

COLORAND GRAPHICS

Up to now we've explored some of the sophisticated computing
capabilities of the Commodore 64. But one of its most fascinating fea-
tures is an outstanding ability to produce color and graphics.

You've seen a quick example of graphics in the "bouncing ball" and
"maze" programs. But these only touched on the power you command.
A number of new concepts will be introduced in this section to explain
graphic and color programming and show how you can create your own
games and advanced animation.

Because we've concentrated on the computing capabilities of the ma-
chine, all the displays we've generated so far were a single color (light
blue text on a dark blue background, with a light blue border).

In this chapter we'll see how to add color to programs and control all
those strange graphic symbols on the keyboard.

PRINTING COLORS

As you discovered if you tried the color alignment test in Chapter 1,

you can change text colors by simply holding the" key and one of
the color keys. This works fine in the immediate mode, but what hap-
pens if you want to incorporate color changes in your programs?

When we showed the "bouncing ball" program, you saw how
keyboard commands, like cursor movement, could be incorporated
within PRINT statements. In a like way, you can also add text color
changes to your programs.

You have a full range of 16 text colors to work with. Using the ami
key and a number key, the following colors are available:

1234567

Black White Red Cyan Purple Green Blue

8
Yellow

If you hold down the ~ key along with the appropriate number
key, these additional eight colors can be used:

2

Orange Brown

3
Lt.

Red

4

Gray

5 6

Gray 2 Lt.
Green

7
Lt.

Blue

8

Gray 3

TYPE NEW, and experiment with the following. Hold down the"
key and at the same time hit the a key. Next, hit the II key without

56

holdingdownthe_key. Now,whileagain depressingthe Emlkey
at the same time hit the II key. Release the_key and hit thellkey.
Move through the numbers, alternating with the letters, and type out the
word RAINBOW as follows:

10 PRINT"jRjAjI tjBjOjW"

_allIlIlIlIlD
RUN
RAINBOW

Just as cursor controls show as graphic characters within the quote
marks of print statements, color controls are also represented as graphic
characters.

In the previous example, when you held down EmI and typed II a

"£" was displayed.IIDID displayed a "-". Each color control will
display its unique graphic code when used in this way. The table shows
the graphic representations of each printable color control.

Even though the PRINT statement may look a bit strange on the
screen, when you RUN the program, only the text will be displayed. And
it will automatically change colors according to the color controls you
placed in the print statement.

Try a few examples of your own, mixing any number of colors within a
single PRINT statement. Remember, too, you can use the second set of
text colors by using the Commodore key and the number keys.

TIP:

You will notice after running a program with color or mode (reverse) changes, that the

"READY" prompt and any additional text you type is the same as the last color or

mode change. To get back to the normal display, remember to depress:

~ and Em

57

KEYBOARD COLOR DISPLAY KEYBOARD COLOR DISPLAY_a BLACK . a ORANGE n..
EmIli WHITE iii II BROWN II
EmIli RED f!I II LT.RED__CYAN [la GRAY1

&1111 PURPLE . [III GRAY2

&1111 GREEN D II LT. GREEN II
IIDID BLUE = D LT. BLUE 0
&liD YELLOW iii D GRAY 3

....

COLOR CHR$ CODES

Take a brief look at Appendix F, then turn back to this section.
You may have noticed in looking over the list of CHR$ codes in

Appendix F that each color (as well as most other keyboard controls,

such as cursor movement) has a unique code. These codes can be

printed directly to obtain the same results as typing liB and the
appropriate key within the PRINT statement.

For examp.le, try this:

The text should now be green. In many cases, using the CHR$ func-

tion will be much easier, especially if you want to experiment with

changing colors. The following program is a different way to get a rain-
bow of colors. Since there are a number of lines that are similar (40-

110) use the editing keys to save a lot of typing. See the notes after the

listing to refresh your memory on the editing procedures.

HEW

1 REI'1 AUTOl'1ATI C COLOR BARS
S PI':I HT CHF.:$(147) : REI'1 CHR$(147) = CLR/HOt1E
10 PI':I ~n CHR$ (18::0.: " " .:: REN REVERSE BAR
20 CL = IHT(8~RHD(1»+1
30 ON CL GOTO 40.Se~6e~70,80,ge,100~110
40 PRINT CHR$(S);: OOTO 10 J

50 F'F.:HIT CHF.:$(28) .:: GOTel 1£1
613 PRINT CHF.:$(38);: OOTO 113
70 PRINT CHR$(31);: GOTO 113
813 PRINT CHR$(144) : OOTO 113
90 PRINT CHR$(156) : GOTO 113
1130 PRINT CHR$(158 ;: OOTO 113
1113 PRINT CHR$(159 ;: GOTO 10

58

Type lines 5 through 40 normally. Your display should look like this:

1 REM AUTOMATIC COLOR BARS
5 PRINT CHR$(147) : REM CHP$(147)= ClR/HOME
10 PR I NT CHR$ (1 :=:):" " .::F:Et'1 RE',/ER:=:E BAF::=:

20 CL = INT(8*RNO(1»+1
30 ON CL GOTO 40.50.60.70.80.90.100.110
40 PRINT CHR$(5);: GOTO 10
.

EDITING NOTES

Use the CRSR-UP key to position the cursor on line 40. Then type 5
over the 4 of 40. Next, use the CRSR-RIGHT key to move over to the 5 in

the CHR$ parentheses. Hit_ .1/"''tIf'''I~.to open up a space and type
'28'. Now just hit .:1:11111:1/_with the cursor anywhere on the line.

The display should now look like this:

Don't worry. line 40 is still there. LISTthe program and see. Using the
same procedure, continue to modify the last line with a new line number
and CHR$ code until all the remaining lines have been entered. See, we

told you the editing keys would come in handy. As a final check, list the
entire program to make sure all the lines were entered properly before
you RUN it.

Here is a short explanation of what's going on.
You've probably figured out most of the color bar program by now

except for some strange new statement in line 30. But let's quickly see

59

what the whole program actually does. line 5 prints the CHR$ code for
CLR/HOME.

line 10 turns reverse type on and prints 5 spaces, which turn out to be

a bar, since they're reversed. The first time through the program the bar
will be light blue, the normal text color.

line 20 uses our workhorse, the random function to select a random
color between 1 and 8.

line 30 contains a variation of the IF . . . THEN statement which is

called ON . . . GOTO. ON . . . GOTO allows the program to choose
from a list of line numbers to go to. If the variable (in this case CL) has a
value of 1, the first line number is the one chosen (here 40). If the value

is 2, the second number in the list is used, etc.

lines 40-110 just convert our random key colors to the appropriate
CHR$ code for that color and return the program to line 10 to PRINT a

section of the bar in that color. Then the whole process starts over
again.

See if you can figure out how to produce 16 random numbers, ex-

pand ON . . . GOTO to handle them, and add the remaining CHR$
codes to display the remaining 8 colors.

PEEKSAN D POKES

No, we're not talking about jabbing the computer, but we will be able
to "look around" inside the machine and "stick" things in there.

Just as variables could be thought of as a representation of "boxes"

within the machine where you placed your information, you can also

think of some specially defined "boxes" within the computer that repre-
sent specific memory locations. ____

The Commodore 64 looks at these memory locations to see what the

screen's background and border color should be, what characters are to
be displayed on the screen-and where-and a host of other tasks.

By placing, "POKEing," a different value into the proper memory lo-
cation, we can change colors, define and move objects, and even
create music.

These memory locations could be represented like this:

BORDER
COLOR

BACKGROUND
COLOR

60

On page 60 we showed just four locations, two of which control the

screen and background colors. Try typing this:

POKE 53281,7 .:I:llmll.

The background color of the screen will change to yellow because we

placed the value 7'-for yellow-in the location that controls the

background color of the screen.

Try POKEing different values into the background color location, and
see what results you get. You can POKE any value between 0 and 255,

but only 0 through 15 will work.
The actual values to POKE for each color are:

Can you think of a way to display the various background and border
combinations? The following may be of some help:

Two simple loops were set up to POKE various values to change the

background and border colors. The DELAY loop in line 50 just slows

things down a bit.

61

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 Light RED
3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 . GRAY 3

For the curious, try:

? PEEK (53280) AND 15

You should get a value of 15. This is the last value BORDERwas given
and makes sense because both the background and border colors are
GRAY (value 15) after the program is run.

By entering AND 15 you eliminate all other values except 1-15, be-
cause of the way color codes are stored in the computer. Normally you
would expect to find the same value that was last POKEd in the location.

In general, PEEKlets us examine a specific location and see what value

is presently there. Can you think of a one line addition to the program
that will display the value of BACKand BORDERas the program runs?
How about this:

25 PRINT CHR$(147); "BORDER = ";PEEK (53280) AND 15, "BACK-
GROUND = If; PEEK(53281) AND 15

SCREEN GRAPHICS

In all the printing of information that you've done so far, the computer
normally handled information in a sequential fashion: one character is
printed after the next, starting from the current cursor position (except
where you asked for a new line, or used the ',' in PRINT formatting).

To PRINT data in a particular spot you can start from a known place
on the screen and PRINTthe proper number of cursor controls to format
the display. But this takes program steps and is time consuming.

But just as there are certain spots in the Commodore 64's memory to
control color, there are also locations that you can use to directly control
each location on the screen.

SCREEN MEMORY MAP

Since the computer's screen is capable of holding 1000 characters (40
columns by 25 lines) there are 1000 memory locations set aside to han-
dle what is placed on the screen. The layout of the screen could be

thought of as a grid, with each square representing a memory location.
And since each location in memory can contain a number from 0 to

255, there are 256 possible values for each memory location. These

values represent the different characters the Commodore 64 can display
(see Appendix E). By POKEing the value for a character in the appro-

62

priate screen memory location, that character will be displayed in the
proper position.

10
COLUMN

20 30 39

1063

1024-
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

...
10 ~

20

24

Screen memory in the Commodore 64 normally begins at memory
location 1024, and ends at location 2023. Location 1024 is the upper left
corner of the screen. Location 1025 is the position of the next character
to the right of that, and so on down the row. Location 1063 is the
right-most position of the first row. The next location following the last
character on a row is the first character on the next row down.

Now, let's say that you're controlling a ball bouncing on the screen.
The ball is in the middle of the screen, column 20, row 12. The formula
for calculation of the memory location on the screen is:

I
POINT = 1"24 + X + 4"*Y_

COWMN

ROW

where X is the column and Y is the row.

Therefore, the memory location of the ball is:

1"24 + 2" + 48" or 1524
\

C:OWMN

ROW (408 12)

63

Clear the screen with Emil and 11I.:f.ml]{d:land type:

POKE 1524,81
POKE 55796,1

1 t
COLOR

LOCATION

COLOR MEMORY MAP

A ball appears in the middle of the screen! You have placed a char-
acter directly into screen memory without using the PRINT statement.
The ball that appeared was white. However there is a way to change
the color of an object on the screen by altering another range of mem-
ory. Type:

r- -- LOCATION
POKE 55796,2 __COLOR

The bali's color changes to red. For every spot on the Commodore 64's

screen there are two memory locations, one for the character code, and

the other for the color code. The color memory map begins at location

55296 (top left-hand corner), and continues on for 1000 locations. The

55296-
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

10
COLUMN

20 30

..
10 ~

20

24

64

same color codes, from 0-15, that we used to change border and
background colors can be used here to directly change character colors.

The formula we used for calculating screen memory locations can be
modified to give the locations to POKE color codes. The new formula is:

COLOR PRINT= 55296 + X + 40*Y

MORE BOUNCING BALLS

Here's a revised bouncing ball program that prints directly on the
screen with POKEs, rather than using cursor controls within PRINT state-
ments. As you will see after running the program, it is much more flexi-
ble than the earlier program, and will lead up to programming much
more sophisticated animation.

NEW

10 PRINT ..{CLR HOME}..
20 POKE 53280,7 : POKE 53281,13
30 X = 1 : Y = 1

40 OX = 1 : OY = 1
50 POKE 1024 + X +
60 FOR T = 1 TO 10
70 POKE 1024 + X +
80 X = X + OX
90 IF X < = 0 OR X :>= 39 THEN OX = -OX
100 Y = Y + OY
110 IF Y < = 0 OR Y :>= 24 THEN OY = -OY

120 GOTO 50

40i1EY,81

: NEXT
40i1EY,32

Line 10 clears the screen, and line 20 sets the background to light
green with a yellow border.

The X and Y variables in line 30 keep track of the current row and
column position of the ball. The DX and DY variables in line 40 are the
horizontal and vertical direction of the bali's movement. When a + 1 is

added to the X value, the ball is moved to the right; when -1 is added,
the ball moves to the left. A + 1 added to Y moves the ball down a row;

a -) added to Y moves the ball up a row.
Line 50 puts the ball on the screen at the current cursor position. Line

60 is the familiar delay loop, leaving the ball on the screen just long
enough to see it.

Line 70 erases the ball by putting a space (code 32) where the ball
was on the screen.

6S

Line 80 adds the direction factor to X. Line90 tests to see if the ball
has reached one of the side walls, reversing the direction if there's a
bounce. Lines 100 and 110 do the same thing for the top and bottom
walls.

Line 120 sends the program back to display and moves the ball
again.

By changing the code in line 50 from 81 to another character code,
you can change the ball to any other character. If you change DX or DY
to 0 the ball will bounce straight instead of diagonally.

We can also add a little more intelligence. So far the only thing you
checked for is the X and Y values getting out of bounds for the screen.
Add the following lines to the program.

~; ~~~ELl~2~ ~OI~~(RND(1)*1000), 166~E~ COO!C)27 NEXTL
85 IF PEEK(1024 + X + 40*¥) = 166 THEN DX = -OX:

GOTO 80
105 IF PEEK(1024 + X + 40*¥) = 166 THEN O¥ = -O¥:

GOTO 100

lines 21 to.27 put 10 blocks on the screen in random positions. lines
85 and 105 check (PEEK) to see if the ball is about to bounce into a
block, and changes the bali's direction if so.

66

