

WHAT IS MACHINE LANGUAGE?

At the heart of every microcomputer, is a central microprocessor. It's
a very special microchip which is the "brain" of the computer. The
Commodore 64 is no exception. Every microprocessor understands its
own language of instructions. These instructions are called machine lan-
guage instructions. To put it more precisely, machine language is the
ONLY programming language that your Commodore 64 understands. It
is the NATIVElanguage of the machine.

If machine language is the only language that the Commodore 64
understands, then how does it understand the CBM BASIC programming
language? CBM BASIC is NOT the machine language of the Commodore
64. What, then, makes the Commodore 64 understand CBM BASIC in-
structions like PRINT and GOTO?

To answer this question, you must first see what happens inside your
Commodore 64. Apart from the microprocessor which is the brain of the
Commodore 64, there is a machine language program which is stored in
a special type of memory so that it can't be changed. And, more impor-
tantly, it does not disappear when the Commodore 64 is turned off,

unlike a program that you may have written. This machine language
program is called the OPERATING SYSTEMof the Commodore 64. Your
Commodore 64 knows what to do when it's turned on because its
OPERATING SYSTEM(program) is automatically "RUN."

210 BASIC TO MACHINE LANGUAGE

The OPERATING SYSTEM is in charge of "organizing" all the memory

in your machine for various tasks. It also looks at what characters you
type on the keyboard and puts them onto the screen, plus a whole

number of other functions. The OPERATING SYSTEM can be thought of

as the "intelligence and personality" of the Commodore 64 (or any com-
puter for that matter). So when you turn on your Commodore 64, the

OPERATING SYSTEM takes control of your machine, and after it has
done its housework, it then says:

READY.
.

The OPERATING SYSTEM of the Commodore 64 then allows you to

type on the keyboard, and use the built-in SCREEN EDITOR on the Com-
modore 64. The SCREEN EDITOR allows you to move the cursor, DELete,
INSert, etc., and is, in fact, only one part of the operating system that is

built in for your convenience.
All of the commands that are available in CBM BASIC are simply

recognized by another huge machine language program built into your

Commodore 64. This huge program "RUNs" the appropriate piece of
machine language depending on which CBM BASIC command is being

executed. This program is called the BASIC INTERPRETER, because it

interprets each command, one by one, unless it encounters a command
it does not understand, and then the familiar message appears:

?SYNTAX ERROR

READY..
WHAT DOES MACHINE CODE LOOK LIKE?

You should be familiar with the PEEKand POKE commands in the CBM

BASIC language for changing memory locations. You've probably used

them for graphics on the screen, and for sound effects. Each memory
location has its own number which identifies it. This number is known as

the "address" of a memory location. If you imagine the memory in the
Commodore 64 as a street of buildings, then the number on each door

is, of course, the address. Now let's look at which parts of the street are
used for what purposes.

BASIC TO MACHINE LANGUAGE 211

SIMPLE MEMORY MAP OF THE COMMODORE64

212 BASIC TO MACHINE LANGUAGE

ADDRESS DESCRIPTION

0& 1 -6510 Registers.

2 -Start of memory.
up to: -Memory used by the operating system.
1023

1024

up to: -Screen memory.
2039

2040

up to: -SPRITE pointers.
2047

2048

up to: - This is YOUR memory. This is where your BASIC or
40959 machine language programs, or both, are stored.

40960

up to: -8K CBM BASIC Interpreter.
49151

49152

up to: -Special programs RAM area.
53247

53248

up to: -VIC-II.
53294

54272

up to: -SID Registers.
55295

55296
up to: -Color RAM.
56296

56320
up to: -110 Registers. (6526's)
57343

57344
up to: -8K CBM KERNALOperating System.
65535

If you don't understand what the description of each part of memory
means right now, this will become clear from other parts of this manual.

Machine language programs consist of instructions which mayor may
not have operands (parameters) associated with them. Each instruction
takes up one memory location, and any operand is contained in one or
.two locations following the .instruction.

In your BASIC programs, words like PRINTand GOTO do, in fact, only
take up one memory location, rather than one for each character of the
word. The contents of the location that represents a particular BASIC
keyword is called a token. In machine language, there are different
tokens for different instructions, which also take up just one byte (mem-
ory location =byte).

Machine language instructions are very simple. Therefore, each indi-
vidual instruction cannot achieve a great deal. Machine language in-
structions either change the contents of a memory location, or change
one of the internal registers (special storage locations) inside .the micro-
processor. The internal registers form the very basis of machine lan-
guage.

THE REGISTERS INSIDE THE6510 MICROPROCESSOR

THE ACCUMULATOR

This is THE most important register in the microprocessor. Various ma-

chine language instructions allow you to copy the c;:ontents of a memory
location into.the accumulator, copy the contents of the accumulator into
a memory location, modify the contents of the accumulator or some
other register directly, without affecting any memory. And the ac-
cumulator is the only register that has instructions for performing math.

THE X INDEX REGISTER

This is a very important register. There are instructions for nearly all of
the transformations you can make to the accumulator. But there are
other instructions for things that only the X register can do. Various ma-
chine language instructions allow you to copy the contents of a memory
location into the X register,copy the contents of the X register into a
memory location, and modify the contents of the X, or some other regis-
ter directly.

BASIC TO MACHINE LANGUAGE 213

THE Y INDEX REGISTER

This is a very important register. There are instructions for nearly all of

the transformations you can make to the accumulator, and the X regis-

ter. But there are other instructions for things that only the Y register can
do. Various machine language instructions allow you to copy the con-

tents of a memory location into the Y register, copy the contents of the Y
register into a memory location, and modify the contents of the Y, or

some other register directly.

THE STATUS REGISTER

This register consists of eight "flags" (a flag = something that indi-
cates whether something has, or has not occurred).

THE PROGRAM COUNTER

This contains the address of the current machine language instruction

being executed. Since the operating system is always "RUN"ning in the

Commodore 64 (or, for that matter, any computer), the program counter
is always changing. It could only be stopped by halting the microproces-
sor in some way.

THE STACK POINTER

This register contains the location of the first empty place on the stack.

The stack is used for temporary storage by machine language pro-
grams, and by the computer.

THE INPUT/OUTPUTPORT

This register appears at memory locations 0 (for the DATADIRECTION

REGISTER)and 1 (for the actual PORT). It is an 8-bit input/output port.
On the Commodore 64 this register is used for memory management, to

allow the chip to control more than 64K of RAM and ROM memory.

The details of these registers are not given here. They are explained

as the principles needed to explain them are' explained.

HOW DO YOU WRITE MACHINE LAN-
GUAGE PROGRAMS?

Since machine language programs reside in memory, and there is no
facility in your Commodore 64 for writing and editing machine language

214 BASIC TO MACHINE. LANGUAGE

programs, you must use either a program to do this, or write for yourself
a BASIC program that "allows" you to write mClchine language.

The most common methods used to write machine language pro-
grams are assembler progams. These packages allow you to write ma-
chine language instructions in a standardized mnemonic format, which
makes the machine language program a lot more readable than a
stream of numbers! Let's review: A program that allows you to write
machine language programs in mnemonic format is called an assem-
bler. Incidentally, a program that displays a machine language pro-
gram in mnemonic format is called a disassembler. Available for your
Commodore 64 is a machine language monitor cartridge (with assem-
bler/ disassembler, etc.) made by Commodore:

64MON

The 64MON cartridge available from your local dealer, is a program
that allows you to escape from the world of CBM BASIC, into the land of
machine language. It can display the contents of the internal registers in
the 6510 microprocessor, and it allows you to display portions of mem-
ory, and change them on the screen, using the screen editor. It also has
a built-in assembler and disassembler, as well as many other features
that allow you to write and edit machine language programs easily. You
don't HAVEto use an assembler to write machine language, but the task
is considerably easier with it. If you wish to write machine language
programs, it is strongly suggested that you purchase an assembler of
some sort. Without an assembler you will probably have to "POKE" the
machine language program into memory, which is totally unadvisable.
This manual will give its examples in the format that 64MON uses, from
now on. Nearly all assembler formats ar~ the same, therefore the ma-
chine language examples shown will almost certainly be compatible.
with any assembler. But before explaining any of the other features of
64MON, the hexadecimal numbering system must be explained.

HEXADECIMAL NOTATION

Hexadecimal notation is used by most machine language program-

mers when they talk about a number or address in a machine language
program.

Some assemblers let you refer to addresses and numbers in decimal
(base 10), binary (base 2), or even octal (base 8) as well as hexadeci-

BASICTO MACHINELANGUAGE 215

. I

mal (base 16) (or just "hex" as most people say). These assemblers do
the conversions for you.

Hexadecimal probably seems a little hard to grasp at first, but like
most things, it won't take long to master with practice.

By looking at decimal (base 10) numbers, you can see that each digit
falls somewhere in the range between zero and a number equal to the
base less one (e.g., 9). THIS IS TRUEOF ALL NUMBER BASES.Binary
(base 2) numbers have digits ranging from zero to one (which is one less
than the base). Similarly, hexadecimal numbers should have digits rang-
ing from zero to fifteen, but we do not have any single digit figures for
the numbers ten to fifteen, so the first six letters of the alphabet are
used instead:

216 BASIC TO MACHINE LANGUAGE

DECIMAL HEXADECIMAL BINARY

0 0 00000000
1 1 00000001
2 2 00000010
3 3 00000011
4 4 00000100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 00001000
9 9 00001001

10 A 00001010
11 B 00001011
12 C 00001100
13 D 00001101
14 E 00001110
15 F 00001111
16 10 00010000

let's look at it another way; here's an example of how a base 10
(decimal number) is constructed:

Base raised by
increasing powers:

Equals: .1000 100 10

Consider 4569 (base 10) 4 5 6 9
=(4x 1000)+(5X 100)+(6X 10)+9

Now look at an example of how a base 16 (hexadecimal number) is
constructed:

Base raised by
increasing powers:

Equals: .4096 256 16

Consider 11D9 (base 16) lID 9
=1 X4096+1 X256+13X 16+9

Therefore, 4569 (base 10) = 11 D9 (base 16)

The range for addressable memory locations is 0-65535 (as was
stated earlier). This range is therefore o-FFFF in hexadecimal notation.

Usually hexadecimal numbers are prefixed with a dollar sign ($). This
is to distinguish them from decimal numbers. let's look at some "hex"
numbers, using 64MON, by displaying the contents of some memory by
typing:

SYS 8*4096 (or SYS 12*4096)
B*

PC SR AC XRYR SP

.; 0401 32 04 5E 00 F6 (these may be different)

Then if you type in:

.M 0000 0020 (and press 8:1:1111:11.).

you will see rows of 9 hex numbers. The first 4-digit number is the ad-
dress of the first byte of memory being shown in that row, and the other

eight numbers are the actual contents of the memory locations begin-
ning at that start address.

You should really try to learn to "think" in hexadecimal. It's not too
difficult, because you don't have to think about converting it back into

BASIC TO MACHINE LANGUAGE 217

decimal. For example, if you said that a particular value is stored at
$14ED instead of 5357, it shouldn't make any difference.

YOUR FIRST MACHINE LANGUAGE INSTRUCTION

LDA- LOADTHEACCUMULATOR

In 6510 assembly language, mnemonics are always three characters.
LDA represents "load accumulator with . . . ," and what the ac-

cumulator should be loaded with is decided by the parameter(s) asso-
ciated with that instruction. The assembler knows which token is repre-
sented by each mnemonic, and when it "assembles" an instruction, it
simply puts into memory (at whatever address has been specified), the
token, and what parameters, are given. Some assemblers give error
messages, or warnings when you try to assemble something that either
the assembler, or the 6510 microprocessor, cannot do.

If you put a "#" symbol in front of the parameter associated with the
instruction, this means that you want the register specified in the instruc-
tion to be loaded with the "value" after the "#." For example:

LDA #$05 ~
This instruction will put $05 (decimal 5) into the accumulator register.
The assembler will put into the specified address for this instruction, $A9
(which is the token for this particular instruction, in this mode), and it will
put $05 into the next location after the location containing the instruction
($A9).

If the parameter to be used by an instruction has "#" before it; i.e.,
the parameter is a "value," rather than the contents of a memory loca-
tion, or another register, the instruction is said to be in the "immediate"
mode. To put this into perspective, let's compare this with another
mode:

If you want to put the contents of memory location $102E into the
accumulator, you're using the "absolute" mode of instruction:

LDA $102E

The assembler can distinguish between the two different modes because
the latter does not have a "#" before the parameter. The 6510 micro-
processor can distinguish between the immediate mode, and the abso-
lute mode of the LDA instruction, because they have slightly different
tokens. LDA (immediate) has $A9 as its token, and LDA(absolute), has
$AD as its token.

218 BASICTO MACHINELANGUAGE

The mnemonic representing an instruction usually implies what it
does. For instance, if we consider another instruction, LDX, what do you
think this does?

If you said "load the X register with. . . ," go to the top of the class.
If you didn't, then don't worry, learning machine language does take
patience, and cannot be learned in a day.

The various internal registers can be thought of as special memory
locations, because they too can hold one byte of information. It is not
necessary for us to explain the binary numbering system (base 2) since it
follows the same rules as outlined for hexadecimal and decimal outlined

previously, but one "bit" is one binary digit and eight bits make up one
byte! This means that the maximum number that can be contained in a

byte is the largest number that an eight digit binary number can be. This
number is 11111111 (binary), which equals $FF (hexadecimal), which
equals 255 (decimal). You have probably wondered why only numbers
from zero to 255 could be put into a memory location. If you try POKE
7680,260 (which is a BASIC statement that "says": "Put the number two
hundred and sixty, into memory location seven thousand, six hundred

and eighty," the BASIC interpreter knows that only numbers 0 - 255 can
be put in a memory location, and your Commodore 64 will reply with:

?ILLEGAL QUANTITY ERROR

READY.
.

If the limit of one byte is $FF (hex), how is the address parameter in the
absolute instruction "LDA $102E" expressed in memory? It's expressed in
two bytes (it won't fit into one, of course). The lower (rightmost) two
digits of the hexadecimal address form the "low byte" of the address,
and the upper (leftmost) two digits form the "high byte."

The 6510 requires any address to be specified with its low byte first,
and then the high byte. This means that the instruction "lDA $102E" is
represented in memory by the three consecutive values:

$AD, $2E, $10

Now all you need to know is one more instruction and then you can write
your first program. That instruction is BRK. For a full explanation of this
instruction, refer to M.O.S. 6502 Programming Monuol. But right now,
you can think of it as the END instruction in machine language.

BASIC TO MACHINE LANGUAGE 219

If we write a program with 64MON and put the BRKinstruction at the
end, then when the program is executed, it will return to 64MON when it

is finished. This might not happen if there is a mistake in your program,
or the BRK instruction is never reached (just like an END statement in
BASIC may never get executed). This means that if the Commodore 64

didn't have a STOP key, you wouldn't be able to abort your BASIC pro-
grams!

WRITING YOUR FIRST PROGRAM

If you've used the POKEstatement in BASIC to put characters onto the
screen, you're aware that the character codes for POKEing are different
from CBM ASCII character values. For example, if you enter:

PRINT ASq"A") (and press .:~llIm~/.)

the Commodore 64 will respond with:

65

READY.
.

However, to put an "A" onto the screen by POKEing, the code is I,
enter:

POKE 1024,1 :POKE 55296,14 (and .WII":~/.) (1024 is the start

of screen memory)

The "P" in the POKE statement should now be an "A."

Now let's try this in machine language. Type the following in 64MON:
(Your cursor should be flashing alongside a "." right now.)

.A 1400 LDA#$01 (and press .WIII':U.

220 BASIC TO MACHINE LANGUAGE

The Commodore 64 will prompt you with:

.A 1400 A9 01

.A 1402. LDA #$01

Type:

.A 1402 STA $0400

(The STA instruction stores the contents of the accumulator in a specified'
memory location.)
The Commodore 64 will prompt you with:

.A 1405 ..

Now type in:

.A 1405 LDA #$OE

.A 1407 STA $D800

.A 140A BRK

Clear the screen', and type:

G 1400

The G should turn into an "A" if you've done everything correctly.
You have now written your first machine language program. Its pur-

pose is to store one character ("A") at the first location in the screen
memory. Having achieved this, we must now explore some of the other
instructions, and principles.

ADDRESSING MODES

ZERO PAGE

As shown earlier, absolute addresses are expressed in terms of a high
and a low order byte. The high order byte is often referred to as the

page of memory. For example, the address $1637 is in page $16 (22),
and $0277 is in page $02 (2). There is, however, a special mode of
addressing known as zero page addressing and is, as the name implies,
associated with the addressing of memory locations in page zero. These

BASIC TO MACHINE LANGUAGE 221

addresses, therefore, ALWAYShave a high order byte of zero. The zero
page mode of addressing only expects one byte to describe the ad-
dress, rather than two when using an absolute address. The zero page
addressing mode tells the microprocessor to assume that the high order
address is zero. Therefore zero page addressing can reference memory
locations whose addresses are between $0000 and $OOFF.This may not
seem too important at the moment, but you'll need the principles of zero
page addressing soon.

THE STACK

The 6510 microprocessor has what is known as a stack. This is used
by both the programmer and the microprocessor to temporarily re-
member things, and to remember, for example, an order of events. The
GOSUB statement in BASIC, which allows the programmer to call a sub-
routine, must remember where it is being called from, so that when the
RETURNstatement is executed in the subroutine, the BASIC interpreter
"knows" where to go back to continue executing. When a GOSUB
statement is encountered in a program by the BASIC interpreter, the
BASIC interpreter "pushes" its current position onto the stack before
going to do the subroutine, and when a RETURNis executed, the in-
terpreter "pulls" off the stack the information that tells it where it was
before the subroutine call was made. The interpreter uses instructions
like PHA, which pushes the contents of the accumulator onto the stack,
and PLA (the reverse) which pulls a value off the stack and into the
accumulator. The status register can also be pushed and pulled with the
PHP and PLP, respectively.

The stack is 256 bytes long, and is located in page one of memory. It
is therefore from $0100 to $01 FF. It is organized backwards in memory.
In other words, the first position in the stack is at $01 FF, and the last is
at $0100. Another register in the 6510 microprocessor is called the stack

pointer, and it always points to the next available location in the stack.
When something is pushed onto the stack, it is placed where the stack
pointer points to, and the stack pointer is moved down to the next posi~
tion (decremented). When something is pulled off the stack, the stack
pointer is incremented, and the byte pointed to by the stack pointer is

placed into the specified register.

222 BASIC TO MACHINE LANGUAGE

Up to this point, we have covered immediate, zero page, and abso-
lute mode instructions. We have also covered, but have not really talked
about, the "implied" mode. The implied mode means that information is

implied by an instruction itself. In other words, what registers, flags,
and memory the instruction is referring to. The examples we have seen
are PHA, PLA, PHP, and PLP, which refer to stack processing and. the
accumulator and status registers, respectively.

NOTE: The X register will be referred to as X from now on, and similarly A (ac-
cumulator), Y (Y index registe~), 5 (stack pointer), and P (processor status).

INDEXING

Indexing plays an extremely important part in the running of the 6510
microprocessor. It can be defined as "creating an actual address from a
base address plus the contents of either the X or Y index registers."

For example, if X contains $05, and the microprocessor executes an
LDA instruction in the "absolute X indexed mode" with base address

(e.g., $9000), then the actual location that is loaded into the A register
is $9000 + $05 = $9005. The mnemonic format of an absolute indexed
instruction is the same as an absolute instruction except a ",X" or ", Y"
denoting the index is added to the address.

EXAMPLE:

LDA $9000,X

There are absolute indexed, zero page indexed, indirect indexed,
and indexed indirect modes of addressing available on the 6510
microprocessor.

INDIRECT INDEXED

This only allows usage of the Y register as the index. The actual ad-
dress can only be in zero page, and the mode of instruction is called
indirect because the zero page address specified in the instruction con-
tains the low byte of the actual address, and the next byte to it contains
the high order byte.

BASICTO MACHINELANGUAGE 223

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 con-
tains $1 E. If the instruction to load the accumulator in the indirect inde-

xed mode is executed and the specified zero page address is $02, then
the actual address will be:

Low order = contents of $02

High order = contents of $03
Y register =$00

Thus the actual address = $1E45 + Y = $1E45.

The title of this mode does in fact imply an indirect principle, although
this maybe difficult to grasp at first sight. Let's look at it another way:

"I am going to deliver this letter to the post office at address
$02,MEMORY ST., and the address on the letter is $05 houses past
$1600, MEMORY street." This is equivalent to the code:

LDA #$00
STA $02
LDA #$16
STA $03
LDY#$05
LDA ($02), Y

- load low order actual .base address

- set the low byte .of the indirect address
- load high order indirect address
- set the high byte of the indirect address
- set the indirect index (Y)

- load indirectly indexed by Y

INDEXED INDIRECT

Indexed indirect only allows usage of the X register as the index. This
is the same as indirect indexed, except it is the zero page address of the
pointer that is indexed, rather than the actual base address. Therefore,
the actual base address IS the actual address because the index has

already been used for the indirect. Index indirect would also be used if

224 BASIC TO MACHINE LANGUAGE

a table of indirect pointers were located in zero page memory, and the
X register could then specify which indirect pointer to use.

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 con-
tains $10. If the instruction to load the accumulator in the indexed indi-

rect mode is executed and the specified zero page address is $02, then
the actual address will be:

Low order = contents of ($02 + X)
High order = contents of ($03+X)
X register = $00

Thus the actual pointer is in = $02 + X = $02.

Therefore, the actual address is the indirect address contained in $02
which is again $1045.

The title of this mode does in fact imply the principle, although it may
be difficult to grasp at first sight. Look at it this way:

"I am going to deliver this letter to the fourth post office at address
$01 ,MEMORY ST., and the address on the letter will then be delivered to
$1600, MEMORY street." This is equivalent to the code:

LDA #$00
STA $06
LDA #$16
STA $07
LDX#$05

LDA ($02,X)

- load low order actual base address

- set the low byte of the indirect address
- load high order indirect address
- set the high byte of the indirect address
- set the indirect index (X)
-load indirectly indexed by X

NOTE: Of the two indirect methods of addressing, the first (indirect indexed) is far

more widely used.

BASIC TO MACHINE LANGUAGE 225

BRANCHES AND TESTING

Another very important principle in machine language is the ability to
test, and detect certain conditions, in a smiliar fashion to the "IF. . .
THEN, IF . . . GOTO" structure in CBM BASIC.

The various flags in the status register are affected by different in-
structions in different ways. For example, there is a flag that is set when
an instruction has caused a zero result, and is reset when a result is not
zero. The instruction:

LDA #$00

will cause the zero result flag to be set, because the instruction has

resulted in the .accumulator containing a zero.
There are a set of instructions that will, given a particular condition,

branch to another part of the program. An example of a branch instruc-
tion is BEQ, which means Branch if result EQual to zero. The branch
instructions branch if the condition is true, and if not, the program con-
tinues onto the next instruction, as if nothing had occurred. The branch
instructions branch not by the result of the previous instruction(s), but by
internally examining the status register. As was just mentioned, there is
a zero result flag in the status register. The BEQ instruction branches if
the zero result flag (known as Z) is set. Every branch instruction has an
opposite branch instruction. The BEQ instruction has an opposite instruc-
tion BNE, which means Branch on result Not Equal to zero (i.e., Z not
set).

The index registers have a number of associated instructions which
modify their contents. For example, the INX instruction INcrements the X
index register. If the X.register contained $FF before it was incremented
(the maximum number the X register can contain), it will "wrap around"
back to zero. If you wanted a program to continue to do something until
you had performed the increment of the X index that pushed it around
to zero, you could use the BNE instruction to continue "looping" around,
until X became zero.

The reverse of INX, is DEX,which is DEcrement the X index register. If
the X index register is zero, DEX wraps around to $FF. Similarly, there
are INY and DEYfor the Y index register.

226 BASIC TO MACHINE LANGUAGE

But what if a program didn't want to wait until X or Y had reached (or
not reached) zero? Well there are comparison instructions, CPX and
CPY, which allow the machine language programmer to test the index
registers with specific values, or even the contents of memory locations.
If you wanted to see if the X register contained $40, you would use the
instruction:

CPX #$40
BEQ

(some other
part of the
program)

- compare X with the "value" $40.
- branch to somewhere else in the

program, if this condition is "true."

The compare, and branch instructions playa major part in any machine
language program.

The operand specified in a branch instruction when using 64MON is
the address of the part of the program that the branch goes to when the
proper conditions are met. However, the operand is only an offset,
which gets you from where the program currently is to the address spec-
ified. This offset is just one byte, and therefore the range that a branch
instruction can branch to is limited. It can branch from 128 bytes back-
ward, to 127 bytes forward.

NOTE: This is a total range of 255 bytes which is, of course, the maximum range of
values one byte can contain.

64MON will tell you if you "branch out of range" by refusing to "as_
semble" that particular instruction. But don't worry about that now be-
cause it's unlikely that you will have such branches for quite a while. The
branch is a "quick" instruction by machine language standards because
of the "offset" principle as opposed to an absolute address. 64MON
allows you to type in an absolute address, and it calculates the correct
offset. This is just one of the "comforts" of using an assembler.

NOTE: It is NOT possible to cover every single branch instruction. For further informa-

tion, refer to the Bibliography section in Appendix F.

BASIC TO MACHINE LANGUAGE 227

SUBROUTINES

In machine language (in the same way as using BASIC), you can call
subroutines. The instruction to call a subroutine is JSR (Jump to Sub-
Routine), followed by the specified absolute address.

Incorporated in the operating system, there is a machine language
subroutine that will PRINT a character to the screen. The CBM ASCII

code of the character should be in the accumulator before calling the
subroutine. The address of this subroutine is $FFD2.

Therefore, to print "HI" to the screen, the following program should
be entered:

.A 1400 lDA #$48

.A 1402 JSR $FFD2

.A 1405 lDA #$49

.A 1407 JSR $FFD2

.A 140A lDA #$OD

.A 140C JSR $FFD2

.A 140F BRK

.G 1400

- load the C8M ASCII code of "H"

- print it
- load the C8M ASCII code of "1"

- print that too
- print a carriage return as well

- return to 64MON

- will print "HI" and return to 64MON

The "PRINT a character" routine we have just used is part of the
KERNAl jump table. The instruction similar to GOTO in BASIC is JMP,
which means JuMP to the specified absolute address. The KERNAl is a
long list of "standardized" subroutines that control All input and output
of the Commodore 64. Each entry in the KERNAlJMPs to a subroutine in
the operating system. This "jump table" is found between memory loca-
tions $FF84 to $FFF5 in the operating system. A full explanation of the
KERNAl is available in the "KERNAl Reference Section" of this manual.

However, certain routines are used here to show how easy and effective
the KERNAl is.

let's now use the new principles you've just learned in another pro-
gram. It will help you to put the instructions into context:

228 BASIC TO MACHINE LANGUAGE

This program will display the alphabet using a KERNALroutine. The
only new instruction introduced here is TXATransfer the contents of the X
index register, into the Accumulator.

.A 1400 LDX#$41

.A 1402 TXA

.A 1403 JSR $FFD2

.A 1406 INX

.A 1407 CPX #$5B

.A 1409 BNE $1402

.A 140B BRK

- X = CBM ASCII of "A"

-A=X
- print character
- bump count
- have we gone past "Z" ?
- no, go back and do more
- yes, return to 64MON

To see the Commodore 64 print the alphabet, type the familiar com-
mand:

.G 1400

The comments that are beside the program, explain the program flow
and logic. If you are writing a program, write it on paper first, and then
test it in small parts if possible.

USEFUL TIPS FOR THE BEGINNER

One of the best ways to learn machine language is to look at other
peoples' machine language programs. These are published all the time
in magazines and newsletters. Look at them even if the article is for a
different computer, which also uses the 6510 (or 6502) microprocessor.
You should make sure that you thoroughly understand the code that you
look at. This will require perseverence, especially when you see a new
technique that you have never come across before. This can be infuriat-
ing, but if patience prevails, you will be the victor.

Having looked at other machine language programs, you MUSTwrite
your own. These may be utilities for your BASIC programs, or they may
be an all machine language program.

BASIC TO MACHINE LANGUAGE 229

You should also use the utilities that are available, either IN your
computer, or in a program, that aid you in writing, editing, or tracking
down errors in a machine language program. An example would be the
KERNAL,which allows you to check the keyboard, print text, control
peripheral devices like disk drives, printers, modems, etc., manage
memory and the screen. It ;s extremely powerful and it is advised
strongly that it is used (refer to KERNALsection, Page 268).

Advantages -of writing programs in machine languag-e:

1. Speed -Mac-hine language is
thousands of times faster than
BASIC.

2. Tightness -A machine language program can be made totally
"watertight," Le., the user can be made to do ONLYwhat the
program allows, and no more. With a high level language, you
are relying on the user not "crashing" the BASIC interpreter by
entering, for example, a zero which later causes a:

hundreds, and in some cases

a high level language such as

?DIVISION BY ZERO ERROR IN LINE-830

READY..
In essence, the computer can only be maximized by the machine lan-
guage programmer.

APPROACHING A LARGE TASK

When approaching a large task in machine language, a certain
amount of subconscious thought has usually taken place. You think
about how certain processes are carried out in machine language.
When the task is started, it is usually a good idea to write it out on
paper. Use block diagrams of memory usage, functional modules of
code required, and a program flow. Let's say that you wanted to write a
roulette game in machine language. You could outline it something like
this:

230 BASICTO MACHINELANGUAGE

. Display title

. Ask if player requires instructions

. YES-display them-Go to START

. NO'-Go to START

. STARTInitialize everything

. MAINdisplay roulette table. Take in bets

. Spin wheel

. Slow wheel to stop. Check bets with result

. Informplayer

. Player any money left?

. YES-Go to MAIN

. NO-Inform user!, and go to START

This is the main outline. As each module is approached, you can
break it down further. If you look' at a large indigestable problem as
something that con be broken down into small enough pieces to be
eaten, then you'll be able to approach something that seems impossible,
and have it all faU into place.

This process only improves with practice, so KEEPTRYING.

BASIC TO MACHINE LANGUAGE 231

MCS6510 MICROPROCESSOR

ADC
AND
ASl

BeC
BCS
BEQ
BIT
BMI
BNE
BPl
BRK
BVC
BVS

ClC
ClD
Cli
ClV
CMP
CPX
CPY

DEC
DEX
DEY

EOR

INC
INX
INY

JMP

Add Memory to Accumulator with Carry
"AND" Memory with Accumulator
Shift Left One Bit (Memory or Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with Accumulator
Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break
Brancb on Overflow Clear
Branch on OverflowSet

Clear Carry Flag
Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Overflow Flag
Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

"Exclusive-Or" Memory with Accumulator

Increment Memoryby One
Increment Index X by One
Increment Index Y by One

Jump to New. Location

232 BASIC TO MACHINE LANGUAGE

INSTRUCTION SET-ALPHABETIC SEQUENCE

JSR

LDA
LDX
LDY
LSR

NOP

ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI
RTS

SBC
SEe
SED
SEI
STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Jump to New location Saving Return Address

Load Accumulator with Memory
load Index X with Memory
Load Index Y with Memory
Shift Right One Bit (Memory or Accumulator)

No Operation

"OR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt
Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag
Set Decimal Mode

Set Interrupt Disable Status
Store Accumulator in Memory
Store Index X in Memory
Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

BASICTO MACHINELANGUAGE 233

The following notation applies to this summary:

Note: At the top of each table is located in parentheses a

reference number (Ref: XX) which directs the user to

that Section in the MCS6500 Microcomputer Family

Programming Manual in which the instruction is defined

and discussed.

234 BASIC TO MACHINE LANGUAGE

A Accumulator

X, y Index Registers

M Memory

P ProcessorStatusRegister
S Stack Pointer

I Change

No Change

+ Add

/\ Logical AND

Subtract

:If Logical Exclusive Or

t Transfer from Stack

... Transfer to Stack

Transfer to

<- Transferfrom

V Logical OR

PC Program Counter

PCH Program Counter High

PCL Program Counter Low

OPER OPERAND

/I IMMEDIATE ADDRESSING MODE

ADC
Add memo,y to accumulato, with carry

A + M + C ~ A, C

ADC

(Ref: 2.2.1)

Ni!-CIDV

111--1
Operation:

* Add 1 if page boundary 19 crossed.

AND
"AND" memo,y with accumulato, AND

Logical AND to the accumulator

Operation: A A M ~ A

(Ref: 2.2.3.0)

N ! C I D V

11----

* Add 1 if page boundary is crossed.

BASIC TO MACHINE LANGUAGE 235

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate ADC IIOper 69 2 2

Zero Page ADC Oper 65 2 3

Zero Page, X ADC Oper, X 75 2 4

Absolute ADC Oper 6D 3 4

Absolute, X ADC Oper, X 7D 3 4*

Absolute, Y ADC Oper,Y 79 3 4*

(lndirec t, X) ADC (Oper, X) 61 2 6

(Indirect), Y ADC (Oper), Y 71 2 5*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate AND 1/Oper 29 2 2

Zero Page AND Oper 25 2 3

Zero Page, X AND Oper, X 35 2 4

Absolute AND Oper 2D 3 4

Absolute, X AND Oper, X 3D 3 4*

Absolute, Y AND Oper,Y 39 3 4*

(Indirect, X) AND (Oper, X) 21 2 6

(Indirect), Y AND (Oper), Y 31 2 5

ASL ASL Shift Left One Bit (Memory or Accumulator) ASL

Operation: C <- ~ ...0
N -c C I D V

/11---

(Ref: 10.2)

Bee BCC Branch on Carr.v Clear

Branch on C = 0

Bee
Operation: N i!-C I D V

(Ref: 4.1.1.3)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BeS BCS Branchon carryset Bes

Operation: Branch on C = 1 N i\ C I D V

(Ref: 4.1.1.4)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

236 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Accumulator ASLA 0A 1 2

Zero Page ASL Oper 06 2 5

Zero Page, X ASL Oper, X 16 2 6

Absolute ASL Oper 0E 3 6

Absolute, X ASL Oper, X IE 3 7

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BCC Oper 90 2 2*

Addressing Assembly Language OP 110. No.
Mode Form CODE Bytes Cycles

Relative BCS Oper B 2 2*

BEO
BEQ Branch on result zero
1

(Ref: 4.1.1. 5)

BEO

Operation: Branch on g N g C I D V

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

BIT BIT Test:bits in memory with accumulator BIT

Operation: A A M, M] ~ N, M6 ~ V

Bit 6 and] are transferred to the status register.

If the result of A 1\M is zero then Z - 1, otherwise

Z - 0
(Ref: 4.2.1.1)

BMI BMI Branch on result minus BMI

Operation: Branch on N = 1 N ~ C I D V

(Ref: 4.1.1.1)

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Relative BEQ Oper F0 2 2*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page BIT Oper 24 2 3

Absolute BIT Oper 2C 3 4

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BMI Oper 30 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BASIC TO MACHINE LANGUAGE 237

BNE BNE Branch on result not zero BNE
Operation: Branch on Z - 0 NtCIDV

(Ref: 4..1.1.6)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BPL BPL Branch on result plus BPL

Operation: Branch on N = 0 N~CIDV

(Ref: 4.1.1.2)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BRK BRK Force Break IRK

Operation: Forced Interrupt PC + 2 ~ P ~

(Ref: 9.11)

N ~ C I D V

---1--

1. A BRK command cannot be masked by setting I.

238 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BNE Oper IX! 2 2*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BPL Oper 10 2 2*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied BRK 00 1 7

Bye BVC Branchonoverflow clear

Operation: Branch on V = 0

Bye
N~CIDV

(Ref: 4.1.1.8)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

ays BVS Branch on overflow set BYS
Operation: Branch on V = 1 N !! C I D V

(Ref: 4.1.1.7)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

CLC CLC Clear carry flag eLe
Operation: 0 ~ C N !! C I D V

(Ref: 3.0.2)
--0---

BASIC TO MACHINE LANGUAGE 239

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BVC Oper 50 2 2*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BVS Oper 70 2 2*

Addressing AssemblyLanguage OP No. No.
Mode Form CODE BytE!s Cycles

Implied CLC 18 1 2

CLD CLD Clear decimal mode CLD
Operation: IJ + D NtCIDV

(Ref: 3.3;2)
(/1-

CLI CLI Clear interrupt disable bit CLI

Operation: IJ + I

(Ref: 3.2.2)

N ~ C I D V

---(,!--

CLV CLV Clear overflow flag CLV
Operation: IJ + V

(Ref: 3.6.1)

NtCOIDV

(,!

240 BASICTO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
}fode Form CODE Bytes Cycles

Implied CLD D8 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles.

Implied CLI 58 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied CLV B8 1 2

(MP CMPCompare memory and accumulator

Operation:A - M N ~ C I D V

CMP

(Ref: 4.2.1)
111---

* Add 1 if page boundary is crossed.

(PX CPX Compare Memory and Index X (PX

Operation: X - M NcCIDV

111---
(Ref: 7.8)

(py Cpy Compare memory and index Y Cpy
Opera~ion: Y - M N i!iC I D V

111---
(Ref: 7.9)

BASICTO MACHINE LANGUAGE 241

Addressing Issembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate CMP #Oper C9 2 2

Zero Page CMP Oper C5 2 3

Zero Page, X CMP Ope r, X D5 2 4

Absolute CMP Oper CD 3 4

Absolute, X CMP Oper, X DD 3 4*

Absolute, Y CMP Oper,Y D9 3 4*

(Indirect, X) CMP (Oper, X) Cl 2 6

(Indirect), Y CMP (Oper), Y Dl 2 5*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate CPX #Oper E0 2 2

Zero Page CPX Oper E4 2 3

Absolute CPX Oper EC 3 4

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate CPY # Oper C0 2 2

Zero Page CPY Oper C4 2 3

Absolute CPY Oper CC 3 4

DEC DEC Decrement memory by one DEC
Operation: M - 1 + M N~CIDV

//----
(Ref: 10.7)

DEX DEX Decrement index X bv one DEX
Operation:X - 1 + X

(Ref: 7.6)

N ~ C I D V

//----

DEY DEY Decrement index Y by one DEY
Operation: Y - 1 + Y

(Ref: 7.7)

N ~ C I D V

//----

242 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page DEC Oper C6 2 5

Zero Page, X DEC Oper, X D6 2 6

Absolute DEC Oper CE 3 6

Absolute, X DEC Oper, X DE 3 7

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied DEX CA 1 2

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Implied DEY 88 1 2

EOR EOR "Exclusive-Or" memory with accumulator EOR
Operation: A ¥ M ~ A

(Ref: 2.2.3.2)

N e C I D V

11----

* Add 1 if page boundary is crossed.

INC INC Increment memory by one INC

Operation:M + 1 ~ M N e C I D V
11----

(Ref: 10.6)

INX INX Increment Index X by one

Operation: X + 1 ~ X

INX
N i5 C I D V

11----
(Ref: 7.4)

BASICTO MACHINE LANGUAGE 243

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate EOR # Oper 49 2 2

Zero Page EOR Oper 45 2 3

Zero Page, X EOR Oper, X 55 2 4

Absolute EOR Oper 4D 3 4

Absolute, X EOR Oper, X 5D 3 4*

Absolute, Y EOR Oper, Y 59 3 4*

(Indirect, X) EOR (Oper, X) 41 2 6

(Indirect) ,Y EOR (Oper) , Y 51 2 5*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page INC Oper E6 2 5

Zero Page, X INC Oper, X F6 2 6

Absolute INC Oper EE 3 6

Absolute, X INC Oper, X FE 3 7

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied INX E8 1 2

INY INY Increment Index .yby one INY
Operation: Y + 1 ~ Y

(Ref: 7.5)

N g C I D V

11----

JMP JMP Jump to new location

PCL

JMP
Op..ration: (PC + 1)

(PC + 2) PCH (Ref:
(Ref:

4.0.2)
9.8.1)

JSR JSR Jump tonew locationsavingreturnaddress JSR
Operation:PC + 2 +, (PC+ 1) ~ PCL N g C I D V

(PC+ 2)~ PCH _ _ _ _ _ _
(Ref: 8.1)

244 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form' CODE Bytes Cycles

Impl ied INY C8 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Absolute JMP Oper 4C 3 3

Indirect JMP (Oper) 6C 3 5
I

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Absolute JSR Oper 20 3 6

LDA LOA Loadaccumulator with memory LDA
'Operation: M ... A

(Ref: 2.1.1)

N;;CIDV

11----

* Add 1 'if page boundary is crossed.

LDX LDXLoadindex X with memory
Operation: M'" X

LDX

(Ref: 7.0)

N i! C I D V

11----

* Add 1 when page boundary is crossed.

BASIC TO MACHINE LANGUAGE 245

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate LDA # Oper A9 2 2

Zero Page LDA Oper AS 2 3

Zero Page, X LDA OpeT, X BS 2 4

Absolute LDA Oper AD 3 4

Absolute, X LDA .Oper, X BD 3 4*

Absolute, Y LDA Oper, Y B9 3 4*

(Indirect, X) LDA (Oper, X) Al 2 6

(Indirect), Y LDA (Oper), Y Bl 2 5*

Addressing Assembly Language OP No. No.
Mode Fo.rm CODE Bytes Cycles

.Immediate LDX /IOper A2 2 2

.ZeroPage LDX Oper A6 2 3

.Zero Page, Y LDX Oper,Y B6 2 4

Absolute LDX Oper AE 3 4

. Absolute, Y LDX Oper,Y BE 3 4*

LDY LDY Load index Y with memory LDY

Operation: M + Y N!!CIDV

II -- ---
(Ref: 7.1)

* Add 1 when page boundary is crossed.

LSR LSR Shift. right one bit (memory or accumulator) .LSR

Operation: 0 -.+ ~ - C N!!CIDV

011---
.(Ref: 10.1)

NOP No operation

Operation: No Operation (2 cycles)

NOP NOP
N!!CIDV

246 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate LDY # Oper A0 2. 2

Zero Page LDY Oper A4 2 3

Zero Page, X LDY Oper, X B4 2 4

Absolute LDY Oper AC 3 4

Absolute, X LDY Oper, X BC 3 4*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Ac=umulator LSR A 4A 1 2

Zero Page LSR Oper 46 2 5

Zero Page, X LSR Oper, X 56 2 6

Absolute LSR Oper 4E 3 6

Absolute, X LSR Oper, X 5E 3 7

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Implied NOP EA 1 2

ORA ORA "OR" memory with accumulator ORA
operation: A V M ~ A

(Ref: 2.2.3.1)

N;;CIDV

11----

* Add 1 on page crossing

PHA 'PHA Push-accumulator un stack PHA
Operation: A { N ;; C I D V

(Ref: 8.5)

PHP PHP Push processor status on stack PHP
operation: P{ Ni!CIDV

(Ref: 8.11)

BASIC TO MACHINE' LANGUAGE 247

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Iuunediate ORA #oper 09 2 2

Zero Page ORA Oper 05 2 3

Zero Page, X ORA Oper, X 15 2 4

Absolute ORA Oper 0D 3 4

Absolute, X ORA ope'r,X lD 3 4*

Absolute, Y ORA Oper,Y 19 3 4*

(Indirect, X) ORA (Oper, X) 01 2 6

(Indirect), Y ORA (Oper), Y 11 2 5

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied PHA 48 1 3

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Implied PHP 08 1 3

PLA PLA Pull accumulator from stack PLA
Operation: A t

(Ref: 8.6)

N iI C I D V

11----

'LP PLP Pull processor status from stack PLP
Operation: P t NilCIDV

(Ref: 8.12)
From Stack

ROL ROL Rotate one hit left (memory or accumulator) ROL

Operation: N j1; C I D V

111---
(Ref: 10.3)

.248 BASIC TO MACHINE LANGUAGE

Addressing Assembly Languag.! OP No. No.
Mode Form CODE Bytes Cycles

Implied PLA 68 1 4

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied PLP 28 1 4

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Accumulator ROL A 2A 1 2

Zero Pge ROL Oper 26 2 5

Zero Page, X ROL Oper, X 36 2 6

Absolute ROL .Ope.r 2E 3 6

Absolute, X ROL 'Oper, X 3E 3 7

ROR ROR Rotate one bit right (memory or accumulator) ROR

Operation: NiSCIDV

-/-/-/---

Note: ROR instruction is available on MCS650X micro-

processors after June, 1976.

RTI RTf Return from interrupt RTI

Operation: pt PCt N is C I D V

(Ref: 9.6)
From Stack

RTS RTS Return from subroutine RTS

Operation: PCt, PC + l~ PC N is C I D V

(Ref: 8.2)

BASIC TO MACHINE LANGUAGE 249

Addressing Assembly Language OP No. No.

Mode Form CODE Bytes Cycles

Accumulator RORA 6A 1 2

Zero Page ROR Oper 66 2 5

Zero Page,X ROR Oper,X 76 2 6

Absolute ROR Oper 6E 3 6

Absolute,X ROR Oper,X 7E 3 7

Addressing Assembly Language OP No. No.
Morle Form CODE Bytes Cycles

Implied RTI 40 1 6

Addressing AssemblyLanguage OP No. No.

Mode Form CODE Bytes Cycles

Implied RTS 60 1 6

S8C SBCSBC Subtract memory {rom accumulator with borrow

Operation: A - M - C ~ A N ~ C I D V

Note: C= Borrow (Ref: 2.2.2) .' .' .'--.'

* Add 1 when page boundary is crossed.

SEC SEC Set carry flag SEC
Operation: 1 ~ C

(Ref: 3.0.1)

N i5 C 1 D V

--1---

SED SED Set decimal mode SED
Operation: 1 ~ D

(Ref: 3.3.1)

N i!C I D V

1-

250 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate
SBC #Oper E9 2 2

Zero Page SBC Oper E5 2 3

Zero Page, X SBC Oper,X F5 2 4

Absolute SBC Oper ED 3 4

Absolute, X SBC Oper,X FD 3 4*

Absolute, Y SBC Oper,Y F9 3 4*

(Indirect, X) SBC (Oper, X) El 2 6

(Indirect), Y SBC (Oper), Y Fl 2 5*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied SEC 38 1 2

Address ing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied SED F8 1 2

SEI SEISetinterrupt disablestatus

Operation: 1 ~ 1

SEI

N i!iC 1 D V

---1--
(Ref: 3.2.1)

SfA STA Store accumulator in memory SfA
Operation: A ~ M N i!iC I D V

(Ref: 2.l.2)

STX STX Store index X in memory STX
Operation: X ~ M N i!iC I D V

(Ref: 7.2)

BASIC TO MACHINE LANGUAGE 2S 1

Addressing Assembly Language OP No. No_.
Mode FOTm CODE Bytes Cycles

Implied SEI 78 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page STA Oper 85 2 3

Zero Page, X STA Oper, X 95 2 4

Absolute STA Oper 8D 3 4

Absolute, X STA Oper, X 9D 3 5

Absolute, Y STA Oper,Y 99 3 5

(Indirect, X) STA (Oper, X) 81 2 6

(Indirect), Y STA (Oper), Y 91 2 6

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page STX Oper 86 2 3

Zero Page, Y STX Oper,Y 96 2 4

Absolute STX Oper 8E 3 4

STY STY StoreindexY inmemory

Operation: Y ~ M

STY
NaCIDV

(Ref: 7.3)

TAX TAX TransferaccumulatortoindexX
Operation: A ~ X N a C I D v

11----

TAX

(Ref: 7.11)

TAY
T A Y Transfe." accumulator to index Y

TAY
Operation: A ~ Y N a C I D v

11----
(Ref: 7.13)

252 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page STY Oper 84 2 3

Zero Page, X STY Oper, X 94 2 4

Absolute STY Oper 8C 3 4

Addressing Assembly LanEuage OP No. No.
Mode Form CODE Bytes Cycles

Implied TAX AA 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TAY A8 1 2

TSX TSX TransferstackpointertoindexX TSX

Operation: S ~ X N ~ C I D V

(Ref: 8.9)
11----

TXA TXA TransferindexX toaccumulator

Operation: X ~ A

TXA

(Ref: 7.l2)

N~CIDV

11----

TXS TXS TransferindexX tostackpointer TXS

Operation: X ~ S N i!C I D V

(Ref: 8.8)

TYA TYA TransferindexY toaccumulator TVA
Operation: Y ~ ANi! C I D V

(Ref: 7.14)
11----

BASIC TO MACHINE LANGUAGE 253

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TSX BA 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TXA 8A 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TXS 9A 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TYA 98 1 2

INSTRUCTION ADDRESSING MODES AND

ADC
AND
ASl
BCC
BCS
BEO
BIT
BMI
BNE
BPL
BRK
BVC
BVS
ClC
ClD
Cli
ClV
CMP
CPX
CPV
DEC
DEX
DEV
EOR
INC
INX
INY
JMP

x > x >

...

f
_ >

:s
X c

254 BASICTO MACHINE LANGUAGE

234
234

2 5 '6

3

234
2 3
2 3

5 6

234
5 6

4 4*4* 6 5*
4 4* 4 * 6 5*
6 7

2**.
2** .
2** .

4
2** .
2**.
2**.

2*'\.
2** .

2
2
2
2

4 4* 4 *. . 6 5*
4
4
6 7

2
2

4 4* 4* . 6 5-
6 7

2
2

3 5

· Add one cycle if indexing across page boundary.. Add one cycle if branch is taken, Add one additional

RELATED EXECUTIONTIMES (in clock cycles)
-

..
a»a.

x> x> -!
"a» x>-..,.. a»a»&- .., = =
= ._ .., .., .., " GI ..
E i A. A. A. ' . f f .:
= E 0 0 0 0 00= - - 0"'''''''-'i1'''e E ._ N N N - = =

JSR 6
LDA 2 3 4 4 4* 4* . 6 5* .
LDX 2 3 4 4 4* .
LDY 2 3 4 4 4* .
LSR 2 5 6 6 7
NOP 2
ORA 2 3 4 4 4* 4* . 6 5* .
PHA 3
PHP 3
PLA 4
PLP 4
ROL 2 5 6 6 7
ROR 2 5 6 6 7
RTI 6
RTS 6
sse 2 3 4 4 4* 4* . 6 S* .
sEe 2
SED 2
SEI 2
STA 3 4 4 5 5 6 6
STX 3 4 4
STY 3 4 4
TAX 2
TAY 2
TSX 2
TXA 2
TXS 2
TYA 2

if branching operation crosses page boundary

BASIC TO MACHINE LANGUAGE 255

00 - BRK 20 - JSR

01 - ORA- (Indirect,X) .21 -AND - (Indirect,X)

02 - Future Expansion 22 - Future Expansion

03 - Future Expansion 23 - Future Expansion

04 - Future Expansion 24 - BIT - Zero Page

05 - ORA- Zero Page 25 - AND - Zero Page

06 - ASL - Zero .Page 26 - ROL - Zero Page

07 - Future Expansion 27 - Future Expansion

08 - PHP 28 - PLP

09 - ORA-Immediate .29 - AND - Immediate

.0A - ASL - Accumulator 2A - ROL - Accumulator

0B - Future Expansion 2B - Future Expansion

0c - Future Expansion 2C - BIT - Absolute

0D - ORA- Absolute 2D - AND - Absolute

0E - ASL - Absolute 2E - ROL - Absolute

0F - Future Expansion 2F - Future Expansion

10 - .BPL 30 - 'BMl

11 - ORA- (Indirect),Y 31 - AND - (Indirect),Y

.12 - Future 'Expansion 32 - FutureExpansion

13 - Future Expansion 33 - Future Expansion

.14 - Future Expansion 34 - Future Expansion

15 - ORA - Zero Page,X 35 - AND - Zero Page,X

16 - ASL - Zero Page;X 36 - ROL - Zero Page,X

17 - Future Expansion 37 - Future Expansion

18 - CLC :38 - SEC

19 - ORA- -Absolute, Y 39 - AND - Abso1ute,Y

1A - Future Expansion 3A - FutureExpansion

1B - Future Expansion 3B - Future Expansion

1C - Future Expansion 3C - Future Expansion

1D -ORA - Abso1ute,X 3D - AND - Abso1ute,X

1E - ASL - Abso1ute,X 3E - ROL - Absa1ute,X

IF- Future Expansion 3F - .Future Expansion

256 BASICTO MACHINELANGUAGE

40 - RTI 60 - RTS

41 - EOR - (Indirect,X) 61 - ADC - (Indirect,X)

42 - Future Expansion 62 - Future Expansion

43 - Future Expansion 63 - Future Expansion

44 - Future Expansion 64 - Future Expansion

45 - EOR - Zero Page 65 - ADC - Zero Page

46 - LSR - Zero Page 66 - ROR - Zero Page

47 - Future Expansion 67 - Future Expansion

48 - PHA 68 - PLA

49 - EOR - Immediate 69 - ADC - Immediate

4A - LSR - Accumulator 6A - ROR - Accumulator

4B - FutureExpansion 6B - Future Expansion

4C - JHP - Absolute 6C - JHP - Indirect

4D - EOR - Absolute 6D - ADC - Absolute

4E - LSR - Absolute 6E - ROR - Absolute

4F - Future Expansion 6F - Future Expansion

50 - BVC 70 - BVS

51 - EOR - (Indirect),Y 71 - ADC - (Indirect),Y

52 - Future Expansion 72 - Future Expansion

53 - Future Expansion 73 - Future Expansion

54 - Future Expansion 74 - Future Expansion

55 - EOR - Zero Page,X 75 - ADC - Zero Page,X

56 - LSR - Zero Page,X 76 - ROR - Zero Page. X

57 - Future Expansion 77 - Future Expansion

58 - CLl 78 - SEI

59 - EOR - Absolute.Y 79 - ADC - Abso1ute.Y

SA - Future Expansion 7A - Future Expansion

5B - Future Expansion 7B - Future Expansion

5C - Future Expansion 7C - Future Expansion

5D - EOR - Absolute,X 7D - ADC - Absolute,X

5E - LSR - Absolute,X 7E - ROR - Absolute,X

SF - Future Expansion 7F - Future Expansion

BASIC TO MACHINE LANGUAGE 257

80 - Futur.e Expansion A0 - LDY - Immediate

81 - STA - (Indirect, X) A1 - LDA - (Indirect,X)

82 - Future Expansion A2 - LDX - Immediate

83 - Future Expansion A3 - Future Expansion

84 - STY - Zero Page A4 - LDY - Zero Page

85 - STA - Zero Page AS - LDA - Zero Page

86 - STX - Zero Page A6 - LDX - Zero Page

87 - Future Expansion A7 - Future Expansion

88 - DEY A8 - TAY

89 - Future Expansion A9 - LDA - Immediate

8A - TXA AA - TAX

8B - Future Expansion AB - Future Expansion

8C - STY - Absolute AC - LDY - Absolute

8D - STA - Absolute AD - LDA - Absolute

8E - STX - Absolute AE - LDX - Absolute

8F - Future Expansion AF - Future Expansion

90 - BCC B0 - BCS

91 - STA - (Indirect),Y B1 - LDA - (Indirect),Y

92 - Future Expansion B2 - Future Expansion

93 - Fuure Expansion B3 - Future Expansion

94 - STY - Zero Page,X B4 - LDY - Zero Page,X

95 - STA - Zero Page,X B5 - LDA - Zero Page,X

96 - STX - Zero Pge,Y B6 - LDX - Zero Page,Y

97 - Future Expansion B7 - Future Expansion

98 - TYA B8 - CLV

99 - STA - Absolute,Y B9 - LDA - Abso1ute,Y

9A - TXS BA - TSX

9B - Future Expansion BB - Future Expansion

9C - Future Expansion BC - LDY - Abso1ute,X

9D - STA - Absolute,X BD - LDA - Absolute,X

9E - Future Expansion BE - LDX - Abso1ute,Y

9F - Future Expansion BF - Future Expansion

258 BASICTO MACHINELANGUAGE

c0 - Cpy - Iwmediate E - CPX - Immediate

Cl - CMP - (Indirect, X) El - SBe - (Indirect,X)

C2 - Future Expansion E2 - Future Expansion

C3 - Future Expansion E3 - Future Expansion

C4 - CPY - Zero Page E4 - CPX - Zero Page

C5 - CMF - Zero Page E5 - SBC - Zero Page

C6 - DEC - Zero Page E6 - INC - Zero Page

e7 - Future Expansion E7 - Future Expansion

C8 - INY E8 - INX

C9 - CMP - Immediate Eg - SBC - Immediate

CA - DEX EA - NOP

CB - Future Expansion EB - Future Expansion

ec - CPY - Absolute EC - CPX - Absolute

CD - CMP - Absolute ED - SBC - Absolute

CE - DEC - Absolute EE - INC - Absolute

CF - Future Expansion EF - Future Expansion

D0 - BNE F0 - BEQ

Dl - CMP - (Indirect},Y Fl - SBC - (Indirect),Y

D2 - Future Expansion F2 - Future Expansion

D3 - Future Expansion F3 - Future Expansion

D4 - Future Expansion F4 - Future Expansion

D5 - eMP - Zero Page,X F5 - SBC - Zero Page,X

D6 - DEC - Zero Page,X F6 - INC - Zero Page,X

D7 - Future Expansion F7 - Future Expansion

D8 - CLD F8 - SED

D9 - eMP - Absolute,Y F9 - SBC - Absolute,Y

DA - Future Expansion FA - Future Expansion

DB - Future Expansion FE - Future Expansion

DC - Future Expansion FC - Future Expansion

DD - CMF - Absolute,X FD - SBC - Absolute,X

DE - DEC - Absolute,X FE - INC - Absolute,X

DF - Future Expansion FF - Future Expansion

BASICTO MACHINELANGUAGE 259

MEMORY MANAGEMENT ON THE
COMMODORE 64

The Commodore 64 has 64K bytes of RAM. It also has 20K bytes of
ROM, containing BASIC, the operating system, and the standard char-
acter set. It also accesses input/output devices as a 4K chunk of mem-
ory. How is this all possible on a computer with a 16-bit address bus,
that is normally only capable of addressing 64K?

The secret is in the 6510 processor chip itself. On the chip is an input/
output port. This port is used to control whether RAM or ROM or I/O will
appear in certain portions of the system's memory. The port is also used
to control the Datassette TM,so it is important to affect only the proper
bits.

The 6510 input/output port appears at location 1. The data direction

register for this port appears at location O. The port is controlled like any
of the other input/output ports in the system . . . the data direction
controls whether a given bit will be an input or an output, and the actual
data transfer occurs through the port itself.

The lines in the 6510 control port are defined as follows:

The proper value for the data direction register is as follows:

BITS 5 4 3 2 1 0

1 0 1 1 1 1

(where 1 is an output, and 0 is an input).

260 BASIC TO MACHINE LANGUAGE

NAME BIT DIRECTION DESCRIPTION

LORAM 0 OUTPUT Control for RAM/ROM at
$AOOO-$BFFF (BASIC)

HIRAM 1 OUTPUT Control for RAM/ROM at

$EOOO-$FFFF(KERNAl)
CHAREN 2 OUTPUT Control for I/O/ROM at

$DOOO-$DFFF
3 OUTPUT Cassette write line
4 INPUT Cassette switch sense
5 OUTPUT Cassette motor control

This gives a value of 47 decimal. The Commodore 64 automatically
sets the data direction_ register to this value.

The control lines, in general, perform the function given in their de-
scriptions. However, a combination of control lines are occasionally used
to get a particular memory configuration.

LORAM (bit 0) can generally be thought of as a control line which
banks the 8K byte BASIC ROM in and out of-the microprocessor address
space. Normally, this line is HIGH for BASIC operation. If this line is
programmed LOW; the BASIC ROM will disappear from the memory
map and b~ replaced by 8K bytes of RAM from $AOOO-$BfFF.

HIRAM (bit 1) can generally be thought of as a control line which
banks the 8K byte KERNALROM in and out of the microprocessor ad-
dress space. Normally, this line is HIGH for BASIC operation. If this line
is programmed LOW, the KERNALROM will disappear from the memory
map and be replaced- by 8K bytes of RAM from $EOOO-$FFFF.

CHAREN (bit 2) is used only to bank the 4K byte character generator
ROM in or out of the microprocessor address space. From the processor
point of view, the character ROM occupies the same address space as
the I/O devices ($DOOO-$DFFF). When the CHAREN line is set to 1 (as is
normal), the I/O devices appear in the microprocessor address space,
and the character ROM is not accessable. When the CHAREN bit is

cleared to 0, the character ROM appears in the processor address
space, and the I/O devices are not accessable. (The microprocessor only
needs to access the character ROM when downloading the character set
from ROM to RAM. Special care is needed for this . . . see the section
on PROGRAMMABLECHARACTERSin the GRAPHICS chapter). CHAREN
can be overridden by other control lines in certain memory
configurations. CHAR EN will have no effect on any memory
configuration without I/O devices. RAM will appear from $DOOO-$DFFF
instead.

NOTE: In any memory. map containing-ROM, a WRITE (a POKE) to a ROM location will
stare data in the RAM "under" the ROM. Writing to a ROM location stores data in the

"hidden" RAM. For example. this allows a hi-resolution screen to be kept underneath
a ROM, and be changed without- having to bank the screen back into the processor

address space. Of course a READ of a ROM location will return the contents of the
ROM, not the "hidden" RAM.

BASIC TO MACHINE LANGUAGE 261

COMMODORE 64 FUNDAMENTALMEMORY MAP

I/O BREAKDOWN

DOOO-D3FF

D400-D7FF

D800-DBFF

DCOO-DCFF

DDOO-DDFF

DEOO-DEFF

DFOO-DFFF

EOOO-FFFF

DOOO-DFFF

COOO-CFFF

AOOO-BFFF

8000~9FFF

4000-7FFF

0000-3FFF

VIC (Video Controller)

SID (Sound Synthesizer)
Color RAM

CIA1 (Keyboard)
CIA2 (Serial Bus, User Port/RS--232)

Open I/O slot #1 (CP/M Enable)
Open I/O slot #2 (Disk)

262 BASIC TO MACHINE LANGUAGE

1K Bytes
1K Bytes

1K Nybbles
256 Bytes
256 Bytes
256 Bytes
256 Bytes

8K KERNAL ROM
OR

RAM

4K I/O OR RAM OR
CHARACTER ROM

4K RAM

8K BASIC ROM
OR

RAM
OR

ROM PLUG.IN

8K RAM
OR

ROM PLUG.IN

16K RAM

16K RAM

The two open I/O slots are for general purpose user I/O, special pur-

pose I/O cartridges (such as IEEE), and have been tentatively.designated
for -enabling the Z-80 cartridge (CP/M option) and for interfacing to a
low-cost high~speed disk. system.

.The system provides for "auto-start" of the program in a Commodore

64 Expansion Cartridge. The cartridge program is started if the first nine
bytes of the cartridge ROM starting at location 32768 ($8000) contain
specific data. The first two bytes must hold the Cold Start vector to be

used by the cartridge program. The next two bytes at 32770 ($8002)

must be the Warm Start vector used by the cartridge program. The next
three bytes must be the letters, CBM; with bit 7 set in each letter. The
last two bytes must be the digits "80" in PET ASCII.

COMMODORE 64 MEMORY MAPS

The following tables list the various memory :configurations available
on the COMMODORE 64, the states of the control lines which select each

memory map, and .the intended use of each map.

EOOO

DOOO

COOO

AOOO

8000.

4000

0000

x =DON'TCARE
o = LOW
1 =HIGH

LORAM = 1
HIRAM = 1
GAME = 1
EXROM = 1

This is Ihe default BASIC memory
map whiCh provides BASIC 2.0 and
38K contiguous bytes of user RAM.

BASIC TO MACHINE LANGUAGE. 263

8KKERNAL ROM

4KI/O

4K RAM (BUFFER)

8K BASIC ROM

8K RAM

16K RAM

16K RAM

EOOO

0000

COOO

8000

4000

0000

EOOO

0000

COOO

8000

4000

264 BASIC TO MACHINE LANGUAGE

0000

x = DON'T CARE
o = LOW
1 = HIGH

LORAM = 1
HIRAM = 0
GAME = 1
EXROM = X
OR
LORAM' = 1
HIRAM = 0
GAME = 0
(THE CHARACTER ROM
IS NOT ACCESSIBLE BY
THE CPU IN THIS MAP)
EX ROM. = 0

This map provides 60K bytes of
RAM and I/O devices. The user
must write his own I/O driver
routines.

x = DON'T CARE
o = LOW
1 = HIGH

LORAM
HIRAM
GAME
EXROM

o
1
1
X

This map is intended for use with
soft load. languages (including
CP/M), providing 52K contiguous
bytes of user RAM, I/O devices,
and I/O driver routines.

8K RAM

4KI/O

4K RAM

16K RAM

16K RAM

16K RAM

8K KERNAL ROM

4KI/O

4K RAM

16K RAM

16K RAM

16K RAM

EOOO

0000

COoo

AOOO

8000

4000

0000

x = DON'T CARE
O=lOW
1 = HIGH

LORAM = 1
HIRAM = 1
GAME = 1
EXROM = 0

This is the standard configuration
for a BASIC system with a BASIC
expansion ROM. This map provides
32K contiguous bytes of user RAM
and up to 8K bytes of BASIC
"enhancement. ..

BASIC TO MACHINE LANGUAGE 265

x = DON'TCARE
O=lOW

I

16K RAM

I

1 = HIGH

LORAM = 0
COOO HIRAM = 0

GAME = 1
EXROM = X

16KRAM I OR
LORAM = 0
HIRAM = 0

8000

I I

GAME =X
EXROM = 0

16KRAM

4000

16KRAM I This mapgivesaccessto all 64K
bytes of RAM.The1/0devices
must be bankedbackinto the
processor'saddressspacefor any

0000 . . I/O operation.

8K KERNAL ROM

4KI/O

4K RAM (BUFFER)

8K BASIC ROM

8K ROM CARTRIDGE
(BASIC EXP)

16K RAM

16K RAM

EOOO

0000

COOO

AOOO

8000

4000

0000

EOOO

0000

COOO

8000

4000

0000

266 BASIC TO MACHINE LANGUAGE

x = DON'T CARE
o = LOW
1 = HIGH

LORAM = 0
HIRAM = 1
GAME = 0
EXROM = 0

This map provides 40K contiguous
bytes of user RAMand up to 8K
bytes of plug.in ROM for special
ROM.based applications which don't
require BASIC.

x = DON'TCARE
o = LOW
1 = HIGH

LORAM = 1
HIRAM = 1
GAME = 0
EXROM = 0

This map provides 32K contiguous
bytes of user RAM and up to 16K
bytes of plug.in ROM for special
ROM.based applications which don't
require BASIC (word processors,
other languages, etc.).

8K KERNAL ROM

4KII0

4K RAM (BUFFER)

8K ROM (CARTRIDGE)

8K RAM

16K RAM

16K RAM

8K KERNAL ROM

4KIJO

4K RAM (BUFFER)

16K ROM (CARTRIDGE)

16K RAM

16K RAM

EOOO

DOOO

COOO

AOOO

8000

4000

1000

0000

x = DON'TCARE
o = LOW
1 = HIGH

LORAM = X
HIRAM = X
GAME = 0
EXROM = 1

This is the ULTIMAX video game
memory map. Note that the 2K
byte "expansion RAM" for the
ULTIMAX, if required, is accessed
out of the COMMODORE 64 and any
RAM in the cartridge is ignored.

BASIC TO MACHINE LANGUAGE 267

8K CARTRIDGE ROM

4KI/O

4K OPEN

8K OPEN

8K CARTRIDGE ROM

16K OPEN

12K OPEN

4K RAM

THE KERNAL

One of the problems facing programmers in the microcomputer field
is the question of what to do when changes are made to the operating
system of the computer by the company. Machine language programs
which took much time to develop might no longer work, forcing major
revisions in the program. To alleviate this problem, Commodore has
developed a method of protecting software writers called the KERNAL.

Essentially, the KERNALis a standardized JUMP TABLEto the input,
output, and memory management routines in the operating system. The
locations of each routine in ROM may change as the system is up-
graded. But the KERNALjump table will always be changed to match. If
your machine language routines only use the system ROM routines
through the KERNAL,it will take much less work to modify them, should
that need ever arise.

The KERNALis the operating system of the Commodore 64 computer.
All input, output, and memory management is controlled by the
KERNAL.

To simplify the machine language programs you write, and to make
sure that future versions of the Commodore 64 operating system don't
make your machine language programs obsolete, the KERNALcontains
a jump table for you to use. By taking advantage of the 39 input/output
routines and other utilities available to you from the table, not only do
you save time, you also make it easier to translate your programs from
one Commodore computer to another.

The jump table is located on the last page of memory, in read-only
memory (ROM).

To use the KERNAl jump table, first you set up the parameters that the
KERNAl routine needs to work. Then JSR (Jump to SubRoutine) to the
proper place in the KERNALjump table. After performing its function,
the KERNAl transfers control back to your machine language program.
Depending on which KERNALroutine you are using, certain registers
may pass parameters back to your program. The particular registers for
each KERNAl routine may be found in the individual descriptions of the
KERNALsubroutines.

268 BASIC TO MACHINE LANGUAGE

A good question at this point is why use the jump table at all? Why
not just JSR directly to the KERNAl subroutine involved? The jump table
is used so that if the KERNAl or BASIC is changed, your machine lan-
guage programs will still work. In future operating systems the routines
may have their memory locations moved around to a different position
in the memory map . . . but the jump table will still work correctly!

KERNAL POWER-UP ACTIVITIES

1) On power-up, the KERNAl first resets the stack pointer, and clears
decimal mode.

2) The KERNAl then checks for the presence of an autostart ROM car-
tridge at location $8000 HEX (32768 decimal). If this is present, nor-
mal initialization is suspended, and control is transferred to the car-
tridge code. If an autostart ROM is not present, normal system ini-
tialization continues.

3) Next, the KERNALinitializes all INPUT/OUTPUTdevices. The serial bus
is initialized. Both 6526 -ciA chips are set to the proper values for
keyboard scanning, _and the 60-Hz timer is activated. The -SIDchip is
cleared. The BASIC memory map is selected and the cassette motor
is switched off.

4) Next, the KERNAl performs -a RAMtest , setting the top and bottom of
memory pointers. Also, page zero is initialized, and the tape buffer
is -set up.

The RAM TEST routine is a -nondestructive test starting at location
$0300 and working upward. Once the test has found the first non-
RAM location, the top of RAM has its pointer set. The bottom of
memory is always set to $0800, and the screen setup is always set at
$0400.

5) Finally, theKERNAL performs these other activities. I/O vectors are
set to default values. The indirect jump table in low memory is estab-
lished. The screen is then cleared, and all screen editor variables
reset. Then the indirect at $AOOOis used to start BASIC.

BASIC TO MACHINE LANGUAGE 269

HOW TO USETHE KERNAL

When writing machine language programs it is often convenient to
use the routines which are already part of the operating system for
input/output, access to the system clock, memory management, and
other similar operations. It is an unnecessary duplication of effort to
write these routines over and over again, so easy access to the operat-
ing system helps speed machine language programming.

As mentioned before, the KERNALis a jump table. This is just a col-
lection of JMP instructions to many operating system routines.

To use a KERNALroutine you musHirst make all ofthe preparations that
the routine demands. If one routine says that you must call another
KERNALroutine first, then that routine must be called. If the routine
expects you to put a number in the accumulator, then that number must
be there. Otherwise your routines have little chance of working the way
you expect them to work.

After all preparations are made, you must call the routine by means
of the JSR instruction. All KERNALroutines you can access are structured
as SUBROUTINES, and must end with an RTS instruction. When the
KERNALroutine has finished its task, control is returned to your program
at the instruction after the JSR.

Many of the KERNALroutines return error codes in the status word or
the accumulator if you have problems in the routine. Good programming
practice and the success of your machine language programs demand
that you handle this properly. If you ignore an error return, the rest of
your program might "bomb."

That's all there is to do when you're using the KERNAL.Just these
three simple steps:

1) Set up
2) Call the routine

3) Error handling

270 BASIC TO MACHINE LANGUAGE

The following conventions are used in describing the KERNAlroutines:

-FUNCTION NAME: Name of the KERNAl routine.

-CALL ADDRESS:This is the call address of the KERNAl routine, given
in hexadecimal.

-COMMUNICATIONREG1STERS: Registers listed under this heading
are used to pass parameters to and from the KERNAl routines.

-PREPARATORY ROUTINES:Certain KERNAl routines require that data
be set up -before they can operate. The routines needed are listed
here.

-ERROR RETURNS:A return from a KERNAlroutine with the CARRYset

indicates that an error was encountered in proce.ssing. The ac-
cumulator will contain the number of the error.

-STACK REQUIREMENTS:This is the actual number of stack bytes used
by the KERNAl routine.

-REGISTERS -AFFECTED:All registers used by the KERNAl routine are
listed here.

-.-;DESCRIPTION:A short tutorial on the function ofthe KERNAl routine

is given here.

The list of the KERNAl routines follows.

BASIC TO MACHINE lANGUAGE 271

USER CALLABLE KERNAL ROUTINES

272 BASIC TO MACHINE LANGUAGE

ADDRESS
NAME

HEX DECIMAL
FUNCTION

ACPTR $F.FA5 65445 Input. byte from serial
port.

CHKIN $FFC6. 65478 Open channel for input
CHKOUT $FFC9 65481 Open channel for output
CHRIN $FFCF 65487 Input character from

channel

CHROUT $FFD2 65490 Output character to chan-
nel

ClOUT $FFA8 65448 Output byte to serial port
CINT $FF81 65409 Initialize screen' editor
CLALL $FFE7 65511 Close all channels. and

files

CLOSE $FFC3 65475 Close a specified log ic'aI
file

CLRCHN $FFCC 65484- Close input and. output.
channels

GETIN $FFE4 65508 Get character from

keyboard queue
(keyboard buffer)

10BASE $FFF3 65523 Returns base address of
I/O devices

10lNIT $FF84 6541 2. Initialize input/output
LISTEN $FFB1 65457 Command devices on the

serial bus to LISTEN

LOAD $FFD5 65493 Load RAMfrom a device
MEMBOT $FF9C 65436 Read/set the bottom of

memory
MEMTOP $FF99 65433 Read/set the top of mem-

ory
OPEN $FFCO 65472 Open a logical file

BASIC TO MACHINE LANGUAGE 273

NAME
ADDRESS

FUNCTION
HEX DECIMAL

PLOT $FFFO 65520 Read/set X,Y cursor posi-
tion

RAMTAS $FF87 65415 Initialize RAM, allocate
tape buffer, set screen
$0400

RDTIM $FFDE 65502 Read real time clock
READST $FFB7 65463 Read I/O status word
RESTOR $FF8A 65418 Restore default I/O vectors
SAVE $FFD8 65496 Save RAMto device
SCNKEY $FF9F 65439 Scan keyboard
SCREEN $FFED 65517 Return X,Y organization

of screen
SECOND $FF93 65427 Send secondary address

after LISTEN
SETLFS $FFBA 65466 Set logical, first, and sec-

ond addresses
SETMSG $FF90 65424 Control KERNALmessages
SETNAM $FFBD 65469 Set file name
SETTIM $FFDB 65499 Set real time clock
SETTMO $FFA2 65442 Set timeout on serial bus
STOP $FFE1 65505 Scan stop key
TALK $FFB4 65460 Command serial bus de-

vice to TALK

TKSA $FF96 65430 Send secondary address
after TALK

UDTIM $FFEA 65514 Increment real time clock
UNLSN $FFAE 65454 Command serial bus to

UNLISTEN
UNTLK $FFAB 65451 Command serial bus to

UNTALK

VECTOR $FF8D 65421 Read/set vectored I/O

B-1. Function Name: ACPTR

Purpose: Get data from the serial bus
Call address: $FFA5 (hex) 65445 (decimal)
Communication registers: .A
Preparatory routines: TALK,TKSA
Error returns: See READST
Stack requirements: 13
Registers affected: .A, .X

Description: This is the routine to use when you want to get informa-
tion from a device on the serial bus, like a disk. This routine gets a byte
of data off the serial bus using full handshaking. The data is returned in
the accumulator. To prepare for this routine the TALKroutine must be
called first to command the device on the serial bus to send data

through the bus. If the input device needs a secondary command, it
must be sent by using the TKSA KERNAL routine before calling this
routine. Errors are returned in the status word. The READSTroutine is
used to read the status word.

How to Use:

0) Command a device on the serial bus to prepare to send data to
the Commodore 64. (Use the TALKand TKSA KERNALroutines.)

1) Call this routine (using JSR).
2) Store or otherwise use the data.

EXAMPLE:

;GET A BYTE FROM THE BUS
JSR ACPTR

STA DATA

274 BASIC TO MACHINE LANGUAGE

B-2. Function Name: CHKIN

Purpose: Open a channel for input
Call address: $FFC6 (hex) 65478 (decimal)
Communication registers: .X

Preparatory routines: (OPEN)
Error returns:

Stack requirements: None

Registers affected: .A, .X

Description: Any logical file that has already been opened by the
KERNAL OPEN routine can be defined as an input channel by this
routine. Naturally, the device on the channel must be an input device.
Otherwise an error will occur, and the routine will abort.

If you are getting data from anywhere other than the keyboard, this
routine must be called before using either the CHRIN or the GETIN KER-
NAL routines for data input. If you want to use the input from the
keyboard, and no other input channels are opened, then the calls to this
routine, and to the OPEN routine are not needed.

When this routine is used with a device on the serial bus, it auto-

matically sends the talk address (and the secondary address if one was
specified by the OPEN routine) over the bus.

How to Use:

0) OPEN the logical file (if necessary; see description above).
1) Load the .X register with number of the logical file to be used.
2) Call this routine (using a JSR command).

Possible errors are:

#3: File not open
#5: Device not present
#6: File not an input file

EXAMPLE:

; PREPARE FOR INPUT FROM LOGICAL FILE 2
LDX #2

JSR CHKIN

BASIC TO MACHINE LANGUAGE 275

B-3. Function Name: CHKOUT

Purpose: Open a channel for output
Call address: $FFC9 (hex) 65481 (decimal)
Communication registers: .X
Preparatory routines: (OPEN)
Error returns: 0,3,5,7 (See READST)
Stack requirements: 4+
Registers affected: .A, .X

Description: Any logical file number that has been created by the
KERNALroutine OPEN can be defined as an output channel. Of course,
the device you intend opening a channel to must be an output device.
Otherwise an error will occur, and the routine will be aborted.

This routine must be called before any data is sent to any output
device unless you want to use the Commodore 64 screen as your output
device. If screen output is desired, and there are no other output chan-
nels already defined, then calls to this routine, and to the OPEN routine
are not needed.

When used to open a channel to a device on the serial bus, this
routine will automatically send the LISTENaddress specified by the OPEN
routine (and a secondary address if there was one).

How to Use:

REMEMBER:this routine is NOT NEEDEDto send data to the screen.

0) Use the KERNALOPEN routine to specify a logical file number, a
LISTENaddress, and a secondary address (if needed).

1) Load the .X register with the logical file number used in the open
statement.

2) Call this routine (by using the JSR instruction).

EXAMPLE:

LDX#3
JSRCHKOUT

;DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL

Possible errors are:

#3: File not open
#5: Device not present
#7: Not an output file

276 BASIC TO MACHINE lANGUAGE

B-4. Function Name: CHRIN

Purpose: Get a character from the input channel
Ceill address: $FFCF (hex) 65487 (decimal)
Communication registers: .A
Preparatory routines: (OPEN, CHKIN)
Error returns: 0 (See READST)
Stack requirements: 7+
Registers affected: .A, .X

Description: This routine gets a byte of data from a channel already
set up as the input channel by the KERNALroutine <;:HKIN.If the CHKIN
has NOT been used to defJneanother input channel, then all your ci"ata
is expected ,from the keyboard. The data byte is returned in'the ac-
,cumulator. The channel remains open after the call.

Input from the keyboard is handled in a special way. First, the cursor
is turned on, and blinks until a carriage return is typed on the keyboard.
All characters on .the line (up to 88 characters) are stored in the BASIC
input buffer. These characters can be retrieved one at a time by calling
this routine onc'e .for each character. When the carriage return is re-
trieved, the entire ,line has been processed. The next time this routine is
called, the whole process begins again, Le., by flashing the cursor.

How to Use:

FROM THE KEYBOARD

1) Retrieve a byte of data by calling this routine.
2) Store the data byte.
3) Check if it 'is the last data byte (is it a CR ?).
4) If not, go to step 1.

EXAMPLE:

LDY$#00
RD JSR CHRIN

STA DATA, Y

;PREPARE THE .Y REGISTER TO STORE THE DATA

;STORE THE YTH DATA BYTE IN THE YTH

;LOCATION IN THE DATA,AREA.
INY
CMP #CR
BNE RD

;IS IT A CARRIAGE 'RETURN?

;NO, GET ANOTHER DATA BYTE

BASIC TO MACHINE LANGUAGE 277

EXAMPLE: -

JSR CHRIN

STA DATA

FROMOTHERDEVICES

0) Use the KERNAl OPEN and CHKIN routines.

1) Call this routine (using a JSR instruction).
2) Store the data.

EXAMPLE:

JSR- CHRIN

STA DATA

B-5. Fundion Name: CHROUT

Purpose: Output a character
Call address: $FFD2 (hex) 65490 (decimal)
Communication registers: .A
Preparatory routines: (CHKOUT,OPEN)
Error returns: 0 (See READST)
Stack requirements: 8+
Registers affected: .A

Description: This routine outputs a character to an already opened
channel. Use the KERNAl OPEN and CHKOUT routines to set up the
output channel before calling this routine. If this call is omitted, data is
sent to the default output device (number 3, the screen). The data byte
to be output is loaded into the accumulator, and this routine is called.
The data is then sent to the specified output device. The channel is left
open after the call.

NOTE: Care must be taken when using this routine to send data to a specific serial

device since data will be sent to all open output channels -on the bus. Unless this is
desired, all open output channels on the serial bus other than the intended destination
channel must be closed by a call- to the KERNALCLRCHN routine.

278 BASIC TO MACHINE LANGUAGE

How to Use:

0) Use the CHKOUT KERNAl routine if needed (see description
above).

1) load the data to be output into the accumulator.
2) Call:this routine.

EXAMPLE:

;DUPLICATETHEBASIC INSTRUCTION CMD 4,IA";
lDX #4 ;lOGICAl FilE #4.
JSR CHKOUT ;OPEN CHANNEL OUT
LDA #'A.

JSR CHROUT _;SEND CHARACTER'

8-6. Function Name: ClOUT

Purpose: Transmit a byte over the serial bus

Call address:$FFA8 (hex) 65448 (decimal)

Communication registers: .A

Preparatory routines: LISTEN, [SECOND]
Error returns: See READST

Stack requirements: 5

Registers affected: None

Description: This routine is used- to send information to devices on the

serial bus. A call to this routine will put a data byte onto the serial. bus
using full serial handshaking. Before this routine is called, the LISTEN
KERNAl routine must be used to command a device on the serial bus to

get ready to receive data. (If a device needs a secondary address, it
must also be sent by using the SECOND KERNAl routine.) The ac-
cumulator is loaded with a byte to handshake as data on the serial bus.

A device must be listening or the status word will return a timeout. This

routine always buffers one character. (The routine holds the previous
character to be sent back.) So when a call to the KERNAl UNLSN routine
is made to end the data transmission, the buffered character is sent

with an End Or Identify (EOI) set. Then the UNlSN: command is sent to
the device.

BASIC TO MACHINE LANGUAGE 279

How to Use:

.0) Use the LISTEN KERNAL routine (and the' SECOND routine if
needed).

1) Load the accumulator with a byte of data.
2) Call this routine to send the data byte.

EXAMPLE:

lDA #'X
JSR. ClOUT

;SEND AN X TO THE SERIALBUS

B-7. Function Name: CINT

. Purpose: Initialize screen editor & 6567 video chip
Call address: $FFS:l (hex) 65409 (decimal)
Communication registers: 'None

Preparatory routines: None
Error returns: None

Stack requirements: 4

Registers affected: .A, .X, .Y

Description: This routine sets up the 6567 video controller chip in the
Commodore 64 for normal operation. The KERNALscreen editor is also
initialized. This routine should be called by a Commodore 64 program
cartridge.

How to Use:

1) Call this routine.

EXAMPLE:

JSR CINT
JMP RUN ;BEGIN EXECUTION

280 BASIC TO MACHINE LANGUAGE

B-8. Function Name: CLALL

Purpose: Close all flies
Call address: $FFE7 (hex) 65511 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: None

Stack requirements: 11
Registers affected: .A, .X

Description: This routine closes all open flies. When this routine is
called, the pointers into the open flle table are reset, closing all flies.
Also, the CLRCHN routine is automatically called to reset the I/O chan-
nels.

How to Use:

1} Call this routine.

EXAMPLE:

JSR CLALL iCLOSE ALL FILES AND SELECT DEFAULT I/O CHANNELS

JMP RUN iBEGIN EXECUTION

8-9. Function Name: CLOSE

Purpose: Close a-logical flle
Call address: $FFC3 (hex) 65475 (decimal)
Communication registers: .A
Preparatory routines: None
Error returns: 0,240 (See READST)
Stack requirements: 2+
Registers affected: .A, .X, .Y

Description: This routine is used to close a logical flle after all I/O
operations have been completed on that flle. This routine is called after
the accumulator is loaded with the logical file number to be closed (the
same number used when the flle was opened using the OPEN routine).

BASIC TO MACHINE LANGUAGE 281

How to Use:

1) Load the accumulator with the number of the logical file to be
dosed.

2) Call this routine.

EXAMPLE:

;CLOSE 15
LDA #15
JSR CLOSE

B-10. Function Name: CLRCHN

Purpose: Clear I/O channels

Call address: $FFCC (hex) 65484 (decimal)

Communication registers: None

Preparatory routines: None
Error returns:

Stack requirements: 9

Registers affected: .A, .X

Description: This routine is called to clear all open channels and re-
store the I/O channels to their original default values. It is usually called
after opening other I/O channels (like a tape or disk drive) and using
them for input/output operations. The default input device is 0
(keyboard). The default output device is 3 (the Commodore 64 screen).

If one of the channels to be closed is to the serial port, an UNTALK
signal is sent first to clear the input channel or an UNLISTENis sent to
clear the output channel. By not calling this routine (and leaving lis-
tener(s) active on the serial bus) several devices can receive the same
data from the Commodore 64 at the same time. One way to take ad-
vantage of this would be to command the printer to TALKand the disk to
LISTEN.This would allow direct printing of a disk file.

This routine is automatically called when the KERNALCLALLroutine is
executed.

How to Use:

1) Call this routine using the JSR instruction.

EXAMPLE:

JSR CLRCHN

282 BASIC TO MACHINE LANGUAGE

B-II. Function Name: GETIN

Purpose: Get a character
Call address: $FFE4(hex) 65508 (decimal)
Communication registers: .A
Preparatory routines: CHKIN, OPEN
Error returns: See READST

Stack requirements: 7+
Registers affected: .A (.X, .Y)

Description: If the channel is the keyboard, this subroutine removes
one character from the keyboard queue and returns it as an ASCII value
in the accumulator. If the queue is empty, the value returned in the
accumulator will be zero. Characters are put into the queue auto-
matically by an interrupt driven keyboard scan routine which calls the
SCNKEY routine. The keyboard buffer can hold up to ten characters.
After the buffer is filled, additional characters are ignored until at least
one character has been removed from the queue. If the channel is RS-
232, then only the .A register is used and a single character is returned.
See READST to check validity. If the channel is serial, cassette; or
screen, call BASIN routine.

How to Use:

1) Call this routine using a JSR instruction.
2) Check for a zero in the accumulator (empty buffer).
3) Process the data.

EXAMPLE:

;WAIT FOR A CHARACTER
WAIT JSR GETIN

CMP #0

BEQ WAIT

BASIC TO MACHINE LANGUAGE 283

B-12. Function Name: IOBASE

Purpose: Deflne I/O memory page
Call address: $FFF3 (hex) 65523 (decimal)
Communication registers: .X, .Y
Preparatory routines: None
Error returns:

Stack requirements: 2
Registers affected: .X, .Y

Description: This routine sets the X and Y registers to the address of
the memory section where the memory mapped I/O devices are located.
This address can then be used with an offset to access the memory
mapped I/O devices in the Commodore 64. The offset is the number of
locations from the beginning of the page on which the I/O register you
want is located. The .X register contains the low order address byte,
while the .Y register contains the high order address byte.

This routine exists to provide compatibility between the Commodore
64, VIC-20, and future models of the Commodore 64. If the I/O locations
for a machine language program are set by a call to this routine, they
should still remain compatible with future versions of the Commodore
64, the KERNALand BASIC.

How to Use:

1) Call this routine by using the JSR instruction.
2) Store the .X and the .Y registers in consecutive locations.
3) Load the .Y register with the offset.
4) Access that I/O location.

EXAMPLE:

; SETTHEDATADIRECTIONREGISTEROF THEUSERPORTTO 0 (INPUT)
JSR 10BASE
STXPOINT ;SET BASE REGISTERS
STYPOINT+l
LDY#2
LDA #0 ;OFFSETFOR DDROF THE USERPORT
STA (POINT), Y ;SETDDRTO 0

284 8ASIC TO MACHINE LANGUAGE

8-13. Function Name: lOlNIT

Purpose: Initialize r/o devices
Call Address: $FF84 (hex) 65412 (decimal)
Communication registers: None
Preparatory routines: None
Error returns:
Stack requirements: None
Registers affected: .A, ..X, .Y

Description: This routine initializes all input/output devices and
routines. It is normally called as part of the initialization procedure of a
Commodore- 64 program cartridge.

EXAMPLE:

JSR 10lNIT

B-14. Function Name: LISTEN

Purpose: Command a device on the serial bus to listen
Call Address: $FFB-1 (hex) 65457 (decimai)

Communication registers: .A.

Preparatory routines: None
Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine will command a device on the serial bus to
receive data. The accumulator must be loaded with a device number

between 0 and 31 before calling the routine. LISTENwill OR the number
bit by bit to convert to a listen address, then transmits this data as a
command on the serial bus. The specified device will then go' into listen
mode, and be ready to accept information.

How to Use:

1) Load the accumulator with the number of the device to command
to LISTEN.

2) Call this routine using the JSR instruction.

EXAMPLE:

;COMMAND DEVICE #8 TO LISTEN
LDA #8

JSR LISTEN

BASIC TO MACHINE LANGUAGE 285

8-15. Fundion Name: LOAD

Purpose: load RAM from device

Call address: $FFD5 (hex) 65493 (decimal)
Communication registers: .A, .X,. Y
Preparatory routines: SETlFS, SETNAM
Error returns: 0,4,5,8,9, READST
Stack requirements: None
Registers affected: .A, .X, .Y

Description: This routine lOADs data bytes from any input device di-
rectly into the memory of the Commodore 64. It can also be used for a

verify operation, comparing data from a device with the data already in
memory, while leaving the data stored in RAM unchanged.

The accumulator (.A) must beset to 0 for a LOADoperation, or 1 for a
verify. If the input device is OPENed with a secondary address (SA) of 0
the header information from the device is ignored. In this case, the .X
and .Y.registers must contain the starting address for the load. If the
device is addressed with .a secondary address of 1, then the data is
loaded into memory starting at the location.specified by the header. This
routine returns the address of the highest RAM location loaded.

Before this routine can be called, the KERNAl SETlFS, and SETNAM
routines must be called.

:NOTE: You can NOT LOAD from the keyboard (0), RS-232 (2), or the screen (3).

How to Use:

.0) Call the SETlFS, and SETNAM routines. If a relocated load is de-

sired, use the SETlFS routine to send a secondary address of O.
1) Set the .A register to 0 for load, 1 for verify.
2) If a relocated load is desired, the .X and. Y registers must be set

to the start address for the load.

3) Call the routine using the JSR instruction.

286 BASIC TO MACHINE LANGUAGE

EXAMPLE:

iLOAD A FILE FROM TAPE

LDA #DEVICEl iSET DEVICE NUMBER

LDX #FILENO iSET LOGICAL FILE,NUMBER,

LDY CMDl' iSET SECONDARY ADDRESS
JSR SETLFS

LDA #NAME1-NAME iLOAD .A WITH NUMBER OF

iCHARACTERS IN FILE NAME

iLOAD..X AND .Y WITH

iADDRESS OF
iFILE NAME

NAME
NAME 1

LDY
JSR
LDA
LDX
LDY
JSR
STX
STY
JMP
.BYT

LDX #<NAME

#>NAME
SETNAM
#0
#$FF
#$FF
LOAD
VARTAB
VA RTA B + 1

START
'FILE NAME'

B-16. Function Name: MEMBOT

iSET FLAG FOR A. LOAD
iAlTERNATE START

iEND OF LOAD'

Purpose: Set bottom of memory
Call address: $FF9C (hex) 65436 (decimal)

Communication registers: .X,.Y
Preparatory routines: None
Error returns: None

Stack requirements: None
Registers affected: .X, .Y

Description: This routine is used to set the bottom of the memory. If
the accumulator carry bit is set when this routine is called, a pointer to
the lowest byte of RAM is returned in the .X and .Y registers. On the
unexpanded Commodore 64 the initial value of this pointer is $0800

(2048 in decimal). If the accumulator carry bit is clear (=0) when this

routine is called, the values of the .X and-. Y registers are transferred- to

the low and high bytes, respectively, of the pointer to the beginning of
RAM.

BASIC TO MACHINE LANGUAGE 287

How to Use:

TO READ THE BOTTOM OF RAM

1) Set the carry.
-2) Call this routine.

TO SET THE BOTTOM OF MEMORY

1) Clear the carry.
2) Call this routine.

EXAMPLE:

i MOVE BOTTOM OF MEMORY UP 1 PAGE

SECiREAD MEMORY BOTTOM
JSR 'MEMBOT
INY

CLC iSETMEMORY BOTTOM TO NEW VALUE
JSR ,MEMBOT

8-17. Function Name: MEMTOP

Purpose: Set the top of RAM
Call address: $FF99 (hex) 65433 (decimal)

Communication registers: .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine is used to set the top of RAM. When this
routine is called with the carry bit of the accumulator set, the pointer to
the top of RAM.will be loaded into the .X and .Y registers. When this
routine is called with the accumulator carry bit clear, the contents of the
.X 'and .Y registers are loaded in the top .of :memory pointer, changing
the top of memory.

EXAMPLE:

iDEALLOCATE THE RS-232 BUFFER
SEC

JSR 'MEMTOP ;READ TOP OF MEMORY
DEX

CLC

JSR MEMTOP iSET NEW TOP OF'MEMORY

2BB BASIC TO MACHINE LANGUAGE

B-18.Function Name: OPEN

Purpose: Open a logical file
Call address: $FFCO (hex) 65472 (decimal)
Communication registers: None
Preparatory routines: SETLFS,SETNAM
Error returns: 1,2,4,5,6,240, READST
Stack requirements: None
Registers affected: .A, .X, .Y

Description: This routine is used to OPEN a logical file. Once the logi-
cal file is set up, it can be used for input/output operations. Most of the
I/O KERNALroutines call on this routine to create the logical files to
operate on. No arguments need to be set up to use this routine, but both
the SETLFSand SETNAM KERNALroutines must be called before using
this routine.

How to Use:

0) Use the SETLFSroutine.
1) Use the SETNAM routine.
2) Call this routine.

EXAMPLE:

This is an implementation of the BASICstatement: OPEN 15,8,15,"1/0"

LDA #NAME2-NAME
LDY#>NAME
LDX#<NAME
JSR SETNAM
LDA # 15
LDX#8
LDY#15
JSR SETLFS
JSR OPEN
.BYT'I/O'

;LENGTH OF FILE NAME FOR SETLFS

;ADDRESS OF FILE NAME

NAME
NAME2

BASICTO MACHINELANGUAGE 2B9

8-19. Fundion Name: PLOT

Purpose: Set cursor location
Call address: $FFFO (hex) 65520 (decimal)

Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X, .Y

Description: A call to this routine with the accumulator carry flag set
loads the current position of the cursor on the screen (in X,Y coordinates)
into the .Y and.X registers. Y is the column number of the cursor location
(6-39), and X is the row number of the location of the cursor (0-24). A
call with the carry bit clear moves the cursor to X,Y as determined by
the .Y and .X registers.

How to Use:

READING CURSOR LOCATION

1) Set the carry flag.
2) Call this routine.

3) Get the X and Y position from the .Y and .X registers, respectively.

SETTINGCURSOR LOCATION

1) Clear carry flag.
2) Set the .Y and .X registers to the desired cursor location.
3) Call this routine.

EXAMPLE:

; MOVE THE CURSOR TO ROW 10, COLUMN 5 (5,10)
LDX#10
LDY#5
CLC
JSR PLOT

290 BASIC TO MACHINE LANGUAGE

8-20. Function Name: RAMTAS

Purpose: Perform RAM test
Call address: $FF87 (hex) 65415 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X, .Y

Description: This routine is used to test RAM and set the top and
bottom of memory pointers accordingly. It also clears locations $0000 to
$0101 and $0200 to $03FF. It also allocates the cassette buffer, and sets
the screen base to $0400. Normally, this routine is called as part of the
initialization process of a Commodore 64 program cartridge.

EXAMPLE:

JSR RAMTAS

B-21. Function Name: RDTIM

Purpose: Read system clock
Call address: $FFDE(hex) 65502 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X, .Y

Description: This routine is used to read the system clock. The clock's
resolution is a 60th of a second. Three bytes are returned by the routine.
The accumulator contains the most significant byte, the X index register
contains the next most significant byte, and the Y index register contains
the least significant byte.

EXAMPLE:

JSR RDTIM
STYTIME

STX TIME+ 1
STA TIME+ 2

TIME *=*+3

BASIC TO MACHINE LANGUAGE 291

B-22. Function Name: READST

Purpose: Read status word
Call address: $FFB7 (hex) 65463 (decimal)

Communication registers: .A
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A

Description: This routine returns the current status of the I/O devices in
the accumulator. The routine is usually called after new communication
to an I/O device. The routine gives you information about device status,
or errors that have occurred during the I/O operation.

The bits returned in the accumulator contain the following information:
(see table below)

292 BASICTO MACHINE LANGUAGE

ST ST TAPE
BIT NUMERIC CASSETTE SERIAURW VERIFY

POSITION VALUE READ + LOAD
0 1 Time out

write
1 2 Time out

read
2 4 Short block Short block
3 8 long block long block
4 16 Unrecoverable Any

read error mismatch
5 32 Checksum Checksum

error error
6 64 End of file Earline
7 -128 End of tape Device not End of

present tape

How to Use:

1) Call this routine.

2) Decode the information in the .A register as it refer-s to your pro-
gram.

EXAMPLE:

;CHECK. FOR END OF FILE DURING READ
JSR READST

AND #6,4
BNE EOF

;CHECK EOF BIT (EOF=END OF FILE)

;BRANCH ON EOF

8-23. Function Name: RESTOR

Purpose: Restore default system and interrupt vectors
Call address: $FF8A (hex) 65418 (decimal)
Preparatory routines: None
Error returns: None
Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine restores the default values of all system vec-

tors used in KERNAL and BASIC routines and interrupts. (See the Memory

Map for the default vector contents). The KERNAL VECTOR routine is
used to read and alter individual- system vectors.

How to Use:

1) Call this routine.

EXAMPLE:

JSR RESTOR

8-24. Function Name: SAVE

Purpose: Save memory to a device

Call address: $FFD8 (hex) 65496 (decimal)

Communication registers: .A,.X,.Y

Preparatory routines: SETLFS, SETNAM

Error returns: 5,8,9, READST
Stack requirements: None

Registers affected: .A, .X, .Y

BASICTO MACHINELANGUAGE 293

Description: This routine saves a section of memory. Memory is saved
from an indirect address on page 0 specified by the accumulator to the
address stored in the .X and .Y registers. It is then sent to a logical file
on an input/output device. The SETLFSand SETNAM routines must be
used before calling this routine. However, a file name is not required to
SAVEto device 1 (the Datassette™ recorder). Any attempt to save to
other devices without using a file name results in an error.

"NOTE: Device 0 (the keyboard), device 2 (RS-232), and device 3 (the screen) cannot
be SAVEd to. If the attempt is made, an error occurs, and the SAVE is stopped.

How to Use:

0) Use the SETLFSroutine and the SETNAMroutine (unless a SAVEwith
no file name is desired on "a save to the tape recorder").

1) Load two consecutive locations on page 0 with a pointer to the
start of your save (in standard 6502 low byte first, high byte next
format).

2) Load the accumulator with the single byte page zero offset to the
pointer.

3) Load the .X and .Y registers with the low byte and high byte re-
spectively of the location of the end of the save.

4) Call this routine.

EXAMPLE:

LDA # 1
JSR SETLFS
LDA #0
JSR SETNAM
LDA PROG
STA TXTTAB

LDA PROG + 1

STA TXTTAB + 1

LDX VARTAB

LDY VARTAB+l

LDA #<TXTTAB

JSR SAVE

;DEVICE = 1:CASSETTE

;NO FILE NAME

;LOAD START ADDRESS OF SAVE

; (LOW BYTE)

; (HIGH BYTE)

;LOAD .X WITH LOW BYTE OF END OF SAVE

;LOAD .Y WITH HIGH BYTE

;LOAD ACCUMULATOR WITH PAGE 0 OFFSET

294 BASICTO MACHINELANGUAGE

B-25. Function Name: SCNKEY

Purpose: Scan the keyboard
Call address:$FF9F (hex) 65439 (decimal)
Communication registers: None
Preparatory routines: IOINIT
Error returns: None
Stack requirements: 5
Registers affected: .A, .X, .Y

Description: This routine scans the Commodore 64 keyboard and
checks for pressed keys. It is the same routine called by the interrupt
handler. If a key is down, its ASCII value is placed in the keyboard
queue. This routine is called only if the normal IRQ interrupt is bypassed.

How to Use:

1) Call this routine.

EXAMPLE:

GET JSR SCNKEY
JSR GETIN
CMP #0
BEQ GET
JSR CHROUT

iSCANKEYBOARD

iGET CHARACTER

ilS IT NULL?

iYES . . . SCAN AGAIN
iPRINT IT

8-26. Function Name: SCREEN

Purpose: Return screen format
Call address: $FFED(hex) 65517 (decimal)
Communication registers: .X,. Y
Preparatory routines: None
Stack requirements: 2
Registers affected: .X, .Y

Description: This routine returns the format of the screen, e.g., 40
columns in .X and 25 lines in .Y. The routine can be used to determine

what machine a program is running on. This function has been im-.
plemented on the Commodore 64 to help upward compatibility of your
programs.

BASICTO MACHINELANGUAGE 295

How to Use:

1) Call this routine.

EXAMPLE:

JSR SCREEN

STX MAXCOL

STY MAXROW

8-27. Function Name: SECOND

Purpose: Send secondary address for LISTEN
Call address: $FF93 (hex) 65427 (decimal)
Communication registers: .A
Preparatory routines: LISTEN
Error returns: See READST

Stack requirements: 8
Registers affected: .A

Description: This routine is used to send a secondary address to an
I/O device after a call to the LISTEN routine is made, and the device is

commanded to LISTEN. The routine canNOT be used to send a second-

ary address after a call to the TALK routine.
A secondary address is usually used to give setup information to a

device before I/O operations begin.

When a secondary address is to be sent to a device on the serial bus,
the address must first be ORed with $60.

How to Use:

1) Load. the accumulator with the secondary address to be sent.
2) Call this routine.

EXAMPLE:

;ADDRESS DEVICE #8 WITH COMMAND (SECONDARY ADDRESS) #15
LDA #8

JSR LISTEN

LDA #15

JSR SECOND

296. BASIC TO MACHINE LANGUAGE

8-28. Function Name: SETLFS

Purpose: Set up a logical file
Call address: $FFBA (hex) 65466 (decimal)

Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: None

Description: This routine sets the logical file number, device address,
and secondary address (command number) for other KERNALroutines.

The logical file number is used by the system as a key to the file table
created by the OPEN file routine. Device addresses can range from 0 to
31. The following codes are used by the Commodore 64 to stand for the
CBM devices listed below:

ADDRESS DEVICE

o Keyboard
1 Datassette™ #1
2 RS-232Cdevice
3 CRTdisplay
4 Serial bus printer
8 CBM serial bus disk drive

Device numbers 4 or greater automatically refer to devices on the
serial bus.

A command to the device is sent as a secondary address on the serial
bus after the device number is sent during the serial attention handshak-
ing sequence. If no secondary address is to be sent, the. Y index regis-
ter should be set to 255.

How to Use:

1) Load the accumulator with the logical file number.
2) Load the .X index register with the device number.'
3) Load the .Y index register with the command.

BASIC TO MACHINE LANGUAGE 297

EXAMPLE:

FOR LOGICAL FILE32, DEVICE#4, AND NO COMMAND:
LDA #32
LDX #4
LDY#255
JSRSETLFS

8-29. Function Name: SETMSG

Purpose: Control system message output
Call address: $FF90 (hex) 65424 (decimal)
Communication registers: .A
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: .A

Description: This routine controls the printing of error and control mes-
sages by the KERNAL.Either print error messages or print control mes-
sages can be selected by setting the accumulator when the routine is
called. FILENOT FOUND is an example of an error message. PRESS
PLAYON CASSETTEis an example of a control message.

Bits 6 and 7 of this value determine where the message will come
from. If bit 7 is 1, one of the error messages from the KERNALis printed.
If bit 6 is set, control messages are printed.

How to Use:

1) Set accumulator to desired value.

2) Call this routine.

EXAMPLE:

LDA #$40
JSRSETMSG

LDA #$80
JSRSETMSG
LDA #0
JSRSETMSG

jTURN ON CONTROL MESSAGES

jTURN ON ERROR MESSAGES

;TURN OFF ALL KERNAL MESSAGES

298 BASIC TO MACHINE LANGUAGE

B-30. Function Name: SETNAM

Purpose: Set up file name
Call address: $FFBD (hex) 65469 (decimal)

Communication registers: .A, .X, .Y
Preparatory routines: None
Stack requirements: None
Registers affected: None

Description: This routine is used to set up the file name for tbe OPEN,
SAVE, or LOAD routines. The accumulator must be loaded with the
length of the file name. The .X and .Y registers must be loaded with the
address of the file name, in standard 6502 low-byte/high-byte format.
The address can be any valid memory address in the system where a
string of characters for the file name is stored. If no file name is desired,
the accumulator must be set to 0, representing a zero file length. The .X
and .Y registers can be set to any memory address in that case.

How to Use:

1) Load the accumulator with the length of the file name.
2) Load the .X index register with the low order address of the file

name.

3) Load the .Y index register with the high order address.
4) Call this routine.

EXAMPLE:

LDA #NAME2-NAME

LDX #<NAME

LDY#>NAME
JSR SETNAM

;LOAD LENGTH OF FILE NAME

;LOAD ADDRESS OF FILE NAME

B-31. Function Name: SETTIM

Purpose: Set the system clock
Call address: $FFDB (hex) 65499 (decimal)
Communication registers: .A, .X, .Y

Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: None

BASIC TO MACHINE LANGUAGE 299

Description: A system clock is maintained by an interrupt routine that
updates the clock every 1/6Oth of a second (one "jiffy"). The clock is
three bytes long, which gives it the capability to count up to 5,184,000
jiffies (24 hours). At that point the clock resets to zero. Before calling this
routine to set the clock, the accumulator must contain the most

significant byte, the .X index register the next most significant byte, and
the .Y index register the least significant byte of the initial time setting
(in jiffies).
How to Use:

1) load the accumulator with the MSB of the 3-byte number to set the
clock.

2) load the .X register with the next byte.
3) load the .Y register with the lSB.
4) Call this routine.

EXAMPLE:

;SET THE CLOCK TO 10 MINUTES = 3600 JIFFIES

lDA #0 ; MOST SIGNIFICANT
LDX #>3600

LDY #<3600 ; LEAST SIGNIFICANT
JSR SETTIM

8-32. Function Name: SETTMO

Purpose: Set IEEEbus card timeout flag
Call address: $FFA2 (hex) 65442 (decimal)
Communication registers: .A
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: None

NOTE: This routine is used ONLY with an IEEEadd-on card!

Description: This routine sets the timeout flag for the IEEEbus. When
the timeout flag is set, the Commodore 64 will wait for a device on the
IEEE port for 64 milliseconds. If the device does not respond to the
Commodore 64's Data Address Valid (DAV)signal within that time the

Commodore 64 will recognize an error condition and leave the hand-
shake sequence. When this routine is called when the accumulator con-
tains a 0 in bit 7, timeouts are enabled. A 1 in bit 7 will disable the
timeouts.

300 BASIC TO MACHINE LANGUAGE

NOTE: The Commodore 64 uses-the timeout feature to communicate that a disk:fileis

not found- on an -attempt to OPEN a ,file only with an IEEEcard.

How to Use:

TO SET THE TIMEOUTFLAG
I) Set :bit 7 of the accumulator to ,0.
2) Call this routine.

TO RESETTHE TIMEOUTFLAG

I) Set bit 7 of the accumulator tol.
2) Call this routine.

EXAMPLE:

;DLSABLETIMEOUT
LDA #0
JSRSETTMO

'8-33. Function Name: STOP

Purpose: Check if III key is pressed
Call address: $FFEI (hex) 65505 (decimal)

Communication registers: .A
Preparatory routines: None
Error returns: None

Stack requirements: None
Registers affected: .A, .X

Description: If .the 11I1I key on the keyboard was pressed during
a UDTIM call, this call returns the Z flag set. In addition; the channels
will be reset to default values. All other flags remain unchanged. If

the'. key is .not pressed then the accumulator will'contain a byte
representing the.last row of the keyboard scan. The user can also check
for certain other keys this way.

How to Use:

0) UDTIM should be called before this routine.
I) Call this routine.
2) Test for the z.ero flag.

BASICTO MACHINELANGUAGE 301

EXAMPLE:

JSR UDTIM ;SCAN FORSTOP
JSRSTOP
BNE *+5 ;KEYNOT DOWN

JMP READY ; = . . . STOP

B-34. Function Name: TALK

Purpose: Command a device on the serial bus to TALK
Call address: $FFB4 (hex) 65460 (decimal)

Communication registers: .A
Preparatory routines: None
Error returns: See READST

Stack requirements: 8
Registers affected: .A

Description: To use this routine the accumulator must first be loaded
with a device number between 0 and 31. When called, this routine then
ORs bit by bit to convert this device number to a talk address. Then this
data is transmitted as a command on the serial bus.

How to Use:

1) Load the accumulator with the. device number.
2) Call this routine.

EXAMPLE:

;COMMAND DEVICE#4 TO TALK
'LDA #4
JSRTALK

8-35. Function Name: TKSA

Purpose: Send a secondary address to a device commanded to TALK
Call addr.ess: $FF96 (hex) 65430 (decimal)

Communication registers: .A
Preparatory routines: TALK
Error returns: See READST

Stack requirements: 8
Registers affected: .A

302 BASIC TO MACHINE LANGUAGE

Description: This routine transmits a secondary address on the serial
bus for a TALKdevice. This routine must be called with a number be-
tween 0 and 31 in the accumulator. The routine sends this number as a

secondary address command over the serial bus. This routine can only
be called after a call to the TALKroutine. It will not work after a LISTEN.

How to Use:

0) Use the TALK routine.

1) Load the accumulator with the secondary address.
2) Call this routine.

'EXAMPLE:

;TELLDEVICE#4 TO TALKWITH COMMAND #7
LDA #4
JSR TALK
LDA #7
JSR TALKSA

8-36. Function Name: UDTlM

Purpose: Update the system clock
Call address: $FFEA (hex) 65514 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X

Description: This routine updates the system clock. Normally this
routine is called by the normal KERNALinterrupt routine every 1/60th of
a second. If the user program processes its own interrupts this routine
must be called to update the time. In addition, the 11:I key routine
must be called, if the 11:I key is to remain functional.

How to Use:

1) Call this routine.

EXAMPLE:

JSR UDTIM

BASIC TO MACHINE LANGUAGE 303

8-37. Function Name: UNLSN

Purpose: Send an UNLISTENcommand
Call address: $FFAE (hex) 65454 (decimal)
Communication registers: None
Preparatory routines: None'
Error returns: See READST

Stack requirements: 8
Registers affected: .A

Description: This routine commands all devices on the' serial bus to
stop receiving data from ,the Commodore 64 (Le., UNLISTEN).Calling
this routine results in an, UNLISTENcommand being transmitted on the
serial bus. Only devices previously commanded to listen are affected.
This routine is ,normally used after the Commodore 64 is finished sending,
data to external devices. Sending the UNLISTENcommands the listening,
devices to get off the, serial bus so it can be used for other purposes.

How to Use:

1) Call this routine.

EXAMPLE:

JSR UNLSN

8-38. Function Name: UNTLK

Purpose: Send an UNTALKcommand'
Call address: $FFAB (hex) 65451 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: See READST

Stack requirements: 8
Registers affected: .A

DesCI'iption: This routine transmits an UNTALKcommand on the serial
bus. All devices previously set to TALKwill stop sending data when this
command .is received.

How to' Use:

1) Call this routine.

EXAMPLE:

JSR UNTALK

304' BASIC TO. MACHINE LANGUAGE,

8-39. Function Name: VECTOR

Purpose: Manage RAM vectors
Call address: $FF8D (hex) 65421 (decimal)
Communication registers: .X,.Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X, .Y

Description: This routine manages all system vector jump addresses
stored in RAM. Calling this routine with the the accumulator carry bit set
stores the current contents of the RAM vectors in a list pointed to by the
.X and .Y registers. When this routine is called with the carry clar, the
user list pointed to by the .X and. Y registers is transferred to the system
RAM vectors. The RAM vectors are listed in the memory map.

NOTE: This routine requires caution in its use. The best way to use it is to first read the

entire vector contents into the user area, alter the desired vectors, and then copy the
contents bock to the system vectors.

How to Use:

READ THE SYSTEM RAM VECTORS

1) Set the carry.
2) Set the .X and .y registers to the address to put the vectors.
3) Call this routine.

LOAD THE SYSTEMRAM VECTORS

1) Clear the carry bit.
2) Set the .X and .Y registers to the address of the vector list in RAM

that must be loaded.
3) Call this routine.

BASIC TO MACHINE LANGUAGE 305

EXAMPLE:

;CHANGE THE INPUT ROUTINES TO NEW SYSTEM
LDX#<USER
LDY#>USER
SEC

JSR VECTOR ;READ OLD VECTORS
LDA #<MYINP ;CHANGE INPUT
STA USER+l0
LDA #>MYINP
STA USER+ 11
LDX#<USER
LDY#>USER
CLC

JSR VECTOR ;ALTERSYSTEM

USER * =* +26

ERROR CODES

The following is a list of error messages which can occur when using
the KERNALroutines. If an error occurs during a KERNALroutine, the
carry bit of the accumulator is set, and the number of the error message
is returned in the accumulator.

NOTE: Some KERNAll/O routines do not use these codes for error messages. Instead,

errors are identified using the KERNAl READST routine.

306 BASIC TO MACHINE LANGUAGE

NUMBER MEANING

0 Routine terminated by the" key
1 Too many open files
2 File already open
3 File not open
4 File not found
5 Device not present
6 File is not an input file
7 File is not an output file
8 File name is missing
9 Illegal device number

240 Top-of-memory change RS-232 buffer allocation/deallocation

USING MACHINE LANGUAGE FROM BASIC

There are several methods of using BASIC and machine language on

the Commodore 64, including special statements as part of CBM BASIC
as well as key locations in the machine. There are five main ways to use

machine language routines from BASIC on the Commodore 64. They
are:

1) The BASIC SYS statement

2) The BASIC USR function

3) Changing one of the RAM I/O vectors

4) Changing one of the RAM interrupt vectors

5) Changing the CHRGET routine

1) The BASIC statement SYS X causes a JUMP to a machine language
subroutine located at address X. The routine must end with an RTS

(ReTurn from Subroutine) instruction. This will transfer control back
to BASIC.

Parameters are generally passed between the machine lan-

guage routine and,the BASIC program using the BASIC PEEK and

POKE statements, and their machine language equivalents.
The SYS command is the most useful method of combining

BASIC with machine language. PEEKs and POKEs make multiple
parameter passing easy. There can be many SYS statements in a
program, each to a different (or even the same) machine lan-

guage routine.

2) The BASIC function USR(X) transfers control to the machine lan-

guage subroutine located at the address stored in locations 785

and 786. (The address is stored in standard low-byte/high-byte
fprmat.) The value X is evaluated and passed to the machine lan-

guage subroutine through floating point accumulator #1, located

beginning at address $61 (see memory map for more details). A
value may be returned back to the BASIC program by placing it in
the floating point accumulator. The machine language routine must
end with an RTS instruction to return to BASIC.

Thisstatement is different from the SYS,because you have TOset
up an indirect vector. Also different is the format through which

the variable is passed (floating point format). The indirect vector
must be changed if more than one machine language routine is
used.

BASIC TO MACHINE LANGUAGE 307

3) Any of the input/output or BASIC internal routines accessed through
the vector table located on page 3 (see ADDRESSING MODES,
ZERO PAGE) can be replaced, or amended by user code. Each
2-byte vector consists of a low byte and a high byte address which
is used by the operating system.

The KERNALVECTOR routine is the most reliable way to change
any of the vectors, but a single vector can be changed by POKEs.
A new vector will point to a user prepared routine which is meant
to replace or augment the standard system routine. When the ap-
propriate BASIC command is executed, the user routine will be
executed. If after executing the user routine, it is necessary to exe-
cute the normal system routine, the user program must JMP (JuMP)
to the address formerly contained in the vector. If not, the routine
must end with a RTS to transfer control back to BASIC.

4) The HARDWAREINTERRUPT(IRQ) VECTORcan be changed. Every
1/60th of a second, the operating system transfers control to the
routine specified by this vector. The KERNALnormally uses this for
timing, keyboard scanning, etc. If this technique is used, you
should always transfer control to the normal IRQ handling routine,
unless the replacement routine is prepared to handle the CIA chip.
(REMEMBERto end the routine with an RTI(ReTurnfrom Interrupt)
if the CIA is handled by the routine).

This method is useful for tasks which must happen concurrently
with a BASIC program, but has the drawback of being more
difficult.

NOTE: ALWAYS DISABLE INTERRUPTS BEFORE CHANGING THIS VECTORI

5) The CHRGETroutine is used by BASICto get each character/token.
This makes it simple to add new BASIC commands. Naturally,
each new command must be executed by a user written machine
language subroutine. A common way to use this method is to
specify a character (@ for example) which will occur before any of
the new commands. The new CHRGETroutine will search for the
special character. If none is present, control is passed to the nor-
mal BASIC CHRGETroutine. If the special character is present, the
new command is interpreted and executed by your machine lan-
guage program. This minimizes the extra execution time added by
the need to search for additional commands. This technique is
often called a wedge.

308 BASIC TO MACHINE LANGUAGE

WHERE TO -PUT MACHINE LANGUAGE ROUTINES

The best place for machine langua.ge routines on the Commodore 64
is from $COOO-$CFFF, assuming the routines are smaller than 4K bytes
long. This section of memory is not disturbed by BASIC.

If for some reason _it's not possible or desirable to put the machine
language routine at $COOO,for instance if the routine is larger than 4K
bytes, it then becomes _necessary to reserve an area at the top of mem-
ory from BASIC for the routine. The top of memory is normally$9FFF.
The top of memory can be changed through the KERNAL routine
MEMTOP, or by the following BASIC statements:

10 POKE51,L:POKE52,H:POKE55,L:POKE56,H:CLR

Where Hand L are the high and low portions, respectively, of the new
top of memory. For -example, to reserve the area from $9000 to $9FFF
for machine language, use the following:

10 POKE51,0:POKE52, 144:POKE55,0:POKE56, 144:CLR

HOW TO ENTER MACHINE LANGUAGE

There are 3 common methods to add the machine language pro-

grams to a BASIC program. They are:

1) DATA STATEMENTS:

By READing DATAstatements, and POKEing the values into memory at
the start of the program, machine language routines can be added. This
is the easiest method. No special methods are needed to save the two
parts of the _program, and it is fairly easy to debug. The drawbacks
include taking up more memory space, and the wait while the program
is POKEd in. Therefore, this method is better-for smaller routines.

EXAMPLE:

10 RESTORE: FORX=1 T09:READA: POKE12* 4096 + X,A: NEXT

BASIC PROGRAM

1000 DATA 161, 1,204,204,204,204,204,204,96

- BASIC TO MACHINE LANGUAGE 309

2) MACHINE LANGUAGE MONITOR (64MON):

This program allows you to enter a program in either HEX or SYM-
BOLICcodes, and save the portion of memory the program is in. Advan-
tages of this method include easier entry of the machine language
routines, debugging aids, and a much faster means of saving and load-
ing. The drawback to this method is that it generally requires the BASIC
program to load the machine language. routine from tape or disk when
it is started. (For more details on 64MON see the machine' language
section.)

EXAMPLE:

The following is an example of a BASIC program using a machine
language routine. prepared by 64MON. The routine is stored on tape:

10lF FLAG=l THEN 20
15 FLAG=l:LOAD "MACHINE LANGUAGE ROUTINE NAME",l,l
20

REST OF BASIC PROGRAM

3) EDITOR/ASSEMBLER PACKAGE:

Advantages are similar to using a machine language monitor, but
programs are even easier to enter. Disadvantages are also similar to the
use of a machine language monitor.

COMMODORE 64 MEMORY MAP

310 BASIC TO MACHINE LANGUAGE

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

D6510 0000 0 6510 On-Chip Data-
Direction Register

R6510 0001 1 6510 On-Chip 8-Bit
Input/Output Register

0002 2 Unused

ADRAYl 0003-0004 3-4 Jump Vector: Convert
Floating-Integer

BASICTO MACHINELANGUAGE 311

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

ADRAY2 0005-0006 5-6 Jump Vector: Convert
Integer-Floating

CHARAC 0007 7 Search Character
ENDCHR 0008 8 Flag: Scan for Quote at

End of String
TRMPOS 0009 9 Screen Column From Last

TAB

VERCK OOOA 10 Flag: 0 = Load, 1 = Ver-

ify
COUNT OOOB 11 Input Buffer Pointer / No.

of Subscripts
DIMFlG OOOC 12 Flag: Default Array DI-

Mension

VALTYP OOOD 13 Data Type: $FF = String,
$00 = Numeric

INTFlG OOOE 14 Data Type: $80 = Integer,
$00 = Floating

GARBFL OOOF 15 Flag: DATAscan/liST
quote/Garbage Coli

SUBFlG 0010 16 Flag: Subscript Ref / User
Function Call

INPFlG 0011 17 Flag: $00 = INPUT,$40
= GET, $98 = READ

TANSGN 0012 18 Flag: TAN sign / Compari-
son Result

0013 19 Flag: INPUT Prompt
lINNUM 0014-0015 20- 21 Temp: Integer Value
TEMPPT 0016 22 Pointer: Temporary String

Stack

LASTPT 0017 -0018 23-24 Last Temp String Address
TEMPST 0019-0021 25-33 Stack for Temporary

Strings
INDEX 0022-0025 34-37 Utility Pointer Area
RESHO 0026-002A 38-42 Floating-Point Product of

Multiply
TXTTAB 002B-002C 43-44 Pointer: Start of BASIC

Text

312 BASIC TO MACHINE LANGUAGE

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

VARTAB 002D-002E 45-46 Pointer: Start of BASIC
Variables

ARYTAB 002F-0030 47 -48 Pointer: Start of BASIC

Arrays
STREND 0031...,.0032 49-50 Pointer: End of BASIC Ar-

rays (+ 1)
FRETOP 0033-0034 5.1-52 Pointer: Bottom of String

.Storage
FRESPC 0035-0036 53-54 Utility String Pointer
MEMSIZ 0037 -0038 55-56 Pointer: Highest Address

Used by BASIC
CURLIN 0039-003A 57-58 Current BASIC Line

Number
OLDLIN 003B-003C 59-60 Previous BASIC Line

Number
OLDTXT 003D-003E 61-62 Pointer: BASIC Statement

for CO NT
DATLIN 003F-0040 63-64 Current DATALine

Number
DATPTR 0041-0042 65-66 Pointer: Current DATA

Item Address
INPPTR 0043 -0044 67-68 Vector: INPUT Routine
VARNAM 0045-0046 69-70 Current BASIC Variable

Name
VARPNT 0047 -0048 71-72 Pointer: Current BASIC

Variable Data

FORPNT 0049-004A 73-74 Pointer: Index Variable
for FOR/NEXT

004B-0060 75-96 Temp Pointer / Data Area
FACEXP 0061 97 Floating-Point Accumu-

lator # 1: Exponent
FACHO 0062-0065 98-101 Floating Accum. #.1:

Mantissa
FACSGN 0066 102 Floating Accum. #1: Sign
SGNFLG 0067 103 Pointer.: Series Evaluation

Constant

BASICTO MACHINELANGUAGE 313

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

BITS 0068 104 Floating Accum. # 1:
Overflow Digit

ARGEXP 0069 105 Floating-Point Accumu-
lator #2: Exponent

ARGHO 006A-006D 106-109 Floating Accum. #2:
Mantissa

ARGSGN 006E 110 Floating Accum. #2: Sign
ARISGN 006F 111 Sign Comparison Result:

Accum. #1 vs #2
FACOV 0070 112 Floating Accum. #1.

low-Order (Rounding)
FBUFPT 0071-0072 113-114 Pointer: Cassette Buffer
CHRGET 0073-008A 115-138 Subroutine: Get Next Byte

of BASIC Text

CHRGOT 0079 121 Entry to Get Same Byte of
Text Again

TXTPTR 007A-007B 122-123 Pointer: Current Byte of
BASIC Text

RNDX 008B-008F 139-143 Floating RND Function
Seed Value

STATUS 0090 144 Kernal I/O Status
Word: ST

STKEY 0091 145 Flag: STOP key / RVS key
SVXT 0092 146 Timing Constant for Tape
VERCK 0093 147 Flag: 0 = load, 1 = Ver-

ify
C3PO 0094 148 Flag: Serial Bus-Output

Char. Buffered

BSOUR 0095 149 Buffered Character for
Serial Bus

SYNO 0096 150 Cassette Sync No.
0097 151 Temp Data Area

LDTND 0098 152 No. of Open Files / Index
to File Table

DFlTN 0099 153 Default Input Device (0)
DFlTO 009A 154 Default Output (CMD)

Device (3)

314 BASIC TO MACHINE LANGUAGE

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

PRTY 009B 155 Tape Character Parity
DPSW 009C 156 Flag: Tape Byte-Received
MSGFLG 009D 157 Flag: $80 = Direct Mode,

$00 = Program
PTRl 009E 158 Tape Pass 1 Error Log
PTR2 009F 159 Tape Pass 2 Error Log
TIME 00AO-00A2 160-162 Real-Time Jiffy Clock

(approx) 1/60 Sec
00A3-00A4 163-164 Temp Data Area

CNTDN 00A5 165 Cassette Sync Countdown
BUFPNT 00A6 166 Pointer: Tape I/O Buffer
INBIT 00A7 167 RS-232 Input Bits / Cas-

sette Temp
BITCI 00A8 168 RS-232 Input Bit Count /

Cassette Temp
RINONE 00A9 169 RS-232 Flag: Check for

Start Bit

RIDATA OOAA 170 RS-232 Input Byte
Buffer/Cassette Temp

RIPRTY OOAB 171 RS-232 Input Parity / Cas-
sette Short Cnt

SAL OOAC-OOAD 172-173 Pointer: Tape Buffer/
Screen Scrolling

EAL OOAE-OOAF 174-175 Tape End Addresses/End
of Program

CMPO OOBO-OOB 1 176-177 Tape Timing Constants
TAPEl 00B2-00B3 178-179 Pointer: Start of Tape Buf-

fer

BITTS 00B4 180 RS-232 Out Bit Count /

Cassette Temp
NXTBIT 00B5 181 RS-232 Next Bit to Send/

Tape EOT Flag
RODATA 00B6 182 RS-232 Out Byte Buffer
FNLEN 00B7 183 Length of Current File

. Name
LA 00B8 184 Current Logical File

Number

BASIC TO MACHINE LANGUAGE 315

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

SA 00B9 185 Current Secondary Ad-
dress

FA OOBA 186 Current Device Number
FNADR OOBB-OOBC 187 - 188 Pointer: Current File

Name
ROPRTY OOBD 189 RS-232 Out Parity / Cas-

sette Temp
FSBLK OOBE 190 Cassette Read/Write Block

Count
MYCH OOBF 191 Serial Word Buffer
CASl OOCO 192 Tape Motor 'Interlock
STAL 00CI-00C2 193-194 I/O Start Address
MEMUSS 00C3-00C4 195-196 Tape Load Temps
LSTX 00C5 197 Current Key Pressed:

CHR${n) 0 = No Key
NDX 00C6 198 No. of Chars. in

Keyboard Buffer
(Queue)

RVS 00C7 199 Flag: Print Reverse
Chars.-l =Yes, O=No
Used

INDX 00C8 200 Pointer: End of Logical
Line for INPUT

LXSP 00C9-00CA 201-202 Cursor X-VPos. at Start of
INPUT

SFDX OOCB 203 Flag: Print Shifted Chars.
BLNSW OOCC 204 - Cursor Blink enable: 0 =

Flash Cursor
BLNCT OOCD 205 Timer: Countdown to

Toggle Cursor
GDBLN OOCE 206 Character Under Cursor
BLNON OOCF 207 Flag: Last Cursor Blink

On/Off
CRSW OODO 208 Flag: INPUT or GET from

Keyboard
PNT 00DI-00D2 209-210 Pointer: Current Screen

Line Address

316 BASIC TO MACHINE LANGUAGE

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

PNTR 00D3 211 Cursor Column on Current
Line

QTSW 00D4 212 Flag: Editor in Quote
Mode, $00 = NO

LNMX 00D5 213 Physical Screen Line
length

TBLX 00D6 214 Current Cursor Physical
Line Number

00D7 215 Temp Data Area
INSRT 00D8 216 Flag: Insert Mode, >0 =

INSTs
lDTBl 00D9-00F2 217-242 Screen Line Link Table /

Editor Temps
USER 00F3-00F4 243-244 Pointer: Current Screen

Color RAM loc.
KEYTAB 00F5-00F6 245-246 Vector: Keyboard Decode

Table
RIBUF 00F7-00F8 247-248 RS-232 Input Buffer

Pointer
ROBUF 00F9-00FA 249-250 RS-232 Output Buffer

Pointer
FREKZP OOFB-OOFE 251-254 Free O-Page Space for

User Programs
BASZPT OOFF 255 BASIC Temp Data Area

0100-0lFF 256-511 Micro-Processor System
Stack Area

0100-010A 256-266 Floating to String Work
Area

BAD 0100-013E 256-318 Tape Input Error log
BUF 0200-0258 512-600 System INPUT Buffer
LAT 0259-0262 601-610 KERNAl Table: Active log-

ical File No's.
FAT 0263-026C 611-620 KERNAl Table: Device No.

- for Each File

SAT 026D-0276 621-630 KERNAl Table: Second
Address Each File

KEYD 0277 -0280 631-640 Keyboard Buffer Queue
(FIFO)

BASICTO MACHINELANGUAGE 317

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION.

MEMSTR 0281-0282 . 641-642 Pointer: Bottom of Memory
for' O.S.

MEMSIZ 0283-0284 643-644 Pointer: Top of Memory for
O.S.

TIMOUT 0285 645 Flag: Kernal Variable for
IEEE Timeout

COLOR 0286 646 Current Character Color
Code

GDCOl 0287 647 Background Color Under
Cursor

HIBASE 0288 648 Top of Screen Memory
(Page)

XMAX 0289 649 Size of Keyboard Buffer
RPTFLG 028A 650 Flag: REPEATKey. Used,

$80 = Repeat
KOUNT 028B' 651 Repeat Speed CO.unter
DELAY 028C 652 Repeat. Delay Counter
SHFLAG 028D 653 Flag: Keyb'rd SHIFT Key/

CTRLKey/C= Key
LSTSHF 028E 654 Last Keyboard Shift Pat-

tern
KEYLOG 028F-0290 655-656 Vector: Keyboard Table

Setup
MODE 0291 657 Flag: $OO=Disable SHIFT

Keys, $80 = Enable
SHIFT Keys

AUTODN 0292 658 Flag: Auto Scroll Down, 0
= ON.

M51CTR 0293 659 RS-232: 6551' Control

Register Image
M51CDR 0294 660 RS-232: 6551. Command

Register Image
M51AJB 0295-0296 661-662 RS-232 Non-Standard BPS

(Time/2-100) USA
RSSTAT 0297 663 RS-232: 6551 Status Regis-

ter Image
BITNUM 0298 664 RS-232 Number of Bits

Left to Send

318 8ASIC TO MACHINE LANGUAGE

LABEL
HEX 'DECIMAL

DESCRIPTIONADDRESS LOCATJON

BAUDOF 0299-029A 665-666 RS-232 Baud Rate: Full Bit

Time (s)
RIDBE 029B 667 RS-232 Index to End of

Input Buffer
RIDBS 029C 668 RS-232 Start of Input Buf-

fer (Page)
RODBS 029D 669 RS-232 Start of Output

Buffer (Page)
RODBE 029E 670 RS-232 Index to End of

Output Buffer
IRQTMP 029F-02AO 671-672 Holds IRQ Vector During

Tape I/O
ENABL 02A1 673 RS-232 Enables

02A2 674 TOD Sense During Cas-
sette I/O

02A3 675 Temp Storage For Cassette
Read

02A4 .676 Temp D11RQ Indicator For
Cassette Read

02A5 677 Temp For Line Index
02A6 678 PALINTSCFlag, 0=

NTSC, 1= PAL
02A7-02FF 679-767 Unused

IERROR 0300-0301 768-769 Vector: Print BASIC Error

Message
IMAIN 0302-0303 770-771 Vector: BASIC Warm Start

ICRNCH 0304-0305 772-773 Vector: Tokenize BASIC
Text

IQPLOP 0306-0307 774-775 Vector: BASIC Text LIST

IGONE 0308-0309 776-777 Vector: BASIC Char. Dis-

patch
IEVAL 030A-030B 778-779 Vector: BASIC Token

Evaluation

SAREG 030C 780 Storage for 6502 .A Reg-
ister

SXREG 030D 781 Storage for 6502 .X Regis-
ter

I

BASIC TO MACHINE LANGUAGE 319

LABEL
HEX . DECIMAL

DESCRIPTIONADDRESS LOCATION

SYREG 030E 782 Storage for 6502 .Y Regis-
ter

SPREG 030F 783 Storage for 6502 .SP
Register

USRPOK 0310 784 USR Function Jump Instr
(4C)

USRADD 0311-0312 785-786 USR Address Low Byte/
High Byte

0313 787 Unused
CINV 0314-0315 788-789 Vector: Hardware IRQ

Interrupt
CBINV 0316-0317 790-791 Vector: BRKInstr. Interrupt
NMINV 0318-0319 792 -793 Vector: Non-Maskable

Interrupt
IOPEN 031A-031 B 794-795 KERNALOPEN Routine

Vector
IClOSE 031 C-031 D 796-797 KERNAl CLOSE Routine

Vector
ICHKIN 031 E-031 F 798-799 KERNAl CHKIN Routine

Vector
ICKOUT 0320-0321 800-801 KERNAl CHKOUT Routine

Vector
IClRCH 0322-0323 802 - 803 KERNAl ClRCHN Routine

Vector
IBASIN 0324-0325 804-805 KERNAl CHRIN Routine

Vector
IBSOUT 0326-0327 806-807 KERNAl CHROUT Routine

Vector
ISTOP 0328-0329 808-809 KERNAl STOP Routine

Vector
IGETIN 032A-032B 810-811 KERNAl GETIN Routine

Vector
ICLAll 032C-032D 812-813 KERNAl CLAll Routine

Vector
USRCMD 032E-032F 814-815 User-Defined Vector
IlOAD 0330-0331 816-817 KERNAl lOAD Routine

Vector

,

COMMODORE 64 INPUT/OUTPUT ASSIGNMENTS

320 BASIC TO MACHINE LANGUAGE

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

ISAVE 0332-0333 818-819 KERNALSAVERoutine Vec-
tor

0334-033B 820-827 Unused
TBUFFR 033C-03FB 828-1019 Tape I/O Buffer

03FC-03FF 1020- 1023 Unused

VICSCN 0400-07FF 1024- 2047 1024 Byte Screen Memory
Area

0400-07E7 1024-2023 Video Matrix: 25 Lines X
40 Columns

07F8-07FF 2040-2047 Sprite Data Pointers
0800-9FFF 2048-40959 .Normal BASIC Program

Space
8000-9FFF 32768:....40959 VSP Cartridge ROM-

8192 Bytes
AOOO- BFFF 40960-49151 BASIC ROM-8192 Bytes

(or 8K RAM)
COOO-CFFF 49152-53247 RAM-4096 Bytes
DOOO-DFFF 53248-57343 Input/Output Devices and

Color RAM
or Character Generator

ROM

or RAM-4096 Bytes
. EOOO-FFFF 57344-65535 KERNALROM-8192

Bytes (or 8K RAM)

HEX DECIMAL BITS DESCRIPTION

0000 0 7-0 MOS 6510 Data Direction

Register (xx101111)
Bit= 1: Output, Bit=O:
Input, x=Don't Care

0001 1 MOS 6510 Micro-Processor

On-Chip I/O Port
0 /LORAM Signal (O=Switch

BASIC ROM Out)

BASIC TO MACHINE LANGUAGE 321

HEX DECIMAL BITS DESCRIPTION

1 /HIRAM Signal (O=Switch
Kernal ROM Out)

2 /CHAREN Signal
(O=Switch Char. ROM
In)

3 Cassette Data Output Line
4 Cassette Switch Sense

1 = Switch Closed

5 Cassette Motor Control
0= ON, 1 = OFF

6-7 Undefined
DOOO-D02E 53248-54271 MOS 6566 VIDEO INTER-

FACE CONTROLLER
(VIC)

DOOO 53248 Sprite 0 X Pos
DOOI 53249 Sprite 0 Y Pos
D002 53250 Sprite 1 X Pos
DOO3 53251 Sprite 1 Y Pos
D004 53252 Sprite 2 X Pos
D005 53253 Sprite 2 Y Pos
D006 53254 Sprite 3 X Pos
D007 53255 Sprite 3 Y Pos
D008 53256 Sprite 4 X Pos
D009 53257 Sprite 4 Y Pos
DOOA 53258 Sprite 5 X Pos
DOOB 53259 Sprite 5 Y Pos
DOOC 53260 Sprite 6 X Pos
DOOD 53261 Sprite 6 Y Pos
DOOE 53262 Sprite 7 X Pos
DOOF 53263 Sprite 7 Y Pos
DOlO 53264 Sprites 0-7 X Pos (msb of

X coord.)
DOn 53265 VIC Control Register

7 Raster Compare: (Bit 8)
See 53266

6
-

Extended Color Text
Mode: 1 = Enable

322 BASICTOMACHINELANGUAGE

HEX DECIMAL BITS DESCRIPTION

5 Bit-Map Mode: 1 = En-
able

4 Blank Screen to Border
Color: 0 = Blank

3 Select 24/25 Row Text

Display: 1 = 25 Rows
2-0 Smooth Scroll to Y Dot-

Position (0-7)
D012 53266 Read Raster / Write Raster

Value for Compare IRQ
D013 53267 Light-Pen latch X Pos
D014 53268 Light-Pen latch Y Pos
D015 53269 Sprite Display Enable:

1 = Enable
D016 53270 VIC Control Register

7-6 Unused

5 ALWAYSSET THIS BIT TO
01

4 Multi-Color Mode: 1 =
Enable (Text or Bit-
Map)

3 Select 38/40 Column Text

Display: 1 = 40 CoIs
2-0 Smooth Scroll to X Pos

D017 53271 Sprites 0-7 Expand 2X
Vertical (Y)

D018 53272 VIC Memory Control Reg-
ister

7-4 Video Matrix Base Ad-
dress (inside VIe)

3-1 Character Dot-Data Base
Address (inside VIe)

D019 53273 VIC Interrupt Flag Regis-
ter (Bit = 1: IRQ Oc-

curred)
7 Set on Any Enabled VIC

IRQ Condition
3 Light-Pen Triggered IRQ

Flag

BASIC TO MACHINE LANGUAGE 323

HEX DECIMAL BITS DESCRIPTION

2 Sprite to Sprite Collision
IRQ Flag

1 Sprite to Background
Collision IRQ Flag

. 0 Raster Compare IRQ Flag
D01A 53274 IRQ Mask Register: 1 =

Interrupt Enabled
D01B 53275 Sprite to Background

Display Priority: 1 =
Sprite

D01C 53276 Sprites 0-7 Multi-Color
Mode Select: 1 =
M.C.M.

D01D 53277 Sprites 0-7 Expand 2X
Horizontal (X)

DOlE 53278 Sprite to Sprite Collision
Detect

D01F 53279 Sprite to Background
Collision Detect

D020 53280 Border Color
D021 53281 Background Color 0
D022 53282 Background Cplor 1
D023 53283 Background Color 2
D024 53284 Background Color 3
D025 53285 Sprite Multi-Color Regis-

ter 0
D026 53286 Sprite Multi-Color Regis-

ter 1
D027 53287 Sprite 0 Color
D028 53288 Sprite 1 Color
D029 53289 Sprite 2 Color
D02A 53290 Sprite 3 Color
D02B 53291 Sprite 4 Color
D02C 53292 Sprite 5 Color
D02D 53293 Sprite 6 Color
D02E 53294 Sprite 7 Color
D400-D7FF 54272-55295 MOS 6581 SOUND

INTERFACEDEVICE

(SID)

324 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

D400 54272 Voice 1: Frequency
Control - Low-Byte

D401 54273 Voice 1: Frequency
Control-High-Byte

D402 54274 Voice 1: Pulse Waveform

Width -low-Byte
D403 54275 7-4 Unused

3-0 Voice 1: Pulse Waveform

Width-High-Nybble
D404 54276 Voice 1: Control Register

7 Select Random Noise
Waveform, 1 = On

6 Select Pulse Waveform,
1 = On

5 Select Sawtooth
Waveform, 1 = On

4 Select Triangle Waveform,
1 = On

3 Test Bit: 1 = Disable Os-
cilIator 1

2 Ring Modulate Osc. 1 with
Osc. 3 Output, 1 = On

1 Synchronize Osc. 1 with
Osc. 3 Frequency, 1 =
On

0 Gate Bit: 1 = Start Aftl

DeclSus, 0 = Start Re-
lease

D405 54277 Envelope Generator 1: At-
tack I Decay Cycle
Control

7-4 Select Attack Cycle Dura-
tion: 0-15

3-0 Select Decay Cycle Dura-
tion: 0- 15

D406 54278 Envelope Generator 1:
Sustain I Release Cycle
Control

BASICTO MACHINELANGUAGE 325

HEX DECIMAL BITS DESCRIPTION

7-4 Select Sustain Cycle Du-
ration: 0-15

3-0 Select Release Cycle Du-
ration: 0- 15

D407 54279 Voice 2: Frequency
Control- Low-Byte

D408 54280 Voice 2: Frequency
Control-High-Byte

D409 54281 Voice 2: Pulse Waveform

Width-low-Byte
D40A 54282 7-4 Unused

3-0 Voice 2: Pulse Waveform

Width-High-Nybble
D40B 54283 Voice 2: Control Register

7 Select Random Noise
Waveform, 1 = On

6 Select Pulse Waveform,
1 = On

5 Select Sawtooth
Waveform, 1 = On

4 Select Triangle
Waveform, '1 = On

3 Test Bit: 1 = Disable Os-
cillator 2

2 Ring Modulate Osc. 2 with
Osc. 1 Output, 1 = On

1 Synchronize Osc. 2 with
Osc. 1 Frequency, 1 =
On

0 Gate Bit: 1 = Start Attl
Dec/Sus, 0 = Start Re-
lease

D40C 54284 Envelope Generator 2: At-
tack I Decay Cycle
Control

7-4 Select Attack Cycle Dura-
tion: 0- 15

326 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

3-0 Select Decay Cycle Dura-
tion: 0-15

D40D 54285 Envelope Generator 2:
Sustain / Release Cycle
Control

7-4 Select Sustain Cycle Du-
ration: 0- 15

3-0 Select Release Cycle Du-
ration: 0- 15

D40E 54286 Voice 3: Frequency
Control-low-Byte

D40F 54287. Voice 3: Frequency
Control-High-Byte.

D410 54288. Voice 3: Pulse Waveform

Width - low-Byte
D411 54289 7-4 Unused

3-0 Voice 3: Pulse Waveform
Width - High-Nybble

D412 54290 Voice 3: Control Register
7 Select Random Noise

Waveform, 1 = On
6 Select Pulse Waveform, 1

= On
5 Select Sawtooth

Waveform, 1 = On
4 Select Triangle Waveform,

1 = On
3 Test Bit: 1 = Disable Os-

cillator 3
2 Ring ModulateOsc. 3 with

Osc. 2 Output, 1 = On
1 Synchronize Ose. 3 with

Osc. 2 Frequency, 1 =
On

0 Gate Bit: 1 = Start Att/
DeclSus, 0 = Start Re-
lease

BASIC TO MACHINE LANGUAGE 327 .

HEX DECIMAL BITS DESCRIPTION

D413 54291 Envelope Generator 3: At-
tack / Decay Cycle
Control

7-4 Select Attack Cycle Dura-
tion: 0- 15

3-0 Select Decay Cycle Dura-
tion: 0-15

D414 54292 Envelope Generator 3:
Sustain / Release Cycle
Control

7-4 Select Sustain Cycle Du-
ration: 0-15

3-0 Select Release Cycle Du-
ration: 0-15

D415 54293 Filter Cutoff Frequency:
Low-Nybble (Bits 2-0)

D416 54294 Filter Cutoff Frequency:
High-Byte

D417 54295 Filter Resonance Control /

Voice Input Control
7-4 Select Filter Resonance:

0-15
3 Filter External Input: 1 =

Yes, 0 = No
2 Filter Voice 3 Output: 1 =

Yes, 0 = No
1 Filter Voice 2 Output: 1 =

Yes, 0 = No
0 Filter Voice 1 Output: 1 =

Yes, 0 = No
D418 54296 Select Filter Mode and

Volume
7 Cut-Off Voice3 Output: 1

= Off, 0 = On

6 Select Filter High-Pass
Mode: 1 = On

5 Select Filter Band-Pass
Mode: 1 = On

328 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

4 Select Filter low-Pass
Mode: 1 = On

3-0 Select Output Volume:
0-15

D419 54297 Analog/Digital Converter:
Game Paddle 1 (0-
255)

D41A 54298 Analog/Digital Converter:
Game Paddle 2 (0-
255)

D41B 54299 Oscillator 3 Random
Number Generator

D41C 54230 Envelope Generator 3
Output

D500-D7FF 54528-55295 SID IMAGES
D800-DBFF 55296-56319 Color RAM(Nybbles)
DCOO-DCFF 56320.-56575 MOS 6526 Complex

Interface Adapter (CIA)
#1

DCOO 56320 Data Port A (Keyboard,
Joystick, Paddles,
light-Pen)

7-0 Write Keyboard Column
Values for Keyboard
Scan

7-6 Read Paddles on Port A /
B (01 = Port A, 10 =
Port B)

4 Joystick A fire Button: 1 =
Fire

3-2 Paddle Fire Buttons
3-0 Joystick A Direction

(0- 15)
DCOl 56321 Data Port B (Keyboard,

Joystick, Paddles):
Game Port 1

BASIC TO MACHINE LANGUAGE 329

HEX DECIMAL BITS DESCRIPTION

7-0 Read Keyboard Row

Values for Keyboard

Scan
7 Timer B: Toggle/Pulse

Output
6 Timer A: Toggle/Pulse

Output
4 Joystick 1 Fire Button: 1 =

Fire

3-2 Paddle Fire Buttons

3-0 Joystick 1 Direction

DC02 56322 Data Direction

Register-Port A

(56320)
DC03 56323 Data Direction

Register-Port B

(56321)
DC04 56324 Timer A: Low-Byte
DC05 56325 Timer A: High-Byte
DC06 56326 Timer B: Low-Byte
DC07 56327

Timer B: High-Byte
DC08 56328 Time-of-Day Clock: 1/10

Seconds
DC09 56329 Time-of-Day Clock: Sec-

onds
DCOA 56330 Time-of-Day Clock: Min-

utes
DCOB 56331 Time-of-Day Clock: Hours

+ AM/PM Flag (Bit7)
DCOC 56332 Synchronous Serial I/O

Data Buffer
DCOD 56333

CIA Interrupt Control

Register (Read IRQs/

Write Mask)

7 IRQ Flag (1 = IRQ Oc-

curred) / Set-Clear Flag

4 FLAG1 IRQ (Cassette Read

/ Serial Bus SRQ Input)

330 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

3 Serial Port Interrupt
2 Time-of-Day Clock Alarm

Interrupt
1 Timer B Interrupt
0 Timer A Interrupt

DCOE 56334 CIA Control Register A
7 Time-of-Day Clock Fre-

quency: 1 = 50 Hz, 0
= 60 Hz

6 Serial Port I/O Mode: 1 =
Output, 0 = Input

5 Timer A Counts: 1 = CNT

Signals, 0 = System 02
Clock

4 Force Load Timer A: 1 =
Yes

3 Timer A Run Mode: 1 =
One-Shot, 0 = Con-
tinuous

2 Timer A Output Mode to
PB6: 1 = Toggle, 0 =
Pulse

1 Timer A Output on PB6: 1
= Yes, 0 = No

0 Start/Stop Timer A: 1 =
Start, 0 = Stop

DCOF 56335 CIA Control Register B
7 Set Alarm/TOD-Clock: 1 =

Alarm, 0 = Clock

BASIC TO MACHINE LANGUAGE 331

HEX DECIMAL BITS DESCRIPTION

6-5 Timer B Mode Select:

00 = Count System 02
Clock Pulses

01 = Count Positive

CNT Transitions

10 = Count Timer A
Underflow Pulses

11 = Count Timer A
Underflows While
CNT Positive

4-0 Same as CIA Control Reg.
A-for Timer B

DDOO-DDFF 56576-56831 MOS 6526 Complex Inter-
face Adapter (CIA) #2

DDOO 56576 Data Port A (Serial Bus,

RS-232, VIC Memory
Control)

7 Serial Bus Data Input
6 Serial Bus Clock Pulse

Input
5 Serial Bus Data Output
4 Serial Bus Clock Pulse

Output
3 Serial Bus ATN Signal

Output
2 RS-232 Data Output (User

Port)
1-0 VIC Chip System Memory

Bank Select (Default =
11)

DD01 56577 Data Port B (User Port,

RS-232)
7 User / RS-232 Data Set

Ready

332 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

6 User / RS-232 Clear to
Send

5 User
4 User / RS-232 Carrier De-

tect
3 User / RS-232 Ring Indi-

cator
2 User / RS-232 Data Termi-

nal Ready
1 User / RS-232 Request to

Send
0 User / RS-232 Received

Data
DD02 56578 Data Direction

Register-Port A
DD03 56579 Data Direction

Register-Port B
DD04 56580 Timer A: Low-Byte
DD05 56581 Timer A: High-Byte
0006 56582 Timer B: Low-Byte
DD07 56583 Timer B: High-Byte
D008 56584 Time-of-Day Clock: 1/10

Seconds
DD09 56585 Time-of-Day Clock: Sec-

onds

DDOA 56586 Time-of-Day Clock: Min-
utes

DOOB 56587 Time-of-Day Clock: Hours
+ AM!PM Flag (Bit 7)

DDOC 56588 Synchronous Serial I/O
Data Buffer

DDOD 56589 CIA Interrupt Control
Register (Read NMls/
Write Mask)

BASIC TO MACHINE LANGUAGE 333

HEX DECIMAL BITS DESCRIPTION

7 NMI Flag (1 = NMI Oc-
curred) / Set-Clear Flag

4 FLAG1 NMI (UserlRS-232
Received Data Input)

3 Serial Port Interrupt
1 Timer B Interrupt
0 Timer A Interrupt

DDOE 56590 CIA Control Register A
7 Time-of-Day Clock Fre-

.quency: 1 = 50 Hz, 0
= 60 Hz

6 Serial Port I/O Mode: 1 =
Output, 0 = Input

5 Timer A .Counts: 1 = CNT
Signals, 0 = System 02
Clock

4 Force Load Timer A: 1 =
Yes

3 Timer A Run Mode: 1 =
One-Shot, 0 = Con-
tinuous

2 Timer A Output .Mode to
PB6: 1 = Toggle, 0 =
Pulse

1 -TimerA Output on PB6: 1
= Yes, 0 = No

0 Start/Stop Timer A: 1 =
Start, 0 = Stop

DDOF 56591 CIA Control Register B
7 Set Alarm/TOD-Clock: 1 =

Alarm, 0 = Clock

-....

334 BASIC TO MACHINE LANGUAGE

..

HEX - DECIMAL BITS . DESCRIPTION

6-5 Tiiner B Mode Select:
00 = Count System02

Clock Pulses
01 = Count Positive

CNT Transitions
10 = Count Ti.merA

Underflow Pulses
11 = Count Timer A. Underflows While

CNT Positive

4-0 Same as CIA Control Reg.
A-for Timer B

. DEOO-DEFF 56832-57081 Reserved for Future I/O

Expansion
DFOO-DFFF 57088-57343 Reserved for Future I/O

Expansion

