

THE TIME SAVER

Type in a lot of Transactor programs?

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $8.95 Per Issue

6 Disk Subscription (one year)

Just $45.00

(see order form at center fold)

Also check out the TransBASIC Disk

Complete with 24 page manual, just $9.95!

Volume 8

Issue 01
Circulation at Large

72,000

Math

Start Address Editorial 3

Bits and Pieces ... 6
C-128 Easy Program Loading

C-128 80-Column Interrupt Routines

C-128 CAPS-lockq Fix

C-128 Bullet-Proof Windows

C-128 80-Column Display on a Television

1511 Half-Track Fix

The Drivelight Zone

Obscure C-64 VAL bug

G-Link ROM Compare

Input Trickery

C-64 Efficient Keyboard-Checking in Assembler

C-64 Scrolling Banner Routine

C-64 Undocumented Editing Mode

Easy Input Speedup from BASIC

Systematic Loop-Variable Naming

Selective Scratching

Amiga Automatic Up-Date

Pattern Matching With The Dir Command

Multiple-menu Selections

Speeding Up IFF File Access

TransBloopurz . . 20
Cap Meter Bits

N-Body Simulator on Transactor Disk 17

Some Notes on Transactor Disk 17

A Two-Button Mouse

Letters 13
Wanted - Plus/4 Technical Info

Wanted - an IMG stripper for tape

A lead on cables

Another IEEE for the 128

Ultimate frustration fix

Biblical Greek drills

Hardware book blurb

Grounding to a halt

Holes in Inner Space

Structuring Basic programs

FOG clarifies

Simplifying the raid

Double Density HR S&P

"Fast File" relocation

A dissenting vote for C Power

C Converter for Super-C vl

Super C and the RAM disk

TransBASIC graphing on one screen

Bundling TransBASIC dialects

Amiga music software shortage

More Superkit sorrows

News BRK
New Address and Phone Number

Subscription Intersection Set

Disk Subscription Notes

Free Transactor T's with Mag + Disk Sub.

Subscriber Mail Orders

Customs/Duty on Hardware Products

Transactor Mail Order

National Computer Conference 1987

4040 Drive Internals

76
GEOS Programming Guide

New Commodore Business Magazine

Genealogy Software from ByteWare

The MailRoom v2.1 for the Commodore 64

SpenceXPBBSforC64-$10

SpeedScript Updated for the C-128

Disk-2-Disk from CCS

New Interface for C-64/C-128 and IBM PC

Command Center for Commodore computers

Telecolumn 21

A Real Shuffle Subroutine shumes cards me way humans do 24

Function Manipulation: Roots and Integrals 25

Array Math Operations on the C64 simplify array calculations ... 28

A Faster Square Root for the C64 More accurate, too 34

Number AdthmetiC Add complex number data-types to BASIC . 36

raCtS Machine Language floating-point made easy 40

High-speed Multiplies and Divides ml math routines explained .. 42

Secondary Address Bits utae-knwn tips bom jimBuueifidd 44

Interfacing and Controlling the Armatron Robot ... 46

A list formatter for the Symass assembler OU

Variable and line-number cross referencing in a single command oA

A multi-format compare/display utility 56

Amiga Section:

An alternative to the electronic shell-game D<D

Stop that Guru before he stops you! 68

Amiga DiSpatCheS TheA2000and500, news, and some programming insights . 71

Compu-toons 75

The Transactor July 1987: Volume 8, Issue Ol

Transactor
The Tech/H»wi Journal For Commodor* Computer*

Athos Editor

Karl J. H. Hildon

Porthos Editor

Richard Evers

Aramis Editor

Chris Zamara

D'Artagnan Editor

Nick Sullivan

Art Director

John Mostacci

Administration & Subscriptions

Anne Richard

Kathryn Holloway

Contributing Writers

Ian Adam

David Archibald

Jim Barbarello

Anthony Bertram

Tim Bolbach

Ranjan Bose

Donald Branson

Anthony Bryant

Jim Butterfield

Betty Clay

Joseph Caffrey

Gary Cobb

Tom K. Collopy

Robert V. Davis

Elizabeth Deal

Frank E. DiGioia

Chris Dunn

Michael J. Erskine

Jack Farrah

William Fossett

Jim Frost

Miklos Garamszeghy

Eric Guiguere

Thomas Gurley

R. James de Graff

Tim Grantham

Adam Herst

Thomas Henry

John Holttum

David Hook

John Houghton

Robert Huehn

David Jankowski

Brian Junker

Clifton Karnes

Lome Klassen

Jesse Knight

Gregory Knox

David Lathrop

James A. Lisowski

Richard Lucas

Scott Maclean

David Martin

Steve McCrystal

Stacy Mclnnis

Chris Miller

Terry Montgomery

Ralph Morrill

Rick Morris

Michael Mossman

Bryce Nesbitt

Gerald Neufeld

Noel Nyman

Kevin O'Connor

Richard Perrit

Terry Pridham

Raymond Quirling

Richard Richmond

Gary Royal

John W. Ross

E.J. Schmahl

David Shiloh

P. A. Slaymaker

John Spencer

Darren J. Spruyt

Aubrey Stanley

David Stidolph

Richard Stringer

Anton Treuenfels

Audrys Vilkas

Jack Weaver

Evan Williams

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower

case mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o"

will of course be in lower case. Secondly, the lower case L (T) is a straight line as opposed to the

number 1 which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're

listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces

you insert will not be critical to correct operation of the program. When it is, the required number of

spaces will be shown. For example:

print' flush right'' - would be shown as - print' '[10 spaces]flush right

Cursor Characters For PET / CBM / VIC / 64

Down - 0

up -n

Right - ||

Left - [Lft]

RVS - Q

RVS Off - IS

Insert - |j

Delete - Q

Clear Scrn - Q

Home - Q

STOP - R

Colour Characters For VIC / 64

Black -

White -

Red - E

Cyan - [Cyn]

Purple- [Pur]

Green - Q

Blue - B

Yellow- [Yel]

5
Orange

Brown

Lt. Red - |S

Grey 1 - Q

Grey 2 - Q

Lt. Green - Q

Lt. Blue - 0

Grey 3 - [Gr3]

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

F5-

F8-

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing
The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton. Ontario,

L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class postage

paid at Buffalo, NY. for U.S. subscribers. U.S. Postmasters: send address changes to The Transactor, 277

Linwood Avenue, Buffalo. NY, 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM. VIC, 64) are registered trademarks

of Commodore Inc.

Subscriptions:

Canada $15Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department. 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 878 8438. Note: Subscriptions are handled al this address ONLY.

Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ For best results, use

postage paid card at center of magazine.

Please Note: The Transactor's

NEW

phone number is: (416) 737-2786

U.S.A. Distributor:

Capital Distributing

Charlton Building

Derby, CT

06418

(203)735 3381

(or your local wholesaler)

Quantity Orders:

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 5B4

(416)842 1555
(or your local wholesaler)

Norland Communications

251 Nipissinfj Road. Unit 3

Milton, Ontario

L9T 4Z5

416 876 4774

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 03, 04, 05,06, and Vol 5 Issues 02,

03, 04 are available on microfiche only

Still Available: Vol. 4: 01, 02. Vol. 5: 01, 04, 05, 06, Vol 6:01,02 03 04,05 06
Vol. 7: 01, 02, 03, 04. 05, 06. Vol. 8: 01

Back Issues: $4.50 each. Order all back issues from Milton HQ,

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per printed

page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro. WordCraft, Superscript,
or SEQ text files. Program listings over 20 lines should be provided on disk or tape. Manuscripts should be
typewritten, double spaced, with special characters or formats cleariy marked. Photos or illustrations will
be included with articles depending on quality. Authors submitting diskettes will receive the Transactor
Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor
Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please re
confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights basis

only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although
accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.

Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor July 1987: Volume 8, Issue O1

Our Last Newsstand Issue!

It's been just over eight years that I've been making Transactors, and

except for a couple of newsletters from Commodore when their HQ

was Palo Alto, and one or two out of Commodore in Japan, The T. was

the first Commodore periodical. At the time Gene Beales was doing

PET User Notes and Len Lindsay was making The PET Gazette

(which would become COMPUTE! Magazine). But aside from the

three, information was scarce and the big guys printed Commodore

related articles on occasion only.

Then there was the explosion. COMPUTE and Gazette had strong

footholds, and Commodore started publishing two slick efforts of their

own. Other independent publishers followed. But The Transactor

would stay a humble newsletter for another year. On June 1, 1982,

almost five years ago, Transactor finally broke out of its shell to

attempt the impossible: competition at the newsstand.

I learned how to typeset in a month, and shipped Volume 4, Issue 01

to a handfull of magazine racks that October. Surprisingly, we did well

- "surprising" because The T. was still just a newsletter, except it had

a colour cover and the articles were typeset instead of printed on the

NEC. I have to laugh when I leaf through one of those old issues,

kinda like looking at your first program in BASIC. I wasn't satisfied

when an article didn't end at the bottom of a page, but at the time I

didn't have the skill to do better. We store each issue on 256K, 8"

floppies. That first issue needed one - this issue we went through five!

But the information was solid and the Toronto area had a high

concentration of technocrats looking to assimilate and disseminate. In

fact, the content may have been too solid.

The following June we approached Master Media, a national news

stand distributor. They were skeptical about shipping another com

puter title to potentially saturated shelves, but decided to give us a go

anyway. Their U.S. counterpart, Capitol Distributing, didn't take us on

for the same reason. But after the Canadian market showed sales

steadily improving, they reconsidered. In June '84, 16,000 Transac

tors would find their way to stands across the U.S., and some even to

Europe, S.America, and Australia.

Orders came piling in. Both Master Media and Capitol increased their

orders every issue and would sell 50% of the copies or more (30%

sales at the newsstand is considered excellent by publishers). The

newsstand print order peaked at 53,000.

Naturally, the intent was to generate subscriptions - the mainstay for

any magazine. They did increase, but fell short of expectations. The

"solid" information we had to offer had a much smaller market than

the glossy full-colour material from our competitors. However, we

were confident that subscriptions would be generated by those

advancing beyond games and other pre-packaged hobbies. That

happened too. But again, the proportion of those who lose interest

completely is much greater than those who transcend to a fascination

with the science of computers.

Many things have happened over the years (which seem like

months), and within a month another milestone will be planted.

Myself, Richard, Chris and Nick have placed an offer with our parent

company to purchase Transactor Publishing Inc. The offer has all but

been signed. We take possession after this issue is shipped, and you'll

see that new addresses are on the back of our subscription card. Our

new HQ is a 1500 square foot unit in a professional plaza just North of

Toronto, and the builders should be starting work on our two-storey

office layout any day.

Unfortunately, the newsstand distribution business is just too tough.

Standard payment terms are 120 days from the "off-sale" date. Since

we publish once every two months, it takes 6 months from the day an

issue is pressed to the day we receive payment for the last copy sold.

Our printer won't wait that long, and between the four of us, we can't

float that kind of financing. So unless we can find another method for

getting Transactors to the magazine racks, this will be our last

newsstand appearance.

However, the newsstand sales do not generate a lot of revenue. In fact,

they're not supposed to. That may sound absurd, but like I said,

newsstand sales are supposed to generate subscriptions. A publishers'

main goal at the newsstand is to break even. Advertising rates are

driven by total sales, and that's where the profit lies. Of course

advertising revenue at The T. accounts for only a small deposit at the

bank. However, between subscriptions, disks, and our ancillary

products, income from CompuServe, and TPUG's regular purchase,

we've managed to do rather well. AND, we expect to continue doing

well!

There will be other changes, mostly cost cutting. The paper we print

on is the second most expensive available. We won't be regressing to

newsprint or anything, but the familiar coated stock used in most

publications actually costs less, and is more appealing to advertisers.

Yep, advertisers. And if anyone you know is interested in ad space,

we're all ears! Even if interest is high, though, I guarantee at least a

meg of type per issue as usual.

But according to my calculations, there's at least 25,000 of you

listening to me blabber right now that are not currently subscribing.

And we need your help. Besides, you won't be able to get Transactors

any other way, they'll come right to your door, and you'll be getting

them for less than they cost you now. Our next issue will feature

operating systems and it's looking like a good one. Porthos, Aramis,

D'Artagnan, and myself want to keep smashing out Transactors,

hopefully as much as you want to keep getting them! So if you've ever

considered subscribing before, now is the time!

Karl J.H. Hildon, Editor in Chief

The Transactor July 1987: Volume 8, Issue Ol

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from the

pages of The Transactor. It will let you check your work line by line as

you enter the program, and catch frustrating typing errors. The VERIFI

ZER concept works by displaying a two-letter code for each program

line which you can check against the corresponding code in the

program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or

C64, Plus 4, C128, and B128. Enter the applicable program and RUN it.

If you get a data or checksum error, re-check the program and keep

trying until all goes well. You should SAVE the program, since you'll

want to use it every time you enter one of our programs. Once you've

RUN the loader, remember to enter NEW to purge BASIC text space.

Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 4096 to enable the Plus 4 version (off: SYS 4099)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

BANK 15: SYS 1024 for B128 (off: BANK 15: SYS 1027)

Once VERIFIZER is on, every time you press RETURN on a program

line a two-letter report code will appear on the top left of the screen in

reverse field. Note that these letters are in uppercase and will appear as

graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that

line at the last minute which changes the report code. However, this

will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine nor

mally, checking each report code after you press RETURN on a line. If

the code doesn't match up with the letters printed in the box beside the

listing, you can re-check and correct the line, then try again. If you

wish, you can LIST a range of lines, then type RETURN over each in

succession while checking the report codes as they appear. Once the

program has been properly entered, be sure to turn VERIFIZER off with

the SYS indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead

of POKE 53281,0. However, VERIFIZER uses a "weighted checksum

technique" that can be fooled if you try hard enough; transposing two

sets of 4 characters will produce the same report code but this should

never happen short of deliberately (verifizer could have been designed

to be more complex, but the report codes would need to be longer, and

using it would be more trouble than checking code manually). VERIFI

ZER ignores spaces, so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!). Standard

keyword abbreviations (like nE instead of next) will not affect the

VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer, so

if you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities goes,

VERIFIZER shouldn't cause any problems since it works through the

BASIC warm-start link and jumps to the original destination of the link

after it's finished. When disabled, it restores the link to its original

contents.

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

01

JB

PA

HE

EL

LA

Kl

EB

DM

KE

JF

LI

BE

DH

GK

LH

KP

AF

IN

EC

EP

oc

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

10 rem* data loader for "verifizer 4.0" *

15 rem pet version

20cs = 0

30 for i = 634 to 754:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>15580 then print" ***** data error *****": end

70 rem sys 634

80 end

100:

1000 data 76,138,

1010 data 173, 164,

1020 data 145, 201,

1030 data 144, 141, 163,

1040 data 2,133,145,

1050 data 201, 13,208,

1060 data 254, 1,133,

1070 data 0, 2,168,

1080 data 165, 253,

1090 data 198, 254,

1100 data 251, 41,

1110 data 165, 251,

1120 data 141, 1,

2,120,173,163, 2

2,133,145, 88, 96

2,240, 16,141,164

2, 169, 165, 133

88, 96, 85,228

62, 165

251, 162

201, 32

41, 3,133,

16,249,232,

15, 24,105,

74, 74, 74,

128, 108, 163,

167,208,

0,134,

240, 15,

254, 32,

152,208,

193,141,

74, 24,

2,152,

133,144

120,165

2,165

144, 169

165,217

58, 173

253,189

230,253

236, 2

229, 165

0,128

105, 193

24,101

1130 data 251, 133,251, 96

VIC/C64 VERIFIZER

10 rem* data loader for "verifizer" *

15 rem vic/64 version

20 cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>14755 then print"***** data error

70 rem sys 828

80 end

100:

1000 data 76, 74,

1010 data 252,141,

1020 data 3,240,

1030 data 251, 169,

1040 data 3, 3,

1050 data 0,160,

1060 data 32,240,

1070 data 133, 90,

1080 data 232, 208, 229,

1090 data 32,210,255,

1100 data 89, 41, 15,

1110 data 165, 89, 74,

1120 data 32,210,255,

1130 data 32,240,255,

1140 data 101, 89,133,

3,165,251,141, 2

3, 3, 96,173, 3

17,133,252,173, 2

99,141, 2, 3,169

96,173,254, 1,133

91,

3,

0, 189,

15, 133,

32, 183,

56,

169,

24, 105

74, 74

169, 146

108,251

89, 96

0, 2,240

200, 152

198, 90

32, 240, 255

18, 32,210

97, 32

74, 24

32,210

0, 165

3.

3,

3,

3,

89,

, 22,

, 41,

, 16,

,169,

255,

210,

105,

255,

91,

':end

165

201

133

141

162

201

3

249

19

165

255

97

24

24

VIC/64 Double Verifizer Steven Walley, Sunnymead, CA

When using 'VERIFIZER' with some TVs, the upper left corner of the

screen is cut off, hiding the verifizer-displayed codes. DOUBLE VERI

FIZER solves that problem by showing the two-letter verifizer code on

both the first and second row of the TV screen. Just run the below

program once the regular Verifizer is activated.

The Transactor July 1987: Volume 8, Issue Ol

KM

BC

Dl

GD

IN

EN

KG

KO

FM

LP

100 for ad = 679 to 720:read da:poke ad,da:next ad

110sys679: print: print

120 print" double verifizer activated" :new

130 data 120, 169, 180, 141, 20, 3

140 data 169, 2,141, 21, 3, 88

150 data 96, 162, 0,189, 0,216

160 data 157, 40,216,232,224, 2

170 data 208, 245, 162, 0,189, 0

180 data 4,157, 40, 4,232,224

190 data 2,208,245, 76, 49,234

VERIFIZER For Tape Users Tom Potts, Rowley, MA

The following modifications to the Verifizer loader will allow VIC and 64

owners with Datasettes to use the Verifizer directly (without the loader).

After running the new loader, you'll have a special copy of the Verifizer

program which can be loaded from tape without disrupting the pro

gram in memory. Make the following additions and changes to the VIC/

64 VERIFIZER loader:

NB

AL

IB

OC

MO

EG

BD

KH

GL

DC

IP

30 for i = 850 to 980: read a: poke i,a

60 if cs<>14821 then print" *****data error*****": end

70 rem sys850 on, sys853 off

80 delete line

100 delete line

1000 data 76, 96, 3,165,251,141, 2,

1030 data 251, 169, 121, 141, 2, 3, 169,

1070 data 133, 90, 32,205, 3,198, 90,

2000 a$= "verifizer.sys850[space]"

2010 for i = 850 to 980

2020 a$ = a$ + chr$(peek(i)): next

2030 open 1,1,1 ,a$: close 1

2040 end

3, 165

3, 141

16,249

Now RUN, pressing PLAY and RECORD when prompted to do so (use a

rewound tape for easy future access). To use the special Verifizer that

has just been created, first load the program you wish to verify or

review into your computer from either tape or disk. Next insert the tape

created above and be sure that it is rewound. Then enter in direct

mode: OPEN1:CLOSE1. Press PLAY when prompted by the computer,

and wait while the special Verifizer loads into the tape buffer. Once

loaded, the screen will show FOUND VERIFIZER.SYS850. To activate,

enter SYS 850 (not the 828 as in the original program). To de-activate,

useSYS853.

If you are going to use tape to SAVE a program, you must de-activate

(SYS 853) since VERIFIZER moves some of the internal pointers used

during a SAVE operation. Attempting a SAVE without turning off

VERIFIZER first will usually result in a crash. If you wish to use

VERIFIZER again after using the tape, you'll have to reload it with the

OPEN 1:CLOSE1 commands.

Plus 4 VERIFIZER

Nl

PM

EE

NH

Jl

AP

NP

JC

ID

PL

CA

OD

LP

EK

1000 rem * data loader for " verifizer + 4"

1010 rem * commodore plus/4 version

1020 graphic 1: scnclr: graphic 0: rem make room for code

1030 cs = 0

1040 for j = 4096 to 4216: read x: poke j,x: ch = ch + x: next

1050 if ch<>13146 then print " checksum error": stop

1060 print " sys 4096: rem to enable"

1070 print " sys 4099: rem to disable"

1080 end

16,165,211,141, 2, 3

141, 3, 3, 96,173, 3

16,240, 17,133,212,173

133,211,169, 39,141, 2

16,141, 3, 3, 96,165

1090 data 76, 14,

1100 data 165, 212,

1110 data 3,201,

1120 data 2, 3,

1130 data 3,169,

Dl

LK

GJ

DN

GJ

CB

CB

PE

DO

BA

BG

1140 data

1150

1160

1170

data

data

20, 133,208,

0, 2,201,

176, 3,232,

data 240, 22,201,

1180 data 200, 152, 41,

1190

1200

1210

1220

1230

1240

data

data

data

data

data

data

16,198,209,

165,208, 41,

0, 12,165,

24, 105, 193,

0, 165,210,

96

162

48

208

32

3,

16

15,

208,

141,

24,

0,160, 0,189

144, 7,201, 58

242, 189, 0, 2

240, 15,133,210

133,209, 32,113

249, 232, 208, 229

24, 105, 193, 141

74, 74, 74, 74

1, 12,108,211

101,208, 133,208

PK

AK

JK

NH

OG

JP

MP

AG

ID

GF

MG

HE

LM

JA

El

KJ

DH

JM

KG

EF

CG

EC

AC

JA

CC

BO

PD

C128 VERIFIZER (40 column mode)

1000 rem * data loader for " verifizer d 28"

1010 rem * commodore d 28 version

1020 rem * use in 40 column mode only!

1030 cs = 0

1040 for j = 3072 to 3214: read x: poke j,x: ch = ch + x: next

1050 if ch<>17860 then print " checksum error": stop

1060 print "sys 3072,1: rem to enable"

1070 print " sys 3072,0: rem to disable"

1080 end

165,253,141, 2,

3, 3, 96,173,

240, 17,133,254,

1090 data 208, 11

1100 data 254, 141

1110 data 201, 12

3,

173,

1120 data 3,133,253,169, 38,141, 2,

1130 data 169, 12,141, 3, 3, 96,165,

3, 165

3

2

3

22

1140 data 133, 250, 162,

1150 data 2,

1160 data 3,

1170 data 22,201,

1180 data 152, 41,

1190 data 198, 251,

0,160, 0, 189,

58,

2.

0

201, 48,144, 7,201, 58,176

232,208,242,189, 0, 2,240

32,240, 15,133,252,200

3,133,251, 32,135, 12

16,249,232,208,229, 56

1200 data 32, 240, 255, 169, 19, 32, 210, 255

1210 data 169, 18, 32,210,255,165,250, 41

1220 data 15, 24,105,193, 32,210,255,165

1230 data 250, 74, 74, 74, 74, 24,105,193

1240 data 32,210,255,169,146, 32,210,255

1250 data 24, 32,240,255,108,253, 0,165

1260 data 252, 24,101,250,133,250, 96

B128 VERIFIZER Elizabeth Deal, Malvern, PA

1 rem save" @0:verifizerbi 28" ,8

10 rem* data loader for " verifizer b128" *

20 cs = 0

30 bank 15:for i = 1024 to 1163:read a:poke i,

40 cs = cs + a:next i

50 if cs<>16828 then print" * * data error * *"

60 rem bank 15: sys 1024

70 end

1000 data 76, 14, 4,165,251,141,130,

1010data 141, 131, 2, 96,173,130, 2,

1020 data 17,133,251,173,131, 2,133,

1030 data 141, 130, 2,169, 4,141,131,

1040 data 1, 72,162, 1,134, 1,202,

1050 data 233, 32,118, 4,234,177,136,

1060 data 32,240, 15,133,235,232,138,

1070 data 234, 32,110, 4,198,234, 16,

1080 data 230, 165, 233, 41, 15,

1090 data 208, 165, 233, 74, 74,

1100 data 141, 1,208, 24,104,

1110 data 165, 235, 24,101,233,

1120 data 164, 137, 133, 133, 132,

1130 data 32, 78,141,165,133,

1140 data 170,170,170,170

24, 105.

74, 74.

133, 1

133,233.

134, 32,

56, 229,

end

2, 165,252

201, 39,240

252,169, 39

2, 96,165

165, 27,133

240, 22,201

41, 3,133

249, 200, 208

193,141, 0

24, 105, 193

108,251, 0

96, 165, 136

38,186, 24

136,168, 96

The Transactor July 1987: Volume 8, Issue Ol

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - if we use it in the Bits column, we 'II credit you in

the column and send you a free one-year's subscription to The Transactor

C-128 Easy Program Loading Martin Hofheinz

Stockton, CA

When saving programs on disk, use the following procedure:

dsave"0:program name<shift space>:

This shows up in the directory as:

" program name":

(the shifted space shows up as a quote). Now you can load a

program directly from a directory display - just run the cursor up

the left margin of the directory until you get to the program you

want to load, press <F2> and <return>, and the program loads

without any typing!

You can use the rename command to change the existing

programs on the disk to the new shift-space format.

C-128 80-Column

Interrupt Routines

Stephane Laroche

Ste-Foy, Quebec

Have you ever had trouble programming the 8563 chip (80-

column display controller) through an interrupt routine? Due to

the way you program this chip, you have to design an interrupt

that won't access the 8563 at the same time a program (or the

built-in 80-column screen editor) does. A clock that is displayed

continuously on the 80-column screen is an example of a

program that needs to use such an interrupt.

I found a clean way to resolve this problem. You have to begin

your interrupt routine with these instructions:

Ida $0107,x

cmp #$c0

bcc UIRQ

cmp #$d0

bcc HIRQ

UIRQ jmp 'your interrupt'

HIRQ jmp $fa65

This will work nicely when you are using BASIC or the monitor.

If you are running a machine language program, make sure that

every read or write to the 8563 is made through the routines at

$CDCC and $CDDA.

C-128 CAPS-lockq Fix Hal V. Weant

High Pont, North Carolina

An undocumented feature of the Commodore 128 is the 'q' key

that will not respond to the caps lock key. The problem turns out

simply to be the representation in the keyboard lookup table

used for the letter q when the caps lock key is depressed. The

value of $51 is found where a value of $D1 should be.

The cure is simple, but it will require programming an EPROM.

For this reason it is best that you are a technically inclined

person who is comfortable with dismantling the C-128 or have

someone on hand who is. You will also need to have on hand a

Promenade EPROM programmer and a working C-64 or C-128

for burning the chip.

The chip to remove and copy is U35 (next to the socket for the

internal function ROM). After the Promenade is made functional

on the working computer, copy the EPROM U35 into computer

memory with the Promenade command:

£8192,24575,0,5

After that operation, check for an 81 with a peek(23586) to be

sure everything is in its proper place. Next, poke 23586 with 209

and then burn a new chip with

n8192,24575,0,5,7

Install the new chip in the U35 socket and reassemble the C-

128. You should now find the case of caps lock little q solved.

Note 1: The control word and program method word used with

the Promenade are the ones that work for the chips found in

most C-128s. Check the Promenade manual to be sure of the

proper codes.

The Transactor
July 1987: Volume 8, Issue Ol

Note 2: If your C-128 should have 32k EPROMs instead of 16k

ones, adjust the addresses to copy the whole 32k i.e.

8192,40959 and poke 39970,209.

Note 3: EPROMs used are 27128 (16k) or 27256 (32k). 32k chips

have not been found in any 128s here, though the schematic

shows it to be designed for 16 or 32k chips.

C-128 Bullet-Proof Windows D.J. Morriss

Toronto, Ontario

The windows on the C-128 have one fault: they're too fragile.

You get a nice prompt line all set up, then you accidentally hit

HOME twice and the window is "smashed". Here's how to set up

a permanent window, at the bottom of the screen.

1. Place the text that you want protected at the bottom of the

screen; use any text colours that you like, and use as many

lines as you like.

2. Place the cursor a few lines from the top of the screen. Press

ESC T to establish a window.

3. Enter POKE 237,23 to protect one line; for each additional

line protected, decrease the value poked by one.

4. Clear the window with two HOMEs.

That's it. The bottom line(s) of the screen are now untouchable,

even if new windows are set up and collapsed. This works in

both 40- and 80-column mode, provided you set up the

protected are in both screens. The protected area can be

different for the two screens.

C-128 80-Column

Display on a Television

Bill Walton

St. John, New Brunswick

When I first purchased my C-128, one of the first things 1

wanted to try was the CP/M mode. I soon found that I needed

the new operating system (the modem support version) if I

wanted to get very far with it at all. At the time I did not have the

1902 80-column monitor and was in fact using a small colour

television as a monitor. I found that I was in a catch 22 situation. I

needed 80 columns to use the program "cpmterml28" (needed

to download the new operating system) and it only works in 80-

column mode. My solution at the time was not to run out and

purchase a 1902 monitor, but to find a workable way to get 80

columns on my TV. I found a rather simple and inexpensive way

to do just that and I thought I would pass it along to readers of the

Transactor.

All that is needed is three rather inexpensive pieces of hard

ware, which I have listed below, and a couple of strips of scrap

wire to connect it all together.

1.9-pin D-subminiature male plug (Radio Shack part #276-

1537)

2. an RF-modulator (Radio Shack part * 277-221) (an old VIC

RF modulator works well, it's what I used)

3. A 5 to 7 volt power supply (Radio Shack part # 273-1454)

You begin the hookup as if you were going to hook your C-128

to a 1702 monitor. First connect two shielded wires to the 9-pin

DIN plug. One wire goes to pin #1 or #2 (ground connections),

the second wire goes to pin #7, the monochrome output. Run

these two wires to the RF modulator, connecting the mono

chrome output from pin 7 to the video input, and the other line

to the ground connection. If you are using a VIC RF modulator,

open the case to find out where the connections should go - they

are labelled on the circuit board (the ground line connects to the

case itself).

After the video and ground lines have been connected, all that

remains is to connect power to the RF modulator. The power

connections on the Radio Shack RF modulator are fairly straight

forward - connect them to to the power supply power outputs,

observing polarity. On the VIC RF modulator, the red wire is the

"hot" (positive lead), and the case serves as ground (negative).

Lastly, all that is necessary is to plug a shielded cable from the

RF output and run it to your TV/computer switch, or directly to

the TV antenna terminals. Turn the power on to the RF modula

tor and turn your computer on in 80-column mode.

For those a little more adventurous, you can tap the needed

power directly from the C-128. There are several locations

available where the needed 5 volts can come from, including:

pin #2 from the user port, pin b-2 from the cassette port, and

pin 7 from either joystick port. It should be kept in mind,

however, that opening the case to make these connections will

void any warranties, and so should not be done on a new

machine.

I found that this solution was capable of producing a very good

80-column screen considering the equipment used and the fact

you are using a television as an output device. Also I found the

hookup was quick and easy to do and required no permanent

changes to my computer.

1541 Half-Track Fix Geoff Rob

Victoria, Australia

Disk read and write errors can arise when the drive gets stuck in

between tracks from loading programs that use half tracks as a

means of copy protection. Before sending your drive away to be

aligned, it is worth running the following short program that

steps the head half a track:

10 open 15,8,15, "iO"

20print#15,"m-w"chr$(254)chr$(2)chr$(1)chr$(1)

30 close 15: end

Line 20 writes a 1 to PHASE (location $02FE), which is checked

during each interrupt by the code in disk ROM at $F99C. If the

value of PHASE is 1, then the routine increases PHASE to 2, and

steps the head by half a track.

Check by validating a disk. If you get even more errors after

running this program, then you can just rerun the program to

return to the initial state.

The Transactor July 1987: Volume 8, Issue Ol

The Drivelight Zone

Well, I wouldn't have believed it unless it happened to me, and

now it has.

I was having trouble with my 8050 drive 0. Loading programs

was becoming a real bother, especially long ones. The error LED

would flicker, and DOS would occasionally do a head-bump,

creating for some rather lengthy waits. Program SAVEs or

writing an SEQ file had become impossible on drive 0, but I

managed to cope, using drive 1 for nearly everything.

When I figured I could live without my 8050 for a while, I

decided it was time to get her serviced. The old sweetheart went

almost 7 years without so much as a peek under the hood. I went

in to pick her up and was told, "we can't find anything wrong

with it". Disregarding the somewhat impersonal reference, I

immediately began a process of elimination that lasted all the

way home.

"Could 1 have been mistaken? Was 1 just imagining all those

read errors? No. Maybe I just didn't hit her hard enough at home

and whatever chip was loose got jarred on the way in, enough to

make her start working again. Maybe my diskettes were bad.

No, they worked fine in drive 1. Oh well, forget about it - it's

back to normal now and I can get on with my next task."

Or so I thought. I carted her downstairs, set her up, connected

the cables, disk in, and Arghgh! It's doing the same thing as

before!

I went back to Commodore and watched as they tested it with no

apparent problems. So what could it be? "Check your environ

ment", said Roy. Since I didn't have a better idea, that was what I

would do.

My 8050 sits on a shelf to the left of a B&W monitor that's

connected to one of my C64's. I moved the 8050 as far left as I

could, and the monitor as far to the right as possible. Like I said, I

wouldn't have believed it unless it happened to me. Just to be

sure, I moved the monitor back up to the side of the drive again,

and the read errors returned. Turn off the monitor, start a

LOAD. . . no problem until the instant I turned the monitor back

on.

I don't know when it was that my monitor got too close to the

8050, or vice versa. All I do know is that I wasted two round trips

to Commodore, and countless hours dealing with the absence of

the sometimes vital drive 0. Except for the aggravation, the

experience was worth it and I'm glad I can pass it along. Even

though my troubles were with an 8050,1 suspect any drive could

fall prey to this situation. In fact tape, video, or any unit with a

magnetic ingredient to its operation could be affected.

My advice? My advice is not really mine - credit goes to an

astute Roy Robinson of Commodore Canada. Even if you haven't

moved your equipment, you might save yourself a potentially

expensive trip to your service center by simply "checking your

environment". Especially if it's read errors from disk. Try mov

ing your drive away from your monitor. Try entering the com

mand, turn your monitor off, and then hit Return. Try changing

rooms if you have to. Try your drive with a friend's system if you

can. And if you eliminate the trouble, invoking it again is not

only excellent reinforcement, but also gives you a feeling of

accomplishment. Believe me, I know.

Karl Hildon, Editor-in-Chief

Obscure C-64 VAL bug Nick Sullivan

The prize for the most obscure bug in Commodore BASIC goes,

we think, to a recently-discovered problem with the VAL func

tion. As you know, VAL returns the numeric value of an ASCII

numeral string, and most of us have been using it for years with

no trouble at all. Yet the code for VAL contains a fundamental

flaw that has been lying in wait for the right conditions to

manifest itself.

Those conditions were present in the second-last version of the

Help! program that appeared in the Transactor, Volume 7 Issue

6. By the time the bug was traced we were nearly ready to go to

press; there was time to correct the program, but not to update

the article. Hence there is a small but significant discrepancy

between the text and the code.

Here is what the relevant part of the VAL routine looks like on

the Commodore 64 (if you want to see the whole thing, it starts

at $B7AD). By the time we get to the part of the routine listed

below, the CHRGET pointer has been saved, and CHRGET now

points to the start of the string being evaluated. A pointer to the

byte just beyond the string has been set up in locations $24/25.

The "JSR $BCF3" at $B7DA invokes a routine that converts a

null-terminated string, accessed through CHRGET, to a floating

point value in FAC 1:

B7CF Idy

B7D1 Ida

B7D3 pha

B7D4 tya

B7D5 sta

B7D7 jsr

B7DA jsr

B7DD pla

B7DE Idy

B7E0 sta

B7E2 . . .

#$00

($24),y

($24),y

chrgot

$bcf3

#$00

($24),y

get byte past end of string

save it

replace it temporarily

withO

Ida with first byte of string

convert string to floating point

recover byte past end of string

put it back where it came from

restore chrget pointer and exit

Okay, the strategy here is to make the string temporarily null-

terminated so that the routine at $BCF3 will know when to stop,

then restore the byte beyond the string once the conversion to

floating point is done. This approach saves BASIC the extra time

and trouble of making a separate null-terminated copy of the

string somewhere else before doing the conversion. So do you

see the bug?

The Help! program used a 17-byte interrupt routine to switch

out the i/o chips and character ROM so that the code in the

$D000 RAM could test for a special keypress. This routine could

go anywhere in RAM, but its default location was at the top of

BASIC, just above string storage. It was protected from being

The Transactor July 1987: Volume 8, Issue Ol

interfered with by BASIC by lowering the top-of-BASIC pointer

by 17 bytes, as described in the article. This seemed like a

completely safe thing to do.

And it was, unless you happened to do a VAL on the first string

created within a BASIC program. What happened then is that

the VAL routine dropped a zero on the first byte of the IRQ

routine to null-terminate the string, then went off to convert it.

While this was going on an interrupt would happen and the IRQ

code, which now began with a 0 (BRK) instead of a $78 (SEI)

would be executed. This is a sure-fire crash.

The solution, once the bug was identified, was simple enough:

we just lowered the top of BASIC by 18 bytes instead of the 17

needed by the IRQ routine, to give VAL the 1 byte of maneuver

ing room it required. And that is why the Help! article and the

Help! program are not quite in agreement.

G-Link ROM Compare Karl Hildon

Hey G-Link owners! Have any of you been experiencing the

odd glitch with your Glink? Well so have I, and I decided it was

time to find out why. And to my complete surprise I found there

are at least two versions of the Glink EPROM.

In one version I've noticed that a simple SEQ file read can bomb

before reaching the end of the file. With the other I've never seen

the problem. I don't know why it happens, just that it does and

it's annoying. I also don't know why there are two versions, or

how it happened. However, once I made all the EPROMs the

same, the troubles went away.

On Transactor Disk #18 (for this issue) we'll be including the G-

Link ROM file should you wish to re-burn your EPROM. It's a 4K

PRG file and it LOADs to $2000.

The program below will tell you if you need to do this update.

You might think it looks rather long for such a simple task.

Actually, Line 110 alone is enough to determine which version

you have. In fact, if you switch your Glink to parallel mode:

print peek(57625) should give 173

If not, you should probably consider doing the update. Remem

ber, I said earlier that there are "at least" two versions - there

may be more, but I doubt it. Regardless what value the above

PEEK returns, the next part of the program will write the

contents of your Glink ROM to a disk file, and then proceed to

compare it with the file "glink 3/87 $2000" on Transactor Disk

18. So unless you get Disk 18, there's no point entering the

whole program.

Lastly, I've noticed one other glitch, but it very rarely occurs and

only with one program that not many will have or use. The

utility that creates program listings with the Verifizer codes is

called "proofgen". Quite simply, you load a program, LIST it to

disk, then SYS to proofgen. The Verifizer code is calculated from

the line in memory and written to an output file. Then the same

line is input from the disk listing and sent to the output file.

Sometimes while proofgen is making this file, the printer will

suddenly become the output destination, printing exactly what

should be going to disk. The problem here could be in the

proofgen program, but it happens so rarely that I can't help

suspecting the Glink. If anyone has noticed a similar problem,

let us know and we'll go looking for it.

Glink Compare: RUN in IEEE mode.

LJ

OO

GN

JP

OH

IM

MJ

FD

KC

AN

CL

MB

GP

HL

PM

AH

EM

FO

PN

LJ

HJ

OL

KK

MH

LE

HL

LJ

HJ

HP

01

LG

LN

AP

HI

OF

OP

PK

EO

JH

AB

KD

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

rem g—link rom compare

if peek(57625) = 173 then print Q yourg-link
rom is probably ok" : goto 150

print "y your g-link rom should be

re-burned"

print

print

print

print

print

print

print

print

print

print

print

print

with the g-link rom file from

transactor disk #18

if you would like to compare the

entire rom with the g-link rom

file on transactor disk 18, this

next test will write the contents

of your g-link rom to a disk file

and proceed to compare the two

files, we suggest using transactor

disk 18 so that both files will be

on the same diskette" : print

input " do you wish to continue (y/n)" ;a$

if asc(a$)<>89 then end

print: print " creating file 'my glink rom'

open 8,8,8," 0:my glink rom,p,w"

print#8,chr$(0)chr$(32); :rem make start

address $2000

for j = 57344 to 61439 :rem g-link range

print#8,chr$(peek(j));

next: close 8

print

print "comparing 'glink3/87$2000'

print "file with 'my glink rom' file

z$ = chr$(0)

open 8,8,8," Orglink 3/87 $2000,p,r

open 9,8,6, "0:my glink rom.p.r

get#8,a$,a$:get#9,b$,b$:rem strip start

addresses

for j = 57344 to 61439

get#8,a$:a = st: ifa$= " " thena$ = z$

get#9,b$: b = st: if b$= " " thenb$ = z$

ifa$ = b$then470

x = x + 1 : print "Q difference at ";j
print " glink 3/87:" ;asc(a$);tab(19)" my

glink:" ;asc(b$)

print

if a orb then 490

next

close 8 : close 9

print "found" ;x;" different locations

print " glink 3/87 status at end:" a

print " my glink status at end:" b

The Transactor July 1987: Volume 8, Issue Ol

Input Trickery Daniel J. Dyke

Bel Air, Maryland

C-64 Undocumented Editing Mode Nick Sullivan

Here is a C-64 subroutine that I call before any input statement

requiring the use of punctuation and the cursor keys:

10gosub8000

20 input a$

30 print a$

40 goto 10

8000 poke 198,5: poke 631,34: poke 632,34

8001 poke 633,157: poke 634,32: poke 635,157

8002 return

Here's a strange feature in the 64's screen editor. If the high bit of

the current character colour is set, like this:

poke 646,peek(646) or 128

.. .the DEL key will take on a whole new personality in quote

mode: if there is any text to the right of the cursor, it will be

shifted one character to the left, and the character under the

cursor will be deleted. There is one glitch, however: the first time

you hit DEL under these conditions, a garbage reverse-

character will be printed; subsequent DELs will perform as

described.

The effect of this subroutine is that it prints two quotation marks,

back spaces one space, erases the second quote with a space,

and backspaces again. When the data is entered, the input

prompt appears to be followed by a quotation mark. Now any

keyboard character, including punctuation marks, can be en

tered as part of the input data. What is also important to note is

that it allows full use of the left and right cursor keys. The

computer is not in quote mode, but when the return key is

pressed, it thinks it is.

C-64 Efficient Ted Beach

Keyboard-Checking in Assembler Arlington, VA

Quite often we want to suspend a program's execution if the user

presses a key. Here is a very simple way to do this. Wherever

you need to pause the program, insert these two instructions:

waitkey bit $c5

bvc waitkey

No registers are used, and only the flags are affected, so the

instructions can be inserted almost anywhere. If you want to

pause a program until the user presses a key, use these instruc

tions:

nokey bit $c5

bvs nokey

C-64 Scrolling

Banner Routine

Andrew Miller

Asbestos, Quebec

While experimenting with the MID$ function on my C-64, I

constructed a scrolling "formula" which led to the following

program. 1 find it an attractive attention-grabber, and not bad for

4 lines. After RUNning it and typing in your message, you'll be

asked for the viewing area (the number of characters of your

message being displayed on the screen at a time). Your message

will be automatically centred, and will begin to scroll. Here it is:

10 input" message" ;m$: input" viewing area" ;va

: print"| ": b$ = m$ +"..."
20 a = 18-len(m$)/2: if va < len(m$) then a = 20-va/2

30 b$ = right$(b$,len(b$)-1) + left$(b$,1): c$ = ieft$(b$,va)

: print "^3 "tab(a)c$
40 for x = 1 to 70: next: goto 30

Easy Input Speedup

from BASIC

Eddie Anderson

Orlando, Florida

Here is a simple trick that will double your I/O throughput when

doing GET#'s from a disk file. Instead of doing a conventional

GET* loop like this:

4 for j = 1 to 80

5 get#5,a$

6 r$ = r$ + a$

7 next

You can almost halve the time required by GET#'ing two bytes

with each GET# statements. Like this:

4 for j = 1 to 40

5 get#5,a$,b$

6r$ = r$ + a$ + b$

7 next

In my testing I read 60 80-byte strings from a 20 block file using

each of the above methods. Here is the full listing of the

programs:

Version

Version 2

1 open 5,8,5," O:datafile,s,r'

2 for i = 1 to 60

3r$= " "

4 for j = 1 to 80

5 get#5,a$

6 r$ = r$ + a$

7 next

8 next

9 close 5

1 open 5,8,5, "O:datafile,s,r'

2 for i = 1 to 60

3 r$ = " "

4 for j = 1 to 40

5 get#5,a$,b$

6 r$ = r$ + a$ + b$

7 next

8 next

9 close 5

The Transactor 1O July 1987: Volume 8, Issue Ol

The first version took 95 seconds to finish. The second version

took only 49 seconds. I went a couple of steps further to see how

much faster the program could be made to run. Changing the

program to read 4 bytes at a time made it run in 44 seconds.

Version that read 8 and 16 bytes at a time ran in 40 and 36

seconds, respectively.

The times may be off by a second or so because I was timing the

runs with a stopwatch. Nevertheless it seems that the biggest

gain can be had simply by GET*'ing two bytes instead of one on

each GET# statement.

10. The systematic loop-variable names greatly help other peo

ple to read and to grasp your programs, so it's very appropri

ate for published programs. Contributors, take heed!

When you've completed a program, eliminate unused L's from

the DIM in line 110, and reverse the order of the used L's so that

BASIC finds the most time-sensitive, inner-loop L's first. For

example, if you never used more than the six nested loops

(which is typical), the final form would be:

DIM L6,L5,L4,L3,L2,L1

Systematic

Loop-Variable Naming

I've used this systematic loop-variable naming scheme for

J.G. Krol several years. It's saved me so much time, effort, confusion,

Anaheim, California frustration, and grief that I wouldn't be without it.

You can simplify FOR-NEXT loop programming and speed up

loop execution time by coding this line before creating any other Selective

program variables: Scratching

Craig Ede

Minneapolis, MN

110DIML1,L2,L3,L4,L5,L6,L7,L8,L9,LA,LB,LC,LD,LE,LF

Then as you write the programs: (1) use the lowest-numbered

currently-unused L as the loop-variable for each new FOR-

NEXT loop you begin writing; (2) don't use these L's for anything

else. Whenever there are three active loops, for example, the LI

loop will be outermost, the L3 loop innermost.

This systematic loop-variable naming scheme, though simple,

has many advantages over the usual unplanned naming of loop

variables.

1. The L-for-loop names are mnemonic, apt, short, clear, and

consistent, and they're effortless to invoke when you need

them.

2. The systematic naming scheme eliminates the dreaded blun

der of reusing an active loop-variable in another loop, thus

wrecking the program.

3. The scheme eliminates all the usual head-scratching and

"creative" loop-variable naming aimed at avoiding that

dreaded blunder.

4. Since unneeded loop-variables are eliminated, the total

number of variables is minimized, saving time and space.

5. Loop-speed is maximized since BASIC finds the time-

sensitive loop-variables at the front of its variable-table.

6. Loop-speed remains consistent no matter how many (hun

dreds of) variables you create after the L's.

7. The naming scheme provides a clear, convenient, consistent

way of thinking and talking about your program, e.g. "the L5

loop".

8. The systematic names greatly clarify program structure:

whenever you spot an L5 in a listing, you instantly know

you're inside five active loops - no matter how obscure that

critical fact might otherwise be.

9. The systematic names often reveal program structure you

weren't aware of. E.g. when you call a subroutine from

within an L3 loop, all of its loops must be L4 or higher - and

they might not be, since you originally wrote the subroutine

you are invoking from an LI loop. Realizing that, you can

easily revise the subroutine.

1 recently changed word processors, moving from one which

saves files in sequential format to one which normally saves files

in program format. My word processing file disks soon became

full of a mixture of different filetypes. In an effort to organize

things I found out that it is possible to scratch all sequential files

from a disk (retaining all other filetypes) by using the following

disk command:

open 15,8,15: print#15, "sO:* = s": close 15

All program files can be scratched using:

open 15,8,15: print#15, "sO:* = p": close 15

With a DOS wedge of some sort in place, the commands are

simpler:

@sO:* = s (for SEQ files) or

@sO:* = p (for PRG files)

(A more selective scratch of files can be done by using a filename

pattern other than the '*').

This has proven very convenient in helping me separate the files

from my word processors. I make two back-up copies of the file

disk and mass-scratch all the program files from one and all the

sequential files from the other. It could also be used to delete

sequential 'doc' files that are no longer needed on a disk of

programs. Though I haven't tested it, I think this will work with

user (USR) and relative (REL) files also (check on a back-up disk

first).

WARNING: Do not use the delete (DEL) filetype with the

wildcard as it will scratch all files from your disk. The following

is poison:

@sO:* = d (poison: do not use)

The Transactor 11 July 1987: Volume 8, Issue 01

Amiga Bits

Amiga Automatic

Up-Date

Andrew N. Mercier, Jr.

Pope AFB, North Carolina

The Amiga provides a very well maintained software clock, and

since the Amiga runs a multitasking operating system, the

following short routine may be used to keep the time and date on

your SYS: disk as current as possible. By writing to the disk once

in a while, the time won't be too far off when you re-boot, since

the system sets the time to when the disk was used last.

Enter the following command file with an editor or by typing

'copy * to s:saveDate' from the CLI (press CTRL - \ to end your

input if you use the copy command):

c:wait 720 mins

c:cd sys:

c:date >sys:now

c:run >nil:

c:execute s:saveDate

Execute the command file in the background by typing "run

execute saveDate". The program will wait 720 minutes, or 12

hours, then write the current date to disk and repeat the whole

process over again. The wait uses no CPU time as it runs in the

background, since it just waits for a signal from the timer device.

If you wish to have the clock updated more or less frequently,

change the number of minutes in the first line to whatever you

want - every hour might be a reasonable choice.

Note: the CD command is used so that DOS will put up a

requester asking for the system disk if it is not in the drive. The

redundant use of c: and s: is to ensure that the correct com

mands are used (in the case of like-named programs residing in

the current directory).

Pattern Matching With The Dir Command

The CLI command "Dir", as documented in the AmigaDOS

manual, has quite a few features. An especially valuable capabil

ity of this command, however, isn't even documented: pattern

matching. Dir will allow an expression for a directory name like

those used by the "PAT" option of the List command, and will

display all files in the directories that match the given pattern.

So, for example, the command 'dir ???' will display the files in all

directories whose name is three characters long; 'dir c#?' will

display all directories beginning with the letter 'c'; 'dir c|fonts'

will display the 'c' and 'fonts' directories.

Multiple-menu Selections

When using the menus in most applications, you can choose

more than one menu option without popping up the menu for

each choice. While the mouse menu button is held down and the

menu is displayed, move the pointer to the first option you want

and click the LEFT mouse button. While the menu button is held

down, you can move the pointer to as many options as you wish,

clicking the left button over the ones you want to select. When

you finally release the menu button, the program will act as if

you had selected each menu option normally, one at a time. This

is especially handy for menus with choices for many different

modes or settings, like a terminal program with options for

parity, baud rate, etc. Just click - click - click to set up your

choices without having to bring up the menu bar over and over

again.

This technique should work with most programs, i.e. those that

handle mouse events the way the Intuition manual advises.

Speeding Up IFF File Access

If you are reading an IFF file from your own program, you can

speed up access and shorten the file by removing any chunks

that your program doesn't care about. For example, you may be

incorporating graphics in a program by creating an image using

an IFF-compatible paint program like Deluxe Paint - the picture

in IFF-ILBM form can then be read by your program using your

own IFF-reading routines, or the standard public domain rou

tines provided by Electronic Arts and listed in the Amiga ROM

Kernel manual.

This approach works fine, but there may be information in the

picture file that your program doesn't care about, and if you

don't plan on using the picture files for anything else, you might

as well remove it. In this example, that of an ILBM file saved by

Deluxe Paint, The obvious chunks to remove are the CRNG

chunks that describe colour-range information, and the GRAB

chunk that defines a "hot-spot", or point for grabbing the

image. Removing these chunks saves the time needed for the

IFF reader to skip over them, which can be considerable on

floppy drives due to read/write head seek time.

To take the chunks out, you have to remove them from the file

and modify the length of the FORM at the start of the file

accordingly. You could write a simple program in the language of

your choice to do this, but the easiest way is to use a text editor

that lets you edit a binary file as hex. One such editor (perhaps

the only one?) is Aedit by Joe Bostic (DRM Programs, 1329

Arthur Ave., Las Vegas, NV 89101). It lets you read a binary file

and display it as hex and ASCII. You can edit the hex values, and

they will be converted back to binary when the file is saved.

Using Aedit, it is a simple matter to remove all the CRNG chunks

and the GRAB chunk, leaving just the initial FORM, the ILBM,

BMHD, and BODY. The longword after the initial FORM will

have to modified to reflect the new size of the file. For simple

single-picture IFF files, the FORM length should be eight bytes

less than the size of the file as it appears in your directory (using

the CLI List command).

Minimizing your IFF files like this can yield dramatic reductions

in reading time, especially for small files.

The Transactor 12 July 1987: Volume 8, Issue Ol

Letters

Wanted - Plus/4 Technical Info: Can you or a reader help

me? I want a memory map for the 6529 chip in the Plus/4. One

like the excellent Figure C-10 in Appendix C of Jim Butterfield's

fine book Machine Language for Commodore Machines would

be ideal.

Also, where and how can one get a copy of the circuit diagram of

the Plus/4? That would be a big help in understanding the

machine and in machine language programming.

Jim Welch, Santa Clara, California

Wanted - an IMG stripper for tape: Congratulations on

your fine magazine, which I have just discovered. "Downloading

From CompuServe" by Christopher Dunn (Volume 7, Issue 4),

has certainly enlightened me with a problem I have been

encountering.

1 have been downloading with an XMODEM protocol terminal

program on tape. The reason why the IMG files have refused to

run is now clear.

Would one of your technical staff, a contributor or reader be able

to help me? I would like to obtain a copy on tape of an XMODEM

protocol terminal program for the Commodore 64 capable of

downloading both BIN and IMG files with an IMG byte-stripper

built into the program allowing IMG programs to run. Alterna

tively, a listing of same would be most appreciated.

My address is: 17 Sugarloaf Drive, Chirnside Park, Victoria 3116,

Australia.

Philip Gahan

We took a stab at your dilemma, Philip, but quickly determined

that without a sample copy ofa tape, it wouldn 't be wise to print

a program that strips an IMG file header based on speculation. If

you hear from someone that already has this program, then I

guess we don't need to re-invent the wheel. Ifyou don't, send us a

tape with a .BIN file on one side, and a .IMG file on the other,

and we 11 take another shot at it.

A lead on cables: A possible supplier for letter writer Doug

Hurd of Penticton, British Columbia (Letters, Volume 7, Issue 6),

who needed right angle connectors and long serial cables among

other things, is Value Soft, of 9513 S.W. Barbur Boulevard M-56,

Portland, Oregon 97219. They have an ad in Run magazine (3/

87) listing a 9-foot right angle serial cable for $9.95 (US).

Keep up the great work. The Transactor with the TPUG insert

has got to be the best deal anywhere for Commodore freaks!

Really enjoy the cover art. Volume 7, Issue 6, with the robot

sculpting a self-portrait, is perfect for an issue with an article on

recursion.

You, or your readers interested in recursion and AI, might want

to look at Douglas Hofstadter's books: Godel, Escher, Bach and

Metamagical Themas.

John E. Graham, Director EMC, Sinclair College, Dayton, Ohio

Thanks for the lead, John. And we'd also like to endorse your

recommendation of the Hofstadter books. One of the things that

distinguishes Hofstadter's AI work from most others is its em

phasis on the "intelligence" in AI; he's interested in intelligent

machines, notjust clever programs.

Another IEEE for the 128: On page 14 of the March issue; in

a reply to a letter from Bill Bennett, there was a request for

information about a good IEEE interface for the C-128. The unit

I am using is an INTERPOD from England. I have been using

this unit, first with a C-64, and now with the C-128, without

troubles for the past three years. I use the INTERPOD with a

four-pole double-throw switch so I can go between the IEEE

disk drives and the MSD-2 and 1571 drives when using the C-

128.

I do not know if the unit is still available. I wrote a letter to the

address in England about ordering another unit, but never

received a reply. I purchased the unit from: Oxford Computer

Systems (Software) Ltd., Hensington Road, Woodstock, Oxford,

England 0X7 1JR.

John J. Schueler, K7QV, Sedona, Arizona

Ultimate frustration fix: After months and months of playing

Ultima IV (six to be exact), I finally made it into the Abyss. But

when I got there and had to answer the very last question in the

whole game, I got it wrong. It took me a couple of more months

to figure out what was wrong: there is an error in the visions you

get when praying in the shrines. Instead of getting:

fol^T

you should get the following:

Now all of you who have been beating your brains out trying to

figure this out (as I was) can finally get on to your destiny. . .

Paul Reeves, Hamilton, Ontario

Ordinarily we don't publish game tips, and this isn 't meant to be

a precedent (so put down your pens right now). But the idea of

Transactor readers beating their brains out for want of this

information was more than we could stand.

The Transactor 13 July 1987: Volume 8, Issue Ol

Biblical Greek drills: If any of your readers would want some

drills on Biblical Greek, have them send me a disk with some

thing they think is really useful, educational, or entertaining,

and in exchange 1 will send them a disk with the Greek on it.

These are more than vocabulary drills. Included are exercises

on identifying verbs, nouns (5 case system), participles, infini

tives, and adjectives on the book of I John. II Thessalonians is

the next book of the New Testament that will be covered. My

address is: 2311 Creswell Road, Bel Air, Maryland 21014.

Daniel J. Dyke

Hardware book blurb: I would like to inform you readers of a

book I have written which I believe may be of interest to them.

Entitled Electronic Computer Projects, it is published by COM

PUTE! Publications Inc., and is now available.

Electronic Computer Projects is an introduction to computer

interfacing and digital electronics. It is written for users of the

Commodore 64, VIC 20 and C-128, as well as the eight-bit Atari

computers.

As a computer and electronics hobbyist, I believe this book will

be helpful to users who have done some exploring of their

machines programming-wise and are looking for new, interest

ing and exciting things to do with their computers. This book

introduces the reader to computer control and monitoring of

items in "the outside world" through the construction of projects

consisting of a hardware and a software component. While the

projects are useful in themselves, they also provide a basis for

readers to begin designing circuits for projects of their own.

The book is available from: COMPUTE! Books, P.O. Box 5038,

FDR Station, New York, New York 10150 (toll free 1-800-346-

6767; in New York, 212-887-8525); or in Canada from:

McGraw-Hill Ryerson, Ltd., 330 Progress Avenue, Scarborough,

Ontario M1P 2Z5. The suggested retail price is $9.95 (US).

Soori Sivakumaran, Burlington, Ontario

Grounding to a halt: Your issue on Gadgets and Gizmos

inspired this letter. I am an amateur radio operator, and use my

C-64 mostly in connection with my radio hobby. Some months

ago I lost a 6526 chip and had quite a bit of trouble getting

another from Commodore. I would like to caution your readers

who are interconnecting their computers with other equipment

about one of the sneaky problems that can spoil their fun.

In my case, I have my 64 on the bench with my amateur radio

equipment and general test equipment. For safety's sake, one

learns early to ground everything, so I have bare copper wires

running across the bench at several spots where they are out of

the way but easy to connect. All equipment is of course

grounded. But originally not the Commodore, of course. It has a

1541, an 801, and a monitor, all interconnected. And each plug

has a ground; what more could be needed?

When I bought the monitor, my wife advised me to buy a colour

TV instead of a Commodore monitor, since we could also use it

for another TV if the need arose (not to mention how I would use

a computer without a monitor!). Since she has been advising me

wisely for thirty years (and I know where my buttered bread

comes from) I bought the colour TV, a nice RCA 13 inch colour

set. And it did well. When 1 decided to connect my Commodore

as a terminal for my RTTY interface, I was afraid of damaging

the CIA chip, so I carefully studied the diagrams, and finally

decided that a buffer was called for, to be absolutely safe. So I

mounted a couple of 7404 TTL chips on a perf board, and with

an edge connector on one side and a socket on the other it fit

perfectly on the USER interface, and was powered from the

Commodore. With diode clamping to TTL levels, and with the

Commodore chip a CMOS (and able to take 15 vdc), nothing

could get through that buffer and hurt my computer.

Or so it seemed. I connected the cable from the RTTY interface

to the buffer, turned the system on, and promptly burnt out two

inputs on the CIA. The computer would still work for programs

and games, but no more CompuServe!

It's a good thing, although I didn't think so at the time, that it

took two months to get a chip. I was sure the buffer had failed

me. After all, electronic equipment is untrustworthy in general,

and sometimes tricky. Using analyzers, oscilloscopes, and every

technique I have learned over the years, I hunted for the elusive

intermittent that had damaged my baby Commodore. Nothing.

After a month of part-time testing I gave up. Another month and

the new chip came and I had had time to use my last resort

technique. I thought about it. Then I connected a voltmeter

between the RTTY and the buffer input (with no other connec

tions) and turned on the radio. No potential difference. I then

turned on the Commodore, the 1541, the 801, and the TV.

When I switched on the TV, the voltmeter immediately jumped

up to 30 vdc. And an old memory surfaced. Solid state tuners

sometimes put out a dc voltage, which hurts them not at all, and

is not noticeable, but which is enough to raise the ground on the

Commodore to the same voltage. Then if connected to other

equipment which is truly grounded, you have a problem. The fix

is simple. Be sure your Commodore system, when powered up,

has no difference in ground potential with the system you are

connecting into. Otherwise, you may, like me, be waiting for a

chip.

I enjoy your magazine generally, although many times your

writers assume I know more about a subject than I do, and then I

am lost and cannot follow what they are doing. Keep up the

good work. You have the best magazine on the market.

Carl L. Henry, Bowling Green, Kentucky

Holes in Inner Space: I would like to take this opportunity to

thank you and your excellent staff for producing what is quite

certainly the most useful book currently in print for Commodore

computers: The Complete Commodore Inner Space Anthology.

Thanks for the COMAL memory maps; those are the only

COMAL maps I've ever seen. And yes, I even use the periodic

The Transactor 14 July 1987: Volume 8, Issue 01

tables! The Wordprocessing Reference Guide was also a wonder

ful idea - even slightly more accurate than the PaperCLip

manual. I trust Speedscript commands will be included in

Anthology II as well.

As I am sure you already know, CCISA is not entirely complete.

In Anthology II, I would appreciate a small section detailing

physics formulae. The current small section on forces is really

only a start.

I make regular use of both the unit conversion tables and the

geometric volume tables; however, I noticed the omission of the

universal volume equation from these fine tables:

V = (T + 4M + B) x h / 6

T = Area at top

M = Area at midpoint

B = Area at base

h = height

This equation is particularly useful when dealing with irregu

larly shaped figures. (In case one should ever happen to forget

how to calculate the volume of a frustum of a cone.)

Kevin Smith, Edmonton, Alberta

Thanks for the input, Kevin. As you know, we try not to leave

anything out. Perhaps you could send us a list of those physics

formulae you mention, or maybe just a list of the results they

produce so we could research them for you. And if anyone else

has ideas for Anthology type info, we're always open for

suggestions.

Structuring Basic programs: I read with interest the article

"Structured Programming on the Commodore 64" by Frank

DiGioia (Volume 7, Issue 5). I program on both large mainframe

computers (for a living) and small micros (for fun) and try to use

the techniques of top-down design and modular programming

in both environments.

While the extra structures (WHILE-WEND, REPEAT-UNTIL,

CALL-PROC) can help your program be more structured, it is

certainly possible to write structured Basic with just Basic 2.0 on

the C-64. Top-down design is possible in most programming

languages, and Basic is no exception. Modular programming is

also possible providing we follow the cardinal rule of "one entry,

one exit". This rule is what has given the GOTO a bad name. If

we only use the GOTO to branch to the RETURN of a GOSUB or

the NEXT of a FOR-NEXT (perhaps with a "CTR = MAX"

statement to make our FOR CTR = 1 TO MAX loop end nicely)

we are in great shape. The only other thing to watch for is not

entering a GOSUB-RETURN module except for one place: the

top.

If we need to go to one of several places after exiting a module

(processing one of several types of input records read by a

common read routine for example) a "return code" can be set by

the module to a value allowing an ON.. .GOSUB (not GOTO,

please!) to direct us. This is the only problem I had with Mr.

DiGioia's otherwise excellent article. Perhaps the EXIT nn

keyword could be modified to set a pseudo-variable (like ST)

with the value of "nn" as well as exiting the structure normally.

In this way we could know that we would always come back to

the point we left when doing a CALL or GOSUB and still have

the flexibility to decide what to do when we get back.

Douglas Hattrem, Lansing, Michigan

FOG clarifies: The March 1987 issue contains an article

entitled "Compatibility and Operability of the C-128 CP/M +

Operating System" by Ralph Morrill. As the leading interna

tional user group providing support for CP/M, we at FOG were

naturally pleased to see the vastly under-explored CP/M + side

of the C-128 being brought to light. Thousands of C-128 owners

have joined our group seeking just the type of information Mr.

Morrill writes about.

One point of the article needs explanation. Mr. Morrill writes,

"Not one piece of Osborne software from the First Osborne

Group's (FOG) public domain library that I have acquired will

run on the C-128." As a matter of fact, the vast majority of our

current library runs on the C-l 28, as attested to by our growing

C-128 membership. FOG's library is tested, documented and

well organized. Programs which are computer-specific are

clearly labelled.

Our library was once divided into computer-specific sections,

including libraries for Televideo, Kaypro, Morrow and Osborne.

It has come to our attention that disks of our old library are being

sold by some public domain software houses. Please warn your

readers (and writers) that the reliability of the software acquired

from many of these sources is at best questionable. It is clear that

Mr. Morrill did not acquire his software from FOG.

Another possible source of Mr. Morrill's problem may be that the

disks he tried were Osborne single density format. Our current

library is on double density format disks. The 1571 drive will

read Osborne format only if it is double density.

I really wish Mr. Morrill had called our office when he had a

problem. FOG has a full-time technical support staff to help our

members. We certainly would have made sure Mr. Morrill had

up to date information for his article.

FOG welcomes C-128 owners to join our ranks. Our award-

winning FOGHORN newsletter is unmatched as a source of CP/

M information. Our initial offer to C-128 owners of a free disk of

CP/M software with membership has been such a tremendous

success that we have extended the offer through December.

Your readers may write to us for further information at P.O. Box

3474, Daly City, California 94015-0474, USA. FOG is a non

profit corporation.

Ronald V. Forsythe, FOG President, Daly City, California

Thank you Mr. Forsythe! We've been waiting for a letter like

yours a long time. I'm sure many of our readers will take you up

on your offer, especially the ones that have previously inquired

aboutjust such a source of CP/M information.

The Transactor 15 July 1987: Volume 8, Issue Ol

Simplifying the raid: Say again? I use relative files a lot, and

that occasional bug drives me crazy. I welcome Shiloh's Raid

(January 1987) but I don't want to run an eight hour test, 1 just

want the files to work. I've spent 2 hours studying the article and

just want something simple. Can you print just a small routine to

be inserted when positioning to a record?

Max Chapman, Reno, Nevada

Well, maybe it was a little cryptic, Max. However, if our

calculations are correct, the subroutine below should do thejob

for you. When you open your relative file, set the variables LF

and SA to your file s logical file number and secondary address

respectively, and set the variable L to the record length of the file.

You should also initialize to zero the variables SR, R and W,

which are used internally by the subroutine. Before writing a

relative record, just set the variable N to the record number you

want, and call the routine with GOSUB 9000. With this version

you will have to write the whole record; positioning to mid-

record is not supported.

8970 rem position to relative record before write

8980 rem from shiloh's raid (c) 1987 david shiloh

8990 rem adapted from the transactor, volume 7 issue 4

9000 if sr then r1 = sr +1: r2 = sr + 2: r = 2

9010 q = n*l: q% = q/254: q = q-q%*254: sr = -q°/o*(l>q)

9020 if sr then sr = -q°/o*(q-l-1)

9030 h% = n/256: lo = n-h°/o*256

9040 rem point twice and wait if needed

9050 if r then r = r—1: if qo/o = r1 or qo/o = r2 then gosub

9060: w = 162

9060 print#lf," p" chr$(sa)chr$(lo)chr$(h°/o)chr$(0)

9070 if w then poke w,2: wait w,32: w = 0

9080 return

Double Density HR S&P: I wish to express my thanks to Mr.

Bose (Letters, Volume 7, Issue 5) for his kind comments on Hires

Search and Print. His suggestion to enhance the program's

output with double density graphics is a good one and I have

taken it. Six bytes must be altered and eight more added to the

program to effect the change. This is a simple fix in the source

code, and I include the information here for those who entered

the program this way.

Under CKMOR: tell program to send 800 instead of 400 bytes for

large print

within NXTBYT (ie. replace the two single "JSR CHROUTs with

double "JSR CHROUT's)

LDA #32

STA CODE+ 2

LDA #3

replaces

replaces

replaces

LDA #144

STA CODE+ 2

LDA#1

Under END: reset single width codes for 400 rather than 200

bytes

LDA#1 (added code)

STA CODE+ 3 replaces STA CODE+ 3

LDA #144 replaces LDA #200

Under NXTBYT: print each byte one more time to compensate

for double density. Note: this change is required in two places

JSR CHROUT

JSR CHROUT
replaces JSR CHROUT

Under CODE: change printer codes from 200 to 400 bytes per

line

DFB 27,76,144,1 replaces DFB 27,75,200,0

Unfortunately, no easy change is available for those using the

Basic loader. Quite a few DATA numbers change after re

assembly due to address alterations caused by enlarging the

program. For those, I have rewritten the Basic program to

include the enhancement and have formatted it as a generator

rather than a loader. This will create a disk-based object file that

loads much quicker and takes less disk space. If there's room,

perhaps it can be included on the The Transactor Disk in a

future issue.

Jack R. Farrah, Cincinnati, Ohio

Thanks for taking the trouble, Jack. Though there is unfortu

nately not enough room in the magazine to print the new

program generator, the double density version of Hi-Res Search

and Print will indeed appear on Transactor Disk *18 (this issue).

"Fast File" relocation: The "Fast File" program (Volume 7,

Issue 4) on page 6 contains an absolute jump instruction (JMP

$C050) and is therefore not relocatable as written.

The unconditional jump can be transformed to a relative jump

by replacement with:

CLV

BVC +7

where " + 7" is the positive displacement of the relative branch

instruction. Make these changes in the original program:

60 if c<>11584 then print " Idata error!": stop

180 data 8, 76,249,224,132, 97,184, 80

190 data 7,145, 53,200,196,252,144,232

It would be nice if Rick Nash furnished more information

concerning the undocumented parts of the SYS instruction used

in the program, along with the source code to accompany the

machine language data statements.

I would like to see if it is possible to modify the "Fast File" utility

for use with COMAL 0.14.

Lewis C. Brown, Rowayton, Connecticut

A dissenting vote, for C Power: I am a programmer,

experienced in many languages. One of my favourite languages

is C. I own a Commodore 64 and enjoy programming it because

everything is so accessible with so little effort! The introduction

of C compilers for the C-64 was a great day for me. Naturally I

The Transactor 16 July 1987: Volume 8, Issue Ol

read with some interest Adam Herst's comparison of C compil

ers in Volume 7, Issue 5, and I feel I must take issue with some of

his conclusions. I purchased both of the compilers when they

were introduced, and quickly decided on the superior package -

C Power. Mr. Herst decries several alleged shortcomings of C

Power, and ultimately recommends Super C for novice to inter

mediate programmers, and says that it is a toss-up for experi

enced programmers. This is unfortunate. I would like to address

his conclusions individually and provide my own observations.

First, there is the question of documentation. Mr. Herst lamented

the lack of a tutorial in the C Power package, and the dearth of

examples. I found that there were sufficient examples of every

thing, especially in light of the clear explanations given in the

documentation. Most compilers that I have purchased do not

come with language tutorials. A compiler is a tool. It should

contain instructions on how to use it. A tutorial is extra. (Word

processors don't contain lessons on grammar, do they?) I found

the documentation that accompanied C Power to be quite

complete and accurate. It is to Pro-Line's credit that the docu

mentation was clear and short. It seems to have been written for

programmers, as it should be. I am able to find answers to all my

questions quickly and the answers are matter-of-fact, not tuto

rial in style. I like that. My copy of C Power came with the C

PrimerPlus book from SAMS. This is an excellent text, and I find

that I use it as my primary C reference. Pro-Line did indeed drop

the text in later releases but, as I said before, it was extra to begin

with. I did find the C tutorial in the Super C package to be

excellent. Indeed, I thought it was the best part of the package,

but to condemn the C Power package because it does not

contain a tutorial is missing the mark.

The lack of graphics functions in C Power is unfortunate, but

they are very easy to implement. Otherwise the library functions

are complete for the vast majority of programmers.

The linker options in C Power are much more flexible than those

provided in Super C. You can link your C programs to be loaded

and run as a Basic file. You can also link them to be loaded and

run under the shell, with command line arguments and i/o

redirection. You can also link them to a fixed address to be

initiated with a SYS command (for wedges and other nice

things). Super C programs must be executed from the Super C

shell.

The one area that is most important to many programmers is

execution speed. He does mention that C Power has the edge in

that category. HAS THE EDGE?????!!!! My version of the prime

number sieve program took 11 times as long with Super C

compared to C Power. Eleven minutes compared to one minute.

Super C code executes slower than compiled Basic. The one

benchmark program that he gives results for is i/o intensive (a

file conversion program). That is not a valid test of program

execution speed. The 1541 disk drive is the slowest drive on the

market and the 1571 is not much better. His program is limited

by disk speed, not program execution speed.

Last, let me comment on the overall feel of the package. The C

Power shell is UNIX-like, in that it is command-line driven,

allows i/o redirection, and some standard UNIX utilities are

included. I like the command interface. I find it straightforward

and functional. Indeed, functional is my description of the

overall package. It is not flashy, it is not cute, it simply does what

it says it will do. That is extremely important when writing

programs, as it allows me to concentrate on the program being

written, not on the environment in which I am writing.

In conclusion, I can only recommend the C Power package. The

non-standard format of the text files used by Super C, the fact

that programs can only be run from the shell, and the slow

execution times make it the less desirable of the two packages.

Herb Rose, Dale City, Virginia

C Converter for Super-C vl: I was happy to see Adam

Herst's article on C for the C-64.1 was beginning to wonder if I

was the only C-64 owner working with the language.

Unfortunately, I am using Super-C Version 1. Adam's file con

verter will not compile and link as written with that version.

The changes necessary to properly compile and link the pro

gram with Super-C vl are as follows:

In main()

l)#include "a:stdio.h" to#include "stdio.c"

2) fgets(inbuff,254,inchan); to gets(inbuff,254,inchan);

3) status = EOF; to status = EOI;

4) fputs(outbuff, outchan); to puts(outbuff, outchan);

In namefile()

5) gets(name, 16); to gets(name, 16.STDIO);

In convert() and copybuff()

6) char inbuff; to char *inbuff;

7) char outbuff; to char *outbuff;

Changes 6 and 7 occur because Super-C vl defines undimen-

sioned arrays as having null elements, except where initial

values are set at definition. In the case of the Convert program,

moving elements between the null arrays produces an overflow

error. Using pointers remedies the problem.

Changes 1 through 5 are due to differences in the standard

library.

Thanks for a fine magazine.

Terry D. Decker, Oklahoma City, Oklahoma

Super C and the RAM disk: In reference to Adam Herst's

article, "A Tale of Two Cs" (Volume 7, Issue 5): I have taken the

liberty of modifying his "Seq/Usr convert" program (for Super

C) to allow it to be used from the A or B disk drives or the RAM

(H) disk. I also deleted the printing portion of the program as I

found this saved a lot of time in the conversions.

The Transactor 17 July 1987: Volume 8, Issue Ol

Converting a 30 block file I got the following times:

original (a: disk to a: disk)

with file printing 1:21

new (a: or b: to a: or b:)

no file print 0:46

new (a: or b: to ram disk) 0:25

new (ram disk to a: or b:) 0:37

new (ram disk to ram disk) 0:18

I feel that these times make it worth the trouble

program to be converted to the RAM disk.

Or I can use MIX (which, by the way, is a very good implementa

tion of C), which works beautifully on the RAM disk in CP/M.

I will now get off the soap box. I hope all of this has been of some

interest to you and the rest of your readers.

Joe Faust, Lompoc, California

Unfortunately, we don't have space here for Joe's revision of the

Convert program. However, it will be included on the Transactor

to copy the disk for this issue.

In regard to the RAM disk, I contacted Abacus Software and they

provided me with a program to increase the use of expansion

RAM to 128K. After experimenting with it for a while, I finally

found out how to expand the RAM disk to 1985 blocks or

496.25K, using the following program:

1 #include "h:stdio.h"

2fileoutchan;

3

4 main()

5{
(char)0xed06 = 0x7e;6

7

8

9

10}

outchan = open(15, 15, "u:");

close (outchan);

The following hex numbers poked into $ed06 by line six of that

program results in these configurations of the RAM disk:

$30 737 blocks free (the expansion suggested by Abacus)

$40 993 blocks free

$60 1505 blocks free

$7e 1985 blocks free

$7f 0 blocks free

After $7f the count seems to start back up again. It is interesting

to note that although at $7f the blocks free were shown to be

zero, nothing in the current RAM disk was erased.

So much for the good news. We must now deal (again) with copy

protection. When I tried to copy the Super C editor, compiler and

linker to my big new RAM disk, I found I could not. When I

asked Abacus why, I was told because it was copy protected. . .

They said there was nothing they could do about it. . .

Well, in my other C-128 mode, CP/M, a friend loaned me his

MIX C Compiler to try. I went out and bought it although I could

have just copied it, as it was not copy protected.. . It would of

course not have been much use without the very large manual

that comes with the program. Super C would be even less use

without its manual because of its non-standard features. So 1

guess the thing to do now is go out and spend some more money

on a program breaker that will allow me to use the program I

have already purchased in the way it should be used.

TransBASIC graphing on one screen: The TransBASIC

graphing module by Paul Adams is the answer to a prayer -

almost. The program I want to use it in is so large that I just can't

afford the luxury of two hi-res screens. Is it possible to modify

the graphics routines so that they only write to one screen and

leave the other 9k available to Basic?

I don't have any idea how big a project that would be. I hope

someone will take it on, and I hope you will be inclined to print

the changes in an early issue.

The Transactor is great. Please keep on doing what you're doing.

E.D. Berners, South Bend, Indiana

It looks from the code as though the simplest way to make the

change you want involves altering exactly four lines of code in

the original module. This is going to leave you with a module

that is much larger than necessary (it will still contain all the

now-redundant code to handle switching between the screens),

but a wholesale rewrite is unfortunately beyond our resources.

Here are the modifications you would have to make:

13002 ;sta(t4),y

13038ldx#3

13502 f400 .byte $8f,$48,$00,$00,$00

15146 hite .word $e000

We should warn you that this set of changes is untested;

however, we think they'll do the job for you. Good luck.

Bundling TransBASIC dialects: I would like to get some

instructions for the use of TransBASIC, if I could. I ordered the

package a few months ago from the Transactor, and have found

it a worthwhile, cost-effective program. However, I do not

understand how to link my own programs to the TransBASIC

dialect that I have used to write the program.

First of all, I must explain that I am not a hacker or a "techie"; I

am a high school English and history teacher and am interested

in writing some simple software for use in my classes. I have

found Basic 2.0 to be cumbersome, so I have been looking for a

Basic extension that I can use with my program which would not

have to be loaded prior to loading my program.

The Transactor 18 July 1987: Volume 8, Issue 01

Is it possible to do this with TransBASIC? If so, could you explain

to me in simple, layman's terms how to do it? I have read the

manual several times and, as far as I can figure, I have to use the

Datafier to make data statements. Beyond that, I have no idea

what to do.

Bob Irving, Brockville, Ontario

After you have assembled your TransBASIC dialect, and noted

the hexadecimal start and end addresses of the object code as

given by the assembler, you should load and run the Datafier.

After the run, your dialect will be in memory in the form of a

loader subroutine beginning at line 9000 (you can renumber it if

it will conflict with the Basic code you have written).

The next step is to merge this subroutine with your Basic

program. First save it to disk as a temporary file (e.g. SAVE "

TBTEMP", 8). The easiest way to do the merge is with the ADD

fast merge command on the TransBASIC disk. You can enable

this command by loading and running the TransBASICprogram

again as though you were about to create a new dialect. Now

load your Basic program and type, ADD " TBTEMP". When

you get your READY prompt back you should have both your

original program and the Datafied dialect in memory as one

program. All that remains is to add the following lines to the

beginning of the program:

1 if peek(773)<192goto3

2 exit

3gosub9000

This will cause the custom dialect to be poked into memory and

enabled on each run of the program. Save the modified program

back to disk and you 're done.

Amiga music software shortage: I am a professional com

poser and musician, and the proud owner of an Amiga since

October, 1985.

When I purchased this computer, it was on the basis of the

immense promise it held. The combination of power, expand

ability, and ease of operation in a multitasking environment,

with standardized storage of graphics, text and sound files to

accommodate transfer between programs made the Amiga my

obvious choice.

Oh sure, I knew there would be a bit of a wait for the software.

Programs like the complete rewrite of Roger Powell's "Texture"

sequencer or the numerous other music packages from Cherry

Lane Technologies might not arrive for a few months yet. . . but

the wait was bound to be worth it.

Here I am, well over a year down the road. What have I got to

show for my patience? Well, there's Activision's "The Music

Studio". Although not bad as a music toy, its laborious system for

entry of notes (the Amiga version doesn't even allow you to use

midi for this) makes their boast of it being "a professional-

quality music composition tool" seem strange. Electronic Arts'

"Deluxe Music Construction Set" comes much closer to fulfilling

that promise. The system it uses for placing notes on the staff is a

lot more flexible. . . although it seems odd to me that they

wouldn't use the even more elegant method established in the

Macintosh version (where you place the note on the score, and

then drag to the right to choose the timing value - what could be

simpler?)

I have the Mimetics "SoundScape Pro Midi Studio". As a multi

tasking work tool, this could be a big help to me some day.. . but

at this point the sequencer section - which is what I have the

most need of - is lacking in any of the sophisticated editing

features most other sequencers coming on the market have.

Still, I remain optimistic on this one.

As an example of a clever music program which does the sort of

ground-breaking things people were predicting for the Amiga,

all I have at this point is EA's "Instant Music". This is a

wonderfully entertaining program, loads of fun at a party.

Although not really a composer's tool. I still applaud the authors

for a job well done. I wish there were more music programs as

imaginative.

And while I'm wishing, here are some other wishes. Why is the

Amiga the only major computer on the market today to not have:

• a full-featured midi sequencer

• a voice librarian, at least for the DX7, preferably for others, and

• a visual editing program for the Mirage.

Nothing would please me more than to hear that I am wrong,

and that programs like these are available already. However,

after many months of perusing the various computer and music

related magazines with not so much as a rumour, it would be

quite a surprise. So how about it. Does anybody have any

surprises?

Rob Bryanton, Regina, Saskatchewan

More Superkit sorrows: I would like to add yet another voice

to that of Roger Detaille, Therese, Quebec (Letters, Volume 7,

Issue 5). I also purchased a copy of Superkit 1541 during the

summer of 1986, after reading your glowing review (your review

is still 'glowing'!) I suffered some real problems with this pro

gram. Many of the functions did not work correctly. I have

written two letters to Prism in Waco, and have never received

any acknowledgement that I had even written! In short, "little

boy, don't bother us", seemed to be their attitude. I realize that

the program only cost $29.95, but one should receive some

value for the money. I also realize that I am a 'hotdog eater'

subscriber to Transactor. I notice that you have accepted adver

tising from Prism and suppose that that will make all reviews

sound very good! I have written them twice, even about

whether the new version, which I am supposed to be able to

purchase for $10, was a significant improvement over the first

version; complete silence!

Another comment: the reply which you gave Mr. Detaille was

the worst "baloney" I've read in a long time! The line, "we don't

think you'll be disappointed with the quality of Prism's after-

The Transactor 19 July 1987: Volume 8, Issue Ol

sales support to registered owners" is really off beam. They

don't even answer letters to their "registered owners".

Another comment: on page 17, you seem to be orgasmic about

the fact that CompuServe lets you upload without fee. Yes, but

all those uploaded programs are downloaded at CompuServe's

regular on-line charges, and become a source of 'free' materials

which they, in turn, sell at a profit. Why don't you tell the whole

story?

You might think that I am a dissatisfied customer of Transactor,

but I'm not! I love the magazine and would like to see it become

(if it's not already) the ultimate Commodore mag in both coun

tries. I have dropped my subscriptions to some other "junk"

Commodore mags, subscribe to COMAL Today & Disks and

might try a Transactor Disk Subscription soon. I was upset about

TPUG's handling of my subscription (6 months of no communi

cation) but hopefully that is resolved now. Keep up the good

work and take a closer look at SuperKit 1541. I have used

FastHackem and DiSector, and both have done a better job for

me on the same system. My two drives can't be that far out if 1

have never had any problem; the alignment program also says

so!

Robert L. Manchester, HDE, East Aurora, New York

That was a welcome change of pace in your last paragraph,

Robert. We're sorry you've had trouble with SuperKit and with

Prism, but anything you 'oe read about them in this magazine

has been strictly in good faith. It doesn 't surprise us when people

have the oddproblem with the SuperKit program - it is definitely

sensitive to bad alignment, and probably to discrepancies in

rotation speed, as well. But on a good drive, our experience is

that it works as advertised. As for Prism's support of users, most

of what we hear is positive. But we don't have any institutional

relationship with Prism, and no inside knowledge of how they

treat their customers. (By the way, what is a "hotdog eater

subscriber"?)

If somebody at Prism would like to respond to Robert's letter,

we'd be glad to print that response, and interested to hear why

his letters have gone unanswered. You there, Mr. Domengeaux?

As for our not telling "the whole story" about CompuServe:

you'll have to excuse us for not realizing that CompuServe

charging for downloading time is a newsworthy item. At one

time, uploading programs to CompuServe was chargeable

online time - and submissions were frequent.

On reflection, we now realize that, by not making a point of this,

we were being unfair to all those other world-wide online

services who operate as public charities. Sorry, guys.

TransBloopurz

Cap Meter

Norm Herman of Oregon City, Oregon, writes: "The "Cap

Meter" schematic in your January 1987 issue worked per

fectly. . . There was a small problem with the program,

however. The calculation throughout was superb, but since

two ranges of values calculated out in scientific notation, both

employing the E, and since the ASC(P$) is 69 for both ranges,

both came up as PR The E-03 had to be split off, which can

be done by adding a line 565, thus:

565 if p$ = " e-03" then print " .00" x$" uf": return

Bits

Shirley Karish of Hicksville, NY noted a slight error in last

issue's bits section: "in "Printer output from an ML monitor",

the very first line of the program should be LDX #$04 instead

of LDA #$04. With that little change, she reports, it works

just fine."

N-Body Simulator on Transactor Disk 17

The "N-Body Simulator" program was fine as listed in the

magazine, but the program on the Transactor Disk (disk 17)

had a few problems: lines 220 and 2350 are missing and

prevent the program from running. To correct the program,

just LOAD it and enter these lines from the listing on page 33

of Volume 7, Issue 6.

Some Notes on Transactor Disk 17

There are two PRG files on Disk 17 that have raised a couple

of questions. "ATOM" is loaded by "REVERSI", and

"ROCKET" is loaded by "FENCE". Loading ATOM or

ROCKET themselves is meaningless.

The N-Body Simulator program was submitted with ready-to-

load files that would've saved you from typing in the values

from the charts. We regret not including these on Disk 17, so

we've decided to put them on Disk 18, along with some extra

systems that we've come up with ourselves. The files can be

identified by the ".NB" suffix, but don't enter the suffix when

specifying the filename for a load. For convenience we'll put

another copy of the simulator on Disk 18 too.

A Two-Button Mouse

Charles McCarthy from St. Paul MN, wrote with the following

correction: "This concerns the nifty article about the C-1350

mouse (volume 7, issue 6, pages 36-38). There is an error in

the code for the procedure TEST on page 38: at BTN1 +2,

there should be an RTS, not a .BYT $2c. The code as

published will change the desired ,Z = 0 to .Z= 1 if location

$01A9 is zero, and will change the desired .N = l to .N = 0 if

bit 7of $01A9 isO."

The Transactor 2O July 1987: Volume 8, Issue Ol

TeleColumn

Transactor Online Conference

Sunday, April 26, 8:00 PM EST

on CompuServe.

Subject: Writing Articles that

GET PUBLISHED!

We get dozens of articles every month, many we can't use. Why?

The reasons come up as fast as the articles come in. But it

doesn't have to be that way. Much of this is covered in our

Transactor Writer's Guide, which was four years in the making

(available free - send SASE). However, since printing the guide

we've acquired enough new criteria for '86'ing an article to make

the next guide double the size of the first, and we're quite sure

we'll find more.

At this conference we'll discuss everything from topic ideas to

preparing the package. Typesetting is one of most major tasks,

and many programs we receive are good, but too difficult to

typeset. We'll discuss how you can adjust programs you've

already written to reduce our preparation efforts and increase

your chances for seeing them in print. And if they make it into

print, YOU get paid. . . and isn't that what it's all about? Darn

right.

Never written an article before? Many articles we print are the

author's first attempt. Writing is often easier than talking,

because you have time to think about what you'll say. So if

you've been considering a writing hobby for some extra cash,

join us in this conference. Even if you're not planning to write

computer related material, we'll help you put together a submis

sion that will be irresistible at any publication.

The conference will be held in CBMCOM, The Commodore

Communications Forum. Once on CompuServe, type "GO

CBMCOM" and enter "CO" at the main function prompt. It starts

at 8:00 PM EST on Sunday, April 26, and myself, Rich, Chris and

Nick will see you there!

Transactor Programs on CompuServe

We're gradually getting all of the Transactor Disks uploaded to

CompuServe. You can find them in Data Library 17 of CBMPRG,

The Commodore Programming Forum. Data Library 16 of

CBMPRG will contain all of the programs that have been

published in the Bits section, and those few that have appeared

in the Letters column.

Since filenames on CompuServe are limited to six characters

(the extension will always be ".BIN" ie. uploaded with Xmo-

dem), they won't always be very descriptive. So unless you

know the exact name we chose to upload the file, it might get

difficult locating a specific program. Therefore, we carefully

designed a format of keywords that makes them easy to find.

Here's an example:

V7104 P70 JAN87 C64 TRACE44.SRC HI RES TRACER PAL SOURCE

The keywords start with the Volume, Issue, and Page numbers,

followed by the date on the cover. The Page number is the page

that the listing starts on, NOT the first page of the article.

Next is the machine(s) the program will run on. Some programs

will run on any machine, in which case this will be "BASIC".

The exact name of the file as it appears on the Transactor Disk

comes next ("TRACE44.SRC"), and we suggest you use this

name once it's downloaded to make it more identifiable when

talking with others who have the program, but obtained it

elsewhere. At the moment we're not sure how to show where

the "exact filename" ends, so this will be duplicated in the file

description that is displayed below the keywords. Following the

filename are some extra keywords that will describe the general

purpose of the file if the filename leaves a little too much to the

imagination.

Now when you're reading a Transactor, and you just can't wait to

get a copy of a program, sign on to CompuServe, "GO

CBMPRG", and enter DL17 at the main function prompt (DL16

for Bits). If "Mini-Tracer" is the program you want, as in the

The Transactor 21 July 1987: Volume 8, Issue Ol

above example, enter the following at the DL prompt:

bro /key:v7 iO4 p70

. . .and the file should appear instantly. The above would show

you the source file. If you only want the Loader, you would enter:

bro /key:v7 iO4 p69

Occasionally there may be two or three programs that start on

the same page. If the one you want doesn't show up first, just

keep hitting Return at the prompts and eventually it will.

HOWEVER, please note that although the above is an accurate

example, Mini-Tracer had not been uploaded as of this writing.

The Magazine Display Area

After starting work on the Display Area that we've been men

tioning over the last four issues, we soon realized that if we were

going to refer to programs from within the articles on the

service, we should know what the name is before we refer to it.

We could have chose names prior to uploading the programs,

but then the articles would refer to files in the DLs that aren't yet

there. So we decided that the programs should be safely in the

DLs before we refer to them by name. When all the Transactor

programs are uploaded, work will resume on the Display Area,

which should be sometime in April.

CAD30.BIN by Steve Nye [70366,1316]

a drawing/drafting program for the Commodore 64

Did you ever wish you could try out that new floorplan before

moving all the furniture? Or print a map to your house for those

out-of-town guests? Need to create a bar or pie chart for that

sales meeting tomorrow? All this and more is available for the

price of downloading from CompuServe's CBMART SIG.

CAD is a drawing/drafting program for the Commodore 64.

Originally designed to do electronic schematics, it has evolved

into one of the most complete drawing packages available. The

ease with which it is modified and expanded has allowed the

users of the package to be major contributors to its development.

Aside from the usual drawing functions (line, box, circle, erase,

etc.), there were from the outset three main requirements for the

package, an easily expanded and modified command set, three

hires screens resident in RAM, and the ability to access a library

of pre-designed figures.

The ease with which BASIC is modified made it the obvious

choice for a programming language, but the lack of high resolu

tion commands had to be overcome. A package of USR calls

from the old Commodore SIG, USRML, made it possible to access

machine language routines for hires work while keeping the

main structure of the program in BASIC.

CAD is actually a package of eighty-three short programs. The

command function programs are linked together by a command

processor, and only one is loaded at a time. The use of linked

programs keeps the amount of memory needed by BASIC to a

minimum and allows a virtually unlimited command set. Since

the CAD programs only need to pass numeric variables, the

linking process is a simple one; it is only necessary to ensure

that the first program loaded is the longest in the package.

The pre-drawn figure access was a simple programming prob

lem. The figures are stored on disk as X and Y displacements

from a reference point. When the figure is recalled, these

displacements are added to the present position of the cursor

and the pixel at that location is set. The size of the figure is

limited to plus or minus 127 pixels and a total of 255 'on' pixels

can be included in each figure. The number of figures on a disk

is limited only by the number of available directory entries.

Thanks to user support there are now over thirty figure libraries,

including furniture for floorplans, USGS map symbols, electronic

schematic symbols, plumbing fixtures, and a number of font sets

for lettering hires screens.

A package that has not received as much attention as CAD, but

is closely related, is GRAPH. This package allows drawing high

resolution pie charts, bar charts, and line plots. Using a dynamic

keyboard technique it even allows graphing of a user-input

equation. Since GRAPH initially boots the entire CAD support

library, it is possible to move from GRAPH to CAD by simply

changing the disk. This allows the user to modify, letter, and

otherwise manipulate the graph.

The CAD and GRAPH packages are available from CBMART

Data Library 12 under the filenames CAD30.BIN and GRAPHV-

.BIN. There are numerous support files, such as the figure sets,

and a number of CADGames designed to be played using CAD.

In fact, the support files for CAD became so numerous that now

Data Library 12 is devoted exclusively to CAD. Support for the

package is available through regularly scheduled conferences

and the message section of the SIG.

Another Online Odyssey
by Marte Brengle, Glendale, CA

Check out The Source and expand your online world.

Ranjan Bose's article in the May '87 Transactor gave a good

overview of three of the most popular national online services

for Commodore owners. One other large national service whose

name doesn't usually come up when one thinks of topics of

interest to Commodore owners is The Source.

In the past, The Source's target "audience" has been business-

oriented and mostly IBM-using, rather than the kinds of people

who use the "consumer" services provided by CompuServe or

QuantumLink. That is changing these days, and a large factor

influencing that change is the new Commodore-oriented Spe

cial Interest Group (SIG). Any of you who used to visit The

Transactor on Viewtron may already be familiar with the folks

who run the Commodore SIG on The Source. It's the Indepen-

The Transactor 22 July 1987: Volume 8, Issue Ol

dent Computer User Group (ICUG), the same crew who ran

Speakeasy, Inner Works, and For Starters on Viewtron.

The Source provides the same kinds of services as the other

major networks - information, public domain software, games,

and the like - and has just added a real-time conferencing area,

called Chat. Those of you who have used CompuServe's "CB

Simulator" or any of the "CO" areas in the Forums may find that

Chat is even easier to use.

CompuServe's interactive conferences are an exercise in mental

gymnastics, unless you are using a terminal program with a split

screen, since your messages can get totally tangled up with

other people's on the screen. One of the first things CIS CB users

learn to do is press ctrl-V (repeatedly!) to straighten out their

messages so they can see what they've typed so far. No need to

do that in Source Chat. Since The Source is accessed primarily

through packet-switching networks like Telenet and Tymnet, a

few simple keystrokes will take you back to "network level,"

switch you to half duplex, return to Chat and show you your own

messages without their being overrun by everyone else's. And

with Source's command structure, you can even set yourself up

a "personal command key" (as was possible on Viewtron) to do

all that "preparation" automatically as it takes you into Chat.

(More about that in a moment.) It's like getting the best of

QuantumLink or PlayNET (each message is an entity unto itself

and you don't have to unscramble them) with the best of the

ASCII networks (no proprietary software required). And nicer

still, you don't pay extra for using higher baud rates in Source

Chat. It's billed at the 300 baud rate no matter how fast you

choose to go (up to 2400 baud at present).

The Source also features one of the most sophisticated

"message-board" systems around, called Participate(tm). You

may be surprised at the kinds of things that are possible in

Participate, or Parti as it's called. Much like CIS, messages follow

each other in "threads", but on CIS, only the Sysops can move

messages from one topic to another. Not so in Parti. Messages

can be branched off, moved around, sent to other topics, used to

begin new topics, or whatever your imagination desires - no

special Sysop powers required. There are private topics on both

CIS and Parti, but on Parti anyone can start one, and can invite

anyone of his or her own choosing.

One of the nicest things about the late, lamented Viewtron was

that it allowed you to set up your own personal "command

keys" to take you anywhere in the system. If you didn't feel like

typing ICUGSIG SPEAKEASY every time, for example, you

could program the combination =S to take you there. The

Source lets you do the same thing. You can program as many

commands into a sequence as you need, to get you anywhere on

the system with just one keystroke, if you choose. Here's an

example of one of my own custom keys. I've programmed the

letter C to switch me to half duplex, take me into ICUGSIG Chat

(the special Chat area run by the Commodore SIG), check to see

who else is there, give me an "alias" (or "handle"), make sure I

can see my own messages, and enter the ICUG Reception

channel. The listing looks really complex when you see it on the

screen, but it works like a charm:

C term -half;icug chat.1015 -s -al marte -di me -j 31

More complete instructions for setting up personal command

keys are found in the Source manual, and also in Parti under the

topic "Custom Keys."

You can also set up a file to run automatically each time you sign

onto The Source, if there are certain things you'd like to do every

time you sign on. For example, my file turns my "custom keys"

on, and then checks to see what's in my mailbox. But that's not

all you can do. Ever get tired of seeing the system's "what next"

prompts? You can reprogram even that to suit your mood.

Instead of the standard "arrow" that The Source uses for a

Command Level prompt, I have it set up to say "What now?"

And instead of the question-mark-and-arrow combination that

means you made a mistake somewhere, my prompt says "Uh

oh!" My sign-on file sets that up as well. You can find instruc

tions for all that in the Source manual under "Customizing The

Command Level Prompt," or in Parti in the "Custom Keys"

topic.

Although I've mentioned the Source manual several times here,

and it is for the most part a good investment, the fastest way to

find help for what you need to do on line is generally to ask

someone. The Parti section in the manual, for example, is out of

date (as is the Parti section in Charlie Bowen and Dave Peyton's

excellent book "How to Get The Most Out Of The Source"). And

ICUGSIG is a great place to find all kinds of help with using the

system. There are quite a few "help with Parti" topics set up

under ICUGSIG Exchange in Parti, and the SIG also provides a

"New User Survival Kit" under the main SIG menu that's a gold

mine of information. It covers such things as navigation com

mands, "how to download/upload," how to use SourceMail,

how to use the Members' Directory, and a complete and thor

ough tutorial on how to use Parti. And there's a new "Ask The

Experts" section that's much like the one on Viewtron, where

Commodore users can get information on hardware, software,

or any other computer-related problem.

You can upload to and download from the software libraries with

a variety of protocols, including two variations on "capture

buffer," Xmodem, Kermit, and, for Amiga users, Sliding Window

Kermit in ATerm (which is also available for downloading from

the ICUG library).

ICUGSIG on The Source provides software, advice, and informa

tion for all Commodore computer users. There's a large library of

C64, C128, and Amiga software, and a large group of sysops

who can provide help with almost anything imaginable. You can

recognize the Sysops online by their ID numbers, which all have

a SIG prefix. The ICUG Sysops' ID numbers range from SIG015

to SIG025.

As Ranjan Bose's article pointed out, there is a wealth of

information and services available online for Commodore own

ers. But it's not all on CompuServe and QuantumLink! Check

out The Source and expand your online world.

The Transactor 23 July 1987: Volume 8, Issue Ol

A Real Shuffle Subroutine Thomas W. Gurley

Wills Point, Texas

How many times have you ever played Blackjack where the dealer

threw all the cards up in the air and then picked them up in random

order and dealt them out? Not very many, I'm sure. But that is just

about the way most computer programs shuffle cards. The shuffle

subroutine of the program uses a pseudo-random number genera

tor to rearrange the order of the cards each time they are dealt. On

the other hand, a human dealer would not shuffle like that. He

would divide the deck into two packets and riffle one half with the

other. Most dealers will let one to five cards fall from each packet

until all the cards are riffled. He will then split the pack again and

repeat the shuffle several times. Each new deal thus depends (in a

complicated way) upon all previous hands.

The card shuffle subroutine presented here more nearly approxi

mates the actions of a human dealer.

This subroutine starts with a "fresh deck" by assigning the order to

the cards from 1 to 52 when first run. It then shuffles several times

just as a real dealer would do. Before each new deal, the cards will

be shuffled a random number of times from 3 to 13. You can change

this feature (and others) to suit yourself.

I wanted to analyze the game of Blackjack to find out why "runs"

seem to occur. In real-life Blackjack, the cards will sometimes hit in

runs and eventually they will "patternize" so that one of the players

(or the dealer) will always hit. It may require hundreds of deals

before a "run" will occur but it will happen in total defiance of all

logic. This subroutine will do exactly the same thing!

All you need do to obtain more realistic hands is substitute this

subroutine for the one currently being used in your card game. You

will have to adjust the array names to match your program, but that

should be easy.

The Blackjack program I modified had two calls to a shuffle

subroutine. It randomly filled an array with numbers from 1 to 52

each time. It then went on to assign card values to the numbers in

the arra. All that was necessary to implement the new shuffle

subroutine was to put a GOSUB 8000 as the first line of the original

randomizer and then jump past it (on return) to the "card value"

routine.

It works really well and the hands seem to appear more like those in

real Blackjack games I've been in. I hope you can use this subrou

tine as well.

JK

PA

AE

EO

Gl

MM

8000 rem **shuffle subroutine**

8010 rem 8/27/86

8020 rem **dimension arrays**

8030 dim co/o(52),c1(26),c2(26):rem (0) not used

8040 print" ftf1 to start"

8050 if peek(197)<>4 then 8050: rem time is part

of random factor

AH

MN

ND

IL

BF

CL

ED

EC

EH

FP

Nl

FE

NF

EC

DB

JB

AD

DM

Fl

KB

MD

EG

FP

AH

OH

LH

MM

HC

CK

AL

GD

EP

JF

BN

CO

JE

OG

AA

ML

JN

HE

Jl

EE

8060 rem set up the deck

8070 forx = 1 to52:c°/o(x) = x:next:formm = 1 to10

:gosub8130:next

8080 x = md(-ti):rem enter here for all subsequent

shuffles

8090 sh = int(10*rnd(x) +1) + 2: rem change the

'10' to suit yourself

8100 formm = 1 tosh:gosub8130:d = 0: rem shuffle

random times

8110 next

8120 end: replace this with 'return'

8130 rem **a real shuffle**

8140c = 0:ca = 0:cb = 0:cc = 0:cd = 0

8150 print". . .shuffle. . ..shuffle. . ."

8160fori = 1to26:c1(i) = c°/o(i):c2(i) = c°/o(i + 26):next

:rem split deck into two

8170 gosub8400:gosub8250:ifcb> = 26then8360

8171 rem deal 1 st card from right packet so 1 st

card changes (just like real!)

8180 gosub8400:gosub8200:ifca> = 26then8300

8190goto8170

8200 rem **riffle cards from left half**

8210 fore = 1 tonca = ca +1 :ifca>26thenc = 7: return

8220cd = cd + 1

823Oc°/o(cd) = c1(ca)

8240 next:return

8250 rem**riffle cards from right half**

8260 fore = 1 torcb = cb +1 :ifcb>26thenc = 5: return

8270cd = cd + 1

8280 c°/o(cd) = c2(cb):next

8290 return

8300 rem **shuffle balance of left**

8310 fore = cbto26:cb = cb +1 :ifcb>26thenreturn

8320 cd = cd +1

8330 c°/o(cd) = c2(cb):next

8340 return

8350 rem **shuffle balance of right**

8360 fore = cato26:ca = ca + 1: ifca>26thenreturn

8370cd = cd + 1

8380 c°/o(cd) = d (ca):next

8390 return

8400x = rnd(-ti)

8410r = 4*rnd(x) + 1

8420 return

9000 rem ***this is for you to verify

there is one and only one of each

9010 rem number in the array c°/o(x).

use 'goto 9000' and note that

9020 rem each left hand number occurs

once only.

9030 forx = 1 to56:forjj = 1 to52:ifc%(jj) = xthen

printx;jj

9040 next:next:end

The Transactor 24 July 1987: Volume 8, Issue 01

Function Manipulation:

Roots and Integrals

Eric Giguere

Waterloo, Ontario

One of the computer's strongest points is its mathematical

prowess. In terms of speed alone, computers have revolution

ized modern mathematics. Things which used to be drudgery

for human mathematicians are handled without complaint by a

properly programmed computer. The following article deals with

two useful applications of computers: estimation of function

roots and integrals.

Roots

A function is a way of expressing the fact that one quantity

depends upon another. By definition, the dependent quantity

must be unique. We usually see a function expressed in the

form:

f(x) = x + 1

For a certain value of x, out pops another value, in this case

x +1. If the function is to be plotted, we may see it expressed in

the following form:

y = x + 1

Thus given a point x, we can find a related point y and plot the

corresponding coordinate on a graph such as the one in Figure

la.

Y-axis

-5 -4

(-3,-4

5-
A
H -

3-

2-

1-

-3 -2 -1

-2-

-3-

). _4.

-5-

• (2,3)

1 2 3

X-axis

4 5

Figure la: The Catesian Coordinate System

A root or zero of a function is defined as the point where the

function is zero, or where the graph of the function crosses the

x-axis. A function may have one root, several roots, or no roots.

The function y = x + 1 has a root at the point x = -1, since y = (-

1)+ 1 =0. But a function such as y = x2+ 1 has no root, since y

will never be zero no matter what value of x we choose.

There are times when it is useful to know where the roots of a

function are, if it has any. Some functions are particularly easy in

this respect, but others are a lot harder. This is where the

computer comes in. Several methods have been perfected over

the years to yield accurate root estimates for a given function.

The one I will be presenting you with is called the bisection

method.

BISECT

The idea behind the bisection method is very simple. Take a

function f(x) that has a root somewhere in the interval [A,B]

(that is, it has a root at a point x such that A <= X <= B), as in

Figure 1 b. We then divide this interval into two equal subinter-

vals and throw away the subinterval that doesn't contain the

root (see Figure 1 c). We then repeat the process on the remain

ing subinterval, and continue on in this fashion until we are

within a certain distance (or tolerance) of the root. This gives us

the approximation for the root.

A

I

y

—-*

MID

/
/

/ J

\ A
root or zero

off(x)

X

Figure lb): BISECT algorithm

MID

New left endpoint,

root New midpoint

Figure lc): Blow-up of lb)

The Transactor 25 July 1987: Volume 8, Issue Ol

We need to know one thing before going ahead and writing the

algorithm for this method: how do we know if an interval

contains a zero or not? The easiest way is to compare the

function values at the two endpoints of a specific interval. If

there is a root in the interval, then one y-value will lie below the

x-axis and the other will be above it. Thus if we are looking at

the interval [A,B], there will be a root if the following condition

holds:

f(A)*f(B) < 0

(Remember that if you multiply a negative number by a positive

one you get a negative answer, and a positive one otherwise.)

This is the test we will use in the algorithm.

NOTE: The above test is not accurate for all intervals of a

function. If, for example, a function crosses the x-axis twice on

the interval [A,B], then f(A)*f(B) > 0, even though there are two

roots in the interval. Thus you must be careful of which interval

you choose to get an accurate example. Plotting the graph over a

large interval can often give you a good idea where the roots are

approximately, and you can then use the bisection method to get

an accurate estimate from the intervals shown on the graph.

A BASIC subroutine to find a root using the bisection method is

shown in Listing #1, lines 380-430. The function should be

defined in the calling program with a DEFFNF statement. Set the

variables A and B to be the left and right endpoints of the

interval you wish to test, and set TL to be the desired tolerance

(something like 0.00005, say). A GOSUB 380 will then find the

root, if any, on the interval. If a root is found, ER will be zero and

the root location will be stored in MID. If ER is 1, then no root

was found on that interval — but remember this is not necessar

ily a definitive answer. The rest of the program in the listing is an

example of how to use the routine. (None of the REM statements

are necessary, so you don't have to type them in.)

Integration

Integration is the term used, at the most basic level, to describe

the method to find the area under a given curve. Refer to Figure

2. The area under the curve on the interval [A,B] is shown as the

shaded area. Note that the we consider the term "under the

curve" to mean "from a point on the curve to the corresponding

point on the x-axis", in other words the area between the curve

and the x-axis. (Even if a function is below the x-axis, this

definition is valid and we still use the term "under the curve",

even though it's a bit inaccurate in this situation.)

Many methods have been developed over the years to calculate

areas, and the one we will use here is based upon approxima

tion. One way of estimating the area in such a fashion is to divide

the area into many rectangles of equal base length. Each

rectangle will have a height determined by the function itself.

Since we know that the area of a rectangle is the product of its

base and height, we simply sum the individual rectangle areas to

get an approximation for the entire area under the curve. The

approximation gets better as the number of rectangles increases

(and hence the base length decreases).

Figure 2: Area under the curve between points A and B

The actual area-finding routine described in this article is a

variation of the approximation method detailed above called

Simpson's Rule. I won't go into the theory as to how the rule

works here, but you can find it in any good computer textbook

dealing with area-finding problems. Listing *2 shows the actual

BASIC subroutine, from lines 450 to 520. As in the bisection

subroutine, the function should be defined with a DEF FN

statement, and the endpoints of the interval stored in the

variables A and B. The variable NP is the desired number of

integration panels (rectangles) that the subroutine should use.

This sets the desired estimate accuracy for the subroutine — the

larger NP is, the better the estimate. (There's a tradeoff in time

taken to calculate the area, of course.) Actually, if your function

FNF has no powers of x greater than 3, then you need only set

NP to a small number such as 16, because Simpson's Rule gives

an exact value for the area. For functions of degree greater than

3 (ie, they have powers of x that are greater than three),

Simpson's Rule gives an estimate, an estimate which improves

with larger values of NP. As before, the rest of Listing *2 gives an

example of how to use the subroutine.

Final Notes

Computer algorithms such as the above have made themselves

very useful for solving many physical problems. Examples

abound that require a person to know the roots or integrals of a

function, and sometimes the most efficient way to find these is to

use a computer. While the answers such algorithms may give are

The Transactor 26 July 1987: Volume 8, Issue 01

limited both by the computer's accuracy (usually found as

round-off errors) and the inherent inaccuracy of the algorithms,

they are usually good enough for the task (especially since the

time required to find an accurate answer using manual methods

may outweigh the benefits of having such an accurate answer). If

you're interested in other such approximation techniques, many

computer science textbooks are good sources of such informa

tion and usually the algorithms they give may be converted to

BASIC without much trouble. I know that I've found the integra

tion routine particularly useful in checking my answers in my

university calculus courses. Maybe you can find a good use for

them, too.

Listing 1: BISECT

rem sample program to find the

rem roots of the function

rem

rem y = (x-3)(x-1)(x + 4)

rem

rem which we know are x = 1,3, and -4.

rem

rem try the intervals (0,2), (2,0)

rem and (-5,-3)

•

ideffnf(x) = (x-3)*(x-1)*(x + 4)

) print

i input" left endpoint";a

i input" right endpoint" ;b

i input"tolerance";tl

) print

l gosub 380

i if er = 1 then print " no zero was found

between" ;a;" and" ;b: goto 210

i print " root is at:" ;mid: goto 210

[•g|-p **************************

rem bisect subroutine, used to

rem find the zero of a function

rem between points a and b, with

rem tolerance tl. if no zero

rem exists, er = 1.

rem

ifl=fnf(a):fr=fnf(b):er=O

if fl*fr > 0 then er = 1: return

= (a + b)/2

if abs(a-mid) < = tl then return

i fm = fnf(mid)

if f|*fm < = 0 then b = mid: goto 400

1 a = mid: fl = fm: goto 400

CD

FL

GJ

IG

KK

NE

OL

IC

PH

CD

LB

EA

Fl

DA

MC

MC

HM

DN

NA

GJ

IE

KK

KF

EB

BC

AB

JB

AJ

CC

PB

FO

EK

IA

PM

JK

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

Listing 2: Approximate Area using Simpson's Rule

rem program example using Simpson's

rem rule to find the area under

rem the curve

rem

rem y = 1 + x + xt2

rem

rem from x = 0 to x = 2. by direct

rem integration the answer we

rem should get will be 20/3, or

rem approx. 6.66667

rem

rem first define the function

i deffnf(x)= 1 + x + x*x

rem now call the subroutine to

rem find the area

i a = 0: b = 2: np = 16: gosub 450

print "the area from ";a; "to";b; "is: ";ar

i end

i *

rem

[Qff\ *****************************

rem

rem Simpson's rule subroutine

rem

rem returns the area under the curve

rem defined by fnf, from endpoints

rem a to b. set np to the desired

rem number of integration panels

rem

rem the area is returned as a value

rem in the variable 'ar'

rem

h = (b-a)/(2*np):se = 0: so = fnf(a + h)

for i = 1 to np-1

x = a + 2*i*h

se = se + fnf(x)

so = so + fnf(x + h)

next i

ar = (h/3)*(fnf(a) + 4* so + 2*se + fnf(b))

return

LE

NE

EK

AK

Ol

EL

AO

MO

Dl

MD

GO

IJ

AF

BC

EG

CC

MB

Cl

HE

HO

MC

KK

OF

CG

CH

AA

Gl

MJ

LM

JD

MH

IL

PD

NE

GN

FE

BC

OG

CG

OD

DN

GD

EC

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

The Transactor 27 July 1987: Volume 8, Issue Ol

Full Array Math

Operations On The 64

Richard Richmond

Springfield, Ohio

. . . When manipulating large arrays or carrying out repetitive operations,

these routines can significantly reduce the execution time of a program.

This article describes a group of math functions that perform the

basic math operations like "add, subtract, multiply and divide" on

an entire array with just one SYS command. Using these routines,

code like the following;

100 for i = 0 to 100

110 a(i) = a(i)*c

120 next i

can be reduced to SYS SA+ 18,C,A(0), where A is the name of an

array and C is a separate variable. Not only do these routines

provide simpler code, but they are faster than the corresponding

operation in BASIC statements. These routines are written in ma

chine language and will carry out the operations from ten to fifty

times faster than BASIC. When manipulating large arrays or carry

ing out repetitive operations, these routines can significantly reduce

the execution time of a program. Because this program makes

extensive use of the floating point routines in ROM, it also provides

examples of how to use those routines in your own programs.

The New Functions

Table 1 lists the SYS commands for these new utilities. Also listed

are the math functions performed by each of the functions. You can

see from the list that the program can perform the four math

functions +, -, *, and / on either two arrays or one array and a

separate variable. Some of the routines are provided to take into

account the non-reciprocity of certain operations. For example,

"A = A+B" is the same, mathematically, as "A = B + A". But,

"A = A-C" is not the same as "A = C-A". Table 1 shows that separate

routines are provided for the following non-reciprocal operations:

A = A-V

A = V-A

A = A/V

A = V/A

A = A-B

A = B-A

A = A/B

A = B/A

Throughout this article and in the examples, the labels A and B will

be used to indicate arrays and the label V to indicate a single

variable. Note that when a variable is indicated that variable could

also be one of the elements of an array.

The Rules and Exceptions

Because most of these routines follow the same conventions and

format, we will first discuss those and later point out the exceptions.

Two arguments, separated by a comma, are passed to the utility.

The second argument will be one of the arrays that will be operated

on and the array in which the results will be stored. These routines

are written to operate on floating point arrays and variables.

When working on an array, two addresses are used by the routines.

The address for the end of the array in the second argument is found

by the program and used to determine when the operation is

completed. The other address is used to tell the procedure where in

the second array to start the operation. In Table 1, the array

elements are x (such as a(x)). Normally, x would be = 0. In that case,

the procedure begins with the first, or (0), element of the array and

operates on every element in the array. A non-zero element would

cause the routine to skip some of the elements. For example, SYS

SA,V,A(0) would cause every element in A to be set equal to V. But,

SYS SA,V,A(2) would leave A(0) and A(l) unchanged and all of the

rest of the elements would be equal to V.

With this type of flexibility, some precaution is necessary. For the

two array operations, the number of elements in the first argument

from the element specified to the end of array must be, at least,

equal to the number of elements in the second argument from the

specified element to the end of that array. The routines only look for

the ending address of the second array. If the utility runs out of

elements in the first array before reaching the end of the second

array, the program continues but the results from that point on will

not be valid. No error or system crash should result, just useless

data.

Arrays must be dimensioned and the elements should be defined

before the utilities are called. The utility can be used to define

elements if they are all the same value. Variables do not have to be

predefined. But if they are not, they will be set to zero the first time

that they are used in a SYS to one of the routines. This program

depends heavily upon the floating point routines in ROM. There

fore, the rules for math operations in BASIC still apply and the

routine will return error messages such as "DIVISION BY ZERO" if

illegal operations are attempted.

As mentioned earlier, there are exceptions to the above guidelines.

Two of the routines are not limited to floating point numbers.

"EQUB" works on all three types of variables (integer, string and

floating point) and sets one array equal to a second. "INSERT" is the

second utility that also works with all variable types. This routine

puts the value of the first argument into the array at the location

specified, A(x). All of the following elements are shifted down one.

That is, A(x+l)=A(x),A(x + 2) = A(x+l) and so on. The last ele

ment in the array is lost.

Also, notice that "SQUARE" has only one argument. The elements

of the array are squared and stored back into the array, so no second

argument is needed.

For most of these routines, the value of the first argument is not

changed and should be defined before being used in one of the

The Transactor 28 July 1987: Volume 8, Issue 01

routines, unless that value is to be zero. The exceptions are 'mn'

and 'mx' used in "MIN" and "MAX". The minimum (mn) or

maximum (mx) value of the array will be returned and the initial

value of the variable does not matter.

A Look At The Program

The source code for these routines is listed in Program 3. Rather

than discuss it line-by-line, we will look at some general character

istics and some of the subroutines or modules used by almost all of

the routines. The labels at the beginning of the listing refer to the

ROM routines that do the bulk of the floating point math. Next in the

listing is the "JUMP" table. This technique makes it much easier to

insert or delete code or to make changes in the routines because the

"SYS" statement in BASIC does not change. Also, the "SYS" address

for new routines that may be added later can be easily determined.

To obtain as much speed as possible, zero page addressing is used

extensively. But, there is not enough zero page free memory for our

purposes. Therefore, "SZPAGE" saves the contents of a block of zero

page memory to a safe location and "RESTOREZ" loads the values

back to zero page before returning to BASIC.

The "TEST" routines are used to step through the array five bytes at

a time (5 bytes are used to store a floating point number) and to set a

flag when the end of the array is reached. "MODI" looks for the first

argument in the variable or array storage area and creates it if not

found. The address of this variable is then saved. Next, "M0D2"

finds the address of the array element in the second argument and

the address of the end of this array. These values are also stored for

use by the routines. In general, the steps followed when one of the

routines is called are:

1. Save zero page values

2. Use "MOD" routine to find the arguments

3. Addresses are loaded to the registers

4. Numbers are loaded into the Floating Point Accumulator (FAC)

5. The required math is performed between the FAC and memory

6. Results in FAC are stored in memory

7. Steps 3-6 are repeated for entire array

8. Zero page is restored and control returned to BASIC

Using The Program

First, type in and save Program 2. When this program is run, a ML

program file is written to disk with the name "ARRAY.FNC". Load

this program with:

LOAD "ARRAY.FNC ",8,1

Because these utilities were conceived to provide time savings for

graphics programs, they are located to be compatible with graphics

utility programs that load at $C000 (49152). The starting address

(SA) for these utilities is 51800. Once these utilities are loaded, type

"NEW" and enter or load your BASIC program. Near the beginning

of your program, define SA = 51800. SA can then be used for the

SYS statements listed in Table 1.

For examples of how these routines work, look at Program 1. Not

every routine is illustrated in Program 1, but if you run the program

and examine the output, you will get a good idea of what these

routines do. Note that in the next to last example array B is squared,

but the element (x) in the SYS command is 4. Compare that print out

with the previous one and you will see that the first 4 elements (x = 0

to 3) are not changed and the remaining elements (x = 4 to 10) have

been squared. The examples in Program 1 should give you a good

starting point for your own experiments in how to use these

routines.

Some of the routines, such as "MIN" and "MAX" are especially

useful when graphing. Using these routines, the maximum and

minimum values of an array could be used to "scale" the data before

it is displayed.

These utilities are fast. They are reasonably "goof proof" yet still

allow a good deal of flexibility. Any program that manipulates large

arrays should benefit from the increased speed possible with these

utilities. The use of jump tables and a modular approach to program

ming the different operations make it fairly simple to add other

functions to the program. Obvious ideas for additional routines

would be a square root function and one to raise the array to a given

power. Because both EQUB and INSERT work on all three types of

variables, you might want to write another program that only has

these two routines in it.

Although I first thought of these routines as aids for graphics

programs, they would be equally useful in a database or spread

sheet type of program. For that type of use, another possible

function would return the sum of an array. I would be interested in

hearing from anyone who has suggestions for improvements or

additions to this program.

TABLE 1: Summary of Commands

Format

SYS SA,V,A(X)

SYSSA + 3,B(Y),A(X)

SYSSA + 6,V,A(X)

SYSSA + 9,B(Y),A(X)

SYSSA + 12,V,A(X)

SYSSA + 15,B(Y),A(X)

SYSSA+18,V,A(X)

SYSSA + 21,B(Y),A(X)

SYSSA + 24,V,A(X)

SYSSA + 27,B(Y),A(X)

SYSSA + 30,V,A(X)

SYSSA + 33,B(Y),A(X)

SYSSA + 36,V,A(X)

SYSSA + 39,B(Y),A(X)

SYSSA + 42,MX,A(X)

SYSSA + 45,MN,A(X)

SYSSA + 48,A(X)

SYSSA + 51,V,A(X)

NOTE: SA = starting address (51800)

IF X or Y>0 in SYS command, routine will skip over elements

in array to (X). Elements with (a)<X will be unmodified.

Program 1: Example

Routine

EQUV

EQUB

PLUV

PLUB

SUBV

SUBB

MULV

MULB

DIVV

DIVB

SBUV

SBUB

DVIV

DVIB

MAX

MIN

SQUARE

INSERT

Operation

A = V

A = B

A = A + V

A = A + B

A = A-V

A = A-B

A = A*V

A = A*B

A = A/V

A = A/B

A = V-A

A = B-A

A = V/A

A = B/A

MAX(A)

MIN(A)

A = At2

A(X) = V

AK

IE

EN

CM

10sa = 51800:dima(10),b(10)

20 print: for i = 0 to 10: a(i) = i: next

30 print: print "set b = a": syssa + 3,a(0),b(0)

40 print: for i = 0 to 10: print b(i);: next

50 v1 =2:syssa + 6,v1,b(0): print:

print "set b = b + 2"

The Transactor 29 July 1987: Volume 8, Issue 01

ED

MC

FE

CP

MF

OA

FP

El

NM

JD

]

IK

BE

JH

ED

IP

OH

HB

PO

MM

01

NN

FK

KP

DA

PC

BJ

GE

EE

PJ

GG

GE

JL

HG

MN

DN

PN

AN

II

BP

DJ

CM

BK

LB

00

BP

CM

FC

DB

HB

LE

MF

IF

OA

PB

MG

60fori = 0to10: printb(i);: next

70 v2 = 25: print: print" insert 25 at a(5)

sys sa + 51 ,v2,a(5)

80 for i = 0 to 10: printa(i);: next

90 print: print

100 for i = 0 to

110

130

print: prin

set b = b*a": syssa + 21

10: print b(i);: next

t "square b - (b = bt2)"

print "starting with element x

sys sa + 48

140

150

160

for i = 0 to

print: prin

sys sa,v3

print: for i

,b(4)

10: print b(i);: next

= 4":

,a(0),b(0)

t " using an undefined variable":

a(0)

= 0 to 10: printa(i);: next

Program 2: Creates disk file ARRAY.FNC

100 rem m/l loader for array math

110 for j = 51800 to 52778

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

read x : ch = ch + x : next

if ch<> 141610 then print "checksum

error" : end

print "data ok. . . creating 'array.fnc'"

hi = int(51800/256):lo = 51800-hi*256

open 1,8, 1, "0:array.fnc"

print#1 ,chr$(lo)chr$(hi);

restore

for i = 51800 to 52778

read x : print#1 ,chr$(x); : next

closei

rem

data 76,

data 203,

data 250,

data 76,

data 203,

data 134,

data 76,

data 255,

data 1,

data 64,

data 202,

data 148,

data 96,

data 96,

data 165,

data 24,

data 0,

data 185,

data 96,

data 183,

data 164,

data 176,

data 32,

data 181,

data 164,

data 32,

data 32,

data 164,

data 181,

data 32,

data 76

data 205

The Transactor

233,202, 76,169,

76,215,203, 76,

203, 76,110,203,

145,203, 76, 64,

76, 99,204, 76,

204, 76, 37,205,

177,205, 76,212,

255, 255, 255, 0,

8, 64, 0, 0,

160, 12,185,191,

136, 16,247, 96,

202,153,191, 0,

166, 181, 164, 182,

165,183, 24,105,

184,105, 0,133,

105, 5,133,185,

133, 186, 197,252,

197,251,208, 2,

32,161,202, 32,

164,184, 32,162,

186, 32,212,187,

244, 76,173,202,

20,205,165,185

132,182, 32,162

184, 32,103,184

206,202,176,230

161,202, 32, 20

184, 32,162,187

164, 186, 132, 182

185,202, 32,206

173,202, 32,161

165, 185, 133, 181

204,

40,

76,

204,

180,

76,

205,

0,

3,

0,

160,

136,

32,

5,

184,

165,

208,

24,

20,

187,

32,

32,

164,

187,

32,

76,

205,

165,

32

202

202

164

76, 5

203, 76

29, 204

76, 75

203, 76

107,205

255,113

88,202

0, 3

153, 148

12, 185

16,247

212, 187

133,183

165, 185

186, 105

8, 165

96, 56

205, 165

166,185

206, 202

161,202

186, 133

165, 183

185,202

173,202

165, 183

185,133

80, 184

176,230

32, 20

186, 132

AK

HC

DH

MC

BK

LP

BK

HM

JO

IN

KL

PA

HP

FA

OM

JP

BM

LD

HD

IE

LF

JF

NC

OH

HE

LH

FK

JK

Cl

JK

KL

AM

EH

NH

KM

OP

DK

BN

Kl

PP

FG

MA

LB

MM

NL

AD

II

OG

Dl

MJ

HG

Ol

LG

GD

GF

CC

DN

II

BN

CH

DO

CM

3O

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

980

990

data

data

data

data

data

data

data

data

data

data

data

182,

32,

202,

202,

164,

183,

202,

202,

183,

133,

187,

data 230,

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

20,

132,

184,

206,

161,

184,

164,

185,

173,

165,

185,

80,

176,

32,

162,

132,

32,

32,

164,

181,

32,

76,

205,

182,

32,

202,

202,

164,

183,

202,

data 202,

data

data

0,

2,

1000 data 186

1010 data 76

1020 data 173

1030 data 186

1040 data 252

1050 data 11

1060 data 32

1070 data 76

1080 data 200

1090 data 165

1100 data 2

1110 data 139

1120 data 133

1130 data 32

1140 data 162

1150 data 187

1160 data 32

32, 162, 187,

80,184, 32,

176,230, 76,

32, 20,205,

186, 132, 182,

164,184, 32,

32, 206, 202,

32, 161,202,

164,184, 32,

181, 164, 186,

32, 185,202,

76,173,202,

205,165,185,

182, 32,162,

32, 15,187,

202, 176,230,

202, 32, 20,

32, 162, 187,

186,132,182,

202, 32,193,

202, 32,161,

183, 164, 184,

133, 181, 164,

184, 32,185,

230, 76,173,

20,205, 165,

187, 165, 185,

182, 32, 40,

193,202, 176,

161,202, 32,

184, 32,162,

164, 186, 132,

185,202, 32,

173,202, 32,

165, 185,164,

32, 162, 187,

80,184, 32,

176,230, 76,

32, 20,205,

186, 132, 182,

164,184, 32,

32,193,202,

32, 161,202,

177, 183, 145,

230,184,230,

,165,186, 32

, 173,202, 32

,165, 71,133

,165, 47,133

,160, 0,177

,200, 177,251

,251,204, 96

,225,204, 200

,177,251, 24

,251, 24,101

,230,252, 96

,176,165, 71

,184, 76,203

, 20,205,165

, 187, 162, 142

, 32,206,202

, 162, 187, 162

July

165, 183, 164, 184

185,202, 32,206

173,202, 32,161

165, 185, 133, 181

32, 162, 187, 165

40,186, 32,185

176,230, 76,173

32, 20,205,165

162, 187, 165, 185

132,182, 32, 15

32,206,202, 176

32,161,202, 32

133, 181, 164, 186

187, 165, 183, 164

32,185,202, 32

76,173,202, 32

205, 165, 183, 164

165, 185, 133, 181

32,103,184, 32

202,176,230, 76

202, 32, 20,205

32, 162, 187, 165

186,132,182, 32

202, 32,193,202

202, 32,161,202

183,164,184, 32

133, 181, 164, 186

186, 32,185,202

230, 76,173,202

20,205, 165, 183

187, 165, 185, 133

182, 32, 15,187

193,202, 176,230

161,202, 32, 20

186, 133,181,132

165, 183, 164, 184

185,202, 32,193

173,202, 32, 161

165,185, 133,181

32, 162, 187, 165

15,187, 32,185

176,230, 76,173

32, 20,205,160

185,230,183,208

185,208, 2,230

,219,202, 176,231

,253,174, 32,158

,185,165, 72,133

,251,165, 48,133

,251,197, 69,208

,197, 70,208, 5

,200, 32,251,204

, 177,251, 133,253

, 101,252, 133,252

,253,133,251, 144

, 32,253,174, 32

,133,183,165, 72

,204, 32,161,202

,185,164,186, 32

,160,202, 32,212

, 165, 185, 164, 186

, 142, 160,202, 138

1987: Volume 8, Issue Ol

BL

FL

GJ

DA

HM

IA

PA

LO

AC

MP

IC

IC

Gl

EA

JE

KJ

BG

HL

MH

Al

MK

OL

FL

01

HN

OB

IP

KN

EB

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

data 32, 91

data 202, 32

data 227, 162

data 187, 166

data 76, 173

data 205, 165

data 162, 142

data 206, 202

data 187, 162

data 188, 16

data 212, 187

data 142

data 183

data 202

data 185

data 162

data 186

data 230

data 20

10

69

56

0, 133

data 133,253

data 164, 191

data 16,249

data 165, 251

data 136, 177

data 76, 173

data

data

data

data

160

164

32

164

187

32

76

205

144

10

229

188,

212,

142,

183,

202,

185,

160,

165,

142,

7,

32,

202,

184,

161,

186,

165,

185,

173,

169,

11,

176,

191,

252,

165,

136,

165,

197,

183,

202

48, 7,

187, 32,

160,202,

164, 184,

32, 161,

164, 186,

202, 32,

185, 164,

160,202,

162, 142,

206, 202,

138, 32,

32,212,

202, 32,

133, 181,

185, 164,

202, 32,

202, 32,

5, 133,

169, 2,

2, 230,

133,251,

165,251,

252, 233,

177,253,

252, 197,

185,208,

145,251,

AK

IA

KC

KC

BF

EL

GD

LI-I

HN

AA

AH

JM

PK

LH

ML

BB

PN

JG

II

CP

JG

Fl

Fl

NL

LK

GN

EN

KP

JN

KB

AP

NP

LB

OK

CN

KO

AH

LG

HM

CG

BC

FC

DM

Program 3: PAL Source Code

100 rem array math functions

110 rem c richard richmond

120 rem 308 rosewood ave.

130 rem Springfield, ohio

140 rem 45506

150 rem

160open8,8,1," O:array.obj"

170 sys700

180 .opt 08

200memfac =

210facmem =

220 compar =

230memplu =

240 memmul =

250 memsub =

260memdiv =

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450 dummy

460 zpage

470 szpage

480

490 sz1

500

510

520

imp

jmp

jmp

jmp

jmp
jmp

jmp

jmp

jmp

jmp

imp

jmp

jmp

jmp

imp

imp

jmp

imp

$bba2

$bbd4

$bc5b

$b867

$ba28

$b850

SbbOf

eqv

eqb

plv

plb

sbv

sill)

mlv

mil)

dvv

dvl)

bsv

bsb

vdv

vdb

max

min

square

insert

+ 6

+ 13

Idy #$0c

;memory to fad

;fad to memory

; compare memory to fad

;add memory to fad

;multfad by memory

;sub fad from memory

;dividefad by memory

; a() = v 'starting address

;a() = b()'sa + 3

; a() = a() + v 'sa + 6

;a() = a() + b()1sa + 9

; a() = a()-v 'sa + 12

;a() = a()-b()'sa+15

;a() = a()»v'sa+18

;a() = a().b()'sa + 21

;a() = a()/v'sa + 24

;a() = a()/b()'sa + 27

; a() = v-a() 'sa + 30

;a() = b()-b()'sa + 33

;a() = v/a()'sa + 36

;a() = b()/a()'sa + 39

; v = max(a()) 'sa + 42

; v = min(a()) 'sa + 45

;a() = a()t2'sa + 48

; insert v at a() 'sa + 51

; routine to save

; zero page memory

91

32

162,142,160

206,202, 176

138, 32, 162

32,212, 187

202, 32, 20

32, 162, 187

212,187, 32

186, 32,162

138, 32,

160,202,

176,227, 162

162, 187, 166

187, 76,173

203,204, 165

132,182, 32

186, 32, 40

206,202, 176

161,202, 32

191, 165

133, 191

191, 165,251

165,252,233

56,229,191

0,133,254

145,251, 136

186,208,214

208, 164, 191

136, 16,249

70

165

Ida

sla

day

$OObf,y

zpage.y

AF

IA

KP

FO

AG

NC

JL

DB

GE

NJ

LO

KB

LD

ML

Kl

MK

JB

BP

OM

EO

CJ

JP

EO

EF

AH

BF

OB

KD

NP

JE

PE

JC

JP

LC

BC

DJ

GJ

Kl-1

KH

JB

oc

IJ

CM

BJ

DE

CH

ID

AH

IP

CE

BD

JH

IG

01

BO

DJ

DO

MJ

EG

JB

IG

CM

CF

GG

GH

GP

HN

LJ

GL

PA

GM

MB

Dl

MD

LO

DL

LO

PL

HN

MN

NF

Ml

PH

JE

GF

KJ

GG

DA

DC

MN

530

540

550 reset

560

570 restorez

580

590

600

610

620

630 store

640

650

660

670

680 testi

690

700

710

720

730

740

750

760 test

770

780

790

800

810

820

830

840 test2

850

860

870

880

890

900

910

920 cont

930

940

950 eqv

960

970

980

990

1000

1010eqv1

1020

1030

1040

1050

1060

1070

1080 plv

1090

1100

1110 plv2

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240 sbv

1250

1260

1270sbv1

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400 bsv

1410

1420

bpl

rts

Idy

Ida

sta

dey

bpl

IIS

Idx

Idy

jsr

[is

Ida

do

adc

sta

Icia

adc

sta

Ida

clc

adc

sta

Ida

adc

sta

SZ1

#$0c

zpage,y

SOObf.y

restorez

Sb5

$b6

facmem

Sd7

#$05

$b7

$b8

#$00

$b8

$b9

#$05

$b9

$ba

#$00

$ba

cmp $fc

bne

Ida

cont

$b9

cmp $fb

bne

clc.

rts

sec

rts

jsr

jsr

Ida

Idy

jsr

Idx

Idy

jsr

jsr

bcs

imp

jsr

jsr

Ida

Idy

sia

sty

jsr

Ida

Idy

jsr

jsr

jsr

bcs

jm|

jsr

jsi

Ida

Idy

jsr

Ida

sta

Idy

sty

jsr

jsr

jsr

bcs

jmp

jsr

IS!

cont

szpage

modi

$b7

$b8

memfac

$b9

$ba

facmem

test

eqv1

reset

szpage

modi

Sb9

Sha

Sb5

$b6

memfac

$b7

$b8

memplu

store

test

plv2

reset

szpage

modi

Sl)7

$b8

memfac

$b9

$b5

$ba

$b6

memsub

store

test

sbv1

reset

szpage

modi

;routineto reset

;aero page memory

;exit

;store fad

;to memory

; specified at

; $b5,$b6

;this portion

;increments the

;second array

; pointers by

;5

;routineto

iincrement

;first array

; pointers by

;5

;and check

;for the end

;of array

;if not to end

;set carry bit

;a() = v

;store zero page

;get addresses

;addresso

;v

;loadvtofad

;address of

;a()
;fad to a(x)

;check if done

;no continue

;yesexit routine

;a() = a() + v

;load address

;of next a()

pointer for

;store routine

;1st element to fad

;address of

;v

;add vtofad

; results to a()

;a() = a()-v

;load address

;of v

;vtofad

;load address

;of

;a()

;a()added to fad

; result to a()

;a() = v-a()

The Transactor 31 July 1987: Volume 8, Issue Ol

MJ

LF

HJ

HO

OA

BD

ED

NL

BM

Bl

GP

LE

GA

PG

DM

MH

ND

LP

EO

KN

OK

BN

EN

NF

HD

BC

GJ

10

GK

MB

DG

MB

JO

NE

LM

HK

GG

IE

FE

MG

PL

BM

GD

DJ

GE

EO

DA

ML

HH

10

KM

HM

00

BB

EB

NJ

EH

BG

GN

BC

GO

JP

DK

MF

DN

Cl

IJ

OJ

JP

CO

IN

MK

JL

BA

HE

PI

Gl

Al

DE

MP

LF

CC

ID

OD

JJ

Cl

IH

ME

GL

HH

1430 bsv1

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560 mlv

1570

1580

1590mlv1

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720dvv

1730

1740

1750 dw1

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880 vdv

1890

1900

1910vdv1

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040 plb

2050

2060

2070 plb1

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200 sbb

2210

2220

2230sbb1

2240

2250

2260

2270

2280

2290

2300

2310

2320

The Transactor

Ida

sta

Idy

sty

jsr

Ida

Idy

jsr

jsr

jsr

bcs

jmp

jsr

jsr

Ida

sta

Idy

sty

jsr

Ida

Idy

jsr

jsr

jsr

bcs

imp

jsr

jsr

Ida

Idy

jsr

Ida

sta

Idy

sty

jsr

jsr

jsr

bcs

jmp

jsi
jsr

Ida

sta

Idy

sty

jsr

Ida

Idy

jsr

jsr

jsr

bcs

jmp

jsr

jsr

Ida

Idy

jsr

Ida

sia

Idy

sty

jsr

jsr

jsr

bcs

jmp

jS'

jsr

Ida

lay

jsr

Ida

sta

Icy

Sly

jsr

jsr

$b9

$b5

$ba

$b6

memfac

$b7

$b8

memsub

store

test

bsv1

reset

szpage

modi

Sb9

$b5

Sba

$b6

memfac

$b7

$b8

memmul

store

test

mlv1

reset

szpage

modi

Sb7

$b8

memfac

$b9

Sb5

Sba

Sb6

memdiv

store

test

dw1

reset

szpage

modi

Sb9

$b5

Sba

$b6

memfac

$b7

$b8

memdiv

store

test

vdv1

reset

szpage

modi

Sb7

$b8

memfac

$b9

$b5

Sba

Sb6

memplu

store

testi

plbl

reset

szpage

modi

Sb7

$b8

memfac

$b9

Sb5

Sba

$b6

memsub

store

;fad =a()

; address

;of v

;fad = v-a()

;a() = fad

;a() = a().v

;address

;ofa()

;fad=a()

;address

;of v

;fao1 =a()«v

;a() = fad

;a() = a()/v

;adress

;of v

;fad = v

;address

;ofa()

;fad = a()/v

;a() = fao1

;a() = v/a()

;address

;ofa()

;fad = a()

;address

;of v

;fac1 =v/fac1

;a() = fad

;a() = a().b()

;address

;ofb()

;fad=b()

;address

;of a()

;fac1=fac1.a()

;a() = fad

;increment b pointer then a

;a() = a()-b()

;address

;ofb()

;fad=b()

;address

;ofa()

;fao1 = a()-fad

;a() = !

32

AN

OB

GC

DD

DO

MJ

NA

CM

IN

ON

JD

CC

IB

MO

EO

BE

ND

MM

GM

AO

Dl

MD

JL

CG

IH

OH

JN

CM

IL

Ml

IG

BO

NN

HH

GG

BH

DC

MN

ME

LF

Kl

EP

OA

BD

ED

KE

HJ

Bl

NH

PA

GA

OA

DM

MH

HO

LP

EO

KN

OK

BN

EN

KO

PB

BC

HM

FK

GK

IG

DG

MB

Ml

DG

Nl

CE

Gl

JL

HH

DN

EL

FO

HL

MP

FD

BL

AJ

PB

OB

JF

HP

AB

2330

2340

2350

2360 mlb

2370

2380

2390 mlb1

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520 dvb

2530

2540

2550 dvb1

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680 bsb

2690

2700

2710 bsb1

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840 vdb

2850

2860

2870 vdb1

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000 eqb

3010

3020

3030 eqb1

3040

3050

3060

3070

3080

3090

3100eqb2

3110

3120

3130

3140eqb3

3150

3160

3170

3180

3190 mod2

3200

3210

3220

jsr

bcs

jmp

JS!

jsr

!da

Idy

jsr

Ida

sta

Idy

sty

jsr

jsr

jsr

bcs

jmp

jsr

jsr

Ida
Idy

jsr

Ida

sta

Idy

sty

Jar

jsr

jsr

bcs

jmp

jsr

jsr

Ida

Idy

sta

sty

jsr

Ida

Idy

jsr

jsr

jsr

bcs

jmp

jsr

jsr

Ida

s".a

Idy

sty

jsr

Ida

Idy

jsr

jsr

jsr

bcs

jmp

jsr

jsr

Idy

Ida

sta

ino
bne

me

inc

bne

nc

Ida

jsr

bcs

jmp

jsr

jsr

Ida

testi

sbb1

reset

szpage

modi

Sb7

$b8

memfac

Sb9

$b5

Sba

Sb6

memmul

store

testi

mlb1

reset

szpage

modi

$b7

Sb8

memfac

Sb9

$b5

Sba

Sb6

memdiv

store

testi

dvb1

reset

szpage

modi

Sb9

Sba

Sb5

Sb6

memfac

$b7

Sb8

memsub

store

testi

bsb1

reset

szpage

modi

$b9

Sb5

Sba

Sb6

memfac

Sb7

Sb8

memdiv

store

testi

vdb1

reset

szpage

modi

#$00

(Sb7),y

(Sb9),y

Sb7

eqb2

$b8

$b9

eqb3

Sba

Sba

test2

eqb1

reset

Saefd

Sad9e

$47

;increment bthen a

;a() = a().b()

;address

;ofb()

;fac1 = b()

; address

;ofa()

;fad =fad«a()

;a() = fad

; increment pointers

;a() = a()/b()

; address

;ofb()

;fad = b()

;address

;ofa()

;fad =fad»a()

;a() = fad

;increment pointers

;a() = b()-a()

;address

;ofa()

;fad=a()

;address

;ofb()

;fac1=b()-fad

;a() = fad

;mcrement pointers

;a() = b()/a()

;address

;ofa()

;fad = a()

;address

;of b()

;fao1 = b()/fad

;a() = fad

:a() = b()

;1st byte of b

;into a

;increment

;address

;ofb

;increment

;address

;of a

;hi byte of a

;end of array

;no continue

;yes exit routine

;find address of a

;skip comma

; routine

;lo byte of

July 1987: Volume 8, Issue Ol

DE

HB

PG

ED

CO

00

JP

LC

BH

GD

PB

OM

GP

OF

AD

BH

Bl

PA

KD

MD

IL

AF

JD

IN

KF

JP

GN

OG

EP

GD

NJ

DP

ML

OF

IM

IB

AP

BB

El

AB

GJ

BB

OG

AJ

NC

HJ

CP

OK

MG

JC

CO

HF

JN

CN

PI

DC

EE

EN

BN

EJ

MH

JG

JG

DH

CN

AG

IJ

FK

FK

Jl

KE

KO

KM

PJ

BO

BF

IA

OF

LI

EH

GL

KJ

DH

MC

OE

PM

Al

HG

NG

01

3230

3240

3250

3260

3270

3280

3290

3300 again

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410 Step2

3420

3430 step

3440

3450

3460 stepi

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610 St2

3620

3630 modi

3640

3650

3660

3670

3680

3690

3700

3710 max

3720

3730

3740

3750

3760

3770

3780

3790

3800

3810 max2

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930 max3

3940

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040 min

4050

4060

4070

4080

4090

4100

4110

4120

The Transactor

sta

Ida

sta

Ida

sta

Ida

sta

Idy

Ida

Sb9

$48

$ba

$2f

$ib

$30

$fc

#$00

($fb),y

cmp $45

bne

iny

Ida

step2

($fb),y

cmp $46

bne

jsr

rts

iny

jsr

jmp

iny

Ida

sta

iny

Ida

clc

adc

sta

Ida

clc

adc

sta

bcc

inc

rts

jsr

jsr

Ida

sta

Ida

sta

imp

jsr

jsr

Ida

Idy

jsr

Idx

Idy

jsr

jsr

Ida

Idy

jsr

Idx

Idy

txa

jsr

bmi

Idx

Idy

jsr

jsr

bcs

Idx

Idy

txa

jsr

Idx

Idy

jsr

jmp

jsr

jsr

Ida

Idy

jsr

Idx

Idy

jsr

step

stepi

stepi

again

($fb),y
$fd

($fb),y

$fo

$fc

$fb

$fd

$fb

st2

$fc

$aefd

$bO8b

$47

$b7

S48

$b8

mod2

szpage

modi

$b9

$ba

memfac

#<dummy

#>dummy

facmem

test

$b9

$ba

memfac

#<dummy

#>dummy

compar

max3

#<dummy

#>dummy

facmem

test

max2

#<dummy

#>dummy

memfac

$b7

$b8

facmem

reset

szpage

modi

$b9

$ba

memfac

#<dummy

#>dummy

facmem

;a address

;hi byte of

; a address

;start of

; array storage

;search array storage

;for name

;of

;'a' array

;routine returns

;with ending address

;ofa()in$fb,$fc

;routineto

;skip through

;array memory

;from one

;array to next

; routine to find b()

;skip comma

; routine

;to find v,b

;or create

;variable

;if not found

;v = maximum of a()

;fad=a(0)

;store in

I'dummy'

; next address

;ofa()

;fad = a()

;compare

;a() with 'dummy'

;fad larger

;then 'dummy'= fad

;done

;no continue

;yes

;fac1 ='dummy'

;address

;of v

;v = fad

;v = minimum of a()

;address

;of a(0)

;store

;a(0)into

;'dummy'

33

OB

LA

AC

PH

HI

OE

NL

MB

NJ

BK

EH

PO

BO

El

KK

BE

BC

LC

Kl

DC

ND

MJ

Al

AA

IP

NL

KH

OE

CK

KM

LD

IK

BG

HC

JK

LH

EA

LH

PO

AK

GO

MB

HD

JO

DJ

FB

BF

EB

BD

MC

NK

LJ

CK

LP

EN

IC

AC

PC

EE

GO

MG

GK

PG

LM

HM

OO

BH

KL

AB

AF

JJ

CD

JN

EB

KC

EP

KB

IE

AH

DP

ND

CF

CN

LB

IL

MG

KF

4130

4140 min2

4150

4160

4170

4180

4190

4200

4210

4220

4230

4240

4250

4260 min3

4270

4280

4290

4300

4310

4320

4330

4340

4350

4360

4370 square

4380

4390

4400 squ1

4410

4420

4430

4440

4450

4460

4470

4480

4490

4500

4510

4520

4530 insert

4540

4550

4560

4570

4580

4590

4600

4610

4620

4630 ins1

4640

4650

4660

4670

4680

4690

4700

4710

4720

4730

4740

4750

4760

4770

4780

4790

4800 ins2

4810

4820

4830

4840

4850

4860

4870

4880

4890

4900

4910

4920

4930 ins3

4940

4950

4960

4970

4980

4990 .end

jsr test

Ida $b9

Idy $ba

jsr memfac

Idx #<dummy

Idy #>dummy

txa

jsr com par

bpl min3

Idx #<dummy

Idy #>dummy

jsr facmem

jsr test

bcs min2

Idx #<dummy

Idy #>dummy

txa

jsr memfac

Idx $b7

Idy $b8

jsr facmem

jmp reset

jsr szpage

jsr mod2

Ida $b9

Idy $ba

sta $b5

sty $b6

jsr memfac

Ida $b9

Idy $ba

jsr memmul

jsr store

jsr test

bcs squ1

jmp reset

jsr szpage

jsr modi

Ida #$05

sta $bf

Ida $46

asl a

bcc ins1

Ida #$02

sta $bf

Ida $fb

clc

sbc $bf

sta $fb

Ida $fc

sbc #$00

sta $fc

Ida $fb

clc

sbc $bf

sta $fd

Ida $fc

sbc #$00

sta $fe

Idy $bf

dey

Ida ($fd),y

sta ($fb),y

dey

bpl ins2

Ida $fe

cmp $ba

bne ins1

Ida $fd

cmp$b9

bne ins1

Idy $bf

dey

Ida ($b7),y

sta ($fb),y

dey

bpl ins3

jmp reset

;address of

;nexta()

;load into fad

;and

;compare with 'dummy'

;facK'dummy

;then 'dummy'

;=fad

;'dummy =min(a)

transfer

;'dummy'

;to

;v

;a = a»a

;address

;ofa()

;a() to fad

;fad =a*a

increment pointer

;a(x) = v

;following

;elements

;moved down

;a(max) = a(max-1)

;continue

; until

;a(x + 1) = a(x)

;then a(x) = v

; routine will

;automatically

;use proper offset

;for variable type

;workswith

;strings(a$)

;integers(a%)

;or

floating point

July 1987: Volume 8, Issue Ol

Faster Square Root

For The Commodore 64

E.J. Schmahl

Bowie, Maryland

. .not only is it fast, it is much more accurate!

If you time the C-64 functions built into your C-64 BASIC, you

will find that the SQR function is very much slower than +,-,*,

or /. In fact it slower than EXP or LOG because it uses both of

those functions, which are rather slow themselves. However,

you don't have to be resigned to slow square roots, because it

turns out that there are well-known algorithms that run faster

than the SQR built into your C-64 ROM.

To make this possible, I have written a short machine language

square root routine which takes the first variable in the BASIC

variable area of memory and replaces it with its square root. The

program uses the BASIC ROM floating point functions which

move, add and divide numbers. (No LOGs or EXPs are used.)

This routine can be run and compared with the standard SQR

function in ROM:

10 input a

20printsqr(a);:sys49152

30 print a: goto 10

You will find that the new square root is about 2.5 times faster

than the SQR in ROM, quite an improvement! But not only is it

fast, it is much more accurate. Just try printing out the square

roots of these squares: 26569, 21316689, 84309124, and

0.779689. The new square root gives the exact answers (163,

4617, 9182, and 0.883), but the ROM SQR routine does not! The

reason is that the EXP function is not very accurate (6 to 8 digits

instead of 9) for certain numbers. (This inaccuracy problem has

been cured in the C-128.)

Note that, to keep things simple, (and fast) the new SQR operates

only on the very first variable in BASIC. Thus whatever variable

appears first in the program is changed into its square root.

Make sure you declare your desired variable first with an

equality (e.g. 1 x= 1) or a DIMension statement (e.g. 1 dim x).

The BASIC loader loads the machine language into the area

starting at 49152. You can change the variable AD in line 60 to

828 or 9*4096 or whatever you like. Line 70 of the loader

program will modify the non-relocatable machine language

command "Ida tabl.x" appropriately for the new starting ad

dress.

For those interested in the algorithm used for computing the

square root, it is Newton's method, with a good first approxima

tion from a 16-entry table. In BASIC, the equivalent program

would be:

10 input a

20 if a = 0 then 90

30 if a<0 then 120

40 input" first approx" ;approx

50 x = approx

60 x = (x + a/x)/2

70k = k + 1

80 if k<4 then 60

90a = x

100 print" sqr = " a

110k = 0:goto10

120 print" illegal quantity error"

Enthusiasts of greater speed in the C-64 should note that there

is room for improvement in most of the other BASIC functions.

The favored method for approximating functions in the C-64

ROM seems to be power series. As the present example shows,

there are sometimes better ways to generate functions. A chal

lenge to you programmers out there: try some new methods and

speed up your programs!

BASIC Loader

MC

CP

Hi

GE

PJ

Gl

CE

NL

Cl

JB

JB

AP

PG

100rem a = 64.1:sys49152:printa

110rem where a is the first variable

120rem result of sqr will be in a

130ad = 49152:ch = 0

140fori = 0to122:readx

150 pokead + i,x:ch = ch + x:next

160 if ch<>13691 then print" error in data

statements ":end

170hi = int((ad + 107)/256)

180 poke ad + 59,hi:poke ad + 58,ad + 107-hi*256

190 rem new table address for relocated p

200 data 160, 3,177, 45, 48, 98,136,177

210 data 45,240, 92,165, 45, 24,105, 2

220 data 133, 170, 165, 46,105, 0,133,171

The Transactor 34 July 1987: Volume 8, Issue Ol

GN

LN

MH

DN

IF

DG

Ml

Dl

Kl

DM

Kl

FP

IL

230

240

250

260

270

280

290

300

310

320

330

340

350

data 160,

data 132,

data 128,

data 177,

data 170,

data 133,

data 187,

data 169,

data 97,

data 166,

data 76,

data 38,

data 107,

PAL Source Code

FD

PN

JE

FK

NH

BP

BH

LP

IG

KG

OD

LA

DE

PK

MJ

AH

FB

AG

JD

HP

DG

IL

Nl

AM

BK

DP

GL

NC

JC

DK

BD

AB

HF

10

FC

HN

JD

MH

HP

100

0, 132,

96, 177,

134, 93,

170, 5,

189, 107,

172, 169,

165, 170,

92, 160,

32, 199,

170, 164,

72, 178,

44, 50,

115, 123

93,132, 94,132, 95

170,106,176, 4,162

105, 64,133, 92,200

93, 74, 74, 74, 74

32,133, 93,169, 4

92, 160, 0, 32, 162

164,171, 32, 15,187

0, 32,103,184,198

187, 198, 172,208,233

171, 32,212,187, 96

3, 11, 18, 25, 32

58, 69, 79, 89, 98

rem faster square root pal source

110open8,8,1,

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

sys 700

.opt 08

* = $c000

"O:fastsqr.obj

; faster square root

; takes first basic variable and

; returns square root n its place

; uses newton's method with a good

; first approximation.

var

ptr

ctr

temp =

$2d

$aa

Sac

$5c

; rom routines

temfi =

divid =

plus

fltem =

310f1mem =

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

print

Idy

Ida

bm

dey

Ida

bee

Ida

clc

adc

sta

Ida

adc

sta

Idy

sty

The Transactor

$bba2

$bbOf

$b867

$bbc7

$bbd4

$ffd2

#$03

(var),y

errorexit

(var).y

return

var

#$02

ptr

var + 1

#$00

ptr+1

#$0

temp +1

; start of variables

; points to variable

; iteration counter

; temp store for fit pt#

; unpack 5c to fac#1

;fac#1=var/fac#1

;fac#1=fac#2 + fac#1

; pack fac#1 to 5c

; pack fac#1 to memory

; chrout routine

;get variable's mantissa

;check if negative

;get variable's exponent

;return if var = zero

;points to var name

;add 2 so ptr

;points to variable

;and store it

;fill temp with zeroes

DA

PA

LB

OH

IO

LO

Al

KE

HG

GM

LO

HO

JB

PH

ND

ML

BD

LN

EH

JF

LI

FJ

PJ

LJ

DO

PK

GM

BN

FD

MD

EA

LG

IF

LJ

NM

NG

AE

HK

AJ

DG

OB

ON

PL

KE

BD

NA

LG

Kl

El

AM

HB

GM

OM

35

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

980

990

sty

sty

sty

temp+ 2

temp+ 3

temp+ 4

; now find a first approximation

; to the square root

; exponent = exponent/2 +40.5

; mantissa found from

Ida

ror

(ptr),y

table

get exponent (y = 0)

a = a/a, pop low bit

; carry = 1 when exponent odd

bes

Idx

stx

add adc

sta

iny

Ida

ora

Isr

Isr

Isr

Isr

tax

Ida

sta

add

#$80

temp +1

#$40

temp

(ptr),y
temp + 1

tabl.x

temp + 1

no flag set if odd

even, so set a flag bit

a = exponent of 1 st appr

store exponent

y-1
mantissa of variable

if expon odd add 80

;shift nybble right

;get approx from table

;store it in temp mantissa

; now use newton's method

; x = (x + var/x)/2

Ida

sta

Ida

Idy

jsr

loop Ida

Idy

jsr

Ida

Idy

jsr

dec

jsr

dec

bne

Idx

Idy

jsr

return rts

errorexitda

jsr

rts

tabl .byte

1000 .byte

1010end

#$04

ctr

#<temp

#0

temfi

ptr

ptr + 1

divid

#<temp

#0

plus

$61

fltem

ctr

loop

ptr

ptr + 1

fimem

#$3f

print

} 03,11,18

i 58,69,79

;set counter to 4

;loadfac#1 from temp

;dividefac#1 into var

addtemptofac#1

divide fac#1 by 2

packfac#1 to temp

decrement the counter

loop if not zero

pack fac#1 to memory

11 ?"

print " ?"

,25,32,38,44,50

,89,98,107,115,123

July 1987: Volume 8, Issue Ol

Complex Number Arithmetic

For The Commodore 64

Thomas Henry

North Mankato, MN

BASIC 2.0 of the Commodore 64 supports three simple data

types. These are integers, floating point numbers and strings.

With the addition of a simple machine language routine, it is

easy to add a fourth type: complex numbers. The routine

described in this article allows the representation of complex

numbers by ordered pairs, and additionally supports the four

basic operations of addition, subtraction, multiplication and

division.

The left-bracket, [, is used to alert the Commodore 64 that you

wish to perform some complex number arithmetic. A corres

ponding right-bracket,], allows the system to go back to normal

floating point operation. The method by which these brackets

switch the system over to complex number arithmetic is based

upon Brian Munshaw's article, "A New Wedge for the Commo

dore 64", which appeared in The Transactor, Volume 5, Issue 6,

pp. 22-25. Refer to Brian's article to learn how new commands

may be added to the 64 by means of the "Error Wedge".

Before seeing how to punch this new routine into your computer,

let's consider the details of representation and syntax. As men

tioned above, complex numbers are represented in this system

by ordered pairs. Whereas highschool algebra books might

denote a complex number by a + bi, the ordered pair (a,b) is

used hereinafter. The first entry is always assumed to be the real

part, while the second entry is the imaginary part.

The syntax for a complex number operation is (here shown for

addition):

[(X,Y) = (A,B) + (C,D)]

The left-bracket signifies the complex number mode, while the

right-bracket signifies the end of this mode. The variables X and

Y are set equal to the results of A + C and B + D, respectively.

Similar syntax holds for the other three operations. A, B, C and D

may be any valid combination of values, variables or operands,

but X and Y (which hold the resulting complex number) must of

course be variables only.

Adding The New Commands To Your Computer

Program 2 shows the complete assembly language listing. While

it's not necessary to understand this listing to use the system,

you will still find it to be quite interesting. In particular, the

source code illustrates how to manipulate variables and perform

floating point operations from within machine language. Also,

the source code will be of inestimable value should you desire to

add some new operations (like complex number conjugation, for

example). So, give the code a quick glance over to become

familiar with the several novel actions it performs.

On the other hand, if you simply wish to get down to business

and use the program, then Program 1 is the listing you'll want.

This is a BASIC generator program which creates a working copy

of the complex number routine on disk, ready for use. First,

enter this program into your Commodore 64. Now run it. A

checksum handler will halt the program if there are errors in the

DATA statements. Proofread the program and make any correc

tions as needed. If you make it past the checksum detector, then

the complex number routine will be written to disk under the

name of "COMPLEX.ML". This is the program that you will use

from now on. You may discard Program 1 now, as it has served

its purpose.

Using The Complex Number Package

At this point you can load the package into memory with:

load "complex.ml",8,1

The program will load into memory from $C000 through $C1C6.

You should enter NEW at this point, then activate the routine

with:

sys49152

This engages the complex number commands, making them

available for use until you shut the computer off. To become

familiar with the syntax, try out some examples. Here are a

couple to get you started:

100 input a,b

110 input c,d

120[(e,f) = (a,

130 print e,f

100p = 12:q = 13.1

110r = 54.1: s = 3.14

120[(w,y) = (2*p,3*q)/(r/12,s)]

130 print w,y

In the first example, the complex numbers (A,B) and (C,D) are

input. The latter is subtracted from the former and the result is

printed out. In this case, all of the parts of all of the complex

numbers are variables (i.e., A, B, C, D, E and F).

Example two demonstrates that the parts of the complex num

bers may actually be quite complicated. Here the complex

number (2*P,3*Q) is divided by (R/12.S) and the result is left in

the pair of variables W and Y (W is the real part and Y is the

imaginary part).

The Transactor 36 July 1987: Volume 8, Issue Ol

Some Interesting Details

The real and imaginary parts of the two operands may be any

valid combination of values, variables and ordinary numeric

operators. Both integers and floating point numbers may be

used. The real and imaginary parts of the result must be

variables (since they store the final result). These too may be

integer or floating point types. Be forewarned, however, that in

general the product or difference of two complex numbers made

up of integer components rarely lead to complex numbers with

integer components. In this case, the Commodore 64 will

truncate the fractional part.

All of the values of the components in the complex numbers

must, of course, be numeric in type. Attempting to use a string

will lead to a TYPE MISMATCH ERROR. And as is the case with

integers and floating point numbers, division by zero is unde

fined and will yield a DIVISION BY ZERO ERROR.

The algorithms used to compute these various results are:

(a,b) + (c,d) = (a + c, b + d)

(a,b)-(c,d) = (a-c,b-d)

(a,b)*(c,d) = (a*c-b*d,a*d + b*c)

(a,b)/(c,d) = ((a*c + b*d)/(c*c + d*d),(b*c-a*d)/(c*c + d*d))

Program 1: Creates disk file COMPLEX.ML

AG

EM

EE

Dl

LB

MG

FP

Gl

Kl

LO

KL

KP

MA

AP

PA

CB

OE

DA

MD

EL

HC

HK

JC

CO

BP

DM

100 rem prg file gen for complex.ml

110ch = 0

120 for a = 49152 to 49606

130 read x: ch = ch + x: next

140 if ch = 55928 then 160

150 print" error in data statements" :end

160 open8,8,8," 0:complex.ml,p,w"

170 print#8,chr$(0);chr$(192);

180 restore

190 for a = 49152 to 49606

200 read x: print#8,chr$(x);: next

210 close 8

220 rem

230 data 169, 11,141, 0,

240 data 1, 3, 96,224,

250 data 139, 227, 32,121,

260 data 246, 104, 104, 32,115

270 data 174, 32,139,176

280 data 168, 2,140,169, 2

290 data 167, 2, 32,253,174

300data 32, 141, 173, 141,171

310 data 2,165, 14,141,170, 2

320 data 174, 169, 178, 32,255,174

330 data 174, 32,138,173,162,173,160, 2

340 data 32,212,187, 32,253,174, 32,138

350 data 173, 162, 178, 160, 2, 32,212,187

360 data 32,247,174,141,193, 2, 32,115

3, 169, 192, 141

11,240, 3, 76

0,201, 91,208

0, 32,250

32, 141, 173, 141

2,165, 14,141

32, 139, 176

2, 140, 172

2, 32,247

32, 250

HH

GJ

LD

PN

JM

JP

PC

oc

Fl

GN

MO

HJ

BD

FB

AL

IJ

LG

DG

EM

DE

HB

GJ

IK

KG

CO

FL

Al

Jl

LJ

GD

LM

PD

DK

GB

AG

LL

DC

HA

GB

HD

IF

HK

HP

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

data 0, 32

data 183, 160

data 174, 32

data 247

data 193

data 240

data 193

data 76

data 160

data 172

data 193

data 32

data 2

data 32

data 188

data 161

data 169

data 97, 208

data 187, 169

data 32, 12

data 193, 32

data 184, 193

data 32,212

174

2

17

201

8

2

169

32

135

173

180

32

193

87

2

32

193

173

184

32

193

174

187

177

data 160

data 0

data 148

data 186

data 103

data 28

data 190

data 32

data 15

data 32

data 2,173

data 134, 73

data 193, 2

data 184, 76

data 76, 162

data 247, 169

data 188, 160

data 44, 169

data 32, 190

data 69, 110

250, 174,

2, 32,

138, 173,

169, 93,

201, 170,

201, 172,

173,208,

175, 32,

32, 135,

2, 173,

155,193,

193, 174,

170, 2,

191, 32,

184, 193,

32, 12,

160, 0,

3, 76,

173, 160,

188, 32,

199, 187,

174, 168,

187, 32,

32, 40,

80, 184,

169, 183,

168, 2,

173, 193,

12, 188,

32, 18,

193, 169,

76, 115,

193, 174,

167, 2,

132, 74,

224,170,

80, 184,

187, 169,

183,160,

32, 138,

212, 187,

32, 167,

32, 255,

240, 21,

208, 3,

3, 76,

161, 193,

193, 174,

167, 2,

169, 178,

171, 2,

32, 128,

167, 193,

32, 202,

188, 32,

32, 103,

138,187,

2, 32,

161, 193,

32,155,

2,172,

148, 193,

186, 169,

32, 199,

160, 2,

172,169,

2,201,

32, 174,

187, 32,

92, 160,

193, 32,

168, 2,

32,128,

76,194,

173,162

32,253

193, 32

174, 173

201,171

76, 1

216, 192

169, 173

168, 2

32, 128

160, 2

172, 172

193, 96

32, 12

187, 32

184, 193

184, 165

32, 202

162, 187

32, 184

193, 32

169, 2

169, 188

92, 160

187, 32

32, 40

2, 32

172,240

193, 32

203, 192

0, 32

203, 192

172, 169

193, 96

169, 174

208, 3, 76,103

169, 178,

188,160,

2, 208,

2, 76,212,187,

92, 160, 0, 76,

193, 76, 43,186,

133,111,165, 97,

160, 2

2,208

241,162

169, 87

162,187

165, 102

96

Program 2: PAL Source Code

LC

LB

JE

FK

CA

EO

KM

ID

EN

IO

ON

100 rem complex number arithmetic pal source

110open8,8,1, "0:complex.ml

120sys700

130 .opt 08

140;

150; *******************************

160;*

170;* complex number arithmetic

180;* for the commodore 64

190;*

200;* +,-,* and /are all supported as

The Transactor 37 July 1987: Volume 8, Issue Ol

HP

DM

AB

NH

EC

El

ON

FP

EK

CF

KM

HD

DL

OL

FJ

IF

10

MP

JM

FP

GJ

ON

BM

CN

CH

LP

DB

BC

Dl

FD

ID

EJ

KD

GP

MF

LL

GK

DC

KJ

IK

NM

FD

NN

DH

FM

EB

JJ

IC

HI

NC

KO

IC

AN

EG

AN

GE

FD

Ml

EA

MF

EC

IP

AN

210;* well as complex numbers •

220 ;* (represented as ordered pairs).

230;*

240;*

250;*

270;

280 intflg

290 forpnt

300 facexp

310facsgn

320 argsgn

330 arisgn

340 chrget

350 chrgot

360 realot

370 imagot

380 reali

390 imagi

400 real2

410imag2

420 cmxop

430 ierror

440 varstr

450 frmnum

460 chknum

470 chkcls

480chkopn

490 chkcom

500 chkchr

510snerr

520 ptrget

530 fsub

540 fadd

550 faddt

560 fmult

570 fdiv

580 fdivt

590 divzer

600 movfm

610flt5c

620 flt57

630 movmf

640 movaf

650 negop

660 olderr

670;

*

thomas henry •

= $0e

= $49

= $61

= $66

= $6e

= $6f

= $73

= $79

= $02a7

realot+ 3

imagot + 3

real1+5

imagi +5

» real2 + 5

= imag2 + 5

= $0300

= $a9c2

= $ad8a

= $ad8d

= $aef7

= $aefa

= $aefd

= $aeff

= $afO8

= $bO8b

= $b850

= $b867

= $b86a

= $ba28

= $bbOf

= $bb12

= $bb8a

= $bba2

= $bbc7

= $bbca

= $bbd4

= $bc0c

= $bfb4

= $e38b

680 * = $c000

690;

700 init

710

720

730

740

750;

760 cmxrtn

770

780 cmxO

790;

800 cmx1

810

820

830

840

The Transactor

Ida #<cmxrtn

sta ierror

Ida #>cmxrtn

sta ierror +1

rts

cpx #$0b

beq cmx1

jmp olderr

jsr chrgot

cmp#'['

bne cmxO

pla

pla

*

;$00 = fltpt, $80 = integer

;temp pointer in list

;fltpnt accum, exponent

;fltpnt accum, sign

;fltpnt accum #2, sign

;fad & fac2 sign cmp flag

; basic character get rtn

; re-get old character

;real part output pnt

;img part output pnt

;1st number real part

;1st number img part

;2nd number real part

;2nd number img part

;complex# operator

;vector to error routine

;store numeric variable

;evaluate a numeric

;checkfor number

;check for close paren

;check for open paren

;check for comma

;checkforchr inacc

;do 'syntax error'

;find variable

;fad = (a:lsb,y:msb) - fad

;fad = (a:lsb,y:msb) + fad

;fad = fac2 + fad (setup)

;fad = (a:lsb,y:msb) • fad

;fad = (a:lsb,y:msb)/fad

;fad = fac2/fad

;'division by zero'

;fad = (a:lsb,y:msb)

; read fad to$5c-$60

;readfad to$57-$5b

;(x;lsb,y:msb) = fad

;fac2 = fad

;fad = -fad

;continue old error routine

;change error vector

;" syntax-error ?

;yes, move on.

;no, do regular error routine

;reget offending character

;" left-bracket?

;no, ordinary error

;pop junk from stack

Fl

KA

BH

OM

AP

GP

JF

OA

FK

CO

OB

BC

PI

HI

BG

IH

CA

HI

OL

PA

HO

BP

MN

LD

PL

EB

OB

OA

KP

PB

PH

AE

EJ

MG

GH

OF

NL

DE

DA

IG

DN

HH

GH

FF

HA

DB

OJ

PC

BD

ML

IE

CM

EO

EO

Cl

OO

EA

MA

NP

AC

FM

FC

LI

38

850

860

870

880

890;

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280;

1290

1300

1310

1320;

1330

1340

1350;

1360

1370

1380

1390;

1400cmx2

1410

1420

1430;

1440cmx3

1450;

1460 cmx4

1470

1480

jsr

jsr

jsr

jsr

St3

sty

Ida

sta

jsr

jsr

jsr

sla

sty

Ida

sta

jsr

Ida

jsr

jsr

jsr

Idx

Idy

jsr

jsr

jsr

Idx

Idy

jsr

jsr

sta

jsr

jsr

jsr

Idx

Idy

jsr

jsr

jsr

jsr

jsr

Ida

jsr

Ida

chrget

chkopn

ptrget

chknum

realot + 2

intflg

realot

chkcom

ptrget

chknum

imagot+1

imagot+ 2

intflg

imagot

chkcls

#$b2

chkchr

chkopn

frmnum

#<real1

#>real1

movmf

chkcom

frmnum

#<imag1

#>imag1

movmf

chkcls

cmxop

chrget

chkopn

frmnum

#<real2

#>real2

movmf

chkcom

frmnum

otimg2

chkcls

#']

chkchr

cmxop

cmp #$aa

beq cmx4

cmp #$ab

beq cmx4

cmp #$ac

bn<

jm|

; cmx2

) cmx8

cmp #$ad

bne cmx3

jmf

jmi

jsr

Ida

Idy

> cmx6

) snerr

inrel2

#<real1

#>real1

;fetch next character

;check for open paren

;find real output

;check if numeric

■IcK,ISD

;msb

;save integer flag

;check for comma

;find img output

;check if numeric

;lsb

;msb

;save integer flag

;check for close paren

;checkfor ' = '

;check for open paren

;evaluate real #1

;save it for later

;check for comma

;evaluate img #1

;save it for later

;check for close paren

;save operator

;get next character

;check for open paren

;evaluate real #2

;save it for later

;check for comma

;evaluate img #2

;save it for later

; check for close paren

;checkfor']'

; restore operator

;" is it + ?

; branch if it is

;" is it - ?

; branch if it is

;" is it * ?

; branch if not

;" is it / ?

; branch if not

; 'syntax error'

;bring in real #2

July 1987: Volume 8, Issue Ol

PK

IC

KD

KE

BM

CD

AH

GN

BN

PP

OA

JP

BP

AE

EN

AG

ND

BK

GA

AM

PF

FM

IC

GA

FE

AE

KA

AM

IH

KG

OG

EH

FN

FH

PD

FP

MK

EL

GB

MM

OK

AM

MB

AE

PO

FF

JB

GC

FD

FH

EN

AJ

EE

KK

HG

10

GF

EH

CF

IB

10

JL

KD

JE

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580 cmx5

1590

1600

1610

1620

1630;

1640cmx6

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780;

1790cmx7

1800cmx8

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

The Transactor

jsr

Idx

Idy

Ida

jsr

jsr

Ida

Idy

jsr

Idx

Idy

Ida

jsr

rts

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

Ida

Idy

jsr

Ida

bne

jmp

jsr

Ida

Idy

jsr

jsr

jsr

jsr

jsr

jsr

jsr

Idx

Idy

jsr

jsr

Ida

Idy

jsr

Ida

Idy

jsr

jsi

jsr

Ida

Idy

jsr

Ida

Idy

jsr

Ida

addsub

realot +1

realot+ 2

realot

storfp

inimg2

#<imag1

#>imag1

addsub

imagot+1

imagot + 2

imagot

storfp

negop

otimg2

movaf

cmult

flt57

inrel2

movaf

cmult

#$57

#$00

fadd

facexp

cmx7

divzer

flt57

#<real1

#>real1

movfm

movaf

inrel2

cmult

fltSc

inimg2

cmult

realot+ 1

realot + 2

movmf

inimgi

#<imag2

#>imag2

fmult

#$5c

#$00

fsub

flt5c

inimgi

#<real2

#>real2

fmult

realot +1

realot+ 2

fadd

cmxop

cmp#$ac

beq

jsr

jsr

jsr

cmx9

movaf

flf57

adjsgn

;do + or-.

;integer flag

;store real result

;bring in img#2

;do + or-

;integer flag

;store img result

; negated for conjugate

; saved

;fac2 = d

;fad = d*d

;saved*d

;bring in c

;fac2 = c

;fad = c*c

;fad = c*c + d*d

;check for zero

; branch if okay

;'division by zero1

;savec*c + d*d

;bring in a

;fac2 = a

;bring in c

;fad = a*c

;save it

;bring ind

;fad = a*d

;savea*d

;bring in b

;fad = b*d

;fac1 = a*c- b*d

;save it back

;bring in b

;fad = b*c

;fac1 = a*d + b*c

;check operator

;" is it * ?

;yes, branch

;fac2 = a*d + b*c

;fac1 = mag squared

;adjustsign

GF

KH

CG

AG

NP

IE

CC

OA

GM

DG

GJ

EB

EC

OE

KM

OF

AE

CH

FO

NH

HK

KJ

FO

EF

OD

OC

MM

OE

AO

GH

MD

LP

IA

EK

HG

NK

AD

OP

EJ

FN

IF

HL

HL

NE

Al

BD

JP

JG

FL

AC

ML

MH

JL

KN

GB

CB

IL

JH

Cl

GB

Gl

39

2130

2140

2150

2160

2170

2180

2190

2200;

2210cmx9

2220

2230cmx10

2240

2250

2260

2270

2280;

jsr fdivt

jsr cmx5

jsr flf57

Ida #$5c

Idy #$00

jsr fdiv

jmp cmx10

jsr cmx5

jsr flf5c

Idx realot+1

Idy realot+ 2

Ida realot

jsr storfp

rts

;fad = (a*d + b*c)/(c*c + d*d)

;store imaginary part

;fac1 = mag squared

;fad = (a*c-b*d)/(c*c + d»d)

;final result

;store imaginary part

;fad = real part

; integer flag

; store real part

2290 ;/// complex number utilities ///

2300;

2310 storfp

2320

2330

2340;

2350 addsub

2360

2370

2380

2390;

2400 as1

2410;

2420 inimgi

2430

stx forpnt

sty forpnt +1

jmp varstr

Idx cmxop

cpx #$aa

bne as1

jmp fadd

jmp fsub

Ida #<imag1

Idy #>imag1

2440 cmovfmjmp movfm

2450;

2460 inimg2

2470

2480

2490;

2500 inrel2

2510

2520

2530;

2540 otimg2

2550

2560

2570;

2580 flf57

2590

2600 flf5c

2610

2620

2630;

2640 cmult

2650

2660;

2670 adjsgn

2680

2690

2700

2710

2720;

2730 .end

Ida #<imag2

Idy #>imag2

bne cmovfm

Ida #<real2

Idy #>real2

bne cmovfm

Idx #<imag2

Idy #>imag2

jmp movmf

Ida #$57

,byte$2c

Ida #$5c

Idy #$00

jmp movfm

jsr adjsgn

jmp fmult+ 3

Ida facsgn

eor argsgn

sta arisgn

Ida facexp

rts

;go store value

;check operator

;" is it + ?

;godo +

;bring in imagi

;bring in imag2

; branch always

;bring in real2

; branch always

;store imag2

; branch always

;movetofad

;set up for multiply

;fad = fad * fac2

;adjust sign

July 1987: Volume 8, Issue Ol

FAC1 Facts John Houghton

Collingwood, Ontario

QUESTION: In machine language, how do you multiply 3x4?

ANSWER: Well, you take the multiplicand (3) and add it to itself, the

number of times in the multiplier (4).

QUESTION: OK! Then how do you multiply 10.125x6.375 ?

ANSWER: Sorry, anything past integer arithmetic in M.L. gets left

alone. Either do it in Basic or not at all.

"The time has come" the walrus said, "to think of many things.

Like. . ." floating point arithmetic.

Remember way back when, in high school algebra, something

called logarithms was discussed? Well, floating point notation is

similar in nature. Instead of base 10 notation, F.P. on the computer

uses base 2. Therefore, a number is the equivalent of the Mantissa

times 2 to the power of the Exponent (In simplified terms). Sounds

confusing, and it can be, especially when it is time to explain how to

add, multiply etc., but exact knowledge of how F.P. works is not

needed to be able to use it in a machine language program. In fact

the best advice is to cheat and let ye olde trusty micro-processor do

the work. All that is needed to be known are the ground rules by

which to operate.

The information discussed in this article pertains directly to the

Commodore 64 but other Commodore machines will have similar

routines in their ROM, just check the ROM memory maps. After a

discussion of these ROM routines, a short PAL source code program

will run through some of the operations.

There are two floating point accumulators in the 64. FAC1 at $61 to

$65 and FAC2 at $69 to $6e. $61 and $69 contain the exponents,

$62 to $65 and $6a to 6d contain the 4 byte mantissa and $66 and

$6f contain the signs for each number. There is a main work/

storage area at $57 to $60 used for F.P. crunching. As well there are

some miscellaneous but important locations at $67/$68 and $6f to

$72.

Now here is a list of some of the routines for manipulating floating

point numbers.

$bcf3: convert ascii string to FAC1

-To use this routine place an ascii numeric string, with a 0 after the

string, in a buffer. Point the CHRGET pointers at $7a/$7b to the

first character and call CHRGOT before entry.

-This routine is called by $ad9e and $ae83 routines.

-It clears FAC1, FAC2 and numeric work area $5d to $60 before

converting the string to F.P. notation. Therefore preserve anything

in these three areas that are needed later.

-It works like the VAL function in basic, indeed VAL calls this

routine, and will ignore alphabetic entry after an ascii numeric

string.

-It will accept scientific notation incorporating an 'e' and a leading

' + 'or'-'.

$bbc7: move FAC1 to memory.

-This routine has several entry points depending on where FAC1 is

to be stored.

-Enter at $bbc7 and FAC1 goes to $5c-$60 (and will get clobbered if

$bcf3 is called again).

-Enter at $bbca and FAC1 goes to $57-$5b (and is immune to $bcf3

calls).

-Enter at $bbd4 and FAC1 goes to the address pointed to by the .X

(low) and .Y (high) registers.

$bba2: move memory to FAC1.

-Point the .A (low) and ,Y (high) registers at memory and this

routine loads the 5 byte floating point number into FAC1.

$ba8c: move memory to FAC2.

-Same as above for FAC2.

$bcOc: round and move FAC1 to FAC2.

$bcOf: move FAC1 to FAC2 no rounding.

$bbfc: move FAC2 to FAC1

$bclb: round FAC1

$bc5b: compare FAC1 to memory.

-Point the .A (low) and ,Y (high) registers to an F.P. number in

memory, and this routine will return a 0 in .A if they are the same,

a 1 in .A if FAC1 is greater than memory and $ff in .A if memory is

greater than FAC 1.

$b7f7: convert FAC1 to 2 byte integer.

-.A and .Y as well as $14/$ 15 contain the integer.

(Note: this only works for positive values. If you know the value in

FAC1 is positive, set the sign bit at $66 to zero. Otherwise, use

$blbf to convert to a signed integer, or $bc9b to get a 4 byte signed

integer.)

$bc9b: convert FAC1 to 4 byte integer.

-stored in FAC1 mantissa area $62 to $65.

$bddd: convert fac 1 to ascii string.

-The ascii string is stored at $0100 with a 0 after the string and the

.A (low) and .Y (high) registers pointing to the string address. In the

process, FAC1 is altered as well as memory area $5d and $5e. To

print the string after this routine make a direct call to $able.

The next routines need the address of the floating point number

stored in the .A and .Y registers before being called. They all move

that number to FAC2 and then perform the appropriate operation.

$b850: subtract memory form FAC 1

$b867: add memory to FAC 1

$ba28: multiply FAC1 by memory

$bbOf: divide memory by FAC 1

An alternative to these arithmetic operations is to move the needed

number to FAC2 by one of the previously listed move routines. Then

The Transactor 4O July 1987: Volume 8, Issue Ol

for the add and divide routines load the A or X register with $61, and

call one of the following:

$b853: subtract FAC2 from FAC1

$b86a: addFAC2 to FAC1

$ba30: multiply FAC1 by FAC2

$bbl2: divide FAC2 by FAC1

$bf7b: raise FAC2 to the power of FAC1

Other useful routines are listed below.

$b849: add .5 to FAC1 (no pointers needed)

$bccc: perform INT (calls $bc9b and reconverts to F.P.)

$bae2: multiply FAC1 by 10.

$bafe: divide FAC 1 by 10.

$e264: perform COS to FAC 1.

$e26b: perform SIN to FAC 1.

$e2b4: perform TAN to FAC 1.

$e30e: perform ATN to FAC 1.

The trigonometry functions above need the angle, expressed in

radians, stored in FAC1.

And there are some five byte floating point constants stored in ROM

that you might want to use.

$bfll:

$b9bc:

$baf9:

$aea8:

$e2e0:

$e2e5:

$e2ea:

constant .5

constant 1

constant 10

constant pi

constant pi/2

constant 2*pi

constant 1/4

There are some other routines in ROM that perform overflow

checking, exponent addition, and sign checking that will need to be

accessed when getting into long and complex formulas but for now

the routines outlined will get the fear of using floating point

numbers from a machine language program out of the way.

Now onto a short discussion of the program. First, BUFFR1 is

converted from an ascii string to an F.P. number in FAC1 and

moved to memory location $57. Then BUFFR2 is similarly con

verted and stored at $5c. The two numbers are then multiplied and

stored in $57. Finally the two original numbers are added together

and a check to see if the sum is less than the product. If it is less,

then keep adding until the sum exceeds the product. The program

will then print the sum to the screen, print the product to the screen

and print the number of times it added the two numbers together.

Here are some alterations to the program. Try messing around with

the ascii numbers and see what other values will be produced.

Change the arithmetic operations in lines 510 or 590. Maybe use the

move routine at $bcOc in line 600 instead, to see what effect takes

place on a lot of additions. Use large original numbers to find out

when scientific notation displays take over.

That's probably enough to make the old wood start burning, but it

will be interesting to learn who will be the first to convert Chris

Zamara's SPRITE ROTATE from VOL. 5 ISS. 1 entirely into M.L.???

DA

MG

MG

KK

ED

LH

GC

OD

DM

CF

AO

CN

NO

LB

El

LD

OB

HH

BN

BB

KA

GA

Cl

FH

FA

KH

IH

JB

BJ

MM

Cl

PE

AM

OL

PF

JN

ID

HH

PH

LD

II

El

EK

DL

PG

NN

JG

JH

FD

IF

BF

GP

PF

CO

BC

BN

Nl

JC

Ml

DE

DH

CD

BH

BC

PG

CN

Jl

JL

ED

NA

PC

CB

AO

GB

KN

OG

GG

KP

NK

HO

NM

CC

PP

Al

AE

DN

OJ

100 rem •

110 rem •

** fad facts •••

»• by John houghton •••

120rem»»» collingwood ont •••

140 rem

150 rem pal source code

170 sys700

190 .opt 00

200;

210.= $c000

220;

230 ;a routine to demonstrate the use

240 ;of floating point numbers, the

250 associated floating point

260 accumulators and rom routines.

270;

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530;

540 add

550

560

570

580

590

600

610

620

630

640;

650 nex

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900;

910 count

920 getlo

930 gethi

940;

950 buffri

960

970;

980 buffr2

990

Ida

sta

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jsr

jsr

jsr

Ida

sta

Ida

sta

jsr

jsr

jsr

Ida

Idy

jsr

jsr

=

ida

idy

jsr

Idx

jsr

jsr

nc

bne

inc

=

Ida

Idy

jsr

bmi

jsr

jsr

Ida

jsr

Ida

Idy

jsr

jsr

jsr

Ida

jsr

Ida

Idx

jsr

jsr

Ida

sta

Ida

sta

rts

• = •

* = ♦

* = *

.asc

#$00

count ;clear integer

count+1 ;storage

$7a ;store chrget

getlo ; pointers

$7b

gethi

#<buffr1 ;point chrget to

$7a ; 1st number

#>buffr1

$7b

$0079 ;call chrgot

$bcf3 ;ascii to fad

$bbca ;fad to mem $57

#<buffr2 ;point chrget to

$7a ;2nd number

#>buffr2

$7b

$0079 ;call chrgot

$bcf3 ;ascii to fad

$bbc7 ;fac1 to mem $5c

#$57

#$00

$ba28 ;$57 to fac2 & mult

$bbca ;product to $57

*

#$5c

#$00

$bba2 ;$5c to fad

$61 ;exponentfad

$b86a ;add fac2 to fad

$bcOf ;sum to fao2

count ;inc number of

nex additions

count+1

*

#$57

#$00

$bc5b ;compare sum & prod

add ;fad < $57

$bddd ;fad to ascii

$ab1e ;printsum

#$0d

$tfd2

#$57

#$00

$bba2 ;$57 to fad

$bddd ;fad to ascii

Sable ;print product

#$0d

$ffd2

count+1 ;get count of

count additions convert

$bdcd ;int to ascii

$ab1e ;print count

getlo

$7a ;restore chrget

gethi

$7b

+ 2

+ 1

+ 1

"10.125"

byte $00

.asc "6.375"

.byte $00

The Transactor 41 July 1987: Volume 8, Issue Ol

High-Speed Integer

Multiplies and Divides

Donald A. Branson

St. Louis, Missouri

. . .Ifyour processor has multiply/divide commands,

no problem. However, if it does not. . .

If you have written any amount of assembler code, you have

probably encountered a situation where you wanted to do a multipli

cation or a division. If your processor has multiply/divide com

mands, no problem. However, if it does not (as in the case of the

6502-series CPU in Commodore's 8-bit computers), you may have

done a multiply by adding an operand to itself, decrementing the

operand at the same time until it reaches zero.

This is probably the most straightforward way to do a multiply, but a

binary multiply can be done the same way a person multiplies a

decimal number by hand. This way is as easy to do and, in all but a

few cases, is quite a bit faster.

Multiplication

First, let's look at the way a decimal multiply is done, in order to

draw attention to some key elements in any multiply. The procedure

is expanded on the right to show more specifically what is happen

ing here.

35

x 15

175

350

525

1) 5*5

2) 5 * 30

3) 10*5

4) 10*30

25

150

50

300

525

It can be seen that 35 has not been added to itself 15 times or 15

added to itself 35 times. Doing it that way would take longer and, if

you're doing it by hand, more prone to error.

What has been done is to multiply each digit in the first number

against all the digits in the other number.

This same method can be applied to binary multiplication.

In order to look at one binary digit (bit) at a time, a combination of

the LSR and ROR operations is used to shift the bit into the carry bit,

where it can be examined with a BCC or BCS operation. In this way,

one digit can be multiplied at a time. If this were a decimal multiply,

we would have to have a table of results for each possible combina

tion of one digit multiplies, like this:

1*1=1

1*2 = 2

2*1=2

2*2 = 4

When we multiply decimal, we have this table in our heads.

However, the table is simplified when we do binary multiplication. If

fact, it is simplified to the point that the result of a multiply can be

one of two things: a zero bit or a one bit.

A result table does not need to be kept for binary multiplication. The

table is effectively implied in the operands.

For example:

15 = $0F = %0000

35 = $23 = %0010

00001111

x 00100011

00001111

00001111

00000000

00000000

00000000

00001111

00000000

00000000

000001000001101

($020D = 525)

1111

0011

M1

M2

R

Now to look at the process in a way that can be easily represented in

a computer. We'll call the multiplicand Ml, the multiplier M2, and

the field where the result is left R, like this:

M1:0000 0000 0000 1111

M2:0000 0000 0010 0011

R: 0000 0000 0000 0000

The Transactor 42 July 1987: Volume 8, Issue 01

Since the result will be sixteen bits (525 > 255), all the fields are

represented as sixteen bits.

First, Ml is shifted right, so that each bit can be looked at from right

to left as in the decimal multiply shown before. As you can see in the

example of binary multiplication above, the digit can be either one

or zero, and the result of the single-digit multiply is either zero, or a

duplicate of M2, properly shifted to the left. After each digit in Ml is

shifted into the carry bit, M2 is added to R if the carry is one, then

M2 is shifted left, in preparation for the next digit.

Here, 'SR' stands for shift right, 'SL' for shift left.

pass

1-

2-

3-

4-

carry

SRM1: 0000 0000 0000 0111 1

R = R + M2: 0000 0000 0010 0011

SLM2: 0000 0000 0100 0110

SRM1: 0000 0000 0000 0011 1

R = R + M2: 0000 0000 0110 1001

SLM2: 0000 0000 1000 1100

SRM1: 0000 0000 0000 0001 1

R = R + M2: 0000 0000 1111 0101

SLM2: 0000 0001 0001 1000

SRM1: 0000 0000 0000 0000 1

R = R + M2: 0000 0010 0000 1101

SLM2: 0000 0010 0011 0000

Note that we can stop here, because Ml is zero, and the carry bit

will no longer be set as a result of shifting M1, and therefore M2 will

not be added to R any more times. At this point, the result of the

multiply is left in R.

Here is how this process looks in assembler:

MLOOP EQU

LSR

ROR

BCC

CLC

LDA

ADC

STA

LDA

ADC

STA

SHIFT EQU

ASL

ROL

LDA

BNE

LDA

BNE

RTS

M1 HEX

M2 HEX

R HEX

The Transactor

*

M1

M1+1

SHIFT

M2 + 1

R + 1

R + 1

M2

R

R

*

M2 + 1

M2

M1 +1

MLOOP

M1

MLOOP

0023

000F

0000

;in PAL- MLOOP = *

;SRM1

;the carry from M1 -* M1 + 1

;add on carry set

;R = R + M2

;SLM2

;ifM1 andM1 +1 =0

;when we are done

;or.BYTE$00,$23

;or.BYTE$00,$0F

;or.BYTE$00,$00

Division

Now we'll take a look at division. Binary division can also be done

by mimicking the way decimal division is done. Let's look at an

example of how to compute 43/5, giving a result of 8 remainder 3.

Here's how it would be done by hand, in decimal.

8 r3

5

1)

2)

)

8

43

40

3

*5

43-

=

40

40

= 3

M1 = 5 = 0000 0101

R1 = 0000 0000

M2 = 43 = 00101011

R2 = 0000 0000

In the case of division, two result fields are needed, one for the

quotient, the other for the remainder. Specifically:

M1 /M2 = R1 remR2

M2 will be shifted left into R2, and R2 will then be compared to Ml.

If R2 is greater than or equal to Ml, then Ml will fit into R2. The

result of a binary divide can be only a zero or a one, again saving us

the trouble of having a result table, as is necessary for decimal

division. If Ml will fit into R2, then we subtract Ml from R2, leaving

the result in R2. Finally, Rl is shifted left, with the carry bit from the

compare going into the least significant bit.

pass

1- SLM2intoR2 R2 = 0000 0000

CMPR2-M1 (carry clear)

SLR1 R1 = 0000 0000

M2 = 0101 0110

2- SLM2intoR2 R2 = 0000 0000 M2 = 1010 1100

CMPR2-M1 (carry clear)

SLR1 R1 = 0000 0000

3- SLM2intoR2 R2 = 00000001 M2 = 0101 1000

CMPR2-M1 (carry clear)

SLR1 R1 = 0000 0000

4- SL M2 into R2 R2 = 0000 0010 M2 = 1011 0000

CMPR2-M1 (carry clear)

SLR1 R1 = 0000 0000

5- SLM2intoR2 R2 = 0000 0101 M2 = 0110 0000

CMPR2-M1 (carry clear)

SLR1 R1 = 0000 0001

R2 = R2-M1 R2 = 0000 0000

6- SL M2 into R2 R2 = 0000 0000 M2 = 1100 0000

CMPR2-M1 (carry clear)

SLR1 R1 = 0000 0010

7- SLM2intoR2 R2 = 0000 0001 M2 = 1000 0000

CMPR2-M1 (carry clear)

SLR1 R1 = 0000 0100

(. . .cont'd on page 45)

43 July 1987: Volume 8, Issue Ol

Secondary

Address Bits

Jim Butterfield

Toronto, Ontario

. . .a characteristic ofsecondary addresses that is not well known. . .

When you work a device whose number is 4 or more, you are

allowed (sometimes required) to use an extra number called a

secondary address. The purpose of the secondary address is to

choose a channel within the device. In other words, if I'm using

the disk (usually device 8), I may want to have several things

going at one time: one file might be in the process of being read,

with another separate file being written at the same time.

Although these are happening in the same device (the disk,

number 8), we want to keep them separate. To do this, we

supply unique secondary addresses for each process.

This article documents a characteristic of secondary addresses

that is not well known, plus an oddity in the way it is sometimes

used. The characteristic is this: Commodore Basic always adds

96 to the SA (secondary address) used by an OPEN command

before storing this value. Machine language routines, however,

don't do this, and you may want to add in the value to keep

operation consistent. The oddity is this: despite documentation,

the number you supply to go with a LOAD command is not a

secondary address. It's just a flag, and will later be replaced by a

SA of 0 (plus the extra 96).

Try It

Type the following direct Basic command on your computer:

OPEN 2,8,15

. . .now you can check the three values you have supplied by

PEEK-ing them directly from the tables where they have been

stored. Assuming this is your only active file, you should see the

three values at:

VIC-20, Commodore 64: 601, 611, 621

Most PET/CBM: 593, 603, 613

B-128 820, 830, 840

C-16, Plus-4 1289,1299,1309

Commodore 128 866, 876, 886

Using the PEEK address from your machine, if you PEEK the

first address, you'll see the value 2 from the command that was

entered. PEEK the second value and you'll see the 8. . . but

when you PEEK the third value, the 15 has mysteriously

changed to 111. The computer has added 96. Why?

I don't know. . . but I do know that the Basic side of the computer

is quite specific about doing this. And if there is no secondary

address, the Basic handler carefully sets the SA to a value of

255. . . a flag value which signals to the various parts of the

kernal that there is no secondary address.

If a secondary address is being used, it's sent out every time we

wish to connect to a file. When we call the device (usually the

disk drive) we signal which sub-channel we are using via the

SA. And there's more: the SA is also used to signal an OPEN or

CLOSE as well as a normal data transmission.

Here's the system: When we open a file, we send the original SA,

plus 240, to the device, followed by the file name. When the disk

sees this value (240 to 255), it knows to expect a file name to

follow - not data. When we close a file, we send the original SA,

plus 224, to the device. When the disk sees this value (224 to

239), it knows to close the file. Finally, when we send or receive

data, we send the SA as it is stored in memory (which includes

the added value of 96). The disk sees that the SA is neither an

OPEN nor a CLOSE, and handles the data as desired.

Now.. . when Basic puts the SA away for you, all the above

happens automatically (add 96 to value supplied, or set 255 if

there is no secondary address). But if you do it yourself in

machine language, you must do it all.

So. . . if you're going to call SETLFS as a first step towards calling

OPEN, set up the secondary address correctly. In other words, if

you were planning to OPEN in a similar manner to the above

command (OPEN2,8,15), I'd suggest you code:

LDA #$02

LDX #$08

LDY #$6F

JSR $FFBA ;(SETLFS)

Note that the secondary address of 15 (hex #$0F) has had

a value of 96 (hex $60) added to it, to make a total of $6F.

And if you want to open to the printer with the equivalent of

OPEN3.4. . . I recommend:

LDA #$03

LDX #$04

LDY #$FF

JSR $FFBA ;(SETLFS)

The Transactor 44 July 1987: Volume 8, Issue Ol

To signal that no secondary address is called for, put 255

(hex FF) into the Y register.

Both of the above calls should be followed soon by a call to

OPEN ($FFC0). Because here's the catch: the above setup

does NOT work as expected if you're going to call LOAD

($FFD5).

The documentation doesn't tell you this. . . but if you are

going to make a call to LOAD, your prior call to SETLFS

does not set a secondary address. Instead, it sets a flag. A

value of binary zero allows the program to relocate as it is

loaded; any other (non-zero) value triggers a load to a fixed

address, with no relocation. This last is what is most often

wanted.

And in the case of LOAD, you do NOT want to add 96. If

your objective is relocation, the only value that works in the

Y register is zero. . . add 96 and it isn't zero any more, and

you will NOT relocate.

I don't use calls to LOAD much. In most cases, it seems to

me to be as easy to OPEN and read the bytes myself,

stacking them away under program control after examining

them. But if you wish to use LOAD, go ahead. . . just

remember that the SETLFS secondary address is really not

a secondary address at all.

One other related subject, to do with relative files. If you

want to position to a particular record in a file, you must use

the secondary address of that file in the "P" command.

Again, I recommend that you use an added 96 as part of

the value. Thus, if you have coded:

OPEN 15,8,15

OPEN 1,2,3, "O:RELDATA,L," +CHR$(75)

. . .opening a file, then to position to record number five, I'd

suggest:

PRINT#15,"P"+CHR$(99) + CHR$(5) + CHR$(0) + CHR$(1)

The secondary address for the file is three, as shown in the

OPEN 1,2,3. . . statement. But I'd suggest that your position

command add 96 as shown to specify a secondary address of 99.

Do you need to carefully do all this, every time? I honestly don't

know for sure. Sometimes everything seems to work when you

don't worry about the extra bits. But when you carefully trace

Basic code (especially the 4.0 and 7.0 versions), you see that

Commodore always puts these extra values in. Maybe they

know something.

And with the wide variety of disk drives and programs, you can

never be sure when you might come up with a combination that

needs those extra bits to be exactly right. I don't know about

you... but my data files are too important for me to take any

unnecessary chances.

(Cont'd from page 43)

8- SL M2 into R2 R2 = 0000 0011

CMPR2-M1 (carry clear)

SLR1 R1 = 00001000

M2 = 0000 0000

Now we can stop, because all eight bits of M2 have been

processed.

Here is how this process looks in assembler. To compare R2

and M1, a subtract is used. The result of this subtract is saved

in registers X and Y, so that the subtract does not have to be

repeated, thus saving a few cycles.

DLOOP

SKIPSAVE

M1

M2

R1

R2

Conclusion

EQU

ASL

ROL

ROL

ROL

SEC

LDA

SBC

TAX

LDA

SBC

TAY

BCC

STX

STY

EQU

ROL

ROL

LDA

BNE

LDA

BNE

RTS

HEX

HEX

HEX

HEX

*

M2 + 1

M2

M2 + 1

R2

R2 + 1

M1+1

;save low byte

R2

M1

;save high byte

SKIPSAVE

R2 +1 ;store saved bytes

R2 ;in R2

*

R1+1 ;shift carry from

R1 ;subtract into R1

M2 + 1

DLOOP

M2

DLOOP

0005

002B

0000

0000

To make these routines even faster, use zero page memory for all

the fields. They will also take less memory this way.

Where will these routines come in handy? Well, for starters, here

are some ideas.

- Graphics programs, for calculating the position of a dot, plotting a

line, or drawing a circle, or drawing a circle.

-Compilers, for calculating memory needed for arrays, or for

finding a specific element in an array. Also good for fast integer

multiply/divides.

- Calculating prime numbers.

There are many places where multiplies or divides are used, and

anywhere one is used, one of these routines can make your code

from a few times to hundreds of times faster.

The Transactor 45 July 1987: Volume 8, Issue Ol

Interfacing and Controlling

the Armatron Robot

J.J. Barbarello

Englishtown, NJ

. .the original Armatron from Radio Shack was both agony and ecstacy

For those of us interested in experimenting with robotics, the

original Armatron from Radio Shack was both agony and

ecstacy. Still available, armatron is a low cost, fully functioning

robot arm with six degrees of freedom (meaning there are six

different portions of the arm whose movement can be con

trolled). For robotics experimentation its serious shortcomings

include the inability to lift anything of measurable weight and its

totally mechanical controls. While many different articles ap

peared describing modifications to allow computer linkup of

Armatron, all (including one I did) required a substantial amount

of mechanical skill.

These problems have been overcome in a newer version called

Mobile Armatron. This under $40.00 robot has enough power to

lift items in the one pound range while retaining six degrees of

freedom. Best of all, it is electrically controlled. As its name

implies the robot can move on its two wheels. On the negative

side, the elbow joint is not controllable (but you can manually

move it).

If the thought of experimenting with a computer controlled

robotics device is appealing, this project is for you. The project

consists of a simple interface and a comprehensive control

program for the C-64. Including the cost of the robot, the total

project cost should be around $60.00.

The Interface

Mobile Armatron has a control module that is simply a series of

switches. It can select one of four directions (forward, back, left

and right), arm up, arm down, wrist up, wrist down, wrist turn

and fingers open/clamp. The robot is powered by four D size

batteries that provide plus and minus three volts for the internal

motors. By changing the polarity of voltage applied, alternating

functions (such as arm up and arm down) are obtained. The

control module can actuate the left wheel, the right wheel, the

arm movement, the wrist movement, and the wrist turn/fingers.

Its seven control lines include one for each of the five motions

just mentioned plus one each for positive and negative voltage.

As shown in the schematic diagram of Figure 1, the interface is a

straightforward design that replaces the control module switches

with seven low current relays. These relays are activated by

seven transistors which are in turn controlled by seven of the

eight available C-64 user port lines. Low current relays insure

that the 100 milliamp maximum allowable current drain from

the user port is not exceeded.

Figure 1: Schematic Diagram

S,OA_ WIRES

CONTROLLED.
MODULE

O B.LUC

Construction

Begin construction by fabricating a doubled sided printed circuit

board (PCB) using the circuit patterns shown in Figure 2. If you

prefer, you can fabricate a single sided PCB by eliminating the

top circuit pattern. In this instance, you will have to connect a

The Transactor 46 July 1987: Volume 8, Issue Ol

jumper wire between hole A and connector pin 2 (+ 5 volts).

While this method does not provide as much rigidity (only half

as many connector pins soldered to the PCB), it is somewhat less

intimidating. If you opt for the double sided PCB, be sure to

insert a short length of wire into hole A and solder it to the pads

on either side of the PCB. This replaces the wire jumper used on

the single sided version.

Location of wires on Controller PC Board

(9 6%

C-LAr fAO&luE IMTEK.FA.CE"

CD QD OO OO OO OO OO

Bllllll IB

Figure 2: PC Layout

Mount the components on the PCB as shown in Figure 3, being

sure not to apply excessive heat during the soldering process.

When all components have been soldered in place, slide the

connector onto the edge of the board so the pins are over the

edgeboard pads. Solder each pad to its associated connector pin.

Place the controller module face down and remove the six

screws holding it together. Remove the rear case half and note

the PCB held in place by a single screw. Remove that screw and

the PCB. Turn the PCB over (circuit side) and note the seven

wires soldered to the upper edge. Starting from the left they are

black, brown, red, pink, yellow, green and blue. Unsolder the

wires from the PCB and discard the controller module. Solder

these wires to the seven remaining holes as shown in Figure 3.

This completes construction.

iimiiim

Double Sided: Wire through hole soldered to pads on both

sides.

Single Sided: Wire jumper soldered to pad on other side and

Pin 2 (see dotted line).

Figure 3: Component Placement

Use

Install four D size batteries in the Mobile Armatron. Connect the

interface to the user port (rear left of the C-64) such that the

component side of the PCB is on top. Power up your C-64 and, if

you haven't already, type in the program shown in the Program

The Transactor 47 July 1987: Volume 8, Issue Ol

Listing and save it using the name ROBOT. When you RUN the

program the main menu will appear with the five options Learn,

Do, Save, Retrieve and Quit (End). To better understand what

these options do and how the program operates, let's discuss

each of them separately.

Learn allows you to "teach" the robot to perform a series of

functions in a specific manner. Together these functions form a

procedure. Once created, the procedure can be saved, retrieved,

added to and executed at any time. Select Learn by pressing Fl.

The Learn screen defines the keys to select the twelve possible

movement functions. To perform one of the functions described,

press the associated key. To end movement, press any key. The

program remembers each function selected and the length of

time the function is performed. To end the teaching session,

press the Fl key to return to the main menu.

Do executes a procedure resident in memory. Select Do by

pressing F3. If a procedure is resident in memory, you will be

asked to press any key to begin execution. Otherwise, you will

be informed that there is no procedure in memory and asked to

press any key to return to the main menu.

Save allows you to copy a procedure in memory to a disk file

using a name that you specify. Select Save by pressing F5. If

there is no procedure in memory, you are so informed and asked

to press any key to return to the main menu. If you specify the

name of a file that already exists, you are asked if you want to

continue. Continuing erases the existing disk file and replaces it

with the current memory contents.

Retrieve copies the contents of a disk file into memory, erasing

any procedure in memory at the time. Select Retrieve by

pressing F7. If you specify the name of a file that doesn't exist,

you will be so informed and asked to press any key to return to

the main menu. If memory already contains a procedure you

will be so advised and asked if you want to continue. Continuing

erases the current memory contents and replaces it with the

procedure saved on disk.

Quit is selected by pressing both the CTRL and Q keys. This

ends the program, insures all files are closed and prints a

message "To re-enter, type GOTO 50". If you end prematurely

without saving a procedure in memory, executing a GOTO 50

allows you to re-enter the program with memory intact. You can

then save memory contents to a disk file.

Experimenting Tips

Each movement you specify is called a step. After loading a

procedure from disk, you can add steps to it in the Learn mode.

This allows you to build a procedure a part at a time, add to it,

test it, and save the revised procedure if it proves acceptable.

You can also have standard procedures on file rather than

having to build them manually each time.

You should always start a procedure with the robot in the same

initial position. To do this, save any procedure in memory and

enter the Learn mode. Perform the functions necessary to get

the robot to the initial position. Then retrieve the procedure you

wish to perform.

Each procedure step is saved as a movement function number

and a time count. The movement function is specified by a

number between one and twelve (corresponding to the twelve

function definitions listed on the Learn screen). The time count

is a number that indicates how long the function should be

performed. As the robot's batteries drain, the time count may

produce slightly different results, since the robot will now move

at a slower speed. For precise procedures, then, always use a

fresh set of batteries.

List Of Materials

R1-R7 :10,000 ohm, 1/4 watt fixed resistor (such as Radio

Shack P/N 271-1335).

Q1-Q7 :2N2222A NPN Silicon Transistor (such as Radio Shack

P/N 276-2009).

K1-K7 :5 volt, 250 ohm coil reed relay with 1 amp SPST

contacts (Radio Shack P/N 272-232).

SO1 Standard user port 12 position female connector with

0.156" spacing. NOTE- Radio Shack P/N 276-1551

(22 position connector) can be used as an alternate by

cutting it to a 12 position length.

PCB : Printed Circuit Board (see text).

ROBOT :Mobile Armatron (Radio Shack P/N 60-2396).

MISCELLANEOUS: Solder, short length of wire (see text), four D

cell batteries.

NOTE: A disk containing the ROBOT program plus a series of

demonstration procedures is available for $6.00 US ($6.36 for

New Jersey residents) from B&BTC, RD#1, Box 241H, Tennent

Road, Manalapan, NJ, 07726.

Mobile Armatron Program

NL

IC

CA

GK

DJ

Jl

DM

IF

HM

HD

DA

CJ

IJ

DA

KL

DM

HJ

ND

IM

AM

1 r6m *********************************

2rem** mobile armatron software **

3 rem ** name: robot **

4rem ** (c) 1986, jjb **

5 rem ** manalapan, nj 07726 **

6 rem ** v 860928 **

7 r6m *********************************

10dima(12),b(250,1):gosub3000

:gosub 5000:poke 56579,255:poke 56577,0

20 a(1) = 38:a(2) = 70:a(3) = 36:a(4) = 34

:a(5) = 33:a(6) = 65

30 a(7) = 40:a(8) = 72:a(9) = 48:a(10) = 80

:a(11) = 66:a(12) = 68

40 ss$ = "1234567890 + -"

:rc$ = chr$(5) + chr$(18)

50 gosub 3000:ro = 6:co = 10:gosub 5050

:printrc$; "main menu"

60 print:printtab(12);" < f1 >: learn " :print

:printtab(12);"<f3>:do"

70 print:printtab(12); "< f5 >: save" :print

:printtab(12); "< f7 >: retrieve"

80 print:printtab(10); "<ctrl>q: quit (end)

90 ro = 19:co = 10:gosub 5050:print" which. . .

100getsr$:ifsr$= "" then 100

110 sr = asc(sr$)-132:if sr = -115 then sr = 5

120 if sr<1 or sr>5 then 90

130 on sr gosub 200,300,400,600,800

The Transactor 48 July 1987: Volume 8, Issue Ol

NP

KL

GC

KA

PM

NJ

DD

BN

KN

LA

GA

PG

MD

GE

PK

CG

PG

HM

MF

JA

JL

PN

CK

FA

OD

EJ

Jl

FO

CG

AB

JC

MC

AF

LA

PD

AD

OM

LO

EC

IB

FL

MA

JF

BM

GG

BK

140 goto 50

200gosub1000:j = b(0,0):x = 0:rem*** learn

mode ***

210geta$:ifa$= "" then 210

220 if asc(a$) = 133 then return

230 gosub 2000:if i = 0 then poke 56577,0

:goto210

240 poke 56577,a(i)

250 get a$:if a$= "" then x = x +1:goto 250

260 poke 56577,0

270 j = j + 1 :b(j,O) = i:b(j,1) = x:x = 0:b(0,0) = j

280 ro = i + 10:co = 5:gosub 5050

:print mid$(ss$,i,1);:goto 210

300 rem** do procedure

310printchr$(147):printbl$:print"[13spcs]do

procedure" :printbl$:print

320 if b(0,0) = 0 then print" no procedure in

memory." :goto 375

330 print" press any key to begin procedure."

340 get a$:if a$ - "" then 340

350 print" procedure execution in progress"

355 for i = 1 to b(0,0):poke 56577,a(b(i,0))

360forj = 1 to b(i,1)

365geta$:ifa$= "" then x = x + 1:next j

370 poke 56577 Ofor i - 1 to 500'next inext i

:print" procedure done."

375 ro = 18:co = 0:gosub5050:print" press any key

to return to the menu."

380 get a$:if a$ = "" then 380

390 return

400 rem** save procedure

410 printchr$(147):printbl$:print"[13spcs]save

procedure" :printbl$:print

420 if b(0,0) = 0 then print" no procedure in

memory." :goto 480

430 input" enter file name to save" ;f$

440 open 1,8,15:open 2,8,2, "@0:" +f$+ ",s,r"

:input#1 ,e,ed$,tn,bl:close 1 :close 2

450 if e = 62 then 500

460 print "file exists, continue (y/n). . .";

:gosub 1500

470 if a$ = " y" then 500

480 print" abort, press any key. . ."

490 get a$:if a$ = "" then 490

495 return

500 open 2,8,2, "@0:" +f$+ ",s,w":print

:print" saving procedure, wait."

510fori = 0tob(0,0):print#2,b(i,0):print#2,b(i,1)

:next i:close 2:close 15

520 print:print" procedure saved, press any key."

:goto 490

600 rem** retrieve procedure

610printchr$(147):printbl$:print"[11 spcs]retrieve

procedure" :printbl$:print

620 if b(0,0) = 0 then 650

630 print" procedure in memory, continue (y/n)? ";

:gosub1500

640 if a$ = " n " then print" abort. " ;:goto 700

650 input" enter file name to retrieve" ;f$

660 open 1,8,15:open 2,8,2, "@0:" +f$+ ",s,r"

:input#1 ,e,ed$,tn,bl:close 1 :close 2

670 if e = 0 then 720

IM

DB

CO

IG

JO

PG

CB

BB

Al

GL

CM

IC

HK

MH

AH

OC

HM

CF

MM

IL

MH

FD

AH

OH

FP

EF

HP

ID

FC

FN

CE

DN

CL

HB

IB

KN

MM

DB

MC

IA

AB

OP

NO

FK

HI

MM

NK

AO

680 if e = 62 then print "file doesn't exist. ";

The Transactor 49

690 print" press any key."

700 get a$:if a$ = "" then 700

710 return

720 print" retrieving procedure, wait."

:open 2,8,2, "@0:" +f$+ ",s,r"

730input#2,b(0,0):input#2,b(0,1)

740 for i = 1 to b(0,0):input#2,b(i,0):input#2,b(i,1)

:next:close2

750 print" retrieval complete. " ;:goto 690

800 rem** end

810 ro = 5:co = 10:gosub 5050:for q = 1 to 16

:printtab(10);b$:next

820 ro = 10:co = 0:gosub 5050:close1 :close2

830 print" program ended, to re-enter,

type goto 50 ";

840 printend

1000 rem** learn mode screen

1005 printchr$(147):printbl$

1006 print" [3 spcsjmobile armatron robot learn
mode[3 spcs]": printbl$:print

1007 print" [4 spcsjpress key to do function, press

any other key to stop.";

1008 print" press<f1>to return to menu. ":print

1009 print "[4 spcs]key function ":print"[4 spcs]
■■

1010 printtab(5);" 1 = forward "

:printtab(5); "2 = backward"

1020printtab(5);"3 = right forward turn "

:printtab(5); "4 = left forward turn"

1030 printtab(5); "5 = arm up"

:printtab(5); "6 = arm down "

1040 printtab(5);" 7 = wrist up"

:printtab(5); "8 = wrist down"

1050printtab(5);"9 = hand turn"

:printtab(5); "0 = fingers move in/out"

1060 printtab(5);" + = right reverse turn "

1070 printtab(5);"- = left reverse turn "

1080 return

1500 get a$:if a$ = "" then 1500

1510 a$ = chr$(asc(a$) and 223)

1520 if a$<>" y" and a$<>" n " then 1500

1530 print a$:return

2000 rem** position in string

2010 for i = 1 to 12:ifa$ = mid$(ss$,i,1)then2030

2020 next:i = O:return

2030 ro = i + 10:co = 5:gosub 5050:printrc$;a$:return

3000 rem** format screen =

3010 poke 53280,6:poke 53281,6:printchr$(147)

:b$ = chr$(5) + chr$(18)

3020 bl$ = b$ + " [39 spcs]":print bl$

3030 print b$;" mobile armatron robot controller "

3040 printbl$

3050 b$ = " [29 spcs]"

3060 return

5000 rem* cursor control using plot kernel ($fffO)

5010 data 162,0,160,0,24,32,240,255,96,999

5020a = 49300:sc = a

5030 read b:if b<>999 then poke a,b:a = a +1

:goto 5030

5040 return

5050 poke sc + 3, col: poke sc +1, row: sys sc

5060 return

July 1987: Volume 8, Issue Ol

Symlister - A List

Formatter for Symass

John A. Spencer

Edwardsville, IL

. . .Symlister will automatically detect spelling errors in opcodes. .

Symass is a first class assembler for the C-64 but one feature is

noticeably absent. You cannot indent the opcodes to make the

labels more easily identified. This is not the "fault" of Symass but

rather stems from the fact that the normal Basic operating

system is used to manipulate the program. When a line is

crunched, the spaces between the line number and what follows

are always removed. On listing, a single space is uniformly

inserted after each line number to make the program more

"readable". But when working with assembly code it is very

helpful to have the labels separated to the left of the opcodes.

The lack of this formatting can lead, at the least, to eye strain or

even worse, to inadvertent duplication of labels. Symlister solves

this problem.

This short utility routine, when assembled with Symass 3.13 and

enabled, will tidy up your code by automatically indenting each

line that begins with a 6510 mnemonic. Because Symlister uses

the IQPLOP vector ($306), it also works with listings to a printer

in the CMD mode. With Symlister active, enter your assembly

code as usual. You need not indent on lines starting with

opcodes. When the program is listed, they will be indented.

When editing, it is most sensible to align the opcodes appearing

after the labels since the indents are fixed for the other lines.

Since Symlister affects only the listing of a program, it does not

change the amount of disk space required to store the PRG file.

To conserve programming space, this utility has been designed

to hide in the tape buffer. It can be assembled below Symass in

memory but when calculating a new starting address, be sure to

include an extra 180 bytes or so to allow for the Symass symbol

table required during its assembly. Add the following lines to

protect the formatter from being overwritten by new Symass

symbol tables after it is enabled:

1401 lda#<vecset; protect code

1402 sta $37 ; from symass

1403 Ida #>vecset

1404 sta $38

1405 jsr $a65e ; reset memory pointers

Of course, new enable and disable SYS addresses will have to be

calculated for alternate locations. For example, if you load

Symass first, it will reside at $952C and Symlister will assemble

properly with a starting address of $9400. Then to enable,

SYS37888, and disable, SYS37891 (enable + 3)

This routine automatically adjusts for variations in the load

address of Symass. If you install another utility (eg. C-64 Tiny

Aid) before Symass the starting address changes. This adjust

ment is important because the routine calls two procedures

within Symass itself - WORD and FINDOP. A very useful result

of this is that Symlister will automatically detect spelling errors

in opcodes by not indenting them when you re-list the line. This

does not apply to opcodes on lines with labels.

The program is written to automatically vector to whatever was

originally in IQPLOP, so if you are using a cartridge that alters

this vector it should continue to work normally. However, be

careful to disable Symlister with the appropriate SYS before

disabling your other utility.

As presented here, Symlister indents eight spaces. This figure

works very well with Unassembler files generated from the STP

program that converts the SEQ disk files to Symass compatible

PRG form. If you favor a different spacing, change the "SPACES"

variable before assembling. If Symlister is already active, you

can change the spacing by a POKE to location 917 with the

desired value.

This program is compatible with Tiny Aid to make it easy to

revise the 'ADxxxx' labels from Unassembler. But note that Tiny

Aid uses its own display routine so it will not indent the results of

FIND or CHANGE operations. Once changes are made, re-list

the lines in question to see them formatted. This version of

Symlister is not compatible with Verifizer since they both use the

tape buffer. Assembly at $C000 (change line 1160 to * = $C000)

would be a simple alternative provided you are careful to disable

it before Symass does any assembling into this region. In this

case enable is SYS49152 and disable SYS49155.

The Transactor 5O July 1987: Volume 8, Issue Ol

Gl

OH

CJ

AM

--

01

CD

CK

PE

KP

ME

KM

DO

EG

10

PE

BM

IA

KK

EL

NA

GF

HD

DG

FM

KJ

EJ

MG

NG

MO

Kl

AB

MP

JN

DG

AG

BK

FO

KD

KG

KN

FL

LK

KB

DC

KJ

IF

DE

OD

FA

HF

JC

GJ

1000 rem save" 0

1010rem*21 fet

symlister

87 - j.a

Symlister Source

',8

spencer

1020 rem * indents all lines starting

1030 rem * with 6510 opcodes

1040 rem * symass must be installed

1050:

1060ifpeek(700)

1070:

= 76 then

1080 print "** symass not i

1120

nstalled **"

1090 print " load/run symass first"

1100 end

1110:

1120 print " sys 828 to enable"

1130 print "sys 831 to restore previous list vector

1140:

1150 sys700

1160*=$033c

1170;

1180 spaces =

1190srcad =

1200 ad

1210 iqplop =

1220symptr =

1230 reglst =

1240 outdo =

1250findop =

1260 word =

1270;

1280 jmp

1290 jmp

1300;

1310 jalter the list

1320vecset =

1330 Ida

1340 sta

1350 Ida

1360 sta

1370 Ida

1380 sta

1390 Ida

1400 sta

1410 Ida

1420 clc

1430 adc

1440 sta

1450 Ida

1460 adc

1470 sta

1480 clc

1490 Ida

1500 adc

1510 sta

1520 Ida

The Transactor

$08

$5f

$7a

$0306

$02bd

$a71a

$ab47

$0000

$0000

vecset

lisdis

;# spaces to indent

;code address

;chrgot& symass

;std list jmp vec

;symass vector

;normal list code

;print char

;dummy value

;enable

;disable

vector (iqplop)

*

iqplop

rgl + 1

iqplop +1

rgl + 2

#<lvec

iqplop

#>lvec

iqplop +1

symptr

#$9d

opfd +1

symptr +

#$03

opfd + 2

symptr

#$fa

wrd + 1

symptr +

;pickup

;current

; 'list'

; vector

;install new

; 'list'

;vector

;calc addr of

;'findop'

;routine

1 ;& insert in

;code below

;calc addr of

;'word'

;routine

1 ;in symass

Code In Symass Format

1

DC

LE

KP

01

AG

El

JE

GL

PI

KM

KH

ON

DM

PM

MP

GC

MF

KB

OC

Nl

ID

DB

ME

PA

DB

LK

LH

OH

BH

PE

MJ

HD

OD

CM

HM

MO

FP

LN

JJ

JM

LL

Al

EB

CH

EL

OO

OG

GN

MD

AN

EG

EN

51

1530

1540

1550

1560;

adc

sta

rts

#$05

wrd + 2

1570 ;new routine for listing

1580lvec

1590

1600;

1610 reg

1620;

1630 rgl

1640;

1650opsrch

1660

1670;

1680wrd

1690

1700;

1710 opfd

1720

1730;

1740

1750;

1760con2

1770

1780

1790

1800;

1810 jreg

1820

1830;

cpy

beq

Ida

jmp

sty

jsr

jsr

jsr

jsr

bcc

Idx

Ida

jsr

dex

bne

Idy

bne

#$04

opsrch

(srcad), y

reglst

$49

calcad

word

calcad

findop

jreg

#spaces

#$20

outdo

con2

$49

reg

;checkonly

;1st word

;on line

;get len of

;word ($59)

;not mnemonic

;insert spaces

;restore y reg

1840 subroutine to set up search

1850 ;address 'ad' in symass

1860calcad

1870

1880

1890

1900

1910

1920

1930

1940

1950;

1960;systo

1970 lisdis

1980

1990

2000

2010

2020

2030;

2040.end

=

Ida

clc

adc

sta

Ida

adc

sta

rts

*

$49

srcad

ad

#$00

srcad +1

ad + 1

;add .y to

;current

;addr

disable list formatter

=

Ida

sta

Ida

sta

rts

*

rgl + 1

iqplop

rgl + 2

iqplop+ 1

;restore last

; vector

July 1987: Volume 8, Issue OT

XREF for the

Commodore 64

David Archibald

Flint, Michigan

An indispensible BASIC programming aid

When I'm writing a BASIC program, I find that there are certain

programming aids that I use over and over again. The fact is, these

programs save me so much time and aggravation that I would find

myself hard pressed to get along without them.

One of these indispensable programs is my variable and line

number cross reference program, XREF. What is does, for those

who are unfamiliar with this type of program, is create a listing of 1)

program lines that are referenced by other program lines, and 2) all

variables have been used, and on what program lines they appear.

Learning to use Xref is quite simple, since there are only two

commands: XREF, and HELP. There are also, only two items of

syntax: @ and *. Altogether, there are seven different combinations

of these commands and syntax, but I'm sure you won't have any

problem remembering them.

But before we get into the explanations of these commands, let's get

the basics of running Xref out of the way. All of the commands listed

here must be at the beginning of the command line. If they are not,

you will get a SYNTAX ERROR. These commands will work only in

direct mode; they will not work from within a Basic program. All

spaces in the command line will be ignored. The output, which can

be sent to the screen or your printer, is listed in numerical or

alphabetical order. For this program to do anything, you must of

course have a Basic program in memory. To pause the listing, press

and hold down the "P" key, until the listing stops. You can restart

the listing by pressing any key (just close your eyes, and hit any key

that catchs your fancy). You can abort the listing, by pressing RUN/

STOP.

And now that you have committed all that to memory, we can start

on the commands.

In the following commands, "var-#" can equal any variable name,

or line number up to five characters long. Anything over this five

character limit is ignored. The symbol <cr> represents pressing the

Return key.

XREF @ <cr>

This command sends a complete line number and variable cross

reference to your screen.

XREF* @ <cr>

This is the same as the above command, except the output is sent to

the printer.

or

XREF® var-#<cr>

XREF*@ var-#<cr>

These commands list all references from the variable or line

number onwards. If, for example, you entered the variable "CBS",

then the variable CB$ (if it exists) and those alphabetically greater

will be listed. You can also use these commands to separately list

either the line number or the variable cross reference. In other

words, when you enter a line number, then only line number cross

references are listed, and the same goes for the variables. Using zero

will display all line number cross references, and "A" will display all

variables.

XREFvar-#<cr>

or XREF* var-#<cr>

With this command, only the single variable or line number that

you enter is cross referenced. I like to make use of this command

before using a new variable, so I can make sure it hasn't already

been used.

XREF<cr>

Each time the command XREF is entered, it will consecutively list a

Basic line where the previous "var-#" appears. Lets say for example

you enter the command "XREF C$", and you get a listing saying C$

appears on these line numbers: 10,30,100, and 165. If you then

enter the command XREF, line 10 will be listed. If you enter it again,

then line 30 will be listed. Each time the command XREF is entered,

the next Basic line where C$ appears is listed. After the last line is

listed (in this case 165), subsequent XREF commands will give you

the message "END OF TEXT".

This command is especially handy for editing. Say for example you

have ten Basic lines that reference a subroutine at line 1500, and

you need to change six of them to call a new subroutine at line

2000. Well, you can either try to remember the six line numbers,

and then list them one at a time, or you can simply enter the

command XREF 1500, and then follow it with XREF until the six

lines pop up. 1 think I prefer second method, thank you!

HELP<cr>

This is the last command, and the most important. Why is it the

most important? Because if you forget everything you have just

read, you can enter this command, and get an abbreviated descrip

tion of these instructions. So if you only remember one command,

make it this one.

The Transactor 52 July 1987: Volume 8, Issue 01

Technical Notes XREF 64: BASIC Loader

Xref is written completely in machine language, but since It's loaded

with a Basic loader, you do not need to know anything about

machine language to use it.

Before the Basic loader pokes Xref into memory, it gets the address

of the top of Basic memory from locations 55 and 56. It then

subtracts 214 (the number of bytes used by Xref) from this address,

and Pokes Xref into memory starting from there. What this all

means is that Xref is a relocatable program. If for example you

already have a machine language program at the top of Basic

memory, then the Basic loader will relocate Xref below this other

program.

IMPORTANT NOTE! Be sure you save the Basic loader before you

run it, because it executes a NEW command after it pokes Xref into

memory.

Are you wondering how Xref manages to use only 214 bytes of

memory? Well, it actually uses over 2000 bytes of memory. So

where's the rest? It's hidden under the Basic ROM.

This is made possible because of the Commodore 64's unique

memory architecture. What makes it unique is that underneath the

ROM for the Basic interpreter and the Kernal is a whole bunch of

unused RAM. You can write to this RAM from Basic, but to read it,

you really have to use machine language. To read this RAM, you

first have to "switch out" the Basic interpreter's ROM. And of course

when you switch out the Basic interpreter - which is after all, just a

machine language program - it no longer exists in memory, so it is

not there to read any memory locations!

Which memory the computer "sees" - the ROM or the RAM - is

controlled by the value in zero page memory location one. If bits

zero and one in this byte equal zero, then the computer sees RAM at

addresses 40960-49151 ($A000-$BFFF), and 57344-65535

($E000-$FFFF). If these bits equal one, then the computer sees

ROM at these addresses.

Xref uses this switching act between RAM and ROM to its advan

tage, and by doing so saves Basic programming memory. The

majority of the Xref program, doesn't care if the Basic interpreter is

switched in or out, so most of it is hidden under the ROM. The 214

bytes that are in the Basic programming memory consist mainly of

subroutines that switch the ROM back in, and then call other

subroutines in the Kernal. When the Kernal subroutine is finished,

the Xref subroutine switches the ROM back out, then returns to the

part of the main program that called it.

Once Xref is in memory, you don't have to worry that pressing

RUN/STOP and RESTORE will kill it, because only turning your

computer off will do that.

If you'd rather not type in the program, you can get this issue's

Transactor disk, or send $3, a formatted diskette, and a self-

addressed, stamped mailer to:

David Archibald

3717 Aldon Lane

Flint, MI 48506

GM

JL

EK

LF

OO

KF

EG

OG

PN

JF

BN

GJ

CD

KK

BK

LJ

IM

IC

NE

GO

LE

KP

HC

EB

IB

OO

EJ

GD

MO

LD

EF

DP

CL

MP

MH

BA

AJ

NN

EK

Fl

PC

MA

LB

GN

LJ

KO

BM

HE

GO

CB

BH

GC

JA

IG

EE

OP

HB

xref

(c) 1985 by david archibald

(313)736-0239

10 rem***

20 rem**

30 rem**

40 rem**

50 rem*********************************

60 rem

70 rem

80 rem

90 print" [CLR]" :print:print:print:print:print:print:print

100 printspc(8)" [RVS]poking xref into memory." :print

110 printspc(6)" please wait approx. two min."

120 rem

130 rem— save border color.

140 rem

150m1=53280:lt=15:p4 = 1

160bc = peek(m1)

170 rem

180 rem— get top of free memory and

190 rem— where to put start of prog.

200 rem

210 ea = peek(55) + peek(56)*256-1 :sa = ea-214

:exe = sa

220 rem

230 rem— check if start of xref is

240 rem— lower then end of basic prog.

250 rem

260 bm = peek(45) + peek(46)*256 +100

270 if bm>sa then print:print" there isn't enough free

memory ":end

280 rem

290 rem— convert start of xref into

300 rem— split decimal.

310 rem

320 th = int(sa/256):tl = sa-th*256

330 for pa = sa to ea

340 read by:tst = by-int(by)

350 rem

360 rem— randomly change border color.

370 rem

380cm = cm + p4:ifcm = 20then p1 =rnd(1)*lt + p4

:pokem1,p1:cm = 0

390 rem

400 rem— if byte followed by .1 then

410 rem— lower byte of absolute addr.

420 rem— add lower byte of start to it

430 rem— so it points to relocated addr

440 rem

450 if tst>0 and tst<.2 then carry = O:by = by + tl

460 rem

470 rem— if lower byte is greater than

480 rem— 255 then a carry is generated

490 rem— so add 1 to high byte.

500 rem

510 if by>255.5 then by = by-256:carry = 1

520 rem

530 rem— if byte followed by .2 then

540 rem— high byte of absolute add.

550 rem

560 if tst>. 19 then by = by + th + carry:carry = 0

570 poke pa, by

The Transactor 53 July 1987: Volume 8, Issue O1

MD

MG

GH

NM

MO

EK

OJ

PC

GO

IK

GA

AB

JJ

LB

PI

ID

CE

DG

AL

NB

CP

AN

FJ

CL

PM

DF

KM

OP

JK

MF

EH

AN

EH

OM

OA

CE

IC

FD

IL

KA

AH

MD

EG

PI

KF

EJ

JP

IH

DD

EE

IH

NL

IA

MA

DG

KL

FB

HE

AJ

MM

BC

HN

580 next pa

590 rem

600 rem

610 rem—

620 rem—

630 rem—

640 rem

650 if a = C

- starting addr ($a000) & ending

- addr ($a71 e) of main program

- under basic's rom.

) then a = 1 :sa = 40960:ea = 42781:

660pokem1,bc

670 sys exe: new

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

rem

rem

rem— relocatable section of the

rem-— program is not poked

rem— basic's rom.

rem

rem

data

data

data

data

data

data

data

data

32,31.1, 0.2, 76,

0, 80, 76, 69,

122, 164, 32, 166,

76, 128, 0, 96,

208, 5, 88, 165,

96, 72, 32, 38.1,

76,31.1, 0.2, 32,:

195, 255, 32, 204,

data 38.1, 0.2, 76, 167,

data

data

data

data

data

data

data

data

data

data

data

data

1280 data

1290 data

1300 data

1310

1320

1330

1340

rem

rem

rem

rem

1350 data

1360

1370

1380

data

data

228, 255, 72, 32,:

32, 134, 33, 166,

208, 174, 201, 88,

9.1, 201, 72, 240,

162, 6.1, 142,126.1,

6.1, .2, 208, 139,

.2, 201, 6.1, 240,

14, 161, 169, 163,

201, 0, 208, 6,

161, 72, 169, 4,

3, 160, 36, 201,

0, 162, 4, 160,

169, 4, 160, 255,

32, 189, 255, 32,

201, 255, 32, 31.1,

— start of main program

— under basic rom

166, 43,232,232,228

44,228, 46,208, 3

95,163,104,160, 0

data 201, 64,208, 11,230

1390 data

1400 data

1410

1420

1430

1440

data

data

115, 0,201, 0,240

153,203,163,200,192

196, 163,140,202,163

0,133, 75,240, 11

data 164, 157,196,163,202

data 202, 134, 32,165, 44

1450 data

1460

1470

1480

data

data

data

1490 data

141, 91,161,230, 30

162,169, 29,133,251

173,197,163,201, 58

161,169, 0,141,187

166, 2,240, 3, 76

1500 data 201, 143, 240, 10,201

1510 data

The Transactor

34,208, 18,162, 34

under

234,

160,

33,

120,

1,

0.2,

38.1,

255,

166,

51.1,

157,

240,

6,

.2,

136,

6,

133,

32,

32,

42,

76,

32,

192,

0.2,

, 45

, 76

,132

, 75

, 11

, 5

,152

,162

16

133

133

169

176

160

71

131,

142,

166,

0,

201,

165,

9,

104,

0.2,

108,

32,

•2,

16,

10,

208,

32,

16,

32,

26,

31.1,

195,

208,

140,

186,

255,

76,

208

20

75

132

153

208

240

11

247,

33,

2,

167,

8,

32,

162,

240,

160,

goto 330

70, 69,

132, 122,

58, 176,

1, 41,

1, 133,

32, 210,

169, 4,

2, 3,

38.1, 0.2,

104, 96,

178, 166,

160, 3,

160, 160,

115, 0,

245, 173,

31.1, .2,

32, 115,

.2, 76,

255, 104,

7, 32,

166, 162,

255, 169,

162, 4,

0, 160

9, 166

167, 32

230, 76

76, 32

197, 163

238,140

6,169

189, 9

166, 43

169, 0

141, 193

133,252

238, 91

4, 162

162, 0

6,201

160, 32

82

177

3

254

1

255

32

32

32

132

122

162

2

217

126.1

76

0

40

162

115

72

0

32

54

CL

NA

BP

HO

LH

EP

ID

GL

OH

NK

FF

GM

GH

AJ

KE

MK

IO

OM

AL

PN

GK

CD

MK

OL

BH

AA

HO

FB

DA

CE

AA

DB

PB

LI

LE

CJ

OD

KN

FA

CB

ON

OK

NF

BH

BC

GK

Al

IC

PF

Kl

NC

MB

PM

HB

KL

ML

Al

AH

HC

PH

EM

IJ

1520 data 4,162,201, 0,240,223,201, 0,208

1530 data 245, 240, 217, 174, 91,161,240, 40,201

1540 data 138,240, 20,201,137,240, 16,201,141

1550 data 240, 12,201,167,240, 8,162, 0,240

1560 data 189, 201, 44,208,180,141,187,160, 32

1570 data

1580 data

1590 data

4,162,201, 58,176,170,201, 48,144

166,176, 8,201, 65,144,165,201, 91

176,161,169,202,133, 25, 32, 75,161

1600 data 240, 37,166, 76,208,148,144, 5,141

1610 data

1620 data

1630 data

1640 data

1650 data

1660 data

1670 data

1680 data

1690 data

1700 data

1710 data

1720 data

1730 data

1740 data

1750 data

1760 data

193, 162, 176, 141, 169, 196, 133, 25, 32

145,161,144, 20,240, 18,169,202,133

25, 32,185,161,169, 29,133,251,169

167,133,252, 32,201,161, 76,123,160

169,164,141, 23,161,160, 0,185, 21

164,240, 11, 32,210,255,200,208,245

238, 23,161,208,240, 76, 20,167, 32

84,163,240, 27, 32, 8,163,240, 14

160, 0,177,253,133, 20,200,177,253

133, 21, 76, 23,167,169, 29,133,251

169,167,133,252, 76, 0,163,165, 32

133, 27,165, 33,133, 28,169, 1,133

29, 32, 4,162,162, 0,208, 24,201

91,176, 32,201, 65,176, 24,201, 36

240, 8,201, 37,240, 4,201, 40,208

4,230, 29,208, 12,201, 58,176, 8

1770 data 201, 48,144, 4,230, 29,208,213,165

1780 data

1790 data

1800 data

1810 data

1820 data

1830 data

1840 data

30,208, 11, 56,165, 32,233, 1,133

32,176, 2,198, 33,173, 91,161,240

5, 32,178,161,208, 29,160, 0,177

25,197, 29,144, 2,165, 29,170,240

10,177, 27,200,209, 25,208, 9,202

208,246,160, 0,165, 29,209, 25, 96

160, 0,165, 29,145, 25,170,177, 27

1850 data 200, 145, 25,202,208,248, 96, 32, 84

1860 data 163,240, 24,160, 0,177,251,197, 20

1870 data 208, 16,200,177,251,197, 21,208, 9

1880 data

1890 data

1900 data

1910 data

1920 data

1930 data

1940 data

1950 data

1960 data

1970 data

200,169, 1, 24,113,251,145,251, 96

24, 165,251,105, 3, 133,251, 165,252

105, 0,133,252,160, 0,165, 20,145

251,200,165, 21,145,251,200,169, 1

145,251, 96,169, 1,141, 35,162,165

30,240, 18,198, 30,160, 3, 177, 32

133, 20,200,177, 32,133, 21,169, 5

141, 35,162, 24,165, 32,105, 1,133

32,165, 33,105, 0,133, 33,160, 0

177, 32,240, 5,201, 32,240,206, 96

1980 data 200, 209, 32,240, 3,230, 30, 96,200

1990 data 209, 32,208,248,230, 2, 96, 32. 84

2000 data

2010 data

2020 data

2030 data

2040 data

2050 data

2060 data

163,240,116, 32,230,161,169, 13, 32

17, 167, 174, 202, 163, 160, 1,185, 202

163, 32, 17,167,200,202,208,246, 32

32, 163, 169, 32, 133, 253, 169, 167, 133

254, 160, 0, 177,253, 141, 174, 163,200

177, 253, 141, 175, 163, 200, 177, 253, 72

32,108,163,104,141,174,163,201 1

2070 data 240, 18,238,168,162,169, 47.157^176
2080 data

2090 data

2100 data

2110 data

2120 data

2130 data

163,232,169, 0,141,175,163,168, 32

120, 163,169, 32, 157, 176, 163, 232, 238

168,162,169, 0,201, 0,176, 10,169

13, 32, 17,167,160, 1, 32, 32,163

32, 51, 163, 32, 64, 163, 32, 8^ 163
208, 174, 169, 0, 240, 26, 174, 202,' 163

July 1987: Volume 8, Issue 01

Al

ML

NH

BN

AG

FK

AM

JK

LJ

BC

KP

CE

CM

FP

PO

EC

OG

10

DB

KE

BN

EF

OH

HF

LK

CO

CM

PK

DB

EM

GM

PM

DP

ON

PN

IG

FO

AO

IL

KA

CA

EE

BF

LC

NH

FG

FH

CJ

HE

LG

LH

BJ

OK

JK

DJ

00

PK

NP

CP

OM

CO

IA

2140 data 189, 202, 163,

2150 data

2160 data

2170 data

2180 data

2190 data

2200 data

2210 data

2220 data

162, 5,189,

16,247, 76,

198, 75, 32,

163,169, 1,

208,162,104,

167,133,254,

20,167, 24,

165,254,105,

2230 data 253, 208, 4,

2240 data

2250 data

2260 data

72,169, 32,

11,208,245,

160, 0,185,

2270 data 202, 208, 246,

2280 data

2290 data

2300 data

2310 data

2320 data

2330 data

2340 data

2350 data

2360 data

2370 data

208, 6, 32,

3,208, 13,

251,208, 4,

0, 185,208,

200, 208, 245,

153,175,163,

56, 173,174,

175, 163,249,

163, 104,141,

228,104,224,

2380 data 201, 48,240,

2390 data 200,192, 10,

2400 data

2410 data

2420 data

2430 data

2440 data

2450 data

2460 data

2470 data

2480 data

2490 data

2500 data

2510 data

2520 data

2530 data

2540 data

2550 data

2560 data

2570 data

2580 data

2590 data

2600 data

2610 data

2620 data

2630 data

2640 data

2650 data

2660 data

2670 data

2680 data

2690 data

2700 data

2710 data

2720 data

2730 data

2740 data

2750 data

The Transactor

48, 48, 48,

16, 39,232,

0, 78, 85,

77, 66, 69,

82, 47, 78,

80, 80, 69,

32, 76, 73,

66, 69, 82,

13, 18, 69,

84, 69, 88,

32, 32, 32,

90,147, 32,

32, 32, 32,

82, 69, 70,

80, 13, 13,

78, 32, 69,

32, 86, 65,

32, 85, 80

86, 69, 13,

83, 32, 76

82, 32, 65

82, 32, 66

13, 48, 45

13, 13, 18

32, 60, 67

80, 82, 73

76, 32, 82

67, 69, 83

69, 70, 42

34, 146, 32

83, 32, 65

69, 82, 69

79, 13, 89

73, 78, 84

88, 82, 69

67, 82, 62

157,196,

15, 164,

79,160,

95, 163,

141, 196,

104, 169,

160, 40,

165,253,

0,133,

165,252,

32, 17,

142,168,

176,163,

96, 32,

26,167,

76, 246,

169,167,

163,240,

160, 10,

136,208,

163,249,

187,163,

174,163,

0, 208,

4, 232,

208, 206,

48, 48,

3,100,

77, 66,

82, 13,

85, 77,

65, 82,

78, 69,

40, 83,

78, 68,

84, 13,

32, 5,

32, 32,

32, 32,

54, 52,

34, 88,

81, 85,

82, 73,

32, 84,

76, 69,

79, 78,

32, 78,

69, 84

54, 53

34,' 88

82, 62

78, 84

69, 70

46, 13

64, 32

58, 80

76, 76

78, 67

79, 85

69, 82

70, 64

34, 146

163,

157,

165,

169,

163,

29,

32,

105,

254,

197,

167,

162,

32,

26,

170,

162,

197,

248,

162,

248,

186,

144,

254,

7,

238,

96,

48,

0,

69,

13,

32,

83,

32,

41,

32,

13,

90,

32,

32,

32,

34,

65,

65,

79,

84,

71,

85,

87,

53,

82,

34,

83,

69,

18,

60,

82,

32,

69,

82,

46,

32,

32,

202, 16,247

202,163,202

75,240, 22

64, 141, 197

162, 2, 76

133,253,169

97,163, 76

3,133,253

165,251,197

254, 96, 138

232,200,192

104,170, 96

17,167,200

167,201, 80

240, 250, 201

169, 29,197

252, 96,160

32, 17,167

0,169, 48

142,153,163

163, 72,173

12,141,175

176,163,176

189,176,163

168,162,200

0, 0, 48

48, 48, 48

10, 0, 1

82, 78, 85

18, 86, 65

45, 32, 65

32, 79, 78

78, 85, 77

13, 0, 13

79, 70, 32

0, 1, 48

90, 90, 90

32, 32, 32

32, 18, 88

72, 69, 76

32, 67, 65

76, 32, 65

66, 76, 69

32, 70, 73

84, 69, 82

44, 32, 79

77, 66, 69

69, 69, 78

51, 53, 46

69, 70, 64

146, 32, 58

32, 65, 76

82, 69, 78

34, 88, 82

67, 82, 62

73, 78, 84

82, 69, 70

83, 32, 84

32, 80, 82

13, 18, 34

88, 32, 60

58, 80, 82

KP

KD

CA

NB

EC

AF

GE

BF

NG

KF

AH

LF

Bl

HG

II

KJ

OM

GL

AL

GP

CN

GO

LL

NC

JB

MB

HA

EB

AB

PA

HA

GG

CF

PE

Kl

DH

IG

OJ

Ml

JJ

DH

CB

HC

HJ

ID

JL

BO

FM

Dl

FP

OP

EK

IN

KC

IC

GG

OA

ON

MP

KP

MB

PI

55

2760 data

2770 data

2780 data

2790 data

2800 data

2810 data

2820 data

2830 data

2840 data

2850 data

2860 data

2870 data

2880 data

2890 data

2900 data

2910 data

2920 data

2930 data

2940 data

2950 data

2960 data

2970 data

2980 data

2990 data

3000 data

3010 data

3020 data

3030 data

3040 data

3050 data

3060 data

3070 data

3080 data

3090 data

3100 data

3110 data

3120 data

3130 data

3140 data

3150 data

3160 data

3170 data

3180 data

3190 data

3200 data

3210 data

3220 data

3230 data

3240 data

3250 data

3260 data

3270 data

3280 data

3290 data

3300 data

3310 data

3320 data

3330 data

3340 data

73,

82,

83,

88,

88,

60,

65,

79,

84,

84,

32,

80,

18,

32,

42,

73,

72,

32,

80,

76,

78,

88,

70,

58,

73,

84,

83,

32,

34,

46,

84,

69,

83,

83,

68,

32,

78,

83,

80,

67,

73,

0,

32,

32,

13,

32,

76,

32,

32,

79,

69,

82,

32,

56,

73,

65,

0.2,

160,

0,

3350 data 200,

3360 data

3370 data

76,

76,

78,

69,

44,

34,

82,

67,

77,

86,

72,

32,

84,

82,

34,

79,

32,

78,

69,

79,

82,

76,

67,

34,

32,

67,

86,

83,

73,

87,

32,

13,

72,

89,

69,

84,

32,

84,

85,

32,

44,

69,

83,

147,

32,

18,

13,

65,

69,

78,

32,

83,

78,

65,

32,

53,

68,

76,

134,

0.2,

185,

208,

46.1,

77.1,

84,

70,

13,

32,

69,

82,

69,

69,

69,

73,

79,

73,

88,

82,

88,

84,

13,

82,

73,

32,

69,

46,

60,

79,

69,

32,

67,

72,

65,

13,

69,

32,

32,

73,

65,

79,

69,

82,

32,

76,

84,

13,

32,

88,

32,

32,

32,

85,

32,

83,

67,

77,

18,

32,

32,

68,

55,

133,

103,

245,

0.2,

0.2,

83,

69,

70,

79,

70,

62,

32,

44,

13,

83,

32,

78,

82,

32,

34,

83,

83,

32,

78,

82,

83,

13,

67,

78,

76,

79,

32,

69,

80,

80,

32,

84,

84,

78,

78,

32,

46,

85,

84,

32,

73,

32,

32,

82,

32,

86,

38,

77,

32,

32,

69,

13,

40,

66,

65,

13,

132,

124,

166,

76,

76

0

32,

82,

82,

78,

42,

34,

65,

32,

79,

32,

89,

84,

69,

34,

146,

32,

67,

89,

84,

69,

13,

18,

82,

83,

89,

78,

76,

82,

80,

82,

34,

79,

72,

71,

89,

67,

13,

78,

79,

84,

78,

32,

32,

69,

32,

65,

32,

66,

32,

82,

32,

13,

67,

89,

82,

13,

56,

134,

240,

31.1,

57.1

65,

69,

79,

46,

64,

146,

83,

66,

85,

83,

79,

69,

70,

88,

32,

84,

82,

79,

69,

70,

84,

34,

62,

69,

32,

69,

73,

69,

69,

69,

80,

32,

69,

44,

32,

79,

80,

47,

32,

72,

71,

32,

32,

70,

32,

82,

76,

69,

32,

69,

80,

32,

41,

32,

67,

0,

169,

125,

9,

0.2,

0.2,

76,

78,

77,

13,

32,

32,

32,

85,

84,

69,

85,

82,

32,

82,

58,

79,

69,

85,

82,

69,

79,

88,

34,

67,

76,

13,

78,

32,

65,

83,

34,

80,

13,

32,

75,

78,

82,

83,

67,

69,

46,

32,

32,

54,

32,

73,

73,

82,

32,

70,

82,

32,

32,

68,

72,

162

76

132

32

76

76

76,

67,

32,

18,

88,

58,

65,

84,

80,

78,

82,

46,

88,

69,

80,

32,

69,

82,

32,

82,

32,

82,

146,

85,

73,

66,

69,

34,

82,

83,

32,

65,

76,

65,

69,

84,

69,

84,

65,

32,

13,

32,

32,

52,

32,

65,

78,

13,

67,

69,

79,

32,

49,

65,

73,

6.1,

162,

126,

17,

38.1

71.1

32

69

34

34

32

83

66

32

85

84

32

13

34

70

82

84

78

32

65

69

34

69

32

84

83

65

44

88

83

32

75

85

73

78

89

73

83

79

78

76

13

32

32

13

32

66

69

32

82

82

71

32

57

86

66

160

89.1

160

167

0.2

0.2

July 1987: Volume 8, Issue Ol

Beyond COMPARE David Lathrop

Fremont, California

Find the differences between two files of any kind -

BASIC, assembler, text, database records, or hexadecimal!

Utilities are usually pretty dull subjects. So a file compare program

probably will not generate a lot of excitement — until you need it.

When you do need one, you may discover that there are not many

of them available, and they do not handle inserted or deleted

records very well. Furthermore, if you compare BASIC or machine

language program files, these other compare programs show file

differences in binary or ASCII data as they are stored on disk, not as

BASIC statements or ML instructions.

COMPARE is a file comparison utility that does not suffer from these

shortcomings. It recognizes inserted and deleted lines and makes

adjustments before continuing with the comparison. If the files are

BASIC programs, COMPARE will list the program files as the LIST

command does (that is, the line numbers and tokens will be

interpreted). If the files are 6502 machine language programs, they

can be disassembled. If the files are text or data, they may be shown

as either ASCII text or hexadecimal data.

A simple BASIC program is shown in Figure 1. A modified version of

it is shown in Figure 2. Can you easily see the differences? A report

created by COMPARE is shown in Figure 3, and this report clearly

shows how the two programs differ.

A nice fringe benefit of COMPARE is the ability to list a file in a

variety of formats. To do this, the file is compared with "nothing".

All the differences between the file and "nothing" are reported, and

these differences represent the entire contents of the file. We'll

discuss how to do this shortly.

Program Preparation

First enter and save Program 1. This BASIC program, named

COMPARE, is the main program which loads ML routines and

prompts for information such as file names and report formats. It

then calls the ML routines to do the comparison.

Next enter, save and run Program 2. This BASIC program creates an

ML program named CMP.ML.6800. This ML program reads the

files, compares them, and reports the differences.

How to use COMPARE

After saving the BASIC and ML programs on disk, load and run

COMPARE. After loading the ML routines, COMPARE will prompt

you for the following:

1. The address of the drive you wish to use - this is usually 8 or 9.

2. The name of the OLD file - COMPARE assumes that one of the

two files pre-dates the other, so the earlier one is called the OLD

file. If you are in doubt about the file's name, you can list the

diskette directory by entering $ as the file name.

3. The name of the NEW file - For comparisons, this is the name of

the second file. But if you want to list the OLD file, enter an

asterisk (*) as the NEW file name.

4. The destination of the comparison report - Choose s for screen,

or p for printer.

5. The report format - If the OLD file is a program file, you may

choose a (ASCII text), b (BASIC list), d (disassembled 6502 list), or

x (hexadecimal data) formats.

If the OLD file is a sequential, user or relative file, you may choose a

(ASCII text) or x (hexadecimal data) format.

The choice of format tells COMPARE how to process the file's

records, and how to prepare the display of non-comparing records.

If you request either a BASIC or 6502 machine language report, that

is sufficient information for the compare to begin. However if you

request either ASCII text or hexadecimal data formats, you must tell

COMPARE what kind of records these files have.

Ifyou don't know what the internal structure ofthe file is, COMPARE

can help you by listing the files for inspection. Pick one of the files for

the OLD file name, specify * for the NEW file name, select report

format x for hexadecimal, choose f for fixed record length, and

specify a record length of 127 bytes. With a little investigation, you

should be able to determine how records are defined in the file.

COMPARE can work with fixed (f) or variable (v) length records. If

the record length is fixed, COMPARE will ask you what that length

is. But if the length is variable, COMPARE will ask how it can

determine the end of each record. Three possibilities are allowed:

1. The length of the record is contained in the data. For example,

suppose the first byte indicates how long the record is. In this case

you would choose option 1 and indicate that the position of the

length value is one.

2. The end of the record is marked by a special character. For

example, many text files terminate a line or paragraph with a

carriage return. In this case you would choose option c and

indicate that the decimal value of the special character is 13.

3. The end of the record is marked by special bits, the value of which

is called a mask. To use this option, you need to understand how

eight bit bytes can be expressed as decimal values from 0 to 255.

For example, many text files mark the end of a record by setting

the most significant bit. In this case you would choose option m

and indicate that the mask is 128.

For option c or m, you will be asked for a minimum record length.

This is because it is possible that the special character or mask may

appear in the first few bytes of a record. For example, a BASIC

program file has a minimum record length of four because a zero

marks the end of a statement, but a zero may also appear in the first

The Transactor 56 July 1987: Volume 8, Issue Ol

four bytes as either part of the line number or the line link. This

prompt allows you to tell COMPARE to ignore any occurrence of the

special character or mask at the start of a record. Specify zero if this

is not the case.

At the completion of this step, you will have described to COMPARE

the nature of the files to compare and the format of the comparison

report you wish to see. Now the comparison will start. Figure 3

shows an example of a comparison between two BASIC program

files. Figures 4 and 5 show a 6502 disassembly and a hexadecimal

list of another program. Report types a, d, and x show the ASCII

representation of data, but all Commodore graphics characters,

cursor movement and color characters are shown as periods.

When the comparison begins, a report heading is printed which

shows the names of the two files. Following the header, each

mismatch between files is grouped into blocks. The records in the

OLD file which do not compare are listed first followed by a dashed

line (). The corresponding part of the NEW file is then listed

followed by a line of equal signs (= = = = = = =). You will note that

the last line printed for both files in each block of mismatched

records (except possibly the very last block) are identical. This is the

point where COMPARE has determined that the files are the same,

has realigned them and continued the comparison. A count of the

mismatched blocks is shown at the end of the report.

While the comparison is taking place, you may press any of the

following keys:

CTRL slows the scrolling speed if the comparison report is dis

played on your monitor screen.

F3 terminates the comparison immediately.

F7 pauses the comparison. This is useful if the report is displayed

on the screen and you wish to study it before letting it scroll by.

Press any other key to resume.

Technical Notes

The BASIC and ML programs communicate with each other via

variables. Variables associated with the OLD file begin with an "o",

and variables associated with the NEW file begin with an "n". The

variables are defined before the ML program is called, and are used

as follows:

General variables

dn% -disk unit address (input to ML)

pn % - printer or screen address (to ML)

pc% - printer secondary address (to ML)

mm% - mis-match count (output from ML)

rc% - return code (from ML)

OLD file

oo$ - file name padded with shifted spaces (to ML)

ov$ - report format a,b,d,x (to ML)

ot$ - record type f,v,l,c,m (to ML)

oz$ - rec. length, length position, character or mask (to ML)

os$ - minimum record length (to ML)

of$ - 4K buffer RAM page nr (to ML)

ob% - file starting track & sector (to/from ML)

oy% - file type 1 = seq,2 = prg,3 = usr,4 = rel (from ML)

NEW file

nn$ - file name padded with shifted spaces

n?? - see OLD file variables above

The COMPARE ML program resides between $6800 and $8000, so

it should be able to co-exist peacefully with expansion cartridges

and most other ML programs. Page zero is used heavily, but it is

saved and subsequently restored before the ML ends. Two 4K file

buffers fit between $4000 and $6000, so the BASIC program lowers

MEMTOP accordingly (see line 10). If you wish to increase the RAM

available to BASIC, you can move the buffers up under BASIC ROM

between $A000 and $C000 by setting of$ = chr$(160):

nf$ = chr$(176).

The BASIC program may be modified to suit your tastes if you take

care to define the variables shown above before you SYS to any of

the ML routines. If you wish to make modifications, the following

will be of interest:

If pn%=3, a 40 column report is created to fit on the screen,

otherwise an 80 column report is produced. If you have an 80

column cartridge, you can show 80 columns on the screen by

opening a file to the screen such as pn% =5:open5,3,0.

You may also write a report to disk by opening a file such as

pn% =2:open2,8,2,"comp.report,s,w".

If you wish to display or compare files which do not have entries in

the diskette directory, you may do so by setting ob% and nb% equal

to the files' beginning track and sector. For example, to list a diskette

BAM and directory blocks, set nb% =0: ob% = 18*256 before the

sys26624.

Beyond Compare

As good as COMPARE is, it is not foolproof. If two files have a

number of identical records in them such as blank lines in a text file

or REM statements without any text in a BASIC program, COMPARE

can be fooled into thinking it has found a point where two dissimilar

files are the same and a block of non-comparing records may be

printed prematurely. This is usually not a serious problem, but if

these "trivial" records disrupt the comparison, you may wish to

make copies of the two files with these records deleted.

All of the records for each file which do not compare are held in

RAM until they are printed. If there is a large block of records in

either file which does not correspond to any records in the other file,

COMPARE may run out of space to hold the records. When this

happens, a warning message will be printed, all records currently in

memory will be printed and the comparison will continue from that

point. This event may cause COMPARE to subsequently report

differences between the files when in fact they do not exist.

After you have used COMPARE, you may find it very valuable as a

file listing utility. You can use it to examine database files and see

how they are structured. It is very helpful in listing BASIC programs

with REM statements which confuse the LIST command. Machine

TheTr ctor
57 July 1987: Volume 8, Issue

language programs may be disassembled and listed directly from

disk. But COMPARE's main function is to compare two files. When

you need to do that, there is little else around that works as well. In

those situations, this little utility is beyond compare.

Figure 1: UNNEW.BASIC Program File Listing

100 poke53281,0:print" ..sys525"

110 i = 525

120 reada:ifa = 256then 130

130 pokei,a:i = i + 1:goto120

140 poke43,525 and 255:poke44,2

150 poke45,578 and 255:poke46,2

160 print". ":save"0:unnew",8

170 rem for tape use save" unnew ",1,1

180 data 160, 3,200,177, 43,208,251

152,160, 0

44,200,145, 43

0,132, 59,162

230

190 data 200, 200

200 data 165,

210 data 160,

220 data 208,

230 data 245, 232, 224,

240 data 208, 2, 230,

250 data 60, 132, 46,

145, 43

133, 60

0,200

59,208

3, 208, 242, 200

60,132, 45,164

96,256

60, 177,

Figure 2: UNNEW.BASIC2 Program File Listing

110 i = 525

120 reada:ifa - 256then130

130 pokei,a:i = i + 1:goto120

140 poke43,525 and 255:poke44,2

150 poke45,578 and 255:poke46,2

160 print". ":save"0:unnew" ,8

170 data 160, 3,200,177, 43,208,215

180 data 200, 200, 152, 160, 0,145, 43

190 data 165, 44,200,145, 43,133,60

200 data 160, 0,132, 59,162, 0,200

210 data 208, 2,230, 60,177, 59,208

220 data 245, 232, 224,

230 data 208, 2, 230,

240 data 60, 132, 46,

3, 208, 242, 200

60,132, 45,164

96,256

Figure 3: BASIC Program Files Comparison Report

* File Comparison Utility V3.4 *

OLD Name: unnew.basic

NEW Name: unnew.basic2

100 poke53281,0:print"..sys525'

110 i = 525

110 i = 525

170 rem for tape use save" unnew ",1,1

180 data 160, 3,200,177, 43,208,251

190 data 200, 200, 152, 160, 0,145, 43

170data160, 3,200,177, 43,208,215

180 data 200, 200, 152, 160, 0,145, 43

Compare finished. 2 mismatches found.

Transactor

Figure 4: Machine Language Program Disassembly

(Editor's Note: COMPARE prints a character representation of the

bytes in the column down the right. Some of the characters are

graphics that we can't typeset. However, they aren't critical for the

example reports, so we've replaced them with a §)

**

* File Comparison Utility V3.4 *

OLD Name:

NEW Name:

020d-

020f-

0210-

0212-

0214-

0215-

0216-

0217-

0219-

021b-

021d-

021e-

0220-

0222-

0224-

0226-

0228-

0229-

022b-

022d-

022f-

0231-

0232-

0234-

0236-

0237-

0239-

023b-

023d-

023f-

0241-

aO

c8

t>1

d0

c8

c8

98

aO

91

a5

c8

91

85

aO

84

a2

c8

dO

e6

b1

dO

b8

eO

dO

c8

dO

e6

84

a4

84

60

unnew

*

03

2b

fb

00

2b

2c

2b

3c

00

3 b

00

02

3c

3b

f5

03

f2

02

3c

2d

3c

2e

Idy

iny

Ida

bne

iny

iny

tya

Idy

sta

Ida

iny

sta

sta

Idy

sty

Idx

iny

bne

inc

Ida

bne

inx

cpx

bne

iny

bne

inc

sty

Idy

sty

rts

#$03

($2b),y

$020f

#$00

($2b),y

$2c

($2b),y

$3c

#$00

$3b

#$00

$022d

$3c

($3b),y

$0226

#$03

$0228

$023b

$3c

$2d

$3c

$2e

<. .>

<H>

<§+>
<P§>

<H>

<H>

<.>

<. .>

< . +>

<§,>
<H>

<. +>

<.<>

<. .>

<• ;>

<§■>
<H>

<P.>

<§<>

<§;>
<p§>

<§>
< .>

<p§>

<H>

<P.>

<§<>
< . ->

<§■&

< . .>

< >

Figure 5: Hexadecimal Listing

I"**

* File Comparison Utility V3.4 *
f***,.*,,,,.!,

OLD Name: unnew

NEW Name: *

0000 0d02 aOO3 c8b1 2bdO <. . . .H§+P>

fbc8 c898 aOOO 912b <§HH. . . . +>

a52c c891 2b85 3caO <§,H.+.<.>

0084 3ba2 00c8 d002 < . . ; § . HP . >

0020 e63c b13b dOf5 e8eO <§<§ ; P§ § >

03d0 f2c8 d002 e63c < . P§HP . §

842d a43c 842e 60 <.-§<.. >

58
July 1987: Volume 8, Issue 01

CN

Gl

DL

IC

10

10

EL

OG

HK

BK

EB

PG

Gl

FD

JH

JA

DP

HA

Ml

PB

PC

OP

DL

LL

MN

KK

JF

BK

LK

PB

IH

KF

FJ

GN

EL

KM

FM

DN

JC

AC

EG

KE

AP

HL

DA

JJ

Jl

KL

BN

COMPARE: BASIC Portion

10 poke56,64:clr:co = 06:cr = 02:cb = 1 :poke646,co

:poke53280,cr:poke53281 ,cb

20 if peek(26636) = 51 and peek(26638) = 52

thenlOO

30 gosub940:print "BJSTANDBY " Loading
ML Subroutines.

40 dn% = peek(186):load" cmp.ml.6800" ,dn%,1

100 hd$ = " * File Comparison Utility V3.4 *"

110 bx$= "[34*'s]"

120 rem of$ = chr$(160):nf$ = chr$(176)

130 mm% = O:rc% = O:cr$ = chr$(13):ze$ = chr$(O)

:fori = 1 to16:sp$ = sp$ + chr$(160):next

140 ov$ = " " :ot$ = " " :oz$ = " " :os$ = " "

:ob°/o = 0:oy% = 0

150 nv$ = " " :nt$ = " " :nz$ = " " :ns$ = " "

:nb°/o = O:ny°/o = O

160:

170gosub940

180 dn°/o = O:input" Disk unit nr (8-11)" ;dn%

:if dn% = 0 then end

190 if dn%<8 or dn%>11 then print" Unit

nr must be 8-11 ":goto180

200 gosub940:ol$ = " " :input" OLD file name

or||$|3";ol$
210 if ol$ = " $" then gosub970:goto200

220 if ol$= " " then170

230 nu$ = " " :input" NEW file name or Q * Q" ;nu$
240ifnu$= "$" then gosub970:gosub940:goto200

250 if nu$= " " then200

260pd$= " ":input"ReporttoDs|3creen
or BJ p0rinter";pd$

270 if pd$= " " then230

280 if pd$ = "s" then pn°/o = 3:pc°/o = 0:goto310

290 if pd$ = "p" thenpn°/o = 4:pc°/o = 7:goto310

300 goto260

310:

320 :rem— get file type, trk, sector

330 oo$ = left$(ol$ + sp$, 16)

340 nn$ = left$(nu$ + sp$, 16)

350sys26627:if nu$= "*" then ny°/o = 1:nb°/o = O

360ifrc°/o<128then400

370 if rc%<255 then a$ = " failed." :goto390

380 a$= "cancelled."

390 print" Directory search " ;a$:goto440

400 if oy%<>0 and ny%<>0 then480

410 if oy% = 0 then print" OLD file not found."

420 if ny% = 0 then print" NEW file not found."

430 print" Enter Q GSt0 list tne disk directory."
440 print" Press any key to continue"

450geta$:ifa$= " " then450

460 goto200

470:

480 :rem— get report and record type

490 os$ = ze$:print" Choose HaEJscii";
500 if oy% = 2 then print" ,Q b|3asic,

Q d 0isassembly" ■
510 ov$ = " " :input" .heflxQ" ;ov$
520 if ov$ = " a" or ov$ = " x" then580

530 if oy% = 2 and ov$ = " b" then ot$ = " c"

:oz$ = chr$(0):goto820

540 if oy% = 2 and ov$ = " d" then ot$ = " f"

AF

CP

PF

JE

FL

LA

FK

NC

NK

OH

IE

AN

LE

EJ

CF

GF

IA

Ml

GK

KC

LG

CL

OE

FP

IN

DH

HK

CH

GC

ML

BD

BE

PA

OL

GH

EM

CJ

MA

ML

LK

KC

LO

LA

IE

JL

KC

LK

EN

PE

BN

Dl

AE

:oz$ = chr$(1):goto820

The Transactor 59

550 if ov$ = " " then goto820

560 goto490

570 :rem— record specification

580 ot$ = " " :input" Is record length Q f UJixed
or Q v QJariable" ;ot$

590 if ot$ = "f" then630

600 if ot$ = " v" then660

610 if ot$= " " then490

620 goto580

630 x = 0:input" Specify record length (1 -255)" ;x

:ifx<1 or x>255 then580

640 oz$ = chr$(x):goto820

650 :rem— variable In record

660 print" Choose end of record indicator. . .'

670 ot$ = " " :input" Q cQharacter, QI Qength,
ornm0ask";ot$

680 if ot$ = " c" then a$ - " character" :goto730

690 if ot$ = " m " then a$ = " mask" :goto730

700 if ot$ = " " then790

710 if ot$= " " then580

720 goto660

730 x$ = " " :print" Enter value of " ;a$;" (0-255)";

.input x$:ifx$ = " " then660

740 x = val(x$):if x<0 or x>255 then730

750oz$ = chr$(x)

760 x$ = " " :input " Enter minimum record length

(0-255) ";x$:ifx$= " " then730

770 x = val(x$):if x<0 or x>255 then760

780 os$ = chr$(x):goto820

790 x$= " ".input "Specify the location (1 -255) ";x$

:if x$ = " " then760

800 x = val(x$):if x<1 or x>255 then790

810oz$ = chr$(x)

820 if ov$ = " " then260

830 nv$ = ov$:nt$ = ot$:nz$ = oz$:ns$ = os$

840:

850 :rem— produce comparison report

860 a$ = chr$(147):b$= " [3 spcs]" :if pn%<>3

thena$ = chr$(12):b$= "[16 spcs]"

870 open pn°/o,pn%,pc%

880print#pn%,a$;b$;bx$;cr$;b$;hd$;cr$;b$;bx$;cr$

890 print#pn%,b$;" OLD Name: " ;ol$

900 print#pn%,b$;" NEW Name: " ;nu$;cr$

910 sys26624:gosub990:goto200

920:

930 :— display screen header

940 print" gj" chr$(14)tab(3)hd$crcr:return
950:

960 :— list directory

970 pn°/o = 3:nu$= " *" :open pn%,pn%,pc%

:sys26630

980:

990 a$ = " Compare " :if nu$ = " *" then

a$ = " Listing

1000b$= "finished. ":ifrc%>99 then b$ = "failed."

.if rc% = 255 then b$ = "cancelled."

1010 if nu$<>" *" then b$ = b$ + str$(mm%)

+ " mismatches."

1020 print#pn%,crcrab:print#pn°/o:close pn%

1030ifpn%O3then1060

1040 print" Press any key to continue."

1050 get a$:if a$ = " " or a$ = chr$(136) theni050

1060 return

July 1987: Volume 8, Issue Ol

BH

EM

JG

CO

NH

GJ

EF

LG

NM

FA

PD

MC

FM

OC

OC

GF

MK

JP

KN

NG

NC

Cl

Gl

JB

JA

HN

Al

AG

KG

EH

OH

II

CJ

MJ

GK

AL

KL

EM

OM

IN

CO

MO

GP

AA

KA

EB

MD

DM

PF

DM

JM

KM

GG

HF

AJ

FA

GM

FF

JN

PM

LB

FD

COMPARE: Creates Machine Language file

10 rem* data loader for "compare" *

20 for i = 26624 to 31790: read a

30 cs = cs + a: next i

40 if cs<>523626 then print" !data error!": end

50 open 1,8,1, "cmp.ml.6800,p,w"

55print#1,chr$(0)chr$(104);

60 restore

70 for i = 1 to 5167

80 read a: print#1 ,chr$(a);: next i

90 close 1: print" ok, ml file has been

written.": end

100:

1000 data 76, 38,105, 76, 21,106,

1010 data 107, 99,109,112, 51, 46,

1020 data 151, 108, 76,194,109, 76,

1030 data 76, 79,110, 76,111,110,

1040 data 110, 76,230,110, 76, 11,

1050 data 245,112, 76, 48,113, 76,

1060 data 76,101,114, 76,110,115,

1070 data 116, 76,218,117, 76,246,

1080 data 61,118, 76,128,118, 76,

50,119, 76, 86,119,

76, 129, 119,

120, 0,

85,

84,

1090 data 76,

1100 data 119,

1110 data 26,

1120 data 3,

1130 data 84,

1140 data 108,

1150 data 46,

1160 data 107,

0,

58,

83,

1170 data 0,

1180 data 0,

1190 data 0,

1200 data 0,

1210 data 0,

1220 data 0,

1230 data 0,

1240 data 0,

1250 data 0,

1260 data 0,

1270 data 0,

1280 data 0,

1290 data 0,

1300 data 0,

1310 data 0,

1320 data 0,

1330 data 0,

1340 data 0,

1350 data 0,

1360 data 0,

1370 data 104, 169, 124

1380 data 78, 173

1390 data 104, 32

1400 data 41, 166

1410 data 79,181

1420 data 60, 104,240,

1430 data 208, 220, 165,

1440 data 208, 212, 32,

1450 data 208, 204, 166,

1460 data 181, 9,133,

1470 data 253, 208,

1480 data 17,240,

1490 data 255, 162,

50,

0,

0,

0,

0,

o,

o,

0,

0,

0,

0,

0,

o,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

o,

o,

0,

0,

0,

o,

o,

0,

o,

0,

0,

0,

0,

0,

0,

0,

0,

0,

76, 165,

0, 8,

55, 44,

83, 0,

97, 109, 101,

46, 46, 46,

0,

0,

o,

o,

o,

o,

0,

0,

0,

0,

0,

0,

o,

0,

o,

0,

0,

0,

0,

0,

49,

44,

101, 110,

46, 46,

64,

0,

0,

0,

0,

0,

0,

o,

0,

0,

o,

0,

0,

0,

0,

0,

0,

0,

0,

o,

0,

133, 79,169,

90,104,208, 52,

27,104,173, 90,

78,181, 0,240,

240,

80,

0,

0,

o,

o,

0,

0,

0,

0,

o,

0,

o,

0,

0,

0,

0,

0,

0,

0,

0,

0, 0,

0, 13,208,

14,166, 79,

78,134, 78,

42,104, 32,

79,181, 8,

81,173, 90,

40,162,124,181,

25,174, 96,104,

0, 189, 170, 105,

1500 data 157,194, 104, 232, 208, 245,

1510 data 104, 32,204,255,169, 0,

76, 92

52, 76

19,110

76, 151

112, 76

83,114

76, 209

117, 76

252, 118

76,103

119, 76

15, 7

48, 44

102,105

46, 46

119,114

15, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

0,

0,

0,

0,

32, 15

94,133

32, 30

104,208

8, 166

27, 32

181, 0

133, 79

66, 104

133, 80

104,201

16, 21

32, 201

240, 6

32, 57

141, 90

CP

IF

JJ

FL

CM

CJ

EJ

NM

FL

MM

PM

KO

CO

EA

HJ

EA

JH

DM

CL

OB

BM

HF

JP

NC

CM

EN

KP

AB

CE

KD

Bl

OM

EJ

CH

OJ

KA

FE

ED

PF

Fl

LM

AJ

CN

FD

FM

ME

GO

DP

PO

KA

GP

NP

LO

AP

NC

OD

KH

AO

CJ

AL

FE

LH

LM

BJ

MK

EL

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

data 104, 240

data 104, 96

data 65, 84

69,

86,

68,

46,

32,

83,

69,

68,

69,

73,

76,

85,

67

69.

32.

13.

67.

32

32.

32

32

83

32

69

90

32

251

data

data

data

data

data

data

data

data

data

data

data

data

data 173

data 207

data 177

data 125,162

data 176, 89

data 133,127

data 169,194

data 251,133

data 78,169

data 160, 3

data 251,133

data 21,104

data 165, 252

data 145, 251

data 10,165

data 135, 144

data 173, 90

data 162, 94

data 169, 1

data 169, 70

data 169, 255

data 136,148

data 32, 30

23

36

32

32

32,

13,

72,

82,

70,

85,

85,

78,

73,

82,

78,

79,

78,

79,

13,

191,

13,

67,

79,

82,

66,

98,

79,

87,

80,

65,

67,

79,

67,

46,

104,208,

21, 104,

133, 124,

207,169,

165,251,

169, 0,

32, 21,

128, 165,

206, 32,

177,251,

131, 162,

176, 31,

133,133,

169, 194,

251, 133,

5,169,

104,208,

134, 78,

149, 17,

149,

149,

42, 104,

109, 73,

69, 68,

68,

76,

70,

70,

84,

76,

73,

68,

77,

32,

78,

0,

83,

79,

70,

70,

69,

76,

78,

13,

80,

87,

84,

32,

18

77

82

79

69

82

82

84

66

69

72

82

76

78

data

data

data

data

data 181

data 169

data 32

data 41

data 28

data 208

data 145

data 173

data 132

data 209

data 3

data 134

data 144

data 141, 90

data 90, 104

32,204

18

65

30

36

78

181.

104.

27.

18.

11.

104.

69

127

160

19

126

157

208

130

138

136

9

2,

14,

8, 180,

104, 166,

41,

36,

data

data

data

data

data

data

data 173,

data 160,

data 136,

149

149

149,

104.

169.

90

17,

16.

5,

32,

104, 173,

104, 96,

133,252,

133,254,

104, 173,

170,160,

15, 185,

136, 16,

173, 158,

104, 145,

31, 160,

208, 31,

145, 132,

173,157,

177, 126,

104, 96,

240, 4,

255,162,

16,169,

1,169,

3, 169,

173, 90,

142, 149,

104,208,

185,156,

247, 173,

123, 162,

176, 109,

200, 177,

217, 32,

133, 126,

160, 3,

104, 176,

252,133,

21, 104,

133, 130,

206, 169,

165,251,

169, 0,

32, 21,

134, 165,

254, 141,

75, 32,

169, 18,

169, 65,

169, 30,

166, 78,

11, 136,

78,181,

7, 240,

104, 32,

90, 104,

181, 10,

169,153,

162, 33,

156,104,

3, 177,

159, 104,

246, 160,

104, 145,

128,160,

15, 185,

136, 16,

173,158,

104, 145,

240, 5,

32, 15,

32, 18,

94, 134,

0, 149,

70,149,

255, 149,

104,208,

14, 32,

110, 32,

104,153,

174,104,

32,

83,

32,

32,

87,

69,

69,

78,

32,

84,

84,

65,

73,

73,

15, 104

79, 169

160, 3

251,133

21,104

165,252

145,251

68, 165

129,162

176, 51

200, 177

217, 32

133, 132

160, 3

104, 176

252,133

90, 104

204,255

16

1

3

10

9

149,

149,

149,

180,

148,

0,208

6, 32

236, 106

240,212

133,251

133,253

160, 0

16, 83

126,208

209,124

3,138

128, 136

3,177

159, 104

246,160

104, 145

134, 24

169, 1

104, 173

104, 96

78,169

17, 169

2, 169

14, 32

124, 166

30, 104

105,108

204, 104

141,224

The Transactor 6O July 1987: Volume 8, Issue 01

IJ

NJ

AL

MM

NP

PM

LM

HN

AO

KO

LM

NN

DH

LA

DB

DH

LF

GF

EF

PM

EJ

LJ

IJ

IA

KM

EH

OH

NP

GH

Gl

MB

CP

EJ

CP

AN

GA

FO

EC

KC

OE

IF

AN

DF

DN

KL

GJ

CE

PI

OP

LJ

Gl

LF

NO

PL

PK

CM

IM

PM

LM

OC

LL

MD

II

LI

EC

OH

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

data 104, 173

data 13,141

data 147, 174

data 169, 12

data 162, 39

data 0,149

data 78,180

data 136, 148

data 181, 0

data 240, 6

data 32, 15

data 104, 16

data 105, 108

data 127, 10

data 185, 131

data 16,246

data 199, 104,

data 170, 173,

data 5,185,

data 16,247,

data 226, 104,

data 232, 104,

data 32,201,

data 96, 166,

data 11,133,

data 104, 133,

data 69,104,

69, 81,

83, 82,

0, 141,

90, 104,

32,

23

36

32

32

data

data

data

data

data 169

data 16

data 104

data 96

data 104

data 93

data 133

data 133

data 104

data

data

250,

176,

104,

176,

104,

252,

254,

173,

94, 104,

58, 160,

data 255, 32,

data 104, 174,

data 186, 255,

data 32, 189,

data 104, 208,

data 162, 79,

data 124, 173,

data 109, 96,

data 169, 198,

data 3,173,

data 109, 134,

data 104, 153,

data 104, 153,

data 104, 153,

data 104, 153,

data 104, 153,

data 169, 194,

data 2,177,

data 149, 17,

data 149,

data 149,

data 213,

data 208,

data 5,

175, 104

231,104

96, 104

141,194

32, 57

5, 169

10, 136

9, 32

208,

32,

108,

212,

173, 156,

10, 105,

108,157,

162, 15,

202, 16,

184, 104,

87, 0,

160, 3,

136, 16,

32, 204,

255, 162,

78, 181,

252,169,

254, 160,

96, 66,

32, 80,

32, 82,

91, 104,

141, 26,

162, 99,

162,208,

7, 160,

162, 196,

7, 160,

169, 124,

169, 135,

162, 18,

94, 104,

32, 186,

109, 32,

39,104,

93, 104,

169,

255,

22, 160,

32, 61,

133, 104,

73, 48,

32, 24,

126,104,

104,153,

9, 0,

1,

32,

6,

12,

1,

12,

32,

1,

2,

3,

4,

32,

251,

169,

149,

0,

0,

0,

0,

21,

149,

0,

7,

141,225,

141,232,

224, 3,

104, 32,

104, 166,

255, 149,

148, 8,

30, 104,

181, 5,

104, 32,

27, 104,

18, 104,

104, 16,

3, 168,

216, 104,

189,159,

247,173,

32, 84,

153,219,

185, 131,

247, 169,

255, 174,

39, 32,

10, 133,

153, 133,

0, 162,

76, 75,

82, 71,

69, 76,

141, 92,

208, 141,

157, 194,

169,206,

3, 177,

169,206,

3, 177,

133,251,

133,253,

160, 0,

174, 93,

255, 169,

189,255,

208, 51,

172, 95,

162, 60,

192,255,

94,173,

109,208,

162, 78,

35,141,

104,201,

24, 153,

13, 0,

169,214,

169,212,

169,218,

169,211,

138, 9,

104, 152,

16,200,

169,255,

240, 6,

134, 78,

36,104,

149,

149,

149,

169,

32,

149,

0,

15,

8,

68,

36,

6,

104,169

104, 169

240, 2

201,255

78,169

14, 166

180, 11

166, 78

41, 7

36,104

173, 90

96, 32

81, 41

162, 3

136,202

104,157

185, 104

104, 160

104, 136

108, 153

13,141

96,104

57, 104

251,181

253,169

33, 32

83, 83

32, 85

32,169

104, 141

13,221

104,202

32, 21

251,141

32, 21

251, 141

169, 0

169,104

32, 69

104,172

2,162

32, 192

173, 95

104, 32

160,109

32, 39

131,104

10, 160

32, 61

126, 104

0,208

11, 0

237,134

32, 24

32, 24

32, 24

32, 24

128, 170

170,160

177,251

149, 5

149, 10

169, 66

213, 1

104, 149

173, 90

Ml

BO

BE

HG

KG

LG

AL

GH

Nl

FF

HE

CK

EF

CD

AK

GF

JP

OD

KO

EC

PA

BC

DL

HL

LK

PM

GG

NJ

IF

HD

CL

NE

DN

JO

NK

MD

KN

KL

FK

FL

AM

PD

CD

DM

BG

MD

DC

IM

EF

LC

IM

OB

EE

PC

LD

AF

LD

OF

NP

GK

JO

AM

IL

PI

NB

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

data 104:

data 32,

data 255,

data 176,

data 251,

data 210,

data 160,

data 124,

data 135,

data 18,

data 133,

data 72,

data 252,

data 47,

data 8,

data 136,

data 230,

data 104,

data 21,

data 160,

data 251,

data 160,

data 198,

data 119,

data 136,

data 234,

data 169,

data 33,

data 68,

data 8,

data 5,

data 200,

data 133,

data 181,

data 229,

data 208,

data 169,

data 185,

data 133,

1,

32,

0,

o,

96,

data

data

data

data

data

data 169,

data 182,

data 240,

data 5,

data 0,

data 68,

data 176,

data 104,

data 251,

data 36,

data 208,

data 2,

data 3,

data 200,

data 126,

data 78,

data 141,

data 70,

data 36,

data 236,

data 4,

data 28,

96, 32

195,255.

162,205.

13, 160,

136, 173,

169, 195,

3, 173,

133,253,

133,251,

160, 0,

198, 96,

160, 0,

133,251,

240, 25,

165, 88,

24, 165,

252, 208,

168, 166,

104,169,

2, 177,

133,253,

0, 177,

240, 35,

2, 72,

208, 18,

72, 169,

255, 141,

104, 166,

181, 7,

165,254,

145,253,

181, 7,

253,169,

12,229,

254, 133,

11, 165,

253, 141,

8, 0,

254, 162,

224, 66,

36,104,

32, 36,

0, 240,

185, 7,

1, 208,

2, 224,

2,105,

0, 153,

121, 6,

208, 39,

69, 160,

162, 0,

162, 1,

104,176,

241, 182,

224, 76,

32, 36,

232, 236,

104, 141,

150, 7,

90, 104,

208, 20,

104,176,

126, 104,

0, 141,

160, 3,

204,255, 173,

173, 94,104,

169,205, 32,

3,173, 91,

92, 104, 145,

32, 21,104,

90, 104, 145,

169, 0,133,

169, 104, 133,

32, 69,104,

134, 87,133,

165, 45,166,

228, 48,208,

165, 87,209,

200,209,251,

251,105, 7,

221, 56,176,

87, 165, 88,

0,176, 24,

251,240, 14,

200, 177,251,

253, 164, 87,

169, 0,133,

201,134,240,

104,205, 119,

0, 133, 198,

90, 104, 104,

78,173, 90,

240, 64,165,

149, 9,160,

200,181, 6,

145,253, 56,

0, 101,254,

253, 133,253,

254,144, 10,

253,201, 85,

90,104, 96,

133,253,185,

253, 32, 63,

208, 28, 32,

32, 36, 104,

104,153

94,162

0,224

18,224

67, 208

0, 182

5, 0,144,

0,153, 6,

162, 0, 32,

3,145,253,

161,251, 41,

228, 251, 240,

43,200,145,

3, 142, 126,

208, 42,162,

104,176, 17,

126, 104,208,

126,104, 16,

96,164, 78,

153, 0, 0,

160, 3,162,

227, 145,253,

144,242,176,

127, 104,224,

162, 0, 32,

6,

0,

65.

88,

6,

1,

95, 104

32,195

21, 104

104, 145

251,162

176, 7

251, 169

254,169

252, 162

169, 0

88,152

46, 134

4, 197

251, 208

240, 15

144,225

1, 24

96, 32

132, 87

200, 177

133,254

96,165,

198, 173

17,201

2,208

240, 243

96, 32

104, 48

253, 149

0, 181

145,253

101,253

133,254

181, 13

201,

176,

164,

9,

104, 182

36,104

153, 5

0, 185

240, 127

208, 4

208, 14

201, 0

24, 121

8,169

0,224

36,104

32, 72

3, 133

48, 32

253, 232

104, 182

0, 160

145,253

242, 205

24, 164

169,254

96, 224

0, 32

200, 232

216, 185

67, 208

36, 104

0

5

78

0

The Transactor 61 July 1987: Volume 8, Issue Ol

JN

EJ

LM

JO

DP

LD

IM

PB

CK

LF

LD

HB

BF

AH

BL

NE

DE

AH

KM

KG

LG

EK

OJ

FN

JN

FO

AA

DB

JO

HB

CL

DB

HD

MB

EJ

LL

Ml

CL

HH

BD

FK

HM

AG

GE

Gl

KK

JM

PJ

CD

PG

AG

DF

EK

KB

NP

IL

BJ

NJ

BA

KD

PK

II

MM

ND

IF

JM

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

3740

3750

3760

3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3940

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

data 176,

data 144,

data 208,

data 179,

data 176,

data 144,

data 240,

data 232,

data 78,

data 14,

data 16,

data 41,

data 133,

data 88,

data 133,

data 14,

data 0,

data 96,

data 104,

data 32,

data 104,

data 255,

data 0,

data 255,

data 39,

data 198,

data 16,

data 165,

data 208,

data 254,

data 202,

data 133,

data 87,

data 32,

data 196,

data 153,

data 0,

data 208,

data 160,

data 200,

data 32,

data 104,

data 100,

data 6,

data 166,

data 82,

data 166,

data 181,

data 197,

data 3,

data 201,

data 32,

data 17,

data 32,

data 113,

data 21,

data 6,

data 169,

data 141,

data 96,

data 113,

data 79,

data 32,

data 105,

data 208,

data 166,

197,

5,

235,

160,

165,

8,

6,

208,

56,

0,

0,

24,

87,

32,

87,

24,

56,

32,

104,

81,

141,

174,

185,

200,

104,

255,

0,

255,

54,

217,

150,

89,

160,

183,

87,

0,

240,

53,

0,

201,

204,

201,

136,

174,

78,

181,

79,

11,
83,

238,

255,

216,

240,

181,

32,

17,

32,

113,

194,

32,

32,

157,

141,

162,

2,

78,

145,

205,

202,

3,

145,

45,

232,

140,

185,

217,

240,

185,

185,

75,

32,

144,

104,

81,

141,

104,

108,

94,

97,

208,

208,

104,

32,

153,

169,

16,

15,

185,

0,

255,

208,

0,

1,

174,

32,

13,

255,

48,

153,

193,

56,

11,

181,

229,

240,

92,

166,

113,

39,

113,

230,

240,

181,

32,

104,

158,

158,

194,

194,

81,

162,

181,

253, 200,

126,104,

208, 178,

162, 0,

253, 200,

126, 104,

208, 232,

138, 72,

0,

15,

40,

12,

13,

0,

o,

32,

0,

0,

104, 162,

75, 104,

6, 169,

168, 104,

104, 32,

105, 104,

32, 78,

104, 152,

104, 32,

104,240,

245, 32,

80, 174,

168, 32,

183,255,

17, 0,

0, 153,

0, 208,

152, 72,

13, 0,

32, 165,

41, 191,

239,170,

32,171,

56, 96,

94, 104,

165,255,

208, 245,

173, 194,

208, 12,

194, 104,

104, 32,

181, 10,

245, 9,

10,229,

81, 144,

73, 238,

104, 174,

78, 224,

162, 124,

173, 90,

32, 230,

113, 162,

14, 173,

113, 32,

204, 255,

162, 1,

113,169,

113, 96,

104,202,

104, 169,

173, 96,

40, 32,

8,133,

236,127, 104

240,184,232

224, 77,208

32, 36,104

236,127,104

205,126,104

202,208, 143

152, 72,164

208, 59,185

144, 10,185

89,112, 176

121, 14, 0

105, 0, 133

0,161, 87

152,170,246

1,153, 0

170,165, 87

78,104, 142

185, 17, 0

104,142,107

72, 32,204

201,255, 160

6, 32,168

174,255, 32

95,104, 32

165,255,153

208, 65, 32

32,183,255

14, 0,162

3,182, 17

185, 12, 0

133, 90,134

255,145, 89

208, 5,200

104,168,138

255,185, 0

32,183,255

32,198,255

153,194,104

140,193, 104

104, 13,195

169, 32,160

208, 250, 240

57,104, 96

245, 8,133

144, 21, 56

80,133, 83

6,165, 82

91, 104,208

96,104, 32

94,208, 25

181, 16, 21

104, 48, 31

113, 76,151

124,181, 16

90,104, 48

216,113, 32

96,169, 13

32, 57,104

61, 32, 183

169, 45,162

208,250, 169

13,141, 18

104,201, 3

57,104, 96

85,181, 9

CH

P!

Al

IF

BG

DM

LA

Fl

GO

Ml

HJ

Kl

JL

BN

JB

CM

LN

ON

AA

BA

AC

IH

FP

LF

CA

LI

JC

HH

KL

AD

PD

NK

LO

EL

LH

LL

PO

KK

DO

CL

EM

PD

DP

AE

DE

JC

LD

Dl

GF

KN

BF

JD

MJ

Fl

LN

EM

KO

PK

LP

HA

MN

MC

CB

AK

ON

HB

4160 data 133,

4170 data 165,

4180 data 32,

4190 data 181,

4200 data 114,

4210 data 58,

4220 data 229,

4230 data 65,

4240 data 68,

4250 data 104,

4260 data 32,

4270 data 32,

4280 data 76,

4290 data 240,

4300 data 113,

4310 data 100,

4320 data 104,

4330 data 32,

4340 data 136,

4350 data 104,

4360 data 104,

4370 data 104,

4380 data 114,

4390 data 240,

4400 data 203,

4410 data 32,

4420 data 114,

4430 data 174,

4440 data 101,

4450 data 0,

4460 data 169,

4470 data 173,

4480 data 64,

4490 data 7,

4500 data 109,

4510 data 206,

4520 data 75,

4530 data 174,

4540 data 24,

4550 data 202,

4560 data 114,

4570 data 104,

4580 data 114,

4590 data 56,

4600 data 169,

4610 data 200,

4620 data 41,

4630 data 255,

4640 data 206,

4650 data 194,

4660 data 104,

4670 data 136,

4680 data 133,

4690 data 87,

4700 data 116,

4710 data 90,

4720 data 253,

4730 data 116,

4740 data 141,

4750 data 133,

4760 data 0,

4770 data 32,

4780 data 253,

4790 data 8,

4800 data 93,

4810 data 89,

86,

80,

244,

11,
32,

56,

83,

240,

240,

240,

48,

45,

1,

7,

96,

114,

141,

75,

177,

160,

136,

177,

141,

45,

114,

87,

240,

204,

115,

0,

0,

96,

162,

141,

205,

114,

104,

207,

201,

138,

232,

201,

73,

233,

158,

177,

127,

240,

114,

104,

160,

16,

253,

32,

169,

32,

165,

136,

179,

253,

177,

200,

165,

36,

240,

201,

32,

133,

113,

133,

27,

165,

144,

26,

8,

16,

104,

104,

114,

201,

0,

141,

8,

104,

82,

5,

16,

82,

202,

173,

141,

104,

5,

114,

32,

0,

141,

104,

8,

203.

114,

208.

177.

114.

128.

24,

202.

34.

1

127.

133.

251,

157.

4.

104,

232.

5.

248,

165.

187.

8,

187.

91.

240,

116,

165,

251,

116,

89,

93,

86,

2,

244, 113,

85, 165,

96, 181,

83,181,

104,173,

85, 229,

47, 173,

201, 66,

32,158,

32, 51,

240, 6,

162, 82,

173, 82,

68, 240,

173, 8,

8, 115,

115, 96,

160, 1,

32, 75,

185, 87,

247,160,

32, 75,

114,200,

205,114,

201, 114,

32, 101,

206,201,

134,253,

57, 104,

0, 0,

206,114,

201, 3,

208, 4,

114, 142,

141,204,

38, 206,

82, 32,

208, 28,

144, 20,

109,202,

142,206,

208, 10,

141,207,

170,152,

251,169,

16,251,

110, 104,

177,251,

168, 96,

134,253,

177, 82,

32, 75,

88, 32,

116,169,

133,253,

116, 136,

141,178,

10,230,

32, 187,

90, 32,

133, 93,

192, 3,

201, 1,

208, 18,

201, 16,

240, 81,

79

86

82

82

86

96,166,

81,133,

10, 133,

1, 141,

90,104,

82,165,

82, 114,201

240, 17,201

113, 32, 54

104,208, 11

32, 158, 113

32, 63,104

114,201, 66

3, 32,158

115, 72,173

32, 48, 104

32,208, 114

177, 82,170

104, 32, 84

0,153,194

2, 32, 75

104, 141,200

173,200, 114

133,253,173

32,247, 114

115,206,202

114,208,237

169, 13, 32

208,206, 96

0, 0, 0

141,207,114

240, 6,169

169, 32,162

205,114, 24

114, 96,174

200,114, 32

75, 104,200

201,255, 240

32, 56,115

114, 141,202

114, 189, 110

72,173,207

114,104, 96

72,160,255

160,133,252

202, 208, 248

232,136,192

16,243, 142

166,253, 157

96, 32, 75

153, 87, 0

104,169, 1

187,116, 165

45, 32,200

164, 89,165

240, 23,230

116, 32,187

253,165, 92

116,169, 20

72,104, 160

200, 177,251

208,246, 230

240, 85,169

169, 48, 37

240, 21,165

208, 49,169

The Transactor 62 July 1987: Volume 8, Issue Ol

Fl

AP

NC

EC

CM

BF

NB

ME

PL

IG

HM

JF

CG

GP

LO

GH

KH

PJ

AO

AN

PM

FF

AF

FL

MN

KP

KD

CC

NO

NC

ID

MH

NN

DJ

BL

EJ

GN

JJ

JD

JL

DA

IA

PJ

MJ

GO

HM

PC

NO

EJ

CC

CK

GB

PB

FN

MF

ID

LA

DD

PG

OH

AK

El

BJ

JF

GL

KH

4820 data 40,

4830 data 240,

4840 data 87,

4850 data 88,

4860 data 91,

4870 data 88,

4880 data 169,

4890 data 187,

4900 data 240,

4910 data 73,

4920 data 32,

4930 data 169,

4940 data 169,

4950 data 32,

4960 data 169,

4970 data 32,

4980 data 93,

4990 data 169,

5000 data 200,

5010 data 32,

5020 data 180,

5030 data 32,

5040 data 116,

5050 data 116,

5060 data 104,

5070 data 200,

5080 data 32,

5090 data 166,

5100 data 96,

5110 data 32,

5120 data 160,

5130 data 75,

5140 data 117,

5150 data 173,

5160 data 117,

5170 data 95,

5180 data 95,

5190 data 137,

5200 data 96,

5210 data 117,

5220 data 92,

5230 data 117,

5240 data 117,

5250 data 117,

5260 data 104,

5270 data 250,

5280 data 0,

5290 data 16,

5300 data 141,

5310 data 96,

5320 data 141,

5330 data 96,

5340 data 32,

5350 data 144,

5360 data 171,

5370 data 206,

5380 data 32,

5390 data 32,

5400 data 96,

5410 data 104,

5420 data 96,

5430 data 253,

5440 data 0,

5450 data 32,

5460 data 104,

5470 data 181,

32, 200

68, 208

133, 87

165, 87.

16, 7.

24, 165.

36, 32,

116,208,

80, 169,

169, 35,

200, 116,

48, 37,

64, 36,

200, 116,

8, 36,

200, 116,

240, 5,

44, 32,

116, 169,

200, 116,

116, 136,

180,116,

32, 180,

169, 13,

96, 0,

116, 96,

200, 116,

253,157,

32, 98,

171, 117,

2, 32,

104, 141,

172, 92,

93, 117,

170, 176,

117, 162,

117, 142,

117, 173,

117, 134,

174, 95,

117, 140,

206, 94,

202,134,

169, 13,

169, 32,

48,150,

0, 173,

169, 16,

96,117,

169, 8,

96, 117,

173, 94,

147, 117,

3, 32,

117,206,

94,117,

75, 104,

209,117,

32, 75,

32, 87,

166,253,

96, 72,

185,194,

153, 194,

168,104,

8, 133,

116,165, 89,

36, 24,169,

169, 0,101,

101, 91, 36,

165, 88,233,

88,105, 0,

200, 116, 165,

23,169, 4,

65, 32,200,

32.200, 116,

165, 91, 32,

93.201, 48,

93,240, 23,

169, 88, 32,

93,240, 28,

208, 21,169,

169, 41, 32,

200, 116, 169,

34,133,253,

164, 89,165,

240, 15,173,

136,240, 6,

116,169, 62,

32,200,116,

0, 32, 87,

32, 78,104,

104, 32,200,

194, 104,232,

117,160, 1,

160, 0, 32,

75, 104, 177,

93, 117,200,

117,169, 6,

240, 94, 56,

8,174, 93,

0,142, 93,

94, 117,230,

94, 117,208,

253,169, 60,

117,142, 94,

92, 117, 168,

117,208,248,

253,169, 62,

32,209,117,

157, 194, 104,

96, 0, 0,

96, 104,201,

141, 95,117,

169, 68,141,

141, 95,117,

169, 38,141,

117,201, 5,

173, 94,117,

157, 117,230,

94, 117,208,

32, 75,104,

32, 78,104,

104, 32,209,

104,177, 82,

104, 32,209,

157, 194, 104,

138, 72,152,

104, 32,210,

104,200,202,

170,104, 96,

253,181, 9,

201, 2

2, 101

88, 133

91,133

0,133

133, 92

92, 32

36, 93

116,208

169, 36

187, 116

208, 16

169, 44

200, 116

169, 41

8, 36

200,116

89, 32

169, 60

90, 32

178, 116

173,179

32, 200

32, 57

104, 32

72,138

116, 96

134,253

132,253

171,117

82, 32

140, 92

133,253

237, 95

117,142

117, 174

253, 32

246, 174

32, 209

117, 173

32,193

174, 97

32, 209

32, 57

202, 16

0, 0

3,240

169, 50

97, 117

169, 28

97, 117

144, 3

201,

253,

1,

177,

72,138

117,200

32, 75

117,200

232,134

72,160

255,169

208, 241

166, 78

133,254

3

32

96

82

LI

00

KM

MK

MD

KC

EM

PK

Ml

IM

FB

FH

Al

JP

LC

GO

BG

LK

AC

OF

OG

OD

Kl

BO

NJ

BJ

LB

IK

LL

KK

Cl

KL

GM

AN

LI

DB

CP

NF

PE

IO

GH

NL

AF

LB

JB

OJ

BJ

ML

OH

DG

Gl

AM

GO

GB

JF

DO

II

KJ

PH

NA

EJ

AN

GK

GE

OH

LH

5480 data 166,

5490 data 133,

5500 data 208,

5510 data 32,

5520 data 232,

5530 data 240,

5540 data 162,

5550 data 209,

5560 data 164,

5570 data 208,

5580 data 29,

5590 data 88,

5600 data 32,

5610 data 117,

5620 data 24,

5630 data 117,

5640 data 164,

5650 data 19,

5660 data 182,

5670 data 150,

5680 data 104,

5690 data 252,

5700 data 0,

5710 data 185,

5720 data 56,

5730 data 229,

5740 data 133,

5750 data 185,

5760 data 185,

5770 data 104,

5780 data 78,

5790 data 202,

5800 data 160,

5810 data 104,

5820 data 32,

5830 data 208,

5840 data 104,

5850 data 208,

5860 data 88,

5870 data 120,

5880 data 230,

5890 data 252,

5900 data 101,

5910 data 165,

5920 data 73,

5930 data 120,

5940 data 105,

5950 data 24,

5960 data 96,

5970 data 170,

5980 data 74,

5990 data 202,

6000 data 88,

6010 data 88,

6020 data 104,

6030 data 6,

6040 data 127,

6050 data 109,

6060 data 104,

6070 data 208,

6080 data 104,

6090 data 126,

6100 data 4,

6110 data 238,

6120 data 48,

6130 data 4,

79,

81,

6,

75,

177,

15,

80,

32,

78,

7,

181,

160,

75,

0,

117,

1,

79,

165,

10,

9,
165,

185,

133,

9,
165,

252,

87,

8,

9,
168,

182,

150,

0,

177,

75,

236,

177,

247,

96,

133,

252,

24,

252,

0,

1,

248,

64,

105,

8,

41,

74,

240,

166,

169,

141,

87,

104,

128,

109,

222,

162,

104,

120,

169,

133,

169,

181,

181,

181,

104,

253,

200,

32,

75,

185,

181,

0,

2,

104,

208,

0,

149,

165,

81,

202,

208,

80,

10,

254,

0,

80,

72,

165,

0,

0,

104,

10,

9,

166,

251,

104,

165,

251,

32,

72,

252,

230,

101,

133,

9,

133,

170,

72,

144,

120,

15,

74,

4,

87,

0,

129,

38,

141,

104,

129,

216,

0,

32,

104,

32,

92,

32,

10, 133,

9,197,

8,197,

160, 2,

209, 80,

208, 244,

63, 104,

104, 96,

10, 0,

1,217,

133, 87,

32, 75,

24,105,

8, 240,

56, 149,

1,104,

80,217,

217, 9,

150, 8,

83, 162,

133,251,

0, 133,

185, 8,

133, 81,

229,251,

56, 165,

252, 229,

229, 87,

229, 88,

170, 32,

202, 150,

96, 134,

88, 240,

145,253,

230, 252,

87, 240,

145,253,

75, 104,

169, 45,

104, 72,

252, 10,

251,133,

252,104,

1,133,

1, 104,

24, 41,

138, 74,

105, 64,

248, 134,

24, 105,

74, 170,

105, 22,

40, 96,

141, 127,

104, 120,

88, 173,

127, 104,

141, 128,

104, 141,

88,169,

134, 93,

78, 104,

32, 4,

197, 92,

96, 205,

208, 5,

8

1

0

96

80,181, 11

81, 48, 44

80, 144, 36

177,253, 170

208, 6,202

32, 75,104

166, 79,208

72,152, 72

24,245, 0

11, 0, 48

181, 1,133

104,177, 87

3,176,

6, 169,

0,169,

168, 104,

8, 0,208

0,208, 12

182, 11,202

80, 32, 63

165, 81,133

253,185, 11

0, 133, 80

32, 63,104

72,165, 81

251,229,253

254,133, 88

153, 8, 0

153, 9, 0

69, 104, 164

8,182, 11

87,132, 88

20, 32, 75

200, 208, 249

230,254, 202

15, 32, 75

200,196, 87

166, 87,164

133,251,169

10,144, 4

144, 2,230

251,169, 0

96, 8, 72

0,165, 1

40, 96, 8

15, 105, 144

74, 74, 74

170,104, 40

87,132, 88

0, 168, 138

232, 24,152

208,249, 164

133, 87,134

104,141, 128

248,162, 16

127, 104, 109

173,128,104

104,173,129

129, 104,202

48, 141, 126

160, 3,185

72,138, 32

120, 136,208

208, 4,169

126, 104,208

162, 0,142

The Transactor 63 July 1987: Volume 8, Issue Ol

KE

HA

HI

FF

HH

01

MK

KK

KM

FM

KN

EK

FN

ON

FP

MB

JO

GA

CC

OP

OA

MP

JF

GF

Kl

FD

HI

NF

OG

OH

PJ

JL

01

GK

MM

CN

PL

OM

LO

NN

PC

KN

DB

PO

CB

OB

ME

PE

IB

GE

JH

FG

AF

OG

HI

Jl

CN

HH

PK

PI

JK

OL

NN

MO

JL

GO

6140 data

6150 data

6160 data

6170 data

6180 data

6190 data

6200 data

6210 data

6220 data

6230 data

6240 data

6250 data

6260 data

6270 data

6280 data

6290 data

6300 data

6310 data

6320 data

6330 data

6340 data

6350 data

6360 data

6370 data

6380 data

6390 data

6400 data

6410 data

6420 data

6430 data

6440 data

6450 data

6460 data

6470 data

6480 data

6490 data

6500 data

6510 data

6520 data

6530 data

6540 data

6550 data

6560 data

6570 data

6580 data

6590 data

6600 data

6610 data

6620 data

6630 data

6640 data

6650 data

6660 data

6670 data

6680 data

6690 data

6700 data

6710 data

6720 data

6730 data

6740 data

6750 data

6760 data

6770 data

6780 data

6790 data

The Transactor

126,

93,

144,

208,

75,

63,

63,

76,

80,

76,

63,

76,

76,

63,

63,

76,

67,

63,

63,

76,

82,

63,

84,

76,

80,

76,

84,

76,

73,

63,

63,

76,

67,

63,

63,

76,

73,

63,

63,

82,

65,

82,

80,

82,

67,

63,

63,

82,

73,

63,

63,

82,

83,

63,

63,

82,

65,

82,

80,

82,

83,

63,

63,

82,

73,

63,

104,

96,

10,

2,

122,

1,

34,

1,

2,

1,

35,

1,

58,

1,

114,

1,

51,

1,

115,

1,

122,

1,

34,

1,

2,

1,

35,

1,

58,

1,

114,

1,

51,

1,

115,

1,

122,

1,

34

1

2,

1

35

1

58,

1,

114,

1,

51,

1,

115,

1,

122,

1,

34,

1,

2,

1,

35,

1,

58,

1,

114,

1,

51,

1,

166,

201,

201,

169,

79,

63,

79,

63,

79,

63,

79,

63,

79,

63,

79,

63,

79,

63,

79,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65

63

65

63

65

63

65

63

69

63

69

63

69

63

69

63

69

63

69

63

69

63

69

63

65

63

65

63

65

63,

65,

63,

65,

63,

65,

63,

65,

63,

93,

32,

161,

46,

82,

63,

82,

63,

82,

63,

82,

63,

82,

63,

82,

63,

82,

63,

82,

63,

78,

63,

78,

63,

78,

63

78

63

78

63

78

63

78

63

78

63

79

63

79

63

79

63

79

63

79

63

79

63

79

63

79

63

68

63

68

63

68

63

68

63

68

63,

68,

63,

68,

63,

149,

144,

144,

96,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

68,

63,

68,

63,

68,

63,

68,

63,

68,

63,

68,

63,

68,

63,

68,

63,

82,

63

82

63

82

63

82

63

82

63

82

63

82,

63

82,

63,

67,

63,

67,

63,

67,

63,

67,

63,

67,

63,

67,

63,

67,

63,

87,

12,

4,

1,

1,

1,

34,

1,

5,

1,

35,

18,

1,

1,

114,

1,

1,

1,

115,

35,

1,

34,

34,

1,

5,

35,

35,

18,

1,

1,

114,

1,

1,

1,

115,

1,

1,

1,

34,

1,

5,

35,

35,

18,

1

1,

114,

1,

1,

1,

115,

1,

1,

1,

34,

1,

5,

43,

35,

18,

1,

1,

114,

1,

1,

1,

232,

201,

201,

66,

63,

63,

65,

80,

65,

63,

65,

66,

63,

63,

65,

67,

63,

63,

65,

74,

63,

66,

82,

80,

82,

66,

82,

66,

63,

63,

82,

83,

63,

63,

82,

82,

63,

63,

76,

80,

76,

74,

76,

66,

63,

63,

76,

67,

63,

63,

76,

82,

63,

63,

82,

80,

82,

74,

82,

66,

63,

63,

82,

83,

63,

63,

134

128

255

82

63

63

83

72

83

63

83

80

63

63

83

76

63

63

83

83

63

73

79

76

79

73

79

77

63

63

79

69

63

63

79

84

63

63

83

72

83

77

83

86

63

63

83

76

63

63

83

84

63

63

79

76

79

77

79

86

63

63

79

69

63

63

KA

MP

AO

IO

AE

CG

HG

KB

OG

FE

NE

LE

NN

MK

LH

Ml

FH

JL

KL

LK

CO

MO

NB

FN

AB

FO

EO

MO

HJ

HE

CB

BD

DH

AG

OE

EB

MH

Gl

EM

IF

KK

Cl

Ml

OJ

CC

NN

LJ

GM

AA

GP

ON

EL

NB

GC

DH

IN

LE

DC

NB

OD

IK

KH

GE

GG

Cl

KH

64

6800 data

6810 data

6820 data

6830 data

6840 data

6850 data

6860 data

6870 data

6880 data

6890 data

6900 data

6910 data

6920 data

6930 data

6940 data

6950 data

6960 data

6970 data

6980 data

6990 data

7000 data

7010 data

7020 data

7030 data

7040 data

7050 data

7060 data

7070 data

7080 data

7090 data

7100 data

7110 data

7120 data

7130 data

7140 data

7150 data

7160 data

7170 data

7180 data

7190 data

7200 data

7210 data

7220 data

7230 data

7240 data

7250 data

7260 data

7270 data

7280 data

7290 data

7300 data

7310 data

7320 data

7330 data

7340 data

7350 data

7360 data

7370 data

7380 data

7390 data

7400 data

7410 data

7420 data

7430 data

7440 data

7450 data

63,

82,

63,

63,

89,

88,

89,

65,

89,

88,

67,

63,

89,

88,

65,

83,

63,

63,

89,

88,

89,

88,

89,

88,

89,

88,

83,

63,

89,

88,

86,

88,

89,

88,

89,

63,

89,

67,

89,

88,

89,

67,

69,

63,

63,

67,

68,

63,

63,

67,

88,

63,

88,

67,

88,

80,

88,

67,

81,

63,

63,

67,

68,

63,

63,

67,

115,

1,

122,

1,

34,

1,

1,

1,

35,

1,

58,

1,

114,

1,

51,

1,

115,

1,

122,

1,

34,

1,

2,

1,

35,

1,

58,

1,

114,

1,

51,

1,

115,

1,

122,

1,

34,

1,

2,

1,

35,

1,

58,

1,

114,

1,

51,

1,

115,

1,

122,

1,

34,

1,

2,

1,

35,

1,

58,

1,

114,

1,

51,

1,

115,

1,

65,

63,

83,

63,

83,

63,

63,

63,

83,

63,

83,

63,

83,

63,

83,

63,

83,

63,

76,

63,

76,

63,

76,

63,

76,

63,

76,

63,

76,

63,

76,

63,

76,

63,

67,

63,

67,

63,

67,

63,

67,

63,

67,

63,

67,

63,

67,

63,

67,

63,

83,

63,

83,

63,

83,

63,

83,

63,

83,

63,

83,

63,

83,

63,

83,

63,

68,

63,

84,

63,

84,

63,

63,

63,

84,

63,

84,

63,

84,

63,

84,

63,

84,

63,

68,

63,

68,

63,

68,

63,

68,

63,

68,

63,

68,

63,

68,

63,

68,

63,

77,

63,

77,

63,

77,

63,

77,

63,

77,

63,

77,

63,

77,

63,

77,

63,

66,

63,

66,

63,

66,

63,

66,

63,

66,

63,

66,

63,

66,

63,

66,

63,

67,

63,

65,

63,

65,

63,

63,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63,

65,

63

80,

63,

80

63,

80

63,

80,

63,

80

63

80

63,

80

63

80

63

67,

63

67

63,

67,

63,

67,

63,

67.

63,

67,

63,

67,

63,

67,

63,

115,

1,

1,

34,

34,

1,

1,

35,

35,

18,

1,

114,

50,

1,

1,

1,

1,

2,

2,

34,

34,

1,

1,

35,

35,

18,

1,

114,

50,

1,

1,

115,

115,

2,

1,

34,

34,

1,

1,

35,

35,

18,

1,

1,

50,

1,

1,

1,

115,

2,

1,

34,

34,

1,

1,

35,

35,

18,

1,

1,

50,

1,

1,

1,

115,

0,

82,

63,

63,

83,

83,

68,

84,

83,

83,

66,

63,

83,

83,

84,

84,

63,

63,

76,

76,

76,

76.

84,

84,

76,

76,

66,

63,

76,

76,

67,

84,

76,

76,

67,

63,

67,

68,

73,

68,

67,

68,

66,

63,

63,

68,

67,

63,

63,

68,

67,

63,

67,

73,

73,

78,

67,

73,

66,

63,

63,

73,

83,

63,

63,

73,

0

July 1987: Volume 8

79

63

63

84

84

69

88

84

84

67

63

84

84

89

88

63

63

68

68

68

68

65

65

68

68

67

63

68

68

76

83

68

68

80

63

80

69

78

69

80

69

78

63

63

69

76

63

63

69

80

63

80

78

78

79

80

78

69

63

63

78

69

63

63

78

Issue Ol

PopToFront

for the Amiga

Bryce Nesbitt

Berkeley, CA
(C) 1987 fryce Nesbitt

Have you ever found a corner of a window you wished to work

with, but had to play some sort of electronic shell game to bring it

to the front? This utility provides a quick shortcut: simply

activate any window in any screen by clicking into any part of it,

hit left Amiga-F and that window will come forward. PopTo

Front is written entirely in 68000 for the Amiga. In addition to

being a useful utility, the code provides a valuable example of

adding a keyboard handler to the system and includes a version

of the " exec_support" library, a set of routines normally availa

ble only to C programmers.

Getting it running

The source code in listing 1 can be typed into any editor and

assembled with the Metacomco 68000 assembler. (If you are

lazy, a copy is available on the new Transactor Amiga disk). An

icon can be created by modifying an existing icon of type " tool

using the editor in the system drawer of the workbench disk.

To activate PopToFront, double-click on its icon from Work

bench or type 'run PopToFront' from the CLI. To test it out, push

a window to the back with the back gadget, press and hold the

Left Amiga key and tap " F" - the window will pop up to the

front. Once installed, PopToFront stays resident until the Amiga

is turned off. While it is possible to install several PopToFronts at

once, no benefit results.

How it works

The program consists of three parts: The exec_support routines,

the startup code and the keyboard handler itself. The startup

code and exec_support routines exist only to get the handler

installed. This is done in three parts:

l)The intuition.library is opened and its address placed in the

handler code for later use. Note that since the handler uses it,

the intuition.library is never closed.

2) The startup code allocates some PUBLIC memory to contain

the handler. PUBLIC is used so that, on a future version of the

Amiga with a memory-management unit, there is no possibil

ity that the handler will ever be swapped out to disk.

3) Once the handler is in its new home, the startup code adds it

to the handler list by sending to the input.device an I/O

Request block of type INDJUDDHANDLER. Its purpose thus

fulfilled and errors checked for, it terminates, leaving the

handler in place.

The handler gazes lightly into the meaning of each input.device

event that passes by. When the correct one is detected it finds

the pointer to the active Window & Screen from their known

locations in the IntuitionBase structure, and calls the Intuition

ScreenToFront() and WindowToFront() routines. The Left

Amiga-F keystroke is then removed from the input stream.

;PopToFront(C)1987 Bryce Nesbitt. Unlimited free non-exclusive licence

;hereby granted to any sentient being to use or abuse this code in any way

whatsoever provided that this and any other copyright notices remain fully

;attached and are reproduced in any simultaneously distributed printed matter

;and with the exception that, without prior written permission, it not

;be utilized by any entity that has been commonly referred to as Robert

;W. Skyles, Skyles Electric Works, Jim Drew, Regie Warren or any organization

;founded by, controlled, employing or profiting any such entity, its

;offspring or spouses.

;Author correspondence, bug or stupidity reports may be directed to:

; Bryce Nesbitt

; 1712 Marin Ave.

; Berkeley, Ca 94707-2902

NOLIST

INCLUDE 'exec/types.i'

INCLUDE 'exec/memory.i'

INCLUDE 'exec/interrupts.i'

INCLUDE 'exec/io.i1

INCLUDE 'libraries/dosextens.i'

INCLUDE 'devices/inputevent.s.i'

INCLUDE'devices/input.i'

INCLUDE 'intuition/intuitionbase.i'

INCLUDE 'workbench/startup.i1

;INCLUDE 'lib/exec_lib.i' ;eliminates link with amiga.lib

;INCLUDE 'lib/dosjib.i' ;non-standard, and very speedy!

;INCLUDE 'lib/intuitionjib.i' ;See exec/execjib.i & fd.files

LIST

isriio macro

xref

jsr

endm

jmplib macro

xref

jmp

endm

CODE

startup: move.l

suba.l

jsrlib

move.l

moveq

move.l

bne.s

_LVO\1

_LVO\1(a6)

_LVO\1

_LVO\1(a6)

4,a6

a1,a1

FindTask

dO,a5

#0,d0

pr_CLI(a5),d1

fromCLI

;Get THIS task

;Set zero for later

;Pointer to CLI only structure

:lf not zero, then save a zero.

; If called from Workbench a message will be sent. This waits for it,

; and saves its pointer to be returned to Workbench later.

lea pr_MsgPort(a5),aO

The Transactor 65 July 1987: Volume 8, Issue Ol

jsrlib WaitPort

lea pr_MsgPort(a5),aO

jsrlib GetMsg ;Message pointer in DO

fromCLI move.I dO,-(a7) ;Save message for later. ..

...)•«.,,•,,«,,.•, ***.*.«**..*«» [A6 = ExecBase][a5 = this task]

failcode equr d7

portsave equr a5

lOReqsave equr a4

moveq

Prepare StdIO—

moveq

bsr

beq

move.l

bsr

beq

move.l

#25,failcode

#0,d0

_CreatePortE

ExitToDOS

dO,portsave

_CreateStdlOE

e_StdlO

a1, lOReqsave

Open input.device—

moveq

move.l

lea

#0,d0

dO,d1

devname(pc),aO

;(loRequestisin A1)

jsrlib

tst.l

bne

Copy Handler—

moveq

lea

jsrlib

move.l

beq.s

move.l

move.l

jsrlib

move.l

move.l

tst.l

beq.s

OpenDevice

dO

e_Open

#0,d0

lntuiName(pc),a'

OpenLibrary

dO,IBASE + 2

e_lntui

;Default fail code

;priority

;[dO = Port]

;[a1 = loRequest]

;Unit

;Flags

;[dO = zeroif ok]

;Any version

t

;[dO = Base]

;modify code

#DownEnd-Start,dO

#MEMF_PUBLIC,d1

AllocMem

dO,a2

dO,a1
dO

e_nomem

;location of block

lea Start(pc),aO

moveq #((DownEnd-Start)/4),d1 ;Length in LONGS

copylp move.l (aO) + ,(a1)+ ;Copy handler to Public Memory

dbra d1,copylp

;68010 Loop mode!

;—Prepare lOReq with proper addresses—

Handlercode-Start(a2),aO ;offset + memblock

aO,IS_DATA(a2) ;unused

aO,IS_CODE(a2) ;where code is

PopName-Start(a2),aO ;optional ascii name

aO,LN_NAME(a2)

DolO

dO

e.DolO

#0,d7

;dO = (IOReq-aO)

;zero = ok!

;set return code to zero

lea

move.l

move.l

lea

move.l

;—Send ADDHANDLER—

move.l lOReqsave,a1

move.w #IND_ADDHANDLER,IO_COMMAND(a1)

move.l a2,IO_DATA(a1)

;(IOReqina1)

jsrlib

tst.l

bne.s

moveq

e_nomem

e_DolO

ejntui move.l lOReqsave,a1

CloseDevice

lOReqsave,a1

.DeleteStdlOE

portsave.ai

_DeletePortE

•itttMttto,.....«..»(a7)+ = message d7 = return code

ExitToDOS move.l (a7) + ,d6

beq.s NotWB ;lf saved pointer is zero, exit to CLI.

; Return the startup message to the parent Workbench tool. The forbid

; is needed so Workbench can't UnLoadSeg() the code too early.

e_Open

e.StdIO

move.l

jsrlib

move.l

bsr

move.l

bsr

move.l

jsrlib

move.l

jsrlib

NotWB move.l

rts

ntuiName dc.b

devname dc.b

cnop

4,a6

Forbid

d6,a1

ReplyMsg

d7,dO

'intuition.library

'input.device',0

0,2

•••* exec.support/CreatePort **•

port=_CreatePort(pri)

dO dO.b

;message pointer

;Set "failat" code

,0

;WORD align

FUNCTION: Create a nameless message port with a specified priority.

(exec/ports, i)

RESULT: The port pointer or Z = 1 if an error occurred.

REGISTERS: a6 is destroyed unless _CreatePortE is called,

in which case a6 must contain ExecBase.

EXAMPLE:

moveq #3,dO ;Set Priority

jsr _CreatePort

beq.s noport ;Not enough memory or signals

:_CreatePort

_CreatePortE

;xref

;xref

move.l

move.l

move.b

move.l

moveq

jsrlib

move.l

tst.l

beq.s

moveq

jsrlib

moveq

cmp.l

bne.s

move.l

moveq

jsrlib

cp_nomemory addq.l

moveq

bra.s

_CreatePort

_CreatePortE

4,a6

a2,-(a7)

dO,-(a7)

#MEMF_PUBLIC + MEMF_CLEAR,d1

#MP_SIZE,dO

AllocMem

dO,a2

dO

cp_nomemory

#-1,dO

AllocSignal ;dO = return

dO,d1

cp_sigok

a2,a1

#MP_SIZE,dO

FreeMem

#2,a7

#0,d0

cp_xit

;-1 indicates bad signal

;Unpush byte

;setz = 1

cp_sigok move.b

move.b

move.b

move.b

suba.l

jsrlib

move.l

lea

NEWLIST aO

move.l a2,d0

cp_xit move.l (a7) + ,a2

rts

• • exec_support/DeletePort *•»

dO,MP_SIGBIT(a2)

#PA_SIGNAL,MP_FLAGS(a2)

#NT_MSGPORT,LN_TYPE(a2)

(a7) + ,LN_PRI(a2)

a1 ,a1 ;a1 = O/Find this task

FindTask ;[d0=this task]

dO,MP_SIGTASK(a2)

MP_MSGLIST(a2),aO ;Point to list header

;lnit new list macro

;cc's NOT affected

;_DeletePort(port)

a1

FU NCTION: Deletes the port by first setting some

fields to illegal values then calling FreeMem.

RESULT: none

REGISTERS: a6 is destroyed unless _DeleteStdlOE is called,

in which case a6 must contain ExecBase.

;xref _DeletePort

;xref .DeletePortE

;_DeletePort move.l 4,a6

The Transactor 66 July 1987: Volume 8, Issue Ol

JDeletePortE move.l

moveq

move.b

move.l

moveq

move.b

jsrlib

move.l

moveq

implib

a1 ,-(a7)

#-1,dO

dO,LN_TYPE(a1)

dO,MP_MSGLIST + LH_HEAD(a1)

#0,d0 ;Clear upper 3/4 of dC

MP_SIGBIT(a1),dO

FreeSignal

(a7) + ,a1

#MP_SIZE,dO

FreeMem

ioStdReq = CrealeStdlO(ioReplyPort)

a1 dO

Function: Allocate a loRequest block of standard size.

Example: move.l MyPort.dO

jsr _CreateStdlO

beq.s badnews

;xref

;xref

;_CreateStdlO move.l

_CreateStdlOEmove.l

moveq

move.l

jsrlib

move.l

tst.l

beq.s

move.b

move.l

nomem rts

_CreateStdlOE

_CreateStdlO

4,a6

dO,-(a7)

#IOSTD_SIZE,dO

#MEMF_PUBLIC + MEMF_CLEAR,d1

AllocMem

dO,a1

dO

nomem

#NT_MESSAGE,LN_TYPE(a1)

(a7) + ,MN_REPLYPORT(a1)

••• exec_support/DeleteStdlO • ••

_DeleteStdlO(ioStdReq)

a1

FUNCTION: Deletes an ioStdReq by setting some

fields to illegal values then calling FreeMem.

RESULT: none

REGISTERS: a6 is destroyed unless _DeleteStdlOE is called,

in which case a6 must contain ExecBase.

;xref

;xref

;_DeleteStdlO move.l

_DeleteStdlOE moveq

move.b

move.l

move.l

moveq

jmplib

_DeleteStdlO

_DeleteStdlOE

4,a6 ;Get ExecBase

#-1,dO ;Set fields to illegal value

dO,LN_TYPE(a1)

dO,IO_DEVICE(a1)

dO,IO_UNIT(a1)

#IOSTD_SIZE,dO

FreeMem

Start

ints

cnop 0,4 ;LONG word align

;This is an interrupt structure (exec/interrupts, i)

del

del

dc.b

dc.b

del

del

del

0

0

0

51

0

0

0

;Compare class AND subclass. $0100 is a combination of IECLASS_RAWKEY

;for ie_Class and IECLASS_NULL for ie_SubClass.

beq.s

move.l

bne.s

rts

hurdlei

(aO),d1

MoreEvents

;Get }ie_NextEvent{ pointer

; If any...

;exit (with no changes made)

hurdlei move.l ie_Code(aO),d1 ;Code& Qualifier,

andi.w #%0000001111111011,d1

;Mask off the bits of the qualifier field that we do not care about. These

; are IEQUALIFER_RELATIVEMOUSE, _MULTIBROADCAST, .INTERRUPT,

; _CAPSLOCK, _LBUTTON, _RBUTTON and _MBUTTON

cmpi.l #$00230040,d1

;The upper word of this comparison ($0023) is the RAW key code for 'F

; the lower is IEQUALIFIER_LCOMMAND.

KeepLooking

beq.s

move.l

bne.s

rts

hurdle2

(a0),d1

MoreEvents

;See above...

;See above...

;exit (no changes)

;MoreEvents handles the case where several events may be linked and

; can extract one of them from the middle.

MoreEvents move.l

move.l

cmpi.w

bne.s

move.l

andi.w

cmpi.l

bne.s

a0,a1 ;Temporary for unlinking

d1,a0 ;Look here next...

#$0100,ie_Class(aO)

KeepLooking

ie_Code(a0),d1

#%0000001111111011,d1

#$00230040,d1

KeepLooking

;Move this event's ie_NextEvent pointer to that of the previous event,

; thereby unlinking this one from the chain.

move.l (a0),(a1)

move.l dO,-(a7)

bra.s hurdle3

;Move pointer to NEXT to previous

;Pointer to be passed back

;Go do it...

;The pointer to the currently active Screen and Windows are available at a

; positive offset from the Intuition base pointer. These will be brought

; to the front. Note that it may not be proper under the Amiga system to

; do this in the actual handler. It may be safer to have another task

; lying around in the background to do the actual work. The description

; of the Intuition WindowToFront commands indicates that it will not take

; effect until the NEXT input event, which (of course) will not happen

; until this one exits.

hurdle2

hurdle3

IBASE

;succ

;pred

;type inoscreen

^Priority (One step higher than Intuition)

;Name

;Data

;Code inowindow

inte

;When the handler is entered aO will point to a linked list of input

; events of the type defined in the incude file (devices/inputevent.i) PopName

; When done mangling the input stream it returns a new pointer in dO

;Note: All references to (aO) below refer to ie_NextEvent(aO). The DownEnd

; offset equates to zero and was eliminated for efficiency. END

move.l

move.l

move.l

move.l

beq.s

move.l

jsrlib

move.l

beq.s

move.l

jsrlib

move.l

move.l

rts

dc.b

cnop

(a0),-(a7) ;Unlink first event. }ie_NextEvent{

a6,-(a7)

#0,a6 ;Self-modifying-> Intuitionbase goes here

ib_ActiveScreen(a6),dO

inoscreen

d0,a0

ScreenToFront

ib_ActiveWindow(a6),dO

inowindow

d0,a0

WindowToFront

(a7) + ,a6

(a7) + ,d0 ;Pointer to new, shorter input stream

'PopToFront',0

0,4 ;Pad out to Longword boundary

Handlercode move.l

cmpi.w

a0,d0 ;Save pointer to start of chain

#$0100,ie_Class(a0)

The Transactor 67 July 1987: Volume 8, Issue Ol

TrapSnapper:

Adding A Trap Handler to Your C Programs
by Chris Zamara and Nick Sullivan

That bug in your program could cost you a visit from the Guru. . .

TrapSnapper helps keep the old geezer at bay!

If you've spent any amount of time with the Amiga, you are probably

not unfamiliar with the following message: "Software Error - Task

Held. Click on Cancel to Reset/Debug". This is an annoying message. If

you accept the invitation to "Click on Cancel", you'll reset the machine,

bringing down not only the task that failed but any others you may

have going at the time. You can ignore the message, if you want

(providing you have Workbench up or access to an extra CL1), but the

"Software Error" requester keeps coming relentlessly back every time

you swap disks or shuffle windows. Furthermore, all visible traces of

the program that died - like its windows and screens - will still be

around, getting in your way and using up memory.

There's a way to deal with software errors, at least in your own

programs, but before we get into that let's look at what these errors are

and why the Amiga handles them as it does.

Tasks, Traps and Exceptions

As you probably know, the programs that you run on the Amiga are

treated as separate tasks under Exec, which is the name given to the set

of operating system routines that are responsible for multitasking,

device, library and I/O management. Only one task can have control of

the CPU at any one instant of course; that task is said to be in the

"running" state. Other tasks will at the same time be either "waiting"

for their turn at the CPU, or lying dormant ("sleeping") until they are

awoken by an external event such as a mouse movement, keypress, or

timer signal. Sleeping tasks require only a tiny proportion of processor

time to service. If its wake-up event never comes, such a task could

sleep for ever without perceptibly affecting the operation of the ma

chine.

One difficulty with a multitasking system is that any task in the running

state can crash due to a bug in the program. Since there may be other,

viable, tasks in the system when this occurs, it is important that they

should be allowed to continue unhindered if at all possible. This is

where a Software Error differs from a Guru Meditation Error - Software

Errors are polite bugs that don't step on outside tasks; Gurus are

barbarian bugs that destroy everyone else along with themselves.

Software Errors are actually detected by the microprocessor itself, not

by the operating system. In 68000 jargon, they are called "exceptions",

for they are conditions that the processor cannot handle by ordinary

means. An example is the undefined result of a division by zero, using

one of the 68000 divide instructions DIVS or DIVU. If this operation is

requested (usually by accident), the 68000 does not know how to

proceed, and invokes an exception.

At this stage, several things happen. The 68000 goes into "supervisor"

mode, which enables the status register (SR) and several privileged

opcodes, and switches over to the supervisor stack from the user stack.

Six bytes of data are pushed onto the supervisor stack: a word

containing a copy of the Condition Code Register (CCR), and a long

word containing the value of the program counter, which for most

exceptions is the address of the instruction following the one that

caused the exception. (In the case of certain exceptions, other data are

also pushed, but we'll get to that later.) Finally, control is turned over to

an exception-handling routine that is accessed via a table of vectors

keyed to the "exception number" of the exceptional condition. For

example, division by zero is exception 5; hence, its exception routine is

entered through vector number 5 of the table. It is at this point that

Exec takes over.

Exec pushes a long-word on the stack corresponding to the exception

vector number - this is called the trap number. (In Amiga jargon, the

term "exception" has been appropriated to another purpose, and

exceptions are known as "traps", from the exception-generating TRAP

and TRAPV instructions of the 68000 - see the list of trap numbers at

the end of this article). It then branches through a vector that is specific

to the task that caused the exception. Unless this vector has been

changed by the task itself, it points to the default trap handler. Since

Exec cannot on its own know what actions would be appropriate to take

to rescue a given task from a given exception, its default handler does

nothing more than put the task to sleep (permanently), and put up the

"Software Error" requester to tell the user what is going on and provide

him or her with the opportunity to reset if desired. Any resources

(primarily RAM) allocated to the errant task remain allocated, and there

is no reasonable way of getting them back.

However, it is not very difficult to create and enable your own trap-

handling routine in a program that you write, and there are considera

ble advantages to doing so. For one thing, you can provide a graceful

exit in the event that your program bombs out; more importantly, you

can hand back your allocated RAM to the system, to be made available

to other tasks. You can close any windows or screens that the program

may have opened so that they don't continue to get in the way and use

up memory. You also avoid the "Software Error" message that will

otherwise be haunting you until you reset your machine. There is a

slight risk involved: if the event that caused the trap had trashed your

handler code before the 68000 intervened, you're off to Guru City; this

risk is small enough to be acceptable.

We now have to consider how to write a handler routine that will get

you through the trap and into your de-allocation code, and how to link

this routine into the system so that it will be invoked when a trap

occurs. We will outline what we believe to be the simplest approach to

this problem in the following sections.

Writing a Trap-Handler

As described above, the 68000's behaviour during a trap involves

entering supervisor mode, pushing the CCR and the program counter,

and jumping into the system handler code through a vector. If this were

The Transactor 68 July 1987: Volume 8, Issue Ol

the Commodore 64 rather than the Amiga, the obvious approach would

be to change that vector to point to our own code. In a multitasking

system, however, we can't take that kind of liberty; if we did, any task

that encountered a trap would end up using the handler written for our

task alone. (Besides, we'd have to change not just one, but all the

vectors in the table - one for each kind of trap.) Instead, we have to use

another vector, one that is specific to our task. This is provided in the

"Task Control Block", a structure that Exec maintains for each task in

the system. A task can get a pointer to its task control block (a "Task"

structure) by calling the Exec function "FindTask()" with a parameter

of zero. Once we have the pointer to our task control block, we can

change the member called "tc_TrapCode" to point to the code to be

executed when an exception occurs.

Changing tc_TrapCode to point to our own routine is very simple.

Unfortunately, we can't leave it at that, because our trap code will be

executed from within a CPU exception, and trap routines, like interrupt

routines, are limited in their capabilities. For example, trap or interrupt

code can't call any function that requires multitasking to do its job - this

includes "printf()", commonly used in C programs to print text to the

console. Another problem is that during an exception, the stack pointer

(A7) points to the supervisor stack, not our task's private user stack,

and we don't want to go messing with the supervisor stack (usually).

Finally, an exception handler must end with an RTE instruction

(ReTurn from Exception), but we probably want to finish execution of

our cleanup routine with an 'Exit()', to remove our process (Amiga-

DOS's higher-level view of our task) from the system.

As you may have guessed, now comes the fun part where you get to

find the solution to these problems. What we have to do is exit from our

exception code with an RTE instruction, and then have control passed

to our special cleanup and exit code. To do that, we have to "mess with

the system stack", which, as you may have heard before, you usually

don't want to do. In this case, the saved address of the program counter

on the stack can be modified so that when the RTE instruction is

executed, the CPU will run the program of our choice (the cleanup

routine) instead of continuing with the nasty code that caused the

exception in the first place. Before the RTE, we have to pull the trap

number from the stack, which the system trap handler put there for us.

This tells us why the CPU generated the exception - the list of possible

trap numbers appears at the end of this article.

A small complication is that the exceptions for "bus error" (trap

number 2) and "address error" (trap number 3) push an extra 8 bytes of

data onto the supervisor stack. One way to handle this in the trap code

is by checking the trap number and advancing the stack pointer past

the 8 bytes for trap numbers less than 4.

Another issue that should be addressed by a truly general trap handler

is the fact that other members of the 68000 microprocessor family

arrange their stacks differently on an exception. Some Amiga users are

replacing their 68000s with a 68010 or even a 68020 for added speed.

The Amiga's operating system is designed to work with these CPUs,

and so should application software, if possible. The trap code could

check the CPU type (Exec provides a field for this purpose in the

ExecBase structure) and adjust the stack pointer accordingly.

So, to recap the above, the following steps are required to have your

task clean up and leave gracefully when a CPU exception occurs:

1) Call FindTask() to get a pointer to the task's "Task" structure.

2) Change the "tc_TrapCode" member of the Task structure to point to

a short machine language routine that does the following:

(i) Change the program counter on the stack to point to your "clean

up and exit" routine,

(ii) pull the trap number from the stack

(iii) perform an RTE instruction to exit the exception handler and

pass control to the clean up function.

Your "clean up and exit" function should free any memory your task

allocated, close any screens, windows, fonts, libraries, devices, etc. that

it opened, and then call "exit()" (from C) or the equivalent to end and

kill the task.

Our Solution: TrapSnapper

Lucky for you, all of this has been done for you in the short program

presented here called "TrapSnapper". TrapSnapper is set up for C-

language trap handling, which takes a bit more set-up than doing it in

assembler, since there is some code that has to be in assembler.

All you need to do to put a decent trap-handler in your program is:

1) Put a structure template declaration at the start of your file pr in a

header file that you *include (see listing)

2) Declare an instance of that structure at the top of your file and

initialize it with 15 words making up a short machine language

routine (see listing).

3) Call the function SetTrap() early in the program's execution to

initialize the trap handler.

The C code presented here is a simple program that shows how to do

this, and demonstrates the effectiveness of the trap handler by generat

ing two kinds of CPU exceptions that would normally result in a

Software Error. The program itself just takes the argument supplied on

the command line (when the program is invoked from the CLI) and

converts it to an integer. If the value is 1, the program forces an address

error by attempting to read a word (16 bits) from an odd address. If the

value is not 1, the program tries to divide the value into 100 - causing a

divide by zero exception, of course, if the value entered was zero.

If this program was compiled without the call to SetTrap(), it would

cause a software error if it was run and given zero or one as an

argument. As it stands, with the TrapSnapper in place, it just prints a

warning message and the trap number, and exits gracefully, removing

itself from the system without a trace.

Here's how the trap code works in C. The initial trap code must be in

assembler so that we can access the stack pointer A7 directly and

perform an RTE instruction. To do this in C, the machine code is set up

as a static array of words and a pointer to this array is put into the Task

structure's "tc_TrapCode" member. The machine code needs a pointer

to the clean up code (the CleanUpAndExit() function in this example),

and a place to store the trap number. These long-words are stored

immediately before the machine code itself through the use of the

"TrapData" structure defined at the beginning of the program. Include

this structure template declaration at the top of your file or in a header

file that you #include.

The assembly code appears as comments in the C listing for TrapSnap

per. The code is fairly straightforward: it pulls the trap number from the

stack and stores it in the MyTrap structure where the C code can get at

it; adjusts the stack pointer if the trap number was less than 4 to allow

for bus and address errors; then replaces the program counter on the

stack with the address of the clean-up routine (which was put in the

MyTrap structure by the SetTrap() function). Finally, it ends with an

The Transactor 69 July 1987: Volume 8, Issue Ol

RTE instruction. As you may recall, we mentioned that the exception

stack frame was CPU-dependent, and a general trap-handler should

work for the 68010 and 68020 as well as the 68000. Well, we're good at

giving advice, but this trap-handler isn't that general. Sorry, 68010/

68020 users, if this routine doesn't work on your machine.

An instance of a TrapData structure (MyTrap) is then declared and

initialized - this is where the machine language is created. The pointer

to the clean-up code will be put into this structure by the SetTrap()

function.

The SetTrap() function finds the pointer to the task's Task control block,

then puts a pointer to the trap machine code into the "tc_TrapCode"

member. Finally, it puts a pointer to the function called CleanUpAn-

dExit() into the TrapData structure called MyTrap.

The CleanUpAndExit() function is where all of the clean-up code for

the program goes. In this case, it just prints a message and performs the

C function exit() (The DOS Exit() function could be used instead.) It

also prints the exception that was encountered by looking at the

TrapNum member of the MyTrap structure. In a more typical program,

the CleanLlpAndExit function would close any Intuition screens and

windows that the program had opened, free any memory it had

allocated (including graphics memory like rasters), and close open

fonts, devices, and libraries. In short, anything that the program would

do to clean up after itself before it exits should be done in CleanUpAn-

dExit().

Whether you fully understand the details of the trap handler or not, you

can easily add it to your own C or assembler programs. Every program

should have its own trap handler to spare the user from the plague of

the Software Error when things go wrong. You can't always guarantee

that a program is free of bugs, but with TrapSnapper, at least you can

make them less harmful.

List of Trap Numbers:

2 - Bus Error

externally generated signal from Amiga Hardware

3 - Address Error

word or longword instruction attempted at odd address

4 - Illegal Instruction

a meaningless op-code was encountered

5 - Division by zero

the source operand of a DIVS or DIVU instruction was zero

6 - CHK instruction

operand of a CHK instruction fell outside of specified bounds

7 - TRAPV instruction

overflow (V) set when a TRAPV instruction was executed

8 - Privilege violation

a supervisor-state operation was attempted in user state

9 - Instruction trace

generated after each instruction while in trace mode

10 - 1010 Emulator

an op-code starting with the bit-pattern 1010 was encountered

11-1111 Emulator

an op-code starting with the bit-pattern 1111 was encountered

32 through 47 - TRAP instructions

TrapSnapper From The Transactor

This program shows an easy way to handle CPU exceptions from

a C program. Just include the structs below, and put your error

message and/or cleanup code in the function CleanUpAndExit().

call SetTrap() to initialize the trap handler. You can get the

trap number as shown in this example. (c) 1987 AHA!

include <exec/tasks.h>

struct Task *MyTask, *FindTask();

struct TrapData}

long TrapNum;

int (*Code)();

USHORTMLcode[13];

/• trap number will be stored here •/

/• pointer to user trap handler function •/

/• trap-handler machine code goes here »/

struct TrapData MyTrap = }

0,

NULL, /* clean-up routine address - will be filled in later »/

0x201 F, /• MOVE.L (A7) + ,DO »/

0x41 FA, 0xFFF4, /.LEA .-$A,A0 «/

0x2080, /. MOVE.L D0,(A0) ./

OxBOBC, 0x0000, 0x0003, /. CMP.L #3,D0 •/

0x6202, /. BHI.S . + 4 ./

0x504F, /»ADDQ.W #8,A7 «/

0x2F7A, 0xFFE8, 0X0002, /• MOVE.L errfunc(PC),2(A7) •/

0x4E73 /• RTE */

commented assembler code is below:

errnum: DS.L 1 ;belowcode will put trap number here

errfunc: DS.L 1 pointer to clean-up routine goes here

start: MOVE.L(A7) + ,D0 pull trap number off stack

LEA errnum,AO ;force PC-relative addr mode

MOVE.L D0,(A0) put trap # in errnum for C

CMP.L #3,DO ;check for bus or address error

BHI other ;other traps (4 or greater)

ADDQ #8,A7 ;skip extra info on stack

other: MOVE.L errfunc(PC),2(A7) point PC on stack to user routine

RTE ;exit from trap-handler

extern int CleanUpAndExit(); /• your clean-up function •/

main (argc, argv)

int argc;

char «argv[];

}
int n1, n2;

int 12, *I1 =1;

SetTrap(); /* set up trap handler */

if (argc I = 2)

}
printf(" Usage: °/os <n>\n", argv[0]);

exit (0);

{
n1 = atoi(argv[1] * •

/* if arg = 1 let's get an address error by referencing an odd address •/

if (ni ==1)

12 = .11;

/• if n1 is zero, we'll get a divide by zero trap •/

n2 = 100/n1;

printf(" 100 divided by %d equals %d\n", n1, n2);

SetTrap ()

/* initialize trap handler •/

}
MyTask = FindTask(OL);

MyTask->tc_TrapCode = (APTR)MyTrap.MLcode;

MyTrap.Code = CleanUpAndExit;

{

CleanUpAndExit ()

/* warn of error, free memory, close up everything, and exit •/

}
printf(" Hey - watch it! If I weren't a sophisticated\n");

printf(" Transactor program, I would have bombed out!\n");

printf(" (The problem was, I got a trap number °/old)\n", MyTrap.TrapNum);

exit(0);

The Transactor 7O July 1987: Volume 8, Issue Ol

Amiga Dispatches
by Tim Grantham, Toronto, Ontario

I'm sure that by now you have all pored over the numerous

articles describing the new Amiga 2000. I'm pleased to see that it

is pretty much as I described in this column several months ago,

with the exception of the lesser amount of RAM. I hope to have

an evaluation unit soon, and then I will file my own report. The

Amiga 500 (at $649 US) and the 2000 (at $1499 US) are

essentially the same machine as the 1000, with the same OS, the

same chips, and the same software. Only the packaging is

fundamentally different.

What I do find particularly intriguing about the 2000 are slots

that apparently will enable one to upgrade the machine to not

only faster CPUs like the 68020 and 68881, but also to newer

versions of the custom graphics chips. The latter, as I have

mentioned in previous columns, will provide access to larger

amounts of video RAM and higher resolutions.

Not much is known about the 500, except that it is intended to

provide competition for the Atari 1040 and is packaged in a very

similar style, with a built-in disk drive, non-detachable key

board and, for another $ 150 US, 1 meg. of RAM and a real-time

clock/calendar.

Where does this leave us 1000 owners? Commodore has said

that they will continue to make the 1000 as long as there is a

demand for it. Some fear this means we shall never see another.

However, Commodore has been saying the same thing about

the 64 for several years now, and that machine is still with us.

Software will not be a problem, for reasons mentioned above.

The only area of concern is hardware. Will third-party periph

eral providers abandon the 1000's 86-pin expansion bus for the

Zorro slots of the 2000? Certainly, Zorro cards are easier to

design than the external units needed by the 1000. No housing

is required, no power supply is required, no worry about FCC

and CSA RFI standards is necessary. But there are a couple of

factors in the 1000's favour.

First, Zorro card makers will be competing with Commodore;

makers of expansion units for the 1000 will not. Second, the 500

will have almost the same 86-pin expansion slot as the 1000:

the differences would involve only minor changes to 1000

expansion products - an incentive for manufacturers to main

tain their 1000 product lines. Finally, there are still 150,000

1000's out there - not a bad market. I think that, after some

shake-out, we will see plenty of products for the 1000 still

available. Furthermore, I believe we will see expansion boxes

for both the 500 and 1000 that will let one plug in Zorro cards,

and perhaps even the so-called Bridge and PC cards, designed

for the 2000.

I also believe there will be continuing demand for the 1000,

though obviously not as much as there has been. The detach

able keyboard and internal power supply are better than their

counterparts on the 500. And peripherals like the Genlock and

Digiview are currently only available for the 1000. Eventually

the 1000 will fade out of the picture, but certainly not in the

same fashion as such orphans as the PC Jr. or the 128K

Macintosh.

Software News

Dropping around at an Amiga dealer's store, I was surprised

again by the quantity and quality of the software available for the

Amiga. But even more will come along as the 500 opens up the

home market, and the2000 finds a niche for itself in the business

and scientific world.

At the Club-Amiga meeting here in Toronto, John Skeel, Vice-

President of marketing for Aegis Development, demoed their

latest products Sonix, Draw Plus, Aegis Animator II, and

Diga!. This last one is a terminal program using a proprietary

protocol that permits file transfers between two Amigas (each

running Diga!) while remaining in CHAT mode.

He also showed an extraordinary video tape of a 3D animated

sequence, every frame of which had been created on a 512K

Amiga 1000 using their new software. The program can draw a

frame in less than ten seconds, depending on the complexity of

the image. It can also, using an optional frame controller, record

each image on a VCR. The program uses overscan so that the

picture is not confined within the borders of the usual Amiga

screen, and can use fractal geometry to generate landscapes.

The Transactor 71 July 1987: Volume 8, Issue Ol

The artist describes the sequence in a text file. She can then test

the sequence in a preview animation mode that uses wire-frame

models. Once she is happy with the sequence, the solid three-

dimensional, 16-colour output is generated automatically. Skeel

said that the demo tape, which lasted about a minute, took 8

hours to generate from previously completed scripts. By my

estimation, that means that Amiga generated and recorded at

least 1800 frames in 8 hours. I wonder how many it could have

done with the 68020/68881 combination installed? The pro

gram is supposed to be available as you read this, for a cost of

about $300 US.

Deluxe Paint II from Electronic Arts is a significant upgrade to

the original DPaint. Besides being able to handle multiple

resolutions, it adds a unique ability to rotate a brush through

three dimensions. . . According to DJJAMES, a sysop on People-

Link's Amiga Zone, the OpenLibraryO function in 1.1 didn't

care what library version number you passed to it. Another

version of OpenLibraryO was created in 1.2 that fixed that bug

and it's called NewOpenLibraryO- . . Speaking of 1.2, mutual

exclusion of gadgets is still not implemented. R.J. Mical suggests

a roll-your-own approach that entails removing the gadgets

involved, making the state changes in the gadget structures, and

then re-attaching the gadgets, using the 1.2 functions Remov-

eGListO, AddGListO and RefreshGList(). . . Larry Phillips of

Vancouver, mentioned two issues ago as a sysop on The Source,

is now a sysop on CompuServe's Amigaforum. He's a valuable

addition to a good team. . .

1 downloaded some terrific Public Domain software and Share

ware recently: Blitzfonts, by a gentleman named Hayes C.

Haugen, speeds up screen text output on the Amiga 2-3 times. I

have used it with Uedit and Scribble! to great effect. It's written

entirely in ML and uses up less than 4K of memory once

installed. Mr. Haugen is asking only a $ 10 donation. If you've got

it, send it. Another fine program being offered as Shareware is

Dave Wecker's ray-tracing software. This program can generate

stunning 320 by 400 HAM graphics. A PD assembler and C

compiler have also arrived on the scene. This is good news but I

anticipate a problem here. Both of these require the Amiga

include files to work. Those, however, are copyrighted by Com

modore and licensed to people like Lattice, Manx and Meta-

comco. Wouldn't it be nice of Commodore to offer these includes

to the general public, say for a nominal copying fee? Are you

listening, Commodore?

Speaking of languages, Manx has released version 3.4 of the

Aztec C compiler by Jim Goodnow. In addition to further

optimization of the compiler, it now fully supports scatter-

loading, 1.2 and the 68020/68881 processors. The prices have

also been significantly lowered: $199 for the personal version,

$299 for the developer's version and $399 for the commercial

version. TDI has also released a new version of their Modula-2

compiler, version 3.00.. . Ben Blish's SoftCircuits company has

lowered the price of their PCLO (Printed Circuit Board Layout)

software to $499. A greatly enhanced version called PCLO

Plus is now selling for $1024. All owners of the original PCLO

will have their copies updated to PCLO Plus for a nominal

charge. . .

Charlie Heath of BIX and MicroSmiths is heading up a group of

volunteers who want to replace all the BCPL-encoded compo

nents of AmigaDOS with equivalents written in assembly lan

guage. A number of the commands have already been done.

Meanwhile, rumour has it that Tim King of Metacomco, the

original programmer of AmigaDOS, is working on optimizations

that will permit the efficient use of hard disk drives, and the

folks at the Software Distillery are also working on improving

AmigaDOS. As I understand it, these involve no change in

Kickstart, only in Workbench. . . T£X, the sophisticated type

setting system developed by Donald Knuth of Stanford Univer

sity, is available for the Amiga from N2 Computer Consultants,

P.O. Box 2736, College Station, TX 77841. . .

Finally, a word about Transformer. Those of us who use it

know by now that it will not work under 1.2. It apparently uses a

bug in 1.1 to load that was fixed in 1.2. Commodore now has in

their hands a 1.2 version of Transformer and will hopefully

upgrade us Transformer 1.1 owners ASAP. Do you remember

Commodore's promises to provide a hardware Accelerator that

would speed up operation of the Transformer to something

approaching full speed? Well, apparently somebody in market

ing had the bright idea that making a full-sized clone one stuck

on the side would make them a lot more money. Thus the

SideCar was born, and the Accelerator accelerated to an early

grave. Meanwhile, Simile, the company that wrote the Trans

former, was told to take a hike. CBM will not allow them,

apparently, to sell a version of the software that would offer

colour and graphics. This is one of the few Amiga products that

Commodore has reneged on (though some were a long time

coming) and we and Simile certainly deserve better treatment.

Hardware News

There are two hardware products for the Amiga worthy of

special mention: the Insider internal 1 meg. RAM board; and

Byte-by-Byte's PAL Jr. expansion box.

The Insider mounts inside the Amiga and attaches directly to the

68000 bus. In addition, it is configured to lie at the $C0000000

address reserved under 1.2. It is true FAST RAM with no wait

states, unlike some other internally-mounted RAM expansions

that piggyback on to the video memory chips. Because it lies in

the reserved area of memory, a full 8 megabytes can still be

added on the expansion bus, bringing the total possible amount

of memory on the Amiga to 9.5 Megabytes. The unit is one of the

few memory boards that will work with the Sidecar.

Some have expressed concern that it may prevent other units on

the expansion bus from working because the Amiga bus is rated

only for one 'F' load, which would be absorbed by the Insider.

However, the manufacturers say that they have buffered all

except the data lines. Larry Phillips has one installed in his

machine and says he has had no trouble driving an external

memory board or the Sidecar. He feels there is probably enough

leeway in the specs to allow units on the expansion bus to

coexist with the Insider. I must admit, it would be very nice to

have a 1.5 meg. Amiga with a battery-backed clock/calendar

that doesn't have all that junk hanging off the side. It is available

The Transactor 72 July 1987: Volume 8, Issue Ol

from Michigan Software, 43345 Grand River, NOVI, MI 48050 at

a cost of $349.95. The telephone number is 313-348-4477.

Byte-by-Byte have announced that they have completely rede

signed their PAL Jr. expansion box. It now sits on top of the

Amiga 1000, is a little under three inches high, and provides a

20 meg. ST506 hard disk with a DMA controller, a board with 1

meg. of RAM, and an empty slot for another Zorro board. It

provides its own power with a 90-watt supply on board. Buyers

can upgrade the controller board to include a SCSI controller as

well. The supplied RAM, like the Insider, resides at the

$C0000000 address. A clock is also standard equipment. The

unit costs $1495 US and can only be ordered directly from Byte-

by-Byte.

As a little postscript, it is interesting to note that the custom chip

each manufacturer inserts into their expansion product to en

able it to autoconfigure, also contains a product code and a

manufacturer's ID*. Thus, software can check to see exactly

what hardware is on the bus, and adapt accordingly, without the

user having to go through lengthy installation procedures.

Report from a Sunday programmer

I'd like to finish up this edition of Amiga Dispatches with a

recounting of my Amiga programming efforts (so you can stop

here if it's only product news you want to read about). Not that

I'm any kind of programming avatar - quite the opposite. But my

experiences may provide insight for some and amusement for

others.

In case you don't know, I ascended from the lowly depths of the

65xx world to the lofty heights of the Amiga. I only just recently,

and reluctantly, sold my C64 system. I still view the 64 as a very

fine computer: I don't think there is a better machine for anyone

who wants to learn the basics. It helped bring about a revolution

in the way the average citizen perceived computers: not as

modern metal Minotaurs tended by priests in white shirts and

black ties but rather as extensions of themselves - brain trans

portation, if you'll permit me.

But back to the Amiga.

It's been a year now and I still get a gee-whiz kick out of it. But I

wasn't content to be only a user. I wanted to see what / could

make it do. I felt reasonably confident. After all, I could find my

way around the 64 in BASIC and 6510 machine language. The

Amiga would simply be the next step up the ladder. Fools rush

in. . .

I did not even try to learn AmigaBASIC. While it was apparent

that it was a much more powerful BASIC than any on other CBM

machines, its editor was clumsy - a shame, considering that the

Amiga was supposed to be a friendly machine. Furthermore, if

you wanted to multitask with other AmigaBASIC programs, you

had to run other copies of AmigaBASIC. Finally, while it was

possible to call the system routines from AmigaBASIC, it was

hardly the ideal way of using them. It was clear that this

implementation of BASIC had been stuck onto the Amiga like

training wheels on a Harley-Davidson. All right, so I exaggerate

a little - more like a cow-catcher on Porsche.

The reality was that almost all software development was being

done in C, a language I had only recently heard of, and the rest

in 680xx machine language. Most of the operating system had

been written in C and the documentation from Commodore

assumed a C environment. I felt that it was perhaps propitious

that the Amiga was making me seriously consider learning this

language: C is supposed to be the language of the eighties. What

was true of the Amiga was increasingly true for microcomputers

in general: C provided a language that significantly reduced

development time while providing most of the speed of machine

language. So I obtained a copy of Abacus' Super-C for the 64,

and the well-known C Primer Plus, published by The Waite

Group, and began.

It wasn't easy. Forget the articles that try to use BASIC as a

springboard to C - they are simply too different. First and

foremost, C is a structured language. This isn't just another

buzzword. If you have come from a linear programming envi

ronment, like CBM BASIC and ML, you'll run smack into a

completely different way of thinking. I think I must have added

new cortical folds to my brain, trying to twist my linear thought

processes around to accommodate the modularity of C. I can't

tell you how often I longed to use a goto, especially in loops.

(goto is implemented in C, but using it is considered slumming

by purists. I decided that, just for the mental discipline, I would

also avoid using it.)

Furthermore, C is emphatically not a friendly language. It was

designed by programmers for programmers. As such, it is a mid-

level language that combines the sophisticated data structure

handling capabilities and modularity of a high level language

with the efficiency and flexibility of assembly language. If you

have some experience with assembly language, you will indeed

feel more at home. But you had better comment your source

code heavily if you want anybody, including yourself, to under

stand what you've written six months down the road.

Is it worth the trouble? Absolutely. Once you've wrenched your

brain around to C's way of thinking, you'll feel right at home

programming the Amiga. C was written in conjunction with, and

as an aid to, the development of Unix. The Amiga OS has many

things in common with Unix - multitasking, message ports,

system structures - and C is becoming the lingua franca of

multitasking operating systems. Not to mention the fact that

nearly all the examples given in the official Amiga docs are in C.

Assembly language is not out of the question on the Amiga.

680xx ML is much more powerful and orthogonal than 65xx

ML, but they both have linearly addressed memory and similar

opcodes. The jump from 65xx to 680xx will not leave your head

spinning. And it has the advantage of producing smaller, tighter

code than C. Indeed, the Manx Aztec C compiler for the Amiga

actually produces assembly language on its first pass, which it

then assembles on the second pass. You can examine the

assembly language object code if you wish. If you wish to learn

680xx machine language, I can recommend the 68000, 68010,

The Transactor 73 July 1987: Volume 8, Issue Ol

68020 Primer by Stan Kelly-Bootle and Bob Fowler, also pub

lished by The Waite Group.

There are many other languages for the Amiga but few provide

the tight interface to the Amiga libraries that C does.

Learning C, though, had only brought me half way. There was

still the multitasking, multiprocessing Amiga OS to learn.

Bear with me a moment while I conjure up the following

scenario: You sit behind a desk in a room. In that room are a

giant screen, a pair of speakers, one of those pneumatic systems

that lets you send and receive office memos in little cylinders,

and a locked door with a mail slot. (I leave it to you to add

whatever companions or libations you need to feel at home.) The

screen is black, containing only the words 'Guru Meditation' in

red letters. No sound issues from the speakers.

All around you, in the floors above and below, and outside that

locked door, you can sense an enormous amount of activity.

Who knows how many other rooms there are, with other

individuals behind other desks, busily receiving, processing and

sending memos and forms. And why?

Your head snaps up, for the image on the screen has changed.

Now it is filled with a familiar picture of words dropping down

from a bar at the top of the screen, and one of the words is

highlighted. Suddenly, with a hollow THWONK!, a cylinder pops

out of the incoming message tube. You open it. Inside is a piece

of paper, a small form actually, labelled 'IntuiMessage' at the top,

and someone, or something, has filled in the various blanks

below. One jumps out at you: in the blank labelled 'Class', the

word 'MENUPICK' is printed.

Now you know what it is you must do. You make a copy of the

IntuiMessage for your records, initial it, mark 'Return to Sender'

on it, and stick it into the outgoing message tube. With a muffled

THUPP!, it disappears. Quickly, you fill out a directive labelled

'AutoRequest'. You know that, as long as you supply every

required detail, and submit every required form, this hyper-

efficient bureaucracy will follow your instructions to the letter.

You hurry over to the door and pop the directive through the

slot. Even as you turn away, another image appears on the

screen, a rectangle containing the message 'Are you sure?' and

two smaller rectangles that say 'OK' and 'Cancel'. Then the

screen goes black once more, 'Guru Meditation' appears in red

letters, and you know that soon another cylinder will pop,

THWONK!, out of the incoming message tube.

As you head back to your desk, to spend your allotted time filling

out forms, receiving forms, processing messages, and sending

directives, you wonder who or what is outside that locked door.

For you sense that, if you knew how, you might be able to fill your

room with ever more complex images and sounds, or control the

images and sounds in someone else's room.

This scenario, fanciful though it is, is very much like what

programming in the Amiga's multitasking environment is like.

Even some of the terminology is the same: one 'submits' an

initialized structure (completed form); one 'processes' messages

received in the MsgPort (message tubes) from MsgPorts in other

tasks (rooms). Only the Amiga OS is infinitely more efficient and

integrated than the most highly automated, networked and inte

grated office system could ever be.

Working in that single room is analogous to a programmer who

simply wants to use the interface that Intuition provides for his or

her program. It's not necessary to know what sends those

messages, for example, only what response is required to fulfill

the programmer's objectives. If the programmer needs to know or

control what is going on in other rooms - tasks, 1 mean - they

must open that locked door and go exploring.

A program that lets you do just that is the Structure Browser

program written by Chris Zamara and Nick Sullivan and pre

sented in last month's Transactor. Using SB is almost like playing

one of those text adventures where you explore the rooms of a

huge castle, and find out where all the secret tunnels are that link

one room with another. Only it's better than that because the

Amiga's display, in the case of the Intuition structures, provides a

map of the journey.

Using SB proved to be a major watershed in my understanding of

the Amiga OS. I think it would be the same for anyone wishing to

gain an intuitive grasp of how the various system structures (there

are nearly 100 of them) are connected to each other, and how the

display reflects their contents. The current version of SB supports

only the Intuition structures. I hope others will add the other

libraries.

Other very helpful utilities for programming on the Amiga include

egad, the PD gadget editor produced by John Draper et al; Uedit,

a very fine programmable Shareware text editor written by Rick

Stiles; and Charlie Heath's getfile file requester. I have used all of

these in my first major effort, Keep vl.O, which hopefully will be

available on the first Transactor Amiga disk. Keep is a program

that is descended from excise, a program written in BASIC and

ML for the 64 and the PET 8032 by Nick Sullivan. It lets one

extract selected messages from a file of messages downloaded

from one of a number of information services - simple but useful.

Some of the books I found useful in my programmer's progress

were the Amiga Programmer's Guide from Compute! Publica

tions; the Amiga Programmer's Handbook by Eugene Mortimer,

published by Sybex; and of course, the best of them all, the Amiga

Intuition Reference Manual by R.J. Mical and Susan Deyl, pub

lished by Addison-Wesley. The Sybex book is noteworthy be

cause, to my knowledge, it and the new edition of Bantam Books

AmigaDOS Reference Guide are the only books that provide

information about 1.2.

Before I bid you adieu, let me remind you that any comments or

questions about this column, can be sent to me on PeopleLink

(AMTAG) or on CompuServe (71426,1626). I can't promise I'll

reply but I will certainly do my best.

exit(l);

The Transactor 74 July 1987: Volume 8, Issue 01

Computoons

"He's heavily into computer animation. . .» DRAT ITS ANOTHER BUG IN IM PROGRAM

do

4

The Transactor 75 July 1987: Volume 8, Issue Ol

News BRK

Submitting NEWS BRK Press Releases

If you have a press release you would like to submit for the NEWS BRK column,

make sure that the computer or device for which the product is intended is

prominently noted. We receive hundreds of press releases for each issue, and

ones whose intended readership is not clear must unfortunately go straight to the

trash bin. It should also be mentioned here that we only print product releases

which are in some way applicable to Commodore equipment. News of events

such as computer shows should be received at least 6 months in advance.

Transactor News

New Address and Phone Number

Please note that The Transactor now has a new address:

The Transactor

501 Alden Road

PO Box 3250

Markham Industrial Park

Markham, Ontario, Canada

L3R6G6 (416)737-2786

The address is actually just a box at our local post office. When construction is

complete at our new office, we'll publish the address there, hopefully by next

issue. We also have a new Buffalo address that should be on the back of our mail

order card, but wasn't available at the time of this writing.

Subscription Intersection Set

On closer inspection we have found the overlap of TPUG members and

Transactor subscribers to be about 1000, not 400 as previously reported. During

our first comparison, many went undetected due to differences between the two

mail list databases. It seems that a computer just can't tell if two names are the

same when a middle initial is included in one but not the other. To compensate, a

program was written that bordered on artificial intelligence. However, it's still

possible that some matches were missed, especially if the postal/zip code was

different in the two databases. So, if you're a TPUG member AND a Transactor

subscriber, and you're still getting two issues, please let us know and the two will

be combined.

The matches that were found, plus any that we've been informed of by mail,

have all been dealt with as of this issue. Any Transactor subscribers that were

also TPUG members have had their TPUG memberships extended by the

number of issues remaining in their Transactor subscriptions. If you fall into this

"intersection set", your mailing label should show this extension.

Since you'll now only be receiving magazines from TPUG, your renewal notice

will also come from TPUG. Naturally you should renew to one OR the other.

Renewing to both will mean you'll start getting two magazines all over again,

and after we get this situation sorted out, we'd like it to be eliminated for good.

The fact is, we could make a career outa this. So, since all the existing

overlapping memberships/subscriptions have been combined and extended,

any and all new ones will get two magazines; one with an insert from TPUG, and

another without an insert from us. This applies mainly to those who are

currently Transactor subscribers and are not TPUG members, but considering

becoming one.

If you're renewing a subscription, or subscribing for the first time, you'll have the

choice of getting the regular magazine (no TPUG insert) or becoming/remaining

a TPUG member, and getting the 8-page TPUG insert as part of your Transactor.

If you want just the Transactor, use the insert card in the magazine to subscribe/

renew. If you want the insert as well, send your TPUG renewal form to TPUG

(they'll send it to you before your current membership expires) or, if you're not

currently a member, contact them about becoming one. Please do NOT use the

postage paid Transactor subscription card for TPUG memberships. TPUG and

Transactor are at seperate addresses, and applying to one via the other will delay

processing unecessarily.

The current cost of a TPUG 'associate' membership is $25.00 (US/C). For that

you get the insert plus access to TPUG's large public domain disk library, neither

of which comes with the $ 15.00 (US/C) subscription to the Transactor.

Disk Subscription Notes

Many of those who fall into the intersection set described above also have

Transactor Disk subscriptions. These will still be handled by us, and when they

expire, a notice will be sent. Some have pointed out that, "we would find it mush

easier to renew to both if they were to both expire at the same time. Now that our

memberships/subscriptions have been combined, the magazines end at one

issue and the disks at another". Good point. What we suggest is this: when you

renew your disk subscription, add $7.50 (US/C) for every disk necessary to

make your disk and magazine subscriptions concurrent.

Free Transactor T's with Mag+Disk Subscription

Subscribe or renew to a combination magazine and disk subscription, and we'll

send you a free Transactor T-Shirt! You save 29 % off the magazines, 16 % off the

disks, and get a Transactor T worth $13.95 ($17.95 if you order the jumbo size!)

The T-Shirts come in 5 sizes (red only), with a 3-color screen featuring Duke, our

mascot, dressed in a snappy white tux, standing behind the Transactor logo done

in yellow with black "3-D" borders. The screen was done using a special "super-

opaquing" process that cost us quite a bit more than those decals that crack and

fade. Mine has been through the wash at least 25 times now, and it still shows

virtually no sign of wear due to "washing machine punishment".

Subscriber Mail Orders

If you're a Transactor subscriber, and you're using the postage paid order card to

purchase items other than a subscription, please write your subscriber number

on the card. This way your order is recorded along with your subscription

information in our database.

Customs/Duty on Hardware Products

Shipping hardware to the US from Canada often incurs customs and/or duty

charges at the destination. Some of our suppliers are in the US and for US orders

processed by us, we have the items shipped direct without bringing them into

Canada. However, other hardware items manufactured in Canada and sent to US

destinations may arrive with a surcharge payable. The Transactor cannot be

responsible for these charges. This may also add to delivery delays. If you've

placed an order for a hardware item and it seems to be taking a rather long time

to arrive, it may be sitting at your local customs office, in which case a notice is

probably on its way for you to come pick it up.

Transactor Mail Order

The following details are for products listed on the mail order card. If you have a

particular question about an item that isn't answered here, please write or call.

We'll get back to you and most likely incorporate the answer into future editions

of these descriptions so that others might benefit from your enquiry.

■ Moving Pictures - the C-64 Animation System, $29.95 (US/C)

This package is a fast, smooth, full-screen animator for the Commodore 64,

written by AHA! (Acme Heuristic Applications!). With Moving Pictures you use

your favourite graphics tool to draw the frames of your movie, then show it at full

The Transactor 76 July 1987: Volume 8, Issue Ol

animation speed with a single command. Movie 'scripts' written in BASIC can

use the Moving Pictures command set to provide complete control of animated

creations. BASIC is still available for editing scripts or executing programs even

while a movie is being displayed. Animation sequences can easily be added to

BASIC programs. Moving Pictures features include: split screen operation - part

graphics, part text - even while a movie is running; repeat, stop at any frame,

change position and colours, vary display speed, etc; hold several movies in

memory and switch instantly from one movie to another; instant, on-line help

available at the touch of a key; no copy protection used on disk.

■ Volksmodem 12, w/cable, and CIS Intro-Pack, $329.00 (Cdn), $199 (US)

Not only do you get the Volksmodem 12 (DOC approved), but you get the cable

at no extra charge (the C64 cable goes directly onto the User Port, and the RS232

cable is for any standard RS232 DB-25 female connector) Plus you'll receive a

free CompuServe Intro-Pak which contains a User ID, a Password, and $ 15.00 of

connect time! The Volksmodem 12 will work at 300 or 1200 baud, and is "Hayes

compatible" so it will work with virtually any terminal software because the

commands are controlled by you from the keyboard - just type "AT" (for

ATtention) and follow with any of several easy-to-remember commands - no

special POKing or elaborate dialing routines necessary! (I've been using a Hayes

for almost 3 years, and my Volks for over a year -1 love them both! - KJH) It

comes with (get this) a 5 year manufacturer's warranty on parts and labour! The

modem is shipped insured via UPS at no extra charge.

■ Intelligent I/O Interface Cards

■ BH100 I/O Interface Card w/documentation $129 (US), $199 (Cdn)

■ BH100-AD8 8-Channel A to D Conversion Module $45 (US), $69 (Cdn)

■ BH100 Beginners Course $ 159 (US), $239 (Cdn)

■ BH100-S Security System $25 (US), $39 (Cdn)

These products from Intelligent I/O will make great Christmas gifts! And if

you've been wondering what to do with that VIC 20 that doesn't get much

attention anymore, they're perfect! If you've ever wanted to start doing some real

world interfacing, real easy, and inexpensively, then these items are ideal. The

boards they sent us for evaluation are currently watching for floods in my

basement. Too bad 1 didn't think of it before the flood - it only took about an hour

using spare parts 1 had lying around - no resistors, no capacitors, just two strips

of metal, a piece of styrofoam, a brick, and about 20 feet of wire that was also

collecting dust. Once I get time, I intend to make it do some more surveillance

since only one channel is currently in use. And the program to do it? A quick and

messy 5 lines! Since the boards are memory mapped through the cartridge port,

a PEEK is all you need! The 22 page manual is clear and concise. All products

come with a 90 day manufacturer's warranty. Shipped insured via UPS at no

extra charge.

■ Transactor T-Shirts, $13.95 and $17.95 (US/C)

As mentioned earlier, they come in Small, Medium, Large, Extra Large, and

Jumbo. They're 13.95 each, $17.95 for the Jumbo. The Jumbo makes a good

night-shirt/beach-top - it's BIG. I'm 6 foot tall, and weigh in at a slim 150 pounds

- the Small fits me tight, but that's how I like them. If you don't, we suggest you

order them 1 size over what you usually buy. The design is screened using a

"super-opaquing" process so they wear much longer than your ordinary screens

and iron-ons.

■ The Transactor Book of Bits and Pieces #1, $14.95 (US/C)

Not counting the Table of Contents, the Index, and title pages, it's 246 pages of

Bits and Pieces from issues of The Transactor, Volumes 4 through 6. Even if you

have all those issues, it makes a handy reference - no more flipping through

magazines for that one bit that you just know is somewhere... Also, each item is

forward/reverse referenced. Occassionally the items in the Bits column ap

peared as updates to previous bits. Bits that were similar in nature are also cross-

referenced. And the index makes it even easier to find those quick facts that

eliminate a lot of wheel re-inventing.

■ The Tr@ns@ctor 1541 ROM Upgrades, $59.95 (US/C)

You can burn your own using the ROM dump file on Transactor Disk *13, or you

can get a set from us. There are 2 ROMs per set, and they fix not only the SAVE®

bug, but a number of other bugs too (as described in P.A. Slaymaker's article, Vol

7, Issue 02). Remember, if SAVE® is about to fail on you, then Scratch and Save

may just clobber you too. This hasn't been proven 100%, but these ROMs will

eliminate any possibilities short of deliberately causing them (ie. allocating or

opening direct access buffers before the Save).

■ The Micro Sleuth: C64/1541 Test Cartridge, $89.95 (US), $129.95 (Cdn)

This cartridge, designed by Brian Steele (a service technician for several schools

in southern Ontario), will test the RAM of a C64 even if the machine is too sick to

run a program! The cartridge takes complete control of the machine. It tests all

RAM in one mode, all ROM in another mode, and puts up a menu with the

following choices:

1) Check drive speed

2) Check drive alignment

3) 1541 Serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

A second board, that plugs onto the User Port, contains 8 LEDs that lets you zero

in on the faulty chip. Complete with manual.

■ Inner Space Anthology $14.95 (US/C)

This is our ever popular Complete Commodore Inner Space Anthology. Even

after a year and a half, we still get inquiries about its contents. Briefly, The

Anthology is a reference book - it has no "reading" material (ie. "paragraphs").

In 122 compact pages, there are memory maps for 5 CBM computers, 3 Disk

Drives, and maps of COMAL; summaries of BASIC commands, Assembler and

MLM commands, and Wordprocessor and Spreadsheet commands. Machine

Language codes and modes are summarized, as well as entry points to ROM

routines. There are sections on Music, Graphics, Network and BBS phone

numbers, Computer Clubs, Hardware, unit-to-unit conversions, plus much

more... about 2.5 million characters total!

■ AX 1000 Amiga 1 MEG RAM Box $729.00 (+$100 S&H) (US),

$1035.00 (+$25 S&H) (Cdn)

■ AX2000 Amiga 2 MEG RAM Box $899.00 (+$ 100 S&H) (US),

$1276.00 (+$25 S&H) (Cdn)

The AX2000 adds 2 Megabytes of "fast" RAM to the Amiga, allowing more tasks

to run in the system at once, or for use as a fast RAM-drive. The unit plugs into

the expansion connector on the side of the Amiga and duplicates the connector

for other devices to plug into. Up to two RAM boards may be plugged in together

(limited by the Amiga'a power supply), adding 4 Megabytes. The box has "auto-

config", so with Kickstart 1.2 the RAM will automatically be added to the system

when it is booted. If you are using Kickstart 1.0 or 1.1 (no auto-config), you can

use the program included with the AX2000 to add the memory to the system,

and change your startup-sequence to automatically add the memory on power-

up. Standard expansion bus architecture was used in the design of the AX2000,

ensuring compatability with all peripherals and operating system releases. The

unobtrusive steel box is the same height and colour as the Amiga, and snugs up

to the side without taking up much extra space. The unit is built tough and comes

with a 1 year manufacturer warranty.

This seems to be the most highly-recommended Amiga RAM board, and the first

one to actually be available, so we're selling it here at The Transactor. You can

order the AX2000 or the 1-Meg AX1000 from the subscription form in this issue.

Shipping and Handling to the USA. is via courrier and includes all customs

clearance, or you can opt to clear shipments yourself and have it shipped

"collect".

Superpakl.O C64

Pocket Writer C64

Pocket Planner C64

Pocket Filer C64

Superpakl.O C128

Pocket Writer C128

Pocket Planner C128

Pocket Filer C128

$49.95 (US),

$29.95 (US),

$29.95 (US),

$29.95 (US)

$59.95 (US)

$39.95 (US)

$39.95 (US)

$39.95 (US)

$59.95 (Cdn)

$39.95 (Cdn)

$39.95 (Cdn)

$39.95 (Cdn)

$69.95 (Cdn)

$49.95 (Cdn)

$49.95 (Cdn)

$49.95 (Cdn)

The Transactor 77 July 1987: Volume 8, Issue OT

■ Pocket Dictionary $14.95 (US), $19.95 (Cdn)

Version 2.0 of the software trio from Digital Solutions is now in production. The

new packages include both the 64 and 128 versions on the same disk. Each 2.0

Pocket package will sell for $59.95 (US), or $84.95 (Cdn). A Superpak will

include all three for $99.95 (US) or $139.95 (Cdn). The Pocket Dictionary is still

$14.95 (US), $19.95 (Cdn). However, they won't be available from us until next

issue.

Version 1.0 is still available, and at terrific prices! The 64 and 128 versions still

come in separate packages, but the real deal is the special price for all three. The

C64 Superpak is $49.95 (US) or $59.95 (Cdn). Cl28 Superpaks are $59.95 (US) or

$69.95 (Cdn). To top it off, we'll throw in the Pocket Dictionary program for free!

If you average the price of all four, it comes to less than the price of two!

■ The TransBASIC Disk $9.95 (US/C)

This is the complete collection of every TransBASIC module ever published up to

Volume 7, Issue 01. There are over 120 commands at your disposal. You pick the

ones you want to use, and in any combination! It's so simple that a summary of

instructions fits right on the disk label. The manual describes each of the

commands, plus how to write your own commands.

■ Super Kit 1541 $29.95 (US), $39.95 (Cdn)

Super Kit is, quite simply, the best disk file utility there is. No more losing those

valuable copy-protected originals (like what's happened to me twice too many

times). So far we've shipped over 600 Super Kits and orders continue to pour in.

■ Gnome Speed Compiler $59.95 (US), $69.95 (Cdn)

This compiler is for BASIC 7.0 on the Commodore 128.

■ Gnome Kit Utility $39.95 (US), $49.95 (Cdn)

Gnome Kit is a Commodore 128 utility with enhancements for the BASIC editor

(like Trace, Find, Renumber, Delete, Auto, etc.) as well as enhanced monitor

commands, and floppy disk monitor functions.

Transactor Disks, Transactor Back Issues, and Microfiche

All issues of The Transactor from Volume 4 Issue 01 forward are now available

on microfiche. According to Computrex, our fiche manufacturer, the strips are

the "popular 98 page size", so they should be compatible with every fiche reader.

Some issue are ONLY available on microfiche - these are marked "MF only". The

other issues are available in both paper and fiche. Don't check both boxes for

these unless you want both the paper version AND the microfiche slice for the

same issue.

To keep things simple, the price of Transactor Microfiche is the same as

magazines, with one exception. A single back issue will be $4.50 (US/C) and

subscriptions are $15.00 (US/C). The exception? A complete set of 18 (Volumes

4, 5, and 6) will cost just $39.95 (US/C)!

This list also shows the "themes" of each issue. "Theme issues" didn't start until

Volume 5, Issue 01. The Transactor Disk *1 contains all program from Volume 4,

and Disk #2 contains all programs from Volume 5, Issues 1-3. Afterwards there

is a separate disk for each issue. Disk 8 from The Languages Issue contains

COMAL 0.14, a soft-loaded, slightly scaled down version of the COMAL 2.0

cartridge. And Volume 6, Issue 05 published the directories for Transactor Disks

1 to 9.

■ Vol. 4, Issue 01 (■ Disk 1) ■ Vol. 4, Issue 04 - MF only (■ Disk 1)

■ Vol. 4, Issue 02 (■ Disk 1) ■ Vol. 4, Issue 05 - MF only (■ Disk 1)

■ Vol. 4, Issue 03 (■ Disk 1) ■ Vol. 4, Issue 06- MF only (■ Disk 1)

■ Vol. 5, Issue 01 - Sound and Graphics (■ Disk 2)

I Vol. 5, Issue 02 - Transition to Machine Language - MF only (■ Disk 2)

■ Vol. 5, Issue 03 - Piracy and Protection - MF only (■ Disk 2)

■ Vol. 5, Issue 04 - Business & Education - MF only (I Disk 3)

■ Vol. 5, Issue 05 - Hardware & Peripherals (■ Disk 4)

■ Vol. 5, Issue 06 - Aids & Utilities (■ Disk 5)

■ Vol. 6, Issue 01 - More Aids & Utilities (■ Disk 6)

I Vol. 6, Issue 02 - Networking & Communications (■ Disk 7)

I Vol. 6, Issue 03 - The Languages (■ Disk 8)

I Vol. 6, Issue 04 - Implementing The Sciences (■ Disk 9)

I Vol. 6, Issue 05 - Hardware & Software Interfacing (■ Disk 10)

I Vol. 6, Issue 06 - Real Life Applications (■ Disk 11)

I Vol. 7, Issue 01 - ROM / Kernel Routines (■ Disk 12)

I Vol. 7, Issue 02 - Games From The Inside Out (■ Disk 13)

I Vol. 7, Issue 03 - Programming The Chips (■ Disk 14)

I Vol. 7, Issue 04 - Gizmos and Gadgets (■ Disk 15)

I Vol. 7, Issue 05 - Languages II (■ Disk 16)

I Vol. 7, Issue 06 - Simulations and Modelling (■ Disk 17)

I Vol. 8, Issue 01 - Mathematics (■ Disk 18)

Industry News

The following items, compiled by Astrid Kumas, are based on press releases

recently received from the manufacturers. Please note that product descriptions

are not the result of evaluation by The Transactor.

National Computer Conference 1987

This announcement is to remind all readers of the National Computer Confer

ence (NCC'87), which will be held in McCormick Place, Chicago, IL on June 15 -

18,1987. The National Computer Conference provides a forum where significant

developments and trends in technology are announced, discussed and dis

played. NCC program includes both exhibits and presentations. For more

information contact:

NCC '87

AFPIS

1899 Preston White Dr.

Reston.VA 22091

l(800)NCC-1987

4040 Drive Internals

Depending on reader response, a book could soon become available that

uncovers, for the very first time, all inner details of the Commodore 4040 drive.

Within this vast tome of knowledge will be found an in depth and documented

look into the Floppy Disk Controller RAM and ROM, the Interface Processor

RAM and ROM, plus theory on how it all fits together. A useful book for specific

occasions. The book is close to completion right now, but reader response is

required to determine if full production would be worth while. If you are at all

interested, and would like to be kept informed of the book's progress, then send a

note today to the following address. If the 4040 book is successful, then an 8050,

8250,9060 and 9090 will follow.

Hillaire Gagne

1074 Webbwood Drive

Sudbury, Ontario, Canada

P3C-3B7

GEOS Programming Guide

The OpCode Factory will be offering a technical programming guide to GEOS

during the Spring of 1987. If you are interested in having more information on

GEOS please send your name, address, and phone number to David Martin in

care of:

The OpCode Factory

1417 South Heron Drive

Seabrook, Texas, 77586

New Commodore Business Magazine

Money Machine is a new Commodore magazine introduced at the last LA

Commodore Show. It is targeted at Commodore 64, 128 and Amiga owners who

are using their computers for home applications and/or for small or home

business management.

The Transactor 78 July 1987: Volume 8, Issue Ol

Money Machine is a bi-monthly magazine that retails for $3.95 US per copy in

the stores, and is distributed by:

Redwood Distributing

P.O. Box 6609

San Mateo, CA 94403

(415)579-5506

Subscriptions are available from the publisher at the rate of $16.00 US for six

issues. Contact:

Paula Vineyard

P.O. Box 2618

2142 E. Silver Springs Blvd.

Ocala, FL 32678

(904)622-1022

Genealogy Software from ByteWare

ByteWare has been known for developing genealogy software for Commodore

computers. Their product, designed to ease the genealogist's record keeping

tasks, was originally created for the C-64. Later, versions for Plus/4 and C-128

computers were developed. Most recently, the manufacturer has announced the

release of the Genealogy package for the PET computers. Programs in both 4040

and 8050 formats are available.

For more information, sample sheets and prices for various programs, interested

genealogists should contact:

ByteWare

Maple City Software

906 West 6th Avenue

Monmouth, 1L 61462

The MailRoom v2.1 for the Commodore 64

Version 2.1 manages as many one-disk mailrooms as you may need, each with

up to five distinct mailing lists containing up to 2000 labels indexed by name, city

and ZIP code for 30-second retrieval of all matching labels. The user can define

up to five non-exclusive sub-lists per disk, with up to three mutually-exclusive

categories, for use in printing labels (in ZIP code order) or indices (by name, city

or ZIP); select labels from any combination of lists with wild-card (*) search

parameters; and enter listings first-name-first or last-name-first for first-name-first

labels.

The program automatically checks new entries for matching names or ad

dresses, allowing instant editing of an existing matching label with automatic

update of indices and supports wild-card functions for edit and delete oprations

or simple searches. With a second drive, The MailRoom will automatically

merge two mailing lists or allow selective merges with editing.

The MailRoom for the C64, $49.95 plus $3.00 shipping and handling; or demo

disk, $5.00. If Version 2.1 doesn't meet your needs, The DiskWorx will

customize field length, disk capacity, and other features to your specifications for

an additional $20.00. Specify address to be used for test label when ordering,

make checks payable to David Shiloh at

The DiskWorx

1011 Vallley River Way, Suite 155

Eugene, Oregon 97401

Spence XP BBS for C64 - $10

The Spence XP BBS is a public domain BBS program for the C64. The program

supports the 1650, Mitey Mo and 1670 modems. Features of the BBS are: 300/

1200 baud, 0-10 directories, message base with 1 -8 categories, bulletins, Punter

and Xmodem protocol, runs in basic with ML routines, selectable drive configu

ration as well as online sysop commands.

Although the program is public domain we can mail you a copy with our 18 page

manual. Send cheque or money order for $10 (Ontario residents add 7% PST)

payable to ConText Publishing:

Spence XP BBS

c/o ConText Publishing

3092 Danforth Ave. Suite D

Scarborough Ont.

M1L1B1

SpeedScript Updated for the C-128

SpeedPlus-128 from Lindon Enterprises converts a C-64 copy of SpeedScript

3.X into a full-featured 80-column C-128 version with 64K text memory and

20K erase buffer, all for use in 128 operating mode. The program also adds new

features to SpeedScript, including justification, 12-value assignable tab, 2-

column/2-side printing, word wrap toggle, selectable print-out, over 26 print

commands programmable with up to 16 values each, window screen preview of

documents for all margins and page lengths, secondary address change to "0"

or "7" while printing, insertion of text files within a document, screen display of

up to 26 help files from a single disk without loss of text in memory, changeable

command line and screen display character color, and adjustable screen display

of text for increased typing speed. SpeedPlus-128 comes with two help files: a

1986-87 calendar and a reference list of SpeedScript/SpeedPlus commands.

SpeedPlus-128 is available by mail order for $29.95 (US), including shipping and

handling charges, from:

Lindon Enterprises

P.O. Box 773

Elm Grove

WI53122

Disk-2-Disk from CCS

Central Coast Software announces Disk-2-Disk, which transfers C-64/C-128

files to and from AmigaDOS. (This disk-to-disk file transfer utility transfers SEQ,

REL and USR files to the Amiga.)

Disk-2-Disk supports the 1541/4040 and 1570/1571 disk formats including

1541 "Hippies". The program converts Commodore PET ASCII to AmigaDOS

standard ASCII and vice versa. Disk-2-Disk formats 1541 and 1571 diskettes,

runs under either the Intuition or CLI interfaces, supports AmigaDOS style wild

cards in file names, provides TYPE and DELETE (Scratch) commands and

permits renaming of files where file name restrictions occur.

Disk-2-Disk includes VALIDATE BAM and CHCK Disk utilities as well as a

BASDIF utility to find and flag dialect differences in BASIC files.

Disk-2-Disk requires a standard Amiga with an Amiga model 1020 external

5.25" disk drive. $49.95 US through CCS and Amiga dealers. For further

information, contact:

Central Coast Software

268 Bowie Drive

Los Osos.CA 93402

(805)528-4906

New Interface for C-64/C-128 and IBM PC

TecTrans-W.Guertzgen is the distributor for a new interface that allows connec

tion of C-64/C-128 computers to IBM PC computers, or to any other computer,

modem or printer with an RS232C interface. The interface, which is called

98084, is connected to the serial port of the C-64/C-128 and to the RS232C port

of the IBM computers. The data can be transferred from the C-64/128 computer

to the IBM computer or vice versa.

The interface comes with a 64 KByte buffer divided into a 32 KByte input buffer

and a 32 KByte output buffer. There are no DIP switches on board - all

adjustments for the interface are done by commands to an EEPROM into a non

volatile memory (the memory is programmable as often as the user likes).

The Transactor 79 July 1987: Volume 8, Issue Ol

Technical data: Baud rate: 225 to 57600. Databits: 7 or 8. Stopbits: 1 or 2.

Parity none, even, odd, Handshake hardware or XON/XOFF. Connectors: IBM

RS232 (DB25 female), Commodore serial connector. Power supply: from the

cassette port of the C-64/128 or a separate power supply ($15.00 US - optional).

The interface package contains all cables to the computers and instructions for

the user. The price for the product is $149.00 US (CA residents add tax 6.5%,

shipping charges in U.S. are $4.00 on all orders). More information is available

from:

TecTrans-W.Guertzgen

6925 Rosemead Blvd,

San Gabriel, CA 91775

(818)285-3121

The Microtroll

The Microtroll is the newest product from Slide Mountain Systems. It has been

described by the manufacturer as a "customizable, real world interface" de

signed to work with a C-64 or C—128 (in C-64 mode).

The Microtroll is both hardware and software exp'andable. The Microtroll can be

used to create home monitor systems, greenhouse control systems, robotics

systems, automated test equipment, laboratory test and data gathering systems,

manufacturing control systems or as an aid in teaching electronics.

The hardware consists of the main circuit board, a small interface board that

plugs into the computer's cartridge port, and an AC power supply.

The software consists of a nearly 8K Operating System of Basic and Machine

language routines, which auto-boots on power up. This program displays all

input and output info, allows control of input from the keyboard, and is designed

to link to user generated programs as well. Additional software is available on

disk - MATT'S Microtroll Tools, disk 1, which can be purchased for $5.00 US

from the manufacturer.

The Microtroll package includes extensive documentation. It can be ordered

direct from the factory for $180.00 US plus $5.00 shipping and insurance.

Microtroll carries a 90-day factory warranty on parts and labour for manufactur

ing defects. Payments should be made by cheque, money order, or COD. S.M.S.

notes that personal cheques will slightly delay delivery. The manufacturer can be

reached by calling or writing to:

Slide Mountain Systems

P.O. Box 6481

Colorado Springs, CO 80934

(303)449-4783

Command Center for Commodore computers

Ketek has announced a Command Center, a space-saving cabinet specially

designed for the C-64/128 and 64C computers. The Command Center consoli

dates a computer, two disk drives and a monitor into a compact enclosure,

keeping all cables hidden, out of sight and reach. Some features of the cabinet

include a main power control switch eliminating turning on/off all peripherals

separately, a cooling fan to prevent overheating, and a built-in A.C. power strip

with surge protection and line noise filtering. Other options available include a

cartridge port extension and a modular telephone plug with its own on-line/off

line switch. To order the Command Center, contact:

Ketek

P.O. Box 203

Oakdale, Iowa 52319

For fast service, call 1-800-626-4582 toll free. In Iowa call 319 338-7123.

DISK

Converts C64/C128 Files to the Amiga!
DISK-2-DISK " from Central Coast Software

makes it easy and convenient to transfer C64/C128

files to and from the Amiga. DISK-2-DISK programs

the Amiga model 1020 external 5.25" disk drive to

read and write 1541/4040 and 1570/1571 disk

formats including 1541 "flippies". You can even

format a 1541 or 1571 diskette on your Amiga!

DISK-2-DISK converts Commodore/PET ASCII to

AmigaDOS standard ASCII and vice versa. Use

DISK-2-DISK to transfer word processing text files

(such as PaperClip, SpeedScript and Pocket Writer)

to and from the Amiga for use with popular

Amiga word processors.

DISK-2-DISK includes a utility to find and flag

dialect differences between Commodore Basic and

Amiga Basic files.

DISK-2-DISK includes VALIDATE BAM and CHECK

DISK utilities. VALIDATE BAM verifies the directory

structure of the 1541/1571 diskette. CHECK DISK

reads every block of a 1541/1571 diskette to detect

diskette errors.

DISK-2-DISK sells for $49.95 plus $3 shipping
and handling. CA residents add 6% sales tax.

Telephone orders welcome. Dealer inquires invited.

Central Coast Software ™
268 Bowie Drive, Los Osos, CA 93402 805 / 528-4906

Trademarks: Amiga. AmigaDOS, Commodore-Amiga. Inc.; PaperClip. Batteries Included; Pocket Writer, Digital Solutions, Inc.; DISK-2-DISK. Central Coast Software.

The Transactor 8O July 1987: Volume 8, Issue Ol

Lincoln College

Commodore Computer Camp

with

JIM BUTTERFIELD
and other experts

July 19-25, 1987

Topics include:

• Amiga

• C-128

• Robotics

• Telecomputing

• Additional selected topics

For further information, contact:

Office of Continuing Education

Lincoln College

300 Keokuk

Lincoln, IL 62656

217/732-3155

EXPAND YOUR AMIGA

(No Soldering)

BY ONE MEGABYTE !
(1.000K or 1,000,000 Bytes)

With the

- The BEST Internal RAM expansion.

- One Megabyte of FAST Auto-Config RAM.

- No Wait States.

- Battery Backed-Up Clock/Calendar Chip.

- Compatible with Sidecar™.

- Compatible with Most other External RAM.

- One Year Warranty.

Suggested Retail $595.00 Canadian Funds

Canadian Distributor

DesignTech Business Systems Inc.
#304-850 Burrard Street

Vancouver, BC V6Z 2J1 Certified Cheque or MO

(604) 669-1855 Dealer Enquiries Invited

EXPAND YOUR
WITIIfIWVIU IV

PERFORM LIKE

Just plug in the Find Cartridge.
only $54.95i

Does NOT use existing memory

The first completely external operating system created specifically for
the Commodore 64, 64C, and 128 (in C64 mode).

Upgrades hardware and software

Takes the place of at least 6 separate devices, 1) Disk Turbo-6 times
faster loading and saving; 2) Preprogrammed Function Keys-eliminate

long, tedious command sequences

for many commands, 3) Extended
Machine Language Monitor-vvith
relocated load-scrolling up and

down, bankswitching, and more;

4) Printer Interface-prints all
Commodore graphics plus screen-
dump utility; 5) Basic Tool
Kit-Aiito Line Numbering, Delete
large program blocks with one

touch, Old recovers accidentally-deleted programs, Renumbering, Find,
Help debugs system, Disk Append adds new programs to existing files;
6) Make backup copies of any software program.

Other Convenient features
Freezer- »16 sub menus • color changes • 4 resets • centronics/serial

screendumps • print vector setting • reverse printing • stops and con

tinues almost every program • allows total backup to disk or tape
automatically • creates one file on disk or tape • freezes 4 to 6 times
faster than dedicated freezers • game killer
Screendump Capability-Prints low-res, high-res and multicolor •

prints full page • prints from games and more

Keyboard Extras-Delete parts of lines • move cursor •
operates your printer as a typewriter

BONUS! Additional 24K extra RAM
for basic programs

10 Day Money-back

Guarantee, Full
year warranty

SPECIAL!
Commodore to Centronics
printer cable-$19.95

Payments to:

H & P Computers

• Bank or Certified Check, Per-1
sonal Check, Money Order,
Visa or MasterCard

and C.O.D.

• Add S3.00 for shipping
and handling

• NJ and NY residents add

appropriate sales tax

• Dealer, distributor, user

group inquiries welcome

HEHNAi
COMPUTERS

OF AMERICA

154 Valley Street. South Orange, New Jersey 07079 (201) 763-3946

Thanks for the

2 MEG RAM EXPANSION

Comspec's second generation AX2000

RAM BOARD.

Software developers worldwide

have been using it for over a

year. Now so can you.

The AX2000 provides "fast"

RAM, giving you more room

for program and data

storage, faster program

execution and fewer time-

consuming disk accesses.

The AX2000 provides a full

2 Megabytes of memory

now.

The AX2000 is fully

compatible with all

standard Amiga products.

Some boards aren't.

The AX2000 is auto

configuring*. All you do

is plug it into your Amiga

and turn it on. Nothing

else is needed.

Full "pass through"

allows for complete

peripheral expansion.

It'll even survive a

"soft" reset.

'Using Workbench 1.2

Amiga is a registered trademark

of Commodore Business Machines.

HARD DISK

Finally, a hard disk drive for the

Amiga made to the same exacting

standards as the AX2000. It runs

on every voltage from 95 to 260

volts. It uses 50 or 60 Hz. It's

available simply as a SCSI

host adaptor, a SCSI host

adaptor and controller, or

as a complete 20 Meg.

hard drive. In fact the

machine accepts hard

drives starting from 10

Meg and up. The hard

drive can be combined

with the AX2000 to

provide up to 8 Meg of

RAM memory. Adaptability

is the definition ofComspec's

new hard disk drive.

But the hard disk is more than

adaptable. It comes standard

with features you won't soon

forget. A built-in power supply

gives the Amiga an

additional 2 amps of necessary

power for use with peripherals.

It buffers the Amiga expansion bus,

giving the computer better flexibility.

It comes with a built-in SCSI port. The

clock calendar has a battery back-up.

And of course it's auto-configuring.

Specs on hard disk not finalized.

PistnliuLefi wnrldu

Comspec

Tnmrun Canada

14161 787 OB17

COMSPEC

1 53 Bridgeland Ave . Unit #5

Toronto Ontario Canada M6A 2Y6

[416] 787 0617

Air-Stat of Canada Inc.

Markham. Canariii

(416)477 9440 1 800 268 3314

Run Informatique Microtron Ingeniarfirmaet Finn Jacobson Precision Software Limited Nerika Australia Proprietary Ltd. Southern Technologies Inc.

Pans France PieLerlen, Switzerland Bagsvaerd, Denmark Surrey. England Sidney. Australia Dallas. Texas

33 1-45-81 5144 41-32-87 2429 45-2-44 0488 01-33D 7166 957-4778 United States

[214)247-7373

