
Computers and Copyrights

Painless ML Development

Using 2 Commodore 64s

Matrix Mathematics

Decoding Infocom

Vocabularies

A Better Syntax for Device I/O

Editing Power C Libraries

The Link Between C and ML

A Bug in the

1750 RAM Expander

Better ML Bank-Switching

on the Commodore 128

Autobooting Programs

Under CP/M

Amiga Section:

Amiga Dispatches

Amiga's Flashy

Boot Sequence

Changing the Mouse

Pointer from AmigaBasic

29074 12121

03

Canada $4.25

USA $3.50

Fast String Searches

with

Binary Trees

The Potpourri Disk

Help!

This HELPful utility gives you instant

menu-driven access to text files

at the touch of a key - while any

program is running!

Loan Helper

How much is that loan really going

to cost you? Which interest rate

can you afford? With Loan Helper,

the answers are as close as your

friendly 64!

Keyboard

Learning how to play the piano?

This handy educational program

makes it easy and fun to learn the

notes on the keyboard.

Filedump

Examine your disk files FAST with

this machine language utility.

Handles six formats, including hex,

decimal, CBM and true ASCII,

WordPro and SpeedScript.

Anagrams

Anagrams lets you unscramble

words for crossword puzzles and

the like. The program uses a recur

sive ML subroutine for maximum

speed and efficiency.

Life

A FAST machine language version

of mathematician John Horton

Conway's classic simulation, Set

up your own 'colonies' and watch

them grow!

War Balloons

Shoot down those evil Nazi War

Balloons with your handy Acme

Cannon! Don't let them get away!

Von Googol

At last! The mad philosopher,

Helga von Googol, brings her own

brand of wisdom to the small

screen! If this is 'Al', then it just ain't

natural!

News

Save the money you spend on

those supermarket tabloids - this

program will generate equally

convincing headline copy - for

free!

Wrd

The ultimate in easy-to-use data

base programs, WRD lets you

quickly and simply create, exam

ine and edit just about any data,

Comes with sample file.

Quiz

Trivia fanatics and students alike

will have fun with this program,

which gives you multiple choice

tests on material you have en

tered with the WRD program.

AHA! Lander

AHAI's great lunar lander program.

Use either joystick or keyboard to

compete against yourself or up to

8 other players, Watch out for

space mines!

Bag the Elves

A cute little arcade-style game;

capture the elves in the bag as

quickly as you can - but don't get

the good elf!

Blackjack

The most flexible blackjack simula

tion you'll find anywhere. Set up

your favourite rule variations for

doubling, surrendering and split

ting the deck.

File Compare

Which of those two files you just

created is the most recent ver

sion? With this great utility you'll

never be left wondering.

Ghoul Dogs

Arcade maniacs look out! You'll

need all your dexterity to handle

this wicked joystick-buster! These

mad dog-monsters from space

are not for novices!

Octagons

Just the thing for you Mensa types,

Octagons is a challenging puzzle

of the mind. Four levels of play,

and a tough 'memory' variation

for real experts!

Backstreets

A nifty arcade game, 1OO% ma

chine language, that helps you

learn the typewriter keyboard

while you play! Unlike any typing

program you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the

above programs, ALL of the above programs, on a single disk, accessed
independently or from a menu, with built-in menu-driven help and fast-loader.

The ENTIRE POTPOURRI COLLECTION

JUST $17.95 US!!

See Order Card at Center

Volume 8

Issue 5

Bits and Pieces .. 6
Figure this one out!

Sprite Memory Display

File Track and Sector

File Load Address Changer

File Stripper

No-Question Mark Input

Binary Sorting "On The Fly"

Handy Hexer

Microtrace

Monitor Dump to Sequential File

50-line, 80-columnCl 28 Display

Windows on the 128

The Other Drag Bar

Awrite File Transfers

Amiga 500 Serial and Parallel Ports

Letters 10
A question on copyright

Transformer Mods for MC68010 Amiga

C64 Keyboard Matrix

Clock Setting

Transactor's Amiga Coverage

My heart leaps up...

Accessing Curly Brackets with Speedscript

The Continuing BIT/.BYTE Saga

ML EPROM Burner

IEEE Interfaces for the C64/128

News BRK 75
New Editorial Assistant Mends Our Ways

Save on Quick Brown Boxes

Combination Magazine Subscriptions

Subscription Switch

Problems Keep Life Interesting

Early Renewal Notices

Two Separate Subs!

Half Price For One Year Only

Office Access

The 20/20 Deal

1541 Upgrade ROMs No Longer Available

TPUG No Longer Supplying Transactor

New and Improved Transactor Disks!

Fish Disks With Custom Labels

Transactor Bi-Monthly Special Extended

Transactor Mail Order

Parents Legally Responsible for Teenage Pirates?

The 64 Emulator for Amiga

THE ACCOUNTANT v2.0 for C128

New Utility Program For the 1581 Disk Drive

Survey-Master for C64 & C128

Satcomm 64

Precisely and Quarterback for the Amiga

Legal Care For Your Software

MIDI Interface for C64&C128

Commodore 128 Software from Abacus

Speedterm 128.TAS-128, PPM-128

Amiga Software and Books from Abacus

TextPro, BeckerText,

DataRetrieve, AssemPro,

AmigaBASIC - Inside & Out,

Amiga Tricks and Tips,

Amiga for Beginners,

Amiga Machine Language

Power Windows: Release 2.0

Ketek announces new Command Centre

SpeedScript Upgrade for the C-128

MPS-801 Descender ROM

Synthesizer Software

Musical Catechism Lessons on the 64

TransBloops . .. 14
Random Number Generation in ML

Common by Comparison

Transactor

Socially Unacceptable 3

TeleColumn 15

Branch out into binary trees to organize your data lo

Protecting your work starts here 22

A fast alternative to some tedious math 26

KeaQ lniOCOm Those text adventures have big vocabularies -but where? Zo

Interfacing TWO C64S Develop on one machine, test on another! 31

The Link Between C and Assembly can ml ukea Power c function 36

Maintaining the Power C Library n™,™ routines imociibrarycaiis 42

A D6ttGr OyntclX for Kernal Device I/O. Don't let "device 8 only" programs rule your life 44

A RAM EXpanSlOn BUg How did that ROM code find its way into the strings? . 48

Steve Punter offers tips for faster bank management 52

CP/M There's another way- and it's faster, too! 56

1 Zo This interrupt-driven timekeeper even has a built-in alarm . . OO

Amiga Section

In which Tim announces the end of an era in computer journalism Ut7

Change Your Mouse Pointer S^SS^ffiS 72

FaCtS Behind The FlaSheS What your Amiga is teHingyou during boot-up .. 74

Note: before entering programs, see "Verifizer" on page 4

ABOUT THE COVER: The tree was drawn using

Deluxe Paint II, then simply stored on disk, packed in an

envelope, and shipped to the ImageSet Corporation in

San Francisco, CA. It seems the Amiga will do just about

anything, and colour separations on a micro is an appli

cation that's about as cost and time effective as you can

get. Using a program called "ColorSet", the IFF file

containing our picture can be resized vertically or

horizontally before the separations are generated.

The Transactor March 1988: Volume 8, Issue O5

Itansactor
The Magailne for Commodore Programmers

Editor-in-Chief

KarlJ.H.Hildon

Publisher

Richard Evers

Technical Editor

Chris Zamara

Submissions Editor

Nick Sullivan

Editorial Assistant

Moya Drummond

Customer Service

Jennifer Reddy

Contributing Writers

Ian Adam

Steve Ahlstrom

David Archibald

Jack Bedard

Paul Blair

Neal Bridges

Bill Brier

Anthony Bryant

Jim Butterfield

Dale A. Castellcf

Betty Clay

Tom K. Collopy

DonCurrie ,

Robert V. Davis

Elizabeth Deal

Frank E. DiGioia

Chris Dunn

Michael J. Erskine

Jack Farrah

Mark Farris

Jim Frost

Miklos Garamszeghy

Eric Germain

David Godshall

Michael T. Graham

Eric Giguere

Thomas Gurley

Tim Grantham

Patrick Hawley

Adam Herst

Thomas Henry

John Houghton

Robert Huehn

David Jankowski

Clifton Karnes

Lome Klassen

Jesse Knight

Gregory Knox

David Lathrop

James A. Lisowski

Richard Lucas

Scott Maclean

Steve McCrystal

Chris Miller

Keath Milligan

Terry Montgomery

Ralph Morrill

D.J. Morriss

Michael Mossman

Bryce Nesbitt

Gerald Neufeld

Noel Nyman

Matthew Palcic

Richard Perrit

Larry Phillips

Steve Punter

Raymond Quirling

Doug Resenbeck

Tony Romer

Herb Rose

Dan Schein

EJ. Schmahl

David Shiloh

Darren J. Spruyt

Aubrey Stanley

David Stidolph

Richard Stringer

Anton Treuenfels

AudrysVilkas

Jack Weaver

Geoffrey Welch

Evan Williams

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Program Listings In Transactor

All programs listed in Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of

course be in lower case. Secondly, the lower case L (T) is a straight line as opposed to the number 1

which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're

listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces

you insert will not be critical to correct operation of the program. When it is, the required number of

spaces will be shown. For example:

print' flush right" - would be shown as - print "[10 spaces]flush right"

Cursor Characters For PET / CBM / VIC / 64

Down - Q

up -B
Right -0

Left - [lit]

RVS - Q
RVSOff- Q

Colour Characters For VIC / 64

Black - |

White - |

Red - Q

Cyan - [Cyn]

Purple- [Pur]

Green - ||

Blue - B

Yellow- [Yel]

Function Keys For VIC / 64

F5-

F6-

F7-

F8-

Please Note: Transactor's

phone number is: (416) 764-5273

Mondays, Wednesdays and Fridays ONLY

CompuServe Accounts

Contact us anytime on GO CBMPRG, GO CBMCOM, or EasyPlex at:

KarlJ.H.Hildon 76703,4242

Chris Zamara 76703,4245

Nick Sullivan 76703,4353

Transactor is published bi-monthly by Transactor Publishing Inc., 85 West Wilmot Street, Unit 10,

Richmond Hill, Ontario, L4B 1K7. Canadian Second Class mail registration number 6342. USPS 725-

050, Second Class postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address

changes to Transactor, P.O. Box 338, Station C, Buffalo, NY, 14209 ISSN* 0827-2530.

Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore Incorporated.

Commodore and Commodore product names (PET, CBM, VIC, 64,128, Amiga) are registered trademarks of
Commodore Inc.

Subscriptions:

Canada $ 19 Cdn. U.S.A. $ 15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: Transactor, Subscriptions Department, 85 West Wilmot Street, Unit 10,

Richmond Hill, Ontario, Canada, L4B 1K7,416 764 5273. Note: Subscriptions are handled at this address

ONLY. Subscriptions sent to our Buffalo address (above) will be forwarded to our Richmond Hill HQ. For
best results, use postage paid card at center of magazine.

Quantity Orders:

In Canada:

Ingram Software Ltd.

141 Adesso Drive
Concord, Ontario

L4K 2W7
(416)738-1700

In the U.S.A.:

IPD (International Periodical Distributors)

11760-B Sorrento Valley Road

San Diego, California

92121 (619)481-5928
Ask for Dave Bruescher

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 03,04,05,06, and Vol 5 Issues 02,
03,04 are available on microfiche only

Still Available: Vol. 4:01,02. Vol. 5:01,04,05,06. Vol. 6:01,02,03,04,05,06.
Vol. 7:01, 02,03,04,05,06. Vol. 8:01,02, 03,04,05

Back Issues: $4.50 each. Order all back issues from Richmond Hill HQ.

Editorial contributions are always welcome. Minimum remuneration is $40 per printed page. Preferred

media are 1541,2031,4040,8050,8250,1571, or 1581 diskettes with WordPro, PaperClip, Pocket Writer,
WordCraft, Superscript, (actually, just about any word processor files) or SEQ text files, or Amiga format 3>/2

diskettes with ASCII text files. Program listings including BITS subsmissions of more than a few lines should

be provided on disk. Manuscripts should be typewritten, double spaced, with special characters or formats

clearly marked. Photos should be glossy black and white prints. Illustrations should be on white paper with
black ink only.

All material accepted becomes the property of Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Solicited
material is accepted on an all rights basis only. Write to the Richmond Hill address for a writer's package.
The opinions expressed in contributed articles are not necessarily those of Transactor. Although accuracy is
a major objective, Transactor cannot assume liability for errors in articles or programs. Programs listed in
Transactor, and/or appearing on Transactor disks, are copyright by Transactor Publishing Inc. and may not
be duplicated or distributed without permission.

The Transactor March 1988: Volume 8, Issue O5

Socially Unacceptable

Have a look at the first item under "Industry News" in the New BRK

section. It's a report of a federal court case underway in New York

state. Should judgement be found for the plaintiff, the defendant will

be convicted of operating a pirate bulletin board system. More

significant than that is the fact that his or her parents will be held

responsible.

I, for one, am rooting for the plaintiff. And if they should win? Send

them on a walk down the gangplank if that's suitable (and I'm in a

good mood right now). But since that doesn't happen in our "civilized

age", the court will need to think of something else. Punishment of

equal significance I would hope. Punishment that will make others

think twice about supplying the public at large with commercial

software. And not just over the phone lines... hand-to-hand transfers

too. We need a deterrent. A deterrent commensurate with the crime.

One that deters the act because getting caught would be socially

unacceptable. Those involved with this case have the opportunity to

set a valuable precedent here... one that may prove to be the best

protection yet against software piracy.

Looking at software stealing over the years, it seems little else has

proven very effective for very long. Early packages used a ROM

installed in a spare socket, but it wasn't long before the program

stopped looking at the ROM. Same with the dongle. Then there was

disk surface protection. Thick manuals. They all had one thing in

common, though. Making a copy was something to be proud of...

friends admired you, even if they weren't the recipient of the

duplicate. The skill required was quite captivating. Like drinking and

driving, that must change.

Unfortunately, changes like that require money... a lot of money.

Changing the public's attitude toward anything, at least on this

continent, is possible, but it usually means relentless, expensive

campaigns. Even then, there will always be those who choose to

ignore the consequences. And since nobody is suffering physically

when a program is passed along, a public campaign is unlikely. It

looks like we'll have to settle for the embarrassment of a conviction

that can be used publicly to equate software pirates with the common

thief.

But convictions are expensive. The revenue lost by one outfit to even

a hundred downloads probably doesn't compare to the attorney's fee.

Add up the total losses among all the manufacturers whose titles are

available for capturing though, and the lost revenue becomes poten

tially staggering. The most popular pirate boards are those with the

largest selection. Naturally the plaintiff cannot collect on behalf of all

the others, so it's up to the courts to assess the damage and determine

suitable punishment.

The software industry is easily in the billion dollar range per year.

That money goes a lot farther than just over the counter and into the

till. Every copy of any commercial program that isn't sold means the

author loses, the manufacturer (our advertiser) loses, the retailer (who

also sells our mag) loses, and the consumer pays higher prices. When

these outfits can't sustain themselves any longer, they go under. The

employees lose, and the customers lose when they can no longer get

support for the products they bought. Who else? How about the

essential services that every company needs? It's time the authorities

took notice. A rumour I heard recently suggests they are. Perhaps by

next issue I'll have more on that.

As far as this latest round goes, word is that the Doe family stands a

good chance of losing their telephone service. It's within the court's

power to order it and the deterrent value would have far more impact

than even the most reasonable fine. I would hope the telephone

company won't have a problem with that either. We pay lots of

dineros to the phone people and it's my guess that many of the

software companies that have gone under were paying more than us.

It's also my contention that the phone company could do more to

eliminate the pirate BBS. I don't expect them to go around snipping

phone lines. Simply alerting the proper authorities would be enough

on their part. It would be interesting employment for someone who

not only enjoys BBSing but also wants to preserve it, and it could

certainly be considered as revenue protection for the phone company.

But many of you will disagree, I know. Because if Ma Bell gets

involved, it's very possible that the BBS as we know it will become

extinct. BBS operators who don't even take donations will suddenly

be paying to offer their service, which might have been completely on

the level and no more than a hobby. There isn't room here to describe

how the phone people could do this job right, but I think it's worth

looking at.

The outcome of Weaver vs. Doe will be extremely important. I

recently saw a BBS directory that offered the entire product line of one

firm. The company is aware of the BBS and in the process of reacting.

I find it most distasteful that anyone could participate in something so

evil, especially when they must know how much it can hurt an

honest manufacturer trying to make an honest buck. And based on

that, I do hope more pirate boards are caught, eliminated, and

penalized. And perhaps one day enough Doe's will have lost their

telephone lines to make policing the BBS operators unnecessary.

It's not the solution, but it's a start. Hand-to-hand transfers are still the

biggest problem. But if this angle can be successfully labeled "socially

unacceptable", it's a step closer to changing the attitude towards

piracy at all levels. I plan to do my part. You can do yours by

boycotting the pirate BBS. Also, I'm sure manufacturers would be

most interested in the whereabouts of boards offering their software.

And /intend to make it possible for more firms to react.

I should have more on the outcome of Weaver vs. Doe by next issue.

Let's just hope it doesn't set a precedent that renders us powerless to

do anything but watch our software industry die... and that includes

the Amiga.

Karl J.H. Hildon, Editor in Chief

The Transactor 3 March 1988: Volume 8, Issue O5

Using "VERIF1ZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from the

pages of The Transactor. It will let you check your work line by line as

you enter the program, and catch frustrating typing errors. The VERIFI

ZER concept works by displaying a two-letter code for each program

line which you can check against the corresponding code in the

program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or

C64, Plus 4, C128, and B128. Enter the applicable program and RUN it.

If you get a data or checksum error, re-check the program and keep

trying until all goes well. You should SAVE the program, since you'll

want to use it every time you enter one of our programs. Once you've

RUN the loader, remember to enter NEW to purge BASIC text space.

Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a program

line a two-letter report code will appear on the top left of the screen in

reverse field. Note that these letters are in uppercase and will appear as

graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that

line at the last minute which changes the report code. However, this

will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine nor

mally, checking each report code after you press RETURN on a line. If

the code doesn't match up with the letters printed in the box beside the

listing, you can re-check and correct the line, then try again. If you

wish, you can LIST a range of lines, then type RETURN over each in

succession while checking the report codes as they appear. Once the

program has been properly entered, be sure to turn VERIFIZER off with

the SYS indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead

of POKE 53281,0. However, VERIFIZER uses a "weighted checksum

technique" that can be fooled if you try hard enough; transposing two

sets of 4 characters will produce the same report code but this should

never happen short of deliberately (verifizer could have been designed

to be more complex, but the report codes would need to be longer, and

using it would be more trouble than checking code manually). VERIFI

ZER ignores spaces, so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!). Standard

keyword abbreviations (like nE instead of next) will not affect the

VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer, so

if you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities goes,

VERIFIZER shouldn't cause any problems since it works through the

BASIC warm-start link and jumps to the original destination of the link

after it's finished. When disabled, it restores the link to its original

contents.

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

01

JB

PA

HE

EL

LA

Kl

EB

DM

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

10 rem* data loader for Verifizer 4.0° *

15rem pet version

20cs = 0

30 for i = 634 to 754:read a:poke i,a

40cs = cs + a:nexti

50:

60 if cs<>15580 then print"***** data error *****": end

70 rem sys 634

80 end

100:

1000 data 76,138, 2,120,173,163, 2,133,144

1010 data 173,164, 2,133,145, 88, 96,120,165

1020 data 145, 201, 2,240, 16,141,164, 2,165

1030 data 144,141,163, 2,169,165,133,144,169

1040 data 2,133,145, 88, 96, 85,228,165,217

1050data201, 13,208, 62,165,167,208, 58,173

1060 data 254, 1,133, 251,162, 0,134, 253,189

1070 data 0, 2,168,201, 32,240, 15,230,253

1080 data 165, 253, 41, 3,133,254, 32,236, 2

1090 data 198, 254, 16, 249, 232, 152, 208, 229, 165

1100 data 251, 41, 15, 24,105,193,141, 0,128

1110 data 165,251, 74, 74, 74, 74, 24,105,193

1120data141, 1,128,108,163, 2,152, 24,101

1130data251,133,251, 96

VIC/C64 VERIFIZER

10 rem* data loader for Verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:nexti

50:

60 if cs<>14755 then print"***** data error *

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,251,141, 2

1010 data 252,141, 3, 3, 96,173, 3

1020 data 3,240, 17,133,252,173, 2

99,141, 2, 3,169

96,173,254, 1,133

0,189, 0, 2,240

15,133,

32,183,

1030 data 251,169,

1040 data 3, 3,

1050 data 0,160,

1060 data 32,240, 15,133, 91,200,152,

1070 data 133, 90, 32,183, 3,198, 90,

1080 data 232, 208, 229, 56, 32,240,255,

1090 data 32,210,255,169, 18, 32,210,

1100 data 89, 41, 15, 24,105, 97, 32,

1110 data 165, 89, 74, 74, 74, 74, 24,

1120 data 32,210,255,169,146, 32,210,

1130 data 32,240,255,108,251, 0,165,

1140 data 101, 89,133, 89, 96

****": end

3,165

3,201

3,133

3,141

89,162

22, 201

41, 3

16,249

169, 19

255,165

210,255

105, 97

255, 24

91, 24

VIC/64 Double Verifizer Steven Walley, Sunnymead, CA

When using 'VERIFIZER' with some TVs, the upper left corner of the

screen is cut off, hiding the verifizer-displayed codes. DOUBLE VERI-

The Transactor March 1988: Volume 8, Issue O5

FIZER solves that problem by showing the two-letter verifizer

code on both the first and second row of the TV screen. Just run

the below program once the regular Verifizer is activated.

KM

BC

Dl

GD

IN

EN

KG

KO

FM

LP

100 for ad = 679 to 720:read da:poke ad,da:next ad

110sys679: print: print

120 prinfdouble verifizer activated":new

130 data 120,169,180,141, 20, 3

140 data 169, 2,141, 21, 3, 88

150 data 96, 162, 0,189, 0,216

160 data 157, 40,216,232,224, 2

170 data 208, 245,162, 0,189, 0

180 data 4,157, 40, 4,232,224

190 data 2,208,245, 76, 49,234

VERIFIZER For Tape Users Tom Potts, Rowley, MA

The following modifications to the Verifizer loader will allow VIC and 64

owners with Datasettes to use the Verifizer directly (without the loader).

After running the new loader, you'll have a special copy of the Verifizer

program which can be loaded from tape without disrupting the pro

gram in memory. Make the following additions and changes to the VIC/

64 VERIFIZER loader:

NB 30 for i = 850 to 980: read a: poke i,a

AL 60 ifcs<>14821 then print"*****data error*****": end

IB 70 rem sys850 on, sys853 off

— 80 delete line

— 100 delete line

OC 1000 data 76, 96, 3,165,251,141, 2, 3,165

MO 1030 data 251,169,121,141, 2, 3,169, 3,141

EG 1070 data 133, 90, 32,205, 3,198, 90, 16,249

BD 2000 a$ = Verifizer.sys850[space]B

KH 2010 for i = 850 to 980

GL 2020 a$ = a$ + chr$(peek(i)): next

DC 2030 open 1,1,1,a$: close 1

IP 2040 end

Now RUN, pressing PLAY and RECORD when prompted to do so (use a

rewound tape for easy future access). To use the special Verifizer that

has just been created, first load the program you wish to verify or

review into your computer from either tape or disk. Next insert the tape

created above and be sure that it is rewound. Then enter in direct

mode: OPENlrCLOSEl. Press PLAY when prompted by the computer,

and wait while the special Verifizer loads into the tape buffer. Once

loaded, the screen will show FOUND VERIFIZER.SYS850. To activate,

enter SYS 850 (not the 828 as in the original program). To de-activate,

useSYS853.

If you are going to use tape to SAVE a program, you must de-activate

(SYS 853) since VERIFIZER moves some of the internal pointers used

during a SAVE operation. Attempting a SAVE without turning off

VERIFIZER first will usually result in a crash. If you wish to use

VERIFIZER again after using the tape, you'll have to reload it with the

OPEN1:CLOSE1 commands.

C128 VERIFIZER (40 column mode)

PK

AK

JK

NH

OG

JP

MP

AG

ID

GF

1000 rem * data loader for Verifizer d 28"

1010 rem * commodore c128 version

1020 rem * use in 40 column mode only!

1030 cs = 0

1040 for j = 3072 to 3214: read x: poke j,x: ch = ch + x: next

1050 if ch<>17860 then print "checksum error": stop

1060 print "sys 3072,1: rem to enable"

1070 print "sys 3072,0: rem to disable"

1080 end

1090 data 208, 11,165, 253, .141, 2, 3,165

MG

HE

LM

JA

El

KJ

DH

JM

KG

EF

CG

EC

AC

JA

CC

BO

PD

1100 data 254,

1110 data 201,

1120 data 3,

1130 data 169,

.1140 data 133,

1150 data 2,

1160 data 3,

1170 data 22,

1180 data 152,

1190 data 198,

1200 data 32,

1210 data 169,

1220 data 15,

1230 data 250,

1240 data 32,

1250 data 24,

1260 data 252,

141,

12,

133,

12,

250,

201,

232,

201,

41,

251,

240,

18,

24,

74,

210,

32,

24,

3, 3,

240, 17,

253,169,

141, 3,

162, 0,

48,144,

208, 242,

32, 240,

3,133,

16,249,

255,169,

32,210,

105,193,

74, 74,

255,169,

240, 255,

101,250,

96,173,

133,254,

38,141,

3, 96,

160, 0,

7,201,

189, 0,

15,133,

251, 32,

232, 208,

19, 32,

255, 165,

32,210,

74, 24,

146, 32,

108,253,

133,250,

3, 3

173, 2

2, 3

165, 22

189, 0

58,176

2,240

252, 200

135, 12

229, 56

210,255

250, 41

255,165

105,193

210,255

0,165

96

Introducing

The Standard

Transactor Program Generator

If you type in programs from the magazine, you might be able to save

yourself some work with the program listed on this page. Since many

programs are printed in the form of a BASIC "program generator",

which creates a machine language program on disk, we have created a

"standard generator" program that contains, code common to all

program generators. Just type this in once, and save all that typing for

every other program generator you enter!

Once the program is typed in (check the verifizer codes as usual when

entering it), save it on a disk for future use. Whenever you type in a

program generator (for example listings 5 and 6 from the article

"Interfacing two Commodore 64s" in this issue), the listing will refer to

the standard generator. Load the standard generator you've saved, then

type the lines from the listing as shown. The resulting program will

include the generator code and be ready to run.

When you run this new generator, it will create a machine language

program on disk that can be loaded (load "filename\8,1) and executed

with a SYS command. The machine language program is described in

the related article, and the generator is just an easy way for you to create

it using the standard BASIC editor at your disposal. After the machine

language file has been created, the generator is no longer needed. The

standard generator, however, should be kept handy for all future

Transactor type-in program generators.

The standard generator listed here will appear in every issue from now

on (when necessary) as a standard Transactor utility like Verifizer.

MG

EE

LK

KO

EC

FB

DE

CM

CH

HM

NA

KD

HE

JL

MP

MH

IH

100 rem transactor standard program generator

110 n$ = "filename": rem name of program

120 nd = 000: sa = 00000: ch = 00000

130 for i = 1 to nd: read x

140ch = ch-x: next

150 if ch then prinfdata error": stop

160 print"data ok, now creating file"

170 restore

180open1,8,1,"0:" + n$

190 hi = int(sa/256): lo = sa-256*hi

200print#1,chr$(lo)chr$(hi);

210 for i = 1 tond: readx

220 print#1,chr$(x);: next

230 close 1

240 prinfprgfile '";ri$;"' created....'

250 printthis generator no longer needed."

260: m

The Transactor March 1988: Volume 8, Issue O5

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - if we use it in the Bits column, we 7/ credit you in

the column and send you a free one-year's subscription to The Transactor

Figure This One Out!

Here's a challenge for all who think they know the 64's innards

pretty weli: examine the following program:

1 print"*";: pokeNUM.O

The trick is to fill in "NUM" with a value that will cause the program

to fill the entire screen with asterisks. Those who figure out the

POKE win nothing but the satisfaction of having solved the puzzle.

The first one who can figure out TWO solutions, however, gets a

Transactor bits book as a prize. Just to save you from trying too hard

and possibly losing your sanity, it's only fair to tell you that we know

of no second solution.

Sprite Memory Display Richard Lucas

Los Angeles, CA

This bit is not just a dazzler, it's also educational. The VIC—II chip in

the Commodore 64 can use any section of memory to output a

display, including page zero. This program combines this feature

with sprites to create a dynamic bit-mapped display of the first two

pages of memory. When run, it sets up eight sprites, then loops so

that you can see zero page activity during the execution of a BASIC

program. Press any key to exit the proram. The sprites will remain

on the screen. Notice how much less activity there is in immediate

mode? See how the display changes as you move the cursor,

evaluate an expression, list a program, etc. When you're finished,

RUN 999 To restore your computer to normal.

MP

NE

MO

OE

OF

KH

PK

HK

ON

EP

BG

IM

DM

10 rem zero page display rl 5/10/84

60 poke 53280,0:poke 53281,0:printn[md. grey]'

100 vi = 53248

110 poke vi + 21,255

120 poke vi + 23,255

130 poke vi + 29,255

140 poke vi,30: poke vi +1,65

150 poke vi + 2,90: poke vi + 3,65

160pokevi + 4,150:pokevi + 5,65

170 poke vi + 6,210: poke vi + 7,65

180 poke vi + 8,30: poke vi +9,135

190 poke vi +10,90: poke vi +11,135

200 poke vi +12,150: poke vi +13,135

AN

DD

DP

BN

FC

OG

OA

CC

IP

210 poke vi +14,210: poke vi +15,135

220 for i = 0 to 7: poke 2040 + i,i: next

230 for i = 0 to 7: poke vi + 39 + ij + 7: next

250 print°[clr]page zero"

260 print"[8 crsr down]page one[6 crsr down]"

270 get a$: if a$ = "then 270

280 print "[2 crsr down]goto 999[2 crsr up]'

290 end

999 poke 53248 + 21,0: print "[clr]";

File Track and Sector Paul Blair

Canberra, Australia

This routine came out of desperation, when I wanted to find

(quickly) where a certain program was stored on disk. I tried reading

the directory, but that all takes time. Too slow.

Then I figured that the Disk Operating System does it all anyway

when it opens a file. Hmmmmm. The trick is to find which internal

buffer has been set when the OPEN command is issued. DOS uses

location $F9 in the disk drive to store the number of the buffer (0-5

in the 15** drives) that will be used. Line 20 reads the buffer

number. Knowing this, we have identified which of the "pairs" of

track and sector values stored between $06 and $11 in the drive we

want for the file in question. Buffer 0 uses $06 and $07, buffer 1 uses

$08 and $09, and so on. A quick fix in line 30, and we can get the

values we want.

IE

FE

PM

MG

LO

CF

GF

5 rem find track and sector of a file

10z$ = chr$(0): inpufwhich file";nm$: open 15,8,15

20 open 2,8,2,nm$: print#15,nm-r"chr$(249)

chr$(0)chr$(1)

30 get#15,a$: bf = 6 + 2*asc(a$ + z$)

40 print#15,"m-rB;chr$(bf)chr$(0)chr$(2)

50 get#15,a$,b$: tr = asc(a$ + z$): sc = asc(b$ + z$)

60 close 2: close 15: print'track^tn'sector^sc

File Load Address Changer Darryl Brimner

Windsor,Ont.

In many instances it is desirable to have versions of relocatable data

and programs that have different starting addresses. In other

The Transactor March 1988: Volume 8, Issue O5

situations it may be convenient to have the ability to change the

starting addresses on disk. For instance Ultrafont stores its character

sets at $7000, while Paperclip uses $0800. The following program

gives the user the ability to change the load address of a program file

(PRG) on disk. Note the way the track and sector of the file is

obtained. (Not the same way Paul Blair does it in the previous bit -

CZ)

BJ

ON

FN

IE

CH

IL

KJ

PL

HK

JP

LK

1000 rem change load address of file

1010 input"filename>B;fs$

1020 print:Jnput "new load address>";na

1030 open 2,8,0,fs$:close2:open 15,8,15

:print#15,"m-r";chr$(144);chr$(2)

1040 get#15,s$:print#15,"m-r';chr$(147);chr$(2);

chr$(2):get#15,t$,b$

1050 open 2,8,2,Br:print#15,"u1 2 0";asc(t$);asc(s$)

1060 print#15,"b-p 2";asc(b$):get#2,f$,t$,s$

1070 print#15,"u1 2 0";asc(t$);asc(s$)

:print#15,"b-p2 2°

1080 hi = int(na/256):lo = na-hi*256

1090 print#2,chr$(lo);chr$(hi);

:print#15,"u2 2 0";asc(t$);asc(s$)

1100close2:close15

File Stripper Eric Giguere, Waterloo, Ont.

When submitting articles to the Transactor, the editors prefer to

have a copy of the article on disk as well as on paper. But any word

processor files you use are bound to have embedded commands in

them, commands which are useless for the Transactor's editorial

purposes. It's best to send a simple file without any of these

commands. So to make things simpler, I wrote a small program that

would take a Commodore 64 EasyScript file and automatically strip

out the embedded commands. The program should be easily

modifiable to suit your own wordprocessor. The lines specific to

EasyScript are lines 120 to 160. Line 120 is special because it

intercepts EasyScript command lines and sets a no-print flag (the

flag is reset when the end-of-line is encountered). Apart from this,

the program simply ignores characters that aren't valid alphanu-

merics or punctuators.

PG

AE

GJ

BE

BL

BM

GB

AH

MJ

AJ

LO

CP

CO

JC

100 rem easyscript file stripper

110 rem by eric giguere

120 rem

130 print B[CLR DWN] input filename:";: gosub 270

:fi$ = left$(in$,16)

140 print °[DWN] output filename:";: gosub 270

:fo$ = left$(in$,16)

150 fl = 0: print "[DWN] opening the files. .."

160 open 15,8,15,di0": gosub 280: if e then 300

170 open 2,8,2,°0:d + fi$ + ",s,r": gosub 280

: if e then 300

180 open 3,8,3,"0:" + fo$ + ",s,w": gosub 280

: if e then 300

190 get#2,a$: a = asc(a$ + chr$(O)): ok = st

200 if a = 128 then get#2,a$: if a$ = "*" then fl = 1

: goto 250

210 if fl = 1 and a = 13 then fl = 0: goto 250

220 if (a<32 and a<>13) or a>218 then 250

230 if a>95 and a<192 then 250

240iffl = 0thenprint#3,a$;

Nl

PD

HG

OJ

OD

CD

250 if ok = 0 then 190

260 close 2: close 3: close 15: end

270 open 1,0: input#1 ,in$: closei: print: return

280 input#15,e,e$: if e<20 then e = 0

290 return

300 print n[DWN] disk error: ";e;e$: goto 240

No-Question Mark Input KeathMilligan

Austin, TX

Input from BASIC without the question mark prompt can be accom

plished by fooling BASIC into thinking it is receiving input from

something other than the keyboard. When the input routine is

called, it checks location 19; if this location contains a zero, the

routine will know the keyboard is being used and will do a few extra

things, such as printing the question mark.

Try this:

10 poke 19,1: input"promptB;a$: poke 19,0

The system uses the same input routine in immediate mode as the

one used by the INPUT statement, so the POKE 19,0 is needed to

put things back to normal.

Binary Sorting

"On the Fly"

Don Ellis

Winnipeg, Manitoba

Further to 'Sorting on the Fly' in the September 87 Bits and Pieces:

Sorting data as it is entered can also be accomplished with a binary-

sort algorithm instead of a sequential substitution as used in the

illustration given. Although the sequential algorithm in Martin

Hofheinz's program (lines 80-90) is indeed faster than a binary sort

(or at least, than my binary sort) for small lists, in my tests the

binary sort takes over on speed somewhere in between sixty and

seventy total -1 mystically suppose the exact point would turn out to

be 63. The relative speed difference curves rapidly apart from there,

so that with a 200-member array, the sequential sort takes 30%

longer than the binary.

Even more important, the sequential sort is faster in a region where

they are both virtually instantaneous; shortly past the threshold of

noticeability of processing time - which I take to be about half a

second - the binary sort is faster anyway. Finally, the binary sort has

a much narrower range of variation. This means, for example, that

the worst-case situation in a 200- member array sort can take two

or three times as long with a sequential algorithm - a noticeable

difference indeed. To examine the difference, substitute the follow

ing lines 80-90 for those in the original program; then compare the

time required to sort alphabetically (the new binary sort) with that

required to sort by age (the sequential substitution). The effects will

be most noticeable with arrays over 100.

KF

Cl

IF

BG

MP

LM

82 if (t$(j) < t$(a(h))) then h = int((h + g)/2): goto 86

84g = h:h = int((h+j)/2)

86 if h-g > 0 then 82

88 h = h-(t$(j) > t$(a(h))): g = j-1

90 if g> = h then a(g +1) = a(g): g = g-1: goto 90

The Transactor March 1988: Volume 8, Issue O5

Handy Hexer Brian Mcintyre

Vancouver, BC

One of the neatest and easiest subroutines I have ever used for

printing hex numbers is the following.

IH

KK

ON

Nl

AL

IF

10

20

30

40

50

60

b = int(a/256):gosub30

b = a-b*256:gosub 40:return

print '$';

x = int(b/16):gosub 50:x = b-x*16

printmid$(a0123456789abcdefB,x +

return

1,1);

The routine may be entered at four places, line 10 for two byte

numbers (0 to 65535), lines 30 and 40 for one byte numbers (0 to

255), and line 50 for single digits (0 to 15). These examples show the

different ways to use it:

Input Output

a = 49152:

b = 234:

b = 234:

x = 10:

gosubiO

gosub30

gosub40

gosub50

$C000

SEA

EA

A

There is a good deal of choice as to how to use this routine, and any

lines above the line called are unnecessary. Note that this routine

leaves the next print position immediately after the number that

was printed.

Microtrace Peter Lottrup

Buenos Aires, Argentina

Here is a short trace utility which will display the current BASIC line

number in reverse field on the top left corner of the screen. It is

placed in the cassette buffer, and activated with SYS 828. It can be

disabled with SYS 831.

The program below is a modified version of Mr. Lottrup's original

microtrace, with an added feature: you can slow down your BASIC

program while it is being traced by holding the CTRL key down.

When CTRL is released, the program continues at full speed. This

makes microtrace even more useful for debugging tricky programs.

-CZ

DO

NB

LC

BE

GK

BO

EL

IL

KF

LF

CB

JJ

FO

NM

AD

MH

10 print" microtrace

20 prinfsys 828 to trace program lines

30 print'hold Ctrl key to slow trace down

40 print'sys 831 to turn microtrace off

50:

60 for i = 828 to 934: read a

70 poke i,a: ch = ch + a: next i

80 if ch<>11716then print"data error!"

90 end

1000 data 76, 66, 3, 76, 77t 3,169, 88

1010 data 141, 8, 3,169, 3,141, 9, 3

1020 data 96,169,228,141, 8, 3,169,167

1030 data 141, 9, 3, 96,166, 58,134, 99

1040 data 232, 240, 59,165, 57,133, 98,162

1050 data 0,160, 8,169,176,157, 0, 4

1060 data 56,165, 98,249,157, 3, 72,165

PJ

NG

PC

MF

BH

HB

PN

1070 data 99,249,158, 3,144, 10,133, 99

1080 data 104,133, 98,254, 0, 4,176,232

1090 data 104, 232,136,136, 16, 221,173, 141

1100 data 2,240, 11,162, 32,165,162,197

1110 data 162, 240, 252, 202, 208, 247, 76, 228

1120 data 167, 1, 0, 10, 0,100, 0,232

1130 data 3, 16, 39

C128BITS

Monitor Dump to

Sequential File

Philip Herold

Seattle, WA

When examining ROM or a long program with the 128's monitor, it's

hard to keep track of where you are, especially when you're on level

six of a series of nested subroutines. One solution is to dump the

whole thing to a printer. Better, in my opinion, is to create a

sequential file of the monitor dump, load it into a word processor,

take advantage of its search capabilities and comment the file to

your heart's content.

Here's how to create such a sequential file, dumping the first two

pages of BASIC ROM as an example. Type in direct mode:

open1,8,2,Bfilename,s,wB: cmd8

monitor

d f4000 f4200

When the cursor reappears, type

print#8: close8

.. .and that's all there is to it. The same technique works on the 64,

using a monitor program (accessed with the appropriate SYS com

mand).

50 line, 80 column

display on the C128

Darrel Grainger

Toronto, Ont.

The C128 80 column screen is capable of displaying 50 rows of text.

The BASIC screen editor routines will only use 25 rows, but you can

take advantage of the 50 line display in your own programs.

This program will alter the 8563 VDC chip to display 50 rows. You

won't be able to use all 50 lines when programming, but this gives

you an idea of what the display looks like and shows you what

values to use for your programs.

CA

HM

FJ

IO

MP

0 rem sys write,val,reg

1 :

2 rem write = routine to write to 80 column registers

3 rem val = value being written to register

4 rem reg = reg to which the value is being written

5:

:rem 126 horizontal total

:rem 102 horizontal sync position

: rem 73 bit 7-4 vertical sync width

:rem32 vertical total

:rem 25 vertical displayed

100 sys 52684,128,0

110 sys 52684,104,2

120 sys 52684,137,3

130 sys 52684,64 ,4

140 sys 52684,50 ,6

The Transactor March 1988: Volume 8, Issue 05

JP

GM

Gl

FA

150 sys 52684,57 ,7 :rem29 vertical sync position

160 sys 52684,3 ,8 :remO interlace mode

170 sys 52684,7 ,25 :rem 71 bit 6 disable attributes

180 sys 52684,16 ,26 :rem 240 back/foreground colors

(The value immediately after the REM statement on each line is the

original value for each register.)

Line 100 - This modifies the horizontal total to make the display

more readable.

Line 110 and line 150 - When you alter the display, the screen will

move around. These registers will help to centre things on the

screen (you could use the horizontal/vertical positioning on the

monitor but that would mess up your 40 column picture).

Line 120 - This helps clear up flicker. The high nybble is doubled as

the Programmer's Reference Guide suggests.

Line 130 and 140 - This sets the number of displayed lines to twice

as many as usual. Line 130 is the number of lines on the screen

including the space in the top and bottom borders. Line 140 is just

the lines displayed.

Line 160 - This turns on interlace mode, necessary for a 50 line

display.

Line 170 -1 disabled attributes because the bottom 25 lines, which I

could not access from the BASIC screen editor, were flashing

annoyingly. This has the side effect, among other things, of not

allowing upper/lowercase characters. If you wish to use the upper/

lowercase character set, delete lines 170 and 180 and set the

character colour in the usual way.

Line 180 - Because there are no attributes, all screen colour defaults

to the value in register 26. The value 16 used here produces grey

text on a black background.

This is the best 50 line display I could produce. If someone comes up

with a better set of values to reduce flicker, I would appreciate

hearing about it.

Windows on the 128 Ian Adam

Vancouver, BC

If you've done much programming on the 128, you know how

useful the windows can be in setting up different areas of the screen

for different purposes. You also know that windows can be created

by either ESCape sequences or the WINDOW command, and are

cancelled by printing HOME twice.

Well, here's a twist. If you open two windows in succession without

PRINTing in the first, both windows are cancelled and you get the

full screen! Something like this:

10 window 20,5,35,8

20 rem... in a loop waiting for an event

30 window 10,10,35,15

40 prinf'cursor should be at row 10 column 10"

Whenever you open a window, the cursor is automatically placed in

the home position. It seems that, when you open a second, the

screen editor treats this as two successive HOMEs, and dutifully

cancels your window. This could happen inadvertently in a pro

gram, with unfortunate results.

Let's say you use several windows on the screen - one for a title, one

for input, one for status, etc. You activate the input; window and

leave the cursor there to await a message from the user. Before that

is received, however, some other event changes the status. Your

program opens the status window - or so it thinks! Instead, all

windows are cancelled and your status message gets dumped all

over your nicely centred title.

How to avoid the problem? Number one: always print something

when you open a window, even if it's just a "cursor up". Number

two: put a ",1" after the WINDOW command, to clear the window.

Number three: If you can manage it, print the less-convenient

escape codes to define your window. It's not hard to deal with the

problem, once you know it exists.

AMIGA BITS

The Other Drag Bar

When you've sized a window so narrow that there's no drag bar left

to grab it by, there's still a way to drag the window without resizing it

again! Look to the right of the window-to-front gadget; a few pixels

of title bar overhang beyond the right of the gadget! This is actually a

tiny strip of drag-bar, two pixels wide. Point right at the line that

forms the right side of the front gadget, and you can grab the

window and drag it around from there.

Awrite File Transfers Glenn Wiorek, Chicago, IL

There is an undocumented switch in Awrite, the program that

transfers files from the MS-DOS side of a bridge-card equipped

Amiga 2000 to the Amiga side. Awrite is found on the GW Basic disk

that comes with the A2088 Bridgeboard. Awrite has problems

transferring executable files, transferring only the first 256 to 512

bytes.

In order to transfer any file properly, you have to use the undocu

mented /B switch to put Awrite into binary transfer mode. The

format for this command (in an MS-DOS window) is:

AWRITE [drive:] [path]filename drive:[path]filename /B

Example: AWRITE a:\bin\test.arc DFO:test.arc IB

The above command would transfer the file "test.arc" from the MS-

DOS A: drive in the "bin" directory to the root directory of Amiga

floppy drive 0.

Amiga 500 Serial

and Parallel Ports

Richard Lucas

Los Angeles, CA

Pages A-4 and A-5 of the "Introduction to the Commodore Amiga

500" manual show pictures of the Amiga serial and parallel ports,

respectively. The manual doesn't say this, but the pictures show the

cable connectors, not the ports on the Amiga 500. In addition, there

is a warning on page A-3 that implies that you need a special cable

to connect the Amiga 500 to your printer through the parallel port.

(This is true for the Amiga 1000 - CZ) Actually, I have found that my

standard IBM parallel printer cable (DB25 male to Centronics 36

male, with all DB-25 pins present except 20 through 25) will work

just fine with printers that have standard Centronics inputs.

The Transactor
March 1988: Volume 8, Issue O5

L
t

R

Aquestion on copyright: First I'd like to thank you for publish

ing my reply letter to the Jordan Rolltop Stand (Transactor, Volume

6, Issue 6). You wished me success then so I'm reporting that I did

get three requests for further information and one subsequent order

making my year ending December 31, 1986 register a net profit of

$15.90. Not really enough to allow me to quit my job, but the

experience was invaluable: when I do launch my business, I will be

better prepared to handle the type of requests likely to come in. (If I

can comprehend the requests of hackers who aren't really into

drills, saws, etc., then I should fare well with the cabinetmakers of

the world.) Thanks again.

Second is a question concerning copyright. (Oh no, not again!) I

recently did some extensive reworking on Commodore's "EasyMail

64" for a local businessman, speeding disk access, adding features,

and even cutting program size by about 40 per cent. My question is

this: can I legally offer this as an 'upgrade' product or would I get

nailed for not "reading the program into memory of a computer

solely for the purpose of executing the program..."? I was thinking

of a deal where a legal owner of EasyMail could send me the disk

and I would copy the new program to it for a couple of dollars, but I

try to "toe the line" in regard to copyright and don't need any

trouble either. As a sidelight on this, one of the things I did to

EasyMail was to use an ML sort routine for the listing routines.

Unfortunately, the routine I used came from an old issue of Com

pute! and, being the type they are, I- have to rewrite it myself so I

don't violate their copyright. Any comments on this would be

appreciated.

Third is a comment on the circulation situation that received

attention in the letters column for a while. Don't get too upset when

people complain about your modest circulation. The T. will never be

as widely circulated as Compute!, their Gazette, or the others until

you quit giving readers material to chew on (and digest and grow up

to be big, strong programmers) and start spoon-feeding us ready-

made programs in a format that teaches (and requires) nothing but

some time spent typing them in. Every month I get more disap

pointed with Compute! Publications and long for more of the T.

Keep up the good work.

Matthew R. Strange, Mansfield, Pennsylvania

Glad we could help you establish such a. lucrative business, Mat

thew. Next time you 're passing by in the Rolls, why not stop in at the

office and treat us to a few ofthose fat Cuban cigars you }re washing

your martinis down with nowadays?

We can't see that you have a copyright problem with Easymail -

what people do with their bought-and-paid-for commercial pro

grams is their own affair; as far as we know it is perfectly legal to sell

an aftermarket upgrade. Several upgrade packages for Speedscript

are commercially available, with no argument from COMPUTE!

who, as you note in your letter, are not generally shy about

proclaiming the sanctity of their copyrights.

As for circulation - you're right, ours will probably never go into

orbit. We'd still like to reach the stratosphere, though, and we're

hoping to see a lot of improvement in that area now what we're

getting back into retail distribution.

Transformer Modification for MC68010 Upgraded Amiga:

Back in the September 1987 issue of Transactor (Volume 8, Issue 2)

my article called "Upgrading the Amiga 1000 to 32 bits" was

published. It told how to replace your MC68000 with an MC68010

and also how to modify your disks so that 99% of your programs

would run with the MC68010.

Then, in the November issue, Ian Robertson wrote to ask how to

use DeciGel without modifying every one of his disks (Letters,

Volume 8, Issue 3). The answer that followed was correct, and since

I switched to an MC68010 I have only found a few (less than 10)

games that require the DeciGel patch to run. All others (about 80)

load and run fine with no changes. I find that older VI .1 games are

the common problem programs. Almost all of the better software

The Transactor 1O March 1988: Volume 8, Issue O5

houses have written their newer programs and updates (VI .2

compatibility) with the MC68010 in mind. I have found two pro

grams, however, that will not run: "Hacker" which, due to the form

of copy protection used does not have a start-up sequence that can

be modified, sorry; and "Transformer" from Commodore for which

a fix follows.

I am not a user of Transformer and offer this fix/patch for those who

feel they cannot upgrade because of losing Transformer. No longer

need they suffer! If you were to install DeciGel on your Transformer

disk and make the proper call to activate DeciGel when booting

your machine, it would be lost as your Amiga resets itself when

starting Transformer. So what do you do? A simple fix/patch to your

Transformer program will solve the problem. This requires the use

of a binary file editor - sorry, but Commodore did not supply one

with your Amiga. Like DeciGel itself, the best place to obtain a file

editor is the public domain. I prefer NewZap 3.0 available on Fish

disk #58. The instructions that follow assume you are familiar with

NewZap.

Make a backup copy of your Transformer disk and put the original

back in its box. Put the copy in drive 'x' and start NewZap with the

command:

1>newzapdfx:atl

Press return. Using the search function of NewZap (Amiga-z and

Amiga-c) change all occurrences of these hex strings:

to:

40c2,40c4, 40c6,40c7

42c2, 42c4, 42c6, 42c7

This means that 40c2 will become 42c2, 40c4 becomes 42c4, etc.

There are quite a few (I mean a lot!) of changes to be made, so relax,

take your time and remember to save each disk block as you go.

What you have for all this work is a copy of Transformer that will

work with an MC68010. Please note that after Transformer is

modified in this fashion, it will not run on an MC68000 machine.

(That's why we made a copy, didn't we?)

While we are on the subject of Transformer, there is a patch

available to make it run under AmigaDOS VI .2 in the public domain

called "Trans 12". It is not available on any of the Fish or Amicus

disks, but should be available on services like People Link and

Delphi, or check your local BBS or users' group for a copy. It is easy

to use - just copy Transl2 to your copy of Transformer, CD to your

Transformer disk and run Transl2. This will patch your Trans

former for use under VI .2.

Daniel Schein, West Lawn, Pennsylvania

C-64 Keyboard Matrix: All is not well in the .C-64 keyboard

matrix. The program below visually represents which keys are

being pressed. Type it in and save it before running; it turns off the

normal keyscan. You can see tlie problem by pressing the Stop Key,

Commodore Key, Q Key and Space Bar at the same time and then,

with these held down, pressing the Fl key. The Cursor Down, F5

and F3 keys will come on as if they are being pressed. I stumbled

across this on the way to a split keyboard routine. So far I've worked

around it with a routine that uses the Right Shift and the Cursor

Control keys for one player, with the Left Arrow and the One and

Two keys for the other player. These keys are in mutually exclusive

columns as seen by Data Port B, but this method limits the number

of exclusive key closers to eight, makes finger placement awkward

and an accidental key press can throw the whole scheme off. Any

suggestions?

0:s = 7:a = 56320:b = a + 1:cl = 55296

20 dim m(7,7),x(7),y(7): r$ = chr$(18): n$ = chr$(146)

30 for i =. to s: x(i) = 2ti: y(i) = 255-x(i)

40 for j =. to s: m(i,j) = (s-i)*40 + (s-j)

50 nextj.i

60 poke 53280,.: poke 53281,.: poke 646,1: poke 56333,127

70printchr$(147);

80 print r$B q 2 «-1 an$" stp q com spc 2 ctl«-1'

90 print r$7t= ;*£Mn$spc(12)"lsh hm"

100 print r$\@:.-lp + "

110 print r$Mnokm0ji9"

120 print r$'vuhb8gy7"

130 print r$"xtfc6dr5"

140 print r$a esz4aw3"n$n rsh"

150 print r$"[8 spcs]"n$" crd f5 f3 f1 f7 err rtn del"

160 for i =. to s: poke a,y(i): for j =. to s

170 c = 1: if (peek(b) and x(j)) =. then c = 2

180 poke m(i,j),c: next j,i: goto 160

Owings Saffell, Eugene, Oregon

It is true that multiple simultaneous key-presses will often generate

spurious keycodes. This isn 't really a bug, though -just a side effect

of the way the hardware is set up to map 64 keys onto 8 switches.

For two-person use ofthe keyboard, it may be that the compromise

solution you've already arrived at is about as good as you can do.

Anyone else have ideas on this?

Clock Setting: This year I had an interface built for me which

operates some lights in my home as well as the automatic sprinkling

system for my yard and greenhouse. I wrote a program to run the

interface in Basic on the 128 and it works just fine.

The problem I have is that, if there is a power cut, the program boots

from disk but, of course, does not re-set the time of day. Is there a

digital clock on the market that the 128 can read externally and

then use to reset either of the two clocks resident in the computer? If

not, can the 128 read an external clock and is there anyone who

could provide me with the necessary hardware and a program to

read the clock?

David Kuhn, Nanaimo, British Columbia

Well, we're sure that there is some way to interface an external

clock to the 128, but we don't remember ever having seen it done,

commercially or otherwise. Readers?

Transactor's Amiga Coverage: I see that you are starting to get

flak about coverage of the Amiga. I vote with you. Face it, the 64

with its 8K operating system and 8K Basic interpreter, has been

The Transactor 11 March 1988: Volume 8, Issue O5

pretty thoroughly dissected. Multiple editions of the commented

ROMs are available, and even the Transactor's expertise is reflected

increasingly in clever ways to use what is generally known, rather

than mysteries revealed (though you still reveal more mysteries

than anyone else). The Amiga is new, it's mysterious, and it's

Commodore. I, too, cannot afford an Amiga, yet the idea that its

coverage is inappropriate for the T. is preposterous.

Good luck in your endeavours, the Transactor is tops.

Tab Trepagnier, Kenner, Los Angeles

Well, thanks for the support, Tab, but as you now know we are no

longer going to cover Amiga in this magazine. Still, you're right,

we're running out of mysteries. Because of that, we'll probably be

adjusting our format slightly in issues to come... along with the

utilities and technical applications, we'll be adding more theoretical

material (like the binary trees article in this issue) and reviews of

selected products. Also - for those ofyou who have been clamour

ing for it - it looks as though we're finally going to get around to

running a machine language subroutines column starting next

issue. Anything else you 'd like to see? Let us know.

"My heart leaps up when I can hail,

My Transactor in the mail... ":

1. Volume 7, Issue 5, page 10: "ScreenSave". Re: line 1200 - my

verifizer says it equals HB. Your printed line says CK. I feel the error

is in line 1200 as the program doesn't run - please adjudicate.

2. Volume 8, Issue 1, page 36: "Complex Numbers ..." It seems

that I need Vol 5 Issue 6 "new wedge", which I don't have. Is it

possible to purchase a back copy from you, or can I get a photocopy

from you or from another reader?

3. Regarding the Verifizer Codes in the left-hand column, could they

be moved to the right-hand edge? It would be much more conven

ient.

Ernest Dorfman, Brooklyn, New York

Sorry, Ernest, but we still get CKfor that Verifizer code. Isit possible

you have a pair of transposed numbers in that DATA line, or

possibly a period substituted for a comma? For other possibilities,

take a look at the section on page 14 titled "Common by Compari

son".

New Wedge is not needed for the complex numbers program. It

was referenced in the article as the place where an explanation of

the wedge technique used in the program could be found.

The idea ofrunning the verifizer codes down the right hand edge of

the listings is a good one... odd that it never occurred to us. We'll

experiment with it between now and next issue and, if the typeset

ting works out, you should see some examples of it then. Thanks!

Accessing Curly Brackets with Speedscript: In response to

the letter from John Francis (Letters, Volume 8, Issue 2) concerning

accessing curly brackets with Speedscript: Assuming his terminal

program will let him upload a file in true ASCII without translation,

Speedscript has several features that will provide him with the curly

brackets in a sequential file. First, he can put a formatting command

of "Ctrl 3, a" as the first character of the file. This will translate

everything into true ASCII. Then define any two uppercase charac

ters as the ASCII codes for the curly brackets. I used shifted " + ":

"Ctrl 3, Shift + = 123", 123 being the decimal of $7B. Then do the

same for 125 or $7D. I used Shifted "-". These control characters

will show on the screen §s reversed characters. Then whenever he

needs the curly brackets, he just needs to hit "Ctrl 3, shift + " for left

{ and "Ctrl 3, shift -" for right}.

Speedscript then allows a file to be saved as a SEQ file in PETSCII (or

ASCII if the above command is included) by hitting "Shift-Ctrl-P"

and responding "D" to "Print to Disk". The reversed control

characters are not saved since they are Print Format commands.

Then he can just adjust his terminal program to upload with no

translation and the correct ASCII codes will be sent. I checked this

out by examining such a file I had printed to disk and sure enough, it

contained no codes above $7F, and the curly brackets appeared as

$7B and $7D.

I printed this letter on my Star NX-10 by locking my interface into

Transparent mode and printing it as an ASCII file, rather than have

the interface translate.

James Greek, New York, New York

And from what we can see, it worked great!

The Continuing BIT/.BYTE Saga: Jack Lothian's un-assembler

(Transactor, Volume 6, Issue 4) is a fine program that has evoked

several letters during the past year. I think this is primarily because

the program is quite useful to many readers and is well structured

and commented, enabling readers easily to understand its function

ing. I like other readers have some comments and ideas to offer.

John Menke (Letters, Volume 6, Issue 5) pointed out the problem of

disassembling the sequence $2C;$00;$A9 as BIT $00A9 - the

Commodore Assembler will re-assemble this as BIT $A9, changing

the BIT for $2C.to $24, dropping the byte $00 completely and

offsetting all the code that follows by one byte. Thomas Gurley

(Letters, Volume 7, Issue 5) pointed out that this wasn't unique to

the BIT instruction but was due to the absolute addressing mode. He

observed that, if the addressing mode was one of the absolute

modes (including absolute,X and absolute,Y) and the operand was

less than 256, the assembler would change the addressing mode to

the corresponding zero page mode and drop the byte $00. His

suggested program changes to correct this problem caused the

sequence $4C;$73;$00 to be disassembled as .BYTE 76;.BYTE

115;BYTE 0., rather than JMP $0073. The problem is that not all

instructions wiht absolute addressing modes also have the corres

ponding zero page addressing mode. If they do, the zero page mode

op code is 8 less than the absolute mode op code.

The following changes to the program as it originally appeared in

Transactor should correct this problem.

The Transactor 12 March 1988: Volume 8, Issue O5

1380pp$ = M ":ad$ = " ": if t = 0 then 1405

1410 if n>0 and n<14 then pp$ = pp$ + n$ +""

1435ifn = 14then1380

1730 q1 = q: gosub 2090: ad = q: gosub 2090

: ad = ad + q*mh: p = p + 2: de = ad

1731 hn = 3: gosub 2180

1732 if ad<256 and mn$(q1) = mn$(q1 -8) then n = 14: return

1792 if ad<256 and mn$(q1) = mn$(q1 -8) then n = 14: return

1852 if ad<256 and mn$(q1) = mn$(q1 -8) then n = 14: return

2015 rem convert absolute address less than 256

to .byte instructions

2020 p$ = ad$ + ".byte" + str$(op) + \\byteB + str$(ad)

+ ":.byteO ;***was" + n$ + "***"

2022 n = 0: gosub 2150: p = p +1: return

These and other letters have suggested the preference for the user to

determine whether he or she wanted the BIT ($2C) op code to be

disassembled as BIT or .BYTE and some have suggested the proper

method of implementing this option. It seems to me that this

decision should be based on the context in which this instruction is

found. Programmers use the $2C opcode for two distinct purposes.

The first is its documented function of setting or clearing the N and Z

flags. When the programmer uses the $2C op code for this purpose

the preferable method is to disassemble $2C with the BIT op code.

The other use is the quasi-documented function of skipping 2 bytes

when entered from the top and creating a side entry point immedi

ately below the $2C byte, where a register is commonly set using

the immediate addressing mode. When used for this purpose, it is

preferable to disassemble $2C with the .BYTE pseudo op so that the

side entry point is clearly shown. This also permits the disassembler

to create a valid label for the entry point. Since the op code that

immediately follows $2C is commonly for the immediate addressing

mode, this assumption can be used as the criterion for determining

whether to disassemble using either the .BYTE or BIT op codes.

(Though this isn't a perfect criterion, it is an easily implemented

"rule of thumb" that is valid probably 75 % of the time at least.)

The suggested changes below should implement this change:

DELETE LINES 310 THRU 360

2090 if aa$<>"" then a$ = aa$:aa$ = "d:goto 2094

2092get#1,a$

2094 q = asc(a$ + n1 $):return

2120 p = p +1 :n$ = mn$(q):n = md(q)

2122ifqO44then2126

2124 get#1 ,aa$:q1 = asc(aa$ + n1 $):if md(q1) = 2

then n = 0:n$ = ".bit"

2126 return

My thanks go to Transactor for publishing many fine programs like

the un-assembler and the letters from readers that they provoke.

Bill Taylor, Cupertino, California

ML EPROM Burner: Being an avid reader of Transactor, I know

how technically minded the staff and readers are. This is why I have

decided to ask you for advice concerning the following problem. I

would like to write an ML program and burn it on an EPROM, which

would then go in a cartridge. I have the technical and practical

abilities to do it, I just don't know how to go about it. I've read

different books on the subject of cartridges, but they are all very

cryptic. I know that upon power-up the computer checks for a

cartridge by comparing addresses $8004 to $8008 to the word

'CBM80'. If it matches, program control is transferred to the car

tridge through the vector at $8000. However, the PROM I removed

from a cartridge (Visible Solar System) doesn't have 'CBM80' at

$8004, and the vector at $8000 jumps into the Basic input buffer.

Also, all JMPs and JSRs have their target addresses start with $E (as

in $E191) instead of $8. So basically this is what I want to know:

What PROMs are generally used in cartridges? Why can't I find

'CBM80' at $8004? Am I reading it wrong? Should I just give up and

buy a commercial cartridge-maker?

I also noticed extra room for another microcircuit in the cartridge.

What could it be used for? And finally, are there any books

explaining the operation of the Commodore 64 in detail? I would

greatly appreciate this letter being published; even if you can't give

me the answer, maybe another reader can help me out. I can be

reached at the address below.

Patrick G. Demets, Box 1936, Grand Centre, Alberta T0A 1T0

Unfortunately, we do not have access to the Visible Solar System

cartridge - pity, because we'd be interested in checking it out. We

wonder ifthe cartridge is set up to use the Ultimax memory layout or

one of the other less-used layouts charted in the Programmers'

Reference Guide. The Ultimax layout does have cartridge ROM at

SE000. The 'CBMSO'ID is obviously not needed in this case because

the hardware reset vector is within the address range of the

cartridge itself Any ofyou readers have more definite information

on this?

On the question of books, there are lots that cover the 64 from a

software viewpoint, but we assume that's not what you mean.

Hardware information is a lot harder to find outside the Program

mers'Reference Guide. Again - anyone have recommendations?

IEEE Interfaces for the C-64/128: You recently had a letter

inquiring about IEEE interfaces for the C-64/128. I have used a

couple of them and would like to give you my impressions of them.

First the MSD IEEE interface was mentioned. Well, it doesn't even

make a very good door stop, unfortunately. It does work with plain

vanilla Basic programs and very little else. Also there was a program

that MSD gave out that did improve its performance. Even then it

had a couple of big limitations and I quickly gave up trying to use

that interface.

On to more useful interfaces for use with the C-64.1 think it would

be hard to find a better interface than the BusCard with the Basic 4.0

extensions, the ML monitor and the printer port in it. It also seems to

be compatible with a lot of commercial software, though of course

not all.

However, the BusCard does not work on the C-128 in 128 mode. For

use with the C-l 281 recommend the Quicksilver 128.1 am currently

The Transactor 13 March 1988: Volume 8, Issue O5

using that interface on my C-128. However, since Skyles replaces

the Kernal ROM in the 128 with, one of their own design, it is not

compatible with CP/M. Skyles does sell a ROM switch board that

you can install in your C-128 and have both ROMS available to you,

but if you switch your original Kernal ROM back in, you still have to

remove the Quicksilver cartridge in order to boot CP/M. As to drive

compatibility with CP/M, I don't think that the higher capacity

drives (8050, 8250, SFD1001) are compatible with Commodore's

implementation of CP/M on the C-128.

One other thing: the SFD1001 working through the Quicksilver is

as quick as if not quicker than the 1571. From my observations and

the comments of other users, the data transfers at about the same

speed. But the internal operations of the SFD1001 can run circles

around the 1571.

I hope this helps your readers and provides a little background on

these interfaces. I have used my IEEE interfaces with a MSD and a

SFD1001 disk drive and am quite satisfied with my current set-up

(C428,1571, MSD dual, and SFD1001).

Lyle Giese, Woodstock, Illinois

TransBloopers

Random Number Generation in ML, May 1987: Volume

7, Issue 6, pg. 28

Nothing wrong with program here... just a couple of random

errors that crept into the text. Charlie Kluepfel of Bloomfield, NJ,

writes:

... The article contains an inconsistency which makes me dis

trust the values shown in the table of Figure 2 (page 28). The

diagram shows taps from 5 and 2, while the table shows taps

from 5 and 1. Trying both out, in BASIC, shows that the diagram

is correct and the table is wrong. Using taps at 5 and 1 gives a

cycle length of 7; 5 and2gives the maximum, 31. Thus, how can

we be sure the other entries on the table are correct?

By the way, the number '1021' in the right hand column ofpage

29 should be 1021 (or 10\21). The former is not very ltastronomi-

caV\

Our humblest apologies for this one, Charlie. We're also sorry

we didn't get to this sooner, but the original manuscript for this

article went into hibernation while we effected our "big move"

and only just turned up again the other day.

After checking the manuscript, the taps shown for this spot in

the table are indeed at 5 and 2. Following your suggestion, we

decided to check the rest of the table too, but found no other

errors. The number 10121 checks out too, but c'mon Charlie...

the difference is only 1,000,000,000,000,000,098,979 (1 sextil-

lion, 98...).

And thanks for writing! We usually only find out about errors in

programs. It's the meticulous types like yourself that allow

others to go back and "update our product".

Common by Comparison

Everett E. Stone writes describing some troubles getting David

Lathrop's "Compare" program (Transactor, Volume 8, Issue 1) to

work - "I can not get the check sum of 26624 nor can I run the

the program without adding another zero to the end of the DATA

statements at line 7450."

I'll assume you're already aware that the checksum should be

523626 (26624 is the initial loop value), but that one's too easy.

One of the most common and less obvious problems we find

readers encounter with long listings of DATA statements is the

omission of a comma. Usually this error gets detected because

the comma is missing from between two numbers that, when

concatenated, form a value greater than 255. However, if the

comma is absent from between two numbers such as 2 and 44,

the READ command "sees" a value of 244, which is okay in a

POKE statement or CHR$ function. However, the program has

just scooped up two numbers as one, and will run out of DATA

before the READ loop is complete. Adding zeroes to the end of

the DATA statements will satisfy the loop, but the entire program

beyond the trouble spot will be "skewed" one byte.

Separating numbers with a period instead of a comma creates a

similar situation. This one's equally hard to detect at first glance

because the POKE command and CHR$ function simply ignore

the fractional part and report no error.

Remember, machine language is an exact science: it's either

right or it isn't. An ?OUT OF DATA error can indicate a missing

comma, a missing DATA number, or even a missing line. The

first thing to check is the counter value. If the loop is FOR J = 1 to

100, a "PRINT J" immediately after it's finished should return

"101". If you get, for example, "99", you have two problems to

go looking for.

Once the loop is ending correctly, it's possible the check sum will

fall naturally into place. If it doesn't, there's a couple of other

potential trouble spots you can look at before you conclude that

the error is in the printed listing. If the variable "CH" is used to

accumulate the sum (as is the case with most programs in

Transactor), PRINT CH after the error report. If it contains a

fractional part, chances are there's a period where there should

be a comma. If it's off by an even 100 or 200, chances are you've

keyed, for example, 49 instead of 149 or 249.

Lastly, the Verifizer entry checker will prevent almost any error,

but it can be fooled. Verifizer uses a technique called Cyclic

Redundancy Checksumming in arriving at its two-character

code. However, the cycle length Chris chose was 4. Therefore, if

two consecutive 3-digit numbers occur in a DATA line (e.g. "..

.208, 249,..."), entering ".. .249, 208,..." would produce the

same code (comma is important, space is ignored). A cycle of 5

would virtually eliminate this possibility because only the odd

est of DATA loaders ever use numbers with more than 3 digits.

We've considered making a new Verifizer that checks for spaces

within quotes and ignores remarks - perhaps we'll alter this too.

The Transactor 14 March 1988: Volume 8, Issue O5

TeleColumn

Forums Get Face Lift

Some 3 months of preparation, a 19 hour online stint, several

rounds of internal shuffling, and another two sessions of about 12

hours each, have led to the re-organization of the Data Libraries in

CBMPRG and CBMCOM, the two forums we manage on Compu

Serve.

A little background: the forums originally kept all files and

programs in one of 11 Data Libraries. Once in a Forum, one would

enter "DL" at the main Function prompt followed by a number

from 0 to 10, or simply DLn, where n was the DL number for

those who didn't need to see the list of choices each time.

Some time ago, CompuServe extended their Forum software to

allow 18 DLs, 0-17. It was suggested that DL 0 be reserved for

Sysop activity, but DLs 1 through 17 could be titled any way

deemed appropriate. Terrific! Now we could go and redistribute

files in our DLs into more narrowly defined categories. Compu

Serve furnishes a number of utilities accessible only from Sysop

accounts for doing just that, and it would be a simple matter of

moving the files from one DL to another. Not so simple!

First we captured the titles and descriptions of every file from all

11 DLs in both CBMCOM and CBMPRG. There are thousands of

files representing a few meg of code uploaded over the course of

the last 4-5 years! Since none of this is Amiga software (that's all

in the AMIGAFORUM DLs), a meg adds up to a LOT of programs.

It didn't take long to realize that we'd bitten off a mouthful.

After a few weeks of evaluating the kinds of programs in there, we

created a number of new categories. With 18 DLs per forum,

minus 2 for the Sysop areas, we had 34 to work with. But we

didn't want to use them all up - we wanted to leave room for

future expansion should the need arise. Several times we were

forced to discard, modify, combine, and create more new catego

ries so that each and every file in the DLs would have a "place to

go". We settled on the 31 titles below, and then determined which

would go to CBMPRG and which in CBMCOM. We avoided,

however, deciding the order of the DL titles, mainly because we

thought this would change, and because we didn't have to at this

time.

We knew in advance that many files in CBMCOM would eventu

ally end up in CBMPRG, and vice versa. In fact, we decided that

the C128 Terminal Programs DL in CBMPRG should go over to

CBMCOM with the other telecomputing stuff. However, Compu

Serve has no remote Sysop utility for transferring files between

Forums, short of downloading and re-uploading. So we desig

nated a "transfer DL" in each forum that CompuServe could then

transfer for us locally.

It took months to go through all the lists. Before actually printing

up the lists, Nick trimmed down most of the descriptions to make

them less unwieldy. Even then the total listing was around three

inches thick. Each file was given a code from 1 to 31. Although

several of the DL names weren't changed, we still went through

each and every file looking for strays that would be better off in

another category. Quite often Nick and I would look at each other

and one of us would say, "what's this doing here?", and promptly

mark it to be moved to one of the other 30 categories.

Then Came The Day

We fired up a terminal program on the Amiga and another utility

that allowed 50 function key definitions through use of the SHIFT,

ALT and "Amiga" keys. The codes we gave each file were used as

indirection to a command stored in a function key that would

move the file to the appropriate DL. It wasn't until this point that

we actually picked the order of our DL names as they would

appear to the user. With CompuServe's 19-character limit on DL

names, this wasn't always easy!

CBMPRG Data Libraries

0 CBMPRG Sysops

1 New Uploads Oct->

2 Programmer Utils

3 Assembler Utilities

4 DemoPRGs&Subrtns

5 The Forth Zone

6 The C Language

7 Non-Resident Langs

8 C128 Mode Only!

9 CP/M and GEOS

10 Sector-Level Utils

11 File Conversion

12 DOS Assistant

13 Needs 1571 or 1581

14 Orphan Computers

15 (Future Expansion)

16 Transactor BITS

17 Transactor Programs

CBMCOM Data Libraries

0 CBMCOM Sysops

1 New Uploads Oct->

2 Help & Forum Utils

3 News and Articles

4 Reviews and Demos

5 Science & Education

6 Write, Print & Plot

7 Home and Business

8 General Databases

9 Special Databases

10 Speech Synthesis

11 Exotic Applications

12 CBTerm & Related

13 C-64 Terminals

14 Cl 28 Terminals

15 BBSPrgs(64&128)

16 (Future Expansion)

17 (Future Expansion)

So, for example, if a file were to be moved to category 27 ("File

Conversion", DL11), we would hit ALT F7 which would send a

"MOVE 11" command. Category 17 was "Assembler Utilities"

(DL3), so SHIFT F7 would do a "MOVE 3".

When the target DL and the source DL were both in the one

forum, that was the end of it. But if a file in one forum was being

sent to the other, the function key was set up to send it to the

transfer DL. We did CBMPRG first. Files with category codes of 2,

The Transactor 15 March 1988: Volume 8, Issue O5

5, 7, 8, 9, 12, 13, etc., required hitting F2, F5, F7, F8, F9, SHIFT

F2, SHIFT F3, etc., but all of these produced a "MOVE 15", since

DL15 was the transfer DL for files emigrating from PRG to COM.

The whole idea was to do most of the thinking offline, a habit

we've formed over the years that's become hard to break even

though we areri't charged for our online time. By using this

approach it wasn't necessary for us to convert our code to the DL

number - the computer would do it. In retrospect it all worked

well, but we made the operation so mindless that we spent most

of the time waiting and adding to our "CompuServe wishlist" of

Sysop utility functions.

Okay, let's get started. Whoops! First we'll have to determine the

destiny of the files that have arrived over the past 3 months. No

problem... they'll all appear first and we'll just decide on the fly

until we get to the file that's first on our lists.

Ummm, maybe we'd better close access to the DLs. It would be

okay to download programs while we worked, but if anyone

uploaded a new program it would get gobbled up faster than hot

dogs at a baseball game. Our apologies to anyone who got cut off -

we didn't mean to slam the door.

Now for CBMCOM. The same approach was simply modified

slightly such that the function keys were all re-defined with the

individual MOVE commands to the DL numbers within COM, and

all the fkeys corresponding to CBMPRG codes got a "MOVE 17" -

the transfer DL for files going over to CBMPRG.

A quick note to CompuServe staff would have the two transfer

DLs swapped by the day after tomorrow, and it was on to "phase

* = * + !"

by, "try DL X, or Y, or Z", with an "I dunno" as a reluctant

alternative.

Now, you can ask for a program and chances are good that we

saw it in our travels, chances are better we'll know exactly where

to look, and odds are even good that you'll find it yourself in a

quarter the time it took before. Not only that, but there are several

programs that simply would have never even been found because

they were stored in places where it was unlikely anyone would

even look.

The "New Uploads DL" will make it a lot easier to see what's new

without the need to BROwse all the various DLs looking for recent

stuff. Once a month this DL will be cleared out so that only the

most recent of uploads will be present.

Next step? The upgraded Forum software also extends the num

ber of Sub Topic names from 11 to 18. Once again, Sub Topic 0 is

reserved for Sysop chat (and no, it's not so we can talk behind

your backs - it's mostly for letting the Sysops and assistant Sysops

know the status of uploads and other forum management activ

ity). That leaves, again, 34 spots for Sub Topic titles, which we

intend to enter and alter over the next few weeks.

Why did we tell you all this? Well, it's the Display Area thing

again. This may sound like another excuse, but we decided that

before we go making major additions, we ought to get our house

in order first. The forums demand a good percentage of our time

and adding a new wing to the complex means even more time.

Therefore, it made sense to try and polish up the present routine

so it could be more self-supporting when the time comes to

concentrate on the new construction. For those who care, the list

of online tasks in order are:

About 1 meg of files would cross paths during the swap. Once 1

back online it was a simple matter to go through the files that had 2

arrived from the neighboring forum and redistribute them among

the local DLs.

ACK! What are these doing here?! Oh well, so a few files

accidentally got hijacked. While redistributing in CBMCOM we 3

discovered about 6 or 7 files that really should have stayed in PRG.

Another quick little note to CIS staffers, and back they went. We'd

like to thank Alex Sutcliffe of CompuServe's Forum Support Group

for his time and patience.

So what's this all add up to? Well first of all... MAN! Does

CompuServe ever have a mountain of programs available. Some

of them aren't worth the ferrite they're stored on for more than

about 3 people in the entire galaxy. Others are so old that it was

only the fact that they're out of the high traffic areas that kept

them from the deadly ERA command. We in fact ERAsed a LOT 4.

of old and decrepit programs that were just cluttering up the joint,

and managed to eliminate a lot of duplicates and obsolete ver

sions. But most important is the effect our re-categorizing will

have on the task of finding a program.

5.

Before, if a user asked us if we had a program for a specific

purpose, our best answer was, "yes, we have one", followed often

New Sub Topic titles

New DESC files for the DLs. When you enter a DL, type DESC

at the main prompt. This seldom used feature will print a

description of the DL and what it contains. However, with all

the moving around and re-categorizing, the DESC files will

virtually all need to be replaced.

New HELP files in CBMCOM DL2. We answer a lot of questions

in the message bases of the two forums. Often the questions are

repeated every week, and we enter a new answer each time.

Sometimes the most recent answer contains details not in

cluded in the previous one, and vice versa. It would be better,

therefore, to collect all the details for the common questions

and compile them into comprehensive, all-inclusive Help files.

Further, members could read this online, or capture and read it

offline. The objective would be to make enough Help files to

eliminate the basic questions, saving the members time,

money, and sanity.

Transactor Programs to CBMPRG DL 16 and 17. Yes, we're a

little behind on this too, but we're working on it. Once again,

the articles that go into the Display Area will often reference

programs in the Transactor DL. We want them all in there so

we know for sure what the file name will be.

The Display Area. When this opens it will contain 5 years'

worth of text totalling around 5 meg of characters. We want to

be sure that the text we put online is exactly the same as what

The Transactor 16 March 1988: Volume 8, Issue O5

was printed, but with the mistakes fixed, of course. To do this,

we're "reverse typesetting" the articles. Over the years, every

article from every issue has been stored on typesetter 8"

floppies. Since most of what we publish is spell checked at the

type shop, and then edited in one way or another, we're using

the version on the typesetter disks as the source. Then we have

to take all the typesetter codes out and transmit the raw text out

of the typesetter onto disks that can be read with equipment

that can Xmodem transmit the text into our DA work area on

CompuServe. We've done about half so far and are picking up

speed as we go.

Stick with us... we only wanna do this once, so we wanna do it

right.

Common Sense Function Keys

It seems that defining the function keys from within the Common

Sense terminal program is not as obvious as most would like. Hit

C= and K followed by the function key you wish to alter. From

there you may enter up to 80 characters including "Shift @" to

terminate the line.

The default definitions are saved in a file called MAC.BOOT. This

file is loaded when the program is first RUN. To save the new

definitions, rename the file "MAC.BOOT" and use C= S to save

the new keys in a new file with the same name.

+ + + A Minus Minus Minus

Hitting the " + " sign three times while connected with a Hayes (or

a truly Hayes compatible) modem will allow the user to temporar

ily suspend online activity while performing some other task.

Theoretically the carrier signal isn't lost, but we all know that isn't

true with some "Hayes compatibles". However, real Hayes corn-

pats allow the user to change the character from " + " to virtually

any other. ATS2 = 64 will, for example, change it to the @ symbol.

Why would you want to do this? Truthfully, I don't really know.

But Hayes must have included it for a reason. Initially I thought it

might be possible to bring down a BBS by making it send you

back three plus signs followed by a pause. But most BBS programs

reset after a lost carrier or time limit. Any other ideas?

RS232 Interfaces

The RS232 interface project we published two issues ago is now

working great for everyone who built it (at least, everone we've

talked to about it). About the biggest problem was the note on the

schematic about grounding all unused pins. That really should

have said (as the article text did) "all unused inputs" - ie. the

unused pins that were "input pins" should have been grounded..

. the others left as N/C. However, as reported in this issue's Bloops

section, it's best to leave all the unused pins N/C.

However, for some, there's an even bigger problem: N/T - No

Time! I remember a time when I would build every TTL gizmo I

could find a schematic for. Now I barely have time to plug in a

soldering iron. Sound familiar?

Omnitronix Deluxe RS232 Interface - $49.95 (206) 624-4985

Jameco Electronics JE232CM - $39.95 (415) 592-8097

Aprotek Universal RS232 - $39.95 (800) 962-5800 or (805) 987-

2454

Which one is best? Perhaps someone would like to put together a

point-by-point comparison and send it in. The write-up could even

include our do-it-yourselfer by Mark Farris.

Plus 4 Terminal With Xmodem

Higgyterm (written by my good friend Paul Higginbottom) is

probably the most common terminal program among Plus 4

owners. But you left out Xmodem, Paul!

P/4 TERM is one solution. Contact Dennis Larson, 11982 Xeon

Street NW, Coon Rapids, MN, 55433. His CompuServe account

number is 75555,705.

1650 Ring Detect and Answer in BASIC

Gary Farmaner of Oakville, Ontario, has this for anyone writing

software to support a 1650 or other unon auto-answer" modems.

A 1650 isn't really an "auto-answer" modem. All functions are

handled in software.

You have to monitora line in $DD01 (56577) to see whethera ring

condition is present. Ifbit 3 is low (= 0), a ring is in progress. Then

put the modem online by setting bit 5 of56577 high and check for

a carrier via bit 4.

10 reg = 56577

20 open 2,2,0,chr$(6): poke 56579,38: poke reg, peek(reg)

and 223

1000 rem wait for ring

1010 if peek(reg) and 8 then 1010

1020 rem ring in progress, answer it!

1030 poke reg, peek(reg) or 32

1040 rem check for carrier

1050 for x = 1 to 10000

1060 if peek(reg) and 16 then 1120

1070 next

1080 rem timeout on carrier detect

1090 poke reg, peek(reg) and 223: gotoi 010,

1100 rem start bbs

1110 rem clean up for/next loop and drop into bbs

1120 x = 10000: next

Here's what's happening:

Line 10 opens the RS232 channel and sets up the port

Line 1010 waits for bit 3 of reg to go low

Line 1030 forces the 1650 online

Line 1050-1070 is a countdown carrier detect

Line 1090 re-starts the ring detect if no carrier within 10000

checks. If there is a carrier, the loop exits prematurely

to...

Line 1120 cleans up the loop and starts the program. B5

TheTr ctor 17 March 1988: Volume 8, Issue OS

Fast String Search

With Binary Trees

Herb Rose

Dale City, VA

.. .a "divide-and-conquer" approach to handling a list of data items...

Herb Rose is an Engineering Manager at CONTEL ASC. areas,

and is the author of the INFO*SHARE multi-user bulletin board

system, ARC64 file archival program for the C-64, and MACRO-

64, a macro assembler for the Commodore 64.

Organizing Your Data.

The first step in writing a program is usually to list the data items

the program will manipulate, and to organize them into suitable

data structures. Related items are grouped into RECORDS, sort

keys are identified so that individual records are easily found,

and other decisions are made concerning the organization of the

data. The complexity of the program is often determined by the

organization of the data which it must manipulate. It is no

surprise that programmers spend a great deal of time learning

how to create and use data structures. Knowledge of data

organization techniques can turn a monstrous programming job

into a real snap.

This is a short tutorial on one of the most useful and elegant data

structures used by programmers, the Binary Tree. This article

will explain what binary trees are, how to use them, and will

present a BASIC program which creates and manipulates a

binary tree which represents a string array.

What Are Binary Trees

A binary tree is simply a method of organizing data items within

your program, in the same way that sorting is a way to organize

data items within your program. A binary tree allows you to

organize your data, insert and delete items, and search the list

without moving any data within the list. A binary tree consists of

NODES, which contain the data itself, and from each node there

are BRANCHES. Each branch is actually a pointer to another

node. When a rule for branching is applied to the tree, it

becomes an efficient data sorting/searching tool. The rules we

will be using for our binary trees are quite simple:

1. Duplicate nodes may exist.

2. Each node has 2 branches, which we will call left and right.

3. We will use the left branch to go to a lower or equal value

4. We will use the right branch to go to a higher value.

We now have the basis for a "divide-and:conquer" approach to

handling a list of data items. As we traverse the binary tree

searching for a particular data item, each branch we take brings

us closer to the data we seek. The process is similar to using a

binary search with a sorted list. Here is a sample binary tree

which holds the letters A through H. Note that in some cases

only one branch is used. In actual practice, each node has 2

branches, with unneeded branches marked in some way (usu

ally a pointer value of 0). The node containing 'E' has arbitrarily

been chosen as the first node in the tree (the BASE). All access to

the tree will start at E.

B

/ \
A D

\
G

/ \
F H

Let's define some terms, using examples. A node is simply a tree

entry which contains a value. Each letter entry in the tree above

represents a node. Node 'E' is the base of the tree. It has no

parent node, but it does have 2 branches ('B' and *G'). 'B* is 'A's

parent node. It is also 'D's parent node. 'A' is the left branch from

node 'B\ 'D' is the right branch from node *B\

Remember that the picture above is simply the graphic represen

tation of the binary tree. The data items are usually stored one or

more arrays and the branches are kept as integer pointers to the

next array entry (the index of the entry is usually kept, although

in assembly language the actual ADDRESS of the next entry is

sometimes kept as the pointer.

To set up a binary tree, you would use a program section similar

to one of these (data consists of one string item and one integer

item i.e. Name and AGE).

In BASIC:

100 dim a$(500),b(500): rem to hold data

.110 dim l°/o(5OO),r%(5OO): rem left and right branches

InC:

struct tree {

char mydatafdatasize];

int moredata;

int leftptr;

int rigthptr;

} bintree[500];

18 March 1988: Volume 8, Issue 05

Searching the Tree.

As stated above, searching a binary tree is similar to applying a

binary search to an ordered list. In order to find any entry in the

tree, we simply start at the base of the tree, and compare for a

value that is equal to, less than, or greater than the value we are

searching for. If the value at that level of the tree is equal to our

search value, we are finished. If it is less than our search value,

try the value on the right branch, else try the value on the left

branch. This is because our rule states that we go to the left to

find a lower value, and to the right to find a higher value. For

example: we wish to find the value 'C on the tree. Starting at the

base, we find the value 'E\ 'C is less than 'E', so follow the left

branch. It contains the value 'B'. *C is greater than 4B\ so use the

right branch. It contains the value 'D'. 'C is less than 'D', so use

the left branch. There we find *C\ our search string, completing

the search. We performed 4 compares to find a random element

in an 8 entry list, not a bad performance. Now use that method

to find *G\ We only use 2 compares to find the element this time.

That is a very good indication of the search speed of binary

trees.

Inserting Tree Entries.

Insertion and deletion of entries is one of the most appealing

aspects of binary trees. In order to add a new entry to the tree,

simply follow the branches down as you would for a normal

search, always going to the left when the string to be inserted is

less than or equal to the value of the current node, and going to

the right when the insert string is greater than the current node.

When you find an unused branch, link your new entry there,

and you are done. No data is moved within the array.

BASIC Programming Examples.

Here are several routines which demonstrate the techniques of

searching, inserting entries into, and deleting entries from

binary trees. These programming examples use a binary tree to

access data in a string array named A$. Number arrays are used

to keep track of the left and right branch pointers for each node.

First is an insertion routine, which is used to add an entry to the

binary tree. This routine does not add an entry to the string

array; that must be done prior to calling this routine. What this

routine does is insert the array entry A$(S) into the binary tree

which describes array A$. L and R are the left and right pointer

arrays. The variable S is loaded prior to calling this subroutine,

and must contain the index of the array element being added to

the tree. The essence of this routine, as with all routines which

deal with a binary tree, is that we just keep going down the tree;

using the branching rules described above, until we find what

we are looking for. In this case, we are looking for an empty

branch. When we find it, we will link this array entry into the

tree by placing S into the empty branch pointer.

1000 k = 0: rem k is the cur. node, start at base

1010 if a$(s)>a$(k) then 1050

1020 if l(k)<>0 then k = I(k): goto 1010

1030 rem ** this position empty, insert here **

1040 l(k) = s: return

1050 if r(k)<>0 then k = r(k): goto 1010

1060 r(k) = s: return

To build the tree from scratch given some number of records

already in the arrays, use this short routine:

270 rem do not insert a$(0), we will use it as the

271 rem base of the tree.

272 rem the next line intializes I and r to 0

275 for s = 0 to 5000: l(s) = 0: r(s) = 0: next s

277 rem now add each populated array element to the tree

280 for s = 1 to 5000: if a$(s)On" then gosub 1000

290 next s

Next is the search routine, which searches A$ for an entry which

matches T$. If one is found, its index is returned in S, else -1 is

returned in S.

2005 s = -1: rem initialize s to show error return

2010 k = 0 : rem initialize key to base of tree

2020 if a$(k)=t$ then s = k: return

2030 ift$>a$(k) then 2100

2040 if l(k) = 0 then return

2050 k = l(k): goto 2020

2100 if r(k) = 0 then return

2110 k = r(k): goto 2020

This routine is very similar in function to the insertion routine

described above. Note that in lines 2040 and 2100, if the branch

we wish to take is empty, we return -1 in S, indicating to the

caller that T$ is not in the tree. In line 2020 we set S equal to the

current node index and return, identifying the array entry which

matches the search string by it's index.

Deletion of records is quite simple, but requires some explana

tion. If we wish to delete a record, we simply put a 0 in the

appropriate branch pointer (L() or R()) of its parent node (the

one just above it in the tree). That marks the branch as

"unused". The astute reader will now wonder, "What if the

record being deleted has branches?". It usually does. When we

delete a node whose index is K, and which has branches, we

create 2 smaller trees, whose bases are R(K) and L(K). All we

must do is insert these trees back into the main tree (call the

insert routine with S=L(K) and with S = R(K)). Here is the code

to perform a deletion.

3000 rem d is the index of the record to delete

3001 rem first, find the parent node

3010 k = 0:forj = 0 to 1000

3020 if l(j) = d or r(j) = d then k=j:j = 1000

3030 next j

3031 rem now k is the index to d's parent node

3040 if k=0 then return: rem not found

3050 if l(k) = d then l(k) = 0

3060 if r(k) = d then r(k) = O

3061 rem the entry is now deleted from the tree

3062 rem now insert the branches

3070 if l(d)<>0 then s = l(d):gosub inserted) = 0

3080 if r(d)<>0 then s = r(d):gosub insert:r(d) = 0

3090 return

The Transactor 19 March 1988: Volume 8, Issue O5

This routine is rather incomplete, and messy. It will not allow 1. Choose a base that is near the median point of the array, that

you to delete the base node (index 0), and it searches for the

parent node sequentially instead of using the tree structure. It

does, however, illustrate the basic principle of deletion.

Binary Trees in C

C and Pascal provide a method of simplifying binary tree

manipulation. Both languages allow RECURSION, where a func

tion or procedure can call itself. As an example - here is the

search routine written in C, using the structure given above,

using "moredata" as the search key :

search (key, curnode)

int key, curnode;

{
if (key = = bintree[cumode].moredata)

return key;

if (key < bintree[curnode].moredata)

return search(key, bintree[curnode].leftptr);

else

return search(key, bintree[curnode].rightptr);

There are ways of writing this routine in C which are more

compact and perhaps more efficient, but this style demonstrates

the techniques of recursion and tree searching very well.

Optimization

The efficiency of a binary tree can be measured in terms of the

number of data comparisons needed to find a random element

on the tree. This depends on the number of levels in the tree.

The 2 trees shown below represent the same data, but are vastly

different in shape and efficiency. There are 6 levels in tree #1,

therefore a maximum of 6 comparisons would be needed to find

an element at the lowest level of tree #1, while only 3 compari

sons would be needed to find an element at the lowest level of

tree#2.

1. A 2. D

Y / \
B BE

\ / \ \
C A C F

\
D

\
E

\
F

Tree #2 is said to be balanced, while tree #1 is said to be

unbalanced. There are algorithms which can be used to balance

a tree that is unbalanced, but that subject is beyond the scope of

this article. Here are some guidelines to follow when building

binary trees that will help to keep them somewhat balanced :

is, half of the array elements are less than the base value, and

half are greater.

2. Do not insert sorted data into the tree. Inserting the values A,

B, C, D, E, and F into a tree (in that order) will produce a

branch that looks like tree #1 above (try it!). Inserting D, B, E,

A, C, and F will result in tree #2.

The Demo Program

The demonstration program is a BASIC routine that demon

strates the techniques for using binary trees, and shows you the

speed advantage of incorporating binary trees into programs

which must search lists of data. The program asks for the

number of random strings to create, then it creates random

strings and places them into an array. Each array entry is

inserted into the binary tree as it is created. 10 random indexes

are chosen, and the array is searched sequentially for the

records. 10 more random indexes are chosen, and the search is

performed using the binary tree. Next you are asked to enter a

text string for the binary tree search to look for. This is a good

demonstration of speed since the string you enter will probably

not be found, so the search routine must descend all the way to

the bottom levels of the tree. As with all sorting algorithms, the

average amount of time saved saved per search is dependent on

the number of array elements. If the array only has about 20

items in it, the binary tree search will take just about as long as

the sequential search. For 1000 entries, the binary tree search is

over 10 times as fast.

Binary trees are very general in nature, and will lend themselves

to almost any application where fast data retrieval is necessary.

They are great for symbol table manipulation in assemblers and

compilers.

Binary Tree Demonstration Program

KB

Dl

JM

AH

GF

LM

ML

CL

AB

FH

DC

OD

GC

FM

FJ

FL

MF

Cl

EL

BC

100 rem binary tree demo program

110 rem by herb rose

120 inpufsize of string array ";n

130 print"[CLR]binary tree demo"

140 prinf'creating "n" random strings"

150 dim aa$(n):dim l(n):dim r(n)

160sd = -ti:a = md(sd)

170fori = 1ton

180 print i"[UP]M:n1=int(rnd(1)*10)-f1:a$ = ""

190 forj = 1ton1 :b$ = chr$(int(md(1)*26 + 65))

:a$ = a$ + b$:nextj

200 aa$(i) = a$

210l(i) = 0:r(i) = 0

220ifi>1 then gosub 670

230 next i

240 prinfarray created"

250 prinfsequential search for records"

260 a=0

270forj = 1to10

280n1=int(md(1)*n) + 1

290b$ = aa$(n1):t1=ti

The Transactor 2O March 1988: Volume 8, Issue O5

IJ

PG

IB

JO

AE

BL

PM

OF

MB

IG

FF

LC

MP

CC

EF

BM

DJ

CM

FO

KO

AO

OJ

KO

HN

KD

FE

EB

300 i = 1

310ifaa$(i) = b$then340

320i = i + 1

330 goto 310

340t2 = ti

350s = int(((t2-t1)/60)*100)

360s = s/100

370a = a + s

380 print Item #Bn1" "s"seconds"

390 next j

400 print "avg search time = "a/10

410 prinfbinary tree search"

420 a = 0

430forj = 1to10

440 n1 =int(md(1)*n) + 1

450b$ = aa$(n1):t1=ti

460 gosub 760

470t2 = ti

480 ifs = — 1 then print"*";

490 s = int(((t2-t1)/60)* 100):s = s/100

500a = a + s

510 print "item #nn1" "s"seconds"

520 next j

530 print "avg search time = "a/10

540b$ = "n

550 input "string to find ";b$

560 ifb$ = "" then end

DC

LA

KD

EO

CG

LF

HC

EP

HN

IA

FG

MP

MA

GN

ID

GP

OE

LA

CG

BJ

CH

OC

JA

AP

Gl

GB

CL

570t1=ti

580 gosub 760

590t2 = ti

600 ifs =—1 then prinf'not found";

610 s = int(((t2-t1)/60)* 100):s = s/100

620 print "search timeBsnseconds"

630 goto 540

640:

650 rem the binary tree insert routine

660:

670 k = 1 : rem base is 1

680 ifaa$(i)>aa$(k) then 710

690 if l(k)<>0 then k = I(k):goto680

700l(k) = i:return

710 if r(k)<>0 then k = r(k):goto680

720 r(k) = i: return

730:

740 rem the binary tree search routine

750:

760s = -1

770 k = 1

780 ifaa$(k) = b$thens = k: return

790 ifb$>aa$(k) then 820

800 if|(k) = 0 then return

810k = l(k):goto780

820 ifr(k) = 0 then return

830k = r(k):goto780

UNLEASH THE DATA ACQUISITION AND

CONTROL POWER OF YOUR COMMODORE C64 OR C128.

We have the answers to all your control needs.

NEW! 80-LINE SIMPLIFIED

DIGITAL I/O BOARD

Create your own autostart dedicated

controller without relying on disk drive.

• Socket for standard ROM cartridge.

• 40 separate buffered digital output lines can

each directly switch 50 volts at 500 mA.

• 40 separate digital input lines. (TTL).

• I/O lines controlled through simple memory

mapped ports each accessed via a single

statement in Basic. No interface could be easier

to use. A total often 8-bit ports.

• Included M.L. driver program optionally called

as a subroutine for fast convenient access to

individual I/O lines from Basic.

• Plugs into computer's expansion port. For both

C64 & C128. I/O connections are through a

pair of 50-pin professional type strip headers.

• Order Model SSI00 Plus. Only $119! Shipping

paid USA. Includes extensive documentation

and program disk. Each additional board $109.

Wetake pride in our interface board documentation and

software support, which is available separately for

examination. Credit against first order.

SS100 Plus, $20. 64IF22 & ADC0816, $30.

OUR ORIGINAL ULTIMATE

INTERFACE

• Universally applicable dual 6522 Versatile

Interface Adapter (VIA) board.

• Industrial control and monitoring. Great for

laboratory data acquisition and instrumentation

applications.

• Intelligently control almost any device.

• Perform automated testing.

• Easy to program yet extremely powerful.

• Easily interfaced to high-perfomance A/D and

D/A converters.

• Four 8-bit fully bidirectional I/O ports & eight

handshake lines. Four 16-bit timer/counters.
Full IRQ interrupt capability. Expandable to

four boards.

Order Model 64IF22. $169 postpaid USA.

Includes extensive documentation and programs

on disk. Each additional board $149. Quantity

pricing available. For both C64and C128.

A/D CONVERSION MODULE

Fast. 16-channel. 8-bit. Requires above. Leaves all
VIA ports available. For both C64 and C128.

Order Model 64IF/ADO0816. Only $69.

SERIOUS ABOUT

PROGRAMMING?

SYMBOL MASTER MULTI-PASS SYM

BOLIC DISASSEMBLER. Learn to program

like the experts! Adapt existing programs to
your needs! Disassembles any 6502/6510/
undoc/65C02/8502 machine code program

into beautiful source. Outputs source code

files to disk fully compatible with your MAE,

PAL, CBM, Develop-64, LADS, Merlin or

Panther assembler, ready for re-assembly and
editing. Includes both C64 & C128 native

mode versions. 100% machine code and

extremely fast. 63-page manual. The original
and best is now even better with Version 2.1!

Advanced and sophisticated features far too

numerous to detail here. $49.95 postpaid
USA.

C64 SOURCE CODE. Most complete

available reconstructed, extensively com

mented and cross-referenced assembly

language source code for Basic and Kernal

ROMs, all 16K. In book form, 242 pages.

$29.95 postpaid USA.

PTD-6510 SYMBOLIC DEBUGGER for

C64. An extremely powerful tool with

capabilities far beyond a machine-language

monitor. 100-page manual. Essential for

assembly-language programmers. $49.95
postpaid USA.

MAE64 version 5.0. Fully professional

6502/65C02 macro editor/assembler. 80-page

manual. $29.95 postpaid USA.

AnnRESSl SCHNEDLERSYSTEMS NF\Ai a**.
MEVi AUunw Dept. 85,25 Eastwood Road, RO. Box 5964 w ***'Dft£5cf

aii prices in u.s. dollars. Asheville, North Carolina 28813 Telephone 1-704-274-4646 *^»

The Transactor 21 March 1988: Volume 8, Issue O5

Computers

and Copyrights

Tony Romer

Edmonton, AB
© 1987 by Tony Romer

.. You have probably heard many stories ofhow poorly

current copyright laws protect modern computer software..

Part I: Introduction

The purpose of this report is to explain copyrighting in Canada and

the United States. Part I gives a background of copyrights in general.

Part II explains how to copyright your software. Part HI explains the

legal aspects of copyrights. Part IV explains the use of Public Domain

material (material not currently copyrighted).

Before explaining the copyright procedures, let's first make sure we

fully understand the difference between software and hardware.

Software is a story of mystery and intrigue. It is a poem contrasting

hope and despair. It is the portrait of the world through an artist's eye.

It is a song of love.

Hardware is a pad of paper and a pencil. It is a book of pages with ink

etchings. It is a canvas layered with pigmented oils of many colors. It

is a plastic disc of uneven grooves, a turning circular platter, and a cut

diamond.

If you can understand this, then you can understand the difference

between software and hardware. Software is a purely non-physical

collection of information. Hardware is a physical device (a chair, a

desk, a pen). Most hardware has nothing to do with software, like

chairs and desks. Some hardware is used to store or transcribe

software - a pen, a typewriter, a record player, a sheet of paper.

So where are computers in all of this? Many people mistakenly relate

software and hardware directly to computers. As you can tell from the

above, software and hardware have nothing to do with computers.

However, computers rely totally on software and hardware.

To computers, software is a collection of information. Hardware is the

devices used to store and transcribe the software - printers, key

boards, monitors, disk drives, cassette drives, cassettes, cartridges...

A subset of the software (a word processor, a video game, an

operating system) may be used to provide information to control (or

instruct) the hardware peripherals.

Now back to copyrights. Only software can be copyrighted. In fact,

copyrights were created for exactly that purpose. That may seem

hard to believe, since copyrights existed long before computers. You

very probably have heard many stories (mostly true, unfortunately) of

how poorly current copyright laws protect modern computer soft

ware.

Having read the above, though, you no doubt understand that

software covers a wide range of information - books, poems, songs,

paintings, photographs, documents, sound effects, moving pictures,

and the list goes on. All of these forms of software are easily

copyrightable even by the oldest of copyright laws.

Copyrights were formed to protect an individual's expression of an

idea, concept, theme, algorithm or methodology.

Copyrights give copyright owners exclusive control over the reproduc

tion and distribution of their copyrighted material.

It is the expression of an idea that is copyrightable, and not the idea

itself. That is fundamental to copyrights. Splitting the fuzzy lines

between an idea anda particular expression ofan idea is a matterfor

the courts.

The oldest of copyright laws protects software as designed by the artist

and any mechanical reproduction thereof. This pertained to both of

the only two copyright conventions existing today - the Berne

Convention and the UCC (Universal Copyright Convention).

The Berne Convention remains much the same today. The UCC has

been widened broadly, and even has many special sections referring

.only to computers. Basically, the Berne Convention is used by the

Commonwealth countries, like Canada and Australia. The UCC is

used by the United States, Germany, Belgium.... Together the

conventions cover virtually every country in the world.

Canada, and many countries, observe copyrights under either con

vention. However, you can only gain copyright by the Canadian

Federal Government under the Berne convention. Fear not, though -

you can gain copyrights in countries of which you are not a citizen,

such as the US under the UCC.

With computers, the original copyright laws definitely allowed a

programmer to copyright his or her source software and documenta

tion. It is with object code that copyright problems arise. It seems

courts just couldn't agree on whether the object code was a mechani

cal representation of the source code (like the grooves on a record, or

a French translation of an English song), or a separate and distinct set

of information not created by the author.

The US finally did something about the object code problem to protect

the authors, and are continuing to update their laws. Changes in

Canada's copyright laws are imminently upcoming. (Just as they were

a year ago, just as they were two years ago, andjust as they will be

five years from now.)

The Transactor 22 March 1988: Volume 8, Issue O5

What is not copyrightable? Ideas, concepts, algorithms, themes,

methodologies, and formulas (mathematical or otherwise) are not

copyrightable. Your only means of protection here is to keep your

idea, algorithm, or formula a secret.

Films, audio tapes, video tapes, and phono records are not copy-

rightable\ Read that sentence carefully. Those are all forms of

hardware - their software contents may very well be copyrightable.

It may seem quite obvious to you that you don't want to copyright an

audio tape or a video tape - but remember never to use those words

on a copyright form. Copyright offices are very sensitive about exact

wording on their forms. Never use words like "idea*, 'concept',

'methodology* and 'formula' on your copyright forms. Use these

words only in your documentation, which is part of the work to be

copyrighted.

Like books, documentation can contain almost anything, and be

copyrighted. So you can copyright a list of formulas, or a book of

recipes. Thus no-one can exactly reproduce your list of formulas, or

even print one of your recipes in the same form, without contravening

your copyright. But they can use each and every formula or recipe.

They can even produce their own list of the same formulas, or a book

with the same recipes, provided the form in which they are presented

is sufficiently different. As I said above, your only real protection here

is secrecy.

I may set a camera on a tripod and take a photograph of a gorgeous

waterfall against a beautiful sunset. I, and I alone, have the right to

distribute copies of photos reproduced from the negatives at whatever

price can be agreed to. On the other hand, you may have set your

camera on the same tripod right after I stepped down, and have

photographed the same scene. You also have the same rights to your

photograph - no matter how similar it looks to mine. The scenery is

not copyrightable - only the images as captured on film. You have

yours, and I have mine.

A company comes up with a great idea for a video game. They decide

to create a new caricature that eats dots and chases monsters with

great sound effects. It could turn out to be a good idea, so they decide

to use it. The game is created as a computer program, and is

copyrighted. You see the game, and decide to create one for yourself.

Have you violated a copyright law? This depends on the degree of

similarity. Remember, ideas are not copyrightable. Therefore anyone

may produce a computergame of dot-eating, monster-chasing char

acters. The moving pictures, sound effects, and code are copyright-

able. If you haven't seen the code then you almost certainly cannot

have violated that copyright. As for the rest, it must be very much

alike to violate the copyright because, as I have said, anyone can use

the same idea. Also remember this about your own programs -

anyone can use your ideas without violating your copyrights.

What about titles? Titles are not copyrightable. Copyright offices

do not even check these. You may, however, violate someone's

registered trademark. Companies often register their titles as trade

marks because copyright protection is not available. Copyright offices

will not check for trademarks either - that is your duty. Common

words will not be registered trademarks, like Blockade, or Breakout.

Thus you may find very different software programs, fully copy

righted, with the same names.

should beware of even notable companies with that regard - and

copyrights are cheap to obtain.)

Copyrights are not designed only to protect the rich. Governments

realize that many struggling artists and authors cannot afford high

copyright costs. You can copyright your material for only $10 US in

the States or $25 Cdn. in Canada. You can even copyright collections

for the single cost in the US. Alternatively you could get a lawyer to

copyright your works for you at $500 or more for each work.

Part 2: Obtaining A Copyright

You can obtain formal copyrights under the Berne convention in

Canada or under the UCC in the States by requesting the appropriate

forms for unpublished or published works from the corresponding

governments. The forms will be sent to you free of charge.

In Canada, request Form 9 for an unpublished work, Form 10 for a

published work. In the States, request form TX for computer works

excluding audio and/or visual features. Request form PA (Performing

Arts) if your work includes graphics and sound effects (arcade-type

games, for example). Remember, you do not have to be a citizen of the

country in which you choose to obtain a copyright (but a member of

any country observing at least one of the two conventions, almost any

country in the world).

Each government will forward additional information to help you fill

out the forms. Wording on the forms must be very exact.

For copyright under the Berne convention write to:

The Copyright Office

Consumer and Corporate Affairs

Ottawa-Hull, Ontario

Canada K1A 0C9

For copyright under the UCC write to:

The Copyright Office

Library of Congress

Washington, D.C.

USA 20559

Or phone (202) 287-9100 and leave your request on the answering

machine.

Copyrights in Canada cost $25 Cdn. for each work. Copyrights in the

States cost $10 US for each work, or collection of works.

The forms will either have a line requesting the nature of the work, or

the nature of the authorship of the work. If you are copyrighting non-

audiovisual work (a utility program, an operating system, a compiler

or a word-oriented game, for example), simply describe it as an

Artistic and Literary Work. If your work includes graphics and sound

effects, describe it as an Artistic and Literary Audiovisual Work.

Alternatives, of course: Artistic and Literary Audio Work, Artistic and

Literary Visual work. Do not say the work is an audiovisual work on

cassette or on a floppy disk; leave the hardware medium out of your

descriptions.

If you would like to register your own title you will find it expensive There is a place to show this as an anonymous or a pseudonymous

($300 or more). If you find a publisher for your program, chances are work. In an anonymous work, you will not show any name of

they will look after those details. What you want is to copyright it authorship on distributions of the work. Pseudonymous works will

formally, so that the publisher cannot claim it as their own work. (You show a pen name on the works - Tony Romer is such a name.

The Transactor 23 March 1988: Volume 8, Issue O5

Copyright forms allow you to $how the true authorship of the work

(authorship is not necessarily ownership). In fact, if you are using a

formal copyright, you must show the true authorship.

You must show if the work was made for hire. If you created the work

while salaried or commissioned by someone else then, as a work

made for hire, it very probably belongs to the person or company that

paid for it. Very probably - but not necessarily. Unless a formal

agreement stating the nature of ownership has been made, the actual

ownership may need to be settled by the courts. Regardless, show the

work as a work made for hire if you have been paid to produce it.

The remaining sections of the forms should be matter of fact. You may

explain the nature of the work more fully in the documentation

accompanying the work. The forms were designed to contain all the

required information for copyright - in fact, your form will be rejected

if you give or show an attachment.

A title for the work must be shown. Titles do not have to be unique,

and are not protected under copyrights. However, they cannot violate

a registered trademark. It is your duty to ensure the title does not

violate a registered trademark. The copyright office will not do this for

you.

Works of authorship do not have to be formally copyrighted to be

protected. However, formal copyrights are required under the UCC

before a legal case can be instigated. Formal copyrights are the best

way to establish the date of true authorship.

The Berne convention does not require any special affixations to a

work to show that it is a copyrighted work. The UCC does require the

work to be shown as copyrighted. Therefore, all works should be

shown with the UCC markings to provide for copyright under the

UCC, even if not formally applied for.

The UCC requires the work to be shown as Copyright at a specific

date, and by a specific party. The only formal means of showing the

copyright mark are: Copyright, Copr., or the letter c enclosed within a

full circle. (Also the letter p enclosed in a circle for audio works only).

Courts may also respect other symbols, such as (c) and (C). These are

sometimes frowned upon, since they have not been officially adopted

by the UCC. To my knowledge, however, they have never been

rejected in a copyright case. The following, then are acceptable:

Copyright 1987 by Transactor

Copr. 1987 by Transactor Publishing Inc.

Copyright (C) by Transactor Publishing Inc. 1987

(Q 1987 by Transactor Publishing Inc.

(c)1987 byTonyRomer

A court will allow copyrights without the ownership affixed - even if

the work is totally anonymous (just "(Q 1987", for instance). How

ever, the offices vastly prefer that the copyright holder be shown.

An author can allow one or more other parties to show a copyright

holding of a work with their own names affixed without losing his or

her full ownership of the true copyright.

In the United States, return one copy of your unpublished work, or

two copies of your published work, with the forms. In Canada do not

return any copies of an unpublished work with the forms, or two

copies of a published work. If you follow these statements on

copyrights in Canada, then you can see why I frown on Canadian

copyrights - the office has no formal proof that you completed a work

since it only received a title, and an extremely brief description of the

work's nature.

You do not need to re-submit a previously copyrighted unpublished

work for copyright after it has been published. A copyright exists for

28, 50 or 75 years depending on the convention copyrighted under,

and renewal after initial copyright.

Obtaining a copyright does not fully establish an author as a true

owner or creator of a work. It merely helps to establish the owner.

Ultimately, if it ever comes to court, the legal process will decide the

actual copyright holder. Which brings us to...

Part 3: Legal Aspects of Copyrights

Formal copyrights help to establish the ownership and date that a

work has been completed. However, they don't guarantee full owner

ship by the holder. That is for the courts to decide. For example, John

Doe may write a book anonymously, perhaps even including the

proper copyright symbols. Long before the book becomes popular,

John Smith applies to copyright the book, and successfully, though

fraudulently, receives a copyright registration.

If John Doe can prove himself to be the true creator of the work (not

made for hire) then he is indeed the true copyright holder. In the

court's view, John Smith is far more likely to be the holder - since Mr.

Smith has succeeded in obtaining a copyright on the work. However,

if John Doe can produce a copy of the work from a sealed bank vault

dated prior to John Smith's copyright application, the judge will

probably find him to be the correct holder.

I hope this example illustrates why a formal copyright should be

sought. John Doe will have a very difficult time proving his author

ship unless he has a sealed copy dated such that it can be proved to

precede someone else's copyright. Both alleged holders may be able

to show any number of witnesses supporting their claims, so wit

nesses will not serve as well as having physical proof of ownership.

Many people ask if it is all right to copy copyrighted software for

friends if no money changes hands. The answer is definitely NO! - it

is not all right. A copyright gives the holder rights to distribute and

regulate the distribution of copies. These rights have nothing to do

with money.

People assume that software published in magazines is free to copy.

Wrong again. In fact any work that is published is automatically

copyrighted, and the magazine sends two copies of each magazine

issue to the appropriate offices for formal rights. These companies are

in the business of selling magazines - they give rights to each

magazine holder to have or obtain a copy of the software on the basis

that the magazine was purchased.

Remember that ideas, themes, and concepts are not copyrightable. If

ideas were copyrightable, one person would probably hold a monop

oly on murder mysteries, word processors, or computer operating

systems. Ideas, no matter how simple or complex, are not copyright-

able. It is only the full expression of the idea that is copyrightable - not

the idea itself.

It is quite possible to create software that expresses someone else's

ideas in apparently the same form without violating their rights. For

example, you could completely imitate someone else's word proces

sor, providing the code used is different. Similarly, someone else can

do the same with your ideas.

The Transactor 24 March 1988: Volume 8, Issue O5

An imitator should be aware, however, that portions of the work

imitated may violate artistic computer designs, which are now copy-

rightable with other material under the Performing Arts. Closely

imitating a screen design would be a copyright infringement.

Combatting computer theft has been a difficult and delicate issue.

There have been some successful cases, though. Apple has won a

number of cases in Australia protecting their ROM (Read Only

Memory) software. A software publishing company successfully sued

a magazine publishing company for a very large sum for publishing

their methods of software protection under the guise of methods for

programmers to protect themselves.

This supports one of my contentions: any article giving details of

software protection only serves to help software pirates. A protection

scheme becomes useless when anyone can find the scheme on a

magazine stand. At best, magazines should provide methods for a

programmer to go about creating his or her own protection - not

details of a currently used scheme itself.

(Please note: Software Protection is a totally separate issue from

Software Copyrights. Under a good protection scheme, the software

should be fully copyable, andshouldnotdamage the user's hardware

or software in any way A legal owner of any software product has

the right to make back-ups for as long as the original copy purchased

is owned. The courts have made this legal right ofsoftware owners to

make back-ups quite clear.)

Musical compositions are also copyrightable. Since much of the

computer music supposedly in the public domain consists of versions

of compositions actually created by other artists, such music almost

certainly violates their rights - it is a mechanical reproduction of their

work.

Of note here is a successful lawsuit made on behalf of the Beatles a

few years ago. A company published a concert by the Beatles on

video tape which, indeed, was not copyright and belonged to the

public domain. However, the tape included the music - which was

copyright, and therefore the copyright was violated. (In other words,

they could legally only have distributed the tape without any sound.)

People work hard to produce their work. It may turn out to be quite

good and marketable, or quite poor. The quality of the work is

inconsequential to the copyright. These rights should be respected. If

the artist is actually good enough to have the product marketed, then

the royalties will encourage further work, and generally the quality of

the work will increase because of the monetary rewards.

What do you think would have happened to your favourite rock

bands and authors if everyone was freely copying their works? There

probably would not have been much work left to copy. Would Arthur

C. Clarke have written 2010 if he didn't receive any money for 2001?

You will have to ask him.

Part 4: Public Domain Software

Public Domain Software is software for which copyrights are not

currently in effect. In other words, Public Domain material is material

that you can copy and distribute freely to your friends.

"Night of the Living Dead" and "It's A Wonderful Life" are Public

Domain movies. Computer user clubs often have thousands of Public

Domain games, utilities, and other software.

Most Public Domain material is so because that was the author's

intent. However, sometimes material is not properly protected and

falls into the Public Domain against the author's wishes. Once an item

has fallen into the Public Domain, it is there to stay. However,

copyrighted material is often distributed with Public Domain material

by mistake - the copyright is still in force, and the distributor could be

sued for its illegal distribution. Therefore Public Domain distributors

generally try to avoid distributing copyrighted material without per

mission to do so.

There is nothing wrong with selling Public Domain material for a

profit. Some companies stress that they are providing the software

free and only charging for the service. Actually that is not necessary,

and they could charge anything they wanted for the service anyway.

Any notices restricting the buyer from distributing the software

themselves is without force for true Public Domain material - anyone

can distribute it, no matter how it was obtained.

It is actually the competition that keeps the cost of Public Domain

material low. You should expect, though, to at least be paying a small

amount for the equipment used in the copying process, the time used

for the copying, and the shipping and handling charges. Some places

may have volunteers doing the copying, but it probably would not last

- it is rather boring work for a non-paying job. Therefore you should

expect to pay for their time.

Because authors do not gain any monetary rewards for Public

Domain material, you will find most of it rather simple software. You

will need to sift through a lot of low quality software to find the real

gems - and some of it will be quite good, like the movies mentioned

above. You will find a lot of it without any instructions, and perhaps

plagued with errors - well, what do you expect for such low cost

software?

I am aware of a company distributing Public Domain software

blended in a collection of copyrighted software all under the guise of a

single copyright. This is probably fraudulent, since most of the

software is Public Domain. Public Domain software cannot be copy

righted, and a court will probably take a dim view on the copyright-

able software since it is indistinguishable from the non-copyrightable

software.

You should be aware that some Public Domain distributors may

legally include copyrighted works with their material, providing the

author has allowed such distribution. This software will be clearly

marked as copyrighted - you cannot distribute copies of it yourself

without obtaining permission from the copyright holder.

Postscript

At the time that this article is undergoing final preparation for

printing, efforts by the Canadian government to upgrade our current

copyright laws to better protect computer software continue. While

any changes in this regard are welcome (and overdue), I would-like

once again to emphasize that Canadians can copyright their material

under the UCC by sending copies of their documents and software to

the Copyright office in Washington, DC. Canada, and many other

countries recognize copyrights under the UCC in addition to copy

rights placed under the Berne convention. If you choose not to

formally copyright your material, you should at least place copyright

notices on your software where it will be clearly visible (Copyright

1987 by John Doe, for example).

n

The Transactor 25 March 1988: Volume 8. Issue O5

Matrix Mathematics

for the Commodore 64

Don Currie

Maidstone, ON

.. Sometimes the things that were easy to learn

are often the most time consuming...

Mathematics is the language of the sciences, but sometimes the

language can get in the way of the solution. Yes, as powerful as

math is, sometimes it can be too tedious to appreciate its power.

Sometimes the things that were easy to learn are often the most

time consuming, such as matrix multiplication or the solution to a

system of linear equations. That is why the following programs were

written to ailow a person to calculate the answers quicker and easier

than traditional pencil and paper methods.

Matrix Multiplication

The product A*B of a matrix A with 'm' rows and 'p' columns and a

matrix B with 'p' rows and 'n' columns is defined as C with 'm' rows

and *n' columns where c,, (an element in C, with i representing the

row and j the column of a specific element in the matrix) is defined

as:

From the definition, the number of columns in A must be equal to

the number of rows in B or else the definition does not hold true.

In any case, m, n and p can be any size value, but a practical limit

for the computer is 20. If the maximum values are used for m, n and

p, the memory usage on the Commodore 64 would be 8400 bytes at

7 bytes per number.

In the program, lines 100 to 390 serve to input the number of rows

and columns of matrix A and B, do error checking on the values,

and then the actual entry of the values into the matrix. The program

will ask for the value in a specific row and column using the a,, form

for both matrices. Lines 410 to 600 are responsible for calculating

the matrix product and printing the values in the new matrix. The

values are printed in columns, one column at a time starting from

left to right.

Solving N Linear Simultaneous Equations

Solving linear equations by hand can be a chore even with just a few

linear equations. A technique often used to find the point where the

lines represented by your equations intersect is Jacobi Iteration,

which can approximate a system to any given tolerance.

In order to solve the system of n variables, you need n equations to

get an actual numeric solution. In order to show you how to input

the values into the program, an example will be used.

The computer will first ask for the number of variable you wish to

solve for. For our case it is 2. The computer will then ask for the

system of equations to be entered. Say our equations are:

1x + 2y = 3

4x + 5y = 6

We then take all the values and place them in a 2 rows and 3

columns matrix as

2

5

and input the values when the computer asks for the specific

element in the matrix. The program will then ask for the tolerance

the system is to be solved for - this value controls the accuracy of

your approximation. For most situations, .001 is adequate. The next

question is the number of iterations you wish to try to obtain the

solution of the system. The greater the number of tries, the more

chance there is of obtaining the solution to your specified tolerance.

The computer will then print the answer in column form for your

system.

The Jacobi method is good for any number of equations, but the

limit for this program is set at 20.

In the program, lines 100-240 are responsible for getting the

number of equations and the matrix values from the user. Lines

250-360 check to see that the matrix was entered with no zeros in

its principle diagonal. (The principle diagonal starts at the upper left

and ends at the second last column at the bottom of the matrix.) If

the matrix does have a zero in the principle diagonal, the program

then seeks to arrange the matrix to have no zeros in the principle

diagonal. Lines 370-390 get the tolerance and the number of

iterations from the user. Lines 400-470 arrange the equations so the

principle diagonal is as large as possible (a condition for the Jacobi

method to work). Lines 480-700 perform the actual iteration work,

and line 660 jumps to the answer output routine when the tolerance

is met. Line 700 jumps to an error message when the system does

not converge to your tolerance after the stated number of tries.

Conclusion

Matrix multiplication and solving linear equations occur in the

sciences and engineering fields quite often in areas as diverse as

special relativity to basic electrical circuit analysis. While the pro

grams can be run without understanding how to perform the

operations by hand, I encourage the reader to learn about their

many applications and the theories and specific properties behind

both operations.

The Transactor 26 March 1988: Volume 8, Issue O5

Matrix Multiplier

BA

MD

OB

CP

FJ

DL

IE

LC

BM

LN

DH

FF

CF

HE

OA

AD

GD

EN

HJ

GK

LP

CH

CH

IB

GN

FO

HD

EK

Jl

JJ

CM

FG

BO

BK

GA

BJ

BP

JN

LE

HL

00

HA

LP

EK

GB

GC

BF

HA

KE

GM

NP

100 print"matrix multiplication °: print

110 prinfthis program finds the product of a"

120 print"set of two matrices having up to"

130 print"20*20 dimensions"

140 print°[DN RVS]matrix A:n

150 prinf'how many rows and how many columns ?"

160 input" rows";r1

170 input" columnsD;c1

180 printB[DN RVS]matrix B:B

190 prinf'how many rows and how many columns ?"

200 input" rows";r2

210 input" columnsn;c2

220 if r1 >20 or d >20 or r2>20 or c2>20 then

print"[RVS]matrices too large":end

230 if c1Or2 then print B[RVS]# of cols in A not

equal to # of rows in B":end

240 rem

250dima(r1,c1)

260 print

270 for r = 1 to r1: for c = 1 to d

280 prinfenter matrix A value";r;c;

290 input a(r,c)

300 next c,r

310dimb(r2,c2)

320 print

330 for r = 1 to r2: for c = 1 to c2

340 print"enter matrix B valueB;r;c;

350 input b(r,c)

360 next c,r

370 print

380 prinfthe resulting matrix will have:"

390 print r1 "rows and"c2"columns"

400 print

410 print-multiplication begins"

420 dim c(r1 ,c2)

430forr = 1 tori

440 for c=1 to c2: cs = 0

450foru = 1 tod

460 cs = a(r,u)*b(u,c) + cs

470 next u

480 c(r,c) = cs: nextc.r

490 next c

500 next r

510forc = 1 toc2: print

520forr = 1 tori

530print" C ";r;B>";c;" = "c(r,c)

540 next r

550 print:print"hit return to see next column"

560 get a$:if a$Ochr$(13) then 560

570 next c

580 input "require check view (y/n) n[3 lefts]";a$

590ifa$ = "n'thenend

600 goto 510

Simuhaneaous Linear Equation Solver

BJ

IM

MC

CO

KO

CL

Theft

100 prinfjacobi iteration":print

110 prinfthis program finds the solution to"

120 print a system of equations having up to

130 print"20 variables with 20 equations."

140 print: prinfhow many variables

150 print"you wish to solve for";:input v

ansactor 27

GC

OB

FH

MC

KP

IO

PH

AK

PL

AC

BD

DP

PM

FE

LA

IB

ID

EG

CN

OF

OM

OB

DH

ND

AG

DN

BP

Nl

EO

AC

ON

IL

GA

Kl

LN

HE

FN

NM

BA

MG

HL

DG

Fl

Ml

IF

OA

EF

EG

AC

MG

AL

BM

HO

HE

AF

MA

FC

DE

KK

160 if v = 0 or v = 1 then print "[RVS]too few":end

170 if v>20 then print "[RVS]too many":end

180 print "then there must be";v;"equations"

190dimm(v,v + 1)

200 print

210forr = 1 tov:forc = 1 tov+1

220 prinfenter matrix M value";r;c;

230input" ";m(r,c)

240 next c,r

250 for k=1 tov

260ifm(k,k) = 0then290

270 next k

280 goto 370

290 for j = 1 tov

300 if m(j,k)<>0 and m(k,j)<>0 then 330

310 next j

320 print:print"[RVS]sorry, jacobi iteration will not

work on the system":end

330 for t = 1 tov + 1

340ss = m(j,t):m(k,t) = ss

350 next t

360 next k: print

370 print"to what tolerance do you wish

380 prinfthe system to be evaluated to";

:input"[2 spcs].001 [6 left]";ot

390 print "how many iterations";:inpuf[2 spcs]1000

[6left]";ri

400forj = 1 tov: loc=j

410 for i=j tov

420 if m(ij)>m(loc,j) then loc = i

430 next i

440 for z = 1 tov + 1 ,

450 s = m(loc,z): m(loc,z) = m(j,z): m(j,z) = s

460 next z

470 next j

480fork = 1 tov

490s = -m(k,k): m(k,k) = 0

500forc = 1 tov+1

510m(klc) = m(kIc)/s*
520 next c

530m(k,v + 1) = -m(k,v + 1)

540 next k

550 dim xo(v), nx(v)

560 it = 1

570forl = 1tov

580fort = 1 tov

590xs = m(l,t)*xo(t) + xs

600 next t

610nx(l) = xs + m(l,v + 1):xs=0

620 next I

630cs=0:forj = itov
640 a=abs(xo(j)-nx(j)):cs = cs + a

650 next j

660ifcs/v<otthen730

670 for j = 1 tov

680xofl) = (nx(j) + xo(j))/2

690 next j

700 it = it+1: if it< = ri then 570

710 print"[RVSJno solution available

720 print"[RVSJequations must not intersect. B:end
730 print

740fort = 1 tov

750prinfx";t;" = ";nx(t)

760 next: end

March 1988: Volume 8, Issue O5

Read Infocom Thomas W. Gurley

Wills Point, Texas

A Blind Walk Through The Black Forest

I am always most curious about that which is hidden, forbidden

or secret. One of the first programs I bought for my Commodore

64 was Zork II, part of Infocom's celebrated original series of text

adventures. Another was The Clone Machine, a program with

features for examining raw sectors on disk. Somewhere be

tween the two, I conceived a goal that was to take me down

paths I never knew existed: I wanted to find out what words

Zork II knew.

Quite innocently (never haying used a "real computer" before) I

began to search the tracks and sectors of the Zork II disk with

The Clone Machine. To my surprise there were no secret words

to be found! Suddenly it appeared that I was on a quest equal in

magnitude to that of the search for the Holy Grail! Knowing

absolutely no machine language, I started reading and studying.

I obtained an ML monitor and began to disassemble Zork II.

Gradually, after literally months of reading, studying and disas

sembling, over and over and over, things began to make sense. I

found the place where keyboard input occurs (even this was

nearly a miracle because I knew nothing about the Kernal).

Slowly, though, everything became easier, and eventually I

discovered the answer to the question with which I had begun.

My reason for relating this history is to perhaps inspire others to

"dig in". I now feel quite comfortable with assembly language,

and I truly owe a debt of gratitude to the authors of Zork II. What

began as a simple challenge turned out to be an almost total

learning experience. The code in the Infocom programs is very

well written, and has taught me a lot about programming

technique.

As an aside, I should state that my delving into the labyrinth of

Infocom was not for the purpose of piracy. In fact, the program

that follows will not aid in such activity - it will merely give you

an opportunity to study more closely an Infocom program you

already own, and perhaps to help the bedraggled adventurer

find his way.

Infocom Program Structure

Many of the Infocom games share a common structure. In fact,

the first 8000 bytes or. so are identical except for a few strings.

The Zork I machine language driver works fine with the Sorcerer

disk or with Infidel.

I do not have access to all of the Infocom games, so you will just

have to test this program for yourself on a particular game. I

know it works with the Zork series, Infidel, Planetfall, Enchanter

and Sorcerer. It probably works on most or all of the others as

well.

I will most often refer to Zork II, because that is the program with

which I am most familiar. It is a long program, so I won't

describe all its intricacies here. As far as my project is concerned,

the first break came while I was actually playing the game. I

noticed that when I typed a word Zork knew, it responded with

disk drive activity or a phrase of some sort. If I entered a word

Zork did not recognize, it responded "I do not know the word

'junket'", for example. There was no delay. That meant that all

the words must be in memory all the time. But when I scanned

memory, I found much the same thing I found on disk - no

words.

Digging yet deeper into the code, I found a (to me) complicated

character manipulation subroutine. First, the initial six charac

ters of a word input from the keyboard are reduced to 5 bits

apiece, then stored in addresses $5E-$63. The characters are

then sent through the manipulation subroutine. This takes the

second character and mixes it with the first, ORs the result with

the third character and stores the result in the position of the first

character. The second character is ROLed with the first, putting

any carry bits in the low nybble of the first. This manipulation of

bits completely obliterates all of the first three characters. Much

the same thing happens to the last three. Refer to the source

code of the routine at the end of this article. You will notice that

only the last two characters are left unchanged, but those two

are not used by the next subroutine, which scans memory for

the four mixed-up numbers in the previous four bytes.

Location Of The Words

I have found three dictionaries in Zork II. The first begins at

$2A40 and is a 'quick-search' list of often-used words. The

second begins at $3615 and is a list of responses which Zork

uses to talk to you. These words will not be recognized when

entered from the keyboard unless they appear also in one of the

other dictionaries. The third begins with the letter "a" at $692D.

This is the list of words Zork recognizes as valid words from the

keyboard.

All entries in these three dictionaries are made of four bytes -

corresponding to the four mixed-up bytes encoded as described

above.

The Transactor 28 March 1988: Volume 8, Issue O5

Reconstruction like The Spaghetti Sauce - It's All In There

So... the words are in memory all the time, and now we know

that only four bytes are used. I thought all I would have to do was

simply unROL and unASL those four bytes to reveal the original

word. Was I ever wrong! Remember those last two characters?

They are very important for arriving at the mixed-up numbers,

but they are not available going in reverse. All you have from the

dictionary is four out-of-order, mixed-up bytes.

I wrote a Basic program that ANDed and ORed and divided and

added. It was a monster that took about twenty seconds to

unROL and unASL any four bytes (even if they amounted to

nonsense), and there are several thousand bytes in the three

word-lists. This first program used for-next loops to generate

trial values for those missing last two characters. Surprise! Real

words began to scroll by. That is how I found "bla@k can>le",

which I immediately recognized as "black candle". But was

"zifrS;" a word or just gibberish?

I came up with Basic equivalents of ASL, ROL, ROR and even

ASR, which is missing from the 6510 opcodes.

But I wasn't looking for a copper grail.

Keep in mind that several months have passed since the

beginning of this story. Several months of 20-hour days with

14-16 of those hours at home with toothpicks jabbed under the

eyelids. By now, there was no turning back. Out of sheer

frustration, I did put aside the project and I actually played

Enchanter. Every time I played I wondered what secret words it

knew that I did not know it knew.

I took out the long, slow Basic program once again, and used it

on Enchanter. That is how I found "xyzzy" (at $7C74) and

"antharion" and "zifmia". I ordered one of the "clue" books, but

that only helped in solving the game. It did nothing for helping

me know the words.

Is Machine Language The Answer?

Symass had come out by this time, and I was well enough

acquainted with assembly language to write a simple program. I

wrote a machine language program that created all possible

combinations of the alphabet taken six at a time, and sent them

forward through the manipulation subroutine. It then compared

the result with four bytes from Zork II's word list, and upon no

t match created the next combination.

Perfect in theory - dismal failure in practice. Even at the

lightning speeds of ML it took over thirty minutes to go from

"aaaaaa" to "baaaaa", and on only the first entry in the dictio

nary. Well, let me tell you - I abandoned that approach after

only the first try.

I almost gave up at this point because I had become convinced

that all six characters must be known, and that the manipulation

routine was a one-way street without the last two characters.

Then, like a blind man who suddenly sees, it dawned on me that

all six characters are contained in those four bytes. Indeed, each

pair of consecutive bytes in the dictionary contains three charac

ters. From the moment I realized this until the secret words were

scrolling by on the screen was less than eight hours.

Looking Back

In retrospect, it is obvious that the authors of Zork II were not

only "hiding" the words from prying eyes, they were cramming

three bytes into two, thus allowing more words for a more

realistic response. Experienced programmers will probably

laugh at my naivete, and so do I.

I am certain my program can be improved upon. Reconstruction

of the original word from the mixed-up four bytes found in the

three dictionaries is still not perfect. Following each valid word

are several bytes that the parser uses to determine the response

needed for that word. These bytes produce gibberish when

unscrambled, sometimes producing real-looking words. You

can ignore the gibberish or figure out how to skip over it. The

parser uses some of these bytes as an offset to the next or

previous entry. It adds or subtracts offsets, so finding a match is

fast.

My program asks for a beginning address. RETURN will start

you at $2A40 (10816 decimal). The increment for all entries is 2,

4 or 6, but since you do not know where the words are, an

increment of 1 can be used. You can elect to increment by 2,

changing the address to odd or even as needed.

The short dictionary at $2A40 is on even numbered addresses at

an interval of two. You will immediately see valid words scroll

past from this address.

The Final Program - The Holy Grail?

One would hardly think that so short and so simple a program is

the result of so much time, effort and frustration. Even now, I'm

not certain it is finished. Perhaps my grail is only gold-plated,

and I welcome improvements. The words scroll past faster than I

can write them down, so a machine language program isn't

needed. Shift lock will halt the scroll. Fl allows changing the

address and the increment.

A complete explanation of how the program works would be

pointless and confusing without a listing of the parser source. I

got mine with Un-assembler. Briefly, the original keyboard

input is converted to a number from 6-32. Refer again to Figure

1. The lower 3 bits are shifted to the upper nybble (ASL 5 times).

When the result is ORed with another number, the second

number occupies the lower 5 bits. Thus one byte contains two

characters - almost. Actually, the carry bits from the ASL are

ROLed into the first character. My program tries to account for

the carry bits and reconstructs the original six characters.

The Transactor 29 March 1988: Volume 8, Issue O5

How To Actually See The Words

A reset switch is necessary. Just follow these steps:

1) Load and run an Infocom game.

2) At the first prompt ">", hit the reset.

3) Load and run "read infocom"

4) Memory is lowered to protect the dictionaries.

5) RETURN - increment 2.

6) Fl to change address and increment.

Between the dictionaries are sections of gibberish used as

pointers and as storage area by the parser.

One final note: I chose to display six characters at once. Because

of this, a short word or parts of longer words may appear on

more than one line. I find it easier to recognize:

someth

ething

ing...

than to recognize:

som

eth

ing

but you can change line 350 and 380 to "FOR X = 1 TO 3" if you

prefer the second example.

Good luck and happy hunting.

Disassembly of the input manipulation subroutine (at $1ECF)

Ida $5f

asl

asl

asl

asl

rol $5e

asl

rol $5e

Idx $5e

stx $5f

ora $60

sta $5e

Ida $62

asl

asl

asl

asl

rol $61

asl

rol $61

Idx $61

stx $61 ;redundant, but it's there

ora $63

sta $60

Ida $61

The Transactor 3O

EE

BJ

PD

LK

EA

HJ

MJ

JB

GK

HO

BD

PP

DK

JN

OD

OH

ME

OM

CJ

FJ

PK

LM

DE

AN

PJ

EL

CB

OE

DA

KK

MH

GJ

JH

JJ

MJ

NM

PJ

HO

ora #$80

sta $61

rts

10 rem read infocom

15rem 1/3/87

20 rem thomas w. gurley

25 rem p.o. box 133

30 rem wills point, texas, 75169

35:

40:

100 poke55,0: poke56,42: clr: rem lower top

of basic

110 aa = 0: ab = 0: ac = 0: ad = 0: m = 0: n = 0: o = 0

: nx = 0: nn = 0: dirnl(6): rem define variables

120 print"[3 down][14 spaces]read infocom'

130 printB[down]start';: input"address°;nx

140 preincrement 1 2": input nn: if nn<1 or

nn>2then 140

150 if nx = 0 then nx = 10816: rem start of short

quick search word list

160 if peek(197) = 4 then prinfaddress is "nx

: gotoi 30: rem change address with f1

170 aa = peek(nx): ab = peek(nx +1)

: ac = peek(nx + 2): ad = peek(nx + 3)

180m = 0: n = 0: o = 0

190 rem 95 94 97 96[29 spaces]aa ab ac ad

2001(1) = int((aa-20)/4)'+ 64: rem the' + 64' and
1 + 59' restore alphabet position

210 l(3) = (aband31) + 59: rem 'and 31' drops top

three bits

220 m = int((ab and 240)/32) + 59: rem 'and 240'

takes top bits only

230 if (aa and 1) = 1 then n = 8 : rem restore carry

on second 'rol'

240 if (aa and 2) = 2 then o = 16: rem restore carry

on first'rol1

2501(2) = m + n + o: rem add carries back in

260 rem second half

270 m = 0: n = 0: o = 0: rem cancel carries

280l(4) = int((ac-20)/4) + 64

290l(6) = (adand31) + 59

300 m = int((ad and 240)/32) + 59

310if(acand1) = 1 then n = 8

320 if (ac and 2) = 2 then o = 16

330l(5) = m + n + 0

340 print: print nx

350 for x = 1 to 6: a = l(x) and 223: if a<65 or a>90

then a = 46: rem '.' = invalid character

360 rem the 'and' 223 clears bit 5 to make lower

case character

370l(x) = a: next

380 for x = 1 to 6: print chr$(l(x));: next: print

390 if peek(654) = 1 then 390: rem hold with shift

lock

400 nx = nx + nn: gotoi 60

March 1988: Volume 8, Issue O5

Interfacing Two

Commodore 64's

Jack Bedard

Van Nuys, CA
© Copyright 1987 Jack Bedard

Develop your program on one C64 and send it directly to another for testing!

How would you like to be able to assemble large machine

language programs and data into 60K of memory without

worrying about assembling on top of the assembler itself or the

source code? Or how about keeping your machine undisturbed

when the program you're testing crashes? Cross-assembling -

assembling from one C-64 to another - is the way to do it. Code

is developed and assembled on the source machine, and sent to

a target machine to be tested. With the addition of the cable

interface and software about to be described, very large pro

grams can be developed and tested more easily.

Two complete C-64 systems are needed; 2 C-64's, 2 monitors

and 2 storage devices (tape or disk). Also needed to make the

cable:

1. 2 PC card edge connectors (dual row of 12 contact pairs, .156

X.145)

2. 2 protective covers for above connectors

3. 3 feet of cable (5 multi-stranded, multi-colored wires; 22 or 24

gauge will do)

4. a soldering iron (and enough skill to pick it up by the correct

end)

5. solder and soldering flux

6. wire strippers

(Total cost of 1-3 is less than $10)

We are going to connect these two C-64s with only three feet of

wire. Without going into a lengthy discussion of telecommunica

tions and the errors that can arise during data transmission, let

me point out that we should be able to obtain accurate data

transmission and a very high transmission rate (Baud rate) with

only 3 feet of cable connecting these two computers. We're not

asking for very much, just a system that behaves as if the two

computers are separated by only a few feet. Also, it would be

desirable to be able to create communication software that is

efficient in terms of both time and space, i.e. fast execution and

requiring little memory. If the software doesn't interfere with

other open channels (printer or disk), that would be an added

bonus.

A number of sources have suggested using the mock RS-232

system that is already set up in the operating system. I went this

route initially and found that none of the requirements just listed

was met. The RS-232 channel is limited to an error-plagued

1200 Baud which may be adequate for transmission of text to

and from a BBS but not nearly so for the transfer of a ML

program where one bit out of place could crash the system.

Furthermore, Device #2 must be opened, which results in longer

programming code and interferes with my commercial assem

bler (MAE).

The Programmer's Reference Guide (page 432) gives a terse

description of something called the "serial port" (not to be

confused with the serial port that accesses the 1541 disk drive).

It describes a hardware-implemented shift register that can be

utilized by initializing two memory locations and TIMER A.

Next, drop your data byte into the serial data register and the

hardware will shift its bits one by one out on the SP pin -

preceded (slightly) by a synchronizing signal (generated by

TIMER A) on the CNT pin. When all the bits are gone, a

particular bit in a control register is set to 1 (and if you so desire,

an interrupt is generated) indicating another data byte can be

sent. On the receiving end, just initialize those same two

memory locations (ignore TIMER A) and keep checking (poll)

the control register until that same particular bit is set to 1. Now

go over to the serial data register and lift out the newly arrived

data byte. It is that easy. If it wasn't for the fact that the shift

register is wired to handle eight bits, Commodore might have

incorporated it in the ROM routines that manage Device #2.

Let's look at some more details. There isn't just one serial port;

there is one serial port on each 6526 chip and there are two

6526's on each C-64. I'm going to call the 6526's by their popular

names: Ul and U2. (Also, I'm going to employ jargon used in

technical writing about programming; when I say a bit is "set"

that means it is set to 1; when I say a bit is "clear" that, of course,

means it is set to 0.) Ul's registers are in memory locations

$DC00 to $DC0F and U2's are in locations $DD00 to $DD0F.

The only locations we will be concerned about will be:

* $DC0C and $DD0C (the serial data ports)

* $DC0D and $DD0D (the interrupt control registers)

* $DC0E and $DD0E (TIMER A control registers)

*$DD04-5(TIMERAonU2)

TIMER A on Ul is used by the system to generate interrupts

(IRQ) every 1/60 second so housekeeping chores can be per

formed - reading the keyboard and that sort of thing. Not to

worry, we need TIMER A only for output so we'll restrict

ourselves to U2 for output and use Ul for input on each

computer. (U2 to U2 would work also.) The accompanying

diagram depicts the I/O scheme as well as the wiring arrange

ment. As shown, a dual simplex system is set up. It's sort of like a

The Transactor 31 March 1988: Volume 8, Issue O5

telephone hand-set where data goes out through the mouthpiece

and comes in through speaker end. If error checking is desired,

simply send and have the other C-64 return the data for

verification.

Two C64s interfaced via their Serial Data Ports

All wires soldered to top side pins

The method we are going to implement is a polling one as

opposed to an interrupt. (The RS-232 uses an interrupt method.)

To output data we use U2:

Step 1. $DD0D: clear bit 7 and set bits 0 to 6; this will disable all

interrupts on this chip.

Step 2. $DD04: give this low byte of TIMER A a very small

value- like 4 (we do want a very high Baud rate).

According to The Programmer's reference guide (PRG):

"Data is shifted out on the SP pin at 1/2 the underflow

rate of TIMER A." (If transmission errors occur, try

increasing this value.) Then $DD05 gets a 0. I believe

this low byte/high byte order is important.

Step 3. $DD0E: set bit 0 to start TIMER A; clear bit 3 to put

TIMER A in the continuous mode; set bit 6 to select the

output mode; clear all of the other bits.

Step 4. $DD0C: store your data to be transmitted here.

Step 5. $DD0D: read this location until bit 3 is set; this indicates

the data has been transmitted; if you want, go to step 4

and do it again - steps 1-3 don't have to be repeated.

To input data on the other computer we use Ul:

Step 1. $DC0D: see step 1 above.

Step 2. $DC0E: clear bit 6 without disturbing the other bits; this

will select the input mode.

Step 3. $DC0D: read this location until bit 3 is set; this indicates

that data has been received from the transmitting

computer.

Step 4. $DD0C: read the data here.

Step 5. Process the data and go back to step 3 - steps 1 and 2

don't have to be repeated.

Step 6. When finished, re-enable the system IRQ by setting bits

0 and 7 in $DC0D.

Now, some comments on the programs:

Listing 1 and 2 are for users of the MAE assembler, the MAE

receiver program is a mere 64 bytes in length and is tucked away

in the top of page two. To run the program from a monitor enter:

.G 02AA

If you should want to run it from BASIC just change location

$02D7 from $00 (BRK) to $60 (RTS):

POKE 727,96: SYS 682

The cursor will vanish and the keyboard will not function -

except for the STOP key, which is used to terminate the program

after MAE has finished assembling your ML program. You may

now run your assembled program.

The MAE transmitter program has two functions. The first

modifies the code of MAE itself so it will send the ML program to

the other C-64 instead of storing it in memory. It does this by

swapping the three bytes starting at $5FEB with the three bytes

at $8514; the code at $5FEB then becomes "JSR $8517". The

second routine is the actual transmitter; it sends the address of

the byte about to be stored in the standard low/high byte order

and then it sends the byte to be stored at that address."

The procedure to cross-assemble is this:

The Transactor 32 March 1988: Volume 8, Issue O5

Step 1. In the receiving C-64 load and run your monitor pro

gram.

Step 2. load and run the MAE receiver program.

Step 3. In the transmitting C-64 load MAE and the MAE trans

mitter. Run the MAE.

Step 4. From within the assembler (MAE), enter "RUN $8500".

This will swap the code as described above, thereby

diverting the assembled code to the other machine.

Step 5. Assemble your program.

Step 6. After the assembly process is finished enter "RUN

$8500" a second time. This restores MAE to its original

state.

I have tested this software on several of my own programs with

no problems and no appreciable increase in assembly time. I

assembled a large program that was in six modules on disk; it

ran in the other C-64 perfectly.

For further assistance in fathoming the workings of the serial

port, I refer you to the pages of the PRG (432-434 and the fold-

out schematic inside the back cover) and COMPUTED Mapping

The Commodore 64 (172-197).

One final note about the edge connectors: the wires to pins 4-7

are to be on top - label the connector to indicate that. I don't

know what the results would be if the connectors were inserted

into the user's port upside-down. Also, insert the connectors into

the computers only with the power off.

Notes For PAL Users

For users of PAL or compatible assemblers, Listings 3 and 4

are provided. With the program in listing 3, you can send

code directly from memory to the target computer. You lose

the capability, as in the MAE version, of assembling very

large programs that would overwrite your assembler or other

memory-resident utilities, but for large programs you can

send small portions of code at a time. You still have the

advantage of not having to worry about losing your develop

ment environment when the code you're testing crashes. To

use it, assemble your PAL program to memory as usual, then

send it to the target machine with the command:

SYS 40850,<start address>,<end address>

The start and end addresses are in decimal, and tell the send

routine which bytes to send. For example:

SYS 40850,49152,50200

The "receive" program in listing 4 operates exactly like the

MAE program in listing 2, except that it is stored in the

cassette buffer at 828 so that it doesn't conflict with other

programs that use that area, like POWER. Use it from BASIC

with a SYS 828. Press the STOP key to exit to BASIC after all

code has been sent, then SYS to your program to test it.

Listing 1: This program, in MAE assembler format, will patch the

MAE assembler so that when assembling it sends object code

directly to the target computer through the serial cable.

0020 ; copyright 1986 jack bedard

0030.

0040; output assembled code to serial data port
0050.

0060 ; there are 2 separate routines here:

0070 ; the 1 st (code.swap) modifies mae to transmit assembled code

0080 ; to a 2nd c-64 via s.r. port.

0090 ; it is activated with this command from mae 'ru $8500*

0100.

0110 ; the 2nd sends the address to store (low/high)

0120 ; in the other c64 and the byte to store there.

0130.

0140 mae.table .de $51 ;store address is in this table

0150mod.adr .de$5feb ;my patch goes here

0160 u2.tima.lo .de $ddO4

0170 u2.tima.hi .de $ddO5

0180u2.out .de$dd0c ;serial data port

0190 u2.icr .de $ddOd ;interrupt control register

0200 u2.cra .de $dd0e ;timer a control register

0210 output .de %01000000 ;bit 6 in $dd0e

0220 shifUeg .de %00001000 ;bit 3 in $ddOd

0230 disabl.all .de %01111111 ;0 in 7 causes the 1 's to disable those bits

0240 timer.a .de %00000001 ;bit 0 in SddOe

0250.

0260 baud .de $04 ;the baud rate prescaler
0270.

0280 .os

0290 .ba$8500

0300 .ce

0310.

0320 code.swap ;patch 'jsr sendtodsp' into mae
0330 Idx #2

0340 mod.loop

0350 Ida mod.adr.x

0360 pha

0370 Ida mae.code.mod.x

0380 sta mod.adr.x

0390 pla

0400 sta mae.code.mod.x

0410 dex

0420 bpl mod.loop

0430 rts

0440.

0450 mae.code.mod ;patch to our output routine

0460 jsr send.to.sdp

0470.

0480 send.to.sdp ;send byte from stack (under return addr)

0490 sty save.y ;to other 64.

0500 stx save.x

0510 pla

0520 sta ret.adr ;save return address from stack

0530 pla

0540 sta ret.adr + 1

0550.

0560 Ida mae.table.x ;find address for byte to be sent

0570 sta data.out + 2

0580 Ida mae.table + 1.x

0590 sta data.out + 1

0600 pla

0610 sta data.out ;byte to send (after address)

0620.

0630 Ida #disabl.all ;set up interrupt control reg

0640 sta u2.icr

0650.

0660 Ida #baud ;set up timer

0670 sta u2.tima.lo

0680 Ida #0

0690 sta u2.tima.hi

0700.

0710 Ida #output + timer.a ;set up timer control register

0720 sta u2.cra

0730.

0740 Idx #2 ;send the three bytes starting at dataout

0750 sei ;no interrupts, please

0760 out.data

0770 Ida data.out,x

0780 sta u2.out ;put the byte on the output port

0790.

0800 still.sending

0810 Ida u2.icr ;wait until it has been sent

0820 and#shift.reg

0830 beqstill.sending

The Transactor 33 March 1988: Volume 8, Issue O5

0840

0850

0860

0870.

0880

0890

0900

0910

0920

0930

0940

0950.

dex

bpl out. data

cli

Ida ret.adr+1

pha

Ida ret.adr

pha

Idx save.x

Idy save.y

rts

0960 save.x .ds 1

0970 save.y .ds 1

0980 ret.adr .ds 2

0990 data.out .ds 3

1000.

1010 .en

;send the next one

;all sent

;put return address back on the stack

Listing 2: MAE-format "receive" program. This program runs on

the target computer and loads all code sent by the source machine.

Just SYS 682, send the code from the source machine, and press the

STOP key after the data has been sent.

0010 ; copyright 1986 jack bedard

0020.

0030 ; receive assembled code via

0040 ; the serial data port.

0050.

0060 ; receives address to store

0070 ; (low/high) and the byte

0080 ; to store there.

0090.

.de $fd

.de $dc0c

.de$dc0d

.de $dc0e

0100 ptr

0110 u1.input

0120u1.icr

0130 u1.era

0140update.91.de$f6bc

0150 stop .de$91

0160.

0170 output

0180shift.reg

0190 disabl.all

0200 enable

0210 timer,a

0220.

.ce

.ba$02aa

.OS

.de%01000000

.de o/oOOOO1OOO

.de%01111111

.de%10000000

.de %00000001

0230

0240

0250

0260

0270

0280

0290

0300

0310

0320

0330

0340

0350

0360.

0370 main.loop

0380 jsr get.sdp

sta ptr

jsr get.sdp

sta ptr +1

jsr get.sdp

tsx

stx save.sp

Ida #disabl.all

sta ui.icr

Ida ui.cra

and #$ff-output

sta ui.cra

0390

0400

0410

0420

0430

0440

0450

0460

Idy #0

sta (ptr),y

beqmain.loop

0470 exit

0480 Ida #enable + timer.a

sta ui.icr

Idx save.sp

txs

brk

0490

0500

0510

0520

0530

0540 get.sdp

0550 jsr update.91

Ida stop

bpl exit

0560

0570

0580

0590

0600

0610

Ida ui.icr

and#shift.reg

beqget.sdp

; disable interrupts

; clear bit 6 of era. .. serial port input at

; external clock rate

; get address of data byte

; get data byte

; store data byte

; re-enable interrupts, restore stack, quit

;check stop key

;wait for input char

0620 Ida u1.input ;get input char

0630 rts

0640.

0650 save.sp .ds 1

0660.

0670 .en

Listing 3: PAL-format source code for program to send an area of

memory from the source machine. This program is placed at the top

of memory; to use it, SYS 40850,<start address>,<end address>.

Use this to send the object code of a program to the target machine

after you assemble it.

IA

HJ

GJ

EO

NH

LB

AJ

JE

Dl

EK

MO

HI

FH

MC

AO

GM

JO

NB

JP

CB

LH

CH

FO

KC

Kl

LG

HH

HI

FP

GH

CL

KN

EJ

MH

IK

CL

MJ

NC

CJ

DC

IK

HF

KN

MA

HE

FP

FB

JE

OC

DM

MO

Fl

HA

PO

CP

OP

EP

AB

IB

MK

GL

PD

HJ

NH

PI

NO

BC

GH

DD

AB

PG

ML

$ddO4

$ddO5

$dd0c

SddOd

$dd0e

;ser data port

;interrupt Ctrl

;timer a Ctrl

o/oO1000000 ;$dd0e bit 6

%00001000;$dd0dbit3

%01111111 ;clr ints

%00000001 ;$dd0e bit 0

$fb

$fd

$04

;ptr to byte to send

;last byte to send

;baud rate prescaler

1000 openi ,8,1 ,"0:sendeode.obj"

1010 sys 700 ;activate pal assembler

1020 ♦ = $9f92 ;top of memory (40850)

1030 .opt o1 ;output object file

1031 ;

1040 ; output code to serial data port

1050;

1060 ;this routine can be used to send

1070 ;your code to the target computer

1080 ;after it has been assembled.

1090 ;call it from your assembler

1100 ;environment and pass it the start

1110 ;and end addresses of the object

1120 ;code, e.g. sys 40850,49152,50261

1130;

1140 ;the routine 'sendtosdp' sends the

1150 ;address to store (low/high)

1160 ;in the other c64 and the byte to

1170;storethere.

1180;

1190u2timalo =

1200u2timahi =

1210u2out

1220u2icr

1230u2cra

1240 output

1250shiftreg =

1260disablall =

1270 timera =

1280;

1290codeptr =

1300endcode =

1310;

1320 baud

1330;

1340;

1360sendcode =

1370

1380

1390

1400

1410

1420

1430;

1440 sd

1450

1460

1470

1480 '

1490

1500

1510 sc2

1520

1530

1540

1550

1560

1570

1580

1590;

1600;

1610 sendtosdp = *

1620 ;send 'codeptr' pointer user port,

1630 ;followed by byte in .a

1640 sta dataout

1650 Ida codeptr

1660 sta dataout+ 2

1670 Ida codeptr+1

1680 sta dataout+1
1690;

1700 Ida #disablall

1710 sta u2icr ;clear all interrupts

jsr getparam ;start addr in y,a

sta codeptr +1

sty codeptr

jsr getparam

endcode +1

endcode

sta

sty

;get end address

= * ;send all bytes

Idy #0

Ida (codeptr).y ;get next byte

jsr sendtosdp

inc codeptr

bne sc2

inc codeptr+1

;send it to port

; point to next byte

Ida codeptr

emp endcode

bne sd

Ida codeptr+1

emp endcode+1

bne sd

rts

;end when codeptr = endcode

;byte ofcode to send

;addr of byte to send

The Transactor 34 March 1988: Volume 8, Issue O5

oc

HO

KD

BM

KC

AG

PL

LP

JL

II

HG

PD

NM

CK

IP

HP

niwi

KH

OM

NM

BC

BA

NN

DE

HA

IC

IK

MD

KF

DF

AF

HF

CL

OH

HH

AK

BK

HJ

Kl

1720;

1730 Ida

1740 sta

1750 Ida

1760 sta

1770;

1780 Ida

#baud ;set up timer

u2timalo

#0

u2timahi

#output+timera

1790 ;set up timer control register

1800 sta

1810;

1820 Idx

u2cra

#2

1830 ;send 3 bytes starting at dataout

1840 sei

1850outdata =

1860 Ida

1870 sta
noon .
1 OOU ,

1890 Ida

1900 stillsdg

;no interrupts, please

*

dataout,x

u2out ;put byte on the port

#shiftreg

*

1910 ;wait until it has been sent

1920 bit

1930 beq

1940 dex

1950 bpl

1960 cli

1970;

1980 rts

1990;

2020;

2030getparam =

u2icr

stillsdg

;send the next one

outdata

;all 3 bytes sent

*

2040 ;skip comma, get argument and put

2050 ;in y (low) and a (high)

2060 jsr

2070 jsr

2080 jmp

2090;

2091 ;

3000 dataout * = *

$aefd

$ad8a

$b7f7

+ 3

.3010 ;buffer for addr and byte to send

Listing 4: "Receive" code in PAL format, identical to the MAE

program in Listing 2. This code is located in the cassette buffer

starting at 828.

PD

DM

KA

DH

Gl

Cl

FN

EK

JH

OB

1000 open1,8,V0:rcv.obj

1010sys700

1020 .opt 01

1030 ; copyright 1986 jack bedard

1040;

1050 ; receive assembled code via

1060 ; the serial data port.

1070;

1080 ; receives address to store

1090 ; (low/high) and the byte

LG

MM

AC

DE

MM

PK

KG

DP

CB

JD

MP

HH

EJ

PN

OE

DH

CG

DG

GA

CL

Al

PN

KD

OJ

MG

HD

AN

ID

AN

MK

KD

MA

1100; to store there.

1110;

1120 ptr

1130 u1 input

1140u1icr

1160update91

1170 stop

1180;

1190 output

1200shiftreg

1210disablall

1220 enable

1230timera

1240;

1250* =828

1260;

1261 ;

1270

1280

1290;

1300

1310

1320;

1330

1340

=

=

=

=

=

=

$fd

$dc0c

$dc0d

$f6bc

$91

%01000000

0/000001000

%01111111

%10000000

0/000000001

;goes in cassette buffer

tsx

stx

Ida

sta

Ida

and

savesp

#disablall

ulicr

ulcra

#$ff-output

1350 ; serial port input at

1360

1?S§u1cra
1380mainloop

1390

1400

sta

_

=

jsr

sta

ulcra

$dc0e
*

getsdp

Ptr

;save stack ptr for

;clean exit later

;disable interrupts

;clear bit 6 of era

;external clock rate

;get data byte addr

KK

JP

MJ

GB

FP

KC

MK

OD

PD

EE

AN

PN

JP

AJ

CP

KA

EA

IJ

JJ

PC

CO

Al

CE

IB

EN

JJ

KP

JA

PD

MH

AB

CP

1410

1420

1430

1440;

1450

1460

1470

1480;

1481 ;

1490 exit

jsr

sta

jsr

Idy

sta

beq

=

getsdp

ptr+1

getsdp

#0

(Ptr),y
mainloop

♦

1500 ; re-enable interrupts,

1510; restore stack and quit

1520

1530

1540

1550

1560

1570;

1571 ;

1580 getsdp

Ida

sta

Idx

txs

rts

=

;get data byte

; store data byte

;loop forever

#enable + timera

ulicr

savesp

*

1590 ; get byte from serial data port

1600

1610

1620

1630;

1640

1650

1660

1670

1680

1690;

1700 savesp

jsr

Ida

bpl

Ida

and

beq

Ida

rts

* = *

update91

stop

exit

ulicr

#shiftreg

getsdp

u1 input

+ 1

;check stop key

;wait for input byte

; no byte; loop again

;read the byte

Listing 5: BASIC program to generate "sendcode.obj", the same

code produced by assembling the PAL source in Listing 3. Load this

program and SYS to it as explained in the article sidebar.

OL

EO

LA

100 rem program generator for "sendcode.obj"

110 n$ = "sendcode.obj": rem name of program

120 nd = 103: sa = 40850: ch = 16244

For lines 130-260, use the standard generatorprogram from page 5

AE

PB

PE

00

DE

FG

GG

FF

IF

CF

MF

GJ

Nl

1000 data 32,

1010 data 240,

1020 data 177,

1030 data 2,

1040 data 237,

1050 data 141,

1060 data 165,

1070 data 13,

1080 data 0,

1090 data 221,

1100 data 12,

1110 data 251,

1120 data 174,

240,159,

159,133,

251, 32,

230, 252,

165,252,

249,159,

252,141,

221,169,

141, 5,

162, 2,

221,169,

202, 16,

32, 138,

133,252,

254,132,

186,159,

165,251,

197,254,

165,251,

250,159,

4,141,

221,169,

120,189,

8, 44,

240, 88,

173, 76,

132,251, 32

253,160, 0

230, 251,208

197,253,208

208,231, 96

141,251,159

169,127,141

4,221,169

65,141, 14

249,159,141

13,221,240

96, 32,253

247,183,

Listing 6: This program creates "rcv.obj", the same code generated

by assembling Listing 4 with PAL.

ND

KD

GK

100 rem program generator for "rcv.obj11

110 n$ = "rcv.obj": rem name of program

120 nd = 64: sa = 828: ch = 8062

For lines 130-260, use the standard generator program from page 5

BG

DF

MP

EG

NA

CE

KH

EB

1000 data 186,142, 124, 3,169,127,141, 13

1010 data 220,173, 14,220, 41,191,141, 14

1020 data 220, 32,106, 3,133,253, 32,106

1030 data 3,133, 254, 32,106, 3,160, 0

1040 data 145, 253, 240, 237,169,129,141, 13

1050 data 220,174,124, 3,154, 96, 32,188

1060 data 246, 165,145, 16,239,173, 13,220

1070 data 41, 8,240,242,173, 12,220, 96

The Transactor 35 March 1988: Volume 8, Issue O5

The Link

Between C and Assembly

David Godshall

Elkhart, Indiana

.. .How would you like to be able to access a machine language

routine the same way you would access a C function?

If you own "Power C" from Spinnaker, you own an excellent and

powerful implementation of the C language. If you don't, but have

been thinking about buying a copy, the possibilities opened by this

article may be enough to push you over the edge. Even if you don't

own and don't plan to buy Power C, the techniques mentioned in

this article may apply to other compilers that compile in two

separate stages (from source into object, then from object into

executable) or even for other types of programs.

The Problem...

I was writing some graphics routines to be used from C programs. I

decided that, while Power C is probably the fastest compiler for the

C-64 ("A Comparison of Language Speeds", Volume 7, Issue 5),

nothing can beat hand-coding a piece of code for speed. I promptly

set about coding assembly language routines to clear the bitmap,

plot points, and all the other nice things you like to do to graphics

screens quickly. In looking for a good way to use these routines from

my C programs, I came across the SYS function. I tried it. I gave up

on it. The main trouble with the SYS function is that it is little better

than the BASIC SYS command. It assumes the code is already in

memory (if it isn't, a special disk access is needed to put it there). It

does not provide very descriptive access to the routines. The one

thing it has over BASIC'S SYS command is that it can handle

parameters - three bytes' worth. Some of the functions I wanted to

access, however, required more than 24 bits' worth of information.

So, giving up on the SYS function, I looked around and about and

inside out for a better way. And I found it! My search led me to the

internals of the object files - those mysterious files that are the limbo

between pure source code and pure executable machine language. I

didn't have a lot of hope. I've looked in real spaghetti files before

and was afraid the object files would turn out-to be too complicated

for me to figure out without the aid of extensive documentation and

weeks of personal interviews with Power C author Brian Hilchie. My

fears were groundless.

Starting My Quest

To begin with, I already sort of knew what the linker does. It takes

an object file, moves it to a specific address in memory, and then

checks to see what the file needs to be linked with. It then gets those

files, puts them at unique addresses, and checks what files they

need. Finally, when all the files are linked in with everything they

need and the linker can't find anything else to add, it writes the

executable file containing all the object files all linked up nicely. But

what is in an object file? How does it let the linker know what it

wants and what it has to offer?

My first clue to the general format of the object files came from the

mysterious and totally undocumented (in my manual, at least) LIB.C

file. This is a nice utility that puts a list of all the global identifiers

from multiple object files into one file so that the linker can find their

functions and variables very easily. The first four files on the library

side of the disk (STDLIB.L, STDLIB2.L, SYSLIB.L and SYSLIB2.L)

can be examined and modified with this utility.

By looking at how LIB.C scans object files, I was able to determine

that object files are divided into four sections. I call them the Code

section, the Relocate section, the Global section, and the External

section. Each section begins with a word (two bytes in low/high

order) indicating how long the section is in bytes (for the Code

section) or entries (for the other sections). The general format is

summarized in Table 1.

Section 1: The Code Section

The first section looks familiar when viewed through a machine

language monitor. It is straight machine language. Well, almost

straight. There are a few differences that will be straightened out by

the linker.

To begin with, there is some information that isn't known at the

time the code is created. Any instruction referencing external

functions or variables is going to have to have its operand filled in by

the linker, so it doesn't matter what value is in the operand.

Secondly, one of the jobs of the linker is to decide where in memory

to place the code. In order to enable the linker to do that easily, the

code is generated by the compiler as if it were assembled to location

$0000. In other words, if somewhere in the code you had a JMP

instruction to transfer execution to the first instruction in the code

section, it would be a JMP $0000 instruction. The linker can then

relocate the code by calculating a new base address and adding it to

the offsets contained in the operands of any instructions referencing

a part of the code. But how does the linker know which instructions

need to be adjusted for the new address and which are already

pointing at the correct location (i.e. a ROM routine, a zero page

location, etc.)? This is where the second section comes in:

Section 2: The Relocate Section

This section points out to the linker which instructions need to be

adjusted during the address relocation process. If, for example, the

instruction JSR $0073 is flagged by this section and the linker

decided to relocate the code to base address $1153, then the

instruction will be changed to JSR $11 c6. If the JSR were not

flagged by this section, if would remain JSR $0073.

The Transactor March 1988: Volume 8, Issue O5

This section consists of a list of addresses (as offsets from $0000) of

instructions that need their operands relocated. The length word

indicates how many addresses (of two bytes each) are in this

section.

Section 3: The Global Section

This section tells the linker what the module has to offer to other

modules. Any functions or variables that may be used by external

routines are flagged in this section.

The length word indicates how many entries are in this section.

Each entry will contain a name or identifier, a byte flag, and an

address.

The name will be the one or more characters by which this variable

or routine can be accessed. Remember that C is case sensitive and

that identifiers coming out of the C compiler will be truncated to 8

characters. Terminate the name with a NULL (chr$(0)).

The byte flag tells the linker whether the entry is referring to a

location in the code section or an absolute location. If the byte is a

one, then the linker will know that it is referencing the code section

and will adjust the address when the code section is relocated. A

zero tells the linker that the address does not need to be relocated (it

may be pointing to a ROM routine or some other stable location).

Section 4: The External Section

This section is sort of the opposite of the global section. It tells the

linker what external routines and variables are needed by this

module. It contains entries similar to those in the global section.

Each entry consists of the name of the routine or variable to link in,

a word specifying how to link it in (offset), and the address of the

instruction accessing the external entity.

The word following the name allows several possibilities for linking

in the address of the external entity. First of all, it allows you to link

in the address of the entity, the address plus one, the address plus

two, etc. You can add up to 8191 bytes to the address. Secondly, you

can decide to either link in the whole address (for absolute instruc

tions such as LDA xxxx) or just the high or low byte of the address

(for immediate instructions such as LDA #<xxxx or LDA #>xxxx).

The way to specify these options is to take the number of bytes you

want to add to the base address and multiply by four (to shift it into

the upper 14 bits). Then you add 0, 1, or 2 depending on whether

you want the whole address, the high byte, or the low byte

respectively. The resulting value would go in this offset word.

Finishing up

To finish up the object file, just terminate it with two NULLs. Now

you can give it the linker test! Beware, because the linker was

created to link together modules created by the C compiler. Since

the linker knows what type of object files the compiler is capable of

creating, it isn't very error tolerant and will lock up on just about any

irregularity. If you say there are five global entries, make sure you

include exactly five. Make sure you terminate all identifiers with

NULLs and the file with two NULLs. Et cetera.

Special Routines

There are several special external routines you may need to use

when writing code to be linked in to work under the C environment.

First is the c$start routine. This routine is included in every C

program and is responsible for setting up the C environment. It does

some setup work, calls the main() function, then does some clean

up work before returning control to the shell or BASIC. Thus,

c$start must be the first thing to be called. The first instruction of

the first file to be linked in must call this routine. But how do you

know which of several files will be linked in first? To solve this, the C

compiler puts a JMP c$start instruction as the first instruction in

every module it generates. If there is a chance that your module

might be linked in first, you would also want to put in a jump to the

c$start external routine as the first instruction in your module.

Another important routine you will want to use is the c$funct_init

routine. This is a routine that would be called first thing in any

function you create. Normally, C functions call the routines C$105

on entry and C$106 just before returning instead of c$funct_init.

C$105 copies the local variables (locations $2b-4a) and parameters

(cassette buffer $033c-$03fb) out of the way so the space can be

used for new variables and parameters; c$ 106 copies them in again

upon completion of the function. These require a lot of overhead, so

the c$funct_init routine comes in handy for small routines that

will not need to use the local variable area (they can use the

temporary locations $22-$2a and $4b-$60) and that will not call

other routines that will use the variable area or the parameter area.

Unfortunately, to explain C$105 and C$106 in more detail would

take us out of the scope of this article and into memory manage

ment.

Parameter Passing

One of the advantages of linking machine language routines

through the object file as opposed to the SYS function is the ability to

pass dozens of parameters. On the originating end, the values of the

variables you are passing (or their addresses, if you are passing

pointers) are stored in memory starting at $033c and in the same

order as they were declared in the function descriptor. The accumu

lator is then set to reflect the number of bytes used up by the

parameters, and the new function is called; it can then access the

parameters directly from this memory. As an example, the function

FRED (Age, Name, Weight, Height); where Age is a character

type, Name is a pointer to an array of characters, Weight is a

floating point number, and Height is an integer; would store:

$033c

$033d

$033e

$033f

$0340

$0341

$0342

$0343

$0344

$0345

- Age (one byte)

- Name (low byte of pointer)

- Name (high byte of pointer)

- Weight \

- Weight

- Weight (FP representation)

- Weight

- Weight /

- Height (low byte)

- Height (high byte)

The accumulator would be set to 10. The called routine would

naturally have to know what order the parameters are in and what

type of variable each parameter is. If the called function needs to

return a value, it should put it back into the cassette buffer at

The Transactor 37 March 1988: Volume 8, Issue O5

location $033c. Since the value is not written until just before

returning, you don't have to worry about overwriting what is

already there.

An Example Is Worth Two Thousand Bytes

In order to clear up any questions you may still have, I will present a

practical example of creating an object file from an assembly

language file. While I used PAL as my assembler, you should be able

figure out how to get your assembler to do some of the unusual

things necessary to create an object file. Unfortunately, the current

version of SYMASS, the PAL-compatible assembler, will not be able

to assemble my example because it requires assembling to disk

(since the code is assembled to location $0000).

Listing 2 is a Doodle program written in C. It requires four external

routines, which it will get from Listing 1, the assembly language

portion. You will have to compile the C portion, assemble the

assembly language portion, and then link them together with the

linker. You will then have an executable program that will let you

draw on the hires screen with the IJKM diamond. The +, -, and /

keys set the drawing mode to on, off, and flip respectively. RUN/

STOP restores the normal text screen and exits the program. The

program doesn't do any boundary checking - so don't try to draw

off the screen or you may destroy something vital!

Listing 1 provides four functions: Clear, Plot, FastKeys, and

SlowKeys. Clear fills any block of memory of any size with any

byte. Plot allows you to manipulate any pixel on the graphic screen.

FastKeys sets up an interrupt routine to speed up the keyboard

repeat, and SlowKeys turns it off again.

Line 5 in listing 1 opens the object file to which it will write the

object file. I am following a convention (which I suspect the author

of Power C followed) of suffixing object files created from C source

with a .O and'object files created from Assembly source with .OBJ.

Lines 10 and 20 "fix" PAL so it writes the object file correctly for our

purposes. Normally a machine language file begins with the object

code origin address so that the kernal LOAD routine knows where

to place the routine when you load it. The linker does not require

that address and, in fact, gets confused by it. The pokes in line 20

replace the two JMP $FFD2 instructions that write the address to the

file with do-nothing BIT $FFD2 instructions. If you have another

assembler you will have to find a way to get around this problem.

You may have to write a little program to strip the first two bytes off

the object file after creating it.

Line 30 invokes PAL, and line 40 tells it to assemble to the file

opened in line 10. In line 501 tell the assembler to start assembling

to location $0000 (minus two for the length word). I then define the

filler label xxxxxx in line 60. I use this label in references to

external entities since the assembler requires something. The linker

will fill in the correct address. Line 120 sets up the jump to the setup

routine in case this object file is the first one to l?e linked in.

Lines 100, 7010, 8020, and 9020 set up the length word for each of

the sections. In line 100 it is just a matter of putting the end of the

code section since the code starts at $0000. The length in line 7010

is calculated by taking the number of bytes defined in the relocate

section, dividing by two (since the length is expressed in words

instead of bytes), and subtracting one (to skip the length word).

Calculating the length in the global and external sections is a little

different. Here I use a label as if it were a variable, adding one for

each entry, using PAL's left-arrow temporary assignment operator.

Since calculating labels happens in the first pass and the code is

written the second pass, it doesn't matter that the lines that

increment the label (lines 8040, 8090, 8140, etc.) appear after the

line putting the word in the file (line 8020 or 9020).

The Clear routine is in lines 160-390 and the global entry at lines

8090-8120 open this routine to allow access by other functions.

Likewise, Plot in lines 500-1010 is opened by lines 8140-8170 as

are the FastKeys and SlowKeys routines by the entries at lines

8190-8220 and 8240-8270 respectively.

Notice the global entry at lines 8290-8320 and the two external

entries at lines 9280-9360 for the irq%% routine. Sometimes you

may need to access a local routine or variable in a more specialized

way than just by absolute addressing. Lines 1120 and 1140 need to

access the local routine irqkeys by immediate addressing. The

relocate section, however, only relocates absolute addressing in

structions. In order to get it to work I had to treat the irqkeys

routine as an external routine. This shows that local routines can be

treated as external routines if necessary. Also, I chose to add two %

symbols to the name to ensure that it doesn't interfere if you happen

to define another routine named irq somewhere else.

In line 9701 am storing a value back into location $033c. This is to

provide a return value so that the calling routine can check the new

state of the pixel after the Plot routine is called.

In Conclusion...

I would like to thank Brian Hilchie for a powerful compiler that has

raised the productivity value of the Commodore 64 by several

notches. Thanks also for an elegant and straightforward object

format. But why didn't he include this information in the documen

tation - to allow someone to make some money writing articles

about it? I would suggest to Brian that, given the nature of C,

machine language, and his specific implementation, it should not

have been hard for him to include a #ASM and #ENDM set of

compiler directives to allow inline assembly language. This would

have made an attractive compiler virtually irresistible. I would

recommend him adding it to a future update. After all, compared to

writing a compiler, adding a simple assembler should be peanuts.

He may be able to use PAL or SYMASS as a skeleton. If anyone could

give me Brian Hilchie's address, I would like to be able to write to

him myself.

Those of you who want to take these ideas farther might want to

tackle writing an assembler that would assemble source into object

files of the type linkable by the C linker. You would probably need to

add some pseudo ops like .GLOB, .EXTN, and .FUNC.

If you want to discuss specifics for such an assembler, or have any

questions, problems, corrections or criticisms, I would love to hear

from you. I can be reached at the following address:

David Godshall

137 Wagner

Elkhart, IN 46516

Fido-Mail or Net-Mall can be sent to me at node 11/205 - <G>o-

shen <T>owne <C>rier.

The Transactor 38 March 1988: Volume 8, Issue O5

Table 1: Composition of Object Files

Code

Length

6502 Instructions :

Length

Address

Relocate ;

Address

Length

Global Entry
Composition of Global Entries:

Global —*

Exte rnal

Global Entry

Length

Name

Mode

Adc

« 0 -

Jress
1 =

External Entry

External Entry

/-\

0 0

0

Address is absolute

Address is local

Composition of External Entries:

Name

Offset

Address

Listing 1: GRPLOT.PAL

HC

FM

DB

PO

JD

OH

MF

PM

01

CM

AJ

MA

EO

FB

IP

KD

DO

NH

KA

DP

EG

FP

Cl

BA

FD

MA

JM

5 open2,8,2,"@0:grplot.obj,s,wB

10 pal = peek(701) + 256* peek(702)

20 poke pal +1759,44:poke pal +1764,44

30 sys 700

40 .opt o2

50* =-2

60 xxxxxx = 0

89;

97 ;

98; code section

99;

100 .wordcreloc

110;

120cstart jmp xxxxxx

130;

131 ; "function:

132 ;'Clear (Address,Length,Byte)

133 ; "unsigned int Address;

134 ; "unsigned int Length;

135; "char Byte;

136 ;"

137;"global:

138;" unsigned int Address;

139;

140 address .word$e000

150;

160 clear =*

NN

D,l

CB

Cl

MK

JB

DK

JO

DH

JE

GF

DJ

CN

NF

KM

CJ

LH

FJ

JL

FE

IF

ML

JL

LM

FA

NF

AM

EL

BN

165extn2

170

180rloc1

190

200

210rloc2

220

230

240

250

260

270 floopi

280

290

300

310

320

330

340floop2

350

360

370

380

390 fexit

399;

400 grrows

410

420

430

The Transactor 39

0

Leftmost 14 bits 00- Absolute

is Offset to add 01 - High byte

to External 10- Low byte

Address x 4 11- Low byte

jsr xxxxxx

Ida $033c ;<addr

sta laddress

sta $22

Ida $033d ;>addr

sta laddress+ 1

sta $23

Ida $0340 ;byte

Idy #$00

Idx $033f ;>length

beq floop2

sta ($22),y ;filla

dey ;page

bne floopi

inc $23 ;fill many

dex ;pages

bne floopi

Idy #0

cpy $033e ;<length

beq fexit

sta ($22),y ;fill part

iny ;of a page

bne floop2

rts

.word 0, 320, 640, 960,1280

.word 1600,1920,2240,2560,2880

.word 3200,3520,3840,4160,4480

.word 4800,5120,5440,5760,6080

March 1988: Volume 8, Issue O5

AA

HD

AP

Ml

FL

AG

Al

JL

NE

EG

FG

AH

DD

MJ

CC

MC

IE

FP

LD

AG

Fl

PL

MP

ND

DD

01

GK

PA

IF

RKDr\

DC

JH

KF

KO

PJ

MP

CB

CM

LJ

ID

HP

ME

HO

LN

NL

AJ

GJ

LO

OE

NL

DB

BA

EG

AJ

LJ

LK

Jl

Bl

ML

FP

DB

FD

ON

IL

IN

AA

LL

OA

440

449;

450 orbits

460 and bits

470

490;

491 ; functior

.word 6400,6720,7040,7360,7680

.byte 128,64,32,16,8,4,2,1

.byte 127,191,223,239

.byte 247,251,253,254

V.

492;" char Plot (x,y)

493;" unsigned int x,y;

494;

495;

500 plot

505 extn3

510

520

530

540

550

560 rloc3

570

580 rloc4

590

600 rloc5

610rloc6

620

630

640

660
fi70OrU

680

690

700

710

720

740

750

760

770

780

790

800

810

820

830extn1

840

850

860

870 bitflip

880 rloc7

890 rloc8

900 biton

910rloc9

920rloc10

930 bitoff

940 rlod 1

950 pexit

960 rlod 2

970

980

990

1000

1010

1090;

= *

jsr xxxxxx

Ida $033e

Isr a

Isr a

and #254

tay

Ida grrows.y

clc

adc laddress

sta $22

Ida grrows + 1,y

adc laddress+ 1

sta $23

Ida $033c

;y coord

;get row

;and add

; bitmap

;address

;x coord lo

and #%11111000

auu ■$>£.£.

sta $22
Ho ^fV^rllUd «4>L»OOU

adc $23

sta $23

Ida $033e

*y ponrH hi,A OUUIU 1II

;y coord

and #o/oOOOOO111

tay

Ida $033c ;x coord lo

and #%00000111

sta $24

sei

Ida $01

pha

Ida #$30

sta $01

Ida ($22),y

Idx Ixxxxxx

beq bitoff

cpx #1

beq biton

Idx $24

eor lorbits.x

jmp pexit

Idx $24

ora lorbits.x

jmp pexit

Idx $24

and landbits.x

sta ($22),y

and lorbits.x

sta $033c

pla

sta $01

cli

rts

1091 ; function:

1092;" FastKeys()

1093;

HOOfastkey

The Transactor

;swap all

;rom/ioout

;check

; plot type

;and modify

; pixel

;invert

; pixel on

;pixel off

; replace

;byte and

;return

;bit state.

; restore

;io/roms.

PO

IJ

FC

IK

KD

GB

OH

Jl

GB

FE

KA

FF

PB

PG

EO

EA

MG

HO

IG

LB

HD

BF

HE

GG

CE

KK

OD

AD

Cl
on

PA

ED

CO

EE

AF

DO

BD

DL

GG

FD

II

EK

OC

LD

IE

CL

LG

AO

NG

LJ

PP

MF

EN

JB

FO

IL

KG

GA

LE

EL

KO

Al

ID

NH

KG

MB

DG

KG

4O

1110 sei

1120 extn4 Ida #<irqkeys

1130 sta $0314

1140extn5 Ida #>irqkeys

1150 sta $0315

1160 cli

1170 rts

1299;

1300irqkeys =*

1310 Ida #$01

1320 sta $028b

1330 Ida #$00

1340 sta $028c

1350 jmp $ea31

1390;

1391 function:

1392 ;B SlowKeys()

1393;

1400 slowkey = *

1410 sei

1420 Ida #<$ea31

1430 sta $0314

1440 Ida #>$ea31

1450 sta $0315

1460 cli

1470 rts

1480;

RQQ7 •

6998; relocate section
fiQQQ •

7000 creloc = *

7010 .word (cglobal-creloc)>1 -1

7020;

7030 .word rlod

7040 .word rloc2

7050 .word rloc3 ;the addrs

7060 .wordrloc4 ;of all

7070 .word rloc5 ; instructions

7080 .word rloc6 ;accessing

7090 .wordrloc7 ;local

7100 .wordrloc8 variables.

7110 .wordrloc9

7120 .word rlod 0

7130 .word rlod 1

7140 .word rlod 2

7996;

7QQ7 •

7998; global section

7QQQ •

8000 cglobal = *

8010numglob= 0

8020 .word numglob

8030;

8040 numglob _ numglob +1

8050 .asc "Address":, byt 0

8060 .byt 1

8070 .word address

8080;

8090 numglob _ numglob +1

8100 .asc "Clear":.byt 0

8110 .byt 1

8120 .word clear

8130;

8140 numglob _ numglob +1

8150 .asc "Plot":.byt 0

8160 .byt 1 •

8170 .word plot

8180;

March 1988: Volume 8, Issue O5

PK

ED

OE

JD

MJ

BO

Jl

Al

JJ

OM

DB

FJ

CL

NN

AA

KJ

AAr\r\

HM

CA

DP

KO

BG

ML

BE

BE

JC

Nl

IP

NH

EL

FG

LK

ED

JL

CO

BK

JO

AH

FP

OB

NN

HC

MK

BD

DH

NB

LF

ON

DG

FK

NE

PI

El

DB

8190 numglob _ numglob +1

8200

8210

8220

8230;

.ascBFastKeysB:.byt0

.byt1

.word fastkey

8240 numglob _ numglob +1

8250

8260

8270

8280;

.asc "SlowKeys":.bytO

.byt1

.word slowkey

8290 numglob _ numglob +1

8300

8310

8320

8330;

8996;

8QQ7 •

.ascBirq%%":.byt0

.byt1

.word irqkeys

8998; external section

8999;

9000 cextern = *

9010numext

9020

9030;

9040 numext

9050

9060

9080

9090;

9100 numext

9110

9120

9140

9150;

9160 numext

9170

9180

9200

9210;

9220 numext

9230

9240

9260

9270;

9280 numext

9290

9300

9310

9320;

9330 numext

9340

9350

9360

9998;

9999

= 0

.word numext

_ numext+ 1

.asc"c$start":.bytO

.word 0

.word cstart

_ numext + 1

.ascBPlotType":.byt0

.word 0

.word extnl

_ numext+1

.asc "c$funct[]initB:.byt0

.word 0

.word extn2

_ numext + 1

.asc "c$funct[]init":.bytO

.wordO.

.word extn3

_ numext+1

.ascBirqo/oo/oB:.bytO

.word 2

.word extn4

_ numext+1

.asc'irq%%i:.byt0

.word 1

.word extn5

.word 0 ;done!

Listing 2: DOODLE.C

/*

doodle.c

by David Godshall

♦/

char PlotType;

main ()

{

char * Pointer, Key,

unsigned int Loop,

The Transactor

Storei, Store2, Store3;

X,Y;

highmem (OxCCOO);

Pointer = OxDDOO;

♦Pointer = (Storei = *Pointer)&252;

Pointer = 0xD011; /♦ Turn on Graphics

♦Pointer = (Store2 = ♦Pointer) 132;

romter = uxuuio,

Store3 = * Pointer;

♦Pointer = 0x38;

Pointer = 0x028a;

♦Pointer = 128;

FastKeys();

Clear (OxCCOO, 1000,93);

Clear (OxEOOO, 8000,0);

PlotType = 1;

X = 160;

Y = 100;

Plot(X.Y);

while ((Key = waitkey())! = 3)

i

switch (Key)

{

case 'i'

case 'V

case /m/

case 'W

case 'j'

case'J'

case 'Y!

case'K'

case'-'

case' +'

Plot(X,—Y);

break;

Plot(X,++Y);

break;

Plot(—X;Y);

break;

Plot(++X,Y);

break;

PlotType = 0;

Plot(X.Y);

break;

PlotType = 1;

Plot(X.Y);

break;

case'/' : not lype = z\

Plot(X.Y);

i

}
i

SlowKeysQ;

Pointer = OxDDOO;

♦Pointer = Storei;

Pointer = 0xD011;

♦Pointer = Store2;

Pointer = 0xD018;

♦Pointer = Store3;

s

#defineGETIN 0xFFE4

char a, x, y,

♦numkeys = 198;

/♦ Waits for user to press a key ♦/

intwaitkeyQ

{
while (♦numkeys == 0)

sys'(GETIN, &a, &x, &y);
return a;

}

41

/♦ Turn on key repeat

/♦ Clear colour screen

/♦ Clear bitmap

/♦ Allow user to draw lines

/♦ by using the I, J, K, M

/♦ diamond. -, +, and / set

/♦ clear, set, or flip mode

/♦ respectively. STOP exits

/♦ Restore Text mode

♦/

♦/

*/

♦/

♦/

♦/

*/

♦/

*/

♦/

March 1986: Volume 8, Issue O5

Maintaining the

POWER C Library

Eric Giguere

Waterloo, ON

.. .It would be easier, I thought, ifI could somehow include

my own routines into the standard library...

The Power C compiler for the Commodore 64 is one of the best

software investments I have ever made. Although the Commo

dore 64 is not the best development tool for programming in C,

Brian Hilchie's compiler functions better than I expected any C

compiler to do. As a result, I have been constantly using it over

the past few months, slowly building up a library of routines for

my personal use. Unfortunately, this was a problem in itself: I

really hated having to manually link in my own library routines.

It would be easier, I thought, if I could somehow include my own

routines into the standard library (built-in functions) provided

with the compiler. After a bit of research, I realized how

ridiculously easy this would be, and proceeded to write up a

short library maintenance program.

Library Structure

Included on the system disk that comes with the compiler are

three library files. Each library file is a simple sequential file

consisting of sets of two ASCII strings separated by null charac

ters (ASCII 0). Each set consists of a function name (significant to

eight characters) and the filename of the object file that function

is to be found in. The linker uses these files to link the proper

object modules with your own programs. The three libraries (all

suffixed with a ".ld on the disk) are:

syslib routines for the compiler's own internal use

stdlib the standard library as described in the Power C manual

math math routines

I don't recommend altering the first library in any way, but the

other two are fair game. Since the structure of a library file is so

simple, adding a function to a library is really a matter of

appending two strings to the end of the library file. Program 1,

the Updater, does just that. It adds a function to the specified

library file. If, for example, you wish to add the function "poke",

found in "poke.obj", to the library file "stdlib", you would simply

type in the library name, the function name, and the filename.

The program automatically adds the required M" and ".obj"

suffixes to the library name and the filename and proceeds to

add the function to the library.

Creating a New Library

The Updater program was an easy way for adding functions to a

library file, but I soon realized that it would be useful to make

other changes as well. Many of the files that are included on the

library disk are not used often enough in my programs to

warrant the space they take up on the library disk. I decided that

it would be useful to take the stdlib file and remake it to best suit

my own needs. Program 2, the Library Editor, is another simple

program to do just that.

When creating your own library you have two choices: modify

the existing stdlib file or create your own library file. Creating a

new stdlib file is very simple. First, copy the old stdlib file onto a

fresh diskette. You might also want to copy the linker program

itself onto that diskette. Then load up the Library Editor pro

gram. Use option L to load in the stdlib file. Then use the view

option to examine the file. Choose which functions you wish to

delete and use the D option to delete them (one at a time, by

function name). When done, use the A option to add your own

functions. Then save the file back onto the diskette with the S

option. To complete the new library, quit the editor and copy all

the necessary object files onto the new library diskette. You

might want to add another option to the library editor to print out

a list of all the filenames required just to keep track of things. To

use the new library, just make sure your new library disk is in

the drive when you link in the library by pressing the up-arrow

key. It's as simple as that. (By the way, don't forget to copy the

syslib file and its files over to the new library disk as well.)

Making your own library file is just as simple. First, do the

following:

open I.S.S.'Oimylib.l.s.w"

closei

(Of course, you can use any name you want instead of "mylib" -

just don't omit the T.) This creates an empty library file with the

specified name. Then use the updater program to add the

required information to the file. When you are linking, simply

type the library name (again, don't forget the M" suffix) and the

needed files from that library, if any, will automatically be linked.

Then continue with the linking process as usual.

Final Notes

Keeping your own personal library helps to streamline the

compilation process, and thus saves both time and frustration.

While this article was concerned primarily with the Power C

compiler, the general methods I used can also be applied to

other compilers and machines, although their library schemes
may be a lot different.

The Transactor 42 March 1988: Volume 8. Issue O5

Listing 1: Library Editor

CJ

CD

AP

GE

NH

EN

CB

OA

GN

AK

LF

KO

LJ

KJ

LD

HO

MN

FO

LL

CH

DN

AG

JC

MB

HM

LD

ND

HN

FC

EK

BD

JD

NC

LC

KE

CK

Dl

FH

HB

FJ

GN

CB

CP

DB

IN

OF

10 rem c-power library editor

20 rem

30 rem by eric giguere

40 rem

50 poke 53280,14: poke 53281,1

60 max = 200: dim fc$(max), fl$(max)

70nu$ = chr$(0)

80 open 15,8,15

100 print chr$(14)"[clr][blue]C Library Maintenance

— by Eric Giguere";

110 print

120 print "[down] [black] [A]dd a function"

130 print "[down] [D]elete a function"

140 print "[down] [L]oad a library"

150 print "[down] [S]ave the library"

160 print "[down] [Q]uit"

170 print "[down] [V]iew the library"

180 print "[down] Please select:";: gosub 1000

: print c$: if c$ = "q" then end

190 if c$OV then 350

200 print °[clr][down] Library name:";: gosub 1010

210lib$ = left$(in$, 12) + ".l": n = 0: a$ = "

220 open 2,8,5, "O:" + lib$ + ",s,r"

230 gosub 1500: if e then 1550

240 print "[down] loading ";lib$;".

250 get#2,b$: if b$<>" and st=0 then a$ = a$ + b$

KC

JP

FC

GO

FF

JN

PD

BA

HH

IF

DO

AE

IN

LF

FJ

KC

IK

PG

HO

GF

LE

CG

CA

PB

JG

JO

: goto 250

260 if st<>0 then 300

270n=n + 1:fc$(n) = a$: a$=""

550 if c$<>"a" then 650

560 if n = 0 then 100

570 print "[clr][down] Add afunction"

580 print "[down] Function name:";: gosub 1010

590 n = n +1: fc$(n) = left$(in$, 8)

600 print "[down] Filename:";: gosub 1010

610 fl$(n) = left$(in$, 12) + ".obj"

620 goto 100

650ifc$O"d"then100

655 if n = 0 then 100

660 print "[clr][down] Delete afunction"

670 print "[down] Function name:";: gosub 1010

680 fc$ = left$(in$, 8): j=0

690 for i = 1 to n: if fc$=fc$(i) then j = i: i = n +1

700 next: if j = 0 then 100

710 if j = n then n = n-1: goto 100

720 for i=j +1 to n: fc$(i-1)=fc$(i): fl$(i-1)=fl$(i)

: next: n = n-1

730 goto 100

999 end

1000 poke 198,0: poke 204, 0: wait 197,64,64

: get c$: poke 204,1: return

1010 open 1,0: input#1, in$: closei: print: return

1500 input#15,e,e$: if e<20 then e = 0

1510 return

1550 print "[clr][down] Disk error — #";e

1560 print "[17 spcs]";e$.

1570 close 2: close 15: end

280 get#2,b$: if b$<>"" and st = 0 then a$ = a$ + b$ Listing 2: Updater

: goto 280

290 fl$(n) = a$: a$ ="": if st = 0 then 250

300 close 2: goto 100

350 if c$O"s" then 450

360 if n = 0 then 100

370 print °[clr][down] Are you sure? (y/n)";

: gosub 1000: if c$O"y" then 100

380 print c$: print "[down] Saving ";lib$;\ . ."

390print#15,"s0:" + lib$

400 open 2,8,5, "0:" + lib$ + ",s,w": gosub 1500

: if e then 1550

410 for i = 1 ton

420 print#2,fc$(i);nu$;fl$(i);nu$;

430 next: close 2: goto 100

450 if c$OV then 550

460 if n = 0 then 100

470 print "[clr][down] Function[8 spces]Filename"

480 print

490 for i = 1 to n

500 print" ";fc$(i);tab(17);fl$(i)

510 wait 197,64: next

520 print "[down] Press a key...";: gosub 1000

: goto 100

AE

CD

AP

GE

KL

FH

BE

NH

GG

IC

Ol

KK

IF

JA

EG

AK

BE

The Transactor 43

10 rem c-power library updater

20 rem

30 rem by eric giguere

40 rem

50 print "[clr][down]lnsertyour library disk into

drive 0"

60 print "[down] Library name:";: gosub 1000

:lib$ = left$(in$, 14) + ".l"

70 print "[down] Function name:";: gosub 1000

:fc$ = left$(in$, 8)

80 print "[down] Filename:";: gosub 1000

:fl$ = left$(in$,12) + ".obj"

90 print "[down] Updating ";lib$;"..."

100 open 2,8,5, "0:" + lib$ + ",s,a"

110print#2,fc$;chr$(0);

120print#2,fl$;chr$(0);

130 close 2

140 print "[down] Done. Another function? (y/n)";

: gosub 1000

150 if left$(in$, 1) = "y" then 70

160 end

1000 open 1,0: input#1 ,in$: close 1: print: return

March 1988: Volume 8, Issue O5

A Better Syntax

For Kernal Device I/O

Keath Milligan

Austin, Texas

.. Countless times I have watched my second drive collect dust

because programs simply wouldn 't talk to it.

Compared to other operating systems in its class, the C-64's

"Kernal" offers quite a bit of I/O power to the user. However, it

does have quite a few shortcomings, one of them being the way

it references the different devices.

The Problem

Most operating systems expect the device number (and some

times other information, depending on the system) to be part of

the filename. For instance, a PC user might use:

LOAD "B:BEEPBOOP.BAS"

to load up his favourite music program. Note that there is no u,8"

or anything equivalent. But take a closer look at that filename.

The device (in this case, disk drive B) is specified right there with

the filename. The Amiga uses the same method as the PC, but

with different device names.

This method gives users of these systems quite a bit of choice

when they are asked for a filename. For instance, if a program

running on a PC asks for a filename, the user can usually

respond with any valid device name or filename, thus giving

him the choice of any of the devices connected to his system.

The 64 user, on the other hand, could only give the filename,

and the program would probably default to drive 8. Countless

times I have watched my second drive collect dust because

programs simply wouldn't talk to it.

Actually, Commodore DOS does have this sort of filename

syntax for specifying drives, but it applies to only the drives in a

particular disk unit. If you have a single drive unit, like the 1541,

this DOS feature is mostly useless, so the unfortunate 64 user is

out of luck again.

The Program

Obviously, the more standard method of "devicenameifilename"

is superior to the syntax used on Commodore's 8-bit machines. It

gives the user access to all the devices connected to the com

puter and does not require extra programming effort.

Luckily for us, Commodore did have a few good ideas, and one

of their best was the use of page 3 vectors. By intercepting some

of these vectors it's possible to change the way the Kernal

communicates with devices. The program accompanying this

article uses this method to give the 64 a variation of the same

sort of device/file name syntax used by MS-DOS and Amiga-

DOS.

To install the new filename parser, run the BASIC loader. The

parser can be located at any even page boundary, i.e. any

address that is evenly divisible by 256. Note that the loader

doesn't change any of the BASIC memory pointers, so if you

wish to locate the code at an address in the main memory area

(2048-40959), you'll have to adjust the pointers accordingly to

prevent BASIC from overwriting the code. The enhanced syntax

can be disabled by simply pressing RUN-STOP/RESTORE.

Now you can reference devices by using the general syntax of

'D', T' or '#1 followed by the device number followed by a colon

in front of the filename. For example:

"D9:FILENAME"

specifies a file on device 9. ('D', T' and <#> can be used

interchangeably)

Secondary addresses can now be specified from within the

filename as well. To do this, follow the device number with a

comma followed by the secondary address. For example:

"#8,2:FILENAME\ This can most useful for printer files.

The filename is optional, so the printer and other devices can be

referenced easily. Examples: uP4/,7:", "#0:".

Note the colons, which must be present even though the

filenames are missing. You should also be aware that device

numbers and secondary addresses specified in this manner will

take precedence over those specified outside the filename.

Think of the device numbers and secondary addresses specified

within the filename as adjustments to those specified outside the

filename. For instance,

The Transactor March 1988: Volume 8, Issue O5

is equivalent to

and

is equivalent to

LOAD"D8:FILENAME",0,1

L0AD"FILENAME\8,1

OPEN1,8,8,"P4,7:"

OPEN 1,4,7

The 'D' or 'P' may be specified in upper or lower case. If the

parser encounters anything that it doesn't understand, it simply

passes the entire filename untouched to the Kernal. This is to

ensure that the parser will not interfere with disk commands

and the like.

With the enhancement active, you must specify any reference to

the cassette drive within the filename:

LOAD"#1 FILENAME"

The enhancement defaults to device number 8. Therefore

LOAD"FILENAME" will look for the file on device number 8.

Here are some examples of the enhanced syntax in use:

LOAD"D9:FILENAME"

LOAD"FILENAME" (loads from device 8)

SAVE"D1 FILENAME"

OPEN1,0,0,"P4,27:"

LOAD"D8,1:*" (sameasL0AD"*",8,1)

The enhancement will also work with BASIC and some machine

language programs so long as there are no vector or memory

conflicts. If a BASIC program prompts you for a filename, you

can, in most cases, use the enhanced syntax. This will allow you

to access your choice of devices. You may have to put a quote (")

before the filename because the INPUT statement in BASIC can't

handle colons or commas. Try it without the quote first - some

programs have their own improved input routines.

This enhanced parser might work well in a module for a

TransBASIC dialect. Commands such as DIR or BLOAD could be

written that would no longer have to look for device numbers.

Listing 1: BASIC Loader for New File Name Parser

JB

AP

ON

PB

AA

NK

100 print'start address 49152"

110printchr$(145);tab(13);

120inputsa:a=sa

130 ms = int(a/256):ls = a-ms*256

140 iflsOOthenprinfmust be even page boundary"

:end

150 readv: ifv=-1 then190

PO

MK

EA

CJ

MM

LA

OA

PI

AL

KP

IH

ME

NE

NE

OD

Fl

HP

FO

EK

ON

AP

GJ

OH

EH

II

Ol

GJ

BN

IH

FB

Gl

CA

GA

FC

KN

FE

PJ

KF

NP

GF

JG

NG

LC

EG

AE

FC

MK

BM

Ol

JH

DA

PG

LM

DP

MO

FK

GO

JD

AC

160ch = ch + v

170 if(v = 192)or(v = 193)thenv = v-192:v = v + ms

180 pokea,v:a=a +1 :goto150

190 ifch<>43286thenprint°checksum error. ":end

200 prinfenhanced filename syntax enabled."

210syssa

220 print

230 prinfto change default device use: "

240 print" poke";sa +134; ".device"

250 end

260:

270 data 169, 31,160,192,141, 26, 3,140

280 data 27, 3,169, 37,160,192,141, 48

290 data 3,140, 49, 3,169, 45,160,192

300 data 141, 50, 3,141, 51, 3, 96, 32

310 data 51,192, 76, 74,243, 72, 32, 51

320 data 192,104, 76,165,244, 32, 51,192

330 data 76, 237, 245,165,187,141, 21,193

340 data 165,188, 141, 22,193,165,186,141

350 data 39,193,165,185,141, 40,193,165

360data 183,141, 42,193, 32, 20,193,201

370 data 35,240, 8,201, 68,240, 4,201

380 data 80,208, 32,162, 0,141, 41,193

390 data 32, 20,193,141, 43,193,201, 58

400 data 240, 34,201, 44,240, 30,201, 48

410 data 144, 9,201, 58,176, 5,232,224

420 data 3,208, 15,165,183,240, 10,165

430 data 186,201, 1,208, 4,169, 8,133

440 data 186, 96,208,212,224, 0,240,235

450 data 165,187, 141, 21,193,165,188,141

460 data 22,193,165,183,141, 42,193, 32

470 data 20,193, 173, 21,193,133, 3,173

480 data 22,193,133, 4,138, 32, 44,193

490 data 176, 48,165, 5,141, 39,193, 32

500 data 20,193,201, 58,240, 6,201, 44

510 data 240, 35,208,243,173, 21,193,133

520 data 187, 173, 22,193,133,188,173, 42

530 data 193,133, 183,173, 40,193,133,185

540 data 173, 39,193,133,186,201, 1,208

550 data 1, 96, 76,123,192,162, 0,173

560 data 21,193,133, 3,173, 22,193,133

570 data 4, 32, 20,193,201, 58,240, 14

580 data 232, 224, 4, 240, 8, 201, 48,144

590 data 4,201, 58,144,236, 96,138,240

600 data 252, 32, 44,193,165, 5,141, 40

610 data 193, 76, 196,192,173, 255, 255, 41

620 data 127, 238, 21, 193, 208, 3, 238, 22

630 data 193, 206, 42,193,201, 0, 96, 0

640 data 0, 0, 0, 0,141,123,193,169

650data 0,168,174,123,193,133, 5,133

660 data 6, 24, 32, 85,193,176, 21,177

670data 3, 41, 15, 24,101, 5,133, 5

680 data 144, 5,230, 6, 56,240, 5, 24

690 data 200, 202, 208,230, 96, 6, 5, 38

700 data 6,176, 28,165, 6, 72,165, 5

710 data 72, 6, 5, 38, 6,176, 17, 6

720data 5, 38, 6,176, 11,104,101, 5

730data133, 5,104,101, 6,133, 6, 96

740 data 104,104, 96, 0, -1

The Transactor 45 March 1988: Volume 8, Issue O5

Listing 2: PAL Source for New File Name Parser

JL

MC

JL

MA

KD

EB

NC

BH

KK

MH

CM

MM

IM

AO

MB

BP

MA

EB

FC

NH

LI

AD

KO

AF

DM

AD

00

EF

CO

PE

JB

PH

AB

NB

IC

ML

MK

PG

KN

ND

GK

KA

MM

MA

GO

MA

KC

PK

OD

OP

HB

FJ

NC

KC

NK

LE

LH

1000sys700

1010;*********************************

1020;* file-spec parser *

1030 ;* sep 21,1987 version 1.0 *

1040;*

1050;*

1060;*

1070;*

1080;*

*

keath milligan *

11909 swan drive *

austin, tx 78750 *

(512)331-8451 *

1090 j*********************************

1100;

1110;

1120 .opt oo

1130;

1140 fnlen

11501a

1160 sa

1170 fa

1180fnadr

1190aptr

1200 bptr

1210;

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350;

1360openbp

1370

1380;

1390loadbp

1400

1410

1420

1430;

1440savebp

1450

1460;

= $b7

= $b8

= $b9

= $ba

= $bb

= $03

= $05

Ida #<openbp

Idy #>openbp

sta 794

sty 795

Ida #<loadbp

Idy #>loadbp

sta 816

sty 817

Ida #<savebp

Idy #>savebp

sta 818

sta 819

rts

jsr parse

jmp $f34a

pha

jsr parse

pla

jmp $f4a5

jsr parse

jmp $f5ed

1470 ;*** parse routine ***

1480;

1490 parse

1500

1510

1520

1530

1540

1550

1560

The Transactor

Ida fnadr

sta fnptr+1

Ida fnadr+1

sta fnptr+2

Ida fa

sta tdev

Ida sa

sta tsa

FL

DL

DH

FE

EC

ML

ID

EP

JK

DA

NM

LD

JE

OO

JG

IN

NH

IP

EO

DD

ID

AN

NF

FN

NF

ML

GF

CG

FM

HM

ML

KC

BE

AE

CM

DC

FM

DE

LN

LD

JD

GF

DA

NM

FK

DO

FM

MK

GM

NK

PH

JM

DF

NO

ML

IG

KC

ID

ED

46

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660 checkfn

1670

1680 getnext

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810chkdev

1820

1830

1840

1850

1860

1870

1880 parsex

1890gnext

1900fnok

1910 '

1920

1930

1940

1950

1960

1970

Ida fnlen

sta ctr

jsr getfchr

cmp #"#'

beq checkfn

cmp #"d"

beq checkfn

cmp#"p"

bne chkdev

Idx #0

sta tdname

jsr getfchr

sta tsep

cmp #7

beq fnok

cmp #7

beq fnok

cmp #"0n

bcc chkdev

cmp#°9" + 1

bcs chkdev

inx

cpx #3

bne gnext

Ida fnlen

beq parsex

Ida fa

cmp#1

bne parsex

Ida #8 ;default drive

sta fa

rts

bne getnext

cpx #0 ;# of digits

beq chkdev

Ida fnadr

sta fnptr + 1

Ida fnadr+1

sta fnptr+2

Ida fnlen

sta ctr

1980 ;get pointer on device number

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090 iloop

2100parsec

2110

2120

2130

2140

2150finishfs

jsr getfchr

Ida fnptr+1

sta aptr

Ida fnptr+2

sta aptr+1

txa

jsr asc2wor

bcs passit

Ida bptr ;device number

sta tdev

jsr getfchr

cmp#":"

beq finishfs

cmp #',"

beq chksa

bne iloop

Ida fnptr + 1

March 1988: Volume 8, Issue O5

BF

JH

BH

HN

JG

HM

HC

BC

OC

MP

OF

KM

AH

DH

JP

BN

PA

BP

EB

IH

EL

OB

NK

DK

Ml

JH

HM

AJ

MC

ED

JO

KG

OD

NB

GG

EE

KK

EF

MK

DB

OB

JC

LB

OE

EB

IK

EF

IC

OA

BG

DK

EO

CL

PN

GK

JH

DG

MK

00

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280 passit

2290 chksa

2300

2310

2320

2330

2340 csaloop

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440 csaerr

2450 csaout

2460

2470

2480

2490

2500

2510;

2520 getfchr

2530 fnptr

2540

2550

2560

2570

2580 gfc

2590

2600

2610;

2620 tdev

2630 tsa

2640 tdname

2650 ctr

2660 tsep

2670;

sta fnadr

Ida fnptr+ 2

sta fnadr+1

Ida ctr

sta fnlen

Ida tsa

sta sa

Ida tdev

sta fa

cmp#1

bne passit

rts

jmp chkdev

Idx #0

Ida fnptr+ 1

sta aptr

Ida fnptr+ 2

sta aptr +1

jsr getfchr

cmp#":'

beq csaout

inx

cpx #4

beq csaerr

cmp #"0"

bcc csaerr

cmp #°9° +1

bcc csaloop

rts

txa

beq csaerr

jsr asc2wor

Ida bptr

sta tsa

jmp finishfs

= *

Ida $ffff ;dummy addr

and #%01111111mask high-bit

inc fnptr + 1

bne gfc

inc fnptr+ 2

dec ctr

cmp#0

rts

.bytO

.bytO

.bytO

.bytO

.bytO

2680 ;*********************************

2690 ; * convert decimal ascii to word *

2700;*

2710;*

2720 ;*

2730 ;*

.a = length of string ' *

aptr points to string *

ret-bptr = 16 bit word *

cs = error, cc = ok *

2740 **********************************

The Transactor

ED

OD

JE

HM

FL

HF

GM

NF

El

AC

FC

KA

JO

GL

KM

AC

CO

DK

DP

LH

EF

AH

BF

NE

FC

OC

LH

CE

LK

EF

NN

PA

KH

GJ

Ol

OG

KJ

JC

Ml

IL

HE

AO

CO

ID

OP

Nl

DO

EF

CD

AD

OJ

CD

GC

47

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

;

asc2wor sta declen

Ida #0

tay

Idx declen

sta bptr

sta bptr +1

clc

asc2wor1jsr by10

bcs asc2worx

Ida (aptr),y

;multiply by 10

;cs - overflow

and #%00001111

clc

adc bptr

sta bptr

bcc asc2wor2

inc bptr +1

sec

beq asc2worx

asc2wor2clc

iny

dex

bne asc2wor1

asc2worxrts

;

; by10-multiply by 10

;

by10 asl bptr

rol bptr h- 1

bcs by10r

Ida bptr+1

pha

Ida bptr

pha

asl bptr

rol bptr +1

bcs by10x

asl bptr

* rol bptr + 1

bcs by10x

pla

adc bptr

sta bptr

pla

adc bptr + 1

sta bptr + 1

by10r rts

by10x pla

pla

rts

declen .bytO

;eq - overflow

;x2

;cs - overflow

;x2

;cs - overflow

;x2

;cs - overflow

March 1988: Volume 8, Issue O5

A RAM Expansion

Module Bug

D. J. Morriss

Toronto, Ontario

... Under the wrong conditions, the bug

configures the C-128 memory in unexpected ways.

A subtle bug exists in the C-l 28 Kernal routines for accessing the

RAM Expansion Module, as found in the Version 0 ROM's

(Listing 1). Under the wrong conditions, the bug configures the

C-128 memory in unexpected ways, before transferring data to

or from the RAM Expansion. Part of the bug has been corrected

in the new Version 1 ROMs, and a software patch for Version 0

ROMs is supplied in this article. However part of the bug is still

present, and indeed, seems to be an essential part of the

operation of the RAM Expansion.

As a result of this bug, any particular RAM Expansion operation

runs a small chance of accessing the C-128 Bank 15 configura

tion, no matter what configuration has been chosen. It doesn't

matter whether the configuration has been set by the BANK

command from BASIC, or by M/L operations on the Memory

Management Unit. To the extent that Bank 15 differs from the

chosen configuration, the RAM Expansion operation will cause

one of several problems. If the bug acts during a STASH, the

wrong data will be placed in the RAM Expansion. If the bug

strikes during a FETCH, the data will be sent to Bank 15, and

lost. In addition, it could overwrite important locations in Bank

15, crashing the system.

I encountered the bug while writing a BASIC program to sort a

double sided disk full of strings; many more than could be

loaded into the C-128 at one time. The brute force technique I

used was to read as many strings as possible into the C-128

memory, sort them using a machine language routine, and then

temporarily store the sorted strings in a bank of the RAM

expansion. I stored the strings individually, using a routine like

this:

10DEFFNDK(X) = PEEK(X) + 256*PEEK(X + 1)

100 BANK 1: SLOW

110FORK=1TONS

120J = POINTER(A$(K))

130 STASH NL, FNDK(J + 1),NL*(K-1),BK

140 NEXT K

where NS is the number of sorted strings in memory, NL is the

length of a string (all the same), and BK is the number of one of

the 8 RAM expansion banks.

The program continued loading and sorting portions of the total

list, and STASHing them in different banks of the RAM expan

sion until the last string was read from disk. Then the sorted

subsets were merged into a single, sorted, disk file by first

FETCHing the first string from each RAM expansion bank used.

The smallest of these was written to disk, and replaced by

FETCHing the next one from that RAM expansion bank. The

smallest was again written and replaced, and so on. This

continued until the last string was read from each RAM expan

sion bank and written to disk.

This process required some preliminary work. To allow the RAM

Expansion to access the C-l 28 Bank 1, it was necessary to set Bit

6 of $D506. This is the Ram Configuration Register of the

Memory Management Unit (MMU). This also makes the 40

column screen useless. The second problem is that the Kernal

DMA CALL routine needlessly insists on configuring memory to

make the I/O block from $D000 to $DFFF visible before

accessing the RAM Expansion (this has been changed in the

Version 1 ROMs). Since any strings stored in Bank 1 in this

address range would be invisible to the RAM Expansion, I

lowered the top of the string pool (in $39 and $3A) to below

$D000.

When I tested the program on a file containing fifteen thousand

strings, ten characters long, I discovered that a tiny fraction of

the sorted strings were corrupted when they came back from the

RAM expansion. Naturally, this ruined the merging process. In

fact, the strings were changed into chunks, ten bytes long, from

the C-128 ROM's! I determined that the strings were corrupted

on STASHing, and that the pieces of ROM that replaced the

strings came from the same addresses as the strings that were

corrupted. The STASH command was executing perfectly, ex

cept that it was STASHing from Bank 15, instead of Bank 1!

It was a stroke of pure luck that I was able to discover this. As

you would expect, trying to interpret pieces of ROM as strings

leads to a mess of graphic, cursor control and screen color

characters. But one of the strings that showed up corrupted

turned out to be part of the list of BASIC commands, and another

came back as "STRING TOO"; part of one of the BASIC error

messages! I knew that these strings came from the ROMs, and it

was easy to use the MONITOR HUNT command to show that all

the corrupted strings were sections of ROM.

The Transactor 48 March 1988: Volume 8, Issue O5

There was no pattern to the corruption. Repeated runs on the

same data produced different corrupted strings each time. Only

a few, maybe two to five, were corrupted each time, but that was

more than enough. During a short vacation trip, I left my C-128

working away, STASHing and FETCHing for 80 straight hours.

The result was 630 STASH failures in 3,512,380 STASHes. This

works out to a failure rate of 1 in 5575!

When I examined the various parts of the C-l 28 ROM's involved

in the RAM Expansion commands, I found the cause of the

problem. To understand the bug, you need to know a little about

the operation of the RAM Expansion itself.

The RAM Expansion module contains its own computer, the

Ram Expansion Controller (REC). As computers go, the REC is

not too bright. All it does is move bytes. It has an instruction set

of four commands! On the other hand, it is very good at what it

does, moving bytes much faster than the C-128 CPU can. So, to

operate the RAM Expansion, the C-128 first loads the REC

registers with information about the location and number of

bytes to be transferred, tells the REC Command Register, at

$DF01, what to do, and then gets out of the way. The REC takes

over, moves the data, and then returns control to the C-128. For

a complete listing of all the REC registers, see the Transactor

article "Commodore External RAM Expansion Cartridges", by

Dale A. Costello, Vol #8, Issue #2, page 38.

However, the complex memory configurations of the C-128

presented a problem. To tell the REC to take over, you must load

a value into the REC Command Register at $DF01. Clearly, to do

this the I/O block must be visible. But suppose the memory you

want to move is in some other bank. If you can see the REC, the

REC can't see the memory to be shifted. If the REC can see the

memory to be shifted, you can't tell the REC to operate. The chip

designers got around this by coming up with a delayed action

feature. In effect, you can store a value in the REC Command

Register which says, "Here's what I want you to do, and I want

you to do it after the next write to address $FF00". This address

is a shadow register for the MMU Configuration Register (the

Configuration Register is not the same as the RAM Configura

tion Register!). Writing a value there will configure memory in

any fashion you want. With this feature you can instruct the

REC, and then rearrange memory, before the REC takes over.

One last point. If you are going to start changing memory

configurations in the middle of a M/L program, you better be

sure that the program will still be there when the new configura

tion arrives. So this part of the program must be in the common

RAM, from $0000 to $0400, which appears in all memory

configurations. With this information firmly in mind, let's take a

look at the disassembly of the various routines that manage the

RAM Expansion, in Listing 1.

The BASIC routine, starting at $AA1F, evaluates the parameters

of the BASIC command, and puts them in the appropriate REC

registers from $DF02 to $DF08. It also places a number, $84,

$85, or $86 in the Y register. This number is destined to be

stored in the REC Command Register. Apart from telling the

REC to STASH, FETCH or SWAP in Bits 0 and 1, these numbers

all have Bit #7 set and Bit #4 cleared, setting up the delayed

action feature. A curious point is that the three numbers have Bit

2 explicitly set. Bit 2 of this register is listed as reserved for future

use. Finally, the number of the bank you want to access is stored

in the X register, and the routine jumps to $FF50. This would

also be the appropriate entry point for any M/L use of the RAM

Expansion.

This location is the entry point for the DMA-CALL routine in the

New C-128 Kernal Jump Table. As such, it simply jumps directly

to the actual routine, at $F7A5 in Version 0 ROMs.

At $F7A5, the routine gets, from a table, the MMU Configuration

value corresponding to the bank to be accessed by the REC. This

value is then modified (Bit #0 is cleared) to create a new

memory configuration in which the I/O block is visible. There is

no need to do this. Possibly this code was written before the

delayed action feature of the REC was created. This new MMU

Configuration Register value is then unnecessarily copied to the

X register, and the routine jumps to the RAM portion in the

common RAM at $03F0. And now the bug is about to be

activated.

The RAM routine first stores the current MMU Configuration

Register value in the X register. The REC Command Register

value, patiently waiting in the Y register, is finally stored in the

REC. THE REC IS NOW PRIMED AND READY TO OPERATE

AS SOON AS A WRITE OCCURS TO $FF00. Naturally, the next

command writes the altered MMU Configuration Register value

to $FF00, reconfiguring memory according to the last BANK

command (sort of) and triggering the REC operation. After the

REC is finished, the old MMU Configuration register value is

restored, and the routine exits to BASIC. So where's the bug?

Consider what happens if (make that "when") an Interrupt

ReQuest occurs during the four machine cycles of the STY

$DF01 at $03F3. The STY $DF01 instruction is completed, and

the REC is still primed and ready to go. But the IRQ routine takes

over, and now the REC is triggered by a STA $FF00 instruction,

at $FF22 in the IRQ handling routine. The value stored is zero,

and memory is configured for Bank 15 during the REC opera

tion. The delayed action feature is cleared by the REC after its

operation, so that when the STX $FF00 at $03F6 is executed

after the IRQ, no REC operation results.

The REC operation that occurs uses all the correct addresses,

RAM Expansion bank, and number of bytes; these were stored

in their registers earlier. The "only" error is that the transfer takes

place to/from Bank 15, rather than the desired Bank.

The IRQ occurs 60 times a second; with a 1 MHz clock there is

approximately 1 chance in 4167 that an IRQ will occur during

the four cycles of the STY $DF01 command. The observed rate

of 1 in every 5575 is almost exactly 75 % of this theoretical rate.

Perhaps the danger zone includes only three of the four machine

cycles. Placing responsibility for the bug on the timing of an IRQ

also explains the apparent random nature of the bug. The ugly

fact remains that about one in every 5000 Ram Expansion

operations, on a random basis, is compromised.

The Transactor 49 March 1988: Volume e, Issue O5

There are several solutions. By far the best is to buy the ROM

Upgrade Kit for the C-128. The ROM routines for the Ram

Expansion access have been changed (see Listing 2) to eliminate

many of the problems. The I/O block is no longer activated every

time, and the IRQ is masked to avoid the bug entirely. In addition,

there is no need to modify the RAM Configuration Register

yourself, if you are accessing Bank 1. The code from $CF80 to

$CF8E saves the old value of this register, checks the Configura

tion Register table to see if your last BANK command used RAM in

Bank 1, and modifies the RAM Configuration Register to suit; the

original value is restored after the REC has acted. This means that

the 40 column screen can be used while accessing Bank 1 with

the RAM Expansion. The only sign of what is going on is a flicker,

as the RAM Configuration Register is momentarily changed.

There are other fixes as well, to many parts of the ROMs.

If the new ROMs don't appeal to you, there is a partial software

fix. Fortunately, the problem is in a RAM routine only 13 bytes

long. The cure involves adding a PHP and a SEI command at the

beginning and a PLP command at the end, and there are three

unused bytes at the end of the faulty routine! I added these three

commands to the RAM portion of the DMA CALL routine, and

eliminated the string corruption completely (see Listing 3). This

short program could be entered using the built in Monitor

assembler, and then BSAVEd:

BSAVE BO/your name", P1008 TO P1023

BLOADing this binary file before any RAM Expansion opera

tions would fix the bug. The I/O block would still be visible all

the time; that part of the problem is in ROM.

Part of the problem has not been solved. Exactly the same bug

will be triggered by a Non Maskable Interrupt. Since a NMI, by

definition cannot be masked, there is no way to prevent the bug

from striking. It is inherent in the delayed action feature of the

REC. While NMIs are rare in ordinary programming, they are

the heart and soul of RS-232 communications on the C-128.

Reliable use of the RAM Expansion for other than Bank 15,

during RS-232 communications, would appear to be difficult, if

not impossible. This might not be as big a problem as it looks.

Bank 15 uses RAM from "Bank 0" from $0000 to $4000. This

includes the RS-232 buffers, the VIC text and bit-mapped screens

and the large Applications Area from $1300 to $lC00. All of

these can be moved bug free to and from the RAM Expansion

during RS-232 operations. Any other areas should be moved

into one of these areas, before being sent to the RAM Expansion.

One point is clear from the disassembly of the BASIC routine.

The order of the arguments is the same for the STASH, FETCH,

and SWAP commands, and that order is number of bytes to

move, start address in C-128 memory, start address in RAM

Expansion memory, arid bank number in RAM Expansion.

Several references give the order of these arguments incorrectly,

listing the RAM bank number as the third argument and the

RAM Expansion address as the fourth. A possible explanation

lies in the fact that two Commodore references, while giving the

correct syntax of the commands, list the arguments in a different

order when defining them.

As far as I know, this is the first published discussion of this

potentially serious bug. Since Commodore knew about the bug,

and prepared new ROMs that correct it, their silence on the

matter is troubling to those of us with Version 0 ROMs and a

RAM Expansion.

Listing 1

COMPLETE STASH/FETCH/SWAP ROUTINE

VERSION 0 ROMS

aalf Ida #$84

aa21 jmp$aa2b

aa24 Ida #$85

aa26 jmp $aa2b

aa29 Ida #$86

aa2b pha

aa2c jsr $8812

aa2f jsr $a845

aa32 sty $dfO7

aa35 sta $dfO8

aa38 jsr $880f

aa3b jsr $a845

aa3e sty $dfO2

aa41 sta $dfO3

aa44 jsr $880f

aa47 jsr $a845

aa4a sty $dfO4

aa4d sta $dfO5

aa50 jsr $8809

;STASH entry

•FETCH entry

;SWAP entry

- NOTE -

- all numbers with

- bit 7 set and

- bit 4 clear

;put future REC command register

;value on stack

;evaluate three parameters

;of BASIC command

;and store in

;the proper REC

; registers.

aa53 cpx

aa55 bcs

aa57 jsr

aa5a stx

aa5d pla

aa5e tay

aa5f Idx

aa62 jmp

aa65 jmp

#$10

$aa65

$a845

$dfO6

$03d5

$ff50

$7d28

; branch if error

;in parameter evaluation.

;evaluate last parameter

;and store in REC

;recover future REC command register

;value and store in Y register

;get BANK command value into X reg

;go to Kernal jump table

;parameter error routine

ff50 jmp $f7a5 ;jump table entry

f7a5 Ida $f7fO,x ;getMMU configuration value from

table based on BANK value in X reg

f7a8 and#$fe ;modify it to enable I/O

f7aa tax ;copy to X register (WHY??)

f7ab jmp $03f0 ;jump to RAM portion of routine

03f0 Idx $ffOO OVERWRITE X register with current

MMU configuration value

03f3 sty $dfO1 ;store Y register to REC command

register- REC primed

03f6 sta $ffOO ;store new MMU configuration value

AND trigger REC operation

The Transactor 5O March 1988: Volume 8, Issue O5

STASH/FETCH/SWAP takes place

03f9 stx $ffOO ;restore MMU configuration register

value

03fc rts ;all done so back to BASIC

Listing 2

COMPLETE STASH/FETCH/SWAP ROUTINE

VERSION 1 ROMS

(BASIC routine from $AA1 F to $AA65 unchanged)

ff50 jmp $cf80 ;note new jump table destination

cf80 Ida $d506

cf83 pha

cf84 eor $f7fO,x

cf87 and#$3f

cf89 eor $f7fO,x

cf8c sta $d506

cf8f Ida $f7fO,x

cf92 tax

cf93 php

cf94 sei

cf95 jsr $03f0

cf98 pip

cf99 pla

cf9a sta $d506

cf9d rts

03f0

03f3

03f6

03f9

03fc

;get RAM configuration value

;and stack it

;set Bits 7 and 6 of RAM

Configuration Register to

;reflect Bank command value

;get Configuration Register value from

table

;againWHY?

;save status, including interrupt

;SET INTERRUPT MASK

;noteJSR, not JMP

;restore previous interrupt status

;pull old RAM Configuration register

;value and store

;done, so back to BASIC

Idx

sty

sta

stx

rts

$ffOO

$dfO1

$ffOO

$ffOO

;same as in

;Version 0

;NOT to BASIC!

Listing 3

NEW RAM DMA CALL ROUTINE

FOR VERSION 0 ROMS

03f0 php

03f1 sei

03f2 Idx $ffOO

03f5 sty $dfO1

03f8 sta $ffOO

03fb stx $ffOO

03fe pip

03ff rts

; new command

; new command

;all moved two bytes

;higher in memory

;new command

YOU CAN HAVE IT ALL

THE CONVENIENCE OF A CARTRIDGE!

THE FLEXIBILITY OF A DISK!

THE QUICK BROWN BOX stores up to 30 of your favorite

programs - Basic & M/L, Games & Utilities, Word Processors

& Terminals - READYTO RUN AT THETOUCH OF A KEY

- HUNDREDS OF TIMES FASTER THAN DISK - Modify

the contents instantly. Replace obsolete programs, not your

cartridge. Use as a permanent RAM DISK, a protected work

area, an autoboot utility. C-64 or C-128 mode. Loader Utili

ties included. Price: 16K $69 32K $99 64K $129 (Plus $3 S/H;

MA res add 5%) 30 Day Money Back Guarantee. 1 Year War

ranty. Brown Boxes, Inc, 26 Concord Road, Bedford, MA

01730; (617) 275-0090

THE QUICK BROWN BOX - BATTERY BACKED RAM

THE ONLY CARTRIDGE YOU'LL EVER NEED

SUPER 81 UTILITIES

Super 81 Utilities is a complete utilities package for the

Commodore 1581 Disk Drive and C128 computer. Copy whole

disks or individual files from 1541 or 1571 format to 1581

partitions. Backup 1581 disks. Contains 1581 Disk Editor,

Drive Monitor, RAM Writer, CP/M Utilities and more for only

$39.95.

1541/1571 DRIVE ALIGNMENT

1541/1571 Drive Alignment reports the alignment condition of

the disk drive as you perform adjustments. Includes features

for speed adjustment and stop adjustment. Includes program

disk, calibration disk and instruction manual. Works on C64,

C128, SX64, 1541, 1571. Only $34.95.

"...excellent, efficient program that can help you save both

money and downtime." Compute!'s Gazette, Dec, 1987.

GALACTIC FRONTIER

Exciting space exploration game fro the C64. Search for life

forms among the 200 billion stars in our galaxy. Scientifically

accurate. Awesome graphics! For the serious student of

astronomy or the causal explorer who wants to boldly go

where no man has gone before. Only $29.95.

MONDAY MORNING MANAGER

Statistics-based baseball game. Includes 64 all-time great

major league teams. Realisitc strategy. Great sound &

graphics! Apple II systems - $44.95, C-64 & Atari systems

$39.95.

Order with check, money order.'VISA, MasterCard, COD. Free

shipping & handling on US, Canadian, APO, FPO orders. COD

& Foreign orders add $4.00. Order from:

Free Spirit Software, Inc.
905 W. Hillgrove, Suite 6

LaGrange, IL60525

(312)352-7323

isl«rCordH

The Transactor 51 March 1988: Volume 8, Issue O5

Commodore 128

Machine Language

Steve Punter

Mississauga, ON

. The 8510 processor, which is really a 6510 with the newest

iteration of Commodore's memory management added,

can only address 64K at any one given moment...

If you do most of your C128 programming using a high level

language, like BASIC, you generally don't need to concern

yourself with such trivialities as memory management. On the

other hand, anyone who has delved into the machine language

side of the C128 knows only too well that the memory layering

used in this machine is not the easiest to work with. Drawing on

my experience programming WordPro 128, I would like to

impart to you some of the programming techniques I used, in

hopes that they might come in handy.

I start out assuming that you have a reasonable understanding of

the C128 and its inner workings, for I can't afford to go into the

intricate detail needed to explain all of this to a rank beginner.

Before we begin, let's look at how Commodore has arranged the

128K of RAM and the 48, or so, kilobytes of ROM.

The 8510 processor, which is really a 6510 with the newest

iteration of Commodore's memory management added, can

only address 64K at any one given moment. To allow it access to

the huge amount of RAM and ROM, selected portions of this 64K

address space are set up in such a way that they can be told to

access one of a variety of items. Think of each of the 4 sections of

this 64K memory space as being 4 different elevators in a small

building. Each can be independently moved to any floor of the

building, allowing a variety of different combinations of access.

I'm not going to deal with the INTERNAL and EXTERNAL ROM

sockets here, so the only three things concerning us which can

appear in these memory segments are the first 64K of RAM, the

second 64K of RAM, or the 48K of system ROM. In addition to

that, there is also a small section of I/O space, which can be

selectively brought in, or moved out.

The two 64K RAM spaces are called banks; bank 0 being the

first 64K, and bank 1 being the second 64K. In addition to this,

varying amounts of memory, ranging from none, on up to 32K,

can be declared as "common". This refers to the fact that

regardless of which of the two RAM banks you are in, access to

the common area will always give you bank 0 RAM. This sort of

addressing is advantageous in that coding which must be

available AT ALL TIMES can reside there.

When first considering the arrangement of WordPro 128,1 was

stuck with the prospect of having the text in one bank, and a

multitude of buffers in the other. Linking all that together, I had

to have code which could run in EITHER bank, and here is

where the deficiencies of the C128 MMU start to show.

Although routines are supplied in ROM to fetch or store data into

either bank, they become unacceptably slow when called re

peatedly. The 2Mhz mode of the C128 can help mask some of

this inherent slowness, but in such applications as word process

ing, the speed problem is rather acute.

After much thought on the matter, a number of programming

criteria became clear: Number one, ALL 64K of the addressable

memory space should be, by default, RAM. Number two, the

code must exist in both banks, with each bank of code accessing

and manipulating the data stored there. And number three, the

code must be able to call routines in the alternate bank without

any difficult coding needed at the place of the subroutine call.

Each of these three criteria brought about unique, though

curiously related, solutions. The first problem concerns the

switching in of ALL RAM. Immediately, two difficulties arise;

interrupts and KERNAL calls. The interrupts have been thought

fully taken care of for us, and require no special care, but

KERNAL calls are a different matter. No program can operate

without making calls to the KERNAL, for even printing to the

screen, or fetching from the keyboard, requires it. To make

KERNAL calls, we would need to switch in the appropriate ROM

before the call, and switch it out afterwards. This is not accept

able, as it gets very messy and complicated. If we just leave the

KERNAL switched in all the time, we loose immediate availabil

ity of 16K of RAM, and must resort to switching that in and out

every time we need it.

Clearly a better solution was needed; one which would give us

immediate access to either the KERNAL or the RAM without

having to actively switch it in or out. Although this sounds like a

case of "wanting your cake and eating it too", there is a simple

answer. All that is required is about 200 bytes at the top of each

64K RAM bank, and two small subroutines in the common

memory area.

The Transactor 52 March 1988: Volume 8, Issue O5

The Invisible KERNAL

The first step to creating an invisible KERNAL is to write a fairly

short set of subroutines into your program. The two subroutines

are as follows:

Subroutine # 1

kerncall sta

pla

sta

pla

Ida

pha

|da

pha

Ida

pha

Ida

sec

sbc

pha

Ida

sta

Ida

sta

Ida

rts

Subroutine # 2

kernback pha

Ida

sta

pla

rts

safeloc

safeloc +1

#>kernback-1

#<kernback-1

#$ff

safeloc +1

#3

$ffOO

bankhold

#$0e

$ffOO

safeloc

bankhold

$ffOO

At the very beginning of your program, a routine should be

included which will store, into each 3 byte location from $FF81

through $FFF3, a call to subroutine "KERNCALL". The follow

ing routine will do just that:

setkern jsr setkerni

setkerni Idy #$81

kerni Ida #$20

sta $ffOO,y

iny

Ida #<kerncall

sta $ffOO,y

iny

Ida #>kerncall

sta $ffOO,y

iny

cpy #$f6

bne kerni

Ida $ffOO

eor #%01000000

sta $ffOO

rts

This rather odd structure, calling a subroutine IMMEDIATELY

after itself, is just a quick and dirty way of having the routine

execute itself twice. Note the at the end of each call, the RAM

bank is "flipped", causing not only both banks to be processed,

but the bank to return to its original state. Note also that this

routine MUST reside in the common area also, else it will "bank"

itself out, and crash the machine.

Now that all this is done, you can safely make ANY KERNAL call

in complete confidence that the KERNAL ROM, as well as the 1/

O space, will automatically be swapped in and out for you. But

how does it all work?

Let's follow the path of seemly innocent "JSR FFD2" call from

within our running program. First of all, the return address of

our original call is pushed onto the stack, then execution is

transferred to location $FFD2. At this location, a JSR KERN

CALL is encountered, causing the return address of this subrou

tine call to pushed on the stack on top of the previous one. The

interesting thing to note about this return address is that it's

EXACTLY two higher than the desired KERNAL call, and is a

key factor to how the KERNCALL subroutine works.

Upon entering the KERNCALL subroutine, the accumulator is

put safely away in a location called "SAFELOC", then the first

byte is pulled off the stack and saved away in a location called

"SAFELOC+1". This first byte from the stack is actually the low

order part of our second return address, the one which is exactly

two higher than our desired KERNAL call ($FFD2 in this

example). The next byte off the stack is merely thrown away. It

represents the high order part of the return address, but will

always be $FF, and so we need not waste any time, or memory

space, storing it.

Next, we push the address of our second subroutine onto the

stack in place of the original one that was generated when the

JSR KERNCALL call was made. The purpose of this exercise is to

cause the RTS within the KERNAL subroutine itself to transfer

execution there, so that RAM may be restored. With me so far?

The next step involves the pushing of yet a third subroutine

return address onto the stack, but the purpose of this is to use an

RTS like a JMP INDIRECT. In other words, we now wish to set up

a stack configuration that will cause an RTS to transfer execu

tion to the desired KERNAL subroutine. First, we push the high

order part of the address, which, as was noted earlier, is always

an $FF. After that, we recall the low order part of this address

and subtract three from it. Why three? After all, I did say that

this address was exactly two higher than the desired KERNAL

call. It's done simply because the address stored on the stack for

an RTS is always one byte lower than the address at which

execution actually begins.

Now we are ready to bank in both the KERNAL ROMs and the

I/O space, but before we do that, a copy of the current memory

configuration is saved in a location called "BANKHOLD". A

value of $0E is then stored in the memory configuration register,

and an RTS is executed. Since we have previously pushed the

appropriate address onto the stack, the RTS causing execution to

The Transactor 53 March 1988: Volume 8, Issue O5

go directly to the KERNAL call we originally made, or $FFD2 in

this case. Just before the RTS is executed though, the value of

the accumulator is restored so that the proper value is passed to

the KERNAL routine.

Once the KERNAL subroutine has finished doing whatever it is

that it's supposed to do, its RTS causes execution to be transfer

red to our "KERNBACK" routine. The reason for this is that we

deliberately pushed this return address onto the stack for this

very reason. KERNBACK's purpose is very simple; it merely

restores the memory configuration register to its former value (as

saved in the just before jumping to our desired KERNAL call).

The accumulator is appropriately saved so that KERNAL rou

tines which pass values out are not disturbed.

As the RTS of KERNBACK is reached, execution is passed back

to the code immediately after the actual KERNAL call (our

$FFD2 example). Although the process may seem complicated,

it's not hard to see how it does let you have your cake and eat it

to.

Multiple BANK Coding

The second major problem was to design a system whereby a

single program could exist in two separate banks of RAM. This

presents a problem that is very similar to the KERNAL routines,

and is solved in much the same way.

Before you can begin to write such a program though, certain

basics must be considered, and a "game plan" must be formu

lated. There are three distinct areas of memory in which your

program code will reside: common RAM; bank 0 RAM; and

bank 1 RAM. What goes where, and how much common RAM

to assign, is what we have to decide.

In WordPro 128, it was decided that the text would reside in

bank 1, while all other necessary buffers and strings would be

placed in bank 0. Since it was desirable to maximize the amount

of text, code in bank 1 had to be kept to a minimum. Bank 1

would obviously contain code which only made direct refer

ences to text.

Bank 0 could contain just about everything else, with the

exception of two special cases: routines which were called quite

often from code in both banks; and routines which made

reference to both text AND buffers. This code will have to go in

the common area.

Since WordPro 128 is a huge program, it was decided that the

bottom 16K of RAM would be deemed common, leaving 48K in

each of the banks for other purposes. Your applications may not

call for such a large expenditure of common RAM. How much

you need is not something I can tell you in this article, it's really

a matter of looking at your needs and deciding for yourself.

Since common code will reside from $0000 to $3FFF, bankable

RAM begins at $4000. All that is left now is to work out a way of

allowing routines in one bank to call routines in the other. As I

hinted at earlier, the solution is very similar to the one used to

leave the KERNAL ROM banked out until needed. The solution

to this second problem starts out with a jump table to all the

necessary routines at the beginning of each of the two 48K

banks of /?o/?-common RAM. The trick to all of this lies in what

we put at each of the jump table locations.

If the routine represented by a particular jump table location

resides in the current bank, then a simple JMP to it is used.

Should it reside in the other bank, a JSR call is placed there to a

routine very much like the one used to bring in the KERNAL

ROM. If this sounds a little complex, let's take a small example.

There are four subroutines, called "SUBl", "SUB2", "SUB3"

and "SUB4". Subroutines 1 and 2 are in bank 0, while subrou

tines 3 and 4 are in bankl. This is how the four jump table

locations would appear at the beginning of each bank:

* In BANK 0:

jmp sub1

jmp sub2

sub3 jsr swapbank

sub4 jsr swapbank

* In BANK 1:

sub1 jsr swapbank

sub2 jsr swapbank

jmp sub3

jmp sub4

Were a routine in bank 0 to call "JSR SUBl" or "JSR SLJB2", they

would branch directly there as if no banking existed. A routine

in bank 1 calling "JSR SUB3" or "JSR SUB4" would have the

same effect. But, a routine in bank 0 calling "JSR SUB3" or "JSR

SUB4", or a routine in bank 1 calling "JSR SUBl" or "JSR SUB2"

would be directed to the "JSR SWAPBANK" call in the jump

table. SWAPBANK is very much like KERNCALL, but it swaps

around which of the two non-common banks of RAM are

currently active, then jumps back to the same location in the

jump table (just like the KERNCALL routine). Now that the bank

has been switched, it runs into the appropriate JMP instruction,

rather than the JSR SWAPBANK.

Of course, while in this alternate bank subroutine, a call back to

the original bank might be made, so a "stack" of return "banks"

must be implemented so that each subroutine is returned to it's

correct bank.

Here are the two subroutines involved in this task:

Subroutine # 1:

swapbank sta safeloc

tya

pha

Idy bankpnt

Ida $ffOO

The Transactor 54 March 1988: Volume 8, Issue 05

and

sta

inc

pla

tay

pla

sbc

sta

pla

sbc

sta

Ida

pha

Ida

pha

Ida

pha

Ida

pha

Ida

eor

sta

Ida

rts

Subroutine # 2:

bankback php

pha

tya

pha

dec

Idy

Ida

and

ora

sta

pla

tay

pla

pip

rts

#$fe

bankstak.y

bankpnt

#3

safeloc +1

#0

safeloc+ 2

#>bankback-1

#<bankback-1

safeloc + 2

safeloc +1

$ffOO

#%01000000

$ffOO

safeloc

bankpnt

bankpnt

$ffOO

#$01

bankstak.y

$ffOO

When a routine makes an alternate bank call, the return address

of the subroutine is pushed onto the stack, then execution is

transferred to the jump table, where a JSR SWAPBANK call is

made, thus pushing the return address of this routine onto the

stack also. As with the KERNCALL routine, this address is

exactly two higher than that of the jump table address just

referenced. Execution now branches to the SWAPBANK routine

in common RAM, at which point, the accumulator is saved in

"SAFELOC". The Y-register is pushed onto the stack so that its

value is preserved while we push the memory control register

onto our special "bank stack".

Once the bank has been pushed on our stack, the Y-register is

restored, and the next two bytes are pulled from the stack. As

previously noted, they contain a pointer to the appropriate jump

table location, but two higher. Subsequently, three is subtracted

from this 16 bit value and the whole thing is stored in "SAFE

LOC+1" and "SAFELOC+ 2". The reasons for this were dis

cussed previously in the section on "The Invisible KERNAL". In

place of this return address, we push the location of

"BANKBACK", which, like "KERNBACK", is responsible for

putting everything back to normal after the desired routine has

finished.

Next, we push the value of the jump table location (minus one)

onto the stack so the next RTS acts like a JMP INDIRECT and

transfers execution back to the same location in the jump table

that we came from, only this time, the banks have been

switched, so there will be JMP instruction there, not a JSR

SWAPBANK. Before reaching the RTS though, the appropriate

bit in the memory control register is "flipped" so that the other

48K of non-common RAM is brought in. The accumulator is

restored, and the RTS performed.

Once the desired subroutine has finished, its RTS transfers

execution to our "BANKBACK" routine, which basically pulls

the correct memory configuration byte from our special stack so

that when we return to the calling routine, the correct bank

configuration will be in force.

Observant readers will notice that bit 0 of the memory configu

ration register is not being saved on the special stack. This bit

controls the existence of the I/O space, and for most purposes, I

decided that it would desirable to leave it unchanged so that I/O

control stays within the mainline coding.

Even more observant readers will notice that the special stack

isn't really needed, since for a routine to call this function, it

must have been in the alternate bank. Logic would dictate,

therefore, that to return control to the calling routine would

require nothing more than swapping active banks again. Al

though this is true, the bank stack guarantees that no screw ups

within the called routine cause the bank settings to become

misaligned.

Some Last Words

Of course, the two solutions I've presented here don't even

begin to scratch the surface of what M/L in the Cl 28 is all about,

but they should give you a good starting place so that program

ming is that much easier.

Many may argue that M/L is a dead practice, since so many high

level languages, especially C, allow you to do almost the same

thing with much greater ease. Although I fully agree that

languages like C are very powerful, they simply can't match the

grace and speed possible by writing your programs in pure

machine language.

Given a choice, I usually opt for machine language, but also

recognize that certain tasks are far more suited to a higher level

language. Before you tackle a task in M/L on the C128, you

should decide this too. B

The Transactor 55 March 1988: Volume 8, Issue O5

Auto Booting CP/M

Programs On The C-128

Miklos Garamszeghy

Toronto, ON

... There are two methods... the first is fairly well known...

The second is not well known at all, even to confirmed hackers...

There are two ways to auto boot applications programs, utilities,

games, etc. on the C-128 in CP/M mode. The first is a fairly well

documented feature using a special SUBMIT file. Each time CP/

M is started up, it looks for a file named "PROFILE.SUB" on the

default drive. This is a regular CP/M submit file which is

automatically executed on start up, similar to the IBM-PC-DOS

"AUTOEXEC.BAT" file. Unlike the IBM version, however, PRO

FILE.SUB requires that you have the utility "SUBMIT.COM" on

the same disk. This utility reads the statements in the SUBMIT

file (standard CP/M commands or program names such as DIR

or PIP etc.) and translates them into its own executable form.

The commands are not executed immediately, but are written to

a temporary file called "SYSIN.$$$". When all commands have

been translated and written to this file, the file is read and they

are executed.

This brings out two limitations of the PROFILE.SUB method of

auto booting. Because a temporary file is written to the disk, you

cannot cover the write protect notch. The method is also quite

slow, especially with a 1541 drive, because it involves reading

and writing a number of disk files. In addition, since the

PROFILE.SUB file is written in standard ASCII format, it is very

susceptible to prying eyes. All it takes is a "TYPE PROFILE.SUB"

command for some one to sneak a peak at your secret boot

routine. Despite these limitations, you can do a very complicated

set of start up procedures using this method.

The second method is not well known at all, even to confirmed

hackers who have been using other CP/M machines for years.

(One of the beauties of CP/M is that it is very transportable

between machines. If it works on one machine, it will most likely

work on other CP/M machines.) Although not quite as simple as

using the PROFILE.SUB file, the method allows you to cover the

write protect notch. In addition, you do not need any other files

on the disk other than the one you want to boot. It is also much

faster, because it does not have to read and execute the SUBMIT-

.COM program before executing the boot. The nature of the

technique limits you to a single CP/M command in the boot

statement, but this is sufficient to start up most programs. The

technique involves changing a few bytes in the CPM Console

Command Processor (CCP.COM) file. (Because you are chang

ing the system files, never do this on your original disks! Always

work with a backup copy.)

The CCP is the part of the CP/M system which reads and

interprets commands typed in at the console. It contains the

code for accessing most of the built-in CP/M commands, such as

DIR, TYPE, etc. It also loads and transfers execution to transient

program files. Control of the system is passed to CCP.COM after

boot up and after each command or transient program has

finished executing. Using a debugging utility, such as SID.COM

supplied on the CP/M + Additional Utilities Disk, (or the older

CP/M debugger called DDT.COM or one of the many public

domain utilities), load in the file with the command:

SID CCP.COM <return>

SID will respond with:

NEXT MSIZE

0D80 0D80

#

PC

0100

END

D2FF

The # is the SID prompt. The bytes of interest start at hex

address $07C2. Use SID's display command to display the

memory starting at that location:

D07C2 <return>

(note that there is no space between D and the address)

The first line of the display should look like:

07C2:53 55 42 4D 49 54 20 20

43 4F4D 1A06 4BCDF9:SUBMIT COM

By replacing the word SUBMIT (i.e. the bytes from 07C2 to

07C7) with ASCII spaces (hex $20s), you can autoboot a pro

gram file on start up. This is done with SID's "S" command:

S07C2 <return>

SID responds with:

07C2 53 -n- (where -n- represents a flashing cursor)

Type in a quote mark at the cursor followed by 5 spaces and a

<retum>:

The Transactor 56 March 1988: Volume 8, Issue O5

SID responds with:

spaces> <return>

07C8 20-D-

Type in a period followed by <return> at the cursor to end the

substitution:

. <return>

SID will respond with the prompt#.

This change makes CP/M look for the file PROFILE.COM when

it starts up. If this file is present, it will automatically load and

execute it. All you must do to take advantage of this is to rename

your program to "PR0FILE.COM" with CP/M's "RENAME"

command. For example, to boot MBASIC you would use:

RENAME PR0FILE.COM = MBASIC.COM <retum>

Of course, there is nothing sacred about the name "PROFILE". If

you would rather not rename your program, you can make an

additional change to the CCP. Addresses $04FC to $0503

contain the word "PROFILE". You can change this to your

application program name using a similar method to that out

lined above for erasing the SUBMIT command. For the MBASIC

example, you would use:

you type

SID responds

you type

SID responds

you type

SID responds

S04FC <return>

(MFC 50-g-

"MBASIC <space> <return>

0503 2E -n-

. <return>

#

The total length of the string must be seven characters so pad

the end of the filename with spaces.

Once you have made all of the necessary changes, save the

modified file back to disk with the command:

WCCP.COM,0100,0D80<return>

The 0100 and 0D80 are the hexadecimal start and end ad

dresses of the CCP.COM file as listed on the SID startup display.

All hex addresses listed above are identical for all current

versions of CP/M + implemented on the C-128.

Now press the reset button and watch your program boot up

automatically! One final note. If you decide to change the boot

file name from "PROFILE.COM" to something else, you will

have to modify a custom CCP for each disk you want to boot. Of

course, only one boot routine per disk is possible with this

routine. If you format a new disk and copy the modified system

files to it, the boot command will be totally transparent if the

bootable file is not present on the new disk. This means that if

the file mentioned in the boot routine is not present on the disk,

CP/M will start up in its normal manner and end with the

familiar A> prompt. H

New! Improved!

TRANSBASIC 2!
with SYMASS™

"I used to be so ashamed of my dull, messy code, but

no matter what I tried I just couldn't get rid of those

stubborn spaghetti stains!1' writes Mrs. Jenny R. of

Richmond Hill, Ontario. "Then the Transactor people

asked me to try new TransBASIC 2, with Symass®.

They explained how TransBASIC 2, with its scores of

tiny 'tokens', would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in

giving it a try. Well, all it took was one load and I was

convinced! TransBASIC 2 went to work and got my

code looking clean as new in seconds! Now I'm telling

all my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass, the symbolic assembler.

Package contains all 12 sets of TransBASIC modules

from the magazine, plus full documentation. Make your

BASIC programs run faster and better with over 140

added statement and function keywords.

Disk and Manual $17.95 US, $19.95 Cdn.

(see order card at center and News BRK for more info)

TransBASIC 2
"Cleaner code, load after load!19

The Transactor 57 March 1988: Volume 8, Issue O5

Ck>ck-Calendar 128 William J. Brier

Bensenville, IL
©1987 Bill Brier

An increasingly popular accessory for personal computers is the

Clock-Calendar cartridge with battery backup. It is quite handy to

have the time and date readily available when you or the computer

wants it. However, such gadgetry requires the use of that elusive

matter form known as money. Not surprisingly, most of us hate

spending money (unless it's somebody else's).

I needed some way to display the time and date on my C-128 but I

didn't need the battery backup (or the expense). If you have read

this far, you probably share the same needs. So, if you are willing to

live without the battery backup feature and are also willing to do

some typing, I have an inexpensive timekeeping solution for you. It

uses some resources that all C-128 computers are equipped with,

namely the TOD clocks in the CIA chips. My solution is a little

machine language utility called (oddly enough) Clock-Calendar

128.

Clock-Calendar 128 is a time and date utility for the C-128. Clock-

Calendar uses the Time Of Day (TOD) clock in CIA #2 to generate an

accurate 24 hour time output, with a resolution of one second. The

utility also maintains a Gregorian calendar, accurate through the

year 2099. Time and date outputs are made available for display on

both 40 and 80 column screens and for use by other software.

In addition to the time and date functions, Clock-Calendar also

features an audible alarm, which may be set to any desired time. All

functions of Clock-Calendar are driven by interrupt requests and

are therefore transparent to the computer's operating system and

most software. Special software traps prevent interference with the

C-128 screen editor when the programming considerations de

scribed later in this article are observed.

It's Not A Hydrogen Maser Standard But...

Unlike the TI$ software "clock" provided as part of BASIC 7.0, the

time output of Clock-Calendar is remarkably accurate, typically

demonstrating a drift of less than 0.5 seconds per month. This is

because the CIA hardware clock is synchronized to the power line

frequency, which is carefully regulated by the utility that supplies

electric power.

The CIA hardware clock is initialized during the reset sequence to

operate on a 60 Hz power line frequency (the North American

standard). Many European and Middle East locations use 50 Hz

power. A simple POKE (described later) can be used to program the

CIA chip to operate on 50 Hz power.

I must caution you that batteries are not included with Clock-

Calendar. As soon as you (or the power company) shut off the C-128

the clock vanishes into thin air (sort of the way time does when

you're behind schedule).

Clock-Calendar was inspired by a program that was published for

the C-64 by Mike Forani in Volume 5, Issue 2 of TRANSACTOR. I

typed in Mike's program (learning something about interrupts in the

process) and later added the calendar and alarm routines to it. When

I acquired my C-1281 decided to port the program over, accommo

dating both screen displays in the process. That porting process

proved to be a bit of an education in itself, especially in getting the

clock display and the C-128 screen editor to get along with each

other. I ended up starting from scratch, although Mike may recog

nize a slight vestige of his original routine. In the process of doing

this rewrite I found that a programmer's best friend is indeed the

RESET button.

Three Modules And No Batteries

Clock-Calendar consists of three machine language modules (one

main module and two setup modules). I have this annoying habit of

giving binary files cryptic, "computer-sounding" names that tell me

what they are. Accordingly, I've given each of the three modules

cryptic, computer-sounding names that will undoubtedly annoy you

for the balance of this article:

CLK4864

CLK5632

DT5632

The CLK4864 module contains all program instructions required to

execute the functions of Clock-Calendar. This includes time and

date decoding functions as well as the audible alarm feature.

CLK5632 is used to set the time of day or the alarm time, while

DT5632 is used to set the displayed date. The numbers in the

filenames indicate the decimal addresses to which each file loads

into memory.

Because these are all binary files you must load them into memory

with the BLOAD syntax (or LOAD"FILENAME",8,1). Read on to

discover how to get Clock-Calendar running. As you'll see, it's

actually quite user-friendly (honest!).

Placing Clock-Calendar Into Operation

To activate Clock-Calendar simply BLOAD the CLK4864 module

into memory and activate it with SYS 4897. This command will

"wedge" Clock-Calendar into the interrupt system and the time and

date display will appear in the upper right-hand corner of both

display screens.

When Clock-Calendar is placed into operation the hardware clock

is given a "nudge" to get it started (it initially is not running when

the C-128 is powered up or after the RESET button has been

pressed). Therefore, it is probable that the displayed time will not be

The Transactor 58 March 1988: Volume 8, Issue O5

correct. Also, the displayed date will be represented by a series of

question marks (??-??-??) indicating that no date has been set.

Upon activation of Clock-Calendar the default display settings will

be in force. These are yellow display colour on the 40 column

screen, cyan display colour on the 80 column screen and normal

(non-reversed) video display on both screens. Provisions have been

made to change the display characteristics to suit individual tastes.

Such adjustments are described in a later section.

One precaution must be noted before leaving this section. Once you

have loaded and activated Clock-Calendar do not repeat the load

ing process. Doing so will probably result in a system crash. This of

course, will give you an opportunity to make friends with the RESET

button, in case you haven't already done so.

Setting The Time Of Day

Before describing how to set the time, it is appropriate to discuss the

manner in which Clock-Calendar displays the time.

The time will always be displayed in the format HH:MM:SS, where

HH is the hours representation, MM is the minutes representation

and SS the seconds representation. The time is kept in 24 hour or

military format. This means that when the time of day is 1:00 PM

through 11:59 PM, the clock will display the time with the value 12

added to the hours. Midnight (12:00 AM) will be displayed as

00:00:00. The main advantage of the 24 hour time-keeping system

will quickly become apparent: There will never be any confusion

regarding AM or PM.

To set the time of day, proceed as follows:

1. BLOAD the CLK5632 module into memory.

2. Type SYS 5632,0. The '0' indicates to CLK5632 that you are

setting the time of day.

3. The C-128 will prompt you for the CORRECT TIME (HH:MM) and

flash the cursor. Type in the time of day using 24 hour format.

Note that you must type two digits for the hours and two digits for

the minutes. Enter midnight as 00:00. The cursor will skip over

the colon as you enter the time (see, I told you it was user-

friendly).

4. Upon typing in the time, press RETURN to enter it or the DELete

key to erase your input.

NOTE: The time value that you enter must be a valid one. The hours

value may not be greater than 23 and the minutes may not be

greater than 59. If you don't adhere to these requirements, Clock-

Calendar will become unfriendly and demand that you do it right.

5. Next, the time that you have entered will be confirmed for

accuracy. Respond to the confirmation prompt with (Y)es or (N)o.

A (N)o terminates entry without affecting the time setting. In

either case, control will be returned to the calling program or

BASIC.

Setting The Alarm Time

As mentioned above, Clock-Calendar incorporates an audible

alarm function. The alarm is activated when the time of day equals

the alarm time and the alarm enable flag (described later) has been

set to an enable value.

Set the alarm as follows:

1. BLOAD CLK5632 into memory.

2. Type SYS 5632,1. The T indicates to CLK5632 that you are

setting the alarm time.

3. You will be prompted for the ALARM TIME (HH:MM). The alarm

time is entered in exactly the same manner as the time of day.

4. As with entering the time of day, responding with (N)o to the

confirmation prompt will abort the operation with no effect on

Clock-Calendar. Otherwise, the alarm time will be stored and the

alarm enable flag will be set.

Upon reaching the alarm time a "gong" will sound once every two

seconds for a period of one minute. When the one minute period

has elapsed the gong will silence. Unless the alarm enable flag is

cleared, the alarm will sound at the same time each day for as long

as Clock-Calendar remains in operation.

To silence the alarm and disable it, POKE 4896,129. To enable the

alarm again so that it chimes the next day at the same time, POKE

4896,0.

Setting The Calendar Date

Before describing how to set the date, it is appropriate to discuss the

manner in which Clock-Calendar displays the date.

The date is displayed in the format MM-DD-YY where MM is the

month, DD is the day and YY is the year. If the month is January

through September the first digit of the date will be blank. The date

is always displayed immediately below the time in the upper right-

hand corner of the screen.

The date automatically changes at the stroke of midnight provided

that Clock-Calendar is in operation. Because the calendar is main

tained in software the date will not change if the program has been

disabled.

Clock-Calendar incorporates means to detect a leap year and make

appropriate compensation for the month of February. This compen

sation is accurate for all years from 1901 to 2099 inclusive. Inaccura

cies will occur in any century year that is not evenly divisible by

400, as Clock-Calendar does not use the first two digits of the year

(for example, 1900, 2000 and 2100 are all the same to Clock-

Calendar but only the year 2000 is a leap year).

To change the date, proceed as follows:

l.BLOAD"DT5632\

2. Type SYS 5632.

3. The C-128 will prompt you for TODAY'S DATE and flash the

cursor. Type in the date as MM-DD-YY. If the month is January

through September type a zero as the first month digit.

4. Similarly, days one through nine and years zero through nine

must be entered with a zero as the first digit. The cursor will

automatically skip over the hyphens (-) as you enter the date.

NOTE: The date value that you enter must be a valid one. The

month must be 1 through 12, the day must be 1 through 31 and

must also be a valid day for the month and year that has been

entered. For example, entering 02-29-87 would not be valid as

1986 was not a leap year. Similarly, entering 11-31-87 would also

The Transactor 59 March 1988: Volume 8, Issue O5

not be valid as there are only 30 days in November.

5. Next, the date that you have entered will be confirmed for

accuracy. A (N)o response will simply abort without affecting the

displayed date.

Modifying The Clock-Calendar Display

As described above, Clock-Calendar has default display settings

that determine the colour and appearance of the time and date

display. It is possible by use of simple POKEs to change the

appearance of the display to reverse video, to change the display

colours or to discontinue updating of the display. These functions

are controlled by a group of memory locations starting at $1315 in

RAM 0. Their functions are as follows (all location addresses are

given in hexadecimal):

$1315 This location is the "display flag". Clock-Calendar will

display the time and date on the screen as long as the display flag is

set to zero. If you wish to freeze the display POKE a 1 into this

location. This will tell Clock-Calendar to stop updating the display.

No other function of Clock-Calendar will be affected in any way.

The display flag is set to 0 when the program is activated.

$1316 This location determines the display colour on both screens.

If you wish to change the display colours POKE any value from 0 to

15 into this location. The proper value may be selected from the

following chart:

Code

0

1

2

3

4

5

6

7

40 COL.

Black

White

Dark Red

Cyan

Purple

Dark Green

Dark Blue

Yellow

80 COL.

Black

Dark Grey

Dark Blue

Light Blue

Dark Green

Light Green

Dark Cyan

Light Cyan

Code 40 COL.

8

9

10

11

12

13

14

15

Orange

Brown

Light Red

Dark Grey

Medium Grey

Light Green

Light Blue

Light Grey

80 COL.

Dark Red

Light Red

Dark Purple

Light Purple

Dark Yellow

Light Yellow

Light Grey

White

Colour values in excess of 15 are undefined in the program and may

cause the display to behave in unpredictable ways.

$1317 This location determines whether the display will be in

normal or reverse video. POKEing a 1 into this location will change

the display to reverse video. The default setting is 0 (normal video).

Using Clock-Calendar With Other Software

Clock-Calendar has been designed so that it may be utilized with

other software that requires a time and/or date value. Because

Clock-Calendar is interrupt-driven it is "invisible" to BASIC and

most software and therefore requires few special programming

considerations. There are a few precautions that must be observed

when using the 80 column screen or when fetching keyboard input

by use of the INPUT statement in BASIC or the CHRIN (BASIN)

subroutine in the Kernal. these precautions will be discussed later

in this section.

The time and date outputs of Clock-Calendar are available in a

group of memory locations starting at $1300 in RAM 0. These

locations are updated once per second as long as Clock-Calendar

remains activated. The actual time and date values are stored in

consecutive byte order, using both PETASCII and binary-coded

decimal (BCD) format. A description of each output follows in

location order:

$1300 PETASCII Date

The PETASCII form of the date is stored starting at $1300 and takes

the form MM-DD-YY terminated by a CHR$(0) character. The date

changes only at midnight (when hours, minutes and seconds all

equal zero).

Because it is possible for the date to change while your software is

reading it, you should "stop the clock" by issuing a SYS 4900

command immediately before fetching the date. Once the fetch has

been completed restart the clock with SYS 4897.

NOTE: If the display flag at $1315 has been set to "display off" (1) it

will be reset to "display on" when the SYS 4897 command is issued.

A recommended method of fetching the date from BASIC is as

follows:

100 dt$ =": i = dec('1300"): sys 4900: for j = 0 to 7

110 dt$ = dt$ + chr$(peek(i+j)): next: sys 4897

This will result in the current date being assigned to variable DT$.

If the month is between January and September the first character

in the string will be CHR$(32) (a blank). If the string is written to a

tape or disk file the leading blank will be stripped when INPUT# is

used to read it back.

$1309 PETASCII Time

The PETASCII form of the time is stored starting at $1309 and takes

the form HH:MM:SS terminated by a CHR$(0) character. The time

changes once per second and ranges between 00:00:00 (midnight)

and 23:59:59 (one second before midnight).

As with fetching the date you should stop the clock immediately

before fetching the time. A recommended method of fetching the

time is as follows:

120 td$ = ": i = dec("1309"): sys 4900: for j = 0 to 7

130td$=td$ + chr$(peek(i+j)): next: sys 4897

This will result in the current time being assigned to variable TD$.

NOTE: The time string will contain two imbedded colons (:). If you

write the string to a tape or disk file you must read it back with the

GET# statement.

$1312 BCD Date

The BCD form of the date is stored starting at $1312 and takes the

form M D Y in three consecutive bytes. If your software requires

storage of the date into a file you may find the BCD form more

efficient as less storage space is required.

A recommended method of fetching the BCD date is as follows:

140 bd$ ="": i = dec("1312fl): sys 4900: for j = 0 to 2

150 bd$ = bd$ + chr$(peek(i+j)): next: sys 4897

The Transactor 6O March 1988; Volume 8, Issue O5

This will result in the BCD date being assigned to the variable BD$.

You may PRINT# this date to a file and read it back with INPUT# as

there will be no embedded PETASCII values that will cause trouble

with INPUT*

Using BASIC 7.0 it is possible to decode the BCD date into a

PETASCII representation suitable for display. A recommended

method of doing so is as follows (the BCD date is assumed to be in

variable BD$):

200m = asc(mid$(bd$,1))

210d = asc(mid$(bd$,2))

220y = asc(mid$(bd$,3))

230 m$ = mid$(hex$(m),3):if val(m$) < 10 then

mid$(m$,1,1) = chr$(32)

240 d$ = mid$(hex$(d),3) 250 y$ = mid$(hex$(y),3)

260 dd$ = m$ +"-" + d$ +"-' + y$

This will result in the variable DD$ containing the PETASCII date,

with a leading blank if the month is January through September.

$1318 Signature

This location contains the PETASCII string "CLK" terminated with a

CHR$(0) character. The signature is present only when Clock-

Calendar is activated. Applications software may use this string to

determine if the clock is running. The recommended method of

doing so is as follows:

270 cs$ = "elk" + chr$(0): ck$ = "': ss = dec("1318")

280 for i = 0 to 3: ck$ = ck$ + chr$(peek(ss + i)):next

290 if ckOcs then CLOCK IS NOT ACTIVATED

It is good practice to always test for the signature string before

attempting to fetch time and/or date values from the clock.

$1327 BCD TIME

The BCD form of the time is stored starting at $1327 and takes the

form H M S in three consecutive bytes. If your software requires

storage of the time into a file you may find the BCD form more

efficient as less storage space is required.

A recommended method of fetching the BCD time is as follows:

300 bt$ ="": i = dec(B1327B): sys 4900: for j = 0 to 2

310 bt$ = bt$ + chr$(peek(i+j)): next: sys 4897

This will result in the BCD time being assigned to the variable BT$.

You may PRINT# this time value to a file. However, it must be read

back with GET# to avoid a truncated string.

Using BASIC 7.0 it is possible to decode the BCD time into a

PETASCII representation suitable for display. A recommended

method of doing so is as follows (the BCD time is assumed to be in

variable BT$):

320h = asc(mid$(bt$,1))

330 m = asc(mid$(bt$,2))

340s = asc(mid$(bt$,3))

350 h$ = mid$(hex$(h),3)

360 m$ = mid$(hex$(m),3)

370s$ = mid$(hex$(s),3)

This will result in the variable TD$ containing the PETASCII time,

with a leading zero if the hour is before 10:00 AM.

To avoid system clashes or other maladies when using Clock-

Calendar with other software, you should observe the following

precautions:

1. Do not disturb anything in RAM 0 between locations $131C and

$15D8 inclusive (except the alarm locations at $131E-$1320).

Because Clock-Calendar is driven by interrupts it may be consid

ered part of the C-128 operating system. Disturbing anything in

the $131C-$15D8 memory range will probably cause the C-128

to immediately crash. If it is necessary to load a different program

into that same area you must stop the clock with a SYS 4900

command before attempting the load.

2. Avoid using the INPUT statement in BASIC (or CHRIN in machine

language) to fetch keyboard input when the cursor is on the top

two rows of the screen. The system will accept the time or date

display as part of the input. If you must use the top two rows for

input, either define a window that does not include the columns

in which the time and date display occurs or else shut off the

display as previously described.

NOTE: Shutting off the display does not remove it from the screen. It

simply tells Clock-Calendar to discontinue updating of the display.

You must explicitly clear that part of the screen.

3. When using INPUT or CHRIN on the 80 column screen it is

mandatory that the display be shut off, regardless of the row on

which the input is to be accepted. Due to the manner in which the

C-128 screen editor operates, a clash between CHRIN and Clock-

Calendar may occur if the INSerT/DELete key is used or if the

screen is scrolled with the cursor keys. Such a clash may result in

a scrambled screen display, from which recovery requires use of

the STOP/RESTORE keypress combination.

It is also not advisable to use the SCNCLR statement from

BASIC when operating on the 80 column text screen. SCNCLR

bypasses software traps that have been built into Clock-Calendar

to avoid clashes with the screen editor. Instead, use the C-64

. method of clearing the screen (PRINT CHR$(147)). Partial screen

clearing by use of the ESCape functions (ESC P, ESC Q and ESC

@) is permissible.

4. If your program makes use of split-screen graphics you should

stop the clock with a SYS 4900 command. Split-screen graphics

require very precise timing of the interrupts. The small additional

time required to execute the Clock-Calendar code is sufficient to

disturb that timing. Although such a disturbance will not be fatal

to the system it may result in an unattractive display.

5. If you are using a music program you should avoid setting the

alarm. The alarm function, of course, uses the SID chip and will

interfere with any music that is being performed. Also, many

music programs make use of synchronized graphics, such graph

ics being timed by interrupts. In such a case, the clock should be

stopped for the reasons described above.

6. If you are programming in machine language, avoid direct jumps

into the screen editor ROM unless interrupts have been disabled.

Direct ROM jumps will bypass the editor traps built into Clock-

Calendar and may cause the 80 column display to malfunction

while interrupts are enabled. This precaution does not apply to

the 40 column screen.

The Transactor 61 March 1988: Volume 8, Issue O5

Controlling The Alarm

As mentioned above, Clock-Calendar features an audible alarm.

The alarm is controlled by both the alarm time setting and the alarm

enable flag at $1320. Setting the flag to any positive value (0-127)

will enable the alarm while setting the flag to any negative value

(128-255) will disable the alarm and immediately silence it if it is

operating.

NOTE: Even though the alarm enable flag has been set to "alarm

on" a valid alarm time must exist in the alarm time location if the

alarm is to function.

If you do not disable the alarm with the flag it will automatically

silence after one minute.

If it is necessary to determine what the current alarm time is you

may decode the alarm setting from BASIC 7.0 using the following

short routine:

400 i = dec("131 e"): h$ = mid$(hex$(peek(i)),3)

410 m$ = mid$(hex$(peek(i +1)),3): at$ = h$ +":" + m$

This will result in the decoded alarm time being assigned to variable

AT$ in the format HH:MM (seconds are not used for the alarm time).

It is not necessary to stop the clock to fetch the alarm time as it is

used only as a reference by Clock-Calendar.

Adjusting The Hardware Clock For 50 Hz Operation

As mentioned above, the CIA hardware clock is initialized to use 60

Hz as a time-keeping reference. If your power line operates at 50 Hz

you may make the necessary adjustment with the following com

mand sequence:

i = dec(ddd0ed): bank15: poke i.peek(i) or 128

If it is necessary to reset it for 60 Hz power you may use the

following command sequence:

i = dec("dd0e8): bank15: poke i,peek® and 127

If the CIA chip is set for the wrong power line frequency it will be

obvious by watching the speed at which the display updates.

More Than Just a Clock

Clock-Calendar takes care of the basic functions of timekeeping

and, as you'll see, does the job at minimal cost. However, that

doesn't mean that the program can't be put to other uses.

I've purposely placed the BCD time and date outputs in stable

locations so that they may be used by other software. I've also

defined a stable exit location (IRQA) for the program so that a

machine language programmer can use Clock-Calendar with a

non-standard IRQ system. This makes it possible to easily patch into

the program for other purposes.

In a future article we could explore such things as controlling

external devices with Clock-Calendar or perhaps getting the C-128

to automatically execute a program at any desired time. Before you

know it, we'll have your computer running the house and making

coffee in the morning. Now, that's what I call user-friendly!

How Clock-Calendar Works

Since this is a magazine article and not a programming textbook, I'll

spare you the dissertation on how the program operates (it's a lot

easier to use the thing than to explain why it works). If you're

interested please study the source code comments and feel free to

experiment. After all, the worst thing you can do is crash the

computer. I did it many times before I got Clock-Calendar to work

(crashes in IRQ-driven routines are really exciting).

If after reading through the source code, you still aren't sure as to

how the thing runs, please contact me and I'll send you a detailed

description of Clock-Calendar and how it operates. I may be

contacted via voice at (312) 595-3356 between the hours of 1930

and 2230 Central Time weekdays or all day on most Sundays.

Listing 1: Run this program to generate the clock display program

Bclk4864" on disk. See text for details.

EA

MO

DH

100rem generator for "clk4864"

110 nd$ = "clk4864": rem name of program

120 nd = 729: sa = 4864: ch = 65204

For lines 130 to 200, use the standard generator program on page 5

MP

AO

CN

AA

JO

MB

NL

IG

LI

JF

FF

FP

AE

MB

Dl

NJ

MB

GM

JP

FM

KJ

GA

ML

DP

LE

OP

LN

ND

OM

DF

II

IB

DA

FE

NO

PH

DL

PH

1000 data 32,

1010 data 0,

1020 data 32,

1030 data 0,

1040 data 255,

1050 data 0,

1060 data 224,

1070 data 120,

1080 data 20,

1090 data 172,

1100 data 3,

1110 data 0,

1120 data 169,

1130 data 96,

1140 data 206,

1150 data 28,

1160 data 160,

1170 data 174,

1180 data 21,

1190 data 142,

1200 data 10,

1210 data 199,

1220 data 10,

1230 data 8,

1240 data 153,

1250 data 21,

1260 data 8,

1270 data 21,

1280 data 248,

1290 data 189,

1300 data 19,

1310 data 8,

1320 data 10,

1330 data 105,

1340 data 19,

1350 data 217,

1360 data 169,

1370 data 141,

32, 45, 32,

32, 32, 58,

0, 255, 255,

0, 0, 0,

76,105, 19,

0,174, 20,

206,208, 52,

174, 28, 19,

3,140, 21,

138, 21,142,

174,198, 21,

10,140, 1,

0,153, 24,

174, 20, 3,

208, 4,192,

19.140, 29,

19,142, 20,

38, 3,172,

140,138, 21,

38, 3, 140,

172, 1, 10,

21,162,189,

140, 1, 10,

221, 88,160,

24, 19,136,

19,140,216,

221,240, 8,

108, 28, 19,

206,216, 21,

8, 221,202,

200, 208, 244,

201, 18,208,

41,127,201,

18,216,141,

48, 38,160,

39, 19,208,

15.141, 24,

15,212,162,

32, 45,

32, 32,

255, 0,

101,250,

76, 42,

3,172,

192, 19,

172, 29,

3,174,

38, 3,

172,199,

10, 88,

19,136,

172, 21,

19,240,

19,120,

3,140,

39, 3,

162,116,

39, 3,

142,198,

160, 21,

173, 8,

3,185,

16,247,

21, 96,

169, 0,

44,216,

162, 3,

48, 6,

173, 39,

14,169,

18,176,

39, 19,

1,185,

28,136,

212,141,

250,160,

32, 32

58, 32

7, 0

255, 255

19, 0

21, 3

208, 48

19,142

137, 21

140, 39

21,142

160, 3

16,250

3,224

86,142

162,206

21, 3

142,137

160, 21

174, 0

21,140

142, 0

221, 141

212, 21

200,140

216,173

141,216

21, 48

160, 0

153, 39

19, 48

0,240

4,248

44, 32

30, 19

16,245

14,212

33,142

The Transactor 62 March 1988: Volume 8, Issue O5

IL

GF

NM

DL

PC

Gl

IP

BK

LD

CN

LD

CO

HI

NA

KG

IH

FE

ED

LD

PB

GC

PC

JE

Kl

KG

EH

IP

MK

OA

DH

FL

AN

NG

MN

DO

DO

LJ

LP

DO

Dl

AD

NC

KB

IL

DF

CN

LG

PD

OH

FK

OC

FO

FL

MA

1380 data 20,

1390 data 212,

1400 data

1410 data

1420 data

1430 data

136,

21,

1,

32,

1440 data 221,

1450 data

1460 data

1470 data

1480 data

1490 data

1500 data

1510 data

1520 data

1530 data

1540 data

1550 data

1560 data

1570 data

1580 data

1590 data

1600 data

1610 data

1620 data

1630 data

13,

20,

19,

1,

19,

48,

142,

21,

20,

142,

21,

40,

142,

21,

21,

7,

16,

9,

153,

1640 data 240,

1650 data

1660 data

1670 data

1680 data

1690 data

1700 data

1710 data

16,

21,

169,

0,

160,

169,

87,

1720 data 255,

1730 data

1740 data

1750 data

1760 data

78,

24,

8,

2,

1770 data 240.

1780 data

1790 data

1800 data

1810 data

152,

14,

21,

32,

1820 data 238,

1830 data

1840 data

1850 data

1860 data

1870 data

1880 data

1890 data

1900 data

1910 data

138,

72,

74,

136,

24,

169,

49,

48,

0

212,140, 18,

160, 2,185,

16,248,173,

162, 40, 74,

232,142,201,

170, 21,170,

200, 21,208,

173, 20, 19,

19,169, 1,

32,183, 21,

208, 3, 32,

173, 18, 19,

208, 2,169,

1, 19,173,

141, 3, 19,

19, 32,148,

7, 19,173,

141, 9, 19,

19, 32, 148,

13, 19,173,

141, 15, 19,

19,208,101,

153, 32,216,

247,174, 23,

19,224, 0,

32, 4,185,

2, 9,128,

229,169, 0,

162, 9,160,

0,160,152,

160, 19, 32,

72, 32,106,

8,160,152,

21, 36,215,

108, 28, 19,

21,160, 0,

32, 202, 205,

173, 22, 19,

9, 64, 32,

96,162, 18,

76, 204, 205,

165,154,201,

19,208, 3,

121,239, 44,

21, 19, 96,

9, 48,170,

41, 15,170,

96, 32,160,

48, 9,105,

105, 1,216,

0,141, 34,

40, 49, 48,

49, 48, 49,

212,136,140, 18

39, 19,208, 73

20, 19, 32,170

176, 4, 74,176

21,173, 18, 19

202,173, 19, 19

30,224, 11,208

32,183, 21,141

208, 6,173, 18

141, 18, 19,169

183, 21,141, 19

32,148, 21,201

32,141, 0, 19

19, 19, 32,148

142, 4, 19,173

21,141, 6, 19

39, 19, 32,148

142, 10, 19,173

21,141, 12, 19

41, 19, 32,148

142, 16, 19,173

173, 22, 19,160

153, 72,216,136

19,160, 7,185

240, 2, 9,128

0, 19,224, 0

153, 72, 4,136

160, 72, 32,106

19, 32, 68, 21

32,106, 21,162

68, 21,169, 8

21, 32, 87, 21

32,106, 21, 32

16, 3, 76, 51

142, 77, 21,140

185, 0, 0,240

200,208,245,160

174, 23, 19,240

202,205,136,208

32, 204, 205, 232

72, 36,215, 16

3,208, 8,173

206, 21, 19,104

21, 19, 16, 3

32,160, 21, 72

104, 9, 48, 96

104, 74, 74, 74

21,168,138, 24

10,208,249,248

96, 32,105, 19

10, 76, 0, 0

49, 48, ,49, 49

67, 76, 75, 0

Listing 2: This creates the clock/alarm set program "clk5632\

IP

KN

NH

100 rem generator for "clk5632"

110nd$ = "clk5632": rem name of program

120 nd=468:sa = 5632: eh =49184

The Transactor

For lines 130 to 200, use the standard generator program on page 5

BN

LO

HC

HK

IB

LJ

FE

PL

JA

NE

IH

EJ

BL

OG

El

DK

OB

FJ

PI

AG

01

GL

DG

JD-

FA

IG

HI

FB

NP

Jl

MH

GE

01

FB

LM

CL

OD

FJ

MA

PJ

Jl

IF

Bl

MO

DJ

PH

KP

MC

OD

MH

KE

PF

DM

AD

HF

01

PH

EA

KG

63

1000 data

1010 data

41, 1,141,208, 23,165,241, 72

173. 0.255. 72.162. 14.142. 0

1020 data 255, 232, 142, 24, 212, 169, 183,141

1030 data 60, 3, 32, 93, 23,169,147, 32

1040 data 210,255, 162, 2,160, 0, 32, 60

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

23,173,208, 23, 10,170,189,113

23,188,114, 23, 32, 64, 23,162

2, 56,152,233, 7,168, 32, 60

23, 32, 80, 23,133,252,120, 32

111,205, 88, 32,228,255,240,251

72. 36.215. 16. 8.120. 32.172

1110data205, 88, 76, 96, 22, 32,159,205

1120 data

1130 data

104,164,252,240, 4,201, 20,240

185,192, 4,144, 6,201, 13,208

1140 data 213, 240, 28, 201, 48, 144, 207, 201

1150 data

1160 data

1170 data

58, 176, 203, 32, 210, 255,153, 204

23, 230, 252, 192, 1, 208,191, 169

29, 32,210,255, 76, 70, 22,174

1180 data 204, 23,173,205, 23, 32, 48, 23

1190 data 201, 36,144, 6, 32, 85, 23, 76

1200 data

1210 data

1220 data

34, 22,141,211, 23,174,206, 23

173,207, 23, 32, 48, 23,201, 96

176,234,141,210, 23,169, 0,141

1230 data 209, 23,162, 4,160, 0, 32, 60

1240 data

1250 data

23,169,175,160, 23, 32, 64, 23

32, 93, 23, 32, 80, 23, 32,228

1260 data 255, 201, 78, 240, 73, 201, 89, 208

1270 data 245,173,208, 23,240, 18,174,211

1280 data

129v0data

1300 data

1310 data

1320 data

1330 data

1340 data

23,172,210, 23,142, 30, 19,140

31, 19, 141, 32, 19, 76, 30, 23

173,211, 23,240, 15,201, 18,144

11,248, 56,233, 18,216, 9,128

141,211, 23,120,173, 15,221, 41

127,141, 15,221,162, 2,160, 3

189, 209, 23, 153, 8, 221, 202,136

1350 data 208, 246, 141, 8, 221, 88,162,173

1360 data

1370 data

1380 data

1390 data

1400 data

160, 0,142, 60, 3,140, 24,212

104,141, 0,255,104,133,241, 96

41, 15,133,252,138, 10, 10, 10

10, 5,252, 96, 24, 76,240,255

133, 250, 132, 251,160, 0,177, 250

1410data240, 10, 32,210,255,200,208,246

1420 data 169, 0,133,208, 96,169, 6,162

1430 data 251,160, 33,208, 6,169, 50,162

1440 data 250, 160, 17,141, 1,212,142, 6

1450 data 212, 140, 4,212,136,140, 4,212

1460 data

1470 data

1480 data

1490 data

1500 data

1510 data

1520 data

1530 data

1540 data

1550 data

1560 data

1570 data

1580 data

96,117, 23,147, 23,158, 67, 79

82, 82, 69, 67, 84, 32, 84, 73

11, 69, 32, 40, 72, 72, 58, 77

11, 41, 58,159, .32, 32, 32, 58

27, 81, 0,158, 65, 76, 65, 82

11, 32, 84, 73, 11, 69, 32, 40

72, 72, 58, 77, 77, 41, 58,159

32, 32, 32, 58, 27, 81, 0, 5

73, 83, 32, 84, 72, 73, 83, 32

84, 73, 77, 69, 32, 67,. 79, 82

82, 69, 67, 84, 32, 40, 89, 47

78, 41, 63, 0, 0, 0, 0, 0

0, 0, 0, 0

March 1988: Volume 8, Issue O5

Listing 3: Generator for "dt5632", the program to set the date. Listing 4: CBM-format assembler source code for "clk4864".

IE

FN

JF

100 rem generator for Bdt56328

110 nd$ = Bdt5632": rem name of program

120 nd = 414: sa = 5632: ch = 43027

For lines 130 to 200, use the standard generator program on page 5

PD

LO

IF

HK

AJ

FJ

AC

CL

CH

KH

AK

CF

MG

AJ1

DH

OK

BD

NA

AB

BO

HM

GH

IA

CP

MC

KG

EF

CC

KA

FJ

AA

GH

AN

DF

OD

LH

GK

GO

DF

EK

CK

OK

JF

MD

LD

FK

CK

CO

KE

OD

BA

MO

1000 data 165,

1010 data 14,

1020 data 169,

1030 data 169,

1040 data 0,

1050 data 32,

1060 data 63,

1070 data 32,

1080 data 251,

1090 data 172,

1100 data 205,

1110 data 240,

1120 data 208,

1130 data 201,

1140 data 149,

1150 data 192,

1160 data 255,

1170 data 185,

1180 data 185,

1190 data 252,

1200 data 72,

1210 data 41,

1220 data 48,

1230 data 30,

1240 data 246,

1250 data 23,

1260 data 162,

1270 data 120,

1280 data 23,

1290 data 78,

1300 data 2,

1310 data 16,

1320 data 3,

1330 data 104,

1340 data 74,

1350 data 4,

1360 data 162,

1370 data 162,

1380 data 6,

1390 data 212,

1400 data 76,

1410 data 0,

1420 data 200,

1430 data 49,

1440 data 84,

1450 data 68,

1460 data 32,

1470 data 5,

1480 data 32,

1490 data 82,

1500 data 47,

1510 data 0,

241, 72,

142, 0,

183,141,

147, 32,

32, 63,

67, 23,

23, 32,

111,205,

72, 36,

205, 88,

104,164,

195,192,

213,240,

58,176,

23, 230,

3, 208,

76, 55,

149, 23,

149, 23,

157,155,

173,157,

74,176,

142, 84,

23, 76,

32, 12,

240, 236,

4,160,

160, 23,

32, 58,

240, 15,

189,155,

247,162,

140, 24,

133,241,

170,104,

105, 10,

251,160,

250,160,

212,140,

96,169,

240, 255,

177,250,

208, 246,

50, 50,

79, 68,

65, 84,

45, 32,

73, 83,

68, 65,

82, 69,

78, 41,

0, 0,

173, 0,

255, 232,

60, 3,

210,255,

23,162,

162, 2,

58, 23,

88, 32,

215, 16,

76, 81,

252, 240,

6,144,

32,201,

203, 32,

252,192,

187,169,

22,162,

41, 15,

10, 10,

23,136,

23, 32,

5, 74,

23,104,

29, 22,

23,170,

221, 83,

0, 32,

32, 67,

23, 32,

201, 89,

23,157,

173,160,

212,104,

96, 72,

41, 15,

208, 249,

33, 208,

17,141,

4,212,

0,133,

134,250,

240, 241,

50, 41,

49, 50,

65, 89,

69, 58,

32, 45,

32, 84,

84, 69,

67, 84,

63, 0,

0, 0,

255, 72,162

142, 24,212

32, 38, 23

162, 2,160

95,160, 23

160, 14, 32

133,252,120

228, 255, 240

8,120, 32

22, 32,159

4,201, 20

6,201, 13

48,144,207

210,255,153

1,240, 4

29, 32,210

2,160, 5

133,252,136

10, 10, 5

202, 16,232

12, 23,162

176, 2,162

208, 6, 32

201, 19,176

202,173,156

23,176,231

63, 23,162

23, 32, 38

228, 255, 201

208,245,162

18, 19,202

0,142, 60

141, 0,255

74, 74, 74

24,202, 48

96,169, 6

6,169, 50

1,212,142

136, 140, 4

208, 96, 24

132,251,160

32,210,255

50, 49, 50

49, 50,158

39, 83, 32

159, 32,

81,

73,

27,

72,

32, 67,

32, 40,

0,

0

0,

32

0

83

79

89

0

put"@0:clock-cal.src

opt nos

* clock & calendar display...

;c-128 mode, 40 or 80 columns

* with audible alarm function

* written 11-16-85 w.j. brier

* revised 6-05-87

* copyright 1986

*

* this program is not to be...

* sold, it is permissible...

* to copy it but credit must...

* be given in the documentation

* see the documentation for...

* instructions on using this...

* program with your software...

* <« program assignments >»

;system vectors & pointers..

dflto

mode =

cinv =

ibsout =

system =

rptflg =

basrst =

tod2

.pag

$9a

$d7

$0314

$0326

$0a00

$0a22

$4003

$ddO8

;screen editor functions...

wvdcm =

wvdcr =

$cdca

$cdcc

;kernal functions...

chrout =

irq

crti

$ef79

$fa65

$ff33

;40 col vie screen ram...

vcram =

vlram =

$0400

$d800

;sid chip registers (voice 3).

frelo3 =

frehi3 =

vcreg3 =

surel3 =

sigvol =

$d40e

$d40f

$d412

$d414

$d418

;output device

;display mode flag

;normal irq vector

;normal chrout vector

; basic reset vector

; keyb'd repeat flag

; basic warm reset

;time of day clock #2

;write to 8563 ram

;write to 8563 register

;output a byte

;normal irq

;irq handler exit

;start of display ram

•start of color ram

frequency Ctrl (lo)

frequency Ctrl (hi)

;control register

;sustain/release

;sid volume

;80 col 8563 vdc assignments...

scrami = 72 ;screen ram (time)

scram2 = 152 ;screen ram (date)

atrami = 2120 ;attribute ram (time)

atram2 = 2200 attribute ram (date)

upreg = 18

♦=$1300

.pag

;update register

;4864

; user-accessible memory...

tdta

toda

tdtc

dflg

cflg

rflg
key

.byf - - ',0

.byt1 : : ',0

.byt 255,255,255

.bytO

.byt 7

.bytO

.byt 0,0,0,0

;exit vector...

irqa .wor irq

;alarm registers...

altc .byt 255,255

;ascn date

;ascii time

;bcd date

;1 = no display

;display color

;1 = reverse video

;time (h:m)

The Transactor 64 March 1988: Volume 8, Issue O5

aflg .byt255

;entry point to start display
Clkon imr» etort

II 1 Ik/ WlWll I

;entry point to stop display

clkof jmp stop

I

;bcd time storage

todc .byt 0,0,0
j

. .

j

;enableflag

;start display

;stop display

;hrs:min:sec

_

;stop clock-calendar display

stop

clkott

;loop

clkof2

Idx cinv

Idy cinv+1

cpx #<dcc

bne clkof2

cpy #>dcc

bne clkof2

sei

Idx irqa

Idy irqa + 1

stx cinv

sty cinv +1

Idx bsouta

Idy bsouta+ 1

stx ibsout

sty ibsout+1

Idx alrsti

Idy alrsti+1

stx system

sty system +1

cli

Idy #3

Ida #0

sta key.y

dey

bpl clkofi

rts

j

;irq vector

;display vector

;not running

;not running

;interrupts off

;original irq vector

; restore chrout vector

; restore system vector

;interrupts on

;offset

;wipe out id key

;start clock-calendar display

start

starti

start2

Idx cinv

Idy cinv + 1

cpx #<dcc

bne starti

cpy #>dcc

beq start3

stx irqa

sty irqa +1

sei

Idx #<dcc

Idy #>dcc

stx cinv

sty cinv+1

Idx ibsout

Idy ibsout+1

stx bsouta

sty bsouta +1

Idx #<crdy

Idy #>crdy

stx ibsout

sty ibsout+1

Idx system

Idy system+ 1

stx alrsti

sty alrsti +1

Idx #<alrst

Idy #>alrst

stx system

sty system +1

Ida tod2

sta tod2

cli

Idy #3

Ida keystr.y

sta key.y

dey

bpl start2

iny

sty dflg

The Transactor

;irq vector

;change vector

;display is runnning

;save existing...

;irq vector

;change...

;irq vector so that...

;clock-calendar runs

;save current...

;chrout vector

;change...

;chrout vector so...

;delay routine...

; intercepts it

; basic reset

; store

;alternate reset

;new reset vector

;give clock a kick...

;to get it started

;offset

;key

;enable key

;loop

;clear display flag

sty Iflg

starts rts

':

;clear lockout flag

;update & display time & date

dec eld

Ida tod2

beq dccO2

Ida #0

sta Iflg

dcc01 jmp (irqa)

dccO2 bit Iflg

bmi dcc01

dec Iflg

;read clock registers...

Idx #3

Idy #0

dccO3 Ida tod2,x

dex

bmi dccO4

sta todc.y

iny

bne dccO3
;

;binary mode

;tenths of seconds

;tenths are zero

;clear lockout flag

;normal irq

;update locked out

;set lockout flag

;tod2 offset

;storage offset

;fetch time value

finished

;save in buffer

;loop

;test am/pm flag & adjust hours

dccO4 Ida todc

bmi dccO5

cmp#$12

bne dccO6

Ida #0

beq dccO6

dccO5 and #%01111111

cmp#$12

bes dccO6

sed

adc #$12

eld

dccO6 sta todc
;

;test for alarm time...

bit aflg

bmi dccO9

Idy #1

dccO7 Ida altc.y

emp todc.y

bne dccO9

dey

bpl dccO7

j

;sound alarm...

Ida #15

sta sigvol

sta frelo3

sta frehi3

Idx #250

Idy #33

stx surel3

sty vcreg3

dey

sty vcreg3

j

;test for stroke of midnite..

dccO9 Idy #2

j

dcdO Ida todc.y

bne dcc16

dey

bpl dec10
;

;test for leap year...

Ida tdtc + 2

jsr bedof

Idx #$28

Isr a

bes dcc11

Isr a

bes dcc11

inx

dcc11 stx clut+1

j

;bcd hours

;it's pm

;not midnite

;set hours to midnite

;mask am/pm bit

fit's noon straight up

;decimal mode

;change to 24 hours

;binary mode

;converted hours

;check flag

;alarm not enabled
•nffeotjOTTScl

;alarm time

;check against tod

; not time

;loop

;max volume

;set frequency

;duration

;sawtooth waveform

;sustain/release

;attack/decay

;gate voice

;todc offset

;fetch time value

;not midnite

;loop

;current year

;change to binary

;divide by 2

;odd year

;divide again

; non-leap year

;leap year

;last day in feb.

;adjust date for end of month...

Ida tdtc

jsr bedof

65

;fetch month

;change to binary

dcc12

dcc13

dcc14

dcc15

tax

dex

Ida tdtc + 1

emp clut.x

bne dcc14

cpx #11

bne dcc12

Ida tdtc + 2

jsr idv

sta tdtc + 2

Ida #1

bne dec13

Ida tdtc

jsr idv

sta tdtc

Ida #1

bne dec15

jsr idv

sta tdtc + 1
;

;decode date for display..

dcc16

dcc17

Ida tdtc

jsr bedase

emp #'0

bne dcc17

Ida #32

sta tdta

stx tdta + 1

Ida tdtc + 1

jsr bedase

sta tdta+3

stx tdta+4

Ida tdtc + 2

jsr bedase

sta tdta+6

stx tdta+7

;

;decode time for display..

Ida todc

jsr bedase

sta toda

stx toda+1
;

Ida IUUU t 1

jsr bedase

sta toda+3

stx toda+4

Ida todc+2

jsr bedase

sta toda+6

stx toda+7

;display time & date...

Ida dflg

bne dcc23
I

;calendar lookup offset

;current day

;last day of month

;not end of month

;notdecember

;current year

;bump year

;save new year

;set month to January

;current month

;bump

; new month

;set day to 1st of month

;bump day

; new day

;current month

;decode to ascii

; blank leading zero

;save tens

;save units

;current day

;current year

;hours

(ITliriUlco

; seconds

;display inhibited

;display on 40 column screen...

dcc18

dcc19

dcc20

dcc21

dcc22

Ida cflg

Idy #7

sta vlram+32,y

sta vlram + 72,y

dey

bpl dcc19

Idx rflg

Idy #7

Ida toda.y

cpx #0

beq dcc21

ora #128

sta vcram+32,y

Ida tdta.y

cpx #0

beq dcc22

ora #128

sta vcram + 72,y

dey

bpl dcc20
j

;display color

;offset

;color

;loop

; normal/reverse flag

;offset

;fetch time

;test reverse flag

; not reversed

; reverse

;fetch date

;display on 80 column screen...

Ida #>scram1

Idy #<scram1

jsr setram

Idx #<toda

March 1988: ^

;address for...

;time display

;set up vdc ram

;petascii time

Volume 8, Issue O5

Idy #>toda

jsr dtod

Ida #>scram2

Idy #<scram2

jsr setram

Idx #<tdta

Idy #>tdta

jsr dtod

;set 80 column attributes...

Ida #>atram1

Idy #<atram1

jsr setram

jsr atrst

Ida #>atram2

Idy #<atram2

jsr setram

jsr atrst

bit mode

bpl dcc23

jmp crti

dcc23 jmp (irqa)

;

;display time or date

dtod stx dtod02

sty dtod02 + 1

Idy #0

dtodOl .byt$b9

dtod02 * = *+2

beq atrst3

jsr wvdcm

iny

bne dtodOl
;

;set up display attributes

atrst Idy #8

atrsti Ida cflg

Idx rflg

beq atrst2

ora #%01000000

atrst2 jsr wvdcm

dey

bne atrsti

atrst3 rts

;set up vdc ram address

setram Idx #upreg

jsr wvdcr

inx

tya

jmp wvdcr

■

jchrout intercept & trap

crdy pha

bit mode

bpl crdyOI

Ida dflto

cmp#3

bne crdyOI

Ida dflg

bne crdyOI

dec dflg

crdyOI pla

.byt32
kn/M ito \A//"\r r^hr^i it
USOUla .WOI Ui llUUL

bit dflg

bpl crdyO2

inc dflg

crdyO2 rts

;

;convert bed to petascii

bedase jsr bedbin

pha

txa

ora #48

tax

pla

ora #48

rts

;

The Transactor

;display

;address for...

;date display

; petascii date

;display

;addressfor...

;time attribute

;set up attributes

;addressfor...

;date attribute

;set up attributes

.

;40 column mode

;bypass rest of irq

;continue irq

;source address

•nffcot.UllotJl

;lda llhh.y op-code

;source address

;end of string

;outputto8563

;loop

;counter

;get color

;no reverse display

; reverse

;output to 8563

;loop

;update register

;write

;swap hi byte

;save printing char.

;in 40 columns

;output device

; not screen

;test display flag

;display inhibited

; block display

; recover character

;jsr op-code

.norma

;no reset needed

;clear for display

;bcd to binary

;save tens value

;units value

;change to petascii

;hold

;fetch tens

bed digit to 2 binary digits

bedbin pha

and #15

tax

pia

Isr a

Isr a

Isr a

Isr a

rts

;

bed digit to 1 binary digit

Dcdof jsr bedbin

tay

txa

clc

bedofi dey

bmi idv01

finished

adc #10

bne bedof1

increment date value

dv sed

adc #1

eld

dv01 rts

j

alternate basic reset

alrst jsr start

Ida #0

sta rptflg

.byt$4c

alrsti * = * + 2
;

calendar lookup table

slut .byt$31

.byt$28

.byt$31

.byt$30

.byt$31

.byt$30

.byt$31

.byt$31

.byt$30

.byt$31

.byt$30

.byt$31

*

program storage

keystr .byt 'clk',0

fig * = * +1

I

=================

end

;save bed value

;mask tens nybble

;units in .x register

;fetch bed value

;shift tens nybble

;bcd to binary

;tens value

; units

; counter

;decimal mode

; binary mode

; restart clock

; repeat off

;jmp llhh op-code

; reset jump

;jan

;feb

;mar

;apr

;may

;jun

;aug

;sep

;oct

;nov

;dec

;display lockout

=============

Listing 5: Assembler source code for "clk5632"

put"@0:elockset.src

opt nos

*

♦ clock & alarm setup

♦ written 12-02-85 w.j. brier *

♦ revised 1-18-87

♦ copyright (c) 1985

♦ all rights reserved

*

i

n

♦ use with clock-calendar 128 <

* i

♦ set time of day: sys 5632,0 <

♦ set alarm time: sys 5632,1 <

*

♦ enter time in 24 hour format ♦

♦ <« program assignments >» ♦

66

;system vectors & pointers...

ndx

mode

color

keychk

curon

curofi

curof2

sigvol

tod2

mmu

chrout

getin

plot

;

= $d0

= $d7

= $f1

= $033c

= $cd6f

= $cd9f

= $cdac
;

= $d418

= $ddO8

= $ffOO

j

= $ffd2

= $ffe4

= SfffO

;miscellaneous pointers..

ptr

ctr

= $fa

= $fc

;clock-calendar locations

altc

aflg

= $131e

= $1320

;video constants...

wht

cr

del

esc

right

clr

yel

cyn

= 5

= 13

= 20

= 27

= 29

= 147

= 158

= 159

j

♦ =$1600

;#

;

##########

; keyboard queue

;40/80 column mode

; next attribute

;key decode vector

;flash cursor

;kill cursor (40 col)

;kill cursor (80 col)

;volume control

;time of day clock #2

;memory configuration

;output a byte

;get a byte

position cursor

;zero page pointer

; counter

;alarm register

;alarm enable flag

;white text

;carriage return

.delete

.escape character

;cursor right

;clear screen

;yellow text

;cyan text

;5632

###

#

;# c-128 time/alarm setup #

;# #

;#################

J

; initial setup...

stim and #1

sta sflg

Ida color

pha

Ida mmu

pha

Idx #14

stx mmu

inx

stx sigvol

Ida #183

sta keychk

jsr chime

Ida #clr

jsr chrout

j

;display input prompt...

stirnOI

•fpfph 1 1

Idx #2

Idy #0

jsr plota

Ida sflg

dol a

tax

Ida ptab.x

Idy ptab + 1,x

jsr prnt

Idx #2

sec

tya

sbc #7

tay

jsr plota

jsr clrq

sta ctr

.IC/IUII Uo<^i ii ipui. . .

stimO2 sei

jsr curon

March 1988

;mask garbage &...

;set entry mode flag

;current attribute

;save

; configuration

;save on stack

;enable kernal

;maximum volume

; bypass f keys

;signal user

;clear screen

;row

;column

position cursor

;entry mode

■Hoi ihlp,UUUUIU

;becomes prompt offset

prompt address

;output

;row

;generate column value

position cursor

;clear keyb'd queue

;clear input counter

interrupts off

.flash cursor

: Volume 8, Issue O5

cli

stimO3 jsr getin

beq stimO3

pha

bit mode

bpl stimO4

sei

jsr curof2

cli

jmp stimO5

stimO4 i^r rurofiWill 1 I^^^T J^' V^^JI \Jl 1

;filter & store input...

stimO5 pla

Idy ctr

beq stimO6

cmp #del

beq stimOl

stimO6 cpy #4

bcc stimOT

cmp #cr

bnp stimO2

beq stimO8

stimO7 cmp#'O

bcc stimO2

cmp #':

bcs stimO2

jsr chrout

sta buf.y

inc ctr

cpy #1

bne stimO2

Ida #right

jsr chrout

imn ^timOP

;encode time into bed..

stimO8 Idx buf

Ida buf+1

jsr ascbed

cmp #$24

bcc stimiO

stimO9 jsr buzzer

jmp stimOl

stimiO sta todc+2

Idx buf+2

Ida buf+3

jsr ascbed

cmp #$60

bcs stimO9

sta todc+1

Ida #0

sta todc

;confirm time entry...

Idx #4

Idy #0

jsr plota

Ida #<timp3

Idy #>timp3

jsr prnt

jsr chime

jsr clrq

stim11 jsr getin

cmp#'n

beq stim15

cmp #'y

bne stim11

Ida sflg

beq stim12

j

;interrupts on

;fetch keypress

;no input

;save keypress

;40 columns

;kill 80 col cursor

"kill 40 pnl pnr^nrvrN.ll 1 t-T\J \s\Jl UUIOUI

retrieve keypress

;fetch count

;input deleted

;more input needed

■not ^rptt irn^

finished

;out of range

;out of range

;echo digit

;store

;bump character count

;loop

;jump over colon

;loop

;fetch hours (tens)

;fetch hours (units)

;convert

; illegal value

;reenter

;save

;fetch minutes (tens)

;fetch minutes (units)

;convert

;illegal minute value

;save

;zero seconds

;'correct?'

;fetch keypress

;abort

;loop

;setting tod

;set alarm time & enable flag...

Idx todc + 2

Idy todc + 1

stx altc

sty altc +1

sta aflg

jmp stim15

;

;set time of day. ..

stim12 Ida todc + 2

beq stim13

cmp #$12

The Transactor

;entered hours

;entered minutes

;set alarm register

;set alarm flag

;exit

;hours
■te mirlnitpilo 111ILJI Illw

bcc stim13 ;isam

;convert 24 hour entry to 12 hour. ..

sed

sec

sbc #$12

eld

ora #128

sta todc + 2

j

;set clock registers...
cpj
ocl

stim13 Ida tod2 + 7

and #127

sta tod2 + 7

Idx #2

Idy #3

stim14 Ida todc.x

sta tod2,y

dex

dey

bne stim14
eta tnHPold IUU^

cli

j

; restore system & exit...

stim15 Idx #173

Idy #0

stx keychk

sty sigvol

pla-

sta mmu

pla

sta color

rts

;convert ascii to bed

ascbed and #15

sta ctr

txa

asl a

asl a

asl a

asl a

ora ctr

rts

position cursor

plota clc

jmp plot

;print to screen

prnt sta ptr

sty ptr +1

Idy #0

prntOI Ida (ptr),y

beq clrqOI

jsr chrout

iny

bne prntOI

;clear keyboard queue

clrq Ida #0

sta ndx

clrqOI rts

j

; buzzer

buzzer Ida #6

Idx #251

Idy #33

bne signal

j

;chime

chime Ida #50

Idx #250

Idy #17
;

;signal user

;decimal mode

;change to 12 hour time

; binary mode

;set pm bit

;save hours

;control register

;setting time of day

;todc offset

;tod2 offset

;fetch time &...

;store in cia #2...

;hardware registers

;loop
■ctart plopk,oLctl I UIUUIS

; enable f keys

;sound off

;restore configuration

;restore attribute

;units to binary

; store

;swap tens

;shift tens to...

;high nybble

;combine nybbles

;save text pointer

; offset

;fetch

;exit

;print

;loop

\

(

(

<

<

)

(

67

signal sta 54273

stx 54278

sty 54276

dey

sty 54276

rts

;

; input prompt look-up table

ptab .wor timpi ,timp2

j

;input prompts

timpi .bytyel

.byt 'correct time (hh:mm):'

.byt cyn,'[3 spcs]:\esc,'q\0

timp2 .bytyel

.byt 'alarm time (hh:mm):'

byt cyn,'[3 spcs]:',esc/q',0

timp3 .bytwht

.byt'is this time cor1

.byfrect(y/n)?',0

program storage

buf * = * + 4 ;input buffer

sflg * = * + 1 ;entrymode

todc * = * + 3 ;bcd time (s:m:h)

■ =============================

end

Listing 6: Source code for date-set program "dt5632"

put"@O:dateset.src

opt nos

* *

* calendar date setup *

* written 11 -29-85 w.j. brier *

♦ revised 1-18-87

* copyright (c) 1985 *

* all rights reserved *

* n

* use with clock-calendar 128 *

* set date: sys 5632 <

* enter date as: mm-dd-yy *

* program assignments *

system vectors & pointers...

ndx = $d0 ; keyboard queue
rr)or|p — 1IH7 "AC\IRC\ pnli imn mnrlpI lUUc — *PU 1 ,tU/OU UUIUI1II1 11 lUUc

color = $f1 ; next attribute

keychk = $033c ;key decode vector

curon = $cd6f ;flash cursor

surofl = $cd9f ;kill cursor (40 col)

surof2 = $cdac ;kill cursor (80 col)

sigvol = $d418 ;volume control

nmu = $ffOO ;memory management

Dhrout = $ffd2 ;outputabyte
getin = $ffe4 petabyte

plot = $fffO position cursor
j

miscellaneous pointers...

3tr = $fa ;zero page pointer

ztr = $fc ;counter

j

clock-calendar location...
rltr> — <k'\rZ'\O 'hrvH Hato in r>lnr»U-UlU — vplOl£ ,UUU Udlc 111 UlUUrS

video constants...

/vht = 5 ;whitetext

:r =13 ;carriage return

del = 20 ;delete

3sc = 27 ;escape character

ight = 29 ;cursorrk-ihtant

sir = 147 ;clear screen

/el = 158 ;yellowtext

:yn = 159 ;cyantext

^ = $1600 ;5632

#################

March 1988: Volume 8, Issue O5

;# #

;# c-128 calendar date setup #

;# #

;#################

j

;initial setup...

date Ida color

pha

Ida mmu

pha

Idx #14

stx mmu

inx

stx sigvol
Irla #1ft*3lUct It 1 OO

sta keychk

jsr chime

Ida #clr

jsr chrout

;

;display input prompt...

dateOI Idx #2

Idy #0

jsr plota

Idx #<datep1

Idy #>datep1

jsr prnt

Idx #2

Idy #14

jsr plota

jsr clrq

sta ctr

;fetch user input...

dateO2 sei

jsr curon

cli

dateO3 jsr getin

beq dateO3

pha

bit mode

bpl dateO4

sei

jsr curof2

cli

jmp dateO5

dateO4 jsr curofi

;

;filter & store input...

dateO5 pla

Idy ctr

beq dateO6

cmp #del

beq dateOI

dateO6 cpy #6

bcc dateOJ

cmp #cr

bne dateO2

beq dateO9

dateO7 cmp#'O

bcc dateO2

cmp #':

bcs dateO2

jsr chrout

sta buf.y

inc ctr

cpy #1

•beq dateO8

cpy #3
hno r\a\oC\0Ullc UdlcU£

dateO8 Ida #right

jsr chrout

jmp dateO2

j

;encode date into bed...

dateO9 Idx #2

Idy #5

datelO Ida buf.y

and #15

sta ctr

dey

Ida buf.y

asl a

asl a

asl a

The Transactor

;current attribute

;save

;configuration

;save on stack

;enable kernal

;maximum volume

; bypass f keys

;signal user

;clear screen

;row

;column

position cursor

;'today's date'

;display prompt

position cursor. ..

;to accept...

;user input

;clear keyb'd queue

;clear input counter

interrupts off

;flash cursor

interrupts on

;fetch keypress

;no input

;save keypress

;40 columns

;kill 80 col cursor

;kill 40 col cursor

; retrieve keypress

;fetch character count

;deleted

;more input needed

;not<retum>

;end of input

;out of range

;out of range

;echo character

;store

;loop

;jump over hyphen

;loop

;bcd offset

v ;ascii offset
;fetch units

;mask hi nybble

;store

;fetch tens

;shift lo nybble.. .

;to high

asl a

ora ctr

sta dbuf.x

dey

dex

bpl datelO
;

;test for leap year entry...

pha

Ida dbuf+2

jsr bebin

Idx #$29

Isr a

bcs date11

bcs date11

Idx #$30

date11 stx clut + 1
;

;combine w/units

;save bed digit

;loop

;save month value

;year entry

;change to binary

;non-leap year test value

;divide year by 2

; non-leap year

;bump test value

;test value

;check for valid input month...

pla

bne date13

date12 jsr buzzer

jmp dateOI

date13 cmp #$13

bcs date12

;

;check for valid input day.

jsr bebin

tax

dex

Ida dbuf+1

beq date12

cmp clut.x

bcs date12

;confirm entry.. .

Idx #4

Idy #0

jsr plota

Idx #<datep2

Idy #>datep2

jsr prnt

jsr chime

jsr clrq

date14 jsr getin

cmp#'n

beq date16

cmp #'y

bne date14

j

;input month

;not zero month

;error

;reenter

;too high

;change to binary

;make table offset

.entry day

;zero for day

;table

;too high for month

;'is this correct?'

;fetch keypress

;abort

;loop

transfer date to calendar storage...

Idx #2

date15 Ida dbuf.x

sta tdtc.x

dex

bpl date15

j

; restore system & exit...

date16 Idx #173

Idy #0

stx keychk

sty sigvol

pla

sta mmu

pla

sta color

rts

;offset

;store in calendar

;loop

;enable f keys

;shut off sid

;restore configuration

; restore attribute

;change bed digit to binary digit

bebin pha

Isr a

Isr a

isr a

Isr a

tax

pla

and #15

clc

bebin 1 dex

bmi bcbin2

adc #10

bne bebin 1

bcbin2 rts

68

;save bed digit

;shift tens nybble...

;to lo position

;becomes tens counter

;fetch bed digit

;mask tens nybble

;step tens counter

finished

;add 10 to units

;loop

;

; buzzer tone

buzzer Ida #6

Idx #251

Idy #33

bne signal
j

;chime tone

chime Ida #50

Idx #250

Idy #17

j

;signal user

signal sta 54273

stx 54278

sty 54276

dey

sty 54276

rts

;

;clear keyboard queue

clrq Ida #0

sta ndx

clrqOI rts

;

position cursor

plota clc

jmp plot

j

;

print to screen .

prnt stx ptr

sty ptr +1

Idy #0

prntOI Ida (ptr).y

beq clrqOI

jsr chrout

iny

bne prntOI

j

;calendar lookup table

clut .byt$32

.byt$29

.byt$32

.byt$31

.byt$32

.byt$31

.byt$32

.byt$32

.byt$31

.byt$32

.byt$31

.byt$32

j

;user prompts

frequency

;duration

;sawtooth

;triangle

;gate tone on

;string address

;offset

;fetch

;loop

;jan + 1

;feb+1

;mar+1

;apr+1

;may + 1

;jun+1

;jul + 1
;aug +1

;sep +1

;oct+1

;nov + 1

;dec + 1

datepi .byt yel,'today"s date:'

.byt cyn,'[3 spcs]-[2 spes]-'

.byt esc.'q'.O

j

datep2 .byt wht.'is this date'

.byt' correct(y/n)?',0

\

program storage

buf * = * + 6

dbuf * = * + 3

\

.end

;input buffer

;date encoding buffer

March 1988: Volume 8, Issue 05

Amiga Dispatches
by Tim Grantham, Toronto, Ontario

This edition of Amiga Dispatches will be the last to appear in the

original Transactor. I thought it fitting then, that this column cover a

subject I hope will soon be very important to many of you - moving up

from programming the Commodore 64/128 to programming on the

Amiga.

The idea for this column came from an electronic letter I received from

Tom Brown on PeopleLink. Tom wrote:

/ am sure I am not alone in my confusion, trying to leap the

gap from a 128/64 to the Amiga. Perhaps you could give some

advice to the flood ofnew Amiga users:

1) What is necessary for the beginning Amiga programmer to

learn (assuming a background in Basic and 6502 assembler)?

2) Where does one get that info Le. a suggested reading list?

3) What files should a newcomer look for in the public domain

for programming, disk doctoring, and so on?

4) Which programming language? Look for a Basic compiler or

go the route with C (or even ML)?. Which C compilers to use

without breaking the budget?

As I have discussed in previous columns, the journey from the land of

8-bit machines to the Olympian heights inhabited by the Amiga is not

an easy one. For me, and I suspect for most others, it meant not only

learning an entirely different operating system but learning C as well.

(The fruits of my efforts can be found in Keep yl.l, which I have

posted to all the major information networks and which will be

available on the next Transactor Amiga disk.) For this edition of AD, I

approached a number of people who have climbed that steep learning

curve and asked them to suggest ways to make it less arduous and more

enjoyable. I suggested that they target their answers to the person I

consider to be a typical Transactor reader - one who is fairly well

versed in Commodore BASIC; who has some acquaintance, at least,

with 6502 assembly language; who is prepared to spend some time and

money on books and tools; but who has little experience or knowledge

of the more complex operating systems found on multi-user computers

and on the Amiga.

Many people consider C to be the 'natural' programming language for

the Amiga. Jim Butterfield, however, has had his Amiga for over two

years and very little of that time has been spent programming in C. A

friendly programming environment is important to Butterfield, and C,

though powerful, has never been called friendly. He suggests that those

wishing to start programming the Amiga consider using AmigaBA-

SIC: "Though generally ignored, AmigaBASIC is very good - a very

nice, very fast BASIC." Certainly not least among its virtues is the price

- AmigaBASIC is supplied free with all models of the machine.

There are some adjustments that have to be made: "Losing line

numbers is a bit of a shock at first, but you soon get used to it. Note also

that AmigaBASIC provides only 7 digits of accuracy, not 10, like

Commodore BASIC, and you must make provision for that in your

code."

Jim points to other advantages of starting with AmigaBASIC: a chance

to become familiar with the Intuition environment while working with a

familiar language; good documentation and good example programs

provided with the machine; and the ability to call Amiga library

functions from within BASIC source code.

While Nick Sullivan, Transactor editor and author of TransBASIC,

Music Assembler and many other programs for the 64, grudgingly

agrees with Jim that AmigaBASIC may be a good place for the novice

Amiga programmer to start, he feels that eventually the serious pro

grammer does best to learn C. The data structures used by the Amiga's

OS are documented as C structures, and most of the examples in the

programming manuals are written C, as in fact was most of the OS.

There are currently no "C for the Amiga" type books for those new to C.

Nick suggests C Primer Plus by Mitchell Waite, Stephen Prata and

Donald Martin, published by The Waite Group. This text, though not

without its faults, does provide a reasonably thorough and accessible

introduction to C. Nick also recommends having the Kernighan and

Ritchie "bible" on C handy for reference.

Also recommended by all those I spoke with are the official

Commodore-Amiga reference manuals: the Amiga Intuition Reference

Manual, the two ROM Kernel Reference Manuals, the Hardware

Reference Manual (all published by Addison-Wesley), and the Amiga-

DOS Manual, published by Bantam Books. In every case it was

suggested that the beginner start with the Intuition manual.

The two commercial C compilers come from Lattice and Manx. They

complement each other in terms of strengths and weaknesses; neither

offers the perfect solution. Both, however, are excellent compilers.

Though Nick himself uses the Manx Aztec compiler, he acknowledges

that beginners may find the Lattice compiler somewhat friendlier, with

its more stringent type checking and its more verbose error messages.

In addition, it is the "official" Commodore-Amiga compiler and was

developed in cooperation with C-A. Lattice claims that their latest

revision (4.0) has overtaken the Manx product in terms of the efficiency

of the code it generates.

The Aztec C provides such useful features as precompiled header files

and support for the other CPUs in the 68xxx family - neither of which is

provided by the Lattice product.

The Transactor 69 March 1988: Volume 8, Issue O5

Both compilers provide extensive documentation and a number of

utilities. Neither will teach you how to program in C.

Once you have a compiler, you're up and running - you will require no

other software to write programs. However, there are a number of

utilities so useful to the Amiga programmer as to be deemed essential.

At the top of the list, as far as Nick is concerned, is a command shell,

such as the PD csh by Matt Dillon, or the Shell program produced by

Metacomco. These provide command line history, editing and aliases to

minimize the amount of retyping necessary. Next on the list of recom

mended support software is a recoverable RAM disk, such as the NVO:

supplied with the Comspec RAM board, or the PD program RRD, by

Perry Kivolowitz. These are similar to AmigaDOS RAM: device but

retain their contents during a warm reboot - which saves you having to

restock RAM after a crash during program development. Also recom

mended is a good text editor. Nick user UEdit, a fine programmable

shareware editor by Rick Stiles.

Nick also recommends Power Windows, published by Inovatronics.

This product lets you interactively set up the windows, menus, screens,

gadgets andrequesters you want to use in your program. It then

automatically generates the C, Modula 2 or Assembler source code for

these Intuition structures. It can import images you have stored as

"brushes" in Deluxe Paint, and convert them to Image structures for

use in menus and gadgets. Doing this sort of thing by hand can be

enormously time consuming, as I can tell you, having spent an entire

evening drawing four simple gadgets on graph paper and converting

them into hex data. "If Power Windows had been out right at the start,"

says Nick, "there might be a lot more Amiga software available now!'

Other useful utilities mentioned by Sullivan include Metadigm's Meta-

scope windowing debugger, Manx's SLD source level debugger (see

below), Gimpel Lint, a source-code syntax checker by Gimpel Soft

ware, Deluxe Paint II by Electronic Arts and Blitzfonts, a text

display speedup program by Hayes Haugen.

Chris Zamara, YATE (Yet Another Transactor Editor), and Sullivan's

programming partner, has some advice for new Amiga programmers

trying to make sense of the machine: "Don't read the RKM (ROM

Kernel Manual) graphics documentation first! It think it was written

before the Intuition manual and goes into a lot of detail that is confusing

to someone just starting. Start with the Intuition Manual. As long as you

know where to find the RastPort pointer for your screen or window or

whatever, you're ready to start drawing."

Zamara had had some formal training in high level languages before he

entered the 8-bit world but was new to C. His first attempt to read the

Intuition Manual left him quite confused. However, after reading the

Kernighan and Ritchie text and spending many hours poring over the

Lattice C compiler manual, he gave it another try. "Once I got comfort

able with structures and pointers, I reread the Intuition Manual. Then

everything fell into place."

Larry Phillips is one of the Sysops of the AmigaForum on CompuServe.

By day a mild-mannered mainframe technician, at night he communes

with all manner of Commodore cultists. Larry does not share Transac

tor's C language bias, being instead a devotee of Modula-2, the lan

guage created by Niklaus Wirth as a successor to his earlier Pascal.

Larry's advice to 64/128 programmers: "For those who are familiar

with COMAL, I always recommend Modula-2, and now that I have

Benchmark (the commercial Modula-2 compiler written by Leon

Frenkel) it's the one I recommend specifically. Some books for Modula-

2 I would recommend: Modula-2, A Seafarer's Guide and Shipyard

Manual, by Edward Joyce; and Modula-2 Primer, by Stan Kelly-Bootle

(a Waite Group book). These are aimed at beginners, and are tutorial in

nature. One a little more advanced is Modula-2, A Software Develop

ment Approach, by Gary Ford and Richard Wiener. This one is very

good, and really gets into program construction, especially in larger

projects where more than one programmer is involved.

"Aficionados of Basic have the choice of going to AmigaBasic, with its

very COMAL-like structures and hopeless user interface; or going to

another language. Others available are Forth, APL, Fortran, C, Icon,

ARexx, LISP, Pascal, Draco, Pilot, LOGO, and probably a few I've

forgotten about. Of the above, PD or shareware versions are available

for Forth, C, Icon, LISP (XLisp), Draco, Pilot, and LOGO.

"For the assembler types, all I can say is, good luck wading through the

Amiga documentation and having to learn C to translate to a civilized

program. There is a book called Amiga Assembler Language Program

ming, by Jake Commander. This is not the greatest assembler book I've

seen, but will get them started and help them to understand the Amiga

ways of doing things."

Assembly language on the Amiga is a rather different proposition,

concurs Jim Butterfield. "68000 machine language is the same in

nature (as 6502 ML) but it's in a much more complex envirpnment."

That statement lies at the heart of the difference between single user

computers like the 64/128 and the multi-user, multitasking OS of the

Amiga.

Those who wish to program on the Amiga cannot assume they have the

machine to themselves. The Amiga's OS permits as many programs as

can fit into memory at once to run simultaneously. Those programs

must, therefore, behave as good Amiga citizens - requesting resources

such as memory and I/O devices rather than simply commandeering

them; sharing devices with other processes; and releasing resources

when finished with them. As I have written in previous columns, it's

rather like dealing with a pervasive, though efficient, bureaucracy.

The Amiga programmer is actively discouraged from delving into

Amiga Kernel libraries directly, for good reason: CBM is constantly

improving the OS. They will guarantee only one unchanging address

between revisions: $00000004, otherwise known as AbsExecBase.

This contains the address of ExecBase, the portal to the Exec library.

All routines in Exec, including OpenLibrary(), which is used to open

the other libraries, are addressed as offsets from ExecBase. The address

of any routine, of any library, even of ExecBase itself, may change at

some future date. For example, Dale Luck, architect of much of the

Amiga's graphics libraries, has suggested that about 50K of Kickstart's

current code will be removed from ROM in 1.3 and put onto the

Workbench disk. This will make room in ROM for new graphics

routines. Dale didn't say what these routines will be for, but I think it

likely they will provide support for X-Windows. (For an explanation of X-

Windows, see the last edition of AD.)

The need to coexist with other programs and the necessity of accessing

system routines indirectly requires a fundamental change in attitude on

the part of someone used to programming a single user machine.

Rather than rolling up one's sleeves and digging in, one must learn to

keep all interaction with the system at arm's length. It means playing by

the rules, rather than inventing one's own. The reward is an enormous

gain in power. After all, you have 256K of optimized code in Kickstart

to tap, as opposed to the 16K of BASIC and Kernal ROM found in the

C64.

If you do decide to pursue assembly language on the Amiga, Butterfield

highly recommends Kickstart's Guide to the Amiga. Kickstart is an

The Transactor 7O March 1988: Volume 8, Issue O5

English technical journal. The editors have gathered together much of

the information published in the magazine, edited it and published it in

book form - rather like an Amiga version of Transactor's The Complete

Commodore Inner Space Anthology. Butterfield notes that copies are

hard to get in North America at present, but efforts are underway to

import them.

You will also need an assembler, of course. Charles Gibbs's A68k is a

PD assembler that is compatible with the assembler include files found

in the programmer's support disks, which are available from CBM

West Chester. Alternatively, these files are also included with commer

cial assemblers from Metacomco, HiSoft, Lattice and Manx, to name a

few.

AmiExpo

I shall finish up this edition of AD with the promised report on the

AmiExpo show held in New York, October 10-12. I was unable to

attend but Nick and Karl went and returned bearing a stack of press

releases. Attendance was over 8000 for the three days, with more than

50 vendors exhibiting. A brief summary of products of particular

interest to readers of the Transactor (or at least, of interest to me)

follows. All prices are in US dollars.

Byte by Byte were offering a self-powered RAM expansion board for the

A500: $299.95 unpopulated, $699.95 fully populated with 2 Mb of

RAM. Memory checking software is included... Discovery Software

International announced a C-Shell for the Amiga called Amnix that

provides over 40 resident commands, command line history and

editing, and environment variables for $49.95. They also announced

DX-16 and DX-11, Amiga emulations of the Hewlett-Packard HP-16C

programmer's calculator and the HP-11C scientific calculator respec

tively. Both fully multitasking programs are available for $49.95...

Synthia is a digital synthesizer program for creating IFF instruments. It

uses a variety of techniques, including additive, interpolative and

subtractive synthesis, and can modify existing instruments with such

sonic brushes as true reverb, comb filtration and waveshaping. It

includes an IFF music player and appears to be a very powerful

package. It's yours for $99 from The Other Guys... Other music

software demoed at AmiExpo included The Sound Quest, a Roland

D-50 synthesizer editor/librarian package by Sound Quest Inc. of

Toronto; and Roger Powell's long-awaited Texture port to the Amiga.

ASDG Inc. had a very strong presence at the show. Of particular

interest was the Satellite Disk Processor, an interface for the A1000

and A2000 that will support up to 56 SCSI devices and two ST-506

devices. ASDG claims the card uses its onboard 68000 CPU, 512 Kb

cache, DMA and MiyiU to provide over "400 Kb per second average

user through-put". Also announced were further details on the 2000-

and-1 expansion box for the A1000. This unit provides two Zorro I

slots (for cards designed to the original Zorro spec), five Zorro II slots (for

all those great A2000 cards), three IBM PC/AT slots (for the BridgeCard

and other PC/AT cards), one coprocessor slot (for the 68020/68881),

two 3.5 inch drive bays, one 5.25 inch drive bay and a 200 watt power

supply. The only thing it doesn't provide, at $799, is the A2000's video

slot...

Spirit Technology showed their Inboard internal memory expander for

the A500. The unit plugs into the 68000 socket and can provide up to

1.5 Mb of RAM and a battery-backed clock/calendar. The unpopulated

board sells for $279. There have been reports of severe damage to the

machines of some of those who have installed this board so caveat

emptor. It should be noted that Spirit Technology "guarantees Inboard

to be the finest and most reliable design available or your money back".

Whether this is a guarantee that the unit will actually work is open to

interpretation...

Manx's Jim Goodnow was showing the new Aztec C Source Level

Debugger. This product will answer the prayers of many, me not

least. It provides a facility called "back tracing", which allows the user

to display all active function names and the values of passed parame

ters. In addition, active frame context switching makes it possible to

examine the variables that are visible from any active function, and

reusable command macros can be used to customize the debugging

environment. The windowing capabilities of SDB let the user display C

source and command output separately, with a third window for

entering commands. All of these goodies and more are available for

$75. Manx also announced version 3.6 of their C compiler and declared

that a future release would include an ANSI standard compiler.

Spencer Organization, Inc. showed APL.68000 for the Amiga. Accord

ing to the company, the APL Interpreter supports APL multitasking

(whatever that is), is fully 'Intuitionalized' (my expression), is provided

with a full interface to Amiga graphics functions and has a built in APL/

ASCII terminal emulator. All this and more, folks, for only $99...

Meridian Software Inc., publishers of Zing!, were selling The Demon

strator. If you remember my description of the PD program Journal

a couple of issues ago, this program will ring a bell. It will record one's

interaction with the Amiga and play it back upon demand. One can

apparently add text windows and speech to create elaborate demos or

tutorials. In addition, one can control the speed of the playback. The

price: $39.95... Galileo sounds much like an Amiga version of the

excellent Sky Traveller program for the C64. It can be used to view

the sky from any point on earth for any date this century and displays

the constellations in nine different levels of brightness. The program

was developed by Mike Smithwick, an astronomer and computer

graphics artist currently working for NASA's Ames Research Center.

You can see the stars on your Amiga for $69.95...

That's all, folks!

I am sorry to say that this will be the last edition of Amiga Dispatches

written by me. Due to a number of recent changes in my personal life, I

no longer have the time for the many hours of research this column

requires. Rather, it will be spent on more important matters - my wife

Cate and my young son Alex.

I will be contributing the occasional article to the Transactor for the

Amiga: first on the list is the Amiga 2000 review I have promised for so

long. It will include a look at the B2000, otherwise known as the West

Chester 2000.1 have yet to finish putting it through its paces, but I can

tell you this: it's a significant improvement on the West German 2000.

I will be placing the AD keyboard into the capable hands of Don Curtis

from Denver, CO. His first column will appear in the premiere issue of

TA. In the meantime, let me know what you think: of life, love or the

68030.1 have drawn a great deal of pleasure from the electronic and

paper letters I have received while writing AD. I hope you will continue

to include me in your Amiga adventures. I can be reached at The

Transactor or electronically via:

CIS: 71426,1646

PeopleLink: AMTAG

BIX: dispatcher

GEnie: t.grantham

Bloom Beacon BBS: Tim Grantham

(416 297-5607)

m

The Transactor 71 March 1988: Volume 8, Issue O5

Change The Mouse

Pointer in AmigaBasic

Anthony Bryant

Winnipeg, Manitoba

...a short program to change the default mouse pointer to one ofyour own design...

Basic programmers may wish to use a custom pointer in a program, or

C or assembler programmers may wish to try out a new pointer design

(or sprite design) quickly and interactively. With AmigaBasic's LIBRARY

statement, you can use system functions besides those available di

rectly with Basic commands. Intuition's SetPointer() and ClearPointer()

functions will be used in this program to switch to a new pointer and

back to the default again.

Using Libraries in AmigaBasic

The arrow pointer is the default pointer used by Intuition so to change it

("it" in hardware is sprite 0), we have to "get into" Intuition. We can call

Intuition functions, as we can call functions in other system libraries, by

using the LIBRARY command. The LIBRARY command, given the

name of a library (in this case "intuition.library"), will make the

functions of that library available from AmigaBasic. The catch, how

ever, is that for LIBRARY to work, it needs the ".bmap" file associated

with the library being used, which gives Basic information about the

functions in the library, like their addresses in memory and what

parameters they accept.

Since the information contained in a ".bmap" file is specific to a

particular version of the operating system, the file should be custom-

made for the system you're using. The program "ConvertFD" in the

"BasicDemos" drawer on the AmigaBasic disk (version 1.2) will make a

".bmap" file from a "id" file, which contains more general information

about functions within a library. The "id" files for all libraries can be

found in the "fdl.2" directory on the AmigaBasic disk. You can create

the "intuition.bmap" file that you'll need with the command:

ConvertFD :fd1.2/intuitionJibid

You'll also need the .bmap file for the exec library, so run ConvertFD

on the file "execjib.fd" in the fdl .2 directory as well. You should keep

these files around for future programs; a good idea is to make a "libs"

directory on your AmigaBasic disk and put all your .bmap files there.

You can then use them with the LIBRARY statement by specifying the

full pathname of the files, like:

LIBRARY B:libs/intultion.libraryB

LIBRARY B:libs/exec.library"

etc.

(Assuming that your current directory when you run the Basic program

is somewhere on the same disk.)

Once the LIBRARY command has been used to link you with the

system library of your choice, you can call the routines by name,

passing them parameters just as in a C program. Routines that return

values must be declared with:

DECLARE FUNCTION FunctionName LIBRARY

using a '&' at the end of the function name if it returns a long word (as

most system functions do).

You've probably scanned the several demo programs that use the

LIBRARY statement to see how it works, and you may have looked

through the fdl .2 files to familiarize yourself with the names of all those

system functions that you are so eager to try. But you really need the

manuals - Intuition and ROM Kernal - to make sense of the libraries.

Intuition: The Manual

Chapter 4 of the Intuition manual explains the functions used to create a

custom pointer in a window:

SetPointer (Window, Pointer, height, width, xoffset, yoffset)

Changes the sprite definition in the given window, and

ClearPointer (Window)

Restores the default pointer in the given window.

The program that follows is a simple translation to AmigaBasic. It's

basically a matter of passing SetPointer() the right parameters, then

calling ClearPointer() to set the pointer back to normal again. We get

the pointer to the Window with the WINDOW(7) function, and the left,

width, and offsets for the pointer are just part of the sprite definition in

the DATA statements.

Passing SetPointer() the pointer to the sprite definition data itself is bit

trickier. Perhaps the easiest method would be to store the sprite

definition in an integer array and pass SetPointer a pointer to the array

via Basic's VARPTR function. The trouble with this approach is that

sprite definitions, like any data that needs to be accessed by the

graphics or sound hardware,.must be in "chip" RAM. An unexpanded

Amiga has chip ram only, so using an array would work fine, but the

program would stop working if extra RAM was added to the system. To

do the job properly, memory is allocated with the AllocMem() function

in the Exec library - we can tell AllocMem() to give us chip RAM. The

sprite definition is stored in the chip ram with a POKEW (POKE Word)

statement in a FOR.. .NEXT loop.

Before the program ends, the memory that was allocated is released

back to the system with FreeMem(). If this is not done, the memory

allocated will be lost until the next system re-boot.

To use the AllocMem and FreeMem functions, a LIBRARY command

for "exec.library" must be used. Also, since AllocMem returns a

longword result, it must be explicitly declared with DECLARE FUNC

TION.

When you run the program (Basic's main "run" window should be

active when you do this), it will display the new pointer until you click

The Transactor 72 March 1988: Volume 8, Issue O5

the left mouse button, at which point it will switch back to the default arrow (or whatever

you've set in Preferences) and the program will end. Not much use in itself, but you can use

the code to attach custom pointers to windows in your own programs.

Change the RESTORE command to try any of the four pointers defined in the DATA

statements, or try changing the data to make pointers of your own. To make your own

pointers, you'll need to know a bit about how sprite definitions work.

Creating Sprite Definition Data

The data that constitute the sprite definition are made up of two words per screen line for

position and colour information. (The first and last two words in the definition do not

actually describe the sprite, and should be zero in all definitions - the system will use these

words for its own needs.)

Both words together describe the colour of each pixel on a single horizontal line of the

sprite. A word is 16 bits, the maximum width of a sprite. The first word contains the LSB

(least significant bit) data and the second word has the MSB (most significant bit) data; the

two bits specify one of three possible colours, or transparency:

msb lsb

Colour 0 0 is transparent (blue)

Colour 0 1 is med intensity (red - hardware colour reg. 17)

Colour 1 0 is low intensity (black-hardware colour reg. 18)

Colour 1 1 is high intensity (red - hardware colour reg. 19)

A few examples of custom pointers are given in the program to show how the colours work

(the data is in hexadecimal). XPointer is a direct copy from the example given in C in the

Intuition manual; XPlain is a one-colour version.

'** Change mouse Shape via Intuition Custom Pointer **

DECLARE FUNCTION AllocMem& LIBRARY

LIBRARY "intuition.library"

LIBRARY "exec.library"

chip% = 2 'to tell AllocMem() we want chip ram

RESTORE XPointer 'which pointer we want

READ pHeight%, pWidth%, pXOffseWb, pYOffset%

pSize& = 2 * (2 * pHeight°/o + 3) '# of bytes required for sprite definition

mem& = AllocMem&(pSize&, chip°/o) 'allocate some chip ram

'** copy sprite data into chip ram **

FOR i& = mem& TO (mem& + pSize&) STEP 2

READ xo/o

POKEW i&,x%

NEXTi&

'♦♦ switch to our new pointer **

CALLSetPointerO/VINDOWfZJ.mem&.pHeighto/o.pWidtho/o.pXOffseto/o.pYOffseto/o)

PRINT "SetPointer"

PRINT "(Click left mouse button to ClearPointer)"

'** wait until user clicks left mouse button **

WHILE MOUSE(0)0-1

WEND

'** switch back to normal pointer **

CALL ClearPointer(WINDOW(7))

PRINT "ClearPointer8

'** free memory and close libraries **

CALL FreeMem(mem&, pSize&)

LIBRARY CLOSE

END

' sample custom pointer data follows

XPointer: 'three-colour pointer

DATA 9,9,-5,-4

DATA &H0000, &H0000

DATA &HC180, &H4100

DATA &H6380, &HA280

DATA &H3700, &H5500

DATA &H1600, &H2200

DATA &H0000, &H0000

DATA &H1600, &H2200

DATA &H2300, &H5500

DATA &H4180, &HA280

DATA &H8080, &H4100

DATA &H0000, &H0000

XPlain: 'one-colour (colour 01 only)

DATA 9,9,-5,-4

DATA &H0000, &H0000

DATA &H8080, &H0000

DATA &H4100, &H0000

DATA &H2200, &H0000

DATA &H1400, &H0000

DATA &H0000, &H0000

DATA &H1400, &H0000

DATA &H2200, &H0000

DATA &H4100, &H0000

DATA &H8080, &H0000

DATA &H0000, &H0000

SPointer: 'three-colour separated

DATA 9, 9,-5,-4

DATA &H0000, &H0000

DATA &H0FC3, &H0000

DATA &H3FF3, &H0000

DATA &H30C3, &H0000

DATA &H0000, &H3C03

DATA &H0000, &H3FC3

DATA &H0000, &H03C3

DATA &HC033, &HC033

DATA &HFFC0, &HFFCO

DATA &H3F03, &H3F03

DATA &H0000, &H0000

BPointer: 'two-colour box (colour 01 and 11)

DATA 13,16,-8,-6

DATA &H0000, &H0000

DATA &HFFFE, &HFFFE

DATA &HC106, &HC006

DATA &HC106, &HC006

DATA &HC106, &HC006

DATA &HC106, &HC006

DATA &HC106, &HC006

DATA &HFFFE, &HC006

DATA &HC106, &HC006

DATA &HC106, &HC006

DATA &HC106, &HC006

DATA &HC106, &HC006

DATA &HC106, &HC006

DATA &HFFFE, &HFFFE

DATA &H0000, &H0000

n

The Transactor 73 March 1988: Volume 8, Issue O5

FACTS BEHIND THE FLASHES

The Amiga Startup Messages
By Betty Clay, Arlington, Texas

It is not unusual for a computer to try to communicate with its owner But if something is wrong with your Amiga, you might see:

during the start-up routines. Remember the flashing of the lights on the

4040 and 8050 disk drives? On my 8050 drive, two flashes of the green

LEDs indicate that things are fine. More than two indicate a problem,

and if there were such a thing as a local Commodore repairman, he

would be helped if he knew how many times my drive was flashing the

lights.

Another way the earlier Commodores communicated with us was by

printing the number of bytes free on the screen at startup. If the

number was wrong, we knew that some of the RAM had failed to

accept data during the startup routine, since the computer would

assume that the end of BASIC was at the last location in which it could

write and read back data. If a memory chip became bad, the number of

bytes free would be the same as the number to which the processor had

successfully written and read back its startup data.

The Amiga has a rather elaborate set of diagnostics, if we only know

how to interpret them.

THE AMIGA START-UP ROUTINE

When you turn on your Amiga, it has a rather long and complicated set

of routines through which it must go before it can allow you to interrupt

it. As the startup process goes along, Amiga is trying to let you know

whether all is well. There has been a small problem with this, however

- Commodore forgot to tell us what the signals mean!

Here is a list of the start-up routine activities:

1. Clear all of the chips of old data.

2. Disable DMA and interrupts during the test.

3. Clear the screen.

4. Check the Hardware (make sure the 68000 is working)

5. Change the screen color to show whether this test was passed

6. Do a checksum test on all the ROMS

7. Change screen color to show if ROMS passed the test

8. Begin the system startup

9. Check the RAM at $C0000, and move SYSBASE there

10. Test all of the chip RAM

11. Change the screen color to show if the RAM passed the test

12. Check to see if software is coming in OK

13. Change the screen color to show if the software test is passed.

14. Set up the chip ram to receive data.

15. Link the libraries.

16. Check for additional memory and link it in if found

17. Turn the DMA and Interrupts back on.

18. Start a default task.

19. Check to see if the computer is using a 68010, 68020, and/or

68881.

20. Check to see if there is an Exception (processor error)

21. If so, do a system reset.

AND THE MESSAGES ARE IN TECHNICOLOR!

As this routine is taking place, the Amiga is sending you messages with

the screen colors. If all is well, we usually see this sequence:

Dark gray The initial hardware tested OK. The 68000 is running and

the registers are readable

Light gray The software is coming in and seems OK

White The initialization tests were all passed

Red If there is an error in ROM

Green If there is an error in the Chip RAM

Blue If an error was found in the custom chips

Yellow If the 68000 found an error before the error trapping soft

ware (the guru) was up and running

The most likely of these errors seems to be the error in Chip RAM. Only

this week, I saw an AMIGA 500 flash a brilliant green screen when an

expansion RAM board was put in hastily, and did not settle in correctly.

A repositioning of the board corrected the problem in that case. I have

not yet seen a red, blue, or yellow screen indicator.

KEYBOARD MESSAGES

The Amiga keyboard is not as dull an object as I had originally thought,

either. It contains a processor of its own - a Rockwell/NCR/MOS

Technology 6500/1. It also has 2K of ROM, 64 bytes of RAM, and four

I/O ports of eight bits each. There is a built-in crystal oscillator running

at 3Mhz, also. All but the very earliest of keyboards also have a

"watchdog timer" which will reset the keyboard's processor if it stops

scanning the keyboard for more than 50 milliseconds.

It is possible for the computer to be powered up before the keyboard is

plugged in, in which case the keyboard will have to go through its self-

test after it is connected to the computer. Most of us, however, will have

the keyboard attached, and the self-test will take place while we are

watching the screen, changing disks, etc.

The keyboard self-test consists of four steps. First it does a checksum on

all of the ROMs. Then it checks the 64 bytes of RAM, and then the timer

is tested. Then the keyboard must achieve proper synchronization with

the computer. It does this by slowly clocking out 1 bits until it receives a

handshake pulse from the computer. Once this pulse is received, the

keyboard must inform the computer of the results of its self-test. Should

the self-test fail, the code for failure can be sent to the computer without

waiting for the handshake pulse.

IN CASE OF FAILURE

After informing the computer that the self-test has failed, the keyboard

will then try to notify the user that it is in trouble. This is done by

blinking the CAPS-LOCK light. Here is the code:

One blink The keyboard ROM check failed

Two blinks The keyboard RAM check failed

Three blinks The watchdog timer test failed

Four blinks A short exists between two row lines or one of the seven

special control keys

The last check had not been implemented at the time my ROM Kernal

Manual was printed, but was in the plans. It would be unusual for the

user to have typed anything during this self-check time, but if any keys

have been depressed, the codes for those keys would then be sent to

the computer, a "terminate key stream" code would be sent, and then

the CAPS LOCK LED shut off, indicating the end of the keyboard

startup sequence.

Should you be so unfortunate as to have your Amiga get into difficulties,

perhaps these codes will help you and your repair man to put it in good

health again.

The Transactor 74 March 1988: Volume 8, Issue O5

News BRK

Submitting NEWS BRK Press Releases

If you have a press release you would like to submit for the NEWS BRK column,

make sure that the computer or device for which the product is intended is

prominently noted. We receive hundreds of press releases for each issue, and ones

whose intended readership is not clear must unfortunately go straight to the trash

bin. It should also be mentioned here that we only print product releases which are

in some way applicable to Commodore equipment. News of events such as

computer shows should be received at least 6 months in advance.

Transactor News

New Editorial Assistant Mends Our Ways

There's just been an important addition to the staff at The Transactor, and that

means good news for authors and anyone else sending mail to our editorial

department. Moya Drummond - our hew editorial assistant - is on the job now, and

she's correcting some of our bad habits, mostly in the area of responding to mail. If

you sent us an article recently, chances are you've either heard from Moya or will

be hearing from her soon, just to let you know we received it. You will also find out

the fate of the article once we decide, which means you'll know if we plan to use it

before you see it in print - correcting another nasty habit that we're happy to lose.

Moya is doing wonders for organization around here, and if you have questions

about anything you've sent to the editorial department, chances are she'll be able to

help you out. Questions about advertising in the Transactor should also be directed

to Moya (like everyone at the T., Moya wears many.hats). We thank you for bearing

with us in the past, and if you've tried to communicate with us on something but

given up, please give us another chance!

Avoid Duty and Federal Taxes on Quick Brown Boxes

We've recently made arrangements to supply Quick Brown Box battery backed

RAM cartridges via Transactor mail order. In Canada the prices are identical to the

US price plus the exchange - no duty or 12 % FST! Ontario residents must still add

7 % provincial sales tax though.

The Quick Brown Box is a proven product that we're rather pleased to make

available. For more details see the Mail Order section of News BRK. For more

information than that, call Brown Boxes Inc. at (617) 275-0090.

Combination Magazine Subscriptions

In case you haven't heard, the premiere issue of Transactor for the Amiga will be

released this January. Subscription prices are identical to the Transactor Classic (as

it's become known around the office). Depending on when this issue hits the

streets, you may still have time to subscribe at HALF the regular price. Offer ends

January 1st, 1988. (Sorry, but Herman insists).

Disk subscriptions for the Amiga magazine will be regular price after January 1st,

too. We'd like to point out, however, that there are still a couple of ways to save.

With combination subscriptions to Transactor Classic and the 5V4B disks we offer a

choice of free merchandise, but no price break. With combination subscriptions to

T/A and the T/A Disk, we offer a price reduction on the total, but no merchandise

selection. You can also get a combination break on a subscription to both

magazines. We're not offering "cross-combination" price breaks - that would make

things too complicated (e.g. T/A with T Classic Disks, or T Classic with T/A Disks).

But, if you order subscriptions to both mags AND both disks, you not only get a

break on the total, but you're also entitled to a FREE T-Shirt or any other item on

the list at the top. Check out the order card at center.

If you're already subscribing to Transactor Classic, we're allowing the addition of T/

A subscription items for the difference in price. So if you're in the U.S. and you're

getting T Classic, the combo price would be $27.00, minus $15.00, equals $12.00

for adding a sub to Transactor for the Amiga. Same applies to all combos for "Both

T& T/A" (see card).

Subscription Switch

With the Transactor for the Amiga coming this January, many of our readers will

want to switch to the new mag for the higher concentration of Amiga material. To

switch to the new magazine, there's no charge. Simply put your name and

subscription number on our postage paid card and check off the appropriate box.

Please don't omit your name as this gives us a cross-reference to ensure we change

the correct subscriber record.

Originally we planned to impose a February deadline for switching subscriptions.

Then we considered the situation where a reader might not get an Amiga until

March and disallowing the transfer would be unfair. Officially, therefore, the

subscription switching option will never be discontinued.

Problems Keep Life Interesting

There's a first time for everything and last issue was our first to be shipped in poly

bags. One reason for the bags was to protect the magazine against the hazards of

door-to-door delivery. Another was to keep the mailing label off[he cover. The first

reason panned out rather well, but the second didn't. Ooops. Please accept our

apologies - the labels will be glued to the outside of the bag from now on.

When we looked into the poly bag idea, we just assumed we would be printing the

labels on paper, as we had always done. Then we made a mid-stream modification

and decided to print the labels on sticky-backs to make it easier to complete our

business reply card for things like orders and renewals. Please don't throw this

away when you get your copy. Even if you have no intention of sending us the

order form in this issue, the reply card makes a tidy spot for the label. It means your

magazine will carry your ID in case you lend it out, and if you should move, your

change of address notice is already half completed - just add your new address and

pop it in the mail. It's also a good place to keep a record of your subscription

number and expiry date, all of which will be lost if it makes it to the trash bin.

Early Renewal Notices

We also had a report that a subscribers' first copy arrived containing a renewal

notice. So far there's only been one case reported so it could have been a fluke.

However, if it ever happens again, even though it won't (fingers crossed), always

check the top right corner of the mailing label for the official expiry issue. The data

printed there is extracted directly from two fields in our data base. The same two

fields are used by our "expiry algorithm" to determine when a subscription gets

discontinued. A separate program determines who should be sent a renewal notice.

But in this case, neither was responsible - in fact, our poly bagging service has

asked that we place the blame on him, but we don't like doing that.

Two Separate Subs - Mag Not Included With Disk.

Our last issue detailed two incredible offers regarding the new Transactor for the

Amiga. After the sentence that listed the prices for a disk subscription there was a

sentence that read, "You'll get a disk with every magazine containing all the

programs...". This has been misinterpreted by some as meaning the price of a

disk subscription includes a magazine subscription. We thought we made it clear

that magazine and disk subscriptions carried separate prices, but apparently not.

We've been selling disk and mag subs separately for so long that we didn't

anticipate the potential for assuming one would be included with the other. Our

apologies. Perhaps that sentence should have read, "Magazine subscribers who

also become disk subscribers will receive a disk of the Amiga programs published

in the corresponding magazine, and we'll probably add extra programs too.".

Half Price For One Year Only

Several of the subscription cards we received during our half price offer on T/A

arrived with two and three year orders. However, the offer was never meant to

cover multiple year subscriptions. Some of our colleagues insist we've gone mad

making the offer for even one year! We will apply all your cash to subscription

magazines, but those who ordered two years at half price will receive IV2, and

those who ordered three years will get two. And, we also apologize for overlooking

this possible assumption.

Office Access

Since the announcement of Transactor for the Amiga, our phones are chiming off

the pressure sensors! To keep our production and service operations functional,

we've decided to limit calls to Mondays, Wednesdays and Fridays. So if you have an

order or subscription problem, please try to have it on one of these days. Once we

have some wrinkles ironed out and things return to a nice, tame chaos around the

office, we hope to lift our office access limitation.

The 20/20 Deal

.. .is still in effect - order 20 subscriptions to the mag or disk (either T Classic ORT/

A), 20 back issues, 20 disks, etc., and get a 20% discount. (Offer applies to regular

prices and cannot be combined with other specials)

No Longer Available

Our 1541 Upgrade ROM Kit, which eliminates the SAVE® bug plus a few others, is

now discontinued. Ifyou would still like to obtain a set, complete instructions are in an

The Transactor 75 March 1988: Volume 8, Issue O5

article published in Volume 7 Issue 02 and Disk 13 contains the ROM image file you'll

need to bum your own EPROMS. However, we're reasonably sure that the ROM
image on disk is compatible with the 1541 only. 1541C owners will need to create an

image of their ROM set, then make the changes described in V7102, but with minor

adjustments to accommodate for what are more than likely simply slight address

changes. Please let us know if you do one so we can print an article update!*

TPUG No Longer Supplying Transactor

As most of you know, for the past seven issues we've been supplying Transactor

with TPUG inserts to TPUGwho have been sending them to their members as their

regular club periodical. Since starting, TPUG's order has fallen substantially and we

eventually told them we would have to raise our prices. Shortly afterwards, TPUG

asked that we supply a mixed order of Transactor and Transactor for the Amiga,

which would have meant that the order for each publication would drop again.

TPUG wasn't prepared to cover the additional costs this would entail, and instead

decided to decline further orders altogether.

As we go to press we do not know what substitute TPUG will offer. However, this

will in no way affect your TPUG membership. Members will still have access to

TPUG's vast software library and regular members will still have a full schedule of

meetings to attend.

New and Improved Transactor Disks!

Transactor Disks 1 through 19 have been totally re-mastered. Every bloop from

every issue has been corrected for every disk. The directories have been tidied up a

little too, with "directory placemarkers" so you can see where the "BITS" listings

end and where the programs related to articles begin. Otherwise, the disks still

contain the same programs as before.

The TransBASIC series appeared in 12 issues, starting with Vol. 5 Issue 05 and

ending with Vol. 7 Issue 04. Each Transactor Disk always carried forward the

TransBASIC modules published in all previous issues, and the new modules were

added. Disks 4 to 15 now contain "TransBASIC Samplers". Each disk in this range

now carries only the modules published in the corresponding issue plus everything

you need to try them out. Originally you needed an assembler like PAL or SYMASS

to install the commands published in TransBASIC columns. SYMASS 3.13 has

been included on Disks 4 through 15 and is automatically loaded by the file

"transbasicrun", also on all of these disks. This boot program displays enough

instructions to get you started, and proceeds to set up the sampler system. Give it a

try!

Probably the most important reason for re-mastering the disks was to make the

new custom labels. All Transactor Disks now have typeset three-colour labels. The

colours are co-ordinated to the same colours of the corresponding magazine, and

besides the Disk number, we've included the publication date, volume and issue

number, and the issue theme where applicable. Best of all, the entire directory of

each disk is listed right on the label! It sure beats loading and/or listing directories

trying to find that one elusive program! (Actually, I think I'm going to enjoy having

them more than anybody).

We regret to say that we have not devised any plan for upgrading Transactor disks

because the fee couldn't be much less than the price of brand new ones. However,

if there's enough demand we may sell sets of the colour labels. The labels wouldn't

match the disk directories exactly, but all file names were left unaltered and the

new labels would be quite useful. Let us know what you think!

Fish Disks With Custom Labels

Starting in January, with the premiere issue of Transactor for the Amiga, we'll be

supplying the complete library of Fish Disks. Fred Fish has assembled an

impressive collection of public domain software and shareware for the Amiga and

they're available from several sources. However, on the Fish disks you'll receive

from us will be a custom label. Just like Transactor Disks, a condensed version of

the disk directory will be listed right on the label! When space permits, we'll also

print short descriptions next to each program name. No more reading endless

directories off disk when you're searching for that one file you need! To make

organizing your library even easier, we plan to use a number of different colours

(i.e. readable colours). An order form and prices will appear in every issue of

Transactor for the Amiga.

Transactor Bi-Monthly Special Extended

Because this magazine is coming out so soon after our previous one, we've decided

to extend our bi-monthly special from last issue. To recap, order any back issue at

the regular price of $4.50 (US/Q, and get additional back issues for only $2.00

each! Order 10 total and the effective price per copy is cut by half! ($4.50 + 9 x

$2.00 = $22.50). We actually had another special all picked out before we chose to

extend this one. The extension means it will apply only to orders postmarked

before March 1,1988.

Transactor Mail Order

The following details are for products listed on the mail order card. If you have a

particular question about an item that isn't answered here, please write or call.

We'll get back to you and most likely incorporate the answer into future editions of

these descriptions so that others might benefit from your enquiry.

■ Quick Brown Box - Battery Backed RAM for C64 or C128

■ 16K QBB - $ 69.00 US, $ 89.00 Cdn (Please add $3.00 US,

■ 32K QBB - $ 99.00 US, $129.00 Cdn $4.00 Cdn P&H

■ 64K QBB - $129.00 US, $169.00 Cdn for these items)

■ QBB Utilities Disk - $6 US, $8 Cdn (post paid if ordered with cartridge)

The Quick Brown Box cartridges for the C64 and 128 can be used to store any type

of programs or data that remains intact even when the cartridge is unplugged.

Unlike EPROM cartridges, the QBB requires no programming or erasing equip

ment except your computer. Loader programs are supplied and you can store as

many programs into the cartridge as its memory will allow. It may even be used as

a non-volatile RAM disk. Auto-start programs are supported such as BBS programs

and software monitoring systems that need to re-boot themselves in the event of a

power failure. All models come with a RESET push button and use low current

CMOS RAM powered by a 160 MA-Hr. Lithium cell with an estimated life of 7 to 10

years. Comes with manual, and software supplied includes loader utilities and

Supermon+64 (by permission of Jim Butterfield). 30 day money back guarantee

and a 1 year repair/replacement warranty.

■ Moving Pictures - the C-64 Animation System, $29.95 (US/Q

This package is a fast, smooth, full-screen animator for the Commodore 64, written

by AHA! (Acme Heuristic Applications!). With Moving Pictures you use your

favourite graphics tool to draw the frames of your movie, then show it at full

animation speed with a single command. Movie 'scripts' written in BASIC can use

the Moving Pictures command set to provide complete control of animated

creations. BASIC is still available for editing scripts or executing programs even

while a movie is being displayed. Animation sequences can easily be added to

BASIC programs. Moving Pictures features include: split screen operation - part

graphics, part text - even while a movie is running; repeat, stop at any frame,

change position and colours, vary display speed, etc; hold several movies in

memory and switch instantly from one movie to another; instant, on-line help

available at the touch of a key; no copy protection used on disk.

■ The Potpourri Disk, $17.95 US, $19.95 Cdn.

This is a C-64 product from the software company called AHA!, otherwise known

as Nick Sullivan and Chris Zamara. The Potpourri disk is a wide assortment of 18

programs ranging from games to educational programs to utilities. All programs

can be accessed from a main menu or loaded separately. No copy protection is

used on the disk, so you can copy the programs you want to your other disks for

easy access. Built-in help is available from any program at any time with the touch

of a key, so you never need to pick up a manual or exit a program to learn how to

use it. Many of the programs on the disk are of a high enough quality that they

could be released on their own, but you get all 18 on the Potpourri disk for just

$17.95 US / $19.95 Canadian. See the Ad in this issue for more information.

■ TransBASIC II $17.95 US, $19.95 Cdn.

TransBASIC II contains all TB modules ever printed. The first TransBASIC disk was

released just as we published TransBASIC Column #9 so the modules from

columns 10,11 and 12 did not exist. The new manual contains everything in the

original, plus all the docs for the extras. There are over 140 commands at your

disposal. You pick the ones you want to use, and in any combination! It's so simple

that a summary of instructions fits right on the disk label. The manual describes

each of the commands, plus how to write your own commands.

People who ordered TB I can upgrade to TB II for the price of a regular Transactor

Disk (8.95/9.95). If you are upgrading, you don't necessarily need to send us your

old TB disk; if you ordered it from us, we will have your name on file and will send

you TB II for the upgrade price. Please indicate on the order form that you have the

original TB and want it upgraded.

Some TBs were sold at shows, etc, and they won't be recorded in our database. If

that's the case, just send us anything you feel is proof enough (e.g. photocopy your

receipt, your manual cover, or even the diskette), and TB II is yours for the upgrade

price.

The Transactor 76 March 1988: Volume 8, Issue O5

■ The Amiga Disk, $12.95 US, $14.95 Cdn.

Finally, the first Transactor Amiga disk is available. It contains all of the Amiga

programs presented in the magazine, of course, including source code and

documentation. You will find the popular "PopColours" program, the program

mer's companion "Structure Browser", the Guru-killing "TrapSnapper", user-

friendly "PopToFront", and others. In addition, we have included public domain

programs - again, with documentation - that we think Transactor readers will find

useful. Among these are the indispensable ARC; Csh, a powerful CLI-replacement

DOS shell; BLink, a linker that is much faster and has more features than the

standard ALink; Foxy and Lynx, a 6502 cross assembler and linker that makes its

debut on the Amiga Disk; and an excellent shareware text editor called UEdit. In

addition, we have included our own expression-evaluator calculator that uses

variables and works in any number base. All programs contain source code and

documentation; all can be run from the CLI, and some from Workbench. There's

something for everyone on the Transactor Amiga disk.

■ Transactor T-Shirts, $13.95 US, $15.95 Cdn.

■ Jumbo T-Shirt, $17.95 US, $19.95 Cdn.

As mentioned earlier, they come in Small, Medium, Large, Extra Large, and

Jumbo. The Jumbo makes a good night-shirt/beach-top - it's BIG. I'm 6 foot tall,

and weigh in at a slim 150 pounds - the Small fits me tight, but that's how I like

them. If you don't, we suggest you order them 1 size over what you usually buy.

One of the free gift choices we offer when you order a combination magazine AND

disk subscription is a Transactor T-Shirt in the size and colour of your choice (sorry,

Jumbo excluded). The shirts come in red or light blue with a 3-colour screen on the

front featuring our mascot, Duke, in a snappy.white tux and top hat, standing

behind our logo in 3D letters.

■ Inner Space Anthology $14.95 US, $17.95 Cdn.

This is our ever popular Complete Commodore Inner Space Anthology. Even after

two years, we still get inquiries about its contents. Briefly, The Anthology is a

reference book - it has no "reading" material (ie. "paragraphs"). In 122 compact

pages, there are memory maps for 5 CBM computers, 3 Disk Drives, and maps of

COMAL; summaries of BASIC commands, Assembler and MLM commands, and

Wordprocessor and Spreadsheet commands. Machine Language codes and modes

are summarized, as well as entry points to ROM routines. There are sections on

Music, Graphics, Network and BBS phone numbers, Computer Clubs, Hardware,

unit-to-unit conversions, plus much more... about 2.5 million characters total!

■ The Transactor Book of Bits and Pieces #1, $14.95 US, $17.95 Cdn.

Not counting the Table of Contents, the Index, and title pages, it's 246 pages of Bits

and Pieces from issues of Transactor, Volumes 4 through 6. Even if you have all

those issues, it makes a handy reference - no more flipping through magazines for

that one bit that you just know is somewhere... Also, each item is forward/reverse

referenced. Occasionally the items in the Bits column appeared as updates to

previous bits. Bits that were similar in nature are also cross-referenced. And the

index makes it even easier to find those quick facts that eliminate a lot of wheel re

inventing.

■ The Bits and Pieces Disk, $8.95 US, 9.95 Cdn.

■ Bits Book AND Disk, $19.95 US, 24.95 Cdn.

This disk contains all of the programs from the Transactor book of Bits and Pieces

(the "bits book"), which in turn come from the "Bits and Pieces" section of past

issues of the magazine. The "bits disk" can save you a lot of typing, and in

conjunction with the bits book and its comprehensive index can yield a quick

solution to many a programming problem.

■ The G-LINK Interface, $59.95 US, 69.95 Cdn.

The Glink is a Commodore 64 to IEEE interface. It allows the 64 to use IEEE

peripherals such as the 4040,8050,9090,9060,2031, and SFD-1001 disk drives,

or any IEEE printer, modem, or even some Hewlett-Packard and Tektronics

equipment like oscilloscopes and spectrum analyzers. The beauty of the Glink is its

"transparency" to the C64 operating system. Some IEEE interfaces for the 64 add

BASIC 4.0 commands and other things to the system that sometimes interfere with

utilities you might like to install. The Glink adds nothing! In fact it's so transparent

that a switch is used to toggle between serial and IEEE modes, not a linked-in

command like some of the others. Switching from one bus to the other is also

possible with a small software routine as described in the documentation.

As of Transactor Disk #19, a modified version of Jim Butterfield's "COPY-ALL" will

be on every disk. It allows file copying from serial to IEEE drives, or vice versa.

■ The Micro Sleuth: C64/1541 Test Cartridge, $99.95 US, $129.95 Cdn.

We never expected this cartridge, designed by Brian Steele (a service technician for

several schools in southern Ontario), would turn out to be so popular. The Micro

Sleuth will test the RAM of a C64 even if the machine is too sick to run a program!

The cartridge takes complete control of the machine. It tests all RAM in one mode,

all ROM in another mode, and puts up a menu with the following choices:

1) Check drive speed

2) Check drive alignment

3) 1541 Serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

A second board (included) plugs onto the User Port; it contains 8 LEDs that let you

zero in on the faulty chip. Complete with manual.

Transactor Disks, Transactor Back Issues, and Microfiche

All Transactors since Volume 4 Issue 01 are now available on microfiche.

According to Computrex, our fiche manufacturer, the strips are the "popular 98

page size", so they should be compatible with every fiche reader. Some issues are

ONLY available on microfiche - these are marked "MF only". The other issues are

available in both paper and fiche. Don't check both boxes for these unless you

want both the paper version AND the microfiche slice for the same issue.

To keep things simple, the price of Transactor Microfiche is the same as magazines,

both for single copies and subscriptions, with one exception: a complete set of 24

(Volumes 4,5,6, and 7) will cost just $49.95 US, $59.95 Cdn.

This list also shows the "themes" of each issue. Theme issues didn't start until

Volume 5, Issue 01. Transactor Disk #1 contains all programs from Volume 4, and

Disk #2 contains all programs from Volume 5, Issues 1-3. Afterwards there is a

separate disk for each issue. Disk 8 from The Languages Issue contains COMAL

0.14, a soft-loaded, slightly scaled-down version of the COMAL 2.0 cartridge. And

Volume 6, Issue 05 lists the directories for Transactor Disks 1 to 9.

■ Vol. 4, Issue 01 (■ Disk 1) ■ Vol. 4, Issue 04 - MF only (■ Disk 1)

■ Vol. 4, Issue 02 (■ Disk 1) ■ Vol. 4, Issue 05 - MF only (■ Disk 1)

■ Vol. 4, Issue 03 (■ Disk 1) ■ Vol. 4, Issue 06 - MF only (■ Disk 1)

■ Vol. 5, Issue 01 - Sound and Graphics (■ Disk 2)

■ Vol. 5, Issue 02 - Transition to Machine Language - MF only (■ Disk 2)

■ Vol. 5, Issue 03 - Piracy and Protection - MF only (■ Disk 2)

■ Vol. 5, Issue 04 - Business & Education - MF only (■ Disk 3)

■ Vol. 5, Issue 05 - Hardware & Peripherals (■ Disk 4)

■ Vol. 5, Issue 06 - Aids & Utilities (■ Disk 5)

■ Vol. 6, Issue 01 - More Aids & Utilities (■ Disk 6)

■ Vol. 6, Issue 02 - Networking & Communications (■ Disk 7)

■ Vol. 6, Issue 03-The Languages (!Disk8)

■ Vol. 6, Issue 04 - Implementing The Sciences (■ Disk 9)

■ Vol. 6, Issue 05 - Hardware & Software Interfacing (■ Disk 10)

■ Vol. 6, Issue 06 - Real Life Applications (■ Disk 11)

■ Vol. 7, Issue 01 - ROM / Kernel Routines (■ Disk 12)

■ Vol. 7, Issue 02 - Games From The Inside Out (■ Disk 13)

■ Vol. 7, Issue 03 - Programming The Chips (■ Disk 14)

■ Vol. 7, Issue 04 - Gizmos and Gadgets (■ Disk 15)

■ Vol. 7, Issue 05 - Languages II (■ Disk 16)

■ Vol. 7, Issue 06 - Simulations and Modelling (■ Disk 17)

■ Vol. 8, Issue 01 - Mathematics (■ Disk 18)

■ Vol. 8, Issue 02 - Operating Systems (■ Disk 19)

■ Vol. 8, Issue 03 - Feature: Surge Protector (■ Disk 20)

■ Vol. 8, Issue 04 - Feature: Transactor For The Amiga (■ Disk 21)

■ Vol. 8, Issue 05-Feature: Binary Trees (■ Disk 22)

Industry News

Parents Legally Responsible for Teenage Pirates?

New York - Can parents be held legally responsible for acts of software piracy by.

their teenage children? Jonathan D. Wallace, a computer lawyer representing the

plaintiff in Weaver v. Doe, a case pending in federal court in New York, believes

they can.

Weaver, the plaintiff, owns the copyright of "Cards", a commercially distributed

card-playing simulation for the Atari ST. The teenage defendant allegedly operated

a pirate bulletin board system from which users could download "Cards" and other

The Transactor 77 March 1988: Volume 8, Issue O5

copyrighted programs. Although software companies have sued software pirates

before, this is the first case of which Wallace is aware in which the pirate's parents

have also been sued. Wallace believes the case raises a question of first impression

under the copyright law. "Our argument is that a parent who supplies the computer

equipment and telephone line which is used to operate a pirate bulletin board, and

who then tolerates the trading of pirated software, contributes to the copyright

infringement", Wallace said. "Since teenagers usually have no assets with which to

pay a judgment, holding the parents responsible will give a strong incentive to

families not to condone this type of behaviour."

For further information contact: Jonathan D. Wallace, Meatto, Russo, Burke &

Wallace, 747 3rd Avenue, New York, NY. 10017, telephone (212) 759-0523

The 64 Emulator for Amiga

Last issue the phone number for ReadySoft was incorrect as published. For more

information about the 64 Emulator contact: ReadySoft Inc., P.O. Box 1222,

Lewiston, NY, 14092, (416) 731-4175. Please note, the phone number is for

ReadySoft's headquarters in Richmond Hill, Ontario. Our apologies for any

inconvenience.

THE ACCOUNTANT v2.0 for C128

THE ACCOUNTANT is a 4-part, menu-driven accounting program. Accounts

Payable and Receivable, Payroll and General Ledger are on a single disk. Although

no longer able to run on the 1541 disk drive, it has versions ready to run on the

1571 and the new 1581 disk drives.

New features include a Disk File that will "rebuild" most corrupted files; a rewritten

Payroll section for 100 employees; individualized State Withholding Tax Rates; and

a third percentage reduction. Complete details of all deductions are maintained on a

monthly, quarterly and annual basis. The program produces over 20 CPA style

reports on every aspect of a business.

THE ACCOUNTANT will be the forerunner of a new accounting system from KFS

for the Amiga 500 and 2000, scheduled for release January 1st.

KFS Software Inc., P.O. BOX 107,1301 Seminole Blvd. Suite 117, Largo. FL 34649-

0107, USA.

New Utility Program For the 1581 Disk Drive

Free Spirit Software Inc. has released Super 81 Utilities - a full-featured utilities

system for the Commodore 1581 Disk Drive and Commodore 128 computer. An 80

column monitor is required.

Features include:

• Copy whole disks from 1541 or 1571 format to 1581 partitions

• Copy 1541 or 1571 files to 1581 disks

•Copy 1581 files to 1571.disks

• Backup 1581 disks or files with one or two 1581s

• 1581 disk editor with simultaneous display in hex or ASCII

• 1581 drive memory monitor and RAM writer

• Perform many CP/M utility functions

• Perform numerous DOS functions: rename a disk, rename a file, scratch or

unscratch files, lock or unlock files, create auto-boot etc.

The program is supplied on both SW and 3W diskettes for either 1571 or 1581

drives, which can be utilized as device numbers 8 or 9.

Super 81 Utilities is available from Free Spirit for $39.95. Shipping & Handling are

free. The program disks are not copy-protected. More information from Joe

Hubbard, Free Spirit Software Inc., 538 S. Edgewood, La Grange, IL 60525, USA,

telephone (312) 352-7323.

Survey-Master for C64 & C128

A market survey facility for the C-64/C-128 user. This program establishes survey

parameters and analyses the results. It allows for different sample sizes and

determines what effect they will have on the confidence one may place in the final

data (the confidence interval).

SURVEY-MASTER uses the sample size and survey data to generate screen and

printed reports. If the data consists of numbers, the report includes the average,

standard deviation and standard error of the mean and confidence interval. If the

data consists of yes/no or option/brand preferences, the reports include standard

error of the percent and confidence interval.

The program automatically corrects for large and small samples; its reports recap

all the analysis criteria (confidence level, sample size, population size); built-in T-

Tables are featured allowing correction to results obtained from relatively small

samples at confidence levels of 70,80,90,95, or 98 percent. It is compatible with

the C-64/C-128 single or dual 1541 disk drives and 1525-emulating printer.

Available at $29.95 from Strategic Marketing Resources Inc., P.O. BOX 2183,

Ellisville, MO 63011, telephone (314) 256-7814.

Satcomm 64

A new satellite tracking program for the many licensed amateur radio operators

who use the C-64 or C-128 for communicating in RTTY, ASCII and CW modes.

Features: a master menu allows quick activity selection (12 options); information on

up to 15 different satellites can be stored; quickly confirms W1AW Reference

Orbits; a single entry of the time bracket during which the user is available will

allow a printed report of up to 31 days of access times (during the specified time

bracket) for any satellite; the same one-time entry can also produce a report for any

given day of the access times for up to three different satellites of interest.

Added features include an easily changed satellite menu (together with associated

frequency and Keplerian element data); choice of screen plus printed report, or

screen alone; easily altered user defaults (start time, time increment, etc.); and

ability to override defaults by simply making an entry.

While the Commodore is performing real-time tasks SATCOMM-64's pre-printed •

reports include satellite azimuth and elevation, altitude, longitude and latitude, local

time, UTC day, geographic areas that are within the satellite's communication

range, Doppler shift, minimum and maximum communication distance, operating

frequencies, orbit number and phase.

For C-64/C-128 users who are not amateur radio operators, the program may be

used to track the current group of easily visible satellites including Salyut-7, MIR

and Cosmos 1870, NOAA and Meteor. The program is compatible with the 1541

disk drive and any 1525 emulating printer.

Available from Strategic Marketing Resources Inc., P.O. BOX 2183, Ellisville, MO

63011, telephone (314) 256-7814.

Precisely and Quarterback for the Amiga

From Central Coast Software a new wordprocessor called PRECISELY and a fast

hard disk to floppy back-up utility called QUARTERBACK for Commodore Amiga

users.

PRECISELY delivers fast printer speed and screen updates and features a non

technical user interface, ease of use and inexpensive price. It accepts documents in

the formats of PaperClip, SpeedScript and Pocket Writer. It will conveniently print

selected screen areas such as an address for use with an envelope; supports

multitasking, multiple windows, keyboard macros, online help, oops key to undo

mistakes, column cut and paste, and many other features.

It sells for $79.95 plus $3.00 shipping charge.

QUARTERBACK transfers 20MB to floppy in forty-five minutes; supports full/

subdirectory/incremental backup and restore, with automatic formatting of disk

ettes, automatic catalog of files, and automatic diskette sequence numbering and

checking. It provides graceful error recovery, runs with Workbench or CLI, is

multitasking, works with all AmigaDOS compatible hard disk drives, and isn't copy

protected.

Available for $69.95 plus $3.00 for shipping.

For more information on PRECISELY or QUARTERBACK contact Central Coast

Software, 268 Bowie Drive, Los Osos, CA 93402, telephone (805) 528-4906.

Legal Care For Your Software

Nolo Press has brought out a completely revised and updated 3rd edition of Legal

Care for Your Software. In the last five years a number of important legal

developments has occurred including:

• the "look and feel" of the screen format of a software program is now protected by

the copyright law

• the overall structure and logic of program code is now considered protected by

copyright

• freelance programmers may now be considered employees for purposes of the

"work for hire rule"

The Transactor 78 March 1988: Volume 8, Issue O5

• microcode (the instruction sets on microprocessor chips) has been held to be

protected under the copyright law

Authors Daniel Remer and Stephen Elias incorporate these and hundreds of other

smaller but significant changes; address the legal concerns of both software

developers and publishers; explain copyright, patent and trade secret laws and

what to do if an infringement occurs.

Available from Nolo Press, 950 Parker Street, Berkeley, CA 94710, telephone (415)

549-1976.

MIDI Interface for C64 & C128

MIDI 64 is an all-Canadian intelligent MIDI interface with innovations such as a

16K auto-boot bank-switched EPROM containing:

• an extensive supplement to BASIC for easy, custom MIDI programming

• a real-time 4-track sequencer

• a MIDI-data monitor for hex/binary/decimal real-time data display

• an interface/cable auto-test program

All programs are automatically available on power-up and can be switched out to

run other manufacturers' software. The package includes: MIDI interface with

EPROM installed; two MIDI cables; full documentation on disk; and MIDI BASIC

program examples. This product is aimed at musicians, home hobbyists, students,

repair technicians, and small recording studios, and for teaching and first-time

users.

Available for $199.95 from ADPS, c/o Phil Honsinger, 86 Foxhunt Road, Waterloo,

Ontario, Canada, N2K 2Z6, telephone (519) 886-6361.

New Commodore 128 Software from Abacus

Abacus, one of the largest publishers of books and software for Commodore home

computers, announces three productivity software packages for the Commodore

128.

Speedterm 128 is a flexible, command driven terminal software package. It

supports most modems for the C-128. In addition to the standard options found in

most terminal programs, SpeedTerm supports Xmodem and Punter file transfer

protocols, VT52 and VT100 terminal emulation with cursor keys, large 45K

capture buffer and user-definable function keys. Suggested retail price is $59.95

(US).

TAS-128 is an enhanced version of Abacus' technical analysis system for stock

market charting. Using TAS-128, the investor can automatically download indica

tors from DJN/RS or Warner and then build a variety of charts on the split screen: 7

moving averages, 3 oscillators, 5 volume indicators, comparison charts, trading

bands, least squares and others. It incorporates many new powerful features, such

as macro capabilities, automatic and unattended logon and fast draw charts using

up to 4 windows. Suggested,retail price is $59.95 (US).

PPM-128 is the upgraded C-128 version of Personal Portfolio Manager for tracking

the performance of stocks, bonds or options. PPM-128 is a very easy to use

package and has complete reporting capabilities. It also tracks profits and losses for

tax purposes. The earlier C-64 version has been very favourably reviewed in the

major magazines. Suggested retail price is $59.95 (US).

For more information, contact: Scott Slaughter or Jan Lloyd, Abacus Software,

2201 Kalamazoo S.K, P.O Box 7211, Grand Rapids, MI 49510 (616) 241-5510,

Telex 709101.

New Amiga Software and Books from Abacus

Abacus announces four productivity software packages for the Amiga:

TextPro is an intermediate level, high quality word processor. TextPro features fast

on-screen formatting, automatic hyphenation, capability to include graphics with

text, 30 user-definable function keys and flexible printer driver installation. It is

designed with fast entry of text in mind. Suggested retail price is $79.95.

BeckerText is a professional quality word processor. In addition to the standard

options found in other word processors, BeckerText features fast WYSIWYG

formatting, up to 999 characters per line, multiple-column printing, real time online

dictionary for type-along spell checking, automatic hyphenation, decimal tab

settings, numeric calculations within text, automatic index generation and more.

Suggested retail price is $150 (US).

DataRetrieve is Abacus' data management package that has been fully rewritten

for the Amiga. Some of its features: store and display data fields in different type

styles and sizes; create and work with subsets of a file; easily change file definition

and format; supports RAM disk for high speed operation. DataRetrieve also has fast

search and sorting capabilities, can handle records up to 64,000 characters, allows

numeric values with up to 15 significant digits, accesses up to 8 files simultaneously,

indexes up to 80 different fields and has complete, built-in reporting capabilities.

Suggested retail price is $79.95 (US).

AssemPro is a machine language development package, and includes an inte

grated editor, a high speed macro assembler with 32-bit arithmetic, large operating

system library, unique debugger with 68020 single-step emulation, disassembler

and reassembler. Runs from the Workbench or the CU. Suggested retail price is

$99.95 (US).

Abacus also announces four new Books for the Amiga line:

AmigaBASIC - Inside & Out is a step-by-step guide to programming in

AmigaBASIC. All commands with syntax and parameters are fully described.

Topics include graphics, sound, file management, more. Working programs are also

included: video titling for OBJECT animation, bar and pie charts, windows and

pull-down menus, using the mouse commands, sequential and random file

handling, speech programming and sound synthesis. 550 pages. Suggested retail

price is $24.95 (US).

Amiga Tricks and Tips is a collection of short programs for all Amiga users.

Techniques include using AmigaBASIC, accessing Intuition, making the most of the

CLI, DOS and the disk drive, advanced graphics programming using windows and

menus, more. 275 pages. Price: $19.95 (US).

Amiga for Beginners introduces the new Amiga owner to Intuition, the mouse,

CLI and AmigaBASIC. The user will learn how to use the CLI for performing many

housekeeping chores and will take the first steps in BASIC programming. Price:

$16.95 (US).

Amiga Machine Language describes the 68000 processor, address modes and

instruction set. It details the powerful Amiga libraries for using AmigaDOS,

Intuition, and speech and sound capabilities from machine language. 225 pages.

Price: $19.95 (US).

Contact Julie Carle orRob Lun at Abacus (address in above item).

Power Windows: Release 2.0

Inovatronics Inc. of Dallas presents release 2.0 of PowerWindows, an improved

version of the established Commodore Amiga programmers' tool. It allows the

interactive design of functional windows, gadgets, menus and entire custom

screens including palette control, using the mouse and a few simple keystrokes.

PowerWindows automatically generates the source code needed to integrate these

constructs into original programs. This package now generates TDI Modula-2

source code as well as Manx and Lattice C and 68000 assembly language.

Available for $89.95 from: Inovatronics Inc, 11311 Stemmons Frwy., Suite 8,

Dallas, Texas, 75229, telephone (214) 241-9515.

Ketek announces new Command Centre

KETEK announces a Command Centre for the Commodore 64 and 64C. As with

the 128 Command Centre, this cabinet consolidates all peripherals into a compact

enclosure. It keeps all cables hidden, out of sight and reach. Valuable desk space is

saved enabling you to operate more efficiently, turning the ordinary desk into the

ideal computer workstation. The new Command Centre is a sturdy, colour-

coordinated cabinet designed to give your system a more professional appearance.

The cabinet includes a main power control switch that controls the computer and

all peripherals, a cooling fan to prevent overheating, and a built-in AC power strip

with surge protection and line noise filtering. Other options available include a

cartridge port extension and a modular telephone plug with its own on-line/off-line

switch. Contact: Ketek, P.O. Box 203, Oakdale, IA, 52319 (319) 338-7123.

SpeedScript Upgrade for the C-128

SpeedPlus-128 converts your C-64 copy of SpeedScript 3.X into a full-featured 80-

column C-128 version with 64K text memory and 20K erase buffer, all for use in

128 operating mode. Other enhancements include justification, tabs, two column/

two side printing, word wrap toggle, selectable print-out, preview of documents,

insertion of text files within a document, display of up to 26 help files, adjustable

The Transactor 79 March 1988: Volume 8, Issue O5

screen display of text for increased typing speed, and more. SpeedPlus-128 is

available by mail order for $29.95, including snipping and handling, from: UDON

Enterprises, P. 0. Box 773, Elm Grove, WI53122.

MPS-801 Descender ROM

From Public Domain Solutions comes an EPROM for the MPS-801 printer that

replaces the original ROM, adding true descenders and enhancing the entire

characters set to make documents look better. The EPROM comes with complete,

easy to follow instructions. Price is $29.95 (US) plus $1 shipping/handling.

Contact: Public Domain Solutions, P.O. Box 832, Tallevast, Florida, 34270. Orders:

1-800-634-5546; inquiries (813) 378-2394.

Synthesizer Software

Sound Quest Inc. has introduced two new Editor/Librarians for the Yamaha DX711

and the Roland D50. Both products, utilizing the Commodore Amiga, have been

designed exclusively for the professional, semi-professional and serious amateur

musician.

The DX11 Master Editor/Librarian provides "Musician Friendly" Help Screens for

each Editor Window. It loads data files from disk into the Amiga or directly to the

synthesizer either singly or in batches. As well, the Master loads stored System

Exclusive data to any appropriate MIDI instrument, not just DX data files.

Multi-tasking is utilized, which permits the editing of as many data banks as desired

(limited only by the computer's memory). Eight Bank Editing functions may be

performed on any sized group of patches at one time. As well, the DX11 Master

Editor/Librarian stores and edits all 13 types of DX711 Sys Ex data, and adds the

following screens: Fractional Scaling (featuring Amiga mouse control and superior

graphics), Micro-Tuning (in cents or notes), Performance, Set-Up, and Additional

Parameters. In addition, the Master also provides Random Voice Generation that is

personally controlled.

The D50 Master Editor/Librarian provides an identical helpful environment (data

loading, bank editing, and data sending features) as the DX11. Editing, however, is

performed on partials, tones, or patches,from a main window and features Pop-Up

windows for graphic envelope editing. The D50 Master Editor/Librarian has been

designed with the capability to "Lock" any combination of partials or tones together

for simultaneous editing.

For more information, contact: Glenn Hayworth, Sound Quest Inc., 5 Glenaden

Avenue East, Toronto, Ontario, M8Y2L2

Musical Catechism Lessons on the 64

"We Sing Our Faith" is a musical presentation of Basic Christian Doctrine for the C-

64, based on the traditional Little Catechism of the Province of Quebec. Pro

grammed by Religious of The Order of the Mother of God (Ordo Dei Matris), it is

suitable for ages eight to sixteen, and has been tested on youngsters from the ages

of eight to seventeen in their classrooms. Because music is a great memory aid,

they easily retain the material; they are able to sing the verses years after leaving

the class. Adults also have shown enthusiasm for this enjoyable religious instruc

tion. It is simple to sing along, because syllables are highlighted or underlined as

the music plays.

Disk 1, "The Attributes of God; the creation", contains: The Unity and Trinity of

God; God and His Perfections; The Final Destiny of Man; The Creation; Our First

Parents and their Fall; The Sources of Sin. Disk 2, 'The Incarnation and Redemp

tion", contains: The Promised Redeemer; The Incarnation; The Passion and Death

of Our Lord; The Resurrection and Ascension; The Descent of the Holy Spirit; The

Effects of the Redemption.

Each chapter contains: Questions/Verses; Lexicon after each verse, explaining

words and terminology; A multiple-choice questionnaire; a beautiful on-screen

religious picture to award a high score. Options: Listen to each verse any number of

times; Return to start of music or to questions missed section for a second try; Study

text without playing music. Price is $25 postpaid.

Also available: "Sunday Evening At Home - With The Lord" - music for singing;

scripture tester/teacher; six high-resolution religious pictures. Offering requested:

$10.

Order from Monastery of The Apostles, in Canada: P.O. Box 308, St.-Jovite, PQ JOT

2H0. In the U.S.: Frontier Road, Churubusco, NY 12912

Bits & Pieces I:

The Disk

From the famous book of the same name, Transactor

Productions now brings you Bits & Pieces I: The Disk!

You'll thrill to the special effects of the screen

dazzlersl You'll laugh at the hours of typing time

you'll savel You'll be inspired as you boldly go

where no bits have gone beforel

"Extraordinarily faithful to the plot "Absolutely

of the book... The BAM alone is magnetic!!"

worth the price ofadmission/" Gene Syscall

Vincent Canbyte

"Ifyou mount only one bits disk in 1987, make it this

one/ The fully cross-referenced index is unforgettable/

Recs Read, New York Tl$

BITS & PIECES I: THE DISK, A Mylar Rim, In association with Transactor Productions.

Playing at a drive near youl

Disk $8.95 US, $9.95 Cdn. Book $ 14.95 US, $ 17.95 Cdn.

Book & Disk Combo Just $ 19.95 US, $24.95 Cdnl

The Transactor 8O March 1988: Volume 8, Issue 05

Transactor For The Amiga

Keeping you in touch with the Amiga programming community

Transactor for the Amiga brings Transactor's traditional high-level technical focus to the Amiga. This is

the place to turn for the kind of information programmers and serious hackers need to know. Our own

editorial staff, Nick Sullivan and Chris Zamara, are already known for their Amiga programs and

articles, but we're not stopping there - before the Transactor name went on an Amiga-related

publication we had to be really ready. So we asked the top Amiga programmers, writers and other

experts to write for us, and they did. What we now have is a magazine that will be a clearing house for

new ideas, programs and techniques from the best Amigans in the world. And if you still don't believe

we're really ready, just take a look at this sample of articles from our soon-to-be-released first issue:

• Andy Finkel, one of the authors of the Amiga's system software, tells you

about "CAOS" - Amiga's original Disk Operating System.

• Rob Peck, author of the Amiga's ROM Kernel manuals, shows how to use

the Exec Library's List-handling capabilities for more flexible programs.

• Perry Kivolowitz, president of ASDG Inc. and author of "Face", the floppy

disk accelerator, looks at ideal programming environments.

• John Toebes, director of the Software Distillery and author of Version 4.0 of

the Lattice C compiler, shows the right way to port a program to the Amiga.

• Matt Dillon, author of well-known freely redistributable programs like his

DOS Shell, explains DOS packets, with practical example programs.

• Jim Butterfield, the original Commodore programming guru, dissects an

assembly-language program and explains it piece by piece.

PLUS:
Write your own "Cycle Warrior" to fight it out in Rico Mariani's arena of battling programs!

The inside facts about the Draco language compiler from its author, Chris Gray

Detailed specifications of the new "Arp.library" from its co-authors, Scott Ballantyne

Protecting yourself from THE VIRUS

An all-assembler Update command for the CLI by Bob Rakosky, author of saf-T-net

Part 1 of a series on the theory and practice of debugging, by Metascope expert Vic Wagner

A detailed look at the structure of font files and how they work, by Transactor regular Betty Clay

Reviews of the new Lattice C compiler V4.0, Power Windows 2.0, and the new Amiga 500 RAM

expansion box from Byte-By-Byte.

Regular columns by Larry Phillips, Steve Ahlstrom and Don Curtis.

If you're an Amiga programmer who wants to really take hold of the machine and make it do
backflips, you've just found your magazine. And if you subscribe now, you'll still be in time for our
first edition. We're going to have a hard time holding onto back issues of this one, so don't miss
out. Turn to the subscription form at the centre of this magazine and fill it out today!

Transactor For The Amiga... Flattening the learning curve.

THE TIME SAVER

Type in a lot of Transactor programs? •

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program-is just a LOAD away!

Only $8.95 US, $9.95 Cdn. Per Issue

6 Disk Subscription (one year)

Just $45.00 US, $55.00 Cdn.

(see order form at center fold)

Now Amiga Owners Can Save Time Too!
! Transactor Amiga Disk #1, $12.95 US, $14.95 Cdn.

All the Amiga programs from the magazine, with complete

documentation on disk, plus our pick of the public domain!

