
Your Favorite Programs from RUN

VOLUME TWO
Disk $19.97

C-64

"SPRITECD1"

"SPRITECD/DEMO"

"64FILTER"

"64SQUEEZER"

"64EXPANDER"

"DATAFILE"

"DFMAIL"

"DFREPORT"

"BATTLESHIP"

"SLIDE"

"SLIDEMOD"

"MANOR"

"MONEY"

"MONEYMOD"

"64TOUCHDOWN"

"SPELLER"

page

1

4

7

11

14

24

29

36

41

45

47

50

53

VIC-20 page

"20FILTER"" 4

"20SQUEEZER""* 7

"20EXPANDER" 11

"MULTICOLOR"" 56

"SCREEN RELOCATOR1"**

"PONIES" 63

"SPACE" 66

"SPACEMOD"

"PRESIDENT""* 69

"20TOUCHDOWN"** 50

"NIMBOTS"*" 71

"FRIEND"'* 76

'Must be loaded with LOAD"SPRITECD",8,1

"Require a 3K expander

'"Require an 8K expander

(remember the asterisks are not part of the program name)

ReRun UPDATES:

Please note:

Included on the ReRun disk/

tape are two programs not

mentioned in the directory.

SPRITECD/DEMO, which is

discussed in the article

'Sprite Control' on page 1

and SCREEN RELOCATOR

discussed in the article 'The

Many-Colored VIC on page

56.

The article 'Sprite Control'

talks about a basic loader

which is used to create

SPRITECD; we have already

created and saved

SPRITECD for you on the

disk/tape.

After a little checking we

discovered that some of the

memory requirements listed

in both the articles and di

rectory were misleading. On

the back side of this sheet

is an updated directory stat

ing the correct memory con

figurations needed. (If you

have questions check the ar

ticles.) It should also be

noted that you should make

copies of programs such as

SQUEEZER, EXPANDER,

DATAFILE, DFMAIL,

DFREPORT, and MULTICO

LOR onto a separate dis

kette or tape as these

programs use SAVE and

LOAD commands that may

eventually fill up {or even

destroy) your ReRun diskette

or tape.

One final note. The pro

grams 64SQUEEZER,

20SQUEEZER, 64EXPANDER,

20EXPANDER, DATAFILE,

DFMAIL, and DFREPORT

will only work on a disk

system.

The program MULTICOLOR

was written for tape system.

See the article for saving

and loading procedures.

We have included these on

the tape for your future use.

We are continually checking

and rechecking the pro

grams on ReRun to insure

you get the very best that

RUN has to offer. (In some

cases the programs are bet

ter than those in the maga

zine because of

improvements and correc

tions sent in after publica

tion) If you have any

problems or suggestions we

invite your input.

Guy Wright

DIRECTORY

C-64 PAGE VIC-20 PAGE

"SPRITECD"*

"64FILTER"

"64SQUEEZER"

"64EXPANDER"

'DATAFILE"

'DFMAIL"

'DFREPORT"

'BATTLESHIP"

'SLIDE"

"SLIDEMOD"

"MANOR"

"MONEY"

"MONEYMOD"

"64TOUCHDOWN"

"SPELLER"

1

4

7

11

14

24

29

36

41

45

47

50

53

"20FILTER"**

"20SQUEEZER"***

"20EXPANDER"***

"MULTICOLOR"

"PONIES"

"SPACE"

"SPACEMOD"

"PRESIDENT"**

"20TOUCHDOWN"

"NIMBOTS"***

"FRIEND"**

4

7

11

56

63

66

69

50

71

76

* These are machine language programs that must be loaded

with LOAD"name",8,1 for disk or LOAD"name",1,1 for tape.

Please remember, the asterisk is not part of the file name.

" These programs require 3K expander.

"* These programs require 8K expander.

O64 and VIC-20 are registered irademarks of Commodore Business Machines, Inc.

Design/ Production

Laurie MacMillan, Carol Woodman

Introduction

The long-awaited 2nd edition

of ReRUN is finally here. The

response to the first edition

was so positive that we are

working on a number of special

RUN projects beginning in

1985. To wrap up our first year

we are putting as many of the

best programs we could

possibly squeeze on the 2nd

edition ReRUN tapes and

diskettes. Games to amuse

you, utility programs to help

you get the most out of your

Commodore computer, and

educational programs for young

and old. As you know, there

were a lot of good programs in

RUN magazine from July to

December, and we tried to take

the best of the lot for ReRUN,

but we just couldn't fit them all

in. Weeks went into the selec

tion process with various staff

members fighting for their per

sonal favorites. We think that

the programs selected are

among the very best, and I

hope you agree.

For you gamesters, there are

joystick gems such as Money

Grubber (C-64), and Lost In

Space (VIC). Quick-keyboard

contests like Battleship War

(C-64), a fast-paced battle on

the spritely high seas. And for

anyone who ever wanted to call

the plays but avoid the bruises,

there is Touchdown (C-64 and

VIC). For the thinking gamer

there are a number of

amusements. Nimbots (VIC) is

an ancient take-away game

with some new twists. Slide

(C-64) may be one of the

toughest challenges you ever

slip into.Head for the track in

Playing the Ponies, and enjoy

horse racing action without los

ing your shirt. Then, somewhere

between joystick action and

deductive reasoning there is

Mystery of Lane Manor, a multi-

player solitary detective game

for every amateur sleuth in your

house. And just for fun we

included I Am the President

(VIC), a humorous conversation

with an infamous ex-president.

For the utility-minded Com

modore users, we have pro

grams that will make your

programming life easier. Sprite

Control (C-64) gives you four

new Basic commands for

manipulating sprites. The

Many-Colored VIC helps take

the frustration out of multi-color

character programming. Lister

Filter (C-64 and VIC) will let you

print out those listings,

automatically translating all

those graphics and control

characters into a form that

humans can understand.

Line Squeezer / Line

Expander (C-64 and VIC) are

two programs for the price of

one, to squeeze those long pro

grams down to size or take

those scrunched programs and

spread them out. Finally,

Datafile (C-64), a full-blown

database, offers features found

in professional software.

No matter what you do with

your C-64 or VIC-20, there is

something on ReRUN to use,

amuse, fascinate, educate,

enlighten, solve, battle, help,

provoke, hear, see, play, and

value. No typing, no trouble.

Load them into your Com

modore computer and enjoy the

best from RUN magazine July-

December 1984.

Guy Wright

Technical Editor

RUN magazine

HOW TO LOAD

DISK:

To load any of the programs type:

LOAD " program-name" ,8

then press the RETURN key.

The disk drive should 'whirr' while the screen prints SEARCHING FOR program-name.

The screen should then print LOADING and then finally READY with the flashing cursor

beneath. Type RUN and press the RETURN key. The program will then begin.

CASSETTE

Insert the cassette tape into the Datasette recorder with the proper side facing up

(Commodore 64 side up if you own a Commodore 64 and VIC-20 side up if you own a

VIC-20)

Make sure that the tape is rewound all the way to the beginning.

Type

LOAD "program-name"

then press the RETURN key. The screen will display

PRESS PLAY ON TAPE

you should then push the play button on your datasette recorder.

When the program has been found the screen will display

FOUND program name

on some Commodore computers you may then have to press the C = (Commodore

symbol) key to then load the program. On other Commodore machines the program

will load automatically. Check your owner's manual for specific loading procedures.

When the program has finished loading you will see the READY prompt and the flash

ing cursor beneath. Type RUN and press the RETURN key to start the program.

NOTES:

You should use the entire program name as listed to avoid loading programs that have

similar titles.

Make sure that if you are loading VIC-20 programs you have the correct memory

expansion cartridge (or no cartridge if that is required) plugged in before loading the

program.

Some programs are divided into two sections, the main section (the one you should

load first) and the MODULE section that is either automatically loaded when the first
section is run or is loaded manually after the first section is run.

Commodore 64 programs will NOT normally run on a Commodore VIC-20 and by the

same token VIC-20 programs will NOT usually run on a Commodore 64. Even though

you may be able to load a particular program into the wrong computer it is unlikely

that it will run properly.

ALWAYS refer to the article in the booklet for operating instructions, memory require

ments, etc.

BY M.J. CLIFFORD

Get a firm grip on your

sprites with this pro

gram that lets you ma

nipulate them quickly

and easily.

There are many articles and

programs for the Commodore

64 that deal with sprites. The

purpose of most of these is to

make it easy for you to design

them. However, once you've

designed the sprites, they still

can be difficult to handle in

Basic.

You must keep track of eight

different pointer locations,

eight y-coordinate registers and

nine x-coordinate registers, as

well as the various color and

priority registers. The ninth

x-coordinate register and the

register that turns the sprites

on and off require you to han

dle a single bit at a time. Bit

manipulation requires that you

know a little about binary num

bering and the logical AND and

OR operations. This can be a

lot to handle even for the ex

pert, never mind the novice.

it
IGHT

Sprite Control

Command Your Program

The program in Listing 1

adds to Basic four commands

that take care of all these

details. The commands turn

sprites on or off, move them,

automatically handle the prob

lem of x being greater than 255

and put the pointers, colors, ex

pansion and priority informa

tion into the proper registers.

The new commands are add

ed to Basic by means of the

SYS command, which transfers

control to a machine language

routine. The ML routine then

reads the required values from

the Basic program. Once the

variable SP is set equal to

40080, the following commands

are available:

Define a sprite: SYSSP.D,

n,l,m,(c1,c2,)

c3,xe,ye,p

Show a sprite: SYSSP,S,n

Hide a sprite: SYSSP,H,n

Move a sprite: SYSSP,M,n,x,y

Basic never sees the D, S, H

and M subcommands, so you

may use these letters else

where in the program. Of

course, SP must not be

changed from its value of

40080.

Commodore 64

The lowercase letters, which

may be constants, variables or

expressions, represent the

following.

n—sprite number 0-7

I—sprite data location 0-255

(13-15 are in the cassette buffer

and 11 is unused memory

below the screen). The actual

memory address is 1*64

m—0 = monochrome, 1 a

multicolor

c1,c2—the 01 and 11 colors

shared by multicolor sprites

(omit if m = 0)

c3—sprite color (10 colors for

multicolor)

xe.ye—0= normal, 1 = expand

in x or y direction

p—priority 0 = sprite over text;

1 =text over sprite

x—x-coordinate 0-511 {24-343

are visible, others are all or

partly off screen)

y—y-coordinate 0-255 (50-250

are visible).

The program in Listing 1

Pokes the machine language

into memory and then saves it

in a program file on disk.

Whenever you wish to use

this program, you should load it

by entering:

LOAD'iSPRITECD",8,1 (.1,1 for (ape)

POKE 52,156:POKE 56,156:NEW

Any program using these com

mands should begin with the

following lines.

10 POKE 52,156:POKE 56,156:CLR

20 IF PEEK(40080)< >32 THEN

LOAD"SPRITE CD",8,1

30 SP = 40080

Listing 2 is a short demon

stration of how you may use

these commands. It also in

cludes a method for menu se

lection by means of a mouse

that is much cuter than the one

that rolls around on the

tabletop.

Description of Loader

10-30—Protect the machine

language from Basic and set

the beginning address.

35-60—Read the data from

lines 1001-1019. The last

number on each data line is a

checksum. If you make a

mistake in typing the data, the

program will halt and report the

line number of the data on

which the error occurred.

100-110—report the successful

loading of the package.

200-320—use the Kernal Save

command to save the machine

language in a program file that

can be loaded directly with

LOAD-'SPRITECD",8,1 (,1,1 for

cassette—also change the 8 in

line 260 to a 1).

Description of Demonstration

5-20—Protect ML from Basic,

load the ML if necessary, and

set SP = 40080.

25—Puts data for a striped-box

sprite in location 13.

27—Reads data from lines

1010-1025 for the mouse sprite

and Pokes it to location 14.

30-120—Move 8 sprites at

once.

40-60—Use a loop to define 8

sprites.

50—Defines sprite Z in location

13, multicolor, colors 1, 7 and 2,

not expanded in either X or Y

and having priority over text.

55—Moves sprite Z to position

X,Y (170,140) and shows sprite

Z; only sprite 0 will be seen at

first, since the other seven

sprites are behind it.

70-120—Move all eight sprites

away from the center, each in a

different direction:

0 moves right as the X coor

dinate is increased by Z

1 moves right and up as X in

creases and Y decreases

2 moves up as Y decreases

3 moves left and up as both

X and Y decrease

4 moves left as X decreases

5 moves left and down as X

decreases and Y increases

6 moves down as Y increases

7 moves right and down as

both X and Y increase

130—Hides all 8 sprites.

140—Moves sprite 2 to the up

per left corner and shows it.

150—Moves sprite 2 diagonally

across the screen from upper

left to lower center.

160—Hides sprite 2.

170-230—Demonstrate expan

sion and color changes.

170—Puts sprite 6 into the

center of the screen and

shows it.

180—Redefines sprite 6 in loca

tion 13 as monochrome with

color Z and expanded width.

190, 210, 225—Unexpanded.

200—Expanded height.

220—Expanded in both height

and width.

230—Does it again in three

more colors, then hides it.

300-385—Use a mouse to

make selections from a menu.

300—Defines sprite 0 as in

location 14, monochrome, color

15, unexpanded and without

priority over text

310-340—Print a menu.

345—Sets Y coordinate of

sprite according to the value

of C.

350—Moves sprite to location

24,Y.

355—Waits for keypress.

360—If f3 is pressed, increases C.

65—If f1 is pressed, decreases C.

370—If the return key is not

pressed, goes to 345.

385—If the return key is

pressed, C is the value of the

option chosen.

1000—Time-delay subroutine.®

Address all author cor

respondence to M.J. Clifford,

2323 W. Bancroft St., Toledo,

OH 43607.

Lister Filter

BY ALEJANDRO A. KAPAUAN

Convert those curious

Commodore custom

characters into some

thing we humans can

understand, and you

will get easy-to-read,

professional-looking

listings.

A listing-translator program,

Lister-Filter, allows you to print

easy-to-read listings similar to

the ones in this publication. It

filters out all Commodore

graphics characters output to

the screen, printer or RS-232 de

vices (device numbers 3, 4 and

2, respectively) and replaces

them with easy-to-read non

graphic equivalents.

For example, the clear-screen

character will print as [CLR] in

stead of as a reverse-video

heart character. A shifted

space will print as [SHFT SPC],

while the character you pro

duce by holding down the Com-

unit
IGHT

VIC-20

Commodore 64

modore logo key and typing A

will print as [COMD A]. In addi

tion to these features, Lister-Fil

ter also compresses long re

peated sequences of graphics,

cursor control or blank

characters into a single string.

A string of 22 cursor-right

characters will print as [22

RIGHT]. A single space will

print as a space, while two or

more spaces in sequence will

print as [n SPC], where n is the

number of spaces. The program

is especially useful for making

printed listings if your printer or

printer interface has no graph

ics capabilities. Even if you do

have a graphics printer, listings

processed by this translator are

more readable than regular

graphics listings.

Lister-Filter was originally

written for the expanded

VIC-20, but it will run without

modifications on a Commodore

64. It is written entirely in ma

chine language and uses 630

bytes of your RAM. However,

you don't have to know ma

chine language to use the pro

gram and you do not even need

a machine language monitor to

type it in. The Basic loader pro

gram (see Listing 1) will do the

proper loading and relocation

of the Lister-Filter program.

Using the Program

Type in the Basic loader pro

gram carefully. This may be a

little difficult because of the nu

merous Data statements; how

ever, checks are provided in the

program so that you can easily

locate the errors in the data

when you run it. After typing

in the program, make sure to

save it.

When you run the program

for the first time, it may contain

some errors. If there is a Syntax

error, examine and correct the

offending line. If you get a mes

sage DATA ERROR NEAR LINE

n, examine line n for errors, or

possibly the line before it. If

you get an Out of Data error, it

is likely that you just left out a

Data statement. Make the nec

essary corrections and save the

program again.

Once the loader program ex

ecutes to completion, and the

screen displays FILTER IN

STALLED, then all output di

rected to the screen, printer or

RS-232 device will be trans

lated. You may type NEW to

delete the loader program, but

the Lister-Filter program will

still be there. To make a listing

of another program, just load it

into your computer and list it in

the normal manner. To disable

the translator when you no

longer need it, you can warm

start your computer by holding

down the run/stop key and hit

ting the restore key. To reinstall

the filter later, just load the

loader program and run it.

You can modify what the

translator will print for some

graphics characters by chang

ing lines 1000 to 1350 in the

loader program. The variable C

is set to the CHR$ code of the

character, while the string C$ is

set to the string to be printed. A

GOSUB4000 then installs the

code in the filter's exception

table.

Lines may be added after

line 1350 for other characters,

like the extra Commodore 64

color-control characters, which

are unavailable on the VIC-

20. However, the total excep

tion-table space may not ex

ceed 256 bytes. The program

will tell you if the table strings

are too long. You might have to

shorten some strings to make

room for the others.

How It Works

Lister-Filter is basically a pro

gram that is placed just before

the VIC's or C-64's normal out

put routine. This is done by

modifying the output vector at

locations 806 and 807 to point

to the Lister-Filter program.

After it does its translating, the

program then passes control to

the normal output program to

print the translated characters.

The translating process is

fairly straightforward. First, the

character to be printed is

checked against the previously

received character. If it is the

same, then a count of accumu

lated characters is incre

mented, and the character is

not immediately printed. If it is

not the same, then the character

is saved, and the previously-

buffered characters are printed.

That way, repeated characters

can be compressed as a single

string.

The character is checked to

see if it is in the exception

table. If not, it's checked to de

termine if it is a Commodore

logo key graphics character. If

it's neither of those, it's

checked to see if it's a shifted

character. The appropriate

string representation of the

character is printed, with any

necessary numeric count. If the

character is a normal printable

one, then it's printed as is.

If you are knowledgeable in

machine language program

ming, you might want to disas

semble Lister-Filter to examine

it in detail.

Lister-Filter is a handy

program for making clear, pro

fessional listings, and it helps

prevent the eyestrain and head

aches caused by reading cryp

tic graphics characters, g]

Address all author correspon

dence to Alejandro A. Kapauan,

141-6 Airport Road, West Lafay

ette, IN 47906.

BY ROBERT W. BAKER

Here's a handy utility

that allows you to

squeeze your pro

grams and thus gain

more memory.

This was originally writ

ten for the Commodore PET,

but I've made several improve

ments and have updated the

program to run on the Com

modore 64 and VIC-20 (with 16K

expansion memory).

Compactor II reads a Basic

program that has been saved

on disk and creates a new,

compacted copy. Compactor II

deletes all REM statements, un

necessary spaces and leading

colons.

This program, however, goes

one step further. Whenever pos

sible, it combines program

lines to eliminate the link, line

number and line-end-flag over

heads normally associated with

It
IGHT

Line Squeezer
Formerly "Compactor."

Commodore 64

VIC-20 with 16K expansion

each Basic program line. It

makes a program as small as

possible and usually faster

running.

To give you an idea of what it

can do, the Compactor II pro

gram is over 3100 bytes long (13

blocks on disk), and when com

pacted by itself, the new ver

sion is about 1800 bytes (8

blocks on disk), or approximate

ly 58% smaller. Admittedly, the

Compactor II program does

contain a large number of

spaces and several remarks,

but the savings you get on any

particular program depend on

how it was written.

While writing the original ver

sion of this program, I came

across a few of Commodore

Basic's undocumented quirks.

Since many of you like to ex

periment with the capabilities

of having programs write other

programs to disk, the following

information may be of interest

to you.

Zero-Length and Long Lines

Normally, it is impossible to

create a zero-length line when

you use the screen editor on

any Commodore system. By

zero-length line, I mean a line

with a link, line number and

end-of-line flag, but with no

Basic commands or text. If you

were to type just a line number

using the screen editor, you

would actually delete a line in-

stead of entering a zero-length

line.

When you write a Basic pro

gram on disk as a datafile,

there is nothing to prevent you

from entering a zero-length line.

Basic, however, cannot correct

ly link the program lines when a

program contains a zero-length

line. Therefore, if you want the

program to run. you cannot

have any zero-length lines in

your program.

At the other extreme, when

you use the Commodore screen

editor, you cannot create a

Basic line that is longer than

255 bytes. The Commodore 64

normally limits you to a max

imum of 78 characters, because

of the line-wrapping character

istics and the need for at least

a one-digit line number.

When you're writing a data-

file to disk, be careful not to cre

ate a line greater than 255 bytes,

as the program usually won't

load back from the disk. If it

does load, the program will nor

mally be completely destroyed.

How the Program Works

When you run the Compactor

II program, you have some con

trol over the size of the program

lines. The first input prompt

(lines 410-420) will ask for the

maximum line length.This

must be a positive number be

tween 1 and 255—the default

value is 255 if you just hit the

return key. When entering small

numbers, be sure to use spaces

to remove unwanted digits from

the default number.

After you select the maxi

mum line length, you are asked

the name of the Basic program

file you want compacted (lines

440-450). (Remember that the

program must be on disk.) If the

file is not found or if any disk

errors are encountered, they

will be reported and the pro

gram will abort.

Next, you're asked to enter

the name of the compacted

program to be created (lines

460-470). This name cannot be

the same as the original pro

gram name or any other fi le

currentlyonthe disk. If any file

with the same name already ex

ists, or if any disk errors are en

countered, the program will

likewise abort.

Compactor II reads the pro

gram as a sequential disk data-

file, and the file is read twice.

The first pass (lines 480-820)

checks for line numbers that

are the targets of GOTO,

GOSUB,Run,orlf.. .Then

statements (lines 590-690).

When it finds a target line num

ber, that number is saved in

matrix TL, if it's not already

saved (lines 730-760). It also

checks for multiple target lines

in ON. ..GOTO and ON.. .GO-

SUB statements (lines 800-820).

As the first pass progresses,

each target line is displayed in

the order found (line 750). This

gives you some indication of

the scanning progress, since it

can be rather slow. At the end

of the first pass, the target

lines are sorted into numerical

order, to help speed up later

processing (lines 860-890).

During the second pass

(lines 930-1420), each line is

copied, deleted or compacted

according to the Compactor's

rules. Again, the line number is

8

displayed as each line of the

original program is processed,

to let you know how the pro

gram is progressing. The rules

fol lowed by the Compactor are

as follows:

• Any leading colons and/or

spaces on a line are deleted

(line 1010).

• A line that has only remarks

is deleted if it is not a target

line (lines 1020-1040). If the

line is a target line, the remark

will be replaced with a single

colon, which must be retained

(line 1050). This may produce a

leading colon if the next line is

not a target line and is com

bined with this line. The line

cannot be reduced to a zero-

length line, since Basic cannot

link a program correctly with a

zero-length line, as mentioned

earlier.

• If any line contains a GOTO,

Run or If.. .Then statement, it

cannot be combined with

another line. Line 1130 makes

the check for these tokens and

sets a flag in variable F

whenever one is found. This

flag forces the current line to

be written to disk and the next

line to be read without combin

ing the two. Any line combined

after these Basic commands

would never be executed; thus

the compacted program would

not function properly.

• Any spaces within a line, that

are not enclosed in quotes, are

deleted (lino 1110).

• Any remarks at the end of a

Basic line are deleted to the

end of the line (line 1140).

• Anything within quotes is

copied untouched (lines 1180-

1200). If an ending quote is

missing from a line that could

be combined with another line,

then an ending quote is added

(lines 1210-1220).

• When a colon is found within

a Basic line and not within

quotes, the Compactor program

checks the next non-space

character before it copies the

colon (line 1260). If a remark fol

lows the colon, the colon and

the rest of the line are deleted.

Otherwise, the colon is copied,

and processing continues as

normal (line 1270).

• At the end of each Basic line,

the Compactor checks to see if

the next line can be combined

with this one (line 1310). If there

aren't any GOTO, Run or

If.. .Then commands, and if

the next line is not a target line,

the lines are combined (lines

1320-1360). When this happens,

the link and line number are

discarded, a colon is written,

and the next line is processed

as part of the previous line.

• If the second line cannot be

combined with the first line, the

first line is written to disk with

the correct link. This is the

major difference between the

original Compactor and this

new version. Compactor II uses

a line buffer to construct the

entire line before it is actually

written to disk. This allows the

program to construct an ac

curate link value, which it will

write at the front of each line.

• When the end of the program

is found, the last line is written

to disk, along with the ending

zero link, and all files are prop

erly closed (lines 1400-1420).

Lines On Lines

I skipped over the subroutines,

which are located near the front

of the program at lines 230-360.

A GOSUB to line 240 will read a

byte and return the character

code established in the variable

V, while starting at line 230 will

read two bytes. Lines 270-

290 check for disk errors and

report any findings before

aborting the program.

Lines 300-320 compute the

link value for a program line in

L$ and then write to disk the

link, program line and ending

flag (0). Lines 330-360 read an

entire Basic program line, sav

ing each byte in the C matrix

and the line length in PL It also

computes the program line

number, saves it in the LN vari

able and displays the line num

ber, overwriting any previous

number.

The line length that you

specify at the program's begin

ning prevents Compactor II

from combining lines that

would exceed the specified

limit. However, any lines

already greater than the limit

will be copied without being

combined with other lines. If

you select a small limit, then

the program will copy most of

the lines without combining

them. It will, however, compact

each line by removing spaces,

remarks or leading colons.

Keep in mind that the newly

compacted program may have

lines that cannot be edited with

the screen editor. On the C-64,

any program line that exceeds

two screen lines cannot be

edited. (See my Uncompactor

program, following, which

allows you to break and

shorten program lines to allow

for easier editing.)

One quick word of caution.

When you enter the Printtf com

mand, do not use the Print

statement's abbreviation, which

is a question mark. If you do,

the line will still list correctly,

but internally the code is incor

rect and will generate a syntax

error. Always type the entire

command—PRINT#.S]

Address all author correspon

dence to Robert W. Baker, 15

Windsor Drive, Atco, NJ 08004.

10

Line Expander
Formerly "Uncompactor."

BY ROBERT W. BAKER

Are your program

lines overcrowded

with multiple state

ments? This program

breaks up and short

ens those lines, mak

ing them easier for

you to edit.

This was originally written

for the Commodore PET, but

I've made several improve

ments, including updating the

program to run on the Commo

dore 64 and VIC-20.

Uncompactor, a companion

to Compactor II, reads a Basic

program that was saved on disk

and creates a new, uncom-

pacted, or expanded copy. It

does this by taking any multi-

statement lines (statements

separated by colons) and break

ing them into separate program

lines with new line numbers.

in it
GHT

Commodore 64

VIC-20 with 16K expansion

Long lines created by Compac

tor II can now be edited and the

program recompacted.

When you split multistate-

ment lines, the new line num

bers are created by increment

ing the original line numbers by

1.1 follow this procedure until a

line number reaches the next

original line number in the pro

gram. When I reach that point, I

then copy the remainder of the

original line as part of the last

line generated, with any appro

priate separating colons.

The program must take into

account certain Basic tokens,

or keywords, since they deter

mine whether or not a partic

ular line can be broken into

separate lines. Thus, any data

following a GOTO, End, Run, If,

Return, REM, Stop, List or

CONT token is copied, un

changed, to the end of the cur

rent program line. Also, once a

program detects a quote, it

must copy the line until it

reaches another quote or the

end of the program line.

Program Description

When you run the Uncom

pactor II program, you have

some control over what size

program lines will be uncom-

pacted. The first input prompt

(line 370) will ask for the

minimum line length to try un-

compacting. This should be a

positive number between 1 and

11

255, but there is no check of

the value entered. If you just hit

the return key when prompted,

the default will force the pro

gram to try and break every

single line, where possible.

Selecting a number like 20 will

cause small lines (with 20 or

fewer characters) to be left un

touched, while longer lines are

uncompacted.

After you select the minimum

line length, you're then asked

the name of the Basic program

file to be uncompacted (lines

390-400). The program must be

on disk, as program files can

not be read from tape. If the file

is not found, or if any disk er

rors are encountered, the pro

gram will terminate.

Next, you're asked to enter

the desired name of the uncom

pacted program to be created

(lines 410-420). This name can

not be the same as the original

program name or that of any

other file currently on the disk.

If any file with the same name

already exists, or if any disk er

rors are encountered, they will

be reported, and the program

will terminate.

Uncompactor II treats the

program to be uncompacted as

a sequential disk data file,

which it reads only once. As it

reads the original program,

each line number is displayed

on the screen (lines 490-510).

This gives you some indication

of how things are progressing

as Uncompactor II runs; it can

be rather slow.

After Uncompactor II copies

the original line number, it

reads the actual line into the C

matrix (lines 550-560) and then

reads the next link and line

number (lines 600-620). When it

finds the zero link at the end of

the program, the next line

number is forced to 64000. This

number exceeds any possible

Basic program line number,

thus forcing proper handling of

the last line of the program

read.

Once the entire line has been

read, and if it's longer than the

limit you selected, it is scanned

for colons and certain Basic

tokens (lines 660-940). If the

line is shorter than the speci

fied limit, it's copied untouched

(line 860). If one of the special

Basic tokens is found (lines

820-850), the remainder of the

line is copied untouched.

When a colon is found, the

line is split as long as the cur

rent line number plus one is

less than the next original line

number (lines 700-760). The cur

rent line is written to disk with

the proper link and ending flag.

Single leading colons at the

start of any line are retained,

while spaces or extra colons

following any colon in the mid

dle of a line are deleted (line

750).

Whenever quotation marks

are encountered, the remainder

of the line is copied untouched

until the quote closes or end of

line is found (lines 910-940). At

the end of the program, a zero

link is written to disk to proper

ly terminate the new program,

and all files are closed.

The subroutines are near the

front of the program to help

speed things up. The subrou

tine at line 230 reads two bytes,

while 240 reads a single byte

12

from the original program file.

When the program returns from

this subroutine, the last

character read is in C$, with the

character codes in V and V1.

Lines 270-290 check for disk er

rors and either return to the

calling line ordisplay the disk

error and stop the program.

Lines 300-320 calculate the

correct link for the line in L$

and write the entire line, along

with the link, to the new pro

gram file.

Newly created, uncompacted

programs are fully linked and

ready to run. You can use the

Uncompactor II and Compactor

II on any standard Basic pro

gram that does not contain em

bedded assembly language rou

tines.

As I mentioned in the Com

pactor II article, don't use a

question mark as an abbrevia

tion for Print in Print# com

mands.Theline will still list

correctly, but internally the

code is incorrect and will

generate a Syntax error if ex

ecuted. Be sure you always

type the entire command—

PRINT#—to avoid problems. (K

Address all author correspon

dence to Robert W. Baker, 15

Windsor Drive, Atco, NJ

08004.

13

BY MIKE KONSHAK

If you want to computerize

all those records you have to

keep track of, here's a dandy

database program that will

give you information in a

jiffy. (The first of two parts.)

A database is one of the

more practical and useful pro

grams that a computer owner

can have. Information storage

has always been one of the ma

jor areas of emphasis in the

computer industry, and for the

personal computerist there are

many applications, particularly

in maintaining files such as

family records, Christmas card

lists, recipe files, inventories of

personal possessions and any

thing else you might want to

keep track of in a handy and or

ganized manner.

Databases take many forms

and may be programmed in

several ways, according to your

needs and the extent of the

data to be organized and

stored. Databases normally re

quire some type of mass stor

age device, such as a tape or

disk drive that will keep the rec-

It
IfiHT

Any ASCII or Commodore

printer

Commodore 64 with 1541 disk

drive

Datafile

ords for later processing.

Printers are also a major pe

ripheral used with databases.

They produce the hardcopy re

ports without which the accum

ulation of records would be ex

tremely hard to analyze. After

all, what good is the computer

without output?

Relative Records

A database is essentially a

program that creates a program

that collects and processes

records according to your

wishes and needs. It consists

of records and fields. A record

is basically a collection of infor

mation in the form of fields,

each one containing informa

tion unique to that record. All

records in a particular database

have the same number of fields

containing the same types of

information.

For example, consider the

following database, containing

a list of family members and

friends with their birthdays and

gift preferences:

DATABASE:Birthdays

1. Name: Mike K.

Born: 05-28-47

Likes: Computers

2. Name: Becky K.

Born: 06-27-58

Likes: Clothes

3. Name: Sarah K.

Born: 09-10-75

Likes: Drawing

4. Name: George S.

Born: 07-03-50

Likes: Wine

14

5. Name: Leslie Z.

Bom: 01-18-43

Likes: Books

In this database, called Birth

days, there are currently five

records. Each record contains

three fields, entitled Name,

Born and Likes. The informa

tion in each field is the actual

data that's being recorded and

organized. Such data is some

times called an item.

As you can see, the data is

not listed in any particular se

quence or order. One of the fea

tures of a database program is

the ability to manipulate or sort

records in alphanumeric se

quence, according to a par

ticular field. Obvious sorts

would be into lists by name or

by birthday. In this way you'd

be able to print out a list of

records in any convenient

order.

For example, if a sort were

performed on the first field

(Name), the order of the records

would be 2-4-5-1-3. Notice

that the sort was keyed from

the first name, not the initial of

the last name. Sorts always

start with the leftmost words

and characters. If the key field

was Born, the order would be

5-1-2-4-3. Notice that this sort

is determined by the first nu

meric character, which happens

to be the month, not the year.

Main Database Features

Features found in most data

bases include:

• ADD additional records.

• MODIFY existing records.

• DELETE records from data

base.

• SORT records by field.

• LIST records on the screen.

• PRINT list of records on the

printer.

• SEARCH for one or more

similar records.

When the Print feature is

chosen, you typically have the

ability to format the list of rec

ords in various forms and ar

rangements. Mailing labels and

reports are examples of com

mon uses. Reports typically

have headings at the top of the

page, with the data items listed

in columns below the headings.

Not every field of a record

needs to be printed if the infor

mation in some fields is not

useful for the report. You nor

mally design the format for a

particular report or type of mail

ing label and save it on disk for

later use. You usually store for

mats separately from the infor

mation in the database.

The records in a database

are normally stored on disk.

Tape drives are also used, but

are very slow, especially when

dealing with a large number of

records. Tape drives always

store the database in the form

of a sequential file, while disk-

based systems can store the

records in either a sequential or

a relative file.

Sequential files involve load

ing the entire database from

the disk into the computer's

memory. You then manipulate

the records, and the informa

tion is printed out while the

memory contains the database.

When you've completed all

desired operations, the updated

database is saved back to the

15

disk. You normally scratch the

old information before saving

the new.

Sequential files loaded into

memory allow very fast opera

tions on the data. The major

drawback is that the com

puter's memory capacity limits

the size of the database or the

number of records. It's very im

portant to keep the number of

fields in a record small, as well

as to keep the length of the

items in each field to a

minimum. This will allow the

maximum number of records.

In contrast to sequential

files, relative files store data in

specified disk areas called sec

tors. You can access and ma

nipulate each record without

affecting other records. Since

you can only perform opera

tions directly on the disk,

instead of in memory, these

systems may be very slow, es

pecially when you perform sort

ing operations.

Printing operations pull the

data directly from the disk one

record at a time. This also

takes longer than it would with

a memory-based system. The

main advantage of relative files

is that the database can store

over three times as many rec

ords as a memory system.

Another advantage is that

you can develop a more com

plex and extensive database

program, since memory space

is not needed for loading rec

ords. Relative file systems can

add features such as math

ematical calculations of rec

ords, graphics routines to plot

out data and screen formatting

to aid in entering data.

Datafile Description

Datafile is a memory-based,

multiple-program database

system for the Commodore 64.

It utilizes sequential files on a

1541 disk drive, and any ASCII

or Commodore printer. I chose

a memory-controlled system

because most home users of

personal computers don't need

a large number of records.

Also, you could probably better

use the time spent in front of

the computer for more recrea

tional activities, like program

ming, than in waiting for a

disk-based system to perform,

especially when using the slow

1541.

Datafile allows you to create

your own database, choosing

the number and length of fields,

as well as their titles. The pro

gram will calculate the maxi

mum number of records that

can be retained in memory ac

cording to the criteria you

established. After you've cre

ated a database and added rec

ords, you can perform standard

operations on the data and

save to disk or print out the

results in various formats.

Datafile uses several tech

niques to save time and mem

ory space. The main Basic pro

gram, Datafile, is typically

loaded first at the beginning of

RAM. When run, the program

establishes the existence of

every variable that Datafile and

its subprograms will use, by

setting each variable to a dum

my value.

16

String variables are set to a

null [A$ = CHR$(0)] or some

value pertinent to the program,

and floating point and integer

variables are assigned a value

of zero [A = 0]. Finally, whether

a file of data is created at the

start of the program or by load

ing an existing file, the arrays

are dimensioned last. This has

a two-fold purpose. It allows

programs to load other pro

grams and also minimizes the

time the computer has to spend

managing the memory.

The main program can load

other subprograms from the

disk, removing itself from mem

ory to allow room for the new

program in the same memory

cells. The new program will

then be able to use the same

variable values and data which

were set and retained during

the operation of the first

program.

This only works as long as

the second program is smaller

in memory requirements than

the first. The second program,

however, can load the first one,

even though the first is larger,

because the memory space

was allocated when Datafile

first was loaded.

Garbage Collection Time

The Commodore architecture

is such that as the program en

counters variables during ex

ecution and, except for strings,

gives them values, those values

are stored directly above the

Basic program. When an array

is dimensioned, the computer

will assign the empty cells

directly above the variable

values to array data.

Consequently, as the com

puter encounters a new vari

able that it has not seen before,

it will start shoving the array

higher up in memory, cell by

cell, until enough room is

available for the new variable.

{Evidently, variables get lonely

if they're not together.)

After the arrays, strings are

stored. Basic has a nasty habit

of reappropriating memory

space that's holding strings,

in order to free up the memory

for possible future needs. This

procedure, called garbage col

lection, is normally invoked

when the Basic statement

FRE(O) is in use. Garbage col

lection takes time, especially

when dealing with large arrays

consisting of strings, such as

those created by Datafile.

It's possible to lose control

of your computer for several

minutes when this happens,

and it will occur every time an

other new variable comes

along. I advise you to keep this

in mind when programming

with arrays. It's best to keep

the number of variables to a

minimum and to predefine

them before dimensioning

arrays.

As just mentioned, the pro

gram retains all the record data

inside memory, even though

programs are being removed

and replaced with other pro

grams. The subprograms per

form operations and manipu

late the record data as utilities

serving the main program. If the

routines and services provided

by the subprograms DFReport

and DFMail were combined

with Datafile into one large pro-

17

gram, there would be less

space left for records.

The Subprograms

The following is a brief de

scription of the function of

each of the subprograms.

{Note: For reasons of space,

the subprograms DFReport and

DFMail will appear next month,

along with a detailed descrip

tion of each.)

The Datafile main program

creates the database, defining

the number of fields per record,

the titles and lengths of fields,

and the number of possible rec

ords, based on how the fields

were set up. Datafile also sorts

the fields in alphanumerical

order, depending on which field

is chosen.

Datafile also acts as the con

trolling program for disk-related

operations, such as loading

(reading) and saving (writing)

datafiles, formatting blank

disks, reading the directory and

choosing which subprograms

to advance to.

The DFMail subprogram is

designed to print mailing labels

and has the capacity to deter

mine which fields will be

printed on which lines of the

label. DFMail prints on any

single-row, tractor-feed labels,

and can adjust the number of

lines per label and the number

of characters per line.

Once the label's format is

designed and saved for future

use (in special format files), you

have the ability to search

through the datafiles for se

lected records with common

fields (e.g., Name = Smith) or to

print the entire datafile. In other

words, you can pick and

choose as you like.

The DFReport subprogram is

designed to print reports on the

Commodore 1525E or MPS801

printer, as well as any ASCII-

type printer with suitable inter

face. DFReport has been tested

satisfactorily on Okidata, Epson

and Gemini dot-matrix printers,

as well as on the Brother daisy-

wheel typewriter/printer. A

Cardco interface was used with

all of the above hardware.

You have the capability to

format the report in order to

present the records in the way

best suited to your needs. You

can save the format for recall

when another report must be

printed. You can print up to 136

characters across the page, de

pending on the capacity of your

printer. The Commodore print

ers will only print reports up to

an 80-character width.

A title consisting of four

lines will be centered at the top

of the page, followed by col

umn headings. You can define

up to eight columns with the

width and location of each. You

can also define the column

titles, although these normally

have the same names as the

record fields that will be printed

below the headings. You may

then search selectively for the

records to be printed in the

columns.

For long reports, the printer

will automatically number the

page, advance to the next page,

and print column headings

before beginning to print more

records. For a faster printout of

the records, a nonformatted

print utility is provided that lists

18

each record and every field

within the record in rows in

stead of columns. This printout

can be cut and pasted on 3 x 5

cards.

All the above programs save

datafiles or format files under

special names that can be load

ed only by the program that

saved the file. In many cases

the name given to the original

datafile when the database was

created will also be used as a

reference on format files cre

ated by DFReport and DFMail.

This feature helps you keep

track of which format went with

which datafile. Consequently,

Datafile, DFReport and DFMail

could each have a file named

Xmas Mail, but would load only

their respective file.

Datafile Instructions

You begin by typing LOAD

"DATAFILE",8 < RETURN >.

When the disk drive stops run

ning, type RUN <RETURN>.

The screen then displays the

main menu, which resembles

the following. (Text or letters

surrounded by brackets denote

reversed video characters, nor

mally identifying a key to be

pressed.)

[DATAFILE MENU]

[C]REATE NEW FILE

[A]DD RECORD TO CURRENT FILE

[MJODIFY RECORD IN CURRENT FILE

[D]ELETE RECORD IN CURRENT FILE

[R]EAD OLD FILE FROM DISK

[PJRINT RECORDS BY SELECTION

[V]IEW FILE ON SCREEN

[S]ORT RECORDS BY FIELD

[W]RITE NEW FILE TO DISK

[FJORMAT DISK

[$] DISK DIRECTORY

[Q]UIT PROGRAM

[PRESS THE APPROPRIATE KEY]

THERE ARE 0 RECORDS IN MEMORY

SPACE FOR 0 MORE RECORDS

(Note: The last line will not be

displayed until a file has been

created or loaded from disk.)

You can choose any of the

12 options by pressing the key

that represents the first letter of

the option, although Create or

Read should be the first one

chosen when you begin. The

program will jump to the re

spective subroutine without

your having to press the return

key. When a particular subrou

tine has completed its chores,

it will always return to this

menu.

It's a good idea to create a

small database at first, in order

to become familiar with Data-

file. Don't put too much effort

into the first go-around. Experi

ment a bit to check out the pro

gram's capabilities. The follow

ing is a step-by-step description

of what to expect when you se

lect options from the main

menu.

Create New File

Try to maximize the available

memory space by keeping the

number of fields and the

lengths of the names to a

minimum. The lengths of the

fields should always be

restricted to less than 75 char

acters.

Here's a practice file, which

we'll call Names and Ages. It

will have two fields, the first

one to be called Name, and the

second one Age. We'll only be

putting first names in our

database, so a length of ten

characters for field 1 should be

adequate. We will be putting

19

the person's age in field 2, so

two characters should suffice.

Press the return key after every

prompt. The program continues

with:

HOW MANY FIELDS IN EACH

RECORD? 2

FIELD#1

TITLE? NAME

LENGTH?10

FIELD#2

TITLE? AGE

LENGTH? 2

The computer will then calcu

late as closely as possible the

number of records that can be

stored:

YOUR SELECTIONS WILL ALLOW 1110

MAX RECORDS. [A]CCEPT OR

[R]EJECT?

Press A. If R is pressed, the

program will return to the point

where you are asked for the

number of fields in each record.

This gives you the chance to

change the fields in case you

didn't get as many records as

you were expecting.

If you press A, the main

menu should appear, and the

bottom line should tell you

again how many records the

memory can hold. This will

decrease by one every time you

add a new record.

Add Record to Current File

After pressing A on the main

menu, the screen displays:

PRESS THE [RETURN] KEY AFTER

EACH ENTRY

PRESS [RETURN] WITHOUT ANY

ENTRY TO STOP

[RECORD NUMBER 1]

NAME? MIKE

AGE? 36

Now type in about ten rec

ords so you'll have something

to play with. If you try to enter

into any field more characters

than that field was initialized

for, you'll receive an error

message. You will notice the

dummy character behind each

input statement. This is used to

reserve the space while the

computer is writing the sequen

tial file to the disk.

You stop adding records by

pressing the return key without

making an entry in the first

field. This doesn't work on suc

ceeding fields because it's as

sumed there's some data there

that needs to be saved. This

also allows you to fill in blanks

later if information is unknown

at the time.

It's important to note that

Datafile uses Input statements

that do not allow the use of

quotation marks, commas,

semicolons or colons as part of

data in the fields. All other

alphanumeric characters are

acceptable.

Modify Record in Current File

If you press M, you will see:

MODIFY WHICH RECORD? ENTER [#]

OR [A]LL

?

If you want to change just

one particular record, enter the

number of the record {try 1),

then press the return key.

Pressing A will display all the

records in the file one at a time.

Pressing 1 brings this to the

screen:

TO MODIFY RECORD NUMBER 1,

MAKE CHANGES AS EACH FIELD IS

DISPLAYED, THEN [RETURN]

20

NAME? MIKE

AGE? 36

As you can see, this format

is similar to the Add operation,

except that the data is pre

printed for you on the screen.

Press the return key once, ac

cepting the name, then update

the age by typing over

the 36 with a 37; press the

return key.

The main menu should reap

pear again. If the entire file is

going to be modified, holding

the return key down will scroll

through the data. It is best,

though, to find the record you

want with the View function.

Delete Record in Current File

Pressing D gives you:

DELETE WHICH RECORD? ENTER [#]

OR [AJLL

?

Don't be afraid to press A on

this one. Records will not be

deleted unless you've given the

go-ahead to do so first. For this

example, enter 1, then press

the return key, which displays:

TO DELETE RECORD NUMBER 1,

PRESS [SHIFT] [D], PRESS (SPACE

BAR] TO ADVANCE

The entire record is displayed

so that you'll be aware of the

total contents of the record be

fore you try to delete it. If you

want to delete the record, hold

the shift key down while you

press the D key.

The total number of records

in the file will be decreased by

one, and all the records after

the one you deleted will be re

numbered accordingly. If you

decide not to delete the record

after all, just press the space

bar and it will advance you to

the next record or bring you

back to the main menu. Re

member to save your revised

file.

Read Old File from Disk

This utility is normally per

formed at the start of Datafile

to load a previously stored file.

The program prompts with:

ENTER NAME OF FILE TO BE LOADED

?

Type in the name of the

datafile and press the return

key. The file will load and you'll

return to the main program. If

the return key is pressed

without a filename present, the

program will also exit safely

back to the main program.

Print Records by Selection

This utility advances you to

another menu, designed to load

subprograms that will actually

perform the printing operations.

If no records are present in

memory, you'll be directed back

to the main menu.

[PRINTER MAIN MENU]

PRINT RECORDS USING:

[R]EPORTS AND LISTS

[MJAILING LABELS

[U]SER DEFINED SUBPROGRAM

IEJXIT TO MAIN MENU

[PRESS THE APPROPRIATE KEY]

E returns the program to the

main menu, R loads up

DFReport and M will load

DFMail. Pressing U results in:

ENTER NAME OF SUBPROGRAM

?

Here you can load up pro

grams that might perform other

operations on your data that

Datafile does not provide. Not

21

entering any filename at all will

get you back to the printer

menu.

User-Defined Subprogram

serves to load a program that

you might write to enhance

your particular datafile. One ex

ample might be a program that

adds up all the numeric values

in one field of a datafile. This

could, for example, be a field

that holds the current value for

household inventory items, giv

ing you quickly the total value

for insurance purposes.

Many variations are possible.

You will have to study the pro

gram listings to find the vari

able names required to get the

correct data. More on this later.

View File on Screen

Entering this routine displays

the first record in the datafile

with the following commands

below the record:

[RECORD NUMBER 1] IN FILE (name of

datafile)

(Record Data)

[N]EXT, [LJAST, [JJUMP, [F]IND, [EJXIT

Pressing N causes the

screen to step to the next

record. You can walk through

your entire datafile, one record

at a time, up to your end record

with this command. L steps you

backwards, decrementing each

record number by one, to previ

ous records.

J allows you to jump directly

to a particular record number,

instead of stepping one by one.

You'll be asked for the record

number; then enter your choice

and press the return key.

F is a search function that

allows you to find record fields

that share common items or

data. The screen displays a list

of the field names of the cur

rent data file, then asks you to

enter the number of the field

you wish to search. The field

name is then displayed and

you're asked to ENTER [COM

MON ITEM]. Enter the string of

text that is to be searched and

press the return key.

For example, if you chose a

field which was named First

Name, you might enter the

string JIM. The computer will

search out all records that be

gin with JIM in the First Name

field.

Not only would JIM come up,

but JIMMY would also be

displayed because it begins

with JIM. Entering A would

cause a search of all strings in

a particular field that began

with A and so on. Press N to

continue to the next record in

the search.

Sort Records by Field

The field names will be dis

played, each preceded by a

number, and the list will be

followed by a prompt:

WHICH FIELD IS TO BE SORTED?

Entering one of the numbers

shown, followed by RETURN,

will send the computer off to

sort out that particular field in

ascending alphanumerical

order. The computer will tell

you how it's doing during the

process by flashing the number

of the record it's currently work

ing on.

Datafile uses a Shell-Metzler

sort routine. All the data items

22

entered into Datafile are stored

as string values in the arrays,

whether the value is in the form

of alphabetical characters or

numbers. Therefore, here is a

point to consider in the sorting

of string variables that are num

bers: The first number en

countered will be considered

the first character used for

comparing against another

number.

Given the numbers 2000, 35

and 156, the sort routine will

compare the 2 in 2000 with the

3 in 35 and the 1 in 156. The

result will be shown as the se

quence 156, 2000 and 35.

This is obviously not the in

tention. You can get around

this problem by entering

numbers that have the same

number of digits. The numbers

will now look like this: 2000,

0035 and 0156, and when

sorted, will be in the proper

order: 0035, 0156, 2000.

All the records will now be in

a different order according to

the chosen field. If you want to

keep the file in this order you

must write it back onto the

disk.

{Note: Any desired sorting

should be done before advanc

ing to the Print subprograms.

There is no facility for sorting

the records in those programs.)

Write New File to Disk

Entering this routine pro

duces this display:

ENTER NAME OF CURRENT FILE TO

BE SAVED (12 CHARACTERS MAX).

ANY EXISTING FILE WITH THE

SAME NAME WILL BE SCRATCHED

?

As mentioned previously,

Datafile adds special character

codes to the beginning of your

datafiles and format files. This

ensures that programs will load

their own files and allow the

multiple use of the same

filenames.

Writing your current datafile

onto the disk invokes the

following operations:

• Datafile Mail List was read

into memory from the disk. It

appears on the disk directory

as DF] MAIL LIST.

• The current file has been up

dated and the file is entered,

for writing the file to the disk,

exactly as the name that it was

read from, MAIL LIST.

• The program will change the

name of the last file on the

directory named DF] MAIL LIST

to DF] MAIL LISIOLD. Notice

that the last four characters in

the 16-character filename will

be replaced with !OLD.

• The current updated file will

then be saved as DF] MAIL

LIST.

• If DF]MAILLIS!OLD was

already on the disk directory,

that file would be scratched

before the MAIL LIST file is

renamed.

In essence, Datafile always

keeps your current datafile as

well as your last datafile. This

gives you the opportunity to

recapture the last version of

your data. If you desire to load

the last version from the Read

Old File on the menu, enter

MAIL LISIOLD. Do not include

the special characters shown at

the beginning of the filename

on the directory.

If for some reason you desire

23

to keep the !OLD files, you

must give them a new name to

keep from scratching them

later. (Remember, do not ex

ceed 12 characters.)

Format a Disk

This feature allows you to

format a blank disk for use later

on in saving files.

[DISK NAME.ID]?

Insert a disk into the disk

drive. Enter up to a 16-character

header for the disk name,

followed by a comma, then a

two-character disk ID, and final

ly a RETURN. The drive will

begin to format the disk (this

takes approximately 31/2 min

utes). When it is finished, you

will be returned to the menu.

$ Disk Directory

Pressing the shift and 4 keys

will list the directory of the cur

rent disk in the drive. Press any

key to get back to the menu.

Quit Program

This command makes a

clean exit out of the program. It

closes all the files, performs a

housekeeping function and lets

you know if you've forgotten to

save your current file. Any

modifications to a file will trig

ger a flag that will prevent you

from immediately leaving the

program.

Datafile Part II

DFMail Instructions

You load DFMail using the

print options found in Datafile.

It is assumed that a datafile is

currently held in memory; other

wise, there will be nothing to

print. The screen shows:

[U\BEL SIZE]

[SJTANDARD—5 ROWS PER LABEL

7,9BY3Vz INCHES

[L]ARGE-8 ROWS PER LABEL

17,sBY3Vz INCHES

[OJTHER-CUSTOM LABEL SIZE OR

NUMBER OF CHARACTERS PER ROW

NOTE: LABELS ARE SEPARATED BY

ONE ROW

32 CHARACTERS PER ROW IS

STANDARD

[PRESS THE APPROPRIATE KEY 1

DFMail uses "One-up"

tractor-feed labels and is adapt

able to any length or width of

label. The standard size labels

(with 5 rows of text) are the

most popular and most easily

obtainable, with the large size

(8 rows) being next in line.

Press either the S or L key. If

you have labels of a non-stan

dard size, choose the O option

instead.

OTHER is adaptable to let

you choose the number of

rows, from 1 to ?, and the num

ber of characters can be ex

panded from the standard 32 up

to 136. Putting your printer into

compressed mode will allow

more characters on labels of

standard length.

24

Some labels that fit the non-

tractor-feed printers give you

two across the page. These

labels, which are four inches

long, are used if the printer has

only pin feed (Okidata and Ep

son, for example). These longer

labels can accommodate 38

characters per row, if desired.

DFMail, however, will only print

on the leftmost labels. You can,

of course, feed the labels in

backwards to use the other

side.

If <O> is pressed, the

screen will display:

ENTER NUMBER OF ROWS ON

LABEL?

ENTER NUMBER OF CHARACTERS

PER ROW?

Enter your modifications

when prompted. The next

screen shows the main menu

for the mailing labels program,

as follows:

I MAILING LABELS MENU]

[P]RE-DEFINED FORMAT OR

[D]EFINE NEW FORMAT

[CJHANGE LABEL SIZE

[E]XITTO MAIN PROGRAM OR

[RJEPORT/LISTING PROGRAM

[Q]UIT PROGRAM

[PRESS THE APPROPRIATE KEY]

Pressing the E key reloads

Datafile into memory without

disturbing the record data. Q

closes the files and terminates

the entire program. Ending here

wipes out all data. Do this only

if you have not updated any

records and if you have your

current datafile stored on disk.

You will be warned if you have

not done so.

R loads the subprogram

DFReport directly, instead of

having to go back to the Data-

file program. C sends you back

to the first screen that you en

countered when you entered

DFMail. This allows you to alter

the size of your labels and

printouts.

Formatting Your Labels

Formatting of printer outputs

may be the most confusing

aspect of a database. You must

be able to visualize how you

want the final result to appear.

This may seem difficult at first,

but being able to customize

your outputs is considered a

strong feature of a database.

Fortunately, once you have

formatted a label or report

(when using DFReport), you'll

be able to save your design for

future recall. From then on,

when you want to print your

labels, you'll be able to breeze

by the formatting routines.

Let's design a sample mail

ing label that will probably

meet most of your needs.

Before doing this, you must

have a previously created data-

file that's compatible with your

label format. The datafile will

have the following structure:

Name of datafile: MAIL LIST

Number of fields: 8

Fieid # Field name Field length

1 LAST NAME 15

2 FIRST NAME 10

3 CODE 5

4 STREET 32

5 CITY 23

6 STATE 2

7 ZIP 5

8 PHONE 12

Modifications to the above

datafile might include a second

address line (e.g., COMPANY

25

NAME). The phone number is

included in the datafile, but will

not be printed on the labels.

The field Code may be used for

classifying the records (e.g.,

R = relatives, F= friends,

B = business associates), or for

an employee number, a profes

sional title or an account num

ber for business purposes.

Define New Format

Now that the datafile is

defined, and assuming that

records are present, let's return

to where we left DFMail. Press

ing D in the Mailing Labels

menu results in this display,

which will indicate, by rows and

characters, which label size has

been chosen:

[MAILING LIST FORMAT]

THIS FORMAT USES SINGLE ROW

LABELS.

EACH LABEL CONTAINS UP TO 5

ROWS.

EACH ROW CAN CONSIST OF 1 TO 3

FIELDS.

IF THE LENGTH OF MULTIPLE ITEMS

EXCEEDS 32 CHARACTERS, SOME

DATA WILL BE CUT OFF.

[NUMBER OF ROWS?]

At this point, let's pause to

discuss what your label will

look like. Row 1 will include

record fields 1, 2 and 3 (LAST

NAME + FIRST NAME +

CODE), in that order. Row 2 will

only have record field 4

(STREET). Row 3 will consist of

record fields 5, 6 and 7 (CITY +

STATE + ZIP). Rows 4 and 5

will not be used.

The label shown on the

screen is divided into 3 fields

per row. These are format

fields, not record fields. Try not

to get them confused. Enter 3

for the NUMBER OF ROWS and

press the return key.

CHOOSE WHICH FIELDS GO IN

WHICH ROW

ENTER [0] IF ADDITIONAL FIELDS ARE

NOT DESIRED.

1 LAST NAME ROW 1

2 FIRST NAME FIELD 1?0

3 CODE

4 STREET

5 CITY

6 STATE

7 ZIP

8 PHONE

Field 1, in this case, refers to

the first field or item of the first

row. In this field we will place

record field 2, which is dis

played on the left of the screen.

Respond to the prompts on the

right of the screen as follows:

ROW 1 press the return key

FIELD 1? 2 after each entry

FIELD 2? 1

FIELD 3? 3

ROW 2

FIELD 1? 4

FIELD 2? 0

FIELD 3? 0

ROWS

FIELD 1? 5

FIELD 2? 6

FIELD 3? 7

The screen will now display:

DO YOU WISH TO REVIEW YOUR FOR

MAT AND/OR MAKE CORRECTIONS?

[Y]OR[N]

Pressing Y will repeat the

last screen, except that the

record-field numbers will ap

pear after the format-field

prompts. Press N to advance in

to the program.

[SAVE FORMAT] [Y] OR [N]? Y

SAVE UNDER WHAT FILE NAME?

? MAIL TEST

You will notice that the pro-

26

gram pre-prints the filename

that was determined when your

datafile was saved or loaded

during a disk operation. This

links record and format files

together so that you will not

have to remember different

names. At this point any format

files with the name Mail List

will be scratched as this new

format is saved. Unlike the

datafiles, format files will not

be given a backup when a file

of the same name is resaved

after changes. Change the

name of the format file at this

time if you want to retain the

old format, and press the return

key.

The program will then ad

vance to where the labels are

aligned in the printer. Jump

there now if you wish, because

the next few paragraphs will

discuss the situation where the

user loads in a pre-defined for

mat.

Pre-defined Format

After pressing P at the Mail

ing Labels menu, the screen

will display:

LOAD FORMAT FROM WHAT FILE?

? MAIL TEST

The prompt should pre-print

the last-used filename. If MAIL

TEST is the correct format file,

press return. As soon as the file

is loaded, the program will

display:

DO YOU WISH TO REVIEW YOUR FOR

MAT AND/OR MAKE CORRECTIONS?

[Y] OR [N]

This is the same question

asked when you first designed

the format. If you are not sure if

the format you loaded was the

correct one, you may check it

at this time. This is also a good

opportunity to make a slight

change for a one-of-a-kind job.

Press N. The screen will

display:

SAVE FORMAT? [Y] OR [N]

This may seem repetitive, but

it allows you to save a changed

format, or to save the current

one under a new name, or on a

new disk. Press N. The program

will next display:

INSERT SINGLE ROW TRACTOR FEED

LABELS

RUN TEST LABELS TO HELP POSITION

LABELS

PRESS |T]EST LABEL

[CJHOOSE RECORDS

Pressing T will print rows of

asterisks. The number of rows

and characters should reflect

your label size and format.

Position the labels in your

printer so that the rows appear

centered in the label. Once the

labels are aligned, press C to

advance to the Print Options

menu, where you will choose

the records to print.

PRINT OPTIONS MENU

[A]LL RECORDS IN FILE

[S]ELECT INDIVIDUAL RECORD

[F]IND RECORDS WITH COMMON

FIELDS

[EpCITTOMAIN MENU

[PRESS THE APPROPRIATE KEY]

At this time, you actually de

cide which records you want to

print, and then begin printing.

(If, at any time, you decide that

you want to leave this sec

tion—before or after printing—

press E to get back to the main

menu.) The choices are as

follows:

27

All Records in File

The printer will start printing

from record number 1 until it

has printed your entire datafile.

Sit back with a cup of coffee if

you have a large file.

Select Individual Record

This gives you the opportuni

ty to print just one label of your

choice. This assists you in

making last-minute corrections

or printing just a few records

out of your datafile. The screen

displays PRINT WHICH REC

ORD? Enter the record number,

then press return. If you type in

a number higher than the size

of your datafile, you will receive

an error message. You must

print something to get back to

the menu.

Find Records with Common

Fields

This search routine operates

identically to the one in the

view option of the Datafile pro

gram. The screen will display

all the field names in your data-

file to help you search. The fol

lowing list is from the datafile

called MAIL LIST. For this ex

ample, we will search for all

last names beginning with S.

ENTER [COMMON ITEM]

(THE ENTIRE STRING IS NOT RE

QUIRED)

[LAST NAME] ?S

SEARCHING RECORDS

If you followed the above se

quence, the # symbol will be an

incrementing number that will

stop when the program finds a

record with a last-name field

beginning with S. It will then

print out that record and then

start looking for another. If you

had previously sorted this file

by last name, all the Ss would

be printed one after another.

The program will continue

searching until it runs out of

records. It will then send you

back to the Print Options menu.

If you had typed in

SWYKOWSKI for the last name,

only those records that perfect

ly matched, or began with

SWYKOWSKI, would be printed.

For a business application,

you could use this feature to

group mail by zip code. It is

also possible to print only

those records that have a

special code that was previous

ly entered in the code field of

the record.

FIND RECORDS WITH COMMON

FIELDS

1 LAST NAME

2 FIRST NAME

3 CODE

4 STREET

5 CITY

6 STATE

7 ZIP

8 PHONE

WHICH FIELD IS TO BE SEARCHED? 1

28

DFReport Instructions

Just as with DFMail, you

load DFReport using the print

options in Datafile, and again

it's assumed that a datafile is

in memory; otherwise, there is

nothing to print. The screen

shows:

[REPORT PRINTOUT MENU]

(LJIST RECORDS UNFORMATTED OR

IPJRE-DEFINED FORMAT

[D]EF!NE NEW FORMAT

[E]XITTO MAIN PROGRAM OR

[MJAILING LABEL PROGRAM

[Q]UIT PROGRAM

(PRESS THE APPROPRIATE KEY]

This menu functions like

DFMail. Pressing E reloads

Datafile back into memory for fur

ther updates without disturbing

the record data. Q closes the files

and terminates the entire pro

gram. Ending here wipes out all

data. Do this only if you have not

updated any records and if you

have your current datafile stored

on disk. You will be warned if you

fail to do so. M loads the program

DFMail directly without first hav

ing to load Datafile.

We'll be using the datafile MAIL

LIST, as described in the DFMail

instructions, as an example file to

demonstrate the formatting and

printouts of DFReport. Dummy

data will be used.

List Records Unformatted

This function is by far the

simplest way to get a hard copy of

your datafile. Pressing L results in:

[PRINT OPTIONS MENU]

[A]LL RECORDS IN FILE

[S]ELECT INDIVIDUAL RECORD

[F]IND RECORDS WITH COMMON FIELD

[EJXITTOMAIN MENU

POSITION PAPER IN PRINTER AT TOP OF

PAGE

[PRESS THE APPROPRIATE KEY]

This menu functions exactly as

the one in DFMail, with one ex

ception. Instead of centering your

mailing label, you are required to

advance your printer to the top of

the next page. Refer to the mail

program for instructions on the

above menu. A record printed un

formatted will resemble the

following:

[RECORD#1]

LAST NAME —-KONSHAK

FIRST NAME MIKE

CODE

STREET

CITY

STATE

ZIP

PHONE

IRECORD#2]

LAST NAME

AUTHOR

4821 HARVEST COURT

--.COLORADO SPRINGS

COLORADO

-—80917

303/596-4243

etc.

As you can see, the record

data is printed in rows, which

wastes considerable paper. Al

though this printout is quick-

and-dirty, it can be cut out and

pasted onto cards or filed in

small cabinets or folders.

Pre-Defined Format

Pressing P results in:

LOAD FORMAT FROM WHAT FILE

? MAIL LIST

Enter the datafile format to

be used for printing your report,

then press the return key. The

name of the last datafile loaded

29

in Datafile will be pre-printed

for you after the prompt.

Change the name by overstrik-

ing. The screen then displays:

DO YOU WISH TO REVIEW YOUR FOR

MAT AND/OR MAKE CORRECTIONS [Y]

OR [N]?

Pressing Y sends you

through the Define New Format

routine. The current values of

your format will be displayed.

Alter by overstriking the values

and pressing return. Also press

return to accept the values.

Pressing N gives you:

SAVE FORMAT [Y] OR [N]?

If you made any changes, go

ahead and resave your new for

mat by pressing Y. Keeping the

same filename will scratch the

old format. After N, you will

progress to the Print Options

menu, which has been previ

ously described.

Define New Format

This routine creates a

custom form based on your de

sign. It would be a good idea to

sketch out on a sheet of graph

paper or programmer's pad

what you want your report to

look like. You will need to

decide the following:

7. How many characters wide

will the report be? Up to 136

characters may be printed, if

your printer is capable of com

pressing text. Eighty characters

is normal. Report widths less

than 80 characters will be

printed left-justified on the paper.

2. How should your title read?

Up to four lines are possible,

which will be centered at the

top of the page.

3. How many columns will you

need? This will depend on

which fields of your datafile

you will want listed. Up to eight

columns are allowed.

4. What is the width, in charac

ters, of each column? This will

depend on the combined

character length of the record

fields that you choose for each

column. The total number of

characters permissible in all

the columns combined is 80 (or

136 with printers in compressed

print mode), with two

characters between columns.

Choosing eight columns leaves

you 76 characters for record

fields (14 characters used in

spacing).

5. Which record fields will be in

each of the columns? As in for

matting DFMail mailing labels,

you will be able to combine up

to three record fields in each

column.

6. What will be the header

name of each column? A

header name cannot be longer

than the chosen width of the

column.

Try to remember the length

of each field in the datafile that

will be on this report. If the rec

ord data contained within the

field is longer than the width of

the report column, some end

characters will be cut off.

Let's design a report using

the datafile Mail List, which will

give us a reference list of the

records in the file. We will use

first and last names (16 charac

ters), street address (20), city

(16), state and zip code (8), and

phone number (12). This com

prises a total of 72 characters,

which we will put into 5 col-

30

umns (with 2 spaces between

columns) for a total of 80 char

acters. The report will look like

Table 1.

Now go back to the program

to format the above report.

Pressing D from the Report

Printout menu sends you to:

[REPORT SIZE] UP TO 136

CHARACTERS WIDE

PRINTER MUST BE INITIALIZED FOR

WIDTHS GREATER THAN 80

CHARACTERS.

CHECK YOUR PRINTER MANUAL ON

HOW TO PRINT 136 CHRS

NUMBER OF CHARACTERS? 80

[TITLE FORMAT) PROVIDES FOR 4

LINES OF INFORMATION AT THE TOP

OF THE FORM:

TITLE #1? MAIL LIST RECORDS

TITLE #2? JANUARY 23, 1984

TITLE #3?

TITLE #4?

[COLUMN FORMAT] UP TO 8 COL

UMNS WITH 2 SPACES BETWEEN

COLUMNS:

NUMBER OF COLUMNS? 5

POSITION OF COLUMN #1? 1

COLUMN #2? 19 <1 + 16 + 2>

COLUMN #3? 41 <19 + 20 + 2>

COLUMN #4? 59 <41 +16 + 2>

COLUMN #5? 69 <59 + 8 + 2>

[HEADING FORMAT] COLUMN

HEADINGS CANNOT EXCEED WIDTH

OF COLUMNS:

COLUMN 1 HEADING? LAST/FIRST

NAME

COLUMN 2 HEADING? STREET

ADDRESS

COLUMN 3 HEADING? CITY

COLUMN 4 HEADING? ST & ZIP

COLUMN 5 HEADING? PHONE

NUMBER

CHOOSE WHICH FIELDS GO UNDER

THE COLUMNS

ENTER [0] IF ADDITIONAL FIELDS ARE

NOT DESIRED

1 LAST NAME

2 FIRST NAME

3 CODE

4 STREET

5 CITY

6 STATE

7 ZIP

8 PHONE

COLUMN 1

COLUMN 2

COLUMN 3

COLUMN 4

COLUMN 5

FIELD 1? 1

FIELD 2? 2

FIELD 3? 0

FIELD 1? 4

FIELD 2? 0

FIELD 3? 0

FIELD 1? 5

FIELD 2? 0

FIELD 3? 0

FIELD 1? 6

FIELD 2? 7

FIELD 3? 0

FIELD 1? 8

FIELD 2? 0

FIELD 3? 0

DO YOU WISH TO REVIEW YOUR FOR

MAT AND/OR MAKE CORRECTIONS [Y]

OR [N]? <N>

[SAVE FORMAT] [Y] OR [N] <Y>

SAVE UNDER WHAT FILE NAME?

? MAIL LIST

The program now jumps to

the Print Options menu for

choosing the records that are

to be printed. Now you should

refer back to the mailing label

program instructions.

MAIL LIST RECORDS

JANUARY 23, 1984

Last/First.Name Street Address City St & Zip Phone Number

Konshak Mike

Mouse Mickey

Bunny Bugs

Daniels Jack

4821 Harvest

Court

1984 Disney Road

21 Carrot Lane

555 Sobriety Blvd

Colorado Springs CO 80917 303-596-4243

Orlando FL 10001 800-555-1212

Whatsupdoc CA99999 111-222-3333

Sourmash TN 70707 000-876-5432

31

Appendix to Datafile

Programming User Programs

Datafile is flexible, in that

you may write a subprogram

that can be called from the

Printer Main menu in Datafile.

The basic ground rules are:

1. Subprograms cannot be

larger than Datafile itself (ap

proximately 7400 bytes).

2. Variable names used should

not conflict with those that are

necessary for maintaining the

datafiles. Variable names used

in counters, sorting routines

and menus are safe to be dupli

cated. Try to mimic DFMail or

DFReport in the way they

handle data and perform opera

tions. New variable names en

countered may send the com

puter off garbage collecting.

3. Your subprogram should

have the facility to load back

Datafile so you can continue to

update and manipulate your

data.

4. Open printer and disk files

properly when entering a rou

tine. Ensure that you close the

files before advancing to

another routine or subprogram.

5. Include disk-checking rou

tines to prevent program

crashes. Check out any of the

three Datafile programs for the

routine.

6. It is easiest to modify or ex

pand DFMail or DFReport in

stead of writing your own

subprogram. You should safely

be able to add 2000 bytes to

DFMail and 1000 bytes to

DFReport.

Variable Identification

The following is a list of all

the variables used in Datafile

and its subprograms. Do not

use these variable names ex

cept for accessing data. These

variables never change in use

or purpose.

R = number of possible records

X = number of current records

in file

F = number of fields in each

record

NFS ■ Name of current data or

format file in memory

REC$<R,F) = record data array

F$<F) = field name array

L%(F)= length of field array

T%(F) = sorting buffer array

K%(R) = pointer array, keeps

records in sorted order

ML$(9,4) = array for combining

fields in printing labels and

reports

PC(10) = character position ar

ray for report columns

TT$(5) = report title array

HC$(9) = column heading array

for reports

D$ = chr$(0) dummy string

CR$ = chr$(13) printer and disk

carriage return

B1$ = chr$(10) printer line feed

B$ = chr$(32) 'space1 character

E$ = "EOF" end-of-file marker

on sequential files

MEM = 31000 available memory

(bytes) for record data

S,ST, EN, EMS, ET, ES = disk

error variables

The balance of the variables

may be used in user subpro

grams, but should be avoided

in additions to DFMail and

DFReport. Counters and re

sponse variables are excepted.

Check the programs carefully

for conflicts.

I, J, L, N, M, Z = counters and

32

temporary buffers

K = print routine pointer

AS, C$, MRS, DR$ = responses

from menus

CK = check whether or not file

has been saved

RL=calculated length of

record

F1, F2, F3 = field pointer buffers

HNS, ID$ = new disk header

name and I.D.

SB$ = user subprogram name

SF = field to be searched or

sorted

A1$, A2$, A3$, A0 = buffers for

loading disk directory

PW = paper width of report

(characters)

CW = column width buffer

RW = number of rows (lines) per

label

NL= number of lines for report

title

NC = number of columns in

report

PG = line counter for automatic

paging of reports

IS = input record selection

T$ = input common string to be

searched

B = tab for centering titles and

first column of report

LW= number of characters per

row on labels

T% = number of rows on labels

Printer Codes for Compressed

Print

Many Commodore 64 owners

have chosen to add standard

ASCII parallel printers to their

computer systems. These print

ers cost more, but have many

capabilities and qualities that

make the price secondary. In

terfaces that convert the serial

port on the 64 to parallel ASCII

must also be purchased.

One feature that Datafile is

able to utilize is that of com

pressed characters, allowing

reports to be printed that have

widths up to 136 characters.

The Commodore 1525E and

MPS801 do not have this fea

ture, so you are limited to re

ports 80 characters (ten char

acters or columns per inch wide.

Some printers with 15-inch car

riages will print 132 characters

in the normal mode, but will

need to be compressed in order

to print 136 characters on a

standard 8V2 by 11 piece of

paper.

Table 2 shows the printer

codes and procedures to use to

set your printer into com

pressed mode. This should be

done before you load and run

Datafile (while you are in termi

nal, instead of program, mode).

If you are already into the

program, and you want to send

the printer commands, you

must use the following proce

dures to keep from losing your

datafile and pointers in

memory:

1. While in the program, you

must be at one of the many

menus in Datafile, DFReport or

DFMail. There should not be a

flashing cursor.

2. Press the run/stop key. At the

bottom of the screen, you'll

see:

BREAK IN 30 (30 is the line number

where the computer

READY stopped the pro

gram)

[]

3. Type in your respective

printer commands exactly as

shown below if you are in the

Datafile program. If you have

33

entered DFReport or DFMail,

enter just the line that begins

with PRINT#4. The printer files

are already open when you are

in these programs.

4. Type in GOTO 30, then press

return. The number will be differ

ent, depending on which menu

and subprogram you are in.

5. You will now be back in the

program at exactly the place

you left. To advance into the

next part of the program, press

one of the keys that the menu

was previously showing. In

some instances, you might lose

part of your menu as the screen

scrolls up, so try to remember

which selection you want to

press at this stage. E will nor

mally exit you to the previous

menu or send you to another

program.

(NOTE: This technique may

be used to send any printer

commands, not just com

pressed mode. Just make the

appropriate changes to the

CHRS codes.)

If you have a printer that is

not shown in Table 2, review

your manual for the proper

printer codes. Other commands

or modes that you might want

to consider when printing

reports or labels are Expanded

(for making double size letters);

Double-strike (for darker letters);

and Changing Fonts (different

letter styles).

(NOTE: Do not use modes

that skip over the perforations in

the paper. Labels do not need it,

and reports are automatically

paged by the program.)

Address all author corre

spondence to Mike Konshak,

4821 Harvest Court, Colorado

Springs, CO 80917.

34

Type in the following commands exactly as shown to put your

printer into compressed mode. Press return after each line.

GEMINI 10X:

96 characters (12 CPI): 136 characters {17 CPI):

OPEN4.4 OPEN4.4

PRINT#4,CHR${27)CHR${66)CHR$(2)PRINT#4,CHR${27)CHR${66)

CHR${3)

CLOSE4 CLOSE4

OKIDATA82A:

132 characters (16.5 CPI):

OKIDATA92A:

96 characters (12 CPI):

OPEN4.4

PRINT#4,CHR$(28)

CLOSE4

EPSON RX80 FfT:

96 characters {12 CPI):

OPEN4,4

PRINT#4,CHR$(27)CHR$(77)

CLOSE4

CITOH Prowriter:

96 characters (12 CPI):

OPEN4.4

PRINT#4,CHR$(27)CHR$(69)

CLOSE4

OPEN4,4

PRINT#4,CHR${29)

CLOSE4

136 characters (17 CPI):

OPEN4.4

PRINT#4,CHR$(29)

CLOSE4

137 characters (17.1 CPI):

OPEN4.4

PRINT#4,CHR$(15)

CLOSE4

136 characters (17 CPI):

OPEN4.4

PRINT#4,CH R$(27)CH R${81)

CLOSE4

NOTE: Changing CPI or pitch on daisywheel printers requires that a

suitable daisywheel be installed. Although a command code may be

sent, it is easiest to move the pitch switch on the keyboard to the

proper setting (10, 12 or 15 CPI; i.e., 80, 96 or 120 characters on an

81/2-inch paper width).

NOTE: Changing CPI or pitch on daisywheel printers requires that a

suitable daisywheel be installed. Although a command code may be

sent, it is easiest to move the pitch switch on the keyboard to the

proper setting (10, 12 or 15 CPI; i.e., 80, 96 or 120 characters on an

81/2-inch paper width). Ri

35

BY KEITH MEADE

This battleship game

challenges you on two

fronts: Defend your

fleet from enemy at

tack and learn this

programmer's memory

management tips to

take advantage of the

C-64's special graph

ics features.

You are in command of a

battleship. Submarines silently

move under the area you de

fend, seeking to attack your

fleet's most vulnerable ships.

Enemy planes pass overhead in

a continuous stream.

You sit at the controls with

clenched jaw and beaded brow.

Blazing cannon fire and well-

placed depth charges extract a

heavy toll. For three tense min

utes you batter the opposition

hordes, then emerge in exultant

victory, sporting a new high

score.

Battleship War, an arcade-

style game for the Commodore

64, begins with an instruction

display that describes user con

trols and target point values.

it

IGHT

Battleship War

Commodore 64

You must, as in any good

shoot-'em-up, blast as many ob

jects as possible—the smaller

the targets the higher the point

value. The submarines can be

elusive, but if you watch them

too closely, the airplanes will

slip past you.

Playing for high score is def

initely the way to go with Bat

tleship War. The champion of

this household is my wife; as of

this writing, you'll need 2330

points to match her best score.

When typing the program,

omit all remarks. Lines that end

with 97-99 and contain aster

isks may also be skipped. No

tice that I substituted decimal

points (periods) for zeroes, thus

somewhat speeding up the pro

gram.

The game display for Battle

ship War is composed entirely

of redefined characters. When

you use custom character sets

and the Commodore's other

graphics features, memory

management becomes a prob

lem. Understanding where to

store graphics data and getting

the 64 to use it can be difficult.

I'll discuss this problem and

how I dealt with it in Battleship

War.

I will conclude with a simple

routine that lets you easily

move screen RAM and open up

a large area of free memory for

sprites, character sets, high

resolution displays and other

features.

36

Defining the Problem

You should keep in mind that

the C-64 features two separate

systems sharing memory

space—the video chip (VIC)

and the Basic language. The

VIC chip (not to be confused

with the VIC computer) handles

all data and operations that

relate in any way to the video

display. The VIC, however, has

a limitation for which you must

allow—the chip can access on

ly 16K of memory. I will refer to

this memory as the VIC video

bank.

Within this bank all data re

lated to the video display must

reside. Within the VIC video

bank is an area I call screen

memory, 1K of RAM that con

tains data for the standard text

display. You will often see

screen memory referred to as

the video matrix or character

pointer memory.

(Be sure at this point that

you understand the concept of

the 16K VIC video bank. Do not

confuse it with the screen

memory, which is only a portion

of the video bank.)

With 64K of total memory,

there are potentially four VIC

banks. Normally, the VIC chip

is accessing the first bank. It

sees the memory from ad

dresses 0 to 16384. A look at a

memory map reveals that this

is a busy area. The only large

chunk of free memory is within

the space used by Basic, but

unless you really know what's

going on, only use Basic mem

ory for a Basic program.

So, the major memory man

agement problem is this: There

is not sufficient available space

to allow use of the 64's special

graphics features. In the first

VIC video bank, the bulk of

unused memory is reserved by

the Basic system for Basic pro

grams. As it turns out, both

Basic and the VIC chip are will

ing to compromise. The Basic

space can be trimmed on either

end. The VIC chip can look at

any of the four 16K video

banks.

The simplest solution would

seem to be moving back the

beginning of Basic's program

area. Basic programs normally

start at address 2048. The

following sequence would free

up 4K bytes.

POKE 6144,0:POKE 44,24:NEW

Basic requires that the first

byte in its program area be

zero, so zero is the first Poke.

The second Poke sets back the

beginning-of-Basic pointer. The

New command causes the pro

gram area to be straightened

out within its new boundaries.

I've seen this method suc

cessfully used many times, but

there's an obvious drawback. A

program can't reserve mem

ory for itself; there must be a

separate set-up program or you

must manually type in the con

figuration sequence. As long as

there are alternatives, this

technique should be unaccept

able.

The beginning of the Basic

program area actually contains

the first lines of the Basic pro

gram itself. It's certainly under

standable that we can't cut off

that chunk of memory without

destroying our program. So

37

what about the other end of the

Basic area?

The very top of Basic

memory is used to store the

values of variables (specifically,

string variables). Stealing from

here is going to zap the vari

ables, but notice that the pro

gram itself will survive.

POKE 55,0:POKE 56,128:CLR

The Poke commands set the

top-of-Basic pointer down 8K

bytes. The CLR command

forces Basic to rebuild its vari

able system at the new, lower

location. After execution of this

command, all string variables

are null and all numerics are

equal to zero.

Clearly, the drawback to this

method is manageable and, as

you will see, I recommend go

ing with it. The secret is to

reserve the memory before you

declare or use any variables. To

be safe, devote the first line of

your programs to the function

of clearing this space, if

needed.

The Basic command se

quence in the last paragraph

sets the top limit of Basic at

address 32768. Remember the

VIC video banks? Well, the third

bank begins at address 32768.

Perfect!

POKE 56576,5

Believe it or not, this in

structs the VIC chip to take all

data from the third video bank.

So, while you've lost 8K of Ba

sic RAM (I've never written a

program anywhere near 30K

bytes long), you've gained free

and clear memory for use of

custom graphics.

You Can Bank on It

Unfortunately, the actual

structure of the new video bank

is complicated, but bear with

me. You don't need to under

stand it at all if you're willing to

abide by the rules and address

boundaries I'm presenting.

From address 32768 to 36863

is a 4K chunk that can be used

normally in any way you see fit.

Addresses 36864 to 40959 are

the VIC chip's 4K "blind spot"

in this video bank. The VIC ig

nores the RAM in this range

and, instead, sees the character

set ROM, which contains the

definitions for the two standard

Commodore character sets.

Peeks and Pokes in the Basic

program will see the RAM. You

could use this to store data or

machine language in the RAM.

Addresses 40960 to 49151

look like 8K of RAM to the VIC

video chip. A Basic program

Poke to this area stores values

in that RAM, but a Peek sees

data in the Basic system ROM

chip! It's confusing, but this is

actually a very large and useful

stretch of memory.

Just remember that you can

Poke data in, but you can never

Peek that data. (It's probably

not an appropriate region for

screen memory, but when

would you ever need to Peek at

a redefined character set?)

Sprites, too, would oftentimes

be fine here. Machine language

programmers would be able to

examine this memory by switch

ing out the Basic ROM, but

that's not possible in a Basic

routine.

Screen memory, as you re-

38

call, is the 1K containing the

text screen data. You may

define screen memory as being

any one of the 16-1K areas

within the video bank. A

character set is 2K in length,

and any of the 8-2K regions of

the video bank may be desig

nated as containing the char

acter set.

In Battleship War, I used

variables to hold these location

values. SCRAM could have a

value of 0-15. SCRAM = 0

means that screen memory re

sides in the first 1K of the VIC

video bank (thus, beginning at

32768). CHSET (value equals

0-14, even) specifies which 2K

area holds the character set.

Odd values of CHSET simply

have the same effect as the

next even number below.

The VIC chip contains a sin

gle register that sets the loca

tions of screen memory and the

character set. The following

command will work for all

meaningful values of SCRAM

and CHSET.

POKE 53272,16'SCRAM + CHSET

The Basic system must be

separately informed of the loca

tion of screen memory so that

it can properly handle screen

input and output. The following

command will perform this.

POKE 648,128+ 4*SCRAM

Graphics Routines

Investigation of other

graphics features should reveal

how they fit into this memory

configuration. Observe in the

program Battleship War how

the system has been specifical

ly implemented.

Below are the routines from

Battleship War that could be

used in any program to relocate

the video bank and open up

space for your special graphics

data.

10POKE55,0:POKE56,128:CLR

(Remember, it is best to have this be the

first program line.)

10000 IF SCRAM <0 OR SCRAM > 15

THEN PRINT-SCREEN RAM

ERROR":STOP

10010 IF CHSET<0 OR CHSET>15

THEN CHSET=4

10020 POKE 56576,5

10030 POKE 53272,16*SCRAM +CHSET

10040 POKE 648,128+ 4-SCRAM

10050 RETURN

10100 POKE 56576,7

10110 POKE 53272,20

10120 POKE 648,4

10130 RETURN

Save these program lines and

use them. They'll make your life

a lot easier, believe me.

To rearrange the video, set

SCRAM equal to 0-15, CHSET

equal to 0-14 (even) and

GOSUB 10000. The new loca

tion of screen memory will be

32768 + 1024*SCRAM. The VIC

chip will expect to see the

character set at 32768+1024*

CHSET. CHSET = 4 will point

the VIC to the standard char

acter set (6 for upper/lower

case).

Sprites or other graphics fea

tures may easily be used by

keeping the previously de

scribed VIC memory bank struc

ture in mind. Remember, in par

ticular, that the sprite image

pointers are part of the screen

memory and move with it.

To restore the usual configu

ration, enter GOSUB 10100. The

39

default screen memory area at

location 1024 is not disturbed

by any of this activity. Toggling

between the two subroutines

offers a simple method of page

flipping, with which you might

wish to experiment.ril conclude

this discussion with a little

demo program to get you think

ing. Type in these lines along

with the above routines (don't

forget line 10).

Before you run the program,

notice that the Print statements

are only executed once.

100 PRINT "(clear screen)"

110 PRINT "THIS IS THE OLD

SCREEN."

120 SCRAM = 0:CHSET = 4:GOSUB

10000

130 PRINT "(clear screen)"

140 PRINT "HERE IS THE NEW

SCREEN!"

150 FORD=1 TO1000:NEXT

160 GOSUB 10100

170 FORD = 1 TO1000:NEXT

180 GOSUB 10000

190 GETA$:IFA$ = " " GOTO 150

200 GOSUB 10100:END

Press any key to end the pro

gram. I hope you can put these

routines to good use. Don't for

get to try Battleship War.H

Address all author correspon

dence to Keith Meade, 3111 15th

Ave. NW, Rochester, MN 55901.

40

BY ROBERT ROSSA

Five in a row tic-tac-

toe may sound easy,

but don't be deceived.

This game offers more

challenge than per

haps you're willing to

tackle.

Slide is a simple strategic

board game that pits you

against the computer, which

has been programmed with a

greedy strategy and rarely

loses.

Slide is played on a five-by-

five square board with 25 cells.

You and the computer take

turns entering single tokens

from the top (numbered 1-5) or

the left (lettered A-E). A token

entered into a row or column

will slide tokens already pres

ent on the board over or down

one cell. Tokens may be shoved

off the game board. The first

player to have five tokens in a

row, either horizontally, vertical

ly or diagonally, wins.

On the game boards drawn

by this program, the computer

has the crosses and you have

it

IGHT

Slide

the circles. In the sample posi

tion shown in Fig. 1, you win

(horizontally) by making move 2,

but lose (diagonally) by making

move C.

4 5

fl

[111 I H

B I tt I • I SB | X I X I

hH—1—4—l-H

C I ft IX I • I • I« !

r- I- h-l hH

D IXIX | IX | 1
I—a.—| l-H j

EIX |X I I I I
L L I I, L—I

Fig. 1. Sample

program output.

Commodore 64

Making the Best Move

The first few moves of the

computer are random, to pro

vide some variety in the games.

You can select how many

moves in advance the computer

can consider—either two, four,

six or eight moves ahead. Ob

viously, the more moves ahead,

the more time it will take the

computer to make a selection.

You can gradually advance the

level of play as you learn the

game.

To determine its best move,

the computer must look at the

game tree (see Fig. 2). Each

move is drawn as a branch of a

tree. Note that the tree is drawn

with its branches hanging

downward. Each path down

ward from the root (at the top)

represents a possible sequence

of moves. Each move has a

value, so you can pick the move

with the largest value.

For speed, the move-selec

tion logic is written in machine

language. I wrote the algorithm

in Basic and then translated it

into machine language. In Ba

sic, at level 4,1 could mow the

lawn while the computer was

deciding its next move. Another

factor allowing more speed is

the use of pruning; we don't

have to consider all possible

moves four plays ahead.

Each position is given a nu

merical weight, which is intend

ed to measure a player's ad

vantage. If the player who just

moved has a win, the weight is

as large as possible, in this

case, 32.

If the opposing player wins,

the weight is - 32, as small as

possible. Otherwise, the weight

is the advantage the player who

just moved has over his op

ponent.

There are ten possible moves

from any position. How can a

player determine the best

move? Suppose you are looking

just two levels ahead. For each

of your ten possible moves, you

look at what your opponent can

do. For each of your possible

moves, your opponent has ten

possibilities, so there are 100

combinations of moves.

For each move you can

make, you want to know how

well your opponent can do. So

you assume that your opponent

will select a move by picking

the position of maximum

weight. The value of your move

is then the negative of this

maximum weight.

FROM HIGHER

IN TREE

PLR'i'ER

O~7 0-5 O>= O? O? OPPONENT

02 uS O':' O' •:' F L HVFR

Fig. 2. Game tree, which represents a possible sequence of moves.

42

Pruning the Game Tree

If you search four levels

ahead, it seems that you might

have to look at all 10,000 se

quences: you move, then your

opponent moves, then you

move again, then your oppo

nent moves. For each of the

1000 possibilities at level 3, the

value is the negative of your op

ponent's best possible move.

For each of the 100 positions

at level 2, the value (to your op

ponent) is the negative of your

best possible move. Finally, at

level 1, the value of each of

your ten possible moves is the

negative of your opponent's

best possible moves.

If you search six levels

ahead, you'll have 1,000,000 se

quences at which to look.

Clearly, this is a tedious task

even for a computer. Fortunate

ly, there's a way of eliminating

most of the possible sequenc

es—it's called pruning the

game tree.

For example, consider Fig. 2.

Suppose it represents your

knowledge about a particular

part of a game tree just as you

finish finding the value of the

second game position in the

bottom row. When you find that

this value is 8, then you can say

that the value of the position

just above it (its parent) can't

be better than - 8 for your op

ponent.

Since your opponent already

knows he has better moves, in

cluding one with a value of - 5,

there is no need to continue

evaluating the other possibil

ities (children) of the position.

At this point, you can prune the

game tree, that is, stop con

sidering the -8 position and

move on to the position to its

right in the figure.

You'll be able to follow this

pruning process when you play

the game, since the program

places the moves it's consider

ing on the screen.

The Program

To load and play the game,

you need only enter the Basic

listings. The first Basic program

{Listing 1), consisting mostly of

Data statements, Pokes the ma

chine language needed by the

game. The second program

(Listing 2) plays the game.

Listing 2 begins by protect

ing the machine code. Then it

gets the game tree's depth of

search by asking you to choose

a level.

The variable CC, initialized in

line 90, counts the moves made

by the computer while it is play

ing randomly. The control for

random moving is in line 280.

The variable BQ is the move

number, which is needed by the

subroutine that updates the

screen and internal game

boards.

Lines 100-120 decide which

player starts. AQ is a code for

the current player; 1 is you and

-1 is the computer. Line 130 is

executed if the computer

moves first; it sets up the game

board and makes the comput

er's first move. Line 140 sets up

the game board if you move

first.

Lines 150-240 obtain a play

er's move, recode it for the rou

tine that updates the board and

then call that routine.

43

The game board is coded in

memory in the 25 bytes starting

at location 28672 (A in line 470).

When the search routine is

called, it calls itself recursively.

It needs up to eight copies of

the game board, depending on

the level you choose. These are

located in the 200 bytes begin

ning at location A.

The board evaluation routine,

called from the Basic program

by SYS RT in lines 260 and 320,

needs to know which of these

eight boards it is supposed to

evaluate. This is the purpose of

location LZ, which is Poked in

lines 260 and 320.

The evaluation routine re

turns a 1 in location CZ, if you

have five in a row; otherwise, it

returns a 0. Location CZ+1 is

the return for the computer, so

lines 260 and 270 check to see

if there is a winner. S4 and T4

keep track of the number of

wins for each player.

Line 290 calls the tree search

routine that selects the com

puter's move. BQ is the move

picked; if the computer has on

ly losing moves, you force

movel in line 300. Line 310

then updates the board. Lines

320-340 check for a winner and

then cycle back for the next

move. Lines 350-360 contain

the logic for a random move by

the computer.

The subroutine at 370-520

sets a number of constants: S,

the starting location of the

screen; DN, the screen width;

MR and MC, the starting row

and column for the game board

on the screen; LC, the starting

screen RAM location for the

board; D2, twice the screen

width; and the characters used

to draw the board.

Certain vital memory loca

tions are given symbolic names

in line 470. In line 510, the inter

nal board at level 0 in array A is

initialized. Line 510 is also ex

ecuted before each new game.

The subroutine in lines

530-710 builds the screen, us

ing the symbolic parameters

set up by the initialization

routine. The routine in lines

720-1070 updates the board

after a move. The level 0 board

in array A is looked at by this

routine. Peeks and Pokes must

be used, since A is not a Basic

dimensioned array.

Finally, the last few lines at

1080-1130 print the score and

provide for a continuation of

the match. I have found the

match at level 6 to be pretty un

even—in the computer's favor, j

Address all author correspon

dence to Robert Rossa, 1901

Starling, Jonesboro, AR 72401

44

Mystery of Lane Manor

BY JIM SANDERS

Where are Sherlock

Holmes, Nero Wolfe

and Peter Wimsey

when you need them?

Someone's been killed

at Lane Manor, and

you're going to need

more than a slick

trenchcoat and a

funny hat to discover

where, with what and

whodunit

Mystery of Lane Manor is a

whodunit game, where the play

ers act as detectives trying to

solve the mysterious murder of

industrialist James Lane. The

mystery is solved (and the win

ner declared) when the mur

derer and weapon are discov

ered and the location of the

crime is determined. The cor

rect answers are randomly gen

erated each time the program is

run, so the game provides an

endless source of mystery.

Commodore 64

2 Joysticks

There are six different rooms

where the crime could have oc

curred. There are five different

people who could have mur

dered Mr. Lane. And there are

five weapons that could have

been used.

How to Sleuth

To make a guess, each

player, in turn, moves a token

to the red square in a room.

The step-generator, which is

running when the play screen is

initially displayed, determines

the number of steps you move

your token. The player whose

name is displayed goes first, by

pressing the fire button. This

stops the step-generator, and

an arrow reveals the number of

steps you must move.

Once you've reached the red

square, the program will enter

the Guess routine, and the list

of suspects will be displayed

under your name. Move the

flashing arrow (via the joystick)

to the number corresponding to

the suspect you deem guilty,

and push the joystick's fire but

ton to register your guess.

Next, the six possible rooms

will be listed; guess again and

press the fire button. The list of

weapons will then be displayed.

After you've made your three

guesses, a review of these

guesses will be displayed and

the number of correct guesses

will be revealed.

45

For an added challenge, at

the beginning of the game

you're given the option of see

ing or not seeing the step-gen

erator pointer. With the pointer

invisible, planned movement

through the manor is practically

impossible. After you make a

guess, the token is placed

somewhere in the main hall

way.

Look Out!

The manor is not without its

own hazards. Trapdoors ran

domly spring open and can

become very troublesome. If

you fall through a trapdoor, you

are forced to begin the trek

again, from the home position.

As the game progresses, the

trapdoors may block doors or

eliminate needed guessing

squares. You may clear the

manor of the trapdoors by

pressing the return key. If you

do this, both tokens are forced

to begin again at the home

position.

You may discover all the data

to solve the mystery, but your

final guess must be made in

the room where the crime was

committed.

When the mystery is finally

solved, the winning detective is

congratulated with a musical

fanfare and the time it took to

solve the mystery.

For your convenience, I've in

cluded an itemized list of in

structions, which should make

learning the game easier. I

hope you enjoy playing Mystery

of Lane Manorial

Address all author correspon

dence to Jim Sanders, 12629

S.R. 347, Marysville, OH 43040.

1. One or two detectives may work on the case.

2. The object is to solve the murder in the shortest amount of time

or, if two players, before your opponent.

3. Murderer, room and weapon must be found.

4. In order to make a guess, you must be in a room and on the red

square.

5. You must move your token the number of steps given by the

step-generator.

6. After you've made your guesses, you'll be informed how many

are correct.

7. After a guess, your token will be placed in the safety of the main

hallway.

8. To win, you must solve the murder in the room where it occurred.

9. Guesses are made using the guess-selector, via the joystick and

the fire button.

10. The fire button is also used to stop the step-generator.

46

Money Grubber
Formerly "Taxman."

BY DOUG SMOAK

You've got to be quick

to stay ahead of that

money-grubbing tax-

man, who's hot on your

trail. He's after your

every dollar and won't

stop at that. He wants

your life.

In Taxman, you must move

through different levels of the

screen and gather money. But

just as in real life, someone

else wants your money, too.

The taxman, of course. And just

as in real life, the taxman

wants more than your money...

he wants you!

To play Taxman, you must

plug a joystick into the rear port

of your C-64. You earn points for

each $ that you gather and you

lose points for each one that the

taxman gets. You begin with

three lives (maybe nine would be

better?) and each time the tax

man catches you, you lose one

life. If you reach 2000 points, you

gain a life. The program makes a

noise when you get caught and

a beep when you gain an extra

life.

it
IGHT

Commodore 64

joystick

The Game's Ingredients

One of this game's interest

ing features is the music, which

plays continuously throughout

the game. It is in machine

language and driven by inter

rupt, so it doesn't slow down

the game.

Another interesting feature

is the large alphabet, which is

used in the title and score dis

plays. It is made of strings that

print graphics characters to

build each letter. The program

doesn't use every letter, but all

the letters are included in lines

1110-1510.

The routine at lines 1530-

1540 performs the actual con

version of G$ to large letters.

By using this routine and the

string array of the alphabet and

numbers, you can print large

text in your own programs.

To give the illusion of a man

running, I use four custom char

acters, two for each direction

{left or right). To determine

which character to display I use

an interesting technique. In line

310, the character is chosen by

the expression CH = PEEK(C) +

(MEAND3). The value of

PEEK(C) is set by the machine

language routine that reads the

joystick and determines

whether or not you have moved.

The (MEAND3) is what makes

the character change.

47

As ME changes, ME AND 3

go through the sequence 0,1,2,3

or 3,2,1,0, so the character that

is displayed is changed as ME

is changed. Since ME is the

runner's position on the screen,

the runner is animated as he

runs. A similar method is used

in line 300, to animate the tax-

man through his two positions.

You must actually enter two

programs to get Taxman off

and running. The first one, Tax

Loader, sets up the custom

character set that will be used

in the game, and then loads

and runs the game program.

Since you can use only 12

custom characters, I wrote a

short machine language routine

that first moves the entire ROM

character set into the RAM

area, which the game will use. I

then used Basic Pokes in the

data, for the 12 characters to be

redefined. The first five data

lines of the Tax Loader hold the

machine language routine, and

if you don't enter it correctly,

line 20 will end the program

and tell you the checksum is in

error.

You don't want an error in

these lines, since the machine

language routine disturbs inter

rupts and changes location 1 to

"bank out," or switch out, I/O

memory, and switch in the

ROM, so it can be read. Be

sure, therefore, to get these five

lines correct. If the rest of the

data is not correct, the char

acters will not be correct, but

the program will not bomb.

Also note that line 70 must

be set for either tape or disk,

and if you are using a tape ma

chine, you must have the Tax

man game program as the next

program on tape after the Tax

Loader. You might even want to

put two copies of the program

after the loader, in case the re

corder misses the first one.

You should also be careful

with the data in the game pro

gram, since most of it is for

machine language routines and

could cause the 64 to crash if

you don't enter it properly. I

won't try to explain the program

in detail, but will give you a

brief description of what each

section does.

Line by Line

Line 0 correctly sets the end-

of-program pointers after you've

loaded the loader program and

run the game program.

Lines 10-180 set up

variables, print the title and

read and Poke in the data for

the machine language routines

that are used.

Lines 190-360 make up the

play loop.

Lines 370-480 set up the

strings that put the money and

the "holes" on the screen.

Lines 490-580 print the play

screen for each level of play.

Lines 590-630 animate the

characters on the screen.

Lines 640-790 update the

score, check for end of game,

check for "bonus life" and dis

play the score at the end of the

game.

Lines 800-810 determine the

skill level at which you start.

Lines 820-830 initialize the

SID chip.

Lines 840-1100 are the data

for the machine language

routines.

Lines 1110-1520 are the

strings that contain the large

alphabet.

Lines 1530-1540 print the

large letters from G$.

Lines 1560-1580 play the

opening fanfare, [rj

Address all author correspon

dence to Doug Smoak, 303 Key-

ward St., Columbia, SC 29201.

49

BY LARRY D. SMITH

fouchdown
Formerly "NFL Football "

It's first and ten, do it

again! Surprise!

You've been drafted

into the NFL as a

starting quarterback.

How well can you rack

up those points and

smother your com

puter opponent?

If you're tired of shooting at

or being chased by aliens, you

might like to try quarterbacking

an NFL football team.

NFL Football, a game that

runs on the C-64 or on the

VIC-20 with any memory expan

sion, simulates the situations

that commonly occur in profes

sional football games. While

the graphics usage is not as

tounding, the computer is a

competent opponent and will

maintain your interest as you

lead your team to either victory

or defeat.

The use of the Kernal plot

routine for positioning the cur

sor, and of the random number

jn it
GHT

Commodore 64 or VIC-20

with 3K, 8K, or 16K expansion

techniques for simulating the

statistics of a football game,

are programming tips you may

want to extract. The computer

is well informed about the game

of football, and the game situa

tions are so realistic that you'lF

probably find yourself following

the strategies of the pros.

Butting Heads

Table 1 lists the offensive

and defensive plays available to

you and the computer. As the

table illustrates, the offensive

player has six plays to choose

from: two running plays, two

passing plays and two kicking

plays. The defensive player may

choose to defend any of the

running or passing plays.

From the draw play to the

long pass, the plays increase in

yardage potential. However,

with the potential comes risk,

as the possible yardage loss

also increases. For example,

the draw play typically makes a

three- to five-yard gain, or a

one- or two-yard loss. The long

pass, on the other hand, may

make as much as 70 yards, but

could result in a ten- to 15-yard

loss. Also, the computer gener

ates occasional turnovers, with

increasing turnover frequency

for the plays with the greater

yardage potential.

The computer determines the

kicking game purely from ran

dom numbers, though it uses a

non-uniform distribution to

50

typify a professional game. The

running and passing play yard

age is determined both by ran

dom numbers and the match or

mismatch between the chosen

offense and defense.

If the chosen defense match

es the offense, the yardage

gains are substantially reduced.

If the offense and defense are

considerably mismatched (like

defending for a long pass when

the opponent runs a draw), then

the yardage gain is generally in

creased. This provides a good

mixture of chance and strategy.

Get a Kick Out of It

The computer plays the field

goal kicking game by profes

sional rules. If a field goal at

tempt is missed outside the

20-yard line, the opponent re

ceives the ball at the line of

scrimmage. If the field goal is

missed inside the 20-yard line,

the opponent gets the ball on

the 20.

The computer also knows

about safeties, so be careful

when running the ball from

deep in your own territory.

Punts that go into the end zone

are placed on the 20-yard line.

While the computer randomly

chooses its offensive and

defensive plays, it is aware of

the time remaining, the score

and the field position. On fourth

down, the computer generally

will punt (or if close enough, try

fora field goal), but if it's

behind late in the game, it may

go for the first down. The com

puter also knows that a trailing

human opponent is apt to

throw a few long bombs, so

when it's ahead, it tends to de

fend against the longer poten

tial plays.

The screen display consists

of a 20-yard section of field

around the scrimmage line, the

first down markers and a scrim

mage-line marker. It also dis

plays the time (number of

plays) remaining and the num

ber of downs.

When you're prompted for a

play, you enter the numeric

code (from Table 1) of the

desired play, or a question

mark if you've forgotten the

plays. A question mark will

result in the computer display

ing a list of options.

CODE PLAY

1 Draw play

2 End sweep

3 Short pass

4 Long pass

5 Punt (offensive play only)

6 Field goal (offensive play

only)

Table 1. The offensive and defen

sive plays available to you and the

computer, and their numeric codes.

Choose Your Foe

You can customize NFL

Football to play against your

favorite opponent. Just replace

all occurrences of "ME" and "I"

in the program listing with the

name of your chosen opponent.

51

Try to retain the same spacing

before and after the name so

that the display will look well.

Caution: Do not change the nu

meric variable ME, which is not

inside quotation marks and, if

changed, will cause untold

problems.

C-64 occurrences of "ME"

and "I" are in lines 100,195 and

230. VIC-20 occurrences of

"ME" and "I" are in lines 100,

190 and 230.

After you insert your oppo

nent's name, just run the pro

gram and enjoy the thrill of bat

tling to win the Big Game.tB]

Address all author cor

respondence to Larry D. Smith,

5404 Inspiration Lane, Las

Cruces, NM 88001.

52

BY GARY FIELDS

Speller

In this program, your

child's ability to learn

words and their defini

tions isn't measured by

points. Noises, clues

and a smoke-puffing,

chugging sprite train

alleviate the pressure

and make learning fun.

I began writing the 64 Speller

to help my seven-year-old

daughter with her weekly spell

ing lessons. I wanted the C-64

to prompt her to spell a word,

then to check to see if she

had spelled it correctly.

The major problem was com

ing up with an interesting and

usable prompt, one that

wouldn't display the word. A

speech synthesizer would have

been nice, but I didn't have one.

The solution was to offer a def

inition of a word, then let her

spell the word it defined. This

approach turned up a plus, be

cause the display of the def

inition increased the learning.

It
IGHT

Commodore 64

What's It All About?

This program not only rein

forces spelling, but also knowl

edge of word meanings and

awareness of the keyboard.

And the 64 Speller is enjoyable.

It's full of sound—nice sounds

when the child's spelling is cor

rect, not-so-nice sounds when

it's wrong.

This program is friendly, too.

It first displays all the words

that will be in the program and

lets the child study these for as

long as he or she pleases.

Once the child gets into the ac

tual program, it remains friend

ly with aids.

The word definitions are

slowly scrolled across the

screen with attention-keeping

clicks, and other prompts are

announced with a tone.

Pressing the F1 key provides

the child with clues. It gives aid

one letter at a time, repeating

clues after each spelling try,

and also adding letters after

each try, up to and including

the total word.

And, of course, there's a

reward for getting the word

right—Casey Jones rolls along

"on the right track" in his

smoke-puffing and sound-chug

ging locomotive. The program

reinforces the correct spelling

with a final toot of the train

whistle.

This continues until the child

correctly spells all the words in

53

the program's memory. The pro

gram then says goodbye with a

hearty "Well done!" followed

by a final review of the spelling

words.

Providing the Words

The words are placed in the

program by a parent or teacher.

The program prompts the cor

rect entry through a special

"change WORDS/DEFINITIONS

F2" routine (lines 80 and 155).

Words and definitions should

be entered in even numbers be

cause the data display is read

in pairs. So, if you enter 11

words and definitions, add an

other to make an even 12. Also,

the definitions should be less

than 40 letters in length (try a

longer one and you'll see why).

Our practice at home is to

duplicate each week's spelling-

lesson words into separate pro

grams titled Speller 1, Speller 2,

and so on. One disk is reserved

just for spelling words. That

way, the child can go back and

try old lessons again. Or, if

you're like us and have a

younger child, the saved les

sons may be for his or her

future.

Descriptions of Lines

Line 15. Sets the screen color

and switches to upper/lower

case.

Line 20. Sets the basic sound

and sprite-generating variables.

Line 25. Puts the data-

reading pointer to the 0 in line

2950.

Lines 50-95. Title page.

Lines 80 and 155. Prompt for

the word-replace routine.

Line 87. Reads and Pokes the

train into memory.

Lines 100-165. Display the

words this program will review.

Line 190. Makes the data

pointer look at the first words.

Line 210. Reads the first

word and definition; cc is the

clue-variable counter.

Line 215. Looks to see if all

the words have been used.

Lines 225-270. Slowly scroll

the definition (b$) with clicks.

Line 280. Asks for the word

defined.

Lines 300-310. Check the

spelling and go to the correct

or incorrect routine.

Lines 600-790. The correct

spelling routine.

Line 610. Turns on the sprite

and expands it.

Line 612. Makes sprite black.

Lines 622-624. Draw the

tracks.

Line 625. Makes the train

move from right to left.

Line 644. Chugging sound.

Line 645. Places the train in

the correct starting location.

Line 646. The smoke variable

is sm.

Line 651. Turns the chugging

sound off.

Lines 657-661. The two train

toots.

Line 662. Turns sprite off.

Lines 730-790. Make smoke

come out of train's stack.

Lines 800-910. Incorrect

spelling and clue routine.

Lines 810-840. Buzzer.

Lines 892-894. Check for

clue request.

Line 895. Prints clue using

LEFTS command.

Line 910. Checks to see if

new spelling is correct.

54

Lines 1500-1820. The win

^. Display the

OM 2500-2900. Aid routine

^95^953. Train sprite
data lines.

Lines 3000-4999. Replace

able data lines.

.ssssar—

Lanva/e

28806.

55

The Many-Colored VIC

BY TOMMY MICHAEL TILLMAN

This editor is an art

ist when it comes to

designing and modi

fying your multico

lored VIC-20 graphics

characters. What's

more, it's easy to

use.

I've seen many fine articles

on multicolor programming, but

I've never found an easy-to-use

Editor that would design these

types of characters. As a result

of my futile search, I wrote the

Editor program.

This program is designed to

work on a VIC with 3K memory

expansion (Super Expander will

also work). Simply type in this

program, save it and use it.

If, however, you have an 8K

or greater memory expander,

type in both the Screen Reloca

tion program and the Editor

program and save each sepa

rately. Whenever you wish to

use the Editor, load the Screen

Relocation program and run it.

This will make the VIC look like

it did before you added the 8K

it
IGHT

VIC-20 with 3K expansion

Datassette

Printer (optional)

memory. Next, load the Editor

and remove line 10 (in fact, you

may remove it permanently and

save the new version). Now you

may run the program.

In the upper left-hand corner

of the main screen is displayed

the command board. If you

don't know what to do, wait for

a command to pop up! The

following is a list and descrip

tion of the commands.

C—Change colors

D—Display

G—Go to a new character

number

L—Load an old character set

S—Save the character set

(printer-screen-tape)

Remember that these are the

main commands. If you choose

one of them, they'll all be

erased from the screen and re

placed with new subcom

mands, which will give you in

structions on how to continue

properly. Always wait for the

commands to appear! (There is

a slight time lag in some

subroutines.)

If you look to the right-hand

corner of the screen, you'll see

a large 6x6 square. This is the

display area, which allows you

to put your newly constructed

multicolor characters on top of

or beside each other to create

larger multicolor characters.

If you look at the middle of

the display screen, you'll see

three rows of normal high-

resolution characters. These

56

are the characters that you may

restructure into multicolor char

acters. (As you create a new

character, the character corre

sponding to the one you're

working on will change shape.

The characters in these three

rows will still be displayed in

High-Resolution mode.)

In the left-bottom corner of

the screen, you'll see the four

colors with which you may col

or your multicolor character:

screen color, border color, char

acter color and auxiliary color.

(These colors will be known, re

spectively, as color 1, color 2,

color 3 and color 4.)

In the right-bottom corner of

the screen, you'll see the char

acter you're restructuring. It will

be displayed in High-Resolution

mode and, below, in its ap

propriate Multicolor mode.

The bottom middle of the

screen is the most important.

This is the work area where

you'll display the multicolor

character in a 4 x 8 display. The

character will be made up of 32

large blocks, colored in one of

the four colors you're allowed

to use.

Around the top and left of

the large character are arrows

that indicate which block of

color in the work area you'll be

changing. Press the cursor keys

to move the arrows. The right

cursor moves the arrows right

and the left cursor moves them

left. Likewise, the down cursor

moves the arrows down and the

up cursor moves them up. The

character number on which

you're currently working will be

displayed over the work area.

How To Use the Program

Load the program according

to previous instructions. Run it

and wait for the screen to set

itself.

Now select a character to

work on (0-57). Press G for Go

to Character and then input the

character number (0-57). Al

ways press the return key after

responding to requests for in

put. Also, for later reference,

don't forget to make a note of

what characters you are

changing.

If you wish, you may change

colors now. (In fact, you can

change the colors anytime you

are back to the main command

screen.) To change colors,

press C. Input your choice of

screen color from the color list

(see Table 1). Remember to

press the return key after you

input your choice.

Next, select your choice of

border color, then character

color, and finally, auxiliary col

or. (You may choose only colors

0-7 for character color.)

Now you may restructure

your character. To do this, you

must use the cursor keys and

the number keys 1, 2, 3 and 4.

Notice the arrows above and to

the left of the character. These

arrows indicate which color

block of the character you are

changing. By pressing the cur

sor keys (with the shift key) you

may position the arrows to

point to any block within the

work area.

To change the color of the

block, you must use keys 1, 2, 3

or 4. If you press key 1, you'll

erase that block (because you

57

are coloring it in the back

ground color); key 2 will color

that block in the border color;

key 3 will color it in the char

acter color; key 4 will color it in

the auxiliary color.

Notice that as you change

the blocks, the corresponding

pixel dots in the multicolor ex

ample change to the proper col

or! The corresponding dots in

the high-resolution example

change to the proper configura

tion, too.

If you wish to display your

multicolor characters on the

display screen (upper right-

hand corner), then press D for

the display function. First you

will be asked for the width and

height of the display screen

(the number of characters hori

zontally and vertically). Then

you'll be asked for the char

acter number and the character

color for that particular char

acter. Repeat this information

until the display screen is full.

Then you will return back to the

main commands.

Note that if you change the

four main colors by using the

color command, then the

screen, border and auxiliary col

ors for all blocks in the display

will also change. Each block's

character color will stay the

same, though, because the

character color of each block is

independent of other colors.

To save your data for each

character, press S. The screen

will clear and you'll be

presented with three options. If

you choose T for tape, insert in

the Datassette the tape to

which you wish to save the

character set and press T. Next,

input a filename and press the

record and play buttons on the

Datassette. Stand by until the

character set has been copied

to tape. There will be a slight

delay until the main screen is

once again displayed.

If you choose P for printer,

then stand by while the char

acter set is copied to the paper.

The output will be as follows.

The first number in each line is

the character's number. The

next eight numbers are the byte

numbers that represent that

character in the character set.

(The first eight numbers in the

set are for drawing character 0.

The next eight numbers are for

character LThis continues all

the way to character 57.)

Now you should make a

mark beside the characters that

you've changed. You should

also make a note of the colors

you're using and the character

color you are using for each

character.

If you choose S for screen,

then the output will be identical

to the printer output, except

that only seven characters at a

time will be displayed. You may

copy onto paper the pertinent

information that you desire.

You'll be returned to the main

screen after you finish going

through all 58 characters.

If you wish to reload a char

acter set for reviewing or modi

fication, then press L Insert the

appropriate tape into the

Datassette, type the name of

the character set and press the

return key. Press the play but

ton on the Datassette and

58

stand by while the character

set loads. When the character

set is ready, you'll be returned

to the main command screen.

To quit, press Q. On a VIC

with 3K memory, everything will

be fine (including the new char

acter set, which will be in mem

ory locations 7168 to 7679).

On a VIC with 8K or more

memory, however, don't use Q

unless you permanently modify

line 370. Simply delete every

thing between the words THEN

and END. Now the VIC will

work normally.

How Multicolored

Characters Work

First, you must change the

value of the RAM pointer,

which tells the VIC where to get

data to construct the charac

ters you see on the screen. This

pointer is memory location

36869. There are a few values

that you may Poke in there to

reset the VIC to point to your

own character set. These are

listed in the VIC Programmer's

Reference Guide. The two most

used are 255 and 240. The

former will cause the VIC to get

its character set from memory

locations 7168 to 7679.

But what is a character set?

It is nothing more than a group

of eight bytes, starting from a

certain memory location and

extending to some final loca

tion. In this case we start at

7168. This and the next seven

bytes will define the "at" sym

bol (@). The next eight bytes

define the A symbol, and so

forth.

Since I have defined 58 sym

bols to work with, you'll end up

at 7632 (7168+ 8*58).

So the first line of your pro

grams would probably be

1 POKE 36869,255

But you must be careful to

protect your character set from

variables, which will be stored

in the same area of memory as

your character set and would

therefore destroy the designs

you have created. To protect

them from variables, you must

tell the VIC to lower the top of

memory and variables below

the character set. The VIC's op

erating system will then think

that you do not wish to use this

memory space and will avoid

using it.

Memory locations 51, 52, 55

and 56 tell the VIC where the

end of memory and the bottom

of string storage are located.

So, if you Poke in the appropri

ate values here, you can trick

the VIC into thinking it has less

memory and, possibly, prevent

it from messing up your charac

ter set, which is now in this

unused area of memory.

What are the numbers to

Poke in? To protect memory

area 7168 and up. you would

divide 7168 by 256. The integer

value you get (don't round off!)

is the page of memory you wish

to protect. If you get a re

mainder, this will be extra

memory bytes you wish to pro

tect. In this case, you'll get

page 28 with remainder 0.

The remainder will be Poked

into 51 and 55 (the low bytes)

and the page into 52 and 56

(the high bytes).

1 POKE 51,0: POKE 52,28: POKE 55,0:

POKE.56,28: CLR

59

Notice the CLR at the end of

the line. Its purpose is to reset

important page zero pointers.

Don't forget it!

Now, the second line can be:

5 POKE 36869,255

At this point, the screen

turns to garbage! This is be

cause you have nothing but

random garbage at memory

locations 7168 and up. You

must put some meaningful data

designs here to allow the VIC

to design and print your charac

ters properly.

Would you like to be able to

use the letters and number de

signs that you had before?

Well, you can simply transfer

(or copy) the designs from the

character ROM chip (which is

where you were getting them

before, when memory location

36869 contained 240). The fol

lowing is a simple loop that will

move them for you from the

ROM character chip to the

RAM area you've chosen (7168

and up).

10 FOR D = 0 TO 512

12 POKE 7168 + D , PEEK { 32758 + D)

14 NEXT D

As you run this part of the

program, the garbage will

quickly turn to meaningful and

readable information.

Now for your character set!

All you have to do is copy from

your data sheet or paper the

correct data bytes you've

created for your newly de

signed characters and place

them into the new character set

RAM.

Suppose you wish to replace

the letter A with whatever char

acter you had designed for the

purpose (not a good idea, since

we use the letter A so much,

but this is only an exercise).

On your data sheet or your

paper, you'll have, let's say,

1,255,255,255,255,255,255,255,

255. You could have anything,

but the first number must be a

1, because this is the character

number for the letter A. The

next eight numbers can be any

number less than 256 and equal

to or greater than 0. (This par

ticular set of bytes for the letter

A will produce a reversed blank

space.)

To transfer this data to its

correct position in the char

acter set, use the following

loop (and notice the flag - 1).

20 RESTORE

23 READ A

25 IF A = -1 THEN 40

28 FOR B = 0 TO 7

30 READ D

32 POKE 7168+ A*8+B,D

34 NEXT B

36 GOTO 23

40 REM THIS WILL BE THE REST OF

YOUR PROGRAM

999 END

1000

DATA1.255,255,255,255.255.255.255.255

1010 DATA -1

Notice that you could easily

have used even more user-

defined characters. All you

must do is place them in the

Data statements at the end of

the program (but before the - 1

Data statement). Do those the

same way as the A character

(the first number being the

character number and next

eight numbers being the design

for the character from your data

sheet or your paper).

60

Now, whenever you enter

Poke (screen location),1 you

will not get an "A," but you will

get your new character. You'll

also get your new character if

you type PRINT "A".

How to Use Multicolor

To set this space to

Multicolor mode, you must

Poke the corresponding color

memory location with whatever

character color you have

selected plus eight. In this

case, you can simply enter

Poke (screen location + 30720),

(character color + 8). This sim

ple formula will always work

and is the simplest way to keep

a one-to-one correspondence

between your character screen

and your color screen. (Actual

ly, this will always work unless

you reset the screen or color

memory to a different place in

memory.)

So, whenever you place a

character to the screen in multi

color, first Poke the color mem

ory with the above formula,

then Poke the screen memory

with this formula: POKE screen

location, character number.

Another way to activate Mul

ticolor mode is by printing with

a color code greater than 7.

Memory location 646 is the lo

cation for the current printing

color. Normally, it's from 0 to 7,

but if you Poke it with a number

from 8 to 15, you'll then be

printing in Multicolor mode.

The color you will Poke in

will be the color character num

ber from the list (0 to 7), plus 8

added to activate the mode.

For example, to begin print

ing in Multicolor mode using

red as the character color, enter

POKE 646, 2 +8 (the 2 for red

and the 8 to activate Multicolor).

To cut off multicolor printing,

just enter POKE 646 with a

number less than 8, or just use

a regular color command inside

a Print statement.

How About Colors?

To set the four multicolor

colors in the VIC, use the fol

lowing four Pokes.

1. Screen color.

POKE 36879, PEEK (36879) AND

15 OR (SCREEN COLOR" 16}

2. Border color.

POKE 36879, PEEK (36879) AND

248 OR (BORDER COLOR)

Note that the border color must

be from 0 to 7 only!

3. Character color. This is in

dividually set for each

space on the screen as

discussed above. Note that

character color is from 0 to

7 only, but you must add 8

to it to activate Multicolor

mode in that space on

the screen.

4. Auxiliary color.

POKE 36878, PEEK (36878) AND

15 OR (16 ' AUXILIARY COLOR)

Note that auxiliary colors range

from 0 to 15. E

Address all author corre

spondence to Tommy Michael

Tillman, do T Squared Soft

ware, Box 1133, Sanford, NC

27330.

61

0—black

1—white

2-red

3—cyan

4—purple

5—green

6—blue

7—yellow

8—orange

9—light orange

10—pink

11—light cyan

12—light purple

13—light green

14—light blue

15—light yellow

Table 1. Color list.

Playing-^Fho Ponios

BY GABE GARGIULO

Put away your

binoculars and play

the horses, through

this program and your

VIC-20, without losing

any money.

This horse racing program

for the unexpanded VIC-20 is a

conversion of a program written

for the PET, found in Microcom

puting ("Betting on Old POKEY,"

October 1980). The major

change I made is in the

graphics for the horse. I used

the it symbol, which looks a bit

like a horse, or a dog or a

chicken, if you use your imagin

ation. My version will work only

on the VIC, since it uses Pokes.

You begin the game with

$500, and may bet up to that

amount. You pick a horse, num

bered from 1 to 5, to win. The

program randomly chooses one

horse to win. If you pick the

winner, you win four times the

amount that you bet, which is

added to the money that you're

holding. If you lose, you lose

the amount that you bet. You

It
IGHT

play until you lose all the

money you're holding. (This is

inevitable.)

The game is easy to type in,

fun to play, and above all, costs

you nothing. The program list

ing shows a good programming

style, which, if adopted, gives

you a result that is easy to

understand and modify.

Start with a remark showing

the program's name and pur

pose. Then list the variables

and explain them. After that,

start the main logic of the pro

gram, which contains its major

decisions. Place the subrou

tines, which you use with

GOSUB statements, after the

program's main logic, lr]

Address author correspondence

to Gabe Gargiulo, 26 '/z New

man St., Manchester, CT 06040.

Unexpanded VIC-20

63

Line Number

15— Sets R1 (amount of money held) to 500.

20— Clears screen. Calls on subroutine 1200 to put row of

hyphens across screen. Describes variables ML, LA.

22— Sets ML (Memory Location) to 7680, the starting address

of the upper left of the screen. Sets LA (lines across) to 22.

Poke 36879: Sets color and background.

40— Calls on subroutine 1200 to put a row of hyphens across

screen.

80— Prints the title and calls on subroutine 1200 to put a row of

hyphens across screen.

85— Delays a bit, then starts.

86— Sets starting position of horses.

90-110— Give instructions.

140— Calls on subroutine 1200 to put a row of hyphens across

screen.

270— Gets the number of the horse being bet on.

300— Calls on subroutine 1200 to put a row of hyphens across

screen.

310— Asks for bet.

320— If bet is less than or equal to amount held, goes to 400.

330— (Otherwise) Tells how much is left to bet.

350— Asks for bet again. (310).

400— Clears screen and calls on subroutine 2000 to display

horses.

410— Calis on subroutine 4000 to display starting gate.

600— Gets a random number between 1 and 5.

620— Calls on subroutine 1000 to add 1 to a counter correspond

ing to the horse whose number has come up. Calls on sub

routine 2000 to put horses on screen. (If a horse's counter

has been incremented, its position is advanced.)

630— Adds 1 to a counter corresponding to the horse whose

number has come up.

640— If the horse that just moved is not near the right side of the

screen, goes to 600 to make another horse move.

650— If a horse has won, falls into here. Delays a bit.

660— Tells who is the winner.

665— Prints a row of hyphens across the screen.

670— If the horse picked is the winning horse, adds the winnings

to the amount held, goes to 750.

680— If the horse picked is not the winner, falls into here.

Displays "You lose." Subtracts bet from amount held.

685— Tells how much money is left.

687— If no money is left, displays "You're broke." Ends program.

690— Asks if another game is to be played.

691— Gets reply.

Table 1. Description of main program.

64

700— If reply is "Y," goes to 20 to start again.

710— If reply is not "Y," falls through to here. Restores screen

color and background. Ends the program.

750— Displays "You win" and how much won.

760— Displays amount held.

770— Goes to 690 to ask about another game.

990— Ends.

Subroutines

1000— Adds 1 to X1, X2, X3, X4, or X5, depending on the random

number that came up.

1200— Puts a row of asterisks across the screen.

2000— Advances the horse whose number has come up. Leaves

the other horses where they were.

3000— Makes the sound of a starting gun and galloping of horses.

Table 2. Descriptions of subroutines.

Variables

ML— Memory location of horse.

LA— Lines across screen, 22 for VIC.

X1— Position of horse 1.

X2— Position of horse 2.

X3— Position of horse 3.

X4— Position of horse 4.

X5— Position of horse 5.

R1— Amount of money held.

I— Index variable.

R— Random number.

H— The horse bet on.

B— Amount of bet.

B()—Array used to keep track of position of each horse. B(1) is

for horse #1, B(2) is for horse #2, etc.

Z$— Reply Y/N.

J— Index variable.

Y— "Y" coordinate on screen. (How many lines down from top.)

J3— Index variable.

Y— Index variable.

J2— Index variable.

L— Index variable.

M— Index variable.

Table 3. Definitions of variables.

65

Formerly "Space Rescue."

BY KEN GARDNER

As commander of a

mothership in space,

can you steer your un

manned drones into a

minefield to rescue 18

astronauts who'll

soon be gasping

for air?

In Space Rescue, a challeng

ing all-graphics game for the

unexpanded VlC-20, you are the

commander of an interstellar

rescue cruiser for the Space Pa

trol in the year 2090. The

cruiser is the mothership to

three unmanned drones that

are remotely controlled from it.

A space shuttle, carrying 18

astronauts, has collided with an

asteroid and drifted into a

space minefield. The astro

nauts ejected from the shuttle,

but are floating helplessly in

the field.

To fly in and save the astro

nauts before their air supply

runs out is your mission. The

mothership is too large to enter

the minefield, so you must

it
IGHT

Unexpanded VIC-20

Joystick

send the drones to retrieve the

astronauts one by one.

Be warned, don't collide with

or shoot at the mothership or

that'll be the end. Use the dock

ing bay, located at the bottom

center of the cruiser, to drop off

astronauts. Also, don't hit the

mines or you'll lose a drone

and possibly an astronaut.

The entire game is seen from

the radar screen on the rescue

cruiser. The border lines mark

how far the drones can go with

out flying out of radar range.

The top left of the screen

shows your score and the top

right shows how many drones

you have left. Use the joystick

to steer the drones through the

minefield to pick up the

astronauts and return them to

the mothership.

When you pick up an astro

naut, you'll hear a beep. When

you return the astronaut to the

mothership, you'll hear a lower-

pitched tone. If you lose a

drone by flying out of radar

range or hitting a mine, you'll

hear a high-pitched beep, then

one of the drone ships on the

top right of the screen will

disappear. Remember not to

pick up more than one astro

naut, because the drones can

only transport one at a time.

Each drone is equipped with

a photon blaster to clear mines.

Press the fire button on the joy

stick to operate the blaster. You

can reload by going back to the

mothership.

66

You will have three minutes

to rescue the 18 astronauts be

fore they run out of air. At the

beginning of play, the com

puter's internal clock, Tl$, is set

to "000000". On line 140, Tl$ is

checked to see if more than

three minutes have passed. If

you'd like more time, you can

change the number in quotes

on line 140.

Before you start playing, the

computer will ask you for a skill

level, from one to nine. On the

first level, you'll receive one

point for each astronaut saved.

On the ninth level, you'll receive

nine points for each astronaut

saved. The higher the skill level,

the more credits you'll earn for

your work. Your skill level also

determines how many mines

appear on the screen and how

many shots your photon blast

ers can fire between reloadings.

Type in part one and save it

onto tape with part two saved

immediately after it. In part one,

lines 170-390 and 410-420,

which are the instructions, can

be omitted to save a little

typing.

In the first part of this pro

gram, the top of memory is

lowered, so there's enough

room to put programmable

characters. If you use a Pro

grammer's Aid while entering

this program, make sure you

turn the computer off and on

before running the game. The

Aid raises the top of memory

and messes up some of the

special characters. If the char

acters still look strange, check

and double check the data in

part one.

Disk users, if you're planning

on saving this program on disk,

replace line 400 in part one

with:

400 PRINT CHR$(147)"LOAD"CHR${34)

"(Program Name)"CHR$<34)",8>l:POKE198,

2:POKE631.19:POKE632,131

For his help at the two or

three points where I really got

stuck while writing this pro

gram, I would like to thank my

dad, Dave Gardner. El

Address all author correspon

dence to Kenneth Gardner,

2342 Barnes Road, Walworth,

NY 14568.

67

Part One

10 Lowers top of memory

20 Initializes variables

30-120 Title page

130-140 Poke character information above Basic

150 Reseeds random number generator

160-430 Instructions

440 Title page data

450-610 Character information data

Part Two

10-40 Initialize variables

50-70 Set skill level

90 Places border

100 Places mines and astronauts

130 Reads joystick

140 Checks time

150-190 Set direction for drone or start firing sequence

200-280 Check if drone hit anything

290 Moves drone

300-330 Explosion routines

340-370 Any drones left?

380-410 Play again?

420-460 Drone docks into mothership

470-480 Drone undocks from mothership

490-500 Choose random screen locations for mines and

astronauts

510 Fires shot

520-550 Check if shot hit anything

570-580 Move shot

610-620 "You hit the Mothership!" message

630-660 Display score at end of game

670 Timer

680-690 Mothership appears

700-710 Mothership leaves

730 Any drones left?

750 Timer

790 Beep routine

800-810 Update score and ships left

820 Border data

Table. What the lines in the Space Rescue program do.

I Am The President

BY SCOTT CALAMAR

With this satirical pro

gram that simulates

intelligence, you can

throw a party and let

your friends talk with

a former President of

the United States.

When I bought my VIC-20

about a year ago, it was my

first hands-on experience with

a computer, and although the

VIC is exceptionally user-

friendly, I didn't think it was

friendly at all.

It didn't say hello, didn't ask

how I was, didn't even wish me

a happy day. The cursor blinked

on and off, waiting for me to do

something. The machine said it

was ready, but I sure wasn't.

Like any good VIC user, I

then read my user's manual. I

discovered that if I wanted the

computer to say hello, I had to

make it print hello. I started tag

ging Print statements onto pro

grams so they would begin on

a friendly note. My VIC-20 was

in it
GHT

Expanded VIC-20

hardly HAL from 2001, but I'd

made a start.

By using Get and Input state

ments, you can simulate intelli

gence fairly easily. A Get state

ment will accept a single letter

or number and act on that infor

mation. An Input statement will

accept a string of informa

tion—words or a sentence. You

can program the computer to

recognize that data and re

spond appropriately.

Create A Conversationalist

Simulated intelligence is

used in many programs to ac

cept information, and in video

games to find out the num

ber of players, skill level

and so on. Although programs

that use artificial intelligence

are written for some computers

with more memory, I've seen

few for the VIC-20. The comput

er's memory constraints make

it difficult to include enough al

ternatives in an intelligence

program to be convincing.

I Am the President is a dem

onstration program that shows

how effectively Input and Get

statements can simulate intel

ligence. When you run the pro

gram, any expanded VIC-20 will

assume the personality of a

former President of the United

States. You'll be in for a brief

meeting with the elder states-

69

man, but watch what you say!

He's grown very sensitive in re

cent years.

Just a brief disclaimer: I Am

the President is meant as sat

ire—the president is a carica

ture and not intended to tarnish

the memory of any person, liv

ing or dead.

Those of you who own VICs

with 3K expansion should be

careful not to type any addi

tional spaces when entering

the program. I Am the President

is about 100 bytes short of fill

ing your memory. Users of

larger expanders should feel

free to modify and add to the

program.

I Am the President should

provide you with a few mo

ments of entertainment and

show your friends what your

computer can 6oM

Address all author corre

spondence to Scott Calamar,

917 San Anselmo Ave. #5,

San Anselmo, CA 94960.

70

Nimbots

BY MICHAEL BUCKLEY

You will soon be con

fronted by a dozen

nasty Nimbots, whose

single-minded obses

sion is to preside over

your defeat. This cun

ning game of the

mind is both fun and

challenging.

In Nimbots, you and the com

puter—or a human opponent-

take turns removing from one

to four Nimbots according to

certain rules. To move, you key

in the letters of the Nimbots

that you want taken away and

press the return key. Nimbots

taken in one turn must be in a

straight line, horizontally or

diagonally but not vertically,

and there must not be any

gaps. For example, ADHL

would be a legal move, but ADL

would not—despite whether or

not H is still in place. (The com

puter will not accept illegal

moves.) The player forced to

make the last move is the loser.

Run it
RIGHT

VIC-20 with 8K expansion

Eight Versions

The above rules describe the

standard version. When you've

mastered that, you can try the

variation in which the object of

the game is reversed: You try to

take the last Nimbot yourself.

There are also versions in

which the no-gaps rule is

waived—for example, FHI

would be an acceptable move

(regardless of the presence of

G). The straight-lines rule ap

plies to all versions, however.

All four variations may be

played by one or two persons.

This gives you a total of eight

choices, which you select by

pressing the appropriate func

tion key, according to the table

below.

Function No. Players Gaps Last Player

F1

F3

F5

F7

F2

F-J

F6

F8

one

one

one

one

two

two

two

two

In the one-player

you do not wish to

no

no

ok

ok

no

no

ok

ok

loses

wins

loses

wins

loses

wins

loses

wins

versions, if

make the

opening move, simply press the

return key,

will go firs

and the computer

When asked to do so, you

must choose a difficulty level

from zero to nine. At the higher

levels, the computer plays

flawlessly—but you can still

beat it if you make all the right

71

moves. At lower levels, the

computer often acts randomly.

Save It First

Nimbots is written in Basic,

with a machine language

subroutine that is Poked into

the cassette buffer starting at

address 828. To avoid losing an

untested program, be sure to

save it at least once before you

run it.

The total of all the values in

the M% array is 49680, and the

sum of all the numbers Poked

into memory locations 828-

1003 is 24627. Before you run

Nimbots, enter:

25FORJ=0TO71:T = T+M%(J):NEXT:

PRINTT:END

The program should display the

number 49680 and stop. If you

get any other number, you have

an error somewhere in Data

statements 30-100. When you

get the correct total, replace

line 25 with line 125:

125 FORA = 828T01003:T = T + PEEK(A):

NEXT:PRINTT:END

This time, if you don't get

24627, you have a Data error in

lines 828-991. When you've got

it correct, take out line 125. If

you have no other mistakes,

you should be able to "RUN It

Right."®

Address all author correspon

dence to Michael Ft. W. Buckley,

445 East 19th St., North Van

couver, B.C., Canada V7L2Z6.

Nimbots1 Ancestor

Nimbots is one of the many descendants of Nim, a

game in which two players take turns removing one or

more counters from any one pile. The player unable to

make a move is the loser—in other words, the winner

takes the last counter or counters.

After playing the game for a while, you begin

recognizing certain "safe" positions from which your

opponent cannot win. Two identical piles are safe:

whatever your opponent does to one pile, you do to the

other. Therefore, playing Nim with three piles, contain

ing one, two and three counters is safe because you

can always match your opponent's first move and

force equal piles.

The VIC-20 is one of the many microcomputers built

around the 6502 microprocessor. Included in the 6502

instruction set is the EOR, or "Exclusive OR," instruc

tion. EOR compares two binary numbers, bit by bit, giv

ing a 0 when corresponding bits are the same and a 1

when they differ.

For instance, 89 EOR'ed with 108 would give 53. This

example serves to illustrate why the instruction is

often called "add without carry."

72

89 (decimal) = 1011001 (binary)

108 (decimal) = 1101100 (binary)

53 (decimal) = 0110101 (binary)

Obviously, any number EOR'ed with itself is 0. Also,

1 EOR'ed with 2 EOR'ed with 3 is 0.

Before there were computers, mathematicians had

another name for this operation: they called it nim-

summing. The nim-sum of any safe position in Nim

isO!

One version of Nim starts with three piles of

three, five and seven counters. You compute the nim-

sum to be 1. For example:

3 (decimal) = 011 (binary)

5 (decimal) m 101 (binary)

7 (decimal) = 111 (binary)

1 (decimal) = 001 (binary)

Taking 1 from any pile will reduce the nim-sum to

0. You can't win if you're facing 2, 5, 7 or 3, 4, 7 or 3,

5, 6 (unless your opponent makes a mistake later).

Now comes the switch. Normally this game is

played in reverse: You try to make the other player

take the last counter. The strategy for this version is

left as an exercise for the reader.

How the Program Works

Since there are 12 Nimbots, and each one either is

or isn't there, there are 4096 (2 to the 12th power)

possible configurations. Each element of the A% ar

ray contains a number that tells the computer what

move to make if it encounters the corresponding

position. If an element contains a 0, then that posi

tion is safe (for the opponent) or unanalyzed (in the

low-difficulty version), and the computer moves

randomly.

Let's set up a sample game board display on

which A, F, J, K and L are visible. A%(2119) repre

sents this setup. In binary, 2119 is 100001000111.

The alphabet letters A-L run from left to right in this

binary number. (Include the leading zeroes so that

the resultant 12-digit number will match the 12

alphabetized Nimbots.) If A%(2119) contains 6,

which decodes to 000000000110, then the computer

would select Nimbots J and K, leaving you with

three isolated Nimbots (A, F and L) and certain

defeat, assuming the standard no-gaps-last-person-

loses version of the game.

73

How does A% get to contain these values? There

are 72 legal moves, including all versions, and they

are stored in the M% array. For instance, M%(13)

may or may not contain 6, because this array gets

shuffled to randomize the play. In binary, 6 is

000000000110, which, as you saw above, stands for

Nimbots J and K.

A% is scanned from beginning to end. When an

element is found to contain a zero, representing a

safe position, then each legal move in M% that

could lead to that position is added to the (safe) in

dex, giving the index of an unsafe position. The

move in M% is then stored in each location that is

computed to be unsafe. Referring to the above exam

ple, A%(2113) contains 0—a safe position. There are

many moves in M% that could lead to this position,

one of which, in M%(13), is 6. Adding 6 to 2113 yields

2119. So 6 gets stored in M%(2119).

Of course, all this is done before you make your first

move. It's a procedure that takes over 20 minutes in

Basic, but only a couple of seconds with the included

machine language subroutine. If you want to compare

the two versions of the routine, Listing 2 shows the

assembly code alongside the corresponding Basic

statements in the comments field.

Aftermath

Here are some questions I had to answer before I

could convert those few lines of Basic into machine

language. This information would have been invaluable

to me a few months ago—I hope it saves somebody

else some needless frustration. Reference to Listing 2

will help you understand the answers; some knowl

edge of the 6502 assembler is assumed.

7. Where are some safe places in zero page for in

direct addressing? Nimbots uses locations 163-176.

I've used this area without any ill effects so far, but

check your memory map to ensure that the system's

use of these locations doesn't conflict with yours.

2. How do you get into Basic arrays from machine

language? Use the Start of Arrays vector at addresses

47-48. It points to the prologue of the first dimen

sioned array—the array itself is seven bytes further

along. Other arrays occur in order of appearance, each

74

after a seven-byte offset. In lines 829-853 of the as

sembly listing, you'll see how I stored the address of

the first byte of M%, in 163-164, and of A%, in

165-166.

3. How do you maintain relocatability when you

need to jump more than 127 bytes? Use a branch as a

stepping stone. Look at lines 916 and 918. They are

both BNEs. Obviously, the second one can never be

executed under normal circumstances—it's just a

dummy instruction. Now look at line 1001.1 would like

to have put BNE 863 here, but that's beyond the range

of relative addressing. So, instead, I put BNE 918, and

then at 918,1 inserted the BNE 863 right below another

BNE.

Finally, I'd be interested in hearing from readers

who find a simple strategy for any version of

Nimbots.E]

75

Spelling Friend

BY WILLIAM W. BRAUN

Does your youngster

need help in learning

his/her weekly list of

spelling words? Well,

meet Chippy, who's

the best spelling

buddy your child

could have.

In Spelling Friend, your child

can practice spelling with a

simulated computer friend,

Chippy. My daughters, ages

nine and six, enjoy using the

program to study their weekly

spelling assignments. Even the

six-year-old is now able to enter

her weekly list of words.

Chippy, who appears as a

large smiling face with curly

hair, first shows you the list of

spelling words contained in his

memory. He then asks you if

the words are all right for the

current spelling session. If you

answer no, then Chippy tells

you that you must type in 20

new words and prompts you

when to do so. After you've en

tered the 20 words, Chippy dis

plays the new word list, asking

It

IGHT
VIC-20 with 3K expansion

if those are all right. You may

repeat this process until

satisfied.

When you indicate that the

words are all right, Chippy pre

sents the program's instruc

tions. He indicates that a word

will be displayed for a few sec

onds. After it vanishes, Chippy

will ask you to type it in cor

rectly. After the instructions are

displayed, you are given the op

tion of seeing them again or

continuing.

When you choose to con

tinue, Chippy shows the first

word in his list. The word,

which is enclosed in a multi

color border, appears one letter

at a time. Each letter is accom

panied by a short tone, which

increases in pitch with each let

ter. After the word disappears,

you must try to type it in from

memory. If you succeed, Chip

py appears with a big smile,

gives a short message of en

couragement and winks at you.

If you spell the word incorrect

ly, Chippy frowns and instructs

you to try again. If you spell the

word incorrectly twice, Chippy

shows you the correct spelling.

Periodically during the program,

at least some of the initially

misspelled words will be shown

again, giving you more practice

with them.

After all 20 words have been

used, Chippy shows you your

score and gives a message

76

about your performance. At this

point, you may choose to start

over again, see a list of the

words you misspelled or end

the program. If you choose to

stop. Chippy informs you that

you may resave the program if

you want to have the same

words for the next practice

session.

About the Program

Through Chippy, I tried to

create a feeling of personal

communication between the

child and the computer; the

computer is no longer only a

machine that displays words

and responds negatively or pos

itively to a child's input—

the computer has a personality.

If you have a speech syn

thesizer, you can replace or

supplement the messages on

the screen with verbal state

ments from Chippy.

Unfortunately, I could not

code this program to run on the

unexpanded VIC; I would have

had to sacrifice most of the

features that make it interest

ing. I coded it so that you can

use it with any amount of ex

pansion. Some programs will

run only if a particular amount

of RAM is present. This is be

cause the VIC operating system

changes the screen and color

memory locations when you

add more than 3K expansion. If

your program does not take this

into account and provide for

variable screen and color

memory locations, you must

run the program on a VIC with a

specific RAM configuration.

This can get very frustrating if

you have a variety of programs,

and it can be rough on the ex

pansion port connectors as you

switch around the RAM expan

sion cartridges.

In Spelling Friend, line 9100

takes care of this problem. The

program Peeks location 44,

which will hold the number 18 if

the VIC has more than 3K of

memory expansion. It then

chooses the proper screen and

color memory constants, which

are based on the result of the

Peek. If your programs will be

Poking things around the

screen, you'll save yourself and

others a lot of trouble by in

cluding this option in your

programs.

You can often save yourself

a lot of coding if you create

subroutines to handle repetitive

tasks. This program uses many

subroutines. For example, there

are routines to create Chippy's

smiling or frowning face, to

make sound effects, to produce

delays in the program action, to

respond to correct and incor

rect spelling inputs and to cre

ate the multicolor border

around the spelling words.

Kids love to play with the

keyboard, just to see what will

happen. This can be a problem

if they decide to try out the

run/stop key in the middle of a

program. Line 6 anticipates this

problem, and by Poking 114 to

location 808, it turns off the

run/stop key. The restore key

doesn't become disabled, since

the child would have to press

the run/stop and restore keys at

the same time, which would be

more unlikely to happen.

77

Programming Techniques

While writing Spelling Friend,

I had to find a way to prevent

the child from typing in the

word while it was still being

displayed on the screen. When

the Input statement was ex

ecuted after the word vanished,

the program would use the

word in the keyboard buffer. To

prevent this, it finally occurred

to me to use POKE 198,0 to

clear the keyboard buffer, im

mediately after the word disap

pears and before the actual In

put statement is executed. This

occurs in line 61. The child may

now type in the word while it is

being displayed, but it will not

be picked up by the Input state

ment, and the child will have to

reenter it after the word

disappears.

New words are placed in

Chippy's spelling list by utiliz

ing the "dynamic keyboard"

technique. Lines 463-468 con

tain the routine that creates

new Data statements with the

new words. As the new words

are entered, they are placed in

to an array, NWS.

Five lines, beginning with

number 9000, are then printed

on the screen. These lines are

Data statements, which contain

the new words. A sixth line,

without a line number, is

printed on the screen. This last

line defines a variable and has

a command to go to line 9100.

The cursor is moved to the

Home position. The CHR$ code

for RETURN, 13, is then Poked

into the keyboard buffer six

times. When the End statement

is reached, in line 468, the six

returns in the keyboard buffer

are executed, putting the new

Data statements into the pro

gram (while erasing the old

ones) and executing the GOTO

9100 command.

The variable VB is used in

line 9117, to decide whether or

not the program should con

tinue at line 6 or line 20. The

first time the program is ex

ecuted, it goes through lines

9100-9120 to initialize variables,

and then returns to line 6. The

only other time line 9100 is ex

ecuted is if new words are be

ing entered into the program. At

this point, it is necessary to

start at 9100, since the program

actually ended (albeit only for a

split second) in line 468;

however, this time you jump to

line 20, since you needn't go to

line 6 to see the program title

screen again.

The only other way I could

find to change the spelling-

word list was to actually exit

the program and type in new

Data statements, and then

restart the program from the

beginning. The dynamic-

keyboard technique, which you

can probably find many uses

for in your own programs, is

much cleaner and easier to

use, especially for children. It

can also be used to place com

mands in the keyboard, to

erase the current program and

load and run another program.

If you put two programs, one

after the other, on tape, you

can use this technique to load

and run the second one as the

first is ending. This would be

very useful if your program ex

ceeded 3.5K, as you can split it

73

up into two sections. You can

even load a third program when

the second is completed, and

so on. With this trick, you can

make the VIC run some very

long programs, providing they

are of a type that can be split

up into parts.

Looking at lines 9110-9112,

you will notice that several

string variables have been

defined as being equivalent to

CHR$ commands. I use these

string variables right after a

Print statement, to execute the

CHR$ commands, which per

form the same function as fa

miliar keyboard programming

commands. For example, CD$

is equivalent to moving the cur

sor down one line; BLK$

changes the print color to

black; CH$ clears the screen

and moves the cursor home;

and LC$ changes the charac

ters to upper-/lowercase. This

technique produces listings

that are much easier to under

stand. Instead of getting con

fusing graphics symbols, you

get easy-to-read string

variables.

The string variables, with

their well-chosen names, make

it much easier for you to re

member their functions. Defin

ing string variables in this man

ner also clarifies which sym

bols in a listing are commands

and which are actually graphics

characters. The only drawback I

have found to using this

method is that each defined

string variable eats up a good

chunk of memory. If you are

confined to the unexpanded

VIC, it could use up too much

memory.

Lines 200-205 contain sub

routines to produce delays of

varying length. Rather than writ

ing out a For... Next statement

each time I want a delay, I sim

ply call up the appropriate sub

routine. I put longer delays in

consecutively higher line num

bers, to make it a bit easier to

remember which line the GO-

SUB accesses. If your program

will call for using the same

length delay repeatedly, this

method can save you time and

bytes.

Making programs as user

friendly as possible is an im

portant aspect of programming.

This includes trying to antici

pate problems with Input state

ments. For example, lines

46-49 control the program's re

sponse to the child's input as

to whether or not the instruc

tions should be repeated or the

spelling words commence.

I chose to use a Get state

ment rather than an Input state

ment since only one key needs

to be pressed. Line 46 freezes

the action until a key is actually

pressed. Line 47 checks to see

if the S key was pressed and it

takes appropriate action. Line

48 watches for the I key to be

pressed; if it has, it repeats the

instructions. If any key other

than S or I is pressed, the pro

gram falls through to line 49,

which prints an error message

to the screen that informs the

child that he or she can enter

only I or S, and then branches

back to line 46.

The same technique of

editing the input is used in

lines 418-430, but this time

79

with an Input statement. This

type of editing simply ensures

that the program is not stopped

with an inappropriate input, and

makes it clear just what input

is actually needed.ill

Address all author correspon

dence to William W. Braun,

3164 Wellington Way, Arnold,

MO 63010.

Program documentation

Line numbers) Comments

6-17 Title screen graphics and sound effects (subroutine at

9300-9380 draws the border with letters of the alphabet).

20 Dimensions arrays to hold spelling words and incorrectly

spelled words. AS is for spelling words and WS is for incor

rectly spelled words. Reads Data statements to fill AS array.

25-30 Initialize variables, set border/screen colors.

39-49 Instructions to student.

50 Variable A counts number of spelling words displayed. If A

equals 20, program branches to give score.

57 Variable P is used to display incorrectly spelled words a sec

ond time.

75 Detects incorrectly spelled word.

77 Detects correctly spelled word.

550-573 Print Chippy's faces. Value of FA decides if frown or smile.

600-620 Routine to show correct spelling after two wrong answers.

700-729 Display score and decide upon message about student pro

gress based upon score.

1990-2005 Routine to print spelling words to screen, one letter at a time

with ascending tones and centered in the multicolored box.

3016 Prints list of incorrectly spelled words.

6000-6001 Sound effects and border colors with correctly spelled words.

6200-6210 Blink Chippy's eye.

6500 Buzzing sound with incorrect answer.

8000-8003 Create multicolor border around spelling words.

Definitions of variables

SM—Screen memory location

CM—Color memory location

R_Number of words spelled correctly

A—Subscript of AS(A), number of words displayed

W—Number of words spelled wrong

C—Variable to detect two incorrect spellings in a row

B$—Variable to hold typed-in spelling words

W$—Incorrectly spelled words

FA—Value decides if Chippy has smile or frown

T—Variable in delay routines

80

Please send me ReRUN Volume I!

Cassette version(s) at $11.47* each. " Prices include $1.50 postage and handling
Foreign Air Mail please add an additlo

U.S. funds drawn on U.S. banks ONLY.
Disk versions) at $21.47 each. Foteisn Mr Ma" P'ease aM an ***"°™" <* per i

D Check/MO □ MC D VISA D AE

Cardti Exp. Date.

Signature

Name

Address

City State Zip_

ReRUN • 80 Pine Street • Peterborough, NH • 03458

.

23

Great

New

Software

Programs

For Your

Commodore!

H any manufacturing defect becomes apparent within 30 days of purchase, the defec

tive cassette/disk will be replaced free of charge subject to its return by the consumer by

prepaid mail. Send a letter specifying the defect to:

ReRUN • 80 Pine Street ■ Peterborough. NH 03458

Replacements will not be made if the cassette/disk has been altered, repaired, or is

misused through negligence, shows signs ol excessive wear or is damaged by equip

ment.

ReRUN is simply the listing from RUN Magazine. It will not run under all system config

urations. Use the Key Box accompanying ea:h article as your guide.

The entire contents are copyrighted 1984 by CW Commumcations/Pcterborough. Un

authorized duplication is a violation of applicable laws.

£ Copyright 1984 CW Communications/Peterborough

CW COMMUNICATIONS/PETERBOROUGH

