
Canada $4.25

USA $3.50

256K memory expansion for your 64!

High-performance ML graphics routines

C-128 CP/M+ memory maps

Cycle counting for machine language programs

Using RS-232 printers on the 64

Jim Butterfield on C-128 windows

The ML Column: division routines

Computing the distance between stars

Re-programming the 1581

Reviews:Three C128 assemblers - Merlin, LADS and Buddy; the Final Cartridge

vs. Action Replay Mk. IV; Brainstorm, Brainpower and Story Writer

:

LeafDragon by Wayne Schmidt

Our Third Year

In Business!

We Know How

To Service

Our Customers!

BH iWALL
SOLID PRODUCTS & SOLID SUPPORT

P.O. Box 129 / 58 Noble Street

Kutztown, PA 19530

24 HOURS - TOLL FREE

1-800-638-5757
OUTSIDE USA CALL 1-215-683-5433

SATISFACTION

GUARANTEED

Earn Bonus $$

No Surcharge On

Charge Orders

Friendly Service

ACCESSORIES

40/80 Column Switch Cable $

Apro Extender-Cartridge Port

Apro Extender-User Port

Aprospan 4 Slot Cartridge Holder

Cover 1541

Cover 1571

Cover C128

Cover C64

CoverC64-C

Disk Storage Case-75 Disk

Diskettes 5Vz Floppy/10 pak

Drive Box

Final Cartridge V3

Hotshot Plus Interface

Joystick-Bat Handle

Joystick-Ergo Stick

Joystick-Super 3 Way

Joystick-The Boss

LightpenMode! 170c

Lightpen Model 184c

M-3 Mouse 64/128-Proportional

Mach 128 Cartridge

Mousepad

Paper Banner Band 45 ft. Colors

Paper Banner Band 45 ft. Christmas

Paper Banner Band 45 It. Party

Paper Parchment Color

Power Supply-d 28-Repairable

Power Supply-C64- Repairable

Quick Brown Box 64K

RGB to RCA Cable

RS232 Deluxe Interlace
DJhhnnc fnr PrintprniUUUNb IUI r IINK.i

Security Analyst 128

Serial Box 2 for 1

Serial Box 4 tor 1

Serial to Serial Cable 6 It.

Super Chips 128

Super Chips 128-D

Super Chips 64

Super Chips 64 mode on 128

Super Graphix Gold Printer Intrtc

Warpspeed 128

BOOKS

1541 Troubleshoot & Repair Guide

1571 Internals Book

Anatomy of C64

Anatomy of the 1541 Book

Basic 7.0 Internals Book

Basic 7.0 for C12B Book

Beginner's Guide to BASIC 8

18

17

19

25

7

9

9

8

8

11

4

27

49

69

22

22

25

16

69

49

39

35

8

10

10

10

10

55

39

99

9

39

Call

35

29

39

9

45

45

25

25

89

35

17

17

17

17

19

10

15

C128 Assembly Language Prog Book 14

C128 Internals Book

C128 Programmer's Ref. Book

17

20

C128 Troubleshooting & Repair Book 17

C64 Basic Programming

C64 Programmer's Reference Guide

C64 Tips & Tricks Book

C64 Troubleshoot & Repair Guide

C64/128 Asmbly Lang. Prog Book

GEOS Inside & Out Book

GEOS Programmer's Ref. Guide

GEOS Tips & Tricks Book

K Jax Book Revealed 2

K Jax Book Revealed 1

Machine Language 64 Book

Superbase The Book 64/128

Troubleshoot & Repair C64 Book

Twin Cities 128 Compendium 1

GENERAL PRODUCTIVITY

Business Form Shop/64

CMS Accounting/128

CMS Accounting/64

CMS Inventory Module 128

Charipak 128

25

17

17

17

14

17

17

15

23

23

13

15

18

15

30

129

129

53

29

Chartpak 64 $

Evelyn Wood Dynamic Reader

KFS Accountant 128

Leroy's Cheatsheets

Leroy's Label Maker

M crolawyer/64

Paperclip Publisher

Partner 128

Partner 64

Personal Portfolio Manager 128

Personal Portfolio Manager 64

Pocket Superpak 2 (Digital)

Sylvia Porter's Financial Plan 128

Technical Analysis System 128

Technical Analysis System 64

T meworks Account Payable 64

29

17

109

Call

24

39

39

39

30

42

29

67

39

42

29

39

T meworks Accounts Receiveable 6439

T meworks General Ledger 64 39

T meworks Inventory Managemnt 64 39

T meworks Payroll 64

T meworks Sales Analysis 64

DATABASES

Datamanager 128

Datamanager 2 (64)

39

39

39

17

R.S.V.P. S

Sky Travel

Slickybear ABC's

Stickybear Math 1

Stickybear Math 2

Stickybear Numbers

Stickybear Opposites

Stickybear Reading 1

Stickybear Reading Comprehension

Stickybear Spellgrabber

Stickybear Townbuilder

Stickybear Typing
■ i- '' '' ■ 'i ■'■ . 1.1 S '.II.

buccess w/Matn Add & oud

Success w/Math Add/Sub Decimals

Success w/Math Add/Sub Fractions

Success w/Math Mult/Div

Success w/Math Mult/Div Decimals

Success w/Math Mult/Div Fractions

Toy Shop 64

WhereinEurope is Carmen Sandiego

Where in USA is Carmen Sandiego

Where in World is Carmen Sandiego

Widham Classics-Alice/Wonderland

Widham Classics-Below the Root

Widham Classics-Swiss Famly Robs

Widham Classics-Treasure Island

Widham Classics-Wizard of OZ

OUR POLICY

21

35

22

22

22

22

22

22

22

22

22

22

23

23

23

23

23

23

22

29

29

29

12

12

12

12

12

Doodle/64 $

Flexidraw 5.5/64

Flexifant/64

Graphics Art Disk 1 -10 each

Graphics Galleria Pak 1

Graphics Galleria Pak 2

Graphics Integrator 2/64

Home Designer

Home Designer/Circuit Symbol Lib

Icon Factory/64

Label Wizard

Newsroom
DP \> I M-J* .. C A
rij board MaKer b4

Perspectives II/64

Photo Finish

Postcards

Printmaster-Fantasy Art Gallery

Printmaster Gallery I/64

Printmaster Gallery II/64

Printmaster Plus/64

Prints hop/6 4

Printshop Companion

Printshop Holiday Edition

Screen F/X

Sketchpad 128 NEW

Slideshow Creator

Video Title Shop w/Gr Comp 1

■

Our policy is to stock what we advertise and carry the best products available for

your C64 and C128 computers. Over 400 of the best productivity, educational &

technical software and a host of accessories in stock now! And CHECK OUT OUR

C128 LINE! You will be amazed at the number of products that we carry for this

fantastic machine!

Fleet Filer 64/128

Pocket Filer 2

Superbase 128

Superbase 64

Suprbse/Suprscrpt/Book 128 PACK

Suprbse/Suprscrpt/Book 64 PAK

EDUCATIONAL

Alphabet Zoo

Alphabuild/64

Calculus by Numeric Methods

Counting Parade

Early Learning Friends/64

Easy Sign

Facemaker/64

First Men on Moon Math/64

Grandma's House/64

Hayden SAT Preparation

Jungle Book (Reading 2)

Kids on Keys

Kidsword/64

Kidwriter/64

Kindercomp/64

Lnkword: German

Linkword: French

Linkword: French 2

Linkword: Italian

Linkword: Russian

Linkword: Spanish

Little Computer People

Mathbusters/64

Mav s Beacon Teaches Typing/C64

Peter & Woll Music/64

Peter Rabbit (Reading 1)

Protutor Accounting 128

29

29

49

42

69

59

18

6

2/

6

6

17

16

19

6

32

19

HI

35

r>

18

19

19

19

19

19

19

12

6

30

19

19

69

SEOS

Becker Basic for GEOS 64

Desk Pak Plus-Geos

GEOS 64 v 2.0

GEOS Programmer/64

GEOS Write Workshop/64

GEOS Write Workshop/128

Geocalc 128

Geocalc/64

Geofile 128

Geofile/64

Geopublish 64

Geos/128

Geospell 64/12B

Fontpak Plus

Wordpublisher 64/128 (lor GEOS)

CREATIVITY

Advanced Art Studio/64

Animation Station

Award Maker Plus/C64

Billboard Maker/64

Blazzing Paddles

Bumpersticker Maker

Business Card Maker

Button & Badge Maker

Cad 3D/64

Cadpak 128

Cadpak/64

Certificate Maker

Colorez 128 New Version

Computer Eyes

Create a Calendar

35

22

39

45
39

45

45

35

45

39

45

45

19

22

28

25

65

29

25

25

35

29

39

39

42

29

17

12

105

22

GARAGE SALE

C Power 128

Cover 1541

Cover C64

Decision Maker

Flexi-Aided Design

Forecaster-Brainpower

GEOS-Get Most Disk

Maps of Europe/64

Maps of USA/64

Maps of the World/64

Numbers at Work

Project Planner

Tempo Type

Wordpro128

PERSONAL

All

Bazooka Bill

Blackjack Academy/C64

Christmas Classics/64

Boston Bartender's Guide

Bridge 5.0

Cardio Exercise & Heartlab Combo

Celebrity Cookbook/64

Chessmaster 200/64

Crossword Magic

Dr. Ruth's Book of Good Sex

Dream Machine Analyze/64

Family Tree 128

Family Tree 64

Jeopardy 2

Memory Academy 128

Micro Kitchen Companion

29

29

24

13

24

24

24

45

10

25

21

17

79

39

19

19

15

15

15

25

35

27

19

25

24

13

25

15

4

4

10

15

10

3

12

12

12

10

10

12

15

12

15

27

10

12

22

85

19

30

39

22

19

39

39

12

15

29

Monopoly C6 4 t

Muscle Development Package

Scrabble

Scrapples

Sexual Edge/64

25

54

29

29

19

Stress Reduction-Enhanced 299

Stress Reduction Standard

Strider's Classic 1-10 each

Tarot128

Wheel of Fortune 2

SPREADSHEETS

Pocket Planner 2

Swiltcalc 128 w/Sideways

Swiftcalc 64 w/Sideways

Vizistar 128

UTILITIES

1541/1571 Drive Alignment

Assembler/Monitor/64

Basic 8

Basic Compiler/128

Basic Compiler/64

Big Blue Reader 64/128

Bobsterm Pro/128

Bobsterm Pro/64

CP/M Kit

Cobol/128

Cobol/64• 11 \/t

Gnome Kit 64/128

Gnome Speed Compiler 128

Merlin 128

Merlin 64

Physical Exam 1541

Physical Exam 1571

Power Assembler 64/128

Power C 64/128

Programmers Toolbox/64

ProtoMnc BBS 128

Prototerm 128

Hamuub12o

Renegade

Super 81 Utilities ford 28

Super 81 Utilities for C64

Super Aide 64

Super C 128

SuperC64

Super Disk Librarian for C128

Super Disk Utilities 128

Super Pascal 128

Super Pascal 64

Super Snapshot 4 w/C128 Disable

Super Snapshot V4-New

Syntech BBS Const. Set/64

Syntech BBS Games Module

SysRES Enhanced

WORPRDCESSORS

Bankstreet Writer

Fleet System 2 + /64

Fleet System 4

Fontmaster128w/Speller

Fontmaster II/64

Paperclip 3

Pocket Dictionary 64/128

Pocket Writer 2

Superscript 128

Viziwrite 128

Wordpro 128 w/Speller w/Filepro

Wordpro 64 w/Speller wfTurbo Load

Wordwriter 128

Wordwriter3lorC64

Write Stuff 64

Write Stuff 64w/Talker

Write Stuff C128 Version

89

5

15

12

29

39

17

60

25

29

25

42

29

32

42

35

22

29

29

29

29

45

35

29

29

30

30

15

29

12

29

29

29

29

25

45

45

19

25

45

45

65

59

39

15

30

35

39

52

39

35

39

10

39

45

60

30

30

39

30

19

24

24

CicfVc AUGNmENT

1541/1571 Drive Alignment

This excellent alignment program is a must have

for every Commodore owner. Easy to use, it helps

you to align your drive so that it runs just as if it

were new! The simple instructional manual and

on-screen help prompt you thru the alignment

procedure and help you adjust the speed and head

stop of your drives. It even includes instructions

on how to load the alignment program when

nothing else will load. Don't be caught short! We

get more RED LABEL orders for this program, then

any other program we sell. Save yourself the

expense! Order now, keep it in your library and

use the 1541/1571 Drive Alignment program

regularly!! Works on the C64, C128, and SX64 for

both the 1541 and 1571 drives.

STILL ONLY $25.00

CHRISTMAS CLASSICS

Enjoy your Christmas! Beautiful Christmas scenes

are displayed while your computer plays your

favorite holiday songs. Sing-along to Deck the

Halls, Jingle Bells, Rudolph, Silent Night and more,

as the lyrics to these Christmas classics scroll

across the screen. Great for your holiday

gatherings!

JUST $10

HOLIDAY SPECIAL!

Get your FREE

Christmas Classics

with any order over $75.

offer good until 12/31/88

RAM-DISK

RamDOS 128

Yes...we know that Ram Expanders are scarce

these days. But for you lucky ones that already

have one, RamDOS 128 is just for you! This

complete RAM based "Disk" Operating System for

the 1750 RAM Expander, will turn ALL or part of

your expansion memory into a lightning-fast RAM-

DISK! Under RamDOS, a 50K file(190 blocks) will

load in just Vi second. Load entire disks or

individual files into your expansion memory and

get to work. When done save the entire memory

or individual files back to your disk for permanent

storage. RamDOS makes your work fast and easy!

only $29.00
(C128 and 1750 Ram Expander required)

Home Designer CATALOGS

Home Designer CAD 128

Given glowing ratings by every major Commodore

magazine, this CAD system outclasses every

other CAD program, because of its object-based

design. With over 50 powerful commands, 5

drawing layers, superb support of library figures

and lazer-quality printouts at ANY scale on your

dot matrix printer or plotter, you can create

drawings so accurate that a blueprint can be made

from them!

Tired of working with poor quality/inaccurate print

outs, manipulating little dots on a bit-map, giving

up on detailed work because you can't zoom in

close enough? Join the professionals!

only $45.00
mouse or joystick required

NEWlEngineering Library disk available now. $10.00

yourself. Our 40 page catalog is crammed full 61

detailed descriptions of hundreds of. C64/C128:

products. Call or\writefervourcopytoclay! *"%■

BONUS DOLLARS
EARN BONUS $$$ WHEN YOU ORDER!! For every

$5G*of software and accessories that^you order,*

you-eam one bonus dollar. Tnafs an additional

2% discount!! Usd your bonus dollars on future

BHiWALL
SOLID PRODUCTS & SOLID SUPPORT

P O. Box*129? 58 Noble Street ' * %>
Kutztown, PA* 1953Q *

24 HOURS - TOLL FREE

1-800-638-5757

SKETCHPAD 128
Brand new from Free Spirit, Sketchpad 128 fully

supports your C128 and takes advantage of its

crisp 80 column graphics capabilities. It is packed

with all the features of a professional drawing

package such as drawing SMOOTH freehand lines,

3D Solids, creating Slideshows, Cut & Paste, Clip,

Flip, Enlarge, Shaded Fill Patterns, a variety of

Fonts, Air Brush and more! It supports Printshop

graphics and is completely compatible with all

BASIC 8 files.

Sketchpad 128 unleashes the graphics power of

your C128! It supports your 1351 Mouse, 64K

Video Chip, 1581 drive and 80 column display.

What more could any real C128 user ask for?

ONLY $24,00

Super 81 Utilities

This full-featured disk utilities system, for your

1581 drive, is available in both C64 and C128

versions. Among the many features included in

this fine package are:

•Copy whole unprotected 1541/1571 disks to 1581 partitions

•Copy unprotected 1541/1571 files to 1581 disks

•Copy unprotected 1581 files to 1571 disks

•Backup 1581 files or disks with 1 or 2 1581 "s

•1581 Disk Editor, Drive Monitor and RAM Writer

•Includes numerous DOS commands such as Rename a file/disk,

•Scratch/Unscratch files, Lock/Unlock files, Create Auto-Boot and

more

Tired of not being able to use your 1581? Super

81 will get that great little drive out of the closet

and into use Qn|y $29.00

(please specify C64 version or C128 version)

Piiyiskjii
Sollwaiv

SUPER PAK SPECIAL

Now the best database on the market has been

combined with %**&$. and fy»h* The

Book into one super package with one super low

price.

Though easy for the novice to use, the ability to

write BASIC-like programs to set up your own

custom applications, turns this system into a true

database of incredible power! Combine it with

SUPERSCRIPT, a sophisticated text management

system, that includes a spellchecker, calculator

and mailmerge facility and you have an

unbeatable team! And as an added bonus, you will

also get SUPERBASE THE BOOK, FREE!

Get all three C64 Version $59.00

in one Super Pak! C128 Version $69.00

GREAT ACCESSORIES FOR YOUR C64/C128

The Drive Box - With some simple souldering you

can make any Commodore drive switchable bet

ween devices 8, 9,10 or 11 and also write the

unnotched side of your disk - $27.00

2-For-1 or 4-For 1 Serial Boxes - Connect 2 or 4

peripherals to the box and share with another

device. Multiple computers sharing one drive.

Multiple printers hooked to one computer, etc.

2-For 1 Box is $29.00. 4-FoM Box is $39.00.

Quick Brown Box - A great cartridge into which

you can write programs, utilities or data files.

What you store will remain intact, even with the

cartridge unplugged or the computer turned off!

32K Box is $79.00; 64K Box is $99.00.

M3 Mouse - If you are looking for a reliable, well-

built fully proportional mouse, stop looking! Built

by Contriver, the M3 Mouse is the best we've

seen. $39.00.

*- ' ;we have a fibsml return policy to-batter se
v policy Is notabusei wfewlll^contfnue to

Volume % Issue 2

Publisher

Antony J&cobsoa

Vice-President Operations

Ipaainie Lawrence

Vice-President Advertising

MaximillianJacobson

Editors

Malcolm O'Brien

: Nick Sullivan

Chris Samara

Customer Services

Rename Turner

Contributing Writers

Ian Adam

, Ma^eBrerigfe

PauTBosacki

BiHBrier

Anthony Bryant

Joseph Buckley

Jitn Butteirfield

JimFrdst

Miidos paramszeghy

; LtoyGaynier

Wayne Gurley

Patrick Etawley

AdatnHerst

Rojtatljuehn

Frapcis Kostella

CM$ Miller

MkeMohilo

: NoelNyman

Adrian Pepper

David Sanrier :

Stephen Shervais

Audrys Vilkas

CoverArtist

Wayne Schmidt

Transactor
The Magazine for Commodore Programmers

Fast Graphics Primitives 16

by Robert Huehn

When performance is the ultimate consideration, these are the routines to use.

Cycle Counting 20

by David Sanner

Just how fast is your machine code? Cycle counting explained, with a program that does it for you.

RS-232 Hardcopy 33

by Joseph Buckley

Interfacing an RS-232 printer to your 64 isn't hard - but there are a few tricks.

Star Cart 35

by Stephen Shervais Jr.

An aid for astronomy buffs - an easy way to find the relative positions of stars.

Disabling <I0' on the 1581 37

by Miklos Garamszeghy

A fix for the 1581 to make it retain its subdirectories with application software.

C-128+ CP/M Memory Maps 39

by Miklos Garamszeghy

Invaluable resource material for the CP/M programmer.

WHEREIS 45

by Adam Herst

A useful CP/M utility to find a file - anywhere.

I Do Windows (on the C128) 49

by Jim Butterfield

Jim offers a prime example of easy text placement in a C128 window.

C and Assembly: Clarifying the Link 64

by Larry Gaynier

Larry clears up an error from a previous article, and adds a few new observations.

Care and Feeding of the C256 67

by Paul Bosacki

How about a 256K 64 with four separate environments and a GEOS RAM disk... for starters?

Departments and Columns

Bits
U.S. to Canada Mail Order

Growing Print

Quick Block Display

Who Needs Fast-Loaders?

Now You See Me, Now You Don't

The RND Function

SX-64ROMBug

Window Wiper 128

The ML Column 10

by Todd Heimarck

Struggling with ML math? To kick off his new column, Todd shows you how to divide - and conquer!

The Edge Connection 50

by Joel Rubin

The first of another regular column. This issue, Joel compares three assemblers for the C-128: Buddy,

LADS, and Merlin.

News BRK 78
Turbo Master CPU Accelerator Dialogue 128

QDisk Non-Volatile C128 CP/M RAM disk B-128 Hardware Enhancements

SFX Sound Expander Zoom! for the C64

Reviews

54A Tale of Two Cartridges

by Noel Nyman

An in-depth comparison of two of the hottest multi-function cartridges for the 64: The Final Cartridge,

and Action Replay Mk. IV.

BrainStorm, BrainPower, Story Writer

by Marte Brengle

A low-priced integrated thought processor/word processor, and a unique story-writing aid.

61

About the cover: The artwork is unmistakably that of Wayne Schmidt, long known in

the Commodore graphics arena for his intricately detailed work. Wayne lives in New

York, where he does commercial graphics and other art using his Commodore 64. His

work has appeared in several magazines. Wayne uses a variety of software in produc

ing his images, including some he's written himself. The cover picture is in multi

colour, not hi-res mode.

-Transactors^- ',-

Line open Mondays, Wednesdays

I'. \}' irid Fridays ONLY -; </ '",

TOU-FREEORDER UNE

/(for orders only; fiaveyour-viw of Mastercard / T
- / number ready; available in the; U.& onjjfrv,- !

Transactor is published bimonthly by Croftward
Publishing ina, 8SW0 VVest Vyiimpi^Straei Rich
mond H% Ontario, L4B 1K7/iSSN# O83S«0f6k
Canadian Second Class Mail Registration No,

7690, Gateway-Mississauga, Ont /US Second
Class mail permit pending at Buffalo, NY USPS

Postmasters: send address changes to: Transac

tor, PO Box338, StafoMiC, Buffaib, NY,,142O9.

Transactor Publishing, inc. te In no way connected

with Cpmpodore Business Machines M^;^r-
Cortirnodote Incorporated' Cornmodore ,and

Commodore product names are registered trade

marks of Commodore inc. ' ' .'*'., '''"/"'I

Ajr Mai! (Oye/seas onjy) $40 U$ - ,

Send all subscriptions to; Transactor Publish-

J IS^cr^tfonsDepartt ^tOWt
Rich'mona-Nitl,
)>64^273 F best results,

J 4

Quantity Order$Mn Canada: Ingram Software

mTrtyify 738-1700: ^tHe MSA; P.D'Oht&ma^
tionai Periodical Distributors), 11760-8 Sorrento;

Valley ftba^Sa^bfe CalifoFrtia/9212i; (#9)'
481-5928; ask for Dave Buescher. Quantity or

ders/enquiries are also welcome from comput

er/software distributors in the UK, Europe and

Scandinavia.; Please /Contact: T.G,, Hamilioh
\(W/S) Ltd,, Tel: 02t«742r$35S; Fax;,bai-74a-i
■nmi or^maol Transaacir m® direct at U,nit 2,!
Ungdak Oroye, Birigham* Notts, N013 $S&
tel^one - te*&g$8%k <,>to ■ Australia, contact''
Transactor (Australia) Ply. Umited, 35 Calder Cr.,

Holder, ACT mil: PmM% Phone 6iV;e£

$nouiu %)8 proviuw Omqiskv iff9i8rr9u^ lorniaijs

1541-tormat whh ASCII text files. Manusertpte

stiould be typewritten, double-spaced,;with Espe

cial character or formats dearly mamed; Photos

snoufd be gbssy black and whft^ prints. Illustra
tions should be on Wh^pajpir will !i>TacHMori^
ly, Hi-res grapriics files on disk are preferred to

;hardco|>^strajqns^rje^ :; -/

.Alt material accepted becprne^ the j

Transactor Publishing tnc;, except by „

rangement. All material is copyright by^

^bJrshfna<|ric/Reprdcr -^--^

,permissfenfeMplatlt^...^.^
to the Richmond HilJ address for £

The opinions expressed in

are ;n6t;nece^a%thpse^of}
ing Inc. Although accuracy is

ttofy^l|;y|

fn" Tfansactdr, and/or appearing dn' 'f.

arid may not be duplicated or distributed without

Production

^ Bnajoutpiitby Veilum Prints ^

, Printing , | ;

Using "VERIFIZER"

Transactor'sfoolproofprogram entry method

VERIFIZER should be run before typing in any long program

from the pages of Transactor. It will let you check your work

line by line as you enter the program and catch frustrating typ

ing errors. The VERIFIZER concept works by displaying a two-

letter code for each program line; you can then check this code

against the corresponding one in the printed program listing.

There are three versions of VERIFIZER here: one each for the

PET/CBM, VIC/C64, and C128 computers. Enter the applica

ble program and RUN it. If you get a data or checksum error,

re-check the program and keep trying until all goes well. You

should SAVE the program since you'll want to use it every

time you enter a program from Transactor. Once you've RUN

the loader, remember to enter NEW to purge BASIC text

space. Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top

left of the screen in reverse field. Note that these letters are in

uppercase and will appear as graphics characters unless you

are in upper/lowercase mode (press shift/Commodore on

C64/VIQ.

Note: If a report code is missing (or "--") it means we've

edited that line at the last minute, changing the report code.

However, this will only happen occasionally and usually only

on REM statements.

With VERMZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN

on a line. If the code doesn't match up with the letters printed

in the box beside the listing, you can re-check and correct the

line, then try again. If you wish, you can LIST a range of lines,

then type RETURN over each in succession while checking

the report codes as they appear. Once the program has been

properly entered, be sure to turn VERIFIZER off with the SYS

indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0

instead of POKE 53281,0. However, VERIFIZER uses a

"weighted checksum technique" that can be fooled if you try

hard enough: transposing two sets of four characters will pro

duce the same report code, but this will rarely happen, (veri-

fizer could have been designed to be more complex, but the

report codes would need to be longer, and using it would be

more trouble than checking the program manually), verifizer

ignores spaces so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!) Stan

dard keyword abbreviations (like nE instead of next) will not

affect the VERIFIZER report code.

Technical info: VIC/C64 verifizer resides in the cassette

buffer, so if you're using a datasette be aware that tape opera

tions can be dangerous to its health. As far as compatibility

with other utilities goes, VERIFIZER shouldn't cause any prob

lems since it works through the BASIC warm-start link and

jumps to the original destination of the link after it's finished.

When disabled, it restores the link to its original contents.

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

CI 10 rem* data loader for "verifizer 4.0" *

LI 20 cs=0

HC 30 for i=634 to 754: read a: poke i,a

DH 40 cs=cs+a: next i

GK 50:

OG 60 if cs<>15580 then print"***** data error

JO 70remsys634

AF 80 end

IN 100:

ON 1000 data 76,138, 2,120,173,163, 2,

IB 1010 data 173, 164, 2, 133, 145, 88, 96,

CK 1020 data 145, 201, 2,240, 16,141,164,

EB 1030 data 144, 141, 163, 2, 169, 165, 133,

HE 1040 data 2,133,145, 88, 96, 85,228,

OI 1050 data 201, 13,208, 62,165,167,208,

JB 1060 data 254, 1, 133, 251,162, 0, 134,

PA 1070 data 0, 2,168,201, 32,240, 15,

HE 1080 data 165, 253, 41, 3,133,254, 32,

1090 data 198, 254, 16, 249, 232, 152, 208,EL

LA 1100data251, 41, 15, 24,105,193,141,

KI 1110 data 165,251, 74, 74, 74, 74, 24,

EB 1120 data 141, 1,128,108,163,

DM 1130 data 251,133,251, 96

2, 152,

*****": end

133, 144

120, 165

2,165

144, 169

165,217

58, 173

253,189

230, 253

236, 2

229, 165

0,128

105, 193

24, 101

Transactor December 1988: Volume 9, Issue 2

VIC/C64 VERIFIZER

KE 10 rem* data loader for "verifizer" *

JF 15 rem vic/64 version

LI 20 cs=0

BE 30 for i=828 to 958:read a:poke i,a

DH 40 cs=cs+a:next i

GK 50:

FH 60 if cs<>14755 then print"***** data error *****": end

KP 70remsys828

AF 80 end

IN 100:

EC 1000 data 76, 74, 3,165,251,141, 2, 3,165

EP 1010 data 252, 141, 3, 3, 96,173, 3, 3,201

OC 1020 data 3,240, 17,133,252,173, 2, 3,133

MN 1030 data 251, 169, 99, 141, 2, 3, 169, 3, 141

MG 1040 data 3, 3, 96, 173, 254, 1, 133, 89, 162

DM 1050 data 0, 160, 0, 189, 0, 2, 240, 22, 201

CA 1060 data 32,240, 15,133, 91,200,152, 41, 3

NG 1070 data 133, 90, 32,183, 3,198, 90, 16,249

OK 1080 data 232, 208, 229, 56, 32, 240, 255, 169, 19

AN 1090 data 32,210,255,169, 18, 32,210,255,165

GH 1100 data 89, 41, 15, 24,105, 97, 32,210,255

JC 1110 data 165, 89, 74, 74, 74, 74, 24,105, 97

EP 1120 data 32,210,255,169,146, 32,210,255, 24

MH 1130 data 32,240,255,108,251, 0,165, 91, 24

BH 1140 data 101, 89,133, 89, 96

NEW C128 VERIFIZER (40 or 80 column mode)

KL 100remsave"0:cl28vfz.ldr",8

OI 110 rem c-128 verifizer

MO 120 rem bugs fixed: 1) works in 80 column mode.

DG 130 rem 2) sys 3072,0 now works.

KK 140 rem

GH 150 rem by joel m. rubin

HG 160 rem * data loader for "verifizer cl28"

IF 170 rem * commodore cl28 version

DG 180 rem * works in 40 or 80 column mode!!!

EB 190ch=0

GC 200 for j=3072 to 3220: read x: poke j,x: ch=ch+x: next

NK 210 if cho18602 then print "checksum error": stop

BL 220 print "sys 3072,1 to enable

DP 230 print "sys 3072,0 to disable

AP 240 end

BA 250 data 170, 208, 11, 165, 253,141, 2, 3

MM 260 data 165, 254, 141, 3, 3, 96, 173, 3

AA 270 data 3, 201, 12, 240, 17, 133, 254, 173

FM 280 data 2, 3,133,253,169,39,141, 2

IF 290 data 3,169, 12,141, 3, 3, 96,169

FA 300 data 0,141, 0,255,165, 22,133,250

LC 310 data 162, 0,160, 0,189, 0, 2,201

AJ 320 data 48,144, 7,201, 58,176, 3,232

EC 330 data 208, 242, 189, 0, 2,240, 22,201

PI 340 data 32,240, 15,133,252,200,152, 41

FF 350 data 3,133,251, 32,141, 12,198,251

DE 360 data 16,249,232,208,229, 56, 32,240

CB 370 data 255, 169, 19, 32,210,255,169, 18

OK 380 data 32,210,255,165,250, 41, 15, 24

ON 390 data 105, 193, 32, 210, 255, 165,250, 74

OI 400 data 74, 74, 74, 24,105,193, 32,210

OD 410 data 255, 169,146, 32,210,255, 24, 32

PA 420 data 240, 255, 108, 253, 0,165,252, 24

BO 430 data 101, 250,133, 250, 96

The Standard Transactor

Program Generator

If you type in programs from the magazine, you might be able

to save yourself some work with the program listed on this

page. Since many programs are printed in the form of a BA

SIC "program generator" which creates a machine language

(or BASIC) program on disk, we have created a "standard

generator" program that contains code common to all program

generators. Just type this in once, and save all that typing for

every other program generator you enter!

Once the program is typed in (check the Verifizer codes as

usual when entering it), save it on a disk for future use. When

ever you type in a program generator, the listing will refer to

the standard generator. Load the standard generator first9 then

type the lines from the listing as shown. The resulting program

will include the generator code and be ready to run.

When you run the new generator, it will create a program on

disk (the one described in the related article). The generator

program is just an easy way for you to put a machine language

program on disk, using the standard BASIC editor at your dis

posal. After the file has been created, the generator is no

longer needed. The standard generator, however, should be

kept handy for future program generators.

The standard generator listed here will appear in every issue

from now on (when necessary) as a standard Transactor utility

like Verifizer.

MG 100 rem transactor standard program generator

EE 110 n$="filename": rem name of program

LK 120 nd=000: sa=00000: ch=00000

KO 130 for i=l to nd: read x

EC 140 ch=ch-x: next

FB 150 if ch then print "data error": stop

DE 160 print "data ok, now creating file."

CM 170 restore

CH 180 open l,8,l,"0:"+n$

HM 190 hi=int(sa/256): lo=sa-256*hi

NA 200print#l,chr$(lo)chr$(hi);

KD 210 for i=l to nd: read x

HE 220 print#l,chr$(x);: next

JL 230 close 1

MP 240 print"prg file '";n$;"' created..."

MH 250 print"this generator no longer needed."

IH 260:

Transactor December 1988: Volume 9, Issue 2

Light and the End of the Tunnel

We have good news and good news. And good news. It's great

to be able to say that.

First of all, Transactor's "dark night of the soul" has ended.

Our forte has always been creating magazines of unsurpassed

technical information for users of Commodore computers. We

intend to continue in that tradition.

Now, however, the matters of printing, distribution and adver

tising are being carried out by Croftward Publishing Inc.,

which is owned by a large U.K.-based publishing company

with resources in excess of those that Transactor could pro

vide. (Croftward publishes Commodore Computing Interna

tional and Amiga User International magazines in the U.K.,

among others.)

This happy arrangement means that we need only concern our

selves with editorial content on our side of things and Croft

ward will ensure that those materials are printed and distribut

ed to reach you on a timely basis.

Our other good news concerns magazine content. We have two

new columnists writing for Transactor. "The Edge Connec

tion" is where you'll find the writings of Joel Rubin, who au

thored our C128 80-column Verifizer. Joel is a former Com

puServe sysop and has wide experience in many corners of the

computing universe. Joel examines Commodore computing

from a unique viewpoint and makes for very interesting read

ing, as you'll see. In this issue, Joel's first column compares

three C128 assemblers and discusses a number of issues per

taining to them.

Finally, by popular demand, the feature you've all been so ea

ger to see: The ML Column. Yes, it's here - and written by

Todd Heimarck no less. Todd spent some years at COMPUTE!

and co-authored Machine Language Routines for the Com

modore 641128 (which was so favourably reviewed by Mike

Garamszeghy in Volume 8, Issue 4). Recognize that this is not

a tutorial for beginners. This column is directed at the interme

diate to advanced programmer. The first column takes a look

at various algorithms for doing binary division and bench

marks them. Dig in.

While we're on the subject of advanced programming, two of

the articles in this issue deliver the tools and techniques for

doing fast hi-res graphics. In fact, both articles are looking for

the fastest way to plot a pixel on a hi-res screen (though both

address other issues as well). The authors seem to have come

pretty close to the theoretical maximum speed for this often-

vital task, but if you can shave even more cycles off their rou

tines, we'd love to hear from you and so would they. If you're

"in search of the blazing bit", have a look at Cycle Counting

by David Sanner and Fast Graphics Primitives by Robert

Heuhn. And make sure your monitor is well ventilated.

More good news for GEOS users: This issue we're "pushing

the limits" with the C256. Paul Bosacki shows you in words

and pictures how to expand your C64 to 256K internally. The

software patch to make GEOS recognize the internal ram drive

is printed in geoProgrammer format. From the feedback I've

received so far, it seems that there are a number of GEOS pro

grammers out there who want the listings in geoProgrammer

format. If you're new to programming the GEOS environment

and are using one of the other assemblers, don't fret. Next is

sue we'll print a cross-reference table of GEOS labels that will

make it easier for people on both sides of the fence to talk to

each other.

That's a lot of good news for one issue. We're very happy to

have Todd and Joel writing for us and we're sure you'll be

pleased as well. We're also very happy with our new arrange

ment with Croftward and look forward to returning to active

duty on the forefront of Commodore computing.

Malcolm D. O'Brien □

Transactor December 1988: Volume 9, Issue 2

1

t

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - ifwe use it in the bits column, we'll credit you

in the column and send you afree one-year's subscription to Transactor

U.S. to Canada Mail Order

Steve Campbell, Mississauga, Ontario

If you order from the States and the order is shipped by United

Parcel Service (UPS), there will most likely be a $12.50 fee

charged to you, as well as any customs duties.

I was never advised of this unfortunate situation until I ordered

some CP/M software for my C128. I got a card in the mail

from UPS at the border saying to call them (toll-free) because

there was a hold-up at customs.

When I called, I was told that they always check with the re

ceiver of the parcel before it goes through customs if the

sender did not pay for the duties in advance; my dealer hadn't

paid. I went ahead with the order because it was software I

needed, and paid the $12.50 plus $2.41 duty (on four disks and

six books).

Moral: Ask for the parcel to be sent by United States Postal

Service. Unless you need it immediately, you're better off us

ing the USPS. All things considered, UPS probably takes just

as long anyway.

64 Bits

Now You See Me, Now You Don't

Sudharshan Sathiyamoorthy, Scarborough, Ontario

Looking for a new effect to add to your programs? Type in the

following, save it, and then run it.

ON 100 rem fader - by sudharshan sathiyamoorthy

PB 110 for i=49152 to 49193: read a: poke i,a: next

AE 120 data 165, 78, 133, 80, 165, 79, 133

OC 130 data 81, 166, 83, 164, 82, 202, 165

OO 140 data 87, 136, 145, 80, 192, 0, 208

OC 150 data 249, 24, 169, 40, 101, 80, 133

LM 160 data 80, 169, 0, 101, 81, 133, 81

PA 170 data 164, 82, 224, 0, 208, 227, 96

Now type in the following example program, save it, and then

run it.

HA

EN

GJ

JB

KK

IH

MF

F6

PI

OH

L6

NP

100

110

120

130

140

150

160

170

180

190

200

210

rem fader example

rem by sudharshan sathiyamoorthy

rem

rem make sure fader is installed

rem

poke 82,20:poke 83,10:poke 53280,0:poke 53281,0

for i=l to 10: read c(i): next i

data 0,11,12>15,1,1,15,12,11,0

poke 78,0: poke 79,216

for i=l to 10: poke 87,c(i): sys 49152

: for j=l to 40: next j,i

poke 78,164: poke 79,217

for i=l to 10: poke 87,c(i): sys 49152

: for j=l to 40: next j,i: goto 180

Make sure the screen is fairly full to see the effect properly.

Pretty neat, isn't it? The fading is achieved by cycling the

colour of a section of the screen through different shades of

white, black and grey.

To use this effect in your program, append the first listing to

your BASIC code. The routine is relocatable - at present it re

sides at address 49152. The routine also uses addresses 78 to

83 and address 87 for storage purposes.

The machine language program allows you to change the

colour of a rectangular area on the screen. The top left corner

of the rectangle is stored in address 78 and 79 (in low, high

format) - the value used here is a colour memory address start

ing at 55296. The number of character rows and columns in

the box is stored in addresses 83 and 82, respectively. Finally,

the colour is put in location 87.

The machine language routine simply changes the colour of a

section of the screen; the actual colours that you choose deter

mines the fading effect. The example BASIC program above

fades from white to black and from black to white. To fade

from yellow to black and from black to yellow, modify the

second program as follows:

160 dim c(12) : for i=l to 12: read c(i) : next i

170 data 0,9,2,8,10,7,7,10,8,2,9,0

in lines 190 and 210, change 'for i=l to 10' to 'for i=l to 12'.

Transactor December 1988: Volume 9, Issue 2

Growing Print

Jeremy Hubble, Belton, Texas

This little subroutine does a lot for its size: it not only centres

text, but it causes it to "grow" out from the centre of the

screen, and can also change the text colour. To use it, simply

set A$ to the string you want to print (it should be less that 39

characters), set C to the colour you want to print in (0 through

15), and GOSUB 2000. You can change the speed by altering

the value for Dl in line 2000. Lines 10 and 20 are just to

demonstrate the subroutine, and can be deleted when putting

the subroutine your own programs.

KH 10 poke 53281,0:a$="growing print": c=l:gosub 2000

CC 20 print:a$="by jeremy nubble":c=2:gosub 2000:end

DJ 2000 dl=10: poke 646,c: a=len(a$)

: if a/2Oint (a/2) then a$=a$+" ": goto 2000

DA 2010 for b=l to a/2

:print tab(21-b) left$ (a$,b) right$ (a$,b) ■' {up}"

JM 2020 for d=l to dl: next: next: print: return

The RND Function

Evan Williams, Williams Lake, British Columbia

I have seen, heard, and read a lot of misconceptions about how

the random number generator in Commodore BASIC works or

doesn't work. I have not yet seen an accurate description of

what really happens. First, without getting into what random

ness is, I will say that the Commodore BASIC RND function is

one of the better pseudo-random number generators available.

It generates very long initial sequences of numbers with very

good apparent randomness. No detectable patterns appear at

binary intervals up to 2A16. No significant bias exists such as

for even over odd numbers.

The biggest misconception I know of regarding RND is that

one can "improve" the randomness by using some number

other than one as the argument (i.e. x=rnd(ti)). This has abso

lutely no effect as when the argument is positive it is a dummy

and is not used by the RND function. The next misconception

is that something is wrong with RND when negative numbers

are used. Not so! Negative numbers are used to seed the rnd

function and initiate a new sequence. When any negative num

ber is used in the RND function (i.e. x=rnd(-27)), this starts the

random number generator at a new point. For every negative

number a different sequence results. For really random output,

use x=rnd(-ti) at the start of a program.

Furthermore, and even better, if the same negative number is

used, the same sequence results. This allows you to control the

output of the RND function, which can be useful in games (for

example, to give each player the same random maze to negoti

ate).

Speaking of games, I should mention that a lot of software for

the C64 uses the noise generator in the SID chip to create

pseudo-random numbers. This is a hardware version that

works using a shift register with gated feedback of the binary

output. I haven't examined the characteristics of this part of

the chip so I can't comment on it except to say that the more

the white noise output sounds like white noise (a hissing

sound), the better it probably is. I have heard some artifacts in

the white noise output which sound sort of metallic and clinky

so it probably is suspect. As a last note, when zero is used as

an argument for RND the output seems okay but has gaps in the

numbers it hits. These gaps are regular and periodic so zero

shouldn't be used.

Quick Block Display

Brian Spencer, Barrie, Ontario

Have you ever wanted to quickly display a block from a disk

onto the screen in its raw form? Run the following program

and you'll see just how simple and short a task that can be.

JC 10 for i=828 to 844:read d:poke i,d:next i

NP 20 data 162,2,32,198,255,162,0,32,207

HC 30 data 255,157,0,4,232,208,247,96

GG 40 input"{dr} {8 down}track, sector";t,s

CF 50 open 15,8,15: open2,8,2,"#"

CL 60 print#15,"ul 2 0"str$(t)str$(s)

IE 70 sys 828:poke 780,2: sys 65475: sys 65511

Program explanation:

Line 10 Load in the ML GETBLOck routine

Lines 20,30 ML data for GETBLOck routine. Notice the 0 and

4 that denotes the top of screen memory ($0400,

or 1024 decimal)

Line 40 Prompt user for track and sector

Line 50 Set up channels (device 8 default)

Line 60 Jump to track and sector entered by user

Line 70 Call GETBLOck routine, which puts 256 bytes

from logical file #2 into screen memory; use Ker-

nal to close logical file #2 and close all files

The files are opened and closed from BASIC so that you can

modify the program without altering the machine code.

SX-64 ROM Bug

Kevin Hopkins, Monticello, Illinois

There is a bug in the Kernal ROM for the SX-64. If you use

SHIFT/RUN-STOP to load and run your Quantum Link terminal

software or any other programs using RS-232, this bug can

cause a crash very quickly.

A comparison of the SX Kernal and the version 3 ROM of the

C64 (from which it descended) reveals that there are 49 bytes

different in the SX Kernal. The trouble lies with the changes in

the load/run text for the shift/run-stop key combination.

Upon call, this text is written into the keyboard buffer. Now,

most programmers understand that this buffer is only 10 bytes

long. No problem with the Version 3 text which is only 9 bytes

long, but the SX text is 15 bytes long, which means that five

bytes are going to go where they don't belong. Where they

Transactor 8 December 1988: Volume 9, Issue 2

don't belong in this case is the operating system's pointers to

start of memory, end of memory, and the flag for the Kernal

variable for IEEE time-out. This is exceedingly nasty.

I believe the cause of the problem is the overwriting of the

end-of-memory pointer at $0283/4. Mapping the Commodore

64 states that the start-of-memory pointer is never used after

power-up (the value is copied to zero page and that copy is

used thereafter), and the time-out byte is for an IEEE interface

that Commodore was to release. But the end-of-memory point

er is used in the allocation of the RS-232 input and output

buffers, which is done whenever an RS-232 file is opened.

Writing the "UN" of the "LOAD...RUN" text into that pointer by

pressing SHIFT/RUN-STOP would have you allocating buffers at

$4E55 on down. One hesitates to speculate on how many

things can go awry because of this re-coding error. Depending

on the size of your program, this could spell instant software

death.

The SX bug is cause for concern today because, although that

machine is no longer made, the SX Kernel is a natural founda

tion for anyone creating a customized operating system for the

C64. The SX code has already isolated the tape routines,

which a programmer can freely replace with whatever he likes

before buring a replacement ROM.

Solutions: If you are buring a new ROM, the bug can be

crushed by abbreviating the command string by changing

''loadn*",8<cr>run<cr>" to "10M:*",8<cr>rU<cr>", which re

duces the string by three of the five bytes, or by removing the

",8" and changing the default device number elsewhere in the

Kernal.

C128 Bits

Who Needs Fast-Loaders?

John Fehr, Gretna, Manitoba

The other day, I was fooling around with the 128 and 64

modes when I noticed that the memory from bank 0 in 128

mode remains intact after going into 64 mode. Experimenting,

I found that it was possible to load a machine language pro

gram in 128 mode, go into 64 mode, and execute the program.

Why go through the hassle? With a 1571 disk drive, loading in

128 mode is faster than loading in 64 mode with a fast-load

cartridge!

To try this, boot the computer in 128 mode and load a BASIC

program like this:

bload"filename",dO, u8

Reset the computer, hold down the Commodore key (to enter

64 mode), and the program will still be in memory. To "un-

new" the program so that you can list and run it, type:

poke 2050,10: sys 42291: poke 45,peek(34)

: poke 46,peek(35): clr

Defining Keys in CP/M

Douglas Taylor, Columbus, Ohio

The keyfig command that comes on the C128 CP/M boot disk

allows you to define up to 32 different function keys on the

C128, each with its own string. A 'string' in this case implies

two or more characters, such as 'dir [return]' (assigned to

F3) or 'help ' (assigned to F27). Here is a shortcut that lets you

redefine keys in CP/M mode without using KEYFIG, even from

within many application programs!

Suppose you want to redefine the Fl key, which defaults to the

string "Fl". To do this, hold down the CTRL and right-§fflFT

keys and press the grey cursor-right key. A small white box

will appear at the bottom of the screen. Next, press the func

tion key you want to redefine, in this case Fl. The white box

will now read >F1< in reverse video with the cursor over the

F. Now type in something like, "This is a function key!". If

you make a mistake you can cursor back with CTRL/right-

shift/cursor-left, and forward with CTRL/right-shift/cursor-

right. You can also insert with CTRL/right-shift/+ and delete

with CTRL/right-shift/- (the + and - keys on the main keyboard,

not on the keypad). When you have completed typing the defi

nition, press CTRL/right-shift/RETURN. Commodore chose the

CTRL/right-shift combination so that you can define any key as

a function key and include cursor movements in your strings,

as well as inserts, deletes, and carriage returns. Now press Fl.

You will see the words "This is a sunction key!" printed on

the screen. You can even do this from inside your favourite

word processor for instant key macros.

That's all there is to it. Remember, this method only works for

redefining keys which are assigned strings of two characters or

more, so you couldn't use it to redefine, say, the "a" key. But

once you have used keyfig to set up your keyboard you can

have up to 32 easily redefinable function keys. I have not yet

found a program in which I could not use this shortcut method,

but with IMP.COM in terminal mode, the keys do not play back

correctly.

By the way, all this information can be found in the CP/M sec

tion of the C128 Programmers Reference Guide.

Window Wiper

Chris George, Islington, Ontario

If you are tired of using chr$(147) to clear your screen, you

can easily liven up your programs with a more creative

"screen wipe" by using the "clear" option of the BASIC 7.0

window command. Try the following one-liner:

10 rem wipe out cl28 (40/80)

20 w=rwindow(2)/2:r=3.3/(l-(w=20)):for i=0 to 12

:window w-r*i,12-i,w+r*i,12+i,l:next

This program wipes the screen from the inside to the outside

in either 40 or 80 column mode. Experimenting with this tech

nique can produce some interesting results. □

Transactor December 1988: Volume 9, Issue 2

The ML Column

What do you do, subtract a lot?

by Todd Heimarck

Copyright © 1988 Todd Heimarck

Welcome to the ML Column. I'm sure the Transactor editors

will correct me if I'm wrong, but I believe an unwritten rule

states that "Brand new columnists are allowed to introduce

themselves and their column." Another unwritten rule is this:

"You can always quote an unwritten rule. How will the read

ers know if it's correct or not?" Another unwritten rule is this:

"You can never quote an unwritten rule. As soon as you quote

it, you've written it down, which negates its status as unwrit

ten. Therefore, you're a liar."

Sounds like an old Star Trek episode where Kirk tells a com

puter that it made a mistake. By not catching the mistake, it

made another mistake. By not catching that mistake, it made

another. And so on. Computers are gullible. If you type "ev

erything I SAY IS A lie" it will confuse a 64 (or even a 128).

The result is 7SYNTAX ERROR, which is ridiculous when you

consider that the syntax of the sentence you typed is perfect,

whether or not you include the quotation marks.

But let's return to the introduction. I bought my first computer,

a VIC-20 with an 8K expander and a Datassette, back in 1981

or 1982. After a year or two, I moved up to a 64. Later I

bought a 1541 disk drive. When the 128 first appeared, I

bought one, along with a 1571 drive and a 512K memory ex

pander. I also own an Atari 1040ST, but we won't say anything

more about that in these pages.

I've programmed in 6502 assembly language (also called

"machine language") since 1983, the same year I started

working at compute! Publications. There I wrote articles,

wrote programs, and edited articles. If you read the Gazette,

you might have seen the Horizons column. Charles Brannon

(author of SpeedScript and other goodies) founded the Hori

zons column. I wrote it for a couple of years. It's now in the

capable hands of Rhett Anderson. At various times, I also

worked on Bug Swatter, Hints & Tips, and Gazette Feedback.

I recently moved from North Carolina to Washington state af

ter accepting a job at Microsoft Corporation, where I write

manuals describing their programming languages.

This column will focus on 6502 assembly language algorithms

for the 64 and 128, with an emphasis on intermediate to ad

vanced programming. Although I have several ideas for

columns (searching, sorting, crunching, file I/O, sprites, inter

rupts, graphics), I'd like to hear from Transactor readers. If

you want to suggest a topic or respond to a column, write to

me c/o Transactor at the address in the front of the magazine.

Better yet, send email on CompuServe (id 76703,3051). You

could also drop into my Thursday night conference in the

CompuServe CBMART area. It happens every Thursday night

from 10-12 pm Eastern time. For those of us on the left coast,

that's 7-9 Pacific time. If you're in Iowa, Hawaii, or New

foundland, you'll have to calculate the appropriate time for

yourself. Log onto CompuServe, GO CBMART at a ! prompt,

join the forum if you aren't a member, and type CO to enter the

conferencing area. Incidentally, you can find the example pro

grams from this column on the Transactor Disk or in the

Transactor's own CBMPRG forum on CompuServe.

How to divide

Enough of the introductory stuff. Let's talk about machine lan

guage.

The other day I mentioned (in passing) to an IBM assembly

language programmer that the 6502 didn't have a divide in

struction and that you had to do it in software. He stopped

dead in his tracks, thought deep thoughts for a minute or two,

and said, "No divide instruction? What, do you just subtract a

lot?"

Well, yes and no.

A little later, someone left a message in the CBMPRG area of

CompuServe asking how to divide in assembly language.

How do you divide? There are four (or five) answers to the

question. But first a few remarks.

Testing the alternatives

Given four (or five) answers, you might want to test them out.

Which one is fastest or most compact or most elegant? Let's

invent a benchmark situation. We want to divide one number

by another. Call them Nl and N2. We don't want to destroy

Transactor 10 December 1988: Volume 9, Issue 2

the values in memory, so the first thing to do is copy Nl to

num and N2 to den (I picked those names because in a frac

tion the number on top is the NUMerator and the number below

is the DENominator). The second thing to do is test den for a

value of zero (because you can't divide by zero). If something

(such as division by zero) causes an error, the routine should

squawk. The carry flag isn't affected by the RTS instruction, so

we'll arbitrarily set the carry if an error occurs and clear the

carry to indicate success.

We'll also arbitrarily decide that NUM and DEN are 16-bit val

ues and that the result will be stored in another 16-bit variable

called RES. The remainder will end up in REM. Two more obvi

ous choices for label names. (If your variables have other

sizes, you can easily modify the example programs to whatev

er size you need. The variable res should be the same size as

num and rem should be the same size as den.)

Since we can't easily time a single division routine, we'll

call the routine 32,768 times - just for the test. We can use the

jiffy clock for the benchmark timing.

The benchmark program ("OOtest") is written in BASIC 7.0 for

the 128 (program 0). It inputs the two numbers, zeroes out the

clock, SYSes to the routine, and prints the jiffy clock value.

The routines assemble to $0B00 on the 128. If you own a 64,

you'll have to move them somewhere suitable ($C000, for ex

ample) and modify the BASIC program by removing the fast

statement in line 20.

Just to be fair, we should write a program ("Olnull") that does

nothing but clear the carry (CLC) and return from the subrou

tine (RTS). The clock will report the overhead required for do

ing things like checking for a division by zero error.

All of the example programs contain the 32K loop and the

error-checking for the presence of zero in den. If you're work

ing from the listings, type in Program "Olnull" and for the

others, start at line 570 main = * (in the "Buddy" assembler

for the 128, the character "*" marks the current program

counter; the same is true for "pal" and "lads" and some oth

er assemblers). Lines 580+ are different in the example pro

grams.

Subtract a lot

Program "02subt" subtracts a lot. The algorithm breaks down

to a few simple steps:

1. Begin loop.

2. If num < den, exit loop.

3. Else NUM = NUM - DEN.

4. Increment counter and repeat the loop.

5. RESult = counter. REMainder = value left in num.

When we check the benchmarks, the subtraction alogrithm

works reasonably well when the result is small. To evaluate

6/2, the program subtracts two a total of three times. However,

the larger the result, the longer the delay. If you divide

60,000/2, the algorithm must subtract 30,000 times. The an

swer is accurate, but you have to wait quite a while for it (es

pecially if the program repeats the calculation 32K times).

It's also not very satisfying. Subtracting one number from an

other doesn't seem very elegant. There must be a better way.

Shift to the right

Program "03shif" provides a second solution. It's faster than

blazes, but (unfortunately) it only works when the divisor DEN

is an even multiple of two.

The theory is relatively easy to understand. Suppose your

computer worked in decimal (which it doesn't). Suppose the

number 130,000 was stored in memory as the numerals

"130000" (also a false statement, but we can pretend). Sup

pose once more that you could tell the numerals to move once

to the right (shifting a zero into the high position). Shift

130000 to the right and you get 013000. Shift even more and

you get 001300,000130,000013,000001,000000, and so on.

As you can see, in base ten (decimal), shifting to the right is

the same as dividing by ten. But computers store values in bi

nary (base two). Shifting a byte (or series of bytes) right is the

same as dividing by two:

Binary Decimal

0000 0010 1100 0000 704

0000 0001 0110 0000 352

0000 0000 1011 0000 176

When the 1 's and O's shift to the right, they fall off the edge of

the byte into the carry bit. From there, we can catch the bit

(shifting right again into a REMainder area). The shift algo

rithm for division looks like this:

1. Set a counter to 16 (the size in bits of DEN).

2. Shift DEN right one bit (LSR the high byte and ROR the inter

mediate/low bytes). If the carry is set, skip ahead to step 6.

3. Shift NUM right one bit (LSR the high byte first, then ROR

any intermediate or low bytes).

4. Shift the remaining leftover bit into the high bit of REMain

der (using ROR on the high and low bytes).

5. Decrement the counter and branch to 2 if it's not zero yet.

6. The shifting loop has ended and if den was a multiple of 2,

no more bits should be turned on. Even multiples of two

contain only one bit (00000001, 00000010, 00000100, and

so on). When the single bit rotated out of DEN, it should

have left behind no other 1 bits. If any bits are still on,

there's an error, so we set the carry. Else, clear the carry and

RTS.

As mentioned above, this trick only works when you know in

advance that you have a divisor that's evenly divisible by two.

A better routine would be faster than subtracting and handle all

possible numbers.

Transactor 11 December 1988: Volume 9, Issue 2

Calling the ROM routine

Since BASIC handles division reasonably well, we could dig

out the appropriate memory map ("Mapping the 64" or

"Mapping the 128" or one of the Abacus ROM disassemblies)

to find out which ROM routine performs division, and also find

out what it requires of our calling program.

The routine happens to reside at $8B4C on the 128 and $BB12

on the 64. However, the FDIVT routine, as it's called, requires

two floating-point numbers in FACl and FAC2, so we have to do

some setup work. We've got integers. They must be converted

to floating point.

Program "04floa" starts by loading the high byte of NUM into

the accumulator (.A) and the low byte into the Y register (.Y).

Then it calls GIVAYF ($AF03 on the 128, $B391 on the 64),

which transforms the integer into an official floating-point

variable suitable for use by BASIC ROM routines. The number

now resides in FACl. Next, we call movef ($8C3B or $BC0F),

which moves a number from FACl to FAC2. The final prepara

tory step is to call givayf again, this time to translate den to

floating-point format.

The result is a floating-point value in FACl. To get that back to

integer form, jump indirectly through the pointer at adrayi

($117A on the 128, $0003 on the 64). A word of warning

about location 3 on the 64: No ROM routines ever jump

through 3, so some machine language programmers consider it

an available zero-page location. If you've run other assembly

language programs before you try this one, you may want to

turn your 64 off and on, to make sure the pointer value is cor

rect.

One more thing: The instruction jmp ($117A) is how you jump

indirectly to the two-byte address contained at location $117A.

There's no equivalent JSR instruction. At this point in the rou

tine, there are a couple more things to do; so it's necessary to

place the indirect jump at the end of the program and then JSR

to the JMP. That way, the RTS at the end of the conversion rou

tine returns control to our program rather than ending our pro

gram.

To summarize the routine that calls ROM subroutines:

1. LDA with the high byte of NUM and LDY with the low byte.

2. JSR GIVAYF

3. JSR MOVEF

4. LDA and LDY with the bytes from DEN.

5. JSR GIVAYF

6. JSR FDIVT

7. JMP (ADRAYI)

There are a few good things to say about calling the ROM divi

sion routine. It's fairly short, which can be a factor if you're

writing long programs. It takes a fairly constant time (unlike

Program "02subt," which varies in time according to the size

of the result).

Are there bad things to say? Yes. My own feeling is that the

BASIC ROM routines are there for the benefit of BASIC program

mers. If you want to call BASIC routines, you might as well

write the program in basic. In a program that needs to do a lot

of division, there's no real reason to rely on the ROM routines

if you're writing in assembly language.

A second problem is that you get the result, but not the re

mainder (although if you wanted to, you could call another se

ries of BASIC routines to get the remainder).

A third problem is that you lose some accuracy when you per

form floating-point calculations (try this, for an example: for x

= 1 to 5 step 0.1: print x: next).

The answer: binary division

Program "05divi" does it the right way. Before looking at bi

nary numbers, let's review what happens in decimal division.

Say you want to divide 00043299 (which we'll call NUM) by

00000492 (DEN). We will pretend that all decimal values are

eight-digit numerals for this gedanken experiment.

Shift NUM to the left and the leftmost numeral will fall out.

We'll put it into REM (the remainder). After one shift, the num

bers look like this:

RES REM NUM DEN

zzzzzzzz zzzzzzzO 0043299z 00000492

The z's represent zeros that are there by default. How many

times does DEN (492) fit into REM (0)? Zero times. Put that re

sult into RES. This process occurs a few more times before

something interesting finally happens:

RES REM NUM DEN

zzOOOOOO Z0004329 9zzzzzzz 00000492

You may have noticed that after seven attempts, we've finally

got a number in REM that's bigger than DEN. At this point, we

divide DEN into REM. How many times does it fit? Maybe 7,

maybe 8, maybe 9. In base ten, you have to keep guessing un

til you have the right answer, which turns out to be 8. Move

that number into RES, multiply 492 by 8 and subtract from

rem:

RES REM NUM DEN

Z0000008 00003939 zzzzzzzz 00000492

In the final pass, we calculate that DEN fits into REM 8 times

(again). Shift that into RES. Multiply DEN by 8 and subtract

from rem. Here's the final answer:

RES

00000088

REM

00000003

The result is 88 with a remainder of 3. If you try some base ten

division problems, you can understand the basic steps.

Transactor 12 December 1988: Volume 9, Issue 2

No guess, no mess

The step where you examine 4329 and ask "How many times

does 492 divide 4329?" is the step that stops a lot of program

mers. It just seems so messy. You can't really figure out the

answer by looking at the numbers (at least I can't). Most of us

learn division in elementary school and that rule about guess

ing is stuck in the back of our minds.

If you've done a significant amount of assembly language pro

gramming, but you've never written a division routine, you

might be anticipating a loop that checks a bunch of numbers

until it gets the right one. You'd be wrong.

We're working in binary now and that simplifies everything.

Suppose we're dividing 01101110 by 00000101. Don't worry

about what the decimal equivalents are, think in terms of ones

and zeros. The divisor 101 obviously won't fit into 0, 01, or

011. In the fourth pass, we get this situation:

RES REM NUM DEN

zzzzzOOO zzzzOHO lllOzzzz 00000101

REM is bigger than den, so den must fit into REM at least once.

We'll guess that 110/101 is 1 or 2 or 3 or something else. But

this is base two and the only numerals available are 0 and 1.

We're shifting the variables one bit at a time, so the answer

has to be 1 (if it fit twice, we would have gotten the answer on

the previous pass through the loop). There's no guessing at all.

The answer is either/or. Either DEN fits into REM or it doesn't.

Either the next digit in RES is a 1 or a 0.

It gets even simpler. In the base ten example, we got the digit

8 as one of the intermediate results. We had to multiply 8 by

492 (to get 3936) and subtract 3936 from the number in REM.

We've already decided that the only two digits available in bi

nary are 0 and 1. We'll have to multiply den by 0 (or multiply

by 1) and then subtract that value from REM. Do we need a

separate subroutine to multiply two numbers? Not really.

One of the universal rules about multiplying is "Any number

times zero is zero." Another is "Any number times one is the

number." A rule about subtracting is "Any number minus zero

is the number." In all number bases, these rules are always

true. They're not even unwritten.

That means that if DEN fits into REM, you shift a 1 into RES (no

guessing) and you subtract (1 * DEN), which is the same as

DEN (no multiplying). If DEN doesn't fit, shift a zero into RES

(still no guessing) and subtract (0 * den), which means sub

tract 0, which means no math at all (no multiplying or sub

tracting).

If you CMP, you get a useful bit

There's one more 6502-processor rule that makes life even

simpler for the programmer writing a division routine.

Recall that we want to test rem and den to see if DEN fits into

REM. Suppose that we use the two instructions lda rem: CMP

DEN. If REM is greater than or equal to DEN, the carry bit is set.

If REM is smaller, the carry is clear. The carry is either 1 or 0,

and that's the next digit we want to shift left into RES.

In addition, if the carry is 0, we'll leave REM alone. If the carry

is 1, we need to subtract (rem - DEN) and store the new value

in REM. An advocate of structured programming might scream

at the sight of the following code, but we're going do it any

way:

XX

subtr

Ida

cmp

bcs

rol

rts

jsr

sec

Ida

sbc

sta

rts

rem

den

subtr

res

XX

rem

den

rem

If the carry is clear, the digit is zero. The program drops

through to the code at xx, which rotates the carry left into RES

and then returns. If the carry is set, the program branches

ahead to SUBTR, which immediately jumps to the subroutine at

xx. The carry is still set, so it rotates left into RES. In this case,

the ReTurn from Subroutine (rts) doesn't make us exit the

loop, it sends the program back to SUBTR. The SEt Carry (SEC)

instruction is necessary because the carry flag was likely ze

roed out by the ROL instruction. We subtract DEN from REM

and exit.

The general algorithm looks like this:

1. Set a counter to 16 (the size in bits of NUM)

2. Begin the loop.

3. Shift all bits of NUM to the left, starting with the least sig

nificant byte.

4. Shift the leftover bit (in the carry) into REM.

5. If rem < den then shift the carry flag (0) into RES.

6. Else REM >= den, so shift the carry flag (1) into RES and

Subtract. REM = REM - DEN.

7. Decrement the counter. If it's not zero, repeat the loop.

Which is the fastest?

The table below lists the times (in jiffies, where a jiffy is

l/60th second) for five routines running on a Commodore 128

in FAST (2 MHz) mode. "Olnull" is the program that doesn't

do anything. "02subt" subtracts repeatedly. "03shif" shifts

bytes to the left. "04floa" calls BASIC ROM routines."05divi"

uses the binary division routine.

Num and den are the numerator and denominator. RES and

REM are the result and remainder.

Transactor 13 December 1988: Volume 9, Issue 2

Table 1: Evaluating the various algorithmsfor speed.

NUM DEN RES PEM 01 02 03 04 05

1 1 1 0 116 216 439 3267 1387

100 1 100 0 115 6115 439 2897 1463

6 2 3 0 115 335 466 3176 1425

51 2 25 1 115 1646 466 3044 1463

60100 2 30050 0 115 1419968 466 3268 1653

1 64 0 1 115 156 599 3021 1349

33333 64 520 53 115 24784 600 3414 1425

10000 5000 2 0 115 251 — 2853 1233

60100 5000 12 100 115 723 — 3797 1273

60100 30000 2 100 115 251 — 3444 1233

Ignore column 01. The first program doesn't divide at all. Col

umn 02 is the subtraction algorithm. The answer to "Do you

subtract a lot?" is clearly "Not if you can help it." When the

result is a large number, subtracting is an unattractive alterna

tive (32768 repetitions of 60100 divided by 2 requires 1.4 mil

lion jiffies, approximately one hour, or 40 seconds per calcula

tion). Column 03 looks good, but the algorithm only works if

the divisor is an even multiple of two. Columns 04 and 05

contain reasonably stable numbers.

OOtest: BASIC 7.0 benchmark program

PP 10 rem scratch"00test":dsave"00test"

PH 20 fast

KI 25 for i = 1 to 10

0M 30 readj,k:l=int(j/k):printl,j-l*k,

EH 40 jh = int(j/256):jl = j-jh*256

JI 50 kh = int(k/256):kl = k-kh*256

FO 60 poke2816,jl:poke2817,jh:poke2818,kl:poke2819,kh

BK 70 ti$="000000"

FJ 80 sys 2830

FI 90 print ti;"jiffies"

CB 100 forj=2820to2822step2:printpeek(j)+256*peek(j+l),:next:print

CH 110 next

HO 120 data 1,1,100,1,6,2,51,2,60100,2

FO 130 data 1,64,33333,64,10000,5000,60100,5000,60100,30000

Common code: Allfive MLprograms begin with this code.

m 100 sys 4000

PN 110 .bank 15

KD 120 .org $0b00

GC 130 .mem

6K 140 nl .word 0 ; numerator passed

AI 150 n2 .word 0 ; denominator passed

MD 160 res .word 0 ; result

FM 170 rem .word 0 ; remainder

MH 180 num .word 0 ; numerator

KM 190 den .word 0 ; denominator

EA 200 countl .byte 0

BB 210 count2 .byte 0
PC OOf\ •US CiM ,

BN 230 Ida #0

EG 240 sta countl

NF 250 Ida #128

KH 260 sta count2

KC 270 doit32k dec countl

KF 280 bne iterate

FF 290 dec count2

OG 300 bne iterate

CC 310 rts

FO 320 iterate jsr routine

IC 330 bcc doit32k

AE 340 rts

EM 350 ;

CM 360 ; if routine set the carry, an error occurred

Transactor 14

10

CK

AK

EA

MC

FC

MP

IL

BK

HE

KC

FB

IA

LL

PFJs Bi

JB

AK

HKXU1

BO

GK

BH

370

380

390

400

410

420

430

440

450

460

470

480

490

500

MO

520

530

540

550

560

570

;

routine = *

Ida

ora

bne

sec

rts

init Ida

sta

sta

sta

sta

; copy nl to i

ldy

loop Ida

sta

day

bpl

main = *

Olnull: Append to

BH

KL

KD

570

580

590

main = *

clc

rts

02Subt: Append to

BH

ND

GF

CD

KA

CO

GN

FL

KK

CL

EB

GF

IC

PF

LC

FE

CA

NC

FD

IC

HI

MC

PB

OH

HI

IJ

EH

FO

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

03shif

BH

CI

AC

OB

HA

LJ

HA

LF

HA

El

FF

II

EN

CJ

570

580

590

600

610

620

630

640

650

660

670

680

690

700

main = *

Ida

cmp

bcc

beq

;

quit Ida

sta

Ida

sta

clc

rts

;

lowbyte Ida

cmp

bcc

; check for divide by zero error

n2

n2+l

init

; zero out res and rem

#0

res

res+1

rem

rem+1

ram and n2 to den

nl,y

num,y

loop

"Common code" to create "Olnull"

"Common code" to create "02subt"

den+l

num+1 ; double-compare high bytes

subtract; if den < num, continue

lowbyte ; else if equal, check the low byte

num

rem

num+1

rem+1

; else den > num, so we quit

num

den

quit ; if num < den then quit

; else drop through to subtract

subtract sec

Ida

sbc

sta

Ida

sbc

sta

inc

bne

inc

jmp

num

den

num

num+1

den+l

num+1

res

main

res+1

main

: Append to "Common code" to create "03shif"

main = *

numbits = 11

ldx

mloop lsr

ror

bcs

lsr

ror

ror

ror

dex

bne

cleanup Ida

ora

5 ; number of bits in denominator

#numbits

den+l

den

cleanup

num+1

num

rem+1

rem

mloop

den

den+l

December 1988: Volume 9, Issue 2

OM 710 beq itsok

BF 720 sec

GM 730 rts

KF 740 ;

HD 750 ; if any bits are still set, den isn't a multiple of 2 (error)

OG 760 ;

GK 770 itsok lsr rem+1

MP 780 ror rem

NM 790 dex

DF 800 bne itsok ; fix the remainder

BH 810 Ida num

PK 820 sta res

OF 830 Ida num+1

MJ 840 sta res+1

IM 850 clc

LJ 860 rts ; clear carry means success

04floa: Append to "Common code" to create "04floa"

BH

FP

LF

GD

KE

MI

BK

HP

AI

NI

NG

BL

GP

IA

KB

AC

AF

AN

HI

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

main

fdivt

movef

givayf

adrayl

convert

= *

= $8b4c

= $8c3b

= $afO3

= $117a

Ida

ldy

jsr

jsr

Ida

ldy

jsr

jsr

jsr

sta

sty

clc

rts

jmp

num+1

num

givayf

movef

den+1

den

givayf ,

fdivt ,

convert ,

res+1

res ,

(adrayl)

$bbl2 on the

$bc0f on the

$b391 on the

$0003 on the

get the high

64

64

64

64

and low byte

convert to floating-point in facl

move to fac2

high and low

convert (fad

call the rom

converts fad

in .a and .y

again

. again)

division routine

L to an integer

05divi: Append to "Common code" to create "05divi"

BH 570

CD 580

AC 590

HN 600

JB 610

HO 620

MO 630

MG 640

PF 650

NA 660

00 670

BO 680

CJ 690

MG 700

HD 710

ON 720

BM 730

PH 740

DL 750

HG 760

00 770

JC 780

CO 790

FI 800

BH 810

PM 820

IF 830

JM 840

JE 850

MI 860

LJ 870

AF 880

DI 890

CK 900

KH 910

main

numbits number of bits in num

compare the high bytes

16

ldx #numbits

mainloop jsr divide

dex

bne mainloop

clc

rts

divide asl num

rol num+1

rol rem

rol rem+1

Ida rem+1

cmp den+1

beq notsure

; if equal, can't tell which is bigger

bcs doublesub

; if rem is bigger, subtract den

answerbit rol res

rol res+1

rts

; get the carry into the result

notsure Ida rem

cmp den

bcc answerbit ; another zero bit?

doublesub jsr answerbit

; even if carry is set, put it into res

sec

Ida rem

sbc den

sta rem

Ida rem+1

sbc den+1

sta rem+1

rts

excellent, efficient program that can help you save both money and

downtime." Computers Gazette

1S41/1S71_ _ **• ™**
DRiVc AUGNmENT
1541 /1571 Drive Alignment reports the alignment condition of the disk drive as you perform

adjustments. On screen help is available while the program is running. Includes features for

speed adjustment. Complete instruction manual on aligning both 1541 and 1571 drives.

Even includes instructions on how to load alignment program when nothing else will load!

Works on theC64.SX64.C128 in either 64 or 128 mode, 1541,1571 in either 1541 or 1571

mode! Autobcots to all modes. Second drive fully supported. Program disk, calibration disk

and instruction manual only aaj QCI

/>!^ Super 81 Utilities is a complete utilities package for the 1581 disk drive and

181s C128 computer. Among the many Super 81 Utilities features are:

<Vj7tf- • Copy whole disks from 1541 or 1571 format to 1581 partitions.

• Copy 1541 or 1571 files to 1581 disks

• Backup 1581 disks or files with 1 or 2 1581 's

• Supplied on both 3%" and 5VT diskettes so that it will load on either the 1571 or 1581

drive.

• Perform many CP/M and MS-DOS utility functions.

• Perform numerous DOS functions such as rename a disk, rename a file, scratch or

unscratch files, lock or unlock files, create auto-boot and much more!

Super 81 Utilities uses an option window to display all choices available at any given time. A

full featured disk utilities system for the 1581 for only ^_q q -1

RAMDOS is a complete RAM based "Disk" Operating Sys-

tern for the Commodore 1700 and 1750 RAM expansion

modules which turns all or part of the expansion memory into

a lightning fast RAM-DISK. RAMDOS behaves similar to a much faster 1541 or

1571 floppy disk except that the data is held in expansion RAM and noton disk.

Under RAMDOS, a 5OK program can loaded in % second. Programs and files

can be transferred to and from disk with a single command. RAMDOS is avail

able for only $39.95!

Available through your local

dealer, or contact us directly

order From Free Spirit Software, Inc.

PO Box 128-58, Noble Street

Kutztown, PA 19530

1-800-552-6777

For Technical Assistance Call (215) 683-5609

□

YOU CAN HAVE IT ALL

THE CONVENIENCE OF A CARTRIDGE!

THE FLEXIBILITY OF A DISK!

THE QUICK BROWN BOX stores up to 30 of your favorite

programs - Basic & M/L, Games & Utilities, Word Processors

& Terminals - READYTO RUN AT THETOUCH OF A KEY

- HUNDREDS OF TIMES FASTER THAN DISK - Modify

the contents instantly. Replace obsolete programs, not your

cartridge. Use as a permanent RAM DISK, a protected work

area, an autoboot utility. C-64 or C-128 mode. Loader Utili

ties included. Price: 16K $69 32K $99 64K $129 (Plus $3 S/H;

MA res add 5%) 30 Day Money Back Guarantee. 1 Year War

ranty. Brown Boxes, Inc, 26 Concord Road, Bedford, MA

01730; (617) 275-0090

THE QUICK BROWN BOX - BATTERY BACKED RAM

THE ONLY CARTRIDGE YOU'LL EVER NEED

Transactor 15 December 1988: Volume 9, Issue 2

Fast Graphics Primitives

Assembler routines writtenforflat-out performance

by Robert Huehn

Any attempt to produce real-time graphics animation on any

computer will inevitably be limited by its processing speed.

The C64, with a 1 Mhz 6502-series microprocessor, imposes

hard limits on the complexity of graphics that can be accom

plished within a reasonable length of time. You need to decide

which is most important - speed or complexity - because it

may be impossible to achieve both at once. (For a good exam

ple of the tradeoff, consider subLOGiC's flight simulators.) Ob

viously, fast graphics routines are necessary for best results.

This article deals specifically with optimizing hi-res graphics

for the C64. The discussion and source that follow illustrate

several general principles which can probably be applied to

other situations or other machines.

No BASIC here

First, let's examine carefully the general scenario where very

fast graphics routines are required. Such a program will have a

set of routines to calculate the graphics data, and a set of

graphics routines that draw the graphics data to the screen. If

the calculation part of the process consumes the largest portion

of processor time, then faster graphics primitive routines will

not serve to any great advantage. This rules out Basic as the

your programming language in most cases. In this case, it can

be assumed that your calculation routines are written in ma

chine language, and that most processor time is used simply to

do the drawing. You need fast graphics primitives.

Based on the above assumptions, the routines that follow were

written to provide flat-out performance. They expect that BA

SIC ROM is swapped out; this provides space for the bitmap and

lots of zero-page storage. As they stand now, the routines are

not really flexible and will require some modification if you

want to locate the bitmap at another address, or change draw

ing modes, or whatever. But this is one key to obtaining good

performance: by restricting routines to simple goals, they can

make up for the loss of versatility with increased speed.

Unrolled loops

Animation is normally accomplished by quickly displaying

successive frames on the screen in order to create the illusion

of motion. This involves drawing the screen, clearing it, re

drawing, and so on. Usually a double-buffering system is used

to reduce flicker, where drawing is done to a second screen

area in memory and displayed once the frame is complete.

Consider possible ways to clear the 8000 bytes that the bitmap

screen consists of. The standard method would involve a nest

ed loop with two levels, containing an indirect indexed 'STA

(address),y\ This addressing mode requires six clock cycles;

add the overhead from the looping instructions, and you'll find

this method requires an average of eleven cycles to clear each

byte. That overhead can be cut down by partially unrolling the

loop: by including more STA instructions inside it, the loop can

be performed fewer times.

A loop to fill 8000 bytes containing 32 STAs needs to be exe

cuted only 250 times. This requires only one index register,

simplifying control of the loop. Also, indexed absolute ad

dressing can be used; using five cycles instead of six for each

STA. The bmclr routine in the source code works this way, re

quiring an average of just 5.2 cycles per byte! A disadvantage

to unrolled loops is the increase in the size of the code.

Fast plot

Common sense tells you that one of the best places for opti

mization is within loops. These graphics routines were created

with that in mind; they will be the innermost level of any

graphics program, and extra cycles would be costly. The most

Transactor 16 December 1988: Volume 9, Issue 2

crucial of all is the plot function, which is central to almost all It works something like this:

other routines.

Draw (xl, yl, x2, y2)

The plot routine takes 70 cycles to

execute (including the RTS)

The plot routine will be called with an x coordinate between 0

and 319 and a y coordinate between 0 and 199, with the origin

at the top left corner of the screen. These coordinate values are

passed in zero page and are assumed to be legal values. The

format of the bitmap requires some calculation to find the ad

dress and bit position of the pixel. The Commodore 64 Pro

grammer's Reference Guide suggests:

row = int (y/8)

char = int (x/8)

line = y and 7

bit = 7-(x and 7)

byte = base + row*320 + char*8 + line

poke byte,peek(byte) or 2Abit

However, the byte calculation can be reduced to:

byte = base + 40*(y and 248) + (x and 504) + line

...which works faster in machine language.

A powerful yet simple technique is to use look-up tables

instead of a specialized section of code. For example, the bit

calculation is done by indexing into a table with the lower

three bits of x, to produce a bit mask. Notice the multiply by

40 - you don't really want to do multiplication in such a criti

cal routine. Again, indexing a table of values is faster. The top

five bits of y are shifted right twice, to index into a table of

words pointing to the beginning of each row. To save more

time, the base address of the screen has already been added in

to this table.

There is a subtle trick in the plot source code, used to avoid

two extra 'AND #248' instructions. Right after each coordinate

is masked with 'AND #7' to produce the lower three bits, an

EOR with the same coordinate produces the top five bits!

The plot routine seems to be fully optimized now - at least

improvements are not obvious. It takes 70 cycles to execute

(including the RTS.)

Fast draw

The speed of a line draw depends on the algorithm used. The

standard algorithm comes from Principles ofInteractive Com

puter Graphics by Newman and Sproull; an improvement by

Mike Higgins (p. 414, August 1981 BYTE) requires only addi

tion and subtraction. This information is from Larry Isaacs'

column in the April 1984 issue of COMPUTE! (p. 128).

xinc = POS: yinc = POS

dx = x2 - xl

ifdx<0

xinc = NEG: dx = abs(dx)

dy = y2 - yl

ifdy<0

yinc = NEG: dx = abs(dy)

x = xl:y = yl

Plot (x, y)

ifdx>dy

r = dx/2

for c = 1 to dx

x = x + xinc

r = r + dy

ifr>=dx

y = y + yinc

r = r - dx

Plot (x, y)

next

else

r = dy/2

for c = 1 to dy

y = y + yinc

r = r + dx

ifr>=dy

x = x + xinc

r = r - dy

Plot(x,y)

next

If this routine calls the plot function each time through the

loop, then it will take 70 cycles, plus the time for the rest of

the loop, for each pixel on the line. But the fast draw routine

avoids unnecessary calculation by updating the byte address

and bit location directly. A modified plot is included to set up

these values and to plot the first pixel. A test of the fast draw,

drawing a line diagonally across the screen 256 times, took

seven seconds to execute. That is 12000 pixels per second, or

around 85 cycles per pixel! Lines which are closer to the hori

zontal or vertical axes will be even faster - a horizontal line

uses 71 cycles per pixel.

Take the challenge

Feel free to attempt to improve the performance of these rou

tines: should you succeed, I'm sure other readers would like to

see your results - so please send a letter decribing any im

provements. Fast graphics primitives are the first step to really

impressive graphics effects.

Symass-compatible source code follows on the next page con

taining the fast graphics routines and a demo routine to show

off their speed. Acknowledgement: Thanks to Glen MacKinnon

for some really great ideas, including the EOR trick.

Transactor 17 December 1988: Volume 9, Issue 2

KD

EO

II

PO

FK

BG

GB

NA

KM

NN

AP

DA

LC

OD

BF

BC

ED

HE

01

JA

DN

KG

MG

EF

NM

EE

KI

NC

10

GH

01

NG

MO

CF

IJ

CD

FM

CL

AD

HP

AG

01

DI

IN

MP

CO

ED

EK

BB

AJ

MC

EE

IN

MB

DC

AF

EH

AG

MK

GB

JI

GP

EK

ML

AF

GO

OH

DO

MK

DB

DK

KK

100 sys700 /run assembler

110

120

130

140

150

160

170

< < < graphics vl.O > > >

copyright 1988 by robert huehn

high speed graphic routines

jan 1988

zpage pseudo registers

180 rO =$02

190 rl =$04

200 r2 =$06

210 r3 =$08

220 r4 =$0a

230 r5 =$0c

240 r6 =$0e

250 r7 =$10

260 r8 =$12

270 r9 =$14

280 ;

290 *=$9000

295 jmp demo

300 ;jump table

310 bmon jmp ibmon

320 bmoff jmp ibmoff

330 bmdr jmp ibmdr

340 txclr jmp itxclr

350 plot jmp iplot

360 draw jmp xdraw

370 ;

380 bitab =* /pixel masks

390 .byte 128,64,32,16,8,4,24

400 lotab =* ;base addresses

410 hitab =*+l

420 .word $a000,$al40,$a280,$a3c0

430 .word $a500;$a640,$a780,$a8c0

440 .word $aa00,$ab40,$ac80,$adc0

450 .word $af00,$b040,$bl80,$b2c0

460 .word $b400,$b540,$b680,$b7c0

470 .word $b900,$ba40,$bb80,$bcc0

480 .word $be00

490 ;

500 ;turn on bit map at $a000

510 ibmon =*

520 Ida $dd00

530 and #$30

540 ora #$01

550 sta $dd00

560 Ida #$3b

570 sta $d011

580 Ida #$38

590 sta $dO18

600 rts

610 ;

620 ;back to normal text

630 ibmoff =*

640 Ida $dd00

650 and #$30

660 ora #$03

670 sta $dd00

680 Ida #$lb

690 sta $d011

700 Ida #$15

710 sta $dO18

720 rts

730 ;

740 ;clear bit map $a000-bf40

750 ibmdr =*

760 Ida #0

770 ldx #250

780 dl sta $9fff,x

790 sta $a0f9,x

800 sta $alf3,x

Transactor

EM

EM

LM

FO

FO

PP

PP

GA

FD

FD

MD

GF

GF

EF

BB

IB

CD

CD

JD

DF

DF

NG

NG

EH

DK

DK

KK

EM

EM

DA

GE

ME

AO

LF

AH

JD

MD

OC

KF

BG

LH

LH

JN

EM

IF

GB

BF

MH

HM

FN

CO

AP

LD

EE

EF

AA

IH

KA

NK

MP

DD

HI

LI

DB

LC

GO

IF

OK

GM

ID

KP

JN

810 sta $a2ed,x

820 sta $a3e7,x

830 sta $a4el,x

840 sta $a5db,x

850 sta $a6d5,x

860 sta $a7cf,x

870 sta $a8c9,x

880 sta $a9c3,x

890 sta $aabd,x

900 sta $abb7,x

910 sta $acbl,x

920 sta $adab,x

930 sta $aea5,x

940 sta $af9f,x

950 sta $bO99,x

960 sta $bl93,x

970 sta $b28d,x

980 sta $b387,x

990 sta $b481,x

1000 sta $b57b,x

1010 sta $b675,x

1020 sta $b76f,x

1030 sta $b869,x

1040 sta $b963,x

1050 sta $ba5d,x

1060 sta $bb57,x

1070 sta $bc51,x

1080 sta $bd4b,x

1090 sta $be45,x

1100 dex

1110 bne dl

1120 rts

1130 ;

1140 ;set bit map colour at $8c00

1150 itxclr =*

1160 Ida #$bf

1170 ldx #250

1180 coll sta $8bff,x

1190 sta $8cf9,x

1200 sta $8df3,x

1210 sta $8eed,x

1220 dex

1230 bne coll

1240 rts

1250 ;

1260 ;fast line draw

1270 idraw =*

1280 /passed:

1290 xl =r0

1300 yl =rl

1310 x2 =r2

1320 y2 =r3

1330 /altered:

1340 dx =r4 /delta x

1350 dy =r5 /delta y

1360 xi =r5+l ;l/r flag

1370 yi =r6 ;u/d flag

1380 base =r7 /base of pixel addr

1390 m =r6+l /pixel mask

1400 c =r8 /count

1410 r =r9

1420 ldx #0 /xinc=right

1430 ldy #0 ;yinc=down

1440 Ida x2 /calculate dx=x2-xl

1450 sec

1460 sbc xl

1470 sta dx

1480 Ida x2+l

1490 sbc xl+1

1500 sta dx+1

1510 bcs drl

1520 dex ; dx<0, xinc=left

18

HO

AH

IK

DA

AF

II

MK

BM

NH

LG

IP

PD

BF

JO

CH

BI

JF

HE

NH

HO

LJ

FK

BK

CA

HP

KN

PH

MO

10

PJ

IE

DN

FA

CC

PG

IH

CE

KI

LL

NG

NC

AP

AE

AG

AN

LE

PJ

01

GD

NM

CK

AP

NK

HE

AO

KK

ND

NL

OB

AD

LI

JE

NN

AF

PN

NI

JO

IH

AL

FO

PL

HD

1530 Ida #1

1540 sbc dx

1550 sta dx

1560 Ida #0

1570 sbc dx+1

1580 sta dx+1

1590 drl Ida y2

1600 sec

1610 sbc yl

1620 bcs dr2

1630 dey

1640 eor #$ff

1650 adc #1

1660 dr2 sta dy

1670 stx xi

1680 sty yi

1690 Ida yl

1700 and #7

1710 tay

1720 eor yl

1730 lsr

1740 lsr

1750 tax

1760 Ida xl

1770 and #$f8

1780 adc lotab,x

1790 sta base

1800 Ida hitab,x

1810 adc xl+1

1820 sta base+1

1830 Ida xl

1840 and #7

1850 tax

1860 Ida bitab,x

1870 sta m

1880 ora (base),y

1890 sta (base),y

1900 Ida dx+1

1910 bne dri

1920 Ida dx

1930 cmp dy

1940 bcs dri

1950 jmp drii

1960 dri =*

1970 Ida dx+1

1980 sta c+1

1990 lsr

2000 sta r+1

2010 Ida dx

2020 sta c

2030 ror

2040 sta r

2050 Ida c

2060 ora c+1

2070 beq dr9

2080 dr3 Ida xi

2090 bmi dr4

2100 lsr m

2110 bcc dr5

2120 ror m

2130 Ida base

2140 adc #8

2150 sta base

2160 bcc dr5

2170 inc base+1

2180 bne dr5

2190 dr4 asl m

2200 bcc dr5

2210 rol m

2220 Ida base

2230 sbc #7

2240 sta base

December 1988

/dy=y2-yl

/dy<0, yinc=up

;dy=abs(dy)

/plot (xl,yl)

/save base

/save mask

/(dx>=dy)

/case i -Kslope<l

/c=dx

/r=dx/2

/if single point

;right

/left

: Volume 9, Issue 2

KO

EB

JI

OF

CE

EP

JO

BN

GB

AJ

JP

JN

AH

FD

mm

HH

NL

AJ

IL

FP

LH

HO

PN

GC

BD

JA

NK

MI

GP

AC

PE

JD

JE

LI

DG

FC

PC

OC

NJ

CD

AA

HG

LP

OP

HN

ID

EP

KO

AJ

NI

PK

NI

AK

GB

DF

MI

FE

ND

El

PI

HG

LA

00

DE

BD

NK

PN

BK

BL

DP

LM

2250 bcs dr5

2260 dec base+1

2270 dr5 Ida r ;r=r+dy

2280 dc

2290 adc dy

2300 sta r

2310 bcc dr6

2320 inc r+1

2330 dr6 sec

2340 sbc dx

2350 tax

2360 Ida r+1

2370 sbc dx+1

2380 bcc dr8

2390 stx r ;r>=dx,

2400 sta r+1 ;r=r-dx

2410 Ida yi

2420 bmi dr7

2430 iny ;down

2440 cpy #8

2450 bcc dr8

2460 ldy #0

2470 Ida base

2480 adc #$3£

2490 sta base

2500 Ida base+1

2510 adc #1

2520 bcc drl8

2530 dr7 dey ;up

2540 bpl dr8

2550 ldy #7

2560 Ida base

2570 sbc #$40

2580 sta base

2590 Ida base+1

2600 sbc #1

2610 drl8 sta base+1

2620 dr8 Ida (base),y

2630 ora m

2640 sta (base),y ;plot (x,y)

2650 dec c

2660 bne dr3

2670 dec c+1

2680 beq dr3 ;next

2690 dr9 rts

2700 drii =* ; -l>slope>l

2710 Ida dy

2720 beq drl5 ;single point

2730 sta c ;c=dy

2740 lsr

2750 sta r ;r=dy/2

2760 drlO Ida yi

2770 bmi drll

2780 iny ;down

2790 cpy #8

2800 bcc drl2

2810 ldy #0

2820 Ida base

2830 adc #$3f

2840 sta base

2850 Ida base+1

2860 adc #1

2870 bcc drl9

2880 drll dey /up

2890 bpl drl2

2900 ldy #7

2910 sec

2920 Ida base

2930 sbc #$40

2940 sta base

2950 Ida base+1

Transactor

NI

IJ

PF

OG

OC

AB

EM

CM

ML

LG

KN

00

PL

EP

AA

IH

GA

DM

IO

GD

BJ

PE

DO

KB

FO

HF

NF

CE

GL

LO

FM

ND

EL

KB

MP

FE

KN

IK

IA

JH

GJ

II

DK

KL

LD

JE

FG

IB

II

BM

HC

PH

JN

LH

FI

BI

EK

EM

HF

CN

PF

ID

PJ

BN

NE

PL

DP

AN

LP

CC

ID

2960 sbc #1

2970 drl9 sta base+1

2980 drl2 ldx #0

2990 Ida r ;r=r+dx

3000 clc

3010 adc dx

3020 sta r

3030 bcs drl6

3040 inx

3050 sec

3060 drl6 sbc dy

3070 bcs drl7

3080 dex

3090 beq drl4

3100 drl7 sta r ;r>=dy, r=r-dy

3110 Ida xi

3120 bmi drl3

3130 lsr m ;right

3140 bcc drl4

3150 ror m

3160 Ida base

3170 adc #8

3180 sta base

3190 bcc drl4

3200 inc base+1

3210 bne drl4

3220 drl3 asl m ;left

3230 bcc drl4

3240 rol m

3250 Ida base

3260 sbc #7

3270 sta base

3280 bcs drl4

3290 dec base+1

3300 drl4 Ida (base),y

3310 ora m

3320 sta (base),y ;plot (x,y)

3330 dec c

3340 bne drlO ;next

3350 drl5 rts

3360 ;

3370 ;fast plot

3380 iplot =*

3390 /passed:

3400 xc =r0

3410 yc =rl

3420 /altered:

3430 /base =r7

3440 ptemp =r6+l

3450 Ida yc

3460 and #7

3470 sta ptemp

3480 eor yc

3490 lsr

3500 lsr

3510 tax

3520 Ida hitab,x

3530 adc xc+1

3540 sta base+1

3550 Ida lotab,x

3560 sta base

3570 Ida xc

3580 and #7

3590 tax

3600 eor xc

3610 adc ptemp

3620 tay

3630 Ida (base),y

3640 ora bitab,x

3650 sta (base),y

3660 rts

19

MM

GM

KM

GN

DH

KA

FD

HG

PK

OC

KP

DE

AB

MI

CG

LE

HH

EJ

OH

OA

KL

CC

MA

OF

IG

PG

00

MN

OH

HJ

AO

AM

KC

MB

EK

BF

IL

DK

GN

BA

AO

El

KH

PD

IA

EL

KE

JC

DH

CG

ON

IN

IF

EK

NJ

AI

AH

BC

EL

KA

DK

CM

GF

DG

HO

MP

NC

EH

IA

MJ

AC

HB

3670

3680

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

5100

5110

5120

5130

5140

5150

5160

5170

5180

5190

5200

5210

5220

5230

5240

5250

5260

5270

5280

5290

5300

5310

5320

5330

5340

5350

5360

5370

5380

5390

5400

5410

5420

5430

5440

5450

5460

5470

5480

5490

5500

5510

5520

5530

5540

5550

5560

5570

5580

5590

5600

5610

5620

5630

5640

5650

5660

5670

5680

5690

;

; show-off demo

demo =*

Ida

sta

jsr

jsr

jsr

Ida

sta

sta

sta

sta

Ida

sta

Ida

sta

r

1P1

jsr

ldx

inx

stx

bne

inc

bne

/

Ip2

cpx

bne

ldx

beq

/

1P3

jsr

ldx

inx

stx

cpx

bne

jsr

Ip4

dec

jsr

ldx

bne

dec

beq

inc

;

Ip5

jsr

dec

bne

lpw

cmp

bne

jsr

Ida

sta

rts

/

#$36

1

bmon

bmdr

txdr

#0

xl

xl+1

yi
x2+l

#$9f

x2

#$63

y2

=*

draw

xl

xl

1P2

xl+1

lpl

=*

#$3f

lpl

xl+1

lpl

=*

draw

yi

yi
#$c7

Ip3

draw

=*

xl

draw

xl

1P4

xl+1

Ip4

xl+1

=*

draw

yi
Ip5

Ida 197

#60

lpw

bmoff

#$37

1

xdraw =*

Ida

inc

bit

bne

rts

;

xd =

jmp

#4

$fb

$fb

xd

=*

idraw

December 1988: Volume 9, Issue 2

Cycle Counting

A techniquefor writingfaster code

by David Sanner

Throughout this article, I will be concerned mainly with a sin

gle aspect of program analysis: execution speed. The specific

focus will be on the technique of "cycle counting" for deter

mining the precise execution speed of a machine language or

BASIC program. We'll also look at some of the techniques used

to write faster code.

The quest for speed from a computer is unending. One way to

speed program execution is to use 'canned' algorithms. For ex

ample, sorting algorithms, such as those found in computer

science textbooks, have become quite sophisticated. Many of

them have been analyzed with mathematical techniques. This

allows us to compare their respective performances.

But an in-depth mathematical analysis of a program can be

quite complex, and may require skills the general programmer

does not possess. Of course, this does not mean one cannot ap

ply simpler methods of analysis. For instance, you might use a

stopwatch to measure the time it takes different spreadsheets

to recalculate the same data.

But in the case of an ml subroutine, the execution time is often

very small - much less than the time it takes to operate a stop

watch. In terms of the computer's speed, however, the code

that has just been executed may be very slow, inefficient, and

wasteful of valuable processor time. A good example where

efficient code is a necessity occurs when computers try to

communicate with other devices (such as disk drives). The

speed at which they can send data to each other is often stag

gering - thousands to millions of bits in one second. At this

speed the code used to communicate and transfer data must be

able to respond quickly, or things will go awry.

Other examples of the need for speed include: changing the

screen colour during a horizontal blank interrupt, smooth ani

mation, controlling background music, or "fine-tuning" your

code to run as fast as possible. It is clear that for these cases,

the human time frame will not do the job. We will have to

meet the computer on its own ground.

The cycles of the 6510

The 6510 inside your C64 is controlled by a clock. The 'ticks'

of this clock control how fast the processor can manipulate in

formation (each tick is called a "cycle"). In the C64, a cycle

occurs every one millionth of a second (approximately). Thus

we say the processor runs at about one megahertz.

The 6510 has 56 op-codes. Each requires a certain number of

cycles to execute. The exact number depends on several fac

tors, but is always between two and seven. The first factor, ob

viously, is which instruction you are using. The second factor

is its addressing mode. The last is the 'effective address'.

Effective addresses

The effective address is the final address the processor will use

to access memory. This address is calculated in the processor,

by taking into account the addressing mode (indexed, indirect,

zero page, etc.) and the base address.

For example, consider the instruction LDA $F000. It requires

three cycles to execute, and uses the absolute addressing

mode. The effective address of this instruction is simply the

address given, $F000. The instruction LDA ($F0),Y, however, uses

the indirect indexed addressing mode, which makes calculat

ing the effective address somewhat more involved. It requires

six cycles to execute.

To calculate the effective address in this case, the processor

grabs the two bytes starting at $F0. It forms the base address

using the byte at $F0 as the low byte, and the value in $Fl as

the high byte. Then it adds in the contents of the Y register to

this base address. This forms the effective address for the indi

rect indexed addressing mode.

I said that this instruction requires six cycles. If you examine a

chart of the 6510 op-codes, however, you will notice a foot

note on this instruction. It could be phrased: "If the effective

address crosses the base address page, add one cycle to the ex

ecution time."

The concept of a page is an important one for calculating cycle

times. Briefly, the 6510's address space is divided into 'pages'

- groups of 256 bytes. The lowest page is known as page zero -

$oooo-$ooff. Page one occupies $oioo-$oiff, page two from

$0200-$02FF, and so on. Note that the page number is simply the

high byte of the address.

Transactor 20 December 1988: Volume 9, Issue 2

Regarding the footnote, it's now clear that if the value of the Y

register causes the effective address to cross the page pointed

to by $F0 and $F1, we must add one cycle.

Counting cycles by hand

Let's look at two ML subroutines (see Listing 1 and Listing 2 at

the end of this article). Both perform the same task: filling 256

bytes with a value of zero. The starting address is passed with

the low byte in X, and the high byte in Y. The fill proceeds

from the start address upwards, towards $FFFF.

First, we'll count the cycles needed to execute Listing 1. It

may be handy to have a copy of the Commodore 64 Program

mer's Reference Guide nearby. It contains a table giving the

cycle requirements for each op-code.

To simplify our analysis, let's assume that filling will always

begin at the start of a page, e.g. $8000. Since we fill from the

beginning of a page, there can never be any page crossings

when we use STA ($FB),Y or STA $8000,Y. With no page cross

ings, we don't have to worry about any extra cycles. This

would be the "best case" for these subroutines. In the "worst

case", we would cross pages on all or most of our STA instruc

tions. This would occur if the start address for filling was at

the end of a page, e.g. $80FF.

The first five instructions (up to, but not including the one at

loopl) take 16 cycles. The main loop (four ops) takes 13 cy

cles. (Note that we are assuming that the BNE does not cross a

page - if it did, that would add one more!). This loop will exe

cute until Y becomes $FF. Since Y is zero when the loop is en

tered, this makes for 255 passes through the loop. Of these,

254 passes will use 13 cycles (a total of 3302). The last time

through, the BNE will fail, using only two cycles to execute.

(All branch instructions use three cycles if the branch is taken,

and only two if it is not. An extra cycle is needed if the branch

address is on a different page than the branch instruction).

Adding these 12 cycles for the last loop gives us 3314 for the

entire loop. The final instruction, RTS, uses six cycles. Since

this is a subroutine, it will be called with a JSR. This takes six

cycles as well (note that we are not considering the time it

takes to load the X and Y registers with the proper values be

fore the call). All told, 3342 cycles are required for this sub

routine to be called, execute, and return.

Listing 2 is two bytes shorter than Listing 1. The first four in

structions take 12 cycles. The three instructions in the main

loop take only ten cycles. This is where we can gain a lot of

speed - with fewer instructions inside a loop, it will execute

faster. An obvious point perhaps, but one that can never be

stressed enough.

The main loop will be executed 256 times. Of these, 255 loops

use ten cycles per loop (2550 cycles). Only nine cycles are

used the last time through the loop (because the BNE is not tak

en), so the loop total is 2559 cycles. The final total of 2583 cy

cles is a significant improvement (about 30%) over Listing 1.

A bit about code tweaking

Sometimes programmers use techniques that exploit 'limita

tions' or special characteristics of a processor. I call this

'tweaking'. For instance, notice how you can exploit a 'limita

tion' of register size in Listing 2. When the loop is first en

tered, Y is zero. After it is incremented, we test it - without

comparing it. The BNE is taken if the Z flag is not set. There

are many instructions that can set or clear the Z flag. The CPY

#$30 compares Y to the value of $30 by subtracting - if the re

sult of that subtraction is zero, the Z flag in the status register

will be set. This indicates the values are equal.

Listing 2 uses a different method for setting the Z flag, howev

er. Since each register is only eight bits wide (the 'limitation'),

the maximum value is $FF. If you execute an INY when Y is

$FF, it will 'wrap around' to $00. With the INY instruction, if the

processor detects that Y is zero (after it's incremented), it sets

the Z status flag.

If we assume that we are at the top of the loop, and Y is $FF,

the following will occur: After we store A, we increment Y,

thus 'wrapping' Y to zero, and setting the Z flag. The BNE will

now fail, because the INY has set the Z flag for us.

Sometimes, shortcuts may violate the rules of 'clean' program

ming practice, or they may even fail in certain situations. For

instance, in Listing 2, notice that indexed absolute addressing

is used in the main loop, with Y as the index: STA $0000,Y. This

uses fewer cycles than the indexed indirect addressing mode

(the STA ($FB),Y) used in Listing 1. It may, however, present

some problems.

For the main loop to store A at the proper address, we use the

contents of X and Y. Instead of storing them on page zero, as

in Listing 1, we store them into the actual instruction area. In

other words, we modify the operand of the STA instruction ev

ery time the subroutine is called.

This is referred to as 'self-modifying code', since the existing

instructions themselves are modified. When you use this tech

nique, errors can occur that are quite difficult to track down.

Furthermore, since you actually store data into the program

area, you cannot place such a program in ROM.

The location where the start address will be placed is also

fixed; if you want to relocate the code, you will have to re

assemble it, or modify the first two ops to point to the proper

address. Listing 1 avoids this difficulty by using zero page lo

cations.

So, it seems we do not get something for nothing. We can in

crease the speed by tricks and clever programming, but we

may sacrifice the generality of the code. Also, not every sub

routine, or line of code needs to run as fast as you can make it.

You should ask yourself some questions before you undertake

a serious effort. For instance, is the time you will spend

squeezing a few more cycles out of your code worth it? You

Transactor 21 December 1988: Volume 9, Issue 2

may find yourself spending hours getting the perfect subrou

tine, but end up neglecting the rest of your code.

The example I gave using Listings 1 and 2 was really quite

simple. It took about five to ten minutes to calculate the cycles

used for each listing. If you have a larger section of code, the

procedure becomes much more complex: not only is there the

cycle time of each instruction based on the addressing mode

used, but you must also keep careful track of all the status

flags, changes in memory locations, etc. Needless to say, it

sounds like a job that is more suited for a computer. Hence Cy-

cleCounter.

When I was writing CycleCounter (CC, for short) I had several

goals in mind. I wanted to use it on basic as well as machine

language programs. It would be nice to see each instruction as

it executes, complete with register values and a running total

of cycles used. I wanted to be able to stop the program and

change the values of the registers. The version of CC presented

here incorporates all these features.

CycleCounter is located at $C000. It is a little over 3K of ML.

Unless you are timing a BASIC program (see the section on

timing your BASIC program), you will need a machine lan

guage monitor (MLM) to use it. I have tested CC with two mon

itors, and have had no problems. I have also timed many BASIC

programs, and have encountered no problems (however, see

the section on the limitations of CC, below).

The easiest way to illustrate the use of CC is to go through a

quick example. Let's say your friends at the local CBM users'

group swear that the fastest machine language code to move

256 bytes of memory from one location to another takes 3000

cycles. You know you can do it faster, and you want to check

your code's speed.

First, load and run your MLM, then load your new code. Final

ly, load in CC. Using the 'execute code' command from your

MLM (usually a T or 'G'), you start up CC. After you give CC

some information, it begins to execute your code. When your

program has finished, CC prints out a total of all the cycles

used. It's as simple as that. And because CC returns control the

MLM, you can continue to modify your program.

To use CC from your monitor, simply use the "Execute" or

"Jump to" command. A normal CycleCounter starts at $C000.

Unless you relocate it, you should jump there to begin normal

execution. Note that CC uses the BRK command to stop itself

and return to your MLM.

When you run CycleCounter, it will ask you for information

about your program and options. These options and inputs are

explained below.

The start address

The first thing CC will do is ask you for the address at which it

should begin counting cycles (usually, this will be the start of

your program). Enter the address as a four digit hex number,

e.g. $0800. CC has preprinted the '$' for you.

If you wish to abort CC at this time, simply hit Return.

The end address

There are two options for the End Address request. If you wish

CC to stop counting and return control to the monitor at a cer

tain address, enter that address. For example, entering $0820 at

the prompt will allow CC to count cycles until the PC (the Pro

gram Counter) is $0820. At this point, CC will execute a 'brk'

instruction, returning control to the monitor.

The second option for the End Address input is to enter a 'b\

This tells CC to count cycles until a 'brk' instruction is en

countered. This is useful if you are writing code while in the

MLM, and have forgotten the end address of your code.

In either case, an end message giving the total number of cy

cles used will be printed. As with the Start Address, you can

abort CC at this time by simply hitting the Return key instead

of choosing an option.

Executing instructions

The next question CC will ask you is if you want your code to

be executed or not. Enter a 'y' or 'n' at the prompt. If CC does

not execute your code, it will look at each op-code and add in

the lowest possible cycle time to the total number of cycles

used. Your instructions will not be 'run' - they are only used to

look up cycle times.

When you ask CC to execute your program, however, each in

struction of your program is actually 'run', just as if you had

executed it instead of CC. The total number of cycles used can

differ a great deal from the total you get if you do not choose

to execute the code.

The execute mode is much more accurate because this is the

only way CC can keep track of register values and other

changes that affect your program's cycle time. For instance,

with branch instructions, such as BEQ, BNE, etc., the only way

to know how many cycles are actually used is to know if the

branch is taken. Similarly, for modes such as indexed address

ing, CC must be able to calculate the effective address by using

the values in the registers. If you did not elect to have CC exe

cute your program, the register values will never change.

Finally, as with the previous two input requests, you may abort

CC by simply hitting the Return key at the prompt.

Print trace

This prompt allows you to choose whether or not you will see

the output that CC can display. If you want to see the output

display, enter a 'y'; otherwise, enter 'n'. Once again, simply

hitting the Return key will abort CC.

Transactor 22 December 1988: Volume 9, Issue 2

The output that CC can produce will look like the following:

PC MNEMONIC MODE A X Y ST SP CYCLES

where

PC - is the current Program Counter

MNEMONIC - is the 3 letter code for the instruction

MODE - is the addressing mode that the instruction uses; e.g.

($FB),Y represents the indirect indexed mode.

A, X, Y, ST, SP - are the current values of the accumulator, X and

Y registers, status register, and stack pointer, respectively. Val

ues shown are in hex and represent the contents after the in

struction at the PC has been executed.

CYCLES - is the number of cycles used since CC began, includ

ing those for the current instruction. Note that the cycle count

is a decimal value.

For example, we might have the following:

$0800 LDA #$00 00 01 02 32 FE 000002

which indicates that we have just executed the instruction at

$0800, and the value of all registers and cycles are shown as

they are after the instruction has executed. If you did not

choose the 'execute instructions' option, the values of the reg

isters will not change. Note that only six digit places are given

to the current cycle count. This is due to the narrow screen.

The final message will print out cycles used with nine digits.

Unless your program is very large, it is unlikely that these val

ues will wrap around.

Setting initial register values

The last input CC needs is the values in the registers when it

begins your program. To change a register value, move the

cursor under the register label, and type the new value. When

you hit Return, the values are recorded, and CC begins. If you

simply hit Return when the register display is presented, CC

will not abort; rather, it will use the current register values.

The pause mode

While CC is running, you may wish to stop it for a moment. To

enter the pause mode, press the Fl key. This will display a '>'

prompt so you may enter commands. All commands must be

followed by a Return. Any command not recognized will be

treated as if you simply hit Return. The following is an expla

nation of the pause mode commands:

1. Single step: hitting Return will cause CC to go on to the

next instruction. If CC is executing your code, the instruction

will be performed. CC will return to pause mode after each in

struction.

2. Continue: to leave pause mode, enter a 'c'. This allows CC

to run at full speed again.

3. Toggle trace: to change the setting of the 'print trace' op

tion, enter a 't' at the prompt.

4. Modify registers: to display and/or modify current register

values, enter an 'r' at the prompt. You will see:

A X Y ST SP

00 01 02 36 F8

Change the registers as explained above or Return to accept

current values. Of course, you cannot alter the value of the

stack pointer (SP).

5. Wait for address: Even though execution is hundreds of

times slower using CC, the addresses and instructions can

scroll by very quickly. Moreover, it can be very tedious to sit

through several minutes of listings to observe a certain piece

of code in action. The 'Wait' command was designed to avoid

these situations.

To use the wait command, enter 'w 0123' at the pause prompt.

The 'w' specifies the Wait command. The '0123' is any four

digit hexadecimal address. When CC reaches that address, it

will enter the pause mode.

You can combine this command with the Toggle Trace' com

mand to skip very long sections of print-out. For instance, if

your 'wait' address is deep into the code - that is, it will take a

while to reach it - you may want to turn the trace off. This

would enable CC to execute much faster (output to the screen

slows execution down tremendously), but still allow you to

view your selected areas of code.

6. Quit: enter a 'q' and CC will issue a BRK command. Control

then returns to the calling program.

Relocating CycleCounter

Any machine language utility should be relocatable (since you

may want to test your own code at $C000). All the monitors that

I have used have a relocation command for code. The basic

principle behind them is to modify all absolute address in

structions (jmp $cooo, lda $C00i, etc.) whose operands are

within the range of the old code. Thus, an absolute address in

struction that used a location within $C000-$CD00 would be

changed (if we were relocating CC). It would not modify any

other absolute address instructions, such as those that access

the Vic chip at $D000. Consult your monitor manual for the

command usage or simply assemble the source with your de

sired start address.

If you're working with the object code, you will have to do a

little more work than just move CC around in memory, howev

er. In order for CC to be relocatable, it has to use pointers to

various data areas. These pointers contain absolute addresses

Transactor 23 December 1988: Volume 9, Issue 2

that point to locations within the CC code. Whenever you relo

cate CC, you must modify these pointers as well (there are

about 30 or so). This is so tedious that I have included a short

routine at the end of CC to do it for you. To relocate CC to a

new address, follow these instructions (begin with CC loaded

into location $cooo):

1) Put the low byte of the new address into location $C00B. Put

the high byte of the new address into location $cooc.

2) Use the monitor to execute the code starting at $C006.

3) When control returns from the subroutine, Move (using the

memory transfer utility of your monitor) locations $C000-$CC0C

to the new location.

4) Using the relocation command of your monitor, relocate all

code starting at offset $0452 from your new address. That is, if

your new start address for CC is $1000, you will want to relo

cate all code from $1452 to $icoc.

5) You will have to modify the first three instructions by hand.

If you look at $C000 with the disassembly tool of your monitor

(with CC loaded), you will see three successive JMP instruc

tions. You must change the absolute addresses of these instruc

tions to refer to the new addresses of the relocated code. For

example, if your relocated CC started at $1000, you will have to

change the instruction at $1000 from 'JMP $C452' to 'jmp $1452'

(you will have to change the other two as well).

6) Save the new version of CC.

Using CycleCounter with BASIC programs

One of the more interesting features of CC is the ability to

count the number of cycles your BASIC program uses. In order

to exploit this ability, you should use the following procedure:

First, load in CC using a secondary address of one:

load "cyclecounter.02",8,1

(and remember to enter 'new' to reset the pointers). Use the

version located at $C000, leaving the normal basic RAM free.

Now SYS 49155. When the BASIC prompt returns, type RUN.

You will enter CC.

The request for the starting address will be skipped. When CC

asks for an ending address, you must enter $A480. This is the

address of the top of Basic's main loop. When the PC is equal

to this, CC will know that your BASIC program has finished,

and it will return control to BASIC. Answer the remaining ques

tions to suit your preference.

Note that if you do not have CC execute the code, there is no

guarantee that you will encounter the address of$A480. In ad

dition, it is not advisable to print a trace out of the whole exe

cution. The operating system appears to encounter problems

with the additional text on the screen.

Limitations of CycleCounter

When designing CC, I wanted to keep it as transparent as pos

sible. The optimal utility would not interfere at all with the us

er's program. For the most part, CC follows this guideline.

There are times, however, when CC must utilize the operating

system; possibly jeopardizing a user's program. For example,

CC makes calls to the system routine chrout. This routine is a

general routine for outputting characters to a device. CC as

sumes that the screen is always available, and so makes no at

tempt to check if your program changed this. CC also makes

calls to CHRIN, the general character input routine. The only

way to maintain complete transparency, while still utilizing

these system routines, is a method known as a 'virtual system'.

Essentially, what would occur is that CC would keep a copy of

all important system variables for itself, and load them into

place every time it used the system, saving the user's

variables. This is expensive and time consuming - but possible

in theory. I opted, however, to keep CC as small and as fast as

possible.

Conflict with operating system requests is not the only prob

lem that may occur. Recall that the speed of CC's execution

mode (where your code is actually being executed) is several

hundred or thousands times slower than normal execution

speed. Thus, if your code is interacting with any time-sensitive

devices (disk drive, timers, etc.), you should not use the execu

tion option. Instead, you may wish to change the address of

any memory mapped registers your program accesses, to nor

mal memory addresses. This way you can still check the run

time speed, without actually changing any hardware values.

This could prevent a lock-up or similar disaster.

How CycleCounter works

Some of you may be curious about how CC works. It is diffi

cult to learn much in assembler by typing in hex codes. A dis

assembly helps, but often a programmer's best tricks use the

computer in a way that is not immediately obvious. I will dis

cuss some of the techniques that I used in CC that may be of

interest. I hope that this will give you new ideas or spark an in

terest in using them in your own code.

To start with, CC has over IK of data. Much of the size of CC is

accounted for by input/output routines: formatting routines for

op-code print-out, etc. There is also a data table for the op

codes. Each op-code has one byte, and the groups of bits with

in each mean something to CC. For instance, bits zero through

two are used to give the basic cycle count for that op-code to

execute. To get information about a specific op-code, we use a

'look-up table'; that is, we use the op-code as an index into the

table, and look at the bits we need.

To execute one of your program's instructions, CC copies the

instruction into its own code area. After this, the user's six reg-

Transactor 24 December 1988: Volume 9, Issue 2

isters are reloaded with the values they had after the last in

struction from your program. The instruction is then executed

by simply letting CC run into it, as if it had always been there.

Actually, before CC copies your code into its own instruction

area, it puts three NOPs in a row. This works out nicely, since

the maximum length of any 6510 instruction is three bytes. If

an instruction is less than that, it will be executed, followed by

one or two NOPs. Since the NOP does nothing, the status regis

ter and memory areas of your program are unaffected. If we

did not clear out the instruction area with NOPs, we might exe

cute the data or instructions left over from the last op-code.

This is an example of self-modification, as discussed above.

After your program's instruction has been executed, CC takes

over again, saving all your registers before continuing.

There are several instructions that CC does not copy into its

own program area; JMP absolute is one. To see why, consider

what would happen if CC copied a JMP $0800 into its own pro

gram area, and then executed that instruction. Control would

pass to whatever code is located at $0800 - CC has lost control

of the processor!

To avoid this situation, such instructions are simulated by CC.

For example, a JSR $1000 command, executed normally, pushes

the current value of the PC + 2 onto the stack, and then loads

the PC with $1000. Since CC keeps track of the user's PC, it is

short work to change it, and then push some data onto the

stack. An RTS instruction is likewise simulated: CC pulls the re

turn address from the stack, and changes the copy of your pro

gram's PC.

The point is: CC never loses control of the processor - each in

struction that would cause this to happen has a special routine

to simulate its effect on the processor and programming envi

ronment. In fact, even the brk instruction is simulated.

Earlier, I mentioned the concept of a 'virtual system', where

CC would keep all the important system variables in a data

area, swapping them back and forth with your program's sys

tem variables (system variables include such things as what

files are open and where the current text screen is located). Cy-

cleCounter does this with the registers, but it also does a small

amount of swapping of memory as well. It uses some of the

free zero page space (addresses $FB-$FF) for its own variables.

It would not be a very useful utility if you could not use these

zero page locations yourself, so CC keeps two copies: one for

you and one for itself.

It works like this: Up until CC actually executes your next pro

gram statement (or simulates it), it is using locations $FB-$FE

for itself. Right before your program instruction is done, it re

places these memory locations with your copy of $FB-FE. After

your instruction is done, it copies your values of $FB-$FE into

its data area, and moves its own copy of $FB-$FE back in. Your

program never notices that these memory locations are shared

by two programs. This is exactly like saving and restoring the

registers.

Using CycleCounter as a programming tool

Now it is time to show how we can use CC to help in the de

velopment of faster code.

Despite its great graphic capabilities, the C64 lacks system-

supported graphics primitives. There are no commands to

draw lines, dots, squares, or anything. Instead, the programmer

must manipulate the bits and bytes of the display screen

memory. The biggest problem with this approach, at least in

BASIC, is the lack of speed. The drawing of images is agoniz

ingly slow.

The C64 Programmer's Reference Guide offers a simple algo

rithm to light a pixel on a hi-res screen (see pages 125-126 of

the PRG). This is a very important routine, since almost any

graphics routine that draws on the screen will have to use it.

Since it will be used so often, it should be as fast as we can

make it. Our goal will be to develop the fastest pixel-lighting

routine possible.

In BASIC, we can reduce the PRG code to the two-line subrou

tine (lines 100 and 110) in the short program below. Note that

the variable BA is the base (or start) address of the hi-res

screen in memory, and the X and Y variables represent the co

ordinates of the pixel on the screen. Lines 10 and 20 set and

make the call to the pixel plotting routine:

10 ba = 8192:x = 50:y = 50

20 gosub 100:end

100 by=ba+(int(y/8)*320)+(8*(int(x/8))+(yand7)

110 pokeby,peek(by)or(2A(7-(xand7))):return

Using CC to time this short program, we get the following cy

cle counts: Timing 1, 85646. Timing 2, 148620

There are two points of interest here. The first is the number of

cycles used! As we shall soon see, this is a staggering amount

of processing time to spend on such a (seemingly) simple

operation. BASIC users trade speed for the usefulness of an in

terpreted language.

The second interesting point is that there are two different

times listed for the one program. In the first timing, I made

sure the screen was clear before using CC. I then typed RUN at

the top of the screen. In the second timing, I typed RUN on the

bottom line of the screen. After both trials finished, BASIC

printed 'READY.' to the screen. When the second timing ended,

however, BASIC had to scroll the screen upwards before print

ing the READY message. This accounts for the large difference

in timings. Printing to the screen has never seemed so expen

sive! From now on, I will only discuss timings achieved when

the screen has been cleared, and scrolling is not necessary.

Anyone who has programmed in machine language is aware

of the increase in speed over equivalent BASIC programs. List

ing 3 at the end of this article is an ML program that was devel

oped by following the BASIC subroutine.

Transactor 25 December 1988: Volume 9, Issue 2

Reproducing the exact equations used in the BASIC subroutine

would be very tedious. To avoid this, I first reduced as many

of the expressions as possible to lowest terms. For instance,

the equation

(8 (int (x / 8)))

can also be written as

(x and 248)

provided the value of x is between zero and 255.

The equation involves a multiplication by 40. To achieve this,

I used the simple technique of adding the multiplicand to itself

40 times.

Once the correct byte has been located, the position of the bit

within that byte must be determined. The BASIC method in

volves exponentiation - specifically, raising two to a small in

teger power. This can be done very efficiently in machine lan

guage by shifting a single bit left within a loop.

In order to allow meaningful comparison with the BASIC pro

gram above, we need a few lines of BASIC from which to call

the machine language:

10 x = 50: y = 50

20 gosub 100:end

100 poke 782,y

110 if x>255 then poke 780,l:poke 781,(x and 255):goto 130

120 poke 780,0:poke781,x

130 sys32768:return

This program uses the fact that when the SYS command is is

sued from BASIC, it loads the A, X, and Y registers with the

values found in addresses 780-782. Then it passes execution to

the machine language subroutine. Since our subroutine re

quires the registers to contain the proper values, we can simply

poke those values into memory and let the SYS command load

them for us. Of course, this method is not as general as the BA

SIC version, since we cannot simply change the location of the

screen by modifying a variable. However, notice that each ma

chine language subroutine loads a value that is the high byte of

the start-of-screen-address (no low byte is needed since the

screen must start on the beginning of a page, e.g. $2000). This

is performed by the lda #$20 instruction in each routine.

Should the need present itself, you could simply poke a new

value into the instruction area. Note, however, that this loca

tion is different for each routine.

With the code from Listing 3 located at $8000 (decimal 32768),

we can now use CC to time the total number of cycles used.

The minimum number of cycles needed to complete this rou

tine, including an extra 6 cycles for a JSR, is 829. The maxi

mum number of cycles this routine will ever need is 998 cy

cles. Why are there multiple timing values for this routine?

Recall that we are using loops and addition in this routine.

Some values of the X and Y coordinate will cause the loop at

Ioop2 to be executed seven times, while others will require on

ly one pass through it. Also, the addition we are using in the

main loop, loopl, is double precision. Although this loop is

executed the same number of times for each call to this rou

tine, different values of the Y coordinate (for example, very

large numbers) will cause the inc PNTR+l instruction to be exe

cuted more frequently. Small values of Y can get through the

loop without ever using this instruction. Thus, in this subrou

tine at least, the values of the pixel coordinates can affect the

timing - if only by a hundred millionth of a second, or so.

When we time the BASIC program that calls the routine in List

ing 3, we find it uses 43686 cycles to complete. This betters

the speed of the original BASIC pixel plotter by about 49%.

Computers can perform feats of mathematics far faster than

any of us could hope to. Compared to other functions, howev

er, the instructions used to perform mathematics can be very

slow. In any situation where you are trying to improve the

speed of your code, you should try to exploit as much knowl

edge about the problem and computer as possible. For in

stance, the following lines of machine language perform the

math function of multiplication by four:

clc /prepare for add

Ida value /we'll multiply value by 4

adc value ;acc = value * 2

adc value /ace = value*3

adc value ;ace = value * 4

sta value /store result

There are two assumptions to bear in mind for this short seg

ment of code. The first is that value is not located on zero

page. If it were, fewer cycles would be needed to perform this

code. The second is that value * 4 will not exceed 255, since

we make no provision for handling a carry.

The total time taken by this code segment is 22 cycles. Now

look at the following lines of code:

asl value /shift left = * 2

asl value /shift left = * 4

Like the previous example, this segment of code multiplies a

number by four (the same assumptions apply). This time, how

ever, instead of using the standard addition instruction, adc,

we used the ASL (shift left one bit) instruction. We have ex

ploited the fact that moving a binary number two places to the

left is the same as multiplying it by four. The timing for this

segment of code is now only 12 cycles. This comes close to

halving the number of cycles (in addition to reducing the num

ber of instructions by a factor of three) needed by a more

straightforward approach. Simple observations like this can of

ten lead to faster and more efficient code.

Listing 4 contains the assembly code for another subroutine

that sets a pixel on a hi-res screen. You will notice that it bears

Transactor 26 December 1988: Volume 9, Issue 2

little resemblance to Listing 3. This is because it uses informa

tion about C64 hi-res screens that Listing 3 did not. This extra

information is held in a table at the end of fastpx. The data

are based on several observations.

First, in the previous pixel-lighting algorithm, we spent a lot of

time multiplying the value of Y to obtain the correct address.

This is necessary because of the non-linear method by which

screen memory is displayed (you may wish to refer to pages

122-127 in the PRG for a more complete description of the

standard hi-res mode). The second observation is that, instead

of multiplying, part of the address can be obtained by using

the Y value as an index into a table of offsets. This table is in

two parts: the low bytes of the offsets and the high bytes of the

offsets. By adding in the high and low byte of the offset to a

base address, FASTPX quickly calculates the address of the left

most pixel for the row.

For instance, to calculate the leftmost pixel in row 25, first

load the A register with the value at 'scrlo+25'. Add this value

to the low byte of the hi-res screen base address. Next load A

with 'scrhi+25', and add it to the high byte of the base ad

dress. This resulting address is the leftmost byte (where X val

ues range from 0 - 7) at row 25. It is then a simple matter to

add in the value for the X component of the pixel.

Note that this scheme uses the upper left corner of the screen

as the origin (location 0,0). If you want to change this, simply

reorder the data in the table (you can achieve some interesting

effects by scrambling the data in the table, making the lighting

of pixels unpredictable). Notice, as well, that I forced each

half of this data table to be located at the start of a page ('scr

lo' is at $8100 and 'scrhi' at $8200). While this is a waste of

memory, it was done to demonstrate a point. If the first half

(scrlo) of the table was simply placed into memory right after

the code, there is a very good chance that part of it would lie

on the same page as the code, and the rest on the next page.

Since the combined size of scrhi and scrlo is more than 400

bytes, a similar page split might happen to scrhi. The indexed

addressing mode is used to access the table, which means that

cycles are saved if the index does not cross a page when

memory is accessed. Forcing alignment on a page was the on

ly way to insure the minimum cycle time would be used for

access to this data.

There are other differences between this code and the code in

Listing 3. Instead of using a loop to shift a single bit over, the

correct bit to set is calculated from a look-up table. The lower

three bits of the X register are used as an index into this table.

Since there are eight pixels to one byte on the hi-res screen,

the bytes in the table each have one of the possible eight bits

set. Thus we can simply load this value in and use it.

The number of cycles used by this subroutine is only 75, in

cluding six cycles for a JSR instruction to get us into the code.

Note that, unlike the previous routine, this 75 cycles does not

change with the value of the coordinates. We are guaranteed

75 cycles every time we call it.

The cycle count for this listing is quite a bit less than the num

ber used by Listing 3. Again, we standardize the cycle count

by calling the new routine from BASIC. Using the same pro

gram as we did for Listing 3, but replacing the code at $8000

with the code in Listing 3, we get 42418 cycles, an improve

ment of about 50% over the original BASIC program.

The final version of a pixel plotter is shown in Listing 5. This

represents a compromise between the versions in Listings 3

and 4. It does not perform a straight calculation as in Listing 3,

nor does it have a huge table of data as in Listing 4.

This version exploits two more facts about the way the graphic

screen is organized. The first fact is easy to pick up if you

study the data table used by Listing 4: the low-order bytes re

peat themselves every 32 bytes. Thus, all we need is a small

table to hold these 32 bytes, and some new way to calculate

the high order byte for the offset. As it turns out, this is the

second fact of graphic screen layout that we can exploit. Part

of the high order byte can be calculated by simply using the

upper five bits of the value passed to us in the Y register! By

manipulating these bits, we can obtain the high order value for

the leftmost byte offset.

This 'manipulation' may seem very obscure at first. Examine

the 'scrhi' table of Listing 4 until you notice a trend. There are

two observations we can make from these bytes. First, each

byte occurs eight times in a row. Second, the value of one is

added to each number after it has repeated - except after 32

bytes have gone by; then two is added. To see what I mean,

notice that 'scrhi' starts off with eight zeroes. Then we add

one, and we have eight ones. Add one again, and we have

eight twos. Add one more to the byte value of the last row, and

we have eight threes. That makes 32 bytes so far. Look at the

next line - it contains eight fives. So, every 32 bytes, we add

two to the current byte value in the table.

While this routine is quite a bit smaller than Listing 4, it is

slightly slower. The number of cycles needed to execute is

114, including the JSR. The number of cycles is constant for

any pair of coordinates.

Again, for standardization, we will use the BASIC program we

used with Listing 3. In Listing 5, however, the usage of regis

ters A and X is reversed, so the references to 780 and 781 in

the BASIC code must be interchanged. Using CC to time this

program, we find that it takes 42456 cycles to complete. This

is still an improvement of about 50% over the original BASIC.

These examples are not meant to be the final word on pixel

plotters. In fact, I would enjoy seeing routines that could per

form this function faster than the ones shown. The real pur

pose of these examples is to show how CC was used as a tool. I

was able to quickly count cycles, modify the routines, and

count again. These routines are, for the most part, too fast to

be timed by other means, and the timing from BASIC would be

nearly impossible to count by hand. Cycle counting allowed

me a basis for comparison that I did not have before.

Transactor 27 December 1988: Volume 9, Issue 2

Some final notes on CycleCounter

The major concept now is one involving the conversion of cy

cles into a time value. While CycleCounter will give you a

precise number of cycles needed to execute your program, it

cannot tell you precisely how long (in terms of seconds and

microseconds) it will take your program to run. There are sev

eral reasons for this. An obvious one, especially for program

mers, is the IRQ that occurs every 1/60 of a second. The C64

operating system causes one of the hardware timers to inter

rupt normal program execution, saving the current state of

your program, and then performing necessary chores like read

ing the keyboard, updating clocks, etc. When the operating

system has finished the interrupt, it restores your program to

its previous state, and allows it to run again. Your code will be

slowed by this constant, but transparent, interruption.

Another reason an accurate time value cannot be given is due

to a quirk in the relationship between the 6510 and the VIC II

video chip. There are times - when sprites are on the screen,

for example - when the video chip must use the system data

bus more than normal to maintain the display screen. When

this occurs, the chip will 'steal' the bus from the 6510 proces

sor for a short time. This causes a slight loss of processing

speed.

For these and other reasons, CC cannot give you a precise exe

cution speed in, say, seconds. What does CC give you then?

The first way you can use CC is as a speed analysis tool. Re

gardless of any other interruptions, the code you write will be

executed in a time that is directly proportional to the number

of cycles that code uses. Put another way: more cycles needed,

more time needed. You could thus say that, in most cases, the

code with the fewer cycles will run faster.

Secondly, although CC cannot give a accurate timing in sec

onds, you can get a close estimate by converting cycles to sec

onds. The actual clock speed of the C64 is 1,022,730 cy

cles/second using NTSC, and 985,250 cycles/second for those

using PAL. So, if your program took 100 cycles, you could di

vide 100 by the number of cycles per second to get an execu

tion value in seconds. To get an even more accurate value, you

could count the number of cycles the operating system inter

rupt code uses and add that in to your total cycle time. Of

course, this varies, depending on such things as key presses

and RS-232 activity.

If you are interested, the C64's hardware timers (in the 6526

CIAs) have the capability to count the cycles used as time goes

by. While this may seem an appealing way to compare pro

grams, it introduces some new problems. For instance, the on

ly way to be sure that every program you test is getting the

same treatment is to reset before each test. Furthermore, since

you do not have control of things like the system clock or IRQ

timing, there is no way to keep out interruptions that could

slow down your execution. There are ways around this, of

course, but the main point I wish to make is that one must be

ware of hidden variables: When you are dealing in microscop

ic time values like cycles, it is very difficult to compare pro

gram execution times by actually running them. Nevertheless,

this type of utility could have many uses - but that is easily the

subject of another article.

CycleCounter avoids some of the timing problems by abstract

ing each instruction to its best possible case, and allowing you

to compare programs based on that. If the computer had no

other chores to do - no IRQs, no bus stealing - then the execu

tion value in seconds you can calculate should be an accurate

one.

In closing, I hope that CycleCounter becomes a useful addition

to your programming toolbox. The need for speed is never

ending, especially as the smaller eight-bit computers are

forced to compete with the faster 16-bit and 32-bit processors.

It is up to all of us to make every cycle count.

Listing 1. This subroutine uses 3342 cycles to complete.

filll stx $fb ;save low byte of block in zero page

sty $£c ;save high byte of block in zero page

Ida #$00 ;Acc. holds value to store in block

ldy #$00 ;set index register to zero

sta ($fb),y ;do first byte in block

loopl iny ;move index pointer up one

sta ($fb),y ;stuff value of Ace. into memory

cpy #$ff ;when Y=FF we are done

bne loopl ;not done yet...

rts ;now we're done, return to caller

Listing 2. This subroutine uses 2583 cycles to complete.

£1112 stx loop+1 ;save low byte into STA instruction

sty loop+2 ;save high byte into STA instruction

Ida #$00 ;Acc. holds value to store in block

tay ;set index register to zero

Ioop2 sta $0000,y ;save value of Ace. into memory

iny ;move index pointer up one

bne Ioop2 ;keep going till INY sets zero flag

rts ;now we're done, return to caller

Listing 3. Simple ML Pixel Plotter

BASPIX

This ML subroutine is a very literal translation

of the pixel plotting routine found on pages 123-124

of the CBM Programmers Reference Guide.

Very little optimization has been done.

min cycles to execute: about 829

max cycles to execute: about 998

includes 6 cycles for a JSR to get us here

register usage on entry =

a = 0 if x<255, 1 if x>255

x = 0 - 255

y = 0 - 199

pntr = $fb ;a zero page pointer

Transactor 28 December 1988: Volume 9, Issue 2

* = $8000

;

baspix sta pntr+1 ;add in a right away

txa ;put x into a

pha ;save x for later

tya ;save y for later use

pha ;push y on stack

;

; here, we will calculate the

; (8* (int (x/8)))

; note that this is the same as

; (x and 248)

txa ;now a = x

and #$f8 ;now a = x and 248

sta pntr ;save it

i

; now we are going to perform the

'calculation of

int (y / 8) * 320

; note we can do this as

(y and 248) * 40

nxtlp2 tya ;move y into a

and #$f8 ;mask off lower bits

tay ;use this value to add

ldx #40 /prepare to add in 40 times

loopl tya ;move value to add in 39 tines into ace.

clc ;ready to add now...

adc pntr /adding in y 40 times is sane as y * 40

sta pntr ;hold onto the new value!

bec nxtlpl ;if no carry, skip next instruction

inc pntr+1 ;add 1 to hi byte of pointer

nxtlpl dex ;are we done yet?

bne loopl ;no! keep going!

;

pla ;get back value of y from stack

and #$07 ;this gives us y and 7

clc ;add this in, as well!

adc pntr ;add it

sta pntr ;save it

bec nxtlp3 ;skip it, if no carry...

inc pntr+1 ;add 1 to hi byte

; now we add in the base address of

;our hi-res screen, we only need the

;high byte, since it must start on

;on the beginning of a page

nxtlp3 clc ;prep for add

Ida #$20 ;screen located at $2000

adc pntr+1 ;add it in

sta pntr+1 ;and save it

; now, pntr and pntr+1 point to

;the byte we want in screen memory

;here, we calculate which bit we

;are going to turn on.

pla ;get x from stack

and #$07 ;gives us x and 7

sta bitlit ;save for our subtraction

Ida #$07 /we'll subtract bit from 7

sec ;prep for subtraction

sbc bitlit ;gives us a = 7 - (x and 7)

tay /we'll use this value as a counter

; we now use (x and 7) as a counter

;for shifting a single bit to the

;left.

sec ;first time thru, carry gets pushed into ace.

Ida #$00 /start out with 0 in ace.

;

Ioop2 rol a /shift single bit to left

dey /are we done yet?

bpl Ioop2 /not yet, keep going!

Transactor

/ finally, we can access our byte

/and turn our bit on

ldy #$00 /make our index = 0

ora (pntr),y /turn on our bit

sta (pntr),y /and save the change

rts /all done..

;

bitlit .byte 0 ;a variable

.end

Listing 4. Fast ML Pixel Plotter

FASTPX

1

FASTPX is a subroutine that is

designed to light up a dot on the

hi-res screen in about 75 cycles,

including six cycles for a jsr to

get us here.

It should be called in the

following manner:

y = (0-199) y axis range

x = (0-255) x axis range

a = (0 or 1) if x > 255

mtr = $fb /zero page pointer

* = $8000

first, calculate the offset for

the row

fastpx sta pntr+1 /store upper byte of x

Ida scrlo,y /get lo byte of offset

sta pntr /set up lo byte of pointer

clc /prepare for addition

Ida scrhi,y /get hi byte of offset

adc pntr+1 /add to hi x

sta pntr+1 /set up hi byte of offset

/ now we can calculate what bit we

/ will light up at our address..

txa /move in lo byte of x

and #$07 /get the bit to light up

tay /save it in y

here we calculate the address

of byte to modify, by adding in

x coordinate and screen base

txa /get lo byte of x

and #$f8 /make it a power of 8

adc pntr /add x to offset

sta pntr /update offset

/ now add the hi byte and screen base

Ida #$20 /screen base at $2000

adc pntr+1 /add to offset

sta pntr+1 /update offset

;

; we now have the address to modify

; let's light up a bit in that byte!

Ida table,y /pick up the bit position to lite

ldy #$00 /set y index to 0

ora (pntr),y /lite up that bit

sta (pntr),y /and make change permanent

rts /go home...

/

table .byte $80,$40,$20,$10,$08,$04,$02,$01

29 December 1988: Volume 9, Issue 2

* = $8100

this data file contains

offsets to add to a screen base

address, these offsets will give

you the address of the leftmost

byte, in the y position, use the

y value for an index

scrlo .byte $00,$01,$02,$03,

.byte $40,$41,$42,$43,

.byte $80,$81,$82,$83,

.byte$c0,$d,$c2,$c3,

.byte $00,$01,$02,$03,

.byte $40,$41,$42,$43,

.byte $80,$81,$82,$83,

.byte $c0,$cl,$c2,$c3,

$04,$05,$06,$07

$44, $45, $46, $47

$84,$85,$86,$87

$c4,$c5,$c6/$c7

$04,$05,$06,$07

$44, $45,$46, $47

$84,$85,$86,$87

$c4, $c5,$c6, $c7

.byte $00,$01,$02,$03,$04,$05,$06,$07

.byte $40,$41,$42,$43,$44, $45,$46,$47

.byte $80,$81,$82,$83,$84,$85,$86,$87

.byte $c0,$cl,$c2,$c3,$c4,$c5,$c6,$c7

.byte $00,$01,$02,$03,$04,$05,$06,$07

.byte $40,$41,$42,$43,$44,$45,$46,$47

.byte $80,$81,$82,$83,$84,$85,$86,$87

.byte $c0,$cl,$c2;$c3,$c4,$c5,$c6,$c7

.byte $00,$01,$02,$03,$04,$05,$06,$07

.byte $40,$41,$42,$43,$44,$45,$46,$47

.byte $80,$81,$82,$83,$84,$85,$86,$87

.byte $c0,$cl,$c2,$c3,$c4,$c5,$c6,$c7

.byte $00,$01,$02,$03,$04,$05,$06,$07

.byte $40,$41,$42,$43,$44,$45,$46,$47

.byte $80,$81,$82,$83,$84, $85,$86, $87

.byte$c0,$cl,$c2,$c3,$c4,$c5,$c6,$c7

.byte $00,$01,$02,$03,$04,$05,$06,$07

.byte $40,$41,$42,$43,$44,$45,$46,$47

* = $8200

scrhi .byte 0,0,0,0,0,0,0,0

.byte 1,1,1,1,1,1,1,1

.byte 2,2,2,2,2,2,2,2

.byte 3,3,3,3,3,3,3,3

.byte 5,5,5,5,5,5,5,5

.byte 6,6,6,6,6,6,6,6

.byte 7,7,7,7,7,7,7,7

.byte 8,8,8,8,8,8,8,8

.byte $0a, $0a,$0a,$0a,$0a,$0a,$0a,$0a

.byte $0b,$0b,$0b,$0b,$0b,$0b,$0b,$0b

.byte $0c,$0c,$0c,$0c,$0c, $0c, $0c,$0c

.byte $0d, $0d,$0d,$0d,$0d, $0d,$0d,$0d

.byte $0f,$0f,$0f,$0f,$0f,$0f,$0f,$0f

.byte $10,$10,$10,$10,$10,$10,$10,$10

.byte $11,$11,$11,$11,$11,$11,$11,$11

.byte $12,$12,$12,$12,$12,$12,$12,$12

.byte $14,$14,$14,$14,$14,$14,$14,$14

.byte $15,$15,$15,$15,$15,$15,$15,$15

.byte $16,$16,$16,$16,$16,$16,$16,$16

.byte $17,$17,$17,$17,$17,$17,$17,$17

.byte $19,$19,$19,$19,$19,$19,$19,$19

.byte $la, $la, $la, $la, $la, $la, $la, $la

.byte $lb,$lb,$lb,$lb,$lb,$lb,$lb,$lb

.byte $lc,$lc,$lc,$lc,$lc, $lc, $lc,$lc

.byte $le,$le,$le,$le,$le,$le,$le,$le

.byte $lf,$lf,$lf,$lf,$lf,$lf,$lf,$lf

Listing 5. Optimized ML Pixel Plotter

QUIKPX

This subroutine is designed to

light a pixel on a hi-res screen

in 114 cycles. This includes six

cycles for a JSR to get us here.

Values must be sent as follows:

a = low x (0 - 255)

x = high x (0 if a<255, else 1)

y = y (0 - 199)

pntr = $fb ; low core pointer

*=$8000

first, we save stuff to use later

quikpx pha

tya

pha

;save low part of x

;move row f into a

;save row

now we use fact that low byte of

row offset repeats every 32 bytes

and #$lf ;get number range of 0-31

tay ;now use as an index

Ida lookup,y ;get lo byte of left column of row

sta pntr ;set it up in lowcore

here, we calculate the high byte

of the row offset from screen base

by munging on the bits in y

pla

dc

and

ror

ror

ror

sta

#$f8

a

a

a

pntr+1

;get row

;make it ok to shift bits

;dont move anything into carry

/divide by 2

; ... by 4

; ... by 8

;upper byte of screen offset for y value

and #$fc ;to prevent shifts into the carry

ror a /divide by 16

ror a /divide by 32

adc pntr+1 /add to upper byte

sta pntr+1 /make it official

now, we save the bit position we

will light up when after we calculate

the byte address.

pla /get low byte of x

tay /hold it temporarily

and #$07 /these will be the bits to light in byte

pha /save them

here, add in the value of the x

coordinate.

tya /get back low byte of x

and #$f8 /make it a power of 8 (max of 224)

adc pntr /carry still clear, add it

sta pntr /make change official

now we add in the base of our

hi-res screen

txa /get hi byte of x value

adc #$20 /start of hi-res screen—hi byte

adc pntr+1 /add to hi byte of offset

sta pntr+1 /make it official

Transactor 30 December 1988: Volume 9, Issue 2

; get back our pixel position, and

; use it to look

*

•

pla

tax

Ida litbit

; and finally, we

; up that pixel!

;

•

•

ldy #$00

ora (pntr)

sta (pntr)

rts

litbit .byte $80,
•

lookup .byte $00,

.byte $40,

.byte $80,

.byte $c0,

.end

up value.

;get bit to light

;use as index into

,x ;get value of byte

are ready to light

;set index = 0

,y ;create a new byte

,y ;store it !

;jump home

$40,$20,$10,$08

$01,$02,$03,$04

$41,$42,$43,$44

$81,$82,$83,$84

$d,$c2,$c3,$c4

in byte

table of

to use

,$04,$02,$01

,$05,$06,$07

,$45,$46,$47

,$85,$86,$87

,$c5,$c6,$c7

bytes

Listing 6. Generator for CydeCounter at $COOO

AM

FJ

C6

KO

EC

ID

FF

CM

HH

CF

AD

CF

EM

CO

CH

06

IL

FF

JK

IP

OP

61

IB

EH

AF

LC

IH

EA

B6

CC

OH

FC

KN

DN

BI

KE

BL

6H

NM

EB

OB

II

DN

CK

MK

PB

JN

100 rem generator for "cc.cOOO"

110 nd$="cc.cOOO": rem name of program

120 nd=3084: sa=49152: ch=331732

130 for i=l to nd: read x

140 ch=ch-x: next

150 if ch<>0 then print"data

160 prinf'data

170 restore

180 open 8,8,1

error" : stop

ok, now creating file": print

,"0:"+f$

190 print#8,chr$(sa/256)chr$(sa-int(sa/256))

200 for i=l to nd: read x

210 print#8,chr$(x);: next

220 close 8

230 print'prg

240 prinf'this

250 :

1000 data 76,

1010 data 0,

1020 data 0,

1030 data 0,

1040 data 14,

1050 data 0,

1060 data 21,

1070 data 0,

1080 data 87,

1090 data 26,

1100 data 62,

1110 data 0,

1120 data 14,

1130 data 0,

1140 data 19,

1150 data 0,

1160 data 0,

1170 data 74,

1180 data 68,

1190 data 0,

1200 data 14,

1210 data 0,

1220 data 21,

1230 data 0,

1240 data 87,

1250 data 2,

1260 data 96,

1270 data 32,

1280 data 32,

1290 data 32,

1300 data 0,

Transactor

file '";£$;"' created

generator no longer

82, 196, 76,

0, 0, 0,

0, 0, 0,

0, 0, 19,

0, 34, 101,

0, 0, 212,

0, 76, 2,

0, 0, 60,

0, 78, 46,

0, U, 12,

0, 74, 220,

0, 0, 19,

0, 34, 229,

0, 0, 212,

0, 74, 0,

0, 60, 60,

0, 2, 46,

0, 12, 12,

0, 74, 220,

0, 19, 19,

0, 34, 229,

0, 0, 212,

0, 74, 2,

0, 0, 60,

0, 1, 2,

2, 1, 176,

76, 108, 64,

32, 32, 32,

32, 32, 32,

32, 32, 32,

0, 0, 0,

206,

0,

0,

21,

0,

87,

26,

62,

0,

14,

0,

21,

0,

87,

74,

68,

2,

12,

74,

21,

0,

87,

74,

62,

1,
144,

0,

32,

32,

32,

0,

..."

needed."

202, 76,

0, 0,

0, 0,

0, 75,

0, 0,

0, 14,

0, 12,

0, 74,

0, 0,

0, 34,

0, 0,

0, 76,

0, 0,

0, 0,

0, 12,

0, 74,

0, 19,

0, 34,

0, 212,

0, 74,

0, 0,

0, 2,

0, 12,

0, 74,

0, 1,
112, 80,

36, 32,

32, 32,

32, 32,

32, 32,

0, 0,

205,

0,

0,

2,

60,

46,

12,

220,

19,

229,

212,

2,
60,

46,

12,

93,

19,

229,

212,

2,

60,

46,

12,
220,

1,

208,

32,

32,

32,

32,

0,

203,

1,

0,

26,

62,

0,

14,

0,

21,

0,

87,

26,

62,

0,

12,

74,

19,

0,

220,

74,

62,

0,

14,

0,

2,

240,

32,

32,

32,

13,

0,

0,
2,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

o,

o,

o,

o,

o,

o,

o,

o,

o,

o,

1,

16,

32,

32,

32,

0,

0,

192,

0,

79,

0,

74,

19,

34,

0,

75,

0,

78,

53,

74,

19,

34,

0,

74,

60,

2,

12,

74,

19,

34,

o,

1,
48,

32,

32,

32,

0,

0,

0

0

46

12

220

19

101

212

2

60

46

12

220

19

102

85

2

60

46

12

220

19

229

212

0

32

32

32

32

0

32

FD

L6

CC

BB

CP

FD

BH

EH

NN

DB

DA

OA

OC

6D

AI

NF

HF

6D

HB

6E

06

01

PI

PM

OM

PI

HN

NF

HJ

K6

CF

EC

CE

00

EE

DI

6J

KI

JL

KP

CM

CP

LH

MC

KE

MN

OD

CE

ID

EF

PH

DB

CH

LF

IP

HE

ON

NK

AJ

IM

JF

LD

KD

NE

CA

IN

HM

IL

6F

M6

BA

KN

C6

PO

KM

31

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

32, 32, 32, 32, 32, 32, 32, 32, 32, 0, 0, 0

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 65, 66

67, 68, 69, 70, 0, 0, 0, 0, 0, 0, 95, 197

95, 197, 95, 197, 95, 197, 95, 197, 95, 197, 95, 197

95, 197, 236, 196, 19, 197, 46, 197, 57, 197, 156, 197

111, 197, 23, 192, 61, 193, 105, 193, 40, 196, 31, 192

29, 192, 231, 202, 61, 193, 63, 193, 13, 192, 157, 196

79, 193, 31, 195, 255, 255, 109, 195, 147, 195, 170, 195

193, 195, 228, 195, 14, 196, 224, 193, 46, 196, 253, 195

65, 68, 67, 65, 78, 68, 65, 83, 76, 66, 67, 67

66, 67, 83, 66, 69, 81, 66, 73, 84, 66, 77, 73

66, 78, 69, 66, 80, 76, 66, 82, 75, 66, 86, 67

66, 86, 83, 67, 76, 67, 67, 76, 68, 67, 76, 73

67, 76, 86, 67, 77, 80, 67, 80, 88, 67, 80, 89

68, 69, 67, 68, 69, 88, 68, 69, 89, 69, 79, 82

73, 78, 67, 73, 78, 88, 73, 78, 89, 74, 77, 80

74, 83, 82, 76, 68, 65, 76, 68, 88, 76, 68, 89

76, 83, 82, 78, 79, 80, 79, 82, 65, 80, 72, 65

80, 72, 80, 80, 76, 65, 80, 76, 80, 82, 79, 76

82, 79, 82, 82, 84, 73, 82, 84, 83, 83, 66, 67

83, 69, 67, 83, 69, 68, 83, 69, 73, 83, 84, 65

83, 84, 88, 83, 84, 89, 84, 65, 88, 84, 65, 89

84, 83, 88, 84, 88, 65, 84, 88, 83, 84, 89, 65

10, 34, 34, 2, 36, 34, 2, 34, 2, 9, 34, 34

2, 13, 34, 34, 2, 28, 1, 6, 1, 39, 38, 1

39, 5, 1, 39, 7, 1, 1, 39, 44, 1, 1, 39

41, 23, 23, 32, 35, 23, 32, 27, 23, 32, 11, 23

23, 32, 15, 23, 23, 32, 42, 0, 0, 40, 37, 0

40, 27, 0, 40, 12, 0, 0, 40, 46, 0, 0, 40

47, 49, 47, 48, 22, 53, 49, 47, 48, 3, 47, 49

47, 48, 55, 47, 54, 47, 31, 29, 30, 31, 29, 30

51, 29, 50, 31, 29, 30, 4, 29, 31, 29, 30, 16

29, 52, 31, 29, 30, 19, 17, 19, 17, 20, 26, 17

21, 19, 17, 20, 8, 17, 17, 20, 14, 17, 17, 20

18, 43, 18, 43, 24, 25, 43, 33, 18, 43, 24, 5

43, 43, 24, 45, 43, 43, 24, 35, 36, 66, 69, 32

32, 36, 67, 69, 32, 32, 32, 36, 66, 69, 32, 32

32, 65, 69, 32, 32, 32, 32, 36, 82, 69, 32, 32

32, 40, 36, 66, 44, 88, 41, 40, 36, 67, 41, 69

32, 36, 66, 44, 88, 69, 32, 36, 66, 44, 89, 69

32, 69, 32, 32, 32, 32, 32, 36, 67, 44, 88, 69

32, 36, 67, 44, 89, 69, 32, 40, 36, 66, 41, 44

89, 67, 89, 67, 76, 69, 32, 67, 79, 85, 78, 84

69, 82, 32, 86, 48, 46, 48, 50, 44, 32, 66, 89

32, 68, 65, 86, 73, 68, 32, 83, 65, 78, 78, 69

82, 13, 0, 13, 83, 84, 65, 82, 84, 32, 65, 68

68, 82, 69, 83, 83, 47, 60, 67, 82, 62, 32, 58

36, 0, 13, 69, 78, 68, 32, 65, 68, 68, 82, 69

83, 83, 47, 66, 47, 60, 67, 82, 62, 32, 58, 36

0, 13, 69, 88, 69, 67, 85, 84, 69, 32, 73, 78

83, 84, 82, 85, 67, 84, 73, 79, 78, 83, 63, 40

89, 47, 78, 47, 60, 67, 82, 62, 41, 32, 58, 0

13, 80, 82, 73, 78, 84, 32, 84, 82, 65, 67, 69

32, 40, 89, 47, 78, 47, 60, 67, 82, 62, 41, 58

0, 13, 65, 32, 32, 88, 32, 32, 89, 32, 32, 83

84, 32, 83, 80, 13, 0, 13, 69, 82, 82, 79, 82

58, 32, 85, 78, 75, 78, 79, 87, 78, 32, 79, 80

67, 79, 68, 69, 32, 65, 84, 32, 36, 70, 69, 68

67, 0, 13, 84, 79, 84, 65, 76, 32, 35, 32, 79

70, 32, 67, 89, 67, 76, 69, 83, 32, 85, 83, 69

68, 58, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32

32, 0, 32, 61, 199, 201, 0, 240, 1, 0, 32, 72

203, 169, 13, 32, 210, 255, 173, 28, 192, 240, 7, 32

175, 198, 201, 1, 240, 112, 32, 208, 198, 173, 25, 192

240, 7, 48, 102, 173, 28, 192, 240, 97, 32, 14, 199

32, 184, 197, 208, 5, 32, 185, 198, 176, 207, 32, 242

197, 173, 104, 193, 41, 2, 240, 47, 32, 155, 198, 208

22, 32, 226, 196, 234, 234, 234, 32, 251, 198, 186, 142

17, 192, 32, 29, 199, 32, 43, 199, 56, 176, 20, 152

24, 42, 168, 185, 150, 193, 141, 193, 196, 200, 185, 150

193, 141, 194, 196, 32, 0, 0, 173, 104, 193, 41, 1

240, 3, 32, 31, 202, 32, 174, 203, 173, 104, 193, 41

4, 240, 3, 32, 61, 200, 169, 0, 240, 132, 32, 171

202, 0, 32, 25, 199, 32, 47, 199, 32, 236, 198, 96

104, 168, 104, 170, 165, 251, 208, 2, 198, 252, 165, 252

December 1988: Volume 9, Issue 2

GC 2060 data 72, 198, 251, 165, 251, 72, 173, 157, 196, 133, 251, 173

IJ 2070 data 158, 196, 133, 252, 206, 17, 192, 206, 17, 192, 138, 72

LK 2080 data 152, 72, 96, 104, 168, 104, 170, 104, 133, 251, 104, 133

LN 2090 data 252, 230, 251, 208, 8, 230, 252, 238, 17, 192, 238, 17

HH 2100 data 192, 138, ' 72, 152, 72, 96, 173, 157, 196, 133, 251, 173
KM 2110 data 158, 196, 133, 252, 96, 173, 157, 196, 141, 78, 197, 173

CK 2120 data 158, 196, 141, 79, 197, 32, 25, 199, 32, 47, 199, 162

HF 2130 data 0, 173, 255, 255, 157, 111, 193, 238, 78, 197, 232, 224

MJ 2140 data 2, 208, 242, 32, 43, 199, 96, 173, 22, 192, 240, 10

KL 2150 data 173, 23, 192, 133, 251, 173, 24, 192, 133, 252, 96, 104

CA 2160 data 170, 104, 168, 24, 169, 2, 101, 251, 133, 251, 144, 2

AG 2170 data 230, 252, 165, 252, 72, 165, 251, 72, 173, 16, 192, 9

LH 2180 data 4, 141, 16, 192, 72, 173, 254, 255, 133, 251, 173, 255

AO 2190 data 255, 133, 252, 152, 72, 138, 72, 96, 104, 168, 104, 170

FR 2200 data 104, 141, 16, 192, 104, 133, 251, 104, 133, 252, 24, 169

NO 2210 data 3, 109, 17, 192, 141, 17, 192, 138, 72, 152, 72, 96

GA 2220 data 172, 156, 196, 169, 234, 141, 157, 196, 141, 158, 196, 185

MA 2230 data 34, 192, 240, 41, 141, 18, 192, 41, 127, 74, 74, 74

KK 2240 data 168, 190, 34, 193, 138, 72, 240, 11, 160, 1, 177, 251

EF 2250 data 153, 156, 196, 200, 202, 208, 247, 104, 24, 105, 1, 101

JB 2260 data 251, 133, 251, 144, 2, 230, 252, 169, 1, 96, 160, 0

CF 2270 data 173, 104, 193, 41, 2, 240, 20, 173, 18, 192, 48, 12

KI 2280 data 41, 120, 201, 32, 208, 9, 32, 47, 198, 56, 176, 3

HG 2290 data 32, 115, 198, 173, 18, 192, 41, 7, 24, 121, 19, 192

GG 2300 data 24, 248, 109, 33, 192, 141, 33, 192, 162, 3, 169, 0

FC 2310 data 125, 29, 192, 157, 29, 192, 202, 16, 245, 216, 96, 160

AL 2320 data 0, 173, 156, 196, 141, 62, 198, 173, 16, 192, 41, 195

AE 2330 data 72, 40, 240, 6, 140, 22, 192, 56, 176, 44, 200, 140

GC 2340 data 22, 192, 173, 157, 196, 48, 19, 24, 101, 251, 141, 23

EB 2350 data 192, 144, 1, 200, 169, 0, 101, 252, 141, 24, 192, 56

FK 2360 data 176, 16, 24, 101, 251, 141, 23, 192, 176, 1, 200, 165

AF 2370 data 252, 233, 0, 141, 24, 192, 96, 173, 18, 192, 172, 15

NE 2380 data 192, 41, 120, 201, 80, 208, 3, 172, 14, 192, 201, 96

JL 2390 data 24, 240, 8, 152, 109, 157, 196, 144, 8, 176, 6, 152

OG 2400 data 174, 157, 196, 117, 0, 160, 0, 144, 1, 200, 96, 160

FI 2410 data 13, 173, 156, 196, 217, 47, 193, 240, 7, 136, 16, 248

IC 2420 data 169, 0, 240, 2, 169, 1, 96, 174, 27, 192, 172, 26

CN 2430 data 192, 32, 161, 203, 96, 174, 184, 193, 172, 185, 193, 32

NP 2440 data 25, 200, 173, 217, 193, 174, 216, 193, 32, 121, 202, 32

JG 2450 data 171, 202, 56, 96, 165, 203, 201, 4, 208, 8, 169, 4

10 2460 data 13, 104, 193, 141, 104, 193, 160, 0, 177, 251, 141, 156

PF 2470 data 196, 208, 4, 200, 140, 25, 192, 96, 174, 14, 192, 172

CL 2480 data 15, 192, 173, 16, 192, 72, 173, 13, 192, 40, 96, 141

JL 2490 data 13, 192, 8, 104, 141, 16, 192, 142, 14, 192, 140, 15

BO 2500 data 192, 169, 0, 72, 40, 96, 165, 251, 141, 105, 193, 165

AE 2510 data 252, 141, 106, 193, 96, 160, 7, 208, 2, 160, 3, 162

NH 2520 data 3, 181, 251, 153, 107, 193, 136, 202, 16, 247, 96, 160

OM 2530 data 7, 208, 2, 160, 3, 162, 3, 185, 107, 193, 149, 251

PC 2540 data 136, 202, 16, 247, 96, 173, 207, 193, 174, 206, 193, 32

KL 2550 data 121, 202, 173, 209, 193, 174, 208, 193, 32, 121, 202, 174

HD 2560 data 193, 193, 172, 192, 193, 32, 140, 202, 192, 0, 240, 65

KI 2570 data 174, 192, 193, 173, 193, 193, 160, 3, 32, 224, 201, 174

HA 2580 data 116, 193, 134, 251, 174, 115, 193, 134, 252, 169, 0, 141

KF 2590 data 104, 193, 141, 25, 192, 173, 211, 193, 174, 210, 193, 32

BC 2600 data 121, 202, 174, 193, 193, 172, 192, 193, 32, 140, 202, 192

CO 2610 data 0, 240, 14, 173, 61, 193, 201, 66, 208, 9, 169, 0

AH 2620 data 141, 28, 192, 240, 28, 240, 119, 141, 28, 192, 174, 192

GJ 2630 data 193, 173, 193, 193, 160, 3, 32, 224, 201, 174, 116, 193

AG 2640 data 142, 26, 192, 172, 115, 193, 140, 27, 192, 173, 213, 193

AI 2650 data 174, 212, 193, 32, 121, 202, 174, 193, 193, 172, 192, 193

DI 2660 data 32, 140, 202, 192, 0, 240, 71, 173, 61, 193, 201, 89

KP 2670 data 208, 8, 173, 104, 193, 9, 2, 141, 104, 193, 173, 215

NJ 2680 data 193, 174, 214, 193, 32, 121, 202, 174, 193, 193, 172, 192

MB 2690 data 193, 32, 140, 202, 169, 13, 32, 210, 255, 192, 0, 240

ON 2700 data 29, 173, 61, 193, 201, 89, 240, 2, 208, 8, 173, 104

AI 2710 data 193, 9, 1, 141, 104, 193, 162, 4, 169, 0, 157, 29

BI 2720 data 192, 202, 16, 250, 48, 2, 169, 1, 96, 142, 50, 200

MO 2730 data 140, 51, 200, 174, 182, 193, 173, 183, 193, 160, 2, 32

JH 2740 data 142, 201, 168, 162, 2, 136, 185, 115, 193, 157, 255, 255

PI 2750 data 202, 208, 2, 162, 4, 136, 16, 242, 96, 169, 62, 32

NM 2760 data 210, 255, 174, 193, 193, 172, 192, 193, 32, 140, 202, 162

HG 2770 data 0, 189, 61, 193, 201, 32, 208, 4, 232, 136, 208, 245

CO 2780 data 201, 67, 208, 12, 173, 104, 193, 41, 251, 141, 104, 193

PJ 2790 data 169, 0, 240, 71, 201, 81, 208, 10, 173, 25, 192, 9

EE 2800 data 129, 141, 25, 192, 208, 57, 201, 82, 208, 3, 32, 72

KN 2810 data 203, 201, 84, 208, 11, 169, 1, 77, 104, 193, 141, 104

BF 2820 data 193, 56, 176, 35, 201, 87, 208, 31, 174, 194, 193, 173

MC 2830 data 195, 193, 160, 3, 32, 224, 201, 173, 115, 193, 141, 149

EJ 2840 data 193, 173, 116, 193, 141, 148, 193, 169, 8, 13, 104, 193

DL 2850 data 141, 104, 193, 169, 13, 32, 210, 255, 96, 169, 0, 170

OJ 2860 data 172, 156, 196, 192, 0, 240, 9, 217, 34, 192, 240, 1

JA 2870 data 232, 136, 208, 247, 96, 32, 181, 200, 169, 0, 133, 254

JC 2880 data 189, 136, 194, 24, 133, 253, 6, 253, 144, 3, 230, 254

HD 2890 data 24, 101, 253, 133, 253, 144, 3, 230, 253, 24, 173, 218

NE 2900 data 193, 101, 253, 133, 253, 173, 219, 193, 101, 254, 133, 254

EM 2910 data 96, 174, 156, 196, 189, 34, 192, 41, 120, 74, 133, 253

JP 2920 data 74, 24, 101, 253, 109, 202, 193, 133, 253, 169, 0, 109

KE 2930 data 203, 193, 133, 254, 96, 160, 0, 162, 0, 177, 253, 200

AF 2940 data 142, 145, 193, 140, 144, 193, 201, 66, 208, 4, 160, 1

HE 2950 data 208, 22, 201, 67, 208, 4, 160, 2, 208, 14, 201, 82

DA 2960 data 208, 79, 174, 178, 193, 173, 179, 193, 160, 2, 208, 6

JN 2970 data 173, 199, 193, 174, 198, 193, 32, 142, 201, 56, 233, 1

GK 2980 data 168, 192, 3, 208, 26, 160, 2, 174, 145, 193, 185, 115

ED 2990 data 193, 157, 71, 193, 232, 200, 192, 4, 208, 2, 160, 0

HH 3000 data 192, 2, 208, 238, 202, 208, 21, 24, 109, 145, 193, 141

CB 3010 data 145, 193, 170, 185, 115, 193, 157, 71, 193, 202, 136, 16

FD 3020 data 246, 174, 145, 193, 172, 144, 193, 208, 7, 201, 69, 240

KD 3030 data 8, 157, 71, 193, 232, 192, 6, 208, 136, 96, 72, 165

PO 3040 data 253, 141, 146, 193, 165, 254, 141, 147, 193, 104, 134, 253

AK 3050 data 133, 254, 169, 0, 141, 125, 193, 152, 10, 72, 170, 136

EB 3060 data 202, 177, 253, 72, 41, 15, 142, 126, 193, 170, 189, 128

BP 3070 data 193, 174, 126, 193, 157, 115, 193, 173, 125, 193, 208, 13

DB 3080 data 238, 125, 193, 104, 41, 240, 74, 74, 74, 74, 202, 16

BP 3090 data 225, 206, 125, 193, 202, 136, 16, 213, 173, 146, 193, 133

HP 3100 data 253, 173, 147, 193, 133, 254, 104, 96, 142, 240, 201, 141

GN 3110 data 241, 201, 169, 1, 141, 125, 193, 152, 74, 170, 72, 185

OB 3120 data 255, 255, 56, 233, 65, 24, 48, 4, 105, 10, 16, 2

EC 3130 data 105, 17, 206, 125, 193, 240, 20, 238, 125, 193, 238, 125

NB 3140 data 193, 10, 10, 10, 10, 13, 127, 193, 157, 115, 193, 202

IP 3150 data 24, 144, 3, 141, 127, 193, 136, 16, 210, 104, 96, 165

KE 3160 data 253, 72, 165, 254, 72, 160, 38, 169, 32, 153, 61, 193

DJ 3170 data 136, 16, 250, 169, 36, 141, 61, 193, 174, 180, 193, 172

HA 3180 data 181, 193, 32, 25, 200, 32, 201, 200, 160, 2, 177, 253

ME 3190 data 153, 67, 193, 136, 16, 248, 32, 245, 200, 32, 17, 201

NP 3200 data 32, 34, 203, 174, 186, 193, 173, 187, 193, 160, 3, 32

LK 3210 data 142, 201, 170, 202, 189, 115, 193, 157, 94, 193, 202, 16

NJ 3220 data 247, 173, 193, 193, 174, 192, 193, 32, 121, 202, 104, 133

IC 3230 data 254, 104, 133, 253, 96, 133, 254, 134, 253, 160, 0, 177

NI 3240 data 253, 201, 0, 240, 6, 32, 210, 255, 200, 208, 244, 96

PI 3250 data 165, 253, 72, 165, 254, 72, 134, 254, 132, 253, 160, 0

HI 3260 data 32, 207, 255, 201, 13, 240, 5, 145, 253, 200, 208, 244

DA 3270 data 104, 133, 254, 104, 133, 253, 96, 174, 188, 193, 173, 189

FN 3280 data 193, 160, 5, 32, 142, 201, 170, 202, 189, 115, 193, 157

CA 3290 data 71, 196, 202, 16, 247, 173, 221, 193, 174, 220, 193, 32

LK 3300 data 121, 202, 32, 207, 255, 96, 173, 4, 3, 141, 246, 202

PO 3310 data 173, 5, 3, 141, 253, 202, 173, 190, 193, 141, 4, 3

FG 3320 data 173, 191, 193, 141, 5, 3, 96, 141, 13, 192, 140, 15

LK 3330 data 192, 142, 14, 192, 8, 40, 141, 16, 192, 169, 0, 133

PA 3340 data 251, 141, 4, 3, 169, 0, 133, 252, 141, 5, 3, 32

OA 3350 data 113, 199, 201, 0, 240, 1, 0, 169, 82, 141, 0, 2

AE 3360 data 169, 85, 141, 1, 2, 169, 78, 141, 2, 2, 169, 0

HC 3370 data 141, 3, 2, 76, 90, 196, 173, 197, 193, 174, 196, 193

AM 3380 data 160, 5, 32, 142, 201, 162, 255, 160, 0, 232, 189, 115

AN 3390 data 193, 153, 79, 193, 200, 138, 74, 144, 244, 169, 32, 153

NI 3400 data 79, 193, 200, 224, 11, 208, 234, 96, 173, 223, 193, 174

CP 3410 data 222, 193, 32, 121, 202, 32, 34, 203, 169, 13, 141, 94

IN 3420 data 193, 169, 145, 141, 95, 193, 169, 0, 141, 96, 193, 173

BG 3430 data 201, 193, 174, 200, 193, 32, 121, 202, 174, 193, 193, 172

DH 3440 data 192, 193, 32, 140, 202, 162, 0, 160, 0, 185, 61, 193

JB 3450 data 201, 13, 240, 11, 201, 32, 240, 4, 157, 61, 193, 232

BC 3460 data 200, 208, 238, 174, 192, 193, 173, 193, 193, 160, 9, 32

LJ 3470 data 224, 201, 170, 189, 115, 193, 157, 13, 192, 202, 16, 247

GF 3480 data 96, 169, 0, 196, 251, 208, 6, 228, 252, 208, 2, 169

JJ 3490 data 1, 96, 173, 104, 193, 41, 8, 240, 23, 172, 148, 193

NJ 3500 data 174, 149, 193, 32, 161, 203, 201, 0, 240, 10, 169, 247

AE 3510 data 45, 104, 193, 9, 4, 141, 104, 193, 96, 162, 73, 160

GH 3520 data 0, 56, 185, 150, 193, 237, 9, 192, 153, 150, 193, 200

MA 3530 data 185, 150, 193, 237, 10, 192, 153, 150, 193, 136, 24, 185

OM 3540 data 150, 193, 109, 11, 192, 153, 150, 193, 200, 185, 150, 193

LK 3550 data 109, 12, 192, 153, 150, 193, 200, 202, 202, 16, 210, 173

LD 3560 data 11, 192, 141, 9, 192, 173, 12, 192, 141, 10, 192, 0

Transactor 32 December 1988: Volume 9, Issue 2

RS-232 Hardcopy

Talking to serial printers

by Joseph Buckley

I am a member of the tiny minority of Commodore users who

happen to have an RS-232 serial printer. Since it seems to me

that 99.5% of the software written ignores this possibility, I

usually find myself either being forced to customize the soft

ware, or just doing without.

For some time I have wanted a program that would allow me

to redirect the printer output of both BASIC and assembly pro

grams from device #4 to device #2 transparently, without re

sorting to altering the program. My first approach was to patch

into the vector ibsout ($0326) and intercept the output there,

but I never could figure out why I would always get a '?device

not present' error.

Last August, the sysop of the Programmer's SIG on Quantum

Link announced a contest for writing articles to be placed on

line. This was the perfect excuse to finally get the program

running. I sat down and worked on puzzling it out. After what

couldn't have been more than two minutes the answer just un

folded before me: My mistake was intercepting the vector IB

SOUT, when I should have been intercepting the vector IOPEN.

Page $03 in the Commodore 64 holds the indirect vectors for

the operating system I/O routines as a point for patches to get

hold of, and modify, those routines. What must be done in this

case is to alter the vector IOPEN ($031A) to intercept all calls

that will open to device #4, the serial port printer, and open in

stead device #2, the RS-232 port.

At this point, the call to OPEN will check FA ($BA) to see which

physical device is to be used; if it is not #4, it continues on its

merry way. If it is #4, it will change FA from $04 to $02, the

RS-232 device. It will also set the baud rate at $0293. One oth

er necessary change is to modify the RS-232 output buffer

pointer, ROBUF ($F9), to point to an unused block of 256 bytes

of free memory. Now we can actually open the logical file as

if no change had been made. When finished, we will return to

the calle

T
The assembly code to redirect the output is as follows:

patch 1 Ida

cmp

bne

Ida

sta

Ida

sta

Ida

ldx

sta

stx

jsr

clc

its

$ba

#$04

patch la

#$02

$ba

#$07

$0293

#<buff

#>buff

$f9

$fa

openfl

check current device

is it a printer?

no? then ignore patch

yes, redirect to RS-232 port

new device

baud rate (600)

set baud

buffer address

may change

open the logical file

done

patchla

The address of OPENFL is loaded with the initial value of

IOPEN. This will allow multiple patches to run concurrently.

While you will now no longer generate a '?device not present'

error if there is no device #4, having no device #2 will not

cause an error either. The computer will carry on whether or

not your printer is powered up.

Most RS-232 printers will also need linefeeds in addition to

each carriage return sent to it. (One thing improperly stated in

the Reference Guide is that a logical file number which is

greater than 127 adds a linefeed. While this is true for basic,

ML calls to $FFD2 make no provision for this.) To handle this

problem, another patch is needed at IBSOUT ($0326). This will

add any linefeeds as well as PETASCII to true Ascn conversions

if needed.

Transactor 33 December 1988: Volume 9, Issue 2

patch2 sta

Ida

outl

out2

temp

$9a

cmp #$02

bne out2

Ida temp

cmp #$0d

bne patch2a

Ida #$0a

jsr prntit

lda#$0d

sec

bcc outl

cmp #$41

bcc patch2b

cmp #$5b

bcs patch2b

clc

adc #$20

bne outl

cmp #$cl

bcc patch2c

cmp #$db

bcs patch2c

sec

sbc #$80

bne outl

cmp #$14

bne outl

Ida #$08

sta temp

Ida temp

prntit

;save A

; check current device

; is is 2?

; no, ignore patch

; restore A

; is it a C/R?

; no, skip LF

;LF($00/noLF)

; send LF

; the old C/R patch2a

;CLCforPetASCII

; send TrueASCII

; <a?, yes, skip

; >z?, yes, skip

; make TrueASCII

; exit patch2b

; <A?, yes, skip

; >Z?, yes, skip

; make TrueASCII

; exit patch2c

; CBM delete?

; no, exit

; make TrueASCII backspace

;save A

; restore A

; print/exit

The address of prntit is loaded with the initial value of IB-

SOUT ($0326) to allow for other patches, while TEMP is any

free byte of RAM.

The SEC at PATCH2A acts as a flag for the ASCII conversion to

follow. If no conversion is needed, then either delete the code,

or put a CLC in its place to branch around the conversion.

What follows is the BASIC loader for the code. It is written to

be relocatable by changing the value of AD. You will need ap

proximately 352 bytes for this routine, since the 256 byte RS-

232 output buffer resides at the end of the code. It has also

been commented so that it can be easily customized to suit the

application.

Once run, you merely load another program under it and all

output to device #4 will be redirected to device #2. As long as

the new program doesn't do a major rework to the system, or

use the two bytes $F9-FA, and you can find a place to store the

code and buffer, you'll be all right. As usual, run/stop-

restore will reset the indirect vectors to their default values

and disable the patches.

By the way, I managed to place second in the article contest!

JE

JE

DN

MJ

JL

6E

HO

GJ

PF

LA

JH

OB

HL

FE

MA

GE

GD

N6

EG

AH

DH

BK

DL

HN

LM

KK

CJ

ND

IM

FF

BG

GO

LJ

FD

BC

JD

GI

BG

MC

HN

MC

PI

0G

ED

BA

HE

ND

GE

HD

GJ

IM

10 rem* rs232 printer driver for c64

20 rem* redirects data for device #4 to

30 rem* rs232 port (device #2)

40 :

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

ad=49152

for t=0 to 94: read x: poke 49152+t,x: next

rem set jmp address for open

ol=peek (794): oh=peek (795)

poke ad+24,ol: poke ad+25,oh

ah=int(ad/256): poke 794,ad-(256*ah): poke 795,ah

:

rem set rs-232 output buffer address

bh=int((ad+96)/256): bl=ad+96-(256*bh)

poke ad+16,bl: poke ad+18,bh

rem set baud rate

poke ad+11,7

:

rem set temporary storage

sh=int((ad+95)/256): sl=ad+95-(sh*256)

poke ad+29,sl: poke ad+30,sh

poke ad+38,sl: poke ad+39,sh

poke ad+87,sl: poke ad+88,sh

poke ad+90,sl: poke ad+91,sh

:

rem add linefeed 10 yes/0 no

poke ad+45,10

:

rem set ascii conversion flag (56 yes/24

poke ad+51,56

:

rem set jmp address for print

pl=peek (806): ph=peek (807)

poke ad+47,pl: poke ad+48,ph

poke ad+93,pl: poke ad+94,ph

ph=int((ad+28)/256): pl=ad+28-(256*ph)

poke 806,pi: poke 807,ph

:

data 165, 186, 201, 4, 208, 17, 169,

data 133, 186, 169, 7, 141, 147, 2,

data 96, 162, 192, 133, 249, 134, 250,

data 74, 243, 24, 96, 141, 95, 192,

data 154, 201, 2, 208, 52, 173, 95,

data 201, 13, 208, 7, 169, 10, 32,

data 241, 169, 13, 56, 144, 32, 201,

data 144, 9, 201, 91, 176, 5, 24,

data 32, 208, 19, 201, 193, 144, 9,

data 219, 176, 5, 56, 233, 128, 208,

data 201, 20, 208, 2, 169, 8, 141,

data 192, 173, 95, 192, 76, 202, 241

no)

2

169

32

165

192

202

65

105

201

6

95

□

Transactor 34 December 1988: Volume 9, Issue 2

StarCart

Computing the relative positions of stars

by Stephen Shervais, Jr.

Copyright ® 7957 by Stephen Shervais, Jr.

For many applications, and for most amateur purposes, the

standard astronomical coordinate system, Right Ascension and

Declination, is ideal. Since the sky appears to be a sphere ro

tating about a pole, polar coordinates exactly match the view,

and portray relative positions of stars with a minimum of fuss

and distortion. Even the quirky modifications which as

tronomers have made to the simplest polar coordinate system -

using hours instead of degrees of longitude and measuring 90

degrees each way from the equator instead of 360 degrees

from one pole - even these have good practical historical rea

sons behind them. And when our concerns become three-

dimensional and the positions of stars relative to the Sun be

come important, Right Ascension, Declination, and Distance

still give us all the information we need. The system only be

comes unwieldy when we need to discuss the relative posi

tions of stars to each other. Then we find ourselves trying to

compare two distances and four angles and wondering why we

have a headache.

There are a number of reasons why we might wish to look at

relative star positions. We might be interested in the distribu

tion of different types of stars, or be trying to decide just

where the Sun lies in relation to the rest of the Orion Arm of

the Galaxy. We might be building a three-dimensional map of

the Solar Neighborhood, or even a Galactic Orrery. Fortu

nately, our old friend the Cartesian coordinate system (X, Y,

and Z axes at right angles to each other) is available to help

compare the distances between the stars. Using Cartesian co

ordinates, calculating distances is only a matter of solving the

Pythagorean Theorem: D2=X2+Y2+Z2. The hard part is getting

from astronomical to Cartesian without going mad.

Enter the computer. The formulae for converting polar to

Cartesian coordinates are relatively simple, and available in

any good book on analytic geometry:

X=Distance * Sin(Right Ascension) * Cos(Declination)

Y=Distance * Sin(Right Ascension) * Sin(Declination)

Z=Distance * Cos(Right Ascension)

There are three pitfalls to be avoided when getting your com

puter to do the job for you. First, you have to be sure to con

vert the astronomical data to true polar coordinates. Second,

and simultaneously, you must remember that your computer

works in radians, not degrees. Finally, you must be careful in

data entry formats so that your program is converting the num

bers you think it is converting, and in the direction you want

them to go.

The following program will allow you to create a file of Carte

sian coordinates for any (reasonable) number of stars, then

print out either the coordinates themselves, or the distances

from each star to all the others. Line 200 starts everything off

by defining a function to convert degrees and minutes to deci

mal degrees (or hours and minutes to decimal hours), while

lines 220-310 serve as the menu function. Lines 340-510 take

in the standard astronomical information, check to see that it is

correct (more precisely, that it is what you intended to type),

and convert the positional data to radians. Note that the input

format requires a decimal to separate the hours or degrees

from the minutes; those who use decimal degrees or hours

must modify line 200 so that lines 500 and 510 will give the

correct answer.

The program then jumps successively to two subroutines

which convert the coordinates to Cartesian (lines 570-630) and

then output a sequential file to disk (650-740).

You now have a sequential file on your disk which contains

both the original input data and the Cartesian coordinates. If

you rerun the program and ask for a coordinate output, lines

760-950 will read the file from the disk, and lines 970-1100

will print it out. The subroutine on lines 1120-1320 is the in

teresting one. It takes the data from the file, computes the dis

tance between each star and every other star, and prints out the

result. Be warned, the length of the printout grows very

rapidly as you add stars to the file. Users might want to add a

line after 1110 that asks for a maximum distance (i.e. only

print stars closer to each other than five light years), and put

an if/then statement into line 1210 so the program will re

spond accordingly.

There are limitations to the program as written, and users may

wish to write additional subroutines to overcome them. One

limitation is that you have to tell the program how many

records to read, which means you must either remember the

Transactor 35 December 1988: Volume 9, Issue 2

number or remember where you wrote it down. This presents

the reader with the opportunity to write a subroutine that will

read the file and count how many records are there. Another

limitation is that there is no provision for inserting additional

records; you must start over each time. Finally, the cooordi-

nate system is aligned with the plane of the Ecliptic (defined

by the orbit of Earth around the Sun), a direction which has al

most no significance in the greater scheme of things. A truly

fun project would be the addition of a subroutine which would

convert the astronomical (ecliptic) coordinates to the galactic

latitude and longitude system. The key problem there is to find

a way to resolve the quadrant ambiguities which result. This is

left as an exercise for the reader.

StarCart 1.0: Astronomical to Cartesian coordinate conver

sion programfor determining relative positions of stars.

CE 100

HK 110

ID 120

FI 130

FB 140

JC 150

DB 160

FA 170

FL 180

NG 190

IC 200

KF 210

GM 220

IB 230

DD 240

MO 250

OP 260

AE 270

LE 280

10 290

BC 300

BO 310

AE 320

AL 330

EB 340

DG 350

DG 360

MA 370

BM 380

IN 390

CO 400

BI 410

KN 420

AO 430

KI 440

EB 450

DG 460

JK 470

DE 480

NJ 490

MK 500

PL 510

CI 520

CB 530

PP 540

CE 550

MB 560

CC 570

DO 580

JD 590

KP 600

FO 610

BB 620

CJ 630

EO 640

BO 650

AC 660

rem starplot 1.0

rem copyright @ 1987

rem by Stephen shervais jr

rem 4868 langer In

rem woodbridge, va, 22193

rem CompuServe 72060,573

print"this program is designed to compute"

print"the distance between stars near the sun"

print"in cartesian coordinates aligned with"

prinf'the plane of the ecliptic":print

def fna(q) = (int(q)/57.296) + ((q-int(q))/60/57.296)

rem **** input or output *****

print"do you wish to create a new file or print out an old one?"

print

print1!, new file"

print"2. old file: cartesian coordinates"

print"3. old file: distances"

print

get al$: if al$="" then 280

if al$="l" then gosub 340

if al$="2" then gosub760: gosub970

if al$="3" then gosub760: gosubll20

end

rem **** input new file ****

input"total number of star systems";si:sl=sl-l

dim s$(sl), s(sl,8)

for t=0 to si

print"{rvs off}system";t+l

input"system name

input"right ascension

input"declination

input"distance, ly

rem **** error check **

print

print"check: name

print" r.a.

print" dec

print" dist

s$(t)

s(t,0)

B-(tt A)

s$(t)

s(t,0)

s(M)

inpufis this correct (y/n) y{left}{left}{left}";a2$

if a2$Ochr$(89) then 370

s(t,2)=fna(s(t,0))*15

s(t,3)=fna(s(t,l))

gosub 570:rem *** xyz coords ***

next t

gosub 650:rem ** output to file **

return

rem ** ecliptic cartesian conv **

x=s(t,4)*sin((90/57.296)-s(t,3))*cos(s(t,2))

s(t,5)=x

y=s(t,4)*sin((90/57.296)-s(t,3))*sin(s(t,2))

s(t,6)=y

z=s(t,4)*cos((90/57.296)-s (t,3))

s(t,7)=z

return

rem *** output to disk ***

input "new file name?";a3$

openl4,8/14,"0:"+a3$+",s,w"

JJ

PL

EH

CC

FK

AN

KE

AA

BE

OG

PL

01

KB

JB

KF

LI

AH

BE

FF

BG

KM

LG

JF

GE

ML

HH

CK

MP

CN

GA

PI

PM

KK

AP

AF

OG

IE

JG

HH

FI

GI

ID

OP

IG

NI

FC

JI

PG

LD

MN

II

OE

JA

LG

IL

FM

LA

NA

CP

JA

AC

MH

EF

JF

NA

AF

KN

EE

OE

CK

MM

MG

KD

EP

OJ

KO

NC

AN

OJ

MF

GF

670 for t=0 to si

680 print§14,s$(t)

690 for i=0 to 7

700 print§14,s(t,i)

710 next i

720 next t

730 print#14:dosel4

740 return

750 rem *** input from disk ***

760 input "old file name ";a3$

770 print"do you want to output to screen,"

780 prinf'or printer?":print

790 print"1. output to screen"

800 print"2. output to printer"

810 get bl$: if bl$="" then 810

820 if bl$O"l" and bl$<>"2" then 810

830 print

840 input "number of star systems";si:sl=sl-l

850 if s<0 then return

860 dim s$(sl), s(sl,8)

870 openl0,8,10,"0:"+a3$+",s,r"

880 for t=0 to si

890 input#10,s$(t)

900 for i=0 to 7

910 input#10,s(t,i)

920 next i

930 next t

940 print#10:closel0

950 return

960 rem *** ecliptic output ***

970 open4,3: if bl$="2" then dose4: open4,4

980 for t=0 to si

990 prints

1000 print#4,s$(t)

1010 print#4, right ascension ";s(t,0);"hours.minutes"

declination ";s(t,l)

distance= ";s(t,4)

x= ";s(t,5)

y= "
z= "

then gosub 1340

degrees.minutes"

light years"

light years"

s(t,6);"light years"

s(t,7);"light years"

1020 print#4,

1030 print#4,

1040 print#4,

1050 print#4,

1060 print#4,

1070 if bl$="l

1080 next t

1090 print#4:dose4

1100 return

1110 rem *** distance output ***

1120 open4,3: if bl$="2" then dose4: open4,4

1130 print#4,"distance from sun to ":print

1140 for t=0 to si

1150 print#4,s$(t);tab(25-len(s$(t)));s(t,4)

1155 if bl$="l" then gosub 1440

1160 next t

1170 print#4:dose4

1180 print:input"maximum trip distance ";d2:print

1190 open4,3: if bl$="2" then close4: open4,4

1200 for t=0 to sl-1

1201 gosub 1470

1210 print#4,"distance from ";s$(t);" to:":print:b2=0

1220 for u=t+l to si

1230 xl=s(t,5)-s(u,5):x2=xl*xl

1240 yl=s(t,6)-s(u,6):y2=yl*yl

1250 zl=s(t,7)-s(u,7):z2=zl*zl

1260 dl=sqr(x2+y2+z2)

1270 if dl<d2 then print#4,s$(u);tab(25-len(s$(u)));dl

1280 if bl$="l" then gosub 1440

1290 next u

1300 print:next t

1310 print#4:close4

1320 return

1330 rem *****screen counter****

1340 b2=b2+8

1350 if b2=24 then gosub 1370

1360 return

1370 print"hit any key to continue{up}"

1380 get b2$:if b2$="" then 1380

1390 b2=0: return

1440 b2=b2+l

1450 if b2=22 then gosub 1470

1460 return

1470 prinf'hit any key to continue{up}"

1480 get b2$:if b2$="" then 1480

1490 print:b2=0: return □

Transactor 36 December 1988: Volume 9, Issue 2

Disabling "i©" on the 1581

A peek at the vectored operating system

by M. Garamszeghy

One of the nice features of the 1581 is its ability to use sub

directories (or, more correctly, disk partitions) to divide the

large 800K disk space into smaller, more manageable chunks.

However, this feature does not work with all commercial soft

ware (such as various versions of PaperClip, Pocket Writer,

etc., on both the C64 and C128) because of the annoying habit

of such software to log-in the drive with an "iO" command

before reading or writing a document file. On the 1581, the

"iO" command is not only superfluous for disk log-ins, but

will also reset the directory partition back to the normal or

'root' directory area, thus negating any previously made parti

tion selection.

Fortunately, there is a way to de-activate the "iO" command

without interfering with other operations of the 1581, thus giv

ing full partition support for virtually all software. The tech

nique outlined below can be extended to other operating sys

tem functions such as VALIDATE,

scratch and new for example.

The operating system of the 1581

drive is unusual amongst Commodore

disk drives in that the major functions

are accessed indirectly through RAM

vectors. This means that you can trap

the vectors and replace the code in the

drive ROMs with code of your own devising. The ample RAM

and buffer space of the 1581 also favour such custom pro

gramming.

On the 1581, operating system calls are made via a two step

jump. The various routines are normally accessed by JSRing or

JMPing to a table of addresses beginning at $FF00 of the disk

drive's ROM. Each entry in the table consists of an indirect JMP

{xxxx) instruction, where xxxx is an address of a location in the

drive's RAM that contains the real address for the routine to be

executed. This address, or vector, normally points back to a

ROM routine. However, because the ultimate execution address

is stored in RAM, it can be easily changed to point to new or

custom code.

Table 1 is a list of some of the more important of the 1581 's

vectored operating system calls and the normal memory loca

tions associated with each. The purpose of each of the func-

You can trap the vectors and

replace the code in the drive

ROMs with your own code...

tions is described in detail beginning on page 108 of the 1581

user's manual along with the remainder of the operating sys

tem calls. To disable any of these commands, it is only neces

sary to point the vector to a simple RTS instruction somewhere

in the drive's ROM. One such convenient location is $807B. Re

member that spot - it is all that is required to deactivate any

system function and can be very useful.

Back to our original problem. The vector for the "iO" com

mand is at $198. To de-activate the command, a simple

memory write is all that is required. After opening the com

mand channel on the required disk drive as logical file 15 (e.g.

OPEN 15,8,15 for a device 8 drive), type in:

print#15,"m-w";chr$(152);chr$(1);

chr$(2);chr$(123);chr$(128)

This sequence of bytes does a memory

write to the RAM in the disk drive

(similar to a POKE in the computer)

that changes the address vector at $198

to point to the magical RTS instruction

mentioned above. Now when your ap

plication software issues an "iO" com

mand to the drive, it is just ignored,

and your previously selected partition

remains selected.

Note: The techniques described here will only work with the

1581 drive and will probably cause other drives to crash or,

worse, trash your disks.

To restore the operation of the "iO" command, you need only

issue the drive reset command:

print#15,"ui"

This automatically resets all RAM vectors to their default val

ues (unless of course, you have intercepted the "ui" vector, in

which case it will do nothing). Note that this memory write

method must be applied prior to starting up your other soft

ware because it is very difficult, if not impossible, to send the

required chr$ values to the disk drive from within a commer

cial program, even one containing a sophisticated DOS wedge.

Transactor 37 December 1988: Volume 9, Issue 2

It will also be reset by a general system reset, such as pressing

the reset button on a C128.

To change DOS partitions from within an application program,

the application must have a DOS wedge capable of sending any

user specified command string to the disk drive. The command

to select a disk partition is:

/0:<partitionname>

where <partitionname> is the name of the disk partition that

you wish to select. It will appear in the directory with a file

type of CBM. Note that to access it as a sub-directory partition,

the partition must first have been formatted as a DOS partition

when it was initially created. To return to the normal or 'root'

partition, the command is:

/0

with no partition name specified.

As with all computer programming, there is more than one so

lution to the problem. This next one uses a DOS ampersand

utility file loader to perform the same task in a slightly more

elegant fashion. (The DOS ampersand file is a special type of

USR file which contains a machine language program to be ex

ecuted inside the disk drive.) To activate this program, all you

need to do is send:

&0:iO-off

over the disk command channel to the 1581 drive. This is very

easy to do with the DOS wedges available in most commercial

wordprocessing programs etc. (For example, with Pocket

Writer 128, to get to the DOS wedge, press the Commodore

logo key then the 'c' key. You can then type in any disk com

mand and send it to the drive. Other programs have similar ca

pabilities.) To restore the "iO" command, send the "ui" com

mand string over the command channel as outlined above.

Listing 1 is a BASIC loader which creates the USR file iO-off. It

works with all Commodore computers capable of using the

1581 drive (i.e. C64, C128, +/4, etc.) Remember to set line

150 to the device number of your 1581 drive. This device

number is only used to create the initial file and is not used as

part of the file itself.

Obviously, the technique outlined above can be extended to

any of the vectored commands. For example, by changing the

vector at $oiaa you can disable SCRATCH; $0iAC can be used to

disable the NEW (format) command.

AI

PP

LH

OJ

AA

LP

IP

100 rem

110 rem turn off 1581 iO command

120 rem by m. garamszeghy

130 rem **************************

140 :

150 dv=8 : rem 1581 device number

160 open 2,dv;2,"i0-off,u,w"

PC 170 for i=l to 15

KM 180 read x

CD 190printf2,chr$(x)

MM 200 next

IK 210 close 2

AF 220 :

N6 230 data 0, 4

HE 240 data 11

FF 250 data 169, 123

GO 260 data 141, 152,

LL 270 data 169, 128

PF 280 data 141, 153,

MJ 290 data 96

NL 300 data 14

TABLE 1: 1581 System Vectors

rem execute dos '&' file at $0400 in drive ram

rem program is 11 bytes long

rem

rem

rem

rem

rem

rem

Ida #$7b

sta $0198

Ida #$80

sta $0199

rts

checksum

; reset iO vector

; to point to a

; rts command

System Function Main Entry

Address

RAM Vector

at address

Points to

code at

JIDLE

JIRQ

JNMI

JVERDIR

JINTDRV

JPART

JMEM

JBLOCK

JUSER

JUTLODR

JDSKCPY

JSCRTCH

JNEW

FF00

FF03

FF06

FF09

FF0C

FF0F

FF12

FF15

FF18

FF1B

FF1E

FF21

FF24

FF27

FF2A

0190

0192

0194

0196

0198

019A

019C

019E

01A0

01A2

01A4

01A6

01A8

01AA

01AC

B0F0

DAFD

AFCA

B262

8EC5

B781

892F

8A5D

898F

A1A1

A956

876E

88C5

8688

B348

□

GET MORE

PLEASURE

FROM THE

BIBLE WITH

LANDMARK

The Computer Reference Bible

Here's what LANDMARK will enable you to do:

^SEARCH THROUGH THE BIBLE—Find Phrases,

words or sentences.

^DEVELOP TOPICAL FILES—Copy from The Bible text

and search results then add your own comments and notes.

^COMPILE YOUR PERSONAL BIBLE—Outline texts in

color. Add Notes and comments. Create your own sup

plementary Study files.

SCREATE FILES—Then convert them for use with

wordprocessors like Paperclip and GEOS.

^MAKE SUPPLEMENTARY STUDY FILES—and de

velop translation variations.

NEW LOW PRICE

$119,95!
vl.2 for C64 or v2.0 for C128/1571

CALL OR WRITE TODAY FOR A FREE

BROCHURE, WHICH SHOWS HOW VALUABLE

LANDMARK CAN BE

IN YOUR BIBLE STUDY

P.A.V.Y. Software P.O. Box 1584

Ballwin, MO 63022 (314) 527-4505

ASK FOR IT AT YOUR LOCAL SOFTWARE DEALER!

Transactor 38 December 1988: Volume 9, Issue 2

C-128 CP/M Plus Memory Map

An in-depth investigation...

by Miklos Garamszeghy

Copyright © 1988 M. Garamszeghy

Herne Data Systems, Toronto, Ontario

The memory map of the C-128 is complicated to say the least.

It is even more complicated in CP/M mode because of the vari

ety of RAM, ROM, and input/output chips used by the CP/M

operating system. This article attempts, for the first time, to

map out the memory configurations used in CP/M mode. It is

not claimed to be complete, but is a very useful starting point

for your own explorations. The labels for the various memory

locations are taken from the CP/M system source code files.

It is difficult to produce a detailed memory map of the CP/M

operating system because much of the operating system is

RAM based, and therefore subject to quick and easy revisions.

There are currently four versions of C-128 CP/M generally

available (apart from various beta test versions), as denoted by

the dates displayed on boot up or by pressing the F8 key. There

are some major differences in the memory maps of each ver

sion. For clarity, these are defined here as:

AUG = Version dated 1 Aug 85

DEC = Versions dated 6 Dec 85 or 8 Dec 85

MAY = Version dated 28 May 87

There are also significant differences in the memory map de

pending on which processor (the Z-80 or 8502) is currently in

use. This is important even in CP/M mode because most of the

low-level BIOS routines, such as standard serial port operations

(some disk operations and all printer output), RAM disk opera

tions, etc. use the 8502 mode.

Z-80 OPERATIONS

BANK 0 : MMU configuration register value $3£

BANK 0 is the system bank. The CP/M BIOS and BDOS operate primarily in this

bank. System calls are made by transient programs via the common memory.

0000 to OFFF - Z-80 ROM code

1000 to 128F - SYSKEYAREA ; string data for programmable keys. Each key can

be defined as a string. Definitions "float" (i.e. you do not have to

adjust any pointers elsewhere) and are terminated by a zero byte.

Vector at FDOB points to this table.

1290 to 13EF - KEYCODES ; ASCII codes for each key, 4 values for each key

(normal, "alpha mode", shift and control) arranged according to key

scan code table on pg. 687 of C128 Programmer's Reference Guide. Note

that "alpha mode" defaults to uppercase and is toggled on and off by

pressing the C= logo key. It is equivalent to a software "caps lock",

but is not related to either the <caps lock> or <shift lock> keys.

Vector at FD09 points here.

Value Meaning

0 null (equivalent to no key press)

1 to 7f normal ASCII codes (letters, numbers, symbols, etc)

80 to 9f key has been programmed as a string, defined in SYSKEYAREA

(32 possible "programmable" keys)

aO to af 80-col character colour (ctrl with number keys on main

keyboard)

bO to bf 80-col background colour (ctrl with number keys on

numeric keypad)

cO to cf 40-col character colour

dO to df 40-col background colour

eO to ef 40-col border colour

fO toggle disk status line on/off (ctrl-run/stop)

fl system pause (no-scroll key)

f2 track cursor on 40-col screen (ctrl-no-scroll)

f3 move 40-col window left 1 char (ctrl <- is defined as 4 f3's)

f4 move 40-col window right 1 char (ctrl -> is defined as 4 f4's)

f5 unlock MFM disk types (ctrl-home)

f6 select ADM31 emulation mode (ctrl- on numeric keypad)

(MAY version only)

f7 select VT100 emulation mode (ctrl+ on numeric keypad)

(MAY version only)

f8 to fe not currently defined - reserved for future expansion

ff system cold re-start (control-enter)

(NOTE: when bit 7 of FD22 (STATENABLE) is on, key codes of $80 and

greater are returned without executing special functions as outlined

above. FD4C contains a vector to the address of the table of execution

addresses of key codes fO to ff. This vector can be changed to point to

your own code.)

13F0 to 13FF - COLORTBL ; logical colour values 00, 11, 22, ... FF for use

with (esc-esc-esc) colour value. Vector at FD0D points here.

1400 to 1BCF - SCREEN40 ; pseudo 80-column screen character buffer for

40-column screen

1C00 to 23CF - COLOR40 ; pseudo 80-column screen colour buffer for

40-column screen

2400 BANKPARMBLK ; (system parameters and flags)

2402 CUROFFSET ; position counters used by pseudo 80-col screen

2404 OLDOFFSET ; for 40-col screen

2405 PRTFLG

Transactor 39 December 1988: Volume 9, Issue 2

2406 FLASHPOS

2408 PAINTSIZE

2409 CHARADR40

240B CHARCOL40

240C CHARROW40

240D ATTR40

240E BGCOLOR40

240F BDCOLOR40

2410 REV40

number of rows to move over for 40-col screen shift

($18 or $19)

pointer to current char in pseudo screen RAM

40-col character position - column 0-79

- screen row 0-24

40-col attribute (character colour)

background colour

border colour

reverse video flag

Operating system areas:

2411 CHARADR ; pointer to current char in 80-col RAM

2413 CHARCOL ; 80-col character position - column 0-79

2414 CHARROW ; - screen row 0-24

2415 CURRENTATR ; 80-col attribute

bit : 7 - 0 = alternate (block graphics) char set

- 1 = ASCII character set

6 reverse video 1 = on, 0 = off 2 green 1 ■

5 underline

4 blink

3 red

2416 BGCOLOR80

2417 CHARCOLOR80

2418 PARMBASE

241A PARMAREA80

241D PARMAREA40

2420 BUFFER80COL

2471 KEYBUF

2 green

lblue

0 intensity

0 = off

background colour

character colour

pointers to currently active attribute sets

buffer for currently pressed key code

2488 CONTROL CODES ; flag for control/shift keys pressed

Bit Key Pressed Bits 0 and 1 Character Mode

2

4

5

7

2489 MS6PTR

248B OFFSET

248C CDRPOS

248E SYSFREQ

control key

right shift key

C=key

left shift key

00 = lower case

01 = alpha mode

10 = shift

11 = control

pointer to current function key message string

cursor pointers used by various screen

printing routines

power line frequency : 0 = 60 Hz, FF = 50 Hz

2600 to 2A40 - BIOS8502 ; 8502 BIOS code

(see map of 8502 mode below for description)

2C00 to 2FFF - VICSCREEN ; 40-column video RAM, also appears in hardware

I/O area and Bank 2. (Note this is separate from normal C128 40-col

video RAM at $0400 which is unused in CP/M mode because it is under the

Z-80 ROM.)

3000 to 3CFF - CCPBUFFER ; CCP.COM hides here during TPA execution

Component DEC MAY AUG

BankBDOS 9900 9900 9C00

Resident BDOS EA00 EA00 EE00

Bank BIOS C700 C800 CA00

Resident BIOS F000 F000 F400

MFM disk parameter table (DPT) is located at d876 to da75 in AUG version

d6bd to d8bc in DEC versions

and d860 to da5f in MAY version

The DPT structure is described in "Inside C128 CP/M" (Transactor vol 8/4, pg.

43.) It contains the basic information to allow access to foreign MFM disk

types. The DPT can be found by the pointer at FD46 (all versions).

The other major component of accessing disk drives is the disk parameter

header or DPH. This is the working area used by the BDOS for actual disk

access. When a disk is logged in, the appropriate values are copied from the

DPT to the DPH for general use. The drive table address which contains the

vectors to the DPH for each logical drive can be found at BIOSBASE+D7. This

contains a series of address pointers to the DPHBASE for each logical drive

(A: to P:). If a drive is not supported (drives F: to L: and N: to P:), the

drive table value is 0. For each drive the $37 byte long DPH has the

following format:

DPHBASE-A pointer to the sector write routine for this drive

DPHBASE-8 pointer to the sector read routine for this drive

DPHBASE-6 pointer to the login routine for this drive

DPHBASE-4 pointer to the initialization routine for this drive

DPHBASE-2 physical drive assigned to the logical drive according to values

listed below under VICDRV.

1-1 secondary disk type byte from byte 2 of DPT entry.

pointer to logical to physical sector skew table (0000 if none)

DPHBASE+2 9 bytes of scratch pad for use by BDOS

DPHBASE+B media flag 0 if disk logged in, FF if disk has been changed

DPHBASE+C pointer to DPB values for this drive (contained later in entry)

DPHBASE+E pointer to CSV scratch pad area (used to detect changed disks)

DPHBASE+10 pointer to ALV scratch pad area (used to keep track of drive

storage capacity)

DPHBASE+12 pointer to directory buffer control block (BCB)

DPHBASE+14 pointer to data buffer control block

DPHBASE+16 pointer to the directory hashing table (FFFF if not used)

DPHBASE+17 bank for hash table

DPHBASE+18 DPT entry for this drive

DPHBASE+2A maximum sector number and MFM lock flag (bit 7 on if locked)

DPHBASE+2B pointer to entry in master MFM DPT table

3C00 BOOTPARM

3C02 LDBLKPTR

3C04 BLKUNLDPTR

3C06 BLOCKSIZE

3C07 BLOCKEND

3C09 BLOCKPTRS

3C29 INFOBUFFER

3C35 EXTNUM

3C36 RETRY

3C77 BOOTSTACK

various flags etc. used during cold boot

3D00 BANKOFREE ; BANK 0 work area can be used by transient programs

extends to 98FF on Dec/85 and May/87 versions, 9BFF on Aug/85 version.

Primarily used by CP/M as directory and file buffers. Programmers can

use, but beware of implications.

i Free memory in Common BANK 0 and 1. Normally used by RSX (resident

system extension) programs, as well as operating system extensions and

SID, SUBMIT, SAVE, GET, PUT, etc. Can be used by experienced programmers

if you are aware of consequences, such as possible crash when using

another program.

Extends to E9FF in DEC and MAY versions and

EDFF in AUG version

Transactor 40 December 1988: Volume 9, Issue 2

System Control Block (SCB):

DEC and MAY Versions EF9C to EFFF

AU6 Version F39C to F3FF

100 bytes containing basic system variables, located immediately before BIOS

jump table, can be read or written with BDOS function 49. Basic parameters

detailed in Appendix A of CP/H Plus Programmers Guide from Digital Research.

Byte Offset Function

00 - 04 reserved for various system flags

05 BDOS version number

06 - 09 reserved for user determined flags (put your own stuff here)

0A - OF reserved for system use

10 - 11 16-bit program return code for passing data to

chained programs

12 - 19 reserved for system use

1A screen width - 1 (set to 79)

IB current column position on screen (0 to 79)

1C screen page length (24 lines per screen)

ID - 21 reserved for system use

22 - 2B assignment vectors for CP/M's logical I/O devices.

16-bit value used as follows:

Bit Device

f KEYS (input only)

e 80COL (output only)

d 40COL (output only)

c PRT1 (device 4 serial printer, output only)

b PRT2 (device 5 serial printer, output only)

a 6551 (not really supported, it was supposed to be on an

external card which was never produced)

9 RS232 (input or output)

8 to 0 not used

If a bit is on, then the physical device is assigned to that logical device.

Each logical device can have more than one physical device assigned to it

and each physical device can be assigned to more than one logical device.

Logical devices and their assignment vectors are:

22 - 23

24-25

26 - 27

28 -29

2A- 2B

CONIN

CONOUT

AUXIN

AOXOUT

LSTOOT

2C Page mode 0 = display 1 page of data at a time

1 = display continuously

(this is the annoying flag that causes CP/M TYPE command to say

"press return to continue" after each screenful of data.)

reserved for system use

determines effect of CTRL-H. 0 = backspace and delete

FF = delete and echo

determines effect of delete 0 = delete and echo

FF = backspace and delete

30 - 32 reserved for system use

33 - 34 16-bit console mode flag (default value = 0000):

Bit Meaning

0 0 = return normal status for BDOS function 11

1 = CTRL-C only status

1 0 = enable CTRL-S CTRL-Q stop scroll/start scroll

1 = disable stop/start scroll

2 0 = normal console output

1 = raw console output, disables tab expansion,

and CTRL-P printer echo

3 0 = enable CTRL-C program termination

1 = disable CTRL-C

8 - 9 used for RSX's

35-

37

38

39

3A-

3C-

3E

3F-

41

43

44

45 -

4A

4B

36

3B

3D

40

49

4C - 4F

50

51

52 - 53

54

55 - 56

57

58-59

5A

5B

5C

5D - 5E

5F- 61

62 - 63

address of 128 byte scratch pad buffer

output string delimiter (normally $)

LIST output flag 0 = console output only

1 = echo output to printer

reserved for system use

pointer to start of SCB

current DMA (disk buffer) address

current drive (0 = A:, 1 = B:, etc.)

BDOS disk info flags

FCB flag

BDOS function where error occured

current user number (0 to F)

reserved for system use

BDOS multi sector count for read/write

BDOS error mode:

FF = do not display error messages, return to current program

FE = display error messages, return to current program

else terminate current program on error and display message

Drive search chain: up to 4 drives can be specified

0 = current default drive, 1 = A:, 2 = B:, etc.

If program or file is not found on specified drive, the search

chain will be used and each drive in the list will be tried

in sequence until it is found.

Temporary file drive: 0 = default, 1 = A:, etc

Error drive: number of drive where last I/O error was encountered

(0 = default, 1 = A:, etc)

reserved for system use

BIOS flag to indicate disk changed

reserved for system use

BDOS flags: bit 7 set, system displays expanded error messages

(default is set)

date in days in binary since 1 jan 78

hour in BCD

minutes in BCD

seconds in BCD

start of common memory (E000)

reserved for system use

top of user TPA (from vector at 0006 - 0007: entry point to BDOS)

BIOS Jump table:

(BIOSBASE= F000 in DEC and MAY versions

F400 in AUG version)

(NOTE: the first byte of each group is a Z80 jump instruction to the

address contained in the next two bytes.)

Function BIOS Function number

BIOSBASE+00 to +02

BIOSBASE+03 to +05

BIOSBASE+06 to +08

BIOSBASE+09 to +0b

BIOSBASE+Oc to +0e

BIOSBASE+Of to +11

BIOSBASE+12 to +14

BIOSBASE+15 to +17

BIOSBASE+18 to +la

BIOSBASE+lb to +ld

BIOSBASE+le to +20

BIOSBASE+21 to +23

BIOSBASE+24 to +26

BIOSBASE+27 to +29

BIOSBASE+2a to +2c

BIOSBASE+2d to +2f

cold boot

warm boot

check CONSOLE input status

read CONSOLE character

write CONSOLE character

write LIST character

write AUXILIARY OUT character

read AUXILIARY INPUT character

move to track 0 on selected disk

select disk drive

set track number

set sector number

set DMA address

read specified sector

write specified sector

check LIST status

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Transactor 41 December 1988: Volume 9, Issue 2

BIOSBASE+30 to +32 translate logical to physical sector 16

BIOSBASE+33 to +35 check CONSOLE output status 17

BIOSBASE+36 to +38 check AUXILIARY INPUT status 18

BIOSBASE+39 to +3b check AUXILIARY OUTPUT status 19

BIOSBASE+3c to +3e get address of character I/O table 20

BIOSBASE+3f to +41 initialize character I/O devices 21

BIOSBASE+42 to +44 get address of disk drive table 22

BIOSBASE+45 to +47 set § of logical sectors to read/write 23

BIOSBASE+48 to +4a force I/O buffer flush 24

BIOSBASE+4b to +4d memory move 25

BIOSBASE+4e to +50 get or set time 26

BIOSBASE+51 to +53 select memory bank 27

BIOSBASE+54 to +56 specify bank for DMA operation 28

BIOSBASE+57 to +59 set buffer bank 29

BIOSBASE+5a to +5c call user system functions 30

BIOSBASE+d3 to +d4 pointer to physical device table

(points to $f7fd in AUG and $£3el in DEC and MAY)

DEVTBL = Physical device table, each entry is 8 bytes long:

device name (6 bytes, padded with spaces)

mode byte (1 byte)

baud rate (1 byte)

Mode Byte Component Device Function

FD02 VICDRV ; device number to execute on printer,

for disk I/O:

0000 0001

0000 0010

0000 0011

0000 0100

0000 1000

0001 0000

device can do input

device can do output

device can do both

supports software selected baud rate

supports serial I/O

supports XON/XOFF

Baud Rate

Byte

0

1

2

3

4

5

6

7

8

Function

none

50 baud

75

110

135

150

300

600

1200

Baud Rate

Byte

9

a

b

c

d

e

f

Function

1800

2400

3600

4800

7200

9600

19200

Note:

For all practical uses, C128

CP/M will not support rates

over 1200 baud because of

software overhead.

C128 devices are: KEYS, 80COL, 40COL, PRT1, PRT2, 6551, and RS232

BIOSBASE+d7 to d8 pointer to drive table (List of DPH addresses).

(points to FBDl on DEC and MAY versions and FB78 on AUG)

FC00 to FDOO INTBLOCK ; contains all FD's. This is the pointer to the

interrupt vector (FDFD). A hardware quirk of the C128 requires from FC00

to FDOO to be all FD's else the interrupt pointer address will not be

correctly specified on the Z-80 address bus. If you use this seemingly

unused area for your own programs, it will crash on a random basis if an

interrupt occurs. BEWARE!!

PARMBLOCK ; BIOS parameter working storage for passing to 8502

FD01 VICCMD ; BIOS 8502 command to execute

Bit Value Drive

0000 0001

0000 0010

0000 0100

0000 1000

1000 0001

1000 0010

1000 0100

1000 1000

unit 8, drive 0

unit 9, drive 0

unit 10, drive 0

unit 11, drive 0

unit 8, drive 1

unit 9, drive 1

unit 10, drive 1

unit 11, drive 1

(default drive A: and E:)

(default drive B:)

(default drive C:)

(default drive D:)

FD03 VICTRK

FD04 VICSECT

FD05 VICCOUNT

FD06 VICDATA

FD07 CURDRV

FD08 FAST

; track number to execute disk operations on,

or secondary address for printer operations

; sector number for disk operations. For MFM

disks side 1, use $80 + sector #

; number of sectors to read/write for disk I/O,

number of characters to print on printer or low

byte of address to jump to for custom 8502 code.

; various data/status items for disk and printer or hi

byte of address to jump to for custom 8502 code.

; current logical drive using device A: (0 = drive A:

4 = drive E:)

; drive type flags (updated after each drive I/O

operation), bit on=drive is fast (1571 or 1581)

off=drive is slow (1541 type)

Bit Drive

0

1

2

3

4-7

A:

B:

C:

D:

(not

(device 8)

9

10

11

currently

FD09 KEYTBL ; pointer to key scan definition table (1290)

FD0B FUNTBL ; pointer to function key table (1000)

FD0D COLORTBLPTR ; pointer to logical colour table (13F0)

FD0F FUNOFFSET ; offset to current function key (0 if none)

FD10 SOUND1

FD12 SOUND2

FD14 SOUND3

; pointers for various clicks, beeps etc.

The following storage locations are used by the general BIOS and BDOS

function calls. Values for BIOS 8502 storage (FD01 etc above) are taken

from here:

; track number used in BDOS and BIOS routines

; address of disk data buffer

; sector number used in BDOS and BIOS routines

; numberof sectors to read/write

; current bank (0 or 1)

; bank for disk data buffer (0 or 1)

; absolute drive code (0 = A:, 1 = B:, etc)

; relative drive code (same as for VICDRV

outlined above)

; # 128 byte records in CCP.COM file.

FD16

FD18

FD1A

FD1C

FD1D

FD1E

FD1F

FD20

FD21

@TRK

@DMA

6SECT

8CNT

@CBNK

6DBNK

@ADRV

@RDRV

CCPCOUNT

Transactor 42 December 1988: Volume 9, Issue 2

FD22 STATENABLE ; general purpose status flags:

Bit Meaning (when set to 1)

7 allow 8-bit key codes

(key values above $80 will not result in

special functions defined in key scan table)

6 track cursor on 40-col screen

when doing input on 80-col screen

5 to 1 (not used?)

0 display disk status on bottom line of screen

FD23 EMULATIONADR ; pointer to screen emulation code address (used to

switch between VT100 and ADM31 modes. Can be pointed to custom code

(in bank 0) for other types of emulation.)

FD25 USARTADR ; pointer to external 6551 address (not normally used)

FD27 INTHL ; temporary storage for CPU registers during

FD3D INTSTACK ; interrupts, BDOS and BIOS calls, etc.

FD3D USERHLTEMP

FD3F HLTEMP

FD41 DETEMP

FD43 ATEMP

FD44 SOURCEBNK

FD45 DESTBNK

FD46 MFMTBLPTR

FD48 PRTCONV1

FD4A PRTCONV2

source bank for inter-bank memory move (0 or 1)

destination bank for inter-bank move (0 or 1)

pointer to MFM disk parameter table (DPT)

pointer to character conversion routine for PRT1

printer (normally ASCII to PETSCII)

pointer to character conversion routine for PRT2

FD4C KEYFXFUNCTION ; pointer to dispatch table for executing extended

key codes functions F0 to FF. This table can be patched to add your

memory resident special functions.

FD4E XXDCONFIG ; RS-232 configuration register

FD4F RS232STATUS ; RS-232 status register

Bit Meaning | Bit Meaning
___„„___________________ I «.

7 0 = ready to receive data j 3 1 = framing error
6 0 = idle 1 = busy | 2 1 = other error

5 1 = data in buffer que j 1 1 = receiving data
4 1 = parity error j 0 1 = ready to send data

FD50 XMITDATA

FD73 RXDBUFCOUNT

FD74 RXDBUFPUT

FD75 RXDBUF6ET

FD76 RXDBUFFER

FDFD INTVECTOR

FE00 @BUFFER

your

FF00 FORCEMAP

FF01 BANK0

FF02 BANK1

FF03 IO

FF03 IO0

FF04 101

FFDO ENABLEZ80

FFDC RETURNZ80

FFEO ENABLE6502

FFEE RETURN6502

RS-232 sending data buffer

number of characters in RS-232 buffer

temporary storage for RS-232 variables

RS-232 data receiving buffer (60 characters)

main entry point to interrupt routine (jump to

routine elsewhere)

256-byte disk and general I/O buffer (you can put

own code here if it is OR to overwrite when not in use)

MMU configuration register

force to MMU value of 3F

7F

3E

3E

7E

8502 code to switch to Z-80 mode

Z-80 code to switch to 8502 mode

BANK 1:

BANK 1 is the transient program bank. All transient programs operate in

this bank. The MMU configuration value is $7F.

0000-0002 Jump to BIOS warm start entry BIOSBASE + 3

0004 high nibble = current user number

low nibble = current default drive (0 to f, 0=A, etc.)

0005-0007 Jump to BDOS entry point (address stored in 0006-0007)

NOTE: This address also marks the end of the TPA. It can be

artificially lowered for use by resident programs.

0008-004f reserved for RST 1 to 7 (Z-80 restart instructions)

(NOTE: Locations 0050 to 007b are set automatically by the CCP when

a transient program is loaded. The transient program can

then check this areas for parameters which may have been

passed from the console in the form of a command tail.)

0050 drive from which latest transient program was loaded,

1=A, 2=B, ... 16=P

0051-0052 pointer to password of first operand in command tail (points to

a location in the CCP buffer starting at 0080). It is set to 0

if no password specified.

0053 length of first password. Set to 0 if no password.

0054-0055 pointer to password of second operand in command tail. Set to

0 if no password specified.

0056 length of second password. Set to 0 if no password.

005c-007b default parsed file control block (FCB) area:

005c-006b initialized from first command tail operand

006c-007b initialized from second command tail operand

(NOTE: The FCB areas are normally 32 bytes long each. Thus, the second

FCB area must be moved to an unused area before the first FCB area can

be used or else it will be overwritten.)

007c current record position for default FCB 1.

007d-007f current random record position for default FCB 1.

0080-OOff default 128 byte disk buffer and CCP input buffer.

0100-e9ff 58K transient program area (TPA) DEC and MAY versions

-edff 59K TPA on AU6 version

eOOO-ffff common with BANK 0 (top of TPA, also BDOS, BIOS, etc.)

**

Bank 2 : MMU value = $3E

This bank, which I have arbitrarily called BANK 2, is mostly the same as

Bank 0 with the following exception:

1000 to 13FF VICCOLOR ; colour map for 40-col screen

This bank must also be in context to access the MMU chip registers at D500

in the Z-80 I/O mapped area.

**

Transactor 43 December 1988: Volume 9, Issue 2

Z-80 I/O mapped area:

In addition to the normal memory mapping which includes RAM and ROM, the

Z-80 has another addressing mode which is called I/O mapping. This is used

to access the chip registers and is similar to memory mapping except the

Z-80 IN and OUT instructions must be used instead of LD type instructions,

The two most commonly used ones are:

IN A, (C) which will read the value of I/O addressed by .BC into the

.A register

OUT (C),A which will write the value of .A to the I/O addressed by .BC

In both cases, .BC is a 16-bit address and .A is an 8-bit value.

The C128 I/O chips appear at their normal address locations in the I/O

area as outlined below and can be programmed directly by the experienced

user. Note that you must be careful when playing with register values

because CP/M expects most of them to be set in certain ways. Changing

these settings may cause a system crash. The remainder of the address

space is taken up by "bleed through" from the underlying bank 0 RAM.

An exception to this is the space from 0000 to OFFF which actually

contains bank 0 RAM from address D000 to DFFF.

D000 - VIC

D400 - SID

D500 - MMU

D600 - 8563 80-column chip

D800 - VICCH 40-col colour map

DC00 - CIA fl

DD00 - CIA |2

DE00 external 6551 USART

DE00 TXD6551 (send & receive data register)

DE01 RESET6551 (write only)

DE01 STATUS6551 (when read)

DE02 COMMAND6551

DE03 CONTROL6551

DF00 RAM expander DMA controller chip

8502 Mode

Surprisingly, the CP/M side of the C128 also makes use of the 8502 side,

including the KERNAL ROMs for some of the low-level I/O operations. In

8502 mode, RAM from 0000 to 01FF is common between the banks. Note that

this is different than normal C128 mode which has common RAM from 0000 to

03FF. The most important implication of this that the KERNAL JSFAR,

JMPFAR, INDFET, INDSTA, and INDCMP routines for bank manipulation cannot be

used because they all rely on code which is no longer in common RAM (it is

above 0200).

Most of the memory map is similar to the Z-80 side with the exception of

the low end. This low end area is very similar to that used in normal

C128 mode except as noted below.

Bank 0 (MMU value 3F):

; BIOS 8502 working storage

000A ; current printer device number

000B ; printer secondary address

000C ; disk drive data channel f

000D ; disk drive command channel I

000E ; disk drive device f

000F to 0012 ; temporary storage pointers

0013 to 008F ; unused zp RAM where you can stash your own 8502 code

; (pointers normally used in C128 mode, but not required

; in CP/M mode)

0090

OOCC

0100

0201

0300

0334

0362

0380

0A03

0A1C

to

to

to

to

to

to

to

to

00CA

00FF

0200

02FF

0333

0361

037F

09FF

; KERNAL pointers required for disk and printer I/O

; same as C128 mode

; unused zp RAM

; various KERNAL pointers, 8502 stack, etc. Some

unused locations but too chopped up to put code here.

; basically unused, you can put some code here if you wish

; system vectors

; unused?

; logical file tables

; unused?

; FF=50 Hz, PAL; 0=60 Hz, NTSC

; serial bus fast flag

Other areas up to OFFF are used sporadically. Large open spaces in table

buffer (0B00 to 0BFF) and C128 mode RS-232 buffers (0C00 to 0DFF).

1000 and up ; common with Z-80 side

The following area is used when the 8502 is switched in during CP/M

operations:

2600-2a40 BIOS8502 ; 8502 BIOS code (all code here is in standard 8502 1

BIOS8502 function

-1 reset

0 initialize

1 read 1541

2 write 1541

3 read 1571/81

4 wrt 1571/81

5 inquire disk

6 query disk

7 printer

8 format dsk

9 user code

a 1750 read

b 1750 write

Jump

AUG

260f

2611

2613

2615

2617

2619

261b

261d

261f

2621

2623

n/a

n/a

Table Entry

MAY/DEC

2614

2616

2618

261a

261c

261e

2620

2622

2624

2626

2628

262a

262c

Points to

AUG

2625

2654

2682

26bO

26f9

26£6

270e

2740

2776

27ac

262b*

n/a

n/a

code at

MAY/DEC

262e

265d

2690

26be

2707

2704

271c

274e

2784

27e2

2634

2820

2823

* NOTE: There is an error in the code at $262b of the AUG version. The byte

value is $c3 and it should be $6c for a JMP (xxxx). This means that 8502

BIOS subfunction 9 (jump to custom user 8502 code) does not work on the

AUG version unless you first correct this bug!!

BIOS8502 IRQ, BRK and NMI vectors point to 29ae on the AUG version

and 29fO on the MAY and DEC ver.

Other I/O vectors are unchanged.

Bank 1 (MMU value 7F):

0000 to 01FF ; common with BANK 0

0200 to FFFF ; common with Z-80 memory map in BANK 1 □

Transactor 44 December 1988: Volume 9, Issue 2

WHEREIS

Notesfrom the CP/M Plus workbench

by Adam Herst

Copyright © 1988, Adam Herst

It is not easy to find a specific file in an unknown user area on

a disk in an unknown drive. C-128 CP/M disks can hold up to

128 files. These files can be isolated across 16 user areas. Up

to 16 drives can theoretically be attached to a CP/M system.

The only tool provided with CP/M Plus with which to find a

specific file or files across all drives and user areas is the tran

sient version of the dir command.

You can search for a file across user areas and across disk

drives with the command:

dird:filename.typ{,d:filename.typ} [user=ALL]

where d is the drive to search, filename.typ is the name of the

file for which to search, and the braces ({}) indicate an option

ally repeated argument.

There are a number of drawbacks to this method. The transient

version of DIR is a large file and can be slow to load. It is a

generalized tool making it slow to execute. It displays extrane

ous, as well as desired, information. The drives to be searched

must be explicitly stated on the command line. The informa

tion returned by dir concerning file location is not in a format

suitable for use in batch processing. Finally, even though the

transient version of DIR is exclusively a CP/M 3.0 command, it

does not manipulate the program return code.

whereis addresses all of these problems. Written in 8080 as

sembly language and assembled with MAC and HEXCOM (sup

plied as part of the dri special offer package), whereis is

small, fast and specialized for this task. If no drive is specified

for the search, all drives in the drive search path are searched.

Finally, the program return code will be set to unsuccessful if

no match to the file specified on the command line is found.

whereis prints the drive code, user area code, and file

name.typ for the found file(s) in the form:

duu:filename.typ

where 'd' is the drive the file was found on, 'uu' is the user

area it was found in, and 'filename.typ' is the filename and

filetype of the found file.

WHEREIS is invoked with a command of the form:

WHEREIS d:filename.typ

where 'd:' is an optional valid drive specification, 'a:' to 'p:\

and 'filespec' is a valid filename and filetype with appropriate

wildcards. If an ambiguous filespec is given, all matches will

be returned. If no drive specification is given, all drives in the

drive search path will be searched.

The source code is well commented and the program is (I

hope) self explanatory. A few points are worth explicit note.

WHEREIS uses two system services that are available only un

der CP/M Plus: get/set SCB, and get/set program return code.

WHEREIS uses the get/set SCB call to determine the drive search

path, and uses the get/set program return code to set the pro

gram return code to unsuccessful if no file match is found. (An

incomplete description of the SCB data structure and the inter

pretation of return codes is provided in the documentation of

the appropriate system call in the CP/M Plus Programmers

System Guide in the volume supplied with the DRI special offer

package.)

Making these calls under CP/M 2.2 will yield unpredictable

results. WHEREIS checks the version number of the operating

system as a courtesy to CP/M 2.2 users. A comparison is made

for a returned version code of Oh indicating that the version of

the operating system is pre-3.0. (Multiple versions of CP/M

3.0 are available. CP/M on the C-128 returns a version number

of 3.1. An explicit check for CP/M 3.x would require 16 com

parisons). If the version of CP/M is pre-CP/M 3.0, WHEREIS

will abort with a reminder that CP/M 3.0 is required.

Both of the system services used by WHEREIS that are exclu

sive to CP/M 3.0 access the System Control Block (SCB), ei

ther directly or indirectly. The SCB is a 100-byte data structure

containing system flags and variables that can be accessed by

the assorted modules that comprise the CP/M operating sys

tem. Some SCB flags and variables can be queried or set

through CP/M system calls. Others must be queried or set

through system call 31h and a user-defined data structure

called the SCB Parameter Block (scbpb).

Transactor 45 December 1988: Volume 9, Issue 2

One variable that can be manipulated directly is the program

return code. The program return code is a one-word variable

contained in the SCB. It can be used to pass a value to a

chained program and is tested by the CCP during the execution

of submit files to conditionally execute command lines. (See

the article "Exploring SUBMIT" for more information on con

ditional command lines.) In a submit file, a program return

code between OOOOh and feffh inclusive indicates successful

program termination, while those between ffOO and fffeh in

clusive indicate an unsuccessful program termination.

The program return code can take on the following values:

OOOOh -

ffOOh -

OOOOh

ff80h -

fffdh

fffeh

feffh

fffeh

fffeh

successful return

unsuccessful return

ccr initialization value

reserved for system use

fatal bdos error

CTRL-C

The codes between ffOOh and ff7fh are available to the pro

grammer to indicate an unsuccessful termination. WHEREIS

sets the program return code to ffOlh, unsuccessful, on execu

tion. The return code is set to OOOOh, successful, when a file

match is found.

CP/M 3.0 provides for the definition of a drive search path. Up

to four drives can be included in the CCP command search. The

drive search path is also stored in the SCB.

At the command level, the drive search path can be queried or

set with the DEVICE command. Issued without options, DEVICE

will display the current drive search path along with other en

vironment information. The drive search path can be set with

the command:

device d{,d}

where 'd' is the letter of a valid drive, 'a' to 'p\ or an asterisk,

'*', to indicate the default drive. Up to four drives can be spec

ified in the drive search path separated by commas.

At the system level, there is no call to directly query or set the

drive search path. The drive search path must be queried or set

using the SCB system call and the associated SCBPB. The SCBPB

consists of three fields: the offset, the get/set code, and the set

value. The offset is a single byte indicating the number of

bytes from SCB base of the field to access. The get/set code is a

single byte that indicates whether the call will get or set the in

dicated SCB field. A code of OOh indicates a get operation, a

code of Offh that a byte should be set, and a code of Ofeh that a

word should be set. The set value is a byte or word containing

the value that the indicated SCB field should be set to.

The drive search path occupies four bytes in the SCB, starting

at the byte with an offset of 4ch and ending at the byte with an

offset of 4fh. Each byte in the drive path chain represents a

disk drive with codes Olh-Ofh representing drives A: to P: re

spectively. A drive code of OOh represents the default drive. A

code of OOffh indicates that the following bytes in the drive

path chain have not been set, i.e. this is the end of the chain.

WHEREIS accesses the drive search chain through a function

with two entry points, PATHF and PATHN. Successive calls to

the function leave the code of the next drive in the drive search

path or a OOh (indicating the end of the path) in the accumula

tor. Drive codes are retrieved from the drive search path until a

code of OOffh is retrieved or until the SCB offset points past the

four-byte drive path chain. (This latter indicator is used to

avoid searching the drive path chain when a drive is specified

on the command line for searching. The offset is immediately

set past the drive path chain to end the search after the speci

fied drive.) A call to PATHF initializes the SCBPB and other flags

and returns the code of the first drive in the path in the accu

mulator. Subsequent calls to PATHN will return subsequent

drive codes.

The bulk of the function ensures that the code of the default

drive is not returned twice if it is included in the path through

both an implicit (the default drive code) and an explicit (the

drive code) reference. The default drive can be specified as

part of the drive search path. If the default drive also is named

in the drive search path, it will be searched twice - once when

its explicit drive code is retrieved from the chain and once

when the default drive code is retrieved from the chain. To

avoid this situation a flag, drvflg, is maintained. The low

nybble contains the drive code of the default drive. The high

nybble contains the 'default drive already returned' flag - it is

set to 0 if the default drive has not been returned, and to Ofh if

it has been returned. If the default drive has been returned, the

drive code of the next drive in the path will be returned in

stead.

WHEREIS is very useful in locating the files that inevitably get

spread across user areas and disk drives. Another use is to al

low simple conditional command execution in submit files.

The submit file I use to drive MAC and HEXCOM uses WHEREIS

to check for the existence of the appropriate .HEX file before

invoking HEXCOM on a conditional command line (the first

character in the line is a colon followed by a space). If the file

is not found, whereis sets the program return code to unsuc

cessful and no time is wasted invoking HEXCOM on a non

existent file. There is probably a place for WHEREIS in your

toolkit.

Listing: whereis.asm

whereis (c) 1988 adai herst

where is the match to the file specification on command line

expand wild cards

search drive if specified or search all drives in drive path

search all user areas

return the drive specification in the form DUU:filename.typ

set program return code to unsuccessful if no match found

Transactor 46 December 1988: Volume 9, Issue 2

; BDOS services

ConOut

PrStr

VerNum

SrchF

SrchN

CurDrv

SetDma

GetUsr

GetScb

equ 2h

equ 9h

equ Och

equ llh

equ 12h

equ 19h

equ lah

equ 20h

equ 31h

RCode equ 06ch

; system pointers

FCB

DMA

BDOS

; symbols

CR

LF

RCODEO

RCODE1

org

equ 5ch

equ 400h

equ 5h

equ Odh

equ Oah

equ OOOOh

equ OffOlh

lOOh

; exit with message if not

mvi

call

ora

jnz

mvi

lxi

call

ret

ISCPM2 db

c, VerNum

BDOS

a

ISCPM3

c,PrStr

d,ISCPM2

BDOS

print character

print string

return cpm version number

search for first file name

search for next file name

get current drive code

set dma buffer

get/set user number

get/set scb

get/set program return code

FCB buffer pointer

DMA buffer pointer

BDOS function pointer

ascii carriage return

ascii line feed

successful return code

user unsuccessful return code

:pm 3.0

'whereis requires CP/M 3.0',CR, LF,'$'

; set dma buffer

ISCPM3 mvi

lxi

call

c,SetDma

d,DMA

BDOS

; set return code to unsuccessful

mvi

lxi

call

c,RCODE

d,RCODEl

BDOS

; check if a drive is specified for search

lxi

mov

ora

jz
lxi

mvi

jmp

; search drives

DRIVE call

NODRV cpi

rz

lxi

h,FCB

a, m

a

DRIVE

h,DRVOFF

m,04fh

USER

in drive pal

PATHF

Oh

h,Fcb

mov m, a

; search user areas

USER mvi c, GetUsr

mvi

call

e,0h

BDOS

; search for first match to

FILE mvi

lxi

call

; check return

cpi

jz
call

c,SrchF

d,FCB

BDOS

status

Offh

NXTUSR ,

PFSPEC

point to drive code in fcb

get drive code from fcb

is it the default drive code?

yes so start searching drive path

point to offset for drive path in subroutine

set offset to end of drive path to force exit

search user areas

:h

get first drive in path, leave in a

is there a drive in the path?

no so exit

point to drive code in fcb

put drive code in fcb

start at user area 0

the file name in the FCB

found file?

no so set next user number

yes so print filespec

; search for next match in this user area

NXTFIL mvi

lxi

call

Transactor

c,SrchN

d,FCB

BDOS

; check return

cpi

jz
call

; do next file

jmp

; do next user

NXTUSR mvi

mvi

call

inr

cpi

jz
mvi

mov

call

jmp

; do next drive

NXTDRV call

jmp

status

Offh

NXTUSR

PFSPEC

NXTFIL

area

c,GetUsr

e,0ffh

BDOS

a

lOh

NXTDRV

c,GetUsr

e,a

BDOS

FILE

in path

PATHN

NODRV

• found file?

no so set next user number

yes so print filespec

get user number from system

increment user number

is it user number 16?

yes so do next drive in path

set new user number

- search the next user area for first file

get next drive code, leave in a

search the drive if there is one
j r

; create and print the filespec of dma entry in a

PFSPEC

; do user number

lxi

mvi

ENTRY cmp

jz
lxi

dad

inr

jmp

NUMBER mov

cpi

jnc

mvi

sta

jmp

ONE mvi

sta

SECOND mov

cpi

jc
sui

NOSUB adi

sta

; do filename

h,DMA

b,0h

b

NUMBER

d,20h

d

b

ENTRY

a,m

lOd

ONE

a,'0'

FSPEC+1

SECOND

a,T

FSPEC+1

a,m

lOd

NOSUB

10

30h

FSPEC+2

; copy file name from dma bi

inx

lxi

mvi

FNAME mov

stax

inx

inx

Her

jnz

mvi

inx

FTYPE mov

stax

inx

inx

dCR

jnz

h

d,FSPEC+4h

b,8h

a,m

d

h

d

K
V

VM&MffFNAME

b,3h

d

a,m

d

h

d

b

FTYPE

; do drive letter

lxi

mov

adi

lxi

mov

h,FCB

a,m

40h

h,FSPEC ;

m,a

; print the filespec

mvi

lxi

call

47

c,PrStr

d,FSPEC

BDOS

point to user number in first entry

entry counter to 0

- is it the right dma entry?

yes so put user number in filespec buffer

* point to user number next entry

increment entry counter

check if the right entry

get user number from dma entry

is it less than 10

yes so 1 as first digit in user number

0 as first digit in user number

do second digit in user number

put a 1 in filespec buffer

get user number from file entry in DMA buffer

is it less than 10

no so don't subtract

subtract the ten

make it printable

put it in the filespec buffer

iffer to filespec buffer

point to filename in current entry

point to filename in filespec buffer

set counter for filename length

set counter for filetype length

point to filetype in filespec buffer

point to drive code in fcb

get the drive code

make it printable

point to drive code in filespec buffer

put drive code in filespec buffer

December 1988: Volume 9, Issue 2

; set return code to successful

mvi c,RCode

lxi d,RCODE0

call BDOS

; return from PFSPEC

ret

; return the next drive :in the drive path in a

; initialize for first drive in path

PATHF mvi c,CurDrv

call BDOS

inr a

lxi h,DRVFLG

mov m, a

lxi h,DRVOFF

mvi m,4bh

; get next drive in path

PATHN lxi h,DRVOFF

mov a, in

inr a

mov m, a

cpi 50h

jz RETEND

lxi h,SCBPB

mov m,a

inx h

mvi m,Oh

mvi c,GetScb

lxi d,SCBPB

call BDOS

cpi Offh

jz RETEND

mov b,a

cpi Oh

jz CHKFLG

lxi d,drvflg

ldax d

ani Ofh

cmp b

jnz RETDRV

; check if default drive

CHKFLG lxi d,DRVFLG

ldax d

ani OfOh

cpi OfOh

jz PATHN

ldax d

mov b,a

ori OfOh

stax d

ha

; return drive code of cum

RETDRV mov a,b

ret

RETEND mvi a, Oh

ret

; EXIT

EXIT ret

; filespec buffer

FSPEC db ' :

; 'where' version number

WHERE db 'vl.2$'

; scb parameter block

SCBPB

SCBOFF db

SCBCOD db

SCBVAL dw ' '

; drive flag

DRVFLG db

; scb offset for current

DRVOFF db

end

Transactor

• get current drive code

• add drive code offset

• point to drive flag

- set flag, low bits to drive code, high bits to 0

- point to offset of current drive in path

• set offset to first drive in path - 1

* point to scb offset value for previous drive

• get the offset

• set offset for current drive

* put offset value of current drive

• is current offset pointing past last drive in path?

* yes so return

- point to offset in scb parameter block

• put offset of current drive in scbpb offset

• point to get/set code in scbpb

• set for get operation

* get the current drive in the drive path

* point to scb parameter block

* is it the end of the path?

• yes so return no more drives code

* store current drive code from path

• is it the default drive code?

* yes so check if default drive already returned

point to the drive flag

get drive flag

mask off default drive returned bits

is it the drive code of the default drive?

no so return drive code

3 already been returned

; point to drive flag

get drive flag

mask off drive code

has it already been searched?

yes so get next drive in path

get drive flag, searched bits are already 0

store drive code of current drive

mask on default returned flag to returned (Ofh)

put default returned flag in drive flag

;nt drive in a

leave the drive code in a

leave no more drives code in a

. ',CR,LF,'$'

offset byte, set to start of drive path - 1

get/set code

byte or word value for set operations

high nybble = Oh, default not searched

= Fh, searched

low nybble = default drive drive code

drive in drive path

□

48 December 1988: Volume 9, Issue 2

I Do Windows (on the C128)

A programfor paneless print positioning

by Jim Butterfield

Copyright © 1988 Jim Butterfield

The usual way to set up a screen window on the C128 is to use

the command window. It's easy and natural, and you can set

up the size and other details on the spot.

But window has its limitations. It seems to be devised for a

one-time setup. When you enter the window, you'll be at its

top; great for clearing the area and starting a new display. But

it's not too handy if you want to add new information to the

bottom of an existing window.

I suppose you could get around this with the Escape sequence,

CHR$(27)+"W". This would scroll the window down, leaving

space on the top line for the new information. So, print

CHR$(27)+"W"+"newstuff" would print newstuff on a

fresh line at the top of the window. But it seems unnatural for

the screen to scroll that way.

There's another approach to doing windows. It involves using

the ESC-T ("top") and ESC-B ("bottom") sequences. Here's the

idea: if you place the cursor at the desired top/left positioning

of the window, and then print ESC-T, that part will be set... then

you can move the cursor to the bottom/right and print ESC-B to

fix the rest of the window. And as a byproduct of this method,

you'll be positioned at the bottom of the window... a new line

of data will scroll previous material upward.

This method also works on the Plus/4 and Commodore 16,

which don't have a WINDOW command. They do, however,

recognize the ESC codes, as does the B-128.

Program''window 128" demonstrates this way of doing things.

A series of numbers (your choice) are generated. If the number

is prime, it will be put into the right-hand window. Otherwise,

it is tested for division by two, three, five, and seven, and put

into the appropriate window depending upon the smallest divi

sor. If the number is not prime, but has a divisor higher than

seven, it's put into a window labelled HIGH.

Here's how the program sets up the various windows. It first

places the cursor at the appropriate top/left position, and then

prints W$. Note that W$ is defined in line 270; it contains all

the ingredients for making a window.

The first part of W$, line 270, is CHR$(27)+"T". That fixes the

top/left part of the screen at wherever the cursor is located.

Next, W$ contains cursor movements... a number of cursor-

rights followed by some cursor-downs. The cursor will now be

moved a fixed distance to the desired bottom-right position...

at which time, W$ fixes this point with a CHR$(27)+"B". The

window is sized, and the cursor is at the bottom.

The program starts all windows at the same row, but positions

the window horizontally with a TAB command in line 610. De

pending on the value of variable K (1 to 6), the window will

be set up at its proper location across the screen. Note that

right after the TAB, we print W$ and bring the window into ex

istence.

Windows are exited by printing two successive "HOME" char

acters. You'll see this in line 600, which is where we start to

set up a new window, and line 640, where the program ends.

(We really wouldn't want "ready." to print within our win

dow).

About the factor calculation: The loop from line 300 to 630

walks through the range of numbers the user has requested.

Array F() contains a list of factors: two, three, five, and seven,

and the loop from 320 to 350 tries them all.

Before we do this trial division, however, we do a special

check for the 'root factor.' For example, two divides by two...

but we don't want to put it in the 'twos' column, because it's

prime. So line 310 tests for these low numbers.

If we don't find a factor of seven or lower, we must try trial di

vision. The smallest possible factor is now eleven, and the

highest is the square root of the number in question. We need

to try odd numbers only... and this we do in the loop from 390

to 420.

The program is set up to use a 40-column screen. If you have

80 columns, you might like to try modifying the program to

allow more columns... or to make the existing columns bigger.

The listing "window128" appears on page 53. -Ed. a

Transactor 49 December 1988: Volume 9, Issue 2

The Edge Connection

Comparing three C128 assemblers

by Joel M. Rubin

This is a comparison of three assemblers available for the

C128: LADS (compute! U.S. $16.95 if typed in, $29.90 with

disk, COMPUTE! Publications, P.O. Box 5038, F.D.R. Station,

New York, NY 10150); Buddy (Pro-Line, approximately $30

in U.S. stores under the name "Power" from Better Work

ing/Spinnaker, Spinnaker Software Corp., One Kendall Sq.,

Cambridge, MA 02139); and Merlin 128 (U.S. $69.95 direct

by mail, less in stores), Roger Wagner Publishing, Inc., 10761

Woodside Ave, Suite E, Santee, CA 92071).

LADS is in a compute! book, "128 Machine Language for Be

ginners", by Richard Mansfield. The book contains both the

assembly language source code and a hex dump, with COM

PUTE!'s "mlx" correction code, every

eight bytes. (The hex entry program,

MLX, is included in the book, and there

is also compute!'s basic proofreader,

similar to Verifizer, to help you type in

BASIC programs, such as MLX.)

Lads source code is written in the fa

miliar environment of the BASIC edi

tor. Thus, you can use any BASIC pro-

gramming tools which you may have,

such as a search-and-replace utility. Since lads lives relatively

low in memory, at $2710, the length of source code may be

limited, although LADS allows linked source code files. LADS

has relatively few pseudo-ops. For example, you can set up a

byte or a string, but not a word (at least not very conve

niently).

Also, even when you save the object code to disk, LADS pokes

it to memory, at the location you specify. In one mode, you

can use RAM 1, between $400 and $ffef, but this might still

make things difficult if, for example, you were writing disk

buffer code at $300.

The big advantage of LADS is that since you get the source

code, you can - if you are skilful enough - add features or

modify the code to enhance lads as you see fit. Also, seeing

how a full-blown assembler is written is, in itself, a very good

lesson in assembly language programming. The book is proba

bly worth having, in and of itself, as a tutorial on 6502 assem

bly language.

Seeing how afull-blown

assembler is written is, in itself,

a good lesson in assembly

language...

The power of Buddy

Buddy, or Power, is written by Chris Miller, whose name can

be found on Transactor's list of contributing writers. Buddy

comes on a "flippy," with a C64 version on one side, and a

C128 version on the other. Actually, I should say "versions."

There are C64 and C128 versions using BASIC editor source

code, C64 and C128 versions using a separate editor, a C128

version which runs under the C-Power "shell", and a C128 Z-

80 cross-assembler, which uses BASIC editor source code. The

C128 BASIC editor versions include a simple search and re

place function that allows you to specify whether you want

any occurrence of the string or only a word, but unfortunately

doesn't allow you to specify a line

range. The separate editor allows a

reasonable* number of word-processor

style directives, such as block-move,

search and replace, as well as horizon

tal scrolling for lines longer than 40/80

characters.

Buddy has many more pseudo-ops

than LADS. You can write code to be

assembled at one address, but with la

bels at another address, which is useful if you are going to be

writing disk buffer code, or code which is going to be moved

from one address to another. You can store tables as bytes,

words, PETSCII strings, or in Commodore screen code. Unoffi

cial 6502 opcodes (but not those of the Z-80) are supported,

and you can load or save parts of symbol tables between as

semblies. If you have a 1571, you can link files faster, by us

ing burst mode.

Conditional assembly is supported, so that the same assembly

file can produce object code for the C64, C128, vic-20, and

maybe even the Atari 800. Perhaps the two most useful

pseudo-ops are the .bas directive, which permits you to link

BASIC and machine language, even using symbolic SYS ad

dresses in your BASIC program; and the .out directive which

permits you to output bytes using your own machine code,

(.out could be used, for example, to write a boot sector, to pro

gram an eprom, or to save code to a file in some format other

than the standard one used by Commodore - e.g. with some

sort of checksum, every so many bytes, as in "&" files; or

Transactor 50 December 1988: Volume 9, Issue 2

without the two-byte address header, as in standard GEOS pro

gram files; or with some sort of encryption, for copy protec

tion purposes.) If you are tired of coming up with label names

for minor branches, you can use "+" and "-" to refer to for

ward and backwards references.

One minor complaint about the .bas pseudo-op: when you give

a symbolic SYS address, Buddy automatically adds an extra

space after the SYS token. This is unnecessary, and it should be

left to the programmer to decide.

A more important deficiency of Buddy is the lack of a usable

macro language. Buddy does include three pre-existing

macros, which can: compare two indirect addresses, fill an

area of memory, and move memory. In theory, there is room

for five new user-definable pseudo-ops. Unfortunately, the

manual shows how to define a pseudo-op that will print out a

message on each pass. To make good use of these user-

definable pseudo-ops, what you really need to know is how to

evaluate an operand, and how to put a byte into the object

stream, and this information is not in the manual. You do get a

list of labels used in the assembler, so I guess it is not impossi

ble to trace things down, but it won't be easy.

commands to move and copy lines, and to find or change

words or strings in a line range, with or without confirmation

of each change, and with a wild card character available in the

find string. The editor automatically tabs lines into:

LABEL OPCODE OPERAND COMMENT

It can be useful to be able to program

the Z-80 outside of CP/M, especially if

you want to move memory around,

and having a cross-assembler makes

this possible. It might be nice to have

this assembler support 8080 mnemon

ics, for those of us who have the

disability of having used the CP/M 2.0

assembler for a while, and who, there

fore, use Intel mnemonics except for

the unique Z-80 instructions.

format. If you don't have a label, you must leave one space.

The "alt" key is used for keyboard macros. For example,

ALT-a defaults to CONTROL-B/SPACE/LDA. Since Control-B goes

to the beginning of the line, ALT-a puts "lda" in the opcode

column. The altkey definitions and several other features can

be changed and saved to disk. Keyboard macros, by the way,

are very fashionable just now, and there are all sorts of books

and packages on disk for such programs as Lotus 1-2-3. The

PBS program, "Computer Chronicles," just ran a show on key

board macros, and one person had even written an adventure

game in terms of Lotus 1-2-3 macros. Achacun son gout!

Merlin is a macro assembler. Macros are, essentially, tem

plates for strings of assembly language instructions and/or as

sembler directives, into which you insert variables. For exam

ple, to do a whole bunch of two-byte

additions, you could write:

It can be useful to be able to

program the Z-80 outside of

CP/M, especially ifyou want to

move memory around, and

having a cross-assembler

makes this possible...

DADD MAC

CLC

LDA]1

ADC]2

STA]1

LDA

ADC

STA

The disk also includes C64 and C128 programs to convert BA

SIC editor source code to separate editor source code, and the

source code for a disassembler.

The magic of Merlin

Merlin 128 is the latest incarnation of Glen Bredon's public

domain (freeware?) Big MAC assembler for the Apple It series.

A less expensive Commodore 64 version is sold separately.

When you boot up Merlin 128 (in 80-column mode only!),

you find a menu which permits you to load, save, get a cata

log, and do several other things. You create code by going to

the editor.

The editor has two modes: an "immediate command" mode,

in which you give such commands as "ASM"; and a full

screen editor mode, which is used for all input of text. (The

C64 version uses a line-oriented editor.) There are block

move, find and replace, and other similar commands, along

with a half-screen mode in which the ten bottom lines are

frozen. Certain editor commands can be undone (a feature

word processors should have!). Immediate mode also includes

Then, if you wanted to two-byte-add TEMP to $1234, you

could simply write:

>» DADD. $1234;TEMP

Or, for example, let us suppose that you were writing a FIG-

style Forth interpreter. The macro:

HEADER MAC]OLDPC = *

TXT]1]LENGTH =]OLDPC-*

DS -]LENGTH ;BACK UP * TO]OLDPC

DFB]LENGTH ;BYTE WITH LENGTH]1

DCI]1 ;LAST BYTE HAS HIGH

BIT TURNED-ON

DA]VLIST]VLIST =]OLDPC

will maintain headers. For example,

>» HEADER.'forth'

gives you the Power equivalent of:

Transactor 51 December 1988: Volume 9, Issue 2

.byt 5/length of "forth"

.asc "fortH";note H has high bit

turned on

.wor last'header

except that the Merlin macro automatically computes the

length of five, and keeps the address of last'header.

Here, the labels]VLIST,]OLDPC, and]LENGTH are variables - la

bels which can be redefined. In Merlin 128, there are also lo

cal labels whose scope is only between two global labels.

Merlin also has conditional and loop structures, and Merlin

128 has a five-byte floating point pseudo-op, but it only takes

integer arguments. You can get a printout of how many proces

sor cycles are used by various routines, but there are inherent

ambiguities - some ops take more time if a page boundary is

crossed at run time, and there is no way to test this at assemble

time. Merlin doesn't have the equivalent of Buddy's .out, .bas,

or .scr. It does have one user-defined pseudo-op.

One deficiency of Merlin is that although it has many ways of

defining text, none of them really corresponds to Commodore

PETSCn. The TXT directive uses chr$(65) for "a", but chr$(97)

instead of chr$(193) for "A". (There

is a directive for turning on the high

bit of text - if you use single quotes,

you don't get the high bit; if you use

double quotes, you do get the high

bit.) The difference between chr$(97)

and chr$(193) does not really matter if

you are printing to screen, but it does

make a difference when you scan the

keyboard. You can use the user-

defined pseudo-op for petscii strings,

and, indeed, the disk contains the

source and object code to do so.

One version ofSourceror

disassembles to memory and

can handle about 6K ofobject

code; the other uses the diskfor

temporaryfiles, and can handle

$7fOO bytes of object code...

ware's MAE 64 are compatible with one another. I doubt that

anyone except Commodore itself could promote such stan

dards, and don't hold your breath!

Disassembly with Sourceror

Merlin includes a labelling disassembler, Sourceror. This dis

assembler is more difficult to use than the disassembler which

comes with Buddy, but it is likely to require less post-editing

of source code. When you use Buddy's disassembler, you

specify the area and bank of memory to be disassembled, wait

a few seconds, and the source code shows up in memory, in

BASIC editor format (with line numbers corresponding to the

address in decimal). The disassembler will not stop when it

hits a table of addresses, or text, and, therefore, you are going

to have to edit this source code.

With Merlin's Sourceror, on the other hand, you load in a disk

file (or choose an area of memory in bank 0 - you can specify

an offset, so that the byte in $a000 really belongs at $2000)

and then you go through the program, telling Sourceror where

to disassemble, and where to interpret the memory as address

es, bytes, or text. If you make what appears to be a mistake,

you can back up. Alternatively, if you hit some fill bytes that

are irrelevant to the rest of the pro-

gram, you can skip over them. There

is a directive to interpret two bytes as

an address-1, (which is very typical of

6502 programming - look at the BASIC

ROM), or as an address in reverse or

der, high byte first. The disassembler

will properly interpret 2C A9 01 as:

HEX 2C

LDA #$01

Merlin can link source files in several ways. You can maintain

libraries of macros. Ordinarily, it assembles to a buffer at a

fixed address, and you then save to disk from the menu. But if

you don't have room to do this, you can assemble directly to

disk. Both Merlin 64 and Merlin 128 have their own Apple-

style monitors, and Merlin 128 also allows access to the more

useful ROM monitor. Merlin 128 can also create relative object

files, which can then be linked together at any given address.

(You can specify in the source code of a relative file that an er

ror condition will result if the object is loaded above a certain

address.) Unfortunately, there is no standard format for rela

tive object files on the C128.

If you have Joe Smith's Fortran compiler for the Atari ST, its

relative object files will, most likely, be compatible with the

relative object files put out by Digital Research's CP/M-68K

relative macro assembler, and the same is true of CP/M-80, MS-

DOS, AmigaDOS, Unix, et. al. I am, however, virtually certain

that no two of the relative object files put out by Merlin 128,

Abacus "Super C," Pro-Line "C Power," and Eastern Soft-

instead of bit $01a9, but if it's an EOR

instruction which follows the 2C, you'll have to do that by

hand. Sourceror will also correctly handle both the Kernal and

BASIC ROM versions of PRIMM. (This is probably because DOS

calls under Apple ProDOS have a similar format of JSR to ad

dress followed by data.) There is a file of standard labels, such

as CHROUT, which Sourceror uses to do its labelling. This list

can be edited.

One version of Sourceror disassembles to memory and can

handle about 6K of object code; the other uses the disk for

temporary files, creates multiple source files, and can handle

$7f00 bytes of object code. One suggestion I would make is

that future versions of Sourceror have the option of making

use of expansion RAM modules, which might speed things up.

(Actually, what should be done is that the Kernal ROM should

be rewritten to allow access to and organization of expansion

RAM as a RAM disk.)

The disk also includes programs to generate cross references -

showing where each source label is defined and referenced; to

format a file - so you can use the editor as an inferior word

Transactor 52 December 1988: Volume 9, Issue 2

processor; xand to print the assembly to a disk file, instead of

to the printer. There is source code given for sample programs

and routines, including a 1571 disk copier (which uses ul and

u2, instead of burst mode - so it could be faster) and a disk

sector editor. The program comes on a 1571 disk, but no file

goes past side 0. However, Merlin is the slowest and largest of

the three assemblers, and to load it and then do a long assem

bly, with lots of linked files, would be very slow on the 1541.

Head to head

None of these assemblers use any sort of copy protection -

perhaps because students of assembly language might regard

copy protection as nothing more than a tutorial, to be disas

sembled, understood, and, of course, cracked. Or, perhaps, as

sembly programmers will empathize with the plight of the

poor programmer denied his just royalties (more so than com

piler programmers?).

All in all, I would say that Merlin is the most flexible of the

three assemblers, with Buddy having certain advantages with

regards to its .out and .bas directives, and LADS having the ad

vantage of the complete source code being provided. As far as

manuals is concerned, the lads "manual" is the best, al

though it is not really a manual so much as a tutorial on as

sembly language. Merlin has a fairly complete manual, but it

has no tutorial information on 6502 assembly language. The

Buddy/Power manual, at least the one provided by Spinnaker,

has the least complete information; as I have said, the docu

mentation of user-defined pseudo-ops is useless. It does have a

small, but well-organized summary of both 6502 and Z-80 as

sembly language.

A few final thoughts

1) Since the CP/m Macro Assembler can do 6502 machine lan

guage to some extent using a macro-lib file, maybe one could

write 8080 or Z-80 assembly language in Merlin, using a

macro file.

2) Back in January 1986, Yves Han wrote a C64 assembler for

compute! 's Gazette, as an extension of the BASIC interpreter.

Han poked the BASIC ROM into RAM, and then modified it, and

added extra code. This is harder to do, of course, in the 128.

Assembler op-codes and directives were tokenized, and you

had to use a BASIC FOR-loop to get the three passes the assem

bler used. The advantage of this assembler was that you could

use the full power of BASIC. For example, if you wanted to as

semble the length of a$, followed by a$ reversed, you could

just write:

100 byte len(a$)

110 for j= len(a$) to 1 step -1: byte

mid$(a$,j,1) :next

Furthermore, having this as a subroutine, you could use this as

a macro. This assembler is very fast, although it can't print out

listings. I wonder if anyone else has considered an assembler

where you could use BASIC operations within assembly lan

guage. (I notice that BBC BASIC, which runs on 6502-based

Acorn computers, has an assembler built in, but I don't know

if it allows this sort of manipulation.)

3) 6502 Forths generally include a version of William Rags-

dale's public domain reverse Polish assembler, (e.g. 5 # Ida,

instead of Ida #5) This is not a stand-alone assembler. Forth is

a language in which programming involves defining new key

words in the language, and the assembler is used when you

need to write a word which will perform more quickly than its

pure Forth equivalent.

While this is only a one-pass assembler, designed for rela

tively small routines, it does have words to allow you to do a

"while" loop, or an "if-else-endif" type branch. (The assem

bler saves the address of the branch instruction, and when it

comes to the keyword which tells it how far to branch, it pokes

that information into the branch instruction.) Since the assem

bler is written in Forth, you can always add new keywords to

it in Forth; thus it is a macro assembler. (Forth uses a stack to

pass parameters.) Has anyone thought of writing a two-pass,

Ragsdale-like stand-alone assembler? Q

windowl28: See article on page 49.

KK

CH

FN

FC

OL

OC

CN

IF

IA

DD

JJ

Hfl

DE

DK

ID

MN

MP

KC

OF

DE

AA

MM

IL

DE

10

HP

ND

MP

LJ

OP

MI

CN

HN

KM

HN

IF

NP

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

300

310

320

330

340

350

360

370

380

390

400

410

420

590

600

610

620

630

640

print "d28 window demo jii butterfield"

dimf(4)

data 2,3,5,7

for j=l to 4:read f(j):next j

print

print "(pick factor range, eg. from 77 to 392)"

print

input "from";f

input "to";t

if t>f and f>0 and t<99999 goto 210

print " .. try again ..":goto 140

f=int(f)

print "{dr(from";f;"to";t

for j=l to 4

print tab(j*6-5);" /\f(j);

next j

print tab(5*6-5);" /high";tab(6*6-5);" prime"

w$=chr$(27)+"t{6 right}{10 down("+chr$(27)+"b"

for j=f to t

if j<4 or j=5 or j=7 or j=ll goto 590

for k=l to 4

s=f(k):d=j/s

if d=int(d) goto 600

next k

k=5

ll=sqr(j+.5):l=ll

if 1K11 goto 590

for 1=11 to 11 step 2

d=j/l

if d=int(d) goto 600

next 1

k=6

print "{home}{home}{down}"

print tab(k*6-5);w$

print str$(j);

next j

print "{hone}{home}{13 down}" □

Transactor 53 December 1988: Volume 9, Issue 2

A Tale of Two Cartridges

Final Cartridge III vs. Action Replay Mk. IV

Review by Noel Nyman

The Final Cartridge III, $54.99

Action Replay Mk. IV, $59.99

(prices in U.S. dollars)

Both cartridges distributed by Datel Computers, 3430 E. Trop-

icana Ave., Unit #67, Las Vegas, NV 89121

These cartridges are aimed at different audiences. The FC-in is

billed as "a powerful 64K ROM-based operating system for the

C64 and C128." The emphasis is on "keep it simple" for the

beginner, while giving all users extra features such as a

notepad and calculator available as 'windows.'

The Mk. IV is advertised in full page, four colour magazine

ads as "the ultimate backup cartridge." The drawings show a

futuristic space vehicle cartridge "docking" at the C64 expan

sion port.

In spite of the differences in marketing, the cartridges have

much in common (see the comparison chart accompanying

this review).

Final Cartridge III

The FC-HI comes in a box nearly the size of the C64 itself,

slickly printed with color pictures of various computer screens

and descriptions of features. A carrying handle is provided, in

case you find the need to tote a two by three inch cartridge

around in a eight by twelve inch box.

The large box is necessary for the documentation, which

should win an award for originality of format. The pages mea

sure about eight by twelve. They are loose in the box, and

punched with two holes on the eight inch side. Metal tabs are

provided to hold the pages together.

Each piece of paper has four document pages printed on it. If

folded in half, the collated pages would make an average sized

booklet. Unfortunately, if you did that with the FC-III docs, the

page numbers would be scattered all over the place.

The documentation is clear and easy to read, though occasion

ally brief. Some commands described are not mentioned in the

summaries, which makes looking them up difficult. There are

a few awkward phrases, typical of manuals translated from

one language to another (FC-III originates in the Netherlands).

Some of the diagrams do not correspond to the actual screen

displays. More on this later.

The cartridge is the usual black shell with a few surprises

added. There are two square switch buttons identified as "re

set" and "freeze." A small red LED lights when the FC-m is ac

tive and goes off when the cartridge is 'killed.'

On power-up, you see a menu bar across the top of the screen

in place of the usual start-up screen. This bar controls several

pull-down menus which, in turn, control the cartridge options.

You select one of the bar options by 'pointing' at it and 'click

ing.' The pointer on the FC-III is a coloured arrow. You move

the arrow using a mouse, a joystick, or the function keys. Once

you've pointed at an item, you select it by 'clicking' ...pressing

the mouse button, the joystick fire button, or the Commodore

logo key on the keyboard.

The choice of the function keys instead of the cursor keys to

move the pointer is frustrating. I kept hitting the cursor keys

out of habit. I often overshot my target when using a joystick.

The pointer speed and acceleration can be changed. But it

can't be slowed enough to let joystick novices such as me op

erate efficiently.

Windows arrive

FC-m brings 'windows' to the C64, common in other computer

operating systems such as the Amiga and Macintosh. A win

dow is a box that appears on the screen, and is used to perform

an operating system function. If other information is already

on the screen, the current or active window overlaps it. You

can move windows around and display several at one time, al

though only one will be active. When you've finished with the

function controlled by a window, the window disappears and

whatever screen information was under it is restored.

Transactor 54 December 1988: Volume 9, Issue 2

Cartridge comparison chart

MK-IV

Window driven

Clock/alarm

Calculator

Notepad

Printing

Low -res screen

High -res screen:

"negative" print

change size

print sideways

print sprites

Disk operations

Fast load

Fast save

Fast format

"Wedge" commands

File copy

Disk copy

Freeze

Backup memory

View sprites in memory

Save sprites

Change sprites

Disable collision det

Swap joystick ports

Add "autofire"

Save screen to disk

Poke memory

Modify text

FC-III
*

*

*

*(D

*(2)

*(3)

*

*

*

*(5)

*(6)

*(4)

*(6)

Notes

(1) In some games, sprites definitions are changed part way down the

screen using a "raster interrupt" routine. Depending on the raster location

at the moment of freezing, some sprites may not appear on the hard copy*

(2) The MK-IV offers two fast loading routines; see text.

(3) Some of the standard wedge commands are available in the FC-III by

using unusual syntax. Sending DOS commands from BASIC follows the

Simons* BASIC syntax. For example, to see a disk directory, you type:

DOS "$

(4) The FC-HI can save any portion of memory with the MLmonitor. But,

the user must identify the starting and ending addresses for the sprite.

(5) Limited sprite editing: flip, erase, mirror, and reverse.

(6) "Pokes11 or parameter changes can also be made through the ML mon-

The advantage of windows is that a computer novice can oper

ate the system quickly. No need to learn complex commands

like load " $ ", 8 to view a disk directory, for example.

The disadvantage of windows for the experienced user is that

you have to use the pointer to access everything, even if you

know faster methods. Another disadvantage unique to FC-ni

windows is that they are only available in the 'desktop' mode.

You can't call the window functions from a BASIC program or

in direct mode from the BASIC screen. When you exit to 'desk

top' from BASIC, you lose anything in BASIC memory.

Instead of icons (little drawings that somewhat resemble the

options they represent), the FC-III uses mostly 'gadgets,' small

blocks with real words inside them.

To read a disk directory, you point to the "utilities" option on

the menu bar and hold the 'clicker' button or logo key. Five

options are displayed, including "disk." Move the pointer

down until the disk option is highlighted. Releasing the clicker

causes the Disk Operations window to appear on the screen.

The window, which takes up about half the screen, is filled

with gadgets. The largest one is the window's top border, a se

ries of horizontal lines. By pointing at this gadget, holding the

clicker, and moving the pointer, you can 'drag' the window to

any location on the screen. This is typical of windows as used

on other computers.

There are three DIR gadgets, each with an '8' and '9' gadget.

To get a directory from drive 8, point to and click on the '8'

gadget for one of the DlR's. The '8' will be highlighted. Then

point to the DIR and click. A new window will appear, with the

disk name and the first ten directory entries listed. Two arrow

icons let you scroll up and down through the directory.

At the bottom of the new window are two additional gadgets,

SORT and read. The SORT gadget is not mentioned in the doc

umentation, and the diagram of the directory window does not

show it. If you click on SORT, the read gadget is replaced by

line. The files' listing order doesn't change.

If you select a file name by pointing/clicking on it, then click

on LINE, you'll be given the option of adding a line above the

selected file name. Now, when you click on SORT again you'll

be asked if you want to write the directory back to the disk.

When I tried that, all the windows vanished, the computer

locked up, and I had to reset with the cartridge switch. Perhaps

there is a way to sort the directory with the undocumented

SORT gadget, but I couldn't find one.

The READ gadget is used to re-read the directory when you

change disks. An alternative is to change disks, then call up a

second window using a different directory window. The sec

ond window will overlap the previous windows.

The "exchange" icon (a bright square overlapping a dark

square) is used to exchange the top, 'active' window with the

last active window. The window now on top becomes the cur

rent window (usually, see the exception below). Or, if the op

tion you want on an inactive window is visible, clicking on it

will sometimes make its window active and initiate the action.

The "de-select" icon (a bright square with a dot in it), is used

to remove a window from the screen. This does not remove it

from memory, however. If you re-activate the window the old

information re-appears in it.

This may be an advantage... keeping old directory listings

handy in memory for future reference. But for most of us, it

adds another point/click sequence on the READ gadget unnec

essarily. The only way to completely initialize the windows is

to exit to BASIC, then return via the DESKTOP command, or re

set the cartridge.

Transactor 55 December 1988: Volume 9, Issue 2

More disk operations

From the Disk Operations window, you can execute many

common disk commands, as well as a few new ones. "Fast

format" takes about 28 sec

onds. It gives you a prompt

window, reminding you that

this command will wipe out

existing data, with the option

to abort. Again, the pointer

must be moved and clicked to

either continue or abort the

format.

When you select fast format,

the name of the last disk read

appears in the "from" win

dow. If you don't select that

window and type in a new

disk name and ID, the disk

will be formatted using the

name and ID of the last disk

you read.

"Empty" performs a 'short New,' which reformats the directo

ry to 'erase' all disk files. You can also rename and scratch

files, validate or rename the disk, and read the disk status. For

most of these commands, you'll need to select the appropriate

gadget, then select the DO gadget to perform the command.

RUNning a file can be more complex. First, you select the file

to be RUN by pointing/clicking. Then you click on the RUN

gadget and the DO gadget. FC-III will pop up a new window re

minding you that you'll leave the desktop. If you click on the

RUN gadget in the new window, FC-III will switch to BASIC

mode and LOAD and RUN the file.

As a challenge, FC-III does not identify the file types in the di

rectory. This makes it easy to try to RUN sequential files. The

system doesn't check for this possibility (assuming that you've

memorized all your disks' file types, I guess), and will try to

RUN the sequential file. The user is left with a flashing light on

the disk drive and a "?file not found error" message on

the BASIC screen. Very cryptic indeed for the novice, who will

be frustrated by the fact that the file obviously is there in the

directory window!

Also, if you have several directory windows, you can highlight

a file in any of them for the RUN command. But, you'll get a

"no file selected" message if the dir window you've used

isn't the active one in the Disk Operations window.

Other FC-III window options

Another window lets you set a system clock in either 12 or 24

hour format and add an alarm as well. The docs don't tell you

that you can't set the alarm unless you've already selected

alarm mode in the clock pull-down menu.

LOAD COMPARISON TIMES

Flight Simulator,

to Miegs field

(size in blocks)

Disk Maintenance,

to main menu

(size in blocks)

Easy Script,

to document in place

(size in blocks)

BASIC program

that loads data

(size in blocks)

no cart

3:35

1:08

0:57

1:49

(145)

FC-III

0:30

(196)

0:19

(138)

0:16

(88)

0:17

(107)

Mk.IVTurbc

0:24

(199)

0:16

(133)

0:11

(67)

0:12

(101)

) Warp

0:12

(211)

0:08

(141)

0:07

(71)

0:07

(106)

A simple calculator window is also available. It does four-

function math with a memory. Fortunately, you can enter num

bers from the keyboard rather than by pointing/clicking their

gadgets, although that works too. The calculator does not in

clude square root, per cent, or

memory +/- as shown in the

picture on the front of the FC-

III box.

Another window lets you

change some of the desktop

preferences, such as screen

colours, pointer device port,

and pointer speed. The BASIC

preferences window lets you

add a keyboard click, key re

peat, defeat cursor blink,

change the default device,

and use the numeric keypad

on a C128 in C64 mode.

There appears to be no way

to save the new preferences

for future sessions. They have

to be changed to your liking

each time the computer is turned on. With all the pointing and

clicking required, I soon settled for the default values.

The Notepad option removes windows and gives the user a

blank screen with a new set of pull down menus. Text can be

entered and edited using the regular cursor keys. You can con

trol the line and character spacing, and select bold and propor

tional print, and wordwrap. The text is not limited to a single

screen, and the resulting file can be SAVEd to disk or tape and

recalled later in Notepad mode. It can also be printed.

The FC-m supports Commodore, RS-232 serial, and Centronics

parallel printers. The latter two types require a special cable

"available from your dealer." That may be true in Europe, but

here, the few local Commodore dealers knew nothing about

any special cable. But it is available mail order for $20 US.

I tested the cartridge with a Star Micronics SG-10 and a Micro-

Graphix MW-350 interface set for Commodore emulation. This

combination usually works well as a 'Commodore' printer.

The result was a plain vanilla printout of the text... no propor

tional spacing. The text did word-wrap properly, in 80 colum

ns rather than the 64 columns used for the screen display. The

printer locked up when I tried printing in bold.

The Notepad text files are stored as PRG types in pet ASCII.

The various options such as proportional print and line spac

ing, are screen options only and are not SAVEd with the text.

Text files from other sources can be brought into the Notepad,

provided the file is type PRG. Since the first two bytes of a pro

gram file are the load address, Notepad automatically removes

them. If your file was originally a sequential type, the first two

text characters will be discarded instead. There's no way to

view a disk directory from Notepad mode.

Transactor 56 December 1988: Volume 9, Issue 2

FC-III BASIC additions

The fc-iii adds several features to basic, list scrolls up as

well as down. A Shift-L in a REM normally defeats Lisiing.

Shift-L with the FC-m in place lists as OFF, so the balance of

the program will list properly. The OFF command is docu

mented as part of the trace OFF and bar off options. But,

used by itself, it appears to be equivalent to KILL, which

disables the cartridge.

Also handy are the DUMP command, which displays the values

of all simple variables, and the ARRAY command which does

the same for arrays, including string arrays. The dump com

mand has trouble with DEFFN's. It confuses them with integers

and uses the bytes that point to the definition address

(low/high order) as an integer value (high/low order).

The MEM command shows the total BASIC bytes available, and

how many are used by program, variables, arrays, strings, and

how many are free. Although the documentation claims that

FC-m adds "24K bytes extra memory in BASIC," the MEM com

mand reveals only the standard 38,911 bytes available.

Trace displays each line of basic at the top of the screen as

it's executed. Trace can be slowed to a viewable speed using

the CTRL key, although this will interfere with INPUT com

mands. Trace uses address 682 as a flag. Any non-zero value

here will cause trace to be active. Some machine language

programs are stored in this area, and their presence may trig

ger TRACE mode at inappropriate times.

Auto also uses low memory. Location 681 contains 64 when

auto is active. Locations 820/821 hold the last line number

used and locations 822/823 hold the increment.

Programmers using FC-m should avoid locations 679-767 and

820-827 since other cartridge functions may use these memory

areas.

Pack and unpack are the most curious basic add-ons, pack

changes BASIC so it lists as:

1987 SYS 2061

The command moves the entire BASIC program up in memory,

and adds a machine code routine to the beginning of the pro

gram. When RUN, the SYS command copies the BASIC program

back to the normal starting location, changes a few vectors,

and runs the program. Machine language programmers may

want to examine the code used to do this, since it must over

write itself to move BASIC back down.

The program is simply put back in BASIC space to RUN. If

RUN/STOP is used, the entire program can be LlSTed normally.

This makes UNPACK unnecessary.

Mon enters a machine language monitor with all the usual

commands. Added commands allow editing memory as sprites

or text characters, and viewing common memory areas as RAM

or ROM. The monitor can operate on memory in the disk drive

as well as the computer.

Bar allows displaying a menu bar at the top of the screen.

This can only be done with a joystick or mouse button. The

menu bar shows the definitions FC-III gives the function keys.

There appears to be no way to change these. Other options in

clude switching to the monitor, the desktop, or the freezer

menu.

Two pull-down menu options list the added BASIC commands,

including some not documented. HELP doesn't generate any

errors, but doesn't seem to do anything either. REPLACE is

more interesting. It uses the syntax

REPLACE old,new

where "old" and "new" can be any variable name, BASIC

command, or text in quotes. Any lines changed are listed as

REPLACE executes.

Bar off disables the bar for programs that object to its pres

ence.

Disk commands

The 'dos' command is used as a "wedge", acting like the ">"

or "@" character normally used. Giving the command 'dOS'

by itself will read the error channel.

dos ^command'

sends the command to the disk drive. For example, DOS "$"

reads and displays the disk directory to the screen.

Dload and dsave perform disk load and SAVE with no need

for a ",8" after them. Dload is not the same as its C128 (or

BASIC 4.0) namesake. It performs a BLOAD instead, placing the

program at its original location address. Two similar com

mands are dverify and DAPPEND. All of the 'D' commands

can be entered as 'D' followed by the next letter shifted.

append (or DAPPEND) is used to add a program from disk to

the program in memory. The usual stipulation is that the sec

ond program must have higher line numbers than the last line

of the first program. To 'avoid' this situation, FC-III includes

the ORDER command, which moves lower line numbers from

the appended program into numerical sequence with the origi

nal program lines.

This creates a sort of merge. If the new lines make sense when

executed with the old, the program will RUN. If both programs

have the same line number, the new line is placed in sequence

ahead of the old one. But, the old line is still retained in

memory, and continues to execute. Editing, GOTO and GOSUB

will see only the first, or newly added, line. This makes for

strange and sloppy BASIC.

Transactor 57 December 1988: Volume 9, Issue 2

The Action Replay Mk. IV My favorite is linesave, which has the syntax:

In contrast to the slick packaging of the FC-III, the Mk. IV came

via mail order in a plastic bag inside a plain brown cardboard

box. The cartridge shell is red plastic, with no labels of any

sort. Two round black switches stick out the back at the right.

The documentation is a saddle-stitched booklet, using good

quality typewriter printing. The instructions cover three ver

sions of the cartridge.

At power-up, you see a four-option menu. Selection is done

with the function keys, and there are no windows. Fl fills

memory with a known value. This aids in making frozen

copies. F3 creates a 'normal reset', disabling the Mk. IV for

software that won't load with the cartridge active.

F5 calls up a utilities menu that executes DOS commands. The

format routine takes only 13 seconds. The menu also accesses

a full disk copier and a file copier. The latter looks remarkably

like Jim Butterfield's "Copy-All." This menu also saves a spe

cial fast loader program to disk (more later).

The only exit from this menu is to "Fastload," the same as the

final option of the first menu.

Mk. IV BASIC mode

Except for an added message and a change to white text, the

Fastload screen looks like the standard C64 screen. No win

dows, no notepad, no calculator.

You do have the usual disk wedge commands with the usual

'@' syntax. @$ displays the directory, for example. The

wedge uses the 'last device accessed' memory location 186,

which can confuse it after printing; the @$ command will try

valiantly to get a directory from the printer. A @8 sets things

right again.

The '/' entered in front of a file name will load the program.

This is often done after listing a directory. As with the Epyx

FastLoad cartridge, if the file is larger than nine blocks, you

must space over the remaining digits.

/5 "FILE1 PRG

will try to load a file named "5."

BOOT will load a program, then SYS to the starting address of

that program. Merge is a true merge, rather than append,

which is also supported.

The line numbers of the program being MERGEd from disk can

be changed as part of the MERGE command.

The auto command has a small bug. If you edit a logical line

that ends with a number, and the number wraps to the start of

the next physical line, AUTO turns off.

LINESAVE "filename",8,startline-endline

and saves a part of the BASIC program in memory.

Copy and BACKUP activate the built-in file and disk copying

routines.

The Mk. IV has some of the BASIC commands found in the FC-

III (see the comparison chart), although the FC-III is the clear

winner in BASIC additions.

The machine language monitor is virtually identical with the

monitor in the FC-III, but does not directly edit sprites or text

characters. It does display memory as CBM screen codes, as

well as PET ASCII text, hex values, or assembly code. It will al

so display and allow changes to the I/O registers.

To freeze or not to freeze

'Freezing' is a technique for halting a program in progress. A

copy of the frozen computer memory can be saved. If that

memory 'snapshot' can be successfully reloaded, the program

will continue from the point at which it was halted. See "How

They Work" at the end of this article for the technical explana

tion of how this is done.

I first saw this as strictly a 'pirate' technique. Since the pro

gram is fully loaded when halted, all the copy protection on

the disk is bypassed. The memory snapshot can be copied with

any file copier and passed around freely.

But there are legitimate uses for freezing. Most frozen copies

take less time to load than the originals. Many commercial

programs are incompatible with fast loading routines, and with

them the improvement can be dramatic. Since the copy protec

tion isn't used by the frozen copy, there's none of the head

banging found on older commercial programs.

If you use several options of the same program, you can freeze

a version of each, after loading the necessary overlays, or se

lecting menu options. If you're a game player, you can freeze

the game just before taking on the next adversary. If you loose,

you needn't fight your way back through the lower levels

again.

Transactor does not condone theft of software by any method.

Use of freezing cartridges on any programs you don't own is

unethical. But legitimate owners of programs should know

about all the options they have for making the best use of their

software. We're not telling the pirates anything new here.

They already know all about freezing programs.

Freezing with the FC-III

The FC-III freezer menu can be accessed from pull down

menus or by pressing the "freeze" button on the cartridge. The

Transactor 58 December 1988: Volume 9, Issue 2

latter may be the only option if a program won't load with the

cartridge active. In that case, you use the KILL option to

disable the cartridge, turning the red led off.

The freezer bar controls pull down menus to back-up the pro

gram in memory, change some game options, change

screen/border colors, and print screen dumps. To freeze, just

select "disk" or "tape" from the backup menu. Only the joy

stick or mouse will point/click on the freeze menus.

The frozen memory is saved to disk as two separate files,

"FC" and "-FC." You can rename these files later. There's no

message given about file size before the save starts. You

should use a reasonably empty disk since frozen memory often

takes 150 disk blocks or more.

You're returned to the desktop menu bar with no option to re

sume the frozen program.

Freezing with the Mk. IV

The freezer menu is accessed by the freeze switch. The switch

es aren't labeled, and if you push "reset" instead, you'll have

to start over. From this menu, you can enter the monitor, get a

disk directory, do some interesting sprite manipulations, save

or print the hi-res screen, or back up the program.

Before the backup is saved, you're given several DOS options,

including "directory" and "format." You're also told the size

of the file to be saved and given three save formats: standard,

turbo, and Warp*25. Files saved using "turbo" are standard

DOS files with an optimized "interleave," the number of sec

tors skipped between two consecutive program sectors on the

disk. Files saved in this way will load a bit faster with the Mk.

IV or its fastload routine. They will load without the cartridge

also, but more slowly.

The Warp*25 uses non-DOS techniques to save files. They can

be re-loaded very fast with the Mk. IV in place, or with a spe

cial loader program that's saved into the directory track on the

disk using a special menu option. The Warp*25 files are larger

than turbo files. They require consecutive tracks on a disk, so

may report a "disk full" error when many free blocks remain.

The Warp*25 files load much faster than any others. In fact,

Warp*25 may be the Mk. iv's best feature. See the loading

times comparison chart.

Hi-res screen options

The Mk. IV allows you to freeze the program, then save the

current hi-res screen in one of six software formats: Blazing

Paddles, Koala, Advanced Art Studio, Artist 64, Vidcom 64,

and Image System. Only multi-colour hi-res screens can be

saved.

Freezing may occur while the "raster" (the part of the video

system that 'paints' the image on the screen) is mid-screen, re

sulting in strange images. The screen can be viewed with the

F7 key before the save. You can restart the program and 'jog'

through a picture to try for a better image. Stationary hi-res

screens are easy to capture. Sprites will not appear on the

saved image.

The FC-ill does not have a screen save option. You can view

the captured hi-res screen for printing purposes. Sprites are

visible on the FC-ill captured screen, although the presence of

some moving sprites will depend on the raster location.

You can select among printer types, print density, the size of

the finished product, and sideways printing. With my print

er/interface, the various density options produced the same

output. Size can be increased both vertically and horizontally.

The default values are both '1,' which produces an output

about three by five inches. Increasing the horizontal value to

'2' makes the hard copy twice as wide - a bit wider than a nine

inch printer can reproduce. You can make a full size '2' by '2'

image by specifying the "sideways" option.

In the larger sizes, picture elements become larger and the

gray scale hatching detail increases. The hard copy always

starts with a corner of the screen. So it is difficult to get a large

scale hard copy of objects in the center. You can enter the

freeze mode to print low resolution screens with the same op

tions.

You are returned to the desktop menu bar after printing, with

no option to restart the program.

Gaming options

Both cartridges offer several features of interest to game play

ers. Both will disable sprite collision detection. This may al

low you to survive unscathed in some games, although both

manuals caution that many games do not use the built-in C64

sprite detection systems. Both cartridges make the machine

language monitor available in freeze mode, so changes can be

made in the program. The Mk. IV makes this easier with a

POKE mode.

The FC-ill adds an 'autofire' feature to the joystick fire button.

It also will 'swap' joystick ports in case you start with your

joystick in the wrong place. Actually, this command changes

the keyboard scan too, with fascinating results on programs

such as Flight Simulator.

The Mk. IV will search for and replace PET ASCII text in

memory. I was able to change "player" to "sucker" in Beach-

Head without the need to hunt for the text with the ML moni

tor. It will not change hi-res text, of course.

A real plus for the Mk. IV is its sprite mode during freeze.

Memory can be displayed as sprite images, either hires or mul

ti-color. The sprites can be saved to disk individually, and

loaded back into memory. They can be wiped out, inverted,

mirror imaged, or flipped. The sprite address is displayed, fa

cilitating the use of the ML monitor to save a range of sprites.

Transactor 59 December 1988: Volume 9, Issue 2

I extracted the rotating gun from Raid on Bungeling Bay for The FC-III is also the best for screen dumps to the printer, both

use in my own BASIC program. Then, I replaced the gunboat

sprites with tiny Jump Men. This is great fun. But it would be

more useful if the Mk. iv included a sprite editor.

Compatibility

Frozen FC-III programs use a fast loader routine which conflic

ts with the Mk. IV. The turbo or standard Mk. IV frozen pro

grams can be loaded with the FC-III.

The Mk. IV claims to be compatible with the 1541, 1541C,

1571, and 1581 disk drives and the C64, C128, and C128D.

The FC-III works with the C64 and C128. No list of disk drives

is provided. I tested only the 1541.

The Mk. IV command prompts and menus are printed in white.

The SX-64 background screen color is also white. So, using the

Mk. iv with the portable becomes more of a challenge. You

can change the text color from some modes. The FC-m prints

in text color, so all messages are visible. But the hires win

dows and menus are very hard to read on the built-in monitor.

Final comparison

So, which cartridge should you buy? If your goal is a simpler

operating system, the FC-III is the clear choice. The window

environment provides a (dare I say it) "user friendly" atmo

sphere, free of arcane commands. Experienced users will

quickly skip to the BASIC command screen instead.

for options and its ability to display sprites.

The Mk. IV gives game players more options, and wins the fast

loading race hands down. If windows don't interest you, the

Mk. IV is the better value.

CAPSULE COMPARISON (zero to three stars)

FC-III Mk.IV

Features
BASIC commands
ML monitor

Screen dumps
Screen saves
Gaming

Disk operations
Freezer operation
Windows

Ease of Use
(beginner)

Ease of Use

(experienced user)

Overall rating

*

**

*

How They Work

The memory in the C64 and C128 is shared by several sys

tems. The MPU (Micro Processor Unit) stores information in

memory for use as program data and for screen display. The

vie (Video Interface Chip) looks at memory also to get the

information to create a screen display.

Only one device at a time can access memory. The vie chip

has priority, and uses a technique called DMA (Direct

Memory Access) to assert its rights to ram (Random Ac

cess or read/write Memory). When the vie chip activates a

special DMA circuit, the MPU is put on hold until DMA is

released.

The DMA line is also available at the cartridge or expansion

port. Freezer cartridges produce their own DMA signal when

the freeze button is pressed. This halts the mpu.

A new processor inside the cartridge takes over. This sec

ond MPU has its own operating system in ROM inside the

cartridge. It usually has some RAM in there also.

The cartridge MPU can read the keyboard, joysticks, disk

drives, and make changes in the regular computer memory.

On command, it makes an image or 'snapshot' of the com

puter RAM on disk or tape.

You can examine the innards of either cartridge easily with

the aid of a small Phillips screwdriver. The usual snap tabs

are missing from the shells, and the cartridges come apart

easily. The FC-III is a complex system of integrated circuits.

The Mk. IV is simple by comparison, owing largely to the

custom SMT (Surface Mounted Technology) MPU/ROM chip

mounted on the underside of the board.

Be careful in handling either exposed board. Both use MOS

chips, which can be easily damaged by improper handling.

Also, note that the switches in both units are simply sol

dered to the circuit board with no other mechanical support.

Push gently on those switches. Heavy use may break the

solder joints or the boards themselves. The exposed long

metal sections of the Mk. iv switch may be more suscepti

ble to damage than the black buttons of the FC-m.

Transactor 60 December 1988: Volume 9, Issue 2

BrainStorm, BrainPower, Story Writer

Word and outline processingfor the C128

Review by Marte Brengle

BrainStorm/BrainPower

Outline Processor/Word Processor for the C128

$22 US for both programs

Story Writer

Easy-to-use story-writing aid, $12 US

Available by mail-order from:

Country Road Software

70284 C.R. 143, Ligonier, IN, 46767 (219) 894-7278

Many people have trouble getting organized when they sit

down to write. Students taking essay tests are often told to

make an outline first, in order to help collect their thoughts

and put them in some kind of logical order. That's not always

easy to do, since many of us don't think in 'outline form.'

With the invention of word processors, the physical act of

'getting words on paper' became easier, but until recently

there weren't many programs that could help with the organi

zation of the words ahead of time. Now writers can use an 'in

formation processor' or 'outline processor' like BrainStorm,

and make the whole process amazingly easy and painless. I've

used the outline processor in Microsoft Word, a far more ex

pensive and complex program, and I believe that BrainStorm

is equally powerful, and certainly easier to understand.

The BrainStorm disk contains BrainStorm 2.0 and Brainpow

er, a small but powerful word processor. You can choose

which program you want from the colourful opening screen.

Note that both programs are for the C128 only, in 80-column

mode only.

If you choose BrainStorm, the first thing you'll see is a listing

of the function keys for the program. These keys work from

anywhere in the program, and let you manipulate files, check

your outline for 'logic,' and change from one program to an

other. You can bring back a listing of the function keys from

within BrainStorm by pressing the letter F.

The idea behind a 'brainstorm' is simply to put down as many

ideas as you can, up to the program's limit of 100. They don't

have to be in any order, or related to each other in any way.

The program gives you a yellow "brainstorm box" to type in,

which can contain up to 240 characters. Your words will scroll

across the screen as you type. There are a few rudimentary

editing controls available in the brainstorm box; the delete key

works as you'd expect, but you toggle insert mode by pressing

cursor-up. Pressing CTRL with the left or right cursor key takes

you to the beginning or the end of a line. Clr clears the whole

box, and tab moves you across it ten spaces at a time.

Once you've written down everything you can think of, you

move to the next phase of the program, in which you begin to

put the ideas in order. The program will show you the first

idea on your list, with the second one displayed beneath it.

You can then compare the two and decide whether they are

similar or not, skip to other ideas for comparison, delete ideas

you don't want to keep, and move back and forth among the

ideas at will. Eventually, you'll have compared all the ideas to

each other and put them into groups according to similarities.

Even then, though, your decisions aren't cast in stone. You

move on to what's called the "trunk menu" in order to turn

your grouped ideas into an outline.

The "trunk menu" presents your ideas under headings that ini

tially are called "Group 1," "Group 2" and so forth. Each idea

is preceded by a dash. At the top of the screen is a listing of all

the available commands. You can get additional help by press

ing the Help key, and the BrainStorm function keys are also

operational here.

Now you begin to edit your outline, to put it into a logical or

der. Each individual idea is dealt with as a whole, and can be

highlighted in colour by pressing cursor-up or cursor-down till

you reach the one you want to work with. From there, you can

move the idea to another spot in the outline, or edit it, or delete

it, or add more ideas that go along with it. You can also move

or delete entire groups of ideas by highlighting the "Group"

heading.

As in the brainstorm box, each idea may be up to 240 charac

ters long, although the whole idea might not show on the

screen. If you'd like to see each idea in its entirety while

you're editing, you can use the Extend command. This will

display longer ideas as short 'paragraphs' so that you can work

on them, but as soon as you're finished with the extended idea

and move on, the screen will show only a portion of it again.

Transactor 61 December 1988: Volume 9, Issue 2

As you edit the outline, you'll want to indent some ideas to

make sub-headings. One really nice feature of BrainStorm is

that each level of indentation is in a different colour. This

makes it very easy to check your outline to see if you've sub

divided it properly. (There is a provision for monochrome

screens as well.) As you move ideas around, you may have to

work a little bit to get them indented or 'outdented' to the posi

tions you want them to assume. Sometimes the program won't

let you delete or change the indentation on a particular line un

less the next line beneath it is at an equal level of indentation.

You may have to change that just long enough to deal with the

preceding line, and then change it back.

BrainStorm uses some familiar word processing commands.

You can search for a particular text string, mark and return to

your place, delete ideas singly or in blocks, and retrieve them

from a 100-item buffer if you change your mind. In addition,

the program lets you 'collapse' the outline, so that only certian

levels are visible on the screen. If you have a very long out

line, this can make editing much easier. Those levels aren't

erased; they're just not visible on the screen at the present

time. Once you've collapsed the outline, you can work on any

particular level, even ones that aren't currently visible, by us

ing the "show" command. This will open up the area you se

lect, leaving the rest of the outline collapsed to save space.

Once you're done, you use the "hide" command to collapse

that particular area again. You can also use "hide" to selec

tively collapse a particular section of the outline. Any level

that has hidden subdivisions will be preceded by a plus sign,

so you can tell where they are.

Each section of the outline can also be edited separately by go

ing to the "branch menu." This alows you to deal with one

chosen area at a time without having the entire outline on the

screen.

When you've finished with your outline, it's a good idea to

press F2 to check its 'logic' This will tell you if it's in proper

outline form (all the headings and sub-headings in order, no

"division by one" errors, and that kind of thing). You can also

arrange your outline according to any particular logical strat

egy you prefer (the screen gives some help on doing this). I'd

advise switching to the monochrome screen before entering

'logic,' though, because otherwise the text appears in black on

a dark grey background and is very hard to read. All errors in

logic will be pointed out when you return to your outline -

there will be flashing lines in the appropriate places.

After you've corrected the errors, you can view your outline

on the screen by pressing F3. This will give you an idea of how

it will look when it's printed out. You can change the page

breaks if you like, and check to see if your outline needs any

further editing.

Once you've finally finished with your outline, you can print it

out or save it to a disk (or both, of course). Since BrainStorm

adds a "-." prefix, your filenames can't be more than 14 char

acters long. The files can be saved as ASCII files if you put an

exclamation mark at the end of the filename. The program also

gives you a choice of making automatic backups of your files.

This means that if you happen to save a file with the same

name as one you've already used, the old file will be preserved

on the disk, with a .BAK extension on the filename. The fin

ished outline can then be used with BrainPower, the word pro

cessor. (The program disk contains a good example of a Brain

Storm outline: the outline for the entire program manual is

there, and it's interesting to compare it to the finished manual.)

BrainPower

BrainPower is a small but powerful word processor, which

you can enter directly from within BrainStorm. One of its

main strengths, of course, is the ability to interface with Brain

Storm. You can merge your outlines directly into your text, or

you can have the outline in a window at the top of your screen

and scroll it from point to point as you write. This makes

sticking to your outline especially easy.

BrainPower is not a WYSIWYG word processor. Whether that

makes a difference is, of course, a matter of individual prefer

ence. People who are accustomed to using SpeedScript, for ex

ample, will find the interface familiar. People who have been

working with Pocket Writer may find that BrainPower takes a

bit of getting used to.

The screen can be customized to some extent. It comes up

with white letters on a black background, and the background

colour can be changed. The author suggests trying a blue

background if you're using a colour monitor. I found that a bit

too eye-boggling, and settled for dark grey instead. It would be

nice if the character colour could also be changed.

All the most commonly-used word processor commands are

available. The cursor can be moved rapidly by pressing CTRL

in conjunction with the cursor keys at the top of the keyboard.

In addition, you can move ahead one word at a time by press

ing the Commodore key and cursor-right. There is no equiva

lent 'move back one word' command, though. Insert mode

toggles on and off. Alternatively, you can insert five or 20

blank lines at the press of a key. Block move and delete,

search and replace, reformatting by paragraph or "format all,"

change case, justification, file linking, and headers and footers

are all available and simple to use. You can also mark your

place and return to it, which is very convenient when you're

editing text. The commands are invoked by pressing the func

tion keys or a CTRL-key combination, and pressing the Help

key at any time brings up a series of help screens that explain

just about everything the program does.

The program also includes some interesting features that are

not commonly found in Commodore word processors, even

those that are far more complex. You can bring up a simple

four-function calculator, for example. You can view any file on

a disk, including program files, although only the BrainPower

files can actually be loaded. Pressing F5 to "load file" also lets

you rename or scratch any of the BrainPower files on your

Transactor 62 December 1988: Volume 9, Issue 2

disk. And, as an extra treat, you can hear J.S. Bach's Invention

#13, a brief segment of which is played when BrainPower first

starts up.

Formatting commands are imbedded in the text, and this is

where people who are accustomed to WYSIWYG word proces

sors may have to make a few mental adjustments. The pro

gram comes with preset printer codes for underlining, bold

face, etc., but you may have to adjust those to match your par

ticular printer. (Check your printer manual to find the appro

priate values. The BrainPower manual gives clear instructions

for assigning the codes.) The printer codes are imbedded in the

text by pressing the Commodore key in conjunction with a let

ter key, and the instruction will appear in reverse video on

your screen. If you don't find the pre-arranged printer

mnemonics to your liking, you can change them to whatever

you wish.

The program boots up with certain default values for top, bot

tom, and side margins. You can change them to suit your own

preferences and save that configuration. Changing the format

of the page is done by pressing the left-arrow key at the begin

ning of a new line and then typing in the appropriate values

(again, people who are familiar with SpeedScript will find this

procedure quite familiar). You can then reformat the docu

ment's appearance on the screen by pressing F3 or F4, if you

wish. One quarrel that I have with the program is that no mat

ter where you set your left margin, the text appears "flush

left" on your screen. You could have a left margin of 50 and it

would still look like it was at zero, but your lines would be

very short. And the column number at the top of the screen

refers to the cursor position relative to the left margin, not to

its actual position on the screen.

BrainPower saves files in SEQ format, with a "w." prefix.

When you press "load file," you get a window on the screen

that brings up all files with the appropriate prefix. I have found

that even if you rename a SEQ file from another word proces

sor and give it the appropriate prefix, BrainPower will not load

it. BrainPower files will, however, load into other word pro

cessors that accept SEQ files. The 'generic' geoWrite Text

Grabber will work on them as welll.

As far as I can tell, neither BrainStorm nor BrainPower takes

advantage of a RAM expansion unit, and the instructions don't

mention whether the programs can be used with a 1581. Since

the disks are not copy protected (a definite plus), it should be

possible to copy them to a 1581 disk.

Mark Jordan, the author of the programs, invites users to write

to him directly if they have problems or questions. That's a

plus that's not often found with software these days.

The programs are powerful, easy to use, and very reasonably

priced. The BrainStorm disk, which includes BrainPower, is

only $22 (US), which includes shipping and handling. It's

well worth the investment for anyone who's serious about get

ting organized in their writing.

Story Writer

Also available from Country Roads is Story Writer, which

costs $12.00 (including shipping). Story Writer is a simple

program to use; so simple, in fact, that it doesn't even come

with a printed manual. There are instructions on the disk that

you can print out, if you wish, but the program itself is pretty

much self explanatory. The instruction file can be loaded into

BrainPower, or any word processor or text display program

that accepts SEQ files.

The first thing you'll see is a screen full of coloured boxes,

each marked with an essential element of a story - setting,

plot, protagonist, antagonist, conflict, and climax. You can

choose any of them at any time by pressing its appropriate

number.

When you choose a particular element, instructions for what

should go in the box appear in a window at the bottom of the

screen. Below the instructions is a scrolling "split screen" area

into which you type. Simple text editing commands are

available. After you press Return, the program gives you addi

tional instructions on the kinds of things you should include in

each area. For example, the "setting" box asks you for a spe

cific setting for your story, and after you've provided that, it

asks you for additional details to make your setting more au

thentic.

You can type in up to 100 ideas in each window. If you get

confused, or want additional help, pressing the Help key

brings up a series of help screens that give additional details

on how the program works and what's expected in any particu

lar window. In this way, the program guides you through the

construction of a story, asking you for specific details and then

giving you a chance to add more ideas of your own as you

think of them. The more you supply, of course, the better your

story will be. The program encourages you to think about

what's happening, and gives good pointers on what should be

included in which section.

You can edit the contents of any window at any time. The

commands used to edit may take a bit of getting used to (you

select an item to edit by pressing cursor-right, for example) but

they work well. Each item to be edited is moved into the "split

screen" area at the bottom of the screen. Once you're done,

you can save your story to disk, or print it out. It won't appear

in "story" form, of course, but rather as an outline which you

can use to write the finished story. There is even a sample sto

ry on the disk which you can use as a guide.

The program is easy to use, and helps the writer think careful

ly about what should be included in a "good story." The best

part of this program is that you can put your ideas down in any

order in which they occur to you. You don't have to stick with

any one element; you can jump back and forth as the Muse in

spires you. And once you're done, you have all your work in

order, ready to write the finished story. It's the BrainStorm

concept applied to fiction, and it works remarkably well. □

Transactor 63 December 1988: Volume 9, Issue 2

C and Assembly: Clarifying the Link

Not all static variables are created equal...

by Larry Gaynier

Larry Gaynier has more than 15 years of experience in soft

ware design, functional specification and documentation in a

variety of mainframe environments. In this article, he builds

on the description ofC objectfiles given by David Godshall in

Volume 8, Issue 5 and gives explicit detail ofhow the "C Pow

er/Power C" compiler handles static variables. Some of this

material was also discussed by Adrian Pepper in Volume 9, Is

sue 1.

I want to clarify some items presented in a recent Transactor

article (The Link Between C and Assembly by David Godshall,

Transactor, Volume 8, Issue 5). In my remarks, I assume

'Tower C" from Spinnaker is identical to "C Power" from

Pro-Line. I have the "C Power" compilers for the C64 and the

C128.

Section 5: the static section

The article described four sections that make up a C object

file. However, there is a fifth section for static variables. The

two nulls, thought to terminate an object file, actually specify

the length of the static section. In the example given, the

length is zero, meaning there are no static variables.

An important characteristic of static variables is that they are

always initialized to a known value at program start-up. The

default initial value is zero unless an explicit value is included

in the declaration for a static variable.

The static section of a C Power object file only contains static

variables that rely on the default initialization to zero. Static

variables that are explicitly declared with initial values, are

handled in a different manner by the compiler. Unfortunately,

this leads to inconsistent behavior with C Power programs as

we shall see later.

Each entry in the static section consists of a null-terminated

name string followed by a word giving the size in bytes.

Consider the following example:

int fun()

char ec

static int

c = 1;

iarray[5]

Iarray is declared to be a static array of five integers. When

compiled using C64 C Power, the following object file is pro

duced.

hex dump of file fun.o

0000

0008

0010

0018

0020

0028

0030

0038

0040

0048

0050

0058

Id

01

a2

a2

00

03

41

43

0b

00

49

00

00

a2

01

00

01

00

52

24

00

00

41

4c

00

aO

aO

00

03

54

31

43

la

52

4c

aO

00

00

46

00

00

30

24

00

52

4c

00

86

4c

55

43

00

35

31

01

41

85

20

2b

4c

4e

24

00

00

30

00

59

fb

20

a9

4c

00

53

00

00

36

cd

00

a9

20

01

00

01

54

00

00

00

29

05

. .111...

... .

. . . . + . .

.. .111.

...fun..

c$st

art

C$105...

. .C$106.

M)

iarray.H

The sections in the object file can be easily identified based on

their location relative to the beginning of the file.

Section Location Length Contents

code

relocate

global

external

$0000

$001F

$0021

$002A

$1D

0

1

3

fun

c$start,C$105,

C$106

Transactor 64 December 1988: Volume 9, Issue 2

The static variable section begins at location $004C showing a

length of one. Next, comes the only static entry - iarray. Its

size is declared to be ten bytes. The first two bytes in the name

string are generated by the compiler. (I am not sure about their

significance. They appear to be random identifiers assigned by

the compiler).

As you can see, no data space has actually been allocated for

iarray. This happens at run-time similar to automatic

variables. During the linking process, the static variable entries

are collected into a contiguous data area to be located immedi

ately above the program in memory. When linking is com

plete, the executable program knows the starting address and

size of the static data area. At run-time, the program performs

a simple loop to zero each byte in the static data area, guaran

teeing the static variables are initialized to zero.

Inconsistent behavior

Section

code

relocate

global

external

Location

$0000

$0029

$002B

$0035

C$106

static $0057

Length

$27

0

1

3

0

Contents

funl

c$start,C$105,

Two things worth noting in this example are: the code section

is larger and the static section is empty. This result occurred

because iarray was allocated and initialized by the compiler

beginning at location $0005.

My advice is to keep in mind the potential side effects when

you explicitly initialize static variables as part of their declara

tion.

If a static variable is explicitly declared with an initial value,

appropriate memory is allocated and initialized in the code

section after the JMP C$START but before the regular executable

code. It does not appear in the static section. As a result, ini

tialization happens once when the program is loaded. If the

static variable changes value during execution, the new value

is remembered and becomes the initial value for the next exe

cution of the program, unless the program is reloaded. Consid

er the following example, which includes explicit initializa

tion.

int funl()

char c;

static int iarray[5]

c = 1;

= {1,2,3,4,5};

Iarray is declared to be a static array of five integers initial

ized to 1,2,3,4,5. When compiled using C64 C Power, the fol

lowing object file is produced:

hex dump of file funl.o

0000

0008

0010

0018

0020

0028

0030

0038 24

0040 00

0048

0050

0058

27 00

00 03

fb a9

20 20

a9

4c

31

00

30

00

01

00

00

53

00

00

36

4c

00

01

a2

a2

00

01

54

00

00

00

4c 4c 01 00 02 ' .111. . .

04 00 05 00 85

a2 00 aO 00 20

01 aO 00 86 2b+

00 aO 00 4c 4c 11

01 00 46 55 4e 1 fun

Od 00 03 00 43 1 c

41 52 54 00 00 $start..

43 24 31 30 35 ...C$105

15 00 43 24 31 c$l

00 00 24 00 00 06...$..

Parameter passing

I think the article contains an error in describing how parame

ters are passed during a function call. A character variable was

claimed to be passed as one byte. Actually, a character variable

is first converted to an integer when passed. This conversion is

described in the book "The C Programming Language" by

Kernighan and Ritchie. You may see other literature about the

C language refer to the conversion as 'widening' or 'promot

ing.' Any actual arguments of type float are converted to dou

ble before the function call; any of type char or short are con

verted to int. The C Power compiler only widens character

variables because the data type sizes are limited: char is one

byte; short, int, long, unsigned dead pointer are two bytes; float

and double are five bytes. Consider the following example:

callfredO

char age, *name;

float weight;

int height;

fred(age,name,weight,height);

This function calls the function FRED that was described in the

article. When compiled using C64 C Power, the following ob

ject file is produced.

hex dump of file califred.o

The sections in the object file can be easily identified based on

their location relative to the beginning of the file.

0000

0008

0010

0018

0020

0028

0030

0038

0040

48

05

a9

00

2c

03

00

a2

00

8e

a4

a9

20 20

03 8c

6c a9

4c 4c

05 aO

20 20

3c 03

2d 8e

04 a2

a6 2e

46 03

05 a2

4c

00

20

8c

3e

00

a4

a9

85 fb a9

20 20 20

a6 2b aO

3d 03

03 8c

aO 00

2f 8e

0b 20

05 aO 00

a6

3f

20

45

6c

4c

h.lll.

.<..=.

../.e

.f. . . .

1

Transactor 65 December 1988: Volume 9, Issue 2

0048

0050

0058

0060

0068

0070

0078

0080

0088

0090

0098

4c

4c

03

41

43

Ob

00

31

46

00

00

4c

4c

00

52

24

00

00

33

52

43

45

00

46

06

54

31

43

00

38

45

24

00

00

52

00

00

30

24

10

00

44

31

00

01

45

43

00

35

31

00

00

00

30

00

00

44

24

00

00

31

43

00

00

36

43

00

53

00

00

30

24

2d

00

00

41

01

54

00

00

32

31

00

3c

00

11 ca

llfred..

c$st

art

C$105. . .

..C$1102

c$l

138...-.

fred...<

.C$106..

.e. . .

On disassembly, it will be seen that the following 6502 code is

produced:

Code Size: 72 (D) / 48(X)

0 relocation entries

1 external definitions

callfred R 0003

6 external references.

*=

4c 4c '

$0000

4c ,

callfred

85

a9

a2

aO

20

a9

20

a6

aO

8e

8c

a6

a4

8e

8c

a9

a2

aO

20

a6

a4

8e

8c

a9

20

a9

a2

aO

4c

Transactor

fb

05

05

00

20

00

20

2b

00

3c

3d

2c

2d

3e

3f

04

00

00

20

2e

2f

45

46

Ob

6c

05

05

00

4c

/ 1800 jmp

00 ,

00 ,

00 ,

00 ,

20 ,

00 ,

20 ,

00 ,

00 ,

03 ,

03 ,

00 /

00 ,

03 /

03 /

00 /

00 /

00 /

20 /

00 /

00 /

03 /

03 /

00 /

6c /

00 /

00 /

00 /

4c /

/ 0003

/ 0005

/ 0007

/ 0009

/ 000b

/ OOOe

/ 0010

/ 0013

/ 0015

/ 0017

/ 001a

/ OOld

/ OOlf

1 0021

f 0024

1 0027

f 0029

' 002b

t 002d

i 0030

f 0032

' 0034

1 0037

/ 003a

f 003c

1 003f

' 0041

' 0043

' 0045

c$start

sta

Ida

ldx

ldy

jsr

Ida

jsr

ldx

ldy

stx

sty

ldx

ldy

stx

sty

Ida

ldx

ldy

jsr

ldx

ldy

stx

sty

Ida

jsr

Ida

ldx

ldy

jmp

$fb

#$05

#$05

#$00

C$105

#$00

C$1102

$2b

#$00

$033c

$033d

$2c

$2d

$033e

$033f

#$04

#$00

#$00

C$1138

$2e

$2f

$0345

$0346

#$0b

fred

#$05

#$05

#$00

C$106

As the example shows, the accumulator is loaded with eleven

just before the JSR to fred. These eleven bytes of parameters

are passed to FRED in memory starting at $O33c:

$033c - Age (two bytes, zero high byte)

$033e - Name (two bytes, pointer)

$0340 - Weight (five bytes, FP representation)

$0345 - Height (two bytes)

Once inside the function FRED, the upper byte of Age will be

loaded to zero page storage but it will never be used. Widening

of parameters has been generally recognized as an inefficiency

of the C language. The new ANSI C standard, when adopted,

will add function prototyping to the C language which will

make parameter widening unnecessary. I am curious to see if

the "C Power" compilers will be updated to match the ANSI C

standard.

Wrapup

Overall, the C Power 128 compiler exhibits identical behavior

as the C64 version except that parameters are passed in

memory starting at $0400 in bank 1 and different zero page lo

cations are used during function execution.

I hope you find this information useful to better understand the

C Power compilers and to avoid some pitfalls. □

BIG BLUE READER 128/64

COMMODORE <=> IBM PC

File Transfer Utility
Big Blue Reader 128/64 is ideal for those who use IBM PC

compatible MS-DOS computers at work and have the

Commodore 128 or 64 at home.

Big Blue Reader 128/64 is not an IBM PC emulator, but rather

it is a quick and easy to use file transfer program designed to

transfer word processing, text and ASCII files between two

entirely different disk formats; Commodore and IBM MS-

DOS. Both C128 and C64 applications are on the same disk

and requires either the 1571 and/or 1581 disk drive. (Transfer

160K-360K 5.25 inch & 720K 3.5 inch MS-DOS disk files.)

Big Blue Reader 128 supports: C128 CP/M files, 17xx RAM

exp, 40 and 80 column modes.

Big Blue Reader 64 Version 2 is 1571 and 1581 compatible and

is available separately for only $29.95!

BIG BLUE READER 128/64 only $44.95
Order by check, money order, or C.O.D.

No credit card orders please. Foreign orders add $4

BBR 128/64 available to current BBR users for $18 plus your original disk.
Free shipping and handling. CALL or WRITE for more information.

To order Call or Write:

SOGWAP Software

115Bellmont Rd

Decatur, IN 46733

Ph (219) 724-3900

66 December 1988: Volume 9, Issue 2

Care and Feeding of the C256

Fattening your C64

by Paul Bosacki

It really wasn't that long ago that 64K was a lot of memory.

But in five short years, we've gone from measuring 'enough'

memory in kilobytes to megabytes. An Amiga comes with

512K, but apparently needs at least a meg to really show. We

owners of the (dare I say it) venerable Commodore 64 have

64K and really little opportunity to expand beyond that other

than the 1764 reu. But what if I told you that there is a way to

expand the C64 to 256K, that you can do it yourself, and (best

yet) I can promise you compatibility with GEOS? And maybe,

just maybe, it can all happen for under $100.00. Interested?

Read on.

This promised memory expansion comes in two parts. The

first is a circuit whose construction is, I believe, not beyond

the abilities of the novice. The second is the direct replacement

of the memory chips with 41256's (a 256K bit dram). There is

some interface wiring between the 64 and the mod board.

As you are aware, the 64K memory capacity of the C64 is dic

tated by the width of the address bus: sixteen bits. I have

found an easy way to add two pseudo-address lines. These two

new lines allow access to four banks of 64K each. When each

bank is mapped in, the stardard configuration of the C64 is un

changed. If all ROMs were mapped in, then they still are. Little

has changed, except that there is now 256K rather than 64K

resident in the machine. By the way, Bank 0 is always brought

into context on power-up. As well, a certain amount of Bank 0

is always available. This is necessay for two very important

reasons. Although much of memory can be changed at will

without consequence, there are certain locations that the Oper

ating System and the mpu need to have available at all times;

namely, system vectors and the stack. Consequently, these lo

cations are never mapped out.

The modification

Three switches and two bits from the MPU I/O port are used to

configure the additional memory. Briefly, P3 and P4 (the cas

sette write line and cassette sense line) provide the two

pseudo-address lines needed to access the additional memory.

By reconfiguring P4 to output and writing one of four two-bit

codes to location $01, one of four banks of 64K can be

mapped in. This technique must certainly ring a bell, for it is

by the same method that the ROMs are mapped either in or out.

Of the three switches, one allows the machine to be signifi

cantly reconfigured. It allows AlO to be considered when de

coding common ram. If considered, common ram (CRAM) is

from $0-$03FF. Otherwise, CRAM exists to $07FF. This option

sets the default screen matrix within CRAM. The result is that,

on a bank switch, the screen remains unchanged and 'com

mon' to each bank. Another switch allows the AEC line from

the vie Chip to generate a CRAM call. If enabled, a low on AEC

causes Bank 0 to be mapped in (CRAM is always Bank 0). If

disabled, AEC has no effect. This option is particularly useful

with CRAM set to $03FF and AEC disabled. Each bank then has

its own screen matrix which can be used in the usual sense

(i.e. your typing appears on the screen). If AEC is enabled, the

screen is 'protected.' It's visible, but the contents cannot be di

rectly modified from the keyboard. Through these options any

number of screens are made available without stealing Bank 0

RAM.

The third and final switch disables the bank select circuitry.

This is done quite simply by driving the *STROBE pin of the

'LSI57 high. This forces a low on output Yl bringing in Bank

0. This capability is needed with software that is lazy when

writing to the mpu I/O port. A bank switch might inadvertently

occur. Further, software which is protected through the use of

'keys' that fit into the cassette port will not load properly with

out disabling the expansion memory. And of course, because

we are using the cassette sense and write lines as our two

pseudo-address lines, the datassette is incompatibile with this

expansion project.

Circuit theory

Briefly, an 'LS245 bus transceiver buffers A10-A15 to a pair of

'LS32 OR gates acting as address decoders. However, A10 is

first AND'ed with a qualifying signal generated by SWl. If the

Transactor 67 December 1988: Volume 9, Issue 2

qualifying signal is high (swl is open), A10 is reflected at the

output of the gate and passed back to the OR gates. If low, Aio

is inhibited, and a low is generated regardless of the state of

AIO.

The OR gates decode the address lines in this fashion: if any

line should go high, then a high is generated at the final out

put. Otherwise, a low is generated indicating an attempt to ac

cess memory below $07FF (or $03FF if Aio is considered in

the decoding). This signal is labled *CRAM (Common RAM) on

the schematic. *Cram is then AND'ed with *vid (AEC rela

beled). *VlD goes low only when the Vic chip updates the dis

play. If *VID is enabled, then both signals must be high in or

der for the output of the 'LS08 AND gate to go high. When *VID

is disabled through opening sw2, *vid is forced high by a

4.7K pull-up resistor. In such a situation, *CRAM is reflected at

the output of the AND gate. This output is the BEN (bank

enable) signal.

The BEN signal is really the heart of this expansion. P3 and *P4

(P4 is inverted earlier) are each presented to one input of an

AND gate; BEN serves as a qualifer at the other input. When

BEN is high, P3 and *P4 are present on the output of their re

spective gates allowing a selected two-bit code to be sent to

pin 1 of the 41256 dram's. If ben is low, P3 and *P4 are inhib

ited and a low is present at the outputs forcing a default to

Bank 0. These two outputs are LA16 and LA17.

The two pseudo-address lines are then passed to a 'LS157

multiplexer. The *SELA line of the multiplexer is controlled by

the same signal that drives the 'LS257 multiplexors on the sys

tem board. That is, the *CAS signal generated by the VIC chip.

The two pseudo-addresses are multiplexed onto pin 1 of the

41256's at the same time as the rest of the address bus.

That's pretty much it. Dependent upon the BEN signal, which

is enabled only when both *CRAM and AEC are high, four

banks of 64K are available. It is worth noting that *VID goes

low only on a video access, which itself disables the MPU, and

that *CRAM only goes low when the MPU tries to access

memory below $0800 or $0400 (depending upon whether AIO

is considered).

Installation

The installation of this modification is absolutely a two step

process. First, disconnect everything: printers, disk drives, joy

sticks and the power supply. Next, void your warranty by dis

assembling your C64. Remove the top RF shield, gently dis

connect the keyboard, then remove the screws that hold the

system board to the bottom half of the case. Now, remove the

bottom RF shield. In some cases, it is held in place by the same

screws and simply drops off. However, mine was soldered in

place. Desoldering braid did the job for me.

Now life gets interesting. Locate the eight 4164 DRAM's on

the system board. They're usually in the lower left corner. On

my board they were labeled U9-U12 and U21-U24. Turn your

board over and carefully note their position. Now comes the

fun part: remove them. I used a combination of solder braid

and a vacuum desolder. Make certain that each hole is as free

of solder as possible. Each chip should then pry free fairly eas

ily. If you want to save the chips remember to keep your time

at each pin to a minimum. The heat generated by a soldering

iron will quickly ruin a memory chip.

Once you've removed all eight, install 16-pin sockets and

carefully solder them to the system board. Be certain not to

leave solder bridges between pins. That's a sure headache later

on. Once installed, use a fine gauge wire (I used wire wrap) to

link together pin 1 of each socket. For now, connect pin 1 of

the last socket to a convenient ground. Install the 41256's.

They are extremely static sensitive so ground yourself first to

discharge any static that may have built up. Now, reassemble

your computer (at least set it back in its case). Reconnect the

power supply and your monitor. Hold your breath and turn

your machine on.

If you get the usual power on message, everything's fine for

now. If you didn't, try reseating the 41256's. Are any upside

down? Did a pin slip outside a socket? Carefully reinspect

your soldering and try again. If your display flips (i.e., random

display that changes in a random fashion), then one chip or

more isn't seated properly. Check everything. Most likely,

however, you will get the usual power up message.

With the dram's in place and working properly, the next step

is construction of the mod board. I used point to point solder

ing, although wire wrap works just fine. If you can etch your

own board that's great. For the board itself, I used one from

Radio Shack with solder-ringed holes (cat. no. 276-158). Re

membering to leave room for ground plane and +5V plane, in

stall the sockets according to the wiring diagram and solder a

couple of pins on each socket to hold them in place. Then run

the ground and +5V planes. For the planes, try 'stitching'

stripped 22 gauge through every fifth or sixth hole and apply a

touch of solder. Make the appropriate +5V and ground connec

tions, and install the capacitors at this time. Now, follow the

wiring diagram and carefully complete the job. The wiring di

agram shows the board from the component side. Remember

that pin 1 of the 'LS245 is at the top left corner on the compo

nent side, and top right corner on the solder side.

Just a hint: after I had installed the sockets and power planes, I

trimmed the board leaving a 1/4" border all around.

With the board finished, its time to hook it up. But first find a

place for it. I have a 64C and placed mine between the Vic

chip and the RF modulator. Don't fix it in place yet. Using rib

bon cable five-conductor wide, follow the diagram of the Ex

pansion Port on the following page (seen from the solder side)

and solder one lead to each address line. I found that ribbon

cable from Radio Shack was of a fine enough gauge that I

could ease the Expansion Port lead to one side and insert the

wire. Again watch out for solder bridges. The address bus will

crash, and your computer will lock up with no display.

Transactor 68 December 1988: Volume 9, Issue 2

Determining just how long the cable will have to be is up to

you, but keep it as short as possible. Solder the other end of

the cable to your mod board, again each lead to one input of

the 'LS245 socket.

Now we have to do a little hunting. Locate pin 1 of either

'LS257 (U13 or U25) on the component side of the system

board (look to the right of the 41256's). This is the *CAS sig

nal. Follow the trace away

from the chip until you find a

silver solder dot. This is a

pass-through jumper to the

other side of the board. Heat

the solder and insert a single

strand of ribbon cable about

10" long.

solder side of Motherboard

1 £2
oooooooooooooooooooooo

fl F H J K L M
ooooooooooooooooooo

Bis mo

Now locate pin 16 of the VIC

chip (U19). This is the AEC

signal. Either locate a pass-

through jumper as before, or

from the solder side, heat the

pin, ease it aside and insert

another single strand of rib

bon cable. Now make the appropriate connects to the mod

board. Aec goes to swl. *Cas goes to pin 1 of the 'LS157

multiplexer socket.

Look at the diagram of the Datassette Port. P3 and P4 are

available on leads E5 and F6 respectively. P4 connects to pin 1

of the 'LS04 socket; P3 connects to pin 13 of the 'LS08 socket.

I also took my power supply from the port. Use a heavier

gauge wire to make the connections. Now connect the switch

es. I found a DIP array works well. Use enough ribbon cable so

that you'll be able to pass the DIP switch out the cassette port.

This way it'll be easier to get at it when you want to change

the configuration of the mem board. Use shrink wrap to insu

late the leads of the switch so that casual use doesn't result in

two leads shorting to each other.

Don't yet install the chips. Reassemble as much of your com

puter as necessary and power up. Get the usual message?

Great!

If you didn't, recheck your wiring, especially the connections

to the expansion port and 'LS245 socket. Since none of the

chips have yet been installed, your problem must lie some

where in the interface wiring. So check it all over and find the

fault.

If you have a logic probe, check the A inputs of the 'LS245

socket for high/low pulses. As well, pin 1 should show high

and pin 19, low. If missing, check your wiring and the solder

joints. Now, test P4 at pin 1 of the 'LS04 socket. Is it high? Do

the same for P3 at pin 13 of the 'LS08 socket. It should be low.

Check for pulse conditions where AEC and *CAS come to the

mod board. Check each ground and +5V connection for the

corresponding low or high. If everything checks out, turn off

r
Cartridge

your computer and install the chips ensuring correct orienta

tion and placement.

(Note: all of the above tests can be performed with a volt

meter. High/low pulses will show about 2.4v, low below 0.8V,

and high above 3.5V.)

Power up and the usual message should appear. If it doesn't,

recheck the above. Also look

for pulses on the outputs of

the OR and AND gates. Check

the wiring of the mod board

itself; this is most likely

where the problem lies. If the

usual message did appear,

then turn off your computer

and disconnect pin 1 of the

41256's from the ground and

connect it to pin 4 of the

'LS157. Power up and you

o o o

Diagram of the C64's Expansion Port

should be in business. Four

banks of 64K each are just

waiting for you. Reassemble

your computer and promise

yourself that you'll never take it apart again.

Getting acquainted

Try this from the direct mode with AEC disabled and Aio con

sidered: poke 1,63. Your screen filled up with garbage, right?

That's because the vie chip now 'sees' Bank 1 RAM. Clear the

screen and enter list. Again you probably got garbage or a syn

tax error. So, enter sys58303 and then new. List again; nothing

right? Now enter a short program:

10 for j=l to 1000: next

Now enter poke 1,55. Something happened. The power-up

screen (or a part of it) is back, and the cursor is about half way

down the screen. Now list your program. Not there? Go back

to Bank 1 and list. It's there, isn't it. Neat stuff, eh?

Now reconfigure bit 4 of the MPU data direction register to

output with pokeO, peek(0) or 16. Now, try going to each of

the other banks. For the default power-on configuration, the

values are:

bank 0: 55

bankl: 63

bank 2: 39

bank 3: 47

Have fun with it. Your machine now contains 256K of

memory! If you want, enter and run the Memory Test program

supplied with this article. It will simply and quickly test the

four banks of memory. Also get to know the table of configu

rations so you won't be too shocked when AEC is enabled, aio

not considered, and you switch banks.

Transactor 69 December 1988: Volume 9, Issue 2

GEOS V 1.3 and 256K

At the beginning of this article, I promised compatiblity with

GEOS. Using Configure256, you can configure a 1541 RAM

disk to run under GEOS. The RAM disk uses the bank switched

RAM we've just installed. If you've ever tired of what seemed

like continuous disk access when running an application, life

just got better. Loading an application from the RAM disk takes

a second or two; overlays take no time at all. If a copy of the

DESKTOP is also on the RAM disk, the desktop comes back up

almost instantly.

When you first run Configure256 for the DESKTOP, a small

block transfer routine is moved down to $02A7, and the RAM

drive code at $9C80 is modified to access the bank switched

RAM. Also, the number of drives on the system is stored at

$C013. This serves to indicate to the program whether it's

been run before and, if it has, to bypasses the above routines.

Next a check is performed to test whether the ram disk has

been formatted. If so, the program exits. If not, it performs a

format, then exits. Device 9 is the default RAM drive. On a

one-drive system, a new disk icon appears below the other

with the name bram 1541. On two-drive systems, the icon ap

pears in the same place, but because the desktop can handle

only two drives, your second 1541 cannot be accessed.

On subsequent calls to Configure256, a menu is displayed of

fering the following options:

a) format: just what it implies

b) Rdrive A: move ram drive to device 8 (only enabled when

there are two disk drives on the system)

c) Rdrive B: as above

d) flip: exchange RAM drive and 1541 at that device number.

On a system with two drives, this allows you to have three

drives availalble (though only two at a time).

e) 1541: remove ram drive from system.

f) quit

The menu appears immediately to the right of the desktop

menu.

There are some points to note while using this patch. The first

is that AlO must be set to 'considered' and for esthetic reasons,

aec must be enabled (video display drawn from Bank 0). The

RAM disk table uses RAM from $0400 to $FFFF in Banks 1-3.

If AlO is not considered, the Bank 0 RAM at $0400 will be

overwritten, leading to a System Error Near... message.

Next, this program, and in fact, this expansion module is in

compatible with the Calculator DA. The DA writes to $01 in a

very sloppy manner causing an inadvertent bank switch. If you

use the Calculator, switch off the mod board. It can be done on

the fly, so you can switch it back on afterward.

GEOS must be run from Bank 0. GEOS writes to $01, and

knows nothing about our Ram Expander. If you do manage to

boot, and run Configure256, you will get an error message.

Shut down and reboot from Bank 0. Otherwise, you're only

asking for trouble.

Lastly, there is absolutely no such thing as free memory under

GEOS. This program has been tested with applications like ge-

oWrite 2.0, geoCalc, geoPublisher, the geoProgrammer pack

age, the Desk Pack and found to be compatible. However, I

cannot guarrantee compatibility with applications not listed.

There are also some limitations when running this program

under GEOS. Configure256 does not support the shadow drive,

nor the Stash, Fetch, Swap and Verify routines. If you run the

Configure256 program from your boot disk, it will indicate a

1541 RAM Drive, but RAM expansion will be "none." Don't at

tempt to configure a shadow drive. If you do, rerun Config-

ure256 and click on "Rdrive B."

How to get there from here

A question I kept asking myself throughout this project: where

do I go from here? It been 11 months since I modified my C64

to run with 256K, and I'm still coming up with new ideas and

uses for my expansion memory. Here are a few of the more in

teresting ones. About 1.8K of the Kernal is devoted to cassette

operations; how about replacing that code with stash and fetch

routines? That way precious cram is not cluttered with trans

fer routines. Or how about a modified CHRGET routine to fetch

BASIC text from another bank?

You've got nearly 196K of expansion ram. How many graph

ic screens is that? Easy animation?

Or something more down to earth: a few days ago, I was

working on a problem that required a sector editor, an ML

monitor and a couple of other support utilities. If I hadn't had

the expansion RAM, I would have been loading one, using it,

loading another, using it and so ad infinitum. As it was, I load

ed each into its own bank and switched banks when I needed

to.

Here's something on the hardware front. On the C128, you can

declare 32K of cram through the mmu. How about adding an

other AND gate and switch (along the lines of the AlO inhibit

circuitry), and declaring more CRAM. Or add A9 to the address

decoding. With A9 considered, CRAM would only go to $01FF.

Each bank could have its own basic and OS vectors. Four

computers in one!

I leave it up to your capable hands and imagination.

Table of configurations

A) The four banks:

BankO:

Bankl:

Bank 2:

Bank 3:

55

63

39

47

Transactor 70 December 1988: Volume 9, Issue 2

Bit 4 of the mpu DDR must be set to output (=1). By default, bit

4 is set to input and pulled high by a resistor. For this reason,

bit 4 is inverted at the mod board.

B) Three switches offer 'hardset' configurations that can be

switched on the fly:

i) AlO consider: considered when open

ii) AEC enabled: enabled when open

iii) Disable Mod: disabled when open.

a) AlO considered/AEC enabled: CRAM $02-$03FF. Video dis

play data drawn from Bank 0, however OS 'sees' current

bank. Therefore, screen seems to freeze until Bank 0 reset.

Type blindly: pokel,55.

b) AlO considered/AEC disabled: CRAM $02-$03FF. Video

display is drawn from the current bank. OS also sees this

bank, and updates accordingly.

c) AlO not considered/AEC enabled: CRAM $02-$07FF. De

fault screen matrix now falls within CRAM. All banks share

a common screen.

d) AlO not considered/AEC disabled: cram $02-$07FF. Re

verse of configuration (a). Video display data drawn from

current bank, however OS 'sees' Bank 0. Type blindly:

pokel,55.

Notes:

When AlO is considered and AEC is enabled the cursor is 'lost'

when Bank 0 is switched out. If AEC is then disabled, the cur

sor is found in the current bank. Why?

Bank 0 is only brought into context when:

1) address falls below least decoded line (ldl), or

2) AEC goes low indicating VIC DMA.

If ldl is AlO and screen memory is at the default location, the

OS acts on the current bank whose screen matrix lies above

CRAM. In this sense, the cursor isn't lost. The OS is happily up

dating the cursor and the video matrix. However, since it

knows nothing about the expansion ram, its updating the cur

rent bank. The reverse is true when AlO is not considered and

AEC is disabled.

Disclaimer: While we have every confidence that Mr. Bo-

sacki's project functions as it should, we would like to make it

clear that it was not undertaken here at Transactor and we

were therefore unable to test the software. Consequently, we

would like to request that you refer any problems or sugges

tions to Mr. Bosacki directly, rather than sending them to

Transactor. You may be interested to know that Mr. Bosacki is

now using a one megabyte C64. He has 512K installed inside

that machine and a 512K REU. We would be remiss if we

failed to inform you that a project such as the one discussed

will certainly void your warranty. That being said, please ad

dress your letters to:

Paul Bosacki

37-1443 Huron St.

London, ON, Canada

N5V 2E6

MemEx Daughter Board

Pin 1 of

41256's

Transactor 71 December 1988: Volume 9, Issue 2

;***************************************

;* Config256.hdr *

;* *

;* This file contains the header block *

;* definition for Config256. *

;***************************************

.if Passl

.include Config256.sym

.endif

/Here is the header. The Config256.1nk file will

/instruct the linker to attach it to application.

.header /start of header section

.word 0 /first 2 bytes are always zero

.byte 3 /width in bytes

.byte 21 /and height in scanlines of:

.byte $80|USR ;C= file type, with bit 7 set.

.byte APPLICATION /GEOS file type

.byte SEQUENTIAL /GEOS file structure type

.word $400 /start address (where to load)

.word $3ff /usually end address, but only

/needed for desk accessories.

.word $400 /init address (where to JMP)

.byte "RamDriver VI.1",0,0,0,$00

/permanent filename: 12 chars,

/then 4 character ver. number,

/then 3 zeroes,

/then 40/80 column flag.

.byte "Paul J. Bosacki ",0

/twenty character author name

/end of header section which

/is checked for accuracy

.block 160-117 /skip 43 bytes...

.byte "Configures banked RAM to act"

.byte "as RAMdrive as under GEOS",0

.endh

* Config256.1nk *

* *

* Here are the link file directives for *

* Config256. *

.output configure256 /application name

.header Config256.hd.rel /header definitions

.seq /sequential file type

.psect $0400 /loads in at $400

Config256.mn.rel /link this file

**

* Config256.Sym *

* *

* These are the GEOS equates for Config256 *

**

*** Geos OS TAB Routines Used ***

CmpFString = $c268

DoDlgBox = $c256

Dolcons • = $d5a

DoMenu = $d51

DoPreviousMenu = $cl90

EnterDeskTop = $c22c

GetBlock = $de4

MoveData = $d7e

Transactor

NewDisk

PutBlock

ReDoMenu

SetDevice

= $del I

= $de7

= $d93

$c2bO

;*** Misc. Equates ***

CPUJDATA

cpu'ddr :
curDevice =

curDrive =

diskBlkBuf =

dispBufferOn •

numDrives :

$0001

$0000

$00ba

$8489

$8000

$002a

$848d

;*** Geos Constants *** (

APPLICATION =

BOLDON =

DEFJ)B POS =

DBSYSOPVEC =

DBTXTSTR

DIR TRACK =

HORIZONTAL =

MENU_ACTION =

NULL =

SEQUENTIAL =

ST WR FORE =

TXT LNX =

txt"ln~2 y =
txt'lnTy =
USR =

VERTICAL =

I

6

24

$80 1

14

11

18

0 1

0

0

0

$80

16

32

48 :

4

$80

;*** Geos Pseudo-Register Definitions ***

rO

rOH =

rOL =

rl

rlH

rlL =

r2

r2H =

r2L =

r3

r3H =

r3L =

r4

r4H =

r4L

$0002

$0003

$0002

$0004

$0005

$0004

$0006

$0007

: $0006

$0008

$0009

$0008]

$000A

$000B I

$000A

;**

;* RamDisk Driver (GEOS) *
.*

;* This progran

;* driver for G

*

creates a RAMdisk *

EOS. Runs as an application. *

;* Leaves a transfer routine and patch. * I

;** I

•

.if Passl

I

)bank: .block 1

• CPU_DATA: This is the Bank Control Reg.

Four banks of 64K are available.

The register is laid out like this:

bit 0: ROM select

bit 1: ROM select

bit 2: ROM select

bit 3: bank select (LA16) see schematic

bit 4: bank select (LA17)

bit 5: cassette motor

bit 6: n/a

bit 7: n/a

: numDrives = $cO13

iankMove = $02a7

psect

[nit: LoadB dispBufferOn, #ST_WRJORE

Ida CjiumDrives /program called

beq 11$ /first time?

jmp FromDesk

Ll$: Ida CPU DATA /do initalization

and #%00010000 /are we in bankO?

cmp #%00010000 /if not, put up

beq 10$ /error message and

LoadW r0,#NotB0_Tab /exit to DeskTop.

jsr DoDlgBox

jmp Dojjuit

L0$: Ida curDevice

sta Copy curDevice

Ida numDrives

sta CjiumDrives

jsr Install_Drive /install code patch

LoadW r4, fdiskBlkBuf /and move transfer

LoadB rlL,#DIR TRACK /routine to BankMove

LoadB rlH, #0 ~
jsr GetBlock

LoadW rO, #diskBlkBuf+144 /offset to

LoadW rl, #headerTitle+144 /diskname

ldy #$02

ldx #$04

Ida #$10

jsr CmpFString /has ramdisk already been

beq 12$ /formated? If so bypass

jsr Format_Rdri /format routine.

2$: jmp Do_quit

'romDesk:

Ida curDevice /save current device

sta Copyj:urDevice

LoadW rO7 #MenuJTab /put up selection menu
Ida #0 /pointer is placed

jsr DoMenu /on first item

rts

;

rcjrop =o

(XJffilGHT =$0c

IX LEFT =0 /last two used as word values

BX WIDTH =$89 /when declaring menu dimensions

.include Config256.sym

.include geos

.endif

;

.zsect $02

source:

destination:

tlength:

Sbank:

Mac MenuJTab: .byte BXJFOP

/zpage begins

/at rO

.block 2

.block 2

.block 2

.block 1

72

.byte BX TOP+BX HEIGHT

.word BX~LEFT+BX WIDTH

.word BX~LEFT+BX~WIDTH+35

.byte 1|HORIZONTAL

.word DiskText

.byte VERTICAL

.word DiskSubMenu

December 1988: Volume 9, Issue 2

DiskSubMenu:

.byte BX TOP+13

.byte BXJOP+(14*7)+1

.word BX~LEFT+BX WIDTH

.word BXJEFT+BXJJIDTH+75

.byte 6|VERTICAL"

.word Txt format

.byte MENU_ACTION

.word Do format

.word Txt dra

.byte MENUACTION

.wrd Do_dra

.word Txt drb

.byte MENU_ACTION

.word Do drb

.word Txt flip

.byte MENUJCTION

.word Do flip

.word Txt noram

.byte MENUACTION

.word Do noram

.word Txt quit

.byte MENUACTION

.word Do quit

;

DiskText: .byte "RDrive", NULL

Txtjormat: .byte "format", NULL

Txtjira: .byte "RamDri A", NULL

Txt drb: .byte "RamDri B", NULL

Txtjlip: .byte "flip", NULL

Txfnoram: .byte "1541", NULL
Txt"quit: .byte "quit", NULL
;

t

NotBOJab:.byte DEF DB POS|1

.byte DBTXTSTR

.byte TXT LN X

.byte TXT"LN"2 Y

.word NbicOJ "

.byte DBTXTSTR

.byte TXT LN X

.byte TXT"ln"3 Y

.word N bkO 2 "

.byte DBSYSOPVEC, 0

;

NbkOJ:

".byte BOLDON, "This module can only be", 0
NbkOJ:

".byte BOLDON, "installed from BANK 0", 0

RDevice: .byte |9 /default ramdisk=device 9

Copy_curDevice: .block 1

;

Do format:

jsr ReDoMenu

Ida 12

sta numDrives

jsr Format Rdri

rts

Do dra:

jsr ReDoMenu

Ida CjiumDrives /if there is only one 1541

cmp fl /on the system then this

bne 1$ /option does not allow a

rts /ramdrive as device #8

1$: ldy #8

sty RDevice

bne Set Device

Dojirb:

jsr ReDoMenu

Transactor

ldy 19

sty RDevice

Set Device:

" Ida #2
sta numDrives /update f of drives

Ida #$81

sta $8486,y

cpy #8

bne 5$

iny

10$: and #100000001 /make drive type 1541

sta $8486,y

tya

jsr SetDevice /pass device # in ace.

/Set Device make that device

jsr NewDisk /and updates drive varibles

rts /initializes new disk

5$: dey

bra 10$

;

Do flip: jsr DoPreviousMenu /roll up menu

ldy 18

Ida $8486,y

pha

iny

Ida $8486,y

dey

sta $8486, y

iny

pla

sta $8486,y

bmi 10$

tya

jsr SetDevice

jsr NewDisk

jmp Do quit

10$: dey

tya

jsr SetDevice

jsr NewDisk

jmp Do quit

;

Do noram: jsr ReDoMenu /simply put, restores

Ida tl ;1541's to system.

ldy #8 /Checks C numDrives

sta $8486,y /for the number of

Ida C numDrives ;1541's.

empil

bne 10$
ij. an
laa #u

ldy #9

sta $8486, y

Ida #1

sta numDrives

jmp Do quit

10$: Ida #l"
ldy #9

sta $8486, y

jmp Do_quit

Do quit: Ida numDrives

cmp #1

bnel$

Ida f8

sta Copy_curDevice

1$: Ida Copy_curDevice /restore curDrive

jsr SetDevice /on entry to

jmp EnterDeskTop /application.

;

; Geos disk routines read a block at a time.

/ Because of this, our transfer routine requires

73

/ only enough code to transfer 256 bytes.

■

sJankMove:

PushB CPU DATA

PushB CPU"DDR
ora #100010000 /set CASS Sense to

sta CPUJDR /output. Restored at

ldy #0 /exit from routine

ldx Dbank /from stack.

20$: ldaSbank

sta CPUJATA

Ida (source),y

stx CPU_DATA

sta (destination),y

iny

bne 20$

PopB CPU DDR

PopB CPUJATA

rts

>

>

eJankMove:

BankLen = e BankMove-s BankMove

; ***"Patch GEOS~Routines and
; transfer move block routine***

RamCode == $9c80

Install Drive:

LoadW r0,#sJankCode /install RAM driver

LoadW rljRamCode /code. This code then

LoadW r2,fCodeLen /overwrites the

jsr MoveData /existing GEOS routine

■

LoadW rO, fsJankMove /move transfer

LoadW rl, #BankMove /routine to

LoadW r2, #BankLen /BankMove.

jsr MoveData

rts

■

sJankCode:

ldx 10 /dummy routine for the

Ida i0 /verify RAM call

rts

nop

nop

nop

a following code replaces the GEOS RAMex driver.

ldx #1 /fetch

bne 10$

ldx #0 /stash

L0$: PushW rO

PushW rl

PushW r3

ldy destination

GetBlock and PutBlock routines pass

the track value in rlL, and sector in rlH.

dey

Ida RDTab,y /get RAM track value

dc

adc destination+1 /add in sector as offset

sta destination+1

Ida #100111000 /value for Bankl

cpy #11 /if track<ll then Bankl

bec 40$

December 1988: Volume 9, Issue 2

Ida #%00100000 /value for Bank2

cpy 123 ;if track<23 then Bank2

bcc 40$;else Bank3

Ida #%00101000 /value for Bank3

40$: sta Dbank

ldy #%00110000

sty Sbank

ldy #0

sty destination 1

ldy r4H

sty source+1

ldy r4L

sty source

cpx #1 /if Fetch then flip source and

/destination as well as source

bne 60$ /and destination banks.

FushB Dbank

MoveW destination, source

MoveW r4, destination

MoveB Sbank, Dbank

PopB Sbank

60$: jsr BankMove /jump to block transfer

PopW r3 /routine, restore

PopW rl /pseudo-registers

PopW rO

ldx 10 /disk errors passed in x.

Ida 10 ;0=no error.

rts

/RamDiskTab is a table of RAM page values used

/by the RAMex driver in order to determine the

/location of each track and sector. It works like

/this: each value represents Track XX, Sector 0,

/where XX is a validtrack. The sector number is

/then used as an offset. For example, Track 1,

/Sector 8 =4+8=12, or, Bankl, RAM page 12.

RamDiskTab:

.byte$04,$la,$30,$46,$5c,$72,$88,$9e

.byte $b4,$ca,$e0,$04,$la,$30, $46,$5c

.byte$72,$88,$9c,$b0,$c4,$d8,$ec,$04

.byte$18,$2b,$3e,$51,$64,$77,$8a,$9c

.byte $ae,$cO,$d2,$e4

e_BankCode:

RDTab = RamCode+(RamDiskTab-s_BankCode) 1

CodeLen = e_BankCode-s_BankCode;

Format Rdri:

ldy RDevice /get RAMdrive f.
Ida #$81 /high bit set=RAM device,

/therefore $82=1571

sta $8486,y /under geos.

sty curDrive

LoadW r4, fheader /set up for PutBlock

LoadB rlLjDIR TRACK /write header out to

LoadB rlH, {0 " ;18/0
jsr PutBlock

ldy fO

tya

10$: sta diskBlkBuf,y I

dey

bne 10$

Ida #$ff

sta diskBlkBuf+1

LoadW r4, fdiskBlkBuf

LoadB rlL, §19 /set up GEOS border

/directory block &

LoadB rlH, §08 /write out to 19/8

jsr PutBlock

Transactor

LoadW r4, fldiskBlkBuf

LoadB rlL, #DIR TRACK /pass same block /

LoadB rlH, §1 " /to 18/1
jsr PutBlock

Ida #0

ldx #0 /no errors

rts

leader:

.byte $12, $01, $41, $00 /exactly what the

/name implies the ;

.byte $15, $ff, $ff, $lf /header block

.byte $15, $ff, $ff, $lf /writen out by

.byte $15, $ff, $ff, $lf /the PutBlock

.byte $15, $ff, $ff, $lf /routine to 18/0

.byte $15, $ff, $ff, $lf

.byte $15, $ff, $ff, $lf

.byte $15, $ff, $ff, $lf

.byte $15, $ff, $ff, $lf

.byte $15, $ff, $ff, $lf

.byte $15, $ff, $ff, $lf

.byte $15, $ff, $ff, $lf

.byte $15, $ff, $ff, $lf

.byte $15, $ff, $ff, $lf a

.byte $15, $ff, $ff, $lf a

.byte $15, $ff, $ff, $lf c

.byte $15, $ff, $ff, $lf C

.byte $15, $ff, $ff, $lf C

.byte $11, $fc, $ff, $07 C

.byte $12, $ff, $fe, $07 £

.byte $13, $ff, $ff, $07 £

.byte $13, $ff, $ff, $07

The program MemTest.mn links to $033c: the

cassette buffer. Start MEMTEST with "sys828."

output MEMTEST /name of the output.

cbm /the linked file will

/be in the standard pre-Geos

psect $033c /format. Cassette buffer

/always lies within CRAM.

MemTest.rel /link this file

* MemTest.mn *

* *

* This program tests each bank of *

* memory, setting each bit=0 then each *

* bit=l. It runs from and returns to BASIC. *

if Passl

.include geosMac

endif

equates used:

iO =$fb

tOL = $fb

lOH = $fc

:puj)dr = $oo

:pu"data = $oi
ILRSCR = $e544

>TROUT = $able

>CRTCH = $a642

.byte $13, $ff, $ff, $07 NOLL = 0

.byte $13, $ff, $ff, $07

.byte $13, $ff, $ff, $07

.byte $12, $ff, $ff, $03

.byte $12, $ff, $ff, $03

.byte $12, $ff, $ff, $03

.byte $12, $ff, $ff, $03

.byte $12, $ff, $ff, $03

.byte $12, $ff, $ff, $03

.byte $11, $ff, $ff, $01

.byte $11, $ff, $ff, $01

.byte $11, $ff, $ff, $01

.byte $11, $ff, $ff, $01

.byte $11, $ff, $ff, $01

leaderTitle: .byte "BRam 1541"

This is not a comprehensive memory test, nor is

it meant to be. Simply, each bit throughout an

entire bank is set to one and then tested for

this value. Then each bit is set to zero, and

tested again. On failure the screen is cleared

and an error message is generated. A10 must be

set to "considered" for a thorough test. If AEC

is disabled, then the screen will change each

time a new phase of the test is entered

providing a visual record of the test. The

program runs in less than 30 sees., and then

returns to BASIC.

Progstart: Ida CPU DATA /push configuration

.byte 160,160,160,160,160

.byte 160,160,160,160

.byte $52, $44, $A0, $32

.byte $41, $A0, $A0, $A0

.byte $A0, $13, $08

.byte "GEOS format VI.0"

.byte 0,0,0,0,0,0,0,0,0,0,0,0

.byte 0,0,0,0,0,0,0,0,0,0,0,0

.byte 0,0,0,0,0,0,0,0,0,0,0,0

.byte 0,0,0,0,0,0,0,0,0,0,0,0

.byte 0,0,0,0,0,0,0,0,0,0,0,0

.byte 0,0,0,0,0,0,0,0,0,0,0,0

>rogEnd: ,

end

* MemTest.lnk *

* *

•* Here are the link file directives for *

•* MemTest. *
• *** f

74

onto stack to be restored on exit from routine.

pha

Ida CPO_DDR

pha

ora #%00010000 /set bit 4 to output

sta CPU DDR

Ida 1*00110000 /all ram BankO

sta CPU DATA

jsr MemTest

Ida #%00111000 /all ram Bankl

sta CPU_DATA

inc bankValue /ascii value

used by errMess to indicate Bank in which

fault occurred.

jsr MemTest

Ida #%00100000 /all ram Bank2

sta CPUDATA

inc bankValue

jsr MemTest

Ida 1*00101000 /all ram Bank3

sta CPUDATA

inc bankValue

jsr MemTest

December 1988: Volume 9, Issue 2

PopB CPU DDR

PopB CPU~DATA
cli

jsr CLRSCR

Ida fO

jsr SCRTCH

rts

testvalue: .byte $ff

MemTest: Ida 1255

sta testvalue

sei

MemLoop: Ida f4

/in this case $0400. This

/be set allowing each ban}

sta aOH

Ida fO

sta aOL

tay

Ida testvalue

1$: sta (aO), y

iny

bne 1$

inc aOH

bne 1$

Ida 14

sta aOH

Ida #0

sta aOL

tay

2$: Ida (aO), y

cmp testvalue

bne 3$

iny

bne 2$

inc aOH

bne 2$

Ida testvalue

bne 4$

rts

4$: inc testvalue

jmp MemLoop

3$: PushB CPU DATA

ora 17

sta CPU DATA

Ida HerrMess

ldy §]errMess

jsr STROUT

PopB CPU DATA

rts

errMess: .byte 147,11,"

.byte " MEMORY:

bankValue:.byte 48

.byte 11,11,13,1

/restore configuration

/dear interrupt flag

/set by MemTest routine

/first set each bit of

/each location to one.

/start address to test

is the lowest CRAM can

c to be fully tested.

/write test value out

/if testvalue=0 then

/set up for 2nd pass.

/now set each bit=0

/save configuration

/and map in ROM's

/use BASIC routine to

/output error message.

FAULT FOUND IN"

BANK"

/ascii "0"

TOLL

The following macros arefrom thefile

'geosMac' supplied with geoProgrammer.

.macro LoadB dest,value

Ida lvalue

sta dest

.endm

Transactor

.macro LoadW dest,value

Ida |](value)

sta dest+1

Ida |[(value)

sta dest+0

.endm

.macro MoveB source,dest

Ida source

sta dest

.endm

.macro MoveW source,dest

Ida source+1

sta dest+1

Ida source+0

sta dest+0

.endm

.macro add source

clc

adc source

.endm

.macro AddB source,dest

clc

Ida source

adc dest

sta dest

.endm

.macro AddW source,dest

Ida source

clc

adc dest+0

sta dest+0

Ida source+1

adc dest+1

sta dest+1

.endm

.macro AddVB value,dest

Ida dest

clc

adc lvalue

sta dest

.endm

.macro AddVW value, dest

clc

Ida |[(value)

adc dest+0

sta dest+0

.if (value >= 0) && (value <= 255)

bcc nolnc

inc dest+1

nolnc:

.else

Ida I](value)

adc dest+1

sta dest+1

.endif

.endm

.macro sub source

sec

sbc source

.endm

.macro SubB source,dest

sec

Ida dest

sbc source

sta dest

.macro Subff source,dest

Ida dest+0

sec

sbc source+0

sta dest+0

75

Ida dest+1

sbc source+1

sta dest+1

.endm

.macro CmpB source,dest

Ida source

cmp dest

.endm

.macro CmpBI source, immed

Ida source

cmp timed

.endm

.macro CmpW source,dest

Ida source+1

cmp dest+1

bne done

Ida source+0

cmp dest+0

done:

.endm

.macro CmpWI source,immed

Ida source+1

cmp |](immed)

bne done

Ida source+0

cmp |[(immed)

done:

.endm

.macro PushB source

Ida source

pha

.endm

.macro PushW source

Ida source+1

pha

Ida source+0

pha

.endm

.macro PopB dest

pla

sta dest

.endm

.macro PopW dest

pla

sta dest+0

pla

sta dest+1

.endm

.macro bra addr

civ

bvc addr

.endm

.macro smb bitNumber,dest

pha

Ida 1(1 « bitNumber)

ora dest

sta dest

pla

.endm

.macro smbf bitNumber, dest

Ida 1(1 « bitNumber)

ora dest

sta dest

.endm

.macro rmb bitNumber, dest

pha

Ida f HI « bitNumber)

and dest

sta dest

pla

.endm

December 1988: Volume 9, Issue 2

.macro

.endm

.macro

rmbi

Ida

and

sta

bbs

php

pha

Ida

and

beq

pla

pip

bra

: bitNumber,dest

iMl « bitNumber)

dest

dest

bitNumber,source, addr

source

1(1 « bitNumber)

nobranch

addr

nobranch:

endm

macro

pla

pip

bbsf: bitNumber,source,addr

8UNTRON C64/VIC20
POWER SUPPLYS26.95
6 Pin Din, 6 ft., male/male B66 $5.95

6 Pin Din, 9 ft., male/male B69 $7.95

6 Pin Din, 18 ft., male/male B618 $12.95

6 Pin Din, 38 ft., male/male B636 $19.95
6 Pin Din Extension, 6ft A66 $5.95

5 Pin Din to 3 RCA plugs, 5ft M653 $5.95

5 Pin Din to 2 RCA plugs, 5ft M652 $4.95

5 Pin Din Extension, 10 ft ME65 $5.95

8 Pin Din to 2 RCA plugs, 3ft M382 $4.95

8 Pin Din to 5 RCA plugs, 3ft M385 $5.95

DB9,12ft., Joystick Extension JS12 $4.95

DB9, T cable, 1 female/ 2 male JSY $6.95

DB9, T cable, 1 male/2 female RJSY $3.95

DB9, 6 ft., male/male DB9MM$8.95

DB9, 6 ft., Extension DB9MF ... $8.95

Parallel, 36 Pin, 6 ft., male/male C6MM $9.95

Parallel, 36 Pin, 10 ft., male/male C10MM .. .$11.95

Parallel, 36 Pin, 6 ft., male/fern C6MF $9.95

Parallel, 36 Pin, 10 ft.. male/fern C10MF... $11.95

Serial, DB25, 6 ft., male/male R6MM $8.95

Serial, DB25, 6 ft., male/fern R6MF $8.95

IBM Printer, 6 ft., mate/male IBP6 $8.95

IBM Printer, 10 ft., male/male IBP10 $10.95

IBM Printer, 15 ft., male/male IBP15 $16.95

IBM Printer, 25 ft., male/male IBP25 $24.95

1MB Keyboard Extension, 5 Pin, 5 ft IBKE $5.95

Power Cable, male/right angle female PR6 $6.95

Gender Changer, 6 Pin, female/fern GC6FF $4.95

Gender Changer, parallel, male/male ... GCMM $9.95

Gender Changer, parallel, female/fern... GCFF $9.95

Gender Changer, serial, male/male GSMM $5.95

Gender Changer, serial, female/fern GSFF $5.95

Gender Changer, DB9, male/male G9MM $4.95

Gender Changer, DB9, female/female... G9FF $4.95

Adaptor, DB9 female to DB25 male G9F25M .. $8.95

Adaptor, DB25 male to 36 pin male A2536M.... $8.95

Null Modem, DB25, male/male NMMM ... $5.95

Null Modem, DB25, male/female NMMF $5.95

Null Modem, DB25, female/female NMFF $5.95

RS232 Mini Tester, male/female TESMF .. $12.95

RS232 Line Surge Protector SSP $14.95

Parallel Line Booster PLB $24.95

BLASTER C64, C128 $5.95
Add automatic firepower to your games, plug-in module

that makes the fire button of your joystick have machine

gun action. Adjustable speed control.

DISKDOUBLER ^ $6.95
The original! All metal

Cuts an exact square

nofch in the disk. Same

spot every time!

TO ORDER: VISA, MASTER CARD, money orders, or check

(allow 21 days for check to clear) accepted.

SHIPPING: $3.00. power supplies $4.00, power center $5.00.

$3.00 service charge on C.O.D. (cash only) plus U.P.S., APO,

FPO, etc., no extra charge.

TERMS: All sales are final. Defective items replaced or

repaired at our discretion. RA# REQUIRED. Price and avail

ability subject to change.

.if (bitNumber = 7)

bit source

bmiaddr

.elif (bitNumber = 6)

bit source

bvs addr

.else

Ida source

and f(l « bitNumber)

bne addr

.endif

.endm

.macro bbr bitNumber,source,addr

php

pha

Ida source

and #(1 « bitNumber)

bne nobranch

pla

1-800-544-7638

Inquiries & Oregon buyers

1-503-246-0924

pip

bra addr

nobranch:

pla

pip

.endm

.macro bbrf bitNumber,source,addr

.if (bitNumber = 7)

bit source

bpl addr

.elif (bitNumber = 6)

bit source

bvc addr

.else

Ida source

and 1(1 « bitNumber)

beq addr

.endif

.endm

SCHOOLS

OUR

SPECIALTY

□

VSI was founded in 1984 and has since become a leader in the DrillfCD rCIITED
field of cables and switching devices. We are dedicated to pro- rWffWl VCillCH
vide top value and quality on a budget. School districts large f^g POWISM CEI
and small are a specialty of our firm. Complete catalog on

request ^

was $59.95

mew low price $49.95

~ OATA 8WITCHE8
VSI switches end cable swapping, share equipment. Need

extra cables, we stock a broad selection.

* ONE YEAR WARRANTY, Deluxe All Metal Case
* Compact Design, Rotary Switch

* Full Shielding, Exceeds FCC Requirements

AB all models $29.95

ABCD all models $39.95

Switch models available:

8 Pin Mini Din, 6 Pin Din, DB9, Parallel, Serial

Aa x Bb (crossover), Parallel or Serial $44.95

IS MM* braikar, hwwjr <tety cable/a p

OMNITRONIX INTERFACES

HOT SHOT PLUS $64.95
Printer interface, 8K buffer, expandable to 64 K. 6 fonts plus editor in

ROM, prints double or quad density, CPM selection.

DELUX RS232 INTERFACE $39.95

Connects standard modems or R8 232 accessories to the C64, C128,

64C, 8X64, VIC20, or Ptus4.

SERIAL PRINTER INTERFACE $64.95

Use a standard R8232 type printer on the Commodore. Cormcets to

Serial Bus (6 pin).

IBM to CBM Adaptor $37.95
Now use your C64 compatible printer on a PC compatible. Includes a

Apple cables also available.

NEW MODEM LINK by VSI $15.95
This is the LINKfrom a Hayes compatible modem toyour

Commodore. Emulates Hayes or a 1670. The LINK con

nects to the user port, and has been tested in 1200 or

2400 baud. Compact, full plastic case, why pay more.

NEW...THE BUTTON byVSI $8.95
The BUTTON is a deluxe reset for the C64. Plugs into the

user port, don't worry the port is duplicated on the out

side edge of the case. Comes in a compact case. 3x1 fe

inches, do not confuse the C64 with the newer 64C.

BLACK BOOK of C128 $15.95
The best friend a C128 user ever had

.. Includes C-64. C128. CPM, 1541.

1571. 261 pages of easy to find infor

mation. 75 easy to read charts and

tables. The Black Book of C126 is very

much like a dictionary, always ready to

answer your questions.

COOLING FAN
Heat is a #1 enemy to your

disk drive. Reduce bad

\\ loads and costly repair
) bills with a fan, keep your
1541 or 1571 cool. Quiet,

surge and spike protec

tion. EMI filtering

VOICE MASTER JR. $37.95
Turn your computer into a talking and listening servant

Get speech and voice recognition in ONE product. Easy

to use, write music bywhistling atune. Unlimited usesfor

fun, education, or business.

Hly dasiojiMd cable and software*

JOYSTICK REDUCER $3.95
tfintfombflhoseodcl9id9etet)wy

t Rwtoom i» odd ami low-pftetttlt

„ ad hrtoboth pofteatttw—fy»tiiTw. 1

\

THE

BLflCK
BOOK

f APROSPAND-64
Give your C64 or 126 full expandability. This

skillfully designed expansion unit plugs into

the cartridge port, this gives you 4 switchable

(single or in combination) cartridge slots, in

cludes fuse protection and a reset button!

V $26.95

12 PLUS 12 in. cartridge pert

SPECIAL PURCHASE

Chrome plated, heavy duty universal printer

stand. Rubber feet, allows front, back, or

bottom feed. For 80 or 132 column printers.

Original price $24.95

Now $12.95

$19.95

iject to change.

All prices quoted in US dollars - In Canada, add $4.00 shipping

Transactor 76 December 1988: Volume 9, Issue 2

NorvNJest
MUSIC
CENTER

539 N. Wolf Rd. — Wheeling, IL 60090

Hours— (voice) Phone (312) 520-2540

Mon.-Thurs. 12:30-5:00, Sat. 12:00-4:00
(24 Hour Order Recorder)

We want to te shop!!

Parts

Hackees
One of a Kind • Surplus • Monthly Special • Closeouts

Limited quantities to stock oh hand

64 k ieee to parallel buffer $199.00 8023p and MPP 1361 ribbons $5.50

4023p 100cps rehab $99.00 9090 7.5 meg rehab $495.00

64k ram exp 8032 $110.00 4023p ribbons $6.00

Smith Corona DM-200 $179.95 Everex 2400 external modem $245.00

6400, 8300p. Diablo 630 ribbons $4.95

NWM's
INVENTORY CONTROL

SYSTEM*

■ loads program modules in less than 8 seconds

(superbase 2) to main menus in 3 seconds or less

■ on screen pop-up calculator in transaction

modules

■■ ■ most data centered function use the calculator

keypad

■ versatile report features allow for 3 ways to print

the same report. User selects the fastest method

■ built in sophisticated export program allows for

complete packing of the database

■ type ahead feature allowed

■ you can display reports on screen

■ access to superbase menu for user developed

applications

B Version 1 8050 $39.95
B Version 2 8050 $39.95

._ . , C-128 Version 1 1571 $24.95
Requires use of superbase B.128 Version 1&2 8050 $44.95

B-128

$145 U.S.

NEW 128K USER INSTALLABLE

MEMORY EXPANSIONI

INTRODUCTORY PRICE OF ONLY $125.

SOFTWARE FOR THE B-128!!!

Superbase $19.95

Superscript $19.95

Superoffice Integrated

Superbase & Superscript $49.95

Calc Result $89.95

Word Result $89.95

Super Disk Doc 24.95

The Power of: Calc Result (Book) $14.95

C.A.B.S. Accounting

General Ledger $ 9.95

Accounts Receivable $ 9.95

Accounts Payable $ 9.95

Order Entry $ 9.95

Payroll $ 9.95

Buy all 5 for only $24.95

Superbase: The Book $14.95

Applied Calc Result (Book) $14.95

,0^80009000 and 6 series

only $19900

while supplies last

With Five

Interpretive

Languages:

Cobol
Pascal

Basic

Fortran

Apt

Runs 8032 software.

Great for schools and students

64K Memory Expansion for 8032 only $110
upgrades your 8032 to an 8096.

COMMODORE

8000-9000 SOFTWARE & MISC.

9000 Superpet $199.00

64K exp for 8032 $110

OZZ Database $25

BPI General Ledger $25

BPI Accts Payable $25

BPI Job Cost $25

BPI Accts Receivable $25

BPI Inventory $25

Superscript 8032 $79

Superbase 8096 $79

Legal Time Ace $25

Dow Jones Program $25

Info Designs 8032

Accounting System $50

Superoffice 8096 $149

Calc Result 8032 $89

SFD 1001 1 Megabyte

PRICED AT $149.95 (US)
$125 with purchase of Superpet

SFD-1001 is the drive that you should consider when you need large amounts of data storage. It holds

over 1 megabyte of data on its single floppy drive. Fast IEEE access for your C-64 or C-128. (C-64 and

C-128 need an IEEE interface.) Why settle for slower drives with less storage capacity. This drive stores

substantially more programs and data. Think how much money you can save on disk purchases. In

fact, it stores almost 7 times more information than your standard drive. Bulletin board owners love

them. And what an introductory price! At $169.95 these drives will sell fast, so don't wait. This drive has

the identical format of a CBM 8250 drive, one of Commodores most durable floppy drives.

MODEL

DRIVES

HEADS/DRIVE

SFD-1001

1

2

STORAGE CAPACITY (Per Unit)

Formatted

MAXIMUM (Each Drive)

Sequential File

Relative File

Disk System

Buffer RAM (Bytes)

1.06 Mb

1.05 Mb

1.04 Mb

4K

DISK FORMATS (Each Drive)

Cylinders (Tracks) (77)

Sector/Cylinder

Sector/Track

Bytes/Sector

Free Blocks

TRANSFER RATES (Bytes/Sec)

Internal

IEEE-488 Bus

ACCESS TIME (Milli-seconds)

Track-to-track

Average track

Average Latency

Speed (RPM)

—

23-29

256

4133

40 Kb

1.2 Kb

•

••

100

300

ORDER NOW WHILE STOCK LASTS!

Send or call your orders to: Northwest Music Center, Inc. 539 N. Wolf Rd., Wheeling IL 60090.312-520-
2540 For prepaid orders add $25.50 for Superpet, $10.45 SFD 1001, $11.45 B-128. $10.45 4023p, $16.45 9090
and $5.45 64K memory expansion. For software add $3.50 for first and $2.00 for each additional book or
program. Canadian shipping charges are double U.S. For COD. orders add $2.20 per box shipped. All orders
must be paid in U.S. funds. Include phone numbers with area codes. Do not use P.O. Box, only UPS shippable
addresses. A 2 week hold will be imposed on all orders placed with a personal or business check. C.O.D.
orders shipped in U.S. only and cash on delivery, no checks. 30 day warranty on all products from NWM, Inc.
No manufacturer warranty. NWM reserves the right to limit quantities to stock on hand and adjust prices
without notice!

All prices quoted in US dollars.

News BRK

Submitting News BRK Press Releases

If you have a press release you would like to submit for the

News BRK column, make sure that the computer or device for

which the product is intended is prominently noted. We re

ceive hundreds of press releases for each issue and those

whose intended readership is not clear must unfortunately go

straight into the trash bin. We only print product releases

which are in some way applicable to Commodore equipment.

News of events such as computer shows should be received at

least six months in advance. The News BRK column is com

piled solely from press releases and is intended only to dis

seminate information; we have not necessarily tested the prod

ucts.

Turbo Master CPU Processor Accelerator for C64:

Schnedler Systems' Turbo Master CPU accelerator cartridge

speeds up the operation of the Commodore 64. A replacement

microprocessor clocked at 4.09 MHz provides four times

faster processing speed, not merely a disk speed-up. BASIC,

word processor scrolling, spreadsheets, assemblers, graphics

and GEOS are all accelerated. In addition, 'turbo' disk routines

are included in ROM for five times faster disk load and save,

as well as a DOS 'wedge'. The plug-in cartridge features an

onboard 65C02 processor, 64K RAM and a 32K EPROM.

According to the manufacturer, Turbo Master CPU is compati

ble with nearly all C64 software. This includes programs writ

ten in BASIC, ML programs, GEOS applications, programs

that use bank switching to access RAM under ROM, programs

that move screen memory, and bit-mapped graphics screens.

The main limitation is that the few ML programs that use 'ille

gal' or undocumented 6502 op-codes will not run because Tur

bo Master CPU uses an enhanced 65C02 in which many previ

ously undocumented op-codes are now officially assigned as

useful instructions.

Turbo Master CPU is intended for regular C64 and 64C com

puters. It also works with the SX-64 portable. It is not intend

ed for the C128, even in C64 mode. The 'turbo' disk routines

are for a 1541 disk drive, or close compatible. The 'turbo' disk

routines can easily be turned off if you are using a different

drive, without affecting the faster processing speed of the

computer. Cassette tape cannot be used with Turbo Master

CPU. Turbo Master CPU can be used with Schnedler Systems

data acquisition and control interface boards, but not with oth

er cartridges. (However the possibility of an adapter to allow

use in conjunction with a 1764 REU is being investigated.)

Turbo Master CPU is almost exactly the size of an REU. It has

a metal case with a gold-plated circuit board edge connector

extending about 1.5 inches.

In addition to the Rockwell R65C02P4 clocked at 4.09MHz,

Turbo Master includes its own 64K of fast static RAM (120

ns) and a 32K EPROM. The on-chip port on the regular 6510

processor in the C64 is emulated with TTL logic for bank

switching. There are 16 ICs in all. In fact, Turbo Master CPU

is practically a complete 64K microcomputer, lacking only a

keyboard and screen. During operation of Turbo Master CPU,

the 6510 processor in the C64 is completely bypassed, while

the VIC chip, SID chip, keyboard and serial bus port are all

accessed by the cartridge and operate normally. The 6526 CIA

timers in the C64 continue to be clocked at their usual 1.0225

MHz rate. Speed change between the standard 1.0225 MHz

processor clock rate and the fast 4.09 MHz clock rate can be

accomplished either manually using the switches, or by soft

ware. (The software speed switch is bit 7 of memory address

$00.) Schnedler Systems also markets the MAE assembler,

which recognizes the full 65C02 instruction set.

Included in the cartridge is a switch for selecting ROM 1 or

ROM 2. ROM 1 has no tape routines, replacing them with the

fast disk routines and a DOS wedge. ROM 1 is highly compat

ible but ROM 2 is nevertheless provided. The cassette tape

routines are present, but are disabled. ROM 2 does not have

any extra features compared to a standard CBM Kernal ROM,

but you still have the benefit of four times faster processing

speed.

Turbo Master CPU comes with a 24-page manual, plus a disk

containing a few demo and utility programs, as well as text

files for assembly language programmers documenting the en

hanced 65C02 instruction set.

Transactor 78 December 1988: Volume 9, Issue 2

The introductory price of the Turbo Master CPU is $179 US,

shipping prepaid to US addresses. Orders may be placed by

telephone or mail. Visa and MasterCard accepted. Ten-day sat

isfaction or money back guarantee. Order from: Schnedler

Systems, 25 Eastwood Rd., P.O. Box 5964, Asheville, NC,

28813. Telephone: (704) 274-4646. Shipment from stock with

in 24 hours via UPS.

Dialogue 128: Advanced Terminal Software for the C128 and

C128D. Over two years of work has gone into making Dia

logue 128 the ideal terminal, with features no other software

can match. All commands are accessible via keyboard, help

menus, or 1351 mouse. Colour graphics mode for both CBM

and IBM type ANSI bulletin boards is supported.

Features include: VT52 and VT100 terminal emulation; 300,

1200, 2400 and variable baud rates; support of major modem

types through individual modem support files; all operations in

2MHz fast mode.

Visually, the package offers: 40/80 column selectable display,

optional 25 or 50 line display and extensive in-program drop

down help screens. Memory usage options include: full sup

port of 1700 and 1750 REUs and C128 RAMDOS (installed at

page 11); 64,000 character capture buffer (800/1600 lines);

8000 character separate review buffer; optional 512,000 char

acter buffer with RAM expander (6400/12,800 lines); multiple

buffer configurations (1 to 8 separate capture buffers).

Dialogue 128 also includes: a full-featured text editor; exten

sive autodial/redial capabilities; the ability to autodial multiple

numbers and load and save multi-dial lists; a 30-entry phone

directory with individual terminal parameters and four user-

defined function keys for each number in directory; ten other

"always active" macro keys; split screen conference mode;

clock and alarm for both "real" time and on-line time;

up/downloading with Punter Cl or Xmodem (CRC and check

sum) protocols.

A powerful auto-execute script language allows the advanced

user the option of creating logon scripts or even developing

programs to enable unattended operation. This feature could

be used to set up a mini BBS.

According to the manufacturer, loadable extension files vastly

extend Dialogue's future capabilities. Extension files are in

cluded for RLE files (allows viewing of RLE graphics while

online and storing them to disk) and for fully integrated char

acter set editing. Dialogue 128 is not copy protected - use any

drive or combination of drives. Files are accessible via a con

venient file selection mode. Dialogue 128 uses burst mode for

1571 and 1581 disk drives and permits use of partitions when

using 1581 drives. It will also let you send printer commands

via the DOS wedge.

Sending in your registration card entitles you to access the

Workable Concepts BBS (directly or via PunterNet) and the

Workable Concepts newsletter.

Dialogue 128 was written by Gary Farmaner and is available

from: Workable Concepts Inc., 281 St. Germain Avenue,

Toronto, ON, Canada, M5M 1W4. Price is $59.95 (Cdn) or

$49.95 (US).

QDisk Non-Volatile C128 CP/M RAM disk: Brown Boxes

Inc. of Bedford, MA and Herne Data Systems Ltd., of Toronto,

ON are pleased to announce the release of QDisk version 2.0.

QDisk is a device driver for the Quick Brown Box that allows

it to be used as a non-volatile RAM disk in C128 CP/M mode.

QDisk is totally application-transparent and can be used with

all standard CP/M software such as PIP, WordStar and dBase.

The Quick Brown Box is a battery-backed CMOS static RAM

cartridge for use with the C64 and C128 computers. It is

available in 16K, 32K and 64K byte sizes for $69, $99 and

$129 respectively (prices in US dollars; add $3 shipping and

handling, and 5% sales tax in MA). The internal lithium bat

tery retains the contents of the RAM for up to ten years, even

when the cartridge is unplugged from the computer. It is sup

plied with RAM disk software for use on a C64 and C128 (in

native mode). With the introduction of QDisk, the speed and

flexibility of a non-volatile RAM disk is now available for

C128 CP/M mode also.

In addition to being able to use the entire 64K version as a sin

gle CP/M drive, QDisk allows partitioning of the 64K Quick

Brown Box into two 32K areas, either one of which can be

used for C64 or C128 native mode applications, or both of

which can be used as separate CP/M drives. Once the driver is

installed, the Quick Brown Box can be accessed as a normal

CP/M disk drive. However, unlike the standard C128 CP/M

RAM disk using the 1700/1750 REUs, QDisk does not lose its

contents when the computer is turned off. Programs and data

files remain stored until needed and can be recalled in an in

stant.

QDisk is available for $9.95 (US) or $10.95 (Cdn.) plus $2.00

shipping and handling from: Herne Data Systems Ltd., P.O.

Box 714, Station 'C\ Toronto, ON, M6J 3S1. Phone: (416)

535-9335. For more information about the Quick Brown Box,

contact: Brown Boxes Inc., 26 Concord Road, Bedford, MA,

01730. Phone: (617) 275-0090 or (617) 862-3675.

B-128 Hardware Enhancements

The low-profile B-128 is being supported by a line of hard

ware enhancement products from Anderson Communications

Engineering.

The B-1024 is a 1MB memory expansion board that implemen

ts banks 0-14 with socketed 256K dynamic RAM. This in

crease, for example, allows 8 documents with Superscript II;

28,560 input values with Calc Result; and 14 8032s with the

multi-tasking 8432 Emulator software package. The board is

fully assembled and tested. It plugs internally onto pin fields

in the low profile B-128 and installs in minutes. The original

configuration of a stock B-128 can be restored at any time by

Transactor 79 December 1988: Volume 9, Issue 2

simply removing the board; this is a non-destructive upgrade.

In addition to the megabyte of memory there are pin fields for

future I/O, a RAM/ROM socket to implement $0800-$ 1FFF in

BANK 15, documentation for installation, parts layout,

schematic diagram, and a machine language memory test util

ity on 8050 disk. Three memory density options are available.

The board can be fully populated with user-purchased 41256-

15 DRAM. Pricing: B-1024 with 1024K installed is $699, with

512K installed is $499, with OK installed is $289.

The 24K RAM/ROM Cartridge adds another 24K of

memory to your B-128/CBM-256 system unit in BANK 15 from

$2000-$7FFF. It comes complete in a plastic case with 24K of

SRAM, is assembled and tested, and is ready to be plugged into

the cartridge port. This cartridge is used with many software

packages available from the Chicago B-128 Users Group

(CBUG, 4102 N. Odell, Norridge, IL 60634) such as Scott's

BMON, JCL Workshop, Harrison's Assembler, Jarvis/Springer

Serial Bus Software, and Liz Deal's Keytrix to name a few.

Price: $84.95

Serial Bus peripherals can now be connected to the B-128!

The Serial Bus Interface is a full featured hardware interface

for the B-128 implementing the Commodore serial bus with

the functions of controller, listener/talker, slow bus, fast bus,

attention acknowledge, power-on serial bus reset, and manual

serial bus reset. It comes in a rugged plastic case and connects

to the user port via a ribbon cable. This interface operates with

the Jarvis/Springer Serial Bus Software Package available

from CBUG. Price: $59.95

The RAM/ROM Socket allows implementation of the 6K

memory area below the cartridge port from $0800-$1FFF in

Bank 15. It is a small circuit board with connector and 28-pin

socket that will receive an 8K SRAM or ROM to customize

your applications. Price: $24.95

A copy of the latest ad can be obtained by sending an SASE to

Anderson Communications Engineering, 2560 Glass Road

NE, Cedar Rapids, IA 52402. Terms: free shipping in USA, US

funds, Iowa add 4%, allow 6-8 weeks.

SFX Sound Expander: This expansion module for the

C64/C128 is based on a custom LSI chip that provides a pro

grammable nine voice FM synthesizer on a single chip. The

manufacturer reports a great improvement in sound quality

and variety over that of the Commodore SID chip. The basic

software package that comes with the Sound Expander is a

menu-driven program that includes a large selection of voices

(more can be added with the optional FM Composer and

Sound Editor program), keyboard split, chorus, transposition,

one-finger chords, a rhythm machine, a riff machine and more.

Also included with the Sound Expander is a Programmer's

Reference Guide that gives all the programming details.

The SFX full-size keyboard combines with the SFX Sound

Expander to create a "truly professional musical instrument",

the manufacturer says. The keys on the five-octave keyboard

are of standard piano key dimensions. The SFX keyboard

overlay is a small two-octave keyboard that fits on top of the

computer.

FM Composer and Sound Editor: This software is compatible

with the SFX Sound Expander module. It is a MIDI-

compatible nine-channel sequencer developed in cooperation

with England's Reading University; it allows you to enter, edit

and play back any piece of music that can be written in stan

dard music notation. Among the features supported are:

crescendo and decrescendo, loudness settings for individual

notes (ppp to fff), repeats (da coda, dal Segno, start etc.),

transposition, tempo settings, performance voice (may be

changed for every note if desired, choosing from up to 64

voices in any composition), key, detuning (for chorus effects),

copy and move options.

The Sound Editor program provides the tools to create, edit,

store, and recall a wide variety of sounds for use with the

Sound Expander. It also includes a random sound generator

that lets the computer generate sounds on its own, a MIDI-

compatible synthesizer mode and a drum machine.

SFX Sound Expander is $180.00 (US); SFX Full-Size Key

board is $145.50; SFX Keyboard Overlay is $14.00; SFX

Composer and Sound Editor is $45.00; SFX Sound Sampler is

$89.00. Available from: Fearn & Music, 519 W. Taylor #114,

Santa Maria, CA, 93454. Call: (800) 447-3434. In CA, call

(805) 925-6682.

Zoom! for the C64: Discovery Software International, Inc.

has announced the release of ZOOM!, the company's second

arcade-style game for the C64/C128. The game, described as

easy-to-learn and non-violent, features a character named

Zoomer, who is chased by a gang of reckless enemies through

an outer space land called Zoomland. Zoomer's mission is to

dart through Zoomland, capturing territories and collecting

points.

According to the manufacturer, Zoom! is designed to appeal to

video game enthusiasts at all skill levels, and challenges play

ers' reflexes and strategic thinking abilities. The game has 50

levels of play for one or two players. Suggested retail price of

Zoom! is $29.95 (US). The game carries a 30-day uncondi

tional money-back guarantee. Q

Transactor 80 December 1988: Volume 9, Issue 2

The Potpourri Disk

Help!

This HELPful utility gives you instant

menu-driven access to text files

at the touch of a key - while any

program is running!

Loan Helper

How much is that loan really going

to cost you? Which interest rate

can you afford? With Loan Helper,

the answers are as close as your

friendly 64!

Keyboard

Learning how to play the piano?

This handy educational program

makes it easy and fun to learn the

notes on the keyboard.

Filedump

Examine your disk files FAST with

this machine language utility.

Handles six formats, including hex,

decimal, CBM and true ASCII,

WordPro and SpeedScript,

Anagrams

Anagrams lets you unscramble

words for crossword puzzles and

the like. The program uses a recur

sive ML subroutine for maximum

speed and efficiency,

Life

A FAST machine language version

of mathematician John Horton

Conway's classic simulation. Set

up your own 'colonies' and watch

them grow!

War Balloons

Shoot down those evil Nazi War

Balloons with your handy Acme

Cannon! Don't let them get away!

Von Googol

At last! The mad philosopher,

Helga von Googol, brings her own

brand of wisdom to the small

screen! If this is 'Al', then it just ain't

natural!

News

Save the money you spend on

those supermarket tabloids - this

program will generate equally

convincing headline copy - for

free!

Wrd

The ultimate in easy-to-use data

base programs. WRD lets you

quickly and simply create, exam

ine and edit just about any data.

Comes with sample file.

Quiz

Trivia fanatics and students alike

will have fun with this program,

which gives you multiple choice

tests on material you have en

tered with the WRD program.

AHA! Lander

AHA!'s great lunar lander program.

Use either joystick or keyboard to

compete against yourself or up to

8 other players. Watch out for

space mines!

Bag the Elves

A cute little arcade-style game;

capture the elves in the bag as

quickly as you can - but don't get

the good elf!

Blackjack

The most flexible blackjack simula

tion you'll find anywhere. Set up

your favourite rule variations for

doubling, surrendering and split

ting the deck.

File Compare

Which of those two files you just

created is the most recent ver

sion? With this great utility you'll

never be left wondering.

Ghoul Dogs

Arcade maniacs look out! You'll

need all your dexterity to handle

this wicked joystick-buster! These

mad dog-monsters from space

are not for novices!

Octagons

Just the thing for you Mensa types.

Octagons is a challenging puzzle

of the mind. Four levels of play,

and a tough 'memory' variation

for real experts!

Backstreets

A nifty arcade game, 1OO% ma

chine language, that helps you

learn the typewriter keyboard

while you play! Unlike any typing

program you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the

above programs, ALL of the above programs, on a single disk, accessed

independently or from a menu, with built-in menu-driven help and fast-loader.

The ENTIRE POTPOURRI COLLECTION

JUST $17.95 US!!

See Order Card at Center

■■■■■■■■

Exhibitors, contact:

The Hunter Group

(416)595-5906

Fax (416)595-5093

Produced in association with Commodore Business Machines

Incredible bargains.

Amazing new hardware and software.

The excitement.

It all returns to Toronto for the sixth great year:

Canada's annual computer extravaganza sponsored by

Commodore Business Machines.

The 1987 show set world records - 42,000

showgoers made it the largest, best-attended Commo

dore show ever.

Commodore will be at the 1988 show with a giant

display area for its exciting computers, accessories and

software.

Thousands of brands will be shown and sold by

other manufacturers, distributors and retailers.

Top experts in home, business and educational

computing will lead seminars and demonstrations

which are free with admission for all show visitors.

The Amiga, the C-64, the C-128, the Commodore

PC line, all the major peripherals, programs, accesso

ries - many more to be announced - they're all at the

Sixth World of Commodore.

Get in on the excitement.

