
RUN Programs Included on this Disk:

Personal Finance Turtle Graphics

Education ProgrammingAids

Small Business Applications

From the SeptemberRUN:

-- The Loan Arranger

* Turtle-Tutor for Tykes

RUN Basic

- Programmers, Take Note!

Sign Maker

Instant Data Statements

From the OctoberRUN:

64 Personal Ledger

High-Resolution Revolution

As the Word Turns

Making a Pointer

Double Vision

Chain Your Programs

Mega-Magic

PLUS Bonus Program:

Halloween Story

II any manufacturing defect becomes apparent, the defective disk will be replaced free of charge if returned

by prepaid mail within 30 days of purchase. Send it, with a letter specifying the defect, to:

RcRUN • 80 Elm Street • Peterborough, NH 03458

Replacements will not be made if the disk has been altered, repaired or misused through negligence, or if it

shows signs of excessive wear or is damaged by equipment.

The programs in ReRUN are taken directly from listings prepared to accompany articles in RUN magazine.

They will not run under all system configurations. Use the RUN It Right information included with each article as

your guide.

The entire contents are copyrighted 1986 by CW Communications/Peterborough. Unauthorized duplication is a

violation of applicable laws.

©Copyright 1986 CW Communications/Peterborough

CW COMMUNICATIONS/PETERBOROUGH

RUNPrograms on Disk

Th« Commodor* C-1ZVC44 Horn* Computing OuU* For the

C-64andC-128*

\AS) CIALLOOK

Al SMALL BUSINESS:
Applications

Buyer's Guide

CAD Programs Reviewed

Easy-to-Use Personal Ledger

INTRODUCING

.... 1 llll.l

1

IT*Commode™C-12&C-W HamCo«*»Bnga*»

l.f. (HIAi'HKIK HJinj;

CES NEW PRODUCT

Hr
HOME FINANCES
-Ouide to Available Software
-Ensy-lo-Use Type-in Program

*128mode

programs included

i nm

Introduction

September-October '86 ReRUN

Welcome to the September-

October edition of ReRUN. Sep

tember and October were theme

issues for RUN magazine, cov

ering personal finance and small-

business applications, so you'll

find several programs on this

disk to help you in these areas.

These issues also contained pro

grams to help you use your

Commodore for education, pro

gramming and graphics.

Let's begin with business and

finance. The Loan Arranger is a

valuable finance aid for both 64

and 128 users. With it, you can

figure out your monthly loan pay

ments, loan balances and am

ortization schedules.

64 Personal Ledger helps you

keep track of savings accounts

and transactions involved with

running a small business. Book

keeping tasks become easier

with this computerized ledger.

Sign Maker lets you create

banners and signs with charac

ters large enough for people to

read from across the room or

across the street. Two formats

are available: sideways printing

for banners up to 40 characters

high and standard printing for

smaller signs.

Make your business presen

tations clearer with Making a

Pointer, a screen-oriented visual

aid for focusing attention on spe

cific aspects of your monitor dis

plays. This is perfect for use with

large-size screens, which many

schools, small businesses and

user groups employ.

Speaking of screen displays,

we have several graphics pro

grams for the whole family. For

children, take a look at Turtle-

Tutor for Tykes, a first step into

LOGO programming on the C-64.

For less structured fun, try run

ning Double Vision, which gives

your kids a treat as they create

colorful, mirrored designs.

For experienced program

mers, check out RUN Basic. The

version on this disk has already

been combined with Basic 4.5,

so all you need do is boot RUN

Basic to have all of the com

mands from these two major Ba

sic extensions. This gives you

extra commands for program

ming disk operations, sprite

graphics, music, windows, turtle

graphics and subroutines.

Specifically aimed at simplifying

high-resolution drawing is High-

Resolution Revolution. Once you

run this program, you'll have eight

powerful commands for drawing

on your C-64.

Mega-Magic is RUN's newest

monthly column, featuring some of

the larger Magic submissions that

are sent to RUN. In October, we

published Scroller, a machine lan

guage routine that lets you scroll

your C-64's screen horizontally.

RUN's Basically Speaking col

umns have provided much infor

mation for those who want to

learn how to program in Basic.

Instant Data Statements, from

September, lets 64 and 128 own

ers convert machine language

programs into data statements

for use within their own Basic

programs. Chain Your Programs,

from October, is a utility for pro

grammers to use when their pro

gram creation exceeds the com

puter's available memory.

For keeping track of important

notes and numbers, we have

Programmers, Take Note! This

computerized notepad resides in

your computer's memory while

you program or run other pro

grams. Just press a key when

you want the notepad to appear

on screen.

For educational fun, As the

Word Turns is bound to keep you

and your family intrigued as you

try to find the words hidden in

this puzzle.

Lastly, to put you in the mood

for the Halloween season, we

have a bonus program, Hallow

een Story. This program will raise

eyebrows when you run it on All

Saint's Eve.

That's all for this edition of

ReRUN. Have fun!

Margaret Morabito

Technical Manager

RUN magazine

Please send me back issues ofReRUN

Cassette version(s) at $11.47*

Disk version(s) at $21.47*

Gamepak

Summer Edition

Fall Edition

Winter Edition

January/February 1986 **

March/April 1986

May/June 1986

July/August 1986

Productivity Pak II

* Ih-ires iwtude postage and handling. Forforeign air mail, please add U.S. $1.50 per item and

$25 per subscription. Prepayment only.

** All 1986 editions contain 128-mode programs and are available on disk only.

D Payment Enclosed □ MC □ VISA D AE

Caul if

Name

Address

City

Signature

Slate

Kxp. Datt

Zip

ReRUN • 80 Elm Street • Peterborough, NH • 03458

Please send me:

□ 1 year (6 issues) for $89.97

□ November/December ReRUN disk for $21.47.*

*AitailabIe in December.

Includesprogramsfor C-64 and C-128 (in both 64 and 128 modes).

Price includes postage and handling. Forforeign air mail, please add U.S. $1.50 per item and

$25 per subscription. Prepayment only.

□ Payment Enclosed D MC D VISA D AE

CmtU

Name

Address

City

Signature

Stale

Exp. Date

Zip

ReRUN • 80 Elm Street • Peterborough, NH • 03458

How To Load
Loading from Menu

To get started, C-64 users should type LOAD "MENU 64",8 and press the return

key. When you get the Ready prompt, the menu is loaded and you should type
RUN to see a list of the programs on your disk.

Loading from Keyboard

If you do not wish to use the menu program, follow these instructions.

C-64:

To load a C-64 program written in Basic, type:

LOAD "DISK FILENAME1'^

and then press the return key. The drive will whir while the screen prints LOADING

and then READY, with a flashing cursor beneath. Type RUN and press the return
key. The program will then start running.

To load a C-64 program written in machine language (ML), type:

LOAD "DISK FILENAME",8,1

C-128:

All C-64 programs can be run on the C-128 as long as your computer is in
C-64 mode.

All C-128 programs are clearly labeled on the directory page. Your C-128 must

be in C-128 mode to run these programs.

To load a C-128-mode program, press the F2 key, type the disk filename and
then press the return key. When the program has loaded, type RUN.

Making Copies of ReRUN Disks

Many of the programs on your ReRUN disk have routines that require you to

have a separate disk onto which the program writes or saves subfiles. In order tor

you to use these programs, you will first have to make a copy of the original

program onto another disk that has enough free space on it to hold these newly
written subfiles.

If the program is written in Basic, it is simple to make a copy of the program.

Just load the program into your computer following the procedures outlined above.

and then save the program back onto a separate disk that has plenty of free space
for extra files.

If the program is written in ML, copying is not so simple. You cannot simply

load and save an ML program. In this case, you'll need to use a disk-backup

utility program, such as the one on your Commodore Test Demo disk.

iii

■:\;/.- •

Halloween Story

By W. O. Nelson

RUN it Right

064

This Halloween program will

delight all the children in your

family and your neighborhood. It

starts with an introductory se

quence, including a background

story printed on the screen, little

sprite pumpkins that pop up from

behind vines and some Hallow

een music. Then the "great

pumpkin" is revealed, hanging

bright orange in the black night

sky. Every few seconds a sprite

witch flies by, and once in a

while lightning flashes and thun

der rolls.

The pumpkin has black eyes

with white sprite pupils that follow

the witch across the screen, and

a black nose and mouth. Curved

vertical lines run up its sides, and

a line circles the top where the

lid should be. The pumpkin is

stored in a picture file called

Pumpkin, which the main part of

the program loads to display the

image on the screen.

To use the program, type

LOAD "HALLOWEEN'\8. The
program is short, but cycles con

tinuously, so you can let it run

all evening if you like. Last year

we put our monitor in the window

so trick-or-treaters could see it.

Believe me, we were the talk of

the neighborhood! d

ReRUN Staff

Technical Manager/Kditor: Margaret Morabito

Technical Editor: Tim Walsh

Managing Editor/I1 roduc I ion: Swain Pratt

Copy Editor: Peg LePage

Proofreader: Harold Bjornsen

Design and Layout: Karla M. Whitney

Typesetting: Doreen Means, Beth Krommes, Ken Sutcliffe

iv 39

Mega-Magic

By Robert Bixby

RUN It Right

C6-t

Scroller is a brief machine lan

guage routine that turns your dis

play into a continuous band

running in either direction across

the screen. Run Scroller Basic. It

automatically saves to disk a

machine language program file

called SCROLLERMLA.

To access SCROLLERMLA,

type in SYS828. The entire

screen will move one column to

the left. Type in SYS892 and it'll

shoot back to where it started.

You can scroll any text screen

endlessly this way, using a con

tinuous loop such as: 10 SYS892:

GOTO10. If you write a program

with a series of Data statements

to be printed vertically on the left

margin of the screen. SCROLL

ERMLA will scroll a message as

long as the memory available in

your computer.

Random Scroller demonstrates

a potentially valuable feature of

this scrolling program. By typing

lines 30-70 into your program

(perhaps as a subroutine) and

setting the variables to appropri

ate values, you can scroll any

section of the screen in either

direction. Set T equal to the num

ber (0-23) of the top screen line

of the section to be scrolled, B

to the number (1-24) of the bot

tom line of the section, R to the

right margin and L to the left

margin.

Load and run Random Scroller

to see what I mean. Enter your

own values for T, B, R and L

See if you can scroll different

sections of the display in oppo

site directions at the same time.

Experiment and have fun. One

note of caution, however: Scroll

ing lines beyond line 24 will

certainly Osterize your Basic pro

gram, and setting T to a value

greater than B is likely to crash

the computer. H

Directory

Page

1

4

7

15

17

18

21

25

28

30

32

33

38

39 £

Article

The Loan Arranger

Turtle-Tutor for Tykes

RUN Basic

Programmers, Take Note!

Sign Maker

Instant Data Statements

64 Personal Ledger

High-Res Revolution

As the Word Turns

Making a Pointer

Double Vision

Chain Your Programs

Mega-Magic

Halloween Story

Disk Filename

MENU 64

LOAN ARRANGER (64/128)

TURTLE TUTOR

RUN BASIC 1.0

DEMO 1

DEMO 2

DEMO 3

DEMO 4

DEMO 5

DEMO 6

NOTEPAD

SiGN MAKER

DATAMAKER 64

DATAMAKER 128

BALANCE SHEET

64/GRAFIX

GRAFIX DEMO 1

GRAFIX DEMO 2

FIND THE WORD

DEMO POINTER

MIRROR

OVERLAY.BOOT

MAIN

SUB1

'SCROLLER

RANDOM SCROLLER

HALLOWEEN

PUMPKIN

File Type

BASIC

BASIC

BASIC

ML

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

ML

NOTE: Do not load indented files as stand-alone programs)

* Be sure to place a different disk in your drive before running SCROLLER.

This program writes a machine language program to disk.

£ Bonus program!

38

65536

57344

53248

4'.) 152

40960

2048

Krrnal ROM

WO Control

Free RAM

Basic ROM

Basic Memory

Basic Work

Area

Figure 1. Typical memory allot

ment in the C-64.

sprite and sound control. Finally,

at the very "end" of memory

(57344 to 65535) is the Kernal

ROM. a set of special machine
language routines used by Basic

for input/output, timer and mem

ory management and other use

ful tasks.

This is, in a slightly simplified

manner, how all the memory in

the 64 typically is configured.

Now let's turn our attention to the

38000 or so bytes reserved for

your Basic program, which I'll re

fer to as Basic memory.

Basic memory contains not
only your program, but also the

values of all the variables and

20-IK

Siring

Storage

Arrays

Variables

Program Text

Figure 2. Basic memory areas

in the C-64.

arrays the program needs as it

runs. When you run a program,

all variables are reset, and Basic

creates space for each variable

and array the first time it's ref

erenced. Variables occupy mem

ory just past the end of the

program text, and arrays are just

past the variables.

String variables are handled in

a special way. Since strings can

vary in length up to 255 char

acters, the string values go at the

top of Basic memory, and only

descriptive information about the

variable (its name, length and

where it's actually stored) is

found with all the other variables.

The Loan Arranger

By Jaap Kroes

RUN It Right

C-64; 0128 (in 40-column mode)

Printer optional

How would you like an amorti

zation schedule of each outstand

ing loan you have, including the

mortgage? By having such a

schedule, you can easily calculate

for tax-deduction purposes the

amount of interest you paid during

the preceding year.

The Loan Calculator and Am

ortization program for the C-64

and C-128 will do all that for

you. It's easy to use, requiring

only input to the questions

asked on the screen. And if you

want a hard copy of the am

ortization schedule, just answer

Y when prompted for it, and

you'll get a neat, easy-to-read

printout.

USING THE PROGRAM

After you run the program, a

menu will appear.

Option 1, Monthly Payments,

consists of three questions to de

termine your monthly payments.

You'll be prompted to enter your

loan principal, the interest rate

and the number of months in the

repayment schedule. This is a

handy feature, since you may

wish to see what effect different

interest rates would have on your

monthly payment.

Option 2, Loan Balance, begins

by prompting you to enter the

amount of your current loan. It

then asks you for the amount of

your monthly payments and how

many you've made, and finally for

the interest rate. The remaining

balance is instantly displayed, and

you are asked if you want to run

another. An N answer returns you

to the main menu.

The most interesting part of the

program is option 3, Amortiza

tion, which will list the figures to

your screen or printer.

Again you are asked to input

the amount of the loan, the in

terest rate and the duration of

the loan in months. You are then

asked if you want a hard copy.

If you answer N, the amortization

schedule of your loan is printed

to the screen. The top three lines

of the screen consist of the col

umn headings. The figures scroll

36

LOAN MENU

1) MONTHLY PAYMENT

2) LOAN BALANCE (PAYOFF

3) AMORTIZE A LOAN

4) END PROGRAM

through the rest of the normal

screen.

After the program loops through

the formulas—one loop per

month—you are informed of the

total amount of your payments

and the cost of the loan. The cost

of the loan is nothing more than

the total of payments minus the

principal amount of the loan.

Please note that on occasion,

when working with large loans,

the amounts may be off by a few

cents. This is due to the method

of rounding, which doesn't al

ways go to the nearest penny.

However, the program has been

exceptionally accurate in most

situations.

If you answer Y when asked if

you want a hard copy, you'll get

a printout of the amortization

schedule. The routine should

work fine with your Commodore

printer as well as with third-party

printers. Tabbing is accom

plished in a rather crude but ef

fective way, using

PRINT#4,""TAB(n)X$

where n is the number of spaces

to tab.

Page advance is automatic by

iiiouiij ui l_.UUillfc;l i\. vVilcii llllb

counter reaches 42 lines, the pro

gram prints a message at the bot

tom of the page and increases the

page number by 1. A form-feed is

code included in the Sower-num

bered lines. When the code in

MAIN or SUB1 is needed, Over

lay chains the appropriate pro

gram into memory starting at line

1000, leaving the beginning of

the program (the common code)

intact. First let's look at Overlay

and how to use it—then I'll ex

plain how it works.

OVERLAY SAMPLE

PROGRAMS

The best way to explain how

to use Overlay is through an

example.

Try loading and running

OVERLAY.BOOT. Notice how

the variable Z is initially set in the

boot program (line 1050) and

then is used to specify where the

main program should begin ex

ecuting before and after calling

up an overlay.

After you see how these ex

amples work, you'll be able to

use overlays in your own pro

grams with a minimum of hassle.

Modify the boot program to suit

your own applications. If you

wish to start your overlays with

another line number besides

1000, all you have to do is

change line 1 of the boot pro

gram and the value assigned to

the variable ZL in line 10.

HOW OVERLAY WORKS

To understand how Overlay

works, it's helpful to understand

how the 65536 <64K) bytes of

memory in the C-64 are used

when you're programming in

Basic.

When you first turn on or reset

the 64, you see the familiar

power-on message that tells you

there are 38911 Basic bytes free.

What happened to the other

26625 bytes'? They're there, but

just not available for use by a

Basic program. Look at the dia

gram in Figure 1.

If you think of the memory in

the C-64 as a string of bytes

numbered from 0 to 65535, your

Basic program typically resides

at the beginning of the area that

starts at location 2048 and ex

tends up to 40959. The 'lower"

part of RAM, from location 0 to

2047, is used by the Basic op

erating system to do housekeep

ing. This space includes memory

for screen management, the cas

sette buffer, important Basic

pointers, and so forth.

The Basic language and op

erating system program is stored

on special ROM (Read Only

Memory) chips, taking up 8K of

memory in locations 40960 to

49151. Next comes a 4K chunk

of memory from 49152 to 53247

that's free to be used for what

ever you like—perhaps for ma

chine language programs that

must coexist with Basic.

Locations 53248 to 57343 are

used for input/output and for

35

THIS IS AN EXAMPLE OF A MAIN

PROGRAM.

PRESS ANY KEY TO LOAD IN

THE OVERLAY.

THIS IS THE OVERLAY.

PRESS ANY KEY TO RETURN TO

THE MAIN PROGRAM.

AND HERE WE ARE BACK IN THE

MAIN PROGRAM.

part. Do I have to include that

code as part of every chained

program?"

Uh oh. Now the problem was

getting harder. The fastest way

out was to tell him that, yes, he

had to include the 10K in every

program. But it would take

longer to load each part, not to

mention the extra disk space

each would occupy. Plus, for ev

ery change he might want to

make to the "common" part of

the code, he would have to

change every program. Keeping

all the parts in sync could turn

into a time-consuming nightmare.

After a couple of hours of ex

perimentation, I came up with a

way to solve this dilemma, It's a

pair of subroutines (one written

in Basic, one in machine lan

guage) that enables you to do

program chaining while protect

ing a portion of the program al

ready in memory. Throughout

the rest of this article I'll refer to

this utility as Overlay.

The only restrictions involved

in using Overlay are that the area

of memory to be protected (I'll

refer to it as the common code)

must be the first part of the pro

gram, and all the overlays must

begin with the same line number.

My friend decided to keep all

the common code in lines num

bered less than 1000. He uses

two overlays I'll call MAIN and

SUB1, both of which start with

line 1000. Overlay's utility sub

routines are part of the common

M 0

1)

2)

3)

4)

N T t

LOAN

LOAN

LOAN

I L Y F A Y

PRINCIPLE ?

INTEREST ?

M E N T

12500

2.9

DURATION (MONTHS)?

MONTHLY PAYMENT :

B| ANOTHER Y.

- $ 362.

36

96

sent to the printer, and the counter

K is reset to 0. The next page

number appears at the top of the

next page and is followed by the

column headings.

When you wish to exit the pro

gram, select option 4. A final

message is printed to the screen,

and the program ends.

All in all, you should find the

program to be a very accurate

and useful addition to your fi

nancial program library. And it

should help you make some in

formed decisions about borrow

ing money prior to your actual

shopping. The amortization

schedule makes tax time a little

easier, since you don't have to

rely on lenders to provide you

with interest-paid information. H

34

. ■

'■■■■■■

Turtle-Tutor

For Tykes

By Peter Crosby

RUN It Right

064

Children under six or seven are
fascinated by computers, but lim
ited in what they can create with
them, since they can't read or

handle detail well enough to pro
gram. I wrote Elmer the Turtle, an

introductory turtle-graphics pro
gram, for my own children so

they could start to program, and
I've found that it can be useful
fun for beginning adults, too.

Elmer is a pen-wielding "tur
tle" who moves about the screen
and draws according to a list of

instructions you create by copy
ing choices from a menu. The
programming is done with only

two screens, the second follow

ing the first automatically. There's
no switching from menu to menu

as in more advanced programs
like Logo. Eleven simple state
ments are sufficient to put Elmer

through reasonably complex ma

neuvers, and four rudimentary

editing commands enable you to

arrange the program listing.

The program is reasonably
crash-proof. If you type in gar

bage, Elmer just says he doesn't

understand and would you please

try again. If it does crash, you can

usually restart it without losing any

thing by typing GOTO 700.

The statement list for Elmer is
limited to 36 lines so that they'll

all fit on one screen. Obviously,

after a while you'll want more

room. That's when you move on

to Logo or regular turtle graph

ics. Since Elmer's vocabulary

and procedures do carry over,

you'll have a valuable head start.

TALKING TO ELMER

As I mentioned, there can be

up to 36 instructions in a list.

Each instruction has a line num

ber. After a couple of introduc

tory screens that explain what

the program is about, a display
appears with an empty list of all

Chaining \bur

Programs

By Michael Broussard

RUN It Right

C-64; V!O20

A friend of mine who is rela

tively new to programming is

working on his most ambitious

project to date—an all-text ad

venture game written in Basic for

the Commodore 64. After a week

or so, he discovered that the 38K

of memory available for a single

program would not be enough.

"Now what do I do?" he asked

me the other day. "I'm out of

memory!"

"Well," I replied, "you'll have

to use program chaining." I ex

plained the fundamentals of

chaining using Commodore Ba

sic. It's quite simple, really. All

you have to do is employ the

Load command from inside a

program. This reads in the new

program specified from disk (or

tape). When it's loaded, it wipes

out the program currently in

memory and then runs automat

ically. As long as the "chained"

program is shorter than the orig

inal, all the variables will be avail

able to the chained program as

well. I even wrote an example

program to show him how it

works:

10 PRINT"THIS IS THE MAIN

PROGRAM. NOW LETS"

20 PRINT-CHAIN TO THE SUB

PROGRAM."

30 LOAD'1SUBPROG",8

When you run this short pro

gram, it executes the Print state

ments shown and then loads a

new program called SUBPROG

from the disk. SUBPROG then

runs automatically.

Armed with his new knowl

edge, my friend went back to

programming, confident his

memory problems were solved.

But, within an hour he was back.

"I've figured out how to break

my game up into parts," he said,

"but there's about 10K of code

that's exactly the same for each

33

Double Vision

By Larry Cotton

RUN It Right

064; 0128 (m 064 modi)

Mirror, Mirror is an excellent

first program to type into your

Commodore 64. When you draw

a pattern with the joystick, a mir

ror image is drawn simulta

neously. This, complemented by

randomness and color, yields

beautiful, magical surprises, aris

ing from the symmetry of the mir

ror image. All the while, a mellow

"Dipping" sound tracks the cur

sors, rising and falling in pitch as

they move.

The liberal use of constants,

which are defined early on, and

a minimum number of If.. .Then

statements ensure quick re

sponse to joystick movements,

even though the program is writ

ten entirely in Basic.

A very short menu at the be

ginning of the program allows

you to change patterns and

colors. To erase drawing, press

the space bar, which brings you

the simple menu again.

To use the program, turn up

the volume on your TV or mon

itor, Plug the joystick into port 2

(next to the power cord) and run

the program. Try pressing the

joystick to the right. Both char

acters will move. You're control

ling the right-hand one, unless

they cross. If they do cross and

continue past the right and left

borders, the cursors will get out

of sync vertically. You can bring

them back into sync by backing

up and retracing your pattern.

To avoid using a lot of If...

Then statements, which slow

down the program, there are

only minimum top and bottom

border checks. You may go to

these borders, but if you keep

pushing the joystick, the pro

gram will end. Press the space

bar for a new start.

Now press the space bar and

answer the questions differently.

You will be truly amazed at the

results! U

32

RIGHT

UP

DOWN

INSERT

LEFT

PEN UP

PEN DOWN

DELETE

CHAR

COLOR

TEXT

BACK TO LINE #

STOP

Table 1. Commands for direct

ing Elmer and for editing the

instruction list.

the line numbers and, at the bot

tom, a menu of three choices.

You can go to a line number

you specify to write in an instruc

tion; you can type E to make

Elmer follow the instructions

you've already written; or you

can type NEW to clear your list

and start afresh. Of course, when

you're just beginning to play,

only the first choice, writing in

structions, is viable. So, type in

the line number you want—prob

ably 1—and hit the return key.

The next screen displays all the

possible instructions for making

Elmer walk and draw, and for

editing the list. (See Table 1.)

Choose a direction for Elmer

to walk by typing the appropriate

word, then tell him how many

steps he should take in that di

rection. You must include the

number—he won't understand

otherwise. When you press the

return key again, your instruction

will appear at the specified line

number in the list.

To make Elmer draw, tell him

PEN DOWN. He'll place his pen

on the screen and draw a trail

behind him. When you say PEN

UP, he'll lift the pen and leave

no mark at all. The drawing in

structions do not need following

numbers.

Elmer usually uses an asterisk

for drawing his trail, because he

thinks it looks like a turtle. How

ever, he'll draw with any other

character you choose. Just type

the instruction CHAR, followed

by a space and the character

you want. For example, CHAR E

makes him leave a trail of Es.

You can request any letter, num

ber or punctuation mark on the

keyboard except the Commo

dore graphics symbols.

Elmer can draw in 16 different

colors. To change color, type

COLOR, a space and the num

ber of your choice, 0 to 15. If

you have a monochrome moni

tor, you can choose from seven

shades.

Even though he's just a silly

old turtle, Elmer can write mes-

■ ■.- }.-rj,_;-,.;,- ■ .. ■

sages if you tell him what to say.

Type TEXT, a space, then a mes

sage from one to ten letters long.

If you have a longer message,
break it up into a few short ones.
You can make Elmer stop

moving anywhere in the list with

the instruction STOP. He'll hold

still until you press any key, then

continue on. It's a good idea to

make STOP the last instruction
on a list, so you can see what

you and Elmer have created.

CHANGING THE LIST
You can alter Elmer's instruc

tions in various ways after you've

written them. As I mentioned ear

lier, NEW erases the whole list.

To erase only one line, specify
the line number, then type D for

delete. The instruction at that line
number will disappear, and all

the ones below it will move up.
If you need to change an in

struction instead of erasing it,

type the new version after des

ignating the line number. To add
a line between two others, type

the number of the second and

an I for insert. That line will clear,

and its instruction and all those

following will move down. Then,

by accessing that line number

again, you can fill in the blank.

By the way, if you should leave

blank lines in the list, Elmer won't

mind. He'll just ignore them and
plod along.

At any time you're on the sec

ond menu screen, you can

change the line number you're

working at by typing B, for Back

to Line #. This recalls the first

menu screen, where you can

choose another line number.
You know, Elmer may not be

very smart, but he has endless

patience. He never tires of read

ing your list and walking around

the screen following directions.

He tells you when he doesn't
understand, and gives you as

many tries as you need to get it

right.

Nowadays, when I'm done us

ing our Commodore, I load in

Elmer the Turtle and leave it on.

More often than not, some visitor

passes by and starts to play.

Bingo!—another programmer is
born. \E

v't -....

The actual machine language

program is 175 bytes long and

is loaded at address 49200. If

you want to run Demo Pointer

with another program that uses

that section of memory, you may

load the Demo Pointer machine

language routine into a different

part of memory simply by chang

ing the address in line 370.

You can't move the arrow

while either the disk drive or Da-

tassette is active, as the com

puter is too busy to accept the

clock interrupts. Moving the

pointer while typing can cause

entry errors; this is because the

joystick and keyboard share a

register in the complex interface

adapter (CIA). E

31

Making a Pointer

By John M. Campbell

RUN It Right

064; joystick in port 2

Demo Pointer, written in Basic,

places on the screen a pointer

in the form of an arrow. You con

trol the pointer's movement with

a joystick plugged into port 2.

You can use Demo Pointer

with other Basic programs to

point to locations in text or charts

on the screen. This is especially

helpful at club meetings or in the

classroom.

Before running Demo Pointer,

plug your joystick into port 2.

Pushing the fire-button once

turns the pointer off, and pushing

it again turns it back on. If you

move the pointer off one side of

the screen, it will reappear im

mediately on the other.

Once you run the program,

you'll be prompted to select the

size and color of the pointer. The

program will then poke into mem

ory a short machine language pro

gram that controls the pointer's

movement independently of what

ever else you've loaded into the

computer's memory.

The C-64 allows you to define

up to seven sprites for display

on the screen. The pointer arrow

is just such a sprite. The pattern

of bits that compose it are con

tained in the Data statements in

lines 300-360. You may alter the

form of the sprite from an arrow

to a hand or a turtle simply by

changing the numbers in those

lines. The Commodore 64 Pro

grammer's Reference Guide de

scribes in detail how to define

your own sprite.

PROGRAM LIMITATIONS
Demo Pointer was written to

be as flexible as possible, but it

has a few limitations.

It will run with just about any

Basic program except those con

taining sprites or using a joystick

in port 2. Demo Pointer uses lo

cations 679-767 to hold the

sprite and perform other house

keeping chores, so it can't co

exist with other programs that

use those addresses.

RUN Basic

By Robert Rockefeller

RUN It Right

C-64; Basic 4.5

RUN Basic, an extended Basic

for the C-64, adds 30 new com

mands to Basic 4.5 (published in

RUN's June, July and August

1985 issues). RUN Basic in

cludes commands for graphics,

structured programming and

named subroutines with local

variables, among other features.

It is aimed at fairly competent

programmers, and even they will

need to closely examine the
demo programs to learn how to

use these new powerful com

mands effectively.

To load RUN Basic 1.0 from

disk, just execute:

LOAD "0:RUN BASIC 1.0lp,8,1

Once the program loads, enter
SYS64738 and press the return

key to start it.

TURTLE GRAPHICS

Most of RUN Basic's com

mands are for turtle graphics, so

we'll start with a description of

these. In most forms of turtle

graphics, the cursor is a crude

representation of a turtle, to be

imagined as holding a pen. You

move the turtle with commands

such as

AHEAD 30: TURNTO HEADING+ 1:

BACK 59

When the turtle pen is down,

you may draw or erase lines on

the screen; when it's up, you can

move the turtle without having it

draw anything.

RUN Basic doesn't use a turtle

because it slows the drawing

process. For the sake of con

sistency, however, I refer

throughout this article to the cur

rent position of the drawing pen

on the hi-res screen as a turtle.

When plotting turtle graphics,

RUN Basic uses a standard

Cartesian coordinate system with

the origin (0,0) at the lower left

of the screen. The screen is 320

pixels wide and 200 pixels high.

Many of RUN Basic's turtle

graphics commands require you

to supply a color in the param

eter string. The colors are spec

ified as follows:

30

■

0—black 8—orange

1—white 9—brown

2—red 10—light red

3—cyan 11—dark gray

4—purple 12—medium gray

5—green 13—light green

6—blue 14—light blue

7—yeilow 15—light gray

TURTLE GRAPHICS

COMMANDS

HIRES Command format: HIRES

< screen-color (0-15), plot-type-

color #1 (0-15)>.

HIRES initializes a high-resolu

tion bit-map graphics screen, but

it does not clear the screen. This

permits the Hi-res mode to change

the current colors while drawing. It

also permits all 16 colors to be dis

played simultaneously on the

high-resolution screen. Each block

of the hi-res screen is eight pixels

wide and eight pixels high and

can have a unique screen and plot

color combination. Sample RUN

Basic line:

10 HIRES 1.0 : REM WHITE HI-RES

GRAPHICS SCREEN WITH BLACK

PIXELS

MEDRES. Command format:

MED-RES <screen-color (0-15),

plot-type-color #1 (0-15), plot-

type-color #2 (0-15), plot-type-

coior #3 (0-15)>.

MEDRES is similar to the

HIRES command except that it

initializes a multicolor graphics

mode. In Med-res mode, each

four-pixel-wide by eight-pixel-

high block of the med-res screen

can simultaneously display three

different colors, plus the screen

color. By using MEDRES to se

lect new drawing colors, all 16

colors can appear on the same

med-res screen. Sample RUN

Basic line:

10 MEDRES 0,7,3.4: REM YELLOW,

CYAN & PURPLE DRAWING

COLORS ON A BLACK SCREEN

TEXT. Command format: TEXT.

The TEXT command reverts

the screen from Hi-res or Med-

res mode to the text screen.

Sample RUN Basic line:

10 TEXT REM TO LOW-RES SCREEN

GCLR. Command format: GCLR.

GCLR clears the graphics

screen. This command should

be executed at the beginning of

every RUN Basic turtle graphics

program, to clear the graphics

screens. Sample RUN Basic line:

10 GCLR: REM CLEARS HIRES &

MEDRES SCREENS

PEN. Command format: PEN

< plot-type (0-3) >.

PEN determines whether RUN

Basic's pen will draw or erase

when lowered. Following is a de

scription of each plot type.

0—Erases with screen color in

Hi-res or Med-res mode.

1—Plots in Hi-res mode with the

plot-type color selected in the

HIRES command. In the Med-res

8

FIND THE WORDS

MODEM PROGRAM CURSOR

*♦*******#************************

* *

♦ RCURSOROOR*
4 *

♦ OMOURPODMP*
* *

UCPROGRAMO
* *

»DDODRDOPCP*
♦ *

♦ OOORMMMDPH*
♦ *

UCDR(JEPPOO

* ■*

♦ RCUODMDOPR*
* *

• COOPUCPOOO*
* ♦

• OOOODCOOMP*
*)t

*PURORDOOOR<
* ♦

Figure 1. An example of a 10 by 10 puzzle.

I added an option for smaller puz

zles. The grids now can range

from 10 by 10 to 20 by 20, with

the number of words adjusted for

the puzzle size.

You can also make puzzles

with numbers or graphics char

acters. Figure 1 is an example—

a 10-by-10 puzzle composed of

letters, numbers and graphics

characters.

Many people wrote saying

they were using the puzzles for

everything from church bulletins

to TV fact magazines. At my

school, we always put one in our

monthly school newspaper. If

you are using the puzzles in an

interesting way, I'd like to hear

about it. I'd also welcome any

ideas you have for further en

hancements to the program. tffi

29

As the Word Turns

By Gerald Caron

RUN It Right

064; VIC-20; printer

Find the Word 3.0 is a revision

of my Find the Word program

that appeared in the October

1984 issue of RUN. After it ap

peared, I received many letters

from people who had been look

ing for such a program, and

many fellow teachers wrote to

thank me for my efforts. Some

writers offered suggestions; oth

ers wished the program had ad

ditional functions.

One of the most requested

functions was the ability to save

and load puzzles to avoid having

to type all the words in again. I

have provided this by using se

quential files. With this feature,

the puzzle also prints out im

mediately after loading, and

there's no waiting for set-up or

placements.

I have added disk error trap

ping, as well, to help prevent

crashes, and now include a ,WS

in the name of the puzzle file so

you can spot it more easily in

the directory. You don't have to
add the .WS when you load a

puzzle because the program

does it automatically.

The routines for these proce
dures are located after line 1000

in the program listing. They store

the grid and the word direction

and puzzle size options that I'll

discuss shortly.

Another feature I've added is

an option to have the same

words in a different grid. If you

ask for a new grid, all the arrays

except the word array have to

be reinitialized. This is taken care

of starting at line 1200. Now you

can use the same words over

and over, but get entirely differ

ent puzzles.

A word-direction option was

something I wanted to add after a

teacher at my school told me the

reversed and slanted words were

too difficult for younger children.

Then I received a letter from a

reader who had added that option

plus one for puzzle size. Realizing

that a small puzzle with words
going only across or up and down

could be done by almost anyone,

28

mode, drawing will be done with

plot-type color #1.

2—Plots in Med-res mode with

Med-res color #2.

3—Plots in Med-res mode with

Med-res color #3.

Sample RUN Basic lines:

10 PEN 0: REM LINE ERASES AS IT

PLOTS

10 PEN 3: REM LINE DRAWS AS IT

PLOTS

PENUP. Command format:
PENUP.

PENUP is used to stop draw

ing. After PENUP is executed,

drawing commands such as

AHEAD, BACK and MOVXY will

not draw. RUN Basic's turtle

moves to its new location without

drawing a line. Sample RUN Ba

sic line:

10 PENUP: REM STOP PLOTTING

LINE HERE

PENDOWN. Command format:
PENDOWN.

PENDOWN is the Default mode
and allows lines to be drawn when

RUN Basic's turtle is moved. Sam

ple RUN Basic line:

10 PENDOWN : REM RESUME OR

BEGIN PLOTTING HERE

AHEAD. Command format:

AHEAD <number of units>.

AHEAD moves the turtle the

specified number of pixels

ahead. Sample RUN Basic line:

10 AHEAD 30.5 : REM MOVE TUR

TLE 30.5 PIXELS FORWARD

BACK. Command format: BACK

< number of units >.

BACK moves the turtle the

specified number of pixels back

wards. Sample RUN Basic line:

10 BACK 162: REM MOVE TURTLE

BACK 162 PIXELS

MOVXY. Command for

mat: MOVXY <x-coordinate,

y-coordinate>.

MOVXY moves the turtle to the

position specified by the x,y co

ordinates. If the pen is down dur

ing the execution of MOVXY, a

line will be drawn. Sample RUN

Basic line:

10 MOVXY 10,39: REM MOVE TUR

TLE TO THE INTERSECTION OF X

(10) AND Y (39)

MOVX. Command format:

MOVX < x-coordinate >.

This command moves the tur

tle to the specified x-coordinate.

Sample RUN Basic line:

10 MOVX 100: REM MOVE THE TUR

TLE TO THE X-COORDINATE (100)

MOVY. Command format:

MOVY <y-coordinate>.

This command moves the tur

tle to the specified y-coordinate.

Sample RUN Basic line:

10 MOVY 199 : REM MOVE THE

TURTLE TO THE Y-COORDINATE

(199)

TURNTO. Command format:

TURNTO < angle >.

TURNTO points the turtle in

the specified direction. The angle

9

,■■■

must be in radians, as used in

Basic 2.0. A radian is a unit of

measure for angles or arcs. To

convert degrees to radians, use

the following equation:

Radian measure of an angle =

number of degrees *?r/180

An angle of 0 (radians or de

grees) points the turtle to the

right, on a heading parallel to the

x-axis. An angle of ir/2 radians,

or 90 degrees, points it straight

up, parallel to the y-axis. Sample

RUN Basic line:

10 TURNTO .4 : REM POINTS THE

TURTLE UP AT AN ANGLE OF 23

DEGREES MEASURED

COUNTERCLOCKWISE FROM THE

0 DEGREE DIRECTION.

LEFT. Command format: LEFT

< angle >.

LEFT turns the turtle left from

its current direction by the spec

ified angle (always in radians).

Sample RUN Basic line:

10 LEFT .3 : REM TURNS THE TUR

TLE 17 DEGREES TO THE LEFT

RIGHT. Command format:

RIGHT <angle>.

This command turns the imag

inary turtle right by the specified

angle. Sample RUN Basic line:

10 RIGHT t/4: REM TURNS THE

TURTLE 45 DEGREES TO THE

RIGHT

PUTCHAR. Command format:

PUTCHAR < screen-code-value

(0-255) >.

The PUTCHAR command

draws the specified character at

the current turtle position. The

character is specified by its

screen-code value, not its ASCII

value. Check your user's guide

for a table of screen codes. Sam

ple RUN Basic line:

10 PUTCHAR 1: REM PRINT AN "A"

AT CURRENT POSITION

HOME. Command format:

HOME.

HOME moves the turtle to the

center of the screen. Sample

RUN Basic line:

10 HOME : REM MOVE TO CENTER

OF SCREEN

PLOT. Command format: PLOT

< plot-type (0-3), x-coordinate

(0-319), y-coordinate (0-199)>.

The PLOT command plots one

pixel at the specified coordinates

using the specified plot-type (see

definitions of plot-types under the

PEN command, above). The lo

cation of RUN Basic's imaginary

turtle has no effect on this com

mand. Sample RUN Basic line:

10 PLOT 1,100,38 : REM PLOT A VISI

BLE PIXEL AT X (100), Y (38)

XPOS. Command format: XPOS.

XPOS returns the current x-co

ordinate of the turtle's posi

tion. Sample alternative RUN Ba

sic lines:

10 A = XPOS : PRINT A: REM PRINTS

CURRENT X POSITION OF TURTLE

10 PRINT XPOS : REM PRINTS CUR

RENT X POSITION OF TURTLE

10

cessing loop. You can reactivate

the program with SYS 49152.

FOR YOUR INFORMATION

The 64/Grafix program resides

in the 4K of RAM from $C000

to $C4D0. The area from $C800

to $CBFF is used as the color

screen, and the RAM under the

operating system ROM from

$E000 to $FFFF is used for the

graphics screen. 64/Grafix takes

no memory space away from Ba

sic; the area from $0800 to

S9FFF remains completely free

for Basic programs.

I've included two demo pro

grams to help you further under

stand and use the 64/Grafix

commands. The first demo pro

gram draws several figures on the

screen and then waits for a key

press. If you want to exit the pro

gram, press F1; otherwise, press

any other key to continue.

The second demo is a joystick-

controlled (port #2) drawing pro

gram. F1 clears the screen and

sets the background and fore

ground colors; F3 clears the

screen; F5 exits the program. M

27

it is determined by the following

formula:

n = (background color) +

(foreground color)*16

For example, if you wanted the

background red and the fore

ground blue, n would have to

equal 2 + 6*16, or 98.

!BL,b,n—The Block command

lets you choose the background

and foreground color for any

8x8 block on the graphics

screen. The screen is divided

into 1000 blocks, which are num

bered from 0 to 999, starting at

the top left-hand corner and

moving right. The first parameter

in this command is the block

number (b), and it is determined

in the following fashion:

b = (column) + (row)*40

Of course, on the C-64 there are

25 rows and 40 columns. The sec

ond parameter for this command

(n) sets the background and fore

ground colors for the specified

block, using the same form as the

previous command.

!PL,x,y—This command plots a

point at the coordinates x and y,

or erases a point at the same

coordinates. It all depends

whether the pen is on or off (see

the !PN,n command). The pa

rameters x and y are offset from

the top-left corner of the screen

and have a range of 0-319 for

x and 0-199 for y.

IDR,x1(y,,x2,y2—This command

draws a line from point x^y, to

the point x2ty2. As before, the line

is plotted or erased depending

on whether the pen is on or off.

!CR,x,y,r—This command draws

an oval, given the center coordi

nates x,y and the radius r. The

radius must be within the range

of 0-255, although, as you'll see

in most cases, the largest possi

ble radius will be around 110-

130. To make this command

more versatile, you may multiply

the vertical distance by a fraction,

allowing you to draw anything

from a wide short oval to a tall

narrow one. The following two

memory locations are used to in

put the numerator and denomi

nator for the fraction (N/D):

POKE 50243.N

POKE 50251,D

The program at this point as

signs N/D = 9/,,. I arrived at this

fraction by measuring a few pix

els parallel to the x-axis and the

same number of pixels parallel

to the y-axis. From these mea

surements, I calculated that the

length of nine pixels in the hor

izontal direction is equal to the

length of 11 pixels vertically.

Thus, multiplying a given vertical

distance by % will make the

ovals appear more like true cir

cles than ellipses.

!EX—This command exits 64/

Grafix from the command-pro-

26

YPOS. Command format: YPOS.

This command returns the cur

rent y-coordinate of the turtle's po

sition. Sample alternative RUN

Basic lines:

10 A = YPOS : PRINT A: REM PRINTS

CURRENT Y POSITION OF TURTLE

10 PRINT YPOS : REM PRINTS CUR

RENT Y POSITION OF TURTLE

HEADING. Command format:

HEADING.

HEADING is used to determine

the angle of the direction in which

the turtle is currently pointing.

Sample RUN Basic lines:

10 A = HEADING : PRINT A : REM

PRINTS CURRENT ANGLE TURTLE

IS POINTING

10 PRINT HEADING : REM PRINTS

CURRENT ANGLE TURTLE IS

POINTING

10 TURNTO HEADING+ .1 : REM

TURN TO CURRENT HEADING

PLUS .1 RADIAN

COORDS. Command format: CO

ORDS (x-coordinate, y-coordinate).

This command returns the di

rection from the turtle's position to

the specified coordinates. Sample

RUN Basic lines:

10 A = COORDS(0,0) : PRINT A : REM

PRINTS THE DIRECTION OF THE

POINT (0,0) FROM THE TURTLE'S

POSITION

10 PRINT COORDS(31,29) : REM

PRINTS THE DIRECTION OF POINT

(31,29) FROM THE TURTLE'S

POSITION

10 TURNTO COORDS(150.36): REM

TURNS TURTLE TOWARDS (150,36)

RPtX. Command format: RPIX (x-

coordinate, y-coordinate).

RPIX is used to return the plot-

type used to draw a pixel. The

plot-type returned in Med-res

mode will vary from 0 to 3. In Hi

res mode, the plot-type returned

will be either 0 or 1. Sample RUN

Basic lines:

10 A = RPIX{300,150): PRINT A : REM

PRINTS THE PLOT-TYPE USED AT

300.150

10 ON RPIX{QT,QS) GOSUB 100.200 :

REM GOSUB WHEN THE ARGU

MENT IS SATISFIED

SPRITE COMMANDS

DATCOLL. Command format:

DATCOLL.

DATCOLL returns the contents

of the sprite-background collision

register. If a sprite collides with the

background, its corresponding bit

is set. Bit 0 corresponds to sprite

1, bit 1 corresponds to sprite 2,

etc. Sample RUN Basic lines:

10 IF DATCOLL AND 128 THEN GO

SUB 1000: REM HANDLE SPRITE 8

COLLISION

10 A= DATCOLL : PRINT A : REM

PRINTS SPRITE/BACKGROUND COL

LISION OCCURRED

10 PRINT DATCOLL : REM PRINTS

SPRITE/BACKGROUND COLLISION

OCCURRED

MCOLL. Command format:

MCOLL.

MCOLL returns the contents of

the sprite-sprite collision register.

When two sprites collide, their cor-

11

.

responding bits are set. The

sprites are then mapped to the

register bits in a slight variation of

the method explained under DAT-
COLL. The difference is that the
collision of two sprites sets two bits
instead of one. Sample RUN Basic
lines:

10 IF MCOLL =4+2 THEN GOTO 6000

: REM SPRITES 3 AND 2 HAVE

COLLIDED

10 IF MCOLL = 8+16 + 32 THEN GOTO

4000 : REM SPRITES 4, 5 AND 6

HAVE COLLIDED

10 PRINT MCOLL : REM PRINTS IF

SPRITE/SPRITE COLLISION OCCURS

10 A = MCOLL : REM IDENTIFIES

SPRITE/SPRITE COLLISION

OCCURRED

STRUCTURED

PROGRAMMING

SUB. This is used to declare a
named subroutine that can be ex

ecuted with the CALLSUB com

mand. The subroutine's name

must follow the SUB command

and may be up to 31 characters

long, though only the first four let
ters are significant.

Unlike variables, Basic com
mands can be embedded within

the name. SUB PRINT-IT(A$) is an

acceptable subroutine title. Punc

tuation and spaces can be used

within the name, but graphics
characters cannot.

Parentheses that enclose an op
tional list of variables must follow

the name. The optional list of vari

ables contains any values to be

passed to the subroutine. This

passing of values is similar to the

Basic 2.0 DEF FN command, ex
cept that up to 35 values may

be passed to a subroutine; only

one value may be passed to a

function.

When the SUB command is ex

ecuted, it scans ahead in the pro

gram, looking for the SUBEND

command, which will be de

scribed next. If SUBEND is not

found, a Syntax error occurs.

If SUBEND is found, the sub

routine is initialized, and program

execution is resumed at the line

following SUBEND. The code be

tween SUB and SUBEND is ex

ecuted only when the subrou

tine is called with the CALLSUB

command.

The variables enclosed by pa

rentheses following the subroutine

name are local variables, mean

ing that they are referenced only

when the subroutine is executed.

After the subroutine finishes exe

cuting, all local variables created

by the subroutine are no longer

accessible.

This allows you to use the same

variable name twice—once within

the subroutine and once outside

the subroutine.

SUBEND. SUBEND is used to

mark the end of a subroutine and

is equivalent to the RETURN com

mand used in Basic 2.0 subrou-

12

High-Resolution

Revolution

By Henrik Markarian

RUN It Right

064

High-resolution color graphics is

one of the C-64's main features,

yet C-64 Basic doesn't provide

any commands to let you easily

take advantage of it. For example,

there is no command to clear the

high-resolution screen. Instead,

you must poke 8000 memory lo

cations with zeros; in Basic, this

takes about 30 seconds. Plotting

a single point requires a lot of

computation and time.

The 64/Grafix program aug

ments 64 Basic with eight com

mands that make it easy for you

to draw high-resolution pictures.

The program is written entirely in

machine language, although it is

in the form of a Basic loader.

64/GRAFIX COMMANDS

You must precede each com

mand with an exclamation point

to let the 64 Basic interpreter

know that it is a special com

mand. If the commands follow an

If...Then statement, you must

precede them with a colon, too,

or an error will occur.

ISC,n—This command turns the

high-resolution screen on or off,

depending on the value of n. If

n = 0, then the high-resolution

screen is turned off, and the reg

ular text screen displayed. If

n = 1, the high-resolution screen

is turned on but not cleared. Set

ting n = 2 will turn on the high-

resolution screen and clear it.

!PN,n—This command turns the

pen on or off, depending on the

value of n. If n = 0, then the pen

will be off, and points (pixels) will

be erased; if n = 1, the pen will

be on, and points (pixels) will be

plotted.

iCO,n—This command colors in

a background and foreground

color on the entire graphics

screen. The parameter n must be

within the range of 0-255, and

25

command (CHR$(12)). The num

ber of entries per page has been

set at 56 in line 2880. This allows

for a fair degree of error in po

sitioning the paper. If you wish,

you may increase this by four or

five entries. Page 1 automatically

has five fewer entries to allow

space for the headings.

To accommodate non-Com

modore printers and interfaces,

you may have to make some

alterations to the print routine.

Commodore printers perform an
automatic linefeed after printing

a line, and the Print routine ex

pects this. If your printer is over

printing lines, you'll have to add

a linefeed after line 2910. For

example:

2915 PRINT#,CHR$(10)

If the paging option won't work

on your printer, try replacing line

2920 with:

2920 IF SP = 56 THEN FOR ZZ=1 TO

10:PRINT#4.CHR$(10):

NEXT:SP = 0

With this substitution, your

printer should do ten linefeeds at

the bottom of each page. If it's

doing 20, then your interface is

adding an additional linefeed

whenever it receives a linefeed

command from the program.

Solve this by changing "zz =

1to10" to "zz=1to5".

%:Reestablish File. You use

this function when a file is full or

if you wish to eliminate the older

entries. (The file must contain at

least five entries for this function

to work.) This is the most con

fusing and dangerous function of

the program. I suggest you cre

ate a dummy file and try it out

before using it with a real file.

This operation establishes a

new file under the same filename

as the old one, with the current

balance carried forward along

with the number of entries you

select. If you wish to preserve

the old file, you'll be prompted

to enter a new filename for it, as

the old name is being reused for

the new file. (I usually use the

old name, preceded by a "-".)

Regardless of whether you

choose to preserve or erase the

old file, you'll be given the option

to print a hard copy of it.

After the program loops

through the Print routine, you'll

be prompted to select the num

ber of entries you wish carried

forward into the new file. (Should

you change your mind at this

point, enter a number outside the

given range, and you'll default

back to the main menu.) The old

file will be erased and replaced

by the new one, with the balance

forward showing as the first en

try. The date on the balance for

ward will appear as "******" to

ensure it always remains as the

initial entry in the file, following

any subsequent chronological

sorts, d

24

tines. The guidelines for SUBEND

are simple.

First, every SUB must have its

corresponding SUBEND. Next,

SUBEND must be the first com

mand on its line. Finally, if the

SUBEND command is preceded

by colons or any other command,

SUB will be unable to locate it,

and a syntax error will occur.

The following sample program

demonstrates the use of the

SUB, CALLSUB and SUBEND

commands:

10 SUB TEST (X,Y,A$)

20 PRINT "LINE 20

X = "X;"Y-"Y;"A$-";A$

30 SUBEND

40 P

50 X = 5: Y = 5: A$= ■'GLOBAL11

60 PRINTLINE 60
X = 1<X;"Y = "Y;"A$ = ";A$

70 CALLSUB TEST(1,2.MLOCAL")

80 PRINT "LINE 80

X="X;"Y="Y;"A$ = ";A$

In line 50, three global (normal)

variables, X,Y,A$, have been as

signed values. Three local vari

ables with the same names are

created by CALLSUB when it calls

the subroutine TEST. The local

variables are different variables

and have different values from the

global (normal) variables, but they

share the same names!

How does this program exe

cute? The SUB command is ex

ecuted first, and it scans ahead

looking for SUBEND, which it finds

on line 30. It then initializes the

subroutine TEST. This permits ex

ecution to resume on line 40. The

code from lines 40 to 80 is exe

cuted normally.

The output appears as follows:

LINE 60 X = 5 Y = 5 A$ = GLOBAL

LINE 20 X = 1 Y = 2 A$ = LOCAL

LINE 80 X = 5 Y = 5 A$ = GLOBAL

This program demonstrates how

global variables retain their as

signed values, despite the fact

that the local variables were as

signed different values within the

subroutine.

EXIT. This is used to terminate

subroutine execution prematurely.

It is the equivalent of the RETURN

command. Like SUBEND, EXIT

works only with named subrou

tines. See the subroutine C-

CURVE in the demo program for

an example.

LOCAL. This is used to create lo

cal variables in addition to those

CALLSUB has created and

passed values to. LOCAL should

only be used within a named sub

routine. Sample RUN Basic line:

LOCAL A,B.FF%.QQ$

TECH TALK

RUN Basic works by using the

C-64's RAM in a variety of ways.

The RAM under the Basic ROM

is used for storage of variables.

A graphics bit map uses the

RAM under the Kerna! ROM.

RUN Basic's turtle graphics com-

13

mands for color memory use the

RAM at addresses 49152 to

50176. Free RAM exists from lo

cations 50177 to 53247 for other

uses such as sprite storage.

To see a demonstration of

RUN Basic's turtle graphics and

structured programming com

mands, run demos 1 through 6.

You'll be impressed with the

speed of RUN Basic's turtle

graphics, compared to other tur

tle graphics programs. E)

14

Fl Forward Scan «- Reverse Scan

F4 Enter Information

F5 Balance Sheet

F6 Last Page

= Total Debits/Credits

* Select Hew File

T Rename File

% Re-Establish File

S Save

C Chronological Sort

P Print

+ Exit

File: Budget '86

Balance: 0

Entries: 0

Last Date:

t .Rename File. Press the t key

to alter the name of a file. You

may also use this option to cre

ate a backup file under a differ

ent filename. To accomplish this,

rename the file, but do not ex

ecute it to disk when prompted.

Press the S key when the main

menu reappears.

"■.Select New File. Pressing *

clears the file in memory and re

turns you to the introductory

screen.

C:Chrono!ogical Sort. After up

dating a file, you may sort the

entries chronologically. This may

take a while if a large number of

entries is involved. The screen

border will flash during the sort

ing process. Remember to re-

save to disk to make the change

permanent.

P:Print. You may print out a

file by pressing the P key. This

option works with most printers.

However, it won't function prop

erly on printers lacking the tab

ulator function. The iiie can be

printed partially or in its entirety.

A paging option is also pro

vided for printers that recognize

the "advance-to-top-of-form"

23

"month/day" in order for the

chronological sorting feature to

work. Days and months with

one-digit numerical equivalents

must be preceded by a 0. For

example, April 3, 1986 should be

entered as 860403 or 04/03.

Starting with the second entry,

the previous entry's date is auto

matically displayed. This makes it

easier to enter multiple entries for

a single day. Either press the re

turn key to confirm the date or

type a new date over it. You may

eliminate this feature by deleting

D$(N-1) from line 520.

Following the date, you may

enter into the Item field a brief

description (28 characters maxi

mum) of the entry or just leave

it blank by pressing the return

key. Don't use punctuation

marks that are invalid in Input

statements, such as commas or

colons.

Next, fill in either the Debit or

Credit fields, or both. Both de

fault to 0 if nothing is entered.

Don't use dollar signs, commas

or negative numbers; the pro

gram keeps track of these.

Amounts in excess of $100,000
will disrupt the Balance Sheet

screen display, although the pro

gram will still operate on them.

Once all four data fields have
been filled, the balance is auto

matically updated and displayed.

At this point, you have the option

of adding another entry, returning

to the menu, reentering the last en

try or erasing the last entry.

F7/— :Scan Forward/Reverse.

Once a file contains entries, you

may scan them forwards or

backwards by holding down the

F1 or the left-arrow key. When

an individual entry is displayed,

you may modify or erase it by

using one of the options dis

played at the bottom of the

screen. Each time you erase or

change an entry, the balance

is automatically recalculated

through the subsequent entries.

F5/F6:Balance Sheet. This

function displays the entries in

column format, with the excep

tion of the Item field, which

couldn't be included because of

the C-64's 40-column limitation.

Pressing the F6 key takes you

directly to the last page. You may

access individual entries from this

screen by pressing the R key, fol

lowed by the entry number.

You may also go directly into

the Scan, Enter Information or

Column Totals modes from the

balance sheet display without

first returning to the main menu.

Column Totals. Pressing the

equals sign will add up the total

debits and credits in a file.

S:Save. Following any addi

tions, changes, deletions or

chronological sorts, press the S

key to resave the file to disk.

22

Programmers,

Take Note!

By Bob Kodadek

RUN It Right

C-64

While computing, how often

do you have to spend time look

ing up Poke, Peek or SYS num

bers because you forgot them?

Or how often have you had an

idea you wanted to write down

quickly but were unable to find

a pencil or paper handy? If

you're like me, you end up mak

ing a lot of mental notes, then

forgetting them.

With 64 Notepad, you have an

electronic pad, pencil and eraser

at your fingertips.

The program adds a text win

dow to your screen. The window

has editing capability and does

not affect your present screen.

You can access it at the touch

of a key, open and use it even

while another program is run

ning. When you close the win

dow, your program continues

without missing a byte, and your

notes are safely stored in a mem

ory that never forgets.

ABOUT THE PROGRAM

After you run Notepad, press

the CTRL-0 key combination to

open the window. When it first

opens, the notepad will be filled

with garbage; simultaneously

press the shift and CLR/home

keys to clear it. The notepad con

sists of 15 lines, each 38 spaces

long. You may change your text

color within the window by press

ing CTRL-P.

The home, return, cursor and

delete keys function as you

would expect. The insert key,

however, is disabled.

To close the window and re

turn to the previous display,

press CTRL-C. Simultaneously

press the run/stop and restore

keys to disable the utility. To re

start, simply enter SYS 51072.

This program can be used with

15

Robert Rockefeller's RUN Basic.

Also, if you want to print out your

notes, you may do so using

RUN's previously published

screen dump utility (see "Print

Your Screen," December 1984),

which runs concurrently with

Notepad, as does RUN's 64 Per

fect Typist checksum utility, the

DOS wedge or any program that

doesn't conflict with the memory

area from 51072 to 51852.

Now get busy and take some

notes! [Q

T

16

64 Personal Ledger

By Paul Beddows

RUN It Right

064; disk drive; printer opimd

A program that keeps track of

savings accounts or transactions

involved with running a small

business out of the home can be

useful. And if you're the treasurer

of a club or organization, it can

take a lot of the drudgery out of

the bookkeeping.

Balance Sheet is such a pro

gram, and it lets you keep sev

eral years' records on a single

disk; so if the IRS ever decides

you deserve an audit, you should

be in good shape.

Balance Sheet should be

stored as the first and only pro

gram on your disk. It will create

sequential files on the same disk,

in which your data will be stored.

When you load and run the

program, you'll be prompted for

a filename—a bank account

number or any other filename of

ten characters or less. Filenames

of more than ten characters will

be truncated.

Press the return key and an

other prompt will appear. If

you're establishing a file for the

first time, enter " and press the

return key again. The main menu

will appear. If the file already ex

ists, press the return key without

first entering ', and the file

should load.

File length, by the way, has

been set to 95 entries to shorten

loading and saving times. You

may change this value by alter

ing the value of X in line 50.

Since the program can carry

over balances from one file to

another, I have found 95 entries

to be more than sufficient.

MENU OPTIONS

F4:Enter Information. There

are four fields of data entry: Date,

Item, Debit and Credit. The date

must be entered in numerical for

mat and mustn't be more than

six characters long. An attempt

to enter a non-numerical format

will default the date to a "—"

symbol. Entries of more than six

characters will be truncated.

Dates must be entered using

the format "year/month/day" or

21

With the transcriber, if the vari

ables weren't poked into mem

ory, they'd all contain a value of

zero after the program read in

the first line of data. The 128

uses a separate bank of RAM to

store its variables, and Basic

doesn't affect it when changing,

adding or deleting lines.

Users of the C-128 should

keep this in mind. It's usually

possible to change a line and

then go right on executing the

program. If, for example, you get

a Syntax error in line 500, you

can list the line and correct the

error, then continue the program

by typing GOTO500 and press

ing the return key. This is a

way to avoid long setup delays

while debugging programs, a

trick you'll appreciate more and

more as your programming skill

improves,

Using this transcriber utility to

make Data statements is an easy

way to build a library of subrou

tines, each starting at a different

line number, that can later be

incorporated into a main pro

gram. By keeping a list of the

starting line numbers, you can

then include GOSUBs to any of

them when you're writing a main

program. After you append the

subroutine and renumber, Basic

7.0 will handle all the GOTO and

GOSUB addresses for you. @

20

Sign Maker

By Ken Amberg

RUN It Right

G64; 0128 (in C-64 modi); VlC-20
Printer

I own a printer that has an

Enlarge mode for printing larger

characters. The Enlarge mode is

nice, but I wanted letters big

enough to be visible across
a room.

Sign Maker prints characters in

two ways. One format produces

the largest letters and prints them

sideways down the paper, ban
ner style, up to 40 characters

high. The other format prints
smaller characters on a standard

8%- by 11-inch sheet of paper.

The menu appears on the

screen after you load and run

the program. Press the F1 key

to use the banner maker. Press

the F3 key to use the single-

sheet sign maker. The F5 key

prints a form-feed character, and

the F7 key ends the program

and closes the print file.

To make a sign, simply answer

the different questions the pro

gram asks.

I've found plenty of uses for

this little printer utility program.

It's great for birthday messages

and greetings, and my family al

ways sees the notes I leave on

the refrigerator. Experiment with

this program; it could breathe
new life into your printer, which

is useful for more than just

making program listings and

reports. IS

17

Instant Data

Statements

By Thomas H. Simmonds, Jr. and Jim Borden

RUN It Right

C64;G128

Datamaker 64 and 128 enable

you to incorporate machine-lan

guage routines into your Basic

programs. They peek anywhere in

random access memory and tran

scribe the hexadecimal machine

language there into lines of Basic

Data statements. The transcriber

then deletes itself, leaving the Ba

sic Data lines for you to add to or

merge with an existing program.

This is an ideal way to add custom

characters or sprites to a program

after they've been generated by

an editor program.

THE C-64 VERSION

Use a "filename",8,1 format to

load RAM with the machine lan

guage you wish to transcribe into

Data statements Now load Da

tamaker 64, run it, and type in

the information requested. Be

sure the starting Basic line num

ber is greater than the highest

line number in the transcriber.

You may want to choose line

numbers and a line-number in

crement that will be compatible

with the program to which you

plan to add the Data statements.

Then enter the beginning and

ending RAM locations to be tran

scribed. The transcriber will cycle

through, writing Data statements

and then line numbers to the

screen until it has processed the

last memory location you desig

nated. When it's done, save the

statements to disk, clear the

computer and load the program

you are adding the statements

to. Then, in Direct mode, type

the following as one line and

press the return key:

L = 256 * PEEK{46) + PEEK(45) - 2:LH =

INT(U256):LL = L - 256'LH:POKE43,LL:

POKE44,LH:CLR

Next, load the Data statements

and, in Direct mode again, enter

the following line and press

return:

POKE43,1:POKE44.8

i

18

MEMORY TO DATA ST.

ENTER FIRST DATA LINE NUMBER

? 500

ENTER LINE NUMBER INTERVAL

■ 10

ENTER FIRST LOCATION IN MEMORY TO BE

PUT IN DATA ST.

? 49152

Now list the program. It should

include the Data statements.

Note that these two last steps

can be used to merge any Basic

programs.

THE C-128 VERSION

Datamaker 128 takes advan

tage of some Basic 7.0 key

words, but also allows data to be

read from any bank of memory.

In the 128 version, the F1 key

replaces the dynamic keyboard.

To add the Data statements to

the main program, first load the

main program, then, in Direct

mode, type:

GRAPHIC CLR:T = 65278-FRE(O):

POKE46,T/256;POKE45,

T-PEEK(46)#256

and press the return key. Next,

load the Data statements and

then type, again in Direct mode:

POKE45.1:POKE46,28

and press return. Now you can

list the combined program. As

with the C-64 version, you can

use this procedure to combine

any Basic programs.

VARIABLE STORAGE

A note on how variables are

stored is in order here. You'll no

tice that the C-64 version of the

transcriber has to poke all the

variables and later peek them,

but the 128 version does not.

The 64 stores numeric variables

at the end of a Basic program,

where they may be overwritten

if a line is changed. That's why

Basic does a CLR in the 64 any

time you revise a line.

19

Instant Data

Statements

By Thomas H. Simmonds, Jr. and Jim Borden

RUN It Right

C64;G128

Datamaker 64 and 128 enable

you to incorporate machine-lan

guage routines into your Basic

programs. They peek anywhere in

random access memory and tran

scribe the hexadecimal machine

language there into lines of Basic

Data statements. The transcriber

then deletes itself, leaving the Ba

sic Data lines for you to add to or

merge with an existing program.

This is an ideal way to add custom

characters or sprites to a program

after they've been generated by

an editor program.

THE C-64 VERSION

Use a "filename",8,1 format to

load RAM with the machine lan

guage you wish to transcribe into

Data statements Now load Da

tamaker 64, run it, and type in

the information requested. Be

sure the starting Basic line num

ber is greater than the highest

line number in the transcriber.

You may want to choose line

numbers and a line-number in

crement that will be compatible

with the program to which you

plan to add the Data statements.

Then enter the beginning and

ending RAM locations to be tran

scribed. The transcriber will cycle

through, writing Data statements

and then line numbers to the

screen until it has processed the

last memory location you desig

nated. When it's done, save the

statements to disk, clear the

computer and load the program

you are adding the statements

to. Then, in Direct mode, type

the following as one line and

press the return key:

L = 256 * PEEK{46) + PEEK(45) - 2:LH =

INT(U256):LL = L - 256'LH:POKE43,LL:

POKE44,LH:CLR

Next, load the Data statements

and, in Direct mode again, enter

the following line and press

return:

POKE43,1:POKE44.8

i

18

MEMORY TO DATA ST.

ENTER FIRST DATA LINE NUMBER

? 500

ENTER LINE NUMBER INTERVAL

■ 10

ENTER FIRST LOCATION IN MEMORY TO BE

PUT IN DATA ST.

? 49152

Now list the program. It should

include the Data statements.

Note that these two last steps

can be used to merge any Basic

programs.

THE C-128 VERSION

Datamaker 128 takes advan

tage of some Basic 7.0 key

words, but also allows data to be

read from any bank of memory.

In the 128 version, the F1 key

replaces the dynamic keyboard.

To add the Data statements to

the main program, first load the

main program, then, in Direct

mode, type:

GRAPHIC CLR:T = 65278-FRE(O):

POKE46,T/256;POKE45,

T-PEEK(46)#256

and press the return key. Next,

load the Data statements and

then type, again in Direct mode:

POKE45.1:POKE46,28

and press return. Now you can

list the combined program. As

with the C-64 version, you can

use this procedure to combine

any Basic programs.

VARIABLE STORAGE

A note on how variables are

stored is in order here. You'll no

tice that the C-64 version of the

transcriber has to poke all the

variables and later peek them,

but the 128 version does not.

The 64 stores numeric variables

at the end of a Basic program,

where they may be overwritten

if a line is changed. That's why

Basic does a CLR in the 64 any

time you revise a line.

19

With the transcriber, if the vari

ables weren't poked into mem

ory, they'd all contain a value of

zero after the program read in

the first line of data. The 128

uses a separate bank of RAM to

store its variables, and Basic

doesn't affect it when changing,

adding or deleting lines.

Users of the C-128 should

keep this in mind. It's usually

possible to change a line and

then go right on executing the

program. If, for example, you get

a Syntax error in line 500, you

can list the line and correct the

error, then continue the program

by typing GOTO500 and press

ing the return key. This is a

way to avoid long setup delays

while debugging programs, a

trick you'll appreciate more and

more as your programming skill

improves,

Using this transcriber utility to

make Data statements is an easy

way to build a library of subrou

tines, each starting at a different

line number, that can later be

incorporated into a main pro

gram. By keeping a list of the

starting line numbers, you can

then include GOSUBs to any of

them when you're writing a main

program. After you append the

subroutine and renumber, Basic

7.0 will handle all the GOTO and

GOSUB addresses for you. @

20

Sign Maker

By Ken Amberg

RUN It Right

G64; 0128 (in C-64 modi); VlC-20
Printer

I own a printer that has an

Enlarge mode for printing larger

characters. The Enlarge mode is

nice, but I wanted letters big

enough to be visible across
a room.

Sign Maker prints characters in

two ways. One format produces

the largest letters and prints them

sideways down the paper, ban
ner style, up to 40 characters

high. The other format prints
smaller characters on a standard

8%- by 11-inch sheet of paper.

The menu appears on the

screen after you load and run

the program. Press the F1 key

to use the banner maker. Press

the F3 key to use the single-

sheet sign maker. The F5 key

prints a form-feed character, and

the F7 key ends the program

and closes the print file.

To make a sign, simply answer

the different questions the pro

gram asks.

I've found plenty of uses for

this little printer utility program.

It's great for birthday messages

and greetings, and my family al

ways sees the notes I leave on

the refrigerator. Experiment with

this program; it could breathe
new life into your printer, which

is useful for more than just

making program listings and

reports. IS

17

Robert Rockefeller's RUN Basic.

Also, if you want to print out your

notes, you may do so using

RUN's previously published

screen dump utility (see "Print

Your Screen," December 1984),

which runs concurrently with

Notepad, as does RUN's 64 Per

fect Typist checksum utility, the

DOS wedge or any program that

doesn't conflict with the memory

area from 51072 to 51852.

Now get busy and take some

notes! [Q

T

16

64 Personal Ledger

By Paul Beddows

RUN It Right

064; disk drive; printer opimd

A program that keeps track of

savings accounts or transactions

involved with running a small

business out of the home can be

useful. And if you're the treasurer

of a club or organization, it can

take a lot of the drudgery out of

the bookkeeping.

Balance Sheet is such a pro

gram, and it lets you keep sev

eral years' records on a single

disk; so if the IRS ever decides

you deserve an audit, you should

be in good shape.

Balance Sheet should be

stored as the first and only pro

gram on your disk. It will create

sequential files on the same disk,

in which your data will be stored.

When you load and run the

program, you'll be prompted for

a filename—a bank account

number or any other filename of

ten characters or less. Filenames

of more than ten characters will

be truncated.

Press the return key and an

other prompt will appear. If

you're establishing a file for the

first time, enter " and press the

return key again. The main menu

will appear. If the file already ex

ists, press the return key without

first entering ', and the file

should load.

File length, by the way, has

been set to 95 entries to shorten

loading and saving times. You

may change this value by alter

ing the value of X in line 50.

Since the program can carry

over balances from one file to

another, I have found 95 entries

to be more than sufficient.

MENU OPTIONS

F4:Enter Information. There

are four fields of data entry: Date,

Item, Debit and Credit. The date

must be entered in numerical for

mat and mustn't be more than

six characters long. An attempt

to enter a non-numerical format

will default the date to a "—"

symbol. Entries of more than six

characters will be truncated.

Dates must be entered using

the format "year/month/day" or

21

"month/day" in order for the

chronological sorting feature to

work. Days and months with

one-digit numerical equivalents

must be preceded by a 0. For

example, April 3, 1986 should be

entered as 860403 or 04/03.

Starting with the second entry,

the previous entry's date is auto

matically displayed. This makes it

easier to enter multiple entries for

a single day. Either press the re

turn key to confirm the date or

type a new date over it. You may

eliminate this feature by deleting

D$(N-1) from line 520.

Following the date, you may

enter into the Item field a brief

description (28 characters maxi

mum) of the entry or just leave

it blank by pressing the return

key. Don't use punctuation

marks that are invalid in Input

statements, such as commas or

colons.

Next, fill in either the Debit or

Credit fields, or both. Both de

fault to 0 if nothing is entered.

Don't use dollar signs, commas

or negative numbers; the pro

gram keeps track of these.

Amounts in excess of $100,000
will disrupt the Balance Sheet

screen display, although the pro

gram will still operate on them.

Once all four data fields have
been filled, the balance is auto

matically updated and displayed.

At this point, you have the option

of adding another entry, returning

to the menu, reentering the last en

try or erasing the last entry.

F7/— :Scan Forward/Reverse.

Once a file contains entries, you

may scan them forwards or

backwards by holding down the

F1 or the left-arrow key. When

an individual entry is displayed,

you may modify or erase it by

using one of the options dis

played at the bottom of the

screen. Each time you erase or

change an entry, the balance

is automatically recalculated

through the subsequent entries.

F5/F6:Balance Sheet. This

function displays the entries in

column format, with the excep

tion of the Item field, which

couldn't be included because of

the C-64's 40-column limitation.

Pressing the F6 key takes you

directly to the last page. You may

access individual entries from this

screen by pressing the R key, fol

lowed by the entry number.

You may also go directly into

the Scan, Enter Information or

Column Totals modes from the

balance sheet display without

first returning to the main menu.

Column Totals. Pressing the

equals sign will add up the total

debits and credits in a file.

S:Save. Following any addi

tions, changes, deletions or

chronological sorts, press the S

key to resave the file to disk.

22

Programmers,

Take Note!

By Bob Kodadek

RUN It Right

C-64

While computing, how often

do you have to spend time look

ing up Poke, Peek or SYS num

bers because you forgot them?

Or how often have you had an

idea you wanted to write down

quickly but were unable to find

a pencil or paper handy? If

you're like me, you end up mak

ing a lot of mental notes, then

forgetting them.

With 64 Notepad, you have an

electronic pad, pencil and eraser

at your fingertips.

The program adds a text win

dow to your screen. The window

has editing capability and does

not affect your present screen.

You can access it at the touch

of a key, open and use it even

while another program is run

ning. When you close the win

dow, your program continues

without missing a byte, and your

notes are safely stored in a mem

ory that never forgets.

ABOUT THE PROGRAM

After you run Notepad, press

the CTRL-0 key combination to

open the window. When it first

opens, the notepad will be filled

with garbage; simultaneously

press the shift and CLR/home

keys to clear it. The notepad con

sists of 15 lines, each 38 spaces

long. You may change your text

color within the window by press

ing CTRL-P.

The home, return, cursor and

delete keys function as you

would expect. The insert key,

however, is disabled.

To close the window and re

turn to the previous display,

press CTRL-C. Simultaneously

press the run/stop and restore

keys to disable the utility. To re

start, simply enter SYS 51072.

This program can be used with

15

mands for color memory use the

RAM at addresses 49152 to

50176. Free RAM exists from lo

cations 50177 to 53247 for other

uses such as sprite storage.

To see a demonstration of

RUN Basic's turtle graphics and

structured programming com

mands, run demos 1 through 6.

You'll be impressed with the

speed of RUN Basic's turtle

graphics, compared to other tur

tle graphics programs. E)

14

Fl Forward Scan «- Reverse Scan

F4 Enter Information

F5 Balance Sheet

F6 Last Page

= Total Debits/Credits

* Select Hew File

T Rename File

% Re-Establish File

S Save

C Chronological Sort

P Print

+ Exit

File: Budget '86

Balance: 0

Entries: 0

Last Date:

t .Rename File. Press the t key

to alter the name of a file. You

may also use this option to cre

ate a backup file under a differ

ent filename. To accomplish this,

rename the file, but do not ex

ecute it to disk when prompted.

Press the S key when the main

menu reappears.

"■.Select New File. Pressing *

clears the file in memory and re

turns you to the introductory

screen.

C:Chrono!ogical Sort. After up

dating a file, you may sort the

entries chronologically. This may

take a while if a large number of

entries is involved. The screen

border will flash during the sort

ing process. Remember to re-

save to disk to make the change

permanent.

P:Print. You may print out a

file by pressing the P key. This

option works with most printers.

However, it won't function prop

erly on printers lacking the tab

ulator function. The iiie can be

printed partially or in its entirety.

A paging option is also pro

vided for printers that recognize

the "advance-to-top-of-form"

23

command (CHR$(12)). The num

ber of entries per page has been

set at 56 in line 2880. This allows

for a fair degree of error in po

sitioning the paper. If you wish,

you may increase this by four or

five entries. Page 1 automatically

has five fewer entries to allow

space for the headings.

To accommodate non-Com

modore printers and interfaces,

you may have to make some

alterations to the print routine.

Commodore printers perform an
automatic linefeed after printing

a line, and the Print routine ex

pects this. If your printer is over

printing lines, you'll have to add

a linefeed after line 2910. For

example:

2915 PRINT#,CHR$(10)

If the paging option won't work

on your printer, try replacing line

2920 with:

2920 IF SP = 56 THEN FOR ZZ=1 TO

10:PRINT#4.CHR$(10):

NEXT:SP = 0

With this substitution, your

printer should do ten linefeeds at

the bottom of each page. If it's

doing 20, then your interface is

adding an additional linefeed

whenever it receives a linefeed

command from the program.

Solve this by changing "zz =

1to10" to "zz=1to5".

%:Reestablish File. You use

this function when a file is full or

if you wish to eliminate the older

entries. (The file must contain at

least five entries for this function

to work.) This is the most con

fusing and dangerous function of

the program. I suggest you cre

ate a dummy file and try it out

before using it with a real file.

This operation establishes a

new file under the same filename

as the old one, with the current

balance carried forward along

with the number of entries you

select. If you wish to preserve

the old file, you'll be prompted

to enter a new filename for it, as

the old name is being reused for

the new file. (I usually use the

old name, preceded by a "-".)

Regardless of whether you

choose to preserve or erase the

old file, you'll be given the option

to print a hard copy of it.

After the program loops

through the Print routine, you'll

be prompted to select the num

ber of entries you wish carried

forward into the new file. (Should

you change your mind at this

point, enter a number outside the

given range, and you'll default

back to the main menu.) The old

file will be erased and replaced

by the new one, with the balance

forward showing as the first en

try. The date on the balance for

ward will appear as "******" to

ensure it always remains as the

initial entry in the file, following

any subsequent chronological

sorts, d

24

tines. The guidelines for SUBEND

are simple.

First, every SUB must have its

corresponding SUBEND. Next,

SUBEND must be the first com

mand on its line. Finally, if the

SUBEND command is preceded

by colons or any other command,

SUB will be unable to locate it,

and a syntax error will occur.

The following sample program

demonstrates the use of the

SUB, CALLSUB and SUBEND

commands:

10 SUB TEST (X,Y,A$)

20 PRINT "LINE 20

X = "X;"Y-"Y;"A$-";A$

30 SUBEND

40 P

50 X = 5: Y = 5: A$= ■'GLOBAL11

60 PRINTLINE 60
X = 1<X;"Y = "Y;"A$ = ";A$

70 CALLSUB TEST(1,2.MLOCAL")

80 PRINT "LINE 80

X="X;"Y="Y;"A$ = ";A$

In line 50, three global (normal)

variables, X,Y,A$, have been as

signed values. Three local vari

ables with the same names are

created by CALLSUB when it calls

the subroutine TEST. The local

variables are different variables

and have different values from the

global (normal) variables, but they

share the same names!

How does this program exe

cute? The SUB command is ex

ecuted first, and it scans ahead

looking for SUBEND, which it finds

on line 30. It then initializes the

subroutine TEST. This permits ex

ecution to resume on line 40. The

code from lines 40 to 80 is exe

cuted normally.

The output appears as follows:

LINE 60 X = 5 Y = 5 A$ = GLOBAL

LINE 20 X = 1 Y = 2 A$ = LOCAL

LINE 80 X = 5 Y = 5 A$ = GLOBAL

This program demonstrates how

global variables retain their as

signed values, despite the fact

that the local variables were as

signed different values within the

subroutine.

EXIT. This is used to terminate

subroutine execution prematurely.

It is the equivalent of the RETURN

command. Like SUBEND, EXIT

works only with named subrou

tines. See the subroutine C-

CURVE in the demo program for

an example.

LOCAL. This is used to create lo

cal variables in addition to those

CALLSUB has created and

passed values to. LOCAL should

only be used within a named sub

routine. Sample RUN Basic line:

LOCAL A,B.FF%.QQ$

TECH TALK

RUN Basic works by using the

C-64's RAM in a variety of ways.

The RAM under the Basic ROM

is used for storage of variables.

A graphics bit map uses the

RAM under the Kerna! ROM.

RUN Basic's turtle graphics com-

13

.

responding bits are set. The

sprites are then mapped to the

register bits in a slight variation of

the method explained under DAT-
COLL. The difference is that the
collision of two sprites sets two bits
instead of one. Sample RUN Basic
lines:

10 IF MCOLL =4+2 THEN GOTO 6000

: REM SPRITES 3 AND 2 HAVE

COLLIDED

10 IF MCOLL = 8+16 + 32 THEN GOTO

4000 : REM SPRITES 4, 5 AND 6

HAVE COLLIDED

10 PRINT MCOLL : REM PRINTS IF

SPRITE/SPRITE COLLISION OCCURS

10 A = MCOLL : REM IDENTIFIES

SPRITE/SPRITE COLLISION

OCCURRED

STRUCTURED

PROGRAMMING

SUB. This is used to declare a
named subroutine that can be ex

ecuted with the CALLSUB com

mand. The subroutine's name

must follow the SUB command

and may be up to 31 characters

long, though only the first four let
ters are significant.

Unlike variables, Basic com
mands can be embedded within

the name. SUB PRINT-IT(A$) is an

acceptable subroutine title. Punc

tuation and spaces can be used

within the name, but graphics
characters cannot.

Parentheses that enclose an op
tional list of variables must follow

the name. The optional list of vari

ables contains any values to be

passed to the subroutine. This

passing of values is similar to the

Basic 2.0 DEF FN command, ex
cept that up to 35 values may

be passed to a subroutine; only

one value may be passed to a

function.

When the SUB command is ex

ecuted, it scans ahead in the pro

gram, looking for the SUBEND

command, which will be de

scribed next. If SUBEND is not

found, a Syntax error occurs.

If SUBEND is found, the sub

routine is initialized, and program

execution is resumed at the line

following SUBEND. The code be

tween SUB and SUBEND is ex

ecuted only when the subrou

tine is called with the CALLSUB

command.

The variables enclosed by pa

rentheses following the subroutine

name are local variables, mean

ing that they are referenced only

when the subroutine is executed.

After the subroutine finishes exe

cuting, all local variables created

by the subroutine are no longer

accessible.

This allows you to use the same

variable name twice—once within

the subroutine and once outside

the subroutine.

SUBEND. SUBEND is used to

mark the end of a subroutine and

is equivalent to the RETURN com

mand used in Basic 2.0 subrou-

12

High-Resolution

Revolution

By Henrik Markarian

RUN It Right

064

High-resolution color graphics is

one of the C-64's main features,

yet C-64 Basic doesn't provide

any commands to let you easily

take advantage of it. For example,

there is no command to clear the

high-resolution screen. Instead,

you must poke 8000 memory lo

cations with zeros; in Basic, this

takes about 30 seconds. Plotting

a single point requires a lot of

computation and time.

The 64/Grafix program aug

ments 64 Basic with eight com

mands that make it easy for you

to draw high-resolution pictures.

The program is written entirely in

machine language, although it is

in the form of a Basic loader.

64/GRAFIX COMMANDS

You must precede each com

mand with an exclamation point

to let the 64 Basic interpreter

know that it is a special com

mand. If the commands follow an

If...Then statement, you must

precede them with a colon, too,

or an error will occur.

ISC,n—This command turns the

high-resolution screen on or off,

depending on the value of n. If

n = 0, then the high-resolution

screen is turned off, and the reg

ular text screen displayed. If

n = 1, the high-resolution screen

is turned on but not cleared. Set

ting n = 2 will turn on the high-

resolution screen and clear it.

!PN,n—This command turns the

pen on or off, depending on the

value of n. If n = 0, then the pen

will be off, and points (pixels) will

be erased; if n = 1, the pen will

be on, and points (pixels) will be

plotted.

iCO,n—This command colors in

a background and foreground

color on the entire graphics

screen. The parameter n must be

within the range of 0-255, and

25

it is determined by the following

formula:

n = (background color) +

(foreground color)*16

For example, if you wanted the

background red and the fore

ground blue, n would have to

equal 2 + 6*16, or 98.

!BL,b,n—The Block command

lets you choose the background

and foreground color for any

8x8 block on the graphics

screen. The screen is divided

into 1000 blocks, which are num

bered from 0 to 999, starting at

the top left-hand corner and

moving right. The first parameter

in this command is the block

number (b), and it is determined

in the following fashion:

b = (column) + (row)*40

Of course, on the C-64 there are

25 rows and 40 columns. The sec

ond parameter for this command

(n) sets the background and fore

ground colors for the specified

block, using the same form as the

previous command.

!PL,x,y—This command plots a

point at the coordinates x and y,

or erases a point at the same

coordinates. It all depends

whether the pen is on or off (see

the !PN,n command). The pa

rameters x and y are offset from

the top-left corner of the screen

and have a range of 0-319 for

x and 0-199 for y.

IDR,x1(y,,x2,y2—This command

draws a line from point x^y, to

the point x2ty2. As before, the line

is plotted or erased depending

on whether the pen is on or off.

!CR,x,y,r—This command draws

an oval, given the center coordi

nates x,y and the radius r. The

radius must be within the range

of 0-255, although, as you'll see

in most cases, the largest possi

ble radius will be around 110-

130. To make this command

more versatile, you may multiply

the vertical distance by a fraction,

allowing you to draw anything

from a wide short oval to a tall

narrow one. The following two

memory locations are used to in

put the numerator and denomi

nator for the fraction (N/D):

POKE 50243.N

POKE 50251,D

The program at this point as

signs N/D = 9/,,. I arrived at this

fraction by measuring a few pix

els parallel to the x-axis and the

same number of pixels parallel

to the y-axis. From these mea

surements, I calculated that the

length of nine pixels in the hor

izontal direction is equal to the

length of 11 pixels vertically.

Thus, multiplying a given vertical

distance by % will make the

ovals appear more like true cir

cles than ellipses.

!EX—This command exits 64/

Grafix from the command-pro-

26

YPOS. Command format: YPOS.

This command returns the cur

rent y-coordinate of the turtle's po

sition. Sample alternative RUN

Basic lines:

10 A = YPOS : PRINT A: REM PRINTS

CURRENT Y POSITION OF TURTLE

10 PRINT YPOS : REM PRINTS CUR

RENT Y POSITION OF TURTLE

HEADING. Command format:

HEADING.

HEADING is used to determine

the angle of the direction in which

the turtle is currently pointing.

Sample RUN Basic lines:

10 A = HEADING : PRINT A : REM

PRINTS CURRENT ANGLE TURTLE

IS POINTING

10 PRINT HEADING : REM PRINTS

CURRENT ANGLE TURTLE IS

POINTING

10 TURNTO HEADING+ .1 : REM

TURN TO CURRENT HEADING

PLUS .1 RADIAN

COORDS. Command format: CO

ORDS (x-coordinate, y-coordinate).

This command returns the di

rection from the turtle's position to

the specified coordinates. Sample

RUN Basic lines:

10 A = COORDS(0,0) : PRINT A : REM

PRINTS THE DIRECTION OF THE

POINT (0,0) FROM THE TURTLE'S

POSITION

10 PRINT COORDS(31,29) : REM

PRINTS THE DIRECTION OF POINT

(31,29) FROM THE TURTLE'S

POSITION

10 TURNTO COORDS(150.36): REM

TURNS TURTLE TOWARDS (150,36)

RPtX. Command format: RPIX (x-

coordinate, y-coordinate).

RPIX is used to return the plot-

type used to draw a pixel. The

plot-type returned in Med-res

mode will vary from 0 to 3. In Hi

res mode, the plot-type returned

will be either 0 or 1. Sample RUN

Basic lines:

10 A = RPIX{300,150): PRINT A : REM

PRINTS THE PLOT-TYPE USED AT

300.150

10 ON RPIX{QT,QS) GOSUB 100.200 :

REM GOSUB WHEN THE ARGU

MENT IS SATISFIED

SPRITE COMMANDS

DATCOLL. Command format:

DATCOLL.

DATCOLL returns the contents

of the sprite-background collision

register. If a sprite collides with the

background, its corresponding bit

is set. Bit 0 corresponds to sprite

1, bit 1 corresponds to sprite 2,

etc. Sample RUN Basic lines:

10 IF DATCOLL AND 128 THEN GO

SUB 1000: REM HANDLE SPRITE 8

COLLISION

10 A= DATCOLL : PRINT A : REM

PRINTS SPRITE/BACKGROUND COL

LISION OCCURRED

10 PRINT DATCOLL : REM PRINTS

SPRITE/BACKGROUND COLLISION

OCCURRED

MCOLL. Command format:

MCOLL.

MCOLL returns the contents of

the sprite-sprite collision register.

When two sprites collide, their cor-

11

must be in radians, as used in

Basic 2.0. A radian is a unit of

measure for angles or arcs. To

convert degrees to radians, use

the following equation:

Radian measure of an angle =

number of degrees *?r/180

An angle of 0 (radians or de

grees) points the turtle to the

right, on a heading parallel to the

x-axis. An angle of ir/2 radians,

or 90 degrees, points it straight

up, parallel to the y-axis. Sample

RUN Basic line:

10 TURNTO .4 : REM POINTS THE

TURTLE UP AT AN ANGLE OF 23

DEGREES MEASURED

COUNTERCLOCKWISE FROM THE

0 DEGREE DIRECTION.

LEFT. Command format: LEFT

< angle >.

LEFT turns the turtle left from

its current direction by the spec

ified angle (always in radians).

Sample RUN Basic line:

10 LEFT .3 : REM TURNS THE TUR

TLE 17 DEGREES TO THE LEFT

RIGHT. Command format:

RIGHT <angle>.

This command turns the imag

inary turtle right by the specified

angle. Sample RUN Basic line:

10 RIGHT t/4: REM TURNS THE

TURTLE 45 DEGREES TO THE

RIGHT

PUTCHAR. Command format:

PUTCHAR < screen-code-value

(0-255) >.

The PUTCHAR command

draws the specified character at

the current turtle position. The

character is specified by its

screen-code value, not its ASCII

value. Check your user's guide

for a table of screen codes. Sam

ple RUN Basic line:

10 PUTCHAR 1: REM PRINT AN "A"

AT CURRENT POSITION

HOME. Command format:

HOME.

HOME moves the turtle to the

center of the screen. Sample

RUN Basic line:

10 HOME : REM MOVE TO CENTER

OF SCREEN

PLOT. Command format: PLOT

< plot-type (0-3), x-coordinate

(0-319), y-coordinate (0-199)>.

The PLOT command plots one

pixel at the specified coordinates

using the specified plot-type (see

definitions of plot-types under the

PEN command, above). The lo

cation of RUN Basic's imaginary

turtle has no effect on this com

mand. Sample RUN Basic line:

10 PLOT 1,100,38 : REM PLOT A VISI

BLE PIXEL AT X (100), Y (38)

XPOS. Command format: XPOS.

XPOS returns the current x-co

ordinate of the turtle's posi

tion. Sample alternative RUN Ba

sic lines:

10 A = XPOS : PRINT A: REM PRINTS

CURRENT X POSITION OF TURTLE

10 PRINT XPOS : REM PRINTS CUR

RENT X POSITION OF TURTLE

10

cessing loop. You can reactivate

the program with SYS 49152.

FOR YOUR INFORMATION

The 64/Grafix program resides

in the 4K of RAM from $C000

to $C4D0. The area from $C800

to $CBFF is used as the color

screen, and the RAM under the

operating system ROM from

$E000 to $FFFF is used for the

graphics screen. 64/Grafix takes

no memory space away from Ba

sic; the area from $0800 to

S9FFF remains completely free

for Basic programs.

I've included two demo pro

grams to help you further under

stand and use the 64/Grafix

commands. The first demo pro

gram draws several figures on the

screen and then waits for a key

press. If you want to exit the pro

gram, press F1; otherwise, press

any other key to continue.

The second demo is a joystick-

controlled (port #2) drawing pro

gram. F1 clears the screen and

sets the background and fore

ground colors; F3 clears the

screen; F5 exits the program. M

27

As the Word Turns

By Gerald Caron

RUN It Right

064; VIC-20; printer

Find the Word 3.0 is a revision

of my Find the Word program

that appeared in the October

1984 issue of RUN. After it ap

peared, I received many letters

from people who had been look

ing for such a program, and

many fellow teachers wrote to

thank me for my efforts. Some

writers offered suggestions; oth

ers wished the program had ad

ditional functions.

One of the most requested

functions was the ability to save

and load puzzles to avoid having

to type all the words in again. I

have provided this by using se

quential files. With this feature,

the puzzle also prints out im

mediately after loading, and

there's no waiting for set-up or

placements.

I have added disk error trap

ping, as well, to help prevent

crashes, and now include a ,WS

in the name of the puzzle file so

you can spot it more easily in

the directory. You don't have to
add the .WS when you load a

puzzle because the program

does it automatically.

The routines for these proce
dures are located after line 1000

in the program listing. They store

the grid and the word direction

and puzzle size options that I'll

discuss shortly.

Another feature I've added is

an option to have the same

words in a different grid. If you

ask for a new grid, all the arrays

except the word array have to

be reinitialized. This is taken care

of starting at line 1200. Now you

can use the same words over

and over, but get entirely differ

ent puzzles.

A word-direction option was

something I wanted to add after a

teacher at my school told me the

reversed and slanted words were

too difficult for younger children.

Then I received a letter from a

reader who had added that option

plus one for puzzle size. Realizing

that a small puzzle with words
going only across or up and down

could be done by almost anyone,

28

mode, drawing will be done with

plot-type color #1.

2—Plots in Med-res mode with

Med-res color #2.

3—Plots in Med-res mode with

Med-res color #3.

Sample RUN Basic lines:

10 PEN 0: REM LINE ERASES AS IT

PLOTS

10 PEN 3: REM LINE DRAWS AS IT

PLOTS

PENUP. Command format:
PENUP.

PENUP is used to stop draw

ing. After PENUP is executed,

drawing commands such as

AHEAD, BACK and MOVXY will

not draw. RUN Basic's turtle

moves to its new location without

drawing a line. Sample RUN Ba

sic line:

10 PENUP: REM STOP PLOTTING

LINE HERE

PENDOWN. Command format:
PENDOWN.

PENDOWN is the Default mode
and allows lines to be drawn when

RUN Basic's turtle is moved. Sam

ple RUN Basic line:

10 PENDOWN : REM RESUME OR

BEGIN PLOTTING HERE

AHEAD. Command format:

AHEAD <number of units>.

AHEAD moves the turtle the

specified number of pixels

ahead. Sample RUN Basic line:

10 AHEAD 30.5 : REM MOVE TUR

TLE 30.5 PIXELS FORWARD

BACK. Command format: BACK

< number of units >.

BACK moves the turtle the

specified number of pixels back

wards. Sample RUN Basic line:

10 BACK 162: REM MOVE TURTLE

BACK 162 PIXELS

MOVXY. Command for

mat: MOVXY <x-coordinate,

y-coordinate>.

MOVXY moves the turtle to the

position specified by the x,y co

ordinates. If the pen is down dur

ing the execution of MOVXY, a

line will be drawn. Sample RUN

Basic line:

10 MOVXY 10,39: REM MOVE TUR

TLE TO THE INTERSECTION OF X

(10) AND Y (39)

MOVX. Command format:

MOVX < x-coordinate >.

This command moves the tur

tle to the specified x-coordinate.

Sample RUN Basic line:

10 MOVX 100: REM MOVE THE TUR

TLE TO THE X-COORDINATE (100)

MOVY. Command format:

MOVY <y-coordinate>.

This command moves the tur

tle to the specified y-coordinate.

Sample RUN Basic line:

10 MOVY 199 : REM MOVE THE

TURTLE TO THE Y-COORDINATE

(199)

TURNTO. Command format:

TURNTO < angle >.

TURNTO points the turtle in

the specified direction. The angle

9

,■■■

0—black 8—orange

1—white 9—brown

2—red 10—light red

3—cyan 11—dark gray

4—purple 12—medium gray

5—green 13—light green

6—blue 14—light blue

7—yeilow 15—light gray

TURTLE GRAPHICS

COMMANDS

HIRES Command format: HIRES

< screen-color (0-15), plot-type-

color #1 (0-15)>.

HIRES initializes a high-resolu

tion bit-map graphics screen, but

it does not clear the screen. This

permits the Hi-res mode to change

the current colors while drawing. It

also permits all 16 colors to be dis

played simultaneously on the

high-resolution screen. Each block

of the hi-res screen is eight pixels

wide and eight pixels high and

can have a unique screen and plot

color combination. Sample RUN

Basic line:

10 HIRES 1.0 : REM WHITE HI-RES

GRAPHICS SCREEN WITH BLACK

PIXELS

MEDRES. Command format:

MED-RES <screen-color (0-15),

plot-type-color #1 (0-15), plot-

type-color #2 (0-15), plot-type-

coior #3 (0-15)>.

MEDRES is similar to the

HIRES command except that it

initializes a multicolor graphics

mode. In Med-res mode, each

four-pixel-wide by eight-pixel-

high block of the med-res screen

can simultaneously display three

different colors, plus the screen

color. By using MEDRES to se

lect new drawing colors, all 16

colors can appear on the same

med-res screen. Sample RUN

Basic line:

10 MEDRES 0,7,3.4: REM YELLOW,

CYAN & PURPLE DRAWING

COLORS ON A BLACK SCREEN

TEXT. Command format: TEXT.

The TEXT command reverts

the screen from Hi-res or Med-

res mode to the text screen.

Sample RUN Basic line:

10 TEXT REM TO LOW-RES SCREEN

GCLR. Command format: GCLR.

GCLR clears the graphics

screen. This command should

be executed at the beginning of

every RUN Basic turtle graphics

program, to clear the graphics

screens. Sample RUN Basic line:

10 GCLR: REM CLEARS HIRES &

MEDRES SCREENS

PEN. Command format: PEN

< plot-type (0-3) >.

PEN determines whether RUN

Basic's pen will draw or erase

when lowered. Following is a de

scription of each plot type.

0—Erases with screen color in

Hi-res or Med-res mode.

1—Plots in Hi-res mode with the

plot-type color selected in the

HIRES command. In the Med-res

8

FIND THE WORDS

MODEM PROGRAM CURSOR

*♦*******#************************

* *

♦ RCURSOROOR*
4 *

♦ OMOURPODMP*
* *

UCPROGRAMO
* *

»DDODRDOPCP*
♦ *

♦ OOORMMMDPH*
♦ *

UCDR(JEPPOO

* ■*

♦ RCUODMDOPR*
* *

• COOPUCPOOO*
* ♦

• OOOODCOOMP*
*)t

*PURORDOOOR<
* ♦

Figure 1. An example of a 10 by 10 puzzle.

I added an option for smaller puz

zles. The grids now can range

from 10 by 10 to 20 by 20, with

the number of words adjusted for

the puzzle size.

You can also make puzzles

with numbers or graphics char

acters. Figure 1 is an example—

a 10-by-10 puzzle composed of

letters, numbers and graphics

characters.

Many people wrote saying

they were using the puzzles for

everything from church bulletins

to TV fact magazines. At my

school, we always put one in our

monthly school newspaper. If

you are using the puzzles in an

interesting way, I'd like to hear

about it. I'd also welcome any

ideas you have for further en

hancements to the program. tffi

29

Making a Pointer

By John M. Campbell

RUN It Right

064; joystick in port 2

Demo Pointer, written in Basic,

places on the screen a pointer

in the form of an arrow. You con

trol the pointer's movement with

a joystick plugged into port 2.

You can use Demo Pointer

with other Basic programs to

point to locations in text or charts

on the screen. This is especially

helpful at club meetings or in the

classroom.

Before running Demo Pointer,

plug your joystick into port 2.

Pushing the fire-button once

turns the pointer off, and pushing

it again turns it back on. If you

move the pointer off one side of

the screen, it will reappear im

mediately on the other.

Once you run the program,

you'll be prompted to select the

size and color of the pointer. The

program will then poke into mem

ory a short machine language pro

gram that controls the pointer's

movement independently of what

ever else you've loaded into the

computer's memory.

The C-64 allows you to define

up to seven sprites for display

on the screen. The pointer arrow

is just such a sprite. The pattern

of bits that compose it are con

tained in the Data statements in

lines 300-360. You may alter the

form of the sprite from an arrow

to a hand or a turtle simply by

changing the numbers in those

lines. The Commodore 64 Pro

grammer's Reference Guide de

scribes in detail how to define

your own sprite.

PROGRAM LIMITATIONS
Demo Pointer was written to

be as flexible as possible, but it

has a few limitations.

It will run with just about any

Basic program except those con

taining sprites or using a joystick

in port 2. Demo Pointer uses lo

cations 679-767 to hold the

sprite and perform other house

keeping chores, so it can't co

exist with other programs that

use those addresses.

RUN Basic

By Robert Rockefeller

RUN It Right

C-64; Basic 4.5

RUN Basic, an extended Basic

for the C-64, adds 30 new com

mands to Basic 4.5 (published in

RUN's June, July and August

1985 issues). RUN Basic in

cludes commands for graphics,

structured programming and

named subroutines with local

variables, among other features.

It is aimed at fairly competent

programmers, and even they will

need to closely examine the
demo programs to learn how to

use these new powerful com

mands effectively.

To load RUN Basic 1.0 from

disk, just execute:

LOAD "0:RUN BASIC 1.0lp,8,1

Once the program loads, enter
SYS64738 and press the return

key to start it.

TURTLE GRAPHICS

Most of RUN Basic's com

mands are for turtle graphics, so

we'll start with a description of

these. In most forms of turtle

graphics, the cursor is a crude

representation of a turtle, to be

imagined as holding a pen. You

move the turtle with commands

such as

AHEAD 30: TURNTO HEADING+ 1:

BACK 59

When the turtle pen is down,

you may draw or erase lines on

the screen; when it's up, you can

move the turtle without having it

draw anything.

RUN Basic doesn't use a turtle

because it slows the drawing

process. For the sake of con

sistency, however, I refer

throughout this article to the cur

rent position of the drawing pen

on the hi-res screen as a turtle.

When plotting turtle graphics,

RUN Basic uses a standard

Cartesian coordinate system with

the origin (0,0) at the lower left

of the screen. The screen is 320

pixels wide and 200 pixels high.

Many of RUN Basic's turtle

graphics commands require you

to supply a color in the param

eter string. The colors are spec

ified as follows:

30

■

■ ■.- }.-rj,_;-,.;,- ■ .. ■

sages if you tell him what to say.

Type TEXT, a space, then a mes

sage from one to ten letters long.

If you have a longer message,
break it up into a few short ones.
You can make Elmer stop

moving anywhere in the list with

the instruction STOP. He'll hold

still until you press any key, then

continue on. It's a good idea to

make STOP the last instruction
on a list, so you can see what

you and Elmer have created.

CHANGING THE LIST
You can alter Elmer's instruc

tions in various ways after you've

written them. As I mentioned ear

lier, NEW erases the whole list.

To erase only one line, specify
the line number, then type D for

delete. The instruction at that line
number will disappear, and all

the ones below it will move up.
If you need to change an in

struction instead of erasing it,

type the new version after des

ignating the line number. To add
a line between two others, type

the number of the second and

an I for insert. That line will clear,

and its instruction and all those

following will move down. Then,

by accessing that line number

again, you can fill in the blank.

By the way, if you should leave

blank lines in the list, Elmer won't

mind. He'll just ignore them and
plod along.

At any time you're on the sec

ond menu screen, you can

change the line number you're

working at by typing B, for Back

to Line #. This recalls the first

menu screen, where you can

choose another line number.
You know, Elmer may not be

very smart, but he has endless

patience. He never tires of read

ing your list and walking around

the screen following directions.

He tells you when he doesn't
understand, and gives you as

many tries as you need to get it

right.

Nowadays, when I'm done us

ing our Commodore, I load in

Elmer the Turtle and leave it on.

More often than not, some visitor

passes by and starts to play.

Bingo!—another programmer is
born. \E

v't -....

The actual machine language

program is 175 bytes long and

is loaded at address 49200. If

you want to run Demo Pointer

with another program that uses

that section of memory, you may

load the Demo Pointer machine

language routine into a different

part of memory simply by chang

ing the address in line 370.

You can't move the arrow

while either the disk drive or Da-

tassette is active, as the com

puter is too busy to accept the

clock interrupts. Moving the

pointer while typing can cause

entry errors; this is because the

joystick and keyboard share a

register in the complex interface

adapter (CIA). E

31

Double Vision

By Larry Cotton

RUN It Right

064; 0128 (m 064 modi)

Mirror, Mirror is an excellent

first program to type into your

Commodore 64. When you draw

a pattern with the joystick, a mir

ror image is drawn simulta

neously. This, complemented by

randomness and color, yields

beautiful, magical surprises, aris

ing from the symmetry of the mir

ror image. All the while, a mellow

"Dipping" sound tracks the cur

sors, rising and falling in pitch as

they move.

The liberal use of constants,

which are defined early on, and

a minimum number of If.. .Then

statements ensure quick re

sponse to joystick movements,

even though the program is writ

ten entirely in Basic.

A very short menu at the be

ginning of the program allows

you to change patterns and

colors. To erase drawing, press

the space bar, which brings you

the simple menu again.

To use the program, turn up

the volume on your TV or mon

itor, Plug the joystick into port 2

(next to the power cord) and run

the program. Try pressing the

joystick to the right. Both char

acters will move. You're control

ling the right-hand one, unless

they cross. If they do cross and

continue past the right and left

borders, the cursors will get out

of sync vertically. You can bring

them back into sync by backing

up and retracing your pattern.

To avoid using a lot of If...

Then statements, which slow

down the program, there are

only minimum top and bottom

border checks. You may go to

these borders, but if you keep

pushing the joystick, the pro

gram will end. Press the space

bar for a new start.

Now press the space bar and

answer the questions differently.

You will be truly amazed at the

results! U

32

RIGHT

UP

DOWN

INSERT

LEFT

PEN UP

PEN DOWN

DELETE

CHAR

COLOR

TEXT

BACK TO LINE #

STOP

Table 1. Commands for direct

ing Elmer and for editing the

instruction list.

the line numbers and, at the bot

tom, a menu of three choices.

You can go to a line number

you specify to write in an instruc

tion; you can type E to make

Elmer follow the instructions

you've already written; or you

can type NEW to clear your list

and start afresh. Of course, when

you're just beginning to play,

only the first choice, writing in

structions, is viable. So, type in

the line number you want—prob

ably 1—and hit the return key.

The next screen displays all the

possible instructions for making

Elmer walk and draw, and for

editing the list. (See Table 1.)

Choose a direction for Elmer

to walk by typing the appropriate

word, then tell him how many

steps he should take in that di

rection. You must include the

number—he won't understand

otherwise. When you press the

return key again, your instruction

will appear at the specified line

number in the list.

To make Elmer draw, tell him

PEN DOWN. He'll place his pen

on the screen and draw a trail

behind him. When you say PEN

UP, he'll lift the pen and leave

no mark at all. The drawing in

structions do not need following

numbers.

Elmer usually uses an asterisk

for drawing his trail, because he

thinks it looks like a turtle. How

ever, he'll draw with any other

character you choose. Just type

the instruction CHAR, followed

by a space and the character

you want. For example, CHAR E

makes him leave a trail of Es.

You can request any letter, num

ber or punctuation mark on the

keyboard except the Commo

dore graphics symbols.

Elmer can draw in 16 different

colors. To change color, type

COLOR, a space and the num

ber of your choice, 0 to 15. If

you have a monochrome moni

tor, you can choose from seven

shades.

Even though he's just a silly

old turtle, Elmer can write mes-

. ■

'■■■■■■

Turtle-Tutor

For Tykes

By Peter Crosby

RUN It Right

064

Children under six or seven are
fascinated by computers, but lim
ited in what they can create with
them, since they can't read or

handle detail well enough to pro
gram. I wrote Elmer the Turtle, an

introductory turtle-graphics pro
gram, for my own children so

they could start to program, and
I've found that it can be useful
fun for beginning adults, too.

Elmer is a pen-wielding "tur
tle" who moves about the screen
and draws according to a list of

instructions you create by copy
ing choices from a menu. The
programming is done with only

two screens, the second follow

ing the first automatically. There's
no switching from menu to menu

as in more advanced programs
like Logo. Eleven simple state
ments are sufficient to put Elmer

through reasonably complex ma

neuvers, and four rudimentary

editing commands enable you to

arrange the program listing.

The program is reasonably
crash-proof. If you type in gar

bage, Elmer just says he doesn't

understand and would you please

try again. If it does crash, you can

usually restart it without losing any

thing by typing GOTO 700.

The statement list for Elmer is
limited to 36 lines so that they'll

all fit on one screen. Obviously,

after a while you'll want more

room. That's when you move on

to Logo or regular turtle graph

ics. Since Elmer's vocabulary

and procedures do carry over,

you'll have a valuable head start.

TALKING TO ELMER

As I mentioned, there can be

up to 36 instructions in a list.

Each instruction has a line num

ber. After a couple of introduc

tory screens that explain what

the program is about, a display
appears with an empty list of all

Chaining \bur

Programs

By Michael Broussard

RUN It Right

C-64; V!O20

A friend of mine who is rela

tively new to programming is

working on his most ambitious

project to date—an all-text ad

venture game written in Basic for

the Commodore 64. After a week

or so, he discovered that the 38K

of memory available for a single

program would not be enough.

"Now what do I do?" he asked

me the other day. "I'm out of

memory!"

"Well," I replied, "you'll have

to use program chaining." I ex

plained the fundamentals of

chaining using Commodore Ba

sic. It's quite simple, really. All

you have to do is employ the

Load command from inside a

program. This reads in the new

program specified from disk (or

tape). When it's loaded, it wipes

out the program currently in

memory and then runs automat

ically. As long as the "chained"

program is shorter than the orig

inal, all the variables will be avail

able to the chained program as

well. I even wrote an example

program to show him how it

works:

10 PRINT"THIS IS THE MAIN

PROGRAM. NOW LETS"

20 PRINT-CHAIN TO THE SUB

PROGRAM."

30 LOAD'1SUBPROG",8

When you run this short pro

gram, it executes the Print state

ments shown and then loads a

new program called SUBPROG

from the disk. SUBPROG then

runs automatically.

Armed with his new knowl

edge, my friend went back to

programming, confident his

memory problems were solved.

But, within an hour he was back.

"I've figured out how to break

my game up into parts," he said,

"but there's about 10K of code

that's exactly the same for each

33

THIS IS AN EXAMPLE OF A MAIN

PROGRAM.

PRESS ANY KEY TO LOAD IN

THE OVERLAY.

THIS IS THE OVERLAY.

PRESS ANY KEY TO RETURN TO

THE MAIN PROGRAM.

AND HERE WE ARE BACK IN THE

MAIN PROGRAM.

part. Do I have to include that

code as part of every chained

program?"

Uh oh. Now the problem was

getting harder. The fastest way

out was to tell him that, yes, he

had to include the 10K in every

program. But it would take

longer to load each part, not to

mention the extra disk space

each would occupy. Plus, for ev

ery change he might want to

make to the "common" part of

the code, he would have to

change every program. Keeping

all the parts in sync could turn

into a time-consuming nightmare.

After a couple of hours of ex

perimentation, I came up with a

way to solve this dilemma, It's a

pair of subroutines (one written

in Basic, one in machine lan

guage) that enables you to do

program chaining while protect

ing a portion of the program al

ready in memory. Throughout

the rest of this article I'll refer to

this utility as Overlay.

The only restrictions involved

in using Overlay are that the area

of memory to be protected (I'll

refer to it as the common code)

must be the first part of the pro

gram, and all the overlays must

begin with the same line number.

My friend decided to keep all

the common code in lines num

bered less than 1000. He uses

two overlays I'll call MAIN and

SUB1, both of which start with

line 1000. Overlay's utility sub

routines are part of the common

M 0

1)

2)

3)

4)

N T t

LOAN

LOAN

LOAN

I L Y F A Y

PRINCIPLE ?

INTEREST ?

M E N T

12500

2.9

DURATION (MONTHS)?

MONTHLY PAYMENT :

B| ANOTHER Y.

- $ 362.

36

96

sent to the printer, and the counter

K is reset to 0. The next page

number appears at the top of the

next page and is followed by the

column headings.

When you wish to exit the pro

gram, select option 4. A final

message is printed to the screen,

and the program ends.

All in all, you should find the

program to be a very accurate

and useful addition to your fi

nancial program library. And it

should help you make some in

formed decisions about borrow

ing money prior to your actual

shopping. The amortization

schedule makes tax time a little

easier, since you don't have to

rely on lenders to provide you

with interest-paid information. H

34

LOAN MENU

1) MONTHLY PAYMENT

2) LOAN BALANCE (PAYOFF

3) AMORTIZE A LOAN

4) END PROGRAM

through the rest of the normal

screen.

After the program loops through

the formulas—one loop per

month—you are informed of the

total amount of your payments

and the cost of the loan. The cost

of the loan is nothing more than

the total of payments minus the

principal amount of the loan.

Please note that on occasion,

when working with large loans,

the amounts may be off by a few

cents. This is due to the method

of rounding, which doesn't al

ways go to the nearest penny.

However, the program has been

exceptionally accurate in most

situations.

If you answer Y when asked if

you want a hard copy, you'll get

a printout of the amortization

schedule. The routine should

work fine with your Commodore

printer as well as with third-party

printers. Tabbing is accom

plished in a rather crude but ef

fective way, using

PRINT#4,""TAB(n)X$

where n is the number of spaces

to tab.

Page advance is automatic by

iiiouiij ui l_.UUillfc;l i\. vVilcii llllb

counter reaches 42 lines, the pro

gram prints a message at the bot

tom of the page and increases the

page number by 1. A form-feed is

code included in the Sower-num

bered lines. When the code in

MAIN or SUB1 is needed, Over

lay chains the appropriate pro

gram into memory starting at line

1000, leaving the beginning of

the program (the common code)

intact. First let's look at Overlay

and how to use it—then I'll ex

plain how it works.

OVERLAY SAMPLE

PROGRAMS

The best way to explain how

to use Overlay is through an

example.

Try loading and running

OVERLAY.BOOT. Notice how

the variable Z is initially set in the

boot program (line 1050) and

then is used to specify where the

main program should begin ex

ecuting before and after calling

up an overlay.

After you see how these ex

amples work, you'll be able to

use overlays in your own pro

grams with a minimum of hassle.

Modify the boot program to suit

your own applications. If you

wish to start your overlays with

another line number besides

1000, all you have to do is

change line 1 of the boot pro

gram and the value assigned to

the variable ZL in line 10.

HOW OVERLAY WORKS

To understand how Overlay

works, it's helpful to understand

how the 65536 <64K) bytes of

memory in the C-64 are used

when you're programming in

Basic.

When you first turn on or reset

the 64, you see the familiar

power-on message that tells you

there are 38911 Basic bytes free.

What happened to the other

26625 bytes'? They're there, but

just not available for use by a

Basic program. Look at the dia

gram in Figure 1.

If you think of the memory in

the C-64 as a string of bytes

numbered from 0 to 65535, your

Basic program typically resides

at the beginning of the area that

starts at location 2048 and ex

tends up to 40959. The 'lower"

part of RAM, from location 0 to

2047, is used by the Basic op

erating system to do housekeep

ing. This space includes memory

for screen management, the cas

sette buffer, important Basic

pointers, and so forth.

The Basic language and op

erating system program is stored

on special ROM (Read Only

Memory) chips, taking up 8K of

memory in locations 40960 to

49151. Next comes a 4K chunk

of memory from 49152 to 53247

that's free to be used for what

ever you like—perhaps for ma

chine language programs that

must coexist with Basic.

Locations 53248 to 57343 are

used for input/output and for

35

65536

57344

53248

4'.) 152

40960

2048

Krrnal ROM

WO Control

Free RAM

Basic ROM

Basic Memory

Basic Work

Area

Figure 1. Typical memory allot

ment in the C-64.

sprite and sound control. Finally,

at the very "end" of memory

(57344 to 65535) is the Kernal

ROM. a set of special machine
language routines used by Basic

for input/output, timer and mem

ory management and other use

ful tasks.

This is, in a slightly simplified

manner, how all the memory in

the 64 typically is configured.

Now let's turn our attention to the

38000 or so bytes reserved for

your Basic program, which I'll re

fer to as Basic memory.

Basic memory contains not
only your program, but also the

values of all the variables and

20-IK

Siring

Storage

Arrays

Variables

Program Text

Figure 2. Basic memory areas

in the C-64.

arrays the program needs as it

runs. When you run a program,

all variables are reset, and Basic

creates space for each variable

and array the first time it's ref

erenced. Variables occupy mem

ory just past the end of the

program text, and arrays are just

past the variables.

String variables are handled in

a special way. Since strings can

vary in length up to 255 char

acters, the string values go at the

top of Basic memory, and only

descriptive information about the

variable (its name, length and

where it's actually stored) is

found with all the other variables.

The Loan Arranger

By Jaap Kroes

RUN It Right

C-64; 0128 (in 40-column mode)

Printer optional

How would you like an amorti

zation schedule of each outstand

ing loan you have, including the

mortgage? By having such a

schedule, you can easily calculate

for tax-deduction purposes the

amount of interest you paid during

the preceding year.

The Loan Calculator and Am

ortization program for the C-64

and C-128 will do all that for

you. It's easy to use, requiring

only input to the questions

asked on the screen. And if you

want a hard copy of the am

ortization schedule, just answer

Y when prompted for it, and

you'll get a neat, easy-to-read

printout.

USING THE PROGRAM

After you run the program, a

menu will appear.

Option 1, Monthly Payments,

consists of three questions to de

termine your monthly payments.

You'll be prompted to enter your

loan principal, the interest rate

and the number of months in the

repayment schedule. This is a

handy feature, since you may

wish to see what effect different

interest rates would have on your

monthly payment.

Option 2, Loan Balance, begins

by prompting you to enter the

amount of your current loan. It

then asks you for the amount of

your monthly payments and how

many you've made, and finally for

the interest rate. The remaining

balance is instantly displayed, and

you are asked if you want to run

another. An N answer returns you

to the main menu.

The most interesting part of the

program is option 3, Amortiza

tion, which will list the figures to

your screen or printer.

Again you are asked to input

the amount of the loan, the in

terest rate and the duration of

the loan in months. You are then

asked if you want a hard copy.

If you answer N, the amortization

schedule of your loan is printed

to the screen. The top three lines

of the screen consist of the col

umn headings. The figures scroll

36

The diagram in Figure 2 sum

marizes this information.

Special pointers in lower RAM

keep track of the dividing lines

between the various portions of

Basic memory. RAM locations 43

and 44 contain the address

where program text is to be

loaded {the start-of-Basic

pointer). As you can see in Fig

ure 2, this is usually set to 2048

on the 64.

Overlay works by scanning the

program until it finds line 1000.

Then it stores the address of line

1000 in the start-of-Basic pointer

and loads in the specified over

lay program, starting at that ad

dress instead of the default

location of 2048. This leaves the

part of the program numbered

less than 1000 (the common

code) intact.

The overlay program begins

executing at line 1000, because

that's where Basic thinks the pro

gram starts. The first line of the

overlay resets the start-of-Basic

pointer to include lines 1-999

again, so those Pokes must be ex

ecuted before you reference any

of the common code.

When a program is loaded,

Basic also sets another pointer

at locations 45 and 46 to point

two bytes past the program end.

This is where the variables will

be stored when the program is

run initially. When you use Over

lay, however, this may present a

problem. As you can see, if you

load an overlay that's long

enough to extend past where this

pointer points, you'll destroy

some of the program variables.

To get around this, the boot pro

gram sets the beginning-of-vari-

ables pointer to a spot about two-

thirds of the way into Basic mem

ory, leaving 22K for the common

code and the longest overlay,

and 16K for the variables, arrays

and string storage.

If the common code plus the

longest overlay is longer than

about 24 disk blocks, you must

adjust the pointer by increasing

(on line 1030 of the boot pro

gram) the value poked into lo

cation 46. If your program

produces an Out of Memory er

ror when it runs, the pointer must

be adjusted downward to in

crease the amount of space

available for variable storage.

(Out of Memory errors can also

occur if your program uses too

many nested For loops or too

many nested GOSUBs, but this

sort of error is not related to this

pointer setting.)

Ideally, the pointer should be

set to 8 plus the size of the com

mon code plus the size of the

longest overlay (code sizes are

in disk blocks). This reserves the

right amount of Basic space for

the program text while leaving

the maximum amount of space

free for variables. ®

37

Mega-Magic

By Robert Bixby

RUN It Right

C6-t

Scroller is a brief machine lan

guage routine that turns your dis

play into a continuous band

running in either direction across

the screen. Run Scroller Basic. It

automatically saves to disk a

machine language program file

called SCROLLERMLA.

To access SCROLLERMLA,

type in SYS828. The entire

screen will move one column to

the left. Type in SYS892 and it'll

shoot back to where it started.

You can scroll any text screen

endlessly this way, using a con

tinuous loop such as: 10 SYS892:

GOTO10. If you write a program

with a series of Data statements

to be printed vertically on the left

margin of the screen. SCROLL

ERMLA will scroll a message as

long as the memory available in

your computer.

Random Scroller demonstrates

a potentially valuable feature of

this scrolling program. By typing

lines 30-70 into your program

(perhaps as a subroutine) and

setting the variables to appropri

ate values, you can scroll any

section of the screen in either

direction. Set T equal to the num

ber (0-23) of the top screen line

of the section to be scrolled, B

to the number (1-24) of the bot

tom line of the section, R to the

right margin and L to the left

margin.

Load and run Random Scroller

to see what I mean. Enter your

own values for T, B, R and L

See if you can scroll different

sections of the display in oppo

site directions at the same time.

Experiment and have fun. One

note of caution, however: Scroll

ing lines beyond line 24 will

certainly Osterize your Basic pro

gram, and setting T to a value

greater than B is likely to crash

the computer. H

Directory

Page

1

4

7

15

17

18

21

25

28

30

32

33

38

39 £

Article

The Loan Arranger

Turtle-Tutor for Tykes

RUN Basic

Programmers, Take Note!

Sign Maker

Instant Data Statements

64 Personal Ledger

High-Res Revolution

As the Word Turns

Making a Pointer

Double Vision

Chain Your Programs

Mega-Magic

Halloween Story

Disk Filename

MENU 64

LOAN ARRANGER (64/128)

TURTLE TUTOR

RUN BASIC 1.0

DEMO 1

DEMO 2

DEMO 3

DEMO 4

DEMO 5

DEMO 6

NOTEPAD

SiGN MAKER

DATAMAKER 64

DATAMAKER 128

BALANCE SHEET

64/GRAFIX

GRAFIX DEMO 1

GRAFIX DEMO 2

FIND THE WORD

DEMO POINTER

MIRROR

OVERLAY.BOOT

MAIN

SUB1

'SCROLLER

RANDOM SCROLLER

HALLOWEEN

PUMPKIN

File Type

BASIC

BASIC

BASIC

ML

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

ML

NOTE: Do not load indented files as stand-alone programs)

* Be sure to place a different disk in your drive before running SCROLLER.

This program writes a machine language program to disk.

£ Bonus program!

38

■:\;/.- •

Halloween Story

By W. O. Nelson

RUN it Right

064

This Halloween program will

delight all the children in your

family and your neighborhood. It

starts with an introductory se

quence, including a background

story printed on the screen, little

sprite pumpkins that pop up from

behind vines and some Hallow

een music. Then the "great

pumpkin" is revealed, hanging

bright orange in the black night

sky. Every few seconds a sprite

witch flies by, and once in a

while lightning flashes and thun

der rolls.

The pumpkin has black eyes

with white sprite pupils that follow

the witch across the screen, and

a black nose and mouth. Curved

vertical lines run up its sides, and

a line circles the top where the

lid should be. The pumpkin is

stored in a picture file called

Pumpkin, which the main part of

the program loads to display the

image on the screen.

To use the program, type

LOAD "HALLOWEEN'\8. The
program is short, but cycles con

tinuously, so you can let it run

all evening if you like. Last year

we put our monitor in the window

so trick-or-treaters could see it.

Believe me, we were the talk of

the neighborhood! d

ReRUN Staff

Technical Manager/Kditor: Margaret Morabito

Technical Editor: Tim Walsh

Managing Editor/I1 roduc I ion: Swain Pratt

Copy Editor: Peg LePage

Proofreader: Harold Bjornsen

Design and Layout: Karla M. Whitney

Typesetting: Doreen Means, Beth Krommes, Ken Sutcliffe

iv 39

Basic to have all of the com

mands from these two major Ba

sic extensions. This gives you

extra commands for program

ming disk operations, sprite

graphics, music, windows, turtle

graphics and subroutines.

Specifically aimed at simplifying

high-resolution drawing is High-

Resolution Revolution. Once you

run this program, you'll have eight

powerful commands for drawing

on your C-64.

Mega-Magic is RUN's newest

monthly column, featuring some of

the larger Magic submissions that

are sent to RUN. In October, we

published Scroller, a machine lan

guage routine that lets you scroll

your C-64's screen horizontally.

RUN's Basically Speaking col

umns have provided much infor

mation for those who want to

learn how to program in Basic.

Instant Data Statements, from

September, lets 64 and 128 own

ers convert machine language

programs into data statements

for use within their own Basic

programs. Chain Your Programs,

from October, is a utility for pro

grammers to use when their pro

gram creation exceeds the com

puter's available memory.

For keeping track of important

notes and numbers, we have

Programmers, Take Note! This

computerized notepad resides in

your computer's memory while

you program or run other pro

grams. Just press a key when

you want the notepad to appear

on screen.

For educational fun, As the

Word Turns is bound to keep you

and your family intrigued as you

try to find the words hidden in

this puzzle.

Lastly, to put you in the mood

for the Halloween season, we

have a bonus program, Hallow

een Story. This program will raise

eyebrows when you run it on All

Saint's Eve.

That's all for this edition of

ReRUN. Have fun!

Margaret Morabito

Technical Manager

RUN magazine

Please send me back issues ofReRUN

Cassette version(s) at $11.47*

Disk version(s) at $21.47*

Gamepak

Summer Edition

Fall Edition

Winter Edition

January/February 1986 **

March/April 1986

May/June 1986

July/August 1986

Productivity Pak II

* Ih-ires iwtude postage and handling. Forforeign air mail, please add U.S. $1.50 per item and

$25 per subscription. Prepayment only.

** All 1986 editions contain 128-mode programs and are available on disk only.

D Payment Enclosed □ MC □ VISA D AE

Caul if

Name

Address

City

Signature

Slate

Kxp. Datt

Zip

ReRUN • 80 Elm Street • Peterborough, NH • 03458

Please send me:

□ 1 year (6 issues) for $89.97

□ November/December ReRUN disk for $21.47.*

*AitailabIe in December.

Includesprogramsfor C-64 and C-128 (in both 64 and 128 modes).

Price includes postage and handling. Forforeign air mail, please add U.S. $1.50 per item and

$25 per subscription. Prepayment only.

□ Payment Enclosed D MC D VISA D AE

CmtU

Name

Address

City

Signature

Stale

Exp. Date

Zip

ReRUN • 80 Elm Street • Peterborough, NH • 03458

RUN Programs Included on this Disk:

Personal Finance Turtle Graphics

Education ProgrammingAids

Small Business Applications

From the SeptemberRUN:

-- The Loan Arranger

* Turtle-Tutor for Tykes

RUN Basic

- Programmers, Take Note!

Sign Maker

Instant Data Statements

From the OctoberRUN:

64 Personal Ledger

High-Resolution Revolution

As the Word Turns

Making a Pointer

Double Vision

Chain Your Programs

Mega-Magic

PLUS Bonus Program:

Halloween Story

II any manufacturing defect becomes apparent, the defective disk will be replaced free of charge if returned

by prepaid mail within 30 days of purchase. Send it, with a letter specifying the defect, to:

RcRUN • 80 Elm Street • Peterborough, NH 03458

Replacements will not be made if the disk has been altered, repaired or misused through negligence, or if it

shows signs of excessive wear or is damaged by equipment.

The programs in ReRUN are taken directly from listings prepared to accompany articles in RUN magazine.

They will not run under all system configurations. Use the RUN It Right information included with each article as

your guide.

The entire contents are copyrighted 1986 by CW Communications/Peterborough. Unauthorized duplication is a

violation of applicable laws.

©Copyright 1986 CW Communications/Peterborough

CW COMMUNICATIONS/PETERBOROUGH

RUNPrograms on Disk

Th« Commodor* C-1ZVC44 Horn* Computing OuU* For the

C-64andC-128*

\AS) CIALLOOK

Al SMALL BUSINESS:
Applications

Buyer's Guide

CAD Programs Reviewed

Easy-to-Use Personal Ledger

INTRODUCING

.... 1 llll.l

1

IT*Commode™C-12&C-W HamCo«*»Bnga*»

l.f. (HIAi'HKIK HJinj;

CES NEW PRODUCT

Hr
HOME FINANCES
-Ouide to Available Software
-Ensy-lo-Use Type-in Program

*128mode

programs included

i nm

