
Canada $4.25

USA $3.50

CO
CO

o

■ ■

00

a:

0
O

LU

O
o

O

O
O

O
LL.

LU

z

N

<
0
<

LU

Loadermaker - Take the pain out of GEOS program development

Fattening the C128 - RAM expansion aUernatives

Customizing C128 CP/M - Patches for CPM+.SYS

How random is RND? An analysis of the C64 and C128 RND routines

Inside GEOS 128 - Information you won't find anywhere else

The C64 Power C Shell - Making it work with a RAM expansion unit

Turning off write/verify - Modifying 1571 vectors

Converting 1541 disks to 1571 format

An introduction to GEOS files - Using the high-level disk routines

Product Reviews: Macro Set 1 from Xytec, X-10 Powerhouse Computer

Interface, SFX Sound Expander, What's Really Inside The C64? reviewed by

Jim Butterfield

Plus Regular columns by Todd Heimarck and Joel Rubin, Bits, and more

ThunderBear by Wayne Schmidt

U
T
I
L
I
T
I
E
S
U
N
L
I
M
I
T
E
D
,

in
c.

1
2
3
0
5

N
.
E
.
1
5
2
n
d

S
t
r
e
e
t

B
r
u
s
h

P
r
a
i
r
i
e
,
W
a
s
h
i
n
g
t
o
n
9
8
6
0
6

O
V
E
R
5
0
0
0

UN
IT
S

SO
LD

!!
!

U
n
l
i
k
e
o
u
r

co
mp

et
it

or
s,

w
e

at
Ut

il
it

ie
s
U
n
l
i
m
i
t
e
d
,

In
c.

h
a
v
e
b
e
e
n
c
o
n
c
e
n

tr
at
in

g
al
l
o
u
r

ef
fo
rt
s
in

b
r
i
n
g
i
n
g
th

e
n
e
w
e
s
t
t
e
c
h
n
o
l
o
g
y
.
T
h
e

re
su

lt
of

th
at

ef
fo
rt

is
Su
pe
rC
ar
d.

It
is

fa
r

su
pe

ri
or

to
al
l
th
e
co
py

ut
il
it
ie
s

ou
t

th
er

e
in

cl
ud

in
g:

R
a
m
b
o
a
r
d
Re

ne
ga

de
,

Da
te
l

Bu
rs

t
Ni

bb
le

r,
2
1
S
e
c
o
n
d
,

Ul
tr
ab
yt
e,

a
n
d

a
n
y

ot
he

r
b
a
c
k
u
p

ut
il

it
y
o
n

th
e
ma
rk
et
.
S
o

do
n'

t
b
e

le
d

as
tr

ay
.
W
e

wi
ll

gi
ve

yo
u

yo
ur

mo
ne

y
ba
ck

if
th
ey

ca
n

ba
ck

up
mo
re

of
th

e
la

te
st

so
ft
wa
re
,

wi
ll

t
h
e
y
?
?
?

In
a

w
o
r
d

"
N
O
!

A
L
L

S
A
L
E
S

A
R
E

F
I
N
A
L
!
!
!
"

T
h
a
t

is
th
ei

r

r
e
s
p
o
n
s
e

if
y
o
u

w
a
n
t

to
re

tu
rn

R
A
M
B
O
.

If
y
o
u
h
a
p
p
e
n

to
se

e
th

e
a
d
s
o
n
R
A
M
B
O
a
r
d

(o
ri

gi
na

l
n
a
m
e

h
u
h
)
,

th
ey

c
l
a
i
m

to
b
e

c
h
e
a
p
e
r
.

We
ll

,
th
at
's

pa
rt
ia
ll
y

tr
ue

,
b
u
t

as
is

us
ua

l,
m
o
s
t
l
y

fa
ls
e.

Fi
rs
t
y
o
u
n
e
e
d

to
b
u
y

th
ei
r
b
o
a
r
d
,

t
h
e
n
y
o
u
n
e
e
d

to
s
p
e
n
d

a
n
o
t
h
e
r

$3
4.
95

fo
r
so
ft
wa
re

to
r
u
n

th
ei

r
b
o
a
r
d
.

Th
at

m
a
k
e
s

th
e

co
st

of
R
a
m
b
o
R
e
n
e
g
a
d
e

to
be

at
le
as
t
56

9.
90

.
Bu

t
th
en

th
ey

cl
ai
m
yo

u
ca

n
us
e
ou

r
so

ft
wa

re
(w

ha
t
do
es

th
at

sa
y

ab
ou

t
th
ei
r

so
ft

wa
re

?)
.

We
ll

no
w,

th
at

m
a
y

be
ju

st
a

bi
t

of
a
wh
it
e

li
e
as

we
ll
,

wh
il
e

it
's

tr
ue

th
at

ea
rl

y,
le
ss

re
li

ab
le

ve
rs

io
ns

wo
rk

wi
th

T
H
E
I
R

th
in
g,

th
e
n
e
w

m
o
r
e

re
li

ab
le

ve
rs
io
ns

of
Su
pe
rC
ar
d

so
ft

wa
re

is
sp

ec
if

ic
al

ly
de
si
gn
ed

no
t

to
w
o
r
k

wi
th

th
ei
r
R
A
M
B
O
.

Fo
r

th
os
e

pe
op
le

th
at

ha
ve

fo
un
d

ou
t

th
at

th
e
R
A
M
B
O

a
n
d

Re
ne
ga
de

so
ft

wa
re

pa
ck
ag
e

ar
e

qu
it
e

in
te

ri
or

to
Su

pe
rC

ar
d
w
e

of
fe
r

th
e

fo
ll
ow
in
g

su
gg

es
ti

on
.

Se
nd

in
yo

ur
R
A
M
B
O

an
d

5
2
4
.
9
5

an
d
W
E
I
L

S
E
N
D
Y
O
U
T
H
E

R
E
A
L

T
H
I
N
G
—

Su
pe
rC
ar
d.

N
e
e
d
l
e
s
s

to
sa

y
y
o
u
n
e
e
d

a
pa

ir
of

hi
p

bo
ot
s

to
w
a
l
k

t
h
r
o
u
g
h

th
ei

r
c
l
a
i
m

th
at

th
ey

ar
e

th
e

be
st
.
B
y

th
e
w
a
y
,

th
ei
r
s
o
f
t
w
a
r
e

th
at

b
a
c
k
s
u
p
a
n
u
n
p
r
o
t
e
c
t
e
d

di
sk

in
50

s
e
c
o
n
d
s
,

we
ll

,
it

do
es

n'
t
e
v
e
n
u
s
e
th

e
R
A
M
B
O

to
wo
rk
.

I
su

pp
os

e
if

yo
u
ha

d
a

ch
oi

ce
of

an
O
L
D
S
M
O
B
I
L
E

or
a

Co
rv

et
te

wi
th

no
en

gi
ne

,
yo

u
wo
ul
d

st
il
l
pi

ck
th
e

Ol
ds
mo
bi
le
.

Su
pe

rC
ar
d
1
5
4
1
/
1
5
4
1
C

$
4
9
.
9
5

2
dr

iv
e
ve
rs
io
n

$
7
9
.
9
0

Su
pe

rC
ar
d

15
41
-1
1

$5
9.

95
2
dr

iv
e
ve
rs
io
n

$9
9.
90

Su
pe

rC
ar
d
1
5
7
1

$
5
9
.
9
5

2
dr

iv
e
ve
rs
io
n

$
9
9
.
9
0

Su
pe

rC
ar
d

15
41
-1
3
ve
rs
io
n

wi
ll

w
o
r
k

wi
th

m
o
s
t

c
o
m
p
a
t
i
b
l
e

dr
iv
es
.

Th
es

e
pr

ic
es

in
cl
ud
e

so
ft

wa
re

.
Y
o
u

do
n'
t

ne
ed

to
st
ea
l
an
yo
ne

el
se
's

so
ft

wa
re

to

m
a
k
e

it
wo
rk
. S
U
P
E
R
P
A
R
A
M
E
T
E
R
S

5
0
0

Pa
ck

#
1

an
d
#
2

5
0
0
P
a
c
k
#
1

■
$
2
4
.
9
5
h
a
s

th
e
v
i
n
t
a
g
e
p
a
r
a
m
e
t
e
r
s
o
n

it
th

at
n
o
o
n
e

el
se

ha
s.

T
h
i
s
p
a
c
k
c
o
m
e
s

in
a

5-
di
sk

se
t.

5
0
0

Pa
ck

#
2

■
$
2
9
.
9
5

h
a
s

al
l
th

e
m
o
s
t

cu
rr

en
t
p
a
r
a
m
e
t
e
r
s
o
n

it
.
A
n
d

p
u
t

t
o
g
e
t
h
e
r

as
o
n
l
y

Ut
il

it
ie

s
Un

lt
d.

c
a
n
.

Al
l
S
u
p
e
r
P
a
r
a
m
e
t
e
r
P
a
c
k
s

ar
e
c
o
m

pl
et
el
y
m
e
n
u

dr
iv

en
,

fa
st

a
n
d

re
li
ab
le
.
I
n
c
l
u
d
e
d
o
n

b
o
t
h
5
0
0
P
a
c
k
s

is
o
u
r

st
at
e-
of
-t
he
-a
rt

6
4
/
1
2
8
S
u
p
e
r

N
i
b
b
l
e
r

at
n
o

ex
tr
a
c
h
a
r
g
e
.

S
U
P
E
R
P
A
R
A
M
E
T
E
R
S

1
0
0
0

P
a
c
k
#
1

Ut
il

it
ie

s
U
n
l
t
d
.
h
a
s
d
o
n
e

it
ag

ai
n!

!
W
e

h
a
v
e
c
o
n
s
o
l
i
d
a
t
e
d
a
n
d
l
o
w
e
r
e
d

th
e

pr
ic
es

o
n

th
e

m
o
s
t

p
o
p
u
l
a
r

p
a
r
a
m
e
t
e
r
s

o
n

th
e

m
a
r
k
e
t

.
.

.
S
u
p
e
r
-

P
a
r
a
m
e
t
e
r
s
,

n
o
w

y
o
u

c
a
n

g
e
t

1
0
0
0

p
a
r
a
m
e
t
e
r
s
a
n
d

o
u
r

6
4
/
1
2
8

n
i
b
b
l
e
r

p
a
c
k
a
g
e

fo
r

ju
st

53
9.

95
!!

!
Th

is
is

a
c
o
m
p
l
e
t
e

10
di
sk

se
t,

th
at

i
n
c
l
u
d
e
s

e
v
e
r
y
p
a
r
a
m
e
t
e
r
w
e
h
a
v
e
p
r
o
d
u
c
e
d
.

P
A
R
A
M
E
T
E
R
S

C
O
N
S
T
R
U
C
T
I
O
N

SE
T

T
h
e

c
o
m
p
a
n
y

th
at

h
a
s

T
h
e

Mo
st

Pa
ra

me
te

rs
is

a
b
o
u
t

to
d
o

s
o
m
e
t
h
i
n
g

Un
be
li
ev
ab
le
.
W
e

ar
e

gi
vi
ng

y
o
u
m
o
r
e

of
ou
r

se
cr

et
s.

U
s
i
n
g

th
is

Ve
ry

Ea
sy

p
r
o
g
r
a
m
,

ij
wi

ll
no
t
o
n
l
y

Re
ad

,
C
o
m
p
a
r
e
a
n
d

Wr
it
e
Pa

ra
me

te
rs

fo
r
Yo
u;

it
wi
ll

al
so

Cu
st
om
iz
e
th

e
di

sk
wi

th
y
o
u
r
n
a
m
e
.

It
wi
ll

i
m
p
r
e
s
s
y
o
u

as
we
ll

as
y
o
u
r

fr
ie
nd

s.
T
h
e

"P
ar

am
et

er
Co

ns
tr
uc
ti
on

Se
t"

is
li

ke
n
o
t
h
i
n
g
y
o
u
'
v
e

ev
er

se
en

.
In

fa
ct

y
o
u

c
a
n

e
v
e
n

R
e
a
d

Pa
ra

me
te

rs
th
at

y
o
u
m
a
y

h
a
v
e

a
l
r
e
a
d
y

wr
it
te
n;

th
en

b
y

u
si

ng
yo

u
r

co
ns

tr
uc
ti
on

se
t

re
wr
it
e

it
wi

th
yo
ur

n
e
w

Cu
st
om
iz
ed

Me
nu
.

$
2
4
.
9
5

If
y
o
u
w
i
s
h

t
o
p
l
a
c
e
y
o
u
r
o
r
d
e
r
b
y
p
h
o
n
e
,
p
l
e
a
s
e

c
a
l
l

2
0
6
-
2
5
4
-
6
5
3
0
.
A
d
d

$
3
.
0
0

s
h
i
p
p
i
n
g
&

h
a
n
d

li
ng
;

$
3
.
0
0
C
O
D

o
n

al
l

o
r
d
e
r
s
,

v
i
s
a
,

M
/
C

a
c
c
e
p
t
e
d
.
D
e
a
l
e
r

I
n
q
u
i
r
i
e
s

I
n
v
i
t
e
d
.

W
O
R
L
D
'
S
B
I
G
G
E
S
T

P
R
O
V
I
D
E
R
O
F

C
6
4
/
1
2
8

U
T
I
L
I
T
I
E
S

S
o
f
t
w
a
r
e
S
u
b
m
i
s
s
i
o
n
s

In
vi
te
d

W
e

a
r
e
l
o
o
k
i
n
g

fo
r
H
A
C
K
E
R
S
T
U
F
F
:

pr
in
t

ut
il

it
ie

s,
p
a
r
a
m
e
t
e
r
s
,

t
e
l
e
c
o
m
m
u
n
i
c
a
t
i
o
n
s
,

a
n
d

t
h
e

u
n
u
s
u
a
l
.

W
e
n
o
w
h
a
v
e
o
v
e
r
1
,
0
0
0
p
a
r
a
m
e
t
e
r
s

in
s
t
o
c
k
!

LO
CK

PI
CK

-
T
H
E
B
O
O
K
S

-
fo

r
th
e
C
6
4

an
d
C
1
2
8

L
o
c
k

Pi
k

6
4
/
1
2
8
w
a
s

p
u
t

t
o
g
e
t
h
e
r
b
y

o
u
r

c
r
a
c
k

t
e
a
m
,

as
a

to
ol

fo
r
t
h
o
s
e

w
h
o

ha
ve

a
de
si
re

to
se
e

th
e

In
te
rn
al

Wo
rk
in
gs

of
a
pa
ra
me
te
r.

Th
e
bo

ok
s

gi
ve

y
o
u

St
ep

-B
y-

St
ep

In
st
ru
ct
io
ns

o
n

b
r
e
a
k
i
n
g

pr
ot
ec
ti
on

fo
r
b
a
c
k
u
p

of
10
0

cl
ea
r
a
n
d

pr
ec

is
e

th
at

a
n
y
o
n
e
c
a
n

us
e

it
.

p
o
p
u
l
a
r

p
r
o
g
r
a
m

ti
tl

es
.

U
s
e
s

H
e
s
m
o
n
a
n
d

Su
pe

re
di

t.
In

st
ru

ct
io

ns
ar

e
so

•
O
U
R
B
O
O
K
T
W
O

IS
N
O
W

A
V
A
I
L
A
B
L
E

•

B
O
O
R

1:
I
n
c
l
u
d
e
s
H
e
s
m
o
n
a
n
d

a
di

sk
wi

th
m
a
n
y

ut
il

it
ie

s
s
u
c
h

as
:
K
E
R
N
A
L

SA
VE

,
I/

O
SA

VE
,
DI

SK
L
O
G

FI
LE

a
n
d

lo
ts

m
o
r
e
,

al
l
wi

th
in
st
ru
ct
io
ns

o
n

di
sk

.

A
l
o
n
g
-
t
i
m
e

fa
vo
ri
te
.

B
O
O
K

2:
1
0
0

N
E
W

E
X
A
M
P
L
E
S
,
H
e
s
m
o
n

o
n

di
sk

a
n
d

ca
rt

ri
dg

e
pl

us
m
o
r
e

ut
il

it
ie

s
to

in
cl

ud
e:

A
Ge

ne
ra

l
Ov

er
vi

ew
on

H
o
w

to
M
a
k
e

Pa
ra

me
te

rs
a
n
d

a
Di

sk

Sc
an
ne
r.

$
1
9
.
9
5

ea
ch

O
R
B
U
Y
B
O
T
H

F
O
R

O
N
L
Y

$
2
9
.
9
5

N
o
w

wi
th

F
R
E
E
H
e
s
m
o
n

Ca
rt

ri
dg

e.

T
H
E

1
2
8
S
U
P
E
R
C
H
I
P

-
A,

B
or

C
(a
no
th
er

fi
rs

t)
A
—

T
h
e
r
e

is
a
n
e
m
p
t
y

so
ck
et

in
si

de
y
o
u
r

12
8

ju
st

wa
it

in
g

fo
r
o
u
r

Su
pe

r
Ch

ip
to

gi
ve

y
o
u
3
2
K
w
o
r
t
h

of
gr

ea
t

Bu
il
t-
in

Ut
il
it
ie
s,

al
l

at
ju
st

th
e
To

uc
h

of
a

Fi
ng
er
.
Y
o
u

ge
t

bu
il
t-
in

fe
at
ur
es
:

Fi
le

Co
pi
er
,

Ni
bb
le
r,

Tr
ac

k
&

Se
ct
or

Ed
it

or
,

Sc
re

en
D
u
m
p
,
a
n
d

e
v
e
n

a
3
0
0
/
1
2
0
0
b
a
u
d

Te
rm

in
al

P
r
o
g
r
a
m

th
at

's
16
50
,

16
70

a
n
d
H
a
y
e
s

c
o
m
p
a
t
i
b
l
e
.

Be
st

of
al

l,
it

do
es

n'
t
u
s
e
u
p
a
n
y
m
e
m
o
r
y
.
T
o

us
e,

s
i
m
p
l
y
t
o
u
c
h

a
f
u
n
c
t
i
o
n

ke
y,

a
n
d

it
r
e
s
p
o
n
d
s

to
y
o
u
r
c
o
m
m
a
n
d
.

B
—

H
A
S
S
U
P
E
R
81

UT
IL

IT
IE

S,
a
c
o
m
p
l
e
t
e

ut
il

it
y
p
a
c
k
a
g
e

fo
r
th
e
15
81
.
C
o
p
y

w
h
o
l
e

di
sk
s
f
r
o
m

15
41

or
15

71
f
o
r
m
a
t

to
15
81
.
M
a
n
y

op
ti

on
s

i
n
c
l
u
d
e

15
81

di
sk

ed
it

or
,

dr
iv

e
mo
ni
to
r,

R
a
m

wr
it
er

a
n
d

wi
ll

al
so

p
e
r
f
o
r
m
m
a
n
y
C
P
/
M
&

M
S
-
D
O
S

ut
il

it
y
fu

nc
ti

on
s.

C
—

"
C
"

IS
F
O
R
C
O
M
B
O
a
n
d

th
at

's
w
h
a
t
y
o
u

ge
t.

A
s
u
p
e
r
c
o
m
b
i
n
a
t
i
o
n

of

bo
th

ch
ip

s
A

a
n
d
B

in
o
n
e

ch
ip
,

sw
it
ch
ab
le

at
a

gr
ea

t
sa
vi
ng
s

to
yo

u.
Al

l
Ch

ip
s

In
cl

ud
e
1
0
0

Pa
ra
me
te
rs

FR
EE

!
C
h
i
p
s
A

or
B:

$
2
9
.
9
5

ea
.

C
h
i
p

C:
$
4
4
.
9
5

ea
.

S
U
P
E
R
G
R
A
P
H
I
C
S

1
0
0
0
P
A
C
K

Th
at

's
ri
gh
t!

O
v
e
r

1
0
0
0
g
r
a
p
h
i
c
s

in
a

1
0
-
d
i
s
k

se
t
fo
r
o
n
l
y

S
2
9
.
9
5
.
T
h
e
r
e
a
r
e

g
r
a
p
h
i
c
s

fo
r

vi
rt
ua
ll
y

e
v
e
r
y
t
h
i
n
g

in
th
is

p
a
c
k
a
g
e
.

T
h
e
s
e

g
r
a
p
h
i
c
s
w
o
r
k

wi
th

Pr
in
t
S
h
o
p

a
n
d

Pr
in
t

M
a
s
t
e
r
.

A
L
L
T
H
E
A
B
O
V
E

F
E
A
T
U
R
E
S
,
A
N
D
M
U
C
H

M
O
R
E
!

P
L
U
S
A

F
R
E
E

U
T
I
L
I
T
Y
D
I
S
K
w
/
S
U
P
E
R

E
X
P
L
O
D
E
!

V4
.1

.

M
A
K
E
Y
O
U
R

C-
64
,

64
-C

or
C-

12
8*

,
D-

12
8*

S
U
P
E
R
F
A
S
T

an
d
E
A
S
Y

to
us

e.

A
D
U
L
T
G
A
M
E
&

G
R
A
P
H
I
C
S
D
A
T
A

DI
SK

S
GA
ME
:
A

ve
ry

u
n
u
s
u
a
l
g
a
m
e

to
be

pl
ay
ed

b
y

a
ve

ry
Op
en

Mi
nd
ed

ad
ul
t.

It
in

cl
ud
es

a
Ca

si
no

a
n
d

Ho
us

e
of

11
1
Re

pu
te

.
Pl
ea
se
,
y
o
u

Mu
st

be
18

to
o
r
d
e
r

Ei
th

er
On

e.

D
A
T
A

•
:

Th
is

Po
pu
la
r

di
sk

w
o
r
k
s

wi
th

Pr
in

t
Sh

op
a
n
d

Pr
in
t

Ma
st
er
.

N
o
w

V
e
r
s
i
o
n

1
+

2
.
.
.

$
2
4
.
9
5

ea
.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

*

N
E
W
!
S
U
P
E
R
C
A
R
T
R
I
D
G
E

EX
PL

OD
E!

V4
.1

w
/
C
O
L
O
R
D
U
M
P

$4
4.

95
I
n
t
r
o
d
u
c
i
n
g
th
e
Wo
rl
d'
s

Fi
rs
t
Co
lo
r
Sc

re
en

D
u
m
p

in
a
ca
rt
ri
dg
e.

E
x
p
l
o
d
e
!
V
4
.
1

wi
ll

n
o
w

Su
pp

or
t

Di
re
ct
ly

f
r
o
m

th
e
sc

re
en

.
F
U
L
L
C
O
L
O
R
P
R
I
N
T
I
N
G

fo
r
th
e

Ra
in

bo
w

St
ar

N
X
-
1
0
0
a
n
d

al
so

th
e

Ok
id
at
a

1
0
&

2
0

pr
in

te
rs

.

T
h
e

Mo
st

Po
we

rf
ul

Di
sk

Dr
iv
e
a
n
d

Pr
in

te
r
Ca
rt
ri
dg
e
p
r
o
d
u
c
e
d

fo
r
th
e
C
O
M
M
O

D
O
R
E

U
S
E
R
.

Su
pe
r

Fr
ie

nd
ly

wi
th

th
e

fe
at

ur
es

m
o
s
t

a
s
k
e
d

fo
r.

•
S
U
P
E
R
F
A
S
T

bu
il

t-
in

si
ng

le
dr
iv
e

8
or

9
F
I
L
E
C
O
P
Y
,

c
o
p
y

fi
le

s
of

u
p

to

2
3
5
B
L
O
C
K
S

in
le

ng
th

,
in

le
ss

t
h
a
n

13
s
e
c
o
n
d
s
!

•
S
D
P
E
R
S
C
R
E
E
N
C
A
P
T
U
R
E
.
C
a
p
t
u
r
e
a
n
d

C
o
n
v
e
r
t
A
n
y

Sc
re

en
to
K
O
A
L
A

or

D
O
O
D
L
E
.

•
S
U
P
E
R
F
A
S
T
F
O
R
M
A
T

(8
S
E
C
'
S
)

-
pl

us
F
U
L
L
D
.
O
.
S
.
W
E
D
G
E

w
/
s
t
a
n
d
a
r
d

fo
rm

at
!

•
S
U
P
E
R
F
A
S
T
L
O
A
D
a
n
d
S
A
V
E

(5
0k

in
9
S
E
C
'
S
)
w
o
r
k
s

wi
th

al
l
C-

64
or

C-
12
8'
s

N
o

Ma
tt
er

W
h
a
t

Vi
nt

ag
e!

A
n
d

wi
th

m
o
s
t

af
te

r
m
a
r
k
e
t

dr
iv
es

E
X
C
E
P
T

th
e

15
81
,
M
.
S
.
D
.

1
o
r

2.

•
S
U
P
E
R

P
R
I
N
T
E
R

F
E
A
T
U
R
E
S

al
lo

ws
A
N
Y

D
O
T

M
A
T
R
I
X

P
R
I
N
T
E
R

e
v
e
n

1
5
2
6
/
8
0
2

to
pr

in
t
H
I
-
R
E
S
S
C
R
E
E
N
S

(u
s
i
n
g

16
s
h
a
d
e
G
R
A
Y

S
C
A
L
E
)
.

A
n
y

Pr
in

te
r

or
In
te
rf
ac
e
Co
mb
in
at
io
n
c
a
n
b
e
u
s
e
d

wi
th

S
U
P
E
R
E
X
P
L
O
D
E
!

V
4
.
1

or
V3

.0
.

•
N
E
W

an
d

I
M
P
R
O
V
E
D

C
O
N
V
E
R
T

fe
at

ur
e

al
lo
ws

a
n
y
b
o
d
y

to
co
nv
er
t

(e
ve

n

T
E
X
T
)

Sc
re
en
s

in
to

D
O
O
D
L
E

or
K
O
A
L
A

Ty
pe

Pi
ct

ur
es

w/
Fu

ll
Co

lo
r!

•
S
U
P
E
R
F
A
S
T
S
A
V
E

of
E
X
P
L
O
D
E
!
S
C
R
E
E
N
S

as
K
O
A
L
A

or
D
O
O
D
L
E

F
I
L
E
S

w
/
C
O
L
O
R
.

•
S
U
P
E
R
F
A
S
T

LO
AD
IN
G

wi
th

Co
lo
r

Re
-D

is
pl

ay
ol

D
O
O
D
L
E

or
K
O
A
L
A

fi
le
s.

•
S
U
P
E
R
F
A
S
T
L
O
A
D

or
S
A
V
E
c
a
n
b
e
T
U
R
N
E
D
O
F
F

or
O
N

wi
th
ou
t
A
F
F
E
C
T

I
N
G

th
e
R
E
S
T

of
S
U
P
E
R
E
X
P
L
O
D
E
'
S
F
E
A
T
U
R
E
S
.
T
h
e

re
st

of
E
x
p
l
o
d
e

V
4
.
1

is
st
il
l
ac

ti
ve

.

•
S
U
P
E
R
E
A
S
Y

L
O
A
D
I
N
G

an
d
R
U
N
N
I
N
G

of
A
L
L
P
R
O
G
R
A
M
S

f
r
o
m

th
e
D
I
S
K

D
I
R
E
C
T
O
R
Y
.

•
S
U
P
E
R

BU
IL

T-
IN

T
W
O
-
W
A
Y

SE
Q.

or
PR

G.
fi
le

R
E
A
D
E
R

u
s
i
n
g

th
e

D
I
S
K

D
I
R
E
C
T
O
R
Y
.

•
N
E
V
E
R

T
Y
P
E

A
FI

LE
N
A
M
E

A
G
A
I
N
w
h
e
n

y
o
u

u
s
e
S
U
P
E
R

E
X
P
L
O
D
E
'
S

u
n
i
q
u
e
L
O
A
D
E
R
S
.

•
C
A
P
T
U
R
E

40
C
O
L
U
M
N

C
or

D-
12

8
S
C
R
E
E
N
S
!

(w
it

h
op

ti
on

al
D
I
S
A
B
L
E

S
W
I
T
C
H
)
.
A
d
d

$5
.

*

S
U
P
E
R
T
R
A
C
K
E
R

Ut
il
it
ie
s
Un
li
mi
te
d
h
a
s
d
o
n
e

it
ag
ai
n.

A
t

la
st

a
n

ea
sy

w
a
y

to
fi

nd
ou

t
w
h
e
r
e

th
e

pr
ot

ec
ti

on
re
al
ly

is
.

Su
pe

r
Tr

ac
ke

r
wi

ll
di

sp
la

y
th

e
lo

ca
ti

on
of

y
o
u
r

dr
iv

e
h
e
a
d

wh
il

e
y
o
u

ar
e
l
o
a
d
i
n
g

a
pi
ec
e

of
so
ft
wa
re
.

Th
is

in
fo
rm
at
io
n

wi
ll

b
e

ve
ry

us
ef
ul
,

to
fi

nd
w
h
e
r
e

th
e
pr
ot
ec
ti
on

is
.
Su
pe
r
Tr
ac
ke
r
h
a
s

ot
he

r
us
ef
ul

op
ti

on
s
s
u
c
h

as
:

tr
ac
k
a
n
d

ha
lf
-t
ra
ck

di
sp
la
y,

8
a
n
d

9
sw

it
ch

,
de

ns
it

y
di
sp
la
y,

wr
it

e
pr
ot
ec
t

on
/o

ff
.

Th
is

i
n
c
r
e
d
i
b
l
e

li
tt
le

to
ol

is
e
n
c
a
s
e
d

in
a
h
a
n
d
s
o
m
e
b
o
x

th
at

si
ts

o
n

to
p

of
y
o
u
r

dr
iv
e.

W
o
r
k
s

w
i
t
h

al
l

C
/
6
4
/
1
2
8
a
n
d

m
o
s
t
C
/
6
4

c
o
m
p
a
t
i
b
l
e

dr
iv
es
.
S
o
m
e

m
i
n
o
r

s
o
l
d
e
r
i
n
g

wi
ll

b
e

r
e
q
u
i
r
e
d
.

In
tr

od
uc

to
ry

Pr
ic

ed
at

Ju
st

$
6
9
.
9
5

*

No other training—in school, on the job,
anywhere—shows you howto trouble-
shoot and service computers like NRI

HARD DISK

20 megabyte hard disk drive you Install
internally for greater data storage
capacity and data access speed.

PACKARD BELL COMPUTER

NECvoo dual speed (4.77 MHz/8 MHz) CPU,
512K RAM, 36OK double-sided disk drive.

DIGITAL MULTIMETER
Professional test Instrument for
quick and easy measurements.

LESSONS

ciearcut. Illustrated
texts build your
understanding
of computers
step by step.

SOFTWARE

including MS-DOS, CW

BASIC, word processing,

MONITOR
High-resolution, non-glare, 12" ttl
monochrome monitorwith tilt and
swivel base.

TECHNICAL MANUALS
With professional programs and

complete specs on Packard
Bell computer.

programs.

Only NRl walks you through the
step-by-step assembly of a powerful
XT-compatible computer system you

keep—giving you the hands-on

experience you need to work with,
troubleshoot, and service all of today's most
widely used computer systems. You get all it
takes to start a money-making career, even a

business of your own in computer service.

No doubt about it: The best way to learn to service computers is to actually

build a state-of-the-art computer from the keyboard on up. As you put the
machine together, performing key tests and demonstrations at each stage of

assembly, you see for yourselfhow each part of it works, what can go wrong,

and how you can fix it.

Only NRI—the leader in career-building, at-home electronics training for 75

years—gives you such practical, real-world computer servicing experience. Indeed,

no other training—in school, on the job, anywhere— shows you how to trouble-

shoot and service computers like NRI.

You get in-demand computer servicing skills as you

train with your own XT-compatible system—now

with 20 meg hard drive

With NRI's exclusive hands-on training, you actually build and keep the powerful
new Packard Bell VX88 PC/XT compatible computer, complete with 512K RAM and

20 meg hard disk drive.

You start by assembling and testing the "intelligent" keyboard, move on to test

the circuitry on the main logic board, install the power supply and 5 lA" disk drive,

then interface your high-resolution monitor. But that's not all.

Only NRI gives you a top-rated micro with complete

training built into the assembly process

Your NRI hands-on training continues as you install the powerful 20 megabyte hard

disk drive—today's most wanted computer peripheral—included in your course to

dramatically increase your computer's storage capacity while giving you lightning-

quick data access.

Having fully assembled your Packard Bell VX88, you take it through a complete

series of diagnostic tests, mastering professional computer servicing techniques as you

take command of the full power of the VX88's high-speed V40 microprocessor.

In no time at all, you have the confidence and the know-how to work with,

troubleshoot, and service every computer on the market today. Indeed you have

what it takes to step into a full-time, money-making career as an industry technician,

even start a computer service business ofyour own.

No experience needed, NRI builds it in

You need no previous experience in computers or electronics to succeed with NRI.

You start with the basics, following easy-to-read instructions and diagrams, quickly

DISCOVERY LAB

Complete breddboarding
system to let you design and

modify circuits, diagnose
and repair faults.

DIGITAL

LOGIC
PROBE

simplifies
analyzing digital

circuit operation.

moving from the fundamentals to

sophisticated computer servicing

techniques. Step by easy step, you

get the kind of practical hands-on

experience that makes you uniquely

prepared to take advantage of every

opportunity in today's top-growth

field of computer service.

What's more—you learn at your own

pace in your own home. No classroom

pressures, no night school, no need to

quit your present job until you're ready

to make your move. And all throughout

your training, you have the full support of your personal NRI instructor and the NRI
technical staff always ready to answer your questions and give you help whenever

you need it.

Your FREE NRI catalog tells more

Send today for your free full-color catalog describing every aspect of NRI's innovative
computer training, as well as hands-on training in robotics, video/ audio servicing,

electronic music technology, security electronics, data communications, and other

growing high-tech career fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill
Continuing Education Center, 4401 Connecticut Avenue, Washington, DC 20008.

PC/XT and XT arc registered trademarks of International Business Machines Corporation

' School of -
Electronics

McGraw-Hill Continuing Education Center

4401 Connecticut Avenue, Washington, DC 20008

MCheck one FREE catalog only

O Computers and Microprocessors

□ Robotics

□ TV/Video/Audio Servicing

[U Computer Programming

For career courses

approved under GI bill

□ check for details

□ Security Electronics

□ Electronic Music Technology

CH Basic Electronics

CH Data Communications

Name (please print) Age

Address

City/State/Zip 0000-000
I Accredited by the National Home Study Council I

Volume 9, Issue 4

Publisher

Antony Jacobson

Vice-President Operations

Jeannie Lawrence

Assistant Advertising Manager

Julie Cale

Editors

Malcolm O'Brien

Nick Sullivan

Chris Zamara

Contributing Writers

Marte Brengle

Paul Bosacki

Bill Brier

Anthony Bryant

Joseph Buckley

Jim Butterfield

William Coleman

Richard Curcio

Miklos Garamszeghy

Larry Gaynier

ToddHeimarck

AdamHerst

Robert Huehn

George Hug

Zoltan Hunt

Dennis Jarvis

Garry Kiziak

Francis Kostella

Mike Mohilo

DJ. Morriss

Noel Nyman

Adrian Pepper

Steve Punter

Robert Rockefeller

Joel Rubin

David Sanner

Stephen Shervais

Audrys Vilkas

Nicholas Vrtis

W.Mat Wakes

Cover Artist

Wayne Schmidt

Transactor
The Magazine for Commodore Programmers

Inside GEOS 128 29

by William Coleman

At last! Read it here first! What you need to know to program GEOS on the 128.

Loadermaker 34

by Nicholas J. Vrtis

Developing a GEOS program in the standard environment? This program eliminates conversion.

An Introduction To GEOS files 40

by Francis G. Kostella

A handy Icon Definer program that demonstrates the use of the high-level disk routines.

RAMifications 46

by Richard Curcio

Some suggestions for fattening the C128.

How Random is RND? 50

by D. J. Morris

The C64/C128 RND routines: The orderly generation of disorder includes some surprises...

Turning Off Write/Verify 56

by Dennis.J. Jarvis

The inner workings of the 1571's vectored operating system. Includes a BASIC program that will run

on all 8-bit Commodore computers.

Make 2 Sided 58

by DennisJ. Jarvis

Converting 1541 disks to 1571 format - ou could do it by hand but this program makes it simple.

Customizing C128 CP/M 62

by Miklos Garamszeghy

Patching the CPM+.SYS program.

Departments and Columns

Letters

Bits

8

10

Fast Graphics with SYMASS

Quickie Flash Routine

C128 ML Monitor Tricks

Command Tails

Device Presence Checker

12The ML Column

by Todd Heimarck

Ever wondered how data compression works? Todd explains the ins and outs of Huffman encoding and

crunches a verse from A. A. Milne.

The Edge Connection 22

by Joel Rubin

Joel shares his experiences with a 1700 RAM expansion unit. There's much more capability in that

128K than you might have thought. And the price is right...

Reviews

What's Really Inside the Commodore 64?
Jim Butterfield analyzes this commented disassembly

Macro Set 1

Reduce program development time with this handy package from Xytec

SFX Sound Expander

Commodore UK's hardware add-on is now making beautiful music in North America

X-10 Powerhouse Computer Interface

With an X-10, you can control the world... or at least your house.

69

70

72

75

About the cover: ThunderBear was created by Wayne Schmidt using Kwikpaint and

Artist 64. Wayne describes the picture as follows:

* 'Inspired by Kwakiutl motifs (North West Coast Indians), the subject is a

'transformation' mask design worn by shamans during initiation and ceremonial events.

During these events, the Thunderbird outer mask opens to reveal a great Bear spirit."

Transactor is published bimonthly by Croftward

Publishing Inc., 85-10 West Wilmot Street, Rich

mond Hill, Ontario, L4B 1K7. ISSN# 0838-0163.

Canadian Second Class Mail Registration No.

7690, Gateway-Mississauga, Ont. USPS Post
masters: send address changes to: Transactor,

PO Box 338, Station C. Buffalo, NY, 14209.

Croftward publishing Inc. is in no way connected

with Commodore Business Machines Ltd. or

Commodore Incorporated. Commodore and

Commodore product names are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $19 Cdn.

USA $15 US

All others $21 US

Air Mail (Overseas only) $40 US

Send all subscriptions to: Transactor., Sub

scriptions Department, 85 West Wilmot Street,

Unit 10, Richmond Hill, Ontario, Canada, L4B

1K7, (416) 764-5273. For best results, use the

postage paid card at the centre of the magazine.

Quantity Orders: In Canada: Ingram Software

Ltd., 141 Adesso Drive, Concord, Ontario, L4K

2W7, (416) 738-1700. in the USA; IPD (Interna

tional Periodical Distributors), 11760-B Sorrento

Valley Road, San Diego, California, 92121, (619)

481-5928; ask for Dave Buescher.

Editorial contributions are welcome. Only original,

previously unpublished material will be consid

ered. Program listings and articles, including

BITS submissions, of more than a few lines,

should be provided on disk. Preferred format is

1541-format with ASCII text files. Manuscripts;

should be typewritten, double-spaced, with spe

cial characters or formats clearly marked. Photos

should be glossy black and white prints. Illustra

tions should be on white paper with black ink on

ly. Hi-res graphics files on disk are preferred to

hardcopy illustrations when possible. Write to

Transactor's Richmond Hill office to obtain a writ

er's guide.

All material accepted becomes the property of

Croftward publishing Ina, except by special ar

rangement. All material is copyright by Croftward

publishing Inc. Reproduction in any form without

permission is in violation of applicable laws. Write

to the Richmond Hill address for a writer's guide.

The opinions expressed in contributed articles

are not necessarily those of Croftward publishing

Inc. Although accuracy is a major objective, Croft

ward publishing Inc. cannot assume liability for

errors in articles or programs. Programs listed in

Transactor, and/or appearing on Transactordisks,

are copyright by Croftward publishing Inc. and

may not be duplicated or distributed without per

mission.

Production

In-house with Amiga 2000 and

Professional Page

Final output by Vellum Print &

Graphic Services, Inc., Toronto

Printing

Printed in Canada by

Bowne of Canada Inc.

Using "VERIFIZER"

Transactor'sfoolproofprogram entry method

VERIFIZER should be run before typing in any long program

from the pages of Transactor. It will let you check your work

line by line as you enter the program and catch frustrating typ

ing errors. The VERIFIZER concept works by displaying a two-

letter code for each program line; you can then check this code

against the corresponding one in the printed program listing.

There are three versions of verifizer here: one each for the

PET/CBM, VIC/C64, and C128 computers. Enter the applica

ble program and RUN it. If you get a data or checksum error,

re-check the program and keep trying until all goes well. You

should SAVE the program since you'll want to use it every

time you enter a program from Transactor. Once you've RUN

the loader, remember to enter NEW to purge BASIC text

space. Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top

left of the screen in reverse field. Note that these letters are in

uppercase and will appear as graphics characters unless you

are in upper/lowercase mode (press shift/Commodore on

C64/VIC).

Note: If a report code is missing (or "--") it means we've

edited that line at the last minute, changing the report code.

However, this will only happen occasionally and usually only

on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN

on a line. If the code doesn't match up with the letters printed

in the box beside the listing, you can re-check and correct the

line, then try again. If you wish, you can LIST a range of lines,

then type RETURN over each in succession while checking

the report codes as they appear. Once the program has been

properly entered, be sure to turn VERIFIZER off with the SYS

indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0

instead of POKE 53281,0. However, VERIFIZER uses a

"weighted checksum technique" that can be fooled if you try

hard enough: transposing two sets of four characters will pro

duce the same report code, but this will rarely happen. (VERI

FIZER could have been designed to be more complex, but the

report codes would need to be longer, and using it would be

more trouble than checking the program manually), verifizer

ignores spaces so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!) Stan

dard keyword abbreviations (like nE instead of next) will not

affect the verifizer report code.

Technical info: VIC/C64 verifizer resides in the cassette

buffer, so if you're using a datasette be aware that tape opera

tions can be dangerous to its health. As far as compatibility

with other utilities goes, VERIFIZER shouldn't cause any prob

lems since it works through the BASIC warm-start link and

jumps to the original destination of the link after it's finished.

When disabled, it restores the link to its original contents.

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

CI 10 rem* data loader for "verifizer 4.0" *

LI 20cs=0

HC 30 for i=634 to 754: read a: poke i,a

DH 40 cs=cs+a: next i

GK 50:

OG 60 if cs<>15580 then print"***** data error *****": end

JO 70 rem sys 634

AF 80 end

IN 100:

ON 1000 data 76, 138, 2, 120, 173, 163, 2, 133, 144

IB 1010 data 173, 164, 2,133,145, 88, 96,120,165

CK 1020 data 145, 201, 2,240, 16,141,164, 2,165

EB 1030 data 144, 141, 163, 2, 169, 165, 133, 144, 169

HE 1040 data 2,133,145, 88, 96, 85,228,165,217

OI 1050 data 201, 13,208, 62,165,167,208, 58,173

JB 1060 data 254, 1, 133, 251, 162, 0, 134, 253, 189

PA 1070 data 0, 2,168,201, 32,240, 15,230,253

HE 1080 data 165, 253, 41, 3,133,254, 32,236, 2

EL 1090 data 198, 254, 16, 249, 232, 152, 208,229, 165

LA 1100 data 251, 41, 15, 24,105,193,141, 0,128

KI 1110 data 165,251, 74, 74, 74, 74, 24,105,193

EB 1120 data 141, 1,128, 108, 163, 2,152, 24,101

DM 1130 data 251, 133,251, 96

Transactor April 1989: Volume 9, Issue 4

VIC/C64 VERIFIZER

KE 10 rem* data loader for "verifizer" *

JF 15 rem vic/64 version

LI 20 cs=0

BE 30 for i=828 to 958:read a:poke i,a

DH 40 cs=cs+a:next i

GK 50:

FH 60 if csol4755 then print"***** data error

KP 70remsys828

AF 80 end

IN 100:

EC 1000 data 76, 74,

EP 1010 data 252, 141,

OC 1020 data 3,240,

MN 1030 data 251,169,

MG 1040 data 3, 3,

DM 1050 data 0, 160,

CA 1060 data 32,240,

NG 1070 data 133, 90,

OK 1080 data 232, 208, 229, 56,

AN 1090 data 32,210,255,169,

GH 1100 data 89, 41, 15, 24,105,

JC 1110 data 165, 89, 74, 74, 74,

EP 1120 data 32,210,255,169,146,

*****": end

3,165,251,141, 2,

3, 3, 96, 173, 3,

17, 133, 252, 173, 2,

99, 141, 2, 3, 169,

96,173,254, 1,133,

0,189, 0, 2,240,

91,200,152,

3,198, 90,

32, 240, 255,

18, 32,210,

15, 133,

32, 183,

MH 1130 data 32, 240, 255, 108, 251,

BH 1140 data 101, 89,133, 89, 96

97, 32,

74, 24,

32,210,

0, 165,

3,165

3,201

3,133

3,141

89, 162

22, 201

41, 3

16, 249

169, 19

255,165

210, 255

105, 97

255, 24

91, 24

NEW C128 VERIFIZER (40 or 80 column mode)

KL 100remsave"0:cl28vfz.ldr",8

OI 110 rem c-128 verifizer

MO 120 rem bugs fixed: 1) works in 80 column mode.

DG 130 rem 2) sys 3072,0 now works.

KK 140 rem

GH 150 rem by joel m. rubin

HG 160 rem * data loader for "verifizer cl28"

IF 170 rem * commodore cl28 version

DG 180 rem * works in 40 or 80 column mode!!!

EB 190ch=0

GC 200 for j=3072 to 3220: read x: poke j,x: ch=ch+x: next

NK 210 if cho18602 then print "checksum error": stop

BL 220 print "sys 3072,1 to enable

DP 230 print "sys 3072,0 to disable

AP 240 end

BA 250 data 170, 208, 11, 165, 253,141, 2, 3

MM260data 165,254, 141, 3, 3, 96,173, 3

AA 270 data 3, 201, 12, 240, 17,133, 254, 173

FM 280 data 2, 3,133,253,169,39,141, 2

IF 290 data 3,169, 12,141, 3, 3, 96,169

FA 300 data 0, 141, 0, 255, 165, 22, 133, 250

LC 310 data 162, 0,160, 0,189, 0, 2,201

AJ 320 data 48,144, 7,201, 58,176, 3,232

EC 330 data 208, 242, 189, 0, 2,240, 22,201

PI 340 data 32,240, 15,133,252,200,152, 41

FF 350 data 3,133,251, 32,141, 12,198,251

DE 360 data 16,249,232,208,229, 56, 32,240

CB 370 data 255, 169, 19, 32,210,255,169, 18

OK 380 data 32,210,255,165,250, 41, 15, 24

ON 390 data 105, 193, 32, 210, 255,165, 250, 74

OI 400 data 74, 74, 74, 24,105,193, 32,210

OD 410 data 255, 169, 146, 32, 210,255, 24, 32

PA 420 data 240, 255, 108, 253, 0,165, 252, 24

BO 430 data 101, 250, 133, 250, 96

The Standard Transactor

Program Generator

If you type in programs from the magazine, you might be able

to save yourself some work with the program listed on this

page. Since many programs are printed in the form of a BA

SIC "program generator" which creates a machine language

(or BASIC) program on disk, we have created a "standard

generator" program that contains code common to all program

generators. Just type this in once, and save all that typing for

every other program generator you enter!

Once the program is typed in (check the Verifizer codes as

usual when entering it), save it on a disk for future use. When

ever you type in a program generator, the listing will refer to

the standard generator. Load the standard generator first, then

type the lines from the listing as shown. The resulting program

will include the generator code and be ready to run.

When you run the new generator, it will create a program on

disk (the one described in the related article). The generator

program is just an easy way for you to put a machine language

program on disk, using the standard BASIC editor at your dis

posal. After the file has been created, the generator is no

longer needed. The standard generator, however, should be

kept handy for future program generators.

The standard generator listed here will appear in every issue

from now on (when necessary) as a standard Transactor utility

like Verifizer.

MG 100 rem transactor standard program generator

EE 110 n$="filename": rem name of program

LK 120 nd=000: sa=00000: ch=00000

KO 130 for i=l to nd: read x

EC 140 ch=ch-x: next

FB 150 if ch then print "data error": stop

DE 160 print "data ok, now creating file."

CM 170 restore

CH 180 open l,8,l,"0:"+n$

HM 190 hi=int(sa/256): lo=sa-256*hi

NA 200print#l,chr$(lo)chr$(hi);

KD 210 for i=l to nd: read x

HE 220 print#l,chr$(x);: next

JL 230 close 1

MP 240 prinf'prg file '";n$;"' created..."

MH 250 print"this generator no longer needed."

IH 260: Q

Transactor April 1989: Volume 9, Issue 4

Follow-ups and returns

Last issue this space was devoted to copy

protection. Specifically, I was upset that Com

modore GEOS is protected and Apple GEOS isn't.

Since that time I have discovered a very interesting

thing: When first released, Apple GEOS was copy

protected but the response from the Apple commu

nity was so negative that Berkeley Softworks re

moved the protection! Since then, Apple GEOS

sales figures have improved. Of course, some may

contend that sales were stimulated primarily by the

release of Apple GeoPublish, but my own feeling is

that sales of both are augmented because of the ab

sence of copy-protection.

This means there is hope! Write to Berkeley and tell

them how you feel. Maybe we can get the situation

changed. In the case of Apple GEOS, Berkeley Soft-

works has demonstrated that they are responsive to

the user community. The ball is in your court now...

The response to Paul Bosacki's hardware project in

9:2 has been phenomenal. Seems like everybody

wants more RAM! A sampling of the letters Paul

has received (and Paul's replies) have been included

in Letters. Also in this issue is an article by Richard

Curcio suggesting a similar project for the C128. In

cluded with that are the letters between Paul and

Richard and some schematics from Richard. This is

a topic that is not going to go away! Now if only the

price of RAM would come down...

In 9:3 we were 'pushing the limits' with George

Hug's Toward 2400; another article that was very

well received. I don't know how many people have

called about that. Some of them called to get the

missing data statement line from the CIA test pro

gram (see Bloops). Some were interested in incor

porating the routines in their own programs. At least

the prices on 2400 bps modems have become af

fordable...

We're pushing the limits in 'fleshware' too. By the

time you read this the Transactor editorial staff will

be 33% larger. That's right, we have a new editor.

Tim Grantham did eight Amiga Dispatches columns

for us before Don Curtis started doing it when we

started up TransAmi. Tim also recently started a

new column in TransAmi called Hard Copy. Tim

has been 'in deep' for quite a while with both the

Amiga and the 8-bit machines. We're very pleased

to welcome Tim back to Transactor. The extra man

power means we'll have time for other things, such

as eating, sleeping and breathing.

Also returning this issue are Letters and NewsBRK.

To those of you who wrote in about it or were just

wondering, they haven't been discontinued. We just

needed the space. Both departments are fairly

weighty this time.

Malcolm D. O'Brien

Transactor April 1989: Volume 9, Issue 4

L R

Please address letters to the editor to:

Letters, Transactor Magazine,

10-85 West Wilmot Street,

Richmond Hill, Ontario LAB 1K7.

A tale of woe... and a solution: I would

like to thank you all for the complimen

tary copy of Transactor containing Joel

M. Rubin's comparison review of a few

Commodore macro assemblers; my Bud

dy included. Brian Hilchie once said to

me, regarding a not so totally positive

review of his C compiler, "Bad publicity

is better than no publicity." Of course it

wasn't a bad review, or unfair. But it still

pissed me off and made me say some

gosh darn bad words.

But before I launch into any more heart

rending whining or the reason why I felt

compelled to say these bad words, I

would like to share a glimpse of the soft

ware industry through the eyes of Bud

dy's greatest fan and victim: its author;

the idea being not only to egoize on a

bit, but to try and piece together an ad

mittedly cynical software publication

theory to be considered by other users

and hackers pure in spirit.

Every hacker has dreams (in addition to

those of flying and being found inexpli

cably and embarrassingly naked in pub

lic places) of gaining recognition and re

ward for his awesome programming ac

complishments. I (except for the flying

dreams) am no different.

Before Buddy, I did a screen design and

animation utility for games program

mers called 64 Animator. Although life

on Earth (and perhaps my marriage)

could well have carried on much the

same if I had not, it wasn't bad, and ev

ery publisher that ever looked at it drew

up a contract. Except Commodore.

Commodore looked at it for about six

months and then said they weren't in the

software business anymore. I do believe

however that some of the ideas in it may

have found their way into the sprite rou

tines on the 128. (Call me paranoid; call

me a megalomaniac; just don't call me a

lawyer.) Commodore (Canada) returned

the sixty bucks I had put up to get them

to look at it in the first place; thereby, in

their expressed consideration, voiding

our non-disclosure agreement.

Richvale Telecommunications (remember

Script 641) signed up for Animator next -

then sat on it for about six months until

they went under. Next it was Pro-Line's

turn. Pro-line dinked around with it liter

ally for years before releasing it to Spin

naker who released it back to them who

released it back to me. Richard Evers'

Northern Blue Marketing Inc. contracted

to publish it next, and is currently doing

so, and - get this - has actually sent me a

royalty cheque. Richard and company

and family, I love you; I really do.

Buddy assembler was Pro-Line's idea.

The world owes Buddy to Pro-Line and

OSAP (Ontario Student Assistance Pro

gram). I even made almost enough mon

ey the first year to, say, cover my hydro

(I heat with oil). Still, it was better than

the nothing I was accustomed to. Then

Pro-Line decided to sign an agreement

for all of their products with the big

boys at Spinnaker down in Boston. And

that was that. The first quarter I actually

earned a negative royalty. Of course,

they didn't make me pay; they let me

owe it to them. Next quarter I paid Pro-

Line back from royalties based on back

collections from their own sales and I

haven't seen a nickel since. And neither

has Pro-Line from what I hear.

Anyone who bought Spinnaker's pack

age (nobody according to my percent

age) probably wondered why the name

Power Assembler is displayed above C

source code. After all, the assembler

says "Buddy" when you run it; you

have to type in "Bud" to invoke it; the

manual refers to the "Buddy System"

throughout; and C source would surely

be a wonderful source - of syntax errors.

But I would be willing to let them slide

for seemingly sticking it in a used box; I

would even be willing to ignore the fact

that they have never advertised the prod

uct - if it were not for the following:

Spinnaker apparently does not believe in

updating their releases. The version re

viewed is as old as the proverbial hills.

Buddy has been a true macro assembler

Transactor April 1989: Volume 9, Issue 4

for years; it has a vertical split-screen

editor, superior memory management,

speed, and display formatting, and even

improved documentation (although

some might still find it overly concise).

Jim Butterfield, Liz Deal, Richard Ev-

ers, Miklos Garamszeghy, Darren

Spruyt, John Lem and a zillion others

gave me valuable feedback in bringing

Buddy up to what is currently not

available from Spinnaker today. Now, I

know that hackers update their stuff

hourly and a publisher can't always be

restuffing boxes, but Spinnaker has had

the latest and greatest for over a year.

Just sitting there.

Now, I'll probably never get rich off

Buddy, but it does give me a nice, warm,

fuzzy feeling to know that someone out

there is occasionally wowed by it and

finds it useful. And it annoys the socks

off me when giants sleep in the road.

I guess my advice to hackers in search

of recognition and reward would be to

seek out the smallest publisher you can

find. Software publishers are like fish:

the bigger they are, the harder they jerk

you around. This is my theory; it is what

I have come to believe.

Transactor has been my staunchest ally

all along; always connecting me with the

right people and the right information.

Ever catering to my ever-starving ego.

You guys saved my life. I cannot thank

you enough.

I now spend my days coding medical

systems in C on Kitchener Online Data's

state of the art, 32-node, QNX network.

1 enjoy the work and the people. But the

Commodore 64 was my first and is my

deepest love. I feel bad for letting her

languish sometimes, because if it were

not for the Commodore 64 and Transac

tor I honestly believe that I would still

be painting townhouses or washing pots

for a living - instead of playing on the

virtual circuits. All the best,

Chris Miller

2 Hilda Place, Kitchener, ON N2G 1K3

As you can see, this is not your average

letter to the editor. Since it contains

some provocative material, I phoned

Chris to ask him if he would mind if we

printed it. He said that he had written it

figuring that we would publish at least

some of it. Of course, the statements

made and opinions expressed are Chris'

own. Transactor received a letter and

published it, that's all.

Since his main concern at this point, as

expressed in the letter, is the un

availability of his upgrade, I made a

suggestion and Chris agreed to it. I sug

gested that Chris supply the upgrade di

rectly. Chris was concerned that users

would think that he was just trying to

scoop up some cash by writing his letter.

I told him that I would say that the up

grade offer was my idea (and so it was).

He also didn't want to charge so much

that people would be put off and be de

nied the upgrade. We agreed that $10

was a reasonable figure and unlikely to

dissuade anyone on the basis ofcost.

Of course, the rights to Buddy are held

by Spinnaker and he can't be taking cus

tomers from them. So... if you send your

original Power Assembler disk and $10

to the address printed above, Chris will

send you the "latest and greatest" ver

sion ofBuddy with some supplementary

docs on disk. I stress that it must be the

original disk. This way, Chris is not tak

ing customers from Spinnaker. They

make their money when you purchase

Power Assembler. In effect, Chris is pro

viding customer support for their prod

uct on "volunteer plus costs plus a lit

tle" basis. Since the product is not copy

protected, you won't have to do without

while it's in the mail.

Pushing the Limits: Paul Bosacki's ar

ticle on expanding the C64's memory in

ternally has been very well received, to

put it mildly. Paul has received numer

ous letters and is still receiving them

(and replying to them) as we go to press.

In the space remaining we've included

some of these letters along with Paul's

responses. I've edited both the letters

and responses somewhat to eliminate

material which does not pertain directly

to the article. - MO

Wanted: Non-volatile 1750:1 read your

article, "Care and Feeding of the C256"

in Transactor 9:2 with great interest. I'm

writing you in the hope that you may

have an answer to a possible hardware

fix for the 1750 REU. I use it as a CP/M

RAMdisk on the C128. I'm told that it

might be possible to convert the REU

into a non-volatile RAMdisk. This ap

parently could be done by interrupting

the power supply line from the main

board inside the cartridge, inserting a

"refresher circuit" (oscillator/regulator)

and connecting this circuit to a direct

and constant power supply.

Not a battery; used, for instance, by the

Quick Brown Box. Since the REU uses

dynamic and not static RAM, a battery

wouldn't keep its charge very long, sus

taining 512K of DRAM. But rather con

necting the circuit to a transformer plug,

of the kind used to power transistor ra

dios when their batteries aren't being

used. It was suggested that a plug sup

plying 7 volts would be about right.

Does it seem to you that this would be

possible? If so, I'm not sure I'd attempt

it myself, but with the proper instruc

tions and a rough schematic, if needed,

I'd happily hand it over to an experi

enced technician.

Carl Gabler, Van Nuys, CA

And I'm afraid that all I have is bad

news for you. I too, have heard ofsuch a

hardwarefix, but only in the "wouldn't it

be great if" stages. When Ifirst received

your letter, I looked briefly into the prob

lem, and though I believe it possible, I

just haven't had the time to do anything

about it. Your note outlined the problem

exactly: external power supply, voltage

regulator and a refresher ofsome sort.

The 41256 DRAM has an onboard re

fresh counter, so all that's necessary in

the refresher is a timer (the timing's

tense) and a method of strobing *RAS

while *CAS is held low. The power con

sumption would be high, but then we've

an external power supply, so that's not a

problem.

Anyway, that's pretty much all I have to

say on the topic right now. If I get any

further with it, I'll let you know. On the

other hand, if you manage to come up

with anything, I'd appreciate hearing

Transactor 8 April 1989: Volume 9, Issue 4

about it. My REU could use the same

treatment. Thank you for your interest.

I'm sony I couldn't be ofmore help.

I just got Transactor 9:2 with your arti

cle in it. I am very interested in knowing

how you managed to squeeze 1MB into

a C64. Please send me any info you

have on the procedure. Is the 1MB also

GEOS compatible?

What other projects are in the works?

How far could the 64 be expanded?

Could another graphics chip be inter

faced to improve resolution? Could two

64s be linked to common memory to do

multitasking or parallel processing?

As you can see, I'm full of questions.

Anything you could send to answer a few

would be greatly appreciated. Thank you.

Dale Schoek, Hurst, TX

/ stuffed a meg into the 64 using two

very different techniques. The first, and

perhaps least obvious - I expanded a

1764 REU to 512K. As you may know,

this unit comes with 256K installed. Tak

ing it to 512K is as simple as opening

the unit and installing another bank of

41256's. The 150 nanosecond chips are

the ones to use. They're designated with

a -15 at the end of the chip number, i.e.

41256-15.

In order to install the extra RAM, you

will have to clear the solder rings, but

other than that, there's nothing else in

volved. Just a little proficiency with a

soldering iron, and the usual anti-static

precautions.

Now, concerning the 512K expansion

board that I have installed in my 64: it

now looks as though Transactor will be

publishing the 512K Upgrade article in

an upcoming issue. Because of this, I'm

back in development, trying to stream

line the board. So until I test out the new

board, I really wouldfeel uncomfortable

releasing that information. Keep your

eyes open; it'll be in a Transactor soon.

As well, the article will present the

driver that will configure the extra RAM

as a 1571 RAM DISK, as well as allow

the 17xx REU's and my RAM expansion

to function together. In the first article, it

was one or the other. Not both.

What other projects are in the works?

Mostly, I'm working on software right

now, and the upcoming Transactor arti

cle. I've also been looking at doing an in

ternal RAM expansion to one meg, using

one meg chips. It gets a little ridiculous

though. Through banked RAM, there's no

reason why you couldn't install

megabytes of memory into a 64 (power

supply considered). But when you consid

er that a 64 costs less than $175 and a

full megabyte of RAM $320... well, you

see what I mean. So, it stops somewhere,

probably where the cost of the memory

exceeds the orginal purchase price of the

computer. 512Kpushes it.

Concerning some of your other ques

tions here. There's no sense in adding

another VIC chip to a 64. No, it wouldn't

increase resolution. In fact, it's probably

impossible due to the way the VIC han

dles the address and data buses and re

fresh timing and bus timing, etc. What

I've always thought would be a really

neat option is a new chip that's compati

ble with the earlier VIC but offers

(through additional registers) higher

resolutions, more colours, etc. That

would be the way to go. But that's up to

Commodore, so I doubt we'll see some

thing like that. Although, I have heard

rumours that Commodore is considering

a new 8-bit computer that would be 64-

compatible. Maybe a 'turbo' 64 with en

hanced graphics and memory!

And lastly, concerning multitasking. The

512K board offers that option. The 256K

mod, as you know, keeps a certain

amount of memory common to each

bank. The 512K mod allows you,

through software, to turn off that option.

What happens then is that, with a little

bit of set-up, you have 8 absolutely sepa

rate 64K partitions. Each with its own

stack, zpage, and Kernal vectors. The

only thing that has to be handled is

reloading the IIO chips on bank switch.

You'll read all about it soon.

Some alternatives: I very much enjoyed

reading your "C256" article in Transac

tor 9:2. To my knowledge you are the

first to demonstrate a working conver

sion of this type for the C64. Now that

you have done the hard part, the rest of

us can just sit back and wait for some

cheap RAM to come along.

If convenient, I would appreciate your

sending me a list of any errors in the ar

ticle. I assume that on page 71 the AEC

switch setting under B(ii) should read

"enabled when closed", but I would like

to know about any other typos you may

have found.

Congratulations on your successful pro

ject and fine articles. I look forward to

future instalments.

Concerning typos in the article. You've

caught the glaring one. The rest are, to

my knowledge, just misspellings, and

those are mine, not T's. The only other

thing is an omission in the code. In the

header declaration, the icon is missing.

Apparently, the T is planning an errata.

[The missing icon data is included as a

"bloop" in this issue. - MO] □

NOW AVAILABLE FOR THE AMIGA

The MicroFlyte JOYSTICK, the only fully
proportional continuously variable joystick con

trol for Flight Simulator II

". . .It transforms an excellent program into a

truly realistic flight simulation system" B.A.C.E.

MICROCUBE PRODUCTS

Commodore 64/128

• MicroFlyte ATC Joystick $59.95

• Test/Calibration Disk: A diagnostic tool for your

joystick $4.95

Amiga

• MicroFlyte Joystick—Plugs into the mouse

port & works with most software . $119.95

• Analog Joystick $74.95

Include $4.00 shipping of joystick orders. FSII is

a trademark of subLOQIC Corp.

Order Direct from:

MICROCUBE

CORPORATION

P.O. Box 488

Leesburg. UA 22075

(703)777-7157

Transactor April 1989: Volume 9, Issue 4

Got an interesting programming tip, a short routine, or an unknown bit of

Commodore trivia? Send it in - ifwe use it in the bits column, we'll credit you in the

column and send you afree one-year subscription to Transactor.

Fast Graphics Primitives with SYMASS

Henry Cale, Roswell, New Mexico

Robert Huehn's excellent Fast Graphics Primitives program in

the December 1989 issue (Volume 9 Issue 2) of Transactor

works well after being assembled using SYMASS if the follow

ing minor changes are made to the assembly code: (1) Remove

the comment after SYS 700 in line 100. (2) Enter 5700 .END

as the last line of the listing. (3) Change the code starting ad

dress to 290 *=$C000 or some other safe location. At $9000

the assembled code overwrites SYMASS's symbols table which

propagates downward from symass causing symbol not

FOUND errors.

Command Tails for the C64/C128

Noel Nyman, Seattle, Washington

At a recent user group meeting, a member asked me if it was

possible to pass data to a program as part of the RUN state

ment. For example, CP/M allows you to type:

READ filename.ext

"Read" is the name of a program to be executed; CP/M loads

and runs this program. It also makes available the data "file-

name.ext", called the 'command tail', to the program READ,

which can do what it likes with the information. AmigaDos,

MS-DOS, and other operating systems also allow arguments to

be passed to programs in this way.

At first, I said that you can't do that in Commodore basic,

then I thought about it a bit and realized that you can, and

quite easily!

When RETURN is pressed on a screen line, the entire line is

transferred to an area of memory called the input buffer. The

line is tokenized during the transfer: each BASIC keyword is re

placed with a single-byte token.

RUN: "filename

On the C64, RUN can only be followed by a colon or a line

number. The operating system ignores anything that follows

the colon, but the bytes are still in the input buffer. All a pro

gram has to do is scan for the RUN token and the colon.

A zero byte indicates the end of the line in the buffer. Any

thing between the colon and the zero byte is data we can ma

nipulate in any way we choose.

Below is a simple sequential file reading program that uses the

'command tail' to get the name of the file to read.

Anything between a colon following RUN and the end of the

line is placed in BF$. Leading spaces and quote marks are dis

carded. If BF$ is null, there was no command tail and we ask

the user for a file name.

You could check for numbers, MS-DOS style switches (slash),

Unix-style options (hyphen), or anything you want. You can

do it in machine language, or keep it in BASIC, which is proba

bly fast enough.

The C128 makes the command even more useful. It allows

RUN to also LOAD the program. So,

RUN "file reader": "filename

...will LOAD the program called "file reader" from drive 0 of

device 8 and RUN it. File Reader then parses past the colon and

puts "filename" in BF$. The main program then opens the re

quested file and displays its contents on the screen.

It's best to use quotes ahead of the file name to avoid tokeniz-

ing any BASIC commands that may be part of the name.

H6 100 rem parse the input buffer for a file

NC 110 rem name following run:

E0 120 rem by noel nyman

GP 130 :

PI 140 x=512 : rem start of input buffer

6H 150 xx=592: rem change to 673 for cl28

FH 160 : if peek(x)<138 and peek(x)>0 then x=x+l: goto 160: rem 138=run token

CJ 170 : if peek(x)=0 goto 250: rem end of line in buffer

Transactor 10 April 1989: Volume 9, Issue 4

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

if peek(x)=58 then x=x+l: goto 210: rem found a colon

x=x+l: if x>xx goto 250: rem xx points to end of input buffer

goto 180

if peek(x)=32 and bf$="" then x=x+l: goto 210: rem skip leading spaces

if peek(x)=34 then x=x+l: goto 220: rem skip quotes

if peek(x)<>0 then bf$=bf$+chr$(peek(x)): x=x+l: goto 220

if bf$="" then input "enter file name: ";bf$: rem no arguments

open 15,8,15

open 2,8f2,"0:"+bf$+",s,r"

input|15,x,x$

if x>19 then print "file name = "bf$: print "disk error"x,x$: goto 390

geti2,x$

print x$;

wait 653,1,255: rem shift key pauses, shift/lock holds

if st=0 goto 320

close 2: close 15

end

Quickie Flash Routine

RJ. Poulin, Frederick, Maryland

A short and sweet 'flash' routine for the C64 is always in de

mand. Here's one I use with my notice to a forgetful user to

turn on his printer:

500 rem simple flash subroutine

510 rem r.j. poulin, frederick, md

520 f=0: print "press <return> when ready": print

530 print chr$(f)"turn on your printer!"chr$(145)

540 get a$: f=18-f: for i=l to 250: next

550 if a$Ochr$(13) then 530

560 return

C128 ML Monitor Tricks

James Devlin, Decatur, Georgia

The following pokes will turn the RESTORE key into a monitor

BRK key:

poke dec("0318"),peek(dec("0316"))

poke dec("0319"),peek(dec("0317"))

Enter the pokes and hit the restore key (you don't need the

STOP key). Your computer will BRK into the machine language

monitor, just as if it had encountered a BRK instruction. And

the best thing about this trick is that the program counter and

registers displayed will reflect exactly what the computer was

doing when you hit RESTORE!

This trick works by copying the monitor's BRK vector into the

NMI vector, so that the non-maskable interrupt generated by

tapping the restore key forces a jmp to the monitor's BRK

routine rather than the normal NMI routine.

Device Presence Checker

Paul Sawyer, Orangeville, Ontario

This machine language program will report on the presence of

a given device number. You can use it to check if the user has

his disk drive or printer plugged in and turned on before pro

ceeding with an operation.

The program is relocatable; in this listing it resides at 49152.

To use it, put the device number in location 252, then SYS

49152, and peek location 251; if the result is zero, the device

is off or not connected.

If you check for a disk drive that is present, the drive error

light will flash. Just initialize the drive and everything will be

okay.

BASIC Loader

N6 100 rem device presence checker

MJ 110 rem by paul 9 sawyer

JA 120 rem store device i in 252,

JO 130 rem sys to routine (49152),

HK 140 rem then peek(251). if value is

KJ 150 rem 0 then device is off,

LP 160 rem 1 then device is on.

IM 170 rem

NP 180 rem if device checked is a disk

DK 190 rem drive, initialize after calling

JM 200 rem routine.

KP 220 for i=49152 to 49191:read x:poke i,x:next

BM 230 data 169, 0, 133, 251, 165, 252, 170, 160

HN 240 data 0, 32, 186, 255, 169, 1, 166, 251

BC 250 data 160, 0, 32, 189, 255, 32, 192, 255

OF 260 data 165, 144, 72, 165, 252, 32, 195, 255

BG 270 data 104, 48, 4, 169, 1, 133, 251, 96

Source code

NB 300 *=$c000

OJ 310 .opt 00

OM 320 device = $fc

NK 330 onflag = $fb

NH 340 Ida |0: sta onflag

DH 350 Ida device: tax: ldy 10

FJ 360 jsr $ffba ;setlfs

CC 370 Ida fl: ldx onflag: ldy fO

JI 380 jsr $ffbd ;setnam

M& 390 jsr $ffc0 ;open

JK 400 Ida $90: pha

FA 410 Ida device: jsr $ffc3 ;close

CK 420 pla: bmi off

FI 430 on Ida |1: sta onflag

DD 440 off rts Q

LTU1T
Top-Tech International, Inc.

Advanced Computer Systems

INDUSTRY FIRST - LIFETIME COMPUTER"

SERVICE PERFECTION — Lifetime Warrantyfor C-64/128 Computers!!!

Exclusivelyfrom TOP TECH WORLD, INC.

Flat Service Rates — FAST, Professional Service

Full line of CBM computers & peripherals; Power Supplies for C-64 (3-yr warranty);

Software: Hard-to-find parts; Service Manuals; Protective Devices.

VISA, MASTER CARD, DISCOVER, AMEX

(800) 843-9901 • 1112 S. Delaware Ave., Philadelphia, PA 19147 • (215) 389-9901

Transactor 11 April 1989: Volume 9, Issue 4

The ML Column

Crunching:from order to chaos

by Todd Heimarck

It doesn't seem to make sense. Crunching reduces the size of a

file without reducing the amount of information there. How is

that possible?

If you've used programs like ARC, you know that, however it

works, it works. In this article, we'll look at the classic crunch

ing algorithm called Huffman encoding.

Huffman encoding and other compression techniques usual

ly reduce the size of a file. However, you can find mathe

maticians, computer scientists, and other theoreticians who

can prove that compression algorithms can fail. Once in a

while, you crunch a file and (surprise!) you get back some

thing that's bigger than the original. That's the chance you

take.

But that's a reasonable rule. If you owned a crunching algo

rithm that guaranteed a 20% reduction in size, you could run

the program over and over again to compress a whole encyclo

pedia into one byte. You'd just run the output into the input

until it shrank down to whatever size you wanted.

The theory: making chaos

The basic theory of crunching is that you look for patterns of

order in the input file. You then replace the patterns with

smaller codes that will later expand during the uncrunching

process. The crunched file is more chaotic and more random

(in an orderly way) than the source file.

As a very simple example, imagine that a text file contains 431

instances of the word "the". The word "qz" appears nowhere

in the file, mainly because it's not an English word. If you

search and replace "the" with "qz", you save 431 bytes. Two

letters have replaced three letters. But you've made the file

more random. At some point you run out of orderly patterns

and you can't compress any more.

A benefit of crunching is that you save space, whether it's disk

space or memory. A drawback is that it takes time to crunch

and uncrunch.

Huffman encoding, which is capitalized because it's named after

its inventor, typically reduces a file by 20 to 40 percent, some

times more. It works best on text files, which abound with space

characters between words. Text files also have a lot of charac

ters in the a-z and A-Z range. They're predictable and orderly.

Enough theory. Let's crunch something.

How it works

The writer A.A. Milne, author of "Winnie the Pooh", wrote a

poem that starts with these lines:

Of all the Knights in Appledore

The wisest was Sir Thomas Tom.

He multiplied as far as four,

And knew what nine was taken from

To make eleven.

To introduce the concepts of Huffman coding, we will crunch

those five lines. Including letters, punctuation, spaces, and five

carriage returns, there are 143 bytes to crunch.

On the first pass of the Huffman program, we count each char

acter 's frequency. Next, we sort the letters from most common

to least common. That list is used to create the Huffman codes,

which are labeled HCODES in Table 1.

Columns 1-3 list the character, the PETASCII code, and the fre

quency. Columns 4 and 5 give the Huffman code and its length

(note that the length varies in this example from 3 bits to 8 bits

and that the most frequent characters have the shortest length).

Columns 6 and 7 list the number of bits for the Huffman code

and the number of bits for the eight-bits-in-a-byte ASCII code.

Take the entry for the letter ' A', for example. It looks like this:

A 193 2 111001 6 12 16

The PETASCII code is 193 and it appears two times in the sam

ple text. The Huffman code for this particular example is

Transactor 12 April 1989: Volume 9, Issue 4

Table 1: Characters Sorted by Frequency

CHR ASC

spc* 32

e

a

n

s

i

1

t

o

r

h

w

m

<*

f

T

k

d

P

u

A

/

S

0

K

H

V

g

*The

69

65

78

83

73

76

84

79

82

72

87

77

13

70

212

75

68

80

46

85

193

44

211

207

203

200

86

71

space

as spc and

FREQ

23

14

10

8

8

7

6

6

6

5

5

5

5

5

4

4

3

3

3

2

2

2

1

1

1

1

1

1

1

character

<.

HCODE HLEN

000 3

110 3

0100 i

1000 i

1001 '

1011 i

1111 *■

00100 5

00101 5

00111 5

01100 5

01101 5

01010 5

01011 5

01111 5

10111 5

11101 5

001100 6

001101 6

011101 6

111000 6

111001 6

0111001 7

01110000 8

01110001 8

1010110 7

1010111 7

1010100 7

1010101 7

and the carriage

HBITS

69

42

40

32

32

28

24

30

30

25

25

25

25

25

20

20

15

18

18

12

12

12

7

8

8

7

7

7

7

return are

8BITS

184

112

80

64

64

56

48

48

48

40

40

40

40

40

32

32

24

24

24

16

16

16

8

8

8

8

8

8

8

listed

111001, which is 6 bits long (in another example, the code

might be something completely different). In the crunched file,

2 times 6 is 12 (frequency times length). In a normal ASCII file,

two 8-bit bytes would need 16 bits. For this character, we

crunch 16 bits down to 12, a savings oi25%.

Comparing the hbits column (630 bits) against the 8BITS col

umn (1144 bits) shows that using Huffman codes should save

45%. Actually, as we'll see in a minute, the overhead needed

for the code table wipes out the savings.

It's not at all obvious where the Huffman code 111001 for

"A" came from. We'll get to that soon. But first, let's examine

a coded line. Figure 1 shows the characters of the first line of

the poem. The Huffman code from the table above is under

each character. The bits are repackaged as 8-bit bytes, which

would be written to the crunched file. The commas would not

appear in memory or in the file; they're included to visually

separate the bits.

Figure 1: Crunching "Of all the Knights ofAppledore<"

spc a spc t spc

01110001, 01111 000, 0100 1111, 1111 000 0,0100 0110,0 110 000

$71 $78 $4F $F0 $46 $61

K spc o

1,010110 10,00 1011 10,10101 011,00 00100 1,001 000 00,101 01111,

$5A $2E $AB $09 $20 $AF

spc A e d e <

000 11100,1 001101 0,01101 111,1 110 0011,00 00101 0,0111 110 0,1011

$1C $9A $6F $E3 $0A $7C $B?

Uncrunching

Now it's time to uncrunch the file, which you may notice is a

lot more chaotic than it was before. The letter "1" repeats three

times, for example, in the original line. Not one byte repeats in

the crunched line.

Before we start to uncrunch, we should briefly review binary

trees. A 'tree' is a data structure made up of nodes. There's

always one node at the top. A node can do one of two things: it

can terminate or it can branch. If it branches, it's called a par

ent node and the nodes below are called children.

In a binary tree, the parent nodes can have only two children -

not three and not one. If you branch to the left, you find child

0. On the right is child 1. (Other kinds of trees can have more

than two children, but we're using a strictly binary tree for

Huffman codes.)

The Huffman codes listed above happen to fit into a binary

tree that's illustrated in Figure 2.

To uncrunch the Huffman codes, we need to do something

called "traversing the tree". The bit patterns of the first two

bytes look like this:

01110001, 01111000

Start at the top of the tree and read the bits from left to right.

First there's a 0, which means you move down to the left to

child 0, which happens to be a parent node. Next a 1, so move

down and right to child 1. Then right, right, left, left, left, and

right. The eight node terminates in the letter "O". Print that

letter (or send it to an output file) and go back to the top of the

tree. One left and four rights takes us to the terminating node

"f". Print it and go back to the top. The next traversal does

three quick lefts and hits the space character.

You might ask the question "What if one code is 01 and

another is 0101?" How do you know when to stop and when

to continue? If you look at the tree, you'll see that a node

Transactor 13 April 1989: Volume 9, Issue 4

spc

a

t o I r m < h w

d p

S 0

v g K H

Figure 2: The binary tree

either terminates or has children. It's impossible to have both

01 and 0101. Since the space character starts with 000, no oth

er characters start with OOOx (where x is a 0 or 1).

How to grow a tree

Of course, the next question is how do you create a binary

tree? Well, we want it to be 'weighted', which means we want

the popular characters near the top (a short path) and the

unpopular ones near the bottom (a longer path).

Let's start with a small example. Suppose you have a file with

six characters distributed like this (the "t" means "terminating

node"):

tE

tT

tA

to

tN

tQ

50

31

15

12

8

8

After sorting the frequencies, you start building nodes from

the bottom. Combine tN and tQ into a new node called pOl

(the "p" means "parent node"), which has a frequency of 8+8

or 16. It replaces the second to the last node and we delete the

last node:

tE

tT

tA

to

pOl

50

31

15

12

16

The tree is still sorted, except for the final node. Next we per

form an insertion sort, to put that node in its right place:

tE

tT

50

31

pOl

tA

to

16

15

12

(children tN and tQ)

Combine the two bottom nodes tA and tO into pO2, with a fre

quency of 27 and sort again:

tE

tT

pO2

pOl

50

31

27

16

(children

(children

tA

tN

and

and

to)

tQ)

The process continues until only two nodes remain, which are

then hooked into the node at the very top.

How to use the program

Say you want to crunch a sequential file called ZEBRA into a

sequential file called Z.HUFF. Load the Huffman program into

memory and run this program:

10 OPEN 2,8,2,"ZEBRA,S,R": SYS 49152: REM FIRST PASS

20 OPEN 3,8,3, "ZEBRA, S,R": OPEN 4, 8, 4, "Z.HUFF,S, W" : SYS 49155

The file Z.HUFF is created. In addition, the original file size and

the crunched size are printed on the screen.

To uncrunch, run this program:

10 OPEN 5,8,5, "Z.HUFF,S,R": OPEN 6, 8, 6, "OUTFILE,S,W" : SYS 49158

It's important that the files be opened as numbers 2, 3, and 4

when you crunch and 5 and 6 when you uncrunch.

Program Notes

The program has three parts: EPASSl (49152), EPASS2 (49155),

and decode (49158).
Transactor 14 April 1989: Volume 9, Issue 4

The EPASSl routine counts the bytes in COUNTEM, which stores

the frequencies in the tables CFREQLO and CFREQHI (the C

means "character"). Then it sorts the list in SORTEM, which in

turn calls ISORT, the insertion sort routine. Then MAKETREE

builds a tree. The node frequencies are stored in NFREQLO and

NFREQHI. The codes are in NCODE. The parent nodes for char

acters are in CPNODE, for nodes they're in NPNODE.

EPASS2 won't work unless EPASSl has been called first. It

sends out a set of bytes that describe the tree. First, the total

number of bytes is sent (two bytes), then the number of char

acters that branch left (the zeros) and each one's parent and

name. Next, the children who branch right (ones), the nodes

that are Os, and the nodes that are Is.

The overhead needed to describe the tree increases the size of

the file. For example, the poem above has 143 characters, but

only 29 are unique. The header needs 29 times 4 plus 2 bytes:

118 bytes in all. The 143 characters crunch down into 79

bytes, but when you add the overhead, the crunched file con

tains 197 bytes (compared to 143 in the original).

The Huffman codes follow the header. In the example above,

the letter "n" has the code 1000. The tables are arranged by

parent nodes, so to figure out the code, the program works

backwards: 0, 0, 0, 1. When it gets to the top, it reverses the

(reversed) bits to get 1000. The variable-length codes are

packed into bytes of eight bits each and sent out to the

crunched file.

The DECODE routine uncrunches Huffman codes. It sets up a

table (choname, chotype, chiname, and CH1TYPE). Note that

this is a table of children, whereas the encoding routine used a

table of parents. In the decoding process, the program gets bits

one at a time until it gets a child that's a character. Then it

goes back to the top of the tree.

How well does it work?

In some tests I ran, text files crunched best. A 15400-byte file

crunched down to 9118 bytes (from 61 disk blocks to 36).

That's a 41% savings. The pal source code from this program,

which is mostly text, reduced from 10126 bytes to 8218, a

19% savings. The SpeedScript program (all machine language)

didn't crunch very well at all, probably because of the

overhead. It shrank slightly, from 6153 bytes to 6042, a 2%

savings.

"huff.src" - source code in PALformat

IJ 100 rem save"huff.src"

PD 110 sys700

IL 120 *=49152

K0 130 .opt oo

HM 140 fstat = $90 ; file status

MH 150 getin = $ffe4

IC 160 chkin = $ffc6

01 170 chrin = $ffcf

AK

LA

GN

JP

HC

L0

AD

JA

JE

F0

OH

MH

NF

LM

PG

AK

JP

EM

AB

NN

OK

CL

KL

AB

CC

JP

KP

JO

BM

FM

FF

NP

LI

AI

GK

OP

CJ

HO

LB

JA

OH

GG

MG

HM

LI

EA

EC

FE

JA

HN

IM

DA

PB

KJ

ML

AF

OK

HG

HI

GM

OP

PK

JL

IJ

GD

NE

JM

JK

0D

PP

NP

BG

LK

EA

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

clrchn = $ffcc

close = $ffc3

chkout = $ffc9

chrout = $ffd2

bb = $c500

cfreqlo = bb+0

cfreqhi = bb+$100

ccode = bb+$200

cpnode = bb+$300

nfreqlo = bb+$400

nfreqhi = bb+$500

ncode = bb+$600

npnode = bb+$700

list = bb+$800

type = bb+$900

hbits = bb+$a00

chOtype = bb+0

chOnane = bb+$100

chltype = bb+$200

chiname = bb+$300

jmp epassl

jrop epass2

jmp decode

•

epassl = *

ldx #2

jsr chkin

jsr zeronem

jsr countem

Ida 12

jsr close

jsr clrchn

jsr sortem

jsr maketree

jsr nodeO

rts

;

zeronem = *

Ida #0

tay

zeloop sta cfreqlo,y

sta cfreqhi,y

sta ccode, y

sta cpnode,y

sta ncode,y

sta type,y

sta list,y

dey

bne zeloop

sta filelen

sta filelen+1

sta numchar

sta numnode

inc numnode

rts

;

countem = *

jsr chrin

tax

characters' frequency

code (00=0, ff=l)

parent node

nodes' freq

code

parent (0=top)

sorted list

type 00=char, ff=node

my own stack

reused variable space—child 0 type

child 0 name

encode pass one

encode pass two

decode

- open channel 2 for input

• zero out memory

• count the bytes

* close up channel 2

* sort the list

• build the tree

• the tip of the tree

save node 0 for the top

; get a character from disk

; index by .x

inc cfreqlo,x ; one more in that slot

bne bytecount

inc cfreqh:

bytecount inc filelei

bne cotest

l,x ; if 0, then inc the high byte

i

inc filelen+1

cotest ldy fstat

beq counter

ldx filelei

; file status (0 = more to come]

\ ; go back for more bytes

l

Ida filelen+1

jsr $bdcd

Ida 162

jsr chrout

rts

•

; print length, >

;

Transactor 15 April 1989: Volume 9, Issue 4

DE

NO

IL

01

GH

KL

GI

ML

IA

FG

DD

EG

HN

AP

BG

NH

EC

JE

KG

GF

BJ

ME

KN

JE

IN

GJ

EE

DJ

FG

BJ

FM

EM

JF

HJ

OM

HP

FO

FH

GN

OG

NP

PB

DP

NB

HP

AG

OA

FC

KF

JC

CH

JO

EM

KG

LO

FD

HD

GP

IP

KK

MM

LE

PL

PC

IP

CM

HC

FM

MC

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

sortem = *

ldyiO

sty listlen

sty lc

soloop ldy lc

Ida cfreqlo,y

ora cfreqhi,y

beq nochar

tya

ldy numchar

sta list,y

inc numchar

jsr isort

inc listlen

nochar inc lc

bne soloop

rts

isort = *

ldy listlen

bne isOl

rts

isOl Ida list,y

sta islist

tax

Ida type,y

sta istype

bne anode

Ida cfreqlo,x

sta islo

Ida cfreqhi,x

sta ishi

jmp isO2

anode Ida nfreqlo,x

sta islo

Ida nfreqhi,x

sta ishi

is02 = *

dey

ldx list,y

Ida type,y

bne anode2

Ida cfreqlo,x

sta testlo

Ida cfreqhi,x

sta testhi

jmp isO3

anode2 Ida nfreqlo,x

sta testlo

Ida nfreqhi,x

sta testhi

isO3 = *

Ida ishi

cmp testhi

bcc insert

bne isO4

Ida islo

cmp testlo

beq insert ,

bcc insert ,

isO4 cpyiO

bne isO2

dev

insert = *

iny

sty tempy ,

cpy listlen

bne doit

rts

Transactor

; used by the isort routine

; check if freq <> 0

; if eq, then no characters

; add it to the list

; this is the ascii code

; one more character

; insertion sort

; the list has one more member

; keep going with lc 0 to 255

; length of the list

; if = 0, skip this

; save these values

; if <>0, it's a node

* save frequencies

* go compare them

save frequencies

count backward in the list

another node

compare

insert in the list here

keep looping, maybe

not sure, so check low byte

if equal, insert

if islo < testlo, insert

else drop through

if .y = 0, drop through to insert

save the value

DI

DP

EM

IE

GB

HD

GN

AH

IC

PF

GO

ID

KO

AH

HG

OG

GN

KG

LC

HH

JM

PD

HH

HI

GB

CA

EK

NJ

LO

OJ

KI

MG

GP

NH

LJ

CL

NG

HK

FF

ML

PH

ML

AL

BN

HC

IH

CA

JM

LD

JF

PJ

ED

JD

FE

CB

IE

MD

MH

HO

KH

FL

PE

KP

NK

DC

LK

BP

IF

OJ

IL

IM

IA

HH

GA

EE

JO

16

1610 doit

1620 isloop

1630

1640

1650
1 CCf\
1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780 ;

ldy listlen ;

dey

Ida list,y

iny

sta list,y

dey

Ida type,y

invj
sta type,y

dey

cpy tempy

bne isloop

Ida islist

sta list,y

Ida istype

sta type,y

rts

1790 maketree = *

1800

1810

1820

1830 mamain

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930 fixcn

1940

1950

1960

1970

1980

1990

2000

2010 fixsr

2020

2030

2040

2050

2060

2070

2080 tsachar

2090

2100

2110

2120

2130 fixfreq

2140

2150

2160

2170

2180

2190

2200

2210

2220

ldx numchar

dex

stx listlen

ldy listlen

jsr fixcn ;

jsr fixfreq ;

jsr addnode ;

jsr isort

inc numnode

Ida listlen

cmp #1

bne mamain ;

rts

= *

ldy listlen

Ida f$ff

jsr fixsr ;

dey

Ida #0

jsr fixsr ;

rts

ldx type,y

beq tsachar ;

ldx list,y

sta ncode,x ;

Ida numnode

sta npnode,x

rts

ldx list,y

sta ccode,x

Ida numnode

sta cpnode,x

rts

= *

ldy listlen

ldx type,y

beq anotchar ;

ldx list,y

Ida nfreqlo,x

sta lowl

Ida nfreqhi,x

sta hil

imp ahead

2230 anotchar ldx listv

2240

2250

2260

2270

2280 ahead

2290

2300

2310

2320

2330

2340

2350

2360

Ida cfreqlo,x

sta lowl

Ida cfreqhi,x

sta hil

dey

ldx type,y

beq itschar ;

ldx list,y

Ida nfreqlo,x

sta Iow2

Ida nfreqhi,x

sta hi2

jmp addem

start at the end

fix the codes & nodes for y and y-1

fix the new node's frequency

add the node to the list

sort it

quit when only two nodes remain

this means code = 1

set the code/node

code = 0 on the left

itsa char

it's a node

another char

another char

April 1989: Volume 9, Issue 4

AC

JD

DL

HD

AI

IJ

EP

DK

DK

CN

LH

KH

KN

AL

EE

MA

G6

BN

DL

EJ

PC

FE

KA

OJ

GD

JI

IA

NA

GH

PE

KG

DD

EE

IK

CA

HI

AC

FD

NA

AJ

NL

DI

GN

DP

HO

HP

DI

JA

HJ

DD

LP

FL

DG

AE

EN

DA

NG

DF

IG

DE

FO

LO

HL

AD

LL

PJ

JH

EJ

ND

CF

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

itschar ldx list,y

Ida cfreqlo,x

sta Iow2

Ida cfreqhi,x

sta hi2

addem ldx numnode

dc

Ida lowl

adc Iow2

sta nfreqlo,x

Ida hil

adc hi2

sta nfreqhi,x

rts

;

addnode = *

dec listlen

ldx listlen

Ida #$ff

sta type,x

Ida numnode

sta list,x

rts

nodeO = *

ldy #1

ldx list,y

Ida #$ff

sta ncode,x

ldafO

sta npnode,x ;

dey

ldx list,y

sta ncode,x

sta npnode,x

rts

;

epass2 = *

ldx 14

jsr chkout ;

Ida 10

sta outlen

sta outlen+1 ;

jsr header ;

jsr encfile ;

Ida U

jsr close

Ida #3

jsr close

jsr clrchn

ldx outlen

Ida outlen+1

jsr $bdcd

rts

header = *

Ida filelen

jsr chrout

Ida filelen+1

jsr chrout ;

ldy §0

ldx 10

charO Ida cfreqlo,x

ora cfreqhi,x ;

beq headO

Ida ccode,x

bne headO ;

txa

sta hbits,y

iny

Transactor

type of a parent is always a node

add the node number to the list

the parent is node 0 at the top

channel 4 for writing

zero out file length

send the header bytes

send the encoded file

print crunched length

length of input file

is this char in file

if no freq, doesn't exist

ignore $ff

push on temp stack

AH

IJ

JM

IJ

NP

NE

AL

PI

FJ

AO

JN

AC

JM

ON

OP

FC

FF

EC

JI

KN

MD

LB

DC

CK

DJ

MK

FF

KG

MI

DL

KD

LO

KL

PB

BL

CN

BL

JL

LD

NP

CE

LO

AA

EC

JE

CN

BI

AF

FL

IE

IG

PE

GC

GI

FH

LM

JB

PJ

FP

HA

KH

MA

ID

KO

HO

BH

JD

HI

NA

DG

GK

KD

17

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

3740

3750

3760

3770

3780

headO inx

bne charO

tya

pha

jsr chrout

jsr sendchar

ldy 10

ldxfO

charl Ida ccode,x

beq headl

txa

sta hbits,y

iny

headl inx

bne charl

tya

pha

jsr chrout

jsr sendchar

;

ldy #0

ldx #1

pnodeO Ida ncode,x

bne head2

txa

sta hbits,y

iny

head2 inx

cpx numnode

bne pnodeO

tya

pha

jsr chrout

jsr sendnode

ldy t0

ldx #1

pnodel Ida ncode,x

beq head3

txa

sta hbits,y

iny

head3 inx

cpx numnode

bne pnodel

tya

pha

jsr chrout

jsr sendnode

;

ldy #4

addloop pla

clc

adc outlen

sta outlen

Ida fO

adc outlen+1

sta outlen+1

dey

bne addloop

asl outlen

rol outlen+1

clc

Ida outlen

adc #6

sta outlen

Ida fO

adc outlen+1

sta outlen+1

rts

'*

; send f of Ochildren and then names

; ignore $00

; push on temp stack

; send # of lchildren and then names

; ignore $ff

; push on temp stack

; send # of Onodes and then names

; ignore $00

; push on temp stack

; send 1 of lnodes and then names

April 1989: Volume 9, Issue 4

HM

JE

FA

PI

KK

MC

H6

HL

KA

OJ

ND

NK

EH

DP

OA

AJ

LM

BE

06

CA

AP

CK

FK

LO

OH

NO

IM

OE

DM

OD

FK

N6

06

6H

JN

NN

FI

CA

PH

06

HO

DL

HA

EC

MP

KI

HO

PJ

OL

HM

NA

PJ

JC

IH

NA

FE

60

60

F6

ED

EF

P6

6E

AD

EM

LM

HH

NC

BM

KM

K6

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3940

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

4240

4250

4260

4270

4280

4290

4300

4310

4320

4330

4340

4350

4360

4370

4380

4390

4400

4410

4420

4430

4440

4450

4460

4470

4480

4490

sendchar

sendnode

i

encfile :

enloop

lastone

finish

;

walkup =

uploop

upout

;

walkdown

Transactor

dey

ldx hbits,y

Ida cpnode,x

jsr chrout ;

txa

jsr chrout ;

cpy §0

bne sendchar

rts

dey

ldx hbits,y

Ida npnode,x

jsr chrout ;

txa

jsr chrout ;

cpy §0

bne sendnode

rts

= *

inc filelen+1

Ida 18

sta outbits ;

jsr walkup ;

jsr walkdown ;

dec filelen

bne enloop

dec filelen+1

bne enloop ;

ldx outbits

cpx |8

beq finish

asl outbyte

dex

bne lastone

ldx |4

jsr chkout

Ida outbyte

jsr chrout ;

inc outlen

bne finish

inc outlen+1

rts

*

ldx 13

jsr chkin

jsr chrin

tax

ldyiO

Ida ccode,x

sta hbits,y

iny ;

Ida cpnode,x

beq upout

tax

Ida ncode,x

sta hbits,y

iny

Ida npnode,x

bne uploop ;

dey

rts

= *

Ida hbits,y

rol

rol outbyte ;

dec outbits

beq gotabyte ;

send parent's name

send name

send parent's name

send name

8 bits in a byte

walk up the tree

output the byte

keep going while the characters are coining

send the last one

get the next input byte

first code

if parent is zero, exit

get the code and save it

branch if not parent 0

build a byte a bit at a time

if outbits = 0, 8 bits are ready

FI

CH

CD

60

CD

JO

PB

MJ

JB

FD

OB

E6

LD

LK

DL

HL

JN

EL

FM

DK

DP

6H

JK

KI

EK

AJ

OP

LK

KA

6P

LI

KN

HM

JM

BB

HC

BK

MRran

KH

JD

CI

AH

DA

CF

CE

BE

MI

PJ

KB

EP

HF

FL

KP

KO

LH

KM

HL

LI

BA

HB

DJ

M6

EN

KK

CH

E6

DP

CE

CD

DA

MH

PI

MA

EO

18

4500 downtest

4510

4520

4530

4540 ;

4550 gotabyte

4560

4570

4580

4590

4600

4610

4620

4630

4640 reset8

4650

4660

4670 ;

4680 decode =

4690

4700

4710

4720

4730

4740

4750

4760 chiO

4770

4780

4790 delpl

4800

4810

4820

4830

4840

4850

4860
AQ1(\ .
HOIv i

4880 chil

4890

4900

4910 delp2

4920

4930

4940

4950

4960

4970

4980

4990 ;

5000 parO

5010

5020

5030 delp3

5040

5050

5060

5070

5080

5090

5100

5110 ;

5120 parl

5130

5140

5150 delp4

5160

5170

5180

5190

5200

5210

5220

5230 ;

dey

cpy 1255

bne walkdown

rts

sty tempy

ldx #4

jsr chkout

Ida outbyte

jsr chrout ;

ldy tempy

inc outlen ;

bne reset8

inc outlen+1

Ida 18

sta outbits

bne downtest ;

*

ldx f5

jsr chkin ;

jsr chrin

sta filelen

jsr chrin

sta filelen+1

inc filelen+1

jsr chrin ;

beq chil

sta lc

jsr chrin

tax

jsr chrin

sta ch0name,x

Ida §0

sta ch0type,x

dec lc

bne delpl

jsr chrin ;

beq parO

sta lc

jsr chrin

tax

jsr chrin

sta chlname,x

Ida fO

sta chltype,x

dec lc

bne delp2

jsr chrin

beq parl

sta lc

jsr chrin

tax

jsr chrin

sta ch0name,x

Ida #$ff

sta ch0type,x

dec lc

bne delp3

jsr chrin ;

beq bitter

sta lc

jsr chrin

tax

jsr chrin

sta chlname,x

Ida #$ff

sta chltype,x

declc

bne delp4

end of walkdown

send a character

increment length of output file

branch always

channel 5 is input

how many childO's

loop counter

how many childl's

loop counter

how many parentO's

loop counter

how many parentl's

loop counter

April 1989: Volume 9, Issue 4

P6

N6

OP

HD

LJ

KL

EK

JL

PD

6J

IK

OP

BD

HH

MJ

PC

LE

MM

A6

MK

JN

AM

HJ

AO

AA

6J

PK

JD

6A

BA

HP

AH

MO

JJ

CM

EN

NL

KO

BD

JP

LA

FM

P.T

KM

FC

PK

LD

DM

PF

OE

CO

MC

EL

OJ

IE

NA

MA

JC

OA

DA

NK

66

EO

FH

NM

EK

DH

OL

01

JA

ME

EF

OF

5240 bitter =

5250

5260

5270 outloop

5280

5290

5300

5310

5320

5330 inloop

5340

5350

5360 itsaO =

5370

5380

5390

5400

5410 nextbit

5420

5430

5440

5450 ;

5460 itsal =JlVv lUoQJl

5470

5480

5490

5500

5510

5520 ;

5530 printit

5540

5550

5560

5570

5580

5590

5600

5610 tothetoj

5620

5630

5640

5650

Rfifif) •JuOU i

5670 cleanup
CCOfi
5680

5690

5700

5710

5720

5730

5740 ;

5750 filelen

5760 numchar

5770 numnode

5780 lc

5790 listlen

5800 islist

5810 istype

5820 islo

5830 ishi

5840 testlo

5850 testhi

5860 tempy
coin l «.,i
5870 low!

5880 hil

5890 Iow2

5900 hi2

5910 outlen

5920 outbyte

5930 outbits

5940 huffer

5950 node

5960 numbits

Transactor

*

Ida HO

sta node

ldx #5

jsr chkin

jsr chrin

sta huffer
1 J« 110
Ida #8

sta numbits

ldy node

rol huffer

bcs itsal
*

Ida chOname

sta node

>y

ldx ch0type,y

beq printit

= *

dec numbits

bne inloop

beq outloop

*

Ida chlname

sta node

ldx chltype

beq printit

bne nextbit

ldx #6

jsr chkout

Ida node

jsr chrout

dec filelei

got 8 bits

the node is the parent

get a bit into carry

if cs, the bit is 1

- get the name of child 0

* who is the new parent/node

* does it terminate

• yes, go print

,y ; get the name of child 1

; who is the new parent/node

i,y ; does it terminate

; yes, go print

l

bne tothetop

dec filelen+1

) Ida fO

sta node

Ida filelei

; back up to node 0 at the top

i

ora filelen+1

bne nextbii

— X
S «

1 Jo ilE
Ida 85

jsr close

Ida 16

jsr close

jsr clrchn

rts

= *

= *+2

= *+3

= *+4

= *+5

= *+6

= *+7

= *+8

= *+9

= *+10

= *+ll

= *+12

= islo

= ishi

= testlo

= testhi

= *+13

= *+15

= *+16

= islo

= ishi

= testlo

length of sre file

f of chars

i of nodes

loop counter

length of list, used by isort routine

temporary storage for list, type, freqlo,

and freqhi

islo/hi is tested against testlo/hi

for insertion sort

temp storage for .y

output file length

the (crunched) huffman byte to send out

number of bits (when it=8, the byte gets sent)

huffman byte (when uncrunching)

the child node (either another node or a char)

number of bits

LB

FB

HH

100 rem generator for "object"

110 n$="objecf : rem name of program

120 nd=1178: sa=49152: ch=173041

(for lines 130-260,

H6

NP

MB

El

BB

CF

PA

EB

HI

OL

MH

EJ

MF

DK

DA

MI

LJ

HP

BP

BA

CI

01

61

LC

PN

MP

IA

PI

PI

AD

CA

16

PH

BE

NO

CH

ED

LF

FJ

IP

LO

CJ

MA

IA

MN

IM

FI

DF

6A

JE

JJ

FO

6D

JD

MB

60

JP

CA

HF

EF

AN

FE

IL

6K

LE

MH

EJ

NF

JF

BB

HN

19

1000 data 76,

1010 data 195,

1020 data 192,

1030 data 255,

1040 data 62,

1050 data 168,

1060 data 0,

1070 data 153,

1080 data 232,

1090 data 156,

1100 data 96,

1110 data 208,

1120 data 208,

1130 data 232,

1140 data 205,

1150 data 160,

1160 data 172,

1170 data 198,

1180 data 0,

1190 data 238,

1200 data 96,

1210 data 0,

1220 data 206,

1230 data 197,

1240 data 163,

1250 data 141,

1260 data 196,

1270 data 208,

1280 data 189,

1290 data 192,

1300 data 0,

1310 data 205,

1320 data 162,

1330 data 5,

1340 data 166,

1350 data 172,

1360 data 153,

1370 data 153,

1380 data 234,

1390 data 161,

1400 data 196,

1410 data 32,

1420 data 193,

1430 data 159,

1440 data 159,

1450 data 169,

1460 data 206,

1470 data 203,

1480 data 190,

1490 data 196,

1500 data 190,

1510 data 189,

1520 data 202,

1530 data 0,

1540 data 189,

1550 data 0,

1560 data 0,

1570 data 141,

1580 data 205,

1590 data 0,

1600 data 24,

1610 data 0,

1620 data 157,

1630 data 159,

1640 data 157,

1650 data 190,

1660 data 169,

1670 data 205,

1680 data 162,

1690 data 167,

1700 data 32,

see the standard generator on page 5)

9, 192, 76, 32, 194, 76, 172

162, 2, 32, 198, 255, 32, 38

32, 81, 192, 169, 2, 32, 195

32, 204, 255, 32, 120, 192, 32

193, 32, 6, 194, 96, 169, 0

153, 0, 197, 153, 0, 198, 153

199, 153, 0, 200, 153, 0, 203

0, 206, 153, 0, 205, 136, 208

141, 154, 196, 141, 155, 196, 141

196, 141, 157, 196, 238, 157, 196

32, 207, 255, 170, 254, 0, 197

3, 254, 0, 198, 238, 154, 196

3, 238, 155, 196, 164, 144, 240

174, 154, 196, 173, 155, 196, 32

189, 169, 62, 32, 210, 255, 96

0, 140, 159, 196, 140, 158, 196

158, 196, 185, 0, 197, 25, 0

240, 16, 152, 172, 156, 196, 153

205, 238, 156, 196, 32, 161, 192

159, 196, 238, 158, 196, 208, 224

172, 159, 196, 208, 1, 96, 185

205, 141, 160, 196, 170, 185, 0

141, 161, 196, 208, 15, 189, 0

141, 162, 196, 189, 0, 198, 141

196, 76, 209, 192, 189, 0, 201

162, 196, 189, 0, 202, 141, 163

136, 190, 0, 205, 185, 0, 206

15, 189, 0, 197, 141, 164, 196

0, 198, 141, 165, 196, 76, 245

189, 0, 201, 141, 164, 196, 189

202, 141, 165, 196, 173, 163, 196

165, 196, 144, 17, 208, 10, 173

196, 205, 164, 196, 240, 7, 144

192, 0, 208, 196, 136, 200, 140

196, 204, 159, 196, 208, 1, 96

159, 196, 136, 185, 0, 205, 200

0, 205, 136, 185, 0, 206, 200

0, 206, 136, 204, 166, 196, 208

173, 160, 196, 153, 0, 205, 173

196, 153, 0, 206, 96, 174, 156

202, 142, 159, 196, 172, 159, 196

95, 193, 32, 141, 193, 32, 244

32, 161, 192, 238, 157, 196, 173

196, 201, 1, 208, 231, 96, 172

196, 169, 255, 32, 110, 193, 136

0, 32, 110, 193, 96, 190, 0

240, 13, 190, 0, 205, 157, 0

173, 157, 196, 157, 0, 204, 96

0, 205, 157, 0, 199, 173, 157

157, 0, 200, 96, 172, 159, 196

0, 206, 240, 18, 190, 0, 205

0, 201, 141, 162, 196, 189, 0

141, 163, 196, 76, 182, 193, 190

205, 189, 0, 197, 141, 162, 196

0, 198, 141, 163, 196, 136, 190

206, 240, 18, 190, 0, 205, 189

201, 141, 164, 196, 189, 0, 202

165, 196, 76, 221, 193, 190, 0

189, 0, 197, 141, 164, 196, 189

198, 141, 165, 196, 174, 157, 196

173, 162, 196, 109, 164, 196, 157

201, 173, 163, 196, 109, 165, 196

0, 202, 96, 206, 159, 196, 174

196, 169, 255, 157, 0, 206, 173

196, 157, 0, 205, 96, 160, 1

0, 205, 169, 255, 157, 0, 203

0, 157, 0, 204, 136, 190, 0

157, 0, 203, 157, 0, 204, 96

4, 32, 201, 255, 169, 0, 141

196, 141, 168, 196, 32, 74, 194

27, 195, 169, 4, 32, 195, 255

April 1989: Volume 9, Issue 4

KB

1710

HA 1720

DE 1730

II 1740

CJ 1750

LA 1760

LL 1770

6E 1780

AA 1790

DO 1800

1810

1820

1830

PF 1840

HM 1850

BE 1860

KG 1870

LF 1880

PL 1890

PK 1900

AM 1910

GP 1920

MK 1930

CJ 1940

JO 1950

LP 1960

CJ 1970

OF 1980

CP 1990

OG 2000

JB 2010

ME 2020

BA 2030

BG 2040

HA 2050

KJ 2060

EN 2070

HC 2080

JL 2090

IB 2100

KJ 2110

FJ 2120

GK 2130

CF 2140

FN 2150

LJ 2160

IB 2170

FA 2180

10 2190

HN 2200

FO 2210

PM 2220

KN 2230

NA 2240

FN 2250

OP 2260

NB 2270

LC 2280

AC 2290

AC 2300

DF 2310

CM 2320

EE 2330

OO 2340

JI 2350

MF 2360

NN 2370

MN 2380

KI 2390

KE 2400

OC 2410

FK 2420

GL 2430

AO 2440

GC 2450

IL 2460

GC 2470

data 169,

data 174,

data 189,

data 173,

data 162,

data 240,

data 153,

data 72,

data 0,

data 138,

data 152,

data 160,

data 5,

data 157,

data 255,

data 189,

data 207,

data 152,

data 160,

data 167,

data 168,

data 46,

data 6,

data 196,

data 207,

data 32,

data 136,

data 210,

data 208,

data 141,

data 195,

data 196,

data 240,

data 162,

data 32,

data 238,

data 255,

data 0,

data 200,

data 0,

data 136,

data 196,

data 255,

data 4,

data 210,

data 208,

data 170,

data 255,

data 207,

data 32,

data 32,

data 0,

data 158,

data 23,

data 32,

data 157,

data 32,

data 32,

data 0,

data 158,

data 23,

data 32,

data 157,

data 169,

data 198,

data 169,

data 46,

data 141,

data 206,

data 0,

data 240,

data 255,

data 154,

data 0,

data 155,

data 255,

data 255,

3, 32,

167, 196,

96, 173,

155, 196,

0, 189,

10, 189,

0, 207,

32, 210,

162, 0,

153, 0,

72, 32,

0, 162,

138, 153,

196, 208,

32, 8,

0, 203,

200, 232,

72, 32,

4, 104,

196, 169,

196, 136,

168, 196,

141, 167,

141, 168,

189, 0,

210, 255,

190, 0,

255, 138,

238, 96,

170, 196,

206, 154,

208, 240,

25, 14,

4, 32,

210, 255,

168, 196,

32, 207,

199, 153,

240, 13,

207, 200,

96, 185,

206, 170,

208, 239,

32, 201,

255, 172,

3, 238,

196, 208,

32, 207,

255, 141,

207, 255,

207, 255,

198, 169,

196, 208,

141, 158,

207, 255,

0, 199,

207, 255,

207, 255,

198, 169,

196, 208,

141, 158,

207, 255,

0, 199,

0, 141,

255, 32,

8, 141,

162, 196,

163, 196,

164, 196,

200, 141,

2, 208,

173, 163,

196, 208,

141, 163,

196, 208,

169, 6,

96

195, 255,

173, 168,

154, 196,

32, 210,

0, 197,

0, 199,

200, 232,

255, 32,

189, 0,

207, 200,

210, 255,

1, 189,

0, 207,

240, 152,

195, 160,

240, 5,

236, 157,

210, 255,

24, 109,

0, 109,

208, 237,

24, 173,

196, 169,

196, 96,

200, 32,

192, 0,

207, 189,

32, 210,

238, 155,

32, 84,

196, 208,

174, 170,

169, 196,

201, 255,

238, 167,

96, 162,

255, 170,

0, 207,

170, 189,

189, 0,

0, 207,

196, 240,

96, 140,

255, 173,

166, 196,

168, 196,

218, 162,

255, 141,

155, 196,

240, 23,

170, 32,

0, 157,

236, 32,

196, 32,

157, 0,

206, 158,

240, 23,

170, 32,

255, 157,

236, 32,

196, 32,

157, 0,

206, 158,

163, 196,

207, 255,

164, 196,

176, 18,

190, 0,

208, 232,

163, 196,

236, 162,

196, 32,

3, 206,

196, 173,

204, 169,

32, 195,

32, 204, 255

196, 32, 205

32, 210, 255

255, 160, 0

29, 0, 198

208, 5, 138

208, 235, 152

245, 194, 160

199, 240, 5

232, 208, 243

32, 245, 194

0, 203, 208

200, 232, 236

72, 32, 210

0, 162, 1

138, 153, 0

196, 208, 240

32, 8, 195

167, 196, 141

168, 196, 141

14, 167, 196

167, 196, 105

0, 109, 168

136, 190, 0

210, 255, 138

208, 238, 96

0, 204, 32

255, 192, 0

196, 169, 8

195, 32, 122

245, 206, 155

196, 224, 8

202, 208, 250

173, 169, 196

196, 208, 3

3, 32, 198

160, 0, 189

200, 189, 0

0, 203, 153

204, 208, 243

42, 46, 169

6, 136, 192

166, 196, 162

169, 196, 32

238, 167, 196

169, 8, 141

5, 32, 198

154, 196, 32

238, 155, 196

141, 158, 196

207, 255, 157

0, 197, 206

207, 255, 240

207, 255, 170

200, 169, 0

196, 208, 236

141, 158, 196

207, 255, 157

0, 197, 206

207, 255, 240

207, 255, 170

200, 169, 255

196, 208, 236

162, 5, 32

141, 162, 196

172, 163, 196

185, 0, 198

197, 240, 20

240, 214, 185

190, 0, 199

6, 32, 201

210, 255, 206

155, 196, 169

154, 196, 13

5, 32, 195

255, 32, 204

□

New! Improved!

TRANSBASIC 21
with SYMASS1

"I used to be so ashamed of my dull, messy code, but

no matter what I tried I just couldn't get rid of those

stubborn spaghetti stains!11 writes Mrs. Jenny R. of

Richmond Hill, Ontario. 'Then the Transactor people

asked me to try new TransBASIC 2, with Symass®.

They explained how TransBASIC 2, with its scores of

tiny 'tokens1, would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in

giving it a try. Well, all it took was one load and I was

convinced! TransBASIC 2 went to work and got my

code looking clean as new in seconds! Now I'm telling

all my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass, the symbolic assembler.

Package contains all 12 sets of TransBASIC modules

from the magazine, plus full documentation. Make your

BASIC programs run faster and better with over 140

added statement and function keywords.

Disk and Manual $17.95 US, $19.95 Cdn.

(see order card at center and News BRK for more info)

TransBASIC 2

"Cleaner code, load after load!11

Transactor 20 April 1989: Volume 9, Issue 4

FOR COMMODORE 64/128

RAPIUB
AND FOR CP/M COMPUTERS

So all your friends have

IBM's and Macs?

Now you can feel

sorry for them.

THE SUPERFAST PARALLEL DOS FOR THE COMMODORE 64/128 AND 1541

You're a Commodore owner. YouVe got great

colors and fantastic sound, dynamic features

that IBM and Mac owners can only dream of.

YouVe got it all - except speed.

Well, you don't have to be left in the dust

anymore! Lawrence Hiler, one of the original

"Basement Boys", brings you the most exciting

development in the history of Commodore

computers - RapiDos! Packed with features,

RapiDos will transform your slug into a bullet -

just take a look at the chart below!

Get your RapiDos, then invite your IBM and

Mac friends over to see your "new" super

computer. But be nice - make sure they're sitting

Sample RapiDos Features:

• ALL disk access commands execute at superfast speeds!

• Designed to support multiple drives I

• On board DOS Wedge / Screen Dump / M-L Monitor!

• Centronics parallel printer support available!

• Fully Commodore compatible & your cartridge port is left free!

RapiDos Professional Features:

• Gives even faster disk access than RapiDos!

• 8K RAM track buffering and hardware GCR conversion!

• Provides 40 track extension (749 blocks FREE)!

• Adds 20 NEW disk commands (lock files, rename disk, etc)!

SPECIAL: RAMBOard™ capabilities are built in! RapiDos Pro

can use Maverick™ parameters to backup some of the

newest, hottest titles on the market today!

aown Deiore you dio\

Function

Lr>ad 202 blocks

Save 202 blocks

Formal 35 tracks

v inem awayi

Normal DOS

128 seconds

196 seconds

90 seconds

Parallel Utilities Disk

RapiDos

15 seconds

98 seconds

24 seconds

Available For Both

RapiDos Pro

3 seconds

8 seconds

18 seconds

Venlon* - Only $19.95

Your System

?

?

?

RapiDos - Only $49.95 / RapiDos Professional - Only $119.95
These prices are for a standard C-64 and 1541 drive. RapiDos is avaiiabe for other Commodore configurations, but prices do vary -

contact us for details. RapiDos requires a socketed kemal ROM U4 in your C-64. RapiDos is easily upgradeabie to the Professional

version. The RapiDos Professional drive controller is Q1987 mts data GbR, the creators of the best parallel systems in Europel

• A Hiler Design •

THE MSD MASS DUPLICATOR

// You're Looking For Speed, You've Come To The Right Place
No one will deny that a stock Coorvette is a fast car. But in the hands of a knowledgeable expert, it can get

faster. Much faster. Lawrence Hiler is a Commodore hardware expert. The first time he saw an MSD SD-2, he

liked what he saw. But he knew it could go faster.

Much faster.

The MSD Mass Duplicator is firmware that turns an ordinary SD-2 into a professional, high speed disk copying

system of unequaled performance. What kind of performance? How about:

• 15 second backup of standard formatted disks!

• 18 second full GCR QuickNibble for archiving protected disks!

• 9 second disk format - even for two disks at the same time!

Not bad, eh? But that's not all • our AutoCopy ROM Option allows you to use your SD-2 WITHOUT having it

connected to your Commodore computer at all! Your MSD is transormed into a DEDICATED High speed
duplication machine - a machine so fast and reliable that it is the same system we use here at Software Support
to produce our own commercial software!

If You're lucky enough to own an MSD SD-2, you're just a simple, solderless, plug-in step away from owning

the finest, fastest high speed disk duplicator we've ever seen. Why waste any more time - order Mass Dupicator
today!

THE MSD MASS DUPLICATOR/ONLY $39.95
Special Bonus-Now Includes Our Dynamic AutoCopy ROM Option FREE!

TURBO 64
Life In The Fast Lane

What does a Turbo 64 cartridge have in common with a Lamborgini? They're both fast. Expensive.
And definitely not for everyone. For most people, the Turbo 64 cartridge would be overkill. But for the
few who can handle it, it can be as satisfying as a fast ride in a hot car.

Just plug the Turbo 64 cartridge in, and the on board 65816 processor takes over. This is the same
high speed 8/16 bit chip that's found in the Apple IIGS. You can adjust the clock speed from 100khz
1/10 of normal) to a blistering 4.5mhz (41/2 times normal speed)! Your games, graphics, and applica

tions (including GEOS) will flow. Get Turbo 64 - and get into the passing lane!

Turbo 64/$199.00

C-64 Burst ROM / C-128 Burst ROM
Exceed The Speed Limit

If you own a C-64 with a socketed Kernal ROM U-4 you're in luck. With our C-64 Burst ROM chip
installed, you can access the burst mode of a Commodore 1571 or 1581 disk drive. This means that
you can load 100 blocks in just 6 seconds on a 1571 (even double sided format), and 4 seconds on

a 1581 drive! In addition, you get super fast access of directories and sequential and relative files.

There's even a DOS wedge built in!
The C-128 version provides the same features as found on the C-64 version, and allows the C-128

to run at burst speed when in the 64 mode. Get the version for your machine, and start speeding today!

C-64 Burst ROM/Only $39.95 C-128 Burst ROM/Only $49.95
Please Note: TheKemal ROM U4ChiplnYourComputerMust BeSocketed ToAcceptA BurstROM Chip

^^

S0FT11JHRE

INTERNATIONAL

PLEASE READ BEFORE ORDERING: We accept money orders, certified checks, VISA, M/C and, Discover.
Previous Software Support customers may use C.O.D. and personal checks. Orders shipped to U.SA (48 states),

F.P.O., A.P.O., or possessions, please add $3.50 per order for S & H. U.S. shipping is by UPS ground in most
cases. FAST 2nd DAY AIR available: add $1.00 per pound additional (U.S. 48 states only). Alaska or Hawan (all

orders shipped 2nd day air), please add $7.50 per order for S & H. C.O.D. available to U.S. customers only (50

states): add $2.75 along with your S & H charges per order. Canadian customers may calculate the S & H charges
by including $4.00 (minimum charge) for the first two pieces of SOFTWARE and $1.00 for each additional piece
per shipment. All monies must be submitted in U.S. funds. Canadians must call or write for hardware shipping
charges. Foreign customers must call or write for shipping charges. Defective items are replaced at no charge if
sent postpaid. All in stock orders are processed within 24 hours. U.S. SOFTWARE orders over $100 will be shipped
2nd Day Air at our regular $3.50 S & H charge (48 states only). Washington residents please add 7.6% additional
for Sales Tax. All prices subject to change. All sales are final unless authorized by management

Mail your order to: Software Support. Int.

2700 NE Andresen Road Vancouver. WA 98661

DEALERS - WE HAVE THE SUPPORT YOU'RE LOOKING FOR!

The Edge Connection

Experiences with a RAM expansion unit

by Joel M. Rubin

On Boxing Day (not a holiday here), having looked far and

wide for the mythical 1750 512K RAM Expansion Unit for

the Commodore 128 (which appears to be on eternal back-

order), I grabbed a 1700 for $90 (US). Contrary to the

promises on the box, I received neither a "new" CP/M disk

nor the RAMDOS software; but, since the price was right and

I already had both pieces of software, I did not scream too

loudly.

The newest version of the U.S. C128 Kernal ($FF80 contains

the identifying value $01 and the DMA Kernal jump at $FF50

jumps to the patch area at $CF80) fixes three bugs with DMA

access. First of all, as previously noted in this magazine, it

temporarily shuts off maskable interrupts (sei) which could

force the C128 into BANK 15 before the deferred DMA access is

consummated. (If bit 4 of $DF01 is not set - which is the way

BASIC does it - a DMA process is not carried out until the next

write to $FF00. But, the NMI and IRQ routines write to $FF00,

setting bank 15 so, if they happen at the wrong time, the DMA

transfer will take place from BANK 15, even if you wanted

BANK 0.)

Of course, one cannot shut off non-maskable interrupts, so be

careful with the RESTORE key and pseudo-RS-232 activities.

Secondly, if you request a DMA activity using bank 1 ram, the

new Kernal routine temporarily switches the VIC/DMA RAM

BANK register (bit 6 of $D506) to bank 1. Therefore, with new

Kernal 128s, contrary to the REU manual, you do not have to

do this yourself when you do a BASIC FETCH, STASH or swap

involving bank 1 ram - just use the basic "bank 1" state

ment.

However, the new Kernal call does not temporarily switch to

SLOW mode, so you will still have to switch to 1 MHz your

self. (Actually, DMA operations seem to work correctly in

FAST mode, but the 8502 gets confused at the end of the pro

cess and tends to drop into the monitor.)

Finally, under the old routine, there was some trouble with

the I/O chips ($D000-$DFFF) always being in context during

a Kernal DMA operation, causing errors (and likely, crashes)

when you tried to use DMA operations on RAM under the I/O

page. The new Kernal routine fixes that.

old dma-call ($ff50 - $f7a5):

.ff7a5 bd fO f7 Ida $f7fO,x ;

.££7a8 29 fe and f$fe ;

.f£7aa aa tax

.ff7ab 4c fO 03 jmp $O3fO ;

new dma-call ($ff50 - $cf80):

get configuration value

mask out i/o bit

move configuration value to x-register

jump to common ram dma

.fcf80 ad 06 d5 Ida $d506

.fcf83 48 pha

.fcf84 5d fO f7 eor $f7fO,x

.fcf87 29 3f andf$3f

.fcf89 5d fO f7 eor $f7fO,x

.fcf8c 8d 06 d5 sta $d506

.fcf8f bd fO f7 Ida $f7fO,x

.fcf92 aa tax

.fcf93 08 php

.fcf94 78 sei

.fcf95 20 fO 03 jsr $03f0

.fcf98 28 pip

.fcf99 68 pla

.fcf9a 8d 06 d5 sta $d506

.fcf9d 60 rts

save the vie ram bank on the stack

turn it to bank 1 for bank 1 operations

save the status on the stack

shut off irq's (but not nmi's, alas)

do dma

cli if irq's previously turned on

recover old vie ram bank

.003f0

.003f3

.003f6

.003f9

.003fc

ae 00 ff ldx $ffOO

8c 01 df sty $df01

8d 00 ff sta $ffOO

8e 00 ff stx $ffOO

60 rts

Word processors which allow you to load the whole dictio

nary into the REU and then automatically check your

spelling as you type, such as Paperclip HI/128, and the

newest version of WordPro 128, won't do this autochecking

if you only have 128K of REU, but Paperclip can load all

the overlays you want into the REU. GEOS 2.0 and GEOS 128

won't allow you to use a 128K REU as a RAMdisk, but you

can configure a 128K REU for fast rebooting after exiting to

BASIC, and/or to speed up GEOS applications by allowing

the VLIR overlays to be stored in the REU. Fast rebooting

does not require the copy-protected GEOS key disk - only a

disk with the deskTop. Geoprogrammer's superdebugger,

as sophisticated a debugger as is found on many main

frames, works fine on a 128K reu.

Of course, all but the earliest versions of CP/M allow the use

of a 128K REU as a RAMdisk, device M:. Not all CP/M soft

ware supports device M:, however, you can get around this.

First (due to Ken Flippo writing in November 1988

Transactor 22 April 1989: Volume 9, Issue 4

FOGHORN, FOG, P.O. Box 3474, Daly City, California 94015

U.S.A., Telephone (415) 755-2000) you can poke the address

of the RAM disk handler into the dph pointer address of the

logical disk drive you want the RAM disk to be. For example,

in the 8 December 1985 BIOS, disk drive C: has its table entry

at 0FBD5h and the RAM disk handler is at 0FB96h. Like the

6502, the Z80 likes its words low-byte first. Ergo,

conf poke fbd5=96fb

would set/change device C: from device 10, drive 0, to the

RAM disk. OFBDlh is device A:, 0FBD3h is device B:, and so

on. If you want, you can put this line in a profile.sub file, so it

automatically happens on boot. Or, if you are a fanatic, you

can either find the patch address in your version of CPM+.SYS

and modify it or, if you have the source code for your BIOS,

(the source code for one of the December 1985 BlOSs is

included in the CP/M development package) you can change it

and reassemble it. When I examined CPM+.SYS with sid and the

C128 native-mode monitor (which, unlike sid, has a hunt

function), I did not find an immediately obvious patch spot, so

this chore is left as an exercise to the reader.

According to Miklos Garamszeghy's CP/M+ memory map

(Transactor 9:2 or Twin Cities 128 issue 21) the entry for

device A: is at OFBDlh in all versions of CP/M+ which support

the RAM expander - all December and May versions. (August

versions use a different address but don't support the REU.)

However, if you have a version other than 8 December, you

may wish to check the value of the REU handler. Use:

conf dump fbe9

and substitute the first two values for 96FB above.

One C128 CP/M user, J. Waltrip, made several modifications to

his bios. The source and object codes are available, among

other places, on FOG disk 186. Mr. Waltrip has the RAMdisk as

device D:, and he also eliminated virtual drive E: and 40-

column support.

An REU also provides a way of transferring files between Com

modore DOS and CP/M. To copy a file from CP/M to Commodore

DOS, pip it to the REU and reboot to Commodore DOS. On a 1700,

the file begins at bank 0, $0800. The directory entry, near the

beginning of the REU, shows how long the file is, in the standard

CP/M directory entry method. With the 1700, each allocation unit

is IK, and the same should be true with the 1764. However, since

each allocation unit has a one-byte entry in CP/M, if you have a

1750, each allocation unit must be 2K (512K/256 entries).

Going the other way, first boot CP/M. To create a directory

entry up to 64K, use save to save a file to the REU. If you have

a bigger file, you can create more than one file, each in multi

ples of the REU allocation unit (IK or 2K). Now, reboot to

Commodore DOS, put your file in 17xx memory, beginning at

$0800, bank 0, and reboot CP/M. Since the RAMdisk survives a

reboot, your file will now be in device M:. If you have more

than one file, you can pip them together - making sure, if they

are not text files, that pip is in binary mode.

(For relatively short files, there is an easier method not involv

ing the REU - from Commodore DOS to CP/M, load the file in

BANK 1, beginning at $lC00, and then boot CP/M+ and use the

CP/M+ program save twice. To get a file into Commodore DOS,

use sid or ddt on it. Move the area from $0100 to $03FF to a

higher area in memory (since $0100-$03FF of bank 1 are

ordinarily invisible in 128 mode). Now, hit stop-reset and end

up in the monitor. Your file is in bank 1.)

I can't get my 1700 to work with my old Cardco multi-

cartridge board. I don't know if this is just a lack of physical

contact or that the I/O expansion lines are buffered in some

inappropriate way. I have trouble using the Cardco board with

some (but not all) bank-switched cartridges which use the

$DE00 or $DF00 I/O expansion spaces. Simon's BASIC

worked fine with the Cardco board and a 64, but not with the

Cardco board and a 128. (It works fine on the 128 without the

Cardco board.) On the other hand, both the 128 and 64 modes

of Cinemaware's Warpspeed (my favourite cartridge, right

now) work with the Cardco board, and the 64 mode uses the

$DE00 I/O space for bank switching. Unfortunately, Warp-

speed also uses the $DF00 I/O space, which is the same

address as the RAM expansion controller chip, so there is no

hope of using both Warpspeed and a 17xx at the same time -

even with a different multi-cartridge board.

[Stop the presses! This just in from Joel:] The problem with

my 1700 REU and Cardco cartridge turned out to be entirely

physical - the 1700 works fine with it if"you remove the plastic

outer shell of the 1700. However, because of the $DF00 con

flict, you still can't use the 1700 with Warpspeed.

Interrupts and the C128 80-column chip

There has been some question as to just when you can use an

interrupt routine which writes to the C128 VDC chip. I've been

playing with this a bit, and my conclusion seems to be that as

long as the main program is not in an actual routine which reads

or writes to the VDC chip, you are safe - provided that you save

and restore registers $12 and $13, the RAM address registers.

For well-behaved programs (programs which stay with the nor

mal text screens and only use the screen editor ROM routines to

read or write to the VDC) you should be safe as long as the high

byte of the program counter is not $CD. If you are using a pro

gram which does weird things to the VDC chip using its own

RAM-based routines, such as GEOS128 or basic 8, all bets are off.

tsx

Ida $107,x

cmp #$cd

bne ok

jmp $fa65 ; old irq

OK, your code here

Transactor 23 April 1989: Volume 9, Issue 4

If you want to be a bit safer, you can make sure that the high

byte of the PC is not between $C400 and $CFFF (The last page

and a half of $C000 is a patch area so there might be some

thing having to do with the vdc in the future). Since the com

puter spends much of its time in a waiting loop around $C200,

this is much better than $C000-$CFFF. I have included an

interrupt-driven clock routine which will run in either forty or

eighty column text mode.

Hey, wanna buy a cheap orphan?

I notice that at least one mail order house (American Design

Components, P.O. Box 220, Fairview, NJ 07022, telephone (201)

941-5000 or (800) 524-0809) is getting rid of Plus/4s for $49.95.

These are returned machines, but they have been tested. What can

you do with a Plus/4 (no anatomical suggestions, please)?

There is, or was, a Plus/4 users' group at P.O. Box 1001, Mon

terey, California. My local Toys-R-Us, just down the road

from Wyatt Earp's tombstone, carries a word processor and an

accounting package for the Plus/4. There are ads for various

programs, including an assembler, in the pages of Commodore

Computing International. The assembler is sold by a British

software house, Supersoft, whose products are sold in the

U.S. by Skyles Electric Works, so one might check with

them. The Plus/4 can run many BASIC 7.0 graphics programs

written for the 128.

While the Plus/4 only has 40 columns, it does have a 6551

UART, so it might be used for transferring files to/from Com

modore DOS to other machines at a high baud rate. {Paperclip

III/128's telecommunications module and GeoLaser both have

9600 baud settings. So, if you do some CIA bit twiddling,

rather than using the Kernal routines, it should be possible to

use the C128, and maybe even the C64, at 9600 baud. I sus

pect that even with the fanciest bit twiddling, you'd still have

to shut off the C128/C64 40-column screen to achieve such

speeds, and you might need a goodly number of nulls if you

want to scroll the C128 80-column screen.)

Moving forward with the 8-bit line

Finally, a reply to Info magazine's rumour column. According to

the January/February issue, Commodore was thinking of putting

out a super-64 or super-128, and one of the questions they were

asking was, "How compatible must such a machine be?" Info

said, "100%". But this would preclude such goodies as a 65816,

a built-in UART at $DE00, a built-in 1750, a built-in 3.5" disk

drive, et alia. I think that if Commodore's 8-bit line is to survive,

it must, like the Apple //GS, move forward with the times. If it

does, it will continue to get third party support. If it doesn't, it

will, like the Atari 8-bit line, become just a cartridge game

machine.

By the way, if Commodore is interested in competing with

cartridge game machines, such as the Nintendo, it could bring

out the Max Machine. (This was a game machine with which

the C64 is upward compatible. It was never brought out in

North America.) This could easily be sold for $50 (us) list and

would have all the sound and graphics facilities of the C64.

And, it would give us Commodore 8-bit hackers a new almost

pirate-proof installed base for which to program games.

Clock.src: CI28 interrupt-driven clock routine for 40 or 80

column text mode.

* clock program for c'128 *

* works in 40 or 80-column *

* text mode. *

* (c) 1989 joel m. rubin *

col40J0 = $d7

writdat = $cdca

writreg = writdat+2

rddat = $cdd8

rdreg = rddat+2

oldirq = $fa65

irqv = $0314

time = $dcO8

org $1300

sei

Ida JKnewirq

sta irqv

Ida f>newirq

sta irqv+1

di

rts

current screen is 40-columns if 0,

80-columns if 128

.a => write .a to vdc data register (31)

.a, .x => write .a to vdc register f.x

read vdc data (31) register in .a

.x => read vdc register f.x in .a

standard c'128 irq routine

irq vector

cia clock f1

* put 2 bed digits (.a) on

* current screen at current

* position

printit tay

lsr

lsr

lsr

lsr

print2

ora f"0"

jsr writit

tya

and #$0£

ora f"0"

jmp writit

double quotes here indicates most

significant bit set, so reversed

put a screen value at current*

position on current screen. *
*

datum in .a *

for 40-column screen, *

screen position in .x *

writit pha

Ida col40 80

bpl :40

pla

jmp writdat

Transactor 24 April 1989: Volume 9, Issue 4

:40

newirq

pla

sta

inx

rts

Ida

bpl

$400,x

col40 80

do40"

* for 80 columns only, make *

* sure that we're not doing *

* anything with the vdc right *

* now-$c400 to $cfff no good. *
* *

* could probably get away with *

* $cd00 to $cdff in bank 15 *

* but there is a reference to *

* $d600 in $c500 page. *
* *

* also, there is a patch area *

* at the end of $ce00 page *

* to $cfff which could *

* contain vdc references in *

* the future. *

col80 tsx

Ida

cmp

bit

cmp

bge

jmp

$107,x

#$c4

ok

#$d0

ok

oldirq

for 80 columns only,

put the values of vdc

register $12 and $13 on

the stack.

since we are going to write

to the beginning of the

80 column screen, we are

going to set these registers

to 0.

k ldx

jsr

pha

Ida

tay

jsr

inx

jsr

pha

tya

jsr

common :

#$12

rdreg

#0

writreg

rdreg

writreg

routines for *

40 columns and 80 columns *

do40 ldx #0

Ida time+3

pha

and #$lf

jsr printit

Ida #":"

jsr writit

Ida time+2

jsr printit

Ida §":"

jsr writit

Ida time+1

hours + am/pm

hours

minutes

; seconds

jsr

Ida

jsr

Ida

jsr

Ida

jsr

pla

bmi

Ida

hex

m Ida

jsr

Ida

jsr

Ida

bpl

printit

#"."

writit

time

print2

r "
writit

pm

f'a'V?"

2c

#"p"&"?"

writit

#"m'V?"

writit

col40 80

fin40"

; tenths of seconds

; get back am/pm flag

; skip next two bytes

* 80 columns only—fill in *

* vdc attribute ram with the *

* current color. *
*—

Ida #8

ldx #$12

jsr writreg

inx

lda#0

jsr writreg

Ida $£1

and#$f

ldy #13

:1 jsr writdat

dey

bne :1

80 columns only—take old *

values of vdc registers *

$13 and $12 off the stack. *

ldx

pla

jsr

das

pla

jsr

endit jmp

#$13

writreg

writreg

oldirq

* 40 columns only—fill in

* color ram with current

* cursor color, if we are

* in lower/upper mode, turn

* the lower case reversed

* "am" or "pm" to "am" or "pm",

:1

fin40 ldx 112

Ida $£1

sta $d800,:

dex

bpl :1

Ida $a2c

cmp #22

bne endit

Ida $40b

ora #$40

sta $40b

Ida #"m"

sta $40c

bne endit

lower/upper mode

□

Transactor 25 April 1989: Volume 9, Issue 4

The C64 Power C Shell

With notes on modifying the shellfor REU users

by Adrian Pepper

In a previous article ("On The C Side", Transactor, Volume 9,

Issue 1), I hinted at the ability to use Power C with a RAM disk

in a 1764 Reu, but gave no details. Using the RAM disk soft

ware provided with the 1764 requires a 256 byte page of regu

lar C64 RAM to be set aside for the interface to the RAM disk

software. In the standard Power C environment, it is not possi

ble to do this.

What follows will give some background to the explanation of

making the RAM disk software work with Power C. It digress

es a bit, but this should help lead to better understanding of the

Power C environment in general. Even readers who don't use

Power C may find this interesting and helpful, especially if

they are considering purchasing it.

Overview

The Commodore 64 Power C shell is a machine language pro

gram that loads at $801, and occupies the memory almost to

$1800. It is designed to work easily with one or two drives at a

time. It recognizes a work drive, where user files (source, ob

ject and executable) should be, and a system drive, where files

such as the different passes of the compiler, and object li

braries are expected to be. These may be two drives in the

same (dual drive) device, or drives in separate devices. The

default configuration when the shell is run is suitable for a sin

gle drive system, and has both assigned to the same drive (de

vice 8, drive 0). This configuration is usable, but necessitates a

lot of disk swapping when compiling and linking programs.

Once running, the shell reads lines of user input from the

screen. It parses the lines into words (series of non-blank char

acters), gathering them as the 'arguments' to the command to

be executed. Generally, each word becomes a separate argu

ment; the following characters cause certain exceptions:

11 will turn a series of characters, including blanks, into a sin

gle argument, until a closing double-quote is found.

< will use the word following it as the name of a sequential

file. It will look for the file on the work disk, and open it as

standard input for the command executed in response to the

command line. Neither the '<' nor the file name are actually

passed as arguments to the command.

> will use the word following it as the name of a sequential

file. It will attempt to create the file on the work disk, to re

ceive standard output for the command executed. A special

case is '»', which will cause standard output to be directed to

the printer.

The first argument found is taken as the name of a command.

First, the shell checks to see if this is one of its own built-in

commands:

bye: exit to basic.

1: list directory of work disk.

Is: list directory of system disk.

rm: remove (scratch) a file.

mv: move (rename) a file.

pr: copy a file on the work disk to standard output.

disk: send arbitrary disk command to work device.

load: load, but don't run, an application program.

work: set or display the work device and disk numbers.

sys: set or display the system device and disk numbers.

Most of these commands will use other arguments that may be

present on the command line. For instance, the I and Is com

mands will use an optional filename pattern. Details are given

in the Power C manual. The output redirection will work when

appropriate, to send output (e.g. a directory listing) to disk or

printer.

If the first argument is not one of these built-ins, it is assumed

to be the name of a user program. First the work disk is

searched for a program file named as the first argument suf

fixed with ".sh". If it is not found on the work disk, the sys

tem disk is searched. If found on one of the two disks, the pro

gram is loaded at address $1800, and called by the shell as a

subroutine.

Transactor 26 April 1989: Volume 9, Issue 4

This makes Power C a very tailorable environment. If you

can express a certain command as a C program, you can eas

ily add it to your available 'vocabulary'. The number of ar

guments found on the command line is passed to the main()

routine of the C program as its first argument, with a pointer

to an array of character pointers to each of the command line

arguments being passed as the second (the traditional argc

and argv). All programs read from standard input and write

to standard output by default. Since these can be 'redirected'

on the command line, manipulating files is especially easy.

Several not-so simple C applications are supplied in source

form on the Power C disk, including a text formatter, an ob

ject file library editor, a 'filter' for adding page headings to

source files in preparation for printing, and a program to

search a file for a text pattern.

Power C has another feature to speed things up. Since the shell

built-in commands do not use the RAM from $1800 on, a user

program that has been loaded there remains untouched by

them. Therefore a command program will not even be reload

ed from disk if its name is the same as the last user application

run (or loaded using the load command.) This speeds up the

rerunning of a program, and using the load command allows

standard input data to be on a different disk from the program

even on a one-drive setup.

But this can cause some peculiar behaviour. If a program is

run a second time without reloading, global and static data are

'remembered' from the previous run. Thus, C programs origi

nating on other implementations that are 'ported' to Power C

often must be modified to explicitly initialize large portions of

their global data at run-time. Static data that is local to a func

tion must often be moved outside the function so it can be ini

tialized.

As an aside, note that the easiest way to get around this

problem (until the offending program is modified for the

Power C environment) is probably by writing the shortest C

program:

main()

or, if you prefer, the shortest machine language program, using

any assembler package you like, as long as the load address

ends up as $1800:

rts

Name the resultant program "unload", or something similar, and

execute it when you want to force a reload of another program.

Memory usage by C programs and the shell

$ 17fa: number of device containing system disk.

$ 17fb: number of drive containing system disk.

$ 17fc: number of device containing work disk.

$ 17fd: number of drive containing work disk.

$17fe: flag; 0 means standard input is using the default

Kernal chrin device; 1 means standard input is

Kernal logical file #1.

$17ff: flag; 0 means standard output is using the default

Kernal chrout device; 1 means standard output is

Kernal logical file #2.

It can useful to inspect these locations from C programs. For

instance, you may want to suppress prompts if standard input

has been redirected. Of course, this will have the disadvantage

of making the C source Commodore 64 dependent.

In addition, a few run-time routines frequently used by C pro

grams actually reside in the shell. There is a jump table to

these near the beginning of the shell, each entry consisting of a

jmp instruction to one of the following routines:

$80e:

$811:

$814:

$817:

$8 la:

$81d:

$820:

$823:

initialize shell

C$1102 code

c$funct_init code

printfcode

fprintfcode

sprintfcode

c$getc code (part of getchar())

C$2102 code

The c$funct_init routine does quick set-up for a C-callable ma

chine-language routine. It is used by the printf code, actually.

The C$1102 routine simply pushes the accumulator onto the C

run-time stack (the pointer to which is located in $la,$lb of

zero page). The C$2102 routine just calls C$1102 to push the

value zero onto the C run-time stack.

Finding a free page for the RAM disk interface

The Power C shell occupies or uses nearly all the memory be

tween $801 and $1800. C application programs are loaded at

$1800. They set up their run-time stack to grow upwards from

the end of the loaded code. This stack is used for automatic

variables and some parameter passing, and is pointed to by

($la,$lb) in the zero-page. Memory dynamically allocated by

the C library routines malloc, calloc and realloc is taken from

the top-of-memory down. Applications running under the Power

C shell potentially use all memory. While the top-of-memory

can be set within a single C program by the Power C routine

highmem, it cannot be set for the entire environment. Standard

programs such as ed, the excellent Power C text (source-file)

editor, and cc, the compiler command, while they are not C pro

grams, will certainly try to use all the available memory.

However, by rewriting the shell, it has proven possible to

squeeze a free page in there. By carefully compacting the code

When running, a C program relies on some locations in the a little, and re-arranging the use of memory within the shell,

shell's memory area, among them: the page from $1600 to $16ff (page 22) can be freed.

Transactor 27 April 1989: Volume 9, Issue 4

By loading the RAM disk software and specifying page 22 as

the interface page, prior to loading the specially rewritten shell

and running it, all C programs will work, and the RAM disk is

made accessible as a disk drive.

Other problems (and fixes)

The only hitches occur when the RAM disk does not behave

quite like other Commodore disk drives. For instance, a major

problem is that the cc program, which loads and runs the two

passes of the C compiler attempts to concatenate two files by

sending the work disk drive the command:

cO:file.o=0:xxxtempl,xxxtemp2

Well, the RAM disk does not support concatenation in this fash

ion. So even though the two passes of the C compiler would

load and run properly from the RAM disk and produce correct

output on a regular disk drive, the final object file would not

be produced correctly if the RAM disk itself was being used as

the Power C work disk. But it is also possible to rewrite the cc

command to perform the concatenation by reading and writing

the files. It was while doing this rewrite that I discovered the

bug in RAMDOS 3.3 referred to in "On The C Side". Happily

that bug has been fixed in the more recent Ramdos 4.2. RAM-

DOS releases can be found on various BBSs, and it is good to

try and get as recent a version as you can.

In general, though, most programs reading or writing multiple

files on the RAM disk are surprisingly slow. I think the process

of switching from working with one file to another in the RAM

disk software is quite slow. Performance seems to improve no

ticeably if the input and output is heavily buffered.

A pleasant working environment

After writing the modified shell, and the cc command, I com

bined them with a couple of other support utilities into a com

pressed archive file, shellram.arc. I have uploaded this to the

Pro-line Power C BBS (416-276-6811), and I think it may by

now be available from other places as well (including the

Transactor disk for this issue).

So with the modified shell, and the cc command, I have a

Power C environment in which the editor loads instantly, and

takes only a couple of seconds to load or save large source

files on the RAM disk. Although the actual computation-bound

compilation processes are not much faster, even when the

source is on the RAM disk, there are no annoying delays while

each pass of the compiler is loaded. In addition, the concatena

tion of the two temporary files to produce the final object file

is a lot faster, and a lot easier on the hardware, both disks and

drives. Once compiled, even large programs load in the time it

takes to type their name.

In fact, when using Power C with the RAM disk, I often think it

is a great tribute to Power C that I was able to tolerate using it

with regular disk drives at all. □

Bits & Pieces I:

The Disk

From the famous book of the same name, Transactor

Productions now brings you Bits & Pieces I: The Disk!

You'll thrill to the special effects of the screen

dazzlers! You'll laugh at the hours of typing time

you'll savel You'll be Inspired as you boldly go

where no bits have gone before!

''Extraordinarily faithful to the plot "Absolutely

of the book... The BAM alone is magnetic!!"

worth the price ofadmission!" Qene syscall

Vincent Canbyte

"Ifyou mount only one bits disk in 1987, make it this

one! The fully cross-referenced index is unforgettable!

Recs Read, New York Tl$

BITS & PIECES I: THE DISK, A Mylar Film, In association with Transactor Productions.

Playing at a drive near youl

Disk $8.95 US, $9.95 Cdn. Book $ 14.95 US, $ 17.95 Cdn.

Book & Disk Combo Just $ 19.95 US, $24.95 Cdnl

Transactor 28 April 1989: Volume 9, Issue 4

Inside Geos 128

The info you needed and couldn'tfind...

by William Coleman

Geos for the Commodore 128 has been available for quite a

while now. A new and improved version (V2.0) has just been

released. Unfortunately there still are very few applications

written specifically for it. Most are simply C64 GEOS programs

that will run in 40-column mode. One of the biggest obstacles

has been a lack of information. This article will attempt to

remedy this situation by providing all of the information

required to program in 80-column mode. There isn't enough

room to teach GEOS programming from scratch; therefore, the

reader is assumed to already be familiar with GEOS program

ming on the C64.

Which is which?

Before your application can do its job, it needs to know what

computer and what mode it is running under. Geos (through

out this article the term GEOS is used to signify GEOS 128,

unless stated otherwise) provides two variables for the purpose

of differentiation.

The first, available to all versions (VI.3 and above), is

cl28Flag ($C013). If bit 7 is set then the application is run

ning under GEOS 128. Note that the 128 DeskTop will parse

out programs that can't be run under the current mode or com

puter (we'll discuss just how a bit later) but the 64 DeskTop

can't. If you are writing a 128-only application, it will need to

check this flag to make sure that it isn't being run under GEOS

64. Use this routine to check:

CheckPuter:

Ida #$12

cmp version

bpl 10$

Ida cl28Flag

10$:

rts

15

0

1

1

0

Bit

14

0

1

0

1

Graphic doubling

The 80-column screen is, of course, twice as wide as the 40-

column screen. Geos provides a means to automatically dou

ble the width and/or X position of all graphics drawn on the

screen. The highest three bits of the width/X position byte (or

bytes) are used for this as follows:

13

0 Leave X value as is (positive value)

0 Leave X value as is (negative value)

n X = X * 2 + n. Doubled positive,

n X = X * 2 - n. Doubled negative.

Normally you won't access these bits directly but will instead

use the new GEOS constants ADD1_W, ADD1.B, DOUBLE.W, and

DOUBLE_B. Simply OR the appropriate constant or constants

into the width or X position value. Use the byte (B) constants

in those areas where a byte (card) value is required, i.e. icon

tables. Here's an example:

mylconTab:

.byte thismany

. word mseLef11 DOUBLE_W

. byte mseTop

firstlcon:

. word mylcon

. byte leftEdge|DOUBLE_B

. byte yPos

.byte width|DOUBLE_B

. byte height

.byte Service

... etc.

After calling this routine, bpl will branch if running under a The newer versions of PutChar allow you to pass negative X

position values. In these cases you should EOR the constants

rather then ORing them. This will maintain the bit pattern

required for negative values.

C64.

The second variable, called graphMode, is available to GEOS

128 only, all versions. If bit 7 is set then you are in 80-column

mode. Virtually all GEOS graphic and text routines check this

variable to find out what mode is active.

An astute reader will probably remark that any number when

multiplied by two will be even. Therefore, you would not be

Transactor 29 April 1989: Volume 9, Issue 4

able to access odd positions (for clearing the screen, etc.). To

get around this problem simply OR with ADD1_B or ADD1_W as

appropriate. This will add one to the final result. The only time

you will normally need this is when clearing the screen (i.e.

319lDOUBLE_WlADDl_W).

The routine used to perform all of this miraculous doubling

is called NormalizeX. It will be called automatically by all

of the GEOS graphic and text routines. In 40-column mode

this routine will RTS without doing anything. You can, if

you wish, call it from within your application but under

normal circumstances (is there really such a thing?) you

shouldn't have to. See Table 1 for a more complete descrip

tion.

Graphics and the 64

While GEOS 128 will correctly handle doubling bits regardless

of the video mode, GEOS 64 doesn't know doubling bits from

Adam. If you try to use them the graphic routines will try to

print way off the screen with obviously lousy results. This

makes creating a program that will run in 80-column 128 and

GEOS 64 rather difficult.

Probably the easiest way to write a totally compatible program

is to keep track of all the places in the program where dou

bling bits are required, and poke the appropriate values in dur

ing initialization.

In those places where the value is loaded into a register, try the

following:

MyNormalizeX:

jsr

bmi

Ida

and

sta

10$:

rts

Convert:

; pass:

pha

txa

pha

ldx

jsr

ldx

jsr

pla

tax

pla

rts

CheckPuter

10$

$01,x

#%00011111 ;

$01, x

r2L-r4 just like

#r3

MyNormalizeX

#r4

MyNormalizeX

if C128

it's a 64

so clear the

doubling bits

in Rectangle

While all of this is a pain for smaller applications, it gets darn

near impossible to maintain with larger ones. This is why most

large applications have two versions - one for GEOS 64 and one

for the 128.

The 128 memory map

The main GEOS 128 bank is bank 1. It is virtually identical to

the GEOS 64 memory map with the following exceptions:

1) The I/O area is always banked in.

2) The mmu can be seen at $FF00.

3) Because of #2 the input driver has been moved. The input

driver table is still in the same place (in this case, at the end

of the driver instead of at the beginning).

Under normal circumstances (i.e. when application code is

executing), there is no common RAM defined. There is a sec

tion of the GEOS Kernal in high memory of bank 0. When

GEOS needs to access this, it sets common RAM high and this

area will flip in.

The softsprite variables reside in bank 0 between $0400 and

$1FFF. When these variables need to be accessed the Kernal

will set common ram low.

GEOS 128 does not swap memory to disk the way the GEOS 64

does. Instead it uses $2000 to $9FFF of bank 0. You can use

this area as a buffer but if your application loads Desk Acces

sories this area will be trashed. There is, unfortunately, no way

to prevent this.

While at first glance you would think the 128 has much more

room this is not really the case with GEOS 128. The active font

must be in front RAM (bank 1), as must the sprite pictures and

all tables passed to GEOS routines. While there is a large area

in back RAM (bank 0), it is hard to use and will be trashed by

DAS.

The 'runnable on' flag

Every GEOS file has a flag in the header block at position

OFF128FLAGS. This flag tells the GEOS 128 Kernal what com

puter and/or mode the program can run under. Only the high

est two bits matter; the rest should be zero.

bit 7

0

1

0

1

bit 6

0

0

1

1

40-column mode only

40- and 80-column modes

Does not run under GEOS 128

80-column mode only

Now simply use the doubled forms of all X positions and call

Convert before all calls to Rectangle, FrameRectangle, etc.

Admittedly, this is a bit of a kludge but it works.

Note that this flag is not recognized by any GEOS 64 version

(which is why zero means 40-column only). You can some

times change this flag with interesting results. Both

geoAssembler and geoLinker are set so that they will not run

on the 128. However, you can change this flag and they will

run just fine! In fact, if you don't mind a weird looking screen,

Transactor 30 April 1989: Volume 9, Issue 4

you can run them in 80-column mode at twice the normal

speed!

Some nasty bugs

There are a couple of serious bugs that you should be aware

of. If $1300 is non-zero, the softsprite will not function prop

erly. This one is a real pain to work around. If possible, start

your programs at $1300 and make the first instruction .block

1. You can then use $0400 to $12ff for buffers.

Since the first version of GEOS there has been a bug in the

menu handler that prevents menus from going past position

255. Unfortunately this also applies to the 128 versions even in

80-column mode! This one can be quite difficult to work

around if you use large menus.

I ran up against this problem when I was writing my 128

terminal. In 40-column mode, the main menu extended to 253.

In 80-column mode this translated to about 330 (the BSW80

font is about 1.3 times as wide as BSW40). Of course, it

wouldn't work. What I finally did was fool UseSystemFont

into thinking it was always in 40-column mode so that it

would always return BSW40. It works fine like this but the 80-

column menu is awfully tiny. Hopefully, V2.0 has fixed these

problems, but I'm not holding my breath.

The following tables provide all of the new routines, variables,

etc. I would suggest making up a new include file called

geosl28Sym. You can then include it in all of your 128 pro

grams. If you add everything to geosSym you will waste

assembly time reading variables that aren't used.

Table 1 - GEOS 128 Routine Descriptions

DoBOp - $C2EC

Pass: rO - BLKl. Pointer to the start of a block of memory.

rl - BLK2. Pointer to the start of a block of memory.

r2 - Number of bytes to move.

r3L - Bank of BLKl (0 = bank 0, 1 = bank 1)

r3H - Bank of BLK2 (0 = bank 0, 1 = bank 1)

Y - Mode of operation as follows:

the destination. When swapping memory in the same bank the

reverse is true.

bit 1 bit 2

0 0

0 1

1 0

1 1

Move from BLKl to BLK2

Move from BLK2 to blki

Swap BLKl with BLK2

Verify only

Return: rO-r3 unchanged

X 0 = match, $FF = mismatch (verify only)

Destroy: a, x, y

This routine is a low level, general purpose, bank to bank

memory move routine. If both source and destination address

es are in the same bank then the source must be greater then

HideOnlyMouse - $C2F2

Pass: nothing

Destroy: a, x, y, rl-r6

Return: nothing

This routine is used to erase the mouse softsprite from the

screen when in 80-column mode. It will be redrawn during the

next pass through Main Loop. This routine will have no effect if

called when in 40-column mode. Usually it is best to call Temp-

HideMouse. Since the graphics routines use TempHideMouse

this routine is worthless if you also call a graphics routine.

MoveBData - $C2E3

Pass: rO - Pointer to start of the SOURCE block of memory.

rl - Pointer to start of DESTINATION block of memory.

r2 - Number of bytes to move.

r3L - SOURCE Bank (0 = bank 0,1 = bank 1)

r3H - destination Bank (0 = bank 0,1 = bank 1)

Return: rO-r3 unchanged

Destroy: a, x, y

This routine simply loads Y with zero and calls DoBOp. If

both areas are in the same bank then DESTINATION must be less

than source.

NormalizeX - $C2E0

Pass: x - Pointer to the zero page word to normalize, e.g.

ldx #r3.

Return: x - unchanged Destroy: a

This routine is used to convert doubling bits to an absolute

value. graphMode is checked and, if called when in 40-

column mode, will simply strip the doubling bits. All GEOS

graphics routines call this routine, so normally an application

will not need to call it.

SetMouse - $FE89

Pass: nothing Return: nothing

Destroy: assume a, x, y, rO-rl5

This routine is called by the interrupt routine just after the

keyboard is scanned. It's job is to reset the POT lines. This

is only necessary for a mouse; all other drivers will simply

Transactor 31 April 1989: Volume 9, Issue 4

RTS. An application should never need to call this routine

directly.

SetMsePic - $C2DA

Pass: rO - pointer to 32 bytes of data (two 16 byte images)

or ARROW to switch to the default.

Return: nothing Destroy: a, x, y, rO-rl5

This routine is used to change the shape of the mouse soft-

sprite (#0) in 80-column mode. Unlike the other seven soft-

sprites, the mouse softsprite is highly optimized so that it will

function smoothly as a mouse. It is only 16x8 pixels in size.

The first 16 bytes of the table are a mask image. The last 16

bytes are the picture itself. The mouse handler will first and

the area with the mask image. Any 0's in the mask will clear

that pixel on the screen. Then the image itself is OR'ed in.

Here's an example:

TriangleMouse:

LoadWrO,MSEPIC

jsr SetMsePic

rts

DefaultMouse:

LoadWrO,ARROW

jsr SetMsePic

rts

; macro to store word in Hi/Lo order

.macro rvword word

.byte>word,<word

.endm

MSEPIC:

;mask

rvword %0000000000000001

rvword %0111111111111011

rvword %0111111111101111

rvword %0111111110111111

rvword %0111111011111111

rvword %0111101111111111

rvword %0110111111111111

rvword %0001111111111111

; image

rvword %0000000000000000

rvword %0111111111111000

rvword %0110000011100000

rvword %0110001110000000

rvword %0110111000000000

rvword %0111100000000000

rvword %0110000000000000

rvword %0000000000000000

Transactor 32

SetNewMode - $C2DD

Pass: graphMode - set to the new mode

Return: nothing

Alters: rightMargin, clkreg, calls UseSystemFont

Destroy: a, x, y, rO-rl5

This routine is used to switch graphics mode. The application

must redraw the new screen itself. Note that UseSystemFont is

called; so, if you are using a custom set, you will have to re-

enable it. Here's an example:

SwitchMode:

; first erase old screen

jsr i—Rectangle

.byte 0,199

.word 0,319|DOUBLEJW|ADD1_W

; now switch modes

Ida graphMode

eor #%10000000

sta graphMode

jsr SetNewMode

; now initialize the new screen

jsr DrawScreen

rts

SwapBData - $C2E6

Pass: rO - BLK1. Pointer to start of a block of memory.

rl - BLK2. Pointer to start of a block of memory.

r2 - Number of bytes to move.

r3L - Bank of blki (0 = bank 0, 1 = bank 1)

r3H - Bank of BLK2 (0 = bank 0, 1 = bank 1)

Return: rO-r3 unchanged

Destroy: a, x, y

This routine simply loads Y with two and calls DoBOp. If both

areas are in the same bank then BLK2 must be less then blki.

TempHideMouse - $C2D7

Pass: nothing Return: nothing

Destroy: a, x

This routine is used to erase all of the softsprites from the

screen when in 80-column mode. They will be redrawn

during the next pass through Main Loop. This routine will

have no effect if called when in 40-column mode. All the

GEOS graphics routines call TempHideMouse before draw

ing to the screen. The only time an application will need

April 1989: Volume 9, Issue 4

to call it is when manipulating screen (VDC) memory

directly.

VerifyBData - $C2D7

Pass: rO - blki . Pointer to the start of a block of memory.

rl - BLK2. Pointer to the start of a block of memory.

r2 - Number of bytes to move.

r3L - Bank of blki (0 = bank 0,1 = bank 1)

r3H - Bank of BLK2 (0 = bank 0,1 = bank 1)

Return: rO-r3 unchanged

Destroy: a, x, y

This routine simply loads Y with three and calls DoBOp.

CIOIN

CKRNLBASIOIN

CKRNLIOIN

CRAM64K

DOUBLE_W

DOUBLE_B

GP_40

6R_80

INCOMPATIBLE

INPUT128

KEYHELP

KEYALT

KEYESC

KEYNOSCRL

KEYENTER

OFF128FLAGS

SCREENBYTEWIDTH

SCREENPIXELWIDTH

= $7e

= $40

= $4e

= $7f

= $8000

= $80

= 0 ;use these two to test

= $80 ;graphMode

= 14 ;new disk error

=15 ;new input device

= 25

= 26

= 27

= 7

= 11

=96 ;offset into header bl

= 80

= 640

TABLE 2

New Equates, Variables and Constants (geosl28Sym)

; Jump Table

AccessCache

ColorCard

ColorRectangle

DoBOp

HideOnlyMouse

JmpIndX

MoveBData

NormalizeX

SetColorMode

SetMsePic

SetNewMode

SwapBData

TempHideMouse

VerifyBData

; Variables

graphMode =

scr80Polar =

scr80Colors =

vdcClrMode =

keyreg =

clkreg =

mmu =

VDC

MOUSEBASE

ENDMOUSE

config =

; Constants

ADD1_W

ADD1_B

ARROW =

Transactor

= $c2ef

= $c2f3

= $c2fb

= $c2ec

= $c2f2

= $9d80

= $c2e3

= $c2eO

= $c2f5

= $c2da

= $c2dd

= $c2e6

= $c2d7

= $c2e9

$003f ;bit 7 set = 80 column mode

$88bc ;copy of VDC reg 24

$88bd ;copy of VDC reg 26

$88be /current color mode

$dO2f

$d030

$d500

$d600

$fd00

$fe80

$ff00

$2000

$20

0 ;pass this to SetMsePic

Editorial Note: The Transactor disk for this issue (Tdisk #27)

will include geosl28Sym, Also worth noting at this time is the

fact that since 9:1 (when I stated that we would support PAL

format), all submissions received have been in geoProgram-

mer format. (Although Francis Kostella went to the trouble of

making his article for this issue PAL-compatible.) Conse

quently, most articles will be in geoProgrammerformat using

BSW labels and symbols. Generally speaking, an article will be

published in the form in which it is received; and that form

will most likely be geoProgrammer. - MO □

NOTHING LOADS YOUR PROGRAMS FASTER

THE QUICK BROWN BOX

A NEW CONCEPT IN COMMODORE CARTRIDGES

Store up to 30 of your favorite programs — Basic & M/L, Games &

Utilities, Word Processors & Terminals — in a single battery-backed

cartridge. READY TO RUN AT THE TOUCH OF A KEY.

HUNDREDS OF TIMES FASTER THAN DISK. Change contents

as often as you wish. The QBB accepts most unprotected programs

including "The Write Stuff the only word processor that stores your

text as you type. Use as a permanent RAM-DISK, a protected work

area, an autoboot utility. Includes utilities for C64 and C-128 mode.

Packages available with "The Write Stuff," "Ultraterm III," "QDisk"

(CP/M RAM Disk), or QBB Utilities Disk. Price: 32K $99; 64K $129.

(+$3 S/H; $5 overseas air; Mass residents add 5%). 1 Year Warranty.

Brown Boxes, Inc, 26 Concord Rd, Bedford, MA 01730: (617) 275-

0090; 862-3675

33 April 1989: Volume 9, Issue 4

Loadermaker

Easy GEOS info sectors

by Nicholas J. Vrtis

Once you get the feel for it, coding assembler for GEOS is easy.

The routines are pretty easy to access, and you can do some

pretty impressive things with just one subroutine call. The

problem is that during a development cycle you end up assem

bling and testing the same program over and over. This pro

cess can get messy and inconvenient if you have a program

like PRGTOGEOS from The Official GEOS Programer's Refer

ence Guide.

The trouble is that once you convert a file to GEOS format, you

must delete it with GEOS, or you end up with a sector allocated

in the BAM but not tied to any program (because the DOS

scratch doesn't know about the GEOS info sector). If you are

like I am, when you are testing an assembler program (particu

larly if you are just learning GEOS), you frequently hang the

system up and need to reset it. So to put up a new version of

the program you need to boot up GEOS, scratch the old pro

gram, then boot up your assembler, change the source,

reassemble, and reboot GEOS and convert. Finally you get to

test your change! With the various copy protection schemes

involved in GEOS and your assembler, there are a couple of

disk swaps involved in the process.

Loadermaker was written because I am lazy and wanted to

shorten the process. All Loadermaker does is create a short

GEOS program whose sole purpose is to load a non-GEOS pro

gram, and start it running in the GEOS environment. Since the

loader program doesn't do anything except load the program

you are testing, there is not a lot of need to change it. Since the

test program is a normal Commodore file, you can use your

assembler and scratch, reassemble, etc. to your hearts content

without collecting extra GEOS info sectors.

Operation of the program is pretty straightforward. Double

click on the icon to get it running. You will get a menu with

three options: 'Done' will get you back to the DeskTop,

'Make' starts the process, and 'Help' supplies a little explana

tion of the program purpose and operation. Selecting 'Make'

will present you with a window which asks for the name of the

program you want the boot program to load. This should be

the name of your assembler output. It does not have to exist at

this time. The second question is the name for the boot pro

gram which will do the loading. This is the name of the GEOS

program you will double click on to get your program loaded

and run. If this file already exists, you will be asked if you

want it overlaid with the new version or not. If you click on

YES, a new copy is written out. If you click on NO, then you

will be asked for a new name for the boot loader program.

That's it. You will go back to the main menu to either quit or

create another boot loader.

The operation of the boot loader program generated by Load

ermaker is even simpler than Loadermaker. All you do is dou

ble click on the icon, and you are off and running with your

assembler program. The loader runs out of location $7F40, so it

will not load a program to that area. It uses the load address

found as the first two bytes of the assembler file (a la normal

load "...",8,1). The starting execution address is assumed to

be the same as the starting load address.

Since Loadermaker is such a simple GEOS program, it also

makes a good sample of how to code one up. While simple, it

uses most of the basic GEOS processes (menus, windows, file

I/O, etc.). I would recommend two sources of information on

GEOS. The first is a shareware manual by Alexander Boyce

(2269 Grandview Ave., Apt 1, Cleveland Heights, OH 44106-

3144, or check your local BBS). The second is The Official

GEOS Programmers' Reference Guide by Berkeley (Bantam

Computer Books). The latter is a little more complete, but dif

ficult to read and find things in. The former is much easier to

read, and better indexed. The Loadermaker program is a mix

ture. The routine names are from Boyce's manual, and the

Page Zero definitions are from the Berkeley manual.

Most of the program is a process of setting up Page Zero regis

ters with pointers to a table, calling a GEOS routine to do the

work, and then checking the results. I won't try to explain all

the options used in each of the tables. Either of the manuals

mentioned earlier can do that (and I've included liberal com

ments in the source). What I will do here is point out some of

the things which aren't really mentioned in the manuals.

One of the hard parts of GEOS is designing a text screen

(believe it or not). Since all the text is proportional, you can't

just count characters to decide if they will fit on a line or in a

box. I use two different methods. For small areas such as

menu options and title lines, I take a guess and then make

adjustments after I see it on the screen. Note that when doing

Transactor 34 April 1989: Volume 9, Issue 4

menu options, GEOS takes care of the dividing line between all

the options, so all you have to do is worry about the width of

the box area. If you don't allow enough room, GEOS gets con

fused and, when you select that entry, it reverse-images more

than it should. Other than looking funny, it works for testing.

Lining up submenus is really a challenge, since the dividing

line is put in by GEOS. Again, take a guess and adjust after you

see it on the screen. After a while you can get good enough to

count dots on the screen (a screen dot is one pixel).

The second method of figuring out what will fit is the one I

use for larger areas (such as the help window text). This is

more complicated. I do the text in geoWrite, with the margins

pulled into the size of the area I am working with. That way,

geoWrite will tell me what fits, and wrap the lines as needed

(for your information, the standard spacing between lines used

by geoWrite is 10 pixels). There are a lot more 'moving parts'

this way, but it doesn't take any longer than if you just tried to

guess and adjust each line as you go.

I recommend using bolding for most short text. Plain BSW font

(the default font) is a little hard to read. You should also note

that if you have a pattern on the screen and put text on it with

ten pixels between lines there will be one pixel of pattern

showing between most characters, but nine pixels between

causes the tops and bottoms of some letters to touch. There

fore, I recommend putting text on a plain background if possi

ble, or line it up with your pattern (patterns are 8 pixels high).

I also recommend a space before and after any text which is

put on a pattern. Otherwise the first and last characters of the

text run into the pattern.

Multiple lines of text in a window are sort of tricky. A carriage

return (decimal 13) takes you to the start of the left margin,

and the window processor sets the left margin to 0. Any text

positioning controls are in reference to the left margin, not the

edge of the window. Since the window processor allows multi

ple text references, I would recommend this method for most

windows that need more than one line. It takes five bytes this

way (one control, three coordinates, and one 0 at the end).

An alternate method (which I used for the window text) is to

use the positioning controls within the text and adjust for

where the window will be. This only takes four bytes, but has

the disadvantage of needing changes if you move the window.

A word of caution on text: if you forget the 0 at the end of the

text, you will usually get a system error and/or hang up GEOS.

It is possible to position some things (click boxes, text, etc.) so

they hang outside the window. This tends to mess up your

screen, since the window processor only recovers the portion

of the screen defined by the window, and it will leave the stuff

which hung over on the screen.

One final point about text in GEOS: Geos uses true ASCII

instead of Commodore ASCII. This means that most Com

modore assemblers will have trouble assembling anything oth

er than lower case text strings. I modified SYMASS with a new

pseudo opcode, .tasc, which tells SYMASS to assemble true

ASCII characters instead of Commodore ASCII.

The final challenge now becomes: how do I assemble Loader-

maker with SYMASS, and make it a GEOS program so I don't

have to mess with making GEOS programs for a while again.

Actually, there are three ways. If you have already typed in

prgtogeos from the Berkeley Book, then all you need to do is

take Loadermaker, assemble it, and use a convenient ML moni

tor to save the object code to disk. Then just run PRGTOGEOS

against it. The source for Loadermaker is set up with the GEOS

info sector on the front where PRGTOGEOS expects it.

If you have not typed in PRGTOGEOS (or don't have the Berke

ley Book), then you will need a handy sector editor program to

perform some minor disk magic. If you are going to do this, I

strongly recommend that you start with a disk that doesn't

have anything on it that you want (preferably empty). You will

be rewriting directory blocks, and it is possible to make a mis

take and mess up the disk so that you cannot access anything

on it (not likely, but possible).

First, assemble Loadermaker and save it out to your scratch

disk as a normal Commodore PRG file with a convenient ML

monitor. Then you need to use your sector editor to find the

directory entry for Loadermaker. The directory is at track $12,

sector $01. If you started with an empty disk, the Loadermaker

entry will be the first (and only) entry. It will start with a $82,

the starting track and sector, and then the name. You will need

to write down the starting track and sector number (this will

become the GEOS info sector).

Use your sector editor to read the starting track and sector. The

first two bytes of this sector are the track and sector where the

Loadermaker code starts. Write these numbers down (they will

become the program starting sector). The third and fourth

bytes tell where the data was saved from (should be $04 $4f).

You want to change these four bytes to $00 $FF $03 $15, and

write the sector back to disk. Next, you want to reread the

directory sector that had the Loadermaker entry in it ($12 $01

if the disk was empty). Starting at the $82 in the Loadermaker

directory entry, you want to change the $82 to $83, then you

want to change the next two bytes to be the track and sector of

the program starting sector you wrote down from before. The

name portion of a directory entry is always the same length,

and the name is padded with shifted spaces ($A0's). Immedi

ately following the name, you want to enter the track and sec

tor numbers of the info sector you recorded previously. Fol

lowing the info sector, you want to enter the following five

bytes: $00 $06 $58 $01 $01. Finally, rewrite the directory sec

tor back to disk.

A third method is the one I use after I have tested a new pro

gram and want to make it into a normal GEOS program. I just

'steal' an info sector from another GEOS program. Again, I

urge doing this on an empty disk - just in case. What I do is

Transactor 35 April 1989: Volume 9, Issue 4

copy a GEOS program that has an info sector similar to what I

want. Then I point to that sector as the info sector of my new

program, and fix up the load address, etc. Finally, I boot up

GEOS and trash the copy I took the info sector from. I then use

GEOS to validate the disk (because it has scratched my info

sector). While this sounds sort of complicated, I don't have to

do it enough to make it worth my while to bother keying in

PRGTOGEOS, and having to key in the info sector for each new

program.

Loadermaker.src

BF 100 sys 49152

OL 110 ;"LOADERMAKER.SRC — creates a ml loader program on GEOS disk"

DG 120 /"Nick Vrtis -- January 1988"

IP 130 ;

CB 140 ; work registers as in geos programmers reference

NK 150 rO = $02

PL 160 rl = $04

JP 170 r4 = $0a

FB 180 r6 = $0e

HP 190 r9 = $14

EC 200 rlO = $16

CC 210 aO = $£b

FD 220 al = $fd

MF 230 ;

AD 240 .tasc /assemble true ascii literals

AH 250 ;

DB 260 * = $5000-252 /allow for geos info sector ($4fO4)

MC 270 .byte $bf

LP 280 .byte $00,$00,$00,$7f,$ff,$fe,$40,$lf

GK 290 .byte $fe,$5f,$80,$7e,$6f,$ff,$7e,$77

NJ 300 .byte $fe,$7e,$77,$05,$fe,$76,$03,$fe

ON 310 .byte $74,$ff,$fe,$75,$80,$7e,$75,$ff

FN 320 .byte$fe,$75,$80,$7e,$74,$ff,$e6,$76

PJ 330 .byte $03,$la,$77,$07,$fc,$77,$ff,$fc

PO 340 .byte $77,$a3,$fc,$77,$b8,$fa,$70,$3f

JG 350 .byte $06,$7f,$ff,$fe,$00,$00,$00

JL 360 .byte $83,$06,$00

LA 370 .word begin /starting load address

PI 380 .word ldrend /ending load address

BJ 390 .word begin /starting execution address

PB 400 .asc "LoaderMakerVl.O"

OB 410 .byte 0,0,0,0,0

KJ 420 .asc "Nick Vrtis - 1988"

CI 430 .byte 0,0

EJ 440 .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

OE 450 .byte 0,0

NA 460 .asc "Create a loader program on GEOS disk to load ML files "

OC 470 .asc "created by a non-GEOS assembler"

EN 480 .byte 0

AG 490 ;

HN 500 * = $5000

CF 510 moveto =$7f40 /where boot code will execute from

JC 520 begin Ida #<title

KG 530 sta rO

EO 540 Ida #>title

AE 550 sta r0+l

KF 560 jsr grphic /do the opening credits

AL 570 ;

CG 580 doagain = * /restart point

CA 590 Ida Kmainmenu

AL 600 sta rO

CB 610 Ida #>mainmenu

GI 620 sta r0+l

NN 630 Ida fl /cursor on option 12

AF 640 jmp menu

AA 650 ;

HE 660 doquit = * /handle the quit option

AK 670 jmp restrt /back to desktop

OB 680 ;

Transactor 36

BP

GO

APAT

HP

OG

KF

JA

KP

EC

GP

ED

DO

PL

JM

FG

JJ

GI

DB

MN

GG

JI

OG

JJ

LF

GN

AO

NN

BB

OP

LI

NO

ME

NP

CC

PO

OA

FA

AL

PK

AM

BB

BM

JC

EF

OF

LJ

DE

AM

FB

LK

OP

LL

EN

IH

EE

KN

PI

DK

CO

LK

GO

FK

IG

OH

FF

OA

10

PG

IC

PN

JI

CG

MJ

GP

690 dohelp = * /handle the help option

700 ldx §<helpw

710 ldy !>helpw

720 jsr xywindow

730 jmp drwmnu /redraw the menu

740 ;

750 domake = * /handle the make option

760 jsr cmenus /close all menus

770 Ida jkpgmname

780 sta rlO

790 Ida #>pgmname

800 sta rl0+l

810 ldx Kloadnw

820 ldy |>loadnw

830 jsr xywindow

840 Ida rO /check for cancel

850 cmp |2

860 beq doagain ;..yes-restart

870 ;

880 getln = * /get name for loader file

890 Ida Kldrname

900 sta rlO

910 Ida i>ldrname

920 sta rl0+l

930 ldx Kldrow

940 ldy §>ldmw

950 jsr xywindow

960 Ida rO /check for cancel

970 cmp |2

980 beq doagain ;..yes-restart

990 Ida Kldrname

1000 sta r6

1010 Ida f>ldmame

1020 sta r6+l

1030 Ida drvsrch /check only 'active' drive for new name

1040 pha /save current setting

1050 Ida iO

1060 sta drvsrch

1070 jsr lookup /try to find loader name

1080 pla

1090 sta drvsrch /reset drive search flag

1100 txa /check return from lookup

1110 bne fileok ;. .not found—good

1120 ldx Kerafnw

1130 ldy #>erafnw

1140 jsr xywindow

1150 Ida rO /see if ok to overlay

1160 cmp #4

1170 beq getln ;..no-get a new loader name

1180 Ida #<ldrname

1190 sta rO

1200 Ida jj>ldrname

1210 sta r0+l

1220 jsr delete /erase current version

1230 ;

1240 fileok = * /file setup is ok

1250 ldx f0 /move loader code to where it will run from

1260 ldrmove = *

1270 Ida ldrcode,x

1280 sta moveto,x

1290 inx

1300 cpx Kldrend-ldrcode

1310 bne ldrmove

1320 clc ;calc end address of save

1330 Ida Kldrend-ldrcode

1340 adc Kmoveto

1350 sta savend

1360 Ida kldrend-ldrcode

1370 adc §>moveto

1380 sta savend+1

1390 Ida §0 /try starting on 1st page of directory

1400 sta rlO

1410 Ida Kldrinfo

1420 sta r9

April 1989: Volume 9, Issue 4

MK 1430 Ida Mdrinfo

MM 1440 sta r9+l

NJ 1450 jsr save /save new file

BM 1460 jmp doagain /redo menu/options

ED 1470 ;

FE 1480 xywindow = * /produce window pointed to by x/y regs

61 1490 stx rO

6F 1500 sty rO+1

ME 1510 jmp window /got here via jsr/return directly

66 1520 ;

16 1530 mainmenu .byte 0 /start @ top of screen

D6 1540 .byte 14 /to +14 down

6D 1550 .word 0 /left edge

FF 1560 .word 92 /right edge

MA 1570 .byte 3 ;3 horizontal options

AO 1580 .word done

KF 1590 .byte $80 /submenu option

FL 1600 .word donemenu /submenu defination

NH 1610 .word make

NF 1620 .byte 0 /flash & do option

CB 1630 .word domake

MK 1640 .word help

66 1650 .byte 0

DE 1660 .word dohelp

FH 1670 done .asc "Done" : .byte 0

AJ 1680 make .asc "Make" : .byte 0

NN 1690 help .asc "Help" : .byte 0

KB 1700 ;

IP 1710 donemenu .byte 14 /start below main

NL 1720 .byte 14+14 /still 14 pixels high

KO 1730 .word 0 /left edge

AB 1740 .word 29 /right edge

OH 1750 .byte $80+1 /one vertical entry

OF 1760 .word quit

DF 1770 .byte 0 /flash & do

FP 1780 .word doquit

LK 1790 quit .asc "Quit" : .byte 0

OH 1800 ;

AH 1810 title .byte $05,28 /fill pattern

AD 1820 .byte $01,0,0,0 /top/left corner

NN 1830 .byte $03:.word 320:.byte 199 /fill whole screen

IC 1840 .byte $05,9 /new fill pattern

BL 1850 .byte $03:.word 320:.byte 20 /fill top title line

CK 1860 .byte $06:.word 8:.byte 190 /output title

OM 1870 .byte $18,$20,$la ; bold+outlined

CH 1880 .asc "LoaderMaker"

BH 1890 .byte$lb,$18 / just bold

PO 1900 .asc " VI.0 Machine Language Loader Maker "

JA 1910 .byte $16,8,0,142 ; new position for text

ME 1920 .asc " Nicholas J. Vrtis "

JP 1930 .byte $16,200,0,142

FB 1940 .asc " Copyright 1988 "

PD 1950 .byte $16,8,0,158

El 1960 .asc " 5863 Pinetree S.E. "

HF 1970 .byte $16,8,0,174

JJ 1980 .asc " Kentwood, MI 49508 "

FF 1990 .byte $lb,0 /back to plaintext at end

GE 2000 ;

LE 2010 helpw .byte $01 /non-standard sized window here

KE 2020 .byte 22,178 /top/bottom pixels

OB 2030 .word 4 /left edge

NJ 2040 .word 305 /right edge

NA 2050 .byte $0b,2,15

PP 2060 .word helpmsg

AB 2070 .byte $01,31,135,0 /-cancel- box

LL 2080 helpmsg .byte $18

JI 2090 .asc "This program is used to create a 6E0S program which"

AN 2100 .byte $16,6,0,47 /change here is window size adjusted

DF 2110 .asc "can be run from the DeskTop. The 6E0S program will"

PL 2120 .byte $16,6,0,57

DH 2130 .asc "then load and run an assembler program created as a"

6N 2140 .byte $16,6,0,67

HJ 2150 .asc "'normal' Commodore program. This avoids having to"

NO 2160 .byte $16,6,0,77

LB 2170 .asc "run a separate program to 'convert' your assembler"

EA 2180 .byte $16,6,0,87

ND 2190 .asc "program each time you reassemble it. A 'normal"1

LB 2200 .byte $16,6,0,97

PF 2210 .asc "Commodore program has the load address as the first"

CD 2220 .byte $16,6,0,107

AH 2230 .asc "two data bytes of the file, and starts execution at"

KE 2240 .byte $16,6,0,117

EO 2250 .asc "that address after being loaded."

CJ 2260 .byte $lb,0

EF 2270 ;

61 2280 ldrnw .byte $81 /standard size window

BJ 2290 .byte $0b,10,30

IP 2300 .word lnmsg

LJ 2310 .byte $0b,10,40 /two lines of text in this window

CK 2320 .word Inmsg2

LE 2330 .byte $0d,10,60 /get input in window

BC 2340 .byte <rlO,16 ;rl0 is buffer pointer/max 16 characters input

6F 2350 .byte $02,17,78 /-cancel- box

MC 2360 .byte 0

M6 2370 lnmsg .byte $18

CD 2380 .asc "Enter name for NEW loader"

KE 2390 .byte 0

HF 2400 Inmsg2 .asc "program to be created."

IC 2410 .byte $lb,0

KO 2420 ;

PA 2430 loadnw .byte $81 /again a standard sized window

HC 2440 .byte $0b,10,30

AJ 2450 .wordplmsg

DE 2460 .byte $0d,10,60

KH 2470 .byte <rlO,16

JF 2480 .byte $02,17,78 /cancel box

OK 2490 .byte 0

AP 2500 plmsg .byte $18

OB 2510 .asc "Enter name of PROGRAM to load."

6J 2520 .byte $lb,0

IF 2530 ;

PE 2540 erafnw .byte $81

FJ 2550 .byte $0b,10,30

FP 2560 .word errmsg

LK 2570 .byte $0b,10,40

BN 2580 .word errmsg2

AL 2590 .byte $03,17,60 /-yes- box

JK 2600 .byte $04,17,78 /-no- box

6C 2610 .byte 0

6L 2620 errmsg .byte $18

6N 2630 .asc "That file already exists."

EE 2640 .byte 0

10 2650 errmsg2 .asc "OK to overlay ?"

CC 2660 .byte $lb,0

EO 2670 ;

PL 2680 ldrinfo .word ldrname

EB 2690 .byte $03,$15,$bf

MD 2700 .byte$ff,$ff,$ff,$80,$00,$01,$aa,$a0

OA 2710 .byte $01,$a0,$55,$81,$90,$00,$01,$88

El 2720 .byte $01,$81,$80,$f8,$01,$89,$fc,$01

AC 2730 .byte $83, $00, $01,$8a, $7£, $81, $82, $00

KD 2740 .byte $01,$8a,$7f,$81f $83,$00,$09,$89

KM 2750 .byte $fc,$a5,$80,$f8r $03,$88,$00,$01

FC 2760 .byte $80, $54, $03,$88,$05, $05, $8d,$40

CI 2770 .byte $a9,$80,$00,$01,$ff,$ff,$ff

NC 2780 .byte $83,$06,$00

BM 2790 .word moveto /begin address of save

MJ 2800 savend *=*+2 /end address for save

LO 2810 .word moveto+17 /execution start address

DJ 2820 .asc "LoaderMakerVl.O"

CJ 2830 .byte 0,0,0,0,0

OA 2840 .asc "Nick Vrtis - 1988"

6P 2850 .byte 0,0

IA 2860 .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

CM 2870 .byte 0,0

MJ 2880 .asc "Load and Run a 6E0S program created by a non-GEOS assembler. "

OP 2890 .asc "This program loads "

KM 2900 ;

Transactor 37 April 1989: Volume 9, Issue 4

2910 ldrname .byte 0

BD 2920 *=*+16

10 2930 ;

OP 2940 ldrcode = *

MK 2950 pgmname .byte 0

MP 2960 *=*+16

AB 2970 ;

PK 2980 loadml Ida f<moveto

CB 2990 sta r6

EJ 3000 Ida #>moveto

10 3010 sta r6+l

JJ 3020 jsr lookup

KL 3030 txa

BK 3040 beq diskok

KL 3050 jmp restrt

KG 3060 ;

NN 3070 diskok Ida dentry+2

EC 3080 sta rl+1

MN 3090 Ida dentry+1

6H 3100 sta rl

AB 3110 Ida #<buf0

AJ 3120 sta r4

HO 3130 Ida #>buf0

66 3140 sta r4+l

Hfl 3150 jsr read

BF 3160 Ida bufO+2

JK 3170 sta aO

MH 3180 sta al

M6 3190 Ida bufO+3

JI 3200 sta a0+l

FJ 3210 sta al+1

DJ 3220 ldx |3

NO 3230 bne skipread

AD 3240 readpgm Ida bufO

MA 3250 sta rl

OK 3260 Ida buf0+l

CO 3270 sta rl+1

MC 3280 jsr read

NK 3290 ldx #1

IN 3300 skipread ldy f$£f

M6 3310 Ida bufO

KC 3320 bne goodnxtt

KJ 3330 ldy buf0+l

HD 3340 goodnxtt sty rO

B6 3350 ldy |0

BD 3360 moveloop inx

KM 3370 Ida buf0,x

CC 3380 sta (a0),y

PA 3390 inc aO

El 3400 bne aOok

ND 3410 inc a0+l

HD 3420 aOok cpx rO

CE 3430 bne moveloop

PP 3440 Ida bufO

CP 3450 bne readpgm

HA 3460 jmp (al)

EA 3470 ;

KP 3480 ldrend = *

IB 3490 ;

MI 3500 bufO = $8000

K6 3510 dentry = $8400

PP 3520 drvsrch = $886e

AE 3530 ;

JB 3540 grphic = $d36

AH 3550 menu = $d51

EB 3560 drwmnu = $d93

PN 3570 cmenus = $clbd

LE 3580 read = $de4

OD 3590 save = $cled

IF 3600 lookup = $c20b

PK 3610 restrt = $c22c

MD 3620 delete = $c238

KC 3630 window = $c256

OK 3640 ;

OB 3650 .end

/allow for full name + trailing null

/loader code starts here

/address of name of program to load

/check return

/..found it ok

/else abandon the load & go back to desktop

/sector of file beginning

/track of file beginning

/set pointer to buffer for read

/read 1st buffer

/get program load adress

/also store as starting address

/skip t/s & address

/..unconditional-skip 1st read

/get track/sector of next block

/skip t/s pointer for all other blocks

/assume a full sector

/check next track pointer

/..good next track

/else this is last sector/pick up # valid bytes

/save f valid bytes (255 for full sector)

/get input byte

/store it

/bump pointer

/check if to end of buffer

/..not yet/more to do

/check if more sectors to go

;..yes (next track pointer is non-zero)

/now go start program

/end of loader code to move

;geos buffer 0

/directory entry from lookup

;drive search flag

/graphic table processor

/menu processor

/redraw the menu

;close all menus

/read a sector

/save a geos file

/lookup file in directory

/reload desktop & restart geos

/delete geos file

/window processor routine

The lines below should be entered (while the lines above are

still in memory) ifyou are NOT using Nick Vrtis' modified ver

sion of the Symass assemblerfrom the Transactor diskfor this

issue. They contain the ASCII bytes for the messages in the

Loadermaker program.

sys 700

'.byte 76,111, 97,100,101,114, 77, 97
.byte 107,101,114, 86, 49, 46, 48

.byte 78,105,99,107,32,86,114,116

.byte 105,115,32,45,45,32,49,57,56

.byte 56

.byte 67,114,101,97,116,101,32,97

.byte 32,108,111,97,100,101,114,32

.byte 112,114,111,103,114,97,109

.byte 32,111,110,32,71,69,79,83,32

.byte 100,105,115,107,32,116,111

.byte 32,108,111,97,100,32,77,76

.byte 32,102,105,108,101,115,32

.byte 99,114,101,97,116,101,100,32

.byte 98,121,32,97,32,110,111,110

.byte 45,71,69,79,83,32,97,115,115

.byte 101,109,98,108,101,114

done .byte 68,111,110,101
.byte 0

make .byte 77,97,107,101

.byte 0

help .byte 72,101,108,112

.byte 0

quit .byte 81,117,105,116

.byte 0

.byte 76,111,97,100,101,114,77,97

.byte 107,101,114

.byte 32,86,49,46,48,32,77,97,99

.byte 104,105,110,101,32,76,97

.byte 110,103,117,97,103,101,32

.byte 76,111,97,100,101,114,32,77

.byte 97,107,101,114,32

.byte 32,78,105,99,104,111,108,97

.byte 115,32,74,46,32,86,114,116

.byte 105,115,32

.byte 32,67,111,112,121,114,105

.byte 103,104,116,32,49,57,56,56

.byte 32

.byte 32,53,56,54,51,32,80,105

.byte 110,101,116,114,101,101,32

.byte 83,46,69,46,32

.byte 32,75,101,110,116,119,111

.byte 111,100,44,32,77,73,32,52

.byte 57,53,48,56,32

.byte 84,104,105,115,32,112,114

.byte 111,103,114,97,109,32,105

.byte 115,32,117,115,101,100,32

.byte 116,111,32,99,114,101,97

.byte 116,101,32,97,32,71,69,79

.byte 83,32,112,114,111,103,114

.byte 97,109,32,119,104,105,99

.byte 104

.byte 99,97,110,32,98,101,32,114

.byte 117,110,32,102,114,111,109

.byte 32,116,104,101,32,68,101

.byte 115,107,84,111,112,46,32,32

.byte 84,104,101,32,71,69,79,83

.byte 32,112,114,111,103,114,97

.byte 109,32,119,105,108,108

.byte 116,104,101,110,32,108,111

.byte 97,100,32,97,110,100,32,114

.byte 117,110,32,97,110,32,97,115

.byte 115,101,109,98,108,101,114

.byte 32,112,114,111,103,114,97

.byte 109,32,99,114,101,97,116

.byte 101,100,32,97,115,32,97

.byte 39,110,111,114,109,97,108

FD

66

BB

BD

HF

FJ

BI

D6

DI

AC

NL

EP

AE

MG

AL

NE

LN

JF

IL

LH

AE

FI

DB

PI

PM

DP

JN

6A

6C

PD

AP

KN

AF

EA

EP

LA

MN

LO

LF

61

JK

DF

KA

ND

H6

LL

BM

PK

KA

CP

6H

LE

MB

EL

HI

6C

AL

KA

FO

AO

JH

BL

OL

JL

IP

ID

PN

MC

100

240

400

401

420

421

422

460

461

462

463

464

465

466

470

471

472

473

1670

1671

1680

1681

1690

1691

1790

1791

1880

1881

1900

1901

1902

1903

1904

1920

1921

1922

1940

1941

1942

1960

1961

1962

1980

1981

1982

2090

2091

2092

2093

2094

2095

2096

2097

2110

2111

2112

2113

2114

2115

2116

2130

2131

2132

2133

2134

2135

2136

2150

Transactor 38 April 1989: Volume 9, Issue 4

OE 2151 .byte 39,32,67,111,109,109,111

BI 2152 .byte 100,111,114,101,32,112,114

GP 2153 .byte 111,103,114,97,109,46,32,32

DI 2154 .byte 84,104,105,115,32,97,118

AO 2155 .byte 111,105,100,115,32,104,97

DJ 2156 .byte 118,105,110,103,32,116,111

EF 2170 .byte 114,117,110,32,97,32,115

AB 2171 .byte 101,112,97,114,97,116,101

OB 2172 .byte 32,112,114,111,103,114,97

CA 2173 .byte 109,32,116,111,32,39,99,111

BP 2174 .byte 110,118,101,114,116,39,32

GP 2175 .byte 121,111,117,114,32,97,115

EO 2176 .byte 115,101,109,98,108,101,114

AO 2190 .byte 112,114,111,103,114,97,109

LP 2191 .byte 32,101,97,99,104,32,116,105

HA 2192 .byte 109,101,32,121,111,117,32

JA 2193 .byte 114,101,97,115,115,101,109

AC 2194 .byte 98,108,101,32,105,116,46,32

FO 2195 .byte 32,65,32,39,110,111,114,109

KL 2196 .byte 97,108,39

FB 2210 .byte 67,111,109,109,111,100,111

AN 2211 .byte 114,101,32,112,114,111,103

FD 2212 .byte 114,97,109,32,104,97,115,32

AD 2213 .byte 116,104,101,32,108,111,97

ON 2214 .byte 100,32,97,100,100,114,101

FI 2215 .byte 115,115,32,97,115,32,116

GO 2216 .byte 104,101,32,102,105,114,115

KJ 2217 .byte 116

OC 2230 .byte 116,119,111,32,100,97,116

DC 2231 .byte 97,32,98,121,116,101,115,32

LC 2232 .byte 111,102,32,116,104,101,32

El 2233 .byte 102,105,108,101,44,32,97

JE 2234 .byte 110,100,32,115,116,97,114

KD 2235 .byte 116,115,32,101,120,101,99

OC 2236 .byte 117,116,105,111,110,32,97

OK 2237 .byte 116

JM 2250 .byte 116,104,97,116,32,97,100

FD 2251 .byte 100,114,101,115,115,32,97

MC 2252 .byte 102,116,101,114,32,98,101

FF 2253 .byte 105,110,103,32,108,111,97

ID 2254 .byte 100,101,100,46

ON 2380 .byte 69,110,116,101,114,32,110

AN 2381 .byte 97,109,101,32,102,111,114

HC 2382 .byte 32,78,69,87,32,108,111,97

FP 2383 .byte 100,101,114

AO 2400 Inmsg2 .byte 112,114,111,103,114

EP 2401 .byte 97,109,32,116,111,32,98,101

JD 2402 .byte 32,99,114,101,97,116,101

GB 2403 .byte 100,46

AG 2510 .byte 69,110,116,101,114,32,110

OE 2511 .byte 97,109,101,32,111,102,32,80

BA 2512 .byte 82,79,71,82,65,77,32,116

NL 2513 .byte 111,32,108,111,97,100,46

ND 2630 .byte 84,104,97,116,32,102,105

KK 2631 .byte 108,101,32,97,108,114,101

KK 2632 .byte 97,100,121,32,101,120,105

OM 2633 .byte 115,116,115,46

OG 2650 errmsg2 .byte 79,75,32,116,111,32

HJ 2651 .byte 111,118,101,114,108,97,121

CF 2652 .byte 32,63

FI 2820 .byte 76,111,97,100,101,114,77,97

FK 2821 .byte 107,101,114,86,49,46,48

LM 2840 .byte 78,105,99,107,32,86,114,116

IL 2841 .byte 105,115,32,45,45,32,49,57

NC 2842 .byte 56,56

KL 2880 .byte 76,111,97,100,32,97,110,100

PL 2881 .byte 32,82,117,110,32,97,32,71

DM 2882 .byte 69,79,83,32,112,114,111,103

AP 2883 .byte 114,97,109,32,99,114,101,97

JK 2884 .byte 116,101,100,32,98,121,32,97

DK 2885 .byte 32,110,111,110,45,71,69,79

HM 2886 .byte 83,32,97,115,115,101,109,98

AD 2887 .byte 108,101,114,46,32,32

LN 2890 .byte 84,104,105,115,32,112,114

KO 2891 .byte 111,103,114,97,109,32,108

CB 2892 .byte 111,97,100,115,32

GET MORE

PLEASURE

FROM THE

BIBLE WITH

LANDMARK

The Computer Reference Bible

Here's what LANDMARK will enable you to do:

• SEARCH THE BIBLE—Find Phrases, words or sentences.

• DEVELOP TOPICAL FILES—Copy from The Bible text

and search results then add your own comments and notes.

• COMPILE YOUR PERSONAL BIBLE-Outline texts in

color. Add notes, comments, and references. Make your Bible

Study organized and on permament record!

• CREATE FILES— Then convert them for use with

wordprocessors like Paperclip and GEOS.

• MAKE SUPPLEMENTARY STUDY FILES-For specific

study and develop translation variations.

NEW LOW PRICE! $119.95

vl.2 for C64 and v2.0 for C128
CALL OR WRITE TODAYFORA FREE BROCHURE

WHICH SHOWS HOW VALUABLE LANDMARK CAN

BE IN YOUR BIBLE STUDY

P.A.V.Y. Software P.O. Box 1584

Ballwin, MO 63022 (314) 527-4505

Faster than a Speeding Cartridge

More Powerful than a Turbo ROM
It's Fast, It's Compatible, It's Complete, It's...

JiffvEKtt
Ultra-Fast Disk Operating System for the O64, SX-64 A C-128

• Speeds up all disk operations. Load, Save, Format, Scratch, Validate, access

PRG, SEQ, REL, & USR files up to 15 times fasterl

• Uses no ports, memory, or extra cabling. The JiffyOOS ROMs upgrade your

computer and dnve(s) internally for maximum speed and compatibility.

• Guarant<»d100\compttlbl«wrthall8oftwirtar>dhtrdwart. JiffyOOSspeeds

upthe loadingand Internal file-accessoperation of virtually allcommercial software.

• Built-in DOS Wedge plus 14 additional commands and convenience features

including one-key loaoVsave/scratch, directory menu and screen dump.

• Easy do-it-yourself installation. No electronics experience or special tools re

quired. Illustrated step-by-step instructions Included.

Available for C-64,64C, SX-64, C-128 & C-128D (JrffyDOS/128 speeds up both 64

and 128 modes) and 1541,1541C, 15414,1571,1581, FSD-1&2, MSD SD-1&2,

Excel 2001,Enhancer2000,Amtech,Swan,lndusABIuechlpdiskdrives. System

includes ROMs for computer and 1 disk drive, stock/JiffyDOS switching system,

illustrated installation instructions, User's Manual and Money-Back Guarantee.

j Creative Micro Designs, Inc.

□

Transactor 39 April 1989: Volume 9, Issue 4

An Introduction To GEOS Files

Using the high-level disk routines

by Francis G. Kostella

While coding my first attempts at a working GEOS program, I

was overwhelmed - and more than a little confused - at the

seeming complexity of the GEOS kernal. After all, there are

almost 200 callable routines and hundreds of variables

available to the programmer, and I believe I've had the oppor

tunity to use most of them the wrong way! But a bit of persis

tence does pay off and, after a while, the structure begins to

make sense. What once seemed like hoops to be jumped

through became simple methods of achieving complex results.

My first few programs avoided using any type of disk access,

except to exit the program and reload the DeskTop. But later I

became a bit bolder and decided to take a look at the dozens of

disk routines available and try to use them in my programs

(besides, my programs were starting to eat up all the available

memory and I'd have to load and save sections to disk). A first

glance in The Official GEOS Programmers Reference Manual

from Berkeley Softworks showed over 50 disk routines

available, so I prepared myself to write a number of complex

setup routines and to do hours of debugging.

Well, my first efforts failed miserably, but further study

showed that I was using too many routines. Looking back it

seems I was trying to use as many of the available routines as

possible, when one or two would have sufficed. The great

majority of the disk calls are the primitives that make up the

higher level routines that load and save vlir and GEOS SEQ

files.

Loading a file is easily accomplished once you have the file

name, and the record number if the file is a vlir file. To load a

GEOS SEQuential structure file, we simply put the address of

the null-terminated filename string into the zero page register

r6 ($0E/0F), store a zero in rO ($02) and then JSR to $C208

[GetFile (LOAD)]. (Throughout this article, and in the program

listing, the hex address of the routine is used, followed by the

BSW label and the Boyce label.) The file is loaded to the

address in the file's Header Block. If we want to load the file

to a different address, we store a 1 in rO, and pass the address

to load in r7 ($10/11). Filenames are easily obtained from disk

or from the user with a dialog box (see the example program).

If we're trying to load a record from a VLIR file we first open

the file by passing the pointer to the filename in rO ($02/03)

then calling $C274 [OpenRecordFile (VOPEN).] Next we pass

the record number we want in .A and JSR $C280 [PointRecord

(GOTO).] We're now pointing at the record, to load it pass the

load address in r7, and the number of bytes expected in r2

($06/07). Finally, after the record is read in, (assuming we're

done reading records) we close the file with JSR $C277

[CloseRecordFile (VCLOSE).]

To save a file of any type, we need to create an area in

memory that will be saved to disk as the Header Block

attached to the file. The Header is 256 bytes long and will tell

the save routine the file type, file structure, load address, etc.

Exact descriptions of the structure of the Header can be found

in either Alex Boyce's manual or the BSW PRG, but there are a

few bytes we'll use when saving a file that should be

explained.

When the Header is written to disk, the first two bytes will

be replaced with $00 $FF to indicate that the entire sector is

used and no other, but while the Header is still in RAM, these

two bytes will be used to point to a null-terminated filename.

This is the name that will be used in the file's directory entry.

A few other bytes will be used to build the directory entry.

Byte 68 in the Header will hold the normal DOS file type

(usually $83, USR). Byte 69 will describe one of the GEOS file

types (font, application data, desk accessory, and so on).

Byte 70 will tell us the GEOS file structure, 1 for vlir and 0

for GEOS sequential. The next two pairs of bytes are

addresses: 71/72 is the load/beginning address, 73/74 is the

end address.

To save an area of memory as a GEOS sequential file, we set

up the above mentioned bytes and addresses, load the address

of the Header into r9 ($14/15), put a zero into rlOl ($16) and

call $C1ED [SaveFile (SAVE).]

To save a VLIR record, we must first create the file. Call

$C1ED as above, but set the beginning address in the Header

to $0000 and the end address to $FFFF. (If the VLIR file is an

executable file, put the load address of the first record into

Header bytes 71/72, the load address-1 into 73/74, and the jmp

address into 75/76.) Now we have to create the records, first

open it, call $C289 126 times, then close the VLIR file, like

this:

Transactor 40 April 1989: Volume 9, Issue 4

Ida #<filnam

sta rO ; ($02)

Ida #>filnam

sta rO+1

jsr $c274 ; openrecordfile (vopen)

ldy #126

aloop

jsr $c289 ; appendrecord (append)

dey

bne aloop

jsr $c277 ; closerecordfile (vclose)

To write a record, select the record by calling $C280

[PointRecord (GOTO)] with the record number in .A, put the

beginning save address in r7 ($10/11) and the number of bytes

to save in r2 ($06/07) and JSR $C28F [WriteRecord (vsave).]

The GEOS disk routines do their own error checking and usual

ly return error numbers in the .X register. Using the above rou

tines for simple loading and saving, the only error I've had to

deal with is #11: record empty, when attempting to to read a

nonexistent VLIR record. Of course, more complex applica

tions will want more elaborate error checking. See the above-

mentioned programmer's reference guides for more details.

Another thing I should mention, is that the above routines

assume that you are not changing disk devices nor swapping

disks. Changing drives is accomplished by calling $C2B0

[SetDevice (DRVSET)] with the device number in .A. This

should be followed by a call to $C2A1 [OpenDisk (OPNDSK)]

which is also used to read a newly inserted disk. These two

routines, when used, should be called before using any of the

load or save routines detailed above.

About the programs

Program 2, Icon Definer will translate a photo from a Photo

Album into a form readily digestible by your assembler. I use

this program to 'grab' my compacted icon drawings from

geoPaint for use in my programs. In fact, the icons used in the

program were translated by an earlier version of this program.

A few notes: The first three bytes of the graphic are the width

and height of the bitmap; you should delete them or comment

them out as they will interfere with the GEOS uncompacting

routines. Also, the last few bytes are the colour information for

the bitmap. If you have a copy of the BSW PRG, see Appendix

D; otherwise, you can leave them in, or calculate them from

the width and height bytes.

The resulting SEQ file can be converted to a PRG file with Pro

gram 1, which is from an earlier Transactor. If you're translat

ing lots of icons, use the DOS command CO: to concatenate a

group of SEQ files to save time. If you'd like to have a GEOS

Header attached to the output file, change byte 69 to 3. The

program is easily modified to accept different input and output

files, so experiment. I'd like to thank Joe Buckley for explain

ing to me the use of the undocumented routine AppendRecord.

Program 1: "convertseqtopal"

CM 0 rem save"convertseqtopal", 8

PI 10 openl,8,2,"0:filename":1=1000

EA 20 print" {dr} {down}" : fori=0to8:print1; : 1=1+2

DP 30 get#l,a$:s=-(st=0):ifs=0goto50

BG 40 ifa$Ochr$(13)thenprinta$; :goto30

D6 50 print:nexti

MB 60 i£sthenprint"l=n;l;":pokel52,l:goto20"

KN 70 fori=631to639+s:pokei,13:next

KH 80 pokel98, 9+s: dosel-s:print" {home} "; :end

OM 90 :

Program 2: "icon definer.src"

LB 1000

DM 1010

NA 1020

MH 1030

ME 1040

FF 1050

KD 1060

NE 1070

A6 1080

KJ 1090

DH 1100

PI 1110

ML 1120

M6 1130

PH 1140

CJ 1150

PD 1160

IA 1170

IF 1180

06 1190

AP 1200

El 1210

M6 1220

FG 1230

OE 1240

IL 1250

CG 1260

CM 1270

KL 1280

LB 1290

CP 1300

AJ 1310

DP 1320

BA 1330

AP 1340

PA 1350

IJ 1360

BD 1370

MF 1380

BG 1390

RO 1400

IP 1410

IF 1420

GN 1430

CC 1440

GG 1450

OB 1460

JN 1470

OD 1480

LI 1490

IH 1500

EG 1510

MI 1520

AH 1530

IA 1540

El 1550

open2,8,l,"0:id"

sys700

.opt o2

start =$0304

; --equates--

rO =$02

=$04

=$06

=$0c

=$10

=$14

=$16

=$70

=$72

a4 =$74

disbuf =$2f

pload =<

pdepth =$0b01

pstart =$0b03

sbegin =$20d0

; max 349 lines

recvec = $84bl

*= start

fore/back screen write (displaybufferon)

load photo here, is also width byte

depth stored here

1st byte of bitmap

start seq save here

of 16 bytes each

recover screen from dialog box

;lst 4 bytes commented out

; they will be placed in the

; file header by "maketogeos"

;.byte $00,$ff

;.byte 3,21 ; 3x21 icon

.byte $bf,$ff,$ff,$ff,$82,$20,$01

.byte $84,$50,$01,$89,$88, $01

.byte $84,$84,$01,$8e,$52,$01,$87

.byte $31, $01, $83,$98,$81, $81, $d, $81,$f4

.byte $e3,$01,$8c,$ff,$01,$f4,$al,$01

.byte $84,$52,$01,$84,$52, $cl, $84, $al

.byte $79,$84,$80,$55,$8f, $a0,$6d,$84

.byte $al,$57,$80,$52,$cb,$80,$3c,$0d

.byte$ff,$ff,$ff

.byte $83

.byte 6

.byte 0

.word saddr

.word endcod

.word stjump

;c= filetype user

/application

;geos seq file

/start addr

/end addr

/start addr jump

.asc "icon definervl.O"

.byte 0,0,0,0

.asc "f.g.kostella"

.byte 0,0,0,0

/the rest of the header is not used here

Transactor 41 April 1989: Volume 9, Issue 4

ON 1560 ;—start geos file-—

IM 1570 *= start+$fc

El 1580 stjump =* /these are the starting points

LE 1590 saddr =* /specified in this file's header

NC 1600 Ida §1

CJ 1610 sta erflag /for first call

NG 1620 jsr clrscr /give instructions

JN 1630 jsr doicon /do icons

GL 1640 rts ; to main loop

FN 1650 ;— initial screen —

DH 1660 clrscr =*

BH 1670 Ida #0

MJ 1680 jsr $d39 / setpattern (setpat)

EO 1690 jsr $d9f ; i.rectangle (pfill2)
PT nflfl KtrfA fl 1QQbu iruu .oyte u,i7?

NO 1710 wor 0 319

00 1720 ; turn off the background screen

FA 1730 ; (we're using that ram)

GJ 1740 ; insert our own routine into the

AJ 1750 ; db screen recover vector.

AA 1760 Ida disbuf

AN 1770 and 1*10111111 /bit 6-background enable

CF 1780 sta disbuf

HD 1790 Ida i<recovr /our routine

GH 1800 sta recvec /geos vector

ED 1810 Ida fl>recovr

ME 1820 sta recvec+1

MJ 1830 ;

NG 1840 jsr $da2 ;i.framerectangle (pbox2)

LH 1850 .byte 0,16

KI 1860 .wor 144,319

FL 1870 .byte $ff /solid line

MJ 1880 ; print some user help info

KG 1890 ; first draw the 'fake' icons

IN 1900 jsr $dab /i.bitmapup (cbox2)

NG 1910 .wor iconch

PE 1920 .byte 3,60,6,16

CO 1930 jsr $dab

OL 1940 .wor larrow

LG 1950 .byte 3,84,3,16

AA 1960 jsr $dab

CO 1970 .wor rarrow

IE 1980 .byte 3,108,3,16

OB 1990 jsr $clab

AA 2000 .wor iconsa

NF 2010 .byte 3,132,6,16

Hfl 2020 ; tell what they do

PD 2030 jsr $dae / i. putstring (dsptx2)

DL 2040 .wor 24

00 2050 .byte 40,24

FM 2060 .asc "icon definer vl.O"

KA 2070 .byte 0

LH 2080 jsr $clae

FO 2090 .wor 24

PP 2100 .byte 52

OB 2110 .asc "by f. g. kostella for "

KG 2120 .byte 14 ; underline on

KC 2130 .asc "the transactor"

CH 2140 .byte 15,0 ; off

BM 2150 jsr $clae

JC 2160 .wor 80

LE 2170 .byte 72

PO 2180 .asc "a photo album"

CI 2190 .byte 0

DP 2200 jsr $dae

EG 2210 .wor 56

DJ 2220 .byte 96

PD 2230 .asc "previous album record"

EL 2240 .byte 0

FC 2250 jsr $dae

GJ 2260 .wor 56

NM 2270 .byte 120

EF 2280 .asc "next album record"

GO 2290 .byte 0

HF 2300 jsr $dae

PL 2310 .wor 80

LA 2320 .byte 144

Transactor

AI 2330 .asc "current album record"

IB 2340 .byte 0

KB 2350 rts

LP 2360 ;— icons —

DE 2370 doicon =*

KA 2380 Ida #<myicon

OK 2390 sta rO

KB 2400 Ida #>myicon

El 2410 sta r0+l

GB 2420 jsr $cl5a

KG 2430 rts

OP 2440 /

HB 2450 myicon =*

BD 2460 .byte 5,99,0,99

KJ 2470 .wor iconch

CG 2480 .byte 0,0,6,16

LG 2490 .wor choose

UN zovu .wor iconex

DL 2510 .byte 38,0,2,16

LP 2520 .wor doexit

MA 2530 .wor larrow

AB 2540 .byte 6,0,3,16

MN 2550 .wor dolast

AD 2560 .wor rarrow

HD 2570 .byte 9,0,3,16

OB 2580 .wor donext

OE 2590 .wor iconsa

PP 2600 .byte 12,0,6,16

FH 2610 .wor saveit

'put up icons

* doicons (cboxes)

icon tables

I, x&y pointer

graphic pointer

x,y,w,h dimensions

svc rtn pointer

BF 2620 /— icon service routines —

BL 2630 doexit =*

HC 2640 jmp $c22c

IC 2650 ;—

FI 2660 choose =*

OA 2670 jsr findfl

DD 2680 cmp |2

MM 2690 beq choos2

GP 2700 Ida #0

IA 2710 sta recnum

KI 2720 jmp getit

DE 2730 choos2 =*

AK 2740 rts

MI 2750 ;—

FJ 2760 donext =*

GC 2770 inc recnum

HE 2780 bpl donex2

BN 2790 Ida §0

CG 2800 sta recnum

LM 2810 donex2 =*

00 2820 jmp getit

MN 2830 ;—

OD 2840 dolast =*

BF 2850 dec recnum

PP 2860 bpl getit

BC 2870 Ida ftO

CL 2880 sta recnum

AM OQQfl •
AH £0?U ,

EP 2900 getit =*

FN 2910 jsr doname

EH 2920 jsr getrec

OF 2930 rts

KE 2940 ;—

DO 2950 saveit =*

OM 2960 jsr getfnm

FF 2970 cmp §2

DD 2980 beq save2

KB 2990 jsr recbyt

GD 3000 jsr savseq

EP 3010 save2 =*

IL 3020 rts

MD 3030 ;— setup & cal]

quit application

enterdesktop (restrt)

choose a photo album

put up file names

cancel selected

start with rec #0

next record

previous record

put up filename

and get the record

prompt for save name

cancel selected

translate

save to disk

db to get filename —

LK 3040 getfnm =* /user enters name of file

EE 3050 ; clear out filename buffer

DO 3060 ldy #16

JO 3070 Ida #0

42 April 1989: Volume 9, Issue 4

LA

EG

HN

LE

P6

HE

GK

HF

MH

KI

EN

GE

KJ

JE

NN

FP

GH

NA

JD

ON

DE

LB

EN

JA

OG

DB

GN

BP

CI

AK

EK

FA

IG

BE

HE

NF

DK

FD

AD

LM

FF

IA

GJ

CI

CC

CJ

IP

KE

IA

BP

GO

BA

DN

AK

MH

KL

CF

HJ

GG

NJ

GN

FM

EA

KJ

CE

AE

DO

LM

EE

GJ

PM

FO

EB

BC

BC

BD

OE

JM

3080 getfn2 =*

3090 sta svname,y

3100 dey

3110 bpl getfn2

3120 ; r5 to hold selected name in db

3130 Ida #<svname

3140 sta r5

3150 Ida #>svname

3160 sta r5+l

3170 Ida Kgetndb

3180 sta rO

3190 Ida #>getndb

3200 sta r0+l

3210 jsr $c256

3220 Ida rO

3230 rts

3240 ;—

3250 ; db table

3260 getndb =*

3270 .byte $81

3280 .byte 2,16,68

3290 .byte 11,16,16

3300 .wor gnmstr

; addr of db table

; dodlgbox (window)

; .a holds #2 if cancel

; return it to caller

- return save name in r5 pointer

standard position

cancel icon

textstr cmnd

pointer

3310 .byte 13,16,30,$0c,16,0 ; getstr db cmnd ($0c = r5)
3320 ;

3330 gnmstr =*

3340 .byte 24

3350 .asc "please enter filename"

3360 .byte 27,0

3370 ;

3380 ;— setup & cal]

3390 findfl =*

3400 ; clear out the

3410 ldy #16

3420 Ida §0

3430 fifl2 =*

3440 sta phname,y

3450 dey

3460 bpl fifl2

3470 ; search for this

3480 Ida f7

3490 sta r7

3500 ; return selected

3510 Ida Kphname

3520 sta r5

3530 Ida #>phname

3540 sta r5+l

. db to find photo albums on disk —

phname

geos file type:

appl. data

file name in

3550 ; search for files with this

3560 ; permanent name

3570 Ida #<permnm

3580 sta rlO

3590 Ida #>permnm

3600 sta rl0+l

3610 Ida #<ffildb ;

3620 sta rO

3630 Ida #>ffildb

3640 sta r0+l

addr of db table

3650 jsr $c256 ;dodlgbox

3660 Ida rO

3670 rts ; rO is in .a

3680 ;

3690 ; db table

3700 ffildb =*

3710 .byte $81

3720 .byte 16,4,4 ;

3730 .byte 5,17,24 ;

3740 .byte 2,17,72,0 ;

3750 ;

3760 ; print filename

3770 doname =*

3780 Ida #9

3790 jsr $d39

3800 jsr $d9f

3810 .byte 0,15

3820 .wor 145,303

3830 jsr $dae

3840 .wor 160

3850 .byte 10,32,0

Transactor

standard

getfiles cmnd

open icon

cancel

to screen

horz lines

space, set pos.

LL

GH

AP

ME

GF

MA

AL

FJ

ML

JF

CJ

GK

FG

AB

HL

GJ

CI

NG

HF

PH

IG

CN

IK

GO

IH

JH

AB

MD

FB

KK

ED

HD

EL

HD

EF

FJ

FN

CA

MH

ON

NI

LP

MK

KE

IE

OC

LM

EA

IB

HN

PI

JC

JA

GI

IF

EL

IK

OA

EE

MH

IF

PF

EH

FK

AI

EB

PM

ME

KG

LA

KO

AA

MD

DL

CF

JL

IC

HF

43

3860 Ida Kphname

3870 sta rO

3880 Ida |>phname

3890 sta r0+l

3900 jsr $d48

3910 Ida |47

3920 jsr $d45

3930 Ida recnum

3940 sta rO

3950 Ida #0

3960 sta r0+l

3970 Ida #$c0

3980 jsr $d84

3990 Ida #32 /space

4000 jsr $d45

4010 rts

4020 ;—

4030 dogrid =*

4040 Ida |16

4050 jsr $cl39

4060 jsr $d9f

4070 .byte 16,199

4080 .word 0,319

4090 rts

4100 ;— error rtns

4110 norec =*

4120 jsr $dae

4130 .word 110

4140 .byte 102

/selected file

; slash

; putchar (dspchr)

; record #

; flush left

; putdecimal (dspnum)

; draw grid behind bitmap

; setpattern

; i-rectangle

—

; i.putstring

4150 .asc " empty record "

4160 .byte 0

4170 Ida #1

4180 sta erflag

4190 jsr $c277

4200 rts

4210 ;--

4220 derror =*

4230 pha

4240 jsr $clae

4250 .wor 110

4260 .byte 102

; closerecordfile (vdose)

; err # is in .a

; i-putstring

4270 .asc " -disk error- I"

4280 .byte 0

4290 pla

4300 pha

4310 sta rO

4320 Ida #0

4330 sta r0+l

4340 Ida #$c0

4350 jsr $d84

4360 Ida #32

4370 jsr $d45

4380 Ida #1

4390 sta erflag

4400 jsr $c277

4410 pla

4420 crop #11

4430 bne derr2

4440 jsr $dae

4450 .word 110

4460 .byte 111

; flush left

; putdecimal (dspnum)

; err 11 = too long

; was the record too long

; i-putstring

4470 .asc " -record too long- "

4480 .byte 0

4490 derr2 =*

4500 rts

4510 ;

4520 erflag .byte 0

4530 ;— draw the photo —

4540 drawph =*

4550 Ida #>pstart

4560 sta r0+l

4570 Ida #<pstart

4580 sta rO

4590 Ida #0

4600 sta rl

4610 Ida #16

4620 sta rl+1

4630 Ida pload

; draw selected photo

; skips w/h

; x bytes pos

; y pixel pos

; width (at least 1)

April 1989: Volume 9, Issue 4

NB

CP

AO

KJ

FN

CA

GA

LJ

01

EO

AH

IB

El

ML

FJ

EG

EL

GL

IP

CN

KK

HG

DD

EN

NP

PI

JM

AF

AB

LK

AB

CE

BM

FF

JO

KG

FN

IA

DI

AP

EP

PJ

MD

FM

NH

ME

CE

OE

IM

EC

EO

BM

HD

DM

IC

PG

El

CF

LB

JA

GN

AK

GL

NL

EK

IM

DB

KB

BB

KP

JA

ME

HJ

GP

IL

FC

JK

OA

4640 beq badmap

4650 cmp #40

4660 bcs badmap

4670 sta r2

4680 Ida pdepth

4690 beq badmap

4700 cmp #184

4710 bcs badmap

4720 sta r2+l

4730 jsr $d42

4740 rts

4750 badmap =*

4760 jsr $clae

4770 .word 110
A1Qf\ KirfA 1 rt9
47ou .byte iu*

not valid photo-might be the photo name strings

too wide

height lo-byte only

not valid

too long

a bitmapup (cbox)

; i-putstring

4790 .asc -bad Ditmay-

4800 .byte 0

4810 rts

4820 ,

4830 ; when exiting a

4840 ; to recover the

4850 recovr =*

4860 Ida rvflag

4870 bne norcvr

4880 Ida #1

4890 sta rvflag

4900 jsr dogrid

4910 Ida erflag

4920 bne nobmap

4930 jsr drawph

4940 nobmap =*

4950 rts

4960 norcvr =*

4970 Ida #0

4980 sta rvflag

4990 rts

5000 rvflag .byte 0

5010 ;

db, this rtn is called twice

db shadow & the db

; called through $84bl

; call once

; is there a bitmap

; then display it

; reset on 2nd call

5020 ;— disk routines —

5030 recnum .byte 0

5040 ;opendrive =* ;c

5050 ;lda #8 ; drive

5060 ;jsr setdevice

5070 getrec =*

5080 jsr dogrid

5090 jsr $c2al

5100 Ida Kphname

5110 sta rO

5120 Ida #>phname

5130 sta r0+l

5140 jsr $c274

5150 txa

5160 beq grcl

5170 jsr derror

5180 rts

5190 grcl =*

5200 Ida recnum

5210 jsr $c280

5220 tya

5230 bne grc2

5240 jsr norec

5250 rts

5260 grc2 =*

5270 ; ok, now read]

5280 Ida #$15

5290 sta r2+l

5300 Ida #$d0

5310 sta r2

5320 Ida #>pload

5330 sta r7+l

5340 Ida #<pload

5350 sta r7

5360 jsr $c28c

5370 ; .x hold error

5380 txa

5390 beq grc3

5400 jsr derror

5410 rts

Transactor

>ptional

; opendisk (opndsk)

; name of album

; openrecordfile (vopen)

; x=0 if no error

; pointrecord (goto)

; 0 if empty

; rec empty

Lt in

; max f of bytes (=sbegin-pload)

; load to address

; readrecord (vload)

#

HF

DK

AB

BL

OD

PG

DF

OJ

ID

PF

MH

IMuM

CC

BJ

NC

LN

MG

DA

LC

DB
n*
On

GN

FF

GO

LC

BH

DE

MN

JL

BG

JO

LJ

OM

CM

CO

BF

GP

JI

KA

JI

OB

FP

CD

PP

KF

PO

HI

EG

GG

LK

KO

EA

NO

NM

JA

IN

OL

MO

LN

IH

NB

CG

DP

HM

CC

HI

CE

GL

KE

GD

AL

FI

OF

01

MI

HF

NP

HA

BB

44

5420 grc3 =*

5430 ;r7=addr of first

5440 Ida r7

5450 sta a4

5460 Ida r7+l

5470 sta a4+l

5480 Ida #0

5490 sta erflag

5500 jsr drawph

5510 jsr $c277

5520 rts

5540 pcount .byte 0

5550 recbyt =*

5560 ; photo loaded at

5570 ; the bytes file

byte following the last byte read in

we'll use a4 as a pointer

(r7 is destroyed, a4 is reserved for our use)

if it got this far!

closerecordfile (vclose)

pload to the addr in a4 -1

will be saved from sbegin to a3

5580 ; set up a2 (photo pointer) & a3 (bytes pointer)

5590 Ida #<pload

5600 sta a2

5610 Ida #>pload

5630 Ida #<sbegin

5640 sta a3

5650 Ida #>sbegin

5660 sta a3+l

5670 ldy #0

5680 sty pcount

5690 xbytl =* ;loop

5700 Ida pcount

5710 and #$0f

5720 bne xbyt2

5730 Ida #13

5740 jsr addchr

5750 Ida #46

5760 jsr addchr

5770 Ida #66

5780 jsr addchr

5790 Ida #89

5800 jsr addchr

5810 Ida #84

5820 jsr addchr

5830 Ida #32

5840 jsr addchr

5850 jmp xbyt3

5860 ;

5870 xbyt2 =*

5880 Ida #44

5890 jsr addchr

5900 xbyt3 =*

5910 inc pcount

5920 Ida (a2),y

5930 jsr bythex

5940 jsr inca2

5950 jsr cmpa24

5960 bcc xbytl

5970 Ida #13

5980 jsr addchr

5990 Ida #13

6000 sta (a3),y

6010 Ida #<sbegin

6020 sta sstart

6030 Ida #>sbegin

6040 sta sstart+1

6050 Ida a3

6060 sta seqend

6070 Ida a3+l

6080 sta seqend+1

6090 rts

6100 ;

every 16 bytes, start a new line

eol

period

b

y

t

spc

• use a comma

• index into photo file

* done yet

save start in header

save end in header

6110 ; translate a byte into hex format

6120 bythex pha

6130 Ida #36

6140 jsr addchr

6150 pla

6160 pha

6170 lsr

6180 lsr

6190 lsr

6200 lsr

save byte

move hi-nybble into low

April 1989: Volume 9, Issue 4

LK

NK

GM

FT.£ill

OL

AG

CK

HF

EN

EP

ID

NC

AH

CO

KL

OE

IL

HF

AL

MO

AI

PK

FB

HB

PN

CL

GO

LE

LE

CB

EO

KN

00

EB

MA

BC

HL

FN

JG

HJ

FL

LC

CN

GG

NL

Kfl

KI

NB

FI

GJ

PO

MG

FD

OD

IE

EF

10

IM

EM

NK

AA

FN

DE

OG

AP

GC

KM

IG

NB

AK

GC

CE

GC

PK

PO

LJ

MN

KL

=

6210 jsr fndasc

6220 jsr addchr

6230 pla

6240 jsr fndasc

6250 jsr addchr

6260 rts
coin .

6280 fndasc =*

6290 and #$0f

6300 cmp #$0a

6310 bmi findl

6320 adc #$06

6330 findl =*

===

; returns with ascii char in .a

; write it to buffer

• get original byte

write it

returns ascii for 4 lsb in .a

clear 4 hibits

>9 print

it's a-f ; +$36

if it's 0-9, add $30 to convert to ascii
6340 adc #$30

6350 rts

6360 ;

6370 addchr =* ; add char in .a to the byte (file) buffer
6380 sta (a3),y

6390 jsr inca3

6400 rts

6410 ;

6420 inca2 inc a2

6430 bne xia2

6440 inc a2+l

6450 xia2 rts

6460 ;

6470 inca3 inc a3

6480 bne xia3

6490 inc a3+l

6500 xia3 rts

6510 ;

6520 cmpa24 =*

6530 ; if a2 >or= a4 then we've exceeded the eof so set .carry
6540 ; if < then return with .carry clear
6550 ;

6560 sec

6570 Ida a2

6580 sbc a4

6590 sta xxtemp

6600 Ida a2+l

6610 sbc a4+l

6620 ora xxtemp ; flags set

6630 rts

6640 ;

6650 xxtemp .byte 0

6660 ;

6670 ;

6680 savseq =*

6690 Ida #<header ; header block for file

6700 sta r9

6710 Ida #>header

6720 sta r9+l

6730 Ida #0

6740 sta rlO

6750 jsr $cled ; savefile (save)

6760 rts

6770 ;

6780 ;— icon graphics —

6790 iconex =* ; exit icon

6800 .byte 160,255,255,0,0,255,255,128,1,128,1,128,1

6810 .byte 143,241,143,241,143,241,128,1,128

6820 .byte 1,128,1,255,255,0,0,255,255,0,0

6830 ; the icons below were "grabbed"

6840 ; with an earlier version of this

6850 ; program.

6860 iconch =* ; choose icon

6870 .byte$05,$ff,$82,$fe,$80,$04, $00, $82

6880 .byte $03,$80,$04,$00,$b8,$03,$8f,$98

6890 .byte $00,$00,$00,$03,$98,$d8,$00,$00

6900 .byte $00,$03,$98,$lf,$le,$3c,$78,$f3

6910 .byte $98,$ld,$b3,$66,$cd,$9b,$98,$19

6920 .byte $b3,$66,$d,$9b,$98,$19,$b3,$66

6930 .byte $79,$fb,$98,$19,$b3,$66,$0d,$83

6940 .byte $98,$d9,$b3,$66,$cd,$9b,$8f,$99

6950 .byte $9e,$3c,$78,$f3,$80,$04,$00,$82

6960 .byte $03,$80,$04,$00, $81, $03,$06, $ff

6970 .byte $81,$7f,$05,$ff

6980 ;

Transactor

DG

ME

CM

IG

PK

BC

LF

II

KG

HO

NB

OF

MD

BM

LF

JO

CK

PH

HA

HO

MI

AG

KK

NC

DL

AJ

LE

HD

MN

MF

IK

DH

EF

HB

NC

OE

NF

LE

FH

BN

EF

KB

NF
AM
\Ja

GD

LK

PP

MJ

OK

BI

GJ

FJ

PJ

AG

JK

MC

HF

NJ

LB

GP

AI

AN

EH

IK

CB

PI

DI

DH

PK

MJ

AI

CJ

KL

OJ

JN

EF

CC

45

■

6990 iconsa =* ; save icon

7000 .byte $05,$ff,$82,$fe,$80,$04,$00,$82

7010 .byte $03,$80,$04,$00,$b8,$03,$80,$lf

7020 .byte $00,$00,$00,$03,$80,$31,$80,$00

7030 .byte $00,$03,$80,$30,$le,$66,$78,$03

7040 .byte $80,$30,$33,$66,$cc,$03,$80,$lf

7050 .byte $lf,$66,$cc,$03,$80,$01,$b3,$3c

7060 .byte $fc,$03,$80,$01,$b3,$3c,$c0,$03
7070 .byte $80,$31,$b3,$18,$cc,$03,$80,$lf
7080 .byte $lf,$18,$78,$03,$80,$04,$00,$82

7090 .byte $03, $80,$04,$00,$81, $03,$06,$ff

7100 .byte $81,$7f,$05,$ff

7120 larrow =* ; left arrow icon

7130 .byte $b0,$ff,$ff,$ff,$80,$00,$03,$80

7140 .byte $00,$03,$80,$00,$03,$80,$40,$03

7150 .byte $81,$c0,$03,$87,$ff,$f3,$9f,$ff

7160 .byte $f3,$87,$ff,$f3,$81,$c0,$03,$80

7170 .byte $40,$03,$80,$00,$03,$80,$00,$03

7180 .byte $80,$00,$03,$ff,$ff,$ff,$7f,$ff,$ff
7190 ;

7200 rarrow =* ; right arrow icon

7210 .byte $b0,$ff,$ff,$fe,$80,$00,$03,$80

7220 .byte $00,$03,$80,$00,$03, $80, $04, $03

7230 .byte $80,$07,$03,$9f,$ff,$c3,$9f,$ff

7240 .byte $f3,$9f,$ff,$c3,$80,$07,$03,$80
7250 .byte $04,$03,$80,$00,$03,$80,$00,$03

7260 .byte $80,$00,$03,$ff,$ff,$ff,$7f,$ff,$ff
7270 ;

7280 permnm =* ; find any version

7290 ;.asc "photo album "

7300 .byte $70,$68,$6f,$74,$6f,$20,$61,$6c,$62,$75,$6d,$20
7310 .byte 0 ;(version not included)

7320 ; the new photo album (v2.1) stores the

7330 ; names of the individual photos as the

7340 ; last used record.

7350 ; use: .asc "photo album vl.0"

7360 ; to read the older versions exclusively.

7370 ; use: .asc "photo album v2.1"

7380 ; to read the newer version.

7390 ;

7400 phname .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; selected photo album

7410 svname .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; user entered name

7430 ; this header is saved along with the file

7440 header =*

7450 .wor svname

7460 .byte 3,21 ,$bf ; 3x21 icon

7470 .byte $ff,$ff,$ff,$80,0,l,$80,0,l,$80

7480 .byte 0,l,$80,0,l,$80,0,l,$80,0,l,$80,0,l

7490 .byte $80,0,l,$80,0,l,$80,0,l,$80,0,l,$80

7500 .byte 0,1,$80,0,1,$80,0,1,$80,0,1,$80,0,1

7510 .byte $80,0,l,$80,0,l,$80,0,l,$ff,$ff,$ff

7520 ;this icon is just a square outline

7530 ; save the file as a c= seq

7540 .byte $81 ; c= seq

7550 ; actually, when the kernal writes

7560 ; the file to disk, it wont save

7570 ; the header to disk

7580 ; when it sees the next

7590 ; byte, a filetype of non-geos.

7600 .byte 0 ; non-geos/alternately use 3 for data

7610 .byte 0 ; geos seq

7620 ; next two words placed by translate rtn

7630 sstart =*

7640 .wor 0 ; start addr

7650 seqend =*

7660 .wor 0,0 ; end addr, jump addr

7670 .asc "icon definervl.O"

7680 .byte 0,0,0,0

7690 ;

7700 .asc "f. g. kostella "

7710 .byte 0,0,0,0

7720 ;

7730 *=*+139

7740 endcod =* ; specified in header

7750 .end □

April 1989: Volume 9, Issue 4

RAMifications

Approaches to fattening the C128,

with critique and commentsfrom Paul Bosacki,

who did itfor the 64

by Richard Curcio

Paul Bosacki's C256 (Volume 9, Issue 2) is the most exciting

hardware project for the C64 to come along in a long time. I

offer a bit of advice to others who would modify a valuable

piece of equipment:

Don't plan on re-using chips desoldered from equipment.

Often, the efforts to remove the chip intact result in damage to

the circuit board. If the IC is successfully removed, one can

never be 100% certain of its reliability. Without access to pro

fessional desoldering equipment, it's better to plan on discard

ing any removed chips. Having made this decision, chip re

moval becomes much easier.

On the solder side of the circuit board, some pins may be bent

over. Straighten these by heating with a low-wattage soldering

iron and slipping the blade of a small jeweller's screwdriver or

a hobby knife (X-acto) between the bent-over portion and the

PC board. (This step is essential if you do decide to risk re

using the chips.) On the component side of the board, using a

sharp, small diagonal cutter, clip each IC pin as close as you

can get to the body of the chip.

Once all the pins of one chip have been clipped, and the body

discarded, begin desoldering the pins. Heating each pin from

the bottom of the board, most pins will simply drop out of the

hole. Those that don't can be removed from the top-side. Grab

each pin with small needle-nose pliers or tweezers while heat

ing the pin with the soldering iron. With just a few jiggles, the

pin should come free.

Clear out the hole from the solder side with a "solder sucker".

Radio Shack carries a very inexpensive one. The trick with

these is to keep the nozzle clear. Empty the sucker often and

use a tooth-pick or straightened paper clip to clear the nozzle.

A sharpened wooden tooth-pick is also useful for clearing out

the PC board holes.

Double-sided printed circuit boards (circuit traces on both

sides) use "plated-through" holes. In other words, the inside

of the hole is copper clad to continue the circuit from one side

of the board to the other. If any desoldered component lead or

IC pin comes out with a small copper-coloured cylinder on it,

the through-plating has come loose. Usually, soldering the

replacement part on both sides of the board will restore the cir

cuit's continuity. If you can't get to the component side of the

part (such as the underside of an IC socket,) flow just a little

more solder than necessary from the bottom of the board.

You might want to practise these techniques before mangling

your trusty C64. Most large cities have an area that used to be

known as "Radio Row", where one can purchase everything

from ancient teletype machines and radar transmitters to obso

lete and/or defective consumer electronics. Pick up a few junk

circuit boards and try your hand at removing ics.

RAMifications: the C128

There are a number of possibilities (with attendant difficulties)

in performing a memory expansion similiar to Paul Bosacki's

on the C128. The following is the result of many nights spent

studying the C128 schematics and is intended to stimulate

some debate on the subject.

As many functions as is reasonable should be controlled by

software, with a few key functions controlled by switches that

over-ride the software settings. There is ample I/O space for

Transactor 46 April 1989: Volume 9, Issue 4

adding latches and such without using the 'official' I/O loca

tions. At least part of the added memory should be available in

64 mode and be compatible with Mr. Bosacki's design.

With these criteria in mind, consider these suggestions:

1) Replace the 64K of RAM 1 with 256K chips, dividing

RAM 1 into 'sub-banks'.

In 128 mode, we need not be concerned with the location and

amount of common RAM since it's always in RAM 0 and the

MMU will take care of everything. Pin 47 of the MMU, vari

ously referred to as MS3 or c 128, goes to logic 0 in 64 mode,

disabling the fast serial circuitry and signalling the PLA to as

sume its C64 persona. This can be used to disregard RAM 0 and

switch over to the expanded RAM 1 in 64 mode and enable the

CRAM circuitry that would be needed, since the MMU effec

tively vanishes.

However, we would lose the ability to have something in

RAM 0 be present when we switch to 64 mode. If we attempt to

make RAM 0 available, along with the expanded RAM l, in 64

mode we then have five 64K banks - a major incompatibility

with Mr. Bosacki's design.

2) Replace both RAM 0 and 1 with 256K chips, creating a

C512!

5) Do nothing. Wait for Commodore to produce the C1000.

(Don't hold your breath.)

Personally, I am inclined to go with item one as a plan of ac

tion. Memory is increased by 196K to a total of 320K. Dealing

with the difficulties of item two may require an inordinate

amount of logic. Initially item three merely doubles the

amount of memory and requires even more 'outboard' elec

tronics.

There are numerous details to be worked out in implementing

any of the above (except for item 5): What is the difference

between MUX, which doesn't exist in the C64's old VIC chip,

and CAS? Should the new CRAM circuitry look at the processor

address bus, or the translated address bus? How should the

preconfiguration registers be handled, if at all? How should

expanded memory behave in Z80 mode?

With enough hardware, anything is possible. The question is:

Is it practical?

Dialogue

The following text is taken from an exchange of letters be

tween Mr. Curcio and Mr. Bosacki. Mr. Curcio, like Mr. Bo-

sacki before him, has kindly agreed to the publication of his

address. - MO

Besides the potential for damaging the circuit board by desol-

dering 16 sixteen pin chips (that's 256 pins, folks), we have to

duplicate the CRAM actions of the MMU. There is no signal

from the MMU to indicate that common RAM is being accessed.

The task is to capture the common RAM amount and loca

tion^) values written to the RAM configuration register at

$D506 (not overly difficult; $D5xx is already decoded), and

qualify our CRAM enable with the CAS intended for RAM 0. Ap

propriate three-state circuitry, controlled by MS3, could allow

this mod to mimic Mr. Bosacki's modification in 64 mode.

3) Add two 64K banks, comprised of four 64Kx4 DRAMs.

In addition to capturing the CRAM parameters, if we also cap

ture bit 7 of $FF00, we can implement the missing banks 2

and 3, which the operating system already knows about but the

MMU and the rest of the hardware don't provide. Only minor

alterations need be performed on the C128 PC board. More

RAM could be added at a later date. The hardest part may be

getting it all to fit inside the case.

4) Don't add any RAM. Instead, make RAM l, the second

colour memory bank, and possibly the fast serial circuits,

available in 64 mode.

This is pretty simple. Commodore could have made this

available as an 'enhanced' 64 mode.) When compared to a

C256, this is pretty meagre fare, and may not be worth the ef

fort. On the other hand, the exercise may be useful as a prelim

inary hack.

I applaud your accomplishment, creating a fat C64.1 am eager

to know the details of the 512K expansion. If it uses a switch

to select the second 256K, you might be interested in Figure 2

of the enclosed schematics. I am told that your modification

doesn't work on the newer 64Cs. Can you confirm this or pro

vide a fix? [Happily, Mr. Bosacki has obtained an E-board

64C and states that the mod can be achieved in that machine

also. -Ed.] Also, how are RAM-based characters handled by

your circuit? Does Configure 256 work with geoPainft How

can we implement your GEOS mod without the (alleged) bene

fit of GeoProgrammerl I am not a fan of GEOS and if you can

provide any improvements to it (like turning off proportional

spacing in text in geoPaint) that would be great.

Have you considered the possibility of a C128 expansion? I

have a few ideas regarding that, and it seems that there are

more than a few difficulties to overcome.

I had heard about your C256 some months before seeing it in

Transactor. While awaiting that issue, I devised (on paper) my

own method for RAM expansion. I don't know if it would work,

and I admit that my knowledge of dynamic RAM is somewhat

PLA

break Existing RAM

is 4164 x 8

I 4464 x 2
■jcas

DECODER
figure 1

Transactor 47 April 1989: Volume 9, Issue 4

figure 2a

break

T \

A9 :

A8]

$D5xx

$D6xx

$D7xx

Vz74LS139

figure 2b

BANK SELECT

CRAM AMOUNT

L, H ENABLE
AEC ENABLE

«2

DG-D7>

sketchy. My method requires a bit more hardware and wiring than

yours. It would fit inside a C64 but probably not a 64C.

Basically, my scheme (Figure 1), would leave the original RAM

chips in place, and divert the pla's CASRAM signal from the

4164s to the enable of a 74LS139 or similar decoder. One decoded

output goes to the on-board memory chips and the others go to

banks of 4464s (64K x 4). The value on the decoder's select bits

determines which bank gets CAS'ed. (A three-bit decoder would

provide 8 64K 'banks'.) Any Common RAM or Bank Enable

signal would force this value to select the original RAM.

Memory could be expanded in stages, and the risk of damage to

the circuit board is minimized by not desoldering any chips.

On the other hand, all the data and MA lines would have to be

brought to the expander board. Looking at your design, I get

the uneasy feeling that mine wouldn't work. Am I mistaken in

assuming that unselected banks would continue to be refreshed

via RAS?

A master 'mod disable' switch is a good idea. I've gotten used

to setting switches to configure my viC-20, but for the C64

switches seem like several steps backwards.

The features I have in mind need more bits than those provided

by the cassette lines of the 6510 port. To create more I/O space

to supply the needed bits, Figure 2a decodes SDD's enable (which

occupies a wasteful IK of I/O), into four pages. One of these is

used to enable a 65C22 or other parallel interface chip.

SQ—<

SI

52

V-

cimount

L. enable

CRQMH

figure 3

CH5
BEN

This would power up or reset with its port pins high (via pull-

up resistors) and the logic would be such that this selects the

normal memory configuration. Software would be compatible

as long as it doesn't use any SID 'image' addresses. The 65C22

is undoubtedly over-kill for this application (the CMOS version,

to reduce current consumption, is also hard to find), but it's

easily interfaced and its other port might come in handy, per

haps for selecting alternate ROMs.

The alternative is to also decode R/w and phase 2 to provide a

WRite strobe for a latch and a ReaD for a tri-state buffer to

read back the latch contents. The latch should have a "clear"

input so that RESET provides all zeroes as the default.

The 65C22 would need to be initialized. On reset, the ports go

high because the DDRs (and all other registers) are cleared,

putting the ports in input mode. Changing the DDRs to output

'cold' would cause the port pins to go low because the Output

Registers were also cleared. Fortunately, the 65C22 permits

writing to the Output Registers while configured for input.

Why isn't this a problem with the MPU port? (Or is it?)

Another way to obtain more I/O space is shown in Figure 2b.

Here one of the CIA enables is intercepted and decoded with

A7 to provide a new enable. I tend to favour this approach,

and the lower half of the figure shows the latch/buffer alterna

tive to the 65C22. If Bank Select remains at the 6510 port,

three of the latch bits are unused and available for other tricks.

I would like to have different amounts of common RAM, per

haps as much as 16K so that a bit-map at $2000 could be seen

from the other banks. In Figure 3 the OR gates of your design

are slightly rearranged to provide a logic 0 when the lowest 1,

2, 4, or 16K of memory are addressed. Bits SO and SI of the

74LS151 data selector choose how much low common RAM

will be present. Bit S2 can force the '151 to look at the pins

held at +5V, causing CRAML to be high. (The E input can't be

used because when the '151 is disabled, output Y is low -

which is the opposite of what's needed, although it could be

used for a software 'mod disable'.) With no low common

ram, each bank could thus have its own zero-page and stack!

Because of the scarcity of free RAM in the lowest IK of

memory, Figure 3 also provides the capability of common

RAM in high memory. Three-input and gate A, with two left

over inverters, supplies CRAMH when A15, 14, and 13 are 110.

This decodes addresses $C000-$DFFF as common RAM when

H enable is low. Of course, D-block is accessible only when

I/O and character ROM are switched out. Gate B replaces the

two-input AND gate in your circuit. The remaining OR gate can

be used for a software AEC enable. (In your circuit, how does

an open switch translate to AEC enabled, since AEC doesn't

matter?) Add inverters as necessary to provide the power-up

configuration - depending upon a 65C22 port with all port bits

at 1 or a cleared latch with all zeroes. That leaves one idle

three-input and two 2-input ands for any other enhancements.

In this circuit the amount of High Common RAM is fixed, but

added complexity could provide variable amounts.

Transactor 48 April 1989: Volume 9, Issue 4

When things become too complex for gates and decoders,

some means must be found to reduce the chip count. I include

a data sheet for a UV erasable PLA. This device was sold by

Jameco a while ago. I don't know if it's still available. Sup

posedly, this device could be programmed in an EPROM burn

er^). If it doesn't come out right, erase it and try again. I as

sume the manufacturer can provide more information regard

ing programming, etc.

Even without resorting to a home-burned PLA, I'm sure that

some of the above could be done more efficiently. Every time

I thought that this letter was finished, a new idea would pop

into my head. Thank you for a most stimulating project. I can

hardly wait to try this stuff.

Richard Curcio

22 Seventh Avenue

Brooklyn, N.Y. 11217

Thank you for your response to my article. The big kick with

this article has not been getting it published, but rather receiving

letters like yours. Letters from people who understand the work

ings of the project. My wife, I'm afraid, has gotten a bit tired of

hearing about and gates and *CRAM and "two bit codes" etc.

But, on to your questions. The most important of which is: Is

the project compatible with the newer 64s. The preliminary

answer is a cautious "yes". The newer models use LH2464's

(read 41464), a 64x4K bit DRAM. The modification, as I see it at

this point, is simple. The 'LS157 multiplexor is replaced with

an 'LSI39 which is permanently enabled. The two pseudo ad

dresses are then used to drive the select pins of one half of the

'LS139. The four output pins are then connected to four banks

of 2x64x4K bit drams. The problem here is the additional

wiring of the drams. All this is, as I said, preliminary; I

haven't tried it yet, and I'm still in the process of drawing up

the schematics.

The other possibility here is forsaking the two x 4 drams on the

board and laying in a bank of 41256's. Although the layout of

the system board is quite different than that of the old 64s, all

the signals needed are directly accessible. My opinion is that

this is the way to go. But again, I haven't tried it yet. And DRAM

is expensive right now (I got my first 256K for $50).

Your next question is a bit unclear. Does this RamEx work

with geoPaint? I take it to mean, do you get the fast DMA that

allows the quick scrolling about a geoPaint document? If

that's your question, the answer is no. As I mentioned in the

article, the stash, fetch, swap and verify routines are not sup

ported. Still vague? The DMA routines in GEOS are based on the

principle that it's faster to use the REU to move data than it is

to use the MPU. And they're right. My RamEx, however, uses

the MPU to move data, and since it moves it across banks, that

move is a little slower than a move within one bank. So, for

that reason, I chose not to support those routines. For that rea

son and another: you can only modify so much GEOS code be

fore you run out of space.

To implement the GEOS mod without geoProgrammer: Use

PAL or some other assembler (I used to use Buddy). Type in

code remembering to expand all macros, shorten the routine

names, and make all other changes appropriate to your assem

bler. Then assemble and split the the header manually from the

program. Take a look at the GEOS program from the previous

Transactor. [This is a reference to the "maketogeos" program

and PAL-format source code that was featured in "Program

ming in GEOS" by Francis G. Kostella in T 9:1. - MO] That's

how they did it.

Concerning the 'alleged' advantages of geoProgrammer. Hav

ing used it, Buddy and PAL, I wouldn't go back. It's just too

good. And, of course, for programming under GEOS, just too

necessary!

I know it's impossible to get text to line up properly in

geoPaint. If you want to get rid of proportional spacing, try

using the Commodore font. It's an ugly font, but it will do just

that. If your problem is getting text to line up, use the edit tool

and just move it into place. Once you develop the knack, it's

quite easy to do.

About expanding the 128: my only thought there used to be this:

piggyback the DRAMs with 4164's, bend up pin 15 and connect

it to the MMU's *CAS2, and *CAS3 output. That's an easy 256K,

with 128K unused in any way by the OS. Other than that, I don't

have access to schematics for that machine and am unfamiliar

with its architecture. Will my above suggestion even work? Isn't

that part of what you're getting at in your comments? You're

better qualified here than me. Although I would love to get my

hands on the schematics for that machine. Got an order number?

Something I want to get at here about your modification. It

seems that it would work, yes. And, yes, the RAM would be re

freshed via *RAS. But don't overlook the C64 power supply.

One reason I went for replacing the drams altogether was that

power supply. Too much support circuitry and two much

dram equals one dead power supply, and that dead power sup

ply will propably have taken the DRAM with it. Something to

consider! My board does not require a beefier power supply

(except in those marginal cases). My 64 ran for six months be

fore I got an REU, with no problems. And then I went to 512K,

which definitely requires the heavier power supply.

Although it's certainly not obvious, I had two overriding con

cerns when I went at this expansion project. Keep the parts

count down and keep it transparent. Using the MPU port literally

required the master disable switch. And the other switches? I

agree, switches are a step in the wrong direction. But I wanted

to show that it could be done simply. The other option, even

when that board was being developed, was an 8-bit latch

mapped into phantom I/O space, but the additional circuitry was

too much a complicating factor. I thought that many more peo

ple would try to build a six-chip board than a twelve. Yes, my

first 512K had 12 chips and was a patch on the original board.

Paul Bosacki □

Transactor 49 April 1989: Volume 9, Issue 4

How Random is RND?

An analysis of the C64 and C128 RND routines

by D. J. Morriss

The beginner in BASIC is often surprised to find the RND func

tion. What is the use of a function that supplies an allegedly

completely unpredictable number? The more experienced pro

grammer sees the utility of such a function in games; or, more

seriously, in simulations. But some new questions occur: how

does the computer generate these random numbers, and are

they truly random, or do they exhibit some hidden bias?

You're about to implement a cost-cutting inventory control

system, based on your simulation of typical demand levels;

will it cut costs or lose sales? Or you're specifying maximum

drainage capacity for a proposed municipal storm-sewer sys

tem, after simulating 200 years of rainfall extremes on your

computer. This could get expensive!

Part of the problem is that a random-number generator is, by

its very nature, difficult to test. If you come up with a great

new square-root routine, you need try only a few values to

know if it works properly. But a random number generator can

be shown to be 'good' only by examining many obscure prop

erties of long sequences of numbers produced by the genera

tor. Most of us lack both the skill and time to rigorously test a

RND function, preferring to trust in the designers of the BASIC

Interpreter. Unfortunately, the RND function, as implemented

on the C64 and C128, has a number of serious shortcomings

that should be recognized if RND is to be used effectively.

In theory, a computer is a completely determined system: giv

en the initial state, and in the absence of such variables as key

board input, the subsequent states of the computer are com

pletely defined. Such a system cannot generate true random

numbers; instead, RND produces pseudo-random numbers.

They pass (or should pass) all the tests of random numbers,

such as average value, standard deviation, and runs up and

down, but they are generated by some specific mathematical

technique. The proof that these are not true random numbers

lies in the fact that the same sequences can be created over and

over again. In fact, there are three separate mathematical tech

niques used to generate pseudo-random numbers on the C64

and C128, sometimes in conjunction.

The first is juggling: the digits that make up the number are re

arranged in some defined pattern. In the C64 and C128, this

juggling is done on the basis of individual bytes of a four byte

number. The second system is multiplication and addition:

some starting number is multiplied by one constant, and anoth

er constant is added. The resulting random number is perhaps

altered in some other way, and becomes the starting point for a

repeat of the same process. The third system involves passing

the buck; the computer tries to find some external source of

random numbers that it can use to generate its internal random

numbers.

The RND function on the C128 is located in ROM, starting at

$8434, in Bank 15, and is the same in both Versions 0 and 1 of

the ROMs. The routine makes extensive use of Floating Point

Accumulator #1, (FPA #1), where BASIC stores intermediate

results, located from $63 to $68. Another important storage

area is called RNDX, located from $12IB to $121F. This is the

mysterious random number seed, from which new random

numbers grow. Listing 1 is a commented disassembly of the

C128 routine. Subroutines used by RND are not included, but

their purposes are indicated.

The C64 rnd routine is located at $E097, fpa #1 is at $61 to

$66, and RNDX is at $008B. Although some of the details and

subroutine calls are different, the general flow of the C64 RND

routine is the same as the C128 version. Listing 2 is a com

mented disassembly of part of the C64 RND function. Most of

the following discussion of the C128 routine applies equally to

both computers; where differences are significant, they are

noted.

The C128 routine starts at $8434, by determining the sign of

the argument of RND, stored in FPA #1. The routine then takes

three different routes, depending on whether that argument is:

a) negative; b) zero; or c) positive.

RND(-)

(The C128 and C64 versions of this part of RND are identical.)

If the argument of RND is negative, the C128 routine branches

to $846A. Here, the first and fourth bytes of FPA #1 are inter

changed, then the second and third. At this point, FPA #1 con

tained the negative argument of RND. The sign byte is set to

zero, making the value positive, and the exponent byte is

transferred to the rounding byte. The exponent byte is then set

to $80, meaning a number between one-half and one, and the

Transactor 50 April 1989: Volume 9, Issue 4

number is "normalized". The process of switching bytes may

have led to a number in which the most significant bit (or bits)

of the most significant byte is not a one. During normalization,

the whole four-byte number in fpa #1 is shifted left, and the

exponent decreased by one for each shift, until that most sig

nificant bit is one. The new bits needed at the least significant

end of the number (if any) are obtained from the rounding

byte. This new number in fpa #1 is left there as the value

returned by the RND function, but a copy is packed (stored in a

slightly different way) in RNDX, starting at address $12IB, for

reasons that will (I hope) become clear soon.

Thus, we see that RND of a negative number creates a random

number by carrying out a specific manipulation on that nega

tive number. So, RND(-3) will always yield the same number,

and RND(-112233) will always yield some other specific num

ber, rnd(-) on the C64 follows exactly the same procedure: a

given negative argument gives the same random number on

both machines.

As the disassembly shows, the least significant byte of the

argument becomes the most significant byte of the resulting

random number. If the argument is a number with only a few

digits (when expressed in binary floating point form), then the

least significant byte (or bytes) will be zero. Such arguments

include integers, and fractions like 0.1328125 (17/128) and

0.890625 (57/64). When these zero bytes are switched to

become the most significant bytes of the random number, a lot

of normalization is necessary. This in turn means that the

exponent is decreased a lot, creating a very small random

number. RND(-37), for example, is 3.45808076E-8, and

RND(-6.625) is 4.94792403E-8. On the other hand, the binary

representation of 37/i31, for example, uses all four bytes, and

RND(-37/131) is a more reasonable 0.985681329. (Can any

random number be termed reasonable?)

How does RND(-37/131) compare to RND(-37/131/2) or

RND(-37/131*64)? They are the same! The only difference in

the binary floating point form of the three arguments is in the

exponent, and the exponent gets shifted to the rounding byte,

to be used as the source for new bits during normalization.

Since these arguments use all four bytes, little normalizing is

required, and the rounding byte is probably not needed. On the

other hand, RND(-5), RND(-IO), and RND(-20), although all

very close, are different. The different exponents of the argu

ments, stored in the rounding byte, become significant when

the random numbers, with only a few bits set, are normalized.

I have often seen articles which recommend rnd(-ti) as a

good source of really random numbers. Since the jiffy clock

keeps time in integral numbers of jiffies, it is clear that RND(-

Ti) will always yield very small random numbers. Perhaps a

variation like RND(-TI*SQR(2)) would give the desired result.

Since RND(-) always gives the same value for a given negative

argument, it would not appear to be a very useful random-

number generator. Indeed, about the only purpose of RND(-) is

to store a new, definite value in the RNDX area.

RND(O)

(The C128 and C64 versions of this part of RND are signifi

cantly different.)

Referring to the disassembly of the RND routine again, if the

argument of RND is zero, the C128 routine falls through to

$843B. Here, the routine selects Bank 15, then proceeds to

load FPA #1 with the contents of $DC04 to $DC07, and jumps

to $847A. This is the same part of the routine that sets the sign

positive, the exponent byte to $80, normalizes the value,

copies it to $121B, and then exits.

The locations that produce the random number, $DC04 to

$DC07, are four registers on Complex Interface Adapter (CIA)

#1. These four bytes store the high and low bytes of two internal

16-bit timers. They are not part of the Time Of Day Clocks, as

some references have stated (but see the C64 version discussion

below). The timers are normally used to count pulses of the sys

tem clock. In theory, each byte could have any value from 0 to

255, giving totally random numbers; however, only one of these

two timers is running! The other timer, at $DC04-05, is used in

the C128 for tape and fast disk operations, and is left stopped by

these routines, usually reading 2 or 1. Enter and run this short

program to display the four timer bytes.

100 bank 15 : sa = 56320

110 for k=4 to 7 : print peek(sa + k),

120 next : print

130 go to 110

As you can see, only two of the four bytes are changing. This

limits the range of possible values that will be transferred to

FPA #1, and thus limits the random numbers produced by

RND(0). Since only the first and third bytes of the random

number are changing, while the second byte is a constant, and

the fourth is zero, the result is a set of random numbers clus

tered closely (but not very, very closely) about 256 evenly

spaced values.

To demonstrate the effect of this stopped timer, run this short

program:

200 print rnd(0) * 256 : go to 200

Note that all the numbers printed are very close to whole num

bers. In fact, if the stopped timer is reading 1, the fractional

part of the number will be between 0.00390625 and

0.0078125; that is, between 1/256 and 2/256.

This limitation seriously decreases the usefulness of RND(0).

For example, you may wish to generate a random integer

between 1 and 1000 inclusive; a statement like:

x = int (rnd (0) * 1000 + 1)

would appear to do exactly this. In fact, only 256 of the 1000

integers would ever be generated!

Transactor
51

April 1989: Volume 9, Issue 4

This is a very good reason to avoid RND(O). However, there

may be circumstances where it must be used; for example, to

increase speed (see the timing results below). To make rnd(O)

truly random, the stopped timer must be started and kept run

ning. This short program, for the C128, will start the timer,

and set it counting down repeatedly from 65535.

300 bank 15

310 sa=56320:poke sa+4,255:poke sa+5,255

320 poke sa+14, 1: end

Re-run the previous RND(O) examples, after starting the

timer, and you will see that RND(O) is now well-behaved.

Unfortunately, any serial port operation, such as calling up a

DIRECTORY, will stop the timer until the program above is run

again.

The C64 version of rnd(0) is quite similar (see Listing #2),

but uses some different registers on CIA #1 to generate the ran

dom number; the two registers of Timer #A, for Bytes #1 and

#3, and the 1/10 second and seconds registers of the Time of

Day Clock, for Bytes #2 and #4. To watch these registers on

the C64, run this program:

150 sa = 56320

160 print peek(sa+4), peek(sa+5),

peek(sa+9)

170 go to 160

peek(sa+8),

Note that the last two registers are fixed at zero; thus, RND(0)

on the C64 is even more limited than the C128 version. Run

the program found in Line 200 above, to demonstrate the

effect of this problem on rnd(0).

The Time of Day Clock is running; however, until a write to

the 1/10 second register takes place, the registers are latched.

Run this program:

180 poke 56328,0

to allow the registers to follow the time; re-run the program at

Line 150 and see the change.

Unfortunately, this does not improve RND(0) on the C64 very

much. The 1/10 second register only runs up to 9 (decimal),

and the seconds register only runs up to 89 (decimal), $59. So

even if the Time of Day Clock registers are changing, the ran

dom numbers generated are still clustered about 256 values.

Another problem with RND(0) is that, if it is used repeatedly, in

succession, in a BASIC program, the timers will change in a pre

dictable way in the constant interval between successive calls to

RND, yielding pairs of random numbers that are highly correlated.

For example, using rnd(0) twice to simulate rolling a pair of

dice will produce a very unusual, non-random distribution of

pairs of values; some pairs of values will never appear! Try
this short program:

400 dim a(6, 6)

410 x = rnd (.) : y = rnd (.)

420 x = 6*x+l : y = 6*y+l

430 a(x, y) = a(x, y) + 1

440 get q$: if q$="" then goto 410

450 print:print

460 for k = 1 to 6

470 for 1 = 1 to 6

480 print a(k, 1),

490 next 1 : print : next k

500 go to 410

Press any key occasionally to see an update of how often each

possible pair of values shows up. Note the extreme non-

random distribution of the pairs of values. Switching to FAST

mode accentuates the problem. Interrupts that occur between

the two calls to RND(0) allow the timers to run for different

lengths of time, and increase (slightly) the randomness of the

distribution of pairs of values. The results of this program on

the C64 are still distorted, but less severely.

For both these reasons, RND(0) should be used only to create

new values for RNDX, as was the case of for rnd(-)

RND(+)

(The C128 and C64 versions of this part of RND are identical.)

Referring once more to the disassembly of RND, if the argu

ment is positive, the routine branches to $8455. Here, the

number stored in$121B-$121F (rndx) is recovered into FPA

#1, and multiplied by the constant stored (in floating-point

form) in ROM at $8490 - $8494. The constant in $8495 - $8499

is then added. The routine then falls through to the code that

juggles the bytes, sets the sign and exponent, normalizes and

finally stores the new value back in $121B.

Note that the value found in FPA #1 at the beginning of the rou

tine, the positive argument of the RND function, is never used.

Instead, it is over-written by the last random number, stored in

rndx. It is this old random number that is used to create the

next random number, which in turn becomes the seed for the

next random number.

Any positive argument, constant or variable, for rnd would

have produced exactly the same new random number from a
given seed.

From this description, it is clear that, given a particular value

stored in RNDX, repeated use of rnd with any positive argu

ment will give the same sequence of random numbers every

time. The cold-start routine initializes RNDX to zero, so that

simply using rnd with a positive argument would always

yield the same sequence after resetting. The only way to

change to a new sequence of random numbers is to change to a

new value in rndx; use rnd(-), if you want to switch to some

specific sequence, or RND(0), if you wish to jump to an unde
termined new sequence.

Transactor
52 April 1989: Volume 9, Issue 4

One important question about RND(+) is: how ldng before the

random numbers generated this way begin to repeat. Remem

ber, as long as you use RND(+), you are following a fixed path,

jumping in a definite route from one number to another. Soon

er or later, you must land on a number you have been to

before. After all, there are only so many differer t numbers on

which to land. Once this happens, you then repeat your previ

ous sequence of random numbers, over and over. The length of

this loop is dependent on the constants used to generate the

new random number from the old one. I was curious as to how

well the C64 and C128 designers had chosen these constants.

The machine language program (Listing 3) w,as written to

determine the length of these loops.

The problem of finding the loop length is complicated by the

possibility of a situation like this: random seed A produces B,

which produces C, which produces D, which produces E,

which produces F, which produces C, and the loop is complet

ed without ever returning to A. The sequence consists of a

is not enough

sequence in

loop, C, D, E, F, as well as a "tail", A, B. There

room to keep every random number of the

memory, nor is there time to check the current random number

against all previous random numbers to find a mptch when the

loop closes.

The solution is to run two sequences. They both start with the

same seed. One sequence calculates RND(+) once; then the

other sequence calculates RND(+) twice; then the process is

repeated. Each sequence loads its own old seed into rndx

before taking its single or double step, and saves its new cur

rent seed afterwards. Eventually the double-stepping sequence

will complete the loop and catch up with the single-stepping

sequence from behind. The number of steps needed is the

length of the loop.

The situation is a bit more complicated if the sequence starts

on the tail attached to a loop, as described above. If the tail is

long, compared to the loop, then the program in Listing 3 will

record a length that is approximately equal to the length of the

tail. The reported length will be a multiple of the loop length.

When this ML program was run with over 1000 different start

ing random seeds, a remarkable pattern was discovered. Fully

83% of the sequences looped in the same length: 63,671 ran

dom numbers! About 2% of the sequences contained exactly

twice as many numbers; these were determined to be loops of

the same length, 63,671, entered through a tail at least as long.

No sequences longer than this were found.

The remaining 15% of the sequences were considerably short

er. 5% of the sequences traced had less than 10,000 random

numbers. The shortest sequence observed had only 590 num

bers in it!

The short sequences showed another strange property. They

almost all turned out to be loops with tails, and the loops were

of only a few different lengths. For example, about 9% of the

sequences studied turned out to end in loops of length 724.

Some of these sequences had very long tails, twenty or thirty

thousand numbers long, but the loop at the end was quite

short. Another 2% of the sequences studied ended in loops of

length 7036, while a few other loop lengths, like 4232, 2644,

and 5660 showed up at the end of a few sequences. The reason

that these loop lengths, and only these loop lengths, were

observed is a mystery to me.

Despite the short loops, Commodore seems to like this particu

lar version of RND(+). The two constants used to generate the

next random number are 11879546 (multiplicand) and

3.92767774E-8 (addend). These are exactly the same

constants as RND uses in the C64, and thus RND(+) on the C64

suffers from the same problem as RND(+) on the C128. To

illustrate this problem, run this short program on either a C128

or C64, with the appropriate value of sa, the address of the

start of rndx:

600 sa=4635 : rem for cl28, sa=139 for c64

610 bank 15 : fast : rem on cl28 only

620 for k=0 to 4:read x:poke sa+k, x: next

630 data 128, 115, 153, 56, 197

640 y = rnd(l): print y

650 for k = 1 to 294: x = rnd(l) : next

660 go to 640

This program seeds the five bytes of rndx with values that

place it on a loop of length 295. If you now use RND(+) repeat

edly, you will generate the same 295 random numbers over

and over again. As you can see from the output of this pro

gram, the same value of Y is generated and printed each time

around the loop. All the other 294 random numbers are repeat

ed as well.

A curious programming trick turned up when I checked the

values of these RND constants in earlier PET/CBM systems. The

designers managed to store two five-byte constants in only

eight bytes. They accomplished this apparent miracle by over

lapping the constants. Thus, the fifth byte of the first constant

is also the first byte of the second constant; the first byte of the

routine is also the fifth byte of the second constant. When this

routine was transferred to the more spacious C64 and C128,

the constants were given five bytes each. But the two new fifth

bytes were set to zero. Thus the constants were changed in val

ue slightly, and the sequences of random numbers generated

by RND(+) on the PET/CBM and on the C64 and C128 are com

pletely different.

Although 63,671 random numbers seems like a lot, it should

be considered in light of the over 35 billion possible random

numbers. Clearly, for any particular starting random seed, only

a small fraction of all possible random numbers is available on

that particular sequence. If the total number of random num

bers used exceeds 63,671, as it well might, the selection of

numbers will not be random. There is also the distinct possi

bility of hitting a much shorter sequence. For important appli

cations, it would be a good idea to use RND(-) or rnd(0) fre

quently, to jump to another loop.

Transactor 53 April 1989: Volume 9, Issue 4

Timing

As the disassembly indicates, there are large differences in the

three possible routes through the RND function, resulting in

large differences in execution time. These execution times

were measured for the C128 by executing a short program

with a loop that executed 20,000 times. The time taken for the

statement x = rnd(y) was compared to the time for the state

ment x = y. This eliminated the overhead time devoted to find

ing and storing variables. Naturally, y was allowed to be nega

tive, zero, and positive. Several significant results were

obtained.

First, RND(O) had the shortest execution time. RND(-) took

4.43 times as long to execute, and RND(+) took 4.69 times as

long, compared to RND(O). Secondly, the time to parse and

evaluate a numerical constant argument was significantly

longer than the time needed to find and transfer a variable

argument. For example, the loop took about 10% longer to

complete using x = rnd(-l), compared to x = rnd(y), where

y had earlier been defined as -1. The absolute speed champ

was rnd(.); the Basic Interpreter recognizes a solitary deci

mal point as a zero faster than it recognizes the digit zero,

and faster than it can look up a variable equal to zero, even if

that variable is at the beginning of the variable table.

Good advice

1) Avoid using RND(0) unless absolutely necessary. Start and

re-start Timer A in CIA #1, if you insist on using RND(0) on

the C128. For maximum speed, use RND(.)

2) Use RND(-) to establish a new sequence of random num

bers. Use as the argument a negative number that does not

have an exact representation in floating point binary nota

tion. Avoid numbers like -78, -548, and -12.875

3) Use rnd(+) for most purposes. Use a variable argument,

rather than a constant argument, for a useful increase in

speed. Switch to a different sequence by using RND(-) or

RND(0) before the sequence begins to repeat.

f8455

f8457

f8459

£845c

£845e

£8460

£8463

£8465

£8467

£846a

£846c

£846e

f8470

f8472

f8474

f8476

f8478

Ida

ldy

jsr

Ida

ldy

jsr

Ida

ldy

jsr

ldx

Ida

sta

stx

ldx

Ida

sta

stx

#$lb

#$12

$8bd4

#S90

#$84

$8aO8

#$95

#$84

$8al2

$67

$64

$67

$64

$65

$66

$65

$66

POSITIVE ARGUMENT ROUTINE

set pointers to RND seed

in RAM at $121B

routine to unpack RND seed

to FPA #1

set pointers to multiplicand

at $8490 in ROM

routine to unpack constant to

FPA #2 and multiply by FPA #1,

leaving result in FPA #1

set pointers to addend

at $8495 in ROM

- routine to unpack constant to

• FPA #2 and add to FPA #1,

- leaving result in FPA #1

• NEGATIVE ARGUMENT ROUTINE

• swap Bytes #1 and #4

• of FPA #1

; swap Bytes #2 and #3

; of FPA #1

£847a

£847c

£847e

£8480

f8482

f8484

£8486

£8489

£848b

£848d

Ida #$00

sta $68

Ida $63

sta $71

Ida #$80

sta $63

jsr $88b

ldx #$lb

ldy #$12

jmp

COMMON EXIT ROUTINE

set sign byte of FPA #1

to zero for positive

copy exponent of FPA #1

to rounding byte

set exponent byte of FPA #1

to $80

normalize FPA #1

set pointers to RND seed

AT $121B in RAM

JMP to routine to pack FPA #1

into RND seed; use that routine's

RTS to exit

Listing 1: Commented disassembly of the C128 rnd() routine Listing 2: Commented disassembly of the C64 rnd() routine

£8434

f8437

£8439

£843b

£843e

£8441

£8443

£8446

f8448

f844b

£844d

£8450

£8452

jsr

bmi

bne

jsr

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jmp

$8c57

$846a

$8455

$a845

$dcO6

$64

$dcO7

$66

$dcO4 ,

$65

$dcO5 ;

$67 ;

$847a ;

; determine sign of argument

; branch if negative

; branch if positive

' ZERO ARGUMENT ROUTINE

set bank 15

fill Bytes #1 and #3,

FPA #1, from Timer B,

CIA #1

fill Bytes #2 and #4,

FPA #1, from Timer A,

CIA #1

NOTE: TIMER STOPPED!

jump to COMMON EXIT

eO97

eO9a

eO9c

eO9e

eOal

e0a3

e0a5

e0a7

e0a9

eOab

eOac

eOae

jsr

bmi

bne

jsr

stx

sty

ldy

Ida

sta

iny

Ida

sta

$bc2b

$eOd3

$eObe

$ff£3

$22

$23

#$04

($22),y

$62

($22),y

$64

; determine sign of argument

; branch if negative

; branch if positive

;ZERO ARGUMENT ROUTINE

; set up indirect address

' to $DC00 in $22 and

$23

fill FPA fl,

Bytes 1 and 3,

from Timer A,

CIA #1

Transactor 54 April 1989: Volume 9, Issue 4

eObO ldy #$08

e0b2 Ida ($22),y

e0b4 sta $63

e0b6 iny

e0b7 Ida ($22),y

e0b9 sta $65

eObb jmp $e0e3

fill FPA ft

Bytes 2 and 4,

from Tims of Day Clock

Registers, CIA fl

jump to COMMON EXIT

(remainder of routine identical to C-128 version, except for

different addresses of routines, fpa#1, and constants)

Listing 3: random.src

CB 1002 sys4000

KI 1004 .org 4864

CJ 1006 .mem

EP 1008 ; table of variables

HJ 1010 count =1024 ; start of counter

OM 1012 rndx =$121b / start of rnd seed

DB 1014 mmu =$ff00 ; change bank

ON 1016 rndpos =$8455 ; positive rnd entry

1018 ;

1020 start

1022 ;

1024 :

1026 :

1028 :

1030 :

1032 ;

1034 :

1036 :

sei ; no interrupts

Ida mmu

sta temp

Ida #00

sta mmu

; store bank and

; go bank 15

NO 1038 loopl =*

1040 :

1042 :

1044 :

1046 ;

1048 :

LO 1050 Ioop2

PG 1052 :

1054 :

1056 :

1058 :

ldx §4

Ida #0

sta count,x

dex

bpl loopl

zero counter

all five bytes

ldx f4

Ida rndx,x

sta seedl,x

sta seed2,x

dex

bpl Ioop2

store current rnd seed

in seedl and seed2

all five bytes

OL 1060 ;

1062 main =*

1064 ;

1066 :

1068 Ioop3

1070 :

1072 :

1074 :

1076 :

1078 :

1080 ;

1084 :

1086 ;

1088 :

BM 1090 Ioop4

DC 1092 :

CP 1094 :

CI 1096 :

AA 1098 :

GO 1100 ;

MO

GL

DG

NG

CN

DP

IN

CO

ldx 14

Ida rndx,x

sta seed2,x

Ida seedl,x

sta rndx,x

dex

bpl Ioop3

move rnd seed to

seed2 and seedl

to rnd seed

all five bytes

jsr rndpos ; do a rnd(+)

ldx 14

inc count,x

bne done

dex

bpl Ioop4

jmp exit

increment counter

check for carry

counter overflow

MC

HG

IC

AA

EB

PF

GA

JJ

IP

HI

NA

OP

IF

PJ

OD

LJ

KB

IF

MA

IN

BL

PN

01

IB

FH

GA

LH

KA

LO

OH

1102 done

1104 :

1106 loop

1108 :

1110 :

1112 :

1114 :

1116 :

1118 •

1120 :

1122 :

1124 •

1126 :

1128 Ioop6

1130 :

1132 :

1134 :

1136 :

1138 •

1142 exit

1144 :

1146 :

1148 :

1150 .

1152 seedl

1154 .byte

1156 seed2

1158 .byte

=*

ldx #4

5 Ida rndx,x

sta seedl, x

Ida seed2,x

sta rndx,x

dex

bpl Ioop5

jsr rndpos

jsr rndpos

ldx f4

Ida rndx,x

cmp seedl,x

bne main

dex

bpl Ioop6

Ida temp

sta mmu ,

cli

rts

=*

0,0,0,0,0

=*

0,0,0,0,0

1160 temp =*

1162 .byte 0

=

; move rnd seed

; to seedl and seed2

; to rnd seed

; all five bytes

; do rnd(+)

; twice

; compare rnd seed

; and seedl

1 not equal, so start over

compare five bytes

all five match, so

restore old bank,

allow interrupts, and

back to

VIDEO BYTE the first FULL COLOR!

video digitizer for the C-64, C-128
Introducing the world's first FULL COLOR! video digitizer for the

Commodore C-64, C-128 & 128-D computer.
VIDEO BYTE can give you digitized video from your V.C.R., B/W or

COLOR CAMERA or LIVE VIDEO (thanks to a fast! 2.2 sec. scan time).

• FULL COLORIZING! Is possible, due to a unique SELECT and INSERT color process,
where you can select one of 15 COLORS and insert that color into one of 4 GRAY
SCALES. This process will give you over 32,000 different color combinations to use in
your video pictures.

• SAVES as KOALAS! Video Byte allows you to save all your pictures to disk as FULL
COLOR KOALA'S. After which (using Koala or suitable program) you can go in and
redraw or recolor your Video Byte pic's.

• LOAD and RE-DISPLAY! Video Byte allows you to load and re-display all Video Byte
pictures from inside Video Byte's menu.

• MENU DRIVEN! Video Byte comes with an easy to use menu driven UTILITY DISK and
digitizer program*

• COMPACT! Video Byte's hardware is compact! In fact no bigger than your average
cartridge! Video Byte comes with its own cable.

• INTEGRATED! Video Byte is designed to be used with or without EXPLODE! V4.1 color
cartridge. Explode! V4.1 is the perfect companion.

• FREE! Video Byte users are automatically sent FREE SOFTWARE updates along with
new documentation, when it becomes available.

• PRINT! Video Byte will printout pictures to most printers. However when used with
Explode! V4.1 your printout's can be done in FULL COLOR on the RAINBOW NX-1000,
RAINBOW NX-1000 C, JX-80 and the OKIDATA 10 / 20.

Why DRAW a car, airplane, person or for that matter. . .

anything when you can BYTE it ... llincn DVTC WO AC
Video Byte it instead. VIDEO BYTE $79.95

SUPER EXPLODE! V4.1 w/COLOR DUMP
If your looking for a CARTRIDGE which can CAPTURE ANY SCREEN, PRINTS ALL

HI-RES and TEXT SCREENS in FULL COLOR to the RAINBOW NX-1000, RAINBOW

NX-1000 C, EPSON JX-80 and the OKIDATA 10 or 20. Prints in 16 gray scale to all
other printers. Comes with the world's FASTEST SAVE and LOAD routines in a car

tridge or a dual SEQ., PRG. file reader. Plus a built-in 8 SECOND format and
MUCH, MUCH MORE! Than Explode! V4.1 is for you.

PRICE? $44.95 + S/H or $49.95 w/optional disable switch.

• in 64 mode only VIDEO BYTE only $79.95
SUPER EXPLODE! V4.1 $44.95

TO ORDER CALL 1-312-851-6667 PLUS $1.50 S/H CO.D.'S ADD $4.00

Personal Checks 10 Days to Clear IL RESIDENTS ADD 6% SALES TAX

THE SOFT GROUP, P.O. BOX 111, MONTGOMERY, IL 60538

□

Transactor 55 April 1989: Volume 9, Issue 4

Turning Off Write/Verify

Modifying 1571 vectors

by Dennis J. Jarvis

Copyright © 1989 DJ. Jar-vis

Before I get into the actual operating system I would like to

give some background on the 1571's operating system.

When Commodore released the 2031 disk drive, which was a

single drive unit, it included Disk Operating System 2.6. DOS

2.6 thus became the standard for single disk drive units. This

drive is what the VIC-1540 was based on. The IEEE bus was

reduced to a serial bus, and the disk formating method was

changed (GAP1 was increased by 1 on the 1540).

This is why the 4040 and 2031 disk drives are read compatible

with the 15xx series of disk drives but are not write compati

ble. For more information on this read/write problem consult

the book Inside Commodore DOS by Richard Immers and Ger

ald G. Neufeld on page 208.

When Commodore released the Plus/4 computer they included

a serial bus for the existing serial bus devices, but they also

included a new type of bus called the TED bus. This bus was a

cross between the serial bus and an IEEE bus with 8 data lines

and a few handshake lines. When Commodore released the

1551 disk drive (also known as the 488 disk drive) they

(David Siracusa) made several changes to the operating sys

tem, which included a faster GCR to binary conversion, a fast

format routine, and corrections for some old bugs in the block-

read and block-write routines.

Oddly enough, this DOS was released as DOS 2.6, which is the

same DOS version that is still in the 154x disk drives, even

though their memory maps are nowhere near the same. Com

modore's logic in numbering their DOS versions is still not

very clear to me!

Commodore based the new 1571 disk drive on the 154x's

memory map. What David did was to remove a lot of the code

he installed in the 1551 disk drive and splice it into the 1571

(such as the new GCR routines and the faster formating code,

etc.)

I only wish Commodore had released the 1571 with a serial

bus and an IEEE or 1551 type of bus which would have

increased the overall speed of the drive - if the DOS was

recoded correctly. To wrap up all of the above, the only drives

that are both read and write compatible are the 4040 and 2031

disk drives, and the 15xx series of drives are read and write

compatible. Of course, you can't put a 1571 disk in a 15xx and

read side 1 since you don't have the read/write head to do it

-with. You can read the same disks with the 15xx, 2030, and

4040, but do not write back to them or you may regret it.

One of the changes made in the 1571 DOS was the method by

which it handles the IRQs (Interrupt ReQuests). Instead of

always jumping to a constant memory location (address), it

jumps through a vector the same way that your computer's Ker-

nal jumps through the ICHROUT vector to output a character to

the screen/printer, etc. Since this is the first disk drive to have

this ability, such programs as this were not possible before with

out a major effort on the part of the programmer. With this new

vectoring system in your disk drive we have many options to

pursue - such as the one covered in this article.

The drive's verification routine

Whenever one of the current disk drives (from the 2030

through to the current 1571) writes a sector to disk, it will then

proceed to read that sector back in off the disk to verify it

against what it has in RAM to ensure that the bytes were writ

ten correctly.

Generally you will never see an error occur unless you have a

bad diskette or a hardware failure in the disk drive or serial

bus. Normally a bad disk is detected during the format pro

cess, but they do fail from time to time just by sitting in your

disk box.

In either case, you won't see the problem very often. What this

program does when installed in the 1571 is to 'wedge' itself

into the IRQ vector to allow my program to check to see if the

DOS is about to do a VERIFY operation; if it is, I replace it with

a SEEK operation. If you don't understand any of this, don't

worry about it as it is not required to know how the program

works to use it.

This program could be considered risky to some degree and it

probably is risky, but I've been using this program daily for

three months with no problems encountered to date. Do I

Transactor 56 April 1989: Volume 9, Issue 4

'verify.bas" - Turns off write verify on the 1571

This program runs on any

Commodore computerfrom the

VIC-20totheC128...

guarantee this program? Not on your disk 1 don't. Why, you

might ask? Well, to put it simply, there are too many variables

involved; from your disk drive having the flu, to disks that are

used as floor mats. It would only take one smudge to wipe a

disk. On any account, simply run this program and give it a try

by doing some testing on a. junk disk. (You know the one, it's

the one you don't care if your dog or cat eats, or if Junior uses

it as a frisbee! What I'm trying to say is that I've used this pro

gram for quite a while with no problems on several different

versions of the 1571 Disk Operating System, but this choice is

up to you to make, not me.)

This short program allows you to turn off the write verify opera

tion in your 1571 disk drive even while it's in the 1541 mode.

Currently there are several similar versions of this program run

ning around on public domain bulletin boards but several of

them contain bugs because they, like this one, sit some where in

$0100, which is the disk drive's stack. Most of the ones I have

seen to date use up too much room on the stack and, upon the

first DOS error, - crash! - the drive dies. The following program

has been tested, tested again, then tested more...

To use this program all you need is a 1571 disk drive and this

program. This program runs on any Commodore computer

from the VIC-20 to the C128. To start the program, just load it

up and type run. The program will make only one request, and

that is, simply: "Enter the device number of your 1571 disk

drive:". This value can be in the range of 5 through 30, and

would be the same number that you would enter for a basic

command as dload"filename" ,u(jpc) or load " filename" ,xx

where xx is the device number of the 1571 disk drive. If the

program finds that you indeed have a 1571 disk drive at that

device number, it will proceed with its assigned task. If there

is not a 1571 online, it will display an error message. When

the program has turned off the write verify operation it will

inform you by displaying "Write verify operation is now

turned off!"

During the course of this program I make several checks to

ensure this is really a 1571 disk drive: First I check the IRQ

vector at $FFFE to ensure it contains an $FE67; this will

ensure that it is a 154x or 157x type of drive. Next I check

$8002 for the text S/ to ensure it is a 1571 disk drive. Finally I

check $02A9 which is the IRQ vector for the 1571 disk drive.

When I check this vector I ensure that the MSB of the address

contains a value greater than $80 to ensure that the IRQ is

going somewhere into ROM, and not to another program such

as mine. If all of the aforementioned are true, I download the

ML into the drive and execute it.

FP

DA

CA

HN

JO

KE

JL

CA

6E

FA

AH

GH

KJ

JK

PB

KM

6K

EF

OF

DF

LB

OL

NC

BE

EF

DO

MG

LE

AJ

NI

AO

DP

JM

BB

CO

CG

LO

GL

10 rem publication rights reserved

20 printchr$(142)"{hone}{home}{clr}{down}{down}{down}{down}{down}{down}

{white}turn off write verify operation for"

30 print" commodore's {cyan}1571{white} disk drive

40 print"{down} {cyan}(c){white} 1988, 1989

50 print"{down} by

60 printchr$(15)"{down} dennis j. jarvis"chr$(143)

70 print"{down} kissimmee florida"

80 printchr$(7)chr$(15)"{down}{down} {It. blue}press any key to

{space}continue"chr$(142)

90 geta$:ifa$O""then90:rem purge buffer of any previous key strikes

100 geta$:ifa$= IMIthenl00:rem wait for a key to be pressed now

110 print"{dr}"

120 input"{whitejwhat is the 1571's device number 8 {left}{left}

{left}{left}";a$:dv=val(a$)

130 ifdv<5ordv>30thenl20

140 print"{clr}"

150 openl5,dv,15

160 dosel5:ifstthenprint"{clr}{down}{down}{down}{down}{right}{right}

{right}{right} device number:"str$(dv)n is not turned on":end

170 openl5,dv,15

180 Isb=254:msb=255:gosub350:rem read the rom irq vector ($fffc)

190 iflsb=103andmsb=254then220

200 print"{clr}{down}{down}{down}{down}{down}{right}{right}{right}{right}

{right}{right}sorry this program will only work on the 1571 disk drive"

210 closel5:end

220 Isb=002:msb=128:gosub350:rem check text at $8002 's/w - david

g. sir...etc

230 iflsb<>83ormsb<>47then200

240 lsb=169 :msb=002 :gosub350: rem make sure irq is pointing to a routine in rom

250 ifmsb<128thenprint"{clr}{down}{down}{down}{down}{down}{space}

sorry some one is using the irq vector":goto210

260 fori=2to50:read h$:a$=left$(h$,l):b$=right$(h$,l)

270 gosub300:b=a*16:a$=b$:gosub300:c=a+b

280 print#15,"m-w"chr$(i)chr$(l)chr$(l)chr$(c):next

290 print#15r"m-e"chr$(23)chr$(1):print"{clr({down}{down}{down}{down}{down}

{right}{right}{right}{right}{right} write verify now turned off":end

300 ifa$<":"anda$>I7"thens=48:goto330

310 ifa$>"@"anda$<"g"thens=55:goto330

320 print "invalid hex byte -"h$":stop

330 a=asc(a$)-s

340 return

350 print§15,"m-r"chr$(lsb)chr$(msb)chr$(2):getjfl5,a$,b$:lsb=asc(a$+chr$(0))

:msb=asc(b$+chr$(0)):return

save ace.360 data

370 data

380 data

390 data

400 data

410 data

420 data

430 data

440 data

450 data

460 data

470 data

48:

8a:

48:

a2,05:

b5,00:

c9,aO:

dO,04:

09,10:

95,00:

ca:

10,f3:

4c,fe,ff:

:rem pha

:rem txa

:rem pha

:rem ldx §5

:rem Ida $00,y

:rem emp #$a0

:rem bne *+15

:rem ora #$10

:rem sta $00,y

:rem dex

:rem bpl Ml

:rem jmp $0000

save x reg. onto the stack

number of job queue's to check

get current job out of queue

is it a verify command?

no then branch

replace the verify function

with a seek command

move down to next queue

if any more to do branch

see text for this one

480 :

490 :rem this is where the program is executed when it's in the disk drive
CrtA •AAAAAAAAAAAAAAAAAAAAAAAAAAAAaAA

stop background jobs

get the address of the

current addres in the irq

vector and add 3 to is then

save it for us to jump to,

this was done to save code

(place at jmp $xxxx

place the address of our

new irq routine into the

510 data

520 data

530 data

540 data

550 data

560 data

570 data

580 data

590 data

600 data

610 data

620 data

630 data

78:

ad,a9,02:

18:

69,03:

8d,15,01:

ad,aa,02:

8d,16,01:

a9,02:

8d,a9,02:

a9,01:

8d,aa,02:

58:

60:

:rem sei

:rem Ida $02a9

:rem clc

:rem adc #3

:rem sta $0115

:rem Ida $02aa

:rem sta $0116

:rem Ida f2

:rem sta $02a9

:rem Ida fl

:rem sta $02aa

:rem cli

:rem rts

the 1571's irq vector

so were called each irq.

restart the background jobs

and were done □

Transactor
57

April 1989: Volume 9, Issue 4

Make 2 Sided

Converting 1541 disks to 1571 format

by Dennis J. Jarvis

Copyright © 1989 DJ. Jarvis

This program was written to solve two problems I was having

with the 1571 disk drive:

1) Converting a single-sided diskette to a double-sided one

2) Doing a COLLECT on a 1571 disk while it was in 1541

mode, causing it to revert to being a single-sided disk.

(NOTE: This problem has been corrected in the newer 1571

disk drives.)

The first problem can be a pain in the keyboard. What was

required was that I use the DOS shell or other such program

and copy the files over to a newly formated 1571 diskette. I

could not use any full disk copiers because they would copy

track 18 and 0 from the single-sided disk to the double-

sided disk, turning it back into a single-sided disk (as far as

the 1571 was concerned). Well, that got to be a time-

consuming operation. So I set out to find an easier way.

Using my 1571 Internals book from Abacus Software, I

began to scan through the format routines. As it turned out,

when David Siracusa wrote the format routine, he set it up

as a two-pass operation. First, he formats all of side 0, then

returns to format side 1.

Before I go into any further details on how to use the format

routine I would like to tell you how the 1571 checks to see if

it's got a double-sided diskette in the drive or not. When you

perform most disk functions, the Disk Operating System (DOS)

reads track 18 sector 0 into the disk drive's RAM, then checks

the third byte into that sector (the first byte is byte 0) and

checks to see if it has bit 7 set. If it is not set, it is a single-

sided disk. If bit 7 is set, the drive will read in track 53 sector

0 to read the rest of the disk's Block Availability Map (bam).

This information is used to find out if a sector on a specific

track on side 1 of the disk is in use or if it is free.

As you can see, before the DOS will allow you to read a

track beyond track 35 using the normal DOS, it needs to see

bit 7 set in the third byte of track 18 sector 0. My program

will always set this bit. After this has been done I send out

an 10: which does a couple of things: First, it forces the disk

drive to reload track 18 sector 0 into its RAM (the BAM for

side 0) and set the internal single/double-sided disk flag.

Second, it will force the DOS to read in this disk's format

ting IDS.

Whenever you format a disk using a statement such as

"nO:commodore 1571,dj" it will make the disk's name com

modore 1571, and place the formatting IDs in each header pre

ceding each sector. In this case the formatting ids would be dj.

These ID bytes are placed along with the name on track 18 sec

tor 0. These can be changed by various software programs

such as HEADER CHANGE, which is on the 1571 test/demo disk

which was bundled with your 1571. If you change the name of

the disk or the disk ID on track 18 sector 0, you are just chang

ing the information that you would see when you load/read in

the directory. The actual formatting ID bytes cannot be

changed without reformatting the disk from scratch.

Once the disk has been set up as a double-sided disk, and has

read in the disk ID bytes, we're ready to go to work. Next, I set

the read attempts to one to prevent the disk from searching too

long (so it does not waste your time), then I attempt to read

track 53 sector 0. Track 53 sector 0 could have been any track

on the second side of the disk. If I'm able to read in this track

and sector, then I know that the disk was previously formatted

as a double sided disk, but has reverted to a single-sided disk

due to problem two stated above. All I have to do is to perform

a collect command on the disk to reconstruct a valid (correct)

BAM. If I'm unable to read track 53, sector 0 then I know that

side one was never formatted, and I need to format it.

Note that this program does not convert flippies. Flippies are

those disks that have been notched on the other edge so that

they can be flipped over and used on the other side. In order to

format side one only, all I have to do is to enter the formatting

routine at $A445 in the 1571 disk drive. Once this is done the

disk drive will go on its way formatting side one only of this

disk. If no errors occur, performing a collect on the disk will

create a bam for the second side. Once this has been complet

ed you will have a double-sided disk with no files on side one.

Even though this program may sound straightforward, it is

not! You must allow make 2 sided to complete its task or it

will cause you problems in the future. An example: you have a

single-sided disk that you want to convert to a double-sided

Transactor
58 April 1989: Volume 9, Issue 4

disk. You get all the way up to the point where the disk was

just about to be formatted (side one only, of course), and you

change your mind and pull the disk out of the disk drive. If

you do not rerun this program and select no (when it asks you

if you want to format the disk), you will find that you have a

big problem on your hands...

Since my program has already set the double-sided flag so that

I could read side one of the disk, the next time you try to do

anything with that disk (such as saving or loading a program)

the 1571 sees the double-sided flag set and tries to read track

53, sector 0 to read in the rest of the BAM and - bang! - a read

error because there is no track 53, sector 0 because it was nev

er formatted!

To use make 2 sided all you need to do is to type it in or obtain

the Transactor disk for this issue [Tdisk #27], run it, and then

answer the questions. They are very straightforward questions

such as entering the device number of your 1571. This pro

gram has been tested and operated without any problems on a

VIC-20, C64, Plus/4, B-128 (with our fast serial bus installed,

of course), and the C128. I made sure that I only used basic

2.0 commands to allow everyone that owns a 1571 a chance to

use this program.

Make 2 sided has been tested, tested, tested, then tested some

more. This program has already been released via the CBUG

user's group for the B-128 computer with no complaints thus

far.

As with any piece of software, there is room for change and

growth, but this is a functional program without any bells and

flags. If you wish to change this software, make sure you

know exactly what you are doing or you could erase the wrong

side of the diskette or find yourself with a new dent in your

157l's outer case because you told your disk drive's head to

take a quick trip to Mars and back.

When make 2 sided was sent in, it was over four pages long -

mostly because of single line statements, and massive amount

of comments. Probably the comments will be removed, and

the program shortened due to space limitations. I hope that

Transactor will place the BASIC program on their diskette as it

was sent to them so you can obtain a copy to follow exactly

how this program works. [Mr. Jarvis' program has not been

shortened. In fact, a line was added to get around the appear

ance of an ELSE token. Aside from that, nothing has been

removed. - MO]

A couple of closing comments about track 18 sector 0: If you

look at the last few bytes starting at byte $DD you will see the

number of sectors free on each track on side one. I'm not cer

tain but, in my opinion, David did this to allow us (program

mers) a way of seeing if any tracks are in use on the other side

of the disk.

When I wrote a full disk copier for the CBUG (B-128 users

group) I used this method to see quickly if any sectors were in

use on side one of the disk. This would give them the option of

using a 154x, 2031, or 4040 disk drives as the source disk and

the 1571 disk drive as the copy disk. The only drawback I can

see (and have been affected by) is that my normal method of

reading in a disk's BAM and directory no longer works.

If you open the directory up for reading (not load"$",8 etc.)

you will be able to read in the disk's BAM at the same time. On

the 1571 it will not send you the BAM for side one; you have to

go get it yourself with a Ul command. One last comment

about the format ID byte in the BAM: This byte (byte 2 starting

with byte 0) is a $41 on the 4040, 2031, and 15xx drives. This

byte has been confused over the years as the format type byte.

In my opinion this tells you the number of sectors per zone

and is laid out as follows:

DRIVE

2040

3040

1540

1541

1551

1571

2031

4040

2030

8050

8250

1

20

20

•i

ii

it

»

ZONE

2 3

19 17

.. „

18 17

., „

•i M

•i ii

ii ii

I. U

4

16

»

16

»

»

»

»

(DO YOU KNOW?)

28

..

26 24

ii M

22

..

FORMAT TYPE

$31 or $A0

»

$41

»

»

»

»

ii

$42

$43

All of the above table is of my own creation and opinion. Take

the formattype $41 for example. On the 154x and 1551 they

are all read/write compatible and are identical in about every

way and are currently formatted exactly the same. On the 4040

and 2031 drives, there is an extra GAPl byte in the format pro

cess when compared to the 15xx drives. Due to this extra byte,

they are not write compatible with the 15xx.

The 1571 is double-sided drive with a different BAM scheme

when compared to that of the 2031, 4040 and 154x, and 1551

type drives. In other words, this byte does not indicate the

number of tracks on a disk, nor the formatting method used on

the disk as you are led to believe in the disk drive's manual.

One interesting point: on all of the Commodore disk drives,

the DIRECTORY routine defaults back to the 2040 disk drive

which was VERSION 1 as the format type. On the 4040 if you

change the 2A on track 18 sector 0 to 2 followed by an $A0 it

will show it as 21, after the disk name!. This holds true for all

on the Commodore disk drives, including the 8050/8250

drives as well!! (change the 8050, 8250 from 2C to 2, fol

lowed by an $A0).

If anyone has any input on my opinion, as stated above, please

send it into Transactor, I would like to hear from such people

as Fred Bowen, Jim Butterfield, Liz Deal, Jesse Knight, Anth

ony Goceliak, David Siracusa or from anyone wanting to

Transactor
59 April 1989: Volume 9, Issue 4

make a comment! All of the aforementioned programmers

have been programming on various Commodore disk drives

for many years, and have far more hands-on time than I do.

Like so many others, I'm still just a beginner.

Hopefully, in the next month or two I will have found the time

to clean up the comments in my source code for my Fast For

mat for the 154x, and 1571 (in 1571, or 1541 mode), and will

be able to get them off to Transactor - and to you. Until then,

keep those disk drives spinning.

"make 2 sided.bas"

MF 10 rem ***

IF 20 rem* *

HA 30 rem * this program is used to convert a double sided diskette that

FG 40 rem * was collected on the 1571 disk drive while it was in the 1541 mode

CN 50 rem * which will automaticaly convert a diskette back to a single sided

EE 60 rem * diskette, this progam will also convert a diskette formatted

AF 70 rem * on a 1541 to a double sided 1571 diskette.

El 80 rem * to use this program just place the affected diskette

01 90 rem * in the 1571 disk drive and run this program, and if this

LK 100 rem * problem holds true then this program will correct the problem.

CL 110 rem *

EG 120 rem * warning: if for any reason any errors occur or if during the

execution of this program you should change your mind

just answer (n)o to the questions, if for some reason

(such as a write error or a power failure) this program

does not finish its task you must rerun this program or

serious problems could occur with your diskette!.

JF 130 rem *

PK 140 rem*

BI 150 rem *

LG 160 rem *

DM 170 rem *

IP 180 rem * *

DM 190 rem * (c) 1988, 1989 by dennis j. jarvis publications rights reserved*

MA 200 rem * *

EC 210 rem ***

DL 220 a=40 :rem change this to your computers screen size 40, 80 etc.

OD 230 sc=a/2:printsc

FB 240 print"{home} {home} {dr}":rem clear the screen and delete any

current windows (if any)

El 250 dv=8

LM 260 p$="enter the disk drives device number":rem string to be printed

EF 270 row=12 :rem row to print the string on

JE 280 gosubl820 :rem print it to the center of the screen

BK 290 printdv;"{left}{left}"; :rem display the default drive number

EA 300 open5,0 :rem prevent question mark from being printed

EM 310 input|5,a$:rem allow the user to change the current device number

GE 320 close5 :rem allow proper screen prompting

EJ 330 dv=abs(val(a$)) :rem make the device number positive

CD 340 ifdv = 0 then print"{dr}":end:rem they're done now

CM 350 ifdv>5 and dv<31 then 430: rem if the device number is in range branch

HN 360 print"{clr}" :rem if it's not then clear screen and print the message

FP 370 p$="illegal device number " :rem to the screen

FP 380 rv=l

AP 390 row=12

JH 400 gosubl820

OJ 410gosubl700

HM 420 goto250

PN 430openl,dv,15,"u:"

:rem set the reverse field on flag

:rem print it in the center of the screen

:rem print it to the screen

:rem wait for the user to acknowledge the error

:rem restart the input loop

:rem soft reset the disk drive to obtain model number

PE 440 forx=0to2000:next:rem give the drive time to finish its reset process

JN 450 gosub2050 :rem read in and save disk drives model number

BP 460 print#l/fIu0>ml" :rem just in case were running on a non fast bus computer

CF 470printfl,"u0>r"+chr$(l)

NC 480 gosub2080 :rem close down the command channel to the disk drive

DB 490 ifleft$(right$(e$,9),l)="7"then o=l:goto510

IG 500 o=0

HC 510 ifothen570 :rem if it's a 1571 online then bypass the error message

FO 520 print"{clr}":p$= "sorry for the 1571 disk drive only"

:rem string to be printed

KH 530 row=12 :rem print it on this row

CC 540 rv=l :rem print it in reversed field

HF 550 gosubl820 :rem print it to the center of the screen

NL 560 gosub2080:forx=0to3000:next:run

EH 570 gosubl660 :rem open the proper channels to the disk drive

PK 580 f1=128:gosubl230 :rem set the flag for double sided disk

IG 590 printil,"uO>r"+chr$(l):rem set read attempts to 1

ON 600 print|l,"ul:2 0 53 0" :rem attempt to read second side of the disk

FN 610 gosub2050:d=e :rem preserve the error channel

JP 620 printSl,"uO>r"+chr$(5):rem reset number of read attempts

GD 630 if d = 66 then 810 :rem if unable to read the second side of the disk

MB 640 rem then branch to see if they want to format it

FE 650 rem d will equal 66 (illegal track and sector if

CC 660 rem it's unable to read the second side of the disk)

KB 670 gosub2080 :rem close all open channels to the disk drive

JC 680 gosub2090 :rem make the drive recognize that this disk 2 sided disk

and have it read in the disk id's

GJ 690 print" {dr}

MG 700 p$="disk has now been restored to a double sided diskette"

BN 710 row=ll:gosubl820

FP 720 p$="i am now performing a collect on this disk please wait..."

DL 730row=13:rv=l:gosubl820:gosub2080:gosub2090:openl5,8,15,"v0:":closel5

:print"{dr}":end

AE 740 rem *

750 rem * if we are unable to read the second side of the diskette then we

GD

KP

AA

PI

LP

GA

JJ

BL

HN

HO

NP

MN

GC

II

HH

FJ

EO

CC

FI

JJ

IC

OC

OF

00

GI

CO

KJ

MI

760 rem

770 rem

780 rem

790 rem

give the user the option of formatting only the second side of the

disk, if selected then we will format only the second side of the

disk, or if not wanted then we restore the single sided flag on

the disk and terminate this routine.

Transactor
60

810 print" {dr}

820 gosub2080

830 p$="sorry this diskette was not formatted as a double sided diskette."

840 row=10:gosubl820:p$=" would you like to make it one? (y/n) ?":row=12:rv=l

:gosubl820:gosubl920:

850 print" {dr}

860 p$= "are you sure? this will erase the second side of your disk? (y/n)"

870 row=13

880 gosubl820

890 gosubl920 :rem get their response if it's 'y' then return

900 gosubl410 :rem format the second side of the diskette

910 goto690 :rem inform the user and perform a collect on the diskette

920 gosub2080 :rem close down all open files

930 gosubl660 :rem open the proper channels to the disk drive

940 fl=0 :rem set the flag for a single sided diskette

950 gosubl230 :rem reset single sided diskette flag

960 return

970 rem* *

980 rem * this routine is the error handler, if any disk errors have *

990 rem * occured ,other than the drive being off ,the routine outputs the *

1000 rem * error message and resets the double sided/single sided diskette *

1010 rem * back to a single sided diskette, note that this is very important!!*
1020 rem* *

1030 if (st and 128) thenll30 :rem check for the disk drive being turned off

1040 gosub2050:ife<2 then return :rem if there are no drive errors then return

1050print"{clr}":open5,0

1060 p$= "disk error has occurred - ":row=ll:r=0:gosubl820:gosub2050:p$=e$
:row=13:r=l:gosubl820:print:goto92 0

1070 rem*

1080 rem * this routine is used by the trap command to detect such errors
1090 rem * as syntax, or the disk drive being turned off, if the disk drive

1100 rem * is turned off then it prints a warning to the screen and restarts

1110 rem * the program, if any other error occurs then the program is aborted.
1120 rem * *

1130 p$=" turn on your disk drive ":rv=l:row=12:gosubl820:gosubl700:run
1140 rem* *

1150 rem * read the diskettes bam into the buffer and set the flag to *

April 1989: Volume 9, Issue 4

AK

1160 rein * indicate this disk is double sided to enable us to read the second *

1170 rem * side of the disk, and if we are able to read it then this diskette *

1180 rem * was formatted as a double sided disk, but if we are not able to

1190 rem * read the second side of the diskette then it was formatted as a

1200 rem * single sided diskette so reset the flag back to indicate that this

1210 rem * is a single sided diskette and end this program.

1220 rem*

1230 print|l,"ul:2 0 18 0" :rem read in the diskettes bam

1240 gosut>1040 :rem check for read errors

1250 printjjl,"b-p 2 3" :rem set the pointer to the double side indicator

1260 print|2,chr$(fl); :rem set the flag to the value for single

or double sided

1270 printjjl, "u2:2 0 18 0" :rem write the new bam back to the diskette

1280 gosubl040 :rem check for write/read errors

1290 printfl,"i0:" :rem force drive to read it's new bam in

1300 gosub2080 :rem close down our channels (1571 just did!)

1310 gosubl660 :rem reopen the channels

1320 return

1330 :

1340 rem * this routine is used to format the second side of the disk

1350 rem * that is currently formatted as a single sided disk, to do this a

1360 rem * routine that is in the 1571 disk drive is used, which is in the

1370 rem * normal formatting process, to use this routine we place the max.

1380 rem * number of tracks on this disk (71), into $02ac, and jump to the

1390 rem * format routine ($a445) to format the second side of the disk

1AOA ram *

1410 a = 284 :rem maximum track (located in the 1571's memory at $02ac)

1420 b=71 :rem maximum track nuiber-1 to format too

1430 openl,dv,15 :rem open the command channel to the disk drive

1440 gosub 1570 :rem check for any errors

1450 printil,"m-w"+chr$(a and 255)chr$(a/255)chr$(l)chr$(b):rem set max trk

1460 print" {dr}

1470 p$="the formatting process is now being performed on side 1 of

{space}your diskette"

1480 row=ll:gosubl820 :printf1, "m-e"chr$ (69) chr$ (164) :gosubl570:dosel5

:gosub2080:return

1500 rem * this routine will check to ensure that there are no errors during*

1510 rem * the format process, such as the user popping the diskette out of *

1520 rem * the disk drive, or any write errors, etc. if any occur then this

1530 rem * subroutine will terminate the formatting process and reset the

1540 rem * single/double sided flag back to a single sided diskette.

1550 rem * note: read the warning in the first set of rem statements.

1560 rem*

1570 gosub2050:ife<20then return :rem if no disk drive errors have

occurred then return

1580 print"{dr}":close5:p$="a disk drive error has occured ":row=9:rv=0

:gosubl820:p$=e$:row=ll:rv=l:gosubl820:p$="please check your disk drive "

1590 row=13:gosubl820:gosubl700:gosub920:goto810

1600 rem* *

1610 rem * this routine will open the command channel to the disk drive *

1620 rem * whose number is specified in dv, and will also reserve *

1630 rem * a buffer for our use inside of the disk drive to allow us to read *

1640 rem * and write the bam from/to the disk drive *

1650 rem* *

1660 close2:closel :rem ensure channels are closed

1670 open2,dv,2,"i":rem allocate a buffer for our use in the disk drive

1680 openl,dv,15 :rem open the command channel to the disk drive

1690 goto 1570 :rem check for any disk errors then return

1700 p$= " press any key to continue n:rv=l:row=row+2:gosubl820:gosub2040

1710 geta$:ifa$=""thenl710

1715 print"{dr)":return

1720 rem* *

1730 rem * this routine is used to print our text centered on the 40 or 80 *

1740 rem * column text screens. *

*

*

*

*

*

*

*

*

*

*

oc

FC

LO

HJ

ID

PB

TOAO

LI

80

VPKb

FJ
no

CK

IB

AL

MT
HJ

FP

GJ

EJ

OC

6J

LO

BF

HO

6A

GK

KA

LD

OL

GC

*

*

*

*

,—*

1750 rem * *

1760 rem * to use this routine you must predefine the following variables. *

1770 rem * *

1780 rem * p$ = the string you wish to print centered onto the screen *

1790 rem * r = reverse field on (1), or off (0) *

1800 rem * row = row number to print the text on *

loiu rem ---~~*

1820 nl = len(p$)/2 :rem find the true length of the string

1830 print"(home}":forx=2torow:print:next

1840 fori=ltoabs(sc-len(p$)/2):print"(right}";:next:ifrv=lthenprintchr$(18);

1850 printp$;:rv=0:return
1 QCfi ram * *
1OOU IClD "—"—" ——————————

1870 rem * clear the keyboard buffer of any key presses and wait for the *

1880 rem * user to press a key and if it's the key 'y' then return to the *

1890 rem * calling routine, else reset the flag in the bam to indicate this *

1900 rem * disk is a single sided disk, not a double sided diskette then end *

1Q1fl ram * - —— *

1920 gosub2040 :rem purge the key board buffer of any

outstanding key presses

1930 getz$:ifz$=""thenl930 :rem wait for the user to press a key

1940 ifz$="y"then return

1950 gosub920 :rem set the flag for a single sided diskette

1960 gosub2080 :rem close any open disk drive files

1970 print"{home}(home){dr}" :rem clear the screen and terminate the window

1980 end terminate this program

1QQfl ram * *17?v icIU --

2000 rem * generic purge routine for all cbm computers, this subroutine will *

2010 rem * remove all characters entered up to this point. *
OflOfl ram * *
LMiM Icm * ——————————————

2030 getzz$:ifzz$O""then2030 :rem any more keys in the buffer? if so loop

2040 return :rem buffer now purged

2050 e$=""

2060 ifstthen e=val(left$(e$,2)):return

2070 get§l,a$:e$=e$+a$:goto2060

2080 close2:dosel: return

2090 openl,dv,15;"i0:":dosel:return □

CHIP CHECKER

• Over 650 Digital ICs

• 75/54 TTL (Als.as.f.h.l.ls.s)

• 74/54 CMOS (C.hc, hct, sc)

• 14/4 CMOS

8000 National + Sig.

9000 TTL

14-24 Pin Chips

.3" + .6" IC Widths

Pressing a single key identifies/tests chips with ANY

type of output in seconds. The CHIP CHECKER now

also tests popular RAM chips. The CHIP CHECKER is

available for the C64 or C128 for $159. The PC com

patible version is $259.

DUNE SYSTEMS

2603 Willa Drive

St. Joseph, Ml 49085

(616) 983-2352

Transactor 61 April 1989: Volume 9, Issue 4

Customizing C128 CP/M

Patchesfor CPM+.SYS

by M. Garamszeghy

Copyright © 1988 Herne Data Systems Ltd.

C128 CP/M mode relies on a RAM-based operating system to

control the basic functions of the computer. These RAM-based

operating systems have several advantages over ROM-based

systems (such as the standard Commodore 8-bit Kernal and

basic systems) in that it is very easy to make changes, modifi

cations and general customization by patching the RAM,

whereas an EPROM burner is generally required to make

changes to a ROM-based system. This article deals with a num

ber of fairly simple, but quite useful modifications, or patches,

that can be made to the CP/M boot program.

Before we get started, a bit of background info may be useful.

Officially, there are four versions of the CP/M boot program,

CPM+.SYS, generally available for the C128. These can be iden

tified by the dates displayed when the CP/M system first boots

up: 1 AUG 85, 6 DEC 85, 8 DEC 85 and 28 MAY 87. The 1 AUG

85 version did not support either the RS-232 port or the

1700/1750 RAM expander. Support for these were added with

the 6 DEC 85 version. A minor bug in the printer routine was

corrected with the 8 DEC 85 release; and full support was

added for the 1581 drive with the 28 MAY 87 version. The

patching points used in this article for the 6 DEC and 8 DEC

versions are identical. Therefore, they will both be referred to

as the "DEC 85" version.

There are also numerous modified, "unofficial" and beta test

versions in limited circulation. This article deals only with the

four official versions, although the experienced programmer

can easily adapt the techniques explained herein to other ver

sions.

Although the procedure is fairly straightforward, I will assume

that the reader has a certain degree of understanding and

familiarity with the CP/M environment. Specifically, extensive

use is made of the CP/M debugging utility S1D.COM. (Of note to

long time C64 users is that this program has nothing to do

with the sound chip of the same name. In this case SID is short

for "Symbolic Instruction Debugger".)

Note: The addresses given in this article for the patch points

refer to those obtained using SID or an equivalent debugger

which loads the file being patched into the normal transient

program area (tpa) memory space. Consequently, all address

es are calculated based on the beginning of the file being at

address $100 (i.e. the normal start of the tpa). If you are using

a hex file editor which calculates its addresses based on the

beginning of the file being address 0 (such as EDF1LE.COM),

you must subtract $100 from the addresses given here in all

cases to get the patch point for these other programs. For

example, address $440 with SID, is actually offset $340 when

you count it from the beginning of the file using EDFILE. ($340

from the start of the TPA at $100 = $440)

Starting off

The first step in customizing your CP/M system is to boot up

CP/M and enter the SID environment. This is done by first

putting the CP/M boot disk in disk drive 8 and turning on the

computer or pressing the reset button. Once the CP/M com

mand prompt (normally A>) appears, you can proceed to the

next step. With a copy of SID.COM on the same disk as your

CPM+.SYS file, type in:

SID CPM+.SYS <return>

Note: Use a backup work disk. Do not do this with your origi

nal system disk because it will make permanent changes to the

operating system.

After a few moments, the screen should display something

like:

CP/M 3 SID - Version x.x

NEXT MSZE PC END

zzzz zzzz 0100 CEFF

#

where zzzz is a hexadecimal number indicating the length of

the CPM+.SYS file. For the 1 AUG 85 version, it will have a val

ue of 5D00; a value of 6400 for the dec 85 versions; and a

value of 6300 for the 28 MAY 87 version. If one of these num

bers does not show up, then proceed with caution because you

may not be working with an 'official' release and some or all

of the patch points may be different. In any case, mark this

number down because it will be needed at the end when you

save your changes. The # is SlD's normal input prompt: it is

now awaiting your further instructions.

Transactor 62 April 1989: Volume 9, Issue 4

You should see a display similar to:

05F0: 00 11 22 33 44 55 66 77 88 99

AA BB CC DD EE FF . . " 3DUfw.. .

Throughout the remainder of this article, I will be referring to

three main SID commands. These are d for display memory; s

for set memory (i.e. change memory bytes); and w for write

memory to file. The syntax for each of these commands is

summarized below. Note that there is no space between the

command letter and the first argument, but a space (or comma,

as applicable) is required between arguments.

d<start address>,<end address>

s<start address>

\r<f±le spec>,<start address>,<end address>

In all cases, <start address> and <end address> are expressed

as hexadecimal values and both addresses are optional. If

<start address> is omitted with the d command, the display

starts at the current program counter value (default start at

0100, and with subsequent uses, it resumes from where it last

left off), while if <end address> is omitted, the next 192 bytes

will be displayed (12 lines of 16 bytes). If <start address> and

<end address> are omitted with the w command, the values

displayed in SiD's sign-on message under PC and NEXT are

used as the start address and end address respectively. For

safety's sake, it is a good idea to specify the addresses explic

itly when modifying bytes with the s command or writing the

modified file with w. That way you do not have to keep track

of the default values from the program counter. With SID, the

parameters can be separated by either spaces or commas.

Screen colours

As part of the start-up routine, C128 CP/M specifies the

screen colours for the characters, background and 40-column

border area. Now, you must admit that not everyone will like

the purple characters on a black background with a brown

border that the wise folks at Commodore chose as the

defaults. Our first task is to change them into something a bit

more palatable.

On examining the CP/M source code, one finds that the start

up routine specifies logical colour 0 for the background,

logical colour 4 for the foreground (i.e. the characters) and

logical colour 9 for the 40-column border area. Armed with

this knowledge, there are two ways to change the defaults:

change the logical to physical colour translation table or

change the logical colour codes in the start-up routine. You

need only do one of the following changes, so take your

pick.

The first method is perhaps the easiest, and is a good introduc

tion to the workings of SID. In all official versions of C128

CP/M, the logical to physical colour translation table is in the

same spot. Type in the following at the SID prompt #:

d5fO

followed by the Return key. (From this point on, whenever I SID will respond with:

say to type in something, you should always press the Return

key afterwards.)

followed by a number of other lines of similar format. This

first line is the logical to physical colour translation table. (If

you have previously redefined your colours using the

KEYFIG.COM utility, then all of the numbers may not appear

exactly as shown.) Memory location O5fO contains the physi

cal colours corresponding to logical colour 0 for the 80 and 40

column displays (they can be different, if you so desire), while

05ff contains the physical colours for logical colour f. In each

byte, the low nybble, -x, contains the physical colour for the

80-column screen, while the high nybble, x-, has the colour for

the 40-column screen. Initially, all logical colours are default

ed to the corresponding physical colour numbers, hence the 00

11 22 33 etc.

Recall that logical colour 0 is specified for the background. To

change this, type in:

s5fO

SlD will respond with:

05F0 00

In this case, 00 is the current value for memory location 5f0

and is the location of the cursor. Type in your new hex

value, say 16. (This will give a black background on the 40-

column screen and a blue one on the 80-column screen.) The

physical colour nybbles can be obtained from the following

table (note the differences between 40 and 80-column modes):

Nybble Value

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

Colour

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Brown

Lt. Red

Dk. Gray

Md. Gray

Lt. Green

Lt. Blue

Lt. Gray

(It.

(It.

(It.

(dk.

(dk.

(dk.

cyan 80

purp 80

yellow

purp 80

yellow

cyan 80

col)

col)

80 col)

col)

80 col)

col)

05F1 11

Transactor
63 April 1989: Volume 9, Issue 4

...which is the next memory location to patch. We will not

make any changes here for now, so press Return a few times

until SID says:

db

db

filler

end of message

05F4 44

This is the foreground or character colour location. Type in the

new value, say 11, for white characters or 55 for green (like a

green screen monitor). Press Return a few more times until

you get:

05F9 99

This is the final colour location to patch. It can be ignored if

you use an 80-column display because the border colour is

only used in 40-column mode. It is generally most appealing

to set this one to either the same colour as the background or a

different shade of the same colour (such as light blue with

dark blue, light red with dark red, etc.)

After you have completed the changes, type in a period ('.') to

exit the s command and return to the main SID input prompt (#).

(Note that it is also possible to patch this colour table using the

C128 keyboard redefinition utility KEYPIG.COM. Bear in mind

that the logical colours to be changed to set the default screen

colours are the same as those outlined above.)

The second patch method for changing the screen colours may

seem a bit more complex to some because the precise location

to modify depends upon the version of CP/M that you are modi

fying. However the technique is virtually identical to that out

lined above. The colours are actually set just before the sign-

on message by using a series of escape codes printed to the

screen according to the following extract from the source

code:

call prt$msg ;call routine to print signon message

db >>z''-''w' ;control-Z to clear screen

(note this screen clear is not really required)

db esc,esc,esc /prefix for setting color

db purple+$50 ;logical color 4 for foreground

db esc,esc,esc

db black+$60 /logical color 0 for background

db esc,esc,esc

db brown+$70 /logical color 9 for border

db "z"-""' /clear screen

(this is the one which is required)

db ^CP/M 3.0 On the Commodore 128" /signon msg

db date

db cr,lf

(program resumes execution here)

Note that the three colours need not be specified in any given

order. They may also be specified as physical colours rather

than logical ones. The patch locations are as follows:

Color Code

1

Foreground

Background

40 col border

AUG 85

28d7

28db

28df

Location

DEC 85

2ffb

2fff

2fO3

28 MAY 87

2e01

2eO5

2eO9

All three locations are interchangeable because the colour

source which is actually set by a given location depends only

on the value of byte. To set a given location as a logical fore

ground colour, add $50 to the colour table numbers given

above. To specify the location as a logical background colour

add $60, and for the 40-column border colour add $70. For

example, if you wish to specify the foreground as logical

colour 1, the background as logical colour 7 and the border as

logical colour 3, the byte values would be $51, $67 and $73.

If you prefer to specify the colours as physical colours (i.e. the

logical to physical colour translation table is bypassed and the

specified value is used directly as the colour), the correspond

ing adders are $20 for the foreground, $30 for the background

and $40 for the border. For example, if you used values of

$21, $32, $46 you would always have white characters on a

red background with a blue 40-column border, regardless of

how you had defined your logical colours.

Use siD's s command to set the appropriate locations to your

desired new values. (Don't forget to type in a period when you

are done to return to the main SID prompt.) It may appear that

the locations given for the dec 85 version are out of sequence.

I assure you, however, that they are in correct sequence. The

illusion is created by the obscure method in which most of the

CPM+.SYS file is stored on disk. It is stored in 128-byte records

in reverse order (i.e. the first record after the file header is

placed into the high end of the computer's memory and pro

ceeds downwards). This creates apparent discontinuities in

parts of the file which happen to cross over one of the 128-

byte record boundaries. As we shall see in the next example,

this can also create some minor confusion when trying to

patch across a split record.

The sign-on message

As listed above in the excerpt from the CP/M source code, a

sign-on message is included for displaying on the screen when

CP/M first boots up. In its default form, this is a very boring

Transactor 64 April 1989: Volume 9, Is

message consisting of "CP/M 3.0 ..." etc. followed by the date.

Being in the mood for customization, we can change this to

anything that we like, up to about 50 bytes total length.

Wouldn't it be more interesting for your computer to display a

personal greeting each time you started it up? How about

"Good morning Fred, this is HAL speaking"? Or "Don't

bother me now, I'm thinking"?

The patching procedures for the DEC 85 and 28 MAY 87 ver

sions are simple and straight forward. With the DEC 85 ver

sion, you have 53 bytes to play with at addresses 2fO5 to 2f39.

(Not including an initial CTRL-Z ($la) at $2fO4, to clear the

screen before printing the message.) With the MAY 87 version,

you have 54 bytes from 2e0b to 2e40, with the clear-screen at

$2e0a.

Your custom message can be created by using a variation of

SlD's s command. Type in s<start address> where start address

is the previously mentioned value for the CP/M version you are

using. Sid will respond with something like:

2F05 43

and will await your input. Instead of typing in a single hex val

ue as before, you can type in your desired ASCII string, preced

ed by a quote:

"Fred's computer. Good morning...

and followed by a Return. Note that you do not use a trailing

quote. Anything entered after the first quote is interpreted as

part of the string. Using a trailing quote will cause this quote

mark to be included in your message.

In addition, you should not use trailing spaces unless you want

them to be included in your message. SlD will display the next

available memory location after your change followed by the

current value of this location and the input cursor. Type in a

period and Return if you are done or more text if you are not.

You can include linefeeds (hex $0a), Returns (hex $0d), as

well as other cursor and screen control escape codes in your

message. These are easiest to enter with the normal s com

mand outlined above for changing the hex value of individual

bytes. (When doing this, you should use the d command fre

quently to keep track of where you stand.)

When you have finished your custom message, check your

overall work with the d command to see how much padding

you should add:

d2fO5 (or d2e0b for the MAY version)

Your message should be padded out with a series of blanks

($20 byte values) until you reach $2f3a (DEC version) or $2e41

(MAY version), at which point you should have a hex 0 byte.

This 0 byte is very important as it serves as an end of message

marker. The print message routine that was called at the start

of the sign-on will resume at the address immediately follow

ing this byte. Misplacement of the zero byte terminator may

cause a system crash.

Unfortunately, the sign-on message for the AUG 85 version is

split across a record boundary. The first half of the message

consists of 31 bytes located at $28el to $28ff and the second

half is 24 bytes long at $2800 to $2817. The initial clear-

screen is at $28eO and the 0 byte message terminator is at

$2818.

It is especially important in this case to keep track of your byte

count when entering the new message becuse if you overshoot

the available space, you will corrupt your system disk.

The RUN/STOP key

Most people who are familiar with the operation of the C128

in native mode (and for that matter, most other Commodore 8-

bit computers) use the RUN/STOP key as sort of a 'soft' reset

button to halt the execution of a BASIC, or even a machine lan

guage program. However, you may have also discovered that

this does not work in CP/M mode. (How often have you been in

CP/M mode trying to abort a program and pressed RUN/STOP

out of habit?) The equivalent general program exit command

and soft reset in CP/M is CTRL-C. (That is, hold down the Con

trol key and press the letter C key at the same time.)

This next patch modifies the keyboard decoding tables to assign

a value of CTRL-C (hex $03) to the RUN/STOP key. The patch

point is the same for all three versions of C128 CP/M: $058c.

Change the byte at this location from 0 (representing the equiva

lent of no action) to 3 (representing a CTRL-C). That's all there is

to this patch. Now when you press RUN/STOP in CP/M mode, it

will be the same as pressing CTRL-C to exit a program.

The RAM disk

The AUG 85 CP/M version does not support the RAM disk, so it

will not be discussed further for this topic.

A) The disk label: CP/M has a convenient method of assigning

a name (or volume label) to a given disk to help you keep

track of which disk is which. (This is similar to the convention

of naming a Commodore DOS disk during formatting, except

that it can be done at any time.) The name is assigned using

the CP/M SET.COM utility.

The label is recorded as a special entry in the disk directory

which is normally invisible. (You cannot see the volume label

when you do a DIR command for the disk directory.) Certain

operating system extensions make use of the directory label as

a way of telling which disk is currently in your drive. It can

also be a simple method of 'personalizing' your disks.

So far so good, or at least one would think so. But - and here

comes the cruncher - you should be wary of assigning a name

Transactor 65 April 1989: Volume 9, Issue 4

to your RAM disk (drive M:). The reason for this is quite sim

ple: it already has a name which is also used as a flag to con

trol formatting of the RAM disk on a system boot!

When CP/M boots up, it checks for the presence of the RAM

disk by looking for the RAM expansion controller (REC) regis

ters. If it finds the REC to be present, it then checks the first

entry of the RAM disk directory for a 'key' to see if the ram

expander has been initialized as a CP/M RAM disk. This key is

the disk label "ERTWINE VON". (Von Ertwine was the chap

responsible for adapting CP/M to run on the C128.) If this label

is not found, the boot process will 'format' the RAM disk by

erasing the directory area with hex $e5's then writing this label

to the first entry, thus losing any data which may be present

already.

There are a number of reasons why you may want to preserve

data when switching modes or rebooting your system. The

most obvious is to recover from a system crash. If you had

created or edited files on the RAM disk without saving them to

a floppy and then subsequently had a crash or lock-up, you

may want to be able to recover the files when you reboot. Nor

mally, everything in the RAM disk would be preserved, provid

ing you did a reboot by pressing the reset button momentarily.

However, if you rename your RAM disk using SET, the key will

no longer be present and your data will not be preserved when

going from CP/M to C128 mode and then back again.

The DEC 85 version is relatively simple to patch. The may 87

version is a bit more difficult, again due to the patch area

being split across a record boundary.

For the DEC 85 version, the label is located at $le5a to Ie64.

To see it type in:

dle59

The text "ertwine von" should be shown on the first line of

the dump. The first character is a hex $20 (ASCII space) which

indicates that the entry is a directory label. The last byte is a

01. Neither of these should be changed. Use sid's s command

to change the text of the label:

sle5a

Sid should respond with:

1E5A 45

To make the changes, type in your new disk label as a text

entry preceded by a quote such as:

"MIKES DISK

You must include the quote mark at the beginning. You have

eleven characters to play with and they should be in the form

of a legal CP/M filename (i.e. all uppercase with no reserved or

special symbols such as ? or *). Unused locations should be

padded with spaces. When you have pressed Return, SID will

display the next memory area, which might be:

1E65 01

Type in a period (.) followed by Return to signify that you are

finished. You can check your handiwork by typing in dle59

again.

Now for the MAY 87 version. The first three characters of the

label (ert) are at $lcfd to lcff, while the remainder (WINE

VON) are at $lc00 to lc07. To see this, type in:

dlcOO lcff

To change the label, you will have to change the memory

bytes in both locations, bearing in mind the number of bytes

used at each location. This can be done in two steps:

First, use slcfd to change the first three bytes in the label at

$lcfd to lcff. Remember to type in a period when you have

changed these three bytes to return to the SID command

prompt.

Second, use slcOO to change the remainder of the bytes at

$lc00 to lc07.

B) The drive code: C128 CP/M automatically assigns the RAM

disk to drive M:. While this is good for most applications,

there are a few CP/M programs (mostly those designed to work

under much older versions of CP/M) which will not accept any

thing over D: (such as M:) as a legal drive specifier. In this

case, it is wise to change the RAM disk assignment to some

other letter, such as B:, C:, or D: (assuming that you do not

have a disk drive already so assigned). Changing the drive

assignment invloves making a few patches to the DRIVETABLE

and optionally to the code which checks for and initializes the

RAM disk. First the DRIVETABLE.

For both the DEC 85 and MAY 87 versions, the DRIVETABLE is

located starting at $651. It contains a set of 16-bit vectors, one

for each drive letter, to the disk parameter block for each of

the drives. (If no drive is assigned to a given letter, the vector

has a value of 0 0.) The first thing we must do is to "de

allocate" drive M:. This can be done by setting both locations

$669 and 66a to 0. The second step is to allocate another drive

letter to the RAM disk. The vector for the RAM disk dpb is

$fb96. Translated to low byte/high byte format, this becomes

$96 and $fb. The correct addresses to patch depend on the

desired drive code according to the following table:

Drive

A:

B:

code

*

location

96

651

653

for

fb

652

654

Transactor 66 April 1989: Volume 9, Issue 4

C:

D:

E: *

F:

6:

H:

I:

J:

K:

L:

M:

N:

0:

P:

655

657

659

65b

65d

65f

661

663

665

667

669

66b

66d

66f

656

658

65a

65c

65e

660

662

664

666

668

66a

66c

66e

670

version, $2fe8 for the DEC 85 version and $2eee for the MAY 87

version. Normally, this byte will have a value of $10 which corre

sponds to the value of prti from the following table:

Printer

80COL

40COL

PRTI

PRT2

device

(screen)

(screen)

(device

(device

RS-232

(DEC 85 and MAY 1

4)

5)

37

Byte value

$40

$20

$10

$08

$02

versions only)

* Note: you should avoid assigning drives A: and E: to the

RAM disk because this may cause problems with other CP/M

system functions.

When CP/M boots up it checks for the presence of the RAM

disk. If it is not found, the corresponding vector in the

DRIVETABLE is removed and replaced with 0 0. This process

assumes that the RAM disk is assigned to drive M:. Since we

have just changed this assignment, it is desirable to change the

vector address which will be updated. Note that this patch is

not essential, but will ensure that you will not be able to access

the RAM disk drive code if you do not have a RAM disk

installed. With the DEC 85 version the patch address is $lel0;

and with the MAY 87 version, it is $lcb3. In both cases, the

contents of this byte will be $e9 representing the pointer into

the drivetable for drive M:. This byte should be changed to a

value from the following table which corresponds to the drive

letter installed above:

Multiple device assignments are also possible. For example, a

value of $18 ($10 + $08) will assign the printer to both

devices 4 and 5. In the case of the RS-232 port, some fiddling

with the serial protocol of the printer may be required to match

the default baud rate and communication protocol of the

C128's RS-232 port.

The drive search chain

When cp/m is looking for a program, it can search up to four

separate drives before it gives up its search and reports the

equivalent of a "file not found" error. This sequence is called

the "drive search chain". In the DEC 85 and MAY 87 versions,

the drive search chain parameters are located at $1268 to

126b, while for the AUG 85 version, the search chain is at

$0e68 to 0e6b. In all cases, the default version of CP/M con

tains the chain: 00 ff ff ff which corresponds to searching the

currently logged drive only.

To set the search chain, the following byte values are used:

Drive code

A:

B:

C:

D:

E:

F:

G:

H:

value

dl

d3

d5

d7

d9

db

dd

df

Drive code

I:

J:

K:

L:

M:

N:

O:

P:

value

el

e3

e5

e7

e9

eb

ed

ef

00 = default or currently logged drive

01 — Ht*4 vo A •\J X — UllVc n.

02 = drive B:

(... etc)

10 = drive P:

ff = filler

For example, if the search chain was set to:

00 0d 01 02

The default printer

When CP/M boots up, the cp/m logical list device (i.e. the printer)

is assigned to the physical device PRTI (i.e. serial port printer with

device #4). You may wish to use another printer device, such as

device 5, or even an RS-232 port device as the default printer. (I

have two separate monitors hooked to my system: one for the 40-

column screen, and the other for the 80. In some cases, I use the

40-column screen as a temporary 'printer'.) The patch address to

change for the default printer assignment is $28c4 for the AUG 85

and you typed in a transient command such as PIP, CP/M would

search the default drive for the corresponding file (PIP.COM). If

it was not found on this drive, CP/M would then try drive M:. If

it was still not found, drive A: would be tried next, then drive

B:. If it was still not found after the complete search, CP/M

would report back with a file not found error.

The default drive and user area

After CP/M boots up, control is returned to the user via the

Console Command Processor (CCP.COM) which waits for your

Transactor 67 April 1989: Volume 9, Issue 4

Correcting bugs

This final patch cures a bug in the AUG 85 version which pre

vents you from executing custom 8502 machine language rou

tines from within CP/M. (Yes Virginia, you can switch the 8502

on from within CP/M mode and execute 8502 machine lan

guage programs!) The error is at $5cab which ends up in the

BIOS 8502 portion of the CP/M operating system. Change this

byte from a $c3 to a $6c and you are off to the races with BIOS

function 30, group 4, subfunction 9 "User call to 8502 Code

Routine" (described on page 700 and 701 of the C128 Pro

grammers Reference Guide). The 8502 code at this location

should be JMP (FD05), but the $6c for the JMP instruction was

somehow scrambled into a $c3 by the cross assembler used to

create the routine.

Closing up

Now that you have completed all of the patch work on your

system disk, the last thing to do is to save a copy of it. This is

done with SlD's w command:

wcpm+.sys,100,zzzz

where zzzz is the address that you copied down from SlD's

sign-on screen at the beginning of the process. To refresh your

memory, it should be 5d00 for the AUG 85 version, 6400 for

the DEC 85 version or 6300 for the MAY 87 version. After SID

has rewritten the file, it should display a message similar to:

yyyyh record(s) written

where yyyy has a value of 00B8 for the AUG 85 version, 00C6

for the DEC 85 version, or 00C4 for the MAY 87 version. After

you get this message, you can exit SID with a CTRL-C.

To see the effect of your changes, you must do a cold system

reboot (i.e. with the modified CPM+.SYS disk in drive A:, press

CTRL-<Enter> or the reset button). When CP/M comes back

on, your changes should be in force.

(If by some chance you have made an error in the patches, and

you cannot get CP/M to reboot or it does something unexpect

ed, it is probably easier to start with a fresh copy of the old

unmodified CPM+.SYS file rather than trying to fix your modi

fied one. It is also wise to wait a short time before you copy

your modified CP/M system to your boot disks to check that

you have not created any 'hidden' bugs by your patching

attempts.)

^^ New Byte value At first glance? this article may seem tQ suggest a formidable

aug 85 dec 85 MAY 87 task, especially for the novice CP/M programmer. However, it

is fully recognized that not everyone will want to make all of

1404 2165 ifO8 oo the changes mentioned above but a combination of a few of

1405 2166 if09 86 them can add some nice custom touches to your CP/M environ-

1406 2167 lfoa oi rnent. In addition, there are probably many more changes that

1412 2173 if16 "mg 1581 (enter as text string) could be made in the form of patches. I leave these to other

readers to figure out. q

command. The CCP prompt takes the form of "{user num

ber) [drive letter}>" (such as 3M>), where user number and

drive letter represent the "currently logged" user area (3 in

this case) and disk drive (M: in this case). When you first boot

up, this is normally set to user area 0 on drive A:, giving the

familiar A> prompt. In some cases, such as when you use one

disk drive to boot from, but store most of your programs on a

different drive, you may wish to change this default setting to

avoid having to change the drive assignment explicitly each

time you boot up.

The default drive on a cold boot is controlled by the byte at

$122f for the DEC 85 and MAY 87 versions and at $0e2f for the

AUG 85 version. The value of this byte is 0 for drive A:, 1 for

drive B:, etc., up to f for drive P:. (This byte, which ends up at

offset $13 of the system control block (SCB), is also used by

the CCP during the warm boot routine for establishing the

default drive after exiting from a transient program. The value

at this location is updated each time you explicitly set the

drive from the CCP by issuing a <drive letter>: <Return>

command. This patch only sets the initial value used after a

cold boot.)

The default user area on a cold boot is controlled by the byte

at $1230 for the DEC 85 and MAY 87 versions and at $0e30 for

the AUG 85 version. The value of this byte ranges from 0 for

user area 0 to f for user area 15. It ends up at offset $14 of the

SCB and is also used by the CCP during a warm boot.

Extended 1581 support

In Volume 8, Issue 03 of Transactor (November 1987), I pre

sented a patch for the AUG 85 and dec 85 versions of C128

CP/M that would allow full use of the capacity of the 1581

drive. As I mentioned at the time, my 1581 disk format would

not be compatible with the "official" Commodore version (i.e.

the MAY 87 CP/M release). Since some of you may have

obtained the may 87 CP/M release since making my initial

patch, you may be wondering how to access the 1581 disks

made with my version. Fear not, the next patch allows the may

87 version to read and write these early 1581 disks, in addition

to the "official" 1581 disks. (The patch points are also repeat

ed for the AUG 85 and dec 85 versions for the benefit of those

who missed them the first time around.) Change the listed

bytes to the "new byte value" to complete the patch. This

patch fiddles with the disk parameter table entries for the

EPSON QX-10 disk type (10 x 512 sectors), so you will lose

compatibility with this type, but gain an 800K disk instead.

Transactor 68 April 1989: Volume 9, Issue 4

What's Really Inside

The Commodore 64?

by Milton Bathurst

Book review by Jim Butterfield

Published by DataCap, 12 Trixhal, B-4545 Feneur, Belgium

Available in North Americafrom:

Schnedler Systems

Dept. 94,25 Eastwood Rd.

P.O. Box 5694

Asheville, NC 28813

(704) 274-4646

242 pages, $29.95 US postpaid USA

This book is a complete and relatively good disassembly,

with cross-reference material, of the ROM of the Commodore

64. The title is misleading, since there are many other things

inside the Commodore 64 that could be documented: I/O

chips, specialized RAM areas, and ports (pin connections and

levels).

Bare bones disassembly

The book contains little else apart from the ROM disassembly.

The author has done his job carefully; data tables are not

confused as code, and the tricky BIT entry masks are caught

well. "Immediate" data, where numeric values might some

times be confused with address fragments, are generally

good.

A disassembly is not in itself extensive documentation of ROM.

What would be needed to do the job better is detailed register,

memory and condition code requirements for the various rou

tines as they are entered and as they exit. For example, here's

documentation of subroutine CHRGET: Before calling, a pointer

(txtpointer, address hex 7A/7B) needs to be pointing at the

address to be scanned; no special register or flag setup is need

ed. When the subroutine returns, registers X and Y will not be

disturbed; register A will contain the next character from the

text stream; TXTPOINTER will now point at that character, flags

Z, C, and N will be affected according to the nature of the

character.

If you don't have details like those of the above example, you will

need to do a good deal of research before using such a subroutine

from your own program. The book doesn't see such detail as part

of its task; don't expect to get that information here.

The book documents ROM, not RAM... yet sometimes RAM

contains important code. For example, CHRGET, mentioned

above, is in RAM; at startup time, it's copied from E3A2 in

ROM and placed at $0073 in ram. It's an important subrou

tine that is used frequently by BASIC. But if, as you look

through the book, you see JSR $0073, no amount of frenzied

flipping of pages will show you a subroutine at that address.

While the code is annotated - about 80 percent of the machine

language instructions carry a brief note - it doesn't explain,

and does not set the stage. When you look at the math subrou

tines, you must know in advance how floating point numbers

are set up on the 64. You must know that floating point regis

ters will be pre-loaded with the values to be handled. When

you look at the code for a command such as LIST, you must

know that, upon entry, the C flag will be clear if list is fol

lowed by a non-numeric character, and the Z flag will be set if

LIST stands alone. The book won't tell you any of this; it

assumes you know it in advance.

Cross reference

A useful part of the book - not readily available elsewhere - is

a cross-reference of the ROM code. This is carefully done, but

it's fragmented: jumps, branches, subroutine calls, vectors,

"external" addresses, and zero page addresses are listed sepa

rately, each with a special prefix; and to add to the prolifera

tion of cross-reference entries, the BASIC and Kernal ROMs

each have their own set of listings.

Fragmented addresses are generally handled well, and are car

ried through correctly to the cross-reference area. For example,

...continued on page 71

Transactor 69 April 1989: Volume 9, Issue 4

Macro Set 1 for C64/C128

from Xytec

Review by M. Garamszeghy

Availablefrom:

Xytec

1924 Divisadero

San Francisco, CA 94115

$29.95 US, $5.00 S&H, add $1.80for Canada

Macro Set 1 from Xytec is a collection of some 36 ready to

use assembler source code subroutines and 60 assembler

macros. It is currently available for the Merlin and Com

modore Assembler Developer System, while versions for other

popular assembler formats (such as PAL or Buddy) are said to

be forthcoming. It provides a readily available and easy to use

source of assembler source code for many common tasks

faced by programmers.

Macro basics

For those who are interested, an assembler macro is really just

a simple way to insert a lengthy piece of standardized source

code into your program by specifying a name with perhaps a

few parameters. (Not all assemblers support macros, but most

of the better ones do.) Each time the macro is called in your

assembler source code, a full copy of the represented code is

inserted into the object code.

For example, if you wanted to open a disk file, you normally

have to go through a series of steps using the Kernal SETNAM,

SETLFS (setbank on the C128) then OPEN. Instead of manual

ly repeating these steps each time you wanted to open a file,

you could set up a macro (let's call it DOPEN) which contained

all these steps. Your assembler source code may then contain

some lines which may look something like (remember, the

syntax for various assemblers is different):

DOPEN 'filename',file#,device*,channel*

where filename, file#, device# and channel# are your parame

ters for the given file. Now, each time your assembler sees this

line, it takes the source code (which may be several hundred

lines long) associated with the macro DOPEN, inserts the

parameters at the appropriate spot, then inserts the code into

your main program. By keeping sets of often used macros in

standard reference libraries, you can greatly reduce the effort

in writing new assembler programs.

The libraries

Macro Set 1 does just that for you. Macros and subroutines are

provided for most housekeeping functions such as screen

printing, keyboard input, disk file I/O, etc. A set of EQUATES for

the standard Kernal entry points and other memory and system

values (colour codes) is also provided in one of the libraries.

(However, conspicuous by its absence is support for some of

the peripherals and programming areas many people need help

with such as sound, graphics, mice and RAM expansion units.

In addition, although the disk label states "for the Commodore

64 and 128", there is no support for the C128 80-column vdc

chip, bank switching or the C128's enhanced Kernal set.)

The macros and subroutines are divided into six libraries

which can be combined with your own assembler source code.

(One very nice touch is that the manual states that programs

containing code developed from the Xytec routines may be

freely distributed without attribution. After reading the condi

tions of many compilers, code libraries, etc. that basically state

you cannot sell any program developed using system XYZ

without the permission of Mega XYZ Corp., this is truly a wel

come relief!) In the CAD-64 version, which I tested, the

libraries were supplied as SEQuential data files. (Other ver

sions of Macro Set 1 would presumably have library files

compatible with the given assembler.)

The START library contains the Kernal and system EQUATES

as well as general work areas, pseudo 16-bit register han

dling routines and general housekeeping (i.e. screen clearing,

cursor positioning, etc). The input library contains a fairly

sophisticated macro for keyboard input. The BSAM library

has file handling macros and subroutines. Arith contains a

variety of math and number conversion routines. The

libraries DYDUMP and TRACE contain debugging and monitor

ing type routines.

These libraries contain quite a number of tested and

debugged assembler routines, some perhaps of more use to

the everyday programmer than others, but all well thought
out and easy to use.

Transactor 70 April 1989: Volume 9, Issue 4

Start lets you use pseudo 16-bit registers for math, address

ing and general purposes. It does this by setting up a series of

low byte, high byte memory storage pairs which can be

directly manipulated by a number of the macros and subrou

tines. This feature makes 16-bit math on the 8-bit 65xx proces

sor a real snap to use.

What's up docs

The documentation (or Programmer's Reference Guide, as

they call it) is a fairly extensive description of the available

macros and subroutines grouped by library module, as well as

necessary background info on how the libraries interact with

each other. Also included are some of the basic concepts and

assumptions used in developing the routines for each library.

The manual is indexed by routine function as well as by gener

al subject, and includes a listing of keywords and reserved

words used by the various routines.

The entry for each macro or subroutine is accompanied by a

short description of its function, special preparation required,

which registers are affected and the syntax. Most are also

accompanied by a short example of their usage. If I had one

complaint about the manual, it would be that most of the

examples are too brief or vague to get a really good idea of

what they are trying to do.

On the down side, the supplied source code in the libraries is

very sparsely commented. It seems that the degree of com

menting is inversely proportional to the complexity of the rou

tines. The easy ones are explained, while the complex ones

have little or no comments to them. It is often very difficult to

figure out what is going on. This is especially important if you

want to modify any of the routines. (It is always nice to under

stand what you are trying to change, just to be sure that you

are not removing something vital!)

A few detailed examples would also be nice. How about a

complete sample source code program that calls a number of

the macros and subroutines to demonstrate their proper usage?

Something as simple as a sequential file reader would make

use of a fair number of the macros and subroutines.

Parting words

All things considered, I would recommend Macro Set 1 for

all levels of assembler programmer; although it would proba

bly be of most use to the intermediate level programmer who

is competent enough to understand the basic concepts of the

macro system, but not quite up to writing reams of source

code. Beginners should be able to follow along with the aid

of a good book on assembly programming, while advanced

users may like it for the 'why re-invent the wheel' feeling

that it provides them.

If a version of Macro Set I is not available for your favourite

assembler, an experienced programmer should be able to adapt

one of the existing ones with little difficulty. □

Inside the Commodore 64.... from page 69

LDA #$71, ldy #$A9 is correctly translated as LDA <TA371,

ldy >TA371 ... well, almost correctly, since most assemblers

would call for the "#" symbol to be retained. Indeed, that imme

diate symbol is lacking throughout the disassembly.

Even trickier code is handled intelligently. The IRQ vector table at

$FD9B seems never to be referenced, but the book correctly

deduces that it's reached with an offset from $FCBD, thus: LDA

TDAF9B-8,X.. LDA TDAF9B-7,X. But the author didn't manage

to unravel all the coding puzzles. For example, there's a seem

ingly baffling reference to $9FEA (not even in ROM!) at address

AFD6. Not until you track the call to $AFA7 (from $AEEE)

would you realize that the call is made with a value in A of $B4 or

greater; through some odd arithmetic, this generates a value in Y

of $68 or above. The $9FEA reference could then be changed to

LDA $A052-$68,Y. A052 is the table of addresses for function

calls, but you won't find it addressed any other way.

Ifyou know your way around

ROM code, you9 IIfind it a

handy compact reference...

Other books

You might want to consider other books in the same vein, to

substitute for or supplement this information. Two other refer

ences give ROM details.

The Abacus book The Anatomy of the Commodore 64 gives a

disassembly plus discussion of programming considerations,

with several examples of code. The disassembly (contained

in an appendix that is larger than the book's main text) is

commented, but not as thoroughly as in What's Really Inside

the Commodore 64, and no cross-reference is supplied.

Compute! books has published Tool Kit: Kernal and Tool Kit:

BASIC, both by Dan Heeb. These two books study the ROM of

the Commodore 64, and that of the VIC-20, which has identical

logic flow, to considerable depth. The code is extensively dis

cussed, not just commented. Not all of the ROM code is dis

cussed, but most of it is there.

Summary

What's Really Inside the Commodore 64 is a complete ROM

listing. If you know your way around ROM code, you'll find it

a handy compact reference.

Although the disassembly contains brief comments, this book

would be tough sledding for learners. It assumes that the read

er knows quite a bit about the 64's organization beforehand. □

Transactor 71 April 1989: Volume 9, Issue 4

SFX Sound Expander

SID dethroned

Review by Richard Curcio

SFX Sound Expander and Disk, $90

5 Octavefull size keyboard, $80

MIDI interface, $54

Music Maker keyboard overlay, $10 (C64 only)

FM Composer and Editor disk, $30

SFX Programmers Reference Guide, $10

(All prices in US dollars)

Fearn & Music, 519 W. Taylor #114, Santa Maria, CA, 93454.

Call (800) 447-3434. In CA, call (805) 925-6682.

One of the more notable features of the Commodore 64 has been

its excellent sound generating capabilities. The powerful SID chip,

containing three oscillators with four waveforms each, four-part

envelopes, and filter, is almost a complete synthesizer in a single

integrated circuit. Since the introduction of the C64, synthesizer

technology has overtaken and passed SID. For built-in sound

generation, however, few personal computers have surpassed or

even equalled the C64. (In fact, only two readily come to mind.

One is the Amiga, with four channels of sampled sound. The oth

er is not an Atari.) The SFX Sound Expander brings to the C64 a

different form of sound generation: Digital FM Synthesis.

A brief explanation

The four waveforms of SlD's oscillators are more or less fixed.

The filter can be used to remove or emphasize harmonics or

overtones of the waveform and thus simulate various musical

instruments. This process is called 'subtractive synthesis'.

Another method of sound generation involves the adding

together of harmonically related sinewaves in varing amounts.

This is referred to as 'additive synthesis'.

FM synthesis is an altogether different process. Sounds are

created by having oscillators frequency modulate each other at

high rates in complex ways. Being more than the gentle FM of

vibrato, sidebands are generated; and by varying the speed and

depth of modulation, and the interconnections between the

oscillators, very complex sounds can be generated. Do all this

with digital technology, and you have Digital FM Synthesis.

This same process is used in the electronic instruments made

by Yamaha, and not surprisingly, the SFX Sound Expander

employs a Yamaha ic.

Hardware

The SFX module is not a new product. It is manufactured by

Commodore UK and has been available in Europe for several

years. Fearn & Music is now importing SFX music products to

the U.S. Physically, the SFX Sound Expander is a largish car

tridge, resembling Commodore's Magic Voice module. It plugs

into the C64 expansion port and has a trap door mechanism for

the insertion of a companion MIDI cartridge, available sepa

rately for $54. The slot (and software) is not compatible with

MIDI cartridges from Passport, Sequential, and others. On one

side of the SFX module is a single RCA phono jack for audio

output. This can be connected to a stereo or instrument ampli

fier. A special cable (included) allows the sounds to be played

on a television by routing the signal into the C64 audio/video

connector.

On the other side of the SFX module is a connector for an

external music keyboard, also available separately for $80.

This keyboard has five octaves of full-sized piano keys, is

extremely light weight, and compact. It is neither velocity-

sensitive nor pressure-sensitive, but its 'action' is quite good

and not at all 'squishy' as electronic keyboards tend to be.

Although it is an option, this external keyboard is essential if

you want access the Expander's more sophisticated features.

The top two rows of the computer keyboard can also be used

to play the Expander. A Music Maker keyboard overlay is also

available at $10. This is a plastic cover with mini-sized piano

keys that overhang the computer keyboard. Trying to play

music without the overlay or the full-sized keyboard is

extremely clumsy, tedious, and frustrating.

The SFX Sound Expander has nine 'voices' or sound genera

tors, each consisting of two oscillators (called 'operators' in

FM terminology), with envelope and phase generators. The

software supplied with the Expander provides eight voices, or

six voices plus five percussion sounds.

Software

The disk that comes with the SFX Sound Expander uses the

form of copy protection that abuses the disk drive: while load

ing, the drive emits chattering, grinding, machine-gun sound

effects. Since the software is useless without the hardware, and

Transactor 72 April 1989: Volume 9, Issue 4

the hardware is infinitely more difficult (if not impossible) to

duplicate, one questions the need for copy-protection. Sending

a simple command to the drive, before loading software pro

tected in this manner, can minimize the violence.

openl5,8,15: print#15, "m-w"; chr$(106);

chr$(0); chr$(l); chr$(133): dosel5

will cause the drive to be significantly quieter when software

protected this way is loaded.

Once the SFX software is running, a menu line appears at the top

of the screen, with a window in the centre displaying two music

staves with bass and treble clefs. This window shows the notes

as they are played. The C64 function keys are reprogrammed to

provide cursor up and down, left and right, increase and

decrease, or on and off as applicable to the chosen operation,

plus 'Enter'. This arrangement takes getting used to, and I still

find myself trying to use the normal cursor and return keys. The

menu selections are setup, synth, rhythm, riff, and disk.

Highlighting SETUP with the cursor/function keys, a drop-down

window appears with a number of options affecting the mod

ule's operation. When Normal is clicked on, the sound selected

in the SYNTH window can be played over the full keyboard. One

Finger Chord provides major and minor chords by pressing sin

gle keys on the lower two rows of the computer keyboard, or

combinations of left-hand keys on the external keyboard. (These

are actually two-finger chords, but why quibble?)

The RHYTHM selected interacts with this and Fingered Chord

to produce auto-accompaniment. Memory holds a chord after

the key(s) are released. Pressing the space bar cancels a held

chord. The external keyboard can be SPLIT, and different

sounds assigned to the upper and lower portions. The split

point can be anywhere on the keyboard.

The SYNTH menu provides a selection of 12 different sounds.

The disk comes with two 'voice' or sound banks. Additional

sounds can be created using the companion program FM Com

poser and Sound Editor, available separately. The keyboard

can be shifted +/- 1 octave. The notes displayed on the music

staves don't change when the octave is shifted. The keyboard

can also be transposed +6 and -5 semitones. Played notes are

then displayed at their new positions. Ensemble halves the

number of voices and assigns two voices to a key. The two

voices are then slightly de-tuned to 'fatten' the sound. The

RHYTHM menu provides percussion accompaniment in various

styles: Pop, Rock, Bossanova, Country, etc. The drum sounds

are uncannily realistic (especially the cymbals), unlike the

"boom-chika-boom" of other inexpensive electronic rhythm

units. It beats a metronome any day. When the percussion is

active, the number of playable voices drops to six.

Summary

The overall performance of this package is excellent. The soft

ware does have a few shortcomings, however. The menu high

light bar doesn't 'roll over' from top to bottom or vice versa.

When you reach one end, you have to go through all the selec

tions to get to the other end. A rudimentary tone control is pro

vided from the computer keyboard, but it would have been

nice to have some sort of performance controls, perhaps using

a joystick or paddles, to alter the sounds in real-time. And

what Commodore UK calls a User's Guide is pathetic.

However, the sounds that emanate from the SFX Sound Expander

are simply astounding in their realism. The Strings sound is espe

cially convincing, particularly when Ensemble is enabled. With

the optional Composer/Editor program, any sound found to be

less than satisfactory can be shaped to the user's liking. A C64

owner really can put together a DX7-like instrument for a fraction

of the cost. The mighty SID has been dethroned.

FM Composer and Sound Editor

The companion software for the SFX Sound Expander is

FM Composer and Sound Editor. This package enhances the

performance of that device, and is indispensable if you want to

create your own sounds and compositions for the SFX module.

The Disk: The software employs the abusive form of copy

protection that bangs the disk drive head around. While there

may be some justification for copy protecting this disk, there

can be no justification for the method used. After the initial

head-banging, a screen appears with the choices Editor and

Composer. After making your choice, the drive is subjected to

some more abuse before the selected program appears.

FM Composer: The skimpy booklet that Commodore UK jok

ingly calls a "User's Guide" claims that this program is

"powerful, yet easy to use". This is only half true. The Com

poser is indeed extremely powerful. It is also extremely diffi

cult, and a user must be prepared to spend a lot of time experi

menting and learning its features before attempting to create a

musical score.

FM Composer allows the SFX Sound Expander to play back

nine-part music scores polytimbrally. In other words, each part

can have a different sound. With the companion MIDI car

tridge, each voice can receive notes over any of 16 MIDI chan

nels. An external MlDi-equipped device can set the tempo for

playback (midi clock). Any voice can be turned on or off for

playback, or slightly detuned from the other voices.

In its "clear memory" state, the Composer has memory

available for over twelve thousand "events". For composition,

many common and uncommon time signatures are supported,

including 5/2, 7/16, and 9/4. Notes can be entered from the

computer keyboard, the optional external keyboard, or via

MIDI. Rests are entered with the space bar. When enough notes

and rests of the proper durations have been entered to fill a

measure of the time signature selected, the program automati

cally inserts a bar line. Key and time signatures can change

within a piece of music. Triplets and dotted notes are support

ed. The instrument sound can change within a part.

Transactor 73 April 1989: Volume 9, Issue 4

A score entered with this program can have all the convention

al music notations. Ritardando, sforzando, tenuto, and Da

Capo are a few of the terms used in the instruction booklet.

Obviously, a more than superficial knowledge of music termi

nology is needed to use this program to its full potential.

On playback, the piece can be shifted +/- 2 octaves or trans

posed +/- 6 semitones. Different sounds can be assigned to the

nine parts from a library of 64 sounds. Additional sounds can

be created with the Editor described below.

The list of features goes on and on, and perhaps that's the

main problem with this program: it tries too hard. The so-

called User's Guide doesn't provide much guidance and the

single help screen isn't very helpful. Still, judging from the

demo piece included on the disk, someone willing to spend the

time necessary to learn this program will be able to do amaz

ing things with the SFX Sound Expander.

FM Sound Editor: This program enables the user to develop

new sounds for the SFX Sound Expander. The sounds created

can be used by the FM Composer or the basic software included

with the Expander. It also functions as a nine-voice polyphonic

synthesizer.

The SETUP menu allows selection of one of 64 different sounds.

The upper and lower portions of the external keyboard can have

two different sounds. The keyboard can be split at any point.

The keyboard can be shifted up or down one octave, or trans

posed. With the MIDI interface, the unit can both send and

receive information over all 16 MIDI channels and "Omni".

A simple drum sequencer is included, with five percussion

sounds. The sequence is 32 steps with no provision to alter the

length or save the sequence. Drum events can be entered from

the keyboard a step at a time, or in real time. Ten different

drum 'kits' are provided. Again, when drums are active, the

number of manually playable voices drops to six.

The Edit Sound screen is the real meat of this program. With

it, any of the 64 sounds in the library can be tailored to the

user's liking. Because of the complexity of FM programming,

certain compromises are made. The screen presents several

'sliders' affecting various qualities of the sound. Brilliance and

Volume are self-explanatory. Where the compromise is obvi

ous is in the Envelope control. Instead of the four-part

envelopes familiar to SID programmers, a single slider selects

one of 255 preset envelopes. No graphic representation of the

envelope is offered.

Because an FM voice consists of two oscillators, control over

the two pitches is provided. A slider labelled Expander con

trols the feedback between the two oscillators. Each oscillator

can have different levels of Vibrato and/or Tremolo. Once

you've got the sound just the way you want it, it can be stored

in the library and the whole library saved to disk. The first 12

sounds of a library can be saved as a 'Voice Bank' to be loaded

by the Expander's basic software.

Fruit Machine: This is a silly name for a very clever process.

Rather than assemble a sound from scratch, the screen shows a

display similar to a slot machine, with little pictures of differ

ent musical instruments. Entering the Go command, the

wheels are spun. When they stop, you can press a few keys

and if you like the sound, go to the Edit screen and make

adjustments, or spin again for a different sound combination.

Overall: My main complaint about this software is the method

of copy protection employed and the non-integrated nature of

the separate programs. If you're in the Editor and you want to

exit to the Composer, the computer must be reset and the load

ing process, replete with drive-abuse, begun all over again.

With its many features, two shortcomings of the Composer are

especially annoying. On playback, the screen display is static,

stuck wherever it was when the Play command was given. This

makes locating one's mistakes difficult. This is compounded by

the fact that when you change parts, the display jumps to the

start of the new part, rather than the location corresponding to

the point where the previous part was exited. Furthermore, no

numbering of the measures is provided. The inadequacy of the

Composer instructions may discourage some users. This would

be a shame, because it appears to be as powerful as claimed.

Diligence and patience on the user's part are clearly necessary.

In contrast, there's little to find fault with in the Sound Editor.

The SFX Expander, combined with the Editor/Composer,

brings sophisticated synthesis to C64 owners at a very low

price. One wonders why Commodore didn't make this product

available in this country sooner.

Also available: SFX Programmer's Reference Guide, $10.

This 31-page booklet, titled "Das Musik Geschaft", is

more specifically about the Yamaha YM3526 IC than about

the SFX module. The chip is accessed in a manner similar to

the C128 80 column VDC. Only two locations appear in

memory, one to write a register address, and one to write

the data or read the chip's status. The booklet provides no

programming examples in 65xx or any other ml, but does

explain the numerous registers and functions.

I am in the process of dissecting the SFX module, and the

following information is, at this time, tentative: The matrix

for the external keyboard occupies eight locations at $DF08-

$DF0F. The YM3526 lives at $DF20. Incomplete address decod

ing causes 'images' of the matrix and Yamaha chip to repeat

throughout I/O2. The YM3526 is not clocked by the comput

er's clock, but instead has its own 3.5MHz crystal oscillator.

There is the possibility that a variable clock can be substi

tuted for fine tuning or pitch-bend. The connector for the

MIDI cartridge appears to have some address lines swapped

or shifted. This would explain the incompatibility with third

party midi cartridges. As more is learned about this piece of

hardware, I expect programmers on this side of the Atlantic

will develop their own software for it, perhaps a C128 ver

sion that makes use of the larger memory, built-in windows,

high resolution routines, and 80 column display. □

Transactor 74 April 1989: Volume 9, Issue 4

X-10 Powerhouse Computer Interface

Control the world with your C64

Hardware review by Noel Nyman

X-10 Powerhouse Computer Interface

Manufactured by X-10 (USA) Inc

185ALeGrandAve

Northvale NJ 07647

Availablefrom several sources including

Computer Direct, Inc.

22292 North Pepper Road

Barrington IL 60010

800-BUY-WISE or 312-382-5058 (orders)

312-382-2882 (technical assistance)

$39.95 (US) plus shipping in Winter 1989 catalog

Required: C64 (or C128) and one 154111571 disk drive

When I first bought a house, I wanted to automate every

thing. In those days, computers were too expensive to dedi

cate to mundane things like turning lights on and off. So, I

set up a system using logic gates, programmed from a patch

panel. I ran extra wires where needed, and used three differ

ent voltage levels. I maintained the spirit, if not the letter, of

the electrical codes. The hardware cost about $25 for each

light switch.

With the X-10 Computer Interface and a C64 or C128, anyone

can create a much more elaborate system than my original. It

requires very little electrical experience, no extra wiring, and

only a few minutes to install. Unlike my logic gate circuit, it's

easy to program. It features an on-board clock/timer and full

battery back-up.

The computer is used only to initialize the interface. Once pro

grammed, it can be disconnected from the computer and oper

ated in stand-alone mode.

The Computer Interface originally sold for over $150. In

recent years it's been drastically discounted through mail

order outlets. At $40, it's close in cost to the standard X-10

controllers.

The X-10 System

X-10 (formerly marketed as the bsr System) controls 120 vac

lights, lamps, and appliances by using power line carrier trans

mission. In simple terms, an interface is plugged into an elec

trical outlet in your house. Under program or manual control,

the interface sends a coded radio signal through the 120 VAC

wires to "control modules".

The modules are usually small boxes that plug into wall recep

tacles. The device to be controlled plugs into an outlet on the

module. Another type of module is designed to replace stan

dard wall switches for incandescent lights.

The modules designed for lighting applications can turn the

lights on or off, and dim to any selected level. The same mod

ules can be used for non-inductive appliances, things that

don't have motors. Appliance modules are available that can

switch any load up to 500 watts. They use small relays, so

loads connected to them cannot be dimmed.

Each module has two dials or rotary switches. One dial selects

letters from A to P (16 possibilities). The other dial selects

numbers from one to sixteen. Each module can have one of

256 addresses composed of a letter and a number.

There are many types of interfaces available to control mod

ules. Most have a selectable letter address range, using a

switch or dial. This is called the "house code". The house

code is not changed during normal operation. Depending on

controller style, there are four to sixteen switches. Each con

trols a module, which is also set to the pre-selected house

code, by number. There may be additional switches to dim

modules once they are selected. Some interfaces provide

switches for "all lights on", and other functions.

Most interfaces use manual switches. Some respond to remote

control devices, either infra-red or radio. Special interfaces

answer the phone and respond to touch tone signals. Others

are designed for use with burglar alarm systems. Some have

internal clocks and can be pre-programmed to execute com

mands based on time and day. You can have many interfaces

in different locations to control the same, or different modules.

Transactor 75 April 1989: Volume 9, Issue 4

The Computer Interface and the C64

The Computer Interface has eight manual switches and a

din connector. It comes with a special din to user port con

nector for the C64/C128, and a disk of software in 1541

format. A nine-volt battery is used as a power failure back

up.

To use the Computer Interface, you just plug it into a wall

outlet and the C64. As with any user port device, be sure

the computer is turned off before connecting the cable. Start

the support program by RUNning the first program on the

disk.

The program is largely menu driven. You can use the keyboard

or a joystick to select menu options. After setting the internal

clock with the day of the week and time, you're asked for a

house code. This code will be used with the eight manual

switches to allow the interface to work as a stripped down

standard controller. At the main screen, select the install

option.

The program displays a 'menu' of rooms in a house, and front

and rear views of the exterior. The names of the rooms can't

be changed. So, if you want a module in the den, you'll proba

bly choose the 'spare' room. Your family room might become

the 'guest' room. Actually, you could put all the modules in

one 'room' for ease of programming, regardless of their loca

tions in the house.

In the empty room, you'll have several possible module loca

tions shown as red squares. Some are on the floor, others on

the walls and ceiling. As you point to a square it turns white.

After selecting a square, you choose lamp or appliance. Appli

ances can't be dimmed, so the program won't give you that

option if you choose appliance.

Next, you're given a choice of lamps or appliances to use.

These are cute pictures made of multicolour sprites. There's

a variety of appliances or lamp styles if you picked a loca

tion on the floor. Wall locations give you only wall lamps

and thermostats. Ceilings can have hanging lamps, or the

generic 'custom' appliance, a "C?". After installation,

these pictures will appear at their locations whenever you

select this room.

Each module is assigned a house code and number. The pro

gram will default to the next available number for the house

code assigned to the Computer Interface. But, you can change

this to any of the 256 combinations. One of the features of the

Computer Interface over other interfaces is that it can use

many house codes simultaneously.

After installing the modules throughout the house, you push Q

to go back to the main screen and select operate.

Again, you move through the house to select a room and mod

ule. The program lets you set on and off times for each module.

You can select several times for each device. You can also select

one cycle (now, today, or tomorrow), or periodic cycles (every

day or specific days). You can select full or dim percentage for

lamps and wall switches. You can use exact time, or 'security'

for slightly varying on/off times. You can also group several

modules to use the same timed cycle.

When done programming, just turn off the computer and

unplug the Computer Interface. A red LED (Light Emitting

Diode) on the Computer Interface flashes slowly when the unit

is disconnected from the power line.

Plug the Computer Interface into any outlet. It will now cycle

the modules you've programmed. You can also use the manual

switches to control modules one through eight that share the

interface's house code. The Computer Interface cannot dim

lamps manually.

A feature unique to the Computer Interface is the ability to

save the stored module program on disk. You can keep several

programs for various purposes and load them into the inter

face, saving joystick time. The disk also has utilities to control

devices directly and change the time in the interface without

using the menu program.

Advantages and disadvantages

The X-10 system system is incredibly easy to use, especially

if you've ever spent hours crawling about under a house

installing a wired system! Just plug things in and move the

joystick. The wall switch modules do require a screwdriver

to remove the wall plate and old switch. You'll also use wire

nuts (supplied) to connect the module. Be sure to turn the

power off at the breaker panel before installing wall switch

modules.

I prefer the wall modules to conventional switches, even if

they aren't controlled by interfaces. The X-10 wall modules

are push-on, push-off. It's easy to turn on a light with your

hands full. Just push on the switch with your elbow.

A disadvantage is a small mechanical slide just below the push

button. It turns off the light when pushed to the left. X-10 says

this is a safety feature to disconnect power when replacing

lamps. It's easy to hit that slide switch instead of the main but

ton. If the room is dark, you may try several presses before

discovering, by touch, that you've inadvertently moved the

slide.

You cannot dim lights manually at the switch. It can only be

done with an interface. You can overide the interface bright

ness level by turning the controlled lamp on or off. Lights to

be dimmed are first turned on at full intensity, then brought

down to the desired level.

The lamp modules that plug into outlets have some extra

intelligence that was a pleasant surprise. If you have a lamp

plugged into a module, you can turn it on by throwing its

Transactor 76 April 1989: Volume 9, Issue 4

normal socket switch or pull chain. It may take two or three

tries, but the module will sense the switch activity and sup

ply power to the lamp. If you turn off the lamp using the

'normal' switch, the module won't be able to turn it back on.

The X-10's are good, but not that good!

There are specialized modules for 240 vac appliances, such as

water heaters. There's a thermostat module that mounts below

your normal thermostat. It turns the furnace off by heating a

small coil to trick your house thermostat. It's a bulky arrange

ment that you may find aesthetically unpleasing. Special 'two

way' modules are used for two wall switches controlling the

same light.

X-10 modules are sold by most hardware and department

stores, some computer stores, and Radio Shack. They may

appear under various brand names and have slight differ

ences in appearance. They all work with the Computer

Interface. Some of the specialty modules may only be

available from X-10 (USA) directly. Check for sales and

mail order sources. Modules and interfaces are often dis

counted.

The X-10 signals will generally travel through the power

lines as far as the nearest utility transformer. That means

your neighbor's interface signals may reach your house. If

you are on friendly terms, just select separate house codes.

If you don't like each other, X-10 module wars may break

out.

er than the hardware project I built years ago. It can be costly

if you decide to control several devices. But, you can't repli

cate the electronics for the prices X-10 charges.

Beyond the Computer Interface

Most X-10 systems lack an 'input' to the interface from the

real world. You can't turn lights on when a door is opened,

because you can't detect a 'door open' switch. One solution is

to leave the Computer Interface plugged into the computer.

The joystick ports can be used for switch detection, and a

BASIC program can operate the modules. That ties up the com

puter, however.

A better solution for experimenters is the new PL513 module

from X-10. This power line interface can receive as well as

send X-10 signals.

Steve Ciarcia, of Byte magazine fame, also publishes a maga

zine devoted to computer hardware topics called Circuit Cel

lar INK. Many of the articles in the past year have dealt with

advanced X-10 control. You can subscribe or get past issues by

contacting:

Circuit Cellar INK

Subscriptions

12 Depot Square

Peterborough NH 03458-9909

(203)-875-2199 □

The Computer Interface has worked well for me. I use it to

turn on lights using the 'security' feature. We control lights

that would normally be on, so the house looks 'lived in', even

if we're not there. Since many modules can share the same

code, it was easy to control several Christmas displays with

one switch.

I did find the kitchen light on at odd times. The Computer

Interface programming was correct. But, the light still came on

by itself occasionally. I solved the problem by changing the

module code. It's unlikely that radio noise on the power line

was causing the problem. The X-10 signal is complex, and

sent twice for verification.

Another feature when using security is that several on or off

signals may be sent to a module. At my apartment, I used a

module to control the computer room light. It was the most

visible room from the street. Since I normally quit around

1 1pm, I set the program for a 'security off' at that time.

Of course, I was often working well past 11pm on a pesky pro

gram bug. The interface would turn the light off at 10:50 or so.

I'd reach over to the wall and turn it back on. Maybe ten min

utes later the light would go off again. This might happen

once, twice, or not at all. If no one was in the room, several off

cycles wouldn't be important.

I recommend the Computer Interface system. It's much cheap-

HBT-1
ART-l: A complete interface system

for send and receive on CW, RTTY

(Baudot a ASCII) and AMTOR, for

use with the Commodore 64/128
computer. Operating program on

disk included. $199.00

AIR-1: A complete interface system

for send and receive on CW, RTTY

(Baudot 5 ASCII) and AMTOR, for
use with Commodore VIC-20.

Operating program in ROM. $99.95

SWL: A receive only cartridge for

CW, RTTY (Baudot $ ASCII) for use

with Commodore 64/128. Operating

program in ROM. $64.00

AIRDISK: An AIR-1 type

operating program for

use with your interface
hardware. Both VIC-20

and C64/128 programs on
one disk. $39.95
AIR-ROM: Cartridge

version of AIRDISK for

C64/128 only. $59.95

MORSE
COACH

MORSE COACH: A Complete teaching

and testing program for learning

the Morse code in a cartridge.

For C64 or C128. $49.95
VEC SPECIAL $39.95

These products formerly manufactured by

G and G ELECTRONICS

OF MARYLAND

8524 DAKOTA DRIVE, GAITHERSBURG, MD 20877

(301) 258-7373

Transactor 77 April 1989: Volume 9, Issue 4

NewsBRK

Geos Writer 64: Timeworks, Inc. has released Geos Writer

64, a GEOS-based word processing system that includes a

WYSIWYG preview mode and high speed text entry, and

imports and exports text and graphics. The program also fea

tures a 100,000-word, built-in spelling checker; a wide variety

of special effect fonts; mail merge capability; extensive for

matting control; a 'fast-draft' printing mode; headers and foot

ers; document chaining, to print documents of unlimited

length; single-keystroke command option; use of mouse, joy

stick or keyboard to move around the document; online help

screens. Geos Writer 64 is supported by Timeworks' technical

support team at no charge to registered users. The program

lists for $49.95 US. Order from: Timeworks, 444 Lake Cook

Rd., Deerfield, IL 60015, USA.

Geos Writer 64: Timeworks, Inc. has released Geos Writer

64, a GEOS-based word processing system that includes a

WYSIWYG preview mode and high speed text entry, and

imports and exports text and graphics. The program also fea

tures a 100,000-word, built-in spelling checker; a wide variety

of special effect fonts; mail merge capability; extensive for

matting control; a 'fast-draft' printing mode; headers and foot

ers; document chaining, to print documents of unlimited

length; single-keystroke command option; use of mouse, joy

stick or keyboard to move around the document; online help

screens. Geos Writer 64 is supported by Timeworks' technical

support team at no charge to registered users. The program

lists for $49.95 US. Order from: Timeworks, 444 Lake Cook

Rd., Deerfield, IL 60015, USA.

Investment strategy on the C128: Strategy Software has

announced the release of The Strategist, a C128 market timing

program for investors in stocks, bonds, mutual funds and com

modities.

According to Strategy Software, the typical technical analysis

program approaches the investor's real question - which strat

egy is best? - only indirectly. It allows the user to chart issue

prices against one or several indicators so that he or she can

visually pick those that seem to call the turns in the market,

then use them to time trades. But, says the company, these pro

grams fail to give a hard measure of how much a given strat

egy would have paid (or cost) the investor had he or she used

it in the real world in the past.

Starting with a historical quote file for the issue of interest and

a strategy specified by the user, Strategist goes through the file

making realistic simulated trades to see how much the strategy

would have paid in real life. Then, starting with the user's ini

tial strategy, the program goes through the historical file over

and over, varying the strategy slightly each time, until it

arrives at a strategy that gives the optimal payoff.

Strategist uses a high-low trading system, enhanced by the use

of persistence checks to confirm buy and sell signals and

exponential averages of quote-to-quote volatility to modify the

persistence standards and the buy and sell trigger sensitivities.

Strategist costs $29.95 US, which includes the main program

and two support programs: one creates historical files and the

other tracks week-to-week price activity (in the present) for

trading signals. The package also includes a telecommunica

tions program, a sequential file reader and several years of his

torical quotes for a fictional insurance company. The program

runs in compiled BASIC and is not copy-protected. Strategy

Software, Box 14-2403, Anchorage, Alaska 99514, USA.

Troubleshooting and Repairing the Commodore 128: TAB

Books Inc. has announced the publication of Troubleshooting

and Repairing the Commodore 128 by Art Margolis.

The book includes a complete set of diagnostic programs that

readers can use to test their own machines. Every one of the

C128's chips is detailed in a separate chart that shows the chip

logic, pinouts, and voltage 'scope readings. Margolis also

describes how to take the machine apart and reassemble it safely,

and provides the latest chip-changing techniques. Included are a

vital-chip location guide and master schematic of the C128.

The contents also include chapters on: test points; servicing

the logic gates; servicing digital registers; the PLA chip; the

memory management unit; the address, data and control buses;

the 8563 video controller; and the power supply.

The book has 448 pages and 290 illustrations. Cost is $24.50

Can. ($18.60 US) for the paperback edition and $36.50 Can.

($27.95 US) for the hard cover version. TAB Books, Inc., Blue

Ridge Summit, PA 17294-0850, USA.

1581 toolkit: According to Software Support International,

it took nearly 12 months to produce the 1581 Toolkit. The

package includes the following features for the 1581 user:

fast data copier; track and sector editor; byte pattern

searcher; file track and sector tracer; relocatable fast loader;

fast file copier; directory editor; error scanner; fast format

ter; partition creator; and a 1581 DOS Reference Guide..

The documentation is in a three-ring binder. Software Sup

port International, 2700 N.E. Andersen Rd., #A-1, Vancou

ver, WA 98661, USA.

Income tax preparation: Master Software announces the

release of the 1988 version of Tax Master, which aids in the

preparation of US federal income taxes. The program is for the

C64, with either a single disk drive, a dual disk drive, or two

single disk drives. A printer is optional.

Transactor 78 April 1989: Volume 9, Issue 4

Tax Master 1988 covers all the new tax laws, and guides the

user through the preparation of Forms 1040 and 4562 (depre

ciation), and Schedules A through F. It also includes the tax

tables, figures tax automatically, performs all calculations, and

transfers results from one tax form to another.

Tax Master 1988 includes a built-in calculator function that

can be accessed at any point in the program. The calculator

results can be transferred directly to the line of the tax form

being worked upon. The program retails for $32 US and

includes a coupon said to be good for a substantial discount on

the 1989 version. Master Software, 6 Hillery Court, Randall-

stown, MD 21133, USA.

GEOS 128, version 2.0: Berkeley Softworks announces ver

sion 2.0 of the C128's graphic operating environment. It

includes enhanced versions of deskTop, geoPaint, Desk Acces

sories and diskTurbo. Some of the new features include

stretching and scaling of images, constrain and measure tools

and new graphic shapes for geoPaint; support for two drives

(1541, 1571 or 1581) and RAM expansion unit, multiple file

selection and colour coding of files in deskTop; and cut and

paste options and automatic opening of the first photo album

on disk for the Disk Accessories.

GEOS 128 2.0 also includes several new applications:

• geoWrite Workshop 128 is a word processor that features:

individual paragraph formatting; left, right, centre and full

justification; headers and footers; decimal tabs; full page

preview; 11 fonts in seven styles and multiple sizes; mixing

of text and graphics; support for multiple columns, head

lines and borders; and PostScript output to the Apple Laser

Writer

• geoSpell 128 operates in 80 columns and permits viewing

of dictionaries and documents while checking spelling. It

allows the creation and updating of personal dictionaries

and supports global search and replace;

• Text Grabber lets the user import text from any Com

modore word processor;

• geoMerge provides mail merge capability.

Until April 15, 1989, GEOS 128 2.0 is available to registered

users of GEOS 128 for $35 US, plus $4.50 US shipping and

handling (add $2.45 sales tax if in California), from Berkeley

Softworks Fulfillment Center, 5334 Sterling Center Drive,

Westlake Village, CA 91361, USA.

Genealogical software: Quinsept Inc. has created a line of

genealogical software for the C64:

• Lineages/Starter lets the user store data for up to 570 peo

ple, print alphabetic lists in a variety of ways, and print

descendant charts and three kinds of ancestor charts on a

Commodore printer.

• Lineages/Standard does everything found in Lin

eages/Starter and adds cross-referencing and printing of

address labels, and information sheets showing what is

stored for each person.

• Lineages/Advanced permits the use of almost any printer

and up to four disk drives. The user can customize the pro

gram, for example, to have it always print last name first, or

to add an occupation. It can do searches in a number of

ways. A small built-in word processor permits the addition

of stories to each person's data. This version also comes

with telephone and mail support.

• Family Roots adds many more capabilities to the Lin

eages/Advanced program, including the use of function

keys for quick entry of repetitive place names or surnames;

tracing of a new line of relations on the screen and sending

only those you wish to the printer; making a chart showing

only the father's line; and so on. This program is also

available for the C128 in its native mode.

• Tree Charts is a supplemental program to both Lineages

and Family Roots enabling the user to create and print a

graphical representation of the family tree.

Quinsept Inc. can be reached at Box 216, Lexington, MA

02173, USA. Telephone (617) 641-2930. Quinsept is repre

sented in Canada by Generation Press Inc., 172 King Henry's

Boulevard, Agincourt, ON MIT 2V6. Tel. (416) 292-9845.

New C128 CP/M distributor: Poseidon Electronics of New

York, NY has been appointed primary US distributor of the

line of C128 CP/M software from Herne Data Systems of

Toronto, ON. Poseidon is well-known for its distribution of

Commodore specific CP/M software and will initially handle

two Herne Data products: JUGG'LER-128, version 3.4, and

QDisk, version 2.1. The former program is a disk utility for the

1571 and 1581 that allows them to read, write and format over

140 types of 5 1/4 and 3 1/2 CP/M disks. The latter is a

memory-resident device driver that provides CP/M mode sup

port for the Quick Brown Box, a battery-backed CMOS RAM

cartridge that operates as a non-volatile RAM disk drive. Posei

don Electronics, 103 Waverly Place, New York, NY 10011,

USA. Telephone (212) 777-9515.

Basic 8 returns! Free Spirit Software Inc. has introduced sev

eral products for the C128 and C64, including a newly-

enhanced version of Basic 8, which adds over 50 graphic com

mands to BASIC 7.0. Several preprogrammed Basic 8 applica

tions are included: Basic Paint, Write and Calc. Free Spirit is

also offering a Basic 8 Toolkit featuring a point and click oper

ating system that lets users create custom pointer fonts, pat

terns and icons. The Toolkit also allows the user to convert

Print Shop graphics into Basic 8 graphics files, and provides a

number of disk utilities that include make autoboot, convert

icon file to brush file, scratch file, rename file, toggle drive

and so on. Basic 8 has a suggested retail price of $39.95 US;

the Toolkit is available for $19.95.

Also available:

• Sketchpad 128 provides free-hand drawing on a 640 x 200

screen, with numerous drawing tips and fonts. Output is

compatible with Basic 8, Print Shop, News Maker 128 and

Transactor 79 April 1989: Volume 9, Issue 4

Spectrum 128. Price is $29.95 US.

News Maker 128 is a desktop publishing program for

newsletters, reports, signs and posters. It uses standard

sequential files for 'pouring' text into user-defined colum

ns. Full page layout, popdown menus, smooth screen

scrolling, font selection, cut, paste, mirror and flip are

among the options available. Cost is $29.95 US.

Spectrum 128 is a menu-operated paint program for the

C128D that can display the 16 standard colours and an

additional 128 colours through colour dithering on a 640 x

200 screen. Its features include air brush, erase, mirror,

multicolour, block fill or erase, pixel editor, colour editor,

fonts, slide show and others. It requires the 1351 or com

patible mouse and costs $39.95.

Landmark TCRB is not copy protected and can be backed up

to 1581s, IEEE drives such as the SFD 1001 or to a hard disk.

Burst mode is used with 1571 and 1581 drives. The speed of

any search is entirely dependent on the speed of the disk drive

used. Commercial disk speedup products will work with

Landmark (Load and search files on one side of a disk: stock

1541 - 6:00 min.; w/Epyx Fast Load- 1:38 min.).

Landmark will allow you to extract information to create your

own topical files. These can be manipulated with Landmark's

own editing features or you can use the File Converter to

export files that can be used with Paperclip, Easy Script,

geoWrite (v2) or Fleet System. Landmark is written in 100%

ML for speed. Fully menu-driven for ease of use.

Free Spirit has also introduced some C64 products, including

four graphics programs which have been licensed from Solu

tions Unlimited, Inc.: Icon Factory is a graphics conversion

utility ($34.95 US); Screen FIX is a slideshow creation and

presentation program ($34.95 US); Billboard Maker takes

graphics from most drawing programs and converts them to 4-

ft. x 3-ft. signs ($34.95 US); and Photo Finish optimizes the

clarity of the printed image (640 x 400 resolution - $29.95

US).

ESP Tester ($24.95 US) now includes a version that will run

on the C64. The program is said to use the methods developed

by Dr. J. B. Rhine and the Foundation for Research on the

Nature of Man to test for clairvoyance, precognition and

telepathy.

MACH (Maneuverable Armed Computer Humans) is an

arcade-style, shoot'em-up game for the C64 that features "the

ultimate warrior of the future" ($29.95 US). Order from: Free

Spirit Software Inc., P.O. Box 128, Kutztown, PA 19530,

USA. Telephone (215) 683-5609.

Guitar chord ear training: Chord Printer is a dictionary of

guitar chord fingerings for the C64 containing 19 of the most-

used chord types in popular music. Users can learn the chord

formulas for each type and their sound by listening to the C64

play them as arpeggios. Other options include utilities for

printing hard copies of staff paper, tablature paper, blank five-

fret diagrams and root-node listings for the fourth, fifth and

sixth strings. Chord Printer is available at a cost of $19.95 US

from Computers, Etc!, Dept. GCP, 4521-A Bee Ridge Rd.,

Sarasota, FL 34233, USA. Telephone (813) 377-1121 or (800)

634-5546 (orders, only).

King James Bible on C64: Landmark, the Computer Refer

ence Bible consists of the entire King James version of the

Bible on 24 double-sided disks. The Landmark software pro

vides access to the disks, with individual verse references and

the words of Christ highlighted in colour. A concordance of

over 3,300 of the most frequently looked for words is also pro

vided on six double-sided disks. The program enables the user

to, for example, create a personal Bible, complete with notes,

comments, referencing and outlining of text.

Cost is $119.95 US. PAVY Software, P.O. Box 1584, Ballwin,

MO 63022, USA.

Free software from Memorex: Memorex has established a

'frequent buyer' program that lets customers build points

toward free software. Titles available include the PFS series

from Software Publishing Corp., and others from Accolade,

Activision Disk-Count Software, Electronic Arts, Individual

and Publishing International (Byte-Size). The program pro

motes the full line of Memorex computer supplies, including

disks and paper. Instructions and a complete list of available

software are on each package. Memorex Computer Supplies,

2400 Condensa St., Santa Clara, CA 95051-0996, USA. Tele

phone (408) 957-1000.

WE WONT PAY YOUR TAXES!
But TAX MASTER will help you compute them more QUICKLY and EASILY. Be the

Master of your Income Taxes with TAX MASTER, now available for your 1988 Federal

Income Taxes for the C-64/C-128 with single, twin or dual disk drive and optional printer.

• NEW Tax laws are covered.

• FORMS 1040, 4562, & Schedules A, B, C, D, E & F.

• PERFORMS all arithmetic CORRECTLY.

• EASY CHANGE of any entry with automatic RECALCULATION of the entire form.

• TRANSFERS numbers between forms.

• CALCULATES your taxes and REFUND. Tax tables are included.

• SAVES all your data to disk for future changes.

• PRINTS the data from each form.

• CALCULATOR function is built-in.

• DISCOUNT coupon toward the purchase of next year's updated program is included.

TAX MASTER (ON DISK) ONLY $32.00

TIRED OF SWITCHING CABLES?
VIDEO MASTER 128 provides continuous 80 column color (RGBI), 80 column mono

chrome and audio out. Switch between 80 column monochrome and 40 column color

for composite monitor. Use up to 4 monitors at once! Includes composite cable.

VIDEO MASTER 128 for Commodore 128 $39.95

FED UP WITH SYNTAX ERRORS?
HELP MASTER 64 provides instant On-Line Help screens for all 69 BASIC commands

when you need them. Takes no BASIC RAM. No interference with loading, saving,

editing or running BASIC programs. Includes 368 page BASIC reference text, more.

HELP MASTER 64 for Commodore 64, 64C $24.95

OTHER MASTER SOFTWARE ITEMS
RESET MASTER C-64 (not 64C) reset switch w/2 serial pts $ 24.95

CHIP SAVER KIT protects computer's chips from static 5.95

MODEM MASTER user port extender $29.95; w/reset 34.95

Y-NOT? 6-foot serial Y cable, 1 male, 2 female connectors 15.00

Y-YES! 6-foot serial Y cable, 3 male connectors 15.00

C-128 80 col. monochrome cable for non-RGB monitor 9.00

Disk Notcher—lets you use both sides of disk 6.00

64-TRAN The only Fortran compiler for C-64/64C 50.00

MA(

Send for Free Catalog

1TER

qJoftware
6 Hillery Ct.

Randallstown, MD 21133

(301) 922-2962

ADD $2.00 per order shipping & handling US

and Canada, $7.00 foreign. All prices in US

Dollars. Canadian orders use Canadian

POSTAL money order. Maryland residents

add 5% tax. Dealer inquiries welcome!

Transactor 80 April 1989: Volume 9, Issue 4

TH€ FINAL CARTBIDQl
H 4 P Oomp. Holland wo - 42319«2

9 "PACMftN

72 "FLIGHT 70?"
11 "BALLETJE"

'UN 11 UhIIDATE 11 SCRATCH |

B4"EXPL0DIN0-Fli-T

57 "HE-MAN"

18 BLOCKS FREE

1PIR2| UP

FINAL CARTRIDGE HI
The Best Utility Ever for Your C-64 or 128

Only! $69.95 Only!

SPECIAL VALUE:

Total Retail Value,

This powerful ROM-based operating

system contains easy-to-use windows

and pull down menus. Allowing the

user to select either mouse, joystick

or keyboard, he may access over 60

new commands and functions. Let

your C-64 perform like an Amiga.

Various printer interfaces as well as a

basic toolkit can also be accessed.

Extended ML Monitor

Does not reside in memory! Includes 1541

drive access and sprite editing. Features

up and down scrolling and printer driver!

NotePad/Word Processor

Contains proportional characters and word

wrap. Enables you to store and print small

notes, etc.

Fastest Disk Loading Ever!

Contains 2 disk loaders, with speeds up to

15x faster than normal!

Transform Your C-64 Into

An Amiga Look-Auke!

Various windows such as: Preferences,

Tape, Disk Windows, Directory, Printer &

Clock allow you to feel as if you are

working in the same friendly environment

as the Amiga!

Easy-to-Use Menu Bar

Almost any command not activated by

windows can be accessed while in Basic

by just typing in Box.

Basic Toolkit & Keyboard Extras

Includes: Renumbering, auto, old, delete,

kill, save, 24K RAM for Basic, fast format

and many, many more.

". . ./ can't begin to think of a cartridge

which does so many useful things. . .a tre

mendous value, a must item,for the BA

SIC and machine language programmer."

—Art Hunkins, Compute's Gazette 7/87

FREE Joystick and FREE 100 PARAMETER PAK,

$39.95, with each purchase FINAL CARTRIDGE m
State of the Art Freezer

Includes variable size screen dumps (color

if Epson color or NEC is used). Allows to

tal backup of any memory-resident soft

ware on the market today! Files are

packed and reloadable without the car

tridge, 60K in just 15 seconds. Exits to

Basic or ML monitor.

Games Killer

Kills sprite to sprite and/or background

collision. Can be started at any point in

your games.

Auto Fire Engine

Transforms normal joystick into an auto

fire!

Easy-to-Use Reset System

Reset your computer by the simple touch

of a button!! Wow!!

'Wo needfor all those extras when you

have this C-64 assistant. . . a conventional

review doesn't do the Final Cartridge jus

tice. . .fun at a price is a rarity."

-Tim Walsh, RUN Magazine 9/87

COMPUTERS

OF AMERICA

Home & Personal Computers of America

154 Valley Street

South Orange, NJ 07079

201-763-3946, dealers only, 201-763-1693

INTRODUCING SUPER CARD

Backs up any software program!

Even the latest protection schemes!

Plugs into your drive with only the

use of a screwdriver. If anything

could back up everything, this is it.

100% satisfaction guaranteed! 10 day

or money back guarantee!

ONLY $39.95!

FINAL CARTRIDGE II

ONLY $24.95

Call or write for more information

Attention Schools and Educators:

C-Scan + is the ultimate network for Commodore

computers, eight computers share one or two disk

drives, and only one printer and software program is

needed.

Simple installation, auto scanning and auto power on.

Works perfectly with The Final Cartridge. 1 year

warranty.

C-Scan+ $199.95

Cables available in the following lengths:

9 ft. . .$13.95

18 ft. . . $17.95

36 ft. . . $19.95

EXTRAS AVAILABLE

•Final Cartridge I $14.95

*C-1351 Mouse $32.95

Deluxe Joystick $ 8.95

Cent, printer

cable* (optional) $19.95
* Limited quantities available.

Ordering Info:
Orders Only Call:

1-800-458-8682

MC/Visa accepted. Money orders {immediate shipments).

Personal check (allow 2-3 weeks for check clearing). NY &

NJ residents add appropriate sales tax. Add S3.00 for s/h.

Questions and info, call:

(201)763-3946

Fax: (201) 763-1693

ANY PRODUCT PURCHASED FROM

DATEL ELECTRONICS WILL NOT

BE GUARANTEED BY H&P

COMPUTER.

Software Inc.

"...excellent, efficient program that can help you save both

money and downtime." Computers Gazette

1S41U571 D«., 1987
DRIVE ALIGNMENT

1541/1571 Drive Alignment reports the alignment condi

tion of the disk drive as you perform adjustments. On

screen help is available while the program is running. In

cludes features for speed adjustment. Complete instruction

manual on aligning both 1541 and 1571 drives. Even in

cludes instructions on how to load alignment program when

nothing else will load! Works on the C64, SX64, C128 in

either 64 or 128 mode, 1541, 1571 in either 1541 or

1571 mode! Autoboots to all modes. Second drive fully

supported. Program disk, calibration disk and instruction

manual included.

Suggested retail price $34.95

Super 81 Utilities is a complete utilities package for the

1581 disk drive. Seperate version are available for C64 or

C128. Among the many Super 81 Utilities features are:

•Copy whole disks from 1541 or 1571 format to 1581

partitions.

•Copy 1541 or 1571 files to 1581 disks

•Backup 1581 disks or files with 1 or 2 1581 s

•Supplied on both.3W' and 5W diskettes so that it will

load on a 1541, 1571 or 1581 drive

• Performs numerous DOS functions such as rename a disk,

rename a file, scratch or unscratch files, lock or unlock

files, create auto-boot and much more!

Super 81 Utilities uses an option window to display all

choices available at any given time. A full featured disk

utilities system for the 1581!

Suggested retail price $39.95

Home Designer

Given glowing ratings by every major Commodore

magazine, this CAD system outclasses every other CAD

program, because of its object-based design. With over 50

powerful commands, 5 drawing layers, superb support of

library figures and lazer-quality printouts at ANY scale on

your dot matrix printer or plotter, you can create drawings

so accurate that a blueprint can be made from them! Tired

of working with poor quality/inaccurate printouts,

manipulating little dots on a bit-map, giving up on detailed

work because you can't zoom in close enough? Join the

professionals!

Suggested retail price $49.95

ML
/ A

Sketchpad 128 *

Complete drawing system for the Commodore 128 and

1351 Mouse. Sketchpad 128 takes advantage of the crisp

80 column graphics capabilities of the C128. Smooth

freehand drawing, 640 x 200 drawing screen, wide

selection of dawing tips, many fonts provided. Compatible

with Basic 8, Print Shop, News Maker 128 and Spectrum

128. Sketchpad 128 can be used to create 80 column

artwork, slideshows, signs, posters and many other uses.

Suggested retail price $29.95

News Maker 128

Desk top publishing for the C128D (or the C128 with 64K

Video Ram Upgrade). News Maker 128 can be used to

create professional looking newsletters, reports, signs and

posters. It can be used as a stand alone program or in

combination with word processing or graphics software. It

uses standard sequential files for "pouring" text into user-

defined columns. Full page layout, popdown menus, smooth

screen scrolling, font selection, cut, paste, mirror, flip are

among the options available.

Suggested retail price $29.95

Spectrum 128

A deluxe paint program for the C128D computer (or the

C128 with 64K Video RAM Upgrade). Uses 80 column

display for 640 x 200 pixel resolution. Will display 128

colors! Menu operated. Requires 1351 or compatible

Mouse. Features include air brush, erase, mirror, multi

color, block fill or erase, pixel editor, color editor, fonts,

slide show and more. Compatible with Sketchpad 128,

News Maker 128, Basic 8, 1750 REU, 1541, 1571 and

1581 disk drives. Suggested retail price $39.95

Basic 8
Powerful 80 column hi-res graphics programming system

for the Commodore 128 or 128D computer. This popular

package adds over 50 new graphic commands to standard

C128 Basic. A must for C128 programmers! This new

version published by Free Spirit has been upgraded and

enhanced. As an added bonus several preprogrammed

Basic 8 applications, such as Basic Paint, Write and Calc

are included. Suggested retail price $39.95

See your dealer or order from: Free Spirit Software, Inc.

58 Noble Street

Kutztown, PA 19530

215-683-5609

