
January/February 1991 Edition

RUN
RUN Programs on Disk

For the C-64 and C-128

'»'id.

TiPs For

Extra

Bonus

Programs!

Introduction

January/February '91 ReRUN

WELCOME TO THE JANUARY/FEBRUARY 1991 EDITION of

ReRUN. As many ofyou may realize, RUN will be published on a bi

monthly schedule beginning with the January/February issue, which

means we will publish six issues in 1991. This change reflects our

need to adjust to the reduction in size ofa once robust 64/128 market.

Subscribers to ReRUN will be unaffected by the change in RUN's

frequency, since ReRUN will continue to be produced throughout

the year on its normal bi-monthly schedule. I believe that it's im

portant for all of our ReRUN customers to know that ReRUN will

contain more bonus programs to compensate for the reduction in

the number of programs published in RUN. By increasing the

number of bonus programs in each edition of ReRUN, we have the

ability to deliver the healthy mix of applications, utilities and games

that you've come to expect from us.

We begin this time with Buttons, a truly useful C-64 utility from

the January/February issue of RUN. Buttons gives your computer

the look and feel of a point-and-click user interface. Using a Com

modore 1351 mouse plugged into joystick port#l, you can move

a pointer around the screen. As the pointer passes over buttons

placed about the screen, various messages appear. The program is

useful as a routine for programmers of all skill levels as a framework

for their own mouse-driven operating systems for the 64.

Have you ever tried to print the return and delivery addresses

on an envelope using your computer's printer? Chances are good

that you probably got one good envelope printed after ruining about

four or five. Well, Envelope Addresser to the rescue! Also hailing

from the January/February issue ofRUN, Envelope Addresser gives

your printer the ability to print both "to" and "from" addresses on

business envelopes without a hitch. Give it a try, as I'm sure that

it'll convince you that it's probably the easiest way yet to create

envelopes with your printer.

When you're ready for a little rest and relaxation, boot up Battling

Boas, the next program on the disk. This 100% machine language

action/arcade game pits you against either an opponent or the com-

JANUARY/FEBRUARY 1991 • RERUN i

puter for fast-paced strategy action. The object is to either box your

opponent in, or force them to collide with the trail left behind each

player. It's a challenge at any of its multitude of levels of difficulty.

Bonus programs abound in this edition, and the first is Ques

tionnaire 64/128, written by long-time RUN contributor, Dr. Hugh

McMenamin. The good doctor came up with the idea of a ques

tionnaire generator and its accompanying Analyzer program for

diagnosing the answers to the questions. Whether used for fun or

serious work, Questionnaire provides a good method of collecting

and analyzing data for everything from planning menus at social

functions to organizing after-school activities.

Bring home the flavor of ancient times with Vanquish!, a two-

player C-64 checkers-like game. All that you need to play is two

joysticks and the desire to outwit your opponent.

Next on the list is SAR (Some Assembly Required) 128, a com

mercial-quality machine language assembler for the C-128 written

by RUN's long-time contributor, Jim Borden. Designed for anyone

with a hankering for machine language programming in mind, SAR

128 also includes Jim's AFCO utility, previously published in RUN.

Ifyou've never tried your hand at machine language programming,

give SAR 128 a try and you're certain to find it a comprehensive

way to flex programming muscles.

80-Column 64 creates just that—an 80-column mode for the

C-64 on the 64's 40-column screen. It's the next best thing to owning

a C-128 with its built-in 80-Column mode. 80-Column 64 is followed

by Random Sound 128, designed for the "real" 80-Column mode

on the C-128. You use it to rapidly create a variety of sounds and

sound effects using all three voices of the C-128 SID chip.

A ReRUN diskjust wouldn't be complete without a Tony Brantner

game, and this disk is no exception. You'll find that we've included

Tony's Laser Math to serve as the final program on this disk. With

its three levels and nine speed settings, everyone from first graders

to college students can hone their math skills with Laser Math.

Well, that concludes this edition. Stay tuned, and I'll be back in

two months with another exciting edition of ReRUN.

Technical Manager

RUN Magazine

ii RERUN- JANUARY/FEBRUARY 1991

Directory

Page Documentation

1

5

6

8

11

12

27

29

31

*

#-

\-

BUTTONS

Envelope Addresser

Battling Boas

\ Questionnaire

\ VANQUISH!

* SAR 128

\ 80 Column 64

* Random Sounds 128

\ Laser Math

C-128 mode only

Requires GEOS

Bonus program

Disk Filename

♦MF.NII 128

MFNITfi4

riittons dfmo

ritttonso

SAMPIFO

MOTJSF POTNTFR

MAKF POTNTFR

MAKF SAMPTF

MAKF. RTTTTONS

FNVFTDPF AHDR

ROOT ROAS

ROAS

MAKF ROAS

QIJFSTTONNAIRF

ANATY7FR

VANOTITSH!

SAR 198

%SAR5 42 nOTO

%SARFi 49 nOOO

%AFCO 5.42

SOnOTITMNS

r»FMOi-8n

HFMO9-«n

RANDOM SOUNDS128 _

I.ASF.R MATH

FileTypi

BASIC

BASIC

BASIC

ML

ML

ML

BASIC

BASIC

BASIC

BASIC

BASIC

ML

BASIC

BASIC

BASIC

BASIC

BASIC

ML

ML

ML

BASIC

BASIC

BASIC

BASIC

BASIC

Before you run a program, carefully read the documentation that pertains to it.

JANUARY/FEBRUARY 1991 • ReRUN iii

How To Load

Loading from Menu

To get started, C-64 users should type LOAD "MENU 64",8 and press the

return key. When you get the Ready prompt, the menu is loaded and you

should type RUN to see a list ofthe programs on your disk. C-128 users need

only press the shift and run-stop keys. When all the programs are displayed

on the screen, you can run the one you select by pressing a single key.

Loading from Keyboard

If you do not wish to use the menu program, follow these instructions.

C-64: To load a C-64 program written in Basic, type: LOAD "DISK

FILENAME",8 and then press the return key. The drive will whir while the

screen prints LOADING and then READY, with a flashing cursor beneath.

Type RUN and press the return key. The program will then start running.

To load a C-64 program written in machine language (ML), type: LOAD

"DISK FILENAMES, 1

C-128: All C-64 programs can be run on the C-128 as long as your

computer is in C-64 mode. All C-128 programs are clearly labeled on the

directory page. Your C-128 must be in C-128 mode to run these programs.

To load a C-128 mode program, press the F2 key, type the disk filename

and then press the return key. When the program has loaded, type RUN.

Making Copies of ReRUN Files

Many programs on your ReRUN disk have routines that require a separate

disk onto which the program writes or saves subfiles. To use these programs,

you must first make a copy of the original program onto another disk that

has enough free space on it to hold these newly written subfiles.

It's simple to make a copy of a Basic program. Just load it into your

computer as outlined above, and then save the program back onto a separate

disk that has plenty of free space for extra files.

Copying an ML program is not so simple. You cannot simply load and

save an ML program; you'll need to use a disk-backup utility program, such

as the one on your Commodore Test Demo disk.

rerun january/february 1991

RUN it right: C-64; 1541 drive

Button Up Your Programs
By Kevin Smotherman

DTLF (DOES THIS LOOK FAMILIAR)? HAT (How About This)?

l=Or 2 = Maybe 3 = You 4 = Do 5=This?

I've used all these methods to prompt for user input in my

programs, but they're so cumbersome and cryptic. I finally got fed

up with them and invested a few Saturday afternoons in creating a

better way. Buttons—a flexible user interface system that is friendly

enough for even a novice computerist—is the result.

Buttons has made my programs more professional looking, easier

to use, and typically reduces the size of my Basic programs by 50

percent or more. And since it's written completely in assembly

language, it executes with blinding speed.

If you don't want to convert to a new user-input routine, you

don't have to. Buttons is a point-and-click user interface, using your

proportional mouse in a dialog-box fashion. Integrate the two, using

Buttons for menu selections and your own input routine for data

that requires typing.

What's a Button?

A "button" is a defined object that's used to get selections from

the user. The appearance and function ofeach button on the "button

screen" are defined by table structures. A button consists of three

parts, each ofwhich may or may not be switched on for any particular

button. The first part (which must be present) is the "button text,"

a group ofcharacters (including graphics characters) that's displayed

on the "face" of the button. Think of the button as a key on your

Commodore keyboard; the button text would be the character(s)

on the top of the key.

The second part of a button is the border, a rectangle that sur

rounds the text. You can determine whether or not it will be present.

The last part of a button is the shadow, which appears as reverse

video spaces to the left of and below the button. It gives a button a

JANUARY/FEBRUARY 1991 ■ ReRUN 1

three-dimensional effect, similar to the shadow you see on GEOS

dialog-box buttons.

Button Table

Each part of a button may be a different color, as defined in the

button table, which is a list of button definitions, preceded by a

count of the buttons in that table. When Buttons displays a button

screen, it doesn't erase any part of the screen; itjust puts the buttons

on top of whatever is already there.

Each button is described by a string that may be up to 40 characters

long. Whenever the mouse sprite pointer is positioned over a button,

this description string is displayed in a window. The location and

color of this single-line window is user definable.

Each button also has a "flash control," which comes into effect

when you put the mouse pointer over a button and press the mouse

button. The button may momentarily change colors and then change

Table 1. Button table format.

Byte

1 0-7

2 0-4

6

7

3 0-5

7

4 0-5

5 0-3

4-7

6 0-3

4-7

7 0-7

8 0-7

9 0-7

10 0-7

...

• • •

Bits

0-255

0-31

64

128

0-63

128

0-63

0-15

0-15

0-15

0-15

0-255

0-255

0-255

0-255

. . .

. . .

Function

Number of buttons in this table

Button Y screen coordinate (0 to 23)

Shadow display; on = suppress shadow

Border display; on = suppress border

Button X screen coordinate (0 to 39)

Flash control: on = change, off= flash

Button width

Border color

Button text color (0 to 15x16)

Shadow color

Flash color (0 to 15x16)

Button text pointer, low byte

Button text pointer, high byte

Button description pointer, low byte

Button description pointer, high byte

More buttons

More tables

2 rerun- january/february 1991

back to its original color, or it may remain the new color until

selected again, or until Buttons redraws that button table.

Sound complicated? It's not. Once you've tried Buttons, you'll

never go back to another system!

The format of a button table is shown in Table 1. Note that any

number of button tables may be pushed together back to back, and

you can tell Buttons which to activate. You may define button tables

anywhere in memory as long as everything is consecutive. The easiest

way to define button tables is with an assembler, but you can also

poke them into memory or build them as data files and load them

where you want.

The "button width" includes the border (two characters) and the

shadow (one character). When defining the button width, allow for

the border/shadow only ifthe button is being defined with the border/

shadow option.

The "button text pointer" is a two-byte low/high pointer to a text

string oflength exactly equal to the button width minus 2 (if a border

is used) and/or minus 1 (if a shadow is used).

The "button description pointer" is a two-byte low/high pointer

Table 2. Memory locations to display buttons.

Location

679

680

681,682

683,684

690

691

692

693

828,829

833,834

49152

Function

Button selected (1 to number of buttons)

Button table number to display/activate

(1 to number of tables)

Vector to routine that displays a button table

Vector to routine that activates a button table

Description window Y screen coordinate (0 to 23)

Description window X screen coordinate (0 to 39)

Description window width (0 to 40; 0 = no window)

Description window color (0 to 15; add 128

to use reverse video)

Pointer to start of last displayed button table

Pointer to start of first button table

Address of routine that initializes the Buttons

environment

JANUARY/FEBRUARY 1991 • R E R U N 3

to a text string that is zero-delimited (a zero byte ends the string).

If this text string is wider than the window for button descriptions,

it will be truncated at the window length.

So, now you know how to define buttons, how to group them in

a button table and how to group tables consecutively for Buttons to

display. To display these buttons, refer to the memory map in Table

2 that outlines important memory locations to use.

Using Buttons

To use Buttons, start by loading and running Menu 64, then select

BUTTONS DEMO.

To copy the program files BUTTONS.O, MOUSE.POINTER and

SAMPLE.O to a work disk, simply load and run MAKE SAMPLE,

MAKE POINTER and MAKE BUTTONS with a work disk in the

drive. Then copy BUTTONS DEMO to the same work disk.

MOUSE.POINTER is simply a sprite definition program. You can

define any sprite you want—hi-res or multi-color—provided it is

sprite 0, and you should set address 2040 to indicate what 64-byte

group you want to use to store the sprite. I recommend block 11

(starts at address 704). A complete discussion of sprites is beyond

the scope ofthis article, but the sample program contains an example

of how to set up a sprite for Buttons to use.

Next poke or load in your button table definitions. After this,

poke in the values to position the description window. SYS 49152

will now set up the Buttons program to use these parameters and

will initialize memory locations 833,834 to point to the first free byte

past the actual Buttons driver code. You may change it to point

wherever you want, though.

To display a button table, type in POKE 680 with the button table

number to display, then type SYS PEEK(681) + PEEK(682)*256 to

display the button screen. To activate the buttons and allow the user

to select one, type POKE 680 with the button table number to

activate (if you need to), and SYS PEEK(683) + PEEK(684)*256 to

activate it.

After the user selects a button, the SYS call will return and memory

address 679 will reflect which button was selected (1 to number of

buttons). To reactivate the same table, just repeat the SYS

PEEK(683) + PEEK(684)*256.

If you have a button defined with the Shadow option turned on,

the shadow is what will be flashed by the Buttons driver. If the

Border option is on and the Shadow option is off, then the border

4 RERUN- JANUARY/FEBRUARY 1991

will be flashed. If both shadow and border are off, then the button
text itself is flashed.

With these simple building blocks, you'd be surprised at the

complexity of menu-type structures you can create. And, best of all,
each one is just a point and click away!

RUN it right: C-64; printer

Envelope Addresser
By Kevin McDonald

ENVELOPE ADDRESSER IS JUST the program you need when

it's time to get your mail out. This nifty little program lets you print
addresses—both forwarded (To) and return (From) addresses—on
standard letter and legal envelopes just by using the C-64's function
keys. Your return address is saved in a sequential file on disk, then,
eacb time Envelope Addresser runs, it's loaded automatically.

Load and run ENVELOPE ADDR from Menu 64. When you run

the program for the first time, the message "Loading From Address"
flashes across the screen. Then, because there is no From address
yet, the "Entering a New From Address" screen follows.

Place a formatted work disk in the drive for saving your "To" and
"From" addresses.

Enter your From address one line at a time, pressing the return

key at the end of each line. The first character on each line is a set
of quotation marks provided by the program; it's under the cursor

when the line first appears. Press the cursor-right key once before
typing any line that contains a comma or other punctuation mark.

If you don't, you may get an Extra Ignored error message and lose
everything typed in the line after the punctuation mark. Don't worry

if you forget, though—the line can be corrected after you finish
entering the rest of the address. You can enter a blank line by

tapping the return key when the line first appears. To end the

JANUARY/FEBRUARY 1991 • ReRUN 5

address, type £ as the first character of the line following the address

and then press the return key.

The Menus

There are three Envelope Addresser menus. All menu items are

selected by pressing the appropriate function key.

The From Address menu: Fl lets you quickly change the first line of

the From address—useful when several people have the same ad

dress. F2 inserts a new line into the address; F3 enters a completely

new address; F4 deletes a line from the address; and F5 makes

corrections to any line in the address. F6 is for saving the From

address, as it appears on the screen, to disk. Save the From address

the first time you enter it and any time you make permanent changes

to it. F7 lets you access the To Address menu.

The To Address menu: The F2, F3, F4 and F5 keys are the same as

in the From Address menu, while Fl and F6 are no longer available.

F7 advances to envelope printing.

To print, put an envelope in the printer and press any key. When

printing is done, the Print Options menu appears.

The Print Options menu: Fl prints another envelope; F3 lets you

make corrections in both addresses; F5 enters a new To address;

and F7 exits to Basic.

Now, with this program—and a little help from your friendly

postman—your mail is sure to be delivered correctly!

RUN it right: C-64; one or two joysticks

Battling Boas
By Steve Harter

THE GOAL OF BATTLING BOAS is to add as many segments as

possible to your snaky line of blocks curling around the screen.

When you hit an existing block, either yours or an opponent's,

you're out for the round, and, ifthere are only two players (including

the computer), the round is over. While avoiding collisions yourself,

of course, you should try to force your opponent(s) into collisions.

6 rerun- january/february 1991

The game is designed for either two people, one person and the

computer or two people and the computer. When only one person

is playing, the joystick should be plugged into port 2. The program

is written completely in machine language.

Activate the program by selecting BOOT BOAS from Menu 64.

When the menu screen appears, you must choose the configuration

of players and the other game options (described below) that you

want. Simply move among the menu items by pressing the joystick

forward or backward, and, if necessary, change your choices by

pressing it left or right.

When the game configuration is all set, press the firebutton to

start play. (It won't start ifyou're playing alone against the computer

with your joystick plugged into port 1.)

Soon the game screen will appear, and then a block for each

player at a random location within it. The red block belongs to

player number 1, the green to player number 2 and the blue to the

computer.

Move your block by pressing your joystick in the corresponding

direction. As the block moves, another block will be left in its place,

and then in each location it passes through. Thus, the "tail" of your

"snake" will keep growing, until it reaches the length chosen at the

menu screen. The snake cannot move backward.

The last player to avoid a collision is the winner of the round.

The game continues for the number of rounds chosen at the menu,

and the game winner is the player with the highest score at that

point. When the game is over, press the firebutton to return to the

menu screen.

You can pause the action at any time by pressing the run-stop key;

then press it again to continue. During a pause, you can quit the

current game and return to the menu screen by pressing the Q key.

The Options

Border: If set to "on," the border of the game screen is gray and

impenetrable; if set to "off," the border is brown, signifying that the

snakes can wrap around from one side of the screen to the other.

Speed Up: If set to "on," the snakes gradually move faster; if set

to "off," their speed remains the same.

Random Blocks: If set to "on," extraneous blocks appear on the

screen, obstructing your way; if set to "off," no such blocks appear.

Tail Length: Specifies to what length, in blocks, the snakes' tails

will grow.

JANUARY/FEBRUARY 1991 • R E R U N 7

Rounds: Specifies the number of rounds in a game.

Speed: Specifies the snakes' starting speed. If you don't opt for

speeding up, this will be their speed for the entire game.

Fire: These options specify what happens when you press the

firebutton. "Off" results in no reaction; "inc speed" doubles your

snake's speed; "hyperspace" makes your snake disappear, then reap

pear elsewhere, still moving in the same direction; "leave spaces"

makes blank spaces appear in your snake's tail, rather than blocks;

"skip" lets your snake "pass under" a single block, then "come up"

on the other side. Only one of these options is in effect at a time.

Scoring

Each block you add to your snake is worth one point, and if you

win a round you receive a bonus of 200 points. In addition, the

numbers 20, 40 and 80 will appear randomly on the screen, and if

you can "collect" one, you'll get 20, 40 or 80 points.

There are also little diamond-shaped characters that appear ran

domly on the screen. If you collect one of them, it, in turn, makes

two other characters appear—either two more diamonds or two 20s,

40s or 80s. The diamond is not worth any points in itself.

Now, get busy and prove just how clever you are!

RUN it right: C-64 or C-128 (in 40- or 80-Column mode)

Twenty-five

Questionnaire
By Hugh McMenamin

CONDUCTING A GROUP SURVEY is often time-consuming and

laborious, but now you can generate the forms and tabulate the

results quickly and easily with my Questionnaire and Analyzer pro

grams. Questionnaire prepares a form containing blanks for iden

tification data and up to 25 questions to be answered yes or no with

a check mark. When you enter the information from the question-

8 RERUN JANUARY/FEBRUARY 1991

naires into the Analyzer database, it prints out data on individuals

who checked the yes box for any chosen question.

Be certain that you have a formatted work disk handy. To use

either Questionnaire or Analyzer, just load and run either Menu 64

or Menu 128 and select the one you want. Once either program is

activated be sure to insert the work disk in the drive, since both

Questionnaire and Analyzer read and write files to the disk. Natu

rally, the work disk is needed for subsequent sessions with the

program.

Questionnaire

Ifyou don't begin the session by loading a previously created file,

the questionnaire form prompts you to enter your title, followed by

name, address, city, state, ZIP and an optional special category that

you can define, such as class, parish or age. The actual questions,

which you also type in, must be less than 60 characters long. Provision

has been made for correcting errors in the questions and the special

category name after entry. If there are no corrections, the questions

are stored on the work disk for later recall and use by Analyzer.

The name of the file they're stored in gets a q. prefix.

You can also revise a form after recalling it from disk. If the

revision includes a different number ofquestions, you'll have to save

it in a new file, or all the data previously entered in Analyzer will

be rendered useless.

Your questionnaire can be printed out on any printer. If it's a

daisywheel printer, the variable BX$ in the program should be

changed to brackets, [], or parentheses, (). After printing, you can

make as many copies ofthe questionnaire as you like on a photocopier.

Analyzer

Analyzer is a database program specifically designed for use with

Questionnaire. When it's run, a menu with eight options appears.

First you must choose option 1, to load a question file from the work

disk used with Questionnaire. If there's no previous index file for

those questions on the disk, Analyzer creates a sequential file with

an n. prefix to hold the number of records stored and a relative file

with a d. prefix for data in the records.

After loading the question file from the work disk you created,

select menu option 2 to enter data. You'll be asked for each re

spondent's last name, first name, address, city, state (two-letter

abbreviation only), ZIP code and phone number. If you included a

JANUARY/FEBRUARY 1991 • RERUN 9

special category in the questionnaire, you'll be asked for the response

to that as well. If not, press return to continue. When you're done

entering the identification data, you'll have an opportunity to select

and correct entries. The you'll be asked for the yes/no answers to

the questions in the question file. Again, you can select and change

any incorrect entries. When you indicate the information is correct,

it's saved to the relative file on the disk.

Menu option 3 lets you review any file by number. Option 4 lists

the last name of each respondent in the file chosen from option 3.

Both these options are for information only.

Option 5, the most important, prints a list of yes responders to a

question either on the screen or on both screen and paper. First,

the program displays all the questions in your file, each identified

by a reversed letter. You select the question you want by entering

its letter. Then you choose any identification data—such as address

or phone number—you want printed with each name; it will appear

after the name in the order of selection.

Next, the program will ask if you want a hardcopy. If yes, then

press y (lowercase) to send the output to both screen and printer;

otherwise it will be sent to the screen only.

Option 6 is the master correction section of Analyzer. It displays

the entire list of names in a file on the screen, along with record

numbers. To change a record, enter its number at the prompt, then,

when the record appears, enter the number of the line you want to

change and press return. When the line appears on the screen, the

cursor will be poised over the first character. Type your changes on

the line and press return. Finally, the program will display the file

as corrected and ask if it's okay. If so, answer y and the file will be

saved. Press n (or any other key) to reject the changes.

Option 7 displays the number of files you've entered. If you

decrease this number, the data in the higher-numbered files will be

overwritten when new data is entered.

Option 8 exits Analyzer.

These programs provide an easy way to survey opinion or solicit

help. In either case, if you don't get enough yeses, just rephrase the

questions!

10 rerun january/february 1991

RUN it right: C-64; two joysticks

Vanquish!
By Kurt Ehland

DURING THE TIME OF MIDDLE EARTH, the evil sorcerer

Zepher built a magical arena where armies of monsters battled for

survival. Eventually, only two armies—the red dragons and the

hippogriffs—were left. Vanquish! replays the battle between those

armies—the last battle in the arena.

Vanquish! is a two-person game played withjoysticks. Thejoystick

in port 1 controls the red dragons, and thejoystick in port 2 controls

the hippogriffs. Load and run Menu 64, then select VANQUISH!
to begin.

After the title screen, you'll be asked if you want obstacles on the

gameboard. They make play more challenging, but I don't rec

ommend them for beginners. Then the arena, an 8 by 8 grid, will

be drawn, with the armies arrayed at either end. Each army consists
of eight monsters.

Moves are controlled by dice, which are automatically rolled by

the computer. To "roll," you actually press the joystick firebutton to
stop the die from rolling.

You and your opponent must start by rolling to see who moves

first; the higher roll wins. When it's your turn to move, roll a number

ofspaces, then choose the monster in your army you want to activate.

Here's how to choose: Notice the four dark squares in the corners

around the first-row, first-column space in the grid. Using your

joystick, slide this arrangement of squares onto the space that holds

the monster you want, then press the firebutton.

You can move the monster either forward or sideways the number

of spaces you rolled. A buzzer will sound if it moves the wrong

number of spaces, tries to cross its own path, runs off the grid, or

runs into an obstacle or other monster. When the buzzer sounds

five times, your turn ends.

To banish an enemy monster from the arena, your monster must

land in its space by moving the exact number ofspaces you've rolled.

For example, if you've rolled five, you must move four spaces, then

JANUARY/FEBRUARY 1991 • ReRUN 11

land on the enemy. The winner is the first player to Vanquish! the

entire opposing army.

RUN it right: C-128 (in 40- or 80-Column mode)

The SAR 128 Assembler
ByJim Borden

SAR STANDS FOR some assembly required, and this easy-to-use

128 Assembler is useful not only to the beginner but to the inter

mediate and advanced machine language programmer. SAR's source

code is entered as a Basic program, so you have all the entry and

edit features of Basic 7.0 and a familiar environment. In fact, you

can enter SAR source code without SAR in memory. The only

restriction while entering source code lines is that "fields" (opcodes,

addresses, labels, remarks) must be separated by at least one space.

SAR assembles directly to memory while the source is in memory.

This provides interactive editing much like that of Basic. Assembly

is usually sent to RAM bank 0, but can also go to RAM bank 1 or a

disk file. The source code can be up to about 45K long, which will

assemble to roughly 6K ofmachine language object code (depending

on the size and number of comments used). Source files can also

be linked for very large programs.

Getting Started

To execute SAR128, just select SAR 128 from Menu 128. Both

SAR 128 and AFCO are then activated.

Below is a short program that prints a message to the screen.

Turn on your C-128 and run the SAR Boot program. It's always a

good idea to type NEW before starting to enter your source code.

Now enter AUTO 10 and press return. Enter the program exactly,

as shown, including the deliberate errors. They'll let me describe

how to correct errors.

10 ;PRINT YOUR MESSAGE

20 * = 0B00 ;ASSIGN PC

30 CHROUT=$FFD2

12 RERUN- JANUARY/FEBRUARY 1991

40 ZSTART LDX#0

50 LOOP1 LDA TEXT,X

60 BEQ EXIT ;ZERO BYTE =>END

70 JSR CHROUT

80 INX GET NEXT BYTE

90 BNE LOOP1 ;FORCE

100 EXIT RTS ;DONE-TO BASIC

110 TEXT .BYTE $93,"MY NAME IS SAR",0

120 ZZEND! ;SHOWS LAST BYTE ADR+ 1

When youVe entered all the lines, press return, type AUTO and

press return again. This will cancel the Auto line-number function.

Type L and press return, and you should see the program listed

with the fields in neat columns.

To assemble with SAR, just type A and press return. (All SAR

commands are one character long.) Remember, there are several

intentional errors in this program.

You should now see:

INVALID ADDRESS IN LINE 00020.

NO ORIGIN IN LINE 00040.

Since the No Origin error is "fatal," assembly stops at this point.

Nothing has been assembled yet, since no location was given as a

starting point. Line 20 does give a starting point, but the address

is 0B00, which can't be a decimal address (no prefix means decimal

in SAR). Line 30 just sets the value of CHROUT to $FFD2, so it's

OK, but line 40 tries to assign the label ZSTART to the current PC

location. At that point SAR stops assembly. To correct both problems,

just list line 20, change the first 0 to a dollar sign ($B00) and press

return. Then type A and return to try the assembly again.

More errors! This time you should see:

INVALID ADDRESS MODE IN LINE 00080.

INVALID LABEL IN LINE 00120.

LABEL NOT FOUND IN LINE 00080.

INVALID LABEL IN LINE 00120.

Most errors will be reported on both passes, as you can see here.

Line 80 reports a different error on each pass, but the cause is the

same. All that's required to fix that line is inserting a semicolon (;),

to begin a remark, in front of the comment GET NEXT BYTE. List

line 80 and correct it now.

JANUARY/FEBRUARY 1991 • RERUN 13

List line 120 and delete the exclamation point from the label,

since only letters, numbers and the apostrophe (') are valid label

characters. Then assemble the source again. If you haven't made

any unintentional errors, the code will assemble and you'll see the

Assembled Okay message on the screen.

The code is now ready to use. It's a good idea to save your source

before you assemble it, although we didn't do it here because of the

intentional errors. Save it now, in case there's an error in the machine

language program. Such an error may result in a lock-up and loss

of the program!

To test the machine language code, type BANK15:SYS2816 and

press return. You should see the message in line 110 printed at the

top of your screen. You can change the message if you like. Just be

sure to put it in quotes and include a comma and zero after the

text. The zero is used by the program to detect the end of the

message. Assemble the modified program and then use SYS 2816

to see the results.

To see the labels (or symbols, as they're often called) used by the

program, type T (for table) and press return. This will print the

label table to the screen. If you're using a 40-column monitor, the

labels will be printed two per line. If you print to an 80-column

monitor or a printer, there will be five per line.

Since this machine language program is one continuous block

(that is, the program counter was assigned only once—in line 20),

you can use the S command to save it to disk. Be sure there's a disk

in the drive, then type S and the filename within quotes (for example,

S "MESSAGE"), followed by a return. The S command saves in

memory from the first program counter assignment ($0B00 here)

to the last program counter value at the end of assembly ($OB1E

for the original message).

Syntax of SAR Source Code

The following terms are used in this text to refer to specific

registers:

PC is short for program counter. In a machine language program,

this is the address where the computer is working. In SAR, it's the

address where the next assembled byte will be placed in memory.

A refers to the accumulator in the 6502 microprocessor. SAR uses

the implied addressing mode for the accumulator. This is the same

as in the built-in monitor, but different from some assemblers.

Although SAR will let A be used as a label, it's bad practice to do

14 RERUN- JANUARY/FEBRUARY 1991

so! It could lead to strange errors when the accumulator addressing

mode is used. If A has not been defined as a label, an instruction

such as ROR A will generate an error.

.X refers to the X register within the 6502.

Y refers to the Y register within the 6502.

SAR uses a flexible "floating format" for source code entry. Four

fields are allowed, but not all are required. They are:

[LABEL] OPCODE ADR MODE [;REMARK]

or

[LABEL] PSEUDO-OP [DATA] [;REMARK]

First field labels are shown in lines 40, 50, 100, 110 and 120 of

the sample program above. Any line can have a label after the PC

is assigned. Only equates (as in line 30) are allowed before the PC

is assigned, since SAR wouldn't know what location you wanted to

use (there's no default). Labels should be followed by one space.

SAR can handle more spaces, but they'll just make your source code

bigger.

Standard opcodes are allowed, but A should not be used for the

accumulator in the accumulator addressing mode. For example, if

you want to shift the accumulator left, use ASL rather than ASL A.

Equates, which are used just like Basic variables, give an address

or value to a label. If the address or value will be changed later,

only the equate will have to be changed, then all label references

will change automatically. The syntax for an equate is as follows:

LABEL =12345

or

LABEL=LABEL2

LABEL= LABEL2+$3B

Addition, subtraction, multiplication and division to calculate an

address are allowed to the right of the equal sign.

You don't need a space before or after the equal sign, but the

space will make the L command list the equates in columns. Try

several equates without spaces (for example, CB = $0B00) to see the

difference.

Address Modes

While the C-128's built-in monitor defaults to hex (base 16), most

JANUARY/FEBRUARY 1991 RERUN 15

other assemblers default to decimal (base 10). I prefer a default to

hex, but I followed "the rest of the world" and used decimal.

SAR does not use the plus sign (+) to identify decimal numbers.

This is different from the built-in monitor, but like most other assem

blers. To use a decimal value in SAR, just write it like you usually

would. For example, to load .A with a carriage return, or CHR$(13),

use LDA#13 (decimal) or LDA#1>D (hex). The plus sign is used by

SAR for addition only. For example, STA LOC + 5 would add 5 to the

value of the label LOC and store the contents of .A there.

Labels can have values from 0 to $FFFF. During calculation of

addresses, values up to $FFFFFF (six digits) are valid, but the final

result must be in the 0-$FFFF range. Values higher or lower will

result in an Illegal Address error.

Calculated addresses can include addition (+), subtraction (—),

multiplication (*) and division (/). The * can also be used for the PC

value at that line, if its position is correct. All calculations are handled

from left to right. Any calculation involving the PC will "fill" to that

address, if it's part of a relative PC assignment.

Be very careful with calculations involving labels defined later in

the source. On pass 1, the PC value is used for such undefined

labels, and one or two bytes are reserved according to the result of

the calculation. If the labels Zl and Z2 are defined after the calcu

lation, a line such as LDA Zl—Z2 will assemble as LDA 0 on the

first pass. It might produce a two-byte address after the labels are

defined to their actual values. A Byte Count error would then result

on pass 2. You can avoid this by using the force-absolute character

(<—). The same line written as LDA <—Zl — Z2 will assemble an

absolute address on both passes. Define your labels before the

calculation, if possible, by putting data tables before the calculation.

SAR uses standard syntax for all addressing modes except the

accumulator, as explained above. SAR will use zero page addresses

where possible. For this reason, define all zero page labels before

assembly actually begins. Otherwise, two bytes will be reserved for

the address on pass 1 but only one byte will be used on pass 2. This

will result in a Byte Count error at the next column-one label (not

an equate) or at the end ofthe second pass. The length ofan address

has no effect on how the address is evaluated. For example, if a

16 RERUN- JANUARY/FEBRUARY 1991

dummy address is used in assembly, use a dummy value of 256 or

more. Here's an example:

90 ...

100 STA TARGET+1

110 STY TARGET+ 2

120 TARGET LDA $0000,X ;DUMMY ADDRESS

130 RTS

140 ...

This will assemble line 120 as LDA $00, and line 110 will overwrite

the RTS value (line 130)! SAR will not detect this "error"! The correct

way to write this line with SAR is:

120 TARGET LDA $1000 ;DUMMY 2 BYTE ADR

Since this value is greater than 255, two bytes are required for

the address and the code will work as it was intended to. Since SAR

ignores leading zeros, it's best to write your source without leading

zeros, too—or at least write it as a "one-byte" address, if that's what

you want. Be careful and be sure you understand this point, or

you'll get a Byte Count error when you assemble your code!

You can force SAR to use an absolute (two-byte) address with the

left-arrow (—) character before the address. This makes SAR use

absolute mode no matter how small the address is. An example

would be LDA —$15, which would make SAR produce code with

an absolute address of $0015 (two bytes). The left-arrow will work

only with opcode addresses; it won't work with .BYTE.

The immediate address mode (#) allows an ASCII character or a

high or low byte. ASCII characters must be enclosed in quotes. For

example, LDA#'A" would load the accumulator with a value of $41

(hex) or 65 (decimal).

To load a high or low byte, use the "greater than" (>) or "less

than" (<) character, respectively. Here's an example:

520 ...

530 LDX#<MSG1 ;GET LO BYTE

540 STX TARGET+ 1 ;STORE IN LO ADR

550 LDX#>MSG1 ;GET HI BYTE

560 STX TARGET+ 2

570 ...

1000 TARGET LDA $FFFF,Y ;DUMMY ADR

A program such as this might print one of many messages in a

JANUARY/FEBRUARY 1991 • ReRUN 17

subroutine at line 1000. Lines 530 to 560 would change an address

in the subroutine before it was called. The high and low bytes are

often used to get bytes of an address to store in a vector, too. As

always, the entire address is calculated before the high or low byte

is found. If MSG= $4FE and the instruction LDA#>MSG+15 are

assembled, the resulting code will be LDA#5 ($4FE+15 = $50D),

Note that without the dollar sign, the 15 is interpreted as decimal.

The PC, which keeps track of where the next byte assembled will

be stored, can be changed in several ways. In SAR, it's represented

by the * character. Before any assembly can occur, you must set the

PC with an equate line, such as this:

20 * = $0B00 ;STORE IN 128 CASS. BUF

This line sets the value of the PC to $0B00 (or 2816 decimal).

Usually the PC is assigned only once in this manner. A more

common use for this command is to reserve space for a data block.

That form uses a relative offset of the PC. Assume, for example, that

you want to input a string and save it for later use. The following

line will assign the value of the PC to the label TEXT, "assemble"

five zero bytes starting at the current PC location, and add 5 to the

value of the PC:

1500 TEXT * = * + 5 ;RESERVE 5 BYTES

This same principle would work with a branch address, but you

should avoid it. Here's a short example:

770 BMI * + 4 ;COUNT BRANCH, OFFSET AND ALL BYTES TO

SKIP

780 LDA#10

790 JSR DO'IT ;BMI TARGET IS JSR

If any lines were added between 770 and 790, the offset (* + 4)

would have to be changed by hand. This defeats the purpose of an

assembler! It's much better to put a label at 790 and use that label

as the target for the branch in 770. If lines are added, the assembler

will take care of the changes. (I use a label such as '790 in these

cases.)

The PC can also be set to a label (if the label is assigned a value

first) such as:

1250 * = LOC'2X

18 rerun- january/february 1991

This type of assignment or a relative branch backwards (for ex

ample, * = *—10) can't be used if a file is open for assembly to disk.

Remarks

Using remarks in source code is very important. Like most other

assemblers, SAR treats anything after a semicolon as a remark. Make

remarks clear enough so you'll know what they mean next month

or next year! The only time SAR won't ignore what follows a semi

colon is when it's in text within quotes. Blank lines can be included

for print formatting by putting just a semicolon on a line.

Since the source code is written as a "Basic" program with the

C-128's screen editor, you can't use a question mark unless it's within

quotes. If you do, it will be listed as PRINT. This is, I think, a small

price to pay for the freedom allowed by the C-128's screen editor.

Pseudo-Ops

Pseudo-ops are codes that tell the assembler to do something

other than assemble normal opcodes. SAR uses only seven pseudo-

ops, but can still do what most other assemblers can do.

SAR's pseudo-ops, which begin with a period (.) and are four

letters long, are .BYTE, .WORD, .BANK, .CODE, .DISK, .NEXT

and .LOOP.

.BYTE is followed by data—a table of values, messages, or just

about anything else. You can also use it to store just the high or low

byte of a label or number. Here's an example that shows how to

use .BYTE:

750 DATA1 .BYTE 0,1,2,"A'V<B",uC>DArA2,>DArA3,<DATA2,<DArA3

This line stores the values 0, 1 and 2, the letters A, B and C (as

CBM ASCII), the high bytes oflabels DATA2 and DATA3, and, finally,

the low bytes of DATA2 and DATA3. It can be shortened to:

750 DATA1 .BYTE 0,$102,"ABC",>DATA2,>DArA3,<DArA2,<DArA3

You can combine single-byte values (such as 1 and 2) into a two-

byte hex value. This can save a comma and, if the data was in hex

form, an extra $ character. It's probably better to show each value

as the first example does, and compress your data only if you have

a very large program. The same method applies to text, but the

memory savings are greater since two quotes and a comma can be

saved. If it makes your code unclear, don't compress your data.

The reason why the 0 and 1 weren't combined into a two-byte

JANUARY/FEBRUARY 1991 ■ ReRUN 19

value is that SAR always chooses the shortest form of an address,

and $001 would be stored as just a single byte. The zero byte would

not be stored.

.WORD To the 6502, a "word" is a two-byte address stored in low/

high format. This is the standard way addresses are stored for

opcodes with two-byte addresses. For example, JSR $1234 is stored

in memory as $20 $34 $12, where the first byte is the value for a

JSR instruction and the address follows in low/high order. Here are

the two differences between .WORD and .BYTE:

1. The .WORD pseudo-op always stores two bytes of data for any

number, while .BYTE uses a single byte ifpossible (that is, for values

under 256).

2. The .WORD pseudo-op always stores the data in low/high order,

while .BYTE stores the data as it was entered on the line.

Here's an example that shows the .WORD pseudo-op:

100 LOCI =$1234

110 LOC2 = $2001

120 LOC3 = 256

910 TABLE1 .WORD LOCI- 1,LOC2- 1,LOC3-1 ;STORE RTS'S IN

TABLE

Line 910 will store the following bytes in memory in this order:

$33 $12 $00 $20 $FF $00. Notice that all addresses are stored in

low/high order. In this example, 1 is subtracted from the values
before .WORD stores them. This is a common practice that pushes

the address onto the stack later and "returns" a "fake" RTS to the

address stored plus 1. This is, in effect, a programmable jump

address (common in ROM applications).

Since .WORD is used specifically where a two-byte address is used,

the high or low byte alone (> or <) or any form of string data will

cause an error on a line with .WORD. In these cases, use the .BYTE

pseudo-op instead.

.BANK SAR uses RAM bank 0 as the place to assemble code, unless

directed to use something else. The other options are .BANK 1 and

.DISK (below). The .BANK pseudo-op requires a space followed by

either a 0 or 1. Any other number or a missing space will produce

an error.

If you must store your assembled code in the areas used by SAR

(see SAR Memory Usage, below), you must use .BANK 1 to store

the code in memory. You probably won't be able to test your code

20 RERUN- JANUARY/FEBRUARY 1991

in bank 1 because of the bank switching involved on the C-128.

If you use the .BANK pseudo-op, the S command will produce a

Syntax error, because SAR won't know where the code is stored and

S was designed only for a continuous block in bank 0.

.CODE is used mainly for debugging or listing your final program.

If the two-pass assembly is OK, a third pass is made to output your

actual object code and source code together. The output can be sent

to a printer or disk file by opening the file and using a CMD before

doing the assembly. Oddly, lines containing the .CODE pseudo-op

are not output, but are added at the beginning of the program.

Each time .CODE is found, object code output is toggled on or

off. (At the start of each pass, this output is always off.) If you want

to see only a section of your program, put .CODE at the beginning

and end of the section you want to output and assemble as usual.

If you're using linked source files, be sure to save the file before

assembly!

Source lines that include a .BYTE or .WORD pseudo-op are listed

followed by the actual bytes assembled. If a relative PC assignment

is used to reserve memory (for example, * = * + $15), the code

column will contain [-FILL-] to show that zeros are assembled in

these locations. The pass for .CODE will be done before a .DISK

pass if both are used in a source file.

.DISK saves code to disk as it's assembled. To assemble to a disk

file (instead of to RAM) use the following syntax, where filename

represents the name of your file:

790 .DISK "filename" ;OPEN FILE

To close the file (and assemble in RAM again), use .DISK without

a filename. This is required before another file can be opened.

You can have as many disk files as you need, as long as each has

a different name and one is closed before the next is opened. This

is used mainly where several blocks are assembled at different lo

cations in memory. Be sure to change the PC while the files are

closed or a fatal error will result. Here's the correct way to assemble

several blocks to disk:

10 ;ASSEMBLE MULTI-SEGMENT PROGRAM

20 * = $1BOO ;ASSEMBLE LO SECTION

30 LSTART .DISK "LO MEM FILE" ;OPEN FOR ASSEMBLY

40 ;. . . CODE GOES HERE

50 ;. . . ALL DONE

60 LO'END .DISK ;LABEL OPTIONAL/CLOSE FILE

JANUARY/FEBRUARY 1991 RERUN 21

70 * = $C000 ;SET PC FOR HI BLOCK

80 HSTART .DISK "HI MEM FILE" ;OPEN 2ND FILE

90 ;. . . CODE GOES HERE

100 ;. . .TILL DONE

110 ZZEND .DISK ;END LABEL/FINAL .DISK OPTIONAL

Of course, there's no code shown in this example, but it does

show how to close the file, reset the PC and open the second file.

The final .DISK (line 110) of any program is optional, and the last

file will always be closed properly. The .DISK pseudo:op always

assumes disk drive 8 and uses a file number of 8.

There are several problems that will prevent disk assembly:

1. Any error in assembly.

2. Any disk error.

3. Assigning the PC to a label with a file open (other than a forward

relative assignment).

Note that any section assembled with .DISK won't be assembled

to RAM on any pass. If the two-pass assembly is OK, the assembler

will make an extra pass to do the actual disk assembly. This will

preventjunk files on the disk; only disk drive errors can occur after

the second pass.

.NEXT and .LOOP assemble source files that are too large to fit

into memory. You can safely work with files up to about 175 blocks

without these pseudo-ops.

If your file is larger than 175 blocks or you prefer to work with

smaller source files, SAR will accept a chain of files. Each file should

end with a .NEXT "filename" as the last line, and the filename given

would be the name of the next file in the chain. The final file must

use .LOOP "firstfile" to tell SAR which file to load before beginning

another pass.

If a printer file is open (OPEN4,4:CMD4:A) during assembly, the

load messages will be sent to the screen, but all other messages will

be sent to the printer. The printer channel remains active after

assembly is complete to let all the error messages be sent to the

printer.

Be sure that any edited files are saved to disk before trying to

assemble again! Any changes will be lost if they weren't saved.

Editing SAR Programs

SAR'S L command will list the source in easy-to-read columns.

However, editing these lines might take up more memory, because

22 RERUN JANUARY/FEBRUARY 1991

the C-128 editor will ignore any leading spaces but accept spaces

between fields. For this reason, it's best to list (with Basic) the line

and then edit it. SAR can handle the extra spaces, but they'll use

extra memory, extra disk space and take slightly longer to assemble.

Labels

1. Labels can contain only digits (0-9), letters (A-Z) and the

apostrophe.

2. Labels must not start with a number. A leading digit is assumed

to be a decimal value.

3. Labels can contain a maximum of six characters. Longer labels

will cause an error.

4. Labels can't contain a space.

5. A label can't be a valid opcode or pseudo-op. (Using the L

command will show any opcode used as a label in the opcode

column.)

6. A first-column label starting with a period is assumed to be a

pseudo-op and will cause a fatal (stop-assembly) error. A valid

pseudo-op without a period in the first column will cause a Pseudo-

Op? error. If you want to use NEXT as a label, use NEXT1 or

'NEXT instead.

SAR Memory Usage

SAR uses the following sections of bank 0 memory:

$0200-$029F Used as a buffer for the line being assembled.

$10A0-$10FB Used for bank switching and the like.

$D000-$E8A7 SAR's main program (machine language).

$E8A8-$FEFF Stores the label table during assembly.

There are also several addresses in zero page used by SAR, but

these are used by Basic, too. Addresses $03-$08, $24/25, $3D/3E,

$60-$68, $7A and $DO/D1 are used by SAR.

Direct Mode Commands

SAR provides four direct-mode commands, wedged into the Basic

Syntax Error routine. Each is the first letter of the command's

function:

A assembles the source program currently in memory. The as

sembly can be stopped by pressing any key during a .DISK pass. If

a fatal error occurs, assembly will stop with the error displayed.

Fatal errors are those, such as No Origin, Bank and Disk, that could

cause a system crash.

JANUARY/FEBRUARY 1991 ■ ReRUN 23

The source code for SAR is about 44K long, resulting in about

5.3K of assembled object code, which takes about 20 seconds to

assemble on the first pass and another 13 seconds on the second

pass. SAR always assembles in fast mode, so, if you're using 40-

column mode, the screen will blank during assembly. However,

you'll still hear the bell sound as each pass is finished. When assembly

is complete (or a fatal error occurs), the original speed is restored

and the 40-column screen turned on again.

If there are more errors than will fit on the screen, you have two

choices: fix whatever errors you can see and assemble again or send

all error messages to the printer. To do that, type the following line:

OPEN4,4:CMD4:A:PRINT#4:CLOSE4

If a fatal error occurs, the printer channel will be left open. Just
type

PRINT#4:CLOSE4

and press return. Note that any SAR command can be mixed with

Basic commands. See the Error Message section, below, for more

information about specific causes of errors.

T lists all the labels (symbols) alphabetically in a table. You can

press any key to stop a table listing.

L works with exactly the same syntax as Basic's List command.

However, L prints a cleaner listing of the SAR source program.

S saves your assembled bank 0 object code to disk. You must give

a filename in quotes after the S command, but the drive is always

assumed to be 8. Any disk error will be reported, but a Drive Not

Ready error might require you to turn the disk drive off and back
on.

Any error in assembly will block the S command and result in a

Syntax error if the S command is used. Using the .DISK or .BANK

command will also block the S command and cause a Syntax error.

Error Messages

SAR provides the following error messages:

Assembled Okay Congratulations! Your program assembled and is
ready for testing.

Syntax Error A general error message. Examine the entire line for

possible errors, such as missing spaces.

Label Not Found A pass-2 error caused by a label in an address

field that was never defined. It could be a misspelled label.

24 RERUN- JANUARY/FEBRUARY 1991

No Origin A fatal pass-1 error. Tell SAR where to assemble the

code and try again. The origin line might have another error that

resulted in the PC not being set. This should be very easy to find.

Duplicate Label You've defined a single label more than once. The

easiest way to find this is with the AFCO utility's Find command.

Be sure that all the labels are corrected after this error!

Invalid Label Contains an invalid character or is too long. You

might want to look for this label with AFCO to find and correct all

instances of it.

Invalid Address Probably caused by a bad character in an address

or a missing $ character for a hex number. Remember that addresses

can't exceed $FFFF.

Table Overflow You should never see this! The table can contain

over 700 labels, and SAR's source uses only about 465 of these.

Branch Range Error You tried to branch too far. You'll have to use

a "relay" or a JMP instruction.

Opcode Error You have a bad opcode, probably a spelling error.

All standard opcodes are supported.

Invalid Address Mode Examine your address mode for spelling

errors, a colon starting a remark and other syntax errors in the line.

If all looks in order, see if the address mode you're using is allowed

with the opcode!

Disk File Error An error occurred while using a .DISK pseudo-op.

If a filename is used, it may be too long. You can't open a second

file if one is open.

Invalid Bank Error There's no space after .BANK, or a digit other

than 0 or 1 is used for the bank number.

.Loop Expected Error The last file in a chain of linked files didn't

contain a .LOOP pseudo-op.

Pseudo-Op? A label in the first column is a valid pseudo-op but

doesn't have a period in front of it. You probably used NEXT or

LOOP as a label. Use the AFCO utility to change these to valid labels.

Byte Count Error There was an address defined or calculated as a

single byte on pass 2 after two bytes were reserved for the address

on pass 1. This would result in invalid label addresses. Always define

zero page addresses at the beginning of your source code. This is

a fatal error and is found at the time a first-column label doesn't

match the address that was assigned to it on pass 1. The error

occurred between the line given and the previous first-column label.

JANUARY/FEBRUARY 1991 RERUN 25

Break You hit a key during assembly. Any key but no-scroll will
cause a break.

The AFCO Utility

The AFCO utility was written to support SAR. It's a separate

program so that if it's not needed, it won't use up low RAM memory.

AFCO's code is stored at $1504 to $1AA3 in RAM bank 0. To use

AFCO, just boot it or BLoad it into bank 0 and enter SYS 5380 to

activate its wedge.

This program can Add (append) a program to the one in memory,

Find or Change text in your source program, and Old (unNew) a

program. These commands are explained below. AFCO can be used

with or without SAR. AFCO commands must start in the first column

and can't be mixed with Basic commands as SAR's commands can.

ADD will add a Basic program (from drive 8) to the program in

memory and adjust the pointers as required. This facilitates sub

routine libraries for easy addition to your source files. (It works well

with Basic programs, too—with some planning!) To add a program,

use the following syntax:

ADD"filename"

Line numbers aren't important to SAR, but you should renumber

after all programs have been added.

FIND Use this command to find all occurrences of a string. It

requires a delimiter before and after the text you're looking for.

Quotes, periods and colons work best for delimiters. Use quotes

only if you're looking for text within quotes. Use periods or colons

if you want to find labels. If the source was edited on a C-64, you

might have to use each (one at a time) to find all occurrences. (LOOP

would not be tokenized on a C-64, but would be tokenized if edited

on a C-128.)

CHANGE The syntax to change text is the same as for Find, but

a second string follows the "find" string and there's a third delimiter.

If the quote is used as a delimiter, a colon can be used as the middle

delimiter to prevent the text from being tokenized. The syntax for

Change is as follows:

CHANGE .PRINTPRINT#4,.

or

CHANGE "TON:TIN"

26 RERUN- JANUARY/FEBRUARY 1991

The second form won't let the strings be tokenized, but the middle

colon is accepted as a special delimiter. In any case, you'll be

prompted Y/N/E for yes/no (change) or end for each string match

found. If you want all strings changed (are you really sure!), just

hold down the Y key. Use spaces in the text to avoid substrings. If

you want to find IS, use " IS" to avoid finding THIS. Use common

sense and caution with Change!

OLD If you accidentally "new" a program, the Old command will

restore it for you. This must be done before any lines are added to

the program (after the New command).

RUN it right: C-64

The 80-Column C-64
By Jay Taplin

I WOULDN'T TRADE MY C-64 for the world, but that loyalty

doesn't keep me from wanting certain features available only on the

"bigger computers."

A few months ago, I found myself wishing my 64 had an 80-

column screen, so I wrote a program that would create it. While 80

Columns won't modify professional word processors to print 80-

column characters, you can incorporate it easily into your own

programs.

The Program

The 80-column feature is achieved by using the high-resolution

graphics screen, starting at memory location $2000 (8192 decimal).

The characters are created by taking every other bit value of the

character and placing it in the high nibbles of memory locations

$2A7-$2AD (679-685). Each location in that eight-byte section

stands for one line of the character (0-7). Because the character

values are accessed on request, there's no need for 2K of RAM to

store the 80-column-character data, leaving more room for word

processors and databases to store information.

I wrote 80 Columns in relocatable machine language and made

JANUARY/FEBRUARY 1991 RERUN 27

it accessible from either Basic with SYS commands or machine

language with JSR$ commands. The variables SE, CO, CL and PR

stand for screen SEtup, COlor screen, screen CLear and PRint to

screen, respectively; their values will change if you relocate the

program by changing the value of BA in line 10 of the listing.

Screen Setup puts the computer in hi-res graphics mode. Just

type SYS SE to access this function.

Color Screen sets the background to white and the foreground

(text) to black. I found these the best colors to use on my monitor,

as the smaller text is sometimes difficult to read. If you want to

change the colors, choose a foreground color, multiply its value by

16, add the background color value, then store the sum at CO+ 3

(POKE CO + 3, C).

Screen Clear—SYS CL—erases memory locations $2000-$3FFF

(8192-16383) by erasing the graphics screen.

Ifyou're a machine language programmer, note that Screen Setup

starts on line 15, Screen Color on line 20 and Screen Clear on line

25. The main program starts on line 35.

The character printed is determined by the screen display codes

(Appendix D in the C-64 User's Guide and Appendix B in the Pro

grammer's Reference Guide). Poke (store) the value in $FB (251). Also,

to position the character on the screen, poke the value of X (0-79)

in $FC (252) and the value of Y (0-24) in $FD (253). Once you've

set all the values, enter SYS PR orJSR$ PR, and the character should

appear in the specified location.

The Demos

To use the program, select 80 COLUMN from Menu 64. Once

it's activated, run Menu 64 again and select DEMO1-80 to view the

80-column screen, containing 2000 characters. To view the regular

40-column screen, containing 1000 characters, enter RUN 40.

DEMO2-80 is a simple word processor that lets you type on the

80-column screen using the character, delete, return and cursor-

right keys. Fl displays a menu with four options: Clear, Print, Load

and Save. You can fill just one screen, because there's no scrolling.

To quit the word processor, press run-stop/restore.

Hints

1. Don't use 80 Columns as a replacement for the regular 40-

column screen. I tried this, and the text gets very difficult to read

after a while.

28 RERUN- JANUARY/FEBRUARY 1991

2. Test various colors with Color Setup. The colors I use may not

be the best on your monitor. Also, changing the border color may

help in viewing the characters.

3. Create interrupts to make some sections of the screen 80-

column and others 40-column.

RUN it right: C-128 (in 80-Column mode)

Random Sound

Experimenter
By Daniel Marcek

THE BASIC 7.0 SOUND COMMAND provides programmers with

a rapid way to create sounds for games and other applications.

However, getting the sound just right can be frustrating because of

the number of variables involved. Random Sound Experimenter

makes designing sounds easier, and it also provides a way to learn

the workings and capabilities of the C-128's powerful Sound Inter

face Device (SID).

Refer to your C-128 System Guide, pages 129-137, for Sound

command details.

To use Random Sound Experimenter, load and run Menu 128

in 80-column mode and select random sounds from the menu.

Begin by selecting a sound, randomly generated by the program,

that closely resembles the sound you want. Then fine-tune it by

adjusting its parameters. You can also combine two or three sounds

developed this way for an almost unlimited number of multiple-

voice combinations.

The program is menu driven and runs in 80-Column mode. It

begins by displaying a menu and initial voice parameters, then

sounding voice 1. Parameters of this "active" voice are highlighted

in yellow.

When playing voices simultaneously, an optional delay is available

for postponing the start of any voice after the start of the previous

JANUARY/FEBRUARY 1991 RERUN 29

one. However, you must take care when sequencing sounds with

such delays, because the total time (delay plus actual sounding of

voices) is critical, and slight timing errors introduced by the program

running in real time can throw it off. Fix any errors by fine-tuning

the Duration and Delay parameters.

You can adjust all seven Sound command parameters and the

voice delay (X) within their specified limits. Note that the voice delay

is not included in the Sound command syntax and applies only

within this program.

Program Control

Following are the keys to press to activate various program func

tions:

Press 1, 2 or 3 to select an "active" voice. The chosen number

will be highlighted on the screen, and the sound of that voice will

be played.

Press 4 to toggle between playing a sequence of voices (see 5

below) just once or continuously. You can stop continuous play by

pressing any key. The entire sequence of sounds and delays must

finish before the stop will take effect.

Press 5 to play two or three voices in any order. Enter zero for

voices not to be sounded.

Press 6 to replay voices selected with 5, above.

Press 7 to temporarily save the parameters of the "active" voice

as a "prior" sound before pressing 8 (below) to generate new random

sound. After pressing 8, you can quickly compare the two sounds

by toggling between them within one voice. When you generate a

random sound by pressing 8, all "active" parameters will be lost

unless saved with under option 7.

Press 8 to generate a random sound. When you press 8, all

previous parameters will be lost unless you save them by pressing

7 first (see above). The new sound will play for two seconds.

Press 9 to print out all "active" and "prior" sound parameters as

a reference for future applications.

Press the escape key to leave Random Sound Experimenter and

return to Basic.

30 rerun- january/february 1991

RUN it right: C-64

Laser Math
By Tony Brantner

JUST WHEN YOU THOUGHT the computer skies were safe,

another band of battle-crazed aliens is trying to conquer the earth.

This new threat comes from a distant planet called Equato. The

Equations, known throughout the universe for their savage brutality

and poor table manners, must be stopped! To thwart them, you

need more than luck and quick reflexes—you have to use your

brain.

Laser Math combines arithmetic drill with the classic arcade theme

of aliens invading the earth. Before the game begins, you're asked

to select the math operation (addition, subtraction, multiplication

or division) you'd like to practice, a skill level (from one, the easiest,

to three) and a starting speed (from one, the slowest, to nine). The

skill level you select determines the complexity of the problems

randomly generated by the program. Load and run Menu 64, then

select Laser Math to begin.

When the game screen appears, one to four spaceships carrying

math problems advance toward your base. To shoot down a ship,

type the answer to the problem it poses, then press the return key.

If your answer is correct, a laser beam will destroy the ship. If you

make a mistake typing in your answer, you can erase it using the

delete key.

Occasionally the same answer may be correct for more than one

problem. In that case, the spaceship closest to the base will be

destroyed.

Blast 20 ships from the sky to advance to the next speed. The

game ends if one of the ships lands on your base. Then you can

press any key to return to the opening menu.

As you play, the number of hits and misses you've made are

constantly displayed. Your score—plus two points for each hit and

minus one for each miss—appears at the end of the game. The

higher your score, the better you're getting at Laser Math! ■

JANUARY/FEBRUARY 1991 RERUN 31

REi

RUN
Editor-in-Chief

Dennis Brisson

Technical Editor

Tim Walsh

Managing Editor

Vinoy Laughner

Copy Editor

Peg LePage

Proofreader/New Products Editor

Janice Greaves

Design and Layout

Ann Dillon

Typesetting

Debra Davies

Fulfillment Consultant

Debbie Bourgault

9 Programs Included on this Disk

From the January/February RUN:

► Buttons

► Envelope Addresser

► Battling Boas

Plus: Extra Bonus Programs!

► Questionnaire

► Vanquish!

► SAR 128

► 80-Column 64

► Random Sound 128

► Laser Math

If any manufacturing defect becomes apparent, the defective disk will be replaced free of charge if returned by

prepaid mail within 30 days of purchase. Send it, with a letter specifying the defect, to:

ReRUN • 80 Elm Street • Peterborough, NH 03458

Replacements will not be made if the disk has been altered, repaired or misused through negligence, or if it

shows signs of excessive wear or is damaged by equipment.

The programs in ReRUN are taken directly from listings prepared to accompany articles in RUN magazine.

They will not run under all system configurations. Use the RUN it Right information included with each article as

your guide.

The entire contents are copyrighted 1990 by IDG Communications/Peterborough. Unauthorized duplication is a

violation of applicable laws.

©Copyright 1990 IDG Communications/Peterborough

IDG
- COMMUNICATIONS

PETERBOROUGH

