

INTRODUCTION

This chapter explains CBM BASIC Language keywords. First we give
you an easy to read list of keywords, their abbreviations and what each
letter looks like on the screen. Then we explain how the syntax and
operation of each keyword works in detail, and examples are shown to
give you an idea as to how to use them in your programs.

As a convenience, Commodore 64 BASIC allows you to abbreviate
most keywords. Abbreviations are entered by typing enough letters of
the keyword to distinguish it from all other keywords, with the last letter
or graphics entered holding down the IIIiI key.

Abbreviations do NOT save any memory when they're used in pro-
grams, because all keywords are reduced to single-character "tokens"
by the BASIC Interpreter. When a program containing abbreviations is
listed, all keywords appear in their fully spelled form. You can use ab-
breviations to put more statements onto a program line even if they
won't fit onto the aO-character logical screen line. The Screen Editor
works on an aO-character line. This means that if you use abbreviations
on any line that goes over ao characters, you will NOT be able to edit
that line when LISTed. Instead, what you'll have to do is (1) retype the
entire line including all abbreviations, or (2) break the single line of code
into two lines, each with its own line number, etc.

A complete list of keywords, abbreviations, and their appearance on
the screen is presented in Table 2-1. They are followed by an alpha-
betical description of all the statements, commands, and functions
available on your Commodore 64.

This chapter also explains the BASIC functions built into the BASIC
Language Interpreter. Built-in functions can be used in direct mode
statements or in any program, without having to define the function
further. This is NOT the case with user-defined functions. The results of

built-in BASICfunctions can be used as immediate output or they can be
assigned to a variable name of an appropriate type. There are two
types of BASIC functions:

1) NUMERIC

2) STRING

Arguments of built-in functions are always enclosed in parentheses
(). The parentheses always come directly after the function keyword
and NO SPACES between the last letter of the keyword and the left
parenthesis (.

30 BASIC LANGUAGE VOCABULARY

Thetype of argument needed is generally decided by the data type in
the result. Functions which return a string value as their result are iden-
tified by having a dollar sign ($) as the last character of the keyword. In
some cases string functions contain one or more numeric argument.

Numeric functions will convert between integer and floating-point
format as needed. In the descriptions that follow, the data type of the
value returned is shown with each function name. The types of argu-
ments are also given with the statement format.

Table 2-1. COMMODORE64 BASICKEYWORDS

BASIC LANGUAGE VOCABULARY 31

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

ABS A IDIIiI B Am NUMERIC

AND A BIIiI N AIZJ

ASC A EIIIiI S A NUMERIC

ATN ABIIiI T AD NUMERIC

CHR$ C IDIIiI H C [] .STRING

CLOSE CLEIIIiI 0 CL 0
CLR C BIIiI L C 0
CMD CEIIIiIM C lSI

CONT c.BII 0 C 0
COS none COS NUMERIC

DATA D IDIIiIA D I!I

DEF D_ E D EJ

DIM D_ I D f;J

'32 BASIC LANGUAGE VOCABULARY

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

END E IDID N E 0
EXP E Emil x E NUMERIC

FN none FN

'FOR F BIIiI 0 F 0
FRE F ,BIIiI R F Q NUMERIC

GET G,EDIIII E G EJ

GET# none GET#

GOSUB GO BIIiI S GO

GOTO G ,BIIiI 0 GO

IF none IF

INPUT none INPUT

INPUT# I 'BIIiI N I 0
INT none INT NUMERIC

lEFT$ LE IDID F LE g STRING

LEN none LEN NUMERIC

LET L EIDIiI E L D
LIST L EIDIiI I L

LOAD L BID 0 L 0
LOG 'none LOG NUMERIC

BASICLANGUAGE VOCABULARY 33

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

MID$ M IIID I M EJ STRING

NEW none NEW

NEXT N IIID E N EI

NOT N BIID 0 N 0
ON none ON

OPEN o BIID P 00

OR none OR

PEEK P IIID E pEJ NUMERIC

POKE P BIID 0 P 0

POS none POS NUMERIC

PRINT ? ?

PRINT# P IIID R P bJ

READ R IIID E R E]

REM none REM

RESTORE RE IIID S RE

RETURN RE BIID T RE [[]

RIGHT$ R BIID I R S RING

RND R BIID N R 0 NUMERIC

RUN REmlU R CLI

34 BASIC LANGUAGE VOCABULARY

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

SAVE S BIID A S

SGN S _ G slIJ NUMERIC

SIN S_ I S&J NUMERIC

SPC(S_ P sO SPECIAL

SQR S _ Q sill NUMERIC

STATUS ST ST NUMERIC

STEP ST_ E ST B
STOP S _ T slIJ

STR$ STBIIiI R ST g STRING

SYS S BIID Y s[]

TAB(T BIIiI A T[!] SPECIAL

TAN none TAN NUMERIC

THEN TIIDH T[]

TIME TI TI NUMERIC

TlME$ TI$ TI$ STRING

TO none TO

USR U _ S U NUMERIC

VAL V EIIIiI A V NUMERIC

VERIFY V _ E VU

WAIT WBIIiIA W

DESCRIPTION OF BASIC KEYWORDS

ABS

TYPE: Function-Numeric
FORMAT: ABS(<expression»

Action: Returns the absolute value of the number, which is its value
without any signs. The absolute value of a negative number is that
number multiplied by -1.

EXAMPLESof ABS Function:

10 X = ABS (Y)
10 PRINT ABS (X * J)
10 IF X = ABS (X) THEN PRINT "POSITIVE"

AND

TYPE: Operator
FORMAT: <expression> AND <expression>

Action: AND is used in Boolean operations to test bits. It is also used
in operations to check the truth of both operands.

In Boolean algebra, the result of an AND operation is 1 only if both
numbers being ANDed are 1. The result is 0 if either or both is 0 (false).

EXAMPLESof l-Bit AND Operation:

o
AND0

o

1
AND 0

o

o
AND1

o

1
AND 1

1

The Commodore 64 performs the AND operation on numbers in the
range from -32768 to +32767. Any fractional values are not used, and
numbers beyond the range will cause an ?ILLEGAL QUANTITY error

BASIC LANGUAGE VOCABULARY 35

message. When converted to binary format, the range allowed yields 16
bits for each number. Corresponding bits are ANDed together, forming
a 16-bit result in the same range.

EXAMPLESof 16-Bit AND Operation:

17
AND 194

0000000000010001
AND 0000000011 00001 0

(BINARY)0000000000000000

(DECIMAL) o

32007
AND 28761

0111110100000111
AND 0111 000001011 001

(BINARY)0111000000000001

(DECIMAL) 28673

-241
AND 15359

11111111 00001111
AND 0011101111111111

(BINARY) 0011101100001111

(DECIMAL) 15119

36 BASICLANGUAGEVOCABULARY

When evaluating a number for truth or falsehood, the computer as-
sumes the number is true as long as its value isn't O. When evaluating a
comparison, it assigns a value of -1 if the result is true, while false has

a value of O. In binary format, -1 is all l's and 0 is all O's. Therefore,
when ANDing true/false .evaluations, the result will be true if any bits in
the result are true.

EXAMPLESof Using AND with True/False Evaluations:

50 IF X=7 AND W=3 THENGOTO 10: REMONLYTRUEIF BOTH X=7
AND W=3 ARETRUE-

60 IF A AND Q=7 THEN GOTO 10: REMTRUE IF A IS NON-ZERO
AND Q=7 IS TRUE

ASC

TYPE: Function-Numeric
FORMAT:ASC (<string>)

Action: ASC will return a number from 0 to 255 which corresponds to
the Commodore ASCII value of the first character in the string. The table
of Commodore ASCII values is shown in Appendix C.

EXAMPLESOF ASC Function:

10 PRINTASq"Z")
20 X = ASC("ZEBRA")
30 J = ASqJ$)

If there are no characters in the string, an ?ILLEGALQUANTITY error
results. In the third example above, if J$="", the ASCfunction will not
work. The GETand GET# statement read a CHR$(O)as a null string. To
eliminate this problem, you should add a CHR$(O) to the end of the
string as shown below.

EXAMPLEof ASC Function Avoiding ILLEGALQUANTITY ERROR:

30 J = ASqJ$ + CHR$(O»

BASIC LANGUAGE VOCABULARY 37

ATN

TYPE: Function-Numeric
FORMAT: ATN (<number>)

Action: This mathematical function returns the arctangent of the
number. The result is the angle (in radians) whose tangent is the number
given. The result is always in the range -1T/2 to +1T/2.

EXAMPLESof ATN Function:

10 PRINT ATN (0)
20 X = ATN (J) * 180 / 1T : REM CONVERT TO DEGREES

CHR$

TYPE: Function-String
FORMAT:CHR$ (<number>)

Action: This function converts a Commodore ASCII code to its char-

acter equivalent. See Appendix C for a list of characters and their
codes. The number must have a value between 0 and 255, or an ?IL.
LEGAL QUANTITY error message results.

EXAMPLESof CHR$ Function:

10 PRINT CHR$(65) : REM65 = UPPERCASEA
20 A$ = CHR$(13) : REM 13 = RETURNKEY
50 A = ASC(A$) : A$ = CHR${A): REM CONVERTSTO C64 ASCII

CODe AND BACK

38 BASIC LANGUAGE VOCABULARY

CLOSE

TYPE: I/O Statement
FORMAT:CLOSE <file number>

Action: This statement shuts off any data file or channel to a device.
The file number is the same as when the file or device was OPENed (see
OPEN statement and the section on INPUT/OUTPUTprogramming).

When working with storage devices like cassette tape and disks, the
CLOSE operation stores any incomplete buffers to the device. When this
is not performed, the file will be incomplete on the tape and unreadable
on the disk. The CLOSE operation isn't as necessary with other devices,
but it does free up memory for other files. See your external device
manual for more details.

EXAMPLESof CLOSEStatement:

10 CLOSE 1
20 CLOSE X

30 CLOSE 9 * (1 + J)

CLR

TYPE: Statement
FORMAT:CLR

Action: This statement makes available RAMmemory that had been
used but is no longer needed. Any BASIC program in memory is un-
touched, but all variables, arrays, GOSUB addresses, FOR. . . NEXT
loops, 'user-deflned functions, and files are erased from memory, and
their space is made available to new variables, etc.

BASIC LANGUAGE VOCABULARY 39

In the case of files to the disk and cassette tape, they are not properly
CLOSEd by the CLR statement. The information about the files is lost to

the computer, including any incomplete buffers. The disk drive will still
think the file is OPEN. See the CLOSE statement for more information on
this.

EXAMPLEof CLR Statement::

10 X=25
20 CLR
30 PRINT X

RUN
o

READY

CMD

TYPE: I/O Statement
FORMAT:CMD <file number> [, string]

Adion: This statement switches the primary output device from the TV
screen to the file specified. This file could be on disk, tape, printer, or an
I/O device like the modem. The file number must be specified in a prior
OPEN statement. The string, when specified, is sent to the file. This is
handy for titling printouts, etc.

When this command is in effect, any PRINT statements and LISTcom-
mands will not display on the screen, but will send the text in the same
format to the file.

To re-direct the output back to the screen, the PRINT# command
should send a blank line to the CMD device before CLOSEing, so it will
stop expecting data (called "un-listening" the device).

40 BASIC LANGUAGE VOCABULARY

Any system error (like ?SYNTAX ERROR)will cause output to return to
the screen. Devices aren't un-listened by this, so you should send a
blank line after an error condition. (See your printer or disk manual for
more details.)

EXAMPLESof CMD Statement:

OPEN 4, 4: CMD 4, "TITLE" : LIST: REM LISTS PROGRAM ON PRINTER

PRINT# 4: CLOSE 4: REM UN-LISTENS AND CLOSES PRINTER

10 OPEN 1, 1, 1, "TEST": REM CREATESEQ FilE
20 CMD 1: REM OUTPUT TO TAPE FilE, NOT SCREEN
30 FOR l = 1 TO 100
40 PRINT l: REM PUTS NUMBER IN TAPE BUFFER
50 NEXT
60 PRINT# 1: REM UNLISTEN

70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLYFINISH

CONT

TYPE: Command
FORMAT:CONT

Action: This command re-starts the execution of a program which was
halted by a STOP or END statement or the .:~lllr~"tI'I:Ikey being
pressed. The program will re-start at the exact place from which it left
off.

While the program is stopped, the user can inspect or change any
variables or look at the program. When de-bugging or examining a
program, STOP statements can be placed at strategic locations to allow
examination of variables and to check the flow of the program.

The error message CAN'T CONTINUE will result from editing the
program (even just hitting .:~:lIII:U. with the cursor on an unchanged
line), or if the program halted due to an error, or if you caused an error
before typing CONT to re-start the program.

EXAMPLEof CONT Command:

10 PI=O:C=l

20 PI=PI+4/C-4/(C+2)
30 PRINT PI
40 C=C+4:GOTO 20

BASIC LANGUAGE VOCABULARY 41

This program calculates the value of PI. RUN this program, and after
a short while hit the Imhrl:tlll:l key. You will see the display:

BREAKIN 20 I NOTE: Might be different number. I

Type the command PRINT C to see how far the Commodore 64 has
gotten. Then use CONT to resume from where the Commodore 64 left
off.

cos
TYPE: Function
FORMAT:COS (<number>)

Action: This mathematical function calculates the cosine of the

number, where the number is an angle in radians.

EXAMPLESof cas Function:

10 PRINTCOS (0)
20 X = COS (Y * 7T/ 180) : REM CONVERT DEGREES TO RADIANS

DATA

TYPE: Statement
FORMAT: DATA <list of constants>

Action: DATA statements store information within a program. The
program uses the information by means of the READ statement, which
pulls successive constants from the DATAstatements.

The DATAstatements don't have to be executed by the program, they
only have to be present. Therefore, they are usually placed at the end of
the program.

All data statements in a program are treated as a continuous list.

Data is READfrom left to right, from the lowest numbered line to the
highest. If the READstatement encounters data that doesn't fit the type
requested (if it needs a number and finds a string) an error message
occurs.

42 BASIC LANGUAGE VOCABULARY

Any characters can be included as data, but if certain ones are used

the data item must be enclosed by quote marks (" "). These include
punctuat.ion like comma (,), colon (:), blank spaces, and shifted letters,
graphics, and cursor control characters.

EXAMPLESof DATA Statement:

10 DATA 1, 10, 5, 8
20 DATAJOHN, PAUL, GEORGE, RINGO
30 DATA"DEAR MARY, HOW ARE YOU, lOVE, Bill"
40 DATA -1.7E-9, 3.33

DEF FN

TYPE: Statement

FORMAT: DEF FN <name> (<variable>) = <expres-
sion>

Action: This sets up a user-defined function that can be used later in
the program. The function can consist of any mathematical formula.
Usec-defined functions save space in programs where a long formula is
used in several places. The formula need only be specified once, in the
definition statement, and then it is abbreviated as a function name. It

must be executed once, but any subsequent executions are ignored.
The function name is the letters FN followed by any variable name.

This can be 1 or 2 characters, the first being a letter and the second a
letter or digit.

EXAMPLESof DEF FN Statement:

10 DEFFN A (X) = X + 7
20 DEF FN AA (X) = Y * Z
30 DEF FNA9 (Q) = INT(RND(1)* Q+ 1)

The function is called later in the program by using the function name
with a variable in parentheses. This function name is used like any other
variable, and its value is automatically calculated.

BASIC LANGUAGE VOCABULARY 43

EXAMPLES of FN Use:

40 PRINT FN A (9)
50 R = FNAA (9)
60 G = G + FN A9 (10)

In line 50 above, the number 9 inside the parentheses does not affect
the outcome of the function, because the function definition in line 20
doesn't use the variable in the parentheses. The result is Y times Z,
regardless of the value of X. In the other two functions, the value in
parentheses does affect the result.

DIM

TYPE: Statement
FORMAT:DIM <variable> (<subscripts>) [

<variable> (<subscripts>) . . .]

Action: This statement defines an array or matrix of variables. This
allows you to use the variable name with a subscript. The subscript
points to the element being used. The lowest element number in an
array is zero, and the highest is the number given in the DIM statement,
which has a maximum of 32767.

The DIM statement must be executed once and only once for each
array. A REDIM'DARRAY error occurs if this line is re-executed. There-
fore, most programs perform all DIM operations at the very beginning.

There may be any number of dimensions and 255 subscripts in an
array, limited only by the amount of RAM memory which is available to
hold the variables. The array may be made up of normal numeric vari-
ables, as shown above, or of strings or integer numbers. If the variables
are other than normal numeric, use the $ or % signs after the variable.
name to indicate string or integer variables,

44 BASIC LANGUAGE VOCABULARY

If an array referenced in a program was never DIMensioned, it is
automatically dimensioned to 11 elements in each dimension used in the
first re.ference.

EXAMPLESof DIM Statement:

10 DIM A (100)
20 DIMZ (5, 7), Y (3, 4, 5)
30 DIM Y7% (Q)
40 DIM PH$ (1000)
50 F (4) =9: REM AUTOMATICAtLYPERFORMSDIM F (10)

EXAMPLEof FOOTBALLSCORE-KEEPING Using DIM:

10 DIM 5(1,5), T$(1)
20 INPUT "TEAM NAMES"; T$(O), T$(l)
.30 FOR Q=l TO 5: FOR T=O TO 1

40 PRINT T$(T), "SCORE IN QUARTER" Q
50 INPUT S(T,Q): S(T;O)= S(T,O)+ S(T,Q)
60 NEXTT,Q
70 PRINT CHR$(147) "SCOREBOARD"
80 PRINT "QUARTER"
90 FOR Q=l TO 5

100 PRINT TAB(Q*2 +9) Q;
110 NEXT: PRINT TAB(15) "TOTAL"
1.20 FOR T=O TO 1: PRINTT$(T);
130 -FORQ= 1 TO 5
140 PRINT TAB(Q*2 +9) S(T,Q);
150 NEXT: PRINT TAB(15) S(T,O)
160 NEXT

CALCULATINGMEMORY USED BY DIM:

5 bytes for the array name
2 bytes for each dimension
2 bytes/element for integer variables
5 bytes/element for normal numeric variables
3 bytes/element for string -variables
1 byte for each character in each string element

BASIC LANGUAGE VOCABULARY 45

END

TYPE: Statement
FORMAT: END

Action: This finishes a program's execution and displays the READY
message, returning control to the person operating the computer. There
may be any number of END statements within a program. While it is not
necessary to include any END statements at all, it is recommended that
a program does conclude with one, rather than just running out of lines.

The END statement is similar to the STOP statement. The only differ-
ence is that STOP causes the computer to display the message BREAK
IN LINE XX and END just displays READY. Both statements allow the
computer to resume execution by typing the CONT command.

EXAMPLESof END Statement:

10 PRINT "DO YOU REAllY WANT TO RUN THIS PROGRAM"
20 INPUT A$
30 IF A$ = "NO" THEN END
40 REM RESTOF PROGRAM .
999 END

EXP

TYPE: Function-Numeric
FORMAT: EXP (<number>)

Action: This mathematical function calculates the constant e

(2.71828183) raised to the power of the number given. A value greater
than 88.0296919 causes an ?OVERFlOW error to occur.

EXAMPLESof EXP Function:

10 PRINT EXP (1)

20. X = Y * EXP (Z * Q)

46 BASIC LANGUAGE VOCABULARY

FN

TYPE: Function-Numeric
FORMAT:FN <name> (<number>)

Action: This function references the previously DEFined formula spec-
jfied by name. The number is substituted into its place (if any) and the
formula is calculated. The result will be a numeric value.

This function can be used in direct mode, as long as the statement
DEFining it has been executed.

If an FN is executed before the DEF statement which defines it, an
UNDEF'D FUNCTION error occurs.

EXAMPLESof FN (User.;Defined) Function:

PRINT FN A (Q)
1100 J = FN J (7) + FN J (9)
9990 IF FN 87 (1+1)= 6 THEN END

FOR . . . TO . . . [STEP.. .]
TYPE: Statement
FORMAT:FOR <variable>

<increment>]
<start> TO <limit> [STEP

. Action: This is a special BASICstatement that lets you easily use a
variable as a counter. You must specify certain parameters: the
floating-point variable name, its starting value, the limit of the count,
and how much to add during each cycle.

Here is a simple BASIC program that counts from 1 to 10, PRINTing
each number and ENDing when complete, and using no FOR state-
ments:

100 L = 1
110 PRINT L
120 L = L + 1
130 IF l <= 10 THEN 110
140 END

BASIC LANGUAGE VOCABULARY 47

Using the FOR statement, here is the same program:

100 FOR l = 1 TO 10
110 PRINT L
120 NEXT L
130 END

As you can see, the program is shorter' and easier to understand using
the FOR statement.

When the. FOR statement is executed, several operations take place.
The <start> value is placed in the <variable> being used in the
counter. In the example above, a 1 is placed in l.

When the NEXT statement is reached, the <increment> value is
added to the <variable>. If a STEPwas not included, the <increment>
is set to + 1. The first time the program above hits line 120, 1 is added
to l, so the new value of l is 2.

Now the value in the <variable> is compared to the <limit>. If the
<limit> has not been reached yet, the program GOes TO the line after
the original FOR statement. In this case; the value of 2 in l is less than
the limit of 10, so it GOes TO line 110.

Eventually, the value of <limit> is exceeded by the <variable>. At
that time, the loop is concluded and the program continues with the line
following the. NEXT statement. In our example, the value of l reaches
11, which. exceeds the limit of 10, and the program goes on with line
130.

When the value of <increment> is positive, the <variable> must
exceed the <limit>, and when it is negative it must become less than
the <limit>.

NOTE: A loop always executes at least once.

EXAMPLESof FOR. . .TO. . .STEP.. .Statement:

100 FORL = 100 TO 0 STEP-1
100 FORL = PI TO 6*1TSTEP.01
100 FOR AA = 3 TO 3

48 BASIC LANGUAGE VOCABULARY

FRE

TYPE: Function
FORMAT:FRE (<variable>)

Action: This function tells you how much RAM is available for your
program and its variables. If a program tries to use more space than is
available, the OUT OF MEMORY error results.

The number in parentheses can have any value, and it is not used in
the calculation.

NOTE: If the result of FRE is negative, add 65536 to the FRE number to get the

number of bytes available in memory.

EXAMPLESof FRE Function:

PRINT FRE (0)
10 X = (FRE (K) - 1000) / 7
950 IF FRE (0) < 100 THEN PRINT "NOT ENOUGH ROOM"

NOTE: The following always tells you the current available RAM:

PRINT FRE(O)- (FRE(O)< 0)* 65536

GET

TYPE: Statement
FORMAT: GET <variable list>

Action: This statement reads each key typed by the user. As the user
is typing, the characters are stored in the Commodore 64's keyboard
buffer. Up to 10 characters are stored here, and any keys struck after
the 10th are lost. Reading one of the characters with the GETstatement
makes room for another character.

If the GET statement specifies numeric data, and the user types a key
other than a number, the message ?SYNTAX ERRORappears. To be
safe, read the keys as strings and convert them to numbers later.

BASICLANGUAGEVOCABULARY 49

The GET statement can be used to avoid some of the limitations of the

INPUT statement. For more on this, see the section on Using the GET
Statement in the Programming Techniques section.

EXAMPLESof GET Statement:

10 GET A$: IF A$ = 1111THEN 10: REM LOOPS IN 10 UNTILANY KEY
HIT

20 GET A$, 8$, C$, D$, E$: REM READS5 KEYS
30 GET A, A$

GET#

TYPE: I/O Statement
FORMAT:GET# <file number>, <variable list>

Action: This statement reads characters one-at-a-time from the device

or file specified. It works the same as the GET statement, except that the
data comes from a different place than the keyboard. If no character is
received, the variable is set to an empty string (equal to "") or to 0 for
numeric variables. Characters used to separate data in files, like the
comma (,) or .~~:lIII~U. key code (ASC code of 13), are received like
any other character.

When used with device #3 (TV screen), this statement will read char-
acters one by one from the screen. Each use of GET# moves the cursor 1
position to the right. The character at the end of the logical line is
changed to a CHR$ (13), the .~~:lIII~~I. key code.

EXAMPLESof GET# Statement:

5 GET# 1, A$
10 OPEN 1, 3: GET# 1, Z7$
20 GET# 1, A, 8, C$, D$

50 BASIC LANGUAGE VOCABULARY

GOSUB

TYPE: Statement
FORMAT: GOSUB <line number>

Action: This is a specialized form of the GOTO statement, with one
important difference: GOSUB remembers where it came from. When the
RETURNstatement (different from the .~I:IIIII!U. key on the keyboard)
is reached in the program, the program jumps back to the statement
immediately following the original GOSUB statement.

The major use of a subroutine (GOSUB really means GO to a SUB-
routine) is when a small section of program is used by different sections
of the program. By using subroutines rather than repeating the same
lines over and over at different places in the program, you can save lots
of program space. In this way, GOSUB is similar to DEFFN. DEF FN lets
you save space when using a formula, while GOSUB saves space when
using a several-line routine. Here is an inefficient program that doesn't
use GOSUB:

100 PRINT "THIS PROGRAM PRINTS"

110 FOR L = 1 TO 500 : NEXT

120 PRINT "SLOWLYON THE SCREEN"
130 FOR L = 1 TO 500 : NEXT
140 PRINT "USING A SIMPLELOOP"
150 FOR L = 1 TO 500 : NEXT
160 PRINT "AS A TIME DELAY:'
170 FOR L = 1 TO 500 : NEXT

Here is the same program using GOSUB:

100 PRINT "THIS PROGRAM PRINTS"
110 GOSUB 200
120 PRINT "SLOWLYON THE SCREEN"
130 GOSUB 200
140 PRINT "USING A SIMPLELOOP"
150 GOSUB 200
160 PRINT "AS A TIME DELAY."
170 GOSUB 200
180 END
200 FOR L = 1 TO 500 : NEXT

210 RETURN

BASIC LANGUAGE VOCABULARY 51

Each time the program .executes a GOSUB,the line number and posi-
tion in the program line ~re saved in a special area called the "stack,"
which takes up 256 bytes of your memory. This limits the amount of data
that can be stored in the stack. Therefore, the number of subroutine
return addresses that can be stored is limited, and care should be taken
to make sure every GOSUB hits the corresponding RETURN,or else you'll
run out of memory even though you have plenty of bytes free.

GOTO

TYPE:Statement
FORMAT:GOTO <line number>

or GO TO <line number>

Action: This statement allows the BASIC program to execute lines out
of numerical order. The word GOTO followed by a number will make
the program jump to the line with that number. GOTO NOT followed by
a number equals GOTO O. It must have the line number after the word
GOTO.

It is possible to create loops with GOTO that will never end. The
simplest example of this is a line that GOes TO itself, like 10 GOTO 10.
These loops can be stopped using the .:~lI/r~...tI'l:.JIkey on the key-
board.

EXAMPLESof GOTO Statement:

GOTO 100
10 GO TO 50
20 GOTO 999

IF . . . THEN

TYPE: Statement
FORMAT: IF <expression> THEN <line number>

IF <expression> GOTO <line number>
IF <expression> THEN <statements>

Action: This is the statement that gives BASIC most of its "intelli-
gence," the ability to evaluate conditions and take different actions de-
pending on the outcome.

52 BASIC LANGUAGE VOCABULARY

The word IF is followed by an expression, which can include varia-

bles, strings, numbers, comparisons, and 199ical operators. The word
THEN appears on the same line and is followed by either a line number
.or one or more BASIC statements. When the expression is false, every-
thing after the word THEN on that line is ignored, and execution' con-
tinues with the next line number in the program. A true result makes the
program either branch to the line number after the word THEN or exe-
cute whatever other BASIC statements are found on that line.

EXAMPLEof IF. . .GOTO. . .Statement:

100 INPUT "TYPE A NUMBER"; N
110 IF N <= 0 GOTO :200

120 PRINT "SQUARE ROOT=" SQR(N}
130 GOTO 100
200 PRINT "NUMBER MUST BE >0"
210 GOTO 100

This program prints out the square root of any positive number. The IF
statement here is used to validate the result of the INPUT. When the
result of N <= 0 is true, the program skips to line .200, and when the
result is false the next line to be executed is 120. Note that THEN GOTO

is not needed with IF. . .THEN, as in line 110 where GOT0200 actually
means THEN GOTO 200.

EXAMPLEOF IF. . . THEN. . . Statement:

100 FOR l = 1 TO 100

110 IF RND(1}< .5 THENX = X+ 1 : GOTO 130
120 Y = V+ 1
130 NEXT l
140 PRINT "HEADS= " X
150 PRINT "TAllS= " Y

The IF in line 110 tests a random number to see if it is less than .5.

When the result is true, the whole series of statements following the
word THEN are executed: first X is incremented by 1, then the program
skips to line 130. When the result is false, the program drops to the next
statement, line 120.

BASIC LANGUAGE VOCABULARY 53

INPUT

TYPE: Statement
FORMAT:INPUT [l/<prompt>1/ ;] <variable list>

Action: This is a statement that lets the person RUNning the program
"feed" information into the computer. When executed, this statement
PRINTs a question mark (?) on the screen, and positions the cursor 1
space to the right of the question mark. Now the computer waits, cursor
blinking, for the operator to type in the answer and press the _:1:1111:11_
key.

The word INPUT may be followed by any text contained in quote
marks (" "). This text is PRINTed on the screen, followed by the ques-
tion mark.

After the text comes a semicolon (j) and the name of one or more

variables separated by commas. This variable is where the computer
stores the information that the operator types. The variable can be any
legal variable name, and you can have several different variable
names, each for a different input.

EXAMPLESof INPUT Statement:

100 INPUT A

110 INPUT B, C, D
120 INPUT "PROMPT"j E

When this program RUNs,the question mark appears to prompt the
operator that the Commodore 64 is expecting an input for line 100. Any
number typed in goes into A, for later use in the program. If the answer
typed was not a number, the ?REDO FROM STARTmessage appears,
which means that a string was received when a number was expected.
If the operator just hits _:1:1111:11_without typing anything, the vari-
able's value doesn't change.

Now the next question mark, for line 110, appears. If we type only
one number and hit 11:1:llmll_ , the Commodore 64 will now display 2
question marks (??), which means that more input is required. You can

54 BASICLANGUAGEVOCABULARY

just type as many inputs as you need separated by commas, which
prevents the double question mark from appearing. If you type more
data than the INPUT statement requested, the ?EXTRA IGNORED mes-
sage appears, which means that the extra items you typed were not put
into any variables.

Line 120 displays the
pears. The semicolon is
variables.

The INPUT statement can never be used outside a program. The
Commodore 64 needs space for a buffer for the INPUT variables, the
same space that is used for commands.

word PROMPT before the question mark ap-
required between the prompt and any list of

INPUT#

TYPE: I/O Statement
FORMAT:INPUT# <file number> , <variable list>

Action: This is usually the fastest and easiest way to retrieve data
stored in a file on disk or tape. The data is in the form of whole vari-
ables of up to. 80 characters in length, as opposed to the one-at-a-time
method of GET#. First, the file must have been OPENed, then INPUT#
can fill the variables.

The INPUT# command assumes a variable is finished when it reads a

RETURN code (CHR$ (13», a comma (,), semicolon (i), or colon (:).
Quote marks can be used to enclose these characters when writing if

they are needed (see PRINT# statement).
If the variable type used is numeric, and non-numeric characters are

received, a BAD DATA error results. INPUT# can read strings up to 80
characters long, beyond which a STRING TOO LONG error results.

When used with device #3 (the screen), this statement will read an

entire logical line and move the cursor down to the next line.

EXAMPLESof INPUT# Statement:

10 INPUT# 1, A
20 INPUT# 2, A$, B$

BASICLANGUAGEVOCABULARY 55

INT

TYPE: Integer Function
FORMAT:INT «numeric»

Action: Returns the integer value of the expression. If the expression
is positive, the fractional part is left off. If the expression is negative,
any fraction causes the next lower integer to be returned.

EXAMPLESof INT Function:

120 PRINT INT(99.4343), INT(-12.34)

99 -13

LEFT$

TYPE: String Function
FORMAT:LEFT$(<string>, <integer»

Action: Returns a string comprised of the leftmost <integer> char-
acters of the <string>. The integer argument value must be in the
range 0 to 255. If the integer is greater than .the length of the string, the
entire string will be returned. If an <integer> value of zero is used,
then a null string (of zero length) is returned.

EXAMPLESof LEFT$Function:

10 A$ = "COMMODORE COMPUTERS"
20 B$ = LEFT$(A$,9): PRINTB$
RUN

COMMODORE

56 BASICLANGUAGEVOCABULARY

LEN

TYPE: Integer Function
Format: LEN «string»

Action: Returns the number of characters in the string expression.
Non-printed characters and blanks are counted.

EXAMPLEof LEN Fundion:

CC$ = "COMMODORECOMPUTER":PRINTLEN(CC$)

18

LET

TYPE: Statement
FORMAT:[LET] <variable> = <expression>

Action: The LETstatement can be used to assign a value to a vari-
able. But the word LETis optional and therefore most advanced pro-
grammers leave LETout because it's always understood and wastes val-
uable memory. The equal sign (=) alone is sufficient when assigning the
value of an expression to a variable name.

EXAMPLESof LETStatement:

10 LETD= 12
20 LETE$ = "ABC"
30 F$ = "WORDS"
40 SUM$ = E$ + F$

(This is the same as D = 12)

(SUM$ would equal ABCWORDS)

BASIC LANGUAGE VOCABULARY 57

LIST

TYPE: Command
FORMAT:LIST[[<first-line>]-[<last-line>]]

Action: The LIST command allows you to look at lines of the BASIC

program currently in the memory of your Commodore 64. This lets you

use your computer's powerful screen editor to edit programs which
you've LISTed both quickly and easily.

The LIST system command displays all or part of the program that is

currently in memory on the default output device. The LIST will normally
be directed to the screen and the CMD statement can be used to switch

output to an external device such as a printer or a disk. The LIST com-

mand can appear in a program, but BASIC always returns to the system
READY message after a LIST is executed.

When you bring the program LIST onto the screen, the "scrolling" of

the display from the bottom of the screen to the top can be slowed by

holding down the ConTRol Bill key. LIST is aborted by typing

the ~~ml,.."tIll:.JIkey.
If no line-numbers are given the entire program is listed. If only the

first-line number is specified, and followed by a hyphen (-), that line and

all higher-numbered lines are listed. If only the last line-number is spec-

ified, and it is preceded by a hyphen, then all lines from the beginning
of the program through that line are listed. If both numbers are spec-
ified, the entire range, including the line-numbers LISTed, is displayed.

EXAMPLESof LISTCommand:

LIST (lists the program currently in memory.)

LIST 500 (lists line 500 only.)

LIST 150- (lists all lines from 150 to the end.)

LIST -1000 (lists all lines from the lowest through 1000.)

LIST 150-1000 (lists lines 150 through 1000, inclusive.)

10 PRINT "THIS IS LINE 10"

20 LIST (LISTused in Program Mode)
30 PRINT"THIS IS LINE 30"

58 BASIC LANGUAGE VOCABULARY

LOAD

TYPE: Command
FORMAT: LOAD ["<file-name>"] [,<device>]

[,<address>]

Action:The LOAD statement reads the contents of a program file from
tape or disk into memory. That way you can use the information LOADed

or change the information in some way. The device number is optional,

but when it is left out the computer will automatically default to 1, the
cassette unit. The disk unit is normally device number 8. The LOAD
closes all open flies and, if it is used in direct mode, it performs a CLR
(clear) before reading the program. If LOAD is executed from within a

program, the program is RUN. This means that you can use LOAD to
"chain" several programs together. None of the variables are cleared
during a chain operation.

If you are using file-name pattern matching, the first file which

matches the pattern is loaded. The asterisk in quotes by itself ("*")
causes the first file-name in the disk directory to be loaded. if the file-

name used does not exist or if it is not a program file, the BASIC error
message ?FILE NOT FOUND occurs.

When LOADing programs from tape, the <file-name> can be left

out, and the next program file on the tape will be read. The Commodore

64 will blank the screen to the border color after the PLAY key is
pressed. When the program is found, the screen clears to the back-

ground color and the "FOUND" message is displayed. When the [I
key, .. key, II key, or 1-'1:1,'11.:,,1:1 is pressed, the file will
be loaded. Programs will LOAD starting at memory location 2048 unless
a secondary <address> of 1 is used. If you use the secondary address
of 1 this will cause the program to LOAD to the memory location from
which it was saved.

BASIC LANGUAGE VOCABULARY 59

EXAMPLESof LOAD Command:

LOAD

LOAD A$

LOAD "*",8

LOAD "",1,1

LOAD "STAR TREK"

PRESS PLAY ON TAPE

FOUND STAR TREK

LOADING

READY.

LOAD "FUN",8
SEARCHING FOR FUN
LOADING
READY.

LOAD "GAME ONE",S,1
SEARCHING FOR GAME ONE
LOADING
READY.

60 BASIC LANGUAGE VOCABULARY

(Reads the next program on tape)

(Uses the name in A$ to search)

(LOADs first program from disk)

(Looks for the first program on
tape, and LOADs it into the same
part of memory that it came
from)

(LOAD a file from tape)

(LOAD a file from disk)

(LOAD a file to the specific
memory location from which the
program was saved on the disk)

LOG

TYPE: Floating-Point Function
FORMAT:LOG «numeric»

Action: Returns the natural logarithm (log to the base of e) of the
argument. If the value of the argument is zero or negative the BASIC
err.or message ?ILLEGALQUANTITY will-occur.

EXAMPtES of. LOG Function~

25 PRINT LOG(45/7}
1.86075234

10 NUM = LOG(ARG) / LOG(10) (Calculates the LOG of ARG to the
base 10)

MID$

TYPE: String Function
FORMAT: MID$ «string>, <numeric-1> [, <numeric-

2>])

Action: The MID$ function returns a sub-string which is taken from

within a larger <string> argument. The starting position of the sub-
string is defined by the <numeric-1> argument and the length of the
sub-string by the <numeric-2> argument. Both of the numeric arg\!-
ments can have values ranging from 0 to 255.

If the <numeric-1> value is greater than the length of the <string>,
or if the <numeric-2> value is zero, then MID$ gives a null string value.
If the <numeric-2> argument is left out, then the computer will assume
that a length of the rest of the string is to be used. And if t~e source
string has fewer characters than <numeric-2>, from the starting posi-
tion to the end of the string argument, then the whole rest of the string is
used.

EXAMPLE'of MID$ Function:

10 A$="GOOD"

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$ + MID$(B$, 8, 8)

GOOD EVENING

BASIC LANGUAGE VOCABULARY 61

.NEW

TYPE: Command
FORMAT:NEW

Action: The NEW command is used to delete the program currently in
memory and clear aU variables. Before typing in a new program, NEW
should be used in direct mode to clear memory. NEW can also be used
in a program, but you should be aware of the fact that it will erase
everything that has gone before and is still in the computer's memory.
This can be particularly troublesome when you're trying to debug your
program.

BE CAREFUL: Not clearing out an old program before typing a new one can result in
a. confusing mix of the two programs.

EXAMPLESof NEW Command:

NEW
10 NEW

(Clears the program and all variables)
(Performs a NEW operation and STOPs the program.)

NEXT

TYPE: Statement
FORMAT:NEXT [<counter>] [,<counter>]

Action: The NEXTstatement is used with FOR to establish the end of a

FOR. . . NEXTloop. The NEXTneed not be physically the last statement
in the loop, but it is always the last statement executed in a loop. The
<counter> is the loop index's variable name used with FOR to start the
loop. A single NEXTcan stop several nested loops when it is followed by
each FOR's <counter> variable name(s). To do this each name must
appear in the order of inner-most nested loop first, to outer-most nested
loop last. When using a single NEXTto increment and stop several vari-
able names, each variable name must be separated by commas. Loops
can be nested to 9 levels. If the counter variable(s) are omitted, the
counter associated with the FOR of the current level (of the nested loops)
is incremented.

62 BASICLANGUAGEVOCABULARY

When the NEXTis reached, the counter value is incremented by 1 or
. by an optional STEPvalue. It is then tested against an end-value to see
if it's time to stop the loop. A loop will be stopped when a NEXTis found
which has its counter value greater than the end-value.

EXAMPLESof NEXT Statement:

10 FOR J = 1 TO 5: FOR K = 10 TO 20: FOR. N = 5 TO - 5 STEP -1

20 NEXT N, K, J (Stopping Nested Loops)

10 FOR L = 1.TO 100
20 FORM = 1 TO 10
30 NEXTM
400 NEXT L (Note how the loops do NOT cross each

other)

10 FOR A = 1 TO 10
20 FOR 8 = 1 TO 20
30 NEXT
40 NEXT (Notice that no variable names are

need.ed)

NOT

TYPE: Logical Operator
FORMAT:NOT <expression>

Action: The NOT logical operator "complements" the value of each bit
in its single operand, producing an. integer "twos-complement" result. In
other words, the NOT is really saying, "if it isn't. . . ". When working
with a floating-point number, the operands are converted to integers
and any fractions are lost. The NOT operator can also be used in a
comparison to reverse the true/false value which was the result of a
relationship test and therefore it will reverse the meaning of the com-
parison. In the first example below, if the "twos-complement" of "AA" is
equal to "8B" and if "BB" is NOT equal to "Ce' then the expression is
true.

BASIC LANGUAGE VOCABULARY 63

EXAMPLESof NOT Operator:

10 IF NOT AA = BB AND N.oT(BB = CC} THEN

NN% = NOT 96: PRINT NN%
-97

NOTE: -To find the value of-NOT-use-the expression X=(-(X+I». (The.two's comple-

ment of any integer is the bit complement plus one.)

ON

TYPE: Statement
FORMAT: ON <variable> GOTO / GOSUB <Iine-

number> [,<line-number>]

Action: The ON statement is used to GOTO one of several given line-
numbers, depending upon the value of a variable. The value of the
variables can range from zero through the number of lines given. If the
value is a non-integer, the fractional portion is left off. For example, if
the variable value is 3, ON will GOTO the third line-number in the list.

If the value of the variable is negative, the BASIC error message
?ILLEGALQUANTITY occurs. If the number is zero, or greater than the
number of items in the list, the program just "ignores" the statement and
continues with the statement following the ON statement.

ON is really an underused variant of the IF. . .THEN. . . statement.
Instead of using a whole lot of IF statements each of which sends the
program to 1 specific line, ION- statement can replace a list of IF
statements. When you look at the first example you should notice that
the 1 ON statement replaces 4 IF. . .THEN. . . statements.

EXAMPLESof ON Statement:

ON -(A=7)-2"'(A=3)- 3*(A<3)-o4*(A>7)G.oTO 400,900,1000,100

ON X GOTO 100,130,180,220

ON X+3 GOSUB 9000,20,9000

100 ON NUM GOTO 150, 300, 320, 390

500 .oN SUM / 2 + 1 GOSUB 50, 80, 20

64 BASICLANGUAGEVOCABULARY

OPEN

TYPE:I/O Statement
FORMAT:OPEN <file-num>, [<device>] [,<address>]

[,"<file-name> [,<type>] [,<mode>]"]

Action: This statement OPENs a channel for input and/or output to a
peripheral device. However, you may NOT need all those ports for
every OPEN statement. Some OPEN statements require only 2 codes:

1) LOGICAL FILE NUMBER

2) DEVICE NUMBER

The <file-num> is the logical file number, which relates the OPEN,
CLOSE, CMD, GET#, INPUT#, and PRINT# statements to each other

and associates them with the file-name and the piece of equipment
being used. The logical file number can range from 1 to 255 and you
can assign it any number you want in that range.

NOTE: File numbers over 128 were really designed for other uses so it's good practice

to use only numbers below 127 for file numbers.

Each peripheral device (printer, disk drive, cassette) in the system has
its own number which it answers to. The <device> number is used with

OPEN to specify on which device the data file exists. Peripherals like
cassette decks, disk drives or printers also answer to several secondary
addresses. Think of these as codes which tell each device what opera-
tion to perform. The device logical file number is used with every GET#,
INPUT#, and PRINT#.

If the <device> number is left out the computer will automatically
assume that you want your information to be sent to and received from
the Datassette no, which is device number 1. The file-nome can also be

left out, but later on in your program, you can NOT call the file by name
if you have not already given it one. When you are storing files on cas-
sette tape, the computer will assume that the secondary <address> is
zero (0) if you omit the secondary address (a READoperation).

BASICLANGUAGEVOCABULARY 65

A secondary address value of one (1) OPENs cassette tape files for
writing. A secondary address value of two (2) causes an end-of-tape
marker to be written when the file is later closed. The end-of-tape
marker prevents accidentally reading past the end of data which results
in the BASIC error message ?DEVICENOT PRESENT.

For disk files, the secondary addresses 2 thru 14 are available for
data-files, but other numbers have special meanings in DOS commands.
You must use a secondary address when using your disk drive(s). (See
your disk drive manual for DOS command details.)

The <file-name> is a string of 1- 16 characters and is optional for
cassette or printer files. If the file <type> is left out the type of file will
automatically default to the Program file unless the <mode> is given.
Sequential files are OPENed for reading <mode>=R unless you specify
that files should be OPENed for writing <mode>=W is specified. A file
<type> can be used to OPEN an existing Relative file. Use RELfor
<type> with Relative files. Relative and Sequential files are for disk
only.

If you try to access a file before it is OPENed the BASIC error message
?FILENOT OPEN will occur. If you try to OPEN a file for reading which
does not exist the BASIC error message ?FILENOTFOUNDwilloccur. If
a file is OPENed to disk for writing and the file-name already exists, the
DOS error message FILEEXISTSoccurs. There is no check of this type
available for tape files, so be sure that the tape is properly positioned or
you might accidentally write over some data that had previously been
SAVEd. If a file is OPENed that is already OPEN, the BASIC error mes-
sage FILEOPEN occurs. (See Printer Manual for further details.)

66 BASIC LANGUAGE VOCABULARY

EXAMPLESof OPEN Statements:

10 OPEN 2, a, 4 "DISK-OUTPUT,
SEQ,W"

10 OPEN 1, 1, 2, "TAPE-WRITE"

10 OPEN 50, °

10 OPEN 12, 3

10 OPEN 130, 4

10 OPEN 1,1,0, "NAME"

10 OPEN 1,1,1, "NAME"

10 OPEN 1,2,0, CHR$ (10)

10 OPEN 1,4,0, "STRING"

10 OPEN 1,4,7, "STRING"

10 OPEN 1,5,7, "STRING"

10 OPEN 1,a, 15, "COMMAND"

(Opens sequential file on disk)

(Write End-of-File on Close)

(Keyboard input)

(Screen output)

(Printer output)

(Read from cassette)

(Write to cassette)

(Open channel to RS-232 device)

(Send upper case/graphics to

the printer)

(Send upper/lower case to

printer)

(Send upper/lower case to

printer with device # 5)
(Send a command to disk)

BASIC LANGUAGE VOCABULARY 67

OR

TYPE: Logical Operator
FORMAT: <operand> OR <operand>

Adion: Just as the relational operators can be used to make decisions
egarding program flow, logical operators can connect two or more re-

.ations and return a true or false value which can then be used in a

decision. When used in calculations, the logical OR gives you a bit result
of 1 if the corre~ponding bit of either or both operands is 1. This will
produce an integer as a result depending on the values of the operands.
When used in comparisons the logical OR operator is also used to link
two expressions into a single compound expression. If either of the ex-
pressions are true, the combined expression value is true (-1). In the
first example below if AA is equal to BB OR if XX is 20, the expression is
true.

Logical operators work by converting their operands to 16-bit, signed,
two's complement integers in the range of -32768 to +32767. If the
operands are not in the range an error message results. Each bit of the
result is determined by the corresponding bits in the two operands.

EXAMPLES of OR Operator:

100 IF (AA = BB) OR (XX = 20)THEN.. . .

230 KK% = 64 OR 32: PRINT KK% (You typed this with a bit
value of 1000000 for 64

and 100000 for 32)

96 (The computer responded
with bit value 1100000.

1100000=96.)

68 BASIC LANGUAGE VOCABULARY

I

PEEK

TYPE: Integer Function
FORMAT: PEEK«numeric»

Action: Returns an integer in the range of 0 to 255, which is read
from a memory location. The <numeric> expression is a memory loca-
tion which must be in the range of 0 to 65535. If it isn't then the BASIC
error message ?ILLEGALQUANTITY occurs.

EXAMPLESof PEEK Function:

10 PRINT PEEK(53280) AND 15 (Returns value of screen
border color)
(Returns address of BASIC
variable table)

5 A% =PEEK(45)+PEEK(46)*256

POKE

TYPE:Statement-
FORMAT:POKE<location>, <value>

Action: The POKE statement is used to write a one-byte (8-bits) binary
value into a given memory location or input/output register. The
<location> is an arithmetic expression which must equal a value in the
range of 0 to 65535. The <value> is an expression which can be re-

duced to an integer value of 0 to 255. If either value is out of its respec-
tive range, the BASIC error message ?ILLEGALQUANTITY occurs.

The POKE statement and PEEKstatement (which is a built-in function

that looks at a memory location) are useful for data storage, controlling
graphics displays or sound generation, loading assembly language sub-
routines, and passing arguments and results to and from assembly lan-
guage subroutines. In addition, Operating System parameters can be
examined using PEEKstatements or changed and manipulated using
POKE statements. A complete memory map of useful locations is given
in Appendix G.

BASIC LANGUAGE VOCABULARY 69

EXAMPLESof POKE Statement:

POKE 1024, 1
POKE 2040, PTR
10 POKE RED, 32
20 POKE 36879, 8
2050 POKE A, B

(Puts' an UAU at position 1 on the screen)

(Updates Sprite' #0 data pointer)

POS

TYPE: Integer Function
FORMAT:POS «dummy»

Adion: Tells you the current cursor position which, of course, is in the
range of 0 (leftmost character) though position 79 on an80-character
logical screen line. Since the Commodore 64 has a 40-column screen,
any position from 40 through 79 will refer to the second screen line. The
dummy argument is ignored.

EXAMPLEof POS Fundion:

1000 IF POS(O) > 38,'THEN PRINT'CHR$(13)

PRINT

TYPE: Statement
FORMAT: PRINT [<variable>] [<,/;><variable>]

Adion: The PRINT statement is normally used to write data items to
the screen. However, the CMD,statement may be used to re-direct,that
output to any 'other device in the system. The <variable(s» in the
output-list are expressions of any type. If no output-list is present, a
blank line is printed. The position of each printed item is determined by
the punctuation used to separate items in the output-list.

The punctuation characters that you can use are blanks, commas, or
semicolons. The SO-character logical screen line is divided into 8 print

zones of 10 spaces each. In the list of expressions, a comma causes the
next value to be printed at the ,beginning of the next zone. A semicolon
causes the next value to be printed immediately following the previous
value. However, there are two exceptions to this rule:

70 BASIC LANGUAGE VOCABULARY

1) Numeric items are followed by an added space.
2) Positive numbers have a space preceding them.
When you use blanks or no punctuation between string constants or

variable names it has the same effect as a semicolon. However, blanks
between a string and a numeric item or between two numeric items will
stop output without printing the second item.

If a comma or a semicolon is at the end of the output-list, the next
PRINTstatement begins printing on the same line, and spaced accord-
ingly. If no punctuation finishes the list, a carriage-return and a line-
feed are printed at-the end of the data. The next PRINT statement will
begin on the next line. If your output is directed to the screen and the
data printed is longer than 40 columns, the output is continued on the
next screen line.

There is no statement in BASIC with more variety than the PRINT
statement. There are so many symbols, functions, and parameters
associated with this statement that it might almost be considered as a
langoage of its own within BASIC; a language specially designed for
writing on the screen.

EXAMPLESof PRINT Statement:

1)

5 X = 5

10 PRINT -5*X, X-5, X+5, Xi 5

-25 o 10 3125

2)

5 X=9

10 PRINT X;"SQUARED IS";X*X;"AND";

20 PRINT X "CUBED IS" X i 3

9 SQUARED IS 81 AND 9 CUBED IS 729

3)

90 AA$="ALPHA":BB$="BAKER": CC$="CHARLIE":DD$="DOG":
EE$="ECHO"

100 PRINT AABB;CC$ DD$,EE$

ALPHABAKERCHARLIEDOG ECHO

BASIC LANGUAGE VOCABULARY 71

Quote Mode

Once the quote mark (1IIIiI'1J,) is typed, the cursor controls stop
operating and start displaying reversed characters which actually stand
for the cursor control you are hitting. This allows you to program these
cursor controls, because once the text inside the quotes is PRINTed they
perform their functions. The ... key is the only cursor control
not affected by "quote mode."

1. Cursor Movement

The cursor controls which can be "programmed" in quote mode are:

CLR/HOME

CLR/HOME

11 CRSR 11

11 CRSR11

APPEARS AS

II
(J
II
o
II
D

If you wanted the word HELLO to PRINTdiagonally from the upper left
corner of the screen, you would type:

PRINT" _111:...:1111','_ H 11.1I:1"1:.~1 E II.II:~:.II L 11.1I:1,"I:.~1L I~.II'I."I:.II 0"

which would appear as:

PRINT" II H 11 E 11 L 11 L 11 0"
2. Reverse Characters

Holding down the ami key and hitting II will cause II to ap-
pear inside the quotes. This will make all characters start printing in
reverse video (like a negative of a picture). To end the reverse printing

hit 111I II ,which prints a g or else PRINT a .:1:11111:11.(CHR$(13».
(Just ending the PRINT statement without a semicolon or comma will
take care of this.)

3. Color Controls

Holding down the 111I key or [I key with any of the 8 color keys
will make a special reversed character appear in the quotes. When the
character is PRINTed, then the color change will occur.

72 BASIC LANGUAGE VOCABULARY

Ifyou wanted to PRINTthe word HELLO in cyan and the word THERE
in white, type:

PRINT" ami. HELLO .. II THERE"

which would appear as:

PRINT "~ HELLO . THERE"

4. Insert Mode

The spaces created by using the" key have some of the same
characteristics as quote mode. The cursor controls and color controls
show up as reversed characters. The only difference is in the "'and

E8 ' which performs its normal function even in quote mode, now

BASIC LANGUAGE VOCABULARY 73

KEY COLOR APPEARSAS

lEI. Black .
lEI II White II
IIDII Red .
lEI II Cyan

lEI II Purple IJ
&1111 Green n
&11. Blue II
lEI II Yellow iii

[lB Orange 0
[III Brown .[III Light Red
till Grey 1 .
[III Grey 2 C
[III Light Green II
[I. Light Blue 0
[III Grey 3

....

creates the a . And 11II ' which created a special character in
quote mode, inserts spaces normally.

Because of this, it is possible to create a PRINTstatement containing
DEletes, which cannot be PRINTed in quote mode. Here is an example
of how this is done:

which displays as

10 PRINT"HEllO aa P"

When the above line is RUN, the word displayed will be HelP, be-
cause the last two letters are deleted and the P is put in their place.

WARNING:The DELeteswill work when LiSTing as well as PRINTing, so editing a
line with these characters will be difficult.

The "insert mode" condition is ended when the _:1:1111:11_

(or EIII _:1:1111:11_) key is hit, or when as many characters have
been typed as spaces were inserted.

5. Other Special Characters

There are some other characters that can be PRINTed for special
functions, although they are not easily available from the keyboard. In
order to get these into quotes, you must leave empty spaces for them in

the line, hit _:1:1111:11_or EIII _:1:1111:11_, and go back to the

spaces with the cursor controls. Now you must hit ami 8:&'..-r.'J/.
to start typing reversed characters, and type the keys shown below:

Function

BIll _:1;1111:11-
switch to lower case

switch to upper case

disable case-switching keys

enable case-switching keys

Type
IDIIiI
II
EIII.a

II
II

AppearsAs.
II..a

74 BASICLANGUAGE VOCABULARY

The lID .WIIII~j/. will work in the liSTing as well as PRINT-
ing, so editing will be almost impossible if this character is used. The
LiSTing will also look very strange.

PRINT#

TYPE: I/O Statement
FORMAT: PRINT#<file-number> [<variable>]

[<,/;><variable>]

Adions: The PRINT# statement is used to write data items to a logical
file. It must use the same number used to OPEN the file. Output goes to
the device-number used in the OPEN statement. The <variable> ex-

pressions in the output-list can be of any type. The punctuation char-
acters between items are the same as with the PRINT statement and

they can be used in the same ways. The effects of punctuation are
different in two significant respects.

When PRINT# is used with tape files, the comma, instead of spacing
by print zones, has the same effect as a semicolon. Therefore, whether
blanks, commas, semicolons or no punctuation characters are used be-
tween data items, the effect on spacing is the same. The data items are
written as a continuous stream of characters. Numeric items are fol-

lowed by a space and, if positive, are preceded by a space.
If no punctuation finishes the list, a carriage-return and a line-feed

are written at the end of the data. If a comma or semicolon terminates

the output-list, the carriage-return and line-feed are suppressed. Re-
gardless of the punctuation, the next PRINT# statement begins output in
the next available character position. The line-feed will act as a stop
when using the INPUT# statement, leaving an empty variable when the
next INPUT# is executed. The line-feed can be suppressed or compen-
sated for as shown in the examples below.

The easiest way to write more than one variable to a file on tape or
disk is to set a string variable to CHR$(13), and use that string in be-
tween all the other variables when writing the file.

BASIC LANGUAGE VOCABULARY 75

EXAMPLESof PRINT# Statement:

1)

10 OPEN 1,1,1, "TAPEFILE"
20 R$ = CHR$(13)
30 PRINT# 1,1iR$i2iR$i3iR$i4iR$i5
40 PRINT# 1,6
50 PRINT# 1,7

2)

10 CO$=CHR$(44): CR$=CHR$(13)
20 PRINT#l, "AAA"CO$"BBB",

"CCC" i"DDD"i"EEE"CR$
"FFF"CR$i

30 INPUT#l, A$,BCDE$,F$

3)

5 CR$=CHR$(13)
10 PRINT#2, "AAA"iCR$i"BBB"
20 PRINT#2, "CCC"i

30 INPUT#2, A$,B$,DUMMY$,C$

READ

(By Changing the CHR$(13) to
CHR$(44) you put a "," between
each variable. CHR$(59) would
put a ";" between each
variable.)

AAA,BBB CCCDDDEEE
(carriage return)
FFF(carriage return)

(10 blanks) AAA
BBB
(10 blanks)CCC

TYPE: Statement
FORMAT: READ <variable> [,<variable>]

Adion: The READstatement is used to fill variable names from con-

stants in DATAstatements. The data actually read must agree with the
variable types specified or the BASIC error message ?SYNTAX ERROR
will result. Variables in the DATAinput-list must be separated by com-
mas.

A single READstatement can access one or more DATA statements,
which will be accessed in order (see DATA),or several READstatements
can access the same DATAstatement. If more READstatements are exe-

cuted than the number of elements in DATAst~tements(s) in the pro-

76 BASIC LANGUAGE VOCABULARY

gram, the BASIC error message ?OUTOFDATA is printed. If the
number of variables specified is fewer ,than the number of elements in

the DATA statement(s), subsequent READ statements will continue read-
ing at the next data -element. (See RESTORE.)

"NOTE: The ?SYNTAX'ERROR will appear with the line number from the OATA state-
ment, NOT,the READ statement.

EXAMPLESof READ Statement:

no READA,B,C$
120 DATA l,2,HELLO

100 fOR X=1 TO 10: READA(X):NEXT

200 DATA3.08,5.19, 3.12, 3.98, 4.24
210 DATA5.08, 5.55, 4.00, 3.16, 3.37

(Fills array items (line 1) in order of constants shown (line 5»

1 READ CITY$,STATE$,ZIP

5 DATA ,DENVER;COLORADO, 80211

REM

TYPE: Statement
F,ORMAT:REM[<remark>]

,Adion: The REMstatement makes your programs more easily under-
stood when LISTed.It's a reminder to yourself to tell you what you had in
mind when you were writing each section of the program. For instance,
you might want to remember what a variable is used for, or some other
useful information. The REMark can be any text, word, or character
including the colon (:) or BASIC keywords. -

The REMstatement and anything following it on the same line-number
are ignored by BASIC, but REMarks are printed exactly as entered when
the program is listed. A REMstatement can be referred to by a GOTO or
GOSUB'statement, and the execution of the program will continue with
the next higher program line having executable statements.

BASIC LANGUAGE VOCABULARY 77

EXAMPLES of REMStatement:

10 REM CALCULATE AVERAGE VELOCITY

20 FOR X=l TO 20 :REM LOOP FOR TWENTY VALUES

30 SUM=SUM + VEL(X):NEXT
40 AVG=5UM/20

RESTORE

TYPE: Statement
FORMAT:RESTORE

Adion: BASIC maintains an internal pointer to the next DATA constant

to be READ. This pointer can be reset to the first DATA constant in a
program using the RESTORE statement. The RESTORE statement can be

used anywhere in the program to begin re-READing DATA.

EXAMPLESof RESTORE Statement:

100 FOR X=l TO 10: READ A(X): NEXT
200 RESTORE

300 FOR Y=l TO 10: READ B(Y): NEXT

4000 DATA3.08, 5.19, 3.12, 3.98, 4.24
4100 DATA5.08, 5.55, 4.00, 3.16, 3.37

(Fills the two arrays with identical data)

10 DATA1,2,3,4
20 DATA5,6,7,8
30 FOR L=l TO 8
40 READ A: PRINT A
50 NEXT
60 RESTORE
70 FOR L=l TO 8

80 READ A: PRINT A
90 NEXT

78 BASICLANGUAGEVOCABULARY

RETURN

TYPE: Statement
FORMAT: RETURN

Action: The RETURN statement is used to exit from a subroutine called

for by a GOSUB statement. RETURN restarts the rest of your program at

the next executable statement following the GOSUB. If you are nesting
subroutines, each GOSUB must be paired with at least one RETURN
statement. A subroutine can contain any number of RETURN statements,
but the first one encountered will exit the subroutine.

EXAMPLEof RETURNStatement:

10 PRINT "THIS IS THE PROGRAM"
20 GOSU B 1000
30 PRINT "PROGRAM CONTINUES"
40 GOSUB 1000

.50 PRINT "MORE PROGRAM"
60 END
1000 PRINT "THIS IS THE G05UB":RETURN

RIGHT$

TYPE: String Function
FORMAT:RIGHT$ «string>, <numeric»

Action: The RIGHT$ function returns a sub-string taken from the right-

most end of the <string> argument. The length of the sub-string is

defined by the <numeric> argument which can be any integer in the
range of 0 to 255. If the value of the numeric expression is zero, then a

null string ("") is returned. If the value you give in the <numeric>
argument is greater than the length of the <string> then the entire

string is returned.

EXAMPLE of RIGHT$ Function:

10 .MSG$ = "COMMODORE COMPUTERS"

20 PRINT RIGHT$(MSG$,9)
RUN

COMPUTERS

BASIC LANGUAGE VOCABULARY 79

RND

TYPE: Floating-Point Function
FORMAT: RND «numeric»

Adion: RND creates a floating-point random from 0.0 to 1.0. The
computer generates a sequence of random numbers by performing cal-
culations on a starting number, which in computer jargon is called a
seed. The RND function is seeded on system power-up. The <numeric>
argument is a dummy, except for its sign '(positive, zero, or negative).,

If the <numeric> argument is positive, the same "pseudorandom"
sequence of numbers is returned, starting from a given seed ,value. Dif-
ferent number sequences will result from different seeds, but any se-
quence is repeatable by starting from the same seed number. Having a
known sequence of "random" numbers is useful in testing programs.

If you choose a <numeric> argument of zero, then RND generates a
number directly from a free-running hardware clock (the system "jiffy
clock"). Negative arguments cause the' RND function to be re-seeded
with each function call.

EXAMPLESof RND' Fundion:

220 PRINT INT(RND(O)*SO) (Return random integers
0-49)

100 X=INT(RND(1)*6)+INT(RND(1)*6)+2 (Simulates 2 dice)

100 X=INT(RND(1)*1000)+r (Random integers from
1-1000)

100 X=INT(RND(1)*lS0)+100 (Random numbers from
100-249)

100 X=RND(1)*(U-L)+L (Random numbers between

upper (U) and lower
(L) limits)

BO BASIC LANGUAGE VOCABULARY

RUN

TYPE: Command
FORMAT: RUN [<line-number>]

Action: The system command RUN is used to start the program cur-
rently in memory. The RUN command causes an implied CLR operation
to be performed before starting the program. You can avoid the CleaR-
ing operation by using CONT or GOTO to restart a program instead of
RUN. If a <line-number> is specified, your program will start on that
line. Otherwise, the RUN command starts at first line of the program.
The RUN command can also be used within a program. If the <line-
number> you specify doesn't exist, the BASIC error message UNDEF'D
STATEMENToccurs.

A RUNning program stops and BASIC returns to direct mode when an
END or STOP statement is reached, when the last line of the program is
finished, or when a BASIC error occurs during execution.

EXAMPLESof RUN Command:

RUN
RUN 500
RUN X

(Starts at first line of program)
(Starts at line-number 500)
(Starts at line X, or UNDEF'D STATEMENTERROR
if there is no line X)

SAVE

TYPE:Command
FORMAT:SAVE["<file-name>"] [,<device-number>]

[,<address>]

Action: The SAVEcommand is used to store the program that is cur-
rently in memory onto a tape or diskette file. The program being SAVEd
is only affected by the command while the SAVEis happening. The pro-
gram remains in the current computer memory even after the SAVEop-
eration is completed until you put something else there by using another
command. The file type will be "prg" (program). If the <device-

number> is left out, then the C64 will automatically assume that you
want the program saved on cassette, device number 1. If the <device-
number> is an <8>, then the program is written onto disk. The SAVE

BASIC LANGUAGE VOCABULARY B1

statement can be used in your programs and execution will continue
with the next statement after the SAVEis completed.

Programs on tape are automatically stored twice, so that your Com-
modore 64 can check for errors when lOADing the program back in.
When saving programs to tape, the <file-name> and secondary <ad-
dress> are optional. But following a SAVEwith a program name in
quotes (" ") or by a string variable (---$) helps your Commodore 64 find
each program more easily. If the file-name is left out it can NOT be
lOADed by name later on.

A secondary address of 1 will tell the KERNAl to lOAD the tape at a
later time, with the program currently in memory instead of the normal
2048 location. A secondary address of 2 will cause an end-of-tape
marker to follow the program. A secondary address of 3 combines both
functions.

When saving programs onto a disk, the <file-name> must be pre-
sent.

EXAMPLESof SAVE Command:

SAVE (Write to tape without a name)

SAVE"AlPHA", (Store on tape as file-name "alpha")

(Store "alpha" with end-of-tape marker)SAVE"ALPHA", 1, 2

SAVE"FUN.DISK",8

SAVEA$

(SAVESon disk (device 8 is the disk»

(Store on tape with the name A$)

10 SAVE"HI" (SAVEs program and then move to next

progra.m line)

SAVE "ME", 1,3 (Stores at same memory location and
puts an end-of-tape marker on)

82 BASICLANGUAGEVOCABULARY

SGN

TYPE: Integer Function
FORMAT:SGN «numeric»

Action: SGN gives you an integer value depending upon the sign"'of
the <numeric> argument. If the argument is positive the result is 1, if
zero the result is also 0, if negative the result is -1.

EXAMPLEof SGN Function:

90 ON SGN(DV)+2 GOTO 100, 200, 300
(jump to 100 if DV=negative, 200 if DV=O, 300 if DV=positive)

SIN

TYPE: Floating-Point Function
FORMAT:SIN «numeric»

Action: SIN gives you the sine of the <numeric> argument, in ra-
dians. The value of COS(x) is equal to SIN(x+3.1415926512).

EXAMPLEof SIN Function:

235 AA = SIN(1.5): PRINT AA
.997494987

SPC

TYPE: Special Function
FORMAT:SPC «numeric»

Action: The SPC function is used to control the formatting of data, as
either an output to the screen or into a logical file. The number of
SPaCes given by the <numeric> argument are printed, starting at the
first available position. For screen or tape files the value of the argument
is in the range of 0 to 255 and for disk files up to 254. For printer files,
an automatic carriage-return and line-feed will be performed by the
printer if a SPaCe is printed in the last character position of a line. No
SPaCes are printed on the following line.

BASIC lANGUAGE VOCABUlARY 83

EXAMPLEof SPC Function:

10 PRINT "RIGHT "; "HERE &";
20 PRINT SPC(5) "OVER" SPC(14) "THERE"
RUN

RIGHT HERE & OVER THERE

SQR

TYPE: Floating-Point Function.
FORMAT:SQR «numeric»

Action: SQR gives you the value of the SQuare Root of the
<numeric> argument. The value of the argument must not be negative,
or the BASIC error message ?ILLEGALQUANTITY will happen.

EXAMPLEof SQR Function:

FOR J = 2 TO 5: PRINT J*5, SQR(J * 5): NEXT

10 3.16227766
15 3.87298335
20 4.47213595
25 5

READY
)

STATUS

TYPE: Integer Function
FORMAT:STATUS

Action: Returns a completion STATUSfor the last input/output opera-

tion which was performed on an open file. The STATUS can be read
from any peripheral device. The STATUS(or simply ST) keyword is a

84 BASICLANGUAGEVOCABULARY

system defined variable-name into which the KERNAL puts the STATUSof

'1/0 operations. A table of STATUS code values for tape, printer, disk
and RS-232 file operations is shown .below:

EXAMPLESof STATUSFunction:

. 10 OPEN 1, 4: OPEN 2, 8, 4, "MA5TERfILE,5EQ,W"
20 GOSUB 100: REM CHECK STATUS
30 INPUT#2, A$, B, C

_) 40 If STATUSAND 64 THEN 80: REM HANDLE END-Of-fiLE
50 GOSUB 100: REM CHECK STATUS

60 PRINT#1, A$,B; C
70 GOTO 20
80 CLOSE1: CLOSE2
90 GOSUB 100: END
100 IF ST > 0 THEN 9000: REM-HANDLEFILE I/O ERROR
11 0 RETU RN

BASIC LANGUAGE VOCABULARY 85

5T Bit 5T Numeric Cassette Serial Tape Verify
Position Value Read Bus R/w + Load

0 1 time out
write

1 2 :time out

.read

2 4 short block short block

3 8 .Iong block long block

4 16 unrecoverable any mismatch
read 'error

5 32 checksum checksum
error error

6 64 end of file EOI

7 -128 end of tape device not end of tape

present

STEP

TYPE: Statement
FORMAT:[STEP <expression>]

Action: The optional STEP keyword follows the <end-value> expres-
sion in a FOR statement. It defines an increment value for the loop
counter variable. Any value can be used as the STEP increment. Of
course, a STEPvalue of zero will loop forever. If the STEPkeyword is left
out, the increment value will be + 1. When the NEXTstatement in a FOR
loop is reached, the STEPincrement happens. Then the counter is tested
against the end-value to see if the loop is finished. (See FOR statement
for more information.)

NOTE: The STEP value can NOT be changed once it's in the loop.

EXAMPLESof STEP Statement:

25 FOR XX = 2 TO 20 STEP 2 (Loop repeats 10.times)

35 FOR ZZ. = 0 TO -20 STEP-2 (Loop' repeats 11 times}

STOP
TYPE:Statement
FORMAT: STOP

Adion: The STOP statement is used to halt execution of the current

program and return to direct mode. Typing the .:m~rA""I.j:ll key on the
keyboard has the same effect as a STOP statement. The BASIC error
message ?BREAK IN LINE nnnnn is displayed on the screen, followed
by READY. The "nnnnn" is the line-number where the STOP occurs. Any
open files remain. open and all variables are preserved and can be
examined. The program can be restarted by using CONT or GOTO
statements.

EXAMPLESof STOP Statement:

10 INPUT#l, AA, BB, CC
20 IF AA = BBAND BB = CC THENSTOP
30 STOP

(If the variable AA is -1 and BB is equal to CC then:)
BREAKIN LINE 20

BREAKIN LINE 30 (For any other data values)

86 BASIC LANGUAGE VOCABULARY

STR$

TYPE: String Function
FORMAT:STR$ (< numeric»

Adion: STR$.gives you the STRing representation of the numeric value
of the argument. When the STR$ value is converted to each variable
represented in the <numeric> argument, any number shown is fol-
lowed by a space and, if it's positive, it is also preceded by a space.

EXAMPLEof STR$ Function:

100 FLT = 1.5E4: ALPHA$ = STR$(FLT)
110 PRINT FLT,ALPHA$

15000 15000

SYS

TYPE: Statement
FORMAT:SYS <memory-location>

Action: This is the most common way to mix a BASIC program with a
machine language program. The machine language program begins at
the location given in the SYS statement. The system command SYS is
used in either direct or program mode to transfer control of the micro-
processor to an existing machine language program in memory. The
memory-location given is by numeric expression and can be anywhere in
memory, RAM or ROM.

When you're using- the SYS statement you must end that section of
machine language code with an RTS(ReTurn from Subroutine) instruction
so that when the machine language program is finished, the BASIC
execution will resume with the statement following the SYS command.

EXAMPLESof SYS Statement:

SYS 64738 (Jump to System Cold Start in ROM)

10 POKE 4400,96: SYS 4400 (Goes to machine code location 4400

and returns immediately)

BASIC LANGUAGE VOCABULARY 87

TAB

TYPE: Special Function
FORMAT:TAB «numeric»

Action: The TAB function moves :the cursor to a relative SPC move

position on the screen given by the <numeric> argument, starting with
the left-most position of the current line. The value of the argument can
range from 0 to 255. The TAB function should only be used with the
PRINT statement, since it has no effect if used with PRINT# to a logical
file.

EXAMPLEof TAB Function:

100 PRINT "NAME" TAB(25) "AMOUNT": PRINT
110 INPUT#l, NAM$, AMT$
120 PRINT NAM$ TAB(25) AMT$

NAME AMOUNT

G.T. JONES 25.

TAN

TYPE: Floating-Point Function
FORMAT:TAN «numeric»

Action: Returns the tangent of the value of the <numeric> expression
in radians. If the TANfunction overflows, the BASIC error message ?DI-
VISION BY ZERO is displayed.

EXAMPLEof TAN Function:

10 XX = .785398163: YY = TAN(XX)::PRINTYY
1

88 BASIC LANGUAGE VOCABULARY

TIME

TYPE: Numeric Function
FORMAT: TI

Action: The TI function reads the interval TImer. This type of "clock" is
called a "jiffy clock." The "jiffy clock" value is set at zero (initialized)
when you power-up the system. This 1/60 second interval timer is turned
off during tape I/O.

EXAMPLEof TI Function:

10 PRINT TI/60 "SECONDS SINCE POWER UP"

TlME$

TYPE: String Function
FORMAT:TI$

Action: The TI$ timer looks and works like a real clock as long as your
system is powered-on. The hardware interval timer (or jiffy clock) is read
and used to update the value of TI$, which will give you a Time $tring of
six characters in hours, minutes and seconds. The TI$ timer can also be

assigned an arbitrary starting point similar to the way you set your
wristwatch. The value of TI$ is not accurate after tape I/O.

EXAMPLEof 11$ Function:

1 TI$ = "000000": FOR J=l TO 10000: NEXT: PRINT TI$

000011

BASIC LANGUAGE VOCABULARY 89

USR

TYPE: Floating-Point Function
FORMAT:USR «numeric»

Adion: The USR function jumps to a User callable machine language
SubRoutine which has its starting address pointed to by the contents of
memory locations 785-786. The starting address is established before
calling the USR function by using POKE statements to set up locations
785-786. Unless POKEstatements are used, locations 785-786 will give
you an ?ILLEGALQUANTITY error message.

The value of the <numeric> argument is stored in the floating-point
accumulator starting at location 97, for access by the Assembler code,
and the result of the USR function is the value which ends up there when
the subroutine returns to BASIC.

EXAMPLESof USR Fundion:

10 B = T * SIN(Y)
20 C = USR (B/2)
30 D = USR (B/3)

VAL

TYPE: Numeric Function
FORMAT:VAL«string»

Action: Returns a numeric VALue representing the data in the
<string> argument. If the first non-blank character of the string is not a
plus sign (+), minus sign (-), or a digit the VALue returned is zero.
String conversion is finished when the end of the string or any non-digit
character is found (except decimal point or exponential e).

EXAMPLEof VALFundion:

10 INPUT#1, NAM$, ZIP$
20 IF VAL(ZIP$)< 19400 OR VAL(ZIP$)> 96699

THEN PRINT NAM$ TAB(25)"GREATERPHILADELPHIA"

90 BASICLANGUAGEVOCABULARY

VERIFY

TYPE: Command
FORMAT:VERIFY[//<file-name>//] [,<device>]

Adion: The VERIFYcommand is used, in direct or program mode, to
compare the contents of a BASIC program file on tape or disk with the
program currently in memory. VERIFY is normally used right after a
SAVE, to make sure that the program was stored correctly on tape or
disk.

If the <device> number is left out, the program is assumed to be on
the Datassette™ which is device number 1. For tape files, if the <file-
name> is left out, the next program found on the tape will be com-
pared. For disk files (device number 8), the file-name must be present. If
any differences in program text are found, the BASIC error message
?VERIFYERRORis displayed.

A program name can be given either in quotes (" ") or as a string
variable. VERIFYis also used to position a tape just past the last pro-
gram, so that a new program can be added to the tape without acci-
dentally writing over another program.

EXAMPLESof VERIFYCommand:

VERIFY
PRESSPLAYON TAPE
OK
SEARCHING
FOUND <FilENAME>
VERIFYING

(Checks 1st program on tape)

9000 SAVE"ME",S:
9010 VERIFY"ME"iS (looks at device 8 for the program)

BASIC LANGUAGE VOCABULARY 91

WAIT

TYPE: Statement
FORMAT: WAIT <location>, <mask-1> [,<mask-2>]

Action: The WAIT statement causes program execution to be sus-

pended until a given memory address recognizes a specified bit pattern.

In other words WAIT can be used to halt the program until some external
event has occurred. This is done by monitoring the status of bits in the

input/output registers. The data items used with WAIT can be any
numeric expressions, but they will be converted to integer values.

For most programmers, this statement should never be used. It causes

the program to halt until a specific memory location's bits change in a
specific way. This is used for certain I/O operations and almost nothing
else.

The WAIT statement takes the value in the memory location and per-
forms a logical AND operation with the value in mask-I. If there is a

mask-2 in the statement, the result of the first operation is exclusive-

ORed with mask-2. In other words mask-I "filters out" any bits that you
don't want to test. Where the bit is 0 in mask-I, the corresponding bit in
the result will always be O. The mask-2 value flips any bits, so that you
can test for an off condition as well as an on condition. Any bits being

tested for a 0 should have a 1 in the corresponding position in mask-2.

If corresponding bits of the <mask-I> and <mask-2> operands differ,

the exclusive-OR operation gives a bit result of 1. If corresponding bits get

the same result the bit is O. It is possible to enter an infinite pause with the

WAIT statement, in which case the l:mlrj,,"t1l1:.11and .iI:I."tIlI:j8 keys

can be used to recover. Hold down the I:Ullrj,,-I..11I key and then

press .:j:l."tltl:j:ll. The first example below WAITs until a key is pressed on
the tape unit to continue with the program. The second example will WAIT

until a sprite collides with the screen background.

EXAMPLESof WAITStatement:

WAIT I, 32, 32
WAIT 53273, 6, 6
WAIT 36868, 144, 16 (144 & 16 are masks. 144=10010000 in

binary and 16=10000 in binary. The
WAITstatement will halt the pro-
gram until the 128 bit is on or
until the 16 bit is off)

92 BASIC LANGUAGE VOCABULARY

THE COMMODORE 64 KEYBOARD
AND FEATURES

The Operating System has a ten-character keyboard "buffer" that is
used to hold incoming keystrokes until they can be processed. This buf-
fer, or queue, holds keystrokes in the order in which they occur so that
the first one put into the queue is the first one processed. For example; if
a second keystroke occurs before the first. can be processed, the second
character is stored in the buffer, while processing of the first character
continues. After the program has finished with the first character, the
keyboard buffer is examined for more data, and the second keystroke
processed. Without this buffer, rapid keyboard input would occasionally
drop characters.

In other words, the keyboard buffer allows you to "type-ahead!' of
the system, which means it calT anticipate responses to INPUT prompts
or GET statements. As you type on the keys their character values are
lined up, single-file (queued) into the buffer to wait for processing in the
order the keys were struck. This type-ahead feature can give you an
occasional problem where an accidental keystroke causes a program to.
fetch an incorrect character from the buffer.

Normally, incorrect keystrokes present no problem, since they can be
corrected by the CuRSoR-Left [311~i-"l~_ or DELete .I/I.'IIJA'I~. keys
and then retyping the character, and the corrections will be processed
before a following carriage-return. However, if you press the .:I:lIII:~.
key, no corrective action is possible, since all characters in the buffer up
to and including the carriage-return will be processed before any cor-
rections. This situation can be avoided by using a loop to empty the
keyboard buffer before reading an intended response:

10 GET JUNK$: IF JUNK$ <>"" THEN 10: REM EMPTY THE
KEYBOARDBUFFER

In addition to GET and INPUT, the keyboard can also be read using
PEEKto fetch from memory location 197 ($OOC5)the integer value of the

key currently being pressed. If no key is being held when the PEEKis
executed, a value of 64 is returned. The numeric keyboard values,
keyboard symbols and character equivalents (CHR$) are shown in Ap-
pendix C. The following example loops until a key is pressed then con-
verts the integer to a character value.

10 AA = PEEK(197): IF AA = 64 THEN 10

20 BB$ = CHR$(AA)

BASIC LANGUAGE VOCABULARY 93

The keyboard .is treated as a. set of switches organized into. a matrix
of 8 columns by 8 rows. The keyboard matrix is scanned for key
switch-closures by the KERNALusing the CIA #1 1/0 chip (MOS 6526
Complex Interface Adapter). Two CIA registers are used to perform the
scan: register #0 at location 56320 ($DCOO)for keyboard columns and
register #1 at location 56321 ($DC01) for keyboard rows.

Bits 0-7 of memory location 56320 correspond to the columns 0-7.
Bits 0-7 of memory location 56321 correspond to rows 0-7: By writing
column values in sequence, then reading row'values, the KERNALde-
codes the switch closures into the CHR$ (N) value of the key pressed.

Eight columns by eight. rows yields' 64 possible values. However, if you
first strike the ..' 11I3I or. GI keys or hold down
the EIDIiI' key and type a second character, additional values are
generated. This is because the KERNALdecodes these keys separately
and "remembers" when one of the control keys was pressed. The result
of the. keyboard scan is then placed in location 197.

Characters can also be written directly to the keyboard buffer at lo-
cations 631-640 using a POKE statement. These characters will be
.processed when the POKE is used to set a character count into location
198. These facts can be used .to :cause a series of direct-mode com-

mands to be executed automatically by printing the statements onto the
screen, putting carriage-returns into the boffer, and then setting the
character count. In the example below, the program will LIST itself to
the printer and then resume execution.

10 PRINT CHR$(147)"PRINT#1: CLOSE 1: GOTO 50"
20 POKE 631;19: POKE 632,13: POKE 633,13: POKE 198,3
30 OPEN 1,4: CMD1: LIST
40 END
50 REM PROGRAM RE-STARTSHERE

SCREEN EDITOR

The SCREEN EDITOR provides you with powerful and convenient
facilities for editing program text. Once a section of a program is listed
to the screen, the cursor keys and other special keys are used to move
around the screen so that you can make any appropriate changes, After,
making all the changes you want to a specific line-number of text, hit-
ting the .:~:lIm~/. key anywhere on the line, causes the SCREEN
EDITORto read the entire 80-character logical screen line.

.94 BASICLANGUAGEVOCABULARY

The text is then passed to the Interpreter to be tokenized and stored in
the program. The edited line replaces the old version of that line in
memory. An additional copy of any line of text can be created simply by
changing the line-number and pressing .:~:lII':U.~

If you use keyword abbreviations which cause a program line to ex-
ceed 80 character.s, the excess characters will be lost when that line is
edited, because the EDITORwill read only two physical screen lines. This
is also why using INPUT for more than a total of 80 characters is not-
possible. Thus, for all practical purposes, the length of a line of BASIC
text is limited to 80 characters as displayed on the screen.

Under certain conditions the SCREENEDITORtreats the cursor control

keys differently from their normal mode of handling. If the CuRSoR is
positioned to the right of an odd number of double-quote marks (") the
EDITORoperates in what is known as the QUOTE:-MODE.

In quote mode data characters are entered normally but the cursor
controls no longer move the CuRSoR, instead reversed characters are
displayed which actually stand for the cursor control being entered. The
same is true of the color control keys. This allows you to include cursor
and color controls inside string data items in progrgms. You will find that
this is a very important and powerful feature. That's because when the
text inside the quotes is printed to the screen it performs the cursor
positioning and color control functions automatically as port of the
string. An example of using cursor controls in strings is:

You type ~ 10 PRINT" A(R)(R)B(L)(L)(L)C(R)(R)D":REM(R)=CRSR

RIGHT, (L)=CRSR LEFT

Computer prints ~ AC BD

The _ key is the only cursor control NOT affected by quote
mode. Therefore, if an error is mode while keying in quote mode,
the (';;;;111:1."1:".key can't be used to back up and strike over the
error-even the 11II key produces a reverse video character. In-
stead, finish entering the line, and then, after hitting the .:~:lIII:~I.

key, you can edit the line normally. Another alternative, if no further
cursor-controls are needed in the string, is to press the I:mlrj,"tlll:l
and-:I:!."t",'I. keys which- will cancel QUOTE MODE. The cursor
control keys that you can use in strings are shown in Table 2-2.

BASIC LANGUAGE VOCABULARY 95

Table 2-2. Cursor Control Characters in QUOTEMODE

When you are NOT in quote mode, holding down the EDII key and
then pressing the INSerT .11II key shifts data to the right of the cur-
sor to open up space between two characters for entering data between
them. The Editor then begins operating in INSERT MODE until all of the
space opened up is filled.

The cursor controls and color controls again show as reversed char-
acters in insert mode. The only difference occurs on the DELete and

INSerT .I/"'U".I~. key. The _ instead of operating normally as in
the quote mode, now creates the reversed a . The 11III key,
which created a reverse character in quote mode, inserts spaces nor-
mally.

Ths means that a PRINT statement can be created, containing DE-
Letes, which can't be done in quote mode. The insert mode is cancelled
by pressing the .:I:lIII:U., ._ and .:I:lIII:U., or .:llIIr II.11I and

.:1:10'111:1:11keys. Or you can cancel the insert mode by filling all the
inserted spaces. An example of using DELcharacters in strings is:

10 PRINT "HEllO" ..ED P"
(Keystroke sequence shown above, appearance when listed below)
10 PRINT"HELP"

When the example is RUN, the word displayed will be HELP, because
the letters LO are deleted before the P is printed. The DELete character
in strings will work with LISTas well as PRINT. You can use this to "hide"
part or all of a line of text using this technique. However, trying to edit a
line with these characters will be difficult if not impossible.

96 BASIC LANGUAGE VOCABULARY

Control Key Appearance-
CRSR up 'fi1m8 0
CRSR down Em!) m
CRSR left - II
CRSR right EIIm II
CLR ... (J
HOME II
INST -- II

There are some other characters that can be printed for special func-
tions, although they are not easily available from the keyboard. In order
to get these into quotes, you must leave empty spaces for them in the
line, press .:I:lIII:U., and go back to edit the line. Now you hold down
the 11II (ConTRol) key and type _:&''''''''11I_ (ReVerSe-ON) to start

typing reversed characters. Type the keys as shown below:

Key Function
Shifted RETURN

Switch to upper/lower case

Switch to upper/graphics

Key Entered

.11
II.11

Appearance.
II.

Holding down the BIIiI key and hitting .:~:lIIJ:~I_ causes a
carriage-return and line-feed on the screen but does not end the string.
This works with LISTas well as PRINT, so editing will be almost impossi-
ble if this character is used. When output is switched to the printer via
the CMD statement, the reverse "N" character shifts the printer into its
upper-lower case character set and the BIIiI "N" shifts the printer
into the upper-case/graphics character set.

Reverse video characters can be included in strings by holding down

the ConTRol ami key and pressing ReVerSe III, causing a re-
versed R to appear inside the quotes. This will make all characters print
in reverse video (like a negative of a photograph). To end the reverse

printing, press ami and _:&'...,...11:1_ (ReVerSe OFF) by holding
down the ami key and typing the _:&' 1:1_ key, which prints a
reverse R. Numeric data can be printed in reverse video by first printing
a CHR$(18). Printing a CHR$(146) or a carriage-return will cancel re-
verse video output.

BASIC LANGUAGE VOCABULARY 97

