
Auxiliary Bits
	

Elizabeth Deal
(for the +4/C16, B Series, 1541, and 8050)

	
Malvern, PA

.4 and C16 Bits

These computers are miracles. What follows are some notes I have
which may well be unintelligible to the beginners, but can be of
use to someone familiar with other Commodore machines. The
User's manual is rather complete, so these are just additional
comments:

Character strings are handled differently than in previous ma-
chines: there is no such thing as pointers into a program. All
strings declared inside a program are copied to RAM (usually
hidden under ROM). There are no garbage collection delays.
Additionally, new functions can be done with the strings:

I. The first one is assignment statement with MID$ on the left. Yup,
you're seeing it correctly. It's now OK to code:

MID$(86.4.2). de •

This will change whatever was in positions 4 and S to be "de".
Can you see why strings can't live inside a program? Would be a
programming nightmare if they did.

2. INSTR function returns a position of one string within another,
so

!WAS(' xyz • , • y •)

returns 2. You can also specify a starting position for the search.
The old code

for' -1 tolen(aS): dx$ mict$(4.1. I)thennextj

is no longer needed. and the INSTR function is instantaneous!
Hurray to Commodore.

Tape is incompatible with other CBM machines. The connector is
different, but that's the small part. The timing is different. It seems
that the writing goes at about hall the speed of the previous units.
The code to accomplish tape writing and reading is enormous.
Reading is particularly difficult because the TED chip functions
differently: there is no such thing as detecting a negative transition
- all transitions have to and are being detected in software. The
screen is turned off to permit 1.7 mhz operation. Still. it is a slow
process.

Tape errors are funny. II you happen to position a tape to the very
tippy-end of a program you don't want to load, the computer
reports BREAK error (•30) and does not go on to look for the
program you do want. Using error trapping (TRAP statement exists
in the language!) is the way to go in program mode.

Generally, error numbers when used with tape are wrong. You
may get a DEVICE NOT PRESENT ERROR, when you think it
should be a FILE NOT FOUND ERROR. You invariably get BREAK
ERROR when the end-of-tape header has been read in. This
would be only a cosmetic nuisance, were it not for the fact that a
STOP-key also causes a BREAK error. It's hard to tell one from
another

There is lots of RAM in the machine. and one tends to play a lot of
hide-and-seek games in finding things. Some clues:

1 Page 4 contains various indirect routines that permit taking
bytes from ROM or RAM. These routines are used by BASIC.

2. In page 7, specifically at 87d7 is an equivalent routine for use by
the machine code monitor.

3. BASIC PEEK returns a byte from RAM. Machine Language
Monitor returns a byte from ROM. MLM normally saves only
RAM. you can't save ROM. BASIC SAVE normally saves RAM.
LOAD loads bytes into RAM, as you'd expect. Sometimes you
may wish to change the defaults. It can be done:

(a) To PEEK ROM from BASIC: modify a routine in page 4 (at
$0494) to ignore the store instruction:

poke1176,44 : now peek ROM : pokel 176,141

This is fairly safe, so long as you DO NOT WORK ANY STRINGS
BETWEEN THE TWO POKEI 176 INSTRUCTIONS. This, for in-
stance. is the only way you can get at the character generator ROM
from BASIC, as far as I can tell.

(b)To peek/save ROM from the MLM, set bit 7 in the byte at $718.
Incidentally, the monitor has a nice feature - ">718 80" is all
you need to type in, the ">" sets bytes and displays just one line
of memory.

The MONITOR is nice, it's almost like SUPERMON. But there is a
serious bug - they chopped the TRANSFER command: T with
overlapping addresses does not work in one direction - when the
destination is higher in memory than the source. The bytes just
write one over another and you lose all your work. A cure: first
Transfer to another, non-overlapping area. then do a second
transfer to where you wanted to go in the first place.

Colour memory, as in the C64. contains the colour codes for the
1000 screen bytes. One difference, bit 7 is the Bashing bit. Funny
things happen when you load the C64 colour map into, what's now
called, screen attributes map in the Plus 4. You get flashing for
nothing.

Tim han•aslw
	 cr. lilt, row motlore.< a 	%Awn. 6, Issue 01

To change the colour attributes from the C64 POKEs into the
COLOR statements, you'll need to add one to each value, as the
Plus 4 colour numbers are from Ito 16. POKE values are still 0-15.
but there is little reason to use them.

The keyboard is a delight. Perhaps a bit too soft, but easy to use.
The ESC sequences are a joy to use. There is even a pause-all-
output key: two keys actually - CTL-S. with any other key
restarting the output. There is only one problem: if you use CTL-S
during a program run, and use a subsequent GET statement, the S
will appear to the GET statement as a real input - I think it's a bug-
the keyboard buffer isn't cleared, so you'll have to do it yourself.

Programmable function keys are useful. Unlike in the B machine.
most of them have a carriage return at the end. I don't like this
feature. but it can be easily changed. Unfortunately, the keys are
active inside a running program. Watch out here: if you use GET,
and the user pushes the DIRECTORY key, all the letters in
'DIRECTORY' including the carriage return will be delivered to the
GET! If you don't want it to happen, there is a way to disable the
function keys: either set them all to null (' ') inside a program and
redefine at the end, or POKE their lengths to zero.

The default colours and luminances for the sixteen colour keys are
in RAM. They are in a table in page I at $113. You can change
them as you wish. Machine code people who love to POKE the
stack (auto-run programs!) will have to stay away from this area.

Some of the structured BASIC statements are splendid. For in-
stance. the DO WHILE construct permits you to code a loop that
will never execute (FOR-NEXT loops always run at least once,
unless you test and skip around). The interpreter seems to be
looking ahead. almost like a compiler: it skips the loop and all the
loops inside it. EXIT permits leaving a loop early. LOOP UNTIL
tests a condition at the end of a loop. What more can we ask?

The character table is hall the size of that in the C64. Reverse
characters aren't in ROM, they are software-generated. You may
have to take this into account if you convert programs from the
C64 to the + 4/CI6 machines. Pointing the character base address
is simple. It does require POKEs, a rare event in this machine:
using the BASIC method (above) or the monitor transfer corn.
mend, move the characters to any RAM. Then tell the TED chip
about the move: tell location $1113 the page number of the start of
your character definitions, then clear bit 2 at location Elf 12. That's
all there is to it. Much simpler than in the C64. Incidentally, it is
perfectly all right to speak in semi-hex to the BASIC interpreter.
hence

POKE DEC(• FF12'), DEC(' 71 ')

will tell the chip the character base is at $7000. What's that I doing
in $71? No connection, nothing. Nothing is a one. I don't know
why.

When you play with non-ROM character set, a nasty thing can
happen: an exit from the monitor or any error in BASIC resets
things only half way back to normal. So the screen becomes a
mess. Several solutions: TRAP all errors in BASIC. Do not leave the
monitor (guarantees learning machine code by the total immer-
sion method). Hold STOP and push the little reset button. Define a

function key to (blindly) type the reverse maneuver to set the
character base to the default again. Enjoy the crazy screen sight
and push some keys while you do so - its actually an interesting
display.

It is possible to move the screen memory anyplace in RAM. The
TED chip needs to be told of the move, of course. EFFI4 register is
the place to use. However, I know of no way to print on the screen
when it's not in the standard location. You can POKE it, you can
flip it. you can do all sorts of things with the relocated screen, but
no printing. The print command (EFFD2) delivers bytes to the
default location and only there. It should be possible, if you must
print on a relocated screen, to reroute output to your own routine
(page 3 vectors) but I doubt that it's worth the trouble.

The GRAPHIC split screen always splits five lines from the bottom.
The bottom five lines are in the text mode, the top is bit-mapped.
The constant which controls the split raster line is coded in ROM,
hence a bit rough to change. However, there is a link in the
interrupt-service code which does permit you to modify the place
of the split screen, if you must do it.

Disabling the STOP key is a favourite pastime of many people. It's
quite easy on the Plus 4 computer - use a TRAP statement and trap
error *30 to resume execution. I know, however, of one situation
where the STOP cannot be TRAPped. That is in I/O. Tape LOAD
illustrates it quite well, as things are slow: the STOP can be
TRAPped after the message "LOADING" would appear, not before.
While the computer is searching for a header, it uses another way
to test the STOP. It looks directly at the keyboard register in the
TED chip, and it never tells BASIC about it. The same is probably
true with the serial disk, but it is a bit harder to catch, as things
happen faster. A moral: to disable a STOP during I/O use a little
machine code, especially if your program uses tape. The whole
exercise is almost pointless anyway, as the little reset button lets
anyone in. I like that.

B-128, 1541, and 8050 Bits

I wish Commodore would reconsider their decision to drop the B-
machines. 13-128 is a terrific machine. Sure it's hard to program.
but it's fun. It has superb BASIC, superb keyboard, 2mhz clock, it's
fast and pleasant to use!

There are an assortment of curiosities about the machine itself and
some disk drives:

Happy news: On the BI 28 the files close themselves! When an
error condition causes a disk file to remain open, editing a program
line makes the disk whirr a bit and a file gets closed. It's incom-
plete, but it's not a • file anymore. Clever and useful - it you keep
the drive door down, of course.

There is a RESTORE <line number> command in BASIC, just as in
+4.

BLOAD file name' drive,unitbruik,address loads program files
and does not cause BASIC to run from the beginning. A splendid
feature.

Illso Transactor
	

9 	 (a 	ounuodor ex a
	

VOIIMN 6, Imre 01

	Page 1
	Page 2

