

TIS_ Workbook 1

TOTAL INFORMATION SERVICES

Getting Started with Your PET

Copy r i g h t (1978) b y To t a l I n f o r ma t i on

S e r v i c e s . A l l r i g h t s r e s e r v ed , No pa r t o f

t h i s publication may be r ep r oduced

w i th ou t the express pe r m i ss i on o f Total

Information Services.

TIS
TOTAL INFORMATION
SERVICES P O. Box
921 Los Alamos, NM
87544

GETTING STARTED WITH YOUR PET CONTENTS

I . INTRODUCTION 1-1
A. Assumptions Made About the User 1-1
B. Exercises 1-1
C. Programming 1-2
D. PET Keyboard and TV Display 1-4
E. Notation Used in This Workbook 1-4
F. BASIC Overview 1-6

II. PET BASIC CALCULATOR MODE 2-1

A. Using Strings in PET BASIC 2-2
B. Numeric and Fractional Values 2-2
C. Conversion of Data 2-3
D. Balance Your Checkbook in Calculator Mode 2-4
E. Reserved Words 2-5
F. Modes of Variables and Constants 2-5

III. INPUTTING A PROGRAM 3-1
A. Blanks 3-1
B. Multiple Program Statements 3-1
C. Typing Mistakes 3-2
D. PET BASIC Commands 3-3
E. The 'STOP' Key and CONT 3-7

IV. GETTING INFORMATION OUT OF YOUR PROGRAM 4-1

A. Output Formats - Numeric Data 4-1
B. Output Formats - Character Strings 4-3
C. Spacing 4-3

V. GETTING INFORMATION INTO YOUR PROGRAM 5-1

A. Design Goals 5-1
B. READ and DATA 5-1
C. INPUT 5-2

1. Floating Point Input 5-2
2. String Input 5-6
3. Integer Input 5-11

D. GET 5-12
1. Numeric GET 5-12
2. String GET 5-13

VI. DATA REPRESENTATION 6-1
A. Largest Numeric Value 6-1

1. Floating Point 6-1

2. Integer 6-2
B. Smallest Numeric Value 6-3

1. Floating Point 6-3
C. Memory Space Used 6-4
D. Number of Significant Digits 6-5
E. Rounding 6-6

VII. USING THE CASSETTE FOR PROGRAM STORAGE 7-1

A. SAVE a Program 7-1

B. VERIFY a Program 7-1
C. LOAD a Program 7-3

 1-1

I. INTRODUCTION

This workbook gives a series of exercises that show the new user how
to use the Commodore PET 2000 computer. The most ef fective way to use
the workbook is to sit down with a PET and do the e xercises as they
are presented. Enough space has been provided in th e workbook for you
to add your own examples as you develop them. Later , when you need to
refresh your memory on a particular topic, these ex amples will supply
pertinent, meaningful information.

A. Assumptions Made About the User

Some PET users are comfortable with mathematics. Ho wever,
this workbook assumes that the majority are not. Fo r that
reason, most exercises will use nothing more than h igh
school arithmetic.

This workbook also assumes you know something about the syntax
and semantics of the BASIC programming language. If you do not,
you should obtain one of the following books:

BASIC Programming, J. Kemeny and T. Kurtz
BASIC by Albrecht, Finke, Brown
What Do You Do After You Hit Return? by Peoples Computer Co.
Basic BASIC by James Coan
Advanced BASIC by James Coan

Read about BASIC syntax; then alternate between thi s workbook
and your text on BASIC. You will learn both BASIC a nd how to
use the PET.

B. Exercises

Some of the exercises are designed to be done by rote; that is,
if you type this, then you should get this response . As you learn
more about a feature, the exercises take the form " What would you
get if you typed this? " The next level suggests that you try
various type-ins.

If you understand the topic, you should be able to anticipate
most of the responses. In cases where there are idi osyncrasies,
exceptions, and special problems, they are shown as " try-these "
exercises.

The last level of exercises is " do-it-yourself, " in which you are
given guidelines to create a personal example. If y ou find you
cannot construct a personal example, review the pre vious material
and try again.

You will find that you will learn more if you take the time to create or
try new things. Be sure to enter the results of bot h successful and
unsuccessful attempts in your workbook so you can h ave a

 1-2

GETTING STARTED WITH YOUR PET

convenient reference about what you have done.

Do all the exercises in the workbook. DON'T skip an y of them.

C. Programming

Contrary to what some people say, the best way to l earn how to
program is to program. You can pick up the mechanics of progr amming
by reading books on programming, but that is like r eading about moves
in chess. Knowing the mechanics of chess does not m ake you a good
chess player. Knowing the syntax of BASIC does not make you a good
BASIC programmer.

Just as you can learn chess strategy by reviewing m oves made by good
chess players, you can learn how to program by read ing other people's
programs. But, be careful--reading bad code teaches bad habits ju st as
reading good code teaches good habits.

There are several useful tips all programmers shoul d keep in mind.
First, if you wish to succeed at programming, you n eed to develop a
consistent style. To succeed at programming means t o be able to
write reasonable-size codes, quickly and accurately , that are easy
to debug, easy to modify, and easy to use. Why is c onsistent style
important? If you use the same approach to differen t problems, you
can:

1. Use pieces or programs elsewhere. This saves time s ince

you don ' t have to start again from scratch.

2. Understand what you have written some time ago. Con sistent
style minimizes questions like " What was I thinking about when I
tackled this problem? "

3. Reuse documentation from previous programs.

4. Be consistent in error or warning messages.

Second, plan before you code. This is really part o f your style or
method of solving a problem. One temptation that ma ny programmers
succumb to is to " wing it. " That means to just sit down at the keyboard
and start typing in a program without forethought, planning, or design.
DON' T DO IT--not even when you know the problem is triv ial. The danger
in winging it on a trivial problem is that the prog ram may work and it
may work right. But, at some point you will tackle a problem thought to
be trivial when it isn ' t. All successes at winging it will make it that
much harder to admit that a particular problem is n ot trivial. In
addition, all the winging-it successes will develop no skills at
systematically designing a program and will also te mpt you to slip back
into that mode whenever you think you have another " trivial " problem to
solve. Fig. 1 shows a good approach to writing prog rams.

INTRODUCTION

Specify
Problem

Fig. 1. Program development flowchart.

What is a good way to improve a program? When you h ave finished a
program (that is, you have it working as desired), discard it and start
over with the design phase. Why start there? Becaus e now that you have
the program working, you know more about the proble m, and you can now
do a better, more concise, and more effective desig n. Trying to improve
a program by patching up a faulty design might gain you a little, but it
may introduce more problems than it removes. Rememb er, it is never too
late to discard a program and start over. Look at y our program more
like a rough draft--something to learn from. Even t hough it has a short
life, it has served its purpose if you have learned how to do a better
job from it.

Many publications have stressed the idea that progr amming is easy and that
anyone can learn to program. This is somewhat misle ading. During the last
15 years, we have taught programming in different l anguages on different
machines to people with a variety of backgrounds. S ome became programmers;
many did not. Our experience is not unique. Just as some people can become
good bridge players, piano players, or tennis playe rs, others do not or
cannot.

However, you do not have to become an accomplished programmer to enjoy
your PET. Preprogrammed cassettes are available fro m several sources.
If you understand some of the BASIC language, you c an tailor these
programs and make them more personal for your appli cation.

 1-4

GETTING STARTED WITH YOUR PET

D. PET Keyboard and TV Display

The PET keyboard (Fig. 2) and display are the prima ry input and
output devices. To successfully communicate with yo ur PET, you must
understand the features of the keyboard and how to use the video
display effectively. You can learn this by doing ex ercises in the
manual that Commodore supplied with your PET.

Some of the more important characteristics of the P ET keyboard input
are:

1. For all nongraphics in BASIC, lower case (unshifted characters)

is all that is needed.

2. All lines end with '
RETURN

'
.

3. The ' DEL' key will delete characters.

4. If there is no keyboard response to the ' STOP or ' RETURN' keys,

power off/on reloads the system and gives a fresh s tart. Any
program entered is lost.

5. To delete the line you are typing, press the ' CLR' key. That

deletes the entire line typed so far, and it also e rases the
entire screen. All previous lines are still in memo ry.

To use your PET, plug it into a 110 volt AC circuit and turn the
power switch on the back of the unit to ON. The fir st response that
you should see on the TV display is

R: ***COMMODORE BASIC*** R:

7 1 6 7 BYTES FREE R: READY

All numbers listed for free space reflect an 8K RAM system. If you
have a different size memory, the number of free by tes will be
different.

E. Notation Used in This Workbook

We use a consistent notation in this workbook to in dicate what is to
be typed on the keyboard (T O , what appears on the T V display (R:),
and what indicates blanks are to be typed (b). For example:

T: info (' RETURN' key)

means to type the characters contained on the line after the colon
(:) followed by a ' RETURN' .

INTRODUCTION

R: response

means that the system response to the previous T: l ine should be a
line on the TV.

Blanks are important. They are specified by b. For example: T

: ? "ABbC" ('RETURN' key)

means to type ?, then '.', then the letter A, then the letter B, then
a space, then the letter C, then " followed by a 'RETURN'.

Now let 's run that example all together:

T: ? "ABbC" ('RETURN' key) R: AB
C

The 'RETURN' key must be pressed at the end of each line. We wil l
assume you know that and will not use ('RETURN' key) in any more
examples.

The special keys on the PET keyboard can cause some confusion. This
workbook identifies the special keys with the notat ion 'KEYNAME'.
'KEYNAME' means press the named key. The unquoted sequence of
characters OTHER means press the five keys 0 T H E R in succession.

Fig. 2. The PET keyboard.

 1-6

GETTING STARTED WITH YOUR PET

Example: Special key notation

T : ' STOP'

R: READY.

means press the key labeled STOP.

T : STOP R:
BREAK R:
READY.

means press the four keys S T 0 P in succession.

F. BASIC Overview

BASIC has three classes of capabilities: commands, statements,
and functions.

Commands are facilities which might be considered a s part of the
operating system or environment. Couuuands handle o r manipulate
global items, such as programs.

Statements are elements of the program itself. Stat ements are made up
of keywords, variables, constants, operators, and f unctions.

A user defined function is a BASIC statement which returns a single
value each time it is referenced. Another type of f unction is the
library function. The PET has several library (buil t-in) functions,
such as SIN, RND, LOG, INT, etc. These functions ar e referenced by
their names.

1. Constants. BASIC programs are made up of statements which con tain

keywords, variables, operators and constants. The PET can have two
kinds of constants. Numeric constants are numbers w ith or without
a decimal point. If a number has a decimal point it is sometimes
called a floating point number. A number without a decimal point
is often called an integer. Floating point is used to represent a
wider range of numbers than integer (see section VI on data
representation for more details). Even though there are two types
of numeric constants, the PET represents them the s ame way, i.e.,
as floating point. An integer constant, like 5, is represented as
5.0.

The other kind of constant that you can have in the PET is a
character string. A character string constant is signaled by a
quote (") mark. The symbols " AB" mean the string of two
characters,A followed by B.

2. Variables. Variables are " names" that may take on different values

during a problem. Variables can be named with up to 5 alphabetic
characters.

INTRODUCTION

Exercise: Determine the number of alphabetic charac ters
permitted in a variable name.

T: ABCDE=2 R:
READY. T:
ABCDEF=3
R: ?SYNTAX ERROR
R: READY.

Six or more alphabetic characters in a variable nam e is illegal
and will give a syntax error message. If the second character in
a variable name is numeric, the number of character s in the
variable name is limited only by the maximum line l ength.

Exercise: Determine the number of numeric character s permitted in
a variable name.

T: Al23456789123456789=0
R: READY.
T: A1345678=5
R: READY.

Regardless of the length of the variable, only the first two
characters are used to distinguish between variable s.

Exercise: Verify that only the first two characters are used
in a variable name.

T : PRINT Al
R: 5
R: READY.

Notice that the variables Al23456789123456789, A134 5678, and Al
all refer to the same quantity. Verify that by prin ting out all
three values.

T: PRINT Al23456789123456789, A1345678, Al
R: 5 5 5 R: READY.

The first two characters are the only ones used, bu t additional
characters can be used to describe what the variabl e stands for.

GETTING STARTED WITH YOUR PET

T: ABCNT=33 R:
READY.
T : PRINT AB R:
33

 2-1

II. PET BASIC CALCULATOR MODE

Calculator mode means that the statements entered w ill be executed
immediately. These statements have no line numbers. The absence of a line
number signals the software that this statement is to be executed
immediately and not entered into the program memory . Calculator mode was
used to determine the legal variable names in the p receding examples. When
typing lines, remember: each line must end with the return key
pressed, T: tells you what to type, and R: tells yo u the response you
should get from your PET.

T: A=5
R: READY. T:
B=10 R:
READY. T :
C=A*B R:
READY.

These three lines made no visible effect on the PET . However, the three
variables A, B, and C were set to the values specif ied. To check that
C was calculated properly type:

T: PRINT C
R: 50
R: READY.

To check all three variables at once:

T: PRINT A,B,C
R: 5 10 50
R: READY.

Each variable in the output list is put into a fiel d ten digits wide.
There are four fields per line. The fields start in columns 2, 12, 22,
and 32.

Calculator mode can be used to calculate values dir ectly in the PRINT
statement.

T: PRINT 5*10
R: 50
R : READY.
T: PRINT A*B+C
R: 100
R: READY.

GETTING STARTED WITH YOUR PET

A shorthand for the PRINT statement in the PET BASI C is the question
mark (?).

T: ?5*10
R: 50
R: READY.

A. Using Strings in PET BASIC

T: A$= " NAME IS "

Double quote is used to define the limits of a stri ng of characters.

T : PRINT A$
R: NAME IS
T: B$= " MY"
T : PRINT B $+A$
R: MYNAME IS

This concatenates the two strings A$ and B$ for the display only.
Concatenate means to attach.

T: PRINT B$+ " b" +A$
R: MY NAME IS T:
B$=" bMYb"
T • • PRINT R $ + A 7

5 .a. L -'- a.~

R. MY NAME IS

To save the concatenated string.

T: C$ =B$+A$
T: PRINT C$+ " bDAVE" R:
MY NAME IS DAVE

B. Numeric and Fractional Values

T : X=.25
T: Y=10 T:
Z=X*Y
T : PRINT Z
R: 2.5
T: ? Y/X
R: 40 2-2

PET BASIC CALCULATOR MODE

A ? can be substituted for the PRINT command. A / m eans division; T
means exponentiation.

T: ? Y43
R: 1000
T : PRINT Z
R: 2.5
T: PRINT I NT (Z) R: 2

INT takes the integer part of a number.

C. Conversion of Data

There are several functions available in PET BASIC to convert from
one form of data representation to another. You hav e already seen
INT which converts from a fractional number to an integ er.

T: PRINT ASC("Z") R: 90

ASC converts a character to its equivalent number; CHR$ converts a
number to its equivalent character.

T: L=ASC("Z")
T: PRINT L,CHR$(L)
R: 90 Z

T: L=ASC("ZXCV")
T: ?L R:
90

The number 90 corresponds to the character Z. ASC only converts t he
first character of the string argument.

T: PRINT CHR$ (256)
R: ? ILLEGAL QUANTITY ERROR

The legal characters are 0-255

T: PRINT CHR$(255) R:
'Tr
T : PRINT l ' '
R: 3.14159265

GETTING STARTED WITH YOUR PET

The number 255 corresponds to the character 7i' . T he value of
is 3.14159265.

Exercise: What is the integer value of "?"? What is the
character for 110?

T:

R:

T:

R:

D. Balance Your Checkbook in Calculator Mode

Your PET can be used to help you balance your check book. Let the
variable OB stand for the old balance.

T: OB =990.25 T:
0B=0B-12.36 T:
?OB
R: 977.89

This is the balance after subtracting a $12.36 chec k.

T: OB=OB-10.00-20.00-22.50-11.98
T: ?OE
R: 913.41

This is the balance after subtracting four more che cks.

T: OB=977.89
R: READY.
T: OB=OB-10-20-22.5-11.98
R: READY.
T : PRINT OB
R: 913.41

This is the same as the previous example except tha t unneeded digits
were not typed.

PET BASIC CALCULATOR MODE

E. Reserved Words

PET BASIC reserved the use of certain strings of ch aracters to
specify operations to be performed.

Exercise: Determine what the PET does with improper ly used
reserved words.

T: INT=3
R: ?SYNTAX ERROR

Since INT means the integer function, it cannot be used as a variable.
What would you expect from

T : AS C=1

T : CHR$ =1

T: PRINT=12

F. Modes of Variables and Constants

There are three modes for variables and constants: character strings,
floating point, and integer. Mixing of modes is not permissible between
character strings and numeric values.

Exercise: Mixed mode (integer and floating point) a rithmetic is
permitted.

T: I =2 .5*10 T:
PRINT I R: 25

 2-6

GETTING STARTED WITH YOUR PET

Exercise: Mixing strings and numeric data is not pe rmitted.

T: A=CHR$(63)
R: ?TYPE MISMATCH ERROR

The response is because A is a numeric variable and CHR$ is a
character variable.

Exercise: Display the numerical equivalent of the c haracter "?".

T: A =ASC(" ?") T:
PRINT A R: 63

What will you get with

T: D$=CHR$(63) T
: PRINT D$ R:

 3-1

III. INPUTTING A PROGRAM

Every program line begins with a line number. Howev er, any statements
entered without line numbers are executed immediate ly. Any line of text
typed to BASIC that begins with a digit is processe d only after a RUN
command. There are four possible actions that may o ccur:

1. A new line is added to the program. This occurs if the line number is

legal (range 0-63999 for the 8K PET).

2. An existing line is modified. This occurs if the li ne number
matches the line number of an existing line in the program. That
line is modified to have the text of the newly type d line.

Exercise: Using the line editor to change a stateme nt in your BASIC
program.

T: 100 A=B+C

If you want to change " B" to " D" in line 100, one way is to T:

100 A=D+C

3. An existing line is deleted. This happens when a nu mber is typed
that is equal to an existing line number. The line must contain
only the line number, otherwise the line will be re placed and not
deleted.

` i '

/ . . An A
1 1 error SVMTAV ERROR) 1 ate ietf t

message `. (7
) 1

Y 1 t 1 L 1 is s genelrQLLI. This happens the

line number is out of range (0-63999 for 8K) or the line is too
long (more than 79 characters).

A. Blanks

Blanks preceding a line number are ignored. The fir st non-digit
(including blanks) in a line terminates the line nu mber. Multiple
blanks are permitted anywhere in a line for readabi lity, even in
reserved words (PRINT for instance) or constants.

B. Multiple Program Statements

Multiple program statements may appear on a single line if separated

by a colon (:). A line number must appear only at the beginning of the
first statement on the line. A memory saver is the elimination of the
ending quote (") on strings since the (") requires one byte of memory.
For example, PRINT " ABC works just as well as PRINT " ABC" as long as
the character string is the last part of the line.

GETTING STARTED WITH YOUR PET

However, ending quotes must be used in the followin g case
100 PRINT " A=" ,X. To avoid ending up with programs that. are hard
to read and debug, use matching quotes even though it takes an
additional byte.

Some examples of multiple statement lines:

T: NEW
T: 10 PRINT " AAA:PRINT " BBB:PRINT " CCC
T: RUN
R: AAA:PRINT 0
R: CCC
R: READY.

The system prints AAA:PRINT as a character string s ince it is contained
between two quotes. It then thinks that BBB is a va riable and prints
the value of BBB which is O. PRINT " CCC is the next statement and it is
handled correctly. The above example shows some of the problems
encountered when a quote is left out.

Exercise: The proper use of the quote in multiple s tatement lines.

T: 10 PRINT " AAA" :PRINT " BBB" :PRINT " CCC"
T: RUN R:
AAA R:
BBB R:
CCC

R: READY.

T : 10 A$ =" AB "
T: 20 PRINT A$
T: RUN
R: AB
R: READY.

Exercise: Multiple statements per line are also per mitted in
calculator mode.

T: FOR 1=1 TO 20:PRINT I:NEXT I

C. Typing Mistakes

If a typing mistake occurs during the entering of a line, two ways
to correct the error are:

INPUTTING A PROGRAM

1. Hit the 'DEL ' key until the error is blanked out. Retype the
rest of the line from that point.

2. Hit ' RETURN' and retype the entire line. Other

methods will be discussed in later sections. D. PET

BASIC Commands

LIST line number - line number.

The LIST command is used to display your program. S ee Fig. 3. The
display will be in ascending line number order rega rdless of the order
the statements were entered. A blank is automatical ly inserted between
the line number and the first-non-numeric character of the line even if
one was not originally entered.

If a LIST command is given without a line number, a ll statements in
memory are displayed.

If a LIST 100 is given, then line 100 only will be displayed.

If a LIST 100-150 is given, all the statements from 100 through 150
will be displayed.

Fig. 3. LIST command action.

GETTING STARTED WITH YOUR PET

Exercise: Use of the various options on a LIST comm and.

LIST -20 lists all statements up to and including l ine 20.

LIST 20- lists all statements from line 20 on.

NEW is used to reset memory before entering a new p rogram. This is
done automatically when a LOAD command is given. If a NEW command is
not given and you begin to enter another program, t he system cannot
tell the difference between the new program and mod ification of the
old program. If you want to keep the old program in memory, be sure
to start the new program at a line number greater t han the largest
line number of the old program. For example:

 T: 10 PRINT " LINE 10 "
T: 30 PRINT " LINE 30 "
T: 20 PRINT " LINE 20 "
T: LIST
R: 10 PRINT " LINE 10 "
R: 20 PRINT " LINE 20 "
R: 30 PRINT " LINE 30 "
T: LIST -20
R: 10 PRINT " LINE 10 "
R: 20 PRINT " LINE 20 "
T: LIST 20-
R: 20 PRINT " LINE 20 "
R: 30 PRINT " LINE 30 "

NEW

INPUTTING A PROGRAM

 Exercise: Demonstration of two programs in memory at the same
time.

T: NEW
T: 10 R=3

T: 20 A = 3 . 1 4 1 5 }ART 2

T: 30 PRINT A
T: 40 END
T: 100 X ='K/2
T: 1 1 0 A=SIN(X)

T
:

120 PRINT A
T : 1 3 0 END

There are now two separate programs in memory and w e will soon show
you how to run each one when the ' RUN command is d iscussed.

RUN line number

The line number is optional; if left out, program e xecution will start
with the lowest line number and execute all program statements or
until an END or STOP statement is encountered, whic hever occurs
first. If a line number is given, execution begins with that line and
proceeds to execute from there.

Now let ' s run each of the two programs entered above.

Exercise: Selective execution of one of two program s in memory.

T: RUN
R: 28.2735

GETTING STARTED WITH YOUR PET

This program displays the area of a circle whose ra dius was typed
in (10).

T: RUN 100

R: 1

R: READY.

This program displays the sine of the angle (in rad ians),

Example : Control of execution of a program with RU N.

T : NEW
T: 10 PRINT " LINE 10 " T:

20 PRINT" LINE 20" T: 30
PRINT" LINE 30 " T: 40
END
T: 50 PRINT " LINE 50 " T:
60 PRINT " LINE 60 " T:
RUN
R: LINE 10
R: LINE 20

R: LINE 30
R: READY.

RUN starts execution at the lowest line number and contin ues until u11 t -1y

an END or STOP is encountered or there are no more statements.

T: RUN 50 R:
LINE 50 R:
LINE 60 R:
READY.

RUN 50 begins execution with statement 50 and conti nues until there
are no more statements.

T : RUN 20
R: LINE 20 R:
LINE 30

RUN 20 begins execution with statement 20 and stops when the END
statement is encountered.

 3-7

INPUTTING A PROGRAM

E. The 'STOP ' Key and CONT

Hitting the 'STOP ' button will cause the program to stop executing
and the will display:

BREAK IN statement number.
READY.

The statement number will depend on when 'STOP' is typed. Typing
CONT will resume execution where it left off; i.e., the next
statement number.

 The 'STOP ' key

GETTING STARTED WITH YOUR PET

Exercise: Use o f the 'STOP' key and the CONT command. I nput

t h e f o l l o w i n g program.

T: NEW
T: 10 1=0
T: 20 FOR A=1 TO 500
T : 30 X =A
T: 40 NEXT A
T: 44 1=1+1 T:
46 PRINT I
T: 50 GO TO 20
T: RUN
R: 1
R: 2

T: 'STOP'
R: BREAK IN 30. This line number depends on when the 'STOP' key is typed.
T : CONT
R:

 4-1

IV. GETTING INFORMATION OUT OF YOUR PROGRAM

A program can calculate many different values. Unle ss you have some way to
see the results, those calculations are useless. Re sults can be displayed
on the TV screen in several different ways.

A. Output Formats Numeric Data

Exercise: Output of uninitialized variables in fiel d format.

T: NEW
T : PRINT A, B , C
R: 0 0 0

When commas are used to separate elements of a prin t list, each item
is put into a separate field. There are four fields per line.

Exercise: Output of uninitialized variables in cont inuous format.

T: PRINT A;B;C
R: 0 0 0

When semicolons are used to separate elements of a print list, each
numeric item is separated from the next by two blan k spaces.

Fig. 4. PRINT action.

GETTING STARTED WITH YOUR PET

Exercise: Use the TAB function to space data on the display.

T: 210 PRINT TAB(I) ;"A "
T: RUN 200

The TAB function will print beginning in the column defined by the
variable (I). The difference between TAB and SPC is that TAB defines
the column to start printing in while SPC defines t he number of spaces
between fields.

Exercise: Show the difference between TAB and SPC.

T : NEW
T: 10 FOR 1=2 TO 10 STEP 2
T: 20 PRINT SPC(I) ; " A" ; SPC (I) ; " B"

T: 30 PRINT TAB(I);"A";TAB(I+2);"B"
T: 40 NEXT I
T: RUN R:
A B R: A
B
R: A B
R: A B

R: A B
R: A B

V. GETTING INFORMATION INTO YOUR PROGRAM

A. Design Goals

One design goal should be to minimize the amount an d type of
information the person running the program must ent er. The data
required should be short, simple and logical. The m ore input
required, the longer it will take and the more like ly an error will
occur.

In writing a program a good rule of thumb is to nev er use a constant
where there is even the remotest possibility of a c hange being needed
later. In those cases, use a variable instead of a constant.

On the surface, these two philosophies appear to co nflict. However,
BASIC provides several different methods of getting data into your
program, i.e., setting variables to particular valu es.

The key words for getting information to your progr am are:

READ and DATA
INPUT
GET

B. READ and DATA

READ is used to allow the programmer to easily chan ge the value of
variables (parameters) in the program. READ require s a matching DATA
statement in the program.

Example: Using READ and DATA to fill a string vecto r. A vector is
information arranged as an ordered collection of va lues.

T : NEW
T: 99 DIM MN$(12)
T: 100 FOR 1 =1 TO 12
T: 110 READ MN$(I)
T: 120 DATA "JAN", " F E B " , "MAR" , "APRIL ", "MAY ", "JUNE " ,

" JULY" , " AUG" , " SEPT" , " OCT" , " NOV" , " DEC"
T: 130 PRINT MN$(I)
T: 140 NEXT I
T: RUN R:
JAN R: FEB

R: DEC
R: READY.

This program sets up the array MN$ with the names o f the month and
prints each one out. To verify that the fifth month is MAY try:

GETTING STARTED WITH YOUR PET

T: PRINT MN$(5) R:
MAY

Exercise: Using READ and DATA to fill a numeric array (a collection
of numbers):

T: 99 DIM ND(12)
T: 110 READ ND(I)
T: 120 DATA 31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31
T: 130 PRINT ND(I)
T: RUN R:
31 R: 28

R: 31

This program puts the number of days in each month into the array ND
and then prints out the number of days. To verify t hat the fifth month
(MAY) has 31 days, try:

T: PRINT ND(5) R:
31

C. INPUT

INPUT allows the user of the program to provide dat a for the program to
process. This data can be either control informatio n to select options
and specify how the processing is to be done, data to be processed, or
both. A message may also be displayed at the same time inpu t is asked
for by enclosing the message in quotes following IN PUT.

INPUT is used to read data from the PET keyboard. INPUT#N is for
data on unit N, normally a cassette. When the INPUT statement is
executed, a ? prompt is given on the TV display.

1. Floating Point Input. Floating point input allows you to enter

very large or very small numbers into your PET.

Exercise: A program to explore legal floating point input data.

T: 4000 INPUT V:PRINT V:GO TO 4000 T:
RUN 4000
R: ?

GETTING INFORMATION INTO YOUR PROGRAM

KEYBOARD

Fig. 5. INPUT action.

Since V is a floating point variable, we can use th is fragment of
a program to experiment with the format and size of numbers that
the PET BASIC will accept. The ? implies that the p rogram is
ready for INPUT.

T: 1.5
R: 1.5
R: ?

Normal fractional numbers can be typed.

T: 1.5E+6 R:
1500000 R:
 ?

Scientific notation can be used for large numbers.

T: .005E+6
R: 5000
R: ?
T: 1235.01E+2
R: 123501

Scientific notation can be used to move the decimal point
(scale) a number.

 5-4

GETTING STARTED WITH YOUR PET

 R: ?
T: 12.5E+40
R: ? OVERFLOW ERROR IN 4000 R:
READY.

This message means that 12.5E+40 is too large. Earl ier we saw that
1.5E+6 was not too large. What is the largest numbe r that the PET
can handle? See Section VI, Data Representation, fo r a small program
to determine experimentally the largest and smalles t numbers that
the PET can represent.

The overflow error caused the program to terminate. In order to
continue putting data in you must:

T : RUN 4 000
R: ?

To check the effect of leading blanks type:

T: bbb5 R:
5
 R: ?

Try several combinations of leading, embedded, or t railing blanks
to determine how they are handled by the PET.

T:

R:

R: ?

T: 'STOP'
R: BREAK IN 4000. This line number depends on when the 'STOP' k ey is hit.

GETTING INFORMATION INTO YOUR PROGRAM

Remember that if you find a combination that genera tes an error
message and the READY response, you must type:

T: RUN 4000

in order to continue with your input testing.

Some characters are not permitted for INPUT to a fl oating point
variable.

T: RUN 4000
R: ?
T: 5 + 6
R: ? REDO FROM START

This error message indicates unacceptable (bad) inp ut. It does
not terminate the program. It does give you another chance. What
would you expect to get if you:

T : BCD
R:

Since the INPUT statement was expecting a floating point number, a
letter (like B) would be considered unacceptable.

Try a few other symbols to determine what is legal.

T:

R:

T:

R:

T:

R:

If you didn ' t try something like

T: 123,456

try it now.

 5-6

GETTING STARTED WITH YOUR PET

The response:

R: ? EXTRA IGNORE
R: 123
R: ?

means that you provided more items of data than the INPUT state-
ment requested. The comma is a data item separator.

 T: ' STOP'
R: BREAK IN 4000. This line number depends on when the ' STOP' key is hit.

2. String Input. A little earlier we tried unsuccessfully to enter
some non-numeric characters. The error was caused b ecause the INPUT
variable was floating point. Enter the following st ring INPUT test
program.

Exercise: A program to explore legal string input d ata.

T: NEW
T: 2000 INPUT X$:PRINTX$:GO TO 2000
T: RUN 2000
R: ?
T: ASDE
R: ASDE
R: ?

Alphabetic characters are legal input for string (X $) variables
but not for floating point or integer variables.

T: " ASWER"
R: ASWER R:
?

Note that the leading and trailing quotes are strip ped off, i.e.,
not included in the string.

T: TYPE "" QUOTE R:
TYPE"" QUOTE
 R: ?

Quotes are only removed if they are at the beginnin g of the line.

GETTING INFORMATION INTO YOUR PROGRAM

T: bb " AFR"
R: AFR

Leading blanks are removed and quotes stripped off. Remember b
means a blank or space.

T: bbbFGH
R: FGH
R: ?
T: 'STOP '
R: BREAK IN 2000. This line number depends on when the 'STOP ' key is hit.

Leading blanks are removed. Modify your test progra m to see the
treatment of trailing blanks.

T: 2000 INPUTX$:Z$=X$+X$:PRINTZ$:GO TO 2000
T: RUN 2000

R: ? T:
XC R:
XCXC
R: ?

With no blanks specified, Z$ =X$+X$ simply concatenates the
two copies of the input string.

T: XCbb
D : VPYC

R: ?

Trailing blanks are removed.

T: bbbABCbbb
R: ABCABC R: ?

Both leading and trailing blanks are removed.

T : bbXYZbbABbb
R: XYZ ABXYZ AB R:
?

Embeded blanks are permitted.

GETTING STARTED WITH YOUR PET

T: " bbbABCbbb"
R: ABC ABC
'R: ?

All blanks are included when enclosed in quotes.

T: " bA R:
 A A
R: ?

A single set of double quotes will preserve leading blanks.

T : Ab "
R: A " A"
R: ?
T : " Abb
R: AA R:
 ?
T: ABC,
R: ?EXTRA IGNORED
R: AB CAB C
R: ?

A comma is treated as a data separator for string v ariables
just as it is for numeric variables.

T: " ABC,
R: ABC,ABC,
R: ?

A quote permits the comma to be part of the string and not
considered as a separator.

Try several examples of using special characters in a string
both with and without quotes.

GETTING INFORMATION INTO YOUR PROGRAM T:

R:

R: ?

T:

R:

R: ?

T:

R:

R: ?

If you haven ' t tried any graphics symbols, you might want to
try one or two now.

T:

R:

R: ?

T:

R:

R: ?
T: ' STOP'
R: BREAK IN 2000. This line number depends on when the ' STOP' key is hit.

It appears that graphics symbols must be enclosed i n quotes in
order to be treated as string data.

Many programs use encoded responses to select optio ns. With
string handling there is no need to make encoded re sponses,
i.e., 1 for yes, 0 for no.

 5-10

GETTING STARTED WITH YOUR PET

Exercise: Program to allow human oriented input to programs
for option selection.

T: NEW
T: 1500 INPUT " TYPE IN YES,NO,OR MAYBE " ;Z$ T:
1510 IF Z$= " YES" THEN PRINT " YEP" T: 1520 IF
Z$=" NO" THEN PRINT " NOPE"
T: 1530 IF Z$= " MAYBE" THEN PRINT " MAKE UP YOUR MIND"
T: 1540 GO TO 1500
T: RUN 1500
R: TYPE IN YES. NO.OR MAYBE?

Be sure to use a semicolon (;) between the last quo te and the
variable Z$ in line 1500.

If you get a " syntax error " message, recheck the line number
specified in the error message by:

T: LIST line number

The most likely errors are the wrong number of quot es, a mis-
spelled keyword, an omitted $, or a comma where a s emicolon
should be.

Test this program by trying:

T: YES
R:

R: TYPE IN YES,NO,OR MAYBE?
T: NO
R:

R: TYPE IN YES,NO,OR MAYBE?
T: MAYBE
R:

R: TYPE IN YES,NO,OR MAYBE?
T: ' STOP'
R: BREAK IN 1500

 5-11

GETTING INFORMATION INTO YOUR PROGRAM

3. Integer Input

Exercise: Program to explore legal integer input da ta.

T: NEW
T: 3000 INPUT I%:PRINT I%:GO TO 3000

Since I% is an integer variable, we can use this fr agment of a
program to experiment with the format and size of n umbers that the
PET BASIC will accept. The ? implies that the progr am is ready for
INPUT.

T: RUN 3000
R: ? T:
1.5
R: 1
R: ?

Fractional parts are truncated.

T: 1.5E+6
R: ?ILLEGAL QUANTITY ERROR IN 3000
R: READY.

Quantity is too big.

T: RUN R:
?
T: 1.5E+2
R: 150 R:
 ?

T: bb5
R: 5
R: ?

Blanks are ignored.

T: 5+6
R: ?REDO FROM START
R: ?

This error message indicates unacceptable input. It does not
terminate the program. It does give you another cha nce.

GETTING STARTED WITH YOUR PET

D. GET

The GET statement differs from the READ and INPUT s tatements because it
is conditional. That is, if data is at the keyboard (or other device
specified by #), then it is put in the variable nam ed in the GET
statement. If no data is available, a special signa l value (depending
on the type of the variable) is put in the variable and the program is
continued. GET does not wait for data.

1. Numeric GET.

Exercise: Experiment with numeric GET.

T : NEW
T: 100 GET A
T: 120 PRINT A
T: 130 GO TO 100
T : RUN

The screen should fill with zeros.

R: 0

T: 5 T:
5

Each time a numeric key is typed it will be display ed,

It is not necessary to type a carriage return. Watc h carefully
since the display will be moving rapidly. The speci al value
returned by GET for numeric variables is the zero. Because of
this, it is not possible to determine when a zero i s typed.

T: ' STOP'
R: BREAK IN 120. This line number depends on when t he 'STOP' key is typed.

With the GET experiment in memory (go back and rety pe it if you have
typed NEW or turned power off since typing it the f irst time).

T: 110 IF A=0 THEN GO TO 100 T
: RUN

Now nothing should happen until you type a number. Try a few:

 5-13

GETTING INFORMATION INTO YOUR PROGRAM

T:

R:

T:

R:

If you haven ' t tried typing zero, try it now.

T: 0 R:

What was the response?

T: 'STOP '
R: BREAK IN 110. This line number depends on when t he ' STOP' key is typed.

2. String GET.

Exercise: Determine how characters are entered via a GET
statement.

T: NEW
T: 100 GET A$
T: 120 PRINT A$
T : 130 GO TO 100
T: RUN

Blank lines should fill the screen. Typing any alph abetic
character should echo that character as a response. Since many
blank lines are being displayed, watch carefully si nce the
character typed will quickly scroll off the top of the screen.

T: A R:
A

If you

T : ' STOP'
R: BREAK IN 120

you will interrupt the program.

 R:

GETTING STARTED WITH YOUR PET

T: PRINT LEN(A$) R: 0

When no data is provided to GET with a string variable, the
length of that string is set to zero, i.e., nothing there.

T: 110 IF LEN(A$)=O THEN GO TO 100 T: RUN

Now nothing should happen until you type a character. T ry a few.

T: R:

T:

VI. DATA REPRESENTATION

A. Largest Numeric Value

1. Floating Point. To find the largest floating point number that
the PET can handle, run the following program.

Exercise: Test floating point maximum.

T: NEW
T: 200 1=1
T: 210 I=I*2
T: 220 PRINT I
T: 230 GO TO 210
T: RUN

A long series of numbers starting with

R: 2 R:
4 R: 8
R: 16

will be printed out; the last number will be

R: 4.2535 ... E+37

followed by

R: ?OVERFLOW ERROR IN 210

This means that 8.5070 ... E+37 was too large to re present.

Exercise: Modify the program above to display large negative
floating point numbers to determine the largest neg ative number
that the PET can represent. If the sign of the resu lt alternates
between plus and minus, you should try a different modification.
Your result should show that the sign is independen t of the
maximum size permitted.

T:

T:

R:

 6- 44

GETTING STARTED WITH YOUR PET

The largest negative number is

2. Integer. To find the largest integer number that the PET can
handle, run the following program:

T: NEW
T : 300 I%=0
T: 305 I%=I%+1 T:
310 J%=2UpArrowI%-
1 T : 320 PRINT J%
T: 330 GO TO 305 T
: RUN

A series of numbers

R: 1
R: 3
R: 7

R: 32767
R: ? ILLEGAL QUANTITY ERROR IN 310

w i l l be printed ou t . This means that 65535 is too large to
represent as an integer.

T: I%=32768 R:

This means that 32767 is the largest number that ca n be
represented as an integer.

Exercise: Modify the program above to display large negative
integers.

T:

T:

R:

T:

R:

DATA REPRESENTATION

The largest negative integer that can be represente d by the
PET is ------- ?

B. Smallest Numeric Value

1. Floating Point. To find the smallest floating point number that
the PET can handle, run the following program:

T: NEW
T: 100 1=1
T: 110 1=1/2
T: 120 PRINT I
T : 130 IF I <> 0 THEN 110
T: RUN

A long series of numbers starting with

.5

.25

.125

will be printed out the last two will be

2.938-------E-39
0

This means that 1.469 E-39 was too small and had to be
represented as a zero.

Exercise: Modify the program above to display small negative
floating point numbers to determine the smallest ne gative
number that the PET can represent.

T:

T:

R:

The smallest negative number that the PET can repre sent is -

6- 3

GETTING STARTED WITH YOUR PET

C. Memory Space Used

Different types of data require different amounts o f memory. To

determine the memory space required for each type w e will use the
FRE function which returns the amount of space rema ining.

These are the responses for an 8K machine. If you h ave a 4K
machine or a different version of BASIC, note the v alues.

Exercise: Determine the amount of space used by a s ingle floating
point value.

T: NEW
T: DIMA(100)
T: ? FRE(0) R:
6652

Determine the amount of memory space left after res erving 100
floating point locations.

T: NEW
T: DIMA(101)
T: ? FRE(0)
R: 6647

Determine the amount of space left after reserving 101 floating
point locations. This difference (5) is the number of bytes one
floating point variable requires.

Exercise: Determine the amount of space used by a s ingle integer
value.

T: NEW
T: DIM I%(100) T:
? FRE(0)
R: 6955
T: NEW
T : DIM I%(101)
T: ? FRE(0)
R: 6953

Using the same approach you can see that for one ad ditional integer
number, two bytes are required.

DATA REPRESENTATION

Exercise: Determine the amount of space used by a s ingle string
value.

T: NEW
T : DIM A$(100)
T: ? FRE(0) R:
6854
T: NEW
T: DIM A$(101)
T: ? FRE(0) R:
6851

For one additional string variable, three bytes are required. However,
each string can have as many as 255 characters in i t.

D. Number of Significant Digits

The PET can display nine digits in a number even th ough more infor-
mation can be stored in memory.

Exercise: Determine the number of digits displayed for floating
point numbers.

T: PRINT 234567890 R:
234567890

This indicates that nine digits can be displayed.

T: PRINT 1234567890
R: 1.23456789E+09

This shows that the tenth digit is not displayed.

Exercise: Show how many digits of information can b e saved in
memory.

T: A=1234512340:P RINT A
R: 1.23451234E+09
T: B=1234512341:PRINT B
R: 1.23451234E+09

Even though the numbers entered differed by 1 in th e tenth digit,
the display shows that they are equal. Are they rea lly?

6-5

GETTING STARTED WITH YOUR PET

T: IF A<>B THEN PRINT '<>"
R: < >

The response shows that the PET can distinguish the difference of 1
in the tenth digit even if it doesn ' t display the difference. Can
the PET distinguish a difference of 1 in the eleven th digit?

T: C =12345123400:PRINT C R:
1.23451234E+10
T: D=12345123401:P RINT D
R: 1.23451234E+10

As you expected, the displayed values appear to be equal. Are they?

T: IF C=D THEN PRINT "=" R:
=

It appears that the PET can not distinguish between two numbers
that differ by one in the eleventh position.

The number of significant digits that are displayed is nine and
the number saved in memory is about ten.

E. Rounding.

Since the PET saves about ten digits in memory and only displays
nine, it must "round " to display the proper value.

Exercise: Determine how the PET rounds numbers for display.

T: NEW
T: 100 A =1234512340
T: 110 FOR 1=1 TO 15
T: 120 B=A+I
T: 130 PRINT A;"+";I;"=";B
T: 140 NEXT I
T : RUN
R: 1..23451234E+9+1=1.23451234E+9

R: 1.23451234E+9+5=1.23451235E+9 R:

1.23451234E+9+15=1.23451236E+9

6- 6

DATA REPRESENTATION

From this display you can see that 1234512345 was rounded to
1.23451235E+9 and 1234512355 was rounded up to 1.23451236E+9. The
PET rounds the ninth digit up whenever the tenth di git is 5 (or
more) and rounds down whenever the tenth digit is 4 (or less).

 7-1

VII. USING THE CASSETTE FOR PROGRAM STORAGE

A. SAVE a Program

Since typing is so much work, you will want to save programs that
you have entered. The command to do that is SAVE " LABEL" .

Exercise: Write a program on the cassette.

T: SAVE
R: PRESS PLAY & RECORD ON TAPE #1
R: OK - This occurs after you press play and record .
R: WRITING
R: READY.

If you wish to give your program a label (name), ty pe SAVE " LABEL" .
" LABEL" may be from 1-78 characters.

Exercise: Write a program on the tape with the labe l ABC.

T: SAVE " ABC"
R: PRESS PLAY & RECORD ON TAPE #1
R: OK - This occurs after you press play and record .
R: WRITING ABC
R: READY.

WARNING!WARNING! The system does not check to see w hich buttons
are pushed on the cassette. If any button is left o n, the system
assumes it is the right one. Whatever button you pu sh is assumed to
be the correct one.

B. VERIFY a Program

In order to be confident that the program you wrote on the cassette
is written correctly, you may compare what is on th e tape with what
is in memory with the VERIFY command. First, rewind the cassette.

Exercise: Verify that the information just written is correct.

T : VERIFY
R: PRESS PLAY ON TAPE #1
R: OK
R: SEARCHING R:
FOUND
R: VERIFYING R:
OK
R: READY.

USING THE CASSETTE FOR PROGRAM STORAGE

If there is a compare error, you will get a ?VERIFY ERROR. If
this happens, rewind the tape and try again. Since cassette reading
and writing is not all that reliable, trying again often gets past the
problem.

If a VERIFY is typed without a label, the system wi ll try to compare
the first program it finds on the cassette with wha t is in memory. If
a VERIFY " LABEL" is typed, the system will search for the program w ith
the given label. The name of each program encounter ed will be listed.

Cassettes may be removed without rewinding, then re placed, and a new
program written on the cassette from that point. A 10-15 second
leader is written after each SAVE command is given.

Exercise: SAVE a program and demonstrate that VERIF Y catches
differences. First, rewind a blank cassette.

T: NEW
T: 10 PRINT " TAPE TEST"
T: 20 INPUT L,W
T: 30 A =L*W
T: 40 PRINT A,L,W
T: 50 END
T: SAVE " A"

R: PRESS PLAY AND RECORD ON TAPE #1 R:
OK
R: WRITING A
R: READY.

This puts a small program into memory and saves it on cassette
with the name " A" . Now rewind the cassette.

T : VERIFY
R: PRESS PLAY ON TAPE #1
R: OK
R: SEARCHING R:
FOUND A R:
VERIFYING R: OK
R : READY.

You have succeeded in checking the information on c assette against
the program in memory. Do not rewind the cassette.

GETTING STARTED WITH YOUR PET

T: SAVE " ABC"
R: PRESS PLAY AND RECORD ON TAPE #1 R:
OK
R: WRITING ABC
R: READY.

This saved a second copy of our program on the cass ette. The second
copy is after the first and is called " ABC" .

Rewind the cassette.

To force a verify error, we will change the program in memory.

T: 10 PRINT " FORCE ERROR" T:
VERIFY" ABC"
R: PRESS PLAY ON TAPE #1 R:
OK
R: SEARCHING FOR ABC R:
FOUND A
R: FOUND ABC
R: VERIFYING
R: ? VERIFY ERROR
R: READY.

C. LOAD a Program

To reload your program rewind the cassette and type

T: T VAD
R: PRESS PLAY ON TAPE #1
R: OK

The LOAD command automatically clears memory and re ads into memory
the first program on the cassette. The following re sponses are
displayed after you press play on the recorder.

R: SEARCHING
R: FOUND A R:
LOADING R:
READY.

If you want to load a labeled program, rewind the c assette and
type LOAD " A" .

USING THE CASSETTE FOR PROGRAM STORAGE

Exercise: LOADing of programs SAVEd previously.

T: LOAD " A"
R: PRESS PLAY ON TAPE #1
R: SEARCHING FOR A
R: FOUND A
R: LOADING A
R: READY.

If you have more than one program on a cassette and a LOAD is typed,
the first program found is the one loaded. For exam ple, if you have
three programs on a cassette and the recorder is si tting at the end
of the first program, LOAD will load the second pro gram.

If a LOAD " ABC" is given, a search will be made for program ABC. W hen
ABC is found it will be loaded. A list of all progr ams found before
ABC will be displayed. For example, suppose there are four programs on
a cassette, the first two are labeled 1 and $, resp ectively; the third
is not labeled; and the fourth is labeled PET.

If a LOAD " PET" is given, the system responds as follows:

T : LOAD "PET"
R: PRESS PLAY ON TAPE #1
R: OK
R: SEARCHING FOR PET
R: FOUND 1 R: FOUND $ R: FOUND
R: FOUND PET R: LOADING R: READY.

If you do not know what is on a cassette, just ask to LOAD a non-
existent label and each program on the cassette wil l be listed as it
is found.

WARNING!WARNING! Loading a program from tape is not the most reliable
operation in the world. The most common error we ha ve run into is that
the system finds the label it is searching for but never successfully
loads the program. The only way to correct this is to rewind the
cassette and try again. Often, a second or third tr y will be
successful.

7- 4

