

INTRODUCTION

Computers have three basic abilities: they can calculate, make deci-
sions, and communicate. Calculation is probably the easiest to program.
Most of the rules of mathematics are familiar to us. Decision making is
not too difficult, since the rules of logic are relatively few, even if you
don't know them too well yet.

Communication is the most complex, because it involves the least
exacting set of rules. This is not an oversight in the design of computers.
The rules allow enough flexibility to communicate virtually anything, and
in many possible ways. The only real rule is this: whatever sends infor-

mation must present the information so that it can be. understood by the
receiver.

OUTPUT TO THE TV

The simplest form of output in BASICis the. PRINT statement. PRINT
uses the TV screen as the output device, and your eyes are the input
device because they use the information on the screen.

When PRINTing on the screen, your main objective is to format the
information on the screen so it's easy to read. You should try to think like
a graphic artist, using colors, placement of letters, capital and lower
case letters, as well as graphics to best communicate the information.
Remember, no matter how smart your program, you want to be able to
understand what the results mean to you.

The PRINT statement uses certain character codes as "commands" to

the cursor. The I!III key doesn't actually display anything, it just

makes the cursor change position. Other commands change colors,
clear the screen, and insert or delete spaces. The .:~:IIIII:U_ key has a
character code number (CHR$) of 13. A complete table of these codes is
contained in Appendix C.

There are two functions in the BASIC language that work with the
PRINT statement. TABpositions the cursor on. the g.iven position from the
left edge of the screen, SPC moves the cursor right a given number of
spaces from the current position.

Punctuation marks in the PRINT statement serve to separate and for-
mat information. The semicolon (;) separates 2 items without any spaces
in between. If it is the last thing on a line, the cursor remains after the
last thing PRINTed instead of going down to the next line. It suppresses

336 INPUT/OUTPUTGUIDE

(replaces) the RETURN character that is normally PRINTed at the end of
the line.

The comma (,) separates items into columns. The Commodore 64 has

4 columns of 10 characters each on the screen. When the computer

PRINTs a comma, it moves the cursor right to the start of the next col-
umn. If it is past the last column of the line, it moves the cursor down to
the next line. Like the semicolon, if it is the last item on a line the

RETURN is suppressed.
The quote marks (" ") separate literal text from variables. The first

quote mark on the line starts the literal area, and the next quote mark

ends it. By the way, you don't have to have a final quote mark at the
end of the line.

The RETURN code (CHR$ code of 13) makes the cursor go to the next

logical line on the screen. This is not always the very next line. When

you type past the end of a line, that line is linked to the next line. The
computer knows that both lines are really one long line. The links are

held in the line link table (see the memory map for how this is set up).
A logical line can be 1 or 2 screen lines long, depending on what was

typed or pRINTed. The logical line the cursor is on determines where

the .:I:lIII:U. key sends it. The logical line at the top of the screen
determines if the screen scrolls 1 or 2 lines at a time.

There are other ways to use the TV as an output device. The chapter

on graphics describes the commands to create objects that move across
the screen. The VIC chip section tells how the screen and border colors

and sizes are changed. And the sound chapter tells how the TV speaker

creates ml1sic and special effects.

OUTPUT TO OTHER DEVICES

It is often necessary to send output to devices other than the screen,

like a cassette deck, printer, disk drive, or modem. The OPENstatement
in BASIC creates a "channel" to talk to one of these devices. Once the

channel is OPEN, the PRINT# statement will send characters to that
device.

EXAMPLEof OPEN and PRINT# Statements:

100 OPEN 4, 4: PRINT# 4, "WRITING ON PRINTER"
110 OPEN 3, 8, 3, "O:DISK-FILE,S,W": PRINT# 3, "SEND TO DISK"
120 OPEN I, 1, 1, "TAPE-FILE":PRINT# 1, "WRITE ON TAPE"
130 OPEN 2, 2, 0, CHR$(10): PRINT# 2, "SEND TO MODEM"

INPUT/OUTPUT GUIDE 337

The OPEN statement is somewhat. different for each device. The pa-
rameters in the OPEN statement are shown in the table below for each
device.

TABLEof OPEN Statement Parameters:

FORMAT:OPEN file#, device#, number, string

OUTPUT TO PRINTER

The printer is an output device similar to the screen. Your main con-

cern when sending output to the printer is to create a format that is easy
on the eyes. Your tools here include reversed, double-width, capital and
lower case letters, as well as dot-programmable graphics.

The SPC function works for the printer in the same way it works for the
screen. However, the TABfunction does not work correctly on the print-
er, because it calculates the current position on the line based on the
cursor's position on the screen, not on the paper.

The OPEN statement for the printer creates the channel for communi-
cation. It also specifies which character set will be used, either upper
case with graphics or upper and lower caSe.

EXAMPLESof OPEN Statement for Printer:

OPEN 1, 4: REM UPPER CASE/GRAPHICS
OPEN 1, 4, 7: REM UPPER AND LOWER CASE

338 INPUT/OUTPUT GUIDE

DEVICE DEVICE# NUMBER STRING

CASSETTE 1 o = Input File Name

1 = Output
2 = Output with

EOT
MODEM 2 0 Control Registers

SCREEN 3 0,1
PRINTER 4 or 5 o = Upper/Graphics Text Is PRINTed

7 = Upper/lower Case
DISK 8 to 11 2- 14 = Data Channel Drive #, File Name,

File Type, Read/Write
15 = Command Command

Channel

When working with one character set, individual lines can be PRINTed

in the opposite character set. When in upper case with graphics, the

cursor down character (CHR$(17» switches the characters to the upper
and lower case set. When in upper and lower case, the cursor up char-
acter (CHR$(l45» allows upper case and graphics characters to be
PRINTed.

Other special functions in the printer are controlled through character
codes. All these codes are simply PRINTed just like any other character.

TABLEof Printer Control Character Codes:

See your Commodore printer's manual for details on using the com-
mand codes.

OUTPUT TO MODEM

The modem is a simple device that can translate character codes into

audio pulses and vice-versa, so that computers can communicate over
telephone lines. The OPEN statement for the modem sets up the pa-
rameters to match the speed and format of the other computer you are
communicating with. Two characters can be sent in the string at the end
of the OPEN statement.

The bit positions of the first character code determine the baud rate,
number of data bits, and number of stop bits. The second code is op-
tional, and its bits specify the parity and duplex of the transmission. See

the RS-232 section or your VICMODEM manual for specific details on this
device.

INPUT/OUTPUT GUIDE 339

CHR$ CODE PURPOSE

10 Line feed
13 RETURN (automatic line feed on CBM printers)
14 Begin double-width character mode
15 End double-width character mode
18 Begin reverse character mode
146 End reverse character mode
17 Switch to upper/lower case character set
145 Switch to upper case/graphics character set
16 Tab to position in next 2 characters
27 Move to specified dot position
8 Begin dot-programmable graphic mode
26 Repeat graphics data

EXAMPLEof OPEN Statement for Modem:

OPEN 1, 2, 0, CHR$(6): REM 300 BAUD
100 OPEN 2, 2, 0, CHR$(163) CHR$(112): REM 110 BAUD, ETC.

Most computers use the American Standard Code for Information In-
terchange, known as ASCII (pronounced ASK-KEY).This standard set of
character codes is somewhat different from the codes used in the Com-

modore 64. When communicating with other computers, the Commo-
dore character codes must be translated into their ASCII counterparts. A
table of standard ASCII codes is included in this book in Appendix C.

Output to the modem is a fairly uncomplicated task, aside from the
need for character translation. However, you must know the receiving
device fairly well, especially when writing programs where your
computer "talks" to another computer without human intervention. An
example of this would be a terminal program that automatically types in
your account number and secret password. To do this successfully, you
must carefully count the number of characters and RETURNcharacters.
Otherwise, the computer receiving the characters won't know what to do
with them.

WORKING WITH CASSEnE TAPE

Cassette tapes have an almost unlimited capacity for data. The
longer the tape, the more information it can store. However, tapes are
limited in time. The more data on the tape, the longer the time 'it takes
to find the information.

The programmer must try to minimize the time factor when working
with tape storage. One common practice is to read the entire cassette
data file into RAM, then process it, and then re-write all the data on the
tape. This allows you to sort, edit, and examine your data. However,
this limits the size of your files to the amount of available RAM.

If your data file is larger than the available RAM, it is probably time
to switch to using the floppy disk. The disk can read data at any position
on the disk, without needing to read through all the other data. You can
write data over old data without disturbing the rest of the file. That's
why the disk is used for all business applications like ledgers and mail-
ing lists.

The PRINT# statement formats data just like the PRINT statement
does. All punctuation works the same. But remember, you're not work-
ing with the screen now. The formatting must be done with the INPUT#
statement constantly in mind.

340 INPUT/OUTPUT GUIDE

Consider the statement PRINT# '1, A$, B$, C$. When used with the
screen, the commas between the variables provide enough blank space
between 'items to format them into columns ten characters wide. On

cassette, anywhere from 1 to TO spaces will be :added, depending on
the length of the strings. This wastes space on your tape.

Even worse is what happens when the lNPUT# statement tries to read
these strings. The statement INPUT# I, A$,B$, C$ will discover no data
for B$ and C$. A$ will contain all three variables, .plus the spaces be-
tween them. What happens? Here's a look at the tape file:

A$="DOG" B$="CAT" C$="TREE"
PRINT#I, A$, B$, C$.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
DOG CAT T R E E RETURN

The INPUT# statement works like the regular INPUTstatemel'lt. When

typing data into the INPUT statement, the. data items are separated,
.either by hitting,the .:I:aIIl:I~. key or using commas to separate them.
The PRINT# statemel'lt puts a RETURN.at the end of a line just like the
,PRINT statement. A$ fills up with all three values because there's no
separ.ator on the tape between them, only after all three.

A proper separator wouLd be a comma (,) or a RETURNon the tape.
The RETURNcode .is automatically put at the end .of a PRINT or PRINT #
statement. One way to put the RETURNcode between each item is to
use only one item per P.RINT# statement. A better way is to :set a. vari-
able to the RETURNCHR$ code, which is CHR$(13), or use a comma.
The statement for this is :R$= "," : PRINT# 1, -A$R$ B$ R$ C$. Don't use
commas or any other punctuation between the variable names, since
the Commodore 64 can .tell them apart and they'll' only use up space in
your program.

A proper tape file looks like this:

1 2 3 4 '5 67'S 9 10 11 1213

.DOG, CAT, T R.E E RETURN

The GET# statement will pick data from the tape one character at a
time. It will receive each character, including the RETURN code and

other punctuation. The CHR$(O) code .is received as an empty string, not

as a one character string with .a code .of O. If you try to use the ASC

function on an empty str.ing, you get the error message -ILLEGAL
QUANTITY ERROR.

INPUT/OUTPUTGUIDE 341

The line GET# 1, A$: A= ASC(A$) is commonly used in programs to
examine tape data. To avoid error messages, the line should be mod-
ified to GET#l, A$: A= ASC(A$+ CHR$(O». The CHR$(O) at the end
acts as insurance against empty strings, but doesn't affect the ASC
function when there -are other characters in A$.

DATA STORAGE ON FLOPPYDISKEnES

Diskettes allow 3 different forms of data storage. Sequential files are
similar to those on- tape, but several can can be used at the same time.
Relative files let you organize the data into records, and then read and
replace individual records within the file. Random files let you work with
data anywhere on the disk. They are organized into 256 byte sections
called blocks.

The PRINT# statement's limitations are discussed. in .the section on

cassette tape. The same limitations to format apply on the disk.
RETURNsor commas are needed to separate your data. The CHR$(Q)is
still read by the GET# statement as an empty string.

Relative and random files both make use of separate data and com-
mand "channels." Data written to the disk goes through the data chan-
nel, where it is stored in a temporary buffer in the disk's RAM. When the
record or block is complete, a command is sent through the command
channel that tells the drive where to put the data, and the entire buffer
is written.

Applications that require large amounts of data to be processed are
best stored in relative disk files. These will use the least amount of time
and provide the best flexibility for the programmer. Your disk drive
manual gives a complete programming guide to use of disk files.

342 INPUT/OUTPUTGUIDE

THE GAME PORTS

The Commodore 64 has two 9-pin Game Ports which allow the use of
joysticks, paddles, or a light pen. Each port will accept either one joy-
stick or one paddle pair. A light pen can be plugged into Port A (only) for
special graphic control, etc. This section gives you examples of how to use

the joysticks and paddles from both BASIC and machine language.
The digital joystick is connected to CIA #1 (MOS 6526 Complex Inter-

face Adapter). This input/output device also handles the paddle fire but-
tons and keyboard scanning. The 6526 CIA chip has 16 registers which
are in memory locations 56320 through 56335 inclusive ($DCOO to
$DCOF). Port A data appears at location 56320 (DCOO)and Port B data
is found at location 56321 ($DCOl).

A digital joystick has five distinct switches, four of the switches are
used for direction and one of the switches is used for the fire button. The

joystick switches are arranged. as shown:

(Top)
FIRE

(Switch 4)
UP

(Switch 0)
o

o

,
- ~ ----- RIGHT

(Switch 3)

LEFT

(Switch 2)

DOWN
(Switch 1)

These switches correspond to the lower-'5 bits of the data in location
56320 or 56321. Normally the bit is set to a one if a direction is NOT
chosen or the fire button is NOT pressed. When the fire button is

INPUT/OUTPUTGUIDE 343

pressed, the bit (bit 4 in this case) changes to a O. To read the joystick
from BASIC, the following subroutine should be used:

10 FORK=IZIT011Z1:REMSET UP DIRECTION STRING
2121READDR$(K):NEXT
3121.DATA"1IJ IIt.~"1 tiS".. till.. IIJ..J".."N~J"
4121DATA"SW","","E","NE","SE"
50 PRINT"CiOHIG...";
6121GOSUB101Zl:REM READ THE JOYSTICK
65 IFDR$(J)=""THE~181Z1: REM CHECK IF A DIRECTION ~jAS
CHOSEt.1
7121PRINTDR$(J'v').;" ".; :.REM OUTPUT WHICH DIRECTION
8121 I FFR= 16THEN61Z1: REM CHECK IFF I RE BUTTml ~jAS
PUSHED
9121PRnn" F I R E ! ! !" :GOTOGIZI
100 J'v'=PEEK(56321Z1): f':EM GET JOYSTICK VALUE
11121FR=JVAND16:REM FORM FIRE BUTTON STATUS
120 JV=15-(J'v'AND15):REM FORM DIRECTION VALUE
1:30 RETURN

NOTE: For the second joystick, set JV = PEEK(56321).

The values for JV correspond to these directions:

344 INPUT/OUTPUT GUIDE

JV EQUAL TO DIRECTION

0 NONE
1 UP
2 DOWN
3 -

4 LEFT
5 UP & LEFT
6 DOWN & LEFT
7 -
8 RIGHT
9 UP & RIGHT

10 DOWN & RIGHT

A small machine code routine which accomplishes the same task is as
follows:

1000 .PAGE (JO~STICK.8/5) JO~STICK - BUTTON READ
ROUT I t.jE

1010
1020 ;AUTHOR - BILL HINDORFF
1030 .;
1040 D:":=$C 11121
1050 D'r"=$C 111
1 (16121 *=$C2(I(1

1070 DJPR LDA SDC00 ; (GET INPUTFROM PORT
A m.jL'r')

1080 DJRRB LDY #0 JTHIS ROUTINEREADS AND
DECODES THE
1090 LDX #0 JJOYSTICK/FIREBUTTON
I~jPUT DATA I~I

1100 LSR A ;THE ACCUMULATOR. THIS
LEAST SIGNIFICANT
1110 BCS DJR0 J5 BITS CONTAIN THE
sm TCH CLO~:;UF.:E

1120 DEY JINFORMATION.IF A SWITCH
IS CLOSED THEN IT
1130 DJR0 LSR A JPRODUCES A ZERO BIT. IF
A SWITCH IS OPEN THEN
1140 BCS DJRl ;IT PRODUCESA ONE BIT.
THE JOYSTICK DIR-
1150 I t~'r' .;ECTI at.jS ARE RIGHT.,LEFT.,
FORWARD, BACKWARD
1160 DJR1 LSR A ;BIT3=RIGHT, BIT2=LEFT,
I~ I T 1 =BACK~,jARD.,

1170 BCS DJR2 ;EIT0=FORWARD AND
BIT4-FIRE BUTTON.
1180 DEX ;AT PTS TIME DX AND DY
CONTAIN 2'S COMPLIMENT
1190 DJR2 LSP A ;DIRECTION ~JMBERS I.E.
$FF=-l, $00=O, $01=1.
1200 BCS DJR3 ;DX=l (MOVE RIGHT), DX=-l
(r10'.,.'E LEFT).,

1211<:1 I t'.I:": .: D>':=121 0:HO :": CHA~H3E).
DY=-l (MOVE UP SCREEH),
1220 DJR3 LSF.: fi .;D'r'= 1 (r10VE DO~Jt.j SCF.:EEt.j).,
DY-0 (NO Y CHAHGE).
1230 STX DX ;THE FORWARDJOYSTICK
POSITION CORRESPOHDS
1240 STY DY ;TO MOVE UP THE SCREEH
AHD THE BACKWARD
1250 RTS JPOSITIONTO MOVE DOWN
~3CF.:Ea..j .
1~:60 .;

1270 JAT RTS TIME THE CARRY FLAG COHTAIHS THE FIRE
BUTTOH :::TATE.
1280 ;IF C=l THEH BUTTOH NOT PRESSED. IF C=0 THEN
PF.:ES::;ED.

129121..
130121 .Et.m

INPUT/OUTPUTGUIDE 345

PADDLES

A paddle is connected to both CIA #1 and the SID chip (MOS 6581
Sound Interface Device) through a game port. The paddle value is read
via the SID registers 54297 ($D419) and 54298 ($D41A). PADDLESARE
NOT RELIABLEWHEN READFROM BASIC ALONE!!!!The best way to use
paddles, from BASIC or machine code, is to use the following machine
language routine. . . . (SYSto it from BASICthen PEEK the memory
locations used by the subroutine).

10100
j*-****-*-*-**
11010 ;t FOUR PADDLE READ ROUTINE (CAN ALSO BE USED
FOR TWO)
11020
.; t,+:tt**,+::+::+:***:+:**;+:*:H:+:**;t.*:"",+::t.:+:*,+:**~€,+::n,I€:+::+::+::+:**:+::+:,+:t:+:;+;:+:,+;,+::+::t.,+:

11030 ;AUTHOR - BILL HINDORFF
104121 PORTA=$DC00
105121 CIDDRA=$DCI02
1106121 SID=$D401O
1070 *=$C100
1080 BUFFER *-=t+l
109(1 PDLX *=:;:+2
11100 PDL'T' *=;+;+2
11110 BTNA :t.=*+1
11210 BTt.jB *-=*+1
11310 ,+:=$CIOIOI2I
114121 PDLRD
115121 LD:x: #1
OR TWO ANALOG JOYSTICKS
1160 PDLRD0
ONE PAIR (CONDITION X 1ST)
117121 SEI
1180 LDA CIDDRA
OF DDR
1190
120121
1210
WPUT
12210 LDA #$8121
1 :23121 PDLRD 1

1240 STA PORTA
PADDLES
125(1
126(1
127121
1280
1290
1:31010
1310
1:320
133121

;FOR FOUR PADDLES

;ENTRY POINT FOR

;GET CURRENT VALUE

STA BUFFER
LDA #$Ce
STA C I DDF.:Ft

.; SAVE IT AWA'T'

.; SET PO~~T A FOR

;ADDRESS A PAIR OF

#:$810 ,; ~JA IT A ~,JHI LELD'T'
PDLRD2

Nap
DE'T'

BPL
LDA
STA
LDA
STA

PDLRD2
SID+25
PDL>O:..>o:

SID+26
PDL'T'.,X

.: GET >0: VALUE

,;GET 'T' 'v'ALUE

346 INPUT/OUTPUT GUIDE

1340 LDA PORTA
PFIDIILE FIPE BUTTOt.E;:
1350 ORA #$80
Fr::: OTHEF.: PFi! F.:
1360 STA BTNA
BIT:;:: I::;: PDL 'T'

1370 LDA 1$40
1:~:80 DE)<:

1390 BPL PDLRDI
1400 LDA BUFFER
1410 STA CIDDRA
\II"ILUE OF DDR
1420 LDA PORTA+l
1430 STA BTNB
:F.:IT 3 IS PDL 'T'
144121 ClI
1450 RTS
146121 . Et.m

.:T I t'1E TO READ

;t'1AKE I T THE :3FIt-1E

.:ALL pn I R::;:nONE?

.:NO

;RESTORE PREVIOUS

.:FOF: 2ND PA I R

.:BIT 2 IS PDL :"':.

The paddles can be read by using the following BASIC program:

10 C=12*4096:REM SET PADDLE ROUTINE START
11 REM POKE IN THE PADDLE READING ROUTINE
15 FORI=0T063:READA:POKEC+I,A:NEXT
20 SYSC:REM CALL THE PADDLE ROUTINE
3121 PI =-PEEK(C+257) :REt1SET PADDLE Ot-JE VALUE
40 P;;;:=PEEK(C+258): F.:Et1" " nom
5121P3""PEEK (C+259) : REM" " THREE
60 P4=PEEK(C+260): REt1" " FOUl":
61 REM READ FIRE BUTTON STATUS
52 SI=PEEK(C+261):S2=PEEK(C+262)
70 PRINTP1,P2,P:;::.P4:REM PRINT PADDLE VALUES
7:;;:: F:Et1 PR I t.JT F I F.:E BUTTOt~ STATUS
75 PF:HH: PF.:IHT"FIF.:E FI ".: SI.< "FIRE B ".: S2
80 FORW=IT050:NEXT:REM WAIT A WHILE

~amm
9121 PRIt-n":':]": PI':I ~n : GOTO 20:F.:EMCLEAR SCREEt.J m.m DO
AGAIt..1
95 REM DATA FOR MACHINE CODE ROUTINE
100 DATAI52,1,120,173,2,220,141,0,193.169,192,141.
2.. ;;-~2el.. 169

25.. 21:;~..157

120 DATAl,193.173,26,212,157,3,193,173,O.220.9,128,
141.- 5..193

130 DAT8169.64,202,16,222,173,0.193,141,2.220,173.
1..22121. I'll

140 DATA6.193,88,96

INPUT/OUTPUT GUIDE 347

LIGHT PEN

The light pen input latches the current screen position into a pair of
registers (LPX, LPY)on a low-going edge. The X position register 19
($13) will contain the 8 MSBof the X position at the time of transition.
Since the X position is defined by a 512-state counter (9 bits), resolution
to 2 horizontal dots is provided. Similar/y, the Y position is latched in its
register 20 ($14), but here 8 bits provide single raster resolution within

the visible display. The light pen latch may be triggered only once per
frame, and subsequent triggers within the same frame will have no

effect. Therefore, you must take several samples before turning the pen
to the screen (3 or more samples average), depending upon the char-
acteristics of your light pen.

RS-232 INTERFACE DESCRIPTION

GENERAL OUTLINE

The Commodore 64 has a built-in RS-232 interface for connection to
any RS-232 modem, printer, or other device. To connect a device to the

Commodore 64, all you need is a cable and a little bit of programming.
RS-232 on the Commodore 64 is set-up in the standard RS-232 for-

mat, but the voltages are TTL levels (0 to 5V) rather than the normal

RS-232 -12 to 12 volt range. T/1e cable between the Commodore 64
and the RS-232 device should take care of the necessary voltage con-
versions. The Commodore RS-232 interface cartridge handles this prop-
er/y.

The RS-232 interface software can be accessed from BASIC or from

the KERNALfor machine language programming.
RS-232 on the BASIC level uses the normal BASIC commands: OPEN,

CLOSE, CMD, INPUT#, GET#, PRINT#, and the reserved variable ST.
INPUT# and GET# fetch data from the receiving buffer, while PRINT#
and CMD place data into the transmitting buffer. The use of these com-
mands (and examples) will be described in more detail later in this
chapter.

The RS-232 KERNALbyte and bit level handlers run under the control

of the 6526 CIA #2 device timers and interrupts. The 6526 chip gener-

348 INPUT/OUTPUT GUIDE

ates NMI (Non-Maskab/e Interrupt) requests for RS-232 processing. This
allows background RS-232 processing to take place during BASIC and
machine language programs. There are built-in hold-offs in the KERNAl,
cassette, and serial bus routines to prevent the disruption of data stor-
age or transmission by the NMls that are generated by the RS-232
routines. During cassette or serial bus activities, data can NOT be re-
ceived from RS-232 devices. But because these hold-offs are only local
(assuming you're careful about your programming) no interference
should result.

There are two buffers in the Commodore 64 RS-232 interface to help.
prevent the loss of data when transmitting or receiving RS-232 informa-
tion.

The Commodore 64 RS-232 KERNALbuffers consist of two first-in/
first-out (FIFO) buffers, each 256 bytes long, at the top of memory. The
OPENing of an RS-232 channel automatically allocates 512 bytes of
memory fOTthese buffers. If there is not enough free space beyond the
end of your BASIC program no error message will be printed, and the
end of your program will be destroyed. SO BE CAREFUL!

These buffers are automatically removed by using the CLOSE com-
mand.

OPENING AN RS-232 CHANNEL

Only one RS-232 channel should be open at any time; a second OPEN
statement will cause the b.uffer pointers to be reset. Any characters in
either the transmit buffer or the receive buffer will be lost.

Up to 4 characters can be sent in the filename field. The first two are
the control and command register characters; the other two are re-
served for future system options. Baud rgte, parity, and other options
can be selected through this feature.

No error-checking is done on the control word to detect a non-
implemented baud rate. Any illegal control word will cause the system
output to operate at a very slow rate (below 50 baud).

BASIC SYNTAX:

OPEN Ifn,2,O,"<control register><command register><opt baud
low><opt baud high>"

Ifn- The logical file number (Ifn) then can be any number from 1
through 255. But be aware of the fact that if you choose a logical file
number that is greater than 127, then a line feed will follow all carriage
returns.

INPUT/OUTPUT GUIDE 349

STOP BITS

0-1 STOP BIT
1-2 STOP BITS

WORD LENGTH

UNUSED

4

Figure 6-1. Control Register Map.

<control register> -Is a single byte character (see Figure 6-1, Con-
trol Register Map) required to specify the baud rates. If the lower 4 bits
of the baud rate is equal to zero (0), the <opt baud low><opt baud

high> characters give you a rate based on the following:
<opt baud low> = <system frequency/rate/2-1 00- <opt baud

high>*256

<opt baud high> = INT«system frequency/rate/2- 100)/256

350 INPUT/OUTPUT GUIDE

BIT DATA
6 5 WORD LENGTH

0 0 8 BITS

0 1 7 BITS

1 0 6 BITS

1 1 5 BITS

3 2
1@)

BAUD RATE

0 0 0 0 USER RATE [NI]

0 0 0 1 50 BAUD

0 0 1 0 75

0 0 1 1 110

0 1 0 0 134.5

0 1 0 1 150

0 1 1 0 300

0 1 1 1 600

1 0 0 0 1200

1 0 0 1 (1800) 2400

1 0 1 0 2400

1 0 1 1 3600 [NI]

1 1 0 0 4800 [NI]

1 1 0 1 7200 [NI)

1 1 1 0 9600 [NI]

1 1 1 1 19200 [NI]

HANDSHAKE

0-3 LINE
1-X LINEPAR

GEN
OD
REC
EVE
REC
MA
PAR
SPA
PAR

DUPLEX

O-FUL

1-HAL

UNUSED

Figure 6-2. Command Register Map.

The formulas above are based on the fact that:

system frequency = 1.02273E6 NTSC (North American TV stan-
dard)

= O.98525E6 PAL(U.K. and most European TV
standard)

<command register>-Is a single byte character (see Figure 6-2,
Command Register Map) that defines other terminal parameters. This
character is NOT required.

INPUT/OUTPUTGUIDE 351

PARITY
BIT BIT BIT
7 6 5

0

o 1
-

tt111

OPTIONS

OPERATIONS

::UTYDISABLED, NONE
NERATED/RECEIVED

I PARITY
EIVER/TRANSMITTER
N PARITY
EIVER/TRANSMITTER
IK TRANSMITTED
ITY CH ECK DISABLED
CE TRANSMITTED
fTY CHECK DISABLED

KERNAL ENTRY:

OPEN ($FFCO) (See KERNAl specifications. for more information on
entry conditions and instructions.)

IMPORTANT NOTE: In a BASIC program, the RS-232 OPEN command should be per-
formed before creating any variables or arrays because an automatic CLR is per-
formed when an R5-232 channel is OPENed (This is due to the allocation of 512 bytes

at the top of memory.) Also remember that your program will be destroyed if 512

bytes of space are not available at the time of the OPEN statement.

GEnlNG DATA FROM AN RS-232 CHANNEL

When getting data from an RS-232 channel, the Commodore 64 re-
ceiver buffer will hold up to 255 characters before the buffer overAows.
This is indicated in the RS-232 status word (ST in BASIC, or RSSTATin

machine language). If an overAow occurs, then all characters received
during a full buffer condition, from that point on, are lost. Obviously, it
pays to keep the buffer as clear .as possible.

If you wish to receive RS-232 data at. high speeds (BASIC can only go
so fast, especially considering garbage collects. This can cause the re-
ceiver buffer to overAow), you will have to use .machine language
routines to handle this type of data burst.

BASIC SYNTAX:

Recommended: GET#lfn, <string variable>
NOT Recommended: INPUT#lfn ,<variable list>

KERNAL ENTRIES:

CHKIN ($FFC6)-See Memory Map for more information on entry and
exit conditions.

GETIN ($FFE4)-See Memory Map for'more information on entry and
exit conditions.

CHRIN ($FFCF)-See Memory Map for more information on entry and
exit conditions.

352 INPUT/OUTPUT GUIDE

NOTES:

If the word length is less than 8 bits, all unused bit(s) will be assigned a value of
zero.

If a GET# does not find any data in the buffer, the character nn (a null) is returned.

If INPUT# is used, then the system will hang in a waiting condition until a non-null

character and a following carriage return is received. Therefore, if the Clear To Send
(CTS) or DataSsette Ready (DSR) line(s) disappear during character INPUT#, the sys-
tem will hang in a RESTORE-only state. This is why the INPUT# and CHRIN routines
are NOT recommended.

The routine CHKIN handles the x-line handshake which follows the EIA standard

(August 1979) for RS-232-C interfaces. (The Request To Send (RTS), CTS, and Re-
ceived line signal (DCD) lines are implemented with the Commodore 64 computer
defined as" the Data Terminal device.)

SENDING DATA TO AN RS-232 CHANNEL

When sending data, the output buffer can hold 255 characters before
a full buffer hold-off occurs. The system will wait in the CHROUT routine
until transmission is allowed or the .:lIIlr~'tIlI:.l and .:1:1..1(81:1:11keys
are used to recover the system through a WARM START.

BASIC SYNTAX:

CMD Ifn-acts same as in the BASIC specifications.
PRINT#lfn, <variable list>

KERNAL ENTRIES:

CHKOUT ($FFC9)-See Memory Map for more information on entry
and exit conditions.

CHROUT ($FFD2)-See Memory Map for more information on entry
conditions.

INPUT/OUTPUT GUIDE 353

IMPORTANT NOTES: There is no carriage-return delay built into the output channel.

This means that a normal RS-232 printer cannot correctly print, unless some form of

hold-off (asking the Commodore 64 to wait) or internal buffering is implemented by
the printer. The hold-off can easily be implemented in your program. If a CTS (x-line)
handshake is implemented, the Commodore 64 buffer will fill, and then hold-off more

output until transmission is allowed by the RS-232 device. X-line handshaking is a
handshake routine that uses multi-lines for receiving and transmitting data.

The routine CHKOUT handles the x-line handshake, which follows the EIA standard

(August 1979) for RS-232-C interfaces. The RTS, CTS, and DCD lines are implemented
with the Commodore 64 defined as the Data Terminal Device.

CLOSING AN RS-232 DATACHANNEL

Closing an RS-232 file discards all data in the buffers at the time of
execution (whether or not it had been transmitted or printed out), stops
all RS-232 transmitting and receiving, sets the RTS and transmitted data
(Sout) lines high, and removes both RS-232 buffers.

BASIC SYNTAX:

CLOSE Ifn

KERNAL ENTRY:

CLOSE ($FFC3)-See Memory Map for more information on entry and
exit conditions.

NOTE: Care should be taken to ensure all data is transmilled before closing the
channel. A way to check this from BASIC is:

100 55=5T: IF(55=0 OR 55=8) THEN 100
110 CLOSE Ifn

354 INPUT/OUTPUT GUIDE

Table 6-1. User-Port lines

[7] [6] [5] [4] [3] [2] [1] [0] (Machine Lang.-RSSTAT
:_PARITY ERROR BIT

:_FRAMING ERROR BIT
RECEIVER BUFFER OVERRUN BIT

RECEIVER BUFFER-EMPTY

(USE TO TEST AFTER A GET#)
CTS SIGNAL MISSING BIT

UNUSED BIT

DSR SIGNAL MISSING BIT

BREAK DETECTEDBIT

Figure 6-3. RS-232 Status Register.

INPUT/OUTPUT GUIDE 355

(6526 DEVICE #2 Loc. $DDOO-$DDOF)

PIN 6526
DESCRIPTION

IN/
ID ID

EIA ABV MODES
OUT

C PBO RECEIVED DATA (BB) Sin IN 1 2
D PB1 REQUEST TO SEND (CA) RTS OUT 1*2
E PB2 DATA TERMINAL READY (CD) DTR OUT 1*2
F PB3 RING INDICATOR (CE) RI IN 3
H PB4 RECEIVED LINE SIGNAL (CF) DCD IN 2
J PB5 UNASSIGNED () XXX IN 3
K PB6 CLEAR TO SEND (CB) CTS IN 2
L PB7 DATA SET READY (CC) DSR IN 2

B FLAG2 RECEIVED DATA (BB) Sin IN 1 2
M PA2 TRANSMITTED DATA (BA) Sout OUT 1 2

A GND PROTECTIVE GROUND (AA) GND 1 2
N GND SIGNAL GROUND (AB) GND 123

MODES:

1) 3-LlNE INTERFACE (Sin,Sout,GND)
2) X-LINE INTERFACE

3) USER AVAILABLE ONLY (Unused/un implemented in code.)
* These lines are held high during 3-LlNE mode.

NOTES:

If the BIT=O, then no error has been detected.

The RS-232 status register can be read from BASIC using the variable ST.
If ST is read by BASIC or by using the KERNAl READST routine the RS-232 status

word is cleared when you exit. If multiple uses of the STATUSword are necessary the

ST should be assigned to another variable. For example:

SR=ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232 channel was the last
external I/O used.

SAMPLE BASIC PROGRAMS

10 REM THIS PROGRAM SENDS AND RECEIVES DATA
TO/FROM A SILENT 700
11 REM TERMINAL MODIFIED FOR PET ASCII
20 REM TI SILENT 700 SET-UP: 300 BAUD, 7-BIT ASCII,
MARK PAR IPr',

21 REM FULL DUPLEX
30 REt1 SAt1E SET-UP AT COMPUTER US ING 3-L HIE
INTERFACE
100 OPEN 2.2,3.CHR$(6+32)+CHR$(32+128):REM OPEN
THE CHANNEL
110 GET#2,A$:REM TURN ON THE RECEIVER CHANNEL
(TOSS A NULl)
200 REM MAIN LOOP
210 GET B$:REM GET FROM COMPUTER KEYBOARD
220 IF B$O"" THEN PR INT#2, B$.;:REt1 IF A KE'T'
PRESSED. SEND TO TERMINAL
230 GET#2,C$:REM GET A KEY FROM THE TERMINAL
240 PRINT B$;C$; :REM PRINT ALL INPUTS TO COMPUTER
SCREEN
250 SR=ST: IF SR=0 OR SR=8 THEN 200:REM CHECK
STATUS. IF GOOD THEN CONTINUE
300 REM ERROR REPORTING
318 PRINT "ERROR: ";
320 IF SR AND 1 THEt.~PRINT "PARITY"
330 IF SR At.m 2 THEt~ PRUIT "FRAt1E"
340 IF SR AND 4 THEN PRINT "RECEIVER BUFFER FULL"
350 IF SR AND 128 THEN PRINT "BREAK"
360 IF <PEEK(673) AND 1) THEN 360:REM WAIT UNTIL
ALL CHARS, TRANSMITTED
370 CLOSE 2: END

356 INPUT/OUTPUTGUIDE

113 REr1 THIS PROGRAI'1SENDS AND RECEIVES TRUE.ASCI I
DATA
11313 OPEN 5,2.3.CHR$(6)
lie DIM F%(255),T%C255)
21313 FOR J=32 TO 64~T%CJ)=J:N~n:
2113 T%(13)=13:T%C2e)=8:RV=18:CT=0
22121 FOR J=65 TO 9121:K=J+32:T%CJ)=K:NEXT
23121FOR J=91 TO 95: T%(J)=.J: NEXT
2413 FOR J=193 TO 218:K=J~128:T%(J)=K:NEXT
2513 T%(146)=16:T%(133)=16
26121FOR J=13 TO 255

27121 K=Tr:O)
28121IF K()0THEN F%CK)=J:F%CK+128)=J
29121 NEXT

313121PRItH " "CHR.(147)
31121 GET#5.A$
32121 IFA'=""OR 8TOI2I THEN 3613
3313 PRINT " "CHR$(l57).: CHR.CF;':CASCCAS»);
3413 IF F%(ASC(A$))=34 THEN POKE212,13
350 GOTO 310
360 PRnHCHRS (RV)" "CHR$(157) .:CHR$(146); :GET AS
37121 IF A$O""THENPRItH#5, CHR'(T;-;CASC(A$»)).;
38121 CT=C.T+l
390 IF CT=8 THENCT=13:RV=164-RV
4113 00T03113

RECEIVER/TRANSMITTER BUFFER BASE LOCATION
POINTERS

$OOF7-RIBUF-A two-byte pointer to the Receiver Buffer base loca-
tion.

$OOF9-ROBUF-A two-byte pointer to the Transmitter Buffer base
location.

The two locations above are set up by the OPENKERNAL routine, each
pointing. to a different 256-byte buffer. They are de-allocated by writing
a zero into the high order bytes ($OOF8and $OOFA),which is done by the
CLOSEKERNALentry. They may also be allocated/de-allocated by the
machine language programmer for his/her own purposes, removing/
creating only the buffer(s) required. When using a machine language
program that allocates. these buffers, care must be taken to make sure
that the top of memory pointers stay correct, especially if BASIC pro-
grams are expec:ted to run at the same time.

INPUT/OUTPUTGUIDE 357

ZERO-PAGE MEMORY LOCATIONS AND USAGE FOR
RS-232 SYSTEMINTERFACE

$00A7-INBIT-Receiver input bit temp storage.
$OOA8-BITCI-Receiver bit count in.
$00A9-RINONE-Receiver flag Start bit check.
$OOAA-RIDATA-Receiver byte buffer/assembly location.
$OOAB-RIPRTY:""-Receiver parity bit storage.
$00B4-BITIS- Transmitter bit count out.
$OOBS:"NXTBIT- Transmitter next bit to be sent.

.$00B6-RODATA- Transmitter byte buffer/disassembly location.

All the above zero-page locations are used locally and are only given
as a guide to understand the associated routines. These cannot be used
directly by the BASIC or KERNAl level programmer to do RS-232 type
things. The system RS-232 routines must be used.

NONZERO-PAGE MEMORY LOCATIONS AND USAGE FOR
RS-232 SYSTEM INTERFACE

General RS-232 storage:

$0293-MS1CTR-Pseudo 6551 control register (see Figure 6-1).
$0294-M51COR-Pseudo 6551 command register (see Figure 6-2).
$02.95-M51 AJB- Two bytes following the control and command

registers in the file name field. These locations contain the
baud' rate for the start of the bit test during the interface
activity, which, in turn, is used to calculate baud rate.

$0297 -RSSTAT- The RS-232 status register (see. Figure 6-3).
$0298-BITNUM- The number of bits to be sent/received.
$0299-BAUDOF- Two bytes that are equal to the time of one bit

cell. (Based on system clock/baud rate.)

358 INPUT/OUTPUTGUIDE

$029B-RIDBE- The byte index to the end of the receiver FIFO
buffer.

$029C-RIDBS- The byte index to the start of the receiver FIFO
buffer.

$029D-ROOBS- The byte index to the start of the transmitter FIFO
buffer.

$029E-RODBE- The byte index to the end of the transmitter FIFO
buffer.

$02A l-ENABL-Holds current active interrupts in the CIA #2 ICR.
When bit 4 is turned on means that the system is waiting. f()r
the Receiver Edge. When bit 1 is turned .on then the system is
receiving data; When bit 0 is turned on then the system is
transmitting data.

THE USER PORT

The user port is meant to connect the Commodore 64 to the outside
world. By using the lines available at this port, you can connect the
Commodore 64 to a printer, a Votrax Type and Talk, a MODEM, even
another computer.

The port on the Commodore 64 is directly connected to one of the
6526 CIA chips. By programming, the CIA will connect to many other
devices.

PORT PIN DESCRIPTION

1 2 3 4 5 6 7 8 9 10 11 12

ABC D E F H J K L M N

INPUT/OUTPUT GUIDE 359

PORT PIN DESCRIPTION

360 INPUT/OUTPUTGUIDE

PIN
DESCRIPTION NOTES

TOP SIDE

1 GROUND
2 +5V (100 mA MAX.)
3 RESET By grounding this pin, the Commodore

64 will do a COLD START, resetting
completely. The pointers to a BASIC
program will be reset, but memory will
not be cleared. This is also a RESET
output for the external devices.

4 CNTl Serial port counter from CIA #1 (SEE
CIA SPECS).

5 SP1 Serial port from CIA #1 (SEE 6526' CIA
SPECS).

6 CNT2 Serial port counter from CIA #2. (SEE
CIA SPECS).

7 SP2 Serial port from CIA #1 (SEE6526 CIA
SPECS).

8 PC2 Handshaking line from CIA #2 (SEE
CIA SPECS).

9 SERIAL This pin is conne:cted to the ATNline of
ATN the serial bus.

10 9 VAC+phase Connected directly to. the Commodore
11 9 VAC-phase 64 transformer (50 mA MAX.).
12 GND

BOTTOM SIDE

A GND The Commodore 64 gives you control
B FLAG2 over PORT B on CIA chip #1. Eight
C PBO lines for input or output are available,
D PB1 as well as 2 lines for handshaking with
E PB2 an outside device. The I/O lines for
F 'PB3 PORT B are controlled by two loca-
H PB4 tions'. One is the PORT itself, and is 10-
J PB5 cated at 56577 ($DDOI HEX). Naturally
K PB6 you PEEKit to. read an INPUT, or- POKE .
L PB7 it to set. an OUTPUT. Each of the eight
M PA2 I/O lines can be set up as either. an
N GND INPUT or an OUTPUT by setting the

DATA DIRECTIONREGISTERproperly.

The DATA DIRECTION REGISTERhas its location at 56579 ($DD03
hex). Each of the eight lines in the PORThas a BIT in the eight-bit DATA
DIRECTIONREGISTER(DDR)which controls whether that line will be an
input or an output. If a bit in the DDR is a ONE, the corresponding line
of the PORT will be an OUTPUT. If a bit in the DDR is a ZERO, the
corresponding line of the PORTwill be an INPUT. For example, if bit 3 of
the DDR is set to 1, then line 3 of the PORT will be an output. A further
example:

If the DDR is set like this:

BIT #: 7 6 5 4 3 2 1 0
VALUE:0 0 1 1 1 0 0 0

You can see that lines 5,4, and 3 will be outputs since those bits are

ones. The rest of the lines will be inputs, since those lines are zeros.

To PEEK or POKE the USER port, it is necessary to use both the DDR
and the PORT itself.

Remember that the PEEK and POKE statements want a number from

0-255. The numbers given in the example must be translated into dec-

imal before they can be used. The value would be:

25 + 24 + 23 = 32 + 16 + 8 = 56

Notice that the bit # for the DDR is the same number that = 2 raised to

a power to turn the bit value on.

(16 = 2j4=2X2x2x2, 8 = 2j3=2x2X2)

The two other lines, FLAG1 and PA2 are different from the rest of the
USER PORT. These two lines are mainly for HANDSHAKING, and are

programmed differently from port B.
Handshaking is needed when two devices communicate. Since one

device may run at a different speed than another device it is necessary

to give the devices some way of knowing what the other device is doing.

Even when the devices are operating at the same speed, handshaking is
necessary to let the other know when data is to be sent, and if it has

been received. The FLAGl line has special characteristics which make it

well suited for handshaking.
FLAG1 is a negative edge sensitive input which can be used as a

general purpose interrupt input. Any negative transition on the FLAG line

will set the FLAG interrupt bit. If the FLAG interrupt is enabled, this will

INPUT/OUTPUTGUIDE 361

couse on INTERRUPT REQUEST. If the FLAG bit is not enabled, it can be

polled from the interrupt register under program control.

PA2 is bit 2 of PORT A of the CIA. It is controlled like any other bit in

the port. The port is located at 56576 ($DDOO). The data direction regis-
ter is located at 56578 ($DD02.)

FOR MORE INFORMATION ON THE 6526 SEE THE CHIP SPECIFICA-
TIONS IN APPENDIX M.

THE SERIAL BUS

The serial bus is a daisy chain arrangement designed to let the Com-
modore 64 communicate with devices such as the VIC-1541 DISK DRIVE

and the VIC-1525 GRAPHICS PRINTER. The advantage of the serial bus

is that more than one device can be connected to the port. Up to 5
devices can be connected to the serial bus at one time.

There are three types of operation over a serial bus-CONTROL,
TALK, and LISTEN. A CONTROLLER device is one which controls operation
of the serial bus. A TALKER transmits data onto the bus. A LISTENER
receives data from the bus.

The Commodore 64 is the controller of the bus. It also acts as a

TALKER (when sending data to the printer, for example) and as a LIS-
TENER (when loading a program from the disk drive, for example).

Other devices may be either LISTENERS (the printer), TALKERS, or both

(the disk drive). Only the Commodore 64 can oct as the controller.
All devices connected on the serial bus will receive all the data

transmitted over the bus. To allow the Commodore 64 to route data to its

intended destination, each device has a bus ADDRESS. By using this
device address, the Commodore 64 can control access to the bus. Ad-

dresses on the serial bus range from 4 to 31.
The Commodore 64 can COMMAND a particular device to TALK or

LISTEN. When the Commodore 64 commands a device to TALK, the de-

vice will begin putting data onto the serial bus. When the Commodore
64 commands a device to LISTEN, the device addressed will get ready to
receive data (from the Commodore 64 or from another device on the

bus). Only one device can TALK on the bus at a time; otherwise, the data
will collide and the system will crash in confusion. However, any number
of devices can LISTEN at the some time to one TALKER.

362 INPUT/OUTPUT GUIDE

COMMON SERIAL BUS ADDRESSES

Other device addresses are possible. Each device has its own ad-
dress. Certain devices (likethe Commodore 64 printer) provide a choice
between two addresses for the convenience of the user.

TheSECONDARYADDRESSis to let the Commodore 64 transmit setup
information to a device. For example, to OPEN a connection on the bus
to the printer, and have it print in UPPERILoWERcase, use the following:

OPEN 1,4,7

where,

1 is the logical file number (the number you PRINT# to),
4 is the ADDRESSof the printer, and

7 is the SECONDARY ADDRESS that tells the printer to go into UPPER/
lOWER case mode.

There are 6 lines used in serial bus operation-3 input and 3 output.
The 3 input lines bring data, control, and timing signals into the Com-
modore 64. The 3 output lines send data, control, and timing signals
from the Commodore 64 to external devices on the serial bus.

SERIAL BUS PINOUTS

INPUT/OUTPUT GUIDE 363

NUMBER DEVICE

4 or 5 VIC-1525 GRAPHIC PRINTER
8 VIC-1541 DISK DRIVE

PIN DESCRIPTION

1 SERIAL SRQ IN
2 GND
3 SERIAL ATN IN/OUT
4 SERIAL ClK IN/OUT
5 SERIAL DATA IN/OUT

6 NO CONNECTION

SERIALSRQ IN: (SERIALSERVICEREQUESTIN)

Any device on the serial bus can bring this signal LOW when it re-
quires attention from the Commodore 64. The Commodore 64 will then

take care of the device. (See Figure 6-4).

ATN

NORMAL

BYTE SENT UNDER ATTENTION (TO DEVICES)-j rDATA BYTES

r
ICLOCK

DATA

ATN
TALKER READY-TO-SEND TALKER SENDING

t
CLOCK

DATA IIT88 Ts+I+TV I I

IJTHLTYEJTEILlTRY JTFUTFR

t I ~ISTENERREADY-FOR.DATA tI EOI-TIMEOUTHANDSHAKE SYSTEMLINE
LISTENER READY-FOR.DATA RELEASE

TALK-ATTENTION TURN AROUND (TALKER AND LISTENER REVERSED)

~EVICE ACKNOWLEDGES IT IS NOW TALKER
TALKER READY-TO.SEND

ATN

DATA

CLOCK

Figure 6-4. Serial

364 INPUT/OUTPUT GUIDE

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

The Commodore 64 uses this signal to start a command sequence for
a device on the serial bus. When the Commodore 64 brings this signal
LOW, all other devices on the bus start listening for the Commodore 64
to transmit an address. The device addressed must respond in a preset
period of time; otherwise, the Commodore 64 will assume that the de-
vice addressed is not on .the bus, and will return an .error in the STATUS

WORD. (See Figure 6-4).

TALKER READY.TO.SEND

I TALKER SENDING

SERIAL BUS TIMING

Notes:
. 1. If maximumtime exceeded,device not present.error.

2. If maximum time exceeded, EOI response required.
3. If maximum time exceeded. frame error.
4. TV and TpR minimum must be60lts for external device to.be a talker.
5. TEl minimum must be BOlts for external device to be a listener.

Bus Timing.

INPUT/OUTPUT GUIDE .365

.Descriptlon Symbol Min. Typ. Max.

ATN RESPONSE (REQUIRED)1 TAT - - 1000p,
LISTENERHOLD.OFF TH 0 - 00

NON-EOI RESPONSE TO RFD2 TNE - 40lts 200lts
BIT SET.UP TALKER4 TS 20p,s 70p,s -
DATA VALID Tv 20lts 20lts -
FRAME HANDSHAKE3 TF 0 20 1000p,s
FRAME TO RELEASE OF ATN TR 20lts - -
BETWEENBYTESTIME Taa 100ltS - -
EOI RESPONSE TIME . TYE 200p,s 250p,s -

EOI RESPONSE HOLD TIMES TEl 60lts - -
TALKER RESPONSE LIMIT TRY 0 30lts 60lts
BYTE.ACKNOWLEDGE4 TpR 20lts 30lts -
TALK.ATTENTION RELEASE TTK 20p,s 30lts 1O°ItS
TALK.ATTENTION ACKNOWLEDGE TDe 0 - -
TALK.ATTENTIONACK.HOLD TDA BOlts - -
EOI ACKNOWLEDGE TFR 60lLS - -

SERIAL CLK IN/OUT: (SERIAL CLOCK IN/OUT)

This signal is used for timing -the data sent on the serial bus. (See
Figure .6-4).

SERIAL DATA IN/OUT:

Data on the serial bus is transmitted one bit at a time on this line. (See
Figure 6-4.)

THE EXPANSION PORT

The expansion connector is a 44-pin (22/22) female edge connector on
the back of the Commodore 64. With the Commodore 64 facing you, the
expansion connector is on the far right of the back of the computer. To
use the connector, a 44-pin (22/22) male edge connector is required.

This port is used for expansions of the Commodore 64 system which
require access to the address bus or the data bus of the computer.
Caution is necessary when using the expansion bus, because it's possi-
ble to damage the Commodore 64 by a malfunction of your equipment.

The -expansion bus is arranged as -follows:
22 21 20 1918 17 1615 1. 13 12 11 10 II 8 -7 6 5 . 3 2 1

ZYXWVUTSRPNMlKJHF-EDCBA

The signals available on the connector are as follows:

366 INPUT/OUTPUT GUIDE

-
NAME PIN DESCRIPTION

GND 1 System ground
+5 VDC 2 (Total USER PORT and CARTRIDGEdevices can
+5 VDC 3 draw no more than 450 mA.)
IRQ 4 Interrupt Request line to 6502 (active low)
R/w 5 Read/Write
DOT
CLOCK 6 8.18 MHz video dot clock
1/01 7 I/O block 1 @ $DEOO-.$DEFF(active low) unbuffered I/O
GAME 8 active low Is ttl input
EXROM 9 active low Istt' input
1/02 10 I/O block 2 @ $DFOO-$DFFF (active low) buff'ed Is ttl

output

INPUT/OUTPUTGUIDE 367

NAME 'PIN DESCRIPTION

ROML 11 8K decoded RAM/ROMblock @ $8000 (active low)
buffered Is ttl output

BA 12 Bus available signal from the VIC-IIchip
unbuffered 1 Is load max.

DMA 13 Direct- memory access request line (active low input)
Is ttl input

D7 14 Data bus bit 7 ,

D6 15 Data bus bit 6
D5 16 Data -bus bit 5
D4 17 Data bus bit 4 unbuffered, 1 Is ttl load max
D3 18 Data bus bit 3
D2 19 Data bus bit 2
Dl 20 Data bus bit 1
DO 21 Data bus bit 0 ..
GND 22 System ground
GND A
ROMH B 8K decoded RAM/ROM block @ $EOOObuffered
RESET C 6502 RESETpin (active low) buff'ed ttl out/unbuff'ed in
NMI D 6502 Non Maskable Interrupt (active low) buff'ed ttl out,

unbuff'ed in

cp2 E Phase 2 system clock
A15 F Address bus bit 15 ...

A14 H Address bus bit 14

A13 J Address bus bit 13
A12 K Address bus bit 12
All L Address bus bit 11

, Al0 M Address bus bit 10
,

Address bus bit 9I A9 N
AS P Address bus bit 8 unbuffered, 1 Is ttl load max

A7 R Address bus bit 7
A6 S Address bus bit 6

A5 T Address bus bit 5

A4 U Address bus bit 4

A3 V Address bus bit 3

A2 W Address- bus bit 2

Al X Address bus bit 1

AO y. Address bus bit 0 .J
GND Z System ground

Overbar means active low

Following is a description of some important lines on the expansion
port:

Pins 1,22,A,Z are connected to the system ground.
Pin' 6 is the DOT CLOCK. This is the S.1S-MHz video dot clock. All

system timing is derived from this clock.
Pin 12 is the BA (BUS AVAILABLE)signal from the VIC-II chip. This line

will go low 3 cycles before the VIC-II takes over the system busses, and
remains'low until the VIC-II is finished fetching display information.

Pin 13 is the DMA (DIRECTMEMORY ACCESS) line. When this line is
pulled low, the address bus, the data bus, and,the Read/Write line of
the 6510 processor chip enter high-impedance state mode. This allows.
an external processor to. take control of the system busses. This line
should only be pulled low when the q,2 clock is low. Also, since the
VIC-II chip will continue to perform display DMA, the external device
must conform to the VIC-II timing. (See VIC-II timing. diagram.) This line
is pulled up on the Commodore 64.

2-80 MICROPROCESSOR CARTRIDGE

Reading this book and using your computer has shown you just how
versatile your Commodore 64 really is. But what makes this machine
even more capable of meeting your needs is the addition of peripheral
equipment. Peripherals are things like Datassette TO' recorders, disk
drives, printers, and modems. All these items can be added to your
Commodore 64 through the various ports and sockets on the bac::k of
your machine. The thing that makes Commodore peripherals so good is
the fact that our peripherals are "intelligent." That means that they don't
take up valuable Random Access Memory space when they're in use.
You're free to use all 64K of memory in your Commodore 64.

Another advantage of your Commodore 64 is the fact most programs
you write on your Commodore 64 today will be upwardly compatible
with any new Commodore computer you buy in the future. This is par-
tially because of the qualities of the computer's Operating System (OS).

However, there is one thing that the Commodore OS can't do: make
your programs compatible with a computer made by another company.

368 INPUT/OUTPUTGUIDE

Most of the time you won't even have to think about using another com-
pany's computer, because your Commodore 64 is so easy to use. But for
the occasional user who wants to take advantage of software that may
not be available in Commodore 64 format we have created a Commo-
dore CP/M@ cartridge.

CP/M@ is not a "computer dependent" operating system. Instead it
uses some of the memory space normally available for programming to
run its own operating system. There are advantages and disadvantages
to this. The disadvantages are that the programs you write will have to
be shorter than the programs you can write using the Commodore 64's
built-in operating system. In addition, you can NOT use the Commodore
64's powerful scree.n editing capabilities. The advantages are that you
can now use a large amount of software that has been specifically de-
signed for CP/M@and the Z-SO microprocessor, and the programs that
you write using the CP/M@operating system can be transported and run
on any other computer that has CP/M@ and a Z-SO card.

By the way, most computers that have a Z-SO microprocessor require
that you go inside the computer to actually install a Z-SO card. With this
method you have to be very careful not to disturb the delicate circuitry
that runs the rest of the computer. The Commodore CP/M@ cartridge
eliminates this ~assle because our Z-SO cartridge plugs into the back of
your Commodore 64 quickly and easily, without any messy wires that
can cause problems later.

USING COMMODORE CP/M@

The Commodore Z-SO cartridge let's you run programs designed for a
Z-SO microprocessor on your Commodore 64. The cartridge is provided
with a diskette containing the Commodore CP/M@operating system.

RUNNING COMMODORE CP/M@

1) LOADthe CP/M@ program from your disk drive.
2) Type RUN.
3) Hit the .:~:lIIm/. key.

INPUT/OUTPUTGUIDE 369

At this point the 64K bytes of RAM in the Commodore 64 are accessi-
ble by the built-in 6510 central processor, OR 48K bytes of RAM are
available for the Z-80 central processor. You can shift back and forth
between these two processors, but you can NOT use them at the same
time in a single program. This is possible because of your Commodore
64's sophisticated timing mechanism.

Below is the memory address translation that is performed on the
Z-80 cartridge. You should notice that by adding 4096 bytes to the
memory locations used in CP/M@ $1000 (hex) you equal the memory
addresses of the normal Commodore 64 operating system. The corre-
spondence between Z-80 and 6510 memory addresses is as follows:

370 INPUT/OUTPUTGUIDE

Z-80 ADDRESSES 6510 ADDRESSES

DECIMAL HEX DECIMAL HEX

0000-4095 OOOO-OFFF 4096-8191 1000- 1FFF
4096-8191 1000- 1FFF 8192-12287 2000-2FFF
8192-12287 2000-2FFF 12288- 16383 3000-3FFF

12288- 16383 3000-3FFF 16384-20479 4000-4FFF
16384-20479 4000-4FFF 20480-24575 5000-5FFF
20480-24575 5000-5FFF 24576-28671 6000-6FFF
24576-28671 6000-6FFF 28672-32767 7000-7FFF
28672-32767 7000-7FFF 32768-36863 8000-8FFF
32768-36863 8000-8FFF 36864-40959 9000-9FFF
36864-40959 9000-9FFF 40960-45055 AOOO-AFFF
40960-45055 AOOO-AFFF 45056-49151 BOOO- BFFF

45056-49151 BOOO- BFFF 49152-53247 COOO-CFFF
49152-53247 COOO-CFFF 53248-57343 DOOO- DFFF

53248-57343 DOOO- DFFF 57344-61439 EOOO- EFFF

57344-61439 EOOO-EFFF 61440- 65535 FOOO- FFFF

61440-65535 FOOO- FFFF 0000-4095 OOOO-OFFF

-

To TURN ON the Z-80 and TURN OFF the 6510 chip, type in the follow-
ing program:

-~

10 F:Et1 THI S PROGRAM I S TO BE USED /.ojI TH THE 2::;:121CFIRD
20 REM IT FIRST STORES 280 DATA AT $1000
(Z::::0=$000121)
30 REt'l THEt.1 I T TURt~S OFF THE 6510 I F.:C:!':; At.m EI'.IFiBLES
40 REt1 THE 2:30 CARD. THE 280 CAF:II t'JUST :E:E TUF:NEIJ
OFF
50 REM TO REENABLE THE 6510 SYSTEM.
100 REM STORE 280 DATA
11121F:EAD B: REt1 GET S I 2E OF 28121 CODE TO :E:E f'10"iED
120 FOR 1=4096 TO 4096+B-l:REM MOVE CODE
130 READ A:POKE I,A
14121NE:,n I
20~3 REM RUt'l Z8121CODE
;;:H~ POKE 563:3::::,127 .

220 POKE 56832,0121
230 POKE 56333~129 :
28121 DOt~E
240 H.\II
1000 REM 288 MACHINELANGUAGECODE DATA SECTION
101121 DATA 18 : REM SIZE OF DATA TO BE PASSED
1100 REM 280 TURN ON CODE
1110 DATA OO,OO,00 : REM OUR Z80 CARD REQUIRES
TURN ON TIME AT $0000
1200 REM Z80 TASK DATA HERE
1210 DATA 33,02,245 : REM LD HL,NN (LOCATION ON
SCF:EEt-1)
1220 DATA 52 : REM INC HL (INCREMENT THAT LOCATION)
1300 F:Et1 2::::8 SELF - TUFH.IOFF DfiTfi HEF.:E
1310 DATA 62,01 : REM LD A,N
1320 DATA 50,00,206 : REM LD (NN),A :I~) LOCATION
1330 DATA 00,00,00 : REM Nap: NOP:NOP
1340 DATA 195,OO,OO : REM JMP $0000

REM TURN OF 6510 IRQ'S
REM TURN ON 280 CARD
REM TURN ON 6510 IRQ'S WHEN

For more details about Commodore CP/M@and the Z-80 microproces-

sor look for the cartridge and the Z-80 Reference Guide at your local
Commodore computer dealer.

INPUT/OUTPUT GUIDE 371

