
Canada $4.25

USA $3.50

Inner GEOS - how the system fits together

A Disk Monitor for the C128

The 1764 Ram Expansion Unit: Add an EPROM - internally!

Implementing a RAM disk for Abacus' Super-C

Disk drive memory-read error exposed!

Supernumbers III: The famous indestructible variables come to the C128

Jim Butterfield on linked lists: a quiz program for all CBM 8-bit machines

A Shell Sort for BASIC arrays

Break GEOS's 31 -icon barrier! - some icon programming tricks

Product Review: Two Assemblers for GEOS - Berkeley's Geoprogrammer and

Bill Sharp's GeoCOPE

Plus Regular columns by Todd Heimarck and Joel Rubin, Programming tips in

Bits, and more

Firebird by Wayne Schmidt

U
T
I
L
I
T
I
E
S
U
N
L
I
M
I
T
E
D
,

in
c.

1
2
3
0
5

N
.
E
.
1
5
2
n
d

S
t
r
e
e
t

B
r
u
s
h

P
r
a
i
r
i
e
,
W
a
s
h
i
n
g
t
o
n
9
8
6
0
6

O
V
E
R
5
0
0
0
UN
IT
S

SO
LD

!!
!

U
n
l
i
k
e
o
u
r

c
o
m
p
e
t
i
t
o
r
s
,
w
e

at
Ut
il
it
ie
s
U
n
l
i
m
i
t
e
d
,

In
c.

h
a
v
e
b
e
e
n
c
o
n
c
e
n

tr
at
in
g

al
l
o
u
r

ef
fo

rt
s
in

b
r
i
n
g
i
n
g
th

e
n
e
w
e
s
t
t
e
c
h
n
o
l
o
g
y
.
T
h
e

re
su
lt

of
th

at
ef
fo
rt

is
Su

pe
rC

ar
d.

It
is

fa
r

su
pe

ri
or

to
al

l
th
e
co
py

ut
il

it
ie

s
oa
t

th
er

e
in

cl
ud

in
g:

Ra
mb
oa
rd
/R
en
eg
ad
e,

Da
te

l
Bu
rs
t

Ni
bb

le
r,

2
1
S
e
c
o
n
d
,

Ul
tr
ab
yt
e,

a
n
d

a
n
y

ot
he

r
b
a
c
k
u
p

ut
il
it
y
o
n

th
e
m
a
r
k
e
t
.
S
o

do
n'

t
b
e

le
d

as
tr

ay
.
W
e

wi
ll

gi
ve

yo
u

yo
ur

m
o
n
e
y

ha
ck

if
th

ey
ca

n
b
a
c
k

u
p

m
o
r
e

of
th

e
la

te
st

so
ft
wa
re
,

wi
ll

t
h
e
y
?
?
?

In
a

w
o
r
d

"
N
O
!

A
L
L

S
A
L
E
S

A
H
E

F
I
N
A
L
!
!
!
"

T
h
a
t

is
th

ei
r

r
e
s
p
o
n
s
e

if
y
o
u
w
a
n
t

to
re
tu

rn
R
A
M
B
O
.

If
y
o
u
h
a
p
p
e
n

to
se

e
th

e
a
d
s
o
n
R
A
M
B
O
a
r
d

(o
ri

gi
na

l
n
a
m
e

h
u
h
)
,

th
ey

c
l
a
i
m

to
b
e

c
h
e
a
p
e
r
.

We
ll

,
th
at
's

pa
rt
ia
ll
y

tr
ue
,

b
u
t

as
is

us
ua
l,

mo
st
ly

fa
ls

e.
Fi
rs
t
y
o
u
n
e
e
d

to
b
u
y

th
ei
r
b
o
a
r
d
,

t
h
e
n
y
o
u
n
e
e
d

to
s
p
e
n
d
a
n
o
t
h
e
r

$3
4.
95

fo
r
so
ft
wa
re

to
ru

n
th
ei
r
bo

ar
d.

Th
at

m
a
k
e
s

th
e

co
st

of
R
a
m
b
o
Tl

en
eg

ad
e

to
be

at
le

as
t
$6
9.
90
.
Bu

t
th
en

th
ey

cl
ai

m
yo

u
ca

n
us

e
ou
r

so
ft

wa
re

(w
ha

t
do
es

th
at

sa
y
ab
ou
t

th
ei

r
so

ft
wa

re
?)

.
We
ll

no
w,

th
at

m
a
y

be
ju
st

a
bi

t
of

a
wh

it
e

li
e
as

we
ll
,

wh
il
e

it
's

tr
ue

th
at

ea
rl

y,
le

ss
re

li
ab

le
ve

rs
io

ns
wo
rk

wi
th

TH
EI

R
th

in
g,

th
e
n
e
w

mo
re

re
li
ab
le

ve
rs

io
ns

of
Su

pe
rC

ar
d

so
ft

wa
re

is
sp
ec
if
ic
al
ly

de
si
gn
ed

no
t

to
wo
rk

wi
th

th
ei
r
R
A
M
B
O
.

Fo
r

th
os
e

pe
op
le

th
at

ha
ve

fo
un
d

ou
t

th
at

th
e
R
A
M
B
O

an
d

Re
ne
ga
de

so
ft

wa
re

pa
ck
ag
e

ar
e

qu
it

e
in
fe
ri
or

to
Su

pe
rC

ar
d
w
e

of
fe
r

th
e

fo
ll
ow
in
g

su
gg

es
ti

on
.

Se
nd

is
yo
ur

R
A
M
B
O

an
d

$2
4.
95

an
d

WE
'L
L

SE
ND

Y
O
D
T
H
E

R
E
A
L

TH
I
NG
—

Su
pe
rC
ar
d.

Ne
ed
le
ss

to
sa

y
y
o
u
n
e
e
d

a
pa

ir
of

hi
p

bo
ot
s

to
w
a
l
k

t
h
r
o
u
g
h

th
ei
r
c
l
a
i
m

th
at

th
ey

ar
e
th

e
be
st
.
B
y

th
e
w
a
y
,

th
ei
r
so
ft
wa
re

th
at

b
a
c
k
s
u
p
a
n
u
n
p
r
o
t
e
c
t
e
d

di
sk

in
50

s
e
c
o
n
d
s
,

we
ll

,
it

do
es

n'
t
e
v
e
n
u
s
e

th
e

R
A
M
B
O

to
wo

rk
.

I
su

pp
os

e
if

yo
u
ha

d
a

ch
oi
ce

of
an

O
L
D
S
M
O
B
H
i

or
a

Co
rv

et
te

wi
th

no
en

gi
ne

,
yo
u

wo
ul
d

st
il

l
pi

ck
th
e

Oi
ds
mo
bi
le
.

Su
pe

rC
ar

d
1
5
4
1
1
5
4
1
c

{4
9.

95
2
dr

iv
e
ve
rs
io
n

$
7
9
.
9
0

Su
pe
rC
ar
d

15
41

-0
$5

9.
95

2
dr

iv
e
ve
rs
io
n

$9
9.

90

Su
pe

rC
ar

d
1
5
7
1

$5
9.

95
2
dr

iv
e
ve
rs
io
n

$
9
9
.
9
0

Su
pe
rC
ar
d
1
5
4
1
-
0

ve
rs
io
n

wi
ll

w
o
r
k

wi
th

m
o
s
t

c
o
m
p
a
t
i
b
l
e

dr
iv
es
.

Th
es

e
pr

ic
es

in
cl

ud
e

so
ft

wa
re

.
Yo
u

do
n'
t

ne
ed

to
st

ea
l
an

yo
ne

el
se
's

so
ft

wa
re

to
m
a
k
e

it
wo
rk
. S
U
P
E
R
P
A
R
A
M
E
T
E
R
S

5
0
0

Pa
ck

#
1

an
d
#
2

5
0
0
Pa
ck

#
1

-
$2

4.
95

ha
s
th
e
vi

nt
ag

e
p
a
r
a
m
e
t
e
r
s
o
n

it
th

at
n
o
o
n
e

el
se

ha
s.

T
h
i
s
p
a
c
k
c
o
m
e
s

in
a

5-
di
sk

se
t.

5
0
0
Pa
ck

#
2

■
$2

9.
95

h
as

al
l
th

e
m
o
s
t

cu
rr

en
t
p
a
r
a
m
e
t
e
r
s
o
n

it
.
A
n
d

pu
t

t
o
g
e
t
h
e
r

as
o
n
l
y

Ut
il

it
ie

s
U
n
l
t
d
.

c
a
n
.

A
l
l
S
u
p
e
r
P
a
r
a
m
e
t
e
r
P
a
c
k
s
a
r
e
c
o
m

pl
et
el
y
m
e
n
u

dr
iv

en
,

fa
st

a
n
d

re
li
ab
le
.
I
n
c
l
u
d
e
d
o
n
b
o
t
h
5
0
0
P
a
c
k
s

is
o
u
r

st
at
e-

of
-t
he
-a
rt

6
4
/
1
2
8
S
u
p
e
r

N
i
b
b
l
e
r

at
n
o

ex
tr
a
c
h
a
r
g
e
.

S
U
P
E
R
P
A
R
A
M
E
T
E
R
S

1
0
0
0

Pa
ck

#
1

Ut
il

it
ie

s
Un
lt
d.

h
a
s
d
o
n
e

it
ag

ai
n!

!
W
e

h
a
v
e
co
ns
ol
id
at
ed

a
n
d
l
o
w
e
r
e
d

th
e

pr
ic
es

o
n

th
e

m
o
s
t

p
o
p
u
l
a
r

p
a
r
a
m
e
t
e
r
s

o
n

th
e

m
a
r
k
e
t

.
.

.
S
u
p
e
r
-

P
a
r
a
m
e
t
e
r
s
,
n
o
w

y
o
u

c
a
n

ge
t

1
0
0
0

p
a
r
a
m
e
t
e
r
s
a
n
d

o
u
r

6
4
/
1
2
8

n
i
b
b
l
e
r

p
a
c
k
a
g
e

fo
r

ju
st

$3
9.

95
!!

!
Th

is
is

a
c
o
m
p
l
e
t
e

10
di
sk

se
t,

th
at

in
cl
ud
es

e
v
e
r
y
p
a
r
a
m
e
t
e
r
w
e

h
a
v
e
p
r
o
d
u
c
e
d
.

P
A
R
A
M
E
T
E
R
S

C
O
N
S
T
R
U
C
T
I
O
N

SE
T

T
h
e

c
o
m
p
a
n
y

th
at

h
as

Th
e

Mo
st

Pa
ra

me
te

rs
is

a
b
o
u
t

to
d
o

s
o
m
e
t
h
i
n
g

Un
be

li
ev

ab
le

.
W
e

ar
e

gi
vi
ng

yo
u
m
o
r
e

of
ou
r

se
cr

et
s.

Us
in
g

th
is

Ve
ry

Ea
sy

p
r
o
g
r
a
m
,

ij
wi

ll
no
t
on

ly
Re
ad
,
C
o
m
p
a
r
e
a
n
d

Wr
it

e
Pa

ra
me

te
rs

fo
r
Yo
u;

it
wi
ll

al
so

Cu
st
om
iz
e
th
e
di
sk

wi
th

yo
ur

n
a
m
e
.

It
wi
ll

im
pr

es
s
yo
u

as
we
ll

as
yo
ur

fr
ie

nd
s.

T
h
e

"P
ar

am
et

er
Co
ns
tr
uc
ti
on

Se
t"

is
li

ke
no
th
in
g

yo
u'
ve

ev
er

se
en
.

In
fa

ct
y
o
u
c
a
n
ev
e
n

Re
ad

Pa
ra

me
te

rs
th
at

y
o
u
m
a
y

h
av

e
al
re
ad
y

wr
it
te

n;
th
en

by
us

in
g

yo
ur

co
ns
tr
uc
ti
on

se
t

re
wr
it
e

it
wi

th
yo
ur

n
e
w

Cu
st
om
iz
ed

Me
nu

.
$
2
4
.
9
5

If
y
o
u
w
i
s
h

t
o
p
l
a
c
e
y
o
u
r
o
r
d
e
r
b
y
p
h
o
n
e
,
p
l
e
a
s
e

ca
ll

2
0
6
-
2
5
4
-
6
5
3
0
.
A
d
d

$
3
.
0
0

s
h
i
p
p
i
n
g
&

h
a
n
d

li
ng

;
$
3
.
0
0
C
O
D

o
n

al
l

o
r
d
e
r
s
.

V
i
s
a
,

M
/
C

a
c
c
e
p
t
e
d
.
D
e
a
l
e
r

I
n
q
u
i
r
i
e
s

I
n
v
i
t
e
d
.

W
O
R
L
D
'
S
B
I
G
G
E
S
T

P
R
O
V
I
D
E
R
O
F

C
6
4
/
1
2
8

U
T
I
L
I
T
I
E
S

LO
CK

PI
CK

-
T
H
E
BO
OK
S

-
lo

r
th
e
C6

4
an
d
C1
28

L
o
c
k

Pi
k
64
/1
28

w
a
s

pu
t

to
ge

th
er

b
y

ou
r
cr
ac
k

te
am

,
as

a
to
ol

fo
r
th

os
e

w
h
o
h
a
v
e

a
de
si
re

to
se
e

th
e

In
te
rn
al

Wo
rk

in
gs

of
a
pa
ra
me
te
r.

T
h
e
b
o
o
k
s

gi
ve

y
o
u

St
ep

-B
y-

St
ep

In
st

ru
ct

io
ns

o
n
b
r
e
a
k
i
n
g

pr
ot

ec
ti

on
fo

r
b
a
c
k
u
p

of
10

0
p
o
p
u
l
a
r

p
r
o
g
r
a
m

ti
tl

es
.

U
s
e
s

H
e
s
m
o
n

a
n
d

Su
pe
re
di
t.

In
st
ru
ct
io
ns

ar
e

so
cl
ea
r
a
n
d

pr
ec

is
e

th
at

a
n
y
o
n
e
c
a
n

u
s
e

it
.

•
O
U
R
B
O
O
K
T
W
O

IS
N
O
W

A
V
A
I
L
A
B
L
E

•

B
O
O
K

1:
In
cl
ud
es

H
e
s
m
o
n
a
n
d

a
di

sk
wi

th
m
a
n
y

ut
il
it
ie
s
s
u
c
h

as
:
R
E
R
N
A
L

SA
VE

,
1/
0
SA

VE
,

DI
SK

LO
G

FI
LE

a
n
d

lo
ts

mo
re
,

al
l
wi

th
in
st
ru
ct
io
ns

o
n

di
sk

.
A
l
o
n
g
-
t
i
m
e

fa
vo
ri
te
.

B
O
O
K

2:
10

0
N
E
W

EX
AM

PL
ES

,
H
e
s
m
o
n

on
di

sk
a
n
d

ca
rt
ri
dg
e

pl
us

m
o
r
e

ut
il

it
ie

s
to

in
cl
ud
e:

A
Ge
ne
ra
l
Ov

er
vi

ew
on

H
o
w

to
M
a
k
e

Pa
ra
me
te
rs

a
n
d

a
Di

sk
Sc
an
ne
r.

$1
9.
95

ea
ch

O
R
B
U
Y
B
O
T
H
F
O
R

O
N
L
Y

$2
9.
95

N
o
w

wi
th

F
R
E
E
H
e
s
m
o
n

Ca
rt

ri
dg

e.

T
H
E

1
2
8
S
U
P
E
R
C
H
I
P

-
A,

B
or

C
(a
no
th
er

fir
st)

A
—

T
h
e
r
e

is
a
n
e
m
p
t
y

so
ck

et
in

si
de

yo
ur

12
8

ju
st

wa
it
in
g

fo
r
ou

r
Su

pe
r

Ch
ip

to
gi

ve
y
o
u
3
2
K
wo
rt
h

of
gr

ea
t

Bu
il

t-
in

Ut
il

it
ie

s,
al

l
at

ju
st

th
e
To
uc
h

of
a

Fi
ng
er
.
Y
o
u

ge
t

bu
il

t-
in

fe
at

ur
es

:
Fi

le
Co
pi
er
,

Ni
bb
le
r,

Tr
ac

k
&

Se
ct
or

Ed
it

or
,

Sc
re
en

Du
mp
,
a
n
d
e
v
e
n

a
30
0/
12
00

b
a
u
d

Te
rm

in
al

Pr
og

ra
m

th
at

's
16
50
,

16
70

a
n
d
H
a
y
e
s

c
o
m
p
a
t
i
b
l
e
.

Be
st

of
al

l,
it

do
es

n'
t
u
s
e
u
p
a
n
y
m
e
m
o
r
y
.
T
o

us
e,

si
mp
ly

to
uc
h

a
fu

nc
ti

on
ke

y,
a
n
d

it
r
e
s
p
o
n
d
s

to
y
o
u
r
c
o
m
m
a
n
d
.

B
-

H
A
S
S
U
P
E
R
81

U
m
i
T
I
E
S
,

a
co
mp
le
te

ut
il

it
y
p
a
c
k
a
g
e

fo
r
th

e
15
81
.
C
o
p
y

w
h
o
l
e

di
sk
s
f
r
o
m

15
41

or
15

71
fo
rm
at

to
15
81
.
M
a
n
y

op
ti

on
s
in

cl
ud

e
15

81

di
sk

ed
it

or
,
dr

iv
e
mo
ni
to
r,

R
a
m

wr
it

er
a
n
d

wi
ll

al
so

p
e
r
f
o
r
m
m
a
n
y
C
P
/
M
&

M
S
-
D
O
S

ut
il

it
y
fu

nc
ti

on
s.

C
—

"C
"

IS
FO

R
C
O
M
B
O
a
n
d

th
at

's
wh
at

y
o
u

ge
t.
A

su
pe
r

co
mb

in
at

io
n

of
bo
th

ch
ip

s
A

a
n
d
B

in
o
n
e

ch
ip
,

sw
it
ch
ab
le

at
a
gr

ea
t
sa

vi
ng

s
to

yo
u.

A
D

Ch
ip

s
In

cl
ud

e
1
0
0

Pa
ra

me
te

rs
FR
EE
!

C
h
i
p
s
A

or
B:

$
2
9
.
9
5

ea
.

C
h
i
p

C:
$
4
4
.
9
5

ea
.

S
U
P
E
R
G
R
A
P
H
I
C
S
1
0
0
0
P
A
C
K

Th
at

's
ri
gh
t!

O
v
e
r

10
00

g
r
a
p
h
i
c
s

in
a
10
-d
is
k

se
t
fo

r
on

ly
$2

9.
95

.
T
h
e
r
e
ar

e
g
r
a
p
h
i
c
s

fo
r

vi
rt
ua
ll
y

ev
er
yt
hi
ng

in
th
is

p
a
c
k
a
g
e
.

T
h
e
s
e

g
r
a
p
h
i
c
s

w
o
r
k

wi
th

Pr
in
t
S
h
o
p
a
n
d

Pr
in
t

M
a
s
t
e
r
.

A
D
U
L
T
G
A
M
E
&
G
R
A
P
H
I
C
S
D
A
T
A

DI
SK

S
GA
ME
:
A

ve
ry

u
n
u
s
u
a
l
g
a
m
e

to
b
e
pl
ay
ed

b
y
a
ve

ry
Op
en

Mi
nd
ed

ad
ul
t.

It
in

cl
ud
es

a
Ca

si
no

a
n
d

Ho
us

e
of

11
1
Re

pu
te

.
Pl
ea
se
,
y
o
u

Mu
st

be
18

to
or
de
r

Ei
th

er
On
e.

D
A
T
A

•
:

Th
is

Po
pu
la
r

di
sk

w
o
r
k
s

wi
th

Pr
in

t
Sh

op
a
n
d

Pr
in

t
Ma
st
er
.

N
o
w

V
e
r
s
i
o
n

1
+

2
.
.
.

$
2
4
.
9
5

ea
.

S
o
f
t
w
a
r
e
S
u
b
m
i
s
s
i
o
n
s

In
vi

te
d

W
e

a
r
e
l
o
o
k
i
n
g

fo
r
H
A
C
K
E
R
S
T
U
F
F
:

pr
in
t

ut
il

it
ie

s,
p
a
r
a
m
e
t
e
r
s
,

t
e
l
e
c
o
m
m
u
n
i
c
a
t
i
o
n
s
,

a
n
d

t
h
e

u
n
u
s
u
a
l
.

W
e
n
o
w
h
a
v
e
o
v
e
r
1
,
0
0
0
p
a
r
a
m
e
t
e
r
s

in
s
t
o
c
k
!

N
E
W
!
S
U
P
E
R
C
A
R
T
R
I
D
G
E
EX
PL
OD
E!

V4
.1

w
/
C
O
L
O
R
D
U
M
P

$4
4.
95

In
tr
od
uc
in
g
th
e
Wo

rl
d'

s
Fi
rs
t
Co
lo
r
Sc

re
en

D
u
m
p

in
a
ca
rt
ri
dg
e.

Ex
pl
od
e!

V4
.1

wi
ll
n
o
w

Su
pp
or
t

Di
re
ct
ly

f
r
o
m

th
e
sc

re
en

.
F
U
L
L
C
O
L
O
R
P
R
I
N
T
I
N
G

fo
r
th
e

Ra
in

bo
w

St
ar

N
X
-
1
0
0
a
n
d

al
so

th
e

Ok
id
at
a
10

&
2
0

pr
in

te
rs

.

T
h
e

Mo
st

Po
we

rf
ul

Di
sk

Dr
iv
e
a
n
d

Pr
in

te
r
Ca
rt
ri
dg
e
p
r
o
d
u
c
e
d

fo
r
th
e
C
O
M
M
O

D
O
R
E
U
S
E
R
.

Sn
pe
r

Fr
ie

nd
ly

wi
th

th
e

fe
at

ur
es

m
o
s
t

a
s
k
e
d

fo
r.

•
S
U
P
E
R
F
A
S
T

bu
il

t-
in

si
ng

le
dr
iv
e
8

or
9
F
I
L
E
C
O
P
Y
,
c
o
p
y

fi
le

s
of

u
p

to

2
3
5
B
L
O
C
K
S

in
le

ng
th

,
in

le
ss

t
h
a
n

13
s
e
c
o
n
d
s
!

•
S
U
P
E
R
S
C
R
E
E
N
C
A
P
T
U
R
E
.
C
a
p
t
u
r
e
a
n
d

C
o
n
v
e
r
t

A
n
y

Sc
re

en
to
K
O
A
L
A

or

D
O
O
D
L
E
.

•
S
U
P
E
R
F
A
S
T
F
O
R
M
A
T

(8
S
E
C
'
S
)

-
pl

us
F
U
L
L

D
.
O
.
S
.
W
E
D
G
E

w
/
s
t
a
n
d
a
r
d

fo
rm

at
!

•
S
U
P
E
R
F
A
S
T
L
O
A
D
a
n
d
S
A
V
E

(5
0k

in
9
S
E
C
'
S
)
w
o
r
k
s

wi
th

al
l
C-

64
or

C-
12
8'
s

No
Ma

tt
er

Wh
at

Vi
nt

ag
e!
A
n
d

wi
th

m
o
s
t

af
te

r
m
a
r
k
e
t

dr
iv

es
E
X
C
E
P
T

th
e

15
81

,
M
.
S
.
D
.

1
or

2.

•
S
U
P
E
R

P
R
I
N
T
E
R

F
E
A
T
U
R
E
S

al
lo

ws
A
N
Y

D
O
T

M
A
T
R
I
X

P
R
I
N
T
E
R

e
v
e
n

1
5
2
6
/
8
0
2

to
pr

in
t
H
I
-
R
E
S
S
C
R
E
E
N
S

(u
s
i
n
g

16
s
h
a
d
e
G
R
A
Y

S
C
A
L
E
)
.

A
n
y

Pr
in
te
r

or
In

te
rf

ac
e
Co
mb
in
at
io
n
c
a
n
b
e
u
s
e
d

wi
th

S
U
P
E
R
E
X
P
L
O
D
E
!

V
4
.
1

or
V3

.0
.

•
N
E
W

an
d
I
M
P
R
O
V
E
D

C
O
N
V
E
R
T

fe
at

ur
e

al
lo
ws

a
n
y
b
o
d
y

to
co
nv
er
t

(e
ve

n

TE
XT

)
Sc
re
en
s

in
to

DO
OD

LE
or

KO
AL
A

Ty
pe

Pi
ct

ur
es

w
fu

ll
Co

lo
r!

•
S
U
P
E
R
F
A
S
T
S
A
V
E

of
E
X
P
L
O
D
E
!
S
C
R
E
E
N
S

as
K
O
A
L
A

or
D
O
O
D
L
E
F
I
L
E
S

w
/
C
O
L
O
R
.

•
S
U
P
E
R

F
A
S
T

L
O
A
D
I
N
G

wi
th

Co
lo
r

Re
-D

is
pl

ay
of

D
O
O
D
L
E

or
K
O
A
L
A

fi
le
s.

•
S
U
P
E
R
F
A
S
T
L
O
A
D

or
S
A
V
E
c
a
n
b
e
T
U
R
N
E
D
O
F
F

or
O
N

wi
th
ou
t
A
F
F
E
C
T

I
N
G

th
e
R
E
S
T

of
S
U
P
E
R
E
X
P
L
O
D
E
'
S
F
E
A
T
U
R
E
S
.

T
h
e

re
st

of
E
x
p
l
o
d
e

V
4
.
1

is
st

il
l
ac

ti
ve

.

•
S
U
P
E
R

E
A
S
Y

L
O
A
D
I
N
G

an
d
R
U
N
N
I
N
G

of
A
L
L
P
R
O
G
R
A
M
S

f
r
o
m

th
e
D
I
S
K

D
I
R
E
C
T
O
R
Y
.

•
S
U
P
E
R

BU
IL

T-
IN

T
W
O
-
W
A
Y

SE
Q.

or
PR

G.
fi
le

R
E
A
D
E
R

u
s
i
n
g

th
e

D
I
S
K

D
I
R
E
C
T
O
R
Y
.

•
N
E
V
E
R

T
Y
P
E

A
F
E
E

N
A
M
E

A
G
A
I
N
w
h
e
n

y
o
u

u
s
e
S
U
P
E
R

E
X
P
L
O
D
E
'
S

u
n
i
q
u
e
L
O
A
D
E
R
S
.

•
C
A
P
T
U
R
E

40
C
O
L
U
M
N

C
or

D
-
1
2
8
S
C
R
E
E
N
S
!

(w
it

h
op

ti
on

al
D
I
S
A
B
L
E

S
W
I
T
C
H
)
.
A
d
d

$5
.

A
L
L
T
H
E
A
B
O
V
E

F
E
A
T
U
R
E
S
,
A
N
D
M
U
C
H

M
O
R
E
!

P
L
U
S
A

F
R
E
E

U
T
I
L
I
T
Y

DI
SK

w
/
S
U
P
E
R

E
X
P
L
O
D
E
!

V4
.1

.

M
A
K
E
Y
O
U
R

C-
64
,
6
4

C
or

C-
12

8*
,

D-
12
8*

S
U
P
E
R
F
A
S
T

a
n
d
E
A
S
Y

to
us

e.

S
U
P
E
R
T
R
A
C
K
E
R

Ut
il
it
ie
s
Un
li
mi
te
d
h
a
s
d
o
n
e

it
ag

ai
n.

A
t

la
st

a
n

ea
sy

w
a
y

to
fi

nd
ou

t
w
h
e
r
e

th
e

pr
ot

ec
ti

on
re
al
ly

is
.

Su
pe

r
Tr

ac
ke

r
wi

ll
di

sp
la

y
th

e
lo

ca
ti

on
of

y
o
u
r
dr

iv
e
h
e
a
d

wh
il

e
y
o
u

ar
e
lo

ad
in

g
a
pi

ec
e

of
so
ft
wa
re
.

Th
is

in
fo
rm
at
io
n

wi
ll

b
e
ve
ry

us
ef

ul
,

to
fi

nd
w
h
e
r
e

th
e
pr

ot
ec

ti
on

is
.
Su

pe
r
Tr

ac
ke

r
h
a
s

ot
he
r
us

ef
ul

op
ti

on
s
s
u
c
h

as
:

tr
ac
k
a
n
d

ha
lf
-t
ra
ck

di
sp
la
y,

8
a
n
d

9
sw
it
ch
,

de
ns
it
y
di
sp
la
y,

wr
it

e
pr
ot
ec
t

on
/o

ff
.

J
Th

is
in

cr
ed

ib
le

li
tt
le

to
ol

is
en
ca
se
d

in
a
h
a
n
d
s
o
m
e
bo
x

th
at

si
ts

on
to

p
of

yo
ur

dr
iv

e.
W
o
r
k
s

wi
th

al
l

jf
.
C
/
6
4
/
1
2
8
a
n
d

m
o
s
t
C
/
6
4

c
o
m
p
a
t
i
b
l
e

dr
iv

es
.
S
o
m
e

m
i
n
o
r

so
ld
er
in
g

wi
ll

b
e

re
qu
ir
ed
.

i
In
tr
od
uc
to
ry

Pr
ic
ed

at
Ju

st
$6

9.
95

•
*
•
•
•
•
•
•
*
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
*
•
•
•
•
•
*
•
•
•
•
•
•
•
•
•
•
•

What do you think?

Recently Transactor acquired two 1581 disk drives.

Consequently, authors (and would-be authors) may

now elect to make submissions on 3.5" disks. The

little disks (call them "flappies") are perhaps more

likely to survive their journey through the postal

system. Make certain that your flappy is clearly

labeled as a 1581 format disk! Otherwise it might

get swallowed up by the voracious Amigas.

Now that you know what we've got, we want to

know what you've got! The other bit of Transactor

news for this issue is the appearance of the first

Transactor Reader Survey. This is a Commodore

'consciousness raising' exercise. The results of the

survey will help to determine what you'll see in

future Transactors. Tell us about your system con

figuration, the software you use most and your likes

and dislikes with regard to magazine content.

In recent years the 8-bit market has become increas

ingly fragmented; i.e., some users rarely leave the

Power C environment, some swear by CP/M, others

are committed to GEOS. Of course, there are yet oth

ers who disdain these new developments and con

tinue to use the machines in their native environ

ment. Such users are content to use BASIC and an

assembler and thus avoid the 'overhead' of a differ

ent operating environment.

This polarization of the user community makes it

difficult for any magazine to be 'all things to all Malcolm D. O'Brien

people' - or even all programmers. Transactor has

responded to these developments by attempting to

provide useful information for all of these groups

in every issue. Although there are topics that we

haven't covered (or haven't covered recently), we

feel that Transactor offers more support to pro

grammers and serious users than any other maga

zine. But we want to know what you think. Partici

pate in our Reader Survey. Don't be shy. Let's hear

from you.

This issue pushes the limits with Paul Bosacki's

article on the 1764 REU. You may have seen REU

expansion articles from other sources but this one

includes a new wrinkle: installing an EPROM.

Following on the heels of Adrian Pepper's Power C

RAMdisk article, Kerry Gray has us Implementing a

RAMdisk for Super-C. Robert Rockefeller makes his

first appearance in these pages with some tips on

using pseudo-ops and macros with Commodore's

Devpak. Anton Treuenfels reappears with a nifty

disk monitor, among other things. Jim Butterfield

discusses linked lists. Bill Coleman presents us with

an overview of GEOS. Francis Kostella compares

two GEOS assemblers. Richard Curcio brings robust

variables to the 128, 64 and VIC. All this and so

much more. Enjoy!

Volume 9, Issue 5

Volume 9, Issue 5

Publisher

Antony Jacobson

Vice-President Operations

Jeannie Lawrence

Assistant Advertising Manager

Mike Grantham

Editors

Malcolm O'Brien

Nick Sullivan

Chris Zamara

Contributing Writers

Marte Brengle

Paul Bosacki

Bill Brier

Anthony Bryant

Joseph Buckley

Jim Butterfielfl

William Coleman

James Cook

Richard Quurcio :

Miklos Garamszeghy

Larry Gaynier

Kerry Gray

Todd Hteimarck

Adam Herst

Robert Huehn

George Hug

Dennis Jarvis

GfeyKiziak

Francis Kostella

MikeMohilo

DX Morriss

Noel Nyman

Adrian Pepper

Steve Punter

Robert Rockefeller

JoelRubin

David Sanner

Anton Treuenfels

Nicholas Vrtis

W.MatWaites

Cover Artist

Wayne Schmidt

Transactor
The Magazine for Commodore Programmers

Inner GEOS

by William Coleman

An overview of the GEOS operating system.

1541/1571 DOS M-R Command Error

by Anton Treuenfels

Multiple-byte reads can be hazardous to your data. Anton explains why.

21

24

C128 Simple Disk Monitor 26

by Anton Treuenfels

The C128's built-in machine language monitor was designed to be extensible. Here's how you do it.

HCD65 Assembler Macros 32

by Robert Rockefeller

Your assembler's pseudo-ops may be more versatile than you think.

Implementing A RAMdisk 34

by Kerry Gray

Why should Power C users have all the fun? A C64 RAM disk driver for Abacus' Super-C.

SuperNumbers III 37

by Richard Curcio

New developments in the wild world of sticky variables for the C128, C64 and VIC-20.

Inside the 1764 REU 42

by Paul Bosacki

Can you really put an EPROM in the 1764 - and double its memory into the bargain? Paul explains.

Capitals: A BASIC Quiz Program 46

by Jim Butterfield

What do geography and linked lists have in common? This program for all Commodore 8-bit computers.

C Problems, Tips And Observations

by Larry Gaynier

Some anomalies in the Power C compiler, and notes on drive usage.

50

Programming GEOS Icons

by James Cook

GEOS has a built-in limit of 31 icons... unless you know the tricks presented here.

56

BASIC 2.0 Array Shell Sort 62

by Anton Treuenfels

The anatomy of a sort routine, with a machine language implementation you can call from BASIC.

A glob Function For Power C 68

by Adrian Pepper

Other operating systems offer flexible pattern-matching for file names... now the Power C shell does too.

Departments and Columns

Letters

Bits

6

10

Super-C BIT

The Tasmanian Dataller!

Your other file copier

When Giants Walk...

The ML Column

by Todd Heimarck

How to handle 48-bit numbers - up to 281,474,976,710,655... including square roots.

The Edge Connection

by Joel Rubin

GEOS 128 2.0, ZOOM, macros, radio, etc.

Product Review: Two Assemblers for GEOS

A comparison of Berkeley's Geoprogrammer and Bill Sharp's GeoCOPE

12

18

74

About the cover: Firebird by Wayne Schmidt:

*'Inspired after hearing a transcription of Stravinsky's 'The Firebird' for solo guitar (by

Yamashita), itself inspired by legendary Russian folk tales, this is my Firebird. I am fond

of the folk as well as the primitive art traditions, and the rich imagery of Russian icons

and laquer painting seryed as models for this. This was created with Artist 64, modified

for the 1351 mouse." - liVayne Schmidt

Transactor is published bimonthly by Croftward

Publishing Inc., 85-10 West Wilmot Street Rich

mond Hill, Ontario, L4B 1K7. ISSN# 0838-0163.

Canadian Second Class Mail Registration No.

7690, Gateway-Mississauga, Ont. USPS Post

masters: $er\6 address changes to: Transactor,

PO Box 338, Station C, Buffalo, NY, 14209. f

Croftward publishing inc. is in no way connected

with Commodore Business Machines Ltd. or
Commodore incorporated. Commodore and

Commodore product names are registered trade

marks of Commodore Inc.

Subscriptions: .

Canada $19 Cdn. . .

USA$15US

AH others $21 US

Air Mail (Overseas only) $40 US

Send all subscriptions to: Transactor., Sub

scriptions Department, 85 West Wilmot Street,

Unit 10, Richmond Hill, Ontario, Canada, L4B

1K7, (416) 764-5273. For best results, Use the;

postage paid card at the centre of the magazine.

Quantity Orders: in Canada: Ingram Software

Ltd., 141 Adesso Drive, Concord, Ontario, L4K

2W7, (416) 738-1700. In the USA: IPD (Interna

tional Periodical Distributors), 1176Q.B Sorrento

Valley Road, San Diego, California, 92121, (619)

481-5928; ask for Dave Buescher. [

Editorial contributions are welcome. Only original,

previously unpublished^ material will be consid

ered. Program listings and articles, including

BITS submissions, of more than a few lines,

should be provided on disk. Preferred format is

1541-format with ASCII text files. Manuscripts
should be typewritten, double-spaced, with spe

cial characters or formats clearly marked. Photos

should be glossy black and white prints. Illustra

tions should be on white paper with black ink on

ly. Hi-res graphics files on disk are preferred to

hardcopy illustrations when possible. Write to

Transactor's Richmond Hill office to obtain a writ*
er's guide.

All material accepted becomes the property of

Croftward publishing Inc., except by special ar

rangement. All material is copyright by Croftward

publishing Inc. Reproduction in anyform without

permission is in violation of applicable laws. Write

to the Richmond Hill address for a writer's guide. ,'

The opinions expressed in contributed articles

are not necessarily those of Croftward publishing

Inc. Although accuracy is a major objective, Croft

ward publishing Inc. cannot assume liability for

errors in articles or programs. Programs listed in

Transactor, and/or appearing on Transactor disks,

are copyright by Croftward;publishing inc. and
may not be duplicated or distributed without per-

mission. '

Production

In-house with Amiga 2000 and

Professional Page

Final output by Vellum Print &

Graphic Services, Inc., Toronto

Printing

Printed in Canada by

Bowne of Canada Inc.

Using "VERIFIZER"

Transactor'sfoolproofprogram entry method

VERIFIZER should be run before typing in any long program

from the pages of Transactor. It will let you check your work

line by line as you enter the program and catch frustrating typ

ing errors. The VERIFIZER concept works by displaying a two-

letter code for each program line; you can then check this code

against the corresponding one in the printed program listing.

There are three versions of verifizer here: one each for the

PET/CBM, VIC/C64, and C128 computers. Enter the applica

ble program and RUN it. If you get a data or checksum error,

re-check the program and keep trying until all goes well. You

should SAVE the program since you'll want to use it every

time you enter a program from Transactor. Once you've RUN

the loader, remember to enter NEW to purge BASIC text

space. Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top

left of the screen in reverse field. Note that these letters are in

uppercase and will appear as graphics characters unless you

are in upper/lowercase mode (press shift/Commodore on

C64/VIC).

Note: If a report code is missing (or "—") it means we've

edited that line at the last minute, changing the report code.

However, this will only happen occasionally and usually only

on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN

on a line. If the code doesn't match up with the letters printed

in the box beside the listing, you can re-check and correct the

line, then try again. If you wish, you can LIST a range of lines,

then type RETURN over each in succession while checking

the report codes as they appear. Once the program has been

properly entered, be sure to turn verifizer off with the SYS

indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0

instead of POKE 53281,0. However, VERIFIZER uses a

"weighted checksum technique" that can be fooled if you try

hard enough: transposing two sets of four characters will pro

duce the same report code, but this will rarely happen, (veri

fizer could have been designed to be more complex, but the

report codes would need to be longer, and using it would be

more trouble than checking the program manually), verifizer

ignores spaces so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!) Stan

dard keyword abbreviations (like nE instead of next) will not

affect the VERIFIZER report code.

Technical info: VIC/C64 verifizer resides in the cassette

buffer, so if you're using a datasette be aware that tape opera

tions can be dangerous to its health. As far as compatibility

with other utilities goes, VERIFIZER shouldn't cause any prob

lems since it works through the BASIC warm-start link and

jumps to the original destination of the link after it's finished.

When disabled, it restores the link to its original contents.

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

CI 10 rem* data loader for "verifizer 4.0" *

LI 20 cs=0

HC 30 for i=634 to 754: read a: poke i,a

DH 40 cs=cs+a: next i

GK 50:

OG 60 if cs<>15580 then print"***** data error *****": end

JO 70 rem sys 634

AF 80 end

IN 100:

ON 1000 data 76,138, 2, 120,173, 163, 2,133,144

IB 1010 data 173, 164, 2,133,145, 88, 96,120,165

CK 1020 data 145, 201, 2,240, 16,141,164, 2,165

EB 1030 data 144,141, 163, 2, 169, 165, 133, 144, 169

HE 1040 data 2,133,145, 88, 96, 85,228,165,217

OI 1050 data 201, 13,208, 62,165,167,208, 58,173

JB 1060 data 254, 1, 133, 251, 162, 0,134, 253,189

PA 1070 data 0, 2,168,201, 32,240, 15,230,253

HE 1080 data 165, 253, 41, 3,133,254, 32,236, 2

EL 1090 data 198, 254, 16, 249, 232,152, 208, 229,165

LA 1100 data 251, 41, 15, 24,105,193,141, 0,128

KI 1110 data 165,251, 74, 74, 74, 74, 24,105,193

EB 1120 data 141, 1,128,108,163, 2,152, 24,101

DM 1130 data 251,133,251, 96

Transactor

VIC/C64 VERIFIZER

KE 10 rem* data loader for "verifizer" *

JF 15 rem vic/64 version

LI 20cs=0

BE 30 for i=828 to 958:read a:poke i,a

DH 40 cs=cs+a:next i

GK 50:

FH 60 if cs<>14755 then print"***** data error *****": end

KP 70remsys828

AF 80 end

IN 100:

EC 1000 data 76, 74, 3,165,251,141, 2, 3,165

EP 1010 data 252, 141, 3, 3, 96,173, 3, 3,201

OC 1020 data 3,240, 17,133,252,173, 2, 3,133

MN 1030 data 251, 169, 99, 141, 2, 3, 169, 3, 141

MG 1040 data 3, 3, 96,173,254, 1,133, 89,162

DM 1050 data 0,160, 0,189, 0, 2,240, 22,201

CA 1060 data 32,240, 15,133, 91,200,152, 41, 3

NG 1070 data 133, 90, 32,183, 3,198, 90, 16,249

OK 1080 data 232, 208, 229, 56, 32, 240, 255, 169, 19

AN 1090 data 32,210,255,169, 18, 32,210,255,165

GH 1100 data 89, 41, 15, 24,105, 97, 32,210,255

JC 1110 data 165, 89, 74, 74, 74, 74, 24,105, 97

EP 1120 data 32,210,255,169,146, 32,210,255, 24

MH 1130 data 32,240,255,108,251, 0,165, 91, 24

BH 1140 data 101, 89,133, 89, 96

NEW C128 VERIFIZER (40 or 80 column mode)

KL 100 rem save"0:cl28 vfz.ldr",8

OI 110 rem c-128 verifizer

MO 120 rem bugs fixed: 1) works in 80 column mode.

DG 130 rem 2) sys 3072,0 now works.

KK 140 rem

GH 150 rem by joel m. rubin

HG 160 rem * data loader for "verifizer cl28"

IF 170 rem * commodore cl28 version

DG 180 rem * works in 40 or 80 column mode!!!

EB 190ch=0

GC 200 for j=3072 to 3220: read x: poke j,x: ch=ch+x: next

NK 210 if cho18602 then print "checksum error": stop

BL 220 print "sys 3072,1 to enable

DP 230 print "sys 3072,0 to disable

AP 240 end

BA 250 data 170, 208, 11,165,253,141, 2, 3

MM260 data 165, 254, 141, 3, 3, 96,173, 3

AA 270 data 3, 201, 12, 240, 17,133, 254, 173

FM 280 data 2, 3, 133, 253, 169, 39, 141, 2

IF 290 data 3,169, 12,141, 3, 3, 96,169

FA 300 data 0, 141, 0, 255, 165, 22, 133,250

LC 310 data 162, 0, 160, 0, 189, 0, 2, 201

AJ 320 data 48,144, 7,201, 58,176, 3,232

EC 330 data 208, 242, 189, 0, 2,240, 22,201

PI 340 data 32,240, 15,133,252,200,152, 41

FF 350 data 3,133,251, 32,141, 12,198,251

DE 360 data 16,249,232,208,229, 56, 32,240

CB 370 data 255, 169, 19, 32,210,255,169, 18

OK 380 data 32,210,255,165,250, 41, 15, 24

ON 390 data 105, 193, 32, 210, 255, 165, 250, 74

OI 400 data 74, 74, 74, 24,105,193, 32,210

OD 410 data 255, 169, 146, 32,210,255, 24, 32

PA 420 data 240, 255, 108, 253, 0, 165, 252, 24

BO 430 data 101, 250, 133, 250, 96

The Standard Transactor

Program Generator

If you type in programs from the magazine, you might be able

to save yourself some work with the program listed on this

page. Since many programs are printed in the form of a BA

SIC "program generator" which creates a machine language

(or BASIC) program on disk, we have created a "standard

generator" program that contains code common to all program

generators. Just type this in once, and save all that typing for

every other program generator you enter!

Once the program is typed in (check the Verifizer codes as

usual when entering it), save it on a disk for future use. When

ever you type in a program generator, the listing will refer to

the standard generator. Load the standard generator first, then

type the lines from the listing as shown. The resulting program

will include the generator code and be ready to run.

When you run the new generator, it will create a program on

disk (the one described in the related article). The generator

program is just an easy way for you to put a machine language

program on disk, using the standard BASIC editor at your dis

posal. After the file has been created, the generator is no

longer needed. The standard generator, however, should be

kept handy for future program generators.

The standard generator listed here will appear in every issue

from now on (when necessary) as a standard Transactor utility

like Verifizer.

MG 100 rem transactor standard program generator

EE 110 n$="filename": rem name of program

LK 120 nd=000: sa=00000: ch=00000

KO 130fori=ltond:readx

EC 140 ch=ch-x: next

FB 150 if ch then print "data error": stop

DE 160 print "data ok, now creating file."

CM 170 restore

CH 180 open l,8,l,"0:"+n$

HM 190 hi=int(sa/256): lo=sa-256*hi

NA 200print#l,chr$(lo)chr$(hi);

KD 210 for i=l to nd: read x

HE 220 print#l,chr$(x);: next

JL 230 close 1

MP 240 prinf'prg file '";n$;"' created..."

MH 250 print"this generator no longer needed."

IH 260: □

Volume 9, Issue 5

L R

Responses to the ML Column: I don't know if this will help,

but I generate my random numbers through the Kernal ROM. I

do this by loading the accumulator with my seed value -

either zero, a positive integer or a negative integer (turning on

bit 7). Then I call $E09A. The random numbers will now be

in registers $63-$64. (Both will fluctuate between zero and

255 quite by random; and, if not, you can always use the ran

dom number just produced as your seed which will definitely

guarantee randomness.)

Here's a quick look at the code for a single random number

between 0 and 7:

Ida #1

jsr $eO9a

Ida $63

and #7

There is one drawback: it won't win any awards as far as

speed is concerned.

Sean Peck, Pittsburgh, PA

Campaigning: I was struck by the idea of Campaign (which

you described in Transactor 9:3) for a couple of reasons. The

first was that I thought it would be fun to see it work and the

second was that it asked for a solution to the problem of the

generation of random numbers. I had translated into machine

language an idea for a pseudo-random number generator that

I'd seen in Byte in March 1987. It had seemed a nice exercise

for writing multi-byte division and multiplication routines.

Though it was better than the random number generator with

Commodore BASIC and was written to be accessed with the

USR command, it seemed of limited appeal till your article

came along. Having a source of random numbers, I carried

out your program idea and thought I would send it to you.

The request for help in your article implied that an ideal solu

tion would be a single memory address where random num

bers could be grabbed quickly. The pseudo-random number

generator that I used is complicated enough that the program

takes a perceptible amount of time to calculate each point but

nonetheless it moves along at a pretty good clip.

Frank van Deventer, Grosse Pointe Farms, Ml

Frank's Follow-up: I subsequently ran across an article in

Transactor, Volume 7, Issue 6 (page 27) that described 'linear

maximal length shift register sequences' as a way to generate

a long series of pseudo-random numbers. The method is to

add pairs of numbers in a series, called a register, take the

remainder after dividing by a base and replace one of the

numbers in the register with this new value which is also used

as the random number output. A new pair is taken each time

this is repeated. This proves to be a considerably faster

method. If you look the original article up, you'll see that the

author gave an example program but I found that the idea

could be carried out much faster by using the index registers

instead of moving data and could be worked in either base 16

(4 bits) or base 256 (1 byte) to output random bytes directly.

The article indicates that the length of the series is equal to

the base raised to the power of the number of items in the reg

ister. A base larger than the size of the register does not give a

maximum length series but it seems to produce adequately

random numbers. The real question is whether there is any bi

as in the series and that isn't so clear. A little inspection

Transactor

shows that the maximum series of odd numbers is equal to the

length of the register and the maximum series of even numbers

is equal to the distance between the positions of the two num

bers that are added; the upper and lower taps when two taps

are used. The program runs faster the larger the register and

for those reasons I picked the largest register that had an opti

mum tap near the bottom.

I rewrote the program that I sent you earlier to use the new ran

dom number generator. You'll see that it's much faster and, at

least to visual inspection, seems to work in a random fashion.

It's also fast enough now to fill the screen with random bytes in

an acceptable length of time. There are two versions on the disk,

both of which work from BASIC. Campaign64+ works in base

256 and Campaign* works in base 16. This requires only a mi

nor change in the program. Although the latter program is

marginally faster, it isn't evident to watch it. I also included the

pseudo-random generator separately as rangen64+ along with a

demo+ that shows access from BASIC using the USR function if

you'd like to take a look at it. You'll find I think that Campaign

is even more fun to watch when it's speeded up.

Frank van Deventer, Grosse Pointe Farms, Ml

SID Sampling Rate: The ML Column in Transactor 9:3 ended

with a request for a way to generate random numbers with the

C64.1 think the following may help.

I have found that the SID chip's noise generator can generate

what appear to be truly random numbers, but there's a catch.

The rate at which these numbers are produced is determined

by voice three's frequency setting stored in $D40E and $D40F.

At the highest possible frequency, the chip will produce about

7000 random numbers per second. This translates to a new

number every 140 clock cycles. Consequently, a fast-running

machine language routine can read the same number many

times between changes.

One solution to this problem is to wait for the number to

change before using it, like so:

random = $d41b;sid random number

getrand Ida random; get number

cmp prev;"changed ?

geq getrand;no, wait

sta prev;for next time

rts

prev .byte 0;prev # storage

This subroutine compares the current value of random with what

was there during the previous call and waits for the number to

change before accepting it. The new number is then stored for the

next call before returning the number in the accumulator. This

will slow down a fast-running caller to match the rate at which

the SID can produce new numbers. Note that the routine assumes

that the SID has been initialized to produce random numbers.

This routine still has problems, however. A true eight-bit ran

dom number generator has a one in 256 chance of producing

the same number twice in succession, but the nature of this

routine eliminates this chance. Note that this is only a problem

if you are using all eight bits of the number. For example, in

your Campaign routine one of eight neighbors must be ran

domly selected. Three of the eight random bits can be used to

do this. These three bits can come up the same while the other

five vary, so the errors are reduced.

It seems like the complete solution to this problem requires an

independent signal that indicates a new number is present in

the 'random' register. It's too bad that Commodore didn't

think of this when designing the SID chip. It may be possible to

use some other source, such as the vie scan line register or a

CIA timer, as a source for this signal.

Randomness is a fascinating subject. It is amazing to me that

such a simple concept can be so complicated in execution. I

really enjoy your column and I hope it continues as a regular

feature. Good luck and keep up the good work.

Mike Graham, Hopatcong, NJ

ML Wish List: I very much enjoy your The ML Column in

Transactor. It was not too much over my head, and certainly

not too basic either.

In a future column, I would like to see a discussion about I/O

routines; for example, reading and writing to disk with various

file types, DOS commands, printing, etc. I look forward to fu

ture columns.

Barry Kutner, Yardley, PA

Random bunnies: I love your new column, The ML Column.

(Great title too!) I like how you pick interesting subjects, or at

least make dull subjects sound interesting. I was very im

pressed with your binary division column in Volume 9, Issue

2. It answered a couple of questions I had myself.

With regard to the column in Volume 9, Issue 3... are you kid

ding? You had such a brilliant head long jump into the prob

lem, only to be symied by it not being random enough?! (Ac

tually, I skimmed the article briefly, was impressed, saw how

short the BASIC generator program was, was very impressed,

typed it in, and was disappointed to see the screen not chang

ing. Harumph!)

Anyway, I have a solution that I figured out by simply looking

at the not-changing screen. The nature of the SID output is such

that it develops those irritating diagonal lines. But each byte is

different from the last in that it is shifted over slightly. Two

tricks to solve this, but first the explanation:

'Random' in its pure definition means an absence of pattern,

but it does not mean that local patterns may not develop (like

squares, triangles, bunnies, etc.). By modifying the program to

Volume 9, Issue 5

run infinitely, constantly redrawing the screen, I was able to

watch out, but I didn't see any bunnies... In fact, all I saw was

what looked like churning water! Obviously, the SID does not

do a good job of producing random displays.

So I figured, "What kind of display are we looking for here?"

and I immediately thought of a static screen. About-uniform

distributrion of blue and white dots, like snow on TV. (No di

agonals.)

This isn't true randomness, by the way, because it doesn't al

low for recognizable shapes, such as bunnies and duckies. I

call this 'snow' the random pattern, a really awful oxymoron!

Anyway, two solutions, and the major problem is the pesky di

agonal lines.

1) Change line 630 in the source code to:

630 lpchoose Ida random: adc random: adc random:

adc random: adc random

Now, the gradual difference that provided the original diago

nal tendency is multiplied five-fold. It's still there, but is now

much more jagged, and in the 8-bit wide display, is indis-

cernable. It also takes a lot longer to draw the screen, be

cause this is executed for all 8192 bytes of the screen! Not so

good.

2) The diagonal tendency is caused by putting these slightly-

shifted data bytes next to each other... oh, you guessed it

already. Change the choose routine!

550 choose = *

560 bitmap = $2000

570 ldy #0

580 lpchoose ldx #32

590 Ida #<bitmap

600 sta selfmod+1

610 Ida #>bitmap

620 sta selfmod+2

630 Ip2 Ida random

640 selfmod sta $ffff,y

650 inc selfmod+2

660 dex

670 bne Ip2

680 dey

690 bne lpchoose

I actually conjured up this solution first, simply from looking

at your fill routine. I might use the first solution for the cam

paign routine though, to add a dash of really-more-varied

numbers to the simulation. Another method would be to use

the Commodore random number generator, though that is

really ugly slow in comparison. Please send me your existing

campaign routine!

Kevin Moorman, Calgary, AB

Precious pages: I read with interest Jim Butterfield's review

of What's Really Inside The Commodore 64 [available in

North America from Schnedler Systems, 25 Eastwood Rd.,

P.O. Box 5964, Asheville, NC, 28813, (704) 274-4646] (Trans

actor, Volume 9, Issue 4). I use the book often, and I agree

with Mr. Butterfield's assessment of it. I was surprised, how

ever, to find two other possible supplements were left out.

One of the most useful books in my Commodore library is

Mapping The Commodore 64 by Sheldon Leemon [Compute!

Publications]. It references memory locations, rather than dis

assembling the ROM code. That gives a picture of the dynamics

of the machine missing from the other texts listed. While the

Dan Heeb books [also from Compute!] give in-depth discus

sions of the ROM routines, they're often too detailed. For

'quick and dirty' use of the C64 ROM code, I invariably turn to

Leemon's book. In a few words, he tells me what to do with

registers, and what to expect as output.

I usually tell beginners that if they only buy one book, make it

Programming The Commodore 64 by Raeto West [also from

Compute!]. It's not as detailed in ROM code as any of the other

references. But, West lists the commonly used routines and

gives excellent examples.Actually, an assembly language pro

grammer should have all six books available.

He or she should also consider Mr. Butterfield's own Machine

Language For The Commodore 64 And Other Commodore Com

puters [Brady Books], an excellent, easily understood beginning

text. Marvin DeJong's Assembly Language Programming With

The Commodore 64 is another valuable addition. It gives well an

notated examples of bitmap graphics, SID, and I/O routines.

To round out the library, no programmer should be without

1541 User's Guide by Dr. Gerald Neufeld, and Inside Com

modore DOS by Neufeld and Richard Immers.

Noel Nyman, Seattle, wa

More on household automation: After reading my review on

the X-10 Powerhouse Interface, you may have decided that it's

too limited by the lack of real-world inputs for your applica

tion.

If you prefer not to experiment with X-10's newer modules, and

you have an old vic-20 or C64 not in active use, there's an inex

pensive solution. Check for the May 1986 issue of Radio-

Electronics magazine. In the "Computer Digest" section, Chan

dler Sowden published a simple hardware circuit that sends X-10

signals into the power line. It uses the user port as an output, so

the vic-20 will work as well as a C64 or C128. He also provides a

BASIC program to generate the control signals.

Just add switches to the joystick ports (up to 10), or heat/light

sensors to the paddle inputs and you have an easily pro

grammed X-10 system that will respond to the real world.

Noel Nyman, Seattle, WA

Transactor

Some comments and a question: Volume 9, Issue 2: Joel Ru

bin wrote a comparison of some commercial assemblers for the

128, and also mentioned The Fast Assembler by Yves Han,

which appeared in the January 1986 issue of Computers

Gazette. I was interested in its mention, since I use this system

exclusively. A few thoughts on this very unique assembler:

Joel mentioned that FA can't print out listings. Not so! Since

BASIC is still active, an invocation of the famous line open

4,4:cmd 4:list will do the job. Since all opcodes and pseudo-

ops are tokenized, however, this can only be done while the

assembler is active. And because of this tokenization, source

code isn't easily transferable between fa and other asemblers.

Another point: FA operates as an extension of BASIC, not a re

placement for it. It can be used to write BASIC programs that

use the added features (indentation of lines is supported, as is

the use of binary and hex numbers). Because you can write

both BASIC and ML programs with the assembler, you have to

manually enclose the ML part inside a for/next loop to imple

ment the multiple passes required by a label-based assembler.

Volume 9, Issue 4: Jim Butterfield reviewed What's Really In

side the Commodore 64? by Milton Bathurst. Jim mentioned

Abacus' The Anatomy of the Commodore 64. My advice is:

forget it! The source is sparsely commented and unindexed.

Without a memory map you'll go nuts trying to find the rou

tines you want. The programmer's reference section is full of

errors. Personally, I recommend Dan Heeb's Tool Kit books,

published by Compute!. Regardless of what you may think

about their magazines, Compute!'s programming books are

generally hard to beat.

I'm working on a large-scale filing program and need some

help on a software project I want to undertake. The filing pro

gram will be written entirely in BASIC and will utilize a string

arry which occupies about 30K on its own. Obviously, this

isn't all going to fit in BASIC workspace, and I'm toying with

the idea of setting up a bank of the 1764 REU (say, bank 0) as a

"phantom computer". The idea is to copy both ROMs, zero

page, vectors, the stack, and the string array to their appropri

ate spots in expansion memory, then switch it all in whenever I

need to access the array. Parameters and results could be trans

ferred back and forth between the 4K blocks starting at $C000.

Of course, there are several considerations when doing this.

The BASIC pointers in expansion RAM would need to be modi

fied for the 'new' contents of BASIC workspace. I would have

to perform the switch with an ML routine and interrupts would

have to be disabled, since there will be no I/O. The question is,

will this work? If it's possible to pull this off, how do I make

the 6510 recognize a bank of expansion RAM and how do I se

lect which bank it will look at? Any information you or your

other readers could give me would be greatly appreciated. My

address is: 16925 Morrison Ave., Southfield, Mi, 48076.

You put out a great magazine! Keep up the good work!

Howard I. Goldman, Southfield, Ml □

CONCURR.OS

The CONCURRENT Operating system splits your C64

Into two BASIC computers and allows you to switch

between them. One of the programs can be full length,

(38911 bytes) while the other can be a "Short" BASIC

program (1270 bytes). When switching between these

programs the associated screen display is also switched

and saved.

In a typical configuration the Short program is a utility to

aid in your program development. Loading and running a

Short program will not affect the main co-resident BASIC

or Machine Language program.

CONCURR.OS can be loaded AFTER your main program

has been loaded, it loads without disturbing existing halted

programs. It swaps out the current RAM between $0000

and $0CF7 plus the colour RAM, to RAM at $D000.

CONCURR does not affect the valuable RAM at $C000.

This creates space for Short programs which can provide

you powerfull functions and utilities such as;

* List/Disassemble your Main Program

* List/Disassemble named Disk Files

* List/Disassemble a track & Sector

* List/Disassemble 1541 Disk RAM/ROM

* Disassemble Pseudo Codes

* List a named BASIC disk file

* List a Disk Directory

* Look up, create & print data screen files

* Un-NEW a BASIC program

There is also a Short Screen Editor for creating and filing

your own coloured text screens.

CONCURR.OS allows you to switch over to the Short side

and list an old version of your program to the screen, view

a directory, create and file some comments etc. and return

to your program in the same state as you left it in.

With the 1541 Disassembler program you can place and

run your own programs in the RAM of the disk.

The CONCURR DISK includes CONCURR.OS and

Short utilities described here.

Send $18.00 Cdn (or

$15.00 US) plus $2.00 for

shipping and handling,

Money Order or cheque

drawn on Canadian Bank.

Please allow 6 weeks for

delivery. Pre-payment is

required.

the

PRECISIONWARE

1 Adams Street

Brampton, Ont

Canada, L6Z 2S3

Volume 9, Issue 5

Got an interesting programming tip, a short routine, or an unknown bit of

Commodore trivia? Send it in - ifwe use it in the bits column, we'll credit you in the

column and send you afree one-year subscription to Transactor.

Super-C BIT

Kerry Gray, Salinas, CA

A Super-C program is loaded from $0801 like BASIC. Its first

two bytes form a pointer to the first instruction in the program.

You can write stand-alone assembler language programs that

can be run from the C environment if you follow this conven

tion. Your program should exit with a JMP $0400 to return con

trol to the C shell: Don't use an RTS.

Your other file copier

I had a 457-block ARC file that I wanted to move from a 1581

to a 1571. My file copier wouldn't budge this monster! I

came up with another idea. I booted GEOS and, sure enough,

managed to copy the file. Not only will GEOS handle very

large files, but you also get the added bonus of the GEOS disk

turbo.

The Tasmanian Dataller!

Elaine Foster, Launceston, Tasmania

When you want to make a basic Loader for your own or

other ML program, it is very nice directly to translate the

data in RAM into BASIC DATA lines. This program does this

very simply, and it is only five blocks long compared to a

29-block commercial equivalent. It does require that you

supply the start and end addresses of the ML program to be

translated. The end address will be at 45-46 after loading,

and the start address will be the first two bytes in the first

sector of the program on the disk - all in the usual low

byte/high byte format. Many utilities cartridges these days

also automatically give the start address and end address of

a loaded program.

With the ML program in memory, this one is loaded into the

BASIC workspace and run. It prompts you for the start address

and end address and the starting line number for the DATA

statements. By using Dynamic Keyboard methods (lines

50190-50230) it then makes the DATA lines and ends with the

usual FOR/NEXT reading and poking loop (lines 50240-50250).

The loader program is then ready to save to disk.

Lines 50150 and 50160 ensure that all data elements are

aligned {Transactor style), which makes them much easier to

read and to copy. This program cleverly erases itself when it

has done its job, while leaving the new DATA statements intact!

This means that when the new DATA lines have been made the

program may be saved 'as is' or you can begin entering lines

of BASIC or append another basic program.

The Deleter is a form of selective NEW, and the details are giv

en in the source code shown (deleter.src - provided and pre

sented in Speedy Assembler format - MO). You can see that it

scans BASIC from $0801 onwards, looking at each link address

and at each line number in turn. If the line number is not (in

this case) 50000 it goes to the next link and next line number,

and so on. When 50000 is found, it backs up two bytes, adds

terminating zeros and adjusts the end address bytes of loca

tions 45 and 46 to suit.

The start address of the Deleter routine (53000 in this in

stance) can be any one where there is room for 67 bytes; this is

possible because lines 590-600 replace a JMP by a BEQ, a rela

tive assignment. This is nice, because it allows you to avoid

any conflict with the ML program being examined. If you wish

to use the Deleter routine alone (BASIC Lines 50010-50080), it

may be adjusted to delete from any desired line number: see

rems in lines 50030 and 50040.

Listing 1: The Tasmanian Datafier!

II 50000 ren -- the tasmanian datafier! - transactor 9-5

JL 50010 rem -- ml to delete line 50000+ :

NK 50020 poke53280,3:poke53281,l:poke646,6:dima$(9)

KB 50030 print"{clr}{down}(down)(rvs)basic loader for ram data "

NF 50040 datal69,001,133,251,169,008,133,252,160,000

NI 50050 datal77,251,133,253,200,177,251,133,254,200

DN 50060 datal77,251,201,080,208,029,200,177,251,201:rem 080 = lb for line 50000

B0 50070 datal95,208,022,136,136,169,000,145,251,136:rem 195 = hb for line 50000

IG 50080 datal45,251,200,200,152,024,101,251,133,045

DO 50090 datal65,252,133,046,096,166,253,134,251,166

PP 50100 data254,134,252,169,000,240,197

AA 50110 c=53000:forx=ctoc+66:ready:d=d+y:rem - c anywhere where room for 67 bytes

IE 50120 pokex,y:next:ifd<>10888thenprint"error!":end

EH 50130 print"{down} (enter 0 to exit)"

MA 50140 input"{down}{down} beginning address";ba:input"{down} ending address";ea

NE 50150 ifba=0orea=0thenend

10 Transactor

CM 50160 input"{down} first data line §";1

KF 50170 ifea-ba+l-9>50000thenprint"{down}line overlap with this prog!":goto50160

HM 50180 iffthen50290

AD 50190 forn=ba+atoba+9+a:a$(b)=mid$(str$(peek(n)),2)

MM 50200 iflen(a$(b))=lthena$(b)=" "+a$(b)

KN 50210 iflen(a$(b))=2thena$(b)=" "+a$(b)

FF 50220 ifn=eathenn=ba+9+a:next:f=l:goto50240

DI 50230 b=b+l:next:b=b-l

IA 50240 print"{clr}{white}"mid$(str$(l),2)" data";:forp=Otob-l:printa$(p)",";

KM 50250 next:prmta$(p)

ID 50260 print"ba="ba":ea="ea":a="a":a=a+10:b=0:1="1":1=1+10:f="f":goto50180"

AJ 50270 print"{down}{down}{down}{blue} line f"l"{white}"

FL 50280 poke631,19:poke632,13:poke633,13:poke634,31:pokel98,4:end

HL 50290 print"{clr}";1;"forx="mid$(str$(ba),2)"to"mid$(str$(ea), 2)":ready:";

FN 50300 print"pokex/y:next":print"sys53000"

KK 50310 print"(blue)ok: data entered...{down}{down}{down}{down}{down}{white}"

DD 50320 goto50280

Listing 2: deleter.src

520

530

540

550 ;

560 link

570

580

590

600

Ida $fc

sta 46

rts

ldx$£d

stx $£b

ldx $£e

stx $fc

Ida fO

;hbfm 252

;hb of ea

;nxt lnklb

;store it.

hb

;ditto

n Gia
;=jmp scan

Larry Rutledge, Sacramento, CA

Imagine how the Lilliputians felt. Let's face it, Gulliver was a

big guy. Brobdingnagian, you might say.

No, we're not going to tell you. You'll have to type this in for

yourself.

10

20

30

40

50

60

70

ftnou

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

block delete

line format:

: lines >= 50000

[link][linei][line data]0

end of prog: 0 0 0 [end address]

(link

Line equ

org

points to

50000

53000

A)

/to delete

/start address

note: relocatable anywhere

ent

— scan basic:

start Ida

sta

Ida

sta

;

101

$fb

#$08

$fc

;scan link address:

scan ldy

Ida

sta

iny

Ida

sta

;

#0

($fb),y
$fd

($fb),y
$fe

/scan line number!

line.no. iny

Ida

cop

bne

iny

Ida

anp

bne

/terminating :

terminate dey

dey

Ida

sta

dey

sta

/

($fb),y
#<line

link

($fb),y
§>line

link

:eros:

to

($fb),y ,

($fb),y ,'

/move e.a. ptrs to byte

move.ea iny

iny

tya

clc

adc

sta

$fb

45

;sys

/link lb

/link hb

/ind.addr.

/init.loop

;ld Ink lb

/store it.

•Id Ink hb

•store it.

next byte

Id lne lb

lb 50000?

n:nxt Ink

y:nxt byt

hb 50000?

n:nxt Ink

.y-2

store 0

there.

-1 byt

again.

after 000

+2 byts

lbfrm 251

lbof ea

NP O rem screen display - larry rutledge

PI 1 rem transactor 9-5

JN 2 rem all rights reserved

MA 3 print chr$(147)

FN 4 print tab(11);chr$(154);chr$(17);

chr$(17);"watch what happens"

ML 5 for i=l to 1000:next

KH 6 for j=O to 31-.poke 53270, j:next

NG 7 get a$:if a$="" then 6

DK 8 poke 53270,200

□

VIDEO BYTE the first FULL COLOR!

video digitizer for the C-64, C-128
Introducing the world's first FULL COLORl video digitizer for the

Commodore C-64, C-128 & 128-D computer.

VIDEO BYTE can give you digitized video from your V.C.R., B/W or
COLOR CAMERA or LIVE VIDEO (thanks to a fast! 2.2 sec. scan time).

• FULL COLORIZING! Is possible, due to a unique SELECT and INSERT color process,
where you can select one of 15 COLORS and insert that color into one of 4 GRAY
SCALES. This process will give you over 32,000 different color combinations to use in

your video pictures.

• SAVES as KOALAS! Video Byte allows you to save all your pictures to disk as FULL
COLOR KOALA'S. After which (using Koala or suitable program) you can go in and

redraw or recolor your Video Byte pic's.

• LOAD and RE-DISPLAY! Video Byte allows you to load and re-display all Video Byte

pictures from inside Video Byte's menu.

• MENU DRIVEN! Video Byte comes with an easy to use menu driven UTILITY DISK and

digitizer program.*

• COMPACT! Video Byte's hardware is compact! In fact no bigger than your average

cartridge! Video Byte comes with its own cable.

• INTEGRATED! Video Byte is designed to be used with or without EXPLODE! V4.1 color

cartridge. Explode! V4.1 is the perfect companion.

• FREE! Video Byte users are automatically sent FREE SOFTWARE updates along with

new documentation, when it becomes available.

• PRINT! Video Byte will printout pictures to most printers. However when used with

Explode! V4.i your printout's can be done in FULL COLOR on the RAINBOW NX-1000,
RAINBOW NX-1000 C, JX-80 and the OKIDATA 10 / 20.

Why DRAW a car, airplane, person or for that matter. . .

anything when you can BYTE it... lUnCH DVTC *7O OR
Video Byte it instead. VlUtU DlTC $79.93

SUPER EXPLODE! V4.1 w/COLOR DUMP
If your looking for a CARTRIDGE which can CAPTURE ANY SCREEN, PRINTS ALL

HI-RES and TEXT SCREENS in FULL COLOR to the RAINBOW NX-1000, RAINBOW

NX-1000 C, EPSON JX-80 and the OKIDATA 10 or 20. Prints in 16 gray scale to all
other printers. Comes with the world's FASTEST SAVE and LOAD routines in a car

tridge or a dual SEQ., PRG. file reader. Plus a built-in 8 SECOND format and

MUCH, MUCH MORE! Than Explode! V4.1 is for you.

PRICE? $44.95 + S/H or $49.95 w/optional disable switch.

♦ in 64 mode only VIDEO BYTE only $79.95

SUPER EXPLODE! V4.1 $44.95
TO ORDER CALL 1-312-851-6667 PLUS $1.50 S/H C.O.D.'S ADD $4.00
Personal Checks 10 Days to Clear IL RESIDENTS ADD 6% SALES TAX

THE SOFT GROUP, P.O. BOX 111, MONTGOMERY, IL 60538

Volume 9, Issue 5
11

The ML Column

Big numbers

by Todd Heimarck

This instalment of The ML Column started with one large idea

that gradually developed into a series of smaller ideas. If a

high-level language is like a pile of bricks from which you

build a house, then machine language is like a pile of clay

from which you make the bricks to build a house. It turned out

that I needed some bricks.

The idea behind the original program, which remains in the

planning stage, was to build an enormous look-up table within

the 1750 RAM expansion unit. That's 512 kilobytes (or, in the

program I had in mind, 4 megabits). With two bytes, you can

count up to 65,535, which is not nearly high enough. The

program needs several bytes to count up to four million.

Handling multi-byte numbers isn't so difficult, but there are

two problems: input and output. The program needs a routine

that accepts big numbers and turns them into binary values in

memory. Plus, when the program is finished doing what it

does, it needs a routine to convert the ones and zeros into

printable ASCII numbers.

That topic is enough for a column. We'll have to discuss the

RAM expander in some future column.

If you examine the beginning of Program 1, you'll see the es

sential structure of the program. It does five things:

1. Get a string from the user.

2. Convert it to a big (six-byte) binary value.

3. Do something with the number.

4. Convert it back to decimal.

5. Print the results.

At various spots along the way, the program prints appropriate

prompts. It also checks for a zero value (the signal to exit the

program) and for a number that's too big.

Tearing apart an ASCII number

I decided, for various reasons, to use a six-byte value and to

store the low byte first. The binary number is stored in a sec

tion of memory I've named BIGSIX. It can hold numbers in the

range 0-281,474,976,710,655 (hexadecimal $ffffffffffff).

The user types on the keyboard, which means the incoming

characters are ASCII values. If he or she types 910, we'll

receive 57, 49, and 48, because those are the ASCII codes for

the characters '9\ 41\ and '0'.

The program accepts commas because it filters out any charac

ters outside the range of ASCII numbers (48-57). If the user

types 13turtle56, the program stores the characters '1356' in

memory. The memory buffer for the filtered characters is

called membuf.

We must deal with two special characters that might come

along. An ASCII 13 is a carriage return character, which means

the user pressed Return and is done. The loop ends when it

sees a 13. In addition, a period can also mark the end of input.

For example, if the user types 156.27, we take that to mean

156 and not 15,267.

The first big brick, then, is the GSTRING subroutine. It repeat

edly calls the Kernal routine CHRESf (which is preferable in this

case to GETIN). It filters out all the ASCII numbers and stores

them in MEMBUF.

Next, we call MAKEBIN, which converts the ASCII numbers into

a six-byte integer. The process is relatively simple:

1. Start with a 0 in BIGSIX.

2. Multiply BIGSIX by 10 (because we're in base ten).

3. Get an ASCII number and subtract 48, to make the char

acter '2' into the value $02 (or whatever).

4. Add that number to BIGSIX.

5. If there are more characters in membuf, go back to step 2.

Say the user types 5993. Start at the left. Zero times ten is 0.

Add the first number (5). Five times ten is 50 and add 9, which

is 59. Times 10 (590), plus 9 (599), times ten (5990), and add

3 (5993). It seems kind of silly to start with 5993 and end with

it, but that's because the example math is in decimal. Inside

the computer, it's all ones and zeros: 101 (5) becomes 110010

(50), 111011 (59), and so on.

A general routine for multiplying isn't necessary, because the

only multiplication in the program involves the number ten. If

12
Transactor

you shift a binary number to the left, it's the same as multiply

ing by two. Shifting three times is equivalent to multiplying by

eight. If x is the number, we want 10*x. That's the same as

(2*Jt) + (8*x). To multiply by ten, shift left and temporarily

save it (times two). Shift left twice more (times eight) and add

the temporary value.

The BIGX10 routine multiplies BIGSIX by ten as part of the

MAKEBIN routine. The ROTSix subroutine rotates all six bytes

one bit to the left, and the DUPSix subroutine copies the BIGSIX

number to BIG2. These routines also have to check for an over

flow condition, which happens when the user types in a num

ber bigger than 281 trillion.

Do something interesting

The first version of this program converted the ASCII numbers

to binary and then back to ASCII, which is a rather pointless ex

ercise. You type in a number and then it tells you the number

you just typed. So what?

Since we've gone to all this trouble, we should do something.

Program one takes the binary number and prints it as a series

of ones and zeros. It happens in the PROCESS routine, which

should be easy to follow.

A second version of PROCESS calculates the square root of the

BIGSIX number. More about that in a moment.

Converting back to ASCII

After processing the binary value in PROCESS, we need the

routine that converts back to printable base-ten numbers. Since

we multiplied by ten in the other routine, it's a good bet that

we need to divide by ten in the makedec routine. Since we

started at the left before, we probably need to start at the right.

Take a short number, like decimal 57 (binary 111001). Let's

see, 111001 divided by 1010 is about 101 with a remainder of

111. In decimal, that means 57 divided by 10 is 5 with a re

mainder of 7. The value 7 can be added to 48 to get 55, which

is the ASCII character '7'.

The makedec routine builds up a decimal (ASCII) number by

following these steps:

1. Divide by 10.

2. Add 48 to the remainder to get an ASCII number.

3. Repeat until the result is 0 (with a remainder of 0-9).

A previous column discussed binary division; I won't repeat

myself here. See The ML Column in Volume 9, Issue 2 of

Transactor if you're interested in the details of binary division.

An important thing to remember is that shifting is radix-

dependent (if that's a word), whereas both division and multi

plication are radix-independent. The decimal (base-ten)

number 578 shifted to the left is 5780. The binary (base-two)

number 101 shifted left is 1010. In base ten, shifting left is the

same as multiplying by 10. In base two, shifting left is the

same as multiplying by 2.

To find out that the rightmost digit of 914 is 4, we must actual

ly divide by 10 (and get the remainder of 4). We cannot shift

right, because the number is stored as a binary quantity. Shift

ing a binary right is equivalent to dividing by 2, not dividing

by 10.

Calculating big square roots

Program 2 is a code fragment that contains a new PROCESS

routine. Its lines replace the lines from Program 1; the first

part is identical.

This new PROCESS routine finds the binary square root of a big

six-byte number, rounded down to the nearest integer. It will

say that the square root of 25 is 5, but it also says that the

square root of 30 is 5.

Sounds complicated, doesn't it? It's not. If you're curious

about how it works, read on.

Let's begin with a high-school math refresher and take a

square root entirely in base ten. The square root of 65,536 is

256. The process is described below and corresponds to the

representation included as Figure 1.

2

)6

1
2

2

5

. 55

55

25

30

30

6

. 36

36

36

(0+2)*2

(40+5)*5

(500+6)*6

Figure 1: Finding the square root of65,536

First, mark off every two digits starting at the decimal point:

6/55/36. Start with a partial answer of 0 because we haven't

begun. Multiply by 20 to get 0 (call this the weird number).

Look at the first number from the left. It's a 6 (the first

clump from 6/55/36). Write down 2 as a partial answer, be

cause (2 plus weird) times 2 is 4, which fits into 6. Subtract 4

from 6 (2) and append the next two numbers (55). Now

we've got 255.

The new weird number is the partial answer (2) times 20,

which is 40. We need a number x, where (40+x)*x fits into

255. Five will do, because 45*5 is 225 and 46*6 is 276 (too

big). The new partial answer is 25, the new weird number is

500, and the new target is 3036. The final digit in the answer is

6, because 506*6 is 3036, which exactly equals 3036.

Volume 9, Issue 5 13

We need to translate

mula

it'

In

S "1

for figuring out

times two, then s

base two, we need

that to base two. As it turns out, the for-

the weird number is not "times twenty,"

shift left". Remember the difference?

to multiply by 4 instead of 20. No prob-

lem. Just shift left twice.

What about guessing

two choices: zero or

110100. If the answer

which number is next? Well, there's only

one. So let's say the weird number is

is one, then we subtract 110101 (because

of the rule to add the digit to the weird number).

It works out very nicely in binary. Shift the partial answer

twice to the left anc

below, the next digit

a zerc

That'*

it'sa

>.

5 the end of this

I add one. If that fits into the number

in the partial answer is 1. Otherwise, it's

column about big six-byte numbers, but

good start on another program that will do more with big

numbers. We've got a few bricks now.

Listing liBIGLSRC

DN

PD

IL

KO

DO

NL

FH

CG

LI

CK

PO

LC

GJ

DO

GL

JB

BK

FF

CO

OA

MM

EA

LD

NG

HG

JL

PK

OB

OP

IA

PN

MA

KI

00

KG

CK

CN

HE

CC

HL

FB

LI

DA

FI

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

rem save"bigl.src",

sys700

*=49152

.opt oo

za = $fb

temp = §fd

temp2 = $fe

counter = $ff

errflag = $02

chrin = $ffcf

chrout = $ffd2

; this is the main

main Ida fO

sta errflag

jsr pmsgl

jsr gstring

jsr makebin

bcs error

jsr pmsg2

jsr process

jsr makedec

jsr pmsg3

jmp main

error bne realerr

rts

realerr jsr pemsg

jmp main

; generic loop for

msgout = *

sta za

stx za+1

ldy #0

msglp Ida (za),y

beq msgex

jsr chrout

iny

bne msglp

msgex rts

pmsgl = *

Ida f<msgl

ldx §>msgl

jmp msgout

msgl .asc "enter

.byte 13,0

)

; free zero-page location

loop

no errors (yet)

print message 1

get a string from user

make it a binary number

the number was too big

print message 2

do something to the number

make the binary value into an ascii string

print message 3

loop forever

if not equal, a real error occurred

else, it was a zero entry

print error message "too big"

and go back

printing a message.

a nu

store the address

begin at the beginning

get the character

exit if zero

else print it

continue loop

end of msgout

• the address

• implied rts at the end

nber (commas ok).

; end of pmsgl

AG

FP

HF

BP

10

FD

OM

IK

ND

PJ

GM

OF

BO

PG

OC

JI

DJ

CL

FH

BL

PF

KI

JF

JL

PO

PF

DO

KM

LN

BK

GD

NB

HK

AD

PI

GG

EH

KH

FH

DB

KE

GJ

GN

BK

HP

ON

AN

OC

GI

KC

GI

PB

BM

PH

MJ

MJ

LL

FA

ME

PN

AI

NC

JG

EJ

DK

BB

BD

LH

KD

GB

MG

NN

EC

JI

MD

EA

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

pmsg2

msg2

pmsg3

msg3

pemsg

ernnsg

; the

= *

Ida #<msg2

ldx jf>msg2

jmp msgout

.byte 13

.asc "calculating,

.byte 13,0

= *

Ida f<msg3

ldx #>msg3

jsr msgout ;

Ida f<membuf

ldx |>membuf

jsr msgout

Ida #13

jsr chrout

jsr chrout

rts

end of pmsg2

print, but then

print the buffer, too

.byte 13

.asc "the answer is

.byte 32,0

Ida #<errmsg

ldx #>errmsg

.bytel3

.asc "** number is

.byte 13

end of pmsg3

too big **

.asc "maximum is 281,474,976,710,655.

.byte 13,0 end of pemsg

gstring routine gets a string and puts it in membuf

; chrin sends a 13 to indicate the end, but we make it a zero

gstrinc

gstlp

istex

chknum

chkerr

chkex

= *

ldy HO

jsr chrin

cmpfl3

beq gstex

cmp |46

beq gstex

jsr chknum

bcs gstlp

sta membuf,y

inv

bne gstlp

Ida 10

sta membuf,y

rts

cmp f58

bcs chkex

cmp 148

bcc chkerr

clc

rts

sec

rts

if 13, we're done

special case of period (53.15, for example)

better make sure it's a number

carry set means not-a-number

if it is a number, store it

branch always

store a zero

store the length and exit

57 is ascii 9

if carry set, it's >"9", so exit w/carry set

48 is ascii 0

if carry dr, it's smaller than "0"

clear carry = ok

set = nok

end of gstring

; makebin makes the ascii numbers in membuf

; into a 6-byte (48-bit)

makebin = *

maklp

jsr clrbig

ldy 10

Ida membuf, y

beq makend

sta temp2

jsr bigxlO

Ida errflag

bne abort

Ida temp2

sec

sbc #48

clc

adc bigsix

sta bigsix

bcc mak2

inc bigsix+1

bne mak2

inc bigsix+2

bne mak2

number by repeatedly multiplying by 10.

clear out the big number

start at the beginning

get an ascii character (48-57)

if zero, end of buffer

else stash it

and multiply bigsix by 10

if error, then quit

else get the digit back

make it 0-9

skip ahead if no carry

else handle the higher bytes

14
Transactor

EF

IB

MG

MC

El

AE

MI

LN

GC

JA

FF

JG

KC

HB

LO

EG

KG

IH

DL

DD

OC

OK

MN

KB

IA

EB

OB

JB

OK

NA

GL

PI

LA

BE

PH

KN

LO

El

GD

KP

DH

JK

NC

LD

JE

HF

IN

GK

FT.iii

DM

AG

FA

DN

IC

MB

LC

CK

PK

ML

JM

GN

EC

CP

FA

PM

JI

JH

IA

OB

BL

LH

LL

BM

LF

FO

FF

BJ

1300

1310

1320

1330

1340

1350

1360 abort

1370

1380

1390 mak2

1400

1410 makend

1420

1430

1440

1450 makex

1460

1470 clrbig

1480

1490 clrlp

1500

1510

1520

1530 bigxlO

1540

1550

1560

1570

1580

1590

1600

1610 bigxlp

1620

1630

1640

1650

1660

1670

1680

1690 noflow

1700 rotsix

1710 rot2six

1720

1730

1740

1750

1760

1770

17flfl ftlr•L/Ov Uft

1790 dupsix

1800 duplp

1810

1820

1830

1840

1850 bigor

1860

1870

1880

1890

1900

1910

inc bigsix+3

bne mak2

inc bigsix+4

bne mak2

inc bigsix+5

bne mak2

iny

sec

rts

iny

bne maklp

jsr bigor

bne makex

sec

rts

clc

rts

ldx 15

Ida fO

sta bigsix,x

dex

bpl clrlp

rts

jsr rotsix

jsr dupsix

jsr rotsix

jsr rotsix

Ida 16

sta temp

ldx #0

clc

Ida big2,x

adc bigsix, x

sta bigsix,x

inx

dec temp

bne bigxlp

bcc noflow

inc errflag

rts

asl bigsix

rol bigsix+1

rol bigsix+2

rol bigsix+3

rol bigsix+4

rol bigsix+5

bcc ok

inc errflag

IUS

ldx #5

Ida bigsix,x

sta big2,x

dex

bpl duplp

rts

Ida bigsix+0

ora bigsix+1

ora bigsix+2

ora bigsix+3

ora bigsix+4

ora bigsix+5

rts

1920 ; makedec turns the

1930 ; a series of ascii

1940 makedec

1950

1960

1970 mdlpl

1980

1990

2000

2010 mdlp2

2020

2030

2040

2050

2060

= *

Ida #0

pha

ldx §48

stx counter

Ida fO

sta temp

jsr rotsix

rol temp

Ida temp

cmp §10

bcc mdcool

sbc #10

; clear z flag and c flag to mark an error

; branch always

; see if it's zeros

; carry set = error/exit

; clear carry means all is well

; clear all six bytes

; count back

; rotate bigsix to the left (times 2)

; copy it to big2

do all six bytes

starting with byte 0

add2x

to 8x

which equals lOx

add all six bytes

if cc, no overflow

else set error flag

return from bigxlO

; rotate bigsix one bit left

; if cc, no overflow

; set error flag

; copy bigsix to big2

; end of makebin

binary value into

numbers in membuf

; start with 0, which means "end"

; 48 bits

; get a bit

; and move it into temp

; if temp < 10

; it's cool, clon't worry

; else subtract 10 (carry is already set)

DP

LI

BP

IP

JA

HJ

PP

JM

HE

HN

FP

PE

JN

JK

HN

KA

EA

JL

DC

LP

HP

IB

DM

IE

FD

OP

IF

PM

AB

OP

ME

PC

LM

PK

LF

KP

KO

DE

CC

II

LB

GA

OA

JI

El

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

sta temp

mdcool php

lsr bigsix

pip

rol bigsix

dec counter

bne mdlp2

Ida temp

ora #48

pha

jsr bigor

bne mdlpl

Idy #0

mdlp3 pla

sta membuf, y

beq mdex

iny

bne mdlp3

mdex rts

; process prints the

process Ida #<binmsg

ldx #>binmsg

jsr msgout

Idy #5

proclpl ldx #8

stx counter

Ida bigsix,y

sta temp

Proclp2 Ida #48

rol temp

bcc sendit

adc#0

sendit jsr chrout

dec counter

bne proclp2

Ida #13

jsr chrout

dey

bpl proclpl

rts

binmsg .asc "binary

.byte 13,0

bigsix = $c400

big2 = $c406

membuf = $c40c

Listing 2: BIG2.SRC -

2250 i

; store it (carry is still set)

; put the bit back into bigsix

make it ascii

and push it

is it zero yet

no, it isn't, go back.

get a character

if 0, we're done

else increment y

and branch always

end of makedec

Is and 0s of the binary number

; six bytes

; eight bits

; ascii zero

; if zero, print "0"

; else add 0 (plus set carry)

; next line

; continue outer loop

(high byte to low):

; end of process

; th* big 48-bit (6-byte) number

; another big number

; memory buffer

To create this program, use lines 1OO-

of BIGLSRC and add the following lines for the new

PROCESS routine.

JD

BP

KP

AO

AE

CL

LA

FA

LB

FO

IE

DO

HN

IE

OC

KE

KO

AF

JA

DD

HE

II

NF

JG

HC

CJ

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

; process finds the square root.

big4 .byte 0,0,0,0

big3 .byte 0,0,0,0

process = *

ldx #5

proclpl Ida bigsix,x

sta big4,x

Ida #0

sta big3,x

dex

bpl proclpl

jsr clrbig

Ida #24

sta counter

pmain = *

jsr dupsix

clc

jsr rot2

sec

jsr rot2

jsr rot43

jsr comp32

php

rol bigsix

jsr rot2six

pip

,0,0

,0,0

; first copy bigsix to big4 and clear big3

; clear out bigsix for the answer

; repeat the loop 24 times (for 48 bits)

; main loop for process

; copy bigsix to big2

; rotate big2

* rotate again plus 1

- rotate big4 into big3 twice

• compare big3 to big2

' save the processor status

put the bit into bigsix

Volume 9, Issue 5 15

CB

JC

AN

GL

FM

BA

AF

JN

IL

HN

NN

CD

EE

EL

LL

6D

EF

ND

10

CI

MA

DP

EH

BK

NE

OK

HJ

LD

MN

BJ

16

EC

CB

EA

NL

NO

MA

PL

IK

DC

OB

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

pmlp

nosub

; rot;

rot2

r21p

bcc nosub

ldxjfO

ldy 16

Ida big3,x

sbc big2,x

sta big3,x

inx

dey

bne pmlp

dec counter

bne pmain

rts

I rotates big2 to

ldxfO

ldy #6

rol big2,x

inx

dey

bne r21p

rts

; if carry is clear, continue

; else subtract 3-2

the left

; rot43 rotates two bits from big4 into big3

rot43

twice

r431p

jsr twice

ldxiO

ldy 112

rol big4,x

inx

dey

bne r431p

rts

; comp32 compares big3

comp32

c321p

c32ex

bigsix

big2

membuf

ldx #5

Ida big3,x

crap big2,x

bcc c32ex

bne c32ex

dex

bpl c321p

rts

= $c400

= $c406

= $c40c

• do it twice

•

to big2

compare msb's first

if cc, big2>big3

if not equal, big3>big2

else they're equal, so go back

th* big 48-bit (6-byte) number

another big number

memory buffer

Listing 3: BIGLGEN - BASIC generatorfor "bigl.obj"

JP 100 rem generator for "bigl.obj"

HN 110 n$="bigl.obj": rem name of program

BC 120 nd=568: sa=49152: ch=60233

(for lines 130-260 see the standard generator on page 5)

NF 1000

AO 1010

MH 1020

FF 1030

PB 1040

CC 1050

NC 1060

CK 1070

IL 1080

BL 1090

CO 1100

GK 1110

BE 1120

OO 1130

HM 1140

JJ 1150

IN 1160

DA 1170

NC 1180

EO 1190

GH 1200

FC 1210

CD 1220

GD 1230

KD 1240

ND 1250

JE 1260

data 169,

data 220,

data 92,

data 32,

data 96,

data 251,

data 6,

data 169,

data 78,

data 85,

data 79,

data 41,

data 76,

data 85,

data 46,

data 32,

data 39,

data 210,

data 65,

data 83,

data 39,

data 77,

data 84,

data 42,

data 85,

data 49,

data 54,

0, 133,

192, 32,

192, 32,

116, 192,

32, 155,

134, 252,

32, 210,

63, 162,

84, 69,

77, 66,

77, 77,

46, 13,

39, 192,

76, 65,

46, 13,

39, 192,

192, 169,

255, 96,

78, 83,

32, 0,

192, 13,

66, 69,

79, 79,

42, 13,

77, 32,

44, 52,

44, 55,

2, 32, 56,

6, 193, 176,

242, 193, 32,

76, 0, 192,

192, 76, 0,

160, 0, 177,

255, 200, 208,

192, 76, 39,

82, 32, 65,

69, 82, 32,

65, 83, 32,

0, 169, 99,

13, 67, 65,

84, 73, 78,

0, 169, 139,

169, 12, 162,

13, 32, 210,

13, 84, 72,

87, 69, 82,

169, 162, 162,

42, 42, 32,

82, 32, 73,

32, 66, 73,

77, 65, 88,

73, 83, 32,

55, 52, 44,

49, 48, 44,

192, 32

15, 32

182, 193

208, 1

192, 133

251, 240

246, 96

192, 69

32, 78

40, 67

79, 75

162, 192

76, 67

71, 46

162, 192

196, 32

255, 32

69, 32

32, 73

192, 76

78, 85

83, 32

71, 32

73, 77

50, 56

57, 55

54, 53

LA 1270 data 53, 46, 13, 0, 160, 0, 32, 207

JF 1280 data 255, 201, 13, 240, 15, 201, 46, 240

IE 1290 data 11, 32, 250, 192, 176, 240, 153, 12

GI 1300 data 196, 200, 208, 234, 169, 0, 153, 12

JF 1310 data 196, 96, 201, 58, 176, 7, 201, 48

KI 1320 data 144, 2, 24, 96, 56, 96, 32, 79

LE 1330 data 193, 160, 0, 185, 12, 196, 240, 54

BF 1340 data 133, 254, 32, 90, 193, 165, 2, 208

NJ 1350 data 39, 165, 254, 56, 233, 48, 24, 109

CG 1360 data 0, 196, 141, 0, 196, 144, 28, 238

GG 1370 data 1, 196, 208, 23, 238, 2, 196, 208

CL 1380 data 18, 238, 3, 196, 208, 13, 238, 4

IL 1390 data 196, 208, 8, 238, 5, 196, 208, 3

CP 1400 data 200, 56, 96, 200, 208, 197, 32, 163

GN 1410 data 193, 208, 2, 56, 96, 24, 96, 162

BA 1420 data 5, 169, 0, 157, 0, 196, 202, 16

PB 1430 data 250, 96, 32, 128, 193, 32, 151, 193

PO 1440 data 32, 128, 193, 32, 128, 193, 169, 6

NL 1450 data 133, 253, 162, 0, 24, 189, 6, 196

PO 1460 data 125, 0, 196, 157, 0, 196, 232, 198

JK 1470 data 253, 208, 242, 144, 2, 230, 2, 96

AL 1480 data 14, 0, 196, 46, 1, 196, 46, 2

DJ 1490 data 196, 46, 3, 196, 46, 4, 196, 46

ME 1500 data 5, 196, 144, 2, 230, 2, 96, 162

JC 1510 data 5, 189, 0, 196, 157, 6, 196, 202

LL 1520 data 16, 247, 96, 173, 0, 196, 13, 1

JI 1530 data 196, 13, 2, 196, 13, 3, 196, 13

DG 1540 data 4, 196, 13, 5, 196, 96, 169, 0

FE 1550 data 72, 162, 48, 134, 255, 169, 0, 133

NG 1560 data 253, 32, 128, 193, 38, 253, 165, 253

EC 1570 data 201, 10, 144, 4, 233, 10, 133, 253

PE 1580 data 8, 78, 0, 196, 40, 46, 0, 196

LP 1590 data 198, 255, 208, 229, 165, 253, 9, 48

LC 1600 data 72, 32, 163, 193, 208, 211, 160, 0

DN 1610 data 104, 153, 12, 196, 240, 3, 200, 208

CN 1620 data 247, 96

AJ 1630 rem — following data is for process1 ~

MM 1640 rem — prints input number in binary -

IG 1650 data 169, 28, 162, 194, 32, 39

CM 1660 data 192, 160, 5, 162, 8, 134, 255, 185

PJ 1670 data 0, 196, 133, 253, 169, 48, 38, 253

DJ 1680 data 144, 2, 105, 0, 32, 210, 255, 198

OK 1690 data 255, 208, 241, 169, 13, 32, 210, 255

BD 1700 data 136, 16, 224, 96, 66, 73, 78, 65

JA 1710 data 82, 89, 32, 40, 72, 73, 71, 72

KD 1720 data 32, 66, 89, 84, 69, 32, 84, 79

KN 1730 data 32, 76, 79, 87, 41, 58, 13, 0

Listing 4: BIGLGEN - BASIC generatorfor "bigl.obf

MP 100 rem generator for "big2.obj"

IN 110 n$="big2.obj": rem name of program

EC 120 nd=625: sa=49152: ch=68145

(for lines 130-260, see the standard generator on page 5)

(use lines 1000-1620 of "bigl.gen", change the 242 in

line 1020 to 254 and add the following lines)

DM 1630 rem — following data for process2 —

MK 1640 rem — finds square root of number —

IH 1650 data 0, 0, 0, 0, 0, 0

OG 1660 data 0, 0, 0, 0, 0, 0, 162, 5

JK 1670 data 189, 0, 196, 157, 242, 193, 169, 0

EE 1680 data 157, 248, 193, 202, 16, 242, 32, 79

MO 1690 data 193, 169, 24, 133, 255, 32, 151, 193

IM 1700 data 24, 32, 70, 194, 56, 32, 70, 194

PG 1710 data 32, 82, 194, 32, 97, 194, 8, 46

II 1720 data 0, 196, 32, 131, 193, 40, 144f 17

BA 1730 data 162, 0, 160, 6, 189, 248, 193, 253

IO 1740 data 6, 196, 157, 248, 193, 232, 136, 208

OJ 1750 data 243, 198, 255, 208, 208, 96, 162, 0

CC 1760 data 160, 6, 62, 6, 196, 232, 136, 208

DO 1770 data 249, 96, 32, 85, 194, 162, 0, 160

FP 1780 data 12, 62, 242, 193, 232, 136, 208, 249

KB 1790 data 96, 162, 5, 189, 248, 193, 221, 6

JA 1800 data 196, 144, 5, 208, 3, 202, 16, 243

LJ 1810 data 96 □

16
Transactor

Transactor Reader Survey

Here it is! Transactor's first reader survey. We want to know what you like and don't like about Transactor. We want to know what

software and hardware you're using. And we'd like to know what you want to see in the magazine in the future. Nosey, aren't we?

Please take the time to do the survey and send us the results. Make a photocopy. (We wouldn't want you to tear up the maga

zine). Please send your completed survey page to: Reader Survey, Transactor, 85 West Wilmot St., Unit 10, Richmond Hill,

Ontario, Canada, L4B 1K7.

System configuration and software used:

Columns

Features

The ML Column

The Edge Connection

Bits

Letters

News

Reviews

Love it!

□

□

□

□

□

□

Like it.

□

□

□

□

□

□

Don't like.

□

□

□

□

□

Hate it!

□

□

□

□

□

□

Article Topics

C64 Native Mode

C128 Native Mode

Power C

CP/M

GEOS

Reference Material

Hardware Projects

Software Reviews

Hardware Reviews

Theoretical Material

Love it!

□

□

□

□

□

□

□

□

□

□

Like it.

□

□

□

□

□

□

□

□

□

□

Don't like.

□

□

□

□

□

□

□

□

□

□

Hate it!

□

□

□

□

□

□

□

□

□

□

Comments or suggestions:

Volume 9, Issue 5 17

The Edge Connection

GEOS 128 2.0, ZOOM, macros, radio, etc.

by Joel Rubin

The most important recent 8-bit Commodore software news is

the release of GEOS 2.0 for the C128. Like GEOS 2.0 for the

C64, it includes a new version of geoWrite Workshop (in

cluding Text Grabber, geoMerge, and geoLaser), geoSpell (but

not the font editor which came with the separately packaged

geoSpell and is now part of Fontpack Plus), a new deskTop

(with a built-in clock for midnight hackers, and, more impor

tant, the ability to select more than one file for copying or

erasing), et alia. The new versions of geoWrite and geoSpell

only work in 80-column mode.

In a WIMP (Windows Icons Mouse Pointer) system such as GEOS,

as you become an expert, you may start wishing for cryptic con

trol codes or a command line interface. These may be 'user un

friendly' but at least they get the job done without going through

menu after menu. Both the GEOS deskTop and GEOS applications

are gradually moving towards control code alternatives, with each

version of GEOS having more and more of them.

I still think I would generally prefer to use Paperclip or a simi

lar character-based post-formatted word processor to enter text

and then use Text Grabber to convert to geoWrite, if I'm not

satisfied with an ASCH/control-code printout. But (especially

with the 2 MHz clock) geoWrite is becoming less of a pain in

the neck as a text editor. Still, there are times when I want to

move a margin and get a tab marker instead, or when I want to

enter text and accidentally move the mouse and find things

scrolling ever so slowly the other way. At those times, I think

that the best game to play with a mouse is that canine

favourite, "Shake It To Death".

There are quite a few new printer drivers, including some that

work with a user port to Centronics cable (such as the one de

scribed in Transactor Volume 9, Issue 3), some double and

quadruple strike drivers, a few drivers that reduce the size of

the page and offer greater dot density, and even a very few

drivers that will work with RS-232 interfaces and a PAL clock

speed. (Question: How do the Commodore computers work in

France, where they have neither the NTSC nor PAL colour stan

dards but SECAM?)

Unfortunately, this new version of GEOS does not take advan-

so all 80-column work is going to be in mono. Also, as usual,

geoWrite only supports an 8" (20 cm) wide page, so if you

want to use something wider, you are out of luck. The other

immediately obvious deficiency is the manual (which doesn't

really exist - you get a copy of the 64 version manual and a

booklet that goes through the 128 differences, chapter by

chapter). I always thought that one of the advantages of using

a computer for word processing was that it would be easier to

edit one's document and come out with a new edition.

By the way, although Geoprogrammer 2.0 is listed as an ap

plication one might own, I was told by customer service that

this product has been cancelled. Since the current version of

Geoprogrammer and, in particular, GeoDebugger only work

under C64 GEOS, this leaves quite a gap. Readers might want

to express their opinions. Leave them on Q-Link, or write

them to Berkeley Softworks, 2150 Shattuck Avenue, Berkeley,

CA 94704.

German viruses invade Michigan!

Now that we've gotten through with the supermarket tabloid-

type headline, I can tell you that this is about a Data Becker

book newly translated into English and released by Abacus -

Computer Viruses, A High Tech Disease. On a scale of 1 to 10,

I would give this book an 8 or 9. My major complaint would

be that it could use a good bibliography. It deals calmly and

rationally with the subject, unlike so much of the popular

press. Technical points are illustrated with programs in various

languages, including GW-basic, Turbo Pascal, IBM vm/cms

command language (the infamous "Christmas virus"), and

MS-DOS and IBM mainframe assembly language. The Arpanet

virus happened too late to be covered.

(Just in case you think that Commodore 8-bit machines are im

mune from viruses, there is a short listing of CP/M+ BDOS calls;

although GEOS, which creates swap files, is far more vulnera

ble. Always keep a write-protect on original GEOS and GEOS

application disks, unless you need to write on them - for exam

ple, to install the default printer driver. Some versions of GEOS

will, in an anti-piracy trap, erase boot files if they 'think' you

are using a copy, and the test might be sensitive to drive align

ment.)

18 Transactor

This is not just a technical hacking book. There are interviews

with security professionals, such as a Bavarian police detective

and the head of an insurance company. (By the way, those who

are fighting for the good name of "hacker" will be glad to note

that the word is used in this book as a synonym for "technically-

oriented computer user, whether law-abiding or not".)

Of course, the legal references in this book are largely irrele

vant to most readers of this magazine - not only are the specif

ic laws different, but German law derives largely from Roman

law and the Code Napoleon, whereas most of you live under

some version of English Common Law. (Frankly, I think that it

is a mistake to make too many specific laws when the old

laws, such as "Malicious Mischief", still have teeth. When the

legislators pass a lot of situation-specific laws, the codes get

cluttered with laws, many of them technologically obsolete,

and it becomes difficult for the average citizen to determine

his or her rights and responsibilities.)

A commercial disk-loaded monitor for the C64 and C128

Zoom is a machine language monitor for the C64, C128, and the

BBC computer. (Has anyone outside Britain ever seen a BBC

computer? I've seen books about programming them but that's

it. It was a 6502-based computer put out by Acorn. [Acorn com

puters have been available here in Toronto. - Ed.] It had a very

nice structured BASIC that included a built-in assembler, but

that's about all I know about it.) Like most monitors available

for Commodore computers, it is based on the monitor built into

all but the earliest pet/cbm computers and the extensions writ

ten for it, such as Supermon, Extramon and Micromon.

The most important feature which this monitor has which is

not in the built-in C128 monitor is the ability to walk (single

step) code at three different speeds and to quick trace code

(run code until you've passed a certain point n times and after

that walk the code). One can also set up non-standard banks,

such as $3E (BANK 0 with I/O), check memory for illegal op

codes, and enter values into memory as PETSCII values instead

of hex. There is a built-in hex calculator and a wedge; I can't

figure out how to make zoom's wedge work for device 9.

Let's say you are looking through memory for text, but you are

not certain whether it's PETSCII, ASCII, or screen codes. ZOOM

allows you define a series of mask bytes so that you are look

ing for an area of memory where byte-1 and mask-1 = hunt-

pattern-1, byte-2 and mask-2 = hunt-pattern-2, et alia. ZOOM,

like Extramon, has a relocation facility so that you can change

absolute addresses and/or tables of words to a different loca

tion. Of course, this doesn't always work. Relocation routines

generally will not work if you have the following sort of code:

Ida #<$8000

sta $61

Ida #>$8000

sta $61+1

ldy #0

Ida ($61),y

since the relocation routine will not find the actual absolute

address $8000 anywhere. However, zoom's relocation routines

do work on ZOOM itself. The C64 version loads at $C0000, but

you should be able to set it up to work at the top or bottom of

basic. (I didn't get the C64 version. C64 users should note

that there are several cheap or free alternatives, including

Micromon, from public domain sources, and HESMON,

available on cartridge from software liquidators.) The C128

version loads at $8000 and takes 6K of memory. It can be relo

cated to anywhere up to or below $A800-$BFFF. (It works

either in memory configuration $0E or $4E - BANK 0 or BANK l

RAM, BASIC switched out, KERNAL ROMs switched in, and I/O

switched in. The very thin (16 pages for all three versions!)

manual states that zoom can be relocated but it does not state

where; or that it will work in either RAM bank. It uses a bit of

interface code in common RAM around $0290.)

So far, ZOOM is the only single-step and/or quick trace routine

I have been able to find for C128 mode. Abacus' BASIC 7.0 In

ternals book mentions that a certain author has written another

one, and I have sent him two SASE's but have received no re

sponse in at least a year.

One other advantage that ZOOM has over the built-in C128

monitor is that it uses four hex digit addresses and displays the

configuration register rather than five hex digit addresses. If

you hit a BRK in a machine language program and get into the

standard C128 monitor, the bank given as part of the register

display may or may not have anything to do with reality -

especially if you are playing with BASIC ROM routines and get

dumped into one of those non-standard banks with which

BASIC 7.0 is so enamoured.

ZOOM is marketed by Supersoft in the U.K. and the Com

modore versions are imported by Skyles Electric Works

(231-E S. Whisman Rd., Mountain View, CA, 94041, tele

phone (800) 227-9998/(415) 965-1735) in the U.S.

Assembly language macros

Xytec's Macro Set 1 (1924 Divisidero St., San Francisco, CA,

94115, (415) 563-0660) is a disk of assembly language macros

for use with Commodore's C64 Assembler (available cheap

from software liquidators) or Merlin. While the Merlin

macros, at least, work with the C128 version of Merlin, the ob

ject code generated may not work in C128 mode. For example,

in C128 mode, before you open a file, you have to call setbnk

to tell the Kernal whether the name of the file is in BANK 0 or

bank l. Generally, basic uses bank l, but most machine lan

guage programs use BANK 0, so you can't just assume the de

fault is correct.

The macros are generally oriented to business, rather than

graphics or games software. Among other things, there is a code

for a sort of 16-bit virtual machine, somewhat similar to the ma

chine defined by Steve Wozniak's Sweet-16, although Sweet-16

is an interpreted language. There is BCD multibyte arithmetic,

and output numeric formatting, professional-looking keyboard

Volume 9, Issue 5 19

input and Kernal calls. There is some useful stuff in here if you

have no trouble using disk files from BASIC but have trouble

with the machine language calls for opening the files and check

ing the error channel, or if you want to read delimited variable-

length records, similar to INPUT# in BASIC. One other useful bit

of code allows you to create a self-debugging version of your

program that will, at specified points, dump the registers or an

area of memory, await a key press, and then restore the text

screen and registers and continue. This disk costs $29.95 (U.S.).

Xytec, very much a 'garage-type' operation, also sells a few

other programs, including a tree-oriented data base (intended, in

part, for generating a disk-based user manual), a roommate ac

counting program, and a lotto number choosing program, which

is, essentially, just a somewhat entertaining random number

generator. (Xytec's lotto program does not "help you win the

lotto by analyzing previous lotto drawings", but then, no statis

tician believes that this is mathematically possible. The so-

called "law of averages" does not apply to independent events,

such as the tossing of a coin or the drawing of lotto numbers. It

does apply to Blackjack, since if the drawn card is not put back

in the deck, the odds of getting cards with the same value is de

creased.) Xytec's catalog is free; their demo disk is $2, applica

ble to an order. Currently, Xytec is willing to send you a disk

now and ask you for the money, or the returned disk, later. The

disks are not copy-protected. Is this trust justified? We shall see.

Mail order legal problems in the U.S.

The mail order industry in the U.S. is screaming about a bill in

Congress. Some states have "use tax" laws that require you to

pay sales tax when making purchases in another state to use in

the taxing state. If you buy a car in another state, your state's

vehicle licensing authority may have no trouble collecting the

difference, if any, between the tax you paid and the tax in your

home district when you go to register the car. In most cases,

mail order firms do not collect taxes on out-of-state purchases,

leaving the customer, who may not even know of the require

ment, to obtain an obscure form and pay the tax.

The state tax collectors have asked Congress to force mail order

firms to collect all customers' sales tax. This will raise mail or

der firm's expenses. What the mail order firms can't say is that

it will also discourage interstate customers who have been try

ing to evade their tax. If a one-person garage operation has to

keep track of all the state taxes - which frequently differ in dif

ferent localities in the same state (I pay a 1/2 per-cent transit

district surcharge on my state sales tax) - it may just drive that

operation out of business. If you live in the U.S. and buy or sell

mail order and have any opinion, pro or con, you might wish to

contact your representative and senators.

Computers and radio

If you're interested in using a computer for shortwave listening or

amateur radio, you might be interested in the free pamphlet,

INFODUTCH, available from Radio Netherlands hobbyist show,

Media Network. The address is Postbus 222, 1200 JG Hilversum,

The Netherlands. Among the references given in the guide is one

for the Commodore Radio Users Group, 22 Whiteford Avenue,

Bellsmyre, Dumbarton G82 2JT, U.K., telephone 44 389 61250.

In the U.K, their magazine costs £8 per year. If you write for in

formation from overseas, send them return postage - say two In

ternational Reply Coupons, or British mint stamps.

Finally, here are a couple of quick tips. Let's say you want to

poke to the C64 text screen in interpreted BASIC. You can

avoid the extra step of poking to colour memory if you clear

the screen using: poke 53281,l:print chr$(5)chr$(147);:poke

53281,x where x is either 0 or 2-15. Text will be in white. Ex

actly how this works depends on which model C64 you have.

On the oldest (Kernal 1) machines, printing chr$(147) ("clr")

always clears colour memory to white. On middle-aged (Ker

nal 2) machines, chr$(147) clears colour memory to the back

ground colour (peek(53281)). Thus, by poking 1 into the back

ground before we clear the screen, we will get white colour

memory.

Many old public domain programs and even a few commercial

programs cause invisible (background-coloured) pokes on

Kernal 2 machines. Kernal 3 machines, which includes newer

64s, all 64Cs, and the 64 mode of 128s, clear colour memory

to the current text colour, which is set to white by chr$(5). The

SX-64 uses a version of the Kernal 3 ROM, although it has cer

tain differences - for example, the default colours are blue on

white instead of light blue on blue, and trying to access the

cassette unit gives an illegal device error.

There is one more official North American Kernal - the Educa

tor model. This computer looks like a PET, with a metal case

and built-in green-screen monitor, and it was sold by some

liquidators. I haven't the foggiest idea what differences it has

from other models except that Commodore/Terrapin LOGO

looks for an identifier byte and gives you a special sign-on

message if it is found. I don't have access to the European

models but, since the North American Kernals contain PAL

RS-232 code, and the European disassembly books seem to

have the same code, I assume that this will work on overseas

C64s also.

The second hint comes from Joe Dawson, President of Xytec

Software. One easy method of setting up a text screen which

appears to have different background colours in different areas

is simply to use reverse characters throughout. For example,

you could have a black background, a blue border, and two

boxes filled with text. Everywhere outside the boxes is filled

with reverse blue spaces, which appears to make the border

extend around the boxes. The first box is filled with white re

versed spaces and text which appears to be black text on a

white background. The other box is filled with red reversed

spaces and text which appears to be black text on a red back

ground. No raster interrupts or multi-colour text or high reso

lution screens are required. Moreover, this method will work

just as easily on the 80-column screen of a C128 without BASIC

8 or 64K of video RAM. □

20 Transactor

Inner GEOS

A look at how GEOS operates

by William Coleman

Although GEOS allows you to quickly write programs that would

takes weeks or months to write on a normal C64/128, few people

actually program with it. Part of the problem is that most people

don't understand how GEOS works. While the inner workings of

GEOS are not hard to understand, they do function quite differ

ently from what most 64/128 programmers are used to.

In this article, you will learn how GEOS functions and how its

various levels interact with an application. Once you under

stand this interaction creating and debugging GEOS applica

tions becomes much, much easier.

A 'normal' 64 or 128 program does most of the work itself and

uses Kernal subroutines for things like disk I/O, printing char

acters, etc. GEOS is very different. Basically, it is composed of

three levels:

Interrupt Level

The Main Loop

Application Routines

The first two levels are the GEOS Kernal itself and they must

be allowed to execute periodically or GEOS will seem to freeze.

In fact, if you are testing an application and everything seems

to stop (mouse won't move, keyboard won't respond, etc.) you

can be 90 per cent certain that your application went into an

endless loop and is not letting GEOS do it's job.

Interrupt Level reads the keyboard and checks for numerous

other conditions that require frequent, periodic inspection. It

won't act on what it finds; there isn't enough time. So flags are

set to indicate when the various conditions are met. The Main

Loop then checks these flags and acts on them accordingly.

GEOS is an example of Event-Driven code. The Main Loop is

simply a series of subroutine calls that operate in an endless

loop. These subroutines check if certain events have occurred

and if so execute Service Routines that the application has set

up to handle those situations.

Service routines

There are basically three types of service routines. First, there

are the routines that the application attaches to menus and

icons. For example: when the user presses the mouse button,

GEOS will check to see if the mouse is over a menu option or

an icon. If one of these conditions ('events') is met, the Main

Loop will call the service routine associated with that

option/icon (defined in a menu or icon table).

The next type of service routine is called through the System

Vectors. These are word length memory locations that contain

the address of a service routine to execute when the condition

associated with that vector occurs. If a vector contains $0000

then it will be ignored completely. In the above example, if the

mouse is not over a menu or an icon, the Main Loop will

check otherPressVector. If it is non-zero, the routine whose

address is in the vector will be executed.

The third way to act on an event is through timers. These

come in two flavors: Sleep and Processes.

Sleep

Sleep is a method of stopping the execution of a subroutine for

a predetermined amount of time while continuing to execute

the rest of the application. Remember, the Main Loop must

have control periodically or GEOS will stop. Sleep provides a

way to pause while still performing routine tasks.

The most noticable example is one that you see every time you

use GEOS: icon and menu flashes. When a user clicks on a

menu option, the Menu Handler will invert the option, put

itself to sleep, and when it awakens, simply invert the option a

second time.

Sleep works through a table of timers, one for each sleeping

subroutine. Interrupt Level will decrement each timer every

interrupt. The Main Loop checks these timers; and, if any have

reached zero, the associated routine will be executed. When

Sleep is called, the return address is pulled off the stack. This

address is where execution will continue from.

Processes

GEOS has a form of multitasking called processes. A process is

a subroutine that an application can set up that will be execut

ed at regular intervals. The application passes the amount of

Volume 9, Issue 5 21

time that should elapse between calls to the process. Geos

maintains timers for each process, just as it does for Sleep.

One point you must keep in mind: while the timers are updat

ed during Interrupt Level, the execution of a process is done

during Main Loop. This means that the time the Main Loop

takes to go through one complete iteration can vary signifi-

gantly depending on how many sleep and process routines

need to execute and how long each one takes. Timer values

less then about ten (1/6 of a second) will not be very accurate.

Geos has no way to stack a process. If a process comes due

before the previous call is done (i.e. a process times out twice

before being executed), it will only be executed a single time.

OK, now that we know what events are and how they are used,

let's take a look at the processing levels themselves.

Interrupt Level

Normally, a timer in one of the CIA chips generates interrupts

that are used to read the keyboard, etc. Geos is a bit different:

sixty times per second a raster IRQ is generated by the VIC

chip. This IRQ is set up to hit during vertical blanking so draw

ing to the screen will not produce flicker.

Geos does considerably more during an interrupt then a regu

lar 64 or 128; therefore, it doesn't have time to act on things

like mouse presses and processes. That is the job of the Main

Loop. The advantage of using interrupts to set flags and man

age the timers is that the Main Loop is not constant. Interrupts

provide a means to constantly monitor the system regardless

of what else is going on.

Normally an application will not need to modify the interrupts

but if the need arises there are two vectors provided for adding

your own interrupt code. One, intTopVector, occurs before the

bulk of the interrupt has occurred. The other, intBotVector,

occurs at the end of the cycle.

Several things should be kept in mind when writing interrupt

code:

• Don't try to do too much during interrupts. The GEOS

interrupt is already quite long and you will bog down the

application.

• Don't clear interrupts, i.e. en.

• Don't use GEOS routines if you can help it. Some will work

during interrupts and some won't. CallRoutine and

DoInlineReturn will work OK.

The Main Loop

This is where most of the nitty gritty parts of GEOS occur.

Menus, processes, and the mouse are all managed from here

(remember: interrupts read the status, the Main Loop acts

The Figures that are included

with this article are not byte by

byte disassemblies (which

change with time). They are

presented only to give you an

idea ofwhat's going on...

on it). One of the biggest mistakes beginning GEOS pro

grammers make is that they don't let the Main Loop have

control.

An application is really little more then a group of service rou

tines. They are called by the Main Loop and when they are

finished they must RTS back to it. Since the Main Loop con

trols the positioning of the mouse and managing keyboard

input, the quickest way to kill an application is to prevent the

Main Loop from executing (you may have noticed that I have

been stressing this).

It is extremely rare indeed that you will need to add code to

the Main Loop (use a process); but, if you must, a vector has

thoughtfully been provided, called appUcationMain. This vec

tor is normally $0000 so it won't do anything. If you wedge a

routine into it be sure to end it with an RTS.

Putting it all together

Writing most GEOS applications can be done in a series of sim

ple steps:

• Build the menu tables. Don't worry about all the service

routines at first. You can point all unimplemented entries at

a JMP GotoFirstMenu.

• Design icons and icon tables. Unimplmented icon routines

can point to a RTS.

• Code the process routines if any are needed.

• Decide which vectors the application will need to use and

code the routines necessary.

• Write a ColdStart routine which will initialize the screen,

draw any icons, start any processes, etc. This routine should

end with a RTS. From that point on the Main Loop will

control the application.

Figures 1 and 2 list the pseudo-code for the Interrupt and the

Main Loop respectively. Studying these should provide you

with an excellent foundation for writing your own GEOS appli

cations. □

22 Transactor

Figure 1 - Interrupt Level Pseudo-code

InterruptLevel

; First the state of the machine is saved. This

; includes A, X, Y, and S plus rO-rl5 and the

; memory configuration

jsr SaveState

Now the I/O area is switched

in. Geos 128 will also ensure that

bank 1 is the active bank.

jsr IOIn

Now dblClickCount is decremented. This

variable is used to tell if the user clicks

the mouse twice in rapid succession

jsr DblClick

.if 6eosl28

Geos 128 services the mouse here

jsr MouseService

.endif

Now scan the keyboard and if a key is

found place it in the keyboard que.

jsr Keyboard

jsr Alarm /service alarm tone timer

Normally intTopVector points

to interruptMain.If you wedge

a routine in here the routine

must end with jmp InterruptMain.

Ida #<intTopVector

ldx #>intTopVector

jsr CallRoutine /execute interruptMain

Normally intBotVector is empty, i.e. $0000.

A routine wedged in here should end with rts

Ida #<intBotVector

ldx #>intBotVector

jsr CallRoutine /normally unused.

jsr

rti

RestoreState ;back the way it was.

InterruptMain is called during

each interrupt via intTopVector.

This routine performs the bulk of the

; interrupt's work and must

; things will freeze up.

InterruptMain

.if Geos64

be called or

; Geos 64 services the mouse here

jsr MouseService

.endif

jsr UpdateProcesses

jsr UpdateSleeps

jsr UpdatePrompt

jsr ServiceRandom

rts

/update process

; timers

/update sleep timers

/flash text prompt

/get a new random

/number

Figure 2 - Main Loop Pseudo-code

MainLoop:

first we check the keyboard and load

keyData. Also check if

inputVector, mouseVector, keyVector, or

mouseFaultVector should be called. Indirectly

menu, icon, or otherPressVector

will be called.

Geos 128 will handle soft (80-col)

sprites here.

jsr KeyboardService

now we check if any processes or

sleeping routines should be

executed.

jsr ProcessService

jsr SleepService

next update the time and alarm

variables. If it is time for the

alarm to sound call alarmTmtVector

jsr TimeService

applicationMain is normally $0000. You can

wedge your own Main Loop routines in here

Ida #<applicationMain

ldx #>applicationMain

jsr CallRoutine

jmp MainLoop /forever

Volume 9, Issue 5 23

1541/1571 DOS M-R Command Error

A caveatfor multiple byte reads

by Anton Treuenfels

One of the facilities provided by the DOS of the 1541 and 1571

drives is the memory read (M-R) command, which allows the

user to examine any memory location in the drive. The same

purpose is served in the computer's memory space by Basic's

peek function: memory read can be thought of as a peek

function for the drive.

A difference between the two is that, while Basic's peek is

limited to examining one memory location at a time, a single

M-R command can return the contents of up to 255 memory

locations. There are two forms of the M-R command: a sin

gle-byte version and a multiple-byte version. Commodore's

documentation of the M-R command in the 1541 User's

Guide mentions only the single-byte version, but says that if

more than one byte is read then successive bytes come from

successive memory locations. In the 1571 User's Guide,

however, Commodore says that, in the multiple-byte version

of the M-R command, returned bytes come from successive

memory locations.

The documentation appears to be incomplete. The single-byte

version of the M-R command never returns values from more

than one memory location, and the multiple-byte version be

comes confused near page boundaries. If the starting address

of the memory read plus the number of bytes to read are such

that a page boundary must be crossed to complete the request,

the bytes returned after reaching the boundary come from

somewhere else altogether.

The accompanying program demonstrates the error in the mul

tiple-byte version of the M-R command by requesting reads of

the same locations in drive memory using both the multiple-

and single-byte versions, then comparing the results. If the

sum of the starting address and the number of bytes does not

cross a page boundary, then the results match (at least when

reading ROM locations). If a page boundary is crossed, the re

sults do not match.

The error manifests itself differently depending on whether or

not the starting address was the last byte of a page (of the form

$xxFF). If so, then the second and succeeding bytes come

from $xxOO, $xx01, and so on (in other words, a page wrap).

For any other starting address DOS stops returning memory

bytes at the page boundary and starts returning the bytes of the

00,OK,00,00 status message over and over until the number of

bytes requested is reached.

A slight variation of the multiple-byte M-R subroutine demon

strates what happens when multiple bytes are requested after a

single-byte M-R command is sent. Elimination of the third pa

rameter byte (NB$) from the print# statement sends a single-

byte command, then enters a loop requesting multiple return

bytes. The first byte is correct and all successive bytes come

from the 00,OK,00,00 status message.

The error demonstration program has been used to test a 1541

and a new ROM 1571 with identical results.

It is interesting to note that two different editions of the 1541

User's Guide do not mention the multiple-byte version of the

memory read command, although both allude to an ability to

read multiple bytes. (Both editions also have an example pro

gram showing how to read multiple bytes with the single-byte

version, but only one will work correctly.) The 1571 User's

Guide acknowledges the existence of the multiple-byte version

but not its limitations. Possibly this was a response to third

party discussions of the multiple-byte version in several books

about the 1541.

Unfortunately, none of the books seem to be aware of the

problems either. One can speculate that perhaps the original

decision not to document the multiple-byte version was made

by the persons responsible for implementing it in the first

place. The ability may have been used in the early develop

ment of the DOS by persons who were aware of its limitations

but found it adequate for their needs.

References

Anonymous, Commodore 1541 Disk Drive User's Guide,

Commodore Business Machines Electronics, Ltd., September

1982

Anonymous, VIC-1541 Single Drive Floppy Disk User's Man

ual, Second Edition, Commodore Business Machines, Inc.,

December 1982

24
Transactor

Anonymous, Commodore 1571 Disk Drive User's Guide, Sec

ond Edition, Commodore Electronics Limited, August 1985

Englisch, L. and Szczepanowski, N., The Anatomy of the

1541, Abacus Software, Inc., 1984

Immers, R., and Neufeld, G., Inside Commodore DOS, Data-

most, Inc., 1984

"m-r.error.bas" - the limitation demonstrated

CI 100

LP 105

CO 110

H6 150

GJ 155

EB 160

JG 200

BL 205

DF 210

LC 215

JE 220

FI 225

HF 230

LJ 235

IJ 240

M 245

MK 250

El 255

EB 260

PB 265

CB 270

LK 275

HI 280

FB 300

DO 305

EP 310

PP 315

BL 320

FF 325

FM 330

JH 335

IF 340

AA 345

KH 350

HN 355

MN 400

DF 405

IF 410

PK 415

FR 420

HE 425

JC 430

FP 435

ML 440

EG 445

ON 450

LD 455

LL 500

PN 505

KB 510

print"{down} 1541/1571 dos 'm-r' command"

print" error demonstration"

nl$= "": zr$= chr$(0)

def fnhb(x)= int(x/256): def fnlb(x)= x-int(x/256)*256

print "{down} start address of memory read"

input " hexf or <q> to quit";a$

if a$="q" then end

gosub 505: sa= a: if sa>65535 then 200

input "{down} hexf of bytes to read";a$

gosub 505: nb= a: if nb<l or nb>255 then 220

if fnhb(sa)= fnhb(sa+nb-l) then print"{down} match expected>";: goto 240

print"{down} mismatch expected>";

gosub 305

gosub 405

if mb$=sb$ then print " match found": goto 260

print " mismatch found"

for i=l to nb

print fnhb(sa+i-l),asc(mid$(sb$,i,1)),asc(mid$(mb$,i,1))

next

goto 200

rem *multi-byte read

mb$= nl$

open 15,8,15

lb$= chr$(fnlb(sa)): hb$= chr$(fnhb(sa)): nb$= chr$(nb)

print! 15,"m-r";lb$;hb$;nb$

for i=l to nb

get! 15,a$: if a$=nl$ then a$= zr$

mb$= mb$+a$

next

close 15

return

rem *single-byte read

sb§= nl$

open 15,8,15

for i=l to nb

lb$= chr$(fnlb(sa+i-l)): hb$= chr$(fnhb(sa+i-l))

printi 15,"m-r";lb$;hb$

get #15, a$: if a$=nl$ then a$= zr$

sb$= sb$+a$

next

closel5

return

rem *hex->dec

a=0: for i=l to len(a$): b= asc(mid$(a$,i,l))-48: a= a*16+b+7*(b>9): next

return Q

ULTLT

Top-Tech International, Inc.

Advanced Computer Systems

INDUSTRY FIRST - LIFETIME COMPUTER1

Lifetime Warranty—availablefor any C-64 computer serviced and/or sold by us!!

Flat Service Rates — FAST, Professional Service
Full line of CBM computers, peripherals & parts; C-64 Power Supply with 3-yr warranty;

1531 Datasette — $19.95; Hard-to-find parts (STR-54041); Service Manuals; VIC-20 and

C-64 Cartridges & Tapes: $3.00 ea.; 10 for $25.00 ("Pot Luck" — No exchanges/returns).
VISA, MASTERCARD, DISCOVER, AMEX

Orders ONLY: FAX — (215) 389-5920 or CALL — (800) 843-9901
No extra chargesfor our GIs! We want your business!!!

(215)389-9901 • 1112 S. Delaware Ave., Philadelphia, PA 19147 • (215)389-9901

ART-1: A complete interface system
for send and receive on CW, RTTY

(Baudot § ASCII) and AMTOR, for
use with the Commodore 64/128

computer. Operating program on

disk included. $199.00

AIR-1: A complete interface system
for send and receive on CW, RTTY

(Baudot § ASCII) and AMTOR, for
use with Commodore VIC-20.

Operating program in ROM. $99.95

SWL: A receive only cartridge for
CW, RTTY (Baudot 5 ASCII) for use

with Commodore 64/128. Operating
program in ROM. $64.00

AIRDISK: An AIR-1 type

operating program for

use with your interface
hardware. Both VIC-20

and C64/128 programs on
one disk. $39.95

AIR-ROM: Cartridge

version of AIRDISK for
C64/128 only. $59.95

MORSE
COACH

MORSE COACH: A Complete teaching

and testing program for learning

the Morse code in a cartridge.

For C64 or C128. $49.95
VEC SPECIAL $39.95

These products formerly manufactured by AA/CROLOO

G and G ELECTRONICS

OF MARYLAND

8524 DAKOTA DRIVE, GAITHERSBURG, MD 20877

(301) 258-7373

Faster than a Speeding Cartridge

More Powerful than a Turbo ROM
It's Fast, It's Compatible, It's Complete, It's...

JjffvMK
\Ultra-Fast Disk Operating System for the C-64, SX-64 & C-128

> Speeds up all disk operations. Load, Save, Format, Scratch, Validate, access
PRG, SEQ, REL & USR files up to 15 times faster!

• Uses no ports, memory, or extra cabling. The JiffyOOS ROMs upgrade your
computer and drive(s) internally for maximum speed and compatibility.

• Giiarantoed100%compatiUowithallsoftwaroand hardware. JiffyOOSspeeds
upthe loading arxlimemalfile-acce^

> Built-in DOS Wedge plus 14 additional commands and convenience features
including one-key ioaoVsave/scratch, directory menu and screen dump.

Easy do-it-yourself installation. No electronics experience or special tools re
quired. Illustrated step-by-step instructions included.

Available for C-64,64C, SX-64, C-128 & C-128D (JiffyDOS/128 speeds up both 64

and 128 modes) and 1541,1541C, 1541-1,1571,1581, FSD-1&2, MSD SD-1&2,

Excel 2001,Enhancer2000,Amtech, Swan, Indus&Bluechipdisk drives. System
includes ROMs for computer and 1 disk drive, stock/JiffyDOS switching system,
illustrated installation instructions, User's Manual and Money-Back Guarantee.

Volume 9, Issue 5 25

C128 Simple Disk Monitor

Extending the built-in monitor

by Anton Treuenfels

There are times (often shortly after scratching a file I really

didn't mean to) when I find it very useful to have a disk

monitor program handy. Using one of these widely available

programs I can examine and, if I wish, modify the contents of

any disk sector. On the other hand, I found that many of these

programs were big, clumsy, rigid, and inconvenient to use. The

program presented here was designed to overcome these

perceived problems. Although it perhaps does not do every

thing that could possibly be wished for, it is relatively small,

nimble, flexible, and easy to use.

A disk monitor program must at least be able to read, display,

edit and write disk sectors. The problems of display and edit

ing are shared by monitor programs in general, and

Diskmonl28 deals with them by wedging itself into the main

command loop of the C128's built-in machine language

monitor. This reduces display and editing to problems that

have already been solved (always a useful programming tech

nique).

As bonuses Diskmonl28 gains use of the @ disk wedge com

mand and the ability to examine and modify sectors by disas

sembly and assembly as well as by simple memory dump. Af

ter employing so much of the power of the built-in monitor,

about all that is left for Diskmonl28 to concern itself with is

the proper reading and writing of disk sectors to and from the

C128 's memory.

Using the program

Diskmonl28 may be loaded and installed from either BASIC

7.0 or the built-in monitor. From BASIC: bload

"diskmonl28", sys dec("1300"), monitor. From the moni

tor: 1 "diskmonl28", j 1300.

Once installed, the program functions as an extension of the

C128's built-in monitor. There are four new commands (in

addition to all the normal ones):

/R [<track> <sector>]

/W [<track> <sector>]

/# <device> [<drive>]

/Q

- read sector

- write sector

- set device and drive numbers

- disable disk monitor wedge

All parameters are numeric and (since a built-in monitor ROM

routine is used to collect them) may be specified in any conve

nient base (hexadecimal, decimal, octal, or binary). Square

brackets indicate optional parameters.

The read command (/R) copies a disk sector into a buffer in the

C128's memory. Once in the C128's memory, the contents of

the sector may be displayed in hexadecimal and ASCII form by

using the built-in monitor's memory dump command (m). The

buffer is located at $B00 in RAM bank 0, so the command to dis

play the entire sector is m bOO bff ($B00 is the autoboot disk

sector buffer. Note that this page of memory is also used for the

cassette buffer, and so is incompatible with any routines which

might want to reside there). If desired, the memory display may,

of course, be edited in the normal manner. Alterations made in

this way affect only the copy of the sector in the C128's

memory however, and no changes are made to any actual disk

sector until the contents of the disk sector buffer are deliberately

copied back to disk using the write command (/W).

Both the read and write commands may optionally be fol

lowed by disk track and sector numbers. If a track and sector

are specified they are checked only to see if they are each in

the range 0-99, which allows the program to create a syntacti

cally legal direct access command. It is left up to a drive's DOS

to complain if the command cannot be complied with (usually

because the DOS does not recognize the existence of the re

quested track and sector). This approach is designed to avoid

having to hardcode into the program the internal arrangement

of any past, present or future disk format by taking advantage

of the user's knowledge and the DOS' intelligence.

If a track and sector are not specified, both the read and write

commands use default track and sector values. In the case of the

read command the contents of the first two bytes of the disk sec

tor buffer are taken to be the track and sector to read. This is

based on two assumptions: that the contents of the buffer repre

sent one sector in a series of sectors logically linked together in

a single file, and that the first two bytes in the buffer represent

the link to the track and sector of the next sector of the file.

These assumptions are often true, making it possible to easily

trace forward through the system of links tying files together

under Commodore DOS. Particular conditions under which the

26 Transactor

assumptions are untrue include reaching the last sector of a file

and before the program has read its first sector.

The write command defaults to using the values found in the

current track and current sector variables maintained by the

program. Since these variables will usually have last been set

by the most recent read command, the default action normally

amounts to putting the (possibly modified) sector currently in

the disk sector buffer back where it came from.

The /# command is used to set the device and drive to which

the program will read and write. The program defaults to

device 8, drive 0. The /Q command resets the built-in moni

tor's command indirect vector to the value it had when the

disk monitor was first installed, which effectively disables the

disk monitor.

About the program

The main command loop of the built-in monitor is designed to

accept a line of input, find the first non-space character on the

line, and then jump through an indirect vector. Normally this

vector points to a routine which tries to match that first charac

ter to the commands the monitor knows. Diskmonl28 re-points

the indirect vector to its own match routine, which checks if the

character found is the disk monitor wedge character (/). If not,

control passes to the original command match routine.

If it is the wedge character, the program attempts to match

the second non-space character of the input line to a known

disk monitor command, and reports an error if it cannot do so

(two-character rather than one-character commands are re

quired mainly because the letter R is already employed by

the built-in monitor for its Register command and no alterna

tive one-character command seemed to make as much

intuitive sense as /Read).

Diskmonl28 opens and closes a direct access channel to a

drive for every read or write attempt rather than opening and

closing once for each session with a disk. The time cost of do

ing this is virtually unnoticeable, and it actually saves code

space since session management commands (eg., changing

disks) are not needed.

High-level Kernel file routines are used exclusively rather than

going to the low-level Kernel serial bus routines. There are a

number of mass-storage devices which patch themselves into

the indirect vectors of the high-level routines, and the program

should work with any of them which recognize the normal

Commodore DOS direct access commands (eg., an SFD-1001

drive with a parallel cable should, but an REU with a Com

modore RAMDOS program won't). [Ramdos does not imple

ment a track and sector method ofdata storage. - Ed.]

Getting in and getting out

It is unfortunate that after having provided a documented

method of intercepting the built-in monitor, Commodore did

not provide a documented method of returning to it. The point

of interception is the command dispatch routine. In the built-in

monitor this routine is at the same level as the main loop, so

calls from and returns to the main loop are handled as direct

jumps (as opposed to basic 7.0's command dispatch routine,

which is a subroutine of the main loop. After being intercept

ed, control can be returned to the main loop simply by execut

ing an RTS instruction).

This is a workable, if not exactly academically sanctioned,

method of doing things. However it would be handier if Com

modore had provided another entry in the jump table at the start

of the built-in monitor's ROM; one that pointed to the start of the

main command loop. This would make returning after intercep

tion less of a risky business. As it is, Diskmonl28 is vulnerable

to a ROM revision (in for a penny, in for a pound - the decision

to use a ROM routine to collect numeric parameters must be

blamed solely on a desire to save about 80 bytes of code. It is

just as vulnerable to ROM revisions, and there is really no excuse

for it. I simply yielded to temptation on this one "as long as I

have to use an undocumented return call anyway...").

Observations and possibilities

A couple of final observations. The first is that Diskmonl28 is

less than 700 bytes long, and the built-in monitor's 4K ROM

contains over 1100 unused bytes. A possible use of this empty

space immediately suggests itself (at least to me); although

this might be of more interest to hobbyists than to Commodore

itself.... The possibility is left open by making sure that, aside

from the program code and disk sector buffer, all RAM usage is

confined to areas already utilized by the built-in monitor

(mostly variables at $60468 and $A80-$ABF, but also the in

put buffer at $200 and the stack pointer register save at $09).

The other observation is that the C128's Kernel contains a

limited direct track and sector read ability in the BOOT CALL

routine at $FF53. This routine can read track 1, sector 0 off a

disk in any drive into the autoboot sector buffer at $B00. It

wouldn't take many of the over 600 unused bytes in the

Kernel ROM patch area to add a routine capable of reading and

writing any track and sector on a disk in any drive, along with

a jump table entry to the routine. Although the utility of such a

routine to anything other than a disk monitor program might

be questionable, it would offer a slightly higher-level approach

to direct track and sector reads and writes than requiring such

a monitor to be aware of the messy details itself.

Listing 1: Merlin sourcefor Diskmonl28

* cl28 simple disk monitor

* last revision: 09/23/88

* written by anton treuenfels

* 5248 horizon drive

* fridley, minnesota usa 55421

* 612/572-8229

* program constants

Volume 9, Issue 5 27

asmadr = $1300 /assembly address * install

cr = $0d

csr = $ld

spc = $20

que = $3f

dadf =13

cmdlf = 15

/direct access channel filet

/command channel filet

bnk!5 = %00000000 /bank 15

* program memory

dum$60

addr ds 2

dend

reawri = $0a98

dum $0aba

oldmon ds 2

crrdvc ds 1

crrdrv ds 1

crrtrk ds 1

crrsct ds 1

dend

use

;(monitor memory)

/pointer

/read/write flag

;(monitor memory)

/old command vector

/current device

/current drive

/current track

/current sector

dskbuf = $0b00 /disk buffer (boot block buffer)

* monitor memory use

stkptr = $09

acd = $60

monptr = $7a

buf = $0200

imon = $032e

/stack pointer save

/numeric accumulator

/input buffer pointer

/input buffer

/command execute vector

msgbuf = $0a80 /disk command buffer

* monitor rom

/monitor main loop

/get numeric parameter

mnloop =

numprm = $b7ce

* kernel vectors

clsall = $ff4a /dose all files on device

setbnk = $££68 /set i/o bank

primm = $£f7d /print immediate

setlfs = $ffba

setnam = $ffbd

open = $ffc0

chkin =$ffc6

chkout = $ffc9

/set filet, device, command

/set filename

/open file

/set input file

/set output file

clrchn = $ffcc /set default i/o files

chrout = $ffd2 /output byte

getin = $ffe4 /input byte

* hardware registers

mmucr = $££00 /memory configuration

org asmadr

instal Ida mmucr

pha

Ida tbnkl5

sta mmucr

ldx #3-1

Ida #$00

]bbl sta crrdrv,x /current drive, track, sector

sta dskbuf,x /for /r or /w without params

dex

bpl]bbl

Ida #8

sta crrdvc

clc

jsr setvct /set wedge vector

jsr primm

dfb cr,cr

txt 'diskmonl28 vO92388'

dfb cr

txt 'by anton treuenfels'

dfb cr,00

pla

sta mmucr

rts

* look for disk monitor command

dskmon cmp t'/' /wedge token?

beq montok ;b:yes

jmp (oldmon) /to normal handler

montok jsr

beq

ldx

getspc /look for monitor command

reterr

tmonadr-moncmd-1

]bbl cmp moncmd,x

beq

dex

bpl

reterr ldx

txs

havcmd /bifound command

]bbl

stkptr /restore stack

jsr primm /report problem

dfb csr,que,$00

retmon jmp mnloop /back to main loop

* found command

havcmd txa

asl

tax

Ida

pha

Ida

pha

rts

* monitor <

moncmd txt

monadr da

da

da

da

* execute <

exquit sec

jsr

jmp

monadr+l,x

monadr,x

commands

'qrwt'

exquit-1

exread-1

exwrit-1

exdevc-1

juit

setvct

retmon

28 Transactor

set indirect vector(s)

setvct

]bbl

:1

rplvct

ldx #2-1

Ida oldmon,x

bcs :1

Ida imon,x

sta oldmon,x

Ida rplvct,x

sta imon,x

dex

bpl]bbl

rts

da dskmon

* execute read/write

exread

exwrit

:1

* open

opndir

:1

dacnam

* open

opnfil

:1

Ida VI'

dfb $2c

Ida f'21

sta reavri

jsr trksct

jsr makdac

jsr dsfil

jsr opndir

bcs :1

jsr rwsect

jsr dsfil

jmp retmon

direct access

Ida #$00

jsr setnam

Ida fcndlf

jsr opnfil

bcs :1

ldx i<dacnam

ldy i>dacnam

Ida #1

jsr setnam

Ida Idadf

jsr opnfil

rts

txt '#'

disk file

tay

ldx crrdvc

jsr setlfs

Ida #$00

tax

jsr setbnk

jsr open

bcs :1

jsr diskst

bcc :1

jsr dsfil

sec

rts

* close disk files

dsfil Ida crrdvc

jsr clsall

rts

;b:replace old vector

;save old vector

;set new vector

;'ul'

;'u2'

;read/write flag

;get track/sector

;make command

;close files on device

;open direct access file

;b:can't open

;read/write sector

disk file

/command file

;b:error

/direct access file

/secondary address

/check status message

/b:ok

/dose files

;close everything on device

* read/write sector

rwsect

:2

:3

* copy

rddbuf

]bbl

*copy

wrdbuf

]bbl

* make

makdac

]bbl

* send

sndbuf

Ida reawri

cmpf'2'

beq:2

jsr sndbuf

bcs :1

jsr rddbuf

rts

jsr wrdbuf

bcs :3

jsr sndbuf

rts

disk buffer to

ldx fdaclf

jsr chkin

bcs :1

ldy #0

jsr getin

sta dskbuf,y

iny

bne]bbl

jsr clrchn

dc

rts

/write?

;b:yes

/command read

;b:error

/read buffer

/write buffer

/command write

computer

/'talk'

/input byte

/'untalk'

computer to disk buffer

ldx t<dcptrO

ldy t>dcptrO

jsr dskcmd

bcs :1

ldx tdadf

jsr chkout

ldy tO

Ida dskbuf,y

jsr chrout

iny

bne]bbl

jsr clrchn

clc

rts

direct access

ldxH
inx

Ida dcread,x

sta msgbuf,x

bne]bbl

Ida reawri

sta msgbuf+1

Ida crrdrv

ora #$30

sta msgbuf+6

Ida crrtrk

jsr hexdec

stx msgbuf+8

sta msgbuf+9

Ida crrsct

jsr hexdec

stx msgbuf+11

sta msgbuf+12

rts

command in the

ldx t<msgbuf

ldy t>msgbuf

/buffer pointer to sta

/'listen'

/output byte

/'unlisten'

command

/copy command template

/set command

/set drive

/set track

/set sector

i message buffer

Volume 9, Issue 5 29

* send disk command with error check

sndcmd jsr dskcmd

bcs :1

jsr diskst

:1 rts

* send disk command

dskcmd stx addr

sty addr+1

ldx fcmdlf

jsr chkout /'listen'

bcs :1 ;b:error

ldy !0

Ida (addr),y /first char

]bbl jsr chrout

iny

Ida (addr),y

bne]bbl

jsr drchn /'unlisten'

clc

:1 rts

* disk command messages

dcread txt 'ul:13,0,l

dcptrO txt 'b-p:13,0'

* check disk status

diskst ldx fcndlf

jsr chkin

bcs :2

jsr getin

cmp!'2'

bcc :1

jsr primm

dfb cr,$00

]bbl jsr chrout

jsr getin

cmp jjcr
bne]bbl

:1 php

jsr drchn

pip

:2 rts

* execute device!

exdevc jsr getbyt

bcs numerr

cmp f4

bcc numerr

cmp #30+1

bcs numerr

sta crrdvc

jsr getbyt

bcs :1

cmp f1+1

bcs numerr

sta crrdrv

:1 jmp retmon

Dl,00',00

',00

/'talk'

;b:error

/first byte of status message

/is this an error message?

;b:no

/display error message

/sets carry when true

/'untalk'

/get device!

;b:not found

/check serial bus device!

;31 is bad number

/get drive!

;b:not found

;0 or 1

* convert byte to ascii decimal

hexdec cmp #99+1

bcs numerr

ldx !'0'-l

sec

/works for 0-99

;b:too big

]bbl inx

sbc

bcs

adc

rts

no

]bbl

!'0'+10

* get track and sector

trksct jsr

bcs

sta

jsr

bcc

numerr jmp

tksl Ida

cmp

beq

Ida

sta

Ida

tks2 sta

tks3 rts

* get byte

getbyt jsr

bcs

Ida

bne

Ida

bne

Ida

:1 rts

getbyt

tksl

crrtrk

getbyt

tks2

reterr

reawri

!'2'

tks3

dskbuf

crrtrk

dskbuf+1

crrsct

value

getnum

:1

accl+2

numerr

accl+1

numerr

accl

* get numeric value

getnum jsr

bcs

bne

sec

:1 php

jsr

bne

pip

rts

* characte]

gotdlm dec

getdlm jsr

beq

cmp

beq

cmp

:1 rts

getspc jsr

beq

cmp

beq

:1 rts

getchr ldx

numprm

numerr

:1

gotdlm

numerr

: fetches

monptr

getchr

:1

!spc

:1

IV

getchr

:1

!spc

getspc

monptr

Ida buf,x

beq

cmp

beq

cmp

beq

inc

:1 rts

:1

!':'

:1

!que

:1

monptr

/get track!

;b:not found

/get sector!

/b:found

/write?

;b:yes - use current values

/follow link to next sector

/get number

;b:no number

/b:too big

/get numeric parameter

;b:too big

;b:found number

/flag not found

/save flag

/check last char

;b:not legal terminator

;b:end of input

/check for field separators

;b:end of input

;b:eat spaces

;b:end of line

/check for other terminators

/next char

30 Transactor

Listing 2: BASIC generatorfor ''diskmonllS.of

JP 100 rem generator for "diskmonl28.o"

NI 110 n$="diskmonl28.o": rem name of program

01 120 nd=648: sa=4864: ch=65574

(for lines 130-260, see the standard generator on page 5)

MF 1000

HP 1010

KB 1020

DO 1030

JG 1040

KJ 1050

PI 1060

OL 1070

FN 1080

IN 1090

OD 1100

FB 1110

PN 1120

PO 1130

KO 1140

AP 1150

NL 1160

LP 1170

DN 1180

EC 1190

PO 1200

AE 1210

HO 1220

AC 1230

FF 1240

JF 1250

HP 1260

BI 1270

OC 1280

LD 1290

CE 1300

HB 1310

JF 1320

PC 1330

DM 1340

EO 1350

DJ 1360

El 1370

EO 1380

AK 1390

ON 1400

AF 1410

EC 1420

DA 1430

DN 1440

NK 1450

IM 1460

HL 1470

MI 1480

FA 1490

LC 1500

MH 1510

HA 1520

MF 1530

84,

76,

96,

76,

19,

82,

data 173,

data 255,

data 157,

data 141,

data 125,

data 77,

data 48,

data 89,

data

data

data

data 32,

data 127,

data 9,

data

data

data

data 19,

data 112,

data 9,

data 169,

data 96,

data 141,

data 20,

data 6,

data 112,

data 15,

data 160,

data 13,

data 188,

data 32,

data 32,

data 56,

data 96,

data 32,

data 96,

data 20,

data 15,

data 11,

data 96,

data 176,

data 0,

data 208,

data 255,

data 208,

data 173,

data 173,

data 10,

data 11,

data 96,

data 176,

data 132,

data 16,

data 200,

0, 255,

162, 2,

0, 11,

188, 10,

255, 13,

79, 78,

57, 50,

32, 65,

82, 69,

83, 13,

201, 47,

108, 21,

19, 240,

154, 32,

139, 176,

72, 189,

87, 35,

235, 20,

19, 162,

189, 46,

19, 157,

81, 19,

152, 10,

32, 2,

32, 9,

19, 169,

32, 230,

19, 169,

32, 230,

10, 32,

104, 255,

201, 20,

96, 173,

173, 152,

137, 20,

32, 57,

96, 162,

160, 0,

200, 208,

162, 192,

20, 162,

185, 0,

247, 32,

232, 189,

247, 173,

189, 10,

190, 10,

141, 137,

21, 142,

162, 128,

3, 32,

97, 162,

160, 0,

177, 96,

72, 169, 0,

169, 0, 157,

202, 16, 247,

24, 32, 146,

13, 68, 73,

49, 50, 56,

51, 56, 56,

78, 84, 79,

85, 69, 78,

0, 104, 141,

240, 3, 108,

240, 10, 162,

15, 202, 16,

125, 255, 29,

138, 10, 170,

131, 19, 72,

138, 19, 170,

56, 32, 146,

1, 189, 186,

3, 157, 186,

46, 3, 202,

169, 49, 44,

32, 26, 21,

20, 32, 202,

20, 32, 2,

0, 32, 189,

19, 176, 14,

1, 32, 189,

19, 96, 35,

186, 255, 169,

32, 192, 255,

144, 4, 32,

188, 10, 32,

10, 201, 50,

176, 3, 32,

20, 176, 3,

13, 32, 198,

32, 228, 255,

247, 32, 204,

160, 20, 32,

13, 32, 201,

11, 32, 210,

204, 255, 24,

178, 20, 157,

152, 10, 141,

9, 48, 141,

32, 11, 21,

10, 173, 191,

139, 10, 141,

160, 10, 32,

201, 20, 96,

15, 32, 201,

177, 96, 32,

208, 248, 32,

0

10

8

141,

189,

169,

19, 32

83, 75

32, 86.

13, 66

78, 32

70, 69

0, 255

186, 10

3, 221

248, 166

63, 0

189, 132

96, 81

19, 173

19, 76

10, 176

10, 189

16, 236

169, 50

32, 87

19, 176

20, 76

255, 169

162, 229

255, 169

168, 174

0, 170

176, 9

2, 20

74, 255

240, 9

34, 20

32, 137

255, 176

153, 0

255, 24

150, 20

255, 160

255, 200

96, 162

128, 10

129, 10

134, 10

142, 136

10, 32

140, 10

150, 20

134, 96

255, 176

210, 255

204, 255

EH 1540

JD 1550

MH 1560

NC 1570

IF 1580

KB 1590

LI 1600

HF 1610

ME 1620

MI 1630

OK 1640

KN 1650

CO 1660

KN 1670

BN 1680

BA 1690

OJ 1700

NB 1710

AE 1720

ED 1730

HA 1740

NA 1750

PK 1760

MP 1770

MP 1780

PA 1790

CB 1800

data 24,

data 48,

data 66,

data 0,

data 32,

data 125,

data 228,

data 204,

data 54,

data 46,

data 7,

data 76,

data 47,

data 58,

data 190,

data 103,

data 12,

data 1,

data 21,

data 97,

data 183,

data 94,

data 32,

data 2,

data 4,

data 189,

data 6,

96, 85,

44, 48,

45, 80,

162, 15,

228, 255,

255, 13,

255, 201,

255, 40,

201, 4,

141, 188,

201, 2,

112, 19,

56, 232,

96, 32,

10, 32,

19, 173,

173, 0,

11, 141,

176, 10,

208, 220,

176, 212,

21, 208,

118, 21,

201, 44,

201, 32,

0, 2,

201, 63,

49, 58, 49,

49, 44, 48,

58, 49, 51,

32, 198, 255,

201, 50, 144,

0, 32, 210,

13, 208, 246,

96, 32, 62,

144, 50, 201,

10, 32, 62,

176, 34, 141,

201, 100, 176,

233, 10, 176,

62, 21, 176,

62, 21, 144,

152, 10, 201,

11, 141, 190,

191, 10, 96,

165, 98, 208,

165, 96, 96,

208, 1, 56,

203, 40, 96,

240, 6, 201,

96, 32, 118,

240, 247, 96,

.240, 10, 201,

240, 2, 230,

51, 44

48, 0

44, 48

176, 27

15, 32

255, 32

8, 32

21, 176

31, 176

21, 176

189, 10

24, 162

251, 105

11, 141

19, 76

50, 240

10, 173

32, 78

224, 165

32, 206

8, 32

198, 122

32, 240

21, 240

166, 122

58, 240

122, 96 □

Diamond Text Editor

The First Professional Quality Editor

FortheC128

Look at these features!!!!

- Over 140 commands in a 16K buffer.

- 8 file buffers and 32 resizable, relocatable windows.

- Insert and delete characters, words, lines, and blocks.

- Perform 8 different operations on text blocks.

- Powerful search/replace with 6 operating modes.

- Powerful macro record and playback facility includes conditional

IF/THEN/ELSE macros.

- Edit, debug, and execute BASIC programs or edit text.

- Text mode features word-wrap or programmer's line-oriented mode.

Compatible with many assemblers and compilers.

- BASIC mode allows you to use the power of a text editor to create, edit,

and debug BASIC 7.0 programs.

- Special feature allows editor to remain co-resident in RAM with

Commodore's HCD65 macro assembler and loader. Assemble, execute

the loader, and save program object files from within the editor.

- Compatible with RAM disk software.

- Auto-indentation. 26 bookmarks. Redefinable keys.

- Much, much more!

(80-column mode only)

Available now: Only $42.95 US or $49.95 Can.

Send check or money order. (Foreign add $5.00)

Personal checks require a three-week waiting period.

Robert Rockefeller, P.O. Box 113, Langton, Ont. NOE 1GO

(519) 875-2580

Volume 9, Issue 5 31

HCD65 Assembler Macros

Making use ofassembler pseudo-ops

by Robert Rockefeller

Commodore recently published their new C128 HCD65 macro

assembler. Since the HCD65 manual explains the basic function

of HCD65 pseudo-ops but does not demonstrate how to use

them, it seems possible that some potential users of this

assembler may not be able to make full use of the macro capa

bility. This article illustrates a few macros that the author has

found useful.

Macros are created with the MACRO pseudo-op and terminated

with the .ENDM pseudo-op. Nothing new there. The MoveW

macro is an example of a simple macro which transfers 16 bits

from one variable to another.

The LoadW macro is more complicated in that it has two

behaviours. LoadW varl,var2 is equivalent to the simple

MoveW macro. With LoadW varl,CONSTANT,# the presence

of the # character as the third parameter causes varl to be

loaded with an immediate value. HCD65's ability to test for a

blank field with the Afnb (if not blank) pseudo-op makes it

possible to create a macro which has different actions depend

ing on the presence or absence of a parameter.

The LineAdrs macro uses the .rept (repeat) pseudo-op to cre

ate a table of start addresses for a text screen, color matrix, or

for a bitmap. For example, assuming a graphics bitmap screen

starts at address $6000, LineAdrs $6000,320 would create a

table of row start addresses.

The Mark macro stores up to six strings with the last charac

ter having the sign bit set. Upper case characters and some

punctuation characters which normally have values ranging

from $C0 to $DF are automatically converted to equivalent

values ranging from $60 to $7F. An error message is printed if

graphics characters (values $A0 to $BF) are encountered. The

Count macro can store up to six strings with the length of

each string stored as the first byte. Both these macros make

use of the Arp pseudo-op to process each of the six possible

strings in turn. The Arpc pseudo-op is used to process each

character of each string one character at a time.

The Float macro stores signed values ranging from -32768 to

32767 as floating point numbers compatible with BASIC 2.0 and

BASIC 7.0. It uses a .rept loop to normalize the mantissa and

adjust the exponent. To normalize means to shift the mantissa

left until the most signifigant bit is a 1.

The DefCtrls macro creates symbols corresponding to the val

ues of the control keys.

"macros.src" -for Commodore's HCD65 assembler

*= $1300

.nclist

.blist

varl .wor 1

var2 .wor 2

CONSTANT = $1234

BIT15 = UOOOOOOOOOOOOOOO

POSITIVE = 0

NEGATIVE = $80

;move 16 bits.

MoveW .macro %vla,%vlb

Ida %vlb

sta tola

Ida %vlb+l

sta %vla+l

.endm

MoveW varl,var2 /sample usage.

;this macro transfers 16 bits. Accumulator is used.

LoadW .macro %vla,%vlb,%vlc

.ifnb <%vlc> ;if 3rd argument is present

.ife '%vlc'-'i' ; if 3rd argument equals T

Ida |<%vlb ; then load immediate value.

sta %vla

Ida |>%vlb

sta %vla+l

.else ; else print error message.

.mssg ***** bad argument in LoadW macro *****

.endif

.else

Ida %vlb ;else move 16 bits.

sta %vla

32
Transactor

Ida %vlb+l

sta %vla+l

.endif

.endm

LoadW varl,CONSTANTS ;sample

.irpc %v3,<%v2> /count each character with an .irpc loop.

LEN = LEN+1

.endr

.byte LEN,'%v2' /assemble string, length byte first.

.endif

.endr

;this macro creates a table of row start addresses

;for the screen or color memory or a bitmap.

LineAdrs .macro %vla,%vlb

MR = %vla

.rept 25

.wor ADR

ADR = ADR+%vlb

.endr

LineAdrs $0400,40 ;create a sample table.

;This macro stores a string with the last character

/having the 7bit set. The angle brackets enclosing the macro

/local variables seem to be necessary to handle spaces.

/Mark can handle up to 6 arguments.

Mark .macro %vla,%vlb,%vlc,%vld,%vle,%vlf

.irp %

.ifnb <%v2> /don't assemble null strings.

.irpc %v3,<%v2>

.ifge '%v3'-$80 /if character value > 128

.ifge '%v3'-$cO ; if character is upper case range $cO..$df

CHAR = '%v3'!x$aO ; then convert to range $60..$7f.

.byte CHAR

.else ; else print error message.

.mssg ***** illegal graphics character in Mark argument *****

.endif

.else

CHAR = '%v3' /else assemble character value < 128.

.byte ;%v3'

.endif

.endr

/an entire string has been assembled,

=-l /now back up PC to last character of string,

.byte CHAR!+128 /now set 7bit of last character,

.endif

.endr

.endm

Mark <A b>,< c D> /sample usage.

/This macro stores a string with the count in the first byte.

/It accepts up to 6 operands.

Count .macro %vla,%vlb,%vlc,%vld,%vle,%vlf

.irp %

.ifnb <%v2> /don't assemble null strings.

LEN = 0 /initialize string count to 0.

.endm

Count <Text>,<more!!!> /sample usage.

/assemble a floating point number compatible with

/BASIC 2.0 or BASIC 7.0 floating point routines.

/Float accepts up to 6 arguments.

Float .macro %vla,%vlb,%vlc,%vld,%vle,%vlf

.irp %v2,%vla,%vlb,%vlc,%vld,%vle,%vlf

.ifnb <%v2> /if argument is not blank

EXP = $90 ; EXP = correct binary exponet for 16 bit integer.

MAN = %v2 / MAN = 1st 2 bytes of mantissa.

.ife MAN ; if mantissa = 0

.byt 0,0,0,0,0 ; then assemble a zero.

.else

.ifIt MAN ; else determine correct sign and

SIGN = NEGATIVE ; take absolute value of MAN.

MAN = -MAN

.else

SIGN = POSITIVE

.endif

.rept 15 ; now normalize mantissa while adjusting EXP.

.ife BIT15I.MAN

MAN = MAN*2

EXP = EXP-1

.endif

.endr

MAN = MAN!.!nBIT15 ; clear sign bit of mantissa and assemble number,

.byt EXP,>MAN!+SIGN,<MAN,0,0

.endif

.endif

.endr

.endm

Float 1,-1,-30145 /sample usage.

/create symbols with values corresponding to the CONTROL 1

/works with all alphabetic CONTROL characters.

DefCtrls .macro %vl

.irpc <%v2>,<%vl>

CTRL$%v2 = '%v2'!.$lf

.endr

.endm

.mlist

DefCtrls abcz /sample usage.

.end □

Volume 9, Issue 5 33

Implementing A RAMdisk

For Abacus' Super C On The C64

by Kerry Gray

Super-C, the 'other' C compiler, is sold in two versions: one

for the 64 and another for the 128. The system includes sup

port for a 'RAMdisk', an area of memory that appears to the

system as a disk drive, thus allowing faster access to files. The

introduction of the 1764 RAM Expansion Unit has made

RAMdisks possible on the 64, but since the authors of Super-C

have not yet seen fit to create such a capability, it has devolved

upon hackers to crowbar it in.

Installation problems

The 1764 reu is sold with ramdos software that emulates a

Commodore disk drive. In order to make a RAMdisk simple

enough for anyone to install, it is highly desirable to make use

of this software rather than expand the C-shell. Simply setting

up the RAMDOS before loading the C-system won't work, since

the autoboot part of the C-shell program overwrites the vectors

installed by RAMDOS. Therefore, to avoid excessive modifica

tion of the C-shell, RAMdisk must be installed from within the

C environment. Once the RAMDOS is enabled, the memory-

resident interface page and the altered system vectors must be

protected from the C shell and C programs.

Using installc

The installc program (Listing 1) will execute Commodore's

RAMDOS installation program from within the C environment

and optionally copy the C development programs, cc, cl and ce

to the RAMdisk. It also changes the top-of-memory pointer to

protect the RAMDOS interface page ($CF00-$CFFF). This pro

gram can be run at any time, but be sure the 1764 is installed!

Type the program in, compile it and link it with the library file

libel. Use $60 for the top memory page. Have your 1764

RAMDOS installation program handy (the latest one is ram-

dos64.bin4.2). Run the program and insert the RAMDOS instal

lation disk when prompted. If you want to copy the C develop

ment files, have your original Super-C disk handy too. These

files are copied with an assembler language subroutine be

cause the install program is destroyed when the C programs

are loaded. (The assembly source is in Listing 2 - it's included

only for the curious. You needn't type it in because it's includ

ed in Listing 1.) Once the transfer is complete, the program

restarts the C shell and you're ready to go.

This is a no-frills program; error checking is minimal. If you

like pretty colours, fancy menus or honest-to-goodness error

checking, feel free to add them yourself.

The astute reader may have noticed that the program moves

the top memory page down two pages to $CE rather than

$CF as one might expect. This is made necessary by a bug in

the C compiler: it makes a wild POKE in high memory when

it starts up. Normally it lands harmlessly in an unused ad

dress in I/O space. With the memory top moved down,

though, the program clobbers the RAMDOS resident program.

If you don't intend to use the compiler when the RAMdisk is

enabled, you may change the top page to $CF. In fact, all but

the largest C programs will leave this area alone. Just to be

safe, though, you should re-link your C programs (including

the C programs found on your Super-C disk) with the new

lower memory top.

RAMdisk entomology

The RAMdisk is, alas, not a perfect fit. The RAMDOS program

differs in some subtle ways from 1541 DOS, and there are a

few outright bugs to boot. The difference that concerns us here

is the use of disk channel one, the SAVE channel. This channel

is treated specially by the 1541 DOS. It assumes that any file

opened on this channel is a file to be saved and creates a write

file. The 1764 treats this save channel like any other channel;

it knows whether the file is a save file because it knows when

your program called SAVE rather than OPEN (they are different

entry points in RAMDOS). The C Editor and C Linker both cre

ate output files by means of this save channel. Why? Simply

because it saves them the trouble of appending ,w to the file

name.

When the editor saves your source file it opens the save

channel using a file name such as source.c,u. The 1541

knows this is a write file and treats it accordingly. RAMDOS,

however, treats all files not explicitly opened for writing

(i.e., not opened through SAVE and not suffixed with ,w or ,a)

as read files. If the file exists, RAMDOS will open it for read

ing and then object when the editor tries to write to it. If the

file doesn't exist, the RAMDOS will return, "62,file not

found". Fortunately, we can avoid this disaster without

34 Transactor

surgery on the C files by appending the missing letters to the

file name ourselves.

To save a source file to the RAMdisk you need to append ,w to

the file name. This keeps both the editor and RAMDOS happy.

The C linker engages in the same vice: it tries to SAVE your

object program through OPEN. Therefore, to create an object

file on the RAMdisk you should append ,p,w to its name.

The RAMDOS program stores all files contiguously in its

memory rather than imitating a random access track and sector

configuration. This makes for impressively fast loading but

can make trouble in programs that write to more than one file

at a time. Every time you append to a file, all the files stored in

higher memory must be moved up to accomodate the new

data. If your program is writing to several files, it may take

longer to run than if the files were on a floppy disk!

You can avoid all these problems if you use the RAMdisk as

you would use your original Super C disk: it should be set up

as drive 'a' (device 8), contain all the system files (compiler,

libraries, etc.), and in general be treated as a read-only device.

This setup will make program development much less aggra

vating, since you may now eschew disk-swapping and the

grindingly slow process of compiling and linking, without the

heartbreak of realizing you forgot to save your day's work to a

real disk before you shut the computer off.

The usual disclaimers...

0x91bd, 0x20c0, 0xffd2, 0xdc9, 0xf5d0, 0x5d4c,

OxllcO, 0x2049, 0x4143, 0x274e, 0x2054, 0x4£43,

0x5950, 0x4320, 0xd43

main()

f=STDIO;

while (f=STDIO)

puts("\nlnsert disk with RAMDOS");

puts(" boot program in drive 8 \n")

puts("Then press a key\n");

getchar();

f=fopen("ramdos64.bin*","r,p");

m= (int) fgetc(f);

m |= ((int) fgetc(f)) « 8;

if (m!=0x6300)

puts("\nRAMDOS intallation program not found.\n");

fclose(f);f=STDIO;

else

i = fgetf(m, 0x2000, f);

if (i ob 0)

I have tested this program on my own copy of Super-C V2

(the startup screen shows #2.02) and with my copy of Com

modore's RAMDOS version 4.2. Earlier versions of RAMDOS

have some serious bugs that can crash your computer at any

time. If you don't have the latest version you can get it from

Commodore, or it can be downloaded from some online ser

vices including CompuServe (CBMCOM lib xx) and Quantum-

Link. I have no reason to believe this program will work with

any other version of Super-C or RAMDOS.

Listing 1: install.c

iindude "stdio.h"

file f;

int i;

char c, *m;

puts("\nl can't read the RAMDOS program.\n"

fdose(f);f=STDIO;

int program [82] =

0x43a9,

0x2a9,

0xffd5,

0x6e0,

0x8b5,

OxlaO,

Oxffbd,

0xl4a4,

0x43c9,

0xa908,

0x384c,

0xa08d,

0x9fa2,

0x62b0,

0xf8d0,

OxdOca,

0xba20r

0xla9,

0x2ba9,

Ox5dO,

0x8d4c,

0x4ccO,

0xa9c0,

OxcOaO,

0xa218,

0xe6c9,

0x6cf7,

0xa9ff,

0x2b85,

0xd820,

0x45a9,

OxcOaO,

QxcQ7e,

0xaa08,

0xbd20,

0x8a00,

0x52d0,

0x801,

0xa202,

0x8a9,

OxbOff,

0x6f4c,

0x54c,

0xcc20,

0x20a8,

0xa9ff,

0xb67d,

0x77bd,

0x5ad,

0xa09f,

0x2c85,

0xad21;

0xc9c0,

0x4ccO,

0xa2ff,

Oxffba,

0x2000,

0xe808,

0x9dc0,

Oxaacf,

0x2000,

0xl3a6,

OxcOaO,

0xd045,

0x400,

0xe8£f,

}

(

fdose(f);

do

{
puts("\nEnter desired device f (8-14):"

scanf("%d",&i);

}
while (i<8 || i>15);

putchar(CR);

/* set-regs program at $6200

(*(char*)

(*(char*)

(*(char*)

(*(char*)

(*(char*)

(*(char*)

(*(char*)

0x6200) = 0xa9;

0x6201) = (char) i;

0x6202) = 0xa2;

0x6203) = Oxcf;

0x6204) = 0x4c;

0x6205) = 0x06;

0x6206) = 0x63;

*/

/*

/*

/*

/*
/*

/*

/*

Ida f

device

ldx §

page

jmp

<$6306

>$6306

*/
*/
*/

*/
*/

*/

*/

/* execute RAMDOS init program */

call((char*) 0x6200);

/* restore C system's NMI vector */

nmion();

Volume 9, Issue 5 35

/* set new memory top */

(char)0x04 = (char) Oxce;

puts("\nRAMDOS installed.\n");

puts("\n\nDo you wish to install C System files? ");

do c = getcharf);

while (c != 'y' && c != 'n');

putchar(c);

putchar(CR);

if (c = 'y')

{
puts("\nlnsert C-system disk in drive 8 and press

cmove ((char*) OxcOOO,170,program);

getchar();

call((char*) OxcOOO);

/* subroutine does not return */

(

puts("Press a key ...");

getchar();

}

Listing 2: source codefor ML in install.c

; loader for hidden

; system files

clrchn = $ffcc

chrout = $ffd2

load =$ffd5

save = $ffd8

setlfs = $ffba

setnam = $ffbd

cboot = $0400 ;c shell

patch = $08b6 ;in fast loader

prstrt = $0801 ;c prg start addr

txttab = $2b ;save param

devnum = $cf05 ;inside interf pg

* = $c000

y.\n\n")

;call entry pt

start Ida f'c'

sta name+1

;file name

;is 'cc'

; read in fast loader

restrt Ida 18

tax

tay

jsr setlfs

Ida 12

ldx |<name

ldy |>name

jsr setnam

Ida 10

jsr load

bcs error

;device

;file to copy

; patct

;

loop

Ioop2

; when

i fast loader

dc

ldx i0

txa

adc patch,x

inx

cpx §6

bne loop

cmp #$e6

bne error

Ida npatch-l,x

sta patch-l,x

dex

bne Ioop2

jmp (prstrt)

it finishes, fast

; loader will jump here

return

ramdev

next

tryl

XX

done

npatch

; prini

error

Ioop3

msg

name

.end

Ida devnum

tax

ldy #1

jsr setlfs

Ida #2

ldx jfcname

ldy #>name

jsr setnam

Ida Kprstrt

sta txttab

Ida f>prstrt

sta txttab+1

ldx $13

ldy $14

Ida Ktxttab

jsr save

bcs error

Ida name+1

cnpf'c'

bne tryl

Ida f'e'

jmp xx

cmp §'e'

bne done

Ida VV

sta name+1

jmp restrt

jmp cboot

jmp return

jmp error

b error message

jsr clrchn

ldx #$ff

inx

Ida msg,x

jsr chrout

cmpf$d

bne Ioop3

jmp next

.byte 17, 'i can'

.byte 'cc',$d

;compute checksum

;to ensure

;your version

; matches mine

;chksum

;new code to

;send control

;back to me

;execute loader

;ramdisk dvc

;same name

;prg begins

;at prstrt

;fast loader leaves

;end address here

;compiler

; editor

;linker

;continue

;reboot c shell

;new code for

;fast loader

,39,'t copy '

□

36 Transactor

SuperNumbers III

Sticky variablesfor C128, C64 & VIC-20

by Richard Curcio

Having successfully modified SuperNumbers to run on my

VIC-20, I decided to attempt a C128 conversion. If you're un

familiar with SuperNumbers, it is a neat utility by John R.

Bennett which appeared in Transactor, Volume 6, Issue 1 back

in July 1985. It provides the C64 with a new class of numeric

variable. These new variables, which are single letters preced

ed by the British pound symbol (£), have fixed locations in

memory and are invulnerable to program failure, CLR, and re

set. They are also faster variables since BASIC doesn't have to

search through its other variables to find a particular super-

number.

The "ill" in the title of this article reflects the inclusion of

three versions of a new SuperNumbers program, for the C128,

C64, and VIC-20.

C64/VIC-20

On re-examining the original source program, I noticed two

nearly identical sections of code. These I combined into one

subroutine in the new source listings labelled, not un

expectedly, SUBRTN. This gave me room to add some simple

vector management to the initialization. When SuperNumbers

is initialized, the contents of ERROR is stored at realerr, then

IERROR is changed to point to NEWERR. If IERROR is already

pointing to NEWERR, the initialization exits. This allows Super-

Numbers to co-exist with another error-intercepting wedge.

The contents of the vector IEVAL, however, are simply replaced

by NEWEVAL.

In the original article, the Editor noted that there are appar

ently more than 26 supernumbers (SNs). The routine will ac

cept £1, £@ and even £<shift-a>. Unfortunately, these extra

SNs are located outside the area of memory that the machine

language set aside for the 26 alphabetic SNs. If the area is un

used, no problem. If, on the other hand, that area of ram is be

ing used by another routine, assigning a value to £% or £*

could cause bad things to happen. Like a crash.

The call to the ROM routine CKALPH, near the start of SUBRTN,

returns with carry set if CHRGET found a letter in the BASIC

text. The BCS around JMP SYNTAX ensures that SuperNumbers

will only accept the 26 unshifted alphabetic characters.

Twenty-six new variables is plenty. Besides, there is another

way to get more than 26 supernumbers. This is one reason

why the new CLRRAM subroutine is seemingly more complex

than necessary. Stay tuned.

My first VIC conversion was done the 'hard way'. The original

BASIC loader was run with a protected area of VIC memory as

the destination. I then POKEd the ROM calls and absolute ad

dresses with the proper values. (Incidentally, Vic's location for

memtoi really does have the two middle digits transposed

from the C64 location. That's not a typo.)

For these new conversions, I had to get around the fact that the

assembler I was using, LADS64, doesn't have a WORD pseudo-

op. The original routine contained a table of 26 two-byte

values representing the addresses of the 26 five-byte super-

numbers. I couldn't use BYT since LADS only accepts decimal

and ASC, not expressions for that pseudo-op, and I didn't know

what the table entries would be until the whole thing was

assembled.

The table was halved to 26 single-byte values. Subrtn adds

the appropriate table entry to NUMS to find the location of the

supernumber BASIC is looking for. There is a slight loss of

speed using this method. However, this kept the ML, with the

added vector management, error check, and longer CLRRAM

from growing much longer than the original routine. In fact,

the C64 and Vic versions are two bytes shorter - 163 bytes.

Like the original, these routines require an additional 130

bytes immediately after the ML to hold the 26 5-byte floating

point £ variables.

C128

For the C128, my intention was to store the uew variables with

the ML in bank 15, RAM 0, and gain mor peed by avoiding

the bank switching the interpreter perform, between program

text in ram 0, and variables in ram 1. Ba: ; 7.0 would meet

me only half-way on this brilliant idea, willingly returning

values from ram 0, but refusing to store values there. With

much grumbling, I made the necessary changes arid placed the

new variables high in RAM 1 at $FF45. This area is immedi

ately after the IRQ, NMI and reset preliminaries the system

Volume 9, Issue 5 37

copies to all banks, isolated from normal variables and unused

by the system. Knowing the storage location should have elim

inated the table entry question. The lookup-and-ADC method

was retained for reasons that will be explained shortly.

The source listing for C128 SuperNumbers is very similar to

the C64/VIC version. The CLRRAM subroutine is longer be

cause of the need to use the Kernal indsta routine to get at the

other bank. As noted, though ASCFLT is located at $8D22, entry

at $78E3 performs a needed extra step. This extra step is why,

if the variable is not a supernumber, NODIGIT jumps to OLDE-

val +14 in the 128, and oldeval +12 in the 64/vic source

listing.

Even with the unavoidable bank switching, C128 supernum-

bers are considerably faster than normal variables, especially

so in FAST mode. One thing the 128 really needs is faster

variables.

The Loaders

All three loaders will relocate the ML to an address of your

choice by changing the variable sn in line 120. The Vic ver

sion pokes the ML into RAM in Block 5, the slot for auto-start

cartridges. For other VIC-20 locations, the usual top of memory

lowering pokes should be performed before running the load

er. C64/VIC SuperNumbers requires 293 bytes for the ML and

variable storage.

The loader for SuperNumbers 128 puts 173 bytes of ML at ad

dress 4864/$ 1300, in the 'applications' area. The £ variable

area defaults to 65439/$FF45 in RAM 1. However, all three

versions can have their variables elsewhere, which brings us to

the next topic.

More Than XXVI

The lookup-and-ADC method of finding the address of a £

variable had the happy side benefit of allowing the storage

area to be moved with just two pokes. By performing these

POKES on the fly, SuperNumbers can be made to have more

than one set of variables. If sn equals the start address of the

routine, the low byte of the storage area is contained in sn

+108, and the high byte at sn +110. Peek these locations and

put the values into normal variables if you intend to restore the

default storage area.

For the 128, the storage area must be in RAM 1. Setting aside

memory in RAM 1 is simple enough. Locations 47/48 contain

the pointer for the start of variables; and 57/58, the pointer for

the end of strings. In direct mode, or at the start of a BASIC

program, before any variables are assigned, poke 47, 0: poke

48, 5 raises the normal start of variables by 256 bytes and

poke 57, 0: poke 58, 254 lowers the end of strings by 256

bytes. These pokes should be followed by CLR.

When you want to switch to a different set of supernumbers,

your program would first POKE sn +108 and sn +110 with the

values corresponding to the low byte and high byte of the start

of the new storage area. (Obviously, £ variables can't be used

for these POKES.) If enough memory has been set aside for the

purpose, BASIC subroutines could have their own sets of super-

numbers - local variables - like higher level languages. Local

supernumbers could be passed to the main program (the global

variables) by A = £A. Two pokes just before the subroutine re

turns will restore the first storage area or any other set of su

pernumbers.

SuperNumbers' 'cold' start clears the storage area pointed to

by sn +108 and sn +110. If SuperNumbers is the only error

wedge in place, or the first in a chain (the last one enabled),

COLD can be called again to clear the alternate storage area.

The CLRRAM routine can be called separately with sys sn +119

on all three versions.

Finally

Thanks must go to John R. Bennett for making his program

available to Transactor readers. Converting his original work

from the C64 to the C128, making changes as I encountered ob

stacles along the way, provided me with an interesting project.

Listing 1: Source.128 - LADSformat

1000 *= $1300 ; cl28 .org

1010 ;

1020 .d snl28.obj

1030 .s

1040 ;

1050 ;supernumbers revisited

1060 ;

1070 /adapted by r.curcio

1080 ;from a program by John bennett (vol. 6, iss. 01)

1090 ;

1100 ;lads format

1110 ;

1120 ;

1130 chrget = $0380

1140 ;

1150 valtyp = $0f

1160 intflg = $10

1170 ;

1180 ierror = $0300

1190 ieval = $030a

1200 ;

1210 oldeval = $78da

1220 ;

1230 ; routine which sets carry if accumulator holds a letter

1240 ckalph = $7b3c

1250 ;

1260 /routine to load fad with number in raml pointed to by a,y

1270memtol = $7a85

1280 ;

1290 /routine to change ascii to floating point

1300 ascflt = $78e3

1310 /routine is really at $8d22. entry here first performs ldx #$00

1320 ;

1330 ;

1340 syntax = $796c

1350 indsta = $ff77

1360 ;

1370 nums = $ff45 /storage for \ variables

1380 ;

38
Transactor

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

cold

;

warm

chngvec

leave

*

;

newerr

•

realerr

;

found

;

neweval

•

•

nodigit

;

;

foundl

;

;

subrtn

okay

numadr

endsub

/

;

clrram

jsr

Ida

ldy

cmp

bne

cpy

beq

sta

sty

Ida

ldy

sta

sty

Ida

ldy

sta

sty

rts

cpx

bne

cmp

beq

jmp

jsr

ldx

stx

stx

rts

Ida

sta

jsr

bcs

jmp

cmp

beq

jmp

jsr

jmp

jsr

jsr

bcs

jmp

sbc

tax

jsr

Ida

ldy

clc

adc

bcc

iny

rts

ldx

jsr

sta

sty

Ida

sta

ldy

clrram

ierror

ierror+1

#<newerr

chngvec

f>newerr

leave

realerr+1

realerr+2

§<newerr

#>newerr

ierror

ierror+1

§<neweval

§>neweval

ieval

ieval+1

111
realerr

f"\"
found

$ffff

subrtn

10

valtyp

intflg

10

valtyp

chrget

nodigit

ascflt

f"\"
foundl

oldeval+14

subrtn

memtol

chrget

ckalph

okay

syntax

fa"

chrget

#<nums

f>nums

addtab,x

endsub

#0

numadr

$c3

$c4

#$c3

$02b9

#$00

;zero storage area

;test ierror already

;points to newerr

;syntax"?

;not supernumber

;not supernumber

;not supernumber

;get character

;make sure its a letter

/point to next

/calculate address

/of supernumber

/set supernumbers

;to zero

/set up pointer

/counter

2120 zero

2130

2140

2150

2160

2170

2180

Ida #$00

ldx #$01

jsr indsta

iny

cpy 1130

bne zero

rts

/byte to store

/bank 1

2190 ;

2200 /table of values used to calculate

2210 /address of supernumber

2220 ;

0 5 10 15 202230 addtab

2240

2250

2260

2270

2280

2290 ;

.byt

.byt

.byt

.byt

40

65

90

.byt 100 105 110 115 120

.byt 125

Listing 2: Source.64v - LADSformat

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

*= $c800

'.d
.s

; c64 .org

sn64.obj

/supernumbers revisited

/adapted by r.curcio

/from a program by John bennett (vol. 6, iss. 01)

/lads format

chrget = $0073

valtyp =$0d

intflg = $0e

ierror

ieval

$0300

$030a

oldeval = $ae86 ;$ce86 for vie

/routine which sets carry if accumulator holds a letter

ckalph = $bll3 ;$dll3 for vie

/routine to load facl with number pointed to by a,y

memtol = $bba2 ;$dab2 for vie

/routine to change ascii to floating point

ascflt = $bcf3 ;$dcf3 for vie

syntax = $afO8

cold jsr clrram

warm Ida ierror

ldy ierror+1

cmp |<newerr

bne chngvec

cpy |>newerr

beq leave

chngvec sta realerr+1

sty realerr+2

Ida #<newerr

ldy |>newerr

sta ierror

sty ierror+1

Ida JKneweval

ldy §>neweval

;$cf08 for vie

/set ram to zero

/test ierror already

/points to newerr

Volume 9, Issue 5 39

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

sta ieval

sty ieval+1

leave rts

newerr cpx #11

bne realerr

cmp §"\"

beq found

realerr jmp $ffff

found jsr subrtn

ldx #0

stx valtyp

stx intflg

rts

neweval Ida #0

sta valtyp

jsr chrget

bcs nodigit

jmp ascflt

nodigit cmp #"\"

beq foundl

jmp oldeval+12

foundl jsr subrtn

jntp memtol

subrtn jsr chrget

jsr ckalph

bcs okay

jmp syntax

okay sbc f"a"

tax

jsr chrget

numadr Ida i<nums

ldy |>nums

clc

adc addtab,x

bcc endsub

iny

endsub rts

drram ldx §0

jsr numadr

sta $c3

sty $c4

txa

tay

zero sta ($c3),y

iny

cpy #130

bne zero

rts

table of values used to calculate

address of supernumber

addtab .byt 0 5 10 15 20

.byt 25 30 35 40 45

.byt 50 55 60 65 70

.byt 75 80 85 90 95

.byt 100 105 110 115 120

.byt 125

/syntax"?

;not supernumber

;not supernumber

;not supernumber

;get character

;set carry if letter

/point to next

/calculate address

;of supernumber

;get start of storage

Listing 3: C128.ldr

MI 100 rem *** supernumbers loader ***

OL 110 rem *** d28 version ***

DD 120 sn=4864:bankl5:rem will relocate

BO 130 ck=0

DK 140 readd:ck=ck+d:ifd=999thenl60

LD 150 gotoKO

JB 160 ifck<>15872thenprint"error in data":end

CM 170 restore

KM 180 na=sn

JI 190 readd:ifd=999then240

GB 200 ifd=>0thenpokena,d:goto230

CB 210ad=sn+abs(d):gosub350

KA 220 pokena,lb:na=na+l:pokena,hb

CJ 230 na=na+l:gotol90

DH 240 ad=sn+44:gosub350

MK 250 pokesn+10,lb:pokesn+24,lb

EL 260 pokesn+14,hb:pokesn+26,hb

KJ 270 ad=sn+65:gosub350

EN 280 pokesn+34,lb:pokesn+36,hb

AE 290 rem

KE 300 rem

PJ 310 print"supernumbers installed":printsn"to"na-l

LO 320 print"coldstart = sys"sn

JD 330 print"warmstart = sys"sn+3

EF 340 end

AI 350 hb=ad/256:lb=ad-int(ad/256)*256:return

BP 1000 data 32,-119, 173, 0, 3, 172, 1,

BP 1010 data 201, 44, 208, 4, 192, 19, 240,

HD 1020 data 141, -53, 140, -54, 169,

00 1030 data 141, 0, 3, 140, 1,

LJ 1040 data 160, 19, 141, 10,

OB 1050 data 96, 224, 11, 208,

OD 1060 data 3, 76, 255, 255,

GD 1070 data 134, 15, 134, 16,

IM 1080 data 133, 15, 32, 128, 3, 176,

KG 1090 data 227, 120, 201, 92, 240, 3,

PK 1100 data 120, 32, -90, 76, 133, 122,

HN 1110 data 3, 32, 60, 123, 176, 3, 76, 108

EJ 1120 data 121, 233, 65, 170, 32, 128, 3, 169

MD 1130 data 69, 160, 255, 24, 125,-148, 144, 1

OO 1140 data 200, 96, 162, 0, 32,-107, 133, 195

BN 1150 data 132, 196, 169, 195, 141, 185, 2, 160

DP 1160 data 0, 169, 0, 162, 1, 32, 119, 255

NJ 1170 data 200, 192, 130, 208, 244, 96, 0, 5

EJ 1180 data 10, 15, 20, 25, 30, 35, 40, 45

OO 1190 data 50, 55, 60, 65, 70, 75, 80, 85

NH 1200 data 90,

II 1210 data 999

3,

3

26

44, 160, 19

3, 169, 65

140, 11, 3

4, 201, 92, 240

32, -90, 162, 0

96, 169, 0

3, 76

76, 232

32, 128

95, 100, 105, 110, 115, 120, 125

nums .byt 0 /storage starts here

Listing 4: C64.ldr

MI 100 rem *** supernumbers loader ***

NO 110 rem *** c64 version ***

FA 120 sn=51200:rem will relocate

BO 130 ck=0

DK 140 readd:ck=ck+d:ifd=999thenl60

LD 150 gotol40

BC 160 ifck<>15585thenprint"error in data":end

CM 170 restore

KM 180 na=sn

JI 190 readd:ifd=999then240

GB 200 ifd=>0thenpokena,d:goto230

CB 210 ad=sn+abs(d):gosub350

KA 220 pokena,lb:na=na+l:pokena,hb

CJ 230 na=na+l:gotol90

DH 240 ad=sn+44:gosub350

MK 250 pokesn+10,lb:pokesn+24,lb

EL 260 pokesn+14,hb:pokesn+26,hb

KJ 270 ad=sn+65:gosub350

EN 280 pokesn+34,lb:pokesn+36,hb

40 Transactor

GJ 290 ad=sn+164:gosub350

HO 300 pokesn+108,lb:pokesn+110,hb

PJ 310 print"supernumbers installed":printsn"to"na-1

LO 320 prinf'coldstart = sys"sn

JD 330 print"warmstart = sys"sn+3

EF 340 end

AI 350 hb=ad/256:lb=ad-int(ad/256)*256:return

BP 1000 data 32,-119, 173, 0, 3, 172, 1, 3

KP 1010 data 201, 44, 208, 4, 192, 200, 240, 26

ON 1020 data 141, -53, 140, -54, 169, 44, 160, 200

00 1030 data 141, 0, 3, 140, 1, 3, 169, 65

OP 1040 data 160, 200, 141, 10, 3, 140, 11, 3

OB 1050 data 96, 224, 11, 208, 4, 201, 92, 240

OD 1060 data 3, 76, 255, 255, 32, -90, 162, 0

LB 1070 data 134, 13, 134, 14, 96, 169, 0, 133

OK 1080 data 13, 32, 115, 0, 176, 3, 76, 243

NJ 1090 data 188, 201, 92, 240, 3, 76, 146, 174

HC 1100 data 32, -90, 76, 162, 187, 32, 115, 0

IB 1110 data 32, 19, 177, 176, 3, 76, 8, 175

JJ 1120 data 233, 65, 170, 32, 115, 0, 169, 164

16 1130 data 160, 200, 24, 125,-138, 144, 1, 200

PO 1140 data 96, 162, 0, 32,-107, 133, 195, 132

FN 1150 data 196, 138, 168, 145, 195, 200, 192, 130

HL 1160 data 208, 249, 96, 0, 5, 10, 15, 20

OL 1170 data 25, 30, 35, 40, 45, 50, 55, 60

EF 1180 data 65, 70, 75, 80, 85, 90, 95, 100

CO 1190 data 105, 110, 115, 120, 125, 999

Listing 5: vic.ldr

MI 100 rem *** supernumbers loader ***

II 110 rem *** vie version ***

PC 120 sn=40960:rem will relocate

BO 130 ck=0

DK 140 readd:ck=ck+d:ifd=999thenl60

LD 150 gotol40

DA 160 ifck<>15600thenprint"error in data":end

CM 170 restore

KM 180 na=sn

JI 190 readd:ifd=999then240

6B 200 ifd=>0thenpokena,d:goto230

CB 210 ad=sn+abs(d):gosub350

KA 220 pokena,lb:na=na+l:pokena,hb

CJ 230 na=na+l:gotol90

DH 240 ad=sn+44:gosub350

MK 250 pokesn+10,lb:pokesn+24,lb

EL 260 pokesn+14,hb:pokesn+26,hb

KJ 270 ad=sn+65:gosub350

EN 280 pokesn+34,lb:pokesn+36,hb

GJ 290 ad=sn+164:gosub350

HO 300 pokesn+108,lb:pokesn+110,hb

PJ 310 print"supernumbers installed":printsn"to"na-l

LO 320 prinf'coldstart = sys"sn

JD 330 print"warmstart = sys"sn+3

EF 340 end

AI 350 hb=ad/256:lb=ad-int(ad/256)*256:return

BP 1000 data 32,-119, 173, 0, 3, 172, 1, 3

MP 1010 data 201, 44, 208, 4, 192, 160, 240, 26

OO 1020 data 141, -53, 140, -54, 169, 44, 160, 160

00 1030 data 141, 0, 3, 140, 1, 3, 169, 65

DB 1040 data 160, 160, 141, 10, 3, 140, 11, 3

OB 1050 data 96, 224, 11, 208, 4, 201, 92, 240

OD 1060 data 3, 76, 255, 255, 32, -90, 162, 0

LB 1070 data 134, 13, 134, 14, 96, 169, 0, 133

OK 1080 data 13, 32, 115, 0, 176, 3, 76, 243

JG 1090 data 220, 201, 92, 240, 3, 76, 146, 206

BD 1100 data 32, -90, 76, 178, 218, 32, 115, 0

CB 1110 data 32, 19, 209, 176, 3, 76, 8, 207

JJ 1120 data 233, 65, 170, 32, 115, 0, 169, 164

NH 1130 data 160, 160, 24, 125,-138, 144, 1, 200

PO 1140 data 96, 162, 0, 32,-107, 133, 195, 132

FN 1150 data 196, 138, 168, 145, 195, 200, 192, 130

HL 1160 data 208, 249, 96, 0, 5, 10, 15, 20

OL 1170 data 25, 30, 35, 40, 45, 50, 55, 60

EF 1180 data 65, 70, 75, 80, 85, 90, 95, 100

CO 1190 data 105, 110, 115, 120, 125, 999

CHIP CHECKER

• Over 650 Digital ICs • 8000 National + Sig.

• 75/54 TTL (Als,as,f,h,l,ls,s) • 9000 TTL

• 74/54 CMOS (C.hc, hct, sc) • 14-24 Pin Chips

• 14/4 CMOS • .3" + .6" IC Widths

Pressing a single key identifies/tests chips with ANY

type of output in seconds. The CHIP CHECKER now

also tests popular RAM chips. The CHIP CHECKER is

available for the C64 or C128 for $159. The PC com

patible version is $259.

DUNE SYSTEMS

2603 Willa Drive

St. Joseph, Ml 49085

(616) 983-2352

NOTHING LOADS YOUR PROGRAMS FASTER

THE QUICK BROWN BOX

A NEW CONCEPT IN COMMODORE CARTRIDGES

Store up to 30 of your favorite programs — Basic & M/L, Games &

Utilities, Word Processors & Terminals — in a single battery-backed

cartridge. READY TO RUN AT THE TOUCH OF A KEY.

HUNDREDS OF TIMES FASTER THAN DISK. Change contents

as often as you wish. The QBB accepts most unprotected programs

including "The Write Stuff the only word processor that stores your

text as you type. Use as a permanent RAM-DISK, a protected work

area, an autoboot utility. Includes utilities for C64 and C-128 mode.

Packages available with "The Write Stuff," "Ultraterm III," "QDisk"

(CP/M RAM Disk), or QBB Utilities Disk. Price: 32K $99; 64K $129.

(+$3 S/H; $5 overseas air; Mass residents add 5%). 1 Year Warranty.

Brown Boxes, Inc, 26 Concord Rd, Bedford, MA 01730: (617) 275-

0090; 862-3675

□

Volume 9, Issue 5 41

Inside The 1764 REU

Halfway to a one meg 64

by Paul Bosacki

This article was written in two parts. The first bit was written in

early January, just after the mail started to come in on Care and

Feeding ofthe C256. The rest of it was written four months later

when some additional information led me to question one of my

early speculations. But I've left the first part mostly as it was

because I thought you might appreciate reading about the men

tal stretching that owning a computer has required.

Ever since Transactor published Care and Feeding of the

C256, I've been receiving a little mail. Most of it has had to do

with my 1 meg 64, and how this was achieved. The answer

lies in the marriage of two distinct memory expansion strate

gies. The first is a commercial 512K RAM Expansion Unit that

uses high speed, direct memory access techniques; the second,

512k of user installed, slower, bank-switched RAM along the

lines of the 256K project from Transactor, Volume 9, Issue 2.1

won't be discussing the bank switched RAM project here.

That's for later. Rather, it's the 512K REU that I want to talk

about. It's a 1764 REU. You know, the 256K type.

There can be little doubt that the 1764 reu is one of the most

significant peripherals that Commodore ever offered for the

64. In lieu of a faster processor, it is the best thing going for

speeding up an otherwise slow program. As long, that is, as the

program takes advantage of the REU. Geos is one of those pro

grams. And no one, I imagine, would be foolish enough to

suggest that an reu of some sort isn't necessary when running

GEOS - and the bigger the better. Put a 256K REU on GEOS, and

you're soon wishing you had 512K. The improvements an REU

offers are just short of amazing.

This is the story of curiosity and the cat, including the satisfac

tion part. What follows is a look inside the REU and, best of

all, the information necessary to expand the 1764 REU to

512K. I have heard that some of this information is available

elsewhere; however, it's important enough to bear repeating.

REU Internals

Anyone who's ever been brave enough to open a 1764 has

been greeted with a few very intriguing words on the printed

circuit board: C128 RAM Expansion. It seems that Commodore

uses one rec (ram Expansion Controller) but populates each

REU with varying quantities or types of RAM. Simply put, the

1764 is a 1750 REU with only one bank of 41256-15 DRAM and

a different name stenciled on the case. In fact, the 1700 REU is

different from its beefier siblings only in that it uses the 4164

dram rather than the 41256.

But all that's intriguing doesn't stop there. At the lower right

of the PC board is an empty layout for a 28-pin chip: either an

8, 16 or 32K eprom. Close inspection of the board reveals that

the data bus and the low 13 address lines are brought out to the

layout. As well, A14 can be selected by resetting a jumper on

the board. Of the two EPROM select lines, one is directly con

nected to the REC; the other is connected to ground. Yet, how

the ROM is accessed by the 64 is a partial mystery to me.

Let me outline some of my observations. First, the REC itself

selects the EPROM in response to a low on either the /ROMH or

/ROML line of the cartridge port. There's a fly in that ointment

though. A cartridge signals the presence of an EPROM to the

C64 by pulling low the /EXROM or /GAME line (or both) of the

expansion port. These lines are directly connected to the pla

and default high. But, the /EXROM and /GAME lines are not

manipulated by the REU. Put another way, the EPROM won't be

selected because the REU hasn't indicated to the 64 that there's

an EPROM present! Now this confounds me. Why the layout

for an EPROM, but no way to access it?

There are two possibilities here. One, I'm missing something

obvious. Or two, an early design aspect didn't make it all the

way to the production stages. You see, it is possible to select

the EPROM, but we have to cheat. On the REU board, connect

the /EXROM line to ground. An 8K EPROM is then selected in

the $8000 range. Or connect the /GAME line to ground along

with /EXROM to allow a 16K EPROM. Now an EPROM would be

selected from $8000 to $bfff. However, we're always going to

be out 8K of system RAM. And in the second case, we must

supply BASIC, however modified (otherwise, why bother with

a 16K EPROM?).

Speculations

Now, here's a piece of speculation for you. The EPROM is

obviously selected by the REC based on the status of /ROML

42
Transactor

and /ROMH. But if the EPROM were always to be selected, why

not connect the lines directly to the EPROM? Two possible

reasons. Neglecting for a moment that A14 can be routed to the

layout, the EPROM can be either an 8 or 16K chip. This way the

REC handles the decoding. Or perhaps there is the option to

map in the EPROM. A look at the REC registers reveals that

three bits in the command register are marked reserved. Per

haps these bits serve that function. This means that an output

from the REC might connect directly to the /EXROM line,

another to /game. By setting or clearing a bit, a low on the

corresponding line would signal to the 64 whether an EPROM

were present. However, I couldn't get any combination of

those bits to act in that fashion. Again, maybe I'm missing

something.

Then there's the fact that by changing J2, A14 can be brought

out to the EPROM. This allows a 32K EPROM to occupy the lay

out. But how is the upper 16K selected? Do we again look to

the suspect bits in the command register? Is that function

somehow hidden there as well?

So, what was the EPROM to contain? Your guess is as good as

mine. Speculation: maybe custom REU routines. Perhaps Com

modore intended a custom RAMDOS to be placed there. It's on

ly conjecture. And as I said, it seems impossible for the REC to

select the EPROM without some form of intervention on our

part; i.e., connecting either /EXROM, or both /EXROM or /GAME,

to ground. Then, whatever code an EPROM contained would be

up to the individual. Unfortunately, it seems that the layout

made it to the board but supporting C64 select functions

didn't. Anybody know for certain?

We're here to pump REUs up

Intriguing point number 3: on the solder side of the circuit

board is a jumper with the promising words: 512K-cut. When

this line is cut, it signals to the REC that 256K bit DRAMs are

present. What this suggests is that all those people out there

who bought the 1700 REU and now crave 512K of expansion

RAM need only unsolder the two banks of 4164s and install

41256s - and cut the jumper, of course. One bank of 41256-

15's would yield 256K, another would take the REU to its max

imum 512k. However, it's only fair to warn you that I have not

done this, and cannot, therefore, assure you of the results. And

it would be a finicky job - desoldering 256 pins! If anyone

does succeed at this, let me know!

For those who own 1764s the process is simpler. Because the

512K jumper is already cut, all that needs to be done is install

another bank of 41256-15s. First, carefully disassemble your

1764 (needless to say, such action will void your warranty).

The case is held together by four plastic posts set in sockets.

It's best to start at the expansion port connector and pry up

with a small screwdriver. Work your way around the REU as

the case gives. Inside is the RF shield which just pries off, then

you're at the board itself. Compare the board against the draw

ing. If they're not significantly the same, proceed at your own

risk.

However, if that is the case, all is not lost. Check a couple of

things out. Look for the jumper on the solder side of the board.

It's beneath the REC. If it's there, chances are that simply

adding the extra ram will work even if your board is different.

And check for the C128 RAM Expansion title. I can't help but

feel that's a dead giveaway.

If every thing checks out, look below the bank of 41256s

labeled Bank 1. You will see the layouts for eight sixteen-pin

chips; just to the right of the layouts will be the words "Bank

2" (another dead giveaway). Clear each of the solder pads us

ing either a vacuum desolder or solder braid and install eight

41256-15s there. You'll want to observe the usual anti-static

precautions. Ground yourself first! With DRAM costing $12.00

a chip, mistakes are expensive. You may want to install the

drams in sockets to minimize the possibility of damage. Use

low profile sockets. With the RF shield back in place, there's

just enough room. But check first, just to be certain.

Once the chips are installed, you're done. Put the unit back to

gether and pull out your copy of GEOS 1.3/2.0 or the utility

disk that came with your REU. The RAMdisk utility from that

disk will configure all 512K (minus some room for code) as a

RAMdisk. It's worth noting however, that the REU test program

tests only the first 256K.

Under GEOS, your options are somewhat varied. Under 1.3,

you can configure a RAM 1541 and a Shadow 1541, or if you

have two 1541 's, two Shadow 1541 's. Under 2.0, configure a

RAM 1571 or whatever. If you want to test the additional RAM,

load up a RAM 1571 and click on validate. If your RAMdisk

validates then your new ram passes. It's not a complete test:

only track and sector links are being fetched, so you're really

only testing the first two bytes of each RAM page. However, in

most cases, that test alone will tell you if there's a problem.

And that, ladies and gentlemen, is all there is to it. And, as a

nice little bonus, your REU is (and always has been) compati

ble with the C128.

As for the EPROM, it's one of the more curious aspects of the

REU. It seems that much was intended, but it was ultimately

abandoned. All we're left with is the layout and the opportunity

to ground /EXROM or both /GAME and /EXROM. At least, that

would allow 8K or 16K of EPROM. But that seems pretty poor

fare when 32K is an option, and that there might be lurking

there, somewhere, a more elegant select mechanism.

Following up

Funny, the way things change. The above portion of this arti

cle was written in early January, just when it was becoming

clear that a lot of people were interested in a one meg 64. It

seemed obvious at the time that an article concerning the 1764

was again due. I knew no one had ever attacked the EPROM

question, and I wanted to open a forum of sorts. Then in the

February issue of Commodore Magazine, Brian Dougherty (of

Berkeley Softworks) stated that an EPROM could just be

Volume 9, Issue 5 43

17(4 Board Layout

C2

C128 RAM EXPANSION FAB NO #312535

C3 M « C6 C7 C8 C9

D

U2

T

U3

O^

U4 U5

41256-
U6 U7

1

US U9

1 D C22

C21

16mf

S*16 pin layouts for additional bank

of 41256-15 DRAMS. Labeled U18-U17.
. c

RP1

RP3 -

0
1298A 15-87

C20

C18

C17

FB5 FB1

RPZ

Uacant 28 pin layout for

32k*3 bit ROM. See text.

RP1

FP/CG/TF

ASSV NO.

312533

RP8 RP9

FB5 FB1 F^ FB3 FB4

00 DO

■■■■■■ ■■■■■■■■■

Notes:

i) R4,. present on some early 1756 and

170e's, is absent.

ii) FB2 has become a 439 ohm resistor.

Both changes point to the speculation

that the REU board has not been

significantly redesigned (if at all) since its

introduction.

Question: if so, why did it take

Commodore so long to cough up the

1764?

Notes:

i) REU is shoujn

component side up.

ii) /GAME & /EXROM are

leads 8 & 9 respectively.

iii) SN1 as shown is a

DPST and uihen

closed, maps a 16k

EPROM into the S8Q80 to

Sbfff range. For an 8K

EPROM use a SPST switch

on the /EXROM line. The EPROM

then maps in at S8888.

CM EPROM Select Solutions
(for the 17xx REU's)

puupuu SN1

44 Transactor

dropped into a 1764. Well, that got me

going and the above is the result.

Now four months later, I still stand by the

above conclusions. But, like I said, things

have this funny habit of changing. And,

we learn in the process. I missed a valu

able point in the above notes, that some

thing obvious I complained about: the

1764 is, down deep inside, still a product

that was developed for the C128. And as

such, the EPROM question needs to be

re-examined. Unkown to me at that time

was the select mechanism by which the

C128 'logs in' external (and for that mat

ter, internal) expansion ROM. For the

uninitiated, and those who own 64's, I'll

briefly sketch it out.

Ignoring the Z80 and its part in a 128's

startup routine, we are left with only two

routines in the 128's native mode: POLL

and PHOENIX. Both routines are ac-

cessable through the much expanded

KERNAL jump table. On startup or reset,

POLL does just what its name suggests.

First, the routine checks the state of the

/GAME and /EXROM lines. If either is

pulled low, a go64 is executed and we

end up in 64 mode. Failing that, the inter

nal and external cartridge slots are polled

for the ROM signature CBM (at ROM-

base+7, where ROMbase equals either

$8000 or $C000). If a cartridge is detect

ed, its ID (ROMbase+6) is then logged in

the Physical Address Table (PAT). If the ID

is 1, then an auto-start cartridge is recog

nized, and its cold start entry (at ROM-

base) is called immediately. Otherwise,

this task is left to phoenix which checks

the PAT and then calls the cold start rou

tine of each cartridge logged there. That's

pretty much it. The /GAME and /EXROM

lines are considered only insofar as they

indicate the presence of a C64 style car

tridge. Interesting.

So what does all this mean? Basically this:

the EPROM slot in the 17xx REU's was

probably meant for the C128 only. Com

modore's way of using the expansion port

but leaving it free for further ROM expan

sion - clever! In a brief experiment, I

dropped a 16K EPROM into my REU and

plugged it into a C128. Result: mapped in

at $88000 and $98000 (the first hex digit

is the bank address) was my EPROM. None

of the fancy select mechanisms suggested

above, nothing. Just the 128's way of checking who's out there. That's why the /GAME

and /exrom lines are left unconnected. If they were, we'd end up with a go64 and an

REU that only worked on a C64 or in 64 mode. Maybe those unused bits do function

just as I speculated four months ago. The format of a cartridge 'ROM signature' on

the C128 and C64 differ significantly, making them incompatible. Perhaps some in

compatibility issue is resolved through those bits. A cartridge designed for the 64

affects the 128 in ways not always desired, and a 128 cartridge wouldn't be recog

nised by the 64 at all! Those unused bits' function, though still hidden, may some

how be tied up in all this.And where does that leave us - the owners of these REUs?

If you're a C64 owner then check out the following diagrams. A switch could easily

be added to an REU that would allow an EPROM to be mapped in or out on power up

or reset. If you're a C128 owner, just install a properly formatted EPROM.

Inkwell Systems invites yon to*
SEE US ATOCC UO HI _ _ _

world of.
commodore booth 409
LOS ANGELES CONVENTION CENTER

MAY 19-21,1989

"Bny it at the Show" specials •• prices include tax?

Uul Hight <Pen

with Amiga Light Pen Driver

NOW GET YOUR FAVORITE LIGHT PEN AND DRIVER BUNDLED WITH GRAPHICS PKGS.

WITH WITH

both for only

$159.95

OR

both for only

$199.95

Big Savings on C-64 Programs, too!

SPECIAL...PIX PAK

GRAPHICS GALLERIA I & II
(8 Disks of Clip Art)

$ 32

SPECIAL...SUPER PAK

FLEXIFONT, GRAPHICS INTEGRATOR 2

AND GRAPHICS GALLERIA I & II

$ 69

Inkwell Systems
CREATORS OF PENWARE™

1050-R Pioneer Way • El Cajon. CA 92020 • 619/440-7666 • FAX: 619/440-8048

Volume 9, Issue 5 45

Capitals: A Basic Quiz Program

Using linked lists

by Jim Butterfield

The program included at the end of this article runs on:

Commodore 64, Commodore 128, Plus-4, Commodore 16,

B128, PET, CBM.

Do you know the capital cities of the fifty states and ten

provinces? This program will check your knowledge. It will

give you full points for a correct answer; but if you miss with

your first attempt, it will try to help you with multiple choices.

And it gives hints.

Program CAPITALS is written in BASIC, and you might like to

look at the code for some interesting programming methods. It

uses carefully planned educational techniques; you might like

to check these.

Since the program is in BASIC, it will be no speed demon. Con

sidering the work it does, however, it clips along at an accept

able pace. If you happen to have access to a compiler, you

may use this to speed up CAPITALS.

When you run the program, you'll find its operation to be fairly

self-explanatory. The simple BASIC language doesn't protect

against wild keyboard usage - for example, you could ramble

around the screen using cursor movements when you were be

ing asked for an input. But it does sensible things in most cases.

Educational considerations

The program presents states and provinces in 'shuffled* order.

Each run will be different. As written, it will go through the

entire list of 60 provinces and states, but the user may respond

end at any time to terminate the quiz.

A hint is offered to help with a future question. The hint is set

to give the answer to the question that is four items ahead. An

attentive student's short-term memory will usually retain this.

When this leads to a correct answer a little later, the informa

tion is reinforced; better learning takes place.

If the student misses the question, he or she is offered a

multiple choice supplementary question. There are two kinds

of multiple choice; which one the student sees will depend on

the way the question was first answered.

If the student's reponse is wrong, but starts with the correct

letter of the alphabet, the computer will present a list of all

cities starting with that letter. Perhaps it was a spelling mis

take; or, the student may have the right idea but the wrong an

swer. For example: suppose the computer asks for the capital

of Kansas, and the student replies Tulsa. Since the correct an

swer starts with the letter T, the computer will list all cities

starting with T.

On the other hand, if the student's response does not match -

not even the first letter - the computer prepares a different

kind of multiple choice. In this case, exactly six choices are

presented. The computer has quite a search to find 'good'

choices; there may be a short pause here. The choices will in

clude the correct answer, of course, plus another city in the

same state.

Whichever multiple choice method is used, the student is

asked to type in the correct answer rather than a number or let

ter. It's good exercise, and will help the memory process.

If the student's first response to a question is wrong, but names

a valid city known to the computer, the computer will say so.

For example, if a student responds with Tulsa when asked for

the capital of Kansas, the computer will advise that Tulsa is a

city in Oklahoma. The student immediately receives the cor

rect association for the city name.

The DATA List

You can shorten or lengthen the list of data items, up to a

maximum of 99. You can replace it completely with another

set of data, for example, European countries and their capitals.

Data goes from line 100 to line 800; the last line says DATA

END, which signals the computer that there are no more items.

The format of the data statements is easy to follow, but here

are the details. The first item on each line is the state or

province; then the capital city; then another city in that state.

The second city is often chosen because it is large or well-

known, but some, such as Springfield or Salem, might be

picked because of a name that matches a capital city of a dif

ferent state.

46 Transactor

Program Details Linked lists

This program carefully hooks together all cities whose name

starts with the same letter of the alphabet. Thus, capital cities

Phoenix, Providence and Pierre are linked, as are non-capital

cities Pocatello, Philadelphia, and Portland. Using these

iinked lists', the program can rapidly search out multiple-

choice candidates. More detail on linked lists is given below.

To vary the order of questions, a 'shuffle' must take place as

the program starts. Moving strings around is a tedious busi

ness; instead, a table of 'quick pointers', array Q(), is shuffled.

Later, array Q will tell us the order in which each state or

province will be used. You may read the shuffling code in

lines 1100 to 1140. Note that we use random function rnd(0)

once only, to scramble the random sequence; after that, we use

rnd(l) to generate unpredictable values.

The program starts at line 900, where it defines the arrays (ta

bles and lists). Table S$(state,column) gives us the string val

ues for each state: column 0 for the state name, column 1 for

the capital city, and column 2 for the second city. Tables A()

and L() are used to keep the linked lists; more about those in a

moment. And list Q(), as we have mentioned, sets up the order

in which we will ask the questions.

By line 1200, we've completed reading in the data and shuf

fling, and we can start asking questions. If the first answer is

not correct, we'll call the subroutine at 3000 to do our multiple

coice work for us. Line 1500 covers the ending summary.

The subroutine at 2000 offers the multiple choice menu to the

student. The menu has been built in advance. This subroutine

prints it, asks for the answer, and checks to see if the response

is correct.

At 3000 is a subroutine that is used whenever the student has

given a wrong initial answer. It decides which type of multiple

choice question will be appropriate.

The subroutine at 4000 looks through lists of cities - both capi

tals and others. If the student's first response is not the correct

answer, but is a valid city name, that information is printed. This

subroutine also builds a multiple choice table of cities whose

names start with the same letter as the input name. This table

might be used, or it might be replaced by another multiple

choice table; the decision will be made back in subroutine 3000.

Line 5000 contains a brief subroutine to add a city to the mul

tiple choice list. Its main function is to remove duplicate city

names.

At 6000 we have an elaborate subroutine to select multiple

choice candidates. As an example: for state Arizona, where the

capital is Phoenix and the other city is Tucson, the computer

will pick three cities that start with P and three that start with

T; three will be capitals and three not; and of course the list

will include Phoenix and Tucson themselves.

This is a powerful programming method to hook similar items

together. The program uses it to link cities whose names start

with the same letter. That makes searches much faster: for ex

ample, to find all capital cities starting with the letter T, we

don't need to search and compare all 50; instead, we follow

the "T" chain.

Each city has, as part of its data, a pointer or 'link' to the next

city that belongs in the group. At the end of the chain, there

will be a zero pointer to say, "no more". To tell you where the

chain starts, there are a set of starting pointers for each letter.

To find all the capital cities that start with letter T, for exam

ple, we look at the starting pointer for T (that's in array A, row

20 for letter T, column 1 for capital cities). That gives us the

number of the first city in this chain. If it should happen that

there are no cities starting with the selected letter (as is the

case with the letter X, for example), we would get a value of

zero.

To move on to the next city starting with that letter, we look at

the pointer in array L (for "link"). It gives us the number of

the next city, or a zero to signal "no more cities".

How do we build such linked lists? It's not hard. Before we

read our data, we set all the starting pointers to zero. That, of

course, means "no cities in this list" - so far.

When we read in a city, we pick out its first letter. We will go

to the corresponding point in the starting table; in a moment,

we'll put the identity of this new city there. But first, take the

contents of that pointer and move it into the link of the new

city. After that we make the entry in the starting table.

How does this work? If this is the first city beginning with a

given letter, we'll pop its number into the starting table, and

put the zero (from the starting table) into the city's link. Re

sult: this city becomes the first in the linked list, and its link

value of zero says that there are no more cities in the chain.

Just what we want.

If, on the other hand, the new city is not the first that begins

with that letter, our work with the starting table and link will

add this city to the top of the chain. The starting table will now

point at this new city, which in turn will point to the rest of the

chain.

Linked lists are flexible, and may be used to hook together

many type of data. In a genealogical data base, such a list

might be used to build a chain of children in a given family;

using this kind of data relationship means that there would be

no fixed limit to the number of members of the family. In gen

eral data usage, a list of names linked by their first letter, simi

lar to the system we have used here, can be a good way to

search for a specific person; it would often be faster and more

flexible than an alphabetized list search.

Volume 9, Issue 5 47

Conclusion

The program is a good way to test your skills. It may be easily

modified to test other areas of knowledge. It uses valid educa

tional methods to do more than quiz: it hints, it supplies extra

information, and it gives the student more than one try for a

correct answer.

And if you're interested in programming, you'll find a power

ful technique here, linked lists, that can make your programs

more flexible and efficient.

CAPITALS: An educational program that demonstrates use

of linked lists.

AK 100 data California,Sacramento, los angeles

JJ 110 data new york,albany,new york city

LP 120 data texas,austin,houston

N6 130 data Pennsylvania,harrisburg,Philadelphia

JB 140 data illinois,Springfield,Chicago

NO 150 data ohio,columbus,Cleveland

ID 160 data florida,tallahassee,miand

AJ 170 data michigan,lansing,detroit

NN 180 data new jersey,treriton, jersey city

6K 190 data north Carolina,raleigh,charlotte

FO 200 data massachusetts,boston,salem

PN 210 data georgia,atlanta,columbus

GJ 220 data Virginia,richmond,norfoik

KM 230 data indiana,indianapolis,gary

DI 240 data missouri,Jefferson city,saint louis

ED 250 data Wisconsin,madison,milwaukee

ED 260 data tennessee,nashville,memphis

AJ 270 data louisiana,baton rouge,new Orleans

GN 280 data maryland,annapolis,baltimore

CL 290 data Washington,olympia,Seattle

EF 300 data minnesota,saint paul,minneapolis

IE 310 data alabama,nontgomery,birmingham

6L 320 data kentucky,frankfort,louisville

IP 330 data south Carolina,Columbia,Charleston

NH 340 data Oklahoma,Oklahoma city,tulsa

BG 350 data Connecticut,hartford,bridgeport

PK 360 data Colorado,denver,Colorado springs

EH 370 data iowa,des moines,cedar rapids

NE 380 data arizona,phoenix,tucson

JO 390 data Oregon,salem,portland

NA 400 data mississippi,jackson,biloxi

EL 410 data kansas,topeka,kansas city

DP 420 data arkansas,little rock,fort smith

OD 430 data west Virginia,Charleston,huntington

PG 440 data nebraska,lincoln,omaha

GC 450 data utah, salt lake city,ogden

GI 460 data new mexico,santa fe,albuquerque

JK 470 data maine,augusta,portland

EC 480 data hawaii, honolulu,hilo

PL 490 data idaho,boise,pocatello

PF 500 data rhode island,providence,newport

DN 510 data new Hampshire,concord, manchester

FA 520 data nevada, carson city, las vegas

HG 530 data montana,helena,billings

BJ 540 data south dakota,pierre,sioux falls

JA 550 data north dakota,bismark,fargo

FB 560 data delaware,dover,Wilmington

MN 570 data Vermont,montpelier,burlington

KN 580 data Wyoming,cheyenne,casper

NF 590 data alaska,juneau,anchorage

PD 600 data Ontario, toronto,Ottawa

FH 610 data quebec,quebec city,montreal

MN 620 data british Columbia,victoria,Vancouver

PE 630 data alberta,edmonton,calgary

MC 640 data manitoba,Winnipeg,brandon

PH 650 data Saskatchewan,regina,saskatoon

KO 660 data nova scotia,halifax,Sydney

CN 670 data new brunswick,fredericton,saint John

FL 680 data newfoundland,saint John's,gander

BP 690 data prince edward island,charlottetown,summerside

BH 800 data end

GC 900 dim s$(99,2),1(99,2),q(99),a(26,2)

AB 910 dim c(20)

NI 920 j=0:print"please wait for data load"

AI 930 j=j+l

PJ 940 read s$(j,O):if s$(j,0)="end" goto 1040

MI 950 read s$(j,l),s$(j,2)

JH 960 for k=0 to 2

MG 970 a=asc(s$(j,k))-64

KG 980 if a<l or a>26 then print s$(j,k);"?":stop

ML 990 l(j,k)=a(a,k)

FD 1000a(a,k)=j

HN 1010 next k

JK 1020 q(j)=j

PL 1030 goto 930

MF 1040 s9=j-l

FO 1100 j=rnd(0)

EF 1110 for j=l to s9

IC 1120 k=int(rnd(l)*s9)+l

HM U30q=q(k):q(k)=q(j):q(j)=q

GF 1140 next j

PJ 1150 print chr$(147);chr$(142)

OK 1160 print "capital city quiz"

BM 1170 print " jim butterfield"

OK 1200 for j=l to s9

BP 1210 ql=j+4

HD 1220 if ql<s9 then print "hint: capital of ";s$(q(ql),0);" is ";s$(q(ql),l)

AA 1230 print

FP 1240 qO=q(j)

NB 1250 print "what is the capital of ";s$(q0,0);"?"

ID 1260 r$="i":input r$:print chr$(142);:if r$="end" goto 1500

FM 1270 n=0:ml=0

AL 1280 if r$=s$(q0,l) then m=10

IA 1290 r=asc(r$):rO=r-64

KO 1300 if m=0 then gosub 3000

BJ 1310 if kfO then print "no points! answer is ";s$(q0,l)

LB 1320 s=s+m:if m>0 then print "right!";:if m<10 then print " (for part points)";

GH 1330 print:print

PN 1340 s0=s0+10

IA 1350 print "score: ";s;" out of possible ";s0

GF 1360 if j/10=int(j/10) then print "(reply 'end' to quit)"

MD 1370 next j

OG 1380 goto 1510

GB 1500 print "(answer: n;s$(q0,l);")"

GI 1510 print "your score:"

AM 1520 s$=" a very poor":if s0=0 goto 1590

GF 1530 if s/sO>.5 then s$=" a mediocre"

BM 1540 if s/sO>.7 then s$="* a passable"

DI 1550 if s/sO>.8 then s$="** a decent"

PH 1560 if s/sO>.9 then s$="*** a good"

NG 1570 if s/sO>.95 then s$="**** a fantastic"

ED 1580 if s=s0 then s$="***** a perfect"

DP 1590 print s$;s;"out of";s0

AE 1600 end

EG 1999 rem: offer choice menu

MC 2000 ml=l:print:print"the capital of ";s$(q0,0);" is:"

KI 2010 for jl=l to c

ID 2020 k=int(rnd(l)*c)+l

HD 2030 q=c(jl):c(jl)=c(k):c(k)=q

OJ 2040 next jl

CL 2050 for jl=l to c

NF 2060 cO=c(jl):cl=l

BC 2070 if c0<0 then c0=0-c0:cl=2

DO 2080 print " n;s$(c0,cl)

AN 2090 next jl

48 Transactor

";r$;" is a city in ";s$(l,0);"!"

66 2100 print

NI 2110 print "type in the answer, correctly spelled..11

MK 2120 x$="#":input x$:print chr$(142);:if r$="end" goto 1500

AD 2130 if x$=s$(qO,l) then m=mO

IH 2140 return

EE 2999 rem: answer search strategy

AD 3000 rl=asc(s$(q0,l))-64:r2=asc(s$(q0,2))-64

CH 3010 rem: search name for any match

PK 3020 if r0>0 and rO<26 then gosub 4000

16 3030 rem: first letter matches; menu

HE 3040 if m=0 and r0=rl then m0=7:gosub 2000

6K 3050 rem: no luck, try general menu

DB 3060 if m=0 and ml=0 then gosub 6000

KB 3070 return

NO 3999 rem: check for any match, build table

MP 4000 c=0

A6 4010 1=a(r0,l):10=l:ll=l

LK 4020 if 1=0 goto 4070

HB 4030 if r$=s$(l,l) then print r$;" is the capital of ";s$(l,0);"!"
BN 4040 gosub 5000

BO 4050 1=1(1,1)

MN 4060 goto 4020

OL 4070 1=a(rO,2):10=-l:ll=2

PP 4080 if r$=s$(l,2) then print

6A 4090 if 1=0 or c>15 goto 4130

NA 4100 gosub 5000

BC 4110 1=1(1,2)

OB 4120 goto 4080

OD 4130 return

IM 4999 rem: build table of non dup names

F6 5000 if c=0 goto 5050

CE 5010 for jl=l to c

LD 5020 124:if c(jl)<0 then 12=2

HC 5030 if s$(abs(c(jl)),12)=s$(l,ll) goto 5070

6F 5040 next jl

06 5050 c=c+l

LJ 5060 c(c)=1*10

KO 5070 return

LL 5999 rem: build general multiple choice

CB 6000 c=2:c(l)=qO:c(2)=-qO

DD 6010 l=a(rl,l):10=l:ll=l

AI 6020 if 1=0 goto 6060

HJ 6030 gosub 5000

HK 6040 1=1(1,1)

IK 6050 goto 6020

CI 6060 if c=2 then I=int(rnd(l)*s9)+1:gosub 5000:goto6060

NN 6070cl=c(int((c-2)*rnd(l))+3)

6E 6080 c=3:c(3)=d

FK 6090 1=a(rl,2):10=-l:ll=2

KO 6100 if 1=0 or c>15 goto 6140

HO 6110 gosub 5000

LP 6120 1=1(1,2)

KP 6130 goto 6100

PM 6140 if c=3 then I=int(rnd(l)*s9)+1:gosub 5000:goto 6140

CD 6150 cl=c(int((c-3)*rnd(l))+4)

OJ 6160 c=4:c(4)=cl

6N 6170 l=a(r2,l):10=l:ll=l

EC 6180 if 1=0 goto 6220

HD 6190 gosub 5000

HE 6200 1=1(1,1)

CF 6210 goto 6180

MB 6220 if c=4 then I=int(rnd(l)*s9)+1:gosub 5000:goto 6220

HI 6230 cl=c(int((c-4)*rnd(l))+5)

6P 6240 c=5:c(5)=cl

IE 6250 1=a(r2,2):10=-l:ll=2

El 6260 if 1=0 or c>15 goto 6300

HI 6270 gosub 5000

LJ 6280 1=1(1,2)

EK 6290 goto 6260

J6 6300 if c=5 then I=int(rnd(l)*s9)+1:gosub 5000:goto 6300

MN 6310 d=c(int((c-5)*rnd(l))+6)

OE 6320 c=6:c(6)=d

EO 6330 mO=5:gosub 2000

AO 6340 return

New! Improved!

TRANSBASIC 2!
with SYMASS1

□

"I used to be so ashamed of my dull, messy code, but

no matter what I tried I just couldn't get rid of those

stubborn spaghetti stains!" writes Mrs. Jenny R. of

Richmond Hill, Ontario. "Then the Transactor people

asked me to try new TransBASIC 2, with Symass®.

They explained how TransBASIC 2, with its scores of

tiny 'tokens', would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in

giving it a try. Well, all it took was one load and I was

convinced! TransBASIC 2 went to work and got my

code looking clean as new in seconds! Now I'm telling

all my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass, the symbolic assembler.

Package contains all 12 sets of TransBASIC modules

from the magazine, plus full documentation. Make your

BASIC programs run faster and better with over 140

added statement and function keywords.

Disk and Manual $17.95 US, $19.95 Cdn.

(see order card at center and News BRK for more info)

TransBASIC 2

"Cleaner code, load after load!"

Volume 9, Issue 5 49

C Problems, Tips and Observations

Compiler anomalies and drive usage

by Larry Gaynier

I have the C Power compilers for both the C64 and the C128.

Since I first purchased the C Power compiler, I have discov

ered some problems that I will share with you. Overall, I am

favourably impressed by the package. Hopefully, I can help

you avoid future aggravation and wasted effort if you come up

against one of these problems. In this article, I assume Power

C from Spinnaker is identical to C Power from Pro-Line.

Command line arguments (C128 and C64)

Keep these limits in mind when you use command line argu

ments, especially on the C128. The C64 shell supports 22

arguments; argv[0] through argv[21]. I have found this to be

adequate. The C128 shell is more restrictive, supporting only

10 arguments; argv[0] through argv[9]. I find this to be inade

quate and aggravating when using programs that allow lots of

switches and arguments. Exceeding the limit can lock up the

machine, which may not recover after a soft reset (RUN/STOP-

RESTORE).

A compiler bug (C128 and C64)

The C compiler has an elusive bug that was very difficult to

track down. Originally, I noticed inconsistent results in a pro

gram that used the following IF statement:

if ((ptr->c = calloc (10,1)) != 0)

In this example, ptr points to a structure containing c, a point

er to char. The result of the call to CALLOC is assigned to the

structure variable c. The IF statement tests the assignment

result to see if a non-zero pointer address was returned by CAL

LOC. Calloc returns zero if there is not enough free memory

to satisfy the request. In situations where plenty of free

memory was available, my program would randomly behave

as if CALLOC had returned zero. After months of haphazard

research into the problem, I discovered it had something to do

with the indirection operator * (ptr->c is shorthand for

(*ptr).c).

The bug.c program (Listing 1 at the end of this article) demon

strates the basic problem. The key statement in this program is

the multiple assignment. The integer i2 and the integer pointed

to by ip are to be set to the integer il. One would expect il,

*ip and i2 to always be equal. This is based on the conse

quence that the result of any assignment in C has a value that

is available for subsequent use. Here is a sample of the output

from this program:

il = -512

il = -511

il = -510

il = -509

*ip = -512

*ip = -511

*ip = -510

*ip = -509

i2 = 0

i2 = 1

i2 = 2

i2 = 3

il = -258 *ip = -258 i2 = 254

il = -257 *ip = -257 i2 = 255

il = -256 *ip = -256 i2 = 0

il = -255 *ip = -255 i2 = 1

il = -254 *ip = -254 i2 = 2

il = -3

il = -2

il = -1

il = 0

il = 1

il = 2

il = 3

il = 253

il = 254

il = 255

il = 256

il = 257

il = 258

il = 259

il = 510

il = 511

il = 512

*ip = -3

*ip = -2

*ip = -1

*ip = 0

*ip = 1

*ip = 2

*ip = 3

*ip = 253

*ip = 254

*ip = 255

*ip = 256

*ip = 257

*ip = 258

*ip = 259

*ip = 510

*ip = 511

*ip = 512

i2 = 253

i2 = 254

i2 = 255

i2 = 0

i2 = 1

i2 = 2

i2 = 3

i2 = 253

i2 = 254

i2 = 255

i2 = 0

i2 = 1

i2 = 2

i2 = 3

i2 = 254

i2 = 255

i2 = 0

This clearly shows that something is wrong. The only values

that seem to be correct are in the range 0 to 255. All negative

values and values greater 255 produce bad results. The cause

of this bug can be seen when sample code is disassembled.

50
Transactor

main()

int *ip, il, i2;

i2 = *ip = il;

}

This simple example produces the following C128 object code

after compilation:

main

85 fb 00 / 1803 sta $fb

a9 06 00 / 1805 Ida #$06

a2 00 00 / 1807 ldx #$00

aO 00 00 / 1809 ldy #$00

20 20 20 / 180b jsr C$105

a6 04 00 / 180e ldx $04

a4 05 00 / 1810 ldy $05

begin indirect *ip

98 00 00 / 1812 tya

aO 01 00 / 1813 ldy #$01

91 02 00 / 1815 sta ($02),Y

8a 00 00 / 1817 txa

88 00 00 / 1818 dey

91 02 00 / 1819 sta ($02),Y

end indirect *ip

Y incorrectly assumed

to contain the high byte

86 06 00 / 181b stx $06

84 07 00 / 181d sty $07

always zero

a9 06 00 / 181£ Ida #$06

a2 00 00 / 1821 ldx #$00

aO 00 00 / 1823 ldy #$00

4c 4c 4c / 1825 jmp C$106

integer variables. Character variables do not exhibit the prob

lem because the upper byte is naturally zero. Float variables

are handled differently through special subroutines. My earlier

examples can be rewritten to avoid the problem:

i2 *ip = il;

function preparation

get low byte of il

get high byte of il

$02,$03 has address

can be rewritten as:

*ip = il;

i2 = *ip;

and,

if ((ptr->c = calloc (10,1)) != 0)

can be rewritten as:

ptr->c = calloc (10,1);

if (ptr->c != 0)

save high byte indirect PEEK, POKE, SYS (C128 Only)

at this point Y is zero

save low byte indirect

save low byte of i2

save high byte of i2

function wrap-up

The C64 object code is identical except for zero page loca

tions. For integer-type variables, the compiler assumes the

result of any assignment remains available in the X,Y registers

(low byte, high byte). During the indirect assignment through

a pointer, the Y register is used for indirect addressing. But

nothing is done to restore the high byte to the Y register. As a

result, the high byte is always zero.

The compiler should restore the high byte after saving the low

byte. A sample fix is:

iny

Ida ($02),Y

tay

It should be inserted after the second sta ($02),Y instruction.

This fix would make the compiler behave like 'standard' C at

the expense of adding four bytes to all indirect assignments.

I advise you not to use the result of an indirect assignment.

Typically, the offending line must be broken up into separate

statements. The restriction only applies to signed and unsigned

At the heart of the C128 is a powerful bank switching scheme

to select between RAM banks, BASIC ROM, Kernal ROM, and the

I/O registers. Additional capabilities include zero page reloca

tion and sharing common RAM at the top or bottom of the RAM

banks. These features are controlled by the memory manage

ment unit (MMU) with configuration registers located at $D500-

$D50B and $FF00-$FF04. These registers are critical to the cor

rect operation of the C128 and require careful manipulation.

Otherwise, a program may lose control of the machine and

appear to be locked up.

The C environment makes full use of the C128 banking

features. The shell and RAM disk reside in RAM bank 0, while

programs reside and execute from RAM bank 1. The lowest IK

of memory is shared between both banks. During program

execution, the memory page (256 bytes) at $1300 is used as

zero page RAM. The first 32 bytes of automatic variables

declared in a function are placed in the zero page. The true

zero page is switched back as zero page RAM for any calls to

routines that do not reside within the program, such as the

Kernal, BASIC or shell routines. The true zero page contains

many registers needed for calling the Kernal or BASIC routines.

The PEEK, POKE, and SYS functions supplied with the function

library have been appropriately modified for C128 memory

management. However, there is a problem that can be easily

demonstrated by the peektest.c program (Listing 2). This

program peeks a byte from any C128 bank. When run, it pro

duces strange results. You can easily see this if you attempt to

peek locations with known values such as the Kernal jump

table. The problem lies in the PEEK and POKE functions.

But first, some background. The shell and C programs use two

special routines in common RAM to switch control between

C128 banks.

Volume 9, Issue 5 51

The subroutine at $0124 does a JSRFAR to any bank.

ad 00 ff / 0124 Ida $ff00

48 00 00 / 0127 pha save configuration

a9 00 00 / 0128 Ida #$00

8d 00 ff / 012a sta $ff00 set bank 15

20 6e ff / 012d jsr $ff6e JSRFAR

68 00 00 / 0130 pla

8d 00 ff / 0131 sta $ff00 restore configuration

60 00 00 / 0134 rts

The zero page registers $02-$08 must be set up according to

JSRFAR preparation before the call to $0124.

The subroutine at $0135 stores a value to a configuration register.

a8 00 00 / 0135 tay

ad 00 ff / 0136 Ida $ff00

48 00 00 / 0139 pha

a9 00 00 / 013a Ida #$00

8d 00 ff / 013c sta $ff00

98 00 00 / 013f tya

9d 00 d5 / 0140 sta $d500,X

68 00 00 / 0143 pla

8d 00 ff / 0144 sta $ff00

60 00 00 / 0147 rts

save configuration

set bank 15

set config register

restore configuration

a = configuration value to store

x = offset from $D500, which determines the

configuration register to be updated,

y = used internally by the $0135 routine.

The basic procedure to execute a routine in another bank is:

1) Switch zero page back to $0000 using the $0135 routine.

2) Set up registers $02-$08 for the Kernal routine JSRFAR.

3) Call $0124 in common RAM which calls JSRFAR.

4) Capture results from registers $02-$08 as appropriate.

5) Switch the zero page to $1300 using the $0135 routine.

The problem in the peek and poke functions is that they fail to

set up the X register before the call to $0135. The net result is

that zero page does not get properly swapped. If a function

invokes PEEK or POKE, the first six bytes of variables declared

within the function will be corrupted because the zero page

locations $02-$08 are overwritten during the setup and execu

tion of JSRFAR. The program POKE.A (Listing 3) contains the

updated source code for the PEEK and POKE functions. Old and

new code is highlighted.

The SYS function does not exhibit the zero page swapping

problem like PEEK and POKE. However, SYS does directly

manipulate the configuration registers. One problem of direct

manipulation of the configuration registers is that an executing

program may be switched out and lose control. Since I prefer

robust and consistent designs, I modified SYS to eliminate all

direct manipulation of the configuration register, making it

behave like PEEK and POKE. The program SYS.A (Listing 4)

contains the updated source code for the SYS function. Old and

new code is indicated.

Peek.a and SYS.A can be assembled using any assembler that

produces compatible C object. Alternatively, BASIC generator

programs (Listings 5 and 6) have been supplied to create the

object files for peek, POKE and SYS using DATA statements.

Delete the original object files PEEK.OBJ and SYS.OBJ on your

function library disk and replace them with the updated object

files. Make sure the new object files use the same file names

as the originals. Otherwise, you will need to use a object

library editor to change the file names in the object libraries.

As a precaution, use a backup copy for this and save the origi

nal function library disk.

A painful experience (C128 only)

I never paid much attention to magazine descriptions of 1571

disk drive problems. The information always seemed too

vague to apply to me. I assume the problem that I painfully

discovered came as a result of one of the 1571 bugs. It

strongly reinforced my habit of doing periodic back-ups and

organizing disks to minimize my reliance on any one disk.

When I first obtained the C Power compiler for my C128, I

configured my C environment using two 1571 disk drives as

follows:

1) Work drive 0 was set to disk unit 9 and held the floppy

disk containing programs under development.

2) System drive 1 was set to the RAM disk unit 7. As part of

my startup procedure, I copied the compiler, editor and various

utilities to the RAM disk, as much as would fit. Then I would

switch the system drive 1 between the RAM disk and disk unit

8 depending upon what utility I needed.

With this approach, editing and compiling were done to and

from disk. I adopted this configuration because it was the

fastest way to load the compiler, about two seconds. C128

compile time basically amounted to reading the source pro

gram from disk and writing back the object. These delays

could be substantial when you consider the writing speed of

1571 is identical to the 1541. But I had been conditioned by

the slow loading time of the C64 version of the compiler oper

ating from a 1541 disk drive. I operated comfortably in this

mode for about six months before I encountered the problem.

The problem occurs when the disk block total crosses the side

1 to side 2 boundary. The compiler can go into an infinite

loop, eating up disk space, and corrupting the source file and

possibly other files. When the problem occurred, I had to reset

the computer, leaving the disk corrupt. After validating the

disk, I found two 'splat' files tempxxxi and TEMPXXX2. I

52 Transactor

assume the TEMPXXX files were written by the compiler. In work drive 0 followed by system drive 1, unless the drive

addition, the source file was completely corrupted. number is explicitly given in the file name. The basic proce

I saw similar problems when a C program was executing

under the following conditions:

1) The disk block total was at or near to the side 1 to side 2

boundary.

2) The error channel was open.

3) Two files were opened byfopen.

4) Command line I/O redirection sent the standard output to a

disk file.

Notice the total is three open files plus the error channel on

one disk drive, which is the limit according to the 1571 User's

Guide. Although I do not have the details, I recall that one of

the 1571 bugs is related to the side 1 to side 2 transition.

[Bugs corrected by the new 1571 ROM are documented in the

C128 Developer's Packagefrom Commodore. - Ed.]

After further investigation, I concluded that the problem never

occurs with anything less than three open files. Any program

using two open files or less plus the error channel appears to

operate correctly across the side 1 to side 2 boundary. The C

compiler may have produced the same situation with the error

channel plus three open files: tempxxxi, TEMPXXX2, and

either the source file or the object file.

Working around the bug

I considered many alternatives to avoid this problem. One

solution was to keep disk space low to prevent crossing the

side 1 to side 2 boundary. However, this defeated the advan

tage of a double-sided disk drive.

The approach I eventually took was to avoid all disk drive sit

uations that would have three open files plus the error channel.

I did this by making better use of the RAM disk.

After some experimenting, I finally configured my C environ

ment as follows:

1) Work drive 0 is set to the RAM disk unit 7 and holds the

programs under development.

2) System drive 1 is set to the disk unit 8 and holds the floppy

disk containing the compiler, editor and various utilities.

3) Drive 2 is set to the disk unit 9 and holds the floppy disk

containing programs under development.

With this approach, editing and compiling are done to and

from the RAM disk. The procedure is simple and quick. Keep

in mind that the normal search order for programs and files is

dure is:

1) Set up the RAM disk configuration using the commands

rdon, setu 0 7 0 and setu 2 9 0.

2) Copy the appropriate files from drive 2 (floppy) to drive 0

(RAM) using the command cp 2:file 0. Be sure to copy any

header files needed by the source files.

3) Edit the files using the command ed file. You can even pull

files directly into the editor from drive 2 (floppy) using the

command ed 2:file or using the command get 2:file from

within the editor. The editor command put file writes the

file back to drive 0 (RAM). Similarly, the command put

2:file writes the file directly back to drive 2 (floppy).

4) Compile the file from drive 0 (RAM) using the command

cc file. The object file will be written to drive 0 (RAM).

5) When finished, delete the old copies from drive 2 using the

command rm 2:file. Then, copy the updated files from

drive 0 (RAM) back to drive 2 (floppy) using the command

cp 0:file 2. Wildcard characters in the file name are very

useful here. Be careful! It is very easy to lose hours of work

during this step.

This configuration is quite fast. I/O to the RAM disk is done at

blinding speeds by 1541 standards. Any delays come from

loading the editor, compiler or other utilities. However, I con

sider these delays to be minor since the programs are loaded in

1571 burst mode. For example, the compiler takes about 10

seconds to load and the translator for the compiler takes about

5 seconds.

Important: Don't forget to copy files back to drive 2 (floppy)

when your work is complete. All changes made to files resid

ing in drive 0 (RAM) will be lost when the power is turned off.

Listing 1: bug.c

/*
** bug.c
**

** demonstrate C compiler bug

**

** Larry J. Gaynier

** June 25, 1988

*/

main()

{

int *ip, iO, il, i2;

ip = SiO;

for (il = -512; il <= 512;

i2 = *ip = il;

printf {"il = %d *ip = %d i2 = %d\n", il, *ip,

Volume 9, Issue 5 53

Listing 2: peektestc

/*
** peek an address from a C128 bank

**

** Larry J. Gaynier

** June 25, 1988

*/

main (argc, argv)

unsigned argc;

char **argv;

unsigned bank, address;

char byte, peek();

if (argc == 3)

sscanf (*++argv, "%x", fibank);

sscanf (*++argv, "%x", fiaddress);

byte = peek (bank, address);

printf ("bank = %02x address = %04x byte = %02x\n"

,bank, address, byte);

else

prusage();

exit();

}

prusage()

printf ("usage: peektest bank address\n");

Listing 3: peek.a - revised source for peek.o

;modified to correct zero paging

;added ldx #$07 before every jsr $0135

;Larry Gaynier

;March 10,1987

.def peek, poke

.ref c$functj.nit

peek

jsr c$funct init

stx $a0

txa

pha

Ida #$00

;— new old ■

ldx #$07

;— end end

jsr $0135

pla

tax

Ida $0402,X

sta $fc

Ida $0403,X

sta $fd

Ida #$0f

sta $02

Ida #$ff

sta $03

Ida #$74

sta $04

php

pla

sta $05

Ida #$fc

sta $06

Ida $0400,X

sta $07

Ida #$00

sta $08

jsr $0124

Ida $06

pha

Ida #$13

;— new old ■

ldx #$07

;— end end

jsr $0135

pla

ldx $a0

sta $0400,X

Ida #$00

sta $0401,X

rts

poke

jsr c$funct init

stx $a0

txa

pha

Ida #$00

;— new old •

ldx #$07

;— end end ■

jsr $0135

pla

tax

Ida $0402,X

sta $fc

Ida $0403,X

sta $fd

Ida #$fc

sta $02b9

Ida #$0f

sta $02

Ida #$ff

sta $03

Ida #$77

sta $04

php

pla

sta $05

Ida $0404,X

sta $06

Ida $0400,X

sta $07

Ida #$00

sta $08

jsr $0124

Ida #$13

;— new old •

ldx #$07

;— end end •

jmp $0135

Listing 4: sys.a - revised source for sys.o

;modified to use $0135 routine like peek and poke

;eliminated resetting the configuration register

;no need to enable the kernal and i/o

;handled by the $0135 routine

;Larry Gaynier

;March 14, 1987

.def sys

.ref c$funct init

54 Transactor

sys

jsr c$funct_init

stx $aO

Ida $0404,X

sta $a2

Ida $0405,X

sta $a3

Ida $0406,X

sta $a4

Ida $0407,X

sta $a5

Ida $0408,X

sta $a6

Ida $0409,X

sta $a7

ldy #$00

Ida ($a2),Y

pha

Ida ($a4),Y

pha

Ida ($a6),Y

pha

;-- new

txa

pha

Ida #$00

ldx #$07

jsr $0135

pla

tax

;-- end

Ida $0400,X

sta $02

Ida $0403,X

sta $03

Ida $0402,X

sta $04

pla

sta $08

pla

sta $07

pla

sta $06

php

pla

sta $05

jsr $0124

Ida $05

pha

Ida $06

pha

Ida $07

pha

Ida $08

pha

Ida #$13

;— new

ldx #$07

jsr $0135

,— end

ldy #$00

pla

sta ($a6),Y

pla

sta

pla

sta ($a2),

pip

Ida #$00

bcc skip

Ida #$01

— old —

Ida #$4e

sta $££00

Ida #$00

sta $d507

— old —

sta $D507

Ida #$7F

sta $££00

— end —

($a4),Y

skip

ldx $a0

sta $0400,X

Ida #$00

sta $0401,X

rts

Listing 5: peek.gen - a BASIC generator for peek.o

BN 100 rem generator for "peek.o"

JN 110 n$="peek.o": rem name of program

DC 120 nd=209: sa=151: ch=15837

(For lines 130-260, see the standard generator on page 5.)

FD 1000

BP 1010

HD 1020

MK 1030

HB 1040

FD 1050

CP 1060

EN 1070

JD 1080

KL 1090

JJ 1100

FF 1110

LJ 1120

JL 1130

El 1140

GJ 1150

CK 1160

HL 1170

CN 1180

KN 1190

GO 1200

PM 1210

DM 1220

EN 1230

CM 1240

JM 1250

CI 1260

data 32, 0,

data 0, 162,

data 189, 2,

data 133, 253,

data 133, 3,

data 133, 5,

data 4, 133,

data 36, 1,

7, 32,

0, 4,

data

data

data 32, 0,

data 0, 162,

data 189, 2,

data 133, 253,

data 15, 133,

data 119, 133,

data 4, 4,

data 7, 169,

data 169,

0,

1,

1,

data

data

data

data 85,

data 84,

data 70,

data 73,

data 0

19,

2,

0,

80,

78,

0,

85,

84,

0,

7,

4,

169,

169,

169,

7,

165,

53,

169,

0,

7,

4,

169,

2,

4,

133,

0,

162,

0,

0,

0,

67,

0,

78,

0,

134, 160, 138,

32, 53, 1,

133, 252, 189,

15, 133, 2,

116, 133, 4,

252, 133, 6,

169, 0, 133,

6, 72, 169,

1, 104, 166,

0, 157, 1,

134, 160, 138,

32, 53, 1,

133, 252, 189,

252, 141, 185,

169, 255, 133,

8, 104, 133,

6, 189, 0,

133, 8, 32,

7, 76, 53,

80, 69, 69,

80, 79, 75,

2, 0, 67,

84, 164, 73,

0, 0, 0,

67, 84, 164,

0, 0, 80,

72, 169

104, 170

3, 4

169, 255

8, 104

189, 0

8, 32

19, 162

160, 157

4, 96

72, 169

104, 170

3, 4

2, 169

3, 169

5, 189

4, 133

36,

1,

75,

69,

36, 70

78, 73

67, 36

73, 78

0, 0

Listing 6: sys.gen - a BASIC generator for sys.o

JM 100 rem generator for "sys.o"

GH 110 n$="sys.o": rem name of program

PA 120 nd=168: sa=136: ch=13130

(For lines 130-260, see the standard generator on page 5.)

IA 1000

CE 1010

ID 1020

OH 1030

JP 1040

DA 1050

IC 1060

KF 1070

BF 1080

GC 1090

EF 1100

FI 1110

CG 1120

AH 1130

EH 1140

OH 1150

AA 1160

IH 1170

NF 1180

FK 1190

KC 1200

data 32, 0,

data 133, 162,

data 6, 4,

data 165, 189,

data 4, 133,

data 177, 164,

data 169, 0,

data 170, 189,

data 4, 133,

data 104, 133,

data 6, 8,

data 165, 5,

data 72, 165,

data 32, 53,

data 104, 145,

data 0, 144,

data 0, 4,

data 0,

data 1,

data 85,

data 84,

0,

0,

78,

0,

0,

189,

133,

8,

167,

72,

162,

0,

3,

8,

104,

72,

8,

1,

164,

2,

169,

1,

0,

67,

0,

134, 160,

5, 4,

164, 189,

4, 133,

160, 0,

177, 166,

7, 32,

4, 133,

189, 2,

104, 133,

133, 5,

165, 6,

72, 169,

160, 0,

104, 145,

169, 1,

0, 157,

0, 83,

1, 0,

84, 164,

0, 0,

189, 4, 4

133, 163, 189

7, 4, 133

166, 189, 9

177, 162, 72

72, 138, 72

53, 1, 104

2, 189, 3

4, 133, 4

7, 104, 133

32, 36, 1

72, 165, 7

19, 162, 7

104, 145, 166

162, 40, 169

166, 160, 157

1, 4, 96

89, 83, 0

67, 36, 70

73, 78, 73

0, 0, 0 □

Volume 9, Issue 5 55

Programming GEOS Icons

Some tricksfor using more than 31 icons

by James Cook

One of the most fundamental user interface tools in the GEOS

operating system is the icon. An icon is a graphic image on the

monitor that causes a program routine to be called when the

user clicks the mouse pointer over it. Icons, along with the

mouse and pulldown menus, allow the user to operate the

computer in a comfortable, easy to grasp way. Loading and

running a program is as simple as moving the pointer over the

file icon on the DeskTop and double-clicking. The user does

not need to remember and type complicated, often confusing

commands.

GEOS-specific application programs make extensive use of the

GEOS Kernal, which is loaded from the boot disk and consists

of a large number of service routines. These service routines

take care of most of the common needs of an application such

as disk and file handling, graphic manipulation, the user inter

face, etc. The memory-resident routines wait patiently for a

user event to occur, such as clicking on an icon, before swing

ing into action. The GEOS programmer can freely use these

routines in any GEOS application.

Suprisingly, as important as icons are to GEOS, there is only

one icon-specific routine, Dolcons. This single routine, how

ever, packs a lot of punch. All of the file and disk icons on the

DeskTop use it. All of the tool routines in geoPaint are called

by it. So important is this routine that Berkeley Softworks'

Official GEOS Programmers Reference Guide warns that GEOS

assumes an application will always have at least one icon.

Since most applications depend heavily on the use of icons, it

is worth an in-depth look at how to use them in your own pro

grams.

The Dolcons routine is almost always a part of an applica

tion's initialization sequence. This sequence calls a number of

GEOS graphics and menu routines to create the user interface

screen. These routines, as well as most of the other available

service routines, are accessed by a JSR to an entry in a jump

table. The jump table contains the actual address in memory of

the routine the programmer wishes to access. While different

versions of GEOS may locate the service routines at different

addresses, the jump table remains the same between versions.

Since GEOS has been frequently updated, the jump table pro

vides a stable path to the routine. The GEOS jump table address

for Dolcons is $C15A.

When Dolcons is called, the GEOS Kernal expects the two-byte

.word following the JSR in memory to contain the pointer to

the icon table. The icon table tells GEOS how many icons are

required, their location on the screen, their size, the location of

the compacted bit-map image for each icon, the service routine

to call after the icon is selected, and the position to place the

mouse pointer after the icons are drawn. Here is an example

of Dolcons and the icon table:

;Icon table example

JSR Dolcons ;Call the icon routine,

.word IconTable /Pointer to the icon table.

IconTable: ;Here is the icon table.

;8 icons on the screen.

;The mouse to be in the center of

/screen after icons are drawn.

/Pointer to bit-map for icon #1.

;X Position of the icon in bytes.

;Y Position of the icon in pixels.

/Width of icon in bytes.

/Height of icon in pixels.

/Pointer to service routine for #1.

/Pointer to bit-map for icon #2.

;X Position of the second icon.

;Y Position of the second icon.

/Width of icon in bytes.

/Height of icon in pixels.

/Pointer to service routine for #2.

/6 more icon entries.

Let's take a closer look at the icon table. As noted, every appli

cation must have at least one icon so there will always be at

least one call to Dolcons and an icon table in every applica

tion. The minimum number in the first entry of the icon table,

therefore, is 1. The maximum number of active icons possible

on the screen is 31.

You may call Dolcons several times in an application, but only

the most recently called group of icons will be active. GEOS will

not erase the previously drawn icon graphics from the screen.

You may re-call a Dolcons and reactivate its group of icons if

you wish. If the icons have not been written over or erased, the

user will not detect that they have actually been redrawn.

.byte

.word

.byte

.word

.byte

.byte

.byte

.byte

.word

.word

.byte

.byte

.byte

.byte

.word

8

160

100

IconPicl

10

10

2

10

Dolconl

IconPic2

12

10

2

10

Dolcon2

56 Transactor

The next two entries allow you to place the mouse pointer

anywhere on the screen after the icons are drawn. Following

these three pieces of information, Dolcons expects six data

items for each icon.

Icon image and position data

The first .word contains the pointer for the bit-map data of the

icon image itself. At the memory location indicated by the

pointer, you must have the bit-map image coded using GEOS'

compaction rules. If you are using GeoProgrammer you need

only paste the photo scrap image of the icon into your source

file. This makes it easy to use the graphic tools in GeoPaint to

create just about any image you like without having to worry

about the rather complicated compaction techniques.

Be sure you carefully follow the instructions in the GeoPro

grammer manual. Otherwise, you'll have to break the image

down manually according to the compaction formats described

on page 89-90 of the Official GEOS Programmers Reference

Guide.

The next two .bytes are used to locate the icon on the screen.

Note that the horizontal position of the icon is restricted to

every even byte. This means that you'll only be able to locate

your icons to 40 different positions horizontally. This may be

an important constraint in some applications. The vertical

position of the icon can be on any of the 200 scan lines

available.

The fifth and sixth bytes describe the size of icon. The fifth

byte tells GEOS the width of the icon and byte six is the height

in scanlines. As with the position of the icon, the size of the

icon horizontally is a minimum of eight pixels. The minimum

icon height is one scan line. The maximum icon size is eight

bytes wide and 32 scanlines high. This means that you can

almost completely cover the screen with adjacent icons.

Calling service routines

The final icon entry in the icon table is the .word pointer to

the service routine to call when the icon is activated. The ser

vice routine can do almost anything but it should usually end

with a JSR so that control is returned to the Dolcons routine.

Of course, if you needed to, you could activate an icon which

called a new Dolcons; thereby modifying, or completely re

doing, the icon table.

This is probably what happens, for instance, when you click on

the pattern change box in the lower left corner of the GeoPaint

screen. A new Dolcons is called that uses a different icon table

for the pattern icons. After a pattern is selected the original

Dolcons is called to reactivate the toolbox. Remember, all pre

viously drawn icon images will remain intact when a new

Dolcons is called unless the icon table used rewrites them.

Icon tricks

Here is one easy way to accomplish this that I have used in my

own programs. Remember that after clicking on the tool to

change the pattern or after selecting the change brush menu

item, the mouse is constrained to an area in the lower edge of

the screen that is completely filled with adjacent icons. This is

the key! Because the mouse is restricted to the selection area,

you are forced to make a decision before the mouse can move

out of the area. This means that one of the pattern or brush

icons doesn't really have to be an icon.

Whenever the mouse button is clicked and the pointer is not

over an icon or menu item, GEOS automatically calls a routine

pointed to by otherPressVector. The routine called by other-

PressVector is defined by the applications programmer. Upon

system initialization, GEOS loads a 0 into this address and if

such an event is needed it is up to the programmer to load the

address of the location of the routine. It would be a relatively

simple matter to write a routine pointed to by otherPressVector

that would detect and react accordingly to the mouse button

being pressed over the one pattern or brush icon that isn't real

ly in the Dolcons table.

Although most applications will seldom need more than 31

icons active at one time, GEOS provides yet another way to

include a few more. The routine IsMselnRegion tests if the

pointer is inside a rectangular area of any size that you define.

With this routine you're not restricted to even byte horizontal

position or width. You load the vertical size and position of the

region in r2 and the horizontal size and position in r3 and r4

prior to calling the routine. If the pointer is inside the region

when this routine is called, the accumulator will signal TRUE (-

1) otherwise the accumulator will be FALSE (0). Call this routine

in your otherPress routine, branch on the accumulator being

true and you have your own, custom, 'Dolcons' routine!

Remember the warning to always include an icon in your pro

gram? If you decide that an icon is simply not needed in your

application, be sure to place an 'invisible' icon in it anyway.

Simply use the following icon table:

/Here is the mandatory 'invisible' icon routine

JSR Dolcons /Always at least one Dolcons . .

.word DummyIcon /Pointer to the dummy icon table.

Dummylcon: /Start of the dummy icon table,

.byte 1 /Here's the single icon,

.word 160 /wherever you want the mouse to

.byte 100 /be after this routine is finished,

.word IconPic /Pointer to an empty address,

.byte 0 /Place the blank icon in the upper

.byte 0 /left corner of the screen,

.word NextAddress /Pointer to the next section.

NextAddress:

/The rest of your code follows.

"Whoa, wait a second! If only 31 icons are allowed how come

there are 32 pattern icons in GeoPaintl"

What are some other ways icons are used? How about the icon

used to position the GeoWrite window on a particular section

Volume 9, Issue 5 57

of a page? When the user clicks on this icon the service rou

tine called probably creates a sprite with the cursor-box as its

graphic data and forces it to follow the vertical position of the

mouse. The mouse is constrained to moving up and down only

within the limits of the box that represents the page. When the

mouse is clicked again, the sprite is disabled and the new posi

tion of the window on the page is calculated and the screen

moved to the proper location.

There are all kinds of interesting ways to use GEOS routines

and this one in particular. Even if you've never given assem

bly language a try before, GEOS makes the struggle to learn it a

lot easier. With the many, many service routines GEOS pro

vides, you don't need to worry about the messy, difficult

aspects of developing the user interface. You need only worry

about exactly what the called service routine is going to do

when its icon is clicked on.

Even if you already have a good 6502 assembler, I recommend

buying Berkeley Softworks' GeoProgrammer. Its strong points

are the sample applications they have included, the ease with

which you can include graphic images without having to break

them down into their compacted hexadecimal equivalents and

the ability to directly create the special GEOS file header. Geo-

Programmer produces relocatable code so it also includes a

linker. And, since programs seldom run right the first time,

Berkeley Softworks provides a memory resident debugger.

While my experiences with GeoProgrammer's Assembler and

Linker have been very positive, I'm afraid I can't say the same

about the Debugger. Since memory on the 64 is limited, a

mini-debugger is provided that can be loaded into the directly

accessed system memory or there is a super-debugger that can

be loaded into a RAM expansion unit. The super-debugger is

much more powerful but, if you don't have access to an REU

you can't use it.

My experience with the mini-debugger has been very frustrat

ing. Even when following the documentation examples word-

for-word, the mini-debugger would frequently lock the system

up. I recommend avoiding the mini-debugger and buying or

borrowing an REU if you can.

If you are going to be using GeoProgrammer, be aware that it

does not include an editor with which to actually create your

source file. I recommend using one of the more powerful versions

of GeoWrite as your editor. While GeoProgrammer will not work

with GEOS 128 [See "Inside GEOS 128" in this issue. - MO], you

can still create GEOS 128 programs. I use Writer's Workshop 128

for editing. Besides the search and replace functions which are

very useful in long listings, the 80-column screen and faster speed

are great time savers. When you are finished editing, simply copy

your source file to the assembler disk and re-boot your 128 in 64

mode with GEOS 64.

GeoProgrammer is not the only way to go however. I (and

many other programmers) have successfully used Commodore's

own Macro Assembler Development System, amoung other

assemblers. Only Berkeley's is designed specifically for GEOS

applications, however. The other C64 assembler systems will

require a lot more work in developing application software.

No matter what assembler you use you'll need a copy of the

Official GEOS Programmers Guide published by Bantam.

Since Berkeley Softworks is completely revising this guide, if

you don't already have a copy, try to borrow one. Even if you

have GeoProgrammer and its sample applications, try creating

your own. Ideas for programs using icons are literally every

where. Look how they are used to call GeoPaint tools, pat

terns, brush patterns, colors, etc.

Applications can use icons in very unusual ways. The assem

bler source listing that follows, for instance, uses icons as

piano keys. When the mouse pointer is positioned over a key

icon and the button pressed, the corresponding note will play.

If you're interested, this keyboard could easily be expanded to

include changing the waveform, volume, envelope, etc. Devel

op your own mouse-driven synthesizer!

I've also included the GeoProgrammer linker and header list

ings. Note that the icon I used in the geoKeyboard.hdr file can

be substituted by the sample sequential program icon included

with GeoProgrammer. You can then use an icon editor to edit

the icon anyway you wish. If you're not going to be using

GeoProgrammer, the listings may have to be edited to suit

your own assembler. [DeskTop icons are three bytes wide and

21 scanlines high. If you're using a different assembler you

can create the icon with a sprite editor and insert the data into

your source as .byte statements. - MO]

I hope you'll now have a better understanding of how to use

GEOS icons and will enjoy GeoKeyboard. If you've never tried

assembly programming before get started! Even if you have

worked with in assembly language but are unsure of how to

use the routines provided in the GEOS kernal, give it a try.

Don't be afraid to experiment with your own ideas. Patience

and imagination are important in developing any application.

Getting started is always the hardest part!

**

geoKeybrdfldr

Copyright 1989 By Jim Cook

**

.if Passl

.include geosSym

.endif

.header

.word 0

.byte 3

.byte 21

;the DeskTop icon.

/Include geosSym during assembler's

;lst pass through the header file.

;End the 'IF' clause.

;Flag the start of header section.

;The first two bytes are always 0.

;Width in bytes . . .

;. . .and height in scanlines of:

58 Transactor

.byte $80 | USR

.byte APPLICATION

.byte SEQUENTIAL

.word $400

.word $3ff

.word $400

.byte "geoKeyboard VI,

.byte "James E. Cook,

.endh

;CBM file type, with bit 7 set.

;Geos program type.

;Geos file structure type.

;Load program at this address.

;End address for desk accessories.

/Start program execution here.

0,0,0,$00 ;20 characters for filename.

",0 ;20 characters for author's name.

;End of header block.

geoKeyboard

Copyright 1989 By Jim Cook

.include geosSym

.include geosMac

vlfreqlo

vlfreqhi

vlpwlo

vlpwhi

vlcntrl

vlattdec

vlsusrel

modevol

cialpra

cialprb

.psect

jsr

jsr

jsr

jsr

Ida

jsr

jsr

.byte

.byte

.word

.word

LoadW

jsr

Ida

LoadW

jsr

rts

MAIN TOP

main"bot
main"lft
main"rt
Y POS TOP

xjosjtop

Keyboard:

.byte

.word

.byte

C4

= $D400

= $D401

= $D402

= $D403

= $D404

= $D405

= $D406

= $D418

= $DC00

= $DC01

NewDisk

MouseUp

ClearSIDRegisters

LoadSIDRegisters

#02

SetPattern

i Rectangle

0"
199

0

319

rO,Keyboard

Dolcons

to

r0,GeosMenu

DoMenu

= 0

= 15

= 0

= 29

ICON = 24

"ICON = 5

25

160

100

natural

.word Natural

.byte

.byte

.byte

.word

C4

.word

X POS TOP ICON

Y~POS~TOP"lCON+32
27 32"
DoCN4

sharp

Sharp

;These files need to be included when assem

bling, provided with GeoProgrammer package.

;These global variables were left out of the

/geoSym file. If you're planning on expanding

;on this program you should include all of the

;SID and CIA registers in an .include file

;called geosIO.

/Signal the start of the program.

/NewDisk is needed for early versions of 6E0S.

/Activate and display the mouse pointer.

/Clear any left over data in SID registers.

/Load SID registers for voice one only.

/Clear the screen and set up the background.

/Address of icon data table.

/Display the icons and activate them.

/Put mouse on geos menu item.

/Put the address of the menu table in rO.

/Display menu to quit and return to DeskTop.

/Some constants for the menu structure.

/Some constants for the icon structure.

/This is the start of the icon data table.

;Number of icons.

;x position of mouse after icons are drawn.

;y position of mouse after icons are drawn.

/graphic data for the natural or white keys.

;X position of the upper left corner.

;Y position of the upper left corner,

/width in bytes and height in scanlines.

/routine to play C natural, fourth octave.

/Graphic data for the sharp or black keys.

.byte X POS TOP ICON+1

.byte Y~POS~TOP~ICON

.byte 27 32"

.word DoCS4

D4 natural

.word Natural

.byte X POS TOP ICON+2

.byte Y"POS"TOP"lCON+32

.byte 27 32"

.word DoDN4

D4 sharp

.word Sharp

.byte X POS TOP ICON+3

.byte Y~POS"TOP"lCON

.byte 27 32"

.word DoDS4

E4 natural

.word Natural

.byte X POS TOP ICON+4

.byte Y"POS"TOP"lCON+32

.byte 27 32"

.word DoEN4

F4 natural

.word Natural

.byte X POS TOP ICON+6

.byte Y"POS"TOP"lCON+32

.byte 27 32"

.word DoFN4

F4 sharp

.word Sharp

.byte X POS TOP ICON+7

.byte Y"POS"TOP"lCON

.byte 27 32"

.word DoFS4

64 natural

.word Natural

.byte X POS TOP ICON+8

.byte Y"POS~TOP"lCON+32

.byte 27 32"

.word DoGN4

G4 sharp

.word Sharp

.byte X POS TOP ICON+9

.byte Y"POS~TOP"lCON

.byte 27 32"

.word DoGS4;

A4 natural

.word Natural

.byte X POS TOP ICON+10

.byte Y~POS"TOP"lCON+32

.byte 27 32"

.word DoAN4

A4 sharp

.word Sharp

.byte X POS TOP ICON+11

.byte Y~POS"TOP""lCON

.byte 27 32"

.word DoAS4

B4 natural

.word Natural

.byte X POS TOP ICON+12

.byte Y"POS"TOP"lCON+32

.byte 27 32"

.word DoBN4

C5 natural

.word Natural

.byte X POS TOPJCON+14

.byte Y~POS~TOP ICON+32

.byte 27 32"

.word DoCN5

C5 sharp

.word Sharp

.byte X_POS_TOPJCON+15

.byte Y"POS"TOP"ICON

.byte 27 32~

.word DoCS5

D5 natural

.word Natural

.byte X_POS_TOP_ICON+16

.byte Y"P0S~T0P"lC0N+32

.byte 27 32"

.word DoDN5

D5 sharp

.word Sharp

.byte X_POS_TOP_ICON+17

.byte Y~POS~TOP~ICON

.byte 27 32"

.word DoDS5

E5 natural

.word Natural

.byte X_POSJTOP_ICON+18

.byte Y~POS~TOP~ICON+32

.byte 27 32"

.word DoEN5

F5 natural

.word Natural

.byte X_POSJTOP_ICON+20

.byte Y~POS~TOP~ICON+32

.byte 27 32"

.word DoFN5

F5 sharp

.word Sharp

.byte XJPOSJTOPJCON+21

.byte Y"POS"TOP"ICON

.byte 27 32"

.word DoFS5

G5 natural

.word Natural

.byte X POS TOP ICON+22

.byte Y"POS~TOP"lCON+32

.byte 27 32"

.word DoGN5

G5 sharp

.word Sharp

.byte X POS TOP ICON+23

.byte Y"POS"TOP"ICON

.byte 27 32"

.word DoGS5

A5 natural

.word Natural

.byte XJOSJTOPJCON+24

.byte Y"P0S"T0P"lC0N+32

.byte 27 32"

.word DoAN5

A5 sharp

.word Sharp

.byte X_POSJTOP_ICON+25

.byte Y"POS"TOP~ICON

.byte 27 32~

.word DoAS5

B5 natural

.word Natural

.byte X POS TOP ICON+26

.byte Y"P0S~T0P"lC0N+32

.byte 27 32"

.word DoBN5

C6 natural

.word Natural

.byte X POS TOP ICON+28

.byte Y"POS"TOP"lCON+32

.byte 27 32"

Volume 9, Issue 5 59

.word D0CN6

GeosMenu:

.byte MAINJFOP

.byte MAINJOT

.word MAINJLFT

.word MAIN~RT

.byte HORIZONTALI1

.word GeosText

.byte SUBJENU

.word QuitMenu

GeosText:

.byte "geos",0

QuitMenu:

.byte MAINJOT

.byte MAINJOT+15

.word MAINJLFT

.word MAINJT

.byte VERTICAL11

.word QuitText

.byte MENU_ACTION

.word Quit"

QuitText:

.byte "quit",0

;The end of the icon data table.;

;Menu table to quit the program.

;Put menu box in upper left corner.

;Only one menu box displayed horizontally.

/Location of text for menu box.

/Clicking on box will display a sub menu.

/Location of sub menu routine.

/Here is the text for the box ...

/The sub menu routine to quit.

/open the menu directly below the main menu.

/Only one sub item, opened vertically.

/Location of text for sub item.

/Clicking on this calls EnterDeskTop . . .

/. . .routine that is located here.

/Here is the text for the sub item box ...

Sharp: /These are graphic data for the icons.

.byte 224,32,1,$7F,1,$FE /They are simple enough to easily

Natural: /compact and do not need the nice Geo-

.byte 224,31,1,$80,1,$00,2,$FF /Programmer graphic assembly feature.

DoCN4:

Ida #195

sta aOL

Ida #16

sta aOH

jmp Play

DoCS4:

Ida #195

sta aOL

Ida #17

sta aOH

jmp Play

DoDN4:

Ida #209

sta aOL

Ida #18

sta aOH

jmp Play

DoDS4:

Ida #239

sta aOL

Ida #19

sta aOH

jmp Play;

/This is the start of the routines called by

/clicking the appropriate icons. The values

/to play the note desired are loaded into a

/pseudo-register. The subroutine "Play"

/is called to actually sound the note.

/This is repeated for each of the 25 keys.

Ida #96

sta aOL

Ida #22

sta aOH

jmp Play

DoFS4:

Ida #181

sta aOL

Ida #23

sta aOH

jmp Play

DoGN4:

Ida #30

sta aOL

Ida #25

sta aOH

jmp Play

DoGS4:

Ida #156

sta aOL

Ida #26

sta aOH

jmp Play

DoAN4:

Ida #49

sta aOL

Ida #28

sta aOH

jmp Play

DoAS4:

Ida #223

sta aOL

Ida #29

sta aOH

jmp Play

Ida #31

sta aOL

Ida #21

sta aOH

jmp Play

Ida #165

sta aOL

Ida #31

sta aOH

jmp Play

DoCN5:

Ida #135

sta aOL

Ida #33

sta aOH

jmp Play

DoCS5:

Ida #134

sta aOL

Ida #35

sta aOH

jmp Play

DoDN5:

Ida #162

sta aOL

Ida #37

sta aOH

jmp Play

DoDS5:

Ida #223

sta aOL

Ida #39

sta aOH

jmp Play

DoEN5:

Ida #62

sta aOL

Ida #42

sta aOH

jmp Play

60 Transactor

DoFN5:

Ida

sta

Ida

sta

jmp

DoFS5:

Ida

sta

Ida

sta

jmp

UOwQ.

Ida

sta

Ida

sta

jmp

DoGS5:

Ida

sta

Ida

sta

jmp

DoAN5:

Ida

sta

Ida

sta

jmp

DoAS5:

Ida

sta

Ida

sta

jmp

DoBN5:

Ida

sta

Ida

sta

jmp

D0CN6:

Ida

sta

Ida

sta

jmp

Play:

jsr

Ida

sta

Ida

sta

Ida

sta

Ida

sta

ldy

20$

ldx

10$

nop

nop

dex

bne

dey

bne

#193

aOL

#44

aOH

Play

#107

aOL

#47

aOH

Play

#60

aOL

#50

aOH

Play

#57

aOL

#53

aOH

Play

#99

aOL

#56

aOH

Play

#190

aOL

#59

aOH

Play

#75

aOL

#63

aOH

Play

#15

aOL

#67

aOH

Play

InitForlO

#$40

vlcntrl

aOL

vlfreqlo

aOH

vlfreqhi

#$41

vlcntrl

#$40

#$ff

10$

20$

30$

;Must be called to access SID or CIA.

;Make sure voice one is off.

;Put the frequency data values in the SID.

;Play the note!

;A loop to give the note a minimum duration.

;Note the use of local labels 10$ and 20$.

;Read more about them in the geoProgrammer

/manual.

Loadl

Ida

eor

and

cmp

beq

Ida

sta

jsr

rts

I cialpra,%llllllll

cialprb

#$FF

#100010000

#100010000

30$

#$40

vlcntrl

DoneWithIO

ClearSIDRegisters:

jsr

Ida

ldx

10$

sta

dex

bne

jsr

rts

InitForlO

#$0

#$18

vlfreqlo,X

10$

DoneWithIO

LoadSIDRegisters:

jsr

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jsr

rts

Quit:

jmp

InitForlO

#$40

vlcntrl

#$0f

modevol

#$09

vlattdec

#$01

vlsusrel

#15

vlpwhi

#36

vlpwlo

DoneWithIO

EnterDeskTop

/Disable keyboard matrix columns so only the

/mouse button is examined. Use exclusive or

/to complement data. To mask out the

/other inputs, AND a one on the data line

/for the button input and compare . . .

; . . . branch if button is still being held.

/Mouse button released. . . stop playing!

/Restore standard 6E0S configuration.

/Return to looking at the icons.;

/This routine is used to flush out any old

/data stored in all the SID registers,

/loop to zero each register and executes a

/'DoneWithIO jsr when done looping.

/Must be called in to access SID and CIA's.

/Make certain voice is off.

/Set volume full.

/Set attack and decay to piano envelope.

/Set sustain and release to piano envelope.

/Set pulse width registers to piano waveform.

/Finished with I/O operations return to 6E0S.

/Leave geoKeyboard and return to the DeskTop.

/ geoKeyboard.Ink

/ Copyright 1989 By Jim Cook

; ***

.output geoKeyboard /Name for sequential output file,

.header geoKeybrdHdr.rel /Name of file containing header block,

.seq /Flag Linker, this is a sequential program,

.psect $0400 /Program code starts at address $0400.

geoKeyboard.rel /The name of the relocatable file which

/contains code and data created by Geo-

;Assembler. Note that GeoAssembler automatic

ally appends a .rel to your source file name. □

Volume 9, Issue 5 61

BASIC 2.0 Array Shell Sort

Putting arrays together and taking sorts apart

by Anton Treuenfels

There is no single 'best' sort for all imaginable sorting prob

lems, so different sort routines designed for different problems

will strike different balances among such competing require

ments as size, speed, versatility, and robustness. The sort rou

tine described here is an example of one such balance. It is

less than 512 bytes long, can sort 1000 randomly ordered

strings in less than seven seconds, can sort any BASIC 2.0

singly-dimensioned array in either ascending or descending

order, and tries to behave reasonably in the face of what it con

siders to be errors.

Using the program

The program is assembled to run in the popular free RAM

block starting at $C000, although it can of course be re

assembled to run somewhere else (it might even be modified

to become a TransBasic module). It can be LOADed using the

,8,1 syntax in either immediate or program mode.

Sorts are invoked with a SYS call:

sys 49152, arynam(el), arynam(e2)

where 49152 is the start address, arynam is the name of the

array to sort, and el and e2 are elements of arynam. Ary

nam can be any legal array name (string, real, or integer). El

and e2 indicate the elements that bound the sort: it is not

necessary to sort the entire array if that is not desired. If el is

less than e2, the array will be sorted in ascending order; if el

is greater than e2, the array will be sorted in descending or

der; and if el equals e2 the sort routine exits without affect

ing anything.

Program performance

The program Shellsort Test loads the sort program and puts it

through its paces. The parameters of a test are: type of array to

sort, initial number of elements in the array, final number of

elements, sort direction, and number of passes to average.

Each 'pass' is a series of sorts starting with an array containing

the specified initial number of random elements. After the

array has been sorted once, the sort is executed a second time

on the now-ordered array. The series continues by doubling

the number of elements in the array until it is greater than the

specified final number of elements. When a pass is complete

another begins, until the specified number of passes is

completed. Averaged results for all passes are then displayed.

There is also an option to display the array elements during

the first pass. This is handy in verifying that the sort behaves

as expected (which it did not always do during develop

ment). Elements are displayed in groups of twenty, four

across and five down (a minor deception - strings are

displayed to a maximum length of nine rather than their true

maximum length of ten for a cleaner display). About sixty

array elements can be comfortably displayed at once, so

values up to 60 for 'number of elements to sort' work well. If

more elements are used, the display can be started and

stopped by pressing any key.

The test program reported these average results (in seconds):

#Elements String Real Integer

125

250

500

1000

10-pass

0.47/0.26

1.15/0.60

2.77/1.37

6.53/3.13

0.55/0.28

1.36/0.65

3.23/1.50

7.67/3.40

averages (random/ordered)

0

0

1

4

.34/0.18

.82/0.43

.99/0.97

.64/2.19

About the program

The calling syntax of name(element one), name(element

two) is designed to solve two problems. First, it helps to guar

antee that the sort routine has two valid pointers into the same

array. A common alternative syntax is name(element),

#elements, which makes it possible that #elements might ac

cidentally be larger than the actual number of elements in the

array. Without expensive error-checking, the sort routine might

happily go on to sort memory that wasn't actually part of the

array, leading to all kinds of nasty side effects. The syntax

chosen makes it fairly cheap in terms of time and code to

verify that the pointers are 'reasonable', although it does not

go so far as to guarantee that the array is singly-dimensioned.

62 Transactor

The other problem is how to flag which way to order the array.

It is certainly easy to require a third parameter, but it is also

easy to just let the sort routine compare the two pointers and

decide for itself.

The heart of a sort routine can be regarded as a group of four

basic tasks repeatedly executed in a loop structure: decide

which two objects to compare, find them, compare them and,

if necessary, exchange them (or the things used to find them).

The main difference between various sort algorithms is the

method of deciding which two objects to compare. On the

other hand, the main differences in sorting different objects are

how they are found, compared and exchanged.

The program presented here divides the four basic tasks into a

single Decide routine for all objects and a separate Find, Com

pare and Exchange routine for each different object. Although

in the interest of saving space there are several places in the

code where sharing or overlap occurs, in principle there are

ten separate routines (1 Decide, 3 Find, 3 Compare, 3 Ex

change) and there is nothing to prevent any one of them from

being replaced independently of any other (to gain speed at the

expense of size, for example). The possibility of adding

routines to sort other objects or implementing other sort

algorithms altogether is also open.

The Decide routine (the actual sort algorithm) is a Shell sort. It

is a reasonably compact, fast, and understandable algorithm

that performs well on random and even better on ordered

collections of objects. Alternative algorithms that might be

used here are the Insertion sort (about the same code size;

performs best on nearly ordered collections) and the Quick

sort (larger code size; as usually implemented performs best

on random collections).

The Find routines locate the objects to be compared, taking

into account object sizes and the fact that, while the contents

of real and integer arrays are reals and integers, the contents of

string arrays are not strings but instead string descriptors. The

separateness of the Find step is an often overlooked part of a

sort routine. In BASIC 2.0, for example, a variable is automati

cally located whenever it occurs in the program text, so that in

a Basic 2.0 sort routine what looks like a Compare operation

is really a combined Find and Compare operation.

The Compare routines assume that, given any two objects of

the same type, the statement can always be made that in some

sense the first is less than, equal to or greater than the second

object. The Compare routines determine which is the case and

return a flag byte in which set bits represent logical relation

ships that are TRUE. For example, if the first object is less than

the second, then all of the logical relations 'less', 'less or

equal' and 'not equal' are true.

This system of return values from the Compare routines is a

little more complex than that used by compare routines in

many other sorts (often simply a negative value for less than,

zero for equal, positive for greater). The advantage is that the

same code can sort in either direction by setting a few flags at

the start of the Decide routine, rather than having to write a

separate routine for each direction. For example, the Decide

routine of Shellsort calls the Compare routines looking for

either 'greater or equal' or 'less or equal' (depending on which

direction the sort runs), and exchanges elements if the desired

relation is NOT TRUE.

The Exchange routines are straightforward. It is interesting to

note that, even though the process of locating strings requires

a level of indirection, exchange is similar to that of reals and

integers. Of course, it is the string descriptors rather than the

strings themselves that are being exchanged.

The idea of sorting descriptors of objects instead of the objects

themselves can be taken more generally. For example, integers

in one array can be treated as representing element numbers of

a second array. A keysort arranges the integers in the first array

according to the values in the second, so that the first array be

comes an 'index' to the second. It would require only a slight

modification of the Find and Compare routines of Shellsort to

implement a keysort of any array type. It would even be

handy: there are often occasions where it is more useful to

have a sorted index to an array than a sorted array.

In effect, any of the various modifications that might be made

to extend or change Shellsort amount to striking another of the

many different possible balances among sort requirements.

Readers are welcome to use any of the material presented here

in their own efforts to strike useful balances.

Listing 1: shellsort.s - Merlinformat

* basic 2.0 array shell sort

* last revision: 09/28/88

* written by anton treuenfels

* 5248 horizon drive

* fridley, minnesota

* 612/572-8229

* program constants

asmadr = $c000

tstne = UOOOOO

tstgt = %010000

tstge = 1001000

tsteq = %000100

tstle = %000010

tstls = %000001

usa 55421

/assembly address

/not equal

/greater

/greater or equal

/equal

/less or equal

/less

isgrt = tstne.tstgt.tstge

isequ = tstge.tsteq.tstle

isles = tstne.tstle.tstls

* program zero-page usage

elptr = $22

e2ptr =$24

elml = $26

elm2 = $28

/pointer -> 1st element

/pointer -> 2nd element

;lst element index

/2nd element index

Volume 9, Issue 5 63

elmcnt = $58

produc = $5a

ellen = $60

eladr = $61

e21en = $63

e2adr = $64

tstflg = $69

delta = $6a

lstelm = $6c

crrelm = $6e

* basic 2.0 zero-pag<

arysta = $2f

varnam = $45

varadr = $47

* basic 2.0 indirect

baserr = $300

* basic 2.0 rom

chkcom = $aefd

fndvar = $bO8b

memfac = $bba2

cmpfac = $bc5b

********************:

org asmadr

/ielements

/multiplication product

/lst string descriptor

;2nd string descriptor

/test-type flag

/comparison distance

/last element this pass

/current element this pass

i usage

;start-of-arrays

/current variable name

/current variable address

vectors

/error report

/check and skip comma

/locate variable

/transfer memory to fac

/compare memory to fac

it***********

* basic 2.0 interface

jsr chkcom

jsr fndvar

ldx #0

jsr savptr

Ida varnam+1

pha

Ida varnam

pha

jsr chkcom

jsr fndvar

ldx |2

jsr savptr

ldx |8*3

pla

bpl parl

ldx 18*1

parl eor varnam

bne typerr

pla

bmi par2

ldx §8*2

par2 eor varnam+1

bne typerr

ldy #8*1

]bbl Ida isort-l,x

sta elmsiz-1,]

dex

dey

bne]bbl

jsr arysrt

rts

/get lst parameter

/save variable address

/save variable name

/get 2nd parameter

/assume string

/lst char of lst name

;b:real or string

/integer

/names match?.

;b:no

;2nd char of lst name

;b:string or integer

/real

/set remaining parameters

/execute sort

cmp arysta /verify array element

Ida varadr+1

sta begelm+l,x

sbc arysta+1

bcc typerr ;b:not array element

rts

* report error

typerr ldx #22 /'type mismatch'

jmp (baserr)

* sort parameter tables

isort 2

fndint

anpint

excint

/fbytes/element

/find routine

/compare routine

/exchange routine.

fsort da 5

da fndflp

da cntpflp

da excflp

ssort da 3

da fndstr

da cmpstr

da excstr

* array sort parameter format:

* word begelm - location of first element

* word endelm - location of last element

* word elmsiz - tbytes in an element

* word fndadr - location of find routine

* word cmpadr - location of comparison routine

* word swpadr - location of exchange routine

* array sort

* save pointer to element

savptr Ida varadr

sta begelm,x /save location

arysrt

aysl

ays2

ays3

ldx

ldy

cpy

bcc

bne

cpx

bcc

beq

Ida

sta

Ida

sta

stx

sty

php

jsr

pip

jsr

rts

* determine

fndent sec

Ida

sbc

sta

Ida

sbc

sta

ldy

Ida

begelm

begelm+1

endelm+1

ays2 ;b:first<last

aysl

endelm

ays2

ays3 ;b:first=last (one element)

endelm /exchange pointers

begelm

endelm+1

begelm+1

endelm

endelm+1

/save direction flag

fndent /get element count

shlsrt /execute sort

i element count

endelm /ibytes in array

begelm

elmcnt

endelm+1

begelm+1

elmcnt+1

116

to

64 Transactor

]bbl asl

rol

rol

cmp

bcc

sbc

inc

fdd dey

bne

its

elmcnt

elmcnt+1

elmsiz

fdd

elmsiz

elmcnt

]bbl

* shell sort

shlsrt Ida

sta

Ida

sta

Ida

bcc

Ida

shll sta

bne

elmcnt

delta

elmcnt+1

delta+1

ftstle

shll

#tstge

tstflg

sh!4

* outer loop

]bbl sec

Ida

sbc

sta

Ida

sbc

sta

Ida

sta

sta

elmcnt

delta

lstelm

elmcnt+1

delta+1

lstelm+1

#0

crrelm

crrelm+1

* middle loop

]bb2 clc

Ida

sta

adc

sta

Ida

crrelm

elml

delta

elm2

crrelm+1

sta elml+1

adc

sta

delta+1

elm2+l

* inner loop

]bb3 jsr

jsr

and

bne

jsr

sec

Ida

sta

sbc

sta

fndelm

compar

tstflg

shl2

exchng

elml

elm2

delta

elml

/divide by #bytes/ele

/result in elmcnt

;delta= elmcnt

/ascending sort

/descending sort

;test-result flag

/enter outer loop

;lstelm= elmcnt-delta

;crrelm= 0

;elml= crrelm

;elm2= crrelm+delta

/find elements

/compare elements

/in proper order?

;b:yes

/swap elements

;elm2= elml

;elml= elml-delta

Ida elml+1

sta elm2+l

sbc delta+1

sta elml+1

bcs]bb3

'* inner loop end

shl2 inc crrelm

bne shl3

inc crrelm+1

shl3 Ida

cmp

Ida

sbc

bcs

lstelm

crrelm

lstelm+1

crrelm+1

]bb2

* middle loop end

shl4

* oute]

* find

fndelm

fndint

fndflp

fndstr

]bbl

fndl

]bb2

lsr

ror

Ida

ora

bne

: lo<

its

two

jmp

ldy

dfb

ldy

dfb

ldy

ldx

Ida

sta

Ida

cpy

bcc

asl

rol

cpy

bcc

asl

rol

adc

sta

Ida

adc

sta

Ida

delta+1

delta

delta+1

delta

]bbl

)p end

elements

(fndadr)

#2-1

$2c

15-1

$2c

#3-1

#2

elml+l,x

produc+1

elml,x

#3-1

fndl

produc+1

#5-1

fndl

produc+1

elml,x

produc

produc+1

elml+1,x

produc+1

produc

adc begelm

sta

Ida

adc

sta

dex

dex

beq

cpy

bne

Ida

sta

Ida

elptr,x

produc+1

begelm+1

elptr+l,x

]bbl

#3-1

fnd2

(elptr),y

ellen,y

(e2ptr),y

sta e21en,y

dey

bpl]bb2

;b:lstelm >= crrelm

;delta= int(delta/2)

;delta= 0?

;b:no - continue

/finished

/to current handler

/integer?

;b:yes

;*2

/string?

;b:yes

;*4

;*2,*3,*5

/add offset to base add

;b:do second element

/string?

;b:no

/get string descriptors

;b:elml >= 0

;crrelm= crrelm+1

fnd2 its

* compare two elements

compar jmp (cmpadr) /to current handler

* compare integers

cmpint ldy #0 /most significant byte

sec

Ida (elptr),y

Volume 9, Issue 5 65

sbc (e2ptr),y

beq cin2

bmi cinl /signed compare

bvc elgrt

bvs elles

cinl bvc elles

bvs elgrt

cin2 iny

Ida (elptr),y

sbc (e2ptr),y

beq elequ

bcc elles /unsigned compare

* return el greater than e2

elgrt Ida iisgrt

rts

* compare floating points

cmpflp jsr memfac+4 ;el to fac

jsr anpfac+4 /compare e2 to fac

bmi elles ;b:el<e2

bne elgrt ;b:el>e2

* return el

elequ Ida

rts

* compare s

cmpstr

cstl

]bbl

cst2

cst3

Ida

cmp

bcc

Ida

tax

beq

ldy

iny

Ida

cmp

bne

dex

bne

Ida

cmp

beq

bcs

* return e]

elles Ida

rts

* exchange

exchng

excint

excflp

excstr

]bbl

jmp

ldy

dfb

ldy

dfb

ldy

Ida

tax

Ida

sta

txa

sta

I equal e2

fisequ

strings

ellen

e21en

cstl

e21en

cst2

i-1

(eladr)/y

(e2adr),y

cst3

]bbl

ellen

e21en

elequ

elgrt

L less than

tisles

elements

(swpadr)

12-1

$2c

#5-1

$2c

13-1

(elptr),y

(e2ptr),y

(elptr),y

(e2ptr),y

/compare lengths

/b:el<e2

/use shorter string

;b:shorter is null

/chars different?

;b:yes

/all chars compared?

;b:no

/lengths different?

;b:el=e2

;b:el>e2

e2

/to current handler

/skip next two bytes

bpl]bbl

rts

* sort parameter storage

dum *+U$fffe /word-align

begelm ds 2 /pointer -> first element

endelm ds 2 /pointer -> last element

elmsiz ds 2 /ibytes/element

fndadr ds 2 /vector -> find routine

cmpadr ds 2 /vector -> compare routine

swpadr ds 2 /vector -> exchange routine

dend

Listing 2: BASIC generatorfor "shellsort.o"

BD 100 rem generator for "shellsort.o"

GC 110 n$="shellsort.o": rem name of program

FE 120 nd=495: sa=49152: ch=61786

(for lines 130-260, see the standard generator on page 5)

LB 1000

BB 1010

IG 1020

LE 1030

KK 1040

HM 1050

IK 1060

OF 1070

DN 1080

PL 1090

HH 1100

OL 1110

PJ 1120

EM 1130

CN 1140

GK 1150

BM 1160

HO 1170

BE 1180

ON 1190

CA 1200

KD 1210

JB 1220

NO 1230

DN 1240

CM 1250

AC 1260

IL 1270

EO 1280

GC 1290

OC 1300

IB 1310

AN 1320

GM 1330

JN 1340

DA 1350

JG 1360

MH 1370

EM 1380

HI 1390

CL 1400

OB 1410

OA 1420

HM 1430

ID 1440

FC 1450

DC 1460

PE 1470

32,

32,

72,

2,

2,

48,

57,

60,

63,

data

data

data

data

data

data

data 160,

data 202,

data 165,

data 72,

data 96,

data

data

data

data 193,

data 27,

data 240,

data 173,

data 193,

data 40,

data 193,

data 193,

data 169,

data 244,

data 88,

data 106,

data 2,

data 165,

data 229,

data 133,

data 106,

data 107,

data 193,

data 56,

data 38,

data 39,

data 111,

data 111,

data 107,

data 193,

data 2,

data 38,

data 192,

data 38,

data 91,

data 165,

data 202,

data 34,

253, 174, 32,

64, 192, 165,

32, 253, 174,

32, 64, 192,

162, 8, 69,

2, 162, 16,

8, 189, 85,

136, 208, 246,

71, 157, 240,

157, 241, 193,

162, 22, 108,

193, 136, 193,

193, 167, 193,

193, 180, 193,

172, 241, 193,

208, 7, 236,

26, 173, 242,

243, 193, 141,

140, 243, 193,

32, 197, 192,

237, 240, 193,

237, 241, 193,

0, 6, 88,

193, 144, 5,

136, 208, 238,

165, 89, 133,

169, 8, 133,

88, 229, 106,

107, 133, 109,

111, 24, 165,

133, 40, 165,

133, 41, 32,

37, 105, 208,

165, 38, 133,

165, 39, 133,

176, 224, 230,

165, 108, 197,

176, 191, 70,

5, 106, 208,

160, 1, 44,

162, 2, 181,

192, 2, 144,

4, 144, 3,

133, 90, 165,

165, 90, 109,

91, 109, 241,

240, 208, 192,

153, 96, 0,

139, 176,

70, 72,

32, 139,

162, 24,

69, 208,

69, 70,

192, 153,

32, 110,

193, 197,

229, 48,

0, 3,

217, 193,

220, 193,

223, 193,

204, 243,

242, 193,

193, 141,

241, 193,

8, 32,

96, 56,

133, 88,

133, 89,

38, 89,

237, 244,

96, 165,

107, 169,

105, 208,

133, 108,

169, 0,

110, 133,

111, 133,

54, 193,

22, 32,

40, 229,

41, 229,

110, 208,

110, 165,

107, 102,

162, 96,

160, 4,

39, 133,

10, 10,

10, 38,

91, 117,

240, 193,

193, 149,

2, 208,

177, 36,

162, 0

165, 69

176, 162

104, 16

42, 104

208, 33

243, 193

192, 96

47, 165

144, 1

2, 0

5, 0

3, 0

174, 240

193, 144

144, 20

240, 193

142, 242

157, 192

173, 242

173, 243

160, 16

42, 205

193, 230

88, 133

2, 144

84, 56

165, 89

133, 110

38, 101

39, 101

32, 133

214, 193

106, 133

107, 133

2, 230

109, 229

106, 165

108, 246

44, 160

91, 181

38, 91

91, 117

39, 133

149, 34

35, 202

13, 177

153, 99

66 Transactor

DP

BM

FP

HP

OB

CF

LG

MA

IP

FJ

OG

PE

OB

HA

1480 data 0, 136, 16, 243, 96,

1490 data 160, 0, 56, 177, 34,

1500 data 10, 48, 4, 80, 15,

1510 data 58, 112, 9, 200, 177,

1520 data 240, 15, 144, 47, 169,

1530 data 166, 187, 32, 95, 188,

1540 data 243, 169, 14, 96, 165,

1550 data 144, 2, 165, 99, 170,

' 1560 data 255, 200, 177, 97, 209,

1570 data 202, 208, 246, 165, 96,

1580 data 224, 176, 209, 169, 35,

1590 data 193, 160, 1, 44, 160,

1600 data 2, 177, 34, 170, 177,

1610 data 138, 145, 36, 136, 16,

Listing 3: Shellsort Test

DB

DC

LF

HO

FE

BP

MN

AJ

KN

JB

IJ

NC

NG

BE

MO

LE

LI

FF

CK

PF

IE

JG

AN

DH

OD

GA

KJ

PK

HN

BO

KM

NM

JM

HN

GB

DC

OA

II

AE

CC

EH

LD

IH

JK

HG

HI

KK

JF

BJ

JG

EF

HH

IA

BI

HG

100

105

110

115

120

125

150

155

160

165

180

185

200

205

210

215

220

225

230

235

240

245

250

255

300

305

310

315

330

335

340

345

350

355

400

405

410

420

425

430

450

455

460

465

470

475

480

485

500

505

510

515

520

525

530

108,

241,

112,

34,

56,

4R

%

?40

100,

197,

96,

4,

36,

243,

print"{down}* array shell sort tester"

print"* by anton treuenfels"

print"* last revised - 09/28/88"

:

248, 193

36, 240

60, 80

241, 36

96, 32

36 208

197 99

1? 160

208, 9

99, 240

108, 250

44, 160

145, 34

96

ifpeek(49152)<>32orpeek(49153)<>253thena=peek(186):load"shellsort.o",a,1

:

me=1000:sz=20:mp=20

im=32000:ir=16000

rm=1000000:rr=500000:rp=100

;

print"{down}define test parameters:"

:

p$="array type (string, integer,

:

p$="{down}initial felements":p=l

:

p$="{down}final felements":p=ie:<

p$="{down}sort order (ascending,

real)

:q=me:

?=me:i

":q$="sir":gosub975:at=a

r=int(me/8):gosub950:ie=a

•=me:gosub950:fe=a

descending)":q$="ad":gosub975:so=a

p$="{down}ipasses to average":p=l:q=200:r=l:gosub950:np=a

:

p$="{down}display first pass (no

:

deffnrO(a)=int(rnd(l)*a)

deffnrl(a)=int(rnd(l)*a)+l

deffnrn(a)=int((a+.005)*100) /100
:

ifat=lthendimar$(me)

ifat=2thendimar%(me)

ifat=3thendimar(me)

:

dimup(mp),sp(mp)

:

forpc=ltonp

print"{down}passf";pc

cc=ie:ci=l

ifat=lthengosub750

:

gosub800

p$="random="

gosub600

up(ci)=up(ci)+(et-up(ci))/pc

p$="sorted="

gosub600

sp(ci)=sp(ci) + (et-sp(ci))/pc
:

ifat=lthengosub780

cc=2*cc:ci=ci+l

ifcc<=fethen450

:

nextpc

:

print"{down}{down}averages over";

r yes) ":q$="ny":gosub975:df=a

np;"passes:"

IE

CD

IB

GJ

EJ

EK

CA

OK

EE

NL

CJ

AI

ON

KN

MI

IJ

HK

HG

PM

EB

GK

DA

LA

HP

BG

BH

FI

FI

EJ

AH

HL

FI

DI

IC

NM

PF

ML

CP

EH

AH

MG

GH

AC

EH

OD

GJ

DP

PN

BP

KK

HA

DF

MF

BB

BO

OD

BC

FJ

DN

KP

PP

535

540

545

550

555

560

565

570

580

585

600

605

610

615

620

625

630

635

640

645

650

655

750

755

760

765

780

785

800

805

810

815

820

825

830

835

840

850

855

860

865

870

875

880

885

890

895

900

905

910

915

950

955

960

965

970

975

980

985

990

995

print"{down}ielements","random","sorted"

print:cc=ie:ci=l

printcc,fnrn(up(ci)),fnrn(sp(ci))

cc=2*cc:ci=ci+l

ifcc<=fethen545

:

p$="{down}another test (no, yes)":q$="ny":gosub975:ifa=2thenclr:gotol80

;

end

:

printcc;p$;

ifso=lthena=l:b=cc

ifso=2thena=cc:b=l

onatgoto620,625,630

c=ti:sys49152,ar$(a),ar$(b):d=ti:goto635

c=ti:sys49152,ar%(a),ar%(b):d=ti:goto635

c=ti:sys49152,ar(a),ar(b):d=ti

et=fnrn((d-c)/60)

printet;"seconds"

ifdf=2andpc=lthengosub850

return

:

print"{down}generating master string..."

a=rnd(rnd(-ti)):ms$=""

fori=lto255:ms$=ms$+chr$(fnrO(26)+65):next:return

:

fori=ltocc:ar$(i)="":next:a=fre(0):return

:

print"{down}generating";cc;"elements..."

a=rnd(rnd(-ti))

onatgoto815,820,825

a=8+df:fori=ltocc:ar$(i)=mid$(ms$,fnrl(240),fnrl(a)):next:goto830

fori=ltocc:ar%(i)=fnrl(im)-ir:next:goto830

fori=ltocc:ar(i)=(fnrO(rm)-rr)/rp:next

ifdf=2andpc=lthengosub850

return

:

fori=0tocc-lstepsz

print:onatgoto860,865,870

forj=ltosz:printleft$(ar$(i+j),9),:next:goto875

forj=ltosz:printar%(i+j),:next:goto875

forj=ltosz:printar(i+j),:next

gosub900 ■ .

next

print:print"{down}press any key{down}":gosub905

return

:

geta$:ifa$=n"then910

geta$:ifa$=""then905

return

:

a$=str$(p):b$=str$(q):c$=str$(r)

printp$;" (";a$;" -n;b$;n) ";c$;left$("{7 left}",len(c$)+l);

inputa:a=int(a):ifa<pora>qthen955

return

:

printp$;" ";left$(q$,l);"{left}{left}{left}";

inputa$:a$=left$(a$,l)

fora=ltolen(q$):ifa$=mid$(q$,a,1)then995

next:goto975

return □

Volume 9, Issue 5 67

A glob Function For Power C

Wildcard pattern matching

by Adrian Pepper

The Power C shell provides a pleasing command-line

interface. However, I often found myself wishing it would

provide the useful 'wildcard' file name facilities of systems

such as MS-DOS and UNIX.

'Wildcard' is a term used to refer to the ability to specify many

file names at once in a command line by having the command

line interpreter treat some arguments not just as single literal

names, but as patterns matching sets of file names. Many of us

get used to typing *. c on other systems to match all file names

ending with .c. Here the * is not interpreted literally, but is a

metacharacter, used to mean "any number of repetitions of

any character". From the list of all currently available file

names, all matching file names are selected and the command

functions as if all the names had been literally typed in place

of the pattern.

For reasons buried deep in the fifteen-year antiquity of UNIX

development, programs and routines for expanding wildcard

patterns into lists of matching file names often go by the name

glob. It is an abbreviation of "global", and a reference to the

fact that the command will be executed "globally"; that is to

say, for all appropriate available file names. A very

narrow-minded use of the word "global", if you think about

it.

available file names for pattern matching. The simple dir

program illustrated does this. It essentially mimics the built-in

shell 1 command which gives a directory listing of the drive

currently designated as the 'work' drive.

/*
* dir.c - basic-style directory listing

*/
finclude <stdio.h>

static char buf[100];

main(argc,argv)

unsigned argc;

char **argv;

{
char *pat;

unsigned dev;

FILE fid;

unsigned n;

/* command line pattern if given, else empty string */

pat = (argc > 1) ? argv[l] : "";

sprintf(buf,"$%s", pat);

fdefine wrkdev (*(diar *)0xl7fc)

dev = wrkdev; /* device set by shell work command */

fid = 5;

if (!open(fid, dev, 0, buf) _

ferror))) {

printf("Can't open %s on device %d\n", buf, dev);

exit(l);

Although the Power C shell does not provide this, it proved

not too difficult to create a generalized means to allow Power

C programs to easily support it themselves.

This article attempts to not only give a solution, but also to

trace the steps by which a concept can become a practical tool.

In addition, it attempts to give a little insight into the C

language and the Power C package.

Strangely enough, though, the algorithms and system details

presented can be easily adapted to a variety of languages.

Reading a disk drive directory with Power C

The first step was to verify that Power C programs could quite

easily process directory listings from 1541s and similar disk

drives. This directory listing would be considered our list of

fgetc(fid);

fgetc(fid); /* skip "load address" */

while ((n = gdirline(buf,fid)) != EOF)

printf("%u %s\n", n, buf);

fdose(fid); /* fdose for open() allows re-use */

The gdirline routine is crucial to the dir program:

/*
* gdirline.c - read a line from a

* directory "load" into given buf

* return as function value

* - the "line number" part of basic

* style line (that is, number of

* blocks)

* - EOF at end-of-file

*/
finclude <stdio.h>

68 Transactor

gdirline(buf, fid)

char *buf;

FILE fid;

{
char *b;

unsigned c, n;

fgetc(fid);

fgetc(fid);

/* skip "link" */

/* ... */

n = fgetc(fid); /* get "line number", low byte */

c = fgetc(fid); /* and high byte */

n += c«8; /* and put the two together */

/* read rest of line; ended normally by a zero byte */

for (b = buf; (c = fgetc(fid)) && c != EOF; ++b)

*b = c;

b = '\0'; / just in case didn't end with zero */

if (c = EOF) return EOF;

return n; /* return "line number" */

/* assume EOF is invalid line number */

The dir program takes advantage of a feature of the 1541 and

similar disk drives by opening a 'directory listing', signified

by a file name beginning with a dollar-sign character ($), but

also specifying zero as the secondary address for the drive.

This is interpreted specially by these drives, causing them to

format and send back what appears to be a BASIC program,

complete with load address, and meaningless statement links.

The number of blocks for each file is sent back as the line

number for the 'statement', while the statement itself forms

the rest of the directory line. Whenever the file name used for

an open begins with a dollar-sign, the directory is opened.

Only if a secondary address of zero is used will the special

'BASIC program' format be transmitted.

All this is why load "$",8 in BASIC replaces your current

program with something that, when listed, gives you

information about the directory of the disk.

While Power C does provide library routines for reading the

actual disk directory entries, there were a number of reasons for

not wanting to use them. The most important was that they would

not work at all with the normal RAMdisk software provided by

Commodore for their 1764/1750 RAM expander, while the

opening of a directory listing on secondary address zero would.

Saving a directory listing for later use

The Commodore disk drives perform limited wildcard

matching when returning directory listings. A question mark

(?) can be used to match any single arbitrary character, and an

asterisk (*) can be used to match any number of any

characters.

A preliminary routine for providing the glob facility then can

be simply written, as follows:

devglob.c - expand wildcard filenames

devglob executes the given function

for each file name returned by a

directory listing of the given

filename wildcard pattern on the

given device

returns as function value the number

of names matched

The 'select' function argument allows

the file selection process to be

customized.

I
^include <stdio.h>

this structure is to create a linked

list of matching file names

typedef struct link {

struct link *l$next; /* point to next in list */

char *l$name; /* point to name of this file */

) LINK;

static LINK *namelist;

static char buf[100];

devglob(dev,pat,func,select)

unsigned dev; /* device to use for dir */

char *pat; /* filename pattern to expand */

int (*func)(); /* function to call on matches */

int (*select)(); /* extra matcher */

extern char *malloc();

extern char *strdup();

LINK **plink; /* keep track of end of list */

LINK *nlink; /* pointer to new LINK created */

char *nname; /* pointer to new saved name */

LINK *llink; /* general pointer to LINK */

char *b;

FILE fid;

int n;

sprintf(buf,"$%s", pat); /* form directory name */

fid = 5;

if (!open(fid, dev, 0, buf) _ ferror)))

return 0;

plink = &namelist; /* matching file names will */

plink = NULL; / be saved in a linked list */

fgetc(fid); /* skip "load address" */

fgetc(fid); /*...*/

while (gdirline(buf,fid) != EOF) {

if (*buf != ' ')

; /* not a filename line; skip it */

else f

for (b = buffstrlen(buf);

b >buf && *b != ""; --b)

*b'= '\0';
for (b = buf; *b != '\0' && *b++ != '"';)

; /* skip to EOS or after first "" */

if (!select _ (*select)(b)) {

/* got a good one! */

/* use malloc to create a LINK struct for list */

nlink = (LINK *)malloc(l,sizeof(LINK));

nname = strdup(b); /* save copy of name */

/* note: bug in POWER C causes low byte */

/* only to be tested if assignment done inside if */

if (!nlink !nname) {

Volume 9, Issue 5 69

printf("glob: too many names at %s\n", b);

break; /* finish prematurely */

}
nlink->l$name = nname; /* point to name */

plink = nlink; / and link new LINK */

plink = &nlink->l$next; /* link next one here */

plink = NULL; / NULL (end) for now */

To provide a wildcard facility of the sort we would like then,

we need to check up on the results of the Commodore disk

drive wildcard matching.

Because the C language and the Power C implementation both

support recursion, a nice wildcard matching routine is not all

that difficult to write.

fclose(fid); /* fclose for open() allows re-use */

/*
* now run through the list of saved

* names, executing the function for

* each one

*/
n = 0;

for (llink = namelist; llink; llink=nlink) (

if (func)

(*func)(llink->l$name); /* call function */

nlink = llink->l$next; /* remember next */

free(llink->l$name); /* before ptr freed */

free(llink);

++n; /* count matching names */

return n;

This merely requests a directory, and stores the list of names

returned in a linked list, making use of the C language struct

facilities, together with the C libarary dynamic memory

allocation routines. When it has finished collecting the

directory listing, it executes the given function once for each

file name found. In addition, a 'selector' facility is provided.

The strdup routine used by devglob is merely:

linclude <stdio.h>

/*
* strdup - allocate a copy of string

* returns as function value the

* newly allocated string
*

* NULL if enough memory is not available

*/
char *

strdup(string)

char *string;

extern char *malloc();

char *newstr;

newstr = malloc(strlen(string)+1);

if (newstr != NULL)

strcpy(newstr,string);

return newstr;

Checking up on Commodore's wildcards

The trouble with a Commodore drive's interpretation of * is

that any suffix following it is ignored.

The *.c example given above, for instance, would be

interpreted by a Commodore drive as matching all files on the

drive, not just those ending in .c.

Recursion refers to the ability of routines in a computer

language to invoke themselves. To implement this, the

language must create an entirely new environment (i.e. set of

local variables) for each invocation of a routine. This means it

does not matter when a routine calls itself, either directly or

indirectly.

The recursion is needed as an easy way to check that all

possible ways of expanding any occurrences of * are

considered before the pattern is rejected.

For example, the pattern a*x?o matches the string axyoxyo,

but it is necessary to reject the first matched x?o, and go back

and look for another.

Our wildmatch routine, to support * and ?, is:

* wildmatch - do moderately primitive

* wild card match

* returns non-zero as the function value

* if given pattern matches string
*

* pattern can contain the following

* special characters:

*

* * - match any number of any characters

* ? - match exactly one of any character

* all other characters are matched

* literally. '*' and '?' cannot be

* matched literally. Pattern must match

* entire string.

*/
fdefine NO 0

fdefine YES 1

wildmatch(p,s)

char *p; /* pattern, as a literal string */

char *s; /* string to test as matching entire pattern */

char pc;

for (; ;) {

/* until we return by failure or success */

/* switch on next char in pattern */

switch (pc = *p++)

case '*': /* match any number of any char */

do (

/* check all possible suffices */

if (wildmatch(p, s))

return YES; /* at least 1 suffix works */

} while (*s++);

return NO; /* all suffices inconsistent */

case '?':

70 Transactor

if (*s = '\0') /* match any real char */

return NO;

/* else check next char in p and s */

break;

case '\0': /* pattern ended */

return *s = '\0'; /* YES only if s ends too */

/* returning YES unconditionally here would */

/* check if initial portion of s matched p */

default: /* literal match of char in pattern */

/* ASSERT: if *s = '\0' we return (NO) */

if (*s != pc)

return NO;

/* else check next char in p and s */

}
++s; /* next char in s */

Because each invocation of wildmatch has its own private

copies of p and s, and doesn't disturb the values known to the

one calling it, this provides an automatic method of keeping

track of the success of each possible suffix to the string thus

far matched.

With some care, a non-recursive solution to matching this

simple definition of patterns could probably be written, but the

algorithm given here is easily extendable to more complex

wildcard features. These include characters classes, typically

represented by enclosing a list of characters in square brackets

([and]). For example:

[ch]

would match file names ending with either .c or .h extensions.

Other extensions to pattern matching include allowing the

repetition of any element, not just the 'any number of any

character' as implied by *.

An excellent discussion of pattern matching techniques is

included in the classic programming text Software Tools, by

Brian Kernighan and P.J. Plauger [1], and a sample

implementation of the algorithm is actually included on the

Power C distribution disk as the programfind.c.

Putting it all together...

We now combine devglob with

produce the routine glob

I*
* glob.c - expand wildcard filenames

*/
{include <stdio.h>

/*
* select - double check names matched

* by 1541(etc.) dos
*

* (used by glob function)

*/
char *savepat = NULL;

static select(name)

a call to wildmatch, and

char *name;

I
return wildmatch(savepat, name);

/*
* glob - execute given function for each

* file on the work device matching

* the given pattern

*/
glob(pat,func) /* return quit/continue status */

char *pat; /* filename pattern to expand */

int (*func)(); /* function to call on matches */

{
int select();

extern int sprintf();

extern char *malloc();

unsigned inbasic; /* flag if linked as basic program */

unsigned dev;

char *p, *endp;

Idefine wrkdev (*(char *)0xl7fc)

/* device set by shell work command */

tdefine krndev (*(char *)0xba)

/* device last used for kernal OPEN */

dev = wrkdev;

/* ASSERT: sprintf needed by devglob */

inbasic = fisprintf > 0x880;

if (inbasic) dev = krndev;

if (pat[0] = ':') /* names won't contain drive */

p = pat+1;

else if (pat[l] = ':')

p = pat+2;

else

p = pat;

/* make pat accessible to select */

savepat = strdup(p);

/* remove =typ from end of pattern */

/* since it won't appear either */

p=savepat+strlen(savepat);

endp=p-4;

while (p > endp && p > savepat)

if (*--? = '=') (

*p = '\0';

break;

}
return devglob(dev, pat, func, fiselect);

And taking it on the road

A canonical use of the file name matching glob routine is to

produce a selective list of matching names. This is similar to

the Is command of the UNIX system. Is is already implemented

slightly differently in the Power C shell, so we have named

our version If.

It's quite simple really. It just calls our glob, using as the

function for each file name a routine that simply echoes its

argument.

/*
* If - list file names

* selected by a list of patterns

*/
findude <stdio.h>

/*

Volume 9, Issue 5 71

* function to call for each name

* matched by glob

*/
int

echoname(name)

char *name;

{
printf("%s\n\ name);

main(argc,argv)

unsigned argc;

char **argv;

{
extern int echoname();

unsigned i;

/* if nothing specified */

/* provide a default action */

if (argc < 2)

glob("*",

else

for (i = 1; i < argc; ++i) /* process each pattern */

glob (argv [i], fiechoname);

A slightly more interesting thing to do is augment a program

that takes a list of file name arguments so that it can use

patterns instead. This can save much guesswork and/or typing,

as in the following program which searches for and prints

occurrences of a string in a list of files (patterns).

/*
* findstr.c - string search program

*

* This program will print all occurrences

* of the given string in the specified files.

* The files can be specified as a list of

* patterns.

*/
finclude <stdio.h>

idefine MAXBDF 250

char *index();

static char *matchstr = NULL;

main(argc, argv)

unsigned argc;

char *argv[];

{
int findstr();

i;

if(argc<3){

fprintffstdout, "%s: <match-string> file(s)\n",

argv[0]);

exit();

I
matchstr = argv[l];

for(i=2; i<argc; ++i)

glob(argv[i],fifindstr);

static char buf[MAXBOF] = {0};

findstr(filename)

char *filename;

{
FILE infid;

char *p;

char cl;

unsigned length, lineno;

cl = *matchstr;

length = strlen(matchstr);

infid = fopen(filename, "r");

if(infid = NULL) {

fprintf(stdout, "cannot open %s.\n"

return;

filename);

}
for (lineno=l; fgetsfbuf, MAXBUF, infid); ++lineno) {

for (p=buf; (p=index(p, d)) != NULL; ++p) {

/* consider all occurrences of cl */

if(strncmplp, matchstr, length) = 0) {

printf("%s %d:%s", filename, lineno, buf);

break; /* stop after first match on line */

fclose(infid);

The same modification could be made to the programs which

come on the Power C disk, such as print.c,format.c andfind.c.

Improving performance

A noticeable performance improvement can be made by

replacing the C gdirline routine with one written in assembler.

This is primarily because the C library fgetc routine does a

relatively expensive chkin Kernal call for each character.

C/ASSM - version 2.0 - 10/24/85

gdirline.a:

; gdirline - C callable function reads a line from directory "load" format

int gdirline(buf,fid)

char *buf ;

FILE fid

returns as function value "basic line number" ("number of blocks" in

directory line)

FFC6

FFCC

chkin

clrchn

$ffc6

$ffcc

033C argstk=$033c

004C savex=$4c

00FB bufp=$fb

004D fid=$4d

004E savey=$4e

; and $fc

; for chkin

.ref c$funct init

.ref c$getchar

.def gdirline

first, call c$funct_init for quick setup

copy passed parameters from transfer area (cassette buffer) to zp

72

0000

0003

0005

0008

000A

000D

000F

0012

0014

0015

20 00

86 4C

BD3C

85 FB

BD 3D

85 FC

BD 3E

85 4D

AA

20 C6

00 gdirline

03

03

03

FF

jsr

stx

Ida

sta

Ida

sta

Ida

sta

tax

jsr

c$funct_init

savex

argstk,x

bufp

argstk+l,x

bufp+1

argstk+2,x

fid

;

chkin

; output buf

; low byte

; of fid arg

set logical input device

Transactor

0018

001B

20 42 00

20 42 00

]sr

jsr

cget

cget

skip "link"

now get "basic line number" and save as normal return value

001E

0021

0023

0026

0029

002B

20 42 00

A6 4C

9D 3C 03

20 42 00

A6 4C

9D 3D 03

jsr

ldx

sta

jsr

ldx

sta

cget

savex

argstk,x ;

cget

savex

argstk+l,x

low byte

and high

read rest of line into buffer, until a zero byte or bad status encountered

002E

0030

0032

0035

0037

0039

003B

003D

003F

A0 00

84 4E

20 42 00 loop

A4 4E

91 FB

E6 4E

C9 00

D0F3

4C CC FF

ldy

sty savey

jsr cget

ldy savey

sta (bufp),y

inc savey

cmp #0

bne loop

jmp clrchn ; yes return

next char

save it

zero?

no

cget - call the C library internal routine c$getchar to read a character from

the current chkin input file. c$getchar must still be passed the logical file

number in the 'a' register so it can check whether EOF has been reached on

that file yet.

c$getchar returns with carry set if EOF reached, otherwise it

returns the next character from the file in the 'a' register, cget is local

to this gdirline function, so it arranges to return from gdirline with a

function value of EOF when end-of-file is reached.

Normally, cget returns the

next character from the current file in the 'a' register.

0042

0044

0047

0049

004A

004B

004C

004E

0050

0053

A5

20

B0

60

68

68

A6

A9

9D

9D

4D

00

01

4C

FF

3C

3D

cget

00

eof

03

03

Ida

jsr

bcs

rts

pla;

pla;

ldx

Ida

sta

sta

fid

c$getchar

eof

return EOF

pop return

savex ;

#$ff

argstk,x

argstk+l,x

from gdirline

address

store EOF (-1) as return value

; and return from gdirline

0056 4CCCFF jmp clrchn

End of assembly, 0 errors

The gdirline.a file can be assembled using the public domain

ClAssm assembler to produce a gdirline.o file which can be

linked in place of the compiled version of gdirline.c to make

glob run about twice as fast.

A bug (oh no!)

A word of caution: Commodore drives do not work well

with an output file open at the same time as the directory.

Sometimes (but not always) a program using the glob

function, and creating an output file on the same device will

have its directory reading terminated prematurely with

strange errors. The same phenomenon can be observed

when redirecting the output of the Power C built-in 1

command, as in: l >directory.tmp

Very often, but not always, the last few files on the disk will

be absent from the listing created in the output file.

Exercises for the reader

Well, it wouldn't be fair to finish this discussion without

leaving the reader with some food for thought, would it? So

I'll end with a few suggestions as to how you may want to

alter glob for your own applications.

Very often when specifying a file name to a Commodore disk

drive, it is necessary to suffix it with the file type. Under

certain circumstances, then, this ,s, ,p, or ,u (or even ,r or ,c)

suffix gives extra information about the file name. It is similar

to the file name extensions of MS-DOS, although usually it is

optional. Still, it might be nice to have it on the end of the file

name passed to the function called through glob.

Perhaps, then, if the pattern passed to devglob includes a suffix

like ,p, or ,*, or,? attention should be paid to the file type and

it should be put on the end of the file name passed on to the

function.

Similar treatment could be afforded ?:, *:, or 0: or 1: to

specify a directory. A way could even be worked out to treat

the device number as part of the pattern.

On UNIX, the list of file names matching a pattern is always

sorted alphabetically. Thus could be done in devglob as well.

glob is presented here as a routine. This glob routine could be

used to create a glob program that could, in a limited fashion,

'glob' other programs or commands.

glob <coxnmand> [<pattern>. . .]

could expand the patterns into the lists of matching file names,

and cause:

<command> [<£ilename>...]

to be executed. This can be done by writing the expanded

command line to the screen, and stuffing the keyboard input

buffer to cause it to be read by the Power C shell after the glob

program exits. Of course, if the line would end up being greater

than eighty characters in length, it would need to be truncated.

As presented here, the glob facility can be useful to save

typing, and allow searching for files. As hinted at earlier, the

pattern-matching principle need not only be used for file

names, but can be used when matching other types of strings.

[l]Kernighan, Brian W. and Plauger, P.J., Software Tools,

Addison-Wesley, 1976. □

Volume 9, Issue 5 73

Two Assemblers For GEOS

A comparison ofGeoCOPE and Geoprogrammer

by Francis G. Kostella

GeoCOPE is availablefor $20 (US)from:

Bill Sharp Computing

P.O. Box 7533

Waco, TX 76714

Geoprogrammer is availablefrom:

Berkeley Softworks

2150ShattuckAve.

Berkeley, CA 94704

I'd like to present you with a brief overview of two assemblers

that run under GEOS, and then throw a short argument at you as

to why you should be writing programs for GEOS.

If you've written programs for GEOS with a non-GEOS assem

bler, you are probably familiar with the time-consuming hassle

that the programmer must endure in order to convert his object

file into a runnable GEOS file. Besides the object file needing

to be manipulated in order to work with GEOS, one must con

stantly exit GEOS to make modifications and wait while the as

sembler creates the new file, usually without the speed that the

TurboDOS adds, then re-boot the GEOS system.

What the GEOS programmer needs is a system that operates

while in the GEOS environment and outputs GEOS-ready files.

There are presently two packages (that I know of!) that do this:

geoCOPE from Bill Sharp Computing and Geoprogrammer

from Berkeley Softworks.

Looking into GeoCOPE

GeoCOPE is the less complex of the two and was the first

GEOS-specific assembler released. The COPE system has two

main programs, Editor and copeASM (the assembler).

The nicest part of the COPE system is the Editor. COPE uses its

own unique structure for its source files, and each page of a

source file can hold up to 8K of text. A feature that I found

very useful, was the Editor's ability to make the source files

either GEOS SEQ or VLIR. Thus, my system equates file would

be SEQ structure and would be .included in the main VLIR

source file. A VLIR file can have 127 records, and at 8K per

record, you can see that each of your source files can get very

large if needed.

A few other features of the Editor that I liked and found very

useful were the ability to set a Bookmark, so that you could

return to the last line edited, and an Autosave feature that auto

matically updated changes when selected. The biggest advan

tage of the Editor is that it is fast! Unlike geoWrite, you can

quickly scroll up or down through a document, and since it

doesn't support fonts or font styles you're not left waiting

while the system calculates 24-point bold outlines. The Editor

also supports Text Scraps, has a Save & Replace function, and

allows you to save single pages of a VLIR source file as single

SEQ source files, and SEQ as pages of VLIR files. The COPE Ed

itor also allows you access to Desk Accessories (the system

comes with one: HexCalc a hex/dec/bin calculator) and works

with an REU. The only thing missing from the Editor is the

ability to use tabs to offset the opcodes and comments from

the left margin.

One thing to be aware of when using COPE's Editor, is that it

stores each line of the source file as a null-terminated string. If

you use the Text Scrap function to move text to or from

geoWrite, you'll run into a few problems. Pasting a Scrap into

a COPE file from a geoWrite document is simply taken care of

by entering CRs where the line ends should be. But geoWrite

will choke on COPE Scraps (the Text Manager has no trouble

with them, though). I've managed to get around this problem

by writing a simple filter program that strips out all the nulls

except the final one.

COPE supports 21 different pseudo-ops, from the typical

.BYTE and .WORD to some GEOS-specific ones like .ICON for

defining header icons and .SEGMENT for mapping out any

VLIR modules. COPE also allows you to define macros with

the .MAC and .MND directives.

Labels can be up to 32 characters in length and are case sensi

tive. Cope also allows you to use local branch labels - up to

32 outstanding (unresolved) local labels are permitted. All the

usual arithmetic and logical operators are supported (*, /, +, -,

AND, EOR, OR).

74 Transactor

Ifyou're just getting yourfeet wet

with GEOS, GeoCOPE is the

perfect place to start...

The major advantage that the COPE system has is its simple

and direct approach. Within an hour of reading the manual, I

had an application up and running. The manual itself only

details the features of the Editor and copeASM. The examples

are few, but cover all the specifics. If you've used MADS,

you'll adapt very quickly as the two are very similar.

The manual together with the sample files will have you writ

ing VLIR applications in no time at all. By using the .SEGMENT

directive, you simply indicate the end of one VLIR module and

the start of another. The nice thing about this approach is that

labels in all the different modules are global and the need for

jump tables or duplicate label definitions is eliminated.

COPE files are easy to maintain and update. I've kept all my

COPE source in VLIR structure: the first page holds the header

block definition and an index to the entire file, the second page

holds my constants and equates, the third page holds all of my

macros, and the source code begins on page four. Writing even

the largest of applications, I've never gone over 20 vlir pages

of source.

Once you have your source code

together, you load the assembler

and select the file. CopeASM is a

two-pass assembler that will assem

ble to disk and print any errors to

the screen. You may list the assem

bly on its second pass and can turn

this listing on or off. CopeASM also

allows you to pause the listing if

needed. If the file assembles without any errors, you can exit

to DeskTop and run the file. If you do have errors, you'll have

to pause the assembler and scribble them down. This is the

weakest part of the system - an option to output to an error file

is sorely needed. Furthermore, attempting to pause the screen

listing will sometimes scroll the errors off the screen, forcing

you to reassemble just to see the errors.

Presently, COPE can only handle up to 5000 characters in its

label table, so you'll have to keep those labels short and use

plenty of local labels if you are assembling a large application.

Another limit of copeASM is that it can only assemble 8K sec

tions of code at a time. This isn't as big a problem as it may

seem, though: you can simply divide the file up into VLIR

modules and load them in as part of your initialization routine.

My favorite approach here is to put all of my tables, graphics,

and fonts into one or more VLIR modules and load them in

right after drawing the intro screen.

Although I haven't done any rigorous comparisons of assem

bly times, I've got one good example: the original version of

CIRCE was assembled with the MADS assembler, then convert

ed to GEOS format. The amount of time taken between loading

the MADS assembler and loading the assembled and converted

file from the DeskTop was slightly under 35 minutes. After

converting the source files to COPE format, the time between

loading the COPE assembler and loading the assembled appli

cation was just about four minutes! Now I've got to admit that

this was on an reu, but even without it, the assembly took

about six or seven minutes. (Besides, MADS didn't support the

REU.)

If you're just getting your feet wet with GEOS, COPE is the per

fect place to start. The system easily handles smaller programs

and is fairly fast and easy to maintain. But once your applica

tions begin to grow in size, that 5,000 character symbol table

begins to fill up fairly quickly. Once you get to this point, you

should consider Geoprogrammer.

The first thing that strikes you when you open the

Geoprogrammer package is the 450-page manual. If you

have a number of GEOS programs, you are perhaps used to the

sometimes simplistic documentation that presents you with the

"this is a disk, put the disk in the drive..." level of informa

tion. I was very pleasantly surprised to open this manual and

read through it without ever having my intelligence insulted.

The first two dozen pages do contain the basic info for first

time GEOS users, and there is a chapter devoted to an overview

of the Geoprogrammer system, but the rest of the manual is

filled with loads of useful information.

Granted, the info is not all organized

as well as it might be ("Now, where is

that part about bitwise exclusive-

or?!") but generally you'll be able to

find what you need with a little persis

tence. In addition, the appendices of

the manual contain detailed listings of

all the system constants and variables,

along with a hardcopy listing of the macro and sample source

files included on disk.

The Geoprogrammer disk itself is a flippy that includes, be

sides the sample files and system symbols and macros, the

three programs that make up the Geoprogrammer system:

GEOASSEMBLER, GEOUNKER and GEODEBUGGER. No, there is no

editor here. Unless you have a text editor that handles

geoWrite files [such as Q&D Edit, written by Kostella and

Buckley and available from RUN - Ed.], you'll have to edit

your source files with geoWritel And Geoprogrammer is a

two-drive system; you can use it with one drive, but the

amount of disk swapping involved will quickly convince you

that that second drive is worth the money. Better yet, an REU

is not only a fast second drive that makes using geoWrite

tolerable, but it will allow you to use GEODEBUGGER to its

fullest.

That being said, let me give a brief overview of the assembly

process. Once you've edited all of your source, you assemble

each of the source files into .rel relocatable object files. Then

you load a linker file (also a geoWrite document) into GE-

OLINKER to link together your .rel files into a runnable GEOS

file on disk. Now you can load GEODEBUGGER to test and de

bug your program. Sounds simple, eh? Well, there's a lot more

going on here than would appear. Geoprogrammer gives you

access to some powerful features and abilities that you may

Volume 9, Issue 5 75

find that you won't want to do without once you've gotten

used to them.

First off, GEOASSEMBLER is a two-pass assembler that supports

a number of useful features: conditional assembly, macros, lo

cal labels, the ability to parse complex algebraic expressions,

and the ability to pass symbols to the linker or debugger.

GEOASSEMBLER will also output an error file to disk (in

geoWrite format, of course!), if needed, for each file assem

bled.

When GEOASSEMBLER starts assembling a file, it uses three

counters to keep track of the code: .zsect for zero page ram,

.psect for program code, and .ramsect for uninitialized data. If

you're lazy like I am, when you need a new variable, you just

add it somewhere in the current section of code instead of

adding it to a separate section of code for variables. By using

the .psect and .ramsect directives, you can add variables just

about anywhere like this:

.ramsect

MyVariable:

.psect\b

.block 1

When the assembler encounters this construction, it will give

the label MyVariable the address of the current address of

.ramsect (which can be set by the .ramsect directive or in the

linker file). The .ramsect section defaults to the RAM follow

ing the last byte of code, thus we don't end up assembling

uninitialized variables and add to the length of the program.

Perhaps not a big deal, but when you have a few hundred

bytes of variables it becomes noticeable.

Another useful feature of the assembler is the 16-bit expres

sion evaluator {geounker also uses the same evaluator). Be

sides the usual arithmetic, the evaluator handles a number of

logical operators: the manual lists thirty of them. I usually

keep away from creating expressions too complex to be under

stood at one glance, but GEOASSEMBLER will let you create

some truly bizarre and outlandish expressions if you so desire!

But the real power I find here is that you can easily create data

tables with a few easily changed constants at the root of some

complex expressions. Perhaps this doesn't seem that unusual,

but I've been able to create expressions that all the other as

semblers I own have choked on, and I don't miss having to do

the math by hand.

You run GEOASSEMBLER from DeskTop and select the file to as

semble from the typical 15-file dialog box. Once you've se

lected the file to assemble, you are given a choice of drive for

the output file, then the file is assembled. The output file is the

same name as the source file but with a .rel appended. When

this is done, you can quit to DeskTop, assemble another file, or

open the error file (i.e. enter geoWrite) if one was generated. A

friend of mine who beta-tested the version 2.0 package tells

me that GEOASSEMBLER V2.0 will allow you to go directly to

the linker, and that it is not limited to selecting only the first

15 source files on disk.

Once you've assembled all the .rel files in your program, it's

time to use geounker. Geounker does more than just con

nect separate object files together. First of all, geolinker uses

a link file to determine the structure of the output program, be

it GEOS SEQ, VLIR, or CBM, which is a 'regular' object file. Sec

ondly, the linker will add the header to the file. The linker will

also cross-resolve all label references between the different

.rel files; if a label is defined in two different files, but is not

referenced in a third file GEOUNKER will not flag an error.

One thing I would like to mention here is that although the as

sembler and linker accept symbol names up to 20 characters in

length, only the first eight are significant. This is not really a

problem, but you should remember that there are a few hun

dred system symbols in the geosSym file usually .included dur

ing assembly.

I once wrote a routine named DeleteRegion that was only

called from a routine in another source file. DeleteRegion nev

er seemed to be called, but the disk would go active for a sec

ond when it should have been called. The debugger only

shows the eight significant characters of the label when you

list the code, so I couldn't imagine what was happening. But

the debugger also lets you view the label name by its hex ad

dress, and upon examination, this label appeared somewhere

in the Kernal jump table. The routine that was being called

was the Kernal routine DeleteRecordl Luckily I didn't have

any VLIR files open....

Geolinker will also allow you to output a separate symbol ta

ble (again, a geoWrite file) to the drive of your choice. Like

GEOASSEMBLER, if there are any errors, you have the option of

directly opening the error file after linking. One thing to note

here is that when there are more than 99 errors, the system will

sometimes have a fatal crash.

When GEOUNKER creates the file on disk, it also writes a special

.dbg file to disk for use by the debugger - more on this later.

The manual does not include specifications for either

GEOASSEMBLER or geolinker, otherwise I'd be happy to in

clude a list here. If you do run into problems assembling and

linking very large files, you can always use the .noglbl and

.noeqin directives to cut down the number of symbols passed

to the linker. One way to quickly cut down on the number of

symbols is to use .noglbl and .noeqin before .include geoSym

(the system labels and equates) and .glbl and .eqin after. Of

course you don't get anything for free, and these symbols

don't get passed to the debugger!

A sneaky trick I use when doing this, to get the system sym

bols to the debugger when writing a large VLIR application, is

to assemble the geosRoutines and geosMemoryMap and link

them into one of my modules that isn't using very many sym

bols. Each module has its own set of symbols and is selected

in the debugger by the setmod command. If you're debugging

a stretch of code that uses a lot of system calls, just reset the

module priority to the module with the system symbols.

76 Transactor

Alternately, I find that just defining the pseudo-registers as

global equates helps a great deal when debugging.

Another potential problem I've noticed that is not document

ed, is that when linking files from two drives, the linker seems

to search for the file on the current drive first, then checks the

other drive. The problem here is that if you have two different

versions of one particular .rel file, let's call it beta.rel, and this

file is supposed to be linked after a file called alpha.rel that is

not on the current disk, when the linker switches drives to find

alpha.rel, it does not switch back to the original drive, poten

tially linking the wrong beta.rel. I don't have any empirical

evidence for this, but if your modifications don't seem to be

appearing in your new version of a program, try moving all of

the .rel files in one vlir module to the same disk.

Once you've assembled a GEOS program, it's time to load

GEODEBUGGER - here's where the fun begins! GEODEBUGGER is

a sort of 'shell' that uses NMls to take control of the machine

and allows you to debug the program (or examine the Kernal)

in an almost interactive environment. Load your program from

the debugger. Need to tweak some values or check why that

branch isn't being taken? Just bang on the restore key and

you're in the GEODEBUGGER again.

GEODEBUGGER is the best thing about

this package; you can set breakpoints,

alter stack or register values, and

access the disk drives almost like a

sector editor.

autoexec macro removes these from the symbol table, like

this:

Geoprogrammer along with an

REU will dramatically increase

your output and capabilities...

There are actually two versions of

GEODEBUGGER. When you load the

program, it first checks for a REU. If there is one connected,

the full debugger is loaded into the REU, otherwise the mini-

debugger is loaded into RAM from $3E00 to $5FFF. Needless to

say, the REU super-debugger is the preferred option.

What makes the debugger truly useful is the ability for it to

use the .dbg files generated by the linker. These files contain a

list of symbols and their addresses. This way, while in the de

bugger, you can list and modify a section of code using labels

from your source files. Of course, your changes are not saved,

but this allows you to try out different things without con

stantly reassembling the program.

GEODEBUGGER is basically a machine language monitor with

plenty of features. One of the most powerful of these in the

super-debugger is the ability to define macros. Most of the

commands in the debugger are actually system macros com

posed of a number of macro primitives. GEODEBUGGER allows

you to define up to 1,000 bytes of user macros. These user

macros can be made up of the macro primitives or system

macros. A macro file with the same name as your application

will be automatically loaded along with your application.

Optionally, you can define a default set of macros and an au

toexec macro to run when the debugger is loaded. For

example, the linker always passes a few of the system

variables to the debugger, but I have no use for them, so my

.macro autoexec ; name

clrsym Passl[cr]; eliminate symbol

clrsym picWfcr]

clrsym picHfcr]

.endm

There are dozens of other commands, but there are problems

with some of the memory commands, most notably FILL,

which doesn't work at all. My beta-test friend tells me that this

bug has been eliminated in the 2.0 version. The only other

thing that one could desire would be a more detailed descrip

tion of the macro primitives in the manual.

Overall, the Geoprogrammer package is nicely put together,

and along with an REU will dramatically increase your output

and capabilities. Most especially, the debugger will teach you

about programming for GEOS by allowing you to examine any

GEOS program and the GEOS Kernal in detail.

If you're new to assembly language, I suggest that you give

writing GEOS programs a try. A com-

mon problem for beginners is the

need to develop a set of routines to

perform common functions; i.e.,

printing text and graphics to the

screen, moving large chunks of

memory around, disk access, and

string input to name just a few.

When you're just starting out, you

basically begin with nothing, and until you've accumulated

enough experience to write code to perform some of the above

functions, your ability to write useful programs is hindered.

When you code for GEOS, all of these basic functions are always

available. You can concentrate on writing the 'heart' of the pro

gram without getting bogged down in minor details. By getting

programs up and running quickly, the beginner will (hopefully)

form positive associations with assembly language, instead of

thinking of it as some arcane art which is painfully learned!

If you're interested in writing GEOS programs, you must get an

assembler package that runs in GEOS. If you're not sure how

far you want to go I suggest you get the geoCOPE assembler

from Bill Sharp Computing. The price is good and the system

direct and uncomplicated. If you later decide that you need

more power and you have a two-drive system (or REU!) and

can afford the price, go for Geoprogrammer. If you're an ex

perienced programmer, I suggest that you go straight to

Geoprogrammer or get them both.

Berkeley Softworks should be commended for releasing such

a nice package, especially considering the relatively small

market for products of this nature. Unfortunately, they don't

seem as if they're going to release version 2.0 any time soon.

One only hopes that they would at least consider doing a mail-

in upgrade for present users. □

Volume 9, Issue 5 77

NewsBRK

Format Executive Version 4.0: Powersoft has announced the

release of Format Executive Version 4.0. Format Executive is

the first and only comprehensive disk format and file transfer

program for the Commodore 128 and 128D. Format Executive

now allows a Commodore 128 or 128D computer with 1571 or

1581 drive to read, write and format over 150 different 3.5" or

5.25" MS-DOS (PC-DOS), CP/M-80, CP/M-86, Commodore

CP/M and Commodore DOS (PRG, SEQ, USR, REL) disk for

mats. This means the Commodore 128 can now transfer files

back and forth from almost any CP/M or MS-DOS microcom

puter. The manual also details how to use Format Executive

Version 4.0 to transfer files from machines such as the Com

modore Amiga, the Atari ST and the Apple Macintosh.

Format Executive Version 4.0 features include: high speed

burst file transfer technique, file transfers between all formats,

Commodore PETASCII to true ASCII conversion, linefeed

adjustment, wildcard support (?,*), single drive, multiple

drives, dual drives, RAMdisk, and hard drive support; CP/M

user area support, 1581 partition support, and automatic disk

login. Backup disks are permitted. All Commodore drive

devices are supported: 154x, 157x, 158x drives, and 17xx

RAMdisks. Format Executive Version 4.0 will permit transfers

of any ASCII or OBJECT file of any length at burst speed.

Format Executive is compatible with C128 system enhancements

such as JiffyDOS. A complete list of supported formats is

available on QuantumLink in the file: FE-FMTS. Format Execu

tive Version 4.0 is available for the Commodore 128 or 128D

with 1571 or 1581 drive. Send check (2 wks.) or money order for

$59.95 plus $3.50 S&H (COD add $3) to: Powersoft, Inc., P.O.

Box 7333, Bradenton, FL, 34210. On QuantumLink: Powersoft

CP/M Productivity Software: The Public Domain Software

Copying Company is offering CP/M users an exclusive

repackaging of WordStar version 2.26. PDSC says that CP/M

users are often left out of current software releases, pdsc says

that it is committed to providing CP/M users with the most

productive CP/M software available.

WordStar version 2.26 can turn a Commodore 128 into an

effective, powerful word processor including features such as

MailMerge, which allows users to merge text and/or data files

to generate form letters, boilerplate text (text created from files

of pre-existing, commonly used sections of text), mailing lists,

and large documents.

PDSC is offering this as the first of many classic software pro

grams formatted for the Commodore 128. This Commodore

128 - CP/M disk edition comes complete with an Osborne 1

User's Reference Guide that explains how to use WordStar,

and also has sections on the CP/M operating system.

WordStar version 2.26 is IBM data-compatible using readily

available conversion software including Big Blue Reader and

Uniform. WordStar version 2.26 and manual are available for

$39.95 plus $4.50 for postage and handling.

The User's Guide also describes how to use other programs

available from PDSC: SuperCalc and Microsoft BASIC,

which are $20 each when ordered with WordStar version 2.26

($39.95 each plus $4.50 for postage and handling if ordered

separately).

Also included in the WordStar version 2.26 package is a set of

Key Fronts. More useful than a quick reference guide, these

self-adhesive letters attach to your keyboard and include all

the commands you need to use the special word processing

functions of WordStar. For more information, call or write:

PDSC, 33 Gold St., Suite L3, New York, NY, 10038, (800) 221-

7372, (212) 732-2258.

FORTRAN Compiler for C64: Thirty years ago, FORTRAN

was the first high-level language. Today it remains one of the

most universally-used programming languages. Fortran 64

supports more than 45 statements and functions and is a practi

cal, economical and convenient way for users to learn Fortran

on the C64. Fortran 64 is aimed at the student and novice

programmer who wants to use this mathematically-based

language.

Fortran 64 includes a built-in editor, compiler and linker, and

creates a fast standalone program. Once completed, the pro

gram module may be run without Fortran. Subroutines and

functions may be compiled separately from the main program.

Input and output may be free-form or formatted, and the user

has access to the 6502 registers, Kernal and machine language

routines. Fortran 64 carries a suggested retail price of $39.95.

Other language products from Abacus: Ada, Assembler,

BASIC compilers, COBOL, C and Pascal. Contact: Abacus

Software, 5370 52nd St. SE, Grand Rapids, MI, 49508, (616)

698-0330.

SYSLAW: A Legal Guide for SysOps: A new book from

LLM Press explains the legal rights and responsibilities of

sysops, the people who operate computerized bulletin board

systems (BBS). Written in clear English by Jonathan Wallace

and Rees Morrison, two lawyers who are both veteran sysops,

the one-hundred page book covers all aspects of the emerging

area of SYSLAW.

"More than 4,500 computer bulletin board systems are running

in this country, but the legal rights and risks of their sysops have

never been explained", says Jonathan Wallace. "Hundreds of

unknowing sysops set up BBS's on their home computers each

78 Transactor

year," according to co-author Rees Morrison, "and they don't

know what can happen to them legally, or what they can do."

SYSLAW, or sysop law, for those who run bulletin board sys

tems, concerns the legal consequences for those who run

BBS's. The total number of people who dial the thousands of

bulletin board systems is in the several hundred thousands, and

the legal issues are plentiful. More important, the law affecting

sysops is not merely unsettled, it is unestablished.

Significant legal issues have arisen in connection with BBS's,

but neither courts nor legislators have come to grips with this

technology. Scattered state and federal statutes can affect a

BBS, and the common law development of the area has been

sparse and confused. Given the dynamic activity of BBS's, the

time was ripe for a careful treatment of the many potential

problems, which include:

• What if someone posts copyrighted material on the board?

• Does it matter if you charge users or accept ads?

• What if you delete a crucial message by accident?

• Can you bar someone from using your BBS?

Being unsettled, SYSLAW might deter the development of

this telecommunications explosion. The authors believe that

BBS's offer an exciting, progressive and influential medium,

even in its infancy, that will be promoted by clarity of law and

an understanding of sysop's rights and responsibilities.

The softcover manual costs $19.00 plus $2.00 for postage and

handling. Orders and cheques may be sent to LLM Press, 150

Broadway, Suite 610, New York, NY, 10038.

SimCity, The City Simulator: Maxis Software announces the

release of SimCity, The City Simulator, for C64/C128. When

you enter SimCity you take on the role of Mayor and City

Planner of a sophisticated simulated city. You zone land, bal

ance budgets, install utilities, manipulate economic markets,

control crime, traffic and pollution and overcome natural dis

asters. You control the fate of the city.

Design, plan and grow your own Utopian dream city from the

ground up, or take over any of eight included pre-built cities

on the verge of disaster. Scenarios include: San Francisco, CA

1906, just before the great quake; Tokyo, Japan 1957, just

before a monster attack; and Boston, MA 2010, just before a

nuclear meltdown. Watch the disaster occur, gather your funds

and information and bring the city back to life.

The city is alive: you see traffic on the roads, trains on the

rails, planes in the air, even football games in the stadium. You

see population levels rise and fall, residential areas develop

from single family homes to condos to slums. Watch commer

cial and industrial areas grow or decline depending on your

skill as a strategic city planner.

While you do the planning and zoning, it is the Simulated Citi

zens, a.k.a. Sims, who move in and actually build the city.

Sims live, work, play, move, drive, and complain about taxes,

traffic, taxes, crime and taxes - just like humans.

SimCity is primarily a constructive game, but those who can't

enjoy a game without destruction can wipe out a city through

terrorism, financial mismanagement, or by evoking a natural

disaster such as an earthquake or monster attack.

SimCity comes with extensive documentation including a

User Reference, an explanation of the inner workings of the

simulation, and an essay on the History of Cities and City

Planning.

SimCity is distributed by Br0derbund and carries a retail price

of $29.95. Maxis Software specializes in System Simulations,

a new type of entertainment software, with emphasis on qual

ity graphics and sophisticated simulation techniques. Maxis

Software, 953 Mountain View Drive, Suite #113, Lafayette,

CA, 94549.

C128 CP/M Software from Cranberry Software Tools:

Cranberry Software Tools offers a variety of products includ

ing a public domain diskette containing what the vendor

describes as "an entirely new CP/M environment for the

C128 ". Included on the disk are:

• NEWSYS.COM - generates the 12/6/85 version of CP/M 3.0

• CONF.COM - CP/M 3.0 configuration utility

• CCP.COM - the famous CCP104 upgraded command

environment

• HIST.COM - command line editing accessory

The CCP104 environment allows the recall, editing and re-

execution of command lines; easy use of user areas; and

named reference to user areas. A total of 21 files are supplied,

including powerful CP/M file management utilities such as

ACOPY, CSWEEP and NSWEEP. Limited documentation is

also included. The cost of the disk is just $5.00 postpaid!

Want to try your hand at programming? Cranberry Software

Tools' PD Programming Series is an inexpensive way to get

your feet wet. The following CP/M Language packages cost

only $5.00 (!) per disk:

1. Three BASICs: BASIC5, EBASIC, ZBASIC

2. FOCAL - calculator-like stack language (sorry, no

documentation)

3. Two FORTHs: UNIFORTH, and FIG-FORTH (sorry, no

documentation)

4. LASM - Z80 Assembler

5. SAM76 - unusual symbolic processing language

6. Small-C Interpreter - fun, interactive C environment

7. Small-C Compiler - fast subset of standard C, assembler

required

8. Parasol System - powerful and complete, like COBOL

9. Draco System - powerful and complete, like C

10. E-Prolog - rule-based artificial intelligence

11. Algol/M - scientific language like Algol-60

Volume 9, Issue 5 79

12. Concurrent Pascal-S - has coprocesses like Modula-2

13. PL/0 - miniature compiler, complete with source

14. RATFOR Translator - FORTRAN never looked this good

Cranberry's Disk Reporter-128 was created with the C128

owner in mind. DR-128 takes advantage of many of the

special features found only in the C128's CP/M+. DR-128 will

display the contents of your CP/M diskettes sorted by file

name, extension, size or data. The contents of all user areas are

shown, not just area zero. Unlike many utilities written for the

older CP/M 2.2, DR-128 will display the correct amount of

free space remaining on a C128 diskette. Best of all, DR-128

will print handy diskette labels on your printer. Just $8.95.

The AlphaNote Quick Reference System from Cranberry is a

personal text database program for all computers running the

CP/M operating system (a special version customized for the

C128 is available). AlphaNote has been designed to serve as

an "intelligent memo pad" that can assist you in capturing the

large number of useful facts that bombard you during the aver

age day.

AlphaNote can store an unlimited number of free-format text

notes, with no length restrictions other than the size of your

drive. Each note can be associated with several 'key phrases'

that can assist you in finding the note after it is stored, much

like the card catalog in a library.

Partial keyword matching and case-independent keyword

matching are available to extend the power of your searches

through AlphaNote data files. No need to memorize lots of

keywords - you can choose to search through the main text of

your notes as well. You can create and use as many different

'note-bases' as you wish. Using AlphaNote is a snap, with the

program's easy-to-use, single-key menu interface.

AlphaNote can display any note using quick, random-access

disk techniques. You can call up a full-screen 'directory' of

your stored notes as an alternative to searching for a particular

entry. Notes may be quickly added and deleted, to better accom

modate the short-term importance of this type of data. The

special introductory price of AlphaNote is just $9.95 postpaid.

Also from Cranberry Software Tools, Alpha Text Tools

($39.95) is an integrated text processing system perfect for

home or small business use. The Tools are divided into six

major sections: 1) AlphaText Formatter, an embedded com

mand text processor with over 30 commands, giving the user

total control over margins, page layout, headers and footers,

numbering style, and text justification. AlphaText also fea

tures mail merge capability, automatic numbering of para

graphs and lists, table of contents generation, and user cus

tomizable printer and video control, including on-screen pre

view of the formatted text. 2) AlphaEdit Editor, for effort

less editing of both documents and program text. AlphaEdit

features over 30 single-key commands and is optimized for

use with AlphaText. 3) AlphaSpell Spelling Checker, com

plete with a 34,000 word dictionary. 4) AlphaFont Printer

Enhancer, which gives owners of Epson compatible dot-

matrix printers the capability to produce near letter quality

documents in four distinctive fonts. You can design your own

fonts or modify the fonts suppplied with the package. Cus

tom symbols may be easily created. Most European lan

guages are supported and fonts are being created for many

Middle and Far Eastern languages. AlphaFont can process

both right-flowing and left-flowing languages. 5)

AlphaMenu Interactive Environment, for easy execution

of the Tools with just a single keypress. 6) Alpha Utilities,

which perform dictionary update, text file conversion, and

font creation and modification.

The Alpha Text Tools are furnished with an example-filled

User's Guide, two quick reference pages, and a Tutorial for

new users.

An 80,000 word AlphaSpell dictionary is also available

($10.95) as is a disk with four additional fonts ($12.95).

AlphaShape ($9.95) will reformat documents that hlftve

already been formatted, such as the documentation files that

usually accompany shareware. AlphaShape reparses such doc

uments, eliminating control characters and changing pagina

tion, blank line sequences, and margins to the user's taste. It

also supports a two-column printing mode for dramatic size

reduction of the input text.

The Alpha C Tools package ($31.95) is composed of: 1)

Source Lister Utility, that produces appealing listings of

source code on the CRT, the printer, or in a disk file. Listings

are paginated; page headers contain the input filename, the

system data/time, a user-supplied commentary line, and the

file modification date/time. Each source line is displayed with

a logical nesting level to highlight the hierarchical structure of

the code. A handy table of contents lists all procedures and

functions. Reserved words can be printed in uppercase, bold

face, or both. An outlining feature permits interactive viewing

of the code by logical nest level. 2) Source Reformatter Util

ity, that automatically realigns the indentation of the source

code according to program logic. 3) Cross Reference Utility,

that completely maps all non-reserved symbols and provides

the same elegant reporting format as the Source Lister. Each

member of the C Tools has a flexible UNIX-style command line

interface.

AlphaCPP ($19.95) is a macro preprocessor that provides

powerful conditional processing features for normal text files,

and for languages lacking conditional constructs (like Turbo

Pascal V3). Support for the #define, #ifdef, #ifndef, #include,

#else, and #undef keywords.

AlphaDump is a file dumping utility that produces format

ted output on either the CRT or printer. The user can select

five dump formats: binary, octal, decimal, hexadecimal and

ASCII. Only $8.95. All prices in U.S. dollars. Contact:

Cranberry Software Tools, P.O. Box 681, Princeton Junction,

NJ, 08550-0681. Q

80 Transactor

The Potpourri Disk

Help!

This HELPful utility gives you instant

menu-driven access to text files

at the touch of a key - while any

program is running!

Loan Helper

How much is that loan really going

to cost you? Which interest rate

can you afford? With Loan Helper,

the answers are as close as your

friendly 64!

Keyboard

Learning how to play the piano?

This handy educational program

makes it easy and fun to learn the

notes on the keyboard.

Filedump

Examine your disk files FAST with

this machine language utility.

Handles six formats, including hex,

decimal, CBM and true ASCII,

WordPro and SpeedScript.

Anagrams

Anagrams lets you unscramble

words for crossword puzzles and

the like. The program uses a recur

sive ML subroutine for maximum

speed and efficiency.

Life

A FAST machine language version

of mathematician John Horton

Conway's classic simulation. Set

up your own "colonies' and watch

them grow!

War Balloons

Shoot down those evil Nazi War

Balloons with your handy Acme

Cannon! Don't let them get away!

Von Googol

At last! The mad philosopher,

Helga von Googol, brings her own

brand of wisdom to the small

screen! If this is 'Al', then it just ain't

natural!

News

Save the money you spend on

those supermarket tabloids - this

program will generate equally

convincing headline copy - for

free!

Wrd

The ultimate in easy-to-use data

base programs. WRD lets you

quickly and simply create, exam

ine and edit just about any data.

Comes with sample file.

Quiz

Trivia fanatics and students alike

will have fun with this program,

which gives you multiple choice

tests on material you have en

tered with the WRD program.

AHA! Lander

AHAI's great lunar lander program.

Use either joystick or keyboard to

compete against yourself or up to

8 other players. Watch out for

space mines!

Bag the Elves

A cute little arcade-style game;

capture the elves in the bag as

quickly as you can - but don't get

the good elf!

Blackjack

The most flexible blackjack simula

tion you'll find anywhere. Set up

your favourite rule variations for

doubling, surrendering and split

ting the deck.

File Compare

Which of those two files you just

created is the most recent ver

sion? With this great utility you'll

never be left wondering.

Ghoul Dogs

Arcade maniacs look out! You'll

need all your dexterity to handle

this wicked joystick-buster! These

mad dog-monsters from space

are not for novices!

Octagons

Just the thing for you Mensa types.

Octagons is a challenging puzzle

of the mind. Four levels of play,

and a tough 'memory' variation

for real experts!

Backstreets

A nifty arcade game, 1OO% ma

chine language, that helps you

learn the typewriter keyboard

while you play! Unlike any typing

program you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the

above programs, ALL of the above programs, on a single disk, accessed

independently or from a menu, with built-in menu-driven help and fast-loader.

The ENTIRE POTPOURRI COLLECTION

JUST $17.95 US!!

See Order Card at Center

THE TIME SAVER

Type in a lot of Transactor programs? •

Does the above time and appearance of the sky look familiar?

^Vjith The Transactor Disk, any program is just a LOAD away!

I Only $8.95 US, $9.95 Cdn. Per Issue j
6 Disk Subscription (one year)

Just $45.00 US, $55.00 Cdn. . j
(see order form at center fold)

Now Amiga Owners Can Save Time Too!
Transactor Amiga Disk #1, $12.95 US, $14.95 Cdn.

All the Amiga programs from the magazine, with complete

documentation on disk, plus our pick of the public domain!

