
Spring Edition 1985

Great new software programs

for the C-64 and VIC-20!

C-64 VIC-20

CALCAID64

QUATRO

SCREEN

SMOKING

TAG

MEMO

JACKETS

PLENTY

RECORDS

SCRAMBLER

1

8

10

13

18

19

21

23

26

34

SCREEN

JACKETS

SCRAMBLER

CANYON

CANYONMOD

COLOR

BOMBS

BOMBSMOD

TRAPPED

ZXYLON

ZXYLONMOD

MAZE

10

21

34

36

36

40

50

50

52

59

59

61

NOTE: Since some of these programs include features that

could overwrite or destroy other programs on the same tape or

disk, it is a good idea to make copies of all the programs and

use the original ReRUN tape or disk as a backup. ALWAYS read

the article in the booklet for operating instructions, memory

requirements or special loading instructions before running any

program. Also note that some programs are not included on the

tape version. Check article in booklet for complete details.

INTRODUCTION

1985 is well under way,

and RUN magazine is doing

better than ever. In 1984, the

first two ReRUNs we tried

were very well received, but in

doing only two a year, we had

a rough time deciding which

programs to include and

which to leave out. Many peo

ple wrote to us saying they en

joyed ReRUN Volumes I and II

a great deal, but that there

were programs they thought

we shouldn't have omitted.

The solution to this problem is

a simple one—more ReRUNs!

Twice as many! And more on

top of that!

Beginning with this first

ReRUN of 1985, we will be

coming out quarterly; four

ReRUNs a year filled with pro

grams from the best Commo

dore computer magazine ever

published, plus extra, unpub

lished programs to give you

even more for your money!

For example, CalcAid 64, a

full-blown spreadsheet pro

gram, has everything you

need for calculating expenses

or keeping financial records.

It uses 780 cells (26 rows by

30 columns), allows forced re

calculation at any time, and

has save to tape or disk and

many other features. To buy a

similar program, you would

probably have to pay $50 to

$80, or more; yet, for the price

of ReRUN, it's yours!

Of course, we also have

plenty of programs straight

from the pages of RUN—

programs to help you get

more use from your com

puter. Plenty of K (C-64) is a

computer sampler of graph

ics ideas. Smoking Joe

(C-64) takes you from stitch-

ery to sprites, with six tricks

to try in your own programs.

Print Your Screen (C-64 and

VIC) is a utility program that

lets you put whatever is on

your screen onto paper. Play

Me a Color (VIC) is an

amusing and instructional

use of sound and color.

If you ever wondered

about programming your

own maze games, Trapped

in the Maze (VIC) not only

helps you create your own

programs, but is a fine

game in itself. Quatro (C-64)

and Scrambler (C-64 and

VIC) are two more games

for those computerists who

enjoy an intellectual chal

lenge, while Fly the Grand

Canyon (VIC) is a flight-sim

ulation game for the fast-

handed gamester Perhaps

one of the oldest children's

games ever played makes a

computer comeback in

You're It! (C-64)—two-player

tag without losing your

breath.

Since it is almost that

time of year again, we have

included Tax Records 64

(C-64) to help you get ready

to greet Uncle Sam come

April 15th. And so that you

don't miss those important

dates or meetings, Don't

Forget! (C-64) is a complete

appointment calendar

program.

These programs appeared

in RUN (December 1984

through February 1985), but

there is more: four all-new

bonus programs never pub

lished before! Passage to

Zxylon and Bombs Away are

two more VIC-20 games to

keep you hopping; Bug-in-a-

Maze (VIC) is a game that

teaches youngsters how to

add, and, finally, Making

Jackets (C-64 and VIC) lets

you make your own disk

jackets with your printer,

scissors and tape.

This is just the start for

ReRUN 1985. We have a lot

more in store: more pro

grams from RUN, more bo

nus programs (even a few

super-special bonus Re-

RUNs!), more games, utili

ties, educational and home

business programs—more

for your Commodore.

Guy Wright

Technical Manager

HOW TO LO&fr

DISK:

To load any of the programs, type:

LOAD " program-name" ,8

then press the RETURN key.

The disk drive should "whirr" while the screen prints SEARCHING FOR (pro

gram name). The screen should then print LOADING and then finally READY,

with the flashing cursor beneath. Type RUN and press the RETURN key. The

program will then begin.

CASSETTE

Insert the cassette tape into the Datassette recorder, with the proper side fac

ing up. Make sure that the tape is rewound all the way to the beginning. Type:

LOAD "program-name"

then press the RETURN key. The screen will display PRESS PLAY ON TAPE.

You should then push the play button on your Datassette recorder.

When the program has been found, the screen will display FOUND (program

name). On some Commodore computers, you may then have to press the

C = (Commodore symbol) key to load the program. On other Commodore ma

chines, the program will load automatically. Check your owner's manual for

specific loading procedures.

When the program has finished loading, you will see the READY prompt and

the flashing cursor beneath. Type RUN and press the RETURN key to start the

program.

NOTES:

You should use the entire program name as listed to avoid loading programs

that have similar titles.

Make sure that if you are loading VIC-20 programs you have the correct memory

expansion cartridge (or no cartridge if that is required) plugged in before load

ing the program.

Some programs are divided into two sections, the main section (the one you
should load first) and the MODULE section, which is either automatically

loaded when the first section is run or is loaded manually after the first section
is run.

Some programs may use special loading instructions, so ALWAYS refer to the
article in the booklet for operating instructions, memory requirements, etc.

CaicAid64

BY TRENT BUSCH

This electronic

spreadsheet pro

gram is one of the

most useful tools

you'll ever own. You

can use it to do

anything from bal

ancing a checkbook

to performing com

plex analysis.

This article will take you

step by step through the fea

tures of CalcAid 64 and give

you a sample spreadsheet to

try for yourself.

First make a backup copy

of the program on disk or

tape, then run it and examine

the display.

It
IGHT
C-64

Printer optional

Disk only

The flashing cursor at the

top left of the screen repre

sents the data entry line. Be

low that is a solid line running

across the screen. This is a

comment line that CalcAid

uses to display important

messages and information.

The numbers 0, 1 and 2 repre

sent columns. The letters A

through T are the rows.

If you don't like the screen

colors, you can change them at

any time. The f 7 key changes

the background color, and the

f 8 key steps through the bor

der colors. To change the text

color, simultaneously press

the CTRL key with any number

key from 1 to 8. Upon your next

operation, the entire text will

change color.

CalcAid has 30 columns

and 26 rows. Each column can

display up to nine characters.

Notice that only three col

umns are displayed on the

screen. All 30 are there; you

just cannot see them all at

once. Imagine that you are

looking through a window and

can only see a portion of the

overall picture.

The cursor keys allow you

to move this window around

the spreadsheet. Press the

cursor-down key, and the

spreadsheet will be quickly re

drawn with rows B through U.

Notice that the text is now the

color that you chose. Experi

ment with the cursor keys until

you can place the viewing win

dow over all the columns and

rows. Pressing the home key

will return the window to AO.

Entering Information

The intersection of a col

umn and a row is called a cell.

There are 780 cells that you

can use, A0-Z29. There are

three types of information that

you can enter into a cell: text,

numeric or formula.

In order to enter information

into a cell, you need to follow

a specific procedure. Type in

the cell location, row first and

column second, without put

ting in any spaces. Next, type a

colon. This separates the cell

location from the data. Now

you can type in text or numeric

data up to nine characters.

AO.BUDGET 84

C12:250

Text information can contain

almost any character on the

keyboard, but must not begin

with a number or a plus or mi

nus sign. Numeric information,

however, must start with a num

ber or a plus or minus sign.

After typing in your informa

tion, press the return key. If

everything was typed in cor

rectly, you should see the

data in the proper cell. If you

didn't enter your information

properly, CalcAid will display

a format error message on the

display line. To rectify this,

simply retype the entire line

correctly. Text data will be

left-justified, while numeric

data will be right-justified.

To replace data, just retype

the cell coordinates, a colon

and the new data. To clear

text or numeric data from a

cell, simply type the cell coor

dinates followed by a colon

and then press the return key.

This procedure will not clear a

formula, however.

Pressing SHFTCLR will

clear the entire spreadsheet.

For safety reasons, this is a

two-step process. First, press

SHFT CLR and then answer

the question on the comment

line. Press Y to clear the

spreadsheet. Press N to exit

the Clear mode.

Calculations

While you now know how to

create neat columns and rows,

the real power of CalcAid lies in

its ability to do mathematical

computations using the data in

each cell. For example, you can

add cell AO to cell A1 and put the

answer in cell A2. This is accom

plished by putting the formula

AO + A1 into cell A2. Here is the

proper format:

A2:{f1}A0 + A1

The f 1 key will result in a re

verse-character F on the

screen. This key is used to ac

cess the special features of

CalcAid. If you forget to press

f 1 when entering a formula, the

formula will be entered as text

and displayed in the cell. Only

the result of the computation,

not the formula itself, should

be displayed in a cell.

A special command allows

you to vtew the formula in a

particular cell:

A2:{f1}V

If a formula resides in cell

A2, it will be printed on the

comment line. The full value

of the numeric data in cell A2

also will be printed. This is im

portant, because each column

is limited to nine characters.

CalcAid will fill the cell with

asterisks if the numeric data

is longer than nine characters.

You will then need to use the

View command to examine

that cell.

Here are the formulas that

this spreadsheet can use for

computation:

addition—cell + cell or

cell + constant

subtraction—-cell -cell or

cell-constant

multiplication—ceircell or

ceirconstant

division—cell/cell or

cell/constant

exponentiation—celltcell

or celltconstant

CalcAid cannot handle

complex formulas. A more in

volved computation can be

done by storing the intermedi

ate answer in a spare cell. Ex

tra characters after the

second cell or constant will be

ignored or show up as a For

mat error. When typing in a

formula, leave out all spaces

and be sure to enter the cell

first and the constant second.

After you enter a formula

and press the return key, you

must press the left-arrow key.

Wait for the calculation to be

performed. During calcula

tions, there will be a working

message on the comment

line. Calculations are done

column by column from top to

bottom. Column 1 will be com

pletely done before column 2.

This is an important point.

For example, let cell

A0 = F9*G6. If cell F9 has a

formula in it, the resulting an

swer will be figured after cell

AO is computed. To overcome

this, you should press the left-

arrow key twice. After all com

putations are complete, the

spreadsheet will be redrawn

with the results displayed in

the proper cells. Attempts to di

vide by 0 will be noted in that

cell, as will an overflow note if

an exponentiation calculation

is too large.

Commands and Special

Features

CalcAid has several other

commands that are very use

ful. The following examples

show the proper format for the

commands. You may use any

cells that you wish. The range

must be in a straight row or

column, with the first coordi

nate smaller than the second.

A1:{f1}SUMA2-Z2

This command puts the sum

of cells A2-Z2 into cell A1.

Text data is ignored.

Z29:{f1}AVGB3-B12

This command calculates the

average of cells B3-B12 and

puts the answer into cell Z29.

Text data is ignored.

C12:{f1}MIND0-G0

This command looks for the

minimum figure over a range of

cells and puts the answer in

cell C12. Text data is ignored.

F5:{f1}MAXZ0-Z29

This is similar to the MIN com

mand except it returns the maxi

mum value in a range. Again,

text data is ignored.

Remember, you can use any

cells that you wish, but they

must be in a straight column

or row.

Z29:{f1}SUMA0-D29

This formula will not work be

cause cells A0-D29 are in a

diagonal.

Here are the rest of CalcAid's:

special features:

A0:{f1}T

This command makes row A

and column 0 titles that are al

ways displayed on the screen.

This is helpful in remembering

what each cell is supposed to

be. As you move your display

window around, you can al

ways have a reference to nu

meric displays. You must

always use cell AO in this

command.

AO:{f1}0

This command turns off the

Title mode. The cell must al

ways be AO.

C15:{f1}C

This command will clear an in

dividual cell, including the for

mula, text and numeric data.

F25:{f1}J

This command jumps the

display to a particular area

of the spreadsheet. Some

times this is faster than us

ing the cursor keys to move

the display window.

D3:{f1}COPD4-D29

This command is used when

you are entering lots of identi

cal information. In this exam

ple, the contents of cell D3

will be copied into cells D4-

0

A BUDGET 84

B

C JANUARY

D FEBRUARY

E MARCH

F APRIL

G MAY

H JUNE

I JULY

J AUGUST

K SEPTEMBER

L OCTOBER

M NOVEMBER

N DECEMBER

0

Q TOTAL

R

S MINIMUM

f

U MAXIMUM

V

Ul

Y BUDGET

2

1

RENT

580

560

560

560

560

560

560

560

560

560

560

560

6720

560

560

560

2

CAR LOAN

175

175

175

175

175

175

175

175

175

175

175

175

2100

175

175

175

3

GAS

1 10

120

80

70

30

25

20

20

35

40

55

80

685

20

120

57

4

ELECTRIC

40

40

40

40

40

60

75

80

45

40

40

40

580

40

80

48

5

TELEPHONE

30

45

30

30

30

30

30

30

40

30

30

40

395

30

45

33

6

CABLE TV

15

15

15

15

15

15

15

15

15

15

15

15

180

15

15

15

A

C

0

E

F

G

H

I

J

K

L

M

N

O

p

Q

R

S

u

V

Ul

X

Y

2

7

GASOLINE

50

60

60

60

65

80

90

75

70

70

80

100

860

50

100

72

8

FOOD

450

450

450

450

475

475

475

500

500

500

525

525

5775

450

525

481

9

CHARGES

100

100

100

100

100

100

100

100

100

100

100

100

1200

100

100

100

10

CLOTHES

75

75

75

75

75

75

75

75

75

75

75

75

900

75

75

75

1 1

INSURANCE

75

75

75

75

75

75

75

75

75

75

75

75

900

75

75

75

12

MISC.

250

250

250

250

250

250

250

250

250

250

250

250

3000

250

250

250

13

TOTALS

1930

1965

1910

1900

1890

1920

1940

1955

1940

1930

1980

2035

23295

1840

2120

1941

Table 1. Sample printout of CalcAid64 program.

c

G

K

Q

Q

Q

Q

S

s

S

U

U

U

Y

Y

Y

13

13

13

1

5

9

13

4

8

12

3

7

1 1

S

6

10

SUMC1-C12

SUMG1-G12

SUh*:i-K12

SUMC1-N1

SUMC5-N5

SUMC9-N9

SUMQ1-Q12

MINC4-N4

MINC8-N8

MINC12-N12

MAXC3-N3

MAXC7-N7

MftXCl1-N11

AVGC2-N2

AVGC6-N6

AVGC10-N10

D

H

L

Q

Q

Q

S

S

S

S

U

U

U

Y

Y

Y

13

13

13

2

6

10

1

5

9

13

4

8

12

3

7

1 1

SUr*BDl-D12

SUMH1-H12

SUML1-L12

SUMC2-N2

SUMC6-N6

SUMC10-N10

M1NC1-N1

MINC5-N5

M1NC3-N9

SUMS 1-S12

MAXC4 -N4

maxcs-ns

MAXC12-N12

AVGC3-N3

AVGC7-N7

ftVGCl1-N11

E

I

M

Q

Q

Q

S

S

s

u

u

u

u

Y

Y

Y

13

13

13

3

7

11

2

6

10

1

5

3

13

4

8

12

SUME1-E12

SUMI1-112

SUMM1-M12

SUMC3-N3

SUMC7-N7

SUMC11-N11

MINC2-N2

MINC6-N6

MINC10-N10

MAXC1-N1

MftXC5-N5

MAXC9-N9

SUMU1-U12

AVGC4-N4

AVGC8-N8

AVGC12-N12

F

J

N

Q

Q

Q

S

S

s

u

U

U

Y

Y

Y

Y

13

13

13

4

8

12

3

7

1 1

2

6

10

1

5

9

13

: SUI*F1-F12

: SUMJ1-J12

SUMN1-N12

SUMC4-N4

SUMC8-N8

SUMC12-N12

MINC3-N3

MINC7-N7

MINC11-N1 1

MAXC2-N2

MAXC6-N6

MflXCI0-N10

AVGC1-N1

AVGC5-N5

AVGC9-N9

SUMY1-Y12

Table 2. Printout of formulas used in demonstration of program in Table 1.

D29. Only text or numeric in

formation can be copied. For

mulas must be typed

individually. This works with

rows or columns.

Press f2 and you will see a

maximum precision display on

the comment line. This com

mand does not affect the accu

racy of the calculations. It

rounds the number only for dis

play purposes. Use the View

command to see the full value.

Press a number from 0 to 6.

Zero means integers and 6

means six decimal places.

CalcAid is automatically set up

for two decimal places. This

command is only for numbers

that are computed by a for

mula. If you want two-place

decimals on all the numbers,

you must type them that way.

Press f4 and follow the

screen directions to save the

spreadsheet to tape or disk.

Pick out a logical filename un

der which you can save the

spreadsheet.

Press f3 and follow the

screen directions to load the

spreadsheet from tape or disk.

To print the spreadsheet on

paper, press f5 and follow the

screen directions. You can

print the whole spreadsheet or

any portion of it. You will need

to know the top-left cell coor

dinate and the bottom-right

cell coordinate of the area

that you want printed out. If

you specify more than seven

columns, CalcAid will auto

matically break the printout

into sections for you.

To print the formulas on pa

per, press the f6 key and follow

the screen directions.

The possible uses for this

program are innumerable. To

start, you might want to copy

the budget planner spread

sheet (see Table 1) and adapt it

to your own needs. All the for-

6

mulas are listed in Table 2. The

more you use this program, the

more applications you will find

for it.

If you have any questions

or want to discuss the pro

gram, just drop me a line

along with a self-addressed

stamped envelope. (H

Address all author corre

spondence to Trent Busch,

716 Rascoe Ave., Muscatine,

IA 52761.

BY SOL STEINBERG

This game adds a

new dimension to

Tic-Tac-Toe. You

must get four in a

row to defeat your

opponent.

This strategy game is like

Tic-Tac-Toe, but more difficult.

The playing field is seven col

umns wide and eight rows

high. You play by choosing a

column, and the computer

then enters your color in the

lowest unoccupied square in

your chosen column. The first

player to occupy four squares

in a line (horizontally, vertical

ly or diagonally) wins.

in it
GOT

Quatro

C-64

Disk or cassette

The program will ask if you

want instructions. Type Y for

yes or N for no. Next, you'll be

asked if you want to play

against the computer or an

other player. Type C or P.

If you type P, the game will

start and one player will be

red and the other black. The

computer's only functions in

this situation will be to act as

a recorder and an umpire; it

will neither allow illegal

moves nor overlook a win.

If you type C, you'll be

asked for the play level. Type

A for amateur, P for pro or W

for world class. At the pro

level, the computer looks

ahead to see that it doesn't

create new opportunities for

you to win. At the world class

level, the computer sets traps

and waits for you to fall into

them. If you are playing

against the computer, you will

always be red.

Each player will be asked

"Which Column?" Simply type

the column number you want

to play, and the computer will

fill the next vacant square

8

with your color and will sound

a tone. It also will check to

see if that move gives you a

win and if any squares are left

to be played. A winning move

receives a fanfare. After each

game, the program will ask if

you want to play again. Type Y

or N. The starting player varies

with each new game.

If you play against the com

puter, the computer's first play

is random, to provide variety

in the games. Try to control

the center of the playing field

and avoid creating an oppor

tunity for your opponent to

win. You must keep in mind

that each time you move to a

square, the square above that

one becomes available to your

opponent.

In designing the program, I

placed the most frequently

used subroutines near the

beginning, to obtain maximum

speed. Despite that, the com

puter takes nearly 15 seconds

per move; it must consider

every possible combination of

four contiguous squares that

includes the available square

in the chosen column.

I hope you will find this '

game a welcome break from

arcade and adventure types. H

Address all author corre

spondence to Sol Steinberg,

Apt Q9, Hyde Park Apts.t

Bellmawr, NJ 08031.

—- Screen

BY ROBIN FRANZEL

How often have you been

working at your computer and

wanted a printout of the

screen? This article presents

a program, written in machine

language for the Commodore

64, that will print your screen

whenever you press the f1

function key or call the print

routine from Basic.

The program is interrupt-

driven, which means the key

board is scanned every 1/60 of

a second to see if the f1 key

is being pressed. If it is, the

screen is then printed. The

IRQ vector technique enables

this utility to work even while

executing a Basic or machine

language program. It can also

ton it
1GHT

C-64 and VIC-20

Printer required

Disk or cassette

be used while the disk wedge

program is in the computer,

as long as you load and run

the wedge first.

The screen dump utility is

also a wedge, and when it

does not find the f1 key

pressed, it transfers control

to the DOS wedge program,

so that both utilities can

function properly together.

The loader program will ask

if you want uppercase or low

ercase letters to be printed.

It's easy to switch back and

forth, even after the program

is loaded, just by changing

the command sent to the

printer. This is done with a

Poke, from either your pro

gram or Command mode. To

change to lowercase letters,

enter POKE 49203,7; to

change to uppercase, enter

POKE 49203,255.

If you're running a program

that uses the f1 key, it's very

easy to change the print key.

Simply type POKE 49184, with

the key code for location $C5

(197 decimal). For example, to

make the f7 key print the

10

screen, enter from Command

mode: POKE 49184,3.

Pressing the run/stop and

restore keys will disable the

utility. SYS 49152 will

re-enable the screen print key.

Now, what can't you do

when this utility is in place (if

you still want it to work)?

First, you cannot use loca

tions $C000 to $C0F9 (that's

49152 to 49401 to you decimal

folks). Four bytes are used by

the program at $02A7 to

$02AA (679 to 682), and zero

page bytes $FB to $FE (251 to

254) are also used. That's it!

I hope that you find this

program useful and in

teresting. Have fun with it! B

Address all author cor

respondence to Robin Franzel,

5521 Harvey Lane, Alexandria,

VA 22312.

The VIC-20 Screen Dump Utility

The VIC-20 version of the screen dump program is completely

relocatable, and "hides" itself below the current top of Basic memory. It

is, therefore, able to function with the VIC wedge program in memory. It

also determines where screen memory is located, making this screen

dump program compatible with all memory configurations.

To use this program, load and run the Basic loader. Then, whenever a

print is desired, simply press the f1 key.

When the Basic loader program is run, you are asked whether upper-

or lowercase print is desired, and the appropriate command is sent to

the printer. The start address is provided, so that you may change the

Printer command. For example, to change from uppercase to lower

case, enter:

POKE (start address) + 54,7

If the Print routine is to be used from within a user program, the pro

gram should use the following line of code:

100 POKE SA + 245,96:SYS SA + 44:POKE SA + 245,76

SA indicates the start address of the program. Of course, it is your

responsibility to load the screen dump program and to determine the

start address.

11

The following locations are useful to note:

• SA = start address of utility. If run/stop and restore keys are pressed,

the f1 key is disabled. To reenable it, do a SYS SA.

• SA + 33 = key code being checked. Normally, this is a 39 for the f1

key, but this location may be Poked with another code (see the Pro

grammer's Reference Guide, p. 179) for use with programs that utilize

the f1 key.

• SA + 44 = the Print routine. This is the entry point from user

programs.

• SA + 54 = Printer command. Poke to 7 for lowercase, 255 for

uppercase.

I hope you will agree that the VIC-20 version of the Commodore

screen dump utility is a valuable addition to VIC-20 users' libraries.

12

BY MARK JORDAN

Warning: The Sur

geon General has

determined that the

following six tricks

and accompanying

program will make

it impossible for

you not to be more

creative in your

sprite programming.

Sprites are the greatest

things since plastic straws,

but their potential is largely

untapped. Documentation for

them is not hard to come by,

It
IGHT
C-64

Disk or cassette

but most of it is too technical,

depressingly uncreative and

fails to demonstrate their

unique capabilities. I've dis

covered six programming

tricks that have added many

dimensions to my sprite pro

gramming. Smoking Joe, the

program included with this ar

ticle, demonstrates all these

techniques. If my explana

tions of any of the tricks con

fuse you, just run the

program, and Joe will clear

the smoke.

One last note: Three of the

sprites in this program are in-

terrupt-driven by a machine

language routine. If you don't

know machine language, don't

worry about it. You'll still be

able to glean plenty from the

Basic portion of the program.

Alpha Sprites

Sprites are excellent places

to put words because you can

push them around very hand

ily and can needlepoint them

into any design you want. For

example, if you wanted to

show a plane in the sky, pull-

13

ing a message behind it, you

could jerk letters eight pixels

at a time, using a complicated

printing routine, or you could

do it professionally with a

sprite.

But wait, you say. A sprite

is only 24 pixels across. At

eight pixels per letter, that's

only enough space for three

letters. True, but who said you

have to use eight pixels per

letter? You can halve that

amount and still get crisp let

ters. . .with this trick.

Use the Horizontal Expan

sion mode. If you've never

done it, it's easy. Just turn on

the proper bit (bit 0 for sprite

0, etc.) on register 53277

(D01D in hex, V + 29 with V at

53248), and your sprite will

double its width. The Horizon

tal mode will double the thick

ness of all your vertical lines.

That way, to form the letter H,

you only need one pixel for

each vertical side, another for

the crossbar and a fourth as a

separating space from the next

occurring letter. An L could be

made with only three pixels

(including separating space).

"HELLO" in this mode only re

quires 16 dots in the X direc

tion—a mere two-thirds of

your total 24. You could create

words up to eight letters long.

As you know, sprites are 21

pixels deep. Capital-letter al

pha sprites need five pixels

for most letters and another

for a separating space, so

you'll probably only get words

that are three letters long.

Need some ideas where to

use word sprites? How about

a cartoon-type balloon above

another sprite's head, ex

pressing a monosyllabic emo

tion such as "Ouch!" Or try

one as a warning message

scrolling across the screen,

like "Duck!" or "Run!" Smok

ing Joe uses two alpha

sprites—"Puff" and "X-Ray."

Check them out—you'll be

amazed at how charming and

useful alpha sprites can be.

Window Sprites

This trick utilizes the back

ground priority register, 53275

($D01B). The Default mode

sets all bits to 0, which

causes the sprites to always

have priority over background

data. Admittedly, this is often

what you want, but reversing

the situation will give you

some clever effects.

Print a message on the

screen in the same color as

the background, so the mes-

14

sage can't be seen. What

good is this invisible mes

sage? A lot, if you use a sprite

to uncover it.

Now make a simple solid

box sprite like this:

FOR T = 12288 TO 12350: POKE

T,255: NEXT

Place it under your invisible

message. The sprite can be

made to move, via joystick,

keyboard, loop or whatever,

across the hidden letters, and,

if bit number 0 on 53275 is set

to 1, the letters will show up

on top of the sprite. The effect

is one of a roving window or

periscope.

You can use this technique

to hide secret information on

the screen; only a sprite can

uncover it. You may also use

this technique to keep a sprite

in safe territory. Individual let

ters, functioning as clues, can

be dispersed across the

screen. Again, you are limited

only by your imagination. Ob

serve the use of the window

sprite in Smoking Joe—a cig

arette package. Ah, but what

wisdom it unearths.

Layered Sprites

Sprites that are stacked one

on top of another are layered.

They're easy to keep together

as long as you always move

them in harmony. The uses of

layered sprites are many and

varied.

You could design one sprite

as a body minus some parts,

then use another to supply the

missing elements. You could

then animate the layered parts

independent of the foundation

sprite.

For example, you could use

a heart-shaped sprite centered

on a sprite boy's chest. Then,

when sprite boy meets sprite

girl, you might start sprite

boy's heart pulsating by jump

ing it in and out of Expanded

mode (love at first sprite?). Is

such an effect worth an extra

63 bytes of data and five or so

program lines? You bet. Just

watch Smoking Joe's chest

(and cigarette smoke) rise and

fall, and you'll see the value of

this ploy.

Another use of layered

sprites utilizes the collision-

detection register. You pro

gram one of the layered

sprites (but not the other) to

detect collisions. Imagine hav

ing a sprite creature whose in

nards are actually a different

sprite. Since only the innards

detect collisions, a bullet you

shoot must hit a vital organ,

or no luck.

15

You might decide to let one

of the stacked MOBs (move-

able object blocks—the tech

nical term for sprites) function

as a window sprite. You could

create an eyeless Martian,

who must "see" through his

hands. Only his hands, which

would be a different sprite en

tirely, would have background

priority. He could then "feel"

his way across the screen to

find invisible information.

Multiple Sprites

It's tough to make a com

plete body in a 24 x 21 grid of

dots. A superficial solution to

this problem is to expand the

sprites, which sometimes

helps, but you lose resolution

and still don't have any more

realistic figure than you did

before—just bigger.

Why not use two sprites to

accomplish the same thing?

This trick is so obvious you've

probably thought of it, but

have you actually done it? It

really works.

Combined with animation,

you can get your sprites to get

down and get with it. Make a

person in two halves and let

the legs walk. Smoking Joe is

a prime example of this tech

nique. If you incorporate the

reverse sprite feature, you can

achieve a comical effect by

having Joe's head turning

from side to side while his

body remains stationary.

Evolving Sprites

By altering the data that

constitutes a sprite, you can

make it do interesting things.

For instance, you can watch it

dissolve or fill up. For what?

Well, how about this.

You design a milk bottle

and then use a data-altering

routine to slowly fill in the bot

tle from the bottom up. If the

bottle sits beneath a multiple

sprite cow, then you've got

some fun going. A thirsty

sprite cat could reverse the

process. Smoking Joe's lungs

aptly describe this technique

as the blackness of his dis

ease spreads. Lines 190-200

perform this by changing the

data in the sprite block, in re

verse order and one at a time,

to 255s.

The dissolving idea is a lit

tle harder to describe. Smok

ing Joe shows off this

technique as his final puff of

smoke dissolves. Lines 260-

270 should be studied to see

how random numbers (be

tween 0 and 255), used with

AND along with the existing

data, cause the sprite to

16

slowly wisp away.

You can do a sprite kaleido

scope by Poking in all the nec

essary numbers to get a sprite

going, then filling the data

block like this:

100 FOR T = 12288 TO 12350 : R = INT

(RND (0) * 256): POKET,R : NEXT

: GOTO 100

Cover Sprites

This technique is based on

the ability of sprites to move

one pixel at a time. By creat

ing a solid block sprite and

giving it the same color as

your screen's background,

you can effectively, dot by dot,

either hide or reveal

something.

You might have a stick of

dynamite with a long fuse.

Your cover sprite could slowly

but surely make that fuse dis

appear. Or you could use a

timer technique similar to

many professional games like

Frogger, where a solid bar rep

resents remaining time. The

bar could be printed on the

screen, and a horizontally ex

panded solid sprite bar (which

would be invisible because it's

the same color as the screen

background) would be placed

next to it and then incre

mented a pixel at a time until

the printed bar was covered.

Smoking Joe utilizes back

ground data as a cover sprite.

In Joe's introduction, a re

versed space that is the same

color as the screen's back

ground was printed over Joe's

cigarette. Then, when the pro

gram tells you of his bad

habit, the space is deleted

and there dangles his vice.

Well, there they are—-six

nifty ways to put new life into

your 64's moveable object

blocks. Now it's your turn. Get

busy and put Smoking Joe to

shame. U

Address all author corre

spondence to Mark Jordan,

70284 C.R 743, Ligonier, IN

46767.

17

BY GERALD

CODDINGTON

How would you like

to play tag indoors?

Here's a BASIC pro

gram that requires

two joysticks, so

you and a Friend

can chase each

other around the

screen.

Before you load and run

Tag, make sure your two

joysticks are plugged in.

The opening screen allows

you the option of reading in

structions if you're not fa

miliar with this game.

It
I6HT

C-64

Two joysticks required

Disk only

The object of this version

of Tag is to accumulate two

minutes' worth of free time.

Your free-time total grows

whenever your opponent is It.

Note that there are two

hiding spots located at the

top and bottom sections of

the screen. Use them to

your advantage. H

Address all author correspon

dence to Gerald Coddington,

Rt. 3, Box 296, Gilmer, TX

75644.

18

Dan't-Fefeetf;

BY RICHARD LOVETT

Here's the perfect

program for people

with a busy sched

ule and a bad mem

ory. It lets you

create an appoint

ment file and has a

built-in calendar as

well.

Instant Memo allows you

to enter up to three re

minder memos for any day

of the year, review or

change them, and, if you

have a printer, make a hard

copy of one or more

months' worth of entries.

It
IEHT
C-64

Printer optional

Disk or cassette

The program can also dis

play an accurate calendar

for any month between the

years 1700 and 3099. Any

day for which you've en

tered a memo will be high

lighted in reverse video on

the calendar, and you can

print a hard copy of the cal

endar itself. (Free wall cal

endars are getting harder

and harder to come by.)

Getting Started

When you run Instant

Memo, you will first see an

introductory menu allowing

you to load an existing file

from disk or tape, create a

new file or simply view a

month's calendar. If you

choose the calendar option,

you will be returned to this

menu after viewing the de

sired month.

Selecting the "new file"

option sends you to the

main Input routine. Here you

specify a day, and then

view, enter or delete any de

sired memos for that date.

(Memos can be up to 77

characters long, although

19

they will display more neatly

if kept under 40 characters.

Don't use any commas, co

lons, semicolons or quote

marks.) To select a day, you

first enter the month as a

number between 1 and 12,

then the day and year. Use

all four digits of the year.

Actually, specifying the

year does not prevent a

memo entered for, say, July

4, 1984, from also being dis

played if you call up July 4

of some other year. Making

each day of several years

entirely separate would have

required dimensioning the

arrays in line 10 several

times larger, thus quickly

exhausting the computer's

memory. Putting an "84,"

"85" or other designation at

the end of entries from dif

ferent years is an easy way

to overcome any confusion.

Entering the year does gov

ern whether or not you can

enter or view a memo for

Feb. 29, which only occurs

in leap years.

The main menu, accessi

ble from most other modes

of the program, includes op

tions to view a month's en

tries on the screen, view

more calendar pages or

save the file to tape or disk.

Is Today the 6th?

Lines 385-710 compute

and display the calendar.

Line 420 reads in the name

of the month and its length

in days. Then the formula in

lines 430-480 determines

which day of the week the

first of that month falls on.

Using that day as the start

ing point, lines 500-670

Poke the dates on the

screen and highlight any

days containing memos.

A modified screen dump

in lines 940-1005 prints a

hard copy of the calendar. A

screen dump is a routine

that sends the contents of

the screen to a printer or

other device. Because the

upper limit of LI in line 950

is 19, however, the routine

will reproduce only the top

19 screen lines. This avoids

cluttering up the printout

with the prompts at the bot

tom of the screen. H

Address all authorcorrespon

dence to Richard Lovett, 6649

Oak St., Kansas City, MO 64113.

20

Making Jackets

BY GLENN W. ZUCH

Disk Jacket Printer

complements Michael

Broussard's disk directory

utility program ("Calling

Disk Drives to Order," RUN,

April 1984), which provides a

very handy and useful

printed directory of disk

files formatted to fit protec

tive jackets.

Disk jackets normally be

come useless (or frustrating

to use) due to the following

conditions:

• Frequent use; the jackets

become dog-eared and torn.

It
I6HT

C-64 and VIC-20

Printer required

Disk or cassette

• Time and change; the di

rectory labels you pasted on

them no longer apply be

cause you scratched and re

placed all or most of the

files on the disks.

• Disorganization; frequently

used disks (especially utility

disks) always seem to end

up in the wrong jackets.

Disk Jacket Printer is writ

ten for most printers. If you

have a Commodore printer

or one that supports Com

modore graphics, you

should find it easy to sub

stitute some of the charac

ters in the four strings that

compose the jacket outline

(lines 30-60).

I used the asterisk to

make the label border, but

you can use any character

(simply change the asterisk

in lines 200 and 240). By the

way, the C-64 version of this

program will also work on

Commodore's new Plus/4

computer.

I have used screen color

changes for each program

prompt. That way, you will

21

immediately know when

something new is about to

take place. If you have util

ity programs that cause you

frustrations because you

sometimes overlook the

prompts, you may wish to

add color Pokes as an im

provement to them.

The label-printing routine

(lines 90-100 and 190-250)

can be used in many of your

programs to print centered ti

tles or headings. Just modify

the 72 in line 220 to corre

spond to the total width of

your printed page. (A 60-col-

umn printout would mean re

placing the 72 with a 60.) You

can use the same routine to

center messages or titles on

the screen. Change the 72 to

40 and remove the #4 from

lines 230-250.

I have found it convenient

to print my jackets on differ

ent colored papers to facili

tate locating my files. You,

too, may find this color-cod

ing helpful.

The best way to fold the

printed jacket is to first fold

along the line that becomes

the bottom edge of the

jacket, then lay the jacket

face down (label down) and

fold over the tabs. A small

amount of any white glue or

similar paper cement is all

that is required to complete

your jacket.

Here's to a better organized

disk-filing system. El

Address allauthorcorrespon

dence to Glenn W. Zuch, 183

HagenAve., Tonawanda, NY

14120.

22

BY ELIZABETH OMAN

With this article and

program, you can

create various sizes

and shapes of graph

ics characters, based

on the letter and

number patterns.

As Janelle enters her first

computer class, the computer

screen displays HELLO

JANELLE in extra large let

ters. Janelle stares at the

screen in disbelief—talk about

a friendly computer! Janelle

will be an enthusiastic stu

dent from day one!

My husband and I teach

"Introduction to Personal

it
IfiHT

Plenty of K

C-64

Disk or cassette

Computers" at a recreational

vehicle (RV) park in the Rio

Grande Valley in Texas, and

we use this form of greeting

on our students. We teach the

class in our motor home, so

some improvising is

necessary.

We do not have a traditional

blackboard, and a 0- x 12-inch

magnetic memo board doesn't

always do the job. One day we

entered some Basic terms

such as bit, byte, RAM, ROM

and K on the monitor in large

letters so our students could

better see and remember

them. By using cross-stitch

patterns for the letters, their

sizes ranged from 3x5

spaces to 22 x 24 spaces.

Try It

A good source of different

sized and shaped letters and

number patterns is a sampler,

which originally was a piece

of embroidery.

A sampler was used before

the days of printed material

and later was often used as a

23

reference for stitches and pat

terns. Sometimes, it was hung

on the wall so the young chil

dren in the household could

practice their alphabet and

numbers from it. Samplers

were popular during the Co

lonial period in this country,

and people still make them

today.

You can use these same

patterns on your computer.

There are hundreds of "stitch

es" available, plus many pat

terns for pictures, including

some that will fit into the grid

for a sprite. There are also

magazines and books on

cross stitching and needle

point.

You'll find a few books to

get you started in the library's

740s section, if your library

uses the Dewey decimal sys

tem of classification, or the TT

section, if it uses the Library

of Congress classifications.

Plenty of K

The program with this article

works with the letter K. The

program shows 12 different

sized Ks, from 3x5 spaces to

22 x 24 spaces. Various graph

ics, letters and colors are used

to demonstrate them in the

sampler section of the

program.

After you view the various

sizes and techniques used,

you can go on to modify the

large K, in as many ways as

you can imagine, by changing

the graphics and the color of

the stitch. Black is used as

the background color for the

whole program, as more col

ors show up better on black

than on any other color. White

is a close second, but on our

TV monitor, it created too

much of a glare.

When you are experiment

ing with the large K, do not

use a colon, comma, quota

tion mark, RVS on or RVS off

by itself. If you use more than

one letter (for example, WW),

you'll find that on pressing the

return key, the newly created

letter will be too large for the

screen. Try again with only

one character. Later, you can

try more involved graphics by

using "[RVS on] [any

character]".

Using a space after the RVS

on will give a nice block effect

to an otherwise fancy K. Al

ways remember to use the re

turn key after entering your

choice of stitch. If you want to

try another, press any key or

the space bar. Some incorrect

entries will make the screen

scroll. By pressing the run/

24

stop key and then entering

RUN, you may get back into

the program.

To exit this part of the pro

gram, use ZZ for your char

acter, and you'll be returned to

the menu, where you may

then go on to the third part of

the program. Use it to help

you design your own sampler,

title page, vocabulary features

and so on.

First, determine how many

lines of text you will have (no

more than four). If you were

going to do the title (SAM

PLERS FOR THE MAKING, for

example), you could put each

word on a separate line. Going

through the exercise, you

would enter 4 and be told that

the maximum height of the

letters would be seven. You

would then enter the number

for the line with the longest

text in it. In this case, SAM

PLERS is eight letters long, so

you would enter 8. The max

imum width for any letter

would be six.

The program takes care of

putting one space between

each letter and row. If you

want more than one space be

tween each letter or row, you

must refigure by subtracting 1

from the answers given for

each additional space, then

going to your sampler book of

patterns and finding appropri

ately sized letters.

To exit the whole program,

just press the run/stop and re

store keys. Otherwise, you'll

keep returning to the menu.

This program should have

uses in the classroom, for ad

vertising bulletins, for the vis

ually impaired or for titles for

a slide show. If you develop

any new ideas while you're ex

perimenting, I'd like to hear

about them. HI

Address all author correspon

dence to Elizabeth Oman, 800

North Second, Lindsborg, KS

67456.

25

Tax Records 64

BY GARY V. FIELDS

Load Tax Records

64 into your C-64,

and April 15, tax

day, will be a lot

easier, and perhaps

cheaper, to face.

To assist me in using Tax

Records 64,1 keep one large

envelope where I store every

bill, check stub, receipt and so

on until the first of the month.

I then enter everything into

Tax Records 64 and I divide

the income and deductions

into two other envelopes,

which I place in storage. The

large envelope is then empty

again, ready for another

month's receipts.

Run it

C-64

Printer optional

Disk only

I make a separate file of

each month's records (June

84, for example). Then, at the

end of the year, I merge all

12 files into one, named Tax

File 84.

In Tax Records 64, there are

two main menus: File Options

and Work with File (name).

You cannot get past menu

1, File Options, until you cre

ate a file and store it in mem

ory. Press N for New File, give

the file a name and answer

the prompts.

Respond to the Category

prompt by pressing either I for

income, D for deduction or!

to end the file. The program

will allow you to enter only

these three characters.

If you choose I, answer the

Subcategory prompt by press

ing either W for wages, F for

farm, D for dividend, O for

other, I for interest, R for

rental or B for business.

If you choose D (deduction),

answer the Subcategory

prompt by pressing either I for

interest, M for medical, E for

education, B for business, T

26

for tax, C for contribution, R

for retirement fund or O for

other.

The program has checks to

prevent you from entering

wages or farm as a deduction,

or education, tax or medical

as income.

Next, enter the source of

the money (at the Source

prompt). This must be a mini

mum of four letters, a maxi

mum of ten letters. The

program will not allow you to

break this rule. Be mindful

that the first four letters will

be used later to search for a

specified source. So, if you

entered interest from three dif

ferent banks as Bank 1, Bank

2 and Bank 3, it would be bet

ter to enter the banks as 1

Bank, 2 Bank and 3 Bank, so

you could later search for

them separately if need be.

When responding to the

Date prompt, always enter the

month, followed by the day,

and always use five charac

ters (for example, enter 01-02

for January 2).

You may enter anything in

response to the Record/Re

ceipt prompt. Your answer

must be from one to six char

acters long (for example,

CK#123, or STUB, or NONE).

TheAmount prompt is last.

Enter dollars and cents. Don't

use commas. Don't use a dollar

symbol. The program will not al

low the first character to be any

thing other than a numberor

decimal point. You must enter

cents, even if it's only ".00".

Next, you will be asked if all

the data is correct. If you se

lect N, the cursor will return to

the first item. Press the return

key until the cursor rests on

the incorrect item. Change the

data and press the return key

until you are asked if it is cor

rect again. If it is, enter Y and

press the return key. When

you are finished, enter! as the

category, and the file will be

written to disk and closed.

Press the return key, and

you'll be returned to menu 1,

File Options.

Menu 1's Options

-LOAD EXISTING FILE-

After a file has been cre

ated, you call it into memory

by selecting L from the File

Options menu. You will be

prompted with "Recall File."

Enter the name of the existing

file (? and * wild cards are le

gal). The file will be printed on

the screen as it is recalled,

and a total record count will

be displayed.

27

Remember, this program is

dimensioned to handle 501

records. Do not exceed this

unless you first increase the

DIM statement in line 340. My

total count for 1983 was 226

records, so 500 records

should be adequate for the av

erage taxpayer.

After a file is in memory,

you can advance to the sec

ond menu by selecting f1.

-add to file-

To add to an existing file,

select A. Prompts are the

same as "New File," except

that you exit by selecting N

when you are asked if you

want to "Add More (Y/N)?".

Adding to a file is a little

slower than creating a new

file, and the file is not printed

to disk and closed until you

either select R, Rename and

Save File, or f1. You are then

asked to name the new file;

make sure the name you give

it doesn't already exist on the

disk. Tax Records 64 automat

ically writes over and updates

files using the original file

name, so be careful not to

overwrite a file unless that's

what you mean to do. (See

lines 650 and 7020 in the pro

gram: OPEN 1,8,2,"@0:" +

N$ + ",S,W". This enables you

to save a file using the

old name.)

-DELETE FROM FILE-

Select D to delete from the

file in memory. You will then

be asked if the file is an "I,"

income, or a "D," deduction.

Next, you'll be asked for at

least the first four letters of

the file's source. Press the re

turn key and the program will

display the first file matching

these two descriptions. You'll

be asked if this is correct. If it

isn't, enter N. The displayed

line will be erased and re

placed with the next match.

This continues until all

matches are checked.

When the correct record is

displayed, enter Y, and the

record will be deleted from

the file.

Note: This option works

best on small files. As the file

gets larger, more and more

time is required to shift all the

data after each delete. (After I

made several deletes to a

large file, the cursor seemed

to be gone forever.)

A quicker way to delete sev

eral records from a sizable file

is to change the record (see

"Change Data" below). Simply

replace the source with the

word "delete" (or a similar

28

word) and enter ".00" for the

amount. A little messy, yes,

but much faster if you are

working with a large file.

If the record to delete is not

found in the file, the program

will print RECORD NOT

FOUND and return to the

first menu.

-CHANGE DATA-

Select C to change some

part of an existing file. The

prompts and displays are sim

ilar to Delete and Add. After

making any changes, always

resave the file. Before you can

get to the Work with File

menu, where the Quit option

is located, your file must

be saved.

There is one exception. If

you change the file and then

select Delete without deleting

anything, the program will ac

tivate a flag, signaling no

change was made, and you

could mistakenly advance to

Work with File without first

having saved the changed file.

Always resave your file before

turning off your computer.

(That is why the Rename and

Save File option is included.)

-MERGE TWO FILES-

The program offers the op

tion to merge two files as well

as scratch an unwanted file.

To merge two files, simply se

lect M and follow the prompts.

For instance, you could merge

your January and February tax

records with this option. Be

careful not to merge a file

twice, thus duplicating data.

You can avoid the Merge op

tion by loading an existing file

and adding information to it.

However, I find it easier and

faster to create monthly files

and then merge.

-STATUS CHECK-

Select S to check the status

of the disk drive. The disk is

automatically checked several

times within the program.

-INITIALIZE DISK-

Each time you change a

disk, select I to initialize that

disk. This is another safety

feature. Should you switch

disks without initializing, and

both the old and new disks

contain the same ID code, the

disk drive would not realize

you had switched disks and

could overwrite valuable files

or programs.

-MEMORY AVAILABLE-

Select "?" to display how

much memory remains un

used in the 64. A check may

take a minute or more after a

sizable file is in memory.

29

FILE: TAX MERGE

SEARCH:1 1= CATEGORY 2 = SUBCAT 3 = SOURCE 4 = MONTH 5 = RECORD
6=AMOUNT

C SUB

I..W.

I..F.

I..D.

I..I..

I..R.

I..B.

I..O.

SOURCE

.SOUTH PAC

. CALF SALE

UT STOCK

1ST UNION

. 32 PACK ST

. MAG SALE

.TX REFUND

DATE

04-04

01-28

04-04

04-12

04-01

04-02

04-15

RECORD

33

2

3

4

5

6

7

AMOUNT

$ 1.24

$ 154.44

$ 32.19

$ 10.27

$ 600.00

$ 100.00

TOTAL INCOME $ 900.34

TOTAL DEDUCTIONS $ 0

Table 1. Example of Tax Records 64's printer output according to specified
Search (category) for income.

FILE: TAX MERGE

SEARCH:1 1= CATEGORY

6 =

C

D.

D.

D.

D.

D.

D.

D.

D.

D.

=AMOUNT

SUB

..I..

.. M .

..E.

..T..

.C.

..R.

.B.

.0.

.T..

SOURCE

UT STOCK

. SMITH MD

. ETSU BOOKS

, COUNTY

. BAPT CH

. IRA KATHY

. COMPUTER

. DAY CARE

PHONE TAX

2 = SUBCAT 3

DATE

01-01

02-01

03-01

01-04

01-18

04-14

01-02

01-02

01-04

= SOURCE 4 = MONTH 5 =

RECORD

1

2

3

4

5

6

7

8

9

RECORD

AMOUNT

$ 10.00

$ 20.00

$ 45.89

$ 675.19

$ 10.00

$ 500.00

$ 249.27

$ 35.00

$.94

TOTAL INCOME $ 0

TOTAL DEDUCTIONS $ 1546.29

Table 2. Example of Tax Records 64's printer output according to Search
(category) for deductions.

FILE: TAX MERGE

SEARCH:3 1 = CATEGORY 2 = SUBCAT 3 = SOURCE 4 = MONTH 5 = RECORD

6=AMOUNT

C SUB SOURCE DATE RECORD AMOUNT

D .. I.. UT STOCK 01-01 1 $ 10.00

TOTAL INCOME $ 0

TOTAL DEDUCTIONS $ 10

Table 3. Example of Tax Records 64's printer output according to Search
(source) for deductions.

30

-HELP !-

If you can't remember what

categories or subcategories

are allowable, press H for a

display of that information.

Let me mention something

else here, too. When I first

started the program, I in

tended to disable the run/stop

key so you would not acciden

tally break out (see line 2).

After using this program,

however, I found that if you

load the C-64 wedge from the

demo disk that came with

your disk drive before loading

Tax Records 64, you can dis

play the disk directory without

disturbing the program. This

is handy when calling up a file

or merging files.

You can break into the pro

gram by pressing the run/stop

key while at either menu. Print

"@$" in Direct mode. This will

display the directory. After you

have seen all you need, type

CONTand press the return key.

Now press H twice, and you will

return to the menu.

Be careful not to cause a syn

tax error while in Direct mode.

-WORK WITH AND PRINT FILE-

Select f1 to advance to

menu 2, which allows you to

examine and manipulate data,

print out information con

tained in the file in memory

and quit the program. If you

have made changes to the file

in memory, remember that Tax

Records 64 requires you first

to resave the file before you

can advance to this menu.

-F2 SCRATCH A FILE-

Select f2 to scratch a file.

Be careful with this one. You

don't want to erase an impor

tant file. To avoid trouble, this

option will double-check be

fore it will scratch a file. (An

other good reason to use the

wedge is to see your disk's di

rectory at a crucial point

like this.)

Menu 2's Options

To access menu 2, remem

ber to press f1.

■TOTAL REVIEW-

Select T for a total review of

the file. You will be asked if

you want a printout. If you

don't, you need only press the

return key, as this option al

ways defaults to No. The file's

records are all displayed on

the screen by subcategory.

-SEARCH FOR (BY #)-

You can search for informa

tion by Category, Sub-

category, Source, Month,

Record or Amount.

31

If you choose one of these

options, you will be asked if

you want a printout. If you

don't, just press the return

key. You will then be asked if

the search is for an I, income,

or a D, deduction. Next, you

will be asked to enter informa

tion to enable a specific

search. For example: Search

for all income in the month of

04 (April) or all the deductions

under C (contributions).

The screen will display 13

lines of information, then dis

play a Return for More

prompt. Along with the infor

mation in the file, the program

keeps a running total of in

comes and deductions, and

the total is displayed after the

search ends.

The remainder of the Work

with File menu contains the

same options as the first

menu, except Q. This option

closes all files and ends the

program in an orderly fashion.

Remember: If you've made

changes in the file, don't quit

without first saving the file.

Making It Work for You

This program provides a

very helpful tax utility program

that should aid you as long as

there are taxes—and that will

probably be forever.

Of course, you can also use

Tax Records 64 at times other

than April 15. For instance,

you might want to resubmit

someone's medical bills for in

surance coverage, or to locate

important financial informa

tion stored in your tax record

file, such as interest pay

ments, child care credits and

soon.

I've used Tax Records 64 for

two years and have given it

out to several friends to test

and use. Thus, it is a proven

product. I think you'll like

it, too.

This program occupies a lit

tle over 9K of memory before

it is run. After it's run, the DIM

statements expand this to

about twice that, leaving

around 20K for your file. An

average file takes up 30 bytes,

which, with a 500-record file,

still leaves 5K unused. There

fore, if you need a file of 600-

650 records, you could safely

increase the DIM statement in

line 340.

One more note: If you acci

dentally move the cursor while

you're typing, reposition it us

ing the cursor keys, type your

information and press the re

turn key twice. The second re

turn will accept your input. If

you input an incorrect answer,

32

continue the record until the

program asks "CORRECT

(Y/N)"; then answer N and press

the return key until it returns you

to the incorrect line of entry. Re

type it and press the return key

until you're asked CORRECT

(Y/N) again. Answer Y.

Tape users should be able to

change lines 650 and 7020 to re

flect correct syntax for tape use.

Also, delete the OPEN 15 state

ment in line 6 and the CLOSE 15

in line 1504. E

Address all author corre

spondence to Gary V. Fields,

86 Lanvale Ave., Asheville, NC

28806.

33

BY CHUCK McGAFFIN

How good are you

at unscrambling

words or phrases?

In this word game,

you must decipher a

computer-scrambled

word or phrase en
tered by your oppo

nent. Points are

awarded based on

the length of the

word or phrase and

the number of tries

taken to correctly

unscramble it.

it
IGHT

Scrambler

C-64 and VIC-20

Disk or cassette

Scrambler starts with a

player typing in a word or

phrase that cannot be

longer than 30 characters

on the Commodore 64 and

15 characters on the VIC-20.

If the input word or phrase

cannot be scrambled (for ex

ample, "A" or "XXX"), the pro

gram will discard the entry

and request a new one.

The computer scrambles

not only letters, but also

numbers, symbols and

spaces, then checks to be

sure that the scrambled re

sult is different from the

original word or phrase.

Next, it displays the scram

bled result and prompts the

player for input of the first

character guessed.

As each correct letter is

chosen, the completed por

tion of the unscrambled

word is displayed, and the

scrambled word is updated

to show only those charac

ters remaining. You are then

prompted to enter the next

character. Wrong guesses

are indicated with a musical

reprimand.

34

When the word or phrase

has been successfully un

scrambled, the player's

score is computed accord

ing to the length of the

word or phrase and the

number of errors made dur

ing play. The score is then

displayed, and Scrambler

waits for the player to hit

the return key. This pause

allows players to inspect

the correct word or phrase

and the resulting word score

before proceeding to the

next puzzler.

The VIC-20 version of

Scrambler is limited to the

input of one word or phrase

at a time, while the Commo

dore 64 version allows each

of several players to input a

set of words or phrases at

the beginning of play.

The running score of each

player is displayed along

with the score obtained for

the current word. The com

puter prints a prompt to

identify which player is to

make an entry or to un

scramble the currently dis

played word or phrase.

Scrambler is a simple yet

enjoyable game for young

and old. The game also can

be used in conjunction with

vocabulary lists as a fun

way to help children learn

to spell.

To conserve memory, the

VIC-20 version of Scrambler

is limited to one word or

phrase at a time. If you

have memory expansion,

you can easily modify the

Commodore 64 version to

work on the VIC-20. Aside

from the obvious differences

between the 40-column and

22-column screens, the only

other differences are the ini

tial Pokes to set screen,

border and character colors

and the sound subroutines

(lines 320-360 in the 64 ver

sion and lines 245-280 in

the VIC version). H

Address allauthorcorrespon

dence to Chuck McGaffin, 21

Maple Ridge, Ballston Lake, NY

12019.

35

flythe—:

Grand Canyon

BY THOMAS H.

SIMMONDS, JR.

Fly Grand Canyon is an

arcade-type, joystick-oper

ated game for the unex-

panded VIC-20. You must

take off from the airfield

and fly through the canyon

without hitting walls or

planes. If you accrue 2460

points while doing so, YOU

MADE IT appears on the

screen. Four levels of diffi

culty are available. They

range from a short (S) and

possible (P) to a long (L)

and impossible (I) game. No

one I know of has com

pleted the most difficult

level, as the game is

programmed.

it
IGHT
VIC-20

One joystick required

Disk only

Program Description

The program is written in

Basic, with careful attention

to the structure of the main

game loop to make it as

fast as possible. Because of

the limited available memory

of the unexpanded VIC-20,

the program is loaded in

two parts:

The Canyon program pre

sents the instructions and

Pokes into memory the data

for the 60 custom charac

ters. As a final step, the 512

bytes of custom-character

memory are protected, and

Canyonmod, the main pro

gram, is loaded and run by

using Pokes to the keyboard

buffer.

The second part, Canyon-

mod, consists of three main

sections: initialization, the

airport and the canyon ma

neuvers. The airport portion

of the game, which is in a

subroutine located at the

end of the program, con

sists of initialization, airport

Print statements and plane

maneuvers. The next part

36

contains canyon initializa

tion, the fly-the-canyon loop,

the crash and explosion and

the score-keeping routines.

Initial Setup

The necessary initial pa

rameters are set up in three

areas of the program: at the

beginning, to establish the

level of difficulty and the

screen color, and to activate

the custom characters; in

the airport subroutine, to es

tablish the Print statements

that use the custom charac

ters to create the airport,

then to determine the

sound, the joystick con

stants and the initial posi

tion of the plane; in the

canyon routine, to set up

the array dimensions, Print

strings and initial position

of the canyon opening and

plane.

In the Airport subroutine,

the plane is Poked to the

screen, the joystick direction

is detected, and the plane is

moved accordingly. If.. Then

statements are included to

determine whether the plane

is within the screen bound

ary, to detect whether it has

run into any forbidden ob

jects in the airport and, fi

nally, to see whether the

plane is headed south to

the canyon. When this latter

condition is true, the control

of the plane is passed to

the canyon-flying part of the

program. The canyon loop is

programmed separately to

maximize its speed, as you

will see presently.

The Canyon

Initially, a number of

housekeeping details are

taken care of, including es

tablishing the strings (lines

100-140) that are used to

create the random Print

statements determining the

direction the canyon will

turn. Note that, unlike other

similar graphics programs

that use Print statements of

this type, the four E$ Print

strings are created using

matching custom characters

at the edges of the canyon.

The E$ strings are chosen

using the E(I,J) array, which

allows the program to give

the canyon smooth sides as

it changes to right, left or

straight sections. Line 150

uses two random state

ments—Y, to locate the ini

tial opening in the canyon,

and X, to position the plane.

The Poke statement in line

160 locates the cursor one

37

row up from the bottom of

the screen. This is the posi

tion of the first canyon Print

statement.

Lines 170-270 are the

heart of the game. These

form the loop that controls

the plane, prints the canyon

and detects collisions. A

number of steps have been

taken in these lines to

speed up the Basic pro

gram. For example, a

For.. .Next loop has been

used in lines 170 and 270;

this is faster than using

GOTO 170 in line 270.

The command RND(0) has

been used instead of the

normal RND(1), and periods

(.) have been used to re

place the zeroes (0) in lines

170, 180, 190, 210, 240, 250

and 260; again, all this

makes Basic run faster.

(Many of these speedup

ideas came from the excel

lent article, "Basic Speed

up," by John Tanzini, in the

March 1984 issue of RUN.)

The If statements in lines

170 and 180 randomly

choose whether the canyon

turns right, left or goes

straight. Lines 190 and 200

are If statements that keep

the canyon on the screen.

In line 210, the plane is ad

vanced down the screen and

checked to determine

whether it made it through

the canyon. For a longer or

shorter game, the variable

W may be changed in lines

20 and 30.

In line 220, the first state

ment calculates Q$, the

Print string; then the current

color of the plane is Poked

to the background color in

preparation to moving it.

The Q$ is printed at the bot

tom of the screen and all

other canyon Print state

ments are pushed up, giving

the illusion that the plane is

moving down the canyon.

Next, the position of the

plane is updated and the

color Poked to yellow to

make it visible again. Fi

nally, K is given the value

of X. A collision with the

wall or another plane is de

tected with the If.. Then

statement in the next line.

Line 240 Pokes in ran

domly colored planes. The

frequency of their occur

rence is controlled by the

variable D, which was set

by the possible/impossible

option. You can make the

game easier or more diffi

cult by changing the value

of the variable D in line 20.

38

The next two lines read

the joystick, change X, the

position of the plane, and

set P, the custom character

for a right, left or straight

airplane. The last line of the

loop is a Next statement

and sends the program

through the loop again.

Final Routines and

Future Fun

Lines 280 and 290 pro

duce the visual and sound

effects of the crash. The

screen is shaken by Poking

the address that locates the

center of the screen at the

same time the screen colors

are randomly changed. Fol

lowing the explosion, the

game score is updated and

comments on the results

printed to the screen. The

player is then asked to hit

the joystick's fire-button to

play another game.

The program is not long

and lends itself to modifica

tion. The canyon Print

strings in lines 100-140 are

composed mostly of ran

domly chosen graphics char

acters. As you play the

game, watch what happens

to these Print statements.

Note that the individual

characters change. This is

the result of the graphics

characters being taken from

a part of memory that is the

Basic program rather than

the character ROM.

The canyon opening and

the immediate characters on

each side are critical, how

ever. You might try chang

ing the width of the canyon

to make the game more dif

ficult or easy. By modifying

line 240, some other obsta

cle besides an airplane

could be introduced to the

canyon.

If the game is too hard,

you may set the RND state

ment to some value other

than >0.4. Go higher to

>0.67, and more straight

section of canyon will be

chosen, making it easier

to win. Experiment and

have fun! H

Address all author corre

spondence to Thomas H.

Simmonds, Jr., 127 Chestnut

St., North Andover, MA

01845.

39

BY JOSEPH T. WOYTON

Explore the mysteries

of machine language

programming with this

tutorial, which de

scribes how to make

your VIC into a color

organ.

Basic programs often require

the use of lookup tables to

compare a series of data for co

incidence, equality or tests of

validity. This is usually done

with For... Next loops, and the

computer may take several sec

onds execute a lengthy com

parison list in Basic. This can

certainly slow down your pro

gram's action.

it
IGHT
VIC-20

Disk only

Using a machine language

program, as illustrated here, in

stead of the For. . . Next loop,

results in much faster com

puter processing. A machine

language program, with its blaz

ing speed and efficiency, will

run hundreds of times faster

than its Basic counterpart.

When you press a key, you

want action!

About Machine Language

For the machine language

novice who has no assembler

or monitor programs, the fol

lowing description will show

that it is fairly easy to imple

ment simple machine language

programs by using only VIC

Basic.

Machine language uses only

numbers for machine instruc

tions. All information must be

in the form of integer decimal

values from 0 to 255 for entry

via Basic. Memory addresses

are identified by page (high ad

dress byte), with 256 locations

(low address byte) per page, to

format the two-byte machine

language address the computer

requires.

40

The machine operation codes

are also specified in decimal

values. These code numbers

control the computer functions

as the computer sequentially

steps through the machine

language program. (See Table 1

for procedures to calculate

memory addresses and opera

tion codes for machine lan

guage programs.)

As in assembly language, us

ing mnemonics for reference

purposes helps us bridge the

gap between our English lan

guage and the numbers-only

world of machine language.

Mnemonics are programmers'

English abbreviations for the

operations specified by the nu

meric operation codes. (See

Table 2 for a complete explana-

The VIC memory addresses are specified as quantities from 0 to 65,535. Convert these

numbers to the two-byte format by following these examples.

ADDRESS 197, the VIC keyboard:

PAGE = INTEGER (ADDRESS/256) LOCATION =ADDRESS - PAGE*256

PAGE = INTEGER (197/256) LOCATION = 197 - 0*256

PAGE = 0 (high address byte) LOCATION = 197 (low address byte)

ADDRESS 828, the start of the cassette buffer:

PAGE = INTEGER (828/256) LOCATION = 828 - 3*256

PAGE = 3 LOCATION = 60

ADDRESS 36879, the VIC color register:

PAGE = INTEGER (36879/256)

PAGE = 144

LOCATION = 36879 - 144*256

LOCATION =15

The VIC operation codes are usually specified as hexadecimal (HEX) quantities. Convert these

to decimal values by following these examples.

HEX 0 to 9 = DECIMAL 0 to 9

HEX A, B, C, D, E, F=DECIMAL 10, 11, 12, 13, 14, 15

Load the accumulator = OP CODE HEX A9

HEX A9 = 10* 16 + 9 = 169 DECIMAL

Store the accumulator=OP CODE HEX 8D

HEX 8D = 8*16+13 = 141 DECIMAL

Branch if result zero = OP CODE HEX F0

HEX F0= 15*16 + 0=240 DECIMAL

Table 1. Memory address and operation code conversion.

41

tion of all operation codes used

in this program.)

The machine language pro

gram is placed into a safe and

convenient memory location (it

won't interfere with the Basic

program) using Read, Poke and

Data statements in Basic. The

cassette buffer memory area,

addresses 828-1019, is an ex

cellent storage place. The Color

Organ program uses addresses

828 to 948.

The VIC-20 Programmer's

Reference Guide contains more

on machine language program

ming. You should read this or

other reference material to be

come more familiar with the

VIC's 6502 microprocessor

functions.

The Machine Language

Program

In going through this descrip

tion, you'll note many refer-

Op Code

169

141

173

201

240

Mnemonic

LDAff

STA

LDA

CMP#

BEQ

32

76

162

221

202

48

96

189

DEX

BMI

RTS

LDA(X)

Operation

Load the accumulator with the number in the next byte.

Store the accumulator contents in the memory address given

by the next two bytes.

Load the accumulator with the contents of the memory ad

dress given by the next two bytes.

Compare the contents of the accumulator with the number

given in the next byte.

Branch forward or backward by the number of steps given in

the next byte, //the result of the previous operation was zero

(equality). Backward = 256 ~ steps.

Jump to the subroutine at the address given by the next two

bytes. Save the current return address.

Jump to the address given in the next two bytes.

Load the X-index register with the number given in the next

byte.

Compare the contents of the accumulator with the number at

the address given by the next two bytes plus the value in the

X-index register.

Decrement the value in the X-index register by one.

Branch by the number of steps given in the next byte, //the

result of the previous operation was negative.

Return from this subroutine.

Load the accumulator with the number at the address given

by the next two bytes plus the value in the X-index register.

Table 2. Operation codes, mnemonics and operations.

JSR

JMP

LDX#

CMP(X)

42

ences to accumulator opera

tions. The accumulator is the

main processing register of the

microprocessor. It is used to

transfer data, make compar

isons and perform arithmetic

operations.

Compare the program flow

chart and machine language

listing as we discuss the major

steps in the lookup-table rou

tine. The listing has liberal

comments to help explain the

machine language program

activities.

Starting at address 828 (p. 3,

location 60) the machine lan

guage program sequentially

executes each operation code.

The keyboard entry obtained

from address 197 is loaded

(LDA) into the accumulator.

This value is stored (STA) into

the VIC color register to create

a screen and border color. If

you press any key, the program

goes to JSR, the Read Keys

subroutine.

The subroutine compares

(CMP(X)) the accumulator to

each of the values in the Key

Data table. This uses an index

address technique, where the

microprocessor's X-index reg

ister is used as a pointer that

steps down (DEX) the data

table.

When a match is found

FLOWCHART: MAIN PROGRAM

828

830

833

836

841

START: LOAD

VOLUME * 0

1
VOLUME TO

VOLUME REGISTER

\

LOAD KEYSTROKE <

1
KEYSTROKE TO
COLOR REGISTER

YES ^KEYBOARD \^
\ NULL (64) S

843

846

GO SUB READ KEYS

(TO ADDRESS 849)

SUBROUTINE COMPLETED

NOTE:

NUMBERS REFERENCE MEMORY

ADDRESSES

Fig 1. Flowchart of Color Organ
program.

(BEQ), the accumulator loads

(LDA(X)) the proper value from

the Tone Data table by using

the X-index pointer value as a

reference. The tone value is

then stored (STA) into the VIC

sound register to produce an

organ tone.

43

If no key match is found, the

X index will be decremented

(DEX) below zero. The program

branches on this negative (BMI)

to return (RTS) from the Read

Keys subroutine. It then goes to

look (JMP) for another key

press at the top of the ML

program.

The Key Data and Tone Data

are thus used in pairs, starting

at the end of the tables (X index

= 36) and working backwards

(DEX) to the beginning (X index

= 0). For example, the keyboard

£ (code 6) in address 911 is used

with the musical tone C4 (code

240) in address 948.

This offset relationship

holds, stepping through both

data tables. You can easily

change the keyboard tone as-

FLOWCHART: READ KEYS SUBROUTINE

849

LOAD INDEX POINTER

X = 36

COMPARE KEY TO

KEYS DATA TABLE

YES 854

862

RETURN FROM

SUBROUTINE

(TO ADDR 846)

NOTE:

NUMBERS REFERENCE

MEMORY ADDRESSES

863

866

869

87!

874

LOAD TONE FROM

TONE DATA TABLE

TONE TO SOUND

REGISTER

LOAD VOLUME (15)

VOLUME TO VOLUME

REGISTER

RETURN FROM

SUBROUTINE

(TO ADDR 846)

Fig. 2. Flowchart of Read Keys subroutine.

44

signments by rearranging the

data in either data table. You

can make the key pattern more

like the standard piano layout

(white and black) if you wish.

You may also substitute your

own data to construct any other

kind of lookup table.

Note that the data in address

850 identifies the number of

values in each of the tables.

This program uses 37 entries,

0-36. Insert the proper value (up

to 255) for your own data list.

Changes to the machine lan

guage program are made by

modifying the values in the Ba

sic program's Data statements.

The Basic Program

In the Basic program's opera

tion, the machine language

routine is Read and Poked into

memory (line 100), starting at

address 828. The machine lan

guage program is entirely con

tained within the Data state

ments (lines 101-106). The

screen is cleared and prompt

messages are displayed (lines

110-140).

The machine language pro

gram is then called from Basic

as a subroutine by SYS 828

(line 150) to play the VIC Color

Organ.

Good luck and have fun. If

this is your first attempt at ma

chine language programming,

you are about to enter a new

dimension in computer power

and speed. El

Address all author correspon

dence to Joseph T. Woyton,

106 Braddock Drive, Mauldin,

SC 29662.

Memory

Address

828

829

830

831

832

833

834

Table 3. Machine language listing.

Page 3

Location

60

61

62

63

64

65

66

OP

Code

169

0

141

11

144

173

197

Mnemonic

LDA#

STA

LDA

Comments

START: load volume

Volume = 0

Poke volume to

low address (location)

high address (page)

LOAD KEYSTROKE from

keyboard

low address

45

Memory

Address

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

Page 3

Location

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

%

OP

Code

0

141

15

144

201

64

240

241

32

81

3

76

65

3

162

36

221

107

3

240

7

202

48

3

76

83

3

96

189

144

Mnemonic

—

STA

CMP#

BEQ

—

JSR

JMP

LDX#

CMP(X)

BEQ

DEX

BMI

JMP

RTS

LDA(X)

Comments

high address

Poke color to

low address

high address

Check for no key pressed

64 is keyboard null

To START if no key,

branch back 15 steps

To READ KEYS subroutine

low address

high address

To LOAD KEYSTROKE

low address

high address

READ KEYS

37 data points

COMPARE to KEY DATA table

low address

high address

To PLAY if match,

branch forward 7 steps

Next key data

If end of key data, branch

forward 3 steps to RTS

To COMPARE, repeat

low address

high address

RETURN from subroutine

PLAY: load tone data from

low address

46

Memory

Address

865

866

867

868

869

870

871

872

873

Page 3

Location

97

98

99

100

101

102

103

104

105

OP

Code

3

141

11

144

169

15

141

14

144

Mnemonic

STA

LDA#

STA

Comments

high address

Poke tone to

low address

high address

Load volume

15 is max volume

Poke volume to

low address

high address

874 106 % RTS RETURN from subroutine

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

17

41

18

42

19

43

20

44

21

45

22

46

48

9

49

10

50

11

51

12

52

13

53

14

KEY DATA A

S

D

F

G

H

J

K

L

—

Q
w

E

R

T

Y

U

I

O

P

@
*

47

Memory

Address

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

Page 3

Location

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

OP

Code

0

56

1

57

2

58

3

59

4

60

5

61

6

135

143

147

151

159

163

167

175

179

183

187

191

195

199

201

203

207

209

212

215

217

219

221

Mnemonic

TONE DATA

Comments

l

2

3

4

5

6

7

8

9

0

D

E

F

B

Q2)

at

D

E

F

G

A

48

Memory

Address

935

936

937

938

939

940

941

942

943

944

945

946

947

948

Page 3

Location

167

168

169

170

171

172

173

174

175

176

177

178

179

180

OP

Code

223

225

227

228

229

231

232

233

235

236

237

238

239

240

Mnemonic Comments

B

Q3)

Of

D

D#

E

F

F#

G

G#

A

A#

B

C(4)

49

Bombs Away

BY JAMES F. McCONNELL

Tank Defense is a colorful

arcade-style game that re

quires quick reflexes and

strategy. The screen displays

a continuous rain of lethal

bombs falling from the sky.

On the ground is a typical

community, complete with

buildings, a highway with traf

fic—and a tank.

Your only defense against

the incessantly falling bombs

is to shoot them out of the

sky. Fortunately, you are an

expert marksman and have at

your disposal a state-of-the-art

weapons system in your tank.

You move the tank back and

forth across the screen to ad

just the trajectory and can se

lect either of two cannons to

it
IfiHT
VIC-20

One joystick required

Disk or cassette

fire. The joystick controls

these options as follows:

L—move tank left, R—move

tank right, Up—fire left can

non, Down—fire right cannon.

You gain five points for ex

ploding a bomb before it hits

the ground and lose one point

for every time you shoot and

miss. The game will end

abruptly if a bomb hits a build

ing, a truck or the tank. It will

also end if you accidentally

shoot one of the trucks or

buildings. Each time a bomb

hits the ground without caus

ing damage, the falling bombs

will be fewer and faster, and

the game will end if this hap

pens five times.

The game starts out slowly

enough so that you shouldn't

have any difficulty intercept

ing and exploding the falling

bombs. However, the game's

pace gradually increases, and

after about a minute and a

half of playing time, you'll be

hard-pressed to keep up with

the action.

The Program

The program is written as

50

two programs. The first pro

vides instructions for playing

and loads the game's custom

character set into the VIC's

memory. The second pro

gram, which contains the

main game, then loads

automatically.

The star of this program is

the tank, constructed from six
independently customized

characters. The instructional

value of this game lies in the

method used to provide

smooth, coordinated and fairly

rapid animation of so many

characters at once. If the tank

were animated with Peeks and

Pokes, the result would be

herky-jerky, disjointed and

slow. The tank in this program

is animated with Print state
ments using the MID$ func

tion. Line 21 of the program

accomplishes the whole thing.

Study this line to understand
how it works.

The SYS 7432 in line 10
causes the VIC to jump to a

short machine language sub

routine for reading the joy

stick. This routine is Poked in

to a portion of the custom-

character memory along with

the custom characters in the
first program. The memory

used stretches from location

7432 to 7496, a section of

memory that normally con

tains the information for

characters CHR$(33)-

CHR$(41). Since these charac

ters are not used in the pro

gram, this area of memory is a

relatively safe place to store

this subroutine.

Those who like to tinker and
modify might try altering the

colors I chose for the pro

gram. I tried dozens of color

combinations before I finally

made up my mind.

The pace of the game is

controlled in the main loop be

tween line 21, which moves

the tank, and line 30, which re

directs to the start of the loop.

Anyone who thinks the game

is too easy can significantly

increase the game's pace by

removing these lines and

changing line 30 to GOTO 200.

Although I feel that the play-

ability of the game suffers

when this is done, it does

serve to illustrate the smooth

ness and rapidity of this

method of animation. H

Address all author correspon

dence to James F. McConnell,

Box 111, RD #1, Marathon, NY
13803.

51

Trapped in the

BY JAMES MILLER

This article takes

you from keyboard

character movement

through random

maze construction,

to a complete pro

gram, using color,

sound and custom

characters.

When I first tried simple

game programming on the

VIC, I was stumped! Poring

over scores of game

programs and tutorials

didn't help much, either. I

thought that it was just too

tough!

It
IGHT
VIC-20

Disk or cassette

I believed there was some

secret (and very complex)

formula that controlled

everything, a formula that

the great gamers knew by

intuition and were not about

to share with slow-witted

folks like me!

But that was my prob

lem. . .1 was looking for a

solution far more difficult

than it really turned out to

be! The simplicity of Basic

game design is so apparent

that I missed it completely!

Maybe that's been your

problem, too? If this is the

case, let's run through some

simple ideas and concepts

that really control game ac

tion and see how it's done.

This tutorial is for those

of you who are too often

mystified by computing and

want some elementary, step-

by-step help!

Screen and Color + Get

After many attempts at

Poking and printing graphics

and trying, unsuccessfully,

to get them to move up and

down and right and left on

52

the screen, I finally hit upon

a solution.

Poking movement in one

direction is easy, but adding

the Get command finally

gave me four-way keyboard

control. The core routine I

devised for character move

ment was so direct and sim

ple that I almost doubted its

ability.

If you've dabbled with

Pokes at all, you've learned

that the computer screen is

divided into locations for

character and color. On the

VIC, the screen begins at lo

cation 7680 (upper-left cor

ner) for character placement.

For color values, the screen

begins at 38400.

From the top left, there

are 506 possible Poke loca

tions within a 23-row by 22-

column screen.

You can use any part of

this total working area.

Here's some simple math to

keep in mind. If x = your

starting point, then:

x +1 = one space right

x -1 = one space left

x + 22 = one row down

x-22 = one row up

Using a GET A$ command

combined with a blind Goto

loop is just about all you

need to create and control a

graphics character's move

ment on the screen.

I'll look at the core rou

tine first. Next, I'll develop

and expand it, adding sound

and color, then custom

characters and a maze. Fi

nally, I'll turn it into a strat

egy game you play against

the clock.

The Core Routine

The core program in List

ing 1 is only 12 lines long

and could be shortened if

you used a lot of multiple

statements. (Note: Listings

1 and 2 are not included on

the ReRUN tape or disk.)

The routine takes care of

four basic action elements:

choosing a starting location

for the character, setting a

color-value constant, Poking

the character and its color

to the screen and moving it

around.

Line 10 clears the screen.

Line 15 initializes two vari

ables. X is the first screen

character location, and CL

is the color constant used

to color the character.

Line 22 Pokes a ball char

acter (81) in the first screen

position and colors it black.

Line 30 sets up the Get

routine.

53

Line 32 just provides a

brief delay loop to slow

things down a bit.

Line 33 Pokes location

650 so that all keys will re

peat as you hold them

down. We're only concerned

with four keys for movement

in this routine, however.

Lines 35-50 set up four

If.. Then conditional state

ments that provide for char

acter movement depending

on which key you press—

the up arrow, left arrow, R

and D keys move the ball

as you would expect: up,

left, right and down,

respectively.

Line 60 loops back to line

20 continuously. This en

sures that all Pokes and key

presses are read instantly,

to keep movement going at

a brisk pace.

The routine works alone,

as it is, to demonstrate how

movement is controlled.

We're not even erasing the

ball as it moves around the

screen—that comes later!

You can alter the keys

chosen for movement to any

others you think are more

convenient, as long as you

remember what they are! In

the final game program,

we'll use the cursor control

keys plus f5 and f7 for left,

right, up and down, because

they're close together and

much easier to manipulate

quickly in game action.

Return now to line 15 and

change X to another screen

value larger than 7680 but

less than 8185 (the last loca

tion on the screen). Try 7910,

for example. As you run the

program again, the ball ap

pears at screen center, but

you still have complete con

trol of its movements.

Some games begin with

the primary character at the

bottom of the screen, and

the basic moves are to

wards the top of the screen.

In that case, there's no

need for a Down com

mand—like line 50. In fact,

it's a good idea to exclude

it in some cases, or you'll

find your character dropping

off the bottom of the

screen, into never-never

land!

Building a Game

From the core program,

you can expand the simple

Get movement technique to

include routines that begin

to create a game atmos

phere. The program in List

ing 2 is just twice as long

54

as the core routine, and if

you study the listing, you'll

see it's all there, with only

slight changes.

Lines 16-20 are new and

initialize new parts of the

game structure we're plan

ning. BR in line 16 sets up

125 barrier elements (some

thing to avoid or run into as

you move the ball about the

screen!). Y is the starting lo

cation for the barriers (7702

is one line down from top

left on the screen).

Look at lines 17-18. They

serve as a loop that does no

more than Poke 125 random

locations on the screen with

our barrier character,

{CMD +}, and colors each

one blue.

When you ran the core

routine, the ball character

appeared first, but in this

program, all 125 of the bar

riers pop into place before

the ball appears.

Line 19 takes care of

three functions necessary in

the development of the

game. First, it Pokes a goal

location (8185) and places a

purple symbol that looks

somewhat like a # there.

That's where we're headed

with the ball!

Second, the VIC's clock

function, Tl$, begins a

counting routine that is re

set to 0 every time the pro

gram encounters line 19.

Finally, location 198 is

Poked with a 0 so that the

keyboard buffer won't store

any keystrokes (a value of

10 is normal). As you race

across the screen, extra key

strokes can be stored in a

buffer, thus causing extra

character movement when

you don't want it.

Line 20 represents a

change from the core rou

tine. The REM has been de

leted and replaced by a

random variable that

changes the color of the

ball. You remember that line

60 was a Goto statement

that sent the program back

to line 20.

This adds a nice touch to

the program and also helps

you know exactly where you

are. The ball changes color

several times a second and

you can turn back on yourself

without worry because the

color change tells you your

position! That would not be

the case if we used a single,

unchanging color Poke.

Line 22 Pokes the ball

character after the new

color variable; also, the

55

color Poke has been

changed to include variable

CX, the random color value.

Line 29 also is new and

prints the clock at the top

right of the screen. If more

than 29 seconds tick off,

the game branches to a new

subroutine.

Lines 30-60 remain just

like the core routine, but no

tice the addition of lines 52

and 54. Those pair of IFs

are statements that provide

the only way out of the

Goto loop. In other words,

they branch the game to

two other routines that add

flexibility to the program.

First, if Peek (the # value

of) location 8185 is ever 81

(the ball), then the program

branches to line 100 to tell

you you're free!

If, however, you run into a

barrier, the program jumps to

line 65 and then to line 200 as

a * replaces the {CMD +},

and you get an OUCH! mes

sage. That also happens if

you run out of time.

Without at least these

two branching statements,

you'd be locked into the

main loop forever, able only

to move around, without

doing much at all.

Let the Game Begin

You are now familiar with

moving a single object

around the screen, and per

haps you've even experi

mented with another

character in place of the

ball (there are lots of

choices).

You've also learned to

create barriers, which are at

the heart of all maze games.

But so far, we really don't

have a game at all.

Putting a complete game

program together and mak

ing it entertaining or excit

ing takes some added

thought. What's the object

of the game? What other

elements do we add to fill

in the blanks?

Sound, Strategy and

Custom Characters

By its very nature, a maze

game involves escape and,

usually, a race against the

clock. In addition, most of

us like to see some prog

ress or reward, and that's

where scores come in.

Beyond that, you may

want to explore more of

your computer's capabilities,

especially its talent for spe

cial characters you create in

place of common keyboard

56

graphics.

The main Frenzy program

takes care of ail of that and

a little more in just 58 lines.

Even with the addition of

custom characters, there's

plenty of memory left for

you to experiment, modify

and change the program un

til you have just what you

want in a maze game!

The core remains the

same, and the branches

used in Listing 2 are still

there—they're just changed

to include scoring, sound

and color.

In addition, several new

elements have been added:

custom characters, several

sound routines, screen color

changes, a way to animate

the moving character and a

way to end the game.

Lines 2-7 of the main pro

gram take care of special

character development by

changing three standard key

board characters (@, [,]) to

three created characters that

add interest to the game.

In place of a ball is a

creature that you can move

around the screen. The bar

riers, too, are customized.

Also, a new character is

used as an added element

in the game.. .a bomb to

defuse for points.

Look at lines 35-50. You

will see one new command

in each line. As the creature

moves about the screen,

these commands act as an

eraser; spaces behind it are

Poked with a blank so that

the creature doesn't leave a

trail as he moves.

Lines 35-50 also change

the movement keys, to make

things easier on our fingers.

Pressing the cursor-down

key moves the creature left

only, the cursor-right key

moves him right, f5 moves him

up and f7 moves him down.

Escapes to the goal (#)

earn points, and defusing

the bombs earns a bonus.

The bombs are randomly

Poked on the screen, and

there's plenty of time to get

most of them.

As an additional element,

the maze grows more com

plex as you advance from

round to round, but it's

worse on you if you slam

into a barrier—points are

lost and the maze really

grows!

Below, you'll find an ex

planation of this program's

important routines, plus a

brief description of the vari

ables and suggestions about

57

changes you may make.

Lines 1-7: Title, lower

memory, the creation of cus

tom characters in Data

statements.

Lines 8-9: Initialize score

and rounds plus barriers.

Lines 10-16: Clear screen,

set volume and sound vari

ables plus screen and color

locations for each custom

character.

Lines 17-22: Poke and

randomize character place

ment, set time Tl$ to 0.

Lines 30-60: Get/Goto

character movement loop

plus conditional branch

statements.

Lines 100-110: Routine for

incrementing and reporting

the score if the goal is

reached, plus sound and

color changes.

Lines 200-210: Routine for

score decrement if barrier

hit, plus sound and color

changes:

Lines 300-360: Game end

routine.

Lines 600-6t0: Title

screen character Poke

routine.

SK = score, RO = round

BR = barriers

V = volume

S1,S2 = sounds 1 &2

X = beginning character location

CL = color constant

Y = beginning location for

barriers

Z = beginning location for

bombs

B = random # of bombs

CY = random location of bombs

CX = random color for moving

creature

Table 1. Frenzy program variables.

Remember that the key to

this program remains as

simple as the core routine:

A short Get/Goto loop takes

care of all movement, and

the addition of a few

If.. Then branching state

ments takes care of all the

rest—scoring, sound and

color. 05

Address all author correspon

dence to James Miller, 2142

Odema Drive, Lima, OH 45806.

58

i 3.SS3.QG tVJ riort

BY CHUCK MOUNTS

Zxyion is a game that re

quires a little logic, skill and

luck. The time is 2281 A.D., and

your spacecraft has landed in

the interior of planet Zxyion.

You must retrieve the yellow

Plutonium (vital to your

planet's existence), which was

stolen by the Zxyion warriors,

and avoid being captured by

the deadly Zxyclops that

guard it. But be careful—the

walls of the caverns are

electrified.

It
IGHT
VIC-20

One joystick required

Disk or cassette

How to Play

To retrieve the stolen pluto-

nium, you maneuver your Be

ing around the screen with a

joystick. Lure the Zxyclops

into the electrified walls to de

stroy them. You have 30 sec

onds to capture the egg be

fore it hatches, unleashing the

invincible green Zxyborg. The

only weapons you carry are

three hyperspace bombs,

which you may release by

pressing your joystick's

fire-button.

You have five men per game

and are awarded an additional

man after scoring 1000 points.

You gain ten points for each

Zxyclops you destroy, 25

points for each plutonium

mound you recover and 50

points for capturing the egg

before it hatches. Each time

you destroy all the Zxyclops

guarding the plutonium and

capture the egg, an additional

Zxyclops is added to guard

the plutonium for the next

stage.

The program uses random

locations (the RND statement)

59

to set up the screen, so the

walls of the caverns, the

placement of the plutonium

and the placement of the Zxy-

clops are different for each

stage and game. In the upper

left-hand corner of the screen

is displayed the number of

your remaining men. The up

per middle of the screen dis

plays the number of hyper-

space bombs that remain, and

in the upper right-hand corner

is displayed your score.

The Program

The program is set up in

two parts, making it compati

ble to run on the standard 5K

unexpanded VIC-20. The

Zxylon program sets up the

programmable character set

and instructions, and gives a

brief scenario of the game,

along with an interesting

graphics display.

Zxylonmod is actually the

game itself and uses almost

all of the VICJs memory. Writ

ten entirely in Basic, the game

includes high-resolution

graphics and sound in addi

tion to multi-colored graphics.

After you've loaded Zxylon

into the VIC's memory, type

RUN. Leave the play button on

the cassette recorder de

pressed and do not rewind the

tape. Zxylon will automatically

clear itself out of the VIC's

memory and load Zxylonmod.

I believe you'll find Zxylon to

be an exciting and almost ad

dicting game to play. B

Address all author correspon

dence to Chuck Mounts, 1598

Secretariat Drive, Annapolis,

MD 21401.

60

BotHrva-Maze

BY JAMES R. MILLER

Using custom char

acters and a con

structed maze, this

multi-level addition

review for primary

grade-schoolers adds
entertainment and re

ward to the practice

of early mathematics
skills.

The Bug-in-a-Maze program

provides review of addition for

children in primary grades. It

uses custom characters and a

constructed maze to entertain

and to reward the practice of

elementary math skills.

Bug-in-a-Maze includes nine

Run it
RIGHT

VIC-20

Disk or cassette

levels linked to a pair of ran

dom-number generators and

the level factor (L). Selecting

level 3, for example, will gen

erate addition problems that

are all multiples of 3. The level

factor also determines the

problems' complexity. Level 1

is the easiest; level 9 the most

difficult.

Bug-in-a-Maze is good fun,

too. Whenever a right answer

is given, a nervous little bug

appears at the top opening of

the maze and begins to

scramble through the twists

and turns at a speed that is

linked to the value of X (the

first number in each addition

problem).

As a child tries more diffi

cult problems, the crazy

creature will run faster and

faster through the maze,

changing color with each

level. At the bottom, the bug

turns black and settles fitfully

into his nest, ready to run

again. Pressing the return key

restarts the game.

If an incorrect answer is

given, a second black bug ap

pears out of nowhere, eats the

61

wrong answer and displays

the correct answer in the

center of the maze. After a

brief pause, the screen clears

and the game automatically

begins again.

The Program

The program employs a fair

ly common routine to create a

user-defined character in place

of one of the normal char

acters found in the standard

VIC set (contained in ROM).

Lines 110-140 move the

standard set out of ROM into

RAM and read a set of data

numbers to change the @

symbol to the bug used in the

game. There is also an instruc

tion to lower memory a bit to

protect the Basic program

from the RAM character set.

The maze through which

the bug dashes is constructed

by means of Print statements

rather than random Pokes.

This means the bug always

runs the same pattern

(although at varying speeds).

The creature already skips

one opening (on purpose) and

then runs back again to drop

through to the next level.

Making Changes

While Bug-in-a-Maze per

forms only addition problems

now, it's easy to make

changes to include subtrac

tion or multiplication. Simply

change the variables in lines

169-185 to O or (-) instead

of(+).
You also can change the

bug character (a character-

creator utility program is a

great help in this case). If you

do attempt to alter the bug to

some other design, do so be

fore you run the program: Go

to line 130 and change each

of the eight numbers to what

ever you've selected.

Try the following sets of data

to see my alternative creatures.

DATA 129,90,36,126,129,219,66,60

DATA 102,153,36,36,24,102,66,231

DATA 24,36,24,102,90,36,36,102

Running the program after

entering the new data should

give you a brand new

creature! IB

Address all author corre

spondence to James Miller,

2142 Odema Drive, Lima, OH

45806.

62

Please send me back issues of ReRUN

Cassette version(s) at $11.47' C-64 Vol. 1

Disk versionfs) at $21.47' VIC-20 Vol.2

' Prices include $1.50 postage and handling. Foreign Airmail please add an additional $1.50 per item. U.S. funds

drawn on U.S. banks only.

□ Check/MO □ MC D VISA □ AE

Card # Exp. Date

Signature

Name

Address

City state Zip

ReRUN • 80 Pine Street • Peterborough, NH • 03458

BEAT THE RUSH-

Order the next edition now!

Please send me the ReRUN Summer Edition:

Cassette versions) at $11.47 ea.'

Disk version(s) at $21.47 ea.'

* Prices include $1.50 postage and handling. Foreign Airmail please add an additional $1.50 per item. U.S. funds
drawn on U.S. banks only.

Summer Edition (available in June) runs on O64only.

□ Check/MO □ MC □ VISA D AE

Card* Exp. Date

Signature

Name

Address

City State Zip

ReRUN • 80 Pine Street • Peterborough, NH • 03458

Your

Favorite

Programs

from RUN

December,

January and

February!

Featuring:

*A SPREADSHEET

'GAMES
'UTILITIES
.. .and morel

If any manufacturing defect becomes apparent, the defective cassette ordiskwill be replaced free of charge

if returned by prepaid mail within 30 days of purchase. Send it, with a letter specifying the defect, to:

ReRUN • 80 Pine Street • Peterborough, NH 03458

Replacements will not be made if the cassette ordisk has been altered, repaired or misused through

negligence, or if it shows signs of excessivewearor is damaged by equipment.

The programs in ReRUN are taken directlyfrom listings prepared to accompany articles in RUN magazine.

They will not run under all system configurations. Use the RUN It Right information included with each article as

yourguide.

The entire contents are copyrighted 1985 byCWCommunications/Peterborough. Unauthorized duplication is

a violation of applicable laws.

© Copyright 1985CWCommunications/Peterborough

:»SCW COMMUNICATIONS/PETERBOROUGH

