
LU

0

z

Computer-Generated

Holography on the C64

Circles, Elipses

and Polygons in ML

Projector Update adds

Hidden Line Remova

Butterfield explains

ML Square Roots

Supporting More Disk

Formats under CP/M +

CP/M I/O Redirection

Turbo Processor for C64

Book of ML Routines

Merlin C128 Assembler

Amiga Section:

Tiny Window Manager

Two New Columns

Amiga Dispatches

Benchmark Modula-2

Departments

HAM Mode

- Ray Tracy takes an

in-depth look

Gno Gurus is Good Gnus

ABSExecBase - Editorial, pg. 4

ReplyMsg - Reader Mail

The View Port by Larry Phillips

ACCESS by Steve Ahlstrom

Blitter Late Than Never News LINK

The Incredible Hunk

Structure from the

Black Lagoon

Directories in Minutes

with DOS Accelerator!

GURU Numbers

We'd Like To C

Thankless Tasks and

Due Processes

Performance Test:

Medium Slow German

Fast RAM with

Two Wait States

Announcing

Transactor for the Amiga
The Magazine For Amiga Programmers

Premiere Issue to be released

JANUARY 1988

~(

The Potpourri Disk

Help!

This HELPful utility gives you instant

menu-driven access to text files

at the touch of a key - while any

program is running!

Loan Helper

How much is that loan really going

to cost you? Which interest rate

can you afford? With Loan Helper,

the answers are as close as your

friendly 64!

Keyboard

Learning how to play the piano?

This handy educational program

makes it easy and fun to learn the

notes on the keyboard.

Filedump

Examine your disk files FAST with

this machine language utility,

Handles six formats, including hex,

decimal, CBM and true ASCII,

WordPro and SpeedScript.

Anagrams

Anagrams lets you unscramble

words for crossword puzzles and

the like. The program uses a recur

sive ML subroutine for maximum

speed and efficiency.

Life

A FAST machine language version

of mathematician John Horton

Conway's classic simulation. Set

up your own 'colonies' and watch

them grow!

War Balloons

Shoot down those evil Nazi War

Balloons with your handy Acme

Cannon! Don't let them get away!

Von Googol

At last! The mad philosopher,

Helga von Googol, brings her own

brand of wisdom to the small

screen! If this is 'Al', then it just ain't

natural!

News

Save the money you spend on

those supermarket tabloids - this

program will generate equally

convincing headline copy - for

free!

Wrd

The ultimate in easy-to-use data

base programs. WRD lets you

quickly and simply create, exam

ine and edit just about any data.

Comes with sample file.

Quiz

Trivia fanatics and students alike

will have fun with this program,

which gives you multiple choice

tests on material you have en

tered with the WRD program.

AHA! Lander

AHAI's great lunar lander program.

Use either joystick or keyboard to

compete against yourself or up to

8 other players, Watch out for

space mines!

Bag the Elves

A cute little arcade-style game;

capture the elves in the bag as

quickly as you can - but don't get

the good elf!

Blackjack

The most flexible blackjack simula

tion you'll find anywhere. Set up

your favourite rule variations for

doubling, surrendering and split

ting the deck.

File Compare

Which of those two files you just

created is the most recent ver

sion? With this great utility you'll

never be left wondering.

Ghoul Dogs

Arcade maniacs look out! You'll

need all your dexterity to handle

this wicked joystick-buster! These

mad dog-monsters from space

are not for novices!

Octagons

Just the thing for you Mensa types.

Octagons is a challenging puzzle

of the mind. Four levels of play,

and a tough 'memory' variation

for real experts!

Backstreets

A nifty arcade game, 1OO% ma

chine language, that helps you

learn the typewriter keyboard

while you play! Unlike any typing

program you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the

above programs, ALL of the above programs, on a single disk, accessed

independently or from a menu, with built-in menu-driven help and fast-loader.

The ENTIRE POTPOURRI COLLECTION

JUST $17.95 US!!

See Order Card at Center

Volume 8

Issue 4

Bits and Pieces .. 6
ML Break

Verify Bug

Sneaky File Print

Interrupt Routine Management

Auto-Linefeed Generation

80-Column Tricks

Simple Rules for the 128

1571 Seek-Stopper

C128 I/O Incompatibility

Function Key Finagler

Cursor Save and Restore

CLI Hint

AmigaDOS Rollodex Tool

AmigaBasic Fade-in

Letters 12
Advertising In The TYansactor WORKS!

CP/M In The T.

.. .if I owned one I would get an

Amiga magazine!

Program Listings For All Machines

TVansactor Continuing Education Course

GEOS mice-and-little-pictures environment

Commodore 1526 Blues

Macro Assembler Desired

News BRK 76
Transactor for the Amiga

Half Price Until January 1st!

I Want To Switch!

I Want Both!

Subscription Renewals and Enquiries

Mail Order Products:

The 20/20 Deal

TYansactor Special Offer

TYansactor Mail Order

World Of Commodore Show

New England 1987 Computer Fair

RUN 64 Emulator for Amiga

Commodore Creating Product List

New UEDIT Release

Comspec Hard Drive for Amiga 1000

ROMDISK with HYPERBOOT for the C64

MIDI Interface for C64/128 and 64C

GEOS Upgrade for the Cl28

Video Digitizer for the C64

C128 CP/M Kit

Aegis "Art Paks" for the Amiga

Genealogy Program for the 8032

8051 Cross Assembler for C64/128

Oxxi Claims Benchmark M2

TransBloops ...
GAP FILL

Garbage Collector Revealed

Inside View

C128 Programmer's Aid Fix

Switchable RS-232 Interface

Getting Around With Gogo Dancer

Adding Analog RGB to the 1902

15

Transactor
otan AClClreSS Announcing TVansactor for the Amiga! O

TeleColumn .16

1116 1 rOJGCtOr l3Xt II A new version with hidden line removal -and more lO

Computer-Generated Holography 3X*5S3» 29

vjrClGS IOr tflG Uu4 Easy answers to a tough programming problem O I

InSlde C128 CP/M Add support for virtually any CP/M disk format! 43

CP/M 3.0:PlUS RedireCtiOIl Diverting input and output with GET and PUT . 48

Sqilcire ROOtS in ML Jim Butterfield tells how -without floatingpoint! 52

Placeholder for the C64 Short cursor save and restore routines 54

Reviews

1. TurbO PrOCeSSOr 65C816-based expansion hardware for the C64with64K RAM 56

2. ML Routines for the C64/128 new book ^compute! 57

O. Merlin-l^O A 6502 macro assembler development system 58

4. Benchmark Modula-2 A Modula-2 development system for the Amiga . . 59

Amiga Section

Amiga DiSpatCheS Jerry explains why 01* Myron is still his favourite joystick ... 63

Tiny WindOW Manager Cleanup that Tiny Window Litter! 70

Larry Phillips looks at a hot IBM innovation -multitasking! 62

Steve Ahlstrom looks at the best Amiga freely distributable software DO

-&,■

iff

Note: before entering programs, see "Verifizer" on page 4

ABOUTTHE COVER: The simulated Workbench windows were done with

the same typesetting equipment that is used to produce the rest of the

magazine - a Quadex 5000 typesetting system with a Compugraphic 8400

phototypesetter. The colour picture in the lower window was done on the

Amiga by capturing the image from the famous "boing" demo (using "zsaveiff"

from Meridian Software's Zing! package) and editing it with Deluxe Paint II.

The photo was produced using a Polaroid Pallette system and "Imprint", an

interface and program for the Amiga from American Liquid Light, Inc. The

Polaroid Pallette has an internal CRT and exposes the film by displaying

different parts of the screen image in black and white through a series of

coloured filters. The Imprint software loads IFF picture files and controls the

Polaroid Pallette to take the pictures (using standard 35mm film), and gives

many options to the user for controlling the process. Thanks to Commodore

Canada for the use of the Polaroid Pallette and Imprint equipment.

The Transactor January 1988: Volume 8, Issue O4

Transactor
The Magazine (or Coi KloreProgrc

Editor-in-Chief

KarlJ.H.Hildon

Publisher

Richard Evers

Technical Editor

Chris Zamara

Submissions Editor

Nick Sullivan

Customer Service

Jennifer Reddy

Contributing Writers

Ian Adam

Steve Ahlstrom

David Archibald

Anthony Bertram

Paul Blair

Tim Bolbach

Neal Bridges ,

Anthony Bryant -

Jim Butterfield

Dale A. Castello

Betty Clay

Joseph Caffrey

TomK.Collopy

Robert V. Davis

Elizabeth Deal

Frank E. DiGioia

Chris Dunn

Michael J. Erskine

Jack Farrah

Mark Farris

Jim Frost

Miklos Garamszeghy

Eric Germain

Michael T. Graham

Eric Guiguere

Thomas Gurley

R. James de Graff

Tim Grantham

Patrick Hawley

Adam Herst

Thomas Henry

John Houghton

Robert.Huehn

David Jankowski

Clifton Karnes

Lome Klassen

Jesse Knight

Gregory Knox

David Lathrop

James A. Lisowski

Richard Lucas

Scott Maclean

Steve McCrystal

Stacy Mclnnis

Chris Miller

Terry Montgomery

Ralph Morrill

D.J. Morris

Michael Mossman

Bryce Nesbitt

Gerald Neufeld

Noel Nyman

Matthew Palcic

Richard Perrit

Larry Phillips

Terry Pridham

Raymond Quirling

Doug Resenbeck

Richard Richmond

John W. Ross

Dan Schein

E.J. Schmahl

David Shiloh

Darren J. Spruyt

Aubrey Stanley

David Stidolph

Richard Stringer

Anton Treuenfels

AudrysVilkas

Jack Weaver

Geoffrey Welch

Evan Williams

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Program Listings In Transactor

All programs listed in Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of

course be in lower case. Secondly, the lower case L (T) is a straight line as opposed to the number 1

which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're

listed here for reference. Also remember:^TRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces

you insert will not be critical to correct operation of the program. When it is, the required number of

spaces will be shown. For example:

print" flush right" - would be shown as - print "[10 spaces]flush right"

Cursor Characters For PET / CBM / VIC / 64

Down - Q

Up -B

Right -II

Left - jLft]

RVS

RVSOff- I8

Insert - U

Delete - Q

Clear Scrn-

Home

STOP

Colour Characters For VIC / 64

1
Black - |

White - j
Red -Q

Cyan - [Cyn]

Purple- [Pur]

Green - ||

Blue - B

Yellow- [Yel]

Function Keys For VIC / 64

F5-

F6-

F7-

F8-

Please Note: Transactor's

phone number is: (416) 764-5273

CompuServe Accounts

Contact us anytime on GO CBMPRG, GO CBMCOM, or EasyPlex at:

KarlJ.H.Hildon 76703,4242

Chris Zamara 76703,4245

Nick Sullivan 76703,4353

Transactor is published bi-monthly by Transactor Publishing Inc., 85 West Wilmot Street, Unit 10.

Richmond Hill, Ontario, L4B 1K7. Canadian Second Class mail registration number 6342. USPS 725-
050, Second Class postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address
changes to Transactor, P.O. Box 338, Station C, Buffalo, NY, 14209 ISSN* 0827-2530.

Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore Incorporated.
Commodore and Commodore product names (PET, CBM, VIC, 64,128, Amiga) are registered trademarks of

Commodore Inc.
Subscriptions:

Canada $19 Cdn. U.S.A. $15 US. All other $21 US.
Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: Transactor, Subscriptions Department, 85 West Wilmot Street, Unit 10,

Richmond Hill, Ontario, Canada, L4B 1K7,416 764 5273. Note:.Subscriptions are handled at this address

ONLY. Subscriptions sent to our Buffalo address (above) will be forwarded to our Richmond Hill HQ. For
best results, use postage paid card at center of magazine. .

Quantity Orders:

In Canada:

Ingram Software Ltd.

141 Adesso Drive

Concord, Ontario

L4K2W7

(416)738-1700

In the U.S.A.:

IPD (International Periodical Distributors)
11760-B Sorrento Valley Road

San Diego, California

92121 (619)481-5928

Ask for Dave Bruescher

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 03,04,05,06, and Vol 5 Issues 02,

03,04 are available on microfiche only

Still Available: Vol. 4:01,02. Vol. 5:01,04,05,06. Vol. 6:01,02, 03,04,05,06.
Vol. 7: 01, 02,03,04,05.06. Vol. 8:01,02, 03,04

Back Issues: $4.50 each. Order all back issues from Richmond Hill HQ.

Editorial contributions are always welcome. Minimum remuneration is $40 per printed page. Preferred
media are 1541,2031,4040,8050,8250,1571, or 1581 diskettes with WordPro, PaperClip, Pocket Writer,
WordCraft, Superscript, (actually, just about any word processor files) or SEQ text files, or Amiga format 3'/2
diskettes with ASCII text files. Program listings including BITS subsmissions of more than a few lines should

be provided on disk. Manuscripts should be typewritten, double spaced, with special characters or formats

clearly marked. Photos should be glossy black and white prints. Illustrations should be on white paper with

black ink only.

All material accepted becomes the property of Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Solicited

material is accepted on an all rights basis only. Write to the Richmond Hill address for a writer's package.

The opinions expressed in contributed articles are not necessarily those of Transactor. Although accuracy is

a major objective, Transactor cannot assume liability for errors in articles or programs. Programs listed in

Transactor, and/or appearing on Transactor disks, are copyright by Transactor Publishing Inc. and may not
be duplicated or distributed without permission.

The Transactor January 1988: Volume 8, Issue O4

Transactor for the AMIGA

Inching Toward The Magazine Rack

like asking a girl out for the first time, we're getting back into retail distribution.

Cautiously, and after much rehearsal, we have started our approach... an

approach that comes only after several months of investigating the mechanics of

that stationary fixture known as "the magazine rack".

For those who subscribed based on our landmark decision to go off the news

stands, please don't feel tricked. At the time, we had to do it - we simply couldn't

afford to continue. And we are by no means getting back into "news stand"

distribution. We won't be available at the grocery store, the local variety store or

smoke shop, the hotel confectionery, or in train stations and airports. It's these

places that are truly defined as "news stand". A print run to cover the shelf space

in all those places would be four or five times our immediate objective and any

attempt to tackle such an objective would send us spiralling right back out of the

distribution business to square 1.

Computer shops and book stores, on the other hand, are known among

publishers as "single-copy" outlets. Our single-copy sales always came in at

around 100%, and it was the news stand sales that ruined our average. Time

after time in city after city the story we always hear is, "By the time I get there,

Transactor is sold out". But "there" was always this book store or that computer

store. We could be wrong, but it's become apparent to us that Transactor readers

generally don't go to the news stand to get their copy and, although it's not

impossible that Transactor will show up at one or two of the millions of this type

of outlet, it's highly unlikely that the distribution we're seeking will include them

as a premeditated target.

We are, however, actively seeking pathways to the single-copy type outlets that,

did so well for us before: Waldenbooks, B. Dalton stores, Crown Books, Encore

Books, Software Etcetera and ComputerLand; and in Canada W.H. Smith,

Classic Bookstores, Coles and Lichtman's. We also want to ship to every

computer shop on the planet that carries Commodore equipment.

We've made arrangements so far with a couple of magazine distributors, and any

retailer you know is more than welcome to contact them directly. Their names

are opposite on page 2. If neither is within reasonable geographic proximity, call

*is. By the time this edition reaches you we may have more regional distributors

that we can recommend.

Some readers have told us that they wouldn't subscribe even if they couldn't get

Transactor any other way. And unfortunately for us they've kept their word. But

even more unfortunate is the fact that this page 3 will not reach them, except,

perhaps, by accident. Because even more important than this development is

the following news so many have been anxiously awaiting.

Announcing Transactor for the Amiga!

AmiEXPO in New York was the most electric computer show I've been to since

the first World of Commodore show in Toronto. No shortage of adrenalin there -

storiesof "all-nighters" for last minute preparations were common conversation.

• Exhibitors and attendees came from as far as California, Vancouver, Great Britain

and Germany. One report had attendance figures at 4,000 for the first day. I had

my doubts at first, but when I stopped to consider that the seminars were filled to

capacity while at the same time the exhibit floor was packed tight, 4,000 seemed

like a conservative estimate.

We made the trip for a couple of reasons. Just seeing the show was well worth

the effort, but spreading the word about "Transactor for the Amiga" brought

overwhelming reactions from everyone. If only we'd had subscription forms

with us! Even the staff of other magazines exhibiting at the show agreed that a

high-tech journal for the Amiga was sorely needed and that they were glad to see

us producing one - wonder if they really meant it.

If you own a modem, chances are you're already aware of this news. We've

made similar announcements on just about every popular online service in

North America including CompuServe, PeopleLink, BIX, GEnie, Quantum Link

and PunterNet.

To elaborate, Transactor for the Amiga will not be at all unlike the original

Transactor. We intend to publish articles of interest to programmers and

hobbyists with an appetite for fat-free information that doesn't leave you feeling

hungry again a short time after digesting it. A sample of what will appear come

January is on the cover of this issue; however, don't take the article titles

seriously, as if that need be said. We have lots of material lined up but didn't

know if it would all appear in the premiere issue or if some would end up in the

second issue. So we took the opportunity to have some fun instead.

By the way, if you have an idea for an article, please get in touch. We talked to

several authors at the show and gave out a number of writer kits. Some already

had articles assembled... articles that were declined by some of the other

magazines because they were "too technical". In our opinion, there's no such

thing as "too technical", so if you're in a similar situation, or know someone who

is, send us your stuff or give us a call. I know when I invest time in a project that

gets shelved for one reason or another, and then find a use for that work later on,

it's like getting something for nothing. If the work gets published, then that

"something" usually turns into money - and that's nice!

A charter subscription offer will be in effect until January 1,1988... an offer that

will never be repeated. It comes to HALF the regular price and a whopping 64%

off the cover price. See News BRK and the sub card for more. We've addressed

many reader comments about the advantages of buying at the magazine rack

such as getting damage free copies and a cover without an ugly mailing label

stuck on it. Starting with this issue, all "T" AND "T-A" subscribers will receive

their copies in what our printer calls "a poly bag" - a supermarket type word for

a piece of plastic that's hermetically sealed on three sides around the mag.

Regardless, it should mean that if any damage occurs, you'll be able to toss the

damage AND the label right into the trash, leaving a fresh, crisp, good-as-store-

bought Transactor in hand.

Not mentioned anywhere else in this issue are our two incredible advertising

offers also in effect until January 1 only. Adratesin Transactorfor theAmigamW

for now be the same as in the original Transactor. But advertisers who take out

space in the premiere issue of T-A will want to know about: 1) The Deep

Discount Deal - a full 50% off ads in our first issue, and 2) The Double Exposure

Deal - two ads for the price of one. Place any ad in the December issue of

Transactor and get the same size ad in the Premiere Issue of Transactor for the

Amiga, ABSOLUTELY FREE! At first glance this appears to be "1 for 5,2 for 10"

logic, but under plan 2, ads will reach Christmas shoppers. Again, if you're

interested, or know someone who is, please call us soon. Although Christmas is

still awhile away, our deadlines are rapidly approaching and the pressman waits

for nobody!

Lastly, some of you may be recalling previous editorials where I cite enormous

work loads coupled with unbearable schedules and saying, "you guys must be

crazy - as if one mag wasn't enough, now you'll have two!". Well/we've always

been a little crazy, and if you think an occupational environment like that might

suit you, we're currently accepting resumes.

Karl J.H. Hildon, Editor in Chief

The Transactor 3 January 1988: Volume 8, Issue O4

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from the

pages of The Transactor. It will let you check your work line by line as

you enter the program, and catch frustrating typing errors. The VERIFI

ZER concept works by displaying a two-letter code for each program

line which you can check against the corresponding code in the

program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or

C64, Plus 4, C128, and B128. Enter the applicable program and RUN it.

If you get a data or checksum error, re-check the program and keep

trying until all goes well. You should SAVE the program, since you'll

want to use it every time you enter one of our programs. Once you've

RUN the loader, remember to enter NEW to purge BASIC text space.

Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 4096 to enable the Plus 4 version (off: SYS 4099)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

BANK 15: SYS 1024 for B128 (off: BANK 15: SYS 1027)

Once VERIFIZER is on, every time you press RETURN on a program

line a two-letter report code will appear on the top left of the screen in

reverse field. Note that these letters are in uppercase and will appear as

graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that

line at the last minute which changes the report code. However, this

will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine nor

mally, checking each report code after you press RETURN on a line. If

the code doesn't match up with the letters printed in the box beside the

listing, you can re-check and correct the line, then try again. If you

wish, you can LIST a range of lines, then type RETURN over each in

succession while checking the report codes as they appear. Once the

program has been properly entered, be sure to turn VERIFIZER off with

the SYS indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead

of POKE 53281,0. However, VERIFIZER uses a "weighted checksum

technique" that can be fooled If you try hard enough; transposing two

sets of 4 characters will produce the same report code but this should

never happen short of deliberately (verifizer could have been designed

to be more complex, but the report codes would need to be longer, and

using it would be more trouble than checking code manually). VERIFI

ZER ignores spaces, so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!). Standard

keyword abbreviations (like nE instead of next) will not affect the

VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer, so

if you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities goes,

VERIFIZER shouldn't cause any problems since it works through the

BASIC warm-start link and jumps to the original destination of the link

after it's finished. When disabled, it restores the link to its original

contents.

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

01

JB

PA

HE

EL

LA

Kl

EB

DM

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

10 rem* data loader for Verifizer 4.0" *

15 rem pet version

20cs = 0

30 for i = 634 to 754:read a:poke i,a

40cs = cs + a:nexti

50:

60 if cs<>15580 then print"***** data error *****": end

70 rem sys 634

80 end

100:

1000 data 76,138, 2,120,173,163, 2,133,144

1010 data 173,164, 2,133,145, 88, 96,120,165

1020 data 145,201, 2,240, 16,141,164, 2,165

1030 data 144,141,163, 2,169,165,133,144,169

1040 data 2,133,145, 88, 96, 85,228,165,217

1050 data 201, 13,208, 62,165,167,208, 58,173

1060 data 254, 1,133, 251,162, 0,134, 253,189

1070 data 0, 2,168, 201, 32, 240, 15, 230, 253

1080 data 165,253, 41. 3,133, 254, 32, 236, 2

1090 data 198,254, 16, 249, 232,152, 208, 229,165

1100 data 251, 41, 15, 24,105,193,141, 0,128

1110 data 165,251, 74, 74, 74, 74, 24,105,193

1120data141, 1,128,108,163, 2,152, 24,101

1130data251,133,251, 96

VIC/C64 VERIFIZER

10 rem* data loader for Verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:nexti

50:

60 if cs<>14755 then print"***** data error *****": end

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,251,141, 2,

3, 3, 96,173, 3,

17,133,252, 173, 2,

99,141, 2, 3,169,

96,173,254, 1,133,

0,189, 0, 2,240,

15,133,

32,183,

76, 74,

1010 data 252,141,

1020 data 3,240,

1030 data 251,169,

1040 data 3, 3,

1050 data 0,160,

1060 data 32,240,

1070 data 133, 90,

1080 data 232,208, 229, 56,

1090 data 32,210,255,169,

1100 data 89, 41, 15, 24,105,

1110 data 165, 89, 74, 74, 74,

1120 data 32, 210, 255,169,146,

1130 data 32, 240, 255,108, 251,

1140 data 101, 89,133, 89, 96

3,165

3,201

3,133

3,141

89,162

22, 201

91,200,152, 41, 3

3,198, 90, 16,249

32,240,255,169, 19

18, 32,210,255,165

97, 32,210,255

74, 24,105, 97

32, 210, "255, 24

0,165, 91, 24

VIC/64 Double Verifizer Steven Walley, Sunnymead, CA

When using 'VERIFIZER' with some TVs, the upper left corner of the

screen is cut off, hiding the verifizer-displayed codes. DOUBLE VERI

FIZER solves that problem by showing the two-letter verifizer code on

both the first and second row of the TV screen. Just run the below

program once the regular Verifizer is activated.

The Transactor January 1988: Volume 8, Issue O4

KM

BC

Dl

GD

IN

EN

KG

KO

FM

LP

TOO for ad = 679 to 720:read da:poke ad,da:next ad

110 sys 679: print: print

120 prinfdouble verifizer activateda:new

130 data 120,169,180,141, 20, 3

140 data 169, 2,141, 21, 3, 88

150 data 96, 162, 0,189, 0,216

160 data 157, 40, 216, 232, 224, 2

170 data 208, 245,162, 0,189, 0

180 data 4,157, 40, 4, 232, 224

190 data 2,208,245, 76, 49,234

VERIFIZER For Tape Users Tom Potts, Rowley, MA

The following modifications to the Verifizer loader will allow VIC and 64

owners with Datasettes to use the Verifizer directly (without the loader).

After running the new loader, you'll have a special copy of the Verifizer

program which can be loaded from tape without disrupting the pro

gram in memory. Make the following additions arid changes to the VIC/

64 VERIFIZER loader:

NB 30 fori = 850to980:reada:pokei,a

AL 60 ifcs<>14821 then print"*****data error*****11; end

IB 70 rem sys850 on, sys853 off

— 80 delete line

— 100 delete line

OC 1000 data 76, 96, 3,165,251,141, 2, 3,165

MO 1030 data 251,169,121,141, 2, 3,169, 3,141

EG 1070 data 133, 90, 32,205, 3,198, 90, 16,249

BD 2000 a$ = Verifizer.sys850[space]"

KH 2010 for i = 850 to 980

GL 2020 a$ = a$ + chr$(peek(i)): next

DC 2030 open 1,1,1 ,a$: close 1

IP 2040 end

Now RUN, pressing PLAY and RECORD when prompted to do so (use a

rewound tape for easy future access). To use the special Verifizer that

has just been created, first load the program you wish to verify or

review into your computer from either tape or disk. Next insert the tape

created above and be sure that it is rewound. Then enter in direct

mode: OPEN1 :CLOSE1. Press PLAY when prompted by the computer,

and wait while the special Verifizer loads into the tape buffer. Once

loaded, the screen will show FOUND VERIFIZER.SYS850. To activate,

enter SYS 850 (not the 828 as in the original program). To de-activate,

useSYS853.

If you are going to use tape to SAVE a program, you must de-activate

(SYS 853) since VERIFIZER moves some of the internal pointers used

during a SAVE operation. Attempting a SAVE without turning off

VERIFIZER first will usually result in a crash. If you wish to use

VERIFIZER again after using the tape, you'll have to reload it with the

OPEN 1 :CLOSE 1 commands.

Plus 4 VERIFIZER

Nl

PM

EE

NH

Jl

AP

NP

JC

ID

PL

CA

OD

LP

EK

1000 rem * data loader for Verifizer + 4"

1010 rem * commodore plus/4 version

1020 graphic 1: scnclr: graphic 0: rem make room for code

1030 cs = 0

1040 for j = 4096 to 4216: read x: poke j,x: ch = ch + x: next

1050 if ch<>13146 then print "checksum error": stop

1060 print "sys 4096: rem to enable"

1070 print "sys 4099: rem to disable"

1080 end

1090data 76, 14, 16,165,211,141, 2, 3

1100 data 165, 212,141, 3, 3, 96,173, 3

1110data 3,201, 16,240, 17,133,212,173

.1120 data 2, 3,133,211,169, 39,141, 2

1130 data 3,169, 16,141, 3, 3, 96,165

Dl

LK

GJ

DN

GJ

CB

CB

PE

DO

BA

BG

1140 data 20,

1150 data 0,

1160 data 176,

1170 data 240,

1180 data 200,

1190 data 16,

1200 data 165,

1210 data 0,

1220 data 24,

1230 data 0,

1240 data 96

133,208,162

2,201, 48

3, 232, 208

22,201, 32

152, 41, 3

198.209, 16

208, 41, 15

12,165,208

105,193,141

165.210, 24

0f/160,

144, 7,

242, 189,

240, 15,

133,209,

249, 232,

24,105,

74, 74,

1, 12,

101,208,

0,189

201, 58

0, 2

133,210

32,113

208, 229

193,141

74, 74

108,211

133,208

PK

AK

JK

NH

OG

JP

MP

AG

ID

GF

MG

HE

LM

JA

El

KJ

DH

JM

KG

EF

CG

EC

AC

JA

CC

BO

PD

C128 VERIFIZER (40 column mode)

1000 rem * data loader for Verifizer d 28"

1010 rem * commodore d 28 version

1020 rem * use in 40 column mode only!

1030 cs = 0

1040 for j = 3072 to 3214: read x: poke j,x: ch = ch + x: next

1050 if ch<>17860 then print "checksum error": stop

1060 print "sys 3072,1: rem to enable"

1070 print "sys 3072,0: rem to disable"

1080 end

11,165,253,141, 2, 3,165

3, 96,173, 3, 3

17,133,254,173, 2

38,141, 2, 3

3, 96,165, 22

1140 data 133, 250,162, 0,160, 0,189, 0

1150 data 2,201, 48,144, 7,201, 58,'176

1160 data 3,232,208,242,189, 0, 2r240

1170 data 22, 201, 32, 240, 15,133, 252, 200

1180data 152, ,41, 3,133,251, 32,135, 12

1190 data 198, 251, 16, 249, 232, 208, 229, 56

1200 data 32,240,255,169, 19, 32,210,255

1210 data 169, 18, 32,210,255,165,250, 41

1220 data 15, 24,105,193, 32,210,255,165 v

1230 data 250, 74, 74, 74, 74, 24,105,193

1240 data 32,210,255,169,146, 32,210,255

1250 data 24, 32,240,255,108,253, 0,165 •

1260data252, 24,101,250,133,250, 96 '

1090 data 208,

1100 data 254,141, 3,

1110 data 201, 12,240,

1120 data 3,133,253,169,

1130 data 169, 12,141, 3,

B128 VERIFIZER Elizabeth Deal, Malvern, PA

1 remsave"@0:verifizerb128",8

10 rem* data loader for Verifizer b128" *

20cs = 0

30 bank 15:for i = 1024 to 1163:read a:poke i,a

40cs = cs + a:nexti

50 if cs<>16828 then print"** data error **": end

60 rem bank 15: sys 1024

70 end

1000data 76, 14, 4,165,251,141,130/ 2,165,252

1010 data 141,131, 2, 96,173,130, 2,201, 39,240

1020 data 17,133,251,173,131, 2,133,252,169, 39

1030 data 141,130, 2,169, 4,141,131, 2, 96,165

1040 data 1, 72,162, 1,134, 1,202,165, 27,133

1050 data 233, 32,118, 4,234,177,136,240, 22,201

1060 data 32, 240, 15,133, 235, 232,138, 41, 3,133

1070 data 234, 32,110, 4,198, 234, 16, 249, 200, 208

1080 data 230,165,233, 41, 15, 24,105,193,141, 0

1090data208,165,233, 74, 74, 74, 74, 24,105,193

1100 data 141, 1,208, 24,104,133, 1,108,251, 0

1110 data 165, 235, 24,101,233,133,233, 96,165,136

1120 data 164,137,133,133,132,134, 32, 38,186, 24

1130 data 32, 78,141,165,133, 56,229,136,168, 96

1140 data 170,170,170,170

The Transactor January 1988; Volume 8, Issue O4

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - if we use it in the Bits column, we'll credit you in

the column and send you a free one-year's subscription to The Transactor

ML Break AmirMichail

Willowdale, Ontario

"ML Break" is a debugging tool that lets you cleanly exit from a

machine language program by hitting the RESTORE key. What's

more, the program counter (the address of the next instruction to

be executed) is printed to the screen so you can see what the

program was doing when you stopped it. Very handy for finding

out where a program is getting hung up, and as a cleaner

alternative to RUNSTOP/RESTORE.

Since the RESTORE key generates an NMI (Non-Maskable

Interrupt), which "ML break" intercepts, you can get out of just

about any crash.

JM..

NO

PE

MN

MH

KN

EB

EJ

EE

JF

GA

PE

LA

DN

100 rem "ml break" by amir michail

110forj = 710toj + 49

120 read a: c = c + a: poke j,a: next

130 if c<>5626 then print'data error! ":stop

140 poke 792,198: poke 793,2

150 print"hit 'restore' to break"

160:

170 data 169, 247, 162, 2,141, 24, 3, 142

180 data 25, 3, 32,225,255,208, 3, 76

190 data 71,254,169, 42, 32,210,255,104

200 data 104,170,104, 32, 205,189,169,164

210 data 72,169, 116, 72,169, 32, 72,169

220 data 198,162, 2,141, 24, 3,142, 25

230 data 3, 64

Source code for ML Break

LH

'IL
DO

MP

LG

KE

BH

OP

DB

HO

CM

JC

PG

FM

100 nmivec =

HObasentr =

130 break Ida

140 Idx

150 sta

160 stx

170 jsr

180 bne

190 j'mp

210break2 Ida

220 jsr

230 pla

240 pla

250 tax

792

$a474

#<back

#>back

nmivec

nmivec+ 1

$ffe1

break2

$fe47

#42

$ffd2

;system vector

;basic entry point

;disable interupt

;by pointing vector

;to "rti"

;check stop key

;continue if not pressed

;go to normal entry

; print an asterisk

;in front of pc

;discard status register value

;low byte of pc

NK

LG

CA

OJ

GL

CL

MF

GMV-4IVI

CE

NK

EP

MB

IO

260

270

280

290

300

310

320
QQfl

340

350

360

370

390 back

Verify Bug

pla

jsr

Ida

pha

Ida

pha

Ida

pha

Ida

Idx

sta

stx

rti

;high byte of pc

$bdcd ;print pc

#>basentr ;put entry point on stack

#<basentr ;so that the rti brings us there

#$20 ;cleared flags for status register

#<break ; restore vector

#>break ;to this routine

nmivec

nmivec+ 1

Kevin Hisel and Kevin Hopkins

Champaign, IL

We have uncovered a bug we have never seen mentioned

before. It is with the VERIFY command in C64 and C128 BASIC

(and presumably other versions as well).

During the development of a program that copies files, a little

bug cropped up that consistently truncated the last block of the

file. While this is all in a day's work for the plucky BASIC

programmer/bug-hunter, its cause momentarily escaped us.

Trying to figure out why our 55 block program was now 54, we

VERIFYed the 55 block version (in memory) against the 54-

block file. Of course, we knew that we would get the traditional

"?VERIFY ERROR" but to our utter horror and disbelief, our

seemingly undamaged machine reported, "OK".

It seems that VERIFY does not care if the file on disk is shorter

than the program in memory. As long as the disk file matches

memory in the machine up 16 the end of the file, VERIFY will not

report an error. Admittedly, this condition will rarely occur, but

here is how to duplicate it:

1. Save your favourite BASIC program to a spare disk.

2. Using your favourite sector editor (like Disk Doctor), truncate

the file by writing a zero byte into the first position of a sector

near the middle of the file. (This won't affect the block count

in the directory unless you copy the file somewhere else.)

3. Load the original program into memory.

4. VERIFY it against the truncated version.

The Transactor January 1988: Volume 8, Issue O4

Your silly computer happily reports that the two programs are

identical! But try to LOAD and RUN the truncated version and

you will see that this is simply untrue!

Sneaky File Print Amir Michail

To easily output a SEQ file to a printer:

loadBfilenamelsd,8

(hit RUN/STOP RESTORE if system hangs)

savelitlell + chr$(13)l4

That's it!

Interrupt Routine Management

Installing an IRQ-driven routine is not too difficult, but if you

wish to be able to add new IRQ routines without disturbing

current ones, and remove any individual IRQ routine, things can

get messy. The following short routines make up an interrupt

handler system that makes adding and removing IRQ routines

(interrupt sewers) simple and efficient.

There are four subroutines here: INSTHDLR, KILLHDLR,

ADDSRVR, and REMSRVR. INSTHDLR is called once to install

the IRQ handler system, and KILLHDLR is called to remove it

before your program exits.

Once the handler is installed, adding a server to the interrupt

chain is accomplished by simply calling ADDSRVR with the

address of the subroutine to install in the accumulator (low) and

y register (high). You will get back the number for that server in

the x register; the server number is used to identify a server for

removal.

To remove a server, just call REMSRVR with the server number

in the x register.

You will appreciate the benefits of managing your interrupts

with this system the first time you use it in a program. You never

have to think about anything when you want extra work done

during interrupts; just write the subroutine, and call ADDSRVR

where you want it activated. When it comes time to shut it off,

just REMSRVR it at the appropriate place.

It works by simply putting JSRs to the server subroutines in a

chain that ends with a JMP to the original IRQ destination

(usually, but not necessarily, the Kernal IRQ entry point at

$EA31). Unused server slots in the chain are filled with three

NOPs to take the place of a JSR. A server is added to the chain by

having a JSR followed by its address placed in the first empty

(NOP-filled) slot in the server chain, and removed by having the

JSR simply NOPped out. Simple, perhaps, but it works like a

charm.

The system as listed can handle up to four interrupt servers.

This number can be changed to any size you need by changing

the assembler variable IHENTRIES. Each additional server

added to this maximum uses three more bytes in the server

chain, and causes three extra NOPs to be executed every IRQ.

In case you haven't guessed, the inspiration for these routines

comes from the Amiga's AddlntServer, RemlntServer, and

SetlntHandler functions. Now you can program interrupts on

your 64 just like they do on the Amiga (well, almost).

Interrupt Handler System

JN

IG

PG

OB

Gl

AH

KJ

JP

GE

IL

PK

MM

GN

HA

BK

KG

OP

IA

OP

JO

IA

AG

Cl

AC

IO

IF

EK

PI

OF

GF

KB

MJ

HH

EE

CL

HJ

LJ

HK

AC

CD

00

OG

CA

MA

DN

CM

MG

HF

1000 ; interrupt handler system

1010;

1020; insthdlr. killhdlr,

1030 ; addsrvr, remsrvr

1040;

1050 ternpvec=

1060;

1070 ihentries=

$fb

4 ;max # of int servers

1080; increase if necessary

1090;

1100chainlen=

1110;

1120;

1130ihchain * = *

ihentries * 3

+ chainlen

1140 ; server chain goes here

1150 rts

1160;

1170;

1180 insthdlr =

.A

*

1190; install the interrupt handler

1200 Idy

1210 Ida

1220 ih1 sta

1230 dey

1240 bpl

1250;

1260 php

1270 sei

1280 Ida

1290 sta

1300 sta

1310 Ida

1320 sta

1330 sta

1340;

1350 Ida

1360 sta

1370 Ida

1380 sta

1390 pip

1400;

1410 rts

1420;

1430;

1440 killhdlr =

#chainlen -1

#$ea

ihchain,y ;putnopsin

;handler chain

ih1

$0314 ;save irq vector

intexit+1

saveirq

$0315

intexit + 2

saveirq + 1

#<handler

$0314 ;point vector to handler

#>handler

$0315

*

1450; restore irqs as before insthdlr

1460 php

1470 sei

The Transactor January 1988: Volume 8, Issue O4

AJ

GF

AL

CK

EL

GO

KH

El

BM

PM

EG

KD

GF

AM

MA

HP

ON

GM

JA

MP

JM

EP

BP

EG

OM

NH

HI

BJ

HJ

OB

LB

HA

OB

JD

CD

HI

PB

MJ

EO

KD

OM

IN

EC

Nl

NH

JC

ME

HD

OB

IC

HK

JH

EA

NL

HA

KL

PD

AD

NG

Ida saveirq

sta $0314 ;restore irq vector

Ida saveirq +1

sta $0315

Pip
rts

1480

1490

1500

1510

1520

1530

1540;

1550;

1560addsrvr= *

1570 ; adds routine at address .a/.y

1580 ; to the interrupt chain;

1590 ; returns the number of the

1600; server in the chain in .x

1610;

php

sei

1620

1630

1640;

1650

1660

1670;

1680

1690

1700

1710 ais1

1720

1730

1740

1750

1760

1770

1780

sta tempvec

sty tempvec +1

Ida #$20 ;jsr

Idy #chainlen-3

Idx #3

cmp ihchain.y ;skip full slots

bne ais2

dey

dey

dey

dex

bpl ais1

bmi ais3

1790ais2 sta ihchain.y

1800 ; put handler call in next

1810; available slot

Ida tempvec

sta ihchain +1 ,y

Ida tempvec+1

sta ihchain+ 2,y

pip

rts

1820

1830

1840

1850

1860ais3

1870

1880;

1890;

1900 remsrvr = *

1910; removes the interrupt server

1920; specified in .x

1930 ; from the interrupt chain

1940 php

1950 sei

1960;

1970 clc

1980 Ida #0

1990 ris1 dex

2000 bmi ris2

2010 adc #3

2020 bne ris1

2030 ris2 tay

2040 Ida #$ea ;nopoutjsr to server

2050 sta ihchain.y

2060 - sta ihchain+ 1,y

IH

EO

GB

KK

EL

EM

BH

MK

PI

BE

AP

ME

NK

2070 sta ihchain+ 2,y

2080 pip

2090 rts

2100;

2110;

2120 handler = *

2130 jsr

2140 intexit = *

2150 jmp $ea31

2160 ;($ea31 modified by insthdlr)

2170;

2180 saveirq * = * + 2

2190 ;original irq vector is saved here

ihchain ;execute servers

Auto-Linefeed Generation Joseph Buckley

Quincy, MA

Page 349 of the Commodore 64 Programmer's Reference Guide

states that opening an RS-232 channel with a logical file

number of greater than 127 forces an automatic linefeed after

each carriage return. What may not be commonly known is that

this only works when sending to the file using PRINT from

BASIC. I came across this while using a printer that needed

linefeeds.

What 1 finally did was place a short wedge in the CHROUT

routine. I changed the vector IBASOUT at $0326 to point to this

code.

wedge cmp#$0d

bne skip

jsr $f1ca

Ida #$0a

skip jmp $f1ca

This will add a linefeed after every carriage return printed. For a

more general routine, you could limit it to device number two.

Easy User-Alert Tom Morrow, Oak Park, IL

Often in a program it becomes necessary to signal to the user

that something important is happening (like they are about to

format a disk, or exit the program without saving work). The

following short machine language routine performs this function

quite economically. Include these lines at the beginning of your

program:

10 data 172, 32,208,202,142, 32,208,165

20 data 198, 240, 248, 140, 32,208, 96

30 for ct=679 to 693: read dt: poke ct.dt: next ct

When you want to alert the user, just SYS 679. A pattern will

form in the border of the screen until the user presses a key.

After the keypress, the border will revert to its original colour.

A usage example:

10 print "do you really want to exit? (y/n)"

20 sys 679: get an$

The Transactor January 1988: Volume 8, Issue O4

C128Bits

1571 Seek-Stopper

80-Column Tricks Kevin Hisel

Champaign, IL

I stumbled across the following tricks with the VDC chip in the

C128. Use them in 80-column mode while in BASIC BANK 15.

10 rem wild screen roundup

20 for i = 6 to 80: sys 52684,i,1: next

10 rem character swipe

20 for i = 0 to 8: sys 52684,i,23

30forx = 1 to 100: next x,i

10 rem open the curtain

20 for i = 0 to 100: sys 52684J.35

30forx = 1 to 10: nextx.i

Simple Rules for the 128 Kevin Hisel

Being the librarian for a user group, I come across lots of 128

public domain programs. Almost always, these programs need

to be slightly modified because the programmer did not follow a

few simple and courteous rules. Here they are:

Rule #1: Always place a REM in the first few lines that states

what machine the program runs on. Many frustrated 64 owners

may get hold of your program and wonder for days why it won't

run.

Rule #2: Always check to see what screen (40 or 80 column)

the user is running with and if necessary, adjust your program or

simply display a message telling the user to switch modes. It is

very easy:

if rwindow(2) = 80 then prinffor 40 column mode only": end

This can save a lot of head-scratching when someone tries to

RUN your latest 40 column hi-res demo or 80 column spread

sheet, etc.

Rule #3: If your program redefines the function keys, save the

user's keys first, and when the program ends, put them back!

Again this is very easy to do:

To save the keys:

for i = 4096 to 4352: poke i + 2048,peek(i): next

To put them back when you are done:

for i = 4096 to 4352: poke i,peek(i + 2048): next

These two operations take a few seconds to execute, but the user

will be grateful that when they hit the F3 key for a directory next

time, they won't format the disk or some such thing.

Gerald Boersma

Nepean, Ontario

On the C-128 with the 1571 disk drive, the drive does a lot of

seeking on power-up if the disk within is single sided. In an

earlier column, a reader mentioned that a solution is to copy all

files to another disk, format the disk as double sided, and copy

the files back again. However, there is an easier way! You can

just format the second side of the disk while leaving side one

alone.

Type: open 15,8,15, Bu0>m0"

print#15,pu0>h1"

This puts the 1571 drive in 1541 mode, then selects the second

read/write head. At this point the drive error light may flash,

since the second side of the disk is not formatted. Don't worry

about it; you are about to format this side:

print#15/nO:anti-knock,ak"

After the format takes place, the disk is prepared for future use.

Now, when you boot up with that disk in the drive, the 1571 will

immediately find both sides and won't chatter at you while it

tries to make sense of the second side.

CAUTION: Don't use this on "flippies", disks that have dataion

both sides, since you will wipe out the second side. ;?"£■,

C128 I/O Incompatibility Richard Thornton

Richmond, Virginia

Recently I spent considerable time trying to convert a C64

machine language program to the C128. On the 128 version, the

disk file it produced was incorrect, and some data was erratically

written to the screen rather than the file. The problem turned

out to be consecutive calls to the CHKOUT routine with no prior

call to CLRCHN. Apparently, the C64/1541 has no problem with

this, but the C128/1571 can't handle it properly. Preceding each

CHKIN and CHKOUT with a call to CLRCHN solved the prob

lem.

Function Key Finagler Ed Schmahl

Bowie MD

Here is a way to make your C-l 28 function keys self-modifying,

so that every time you hit a function key, numbers within the

key definition will increase or decrease by a set value. This is

useful, for example, when you are developing a program and

wish to save it with a new version number each time. With

'•function key finagler", you could set up a function key like this:

key5,adsave' + chr$(34) + "file.OOl"

+ chr$(34) + B:sys4864,5,1,2°

The first time you press F5, the file "file.OOln will be saved; the

qext time, the name will be "file.002", etc.

The Transactor January 1988: Volume 8, Issue O4

The "sys4864" in the above example is what increments the

value in the function key. You can put the routine anywhere in

memory; it's fully relocatable. The syntax for using it is:

SYS ad,a,x,y

ad is the start address of the routine (4864 in the above

example); a is the function key number (1 to 10); x is the amount

of the increment (which can be negative using 255 for -1,254 for

-2, etc.); and y is the position within the function key definition,

with zero being the position of the first occurence of a digit.

Here are a few other self-modifying function keys that you

might find interesting:

key1 ,Bgraphic(0and1):sys4864,1,1,0" + chr$(13)

(toggles graphics modes)

Cursor Save and Restore Paul Blair

Canberra, Australia

This routine is one I've always wanted, and the C128 makes it

easy. There I am, wanting to print something on the screen,

jump off to another spot to print something else, then return to

where I left off, to print more.

Basic 7 has two routines to help me do this, SAVEPOS and

RSTRPOS at $CC1E and $C932 respectively. SAVEPOS saves

the current cursor location (column and row) at $DE/$DF.

RSTRPOS recovers them and puts you back whence you came.

Try this (from bank 15):

1 scnclr: char 0,4,7,"this is up here"

2 sys 52254: sleep 2: char 0,11,20,"look!"

3 sys 51506: sleep 2: print' again"

key2, Vol5:sound2,4000,6:sys4864,2,3,11"+ chr$(13)

(beep with varying pitch)

key3,"a = (00and15) +1 :color4,a:sys4864,3,1,1 ° + chr$(13)

(change border colour)

key7,1ist00000-00T00:sys4864,7,1,2

:sys4864,7,1,8' + chr$(13)

(list forward one block at a time)

key8,"list00800-00900:sys4864,8,255,2

:sys4864,8,255,8" + chr$(13)

(list one block at a time backwards)

Change these key commands to suit your taste, or invent other

ones as you like. Remember to insert enough leading digits to

prevent wrap-arounds in the numbers. The ML program is only

80 bytes, so you can stuff it almost anywhere - even in the

upper part of key memory ($1000-$10ff), if your key messages

are short.

C128 Function Key Finagler

Amiga Bits

Nl

EM

AF

BD

CO

KA

BO

JJ

GL

CG

FB

NM

PF

FP

OF

CC

100 rem function key finagler

110 ad = 4864: rem relocatable

120 for i = 0 to 79: read n

130 pokead + i,n: ck = ck + n: next

140 if ck<>11227 then prinfdata error"

150:

160 data 132, 250,168,169, 16,133,252,169

170data 0,133,251,136, 24,136, 48, 4

180 data 113, 251, 208, 249,105, 9,133, 251

190 data 200, 56,177,251,233, 48,201, 10

200 data 144, 6, 230, 251, 208, 244, 240, 39

210 data 164, 250,138,113, 251,176, 15,201

220data 58,144, 26,233, 10,145,251,136

230 data 48, 21,169, 0, 240, 237, 201 / 48

240data176, 11,105, 10,145,251,136, 48

250 data 6,169,255, 48,222,145,251, 96

CLIHint Steve Tibbett

Gloucester, Ontario

Here's a tip I find useful at times for starting a bunch of tasks

without stuff going on while I'm typing: If you hold down the

CTRL key when you hit RETURN after typing a CLI command,

the CLI will not start processing that line until you hit the

RETURN key alone. So, if you type LIST <CTRL-RETURN>

DIR <RETURN>, LIST will only be executed after the final

RETURN, followed by DIR.

This can come in handy when you want execute a few com

mands, but wish to wait until a large program has loaded to

avoid making the disk head seek back and forth between files;

while the program is loading, you can type all your commands

using CTRL-RETURN between them, then just press the final

RETURN when disk activity stops.

AmigaDOS Rollodex Tool Benjamin Dobkin

RegoPark,NY

This short Execute file will retrieve all the "rollodex cards", from

a properly formatted file, whose first line matches a supplied

argument.

For example, to find "Jones" in your database file called "ad

dresses", you would type from the CLI:

execute rollodex jones addresses

All entries whose first line started with "Jones" would be

completely printed out.

The "rollodex" execute file is simply this:

The Transactor 1O January 1988: Volume 8, Issue O4

.KEY string,database

echo >ram:temp °0(F BU/<string>/;P;TN);STOPB

edit from <database>to nil: with ram:temp OPT P6W60

delete >nil: ram:temp

It uses the line editor Edit (included on the standard Work

bench disk), so that program must be in your C directory or

somewhere else in the search path for Rollodex to work.

Your "database" is just a standard ASCII file that you can

make with a text editor (Ed, Emacs, etc.), with each entry

taking a fixed number of lines, for example:

AmigaBasic Fade-in Graham Reed

Toronto, Ontario

Jones, Fred

18 Beazly Street

London, England

phone 212-304-3123

Jane, Mary

14 41st St.

New York, NY

phone 501-123-4351

In a file like this, each record is six lines long. This corresponds

to the first 6 in the "OPT P6W60" option given to Edit in the

execute file. You can change this to suit your needs.

Rollodex works by giving commands to Edit. It creates a tempo

rary command file for Edit in RAM: that looks like this, with the

argument <string> substituted for your search string:

"0(F BU/<string>/;P;TN);STOP"

This means go forward, look at the beginning of each line for the

uppercase string, when it's found, back up to the previous line,

then type to the end of the buffer. The brackets group these

instructions together, and the 0 in front means repeat them

indefinitely, until end of file. The STOP exits Edit and returns to

theCLI.

Edit is then called, using the command file just created and the

options P6W60, giving the buffer size (six lines of up to sixty

characters each). As explained above, you can change the buffer

length to suit your database file format.

Note that in the database file, the search string must start with

an uppercase character and must begin in the first column.

Also, the match is made by the first characters on the line, so

searching for "SM" will match "Smith", "Smurf\ "Smedley",

etc. The " " used above is not necessary, but some form of

delimiter between entries is a good idea for clarity.

Now you have a simple database, without spending money or

typing in a long program!

This simple AmigaBASIC program will create a "fade-in" or

"fade-out" effect by varying the intensities of all four colour

registers from the given colours to black, or from black to the

given colours. It currently does the first four colour registers

only, but it could be easily modified to work with 8, 16, or 32-

colour screens as well, although a visible "wash" would occur

due to the speed of Basic.

The fade is accomplished by the subprogram fadein, which is

passed arrays containing the the red, green, and blue colour

intensities (from 0 to 1) for each of the four colours in the

Workbench screen, and a fade direction. If the direction is

nonzero, the routine fades the screen in from black to the

specified colours; if zero, it fades out from the given colours to

black.

The mainline part of the program shows how to use fadein: it

loads colour values (specified here in their "real" form from 0 to

15 and converted to Basic's 0 to 1 representation) into arrays,

and passes those arrays to fadein along with a direction. To show

off, it keeps fading in and out until you click the left mouse

button.

1 fade in/out

main:

DIM r(3), g(3), b(3) \^f-

FOR i = 0 TO 3 'read rgb values for each colour regisfiir

READ r, g, b

r(i) = r/15: g(i) = g/15: b(i) = b/15

NEXTi

PRINT "Click left mouse button to end"

WHILE MOUSE(0) = 0

CALLfadein(rO,gO,b(),0)

CALLfadein(r(),g()>b(),1)

WEND

END

1 r, g, b values for each colour register

DATA 0, 5,10

DATA 15,15,15

DATA 0, 0, 2

DATA 15, 8, 0

SUB fadein(red(1), green(1), blue(1), dir%) STATIC

IFdiro/oTHEN

dir% = 1; st = 0: en = 1 'fade in

ELSE

dir°/o =-1: st = 1: en = 0'fade out

END IF

FOR i = st TO en STEP dir°/o * .0625

FORj% =0TO3

PALETTE j°/o, i*red(j°/o), i*green(j%), i*blue(j%)

NEXTjo/o

NEXTi

END SUB

The Transactor 11 January 1988: Volume 8, Issue O4

L
t

R

"Advertising In The Transactor WORKS!": In your July '87

issue of the Transactor you published my press release in your

NEWS BRK section. Immediately following publication we experi

enced a dramatic increase in BBS sales from customers both in

Canada and the previously untapped U.S. market.

I would like to thank you for providing this wonderful service.

Without help of this kind, small mail-order operations, like myself,

would not survive. Pass the message to your prospective adver

tisers: advertising in the Transactor WORKS!

James MacFarlane, Co-Author, Spence XP BBS

Islington, Ontario, Canada

CP/M In The T: Thank goodness, somebody realises that CP/M

articles are NEEDED. I have the C128, can't afford to buy an Amiga

- and if I could my wife wouldn't stand for spending that much

money on my hobby - so I have to explore all facets of the computer

I have! I have dropped my subscriptions to Compute Gazette and

RUN because they never publish articles on the CP/M mode.

Please encourage Adam Hearst and Clifton Karnes to keep writing.

.. for your CP/M audience.

J. Nelson William, San Diego, California

At first we stayed away from CP/M because of its age; the duration

of its existence led us to believe that there was already plenty of

information available in othermagazines andbooks. Turnedout we

were wrong - CP/M info has gone dry, and help can be hard to

find. So we began actively look fora little CP/Mmaterial each issue.

Thanks to Adam Herst, Clifton Karnes, Aubrey Stanley, Mike

Garamszeghy and others, CP/M is shedding its years and looking

good. Thanks for the support.

".. .if I owned one I would get an Amiga magazine!99: Mr.

Bernard H. Weiss (Letters, Volume 8, Issue 2) has expressed what

has been on my mind for some time in regards to your Amiga

coverage. There's too much of it!

My 64 has done the job for me for 4 years and so has the 1541

(without trouble!). The Amiga is a great computer but if I owned one

I would get an Amiga magazine. Computing is a hobby with me, but

if I were to get on the treadmill of buying a new machines every

year or so I could not afford the Transactor!

P.S. I do not like your Volume 8, Issue 3 cover! The old artwork was

worth the price of the "T" by itself. Also, the paper is too shiny -

hard on the eyes!!!

Hans Uechert, Wymark, Saskatchewan

Commodore has produced some pretty good computers over the

years. And since 1978, we have covered them all, in one way or

another. The Amiga is yet another Commodore computer, so we've

covered it too. It's nice to work with, powerful and full ofpossibili

ties. But you're right - Amiga users should buy an Amiga-specific

magazine. That's why, come early January, Transactor will un

dergo mitosis. You'll get your eight-bitjournal once again. No more

Amiga coverage! This cell-division, though, will spawn a second

Transactor for Amiga users only - "Transactor for the Amiga".

(Note to Amiga users looking for more details: see the editorial in

this issue.)

You don't like our CN Tower photograph! John Mostacci would be

glad to hear that you miss him. But the new cover design is here to

stay - at least till the next time we change it. After painstaking

market research, we have determined that white magazine covers

show up betteron a newsstandshelfthat coloured ones do (actually,

wejust went to a magazine store andhadagoodlook around, but it

amounts to the same thing). Luckily for us, a lot of readers seem to

approve, ofthe new covers, though we have to admit there's quite a

few disgruntled Duke fans out there. But what could we do? Duke

got himself an AT clone, and he'll probably show up in one of the

MS-DOS magazines any month now, reviewing productivity soft

ware.

Program Listings For All Machines: Your last news stand issue

was the first issue I ever saw of the Transactor. I regret the past

The Transactor 12 January 1988: Volume 8, Issue O4

issues I missed, but I will be part of the future. Since my greatest

pleasure is writing my own programs, your instructional listings in

hex or Basic is what I am looking for.

I do have § request (that you must get all the time from owners of the

C128). When my current program ran out of string space (especially

variable space), I upgraded from the C64 to the C128.1 noticed most

of your articles deal with the C64. I suppose the philosophy in

computerland is that since we have a C64 in our C128 we are

covered. However, I bet that most of your readers are also hackers

like myself and once we have put our programs into C128 format,

we can't go back to the C64. For instance, "XREF for the 64" by

David Archibald makes my mouth water. I could really use that help

with my program. Since it is written with data statements I can't

change it for my C128. My request is that you might make it a policy

that any C64 article you print would be purchased (of course at a

lower fee) in revised C128 format if anyone in your reading

audience has the ability or patience to do so. I noticed that Compute!

Magazine often lists the same program for several different com

puters. Maybe this means fewer programs per issue, but nobody is

left biting their finger nails (except C128 owners in Compute!

magazine).

P.S. It would also make purchasing your disks more reasonable. At

this point it would be just another frustration.

Cynthia Darrow, Watertown, NY

That's an interesting idea,. Cynthia. In fact, whenever possible, we

do like to run multiple versions ofourpublishedprograms. Also, we

usually are able to publish the source for machine language pro

grams (though not in the case ofXREF, unfortunately!); we do this

for the very reason that it enables readers to modify the code to suit

their own needs or their own machines. If readers wish to send us

ported versions of programs from the magazine, we will certainly

consider them forpublication (orperhaps for the disk, depending on

the size of the program, and so on). In any case, good ideas don't

just materialize once then vanish, so you'll more than likely see an

original C128 cross-reference program in Transactor some time in

the near future.

Transactor Continuing Education Course: In the course of a

long and varied academic career, now defunct by a good ten years,

it has been my lot to deal with Continuing Education courses offered

by our University - in fact, I still operate several of them in the field

of Microbiology and Public Health.

As a result of this experience and the fact that it seems unduly

torturous to learn 6502 assembly language in any short time, solo, it

occurs to me that, given a sufficiently large, interested body of eager

neophytes, you and your considerable bevy of top-notch experts

could either offer such a course by mail for an appropriate fee, or it

could be activated as a continuing series in Transactor, my all time

favourite mag.

One might suppose that you have thought through such a plan

many times and discarded it for any number of arcane reasons.

Even if so, perhaps another look might produce different results.

Bob Tischer, Starkville, MS

Bob, we have never consideredproviding a course through the mail

before. With our small staff, it's difficult enough to just keep

producing the magazine. You could be right, though. If sufficient

interest did materialize, Iam sure we could round up a host oftop-

name authors to give us a hand with the series. Food for thought.

Maybeyour letter willgenerate some mail for us. How about it folks

- Continuing Education, by mail, in intermediate to advanced

programming skills? Comments, anyone?

"GEOS mice-and-little-pictures environment": GEOS

doesn't seem to get much respect among "techie" users. While I can

understand that, I have noticed that it's often the people who are

most enamored of the Amiga mice-and-little-pictures environment

who sneer the most at the GEOS mice-and-little-pictures environ

ment. Since the T is the foremost in Commodore techie magazines,

I'd be most interested in seeing a few articles about GEOS, pro or

con (and I'm aware that the "pro" ones will be hard to come by!)

Any possibility of that?

Marte Brengle, Burbank, California

GEOS. It's been a tough decision to make since day one. GEOS is

great for those users who find it suits their style, but so far it doesn 't

seem to have been inspiring for many programmers. If we're going

- to cover GEOS, it will be from the programmer's point ofview - our

normal slant, in other words. So far, we haven't been getting those

articles and, frankly, we wouldn't know where to look for them

outside the walls of Berkeley Softworks. And so, we're silent on

GEOS... not from principle, but for lack of material. Sorry Marte.

Commodore 1526 Blues: I am one of the poor people

bought a Commodore 1526/MPS 802 printer. I say poor, although

have been quite pleased with it as far as it goes. The major

drawback with it (as you probably well know) is its very, very

limited graphics capability. I have often thought that, given its

reputation as a "smart" Commodore peripheral, it should be possi

ble to create a new ROM chip for it which would make it work like

am MPS 801 (1525). I would be interested in doing it myself except

that my skills are all in software with only limited skills in the

practical aspects of firmware and hardware. I'm afraid of frying my

printer, computer and every other solid state electronic device in my

house if I do anything more than take a chip or board out and put

another in. Do you or any of your readers know of any companies or

individuals who have done such a public service? Given that the

printer seems to be modeled after the Mannesman Tally Spirit 80,1

should think that it is quite possible. I believe that the Spirit 80 has

graphics capability. In a similar vein, have you heard of interfaces

that allow Commodore printers to be attached to other computers

(e.g. you-know-who and compatibles) or are the CBM printers just

too smart for that kind of dumb hookup?

Peter Chynoweth, Saskatoon, Saskatchewan

Prepare for a feast. Within the next few months, ifthings continue to

go well, a new series of hardware modification kits will become

available through Transactor for the 1526 printer. The mods are in

three stages. First, a change ofROMs that will clean up all existing

1526 bugs, increase the printing speed, and also provide a whole

new set of commands through a printer command channel. These

commands include a way to tell the 1526 to emulate a 1525 printer

flawlessly! Until the code is complete, I can't go any further on the

commandset.

The second mod kit provides a circuit board containing a new

microprocessor and IK ofRAM that will replace the 1526's normal

The Transactor 13 January 1988; Volume 8, Issue O4

processor. The purpose: to allow the 1526 to access more memory

through a better chip, thereby allowing fonts to be downloaded into

the additional RAM. The third mod kit contains a panel ofswitches

to be mounted on the 1526. These switches will allow control of

Top-Of-Form, On & Off-Line and whatever else can be thought of.

Just be patient for a little while longer - the way it looks right now,

the answer to your 1526 woes is right around the corner.

One last point before going on, MSD did notgo out ofbusiness. They

simply stopped supporting the Commodore marketplace. This ru

mour has been spreading for quite some time, and it's time that it

stopped. The president ofMSD called us about it one day after he

read a somewhat exaggerated account of his company's demise in

our NEWS BRK section. Needless to say MSD is alive, well, and

staying far away from the Commodore community.

Using An IEEE Disk Drive With The Commodore 64:1 have

always felt that it would be a real asset to have a dual disk drive. I

was disappointed when I learned that the manufacturer of the

MSD-2 was no longer in business. However, I was attracted by an

advertisement for interfacing a Commodore 4040 dual disk drive

with the C64 by using an RTC C64-LINK II. This interface also

raised the BASIC 2.0 to 4.0(16 additional disk commands).

I have had continuous problems with this arrangement. The

BACKUP and COPY commands do not work if there is any kind of

glitch on the source disk. Many programs such as PRINTSHOP and

NEWSROOM wil not load from the 4040. By typing in SERIAL, I am

able to default the system to the 1541 drive and thus load the

programs. I do not regard this as being a satisfactory arrangement

as the very reasons for acquiring a dual disk drive have been

defeated. It would appear that there are inherent differences be

tween the two drives but it escapes my logic as to why. I do know

that a large number of programs can be loaded from both disk

drives and formatted disks from either drive are compatible. Have

any of your readers encountered this problem and, if so, have they

been able to solve it? I have already invested considerable time and

rfliiiey in this system and would hate to abandon it now. Any help

you can offer would be appreciated.

If & program uses disk protection or direct disk programming

techniques, it should be stated on the label in BOLD PRINT. But it

never is. If a program has been written that requires the 1541 to

operate, such as Printshop orNewsroom, then chances are thatyou

cannot use another drive in its place. Advanced programming

techniques that exploit internal features of the 1541 disk drive

cannot possibly be expected to work on any other disk drive. The

1541 and the 4040 differ in the amount ofRAM they contain, the

usage of that RAM, the code contained in ROM, plus the way in

which the drives handle data. The 4040 is an IEEE-488 parallel

drive. The 1541 is a pseudo-serial drive. By looking through the

source code for each, similarities and differences abound. They

share lineage, but are not the same drives. Enough said.

The 4040 drive was never meant to be a bit copier. If an error wqs

encountered during a Backup or Copy, then the procedure would

bomb out every time. The RTCLink cannot be expected to improve

on the drive. One problem inherent with the RTCLink, though, was

its consumption ofRAM. In order for it to provide you with an IEEE-

488 interface plus give those "16 additional disk commands", some

liberties were taken. Incompatibility with some commercial pro

grams will be found.

We have been using the entire line ofIEEE-488 drives with our 64s

for years. Karl right now has a 4040 and an 8250 plus several

8050s, all hooked together over our G-Link IEEE-488 interface for

the 64. Although you don *t get any extra commands, it does provide

clean and fast access to the IEEE-488 bus. It's an ugly interface, but

it works.

Macro Assembler Desired: I am at my wits' end in dealing with

my Commodore Macro Assembler package. I am fine until I attempt

to assemble a macro. When the macro is expanded, the assembler

gives me an error. Give me the names of a few good macro

assemblers (make sure they include excellent documentation). I

noticed that Transactor uses PAL. I am unfamiliar with PAL. Is it a

MACRO assembler? Where can I get it? Any help that you can give

me to get me started on the road to machine language proficiency

would be greatly appreciated.

Jeffry S. Barnes, Clarksville, IN, USA

PAL is not a macro assembler. It isjust a nice 6502 assembler to use

with the PET/CBM, B128 and C64 microcomputers. Currently, it is

being marketed by Spinnaker in the US under the "Better Working

Software" label, along with POWER 64, as "The Programmers'

Toolbox". Together, PAL and POWER make a terrific buy at any

price. I'll provide Spinnaker's address, plus Spinnaker's Canadian

distributor's address and such at the end of this reply.

The finest 6502 macro assembler that I have used to date is the

POWERAssembler (aka Buddy 128 andBuddy 64), also distributed

by Spinnaker. Buddy was written by Chris Miller, a name that will

be familiar to many ofour readers. Chris has been regularly writing

for us for years. A few issues ago we published Chris' "Mr. Ed", a

text-editor for the C64. You 'II find a full-blown version ofMr. Ed on

either Buddy disk. This text editor is part of the version of Buddy

(EBUD) that will assemble text data files in RAM. You 7/ also find a

version of Buddy (BUD) that will assembler PAL-type source files

(i.e. Basic source), and a final version for C128 users that will

assemble Z80 code on the C128 side. To make this package even

better, Chris tossed on a slew of macro source files, extra utilities

and whatever else he could think of. It was a true labour bf love.

And it is not copy-protected in the least.

The documentation is good. But that was to be expected consider

ing that Chris Miller wrote the docs. The manual is informative, well

laid out, and fun when the going gets tough. In short, he did a good

job. Since the first time Chris sent me a copy, I have been passing it

about to people that Iknew would use it and advise Chris on how to

make it better. Liz Deal, Mike Garamszeghy, Aubrey Stanley and I

have caused Chris more than enough headaches, but to date, he

has always come through. Buddy is perhaps the nicest and most

versatile assembler that you'll find for the Commodore line of

computers.

US Distributor

Spinnaker

One Kendal Street

Cambridge, MA, 02139

(617)494-1200

800-826-0706 toll-free

Canadian Distributor

Beamscope Canada Inc.

110 Commander Blvd.

Scarborough, Ontario, Canada

M1S3H7 (416)291-0000

800-268-3521 toll-free (Ontario only)

800-268-5535 toll-free (rest ofCanada)

The Transactor 14 January 198S: Volume 8, Issue O4

Tranzbloopurz

GAP FILL, Vol5, Issue6, page 57

This one goes back almost three years! Paul Blair of Holder,

Australia, writes, "Could I point out a very minor but important

glitch in GAP FILL The problem is in line 230. If the order of file

opening is reversed, the program runs quite happily on my 4040.

So, I suggest line 230 should read:

230 OPEN 5,8,5/r.OPEN 15,8,15: REM etc

IfI don't do this, the error light flashes, the drive gets hysterical, and

the program gets knotted up. Not a pretty sight.

Vve never worked out quite why this order of things is required. Rae

West, in his opus magnus on PETprogramming, gives it both ways

- as you had it on page 185 (the introduction to use of disk drives)

then uses the reverse order in all the working examples. There's

obviously a reason, but Ijust don't know what it is. Maybe someone

else does."

Ideas, anyone?

Garbage Collector Revealed, Vol8, Issue29 page 30

A problem that won't affect correct operation of the program, but an

interesting one to look at. On lines 1140, 1150 and 1180 of the PAL

source listing, the word "collect" in the comment field has been

replaced by the word "input". This, as author Michael Graham quite

correctly points out, is the result of tokenizing the source code on

one machine, and listing it on another.

Inside View - bits, page 8

It turns out that this program will not work on 64s that have ROM

version 2, because it stores to display memory without modifying

the corresponding colour memory. If you have an older 64 and find

that the program behaves strangely, that's probably the reason. Our

apologies to anyone who typed it in and can't use it; unfortunately,

it's not possible - and usually not necessary - for us to test

everything on all ROM versions.

C128 Programmer's Aid Fix - Letters, page 17

After stating that the new version of C128 Programmer's Aid would

be fixed and put on Transactor Disk #20, we found that the code

changes were responsible for not only fixing problems, but creating

some new ones too. If we get a good one working, we'll put it on a T

disk and let you know.

Switchable RS-232 Interface, page 21:

The circuit diagram left out a few labels: the ICs, starting with the

1488 and moving clockwise, should be labelled Ul through U5; the

diodes at the upper left of the diagram are, from top to bottom, Dl,

D2 and D3; the capacitors just to the right of the diodes should be

labelled Cl and C2, again from top to bottom. Also, the 1N4001

diodes, as they are named in the diagram, are incorrectly referred to

as 1N001 in the parts list. Another problem with the diagram: the

small note at the bottom saying to ground all unused pins on the

1488 and 1489s is incorrect: only the 1488 should have its unused

pins grounded; the unused pins on the 1489s should be left as N/C -

no connection. Finally, the voltage ratings for the disk capacitors in

the parts list are not specified - the ratings are unimportant, and the

lowest you can get will do.

Getting Around With Gogo Dancer, page 47:

There were a few small bugs in the Gogo Dancer program; here is

the revised BASIC loader. This new version arrived at HQ about 2

days after we went to press. Although the original works in most

case, it will not process line labels and computed line numbers

beyond a "THEN" statement. This new one does. The changes from

the original listing are shown in boldface:

DP

EP

GJ

EJ

HA

PE

OL

AO

GO

JF

BA

KA

LM

PI

KA

IE

BC

HE

EE

DC

PB

BA

JD

IG

EF

HE

Cl

KH

EJ

IK

MK

HA

PF

HI

OJ

MJ

GA

CD

100 rem save'0:gogowedge.ldrB,8

110 rem ** written by chris miller, kitchener, Ontario

120 rem

130 for j = 49152 to 49395 : read x

140 poke j,x: ch = ch + x: next

150 if ch<>31618 then print"checksum error": end'

160 rem

170 data 169, 11,141, 8, 3,169,192,141

180 data 9, 3, 96, 32,115, 0, 32, 20

190 data 192, 76,174,167,201,139,240, 15

200 data 201,137,240, 77,201,141,240, 47

201data201, 64,208, 37, 76,248,168, 32

203data115, 0, 32,158,173,165, 97,208

205 data 6, 32, 9,169, 76,251,168, 32

207 datai 21, 0,201,137,240, 43,169,167

209 data 32,255,174,201,128,144, 37,176 #
210data203, 32,124, 0, 76,237

220 data 167,169, 3, 32,251,163,165,123

230 data 72,165,122, 72,165, 58, 72,165

240 data 57, 72,169,141, 72, 32,105,192

250 data 76,174,167, 32,115, 0,201, 64

260 data 240, 12, 32,124, 0, 32,158,173

270 data 32,247,183, 76,163,168, 32, 6

280 data 169,136,177,122, 201, 36, 208, 34

290 data 32,115, 0, 32,139, 176,160, 0

300 data 177, 71,240, 91,133,255,200,177

310 data 71,170,200,177, 71,168,138,1>08

320 data 1,136, 202,134, 253,132, 254, 76

330 data 178,192,132, 255,165,122,133, 253

340 data 165, 123,133,254, 165, 43,133, 95

350 data 165, 44,133, 96,160, 4,166,255

360 data 177, 95,201, 64,208, 25,136,136

370 data 136,177, 253, 200, 200, 200, 200, 209

380 data 95,208, 12,202,208,240,200,177

23,201, 58,240, 19,160

95,170,200,177, 95,133

95,177, 95,208,205, 76

56, 76,197,168

390 data 95,240,

400 data 0,177,

410 data 96,134,

420 data 227,168,

Adding Analog RGB Capability to the 1902 Monitor

Nothing wrong with this one, except that it might be a little hard to

find using our Table of Contents. It's on page 72.

The Transactor 15 January 1988: Volume 8, Issue O4

TeleColumn

Transactor Online Conference

Saturday, November 21 at 10:00 PM Eastern (7:00 Pacific)

in CompuServe's CBMCOM CO

An evening with

Ben Dunnington and Mark Brown

of INFO Magazine

Online with Ben and Mark

If you're looking for info on a piece of Commodore related hardware or

software, chances are good than Mark or Ben have it. I guess that's

whay their magazine is called "INFO", and it's one of our favourites.

INFO is pressing near 200,000 copies per issue now and has worldwide

distribution.

INFO's claim to fame is "the first personal computer magazine pro

duced entirely with personal computers". So if you're looking for some

advice about desktop publishing, you'll want to talk to Ben and Mark -

they've been at it since before the term was invented.

Since we're starting an Amiga only publication, we're also looking

forward to asking them if they have any similar plans of their own.

So don't miss out! Sign on (use 300 baud - it's cheaper) and enter GO

CBMCOM. At the main Function prompt enter "CO" - we'll use the

default CO channel.

Don't Be Fooled

The ads for GEnie circulating in the major mags compare Compu

Serve's $39.95 registration fee against their $18.00 fee to sign up. The

$39.95 charge will indeed get you registered for using CompuServe,

but that also includes manuals, a subscription to Online Today (Compu

Serve's own monthly magazine) and $25.00 of paid usage time. I'm not

sure what GEnie throws in for the 18 bucks, just as I'm equally unsure

what The Source gives you for their $49.95. All figures in US dough,

too!

However, CompuServe offers extensive online help at all prompts and

for those with any telecomputing experience at all, the manuals quickly

become unnecessary.

Want to save 40 bucks and get something for nothing at the same time?

There's another way to get a CompuServe membership. It's called a

"CompuServe Intro Pak". The cost? Absolutely FREE! And it comes

with a $15.00 time credit so you can try it out for a while to see if you

like it. All you need is a credit card.

Just send us a self addressed envelope (please, no stamps - save them

for Christmas cards). We'll turn it around with an Intro Pak inside (one

per person please). When you get it, you'll notice there's a "snap pack"

at the center of the booklet. Inside you'll find an account number and a

password. At the back of the book are phone numbers for hundreds of

CompuServe network nodes, as well as numbers for the other data

carriers such as Tymnet and Telenet. The inside back cover will show

how to get connected to the service after you've established a connec

tion with the node.

The "Host Name" is "CIS" - you may see this, probably not. Now enter

your account number, hit RETURN, and follow with your password.

CompuServe will notice that this is your first time on and ask you for a

method of payment so have your credit card number handy. Cheque-

Free is another payment method offered by CIS, but I believe this may

require a validation period. Regardless, your first $15.00 of connect

time is free - if you enter a credit card number you'll be sent straight

into the system.

About two weeks later, CompuServe will send you a new password.

This is to protect against unauthorized use of your credit card - the new

password goes to the address that belongs to your card number. To

change your password again, enter GO PASSWORD at any prompt.

Depending on the transmission speed you connect at, $15.00 will get

you different amounts of free time. At 1200 bps, $15.00 will cover you

for just over an hour; at 300 bps, $15 is good for about 2V2 hours (does

not include Telenet, Tymnet or DataPac charges). Also in the back of

the Intro Pak are access instructions for hundreds of forums within the

system. Enter GO CBMPRG or GO CBMCOM, for example, and you'll

have navigated your way directly to the forums managed by us at the T.

On your first entry to the forums you'll be presented with the Visitor's

Menu, but please select the "Join" option - there's no extra charge for

this, and by joining you'll be allowed to Leave messages and download

programs from the Data Libraries. So Leave us a message - we check

into the forums every day and we'll have a reply out to you usually

within 24 hours.

The same ads mentioned above show GEnie's connect time charges to

be less than The Source and CompuServe's. But remember, "you get

what you pay for" and, based on reports I've received via Email,

telecomputing services are no exception to this rule. Also, CompuServe

is one of the only services with their own nationwide network. From

most major metros, CIS is a local call and the network charge is 25 cents

per hour. Most others can only be accessed using the independent data

carriers, or by dialing long distance. Although Tymnet, Telenet and

DataPac offer local numbers in most areas, using their services adds a

surcharge that makes the basic hourly rate substantially higher.

The Transactor 16 January 1988: Volume 8, Issue 04

We've had several reviews published in recent issues by users of the

major telecomputing services, but other opinions are always welcome. I

don't think GEnie, BIX or PeopleLink have been in the TeleColumn

spotlight yet - maybe someone who uses several services would be in a

good position to write 'em up... someone that could be dragged away

from his Amiga for an hour or so... someone like... Tim Grantham

perhaps (hint, hint).

Sunday Night COs with Nick Sullivan et al.

Care to chat online? Perhaps you're looking for a program that isn't in

the Data Libraries. Maybe you've just bought something new with

features not explained very well in the manual. Or you've been

working on a program all weekend and you just can't seem to get past a

stubborn bug. I could think of a hundred other reasons, but if any of

them happeji to coincide with Sunday night at 10 (or thereabouts), sign

on, GO CBMPRG and enter the CO area. Nick Sullivan and any other

sysops, assistant sysops, or just plain knowledgable types, will be

making regular appearances in the conferencing area every Sunday at

10. By the way, use 300 baud - it's cheaper and you can't type at 120

characters per second anyway.

Attention Anchor 6480 Users

Thought you bought a lemon, did you? Most 6480 owners I've talked to

have all but given up on the "black sheep" of modems for Commodore

equipment. But there is hope. Word is that version 1.1 of AutoCom

works pretty well. On CompuServe the C64 version has scrolling

problems, but can be fixed by changing your terminal type to "CRT" in

GO PROFILE.

To get a copy, call Anchor Automation at (818) 997-6493.

CBTerm Now Available in CBMCOM

One of the most popular and most powerful terminal programs for the

C64 is now available in the CBMCOM forum. CBTerm features include

Xmodem protocol transfer capabilities with automatic Image header

stripping for downloading programs uploaded to CompuServe with B

protocol. It has a software 80 column screen mode, with dual incoming

and outgoing windows. There are dozens of support files and overlay

modules available too, including an overlay to make CBTerm work with

the Anchor 6480.

Don't have a program that will download using Xmodem protocol? A

catch-22 situation because without such a program, you can't download

CBTerm so that you can use it to download other programs. Not to

worry, mate. Sign on to CBMCOM and we'll direct you to a program

called BXD - Boot Xmodem Download. This short little BASIC program

is easy to type in and can be used just long enough to get a more

comprehensive terminal emulator... like CBTerm! Once you have

CBTerm you discard BXD and enjoy your full-featured access to one of

the most comprehensive collection of programs available online or

anywhere.

Call Waiting Disable

Do you have call waiting? You know, that handy little telephone feature

you pay extra for every month? It's great when you're on the phone a lot

- when someone else calls, you hear a beep and put your first call on

hold while you answer the second.

That beep, however, can really mess up an online connection, as many

have found out the hard way. Just before the beep, there's usually a split

second of silence that a modem would consider as "no connection" -

the carrier is lost for just long enough to make the call disconnect.

When it happens, about all you can do is answeryoursecond call.

Recognizing this problem, most telephone services are now offering

"call-waiting disable". By dialing "*70", your call-waiting feature is

temporarily disabled at the main switching station. You'll then hear a

second dial tone, at which point you proceed with the number of the

service you want to call. If you don't have touchtone, dialing "1170"

works the same way. If neither works, try calling your business office for

an answer, and then please share it with us.

On autodial Hayes and Hayes compatible modems, the command

"ATDT*70,5551212" usually works, where "5551212" is, of course,

the number of the service. If your modem doesn't accept the asterisk,

use "ATDT1170,5551212". The comma gives a two second pause to

wait for the second dial tone before proceeding with the number.

I've heard different reports on re-enabling your call-waiting feature. In

the U.S., it seems to vary depending on the company servicing your

calls. Some say you must dial *70 or 1170 to re-activate; others say it's

automatically re-enabled when you hang up. In Canada it doesn't

matter, because I can't get it to disable, let alone re-enable. When I

called our local business office I was told there's no way to do what I'm

describing, but again, the service may or may not be available in other

areas - call the business office number on your phone bill to find out for

sure.

Mitey Mo Programming Tips :

Before we log off, here's a technical tidbit taken from a reply by Gap

Farmaner to a question about the Mitey Mo modem on CBMPRG:

The Mitey Mo, in addition to hook, uses lines of the user port to control

the carrier tone and the answer/originate mode. To make sure all the

lines are set up properly, use POKE 56579,38. This is a universal poke;

it works with every modem.

With the Mitey Mo modem, you deal with the following lines by reading

or changing the following bits in location 56577 (bit 0 is LSB, bit 7 is

MSB):

Hook bit 5 zero/online one/offline

Carrier bit 4 zero/no carrier one/carrier present

Ring bit 3 zero/ringing one/no ring

Tone bit 2 zero/carrier tone one/carrier tone off

Mode bitl zero/answer mode one/originate mode

(For a BBS, you'll want to be in answer mode; callers will use originate.)

For answering a call, you'd do the following: Wait for ring with bit 3; go .

online with bit 5; put on your carrier tone with bit 2; wait for carrier

using bit 4.

It's a good idea to count down a number of occurences of a ring-detect

before registering it as a ring. The ring detect line will alternate

between zero and one throughout a ring, at the ring frequency.

Occasionally a single ring transition will occur without an actual ring,

so counting off a few transitions before accepting \vill ensure reliable

ring detection.

The Transactor 17 January 1988: Volume 8, Issue O4

The Projector

Part II

Ian Adam

VancouveiyBC
Copyright © 1987 Ian Adam

.,. The most significant improvement is the treatment ofhidden lines...

Part I of the Projector was published in Volume 6 Issue 4 of

Transactor. It produces a three-dimensional plot of any mathemati

cal formula on the screen of the Commodore 64, using Gary Kiziak's

High-Res graphics utility from Volume 5, Issue 6. That program has

now been improved through the addition of several new capabili

ties. It has also been extended to the new Commodore 128.

Hidden Lines

The most significant improvement to the routines is the treatment of

hidden lines. The clarity of the plot is greatly enhanced by deleting

lines that should be hidden from view by other parts of the subject.

Achieving this required some modification to the original plotting

routines, so you will have to obtain the revised machine code in

order to see it in action on the 64.

'Conceptually, removing hidden lines is not difficult, if one makes

some assumptions about the solid shape being plotted. In this case,

\^e assume that the shape is an upward-facing surface that does not

double back on itself; that is, there are no caves and the bottom

surface, if any, is not visible. With this assumption, objects in the

background are only visible if they are taller than the foreground.

To implement this theory, a buffer of 320 bytes is reserved, each

byte corresponding to one column of pixels on the screen. The

algorithm uses the buffer to keep track of the highest point plotted

so far. When the plot is first started, the buffer is cleared to all zeros.

The plotting is then done from foreground to background. Each time

a point is plotted, its height is compared to the appropriate byte in

the buffer; if the point is higher than the value found, then the point

is plotted and the buffer is updated by substituting the new height. If

the current point is lower than the value in the buffer, the point is

assumed to be obscured and is not plotted. The theory works well,

and does not slow down the plotting perceptibly. In fact, if there

were a lot of hidden points, it could possibly speed the process a

little.

Two entry points to the routines are required in order to handle this:

SYS49155,x,y[TOx,y.

SYS49191,x,y[.

Printer

.] draw a conventional line

] draw line that may be hidden

The high-res plotting procedure creates some problems with

printer dumps. The screen used is tucked away under the operating

system ROM at E000. This is ideal for video, as it is free RAM that is

easily accessed by the video chip. However, in order to read it, the

CPU has to bank out the operating system, which makes the printer

inaccessible. Part I of The Projector included a short piece of code to

relocate the screen to $2000, where any printer dump can easily

find it. This requires leaving The Projector after each plot, loading

and running the relocate routine, then loading and running the

printer dump. Effective, but not the most convenient procedure.

The new version is all rolled into one program. It relocates the plot

to A000, under BASIC, immediately before printing. Now the CPU

can bank out BASIC, keep the operating system, and send the plot to

the printer. The call to print is:

SYS49194,s,d

Other Features

where (size) s = 0 small printout

s = 1 double-size printout

(density) d = 0 light background

d = 1 dark background

Adding these capabilities extended the machine code beyond 4K, so

I stashed it in the high end of BASIC storage at 9800. It must be

protected by POKE 56,152:CLR. (The BASIC loader does this

automatically).

The extra space this created was used to add two more features that

you may wish to take advantage of, though they aren't used by The

Projector. These are a split-screen capability for interactive plotting,

and the ability to load Koala Pad pictures for further editing. Here

are the commands:

SYS 49200,n splitscreen, n text lines.

n=0 all graphics.

n = 1 -15 number of text lines at bottom.

n = 255 all text.

SYS 49197 put Koala pic at $E000, after loading.

Load either a Koala Pad picture or a plot by The Projector; then^YS

49200,5 in immediate mode will give you a split screen with enough

text lines to see what you're doing. You can then proceed to add text

labels or any other editing you wish, then print the result.

The 128

The new Commodore 128 has a number of built-in features that

help in converting the program, notably line plotting and other

high-res commands. As a result, The Projector is written entirely in

BASIC. While this is a marvellous improvement, it is the usual 'good

news, bad news' situation; the major benefit is that special

The Transactor 18 January 1988: Volume 8, Issue O4

machine- code routines are not required. One disadvantage is that

the ROMs cannot be modified as the 64 routines were, so dealing

with hidden lines requires some gyrations in BASIC.

The method used to delete hidden lines is completely different from

that used for the 64. This time, plotting proceeds from background

to foreground; the PAINT command is used to mask out hidden

detail by painting the area underneath each line in background

colour. That's a little trickier than it sounds, and requires making

five passes at each line. As a result, the plotting is considerably

slower than with machine language - the same old slow BASIC

problem.

There is one compensating factor with the 128 - the calculations are

done in FAST mode at 2 MHz, cutting the preparatory time in half.

Don't panic when the screen goes blank; the VIC chip can't keep up

at that speed, so output is automatically switched to the 80-column

screen temporarily. The picture will soon be back.

The 128's coordinate system is upside-down from Gary Kiziak's,

with Y measured from the top of the screen. To match this, all

heights are inverted.

Other Program Improvements

Seven new formulae have been developed and are included in the

programs; some are reproduced here. To make these easier to

access, each plot is selected from a menu, using the DEF FN

command. The vertical lines in each grid may be plotted or, as an

option, left out.

There is also the capability of plotting empirical data. To illustrate

this, I've supplied some data on our famous west coast rainfall.

Should you wish to enter your own information on budgets, ground

contours, or whatever, here is the data format to use. In the first line:

7000 DATA TITLE, M,N,SP

M +1 is the number of data points in each row. N +1 is the number

of rows to plot. SP is a constant affecting the proportion, typically

100 to 160.

7010 DATA a,b,c,...

7020 DATA d,e,f,...

7030 DATA g,h,i,...©

There must be (M+ 1)*(N+1) data points, where a,b,c is the first

row, etc.

When plotted in this way, patterns in the data become easy to spot.

Note how Vancouver's rainfall increases in the late fall. (Sometimes

it seems like it never quits!).

I hope you find that The Projector Part II expands the usefulness of

your computer, whether it's a 64 or 128. If you come up with a

formula or set of data that produces a particularly interesting plot, I'd

be very curious to see it. Perhaps we 11 be able to publish a selection

of the best plots. Just send a copy to the address below.

Ian Adam P. Eng.

4425 West 12th Avenue

Vancouver BC

V6R2R3 Canada

Listing 1: BASIC portion of the new C64 projector program. For

this program to work, the files "hiprntl .ml1 and "hiprnt2.mr must be

present on disk when the program is run. These files can be found

on the Transactor disk for this issue, or created by the BASIC

programs in Listing 3 and Listing 4.

NF

AD

OG

ME

CM

OF

IJ

CJ

IE

AK

AM

JM

JC

KJ

DM

Kl

DE

GA

AE

KH

BM

KC

MC

OG

HH

FK

GH

KG

GH

PF

IM,

OG

AF

HI

MK

EF

MN

KF

IN

EJ

PA

OO

DM

KL

Gl

GE

GF

EH

MD

MH

MB

NB

BF

LC

BO

1000printchr$(147)B 64 projector

1010 print" perspective plotter

1020 print" with hidden lines

1030 print" by ian adam

1040 print" Vancouver be

1050 print" december1985

1060:

1070 rem requires hires plotting routines

1080 rem the transactor vol 5 issue 6

1090 rem with extensions by ia

1100:

1110 if peek(38912) = 1 then a = 2

1120 poke 53281,2-a

1130 on a goto 1150,1190

1140a = 1:load"hiprnt1.ml",8,1

1150 poke 56,152 : clr

1160load"hiprnt2.ml",8>1

1170:

1180 rem start here!

1190 gosubi 990, constants

1200 gosub2650, choose

1210 gosub2090, config'n

1220 gosub2170, viewing angle

1230 gosub2390, get data Vj

1240 gosubi 390, scale 'I
1250 gosubi 580, plot

1260 gosub2550, message * v

1270:

1280 pokei 98,0:waiti 98,1 :getb$

1290 if b$ = "r" then gosub2170:goto1240

1300 if b$ = "p" then sys hi,0: sys du,0,0: sys te

: gotoi 260: dump to printer

1310ifb$ = Ba"then1250

1320 if b$ = "n" then if dd then run

1330 if b$ = "n" then gosub2650:goto1220

1340 if b$ = V then v = 1-v

1350 if b$ = "h" then h = 1-h

1360 if b$O"q" then 1260

1370 end

1380:

1390 rem vertical scaling

1400 print:print'scaling data...

1410vscalar = 9e9

1420fory = 0ton ■;.-.

1430 a=z(0,y):for x = 1 to m v

1440ifz(x,y)>athena=z(x,y) ...

1450 nextrem find highest point on line

1460 if a then tmp = (199-yv(y))/a: if vs>tm then vs=tm

1470 next: rem select best feasible scale

1480:

1490 rem calculate rise

1500 print".. .still scaling!

1510 for y = 0 ton

1520tm = yv(y)

1530 for x = 0 torn

1540 r(x,y) = z(x,y)*vs + tm

The Transactor 19 January 1988: Volume 8, Issue O4

DC 1550nextx,y

ED 1560 return

GJ 1570:

JK 1580 rem set up screen

FG 1590syshi,0f0f13

KA 1600sysdm,1

OL 1610:

DO 1620 rem plot horizontal lines

PO 1630 sysmo,10,r(0,0)

BE 1640 d1 = dr:if h then d1 = hd

JK 1650 for y = 0 ton

BM 1660tm = yh(y)

IL 1670 for x = 1 torn

FP 1680 sysdi ,tm + xh(x),r(x,y)

GK 1690nextx

MC 1700 if y = n then 1800

CC 1710:

GJ 1720 rem plot vertical lines

KL 1730sysdr,yh(y + 1) + xh(m),r(m,y + 1)

PO 1740 sysdi ,yh(y) + xh(m),r(m,y)

FL 1750 for x = m-1 to 0 step-1

AO 1760ifvthenx = 0

CO 1770 sysmo.tm+xh(x)fr(x,y)

Jl 1780 sysdi ,yh(y +1) + xh(x),r(x,y +1)

DB 1790 next x,y

MH 1800:

Nl 1810 rem draw box

NK 1820sysmo,10,r(0,0)

FN 1830 sysdr.10,10

LO 1840sysdr,xh(m),10

IH 1850sysdr,xh(m),r(m,0)

OA 1860 sysmo,xh(m),10

JD 1870 sysdr,xh(m) + yh(n),yv(n)

CO 1880 sysdr.xh(m) + yh^.^m.n)
GN 1890:

FG 1900 rem title

KB 1910 sysco,8:syspr,1,24,a$

EP 1920:

CK 1930 rem wait for human

AF 1940 wait198,3:poke198,0

NC 1950 syste:print chr$(147)

EM 1960 return

GC 1970:

CM 1980 rem constants

NC 1990 hi = 49152:dr = 49155:mo = 49161

PF 2000 dm = 49167:co = 49173:te = 49179

JD 2010pr = 49182:hd = 49191:du = 49194

KL 2020 m = 20:rem x-dimension

MM 2030 n = 16:rem y-dimension

NH 2040 sp = 96:rem vertical separation

HF 2050th = -1

DA 2060 ms$(0) = "hide":ms$(1) = "show

CD 2070 return

EJ 2080:

GC 2090 inpufhidden lines to be shown (y/n)";b$

KF 2100h = abs(b$ = "n")

BM 2110 inputVertical lines to be shown (y/n)";b$

Kl 2120v = abs(b$ = YT)

OP 2130 dim z(m,n),r(m,n)

JD 2140 dim xh(m),yh(n),yv(n)

Cl 2150 return

EO 2160:

STETSON, WITH M=40.

B=1O IN LINE 5400

IMMERSE HftUES

The Transactor 2O January 1988: Volume 8, Issue 04

KF 2170 rem view angle

JC 2180 if theta<0 then theta = 60:rem default angle

NF 2190 print:print'enter viewing angle, or press return

CP 2200 printforth'degrees:

KG 2210 inputth :if th<0 or th>90 then 2180

LD 2220an=th*<clr>/180

DD 2230 tmp = 120*cos(an)

GO 2240 xgrid = int((309-tm)/m)

NN 2250 ygrid = int(sp*sin(an)/n)

IJ 2260ystp = int(tm/n)

CF 2270:

BK 2280 rem calculate offsets

DC 2290forx = 0torn

Gl 2300 xhriz(x) = 10 + x*xg

KA 2310 next

HE 2320 for y = 0 ton

MA 2330 yhriz(y) = y*ys

NK 2340yvert(y) = 10 + y*yg

CD 2350 next

EF 2360 return

GL 2370:

NG 2380 rem data to plot

JA 2390 print: print'creating data...

JA 2400 if dd then 2480

LJ 2410 for x = 0 torn

LK 2420 for y = 0 ton

OG 2430 if e then r = fnr(x):s=fns(y)

PI 2440z(x,y)=fnz(x)

Dl 2450 nexty:printx;:nextx:return

AB 2460:

EE 2470 rem read empirical results from data

HO 2480fory = 0ton

LO 2490 for x = 0 torn

PN 2500 read z(x,y)

KN 2510nextx:printy;:nexty

EP 2520 return

GF 2530 :

KM 2540 rem *** menus: ***

BB 2550 print chr$(19)chr$(18);" press:": print

GG 2560 printer review from another angle

LK 2570 prinfp send projection to printer

FO 2580 print'h: "ms$(1 -h)n hidden lines

KL 2590 prinfv: "ms$(1 -v)n vertical lines

NO 2600 prinfa plot again

HN 2610 prinfn for a new shape

OD 2620 prinfq quit

CG 2630 return

EM 2640:.

OB 2650 printrprint chr$(18);" press:': print

DM 2660 printi. stetson

IA 2670 print"2. inverse waves

OB 2680 printB3. furrows

CF 2690 prints, cascade

J.K 2700 print"5. twin peaks

II 2710 print"6. crater

IG 2720 print1?, radial

HO 2730 printU read data

IC 2740:

DP 2750wait198,1:geta$

DO 2760 e = 0:a = val(a$):if a<1 or a>8 then run

LJ 2770 on a gosub 2890,2940,2980,3020,3070,

3130,3180,2800
CRATER

The Transactor 21 January 1988: Volume 8, Issue O4

HL

KF

EL

IC

Cl

BM

PA

FG

BN

BK

EL

ED

HA

JC

FF

GO

10

FF

OJ

OA

GJ

MP

EO

GD

BA

00

LJ

MD

IG

FD

MP

CB

KM

NF

EK

FA

PM

OG

CG

GN

JL

HG

MF

OP

IA

EE

EM

GC

DG

KD

BP

KK

CB

MJ

HG

HE

CE

RADIAL

2780 printa$: return

2790:

2800 printrprint chr$(18);" press:": print

2810 print"1. rainfall

2820 print"2. more data

2830 print:print"O. first menu

2840 waiti 98,1 :geta:if a = 0 or a>2 then run

2850 on a gosub 3230,3470

2860 read a$,m,n,sp

2870dd = 1:return

2880:

2890a = m/2:b = 5:c = n/2:d = 2:e = .2

2900 deffnr(x) = (x-a)/b:deffns(y) = (y-c)/b

2910 deffnz(x) = sin(r*r*d + s*s)*exp(-r*r-s*s) + e

2920 a$ = "stetson": return

2930:

2940 a = 5

2950 deffnz(x) = sin(x*y/m) + a

2960 a$ = "inverse waves°:return

2970 :

2980a = m/2:b = n/2:c = 4:d = 1

2990 deffnz(x) = sin((x-a)*(y-b)/b) + y/c + d

3000 a$ = "furrows": return

3010:

3020a = 6:b = 2:c = .1:e = -1.2

3030 deffnr(x)=y/n-x/m:deffns(y) = r + r

3040 deffnz(x) = (c + exp(s + r))*cos(a*r*r-a*s + e) + b

3050 a$ = "cascade": return

3060:

3070a = int(m/3):b = m-a:c = n/2:d = 3:e = .1:f = .4

3080 deffnr(x) = (x-a)*(x-a) + (y-c)*(y-c)

3090 deffns(y) = (x-b)*(x-b) + (y-c)*(y-c)

3100 deffnz(x) = cos(sqr(r))*(exp(-r/d) + e)

+ cos(sqr(s))*(exp(-s/d) + e) + f

3110 a$ = "twin peaks":return

3120:

3130a = m/2:b = n/2:c=45:e = 5

3140 deffnr(x) = abs((x-a)*(x-a) + (y-b)*(y-b)-c) + e

:deffns(y) =.

3150deffnz(x) = e/r + e

3160 a$ = "crater": return

3170 CASCADE

3180a = m/2:b = n/2:c = .001:d = 40

3190 deffnz(x) = (abs(x-a) + abs(y-b))*sin(4

*atn((y-b)/(x-a + c))) + d

3200 a$ = "radial": return

3210:

3220 :

3230 poke 65,peek(61): poke 66,peek(62): rem set

data ptr

3240 return

3250 :

3260 data rainfall in mm Vancouver 1975-1985,

11,10,160

3270:

3280 data 30, 94, 83, 90, 44, 31, 7, 29

3290 data 95,266, 0, 0: rem 1985

3300data268,176,132,140,109, 80, 1, 17

3310 data 60,167,225,170,186,239,122, 98

3320 data 40, 84,102, 30, 99, 97,325, 77

3330 data 247,229, 68,116, 18, 28, 74, 44

3340 data 46,131,173,131, 57,106,124,173
RAINFALL MM UANCOUUER 1975-1985

The Transactor 22 January 1988: Volume 8, Issue O4

GL

MD

ON

AP

PL

DP

JB

Jl

PC

KH

FE

IP

ED

EL

GB

Kl

3350 data 130,138, 17, 59, 89, 125, 274,157

3360 data 96,165,120, 71, 54,100, 74, 35

3370 data 104, 40, 319, 218: rem 1980

3380 data 57,162, 61, 57, 49, 33, 32, 19

3390 data 74, 76, 65,294,113, 95, 77t 84

3400 data 65, 23, 9,104, 96, 42,124, 88

3410 data 102, 87, 84, 52, 98, 18, 51, 53

3420 data 82, 98, 20,140,167,159,112, 87

3430 data 95, 67, 24, 84, 53, 81, 64,135

3440 data 162,126,118, 30, 49, 31, 19,106

3450 data 1, 300, 210, 268: rem 1975

3460:

3470 poke 65,peek(61): poke 66,peek(62): rem set

data ptr

3480 return

3490:

3500 data none entered,1,1,100

Listing 2: The version of the new projector for trie C128. No

additional files are required to run this program. Make sure you

switch your monitor to the 40 column (C64) side to see the plots.

Nl

EH

EN

OG

IC

GO

IJ

NM

DO

IF

JP

OL

AA

OJ

BD

EF

IB

LO

MO

MB

IN

PA

ED

MN

MF

GF

EM

MB

MG

BE

II

CE

OA

GD

CG

MP

BK

OM

OA

1000 print chr$(147)128 projector"

1010 print "perspective plotter"

1020 print "with hidden lines"

1030 print "by ian adam"

1040 print 'Vancouver be"

1050 print "december 1985"

1060:

i070trap2170
1080 gosub 2010, constants

1090 gosub 2760, choose

1100 gosub 2090, config

1110 gosub 2230, viewing angle

1120 gosub 2510, get data

1130 gosub 1270, scale

1140 gosub 1460, plot

1150 do

1160 gosub 2670, message

1170getkeyb$

1180 if b$ = V then gosub 2230: goto 1130

1190 if b$ = °pB then 1140

1200 if b$ = °n" then if dd then run

1210 if b$ = "n" then gosub 2760: goto 1110

1220 if b$ = V then v = 1-v

1230 if b$ = "h" then h = 1-rh

1240ifb$ = "q"thenend

1250:

1260 loop

1270 rem vertical scaling

1280vscalar = 9e9

1290 for y = 0 ton

1300:

1310a = z(0,y):fbrx = 1 torn

1320 if z(x,y)>a then a = z(x,y)

1330 next

1340 if a then if vs>yv(y)/a then vs = yv(y)/a

1350 nextrem select best feasible scale

i360color4,7

1370:

1380 rem calculate rise

The Transactor 23

FK

JN

DL

PA

LK

ML

OB

BD

KK

GD

GE

LG

II

MJ

MH

IH

MO

HP

CC

GG

OD

ME

LJ

Gl

GG

NH

GO

HP

EL

KL

NH

HB

IE

LJ

JK

AN

JL

EF

DO

AA

CH

AC

LG

JE

CE

EK

KC

GK

EF

Kl

LM

BH

IC

CL

AP

AK

MF

LA

El

FJ

CO

EE

1390 for y = 0 ton

1400tm = yv(y)

1410forx = 0tom

1420 r(x,y) = tm-z(x,y)*vs

1430 next x,y

1440 return

1450:

1460 rem set up screen

1470 color 1,14: graphic 1,1

1480 slow

1490:

1500 rem plot horizontal lines

1510 locate g(0,n),f(0,n)

1520fory = nto0step-1

1530 if y = n then 1620

1540:

1550 rem plot vertical lines

1560 for x = m-1 to 0 step-1

1570 if v then x = 0

1580 locate g(x,y + 1),r(x,y + 1)

1590 draw to g(x,y),r(x,y)

1600 next x

1610 if h then gosub 1850,mask

1620 for x = 1 torn

1630 draw to g(x,y),r(x,y)

1640 next x,y

1650:

1660 rem draw box

1670 locate 10, r(0,0) . ,

1680 draw to 10,ht

1690 draw to xm,ht

1700 draw to g(m,n),yv(n)

1710 draw to g(m,n),r(m,n)

1720 for y = n-1 to 0 step-1

1730 draw to g(m,y),r(m,y)

1740 next

1750 draw to xm,ht

1760:

1770 rem title

1780 char 1,1,24,a$

1790: ,.

1800 rem wait for human

1810getkeyb$

1820 graphic 0,1

1830 return

1840:

1850 rem mask hidden lines

1860fori = -1 to 1

1870 locate g(0,y) + i,r(O,y) + 3

1880 for x = 1 torn

1890 draw to g(x,y) + i,r(x,y) + 3

1900 next x,i

1910 locate g(0,y), r(O,y) +1

1920 for x = 1 torn

1930 draw 0, + 0, + 0 to g(x,y),r(x,y) +1

1940 next x

1950 draw 0, + 0, + 0 to + 8, + 8

1960 paint 0,g(m,y),r(m,y) + 3

1970 paint0,g(0,y),r(0,y) + 3

1980 locate g(O,y),r(O,y)

1990 return

2000:

January 1988: Volume 8, Issue O4

AL

CM

DH

PO

IE

PO

CD

EJ

HE

HE

EE

HH

MH

LF

Cl

EO

JK<

CP

NJ

EO

CK

AC

GJ

AE

PG

FM

OJ

OA

EJ

HG

IC

GD

FL

10

CK

BP

DH

GN

KF

MH

JL

LK

NN

HO

DM

AJ

LL

MM

OC

FO

NF

PA

DB

MN

NP

BL

GC

l\

DB

PF

DG

HF

2010 m = 20: rem x-dimension

2020 n = 16: rem y-dimension

2030 sp = 96: rem vertical separation

2040 ms$(0) = "hide": ms$(1) = "show

2050 ht= 190: th = -1

2060 pi = 3.14159265

2070 return

2080:

2090 print "hidden lines to be shown (y/n)n: getkey b$

2100h = abs(b$OByB)

2110 print Vertical lines to be shown (y/n)": getkey b$

2120v = abs(b$O"y")

2130 dim z(m,n),r(m,n),g(m,n)

2140 dim xh(m),yv(n)

2150 return

2160:

2170 rem error trap

2180 slow

2190 print err$(er)el

2200 graphic 0

2210 end

2220:

2230 rem view angle

2240 print"** screen will be blanked a while **"

2250 if theta<0 then theta=60: rem default angle

2260 print: print"enter viewing angle, or press return"

2270 printBfor"th "degrees:"

2280 input th

2290an = th*pi/180

,2300 fast

2310 tmp = 120*abs(cos(an))

2320 xgrid = int((309-tm)/m)

2330 ygrid = int(sp*abs(sin(an))/n)

2340ystp = int(tm/n)

2350:

2360 rem calculate offsets

2370 for x = 0 torn

2380xhriz(x) = 10 + x*xg

2390 next

2400xm = xh(m)

2410 color 4,5

2420 for y = 0 ton

2430 yvert(y) = ht-y*yg

2440tm = y*ys -

2450 for x = 0 torn

2460 g(x,y) = xh(x)+tm

2470 next x,y

2480 return

2490:

2500 rem data to plot

2510 if dd then 2600

2520 for y = 0 ton

2530 for x = 0 torn

2540 if e then r=fnr(x):s=fns(y)

2550z(x,y)=fnz(x)

2560 next x: color 4,(yand15) +1: next y

2570 return

2580:

2590 rem read empirical results

2600 for y = 0 ton

2610 for x = 0 torn ,

2620 read z(x,y)

HP

MG

OM

CO

HH

EE

JL

KE

LN

HG

OM

AN

CD

HA

JE

NF

EM

IL

MO

HI

II

IG

DK

AK

LI

AE

LC

HO

JD

MN

Nl

OO

IE

JB

LN

DG

AH

NF

NC

AE

AM

DJ

FL

BO

CH

EH

BO

KC

KJ

CC

II

AH

CM

Nl

KH

HC

IM

EP

BM

II

OJ

The Transactor 24

2630 next x: color 4,(yand15) +1: next y

2640 return

2650:

2660rem ** menus**

2670 print chr$(19)B press:"

2680 print "r review from another angle"

2690 print "h: Bms$(1-h)B hidden lines"

2700 print V: "ms$(1-v)a vertical lines"

2710 print "p plot again"

2720 print "n for a new shape"

2730 print "q quit"

2740 return

2750:

2760 color 0,1

2770 print "press:"

2780 print "1. stetson" x

2790 print "2. inverse waves"

2800 print "3. furrows"

2810 print "4. cascade"

2820 print "5. twin peaks" ^

2830 print "6. crater"

2840 print "7. radial"

2850 print "8. read data"

2860:

2870 getkey a$

2880e = 0:a=val(a$)

2890 if a<1 or a>8 then run

2900 on a gosub 3030,3080,3120,3160,3210,

3270,3320,2930

2910 print a$:. return

2920:

2930 print" press"

2940 print "1. rainfall"

2950 print "2. more data"

2960 print "0. first menu"

2970 getkey a: if a = 0 or a>2 then run

2980 if a = 1 then restore 3360

2990 if a = 2 then restore 3560

3000 read a$,m,n,sp

3010dd = 1: return

3020:

3030a = m/2: b = 5: c = n/2: d = 2: e = .2

3040 deffnr(x) = (x-a)/b:deffns(y) = (y-c)/b

3050 deffnz(x) = sin(r*r*d + s*s)*exp(-r*r-s*s) + e

3060 a$ = "stetson": return

3070:

3080 a = 5

3090 deffnz(x) = sin(x*y/m) + a

3100 a$ = "inverse waves": return

3110:

3120a = m/2:b = n/2:c = 4:d = 1

3130 deffnz(x) = sin((x-a)*(y-b)/b) + y/c + d

3140 a$ = "furrows": return

3150:

3160a = 6:b=2:c = .1:e = -1.2

3170 deffnr(x) = y/n-x/m:deffns(y) = r + r

3180 deffnz(x) = (c + exp(s + r))*cos(a*r*r-a*s + e) + b

3190 a$ = "cascade": return

3200:

3210a = int(m/3):b = m-a:c = n/2:d = 3:e = .1:f = .4

3220 deffnr(x) = (x-a)*(x-a) + (y-c)*(y-c)

3230 deffns(y) = (x-b)*(x-b) + (y-c)*(y-c)

January 1988: Volume 8, Issue 04

GF

JO

AD

BJ

LF

KP

00

CG

FE

DP

10

Kl

HM

LE

EA

MG

GP

BM

BK

MJ

AB

GJ

ID

KE

JB

NE

DH

DO

Jl

EN

PJ

CF

MM

3240 deffnz(x) = cos(sqr(r))*(exp(-r/d) + e)

+ cos(sqr(s))*(exp(-s/d) + e) + f

3250 a$ = "twin peaks": return

3260:

3270 a = m/2: b = n/2: c = 45: e = 5

3280 deffnr(x) = abs((x-a)*(x-a) + (y-b)*(y-b)-c) + e

:deffns(y) = .

3290deffnz(x) = e/r + e

3300 a$ = "crater": return

3310:

3320 a = m/2: b = n/2: c = .001: d = 40

3330 deffnz(x) = (abs(x-a) + abs(y-b))*sin(4

*atn((y-b)/(x-a+c))) + d

3340 a$ = "radial": return

3350:

3360 data rainfall in mm Vancouver 1975-1985,

11,10,160

3370 data 30, 94, 83, 90, 44, 31, 7,

3380 data 95,266, 0, 0:rem1985

3390data268,176,132,140,109, 80, 1,

3400 data 60,167, 225,170,186, 239,122,

3410 data 40, 84,102, 30, 99, 97,325,

3420 data 247, 229, 68,116,

3430 data 46,131,173,131,

3440 data 130,138, 17, 59,

3450 data 96,165,120, 71,

3460 data 104, 40, 319, 218: rem 1980

3470 data 57,162, 61, 57, 49, 33, 32,

3480 data 74, 76, 65,294,113, 95, 77,

3490 data 65, 23, 9,104, 96, 42,124,

3500 data 102, 87, 84, 52, 98, 18, 51,

3510 data 82, 98, 20,140,167,159,112,

3520 data 95, 67, 24, 84, 53, 81, 64,135

3530 data 162,126,118, 30, 49, 31, 19,106

3540 data 1, 300, 210, 268: rem 1975

3550:

3560 data none entered,,,100

29

17

98

77

18, 28, 74, 44

57,106,124,173

89,125,274,157

54,100, 74, 35

19

84

88

53

87

Listing 3: Run this program to create the file "hiprnti.ml" for the

C64 projector in listing 1.

Al

HD

BJ

AM

FM

CD

MF

EM

NH

CM

ED

OF

KF

II

JO

DA

IC

CE

GO

CP

1000 rem* program to create 'hiprnti .ml' on disk *

1010 for j = 1 to 2640: read x

1020 ch = ch + x: next

1030 if ch<>325033 then print"checksum error": end

1040 print "data ok, now creating file": print

1050 restore

1060open8,8,8,"0:hipmt1.ml,p,w"

1070 print#8,chr$(0)chr$(192);

1080 for j = 1 to 2640 : read x

1090 print#8,chr$(x);: next

1100 close 8

1110 print "prg file 'hiprnti .ml' created...

1120 print "this generator no longer needed.

1130 rem

1140 data

1150 data

1160 data

1170 data

11.80 data

1190 data

76,222,195,

76,124,196,

76,245,198,

76,202,195,

76, 33,202,

76,236,155,

76, 32,198,

76, 44,196,

76, 28,199,

76, 223,199,

76, 27,198,

76,148,195,

76,118,197

76,231,198

76, 84,199

76, 228, 201

76, 63,152

0, 0, 0

BK

AD

NJ

HJ

OF

PG

GO

EC

NM

CH

OA

FB

DP

JA

CB

LD

LP

AE

PI

BC

GL

LC

El

PK

OP

BL

KC

IP

AM

AJ

NL

PM

MN

GC

KC

ML

KP

OA

GN

KE

FP

PI

JA

IK

OP

FN

Gl

KP

NL

II

CM

PO

MP

PF

JJ
JB

DC

GK

LO

BF

OH

GC

1200 data 0,

1210 data 0,

1220 data 0,

1230 data 0,

1240 data 223,

1250 data 194,

1260 data 239,

1270 data 1,

1280 data 207,

1290data255,

1300 data 0,

1310 data 255,

1320 data 0,

1330 data 100,

1340 data 0,

1350 data 254,

1360 data 0,

1370 data 109,

1380 data 0,

1390 data 215,

1400 data 108,

1410 data 255,

1420 data 100,

1430 data 64,

1440 data 255,

1450 data 12,

1460 data 223,

1470 data 0,

1480 data 255,

1490 data 0,

1500 data 255,

1510 data 0,

1520 data 255,

1530 data 64,

1540 data 255,

1550 data 0,

1560 data 206,

1570 data 246,

1580 data 0,

1590 data 255,

1600 data 0,

1610 data 255,

1620 data 0,

1630 data 195,

1640 data 173,

1650 data 41,

1660 data 22,

1670 data 63,

1680 data 44,

1690 data 3,

1700 data 169,

1710 data 134,

1720 data 96,

1730 data 96,

1740 data 48,

1750 data 1,

1760 data 173,

1770 data 13,

1780 data 3,

1790 data 192,

1800 data 133,

1810 data 233,

255,128,

0,. 0,

208, 0,

0, 0,

0,219,

255, 50,

9,219,

255, 25,

211, 0,

0,125,

125, 0,

0, 125,

255, 0,

0, 255,

255, 0,

0, 255,

255, 32,

0, 255,

126, 32,

0,121,

117, 64,

32, 255,

108, 48,

255, 0,

89, 255,

238, 0,

0, 255,

219, 155,

0,127,

223, 1,

0, 255,

219,219,

0, 255,

223, 8,

202,155,

223, 0,

194,219,

0, 255,

255, 0,

0, 247,

253, 32,

0,251,

231, 0,

208, 87,

24, 208,

127,141,

208,141,

208, 7,

173, 0,

141, 67,

194,141,

194,173,

141, 2,

169,127,

6, 32,

141, 60,

60,192,

220, 48,

76,139,

16,245,

21,162,

72, 76,

0, 7,

1, 0,

0, 0,

0, 0,

0, 239,

255, 0,

219,255,

255, 8,

254, 0,

36, 255,

254, 20,

64, 254,

239, 0,

0, 246,

255, 0,

0, 255',

53, 36,

0, 255,

255, 77,

0,207,

247,109,

0, 254,

44, 255,

255,130,

130,255,

255, 202,

0, 255,

255, 8,

0, 255,

255, 0,

0, 223,

255, 0,

129,223,

255,194,

139,255,

222, 1,

219, 95,

0, 255,

166, 0,

17,255,

255, 0,

36,100,

255, 0,

173, 0,

141, 43,

17,208,

56,195,

173, 1,

3,141,

194,169,

1, 3,

3, 3,

3,169,

141, 13,

88,195,

192, 41,

133, 1,

3, 32,

227,142,

169, 0,

250,154,

163,168,

248, 0,

15,240,

0, 219,

0, 0,

64, 223,

255, 202,

0, 223,

206,194,

246, 0,

0, 255,

255, 0,

0,125,

255, 4,

0, 254,

255, 0,

0, 254,

255,117,

0, 255,

255, 16,

0, 255,

36, 0,

0, 247,

1,255,

91, 0,

17,255,

189, 1,

16,255,

255, 25,

0, 255,

255, 0,

202,219,

255, 0,

0,218,

255, 50,

8,218,

255, 25,

211, 0,

0,125,

125, 0,

0,125,

255, 0,

0, 255,

255, 0,

221,141,

195,173,

141, 41,

173, 0,

3,201,

66,194,

63,141,

173, 2,

141,135,

194,141,

220,173,

32, 13,

252,133,

173, 61,

173,195,

13, 3,

133, 20,

169,167,

44, 61,

129, 0

240, 0

219,255

255,129

9, 255'
155,139

0,222

219,219

255, 0

0,166

247, 17

32, 255

255, 36

0,255

255, 48

0, 255

255, 0

0,255

255, 32

0,117

255, 0

49, 61

25, 255

255, 0

0,127

255,194

0,251

255, 48

0, 255

255, 17

9,200

255, 0

0,239

255, 0

219,255

255, 8

254, 0

164,255

254, 20

66, 254

239, 0

0,230

173, 43

45,195

17,208

195,173

3,201

194,240

173, 1

0, 3

3,141

194,169

3, 3

61,192

196,165

1, 96

192,141

96, 16

44, 74

169, 0

72,169

192, 16

The Transactor 25 January 1988: Volume 8, Issue O4

LB

KG

EG

KG

FK

OH

FM

FO

MH

FD

Al

FJ

CN

JE

KA

PB

LC

Kl

JF

JD

Al

OB

FN

KB

HN

LM

JK
CH

GA

FN

OM

HO

LH

NL

PJ

MM

AL

KB

GH

LJ

KN

OP

KN

CD

Ml

IB

PH

01

Nl

DE

JE

IM

BL

AA

GD

IH

LN

ME

PL

KP

KF

OL

1820 data 3,

1830 data 3,

1840 data 194,

1850 data 3,

1860 data 164,

1870 data 208,

1880 data 253,

1890 data 208,

1900 data 160,

1910 data 3,

1920 data 153,

1930 data 119,

1940 data 134,

1950 data 254,

1960 data 173,

1970 data 32,

1980 data 142,

1990 data 142,

2000 data 1,

2010 data 205,

2020 data 76,

2030 data 246,

2040 data 162,

2050 data 208,

2060 data 162,

2070 data 76,

2080 data 1,

2090 data 234,

2100 data 0,

2110 data 232,

2120 data 169,

2130 data 173,

2140 data 141,

2150 data 173,

2160 data 193,

2170 data 15,

2180 data 73,

2190 data 25,

2200 data 160,

2210 data 13,

2220 data 195,

2230 data 32,

2240 data 32,

2250 data 128,

2260 data 192,

2270 data 192,

2280 data 240,

2290 data 113,

2300 data 221,

2310 data 17,

2320 data 169,

2330 data 66,

2340 data 128,

2350 data 192,

2360 data 71,

2370 data 192,

2380 data 141,

2390 data 141,

2400 data 64,

2410 data 63,

2420 data 3,

2430 data 247,

32, 202,

173, 67,

141, 2,

169, 0,

254, 240,

251,230,

240, 10,

251,145,

204,132,

132,254,

119,192,

193,136,

252,162,

'76,136,

32, 247,

253,174,

84,192,

86,192,

44, 57,

83,192,

72,178,

96,173,

0,160,

140, 0,

1,142,

188,254,

141, 25,

120,238,

142, 26,

208, 248,

49,162,

41,195,

24,208,

56,195,

32,221,

42, 42,

195,141,

208,141,

127,141,

220,140,

240, 14,

123,195,

183,193,

160, 3,

140, 58,

169,255,

3, 32,

195,173,

169, 56,

208,169,

216,141,

192,173,

141, 56,

10, 10,

192,173,

44, 57,

63,192,

33, 208,

192, 32,

192, 76,

189, 83,

96, 44,

195,173,

194,141,

3,173,

141, 74,

13,160,

252,198,

136,240,

251, 96,

252,160,

32,136,

136,208,

16,250,

64,134,

194, 32,

183,166,

32, 224,

32,221,

138,208,

192, 16,

138,237,

169,199,

18,208,

199,141,

221,169,

25, 208,

169,218,

208, 32,

18,208,

208,173,

141, 25,

234,160,

141, 17,

173, 45,

141, 22,

194, 48,

42,105,

18,208,

26, 208,

20, 3,

61,192,

32, 88,

169, 0,

32,221,

208, 2,

192,152,

141, 55,

44,196,

0,221,

141, 24,

200, 44,

22, 208,

68,192,

192, 32,

10, 10,

83,192,

192, 48,

141, 71,

32,221,

221,194,

168,194,

192,157,

82,192,

66,194,

1, 3,

135,194,

192, 76,

0,145,

254, 208,

5,145,

160, 0,

232,132,

194,169,

250,160,

133,251,

253,162,

253,174,

21,165,

194,141,

194,141,

21,169,

3,169,

84,192,

205, 85,

240, 32,

17, 208,

200,141,

202,142,

141, 18,

13,196,

238, 18,

25,208,

208, 88,

129,120,

208,173,

195,141,

208, 96,

46, 240,

5, 73,

120,169,

169, 35,

142,

88,

195,

141,

21,

96,

32,

43,

194,240,

160, 7,

73, 255,

192, 32,

32, 88,

41,252,

208,169,

57,192,

96,169,

141, 67,

235,194,

141, 63,

41,

12,

192,

194,

141,

32, 235,

51,192,

16, 27,

15,

13,

76,

41,

65,

141, 0

173,134

141, 3

131,164

251,200

243,164

251,136

132,251

253,160

0,168

63,153

162,224

31,134

32,138

20, 96

83,192

85,192

63,162

159,202

176, 3

192,144

169, 27

142, 24

22, 208

18,208

208,169

76, 49

208,162

208, 3

96,120

208, 65

43,195

0,221

32,183

105, 41

255,141

1,141

162,195

3,140

173, 43

113,195

195, 96

6,169

141, 57

141,

121,

195,

141,

59,141

16, 2

1,141

192,169

173, 85

192,141

141, 62

63, 192

168,194

15,141

192,173

194,162

202, 16

169,119

59

0

32

0

NN

HP

EB

EO

LI

MJ

IP

LE

PM

HN

LB

ID

KD

FL

CP

MK

OL

ME

DJ

BA

PG

CC

PN

DK

HA

JK

GD

BJ

HP

FK

II

EF

MD

OH

KN

KC

IB

PG

GP

LP

HN

KG

AF

MN

MB

CL

IE

BD

LG

MJ

MA

AB

HA

KG

GL

BJ

MM

OA

GD

LB

FO

DK

2440 data 133,

2450 data 252,

2460 data 176,

2470 data 199,

2480 data 252,

2490 data 102,

2500 data 174,

2510 data 16,

2520 data 101,

2530 data 104,

2540 data 253,

2550 data 74,

2560 data 9,

2570 data 197,

2580 data 216,

2590 data 133,

2600 data 169,

2610 data 20,

2620 data 133,

2630 data 77,

2640 data 106,

2650 data 61,

2660 data 255,

2670 data 45,

2680 data 128,

2690 data 48,

2700 data 240,

2710 data 3,

2720 data 196,

2730 data 0,

2740 data 192,

2750 data 149,

2760 data 107,

2770 data 0,

2780 data 4,

2790 data 133,

2800 data 0,

2810 data 133,

2820 data 56,

2830 data 229,

2840 data 100,

2850 data 103,

2860 data 144,

2870 data 229,

2880 data 82,

2890 data 6,

2900 data 208,

2910 data 238,

2920 data 32,

2930 data 3,

2940 data 0,

2950 data 192,

2960 data 32,

2970 data

2980 data

2990 data

3000 data

3010 data

3020 data

3030 data 149,

3040 data 108,

3050 data 32,

98,

32,

4,

3,

24,

76,

251, 24,169,

172, 51,192,

228,173, 53,

237, 53,192,

160, 0,132,

251,101,252,

52,192, 45,

6, 10, 72,

251,133,251,

41, 7, 24,

165,252, 74,

102,253,133,

169,204, 5,

173, 66,192,

5,254,133,

252,173, 51,

0,168, 44,

80, 15, 36,

2, 36,107,

55,192, 44,

197,133, 97,

114,197,133,

49,251, 5,

67,192, 13,

64, 32, 16,

12, 3, 32,

11, 32,245,

32,231,198,

76, 46,194,

149,107, 56,

149, 98,189,

99, 16, 20,

56,169, 0,

245, 99,149,

149,106,149,

103,165, 98,

229, 98,133,

105, 36,107,

169, 0,229,

109,133,109,

133,102,170,

197, 99,144,

12,138,229,

99,133,103,

192, 32,235,

32, 95,198,

16, 32,127,

194, 32,121,

245,198, 32,

32,231,198,

201,164,240,

96, 32, 20,

146,197,162,

197,100,165,

202,197, 32,

230,105,240,

238, 52,192,

173, 53,192,

123,198,162,

100,148, 98,

148,106,202,

139,196,230,

192,109,

177,251,

192,145,

72, 74,

251, 74,

133,252,

59,192,

138, 42,

138,101,

101,251,

102,253,

254, 44,

254,133,

201, 3,

254,165,

192, 45,

56,192,

2, 48,

48, 1,

57,192,

189,106,

97,189,

97,145,

71,192,

8, 4,

124,196,

198, 32,

32, 20,

169, 1,

189, 83,

84,192,

169,255,

245, 98,

99, 96,

107, 96,

106,133,

104,169,

16,228,

108,133,

96, 24,

165,103,

18,208,

98,133,

56, 96,

194, 32,

76, 89,

196, 32,

0,201,

121, 0,

32, 95,

220,169,

194,162,

2, 32,

99, 229,

139,196,

84, 238,

32, 246,

101,108,

1,181,

181,106,

16,237,

104,240,

52,192,133

205, 53,192

251, 56,169

74, 74,133

102,251, 74

173, 51,192

44, 57,192

170,104, 24

252,133,252

133,251,133

74,102,253

57,192, 48

254, 76, 21

144,240,169

252, 9,224

58,192,170

16, 4,112

9,169,255

96,177,251

48, 10, 61

197,208, 8

114,197, 73

251,177,253

145,253, 96

2, 1,192

32,121, 0

121, 0,240

194, 32,171

149,106,169

192,253, 51

253, 52,192

149,106,149

149, 98,169

21, 98,208

165, 99, 74

102, 24,169

0,229, 99

32,127,196

108,169, 0

165,102,101

101,101,133

4,228, 98

102,165,103

169,128,141

121, 0,208

198,201,164

115, 0, 32

44,208, 13

201, 44,208

198, 32,121

0,141, 82

0,134, 2

146,197,165

101,144, 39

230,104,208

51,192,208

197,144,232

141, 53,192

98,180,100

180,108,149

32,202,197

28,238, 53

The Transactor 26 January 1988: Volume 8, Issue O4

KL

IC

GJ

ID

HJ

HN

NF

EE

FP

LL

CC

BA

Nl

LG

BK

ID

MM

HO

GK

KL

EE

LF

OF

BD

AG

NJ

AE

ID

CO

DG-

NM

BK

AE

OK

CN

HN

AC

FE

EH

PD

EL

Nl

LJ

HM

CK

EK

BA

FG

OK

KN

Bl

AE

HC

ON

NE

PF

GE

CA

AG

IP

GM

MK

3060 data 192,

3070 data 192,

3080 data 101,

3090 data 107,

3100 data 76,

3110 data 3,

3120 data 221,

3130 data 16,

3140 data 141,

3150 data 189,

3160 data 170,

3170 data 141,

3180 data 62,

3190 data 221,

3200 data 194,

3210 data 189,

3220 data 141,

3230 data 194,

3240 data 202,

3250 data 245,

3260 data 198,

3270 data 83,

3280 data 84,

3290 data 54,

3300 data 95,

3310 data 141,

3320 data 141,

3330 data 56,

3340 data 192,

3350 data 192,

3360 data 79,

3370 data

3380 data

3390 data

3400 data

3410 data 224,

3420 data 133,

3430 data 24,

3440 data 253,

3450 data 24,

3460 data 133,

3470 data 252,

3480 data 224,

3490 data 32,

3500 data 32,

3510 data 232,

3520 data 195,

3530 data 86,

3540 data 215,

3550 data 144,

3560 data 139,

3570 data 94,

3580 data 14,

3590 data 201,

3600 data 202,

3610 data 8,

3620 data 201,

3630 data 201,

3640 data 240,

3650 data 253,

3660 data 44,

3670 data 63,

80,

0,

40,

32,

32, 246,

101,108,

109,141,

16, 3,

46,194,

106,106,

194, 41,

22,141,

71,192;

24,199,

255, 32,

63,192,

192,141,

194, 41,

41, 15,

62,192,

67,192,

162, 3,

16,247,

198, 32,

24,173,

192,173,

192,173,

192,141,

198, 56,

85,192,

86,192,

173, 83,

173, 84,

32, 95,

192,141,

192,141,

133,251,

144, 3,

241,183,

25,176,

251,144,

173, 75,

133, 3,

72, 105,

4, 6,

6,251,

133,252,

7,196,

143,173,

202, 208,

96,177,

200,133,

48, 17,

4,

201,

201,

208,

17,208,

208, 250,

169, 1,

29, 208,

162, 3,

6, 202,

200, 10,

57,192,

192, 32,

41,

41,

32,

6,

197,144,241,

141, 51,192,

52,192, 76,

32,139,196,

32,221,194,

106,141, 56,

3,240, 27,

66,192,170,

189, 67,192,

141, 55,192,

221,194, 10,

44, 57,192,

63,192, 76,

15,141, 64,

141, 65,192,

141, 71,192,

96, 32,124,

189, 83,192,

32,121, 0,

121, 0,240,

51,192,109,

52,192,109,

53,192,141,

86,192, 32,

173, 85,192,

173, 86,1.92,

32, 27,195,

192,237, 77,

192,237, 78,

198, 24,173,

85,192,173,

86,192, 76,

133,252, 32,

76, 72,178,

142, 76,192,

237, 24,165,

2, 230, 252,

192,101,251,

169, 0,101,

216,133,254,

251, 38,252,

38,252, 24,

173, 61,192,

32,253,174,

32,166,182,

7,104, 48,

34, 32,105,

215,138, 72,

201, 32,144,

223,208, 2,

127,201,127,.

144,125, 76,

32, 248, 201,

11,162, 40,

76,189,201,

141, 81,192,

6, 32,100,

44,162, 15,

16,248,

10, 10,

48, 6,

68,199,

192,

44,

189,

141,

96,

10,

48,

174,

189,

196,

157,

240,

3,

76,

10,

13,

76,

24,173, 51

173, 52,192

183,198, 36

32,127,196

41, 3, 73

96, 32

57,192

62,192

67,192

0, 85

10, 10

9, 13

68,199, 32

192, 32,221

66,192

67,192

32, 235

77,192

11, 32

32, 231

77,192,141

78,192,141

85,192,173

3,195, 32

237, 79,192

237, 80,192

32, 95,198

192,141, 83

192,141, 64

85,192,109

86,192,109

95,198,169

241,183,224

142, 75,192

138,240, 18

251,105, 40

202, 208, 242

133,251,133

252,133,252

104,105,204

6,251, 38

165,252,105

72, 48, 3

32,158,173

170,160, 0

3, 32,173

200.200, 76

152, 72,165

28,201, 96

41, 63, 76

208, 2,169

137,201,201

76,189,201

32,100,201

201, 18,208

76,189,201

201, 76,189

221,237, 200

189,201,189

141, 63,192

62,192,141

189.201, 5

BG

BH

NG

Al

PB

IH

FJ

NB

CP

ML

CK

IM

HJ

GN

FF

IL

DD

MN

JA

CB

LF

PF

CA

MD

IJ

CN

IO

Gl

Nl

OF

KH

EF

Al

II

HM

GE

HI

EJ

DM

AG

3680 data 28,

3690 data 22,

3700 data 6,

3710 data 12,

3720 data 245,

3730 data 162,

3740 data 189,

3750 data 81,

3760 data 32,

3770 data 2,

3780 data 198,

3790 data 133,

3800 data 251,

3810 data 96,

3820 data 208,

3830 data 133,

3840 data 64,

3850 data 201,

3860 data 9,

3870 data 202,

3880 data 18,

3890 data 16,

3900 data 192,

3910 data 104,

3920 data 133,

3930 data 6,

3940 data 101,

3950 data 133,

3960 data 32,

3970 data 208,

3980 data 192,

3990 data 220,

4000 data 251,

4010 data 1,

4020 data 96,

4030 data 32,

4040 data 169,

4050 data 0,

4060 data 255,

4070 data 2,

31,

24,

4,

14,

76,

32,

30,

23,

0,

13,

201,

40,

201,201,

192, 76,

60, 201,

198,254,

4,198,

251,165,

201, 0,

230, 253,

2, 230,

251,144,

165,252,

96, 9,

128, 32,

177, 5,

202, 200,

8,173,

13, 63,

168,104,

6, 6,

6, 5,

5, 133,

6, 96,

247,183,

3,162,

162, 0,

41,254,

133, 1,

173, 14,

32,121,

221,194,

128, 36,

223, 9,

0, 255,

219,219

16,

25,

7,

15,

189,

60,

18,

189,

76,

198,

3,

252,

165,

208,

4,

2,

233,

64,

194,

145,

173,

65,

192,

170,

5,

38,

5,

32,

166,

208,

142,

141,

96,

220,

0,

141,

169,

239,

I 0,

28, 30, 31,

26, 27, 1,

3, 8, 9,

201, 14,208,

201.201, 17,

.01,202, 208,

208, 8,169,

201,201, 29,

189,201,165,

253,165, 3,

56,165,251,

233, 0,133,

252, 233, 224,

2, 230, 254,

24,169, 8,

230,252,165,

255,144, 3,

174, 81,192,

201,160, 7,

251,136, 16,

62,192, 44,

192,145,253,

145, 3, 32,

96,133, 5,

38, 6, 6,

6, 24,173,

173, 73,192,

253,174, 32,

21,208, 9,

44,162,216,

72,192, 96,

14,220,165,

165, 1, 9,

9, 1,141,

240, 15, 32,

77,194,142,

141, 74,192,

0,255, 0,

223,202,219,

21

5

11

32

11

76

1,

2,

10,

6,

208,

250,

0,141

208,143

253, 208

208, 2

233, 8

252,165

144, 1

230,' 3

101,251

251,201

32, 60

240, 2

32, 3

249, 32

57, 192

173, 64

100,201

169, 0

5, 38

72,192

101, 6

138,173

165, 20

142, 73

173, 14

1, 41

4,133

14,220

217,193

81,194

96, 255

255, 17

9,202

Listing 4: This program creates the file "hiprnt2.mr, also needed

for the program in Listing 1.

OE

LC

BJ

ON

FM

CD

OF

EL

BH

CM

ED

AG

KF

II

IH

LP

JH

1000 rem* program to create file 'hiprnt2.mr on disk *

1010 for j = 1 to 1136 : read x

1020 ch = ch + x: next

1030 if ch<>145475 then print'checksum error": end

1040 print "data ok, now creating file": print

1050 restore

1060 open 8,8,8, "0:hiprnt2.ml,p,w"

1070 print#8,chr$(0)chr$(152);

1080 for j = 1 to1136:readx

1090 print#8,chr$(x);: next

1100 close 8

1110 print "prg file 'hiprnt2.mr created...

1120 print "this generator no longer needed.

1130 rem

1140data 1, 3, 7, 13, 15, 14, 4, 10, 8

1150data 5, 12, 6, 2, 9, 11, 0, 0, 68

1160 data 17, 34,102,170,221,238,119,187,255

The Transactor 27 January 1988: Volume 8, Issue O4

LK

BJ

BJ

JM

MP

MC

AM

CJ

kM

JA

JC

EA

GB

OB

OD

BK

DC

EC

ID

Dl

PE

EJ

FH

EK

HB

HC

KA

FM

AM

OB

JM

LF

AB

MA

JD

LC

EB

CC

EF

MD

KP

GP

NP

IH

HB

NH

BK

00

Nl

CH

KJ

JO

FH

OA

BP

GP

OP

EP

00

ED

JP

NH

1170 data 10,

1180 data 200,

1190 data 13,

1200 data 217,

1210 data 32,

1220 data 255,

1230 data 192,

1240 data 74,

1250 data 0,

1260 data 2,

1270 data 253,

1280 data 133,

1290 data 145,

1300 data 208,

1310 data 48,

1320 data 169,

1330 data 141,

1340 data 254,

1350 data 12,

1360 data 153,

1370 data 35,

1380 data 235,

1390 data 192,

1400 data 192,

1410 data 77,

1420 data 150,

1430 data 238,

1440 data 7,

1450 data 92,

1460 data 192,

1470 data 208,

1480 data 255,

1490 data 56,

1500 data 233,

1510 data 208,

1520 data 248,

1530 data 81,

1540 data 192,

1550 data 165,

1560 data 48,

1570 data 165,

1580 data 76,

1590 data 5,

1600 data 247,

1610 data 81,

1620 data 57,

1630 data 79,

1640 data 83,

1650 data 234,

1660 data 255,

1670 data 170,

1680 data 16,

1690 data 40,

1700 data 177,

1710 data 141,

1720 data 189,

1730 data 25,

1740 data 165,

1750 data 177,

1760 data 192,

1770 data 41,

1780 data 189,

77,

75,

10,

0,

235,

141,

32,

74,

172,

169,

133,

254,

253,

243,

3,

190,

75,

133,

32,

169,

152,

153,

105,

141,

192,

144,

79,

177,

154,

106,

235,

136,

165,

1,

80,

165,

192,

48,

254,

1,

252,

199,

185,

32,

192,

192,

192,

192,

173,

41,

74,

188,

133,

251,

79,

103,

154,

252,

251,

96,

240,

77,

27,

27,

10,

152,

194,

81,

54,

32,

85,

61,

251,

32,

200,

32,

32,

133,

192,

• 1,

210,

25,

32,

44,

150,

78,

141,

11,
192,

253,

72,

46,

173,

16,

253,

133,

76,

197,

170,

6,

105,

24,

105,

152,

41,

235,

16,

48,

144,

106,

83,

85,

13,

76,

251,

72,

192,

192,

141,

170,

134,

32,

141,

192,

27,

10,

0,

3,

83,

35,

13,

13,

240,

173,

192,169,

152,173,

54,152,

192,208,

32,195,

169,224,

20,194,

208, 249,

46,194,

7,196,

254, 32,

32,176,

174, 81,

255, 14,

141, 76,

210,255,

57,192,

162, 0,

192, 10,

77,192,

238, 78,

162, 3,

162, 4,

189, 77,

83,192,

83,192,

217,206,

233, 64,

254,173,

143,154,

201, 63,

240, 7,

165,253,

30,133,

165,251,

3,133,

169, 25,

152, 32,

153,160,

4, 10,

124,162,

3,173,

46, 83,

192, 69,

10,141,

83,192,

54,153,

176, 2,

41, 15,

104, 74,

44, 57,

80,192,

41, 3,

252, 41,

92,154,

83,192,

41, 15,

16, 51,

1,144,

77, 27,

136, 16,

192,240,

15,168,

71,192,

152, 48,

2, 73,

255,169,

133,252,

1,60, 0,

230, 254,

173, 61,

169,204,

109,154,

154,165,

192,240,

75,192,

192,160,

136, 16,

48,

138,

141,
173,

46,

42,

79,

80,

192,238,

142, 80,

142, 81,

192,106,

104,206,

69, 2,

76,192,

133,253,

81,192,

206, 75,

240, 242,

73,128,

105, 8,

254, 202,

105,232,

252, 232,

141, 76,

210,255,

7,177,

10, 10,

4, 10,

80,192,

192,104,

2,170,

83,192,

32,210,

56,165,

198,252,

170,189,

74, 74,

192, 16,

96,141,

9,216,

15,170,

72,189,

104, 32,

13, 83,

27, 0

75, 27

50, 27

248, 96

2,169

45, 62

74, 74

2,169

255,133

0,133

169,160

177,251

230, 252

192, 72

133,252

169, 40

1, 41

11,169

76,143

5,185

247, 32

173, 79

141, 77

192, 13

192,105

78,192

192,160

192, 32

46, 83

81,192

32,210

240, 23

165,254

240,138

192,240

24,173

141, 81

133,253

138, 56

133,251

208, 3

192,160

136, 16

253, 44

10, 44

72,173

106, 46

202, 208

32,210

138, 41

255,136

251,233

160, 0

103,192

74,170

3, 32

78,192

133,252

189,103

77,192

92,154

192, 69

HC

PD

KB

PD

KD

FF

LB

LC

PL

AM

HJ

Kl

MH

BJ

PL

CK

EN

LO

DO

EM

AC

00

BA

PO

KK

PA

OP

00

OB

NJ

FF

CD

LP

OP

BP

IL

OM

BO

CL

KN

FO

HH

IP

IJ

HG

DD

NK

CN

HH

PN

IM

CP

MG

GH

HO

PE

KL

KP

MJ

EP

AD

NO

1790 data 2,

1800 data 141,

1810data131,

1820 data 192,

1830 data 160,

1840 data 169,

1850 data 61,

1860 data 32,

1870 data 189,

1880 data 169,

1890 data 60,

1900 data 32,

1910 data 84,

1920 data 192,

1930 data 104,

1940 data 74,

1950 data 252,

1960 data 231,

1970 data 57,

1980 data 208,

1990 data 4,

2000 data 179,

2010 data 3,

2020 data 169,

2030 data 88,

2040 data 106,

2050 data 4,

2060 data 192,

2070 data 0,

2080 data 141,

2090 data 201,

2100 data 192,

2110 data 232,

2120 data 142,

2130 data 174,

2140 data 232,

2150 data 187,

2160 data 192,

2170 data 85,

2180 data 185,

2190 data 162,

2200 data 208,

2210 data 185,

2220 data 103,

2230 data 205,

2240 data 15,

2250 data 0,

2260 data 134,

2270 data 254,

2280 data 156,

2290 data 162,

2300 data 135,

2310 data 141,

2320 data 162,

2330 data 224,

2340 data 160,

2350 data 140,

2360 data 165,

2370 data 205,

2380 data 2,

2390 data 208,

2400 data 255,

15,

88,

15,

88,

170, 32,

83,192,

162, 0,

10, 46,

5,169,

0, 32,

32,201,

210,255,

47,152,

61, 32,

192, 9,

173,195,

192,202,

160, 0,

174, 84,

74, 32,

206, 83,

208, 220,

192, 16,

41,

157,

41,

254,

207, 133,

192,106,

110, 83,

110, 83,

200, 200,

142, 85,

77,192,

35,176,

201, 35,

144,229,

84,192,

83,192,

236, 84,

14, 85,

14, 85,

192, 48,

16,152,

16,202,

7,169,

103,192,

192,202,

83,192,

170,189,

141, 85,

252,132,

132,253,

162,131,

216,160,

160, 15,

33, 208,

96,160,

160, 0,

63, 32,

77,192,

252, 205,

77,192,

230, 252,

223, 0,

0

210,255,

138, 41,

142, 85,

85,192,

61,162,

189,255,

255,162,

202, 16,

32,210,

195,255,

3,133,

96,162,

16,250,

177,251,

192,208,

10,155,

192, 48,

174, 84,

37,141,

10,170,

192,169,

10,170,

192, 96,

252,160,

141, 83,

192,106,

192,106,

232, 224,

192,142,

188, 0,

17,109,

176, 12,

173, 77,

173, 85,

188, 0,

192,144,

192, 14,

192,202,

4, 10,

157,103,

188, 0,

255,153,

141, 83,

188, 0,

240, 239,

103,192,

192, 96,

251,162,

162,131,

160, 40,

0,134,

32, 62,

32,183,

0,134,

134,254,

62,156,

160, 0,

78,192,

208, 1,

230, 253,

255, 0,

41,

204,

192,

174,

4,

51,

74,

10,

85,

32,

32,192,

7,189,

247, 96,

255, 202,

32, 204,

1,104,

34,169,

169, 3,

72, 32,

8, 41,

136,208,

6, 208,

192,208,

84,192,

189, 88,

216,133,

254, .87,

169,232,

0,162,

192,185,

44, 57,

105, 0,

16,208,

83,192,

152,185,

77,192,

224, 15,

192,208,

192,238,

152,153,

244, 224,

85,192,

189,103,

112, 1,

192,202,

152,185,

103,192,

192,169,

152,185,

173, 33,

141, 77,

162,127,

204,160,

160, 39,

134,252,

254, 132,

156,173,

193, 32,

252,132,

132,253,

96,142,

177,251,

208, 8,

96, 230,

208, 227,

255, 0,

10, 10

74,112

46, 85

192, 96

186,255

255,162

27,152

162, 6

16,247

255, 173

48, 3

0,157

141, 83

7,155

240, 74

233,230

222,160

42,173

173, 33

192,105

252, 208

192,208

133, 251

0,185

87,192

192, 16

157, 87

220,162

169, 0

87,192

141, 77

176, 8

1,232

85,192

103,192

16,144

14, 85

192, 44

10,168

16,234

87,192

208, 240

255,153

103,192

208, 41

192,169

160,^ 64
0,134

32, 62

132,251

253,162

16,135

230,195

251,162

<] 62,127

78,192

145,253

165,251

251,208

230, 254

255, 0

The Transactor 28 January 1988: Volume 8, Issue O4

Computer Generated

Holography on a C64

Patrick Hawley

Port Elgin, Ontario

.. .the key is knowing that diffraction effects are described by a Fourier Transform.

Introduction

In this programming project a Commodore 64 is used

to produce a plot which can be photographically re

duced to become a computer generated hologram.

When most people think of holograms, they think of the small

pictures on their credit cards or the covers of National Geo

graphic magazine (March/84 or Nov./85). These three-

dimensional holograms are the record of an interference pattern

made by a lensless photographic method that uses lasers. The

, interference pattern contains both the phase and amplitude

information necessary to construct an image by the diffraction

and interference of light. Computer generated holograms, such

as the one that will be described in this article, are diffraction

gratings (which is basically what a hologram is) that give two-

dimensional diffraction patterns of an input image.

Background

In order to understand what the program does, a basic under

standing of interference and diffraction of light waves is re

quired. The term interference is used to describe the combining

of two or more waves of the same frequency in the same region

of space. Whether the interference is constructive or destructive

depends on the phase relationship between the waves. If the

waves are in phase their amplitudes will add; if the waves are out

of phase, then their amplitudes will subtract. As will be ex

plained, it is the constructive and destructive interference of light

waves that makes the light and dark spots found in a diffraction

pattern.

Diffraction is the term used to name a phenomenon that light

possesses, which is that it spreads out when passing an edge. An

explanation for this can be given in terms of interference effects

within a single beam when the light beam is thought of as the

sum of many individual sources (Huygen's principle). Diffraction

effects are most noticeable when dealing with narrow beams of

light when the effect of the light spreading around an edge,

means that geometric optics can no longer be applied.

Insight can be gained into interference, diffraction and diffrac

tion gratings by considering the case of a beam of light passing

through two slits as shown in Figure 1. The lines showing the

light represent a specific phase of the wave (the wave crests if

you like). As the waves hit the slits part of them will go through.

On the "downstream" side of the slits, the light spreads out in all

directions due to diffraction. This causes the two beams coming

SCREEN

DIFFRACTED LIGHT

OPAQUE PLATE
WITH SLITS

-LIGHT BEAM

Figure 1: Light diffracted by a double slit. A distant

screen would show a diffraction pattern of light and dark

spots corresponding to areas of constructive and destruc

tive interference.

from the slits to overlap. If a screen is placed at a distance that is

far compared to the distance between the slits, a diffraction

pattern can be seen. Wherever the overlapping beams interfere

constructively, the screen will be bright. Wherever the overlap

ping beams interfere destructively, the screen will be dark. For

example, if the two beams must travel the same distance to

reach a given point on the screen, they will arrive there in phase

and make a bright spot. If one beam must travel half a wave

length more than the other to reach a given point, it will arrive

out of phase, and that point will be dark. These regions of

alternating bright and dark intensity are called interference

fringes and the whole image on the screen is the interference or

diffraction pattern. The diffraction effects seen on a screen that

is far compared to the distance between the slits (as in this case)

are called Fraunhofer diffraction.

Now the concept of the computer program can be explained. We

want a program that will arrange slits in such a way that when

light is diffracted by the slits the resulting diffraction pattern

The Transactor 29 January 1988: Volume 8, Issue O4

forms a predetermined input image. Our arrangement of slits

can then be called a hologram.

To go further we must know something about the mathematical

description of light. Light is an electromagnetic wave which can

be described using complex numbers. The key to constructing

the program is knowing that the effect of Fraunhofer diffraction

is described by a Fourier transformation.

Fourier transforms are themselves the subject of books. Briefly,

what Fourier transforms do is distinguish the frequency compo

nents in a varying signal. (Conversely, inverse Fourier trans

forms give the domain of a signal whose frequency components

are known). The proof that Fourier transformations describe

Fraunhofer diffraction and that they can be used as described

here to generate holograms goes beyond the scope of this article.

For those interested, the proof may be found in a paper by

Lohmann and Paris in Applied Optics, Vol. 6, No. 10, Pg. 1739.

The essential thing to know is that the Fourier transform will

provide the information required to tell us how to position our

slits to make the diffracted light hit the screen at the right phase

and how big to make the slits so that the light reaches the screen

with the right amplitude.

Method

To make the slits, a printer or plotter is used to draw small black

rectangles on a piece of paper. When this page is photographed,

the black rectangles are clear on the negative and we have our

slits. The details of the procedure are as follows:

Figure 2: Typical aperture in a cell. The height, hni

encodes amplitude information and the position, Cni

encodes phase information.

The desired input image is drawn on a grid. The input data is an

array of binary elements made up by assigning a zero to any part

of the grid which doesn't make part of the image and a one to

any part of the grid which does make part of the image. The

input data is transformed using a two-dimensional complex

Fourier transform. The coefficients of the transform are then

used to calculate the information required to make a plot of, small

black rectangles on a page.

To make the plot, the paper is divided into equally spaced cells.

Rectangular apertures (i.e. the slits) are drawn inside each cell.

Each aperture has three parameters: its height, 'hjnmt', its

width, V, and its centre with respect to the centre of the cell,

'cjnmt'. The subscripts, nm, indicate to which cell on the page

the aperture belongs. Figure 2 shows one of the cells and

aperture. The height of the aperture is made proportional to the

calculated amplitude and the position of the aperture is made

proportional to the calculated phase.

When the plot is reduced down on film to become a hologram,

and monochromatic, coherent light is shone through, we get a

Fraunhofer diffraction pattern which is a reconstruction of our

original input image. The hologram is now doing the inverse of

the original Fourier transform which we applied to the input

data.

The Program

The first part of the program asks for some input. The first option

is whether or not you want to make a hologram plot. At this time

I should point out that aside from producing the hologram plot

the program also has the feature that it continues on and works

backwards, starting with the final data used to create the plot, to

reconstruct the original input image. The image is then drawn

with the printer using a gray-scale made up from ten characters

available from the Commodore keyboard. I found this feature

very useful for checking my input data, debugging the program,

and for getting a qualitative feeling for the image quality I might

expect without going through the trouble of photographing a

plot. If you select the option of not doing the plot, you still get the

gray-scale reconstructed image.

Next, you are asked if you want to keep the phase of the input

elements constant or if you want them randomized (but still

binary). Explanation: The two parts of the complex input data

give the real and imaginary components of the input wave. The

phase is given by the arctan of the imaginary part over the real

part. The magnitude is given by the square root of the sum of the

squares of the real and imaginary parts. Thus the input phase

can be made random while keeping the magnitude constant so

the input remains binary. If you keep the input phases constant,

the dynamic range of the transform will be quite large, with a

few of the elements disproportionately larger than most. The

result of this will be that after normalization, most of the

amplitudes will be small and your plot will be mostly of tiny

rectangles which in turn will give a dim image. This can be

overcome somewhat by truncating the larger coefficients and if

you choose a constant phase input the program will scan the

transform and help you decide how much truncation you want

The Transactor 3O January 1988: Volume 8, Issue O4

to do. It's fun to try to optimize the final image with different

amounts of truncation using the gray-scale output to make

qualitative judgements.

If you randomize the phase of the input data, the dynamic range

of the transform will be reduced and the distribution of the

amplitudes more'uniform. This gives the best final image.

After these decisions have been made, the matrix which makes

up the input figure is read. As can be seen in the listing, the ones

in the 32 X 32 matrix being read form the image of a "happy

face". This data is used to input values to the arrays AR(D,E) and

AI(D,E) which represent the real and imaginary components of

the "happy face" wavefront. The choice of an imput image must

be made keeping in mind that the final image quality is depen

dent on the number of sampling points used to mathematically

represent the input wave (i.e. the number of points in the grid on

which the original figure was drawn). The more points available,

the more complex the figure can be, however, the figure should

be simple enough so that it can be easily represented within the

given matrix size.

There are other restrictions as well. Since the results of sampling

from the grid have to be read into our computer, the grid size is

limited to arrays which can fit into the available computer

memory. Also, the Fourier transform is performed using a so

called Fast Fourier Transform algorithm which requires that the

matrix dimensions must bemXn where m and n are an integral

power of two. The Fast Fourier Transform used here I adapted

from a FORTRAN listing by D.E. Jones in a paper that Jones

wrote while a student at University of Toronto.

These are the considerations which led to a matrix size of 32 X

32 and a "happy face" figure. Other appropriate input figures for

this size matrix could be letters of the alphabet, Chinese charac

ters, the symbol for peace, or whatever.

After the Fourier transform has been completed, the coefficients

of the transform are used to calculate an amplitude and phase for

each component. The amplitudes are then scanned, and the

largest is used to normalize the amplitudes to between zero and

one (unless a constant phase was used in the input data, in

which case there is an option to normalize with a smaller

number and truncate the larger amplitudes to one). We now

have the required information to make the plot.

I will describe the plot routine in some detail since this is the part

of the program that you will probably be modifying should you

want to follow through on this article and try this on your own

computer. The way you choose to make your plot will affect the

final image quality so it's best to have some guidelines before

starting. First I will describe how the plot routine listed here

works, then I will discuss what to consider should you be using a

plotter.

I produced the plot on a Commodore 1526 printer. Each cell is

two printer characters (16 pixels) wide and two printer charac

ters (16 pixels) tall. The rectangles to be placed inside the cells

are four pixels wide. Avoiding the complication of having rectan

gles overlap at cell edges, this allows for a maximum of 13

horizontal positions (quantized phase values) and nine rectangle

heights (quantized amplitude values) if you count zero as one of

the heights.

To plot specific pixels with a 1526 printer, you must define

custom characters. Thus to make the plot, I first set up an array,

CH$(I,J), which contained all the different characters I would

need to make the apertures of varying heights and positions

within a cell. The large number of characters required, and the

complexity of the plot routine, is mainly due to the fact that each

cell is made up of four (2 X 2) printer characters.

In the two-dimensional array, CH(I,J), the first indicia keeps

track of characters of different horizontal positions while the

second keeps track of characters of different height. The correct

height indicia is found by multiplying the normalized amplitude

by eight (since on the 1526 printer, characters are eight pixels

tall) and determining to which of the nine quantized values the

amplitude belongs. A similar process is used to find the horizon

tal indicia except that now the phase is used to find the offset

from the middle of the cell.

It takes two rows of characters to make one row of rectangular

apertures. First the top half of a row of apertures is printed, then

the bottom. The plot routine keeps track of which half is

currently being printed and if it's the bottom half, the character

height indicia is shifted to print characters of the proper size

which meet the bottom of the top half of the rectangle and grow

downwards. You may also note that the 1526 printer can handle

only one custom character at a time and has a one line buffer.

This explains the need for all the tabbing and carriage returns.

By now some of you must be thinking that there must be a better

way. I'm sure there is. For example, those who have systems

that can provide the required resolution may be able to do it

neatly on a hi-res screen which is then simply dumped on a

printer or those with plotters may have another way. At any rate,

here are some guidelines which can be used when setting up a

plot routine. The guidelines were drawn by reading the previ

ously mentioned paper by Lohman and Paris and from a paper

by Gabel and Liu in Applied Optics, Vol. 9, No. 5, Pg. 1180.

The image brightness is maximized when the relative dot width

is one half the cell width and the full width of the cell is used for

dot positioning. If you use the full cell width, you must write a

plot routine which will allow the dots to overlap into neighbour

ing cells. There will be some error in the odd cases where two

dots overlap because these are areas which should be doubly

transmissive. In practise though, there won't be enough of these

cases to worry about. Lphman and Paris also showed however,

that image brightness range increases with increasing dot width.

They suggest that a good balance between image brightness and

uniformity might be achieved with a dot width of one third the

cell width.

Gabel and Liu discuss minimizing image reconstruction error by

optimizing the number of sample points (cells on the plot) and

quantized steps available within a cell given the total number of

The Transactor 31 January 1988: Volume 8, Issue O4

steps available on your plotter. It turns put that the plot I was able

to do on my printer in which I had up to 16 steps within each of

32 X 32 cells was close to being an optimum arrangement.

How far the images end up being spaced from the optic axis can

be controlled by how much of the cell width is used for aperture

positioning. The smaller the amount used, the farther away from

the optic axis the images will be.

Some other things to keep in mind are that amplitude errors

(aperture height) aren't as important as phase errors (aperture

position) because they do not deviate the light rays as do phase

errors. Also, if your printer or plotter is limited, more cells or

finer quantization can be had by doing the plot in several parts

which can later be pasted together before the reduction.

Running, Reduction, Reconstruction

Once the program starts running, be prepared to wait. It takes

over an hour for the program to run completely. I put in some

print statements to the monitor so you can follow along and see

where the program is at any given time.

The output plot must be reduced so that the distance between

apertures is in the order of tens of microns. This means that for a

32 X 32 plot which is 15 cm2 a reduction factor of about 100 is

good.

The reduction is done photographically. None of the authors of

the papers I've read seem to think that there's any challenge to

this process and give no details on how it's done. I, with the help

of a friend who's into photography, tried a few times with various

low grain, high contrast films but we couldn't seem to get the

exposure right. Either the apertures were filled in or the back

ground was too light. If anybody out there has some suggestions,

I'd love to hear them. (My mailing address is PO Box 5106, Port

Elgin, Ontario, NOH 2C0.) I finally sent my plots to a microfich-

ing company who reduced them for $20.00 (see below). Even

the best they could do was a reduction factor of 79.

The three tiny white squares (actual size) at the center

of the film are three separate hologram plots.

can be found in the light coming from a laser. What!? You don't

own a laser? Not surprising, but don't be disheartened. Most

high schools these days have relatively inexpensive helium

neon lasers and it's been my experience that physics teachers

are delighted to let you borrow their laser provided you let them

see what you've done. If you're a student, make a computer-

generated hologram, take it into class and knock your teacher's

socks off.

A 15 cm2 plot reduced by a factor of 100 ends up as a 1.5 mm2

hologram. This is convenient because it's about the same as the

beam diameter of an inexpensive laser. When the laser beam is

shone through the hologram, images of the input will appear on

a screen placed on the other side. The images closest to the optic

axis are first order diffraction, the next set of images are second

order, and so on.

Results

Figure 3 shows typical result of running the program. The input

was binary data that formed a "happy face". Figure 3(a) is the

plot produced by a 1526 printer. Figure 3(b) is the gray-scale

reconstruction of the image, also done on the 1526. Figure 3(c) is

a photograph of the diffraction pattern seen when a laser beam

is shone through the hologram. Notice the dots which appear in

the gray-scale picture and the reconstructed image. These dots

are from Fourier transforming "square" data such as the quan

tized data we use to make our plot.

• II I- 11 I •. I

III I I I II III* 11 I .
• • •• I • • • I I I .. I . .1

I III* 11 • I. I I I I 11 I

I • I I • II • I I I I I 4 I |

|

•• II - I I. I II

II I h II I 11 ..

• 111 . II I 11 III

II-- ■ 'I'll t II I I I I I III I I ll I. I

I'll*' I I I I I I ll I I I * II I I t I . 11
III 1*11 I I I t I I I I I I . I I . I I I .. I I

I I I I I I* > I -I I I I • 11 I 1. 11 11
I II I

i

i

I • I • • II I I I • I I *l I • I . I

I I II I I I ■ I ll ll • I I t t • I I I 11 II

I * I I I II • •! • I I I t| . . I • I | | . | |

I I I I I II * I I * | I I I I * | i i | I I t I || | • | | |

'II I I t | | | It | t. | | | . |i | • . | i I I I | 1*1

'I 1*11*1 M.I | I . | I II I I . i | .. | | I • |

I I I • • I • I I II I I * . • .. | | . | | | . |. | . I .|

I I I I I I I I | ■ I > t I i it | I II | | ||| | I | • . I

'I H * * I • I I I I | •• I • | I I |l | I .. » . | . .

'I 1*11 • | I I I I | I ■ | ... | || | | | | , . ,| . |

II * I I I I • I I • I I * * I |. | I || | i| i I I || ||

* I I I I I I • I • I • I | I | I • | II . I . . . I. . | . .

• ' • I * * > I I • I I • I ||| I | • I till |- I . • . •

• H • » I* * l| I • • I • | • I I I I . I . | | I . . M |

1 I I * I * I I | • • •• • •• ll | I | I I | | | I il I- I
•III' • •• I • ||

• 4 l 11 i i 11 • . |'i •

i I I I I • I I* • * I i • •

I i I 11 i • i i I I I Iii

. . I . . I I i i • i I

i • i

I 1*111 1 I • 11 • * i |> i i • . . i

i I*

I*

In order to reconstruct the image with the hologram we need a

light source which can display interference effects. This means

that it must be monochromatic and coherent. These properties

Figure 3(a): Hologram plot from 1526 printer (54% of

actual size). Reduced photographically, the above will

become a diffraction grating which will form images of

uhappy faces".

The Transactor 32 January 1988: Volume 8, Issue O4

I II I

Figure 3(b): Gray scale reconstruction of image corresponding

to Figure 3(a).

Figure 4(a): Gray scale reconstruction of an image that

used a constant input phase and no truncation of the

transformed data.

Figure 3(c): Photograph of the actual diffraction pattern pro

duced by shining a laser beam through the photo-reduced plot

on film.

Figure 4 shows gray-scale pictures which show the effect of using

a constant input phase and truncating the transformed data. In

Figure 4(a) no truncation was performed and as can be seen, the

predicted reconstructed image will be of relatively poor quality.

In Figure 4(b) the few dominant transform amplitude coefficients

were truncated and the gray-scale picture predicts a much better

image.

Figure 4(b): Gray scale reconstruction of an image that had

a constant input phase. The transformed data was truncated

to limit the effect of the dominant coefficients which result

from transforming square data.

There are other methods of making computer generated holo

grams. Some record phase information on film by varying the

emulsion thickness. The binary holograms described here are

the easiest to make, with the required computer hardware

probably already being available to the majority of persons who

have read this article.

The Transactor 33 January 1988: Volume 8, Issue O4

CF

LH

IB

OC

AD

LM

CE

OJ

ND

ME

NF

KG

CA

Al

AM

HL

HI

MG

AF

KF

PI

BN

EB

KC

AE

OD

EE

OE

IF

CG

MG

GH

II

CJ

AJ

OJ

IK

GL

IM

OM

EN

ON

10

GP

AA

OA

AC

CC

AC

KC

ID

OE

ME

KE

KJ

AD

OA

GP

JG

HO

FM

BK

Computer Generated Holograms

10 rem this program makes binary holograms

15 rem by: patrick hawley, port elgin, on

20dJmx(32),y(32)>s(13)lu(13)>ar(32l32)Jai(32>32)lch$(11>15),e(16)

30 ti$ = "000000":open4,4

40ir = 1:ii = i

50 re&d n,it

60 print""

70 inpufdo you want a hologram plot (y/n)";hp$

80 input"random or constant phase (r/c)";ip$

90pq = 13

100ford = 1ton

110 for e = 1 to n

120 read ar(d,e)

130ai(d,e) = ar(d,e)*ii

140ar(d,e) = ar(d,e)*ir

150ifip$ = "c"then200

160 ar(d.e) = (-1 + 2*rnd(1))*sqr(irt2 + iit2)*ar(d,e)

170pm=^int(-1+3*rnd(1))

180 if pm = 0then 170

190 ai(d,e) = sqr(irt2 + iit2-ar(d,e)t2)*ai(d,e)*pm

200 next e,d

220 data 32,1

230 data 0,0

240 data 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

250 data 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0

260 data 0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0

270 data 0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0

280 data 0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0

290 data 0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0

300 data 0,0,0,0,1,1,0,1,1,0,0,0,0

310 data 0,0,0,1,1,0,1,1,0,0,0

320 data 0,0,0,1,1,0,1,1,0,0,0

330 data 0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0

340 data 0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,a,0,0,1,1,0,0,0,0,0,0,1,1,0,0

350 data 0,0,1,0,1,0,0

360 data 0,1,1,0,1,1,0

370 data 0,1,1,0,1,1,0

380 data 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0

390 data 0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0

400 data 0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0

410 data 0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0

420 data 0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0

430 data 0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0

440 data 0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0

450 data 0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0

460 data 0,0,0,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,0,0,0

470 data 0,0,0,0,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0,0

480 data 0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0

490 data 0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0

500 data 0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0

510 data 0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0

520 data 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0

530 data 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

540 data 0,0

5*50:
560 gosub 660:rem fast fourier transform

570 gosub 2130:rem amplitude and angle

580 gosub 2370:rem normalize/truncate

590 gosub 2900:rem hologram plot

600 gosub 4340:rem find components for inverse fft from plot data

610it = -1

620 gosub 660:rem inverse fft

IB

GA

Kl

GC

KC

Dl

GP

PJ

EN

GK

OB

HG

BN

FD

BC

NC

PI

LA

KA

FF

PL

JM

Cl

EO

FO

IP

NE

AK

DB

JA

EB

CP

MP

FE

GO

DP

FB

AE

IM

AA

FO

NC

LI

AA

NA

MB

LQ

AP

PP

GP

FA

EC

DD

KC

JD

CC

PO

DN

LG
OJ

HI

HK

PJ

AN

630 gosub 4430:rem gray-scale plot

640 prinffinished. time is ";ti$

650 end

660 rem 2d fft

670forrw = 1 ton

680 print"[DN] working on fft;row:';rw

690 for re = 1 ton

700 x(re) = ar(rw,re):y(re) = &i(rw,re)

710 next re

720 gosub 890

730 for re = 1 to n

740 ar(rw,re) = x(re):ai(rw,re) = y(re)

750 next re.rw

770 for cl = 1 to n

780 print"[DN] working on ffticolumn^cl

790force = 1 ton

800 x(ce) = ar(ce,cl):y(ce) = ai(ce.cl)

810 next ce

820 gosub 890

830force = 1 ton

840 ar(ce,cl) = x(ce):ai(ce,cl) = y(ce)

850 next ce,cl

870 return

880:

890 rem complex fast fourier transform

900:

910 if it>0 then 940

920 for i = 1 to n

930 y(i) = -y(i): next i

940lg = log(n)/log(2)

950 if lg< = 1 then 1390

960fork = 2tolgstep2

970m = 2t(lg-k)

980m4 = 4*m

990 for j = 1 to m

1000ar = G-1)/m4*2*Tr

1010c1 =cos(ar)

1020s1 =sin(ar)

1030c2 = d*d-s1*s1

1040s2 = c1*s1 +d*s1

1050c3 = c2*c1-s2*s1

1060s3 = c2*s1+s2*c1

1070 for i = m4 to n step m4

1080j0 = i+j-m4

1090J1 =j0 + m

1100j2=j1+m

1110j3=j2 + m

1120r0 = x(j0) + x(j2)

1130r1=x(j0)-x(j2)

1140i0 = y(j0) + y(j2)

1150i1=y(j0)-y(j2)

1160r2 =

1170r3 =

1180i2 = y(j1) + y(j3)
1190i3 =

1200xO'0)

1210y(j0) = i0 + i2

1220 if ar = 0 then 1300

1230 x(j2) = (r1 + i3)*d + (i1 -r3)*s1

1240 y(j2) = (i1 -r3)*d -(r1 + i3)*s1

1250 x(j1) = (rO-r2)*c2 + (iO-i2)*s2

1260 y(j1) = (iO-i2)*c2-(rO-r2)*s2

1270 xO3) = (r1 -i3)*c3 + (M + r3)*s3

1280 y(j3) = (i1 + r3)*c3-(r1 -i3)*s3

The Transactor 34 January 1988: Volume 8, Issue O4

BB

CH

HH

NJ

KG

NJ

OJ

CG

BB

GF

CC

AD

HC

FD

JD

KC

NA

AB

BL

CK

PJ

AH

DN

KG

DF

00

HA

HD

AK

AB

JC

KD

LE

BE

FF

JG

NH

MJ

GH

CD

PH

PM

EF

DK

PO

Gl

01

FO

EE

PO

AF

JP

MF

DA

10

NA

EH

OG

JB

EJ

HG

CH

AA

FL

JD

1290 goto 1360

1300x(j2) = r1+l3

1310y(j2) = i1-r3

1320x(j1) = r0-r2
1330y(j1) = i0-i2

1340x(j3) = r1-i3
1350y(j3) = i1+r3

1360 next i,j,k

1390 if Ig = int(lg/2)*2 then 1500

1400 for i = 1 ton step 2

1410r0 = x(i) + x(i + 1)

1420r1=x(i)-x(i + 1)

1430i0 = y(i) + y(i + 1)

1440i1=y(i)-y(i + 1)

1450x(i) = r0

1460y(i) = i0

1470x(i + 1) = r1

1480y(i + 1) = i1

1490 next i

1500s(13) = n/2

1510u(13) = n

1520 for k = 2 to 12

1530j = 14-k

1540s© = 1

1550u© = s(j + 1)

1560 if s(j +1)>1 then s© = int(s(j +1)/2)

1570 next k

1580al = s(2)

1590 jj = 0

1600a = 1:b = a:c=b:d = c:e = d:f = e

1660 for g = f to u(7) step s(7)

1670 for h = g to u(8) step s(8)

1680 for i = h to u(9) step s(9)

1690 for j = i to u(10) step s(10)

1700 for k=j to u(11) step s(11)

1710forl = ktou(12)steps(12)

1720 for m = I to u(13) step s(13)

1730jj=jj + 1

1740 if jj< = m then 1810

1750t=x(jj)

1760x(jj) = x(m)

1770x(m) = t

1780t=y(jj)

1790y(jj) = y(m)

1800y(m) = t

1810:

1820nextmJ,k,j,i,h,g

1890f=f + s(6)

1900 if f< = u(6) then 1660

1910e = e + s(5)

1920 if e< = u(5) then 1650

1930d = d + s(4)

1940 if d<=u(4) then 1640

1950c = c + s(3)

1960 if c< = u(s) then 1630

1970b = b + s(2)

1980 if b< = u(2) then 1620

1990a = a + 1

2000 if a< = al then 1610

2010 for si = 1 to(n-2)/2

2020 be = n +1 -sl.fc = si +1

2030tx = x(fc):ty = y(fc)

2040 x(fc) = x(bc):y(fc) = y(bc)

2050x(bc)=tx:y(bc) = ty

2060 next si

FJ

IC

Fl

LK

NB

EG

EO

NG

PF

MG

ML

FJ

GP

LB

DJ

CL

KA

GD

CJ

KN

KJ

PP

HC

KM

FC

JG

BO

KE

MK

KB.

CB

DK

JF

GG

IL

FE

BH

JN

IF

LC

MC

EO

HM

EN

BF

LE

FE

PD

BE

LN

DB

JB

PA

BJ

AH

NB

HK

Ol

LC

NL

MK

JD

DN

KM

The Transactor 35

2070 if it>0 then return

2080 for i = 1 to n

2090x(i) = x(i)/n

2100y(i) = -y(i)/n

2110nexti

2120 return

2130 rem convert into amplitude & angle

2140 print".. .finding amplitude & angle11

2150ford = 1 ton

2160 for e = 1 ton

2170 ap = sqr(ar(d,e)*ar(d,e) + ai(d,e)*ai(d,e))

2180 if ap = 0 then 2330

2190 if ar(d,e)<>0 then 2230

2200 if ai(d,e)<0 then pa = -rr/2

2210 if ai(d,e)>0 then pa=n/2

2220 goto 2320

2230 if ai(d,e)<>0 then 2270

2240 if ar(d,e)<0 the npa=n

2250ifar(d,e)>0thenpa = 0

2260 goto 2320

2270 pa = atn(ai(d,e)/ar(d,e))

2280 if ar(d,e)>0 and ai(d,e)>0 then pa = pa

2290 if ar(d,e)<0 and ai(d,e)>0 then pa=n + pa

2300 if ar(d,e)<0 and ai(d,e)<0 then pa = pa-n

2310 if ar(d,e)>0 and ai(d,e)<0 then pa=pa

2320 ar(d,e) = ap: ai(d,e) = pa

2330 next e,d

2350 return

2360:

2370 rem amplitude normalization routine

2380 rem find largest amplitude

2390 la = af(1,1)

2400 for d = 1 ton

2410 for e = 1 ton

2420 ifar(d,e)>lathenla = ar(d,e)

2430 next e,d

2450 if ip$ = "r" then 2820

2460 print'the largest amplitude is";la

2470 rem check amplitude distribution

2480 p8 = 0: p6 = 0: p4 = 0: p2 = 0: p1 =0

2490 n8 = .8*la:n6 = .6*la:n4 = .4*la:n2 = .2*la:n1 = .1 *la

2500 print" "

2510 for d = 1 ton

2520 for e = 1 ton

2530 if ar(d,e)< = n8 then p8 = p8 +1

2540 if ar(d,e)< = n6 then p6 = p6 +1

2550 if ar(d,e)< = n4 then p4 = p4 +1

2560 if ar(d,e)< = n2 then p2 = p2 +1

2570 if ar(d,e)< = n1 then p1 = p1 +1

2580 next e,d

2600 p8 = int(p8/1024*100):p6 = int(p6/1024*100)

:p4 = int(p4/1024*100)

2610 p2 = int(p2/1024*100):p1 = int(p1/1024*100)

2620 printn8O°/o of the max. amp is";n8

2630 print p8;"°/o of amp's are equal or smaller"

2640 print" "

2650 print"60% of the max. amp isn;n6

2660 printp6;"°/o of amp's are equal or smaller"

2670 print" "

2680 print"4O°/o of the max. amp is";n4

2690 printp4;"°/o of amp's are equal or smaller"

2700 print" "

2710 print"2O°/o of the max. amp is";n2

2720 printp2;"°/o of amp's are equal or smaller"

2730 print" "

January 1988: Volume 8, Issue O4

PE

NO

10

JL

MP

DK

AB

CH

CA

HA

EB

El

DP

MF

OL

AB

ED

DD

EO

PO

DM

Kl

DE

GL

CP

HD

PJ

MK

MA

PH

DL

LN

KM

IL

NH

ME

LD

KL

LJ

OG

OM

ON

BF

DD

LI

DN

LB

LI

EJ

NJ

DE

AE

NP

NA

FP

NJ

IM

EN

LP

EM

2740 printi 0% of the max. amp is";n1

2750 printpi;"% of amp's are equal or smaller"

2760 print" "

2770 prinftime is ";ti$

2780 print" "

2790 input"what no. do you want to normalize toB;nl

2800 print" "

2810 inpufwhich means what °/o of data truncated";pt

2820 ifip$ = rthennl = la

2830 for d = 1 ton

2840 for e = 1 ton

2850 ar(d,e) = ar(d,e)/nl: if ar(d,e)>1 then ar(d,e) = 1

2860 next e,d

2880 return

2890:

2900 rem plot routine

2910 rem read in plot characters

2920 if hp$ = "n" then 3720

2930 print".. .defining plot characters"-

2940 for i = 1 to 8:e(i) = 2ti-1 :e(i + 8) = e(i)*2t(8-i):next

2950 for i = 1 to 11: for j = 1 to 15: for k = 1 to 8

2960 ch = 0: if k<(13-i) and k>(8-i) then ch = effl

2970 ch$(i,j) = ch$(i,j) + chr$(ch)

2980 next k,j,i

3710:

3720 open 2,4,5

3730 open 6,4>6:print#6,chr$(21)

3740 rem main plotting loop

3750 tb = O

3760 nf = 2: if hp$ = dn" then nf = 1

3770 for d = 1 to n

3780 for f = 1 tonf

3790 for e = 1 ton

3800 rem determine which character

3810 rem find character height

3820ht = 8*ar(d,e)

3830dh = ht-int(ht)

3840 if dh<. 125/2 then ht = int(ht):goto3860

3850ht = int(ht) + 1

3860 if f = nf then ar(d,e) = ht/8*nl

3870 rem find phase

3880 cp = pq*ai(d,e)/(2*n)

3890qp = int(pq/2)

3900 ifabs(cp)-int(abs(cp))>.5then3950

3910 if cp<0 then cp = int(cp):if f = nf then

ai(d,e) = (cp + 1)*Ti/qp

3920 if cp> = 0 then cp = int(cp) +1 :if f = nf then

ai(d,e) = (cp-1)*7i/qp

3930 if hp$ = "n"then 4290

3940 goto 3980

3950 if cp<0 then cp = int(cp)-1 :if f = nf then

ai(d,e) = (cp + 1)*7i/qp

3960 if cp>0then cp = int(cp) + 2:if f = nf then

ai(d>e) = (cp-1)*Ti/qp

3970 if hp$ = "nB then 4290

3980 if f<>1 then 4230

3990 if ht = O then print#4,"[2 spcs]";chr$(141);:goto4260

4000 if abs(cp)>2then 4130

4010 if cp>-2 then 4050

4020 print#2,ch$(3,ht):print#4,chr$(254);chr$(141);

4030 tb=tb +1 :print#2,ch$(11 ,ht):print#4,tab(tb);

chr$(254);chr$(141);

4040 goto 4260

4050 if cp>1 then 4090

4060 print#2,ch$(2,ht):print#4,chr$(254);chr$(141);

The Transactor 36

OO

MP

BO

JD

DE

EC

KE

PK

OG

KJ

GF

BH

LL

HF

MC

II

CN

AA

CM

Nl

FJ

FB

PK

MP

OF

HN

EA

KO

PM

PL

HP

AG

CM

FP

EE

FG

BH

MH

GN

BE

ID

Ol

AN

DP

DP

KG

KF

HO

LP

PL

OO

JK

LM

Jl

FB

NB

DL

LJ

IH

4070 tb=tb +1 :print#2,ch$(10,ht):print#4,tab(tb);

chr$(254);chr$(141);

4080 goto 4260

4090 print#2,ch$(1 ,ht):print#4,chr$(254);chr$(141);

4100 tb = tb +1 :print#2,ch$(9,ht):print#4,tab(tb);

chr$(254);chr$(141);

4110 tb=tb +1 :print#2,ch$(9,ht):print#4,tab(tb);

chr$(254);chr$(141);

4120 goto 4260

4130 if cp<0 then 4180

4140 cp = cp +11 -cp*2

4150print#4,"[1 spc]";chr$(141);

4160 tb = tb +1 :print#2lch$(cplht):print#4,tab(tb);

chr$(254);chr$(141);

4170goto4260

4180 if cp>0 then 4230

4190cp = abs(cp) + 1

4200print#2,ch$(cp,ht):print#4,chr$(254);chr$(141);

4210 tb=tb +1 :print#4,tab(tb);"[1 spc]";chr$(141);

4220 goto 4260

4230 if ht = O then 3990

4240ifht<8thenht = ht + 8

4250 goto 3990

4260 if e = n then print#4,chr$(141);chr$(13);

4270 tb = 2*e:if e = n then tb = 0

4280 if'eOn then print#4,tab(tb);

4290 next e,f,d

4320 return

4330:

•4340 rem find real and imaginary components from

truncated & quantized data

4350 for d = 1 to n: for e = 1 to n

4370ap = ar(d,e)

4380 ar(d.e) = ap*cos(ai(d,e))

4390 ai(d.e) = ap*sin(ai(d,e))

4400 next e,d

4420 return

4430:

4440 rem gray scale picture routine

4450 print#4,"[1 spc]11

4460 for d = 1 to n

4470 print#4,tab(23);

4480 for e = 1 ton

4490 in = sqr(ar(d,e)*ar(d,e) + ai(d,e)*ai(d,e))

4500af = 1/sqr(ir*ir + ii*ii):in = af*in

4510 if in>1 then in = 1

4520 if irK.1 thenprint#4,"[1 spc]n;:goto4590

4530 if in<.2 thenprint#4/"I;:goto4590

4540 if in<.4 thenprint#4,B:D;:goto4590

4550 if in<,6 thenprint#4,"*n;:goto4590

4560 if in<.8 thenprint#4,chr$(166);:goto4590

4570 if in<.9 thenprint#4,"[RVS]*[OFF]";:goto4590

4580 if in< = 1 thenprint#4, "[RVS] [1 spc] [OFF]";

4590 if e = n then print#4,chr$(13);

4600 next e,d

4620print#4,"[1 spc]"

4630 print#4,"input real amplitude:";ir

4640 print#4,"input imaginary amplitude:";ii

4650 print#4, "phase angle: ";ip$

4660 print#4,"no. of phase quantization levels: ";pq

4670 if ip$ = Br" then 4700

4680 print#4,"transform normalized with.. .";nl

4690 print#4,"percent of transformed amp's

truncated.. .";pt

4700 return

January 1988: Volume 8, Issue O4 .

CIRCLES

for the C64

Anthony Bryant

Winnipeg, Manitoba

Every graphics programmer needs to draw circles. Fast assem

bly code circles are at best a challenge and at worse a headache.

It is an opportunity to use a variety of integer math algorithms,

testing one's latest GW (gee-whiz) super fast routines.

The program GIRCLES.BAS demonstrates two of the best known

circle-drawing algorithms. It uses HIRES by Gary Kiziak (Vol.5

Iss.6 of the Transactor, reprinted in Vol.8 Iss.2) for the underly

ing graphics primitives. It's in Basic, so it's slow, but also easier to

study, and then translate to assembly code.

Polygons

So called, because varying the increment INC (in degrees) yields

various polygons (try INC=45). The presence of sines and

cosines would seem a formidable barrier to translation.

A circle is symmetrical, such that knowing the value of one

point, it can. be reflected across the x-axis or across the y-axis.

That is, if we know (X,Y) is a point on the circumference, then so

is (X,-Y). The same is true for (-X,Y) and (-X,-Y). If you divide

the circle into quadrants then you only have to code an arc over

0 to 90 deg. These observations also apply to ellipses, (a circle is

really a special case of an ellipse) so that we can have a separate

x-radius and y-radius.

Potential

The second method is called a 'potential function' and is based

upon the realization that the screen cannot plot points except

with integers. Every point connects with its neighbor, so if you

are at one point on the circumference and trying to figure where

the next point is, you can only go in eight directions.

This algorithm is more easily converted to assembly, having as it

does only the need to multiply and divide. Note that the slowest

routine in Basic can potentially be the fastest in assembly!

Faster CIRCLES

POTENTIAL.PAL is a strict translation of this algorithm which

you can relocate where you like. The syntax is:

where:

1000 SYSCIRCLE.XC.YC.XR.YR

XC is the x axis centre

YC is the y axis centre

XR is the x axis radius

YR is the y axis radius

POLYGON.PAL is a translation of the sines and cosines al

gorithm reflected about the x and y axes. The syntax is:

1000 SYS CIRCLE,XC,YC,XR,YR [,SA,EA,INC]

where additionally:

SA is the start angle in degrees

EA is the end angle in degrees

INC is the increment in degrees

Note that the angle parameters are optional and may be omitted

in any order, just use commas as place holders.

Source Notes

While the 'potential function' method is fast it is the least flexible

and takes up 122 more bytes. The 'polygons routine' gains a lot

in speed by using a sine function lookup table. A table of 90

values for 90 degrees yields a resolution of 1 degree. This is

admittedly a compromise between table size, and useful resolu

tion. In use, its just as fast and more flexible. Not only do you get

circles and ellipses, but also arcs and polygons. And the main

loop, which calculates radius and theta, can be readily applied to

new graphics commands that require polar coordinates, such as

rotation.

The Transactor 37 January 1988: Volume 8, Issue O4

A graphic command like CIRCLE, depends so much on fast

underlying primitives, like PLOT and DRAW. 'HIRES' has a fast

line-DRAW algbrithm, but a faster point-PLOT could be coded to

make use of a Y-lookup table. Two hundred bytes (0-199 y

values) though, would be a lot of extra overhead, it's true!

Coding CIRCLES, gives one a chance to dust off the old

computer-math text books or to add new books to your library.

Something to play with on cold and rainy winter days.

CIRCLES.BAS: Using the polygon algorithm (170-290) fol

lowed by the potential algorithm (310-650). The generator for

Garry Kiziak's "HIRES" ML subroutines is not shown here, but

can be found in Volume 8 Issue 2 (or on Disk #19). It will also be

included on Transactor Disk #21 for this issue.

>

DM

LF

IN

KE

II

GB

LN

FO

EB

GN

CH

DA

IM

AG

LG

HO

DA

OJ

FA

CB

IL

NP

AK

HE

OP

PI

FC

EJ

BO

HM

JC

BE

EK

FL

JK

ED

ID

JM

10rem 'circles' in basic

20 ifpeek(49152)<>76thenload"hires",8,1

100:

110 hires = 12*4096: draw = hi + 3: plot = dr + 3

120 move = pi + 3: clscr = mo + 3: dmode = cl+3

130selpc = dm + 3: colour = se+3: box = co+3

140text=bo.+ 3: prnt=te+3: chset = pr + 3

150trap = ch + 3

160:

170 rem basic circles - polygons

180syshires,0,1,6

190 xc = 160: yc = 100: xr = 99: yr = 79

200 sa = 0: ea=360: inc = 5

210 z1 = sa*n/180: z2 = ea*ir/180: z3 = inc*7t/180

220x = xc + xr*cos(z1): y = yc + yr*sin(z1)

230 sys move,x,y

240 for i = z1 to z2 stepz3

250 x = xc + xr*cos(i): y=yc+yr*sin(i)

260 sysdraw.x.y

270 next

280 sys prnt, 16,12, "polygons"

290fort = 1 to 2000: next

300:

310 rem basic circles - potential

320syshires,0,1,6

330 xc = 160: yc = 100: xr = 99: yr = 79

340 phi°/o = O: yphi% = 0: xyphi% = 0: y°/o = O

: x°/o = xr

350f = 0:ifxr<yrthenf = 1

360 if f = 1 thenx°/o = yr: tm = xr: xr = yr: yr=tm '

370 rem start loop

380 yphi% = phi°/o + y% + yo/o + 1

390 xyphi°/o = yphio/o-x%-x% + 1

400 iff=Othenx2 = x°/o:x3 = y°/o

410 if f = 1 then y3 = x%: y2 = y°/o

420 t2% = x%: t1 %=t2°/o*yr/xr

430 iff = 0theny3=t1%

440 if f = 1 thenx2=t1%

450 t2% = y%:t1% = t2°/o*yr/xr

The Transactor 38

OE

KF

EF

EJ

AK

OK

GL

Gl

MM

IN

GO

OO

IL

IB

BH

PC

AO

MP

LF

Kl

460 iff=0theny2=t1%

470 iff=1 thenx3=t1%

480 :

490 sysplot,xc + x2,yc + y2

500 sysplot,xc-x2,yc + y2

510 sys plot,xc-x2,yc-y2

520 sys plot.xc + x2,yc-y2

530 :

540 sys plot.xc + x3,yc + y3

550 sys plot,xc-x3,yc + y3

560 sys plot,xc-x3,yc-y3

570 sys plot.xc + x3,yc-y3

580:

590 phi% = yphi°/o: y°/o = y% +1

600 if abs(xyphi°/o)<abs(yphi°/o) then

phi°/o = xyphi%: x°/o = x°/o-1

610 if x°/o>y°/o goto 380 'loop for more

620:

630 sys prnt, 16,12,"potential"

640fort=1 to 2000: next

650 end

Creates PRG file POTENTIAL.OBJ

FG

AC

BJ

NN

FM

CD

BH

OK

GG

CM

ED

DL

KF

II

GL

EL

LK

NL

CL

PK

IO

CK

JK

IE

PH

HP

NO

EA

JF

1000 rem creates module potential.obj

1010 for j = 1 to 545: read x

1020 ch = ch + x: next

1030 if ch<>57836 then prinfchecksum error"

:end

1040 print "data ok, now creating file': print

1050 restore

1060open8,8,8,"0:potential.obj,p,w"

1070 print#8,chr$(0)chr$(128);

1080 for j = 1 to 545: read x

1090 print#8,chr$(x);: next

1100 close 8

1110 print "prg file 'potential.obj' created...

1120 print "this generator no longer needed.

1130 rem

1140 data 99, 0, 79, 0, 70, 0, 55, 0

1150data162, 3,189, 43,192,157, 47,192

1160 data 202, 16,247, 96,162, 3,189, 43

1170 data 192,157, 0,128, 202, .16, 247, 96

1180 data 32,135,193, 32, 8,128, 32,135

1190data193, 32, 20,128,169, 0,133, 38

1200 data 133, 87,133, 88,133, 41,133, 42

1210data173, 0,128,133, 39,205, 2,128

1220data173, 1,128,133, 40,237, 3,128

1230 data 176, 34,169,255,133, 38,173, 2

1240 data 128,133, 39,170,173, 3,128,133

1250 data 40,168,173, 0,128,141, 2,128

1260data142, 0,128,173, 1,128,141, 3

1270 data 128,140, 1,128,166, 42,134, 90

1280 data 165, 41, 10, 38, 90, 56,101, 87

January 1988: Volume 8, Issue O4

NF

EC

AE

CH

OG

MM

MF

HH

KJ

AJ

OG

LD

AC

LF

FO

EN

HB

CO

OK

AB

HC

PG

FD

OE

CG

IF

LD

EE

KN

El

El

FN

FP

KB

NO

OA

KB

HN

ID

CK

JN

PL

FJ

EN

KL

KN

IA

LL

OE

OE

DE

AG

PH

MM

1290 data 133, 89,165, 90,101, 88,133, 90

1300 data 166, 40,134, 92,165, 39, 10, 38

1310data 92,133, 91, 24,165, 89,229, .91

1320 data 133, 91,165, 90,229, 92,133, 92

1330 data 165, 39,166, 40,164, 38, 48, 37

1340 data 141, 43,192,142, 44,192, 32,191

1350 data 129,141, 6,128,142, 7,128,165

1360 data 41,166, 42,141, 4,128,142, 5

1370data128, 32,191,129,141, 45,192,142

1380 data 46,192, 76,231,128,. 141, 6,128

1390 data 142, 7,128, 32, 191,129,141, 43

1400 data 192,142, 44,192,165, 41,166, 42

1410 data 141, 45,192,142, 46,192, 32,191

1420 data 129, 141, 4,128,142, 5,128, 32

1430 data 77,129,173, 4,128,174, 5,128

1440 data 141, 43,192,142, 44,192,173, 6

1450 data 128,174, 7,128,141, 45,192,142

1460 data 46,192, 32, 77,129,230, 41,208

1470 data 2,230, 42,165, 89,166, 90,133

1480 data 87,134, 88, 32,175,129,133, 36

1490data134, 37,165, 91,166, 92, 32,175

1500 data 129,133, 34,134, 35,165, 34,197

1510data 36,165, 35,229, 37,176, 16,165

1520 data 91,166, 92,133, 87,134, 88,165

1530 data 39,208, 2,198, 40,198, 39,165

1540 data 39,197, 41,165, 40,229, 42,144

1550 data 3, 76,108,128, 96,173, 47,192

1560 data 24,109, 43,192,141, 39,192, 72

1570 data 173, 48,192,109, 44,192,141, 40

1580 data 192, 72,173, 49,192, 24,109, 45

1590 data 192,141, 41,192,173, 50,192,109

1600 data 46,192,141, 42,192, 32,117,195

1610 data 173, 47, 192, 56, 237, 43, 192, 141

1620 data 39,192,173, 48,192,237, 44,192

1630 data 141, 40, 192, 32, 117, 195, 173, 49

1640 data 192, 56,237, 45,192,141, 41,192

1650 data 173, 50,192,237, 46,192,141, 42

1660data192, 32,117,195, 104,141, 40,192

1670 data 104,141, 39,192, 76,117,195, 16

1680 data 13, 24, 73,255,105, 1, 72,138

1690 data 73,255,105, 0,170,104, 96,133

1700 data 36,134, 37,169, 0,133, 34,133

1710 data 35,162, 17, 24,102, 35,102, 34

1720 data 102, 37,102, 36,144, 15, 24,173

1730data 2,128,101, 34,133, 34,173, 3

1740 data 128, 101, 35,133, 35,202,208,228

1750 data 173, 0,128, 13, 1,128,240, 46

1760 data 169, 0,133, 34,133, 35,162, 16

1770 data 38, 36, 38, 37, 38, 34, 38, 35

1780 data 56,165, 34,237, 0,128,168,165

1790 data 35,237, 1,128,144, 4,132, 34

1800 data 133, 35,202,208,227, 38, 36, 38

1810 data 37,165, 36,166, 37, 96, 76,138

1820 data 187

The Transactor 39

Demonstration using POTENTIAL.OBJ

FM

LF

OP

IN

KE

II

GB

LN

FO

EB

MG

CH

CD

PC

GE

OC

EP

JB

OG

HA

MB

JJ

GJ

MD

EE

CH

OL

NL

MG

HA

GO

MD

Gl

10 rem ml circles using potential algorithm

20 if peek(49152)<>76 then load"hires",8,1

30 if peek(32800)<>32 then load"potential.obj",8,1

100:

110 hires = 12*4096: draw = hi + 3: plot = dr + 3

120 move = pi+3: clscr=mo+3: dmode=cl+3

130 selpc = dm + 3: colour = se + 3: box = co + 3

140 text = bo + 3: prnt=te + 3: chset = pr+3

150trap = ch + 3

160:

170 circle = 32768 + 32 :rem not the same as

polygon

180syshires,0,1,6

190:

200 sys prnt, 17,1, "circles"

210:

220xc = 155:yc = 100:xr = 99:yr = 79

230 sys circle,xc,yc,xr,yr

240 sys prnt, 19,12,"1"

250:

260 xc = 100: yc = 120: xr = 90: yr = 50

270 sys circle,xc,yc,xr,yr

280 sys prnt, 10,9,"2"

290:

300 xc = 275: yc = 100: xr=30: yr = 80

310 sys circle,xc,yc,xr,yr

320sysprnt,34,12,"3"

330:

340xc = 52: yc = 45: xr=35: yr=30

350 sys circle,xc,yc,xr,yr

360sysprnt,6,19,"4"

370:

380 for j = 1 to 3000: next

390 end

Creates PRG file POLYGON.OBJ

JG

DB

BJ

AO

FM

CD

LK

OK

JF

CM

ED

BN

KF

II

1000 rem creates module polygon.obj

1010forj = 1 to423: readx

1020ch = ch + x:next

1030 if ch<>48466 then prinfchecksum error"

: end

1040 print "data ok, now creating file": print

1050 restore

1060 open8,8,8,"0:polygon.obj,p,w"

1070 print#8,chr$(0)chr$(128);

1080 for j = 1 to 423 : read x

1090 print#8,chr$(x);: next

1100 close 8

1110 print "prg file 'polygon.obj' created...

1120 print "this generator no longer needed.

1130 rem

January 1988: Volume 8, Issue O4

EE

LF

PL

GO

OG

IJ

ON

KO

ID

MN

EH

HH

IB

NA

NF

FK

OD

OF

PF

Jl

AF

AG

LA

IE

OP

AL

MB

LE

HL

DK

JM

IM

HN

AE

MA

ND

JB

KN

MP

FM

LO

CH

OE

HJ

FK

PD

CK

CA

KC

MG

GK

HM

LO

1140 data

1150 data

0, 0, 0, 0, 0,

5, 72, 32,121, 0,

1160 data 253,174, 201, 44, 240,

1170 data

1180 data

1190 data

124,193,104, 96,162,

192,157, 47,192,202,

162. 3.189. 43.192.

1200 data 202, 16, 247, 96, 32,

1210 data 28,128, 32,135,193,

1220 data 169, 0,162, 0, 32,

1230 data

1240 data

1250 data

4, 128, 142, 5, 128,

1, 32, 9,128,141,

7,128,169, 5, 32,

1260 data 208, 2,169, 1,141,

1270 data

1280 data

1290 data

1300 data

1310 data

1320 data

1330 data

1340 data

1350 data

1360 data

1370 data

1380 data

1390 data

1400 data

1410 data

1420 data

1430 data

1440 data

0,133, 91,133, 92,

174, 5,128,160,255,

90,176,250,202, 16,

133, 87,152, 74,144,

56,229, 87,133, 87,

106,133, 88,152, 41,

56,233, 3,133, 89,

174, 3,128, 32, 33,

32, 8,129, 24,109,

45,192,138,109, 50,

192,173, 0,128,174,

24,129,164, 89, 32,

109, 47,192,141, 43,

48,192,141, 44,192,

8, 32, 43,196,166,

96,198, 91, 32,113,

128, 24,109, 4,128,

144, 3,238, 5,128,

1450 data 205, 6,128,173, 5,

1460 data

1470 data

128,144, 2,198, 92,

16, 13, 24, 73,255,

1480 data 138, 73,255,105, 0,

1490 data

1500 data

1510 data

1520 data

1530 data

1540 data

1550 data

1560 data

1570 data

1580 data

1590 data

72,169, 90, 56,229,

44,164, 87,134, 21,

134, 34,133, 20,169,

162, 8, 70, 34,144,

20, 72,165, 35,101,

104, 70, 35,106,202,

34,166, 35, 96, 0,

18, 22, 27, 31, 36,

53, 58, 62, 66, 71,

88, 92, 96,100,104,

120,124,128,132,136,

1600 data 150,154,158,161,165,

1610 data178,181,184,187,190,

1620 data 202, 204, 207, 210, 212,

1630 data 222, 224, 226, 228, 230,

1640 data 237, 239, 241, 242, 243,

1650 data 248, 249, 250, 251, 252,

1660 data 255, 255, 255, 255, 255,

The Transactor

0,104, 1

240, 11, 32

4,104, 76

3,189, 43

16,247, 96

157, 0, 128

135,193, 32

32, 40,128

9,128,141

169,104,162

6,128, 142

9,128,170

8,128, 169

173, 4,128

200, 56,233

247,105, 90

7,169, 90

152, 74, 74

3,240, 3

173, 2,128

129,164, 88

49,192, 141

192,141, 46

1,128, 32

8,129, 24

192,138, 109

166, 91,240

92,240, 6

194,173, 8

141, 4,128

173, 4,128

128,237, 7

76,109,128

105, 1, 72

170,104, 96

87,168,104

190, 76,129

0,133, 35

11, 24,101

21,133, 35

208,235,133

4, 9, 13

40, 44, 49

75, 79, 83

108,112,116

139,143, 147

168,171,175

193,196,199

215,217,219

232,234, 236

245, 246, 247

253, 254, 254

255, 255

Demonstration using POLYGON.OBJ. Notice that most of

this demo is also in the previous demo. Watch the CIRCLE

address in line 170 - it is not the same for both demos. The first

page c)f this article shows the first two sample screens of this

program.

p..

JO

LF

AA

IN

KE

II

GB

LN

FO

EB

MN

CH

CD

OC

CN

LJ

KF

FP

HJ

DM

Cl

KN

CM

LO

KK

EB

ME

DB

OF

MN

EM

CB

PK

EA

NJ

KD

PC

MC

CN

CG

IA

EF

DF

Kl

NJ

MH

CN

LP

CE

4O

10 rem ml circles, polygons, arcs

20 if peek(49152)<>76 then load"hires",8,1

30 if peek(32820)<>32 then load"polygon.obj",8,1

100:

110hires = 12*4096:draw = hi + 3:plot=dr + 3.

120 move = pi + 3: clscr = mo + 3: dmode = cl + 3

130 selpc = dm + 3: colour = se + 3: box - co + 3

140 text = bo + 3: prnt=te + 3: chset=pr + 3

150trap = ch + 3

160:

170 circle = 32768 + 52 :rem not the same as

potential

180syshires,0,1,6

190:

200 sys prnt, 16,1, "circles"

210 sa=0: ea=360: inc=5

220 gosub 370

230:

240 sys prnt, 16,1 /polygons"

250 sa = 0: ea = 360: inc = 45

260 gosub 370

270:

280sysprnt,18,1,"arps"

290 sa = 90: ea=270: inc = 5

300 gosub 370

310:

320 sys prnt, 16,1, "more arcs"

330sa = 0:ea=180: inc = 5

340 gosub 370

350 end

360:

370 xc = 155: yc = 100: xr = 99: yr = 79

380 sys circle,xc,yc,xr,yr,sa,ea,inc

390 sys prnt, 19,12, "1"

400:

410xc = 100:yc = 120:xr = 90:yr = 50

420 sys circle,xc,yc,xr,yr,sa,ea,inc

430syspmt,10,9,"2"

440:

450 xc = 275: yc= 100: xr=30: yr = 80

460 sys circle,xc,yc,xr,yr,sa,ea,inc

470syspmt,34,12,"3"

480:

490 xc = 52: yc = 45: xr = 35: yr = 30

500 sys circle,xc,yc,xr,yr,sa,ea,inc

510sysprnt,6,19,"4"

520:

530 for j = 1 to 3000: next

540 sys clscr, 1,6

550 return

January 1988: Volume 8, Issue O4

Circles: POTENTIAL.PAL

MG

PG

JE

LP

CA

MA

GN

KN

MP

AG

OB

GJ

GF

Kl

GG

AH

BL

PM

10

IK

PB

BK

IJ

AM

Fl

PH

CJ

LP

CH

Cl

BK

MG

JK

EC

KA

ID

IB

FC

FO

PO

KG

JH

HH

KB

El

NN

LN

GC

KL

EB

GN

KG

CP

NC

HG

GH

KA

OB

PG

ND

MO

BF

FK

FM

HE

PE

CD

BA

CP

Ml

LH

KG

ON

EG

NC

Jl

BH

CC

DN

PN

Cl

AB

PL

HI

KE

KB

DG

100 rem 'hires' circle - potential

110 rem source file by anthony bryant

120sys700

130 .opt n

140;

150;

160; "hires

170x1

180 y1

190x2

200 y2

210 xc

220 yc

230 hm

240;

250;

" variables by g.kiziak

= $cO27

= $cO29

= $cO2b

= $cO2d

= $cO2f

= $cO31

= $cO35

;current position

;new position

;circ centre (also box)

;hires/multi flag

260; "hires" internal subroutines

270 igeti

280 ieget

290 move

300 imov

310 ipit

320 idrw

330;

= $c17c

= $c187

= $c26e

= $c271

= $c375

= $c42b

340 ;zero page labels

35011

36012

370 flag

380 x

390 y

400 phi

410 phiy

420 phixy

430;

= $22

= $24

= $26

= $27

= $29

= $57

= $59

= $5b

440* = $8000

450;

460 xr

470 yr

480x3

490 y3

500;

.worO

.worO

.worO

.wor 0

; internal get integer

;interhal eat & get x,y
;'move' rtn

internal moveto x1,y1

; internal plot

internal drawto

;545 bytes

;x radius

;y radius

; potential y

; potential x

510 .-subroutine moveto xc.yc

520 move

530

540

550

560

570

580;

Idx #3

Ida x2,x

sta xc.x

dex

bpl move+2

rts

590 ;subroutine moveto xr.yr

600 movr

610

620

630

640

650

660;

Idx #3

Ida x2,x

sta xr.x

dex

bpl movr+2

rts

670 ;sys circle.xc.yc.xr.yr

680 circle

690'
700

710

720

730

740

750

760

770

780

790;

= *

jsr ieget

jsr move

jsr ieget

jsr movr

Ida #0

sta flag

sta phi

sta phi +1

sta y

sta y+1

800 cases Ida xr

810

820

830

840

850

860

870 swap

880

890

900

910

920

930

940

950

960

sta x

empyr

Ida xr+1

sta x + 1

sbc yr+1

bes loop

Ida #$ff

sta flag

Ida yr

sta x

tax

Ida yr+1

sta x + 1

tay

Ida xr

sta yr

The Transactor

;moveto xc.yc

;moveto xr.yr

;x=xr

; branch if xr>= yr

;x = yr

;and swap

EP

KP

DE

MK

IG

EL

KA

ND

LN

DA

KB

JL

HF

BB

JO

OE

LD

HH

LN

IE

EJ

IL

AM

GC

BE

AL

IO

LG

FL

NO

MG

AM

NA

JJ

KL

Kl

CL

CC

LK

DN

LB

IG

CN

KP

IG

PO

HB

BL

DB

HD

EK

KC

CF

NJ

KO

DF

LH

KO

CH

KJ

IJ

NM

MF

El

MK

EN

Fl

NK

FN

NP

EL

GA

LH

CN

DA

AO

HL

NC

MG

MD

IE

AH

KN

HC

HF

IH

AK

GK

LC

970

980

990

1000

1010;

1020 loop

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270;

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450altn

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570;

1580dopl

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680;

1690

1700

1710

1720J1

1730

1740

1750

1760abs1

1770

1780

1790

1800

1810 abs2

1820

1830

1840;

1850doif

stx xr ;xr with yr

Ida xr + 1

sta yr+1

sty

=

Idx

stx

Ida

asl

rol

sec

adc

sta-

Ida

adc

sta

Idx

stx

Ida

asl

rol

sta

clc

Ida

sbc

sta

Ida

sbc

sta

Ida

Idx

Idy

bmi

sta

stx

jsr

sta

stx

Ida

Idx

sta

stx

jsr

sta

stx

jmp

sta

stx

jsr

sta

stx

Ida

Idx

sta

stx

jsr

sta

stx

t jsr

Ida

Idx

sta

stx

Ida

Idx

sta

stx

jsr

inc

bne

inc

Ida

Idx

sta

stx

jsr

sta

stx

Ida

Idx

jsr

sta

stx

Ida

xr + 1

♦ ;main loop start

y + 1

phiy+1

y
;phiy=phi+y + y+1

phiy +1

phi

phiy

phiy+1

phi + 1

phiy+1

x + 1

phixy +1

X

;phixy = phiy-x-x + 1

phixy+1

phixy

phiy

phixy

phixy

phiy + 1

phixy+1

phixy+1

X

x + 1

flag

altn

x2

x2 + 1

scale

y3
y3 + 1

y
y + 1

x3

x3 + 1

scale

y2

y2 + 1

doplt

y3
y3 + 1

scale

x2

x2 + 1

y

y + 1

y2

y2 + 1

scale

x3

x3 + 1

plot4

x3

x3 + 1

x2

x2 + 1

y3
y3 + 1

y2

y2 + 1

plot4

y

J1
y+1 ;y = y + 1

phiy

phiy+1 ;phi = phiy

phi

phi+1

absv ;take abs(phiy)

t2

t2 + 1

phixy

phixy+1

absv ;take abs(phixy)

t1

t1+1

t1 ;if abs(phixy)

41

CL

OC

DE

NL

FJ

FJ

BO

HG

EF

OM

KE

ME

CB

EE

HH

CJ

PM

AM

BL

IH

OC

IF

GG

AK

KE

OJ

EM

KF

ED

II

MO

BM

KP

FK

JP

LK

Fl

JN

CL

AB

FF

CB.

IE

KP

CP

IC

CA

BG

FK

DG

JJ

LE

DE

JH

CF

CP

GJ

GA

10

KG

CB

GM

OL

AD

MG

NK

EF

GJ

EJ

DN

LM

CJ

PM

EJ

DP

LJ

KJ

CM

LD

GL

Cl

MF

FB

FG

BM

DL

GN

DA

KC

1860

1870

1880

1890

1900 then

1910

1920

1930

1940

1950

1960

1970J2

1980 else

1990

2000

2010

2020

2030

2040 stop

2050;

emp t2 ;< abs(phiy)

Ida t1+1

sbc t2 + 1 ;then...

bes else ;else...

Ida phixy

Idx phixy +1

sta phi

stx phi + 1 ;phi = phixy

Ida x

bne j2

dec x+1

dec x ;x = x-1

Ida x ;ifx>=y

emp y ;then loop

Ida x+1

sbc y+1

bee stop ;elsestop

jmp loop

rts

2060 subroutine reflect points & plot

2070plot4

2080

2090

2100

2110

2120

2130
2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

.2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460;

= *

Ida xc

clc

adc x2

sta x1

pha

Ida xc+1

adc x2 + 1

sta x1 +1

pha

Ida yc

clc

adc y2

sta y1

Ida yc+1

adc y2 + 1

sta y1+1

jsr ipit

Ida xc

sec

sbc x2

sta x1

Ida xc+1

sbc x2 + 1

sta x1+1

jsr ipit

Ida yc

sec

sbc y2

sta y1

Ida yc+1

sbc y2 + 1

sta y1+1

jsr ipit

pla

sta x1 +1

pla

sta xT

jmp ipit

2470 subroutine absolute value

2480 absv

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580 abok

2590;

bpl abok

clc

eor #$ff

adc #1

pha

txa

eor #$ff

adc #0

tax

pla

rts

2600 subroutine to scale offset

2610 scale

2620

2630

2640

2650

2660

2670

2680

2690 mullp

2700

2710

2720

2730

2740

= * ;t1=t2*yr/xr

sta t2

stx t2 + 1

Ida #0

sta t1

sta t1 +1

Idx #17

clc ;16 bit integer math

ror t1+1

ror t1

ror t2 + 1

ror t2

bec deeni

clc

January 1988: Volume 8, Issue O4

DC

IN

OC

DA

IL

OA

FE

BO

CH

EN

IF

HB

CJ

OF

JA

HL

JJ

PN

LK

NP

EK

EA

JG

El

EO

CB

OH

KO

DC

KL

DG

PC

OB

GE

OP

GH

MJ

MA

2750

2760

2770

2780

2790

2800

Ida

adc

sta

Ida

adc

sta

2810decn1dex

2820

2830

2840

2850

2860

2870

2880

2890

2900 divlp

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

bne

Ida

ora

beq

Ida

sta

sta

Idx

rol

rol

rol

rol

sec

Ida

sbc

tay

Ida

sbc

bcc

sty

sta

3030 decn2dex

3040

3050

3060

3070

3080

3090

3100 error

3110;

3120 .end

bne

rol

rol

Ida

Idx

rts

jmp

yr

t1

t1

yr+1

t1+1

t1+1

mullp

xr

xr + 1

error

#0

t1

t1+1

#16-

t2

t2 + 1

t1

t1+1

t1

xr

t1+1

xr+1

decn2

t1

t1+1

divlp

t2

12 + 1

t2

t2 + 1

$bb8a

Circles: POLYGON.PAL

CF

PG

JE

LP

CA

MA

GN

KN

MP

AG

OB

GJ

GF

Kl

GG

AH

BL

PM

10

IK

PB

BK

IJ

AM

Fl

FG

AF

KM

CP

IM

GA

GO

DP

BM

ME

KK

CE

HD

JP

BK

CP

NG

LJ

CD

HI

CN

HD

CJ

100rem 'hires'

;16 bit integer math

;'division by zero"

circle - polygon

110 rem source file by anthony bryant

120sys700

130 .opt n

140;

150;

160; "hires"

170x1

180y1.

190x2

200 y2

210xc

220 yc

230 hm

240;

250;

variables by g.kiziak •

=

=

=

=

=

=

=

$cO27

$cO29

$cO2b

$cO2d

$cO2f

$cO31

$cO35

;current position

;new position

;circ centre (also box)

;hires/multi flag

260; "hires" internal subroutines

270 igeti

280 ieget

290 move

300 imov

310iplt

320 idrw

330;

=

=

=

=

=

=

$c17c

$c187

$c26e

$c27t

$c375

$c42b

340 ;zero page labels

350 theta

.360 ysign

370 xsign

380;

=

=

=

390* = $8000

400;

410 xr

420 yr

430 arcst

440 arcend

450 delta

460;

$57

$58

$59

.worO

.worO

.worO

.wor 360

.byt 5

;internal get integer

; internal eat & get x,y

;'move' rtn

internal moveto x1 ,y1

[internal plot

; internal drawto

;the angle (0-90deg)

dependent on quadrant

i " "

;423 bytes

;x radius

;y radius

;arc start (deg)

;arc end angl (deg)

;polygonincr(deg)

470;subroutine get angle (deg) integer

480;accuracy to 1 deg (hex 5a=90deg)

490 getan

500

510

520

530

540

550

560

pha

jsr

beq

jsr

$0079

nomore

$aefd

cmp#"."

beq

pla

jmp

570 nomore pla

The Transactor

nomore

igeti

;save ace

;eat\"

;another',"!

;throw away ace

;get integer to .a & .x

KB

EM

DN

BN

EH

ON

HD

FD

Al

EB

OG

AD

EM

ME

HI

BM

AN

EG

LH

JM

HJ

GE

LK

PP

PB

LP

HB

GE

DJ

IP

LN

NC

IN

KE

IP

EF

HH

MK

FH

MG

PL

IN

FO

JL

FP

DC

LH

KF

FK

EL

DF

JP

BP

OL

DA

BC

NE

MF

OP

DB

IF

AJ

NM

DJ

NJ

Cl

CM

JJ

PH

FB

Bl

LA

MH

GK

Nl

FL

Fl

CF

PE

AN

NJ

BN

MC

NH

BL

JB

EA

MC

MP

JM

580

590;

rts ;resultin.a&.x

600 ;subroutine moveto xc.yc

610 move

620

630

640

650

660

670;

Idx #3

Ida x2,x

sta xc.x

dex

bpl move+2

rts

680 subroutine moveto xr.yr

690 movr

700

710

720

730

740

750;

Idx #3

Ida x2,x

sta xr.x

dex

bpl movr+2

rts

760 ;sys circle.xcyc.xr.yrl.sa.eajnc]

770 circle

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970 crc1

980

990

1000

1010 loop

1020

1030

= *

jsr ieget

jsr move

jsr ieget

jsr movr

Ida #0

Idx #0

jsr getan

sta arcst

stx arcst+1

Ida #<360

Idx #>360

jsr getan

sta arcend

;moveto xc.yc

;moveto xr.yr

; default arcst

;get sa (degrees)

; default arcend

;get ea (degrees)

stx arcend +1

Ida #5

jsr getan

tax

bne crd

Ida #1

sta delta

Ida #0

sta $5b

sta $5c

Ida arcst

Idx arcst+1

Idy #$ff

;default delta

;get inc (degrees)

;minimum

1040 ;find quadrant and angle theta

1050lp2

1060

1070

1080

1090

1100

1110

1120

1130

1140 Isr

1150

1160 '

1170

1180

1190

1200lp3

1210 Isr

1220 Isr

1230ror

1240

1250

1260

1270

1280

1290

1300lp4

iny

sec

sbc #$5a

bes Ip2

dex

bpl Ip2

adc #$5a

sta theta

tya

bcc Ip3

Ida #$5a

sec

sbc theta

sta theta

tya

sta ysign

tya

and #3

beq Ip4

sec

sbc #3

sta xsign

1310;doyr*sin(theta)

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

Ida yr

Idx yr + 1

jsr calcsin

Idy ysign

jsr absv

clc

adc yc

sta y2

txa

adc yc+1

sta y2 +1

1430 ;do xr*cos(theta)

1440

1450

1460

1470

Ida xr

Idx xr+1

jsr calccos

Idy xsign

42

;.y = quadn(0-3)

;(0-90deg)

;check y sign

GM

IE

EB

IE

EK

EP

IC

GC

AJ

GH

HE

LF

MC

EA

IP

CE

ON

KB

AH

AH

NE

KL

PP

LE

KO

PK

LN

PB

GF

KA

CA

EH

AL

BP

IJ

KN

IN

HB

PA

GN

NP

IN

DF

PP

GP

LA

IB

NG

AD

GH

NK

BD

FM

GL

AA

JN

PL

AN

OK

EO

GJ

GK

AL

HM

HM

JB

EO

MA

EC

BD

HH

HA

NH

DF

CC

KO

ON

OA

LF

ME

NB

ML

GA

BM

IF

MB

GK

GP

OK

OB

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610lp5

1620

1630 Ip6

1640

1650

1660

1670

1680

1690Ip7

1700

1710

1720

1730

1740

1750lp8

1760;

jsr absv ;check x sign

clc

adc xc

sta x2

txa

adc xc+1

sta x2 + 1

Idx $5b

beq Ip5 ;flag a moveto

jsr idrw ; drawto

Idx $5c

beq Ip6

rts

dec $5b ;cancelflag

jsr imov ;moveto

Ida delta

clc

adc arcst

sta arcst

bcc Ip7

inc arcst+1

Ida arcst

emp arcend

Ida arcst+1

sbc arcend+ 1

bcc Ip8

dec $5c ;cancelflag

jmp loop

1770 subroutine absolute value

1780 absv

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880abok

1890;

bpl abok

clc

eor «$ff

adc #1

pha

txa

eor #$ff

adc #0

tax

pla

rts ;resultin.a&.x

1900 subroutine calculate sine func —

1910 calccos pha

1920

1930

1940

1950

1960

1970

1980 calcsin

1990

2000

2010calc

2020

2030

2040

2050

2060 cal2

2070

2080 .

2090

2100

2110

2120

2130

2140

2150cal3

2160 ror

2170

2180

2190

2200

2210

2220;

2230 sine

Ida #$5a

sec

sbc theta ;(90-theta)

tay

pla

.byt$2c

Idy theta

stx $15 ;hibyt

Idx sine.y

stx $22

sta $14 ;lobyt

Ida #0

sta $23

Idx #8 ;16bit*fract

Isr $22

bcc cal3

clc

adc $14

pha

Ida $23

adc $15

sta $23

pla

Isr $23

dex

bne cal2

sta $22 ;reslo in .a

Idx $23

rts ;reshi in .x

= * ;table of sines (0-90 deg)

2240.byt $00,$04)$09,$0d,$12,$16,$1b,$1f

2250 .byt$24l$28,$2c,$31,$35,$3a,$3e,$42

2260 .byt$47,$4b,$4f, $53,$58,$5c,$60,$64

2270 .byt $68,$6c,$70,$74,$78t$7c,$80,$84

2280 .byt$88,$8b,$8f, $93,$96,$9a,$9e,$a1

2290 .byt$a5,$a8,$ab,$af, $b2,$b5,$b8,$bb

2300 .byt$be,$c1I$c4l$c7,$ca,$cc,$cf, $d2

2310 .byt $d41$d7)$d91$db)$de1$e0,$e2,$e4

2320 .byt $e6,$e8,$ea,$ec,$ed)$efI $f1, $f2

2330.byt $f3,

2340 .byt $fc,

2350 .byt $ff,

2360;

2370.end

$f5, $f6, $f7, $f8, $f9, $fa, $fb

$fd, $fe, $fe, $ff, $ff, $ff, $ff

$ff, $ff

January 1988: Volume 8, Issue O4

Inside C128 CP/M:

Supporting More

Foreign Disk Formats

Mike Garamszeghy

Toronto, Ontario

.. .you can easily add support for virtually any CP/M disk format...

One ofthe nicest features of C-128 CP/M mode is its ability to read

and write "foreign " disk formats when used with a 1571 disk drive.

This ability is built right into the operating system, so no special user

programming is required to access this feature. In addition, with a

bit of knowledge of disk formats, you can easily add support for

virtually any CP/M disk format. You can even create custom

formats ofyour own to keep your data away from prying eyes. The

secret lies in knowing how the CP/M operating system recognizes

different formats.

Disk Organization

In order to understand CP/M disk operations, a brief discussion of

disk organization is in order. The user area of a CP/M disk is

typically divided up into a number of files. Disk space for files is

doled out by the operating system in lumps called "blocks" or

"allocation units" of a fixed size, typically 1024 bytes for single sided

disks or 2048 bytes for double sided disks. Even if a file contains

only 1 byte, an entire allocation unit will be required. Unused space

in an allocation unit cannot be used by other files, but can be used

by the file to which it is assigned if more space is required for it. (To

complicate matters, the allocation unit size does not depend on the

physical disk sector size, but fortunately none of this is of concern to

the casual user).

Each allocation unit is further divided into 128-byte chunks called

"recprds". The record is the smallest directly addressable part of a

file. As a file grows (such as by editing a text file), records are added

as required. If all space currently allocated to a file is taken up,

another allocation unit is allocated. (8 records can fit into a 1024

byte block, or 16 in a 2048 byte block size). A single directory entry

has space for 16 allocation units; if more are required extra directory

entries or "extents" are created for the file, each taking up 32 bytes

of space in the directory area. The directory entry keeps track of the

current record count so that space can be added or deleted as

required.

Each allocation unit is composed of one or more physical disk

sectors. The translation between logical allocation units and physi

cal sectors is handled by the CP/M system using a "translation

table" called the DISK PARAMETER TABLE. This contains the data

required to convert logical records and allocation units into physical

locations on the disk and is completely transparent to user pro

grams, which see everything in terms of standard allocation units

and records. The different physical disk formats obviously require

different values for the translation parameters. Once these values

are set for a given disk format, the user need not be concerned with

what the physical disk format is because all disk operations will be

adjusted automatically.

The Disk Parameter Table

Information on the disk formats is stored in an area of the CP/M

BIOS (or Basic Input/Output System) known as the "DISK PARAME

TER TABLE" or DPT. The absolute location of the DPT depends on

which version of the CP/M operating system is being used. Three

versions are currently in use on the C-128, differentiated by the date

displayed on the CP/M boot up screen. For the "1 Aug 85" version,

the DPT is located from $d876 to $da75 in BANK 0. For the "6 Dec

85" and "8 Dec 85" versions, it is located at $d6bd to $d8bc. Table 1

is a hex dump of the DPT. It is difficult to examine this from CP/M

mode because it resides in BANK 0, while most programs which

allow you to examine memory in CP/M mode work in BANK 1. (In

CP/M, BANK 0 is used for the operating system while BANK 1 is

generally the user work space or "TRANSIENT PROGRAM AREA"

(TPA)). You can examine it easily though by using the C-128's

MONITOR command in the following way: Boot up CP/M. When

you get the CP/M prompt ("A>"), remove the CP/M boot disk then

press the <CONTROL> - <ENTER> key combination. (The <EN-

TER> key is the one at the extreme right of the keyboard in the

numeric keypad. It is NOT the same as the <RETURN> key on the

main keyboard). This performs a soft reset and gets you back into C-

128 BASIC 7.0 mode. From there you can use MONITOR'S M

command to display the memory.

As you can see, each entry is 32 bytes long and only 9 of the 16

spaces are actually used. The 7 unused spots at the end of the table

can be identified by the word "None" in the disk name field. These

spots (or any of the other spots, if you do not wish to keep the disk

format that it represents) can be filled with custom values.

Each of the bytes in a disk parameter table entry has a specific

meaning. These are outlined below. Many of the parameters are

repeated in a number of spots in each DPT entry. This is for

convenience sake as different parts of the CP/M operating system

use the information in different ways. For clarity, the bytes in each

entry are numbered from 0 to 31. Bits are numbered 7 6 54 3 210,

with 7 being the high bit and 0 being the low bit.

Byte 0 is the root to the "problem" of recognizing a foreign disk

format. It can be called a "media descriptor byte" because it is used

to identify the physical format of the disk. It is this byte which gets

compared when a disk is first read. If two or more entries in the DPT

have identical values here, the disk format selection box will appear

The Transactor 43 January 1988: Volume 8, Issue O4

on the bottom of the screen asking you to choose the correct format.

Although it is perhaps the most important, this byte is also very

poorly documented (until now). (The only vague reference to it in C-

128 documentation is on page 707 of the C-128 Programmers

Reference Guide where it is given in cryptic terms such as

"S256*2+(16*2-8)+l)'\ Each of the bits in the byte serves a

specific function:

Bit 7 is flag which indicates whether or not to skip track 0 of the disk

during an initialization. If it is set to 0 (the normal value), it means

that track 0 of the disk is the same as the rest of the disk. If it is set to

1, track 0 has a different format from the rest of the disk. This may

seem strange, but many MFM disks (such as Epson QX-10) are

formatted differently, typically in single density, on track 0 than on

the other tracks to maintain compatibility with much older disk

systems.

Bits 5 and 6 indicate the sector size as follows:

5 6 Sector size

0 0= 128 bytes

0 1 = 256

1 0 =512

11= 1024

Bits 1 to 4 give an indication of the number of sectors per track. It is

actually the binary representation of:

(#sectors/track) - 4

Some typical values are:

4

0

0

0

0

1

1

3

0

1

1

1

1

1

2

0

0

0

1

0

1

1

1

0

1

0

0

0

sectors/track

5

8

9

10

16

18

= (l)+4

= (4)+4

= (4+l)+4

= (4 + 2)+4

= (8+4)+4

= (8+4+2)+4

Finally, bit 0 gives the minimum sector number on side 0. If the

value is 0, then sectors are numbered starting at 0. If bit 0 is set to 1, '

the sectors start at 1.

Byte 1 is called the Disk Type Byte. It gives additional data on the

logical structure of a disk. This byte is described at the bottom of

page 717 of the Commodore 128 Programmers Reference Guide.

The bits have the following meaning:

Bit 7 describes the disk type: 1 = MFM or 0 = GCR. This is always

set to 1 for foreign disk types.

Bit 6 gives tells how the sectors on side 2 of a double sided disk are

numbered:

0 = both sides numbered same

1 = side 2 continues from side 1

For single sided disks, the bit should be set to 0. IBM-8 is an example

of bit value set to 0. The sectors on both sides are numbered from 1

to 8. Kaypro IV is an example of the second side continuing from the

first. The sectors on the first side are numbered from 0 to 9 while the

sectors on the second side are numbered from 10 to 19.

Bits 4 and 5 give the sector size, as outlined above for bits 5 and 6 of

byte 0.

Bits 1 to 3 determine the order in which a double sided disk is filled.

For a single sided disk, the bits should all be set to 0.

3 2 1

0 0 0 fill track by track, first side 0 then side 1 of same track then

next track

0 0 1 fill track by track, even track #'s on side 0, odd on side 1

0 1 0 fill all side 0 then side 1

Bit 0 is a repeat of byte 0, bit 0 as described above.

Bytes 2 and 3 are not normally used. They represent a pointer to a

sector skew table. The MFM formats supported by C-128 CP/M do

not use a software skew. Sectors are filled in numerical order on a

given track such as 1,2,3, etc. In this case, these bytes are set to 0. If

a skew table were used, bytes 2 and 3 would point to a table

containing the order in which the sectors are filled such as, 1,4,7,2,

etc. This table is often located in unused entries in the disk

parameter table, but can be located anywhere in BANK 0 RAM. It is

difficult to set up without a detailed knowledge of both the disk

organization and a CP/M memory map for the specific CP/M

version that you are using. Fortunately, it is not normally used

except for some really weird disk formats such as OSBORNE

OSMOSIS and Cromemco.

Bytes 4 to 20 represent a standard CP/M + DPT entry as described

on page 685 of the C-128 Programmers Reference Guide.

Bytes 4 and 5 are referred to as the SPT. This is the total number of

128 byte records per logical track. It is a 16 bit word coded in low

byte/high byte format. The size of the logical track depends on both

the physical format of the disk and the order in which it is filled. For

example, a single sided disk with 8 sectors per track, each 512

bytes, would have 32 records per track. A double sided disk of the

same physical format may have either 32 (if the logical track

includes only one side of the disk) or 64 (if the logical track includes

both sides of the disk) records per logical track, depending on how

the disk was filled (see bits 1 to 3 of the disk type byte).

Byte 6 is called the BSH or block shift factor. It is equivalent to the

logarithm in base 2 of the number of 128 byte records in a disk

allocation unit or LOG 2 (BLS/128). Values are given below.

Byte 7 is the BLM or block mask. It is equal to 1 less than the

number of 128 byte records in an allocation unit or (BLS/128) - 1.

Values for BSH and BLM are:

BLS (Allocation unit size) BSH BLM

1024

2048

4096*

8192*

16384*

3

4

5

6

7

7

15

31

63

127

Note: Block sizes marked with * are not normally used in floppy

The Transactor January 1988: Volume 8, Issue O4

disk systems. For disks with capacity of greater than 256 k bytes, a disk format which uses all of the disk, set both bytes to 0.

BLS of at least 2048 must be used.

Byte 19 is the physical sector shift factor or PSH. It is equal to:

The allocation unit size (BLS) is not a direct entry in the DPT but is

calculated by the operating system from the BSH and BLM values. LOG 2([sector-size] /128).

Byte 8 is the extent mask or EXM. This is equal to the maximum

number of 16 k file extents that can be coded into a single directory

entry. The maximum values are given below. Values of less than the

maximum can be used, but this wastes directory space as some of

the available spots in the file allocation table will not be used. A

value of 0 must be used for disk systems which run under very, old

versions of CP/M. (For example, if you want to support a disk format

that runs on a CP/M 1.4 machine.)

BLS

1024

2048

4096

8192

16384

Typical

DSM<256

0

1

3

7

15

EXM

DSM > 255

_

0

1

3

7

Bytes 9 and 10 are a 16 bit word (DSM) representing the total

number of allocation units on the disk including the directory area,

but excluding reserved system tracks (if any). The bytes are in low

byte/high byte format. DSM can be calculated from:

(net # tracks) * (# sectors/track) /'(# sectors/allocation unit)

where (net# tracks) is the total number of tracks on the disk minus

the reserved system tracks.

Bytes 11 and 12 (DRM) are the total number of directory entries on

the disk minus 1. For single sided floppy disks, the number of

directory entries is usually 64 and for double sided disks is 128.

Therefore, byte 11 is usually either $3F (63) or $7F (127) while byte

12 is normally 0.

Bytes 13 and 14 (called AL0 and ALl) give the number of blocks

which are reserved for directory use. This is an inverted 16 bit

number of the following format:

<— Byte 13 —X— Byte 14.—>

Bit 7654321076543210

Position 0123456789ABCDEF

Each position which is set to 1 (starting at position 0) indicates one

allocation unit reserved for a directory block. Typically, this results

in bits 0 and 1 being set, giving a value of $C0 for byte 13 and 0 for

byte 14.

Bytes 15 and 16 are called the directory checksum vector, CKS. The

16 bit value is equal to (DRM + l)/4. For 64 directory entries, byte

15 has a value of $10 (16), while for 128 directory entries it has a

value of $20 (32). In both cases, byte 16 has a value of 0.

Bytes 17 and 18 give the track number of the first directory sector

(OFF). This is used for disk partitioning and to skip reserved system

tracks at the beginning of the disk. Byte 17 is typically in the range

of 1 to 4, while byte 18 is normally 0. To create your own custom

Values are given below.

Byte 20 is the physical sector mask or PHM. It is equal to:

[sector-size] /128-1

Physical sector size PSH PHM

128 bytes

256 bytes

512 bytes

1024 bytes

0

1

■2

3

0

1

3

7

Bytes 21 to 31 are not part of a standard CP/M disk parameter table

but are used by the C-l 28 version of CP/M. Byte21 is the number of

sectors on a physical track. Bytes 22 to 31 are an ASCII text string

describing the disk name. This is the name which pops,up in the

disk selection box at the bottom of the screen when the system

cannot decide what the format is. Otherwise, it is not used.

Customizing your DPT

What purpose does all of this detailed technical info $erve, you ask?

Well by playing with the values, you can get your C-l 28 CP/M to

read and write the disks from your uncle Fred's ancient CP/M

machine or you can create your own CP/M disk formats that no one

else can read to protect your data. (Dear Diary....)

The easiest way to change the DPT is by editing the CPM+ .SYS file

with a debugger utility such as SID.COM to load the CPM + .SYS file

into memory, then change the individual bytes, and save the

modified file. Each time you boot up CP/M in the future, you would

have automatic support for these other disk formats. This is identical

to the method described in the article "CP/M and the 1581 Disk

Drive" in Transactor vol 8, Issue 3 (Nov 87). You could also change

the parameters in RAM once the computer has been booted, but

remember they are stored in BANK 0 RAM and will require special

programming in a common area to do this. Try high RAM location

starting at $feOO for the location of such a program. This area is

normally used as a disk buffer and is free for non-disk I/O programs

which need common BANK 0/BANK 1 memory. Changing the

parameters in RAM is only a temporary measure, while changing

the CPM + .SYS file is permanent. Take your pick.

The locations of the seven unused disk parameter table entries in

the CPM + .SYS file when using SID are as follows:

1 Aug 85 version 6 Dec

$1976

$1996

$19b6

$19d6

$lal6

$la36

$la56

: or 8 Dec i

$lefd

$lfld

$lf7d

$H9d

• $lfbd

$lfdd

$205d

The Transactor 45 January 1988: Volume 8, Issue O4

The end of file (EOF) for the Aug version is $5d00, while for the Dec Table 2 contains the values for several disk formats which I have

versions, it is $6400. These numbers will be needed later when re- added to my system. The MAXI-71 and MAXI-81 formats are ones

writing the file. You should always use a backup work disk when which I invented myself that take advantage of the full disk capacity

doing these changes because your CPM+.SYS file will be changed (about 396 k for 1571 and 796 k for 1581). These two formats use

permanently. Do not modify your original system disk!!! 1024 byte sectors, double sided, 5 sectors per track, numbered 0 to

4.

The disk parameter table entries begin at the bytes specified above,

according to the byte parameters previously described. Select an To create disks for these new formats, you will need to use the burst

unused spot then use SID's'D'command to display the memory at mode format command from C-128 mode. For the 1581, the

that location. For example, dl976 <return> will display memory command is:

starting at $1976. If the display does not vaguely resemble the

format of table 1, then stop because you do not have the correct open 15,8,15

memory area. (Check to see that you have the correct version o CP/ print#15, du0" + chr$(134) + chr$(3) + chr$(79) + chr$(5)

M then try again). These locations can be changed using SID's 'S' + chr$(O) + chr$(229) + chr$(O)

command to the values for the new formats that you wish to close 15

support. Once the file has been changed, it can be saved again

using SID's 'W command (w cpm + .sys, 100,(EOF value)<return> For the 1571, the print#l 5 command is:

where (EOF value) is the one listed above for your CP/M version).

For a description of how to use these, see the article mentioned print#15,Bu0" + chr$(102) + chr$(128) + chr$(0) + chr$(3)

above. In order to use your new format, you must do a cold reset (i.e. + chr$(39) + chr$(5) + chr$(O) + chr$(0) + chr$(229)

push the reset button or <CONTROL>-<ENTER>.

Table 1: The unmodified C-l 28 CP/M disk parameter table

>0D876 39 91 00 00 40 00 04 OF 01 97 00 7F 00 CO 00 20 :9 ... @ _ . @.

>0D886 00 02 00 01 01 10 45 70 73 6F 6E 20 51 58 31 30 :. E p s o n QX 1 0

>0D896 CD A1 00 00 50 00 04 OF 01 BD 00 7F 00 CO 00 20 :M ! . . P = . _ . @.

>0D8A6 00 02 00 02 03 0A 45 70 73 6F 6E 20 51 58 31 30 : E p s o n QX 1 0

>0D8B6 49 A5 00 00 20 00 03 07 00 9B 00 3F 00 CO 00 10 : I % ? . @. .

>0D8C6 00 01 00 02 03 08 20 49 42 4D 2D 38 20 53 53 20 : I BM - 8 SS

>0D8D6 49 A5 00 00 20 00 04 OF 01 9D 00 3F 00 80 00 10 : I % ?

>0D8E6 00 01 00 02 03 08 20 49 42 4D 2D 38 20 44 53 20 : I BM - 8 DS

>0D8F6 4C E2 00 00 28 00 04 OF 01 C4 00 7F 00 CO 00 20 : L b . . (. . . . D . _ . @.

>0D906 00 01 00 02 03 0A 4B 61 79 50 72 6F 20 49 56 20 : K a y P r o IV

>0D916 4C E0 00 00 28 00 03 07 00 C2 00 7F 00 F0 00 20 :L@. . (. . . . B . _ . p .

>0D926 00 01 00 02 03 0A 4B 61 79 50 72 6F 20 49 49 20 : K a y P r o II

>0D936 63 B1 00 00 28 00 03 07 00 B8 00 3F 00 CO 00 10 :c 1 . . (. . . . 8 . ? . @. .

>0D946 00 03 00 03 07 05 4F 73 62 6F 72 6E 65 20 44 44 : Os bo r n e DD

>0D956 4B A3 00 00 20 00 04 OF 01 9D 00 3F 00 80 00 10 :K# ?

>0D966 00 01 00 02 03 08 20 20 53 6C 69 63 65 72 20 20 : S I i c e r

>0D976 39 91 00 00 40 00 04 OF 01 8F 00 7F 00 CO 00 20 :9 . . . @ _ . @.

>0D986 00 04 00 01 01 10 45 70 73 6F 6E.20 45 75 72 6F: Epson Euro

>0D996 FF 80 00 00 50 00 04 OF 01 BD 00 7F 00 CO 00 20 :_ ... P=._. @.

>0D9A6 00 02 00 02 03 08 20 20 20 4E 6F 6E 65 20 20 20 : None

>0D9B6 FF 80 00 00 50 00 04 OF 01 BD 00 7F 00 CO 00 20 :_ ... P=._. @.

>0D9C6 00 02 00 02 03 08 20 20 20 4E 6F 6E 65 20 20 20 : None

>0D9D6 FF 80 00 00 50 00 04 OF 01 BD 00 7F 00 CO 00 20 :_ ... P=._. @.

>0D9E6 00 02 00 02 03 08 20 20 20 4E 6F 6E 65 20 20 20 : None

>0D9F6 FF 80 00 00 50 00 04 OF 01 BD 00 7F 00 CO 00 20 :. ... P=._. @.

>0DA06 00 02 00 02 03 08 20 20 20 4E 6F 6E 65 20 20 20 : None

>0DA16 FF 80 00 00 50 00 04 OF 01 BD 00 7F 00 CO 00 20 :_ ... P=... @.

>0DA26 00 02 00 02 03 08 20 20 20 4E 6F 6E 65 20 20 20 : None

>0DA36 FF 80 00 00 50 00 04 OF 01 BD 00 7F 00 CO 00 20 :_ ... P=._. @.

>0DA46 00 02 00 02 03 08 20 20 20 4E 6F 6E 65 20 20 20 : None

>0DA56 FF 80 00 00 50 00 04.OF 01 BD 00 7F 00 CO 00 20 :_ . . . P = . _ . @.

>0DA66 00 02 00 02 03 08 20 20 20 4E 6F 6E 65 20 20 20 : None

Note: The address range given above is for the "1 Aug 85" version of the CPM + .SYS file.

The "6 Dec 85" and "8 Dec 85" start at address $0D6BD.

The Transactor 46 January 1988; Volume 8, Issue O4

Byte*

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Byte#

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The Transactoi

Table 2: Disk Parameter Table values for selected new disk formats. (Note: all values are in hex)

Disk Format

XEROX 16-8

DS

4b

a5

00

00

24

00

04

Of

01

ae

00

3f

00

80

00

10

00

02

00

02

03

09

58

65

72

6f

78

20

31

36

2d

38

OLYMPIA ETX

SS

4b

a5

00

00

24

00

03

07

00

9b

00

3f

00

cO

00

20

00

02

00

02

03

09

65

74

78

20

49

49

20

20

20

20

OLYMPIA EX100

DS

4b

a3

00

00

24

00

04

Of

00

ae

00

7f

00

cO

00

20

00

02

00

02

03

09

4f

2d

45

58

20

31

30

30

20

20

TELEVIDEO

DS

3d

91

00

00

48

00

04

Of

00

bd

00

7f

00

cO

00

20

00

02

00

01

01

12

54

65

6c

65

76

69

64

65

6f

20

MAXI-71

DS

62

bO

00

00

50

00

04

Of

. 01

c8

00

7f

00

cO

00

20

00

00

00

03

07

05

4d

61

78

69

20

37

31

20

20

20

MAXI-81

DS

62

bO

00

00

50

00

04

Of

00

90

01

7f

00

cO

00

20

00

00

00

03

07

05

4d

61

78

69

20

38

31

20

.20

20

Disk Format

NCR-DM

DS

49

a5

00

00

20

00

04

Of

01

99

00

7f

00

cO

00

20

00

03

00

02

03

08

4e

43

52

20

20

20

20 -

20

20

20

r

Zenith

Z90SS

39

91

00

00

20

00

03

07

00

97

00

7f

00

fO

00

20

00

02

00

01

01

10

48

65

61

74

68

20

39

30

20

20

Zenith

Z100DS

49

a3

00

00

20

00

04

Of

00

9b

00

ff

00

fO

00

40

00

02

00

02

03

08

48

5a

20

31

30

30

20

44

53

20

Zenith

Z100SS

49

al

00

00

20

00

04

Of

00

97

00

7f

00

fO

00

20

00

02

00

02

03

08

48

5a

20

31

30

30

20

53

53

20

TRS-80JV

SS

49

al

00

00

20

00

03

07

00

9b

00

3f

00

cO

00

10

00

01

00

02

03

08

54

52

53

2d

49

56

20

20

20

20

LOBO max

SS

3c

90

00

00

24

00

03

07

00

a5

00

3f

00

cO

00

10

00

03

00

01

01

12

4c

6f

62

6f

20

20

20

20

20

20

47 January 1988: Volume 8, Issue O4

CP/M 3.0:

Plus Redirection

and Batch Processing

Adam Herst

Toronto, Ontario
© Copyright 1987 Adam Herst

The last in the lineage of CP/M for 8 bit computers, CP/M 3.0 was

endowed with a name, CP/M Plus, along with its inherited number. This

article deals with one of the pluses of CP/M Plus, input/output (I/O)

redirection and batch processing.

We are creatures of habit. Introduced to a computer system with the

keyboard as the input source and the screen or printer as the output

destination, we accept this configuration as the natural order. It isn't. A

more flexible conception of an input source and an output destination is

possible. The following example illustrates the benefits.

If you're like me, your collection of programs has grown far beyond your

capacity to remember which files are on which disks. Labelling the disks

with the contents is an obvious solution. Using the DIR command to

obtain a list of the files on each disk, then printing it onto a label is the

simplest procedure to follow. But wait - to print the label for the disk

you'll have to copy the DIR listing down by hand, enter each list into a

text editor, format the file for printing and then print it out. There is a

better way.

If the output from the DIR command could be redirected to a disk file

instead of the screen, then you wouldn't have to copy down and re-enter

the information. If the repetitive text editor commands to format the

listing for printing could be redirected from a disk file instead of the

keyboard then you wouldn't have to tweak each listing by hand. I/O

redirection allows you to do just that.

Redirection is a standard feature in most current operating systems. OS's

as varied as AmigaDOS, MS-DOS and UNIX provide redirection capabili

ties. Redirection is commonly provided as a command line option - the

redirection operation is indicated on the command line along with the

command it is to act upon. Earlier versions of CP/M included limited

redirection as options with specific programs and redirection of screen

output to the printer through a toggle on the command line. In contrast,

CP/M Plus, provides a limited implementation of true I/O redirection in

addition to these ad hoc capabilities.

The standard notation to redirect program output to a file is:

command > outpuLfile

the standard notation to redirect program input from a file is:

command < inpuUile

It shouldn't surprise you to learn that CP/M Plus does not use the

standard command line notation to implement I/O redirection. Instead,

CP/M Plus implements I/O redirection with two utility programs invoked

as commands in themselves. These are: PUT and GET.

PUT

PUT is a transient command invoked on the command line. It causes the

output of subsequent programs to be redirected to the named disk file.

Output destined for the screen and output destined for the printer can be

placed in a file with the PUT command. Since PUT is a transient

command it must be on a logged-in disk in an accessible user area to be

executed.

There are four variations of the syntax for the PUT command. Two are

related to screen redirection while the other pair is used for printer

redirection. The syntax to redirect the printer output of subsequent

programs to a file is:

PUT PRINTER OUTPUT TO FILE filename.typ

This can be abbreviated to:

PUT PRINTER FILE filename

(This abbreviation holds for all four variations of PUT and will be used for

the remainder of this article.) The syntax to restore the direction of

program output to the printer is:

PUT PRINTER PRINTER

To redirect the screen output of subsequent programs to a disk file the

syntax is:

PUT CONSOLE FILE filename.typ

(CONSOLE, abbreviated to CON for some programs, is a special name

CP/M uses to refer to the combination of screen and keyboard. When

used in an output context, it refers to the display screen. When used in an

input context, it refers to the terminal keyboard.) To restore the direction

of program output to the screen, the syntax is:

PUT CONSOLE CONSOLE

By way of example, the following commands must be issued to redirect

the output of the DIR command:

PUTCONSOLEFILEdir.txt

(Since PUT is a transient command, remember to have the file PUT.COM

on a logged-in disk in an accessible user area.) CP/M will respond with

the message:

Putting console output to file dir.txt

The Transactor 48 January 1988: Volume 8, Issue O4

and attempt a disk access to create the file DIR.TXT. If a file by that name

exists, CP/M will prompt for confirmation to overwrite the existing file.

Responding with 'no' aborts the PUT command. When the the command

line prompt returns, issuing the command:

DIR a:

sends the output of the DIR program to the file DIR.TXT as well as to the

screen.

At this point, the output of subsequently issued commands also would be

redirected to the file DIR.TXT. To direct the output of subsequent

commands to the screen and to close the redirection file, the command:

PUT CONSOLE CONSOLE

should be issued. CP/M will respond with:

Putting console output to console

and close the output redirection file.

If you had wanted the output of the DIR command to go only to the file

DIR.TXT and not to the screen as well, PUT's NO ECHO option could

have been used. The syntax to include this and other PUT options is:

PUT CONSOLE FILE filename.typ [optionjist]

(Note the square brackets surrounding the option list. These must be

included on the command line.) Other options for the PUT command

include: ECHO, the default, used to restore echoing after a NO ECHO,

FILTER, used to translate control characters in the output stream into

readable form, NO FILTER, the default, used to cancel filtering after

FILTER, and SYSTEM, used to indicate that redirection should occur

immediately after the PUT command and include system output as well

as program output.

Another, less obvious use of the PUT command is to create files of OK

length. These files are crucial to the operation of certain programs -

typically disk cataloguing programs that require files of OK length to

function as disk labels.

A little history is in order. Earlier versions of CP/M, up to release 2.2,

included a resident utility named SAVE. Much like the transient utility of

the same name provided with CP/M Plus, the earlier version allowed you

to save blocks of memory to disk. One quirk in the operation of this

command was the ability to save 0 blocks of memory, thus creating a file

OK in length. This quirk was discovered by a number of CP/M hackers

and incorporated into programs that required the presence of OK files.

The modifications made to SAVE in creating SAVE.COM included the

removal of this quirk. Users of CP/M Plus cannot create OK files in this

way. This inability has given rise to the practice of distributing OK files on

the disks with the programs that need them! This isn't necessary. In

removing the capability from one command, the programmers at DRI

introduced it, knowingly or not, into another. PUT can be used to create a

file OK in length. To create a OK file, redirect output to a file with the

command:

PUT CONSOLE FILE filename.typ

When the prompt returns, instead of issuing a command, restore the

direction of output to the screen with the command:

PUT CONSOLE CONSOLE

(Interestingly, CP/M responds with:

Put complete for file: filename.typ

Putting console output to console

Since PUT does not respond with the first line in other cases it appears

that this was an addition to handle an exception condition. You can

almost smell the paste holding this patch on.) You will be left with a file

that is OK bytes in length.

GET

GET is a transient command invoked on the command line to redirect the

input of subsequent programs from a named disk file. Only keyboard

input can be redirected using the GET command. The input to the

program must have been previously placed in the file. Since GET is a

transient command it must be on a logged-in disk in an accessible user

area to be executed.

At this point it may be helpful to differentiate between two kinds of input

to a program: command input and data input. Practically all programs are

designed to accept command input from the keyboard as their default. A

database management system is a good example. It manipulates data

according to 'command' input. If commands aren't entered, nothing

happens. The commands entered cause the DBMS to act on 'data' input.

If the data is new data, it must be entered into the database via the

keyboard. The GET command allows both command input and data

input to be taken from a disk file.

The syntax to redirect program output with the GET command is:

GET CONSOLE INPUT FROM FILE filename.typ

(Used in this context, related to input, CONSOLE refers to the terminal

keyboard. Similar to the PUT command, the words CONSOLE INPUT

FROM can be omitted and the syntax abbreviated to:

GET FILE filename.typ

This abbreviation will be used from now on.) Issuing the GET command

causes the command input for the subsequent program to be taken from

the named file. It is not necessary to issue a command to restore the

direction of input from the keyboard. The effects of the GET command,

issued without options, will end in one of two conditions. If the redirected

input ends the program, the effects of GET will end with the system

prompt. If the program is not terminated, the effects of GET will end with

the input redirection file, leaving you in the program. In both cases, other

programs or commands in the input redirection file, normally issued at

the system prompt, will not be executed.

To execute a series of commands from a disk file, GET's SYSTEM option

can be used. The syntax for GET with options is:

GET CONSOLE FILE filename.typ [optionjist]

(Note the square brackets surrounding the optionjist. These must be

included on the command line.) This will cause all subsequent input,

both system and program, to be taken from the named file immediately.

The direction of input from the keyboard will be restored when the end of

the input redirection file is reached or input direction is explicitly restored

to the keyboard with the command:

The Transactor 49 January 1988: Volume 8, Issue O4

GET CONSOLE CONSOLE

We can use GET to automate the process of formatting the directory

listing (put into the file DIR.TXT in our last example) for printing, in

combination with the line editor supplied with CP/M Plus, ED. (A

summary of ED commands is available through the on-line HELP

facilities provided with CP/M Plus. If you are thinking of using ED for

your general editing needs, be warned that ED is inadequate for interac

tive, screen-oriented text editing. It is, however, good for editing an input

stream in a repetitive pattern.)

First we must create the file that will contain the predetermined input to

ED. Place the following input lines into a file called DIRXjET:

1:#a

2:b

3:5k

4:b

5: ml3kfDJrectoryAZ-5k

6:-b

7:-3k

8:b

9: mfUserAZ-4c0kl-2ci AZ

10: b

11:mfALAZ-2cOI4OciALAZI

12: b

13:#sALAZ.AZ

14: b

15:mfUserAZli AL ALAZ

16: b

17:mfALAZ-2cOI2OckiALAZ

18:-b
19:jALALALALAZ

20: b

21:mfALAZ-2dl-2dl

22: b

23: #sALAZ.AZ

24: b

25: mlfUserAZ-4ciALAZ60ciALAZ

26: b

27: #sALALAZALAZ

28: b

29:m$1fALAZiALAZ

30: e

Once you have created the file DIR.GET and have put the directory listing

in the file DIR.TXT, issue the command:

GET CONSOLE FILE DIR.GET

(Remember to have the files PUT.COM and DIR.GET on a logged-in disk

in accessible user areas.) CP/M will respond with the message:

Getting console input from file dir.get

Issuing the command:

EDDIR.TXT

will invoke ED, causing it to take as its input the command lines in the file

DIR.GET. (Remember to have ED.COM on a logged-in disk in accessible

user areas.) When the end of the file is reached, input will be restored to

the keyboard. The file DIR.TXT will be formatted at 60 characters to a

line, suitable for printing on a label with 8 lines per label at 17 pitch (132

characters to a line). The command:

PIP LST: = DIR.TXT

can be used to send the file to a printer.

You may have noticed a couple of problems with our automation process

so far/It's not very flexible - there is no way to account for the variations

in line spacing on labels. The listed version expects labels that hold eight

lines to a label. More problematic is the presence of control codes in the

input redirection file for ED. These have been listed in a symbolic

representation requiring two characters: the caret (A) and the appropriate

alphabetic character. ED will not accept control codes in this representa

tion. Control codes must be entered as their ASCII value. While some text

editors will allow you to insert the literal control code within a body of

text, most won't. This makes creating the redirection input file extremely

difficult. Finally, we've only automated one part of the process required to

produce a label of a disk directory - the formatting. There is no reason

why the whole process shouldn't be automated. Fortunately, CP/M Plus

provides batch processing capabilities that are functionally identical to,

but considerably more sophisticated than the capabilities of GET. These

are available through the SUBMIT command.

SUBMIT

SUBMIT is a transient command invoked on the command line to redirect

system and program input from a named file. This sounds similar to the

capabilities of GET. It is - but SUBMIT approaches the problem from a

different perspective. While GET was developed to redirect input for a

single program - the classic definition of redirection - SUBMIT was

developed to execute a series of programs. GET expects program input as

its default while SUBMIT expects system (command line) input as its

default. While both commands have evolved to accept both kinds of

input, the capabilities of SUBMIT provide greater flexibility in the form of

variable substitution and symbolic representation of control codes among

other features.

A SUBMIT file comprises a series of commands on separate lines (i.e.

followed by a carriage return). Issuing the SUBMIT command causes the

execution of the commands in the named submit file. Since SUBMIT is a

transient command it must be on a logged-in disk in an accessible user

area to be invoked. To invoke SUBMIT, issue the command:

SUBMIT filename.sub

The effects of the SUBMIT command terminate with the end of the

submit file. There are no options for the SUBMIT command. At this point,

one of SUBMIT's few functional differences from GET becomes apparent.

GET redirects input directly from the input redirection file. SUBMIT

redirects input from a temporary file created from the .SUB file. For this

reason there must be sufficient free disk space on the current disk. If

there is not, the SUBMIT command will abort.

To begin automating the disk labelling process, we can create a submit

file to put the output from the DIR command into a file for formatting by

ED. Create a text file called DSKLABEL.SUB containing the lines:

put console file dir.txt

dir.txt [user=all nopage]

put console

Issuing the command:

The Transactor 5O January 1988: Volume 8, Issue 04

SUBMIT DSKLABELSUB

will cause each line in the submit file to be echoed on the command line

and executed. When th^ end of the submit file is reached, control returns

to the system prompt. The file DIR.TXT will contain the directory listing

to be formatted.

As it stands now, this submit file will create a directory listing of the

logged-in disk. To list the directory of a non-current drive, we would have

to log-in to it before issuing the SUBMIT command. It would be conven

ient if we could specify the disk which is to have its directory listed on the

command line when we issue the SUBMIT command. The parameter

passing capability of SUBMIT allows us to do just that.

SUBMIT will accept up to nine parameters on the command line. Each

argument replaces its corresponding variable in the submit file. Variables

take the form of a dollar sign followed by a digit from one to nine. The first

argument issued on the command line replaces every occurrence of the

variable '$1' in the submit file, the second argument replaces every

occurrence of the variable '$2' and so on up to '$9'. (To include an actual

'$' in a submit file, use a '$$'.)

To pass the drive specification of the disk which is to have its directory

listed, replace the second line of DSKLABEL.SUB with:

dir$1 [user=all nopage]

Now when the SUBMIT command is issued it can take the form:

SUBM IT DSKLABELdrive.specifIcation

where drive_specification is the drive letter followed by a colon (e.g. a:). If

the drive specification is omitted on the command line, the variable will

be replaced by a null value and the directory of the logged-in disk will be

listed.

So far we have automated the,series of commands to produce the

directory listing to be formatted. To format the listing we don't need to

execute a series of commands, but need to.execute a single program

according to a series of program command input lines. To differentiate

between programs and program command input lines in a submit file,

program command input lines are preceded by a left angle bracket (<).

Add the lines listed for the file DIR.GET to DSKLABELSUB, preceding

each with a left angle bracket. Precede these command input lines with

the command ED. Control codes can be represented symbolically -

SUBMIT will translate them into literal form before passing them to ED.

(To represent a real caret, a 'AA> should be used.)

We can accommodate the variations in lines per label that is likely to be

encountered using a second variable in the submit file. (Because the lines

per label argument will always be passed to the submit file we will use

the variable '$1' to represent it. Consequently, the variable representing

the drive specification must be changed to '$2*. Since the drive specifica

tion is the last argument on the command line, it can still be omitted to no

ill effect.) Finally, we can add a line to the submit file invoking PIP to send

the formatted directory listing to the printer.

The complete DSKLABELSUB file looks like:

1: erase dir.txt

2: put console file dir.txt [no echo]

3: dir $2[user = all nopage]

4: put console

aLaZ

5: ed dir.txt

6:<#a

7:<b

8: <5k

9:<b

10:<ml3kfDirectoryAZ-5k

11: <-b

12:<-3k

13: <b

14:<mfUserAZ-4c0kl-2ci

15:<b

16: <mfALAZ-2cOI4OciALAZI

17:<b

18:<#sALAZ.AZ

19: <b

20: <mfllserAZli AL.

21:<b

22: <mfALAZ-2cOI2OckiALAZ

23: <-b

24: <iALALALALAZ

25: <b

26: <mfALAZ-2dl-2dl

27: <b

28: <#sAL/Z.AZ

29: <b

30: <mlfUserAZ-4ciALAZ60ciALAZ

31:<b

32: <mfALALAZALAZ

33: <b

34:<m$1fALAZiALAZ

35: <e

36: pip 1st: = dir.txt

(The exact number of periods in lines 14 and 20 is not important - there

should be at least 40 in line 14 and 20 in each of the strings in line 20.

This SUBMIT file generates labels from directories that do not have active

time/date stamping. If you use time/date stamping omit lines 15 and 16.)

To invoke DSKLABEL issue the command:

SUBMIT DSKLABEL labels_perjine drive_specification

Where labels_perJine is an integer, drive_specification is a letter fol

lowed by a colon representing a disk drive. To create labels with 8 lines

per label on the disk in drive M:, the command:

SUBMIT DSKLABEL 8 m:

should be issued. (The drive specification argument may be omitted

resulting in a listing of the current drive, but the labels per line argument

must be provided. Failure to do so will result in the double spacing of the

DIR.TXT file.) Before issuing the SUBMIT command, remember to set

your printer on-line ready to print at 96 or 132 characters per line.

The redirection and batch processing capabilities of CP/M 3.0 are not

ideal. The implementation of redirection in the form of free-standing

programs is clumsy and unintuitive, although it does allow for the

presence of command line options. The absence of true variables and

flow of control operators in the SUBMIT environment restricts its useful

ness. Nonetheless, these 'pluses' are a vast improvement over CP/M 3.0's

predecessors and, in combination with the standard 'tools' provided in

the CP/M environment, offer an opportunity to significantly extend the

power and usefulness of the C-128.

The Transactor 51 January 1988: Volume 8, Issue O4

Square Roots

in Machine Language

Jim Butterfield

Toronto, Ontario

.. .Remember those manual square roots?...

There are quite a few ways of doing square roots. Basic does the

job via the exponential/logarithm functions. Other methods use

sucessive approximation: estimate a first value of the root, and

then improve it. The usual formula on this last is:

new root = (oldroot + valge/oldroot)/2

But there is a fast, direct method. It may only be worth the

coding effort if you have a program which performs a large

number of square root calculations. You might find it interesting

to trace through. It's very much like the square roots you used to

do manually in school.

Remember those manual square roots? They worked something

like this:

— pair off the digits into sets of two;

— bring down pairs of digits at a time for a trial "root";

— take the root so far, times 2, as the "multiplier"...

.. .but it's easier to show in an example. Let's take the root of

34567. We pair off the digits and try for a root of 3:

3 45 67 (1

1 1

It must be a one, since 2x2 would be 4, and that's greater than 3.

(Is this coming back to you now?) Bring down the next two

digits, and double the root so far to make a "multiplier" (1 times

2 is 2):

3 45 67

1

2.45

(1

For the next digit, we might try 9 times 29, 8 times 28... that

ones works. It gives 224, which is less than 245. So we subtract

and repeat:

28

36

45 67 (18

45

24

21 67

Note that the new multiplier is 18 times 2, or 36. 9 times 369 is

much too big, so we go through 8 times 368, 7 times 367,6 times

366 (almost!) and finally settle on 5:

3 45 67

1 i

(185

28

365

45

24

21 67

18 25

3 42

There's a hefty remainder; we could continue into fractions, but

let's leave the result as is for the moment: the root of 34567 is

185 plus a remainder.

We can do all this in binary, and it becomes much easier. Since

each digit will be either 0 or 1, our choice is to subtract (1) or not

to subtract (0).

Let's go directly to the method. We'll illustrate it graphically.

Place the value in a work area, and put a "remainder" buffer

filled with zeros at the high end. Set the root to zero:

: REMAINDER : VALUE : : ROOT:

:0000000000000:01111001: :000000:

For the sake of the example, we'll put a value of 121 (binary

01111001) into the value. Hopefully, the result will be 11 (binary

1011).

The Transactor 52 January 1988: Volume 8, Issue O4

Grab two digits - that means two bits in binary turns. We do a

"long shift left" on the REMAINDER/VALUE combination. Since

we're going to the next "result" digit, we'll shift the ROOT one

place left, too:

: REMAINDER :' VALUE : :ROOT:
:0000000000001:l 11001..: :000000:

For a multiplier, we take ROOT*2 (same as the decimal method),

which is ROOT shifted by one more position. We add 1 to try a

"multiply by 1":

: REMAINDER : VALUE

:0000000000001:l 110Q1..

.ROOT: :MULT:

:000000: :000001:

Comparing, we find that MULT is NOT greater than remainder.

So we increment ROOT and subtract MULT from REMAINDER.

This gives:

: REMAINDER : VALUE : : ROOT:

:0000000000000:l 11001..: :000001:'

On to the next pair of bits. As before, a double left shift to

REMAINDER/VALUE and a single shift to ROOT. We'll calculate

a new MULT at the same time:

: REMAINDER : VALUE : :ROOT: : MULT :

' :0000000000011:1001 : :000010: :000101:

See how MULT is ROOT times 2 plus 1? Well, MULT is bigger

than REMAINDER this time, so we skip to the next step with

another shift:

: REMAINDER : VALUE : :ROOT: : MULT :

:0000000001110:01 : :0001.00: :001001:

MULT is pretty big, but REMAINDER is bigger, so we do our

thing on subtraction:

: REMAINDER : VALUE : : ROOT: : MULT :

:0000000000101:01 : :000101: :001001:

Here comes the last step ... we're shifting the last two bits of

value. If we went beyond this point, we'd be into fractions. Here

goes:

: REMAINDER : VALUE : :ROOT: : MULT :

:0000000010101: : :001010: .010101:

MULT is equal to REMAINDER, so we subtract and increment

ROOT.

: REMAINDER : VALUE : : ROOT:

:0000000000000: : :001011:

We're finished. The ROOT is 1011 (decimal 11) and the remain

der is zero (correct!)

It's important to provide the right amount of space for the various

numbers such as REMAINDER and MULT. It's more than you

may think at first.

For example: suppose we're doing the root of an unsigned two-

byte number (the range is from 0 to 65535) It's plain that an

integer result will fit into one byte (range 0 to 255) so long as we

don't need to round it. How big might the remainder be? Well,

the biggest remainder would be for SQR(65535). If you work that

out, it's 510, which means that nine bits are needed. But wait!

That's the remainder AFTER the last subtraction; before that,

the value in REMAINDER was 1019.., a ten-bitter.

In either case, two bytes are needed in this example, for both

REMAINDER and MULT. That means we must do a two-byte

comparison, and a two-byte subtraction when needed. Don't

overlook those extra bits or you'll get wrong answers.

To demonstrate the method, program ROOTS64 does simple

square roots. To keep things at their simplest, the program does

integers only and uses only single-byte areas for REMAINDER

and MULT. As a result, we'd better keep our values in the range

of 0 to 4096. That will allow us to keep REMAINDER and MULT

within a single byte.

Once you know the principles, it's easy to expand the method to

cover bigger numbers, fractions, or whatever fits your objec

tives.

BC

BG

HH

MG

LG

MJ

NM

BG

FN

MN

HN

LD

Jl

FN

CN

OJ

GD

Cl

Fl

LF

AB

PC

CC

100 v% = rnd(0):rem ... this must be first

110 data 160, 2,177, 45,141,161,

120 data 0,145, 45,200,177, 45,

130 data 3,160, 0,140,160, 3,

140 data 3, 14,162, 3, 46,161,

150 data 160, 3, 14,162, 3, 46,

160 data 46,160, 3, 14,163, 3,

170 data 3, 10,170,232,142,164,

180 data 160, 3, 205,164, 3,144,

190 data 163, 3,237,164, 3,141,

200 data 200, 192, 8, 208, 204,160,

210 data 163, 3,145, 45, 96

220 for j = 828 to 912

230 readx: t=t + x: pokej,x

240 next j

250 if t<>8554 then stop

260 rem test run starts here

270 for j = 1 to 10

280v'=int(md(1)*4096)

29Ov°/o = v

300 sys 828

310 print "the root of";v;"is";v%

320 next j

3,169

141,162

140,163

3, 46

161, 3

173,163

3,173

9,238

160, 3

3,173

The Transactor 53 January 1988: Volume 8, Issue O4

PLACEHOLDER

for the Commodore 64

Paul Blair

Holder, Australia

In a very early Transactor, Jim Butterfield presented a very handy

routine to cope with a perennial screen handling task. The program

was designed to allow you to remember the location on screen

where you last printed, so that you could go someplace else to print

something else, then return to where you left off.

The sort of tasks that spring to mind for this sort of routine would

include error messages or continue prompts. It is considered good

design to help an operator by always putting help messages at some

fixed place on the screen, and the bottom line is a favourite spot.

So you may print on line 2:

ENTER DATE [MM/DD/YY]:

and have a check built in that MM has to be between 1 and 12. If the

operator enters "13°, it would be nice to remind he or she that any

value outside the 1-12 range cannot be accepted. A quick print to

the bottom line "PLEASE ENTER 1-12" would be courteous and

helpful.

I recently had to arrange this sort of thing from within a machine

code program. So, I needed a short routine to do the work for me.

PLACE, the extract from that program, shows how it was achieved.

Because the Commodore 64 is so crammed with useful items, it is

easy to overlook the possibility that it may be easier to use a routine

set up for us by Commodore than to design our own. Such was the

case here, because I had overlooked the PLOT routine written by

Commodore to permit a sort of PRINT® on the screen.

PLOT seemed useful to locate to the screen, but PLOT has two sides

to it, a fact I rediscovered when I re-read the reference books,

something we should all do from time to time!! PLOT can not only

set the cursor anywhere on the screen, but it can also work out

where the cursor is at any time. By using PLOT to read the screen

and remember what it sees, it is easy to duck off to the bottom line

(using PLOT to get there), then recall whence the cursor came and

go back there for whatever is to happen next.

The Kernal address for PLOT is $FFF0 (or 65520 in decimal). The

Kernal is the index to the location of the actual routine, which lives

at $E50A (58634). My habit is to use the Kernal addresses, because

they might just stay in the same place in whatever machine comes

next, whereas I can bet my wife's last dollar that the actual routine

will have moved.

Let's look at my machine code first. To READ the screen with PLOT,

it is necessary only to set the carry flag (SEC is the instruction) and

call PLOT. The X and Y cursor positions (across and down, if you

like) will be in the X and Y registers when PLOT finishes its job.

Store these values in a handy place (move them to a protected

location) or push them onto the stack, and we now know where we

have come from.

Now, load X with the •across" value and Y with the "down" value,

and go back to PLOT. Print the message you need, then (in this

example) wait for a keypress before continuing on. When, the

keypress comes, recover the old values, load them in the X and Y

registers, and PLOT again. Now you are back to where you left off.

The routine looks like this:

FB

NG

JE

FK

IL

OM

IF

IC

MO

LM

JB

LH

CB

OB

HC

CD

AD

El

LB

IJ

EP

FE

Kl

PG

JO

EN

EJ

10

KK

MP

OF

AB

JC

IC

OJ

AM

OL

Fl

BM

GG

FK

100 rem save"@0:place. pal"

110 open 8,8,8, "O:place.obj,p,w

120sys700

130 .opt 08

140;///////////////////////////////

150;// //

160;// machine code placeholder //

170;// for commodore 64 //

180;// //

190;// routine to hold screen //

200;// place, print message on //

210;// last line, then return //

220;// whence thee came //

230;// //

240;// may 85 paul blair //

250;// //

260;///////////////////////////////

270;

280;// c64 basic 2.0 routines //

290;

= $d020 ;exterior colour

= $e9ff ;erase line in .x

= $ffd2 ;print a char

= $ffe4 ;get a key

= $fffO ;screen routine

300 border

310 clean

320 chrout

330 getin

340 plot

350;

360;// main program //

370;

380 * = $c000

390;

400;// error message flip border //

410;

420ohdear Ida #$02

430 , sta border

440 sec

450 jsr plot

460 txa

470 pha

480 tya

490 pha

500 clc

;sys49152 calls

;visual error

;get our place

;by'reading screen

;for x, y values

;push them away

;for later use

;set new location

The Transactor 54 January 1988: Volume 8, Issue 04

CB

MN

Fl

MM

GF

LN

IG

BB

EK

NE

EJ

NL

OP

EP

DP

PF

KD

OP

IC

NK

MD

HP

HN

GH

HI

EG

PN

MM

KL

Kl

AK

Al

EL

MJ

LK

ID

510 Idy #$0c

.520 Idx #$18

530 jsr plot

;12over

;24 down

;put cursor there

540 Idy #>cermsg ;print message

550 Ida #<cermsg;maybe add a

560 jsr primms

570 keypls jsr getin

580 beq keypls

590 Idx #$18

600 jsr clean

610 Ida #$0f

620 sta border

630 pla

640 tay

650 pla

660 tax

670 cic

680 jmp plot

690;

700;// print messages //

710;

720 primms sty $5d

730 sta $5c

740 Idy #$00

750primm2 Ida ($5c),y

760 beq primm3

770 jsr chrout

780 iny

790 bne primm2

800primm3 rts

810;

820;//message//

830;

840 cermsg .byt $12: .asc

850 .byt$92,$00.

860 .end

;"tone here too?

;wait a key

;loop if no key

;erase message

;on bottom line

;reset border colour

;to normal

;recall where you

;were before

;and go there

;(rts)

;point to message

;counter

;get char

; if zero, end

print it

;inc index

;loop back

;all done

" press any key '

A Basic program to load the code, then give a very simple

demonstration would be handy.

NE

CF

FJ

FG

AA

ND

EC

DJ

AH

DK

KB

PL

JA

LD

GC

GM

GB

100 rem: placeholder example

110 rem: first load data into $c000

120 rem: then show off

130 rem: paulblair 5/85

140:

150 goto 330

160m = 53280:rt=49152:

170 poke m, 15: poke m +'

print chr$(31)

1,15

180 print"[CLR] test placeholder": sys rt

190 print: print'hello there! ";: gosub 290

200 print'from transactor magazine": gosub 290

210 print: print: prinfas you can see,";: gosub 290

220 print'screen control is easy": gosub 290

230 print: print: print"

: gosub 290

240 print: print: print: print:

: gosub 290

250 print: print"havefun!!";:

now i'm here"

prinfnow down here"

gosub 290

260 print" have fun!!";: gosub 290

The Transactor

OL

ML

JM

AK

FF

EL

GJ

BO

NG

PJ

GO

GF

GK

MJ

LM

PC

MA

LF

ML

GO

DF

HF

270 print" have fun!!": gosub 290: end

280 :

290 for delay = 1 to 1000: next: sys rt: return

300:

310 rem: load m/c into $c000

320 :

330 s = 49152: f = 49237

340 for i = s to f: read a: cs = cs + a: poke i, a: next

350 if cs<>10286 then print"error": end

360 clr: goto 160

370 :

380 data 169, 2,141, 32,208, 56, 32,240

390 data 255,138, 72,152, 72, 24,160, 12

400 data 162, 24, 32,240,255,160,192,169

410 data 68, 32, 51,192, 32,228,255,240

420 data 251,162, 24, 32,255,233,169, 15

430 data 141, 32,208,104,168,104,170, 24

440 data 76,240,255,132, 93,133, 92,160

450 data 0,177, 92,240, 6, 32,210,255

460 data 200,208,246, 96, 18, 32, 80, 82

470 data 69, 83, 83, 32, 65, 78, 89, 32

480 data 75, 69, 89, 32,146, 0

All those PRINT statements are there to show that old habits die

hard.}Why not move around the screen using the same routine, but

this time in Basic?

How do I do that in Basic? This will involve a bit of PEEKing and

POKEing, but it's not too difficult. The prime locations are 781, 782

and 783 (decimal), which are the "save" locations for the X and Y

registers, and the flag register.

You will recall that we have to set and clear the carry flag to read/

write from/to the screen. The carry flag is Bit 1 (decimal value 2) in

the flag register, so we have to twiddle that bit to arrange our "set"

and "clear".

To READ the screen, Lines 160 and 170 return X and Y for you.

Lines 180 and 190 move the cursor, and print the message inline

200. Lines 220 and 230 respond to the keypress.

GM

BF

MO

KL

AD

Al

OM

ML

CH

DN

DG

GL

PB

MF

100 rem: plot routine in basic

110 rem: paul blair 5/85

120:

130 print chr$(147);: sy = 65520

140a = 781:b = 782:c = 783

150 print'hello there";

160 poke c, peek(c) or 1: sys sy: rem set carry flag

170 x = peek(a): y = peek(b)

180 poke c, peek(c) and 254: rem clear carry flag

190 poke a,24: poke b, 14: sys sy

200 prinf'press a key";

210gety$:ify$ = ""then2i0

220 poke a, x: poke b, y: sys sy

230 prinffrom transactor"

There you have it. As the screen tells you, have fun!!

55 January 1988: Volume 8, Issue 04

Reviews

The Turbo Processor for the C64

65C816-based expansion hardware

with 64K of battery backed-up RAM

from SwissComp Inc.

Review By S. Brown Pulliam

© Copyright 1987 S. Brown Pulliam

The Turbo Processor is one of the more ambitious add-on boards for the

C-64 that I have encountered. Physically, it is just an open circuitboard,

without a case, that plugs into the Cartridge Port. It will require careful

handling and anti-static precautions. It replaces almost the entire C-64

with the exception of I/O functions (keyboard, SID, VIC graphics chip,

and disk access). All other functions, that is, the microprocessor chip,

all RAM, and most of the ROM are replaced by higher performance

alternatives. The most spectacular facet of the upgrade is the micropro

cessor chip itself, the W65SC816. This is a 16 bit CMOS upgrade of the

6502 family with an enhanced instruction set and a 4 MHz clock. The

second major feature of the board is a heretofore unheard of (for

Commodore) 64K of battery backed RAM. The ROM chip appears to be

a 32K device loaded with two 16K operating system replacements for

the C-64 Basic and Kernal. The on-board RAM is maintained by a

rechargeable NICAD battery.

The board carries a list price of $189.95 (US). It is not overpriced for the

amount of hardware it contains, but we must ask what it will to do to

improve the operation of our C-64. SWISSCOMP Inc, the Swiss design

ers of the board, claim first of all that the 4 MHz chip will allow most

programs to run 4 times faster, hence the TURBO name. They admit,

however, that there are several functions that will not be speeded up.

The disk operations, loading and saving, run at the old Commodore

speeds, as also must anything having to do with the VIC chip, since it

cannot do graphics faster than a 1 MHz clock rate. In addition, any

program that uses the CIA chips must also keep the old 1 MHz speed

limit.

The other potential advantage for typical commodore users is the non

volatile RAM. With battery backed RAM, if you turn off the computer,

or have a sudden power dropout, your program is still stored where you

loaded it. As a designer of some battery backed RAM cartridges, I am in

a good position to recognize the advantage of having the entire 64K of

RAM protected by a battery.

An advantage the TURBO PROCESSOR is supposed to offer to some

programmers is a large number of additional machine language com

mands and increased addressing capability of the 65C816. However,

the additional address lines are not made accessible to external RAM on

the model I tested, so the 16 megabyte address space is of academic

interest only. Nevertheless, the added 16 bit instructions can certainly

improve programming efficiency and further speed up many pro

grammed operations, and is one reason, I'm sure, that this micropro

cessor was chosen for the Apple IIGs. Unfortunately, programs written

with 16 bit instructions will only run on C-64s that are also equipped

with TURBO PROCESSOR and will not, in general, be compatible with

the Apple. The utility of the expanded instruction set is further compro-

mised by the fact that an assembler that supports these instructions

may be hard to come by. Perhaps there is one available in Europe

where TURBO was originally introduced. I realize it would have been

beyond the scope of the manual to do a tutorial on the 65C816

instruction set, but to not even list the instructions, nor mention

anything about how to get out of the 6502 emulation mode TURBO

seems to stay in, shows they weren't even trying.

The concept of this expansion card is promising, but there are a-

number of major problems in making it truly useful to the average user.

You start off by having to check the positions of 8 dip switches. Then,

some users will notice that when the computer is turned on, the screen

message will begin to display a few, or on some C-64s, many random

characters. The manual instructs you to adjust two small potentiome

ters (they take a VERY small screwdriver, and one is hard to get at)

while continually pressing and releasing the RESET button. On two of

the six C-64s I tried this with, I could not find a combination that would

get rid of the random characters. Any program that displayed charac

ters on the screen would be virtually useless on these C-64s. Three C-

64s had no random characters, and on one, the adjustment did help.

The two C-128s I tried to use (in 64 mode) with TURBO would not run

by the normal method of holding the C = key when powering up. If you

place one of the DIP switches in the OFF position, turn on the C-128 in

64 mode, then move the DIP switch back to TURBO ON, TURBO did

run, but with the same severe random characters that incapacitated

two of the C-64s.

Assuming your C-64 has no problem with random screen characters,

the next hurdle is to find out whether TURBO will let your program run.

Start by assuming any cartridge will create a problem, even if you have

an extender card. Some programs have made use of undocumented

6510 op-codes, and these will definitely not run with TURBO. There

would be a question about disk copy protected software. I tried a recent

version of Pocket Writer II which is heavily copy protected, and it would

not load with TURBO. A non-protected program written in Basic, or

using machine language with a Basic loader should give no problem.

I thought I would try out the Speed improvement by running my trusty

Paperclip word processor. This program has an 80 column display

mode that is nice for viewing text for its format accuracy, but is

annoyingly slow when it is scrolling down the page. How nice a 4 times

speedup of that scrolling would be. Alas, it was not to be. I plugged in

the dongle and inserted Paperclip into the 1541 drive. The first gotcha

was that I couldn't use the Auto-Boot utility in my Brown Box to quick

load Paperclip with the TURBO PROCESSOR in control at power up, so

I un-plugged the Brown Box, and let Paperclip do its normal one minute

load. When I got the READY, typing in RUN just hung up the computer.

I found this very surprising, since Paperclip is a very tame program.

The instruction manual warns that some games that use video sprites

heavily may have some trouble with TURBO. If so, they suggest

soldering a three conductor cable from three terminals on TURBO to

pins 6,7,and 8 of the PLA chip inside the C-64. The addition then

requires a track cut on TURBO and the soldering of a jumper wire. This

is not a trivial modification.

I was impressed when I loaded a monitor program and could turn the

computer off, then back on, and could SYS to the preserved utility, no

matter where in RAM it begins. One important exception is the Cassette

buffer which as usual gets zeroed on reset. A Basic program won't run

when the computer is turned back on because the power-up reset

initializes the Basic pointers. This opens the question of what advan-

The Transactor 56 January 1988: Volume 8, Issue O4

tages of this 64K of battery backed RAM can actually be utilized.

TURBO will save a program, but, if you want to run it again, you need

some software to restore the start up pointers. Even more software

would be necessary if you wished to pick up the program with

previously generated strings and variables intact. Different software

would be required if you wished to store several programs at once. It is

possible that the alternative operating system included in its ROM may

have some re-initializing software, but if so, they don't mention it in the

documentation.

As you may gather, a non-technical user may find TURBO heavy going.

Unfortunately, the instruction manual is poorly written, or I should say,

translated. The original, in German I would guess, might have read

somewhat better. This version is very skimpy, considering the com

plexity of the product. The technical person is somewhat put off, at least

I am, by the obvious pains SWISSCOMP have taken to obliterate the

numbers of many of the logic chips on the board. To be useful, a

product like TURBO must be documented in such a way that qualified

people can learn enough about it to interconnect it with a variety of

hardware and software. The SWISSCOMP people are obviously more

worried that someone may copy their circuit. I can assure them, from

my experience marketing a product line that also has its greatest appeal

to the techie user, a good design is only about 10% of the job. The other

90% is communication with the potential user.

TURBO PROCESSOR is a powerful piece of hardware, but I would

guess that it will coexist with only a small fraction of commercial

programs. It doesn't seem to allow a 1764 RAM Expansion Unit to run

if both are mounted on an extender card. If the TURBO connect DIP

switch is in the OFF position, 1764 RAM TEST runs successfully, but as

soon as it is in the ON mode, the RAM test fails. The designers have not

provided software utilities that enable non-technical users to conven

iently take advantage of its power. We are therefore left to wonder who

will choose to write software to use its capabilities. As a programmer, I

have long held the 6502 in special favour, and have hoped that a 16 bit

upgrade would become generally available. The logical place for that to

have happened would have been when Commodore designed the C-

128. Think where a C-128 that had a 65C816 and could directly

address its RAM Expander as 512K of continuous memory could be

priced relative to the Apple IIGS! It is sad to contemplate that missed

opportunity. The most important question is whether a combination of

add-on modules for the C-64 makes enough sense from an engineering

standpoint to convince programmers that there is a reasonable expecta

tion of a significant market for its software. TURBO PROCESSOR is

wasteful. It makes absolutely no use of the internal processor or of the

internal 64K of RAM. I must admit my thinking is coloured by my own

products, but I submit that added RAM, whether battery backed

cartridges such as mine, or volatile RAM such as the Commodore RAM

expanders, should not take away the utility of the existing C-64 RAM.

Given the choice between more speed and more speed combined with

lots more storage space, the Commodore 1764 RAM Expansion Unit is,

in my opinion, a better engineering solution. The 1764's potentiality for

faster programs is twofold. Many existing programs that depend on

disk file access will run hundreds of times faster once a RAM DOS is

loaded. The other speed advantage of the 1764, for new programs, lies

in its DMA capability. We have come to think of machine language

programs as blindingly fast. The 1764 can be used to move a large

block of bytes from one part of C-64 memory to another eight times

faster than machine language! When you consider that a program

spends much of its time moving bunches of bytes from one part of

memory to another, you can see the potential for speed improvement. It

should be at least equal to using the full 65C816 instruction set, and the

faster clock rate of TURBO. True, the 1764 is volatile RAM and cannot

remain loaded when power is off, so that is a trade off against its 256K

storage capacity advantage. With an extender card, the 1764 can

coexist with a battery backed RAM cartridge, and some programmers

might wish a similar capability for TURBO to handle pointer restoration

without detracting from the 64K of RAM space. TURBO won't allow

this, and it even seems to force a RAM upper limit of 64K because it is

incompatible with the 1764 Expansion Cartridge.

Many creative programmers who used to write for the C-64 have moved

on to more powerful computers. I am afraid the TURBO PROCESSOR is

not the gadget that will lure them back to the 64.

About The Author

Brown Puiliam is ChiefEngineer ofBrown Boxes, Inc. He designed the

QUICK BROWN BOX line of 8, 16, 32 and 64K battery backed RAM

cartridges for the O64 and O128, andformanyyears was an Engineer

with GENRAD, Inc. He presently consults in the field of electronic

testing.

Machine Language Routines

for the Commodore 64/128

by Todd D. Heimarck

and Patrick Parrish

from COMPUTE! Publications

Review by Miklos Garamszeghy

Have you ever thought that you have been re-inventing the wheel

every time you write an assembly language program? Would you like a

large library of documented assembly language source code routines?

Or, are you merely curious about how assembly language is actually

used in practical applications?

If you answered yes to any or all of the above questions, then you

should consider acquiring a copy of "Machine Language Routines for

the Commodore 64/128" from COMPUTE! Books. The 580 pages of

this recent release contain the assembly language source code for some

200 fully documented, commented, and tested routines for performing

a wide range of tasks from file input/output to floating point math to

programming the CIA TOD clocks to alphabetizing and searching lists

to ASCII <> PETSCII conversions, to name but a few. Although they are

not intended to be used as stand alone programs, many can be used

with little or no additional programming by incorporating the additional

coding provided with each routine to demonstrate its use.

Now that I have tweaked your interest, let me start at the beginning.

The first few chapters of the book are devoted to a description of the

6502/6510/8502 type mnemonics instructions such as LDA, STA, etc.

and their associated op-codes, and the KERNAL function calls such as

CLRCHN, SETLFS, etc. The mnemonic descriptions are similar in style

to those found in other COMPUTE! books on machine language

programming. The descriptions are short but clear and to the point.

References are made in the introduction to several other more compre

hensive works on machine language and assembly language program

ming, including some non-COMPUTE! publications. The descriptions

of the KERNAL function calls, which include both standard ones as well

as the new C-128 entries, are also short but clear. No real examples of

how to use either the KERNAL or the op-codes are given at this point,

but all are used extensively in the remainder of the book.

The meat of the book is some 500 pages of carefully explained and

documented assembly language routines arranged in alphabetical

order by an arbitrarily assigned program name such as ALARM2 (for

The Transactor 57 January 1988: Volume 8, Issue O4

setting up TOD clock#2 as an alarm clock) or BORCOL (for changing

the border color). The routines are presented in a format suitable for a

PAL or BUDDY type assembler, but the introduction gives tips and

guidance for converting the listings to other assembler formats. If you

prefer to do it the hard way, the routines can also be entered using a

monitor such as BASIC 7.0's MONITOR command. However, this

approach does require much more manual labour on your part for

calculating absolute addresses and label references. Tedious, but possi

ble.

The routines are presented in true assembly language format with

address and data labels. (Despite the reference to machine language in

the title, the book actually deals with assembly language. There is a

small but definite difference between the two. Strictly speaking, ma

chine language deals with numbers only while assembly language

deals with a set of arbitrarily defined mnemonics used to represent the

numbers. For example, $AD $FF $8D $00 $D0 in machine language is

equivalent to LDA #$FF: STA $D000 in assembly language). Unlike an

earlier COMPUTE! book with a similar title ("Machine Language Rou

tines for the Commodore 64"), BASIC loader DATA statements are not

provided for the routines. If you want to SYS to any of them from BASIC,

you must create the DATA statements and POKE it in. An assembly

language subroutine for creating DATA statements from object code in

memory is provided as one of the routines in the book.

Most of the routines are shown as being located in high memory. This

follows from the C-64 tradition of putting suchr things in the unused

chunk of RAM at $C000. However, with an assembler, the code is fully

relocatable by changing the assembly origin statement. If you want to

incorporate more than one of the subroutines or mix them with your

own assembly code, relocation is inevitable. It should also be noted that

on the C-128 the routines should be placed in low memory, say at

$0B00 or $1300, to avoid having to deal with bank switching for

accessing the KERNAL and BASIC ROM's as well as the I/O block.

Remember that on the C-128, the RAM below $4000 is visible in both

BANK 0 and BANK 15 and is an ideal spot for code needing both

banks. The introduction discusses these requirements for the C-128 but

makes no attempt to explain C-128 bank switching in assembly

language (it is very simple) and refers the reader to other sources for an

explanation.

Because of the similarity between the two machines, most of the

routines will work without modification on either the C-128 or C-64.

Where differences exist, due mainly to different addresses for BASIC

ROM routines called as subroutines, the documentation for that routine

clearly explains the required changes for each machine. Most of the

listings are given for the C-64 format with C-128 modifications listed as

comments. It should even be possible to adapt the routines to work on

other Commodore machines, such as the VIC 20, PLUS/4, etc. Routines

designed specifically for one machine or the other, such as accessing

the 80 column chip or RAM expander on the C-128, are clearly noted

as being such, although I suspect that they would work quite well on a

C-128 in C-64 mode with very minor modifications. The RAM expander

routines should also work on the C-64 with the 1764 expander.

The collection of routines provided in the book gives something for

everyone: from some quite simple routines to very complex ones. A

wide range of topics is provided from math and conversion routines to

graphics and sound to chip register programming and many more. In

fact it covers enough ground to do almost all of the mundane and boring

tasks that many programmers don't like to waste a whole lot of time

developing for themselves. Face it, most people are lazy, so why re

invent the wheel? If you are really lazy, you can mail in the coupon

provided at the end of the book with an extra $12.95 (plus postage,

handling and applicable taxes) and get a disk containing the source

code for each of the routines in the book in PAL/BUDDY format. Even

if you choose not to use the routines exactly as listed, they can serve as

a very useful starting point for your own custom routines. A list of some

of the routines included is given in Table 1.

Although the introduction states that the book is not intended to be an

introduction to assembly language programming, I would recommend

this book most strongly for beginner to intermediate programmers.

These are the people who would benefit most from the clean program

ming style and clear documentation of how each routine works. Despite

the above statement, the bottom line is that "Machine Language

Routines" will be a welcome addition to the library of virtually any

assembly language programmer. (Remember, Christmas is not too far

away).

TABLE 1:

Selected Assembly Language Routines

Name Description

ALARM2 Set up CIA TOD alarm clock

ALSWAP . Alphabetize list by swapping strings

ANIMAT Animation by character sets

BIGMAP Display a virtual window portion of larger logical

screen

CASSCR Convert PETSCII to screen codes

CHARX4, CHARX8 Print magnified characters

CONCAT

CUST80

EXPLOD

FETCH/STASH

FIREBT

INTCLK

INTMUS

MIXLOW

RAS128

RE80C0/WR80C0

SPRINT

WINDOW

WRBUFF

Join two disk files

Create custom characters for 80 column screen

Produce an explosion sound

Retrieve from or store in RAM expander

Read joystick fire buttons

Interrupt driven on screen clock

Interrupt driven background music

Convert mixed case characters to all lower case

Set up a raster interrupt on the C-l 28 40 col screen

Read or write 80 column chip registers

Interrupt driven sprites

Set C-128 window boundaries

Open a direct disk buffer a write a disk sector

Also: Many math routines such as addition, subtraction, division of

floating point and integer numbers, conversion from ASCII to integer to

floating point, etc.

Merlin-128

6502 Macro Assembler

Development System

Written by Glen Bredon

Produced by Roger Wagner

Publishing Inc.

Review by M. Garamszeghy

There are a number of good assemblers currently available for the C-

128, among them Merlin-128. This entry, written by Glen Bredon and

produced by Roger Wagner Publishing Inc. bills itself as a complete

macro assembler editor system. Merlin is not copy protected and the

publishers even recommend that you make yourself a few backup

copies to work with.

The Transactor 58 January 1988: Volume 8, Issue O4

When you boot the Merlin disk, you are presented with the main menu

from which you can load or save source or object files, access disk

utilities, access BASIC'S MONITOR, exit to BASIC, etc. The options are

all fairly straight forward. Most of the work (except loading and saving

files) will be done in the EDITOR/ASSEMBLER mode. The MONITOR

can be used to view or test actual assembled object code.

Merlin features an editor with a wide range of screen and line oriented

commands for listing, inserting, deleting, moving lines, etc. The com

mands are entered with combinations of an alpha key with either the

control key (for line oriented commands) or the Commodore logo (C=)

key (listing oriented commands). Although the commands are fairly

logical, they may take some relearning if you are used to another editor,

such as Buddy. The Merlin editor assigns line numbers automatically

for you in increments of 1. To insert new statements between existing

ones, you must manually enter insert mode. Of course, all subsequent

line numbers are renumbered automatically. While this feature is

handy in some cases, it makes keeping the absolute location of a given

source code statement difficult if you move lines around a lot. It also

makes it imperative (as stated in the manual) that you delete lines in

reverse order. If you delete them in forward order, you will end up

deleting the wrong lines due to automatic renumbering after each

deletion.

Keyboard macros are supported using the ALT key and function keys.

ALT key combinations are used to enter opcodes (e.g. ALT-a will give

you LDA, ALT-j gives JSR, etc.) while the function keys will issue editor

commands.

The assembler offers a rich vocabulary of pseudo ops and directives. It

supports nested macros (up to 15 deep) as well as conditional assem

blies, assembly directly from a disk file, multiple source file linking,

generation of absolute and relocatable object code and a whole host of

other features which most machine language programmers find useful.

Although Merlin works primarily with PRG files, SEQ files containing

source code can also be accessed from within an assembly by the use of

an appropriate PUT pseudo op. Use of SEQ type files allows you to

create source code on your favorite word processor, which I find to be a

very convenient feature.

Macro libraries are supported with the USE pseudo op. With linked files,

labels can be either global or local, with each local label capable of

having a different value in different modules. Labels and other values

can even be assigned values from the keyboard during assembly.

Text can be handled in the source code in a bewildering variety of

ways: as PETSCII text, ASCII text, reverse video, strings with leading

length bytes, strings with last character high bit set, etc. The only text

format not supported is Commodore screen code. This complicates

high speed output to the video chips via direct memory access to video

RAM rather than printing to the screen. Numbers can be handled in

decimal, hex or binary. Decimal numbers are default. A special pseudo

op, FLO, will produce a five byte floating point representation of a

number.

The 140 and some page manual, for the most part, is well written and

easy to understand. However, considerable confusion is introduced at

some points where the text has not been adequately updated from

previous versions (see for example the printer command described

below). Numerous typographical errors can also be found throughout

the text. The manual assumes a certain level of understanding of

assembly language concepts and offers no guidance on assembly

language opcodes other than a brief description of how Merlin handles

certain addressing modes. The reader is referred elsewhere for a
tutorial on assembly language. As a plus, a pull out quick reference card
is provided. (It would have been nicer to provide it in the form of a
keyboard template rather than an alphabetical listing).

The Merlin disk contains a number of example programs, an object file

linker and an "unassembled or source code from object code generator

(cutely named "SOURCEROR" in keeping with its mystical image).

Each of these utilities is described briefly in the manual.

Although it has some interesting features, Merlin-128 appears to be

essentially the C-128 version of an assembler which has been floating

around the Apple][world for some time. While this does not mean to

say that it isn't any good, it could probably have been made better if it

were designed specifically for the C-128 from the ground up. A case in

point is certain portions of the instruction manual which were clearly

taken from an Apple manual without change for the C-128, even

though the context is totally different. For example, the printer com

mand PRTR is given with the syntax: PRTR <slot number>, etc. The

slot number refers to the expansion slot in the Apple chassis where the

printer interface is located. In the C-128 version, the <slot number>

actually refers to the printer device number. The example in the

manual uses a <slot number> of 2 (1 in the description of the example,

which adds to the confusion) instead of a usual C-128 type device

number of 4 or 5.

Because of its Apple heritage, the format of the required assembler

source code is perhaps different than what most Commodore users

would expect. The format is similar to CP/M and MS-DOS type

assemblers with its predefined LABEL, OPCODE, OPERAND, COM

MENT fields rather than the free form structure used by PAL, BUDDY

and similar assemblers. You are also restricted to one assembly lan

guage statement per line. While this makes things uniform, it can lead

to overlong listings of simple or standard assembly routines. The source

code is definitely not PAL compatible, although it would not take much

effort to translate PAL source code. Global search and replace features

should make replacing pseudo ops quite easy.

One feature Merlin lacks is a Z-80 cross assembler. Let's face it, the Z-80

on the C-128 is one of its most useful features, yet very few assemblers

will support it (Z-BUD from the BUDDY system does an excellent job).

A Z-80 cross assembler would allow you to conveniently take advan

tage of the 16 bit indexing and math modes of the Z-80, something that

the 6502 type chip sorely lacks.

In short, if you are looking for a reasonably good C-128 assembler and/

or you have used Merlin on another machine, then this program is for

you. If you already have a good C-128 assembler, then I can see no

reason why you should switch. Merlin is also available for the C-64 and

several other 6502 type machines.

For more information, contact Roger Wagner Publishing Inc., 1050

Pioneer Way, Suite P, El Cajon, CA 92020

Benchmark Modula-2

Modula-2 development system

for the Amiga

from Avant-Garde Software

Product

Manufacturer

Review by Nick Sullivan •

Benchmark Modula-2 Construction Set

Avant-Garde Software

2213Woodburn

Piano, Texas 75075

(214)-964-0260

The Transactor
59

January 1988; Volume 8, Issue O4

Retail Price : Benchmark Modula-2 $199.95

Simple Libs $ 99.95

CLibs $ 99.95

Image Resource + IFF Libs $ 99.95

Update/upgrade policy: Upgrades will be available to registered users

of Benchmark Modula-2 for $20-$60 depending on nature of enhance

ments and amount of new documentation. Bug fixes are not considered

upgrades and will be made available at cost of distribution.

The C language is lean, fast and flexible. It gives you the best of both

worlds - speed and size that are as close as you can come to pure

assembler, plus the data handling and powerful commands of a high

level language. Modula-2 is cumbersome by comparison. The code it

generates is much less efficient than that produced by a C compiler.

Moreover, its strong data typing andPapa-Wirth-knows-best philoso

phy are ridiculously confining... no wonder it is often described as a

voluntary straitjacket for neurotic programmers.

C is perhaps the weakest excuse for a high level language ever

developed. The "freedom " it givesyou to mix data types is an invitation

to disaster, and at best gives you programs that are almost impossible

to debug. Its syntax seems to have been specifically designed to

produce indecipherable source code: Modula-2 does not have these

problems. With M2, most errors are caught at compile time, so you

escape the run-time disasters that C programmers all too commonly

encounter. The source code is much easier to read, thus much easier to

maintain. And the claim that Cprograms are more ''efficient" isjust not

true - there's no reason at all why a Modula-2 program has to be

longer orslower than its Cequivalent. Ifit's maximum speedyou want,

turn to assembler, not to C... unless you like making life hard for

yourself.

To date, the contest between C and Modula-2 as the high-level

language of choice for Amiga development has been heavily lopsided in

favour of C. For one thing, the examples in Amiga programming

manuals like the Rom Kernel Manuals are almost exclusively in C,

much to the frustration of those who prefer, assembler or a different

high level language. For another, two excellent C compilers have been

available ever since the Amiga came out, whereas for Modula-2 pro

grammers there was only an indifferent offering from TDI. (Note: TDI

has recently announced the latest upgrade for their Modula-2 compiler,

which is claimed to fix the numerous bugs that have been reported in

previous versions.)

With the recent release of Benchmark, a new Modula-2 compiler for the

Amiga, the choice of a high level development language is no longer so

clear-cut. If the reaction on CompuServe's AmigaForum is any indica

tion, the Benchmark Modula-2 is going to interest a lot of people who
want to do serious Amiga programming.

example programs on the disks, mostly adapted from code written for

the TDI compiler, all this is the work of one man, Leon Frenkel.

The basic software components of Benchmark (which Frenkel calls a

"Modula-2 construction set") are the compiler, linker and editor. These

are all invocable separately from the CLI but generally will not be, as

both the compiler and linker are also available from function keys

within the editor itself. More conveniently still, the editor knows how to

read the compiler's error output, which is in a binary format otherwise

readable only with the aid of a supplied utility, and lets you step through

the offending lines of your source file (again with a function key) to

make corrections.

The compiler and linker are fast - even faster than their equivalents in

the Manx Aztec C compiler, as far as I can tell - so all in all you have a

very quick and friendly environment for developing programs. Execut

able programs created with Benchmark also run fast - just as fast as the

Manx C equivalent, according to Frenkel, though I haven't ben-

chmarked Benchmark and so can't verify that from personal observa

tion. The size of the executable will generally be a bit fatter than Manx

would generate, primarily owing (again, according to Frenkel) to the

way the Benchmark linker handles libraries - it includes the whole of

each referenced library in its output, not just the particular routines

used in the program. This has the most noticeable effect on smaller

programs (TWM, which is less than 4K under Manx, is about 9K under

Benchmark), and may help to account for Benchmark's very fast link

times.

The only real disappointment in the Benchmark package, for me, is the

editor, which is yet another variant of MicroEmacs - a slick, enhanced

Emacs, compared to others I've seen on the Amiga, but Emacs

nonetheless. Personally, I find Emacs very close to unusable for heavy

editing. However, I found that entering a program in another editor

(Rick Stiles' Uedit, in my case), then switching to the supplied editor for

compiling, linking and fixing errors was quite satisfactory. It must be

admitted, too, that one's choice of text editors is very much a matter of

personal taste, so some programmers will undoubtedly be delighted

with the inclusion of Emacs in the Benchmark package.

The imposing manual, in our Benchmark, is a special pre-release

version, and as such suffers from the haste with wnich it was obviously

prepared - on some pages the typos almost outweigh the text. A great

deal of it is given over to documenting the very extensive set of library

functions Benchmark provides, and even more is devoted to listings of

the ".def" files, which are Modula-2's equivalent of the include files

used in C and assembler. Other sections of the manual provide full

documentation on the editor (a lot of commands, in the true Emacs

tradition), the compiler and linker (here you get the usual command

line options for specifying input and output directories, search paths for

library and symbol files, a switch for including symbol information in

the executable file for use with a symbolic debugger like Wack, and so

on), and the other supplied utilities. Although the package does not

include its own debugger, a full source-level debugger is planned for
future release.

One very useful section of the manual provides a set of statement-by-
statement guidelines for converting C source to Modula-2, which is a

boon for anyone coming to M2, as I did, from a C background, and also
for M2 programmers new to the Amiga who are trying to make sense of

Our review copy of Benchmark arrived at Transactor several weeks
ago, which put us immediately in an awkward situation, since none of

us knew anything much about the language. That hard fact is the

principal background for this article, in which I want to describe the the heavily C-oriented system manuals. Anotner^sectionprovides
package for you, and tell you about my first foray into M2 program- detailed instructions for installing Benchmark on a varS of ArniJ
3^^^ system configurations,^ ^^
eisewnere in this issue. ,oaded Amiga with muWpJe f,oppieSj hard drjve and expansion RAM £

is worth pointing out that, even with the minimum configuration, it is
possible to have the editor, compiler and linker resident in RAM duringThe package first. Our copy came with six heavily loaded disks, and a 2

volume manual totalling more than 700 pages - in other words, an
impressive quantity of material. Apart from an extensive set of PD

program development, which speeds things up greatly. You may have
to play with the sizes of the various internal buffers used by the

The Transactor
60 January 1988; Volume 8, Issue O4

compiler in order to achieve this, but the necessary steps are fully

covered in the manual, and it doesn't sound difficult to do.

My overall impression of the Benchmark so far has been almost

uniformly favourable. Frenkel has clearly put a great deal of thought

and effort into making the system simple to use for novice programmers

without sacrificing power or efficiency. For example, one of the disks

that come with Benchmark is a boot disk, configured for a minimum

system, that puts you right into the editor. The source for a "Hello

World" program is loaded in automatically; you can compile and link it

by following the instructions in the comments at the front of the

program, and thus get a feeling for using the package within minutes of

opening at up, without once looking at the manual. I have never seen a

language package for the Amiga that was easier to get started with,

AmigaBasic included.

Another Indication of the work that has gone into Benchmark is the

libraries which, as mentioned above, provide a very rich set of functions

beyond the standard Modula-2 set. Some of the libraries are not part of

the basic package but may be obtained either by buying the complete

system (currently $299 US), or by separate purchase. One of these

additional sets of library modules seems to have been specifically

designed to seduce diehard C programmers - it contains complete

- implementations of the standard C libraries for file and terminal input/

output, memory allocation, string handling, character conversion and

more. Other additional libraries provide functions for simplifying the

programmer interface to Intuition, and for handling IFF and other

graphics chores in a straightforward way.

As for Modula-2 itself, I admit to mixed feelings. Like its predecessor,

Pascal, M2 is the work of Niklaus Wirth, and its flavour derives from

Wirth's preoccupation with academic correctness in programming

technique. Though M2 is certainly powerful and open-ended enough

that you can "beat the system" if you really want to, it does not lend

itself to underhanded programming tricks with the same casual ease as

C. This can seem confining at first, if you're accustomed to C's free and

easy ways, particularly since the two languages are syntactically quite

similar.

On the other hand, there are manifest advantages to the comparatively

rigid Modula-2 way of doing things. The strict M2 requirement that

operands and function parameters be of the correct types eliminates

many of the hard to trace bugs that type mismatches introduce into C

programs. Even though I find it annoyingly fussy that I can't mix an

INTEGER (signed int) with a CARDINAL (unsigned int) in an expression

without doing an explicit conversion, I have to grant that it's very nice to

pick up potentially disastrous type mismatch problems at compile time.

There are a few Modula-2 features I wish C had counterparts for. One is

the SET type, which allows you to treat a collection of objects as an

unordered set instead of an ordered array, with appropriate operations

for the union and intersection of sets, and for determining whether a

particular number is an element of a given set. Another handy feature

is the WITH statement, which reduces the overhead for initializing

structures (RECORDS, in M2-speak). This not only allows the compiler

to generate better object code, but also makes for a cleaner-looking,

easier to read source program.

Not surprisingly, there are also features of C that are conspicuously

absent from Modula-2. For me, the most aggravating (and inexplicable)

is the lack of any way of initializing static data in M2. Where in C you

might say something like:

intDayslnMonth[] = {31, 28, 31,...};

which costs you just 24 bytes of object code, since the table is

assembled directly into your program, Modula-2 requires you to declare

the array separately and initialize it with assignment statements, a

comparatively wasteful process. The Benchmark version of the lan

guage goes a long way towards dealing with this problem, when dealing

with graphics data, by providing a facility for concatenating the data

with your program, then accessing it by special purpose functions, but I

wish there were a more general solution.

Well, just as editors are matter of taste, so too are languages, and while

I'm still dithering over whether Modula-2 is for me, there are undoubt

edly many of who have already made up your minds in its favour. If you

are one of that many, take a serious look at Benchmark - it's right up

there among the best development systems the Amiga has to offer.

TWM in Modula-2

The following listing is a Modula-2 equivalent of the twmClient module

given in C elsewhere in this issue. Many of the comments have been

omitted to conserve space, but in a few places I have added new

comments pointing out differences and similarities between the two

languages as reflected in the program. The full Modula-2 source for

TWM will appear on the second Transactor Amiga disk, along with the

C source, executables, and several programs to which TWM support

has been added.

(*
This 'definition module" specifies which identifiers in twmClient may be

accessed by other modules. Except for the main module that every program

must have, all modules are either 'implementation modules' or a

corresponding "definition module' like this one.

♦)

DEFINITION MODULE twmClient;'

PROCEDURE PostMe(ClientName: ARRAY OF CHAR): BOOLEAN;

PROCEDURE UnPostMe();

PROCEDURE twmlnit(): BOOLEAN;

PROCEDURE twmCleanUp();

END twmClient.

IMPLEMENTATION MODULE twmClient;

(♦
This module should be compiled and linked with applications that wish to

be clients of TWM when it is present in the system. Briefly, the client

calls the function twmlnit to set up, afterwards calls PostMe whenever

he wishes to go to sleep, then finally calls twmCleanUp just before

exiting. Details are in the prefatory comments to TWM.mod (and TWM.c).

The FROM statements below correspond roughly to C include statements,

except that instead of including an entire file, only those identifiers

that are specifically wanted are brought in (their names appear after

IMPORT). It is also possible to include ALL the identifiers from a given

file by saying 'IMPORT Memory', for example, but in that case every .

reference to an identifier from that file must be preceded by the name

of the file plus a period (e.g. "Memory.AllocMem').

*)

FROM SYSTEM IMPORT ADR, BYTE, ADDRESS, TSIZE;

FROM Memory IMPORT AllocMem, FreeMem, MemReqSet, MemClear;

FROM PortsUtil IMPORT CreatePort, DeletePort;

FROM Ports IMPORT

WaitPort, GetMsg, PutMsg, FindPort, Message, MessagePtr, MsgPortPtr;

FROM Strings IMPORT StringLength;

FROM Nodes IMPORT NTMessage;

CONST (♦ These are constant declarations, similar to C #defines ♦)

NULL = NIL;

PortName = "TinyWindowManager";

GadgNameSize = 17;

twmActionAdd

twmActionDelete

= 0;

• 1;

The Transactor 61 January 1988; Volume 8, Issue O4

(♦ The underscores in the following are not allowed in standard M2, but

are an extension recognized by the Benchmark compiler ♦)

EJDK

EJDPENJNTUI

E_ALREADY.UP

E_OPEN_PORT

EJDPENJVINDOW

EJ\CTIONJJNKNOWN

EJASK.UNKNOWN

EJMOJVIEM

E_ABANDON_SHIP

= 0;

= 501;

= 502;

= 503;

= 504;

= 505;

= 506;

= 507;

= 508;

TYPE

twmMessagePtr = POINTER TO twmMessage;

The RECORD (i.e. structure) declaration in the following

is similar except in syntax details to the C equivalent.

twmMessage = RECORD

tmName

tmAction

: POINTER TO ARRAY [0..GadgNameSize-1] OF CHAR;

: INTEGER; END;

RETURN result;

END PostMe;

PROCEDURE UnPostMe;

VAR

portGobbler : ADDRESS;

BEGIN

twmport:= FindPort(ADR(PortName));

IF twmReady AND (twmport # NULL) THEN

Delmsg\tmAction: = twmActionDelete;

PutMsg(twmportA, Delmsg);

TWM will reply the original (ADD) message before replying this

one if it's going to reply it at all... hence the loop exit condition

)

REPEAT

portGobbler := WaitPort(mpA);

UNTIL GetMsg(mpA) = Delmsg;

END;

END UnPostMe;

VAR (♦ global variable declarations ♦)

mp :MsgPortPtr; (* reply port for our msgs

twmport :MsgPortPtr; (♦ points to twm's port

Addmsg : twmMessagePtr; (* twmActionAdd message

Delmsg : twmMessagePtr; (♦ twmActionDelete message

twmReady: BOOLEAN; (♦ TRUE when ports are allocated and initialized

This is a function procedure" - it returns a value. The type of the

returned value is declared after the colon at the end of the first line;

in this case, it is of type BOOLEAN.

PROCEDURE PostMe (clientName: ARRAY OF CHAR): BOOLEAN;

VAR (♦ declaration of variables local to this procedure *)

result : BOOLEAN;

(
The variable portGobbler is needed because you are not allowed to ignore

the value of a function procedure in M2... you have to do SOMETHING with

it. Here, and further on, it is assigned to a meaningless variable.

■•)

portGobbler: ADDRESS;

BEGIN

result := FALSE;

(
The caret character/A/ is used in M2 to dereference pointers. Thus

Addmsg\tmName is equivalent to C's Addmsg->tmName or, more precisely,

(*Addmsg).tmName. Notice that PutMsg and other functions want to be

RECORDS as arguments, not RECORD pointers. The octothorpe character '#'

is one of two ways of saying 'not-equal-to' in M2 (the other is '<>').

•)
IF StringLength(clientName) # 0 THEN

IF twmReady THEN

twmport: = FindPort(ADR(PortName));

IF twmport # NULL THEN

Addmsg\tmName : = ADR(clientName);

Addmsg\tmAction: = twmActionAdd;

PutMsg(twmportA, Addmsg);

portGobbler := WaitPort(mpA);

Addmsg: = GetMsg(mpA);

IF Addmsg\tmAction = EJDK THEN

result:« TRUE;

END;

END;

END;

END;

PROCEDURE twmlnit (): BOOLEAN; >

BEGIN

(♦
Because you can't test for the success of a function like AllocMemQ

in the same statement as you invoke it, a procedure like twmlnit is

significantly bulkier in M2 than in C.

|F NOT twmReady THEN

mp: = CreatePort(NULL, 0);

IF mp# NULL THEN

Delmsg := AllocMem(TSIZE(twmMessage), MemReqSet{MemClear});

IF Delmsg # NULL THEN

Addmsg := AllocMem(TSIZE(twmMessage), MemReqSet{MemClear});

IF Addmsg # NULL THEN

DelmsgA.tmMessage.mnReplyPort: = mp;

AddmsgA.tmMessage.mnReplyPort: = mp;

DelmsgMmMessage.mnNode.lnType: = NTMessage;

Addmsg\tmMessage.mnNode.lnType: = NTMessage;

twmReady := TRUE;

END;

END;

END;

END;

IF NOT twmReady THEN

twmCleanUp;

END;

RETURN twmReady;

END twmlnit;

PROCEDURE twmCleanUp ();

BEGIN

twmReady := FALSE;

(* TSIZE in the following is similar to C's sizeof operator. *)

IF mp # NULL THEN DeletePort(mpA); END;

IF Delmsg # NULL THEN FreeMem(Delmsg, TSIZE(twmMessage)); END;

IF Addmsg # NULL THEN FreeMem(Addmsg, TSIZE(twmMessage)); END;

END twmCleanUp;

END twmClient

The Transactor 62 January 1988: Volume 8, Issue O4

Amiga Dispatches
by Tim Grantham, Toronto, Ontario

It's been almost two years now since I began writing Amiga Dispatches -

time to stare into the fire over a foaming tankard, draw reflectively on the

pipe and reappraise the future of the Amiga and this column.

This column started as a kind of tip sheet. News was scarce in the

conventional media: the only source of current Amiga information was on

CompuServe. Most of that seemed suspect: "A board that you plug into the

68000 socket to make the Amiga faster than a VAX 11/780? Sure."

Lots of software was coming Real Soon Now. 'Real Soon' turned out.to be

two years, but it has finally arrived - so much so, in fact, that I am very

pleased to say that I can't possibly keep up with it anymore.

Those who have been faithful readers of this column have probably

noticed a shift in emphasis away from news coverage and towards

somewhat more personal commentary. Well, I'm making that official,

starting with this edition. From now on, Amiga Dispatches will have a more

selective focus than it originally had. It will dispense with breathless

announcements of new software and hardware and replace them with

more in-depth commentary on a broader range of topics: product trends,

programming, computing standards and applications.

I'm sure some of you are curling your lips in disgust at this point. "Oh God,

the last thing we need is a Jerry Pournelle clone." I can only say that I will

try to keep this column lively, informative and thought-provoking. In that

endeavour, I'm fortunate to have the subject I do. Frankly, I still think the

Amiga is the most amazing thing since Gandalf slew the Balrog and

returned to tell the tale.

All this is not to say that I won't mention the arrival of a game that pushes

the hardware to its limits or an expert system that will concoct recipes for

benign recreational Pharmaceuticals. But such products will have to

exemplify what I feel to be genuine innovation.

We at Transactor believe that, with the introduction of the 500 and the

2000, the Amiga has a rosy future. The 500 has a very good chance to

replace the C64 in the home market over the next five years. It may also

become the machine of choice for computer science students: where else

can you get a 68020/68881 machine for less than $1800 (US)? Not to

mention the multitasking OS and an array of mature yet inexpensive

development tools.

The 2000 will continue to find favour with engineers and scientists. I do not

believe, however, that the 2000 will make a serious dent in the business

market - MS-DOS is too deeply entrenched. But it will be the first Amiga to

be taken seriously as a business machine, even more so when it eventually

runs Unix.

The 1000 will probably gracefully retire, having spent itself blazing a trail

for the 500 and the 2000. It will be brought out on festive occasions and

given a place of honour, like restored Bugattis in Canada Day parades.

But even these confident prognostications may fall short of the mark. For I

think the Amiga in its various incarnations will provide the platform for

genuinely different applications. Given its hardware support for external

audio and video signals and the increasing 'digitalization' of television and

sound equipment, the Amiga will probably become the first personal

computer to be integrated into the average human being's electronic

environment.

Meanwhile, it's certainly no slouch in the here-and-now department. Some

very exciting work, for example, is being done at the Center for Productivity

Enhancement at the University of Lowell. Rich Miner, who is manager of

the Center, tells me they are busy porting NCS (Network Computing

System) to the Amiga.

Those of you who read my last column may remember NCS: it's Apollo

Computers' system for distributed applications that permits a program to

run across a network of computers. NCS is network, operating system and

hardware independent, and is the first proposal to provide the foundation

for truly integrated computing across a heterogeneous environment.

They have many types of machines at the Center: everything from micros

to mainframes. And they are all networked together, mostly via Ethernet

and NFS (Network File System). Miner (no relation to Jay) sees the Amiga as

a a very practical addition to any networked environment. "Why buy a VT-

100 terminal when for the same money you can buy an Amiga with an

Ethernet interface and be online to several different hosts simultaneously?"

When it comes to NCS, Miner believes the Amiga will provide an extremely

cost-effective entry into the NCS environment.

Miner is also partly responsible for yet another networking standard being

ported to the Amiga: he has given the source code to X-Windows to Dale

Luck at Commodore-Amiga.

X-Windows is a graphic interface standard developed at the Massachusetts

Institute of Technology and is destined to become the ANSI standard user

interface for networked environments. If you have X-Windows running on

your machine, it will permit your computer to open a window on any

screen on the network, be it an MS-DOS screen, a Mac screen or a Sun

workstation screen. Your computer controls that window, wherever it is,

exactly as it would one that had opened on its own screen: it can draw in

that window and receive input from it.

Like NCS, it has a rival from Sun Microsystems: NeWS, or Network

Windowing System. NeWS uses the PostScript page description language

developed by Adobe Systems (its founders did the preliminary work on

PostScript at Xerox PARC, where all windowing interfaces got their start).

With NeWS, each machine on the network has a PostScript interpreter

running. The drawing information for each NeWS window is received over

TheTr< sactor 63 January 1988: Volume 8, Issue O4

the network as a string of PostScript tokens. This means that even a

PostScript printer on the network could have a window opened on it and a

graphic generated. Of course, such a window could only be used for output.

With an ANSI committee working full steam on X-Windows, though, it

looks like it will becom& the official standard. Fortunately for Sun, NeWS

can implemented on top of X-Windows. As far as I know, NeWS has not

been ported to the Amiga, though it has been made available on the Mac

and the Atari ST.

What do NCS and X-Windows mean for the individual? Imagine this: you

are an engineer for a giant multinational corporation. Your company has to

produce a prototype design of a turbine fan for a high-performance jet

engine and it has to do it in one day. At 9:00 am, a conference call is set up

via satellite with the company's top minds from all over the globe in

attendance.

But this is not simply a voice conference - all the computers that each

engineer has access to are also linked up during this conference. Using X-

Windows and NCS, the participants can display their design ideas on

everyone else's screen; in several different views at once if desired. Various

processors on the network could be used to run tests or simulations or

analyses on the designs. Participants could modify other designs as well as

their own. Once a final design had been settled on, a numerically

controlled milling machine somewhere on the network, somewhere in the

world, would carve a hunk of metal into the actual prototype.

Of course, such a scenario demands an enormously fast, reliable means of

transmitting data. Fibre-optic links can provide such speed now. In fact,

according to Cesar Cesaratto, Vice President of Transmission & Hardware

Technology for Bell Northern Research, within the decade we will have

fibre optics that can transmit 100 terabits per second. With that kind of

speed, one half of the world's population could talk to the other half over

two optical fibres.

Which is ultimately the point - transparent communication between

people. In the conference scenario described above, the purpose of X-

Windows, NCS, computers, and networks is to provide the invisible support

for a free and productive interaction between the participants. And there is

no reason why one of those engineers couldn't have been using an Amiga

during that conference.

It's this extraordinary range of application of the Amiga - from arcade

machines like Bally's Sub Hunter to member in good standing in

communities of computers - that continues to fascinate me after two years

and will, I expect, for many more. Damn, it's a neat machine!

The news...

At SIGGRAPH, which is the Association of Computing Machinery's annual

conference on computer graphics, the same Center for Productivity En

hancement mentioned above demonstrated a graphics coprocessor board

for the Amiga 2000. The Amiga Parallel Imaging Coprocessor can

use up to seven NEC uPD7281 Image Pipelined Processor chips for an

effective processing rate of 35 MIPS. It should be available as you read this

and will cost $2000 (US). Full software support, including a library of image
processing functions, will be provided with the board. Similar boards for

other PCs and workstations can cost $30,000 (US) or more.

enhanced disk access program from ASDG Inc., must send in their original

disk, and $2.50 in US funds. American owners must send the original disk

and a self-addressed, stamped envelope... This note from Neil Cumfer in

reply to my query in the last edition ofAD: "Diga means 'Speak!' It is what

our Spanish-speaking amigos say (instead of 'hello') when they answer the

phone." Thanks, Neil... In turn, I can enlighten Neil Boyle of Calgary,

Alberta who wrote to enquire what TANSTAAFL' meant. TANSTAAFL

comes from the book The Moon is a Harsh Mistress by Robert Heinlein,

my personal favourite by that dogged solipsist. It stands for There Ain't No

Such Thing As A Free Lunch, and apparently originates in the days of Mr.

Heinlein's youth in Missouri when bars would offer free lunch to patrons

willing to pay an exorbitant price for the beer...

I dropped in on one of the Sunday night conferences on PeopleLink several

weeks ago and who should arrive but Rob Peck and RJ Mical! Mical

announced that his company, Grab! Inc., had bought the rights to the A-

Squared Live! digitizer. Live! had been lost in limbo for some time, as CBM

ran hot and cold on it through various corporate convulsions - a case <?f

suspended animation if there ever was one. The device should be available
as you read this, for $295 (US).

Speaking of RJ, he and David Needle, another Amiga original, have been

hired by David Morse at Epyx, who also hired them when he was CEO of

Amiga. They are charged with developing a new line of 'non-software'

products for Epyx.

Partners, Inc. here in Toronto have used Videoscape 3D to create

computer graphics for a Campbell's Soup commercial they have produced

for the American market. Look out for it during the World Series. John

Foust of Amazing Computing tells me they are also using Sculpt 3D and

his own Interchanger to convert object and camera motion files between

Sculpt and Videoscape. John is hard at work writing a number of graphics

support packages that include a texture-mapping program that lets you

project any IFF image onto the surface of a graphic object. You can buy

Interchanger for $49.95 (US) from1 him at Syndesis, 20 West Street,

Wilmington, Massachusetts, USA 01887. John is disassociating himself

from Amazing Computing, partly to avoid conflicts of interest and partly

because of dissatisfaction with the way the magazine is being operated. He

will continue to act as a technical consultant... Sculpt and Videoscape have

been joined by animation packages Forms in Flight by Micro Magic and

Silver by Impulse, and byThe Director, an elaborate slide show program

from the Right Answers Group... Word Perfect Corp. has established a

strong presence on CIS and are actively soliciting bug reports from owners

of the Amiga version ofWord Perfect. They have a good number to work

on (of bugs, that is) but are to be commended for their product support...

Those of you who just can't find a driver for that printer you've always

wanted to hook up can roll your own with the PD program prtdrvgen by

Joegen Thomsen. It's a lot of work, though. There are some 350 parameters

to fill in from your printer's manual... Look for COMAL soon on the

Amiga... Audio Master from Aegis Development is sound sample

editing software that works with all sound digitizing hardware. It costs
$59.95 (US)... SoftCircuits, Inc., who pretty well have the entire computer-
aided engineering market for the Amiga to themselves, also have some

intriguing PD software available, including a packet radio communications
program and a slow scan television program... Byte-by-Byte have, after

heavy advertising, stopped making their PAL Jr. peripheral box. Seems
there just wasn't a big enough demand to make it worth while They will

The Gemstone Group is now selling 68020/6888, boards for the Amiga h°WeVer'^ Provide^ suPPort f-*e ones already out there...

Canadians wishing to obtain Face fl, which is a major upgrade to the
The Transactor

Draco compiler for the Amiga is Chris Gray, i

64 January 1988; Volume 8, Issue O4

cuits' Scheme program sells for $199.95 (US). It is the Phis version that

sells for $499.95 (US)... My CIS ID number is not 71425,1646 but

71426,1646... Jo-anne Park spells her first name with a hyphen. Sorry, Jo

anne. ..

Cheath (Charlie Heath, author of TXeD) is one of the moderators of BIX's

Amiga forums. He and others are working on arp.library. This library

will contain all the standard C input and output routines, plus other useful

routines such as Cheath's getfile requester. Programs can then be cut

down in size by opening and using arp.library, rather than using code

added by the compiler. Of course, the Amiga running the program has to

have arp.library in the libs directory on the Workbench disk... Cheath is

also the source of an interesting tidbit of programming info: it seems that

the Request() function, which opens a requester, can return before the

requester has been fully rendered. If an immediate attempt is made to

change a gadget in the requester, it may fail. This could be the very reason

why I could never get RemoveGadget() and AddGadget() to work in the

requester I use in my keep program. I eventually gave up, and simply

made the changes without removing the gadget concerned first, and then

called RefreshGadgets(). It works, if a little crudely. Cheath suggests calling

a Delay() function immediately after the Request() function to ensure that

the requester has had a chance to be completely rendered in the window..

Transformer 1.2 should be out by the time you read this. Also out is the

reason why Commodore hung on to it for so long. Someone posted it to a

pirate BBS in the States shortly after it was received at Commodore several

months ago. Simile Research, the creators of the program, immediately

launched a lawsuit against CBM, blaming them for the leak. According to

Simile, apparently, there were only two copies of the program in existence

at the time it was handed over to CBM: one was in a safe at Simile's lawyer's

office; the other was given to Commodore. With the resolution of the

lawsuit, the program has been released. (As a side note, the same

programmers behind Transformer have created PCDftto for the Atari ST,

which provides PC emulation with colour graphics. It apparently cannot do

monochrome.)

Speaking of emulators, Randy Linden here in Toronto has accomplished a

rather amazing feat of programming. He has written a C64 emulator for the

Amiga that can handle such arcana as raster interrupts, fast loaders and

code intended for the SID chip. In a recent demonstration at the Transactor

offices, Linden's emulator ran every program thrown at it, except for some

copy protected products, though not at full speed. Among the programs

were several that pump the graphics and sound pretty hard.

Unlike the C64 emulator I. have mentioned in previous columns, Linden's

does not require a hardware interface - unless you call a cable an interface.

The program can use a 1541 connected via the cable to the Amiga's serial

port, or a regular 3.5" Amiga drive can be used to partition and format a

portion of a disk in 1541 format.

The program is not an absolutely perfect emulation: in addition to the

reduced speed (roughly half that of the 64, depending on the program),

rapidly changing raster interrupts can cause it to stumble, as well as double-

wide sprites. Nor does it work with all fast loaders; because they are so

dependent oh timing, Linden has to write custom code for each one.

At this point, Linden is thinking of selling the program for $49.95 (Can.),

$69.95 with the cable. At last, relative files on the Amiga!

I have been growing rather weary lately of the endless moaning from some

quarters about the deficiencies of AmigaDOS or the lack of a cheap, fast

hard drive. I have pointed out that AmigaDOS has had nowhere near the

time and money put into its development as Unix or MS-DOS. As for hard

drives, no-one can produce a cheap one for a market consisting of at most

200,000 machines. The economies of scale just don't come into play.

I was gratified then to receive this response from Chris Siebenmann,

currently a programmer at Gold Disk:

"*Sigh. I guess we just haven't talked recently about the good

aspects of the Amiga, like multitasking and a system architecture

that let me build a print spooler with three simple programs, or the

fact that the Amiga (with enough memory) is just about my ideal

development environment. Iknow ofno othermachine on which so

many neat hacks (PopCU, ClickToFront, FACQ vdO:, and many

more) could have been done so transparently and work togetherso

well. It's a wonderful system... which is why the bad bits provoke

me so much.

As to the hardware... amen. When Ibuy expansion hardware, I'm

going^ to pay extra for ASDG or Comspec reliability without even

blinking. It's worth it. For what you get, the prices ARENT out of

line. Name one other machine with cheap autoconfiguring HDs. I'll

give you a hint... it isn 't made by IBM."

Coming up next time...

CBM Canada has kindly lent me a 2000 for evaluation. The full report will

be in the next edition of Amiga Dispatches, but I can tell you right now, I'm

thoroughly spoiled. I don't want to have to go back to my 1000. In addition

to the standard 1 Mb of RAM, this 2000 has a 20 Mb hard disk shared by

the Amiga and a Bridge card. The hard disk is considerably faster than the

floppies: a typical compile and link seems to take only about one quarter

the time it did with floppies. An interesting side-effect of having the extra .5

Mb of RAM is that I have started using the Workbench again, rather than

just the CLI. It really shows that the Amiga doesn't come into its own until

you have a decent amount of memory to work with.

The 2000 on loan to me is a West German model. As you probably know, it

will be replaced by the so-called West Chester design, also known as the

B2000. This has some significant improvements, including a video slot with

a higher number of signals available, a Tat Agnes' chip and 1 Mb of RAM

on the CHIP bus, which opens the door to a possible upgrade on the

graphics performance, and a cleaner design overall. I hope to be able to

bring you a review of this machine as well. Hmmm. Maybe I can just get

CBM to keep lending me review machines...

By the way, Commodore has just published 77m? A500/A2000 Technical

Reference Guide, which provides complete schematics for the 500, the West

German 2000 and the West Chester 2000, in-depth hardware info and

complete Bridgecard documentation, including the Janus library calls. It

can be ordered from Lauren Brown (mistakenly referred to as •Laurie' in

my last column - sorry, Lauren) at CBM West Chester in PA, for $40 (US).

Also coming up are reports on the arrival ofTeX for the Amiga, version 4 of

the Lattice C compiler, and on AmiExpo, the Amiga Exposition to be held

October 10-12, in New York. I was invited by the organizers to appear on

one of the user panels but, to my bitter disappointment, could not raise the
funds to go. So I am dragooning Nick and Karl, who are going, into

grabbing every bit of information they can for me.

Until then, keep those cards and letters, electronic and otherwise, coming,

folks. They're appreciated.

CIS: 71426,1646

PeopleLink: AMTAG

BIX: dispatcher

GEnie: tgrantham

Bloom Beacon BBS: Tim Grantham

(416297-5607)

The Transactor 65 January 1988: Volume 8, Issue O4

TWMi

A Paneless Approach to Tiny Window Management
by Nick Sullivan

Most programs on the Amiga can be divided into three fairly tidy

classes. The commonest class consists of programs like DIR and

LIST, that you invoke as commands, that do their work then exit.

Another class consists of handlers, like the console handler Con-

Man, or PopToFront, from a few Transactors ago. These programs,

or their offspring, live in the system usually until next reboot but,

because they require no user interaction, they are invisible.

Programs in the third class are the ones you interact with for an

extended period of time, such as text editors, terminal emulators

and paint programs, or that you might keep around for sporadic

interaction, such as PopColours and Structure Browser. One benefit

of the Amiga's multitasking environment is that you don't have to

take such programs down in order to do something else. You can

switch readily from your editor to your terminal, for instance, and

keep your text in memory; you can switch from the terminal back to

the editor and stay on-line.

The extent to which you can take advantage of this capability

depends, of course, on how much RAM you have in your system in

relation to the size of the programs you're running. Even with a lot

of expansion RAM, though, you are still limited by the amount of

available "chip RAM" - the special area of memory that the Amiga's

custom chips can use. On current Amigas, chip RAM is limited to

512K and, while that sounds like a lot, it can quickly get eaten up by

programs that use lots of windows, colourful screens, gadgets, and

other display elements that need chip RAM to survive.

The other problem with running a lot of interactive programs

simultaneously is that they tend to crowd your monitor screen. That

makes for a lot of depth-arranging and resizing as you flit from one

task to another - the infamous "electronic shell-game" - and can

get pretty tiresome if you have to do a lot of it. A few programs even

put up a full-size window and won't allow you to get at the

Workbench screen behind.

One approach that some programs have taken to relieve the on

screen congestion has been to supply a "tiny window mode", which

can be invoked when the program is not in active use. This idea was

arrived at independently quite a while ago in at least two programs I

know of - Rick Stiles' shareware text editor Uedit, and Chris

Zamara's PopColours. In Uedit particularly, use of the tiny window

(invoked by clicking on the editor's title bar) achieves a significant

savings in chip RAM. Using a normal 640 by 200 window on the

Workbench screen, which has two bit-planes, Uedit needs 32K for

its bit-map, plus a bit more for gadgets. Its tiny window, however, is

a mere 100 by 20 pixels in size, and so consumes less than 600

bytes. Clearly, the chip RAM penalty for running concurrent appli

cations would be considerably eased if the use of a tiny window

mode was more widespread.

A tiny window consists of no more than an inch or two of title bar

with an equivalent thickness of empty window beneath. It is

draggable, and may be depth arranged (since part of its purpose is to

keep the application that owns it out of your hair), but not resizable.

Clicking in the empty part reactivates the parent program, prompt

ing it to take the tiny window down, put its working window (or

screen) back up, and carry on with business as usual.

One reason for this article is to advocate the use of tiny windows in

programs - including commercial programs - in which their use is

appropriate (for one approach to implementing a tiny window mode

see the listings for "TWM" and "Testl" below). Suppose this idea

were generally adopted, though, making it easier to run several

such programs concurrently. Now the user has another problem:

the new disorder of TWL (Tiny Window Litter), in which one's

visible workspace is obscured by annoying swarms of tiny windows

that continually seem to be getting in your way as you work, no

matter how much you try to shuffle things around.

So the other reason for this article is to present TWM, for Tiny

Window Manager', a small and easily implemented piece of code

that enables programs to support a tiny window mode while giving

users a method of avoiding the anguish of TWL, and the consequent

disruption of their lives.

From the user's point of view, TWM is a kind of central storage

compartment in which sleeping programs are housed, and from

which they can be activated. The programs do not have to maintain

any display of their own - not even a tiny window, so the user's

screen is free from clutter. TWM's own working window contains

gadgets bearing the names of its "client programs". When the user

clicks on one of these gadgets, the corresponding client program is

awoken and resumes operation. TWM also has its own tiny window

mode; when that is in use, the amount of chip RAM jointly

consumed for graphics by the client programs and TWM itself is

very small. When the system is hosting two or more applications

that support TWM, there is a significant savings in both resources

and convenience. Of course, even if TWM is not running, applica

tions that support it will run normally - but instead of disappearing

entirely when they go to sleep, they will put up a tiny window in the

usual way.

From the programmer's point of view, TWM comes in two parts -

the program TWM itself, and a short C-language module called

twmClient.c (also available in Modula 2 - see the review of Bench

mark Modula 2 in this issue). The twmClient code can be compiled

and linked with any application that supports a tiny window mode.

Let us suppose that this client application has been running in its

active mode but now, as a result of some action of the user's

(perhaps a menu selection, perhaps clicking on a gadget) it has

The Transactor 66 January 1988; Volume 8, Issue O4

taken down its working display and is about to put up its tiny

window and go to sleep.

Before taking that step, the application now calls the function

PostMe() in the twmClient module, passing as an argument the

name by which it would like to be known, as in:

PostMe(DPopColoursB);

PostMe(), in its turn, searches the system for a public message port

with the name "TinyWindowManager". If the search succeeds,

PostMeO sends a message to that port with the name of the client,

and waits at its own message port for a reply. Effectively, the client

application has now let itself go to sleep and, because it has closed

its working window, there are no visible signs of its existence.

The message sent by the client is now picked up by the TWM

program, which the user has earlier run, and which is now display

ing one of its own windows (either the tiny window or the larger

working window) on the user's screen. On receipt of the message

TWM creates a gadget bearing the client application's name. The

gadget will be displayed in TWM's working window (immediately, if

that window is up). There may be other gadgets in the window also

- one for each client application. This is the only indication that the

clients still exist and, when TWM is in its tiny window mode, there

is no sign of them at all. Chip RAM is conserved, and the user's

window is uncluttered. When the user later clicks on the gadget,

TWM replies to the message the client sent, deletes the gadget, then

forgets about the client altogether.

Back now to PostMe(), waiting asleep at its message port for a reply

to its message. The reply has finally come, signifying that the user

has selected the client's gadget in the TWM working window, and

wants the client to put up its own working window again. PostMe()

now returns to the client, with the value TRUE, and the client goes

back to work.

Several things might have gone wrong along the way. The most

probable of these is that the user may not currently have TWM

running. A remoter possibility is that TWM might have failed to

allocate memory for the client's gadget, or could not open a window.

In all these cases, PostMe() returns FALSE to the client, who then

knows that it is necessary to put up a tiny window of its own after all.

As you will see in the code that follows, there are other details. In

case the client application wishes to wake itself up (in response to

time-out or some other kind of message) while it is in TWM's care,

an UnPostMe() function is also provided. Most clients won't need

UnPostMe(); in that case, the programmer can remove UnP6stMe()

from twmClient.c to shrink the code even further. Another detail is

that TWM remembers where the user last placed its windows, and

restores them to the chosen position each time they are re-opened.

Uedit and PopColours also have this feature, and it is recommended

that other tiny window programs include it (see the pertly named

SavePosCloseW() function below for sample code).

The intent of TWM is to institute a standard of which all tiny window

programs can take advantage. Therefore all the following code is

freely redistributable, and may be used in any program - PD,

shareware, or commercial. New versions of PopColours and the XE

expression evaluation program from Transactor's Amiga Disk #1

now support TWM, and will be available on CompuServe's Amiga-

Forum, along with TWM itself, by the time this magazine is in your

hands. They will also appear on our second Amiga Disk, which

should be out in January.

LISTING!: TWM.C

/* TWM.c

Tiny-Window Manager v1.0

by Nick Sullivan

(c) 1987 Transactor Publishing Inc.

This program is freely redistributable provided that no charge is made

for the redistribution beyond reasonable reproduction costs, and that no

changes are made except with the prior written approval of Transactor

Publishing Inc., 85 West Wilmot St. #10, Richmond Hill, Ontario L4B 1K7.

TWM provides a storage area in which applications that are inactive, but

running, can wait to be re-activated without using any chip RAM. It thus

provides an alternative to the "tiny window" approach to minimizing chip

RAM use, as exemplified by such programs as Uedit and PopColours.

When TWM is run, it puts up its own tiny window, and creates a public

message port. Client applications should check for the existence of this

port and, if it is present, send a "twMessage" (as defined in twm.h) with

the twm_action field set to TWM_ACTION_ADD when they wish to go to sleep.

When TWM's tiny window is clicked in thereafter, a larger window will be

put up containing gadgets bearing the names of each client application

that has been added. Clicking on one of these gadgets will cause the

twMessage to be replied to, which is the signal for the client to

reawaken. At the same time as the reply is sent, the large TWM window will

be taken down, and the gadget for that client removed.

If a client wishes to reactivate itself before its TWM gadget is

clicked, or if it wishes to exit altogether, it should first send a

twMessage with the twm_action field set to TWM_ACTION_DELETE.

The twm_action field is used by TWM to return a code to the client that

indicates whether the requested operation was successful. The code for

success is E_OK. Other possibilities are:

E_NO_MEM A client has asked TWM to add a gadget, but TWM

was unable to allocate memory for the gadget structure.

EJVBANDON.SHIP 1) A client has asked TWM to add a gadget while

TWM has its large window up. In this case, TWM closes the large window,

and re-opens it after rethinking the gadget positions and the window size.

2) The user has clicked on TWM's tiny window, or closed its large

window, causing TWM to close the current window and attempt to open the

other one.

If the window open fails in either of these cases, TWM sends all

current clients this error message, then exits, since it has no means

of recovery.

EJASKJJNKNOWN A client has sent a TWMJ\CTION_DELETE, but TWM

does not currently have a gadget for that client.

ENACTION.UNKNOWN A message has been received with the twm_action field

set to an unknown code... currently the only possibilities are

TWMJ\CTIONJDELETEandTWM_ACTIONJ\DD. '

Sample C code for applications wishing to interface correctly with TWM

is contained in the file twmClientc. The header file twm.h is also

required. Before using other functions in this file, the client should

call PostMe(), supplying as an argument the name that should appear on its

gadget in the TWM window. The name can be up to GADGNAMESIZE -1

characters in length (currently 16 characters); excess characters are

removed.

The function PostMe() in twmClientc should be called when the

client wishes to deactivate. If this function returns TRUE, the client
should resume its life as an active application. If it returns FALSE,
either TWM is not present in the system or else the attempt to post failed

for some reason. In this case, the client should take an alternative

approach to deactivated living (like making its own tiny window), or else

not allow itself to be deactivated.
Programs that wish to be able to receive messages even when deactivated

(time-outs, for example), will need to use a modified version of PostMe().
If such a program wishes to reactivate before its gadget has been clicked
in the TWM window, it should first call UnPostMe() (no arguments, no

return) to inform TWM that the gadget should be taken down. Programs that
will NOT need to call UnPostMeQ (i.e. most programs) can use a version
of twrnClientc from which the UnPostMe() function and all references to

the global variable Delmsg have been removed.
Before the first call to PostMe(), the function twmlnitQ must be

invoked to set up the required messages and ports that PostMe() will need.
Before the client exits, it should call the function UnPostMeQ to

deallocate resources twmlnit() has allocated.

include "header/twm.h"

/* This invisible gadgetJives in TWM's tiny window. When clicked on, the
tiny window is removed and TWM's working window is opened. */

struct Gadget WakeUpGadget = {

The Transactor 67 January 1988: Volume 8, Issue O4

NULL,

2,10,116,10,

GADGHNONE,

RELVERIFY,

BOOLGADGET,

NULL,

NULL,

NULL,

0,

NULL,

0,

NULL,

/*

/* left, top, width, height •

/♦ flags - no highlighting

/* activation flags

/♦gadget type

/* no imagery

/* no alternate imagery

/♦ no text

/♦ mutual exclude

/* Speciallnfo

/* gadget ID

/* user data

struct NewWindow wtiny = {

480,60,120,20, /• left, top, width, height

/* detail pen, block pen

MDCMP flags

0, t,

GADGETUP

| CLOSEWINDOW,

WINDOWDRAG

IWINDOWCLOSE

| WINDOWDEPTH,

&WakeUpGadget,

NULL,

(UBYTE *)"TWM',

NULL,

NULL,

0,0,0,0,

*/

*/

*/

/♦Window flags

/* application gadget list */

/* special checkmark imagery ♦/

/* window title

/* custom screen pointer

/* super bitmap pointer

/* min/max width and height

WBENCHSCREEN /* screen type

struct NewWindow whuge = {

480,60,0,0, /♦ left, top, width, height

0, 1, /* detail pen, block pen

GADGETUP

MDCMP flags

/♦Window flags

| CLOSEWINDOW,

WINDOWDRAG

| WINDOWCLOSE

| WINDOWDEPTH

| SMART.REFRESH,

♦/

♦/

*/

♦/

NULL,

NULL,

(UBYTE *)TWM",

NULL,

NULL,

0,0,0,0,

WBENCHSCREEN /♦ screen type

/♦ application gadget list ♦/

/♦ special checkmark imagery ♦/

/♦window title

/♦ custom screen pointer

/♦ super bitmap pointer

/♦ min/max width and height

struct TextAttr twmFont =

(UBYTE *)'topaz.font\

TOPA^EIGHTY,

FS.NORMAL,

FPF.ROMFONT

{ /♦ 80 column topaz font

ii,ORT borderlines[5][2] = {/♦ simple box around gadgets ♦/

{-3, -3 },
{GADGWIDTH +3,-3 },

{GADGWIDTH + 3, GADGHEIGHT + 2},

{-3, GADGHEIGHT + 2},

{-3, -3 }

/♦ The following is the default contents of a client's gadget ♦/

struct twmGadget gadgTemplate = {
/♦ intuition gadget structure ♦/

NULL,

0, 0, GADGWIDTH, GADGHEIGHT,
GADGHCOMP,

RELVERIFY,

BOOLGADGET,

NULL,

NULL,

NULL,

0,

NULL,

0,

NULL,

/♦ intuition border structure ♦/
0,0,

2.0.JAM1,

5,

(SHORT ♦Jborderlines,
NULL,

/♦intuitext structure ♦/
1.0.JAM1,

/♦ address of next gadget

/♦ left, top, width, height

/♦ flags - invert to highlight

/♦ activation flags

/♦gadget type

/♦ address of border struct
/♦ SelectRender

/♦ address of intuitext struct

/♦ mutual exclude

/♦ Speciallnfo

/♦ gadget ID

/♦ user data

/♦ left edge, top edge

/♦front, back pens, draw mode

/♦ number of points in border

/♦ address of coordinate array
/♦ address of next border

0,1,
&twmFont,

NULL,

NULL,

/♦ name of gadget as supplied by client ♦/

/♦ front, back pens, draw mode

/♦left edge, top edge
/♦ address of TextAttr struct

/♦ pointer to text

/♦address of next IntuiText

♦/

♦/

♦/

♦/

♦/

♦/

♦/

♦/

♦/

♦/

♦/

♦/

*/

♦/

♦/

♦/

♦/

♦/

♦/

♦/

♦/

*/

/♦ pointer to message that requested this gadget ♦/

NULL

extern VOID ♦OpenWindow(), ♦OpenLibraryQ;

extern VOID ♦CreatePort(), ♦FindPortQ;
extern VOID ♦GetMsg(), ♦AllocMemQ;

struct IntuitionBase ♦IntuitionBase;

struct twmGadget ♦NewGadget();
struct MsgPort ♦mp; /♦ public port (called PORTNAME) ♦/

struct NewWindow +nw; /♦ describes current window ♦/

struct Window ♦w; /♦ pointer to current window ♦/

struct twmMessage ♦Tmsg; /♦ message arrived at mp ♦/

struct IntuiMessage ♦Imsg; /♦ message arrived at IDCMP ♦/

struct twmGadget ♦twmg; /♦ first gadget in my list ♦/

main()

{
register int exitflag;

register int swapflag;

register int tinyflag;

register UWORD class;

UWORDcode;

int gadgCount;

/♦ quit input loop if set ♦/

/♦ use other window (tiny/huge) ♦/

/♦ currently using tiny window ♦/

/♦ IDCMP message class ♦/

/♦ IDCMP message code ♦/

/♦ # of gadgets in my list ♦/

register struct twmGadget ♦gadget; /♦ gadget clicked in huge window ♦/

exitflag = FALSE;

swapflag = FALSE;

tinyflag = TRUE; /♦ start out with tiny window ♦/

gadgCount =0;

if ((IntuitionBase = OpenLibrary("intuition.library",33L)) == NULL)

CloseStuff(EJDPENJNTUI);

if (FindPort(PORTNAME) I = NULL) /* if we already exist, quit */

CloseStuff(EJ\LREADYJJP);

if ((mp = CreatePort(PORTNAME, OL)) == NULL)

CloseStuff(E_OPEN_PORT);

if ((w » OpenWindow(nw = &wtiny)) == NULL)

CloseStuff(E_OPENJVINDOW);

/♦ exitflag set by close gadget on tiny window if no current clients ♦/

while (lexitflag) {

/♦ waiting for message at IDCMP or our own port ♦/

Wait(1 L« w->UserPort->mp_SigBit 11L« mp->mp_SigBit);

while (Imsg = GetMsg(w->UserPort)) {/♦ check IDCMP messages first ♦/

class = lmsg->Class;

code = lmsg->Code;

gadget = (struct twmGadget ♦)lmsg->IAddress;

ReplyMsg(lmsg);

if (class = = CLOSEWINDOW)

/♦ exit from tiny window only if we have no clients, else beep ♦/
if (tinyflag)

if (gadgCount ==0)

exitflag = TRUE;

else

DisplayBeep(w->WScreen);

/* close gadget on huge window means switch back to tiny ♦/
else

swapflag = TRUE;

/♦ this message means gadget pressed in huge window ♦/
else if (class = = GADGETUP)

if (tinyflag)

swapflag = TRUE;

/♦ return code E_OK*/

/♦ get rid of gadget */

gadget->tgMessage->tmAction = E_OK;

KillGadget(gadget->tgMessage,TRUE);
gadgCount—;

swapflag = TRUE;

ReplyMsg(gadget->tgMessage);
/♦ switch to tiny

/♦ inform client

♦/

♦/

/♦ now check messages at our public port ♦/
while (Tmsg = GetMsg(mp)) {

/♦ client going on vacation, create a gadget for him ♦/
if (Tmsg->tmAction == TWM_ACTION_ADD) {

if ((gadget = NewGadgetfTmsg)) == NULL) {

Tmsg->tmAction = E_NOJ/IEM; /♦ send regrets ♦/
ReplyMsg(Tmsg);

else

gadgCount++;

/♦ if the huge window is up right now, close and re-open
sothat we can be sure the new gadget will fit ♦/

if('tinyflag){

SavePosCloseW(nw, w);
CalcGadgPos(nw);

if ((w = OpenWindow(nw)) == NULL)

The Transactor 68 January 1988: Volume 8, Issue O4

CloseStuff(E_ABANDON_SHIP);

}
/* client going right out of business, cancel his gadget */
else if (Tmsg->tmAction == TWMJVCTONJDELETE) {

/* kill the gadget, and ghost it if huge window is up */

if (KillGadgetfTmsg, Itinyflag)) {

Tmsg->tmAction = E_OK;

gadgCount—;

}}
else

Tmsg->tmAction

ReplyMsgfTmsg);

}
/* some message type we don't know ♦/

else {

Tmsg->tmAction = EJVCTIONJJNKNOWN;

ReplyMsg(Tmsg);

if (swapflag) { /* switch between huge and tiny windows */
swapflag = FALSE;

SavePosCloseW(nw, w);

nw = tinyflag ? &whuge: &wtiny;

tinyflag = Itinyflag;

/* if we're going to open huge window, reformat

gadgets and recalculate the window size */

if (Itinyflag)

CalcGadgPos(nw);

if ((w = OpenWindow(nw)) == NULL)

CloseStuff(E_ABANDON_SHIP);

loseStuff(E_OK);

/* CloseStuff

Close and deallocate everything. If there are any active clients, that

means something has gone wrong, so we send them an E^ABANDON.SHIP.

The return error codes start at 500 as defined in twm/header.h

*/

CloseStuff (error) int error;

{
register struct twmGadget *g;

g = twmg;

if(w) CloseWindow(w);

if(mp) DeletePort(mp);

if (IntuitionBase) CloseLibrary(lntuitionBase);

while (g!= NULL) {

g->tgMessage->tmAction = E_ABANDON_SHIP;

ReplyMsg(g->tgMessage);

KillGadget(g->tgMessage);

}
exit(error);

}

/♦ NewGadget

We have a new client to create a gadget for. We link him to the

NextGadget field of the last gadget on the list, set up the new gadget

and return its address.

•/
struct twmGadget *NewGadget (msg)

struct twmMessage *msg;

register struct twmGadget *g, *gprev;

register char *clientname;

register char c;

gprev = NULL;

g = twmg;

while (g!= NULL) {

gprev = g;

g = g->tgMynext;

if((g = AllocMem((long)sizeof(struct twmGadget), OL)) =

return FALSE;

if (gprev I = NULL) {

gprev->tgMynext = g;

gprev->tgGadget.NextGadget = &g->tgGadget;

*g = gadgTemplate;
clientname = msg->tmName + strlen(msg->tmName);

while (clientname > msg->tmName

&& (c = *(clientname -1))! = ':'

&&c !='/')

clientname—;

: NLJLL)

strncpy(g->tgName, clientname, GADGNAMESIZE -1);

g->tgGadget.GadgetRender = (APTR)&g->tgBorder;

g->tgGadget.GadgetText

g->tglText.LeftEdge

g->tglText.lText

g->tgMessage

if(twmg==NULL)

twmg = g;

return g;

&g->tglText;

= (GADGNAMESIZE-strlen(g->tgName))« 2;

= (UBYTE *)g->tgName;

= msg;

EJASKJJNKNOWN; /• unrecognized client */ /* KillGadget

Get rid of a gadget currently on our list. If offJlag is true, the

gadget is currently being displayed, so we'll ghost it. Return FALSE

if the gadget is not on the list.

♦/

KillGadget (msg, offJlag)

struct twmMessage *msg; int offJlag;

{
register struct twmGadget *g, *gprev;

int flag;

flag = FALSE;

gprev= NULL;

g = twmg;

while (g!= NULL &&!flag)

if (g->tgMessage->tmMessage.mn_ReplyPort ==

msg->tmMessage,mn_ReplyPort)

flag = TRUE;

gprev= g;

g = g->tgMynext;

if (flag) {
if (offJlag)

OffGadget(&g->tgGadget, w, OL);

RemoveGadget(w, &g->tgGadget);

if (gprev I = NULL)

gprev->tgMynext = g->tgMynext;

else

twmg = g->tgMynext;

FreeMem(g, (long)sizeof(struct twmGadget));

return flag;

/* CalcGadgPos

Position the gadgets in the huge window, and set the window

size to accommodate them. The gadgets are displayed four

across, to the maximum depth of the screen.

♦/

CalcGadgPos (nw)

register struct NewWindow ♦nw;

register int i, x, y;

register struct twmGadget *g;

i =0;

x = GADGHGUTTER + 2;

y = GADGVGUTTER + 10;

g = twmg; _ _

/* chain through gadget list, writing in new left and top */

while (g) {

g->tgGadget.LeftEdge = x;

g->tgGadget.TopEdge = y;

/* if this gadget is in R.H. column, reposition to left of next line ♦/

. if((i++&3)==3){

x = GADGHGUTTER + 2;

y + = GADGHEIGHT + GADGVGUTTER;,

else
x + = GADGWIDTH + GADGHGUTTER;

/♦ chain to next gadget */

g = g->tgMynext;

/* if there are no gadgets, make the window big enough to hold 1 */

if(i==0)

x = GADGHGUTTER * 2 + GADGWIDTH + 2;

/♦ if less than 4 gadgets, make window just big enough to hold them */

/* gadget counter

/♦ starting x position

/♦ starting y position

♦/

♦/

/♦ address of 1 st gadget */

/

()

nw->Width = x;

else /* otherwise make it full width ♦/
nw->Width = GADGHGUTTER + 2 + (GADGHGUTTER + GADGWIDTH) * 4;

/♦ if the last gadget on the list falls at the R.H. edge of
the window, y is already big enough; otherwise, make it so ♦/

if((i&3)==0)

nw->Height = y;

The Transactor 69 January 1988: Volume 8, Issue O'

nw->Height = y + GADGVGUTTER + GADGHEIGHT;

/* make sure that new dimensions of window will still fit

on the screen... if necessary reposition the window */

if(nw->LeftEdge + nw->Width > w->WScreen->Width)

nw->LeftEdge = w->WScreen->Width - nw->Width;

if(nw->TopEdge + nw->Height > w->WScreen->Height)

nw->TopEdge = w->WScreen->Height - nw->Height;

/♦ install our first gadget as the new window's first gadget */

nw->FirstGadget = &twmg->tgGadget;

/♦ SavePosCloseW

Save the current window position and size in the NewWindow

structure for that window, then close the window.

*/

SavePosCloseW (nw, w)

register struct NewWindow ♦nw;

register struct Window *w;

{
nw->LeftEdge = w->LeftEdge;

nw->TopEdge = w->TopEdge;

nw->Width = w->Width;

nw->Height = w->Height;

CloseWindow(w);

/* When compiling with Aztec, the following two stubs replace the Aztec

code for parsing the command line, thus reducing code size a bit •/

#ifdefAZTEC_C

_wb_parse(){}

_clLparse(){}

#endif!AZTEC_C

LISTING 2: HEADER/TWM.H

/* header/twm.h

This is the same header file for both twm.c and twrnClientc.

However, the intuition include is not needed for twmClient,

and can be omitted to reduce compilation time.

/

#include <intuition/intuitionbase.h>

#include <exec/types.h>

include <exec/memory.h>

#include <exec/ports.h>

#include <exec/lists.h>

#define PORTNAME ("TinyWindowManager")

#defineGADGNAMESIZE 17

#defineGADGHGUTTER 18

#define GADGVGUTTER 10

#define GADGWIDTH (GADGNAMESIZE« 3)
#define GADGHEIGHT 10

/♦ commands passed in twm_action field of a twmMessage ♦/
#define TWMJ\CTION_ADD 0

#defineTWMj\CTION_DELETE 1
/♦ return codes passed back in same field */
#dfi EOK#define EJDK

#defineE_OPENJNTUI
#defineEJ\LREADYJJP
#define E_OPEN_PORT

#define E_OPEN_WINDOW

#define EJ\CTION_UNKNOWN
#define EJASKJJNKNOWN
#define EJM0JV1EM

#define EJ\BANDON_SHIP
struct twmMessage {

struct Message tmMessage; /*

char *tmName; /♦

inttmAction; /♦

0

501

502

503

504

505

506

507

508

Exec message structure ♦/
the client's gadget name*/

add or delete gadget */

struct twmGadget{

struct Gadget tgGadget; . /• the gadget for a client ♦/
struct Border tgBorder; /* box around gadget */
struct IntuiText tglText; /* text in gadget ♦/
char tgName[GADGNAMESIZE]; /♦• string for Intuitext ♦/
struct twmMessage ♦tgMessage; /* msg to reply on click ♦/
struct twmGadget ♦tgMynext; /♦ my link to next gadget ♦/

LISTING 3: TEST1.C

/♦testi.c

This is a test program for TWM, and provides an example of using twmClient

in an application. It puts up a window named "Press any key'; if a key is

pressed, the window is taken down, and is replaced by either a tiny window

or by a gadget in TWM's window (if PostMeQ returns TRUE). Clicking in

the main part of the tinywindow kills it, and brings the big window back.

The same applies to the gadget in the TWM window, if it is being used

instead: clicking on it kills it and bring up this program's big window.

Clicking close in either the big or the small window exits the program.

The compiled testi program may be copied to test2, test3 etc, and all

copies run simultaneously, to get a better idea of how TWM works.

Under Aztec, put this program and twmClientc in the current directory,

and twm.h in the subdirectory "header", then compile and link thus:

cc + Htwm.p header/twm.h

cc+ltwm.p testi

cc+ltwm.p twmClient

In testi .otwmClient.o-lc

#include 'header/twm.h"

#define HUGEJVINDOWJMAME ((UBYTE ♦("Press any key")

struct NewWindow wtiny = {

280,120,120,20,

0, 1,

MOUSEBUTTONS

| CLOSEWINDOW,

WINDOWDRAG

WINDOWCLOSE

WINDOWDEPTH

SMART_REFRESH

ACTIVATE,

NULL,

NULL,

NULL,

NULL,

NULL,

0,0,0,0,

WBENCHSCREEN

' struct NewWindow whuge =
280,120,360,60,

0, 1,

CLOSEWINDOW

| RAWKEY,

WINDOWDRAG

| WINDOWCLOSE

| WINDOWDEPTH
• | SMART_REFRESH

| ACTIVATE,

NULL,

NULL,

HUGEJVINDOW_NAME,
NULL,

NULL,

0,0, 0, 0,

WBENCHSCREEN

/♦ left, top, width, height ♦/

/♦ detail pen, block pen ♦/

/♦IDCMP flags ♦/

/♦ Window flags ♦/

/* application gadget list ♦/

/♦ special checkmark imagery ♦/

/♦window title ♦/

/♦ custom screen pointer ♦/

/♦ super bitmap pointer ♦/

/♦ min/max width and height ♦/

/♦ screen type ♦/

/♦ left, top, width, height ♦/

/♦ detail pen, block pen ♦/

/♦IDCMP flags */

/♦ Window flags ♦/

/♦application gadget list ♦/

/♦ special checkmark imagery ♦/

/♦ window title ♦/

/♦ custom screen pointer ♦/

/* super bitmap pointer ♦/

/♦ min/max width and height ♦/

/♦ screen type ♦/

The Transactor

extern VOID ♦OpenWindowQ, ♦OpenLibraryf), ♦AllocMemQ, ♦GetMsgQ;
struct IntuitionBase ♦IntuitionBase = NULL;
struct NewWindow ♦nw = NULL;

struct Window ♦w = NULL;

struct lntuiMessage*lmsg = NULL;

main (argc, argv)

int argc; char **argv;

int exitflag; /♦ true when close gadget has been pressed ♦/
int swapflag; • /♦ true when it's time to switch between windows ♦/
int tinyflag; /♦ true when the tiny window is up */
UWORD class; /* IDCMP message class ♦/
UWORD code; /♦ IDCMP message code */
charfilename[31];
register int i, c;

/♦ Use program name as title of tiny window */
for (i = strlen(argv[O]) -1;

i > 0 && (c = argv[0][i -1])!=':'&& c != '/'; i—)

wtiny.Title = (UBYte *)(&argv[0][i]);

if ((IntuitionBase = OpenLibrary("intuition.library\33U) == NULL)
CloseStuff(E_OPENJNTUI); " '

/♦ Let twmClient do its allocations... we don't care this

7O January 1988: Volume 8, Issue O4

time, but it returns FALSE if the allocations fail ♦/

twmlnit();

/* initialize flags */

tinyflag = swapflag = exitflag = FALSE;

/♦ open the big window, and save pointer to its NewWindow struct */

if ((w = OpenWindow(nw = &whuge)) == NULL)

CloseStuff(E_OPENJVINDOW);

while (lexitflag) {/* IDCMP loop */

Wait(1 L« w->UserPort->mp_SigBit);

while (Imsg = GetMsg(w->UserPort)) {

class = lmsg->Class;

code= lmsg->Code;

ReplyMsg(lmsg);

if (class = = CLOSEWINDOW)

exitflag = TRUE;

/* swap if tiny window clicked, or key pressed in big window */

else if ((class == MOUSEBUTTONS && code == SELECTUP&& tinyflag)

. || class ==RAWKEY)

swapflag = TRUE;

if (swapflag) {

swapflag = FALSE;

/* remember where this window is now stationed, and close it */

SayePosCloseW(nw, w);

/* if tiny window is now up, or PostMeQ fails, open other window ♦/

if (tinyflag || !PostMe(wtiny.Title)) {

nw = tinyflag ? &whuge: &wtiny;

tinyflag = Itinyflag;

if ((w = OpenWindow(nw)) == NULL)

CloseStuff(EJDPENJ/VINDOW);

CloseStuff(E_OK);

/* CloseStuff

Call twmCleanUpO to deallocate messages and port we've been using,
then close our own stuff and exit.

*/

CloseStuff (error)

int error; /♦ errors start at 500 (see twm.h) except for E_OK = 0 ♦/

twmCleanUpQ; /* twmClient deallocations */

if(w) CloseWindow(w);

if (IntuitionBase) CloseLibrary(lntuitionBase);

exit(error);

/* SavePosCloseW

Save the current window position and size in the NewWindow structure for

that window, then close the window.

♦/

static SavePosCloseW (nw, w)

register struct NewWindow *nw;

register struct Window *w;

nw->LeftEdge= w->LeftEdge;

nw->TopEdge = w->TopEdge;

nw->Width = w->Width;

nw->Height = w->Height;

CloseWindow(w);

}■

LISTING 4: twmClient.c

/♦ twmClientc

Tiny-Window Manager v1.0

Client Interface Module

by Nick Sullivan

(c) 1987 Transactor Publishing Inc.

This program is freely redistributable provided that no charge is made
for th.e redistribution beyond reasonable reproduction costs, and that no

changes are made, except with the prior written approval of Transactor

Publishing Inc., 85 West WilmptSt. #10, Richmond Hill, Ontario L4B1K7.
Programs that incorporate this code should include in their documentation
the line: "This program supports TWM ((c) 1987 Transactor Publishing Inc.)'

This module should be compiled and linked with applications that wish
to be clients of TWM when it is present in the system. Briefly, the client
calls the function twmlnitQ to set up, afterwards calls PostMe() whenever

he wishes to go to sleep, then finally calls twmCleanUpQ just before
exiting. Full details.are in the prefatory comments to TWM.c. Note that

the size of this module can be further reduced, especially in programs

that do not require UnPostMe(); for details see comments in the code.

♦/

include "header/twm.h"

#define TWMJ/ISGSIZE ((long)sizeof(struct twmMessage))

extern VOID *CreatePort(), *FindPort();

extern VOID *GetMsg(), *AllocMem();

struct MsgPort *mp = NULL; /♦ reply port for our msgs */

struct MsgPort *twmport= NULL;/♦ points to twm's port */

struct twmMessage ♦Addmsg = NULL; /*TWMJ\CTION_ADD message */

/♦ The following line can be deleted if UnPostMeQ is not required. */
struct twmMessage *Delmsg = NULL;/♦ TWMJ\CTION_DELETE message ♦/

int twmReady = FALSE- /* TRUE means ports are allocated & initialized */

PostMe (clientName)

register char *clientName;

{
/* trying not to pass junk to TWM... this if-statement can

be deleted after the client application has been debugged. */

if (clientName == NULL || *clientName == '\0')

return FALSE;

/♦ check we're initialized and that TWM exists in system...

the first condition in the if-statement can be removed

after the client application has been debugged */

if (ItwmReady || (twmport = FindPort(PORTNAME)) = = NULL)

return FALSE;

/* set up our message telling TWM to add its gadget */

Addmsg->tmName = clientName;

Addmsg->tmAction = TWM_ACTION_ADD;

PutMsg(twmport, Addmsg);

/* The remainder of this function would need to be modified if

the client wants to be able to re-awaken on some stimulus

other than the user clicking its gadget in TWM's window. */

WaitPort(mp);

Addmsg = GetMsg(mp);

/* anything other than E_OK return code is bad news... forget about TWM */

return (Addmsg->tmAction == E_OK);

/* The following function can be deleted in normal use */

UnPostMe()

{
if (twmReady && (twmport = FindPort(PORTNAME))! = NULL) {

Delmsg->tmAction = TWMJ\CTION_DELETE;

PutMsg(twmport, Delmsg);

/* TWM will reply the original (ADD) message before replying this one

if it's going to reply it at all... hence loop exit condition */

do{

WaitPort(mp);

} while (GetMsg(mp)! = Delmsg);

/* This function must be called by the client before calling PostMeQ */

twmlnit()

if (twmReady) /♦ don't re-initialize */

return TRUE;

/* set up our messages, allocate a port. The allocation of Delmsg

can be deleted if the UnPostMeQ function is not required */

if ((mp = CreatePort(NULL, 0L)) = = NULL

|| (Delmsg = AllocMem(TWM.MSGSIZE, MEMF_CLEAR)) == NULL

|| (Addmsg= AllocMem(TWMJv1SGSIZE, MEMF.CLEAR)) == NULL

){
twmCleanUpO;

return FALSE;

else{

/* the next two lines can be deleted if UnPostMeQ is not required. ♦/
Delmsg->tmMessage.mn_ReplyPort = mp; .

Delmsg->tmMessage.mnJMode.lnJype = NT.MESSAGE;

Addmsg->tmMessage.mn_ReplyPort = mp;

Addmsg->tmMessage.mn_Node.lnJype = NTJviESSAGE;

return (twmReady = TRUE);

}

/* This function must be called by the client before it exits. ♦/

twmCleanUpO

twmReady = FALSE;

if(mp) DeletePort(mp);

if (Addmsg) FreeMem(Addmsg, TWM_MSGSIZE);
/♦ the next line can be deleted if UnPostMeQ is not required. ♦/
if (Delmsg) FreeMem(Delmsg, TWMJVISGSIZE);

TheTr< sactor 71 January 1988: Volume 8, Issue O'

The View Port ■c
By Larry Phillips

Larry Phillips is an Amiga hardware and software hacker from

Vancouver, British Columbia, and a SYSOP on CompuServe's

AmigaForum. This is the first instalment of a regular column in

which Larry talks about.. well, whatever is on his mind. You may

not always agree with his opinions, but we hope you'll enjoy his

discussions on a wide variety ofmostly Amiga-related topics.

Do you remember when the personal computer came onto the

scene? When the first home colour machines became available? The

first hard disk drives? How about software? Desktop publishing? All

of these advancements in the capabilities of the home computer

have been welcomed by enthusiasts. For months or years, the

buzzwords flew, refinements were anticipated, people wondered

when their own machine would be capable of such marvels.

There is a new wave of buzzwords now, and you will be hearing

them more and more in the next few years. The buzzwords have to

do with "multitasking". The reason you will hear more about this is

twofold. The first is that machines are becoming powerful enough,

and fast enough, to make it worthwhile. The second reason is that

the big players in the game will be introducing multitasking ma

chines, and of course will, as usual, claim not only that they

invented the technique, but that their particular implementation is

the best. We all know who these companies are, and in fact they

have already started the wheels in motion. IBM has announced the

PS/2 line, and Apple has announced their Mac II. Of course the

operating system for the PS/2 line is still vapour, and the Mac

doesn't have the MMU yet, but they are coming.

I am confident that IBM will pretend they invented multitasking, just

as they did with "Virtual Storage" on their mainframes. They may

not come right out and say so, but the people who buy computers

from them will look around after the fact and say, "Look at all those

other computer companies imitating IBM. Aren't we great for

buying our machines from the company that paved the way?"

Apple has already gone even farther. A sign on their booth at a trade

show recently proclaimed the Mac II to be "The first in a new

generation of multitasking home computers". Ask any Mac II owner

and he will tell you that the Mac II has multitasking capability. What

he won't tell you is his definition of the buzzwords. With the current

software on the Mac II, one can indeed multitask, but only if the

program that is currently running specifically relinquishes control

to the supervisory scheduling program, or if the user manually

causes a context switch to another, waiting application.

Let's take a look at a machine that really does multitask, one that

has been doing so for two years now. Of course I am referring to the

Amiga. The Amiga is not the first multitasking home computer, but it

does have one distinction from previous multitasking systems such

as the CoCo with the OS/9 operating system. That distinction is all

important, and is the fact that programs need not be specially

written to use multitasking. This means that a program, unless

written to inhibit multitasking, will get along fine with other pro

grams running concurrently.

I have heard multitasking referred to as a "gimmick", as "useless",

and worse. I have heard statements to the effect that "I can only do

one thing at a time anyway", or "I would never use it". One of the

nicest things I can say about multitasking is that I hardly ever notice

it any more. I don't think of it as a "feature" - multitasking has

become an ordinary, everyday activity for me, and I only appreciate

it properly when I am faced with the unpleasant prospect of using a

single-tasking machine.

With multitasking, you need not sit^and wait while a compile or

download is happening, or worry about whether you loaded up that

favourite "resident utility". Your favourite resident utilities are there.

All the time. All of them. Even your not-so-favourite ones are

there, ready to be called upon. Need to look up a name and address?

Uh oh... the compiler is running! No problem, just push the

compiler window into the background and do a directory, load up

an editor, a phone book, and address book, or in fact anything you

want. The only limitation is the amount of memory you have.

But won't everything run slower?

I'm very glad you asked that question, because it is one that can be

answered with an example. You don't get anything for nothing.

There's no such thing as a free lunch. We all know that, so where's

the catch? The answer is that there is no catch. You do get

something for nothing. What you get is better utilization of the

available machine cycles. You get to use the resources you paid for

when you bought your machine. Consider the following reasonably

typical scenario. We will look at it on two different machines, one

being the Amiga, and another being a mythical single-tasking

machine that just happens to run the same programs and at the

same speed.

First the single-tasker. We will consider three programs: a terminal

program, an editor, and a "CPU bound" program, say something

like a Mandelbrot picture generator. With the terminal program we

are going to download a file that will take about an hour at 300

baud. With the editor we are going to write the all time best novel/

computer game/whatever, and will spend an hour editing. The

Mandelbrot generator will do the picture we want in an hour (you

are papering your computer room walls with 'brots aren't you?).

The fact that the times are all one hour is an incredible coincidence,

but will serve our purposes.

On the single-tasking machine, we load up our terminal program,

call the network or BBS, start the download, and go have lunch.

When it is done, we can call up the editor and spend an hour

writing. Finally, we start the Mandelbrot generator and wait again.

Total time for these activities is three hours, not counting any time

we spent setting up each program. Three hours, in which we spent

exactly one hour interacting with the computer, and two hours

waiting for it to finish.

On the Amiga, things are far better. First, we start the Mandelbrot
generator, setting it to a priority of -2. Don't worry too

much if "-2" doesn't mean much to you yet. It's a magic

number that tells the Amiga something about your wishes.

72 January 1988: Volume 8, Issue 04

A little more on it later. Now, the good part starts. Right away, the

first reaction of a new Amiga owner is to sit and wait for it to finish.

Not so for the veteran! The veteran immediately starts up the

terminal program, setting it to a priority of 0 (another magic

number, the Amiga is full of them). The BBS or network is called,

and the download started. Pushing the terminal program back out

of the way, we finally call the editor, at a priority of -1, and start on

that program or manuscript.

By now youVe probably guessed that the Amiga is going to be busy

for less than the three hours required by the other machine, and of

course you're right. What happens is this: the three magic numbers

tell the Amiga that the terminal program (priority 0) has priority

over the other two programs, and that the editor has priority over

the Mandelbrot program. The Mandelbrot program can say any

thing it wants to the potted plant on the desk.

The result of this priority scheme is that whenever the terminal

program needs to get and process characters from the keyboard or

serial port, it will be allowed to do so, usually immediately, and at

worst, within a few milliseconds. Likewise the editor program will

only be active when it has to service the keyboard or perform a

command but, in addition, it will only be active when the terminal

program is not actually processing data. Since characters are com

ing in slowly relative to the speed of the CPU, even at 1200 baud,

the editor gets a lot of time to do its thing. Similarly, when the editor

is not busy processing, and the terminal is not busy, the Mandelbrot

program can churn out some more of its picture. The Mandelbrot

program is too busy to allow the potted plant any time at all.

The bottom line is that the terminal program runs very nearly at full

speed. It will be finished its download in about an hour. While it was

happening, you were writing, and noticed no slowdown in the

response of your editor, so for all intents and purposes, you got just

as much done in the hour as you would have otherwise. Hmm...

pretty good so far. We have done twohours' worth of computing in

just one hour. But what about the poor Mandelbrot program? Did it

get anything done? Of course it did! Neither downloading and

editing are very CPU intensive, and the Mandelbrot program got a

lot of cycles. Granted, it did not get an hour's worth of cycles, but it

got a lot. In practical terms, the Mandelbrot program will be about

half or three quarters of the way through, and will run for another

fifteen minutes to half an hour. It will run longer if you are a fast

typist, using more CPU cycles to service the keyboard input, and

shorter if you type like I do.

So, in somewhat under 1.5 hours, we have done three hours' worth

of work. I'd say that's a pretty good benefit, and when you consider

that even while doing all this, we were not prevented from calling

up some other job, or from looking at another file, listing disk

contents, performing calculations etc., it becomes something I, at

least, am not willing to do without on a home computer. I think it's

called "being spoiled".

In case I sounded a bit upset back there when talking about IBM and

Apple, let me say now that I am glad they are finally seeing the light.

Their multitasking, when it arrives, will effectively "legitimize" the

feature, and we Amiga owners can all sit back with very smug

expressions indeed. Of course, being polite, we will not laugh

uproariously when next year some IBM owner tells us how great it is

to be able to run four programs at once. Will we?

New! Improved!

TRANSBASIC 2!
with SYMASS1

"I used to be so ashamed of my dull, messy code, but

no matter what I tried I just couldn't get rid of those

stubborn spaghetti stains!" writes Mrs. Jenny R. of

Richmond Hill, Ontario. "Then the Transactor people

asked me to try new TransBASIC 2, with Symass®.

They explained how TransBASIC 2, with its scores of

tiny 'tokens', would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in

giving it a try. Well, all it took was one load and I was

convinced! TransBASIC 2 went to work and got my

code looking clean as new in seconds! Now I'm telling

all my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass, the symbolic assembler.

Package contains all 12 sets of TransBASIC modules

from the magazine, plus full documentation. Make your

BASIC programs run faster and better with over 140

added statement and function keywords.

Disk and Manual $17.95 US, $19.95 Cdn.

(see order card at center and News BRK for more info)

TransBASIC 2
"Cleaner code, load after load!"

The Transactor 73 January 1988; Volume 8, Issue O4

ACCESS
The best of non-commercial software

by Steve Ahlstrom, Denver, Colorado

This new regular column is a natural for Steve Ahlstrom - he's the.primary

sysop on CompuServe's AmigaForum, which, by the way, gets a lot oftraffic by

avid Amiga users and programmers. However, AmigaForum won't be Steve's

only source and you can bet he'll report any item worth knowing about. So if

you have some information you'd like to share, you can leave a message to

[76703,2006] on AmigaForum, orsend it to us and we'll pass it along to Steve.

In the world of freely distributable software for the Amiga, there

are many gems to be found. There is also a lot of broken glass.

This column is meant to help you find the more useful and

worthwhile of these programs.

First of all, I guess I should try to define just what "freely

distributable" means. There are generally 3 classes of "freely

distributable" software.

Public Domain

"Public Domain", on the surface, seems to be the easiest to

describe. In reality, it's probably the hardest (at least as far as US

copyright law goes).

To the non-legal type, "Public Domain" means that the author of

the work (in our case, the author of an Amiga program) has

given up all rights to the work and has placed his/her work into

the "Public Domain" for all to use, enjoy, change, sell, or

whoever the case may be. The intent is that the author claims

noVights at all on the work. Under US copyright law, though, it's

a little less clear-cut than that. The law does not specifically say

that something can be placed into the "Public Domain" other

than a work which has gone beyond the time frame granted for

copyrights. There are many rules about how authors may

reclaim their rights (within a specific time period) if for some

reason they feel that they have lost control of those rights. If

someone can place a program into the "Public Domain" then

later re-establish control of the rights they explicitly gave up

earlier, was it indeed "Public Domain" to begin with? See the

possible problems?

When it is stated that a program is "Public Domain", the intent of

the author usually is that the program may be freely distributed

and the author has no intention of reclaiming rights or limiting

distribution in any way.

Shareware

"Shareware" is a little more clear cut. It's merely a non-

conventional method of marketing a program. In some cases, it

works well, but in the vast majority of cases it is not very

effectual.

With "Shareware", the author is retaining all of the rights to the

work and is allowing distribution of the work via electronic

networks, BBSs, user groups and so on. Somewhere in the

documentation for the program you'll find a statement of the

author's stipulations for distribution. Normally it says something

to this effect: "If you like this program and find it useful, send me

$xx.xx. If you do not, feel free to distribute this further, but

please do not continue to use it if you have not paid for it." If you

do send the author money, you will usually be put on a mailing

list to inform you of newer versions of the program and how to

get them. Sometimes you'll be sent, upon payment, the latest

version and the printed documentation. Read the stipulations

carefully because each program is a little different.

"Shareware" is a good concept, but like many good concepts, it

has many abuses. It came about for a variety of reasons. The

foremost reason is that someone thought of a need for a program

but, because the program didn't have mass market appeal, no

mainline software publisher would pick it up. By making it

"Shareware" the author can get some money for the time and

effort spent creating the program. "Shareware" usually fills a

void between "Public Domain" and commercial software in

quality. Unfortunately, many people are now putting the "Share

ware" label on everything they write. The problem becomes

that everyone is asking for money. Many people have decided

that since they don't have to buy the program ih a store there is

no need to send in the money for it (even if they find the program

useful and often used) because everyone seems to be asking for

money. This is a decision only you can make. By not monetarily

supporting those "Shareware" programs you find useful, you

are discouraging the "Shareware" author from using this

method of marketing for other works: Many "Shareware" pro

grams really deserve support.

Other

The 3rd class is really just a subclass of "Shareware". It's a

program that is copyrighted but for which the author asks no

The Transactor 74 January 1988: Volume 8, Issue 04

compensation. The author retains the rights to the program,

often because he wants to leave his options open legally to stop

someone else from selling his work for a profit when his original

intent was for the program to be free.

SetPri: Adjust the priority of active tasks

SetPri by Ben Blish is a fine example of a needed program that

has little commercial marketability. To quote Ben's documenta

tion for SetPri:

"SetPri is NOT Shareware; far be it from me to presume

upon you. If you really like the program, just tell me so by

mail or on CompuServe. If you have suggestions, you can

give those also... if you want to complain, call Commo

dore. I don't want to hear it! <grin>."

SetPri allows you to set or change the priority of any task

currently active in the system. When SetPri is run, it brings up a

small window showing all of your current tasks. If you have

more than eight tasks active, you can scroll through the list with

the proportional slider. Just click on the task name (program

name) you wish to change and set the new task priority, either

higher or lower.

There are many times (like now) that I may have my Amiga

doing many things at once. Right now, I'm compiling a program,

downloading a program from the AmigaForum on CompuServe,

and typing this column. Since the compiler is doing frequent

disk accesses, and the priority is (normally) set higher than

either my term program or text editor, I was finding that I would

have characters 'dropped' when typing. So, I ran SetPri (which

has found a permanent home in my c: directory). I bumped up

the priority of my term program from 0 to 5 and of my editor

from 0 to 2.

With terminal programs and text editors, very little CPU time is

used. Only when you are actually typing do the programs need

to run. In CPU time, there is a huge amount of time for the

system to use between keystrokes (even if you are 150 WPM

typist!) Since I'm running the compiler in the background, it is

running marginally slower than it would if it were the only task

running but, because of resetting the tasks' priority levels, the

compiler isn't interfering with either my term program or text

editor. To me, controllable multitasking is the best thing the

Amiga has going for it, and SetPri makes it easy to obtain that

control.

Next Issue

There are dozens of freely distributable programs that can make

life a lot easier for you. I'm sure you know about many of them,

especially if you frequent the commercial networks and local

BBSs. Some of them may have slipped past your notice. There

are many freely distributable games, terminal programs, lan

guages, text editors, spell checkers - almost anything you can

imagine. I'll be telling you about many of them in future editions

of this column. If there is something specific you'd like to see

covered, just let me know!

Bits & Pieces I:

The Disk

From the famous book ofthe same name. Transactor

Productions now brings you Bits & Pieces I: The Disk/

You'll thrill to the special effects of the screen

dazzlersl You'll laugh at the hours of typing time

you'll savel You'll be Inspired as you boldly go

where no bits have gone before!

"Extraordinarily faithful to the plot

of the book... The BAM alone is

worth the price ofadmission/"

Vincent Canbyte

"Absolutely

magnetic!!"

Gene Syscall

"Ifyou mount only one bits disk in 1987, make it this

one/ The fully cross-referenced Index Is unforgettablel

Recs Read, New York Tl$

BITS & PIECES I: THE DISK, A Mylar Film, In association with Transactor Productions.

Playing at a drive near youl

Disk $8.95 US, $9.95 Cdn. Book $ 14.95 US, $ 17.95 Cdn.

Book & Disk Combo Just $ 19.95 US, $24.95 Cdnl

The Transactor 75 January 1988; Volume 8, Issue O4

News BRK

Submitting NEWS BRK Press Releases

If you have a press release you would like to submit for the NEWS BRK column,

make sure that the computer or device for which the product is intended is

prominently noted. We receive hundreds of press releases for each issue, and

ones whose intended readership is not clear must unfortunately go straight to the

trash bin. It should also be mentioned here that we only print product releases

which are in some way applicable to Commodore equipment. News of events

such as computer shows should be received at least 6 months in advance.

Transactor News

Transactor for the Amiga

In case you haven't heard, the premiere issue of Transactor forthe Amiga will be

released this January. The following few items describe some extra special offers

that you shouldn't miss - most expire January 1st, 1988.

Half Price Until January 1st!

In case that looks like a typo, here it is repeated. Subscriptions to Transactor for

the Amiga will be HALF PRICE until January 1st, 1988. Send just $7.50 US or

$9.50 Cdn for a full year of Transactor for Amiga programmers!

Disk subscription prices are even more incredible! Until January 1st, 1988, a

Transactor for the Amiga disk subscription will be just $29.95 US or $36.95 Cdn!

That's nearly half off the regular price! You'll get a disk with every magazine

containing all the programs we publish for the Amiga, and we'll probably add

extra programs that aren't published too.

After January 1st, 1988, regular subscription prices for Transactor for the Amiga

will be in effect. Magazine subscription prices are the same as for the original

Transactor - $ 15 US and $ 19 Canadian. Disk subscriptions for the new mag will

be a little more until the price of 3V2 inch disks comes down - $55.00 US and

$67.00 Cdn.

I Want To Switch!

With the Transactorfor theAmiga coming this January, many of our readers will

want to switch to the new mag for the higher concentration of Amiga material.

Naturally there will be others that won't, and still others that will want both

magazines.

To switch to the new magazine, there's no charge. Simply put your name and

subscription number on our postage paid card and check off the appropriate box.

Please don't omit your name as this gives us a cross-reference to ensure we

change the correct subscriber, record.

Remember, there's one more Transactor coming out before the first issue of

Transactorfor the Amiga. As usual, it will also contain Amiga material. But if this

issue marks your last one, you'll not only need to switch, you'll need to renew as

well.

I Want Both!

For those who want both magazines, we highly recommend you take advantage

of the pre-release subscription pricing for the new Amiga publication. After

January 1st, we'll be offering special combination subscription pricing, but it

won't match the nice pre-release deals we're offering now. Details to be

announced next issue.

Subscription Renewals and Enquiries

We get a lot of calls at the office. One common reason is to enquire about

merchandise that has not been received. So before calling about a subscription

order or other purchase, please try to follow these guidelines:

• First of all, make sure you contact the right people; if you receive Transactor

with the special TPUG insert, you should call TPUG, not Transactor Publish

ing. If you renew a subscription with Transactor, you will receive the magazine

without the insert, and your TPUG membership will not be renewed.

• Second, note the expiry date of your subscription; the Volume and Issue

number of your last issue is shown on the first line of your mailing label.

• If you're a subscriber, have your subscription number ready - it's the fastest

was for us to check.

Mail Order Products:

• Clearly print your full name, mailing address, phone number, and a Compu

Serve account number if you have one. Confirming an address or potential

error is accomplished mush faster over the phone, voice or data.

• For renewals, include your subscription number AND at least one other piece

of identifiable information such as your name. This allows us to ensure we

extend the right persons subscription. For new subscriptions, please include

your address. Believe it or not, we've actually received orders for subscriptions

and other products with no address - not only are we unable to comply, but we

can't even send back the uncancelled cheque!

• Ontario residents: remember to add 7% provincial sales tax. The reply card

clearly shows which items are taxable.

• Make sure payment is enclosed or credit card number is included, or we will

not be able to fill the order. If paying by credit card, clearly print ALL the

numbers of the card, and include the expiry date.

• Do not staple or glue subscription cards; cards sealed in this way can get

destroyed when opened, causing great problems in filling the order. It's best to

use tape around the three open edges.

The 20/20 Deal

.. .is still in effect - order 20 subscriptions to the mag or disk, 20 back issues, 20

disks, etc., and get a 20% discount. However, this offer cannot be combined with

other specials, or to TPUG subscriptions and products.

Transactor Special Offer

The special offer this issue is for Transactor Back Issues. Order any back issue at

the regular price of $4.50 (US/C), and get additional back issues for only $2.00

each! Order 10 total and the effective price per copy is cut by half! ($4.50 + 9 x

$2.00 = $22.50) Once again, this special offer is in effect for this issue only so it

applies only to orders postmarked before January 1,1988.

Transactor Mail Order

The following details are for products listed on the mail order card. If you have a

particular question about an item that isn't answered here, please write or call.

We'll get back to you and most likely incorporate the answer into future editions

of these descriptions so that others might benefit from your enquiry.

■ Moving Pictures - the C-64 Animation System, $29.95 (US/C)

This package is a fast, smooth, full-screen animator for the Commodore 64,

written by AHA! (Acme Heuristic Applications!). With Moving Pictures you use

your favourite graphics tool to draw the frames of your movie, then show it at full

animation speed with a single command. Movie 'scripts' written in BASIC can

use the Moving Pictures command set to provide complete control of animated

creations. BASIC is still available for editing scripts or executing programs even

while a movie is being displayed. Animation sequences can easily be added to

BASIC programs. Moving Pictures features include: split screen operation - part

graphics, part text - even while a movie is running; repeat, stop at any frame,

change position and colours, vary display speed, etc; hold several movies in

memory and switch instantly from one movie to another; instant, on-line help

available at the touch of a key; no copy protection used on disk.

■ The Potpourri Disk, $17.95 US, $19.95 Cdn.

This is a C-64 product from the software company called AHA!, otherwise

known as Nick Sullivan and Chris Zamara. The Potpourri disk is a wide

assortment of ,18 programs ranging from games to educational programs to

utilities. All programs can be accessed from a main menu or loaded separately.

No copy protection is used on the disk, so you can copy the programs you want

to your other disks for easy access. Built-in help is available from any program at

any time with the touch of a key, so you never need to pick up a manual or exit a

The Transactor 76 January 1988: Volume 8, Issue O4

program to learn how to use it. Many of the programs on the disk are of a high

enough quality that they could be released on their own, but you get all 18 on the

Potpourri disk for just $ 17.95 US / $ 19.95 Canadian. See the Ad in this issue for

more information.

■ TransBASIC II $17.95 US, $19.95 Cdn.

An updated TransBASIC disk is now available, containing all TB modules ever

printed. The first TransBASIC disk was released just as we published TransBASIC

Column #9 so the modules from columns 10,11 and 12 did not exist. The new

manual contains everything in the original, plus all the docs for the extras. There

are over 140 commands at your disposal. You pick the ones you want to use, and

in any combination! It's so simple that a summary of instructions fits right on the

disk label. The manual describes each of the commands, plus how to write your

own commands.

People who ordered TB I can upgrade to TB II for the price of a regular Transactor

Disk (8.95/9.95). If you are upgrading, you don't necessarily need to send us

your old TB disk; if you ordered it from us, we will have your name on file and

will send you TB II for the upgrade price. Please indicate on the order form that

you have the original TB and want it upgraded.

Some TBs were sold at shows, etc, and they won't be recorded in our database, If

that's the case, just send us anything you feel is proof enough (e.g. photocopy

your receipt, your manual cover, or even the diskette), and TB II is yours for the

upgrade price.

■ The Amiga Disk, $12.95 US, $14.95 Cdn.

Finally, the first Transactor Amiga disk is available. It contains all of the Amiga

programs presented in the magazine, of course, including source code and

documentation. You will find the popular "PopColours" program, the program

mer's companion "Structure Browser", the Guru-killing "TrapSnapper", user-

friendly "PopToFront", and others. In addition, we have included public domain

programs - again, with documentation - that we think Transactor readers will

find useful. Among these are the indispensable ARC; Csh, a powerful CLI-

replacement DOS shell; BLink, a linker that is much faster and has more features

than the standard ALink; Foxy and Lynx, a 6502 cross assembler and linker that

makes its debut on the Amiga Disk; and an excellent shareware text editor called

UEdit. In addition, we have included our own expression-evaluator calculator

that uses variables and works in any number base. All programs contain source

code and documentation; all can be run from the CLI, and some from Work

bench. There's something for everyone on the Transactor Amiga disk.

■ Transactor T-Shirts, $13.95 US, $15.95 Cdn.

■ Jumbo T-Shirt, $17.95 US, $19.95 Cdn.

As mentioned earlier, they come in Small, Medium, Large, Extra Large, and

Jumbo. The Jumbo makes a good night-shirt/beach-top - it's BIG. I'm 6 foot tall,

and weigh in at a slim 150 pounds - the Small fits me tight, but that's how I like

them. If you don't, we suggest you order them 1 size over what you usually buy.

One of the free gift choices we offer when you order a combination magazine

AND disk subscription is a Transactor T-Shirt in the size and colour of your

choice (sorry, Jumbo excluded). The shirts come in red or light blue with a 3-

colour screen on the front featuring our mascot, Duke, in a snappy white tux and

top hat, standing behind our logo in 3D letters.

■ Inner Space Anthology $14.95 US, $17.95 Cdn.

This is our ever popular Complete Commodore Inner Space Anthology. Even

after two years, we still get inquiries about its contents. Briefly, The Anthology is

a reference book - it has no "reading" material (ie. "paragraphs"). In 122

compact pages, there are memory maps for 5 CBM computers, 3 Disk Drives,

and maps of COMAL; summaries of BASIC commands, Assembler and MLM

commands, and Wordprocessor and Spreadsheet commands. Machine Lan

guage codes and modes are summarized, as well as entry points to ROM

routines. There are sections on Music, Graphics, Network and BBS phone

numbers, Computer Clubs, Hardware, unit-to-unit conversions, plus much

more... about 2.5 million characters total!

■ The Transactor Book of Bits and Pieces *1, $14.95 US, $17.95 Cdn.

Not counting the Table of Contents, the Index, and title pages, it's 246 pages of

Bits and Pieces from issues olTransactor, Volumes 4 through 6. Even if you have

all those issues, it makes a handy reference - no more flipping through

magazines for that one bit that you just know is somewhere... Also, each item is

forward/reverse referenced. Occasionally the items in the Bits.column appeared

as updates to previous bits. Bits that were similar in nature are also cross-

referenced. And the index makes it even easier to find those quick facts that

eliminate a lot of wheel re-inventing.

■ The Bits and Pieces Disk, $8.95 US, 9.95 Cdn.

■ Bits Book AND Disk, $19.95 US, 24.95 Cdn.

This disk contains all of the programs from the Transactor book of Bits and

Pieces (the "bits book"), which in turn come from the "Bits and Pieces" section of

past issues of the magazine. The "bits disk" can save you a lot of typing, and in

conjunction with the bits book and its comprehensive index can yield a quick

solution to many a programming problem.

■ The G-LINK Interface, $59.95 US, 69.95 Cdn.

The Glink is a Commodore 64 to IEEE interface. It allows the 64 to use IEEE

peripherals such as the 4040, 8050, 9090, 9060, 2031, and SFD-1001 disk

drives, or any IEEE printer, modem, or even some Hewlett-Packard and

Tektronics equipment like oscilloscopes and spectrum analyzers. The beauty of

the Glink is its "transparency" to the C64 operating system. Some IEEE

interfaces for the 64 add BASIC 4.0 commands and other things to the system

that sometimes interfere with utilities you might like to install. The Glink adds

nothing! In fact it's so transparent that a switch is used to toggle between serial

and IEEE modes, not a linked-in command like some of the others. Switching

from one bus to the other is also possible with a small software routine as

described in the documentation.

As of Transactor Disk #19, a modified version of Jim Butterfield's "COPY-ALL"

. will be on every disk. It allows file copying from serial to IEEE drives, or vice

versa.

■ The Tr@ns@ctor 1541 ROM Upgrades, $59.95 US, $69.95 Cdn.

You can burn your own using the ROM dump file on Transactor Disk #13, or you

can get a set from us. There are 2 ROMs per set, and they fix not only the SAVE®

bug, but a number of other bugs too (as described in P.A. Slaymaker's article, Vol

7, Issue 02). Remember, if SAVE® is about to fail on you, then Scratch and Save

may just clobber you too. This hasn't been proven 100%, but these ROMs will

eliminate any possibilities short of deliberately causing them (ie. allocating or

opening direct access buffers before the Save).

NOTE: Our ROM upgrade kit does NOT fit in the 1541C drives. Where we supply

two ROMs, Commodore now has it down to one MASSIVE 16 Kbyte ROM. We

don't know if the new drives still contain the bugs eliminated by our kit, but we'll

find out and re-cut a second kit if necessary. In the meantime, 1541C owners

should not order this item until further notice.

■ The Micro Sleuth: C64/1541 Test Cartridge, $99.95 US, $129.95 Cdn.

We never expected this cartridge, designed by Brian Steele (a service technician

for several schools in southern Ontario), would turn out to be so. popular. The

Micro Sleuth will test the RAM of a C64 even if the machine is too sick to run a

program! The cartridge takes complete control of the machine. It tests all RAM in

one mode, all ROM in another mode, and puts up a menu with the following

choices:

1) Check drive speed

2) Check drive alignment

3) 1541 Serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

A second board (included) plugs onto the User Port; it contains 8 LEDs that let

you zero in on the faulty chip. Complete with manual.

Transactor Disks, Transactor Back Issues, and Microfiche

All Transactors since Volume 4 Issue 01 are now available on microfiche.

According to Computrex, our fiche manufacturer, the strips are the "popular 98

page size", so they should be compatible with every fiche reader. Some issues are

ONLY available on microfiche - these are marked "MF only". The other issues

are available in both paper and fiche. Don't check both boxes for these unless

you want both the paper version AND the microfiche slice for the same issue.

To keep things simple, the price of Transactor Microfiche is the same as

magazines, both for single copies and subscriptions, with one exception: a

complete set of 24 (Volumes 4,5,6, and 7) will cost just $49.95 US, $59.95 Cdn.

The Transactor 77 January 1988: Volume 8, Issue O4

This list also shows the "themes" of each issue. Theme issues didn't start until

Volume 5, Issue 01. Transactor Disk #1 contains all programs from Volume 4,

and Disk #2 contains all programs from Volume 5, Issues 1-3. Afterwards there is

a separate disk for each issue. Disk 8 from The Languages Issue contains

COMAL 0.14, a soft-loaded, slightly scaled-down version of the COMAL 2.0

cartridge. And Volume 6, Issue 05 lists the directories for Transactor Disks 1 to 9.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

I Vol.

4, Issue 01

4, Issue 02

4, Issue 03

5, Issue 01

5, Issue 02

5, Issue 03

5, Issue 04

5, Issue 05

5, Issue 06

6, Issue 01

6, Issue 02

6, Issue 03

6, Issue 04

6, Issue 05

6, Issue 06

7, Issue 01

7, Issue 02

7, Issue 03

7, Issue 04

7, Issue 05

7, Issue 06

8, Issue 01

8, Issue 02

8, Issue 03

(■ Disk 1) ■ Vol. 4, Issue 04 - MF only (■ Disk 1)

(■ Disk 1) ■ Vol. 4, Issue 05 - MF only (■ Disk 1)

(■ Disk 1) ■ Vol. 4, Issue 06 - MF only (■ Disk 1)

- Sound and Graphics (■ Disk 2)

- Transition to Machine Language - MF only (■ Disk 2)

- Piracy and Protection - MF only (■ Disk 2)

- Business & Education - MF only (■ Disk 3)

- Hardware & Peripherals (■ Disk 4)

- Aids & Utilities (■ Disk 5)

- More Aids & Utilities (■ Disk 6)

- Networking & Communications (■ Disk 7)

- The Languages (■ Disk 8)

- Implementing The Sciences (■ Disk 9)

- Hardware & Software Interfacing (■ Disk 10)

- Real Life Applications (■ Disk 11)

- ROM / Kernel Routines (■ Disk 12)

- Games From The Inside Out (■ Disk 13)

- Programming The Chips (■ Disk 14)

- Gizmos and Gadgets (■ Disk 15)

-Languages II . (■ Disk 16)

- Simulations and Modelling (■ Disk 17)

- Mathematics (■ Disk 18)

- Operating Systems (■ Disk 19)

- Feature: Surge Protector (■ Disk 20)

Industry News

World Of Commodore Show

This year's World of Commodore Show promises to be as great as in previous

years, and we'll be there as usual. Show organizers tell us that the original floor

space allotment is 90% taken already and that more is being arranged.

Unlike previous years, the official show hotel is now the Airport Skyline. It's a bit

farther from the International Center, but the Skyline runs a regular shuttle bus

service to and from the show - a nice change!

Special show rates have been arranged - for more information contact Airport

Skyline reservations at (416) 244-1711.

New England 1987 Commodore-Specific Computer Fair

MARCA New England is hosting this event on November 14 and 15,1987 at

Park West Hotel and Club, Marlboro, MA. The Fair will include vendor exhibits of

Commodore 64,128 and Amiga products; seminars by nationally-known speak

ers on beginner users, telecommunications, languages, graphics, music and

more; public domain software and resource tables featuring hundreds of disks of

PD material for the Amiga and experts on hand to answer questions. General

admission is $15 for 2 days with unlimited seminars; one day admission is $8

without access to the seminars, $2 extra for seminar priviledges. MARCA

members should contact their user group for special rates.

Contact: Frank Ordway, 6FlaggRoad, Marlboro, MA 01752, (617)485-4677.

Also planned for the fair is "A Special Salute To Commodore" banquet on Friday,

November 13. Al Duncan, President of Commodore, and Jim Butterfield,

Commodore's most famous guru, will be the guests of honour. Cost for the

banquet is $18.95. Advance registration is required; make cheque payable to SF

Productions and send, along with name address and phone number, to: Sam

Evangelous, 74 West Street, Clinton, MA 01510

The 64 Emulator for Amiga

ReadySoft Inc. announces 'The 64 Emulator" for the Amiga. Simply insert the

Emulator disk into your Amiga and your Amiga becomes a Commodore 64. The

64 Emulator has full support for all Amiga disk drives and printers, and with an

optional interface cable, any Commodore 64 disk drive can be connected

directly to your Amiga through the parallel printer port. All video modes,

including sprites and raster interrupts (used in most games), as well as sound and

colour are fully supported. A monochrome option is included for additional

speed when colour is not required. Written fully in 68000 machine code for

maximum speed, The 64 Emulator takes full advantage of the Amiga's hardware

to give excellent 64 compatibility. Price is $39.95 US ($49.95 Cdn.), $59.95 US

($79.95 Cdn.) with interface cable. For further information contact: ReadySoft

Inc., P.O. Box 1222, Lewiston, NY, 14092, (416) 731-1472.

Commodore Creating Product List

The following is from a letter from Peter Baczor, Commodore Customer relations

manager, to manufacturers of products for Commodore machines:

In .an effort to better support our end-users I am creating a specification

library ofproducts available for use with our computers, the 64-C, C-128,

Amiga 500, Amiga WOO, Amiga 2000, andPC-10.

Iwouldbegreatly appreciative ifyou wouldsend me specification sheets for

the products currently available that will operate with any ofthe abovemen-

tioned machines. Please send this information to the following address:

Commodore Business Machines

Customer Relations, Dept.SU87

1200 Wilson Drive

West Chester, PA 19380

Thank you.

Regards,

PeterJBaczor

Manager, Customer Relations

New UEDIT Release

Uedit V2.3 is now available. Uedit is a Shareware text editor for the Amiga, noted

for editing power (up to 100 files at once) and extreme versatility. It uses mouse

cursor-placement and mouse-scrolling, function keys, menus, gadgets, and on

line help facility. All of these and virtually everything about Uedit can be

customized while you are using it. Up to 1680 user-defined menu selections and

hundreds of key, mouse, and gadget commands can be on-line.

V2.3 expands Uedit from being a remarkable Amiga text editor to being a

powerful and flexible word processor as well. V2.3 has a Teach Mode which

teaches beginners what each input does and many new features, such as tab

rulers, edit-while-you-print, document/nondocument mode, and many more.

Uedit can be configured (by an experienced user) to emulate popular word

processors. It has most of the same capabilities they do plus far greater power,

capacity, versatility, and ability to automate tedious editing chores. Uedit does

not have a built-in spell-checker and doesn't show boldface and italics on the

screen, but it works with any nonproportional font and with all known hardware

and system modifications to your Amiga.

You can order Uedit from Rick Stiles, P.O. Box 666, Washington, IN 47501. Uedit

costs $45 (US) and purchasing it makes you a registered user. You receive a serial

number, $15 commissions when others register from your serialized copy of

Uedit, a Shareware diskette which you can freely distribute, a private diskette

with full documentation on it, notification of upgrades, custom user-written

configurations such as UStar (written by Kurt Wessels) which emulates Word-

Star(tm) and Scribble!(tm), powerful directory utility and computer programming

configurations, a number of utility programs, and a 30-day satisfaction guaran

tee. Uedit keeps improving because of good ideas from its hundreds of users. As

a registered user you can subscribe to the Quarterly Newsletter, earn commis

sions for finding new users, purchase upgrades at low cost, and contribute your

custom configurations and good ideas to keep this program improving.

Comspec Hard Drive for the Amiga 1OOO

Comspec communications has just announced the availability of their new high-

performance hard drive for the Amiga. Features:

Auto-booting: in auto-boot mode, Kickstart and Workbench are loaded from

the hard disk immediately after powering up; no need to keep swapping disks,

even after a Guru Meditation. No other hard disk for the Amiga has this feature.

Able to handle media defects: Media defects are handled transparently to the

user, unlike other hard drives that force you to reformat the disk.

The Transactor 78 January 1988: Volume 8, Issue O4

NorwNNest
MUSIC

INC.

539 N. Wolf Rd., Wheeling IL 60090

Hours — Phone (312) 520-2540

Mon.-Thurs. 12:30-8:30, Sat. 9:00-4:00

We want to be shop!!

Hacked
Parts

SK£5
arable for some 8000,_9000 and B **• mod*/

One of a Kind • Surplus • Monthly Special • Closeouts
Limited quantities to stock on hand

8023 150cpS IEEE $179.95

4023p 100cps rehab $99.00

P-l cable $24.95

l-l cable $29.95

Pet switch $199.00

Pet daughters $105.00

Avatex 1200 modem $94.95

9090 7.5 meg rehab $495.00

64k ram exp 8032 $125.00

Monochrome Monitor $79.95

Smith Corona DM-200 $179.95

NWM's
INVENTORY CONTROL

SYSTEM*

■ loads program modules in less than 8 seconds

(superbase 2) to main menus in 3 seconds or less

■■■■■ ■ on screen pop-up calculator in transaction

■■■■■ modules

■ most data centered function use the calculator

keypad

■ versatile report features allow for 3 ways to print

the same report. User selects the fastest method

■ built in sophisticated export program allows for

complete packing of the database

■ type ahead feature allowed

■ you can display reports on screen

■ access to superbase menu for user developed

applications

B Version 1 8050 $49.95
B Version 2 8050 $49.95
C-128 Version 11571 $49.95

•Requires use of superbase B-128 Version 1&2 8050 $54.95

B-128

$145U.S.

new 128k user installable

memory expansion!

Introductory price of only $125.

SOFTWARE FOR THE B-128!!!

Superbase $19.95

Superscript $19.95

Superoffice Integrated

Superbase & Superscript $49.95

Calc Result $89.95

Word Result $89.95

Super Disk Doc 24.95

The Power of: Calc Result (Book) $14.95

C.A.B.S. Accounting

General Ledger $ 9.95

Accounts Receivable $ 9.95

Accounts Payable $ 9.95

Order Entry $ 9.95

Payroll $ 9.95

Buy all 5 for only $24.95

Superbase: The Book $14.95

Applied Calc Result (Book) $14.95

Commodore's

Superpet 9000

only $27995

while supplies last

With Five

Interpretive

Languages:

Cobol

Pascal

Fortran

Apl

Runs 8032 software.

Great for schools and students

64K Memory Expansion for 8032 only $125
upgrades your 8032 to an 8096.

COMMODORE

8000-9000 SOFTWARE & MISC.

9000 Superpet $279.95

64K exp for 8032 $125

Pet Switch $199

Pet Daughters $105

BPI General Ledger $25

BPI Accts Payable $25

BPI Job Cost $25

BPI Accts Receivable $25

BPI Inventory $25

Superscript 8032 $79

Superbase 8096 $79

OZZ Database $25

Legal Time Ace $25

Dow Jones Program $25

Info Designs 8032

Accounting System $50

Superoffice 8096 $149

Calc Result 8032 .

SFD 1001 1 Megabyte

Drive double sided 8250

format IEEE interface

PRICED AT $169.95 US

SFD-1001 is the drive that you should consider when you need large amounts of data storage. It holds
over 1 megabyte of data on its single floppy drive. Fast IEEE access for your C-64 or C-128. (C-64and
C-128 need an I EEE interface.) Why settle for slower drives with less storage capacity. This drive stores

substantially more programs and data. Think how much money you can save on disk purchases. In

fact, it stores almost 7 times more information than your standard drive. Bulletin board owners love
them. And what an introductory price! At $169.95 these drives will sell fast, so don't wait. This drive has

the identical format of a CBM 8250 drive, one of Commodores most durable floppy drives.

MODEL

DRIVES

HEADS/DRIVE

SFD-1001

1

2

STORAGE CAPACITY (Per Unit)

Formatted

MAXIMUM (Each Drive)

Sequential File

Relative File

Disk System

Buffer RAM (Bytes)

1.06 Mb

1.05 Mb

1.04 Mb

4K

DISK FORMATS (Each Drive)

Cylinders (Tracks) (77)

Sector/Cylinder

Sector/Track

Bytes/Sector

Free Blocks

TRANSFER RATES (Bytes/Sec)

Internal

IEEE-488 Bus

ACCESS TIME (Milli-seconds)

Track-to-track

Average track

Average Latency

Speed (RPM)

—

23-29

256

4133

40 Kb*

1.2 Kb

•

100

300

ORDER NOW WHILE STOCK LASTS!
Send or call your orders to: Northwest Music Center, Inc. 539 N. Wolf Rd., Wheeling IL 60090.
312-520-2540 For prepaid orders add 16.90 for 8023p, $25 Superpet, 9.95 SFD 1001.10.95 B-128.9.95
4023p, 15.95 9090 and 4.95 64K memory expansion. For software add $3.00 for first and $1.50 for each
additional book or program. Canadian shipping charges are double U.S. International orders, call for
shipping. For C.O.D. orders add 1.90 per box shipped. All orders must be paid in U.S. funds. Include
phone numbers with area codes. Do not use P.O. Box, only UPS shippable addresses. A 2 week hold
will be imposed on all orders placed with a personal or business check. C.O.D. orders shipped in U.S.
only and cash on delivery, no checks. 30 day warranty on all products from NWM, Inc. No manufacturer
warranty. NWM reserves the right to limit quantities to stock on hand and adjust prices without notice!

All prices quoted in US dollars.

Intelligent SCSI Controller: Allows for high-speed multitasking, leaving the

Amiga free to do other tasks while the drive seeks and retrieves data; other hard

drives will not even allow you to enter keystrokes while these operations are

occurring. The SCSI controller also allows for maximum expandability, allowing

the user to add additional hard drives, tape streamers, etc. The SCSI controller

also contains a battery backed-up clock, which automatically sets the system

time on power-up.

Hard Drive Chassis: Allows enough room to add hard drives from 10 to 300

megabytes, or space to add a second half-height hard drive or tape streamer. It

comes with a power supply that is capable of running on voltages from 100 VAC

to 240 VAC, at 50HZ or 60HZ without setting any switches or jumpers. The

chassis is equipped with a low noise fan to protect from overheating and provide

greater reliability.

The drive can be ordered with one or two 20 or 40 megabyte drives in the

chassis; larger sizes are also available.

Forpricing and other information, contact: Comspec Communications Inc., 153

Bridgeland Ave, Unit 5, Toronto, Ont. M6A 2Y6, Phone: (416) 785-3555 Fax:

(416) 785-3668.

ROMDISK with HYPERBOOT for the C64

Epimetheus Corporation has introduced its 128K-byte ROMDISK with HYPER

BOOT for the C64 and C128 in 64 mode. It combines all the hardware and

software you need to create a library of up to 150 of your favourite programs on

an EPROM bank attached to the user port. Transferring program files from a

1541 disk drive to the ROMDISK is made simple with a menu-driven program.

This software, called HYPERBOOT, is provided on an 8K cartridge. Once

programs are transferred from floppy disk to the ROMDISK, they load at a rate of

16,000 bytes per second. The ROMDISK comes in a finished case with all 128K

bytes of EPROM installed. It is erasable using ultraviolet light and can be re-

programmed thousands of times. Also available are two-way switches that allow

both a modem and the ROMDISK to occupy the user port ($39 US) and a 3-foot

extension ribbon cable to allow remote placement of the ROMDISK or a modem

($24.95 US). ROMDISK with HYPERBOOT sells for $179.00 (US).

Contact: Epimetheus Corporation, P.O. Box 171, Clear Creek, Indiana 47426

(812)336-4508.

MIDI Interface for C64/128 and 64C

Audio Digital Processing Systems is announcing the release ofoMlDI 64, an

intelligent MIDI interface for the C64/128 and 64C computers and all MIDI-

equipped instruments and devices.

MIDI 64 is the only all-Canadian MIDI interface, and introduces many innova

tions, such as a 16K auto-boot bank-switched EPROM containing: an extensive

MIDI supplement to BASIC for easy custom MIDI programming; a real-time 4-

track sequencer; a MIDI-data monitor for hex/binary/decimal real-time data

display; an interface/cable auto-test program. All programs are automatically

available on power-up, and can be switched out to run other software.

The MIDI 64 package includes: MIDI interface with EPROM installed, two MIDI

cables, full documentation on disk, and MIDI BASIC program examples.

With a suggested Canadian retail price of $199.95, ADPS is targeting MIDI 64 at

musicians, home hobbyists, students, repair technicians, and small recording

studios. The package is especially well-suited for programming and MIDI

teaching in the classroom, and first-time MIDI users. Dealer and distributor

inquiries are invited. Contact: ADPS, c/o Phil Honsinger, 86 Foxhunt Road,

Waterloo, Ontario, N2K 2Z6, (519) 886-6361.

GEOS Upgrade for the C128

Berkeley Softworks is offering GEOS for the C128 to registered C64 GEOS

owners for just $22.00 (US) plus $2.40 shipping/handling. The 128 version of

GEOS runs at 2 MHZ, supports 80-column mode, and uses the optional 1750

RAM expansion unit as a RAM-disk. Contact: Berkeley Softworks, 2150 Shattuck

Avenue, Berkeley, California, 94704, (415) 644-0883.

Video Digitizer for the C64

Eye-Scan from Digital Engineering is a video digitizer for the Commodore 64,

6C, SX64 and C128. Eye-Scan's cartridge plugs into the user port, and accepts a

composite video signal via a standard RCA jack. Conversion time is approxi

mately six seconds per gray level. Eye-Scan's software uses pull-down menus

and allows black and white imaging, up to eight gray levels, image inversion, and

1525 printer support. Also included is a programmer's utility package that allows

programmers to use the imaging capturing algorithms in their own programs.

Possible applications include animation, security, automated process control,

pattern analysis, robot vision, and text recognition. Contact: Digital Engineering

and Design, 2718 S.W. Kelly Suite C165, Portland, Oregon, 97201, (503) 245-

1503.

C128CP/MKit

INCA announces the release of a CP/M kit for the Commodore 128. The kit

consists of a 39-page booklet and two disks of CP/M public domain software

which: explains the use of some of the programs on Commodore's system disk;

demonstrates some of the main features of Commodore's CP/M; shows how to

get started using a modem to obtain more CP/M programs and information.

The "CP/M kit for the Commodore 128" lists for $29.95 (US). Contact: INCA,

1249 Downing St, P.O. Box 789, Imperial Beach, CA 92032.

Aegis Releases "Art Paks" for the Amiga

Aegis Development, Inc. has released "Art Pak, Volume 1" for the Amiga,

consisting of art done by Aegis' professional art team. Volume 1 includes

photograph-quality artwork of buildings for use as backdrops, pieces of eel

animations for creating one's own walking, moving animations. Since Aegis

Animator can do both metamorphic and eel animation, these images can be

used with both styles as different things.

Art Paks can be used with Aegis Images professional paint program, Aegis

Animator, and Aegis Draw, the entry-level CAD program for the Amiga. Any

program that can read IFF format graphics files will be able to take advantage of

these images. Art Paks will sell for $34.95 (US) at retail outlets for Amiga

software.

Genealogy Program for the 8032

Byteware now has a version of "the Genealogist" for the PET 8032, following

their versions for the 64, 128 and Plus/4. This program vastly eases the

Genealogist's record keeping tasks, and is available in 4040 or 8050 format. An

Amiga version is under development. Send a SASE to the following address for

information, sample sheets, and prices for the various programs (prices start at a

very reasonable $9.95 US). Maple City Software, 906 West 6th Ave., Monmouth,

IL, 61462.

8051 Cross Assembler for the C64 and C128

The Zipp-Code-51 is an assembler for the 8051 processor, used in smart

peripherals, robotics and other applications. The editor used is the standard

BASIC editor of the 64 or 128. There are two versions of Zipp-Code-51, optimized

for either the 64 or the 128. The package also includes a symbol cross reference

utility, a disassembler, and a binary to source file converter. Price is $49.95

(including shipping); specify C64 or C128 when ordering. Order from: Hughes

Associates Software, 45341 Harmony Lane, Belleville, MI, 48111, (313) 699-

1931.

Late-BRKing News: Oxxi Claims Benchmark M2

This just in, as they say. Last issue we ran a press release for the Benchmark

Modula-2 development package. The source for the software was given as Oxxi

Inc. of Fullerton, California, the company from whom we obtained the pre

release copy briefly reviewed in this Transactor(see page 59). A few weeks back,

we were informed by Leon Frenkel, author of Benchmark, that he had severed

relations with Oxxi and would henceforth be marketing his Modula-2 through

his own newly-formed company, Avant-Garde Software. Accordingly, it is Avant-

Garde's name (and pricing) that appears with the review. Just as we are about to

go to press, however, we have been told by John Houston of Oxxi that his

company is disputing Frenkel's claim to have title to Benchmark. Well, we aren't

lawyers, and we don't know which way this particular cookie will crumble. We

can tell you that Benchmark is (at this instant) available from Avant-Garde only,

that the question of ownership will probably be resolved one way or another by

the time we print our next issue, and that whatever happens the product does

exist and will be supported. By someone.

The Transactor 8O January 1988: Volume 8, Issue O4

THE TIME SAVER

Type in a lot of Transactor programs? •

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $8.95 US, $9.95 Cdn. Per Issue

6 Disk Subscription (one year)

Just $45.00 US, $55.00 Cdn.

(see order form at center fold)

Now Amiga Owners Can Save Time Too!
Transactor Amiga Disk #1, $12.95 US, $14.95 Cdn.

All the Amiga programs from the magazine, with complete

documentation on disk, plus our pick of the public domain!

THE WORLD OF

COMMODORE

BBBBBBBBBBBBBBBBBBBBBBBI IBBBBBBBB
BBBBBBBBI

IBBB

■ ■■■B|

IBBBBI

■ BBBBI
IBBBBI

IBBBBI

IBBBBI
IBBBBI

IBBBBI

m JJ-> i nntent

-^-yMf nresent an%usine

