APPENDICES

APPENDIX A

ABBREVIATIONS FOR BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commodore 64 BASIC allows the user to abbreviate most keywords. The abbreviation for PRINT is a question mark. The abbreviations for other words are made by typing the first one or two letters of the word, followed by the SHIFTed next letter of the word. If the abbreviations are used in a program line, the keyword will LIST in the full form.

Command	Abbreviafion		Looks like this on screen	Command	Abbreviation	Looks like this on screen
ABS	A SHIFI	B	$A \square$	END	E SHIFI N	E \square
AND	A SHIFT	N	$A \square$	EXP	E SHIFT X	E 9
ASC	A SHIFT	S	A	FN	NONE	FN
ATN	A SHIFT	T	$A \widetilde{ }$	FOR	F SHIFT O	F
CHR\$	C SHIFT	H	$C \square$	FRE	F SHIFT R	F
CLOSE	CL SHIFT	\bigcirc	$C L$	GET	G SHIFT E	C
CLR	C SHIFT	L	C	GET\#	NONE	GET\#
CMD	C SHIFT	M	C	GOSUB	GO SHIFT 5	GO
CONT	C SHIFT	0	C	GOTO	G SHIFT O	G
COS	NONE		cos	IF	NONE	IF
DATA	D SHIFT	A	D 4	INPUT	NONE	INPUT
DEF	D SHIFT	E	D	INPUT\#	1 SHIFT N	$1 \square$
DIM	D SHIFT	1	$\bigcirc \square$	INT	NONE	INT

Command	Abbreviation	Looks like this on screen	Command	Abbreviation	Looks like this on screen
LEFT\$	LE SHIFT F	LE \square	RIGHT\$	R SHIFT I	$\mathrm{R} \square$
LEN	NONE	LEN	RND	R SHIFT N	$R \square$
LET	L SHIFT E	1	RUN	R SHIFT U	$R \square$
LIST	L SHIFT ।	$\llcorner\square$	SAVE	S SHIFT A	S 4
LOAD	1 SHIFT O	$1 \square$	SGN	S SHIFT G	S \square
LOG	NONE	LOG	SIN	S SHIFT I	s \square
MID\$	M SHIFT	$M \square$	SPC(S SHIFT P	S
NEW	NONE	NEW	SQR	S SHIFT Q	s S
NEXT	N SHIFT E	$N \square$	STATUS	ST	ST
NOT	N SHIFT O	N	STEP	ST SHIFT E	ST \square
ON	NONE	ON	STOP	S SHIFT T	$5 \square$
OPEN	O SHIFT P	$\bigcirc \square$	STR\$	ST SHIFT R	ST \square
OR	NONE	OR	SYS	s SHIFT Y	S \square
PEEK	P SHIFT E	P \square	TAB ${ }^{\text {c }}$	T SHIFT A	T 4
POKE	P SHIFT 0	P \square	TAN	NONE	TAN
POS	NONE	POS	THEN	T SHIFT H	T \square
PRINT	?	?	TIME	TI	TI
PRINT\#	P SHIFT R	$P \square$	TIME\$	T/\$	TI\$
READ	R SHIFT E	R \square	USR	\cup SHIFT S	$\cup \square$
REM	NONE	REM	VAL	\checkmark SHIFT A	\checkmark ¢
RESTORE	RE SHIFIS	RE \geqslant	VERIFY	\checkmark SHIFT E	$\checkmark \square$
RETURN	RE SHIFT T	RE \square	WAIT	W SHIFT A	w

APPENDIX B

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commodore 64 character sets. It shows which numbers should be POKEd into screen memory (locations 1024-2023) to get a desired character. Also shown is which character corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This means that you cannot have characters from one set on the screen at the same time you have characters from the other set displayed. The sets are switched by holding down the SHIFT and C: keys simultaneously.

From BASIC, POKE 53272,21 will switch to upper case mode and POKE 53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE. The reverse character code may be obtained by adding 128 to the values shown.

If you want to display a solid circle at location 1504, POKE the code for the circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of each character displayed on the screen (locations 55296-56295). To change the color of the circle to yellow (color code 7) you would POKE the corresponding memory location (55776) with the character color: POKE 55776,7.

Refer to Appendix D for the complete screen and color memory maps, along with color codes.

NOTE: The following POKEs display the same symbol in set 1 and 2: 1, 27-64, 91-93, 96-104, 106-121, 123-127.

SCREEN CODES

SET 1	SET 2	POKE	SET 1	SET 2	POKE	SET 1	SET 2	POKE
$@$		0	C	c	3	F	f	6
A	a	1	D	d	4	G	g	7
B	b	2	E	e	5	H	h	8

SET 1	SET 2	POKE	SET 1	SET 2	POKE	SET 1	SET 2	POKE
I	i	9	\%		37	4	A	65
J	j	10	\&		38	\square	B	66
K	k	11	,		39	\square	C	67
L	1	12	$($		40	-	D	68
M	m	13)		41		E	69
N	n	14	*		42	\square	F	70
0	0	15	+		43	\square	G	71
P	p	16	,		44	\square	H	72
Q	q	17	-		45	a	1	73
R	r	18			46	\square	J	74
S	5	19	1		47	\square	K	75
T	t	20	0		48		L	76
U	u	21	1		49	\checkmark	M	77
V	v	22	2		50	\square	N	78
W	w	23	3		51	\square	0	79
X	\times	24	4		52		P	80
Y	y	25	5		53		Q	81
Z	z	26	6		54		R	82
[27	7		55	\checkmark	S	83
£		28	8		56		T	84
]		29	9		57	\square	U	85
\uparrow		30	:		58	\triangle	V	86
\leftarrow		31	,		59	0	w	87
SPACE		32	$<$		60	4	X	88
!		33	$=$		61	\square	Y	89
"		34	$>$		62	θ	Z	90
\#		35	?		63	H		91
\$		36	\square		64	8		92

8ET 1	SET 2	POKE	8ET 1	SET 2	POKE	SET 1	BET 2	POKE
\square		93	\square	π	105	\square		117
π	88	94			106	\square		118
\triangle	N	95	\square		107	\square		119
SPACE		96	\square		108	\square		120
\square		97	\square		109			121
		98	\square		110		\checkmark	122
		99			111	\square		123
		100	\square		112	\square		124
		101	\pm		113	\square		125
团		102	\square		114	\square		126
		103	$日$		115	\square		127
8ㅏㅇ		104	\square		116			

Codes from 128-255 are reversed images of codes 0-127.

APPENDIX C

ASCII AND CHR\$ CODES

This appendix shows you what characters will appear if you PRINT CHR\$(X), for all possible values of X. It will also show the values obtained by typing PRINT ASC(" x "), where x is any character you can type. This is useful in evaluating the character received in a GET statement, converting upper/lower case, and printing character based commands (like switch to upper/lower case) that could not be enclosed in quotes.

PRINTS	CHRS	PRINTS	CHRS	PRINTS	CHRS	PRINTS	CHRS
	0	chsh	17	"	34	3	51
	1	+10s	18	\#	35	4	52
	2	$\overline{\operatorname{ctan}}$	19	\$	36	5	53
	3	IV51 061	20	\%	37	6	54
	4		21	\&	38	7	55
w+1	5		22	-	39	8	56
	6		23	$($	40	9	57
	7		24)	41	:	58
Jisables SMIT	E8		25	*	42	;	59
EMABLES SMITI	ङ0		26	+	43	$<$	60
	10		27	,	44	$=$	61
	11		28	-	45	\supset	62
	12	${ }^{\text {1585 }}$	29	-	46	?	63
REturn	13		30	1	47	@	64
SWITCH TO LOWER CASE	14	8 LI	31	0	48	A	65
	15	SPACE	32	1	49	B	66
	16	!	33	2	50	C	67

PRINTS	CHRS	PRINTS	CHAS	PRINTS	CHRS	PRINTS	CHRS
D	68	¢	97	T	126	Grey 3	155
E	69	\square	98		127	run	156
F	70	\square	$9 \bigcirc$		128	CHSA	157
G	71		100	Orange	129	YE1	158
H	72		101		130	CxM	159
1	73	\square	102		131	SPACE	160
J	74		103		132		161
K	75	\square	104	$f 1$	133		162
L	76	5	105	¢3	134		163
M	77	\square	106	f5	135		164
N	78	\sum	107	f7	136		165
0	79		108	¢2	137	閭	166
P	80	∇	109	f4	138		167
Q	81	\square	110	f6	139	8888	168
R	82		111	18	140	\square	169
S	83		112	SHIT Me mat	141		170
T	84		113	SWITCH 10 UPPER CASE	142	H	171
U	85		114		143	-	172
V	86	\checkmark	115	Bix	144	\square	173
W	87		116		145	7	174
X	88	\square	117		146		175
Y	89	Х	118	$\begin{aligned} & \text { ct } \\ & 0 \\ & \hline \end{aligned}$	147	\square	176
Z	90	0	119	insil	148	1	177
[91	4	120	Brown	149	\square	178
Σ	92	I	121	Lt. Red	150	日	179
]	93	θ	122	Grey 1	151		180
\uparrow	94	\square	123	Grey 2	152		181
\leftarrow	95	8	124	Li. Green	153		182
\square	96	\square	125	Lt. Blue	154		183

PRINTS	CHRS	PRINTS	CHRS	PRINTS	CHRS	PRINTS	CHRS
	184		186	\square	188	\square	190
	185	國	187	\square	189	-	191
CODES		2-223		ME AS		96-127	
CODES		4-254		AME AS		160-190	
CODE		5		AME AS		126	

APPENDIX D

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing characters on the screen, and the locations used to change individual character colors, as well as showing character color codes.

The actual values to POKE into a color memory location to change a character's color are:
\emptyset BLACK
1 WHITE
2 RED
3 CYAN
4 PURPLE
5 GREEN
6 BLUE
7 YELLOW

8 ORANGE
9 BROWN
$1 \varnothing$ Light RED
11 GRAY 1
12 GRAY 2
13 Light GREEN
14 Light BLUE
15 GRAY 3

For example, to change the color of a character located at the upper left-hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

MUSIC NOTE VALUES

This appendix contains a complete list of Note\#, actual note, and the values to be POKEd into the HI FREQ and LOW FREQ registers of the sound chip to produce the indicated note.

MUSICAL NOTE		OSCILLATOR FREQ		
NOTE	OCTAVE	DECIMAL	HI	LOW
0	$\mathrm{C}-0$	268	1	12
1	C\#-0	284	1	28
2	D-0	301	1	45
3	D\#-0	318	1	62
4	E-O	337	1	81
5	F-0	358	1	102
6	F\#-0	379	1	123
7	G-0	401	1	145
8	G\#-0	425	1	169
9	A-0	451	1	195
10	A\#-0	477	1	221
11	B-0	506	1	250
16	C-1	536	2	24
17	C\#-1	568	2	56
18	D-1	602	2	90
19	D\#-1	637	2	125
20	E-1	675	2	163
21	F-1	716	2	204
22	F\#-1	758	2	246
23	G-1	803	3	35
24	G\#-1	851	3	83
25	A-1	902	3	134
26	A\#-1	955	3	187
27	B-1	1012	3	244
32	C-2	1072	4	48

MUSICAL NOTE		OSCILLATOR FREQ		
NOTE	OCTAVE	DECIMAL	HI	LOW
33	C\#-2	1136	4	112
34	D-2	1204	4	180
35	D\#-2	1275	4	257
36	E-2	1351	5	71
37	F-2	1432	5	152
38	F\#-2	1517	5	237
39	G-2	1607	6	71
40	G\#-2	1703	6	167
41	A-2	1804	7	12
42	A\#-2	1911	7	119
43	B-2	2025	7	233
48	C-3	2145	8	97
49	C\#-3	2273	8	225
50	D-3	2408	9	104
51	D\#-3	2551	9	247
52	E-3	2703	10	143
53	F-3	2864	11	48
54	F\#-3	3034	11	218
55	G-3	3215	12	143
56	G\#-3	3406	13	78
57	A-3	3608	14	24
58	A\#-3	3823	14	239
59	B-3	4050	15	210
64	C-4	4291	16	195
65	C\#-4	4547	17	195
66	D-4	4817	18	209
67	D\#-4	5103	19	239
68	E-4	5407	21	31
69	F-4	5728	22	96
70	F\#-4	6069	23	181
71	G-4	6430	25	30
72	G\#-4	6812	26	156
73	A-4	7217	28	49
74	A\#-4	7647	29	223
75	B-4	8101	31	165
80	C-5	8583	33	135
81	C\#-5	9094	35	134

MUSICAL NOTE		OSCILLATOR FREQ		
NOTE	OCTAVE	DECIMAL	HI	LOW
82	D-5	9634	37	162
83	D\#-5	10207	39	223
84	E-5	10814	42	62
85	F-5	11457	44	193
86	F\#-5	12139	47	107
87	G-5	12860	50	60
88	G\#-5	13625	53	57
89	A-5	14435	56	99
90	A\# 5	15294	59	190
91	B-5	16203	63	75
96	C-6	17167	67	15
97	C\#-6	18188	71	12
98	D-6	19269	75	69
99	D\#-6	20415	79	191
100	E-6	21629	84	125
101	F-6	22915	89	131
102	F\#-6	24278	94	214
103	G-6	25721	100	121
104	G\#-6	27251	106	115
105	A-6	28871	112	199
106	A\#-6	30588	119	124
107	B-6	32407	126	151
112	C-7	34334	134	30
113	C\#-7	36376	142	24
114	D-7	38539	150	139
115	D\#-7	40830	159	126
116	E-7	43258	168	250
117	F-7	45830	179	6
118	F\# 7	48556	189	172
119	G-7	51443	200	243
120	G\#-7	54502	212	230
121	A-7	57743	225	143
122	A\#-7	61176	238	248
123	B-7	64814	253	46

FILTER SETTINGS

Location	Contents
54293	Low cutoff frequency ($0-7$)
54294	High cutoff frequency (0-255)
54295	Resonance (bits 4-7)
	Filter voice 3 (bit 2)
	Filter voice 2 (bit 1)
	Filter voice 1 (bit 0)
54296	High pass (bit 6)
	Bandpass (bit 5)
	Low pass (bit 4)
	Volume (bits 0-3)

APPENDIX F

BIBLIOGRAPHY

Prentice-Hall	"The PET Personal Computer for Beginners", S. Dunn and V. Morgan
Reston Publishing Co.	"PET and the IEEE 488 Bus (GPIB)", Eugene Fisher and C. W. Jensen "PET BASIC-Training Your PET Computer", Ramon Zamora, Wm. F. Carrie, and B. Allbrecht "PET Games and Recreation", M. Ogelsby, L. Lindsey, and D. Kunkin "PET BASIC", Richord Huskell "VIC Games and Recreation"
Telmas Courseware Ratings	"BASIC and the Personal Computer", T. A. Dwyer, and M. Critchfield
Total Information Services	"Understanding Your PET/CBM, Vol. 1, BASIC Programming" "Understanding Your VIC", David Schultz
Commodore Magazi mation for your Comm that you should serious	provide you with the most up-to-date infor re 64. Two of the most popular publications consider subscribing to are:
COMMODORE - The Mi and is available by subs year, worldwide).	rocomputer Magazine is published bi-monthly ription ($\$ 15.00$ per year, U.S., and $\$ 25.00$ per
POWER/PLAY -The Hom and is available by subs year worldwide).	Computer Magazine is published quarterly ation ($\$ 10.00$ per year, U.S., and $\$ 15.00$ per

APPENDIX G

VIC CHIP REGISTER MAP

5324B (\$DOOO) Starling (Base) Address

Register Dec	\# Hex	DB7	DB6	DB5	DB4	D83	DB2	DB1	DB0	
0	0	SOX7							S0x0	SPRITE $O X$ Comoonent
1	1	SOY7							SOYO	SPRITE O Y Componert
2	2	SIX7							SIXC	SPRITE $1 \times$
3	3	SIY7							SIYO	SPRITE 1 Y
4	4	S2X7							S2×0	SPRIIE $2 \times$
5	5	S2Y7							S2YO	SPRITE 2 Y
0	0	S3X7							53×0	SPRITE 3 X
7	7	S3Y7							S3Y0	SPRITE 3 Y
8	8	54×7							S4X0	SPRITE $4 \times$
9	9	$54 Y 7$							SAYO	SPRITE 4 Y
10	A	55×7							\$5×0	SPRITE $5 \times$
11	B	55 Y 7							S5YO	SPRITE 5 Y
12	C	56×7							S 6×0	SPRITE $6 \times$
13	D	S6Y7							SGYO	SFRITE 6 Y
14	E	S7X7							S7X0	SPRITE $7 \times$ Component
15	F	STY7							S7Y0	SPRITE 7 Y Component
16	10	S7X8	S6XB	S5×8	S4×8	\$3x8	S2X8	S1x8	S0X8	$\begin{aligned} & \text { MSB of } \mathrm{X} \\ & \text { COORD. } \end{aligned}$
17	11	RC8	ECN:	BMM	BLNK	RSEL	YSCL2	YSCLI	YSCLC	Y SCROLL MODE
18	12	RC7	RC6	RC5	RC4	RC3	RC2	RCl	RCO	RASTER
19	13	LPX7							LPXO	LIGHT PEN X
20	14	LPY7							LPYO	LIGHT PEN Y

Register Dec	\# Hex	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	
21	15	SE7							SE0	SPRITE ENABLE (ON/OFF)
22	16	N.C.	N.C.	RST	MCM	CSEL	XSCL2	XSCLI	XSCLO	$\begin{aligned} & \text { X SCROLL } \\ & \text { MODE } \end{aligned}$
23	17	SEXY7							SEXYO	SPRITE EXPAND Y
24	18	VS13	VS12	VS11	VS10	CB13	CB12	CB11	N.C.	SCREEN and Character Nemory Base Address
25	19	IRQ	N.C.	N.C.	N.C.	LPIRQ	ISSC	ISEC	RIRQ	Interrupt Request's
26	1 A	N.C.	N.C.	N.C.	N.C.	MLP\|	MISSC	MISBC	MRIRQ	Interrupt Request MASKS
27	1 B	BSP7							BSPO	Backcround- Sprite PRIORITY
28	1 C	SCM 7							SCMO	MULTICOLOR SPRITE SELECT
29	1D	SEXX7							SFXX0	SPRITE EXPAND X
30	IE	SSC7							SSCO	Sprite-Sprite COLLISION
31	1 F	SBC7							SBC0	Sprite- Background COLLISION

$\left.$| Register \#
 Dec | | Hex |
| :---: | :---: | :---: |$c \right\rvert\,$| Color | |
| :---: | :---: |
| 32 | 20 |

Regisper Dec Hex		Col or
39	27	SPRITE 0 COLOF
43	28	SPRITE • COLOR
41	29	SPRITE 2 COLOR
42	$2 A$	SPRITE 3 COLOR
43	$2 B$	SPRITE 4 COLOF
44	$2 C$	SPRITE 5 COLOF
45	$2 D$	SPRITE E COLCR
46	$2 E$	SPRITE 7 COLCR

COLOR CODES

Dec Hex	Color	
0	0	BLACK
1	1	WHITE
2	2	FED
3	3	SYAN
4	4	PURPLE
5	5	GZFFN
3	6	DLUE
7	7	YELLOW

Dec Hex	Color	
8	8	ORANGE
9	9	BROWN
10	A	L' $^{-}$IED
11	B	GRAY 1
12	C	GRAY 2
13	D	LT GREEN
14	E	LT BLUE
16	F	GRAY 3

LEGEND:
ONLY COLORS 0.7 MAY BE USED IN MULTICOLOR CHARACTER MODE

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to Commodore 64 BASIC may be calculated as follows:

FUNCTION	BASIC EQUIVAIENT
SECANT	$\operatorname{SEC}(X)=1 / \operatorname{COS}(X)$
COSECANT	$\operatorname{CSC}(\mathrm{X})=1 / \mathrm{S} N(X)$
COTANGENT	$\operatorname{COT}(\mathrm{X})=1 / \operatorname{TAN}(X)$
INVERSE SINE	$\operatorname{ARCSIN}(X)=\operatorname{ATN}\left(X / S Q R\left(-X^{*} \mathrm{X}+1\right)\right.$)
INVERSE COSINE	$\begin{aligned} & \operatorname{ARCCOS}(\mathrm{X})=-\operatorname{ATN}(\mathrm{X} / \mathrm{SQR} \\ & \left.\left(-\mathrm{X}^{*} \mathrm{X}+1\right)\right)+\pi / 2 \end{aligned}$
INVERSE SECANT	$\operatorname{ARCSEC}(X)=\operatorname{ATN}\left(X / S Q R\left(X^{*} X-1\right)\right)$
INVERSE COSECANT	$\begin{aligned} & \operatorname{ARCCSC}(X)=\operatorname{ATN}\left(X / \operatorname{SQR}\left(X^{*} X-1 i\right)\right. \\ & \quad+\left(\operatorname{SGN}(X)-1^{*} \pi / 2\right. \end{aligned}$
INVERSE COTANCENT	$\operatorname{ARCOT}(\mathrm{X})-\operatorname{ATN}(\mathrm{X})+\pi / 2$
HYPERBOLIC SINE	$\operatorname{SINH}(\mathrm{X})=(\operatorname{EXP}(\mathrm{X})-\operatorname{EXP}(\mathrm{X})$)/2
HYPERBOLIC COSINE	$\operatorname{COSH}(\mathrm{X})=(\operatorname{EXP}(\mathrm{X})+\operatorname{EXP}(-\mathrm{X})$ / 2
HYPERBOLIC TANGENT	$\begin{aligned} & \operatorname{TANH}(\mathrm{X})=\operatorname{EXP}(-\mathrm{X}) /(\operatorname{EXP}(\mathrm{x})+\operatorname{EXP} \\ & (-\mathrm{X}))^{*} 2+1 \end{aligned}$
HYPERBOLIC SECANT	$\operatorname{SECH}(\mathrm{X})=2 /(\operatorname{EXP}(\mathrm{X})+\operatorname{EXP}(-\mathrm{X})$)
HYPERBOLIC COSECANT	$\operatorname{CSCH}(\mathrm{X})=2 /(\operatorname{EXP}(\mathrm{X})-\operatorname{EXP}(-X))$
HYPERBOLIC COIANGENI	$\begin{aligned} & \operatorname{COTH}(X)=\operatorname{EXP}(-X))^{\prime}(\operatorname{EXP}(X) \\ & -\operatorname{EXP}(-X))^{*} 2+1 \end{aligned}$
INVERSE HYPERBOLIC SINE	$\operatorname{ARCSINH}(X)=\operatorname{LCG}\left(X+\operatorname{SGR}\left(X^{*} X+1\right)\right)$
INVERSF HYPERBOLIC COSINE	$\operatorname{ARCCOSH}(\mathrm{X})=\operatorname{LOG}\left(\mathrm{X}+\operatorname{SQR}\left(\mathrm{X}^{*} \mathrm{X}-1\right)\right)$
Inverse hyperbolic tangent	$\operatorname{ARCTANH}(\mathrm{X})=10 \mathrm{G}((1+\mathrm{X}) /(1-\mathrm{X}) \mathrm{y} / 2$
INVERSE HYPERBOLIC SECANT	$\begin{gathered} \operatorname{ARCSECH}(X)=\operatorname{LOG}((S Q R \\ \left.\left(-X^{*} X+1\right)+1 / X\right) \end{gathered}$
INVERSE HYPERBOLIC COSECANT	$\begin{aligned} & \operatorname{ARCCSCH}(X)=\operatorname{LOG}\left(\left(\operatorname{SGN}(X)^{*} S Q R\right.\right. \\ & \left(X^{*} X+1 / x\right) \end{aligned}$
INVERSE HYPERBOLIC COTANGENT	$\operatorname{ARCCOTH}(X)=\operatorname{LOG}((X+1) /(X-1)) / 2$

APPENDIX I

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be made to the Commodore 64.

1) Game $1 / O$
2) Serial $1 / O$ (Disk/Printer)
3) Cartridge Slot
4) Modulator Output
5) Audio/Video
6) Cassette
7) User Port

Control Port 1

Pin	TYpe	Note
1	JOYAO	
2	JOYA1	
3	JOYA2	
4	JOYA3	
5	POT AY	
6	BUTTON ALLP	
7	$+5 V$	MAX. 50 nA
8	GND	
9	POT AX	

Control Port 2

Pin	Type	Note
1	JOYBO	
2	JOYB1	
3	JOYB2	
4	JOYB3	
5	POT BY	
6	BJTTON B	
7	$+5 V$	MAX. 50mA
8	GND	
9	POT BX	

Cartridge Expansion Slot

Pin	Type
1	GND
2	$+5 \mathrm{~V}$
3	$+5 \mathrm{~V}$
4	IRQ
5	R/W
6	Dot Clock
7	1/O 1
8	GAME
9	EXROM
10	1/O 2
11	ROML

Pin	Type
12	BA
13	$\overline{\mathrm{DMA}}$
14	D 7
15	D 6
16	D 5
17	D 4
18	D3
19	D2
20	D1
21	DO
22	GND

Pin	Type
A	GND
B	$\overline{\text { ROMH }}$
C	$\overline{\text { RESET }}$
D	$\overline{\text { NMI }}$
E	S 02
F	A15
H	A14
J	A13
K	A12
L	A11
M	A1O

Pin	TYpe
N	A9
P	AB
R	$A 7$
S	$A 6$
T	$A 5$
U	$A 1$
V	$A 3$
W	$A 2$
X	$A 1$
Y	$A D$
Z	GND

22212019181715151413121110987854321

Audio/Video

Pin	Type	Note
1	LUMINANCE	
2	GND	
3	AUDIO OUT	
4	VIDEO OUT	
5	AUDIO IN	

Serial I/O

Pin	Type
1	SERIAL SRQIN
2	GND
3	SERIAL ATN IN/OUT
4	SERIAL CLK IN/OUT
5	SERIAL DATA IN/OUT
6	RESET

Cassefte

Pin	
A-1	GND
B-2	+5V
C-3	CASSETTE MOTOR
D-4	CASSETTE READ
E-5	CASSETTE WRITE
F-6	CASSETIE SENSE

User I/O

Pin	Type	Note
1	GND	
2	+5 V	MAX. 100 mA
3	$\overline{\text { RESET }}$	
4	CNT1	
5	SP1	
6	CNT2	
7	SP2	
8	PC2	
9	SER. ATN IN	MAX. 100 mA
10	9 VAC	MAX. 100 mA
11	GVAC	
12	CND	

Pin	Type	Note	
A	GND		
B	FLAG2		
C	PBO		
D	PB1		
E	PB2		
F	PB3		
H	PB4		
J	PB5		
K	P36		
L	P37		
M	PA2		
N	GND		

CONVERTING STANDARD BASIC PROGRAMS TO COMMODORE 64 BASIC

If you have programs written in a BASIC other than Commodore BASIC, some minor adjustments may be necessary before running them on the Commodore-64. We've included some hints to make the conversion easier.

String Dimensions

Delete all statements that are used to declare the length of strings. A statement such as DIM $\mathbf{A} \$(1, J)$, which dimensions a string array for J elements of length I, should be converted to the Commodore BASIC statement DIM A\$(J).

Some BASICs use a comma or an ampersand for string concatenation. Each of these must be changed to a plus sign, which is the Commodore BASIC operator for string concatenation.

In Commodore 64 BASIC, the MID\$, RIGHT\$, and LEFT\$ functions are used to take substrings of strings. Forms such as $A \$(1)$ to access the Ith character in $A \$$, or $A \$(I, J)$ to take a substring of $A \$$ from position I to J, must be changed as follows:

Other BASIC	Commodore 64 BASIC
$\mathrm{A} \$(I)=X \$$	$\mathrm{~A} \$=\operatorname{LEFT} \$(A \$, 1-1)+\mathrm{X} \$+\mathrm{MID} \$(\mathrm{~A} \$, 1+1)$
$\mathrm{A} \$(1, J)=\mathrm{X} \$$	$\mathrm{~A} \$=1 E F T \$(A \$, 1-1)+\mathrm{X} \$+\mathrm{MID} \$(\mathrm{~A} \$, \mathrm{~J}+1)$

Multiple Assignments

To set B and C equal to zero, some BASICs allow statements of the form:
$1 \varnothing$ LET $B=C=\varnothing$

Commodore 64 BASIC would interpret the second equal sign as a logical operator and set $B=-1$ if $C=0$. Instead, convert this statement to:
$1 \varnothing C=\varnothing: B=\varnothing$

Multiple Statements

Some BASICs use a backslash (\backslash) to separate multiple statements on a line. With Commodore 64 BASIC, separate all statements by a colon (:).

MAT Functions

Programs using the NIAT functions available on some BASICs must be rewritten using FOR. . .NEXT loops to execute properly.

ERROR MESSAGES

This appendix contains a complete list of the error messages generated by the Commodore-64, with a description of causes.

BAD DATA String data was received from an open file, but the program was expecting numeric data.
BAD SUBSCRIPT The program was trying to reference an element of an array whose number is outside of the range specified in the DIM statement.

BREAK Program execution was stopped because: you hit the STOP key.
CAN'T CONTINUE The CONT command will not work, either because the program was never RUN, there has been an error, or a line has been edited.
DEVICE NOT PRESENT The required I/O device was not available for an OPEN, CLOSE, CMD, PRINT\#, INPUT\#, or GET\#.
DIVISION BY ZERO Division by zero is a mathematical oddity and not allowed.
EXTRA IGNORED loo many items of data were typed in response to an INPUT statement. Only the first few items were accepted.
FILE NOT FOUND If you were looking for a file on tape, and END-DFTAPE marker was found. If you were looking on disk, no file with that name exists.
FILE NOT OPEN The file specified in a CLOSE, CMD, PRINT\#, INPUT\#, or GET\#, must first be OPENed.
FILE OPEN An attempt was made to open a file using the number of an already open file.
FORMULA TOO COMPLEX The string expression being evaluated should be split into at least two parts for the system to work with, or a formula has too many parentheses.
ILLEGAL DIRECT The INPUT statement can only be used within a program, and not in direct mode.
ILLEGAL QUANTITY A number used as the argument of a function or statement is out of the allowable range.

LOAD There is a problem with the program on tape.
NEXT WITHOUT FOR This is caused by either incorrectly nesting loops or having a variable name in a NEXT statement that doesn't correspond with one in a FOR statement.
NOT INPUT FILE An attempt was made to INPUT or GET data from a file which was specified to be for output only.
NOT OUTPUT FILE An attempt was made to PRINT dota to a file which was specified as input only.
OUT OF DATA A READ statement was executed but there is no data left unREAD in a DATA stotement.
OUT OF MEMORY There is no more RAM avcilable for program or variables. This may also occur when too many FOR loops have been nested, or when there are too many GOSUBs in effect.
OVERFLOW The result of o computation is larger than the largest number allowed, which is $1.70141884 \mathrm{E}+38$.
REDIM'D ARRAY An orray may only be DIMensioned once. If an array varicble is used before that array is DIM'd, an cutornatic DIM operation is performed on that array setting the number of elements to ten, and any subsequent DIMs will cause this error.
REDO FROM START Character data was typed in during an INPUT statement when numeric data was expected. Just re-type the entry so that it is correct, and the program will continue by itself.
RETURN WITHOUT GOSUB A RETURN statement was encountered, and no GOSUB command has been issued.
STRING TOO LONG A string can contain up to 255 characters.
?SYNTAX ERROR A statement is unrecognizable by the Commodore 64. A missing or extra parenthesis, misspelled keywords, etc.

TYPE MISMATCH This error occurs when a number is used in place of a string, or vice-versa.
UNDEF'D FUNCTION A user defined function was referenced, but it has never been defined using the DEF FN statement.
UNDEF'D STATEMENT An attempt was made to GOTO or GOSUB or RUN a line number that doesn't exist.
VERIFY The program on tape or disk does not match the program currently in memory.

APPENDIX L

6510 MICROPROCESSOR CHIP SPECIFICATIONS

DESCRIPTION

The 6510 is a low-cost microcomputer system capable of solving a broad range of small-systems and peripheral-control problems at minimum cost to the user.

An 8-bit Bi-Directional I/O Port is located on-chip with the Output Register at Address 0000 and the Data-Direction Register at Address 0001. The I/O Port is bit-by-bit programmable.

The Three-State sixteen-bit Address Bus allows Direct Memory Accessing (DMA) and multiprocessor systems sharing a common memory.

The internal processor architecture is identical to the MOS Technology 6502 to provide software compatibility.

FEATURES OF THE 6510...

- Eight-Bit Bi-Directional I/O Port
- Single +5-volt supply
- N-channel, silicon gate, depletion load technology
- Eight-bit parallel processing
- 56 Instructions
- Decimal and binory arithmetic
- Thirteen addressing modes
- True indexing capability
- Programmable stack pointer
- Variable length stack
- Interrupt capability
- Eight-Bit Bi-Directional Data Bus
- Addressable memory range of up to 65 K bytes
- Direct memory access capability
- Bus compotible with M6800
- Pipeline architecture
- $1-\mathrm{MHz}$ and $2-\mathrm{MHz}$ operation
- Use with any type or speed memory

PIN CONFIGURATION

6510 BLOCK DIAGRAM

6510 CHARACTERISTICS

MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	V_{CC}	-0.3 to +7.0	$\mathrm{~V}_{\mathrm{DC}}$
INPUT VOLTAGE	V_{in}	-0.3 to +7.0	$\mathrm{~V}_{\mathrm{DC}}$
OPERATING TEMPERATURE	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
STORAGE TEMPERATURE	$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

NOTE: This cevice contains inout protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maximum rating.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{VSS}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ}\right.$ to $+70^{\circ} \mathrm{C}$)

CHARACTERISTIC	$\left\lvert\, \begin{aligned} & \text { SYM- } \\ & \mathrm{BOL} \end{aligned}\right.$	MIN.	TYP.	MAX.	UNIT
Input High Voltage $\phi_{1}, \phi_{2(i n)}$ Input High Voltage $\overline{\mathrm{RES}}, \mathrm{P}_{0}-\mathrm{P}_{7} \overline{\mathrm{IRQ}}$, Data	$V_{\text {IH }}$	$\begin{aligned} & v_{\mathrm{Cc}}-0.2 \\ & \mathrm{v}_{\mathrm{Ss}}+2.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\mathrm{v}_{\mathrm{cc}}+1.0 \mathrm{v}$	$V_{D C}$ $V_{D C}$
Input Low Voltage $\frac{\phi_{1}, \phi_{2(i n)}}{\operatorname{RES},}, \mathrm{P}_{\mathrm{C}}-\mathrm{P}_{7} \overline{\mathrm{RQ}}, \text { Data }$	VIL	$\mathrm{V}_{\mathrm{ss}}-0.3$ -	-	$\begin{aligned} & v_{\mathrm{ss}}+0.2 \\ & v_{\mathrm{ss}}+0.8 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{DC}} \end{aligned}$
Input Leakage Current $\left(\mathrm{V}_{\text {in }}-0 \text { to } 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}=5.25 \mathrm{~V}\right)$ Logic $\phi ., \phi_{2(i n)}$	$I_{\text {in }}$	-	-	$\begin{aligned} & 2.5 \\ & 100 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Three State (Off State) Input Current $\left(\mathrm{V}_{\text {in }}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$ Data Lines	$I_{\text {TS }}$	-	-	10	$\mu \mathrm{A}$
Output High Voltage $\begin{gathered} \left(\mathrm{loH}=-100 \mu \mathrm{~A}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right) \\ \text { Data, A0-A15, R/W, } \mathrm{P}_{0}-\mathrm{P}_{7} \end{gathered}$	$\mathrm{V}_{\text {OH }}$	$V_{s s}+2.4$	-	-	Vdc

CHARACTERISTIC	$\begin{aligned} & \text { SYM- } \\ & \mathrm{BOOL} \end{aligned}$	MIN.	TYP.	MAX.	UNIT
Out Low Voltage $\left(I_{\mathrm{oL}}=1.6 \mathrm{~mA}_{\mathrm{vC}}, \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}\right)$ Data, AO-A15, R/W, Po-P	VoL	-	-	$\mathrm{V}_{\mathrm{ss}}+0.4$	V_{DC}
Power Supply Current	I_{cc}	-	125		mA
```Capocitance Vin}=0,\mp@subsup{T}{\textrm{A}}{}=2\mp@subsup{5}{}{\circ}\textrm{C},\textrm{f}=1\textrm{MHz Logic, Po-P Data AD-A15, R/W \phi \phi```	$\begin{gathered} c \\ c_{\text {in }} \\ C_{\text {out }} \\ C \phi_{1} \\ C \phi_{2} \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 12 \\ & 50 \\ & 80 \end{aligned}$	pF



## CLOCK TIMING



## AC CHARACTERISTICS

ELECTRICAL CHARACTERISTICS ( $\left.\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}\right)$
CLOCK TIMING
1MHz TIMING
2 MHz TIMING

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Cycle Time	$\mathrm{T}_{\mathrm{cyc}}$	1000	-	-	500	-	-	ns
Clock Pulse Width $\quad \phi 1$ $\left(\right.$ Measured at $\left.\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}\right) \phi 2$	PWH ${ }^{1} 1$   PWH\$2	$\begin{aligned} & 430 \\ & 470 \end{aligned}$	-	—	$\begin{aligned} & 215 \\ & 235 \end{aligned}$	-		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Fall Time, Rise Time (Measured from 0.2V to $\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$ )	$\mathrm{T}_{\mathrm{F}}, \mathrm{T}_{\mathrm{R}}$	-	-	25	-	-	15	ns
Delay Time between Clocks (Measured at 0.2 V )	TD	0	-	-	0	-	-	ns

READ/WRITE TIMING (LOAD $=1$ TTL) 1 MHz TIMING 2 MHz TIMING

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Read/Write Setup Time from 6508	TAWs	-	100	300	-	100	150	ns
Address Setup Time from 6508	TADS	-	100	300	-	100	150	ns
Memory Read Access Time	TACC	-	-	575	-	-	300	ns


Data Stability Time Period	$\mathrm{T}_{\text {DSU }}$	100	-	-	50			ns
Data Hold Time-Read	$\mathrm{T}_{\mathrm{HR}}$		-	-				ns
Data Hold Time-Write	$\mathrm{T}_{\mathrm{HW}}$	10	30	-	10	30		ns
Data Selup Time from 6510	$\mathrm{T}_{\text {MDS }}$	-	150	200	-	75	100	ns
Address Hold Time	$\mathrm{T}_{\mathrm{HA}}$	10	30		10	30		ns
R/W Hold Time	THRN	10	30	-	10	30		ns
Delay Time, Address valid to $\phi 2$ positive transition	$\mathrm{T}_{\text {AEW }}$	180	-	-				ns
Delay Time, $\phi 2$ positive transition to Data valid on bus	$\mathrm{T}_{\text {EDR }}$	-	-	395				ns
Delay Time, Data valid to $\phi 2$ negative transition	T ${ }_{\text {DSU }}$	300	-	-				ns
Delay Time, R/W negalive transition to $\phi 2$ positive transition	$\mathrm{T}_{\text {WE }}$	130	-	-				ns
Delay Time, $\phi 2$ negalive Iransition to Peripheral Dato valid	TPDW	-	-	1				$\mu \mathrm{s}$
Peripheral Data Setup Time	TpDSU	300	-	-				ns
Address Enable Setup Time	$\mathrm{T}_{\text {AES }}$			60			60	ns

## SIGNAL DESCRIPTION

## Clocks ( $\phi_{1}, \phi_{2}$ )

The 6510 requires a two-phase non-overlapping clock that runs at the $V_{C C}$ voltage level.

## Address Bus ( $\mathrm{A}_{0}-\mathrm{A}_{15}$ )

These outputs are TTL compatible, capable of driving one standard TTL load and 130 pf .

## Data Bus ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ )

Eight pins ore used for the data bus. This is a Bi-Directional bus, transferring data to and from the device and peripherals. The outputs are tri-state buffers capable of driving one standard TTL load and 130 pf .

## Reset

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.

After $V_{\text {CC }}$ reaches 4.75 volts in a power-up routine, resel must be held low for at least two clock cycles. At this time the R/W signal will become valid.

When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above.

## Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being execuled before recognizing the request. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask
flag high so that no further interrupts may occur. At the end of this cycle, the progrom counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses.

Address Enable Control (AEC)
The Address Bus is valid only when the Address Enable Control line is high. When low, the Address Bus is in a high-impedance state. This feature allows easy DMA and multiprocessor systems.

I/O Port ( $\mathrm{P}_{0}-\mathrm{P}_{5}$ )
Six pins are used for the peripherol port, which con transfer data to or from peripheral devices. The Oulpul Register is localed in RAM at Address 0001, and the Data Direction Register is at Address 0000. The outputs are capable at driving one standard TTL load and 130 pf .

## Read/Write (R/W)

This signal is generated by the microprocessor to control the direction of data transfers on the Datc Bus. This line is high except when the microprocessor is writing to memory or a peripheral device.

## ADDRESSING MODES

ACCUMULATOR ADDRESSING-This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.

IMMEDIATE ADDRESSING-In immediote addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.

ABSOLUTE ADDRESSING-In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65 K bytes of addressable memory.

ZERO PAGE ADDRESSING - The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zerc high address byte. Careful use of the zcro page can result in significant increase in code efficiency.

INDEXED ZERO PAGE ADDRESSING - $(X, Y$ indexing $)$-This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, $X$ " or "Zero Page, $Y$ !" The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additonclly, due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.

INDEXED ABSOLUTE ADDRESSING-( $X, Y$ indexing - This form of addressing is used in conjunction with $X$ and $Y$ index register and is referred to as "Absolute, $X$," and "Absolute, $Y$ !" The effective address is formed by adding the contents of $X$ and $Y$ to the address contained in the second and third bytes of the instruction. This mode ollows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time.

IMPLIED ADDRESSING - In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.

RELATIVE ADDRESSING-Relotive oddressing is used only with branch instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offser" added to the contents of the lower eight bits of the progrom counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction.
INDEXED INDIRECT ADDRESSING-in indexed indirect addressing (referred to as [indirect, X]), the second byte of the instruction is added to the contents of the $X$ index register, discording the carry. The result of this addition points to o memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specitying the high ond low order bytes of the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING - In indirect indexed addressing (referred to as [Indirect], Y), the second byte of the instruction points to a memory location in page zero. The contents of this memory location is
odded to the contents of the $Y$ index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address.

ABSOLUTE INDIRECT - The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter.

## INSTRUCTION SET-ALPHABETIC SEQUENCE

ADC	Add Memory to Accumulator with Carry
AND	"AND" Memory with Accumulator
ASL	Shift Left One Bit (Memory or Accumulater)
BCC	Branch on Corry Clear
BCS	Branch on Corry Sel
BEQ	Branch on Result Zero
BIT	Test Bits in Memory with Accumulator
BMI	Branch on Result Minus
BNE	Branch on Result not Zero
BPL	Branch on Result Plus
BRK	Force Break
BVC	Branch on Overflow Clear
BVS	Branch on Overflow Set
CLC	Clear Carry Flag
CLD	Clear Decirnal Mode
CLI	Clear Interrupt Disable Bit
$C L V$	Clear Overflow Flag
CMP	Compare Memory and Aceumulator
CPX	Compare Memory and Index $X$
CPY	Compare Memory and Index Y



TAX Transfer Accumulator to Index $X$
TAY Transfer Accumulotor to Index $Y$
TSX Transfer Stack Pointer to Index $X$
TXA Transfer Index $X$ to Accumulator
TXS Transfer Index $X$ to Stack Register
TYA Transfer Index $Y$ to Accumulator

## PROGRAMMING MODEL



$\begin{aligned} & \square \\ & \frac{\square}{0} \\ & \frac{\pi}{Z} \\ & \frac{0}{x} \\ & r \end{aligned}$	instauctions		$\begin{array}{\|l\|} \hline \text { Imnediate } \\ \hline O D \\ \hline \end{array}$			Aosslate		Zero Prge			Accum．			Implied		（tace．）${ }^{\text {x }}$			（mad） r			［，Payt，x｜			abs． x		Als． Y			Reative		Incirect			Z Page，Y		cundition codes		
	Mnemonic	Cperation				OP			OF ${ }^{\text {N }}$	N $\begin{gathered}\text { A }\end{gathered}$				OF	N		OP	$\checkmark$			$\cdots$	$\because$	Or	4	OP	N	I	OPN	N．	，of	P N	or	OP N	\％	NzCODV				
	ADC	$A+B+C \rightarrow A$（4）（i）	692		26 C			C 4	3	55	3	2						61	\％	2	71	5	2	75	4	7	704	43	79	4	3								，
	AND	$A \backslash / N \rightarrow A$（1）	292	22	222	24	3	25	3	2						21	$\checkmark$	2	31	，	2	35	4	23	3 C 4	43	38	4	3								ィッ－－－－		
	ASL	$\mathrm{C}+7$ 7 0－0				E 6	s	06	6	2	OA	2	1									10	6	，	IE	73											ッレッ		
	BCC	BRANCH ON C＝0 ${ }^{(2)}$																												90	2	2					－－－－－－		
	SCS	BFANCH ON C＝1 ${ }^{\text {（2）}}$																												B0	22	？					－－－－－		
	BEO	BRANCH ON $2=1$（2）																												Fo	22	2					－－－－		
	BIT	A／M			2	C． 4	3	24	3																												$M_{7} \ldots \ldots-M_{6}$		
	EMI	BRANCH ON $\mathrm{N}=1$（2）																												30	22	2					－－－－－－		
	BNE	BPANCH OR $2=0{ }^{(2)}$																												D0	22	2					－－－－－－		
	BPL	BRANCH ON $\mathrm{N}=0$（2）																												10	22	2					－－		
	thK	（Seerg．1）													71																						$--1-1$		
	DVC	BPAANCH ON $\mathrm{V}=0$（2）																												50	22	2					－－－－－－		
	Evs	BRAANCH ON $\mathrm{V}=1$（2）																												70	22	2					－－－－－－		
	CLC	$0 \rightarrow C$												182	21																						－－ 0 －－－		
	CLJ	$0 \rightarrow$ C												082	21																						－－－－0		
	CLI	$0 \rightarrow 1$												58	21																						－－－ 0 －		
	CLV	$0 \rightarrow \mathrm{~V}$												88.	， 1																						－－－ 0		
	CMP	A－M（7）	Cs 2		2 CL	$L^{4} 4$	3	Cs＝	3	2						51	3	2	1	5	20	D5	4	20	OD 4	43	39	4	3								いこん－－		
	CPX	$\times \mathrm{M}$	EO 2	22	2 EC	C 4	${ }^{3}$	E4	3	2																											いとい－－		
	CPY	$Y-\mathrm{M}$	CO．		2 co	$C^{4}$	43	C． 4	3	2																											$\because \sim$		
	LEC	$\mathrm{M} \rightarrow \rightarrow \mathrm{N}$				CE 6	3	Ce	5	2												D6	6	2 D	DE 7	73											$\cdots$		
	DEX	$x-1-\mathrm{x}$												CA	21																						rr－－－－		
	DEY	$r-1 \rightarrow \gamma$												B8 ${ }^{2}$	21																						－r－－－－		
	LUK	ATN $\rightarrow$ A（1）	492		24.	0.4	3	45	3	2						41	3	2	51	5	2	55	4	2	50.4	4 ：	59	4	3								$\cdots \cdots$		
	INC	$\mathrm{M}+\rightarrow \mathrm{N}$				E 8	－	Ee	5	2												F6	6	2	FE 7	73											ロッー－－－		
	inX	$\underline{X+1 \rightarrow X}$												\＃8 2	2.1																						－r－－－－		
	INY	$Y+1 \rightarrow Y$												C． 82	21																						$\cdots \cdots$		
	JMP	JUMP TO NEW LOE．				${ }^{4} 3$	3																										5	3			－－－－－－		
	JSR	（S6e Fig．2）JUMP SUE				20.8	－																														－－－－－－		
	LDA	$\mathrm{M} \rightarrow$ A（）	A9 2					12：	3	2						4.1	6	2	B1	5		85	4		8 C 4	4.3	38	1	3								$\cdots \cdots$		



NOTE: COMMODORE SEMICONDUCTOR GROUP cannot assume licbility for the use of undefined OP CODES.


## APPLICATIONS NOTES

Locating the Output Register at the internal I/O Port in Page Zero enhances the powerful Zero Page Addressing instructions of the 6510.

By assigning the $1 / O$ Pins as inputs (using the Data Direction Register) the user has the ability to change the contents of address 0001 (the Output Register) using peripheral devices. The ability to change these contents using peripheral inputs, together with Zero Page Indirect Addressing instructions, allows novel and versatile programming techniques not possible earlier.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any licbility arising out of the application or use of any product or circuit described herein; neither does it convey any license under its parent rights nor the rights of others.

## 6526 COMPLEX INTERFACE ADAPTER (CIA) CHIP SPECIFICATIONS

## DESCRIPTION

The 6526 Complex Interface Adapter (CIA) is a 65 XX bus compatible peripheral interface device with extremely flexible timing and $1 / O$ capabilities.

## FEATURES

- 16 Individually programmable I/O lines
- 8 or 16 -Bit handshoking on read or write
- 2 independent, linkable 16-Bit interval timers
- 24-hour (AM/PM) time of day clock with programmable alarm
- 8-Bit shift register for serial I/O
- 2TTL Load capability
- CMOS compatible I/O lines
- 1 or 2 MHz operation available


## PIN CONFIGURATION




## MAXIMUM RATINGS

Supply Voltage, $\mathrm{V}_{\mathrm{Cc}}$
Operating Temperature, Tor

$$
\text { Storage Temperature, } \mathrm{T}_{\text {STG }}
$$

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{array}
$$

All inputs contain protection circuilry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may couse permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any olher conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{Cc}} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$ $\left.=0-70^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input High Valtage	$\mathrm{V}_{\mathrm{IH}}$	+2.4	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3	-	-	V
Input Leakage Current $;$   $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}+5 \mathrm{~V}$   (TOD, R/W, $\overline{\text { FLAG }}, \phi 2$,	$\mathrm{I}_{\mathrm{IN}}$	-	1.0	2.5	$\mu \mathrm{~A}$
RES, RSO-RS3, $\overline{\mathrm{CS}})$					


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Port Input Pull-up Resistance	$\mathrm{R}_{\mathrm{P} \mid}$	3.1	5.0	-	$K \Omega$
Output Leakage Current for High Impedance State (Three State); $\mathrm{V}_{1 \mathrm{~N}}=4 \mathrm{~V}$ to 2.4 V ; (DB0-DB7, SP, CNT, $\overline{I R Q}$ )	$\mathrm{I}_{\text {TSI }}$	-	$\pm 1.0$	$\pm 10.0$	$\mu \mathrm{A}$
Output High Voltoge $\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OAD}}< \\ & -200 \mu \mathrm{~A}(\mathrm{PAD}-\mathrm{PA} 7, \overline{\mathrm{PC}} \\ & \mathrm{PBO}-\mathrm{PB} 7, \mathrm{DBO}-\mathrm{DB} 7) \end{aligned}$	$\mathrm{V}_{\text {OH }}$	+2.4	-	$\mathrm{V}_{\mathrm{CC}}$	V
Output Low Voltage $\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{LOAD}}<3.2 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	+0.40	V
Output High Current (Sourcing);   $\mathrm{V}_{\mathrm{OH}}>2.4 \mathrm{~V}$ (PAO-PAJ,   PB0-PB7, PC, DBO-DB7	$\mathrm{I}_{\mathrm{OH}}$	-200	-1000	-	$\mu \mathrm{A}$
$\begin{aligned} & \text { Output Low Current (Sinking); } \\ & V_{0 L}<.4 V(P A 0-P A 7, P C \\ & P B 0-P B 7 \text {, DBO-DB7) } \end{aligned}$	IOL	3.2	-	-	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	7	10	pf
Output Capacitance	Cout	-	7	10	pf
Power Supply Current	$\mathrm{I}_{\mathrm{CC}}$	-	70	100	mA

6526 WRITE TIMING DIAGRAM


## 6526 READ TIMING DIAGRAM



## 6526 INTERFACE SIGNALS

## $\phi 2$-Cloek Input

The $\phi 2$ clock is a TTL compatible input used for internal device operation and as a timing reference for communicating with the system data bus.

## CS—Chip Select Input

The $\overline{\mathrm{CS}}$ input controls the activity of the 6526. A low level on $\overline{\mathrm{CS}}$ while $\phi 2$ is high causes the device to respond to signals on the R/W and address (RS) lines. A high on $\overline{C S}$ prevents these lines from controlling the 6526. The $\overline{C S}$ line is normally activated (low) at $\phi 2$ by the appropriate address combination.

## R/W — Read/Write Input

The R/W signal is normally supplied by the microprocessor and controls the direction of data transfers of the 6526. A high on R/W indicates a read (data transfer out of the 6526), while a low indicates a write (data transfer into the 6526).

## RS3-RSO—Address Inputs

The address inputs select the internal registers as described by the Register Map.

## DB7-BD0-Data Bus Inputs/Outputs

The eight data bus pins transfer information between the 6526 and the system data bus. These pins are high impedance inputs unless CS is low and R/W and $\phi 2$ are high to read the device. During this read, the data bus output buffers are enabled, driving the data from the selected register onto the system data bus.

## IRQ-Interrupt Request Output

$\overline{\mathrm{IRQ}}$ is an open drain output normally connected to the processor interrupt input. An external pullup resistor holds the signal high, allowing multiple $\overline{\mathrm{IRQ}}$ outputs to be connected together. The $\overline{\mathrm{IRQ}}$ output is normally off (high impedance) and is activated low as indicated in the functional description.

A low on the RES pin resets all internal registers. The port pins are set as inputs and port registers to zero (although a read of the ports will return all highs because of passive pullups). The timer control registers are set to zero and the timer latches to all ones. All other registers are reset to zero.

6526 TIMING CHARACTERISTICS


Symbol	Characteristic	1 MHz		2 MHz		Unit
		MIN	MAX	MIN	MAX	
T ${ }_{\text {ACC }}$	Data Access from RS3-RS0	-	550	-	275	ns
$\mathrm{T}_{\mathrm{Co}}(3)$	Data Access from $\overline{C S}$	-	320	-	150	ns
$\mathrm{T}_{\mathrm{DR}}$	Data Release Time	50	-	25	-	ns

NOTES: 1 - All timings are referenced from $V_{I L}$ max and $V_{I H}$ min on inputs and $V_{O L}$ $\max$ and $V_{\mathrm{OH}} \min$ on outputs.
2 - $\mathrm{T}_{\text {wCs }}$ is measured from the later of $\phi 2$ high or $\overline{\mathrm{CS}}$ low. $\overline{\mathrm{CS}}$ must be low at least until the end of $\phi 2$ high.
$3-\mathrm{T}_{\mathrm{CO}}$ is mecsured from the later of $\phi 2$ high or CS low.
Valid data is available only after the later of $T_{A C C}$ or $T_{C O}$.

REGISTER MAP

RS3	RS2	RS1	RSO	REG	NAME	
0	0	0	0	0	PRA	PERIPHERAL DATA REG A
0	0	0	1	1	PRB	PERIPHERAL DATA REG B
0	0	1	0	2	DDRA	DATA DIRECTION REG A
0	0	1	1	3	DDRB	DATA DIRECTION REG B
0	1	0	0	4	TA LO	TIMER A LOW REGISTER
0	1	0	1	5	TA HI	TIMER A HIGH REGISTER
0	1	1	0	6	TB LO	TIMER B LOW REGISTER
0	1	1	1	7	TB HI	TIMER B HIGH REGISTER
1	0	0	0	8	TOD 10THS	IOTHS OF SECONDS REGISTER
1	0	0	1	9	TOD SEC	SECONDS REGISTER
1	0	1	0	A	TOD MIN	MINUTES REGISTER
1	0	1	1	B	TOD HR	HOURS-AM/PM REGISTER
1	1	0	0	C	SDR	SERIAL DATA REGISTER
1	1	0	1	D	ICR	INTERRUPT CONTROLREGISTER
1	1	1	0	E	CRA	CONTROI REG A
1	1	1	1	F	CRB	CONTROL REG B

## 6526 FUNCTIONAL DESCRIPTION

I/O Ports (PRA, PRB, DDRA, DDRB).

Ports $A$ and $B$ each consist of an 8-bit Peripheral Data Register (PR) and an 8-bit Data Direction Register (DDR). If a bit in the DDR is set to a one, the corresponding bit in the PR is an output; if a DDR bit is set to $c$ zero, the corresponding PR bit is defined as an input. On a READ, the PR reflects the information present on the actual port pins (PAO-PA7, PB0-PB7) for both input and output bits. Port A and Port B have passive pull-up devices as well as active pull-ups, providirig both CMOS and TTL compatibility. Both ports have two TTL load drive capobility. In oddition to normal 1/O operation, PB6 and PB7 also provide timer output functions.

## Handshaking

Handshaking on data transfers can be accomplished using the $\overline{\mathrm{PC}}$ output pin and the $\overline{F L A G}$ input pin. $\overline{P C}$ will go low for one cycle following a reod or write of PORT B. This signal can bc used to indicate "data ready" ot PORT B or "data accepted" from PORT B. Handshaking on 16 bit data transfers (using both PORT $A$ and PORT $B$ ) is possible by always reading or writing PORT $A$ first. $\overline{\text { FLAG }}$ is a negative edge sensitive input which can be used for receiving the $\overline{\mathrm{PC}}$ output from another 6526 , or as a general purpose interrupt input. Any negative transition of $\overline{\text { FLAG }}$ will set the $\overline{F L A G}$ interrupt bit.

REG	NAME	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$
0	PRA	$\mathrm{PA}_{7}$	$\mathrm{PA}_{6}$	$\mathrm{PA}_{5}$	$\mathrm{PA}_{4}$	$\mathrm{PA}_{3}$	$\mathrm{PA}_{2}$	$\mathrm{PA}_{1}$	$\mathrm{PA}_{0}$
1	PRB	$\mathrm{PB}_{7}$	$\mathrm{~PB}_{6}$	$\mathrm{~PB}_{5}$	$\mathrm{~PB}_{4}$	$\mathrm{~PB}_{3}$	$\mathrm{~PB}_{2}$	PB	$\mathrm{~PB}_{0}$
2	DDRA	$\mathrm{DPA}_{7}$	$\mathrm{DPA}_{6}$	$\mathrm{DPA}_{5}$	$\mathrm{DPA}_{4}$	$\mathrm{DPA}_{3}$	$\mathrm{DPA}_{2}$	$\mathrm{DPA}_{1}$	$\mathrm{DPA}_{0}$
3	DDRB	$\mathrm{DPB}_{7}$	$\mathrm{DPB}_{6}$	$\mathrm{DPB}_{5}$	$\mathrm{DPB}_{4}$	$\mathrm{DPB}_{3}$	$\mathrm{DPB}_{2}$	$\mathrm{DPB}_{1}$	$\mathrm{DPB}_{0}$

## Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16-bit read-only Timer Counter and a 16-bit write-only Timer Latch. Dato written to the timer are latched in the Timer Latch, while data read from the timer are the present contents of the Time Counter. The timers can be used independently or linked for extended operations. The various timer modes allow gencration of long time delays, variable width pulses, pulse trains and variable frequency
waveforms. Utilizing the CNT input, the timers can count external pulses or measure frequency, pulse width and delay times of external signals. Each timer has an associated control register, providing independent control of the following functions:

## Start/Stop

A control bit allows the timer to be started or stopped by the microprocessor at any time.

## PB On/Off:

A control bit allows the timer output to appear on a PORT B output line (PB6 for TIMER A and PB7 for TIMER B). This function overrides the DDRB control bit and forces the appropriate PB line to an output.

## Toggle/Pulse

A contral bit selects the output applied to PORT B. On every timer underflow the output can either toggle or generate a single positive pulse of one cycle duration. The Toggle output is set high whenever the timer is started and is set low by RES.

## One-Shot/Continuous

A control bit selects either timer mode. In one-shot mode, the timer will count down from the latched value ta zero, generate an interrupt, reload the latched value, then stop. In continuous mode, the timer will count from the latched value to zero, generate an interrupt, reload the latched value and repeat the procedure continuously.

## Force Load

A strobe bit allows the timer latch to be loaded into the timer counter at any time, whether the timer is running or not.

## Input Mode:

Control bits allow selection of the clock used to decrement the timer. TIMER A can count $\phi 2$ clock pulses or external pulses applied to the CNT pin. TIMER B can count $\phi 2$ pulses, external CNT pulses, TIMER A underflow pulses or TIMER A underflow pulses while the CNT pin is held high.

The timer latch is loaded into the timer on any timer undeflow, on a force load or following a write to the high byte of the prescaler while the timer is stopped. If the timer is running, a write to the high byte will load the timer latch, but not reload the counter.

## READ (TIMER)

REG NAME

4	TA LO	$\mathrm{TAL}_{7}$	$\mathrm{TAL}_{6}$	$\mathrm{TAL}_{5}$	$\mathrm{TAL}_{4}$	$\mathrm{TAL}_{3}$	$\mathrm{TAL}_{2}$	$\mathrm{TAL}_{1}$	$\mathrm{TAL}_{0}$
5	TA HI	$\mathrm{TAH}_{7}$	$\mathrm{TAH}_{6}$	$\mathrm{TAH}_{5}$	$\mathrm{TAH}_{4}$	$\mathrm{TAH}_{3}$	$\mathrm{TAH}_{2}$	TAH	$\mathrm{TAH}_{0}$
6	TB LO	$\mathrm{TBL}_{7}$	$\mathrm{TBL}_{6}$	$\mathrm{TBL}_{5}$	$\mathrm{TBL}_{4}$	$\mathrm{TBL}_{3}$	$\mathrm{TBL}_{2}$	$\mathrm{TBL}_{1}$	$\mathrm{TBL}_{0}$
7	TB HI	$\mathrm{TBH}_{7}$	$\mathrm{TBH}_{6}$	$\mathrm{TBH}_{5}$	$\mathrm{TBH}_{4}$	$\mathrm{TBH}_{3}$	$\mathrm{TBH}_{2}$	$\mathrm{TBH}_{1}$	$\mathrm{TBH}_{0}$

## WRITE (PRESCALER)

REG NAME

4	TA LO	$\mathrm{PAL}_{7}$	$\mathrm{PAL}_{6}$	$\mathrm{PAL}_{5}$	$\mathrm{PAL}_{4}$	$\mathrm{PAL}_{3}$	$\mathrm{PAL}_{2}$	$\mathrm{PAL}_{1}$	$\mathrm{PAL}_{0}$
5	TA HI	$\mathrm{PAH}_{7}$	$\mathrm{PAH}_{6}$	$\mathrm{PAH}_{5}$	$\mathrm{PAH}_{4}$	$\mathrm{PAH}_{3}$	$\mathrm{PAH}_{2}$	$\mathrm{PAH}_{1}$	$\mathrm{PAH}_{0}$
6	TB LO	$\mathrm{PBL}_{7}$	$\mathrm{PBL}_{6}$	$\mathrm{PBL}_{5}$	$\mathrm{PBL}_{4}$	$\mathrm{PBL}_{3}$	$\mathrm{PBL}_{2}$	$\mathrm{PBL}_{1}$	$\mathrm{PBL}_{0}$
7	TB HI	$\mathrm{PBH}_{7}$	$\mathrm{PBH}_{6}$	$\mathrm{PBH}_{5}$	$\mathrm{PBH}_{4}$	$\mathrm{PBH}_{3}$	$\mathrm{PBH}_{2}$	$\mathrm{PBH}_{1}$	$\mathrm{PBH}_{0}$

## Time of Day Clock (TOD)

The TOD clock is a special purpose timer for real-time applications. TOD consists of a 24 -hour (AM/PM) clock with $1 / 1$ Dth second resolution. It is organized into 4 registers: 10ths of seconds, Seconds, Minutes and Hours. The AN/PM flag is in the MSB of the Hours register for easy bit testing. Each register reads out in BCD format to simplify conversion for driving displays, etc. The clock requires an external 60 Hz or 50 Hz (programmable) TTL level input on the TOD pin for occurate timekeeping. In addition to time-keeping, a programmable ALARM is provided for generating an interrupt at a desired time. The ALARM registers are located ot-the same addresses as the corresponding TOD registers. Access to the ALARM is governed by a Control Register bit. The ALARM is write-only; any read of a TOD address will read time regardless of the state of the ALARM access bit.

A specific sequence of events must be followed for proper setting and reading of TOD. TOD is automatically stopped whenever a write to the Hours register occurs. The clock will not start again until after a write to the 10ths of seconds register. This assures TOD will always start ot the desired time. Since a carry from one stage to the next can occur at any time with respect to a read operation, a latching function is included to keep all Time Of Day information constant during a read sequence, All four TOD registers latch on a read of Hours and remain latched until after a read of 10 ths of seconds. The TOD clock continues to count when
the output registers are latched. If only one register is to be read, there is no carry problem and the register can be read "on the fly," provided that any read of Hours is followed by a read of 10 ths of seconds to disable the latching.

## READ

REG NAME

8	TOD 10THS	0	0	0	0	$\mathrm{~T}_{8}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{1}$
9	TOD SEC	0	$\mathrm{SH}_{4}$	$\mathrm{SH}_{2}$	$\mathrm{SH}_{1}$	$\mathrm{SL}_{6}$	$\mathrm{SL}_{4}$	$\mathrm{SL}_{2}$	$\mathrm{SL}_{1}$
A	TOD MIN	0	$\mathrm{MH}_{4}$	$\mathrm{MH}_{2}$	$\mathrm{MH}_{1}$	$\mathrm{ML}_{8}$	$\mathrm{ML}_{4}$	$\mathrm{ML}_{2}$	$\mathrm{ML}_{1}$
B	TOD HR	PM	0	0	HH	$\mathrm{HL}_{8}$	$\mathrm{HL}_{4}$	$\mathrm{HL}_{2}$	$\mathrm{HL}_{1}$

## WRITE

$\mathrm{CRB}_{7}=0 \mathrm{TOD}$
$C R B_{7}=1$ ALARM
(SAME FORMAT AS READ)

## Serial Port (SDR)

The serial port is a buffered, 8 -bit synchronous shift register system. A control bit selects input or output mode. In input mode, data on the SP pin is shifted into the shift register on the rising edge of the signal applied to the CNT pin. After 8 CNT pulses, the dota in the shift register is dumped into the Serial Data Register and an interrupt is generated. In the output mode, TIMER A is used for the baud rate generator. Data is shifted out on the $S P$ pin of $1 / 2$ the underflow rate of TIMER $A$. The maximum boud rate possible is $\phi 2$ divided by 4 , but the maximum useable baud rate will be determined $b$; line loading and the speed of which the receiver responds to input data. Transmission will start following a write to the Serial Data Register (provided TIMER A is running and in continuous mode). The clock signal derived from TIMER A appears as an output on the CNT pin. The data in the Serial Data Register will be loaded into the shift register then shift out to the SP pin when a CNT pulse occurs. Data shifted out becomes valid on the falling edge of CNT and remains valid until the next falling edge. After 8 CNT pulses, an interrupt is generated to indicate more data can be sent. If the Serial Data Register was loaded with new information prior to this interrupt, the new data will automatically be loaded into the shift register and transmission will continue. If the microprocessor stays one byte ahead of the shift register, transmission will be continuous. If no further data is to be transmitted, after the Bth CNT pulse, CNT will return high and SP will
remain at the level of the last data bit tronsmitted. SDR data is shitted out MSB first and serial input data should also appear in this format.

The bidirectional capability of the Serial Port and CNT clock allows many 6526 devices to be connected to a common serial communication bus on which one 6526 acts as a master, sourcing data and shift clock, while all other 6526 chips act as slaves. Both CNT and SP outputs are open drain to allow such a common bus. Protocal for master/slave selection can be transmitted over the serial bus, or via dedicated handshaking lines.

REG NAME

$C$	SDR	$\mathrm{S}_{7}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$

## Interrupt Control (ICR)

There are five sources of interrupts on the 6526: underflow from TIMER A, underflow from TIMER B, TOD ALARM, Serial Port full/empty and $\overline{\text { FLAG. A single register provides masking and interrupt information. The }}$ interrupt Control Kegister consists of a write-only MASK register and a read-only DATȦ register. Any interrupt will set the corresponding bit in the DATA register. Any interrupt which is enabled by the MASK register will set the IR bit (MSB) of the DATA register and bring the $\overline{I R Q}$ pin low. In a multi-chip system, the IR bit can be polled to detect which chip has generated an interrupt request. The interrupt DATA register is cleared and the $\overline{I R Q}$ line returns high following a read of the DATA register. Since each interrupt sets an interrupt bit regardless of the MASK, and each interrupt bit can be selectively masked to prevent the generation of a processor interrupt, it is possible to intermix polled interrupts with true interrupts. However, polling the IR bit will cause the DATA register to clear, therefore, it is up to the user to preserve the information contained in the DATA register if any polled interrupts were present.

The MASK register provides convenient control of individual mask bits. When writing to the MASK register, if bit 7 (SET/ $\overline{C L E A R}$ ) of the dota written is a $Z E R O$, any mask bit written with a one will be cleared, while those mask bits written with a zero will be unaffected. If bit 7 of the data written is a ONE, ony mask bit written with a one will be set, while those mask bits written with a zero will be unaffected. In order for an interrupt flag to set IR and generate an Interrupt Request, the corresponding MIASK bit must be set.

## READ (INT DATA)

REG NAME

$D$	$I C R$	$I R$	0	0	FLG	SP	ALRM	TB	TA

## WRITE (INT MASK)

REG NAME

$D$	$I C R$	$S / C$	$X$	$X$	$F L G$	$S P$	ALRM	$T B$	$T A$

## CONTROL REGISTERS

There are two control registers in the 6526, CRA and CRB. CRA is associated with TIMER A and CRB is associated with TIMER B. The register format is as follows:

## CRA:

Bit	Name	Function
0	START	$1=$ START TIMER A, $0=$ STOP TIMER A. This bit is automatically reset when underflow occurs during one-shot mode.
1	PBON	$1=$ TIMER A output appears on PB6, $0=$ PB6 normal operation.
2	OUTMODE	$1=$ TOGGLE, $0=$ PULSE
3	RUNMODE	$1=$ ONE-SHOT, $0=$ CONTINUOUS
4	LOAD	$1=$ FORCE LOAD (this is a STROBE input, there is no data storage, bit 4 will always read back a zero and writing a zero has no effect).
5	INMODE	$1=$ TIMER A counts positive CNT transitions, $0=$ TIMER A counts $\phi 2$ pulses.
6	SPMODE	$1=$ SERIAL PORT output (CNT sources shift clock),   $0=$ SERIAL PORT input (external shift clock required).
7	TODIN	$1=50 \mathrm{~Hz}$ clock required on TOD pin for accurate time, $0=60 \mathrm{~Hz}$ clock required on TOD pin for accurate time.

CRB:


All unused register bits are unaffected by a write and are forced to zero on a read.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliobility, function or design. COMMODORE SEMICONDUCTOR GROUP does not assurne any iability arising out of the opplication or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## APPENDIX N

## 6566/6567 (VIC-II) CHIP SPECIFICATIONS

The 6566/6567 are multi-purpose color video controller devices for use in both computer video terminals and video game applications. Both devices contain 47 control registers which are accessed via a standard 8 -bit microprocessor bus ( $65 \times X$ ) and will access up to 16 K of memory for display information. The various operating modes and options within each mode are described.

## CHARACTER DISPLAY MODE

In the character display mode, the 6566/6567 fetches CHARACTER POINTERs from the VIDEO MATRIX area of memory and translates the pointers to character dot location addresses in the 2048 byte CHARACTER BASE area of memory. The video matrix is comprised of 1000 consecutive locations in memory which each contain an eight-bit character pointer. The location of the video matrix within memory is defined by VM13-VM10 in register $24(\$ 18)$ which are used as the 4 MSB of the video matrix address. The lower order 10 bits are provided by an internal counter (VC3-VC0) which steps through the 1000 character locations. Note that the $6566 / 6567$ provides 14 address outputs; therefore, additional system hardware may be required for complete system memory decodes.

## CHARACTER POINTER ADDRESS

A13	A12	A11	A10	A09	A08	A07	A06	A05	A04	A03	A02	A01	A00
VM13	VM12	VM11	VM10	VC9	VC8	VC7	VC6	VC5	VC4	VC3	VC2	VC1	VCO

The eight-bit character pointer permits up to 256 different character definitions to be available simultaneously. Each character is an $8 \times 8$ dot matrix stored in the character base as eight consecutive bytes. The location of the character base is defined by CB13-CB11 also in register 24 (\$18) which are used for the 3 most significont bits (MSB) of the character base address. The 11 lower order addresses are formed by the 8 -bit character pointer from the video matrix (D7-D0) which selects a porticular character, and a 3-bit raster counter (RC2-RC0) which selects one of the eight character bytes. The resulting characters are formatted as 25 rows of 40 characters each. In addition to the 8 -bit character pointer, a 4-bit COLOR NYBBLE is associoted with each video matrix location (the video matrix memory must be 12 bits wide) which defines one of sixteen colors for each charocter.

## CHARACTER DATA ADDRESS

A13	A12	A11	A10	A09	A08	A07	A06	A05	A04	A03	A02	A01	A00
CB13	CB12	CB11	D7	D6	D5	D4	D3	D2	D1	D0	RC2	RC1	RC0

## STANDARD CHARACTER MODE ( $M C M=B M M=E C M=0$ )

In the standard character mode, the 8 sequential bytes from the character base are displayed directly on the 8 lines in each character region. A. " 0 " bit causes the background \#0 color (from register 33 $(\$ 21))$ to be displayed while the color selected by the color nybble (foreground) is displayed for a " 1 " bit (see Color Code Table).

FUNCTION	CHARACTER   BIT	COLOR DISPLAYED
Background	0	Background \#0 color   register 33 (\$21))
Foreground	1	Color selected by 4-bit color nybble

Therefore, each character has a unique color determined by the 4-bit color nybble ( 1 of 16 ) and all characters share the common background color.

## MULTI-COLOR CHARACTER MODE (MCM = 1, BMM = ECM $=0$

Multi-color mode provides additional color flexibility allowing up to four colors within each character but with reduced resolution. The multi-color mode is selected by setting the MCM bit in register 22 (\$16) to "1," which causes the dot data stored in the character base to be interpreted in a different manner. If the MSB of the color nybble is a " 0 ," the character will be displayed as described in standard character mode, allowing the two modes to be inter-mixed (however, only the lower order 8 colors are available). When the MSB of the color nybble is a " 1 " (if MCM:MSB(CM) - 1) the character bits are interpreted in the multi-color mode:

FUNCTION	CHARACTER   BIT PAIR	COLOR DISPLAYED
Background	00	Background \#0 Color   (register 33 (\$21))
Background	01	Background \#1 Color   (register 34 (\$22))
Foreground	10	Background \#2 Color   (register 35 (\$23))   Color specified by 3 LSB   of color nybble
Foreground	11	

Since two bits are required to specify one dot color, the character is now displayed as a $4 \times 8$ matrix with each dot twice the horizontal size as in standard mode. Note, however, that each character region can now contain 4 different colors, two as foreground and two as background (see MOB priority).

## EXTENDED COLOR MODE (ECM = 1, BMM = MCM = 0)

The extended color mode allows the selection of individual background colors for each character region with the narmal $8 \times 8$ character resolution. This mode is selected by setting the ECM bit of register 17 (\$11) to "1." The character dot data is displayed as in the standard mode (foreground color determined by the color nybble is displayed for
a "1" data bit), but the 2 MSB of the character pointer are used to select the background color for each character region as follows:

CHAR. POINTER   MS BIT PAIR	
00	BACKGROUND COLOR DISPLAYED FOR O BIT
01	Background \#0 color (register 33 (\$21))
10	Background \#1 color (register 34 (\$22))
11	Background \#2 color (register 35 (\$23))
	Background \#3 color (register 36 (\$24))

Since the two MSB of the character pointers are used for color information, only 64 different character definitions are available. The 6566/6567 will force CB10 and CB9 to " 0 " regardless of the original pointer values, so that only the first 64 character definitions will be accessed. With extended color mode each character has one of sixteen individually defined foreground colors and one of the four available bockground colors.

NOTE: Extended color mode and multi-color mode should not be enobled simultaneously.

## BIT MAP MODE

In bit map mode, the $6566 / 6567$ fetches data from memory in a different fashion, so that a one-to-one correspondence exists between each displayed dot and a memory bit. The bit map mode provides a screen resolution of $320 \mathrm{H} \times 200 \mathrm{~V}$ individually controlled display dots. Bit map mode is selected by setting the BMM bit in register 17 (\$11) to a " 1 ." The VIDEO MAIRIX is still occessed as in character mode, but the video matrix data is no longer interpreted as character pointers, but rather as color data. The VIDEO MATRIX COUNTER is then also used as an address to fetch the dot data for display from the 8000-byte DISPLAY BASE. The display base address is formed as follows:

| A13 | A12 | A11 | A10 | A09 | A08 A07 | A06 | A05 | A04 | A03 | A02 | A01 | A00 |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CB13 | VC9 | VC8 | VC7 | VC6 | VC5 | VC4 | VC3 | VC2 | VC1 | VC0 | RC2 | RC1 | RC0 |

VCx denotes the video matrix counter outputs, $R C x$ denotes the 3-bit raster line counter and CB13 is from register 24 (\$18). The video matrix counter steps through the same 40 locations for eight raster lines, continuing to the next 40 locations every eighth line, while the raster counter increments once for each horizontal video line (raster line). This addressing results in each eight sequential memory locations being formatted as an $8 \times 8$ dot block on the video display.

## STANDARD BIT MAP MODE ( $\mathrm{BMM}=1, \mathrm{MCM}=0$ )

When standard bit map mode is in use, the color information is derived only from the data stored in the video matrix (the color nybble is disregarded). The 8 bits are divided into two 4-bit nybbles which allow two colors to be independently selected in each $8 \times 8$ dot block. When a bit in the display memory is a " 0 " the color of the output dot is set by the least significant (lower) nybble (LSN). Similarly, a display memory bit of " 1 " selects the output color determined by the MSN (upper nybble).

BIT	DISPLAY COLOR
0	Lower nybble of video matrix pointer   Upper nybble of video matrix pointer

## MULTI-COLOR BIT MAP MODE (BMM = MCM = 1)

Multi-colored bit map mode is selected by setting the MCM bit in register $22(\$ 16)$ to a " 1 " in conjunction with the BMM bit. Multi-color mode uses the same memory access sequences as standard bit map mode, but interprets the dot data as follows:

BIT PAIR	DISPLAY COLOR
00	Background \#0 color (register 33 (\$21))
01	Upper nybble of video matrix pointer
10	Lower nybble of video matrix pointer
11	Video matrix color nybble

Note that the color nybble (DB11-DB8) IS used for the multi-color bit map mode. Again, as two bits are used to select one dot color, the
horizontal dot size is doubled, resulting in a screen resolution of $160 \mathrm{H} \times$ 200 V . Utilizing multi-color bit map mode, three independently selected colors can be displayed in each $8 \times 8$ block in addition to the background color.

## MOVABLE OBJECT BLOCKS

The movable object block ( $M O B$ ) is a special type of character which can be displayed at any one position on the screen without the block constraints inherent in character and bit map mode. Up to 8 unique MOBs can be displayed simultaneously, each defined by 63 bytes in memory which are displayed os a $24 \times 21$ dot urray (shown below). A number of special features make MOBs especially suited for video graphics and game applications.

MOB DISPLAY BLOCK

BYTE	BYTE	BYTE
00	01	02
03	04	05
$\cdot$	$\cdot$	$\cdot$
$\cdot$	$\cdot$	$\cdot$
$\cdot$	$\cdot$	59
57	68	62
60	61	

## ENABLE

Each MOB can be selectively enabled for display by setting its corresponding enable bit (MnE) to " 1 " in register 21 (\$15). If the MnE bit is "O," no MOB operations will occur involving the disabled MOB.

## POSITION

Each $M O B$ is positioned via its $X$ and $Y$ position register (see register map) with a resolution of 512 horizontal and 256 vertical positions. The
position of a MOB is determined by the upper-left corner of the array. $X$ locations 23 to 347 ( $\$ 17-\$ 157$ ) and $Y$ locations 50 to 249 ( $\$ 32-\$$ F9) are visible. Since not all available MOB positions are entirely visible on the screen, MOBs may be moved smoothly on and off the display screen.

## COLOR

Each MOB has a separate 4-bit register to determine the MOB color. The two MOB color modes are:

STANDARD MOB ( $\mathrm{MnMC}=0$ )
In the standard mode, a " 0 " bit of MOB data allows any background data to show through (transparent) and a " 1 " bil is displayed as the MOB color determined by the corresponding MOB Color register.

## MULTI-COLOR MOB (MnMC = 1)

Each MOB can be individually selected as a multi-color MOB via MnMC bits in the MOB Multi-color register 28 (\$1C). When the MnMC bit is " 1 ," the corresponding MOB is displayed in the multi-color mode. In the multi-color mode, the MOB data is interpreted in pairs (similar to the other multi-color modes) as follows:

BIT PAIR	COLOR DISPLAYED
00	Transparent
01	MOB Multi-color \#0 (register 37 (\$25))
10	MOB Color (registers 39-46 (\$27-\$2E))
11	MOB Multi-color \#1 (register 38 (\$26))

Since two bits of data are required for each color, the resolution of the MOB is reduced to $12 \times 21$, with each horizontal dot expanded to twice standard size so that the overall MOB size does not change. Note that up to 3 colors can be displayed in each MOB (in addition to transparent) but that two of the colors are shared among all the MOBs in the multicolor mode.

## MAGNIFICATION

Each $M O B$ can be selectively expanded ( $2 \times$ ) in both the horizontal and vertical directions. Two registers contain the control bits (MnXE,MnYE) for the magnification control:

REGISTER	FUNCTION
$23(\$ 17)$	Horizontal expand $M n X E-" 1 "=$ expand; " 0 " = normal
$29(\$ 1 D)$	Vertical expand $M n Y E-" 1 "=$ expand; " $0 "=$ normal

When MOBs are expanded, no increase in resolution is reclized. The same $24 \times 21$ array ( $12 \times 21$ if multi-colored) is displayed, but the overall MOB dimension is doubled in the desired direction (the smallest MOB dot may be up to $4 \times$ standard dot dimension if a MOB is both multicolored and expanded).

## PRIORITY

The priority of each MOB may be individually controlled with respect to the other displayed information from character or bit map modes. The priority of each MOB is set by the corresponding bit (MnDP) of register 27 (S1B) as follows:

## REG BIT PRIORITY TO CHARACTER OR BIT MAP DATA

0 Non-transparent MOB data will be displayed (MOB in front)
1 Non-transparent MOB data will be displayed only instead of Bkgd \#0 or multi-color bit pair 01 (MOB behind)

MOB - DISPLAY DATA PRIORITY

$M n D P=1$	$M n D P=0$
$M O B n$	Foreground
Foreground	MOBn
Background	Background

MOB data bits of " 0 " ("00" in multi-color mode) are transparent, always permitting any other information to be displayed.

The MOBs have a fixed priority with respect to each other, with MOB 0 having the highest priority and MOB 7 the lowest. When MOB data (except transparent data) of two MOBs are coincident, the data from the lower number MOB will be displayed. MOB vs. MOB dota is prioritized before pricrity resolution with character or bit map data.

## COLLISION DETECTION

Two types of MOB collision (coincidence) are detected, MOB to MOB collision and $M O B$ to display data collision:

1) A collision between two MOBs occurs when non-transparent output data of two $M O B$ s are coincident. Coincidence of $M O B$ transparent areas will not generate a collision. When a collision occurs, the MOB bits ( $M n M$ ) in the MOB-MOB COLLISION register 30 ( $\$ 1 \mathrm{E}$ ) will be set to " 1 " for both colliding MOBs. As a collision between two (or more) MOBs occurs, the MOB-MOB collision bit for each collided MOB will be set. The collision bits remain set until a read of the collision register, when all bits are automatically cleared. MOBs collisions are detected even if positioned off-screen.
2) The second type of collision is a MOB-DATA collision between a MOB and foreground display data from the character or bit map modes. The MOB-DATA COLLISION register 31 ( $\$ 1 \mathrm{~F}$ ) has a bit (MnD) for each MOB which is set to " 1 " when both the MOB and non-background display data are coincident. Again, the coincidence of only transparent dota does not generate a collision. For special applications, the display data from the $0-1$ multicolor bit pair also does not cause a collision. This feature permits their use as background disploy data without interfering with true MOB callisions. A MOB-DATA collision can occur off-screen in the horizontal direction if octual display data has been scrolled to an offscreen position (see scrolling). The MOB-DATA COLLISION register also automotically clears when read.

The collision interrupt latches are set whenever the first bit of either register is set to " 1 ." Once any collision bit within a register is set high, subsequent collisions will not set the interrupt latch until that collision register has been cleared to all "Os" by a read.

## MOB MEMORY ACCESS

The data for each MOB is stored in 63 consecutive bytes of memory. Each block of MOB data is defined by a MOB pointer, located at the end of the VIDEO MATRIX. Only 1000 bytes of the video matrix are used in the normal display modes, allowing the video matrix locations 1016-1023 (VM base $+\$ 3 F 8$ to VM base-\$3FF) to be used for MOB pointers $0-7$, respectively. The eight-bit $M O B$ pointer from the video matrix together with the six bits from the MOB byte counter (to oddress 63 bytes) define the entire 14 -bit address field:

| A13 | A12 | A11 | A10 | A09 | A08 | A07 | A06 | A05 | A04 | A03 | A02 | A01 | A00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MP7 | MP6 | MP5 | MP4 | MP3 | MP2 | MP1 | MPO | MC5 | MC4 | MC3 | MC2 | MC1 | MC0 |

Where MPx are the MOB pointer bits from the video matrix and MCx are the internally generated $M O B$ counter bits. The $M O B$ pointers are read from the video matrix at the end of every raster line. When the $Y$ position register of a MOB matches the current raster line count ${ }_{i}$ the actual fetches of MOB data begin. Internal counters automatically step through the 63 bytes of MOB dato, displaying three bytes on each raster line.

## OTHER FEATURES

## SCREEN BLANKING

The display screen may be blanked by setting the DEN bit in register $1 /$ (\$11) to a "0." When the screen is blanked, the entire screen will be filled with the exterio color as set in register 32 (\$20). When blanking is active, only transparent (Phase 1) memory accesses are required, permitting full processor utilization of the system bus. MOB data, however, will be accessed if the MOBs are not also disabled. The DEN bit must be set to " 1 " for normal video display.

## ROW/COLUMN SELECT

The normal display consists of 25 rows of 40 characters ior character regions) per row. For special display purposes, the display window may be reduced to 24 rows and 38 characters. There is no change in the formot of the displayed information, except that characters (bits) adjacent to the exterior border area will now be covered by the border. The select bits operate as follows:

RSEL	NUMBER OF ROWS	CSEL	NUMBER OF COLUMNS
0	24 rows	0	38 columns
1	25 rows	1	40 columns

The RSEL bit is in register 17 (\$11) and the CSEL bit is in register 22 (\$16). For standard display the larger display window is normally used, while the smaller display window is normally used in conjunction with scrolling.

## SCROLLING

The display data may be scrolled up to one entire character space in both the horizontal and vertical direction. When used in conjunction with the smaller display window (above), scrolling can be used to creare a smooth panning motion of display data while updoting the system memory only when a new character row (or column) is required. Scrolling is also used to center a fixed display within the display window.

BITS	REGISTER	FUNCTION
$\times 2, \times 1, \times 0$	$22(\$ 16)$	Horizontal Position
$\mathrm{Y} 2, \mathrm{Y} 1, \mathrm{YO}$	$17(\$ 11)$	Vertical Position

## LIGHT PEN

The light pen input latches the current screen position into a pair of registers (LPX, LPY) on a low-going edge. The $X$ position register 19 (\$13) will contain the 8 MSB of the $X$ position at the time of transition. Since the $X$ position is defined by a 512 -state counter ( 9 bits) resolution to 2 horizontal dots is provided. Similarly, the $Y$ position is atched to its reg-
ister $20(\$ 14)$ but here 8 bits provide single raster resclution within the visible display. The light pon latch may be triggered only once per frame, and subsequent triggers within the same frome will have no effect. Therefore, you must take several samples before turning the light pen to the screen (3 or more samples, average), depending upon the characteristics of your light pen.

## RASTER REGISTER

The raster register is a dual-function register. A read of the raster register $18(\$ 12)$ returns the lower 8 bits of the current raster position (the MSB-RC8 is located in register 17 (\$11)). The raster register can be interrogated to implement display changes outside the visible areo to prevent display flicker. The visible disploy window is from raster 51 through raster 251 ( $\$ 033-\$ 0 F B$ ). A write to the raster bits (including RC8) is latched for use in un internal raster compare. When the current raster motches the written value, the roster intcrrupt latch is set.

## INTERRUPT REGISTER

The interrupt register shows the status of the four sources of interrupt. An interrupt latch in register 25 (\$19) is set to " 1 " when an interrupt source has generated an interrupt request. The four sources of interrupt are:

LATCH	ENABLE	
BIT	BIT	WHEN SET
IRST	ERST	Set when (raster count) = (stored raster count)
IMDC	EMDC	Set by MOB-DATA collision register (first collision only)
IMMC	EMMC	Set by MOB-MOB collision register (first collision only)
ILP	ELP	Set by negative transition of LP input (once per frame)
IRQ		Set high by latch set and enabled (invert of IRQ/ output)

To enable on interrupt request to set the IRQ/ output to " 0 ," the corresponding interrupt enable bit in register 26 (\$1A) must be set to "1." Once an interrupt latch has been set, the latch may be cleared only by writing a " 1 " to the desired latch in the interrupt register. This feature allows selective handling of video interrupts without software required to "remember" active interrupts.

## DYNAMIC RAM REFRESH

A dynamic ram refresh controller is built in to the $6566 / 6567$ devices. Five 8 -bit row addresses are refreshed every raster line. This rate guarantees a maximum delay of 2.02 ms between the refresh of any single row address in a 128 refresh scheme. (The maximum deloy is 3.66 ms in a 256 address refresh scheme.) This refresh is totally transparent to the system, since the refresh occurs during Phase 1 of the system clock. The 6567 generates both RAS/ and CAS! which are normally connected directly to the dynamic rams. RAS/ and CAS/ are generated for every Phase 2 and every video data access (including refresh) so that external clock generation is not required.

## THEORY OF OPERATION

## system interface

The 6566/6567 video controller devices interact with the system data bus in a special way. A $65 \times X$ system requires the system buses only during the Phase 2 (clock high) portion of the cycle. The $6566 / 6567$ devices take advantage of this feature by normally accessing system memory during the Phase 1 (clock low) portion of the clock cycle. Therefore, operations such as character data fetches and memory refresh are totally tronsparent to the processor and do not reduce the processor throughput. The video chips provide the interface control signals required to maintain this bus sharing.

The video devices provide the signal AEC (address enoble control) which is used to disable the processor address bus drivers allowing the video device to access the address bus. AEC is active low which permits direct connection to the AEC input of the $65 \times X$ family. The AEC signal is
normally activated during Phase 1 so that processor operation is not affected. Because of this bus "sharing," all memory accesses must be completed in $1 / 2$ cycle. Since the video chips provide a $1-\mathrm{MHz}$ clock (which must be used as system Phase 2), a memory cycle is 500 ns including address setup, data access and, data setup to the reading device.

Certain operations of the $6566 / 6567$ require data at a faster rate than available by reading only during the Phase 1 time; specifically, the urcess of charocter pointers from the video matrix and the fetch of MOB data. Therefore, the processor must be disabled and the data accessed during the Phase 2 clock. This is accomplished via the BA (bus available) signal. The BA line is normaly high but is brought low during Phase 1 to indicate that the video chip will require a Phase 2 data access. Three Phase-2 times are allowed after BA low for the processor to complete any current memory accesses. On the fourth Phase 2 ofter BA low, the AEC signal will remain low during Phase 2 as the video chip fetches data. The BA line is normally connected to the RDY input of a 65 XX processor. The choracter pointer fetches occur every eighth raster line during the display window and require 40 consecutive Phase 2 accesses to fetch the video matrix pointers. The $M O B$ data fetches require $\angle$ memory accesses as follows:

PHASE	DATA	CONDITION
1	MOB Pointer	Every raster
2	MOB Byte 1	Each raster while MOB is displayed
1	MOB Byte 2	Each raster while MOB is displayed
2	MOB Byte 3	Each raster while MOB is displayed

The MOB pointers are fetched every other Phase 1 at the end of eoch raster line. As required, the additional cycles are used for $M O B$ data fetches. Again, all necesscry bus control is provided by the 6566/6567 devices.

## MEMORY INTERFACE

The two versions of the video interface chip, 6566 and 6567, differ in address output configurations. The 6566 has thirteen fully decoded ad-
dresses for direct connection to the system address bus. The 6567 has multiplexed addresses for direct connection to 64 K dynamic RAMs. The least significant address bits, A06-A00, are present on A06-A00 while RAS/ is brought low, while the most significant bits, A13-A08, are present on A05-A00 while CAS/ is brought low. The pins A11-A07 on the 6567 are static address outputs to allow direct connection of these bits to a conventional $16 \mathrm{~K}(2 \mathrm{~K} \times 8)$ ROM. (The lower order addresses require external latching.)

## PROCESSOR INTERFACE

Aside from the special memory accesses described above, the 6566/ 6567 registers can be occessed similar to any other peripheral device. The following processor interface signals are provided:

## DATA BUS (DB7-DBO)

The eight data bus pins are the bi-directional data port, controlled by CS/, RW, and Phase 0 . The data bus can only be accessed while AEC and Phase 0 are high and CS / is low.

## CHIP SELECT (CS/)

The chip select pin, CS/', is brought low to enable access to the device registers in conjunction with the address and RW pins. CS/ low is recognized only while AEC and Phase 0 are high.

## READ/WRITE (R/W)

The read/write input, R/W, is used to determine the direction of data transfer on the data bus, in conjunction with CS/. When R/W is high ("1") data is transferred from the selected register to the data bus output. When R/W is low (" 0 ") data presented on the data bus pins is loaded into the selected register.

ADDRESS BUS (A05-A00)
The lower six address pins, A5-A0, are bi-directional. During a processor read or write of the video device, these address pins are inputs. The data on the address inputs selects the register for read or write as defined in the register mop.

## CLOCK OUT (PHO)

The clock output, Phase 0 , is the $1-\mathrm{MHz}$ clock used as the 65 XX processor Phase 0 in . All system bus octivity is referenced to this clock. The clock frequency is generated by dividing the $8-\mathrm{MHz}$ video input clock by eight.

## INTERRUPTS (IRQ/)

The interrupt output, $I R Q /$, is brought low when an enabled source of interrupt occurs within the device. The $I R Q /$ output is open drain, requiring an external pull-up resistor.

## VIDEO INTERFACE

The video output signal from the $6566 / 6567$ consists of two signals which must be externally mixed together. SYNC/LUM output contains all the video dala, including horizontal and vertical syncs, as well as the luminance information of the video display. SYNC/LUM is open drain, requiring an external pull-up of 500 ohms. The COLOR output contains all the chrominance information, including the color reference burst and the color of all display data. The COLOR outpul is open source and should be terminated with 1000 ohms to ground. After appropriate mixing of these two signals, the resulting signal can directly drive a video monitor or be fed to a modulator for use with o standard television.

SUMMARY OF 6566/6567 BUS ACTIVITY

AEC	PHO	CS $/$	R/W	ACTION
0	0	X	X	PHASE 1 FETCH, REFRESH
0	1	X	X	PHASE 2 FETCH (PROCESSOR OFF)
1	0	X	X	NO ACTION
1	1	0	0	WRITE TO SELECTED REGISTER
1	1	0	1	READ FROM SELECTED REGISTER
1	1	1	X	NO ACTION



## PIN CONFIGURATION



REGISTER MAP


	24	(\$18)	VM13	VM12	VMII	VM10	CB13	CB12	CB11	-	Memory Pointers
	25	(\$19)	IRQ	-	-	-	ILP	IMMC	1 MBC	IRST	Interrupt Register
	26	(\$1A)	-	-	-	-	ELP	EMMC	EMBC	ERST	Enable Interrupt
	27	(\$1B)	M7DP	MODP	M5DP	M4DP	M3DP	M2DP	M1DP	MODP	MOB-DAIA Priority
	28	(\$1C)	M7MC	M6MC	M5MC	M4MC	M 3 MC	M2MC	MIMC	MOMC	MOB Multicolor Sel
	29	(\$1D)	M 7 XE	M6XE	M5XE	M4XE	M3XE	M2XE	MIXE	MOXE	MOB X-expand
	30	(\$1E)	M7M	M6M	M5M	M4M	M3M	M2M	MIM	MOM	MOB-MOB Collision
	31	(\$1F)	M7D	M6D	M5D	M4D	M3D	M2D	M1D	MOD	MOB-DATA Collision
	32	(\$20)	-	-	-		EC3	EC2	ECI	ECO	Exterior Color
	33	(\$21)	-	-	-	-	BOC3	B0C2	BOCl	B0C0	Bkgd \#0 Color
	34	(\$22)		-	-	-	B1C3	B1C2	$\mathrm{B1Cl}$	B1C0	Bkgd \#1 Color
	35	(\$23)	-	-	-	-	B2C3	B2C2	B2C1	B2C0	Bkgd \#2 Color
	36	(\$24)	-	-	-	-	B3C3	B3C2	B3C1	B3C0	Bkgd \#3 Color
	37	(\$25)	-	-	-	-	MM03	MM02	MMOI	мMOO	MOB Multicolor \#0
	38	(\$26)	-	-	-	-	MM13	MM12	MM11	MM10	MOB Multicolor \# 1
	39	(\$27)	-	-	-	-	MOC3	MOC2	MOCl	MOCO	MOB 0 Color
	40	(\$28)	-	-	-	-	M1 C3	M1C2	MICl	MICO	MOB 1 Color
	41	(\$29)	-	-	-	-	M2C3	M2C2	M 2 Cl	M2CO	MOB 2 Color
	42	(\$2A)	-	-	-	-	M3C3	M3C2	M 3 Cl	M3C0	MOB 3 Color
	43	(\$2B)	-	-	-	-	M4C3	M1C2	M 4 Cl	M4C0	MOB 4 Color
$\begin{aligned} & \mathbf{J} \\ & \text { ñ } \end{aligned}$	44	(\$2C)	-	-	-	-	M5C3	M5C2	M 5 Cl	M5C0	MOB 5 Color
$\frac{0}{x}$	45	(\$2D)	-	-	-	-	M6C3	M6C2	$\mathrm{M6Cl}$	M6CO	MOB 6 Color
z	46	(\$2E)	-	-	-	-	M7C3	M7C2	M 7 Cl	M7C0	MOB 7 Color

[^0]COLOR CODES

D4	D3	D1	D0	HEX	DEC	COLOR
0	0	0	0	0	0	BLACK
0	0	0	1	1	1	WHITE
0	0	1	0	2	2	RED
0	0	1	1	3	3	CYAN
0	1	0	0	4	4	PURPLE
0	1	0	1	5	5	GREEN
0	1	1	0	6	6	BLUE
0	1	1	1	7	7	YELLOW
1	0	0	0	8	8	ORANGE
1	0	0	1	9	9	BROWN
1	0	1	0	A	10	LT RED
1	0	1	1	B	11	DARK GREY
1	1	0	0	C	12	MED GREY
1	1	0	1	D	13	LT GREEN
1	1	1	0	E	14	LT BLUE
1	1	1	1	F	15	LT GREY

## 6581 SOUND INTERFACE DEVICE (SID) CHIP SPECIFICATIONS

## CONCEPT

The 6581 Sound Interface Device (SID) is a single-chip, 3-voice electronic music synthesizerisound effects generator compatible with the 65 XX and similar microprocessor families. SID provides wide-range, high-resolution control of pitch (frequency), tone color (harmonic content), and dynamics (ivolume). Specialized control circuitry minimizes software overhead, facilitating use in arcade/home videc games and low-cost musical instruments.

## FEATURES

- 3 TONE OSCILLATORS

Range: $0-4 \mathrm{kHz}$

- 4 WAVEFORMS PER OSCILLATOR

Triangle, Sawtooth,
Variable Pulse, Noise

- 3 AMPLITUDE MODULATORS

Range: 48 dB

- 3 ENVELOPE GENERATORS

Exponential response
Attack Rate: $2 \mathrm{~ms}-8 \mathrm{~s}$
Decay Rate: $6 \mathrm{~ms}-24 \mathrm{~s}$
Sustain Level: 0 -peak volume
Release Rate: $6 \mathrm{~ms}-24 \mathrm{~s}$

- OSCILLATOR SYNCHRONIZATION
- RING MODULATION
- PROGRAMMABLE FILTER

Cutoff range: $30 \mathrm{~Hz}-12 \mathrm{kHz}$
12 dB /octave Rolloff
Low pass, Bandpass,
High pass, Notch outputs
Variable Resonance

- MASTER VOLUME CONTROL
- 2 a/d POT INTERFACES
- RANDOM NUMBER/MODULATION GENERATOR
- EXTERNAL AUDIO INPUT

PIN CONFIGURATION



## DESCRIPTION

The 6581 consists of three synthesizer "voices" which can be used independently or in conjunction with each other (or external audio sources) to create complex sounds. Each voice consists of a Tone Oscillator/Waveform Generator, an Envelope Generator and on Amplitude Modulator. The Tone Oscillator controls the pitch of the voice over a wide range. The Oscillator produces four waveforms at the selected frequency, with the unique harmonic content of each waveform providing simple control of tone color. The volume dynamics of the oscillator are controlled by the Amplitude Modulator under the direction of the Envelope Generator. When triggered, the Envelope Generator creates an amplitude envelope with programmable rates of increasing and decreasing volume. In addition to the three voices, a programmable Filter is provided for generating complex, dynamic tone colors via subtractive synthesis.

SID allows the microprocessor to read the changing output of the third Oscillator and third Envelope Generator. These outputs can be used as $a$ source of modulation information for creating vibrato, frequency/filter sweeps and similar effects. The third oscillator can also act as a random number generator for games. Two A/D converters are provided for interfacing SID with potentiometers. These can be used for "paddles" in o game environment or as front panel controls in a music synthesizer. SID can process external audio signals, allowing multiple SID chips to be daisy-chained or mixed in complex polyphonic systems.

## SID CONTROL REGISTERS

There are 29 eight-bit registers in SID which control the generation of sound. These registers are either WRITE-only or READ-only and are listed below in Table 1.

REC(HEX)	EAT／							
	$\mathrm{O}_{7}$	$\mathrm{D}_{\mathrm{E}}$	$\mathrm{O}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	D ${ }_{1}$	$\mathrm{D}_{1}$	$\mathrm{D}_{\mathrm{C}}$
00	$\mathrm{F}_{7}$	$\mathrm{F}_{\mathrm{E}}$	${ }_{5}$	${ }_{4}$	${ }_{3}$	$\mathrm{F}_{6}$	$F_{1}$	${ }_{C}$
01	$F_{15}$	$\mathrm{F}_{14}$	$F_{13}$	$F_{12}$	$\mathrm{F}_{1}$ ．	$F_{10}$	$\mathrm{F}_{6}$	${ }_{8}$
02	$\mathrm{PW}_{7}$	$\mathrm{PW}_{6}$	$\mathrm{PW}_{5}$	$\mathrm{PW}_{4}$	$\mathrm{PW}_{3}$	$\mathrm{PVN}_{2}$	$\mathrm{ruv}_{1}$	$\mathrm{PWO}_{3}$
03					PW．${ }_{1}$	$\mathrm{PW}_{10}$	$\mathrm{PW}_{7}$	PW
0.4	NOISF	凸	1	へへ	TEST	MINS	SYAC	GATE
05	$\mathrm{AlH}_{3}$	Alk，	Alk $_{1}$	Alk ${ }^{\text {a }}$	$\mathrm{UCH}_{3}$	$\mathrm{DCY}_{2}$	DSY，	$\mathrm{DCY}_{0}$
06	$\mathrm{STH}_{3}$	$3 \mathrm{SN}_{2}$	$3 \mathrm{HN} \mathrm{N}_{1}$	$3 \mathrm{SH}_{0}$	$\mathrm{R}_{-} \mathrm{E}_{3}$	RLS ${ }_{2}$	RL3 ${ }_{1}$	$\mathrm{RLS}_{0}$


AEC NAM：	neg
Voice 1	TYPE
FICQ Lo	WZITE－ONLY
FFFO HI	＇NZITE．ONLY
PV／LO	＇NFITE－ONLY
PW／HI	NFITE－ONLY＇
CONTROL FEG	WRITE－ONLY
ATTACK＇DECAY	NRITE－ONLY
SLSTAIN／RELEASE	＇NaIte．Only
Voice ？	
FFEO LO	WRITF－ONLY
FFEQ HI	\％－IIIE－ONLY
PW LO	WרITE－ONLY
PW／HI	＇NZITE－ONLY
CONTROL REG	NZITE．ONLY
ATTACKIDECAY	WRITE－ONLY
SLSTAIN／REL三ASE	＇NFITE－ONLY
Voice 3	
FFEQLO	WRITE－ONLY
FFEQ HI	WRITE ONLY
PVIO	WRITF－ON Y
PV／ HI	N－IIE－ONLY
GONTHOL MLG	White－only
ATTACKIDFCAY	WRITE－ONLY
SLSIRIVUREL＝ASE	WRITE－ONLY
Filter	
FC LO	WRITE．ONLY
FC HI	＇WaITE－ONLY
RESJFIL	WRITE－ONLY
MODEVDL	WRITE ONLY
Miec．	
POIX	HEAD．OVLY
POTY	READ－ONLY
$\mathrm{OSC}_{-3} / \mathrm{RLNDOM}$	READONLY
Env3	READ－OVLY

## SID REGISTER DESCRIPTION

## VOICE 1

## FREQ LO/FREQ HI (Registers 00,01)

Together these registers form a 16-bit number which linearly controls the frequency of Oscillator 1. The frequency is determined by the following equation:

$$
F_{\text {out }}=\left(F_{\mathrm{n}} \times \mathrm{F}_{\mathrm{cIk}} / 16777216\right) \mathrm{Hz}
$$

Where $F_{n}$ is the 16 -bit number in the Frequency registers and $F_{C I k}$ is the system clock applied to the $\phi 2$ input ( pin 6 ). For a standard $1.0-\mathrm{MHz}$ clock, the frequency is given by:

$$
F_{\text {out }}=\left(F_{n} \times 0.059604645\right) \mathrm{Hz}
$$

A complete table of values for generating 8 octaves of the equally tempered musical scale with concert $A(440 \mathrm{~Hz})$ tuning is provided in Appendix $E$. It should be noted that the frequency resolution of SID is sufficient for any tuning scale and allows sweeping from note to note (portamento) with no discernable frequency steps.

PW LO/PW HI (Registers 02,03)
Together these registers form a 12-bit number (bits $4-7$ of PW HI are not used) which linearly controls the Pulse Width (duty cycle) of the Pulse waveform on Oscillator 1. The pulse width is determined by the following equation:

$$
P W_{\text {out }}=\left(P W_{n} / 40.95\right) \%
$$

Where PWn is the 12 -bit number in the Pulse Width registers.
The pulse width resolution allows the width to be smoothly swept with no discernable stepping. Note that the Pulse waveform on Oscillator 1 must be selected in order for the Pulse Width registers to have any audible effect. A value of 0 or 4095 (\$FF) in the Pulse Width registers will produce a constant DC output, while a value of 2048 ( $\$ 800$ ) will produce a square wave.

## CONTROL REGISTER (Register 04)

This register contains eight control bits which select various options on Oscillator 1.

GATE (Bif 0): The GATE bit controls the Envelope Generator for Voice 1. When this bit is set to a one, the Envelope Generator is Gated (triggered) and the ATTACK/DECAY/SUSTAIN cycle is initiated. When the bit is reset to a zero, the RELEASE cycle begins. The Envelope Generator controls the amplitude of Oscillator 1 appearing at the audio output, therefore, the GATE bit must be set (along with suitable envelope parameters) for the selected output of Oscillator 1 to be audible. A detailed discussion of the Envelope Generator can be found at the end of this Appendix.

SYNC (Bir 1): The SYNC bit, when set to a one, synchronizes the fundamental frequency of Oscillator 1 with the fundamental frequency of Oscillator 3, producing "Hard Sync" effects.

Varying the frequency of Oscillator 1 with respect to Oscillator 3 produces a wide range of complex harmonic struclures from Voice 1 at the frequency of Oscillator 3. In order for sync to occur, Oscillator 3 must be set to some frequency other than zero but preferably lower than the trequency of Oscillator 1. No other parameters of Voice 3 have any effect on sync.

RING MOD (Bit 2): The RING MOD bit, when set to a one, replaces the Triangle waveform output of Oscillator 1 with a "Ring Modulated" combination of Oscillators 1 and 3. Varying the frequency of Oscillator 1 with respect to Oscillator 3 produces a wide range of non-harmonic overtone structures for creating bell or gong sounds and for special effects. In order for ring modulation to be audible, the Triangle waveform of Oscillator 1 must be selected and Oscillator 3 must be set to some frequency other than zero. No other parameters of Voice 3 have any effect on ring modulation.

TEST (Bit 3); The TEST bit, when set to o one, resets and locks Oscillator 1 at zero until the TEST bit is cleared. The Noise waveform output of Oscillator 1 is also reset and the Pulse waveform output is held at a DC level. Normally this bit is used for testing purposes, however, it can be used to synchronize Oscillator 1 to external events, allowing the generation of highly complex woveforms under real-time software control.
(Bit 4): When set to a one, the Triangle waveform output Of Oscillator 1 is selected. The Triangle waveform is low in harmonics and has a mellow, flute-like quality.
(Bit 5): When set to a one, the Sawtooth waveform output of Oscillator 1 is selected. The Sawtooth waveform is rich in even and odd harmonics and has a bright, brassy quality.
(Bit 6): When set to a one, the Pulse waveform output of Oscillator 1 is selected. The harmonic content of this waveform can be adjusted by the Pulse Width registers, producing tone qualities ranging from a bright, hollow square wave to a nasal, reedy pulse. Sweeping the pulse width in real-time produces a dynamic "phasing" effect which odds a sense of motion to the sound. Rapidly jumping between different pulse widths can produce interesting harmonic sequences.

NOISE (Bit 7): When set to a onc, the Noise output waveform of Oscillator 1 is selected. This output is a random signal which changes at the frequency of Oscillator 1. The sound quality can be varied from a low rumbling to hissing white noise via the Oscillator 1 Frequency registers. Noise is useful in creating explosions, gunshots, jet engines, wind, surf and other unpitched sounds, as well as snare drums and cymbals. Sweeping the oscillator frequency with Noise selected produces a dramatic rushing effect.

One of the output waveforms must be selected for Oscillator 1 to be audible, however, it is NOT necessary to de-select waveforms to silence the output of Voice 1. The amplitude of Voice 1 at the final output is a function of the Envelope Generator only.

NOTE: The oscillator output waveforms are NOT additive. If more than one output woveform is selected simultaneously, the result will be a logical ANDing of the waveforms. Although this technique can be used to generate additional waveforms beyond the four listed above, it must be used with care. If any other waveform is selected while Noise is on, the Noise output can "lock up." If this occurs, the Noise output will remain silent until reset by the TEST bil or by bringing RES (pin 5) low.

## ATTACK/DECAY (Register 05)

Bits $4-7$ of this register (ATK0-ATK3) select 1 of 16 ATTACK rates for the Voice 1 Envelope Generator. The ATTACK rate determines how rapidly the output of Voice 1 rises from zero to peak amplitude when the Envelope Generator is Gated. The 16 ATTACK rates are listed in Table 2.

Bits $0-3$ (DCYO-DCY3) select 1 of 16 DECAY rates for the Envelope Generator. The DECAY cycle follows the ATTACK cycle and the DECAY rate determines how rapidly the output falls from the peak amplitude to the selected SUSTAIN level. The 16 DECAY rates are listed in Table 2.

## SUSTAIN/RELEASE (Register 06)

Bits 4-7 of this register (STNO-STN3) select 1 of 16 SUSTAIN levels for the Envelope Generator. The SUSTAIN cycle follows the DECAY cycle and the output of Voice 1 will remain at the selected SUSTAIN amplitude as long as the Gate bit remains set. The SUSTAIN levels range from zero to peak amplitude in 16 linear steps, with a SUSTAIN value of 0 selecting zero amplitude and a SUSTAIN value of 15 (\$F) selecting the peak amplitude. A SUSTAIN value of 8 would cause Voice 1 to SUSTAIN at an amplitude one-half the peak amplitude reached by the ATTACK cycle.

Bits $0-3$ (RLSO-RLS3) select 1 of 16 RELEASE rates for the Envelope Generator. The RELEASE cycle fallows the SUSTAIN cycle when the Gate bit is reset to zero. At this time, the output of Voice 1 will fall from the SUSTAIN amplitude to zero amplitude at the selected RELEASE rate. The 16 RELEASE rates are identical to the DECAY rates.

[^1]Table 2. Envelope Rates

VALUE		ATTACK RATE	DECAY/RELEASE RATE
DEC (HEX)		(Time/Cycle)	(Time/Cycle)
0	$(0)$	2 ms	6 ms
1	$(1)$	8 ms	24 ms
2	$(2)$	16 ms	48 ms
3	$(3)$	24 ms	72 ms
4	$(4)$	38 ms	114 ms
5	$(5)$	56 ms	168 ms
6	$(6)$	68 ms	204 ms
7	$(7)$	80 ms	240 ms
8	$(8)$	100 ms	300 ms
9	(9)	250 ms	750 ms
10	(A)	500 ms	1.5 s
11	(B)	800 ms	2.4 s
12	(C)	1 s	3 s
13	(D)	3 s	9 s
14	(E)	5 s	15 s
15	(F)	8 s	24 s

NOTEEnvelope rates are based on a $1.0-\mathrm{MHz} \phi 2$ clock. For other $\phi 2$ frequencies, multiply the given rate by $1 \mathrm{MHz} / \phi 2$. The rates refer to the amount of time per cycle. For example, given an AITACK value of 2 , the ATIACK cycle would toke 16 ms to rise from zero to peak amplitude. The DECAY/RFIFASF ates refer to the amount of time these cycles would take to fall from peak amplitude to zero.

## VOICE 2

Registers $07-\$ 0 \mathrm{D}$ control Voice 2 and are functionally identical to registers 00-06 with these exceptions:

1) When selected, SYNC synchronizes Oscillator 2 with Oscillator 1.
2) When selected, RING MOD replaces the Triangle output of Oscillator 2 with the ring modulated combination of Oscillators 2 and 1.

## VOICE 3

Registers $\$ 0 \mathrm{E}-\$ 14$ control Voice 3 and are functionally identical to registers 00-06 with these exceptions:

1) When selected, SYNC synchronizes Oscillatur 3 with Oscillator 2.
2) When selected, RING MOD replaces the Triangle output of Oscillator 3 with the ring modulated combination of Oscillators 3 and 2.

Typical operation of a voice consists of selecting the desired parameters: frequency, waveform, effects (SYNC, RING MOD) and envelope rates, then gating the voice whenever the sound is desired. The sound can be sustained for any length of time and terminated by clearing the Gate bit. Each voice can be used separately, with independent parameters and gating, or in unison to create a single, powerful voice. When used in unison, a slight detuning of each oscillator or tuning to musical intervals creates a rich, animated sound.

## FILTER

FC LO/FC HI (Registers \$15,\$16)
Together these registers form an 11-bit number (bits 3-7 of FC LO are not used) which linearly controls the Cutoff (or Center) Frequency of the programmable Filter. The approximate Cutoff Frequency ranges from 30 Hz to 12 KHz .

## RES/FILT (Register \$17)

Bits 47 of this register (RESO-RES3) control the resonance of the filter. Resonance is a peaking effect which emphasizes frequency components at the Cutoff Frequency of the Filter, causing a sharper sound. There are 16 resonance settings ranging linearly from no resonance ( 0 ) to maximum resononce ( 15 or $\$ F$ ). Bits $0-3$ determine which signals will be rouled through the Filter:

FILT 1 (Bit 0): When set to a zern, Voice 1 appears directly at the audio output and the Filter has no effect on it. When set to o one, Voice I will be processed through the Filter and the harmonic content of Voice 1 will be altered according to the selected Filter parameters.

FIIT 2 (Bit 1): Same as bit 0 for Voice 2.
Fllt 3 (Bit 2): Same as bit 0 for Voice 3.
FILTEX ( Bii 3 ): Same os bit 0 for External audio input (pin 26).

## MODE/VOL (Register \$18)

Bits 4-7 of this register select various Filter mode and output options:
LP (Bit 4): When set to a one, the Low-Pass output of the Filter is selected and sent to the audio output. For a given Filter input signal, all frequency components beluw the Filter Cutoff Frequency are passed unaltered, while all frequency components obove the Cutoff are attenuated at a rate of 12 dB /Octave. The Low-Pass mode produces fullbodied sounds.

BP (Bit 5): Same as bit 4 for the Bandpass outpur. All frequency components above and below the Cutoff are attenuated at a rate of 6 $\mathrm{dB} /$ Octave. The Bandpass mode produces thin, open sounds.

HP (Bit 6): Same as bit 4 for the High-Pass output. All frequency components obove the Cutoff are passed unaltered, while all frequency components below the Cutoff are attenuated at a rate of $12 \mathrm{~dB} /$ Octave. The High-Pass mode produces tinny, buzzy sounds.

3 OFF ( Bit 7 ): When set to a one, the output of Voice 3 is disconnected from the direct audio path. Setting Voice 3 to bypass the Filter (FILT $3=$ 0 ) and setting 3 OFF to a one prevents Voice 3 from reaching the audio output. This allows Voice 3 to be used for modulation purposes without any undesirable output.

> NOTE: The Filter output modes ARE additive and multiple Fiter modes may be selected simultaneously. For example, both LP and HP modes con be selected to produce a Notch (or Band Reject) Filter response. In order for the Filter ta have any audible effect, at least one Filter output must be selected and at least one Voice must be routed through the Filter. The Filter is, perhaps, the most importont element in SID as it allows the generation of complex tone colors via subtractlve synthesis (the Filter is used to eliminate specific frequency components from a harmonically rich input signal). The best results are achieved by varying the Cutoff Frequency in real-time.

Bits 0-3 (VOLO VOL3) select 1 of 16 overall Volume levels for the final composite audio output. The output volume levels range from no output ( 0 ) to maximum volume ( 15 or $\$$ F) in 16 linear steps. This contral can be used as a static volume control for balancing levels in multi-chip systems or for creating dynamic volume effects, such as Tremolo. Some Volume level other than zero must be selected in order for SID to produce any sound.

## MISCELLANEOUS

## POTX (Regisfer \$19)

This register allows the microprocessor to read the position of the potentiometer tied to POTX (pin 24), with values ranging from 0 at minimum resistance, to 255 ( $\$ \mathrm{FF}$ ) at maximum resistance. The value is always valid and is updated every $512 \phi 2$ clock cycles. See the Pin Description section for information on pot and capacitor values.

## POTY (Register \$1A)

Same as POTX for the pot tied to POTY (pin 23).

## OSC 3/RANDOM (Register \$1B)

This register allows the microprocessor to read the upper 8 output bits of Oscillator 3. The character of the numbers generated is directly related to the waveform selected. If the Sawtooth waveform of Oscillator 3 is selected, this register will present a series of numbers incrementing from 0 to 255 (\$FF) at a rate determined by the frequency of Oscillator 3. If the Triangle waveform is selected, the output will increment from 0 up to 255 , then decrement down to 0 . If the Pulse waveform is selected, the output will jump betwreen 0 and 255. Selecting the Noise waveform will produce a series of random numbers, therefore, this register can be used os a random number generator for games. There are numerous timing and sequencing applications for the OSC 3 register, however, the chief function is probably that of a modulation gencrator. The numbers generated by this register can be added, via software, to the Oscillator or Filter Frequency registers or the Pulse Width registers in real-time. Many dynamic effects can be generated in this manner. Siren-like sounds can be created by adding the OSC 3 Sawtooth output to the frequency control of another oscillator. Synthesizer "Sample and Hold" effects can be produced by odding the OSC 3 Noise output to the Filter Frequency control registers. Vibrato can be produced by setting Oscillator 3 to a frequency around 7 Hz and adding the OSC 3 Triangle output (with proper scaling) to the Frequency control of another oscillator. An unlimited range of effects are available by altering the frequency of Oscillator 3 and scaling the OSC 3 output. Normally, when Oscillator 3 is used for modulation, the audio output of Voice 3 should be eliminated ( 3 OFF -1 ).

Same as OSC 3, but this register allows the microprocessor to read the output of the Voice 3 Envelope Generator. This output can be added to the Filter Frequency to produce harmonic envelopes, WAH-WAH, and similar effects. "Phaser" sounds can be created by adding this output to the frequency control registers of an oscillator. The Voice 3 Envelope Generator must be Gated in order to produce any output from this register. The OSC 3 register, however, always reflects the changing output of the oscillator and is not affected in any way by the Envelope Generator.

## SID PIN DESCRIPTION

CAP1A,CAP1B, (Pins 1,2)/ CAP2A,CAP2B (Pins 3,4)
These pins are used to connect the two integrating capacitors required by the programmable Filter. Cl connects between pins 1 and 2, C2 between pins 3 and 4. Both capacitors should be the same value. Normal operation of the Filter over the audio range (approximately 30 $\mathrm{Hz}-12 \mathrm{kHz}$ ) is accomplished with a value of 2200 pF for C1 and C2. Polystyrene capacitors are preferred and in complex polyphonic systems, where many SID chips must trock each other, motched capacitors are recommended.

The frequency range of the Filter can be tailored to specific applications by the choice of capacitor values. For example, a low-cost game may not require full high-frequency response. In this case, larger volues for C1 and C2 could be chosen to provide more control over the bass frequencies of the Filter. The maximum Cutoff Frequency of the Filter is given by:

$$
\mathrm{FC}_{\max }=2.6 \mathrm{E}-5 / \mathrm{C}
$$

Where C is the capacitor value. The range of the Filter extends 9 octaves below the maximum Cutoff Frequency.

## RES (Pin 5)

This TTL-level input is the reset control for SID. When brought low for at least ten $\omega 2$ cycles, all internal registers are reset to zero and the audio output is silenced. This pin is normally connected to the reset line of the microprocessor or a power-on-clear circuit.

This TTL-level input is the master clock for SID. All oscillator frequencies and envelope rates are referenced to this clock. $\phi 2$ also controls data transfers between SID and the microprocessor. Data can only be transferred when $\phi 2$ is high. Essentially, $\phi 2$ acts as a high-active chip select as far as dota transfers are concerned. This pin is normally connected to the system clock, with a nominal operating frequency of 1.0 MHz .

## R/W (Pin 7)

This TTL-level input controls the direction of data transfers between SID and the microprocessor. If the chip select conditions have been met ${ }_{i}$ a high on this line allows the microprocessor to Read data from the selected SID register and a low allows the microprocessor to W-ite data into the selected SID register. This pin is normally connected to the system Read/Write line.

## CS (Pin 8)

This TTL-level input is a low active chip select which controls data transfers between SID and the microprocessor. CS must be low for any transfer. A Read from the selected SID register can only occur if CS is low, $\phi 2$ is high and R/W is high. A Write to the selected SID register can only occur if CS is low, $\phi 2$ is high and $R^{\prime} W$ is low. This pin is normally connected to address decoding circuitry, allowing SID to reside in the memory map of a system.

## A0-A4 (Pins 9-13)

These TTL-level inputs are used to select one of the 29 SID registers. Although enough addresses ore provided to select 1 of 32 registers, the remaining three register locations are not used. A Write to any of these three locations is ignored and a Read returns invalid data. These pins are normally connected to the corresponding address lines of the microprocessor so that SID may be addressed in the same monner as memory.

## GND (Pin 14)

For best results, the ground line between SID and the power supply should be separate from ground lines to other digital circuitry. This will minimize digital noise at the audio output.

D0-D7 (Pins 15-22)
These bidirectional lines are used to transfer data between SID and the microprocessor. They are TTL compatible in the input mode and ccpable of driving 2 TTL loads in the output mode. The dato buffers ore usually in the high-impedance off state. During a Write operation, the data buffers remain in the off (input) state and the microprocessor supplies data to SID over these lines. During a Read operation, the data buffers turn on and SID supplies data to the microprocessor over these lines. The pins are normally connected to the corresponding data lines of the microprocessor.

## POTX,POTY (Pins 24,23)

These pins ore inputs to the $A^{\prime}$ D converters used to digitize the position of potentiometers. The conversion process is based on the time constant of a capacitor tied from the POT pin to ground, charged by a potentiometer tied from the POT pin to +5 volts. The component values are determined by:

$$
R C=4.7 E-4
$$

Where $R$ is the maximum resistance of the pot and $C$ is the capacitor.
The larger the capacitor, the smaller the POT value jitter. The recommended values for $R$ and $C$ are $470 \mathrm{k} \Omega$ and 1000 pF . Note that a separate pot and cap are required for each POT pin.

## $\mathbf{V}_{\mathrm{CC}}$ (Pin 25)

As with the GND line, a separate +5 VDC line should be run between SID $V_{c c}$ and the power supply in order to minimize noise. A bypass capacitor should be located close to the pin.

## EXT IN (Pin 26)

This onalog input allows external audio signals to be mixed with the audio output of SID or processed through the Filter. Fypical sources include voice, guitar, and organ. The input impedance of this pin is on the order of $100 \mathrm{k} \Omega$. Any signal applied directly to the pin should ride at a DC level of 6 volts and should not exceed 3 volts $p-p$. In order to pre-
vent any interference caused by DC level differences, external signals should be AC-coupled to EXT IN by an electrolytic capacitor in the 1-10 $\mu \mathrm{F}$ range. As the direct audio path (FILTEX $=0$ ) has unity gain, EXT IN can be used to mix outputs of many SID chips by daisy-chaining. The number of chips that can be chained in this manner is determined by the amount of noise and distortion allowable at the final output. Note that the output Volume control will affect not only the three SID voices, but also any external inputs.

## AUDIO OUT (Pin 27)

This open-source buffer is the final audio output of SID, comprised of the three SID voices, the Filter and any external input. The output level is set by the output Volume control and reaches a maximum of 2 volts $p-p$ at a DC level of 6 volts. A source resistor from AUDIO OUT to ground is required for proper operation. The recommended resistance is $1 k \Omega$ for a standard output impedance.

As the output of SID rides at a 6 -volt DC level, it should be ACcoupled to any audio amplifier with an electrolytic capacitor in the $1-10$ $\mu \mathrm{F}$ range.

## $V_{D D}$ (Pin 2B)

As with $V_{c c}$, a separate +12 VDC line should be run to SID $V_{D D}$ and a bypass capacitor should be used.

## 6581 SID CHARACTERISTICS

## ABSOLUTE MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNITS
Supply Voltage	$V_{\text {DD }}$	-0.3 to +17	VDC
Supply Voltage	$V_{\text {CC }}$	-0.3 to +7	VDC
Input Voltage (analog)	$V_{\text {ina }}$	-0.3 to +17	VDC
Input Voltage (digital)	$V_{\text {inc }}$	-0.3 to +7	VDC
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{VDC} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{VDC} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ )

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNITS
Input High Voltage Input Low Voltage	(RES, $\phi 2, R / W, C S$, A0-A4, D0-D7)	$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	$\begin{gathered} 2 \\ -0.3 \end{gathered}$		$\begin{gathered} v_{\mathrm{cc}} \\ 0.8 \end{gathered}$	VDC VDC
Input Leakage Current   Three-Stote (Off)	(RES, $\phi 2$, R/W, CS, $\begin{aligned} & \text { A0-A4; } \left.V_{\text {in }}=0-5 \mathrm{VDC}\right) \\ & \left(\mathrm{D} 0-\mathrm{DT} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{max}\right) \end{aligned}$	$I_{\text {in }}$   $I_{\text {TSI }}$			$\begin{array}{r} 2.5 \\ 10 \\ \hline \end{array}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
Input Leakage Current	$V_{\text {in }}=0.4-2.4 \mathrm{VDC}$					
Output High Voltage	$\begin{aligned} & \left(\mathrm{D} 0-\mathrm{D} 7 ; \mathrm{V}_{\mathrm{CC}}=\min ,\right. \\ & \text { I load }=200 \mu \mathrm{~A}) \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	$V_{C C}-0.7$	VDC
Output Low Voltage	$\begin{aligned} & \left(D 0-D 7 ; V_{C C}=\max ,\right. \\ & I \text { load }=3.2 \mathrm{~mA}) \end{aligned}$	$V_{\text {OL }}$	CND	-	0.4	VDC
Output High Current	(D0-D7; Sourcing,   $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{VDC}$ )	$\mathrm{I}_{\mathrm{OH}}$	200	-	-	$\mu \mathrm{A}$


Output Low Current	$\begin{aligned} & (D O-D T ; \text { Sinking, } \\ & \left.V_{D L}=0.4 \mathrm{VDC}\right) \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}$	3.2	-	-	mA
Input Capacitance	(RES, $\phi 2, \mathrm{R} / \mathrm{W}, \mathrm{CS}$, A0-A4, D0-D7)	$\mathrm{C}_{\text {in }}$	-	-	10	pF
Pot Trigger Voltage	(POTX, POTY)	$V_{\text {pot }}$	-	$\mathrm{V}_{\mathrm{cd}} / 2$	-	VDC
Pot Sink Current	(POTX, POTY)	$\mathrm{I}_{\text {pot }}$	500	-	-	$\mu \mathrm{A}$
Input Impedance	(EXT IN)	$\mathrm{R}_{\text {in }}$	100	150	-	$k \Omega$
Audio Input Voltage	(EXT IN)	$V_{\text {in }}$	$5.7$	$\begin{gathered} 6 \\ 0.5 \end{gathered}$	$\begin{gathered} 6.3 \\ 3 \end{gathered}$	VDC VAC
Audio Output Volrage	(AUDIO OUT; $1 \mathrm{k} \Omega$ lood, volume $=\max$ ) One Voice on: All Voices on:	$V_{\text {out }}$	$\begin{aligned} & 5.7 \\ & 0.4 \\ & 1.0 \end{aligned}$	$\begin{gathered} 6 \\ 0.5 \\ 1.5 \end{gathered}$	$\begin{aligned} & 6.3 \\ & 0.6 \\ & 2.0 \\ & \hline \end{aligned}$	VDC VAC   VAC
Power Supply Current	( $\mathrm{V}_{\mathrm{DD}}$ )	$I_{\text {D }}$	-	20	25	mA
Power Supply Current	$\left(\mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{I}_{\mathrm{cc}}$	-	70	100	mA
Power Dissipation	(Toral)	$\mathrm{P}_{\mathrm{D}}$	-	600	1000	mW

## 6581 SID TIMING



## READ CYCLE

SYMBOL	NAME	MIN	TYP	MAX	UNITS
$\mathrm{T}_{\text {CYC }}$	Clock Cycle Time	1	-	20	$\mu \mathrm{~s}$
$\mathrm{~T}_{\mathrm{C}}$	Clock High Pulse Width	450	500	10,000	ns
$\mathrm{~T}_{\text {R }}, \mathrm{T}_{\text {F }}$	Clock Rise'/Fall Time	-	-	25	ns
$\mathrm{~T}_{\text {RS }}$	Read Set-Up Time	0	-	-	ns
$\mathrm{T}_{\text {RH }}$	Read Hold Time	0	-	-	ns
$\mathrm{T}_{\text {ACC }}$	Access Time	-	-	300	ns
$\mathrm{~T}_{\text {AH }}$	Address Hold Time	10	-	-	ns
$\mathrm{T}_{\text {CH }}$	Chip Select Hold Time	0	-	-	ns
$\mathrm{T}_{\text {DH }}$	Data Hold Time	20	-	-	ns


${ }^{*} T_{W}$ is reasured from the latest occurring of $\phi_{2}, \overline{\mathrm{CS}}, \mathrm{R} \bar{N}$.

## WRITE CYCLE

SYMBOL	NAME	MIN	TYP	MAX	UNITS
$\mathrm{T}_{\mathrm{W}}$	Write Pulse Width	300	-	-	ns
$\mathrm{T}_{\mathrm{WH}}$	Write Hold Time	0	-	-	ns
$\mathrm{T}_{\text {AWS }}$	Address Set-up Time	0	-	-	ns
$\mathrm{T}_{\text {AH }}$	Address Hold Time	10	-	-	ns
$\mathrm{T}_{\mathrm{CH}}$	Chip Select Hold Time	0	-	-	ns
$\mathrm{T}_{\mathrm{VD}}$	Valid Data	80	-	-	ns
$\mathrm{T}_{\mathrm{DH}}$	Data Hold Time	10	-	-	ns

## EQUAL-TEMPERED MUSICAL SCALE VALUES

The table in Appendix E lists the numerical values which must be stored in the SID Oscillator frequency control registers to produce the notes of the equal-tempered musical scale. The equal-tempered scale consists of on octave containing 12 semitones (notes): $C, D, E, F, G, A, B$ and C\#,D\#,F\#, G\#,A\#. The frequency of each semitone is exactly the 12 th root of $2(\sqrt[12]{2})$ times the frequency of the previous semitone. The table is based on a $\phi 2$ clock of 1.02 MHz . Refer to the equation given in the Register Description for use of other master clock frequencies. The scale selected is concert pitch, in which $A-4=440 \mathrm{~Hz}$. Transpositions of this scale and scales other than the equal-tempered scale are also possible.

Although the table in Appendix E provides a simple and quick method for generating the equal-tempered scale, it is very memory inefficient as it requires 192 bytes for the table alone. Memory efficiency can be improved by determining the note value algorithmically. Using the fact that each note in an octave is exactly half the frequency of that note in the next octave, the note look-up toble can be reduced from 96 entries to 12 entries, as there are 12 notes per octave. If the 12 entries ( 24 bytes) consist of the 16 -bit values for the eighth octave ( $\mathrm{C}-7$ through $\mathrm{B}-7$ ), then notes in lower octaves can be derived by choosing the appropriate note in the eighth octave and dividing the 16-bit value by two for each octave of difference. As division by two is nothing more than a right-shift of the value, the calculotion can easily be accomplished by a simple software routine. Although note B-7 is beyond the range of the oscillators, this value should still be included in the table for calculation purposes (the MSB of B-7 would require a special software case, such as generating this bit in the CARRY before shifting). Each note must be specified in a form which indicates which of the 12 semitones is desired, and which of the eight octaves the semitone is in. Since four bits are necessary to select 1 of 12 semitones and three bits are necesscry to select 1 of 8 octaves, the information can fit in one byte, with the lower nybble selecting the semitone (by addressing the look-up table) and the upper nybble being used by the division routine to determine how many times the table value must be right-shifted.

## SID ENVELOPE GENERATORS

The four-part ADSR (ATTACK, DECAY, SUSTAIN, RELEASE) envelope generator has been proven in electronic music to provide the optimum trade-off between flexibility and ease of amplitude control. Appropriate selection of envelope parameters allows the simulation of a wide range of percussion and sustained instruments. The violin is a good example of a sustained instrument. The violinist controls the volume by bowing the instrument. Typically, the volume builds slowly, reaches a peok, then drops to an intermediate level. The violinist can maintain this level for as long as desired, then the volume is allowed to slowly die away. A "snapshot" of this envelope is shown below:


This volume envelope can be easily reproduced by the ADSR as shown below, with typical envelope rates:

ATTACK:	$10(\$ A)$	500 ms
DECAY:	8	300 ms
SUSTAIN:	$10(\$ \mathrm{~A})$	
RELEASE:	9	750 ms

RELEASE: $9 \quad 750 \mathrm{~ms}$


Note that the tone can be held at the intermediate SUSTAIN level for as long as desired. The tone will not begin to die away until GATE is cleared. With minor alterations, this basic envelope can be used for bress and woodwinds as well as strings.

An entirely different form of envelope is produced by percussion instruments such as drums, cymbals and gongs, as well as certain keyboards such as pianos and harpsichords. The percussion envelope is characterized by a nearly instantaneous attack, immediately followed by a decay to zero volume. Percussion instruments cannot be sustained
at a constant amplitude. For example, the instant a drum is struck, the sound reaches full volume and decays rapidly regardless of how it was struck. A typical cymbal envelope is shown below:


Nate that the tone immediately begins to decay to zero amplitude after the peak is reached, regardless of when GATE is cleared. The amplitude envelope of pianos and harpsichords is somewhat more complicated, but can be generated quite easily with the ADSR. These instruments reach full volume when a key is first struck. The amplitude immediately begins to die away slowly as long as the key remains depressed. If the key is released before the sound has fully died away, the amplitude will immediately drop to zero. This envelope is shown below:

ATTACK:	0	2 ms
DECAY:	9	750 ms
SUSTAIN:	0	
RELEASE:	0	6 ms



RELEASE: 0
6 ms


Note that the tone decays slowly until GATE is cleared, at which point the amplitude drops rapidly to zero.

The most simple envelope is that of the organ, When a key is pressed, the tone immediately reaches full volume ond remains there. When the key is releosed, the tone drops immediately to zero volume. This envelope is shown below:

ATTACK: 0
2 ms
DECAY: 0
SUSTAIN: 15 (\$F)
RELEASE: 0


The real power of SID lies in the ability to create original sounds rather than simulations of acoustic instruments. The ADSR is capable of creating envelopes which do not correspond to any "real" instruments. A good example would be the "backwards" envelope. This envelope is characterized by a slow attack and rapid decay which sounds very
much like an instrument that has been recorded on tape then played backwards. This envelope is shown below:


Many unique sounds can be created by applying the amplitude envelope of one instrument to the harmonic structure of onother. This produces sounds similar to fomiliar acoustic instruments, yet notably different. In general, sound is quite subjective and experimentation with various envelope rates and harmonic contents will be necessary in order to achieve the desired sound.


## APPENDIX P

## GLOSSARY

ADSR attack
binary
Boolean operators
byte
CHROMA noise
CIA
DDR
decay
decimal
e
envelope
FIFO
hexadecimal
integer
jiffy clock
NMI
octal
operand
OS
pixel
queve
register
release
ROM
SID
signed numbers
subscript
sustain
syntax
truncated
VIC-II
video screen

Attack'Deray/'Sustain/Release envelope.
Rate of which musical note reoches peak volume.
Base-2 number system.
Logical operctors.
Memory location.
Color distortion.
Complex Interface Adapter.
Data Direction Register.
Rate at which musical note falls from peak volume to sustain volume.
Base-10 number system.
Mathematical constant (approx. 2.71828183).
Shape of the volume of a note over time.
First-In/first-Out.
Base-16 number system.
Whole number (without decimal point).
Hardware interval timer.
Non-Maskable Interrupt.
Base-8 number system.
Parameter.
Operating System.
Dot of resolution on the screcn.
Single-file line.
Special memory storage location.
Rate at which a musical note falls from sustain volume to no volume.
Read-Only Memory.
Sound Interface Device.
Plus or minus numbers.
Index variable.
Volume level for sustain of musical note.
Programming sentence structure.
Cut off, eliminated (not rounded).
Video Interfoce Chip.
Television set.

## INDEX

Abbreviations, BASIC Commands, Stctemen's, und Functions, x, 29, 31-34, 374-375
ABS function, 31, 35, 374
Ascessories, 335-371
Accumulator, 213
ACPTR, 272-274
ADC, 232, 235, 254
Addition, 3, 911,16
Addressing, 211, 215-217, 411-413
$\mathrm{A} / \mathrm{D} / \mathrm{S} / \mathrm{R}, 183-185,139,196-199$
AND, 232, 235, 254
AND operator, 13-18, 31, 35-36, 374
Animction, xiii, 153, 106
Applications, xiii-xvi
Arithmetic expressions, 10-12
Arithmetic operators, 10-12, 16
Arrays, 10-12, 44-45
ASC function, 31, 37, 374
ASCII character codes, 31, 38, 340, 374
ASL, 232, 236, 254
Assenbler, 215, $218,227,310$
ArcTaNgent function, 31,33, 374
Attack, (see A/D/S/R)
Bank selection, 101-102, 133
BASIC abhreviatiors, 29, 31-34, 374-375
BASIC commands, $31-34,41,58-00,62$, 81-82, 91
BASIC miscel oneous functions, 31-34, $43-44,49,55-57,61.59,70,8 \mathrm{C}, 83-85$, 89
BASIC. rumeric functions, 31-35, 37-38, 42, 46-47, 49, 83-84, 88-89
BASIC operaters, 3, $915,31-36,63-64$, 68, 92
BASIC stotements, 18-26, 31-34, 39-55, 57, 62-67, 69-79, 86-87, 92
BASIC string functions, $51-34,38,56,61$. 79, 87, 89
BASIC variabes, $7-26$
BCC, 232, 236, 254
BCS, 232, 236, 254
BEQ, 226-227, 232, 237, 254
Bibliography, 388-390
Binary, 69, $92,108,112,215-217$
Bit, 99-149, 290, 298, 300-301, 305, 343357, 359
EIT, 232, 237, 254
Bit map mode, 121-130
Bit map mode, multicolo: 127-13C
Bit mapping, 121130
EMI, 232. 237, 254
BNE, 226-227, 232, 238, 254
Eoolean aritmmetic, 14
EPL. 232, 238, 254
Branches and testing, 226-227
BRK, 232, 238, 254
Buffer, keyboard, 93

Business aics, xiii-xvi
BVC, 232, 239, 254
BVS, 232, 239,254
Byte, 9, 104, 108, 117-119, 124-127, 196, $213,218-220,222-227,260-263,2 / 4$, 278 279, 286, 292-293, 299, 307, 349, 357-359

Cassette port, 337, 34C-342
Cossette, tase recorder, xiii, 39.41, 65-67, 81-82, 91, 187, 192, 283, 293-294, 241. 320-321, 337-338, 34C-342
Cheracter PEEKs and POKEs, 104, 106, 109-111, 115, 113, 120-122, 127-130, $134-137,150,154-155,159-161,165$ 166
CHAREN, $260-261$
CHKIN, 272-273. 275
CHKOUT, 272-273, 276
CHRGET, 272-273, 307-3 28
CHRIN, 272-273, 277278
CHROUT, 2/2-273, 278-279
CHR\$ func iun, 24, $51,37-38, \angle 5,50,55$, $75-76,93-94,97,120,156,336342$, 374, 379-381
CINT, 272-273, 280
CIOUT, 272-273, 279-280
CLA.L, 272-273. 281
CLC. 232, 239, 254
CLD. 232, 240, 254
CLI, 232, 240, 254
Clock, 80, 89, 514, 329-332, 366, 405-408, 421-427, 431, 451
Clock timing diagram, 406-408
CLOSE, 272-273, 281-282
CLOSE statement 31, 39-4 , 348, 354, 374
CLR stutement, 31, 39-4C, 81, 109, 374
CLRCHV, $272.273,282$
CLR/HOME key, 22C
CLV, 232, 24C, 254
CND statement, $31,40-11,374$
CNiP, 232, 241, 254
Collision cetect, 144-145, 80
Color adjustment, 113
Color combinations chart, 152
Color memory, 103
Color register, 117, 120, 128, 135-136, 179
Color screen, background, border. 115 -$119,128,135-137,176,179-80$
Commands, BASIC, 31-92
Commodore mogazine, xvii-xviii, 390
Commedore 64 memory map 310
Complement, wos, 63-64
Constants. floaing-point, integer, string. <.7, 46, 77-73
CONT nue command, $31,41-42,46,31$, 86, 374
ConTRoL key, 58, 72, 9今-97, 171
COSine tunction, 31-34, 42, 374

CF/M, $\times$, xiv, 363-371
CPX, 227, 232, 241, 254
CPY, 227, 232, 211, 254
Crunching BASIC programs, 24-27, 156
CuRSoR keys, 93-97, 336
DAIASSETIE ${ }^{\text {TM }}$ recorder, (see cassette, tape recorder)
DATA statement, 26, 31, 42-43, 76-77, 111-114, 164, 169, 174, 374
DEC, 232, 242, 254
Decay, (see A/D/S/R)
DEFine FuNction statement, 31, 43-44, 374
DELele key, 71-72, 95-96
DEX, 226, 232, 242, 254
DEY, 226, 232, 242, 254
DIMension stotement, 9, 31, 44-45, 374
Direct mode, 3
Division, 3, 10-11
Edit mode, 93-97
Editor, screen, 93-97
END statement, 32, 46, 79, 93, 374
Fnvelope generator, (see $A / D / S / R$ )
EOR, 232, 243, 254
Equal, rot-equal-to signs, 3, 9-12
Error messages, 306, 400-401
Expansion port(s), (also user port, serial port, RS-232 port), 335-371
EXPonent function, 32, 46, 374
Exponentiation, 5-6, 10, 12, 16
Files (ccssere), 40, 50, 55, 59-60, 65-66, $75,84-85,91,337-338,340-342$
Files (disk), 40, 50, 55, 59-60, 65-66, 75, 84-85, 91, 337-338, 342
Filtering, 183, 189, 199-202
Fire button, joystick/paddle/lightpen, 328 329, 343-348
FOR statement, 20-21, 32, 39, 47 48, $62-63,77-78,86,110,155-156,165-$ 166, 169-171, 198-199, 309, 374
Football, 45
FREe function, 32, 49, 109, 374
FuNclion 「unction, 32, 47, 374
Functions, $31-34,35,37-38,42,46-47,49$, $56-57,61,69-70,79-80,83-85,87-90$, 374-375

Game controls and ports, 343-348
GET statement, 22-24, 32, 37, 49-50, 93, 374-375
GETIN, 272-273, 283
GET\# statement, 32, $37,50,55,65,341$ $342,348,374$
GOSUB statement, 32, 39, 51-52, 77, 79, 85, 374
GOTO (GO TO) statement, $32,37,48$, 52-53, 64, 77, 81, 86, 374
Graphics keys, xiv-xv, 70-74, 95-96, 108 114

Graphics mode, xiv-xv, 99-183
Graphics mode, bit mapped, 121-130
Graphics symbols, (see graphics keys)
Greater than, equal to or, 3, 12-13, 16
Hexadecimal notation, 101, 209, 215-218
Hierarchy of operations, 16
IEEE-488 interface, (see serial port)
IF .... THEN statement, 32, 46-47, 49. $52-53,64,70,36,172-173,180,374$
INC, 232, 243, 254
Income/expense program, 20-21
Indexed indirecl, 224-225
Indexing, 223-225
Indirect indexed, 223-224
INPUT statement $18-22,32,45,53-55,93$, 371
INPUT\#\# statement, 32, 55, 75, 86, 88, 90 , 374
INSerT key, 72, 95-96
INTeger function, 32,56, 80, 374
Integer, arrays, constants, variables, 4-5, 7.9

INX, 226-227, 232, 243, 254
INY, 226-227, 232, 244, 254
IOBASE, 272-273, 284
I/O Guide, 335-375
IOINIT, 272-273, 285
1/O Pinouts, 395-397
1/O Ports, 214, 260, 335-375
1/O Registerध, 104-106, 212-214
liO Stctements, 39, 50, 54-55, 65-67, 75 IRQ. 308

Joysticks, 343-345
JMP, 22B-230, 232, 244, 254, 270, 308
JSR, 228-230, 233, 244, 255, 268, 270
KERNAL, 2, 94, 209, 228-230, 308, 268 306, 3 28 - 358
Keyboard, 93-98
Keywords, BMSIC, 2992
LDA, 218-220, 233, 245, 255
LDX, 233, 245, 255
LDY, 233, 246, 255
LEFT\$ function, 32, 56, 375
LENgth function, 32,57, 375
Less than, equal to or, 3, 12-13, 16
LET statement, $32,57,375$
LIST command, $32,58,375$
LISTEN, 272-273, 285
LOAD, 272-273, 286
LDAD command, $32,59-60,370,3 / 5$
Loading programs from tape, disk, 59-60, 337-338, 3 $\angle 0-342$
LOGarithm function, 32, 61, 375
Lower case characters, 72-74, 105
LPX (-PY), 348
15R, 233, 246, 255

Machine language, 209-334, 411-413
Mask, 92
Mathematics formulas, 394
Mathematical symbuls, 3, 6-17, 394
MFMBOT, 272-273, 237
Memcry maps, 212, 262-267, 272-273, 310-334
Memory map, obbreviated, 212
Memory recllocation, 101-103
MEMTOP, 272 273, 288
MID\$ function, 33, 61, 375
Modem, xiii-xviii, 339-340
Modulation, 183, 207-208
Maltipliention 3. 10-11
Music, 18ิ-208
NtW command, 18, $33,62,111,117,185$, 187. 375

NEXT command, $20-21,33,39,47-48$, 62-63, 77-78, 86, 110, 155-156, 165166, 169-17', 198-199, 309, 375
NOP, 233, 246, 255
NOT operotor, 13-16, 33, 63-64, 375
Nole types, 190
Numeric variables, 7-8, 26
ON (ON . . . GOTO/GOSUB) slulement, 33, 64, 375
OPEN, 272-273, 284
OPEN statement, 33, 41, 65-67, 75-76, 85, 94, 337-339, 349-352, 375
Operating system, 210-211
Operators, arithmetic, 3, 9-12, 16
Operators, lagical, 13-16, 31-33, 35-37, 63-64, 68, 374-375
Operators, reational, 3, 10-12, 16
OR operator, 13-26, 33, 68, 101-102, 104, $106,115,118,120,122,126-127,129$, $134,136-137,375$
ORA, 233, 247, 255
Parentheses, 3, 8, 30, 33, 83-84, 88, 375
PEEK function, 33, 69, 93, 101-102, 104, $106,108-111,115,118,120-122,126-$ $130,134-137,145,150,159-160,176-$ 177, 180, 185, 211, 361, 375
Peripherals, (see 1/O Cuide)
PHA, 233, 247, 255
PHP, 233, 247, 255
Pinouts, (also see I/O Pinouts), 363, 395397
PLA, 233, 248, 255
PLOT, 273, 290
PLP, 233, 248. 255
POKE slulerrenl, 25, 33, 69-70, 94, 101-$102,104,106,109-111,115-116113$, 120-123, 126-130, 134-137, 150, 153101, 165-106, 168-170, 172-173, 177178, 180, 184-186, 194, 193-197. 204-$205,211,270,309,361,375-376$
Ports, 1/O, 214, 335-375, 395-597

POSition function, 32, /C, 375
PoweriPlay, xvi, 390
PRINT stctement, 13-15, 18-22, 25, 33-51, 55-61, 63, 68-75, 79-80, 83-84, 87-89, 94-96, $09,168,171,210,213,220$, 375
PRINT\# statement, 33, 40-41. 75-16, 85 , 94, 337, 340-341, 348, 353, 375
Printer, xi, 338-339
Program counter, 214
Program mode, 3
Fromot, 45
Quctation marks, xi, 3, 23, 72, 95, 337
Qucte mode, 72-73, 9.5-96
RAM, 49, 100-101, 104-105, 107-108, $110-111,17,122,260-262,269,340$
RAMTAS, 273, 291
Random numbers, 53, 80
RaNCom function, 33, 43, 53, 80, 375
Raster interrupt, 131, 150-152
RDTIM, 273, 291
READST, 273, 292
READ statement, 33, 42, 76-77, 111, 170, 309, 375
Release, (see A/D/S/R)
Register map, C|A ship, 428
Rejiseer map, SID chip, 461
Register map, VIC chip, 454-455
RENierk statement, 25-26, 33, 37-3B, $4-42,45-46,50,77-78,93-95,101$ $118,198-199,338,340,356,375$
Reserved words, (see Kzywords, BASIC)
RESTOR, 273, 293
RESTORE key, 22, 92, 126, 353
RESTORE statement, 33, 78, 375
RETURN key, 3, 18, 22, 41, 50-j1, 74, 93-77, 154-155, 166, 217, 220, 336-337, 370
RETURN statement. 33, 51-52, 74, 85, 1/5. 375
ReVerSe ON. OFF keys, 97
RIGHT\$ func-ion, 33, 79, 375
ROL, 233, 248, 255
ROM, 261, 268-269
ROM, charucler yenerator, 103-111, 34
ROR, 233, 249, 255
R5-232C. 335, 348-354
RTI, 233, 249, 255, 308
RTS, 233, 249, 255
RUN command, 33, 40, 34, 81, 113, 154, 375
RUN'STCP key, 22, 41-42, 52, 58, 86, 92, 126, 220, 353

SAVE, 273, 293-294
SAVE command, $34,81-82,375$
SBC, 233, 250, 255
SCNKEY, 273, 295
SCREEN, 273. 295-29ó

Screen editor, 2, 94-97, 211
Screen menory, 102-103
Scrolling, 128-130, 166
SEC, 233, 250, 255
SECOND, 273, 295
SED, 233, 250, 255
S[I, 233, 251, 255
Serial port (IEEE-488), 262, 331, 333, 362-
366, 432-433
SETLFS, 273, 297
SETMSG, 273, 298
SETNAM, 273, 299
SEITIM, 273, 279-300
SETTMO, 273, 300-301
SGN function, 34, 83, 109, 375
SHIFT key, 4, 30, 72, 74, 54, 96-97, 168, 220
SID chip programming, xiv, 183-208
SID ch $p$ specifications, 457-481
SID ch p memory mop, 223-328
SINe function, 34, 83, 375
Sound waves, 186-187, 192-96
SPace function, 21, 34, 83-84, 336, 375
Sprites, x, xiv, 99-100, 131-149, 153-182
Sprite disslay priorities, 1<4, 161, 179
Sprite positioning, 137-143, 157-161. 177
SGuare Root -unction, 34, 84, 375
STA, 221, 233, 251, 255
Stack pointer, 214, 222
STATUS function, 34, 84-35, 354, 375
Status register, 211, 351
STEP keyword, (see FOR . . . TO), 34, 86
STOP, 273, 301-302
STOP command, 34, 41, 86, 375
STOP key, (see RUN/STOP kev)
String arraye, constante, variables, 4, 69
String expressicns, 7, 17
String operaturs, 9, 16-17
STR\$ function, 34, 87, 375
STX, 233, 251, 255
STY, 233, 252, 255
Subroutines, 222, 228-229, 270, 307

Subtraction, 3, 10-11, 16
Sustain, (see $A / D / S / R$ )
SYS statement, 34, 87, 121, 307, 375
TAB function, 27, 34, 45, 88, 336, 375
TANgert function, $34,88,375$
TALK, 273, 307
TAX, 233, 252, 255
TAV, 233, 252, 255
THEN keyword, (see IF . . . THEN), 34
TIME function, 34, 89, 375
TIME $\$$ function, 34, 89,375
TKSA, 273, 302-303
TO keyword, (see 「Oマ . . . TO), 34
TSX, 233, 253, 255
TXA, 229, 233, 253, 255
TXS, 233, 253, 255
TYA, 22G, 233, 253, 255
UDTIM, 273, 303
UNLSN, 273, 304
UNTLK, 273, 304
User port, 355, 359-362
IJSR function. 34, 90, 307, 375
VALue furnclion, 34, 90, 375
VECTOR, 273, 305-306
VERIFY cormand, 34, 91, 375
$\checkmark$ brato, 203
Voices, 187.191
Volume control, SIJ. 136
WAIT statement, 13-14, 34, 72, 375
XOR, (see WAIT starementi, 13-14
$X$ index ecgister, 213, 223-224
$\mathbf{Y}$ index register, 214, 223-224
Z-80, ( see CP/M)
Zero page, 221-222, 358-359

COMMODORE 84 QUICK REFERENCE CARD

SIMPLE VARIABIES		
TrpeHeal	Nome Range	
	XY	$=1.73141163 \mathrm{E}+38$
		$=2.93873588 \mathrm{E}-39$
Integer	$X Y \%=32767$	
String	XY\% 6 to 255 sharactort	
$X$ is c letter ( $A-6$ ), $Y$ is a letter or number ( $0-9$ ). Variable nomes		
can be more than 2 sharacters, but only the first two are recog-		
rized		
ARRAY VARLADIES		
Trpo		Name
single D	menson	( $\mathrm{Xr}(5)$
Tmo-Dim	ension	$X Y(5,5)$
Thrse-Di	menaipn	$X Y(5,5,5)$

Arrays of us to elever slemen's (subscripts $0-10$ ) con be used where nesdee. Arrers with more than aleven elements need to te DWensioned.

ALGEBRAIC OPERATORS
= Assigns voue ts varicble

- Negation
$\rightarrow$ Exacnenforion
* Mult plication
/ Division
Addrion
- Subtractior

RELATIONAL AND LOGICAL OPERATORS
$=$ Equal
$<>$ Not Equal to

* Less Tinun
- Greater Than
$\kappa^{\prime}=$ less Then or Equal To
$3-$ Greater Tran or Equal To
NOT Lcgicel "Not"
AND logenl "Ane"
OR Logical "Or"
Expression equals 1 if true. 0 F false
5YSTEM COMMANDS

IOAD 'NAME'	loads a program from tape
SNVE "NANE"	Savos a program on tape
LOAD ' NAMME', 8	laods a progrom from disc
5ANF "NAMF", A	Saves a progran to disk
VERIFY "TIAME"	Verifies tha* pregram was S.MEd without error:
RUN	Fxacutes a program
RUN *.A	Executes progrem starting or line $\mathrm{x} x \mathrm{x}$
STOP	Holts execution
END	Ends execution
CONT	Continves program execution from line where peopram was bated
PEEK( X$)$	Reluins suntents of memory location K
POKE X,Y	Threngas concents of location $X$ is value $Y$
SYS xaxix	Jumps to execute a mazhine language program, sterting of excoxy
WAll $K, Y, Z$	Prigerin wuils yutil cuntenta of locaion $X$, when EOFed with $Z$ ard Anthed with $Y$. is maryarn.
USR(X)	Puaser value of $X$ is a machiee languoge subroutine

EDITING AND FORMATIING COMWANDS

LIST	Lists entire program
LIST A-B	Lits from line A to line B
REN Message	Corrment messoge con be isied but   is igncred during program execution
TABIX:	Uied in PaINT stotements. Spoces $X$  


SPC( $X$ )	TKINIS $x$ tlanks on line
POS(X)	Refurns current cursor position
CIR/HOML	Tositions eursor to left eamer of tcreen
SHIFT CIR/HOME	Clears screer cnd plcces cursor in "Ibone" pasition
SHIFT INST/DEL	nsefts spose at cuirent cursor arsition
INST/DEL	Dele'es characher of surrent cursor scsition
CTRI	When usad with numeric color key selects text color. May be yaed in TRINT statemert.
CDSR Keys	Unves cursar up, down, left. right  
Commsdore Key	When used with SHIFI selects aetween upperllowar case and jruplui, display mode.   When used with numeric color key. selects optional text color
ARRAYS AND STRINGS	
DIU A\|X, Y, $Z$ )	Seve mnximum subsrripts for $A$ : reserves spuce for $(\mathrm{X}+1)^{*}(\mathrm{Y} \mid 1)^{*}(2 ; 1)$ elemerts starting of $A(0,0,0)$
LEN (XS)	Relurns number of thargeters in XS
STRS( $\times$ )	Returng numeric value of $\times$, sonverted to a sting
$\mathrm{VaL}(\times 5)$	Returnk numoric valus ef A5, Jp to 'irst nennumerle characier
CHRS (x)	Returns ASCIl choracter whose code is $X$
ASC(1x)	Returns ASCl code for flrst character of $\times \$$
LEFTE(AS, $\times$ )	Returns lefiemest $X$ sharactore of AS
RIGHIS(AS, $X$ )	Keturns nghtmost $X$ charocters of AS
$\operatorname{MIDS}(A S, X, Y)$	Returns $Y$ sharacters of $A S$ starting at character $x$
INPUT/OUTPUT COMMANDS	
INPUT AS OR A	PRINT, "?' on screen ard waits for user to entet c string or value
InPut "AECC*, $A$	PRINTL message and woits for user to enrer value. Can alss INPUT AS
GET AS or $A$	Waits for user to type onecharacter valuei no RETURN resded
UNA A, B',	Iritializes a set of rolves Thor can be jsed by READ statement
READ AS or $A$	Acrigne next DATA velue to $A$ or $A$
RESTORE	Resert cava poirte* to start READing the DATA list again
PRINT "A- "; ${ }^{\text {A }}$	PRINTs string ' $A=$ ' and volue of $A$ "' suppresses spaces - "' rabs dara to next field
PROGRAM FLOW	
GUIU $x$	Branches to line $X$
IF $A=3$ THEN 10	IF assertion is trve THEN execute following pert of statement. IF tolse, exesute next line number
FOR A=1 TO ID STCN 2 . NLXT	Executes all staterrents between FOR and corresponding NEXT, with A gaing from 1 to 10 by 2 . Stes size is 1 unless specried
NEXT A	Defines end of loos. A is optonal
GO5UB 2000	Branches to subroutine starting at line 2000
RETURN	Murks ent of aubruutine. Relums to starement following most recent GOSUB
ON $\times$ OOTO A, 3	Ercriches to Xila live number un list, If $X=1$ branches to $A$, etc.
On $X$ cosub $A, B$	B Erenches to subroutins et Xth line rumber in Ist

## ABOUT THE COMMODORE 64 PROGRAMMIER'S REEERENCE GUIDE . . .

Game cartridge compatibility ... spectacular sound ... arcade style graphics . . . and high caliber computing capabilitles make the Commodore 64 the most advanced personal computer in its class for home, business and educational use.

The COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE tells you everything you need to know about your Commodore 64. The perfect companion to your Commodore 64 User's Guide, this manual presents detailed information on everything from graphics and sound to advanced machine language techniques. This book is a must for everyone from the beginner to the advanced programmer.

For the beginner, the most complicated topics are explained with many sample programs and an easy-to-read writing style. For the advanced programmer, this book has been subjected to heavy pre-testing with your needs in mind. And it's designed so that you can easily get the most out of your Commodore 64 's extensive capabilities.


[^0]:    NOTE: A dash indicates a no connect. All no connects are read as a "1."

[^1]:    NOTE: The eycling of the Envelope Generator can be altered at any poirt vic the Gate bit. The Envelope Generator can be Gated and Relecsed without restriction. For exampe, if the Gate bi- is reset before the onvelope has finished the ATTACK cycle, the RE.EASE cycle will immediately bagin, starting from whatever amplitude had been reucted. If the envelope is then Gated ogoin (before the RELEASE cycle has reached zero umplitude); anothe: ATTACK eycle will begin, starting from whatever amplitude had been reuched. This technique can be used to generate comolex amplitude envelopes via real-time software control.

