

Life Doesn't Stand Still...

Why Should Your Pictures?

Full Screen Animation On Your Commodore 64!

It used to be even the experts couldn't do it.

Now, anyone can.

Moving Pictures by AHA! is more than just another animation

package. It's a whole new breakthrough in software tech

nology.

Moving Pictures is fast, smooth, full-screen animation that is

totally under your control.

You use your favourite graphics tool * to draw the frames of

your movie, then show it at full animation speed with a

single command!

Write movie "scripts" in BASIC, using the powerful Moving

Pictures command set for complete control of your crea

tions!

Whether you're a programmer or a novice, you'll be able to

put together and display intricate scenes of your own

invention. You can even edit your scripts or execute a BASIC

program while a movie is being displayed - Moving Pictures

is a multitasking system!

Besides being fun in itself. Moving Pictures lets you easily

add animation sequences to your own BASIC programs.

Just a few of the many Moving Pictures features:

• allows split screen operation - part graphics, part text -

even while a movie is running

• repeat, stop at any frame, change position, and colours,

vary display speed and more

• hold several movies in memory and switch instantly from

one movie to the other

• instant, on-line help available at the touch of a key

• no copy protection used on the disk

• and here's the best part: the price is just $29.95!

" Graphics program not included. Moving Pictures uses a

standard hi-res bitmap, so many graphics programs are

fully compatible, including: Flexidraw™, Doodle™, Gold Disk

Art Package™, Print Shop Screen Magic™, Perspectives™.

Mail Orders: Transactor Publishing Inc., 5OO Steeles Avenue, Milton, ON, Canada, L9T 3P7 (416) 878-8438

(or use order card at center).

Canadian and International Dealer Inquiries To:

Norland Software Products, 251 Nipissing Road, Unit 3,

Milton, ON, Canada, L9T 4Z5. (416) 876-4774.

USA Dealer Inquiries To:

American Software Distributors Inc., Box 29O,

UrbanalL, USA618O1 1-800-225-7941.

Volume 7

Issue 06
Circulation at Large

72,000

II

0)

Simulations and Modelling

Start Address Editorial 3

Bits and Pieces . . . (
Using the WAIT Function For Screen Changes

" Last File used" update

EasyC-128Un-New

Printer output from an ML monitor

Quick Directory Hider

Editing in the C-Power Shell

"High-Res 128" Video Fix

Little-Known Features of DOS

The Amazing 1660 Modem

Bit Correction: DOS Wedge

Correction: Format Track 36

Assembler Start-up Code

C128RS-232Bugs

Using The C-128 System Vector

Moving The Cassette Buffer

Reset and Run

Border Animation!

Verifizer and Fast-Load Cartridges

Amiga Bits

The Vanishing Workbench

Beating The Low Memory Blues

Modifying The Epson Printer Driver

To Work With Other Printers

TransBloopers
EPROM Burns

Hi-res Trace Utility SYS Address

Uncontrolled Sprite Bits

Tape Verifizzle

Slashing and Pounding

. 15

Letters 12
Angling for weird parts

Nefarious plots

Yet another request for Urdu software

C-64 Numerics

Remote line feeds

Kernal revision revision

Eavesdropping on modems

IEEE for C-128

Amiga marketing

No niche for Amiga

News BRK 77
Submitting NEWS BRK Press Releases

Transactor Currency Standard Decreed

Subscription Intersection Set

Disk Subscription Notes

Toronto CompuServe Node

Free Transactor T's

Subscriber Mail Orders

Customs/Duty on Hardware Products

Sold Out!

Transactor Mail Order

Transactor Disks, Back Issues, and Microfiche

New Books from Abacus

Eye-Scan for C-64/128

Spartan now with Apple II disk

Peek A Byte 128

Smile! YOU re On RLE a short TeleColumn followed by RLE files revealed ... 16

Bulletin Board SyStemS a comparison of online services ... 19

in Europe with a comparison of equipment prices 21

ThOUght recursion described, and applied in two games 24

Machine Language Random Number Generation ... 27

C64 N-Body Simulator soiar systems in action! 31

A TWO Button MOUSe modifications and software for the 1350 mouse 36

EPROM Programmer Update corrections, modifications, and more ... 48

Help! Help! a transparent instant help utility 43

1571 RAM Disk Copier copy double sided disks in one gulp 52

TeXtSCan a CP/M source file browser 55

That Gum DOCS Have A MeSSage decipher those meditation numbers 59

StrUCtUre BrOWSer a handy tool for Amiga explorers 71

Amiga File StrUCtUre another look at disk data format 72

Amiga DiSpatCheS with a special World of Commodore '86 report 74

Compu-toons 76

Note: Before entering programs,

see "Verifizer" on page 4

The Transactor May 1987: Volume 7, Issue O6

TVonsodor
Tho Tech/N«w« Journal For Commodoro Compulon

Athos Editor

Karl J. H. Hildon

Porthos Editor

Richard Evers

Aramis Editor

Chris Zamara

D'Artagnan Editor

Nick Sullivan

Art Director

John Mostacci

Administration & Subscriptions

Anne Richard

Kathryn Holloway

Contributing Writers

Ian Adam

Jim Barbarello

Anthony Bertram

Tim Bolbach

Ranjan Bose

Anthony Bryant

Jim Butterfield

Betty Clay

Joseph Caffrey

Gary Cobb

Tom K. Collopy

Robert V. Davis

Elizabeth Deal

Rolf A. Deininger

Frank E. DiGioia

Chris Dunn

Michael J. Erskine

Jack Farrah

William Fossett

Jim Frost

Miklos Garamszeghy

Martin Goebel

R. James de Graff

Tim Grantham

Adam Herst

John Holttum

David Hook

Tomas Hrbek

Robert Huehn

David Jankowski

Bob Jonkman

Brian Junker

Clifton Karnes

Lome Klassen

Jesse Knight

Gregory Knox

James E. LaPorte

James A. Lisowski

Richard Lucas

Scott Maclean

David Martin

Steve McCrystal

Stacy Mclnnis

Steve Michel

Chris Miller

Terry Montgomery

Ralph Morrill

Rick Morris

Michael Mossman

Gerald Neufeld

Noel Nyman

Kevin O'Connor

Richard Perrit

Donald Piven

Terry Pridham

Raymond Quirling

Gary Royal

John W. Ross

David Shiloh

Fred Simon

P. A. Slaymaker

Edward Smeda

Darren J. Spruyt

Aubrey Stanley

David Stidolph

Richard Stringer

Anton Treuenfels

Karel Vander Lugt

Audrys Vilkas

Jack Weaver

Evan Williams

Chris Wong

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower

case mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o"

will of course be in lower case. Secondly, the lower case L (T) is a straight line as opposed to the

number 1 which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're

listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces

you insert will not be critical to correct operation of the program. When it is, the required number of

spaces will be shown. For example:

print flush right " - would be shown as - print "[10 spacesjflush right

Cursor Characters For PET / CBM / VIC / 64

Down - 0

Up -B|

Right - O

Left - [lit]

RVS - Q

RVSOff- IS

Insert - |j

Delete - Q

Clear Scrn - Q

Home - Q

STOP - R

Colour Characters For VIC / 64

Black -

White -

Red -

Cyan -

Purple -

Green -

Blue -

□

□
[Cyn]

[Pur]

D

B

Orange -

Brown

Lt. Red -

Greyl -

Grey 2 -

Lt. Green -

Lt. Blue -

Yellow- [Yel]

Function Keys For VIC / 64

Fl- U

F2- Q

F3- Q

F4- B

F5-

F7-

F8-

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing
The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton, Ontario,

L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class postage

paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The Transactor, 277

Linwood Avenue, Buffalo, NY, 14209 rSSN» 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trademarks

of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 878 8438. Note: Subscriptions are handled al this address ONLY.

Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use

postage paid card at center of magazine.

Please Note: The Transactor's

phone number is: (416) 878-8438

U.S.A. Distributor:

Capital Distributing

Charlton Building

Derby, CT

06418

(203)735 3381

(or your local wholesaler)

Quantity Orders:

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 5B4

(416)842 1555

(or your local wholesaler)

Norland Communications

251 Nipissing Road, Unit 3

Milton, Ontario

L9T 4Z5

416876 4774

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 03, 04, 05, 06, and Vol 5 Issues 02,

03, 04 are available on microfiche only

Still Available: Vol. 4: 01, 02. Vol. 5: 01, 04, 05, 06. Vol. 6: 01, 02, 03, 04, 05. 06

Vol. 7:01,02,03, 04,05,06.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per printed

page. Preferred media is 1541. 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCrafl, Superscript,

or SEQ text files. Program listings over 20 lines should be provided on disk or tape. Manuscripts should be

typewritten, double spaced, with special characters or formats clearly marked. Photos or illustrations will

be included with articles depending on quality. Authors submitting diskettes will receive the Transactor

Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please re

confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights basis

only. Write to the Milton address for a writers package.

The Transactor May 1987: Volume 7, Issue O6

Commodore's most recent worst kept secret is the Amiga 500

and Amiga 2500. So far I've heard about the new models from

no less than 8 different people from as many different cities since

the January CES in Vegas, and I've read about them in a couple

of club newsletters published before the show even opened.

Word is that several dealers who attended CES were offered a

demonstration, but the machines were not "officially an

nounced".

The 500 sounds curiously similar to the Atari 1040 ST. A self-

contained unit, except for the external power supply, with a 3V2

inch drive (probably at one end), 1 Meg of RAM, and Kiskstart in

ROM. Apparently the ROM Kickstart will have enough "hooks"

so that updates can be osmosed into the system. Price is

supposed to open around $600 U.S., the same tag the Commo

dore 64 carried when it arrived.

The 2500 is being aimed at the business market, especially in

the computer aided design field. The word "IBM compatibility"

is getting tossed around again, with unconfirmed reports of IBM

card slots and an onboard 8088. The case can be fitted with 3

disk drives in any combination of 3 V2, 5V4, and hard disk. Price

is supposed to be around the $2000 U.S. mark, but it's rumoured

that Europe and Canada will get test market shipments before

it's released in the States.

Back when the 1000 hit the market, Commodore said the Amiga

would be a new line of machines, not just another sibling to be

shoved out the door. Commodore should be proud to be keeping

this promise. The Amiga is a fine product, and exploiting a good

thing is good business. For this I tip my hat toward West Chester,

because business is what Commodore needs to stay alive, and I,

for one, want them to. However, it's the execution of this exploit

that has me scratching my head.

Commodore wanted to keep news of the 500 and 2500 as quiet

as possible, particularly the 500. They're afraid that too much

early publicity would hurt sales of the 1000. But I don't think

that should be their largest concern. (Even if I did, the publicity

they'll get here probably won't affect a single sale - most

computer hobbyists don't read The T. until well after they buy)

Commodore intends to build the 2500 first, followed by the 500,

and I think that's the wrong order.

If a whole neighbourhood of $200,000 dollar homes were going

up, but 2 months later you know another neighbourhood not far

away will have acres of similar homes for only $60,000,

wouldn't you wait and see? I know I would. Now granted, the

less expensive models might not appeal to me. But if they came

along first, and had everything I wanted, I'd probably bite even if

I could afford the luxury model.

Regardless, most won't have the extra 1400 or so dollars to sink

into the Amiga 2500, and most won't need the added power.

Perhaps Commodore wants this to make the 1000 more attrac

tive at point of purchase. But the 500 is not much of secret, and it

would seem to me that less people would wait for the more

expensive machine to arrive, as opposed to those who will wait

for the less expensive Amiga. Introduce the 2500 first, and I

believe sales will slow for both of the available models. Bring out

the 500 first, and there will be popularity for it that includes

those who couldn't afford the 1000. The small market ratio of

potential 2500 users will have to wait, but not for long if

Commodore gets moving on it.

Commodore shouldn't fear for the 1000 for other reasons. The

price difference between the 1000 and 500 will not be that big,

and unlike the 500, the 1000 will have the separate keyboard

and the expandability to maintain its posture. Once all three

models are out I believe none of them will be ignored at the

counter.

Commodore has probably considered this situation very care

fully, and their decision is one that undoubtedly spans much

more than just one page of details. One report states that both

machines should be ready by early 1987. If that happens,

Commodore should fare pretty well whichever way they do it.

One thing to remember, all of the above is rumour. If Commo

dore shelves any or all of it, disappointment will be unjustifiable.

On the other hand, when the new Amigas do arrive, Commo

dore should be looking forward to subsequent profitable quar

ters, and those shares I didn't buy back in 78 just might be

worth looking into right now. Tommorrow, in fact.

Remember, there's nothing as constant as change, I remain...

Karl J.H. Hildon, Editor in Chief

The Transactor May 1987: Volume 7, Issue O6

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from the

pages of The Transactor. It will let you check your work line by line as

you enter the program, and catch frustrating typing errors. The VERIFI

ZER concept works by displaying a two-letter code for each program

line which you can check against the corresponding code in the

program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or

C64, Plus 4, C128, and B128. Enter the applicable program and RUN it.

If you get a data or checksum error, re-check the program and keep

trying until all goes well. You should SAVE the program, since you'll

want to use it every time you enter one of our programs. Once you've

RUN the loader, remember to enter NEW to purge BASIC text space.

Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 4096 to enable the Plus 4 version (off: SYS 4099)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

BANK 15: SYS 1024 for B128 (off: BANK 15: SYS 1027)

Once VERIFIZER is on, every time you press RETURN on a program

line a two-letter report code will appear on the top left of the screen in

reverse field. Note that these letters are in uppercase and will appear as

graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that

line at the last minute which changes the report code. However, this

will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine nor

mally, checking each report code after you press RETURN on a line. If

the code doesn't match up with the letters printed in the box beside the

listing, you can re-check and correct the line, then try again. If you

wish, you can LIST a range of lines, then type RETURN over each in

succession while checking the report codes as they appear. Once the

program has been properly entered, be sure to turn VERIFIZER off with

the SYS indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead

of POKE 53281,0. However, VERIFIZER uses a "weighted checksum

technique" that can be fooled if you try hard enough; transposing two

sets of 4 characters will produce the same report code but this should

never happen short of deliberately (verifizer could have been designed

to be more complex, but the report codes would need to be longer, and

using it would be more trouble than checking code manually). VERIFI

ZER ignores spaces, so you may add or omit spaces from the listed

program at will (providing you don't split up keywords!). Standard

keyword abbreviations (like nE instead of next) will not affect the

VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer, so

if you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities goes,

VERIFIZER shouldn't cause any problems since it works through the

BASIC warm-start link and jumps to the original destination of the link

after it's finished. When disabled, it restores the link to its original

contents.

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

01

JB

PA

HE

EL

LA

Kl

EB

DM

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

10 rem* data loader for "verifizer 4.0" *

15 rem pet version

20 cs = 0

30 for i = 634 to 754:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>15580 then print "***** data error ***

70 rem sys 634

80 end

100:

1000 data 76,138,

1010 data 173,164,

1020 data 145, 201,

1030 data 144, 141, 163,

1040 data 2,133,145,

1050 data 201, 13,208, 62

1060 data 254, 1,133,251

1070 data 0, 2,168,201

1080 data 165, 253, 41, 3

1090 data 198, 254,

1100 data 251, 41,

1110 data 165, 251, 74, 74,

1120data141, 1,128,108,163, 2

1130 data 251, 133,251, 96

": end

2,120,173,163, 2,133,144

2,133,145, 88, 96,120,165

2,240, 16,141,164, 2,165

2,169,165,133,144, 169

96, 85,228,165,217

165,167,208, 58,173

162, 0,134,253,189

32,240, 15,230,253

133,254, 32,236, 2

16,249,232,152,208,229, 165

15, 24,105,193,141, 0,128

74, 74, 24, 105, 193

152, 24,101

88,

VIC/C64 VERIFIZER

10 rem* data loader for " verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>14755 then print"***** data error

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,251,141, 2

1010 data 252, 141, 3, 3, 96,173, 3

1020 data 3,240, 17,133,252,173, 2

99,141, 2, 3,169

96,173,254, 1,133

0,189, 0, 2,240

15,133, 91,200,152

32, 183,

■":end

1030 data 251,169

1040 data 3, 3

1050 data 0,160

1060 data 32,240

1070 data 133, 90

1080 data 232, 208, 229, 56,

1090 data 32,210,255,169,

1100 data 89, 41, 15, 24,105,

1110 data 165, 89, 74, 74, 74,

1120 data 32,210,255,169, 146,

1130 data 32,240,255,108,251,

1140 data 101, 89,133, 89, 96

3,198, 90

32, 240, 255

18, 32,210

97, 32

74, 24

32,210

0, 165

3,

3,

3,

3,

, 89,

, 22,

, 41,

, 16,

, 169,

,255,

,210,

,105,

,255,

, 91,

165

201

133

141

162

201

3

249

19

165

255

97

24

24

VIC/64 Double Verifizer Steven Walley, Sunnymead, CA

When using 'VERIFIZER' with some TVs, the upper left corner of the

screen is cut off, hiding the verifizer-displayed codes. DOUBLE VERI

FIZER solves that problem by showing the two-letter verifizer code on

both the first and second row of the TV screen. Just run the below

program once the regular Verifizer is activated.

The Transactor May 1987: Volume 7, Issue O6

KM

BC

Dl

GD

IN

EN

KG

KO

FM

LP

100 for ad = 679 to 720:read da:poke ad,da:next ad

110sys679: print: print

120 print" double verifizer activated":new

130 data 120, 169, 180, 141, 20, 3

140 data 169, 2,141, 21, 3, 88

150 data 96, 162, 0,189, 0,216

160 data 157, 40,216,232,224, 2

170 data 208, 245, 162, 0,189, 0

180 data 4,157, 40, 4,232,224

190 data 2,208,245, 76, 49,234

VERIFIZER For Tape Users Tom Potts, Rowley, MA

The following modifications to the Verifizer loader will allow VIC and 64

owners with Datasettes to use the Verifizer directly (without the loader).

After running the new loader, you'll have a special copy of the Verifizer

program which can be loaded from tape without disrupting the pro

gram in memory. Make the following additions and changes to the VIC/

64 VERIFIZER loader:

NB 30 for i = 850 to 980: read a: poke i,a

AL 60 if cs<>14821 then print" *****data error*****": end

IB 70 rem sys850 on, sys853 off

— 80 delete line

— 100 delete line

OC 1000 data 76, 96, 3,165,251,141, 2, 3,165

MO 1030 data 251, 169, 121, 141, 2, 3,169, 3,141

EG 1070 data 133, 90, 32,205, 3,198, 90, 16,249

BD 2000 a$ = " verifizer.sys850[space]"

KH 2010 for i = 850 to 980

GL 2020 a$ = a$ + chr$(peek(i)): next

DC 2030 open 1,1,1,a$: close 1

IP 2040 end

Now RUN, pressing PLAY and RECORD when prompted to do so (use a

rewound tape for easy future access). To use the special Verifizer that

has just been created, first load the program you wish to verify or

review into your computer from either tape or disk. Next insert the tape

created above and be sure that it is rewound. Then enter in direct

mode: OPENhCLOSEl. Press PLAY when prompted by the computer,

and wait while the special Verifizer loads into the tape buffer. Once

loaded, the screen will show FOUND VERIFIZER.SYS850. To activate,

enter SYS 850 (not the 828 as in the original program). To de-activate,

use SYS 853.

If you are going to use tape to SAVE a program, you must de-activate

(SYS 853) since VERIFIZER moves some of the internal pointers used

during a SAVE operation. Attempting a SAVE without turning off

VERIFIZER first will usually result in a crash. If you wish to use

VERIFIZER again after using the tape, you'll have to reload it with the

OPEN1:CLOSE1 commands.

Plus 4 VERIFIZER

Nl

PM

EE

NH

Jl

AP

NP

JC

ID

PL

CA

OD

LP

EK

1000 rem * data loader for " verifizer + 4"

1010 rem * commodore plus/4 version

1020 graphic 1: scnclr: graphic 0: rem make room for code

1030 cs = 0

1040 for j = 4096 to 4216: read x: poke j,x: ch = ch + x: next

1050 if chO13146then print "checksum error": stop

1060 print " sys 4096: rem to enable"

1070 print " sys 4099: rem to disable"

1080 end

1090 data 76, 14, 16,165,

1100 data 165, 212, 141, 3,

1110 data 3,201, 16,240,

1120 data 2, 3,133,211,

1130data 3,169, 16,141, 3, 3, 96,165

211,

3,

17,

169.

141,

96,

133,

39.

2,

173,

212,

141.

3

3

173

2

Dl

LK

GJ

DN

GJ

CB

CB

PE

DO

BA

BG

1140 data 20,

1150 data 0,

1160 data 176,

1170 data 240,

1180 data 200,

1190 data 16,

1200 data 165,

1210 data 0,

1220 data 24,

1230 data 0,

1240 data 96

133,208,

2,201,

3, 232,

22,201,

152, 41,

198,209,

208, 41,

12, 165,

105, 193,

165,210,

162, 0,

48, 144,

208, 242,

32, 240,

3, 133,

16,249,

15, 24,

208, 74,

141, 1,

24, 101,

160, 0,189

7,201, 58

189, 0, 2

15, 133,210

209, 32, 113

232, 208, 229

105, 193, 141

74, 74, 74

12, 108,211

208, 133,208

PK

AK

JK

NH

OG

JP

MP

AG

ID

GF

MG

HE

LM

JA

Ei

KJ

DH

JM

KG

EF

CG

EC

AC

JA

cc

BO

PD

C128 VERIFIZER (40 column mode)

1000 rem * data loader for " verifizer d 28"

1010 rem * commodore d 28 version

1020 rem * use in 40 column mode only!

1030 cs = 0

1040 for j = 3072 to 3214: read x: poke j,x: ch = ch + x: next

1050 if ch<>17860 then print " checksum error": stop

1060 print " sys 3072,1: rem to enable"

1070 print " sys 3072,0: rem to disable"

1080 end

1090 data 208, 11,165,253,141, 2,

1100 data 254, 141, 3, 3, 96,173,

17,133,254,

3,

1110 data 201, 12,240, 17,133,254,173,

1120 data 3,133,253,169, 38,141, 2,

1130data169, 12,141, 3, 3, 96,165,

1140 data 133, 250,162

1150 data 2

1160 data 3

3, 165

3

2

3

22

0,160, 0,189, 0

,201, 48,144, 7,201, 58,176

232,208,242,189, 0, 2,240

1170 data 22,

1180 data 152,

1190 data 198,

32,

3,

240, 15,133,252,200

133,251, 32,135, 12

201,

41,

251, 16,249,232,208,229, 56

1200 data 32,240,255,169, 19, 32,210,255

1210 data 169, 18, 32,210,255,165,250, 41

1220 data 15,

1230 data 250,

1240 data

1250 data 24,

1260 data 252,

24,105,193, 32,210,255,165

74, 74, 74, 74, 24,105,193

32,210,255,169,146, 32,210,255

32,240,255,108,253, 0,165

24,101,250,133,250, 96

B128 VERIFIZER Elizabeth Deal, Malvern, PA

1 rem save"@0:verifizerb128",8

10 rem* data loader for " verifizer b128" *

20cs = 0

30 bank 15:for i = 1024 to 1163:read a:pokei,a

40 cs = cs + a:next i

50 if cs<>16828 then print"** data error **": end

60 rem bank 15: sys 1024

70 end

14, 4,165,251,141,130,

2, 169,

1,

1000 data 76,

1010data 141, 131, 2, 96

1020 data 17,133,251,173

1030 data 141, 130,

1040 data 1, 72,162,

1050 data 233, 32,118,

1060 data 32,240, 15,

1070 data 234, 32,110,

1080 data 230,165,233,

1090 data 208, 165,233,

1100 data 141, 1,208,

1110 data 165, 235, 24,

1120 data 164, 137, 133,

1130 data 32, 78, 141,

2,

173,130, 2,201,

131, 2,133,252,

4,141,131, 2,

134, 1,202,165,

4,234, 177, 136

133,235,232, 138

198,234, 16

15, 24,105

74, 74, 74

104,133, 1

233, 133,233

240,

41,

249,

193,

24,

108,

96,

133,132,134, 32, 38,

165,133, 56,229,136,

4

41

74

24

101

165,252

39, 240

169, 39

96, 165

27, 133

22, 201

3, 133

200, 208

141, 0

105,193

251, 0

165, 136

186, 24

168, 96

1140 data 170, 170, 170,170

The Transactor May 1987: Volume 7, Issue O6

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - if we use it in the Bits column, we 11 credit you in

the column and send you a free one-year's subscription to The Transactor

Using the WAIT Function

For Screen Changes

Francis O. Saffell

Eugene, OR

If you've worked with graphics on the C-64 you know that

changes in sprite values, screen colour and bank selection can

often look jittery. This is because you caught the raster beam off

guard with your change. For nice clean transitions you can ask

the computer to wait till the raster is out of sight before making

the change:

WAIT 53265,128

. . .will stop your program until the beam is out of sight.

' Last File used update Dan Schein

West Lawn, PA

In the Bits section of Volume 7, Issue 04 (Jan 1987), Dave

Newberry submitted a SYS statement to print the last filename

used on a 64. Here are equivalent SYS commands for other

Commodore models.

VIC 20 SYS 63065

C-64 SYS 62913

Plus/4 SYS 61810

C-128 SYS 62753

EasyC-128Un-New Michael D. Paul

Mansfield, Ohio

Everyone can always use a pogram to restore and accidentally

NEW'd BASIC program. Here's one for the C-128 that uses only

12 bytes and can be located almost anywhere. 1 store it on disk

and use it by typing BOOT" UNNEW".

*= $B00

LDA #$01

LDY #$00

STA ($2D),y

JSR $4F4F

JMP $4F82

cassette buffer

pointer to start basic

routine to rechain lines

routine to reset to end of basic

This should work regardless of where the start of BASIC is.

Printer output from an ML monitor David O. Rowell

Marietta, NY

It seems that the folks who wrote the excellent ML monitor

programs for the C-64 forgot that a printer would be handy for

many uses within the monitor. This omission bugged me for

quite a while before I gave in and worked out a solution.

The following bit of machine code will allow you to toggle

printer output on and off:

PRINTER LDA #$04

TXA

LDY #$FF

JSR $FFBA

LDA #$00

JSR $FFBD

JSR $FFC0

LDX #$04

JSR $FFC9

BRK

SCREEN JSR $FFCC

BRK

;logical file number

;device number

;no secondary command

;set file parameters

;no file name

;set name

;open channel

;logical file number

;assign default output device

;return to monitor

;clear channel

;return to monitor

This little routine has two entry points: PRINTER to turn the

printer on (as in OPEN 4,4: CMD 4) so that everything that

would have printed on the screen now goes to the printer, and

The Transactor May 1967: Volume 7, Issue O6

SCREEN to return output to the CRT. Decide where you want it

in memory and use the assembler function of the monitor to

put it there - it's completely relocatable so it can go anywhere.

Remember the address of the two entry points so that you can

use the .G option of the monitor to jump to the function you

need. You may want to save it on tape or disk for the next time,

maybe along with the monitor itself.

High-Res 128 Video Fix

Quick Directory Hider Doug Resenbeck

Centralia, IL

A friend of mine, Bill Kir, came across yet another trick that can

be done to the BAM on a disk. This routine of mine makes good

use of his find. When run, you are given the option to 'hide' a

directory from loading and listing to the screen or 'recover' a

directory that has been previously hidden. One thing to keep in

mind is that once a directory has been hidden or recovered,

you won't be able to see the changed directory unless you reset

the drive or remove and re-insert the diskette. This is because

the drive keeps a copy of the directory in its buffer. Anyway, the

program will hide any of your directory from being LOADed

and LISTed, but will not prevent any of the programs or files on

disk from being accessed. Is there any way to view a directory

without recovering it first? Yes there is. Just load in the hidden

directory, POKE 2076,50 and SYS 42291. Now list the direc

tory. Have fun!

P.S. Please print my complete address.

O.K. Here it is. . .

Doug Resenbeck

Box 7711 N-00592

Centralia, IL 62801

0 rem directory hider - doug resenbeck

1 open15,8,15:open2,8,2, "#" :print#15," u1 " ;2;0;18;0

:print#15,"b-p";2;165

2 print" 1) hide 2) recover" :wait198,1 :geta:poke198,0

:a = a-1 :ifa<Oora>1 then2

3 if a = 1 thena = 50

4print#2,chr$(a);:print#15,"u2";2;0;18;0:close2:close15

Editing in the C-Power Shell Herb Hasler

Guelph, Ont.

Here is a little information that might be of interest to people

who are using the C-power package for the 64 from PRO-LINE

software. One complaint about the shell is that you have to re

type commands that have been mis-typed. This, however, is

not the case. If you make a typing error you can cursor up and

correct it, but don't hit RETURN just yet. Move to the line above

and hit RETURN to move the cursor to the corrected line, then

hit RETURN again. The corrected line will then be executed.

This may save some readers a bit of frustration.

Erik J. Palm

Rockford, IL

Paul T. Durrant's program, "Commodore 128 High-Res

Graphics", is a wonderful utility for 128 users who wish to gain

an extra 16K of storage or for those who want to exploit the

128's extra screen resolution (Volume 7, Issue 2, page 72).

Readers with newer model 128's may have noticed a flashing

vertical line on the far right of the 80 column display when

using this program. This occurs because of a minor chip

modification at Commodore. There is a simple fix however.

Just change:

To:

00BC9A9 80 LDA #$80

00BC9A9 87 LDA #$87

Little-Known Features of DOS Gavin Bell

Princeton, NJ

Commodore DOS has some nifty features that Commodore

doesn't tell anybody about. For example, both the directory

command ($) and the scratch command can take multiple

arguments, separated by commas. For example:

open 15,8,15, "sO:green,blue,frog,???,t*": close 15

. . .will scratch the files " green", " blue", " frog", any files

with three-character names, and any files with names starting

with the letter " t". Similarly,

load "$:a*,b*",8

. . .will load a directory containing all filenames beginning with

either " a" or " b". The number of arguments is limited only

by the 40-character command length limit, and any kind of

pattern-matching and drive specification will work as ex

pected. For example,

"sO:test,1:tester"

as a disk command will scratch " test'

tester" on drive one of a dual drive.

on drive zero and

The Amazing 1660 Modem Kevin Kleca

Connellsville, PA 15425

One piece of Commodore hardware is the 1660 modem. One of

the unique features of the modem is that you can make it do

tone dialing by generating the tones with the SID chip the way

you would normally produce sound through your TV or moni

tor. Many people don't realize that any sounds produced by the

64 while the modem is 'off-hook' will be sent over the phone

line. This opens up some interesting possibilities. With a 1660

modem and some sort of speech synthesizer like S.A.M., you

The Transactor May 1987: Volume 7, Issue O6

can very easily turn your Commodore 64 into an answering

machine. Just use the short program below with your speech

package and your 64 will answer away! It can easily be changed

to take the time of the call, or do whatever else you wish.

Maybe if you're good with electronics, you could connect a

voice recognition system to the modem and have it answer or

digitize the caller response! When using the program, make

sure your modem is set on ANSWER, not ORIGINATE.

90 oh = 56577: hi = 32: lo = 255-32: c = 0

100 print: print" waiting for call. .

110 if (peek(oh) and 8) then 110

120 poke(oh + 2),(peek(oh + 2) or hi)

: poke oh,(peek(oh) and lo)

130 print" phone ringing, now answering. . ."

140 rem insert commands for your speech program here

150 rem with the speech that you want the caller to hear

160 poke oh,(peek(oh) or hi): c = c + 1

170 print" calls answered:" c

180 goto 100

Assembler Start-up Code Andrew Walduck

Orillia, Ont.

Bit Correction: DOS Wedge Robert C. Kodadek

Aston, PA

In the Bits column, Volume 7, Issue 4, reader Joel Pickett wrote

in to say that the DOS wedge program supports only one 1541

drive. Actually, the DOS wedge (version 5.1) has a command

for changing the device number - the '*'. The proper syntax for

the little-known command is:

@#(device number)

For example, to change from device 8 to device 9, the com

mand is: @#9. The use of this command is certainly easier than

going to the trouble to change the loader program and having

to remember to POKE address 52343 with the current device

number.

Correction: Format Track 36 Thomas E. Calise

Brick, NJ

I have found an error in Mr. D.A. Hook's program (format track

36) that was published in the September '86 Transactor. After

running the program and checking the extra formatted track

for errors using the 1541 SuperKit Super Scan, I continuously

came up with a #20 read error for sector #16. Upon inspection

of the code presented in his article, I realized that the wrong

number was being stored in location $43. Instead of a $10 it

should be a $11. To correct the situation, change line 1020 in

the program to:

1020 data 141, 34, 6, 169, 17, 133,67,32

After the change was made, all sectors checked out properly.

Here is some assembler code, in PAL-compatible format, that I

use as the start of many of my programs. It makes a program

that can be LOADed and RUN like any BASIC program, and the

user doesn't have to remember a SYS command to get it going.

When the program is loaded, it will appear as the BASIC line " 0

SYS 2062", and when run, control will be passed to the

machine code that follows.

100 open 15,8,15, "s0:program name": close 15

110 open 3,8,3, "0:program name,p,w"

120 sys 700

130 .opto3

140*= $0801

150,wor$080c

160.wor$0000

17O.byt$9e

180 .asc " 2062'

190.byt$00

200.wor $0000

;start up pal

;output object to disk

;put program at start of basic

;link address

;line number zero

;token for 'sys'

;ascii literal for sys address

;end of basic line token

;end of basic program

210;

280 ;your source code should start here

C128RS-232Bugs Albert J. McCann, Jr.

Glenolden, PA 19036

There are two bugs in the Commodore 128 in the RS-232

routines that interfere with RS-232 operation. Both bugs have

to do with the carry flag in the 8502 being set to the wrong state

upon exiting the routines.

The first bug is in the " BASIN" code for RS-232 input. The

code is as follows:

EF65 CLC

EF66 RTS

EF67 JSR $EEFD ;get rs-232 byte

EF6A BCS $EF65 ;exit if carry set, branch to wrong loc.

EF6CCMP#00 ;null

EF6E BNE $EF66 ;if valid char, exit, carry set as a result

;of compare, branch goes to wrong

location

EF70 REST OF CODE

The changes needed to make this work are:

EF6A B0 FA BCS $EF66

EF6E DO F5 BNE $EF65

The second bug is even nastier. It is in the RS-232 OPEN

routines and prevents opening an RS-232 " X-LINE" hand

shake channel. The following open statement will work on a 64

but not on a 128 because the 64 ignores the carry flag.

The Transactor May 1987: Volume 7, Issue O6

OPEN 2,2,0,CHR$(6) + CHR$(1) :REM 300 BAUD,

FULL DUPLEX, X-LINE HANDSHAKE

When this executes, you will get random errors and it will stop

a BASIC program. The code is as follows:

F094 LDA $0A11

FO97 LSR A

F098 BCC $F0A3

F09A LDA $DD01 ;check if dsr missing

F09D

F09E

rs-232 command reg

bit 0 to carry

branch if 3-line rs-232

ASL A

BCS $F0A3

bit 7 to carry

if input pin is not connected, or else is

" high" then carry = 1, dsr is " true

high" at this point

F0A0 JSR $E755 ;set status variable to indicate dsr is

missing, input pin is " low". this routine

clears carry so if you ground the dsr

input pin then the above open will work

F0A3 REST OF CODE

FOAF RTS

10 rem reset-controller

20 bank 1

30pokedec("fff8"),0

40pokedec("fff9"),19

50 for i = dec(" 1300") to dec(" 1305")

60 read a: poke i,a: next i

70 data 32, 132, 255: rem jsr$ff84

80 data 76, 0, 176: rem jmp $b000

The first thing the program does is restore I/O by calling IOINIT

at $FF84. Then it jumps to the monitor. This vector has many

uses, for example making a 'reset-proof program, or with an

un-new routine to restore any basic program in memory.

Note to David Mora: we can't find your complete address!

Please give us a call so that we can send you your free

subscription. -CZ

Moving The Cassette Buffer John Tellefson

Salina, KS

There is not enough room at this point to include a CLC The following tip applies to VIC 20 and 64 users who use tape

instruction so I jump to a patch. The code to fix this is: for storage. It may apply to other Commodore computers.

F0AC 4CF3FEJMPSFEF3 ;jump to patch

FEF3 8D1A0ASTA $0A1A ;original code

FEF6 18 CLC ;this is added

FEF7 60 RTS ;exit

These changes were put into a 27128 eprom to replace the

KERNAL rom in the 128.1 use Promenade which works nicely

in 64 mode. While you're poking around the KERNAL making

fixes, here is one that is unrelated to RS-232 but bugs many

people:

FC22 D1

This fixes Caps-Lock Q. Also, to replace the KERNAL rom in

the 128, you will need two computers: a 128 and a 64 or second

128. The reason being that there is 4K of invisible rom (Z-80

code). This is not accessible from 128 mode. The KERNAL rom

is chip U35. You must remove this chip and read it into the

second computer through the eprom programmer. Then you

can modify the code and send it to an eprom.

Many small utilities such as "Verifizer" are written to run in the

tape buffer, and any tape operation clobbers the utility. This

can be avoided by moving the tape buffer - in the VIC and 64,

the buffer is located by addresses 178-179, and the system

doesn't mind if you move it. It is 192 bytes long, and you can

put it anywhere in free RAM as long as it doesn't overwrite your

program, variables or ROM. If you only SAVE and LOAD from

direct mode, it doesn't matter if you overwrite variables, since

they will be cleared the next time you RUN anyway. Here is a

sample code fragment that moves the tape buffer to 192 bytes

below the bottom of string storage space:

a = peek(51) + 256*peek(52)-192: poke 179,a/256

: poke 178,a-256*peek(179)

(if memory is tight, you may want to check 'if fre(O)>l 92' before

doing the above allocation).

An extra advantage: With the tape buffer moved, you can put

code in the tape buffer's normal place and save it to tape with a

monitor. You can then load the program in and use it at its

intended location.

Using The C-128 System Vector David Mora

San Jose, CA

Reset and Run

The C-128 has a very nice feature for programmers. In $FFF8

and $FFF9 of RAM bank 1 is a useful vector called the 'system

vector'. After the reset button is pressed, control is passed to the

routine lying at the address in this vector. For example, to

automatically enter the monitor after a reset, run the following

program.

Noel Nyman

Seattle WA

Here's a way to have your favorite BASIC program availa

ble at the push of a button without building the hardware

described in "C64 RAM Cartridge" (Volume 7, Issue 4).

Make the following changes to listing #1 on page 52:

The Transactor May 1987: Volume 7, Issue O6

Change the file name in line 1090 to " 0:nocart".

Change the end of loop in line 1110 to 33008 (from 32999).

Change the checksum in line 1120 to 29267 (from 28345).

Change line 1290 to read:

1290 DATA 198, 76, 232, 128, 56, 165, 46, 229

Add line 1291:

1291 DATA 0, 0,169,128,133, 56,108,2,3

Run the modified loader to create "nocart" on disk. Then use

"nocart" and follow the instructions in the article to store your

favorite BASIC program in RAM above $8000. Then enter the

command:

POKE 56,128: CLR

This protects the RAM area above $8000 from BASIC string

variables. The code you added to the loader will perform this

function again whenever your stored BASIC program is RUN.

Using SYS 64738 or hitting a reset switch will RUN the stored

BASIC program, just as if it were in a RAM cartridge. The only

difference is that the program is wiped out when the computer

is turned off.

Border Animation! Terry Montgomery

Walls, MS

Ever try to display anything in the screen border? Other than

changing the colour, it's pretty hard to get the border to do

anything exciting. This machine language program from Terry

Montgomery, however, will put a colourful display in your

screen borders that you never thought possible! Not only that,

but the program is interrupt-driven, meaning that you can edit

and, even run most BASIC programs while the display con

tinues. A great addition to your "Gee-Whiz"collection.

LI

KG

DH

GK

EC

El

AF

IN

Kl

MJ

DB

DA

GC

KN

IK

KJ

AA

OE

DN

HM

NJ

CK

MO

10 rem* data loader for "colour bars" *

20cs = 0

30fori = 49152to49394:reada:pokei,a

40 cs = cs + a:next i

50:

60 if cs<>29666 then print" Idata error!": end

70 rem sys 49152

80 end

100:

1000 data 120, 169, 127, 141, 13,220,169, 1

1010 data 141, 26,208,173, 17,208, 41,127

1020 data 141, 17,208,169, 36,141, 20, 3

1030data169, 192, 141, 21, 3,169, 0,141

1040 data 18,208, 88, 96,173, 25,208, 41

1050 data 1,208, 3, 76,101,192,169, 1

1060 data 141, 25,208, 172, 176, 192, 185, 179

1070 data 192, 141, 32,208,238, 176, 192, 174

1080 data 176, 192, 236, 177, 192, 208, 8, 32

1090 data 104, 192, 162, 0, 142, 176, 192, 173

HOOdata 17,208, 41,127,141, 17,208,185

1110 data 191, 192, 141, 18, 208, 173, 176, 192

1120 data 208, 3, 76, 49,234, 76,188,254

1130 data 238, 178, 192, 173, 178, 192,201, 15

1140 data 176, 14,160, 0,185,204,192,153

pp

CN

PG

GA

HN

EO

GC

GJ

IO

AE

EN

PN

GO

IC

GG

MF

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

Verifizer and

Fast-Load»

191,

173,

0,

192,

201,

192,

245,

2,

8,

55,

95,

130,

40,

120,

60,

100,

192,200, 192,

178, 192,201,

185,217, 192,

12,208,245,

45,176, 14,

153, 191, 192,

96,169, 0,

12, 33, 6,

4, 2, 7,

60, 65, 70,

100,105, 40,

150, 170, 190,

50, 60, 70,

130, 140, 150,

65, 70, 75,

105, 110

12,208,245,

30,176, 14,

153, 191, 192,

96, 173, 178

160, 0,185,

200,192, 12

141, 178, 192

9, 5, 1

0, 14, 6

75, 80, 85

50, 70, 90

210,230,250

80, 90,100

160,170, 50

80, 85, 90

96

160

200

192

230

208

96

12

50

90

110

14

110

55

95

Mike Iafrate

Cartridges Parkersburg, WV 26101

I was having trouble using the Verifizer for the 128: when I ran

the program, sometimes it would work, and sometimes the

monitor would break in. After some troubleshooting, I found

that the Machl 28 fast load cartridge was causing the problem. 1

have come to depend on it so much that I often forget that it is

there and usually have no problem with most of the software

that I use.

Here is the problem as far as I can determine. When I use the

cartridge to load a program, there are two symbols that are

substituted for the LOAD command: a slash, and the up-arrow.

These use some type of an interrupt that sets the Z-flag and the

B-flag in the status register. I haven't seen too much written

about the B-flag (break flag). Anyway, when I remove the

cartridge I find that the status register returns to zero, and then I

can load and use the verifizer normally. It's no big deal to fix

the problem; I just add this line to the program:

1080 poke 05,0: end

If anybody else is having problems using Verifizer 128, maybe

this will fix the problem. I am sure there are a lot of people

using the Machl28 cartridge.

Amiga Bits

The Vanishing Workbench

Did you ever slide down the screen of some application,

expecting to find the Workbench screen patiently awaiting

your return, only to find that it had vanished? This happens

when an application closes the Workbench screen in an effort

to save memory. Examples of programs that do this are ABasic

(the original BASIC shipped with Amigas), and Deluxe Music

from Electronic Arts. This may be a fine way to save memory,

but life can be difficult with no Workbench screen - it makes it

impossible to run anything else until you exit your program!

Fortunately, the system won't let anyone close the Workbench

The Transactor 10 May 1987: Volume 7, Issue O6

screen if there are any windows open on it. So, if you want to

make sure you don't lose your screen, bring up a window

before you launch your Workbench-closing application. A good

candidate to have up is a CLI window, since you'll probably

want one around anyway for doing disk operations from time

to time.

Beating The Low Memory Blues

If you can't bring a program up because you're running low on

memory, try closing as many windows on the Workbench as

possible. You can close every window on the screen, even the

one containing the program you're trying to run, by dragging

the program's icon outside the window onto the Workbench

screen (actually, backdrop window) itself. Once you close up

everything you can, you can launch the program by double-

clicking the icon as usual. Make sure you eventually drag the

icon back into the drawer it came from, or it'll disappear from

the disk forever.

If you want to keep some windows around, you can minimize

the memory consumed by making sure they don't overlap. If

you're totally desperate and absolutely need a few more K, you

can always unplug your second drive (if you have one), and re

boot. If you don't have the internal 256K RAM expansion

module, get it. If you can afford to, get more - it's amazing what

a few extra Megabytes can do for Amiga!

Modifying The Epson Printer Driver

To Work With Other Printers

Peter Inskeep

Long Valley, NJ

I use the Scribble! word processor, version 2.0, and a Gemini

Star 10-X printer. If Epson is selected as the printer through

Preferences, many of the printer commands work properly on

the Start 10-X. One command that does not work is the

paragraph return, as would be the case when putting a space

between two paragraphs. Invariably, the printer will skip not

one, but two lines, before starting the next paragraph. Scribble!

is not aware of this extra line skip, so it does not add the extra

line when calculating where the end of the page really is. The

more blank lines between paragraphs, the more the program

gets out of line at the end of the page.

Creating a custom printer-driver is a formidable task. But, if the

Epson program is be modified only slightly it can be made to

work well with the Star 10-X. I used the "Edit" program on the

WorkBench disk to make the modification directly to the Epson

printer driver.

The Epson printer driver is located with all the others in the

"devs/printer" directory. Using the command, "type dfO:devs/

printer/epson opt h" from CLI to display a hex dump of the file,

I located the characters that controlled the linefeed for the

printer. This was at location $0430 (hex), where the characters

read as follows:

$0430: 0000FF00 0A000D0A0000FF00 5.-

The carriage return/linefeed at $0436 and $0437 (in bold

above) were causing the double-skip. In preparation for sur

gery, the file was copied to a new file called "Star" on a spare

disk.

Edit was then invoked to make the correction. Because some of

the "lines" in the file were very long, it was necessary to specify

the unusually long line length to Edit, or the lines would be

truncated and the file corrupted. The Edit command used was

"edit star opt p65w550". The 000D0A combination was found

in lines 12 and 13. Line 12 contains 000D, but only the 00

shows if the ! Edit command is used. Line 13 contains only 0A

(you can't see it, since it's a linefeed, but it's there). Line 12 was

deleted and replaced using the control-2 and control-j keys.

Here are all the edit commands required:

113

CTRL-2 CTRL-j

Z

The instructions for using Edit can be found in the AmigaDOS

manual. Since the control-2 and control-j key combinations

are non-printing, you will not see anything being added, but

you are putting the two characters 000A into the file.

Line 13 was deleted, because the 0A at $0437 was really the

bug for the Star 10-X. This left the file short one character, so

00 was added at the beginning of line 14 to put 000A at $0436.

To add the character to the beginning of the line, before the 0A,

a substitute null string command was used:

A//CTRL-2/

After Edit was wound up, the newly edited file "Star" was

checked for size with the list command to make sure it was the

same size as "Epson". 'Type star opt h' was used to see if the

changes had been made in the right place. The corrected file

read as follows:

$0430 OOOOFFOO 0AOOOAOO OOOOFFOO 5.-

"Star" was then copied to the Scribble disk (copy star to

scribble!/devs/printers). Preferences would recognize the new

printer file, but for some reason Scribble! declared "no printer"

when the print menu was selected. To keep Scribble! happy, I

renamed "Epson" to "True Epson", and "Star" to "Epson".

After that, there was no problem.

Although I have not done it, I assume that many of the printer

drivers could be similarly modified. It took patience to figure

out how to use Edit, especially with non-printing characters. I

put the whole mess in the ram disk ("ram:") while I experi

mented, which made all the trial and error go much faster.

By the way, I am really enjoying Scribble!. Micro-Systems sent

the Scribble! 2.0 upgrade, with the spelling dictionary, as soon

as it was available, and enhanced Scribble! at the same time. It

was a real bargain, because there was no charge for the

upgrade.

The Transactor May 1987: Volume 7, Issue O6

Letters

We get a lot of mail from readers who have very specific questions

about their Commodore and third-party equipment. Many ofthese

are interfacing problems of one kind or another: which software

will work with my modem?How can I get my printer and my word

processor to work together? How come my system won't load from

drive 13 now that I've installed a Magic Shmoo(tm) Expander box

on my game port?

These kinds of questions are often impossible to answer unless you

have specific experience with the particular equipment configura

tion involved. Since we don't have every imaginable piece of

equipment on the market, we're often left scratching our heads for

a reply.

You, on the other hand, may have recently discovered the neces

sary incantations to make the Magic Shmoo(tm) box work with

your disk drives, and wouldjust love to share your discovery with

the rest of the world. That's what this next bunch of letters are all

about. Read them over - see ifyou can help. We 'd love to hear from

you, and so would the authors of these questions.

Angling for weird parts: Because of a stiff cord on my (replace

ment!) power pack, and a lot of movement of the keyboard by our

four users, the power receptacle broke its solder joints to the PC

board. A simple removal of the PC assembly, lifting off the RF

shield and careful resoldering have cured the problem. However, it

could have been worse, and that leads me to the following subject.

I tried to locate a 7-pin DIN male by female right angle adapter so I

could lead my power cable out the rear of the board. This idea

carried over to also trying to source an angle adapter for the rear

serial receptacle on my 801 printer (the cable interferes with the

paper feed). My intention was to fasten these to the cases so flex

loads would be taken by the easily repaired cords.

I could not find a supplier in this area (250 km out of Vancouver).

Could you suggest a supplier of the following items I would like to

purchase: right angle DIN m/f adapters; longer serial cords or m/f

serial cord extenders; a simple inexpensive modem.

Doug Hurd, Penticton, British Columbia

Nefarious plots: I am wondering if anyone has noticed any bugs

in the 1520 plotter when attempting to plot in relative coordinates.

It seems that when the pen carriage is at certain x (horizontal)

positions, the first 'j' sub-command after an T sends the pen off to

the absolute origin instead. To cure this, it is necessary to insert the

apparently redundant subcommand PRINT#1, "R",0,0, after

PRINTS, "I".

The 1520 seems to be a rather unpopular peripheral and I haven't

come across another unit to test whether all have this fault or just

mine.

Michael Seman, South Perth, Western Australia

Yet another request for Urdu software: I have been a regular

subscriber to The Transactor for the last two years. J have owned a

faithful C-64 for the last four years! I have recently seen an Arabic

version of a word processor that is on a cartridge that converts the

C-64 to an Arabic language computer.

I am interested to know if there is any such software for the Urdu

language available? I would be grateful to any Transactor readers

who could provide me with information on such a product.

M. Sharif Butt, Makkah, Saudi Arabia

C-64 Numerics: I enjoyed the 'extra' languages issue, especially

the benchmarks.

What numeric calculation software environments exist for Com

modore 64? Any public domain stuff?

The "Apple Numerics manual" (ISBN 17741-2 Addison-Wesley)

describes SANE, the Standard Apple Numerics Environment,

which runs on the 6502 microprocessor in assembly language. Has

something like this been written for a Commodore system?

"Interactive Simulation Language" (Interactive Mini Systems Inc.)

with the "ISLMP3" compiler is available for Commodore 64. It

includes modules for solving non-linear differential equations.

I bought something from Dynacomp written in BASIC with no

error trapping and clumsy plotter routines for C64. Runs, but not

what I'd hoped to find.

Edward Connors, Frederick, Maryland

Remote line feeds: I have enjoyed The Transactor for many

issues, especially Networking and Communications. The program

I would like to refer to is Remote 64.

After changing 16 to 0 in line 1000 to give full duplex transmission,

this brought my non-Commodore terminal to life and I can interact

with my 64 remotely.

The only problem is that my remote terminal expects a linefeed

(chr$(10)), and unless my programs are modified to give one, the

terminal will just write over the same line. Program and directory

lists seem impossible.

Is there a simple method to send a linefeed after a carriage return

by modifying Remote 64?

This problem has been giving me many sleepless nights and an

answer would be appreciated.

Tim Rayworth, Kentville, Nova Scotia

Put away those sleeping pills, Tim, and add the following lines to

the Remote 64 source file:

The Transactor 12 May 1987: Volume 7, Issue O6

1075 pha

1085 pla

1086 cmp#13

1087 bne * + 7

1088 Ida #10

1089 jsr normout

Kernal revision revision: It almost brought tears to my eyes to

see Tony Doty's articles 'Auto Default for the C64' in Volume 6,

Issue 1. Not of sadness, though - the two 'fixes' he describes cure

two of the most aggravating 'features' of the C64. I have been

running my own EPROM Kernal revision for two years now,

incorporating not only those revisions but a number of others.

However, at this stage I offer two points of comment on Tony's

article.

1. The default device number occurs not only at $E 1 DA but also at

$E228, the latter affecting the Kernal OPEN. I am not sure of the

implications of leaving this as 1, but to be sure I changed it

anyway.

2. Use of the RUN key (i.e. shifted RUN/STOP) leaves the text in

the input buffer. A 'normal' BASIC program with a GET or INPUT

from the keyboard before any other I/O will find this text unless

cleared by a POKE 198,0.

Taking Tony's point on default device one step further, I found that

over 90 per cent of local C64 owners, and even more among non-

gamers, do not use cassette at all! As one of that large majority,

some 1.8K of Kernal was liberated by declaring device 1 as illegal,

and intercepting all attempts to reference it. This permitted the

flexibility to carry out some rather extensive modifications, includ

ing integration of the DOS Manager in the Kernal, thereby avoid

ing some incompatibility problems and saving the hassle of

loading at each power-up.

While on the subject of the DOS manager, it is interesting to

consider the impact of the CHRGET-wedge technique. In effect, all

input, including from disk, is scanned by additional code designed

to intercept DOS commands. The resulting degradation of an I/O-

bound program is massive. As a quick solution, always disable the

DOS manager (Q) before running your programs if they are heavy

on disk input. It can always be resuscitated with a SYS call,

although this is an introverted procedure - the CHRGET code is

being executed when the SYSed code is changing the CHRGET

code! This correctly reinstates the wedge, but it also results in a

SYNTAX ERROR, although this is of no importance unless you

intended to CONTinue the program - the error blocks continua

tion. Such wedge techniques are 'quick and dirty'. The elegant

approach is to intercept the error handler via the $0300 vector, and

check for valid DOS commands before treating as a genuine error -

the same approach as is used for many BASIC extensions.

Peter Morgan, Lesmurdie, Western Australia

Eavesdropping on modems: Please let me take this opportu

nity to thank you for a truly informative magazine. Many of my

projects, programs and most of my experience is directly related to

the articles you have published.

This letter was inspired by a couple of articles concerning modems

in recent issues of the Transactor.

I use a Pocket Modem and a terminal program called Dark Term

on my C64. Both the modem and the terminal program have

autodial capability, but they are unable to sense a busy signal,

ringing phone, or an answered voice signal. This meant that I had

to monitor the call by holding a telephone to my ear. Many are the

headaches caused by a detected carrier. I have overcome this

annoying problem with two items found in a local Radio Shack

store. The first is called a Phone Pickup Coil, part number 44-533;

the second is called an Audio Amp/Speaker, part number 277-

1008.

The phone pickup coil is normally connected to a tape recorder

and then fastened to the telephone handset via a rubber suction

cup, to allow phone conversations to be recorded. However, when

connected to the Audio Amp/Speaker, the phone conversations

can be heard without listening to the telephone handset. Now, if

the pickup coil is placed on the front right corner of the Pocket

Modem case, and the modem is turned online, the speaker will

broadcast the dial tone, or the telephone conversation, just like it

did with the telephone. This means that I can now use my modem

and term program without having to hold my telephone to my ear.

I use the above setup every time I use my modem. With it I can

check for following:

1) A dial tone when I first turn on my modem.

2) Listen to how my modem dials the phone number.

3) Listen for the phone to ring on the other end, or know immedi

ately if the line is busy.

4) I can hear the other computer send its carrier signal and tell if

my computer has answered it.

5) If I don't get an answer after three rings I hang up and check the

number.

6) If I should dial a voice number I will hear them on the speaker

and can then pick up the phone and explain or apologize.

7) When I am uploading or downloading, I leave the speaker on

and listen to the data being transferred. I have found on a

number of occasions, when my computer mysteriously locked

up while uploading, that the problem was caused by the BBS

hanging up on me. Without the pickup coil and speaker setup,

or holding the phone to my ear, I never would have figured out

the cause.

I have installed the pickup coil semipermanently on my Pocket

Modem with a dab of hot glue (Crazy Glue or Epoxy will also work).

The Hot Glue can be peeled off, and it leaves no marks if I should

decide to sell my modem. Also instead of removing the rubber

suction cup I turned the coil upside down: the coil will still work,

and one day I may figure out a use for the suction cup behind the

computer.

The coil and speaker should work on any type of modem. Connect

the coil to the amp/speaker, turn on the modem and pass the coil

over the modem case until the dial tone is heard. It will be

necessary to experiment to find the loudest signal and then just

glue the coil in that spot. The beauty to this setup is that no

permanent modifications are necessary to the computer, modem

or phone lines. Also, there is no way you can damage the

computer or modem, or mess up your phone service. The only

disadvantage to the system is that the coil will pick up a hum if

placed too close to the monitor or TV.

The Transactor 13 May 1967: Volume 7, Issue 06

Note: If you are curious about why people have trouble with disk

drives and Datasettes when placed on the left side of the monitor,

just pass the coil by the left side of your monitor and listen. 1 would

suggest you keep the volume turned down!

Perhaps the neatest thing about this project is the price. The

pickup coil costs $2.19 and the Amp/Speaker is worth $15.95 at

Radio Shack. This speaker and coil modification is a lot like my

Fastload Cartridge: now that I have used it, I won't leave home

without it.

I hope that this project will prove as useful to you as it has to me.

Kevin Lemon, St. Catharines, Ontario

IEEEforC-128:In response to your query in the March '87 issue

about whether there is an IEEE interface for the C-128: there is. . .

the Quicksilver 128 from Skyles Electric. I have been using one of

these for about two months on a C-128 equipped with a Hewlett-

Packard Thinkjet printer and 7470A two pen plotter. The device

plugs into the expansion port and requires replacement of a ROM

and attaching a jumper clip inside the computer. An important

feature is that this unit also works with the C-l 28 running in C-64

mode.

Unlike the older BusCard II for the C-64, this interface does not

have a built-in monitor or enhanced DOS commands. Although

not needed for 128 mode, they are really missed in C-64 mode. It

also does not have a parallel printer output.

As advertised, the Quicksilver seems to be fully transparent.

However, one bug exists if it is to be used in C-64 mode. If you turn

on the C-128 and 'GO 64' immediately, you will not be able to

access the IEEE bus in C-64 mode. The solution is to open and

close any IEEE device while passing through C-128 mode. This

could be handled with an autoboot disk routine in final versions of

application programs.

John A. Spencer, Edwardsville, Illinois

foot is in the poor support they have given their distributors. Two

local outlets have said that they will never deal with Commodore

again. I realize that this is a holdover from the Tramiel era, but the

current superstructure at Commodore does not seem to have

addressed this problem adequately. Also, Commodore seemingly

does not know how to win the press. The PC caught on only

because of the familiar three initials. The computer press followed

a familiar trail and it established a "standard" with a poorly

designed machine. But success breeds success and the press

seems intent on burying the name Commodore. Granted that the

rumoured 150,000 installed systems may not excite software

developers, some good and effective PR effort on the part of

Commodore devoted to the seemingly hostile part of the computer

press could effect a drastic change. It would not be easy but it could

be vital.

One footnote to my first point: the recent rumour that Commodore

has abandoned the Amiga 1000 as of the first of the year in favour

of the "2000" and a "500" does nothing to inspire confidence in

those of us with the 1000. This tactic seems to have been taken out

of IBM's manual of deserting the loyal customers.

Rev. Fr J. Paul Morris, Long Beach, California

Having experienced it ourselves, we sympathize with anyone going

through the vertigo you get when you move up to the Amiga from

the 8-bit machines. But as it happens, sending a directory to the

printer is easy and natural on the Amiga: typing dir >prt: opt a

should do it. Try it - you won t miss the old Commodore syntax for

long.

As we go to press, there's still no official word on the new Amiga

models you mention, so it's too early to say whether to expect

compatibility problems. However, you can take heart from the fact

that the Amiga's operating system software is designed from the

ground up with flexibility and expandability in mind - it is light

years ahead of all other Commodore computers in this respect. In

the old days at Commodore, 'compatibility' and 'analphabetes'

were catchwords of about equal currency.

Amiga marketing: Thank you for Vol 7, Issue 5, first for the

inclusion of articles on the Amiga; and second for the excellent

Start Address.

Although the Amiga articles are over my head, at least they are a

recognition that you plan to support the model. I am one of those

who are still trapped in an 8-bit orientation in a 32-bit environ

ment. I still want to Load and Run with a simple Shift/Run and to

call up a directory with a caTdO or 1.1 yearn to be able to print a

directory or program listing with an open4,4:cmd4:(caT or

list):print#4:close4. That was so automatic. Now I am beginning

to master cd df 1: dir opt a, but I cannot get it to print even if 1

type dir opt a to prt: And I am so tired of getting something

about a command lacking a return code and I cannot find anything

in the manuals on "return codes"! And the manuals were not

written for such as I. How about some articles for the analphabetes

in the Amiga audience?

On the second point, I agree with your editorial wholeheartedly.

But another way that Commodore has repeatedly shot itself in the

No niche for Amiga: Why are Amigas not selling? The short

answer is that IBM/MS DOS is the business standard and the

cheaper 8 bit computers are more than adequate for most home

uses. Amiga would be great for desktop publishing, but the Mac

already owns that territory.

Expandability? You're selling a 1 Meg RAM box for $1035, nearly

the price of a two drive clone. Anyone needing this much memory

is probably running business programs and would be better off

with DOS hardware, kludgy though it is. Ditto for Sidecar. To put it

another way, why speak Esperanto then translate everything into

English?

Multitasking might be a sleeper, but a lot of us have trouble enough

concentrating on one task at a time. Granted, the idea of having a

spreadsheet churning away while you write a letter to your MP

sounds good on paper. But seriously folks, when's the last time you

had to recalculate the orbits of all the stars and planets? Most real

world spreadsheet applications run in a few seconds, even on the

lowly PC.

The Transactor 14 May 1987: Volume 7, Issue O6

At the risk of sounding like a curmudgeon, I must confess to a

loathing of mice. This unfashionable prejudice may simply reflect

my upbringing on IBMs and Commodore 8 bits, but I'm not so

sure. Most tools that are easy to learn are less satisfactory for the

experienced user. To draw what may be an unfair analogy, are you

guys doing a whole lot of programming in BASIC?

So who's left? Technofreaks and artists. Business empires on this

market are not built. Don't get me wrong. I acknowledge the

Amiga as a wizard machine, but right now it's a solution looking

for a problem.

Jim O'Hare, Victoria, British Columbia

// 's a bit ironic that the Amiga, which is arguably the most powerful

micro on the market today, should be widely seen as having no

natural place. It is even more ironic that its most radical innovation

- multitasking - should be so badly undervalued. I think it's a

misconception to suppose - as your spreadsheet example implies

you do - that there is no benefit to multitasking unless all tasks are

continuously running full bore.

Perhaps in your letter to your MP you would like to include some

juicy numbers about government waste. No problem - just save

your document file from your word processor, exit the program,

load your spreadsheet, make your calculation, write down the

numbers, exit the spreadsheet, reload the word processor, reload

the document file, and you're ready to go. Easy! Or, you can click

the word processor out of the way, do your spreadsheet calcula

tion, then go back into the word processor with another mouse

click. Easier!

But that's just scratching the surface. The real value of the multi

tasking environment might not become apparent to you until after

you've worked on the machine for a month or two. And that's

when for some reason you have to go back to a single-tasking

computer for a while. You 11 find it frustrating and confining. By this

time you've become used to slipping fluidly from one program to

another and back again, with almost the same ease as your

thoughts shift between topics, or your hands between tools. And

you won't want to go back to a machine with a narrow-minded,

serially-oriented operating system.

Part of Commodore's marketing problem is that multitasking is

hard to promote. Reading about it isn 't enough - you have to live

with it to appreciate its true power. But time will take care of that,

and a few years from now single-tasking machines may be just

Mesozoic curiosities. That may or may not help the Amiga, since

being too early can be just as bad as being too late, but it's not

inconceivable that it could eventually be more successful than

anyone now imagines.

TransBloopors

EPROM Burns:

Our thanks to everyone who sent in error reports for the Universal

EPROM Programmer article in Volume 7, Issue 05. A follow up

article appears in this issue.

Hi-res Trace Utility SYS Address:

If you've had any slight difficulties with the trace utility on page 69

of Volume 7, Issue 4 - such as the program failing to work - you may

wish to change the SYS address in line 1060 from 52096 to 52723.

And always be on your guard for sophisticated DATAfiers that

cavalierly assume that a program's start address is going to be the

same as its entry point.

The trace utility also has a problem with version 2 C64 ROMs - the

version that fills colour RAM with the background colour when

you clear the screen. To make the program work properly on these

machines, make the following changes:

line 1860: delete the last data item (162)

line 1890: delete the last data item (169)

line 1900: delete the entries 147, 32, 210, 255

Finally, create a new line:

1865 data 169, 147, 32, 210, 255, 162

In the assembler source code, the only change required is to

reposition lines 4890 and 4900 to fall between lines 4690 and

4700.

Uncontrolled Sprite Bits:

David Johnson of Gander, Newfoundland, reports an error in the

third example of the article 'Bit Addressing of Sprite Controls', from

Volume 7, Issue 2. He suggests the following changes:

Change line 1 to ldx #5, instead of Ida *5

Change line 5 to beq dabble, instead of beq maskor

Tape Verifizzle:

Apparently not too many of you are making use of the Verifizer for

cassette users that we've been publishing for the last while,

because we've just now found out from a single letter that up until

this issue it had a fatal error in the data statement in line 1070. The

last number in that line should be 247 instead of 249. Thanks for

spotting the error goes to Phil Hoff of Chico, California.

Slashing and Pounding:

In his book, The Home Computer Wars, Michael Tomczyk re

ported that one of his biggest triumphs as a one-time Commodore

marketing executive was the replacement of the standard Ascii

backslash (code 92) with the English pound sign. This astounding

innovation was first seen on the VIC 20, and was inherited by

Commodore's subsequent 8-bit machines. Well, maybe Tomczyk

had a point and maybe he didn't, but a side effect of the switch is

that we have to be extra careful when we print an article with the

pound sign in it. The typesetting machine doesn't know Commo

dore from coconuts, and code 92 comes out as a backslash every

time; to get the pound sign we have to manually substitute a

character from a special font. All of which explains why the

'Commodore 64 23K RAM Disk' article in Volume 7, Issue 5, used

an incorrect backslash both in the text of the article and in line 180

of the program, instead of the correct British pound sign. Thanks to

Jack R. Farrah of Cincinnati, Ohio, and James C. Sanders of

Knoxville, Tennessee for pointing out the error.

The Transactor 15 May 1987: Volume 7, Issue O6

Smile! You're on RLE! Christopher Dunn

Chicago, Illinois

RLE was first implemented on CompuServe to handle display

of the National Weather Service radar weather maps. . .

But First, A Word From Our Sponsor...

Our regular TeleColumn does not appear this issue as usual.

Instead, we have just a few notes here (sorry for the interruption

Chris). TeleColumn will be back in the next Transactor, but part

of what we intended for the TeleColumn that isn't here was the

command sequence for configuring the DataPac network to

allow successful up/downloads on CompuServe. However,

Ranjan Bose thoughtfully included this at the end of his online

services comparison (see next article).

The Commodore "MagNet" is the tentative name for the online

magazine section of the Commodore Network on CompuServe.

So far there's been mixed response over the choice of name,

ranging from "terrific marketing idea", to "catchy", and on

through "too cute". So, being the democratic blokes that we are,

the floor is currently open to suggestions. If you have one, or if

you like "MagNet", please let us know. You can call, write, or

even message us on CompuServe (enter GO CBMNET and

choose CBMCOM or CBMPRG).

Building the online magazine section for CBMNET is like

learning a new language - and the first program you write is a

database! However, progress is being made and articles from

this issue will be among the first to appear! We're also consider

ing a sub-section of "Online Exclusives". We often receive

articles containing programs that are just too big to publish in

the magazine. These would be ideal in an Online Exclusives

section since "entering the program by hand" is no longer

criteria for deeming an article unacceptable. We took out our

box off unused stuff and found several we could already put to

use for this idea. There's only one problem - our author

payments budget can't handle the load of this extra material,

but if a free T-shirt or some other gift would suffice, we'll be

happy to oblige.

Authors who submitted material that wound up in the unused

box probably know who you are, and we'll be getting in touch

with you shortly to see how the idea might appeal to you.

Naturally, you can feel free to decline and your material will be

returned. Further, we've already returned many articles that

might also have fit into this category, and there are undoubt

edly others with articles that would merit a place in this

"telespotlight". So, if you'd like to re-submit them, they'll be

considered for Online Exclusives.

Christopher and Pamela Dunn

Ok, what is RLE? It stands for Run Length Encoding, and is a system

developed at CompuServe to enable them to transmit high resolution

graphic images to different brands of computers.

A hires image is made up of pixels, as most of us know, that can be set

to different colors to form the picture on our screen. The image can be

generated in various ways, most often with a drawing program of

some sort, or with a digitizer when converting a real world image.

This image can then be stored to disk for recall later. Different

computers use different formats for this storage, and even different

programs on the same computer use incompatible formats for storing

images. Just about the only common item was that all computers used

pixels to form the screen image. RLE is a way of encoding the screen

image so that the original picture may be viewed on most different

types of computers.

In The Beginning...

RLE was first implemented on CompuServe to handle display of the

National Weather Service radar weather maps. If you were lucky

enough, back a few years ago, to have a terminal program that had the

RLE data decoder built in, then you could directly view these hires

maps on your screen. If you did not have RLE capability, all you saw

was gibberish. As the format of RLE filtered down to various program

mers, programs were written to decode the data. Some were built into

terminal programs, some were meant to be used off line to decode

captured data.

The Transactor 16 May 1987: Volume 7, Issue O6

More RLE selections were added to CompuServe, Users Pictures,

images of the FBI's 10 Most Wanted, and more recently, images of

Missing Children. However, all of these images were being gener

ated at CompuServe, users themselves wanted to translate their

own works of art into RLE. Step in the wizards again, and soon

programs popped up to transfer hires images on your computer

into RLE files. These files could then be uploaded to a database for

all to view, (assuming they had an RLE decoder of course.)

Specifications

The format of RLE is really quite simple. It had to be simple

because it had to be understandable by a wide range of computers.

First off, all RLE images are in monochrome. I wont say black and

white, because you could display a RLE image in blue and yellow,

or any 2 colors if you like, but the RLE data only tells you if a pixel

on your screen is on or off, not what color it is. The'standard in RLE

files is a Black background (Pixel off) and a white foreground (pixel

on).

The screen size for an RLE image is 256 pixels across and 192

down. This was chosen because it was the resolution of the screen

on the original Radio Shack Color Computer, which was widely in

use when RLE was being developed. On the C64, the screen size is

320 by 200, so an RLE will not quite fill the screen. A border is left

on the left, right and bottom.

If you look at a hires image on your screen, and starting in the

upper left corner, counted the number of pixels that were of one

color, then when you hit a pixel of a new color, start a new count,

you would have an idea of what Run Length Encoding is. RLE is

the count of dark and light pixels across a line on the screen. RLE

data is sent in pairs of ASCII characters. The first translating into

the number of dark pixels and the second translating into the

number of light pixels to follow.

Image Coding/Decoding

Say that the first line of an image had 3 dark pixels, then a light one

followed by 3 dark ones and another light one. The RLE encoding

program would count the first 3 dark pixels, see that the next one

was light, so generate a 3 for the first dark value. Then the program

counts the light pixels, finds only one, and 1 becomes the light

value. We now have our first pair; a 3 and a 1. This could be used

as the RLE data, but a character with an ASCII value of 3 happens

to be the Control-C character. Trying to send that out on most

networks would cause havoc! So to the raw values an offset of 32 is

added. 32 is an ASCII SPACE, so all RLE data is at least a space

character or higher. The maximum character useable in ASCII is

127, the Delete character. 127 - 32 = 95 So the largest value for a

string of pixels is 95. Getting back you our example, the raw pixel

count is adjusted to produce the ASCII characters '*' and '!'

(chr$(35) and chr$(33)). The next pixels would then be counted

from the image and the process continued.

When the end of a line is reached, you simply wrap around on the

next line. If the pixels don't change state from the end of one line to

the beginning of the next, you just keep counting. If you hit 95

pixels in a row though, you have to stop. Since the maximum

ASCII character usable is 127, and that means 95 pixels in a row,

what happens when there are more than 95? If the pixels count

was of dark pixels, the first character of the pair, you would

generate the character 127. For the light character that follows you

would generate character 32 (ASCII for space). At the decoding

end, the 127 would give you 95 dark pixels, and NO light pixels

since 32 - 32 = 0. You then go on counting the dark pixels where

you left off and generate a new pair of characters as needed. The

same would hold true if the first pixel encountered in an image was

light. The first character of the data pair, the one for the dark count,

would be an ASCII 32, meaning NO dark pixels to start with.

You can now see the meaning of Run Length Encoding. You run

down the length of the images counting pixels and generating the

data from the count of dark and light pixels found. The RLE data is

stored in a text file, and text files are easy to transmit via modems.

At the displaying end, everything runs in reverse, the first pair of

data is taken and decoded into the number of dark and light pixels

to draw on the screen, then the next pair is taken and so on until

the bottom is reached.

The only addition to an RLE file I will mention is that it has a 3 byte

header; the characters <ESOGH. The <ESC> is ASCII 27. And

the GH stands for Graphic Hires. This code is used to switch

terminal programs into RLE decoding mode automatically. The

end of a RLE file is marked with <ESOGN for Graphic Normal.

(Normal terminal mode.)

Commodore RLE

I was writing above in general terms because it applys to all

computers, not only Commodore equipment. Now I will get into

some specific programs for the C64 that create and display RLE

files.

As RLE was meant to display pictures while connected on line, the

RLE decoding software was added to terminal programs. You can

also download or RAM buffer capture the RLE data and display it

off line. Presently I know of 2 terminal programs that will display

RLE images on line. CompuServe's Vidtex 4.2 and my own

CBterm/C64. If you capture the RLE data to a disk file, you may

display it off line with programs like RLE2HR. You may generate

your own RLE files from your hires images with the program

HR2RLE. CBterm/c64, RLE2HR, and HR2RLE may be found for

downloading from the databases of the CompuServe CBIG Sig.

Vidtex 4.2 is available for purchase from CompuServe. CBterm will

also print the hires image if you have a Star or Epson type printer.

Both CBterm and Vidtex may be made to save the hires image to

disk in a Doodle or Koala compatible file with the use of an overlay

subroutine for each program also available in the databases of

CBIG Sig.

Note to Vidtex users: Before RLE pictures can be displayed, you

must enable Hires Memory. Enter Meta-Q and select Option 8

HIRES MEM. Enter 'E' for Enable and hit Return twice to exit

(Option 8 defaults to 'D' for Disabled).

RLE Image Sources

Now that you have read this article, you may be wondering what

kinds of images are available to look at online? As I mentioned in

the beginning, you may view the weather radar maps updated

The Transactor 17 May 1987: Volume 7, Issue O6

hourly (GO WEATHER), or the FBI's 10 most wanted list (GO TEN)

or pictures of missing children (GO MISSING). Other areas on

CompuServe are adding RLE images all the time. But that is only

the half of it. There are hundreds of pictures that have been

generated by users and uploaded to various Forums on Compu

Serve. Database 3 of CBIG contains over 100 RLE images alone,

ranging from very fine detailed drawings by some very skilled

artists to some equally interesting computer room "Nudes".

The Florida Forum uses RLE files to display maps and images of

attractions from that state. Then there is the Picture Support

Forum (GO PICS) that was formed for the purpose of helping

people with displaying and generating RLE files. It has a vast

database of user contributed images.

In DL12 of The Commodore Arts and Games Forum (GO CBMART)

you'll find a program called CAD30.BIN. Also in DL12 are some 40

RLE Figure files that go with this CAD package. Since this is in fact

the "Arts" forum for Commodore users, their DLs will contain

other interesting RLEs, and probably many more to come.

An RLE file is highlighted in a forum's database by the addition of

"/TYPE:RLE" printed after the filename. If you Read that file and

are running a terminal program that will do RLE, then the image

will display on your screen. When you go to upload your own RLE

file to a database, you should also add "/TYPE:RLE" to the upload

command so CompuServe will mark the file as an RLE image.

New files are being added to the forums all the time. Ask the

forum's SYSOP if there is a special place for RLE images. Since RLE

is a universal format, your Commodore generated image can be

displayed on lowly IBMs and Apples. Its about time those folks can

see what a real computer can do...

If you have any questions I might be able to help with, leave them

to me at the CBIG sig (GO CBIG, leave a message to SYSOP) or

Eazyplex me at 76703,717. 1 will help If I can. There are also a

number of graphics utilities for conversion between various hires

formats available in CBIG's databases 2 and 5. The RLE images are

in database 3.

Editor's Note: As a bonus, the programs "RLE2HR" and "HR-

2RLE" will be on The Transactor Disk that goes with this issue

(Disk* 17).

(The vertical white lines in dark areas are due

to the printer, not the RLE image file.

Fillmore Ray
Cross,Jr.

fige: 44

Born: fra*i. 11,1342

San Fran.. Cjft
I Height: £;■'

Weight: 175 lbs.
Build: Slim-Med.
ves: Hazel

Race- White
Hair; Brown

Hair-. Blonde

its waleNationality:&mei

Tattoo of snake
& rose, upper rt.

Christopher

Enoc ftbeyta

Missing: July 15/86
at age 7 months
FrOffl" Colorado

H pingSj Colorado
Jlg'HQe: 12 months
Hi Bom: NoG.28,7985 |

Lyes: Blue

Height: 2'2"

From FBI Ten Most Wanted Section (GO FBI) From The Missing Childrens Section (GO MISSING)

The Transactor 18 May 1987: Volume 7, Issue O6

Beyond Bulletin Board Systems
Ranjan Bose, Winnipeg, Manitoba

. . . The real fun and power of telecommunicating extends

beyond reading E-mail or messages. . .

Telecommunication is a fascinating and extremely useful appli

cation of computers. Few of those who have tried it ever get

over the sheer magic of the ability to 'talk' with remote

computers that are usually so much bigger and powerful than

their own. Commodore equipment owners have generally

been fortunate in this respect because CBM has always been

actively involved in promoting this branch of computing

among their patrons. They have introduced four modems so

far, each a step better than the last. Their first modem, popu

larly dubbed the 'Vicmodem', which was introduced with the

VIC-20, was a very basic piece of hardware. Next came the

1650 automodem, soon to be followed by the 1660 with touch-

tone dialing, then finally, the 1670, which not only made 1200

bps access available, but also many other convenient features

including Hayes-like 'smart' commands. The modem comes

packaged with several telecommunication programs of high

quality, and all this without one having to trade in that ticket to

Hawaii.

Beyond BBSs

A typical telecommunications neophyte usually teethes on

bulletin board systems, which often vary a lot in features and

capabilities. The real fun and power of telecommunicating,

however, extends beyond reading E-mail or messages or even

exchanging programs. In the present age of 'Infomania', one

needs to know a lot of varied bits and pieces of information.

These billions and billions of characters can be handled effi

ciently only by a mainframe computer, in fact, several of them

working together. Several such huge information databases

exist, providing the following categories of services:

a) Pure information - Encyclopedias, research libraries, news

items, stock prices, etc.

b) Public-domain software, freeware and shareware.

c) Electronic mail (E-Mail)

d) Interactive games involving single or more players.

e) Special interest groups (SIGs) or clubs catering to a wide

variety of interests from Astronomy to Zen.

f) Real time interactive conferencing (electronic CB).

g) Commercial services - Banking, stock investments, books,

software, travel arrangements, etc.

Some of these services are provided through 'gateways' to

other mainframes and often incur additional surcharges.

One big difference between bulletin boards and information

services is that one is charged by the minute when accessing

the latter. For most people living outside the continental

U.S.A., there are additional telecommunication charges. Since

one may be paying from 17 to 75 Canadian dollars per hour,

one really has to plan an online session ahead of time, and

familiarity with the system helps.

Three of the many services which support the interests of

Commodore users are CompuServe (CIS), Delphi (DEL) and

Quantum Link (QL). All three permit access up to at least 1200

bps, with CompuServe having differential rates for 300, 450

and 1200 bps access. Of these, Quantum link caters exclusively

to owners of the C-64 and C-128.

Software Requirements

Quantum link requires special telecommunications software

which is distributed free with several soft/hardware packages

(e.g. GEOS, 1670, etc.). A monthly minimum service charge of

$9.95 (US) is levied, which includes one free hour of special

services (almost anything of interest including Email!) costing

$3.60/hour (US). CompuServe recommends its 'Vidtex' soft

ware system which supports its proprietary error-checking "B"

protocol, a protocol that is more efficient and faster than

Xmodem, high resolution graphic displays (RLE), and other

special and standard features. Several public-domain pro

grams also support some or all of these features. In addition to

the 'B' and Xmodem protocols, CIS also supports file transfers

using Xon/Xoff, and special software is not absolutely essen

tial. Delphi permits Xmodem transfers and is compatible with

most software. There are no minimum monthly charges for

regular members of CIS and DEL.

Access

QL is the easiest to access because its special software automati

cally dials and connects with the system. The software supports

practically all popular modems. Accessing CIS or DEL is a bit

more involved depending on whether you are connecting

directly, or through a telecommunication network such as

Tymnet, Telenet or Datapac. Some terminal programs support

user-definable keys and autostart features which, once pro

grammed, make the log-on procedure easy. CIS and DEL

identify a user account by a user id and password; the latter

should be changed periodically to protect one's account from

unauthorized access. QL handles account identification auto

matically.

The Transactor 19 May 1987: Volume 7, Issue O6

Features

Although all three services provide all of the basic features, the

range of services on CIS is the largest. QL will be of greater

interest to beginners because everything is menu-driven, and

the menu-screens are colourful. The system, however, is not

flexible, and advanced users cannot but help feel caged and

slowed down. CIS and DEL permit menus for beginners, and

short prompts or command mode for advanced users. These

save a lot of time ($$) in the long run.

The quality of games on QL is much better, because of the

interactive, colourful high-resolution graphic displays, when

compared with the primarily text-oriented games available on

the other two services.

On the other hand, both CIS and DEL provide access to

research databases such as DIALOG, MEDLINE, etc. Both of

these services also offer searches made on one's behalf by

experienced librarians ($$).

Electronic mail is easier and more flexible on CIS than on DEL,

which, however, provides services such as Telex, Globalink,

etc. Both permit forwarding of mail to other information serv

ices.

QL is entirely Commodore-specific and is currently supported

by CBM. There is a GEOS SIG, Commodore hotline, product

reviews, AHOY and RUN forums and a unique program pre

view section from where one can download good quality demo

versions of commercial software and their abridged documen

tation. Several public domain program libraries are spread all

over the system. The Commodore SIGs on CIS, which previ

ously were supported by CBM, still continues to support pro

grammers, telecommunications, graphic and sound artists, and

provides technical information. It is now managed by the staff

from The Transactor and others. Several data libraries choc-

full of public-domain programs exist on the system. CIS SIGs

also support most other computers and electronic editions of

several popular magazines. DEL is the poorest in this respect. It

has a 'Flagship Commodore' forum manned by ex-SYSOPs

from CIS, and has limited fare for Commodore enthusiasts.

All three services have sections for placing and reading Classi

fied ads, which are free on CIS and QL. CIS and DEL assign

personal disk space to users for storing their files and other

information.

Navigating

CIS is by far the most flexible system, with the easiest and

fastest navigating commands, permitting one to jump around

the system. One can even custom-design the first menu to

include only areas of primary interest. Excellent manuals,

charts and the famous book by Bowen and Peyton, "How to Get

The Most Out of CompuServe" (Bantam) are recommended

reading. One should try to gain familiarity quickly and switch

to Command mode as soon as possible for increased speed,

thereby saving time and money. Navigating commands on CIS

are logical and consistent between similar sections. In addition,

CIS transfers information appreciably faster than the other two,

which are prone to delays even during non-rush hours. QL can

be painfully slow at 300 bps and has a very slow SEARCH

operation. This almost wipes out the differences in fee struc

ture, and CIS comes out ahead of the other two. Moving files

between your personal disk area and public areas, or sending

them as E-mail is much more advanced yet easy on CIS, which

provides a choice of two different editors with distinctive

features (actually a third kind of editor is also available for

special use). Two special commands on CIS, namely GO and

FIND, are really helpful in moving around the system effi

ciently. All three provide feedback services for answering

specific questions and problems. CIS' feedback service is more

human, and reads least like a computer-generated form letter!

In summary, for Commodore equipment owners, both CIS and

QL offer a lot of useful services and information. QL is some

what limited in features but extremely easy to use, with some

unique and interesting features such as commercial software

demos, GEOS forum, educational resource center and fantastic

games. CompuServe, on the other hand, has a huge, dynamic

spectrum of features, easy, flexible and fast navigation, and a

lot more to offer, especially after one gains some familiarity.

Delphi, in my opinion, hardly offers anything uniquely attrac

tive to patrons of Commodore equipment at this time.

Special note for CIS users accessing via DATAPAC:

For years now, Canadian users, accessing CIS via DATAPAC,

were not able to transfer programs or other files using 'B' or

Xmodem protocols. The problem is due to DATAPAC's aggres

sive interference which blocks transmission and hangs up the

systems involved. The following procedure can, however,

soothe DATAPAC into letting such a transfer (B or Xmodem)

proceed. This routine was worked out by some user and was

provided to me by CompuServe. I have used it frequently with

100% success.:

1. After dialing DATAPAC and entering one or two periods (300

or 1200 bps) and receiving the DATAPAC node address

message, enter P 29400138 <Return>

2. At the CompuServe user id prompt, enter: tPPAR <RE-

TURN> Control-PPAR

You will next see a large list of numbers following "PAR".

3. Enter: PROF 1 <Return>

This causes a global change and you will lose echo from

DATAPAC. Type the following blindly, or use predefined macro

keys, or switch into half-duplex if your modem has a switch to

do so.

4. Enter: SET 126:004,003:000,004:004,001:000 <Return>

5. Exit DATAPAC by entering a <Carriage Return> followed by:

GOODBYE <Return>

6. The CompuServe user id prompt reappears. Type on as

usual.

The Transactor 2O May 1987: Volume 7, Issue O6

Commodore in Europe:

An International Comparison of Price and Availability
Mikos Garamszeghy, Toronto, Ontario

(VIENNA, Austria: Transactor International News Service)

Vienna is one of my favourite cities: home of music, art, cafes,

pastries, chocolates and Commodore computers. Commodore

computers? On a recent business trip to Vienna, I had a chance

to do some window shopping for computer equipment. This

article relates some of my experiences in Vienna and other

European countries.

Commodore machines are quite popular in most parts of

Europe, even in certain Eastern Bloc countries such as Hun

gary. (A Hungarian colleague who works in a large engineering

and scientific research institute tells me that most of their word

processing and scientific computing is done with C-64 and C-

128 computers). Computer equipment is generally available in

mass market retail shops such as department stores (even

Harrod's in London, where the Queen and her family shops,

sells Commodore equipment) and specialty stores such as

photo/electronics stores and computer stores. Most serious

software is sold at the specialty stores, while the mass market

stores generally only sell games programs. Technical documen

tation is plentiful in the German speaking countries (most of

the Abacus book series is translated from the original German

version for use in North America). There are also some very

good technical magazines. The German version of RUN maga

zine rivals TRANSACTOR for its no-nonsense technical con

tent (all in German, of course). Several magazines are also

available in English and French dealing with general and

Commodore specific computing. Sadly, I hear, the French

version of RUN is to cease publication at the end of 1986,

leaving that country without a native Commodore specific

magazine. Perhaps Transactor should fill the gap with a French

version?

Much of the hardware familiar to North Americans is available

in most European countries. The C—128, C-64 (both old and

new versions) and AMIGA are generally available along with

their usual peripherals. In addition, the IBM clone PC-10 and

PC-20 and even an AT clone (PC-40) are also available. Several

machines that have long been dropped in North America, such

as the Plus/4 and C—16 (as well as an enhanced model, the C-

116) are all popular items. Third party hardware and software

support for the Plus/4 - C-16 type machines is fairly strong.

Memory expansion cartridges and RS-232 ports are even

available for the C-16.

I saw several items that I would like to see in stores on this side

of the pond, but Commodore does not seem to want to bring

them over. The most interesting is the 128-D. This is a two

piece C-128 compatible unit with a detachable keyboard, a

built in 1571 disk drive and, what every Commodore owner

dreams about, a built in fan cooled power supply. The main

computer and disk drive unit is styled much like the Amiga and

is the same color as a regular C-128. The detachable keyboard

is a very nice feature. It has the same number of keys and

layout as the conventional C-128 board with perhaps a slightly

better tactile feedback. The keyboard cable is about 1 /2 inch in

diameter and terminates at the main computer unit in a RS-

232 or IEEE type "D" plug. Although the cable may be a bit

short and stiff for some people who like keyboards on the lap, I

found it quite comfortable to work with. Judging by the diame

ter of the cable and the number of pins in the plug, I would say

that it supported all of the connections used on the internal

plug of a normal C-128 keyboard cable. Therefore, it should be

possible to connect this detachable keyboard to a North Ameri

can style C-128 (if you could get your hands on one of these

keyboards). The main computer/disk drive unit is about 430

mm (17 in) wide x 405 mm (16 in) deep x 100 mm (4 in) high

and weighs about 9.3 kg (20.5 lb). It also has a fold down

carrying handle on the left side. Although it does not have a

built-in monitor like the SX-64, it might still be considered to

be a semi-transportable.

The European C-128s and 128-Ds have two character sets in

ROM. They are selected by the North American "CAPS LOCK"

key which becomes the ASCII/DIN key. The first set (ASCII) is

identical to the North American set. The second set, DIN

(abbreviation of the German national standards board), in

cludes a few extra characters and accents not found in the

English language. In appearance, the DIN set resembles the

characters used in the older Commodore PET series and has a

much crisper appearance. The lines in the characters of the

standard C-128 are two pixels wide each. The DIN characters

have one pixel wide lines. This gives it the crisp image on a

good quality monitor. It is also suitable for European TV

standards which have a higher resolution than North American

NTSC.

The 128-D supports all three of the C-128 operating modes

and had no trouble running any of my C-128 and CP/M

software. (But then again, I would be surprised if there were

any incompatibilities because it is essentially the same ma

chine in a different box.) The 128-D is available in Austria,

Germany, England and most other European countries. It is

also available in Australia.

The Transactor 21 May 1987: Volume 7, Issue O6

The Europeans also have a second C-128 compatible disk

drive to choose from: the 1570. This drive resembles a 1541 in

outward appearance but is actually a single sided version of the

1571. It supports the fast serial bus, burst mode as well as single

sided MFM type CP/M formats. The price is about mid way

between a 1541 and a 1571.

The special 1551 parallel drive for the Plus/4 and C-16 (a very

hard to come by item in North America) is relatively easy to

find in most parts of Europe. Several third party manufacturers

offer 1541 compatible drives and other mass storage devices,

such as a 200k wafer tape drive that works on the cassette port.

Speaking of cassettes, most casual European users seem to

prefer tape units over disk drives. Judging by the relatively high

cost of the equipment, I am not surprised!

There were several fairly "popular in North America" items

that I did not see in all my wanderings around Europe. Perhaps

the most noticeable was the 1700 and 1750 RAM expansion

cartridges, although several third party RAM expanders were

available for the C-64. Modems were also very scarce and

expensive.

Table 1 is a summary of some of the more common computer

prices in selected countries. All prices are shown in Canadian

dollars, converted from the appropriate national currency at

the prevailing exchange rate. It should be noted that most of

the European prices include all taxes (up to 30% or more,

which in most cases are refundable to non-resident purchasers

upon leaving the country) while North American prices gener

ally do not. Europeans also tend to sell computers as part of a

package with a monitor and a tape or disk drive, sometimes

even with a printer, usually with bundled software. The prices

in the table have been separated to the extent possible into the

component items. Some items in the list may not be familiar to

North American readers such as the Sinclair and Amstrad

computers. These are both quite popular in most parts of

Europe and are aimed at a similar type of market. They are

included to give an indication of the price of Commodore

equipment relative to similar equipment. In addition, a few of

the Commodore product numbers mean different things in

different countries. For example, in North America a 1901

monitor is a monochrome monitor while in Austria and Ger

many it is a color monitor equivalent to the North American

1902.

Commodore 128 D

The Transactor 22 May 1987: Volume 7, Issue O6

Table 1: International Comparison Of Selected Computer Prices (Nov, 1986)

Commodore:

(Computers)

C-16

+ 4

C-64 (old)

C-64 (new)

C-128

128-D

Amiga

PC-10 II

PC-20 II

(Disk drives)

1530Datassette

1541

1551

1570

1571

SFD-1001

(Monitors)

1702

1801

1901

1902

(Printers)

MPS1000

1525

MPS 803

1520

MPS 802/1526

DPS 1101

Atari:

800 XL

130XE

520 ST (mono)

1040 ST (color)

Sinclair:

QL

Spectrum

Spectrum +

Spectrum 128k

Spectrum 128k+ 2

Amstrad:

464 monochrome.tape

664 color,3.5 disk

6128 color,3.5 disk

Canada

99

199

249

299

450

1995

1800

2500

49

349

425

399

549

499

199

399

499

159

249

1099

1699

599

1) All prices are

$1.00 US = $1.40 CDN; IAS = $0.10

U.S.

120

199

249

385

1500

56

210

350

399

279

295

399

350

99

199

910

1599

quoted in Canadian

CDN; 1 DM = $0.70

2) Prices based on average of several typical retailers in

\ustria

199

298

298

398

599

1198

2300

79

399

459

499

599

499

599

799

699

499

399

199

399

1499

2399

398

249

299

649

1199

1399

W

Notes:

Dollars based

CDN;1 UK =

each country;

Germany

161

209

321

349

475

979

2250

2300

3200

65

360

400

425

509

400

390

650

279

279

175

210

U.K.

150

250

298

390

538

998

1950

65

398

450

518

500

558

518

298

175

700

550

140

1190

1800

300

169

220

280

320

400

800

on the following exchant

$2.00 CDN

European]

1 forint= $0

>rices include

Hungary

735

1911

225

882

900

e rates:

029 CDN; 1 FF =

France

329

425

599

2800

2785

4289

75

440

650

320

1290

2580

429

579

1289

= $0,215 CDN

applicable VAT (sales tax).

The Transactor 23 May 1987: Volume 7, Issue O6

Provoking Thought Chris Miller

Kitchener, Ontario

The thing that keeps me plugging away at this keyboard,

besides a profound aversion to real work, is the deep-seated

belief that what lies before me is not a tangle of inanimate

circuitry, but a new order of life evolving, and that some day it

will thank me for the faith I had in it and the help I gave it way

back in its infancy as a species.

I had a conversation with a woman at a party once who

appeared to believe the same, but as it turned out was only

trying to shed herself of an incredible nerd without getting into

an argument. Still, it's the closest I've come to finding someone

with my "religion."

Life. . .

The tired phrase "user friendly" turns my stomach as quickly

as the next; still, it does illustrate the significance of the living

element in software. Good programs do not give users the

feeling that they are dealing with something inanimate.

And Recursion

I would like to discuss a glorious technique for breathing life

into your programs. It is standard fare in many languages;

unfortunately, Basic is not one of them. Therefore, many

Commodore hackers quite possibly remain oblivious to its

power and even its existence. I refer to recursion, likened by

some to a snake swallowing its tail.

What Is Recursion?

"Recursion is

recursion is

recursion.

(recursive definition of a recursion)"

Actually, if you look up "recursion" in the dictionary, you will

see it defined as,

". . .common coding mistake of novice and student pro

grammers when the use of GOTO has been forbidden.

See stack overflow."

Recursion involves either a subroutine calling itself, or two or

more routines calling each other. To clarify, imagine THIS

routine calls THAT routine, and then THAT routine calls THIS

routine, and then THIS routine calls THAT routine again before

THIS routine has returned from its original call to THAT routine

in the first place, and so on, and so on but not indefinitely, of

course. That would be recursion. The opposite of recursion is

iteration, in case you ever need to impress someone at a party.

Where Can I Get Some?

Languages like C and PASCAL support recursive activity very

nicely. Languages like BASIC and COBOL (ick) and RPG (dou

ble ick) do not. Assembler supports everything; it just takes a

little more work.

For a language to recurse properly it must support local varia

bles, which means that every function, procedure, subroutine

or whatever, must set up its own personal variable space each

time it is called. These variables cannot be chewed on by the

rest of the program or even by other calls to the same routine

unless you, the programmer, expressly say so.

Mid-Term Test

What would happen if you ran the following Basic program,

then typed"12345q"?

80gosub100

90 end

100 get k$:if k$ = " " then 100

110 if k$ <> " q" then gosub 100

120 print k$;

130 return

(A) "RETURN WITHOUT GOSUB?" error message

(B) The system would crash

(C) "q" would be printed

(D) "qqqqqq" would be printed

(E) "q54321" would be printed

The correct answer is D, not only because previous values for

K$ are lost each time you press a key and Basic would RETURN

The Transactor 24 May 1987: Wume 7, Issue O6

through the PRINT once for each time you pressed a key, but

because the correct answer is almost always D on multiple

choice questions (same as my mark).

If you pressed too many keys before the Q, you would blow up

the stack by nesting GOSUBs too deeply.

If a similar program were written in Pascal then E would be the

correct answer. That again would be recursion.

So What's It Good For?

Recursion is useful for a lot of things besides printing input

backwards; nested expression evaluations, binary searches

and quick sorts, just to name a few. One of the most traditional

applications of recursive algorithms is in analyzing board game

positions, where a program must check every possible line

leading from a given position for a specified number of moves

before choosing the best.

The two Commodore 64 programs included with this article are

the board games REVERSI and my very own personal version

of this game, FENCE. The following short routine provides the

brains for each of them, and indeed could be used in any

situation in which one wanted a program to "look" down a

decision tree.

Don't bother typing it in and trying to run it unless you're in

love with your assembler's UNDEFINED SYMBOL error mes

sage. See if you can follow in a general way what is happening,

so that when the need arises you'll be ready.

initialize level to present position

;to variable arrays for current level

;current depth of analysis

;howdeep to go

;if equal dont go any deeper

movecount.x ;# of moves tested on this level

;returns # of moves and array of

moves

check'next'move =*

Idx level ;to access table values for this level

Ida movenum.x ;number of moves to look at

cmp movecount.x ;see if all moves are accounted for

beq return ;if so return

inc movecount.x ;otherwise bump counter

jsr makemove ;change the board array

inc level

jsr setpointers

jsr switch

jsr checklevel

;next level in

;for new level data

;turns the board around

recursive call to routine executing

find'best

Ida

sta

jsr

'move = *

#0

level

setpointers

i

checklevel =*

Idx

cpx

beq

Ida

sta

jsr

level

difficulty

return

#0

movecount

findmoves

;***now have analyzed to required depth

jsr switch ;sides again

dec level

jsr setpointers ;to data for last level

jsr evaluate ;attach numeric rating to final

position

jsr reset ;reset the position, ie. take back

move

jsr check'next'move ;recursive call to next move and

level

jsr pick ;choose the best line

return =*

rts

The above passage admittedly smacks more of pseudo-code

than of a useful subroutine that one can plug in, black box

fashion, to a program. It is not something a beginner may want

to cut teeth on. It does display a fairly powerful and concise

machine language method for traversing trees and, hopefully,

will provide food for thought for programmers who've never

considered the possibilities of controlled recursion in their

programs.

Notice how .X is used to access non-array variables relating to

the level of recursion. SETPOINTERS sets up the table data for

level so that recursion is completely supported.

Over-the-board possibilities are structured like a decision tree.

Each node represents a position with the root being the current

position. The branches off each node represent possible

moves. The above algorithm zips to the bottom of the tree then

■works its way back up, exploring every possible combination of

moves. Only the final (leaf) positions are actually evaluated

with results compared and passed back up the tree via the PICK

routine.

When this routine finally exits, the outcome of every possible

line to the specified depth has been evaluated. The computer

then simply chooses the best (or least worst) alternative. If

computers were fast enough or if the universe was going to be

around longer every game could be analyzed right to the end;

the machine would never lose.

The Fun Side Of All This: Reversi

Reversi is a good game except that it's a pain to play over the

board. A single move can entail flipping 20 or 30 pieces over,

and klutzes like me tend to knock them all over the place,

losing the position.

The Transactor 25 May 1987: Volume 7, Issue O6

Reversi is a democratic came. All pieces are equal. Reversi is

very positional and strategic, but not terribly tactical until late

in the game.

The rules are simple: lay down a man so that you out-flank

your opponent along rows, columns or diagonals. If there are

no out-flanking moves then your opponent moves again. The

game is over when no one can move. The winner controls the

most squares.

If you don't quite understand yet don't worry. Just LOAD

"REVERSI",8 and RUN it. Help is available.

If you want to play Flip (the computer) select 1 player. Selecting

2 players tells the program to monitor and referee a game

between two humans.

Select a low level of difficulty when prompted, say 1 or 2, unless

you really want to get creamed. INFINITE level will analyze

ever deeper until a key is pressed (you wont live long enough to

crash the stack). Anything over level 4 may take a few minutes,

especially in the middle game. If you choose to play level 9 your

grandchildren may have to finish the game for you.

A heart beats in the upper-right corner of the screen while the

computer thinks so that you don't have to wonder if it has

passed away or something. Flip will make a tweedling noise

after moving, in case you fell asleep or were doing something

else.

When you choose your colour, keep in mind that in REVERSI,

black moves first.

Get Help

If you aren't sure what your moves are, press H for help and

they will be shown to you. Use the CRSR keys (or joystick in

port 2) to position the big X over the square you want, and press

RETURN (or fire). The appropriate pieces will be turned and

then the computer will play its move.

There are buzzers and horns and poignant messages for stuck

positions and attempts at illegal moves. If you beat the com

puter. . . well, see for yourself.

No Cheating

There are keys for removing and adding pieces of either colour

and for trading sides (B,W,E,T). These are for problem composi

tion and special opening positions only — not for cheating. No

Cheating!!!

Instant Replay

When the game is over, you will be asked if you want to replay,

start over or quit. Games are recorded in memory. Replay

allows you to single step, using the space bar through a game

just completed. By pressing P you can re-enter the game at any

point and play through those "if only I hadda. . ." situations.

Full screen colour graphics are used for the board.

The Game Of Fence

If you like Reversi, you will love FENCE. Even if you don't like

Reversi you may get off on it. Fence is like Reversi except that

instead of being played on an 8 by 8 square checker type boar,

it is played on a larger 11 by 11 board, and only on the

diagonals.

LOAD "FENCE",8 then RUN

I prefer FENCE:

It is possible to see farther ahead into a position because there

are fewer legal moves - unfortunately, the same is true for the

computer (Gnash).

The game is shorter and much more tactical than Reversi. It is

possible (though not necessarily advisable) for the player mov

ing first to force a stuck position on his/her/its opponent after

only a few moves. The all-powerful corner squares no longer

exist, but are replaced by 22 irreversible side squares which

come into play early in most games. It is not unusual for a game

of FENCE to end long before the board is filled.

Score board, features, commands, graphics, whistles, bells and

buzzers are the same as with the Reversi game. The only

difference is that if you beat the computer you get. . . well, see

for yourself.

Where a number of moves have equal value, the computer will

randomly select one, so memorizing a winning line (when you

get lucky) is probably not going to help you the next time.

Unless you find extreme tedium therapeutic, it is unlikely that

you would want to type in the thousands of data lines that these

programs would generate even if Transactor were to see fit to

print them. If you are interested in checking FENCE and

REVERS! out this might be a good time to go for the Transactor

disk.

The Transactor 26 May 1987: Volume 7, Issue O6

Random Number Generation

In Machine Language

Gregory D. Knox

Wurtsmith AFB,

Michigan

.. .some applications are more critical than others, but the

point here is that you sometimes need sequences of random

numbers that are well behaved (in a random sort of way). . .

A variety of applications require generating a sequence of

random numbers. Many games, for example, use a randomly

generated number to simulate the rolling of dice or to change

some feature of the program's operation in an unpredictable

way. If you are doing any kind of simulation with a computer,

you are almost sure to need these numbers in one way or

another. Maybe you need to simulate some kind of input to a

modeled system but only have a statistical description of the

input "signal", or perhaps you're working with the simulation

technique called Monte Carlo analysis. These applications and

more can all make stringent demands on the sequence of

random numbers you use. Of course some applications are

more critical than others, but the point here is that you

sometimes need sequences of random numbers that are well

behaved (in a random sort of way). This article describes a

technique to produce long sequences of random numbers.

I've been using the term "random" here without much regard

for its rigorous meaning. In reality, the sequences we can

generate with a computer are properly called pseudo-random

sequences. The computer is a deterministic device and there

fore produces deterministic results. Truly random numbers

would have to be generated using some kind of nondeterminis-

tic process, for example, sampling the electrical noise voltage

across a diode or resistor. Of course you could use such

numbers in your computer, and there are instances where you

might need to, but in general there are good reasons for not

doing so. First of all, it's inconvenient, but beyond that you

sometimes want random-like data but need to use the same

sequence more than once. If it's a very long sequence, storing it

could be a pretty big waste of memory. Another reason is that

you can exercise a degree of control over the statistical proper

ties of sequences you generate in a deterministic fashion.

Most high-level languages have some type of instruction that

lets you generate sequences of pseudo-random (hereafter

called random) numbers. Depending on the particular lan

guage and its implementation, these random numbers may or

may not be very "good ones". There are several factors we

need to consider when talking about "goodness". Two of the

more important ones are: Any sequence we generate with an

algorithm will eventually repeat itself. This is an unavoidable

property and of some importance. Secondly, the relative fre

quency of occurrence for each number is not generally the

same.

In almost all cases, we would like the number of elements

contained in a random sequence to be very large before the

sequence begins to repeat itself. There are methods of produc

ing random numbers that result in the repetition of the se

quence after only a very few numbers have been generated. At

the other end of the spectrum, there are methods that yield

sequences that are non-repeating for lengths of truly astro

nomical magnitude. The random number generating facilities

provided with most high-level languages are not always as

sterling in this regard as you might expect, though some are

quite good.

Usually when you generate a sequence of random numbers,

you want them to be uniformly distributed. That is to say that

there should be the same frequency of occurrence for all

numbers. There are lots of applications that require some other

distribution, but the starting point for the generation of these

non-uniform sequences is often the uniform distribution. A

number of other more involved considerations also exist where

the evaluation of random sequences are concerned, but we

don't really need to deal with them here.

Rolling Your Own

When programming in assembly language, you often don't

have access to a routine that lets you generate random num

bers. Nevertheless, as we've seen, such a need may well arise.

You may be able to use the Basic machine language subroutine

contained in ROM, but this isn't always possible and might not

The Transactor 27 May 1987: Volume 7, Issue O6

be just what you need anyway. There is a way to produce, in

machine code, random sequences that are non-repeating for

astronomically long intervals. In addition, these sequences are

as uniformly distributed as is possible to obtain. Although we

haven't examined other figures of merit for random sequences,

it turns out that these particular sequences possess many of

those other desirable properties as well. The random se

quences we'll look at here are called Linear Maximal Length

Shift Register Sequences. This sounds pretty intimidating, but

using these sequences is actually quite easy.

Before we take a look at the technique, let's digress and talk

about a little hardware for a minute. As the name suggests, one

of the earlier implementations of these things involved digital

shift registers. The shift registers were connected so as to take

the value of the output and one or more other shift register

cells, add them together MOD 2, and feed the result back to the

input or first shift register cell, then initiate another shift

operation.

* 2 > 4 5. 5

Figure 1

Figure 1 shows what this looks like for a shift register with five

cells. Note the bit positions, or cells, where the taps must be

applied to obtain the values that get fed back to the input cell.

These connections weren't chosen randomly. This particular

arrangement of taps for a five cell shift register gives us the

maximum length sequence we are looking for. Some other

feedback arrangement would certainly generate an output

sequence, but it could be a very short one. Consequently, you

really don't want to consider any but the particular connection

of taps that produces the maximum length sequence. Using

such a connection, you would get an output stream of Is and Os

that appeared very random indeed. If your shift register had,

say, 30 cells, the sequence would contain (2t30)-l numbers

before it started to repeat. If you were generating these num

bers at the rate of a thousand per second, very easy to do, the

sequence would not repeat for almost 300 hours.

The problem of how to select the proper taps still needs to be

addressed. You can build a shift register with any number of

cells you want, registers with two cells or a thousand are

equally possible. Each has some configuration of taps that

makes it a Linear Maximal Length Shift Register. How do you

know what taps to use? There's an involved mathematical

technique that will give them to you but that's pretty messy. I

look up the required connection in a table that lists the tap

positions required for a shift register of given length. Figure 2 is

such a table for shift register lengths up to 34 cells.

Figure 2

Shift Register Connections

For Maximal Length Sequences

Cells

2

3

4

5

6

7

8

9

10

11

12

/ Taps

2,1

3,1

4,1

5,1

6.1

7,1

8,4,3,2

9,4

10,3

11,2

12,6,4,1

Cells

13

14

15

16

17

18

19

20

21

22

23

/ Taps

13,4,3,1

14,10,6,1

15,1

16,12,3,1

17,3

18,7

19,5,2,1

20,3

21,2

22,1

23,5

Cells

24

25

26

27

28

29

30

31

32

33

34

/ Taps

24,7,2

25,3

26,6,2

27,5,2

28,3

29,2

30,23,

31,3

32,22,

33,13

34,27,

1

1

,1

2,

2,

2,

1

1

1

Shift register sequences of this sort have many and varied uses

in the communication electronics field as well as in other areas.

We can use the basic theory ourselves to generate random

numbers using machine language. The hardware technique

described above used binary shift registers to store the Is and

0s. Each cell of such a shift register could contain but a single

bit and, of course, that is the reason the shift register output

consists of a serial bit stream only one bit wide. The theory that

applies to these binary shift registers, however, can be more

generally stated. Although it seems to have been given little

attention, you don't have to restrict yourself to using binary

shift registers. You could design a shift register with cells that

can take on any of a number of discrete values, for instance,

any integer between 0 and 9.

It turns out that all the theory applicable to the binary version

of a Linear Maximal Length Shift Register also applies to these

non-binary versions. As always, there is a proviso: with the

binary shift register, we did our addition MOD 2; with any other

base (B) we must do our addition MOD B. For example, if your

shift register works with the integers from 0 to 9 (that's base 10),

then your addition must be done MOD 10. One other thing: the

base you select must be smaller than the number of cells in

your shift register or the sequence that results won't be one of

maximum length. For example, if you have an eight cell shift

register, you have to operate it base 7 (integers from 0 to 6) or

less.

Doing it in Software

Now that we've looked a little at this hardware stuff what can

we do with it?

Remember how long the 30 cell binary shift register produced

Is and 0s before repeating. If you take this same 30 cell shift

register, but operate it base 10, say, instead of base 2, the output

stream will consist of integers in the range of 0 to 9. If you

generate this sequence at the same rate as the binary sequence

we worked with earlier, it won't repeat for 36,533,877 years.

That's right, millions of years.

The Transactor 28 May 1987: Volume 7, Issue O6

Of course we're much more interested in producing random

numbers with software. It is very easy to program the computer

to mimic the operation of a shift register. Each of the cells of the

shift register is represented by a memory location. Since each

memory location is an eight bit byte, each cell of the shift

register could hold any of 256 values, a number far larger than

you need for this technique. What you do is decide on the

number of cells you want to use then set up that many memory

locations in RAM. Before you can use the shift register you have

to fill each of the cells with a number. Remember that this

number has to be less than the modulus B you've decided on

(from 0 to 9, for example, if it's MOD 10). Any combination can

be used except all the cells can't be zero or no output will result.

Next, consult Figure 2 to determine what taps are required.

To make this software shift register actually shift, you perform

an addition MOD B on the values in the cell locations indicated

as taps in Figure 2. Save this result somewhere temporarily.

Next, load the highest numbered cell (memory location) with

the next highest numbered cell's value and so on down to cell

2. At this point, all cells will have the value their predecessor

had with the exception of cell 1. Now take the stored result of

the addition and load it into cell 1. This completes a single shift

operation and results in the generation of one number of the

random sequence. You can use the value contained in any cell

as your source of output but always use the same cell.

About the Programs

Program 1 (RNDGEN1) is an assembly language listing of a

program that implements a 21 cell shift register operated MOD

10. Note that before you can use this routine you have to fill

each of the 21 cells with some integer value less than 10.

Program 2 is a BASIC program that loads the object code for

RNDGEN1 and then lets you work with it from BASIC. It will

ask you to type in a 21 digit number (the seed). Once you do

this, the machine language routine will start producing random

numbers. These will be printed on the screen as they are

generated. You might observe the effect of different seed values

on the output values.

This machine language routine could be the basis for a random

number generator in lots of applications, but is presented here

mainly to show how easily the concept is programmed. It might

be inconvenient to load 21 numbers every time you needed

this routine.

Program 3 (RNDGEN2) is a more extensive development of the

idea. This routine already has 16 of the seed values pre-

positioned in the shift register cells and you only need to supply

five others. They go in the first five cells of the shift register

(locations $232C through $2330). Then, before any numbers

are produced as output, the shift register is shifted 2560 times.

This ensures that the original seed has long since disappeared.

Once this is done, shifting occurs normally. Notice that the first

time you enter this program you do it at INIT (location $2341).

The program then performs the 2560 shift operations described

above. When this is completed, an RTS is executed returning

control to the calling program. From here on you enter the

routine at SHIFT (location $234A) each time you want to

retrieve a random number.

Program 4 does the same thing to demonstrate RNDGEN2 as

program 2 does for RNDGEN1 except that you only enter a five

digit number. All of the programs will operate in both C-64 and

C-128 mode (40 or 80 column display in C-128 mode).

Both of these assembly language programs produce as output a

single integer from 0 to 9 for each shift operation. Of course,

you may want a random number of some other length, say four

or five digits in width. You can do this easily by taking

successive values and assembling them accordingly. The exact

details would depend on how you were using the random

number generator, whether from machine language or BASIC,

etc. As you can see, it is very easy to produce astronomically

long sequences of pseudo-random numbers, (this 21 cell

implementation generates 1021 numbers before it repeats).

The technique is relatively straightforward to program at the

assembly language level; even so, it is a powerful method for

producing random numbers.

PROGRAM 1: Source Code For RNDGEN1

base

cell21

cell2

celM

tmp

=

=

=

=

=

* = $2341

shift

temp

loop

clc

Ida

adc

cmp

bcc

sbc

sta

Idx

Ida

sta

dex

cpx

bne

Ida

sta

rts

$232b

$2340

$232d

$232c

$232a

cell21

cell2

#10

temp

#10

tmp

#20

base.x

base +1,

#0

loop

tmp

celM

;entry point

;add these cells

;acc <10: already mod 10

;if not, make result mod 10

;store until shift is done

;# of times to shift

;shiftfrom here. . .

x ;to here

;next lower cell

;done yet?

;no, then loop

;get mod 10 addition result

;and put in the first cell

;backto main prgm.

.end

PROGRAM 2: Basic Demo/Loader For RNDGEN1

CE

OM

IM

NE

HD

100 rem save" 0:pgm2" ,8

110 rem — program 2 —

120 rem loads and runs rndgeni

130 rem to demo random # generator output

140 rem — basic loader —

TheTn
29 May 1987: Volume 7, Issue O6

IA

EH

BJ

IL

Jl

GO

IK

HD

KH

IJ

IM

IE

CB

CM

LF

EO

EF

DK

CF

NG

LH

AF

GF

150 for a = 0 to 35

160 read b

170 poke 9025+ a,b

180 next

190 rem — rndgeni demo from basic —

200 rem

210 print " = = = type any 21 digit

number = = = "

220 for a = 0 to 20

230 get k$: if k$= "" then 230

240 j$ = j$ + k$

250 poke 9004 + a,val(k$): rem cells 1 thru 21 get

seed loaded

260 print chr$(147);j$

270 next

280 sys 9025: rem =$2341

290 print peek (9004);: rem =$232c

300 goto 280

310 rem

320 rem — load data —

330 data 24,173, 64, 35,109, 45, 35,201

340 data 10,144, 2,233, 10,141, 42, 35

350 data 162, 20,189, 43, 35,157, 44, 35

360 data 202, 224, 0,208,245,173, 42, 35

370 data 141, 44, 35, 96

PROGRAM 3: Source Code For RNDGEN2

base = $232b

cell21 = $2340

cell2 = $232d

cell1 = $232c

tmp = $232a

tlag = $2329

hicnt = $2328

; partial seed

* = $2331

.byte 3,5,9,4,7,1,4,6,3,2,0,5,7,4,9,8

*=$2341

init Ida #0 ;entry point to reinitialize

sta hicnt ;zero counter most sig byte

sta flag ;clear flag

tay ;zero counter least sig byte

shift clc ;entry after reinitialization

Ida cell21

adc cell2

cmp#10

bcc temp ;acc<10: already mod 10

sbc #10 ;if not.make result mod 10

temp sta tmp ;store until shift is done

Idx #20 ;# of times to shift

loop Ida base.x ;shift from here. ..

sta base + 1,x ;to here

dex ;next lower cell

cpx #0 ;done yet?

bne loop ;no, then loop

Ida tmp ;get mod 10 addition result. . .

sta celM ;and put in the first cell

Ida flag ;getflag

cmp#$ff ;initial runnup done?

bne Ioop2 ;no, then continue

rts ;yes, back to main prgm

Ioop2 iny ;increment least sig byte

cpy #0

bne shift ;notO: continue

inc hicnt ;0: increment most sig byte

Ida hicnt

cmp#10 ;runnup done yet?

bne shift ;no, continue

Ida #$ff

sta flag ;yes, set flag

jmp shift ;done runnup, shift normal now

.end

PROGRAM 4: Basic Demo/Loader For RNDGEN2

EE

GN

JM

NE

HD

GA

EH

HJ

IL

Ml

GO

IH

NH

KH

IJ

PN

IE

CB

CM

LO

FG

CP

OF

NK

HH

IH

EH

BJ

DE

GJ

OK

LI

EH

JK

DK

IM

100 rem save"0:pgm4" ,8

110 rem — program 4 —

120 rem loads and runs rndgen2

130 rem to demo random # generator output

140 rem — basic loader —

150 for a = 0 to 90

160 read b

170 poke 9009 + a,b

180 next

190 rem — rndgen2 demo from basic —

200 rem

210 print " = = = 5 digit seed

220 for a = 0 to 4

230 get k$: if k$= "" then 230

240j$ = j$ + k$

250 poke 9004 + a,val(k$): rem cells 1 thru 5 get

seed loaded

260 print chr$(147);j$

270 next

280 sys 9025: rem =$2341

290 sys 9034: rem = $234a

300 print peek(9004);: rem =$232c

310 goto 290

320 rem

330 rem — load data —

340 data 3, 5, 9, 4, 7, 1, 4, 6

350 data 3, 2, 0, 5, 7, 4, 9, 8

360 data 169, 0,141, 40, 35,141, 41, 35

370 data 168, 24,173, 64, 35,109, 45, 35

380 data 201, 10,144, 2,233, 10,141, 42

390data 35,162, 20,189, 43, 35,157, 44

400 data 35, 202, 224, 0, 208, 245, 173, 42

410 data 35,141, 44, 35,173, 41, 35,201

420 data 255, 208, 1, 96,200,192, 0,208

430 data 208,238, 40, 35,173, 40, 35,201

440 data 10,208,198,169,255,141, 41, 35

450 data 76, 74, 35

The Transactor 3O May 1987: Volume 7, Issue O6

N-Body Simulator

For The Commodore 64

Richard Lucas

W. Los Angeles, CA

The solar system is an example of a multiple-body system. Each

planet is affected by the gravitational attractions

of the other planets and, mostly, the sun. . .

Introduction

The motions of multiple astronomical bodies, affected only by

the gravitational pull they exert upon one another, trace com

plex paths that usually defy easy analytical solution. Finding

the motions of an arbitrary group of N bodies is called the N-

Body Problem, which, in general, has no analytic solution.

The solar system is an example of a multiple-body system.

Each planet is affected by the gravitational attractions of the

other planets and, mostly, the sun. Jupiter and its many

satellites are another multiple body system. Many stars in the

galaxy come in clumps of two, three, or more suns orbiting

around one another.

If one wants to compute the trajectories in an n-body system,

two basic options are available: an analytical approximation,

which usually requires some experience with mathematics and

celestial mechanics; or numerical integration on a digital com

puter. Numerical integration is completely general, and re

quires a modest effort to set up and study a system.

N-Body Simulator (NBS) is a program for the Commodore 64

that solves the N-Body Problem by numerical integration. You

can specify any system up to forty bodies and watch their

motions as they are plotted in the Commodore 64's high

resolution bit map mode. Besides having value as a display tool

for astrodynamicists, the program is educational since it allows

you to reach in and manipulate celestial systems. (The screen

displays are also very attractive, but this is not the main point of

the program.)

Simulator Mathematics

The motion of each body is described by seven attributes: the

body's location in xyz coordinates; the body's velocity in xyz

coordinates (which are referred to as u, v, and w); and the mass.

NBS uses a coordinate system compatible with the Commodore

64 high resolution screen to display body motions. The x-axis

is horizontal and positive going to the right, the y-axis is

vertical and positive downward, and the z-axis, which really

can't be seen in the display, goes directly into the screen. The

upper left-hand corner of the screen is the coordinate (0,0,z),

and the lower right-hand corner is the coordinate (319,199,z).

Body positions and velocities are stored in terms of "pixels"

and "pixels per unit time". The distance each pixel represents

depends upon the scale selected. Three scales are available in

NBS:

1. 1 pixel = 10T7 kilometers

1 mass = 1000 kilograms

1 time = 1 day

2. 1 pixel = 1 astronomical unit (one AU equals the mean

distance from the earth to the sun)

1 mass = 1 earth mass (5.9742x10124 kilograms)

1 time = 1 day

3. 1 pixel = 10t6 meters

1 mass = 1 kilogram

1 time = 1 second

Scale 1 is appropriate for displaying the inner solar system out

to Mars. Scale 2 allows the entire solar system to fit on the

screen (though the orbits of the inner planets won't be very

distinguishable). Scale 3 is intended for displays of near-Earth

space.

Simulation Operation

The NBS command screen shows the attributes of one body

from the system currently in memory and a menu of com

mands. The body attributes are displayed in a window. You can

determine which body is displayed in this window by pressing

the Fl or F7 keys. All commands can be executed from the

main menu. Simply press the highlighted letter corresponding

to the desired command.

The Transactor 31 May 1987: Volume 7, Issue O6

Commands

Exit - End the program.

Plot - Start the simulation.

New System - Input the parameters for one or more bodies. The program

prompts for the number of bodies in the system. NBS doesn't erase

any values presently stored, so pressing RETURN at any prompt

without entering anything simply retains the previous value.

sCale - Change the scale used.

Display - Change from sprite mode to high resolution mode, or vice versa.

In high resolution mode the points representing the bodies are not

erased, so each body gradually leaves a tracing of its path across

the screen. Sprite mode can display a maximum of eight bodies.

Load - Load an n-body system from disk.

Save - Save the n-body system presently in memory to disk. NBS

automatically adds the suffix ".nb" to the file name.

Previous Body - Display the parameters of the previous body in the system list.

Next Body - Display the next body.

X, Y, Z Position - Enter a new value for the body currently in the data window.

U, V, W Velocity - Change the velocity of the body currently in the data window.

Mass - Change the mass of the body currently displayed.

Time - Change the time step interval.

Rename - Change the name of the body in the data window.

Pressing any key stops the simulation,

but note that the current positions are

lost when the display is interrupted in

this manner. Pressing the Fl key inter

rupts the simulation and stores the cur

rent positions so that you can choose to

pick up where you left off.

Simulation Strategies

Accuracy depends on the size of the

integration time step. Accuracy is

achieved by using a small time step. On

the other hand, a small time step makes

the simulation proceed more slowly.

The best compromise is the largest time

step that gives acceptable accuracy.

For new situations trial and error will

reveal the best time step. Start with a

large time step (which takes less compu

tation time), then decrease the time step

until good results are achieved.

Body*

1

2

3

Body*

1

2

Body

1

2

3

4

5

Body

1

2

3

'1

5

6

(For June

* Name

Sun

Mercury

Venus

Earth

Mars

(For June

* Name

Sun

Jupiter

Saturn

Uranus

Neptune

Pluto

1, 1986 ir

Mass

1.989e27

5.97e20

4.87e21

5.97e21

6.42e20

1, 1986 ir

Mass

332931.6

317.867

95.243

14.5459

17.2408

2.176e-3

Some Situations To Try

Inner solar system

heliocentric coordinates based on the ecliptic of 1950.)

X

150

147.86

140.62

144.74

147.84

scale

Y

100

104.25

105.21

85.771

78.184

= 1

z

0

.5459

.6143

1.22e-3

-.4083

Outer solar system

U V

0 0

W

0

-.4605 -.1720 .027607

-.1482 -.266 4.75e-3

.2372 -.09 5.5e-6

.2165 -2.76e-3 -5

heliocentric coordinates based on the ecliptic of 1950.)

Trinary star system:

scale

Name Mass

Sun'

Sun'

Sun'

'1 3e27

*2 3e27

'3 Ie27

X Y

150 90

150 135

50 100

Z

0

0

0

Binary star system:

scale

Name Mass

Sun'

Sun'

*\ 3e27

*2 3e27

= 1

X Y

150 100

150 125

z

0

0

X

150

154.63

145.96

149.67

151.71

126.77

U V

-.15 0

.15 0

0 .07

U V

-.15 0

.15 0

scale

Y

100

98.144

90.827

80.722

69.756

83.627

W

0

0

0

w

0

0

= 2

Z

0

-.09663

.31820

-.0684

.5789

8.443

Body*

1

2

3

4

Body*

1

2

U V

0 0

2.719e-3 7.369e-3 -9

4.789e-3 -2.26e-3 -1

3.903e-3 -2.477e-4 -5

3.108e-3 1.942e-4 -7

2.044e-3 -2.858e-3 -3

33e-3

W

0

020e-5

53e-4

143e-5

629e-5

062e-4

Kemplerer's Rosette

scale = 1

Name Mass X Y

Sun*l 1.8e29 120 70

Sun*2 1.8e29 180 70

Sun*3 1.8e29 180 130

Sun*4 1.8e29 120 130

Simple System

scale = 3

Name Mass X Y

Heavy le30 150 100

Light lelO 150 150

Z U

0 1

0 1

0 -1

0 1

Z U

0 0

0 1

V

-1

1

1

1

V

0

0

w

0

0

0

0

w

0

0

The Transactor 32 May 1987: Volume 7, Issue O6

IK

00

IF

GP

Nl

F0

DC

NF

EB

MM

OM

CG

ID

GN

CB

ME

LG

AA

MA

PC

Fl

FP

NJ

PL

NO

NH

MN

PG

CJ

AK

IL

AP

OD

CL

KF

EL

JL

NJ

JK

BD

IG

OB

IJ

Jl

BC

N-Body Simulator

100 rem n-body simulator

110 rem version 6.09

120 rem by richard lucas

130:

140 rem initialize

150poke2038,peek(55):poke2039,peek(56)

160 poke 56,62: poke 55,0: clr

170 dim x(40),y(40),z(40),u(40),v(40),w(40),

x1(40),y1(40),z1(40)

180 dim m(40),gm(40),e2(7)

190 dim x0(40),y0(40),z0(40),u0(40),v0(40),

w0(40) ,aO(40), b0(40), c0(40)

200 dim ex(7),un(3),un$(3),tu$(3)

210fori = 1to3:readtu$(i),un$(i):next

220 data " days"," 10t7kilometers-tons-days",

" days"," AU-Earth mass-days"," seconds"

230 data 10OOkm-kg-sec

240 gosub 2820

250g=6.67e-11:sy = 1:cf = 40:c4 = 504:c7 = 7

:c8 = 248:vi = 53248:hi = vi + 16:c5 = 255

260 hr = 16* 1024:o$ = " epncdls" + chr$(133)

+ chr$(136) + " xyzuvwmtr" :sp = 0

270 nb = O:dt = 10:d2 = dt*dt/2:d3 = d2*dt/3

:d4 = d3*dt/4:cb = 1

280 fori = 0to7:ex(i) = 2t(7-i):next

290 fori = 0to7:e2(i) = 2ti:next

300 un(1) = 1000*86400t2/1 e10t3

310 un(2) = 5.9742e24*86400t2/1,4959789e1113

320un(3) = 1/1e6t3

330 poke 53280,0:poke 53281,0:print chr$(14)

+ chr$(8) + chr$(151);

340 b$= " ":l$= " ":fori = 1to38:b$ = b$ + chr$(32)

:l$ = l$ + chr$(192):nexti

350 b$ = chr$(29) + b$ + chr$(29)

360:

370 rem main loop

380 gosub 2460

390 gosub 2620

400 print ">";

410geta$:ifa$= ""then 410

420 fori = 1to18:ifa$ = mid$(o$,i,1)then printa$

:goto 450

430 next

440 goto 410

450 on i goto 490,510,1970,2900,3070,2110,

2250,3190,3230

460 if i = 18 then input" New name of body";n$(cb)

:goto 370

470 input" new value" ;nv

480 on i-9 goto 2390,2400,2410,2420,2430,

2440,2380,2450

490poke55,peek(2038):poke56,peek(2039)

:clr:end

500:

510 rem plot trajectories

520 if nb = 0 then print " No bodies in current

system. ":goto370

530 if sp then 610:rem skip hires for sprites

540 rem set up hires screen

Gl

MC

GO

MP

HC

AL

FN

MN

AK

OP

OP

NE

OK

OH

Nl

MJ

Nl

MJ

LK

IO

IM

IA

NM

AB

GC

DE

ND

EC

AO

AP

AA

MK

HK

FD

FE

FF

CJ

AK

DL

GM

KL

AN

NO

HO

KB

KB

LC

MD

GF

BF

PN

PO

PP

MD

BA

550 poke 56578.peek(56578)or3:rem switch to vie

banki (16k-32k)

560 poke 56576,(peek(56576)and252)or2

570 poke 53272,(peek(53272)and15)or128

:rem char screen is in 9th k

580 poke 53265,peek(53265)or32:rem turn on

hires screen

590 poke 820,0:poke 821,64:poke 822,0

:poke 823,96:poke 251,0:sys 49152

600 poke 820,0:poke 821,96:poke 822,231

:poke 823,99:poke 251,16:sys 49152

610 ifspthenfori = vitohi:pokei,.:next

620 ifspthen a1 = O:fori = 1 to8:a1 = a1 or

(-(i< = nb)*2t(i-1)):next:poke vi + 21 ,a1

630 ifspthenpoke 53281,0:printchr$(147)

6401 = 0

650:

660 rem move start parameters to working arrays

670 fori = 1tonb

680x(i) = x0(i)

690y(i) = y0(i)

700z(i) = z0(i)

710 u(i) = u0(i)

720 v(i) = v0(i)

730 w(i) = w0(i)

740 next

750 rem compute accel at time dt before start

760 fori = 1tonb

770a0(i) = .:b0(i) = .:c0(i) = .

780 next

790 fori = 1tonb

800ax = .:ay = .:az = .

810forj = 1tonb

820 ifi = jthen910

830 dx = x(j)-x(i)

840dy = yffl-y(i)

850 dz = z(j)-z(i)

860 r = sqr(dx*dx + dy*dy + dz*dz)

870 r3 = r*r*r/gm(j)

880 ax = ax + dx/r3

890 ay = ay + dy/r3

900 az = az + dz/r3

910 next

920 x1 (i) = x(i)-u(i)*dt + ax*d2

930 y1 (i) = y(i)-v(i) * dt + ay♦ d2

940 z1 (i) = z(i)-w(i)*dt + az*d2

950 next

960 fori = 1tonb

970 ax = .:ay = .:az = .

980forj = 1tonb

990 ifi = jthen 1080

1000dx = x1(j)-x1(i)

1010dy = y1(j)-y1(i)

1020 dz = z1 (j)-z1 (i)

1030 r = sqr(dx*dx + dy*dy + dz*dz)

1040r3 = r*r*r/gm(j)

1050 ax = ax + dx/r3

1060 ay = ay + dy/r3

1070 az = az + dz/r3

1080 next

1090 a0(i) = ax

The Transactor 33 May 1987: Volume 7, Issue 06

OA

LB

EG

ON

BP

01

AD

FK

PN

IE

IF

IG

EB

PA

KN

10

GP

KP

IP

HA

GB

ND

CF

HG

PE

01

DM

DN

DO

OL

JL

Jl

HJ

FK

EK

DE

CF

BG

DK

GL

JM

OP

EB

KC

MC

BE

GF

KL

KM

KN

EE

OL

EG

ID

HE

GF

HE

GF

FG

10

PA

1100 bO(i) = ay

"1 "1 1 O oO/IA 3"7
I I I \J LivJt I/ — dZ.

1120 next

1130:

1140 rem calculate new system state

1150 fori = 1 tonb

1160a1 =.:b1 =.:d =.:a2- b2- c2-

1170 forj = 1 tonb

1180 ifi=jthen1270

1190 dx = x(j)-x(i)

1200 dy = yfl)-y(i)

1210dz = z(j)-z(i)

1220 r = sqr(dx*dx + dy*dy + dz*dz)

1230r3 = r*r»r/gm(j)

1240a1=a1+dx/r3

1250 b1 =b1 +dy/r3

1260 d =c1+dz/r3

1270 next

1280j0 = (a1-a0(i))/dt

1290k0=(b1-b0(i))/dt

13OOIO = (c1-cO(i))/dt

1310x2 = x(i) + u(i)*dt + a1*d2 + j0*d3

1320 y2 = y(i) + v(i)*dt + b1 *d2 + kO*d3

1330 z2 = z(i) + w(i)*dt + d *d2 + IO*d3

1340 forj = 1 tonb

1350 ifi=jthen1440

1360dx = x(j)-x2

1370dy = y(j)-y2

1380dz = z(j)-z2

1390 r = sqr(dx*dx + dy*dy + dz*dz)

1400r3 = r*r*r/gm(j)

1410a2 = a2 + dx/r3

1420b2 = b2 + dy/r3

1430c2 = c2 + dz/r3

1440 next

1450j1=(a2-a1)/dt

1460 k1 =(b2-b1)/dt

147011 =(c2-d)/dt

1480 ml = (a2-2*a1 +aO(i))/(dt*dt)

1490 n1 =(b2-2*b1 + bO(i))/(dt*dt)

1500o1 =(c2-2*d +cO(i))/(dt*dt)

1510 x1 (i) = x(i) + u(i)*dt + a1 *d2 + J1 *d3 + ml *d4

1520 y1 (i) = y(i) + v(i)*dt + b1 *d2 + k1 *d3 + n1 *d4

1530 z1 (i) = z(i) + w(i)*dt + d *d2 +11 *d3 + o1 *d4

1540 u1 (i) = u(i) + a1 *dt+J1 *d2 + ml *d3

1550 v1 (i) = v(i) + b1 *dt + k1 *d2 + n1 *d3

1560 w1 (i) = w(i) + d *dt +11 *d2 + o1 *d3

1570a0(i) = a1

1580 b0(i) = b1

1590cO(i) = c1

1600 next

1610:

1620 fori = 1 tonb

1630 x(i) = x1(i)

1640 y(i) = y1 (i)

1650z(i) = z1(i)

1660 u(i) = u1(i)

1670 v(i) = v1(i)

1680w(i)=w1(i)

1690 x = x(i): ifx(i)<. orx(i)>319then 1720

1700 y = y(i):ify(i)<.ory(i)>199then1720

LM

ML

OP

HE

IP

EF

HK

NE

MC

IA

PG

DN

EN

IM

BP

EE

OF

OH

Ol

OJ

Kl

KJ

KK

DH

FF

MB

ID

PH

AK

AO

KE

IL

AO

LA

BN

NL

NA

PP

BO

IK

HD

IP

DB

HC

PF

OH

AB

FN

OJ

OD

LJ

AL

OJ

HH

1710gosub2710

1720 next

17301 = t + dt

1740 if sp then printchr$(19);t

1750 geta$:ifa$ = "" theni 150

1760:

"1 770 rf^m r^Qtf"ir^ phcsrootor crroon1 / 1 \J 1 Cl 1 1 1 ColUI C Of Idl ClOlfcJl oUl CCI I

1780 poke53265,peek(53265)and223

1790 poke 56578,peek(56578)or3

1800 poke 56576,(peek(56576)and252)or3

1810 poke 53272,(peek(53272)and15)or16

1820 poke vi + 21,0:rem turn off sprites

1830 poke 53281,0

1840 if a$ = chr$(133) then 1860

1850 goto 370

1860 print chr$(17);" Storing present system in

memory. ":gosub 3160

1870fori = 1 tonb

1880 x0(i) = x(i)

1890 y0(i) = y(i)

1900 z0(i) = z(i)

1910 u0(i) = u(i)

1920 v0(i) = v(i)

1930w0(i) = w(i)

1940 next i

1950 goto 370

1960:

1970 rem get new system from user

1980 input "Number of bodies" ;nb

1990 ifnb<1 ornb>50then370

2000 for i = 1 to nb

2010cb = i:gosub 2460

2020 print" Name of body" i;:inputn$(i)

2030 iflen(n$(i))>25then2020

2040 print" Mass of body" i;

2050 input m(i):gm(i) = g*m(i)*un(sy)

2060 input" Input location in x,y,z form";

x0(i),y0(i),z0(i)

2070 input" Input velocity in u,v,w form";

u0(i),v0(i),w0(i)

2080 next i

2090 goto 370

2100:

2110 rem load system description from disk

2120 print " Load system data from disk."

2130 input" Type name of data file" ;a$

2140 if len(a$)>13 then print "Too long."

:goto2130

2150open 15,8.15:open 2,8,2, "0:" +a$

+ " ,nb,s,r"

2160 gosub 3170

2170 if erOO then print er$(1);er$(2);er$(3);er$(4)

:gosub3160:goto2230

2180input#2,sy,nb

2190 fori = 1 tonb

2200input#2,n$(i),xO(i),yO(i),zO(i),uO(i),

v0(i),w0(i),m(i)

2210 gm(i) = g*m(i)*un(sy)

2220 next

2230 close 2:close 15:cb = 1

2240 goto 370

The Transactor 34 May 1987: Volume 7, Issue O6

01

GE

DM

DJ

OH

CJ

EB

GK

ON

ED

AG

MD

NN

DG

ND

JE

FF

FF

BG

NG

DB

FA

MH

EK

EA

CA

EE

PJ

FK

DM

JD

AN

FJ

HL

CH

DF

GK

EH

JM

JA

IN

JO

GK

MD

OJ

ON

HO

OD

FK

AN

2250 rem save current system to disk

2260 print " Save current system."

2270 input" Type name of file" ;a$

2280 if len(a$)>13 then print" Name too long."

:goto 2250

2290 open 15,8,15:c$ = chr$(13)

2300 open 2,8,2," 0:" + a$ + " .nb,s,w"

2310gosub3170

2320 if erOO then print er$(1);er$(2);er$(3);er$(4)

:gosub3160:goto2230

2330 print#2,sy;c$;nb

2340 fori = 1tonb

2350print#2,n$(i);c$;x0(i);c$;y0(i);c$;z0(i);c$;u0(i);

c$;v0(i);c$;w0(i);c$;m(i)

2360 next

2370 close 2:close 15:goto 370

2380 m(cb) = nv:gm(cb) = g*m(cb)*un(sy):goto 370

2390 x0(cb) = nv:goto 370

2400 yO(cb) = nv:goto 370

2410 z0(cb) = nv:goto 370

2420 u0(cb) = nv:goto 370

2430 v0(cb) = nv:goto 370

2440 w0(cb) = nv:goto 370

2450 dt = nv:d2 = dt*dt/2:d3 = d2*dt/3:d4 = d3*dt/4

: goto 370

2460 rem display current system values

2470 printchr$(147)" N-BODY SIMULATOR"

2480 printchr$(176);l$;chr$(174);

249OI1$ = chr$(221)

2500 printMS" name: "n$(cb);tab(79);H$;

2510 printh $" body #" cb;tab(17)" mass:" m(cb);

tab(39)H$;

2520 printl1$" x:" x0(cb);tab(60)" u:" u0(cb);

tab(79);l1$;

2530 printl1$" y:" y0(cb);tab(20)" v:" v0(cb);

tab(39);l1$;

2540 printh $" z:" z0(cb);tab(60)" w:" w0(cb);

tab(79);M$;

2550 printchr$(173);l$;chr$(189)

2560 print " number of bodies:" nb

2570 print " time interval:" dt;tu$(sy)

2580 print " unit system: " un$(sy)

2590 if sp then print " sprite mode" ;chr$(17):return

2600 print "hires point mode" ;chr$(17):return

2610:

2620 rem display menu

2630 print " HelSlxit HplHlot H"n0ew system"
2640 print " slicKiale ydKlsplay fl I IBload"
2650 print "ys0ave B^u Prev body Qf7|£

next body"

2660 print " QxQ position QyQ position Q Q
position"

2670 print H El velocity QvQ velocity |Jvv|j]
velocity"

2680 print "flmQass fltQime flr0ename"
2690 return

2700 rem plot point on hires screen

2710 if sp = 1 then 2750

2720 ml = hr + (yandc8)*cf + (yandc7) + (xandc4)

2730 poke ml,peek(ml)orex(xandc7)

2740 return

DK

Fl

AC

NC

JK

LJ

GB

FO

II

MK

MN

OD

MH

MC

Jl

BK

MG

IM

LL

NO

GN

JN

AH

AA

EJ

LJ

HM

MN

PM

EO

BK

IG

GJ

MC

BK

LO

BK

BL

BD

EE

FA

LK

NP

CN

FO

IP

CK

PA

MK

LK

DB

FB

2750 if i>8 then return

2760 x = x + 24:y = y + 50

2770 poke vi + (i-1)*2,xandc5

2780 poke vi + i*2-1,y

2790ifx>c5thenpokehi,peek(hi)ore2(i-1)

2800 ifx<256thenpokehiTpeek(hi)and(c5-e2(i-1))

2810 return

2820 rem ml code for high speed erase

2830 i = 49152

2840 readmc:ifmc = 256thenreturn

2850 pokei,mc:i = i +1 :goto2840

2860data173, 52, 3,133, 2,173,53,3,133,3

2870 datai 65,251, 160, 0, 166, 3

2880data145, 2,236, 55, 3,208, 7,166,2,236,

54,3,240,9

2890 data230,2, 208,236, 230,3, 76,14,192, 96, 256

2900 print chr$(147);" Select a system of units."

2910 print chr$(17);" 1. 1 pixel = 10t7 kilometers"

2920 print " 1 mass = 1000 kilograms"

2930 print " 1 time = 1 day"

2940 printchr$(17); "2. 1 pixel = 1 AU (earth radius)"

2950 print " 1 mass = 1 earth mass"

2960 print " 1 time = 1 day"

2970 print chr$(17);"3. 1 pixel = 1000 kilometers"

2980 print " 1 mass = 1 kilogram"

2990 print " 1 time = 1 second"

3000 print: input" Which system" ;sy

3010 if sy<1 orsy>3then370

3020 fori = 1tonb

3030 gm(i) = g*m(i)*un(sy)

3040 next

3050 goto 370

3060 :

3070 rem switch plot systems

3080 if sp = 1 then sp = O:goto 370

3090 sp = 1

3100fori = 15872to15872 + 8*64:pokei,.:next

:rem blank out sprite images

3110fori = 0to7:poke15872 + i*64,224

.pokei 5875 + i*64,224:next:rem form dot shape

3120 fori = 0to7:poke2040 + i,248 + i:next:rem set sprite

pointers

3130 fori = 0to7:pokevi + 39 + i,i +1 :next:rem set sprite

colors

3140 poke vi +29,0 poke vi +23,0 :rem compress

sprites

3150 goto 370

3160 forde = 1 to1500:next:return

3170input#15,er$(1),er$(2),er$(3),er$(4)

3180 er = val(er$(1)):return

3190cb = cb-1:ifcb<1 thencb = nb

3200 printchr$(19)chr$(17)chr$(17);b$;b$;b$;b$;b$

:printchr$(19)

321 Ogosub 2480

3220 fori = 1to6:printchr$(17);:nexti:printchr$(29);

:goto410

3230 cb = cb +1 :if cb>nb then cb = 1

3240 goto 3200

3250 poke53272,peek(53272)and247

3260 poke53265,peek(53265)and223

The Transactor 35 May 1987: Volume 7, Issue O6

A Two-Button Mouse Anthony Bryant

Winnipeg, Manitoba

.. .experimenting with the C-1350 Mouse, and more...

If you are presently using the old digital joystick or paddles, to

move a cursor around the screen, or draw with, then join the

mouseketeers - try this new mouse!

On the C-128 (or C-64 with Super Expander cartridge) from

BASIC, you can read the mouse with the JOYO function. The

left button is read like the " fire" button. Only the left button!

But, you say (I sure did!) this mouse, which has the same

physical appearance as the Amiga mouse, has two buttons -

left and right!

(Hmmm)

As no mention is made of the right button in the manual, I

decided to disect this little critter to see why.

Mouse Pinouts

Internally, this is a state-of-the-art mouse. Two optically-

encoded discs, set in motion by a rolling ball, generate phase-

quadrature pulses. These are decoded in hardware (using

op-amps and comparators) and four outputs are generated -

UP, DN, LFT and RHT. Two active pushbuttons are also output!

My findings are tabled in FIGURE 1.

FIGURE 1: Control Port Pinouts

Pin

1

2

3

4

5

6

7

8

9

Joy

Up

Down

Left

Right

-

Button 1

+ 5V

GND

-

Mouse

Up

Down

Left

Right

-

Button 1

+ 5V

GND

Button 2

Stick

-

-

Button 1

Button 2

PotY

_

+ 5V

GND

PotX

FIGURE 1 shows the pinouts for three types of Control Port

input devices for comparison - the digital JOYstick, the

MOUSE, and the analog joySTICK. On the C-1350 mouse, the

left button comes out on Pin 6 - same as the JOY " fire" button

and the right button comes out on Pin 9 - same as the STICK's

POT X line. POT X and POT Y are inputs (READ ONLY) to the

A/D converter used to digitize the analog position of potenti

ometers. The diagram below of register $DC00 of CIA 1 shows

the bit distribution for each device's digital logic lines.

In order to use the right button output, which like the left

button output, is simply a switch closure to ground, a combina

tion of digital and analog techniques is needed.

FIGURE 2: Analog Joystick Schematic

DE-9S

B7N1

FIGURE 2 is the schematic of a two button analog joystick. It

could also be for a graphics pad, or other homebrew configura

tion type of input device. It graphically shows that all that is

required on the POT X line is a potentiometer between Pin 9

andPin7(+ 5v).

Joy

Stick

Vlouse

7

Port 2

Port 2

Port 2

6

Port 1

Portl

Port 1

CIA1

5

- Register $DC00

4 3 2

BTN 1

BTN1

Right

BTN 2

Right

Left

BTN 1

Left

1

Down

Down

0

Up

Up

The Transactor 36 May 1987: Volume 7, Issue O6

FIGURE 3: C-1350 Mouse Schematic

FIGURE 3 is a simple schematic of the C-1350 mouse. The left

button is BTN1 and the right button is BTN2. The Control Port

connects BTN2 with register $D419. This register allows the

microprocessor to read the " position" or, in this case, the "

logic state" of the POT X line, with values ranging from $00 at

minimum resistance (=logic high) to $FF at maximum resis

tance (=logic low). Switch closure generates the logic low, and

what is needed to generate the logic high is a " pull-up"

resistor between Pin 9 (BTN2) and Pin 7 (+ 5v).

Mouse Modification

FIGURE 4 shows the layout of the p.c. board. The mouse cable

plugs into a Block Plug on the board.

The colour code of the Block Plug is as follows:

Block Plug Pin

1

2

3

4

5

6

7

8

Colour

yellow

orange

red

brown

white

blue

green

black

Label

RHT

LFT

DN

UP

GND

+ 5v

BTN1

BTN2

Solder the resistor between pins 6 and 8 of this Block Plug on

the foil side and re-assemble the mouse.

Mouse Machine Code

Now that we have a right button with two discernable logic

states, some code is needed to use it. This is typical coding,

modularized so that you can adapt it to your specific needs.

The object is to maintain x and y coordinates and report button

status.

Experimenting with a variable potentiometer and scope, I

found a value of 47k to be about right for the "pull-up"

resistor. It's not critical, but should range between 22k and

100k.

There is room inside the mouse for one resistor. I used a tiny 1 /

8 watt 47k resistor. Also required is a Phillips-head screw

driver and a fine point low-wattage soldering iron.

Two screws on the underside of the mouse hold the case halves

together. Two screws inside hold the p.c. board assembly (and

pushbutton sub-board) to the bottom case half.

FIGURE 4: Mouse Modification Schematic

Block
Plug

OP7O-ELECTRONICS P.C. BOARD

;define variable labels

XPOS .BYT 0

YPOS .BYT 0

BTNS .BYT 0

;save x position

;save y position

;save btn status

;subroutine to read Control Port 2

RDPORT SEI

LDA #$C0

STA $DC02

LDA *$80

STA $DC00

LDX *$00

INX:BNE *-l

LDX $D419

LDY $D41A

LDA #$FF

STA $DC00

RTS

;lock out keyboard

;set ddr to read

;read Control Port 2

;allow time for

;lines to settle

; read POT X

;read POT Y

; reset Port 2

You could now simply store the 'absolute position' x and y

coordinates just read, for the analog joySTICK, but imperfec

tions in the pots results in jitter on the screen. Some finesse is in

order! A moving average algorithm smooths out the rough

spots.

The Transactor 37 May 1987: Volume 7, Issue O6

;subroutine for moving average algorithm

AVRG BCS AVRGP

AVRGN EOR *-l

ADC*1

LSR

EOR #-l

CLC

ADC*1

CLC:RTS

AVRGP LSR

CLC:RTS

Putting this altogether yields a

getting the 'absolute position' frorr

;if sign positive

;if negative, do

;reverse subt

;allow half-weight

;invert byte

;to preserve sign

;allow half-weight

;to the byte

simple, smooth routine for

the STICK.

;main routine to read the STICK

STICK JSR RDPORT

LDA $DC00

AND#$0C

EOR *$FF

STA BTNS

TXA:SEC

SBC XPOS

JSR AVRG

ADC XPOS

STA XPOS

TYA:SEC

SBC YPOS

JSR AVRG

ADC YPOS

STA YPOS

;now test the buttons anc

TEST LDX *$FF

STX $DC02

CLI

LDA #4

BIT BTNS

BNE BTN1

ASL

BIT BTNS

BNE BTN2

RTS

BTN1 LDA*-1

.BYT $2C

BTN2 LDA #1

RTS

;read Port 2

;filter BTN 1 & 2

; invert logic

;saveBTNl & BTN2

;store x in XPOS

;using a simple

;moving average

;algorithm

;update XPOS

;store y in YPOS

;using the same

;algorithm

;and update YPOS

exit

;

; reset ddr

finished with Port

;test bit 2

;of BTNS

;if BTN1 pressed

;test bit 3

;of BTNS

;if BTN2 pressed

;exit Z=l no btns

;flagforBTNl

;skip over

;flag for BTN2

;exitZ = 0

The Z-flag is set if no buttons were pressed and clear other

wise. Use a BEQ to test for buttons pressed, after a JSR STICK

call. The accumulator knows which button was pressed. Use a

BPL or BMI to check which button is active.

Mouse Moves

Getting 'absolute position' from t

have only 'relative position' to

decrementing XPOS and YPOS -

he MOUSE is not possible. We

work with - incrementing or

■ as the mouse moves.

;main routine to read the MOUSE

MOUSE JSR RDPORT;

LDA $DC00

AND #$10

STA BTNS

TXA

BMI LOW

HIGH LDA #$20

.BYT $2C

LOW LDA #$00

ORA BTNS

LSR: LSR

EOR #$FF

STA BTNS

;read Port 2

ifilterBTNl

;save bit 4

;read POT X

;discern state

;set bit 5

;skip over

;clr bit 5

;combine bits 4 & 5

;shift to bits 2 & 3

; invert logic

;saveBTNl &BTN2

;now we have our left and right buttons!

LDA $DC00

AND#$0F

CMP#$0F

BEQ EXIT

TAX

UP AND#1

BNE DN

INC YPOS

DN TXA

AND #2

BNELFT

DEC YPOS

LFT TXA

AND#4

BNE RHT

DEC XPOS

RHT TXA ;

AND#8

BNE EXIT

INC XPOS

EXIT JMP TEST

read Port 2

filter directions

any movement ?

no, finish up

yes, mouse rolling

check up

check down

check left

check right

test buttons and exit

Use a BEQ to test for buttons pressed, after a JSR MOUSE call.

Use a BPL or BMI to check which button is active.

The 'relative movement' of the f4OUSE routine is very respon-

sive. The speed of movement and the area of movement, i.e the

" feel" of the mouse depends on

is polled. Possibilities, I leave to

how often the MOUSE routine

the mouse programmer!

The Transactor 38 May 1987: Volume 7, Issue O6

Universal EPROM

Programmer Update

Tim Bolbach, P.Eng.

Toledo, Ohio

The Universal EPROMProgrammerproject that appeared two issues ago (Volume 7, Issue 04, "Gizmos and Gadgets ")

has generated response beyond all expectation. Unfortunately, most of the response resulted from some

unforeseen difficulties that prevented many from completing a fully operational programmer.

This follow-up provides corrections (including a couple described last issue) and also

gives test procedures, some enhancements to make the burner compatible

with more EPROM types, and instructions for a 2764 adapter.

A Few Notes

For those of you who were brave (ambitious) enough to build the

EPROM programmer that appeared in the Jan 86 issue of TRANSAC

TOR this article is for you. And for those that didn't build the

programmer because it seemed too hard, 1 hope the following infor

mation will inspire you to try it. This article will attempt to clarify

some unclear areas in the first article and will point out some errors

that crept into the schematic (Murphy does live!)

Corrections to the Schematic

The schematic shown in figure 1 looks similar to the original but

contains the necessary corrections. The circled areas indicate the

corrections as well as some needed changes.

1. The 8255 to the left of the schematic shows two pins numbered 14.

The CGN pin should be pin 7, same as the other 8255.

2. On the ZIF socket, pins 14 through 18 should be relabelled pins 15

to 19. Pin 14 is GND.

3. On U3, the NAND gates, Pin 14 goes to +5V, pin 7 is GND.

4. The emitter of Ql goes to GND.

5. In lines 2760 and 2770 of the program, the " should be replaced by

a " " (i.e. null string).

A wire was added from pin 13 of Ul to pin 4 of the personality socket.

This signal becomes OE4 that is 0 (or low) for read, 0 for standby, and

1 during programming. This is used for some versions of the 2716

EPROM that did not work with the personality socket wiring supplied

with the original article. To support this new signal requires the

modification of three lines of the program. (Note: changing these lines

won't affect the operation with other EPROMs.)

1680 poke 16384,239:for t = 1 to 1000: next t

1770 pokei 6384,21

1780 pokei 6384,239

An additional wire was added from pin 22 of Ul to pin 3 of the

personality socket. This adds A12 to the personality socket for use in

reading masked ROMs of 8K or larger.

Please note the wiring corrections for the personality sockets. 1 am

sorry if this caused any problems for those of you who built the

programmer. This wiring has been re-checked and verified for proper
operation.

It was found that for some transistors used for Ql the 220 ohm resistor

was too high in value and needed to be changed to 75 ohms. This

value is not critical and can be anything close to 75. Make sure you

wire the transistors correctly! The relay shown must be a small DPDT.

The relay used in the prototype, purchased at Radio Shack, has a coil

voltage of 5 volts and a coil resistance of 150 ohms. A DPDT switch

can be used in place of the relay but subtracts from the automatic

operation a bit. Besides that, if you forget to flip the switch, and leave

programming voltage (25 volts, for example) on Vpp, accidental

erasure could destroy your EPROM. (Ah, experience is a tough and

expensive teacher!)

The Circuit Board

I am sure many of you are wondering about the circuit board used. It is

a Radio Shack catalog #276-166. It was cut in half and trimmed from

the 25/50 .100 inch fingers to 22/44 .100 inch fingers. The board is

alas unavailable but still might be in the junk box at your local Radio

Shack dealer. (Note: Jameco in CA sells a C64 cartridge port compati

ble perf board for about $8.00) The other alternative is to use the

fingers from an old discarded cartridge. By trimming the foil back and

carefully cutting the board the assembly can then be attached to larger

perforated board such as a Radio Shack catalog *276-147 or #276-

191. Make sure that the cartridge used has all the needed fingers.

Necessity is the mother of invention!

Information Please

Information about the pinouts of the expansion bus for the C64 was

found in the 'Programmers Reference Guide' published by Commo

dore. Detailed information about the 8255's is found in Intel's 'Com

ponent Data Catalog' available from any Intel distributor. Check your

local electronics supply houses for a copy too.

Vpp

Considering the vast number of types of EPROMs available, the

original article left it up to you to determine the correct programming

voltage (Vpp). Programming voltages can vary from 12.5 volts for

certain 27256s to 25 volts for most garden variety EPROMs. Intel

makes a version of the 2732 called the 2732A that programs at 21

volts. Please verify the voltage that your EPROM requires from the

data sheets supplied with your particular EPROM. Programming at a

voltage higher than recommended WILL result in destroying the chip.

Try using a slightly reduced voltage first (for example 22 volts for a 25

volt EPROM) and raise it up only if it doesn't work. Using the variable

power supply shown in the original article will allow you to adjust for

any programming voltage you may encounter.

Testing the Completed Programmer

One time consuming but essential step in testing the circuit is to use

an ohmmeter to check continuity. Unplug the chips and do not plug

The Transactor
39

the programmer into the C64. Now, using the schematic, verify every

connection. This finds 99.9% of all problems with the circuit. Verify

also that pins (2,3) and (1,22,A,Z) of the board are not shorted

together. Fingers 2,3 are the +5 volt supply and 1,22,A,Z are the

ground. Verify also that no other fingers on the board are directly

shorted to ground. With that complete the next test should be done.

With the board plugged in and power turned on, the 64 should power

up with the usual message on the screen. If this is not successful, re-

check all connections and solder joints. Once you can get the board

powered up, the battle is half over. Make the following checks with a

voltmeter set to read 5 volts.

POSITIVE +

pin 26U1

pin26U2

pinl4U3

pin 28 ZIF

pin 13 Pskt

NEGATIVE -

pin? Ul

pin 7 U2

pin 7 U3

pin 14 ZIF

pin 1 Pskt

READING

5.1 v

5.1 v

5.1 v

5.1 v

5.1 v

If any of the readings above are incorrect check the wiring of the 5 volt

supply (pins 2,3 and 1,22,A,Z, on the fingers of the board).

If you have gotten this far you are almost there! With a voltmeter set to

read 5 volts connect the positive lead to pin 35 of Ul or U2. Connect

the negative lead of the voltmeter to pin 7 of Ul or U2. You should

read close to 0 volts (less than .8 volts). If not, start over with the

ohmmeter check; it is alsopossible that you have a defective 7400. If

that test was successful, with the voltmeter still connected as above,

depress the reset button and hold it. The voltmeter should read close

to 5 volts (greater than 3.5 volts). If not, check the wiring of the reset

circuit and the 1N914 diode. With this test done, you are ready to

proceed to the software test.

A short program appears at the end of the article that will assist in the

testing of the completed programmer. This program will allow you to

selectively turn on certain pins of the 8255s and check them with the

voltmeter. Connect the negative lead of a voltmeter set for 5 volts to

pin 7 of U1. Then connect the positive lead to the pin indicated by the

program. Referring to the schematic, there are four ports to test: port A

of Ul, port Bof Ul, port C of Ul, and port B of U2. The first menu of

the program allows you to select the bit (or pin) to test. For example, if

you wish to test port B of U2, select '4' from the main menu. The

screen will then indicate that you are testing Port B of U2. To turn a bit

(or pin) of the 8255 'on', enter the desired bit number and press return.

That bit only will be turned on. The 'on' state is represented by a

voltage greater than 3.5 volts. Selecting another bit turns the last bit

off and the new one on. Entering '8' for a bit number returns you to

the main menu. After testing all four ports of the 8255s you are ready

to try your first EPROM.

Using the Programmer

Let's examine a few ways to use the programmer. Suppose you wish to

make a modification to the Kernai rom in your C64. First, load your

favorite monitor program into the C64 and enter the monitor. To

modify the Kernai you must first relocate it. Let's assume you transfer

from $E000-$FFFF to $6000-$7FFF. Now, using your monitor, make

the desired changes in memory at the new locations inside $6000-

$7FFF. When you are done save the entire 8K block to disk as a

program file. That's all that is needed to use it with the EPROM

programmer.

To make the EPROM, install the programmer into the cartridge port

and turn power on. Load the EPROM programmer program supplied

in the January 87 issue of Transactor and place the disk with your new

Kernai in the drive. With the program running, select menu item *2

(PROGRAM EPROM). The program will ask you to select the size of

EPROM you are going to program; enter '3' for an 8K EPROM. Next

the program will ask for a file name, so type in the name of the new

kernai that you just made. If the file is found the program will ask you

to press a key when ready. Place a blank EPROM in the programmer

socket (2764 in this case) and the proper personality plug for the

EPROM used. Connect or turn on your source of Vpp programming

voltage (25 volts for a standard 2764). Pressing any key will start the

programming process. First you should notice the LED associated

with the relay and the relay turning on. As the location number on the

screen counts up you should notice a slight blink of the CE LED. The

CE LED is on most of the time and is off for only a very short time.

Programming will take a while (about 10 minutes?). When the pro

gram is done the main menu will re-appear. Select the option to verify

EPROM with disk and answer the questions as they appear. If all is

well the program will return to the main menu.

An 8K 2764 EPROM has 28 pins and the Kernai ROM socket has only

24 pins. Figure 2 shows how to make an adapter from a 28 pin socket

and a 24 pin DIP header. This will work for the Basic ROM also.

Now let's try just copying another EPROM. First install the program

mer and load the program as described previously. Place the EPROM

to be copied into the EPROM socket. Make sure that you have already

installed the proper personality socket for the EPROM. Select the

option to copy the EPROM to disk. Answer the questions asked by the

program and give the file a name. What you are doing is creating a

disk file to later burn into a blank EPROM. Reading an EPROM doesn't

take as long as programming one. When the program is done copying

the EPROM to disk, follow the same procedures as described previ

ously.

For a third example, let's assume you have a machine language

program you want to put on an EPROM. First, assemble the file in

memory and save the file as a program as described in the first

example. If you assemble directly to disk you will have to load the

object file into memory and re-save it. This is required if your

program file is not exactly the same size as your EPROM. If your file is,

for example, only IK long and you are using a 2k EPROM, before

loading your program file, fill a 2K block of memory with the value

$FF (255 decimal). Then load your file to this block and re-save the

entire 2K block. This will allow you to add to that EPROM later

without erasing the whole EPROM.

Figure 3 shows an additional personality socket for reading the C64

Kernai and Basic ROMs directly. This allows you to create a file to be

loaded, modified, and recopied to an EPROM. An interesting project

might be to modify the character generator ROM in the C64 and create

your own set of characters.

The last example is for those of you that like to program on the rock

(right in hex code). To program an EPROM for use in a different

computer or as a character generator or logic array, use your favorite

monitor and use the display or memory dump command. Fill an

entire block the size of your EPROM with the value $FF (255 decimal)

first. As you should know, an erased EPROM contains all $FFs as the

stored value. When you are done entering the values for your EPROM

in memory, save the entire block as a program file and follow the first

example for programming the EPROM.

The uses of the programmer (as in any tool) are limited only by your

imagination.

If you require a faster programming time, you can use a Basic

compiler. Keep in mind that the programming pulse time for an

The Transactor
4O

May 1987: Vfolume 7, Issue O6 [

EPROM is at least 50 milliseconds and you must add the following line

to your program:

1775 FOR CC = 1 TO 30: NEXT CC

One last word of caution, do not erase an EPROM for longer than just

required (about 15 minutes for most erasers), and use a good con

trolled voltage supply for Vpp.

If you get your programmer working, drop me a line and let me know.

Or if you have improvements, that's nice to know too.

Editor's Note: Since publishing his EPROM burner, Tim has been

invited by several user groups to give presentations. . . and has

accepted, if for no other reason than to cut down on phone time spent

assisting callers who built the burner. Tim has invited anyone to call or

write. Also, send an SASE and disk, and Tim will return it with the

testing and burner programs. Write to: Tim Bolbach, 1575 Crestwood,

Toledo, Ohio, 43612

Figure 2: 2764 (28 pin) TO 2364 (24 pin) Adapter

2364 2764

GM

MG

JG

EO

PL

CN

FO

MP

HN

EP

ND

DE

IH

IA

OE

IF

MN

PM

BO

DP

AA

GL

KN

FG

NG

KA

NO

FM

GE

AH

DE

AP

NC

FD

OF

LG

GL

II

HH

JE

EM

EF

NM

DN

KL

HO

10 rem *********************************

20 rem *** EPROM programmer tester *****

30rem*** by tim bolbach (1986) *****

40 rom *********************************

50n$(1)=" u1 port a ":ad(1) = 56832

60n$(2) = " u1 port b" :ad(2) = 56833

70n$(3) = " u1 port c" :ad(3) = 56834

80 n$(4) = " u2 port b" :ad(4) = 57087

90 for a=1 to4:fort = 0to 7:read p(a,t+1):next t:next a

100 rem * * * set all ports to write * * *

110poke56835,128

120poke57091,128

130 rem *** menu select ***

140 print"

150 print"

160 print"

170 print

180 print"

190 print"

200 print"

210 print

DO

Dl

D2

D3

D4

D5

D6

D7

A0

Al

A2

A3

A4

A5

A6

A7

A8

A9

A10

All

Wl

rs

Vcc

GND

10

13

I ■!_

15

17

r,

i

3_

2_

1

23

19

J8

21

20

24

12

DO

Dl

D2

D3

D4

D5

D6

D7

AO

Al

A2

A3

A4

A5

A6

A7

A8

A9

A10

All

A12

G

Vpp

Vcc

PGM

Vcc

GND

I

|EPROM programmer tester" :print

menu

1 - u1 port a"

2 - u1 port b"

3 - u1 port c"

4 - u2 port b"

220 print:print:print"yVefer to schematic diagram for
230 print" y"chip and port designations"
240 poke198,0:wait198,1:geta$

250a = asc(a$)-48:ifa>4ora<1 then 240

260 print "H"
270 print" Qset voltmeter for 5 volts
280 print" yconnect negative to pin #7

290 print" yconnect positive to pin shown0"
300 print:print

310 printn$(a);" address is " ;ad(a)

320 print:print:print

330 for t = 0 to 7

340 print" pin # " ;p(a,t+ 1);tab(20);" bit" ;t

350 next t

360 printrprint"common is pin #7"

370 print:print

380 input " bit # to turn on (8 = menu) " ;b

390 ifb<0 or b>8 then 380

400ifb = 8then130

410 poke ad(a),2tb

420 goto 260

430 data 4, 3, 2, 1,40,39,38,37

440 data 18, 19, 20, 21, 22, 23, 24, 25

450 data 14, 15, 16, 17, 13, 12, 11, 10

460 data 18, 19, 20, 21, 22, 23, 24, 25

Use a 28 pin WW socket and a 24 pin ribbon cable header (male). On

the 28 pin DIP, cut down pins 1, 2,20, 23, 26, 27 and 28 to about 3/8"

. Using wire wrap, short pins 1, 26, 27 and 28. Connect pin 27 to pin

24 of the cable header, pin 23 to pin 18, pin 20 to pin 12, and pin 2 to

pin 21. The long pins will plug directly into the cable header such that

pin 3 of the 28 pin WW goes to pin 1 of the 24 pin header (pin 4 to pin

2, 5 to 3, etc, 25 to 23, 26 to 24).

The Transactor 41 May 1987: Vtolume 7, Issue O6

Figure 1: EPROM Programmer Schematic with corrections and changes

The Transactor 42 May 1987: Volume 7, Issue O6

Help! Help!
by Nick Sullivan and Chris Zamara

Instant Help from an unexpected place!

Here is a utility that will provide you with instant, on-line help,

from just about any application you may be running. The

program can eliminate the need for a pile of manuals by your

side, and can speed up the learning process when it comes to

using a complicated new piece of software. Creating such a

utility - one that can work alongside other programs - can be a

most tortuous endeavour. Comejoin us in our adventure as we

try to build a transparent background task on the Commodore

64!

The question is: how do you write totally transparent code?

We wanted to write a program that, at the touch of a key, would

bring up a menu of help topics. The touch of another key would

choose a topic, and a corresponding sequential file would be

brought in from disk and printed to the screen. At the touch of

yet another key, the original environment would be restored,

and whatever was going on beforehand would continue as if

nothing had happened.

These operations require a fair amount of code. We have to:

1) trap the first special keypress

2) save the user's low RAM and screen in some secret place, to

be restored later on

3) print the file menu

4) wait for a selection

5) open a file, or exit the help utility and restore the original

context

6) print the file, pausing after each screenful until the user

wants to continue

7) close the file and go back to step 2

At the same time, we want this code to be undisturbed by most

programs and to consume a minimum amount of precious

RAM. How?

The answer is: you don't.

If your help program is on a cartridge, you can make it almost

completely transparent to other applications. But cartridges are

too expensive and difficult to manufacture for everyday pur

poses.

If your help program is running under a multitasking operating

system like the Amiga's, transparency is again not hard to

achieve. But we're talking about the Commodore 64 here and,

the last time we looked, multitasking wasn't available.

So we do what programmers have always done on the 64: look

for some space for our program where the traffic is especially

light, and hope that nobody dumps on it. It used to be that short

utilities would normally be placed in the cassette buffer. This

was an inheritance from the PET days, when there were few

other places for machine language programs to go. But our

program is not that short and, in any case, the the cassette

buffer is busier now.

The next choice was the 4K of RAM at $C000, which was either

a design quirk or an intelligent decision on the part of Commo

dore, depending on how you look at it. Naturally, it soon

became impossible to depend on anything surviving in the C-

block for any length of time.

Next came the top of BASIC, also popular in PET days. This had

some advantages. BASIC memory in the 64 is fairly large, so

you can take away some without inflicting a great penalty on

the user. It is also less used than the C-block, so your program

has a correspondingly greater chance of surviving (as long as

you protect it from BASIC itself by adjusting a couple of

pointers). But it also has drawbacks. For one thing, you never

know in advance just where the top of BASIC is, so you have to

make your code relocatable. For another, this area of memory

gets more use now than it did once upon a time (POWER, PAL

and Supermon all use it, for instance) so the risk of inconven

iencing BASIC by using up too much RAM has grown over the

years.

That leaves us with the 'hidden' RAM underlying the ROMs. In

the early days, this RAM was a godsend - nobody used it for

anything. If you could get your code in there, and get at with

some wedging scheme or other, you were home free. No

longer. Programmers discovered that the video chip can look at

that RAM without problems, and started using the RAM at

$A000 and $E000 for high resolution screens, character sets

and sprite data. They also found that machine language can be

run quite nicely out at $A000 Oust kick out BASIC for a little

while) and even at $E000 if you don't need the Kernal for I/O

(and you can still load into that RAM without special precau

tions).

Like some peaceful tribe driven into increasingly inhospitable

territory by hostile neighbours, utility writers were inevitably

forced into these unfriendlier regions of memory in order to

have any hope that their code would survive the competition

for RAM. One by one, these newly-mastered areas just as

inevitably became overcrowded in their turn.

The Transactor 43 May 1987: Volume 7, Issue O6

The only place that was generally ignored was the one we

haven't yet mentioned: the D-block of RAM that underlies not

just ROM (in this case the character set ROM) but also the

input/output registers for the VIC II, SID and CIA chips. You

can't load into this area - it writes over your I/O registers,

which is a pretty sure-fire means of crashing the system. You

can't save from it, because the RAM and the I/O chips needed

to communicate with the disk drive are not simultaneously

accessible. What's worse, any code executing in the D-RAM

cannot directly access any I/O (the video chip, SID chip, serial

port, etc.), because when the D-RAM is selected, all of the I/O

is switched out. If there is a use for this RAM, it's certainly not

obvious at first glance.

Where, then, do we put our help utility? Reluctantly, we put it

in the D-block.

Having made this fundamental, and possibly misguided design

decision, let's follow the programming steps through in more

detail. First, it's obvious that we can't put everything under

ROM - if we did, we couldn't reach our code to execute it in the

first place. So we need a bit of link code that will switch out the

overlying stuff in the D-block (by poking a $34 into the

memory configuration register at location 1) then jump to the

real program. Oh yes, we also need another link to bring the

ROMs back in (with a $37 in location 1) so we can continue life

as normal after the code has finished executing.

This brings back the same old question - where can we put our

code (the link code this time) so that it will get in the way of the

fewest other programs? Well, we're only talking about two very

short routines now, so the top of BASIC space seems like a

natural: the user is not likely to notice the difference, and most

programs that inhabit this area are relocating, as mentioned

above, so we probably won't get written over. Sometimes,

though, the top of BASIC won't be safe, so we'll include an

option to put the link code somewhere else in memory if the

user desires.

To recap: the main program will go in the D-block, where it

should be safe from most competition. The short routines will

go either at the top of BASIC, where considerate programs like

POWER and others will leave them alone, or at some other

place to be determined by the user.

Now back to the seven steps described above:

1) To trap the first keypress, we'll use the vector at $028F. This

vector (known as KEYLOG in the memory maps), is the

stepping stone to the ROM routine that converts raw key-

codes to real PETSCII characters, and is invoked during

every IRQ interrupt just after the keyboard has been

scanned. It is not very well-known, so not many programs

bother to ensure that it is set to its default value as part of

their initialization sequences, which is less true of the more

popular vectors in page 3 (it is reset by RUN/STOP-

RESTORE, however). We'll substitute for this vector the

address of our own routine in 'open' RAM, whose function

will be simply to switch out the ROMs {all the ROMs - we'll

have a pure RAM computer with no I/O registers at this

point) and call our main program in the D-block.

2) Before it does anything else, that program has to save the

user's current environment so that it can be restored later

on. We'll want to save all parts of memory that the help

utility itself will subsequently affect. These include: zero

page, the stack (page 1), a few bytes in page 2 (646 through

648), the low-res screen area we'll be using (pages 4 through

7), colour RAM (pages $D8 through $DB), and the video

registers from $D011 through $D021. We'll store all this data

in the safest place we know about - right alongside our

program itself in D-block RAM.

Unfortunately, this presents a new problem. To write stuff

into D-block we need to have the I/O registers switched out.

But to save the colour RAM and the video registers we need

the I/O switched in. The answer? More link code. To mini

mize our demands on the user's RAM, we'll copy that code

into one end of page 1 (the stack page) every time the help

utility is invoked, and execute it there. At the same time,

we'll move the stack pointer to the other end of the stack so

there'll be no conflict. (The stack will be restored to its

original state after the help utility has finished executing.)

But now that we've broken this new ground, we may as well

use it for more than just copying I/O registers to RAM. We'll

also put here our routines for copying the RAM back to the

registers (which we'll need when we're ready to exit), and

our disk I/O routines (for opening, getting bytes from, and

closing the disk files, for keyboard input and for screen

output).

3) Now we have to print the file menu. No problem. We already

have the data in the D-block, so we just make repeated calls

to our print character routine in page 1 till the printing is

done.

4) Now we wait for the user's selection. Again the routine we

need is going to be on the stack page. Rather than do a JSR

GETIN here, we preferred to do a JSR SCNKEY and interpret

the keycodes ourselves. This avoids complications with

interrupts, and also lets us look at the logo key (our escape

key) and the main keyboard separately.

5) To open the file we call another of our routines on the stack

page. By this point in the project, we've settled on standard

filenames of the form 'help-a', 'help-b', and so on, which

means that we only have to pass the distinguishing final

character of the name to our open routine.

6) We fetch and print the file byte by byte, waiting for a signal to

either continue or abort after each screenful. Along with our

routines for printing to the screen and scanning the key

board, we need a new one to get bytes from disk; this will go

on page 1 with the others.

7) Finally we have to close the file (also via a routine in page 1)

and go back to step 2.

The Transactor 44 May 1987: Volume 7, Issue O6

Okay, all this stuff has been worked out, and the code has been

written. Now all we need to do is find some way to assemble it

all, not forgetting that we're going to need some BASIC at the

front of it so that the menu selection strings can be changed to

fit the actual help files available. We want to use PAL (the

Transactor's default assembler), but PAL doesn't have a good

way of handling this scattered code in one assembly. The TSDS

assembler (Total Software Development System by Kevin Pick-

ell), on the other hand, has the '*S =' pseudo-op, which is

specifically designed to allow you to assemble discontiguous

blocks of code in one piece. TSDS also lets you bring in binary

data (our BASIC front end, in this case) from disk, as though it

had been coded with .BYTE statements. After a bit of fooling

around, the thing is done.

For publication, though, the program really should be in PAL -

after all, that's the assembler most of our readers are using. PAL

has the .BAS pseudo-op, which lets you incorporate BASIC

code directly into your program, using SYS <label> to invoke

the machine code. But it doesn't let you assemble those

discontiguous blocks in one piece. The answer this time is to

assemble in two pieces, appending the second piece of object to

the first in an assembly to disk. A couple of chunks of the

program need to be accessed both before they're copied into

D-block RAM and after (the VECSET routine, the help utility

video preferences and some other data) which means some

fancy footwork with labels, but it turns out to be possible.

To create the HELP program, you can either assemble the

source code in listing 1 or type in the BASIC data loader in

listing 2. If you choose to assemble the source, you'll have to

use PAL 64 or else face a very tricky porting job. Otherwise,

type in listing 2 and run it. Either way, this will create the file

called " help" on disk, which is the final program, and all you'll

need except for the sequential text files themselves.

Run the HELP program, and the help is thereafter available at

any time (at least until the next RUN-STOP/RESTORE). To get

the help, press CTRL-<left-arrow>. Your current screen will

be replaced by a screen containing the menu choices, which

you select by letter. (Exception: if you have more than one file

open, the help utility will refuse to work, and will just do a brief

series of screen flashes instead.) Each menu selection corres

ponds to a disk file, which will then be printed as described

earlier (if the file is not on your current disk, you'll get a garbage

character and a space bar prompt - we didn't have room for

fancy error checking). After you've finished looking at help

files, you'll be returned to wherever it was you came from,

which might be direct mode or might be a running program.

Your screen colours and so on will be the way they were before.

If you want to disable the help for any reason, press SHIFT-

CTRL-<left arrow>; you'll get a long series of screen flashes,

and the special keypress will no longer work. You'll have lost

exactly 17 bytes of open RAM in the process. To re-enable the

help, you'll have to load and run the original program file all

over again.

To install your sequential help files, first rename them as

help-a", " help-b" and so on. Then load the help program,

and write your menu selections into the strings in the DATA

statements between lines 50 and 69 (you can have up to 20

selections, hence 20 different help files). Make sure that you do

not alter the length of the strings or, for that matter, any line in

the program, after assembly - this is very important. When the

program encounters a DATA statement beginning with a blank,

it assumes that there are no more menu selections to come.

When you've entered all of these strings into the DATA state

ments, enter RUN 100 to install them, and resave the program

(before doing a regular RUN) to make your changes permanent.

When the program is subsequently RUN, the new selections

will be displayed in the menu. Besides changing the names of

menu items in the help utility, you can control the border,

background and character colours by changing the POKEs in

lines 230 through 250.

If you want to set the location of the 17 bytes of link code that go

in normal RAM, change the 5—digit address in line 10 (assigned

there to the variable A). If this address is zero, the help utility

puts the link code at the top of BASIC. If it is non-zero, the link

code goes to the specified address. If you do change this

number, just make sure you don't change the length of the line

(i.e. the number must always be 5 digits long).

Note for PAL users: After you assemble, the statement SYS"

INIT" ,A in line 11 will have been changed to SYS3298:,A (the

actual number may vary depending on just how you type the

BASIC portion in). The colon after the number is an error, of

course; it results from an oversight in PAL. Change the colon to

a space (don't just delete it!) before you save the program.

One more thing before we close. There's undoubtedly more

you can do with the D-block RAM than just print sequential

files. It can sometimes be really useful to be able to do

something while in the midst of another program, in order to

change the program's behaviour in some way. (The HELP

utility even works from many commercial programs.) A simple

example is changing screen colours; a more difficult thing

would be adding features to a program. All that's required to

adapt this program for your own purposes is to modify the

central part of the help routine, and replace the file printing

routines, the string storage and the stack-page subroutines

with code of your own devising. The other parts of the program

should not need to be changed. Please let us know if you come

up with anything interesting that you want to share with other

Transactor readers.

Help! BASIC Loader

PM

FM

FJ

JJ

NH

BO

OF

FD

BM

10

PN

10 rem* data generator for " help!" *

20 rem* creates file on drive 0 *

30cs = 0

40 for i = 2049 to 4718:read a

50cs = cs + a:nexti

60 if cs<>225125 then print" !data error!": end

70 restore

80 openi ,8,15," iO" :open 2,8,1," 0:help!"

90 input#1 ,e,e$,t,s:if e then print" !disk error!": goto 150

100 print#2,chr$(1);chr$(8);

110 for i = 2049 to 4718:read a

The Transactor 45 May 1987: Volume 7, Issue O6

FM

CE

GK

GF

AK

OB

CO

LH

OH

AH

PG

HJ

MK

PI

MG

NF

MN

EF

HL

HL

ML

BM

AC

JA

00

FP

OP

EF

IC

FC

IP

AF

HF

AF

IJ

GG

FD

AN

NJ

MK

GL

CG

JG

OE

NM

HB

CD

FM

AJ

CL

IH

IJ

IL

FJ

HN

JJ

OK

HN

NM

KL

DE

CO

NP

EC

120 print#2

130 for i = 1

140 print#2

150 close2

160 end

170:

1000 data

1010 data

1020 data

1030 data

1040 data

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

1110 data

1120 data

1130 data

1140 data

1150 data

1160 data

1170 data

1180 data

1190 data

1200 data

1210 data

1220 data

1230 data

1240 data

1250 data

1260 data

1270 data

1280 data

1290 data

1300 data

1310 data

1320 data

1330 data

1340 data

1350 data

1360 data

1370 data

1380 data

1390 data

1400 data

1410 data

1420 data

1430 data

1440 data

1450 data

1460 data

1470 data

1480 data

1490 data

1500 data

1510 data

1520 data

1530 data

1540 data

1550 data

1560 data

1570 data

,chr$(a);:next i

to 537

,chr$(O);:

closei

35, 8,

69, 32,

67, 84,

80, 32,

89, 0,

78, 73,

76, 73,

68, 32,

90, 65,

8, 17,

79, 66,

54, 0,

40, 67,

32, 84,

78, 83,

53, 8,

65, 89,

80, 89,

84, 79,

59, 8,

21, 0,

79, 84,

32, 84,

71, 84,

78, 89,

32, 76,

84, 69,

82, 65,

83, 83,

0, 240,

9, 24,

48, 48,

68, 73,

78, 75,

65, 68,

0,158,

65, 58,

0,137,

9, 27

0,131

73, 78

84, 69

32, 32

9, 51

73, 78,

79, 85,

32, 32

0,156,

193, 86

32,211

71, 32

32, 34

32, 34

71, 32

69, 68

32, 32,

0, 131,

32, 32

next

15,

84,

79,

85,

72,

67,

86,

67,

77,

0,

69,

121,

41,

72,

65,

19,
32,

44,

32,

20,

143,

32,

72,

72,

0,

73,

82,

77,

69,

8,

0,

58,

71,

32,

68,

32,

32,

32,

0,

32,

71,

68,

32,

0,

84,

82,

32,

9,

79,

80,

197,

0,

199,

198,

32,

32,

32,

32,

i

0,

82,

82,

84,

8,

75,

65,

72,

65,

143,

82,

8,

32,

69,

67,

0,

84,

32,

83,

0,

32,

65,

69,

32,

234,

78,

32,

32,

77,

23,

65,

32,

73,

66,

82,

51,

156,

51,

58,

34,

32,

32,

32,

131,

73,

32,

32,

52,

89,

69,

82,

190,

69,

73,

32,

34,

34,

32,

143,

65,

32,

73,

16,

32,

78,

82,

82,

32,

32,

18,

49,

32,

84,

143,

79,

78,

69,

58,

68,

76,

32,

79,

8,

69,

80,

73,

66,

0,

178,

143,

84,

65,

0,

53,

0,

52,

0,

199,

211,

32,

32,

32,

78,

212,

32,

0,

68,

76,

82,

9,

84,

78,

32,

0,

32,

32,

32,

78,

72,

76,

0,

83,

32,

73,

65,

79,

49,

0,

57,

84,

79,

32,

32,

79,

76,

0,

79,

84,

76,

70,

22,

32,

82,

83,

76,

58,

48,

32,

32,

83,

38,

53,

48,

48,

88,

69,

84,

32,

34,

34,

71,

69,

32,

131,

73,

76,

79,

53,

84,

73,

32,

224,

32,

32,

84,

83,

69,

73,

143,

85,

65,

83,

0,

67,

57,

143,

56,

82,

82,

79,

67,

84,

76,

196,

32,

69,

69,

32,

0,

65,

79,

32,

69,

0,

48,

53,

76,

69,

9,
52,

9,

0,

9,

84,

65,

32,

0,

208,

32,

88,

32,

32,

78,

73,

82,

0,

73,

83,

32,

9,

32,

32,

72

65

76

84

32

76

78

32

91

84

56

32

54

65

0

75

79

32

0

8

78

82

78

65

143

70

71

65

68

22

48

32

73

32

25

44

26

54

50

84

82

32

122

82

217

84

34

34

71

78

83

131

78

72

32

54

32

32

OC

DE

GE

EA

LL

AJ

AE

KO

NP

GP

CG

AB

IB

JB

MM

JP

NB

HG

BA

MP

LI

FH

BJ

HO

OK

CC

DJ

BD

FK

DM

NM

GH

PH

LO

LN

EH

LK

IE

DA

KO

Kl

IM

GB

MN

BN

FF

NF

MJ

MB

JD

DK

PJ

Fl

AF

FC

CO

FL

JF

BO

OP

GO

FK

PP

AA

1580 data

1590 data

1600 data

1610 data

1620 data

1630 data

1640 data

1650 data

1660 data

1670 data

1680 data

1690 data

1700 data

1710 data

1720 data

1730 data

1740 data

1750 data

1760 data

1770 data

1780 data

1790 data

1800 data

1810 data

1820 data

1830 data

1840 data

1850 data

1860 data

1870 data

1880 data

1890 data

1900 data

1910 data

1920 data

1930 data

1940 data

1950 data

1960 data

1970 data

1980 data

1990 data

2000 data

2010 data

2020 data

2030 data

2040 data

2050 data

2060 data

2070 data

2080 data

2090 data

2100 data

2110 data

32,

32,

10,

212,

84,

65,

0,

76,

79,

65,

32,

32,

72,

32,

78,

0,

32,

32,

46,

10,

213,

32,

69,

0,

66,

32,

72,

32,

32,

77,

65,

78,

0

32

44

32

11

76

70

82

0

32

32

32

32

32

84

82

84

0

76

67

84

11

2120 data 212

2130 data

2140 data

2150 data

2160 data

2170 data

2180 data

2190 data

2200 data

2210 data

69

84

0

82

70

83

32

32

72

32,

32,

55,

72,

32,

84,

36,

73,

86,

32,

34,

34,

65,

66,

32,

131,

72,

73,

32,

59,

80,

77,

77,

172,

69,

198,

32,

34,

34,

85,

32,

71,

131,

79,

32,

32,

63,

69,

32,

77,

52,

32,

72,

32,

34,

34,

72,

69,

83,

131,

80,

32,

69,

67,

72,

32,

69,

188,

69,

73,

32,

34,

34,

3?

32,

32,

0,

69,

70,

65,

10,

78,

69,

83,

0,

77,

84,

69,

32,

32,

69,

78,

32,

0,

32,

69,

83,

10,

32,

79,

79,

0,

84,

83,

77,

32,

32,

78,

87,

32,

0,

78,

84,

58,

11,
32,

69,

32,

0,

87,

69,

80,

32,

32,

72,

67,

82,

0,

69,

77,

77,

11,

81,

76,

72,

0,

84,

7?

32,

32,

131,

32,

79,

32,

56,

69,

32,

65,

70,

69,

32,

32,

34,

34,

76,

86,

32,

131,

84,

78,

32,

60,

85,

82,

78,

206,

72,

84,

65,

34,

34,

32,

73,

32,

131,

65,

72,

32,

64,

32,

76,

32,

86,

72,

32,

82,

34,

34,

65,

72,

46,

131,

32,

69,

83,

68,

85,

69,

69,

222,

72,

R9

32,

32,

32,

70,

85,

32,

0,

83,

65,

77,

10,

78,

87,

83,

0,

87,

80,

79,

32,

32,

79,

85,

77,

0,

83,

32,

69,

10,

69,

32.

84,

0,

70

68

84

32

32

77

69

32

0

32

80

32

11

69

39

69

0

65

66

65

32

32

65

78

32

0

73

78

76

11

82

76

32,

34,

34,

73,

82,

32,

131,

32,

82,

80,

57,

85,

73,

72,

104,

72,

32,

75,

34,

34,

32,

32,

65,

131,

69,

69,

44,

61,

82,

66,

67,

240,

73,

73,

72,

34,

34,

69,

32,

32,

131,

32,

45,

32,

65,

82,

63,

83,

120,

78,

69,

82,

34,

34,

66,

85,

32,

131,

82,

65,

80,

69,

79,

80

32,

0,

32,

82,

32,

32,

32,

65,

69,

76,

0,

32,

76,

79,

10,

69,

73,

69,

0,

32,

50,

73,

89.

32,

68,

65,

32,

0,

69,

69

72

10

76

83

32

0

70

32

70

32

32

32

63

32

0

69

39

69

11

32

84

65

0

32

79

32

32

32

69

77

45

0

85

45

32

2

32

83

68

34

34

66

32

69

131

84

76

87

58

78

83

68

138

32

48

84

34

34

46

67

32

131

32

32

73

62

69

75

65

18

73

79

79

34

34

32

32

32 .

131

32

32

78

66

65

73

67

154

32

86

73

34

34

32

69

65

131

71

68

The Transactor 46 May 1987: Volume 7, Issue O6

BM

JL

DK

MD

CH

CF

KH

DD

El

BB

BM

ED

LC

DM

AL

Bl

MM

OG

DF

EF

HO

IG

AL

FC

EO

OP

CN

BD

LF

HD

AC

IG

GE

PB

CF

PJ

DD

JO

PA

LC

El

NK

PP

NJ

JB

El

JO

GM

Kl

GO

HE

AE

GC

GM

KE

PD

FG

FP

Nl

Nl

JJ

OD

KM

MP

12,

75,

65

51,

48.

73,

2220 data 46,

2230 data 32,

2240 data 0,

2250 data 76,

2260 data 143,

2270 data 82,

2280 data 69,

2290 data 0,

2300 data 40,

2310 data 172,

2320 data 48,

2330 data

2340 data

2350 data

2360 data

2370 data

2380 data

2390 data 171,

2400 data 32,

2410 data 40,

2420 data 121,

2430 data 133,

2440 data 73,

2450 data 78,

2460 data 178,

2470 data 32,

2480 data

2490 data

2500 data

2510 data

2520 data 224,

2530 data 51,

2540 data

2550 data

2560 data

2570 data

2580 data

2590 data

2600 data 143,

2610 data 0,

2620 data 170,

2630 data 32,

2640 data 85,

2650 data 151,

2660 data 32,

2670 data 79,

2680 data

2690 data

2700 data

2710 data

2720 data

2730 data

2740 data

2750 data

2760 data

2770 data

2780 data

2790 data

2800 data 194,

2810 data 79,

2820 data

2830 data

2840 data

2850 data

49,

58

49,

51,

58

54,

12,

0,

78,

90,

32,

58,

87;

34,

79,

65,

83,

70,

67,

84,

76,

73,

32,

32,

0,

13,

32, 32,

32, 32,

58, 0,

178, 50,

32, 50,

83, 32,

78, 85,

40, 12,

52, 53,

194, 40,

172, 83,

120, 0,

12, 130,

36, 44,

50, 41,

0, 92,

178, 49,

49, 0,

83, 170,

65, 36,

12, 160,

12, 170,

44, 48,

178, 78,

83,170,

78, 179,

50, 48,

0, 193,

50, 50,

48, 58,

12,210,

58, 32,

32, 90,

172, 65,

220, 0,

151, 32,

0, 10,

170, 49,

32, 66,

37, 13,

50, 44,

66, 65,

78, 68,

32, 90,

58, 143,

82, 0,

34, 68,

32, 137,

13, 24,

1, 143,

85, 84,

76, 67,

32, 65,

0, 161,

72, 82,

82, 32,

79, 78,

78, 69,

13, 54,

32, 83,

65, 76,

73, 78,

200, 13,

74, 1,

32, 32, 32,

34, 0,228,

10, 12,100,

53,170, 49,

53, 32, 67,

80, 69, 82,

32, 73, 84,

110, 0, 83,

41.170, 50,

52, 54, 41,

76.171, 49,

135, 32, 65,

0,139, 32,

49, 41,178,

32,137, 32,

12,140, 0,

32,164, 32,

113, 12,150,

73, 44,198,

44, 73, 41,

0,130, 32,

0,151, 32,

0,165, 12,

170, 49, 58,

83, 76, 58,

50, 48, 32,

0,171, 12,

12,200, 0,

58, 32,141,

32, 90,178,

0, 65,178,

141, 32, 51,

178, 90,170,

170, 49, 49,

58, 0,243,

90,170, 48,

13,240, 0,

44, 48, 57,

79, 82, 68,

250, 0,151,

48, 57, 32,

67, 75, 71,

0, 60, 13,

170, 51, 44,

32, 67, 85,

81, 13, 14,

79, 78, 69,

32, 51, 52,

1, 58, 0,

32, 83, 85,

73, 78, 69,

85, 76, 65,

68, 68, 82,

13, 44, 1,

71, 69, 84,

65, 84, 32,

32, 73, 78,

32, 51, 51,

1,143, 32,

80, 65, 67,

76, 79, 87,

32, 51, 51,

64, 1, 58,

65, 178, 194,

32, 32

11, 70

0, 83

58, 32

72, 65

32, 77

69, 77

178,194

53, 54

171, 50

0, 49

36, 0

200, 40

199, 40

50, 48

129, 32

83, 76

0,151

40, 202

41, 0

73, 0

83,170

180, 0

32, 83

32,139

137, 32

190, 0

65, 178

32, 51

65, 0

49, 50

51, 48

50, 53

0,230

12,230

44, 32

151, 32

32, 58

69, 82

32, 90

58,143

82, 79

4, 1

48, 48

82, 83

1, 153

33, 34

48, 0

123, 13

66, 82

32, 67

84, 69

32, 79

143, 32

32, 80

67, 79

32, 76

48, 0

40, 78

69, 83

69, 68

48, 41

0,213

40, 65

KE

HD

KF

IH

CP

FJ

JA

BH

PG

DJ

NC

JN

DE

LN

BM

AP

JA

NE

LH

PD

NB

CB

CG

00

KL

BA

HG

HC

JC

KJ

FH

IH

DN

PJ

BM

BL

IM

NA

ME

IP

KO

OB

OE

GC

KG

AF

Cl

AB

DC

PM

GG

FE

IF

KH

AJ

II

IJ

FL

ID

HJ

FM

KJ

ML

LO

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

data 41,

data 128,

data 96,

data 247,

data 239,

data 134,

data 233,

data 0,

data 14,

data 105,

data 142,

data 145,

data 222,

data 173,

data 52,

data 34,

data 36,

data 34,

data 230,

data 169,

data 2,

data 1,

data 218,

data 143,

data 140,

data 218,

data 27,

data 121,

data 249,

data 0,

data 203,

data 174,

data 6,

data 50,

data 224,

data 162,

data 208,

data 141,

data 218,

data 0,

data 64,

data 76,

data 2,

data 208,

data 208,

data 96,

data 162,

data 5,

data 12,

data 173,

data 255,

data 1,

data 1,

data 109,

data 221,

data 186,

data 32,

data 32,

data 96,

data 55,

data 234,

data 1,

data 24,

data 159,

58, 142,

0, 0,

32, 253,

183, 174,

142, 135,

14, 170,

17, 133,

133, 56,

132, 34,

11, 141,

185, 14,

34, 136,

13, 153,

221, 13,

133,

132,

132,

145,

37, 202,

55,133,

198, 56,

72,169,

104,133,

2,172,

51,218,

141,143,

10,170,

1,

35,

37,

36,

0,

0.

0,

57,

2,

240,

0,

0,

201,

141,

176,242,

218,172,

4, 240,

16, 165,

21, 173,

229,221,

141,230,

218,160,

1,136,

62,218,

96, 169,

208,251,

202, 208,

162, 55,

52, 134,

1, 208,

1, 208,

255, 255,

255, 162,

208, 3,

208, 3,

1, 173,

162, 55,

255, 162,

189,255,

198,255,

72, 69,

134, 1,

173,229,

32, 204,

144,216,

255, 164.

0,219

0, 4

174, 32

144, 2

14, 174

208, 14

55,168

140,188

133, 35

184, 14

160, 16

16,248

176, 14

141, 183

169, 136

169, 0

160, 0

200, 208

208, 242

1, 88

198, 55

52,133

1, 76

144, 2

173, 52

2, 140

101, 0

0,

0,

0,

240,

224,

169,

51,218,

4, 162,

152,240

89, 2,

173, 109,

221, 76,

22, 185,

16,247,

41, 126,

55, 133,

238, 32,

242, 169,

134, 1,

1, 141,

3, 238,

3, 238,

162, 55,

52, 134,

238, 33,

238, 40,

229,221,

134, 1,

104, 160,

32,192,

120, 162,

76, 80,

32, 228,

221, 72,

255, 104,

169, 55,

203,185.

0

0

0

3,

4,

64,

13, 84, 1

9, 9, 0

138,173, 32

228,224, 144

143, 2,142

56,165, 55

165, 56,233

14, 141, 189

170,152, 24

144, 1,232

185,119, 14

160, 2,185

136, 16,247

14, 120, 169

160, 14,133

160,218, 133

162, 6,177

249,230, 35

32,136, 14

165, 55,208

96,120,165

1, 76, 56

255,255,173

141, 50,218

218,172, 53

2, 96

0, 23

0,249

0, 0

144,

200,

0,

0,

56,218,165

108, 48,218

144,246,224

133,203, 173

32, 18,218

48,208, 34

22,201, 1

32, 148,218

2, 32,148

88,219, 32

155,218,153

32, 64, 1

9, 4, 73

1, 236,

208, 238,

52, 133,

173,255,255

255, 255, 238

6, 1,238

1, 96

1, 141

238, 32

238, 39

96, 141

72,172,230

162, 8, 32

1,169, 6

255, 104, 170

1

18

33

1

13

134

1

1

1

63, 162

24, 144

52, 134

45,

255,

162, 55,134

32, 195,255

133, 1, 32

129,235. 172

The Transactor 47 May 1987: Volume 7, Issue O6

NK

MM

DK

HK

FB

GB

IA

FH

JN

NF

BH

AE

FA

HK

DF

MC

LG

DC

Dl

BL

LH

II

FJ

PKUl\

Jl

EG

CA

AA

MM

NF

DA

JN

Cl

HP

LE

KP

DH

NC

NC

Kl

ED

JD

PA

Al

GE

PM

DH

JO

GJ

MA

JF

KC

GG

KE

BM

JP

CN

HC

PL

FB

AC

CD

ME

AE

3500 data

3510 data

3520 data

3530 data

3540 data

3550 data

3560 data

3570 data

3580 data

3590 data

3600 data

3610 data

3620 data

3630 data

3640 data

3650 data

3660 data

3670 data

3680 data

3690 data

3700 data

3710 data

3720 data

3730 dataO / \J\J \JCXlCi

3740 data

141, 2, 24,144,198,162, 55,134

1, 32,210,255, 24,144,188,169

0,160,208,162, 2, 32, 25,221

169, 4,160,210,170, 32, 25,221

186, 142, 226, 221, 162, 255, 154, 160

166,185,178,218,153, 0, 1,136

192,255,208,245,200,140, 5, 1

140, 12, 1,169, 4,133, 2,162

216,142, 6, 1,162,214,142, 13

1, 32, 0, 1, 136,208,250, 198

2,208,246,169, 17,160,208,141

5, 1,140, 6, 1,169,231,160

221,141, 12, 1,140, 13, 1,160

16,132,204, 32, 0, 1,136, 16

250,173,134, 2,172,135, 2,174

136, 2,141, 43,218,140, 44,218

142, 45,218,169, 4,141,136, 2

169, 0,160,221,141, 5, 1,140

6, 1,141, 39, 1,140, 40, 1

169, 46,160,218,141, 12, 1,140

13, 1, 32, 0, 1, 173, 46,218

9, 3, 32, 34, 1,169, 25,160

218,141, 32, 1,140, 33, 1,169

17 160 ?08 141 39 1 140 40

1,160, 16, 32, 31, 1,136, 16

3750 data 250,173, 42,218,141,134, 2,169

3760 data

3770 data

3780 data

3790 data

3800 data

3810 data

3820 data

3830 data

152,160,221, 32,135,221,169, 13

32,156, 1, 32,156, 1,169,248

160,221,133, 3,132, 4,169, 0

133, 2, 24,105, 65, 32,156, 1

169, 32, 32,156, 1,165, 3, 164

4, 32,135,221, 24, 165, 3, 105

26,133, 3,144, 2,230, 4,169

13, 32,156, 1,230, 2,165, 2

3840 data 205, 47,218,208,213, 32,138,

3850 data

3860 data

3870 data

3880 data

3890 data

3900 data

3910 data

3920 data

3930 data

3940 data

192, 2,240, 18,170, 56,233, 65

144, 243, 205, 47, 218, 176, 238, 138

32, 53,221, 76, 24,220,169,231

160,221,141, 32, 1,140, 33, 1

169, 17,160,208,141, 39, 1,140

40, 1,160, 16, 32, 31, 1,136

16,250,200,140, 32, 1,140, 39

1,162,214,142, 33, 1,162,216

142, 40, 1,169, 4,133, 2, 32

31, 1,136,208,250,198, 2,208

3950 data 246, 173, 43,218,172, 44,218,174

3960 data

3970 data

3980 data

3990 data

4000 data

4010 data

45,218,141,134, 2,140,135, 2

142,136, 2,169, 46,160,218,141

32, 1,140, 33, 1,169, 0,160

221,141, 39, 1,140, 40, 1, 32

31, 1,174,226,221,154,162, 3

189, 34,208,157,248, 7,202, 16

4020 data 247, 169,208, 141, 35,208,160, 0

4030 data

4040 data

4050 data

4060 data

4070 data

4080 data

4090 data

4100 data

140, 34,208,140, 36,208,140, 37

208,162, 2,208, 25,162, 3,189

248, 7,149, 34,202, 16,248,160

4,169,210,162, 4, 32, 25,221

32, 0,218,108, 48,218, 56, 36

24,133, 35,132, 37,160, 0,132

34,132, 36,177, 34,145, 36,200

208,249,230, 35,230, 37,202,208

4110 data 242,176, 202, 96, 32, 62, 1,169

4120 data 147, 32,156, 1,169, 23,141,227

4130 data 221,169, 40,141,228,221, 32,110

GH

OJ

OA

BF

CH

FJ

GH

IK

NK

Jl

OB

KD

Cl

DB

NC

ME

KO

CD

MO

IP

4140 data

4150 data

4160 data

4170 data

4180 data

4190 data

4200 data

4210 data

4220 data

4230 data

4240 data

4250 data

4260 data

4270 data

4280 data

4290 data

4300 data

4310 data

4320 data

4330 data

PL

GJ

NN

OB

HI

AB

FA

JG

IG

CJ

II

HN

DB

LI

LP

PA

FM

PI

JO

DN

HD

IE

KC

KP

MM

AF

MC

LO

JN

MO

GK

HP

AN

FC

ND

BN

Ol

GO

KL

HM

1, 32,156, 1,166,144,

201, 13,240, 5,206,228,

237, 206, 227, 221, 208, 227,

221,169,183,160,221, 32,

32,138, 1,192, 2,240,

32,208,245,240,194, 32,

32,138, 1,201, 32,208,

120, 1,169,205,160,221,

132, 35,160, 0,177, 34,

32,156, 1,200,208,246,

8,147,200, 69, 76, 80,

200, 69, 76, 80, 33, 13,

211, 69, 76, 69, 67, 84,

32, 84, 79, 80, 73, 67,

40,204,207,199,207, 32,

89, 32, 84, 79, 32, 69.

84, 41,146, 0, 13, 18,

193,195,197, 32, 84, 79,

79, 78, 84, 73, 78, 85,

0, 0, 0, 0, 2, 2

Help! PAL Source

10 open 1,8,15," sO:t-help!": close 1

11 open 2,8,1, "O.t-help!"

12 sys"

13.opt

14.bas

15 rem

16 rem

17 rem

18 rem

19 rem

20:

21 rem

22 rem

23:

700

02

the transactor help utility

nick suilivan and chris zamara

October 1986

(c) 1986 the transactor

okay to copy, not to sell

do not alter the length of any

208,

221,

32

135

16

131

249

133

240

96

33

13

32

18

75

88

211

32

69

line after program is assembled

24 a = 00000: rem 5 digit link base addr

25 sys' init",a: clr

26 goto 340

27:

50 data

51 data

52 data

53 data

54 data

55 data

56 data

57 data

58 data

59 data

60 data

61 data

62 data

63 data

64 data

65 data

66 data

67 data

68 data

69 data

70:

100 si =

"Getting Started

" Printing Your Text

" Avoyding Spelling Errors

"Getting Finished

"

" The first four data

" lines above are a sample

" menu that will be shown

" when help is invoked.

" Up to 20 menu items may"

" be used. For each one,

"there must be a matching "

"file on disk, with a

"filename of the form:

help-?

" where the '?' represents

" an alphabetic character.

" The above menu items

" require filenames help-a

"through help-d.

37

208

131

221

201

221

76

34

6

13

32

18

65

32

69

73

208

67

146

25 + 1: rem 25 chars per menu item

The Transactor 48 May 1987: Volume 7, Issue O6

BB

JN

LD

AO

CE

PH

KK

PM

CD

OC

HA

AF

MD

MB

HO

FG

Fl

Ml

IP

OB

BJ

EL

Fl

EF

CN

Dl

KH

CO

PC

CC

JF

BH

KB

DD

II

KG

IB

GN

JO

DN

EP

MG

OA

PO

MM

GC

AD

FE

EE

ED

HN

NH

PF

Ml

FM

IH

BE

MP

DE

DA

PE

FC

AN

EM

DK

MH

HF

LF

AD

LJ

Cl

KC

DF

JN

OK

EE

■ BL

FO

CH

JL

I OL
PO

1 OP
CK

KG

BL

AM

MG

NJ

DC

HJ

LM

MP

Bl

1 AB

110 s= peek(45) + 256.peek(46)-20.sl-1

120 read a$

130ifleft$(a!

140 for i = 1 t

150 poke s +

160 next i

170 poke s +

180n = n + 1

190:

200 a = 122:

210a=123:

220:

230 poke z +

240 poke z +

250 poke z +

260 poke z +

5,1) =
osl-1

chr$(32) goto I

i,asc(mid$(a$,i))

i,0

s = s + sl: if n<20 goto 120

gosub330:z = a

gosub330:z = z

0, n

+ 256«a+11

1,09 :rem border

2,09 :rem background

3,00

270 print "done!"

280:

rem curso

goto 340

290 rem subroutine calculates addr of

300 rem chrget ptr at colon in line 330

310 rem (no spaces allowed in 330)

320:

330a = peek(a):return

340 end

350:

1000chrout

1010 chkin

1020 getin

1030 setlfs

1040setnam

1050 open

1060 close

1070clrchn

1080 scnkey

1090;

1100 sub

1110 prog

1120;

=

=

=

=

=

=

=

»

=

=

=

$ffd2

$ffc6

$ffe4

$ffba

$ffbd

$ffcO

$ffc3

$ffcc

$ff9f

256

$da00

;kernal addresses

;temp subrtns base

;prg2 code start

1130 ;the next four bytes can be set

1140 ;from basic with run 100

1150;

1160numtop.byte4

1170bord

1180 back

1190 curs

1200;

1210;

.byte 9

.byte 9

.byteO

1220 escape rts

1230;

1240 init = •

of help files

help bord colour

help bgnd colour

help text colour

1250 ;called from basic on run

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370;

1380 in 1

1390

1400

1410

1420

1430

1440

1450

1460;

1470in2

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580;

1590 in3

1600

1610;

1620 in4

1630

1640

1650

1660

1670;

1680 in8

1690

jsr

jar

jsr

Idx

cpx

bcc

stx

Idx

stx

tax

bne

sec

Ida
sbc

sta

tay

Ida

sbc

sta

sty

sta

sty

sta

tax

tya

olo

adc

sta

bcc

inx

stx

Idy

Ida
sta

dey

bpl
Idy

Ida

sta

$aefd

$ad8a

$b7f7

$0290

$e0

escape

out1+2

$028f

out1 + 1

in2

$37

#end-start

$37

638

#0

$38

newlog

newlog +1

$22

$23

#out-start

ojmp

n3

ojmp + 1

check comma

evaluate address

conv to integer

text keylog now

in rom

no

save old keylog

vector

test var a = 0

no

make room for top

of basic subrtns

install new

keylog vector

set up to copy

link code

set up jump to

old keylog-link

keylog-link

#end-(start+1)

start,y

(S22),y

Il4

#2

oord.y

copy link code to

its new home

set up video

nlpvid + 15,y; preferences

PF

PN

AF

DD

MN

PE

HL

DD

AE

CM

PC

IB

OH

AP

NF

Fl

IE

EM

PI

KG

ME

II

JC

JD

LE

AL

II

GL

DJ

EF

CE

CG

AP

EG

KP

OO

Cl

Ml
GE

FC

CN

OE

OL

IM

CM

HG

JA

DB

AA

KM

PG

BD

CC

MC

HL

ML

MF

FL

BK

IG

CM

MH

Gl

DE

DA

EK

OK

GB

DG

OP

GF

HL

LL

CG

AA

IA

EH

KN

MJ

AD

KD

OE

HG

IF

CG

CN

BD

GN

GG

EJ

OJ

AE

DP

ML

GM

1700 dey

1710 bpl

1720 Ida

1730 sta

1740 sei

1750 Ida

1760 sta

1770 Ida

1780 Idy

1790 sta

1800 sty

1810 Ida

1820 Idy

1830 sta

1840 sty

1850 Idy

1860 Idx

1870;

1880 in9 Ida

1890 sta

1900 my

1910 bne

1920 inc

1930 inc

1940 dex

1950 bne

1960 jsr

1970 Ida

1980 sta

1990 cli

2000 Ida

2010 bne

2020 dec

2030;

2040 in10 dec

2050 rts

2060;

2070;

in8

numtop ;save # of help

ntsave ; files available

;config 100% ram

#$34 ; (no i/o, roms)

1

#<end ;copy help code

#>end ; to $da00 ram

$22

$23

#<prog

#>prog

$24

$25

#0

#>$eOfl-prog ;# pages to copy

($22).y
(S24),y

in9

$23

$25

in9

end ;vecset in low ram

#$37 ;config for basic

1

$37 decrement top

in10 ; of basic due to

$38 ; basic valQ. bug

$37

2080 ;the next 2 routines are stored in

2090 ;'normal' ram, either at the top

2100 ;of basic, or at an address

2110 specified by the user

2120;

2130;

2140 start •

2150 ;switch out rom, do new keyscan

2160 sei

2170 Ida

2180 pha

2190 Ida

2200 sta

2210 jmp

2220;

2230;

2240 out

1

#$34

1

scan

«

2250 ;restore roms, do rom keyscan

2260 pla

2270 sta

2280 out1 jmp

2290;

2300 end

2310;

2320;

1

$ffff

2330 ;vecset and hlpvid are needed by

2340 ;both init code and help code

2350;

2360;

2370vecset = •

2380 ;save old vector, install new one

2390 Ida

2400 Idy

2410 sta

2420 sty

2430 Ida

2440 Idy

2450;

2460 vcs1 sta

2470 sty

2480 rts

2490;

2500;

$028f

$0290

prog + (oldlog-vecset)

prog + (oldlog +1 -vecset)

prog + (newlog-vecset)

prog + (newlog +1 -vecset)

$028f

$0290

2510 ;the following table will be poked

2520 ;into video chip on entering help

2530;

2540;

2550 hlpvid =

2560 .byte $1 b,$0a,$aa,$65,$00,$c8

2570 .byte $00,$17,$79,$f0,$00,$00

2580 byte $00,$00,$00,$f9,$f9

2590;

2600;

2610 ;the variables in the following

2620 ;table are defined below

2630;

2640;

3C

KN

Al

LC

LD

HD

MA

KD

AC

JH

ED

LN

FE

CF

CB

GG

AH

BJ

AJ

HP

IJ

CK

HF

GL

IN

AD

CN

MN

BD

AP

KP

LO

JE

AN

CC

IL

GD

NJ

KO

BP

AG

PI

Gl

OO

LD

OC

FG

NH

GC

PD

EM

HI

PL

DF

MO

EA

CH

BE

JH

IA

KJ

CD

MP

CO

OF

MO

GN

NK

KM

FN

NK

LO

GO

MC

EL

LE

IM

Fl

OE

CF

NG

HI

EA

EO

IB

HK

HB

ND

PC

BJ

BP

PA

IE

CJ

EH

2650hcurs .byteO

2660;

2670usrtxt .byteO

2680usrcol .byteO

2690 usrscr .byte 0

2700usrbnk .byteO

2710;

2720ntsave .byteO

2730;

2740 ojmp .word 0

2750;

2760 oldlog .wordO

2770 newlog .word 0

2780;

2790.= . + 2

2800;

2810;

2820 ;'scan' is the address of th

2830 ;actual program code n d-block

2840 ;ram, as calculated by assembler

2850;

2860;

2870 scan = prog + (»-vecset)

2880;

2890 ;end 1st assembly

2900 .end

2910:

2920:

2930 print: rem cosmetic newline

2940:

2950:

2960 rem the output from the second

2970 rem assembly is appended to that

2980 rem from the first

2990:

3000 open 2,8,2, "0:t-help!,p,a"

3010:

3020 sys 700

3030 «= $daOO

3040 .opt o2

3050;

3060chrout = $ffd2

3070 chkin = $ffc6

3080 getin = $ffe4

3090 setlfs = Sffba

3100setnam= $ffbd

3110 open = $ffcO

3120 close = $ffc3

3130clrchn = $ffcc

3140 scnkey = $ff9f

3150;

3160sub = $100

3170flash = $140

3180deslen = 25 + 1

3190;

;kernal addresses

;temp subrtns base

;screenflash addr

;# bytes/desc

3200 ;most of the actual data for the

3210 following storage area s written

3220 ;here by the first part of the

3230 ;program. it is duplicated here

3240 ; because we need to tell pal about

3250 ;the various addresses

3260;

3270 vecset »= . + 18

3280 vcs1

3290 hlpvid

3300 hcurs

3310 usrtxt

3320 usrcol

3330 usrscr

3340 usrbnk

3350 ntsave

3360 ojmp

3370 oldlog

3380 newlog

=

=

=

=

=

=

=

. + 7

+ 17

+ 1

» + 1

. + 1

+ 1

+ 1

+ 1

+ 2

+ 2

+ 2

3390;

3400.= .+2

3410;

3420 scan = .

3430 ;new keyscan routine

3440 Ida $cb

3450 cmp#$39

3460 beq sca2

3470;

3480 seal jmp (ojmp)

3490;

3500 sca2 Idx $028d

3510 cpx #4

3520 bcc seal

3530 cpx #6

3540 bes seal

3550 Ida #$40

3560 sta $cb

3570 Ida oldlog

3580 Idy oldlog+ 1

3590 jsr vcs1

;vector swap

; routine

;help video prefs

;help crsr colour

;text colour save

;colour under crsr

;screen page

;16k video bank

;# of help files

;exit routine addr

;old keylog addr

;new keylog addr

;skip load address

;test last key

; was left arrow

;yes

;old keylog link

;test (shift)ctrl

; no

; no

put'no key' in

; last key pressed

;restorevecso2d

; press won't bomb

The Transactor 49 May 1987: Volume 7, Issue O6

PE

BC

AE

BM

OK

Al

CM

MN

LC

MJ

Dl

HO

DD

IA

ED

Gl

MM

AD

NB

EE

GJ

IF

JC

MG

NL

IE

PM

OD

FO

KB

CL

ML

PJ

MO

DG

JA

II

OG

CA

MA

KA

BC

KC

ED

GE

NG

NN

NL

GG

NN

LO

AN

FN

JO

AC

PC

HB

GD

KM

IN

ON

10

AF

DE

GN

AB

KB

FB

FL

MB

PD

JA

Nl

CM

HC

JO

LA

OP

FE

MJ

CH

JC

OM

EM

PH

IN

CO

LO

GB

Fl

BE

BB

LN

NJ

EJ

3600

3610

3620

3630

3640;

3650 sca3

3660;

3670 sca4

3680

3690

3700

3710

3720

3730

3740

3750

3760

3770;

3780 sca5

3790;

3800 sca6

3810;

3820 sca7

3830;

3840 sca8

3850

3860

3870

3880

3890

3900;

3910;

3920 hash

cpx #4

beq sca3

Idx #$30

bne sca7

Idx #$10

Ida $98

beq sca5

cmp#1

bne sca6

Ida $0259

jsr hash

sta file

Ida $026d

jsr hash

sta secadd

jmp help

jsr vecset

Idy #endfla

Ida fla.y

sta flash,y

dey

bpl sca8

jsr flash

jmp seal

= *

;test unshifted

; yes

;long flash count

;flash and exit

;short flash count

;test # open files

; zero - ok

;> one -exit

;current If #

;get unique If #

;current secadd

;get unique secadd

jnstall newk'log

;copy flash rout'n

;do flash

;exit help pgm

3930 ;select non-conflictinq file or sa

3940

3950

3960

3970

3980;

3990;

and #$7e

ora #4

eor #2

rts

;clear bits 0, 7

;set bit 2

; clear bit 1

4000 ;this routine is copied to the

4010 ;stack when needed, and run there

4020;

4030;

4040 fla = *

4050 ;flash screen

4060

4070

4080;

4090 fla1

4100

4110

4120

4130

4140

4150

4160

4170

4180;

4190 endflg

4200;

4210;

Ida #$37

sta 1

cpx $dO12

bne fla1

inc $d020

inc $dO21

dex

bne fla1

Ida #$34

sta 1

rts

= .-(fla + 1)

;switch in i/o etc

;wait for raster

;bump colours

;test finished

; no - reflash

; yes - exit

4220 ;the next subroutines are copied

4230 ;from d-block ram to $100 every

4240 ;time help is used

4250;

4260;

4270 subr = *

4280 ;copy byte from ram addr (subr + 5)

4290 ;to d-block ram addr (subr +12)

4300

4310

4320

4330

4340

4350

4360

4370

4380

4390;

4400 Sb1

4410

4420

4430;

4440 Sb2

4450;

4460;

4470 zubr

Idx #$37

stx 1

Ida Sffff
Idx #$34

stx 1

sta Sffff

inc sub+ 5

bne sb1

inc sub + 6

inc sub+12

bne sb2

inc sub+ 13

rts

.

romsin

;addr set on call

romsout

;addr set on call

;bump fetch addr

;bump stash addr

4480 ;copy byte from d-block ram addr

4490 ;(zubr +1) to ram addr (zubr + 8)

4500

4510

4520

4530

4540

Ida Sffff

Idx #$37

stx 1

sta Sffff

Idx #$34

;addrsetoncall

;roms in

;addr set on call

romsout

JP

GN

NM

AB

EG

Jl

IP

PD

Ml

FF

AK

NP

IJ

OL

IM

MC

NK

HA

CH

AA

MM

MD

FN

DA

Al

LF

MO

LM

PJ

MF

KH

PI

BA

Gl

GO

MP

BG

EC

IL

OM

LJ

GN

AO

FN

DA

OP

PI

CO

MB

GC

CM

JJ

BE

LA

JP

JL

NL

GH

IA

FL

EJ

OJ

CP

HE

OH

MM

NM

HJ

NC

AA

HP

JF

NF

GB

MB

EO

ED

OD

FK

PF

HN

HA

BN

PM

NF

OH

IB

CK

KK

HA

AM

JN

FK

ON

IO

4550

4560

4570

4580

4590

stx 1

inc zub + 1 ;bump fetch addr

bne zb1

inc zub+ 2

4600zb1 inc zub + 8 ;bump stash addr

4610

4620

4630

bne zb2

inc zub+ 9

4640 zb2 rts

4650

4660 calc absolute address of zubr

4670 zub = sub + zubr-subr

4680

4690

4700 opn = •

4710

4720

4730

4740

4750

4760

4770

4780

4790

4800

4810

4820

4830

4840

4850

4860

4870

4880

open a help file (help-a, etc)

sta filnam + 5 ;lastfilnamchar

Ida file ;open lf,8,sa. ..

pha

idy secadd
Idx #$37

stx 1

Idx #8

jsr setlfs

Idx #<filnam;.. ."help-?"

Idy #>filnam

Ida #6

jsr setnam

jsr open

pla

tax ;open input chan

jsr chkin

4890 of1 sei ;(rom did cli)

4900

4910

4920

4930

4940

Idx #$34 romsout

stx 1

rts

calc absolute address of opn

4950 opnfil = sub + opn-subr

4960

4970

4980 help filename - last char varies

4990 fnam .asc"help-?"

5000

5010 ;calc absolute address of fnam

5020filnam = sub + fnam-subr

5030

5040

5050 get = •

5060

5070

5080

5090

5100

5110

5120

5130

;get byte from help file

Idx #$37 romsin

stx 1

jsr getin ;get the byte

clc relocatable jmp

bee of1

;calc absolute address of get

5140 getbyt = sub + get-subr

5150

5160

;

;

5170 els = •

5180

5190

5200

5210

5220

5230

5240

5250

5260

5270

5280

5290

;close help file

Ida file

pha

Idx #$37 romsin

stx 1

jsr clrchn ;close the file

pla

jsr close

clc relocatable jmp

bee of1
;

;calc absolute address of els

5300 clsfil sub + cls-subr

5310

5320

;

;

5330 key = •

5340

5350

5360

5370

5380

5390

5400

5410

5420

;get ascii byte, return in .a

return shift key register in ,y

Ida #$37 roms in

sta 1

jsr senkey ;scan kybd matrix

Idy $cb ;get keycode

Ida $eb81,y ;conv to ascii

Idy $028d ;shift key register

5430 ky1 clc relocatable jmp

5440

5450

5460

bec of1
;

;calc absolute address of key

5470keychk = sub + key-subr

5480

5490

;

FH

LO

ED

NM

LH

LH

PH

ID

HH

FJ

GF

AG

IL

LJ

OH

II

JL

IP

ID

LL

KL

EM

PJ

ON

KH

AJ

LM

EJ

EM

KM

DH

ML

MM

NN

KM

HK

Fl

IJ

GN

EH

HM

FE

HA

GA

AH

AO

HN

KC

HD

JA

DE

OH

KP

AM

DF

Ml

BE

AK

MG

HK

KB

Fl

ON

EE

CK

OA

PP

DJ

KJ

EG

DP

BF

MA

IB

BL

DA

EN

OO

LH

CB

BE

JD

AH

BG

EB

PH

KN

AE

CJ

OP

IJ

DM

GP

IJ

LE

5500 put

5510 ;print a character to the screen

5520

5530

5540

5550

5560

5570;

Idx

stx

jsr

clc

bec

#$37

1

chrout

Of1

relocatable jmp

5580 ;calc absolute address of put

5590 putbyt

5600;

5610;

= sub + put-subr

5620 ;calc # of subroutine bytes

5630 subsiz

5640;

5650;

m •-subr

5660 ;next comes the actual code that

5670 ;executes in d-block ram. the

5680 ;first section swaps out the user

5690 environment, & installs a new one

5700;

5710;

5720 help =

5730 ;the help utility mainline

5740

5750

5760

5770

5780

5790

5800

5810

5820

5830

5840

5850

5860

5870;

5880 he1

5890

5900

5910

5920

5930

5940

5950

5960

5970

5980

5990

6000

6010

6020;

6030 he2

6040

6050

6060

6070

6080

6090

6100

6110

6120

6130

6140

6150

6160

6170

6180;

6190 he3

6200

6210

6220

6230

6240

6250

6260

6270

6280

6290

6300

6310

6320

6330

6340

6350

6360

6370

6380

6390

6400

6410

6420

6430

6440

Ida

Idy

Idx

jsr

Ida

Idy

tax

jsr

tsx

stx

Idx

txs

Idy

Ida

sta

dey

cpy

bne

my

sty

sty

Ida

sta

Idx

stx

Idx

SIX

jsr

dey

bne

dec

bne

Ida

Idy
sta

sty

Ida

Idy

sta

sty

Idy

sty

jsr

dey

bpl

Ida

Idy

Idx

sta

sty

stx

Ida

sia

Ida

lay

sta

sty

sta

sly

Ida

Idy

sta

sty

jsr

Ida

ora

jsr

Ida

#0

#$d0

#2

copy

#4

#$d2

copy

stksav

#$ff

#subsiz

subr.y

sub,y

#$ff

hei

sub+ 5

sub + 12

#4

2

#$d8

sub + 6

#$d6

sub + 13

sub

he2

2

he2

#<$d011

#>$d011

sub+ 5

sub + 6

#<vidbuf

#>vidbuf

sub + 12

sub + 13

#16

$cc

sub

he3

$0286

$0287

$0288

usrtxt

usrcol

usrscr

#4

$0288

#<$ddOO

#>$ddOO

sub+ 5

sub + 6

zub + 8

zub+ 9

#<usrbnk

#>usrbnk

sub + 12

sub + 13

sub

usrbnk

#3

zub+ 3

#<hlpvid

;copy$0000-01ff

;to$dOOO-d1ff

;copy $0400-07ff

; 10 $d200-d5ff

;save user stk ptr

;put our stk ptr

; far from subrtns

;copy subroutines

into stack page

;copy colour ram

; ($d800-$dbff)

; to ram beneath

; ($d600-$d9ff)

;copy video regs

; to a save buffer

;save coloui of

; text and of char

; under cursor,

; and screen page

;screen at page 4

;save user's video

; bank number

; (the hard way)

;copy our video

The Transactor 5O May 1987: Volume 7, Issue O6

PG

GD

AP

CO

IE

EL

PB

HG

IP

CO

BF

CL

AE

Kl

ED

CF

HH

AE

CN

EM

OM

BM

KB

BP

MF

PI

OA

GL

DO

IH

CD

NM

GE

HN

Cl

EP

AB

NO

LC

BJ

CJ

II

ME

IH

OL

OK

IJ

IG

AO

CJ

GA

KD

GB

DO

Al

Bl

NL

LM

BB

GD

IN

HG

EB

ON

JL

FA

AH

CG

IM

ED

PJ

HO

IH

OP

BN

JO

IA

NG

BH

IB

IP

HD

DB

DG

CF

KP

Bl

DF

NE

BE

BG

PN

MO

GA

EL

6450

6460

6470

6480

6490

6500

6510

6520

6530;

6540 he4

6550

6560

6570

6580

6590;

6600 he5

6610

6620

6630

6640

6650

6660

6670

6680

6690

6700

6710

6720;

6730 he6

6740

6750

6760

6770

6780

6790

6800

6810

6820

6830

6840

6850

6860

6870;

6880 he7

6890

6900

6910

6920

6930

6940;

6950 he8

6960

6970

6980

6990

7000

7010

7020

7030

7040

7050

7060

7070;

7080 he9

7090

7100

7110

7120

7130

7140

7150

7160

7170;

7180he10

7190

7200

7210

7220

7230

7240

7250

7260

7270

7280

7290

7300;

7310he11

7320

7330

7340

7350

7360

7370

7380

7390

Idy #>hlpvid

sta zub+1

sty zub + 2

Ida #<$dO11

Idy #>$dO11

sta zub + 8

sty zub + 9

Idy #16

jsr zub

dey

bpl he4

Ida hcurs

sta $0286

Ida #<hlptxt

Idy #>hlptxt

jsr prstr

Ida #13

jsr putbyt

jsr putbyt

Ida #<names

Idy #>names

sta 3

sty 4

Ida #0

sta 2

clc

adc #"a"

jsr putbyt

Ida #$20

jsr putbyt

Ida 3

Idy 4

jsr prstr

clc

Ida 3

adc #deslen

sta 3

bcc he7

inc 4

Ida #13

jsr putbyt

inc 2

Ida 2

cmp ntsave

bne he6

jsr keychk

cpy #2

beq he9

tax

sec

sbc #"a"

bcc he8

cmp ntsave

bcs he8

txa

jsr prtfil

jmp he5

Ida #<vidbuf

Idy #>vidbuf

sta zub + 1

sty zub+ 2

Ida #<$dO11

Idy #>$dO11

sta zub + 8

sty zub + 9

Idy #16

jsr zub

dey

bpl he10

iny

sty zub +1

sty zub + 8

Idx #$d6

stx zub + 2

Idx #$d8

stx zub + 9

Ida #4

sta 2

jsr zub

dey

bne he11

dec 2

bne he11

Ida usrtxt

Idy usrcol

Idx usrscr

sta $0286

The Transactor

; preferences into

; vie chip

;our text colour

;startup message

;two returns

;address of help

; topic strings

;topic #

;conv topic # to

; char and print

print space

;print topic str

;calc address of

; next string

;print return

;test all printed

; no

;get a character

;test logo pressed

; yes

;save character

;conv keypress to

; help topic #

; invalid

; invalid

; retrieve char

;print the file

;reprint menu

;restore user's

; video

;copyfromd-ram

; ($d700-$daff)

; to colour ram

; ($d800-$dbff)

PB

GC

OP

EG

JF

EM

FM

LC

II

DP

LO

JA

MF

OJ

KO

HN

HA

JE

KK

FJ

JL

IB

HB

KL

HB

NC

CN

MG

DN

CK

AO

FN

BA

ID

OH

FJ

KF

Al

OD

EO

00

IG

PK

IB

BP

CK

BC

EN

OD

IE

JF

GG

BH

LA

KH

Cl

EA

IJ

AO

JH

LI

PH

EK

PG

AH

CF

EH

PC

PD

EC

MJ

KE

EK

ID

CE

MO

LO

JD

KG

FO

MN

ON

Ml

MJ

LL

HK

KL

KB

CD

IG

Al

LD

PN

HF

GJ

7400

7410

7420

7430

7440

7450

7460

7470

7480

7490

7500

7510

7520

7530

7540;

7550he11a

7560

7570

7580

7590

7600

7610

7620

7630

7640

7650

7660

7670;

7680 he12

7690he14

7700

7710

7720

7730

7740

7750

7760

7770

7780he15

7790;

7800;

sty $0287

stx $0288

Ida #<usrbnk

Idy #>usrbnk

sta zub +1

sty zub + 2

Ida #<$ddOO

Idy #>$ddOO

sta zub + 8

sty zub + 9

jsr zub

Idx stksav

txs

Idx #3

Ida $dO22,x

sta $07f8,x

dex

bpl he11a

Ida #$dO

sta $dO23

Idy #0

sty $dO22

sty $dO24

sty $dO25

Idx #2

bne xcopy

Idx #3

Ida $07f8,x

sta $22,x

dex

bpl he14

Idy #4

Ida #$d2

Idx #4

jsr copy

jsr vecset

jmp (ojmp)

;restore stack ptr

;save4 0-pg bytes

; restore 3 pgslow

; ram from $d000

: (doubling vecs

; $22 - $25 in

; d-ram image)

;putzp bytes back

; restore $400-$7ff

; from $d200-$d5ff

;set up our vector

;exit via rom

7810 ;the next routine copies pages of

7820 ;memory. enter with source page in

7830 ;.a. target page in .y, # of pages

7840 ;to copy in .x. 'copy' is the

7850 .normal version; 'xcopy 1 is a

7860 .kludge to avoid using the stack

7870 ;copying into page 1 of memory.

7880;

7890;

7900 xcopy .

7910 ;copy memory, branch back to he12

7920

7930

7940;

7950 copy

sec

.byte $24 ;'bit' (skip clc)

7960 ;copy memory, return via rts

7970

7980

7990

8000

8010

8020

8030 cp1

8040

8050

8060

8070

8080

8090

8100

8110

8120

8130;

8140;

8150 prtfil

clc

sta $23

sty $25

Idy #0

sty $22

sty $24

Ida ($22),y

sta ($24),y

iny

bne cp1

inc $23

inc $25

dex

bne cp1

bcs he12

rts

•

8160 ;print a help file

8170

8180;

8190 prl1

8200

8210

8220

8230;

8240 prt2

8250

8260;

8270 prt3

8280

8290

8300

8310

8320

8330

8340

jsr opnfil

Ida #$93

jsr putbyt

Ida #23

sta lincnt

Ida #40

sta eolent

jsr getbyt

jsr putbyt

Idx $90

bne prt6

cmp #13

beq prt4

dec eolent

bne prt3

51

;source hi

;targethi

;source lo

;target lo

; page counter

;xcopy escape

;open the file

;clear screen

;init line count

;init column count

;get disk byte

; print it

;test status

; eof

;test cr

;yes

;test end of line

; no

EB

HH

AL

HC

HB

GH

OD

KF

HO

CA

BH

GC

AC

DH

AK

LL

EL

DE

MG

OG

MN

AA

AP

KP

FJ

BL

PA

FH

MC

AG

AN

IJ

FA

DD

IG

BN

CF

AA

KP

HF

EK

ID

IL

CM

OC

FN

AO

KO

GK

BN

GO

HN

HC

GC

MD

OA

EE

CD

JL

IB

LN

GH

AC

NA

GN

NA

IK

CL

KE

GM

AN

NN

NB

IC

NM

FH

MA

HA

AC

KC

Dl

MD

IE

CF

KC

FA

OO

KH

8350;

8360 prt4 dec lincnt ;test end of page

8370 bne prt2 ; no

8380 jsr spestr ;'spc to continue'

8390 Ida #<ht1 ;'logotoexif

8400 Idy #>ht1

8410 jsr prstr

8420;

8430 prt5 jsr keychk ;getakey

8440 cpy #2 ;test logo pressed

8450 beq prt8 ; yes

8460 cmp #$20 ;test spc pressed

8470 bne prt5 ; no

8480 beq prt1 ; yes

8490;

8500 prt6 jsr spestr ;'spc to continue'

8510;

8520 prt7 jsr keychk ;getakey

8530 cmp #$20 ;test spc pressed

8540 bne prt7 ; no

8550;

8560 prt8 jmp clsfil ;close and exit

8570;

8580;

8590 spestr = •

8600 ;print 'press space to continue'

8610 Ida #<spctxt

8620 Idy #>spctxt

8630;

8640 prstr = »

8650 ; print string addressed in .a/.y

8660 sta $22

8670 sty $23

8680 Idy #0

8690;

8700 prs1 Ida ($22),y

8710 beq prs2

8720 jsr putbyt ;print character

8730 iny

8740 bne prs1

8750

8760

8770

8780

8790

8800

8810

8820

3rs2 rts

messages - no room for

anything too fancy here

8830 hlptxt = •

8840 .byte 13,8,147

8850 .asc " Help! Help!"

8860.byte 13,13,18

8870 .asc " Select a topic"

8880;

8890 ;next msg is part of hlptxt, but

8900 ;can also be addressed separately

8910;

8920 ht1 = .

8930 .byte 18

8940 .asc " (LOGO key to exit)"

8950 .byte 146,0

8960;

8970 spctxt = •

8980 .byte 13,18

8990 .asc " SPACE to continue"

9000 .byte 146,0

9010;

9020;

9030 uninitialized data area

9040;

9050;

9060 stksav .byteO ;old stack ptr

9070 lincnt .byte 0 ;lines per page

9080 eolent .byteO ;chars per line

9090 file .byte 2 ;logical file #

9100 secadd .byte 2 secondary address

9110;

9120 vidbuf •= « + 17 ;video save area

9130;

9140;

9150 ;a whole bunch of empty bytes

9160 ;for the help topic strings

9170;

9180;

9190 names = •

9200 •= names + (20«deslen)-1

9210.byte 0

9220;

May 1987: Volume 7, Issue O6

1571 RAM Disk Copy

GULP.COPY is a short BASIC 7.0 program with a machine lan

guage loader for the C-128 which uses burst mode read and write

routines along with the 512k memory module for copying disks on

the 1571 drive. The program will make an exact duplicate of your

single or double sided GCR disks (either normal Commodore DOS

or CP/M) in one gulp, with no bothersome disk swaps. The

program is relatively fast (about 6 minutes for a single sided disk or

12 minutes for a double sided disk) and very easy to use. Just

follow the prompts on the screen.

Because the copy is exact, there is no way to distinguish between

the original (source) and copy (target) during the copy process (the

i.d. code is also duplicated). 1 recommend, therefore, that you

cover the write protect notch on the source disk to prevent disaster

from striking if you accidentally mix up the original and copy disks

during the copy process.

While 6 minutes may not seem particularly fast (some 1541 disk

copy programs can do it in much less), the program is very simple

(therefore reliable) and does not resort to sophisticated reprogram-

ming of the disk drive. (In addition, with most 1541 fast copy

programs, the screen is blanked out and all extra devices must be

removed from the serial port. Neither is necessary for this pro

gram). With a full disk, 1571 GULP.COPY is more than twice as fast

as the 1571 DOS shell "copy a disk" utility. (The DOS shell routine

only copies allocated blocks on the disk while GULP.COPY will

copy everything. Even so, GULP.COPY will be faster for all but an

almost empty disk!) It is also far more versatile. Because it copies

everything on the disk, GULP.COPY can also be used to copy C-

128 CP/M disks (GCR format only - but it can be easily modified to

copy MFM disks also) and disks with unallocated random files (I

admit to being sloppy because I don't always allocate the blocks for

my random files) neither of which can be copied with the DOS

shell program.

Although the target disk is formatted on both sides, only one side is

used if the source disk was single sided thus maintaining full

compatibility with the 1541 drive. (The DOS shell writes every

thing to a 1571 double sided disk which may not always work in

1541 mode because a file might be stored partly or completely on

the inaccessible flip side).

The six minutes for a single sided disk breaks down approximately

as follows:

40 seconds to read the entire disk

40 seconds to format the new disk

and the rest to write the new disk.

GULP.COPY uses 1571 burst mode to read and write, thus it will

not work with other drives, such as the 1541. For a full description

of the burst mode transfer protocol, see the three part series "A

Layman's Guide to Burst Mode" which appeared in TPUG maga

zine May to July, 1986. GULP.COPY also uses the 512k memory

expander module as a RAM disk. The code to access the expansion

is written in machine language and located at address $0BB8 of the

cassette buffer along with the burst mode code. The ML routine is

used because of a minor flaw in BASIC 7.0's STASH, FETCH and

Miklos Garamszeghy

Toronto, Ontario

SWAP commands which are normally used to access the RAM

disk. These commands cannot "see" the RAM beneath the I/O

block at $D000 to SDFFF of bank 15 because the direct memory

access chip (DMA) is memory mapped into a portion of this area at

$DF00 and the commands do not switch out this block. This

presents a problem for programs such as GULP.COPY which uses

all of Bank 0 RAM, including the part hidden by the I/O block.

Fortunately, the DMA chip registers can be programmed directly to

allow it to access other RAM configurations, including the RAM

under the I/O block.

The DMA registers are outlined in table 1. If bit—4 of the command

register is off, the DMA chip will use the configuration specified by

the memory management unit (MMU) configuration register at

$FF00 as the source or target of the DMA. Bit—7 of the command

register is the execute flag. This must be on for any type of DMA to

take place. If both bit—4 and bit—7 are on, DMA takes place as soon

as the command register is written to. If only bit-7 is on, DMA

takes place when the MMU configuration register at $FF00 is

written to. Bits 0 and 1 of the command register determine the

operation to be performed. The other registers and their typical

values are outlined in the table.

Table 1:

DMA Registers (all regs are read/write except status)

Address

$DF00

Function

Status (read only):

$DF01 Command:

$DF02

$DF03

$DF04

$DF05

$DF06

$DF07

$DF08

$DF09

Bit* Meaning

7 1 = interrupt pending

6 1 = transfer complete

5 1 = block error

4 0= 128k total size

1 = 512k total size

3-0 version number

7 1 = execute

5 1 = reload addr. regs with same

nos. used last time

4 0 = decode MMU configuration

at SFF00

1,0 0 = transfer C-128 > RAM disk

1 = transfer RAM disk > C-l 28

2 = swapC-128&RAMdisk

3 = verify C-l28 & RAM disk

C-128 address, lo byte

C-128 address, hi byte

RAM disk address, lo byte

RAM disk address, hi byte

RAM disk bank 2-0 value ranges from 0 to 8 for

512k or 0-1 for 128k

Transfer length, lo byte

Transfer length, hi byte

Interrupt masks 7

6

5

7$DF0A Address control

. = enable interrupts

1 = interrupt at end of transfer

1 = interrupt on error

1 =do not increment C-128 ad

dress during transfer

1 =do not increment RAM disk

address during transfer

The Transactor 52 May 1987: Volume 7, Issue O6

C128 Gulp Copy Program Listing

EA

AC

II

DC

FP

IL

PI

00

DN

LG

OG

EH

AP

GF

MG

EL

AF

ID

DM

PL

NE

GO

BP

MF

KN

KJ

GO

DL

HB

LJ

KK

KM

MJ

DN

ME

KL

ML

BC

IN

MD

MO

MJ

MG

1000 rem save" O:gulp copy" ,8

1010 print chr$(147): print " ** 1571 gulp copy **"

1020 print: print "512k ram version"

1030 print: print " by m. garamszeghy": print: print

1040 e1 = 2816: e2 = e1 + 3: e3 = e2 + 3: rem three asm

entry points

1050 dim sn(35): ch=0

1060 for i = 2816 to 3038: read x: poke i,x: ch = ch + x

: next

1070 if ch<>28600 then print " checksum error!": stop

1080 for i = 1 to 17: sn(i) = 21: next

1090 for i = 18 to 24: sn(i) = 19: next

1100 for i = 25 to 30: sn(i) = 18: next

1110 for i = 31 to35:sn(i) = 17: next

1120 graphic clr

1130 gosub 1360: bank15:open 15,8,15, "iO"

: open 8,8,8," #": o = 0: o2 = 0: b = 0

1140 print* 15," u1:" ;8;0;18:0: print#15," b-p:" ;8; 162

: get#8,il$,ih$

1150 si = 1: sd = 1: print#15," u1:" ;8;0;42;0: if ds then

sd = 0: si = 0

1160 print: print " copying" sd +1 " sides. . .": print

1170 close8: print#15," uO" + chr$(4)

1180 print "reading. .

1190 a = 52: for i = 1 to 9: gosubi 410: a = a + 21: next

:syse3,(o2),128

1200 a = 52: for i = 10 to 17: gosubi 410: a = a + 21: next

:syse3,(o2+1),128

1210 a = 52: for i = 18 to 27: gosubi 410: a = a + sn(i)

: next:syse3,(o2 + 2),128

1220 a = 52: for i = 28 to 35: gosubi 410: a = a + sn(i)

: next:syse3,(o2 + 3),128

1230 if sd then sd = 0: o2 = 4: o = 35: goto 1190

1240 gosub 1390: print: print "formatting. . ."

1250 print#15," uO" + chr$(6) + chr$(0) + il$ + ih$

1260 print#15," uO" + chr$(4): print " writing. . ."

: o2 = 0: o = 0

1270 sys e3,(o2), 129: a = 52: for i = 1 to 9: gosub 1440

: a = a + 21: next

1280 sys e3,(o2 + 1),129: a = 52: for i = 10 to 17

: gosub 1440: a = a + 21: next

1290 sys e3,(o2 + 2),129: a = 52: for i = 18 to 27

: gosub 1440: a = a + sn(i): next

1300 sys e3,(o2 + 3), 129: a = 52: for i = 28 to 35

: gosub 1440: a = a + sn(i): next

1310 if si then si = 0: o2 = 4: o = 35: goto 1270

1320:

1330 print chr$(147): print " ** done**": print#15," iO"

: dolose

1340 print: input " copy another (y/n)" ;ca$: if ca$ = " y"

then 1130: else end

1350 :

1360 print: print " insert source disk..then press return"

1370 getkey a$: if a$Ochr$(13) then 1370: else return

1380:

1390 print: print " insert target disk - then press return"

: goto 1370

1400:

1410 print#15," uO" + chr$(64) + chr$(i + o) + chr$(0)

+ chr$(sn(i)) + chr$(i + o + 1)

1420 sys e2,a,sn(i),0: return

KA

OL

KG

IC

CH

FC

CN

JM

LB

ON

ON

DE

DH

AD

IL

DJ

HB

BG

FH

JD

BE

KE

GF

GJ

NL

BJ

IJ

EK

KJ

HL

MG

PN

C128

AK

PP

Fl

HN

DD

MB

KJ

MJ

ID

OM

CJ

HB

JD

JN

JH

KK

DK

LF

JA

ED

EP

AD

BG

DH

Fl

IF

FJ

FM

OO

OJ

1430:

1440print#15, "uO" + chr$(66^ + chrS;(l-t

+ chr$(sn(i)) + chr$(i + o + 1)

1450 syse1,a,sn(i):

1460:

1470 data

1480 data

1490 data

1500 data

1510 data

1520 data

1530 data

1540 data

1550 data

1560 data

1570 data

1580 data

1590 data

1600 data

1610 data

1620 data

1630 data

1640 data

1650 data

1660 data

1670 data

1680 data

1690 data

1700 data

1710 data

1720 data

1730 data

1740 data

Gulp Copy

76, 9

11,133

133,254

173, 0

69,254

142, 0

0, 255,

64, 133,

240,251,

255, 44

16, 141,

220, 240,

141, 0,

251, 76,

96,133,

0, 120,

32, 163,

142, 0,

0, 255,

5, 230,

204, 255,

240,251,

0,221,

223,142,

223, 141,

7, 223,

200, 141,

255, 162,

return

11, 76,113,

251,134,252,

160, 0, 56,

221,205, 0,

41, 64,240,

255,177,250,

141, 12,220,

254,169, 8,

200, 208, 211,

13,220, 173,

0,221,169,

251,173, 0,

221,198,252,

20, 11, 88,

251,134,252,

44, 13,220,

11, 32,163,

255, 145,250,

200, 208, 238,

251, 76,128,

96,169, 8,

173, 0,221,

173, 12,220,

1,223,169,

4,223, 141,

169, 52,141,

8,223, 162,

0,142, 0,

PAL Source Listing

1000 rem save"0:gulpcopy.pal" ,8

1010 rem** 512k gulp bit copy for the c12{

1020 open 8,E

1030 sys 700

1040 .opt 08

5,1,"0:gulpcopy.obj"

1050*=$0b00

1060;

1070ramptr

1080 numsec

1090 tstbit

1100dlsdr

1110dlicr

1120d2pra

1130 dmacmc

1140dmaadl

1150dmalo

1160dmabnk

1170dmadal

1180 mmucor

1190spnspt

1200clrchn

1210;

1220. byte 76

1230. byte 76

1240. byte 76

1250 ;

= $fa

= $fc

= $fe

= $dc0c

= SdcOd

= SddOO

i = $dfO1

= $dfO2

= $dfO4

= $dfO6

= $dfO7

l = $ffOO

= $ff47

= $ffcc

11

120

32

221

242

162

165

44

24,

0,

8,

221,

240,

32,

132,

32,

11,
162,

198,

11,

44,

73,

96,

0,

5,

3,

63,

255,

-o) + chr$(0)

76,182

169, 64

71,255

208, 248

162, 63

0,142

254, 73

13,220

32, 71

221, 9

44, 13

41,239

5,230

204, 255

250,160

■170, 11

162, 63

0,142

252, 240

88, 32

13,220

16, 141

141, 6

141, 2

223,141

223,169

142, 0

96

;(ptr),y through ram for data

;number of sectors to read/write

;test serial port status

;serial data register

interrupt control register

;serial port 6526 cia 2

;dma controller status register

;lsb of internal address to access

;lsb of external expansion ram to access

;64k external ram

;lsb of byte count

;mmu control

bank

;spin-spout set up fast serial port for i/o

;clear all channels

<entry1, >entry1

<entry2, >entry2

<entry3, >entry3

1260; *• entry point #1 -

1270entry1

1280

1290

= *

write data to disk

sta ramptr + 1 ;high ram ptr

stx numsec ;# sectors to write out

The Transactor 53 May 1987: Volume 7, Issue O6

NK

HL

NL

NH

CL

NJ

BN

OF

KN

LI

HI

HH

GP

MA

FE

HM

DD

ED

OH

PO

CH

LB

NA

EJ

LF

OH

NK

NB

CK

BG

IM

FN

KM

OD

CN

10

CP

Kl

IB

JK

JD

FH

DL

ID

KP

OF

NG

AG

DA

JC

PM

LG

NJ

MJ

NG

FD

KL

EB

GO

EO

IF

MO

PO

MF

PO

GJ

BK

NP

FF

OE

HH

AF

1300

1310

1320

1330

1340;

1350 morel

1360

1370

1380;

1390watfst

1400

1410

1420

1430;

1440

1450

1460

1470;

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580;

1590wait1

1600

1610

1620;

1630

1640

1650;

1660

1670

1680

1690

1700

1710

1720

1730;

1740 wait2

1750

1760

1770;

1780

1790

1800

1810

1820

1830;

1840

1850

1860;

1870back1

1880

1890

1900

1910;

sei

Ida #%01000000

sta tstbit

Idy #0

= *

sec

jsr spnspt

= *

Ida d2pra

cmp d2pra

bne watfst

eor tstbit

;set up fast serial port

;serial port 6526 cia 2

;wait for change of state

;test state

and #%01000000

beq watfst

Idx #%00111111 ;set for ram 0 and kernal

stx mmucon

Ida (ramptr),y

Idx #0

stx mmucon

sta dlsdr

Ida tstbit

;mmu control

; get from ram

;set back to normal

;mmu control

;serial data register

eor #%01000000 ;flip state

sta tstbit

Ida #8

*

bit dlicr

beq waiti

iny

bne watfst

clc

jsr spnspt

bit dlicr

Ida d2pra

interrupt control register

;set up fast serial port

interrupt control register

;serial port 6526 cia 2

ora #%00010000

sta d2pra

Ida #8

= *

bit dlicr

beq wait2

Ida d2pra

; interrupt control register

;serial port 6526 cia 2

and #%11101111

sta d2pra

dec numsec

beq backi

inc ramptr+ 1

jmp morel

= *

cii

jsr clrchn

rts

;clear all channels

1920 ; ** entry point #2-get data from disk**

1930entry2

1940

1950

1960

1970

1980

1990

2000

2010;

== #

sta ramptr+1

stx numsec

sty ramptr

Idy #0

sei

bit dlicr

jsr get1

; interrupt control register

;get data from disk without wait

MD

HO

OG

FP

FA

GM

ND

MP

BF

DM

IC

PB

CN

NN

HI

AP

BM

Nl

OA

KG

KD

ID

MK

AE

Kl

JN

OF

DC

El

FJ

Gl

DG

DD

KD

PP

OJ

EO

MM

DP

PD

FE

ID

DH

OA

CJ

GN

NA

GP

AG

KE

FH

IJ

JA

AK

NB

GP

Kl

KP

2020 more2

2030

2040;

2050 getmor

2060

2070

2080

2090

2100

2110

2120

2130

2140;

2150

2160

2170;

2180

2190

2200;

2210back2

2220

2230

2240

2250;

2260 dskget

2270

2280;

2290 wait3

2300

2310

2320;

2330 get1

2340

2350

2360

2370

2380

2390;

= *

jsr dskget

= *

jsr dskget

;get data from disk

;get data from disk

Idx #%00111111 ;flip to ram 0 and kernal

stx mmucon

sta (ramptr),y

Idx #0

stx mmucon

iny

bne getmor

dec numsec

beq back2

inc ramptr+1

jmp more2

cii

jsr clrchn

rts

= *

Ida #8

= *

bit dlicr

beq wait3

= *

Ida d2pra

;mmu control

;store byte in ram

; back to normal

;decrease # sectors to go

;if sectors fini then return

;clear all channels

; interrupt control register

;serial port 6526 cia 2

eor #%00010000

sta d2pra

Ida dlsdr

rts

;serial data register

; got data - return

2400 ; ** entry point #3 - initialize configuration **

2410entry3

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580;

2590 .end

= *

sta dmabnk

stx dmacmd

Ida #0

sta dmaadi

sta dmalo

sta dmalo+ 1

sta dmadal

Ida #$34

sta dmaadi +

Ida #$c8

sta dmadal +

;64k external ram bank (0 or 4)

;dma controller status register

(128 or 129)

;lsb of internal address to access

;lsb of external expansion ram to

access

;msb of external expansion ram

to access

;lsb of byte count

1;msb of internal address to access

1;msb of byte count

Idx #0/o00111111 ;set for ram 0 and kernal

stx mmucon

Idx #0

stx mmucon

rts

;mmu control

;then back to normal

;mmu control

The Transactor 54 May 1987: Volume 7, Issue O6

Textscan: A CP/M

Utility For The C128

Aubrey Stanley

Mississauga, Ontario

. . . TEXTSCAN was developed for viewing Z80 source files. You

can view in either direction, control the number of lines you scroll,

turn on line numbering, search fora character string, and more. . .

We'd all grown accustomed to the 64, even our pet budgie! But I

wanted an 80-column screen. On that I was quite adamant. So we

traded in the system, printer and all, for a C128 (minus printer).

One of the things I plan to do is develop C128 and CP/M mode

programs using the Z80 chip. This makes a lot of sense, but you

need the tools. This could prove expensive, and there's not much

around for the C128. But for under thirty bucks (Canadian) you

could send away the form from the System Guide and receive the

complete DR1 CP/M System: source, utilities and manuals. That's a

real bargain considering you now possess a complete Z80 develop

ment system. You can use CP/M mode to develop in Z80 and later

port the code to the C128 environment. Porting is a separate

exercise that I'll tackle when the time arises. For now 1 need to

understand what it takes to control the hardware through Z80

code. The DR1 package includes complete source code and this will

provide a valuable insight into Z80 interfaces. That's one reason

why I developed TEXTSCAN. I can examine an entire source file

very easily, right there on the screen, and not have to print it (even

if 1 did have a printer).

CP/M does have a built-in command called "TYPE", but it is only

really adequate for cursory examination of text. It displays a screen

at a time, allowing you to go forwards through the text in a

sequential manner. TEXTSCAN gives you a viewport into your

entire document. You can view in either direction, control the

number of lines you scroll, advance rapidly through the text, turn

on line numbering, and even search for a character string (great for

examining source code!). And it is fast.

The only limitation is that it will only load the first 54K of a file into

memory for viewing. I can't imagine someone creating files that

large, but if you need to view one, then split it up into smaller parts.

Creating The Program

Assuming of course that you have received the mail-order pack

age listed in the System Guide, then generating the program is

fairly straightforward. The first step is to create a bootable CP/M

disk to work with. Format a disk and use PIP to copy over

CPM + .SYS and CCP.COM as explained in the System Guide. Also

copy over ED.COM unless you are lucky enough to have another

editor. (Almost any other editor is better than ED!). Next copy

Z80.LIB from the DRI Source disk, and the files, MAC.COM and

HEXC0M.COM, from the DRI Additional Utilities disk.

Reboot the system from your work disk and use ED (or alternative)

to type in the source of TEXTSCAN.ASM, saving it under this

name. Here you cannot use the Verifizer to help you, so be

especially careful. In any case, double check your input for the

SUMCHECK routine which begins the program. Of course you

needn't enter the comments (anything beginning with ';')■

When you are satisfied with the file, run MAC TEXTSCAN. This

will generate three output files with extensions - .HEX, .PRN and

.SYM. Correct any assembly errors that are listed and repeat the

process. You may need to run TYPE TEXTSCAN.PRN to identify

where some of the errors are, as the macro process may display

errors which are difficult to place. If error free, then as a further

check on your input, make sure that the display shows '0656' (last

assembled address) followed by an '023h USE FACTOR'.

Now run HEXCOM TEXTSCAN which will convert the .HEX file

into an executable program file, TEXTSCAN.COM. It should list a

first address of 0100, last address of 05BB, bytes read 04BC and

records written OA.

Using Textscan

Start by running TEXTSCAN TEXTSCAN.ASM to view your source

file. If all is well, the entire source file will be read into memory and

the first 24 lines displayed. If the program crashes, then most likely

a source error in the SUMCHECK routine itself caused the crash.

Check this source again. However, if the program prints a '?' and

then gracefully exits, then a bad sumcheck has been generated,

meaning that there is a typo somewhere in your source. Correct

any errors and reassemble your program.

With your text file displayed on the screen, you have several

options, all of them clustered around the Numeric Keypad and the

top row (except for the function keys). You'll find that the keys give

you immediate response, i.e, you can instantly modify the action

even as text is being displayed.

(ENTER) - Outputs the number of lines last defined by the (0 - 9)

and (.) keys.

(0-9) - Defines 1 to 10 lines for output. (0) counts as 10. Also

acts as if (ENTER) was pressed.

(.) - Defines 24 lines for output (default). Also acts as if

(ENTER) was pressed.

(ALT) - Toggles Double mode which allows keys (0 - 9) to

define 11 to 20 lines for output.

(+) -Changes scroll direction upwards. If held down, will

continuously scroll text in the forward direction.

(-) - Changes scroll direction downwards. If held down, will

continuously scroll text in the reverse direction.

The Transactor 55 May 1987: Volume 7, Issue O6

(NO SCROLL)

(TAB)

(LINE FEED)

(CRSR UP)

(CRSR DOWN)

(HELP)

(ESC)

■ Toggles Scroll Mode where text is continuously scrolled in the current

direction.

■ Skips 24 lines in direction of scroll and acts as if (ENTER) was pressed.

By repeatedly tabbing you can quickly advance through the text.

■ Toggles Line Number mode where line numbers are displayed before

each line.

■ Goes to the beginning of text, sets a forward direction and then acts as if

(ENTER) was pressed.

■ Goes to the end of text, sets a reverse direction and then acts as if

(ENTER) was pressed.

■ Erases the current line - top line in reverse scroll, or bottom line in

forward scroll. Now you can enter a string of up to 40 characters. The

line editing functions supported by CP/M will work normally. Pressing

(RETURN) causes a search to be initiated in the current direction of the

scroll, i.e, either to the beginning or end of file. The first match will

result in a new set of lines output, starting with the matched line. If the

search fails, the original line that was erased will be re-displayed.

-Exits back to the CP/M.

be.! equ 07h

; Decoded values for C128 keys

period

plus

minus

endof

bgnof

nscrol

number

alt

tab

enter

help

equ 24

equ 28

equ 27

equ 29

equ 30

equ 32

equ 31

equ 33

equ 26

equ 25

equ 34

. key

; Cur down

; Cur up

; No scroll

;0-9

; Alt

;Tab

; Enter

;Help

; Offsets for variables on the IX register

scroly equ 0

stop

dir

Imit

Inum

double equ

cnt1 equ

cnt2 equ

count equ

equ

equ

equ

equ

; Scroll mode

; Stop scroll

; Current direction

; Limit reached

; Line numbering on

; Double 0-9 values

; Current number for scroll

; Number of lines scrolled

; General purpose

Lessons Learnt

Although I had previously coded in Z80, this was my first attempt with CP/M and with a

C128. So obviously some lessons were to be learnt.

The CP/M Macro Assemblers, MAC and RMAC, support all the Z80 instructions through

the Z80.LIB library file. By using this file you can code all the Z80 instructions.

TEXTSCAN uses this library extensively. Examine Z80.LIB to understand the syntax of

the mnemonics used.

I liked the CP/M+ facility to read up to 16k at a time into a specified area using

Multisector I/O. TEXTSCAN does this in a loop with a count of 3, each iteration reading

up to 128 sectors (128 times 128 bytes, or 16K). Then if there is still data to be read, the

loop is executed once more to read in a further 6K. On each read, register H returns the

actual number of sectors read if the file is exhausted. Otherwise register H contains 0.

This is not too obvious from the manuals.

I couldn't find any method to make keys repeat in CP/M mode. Because I wanted the (+)

and (-) keys to repeat, (in order to scroll), I decided to bypass the BDOS console routine

and scan the keys myself. As the keys I'd chosen were C128 mode keys, I had to unravel

how these keys were scanned. The result is the KSCAN routine which scans the C128

keys.

Scanning the Cl 28 keys means using the I/O registers in the DXXX block of memory. But

CP/M transient programs do not have I/O turned on in Bank 1 where they are run! Yet

TEXTSCAN works even without manipulating the Configuration registers. This leads me

to conclude that if you use the Z80 Input/Output instructions, then you do not need I/O

switched in to access the I/O registers - a bonus for Z80 programmers!

'TEXT SCAN' FOR CP/M + ON THE C128

Aubrey Stanley, Nov 1986

TEXTSCAN Z80 Source Code

sdlmf equ 110 ;Set output delimiter

;CP/M

boot

bdos

dciof

printf

coninf

openf

closef

readf

sdmaf

msecf

sconm

maclib z80

org 100h

Functions

equ 0

equ 5

equ 6

equ

equ 10

equ

equ

15

16

equ 20

equ 26

equ 44

equ 109

;Z80 macro library

;Siart address

;Warm start

;CP/M Function Vector

;Direct console

;Print string

;Read console buffer

;Open file

;Close file

;Read sequential

;Set DMA address

;Multi-sector I/O

;Set console mode

; File Control Block

fcb equ 5ch

fcbex equ fcb + 12

fcbcr equ fcb+ 32

; Console Buffer for Find string

dmabuf equ 80h

mx equ dmabuf ;Max chars

nc equ mx+1 ;Num chars

rchar equ nc + 1 ;Char string

; Character equates

rawinp equ Oah ;Raw input mode

eomc equ 1ah ;End of file

cr equ Odh ;Carriage ret

If equ Oah ;Lmefeed

tabc equ 09h Jab

chksum: CHECKSUMS your code-

;Can be DELETED when all is well

Ixi

Ixiy

Ixi

mvi

chks: Idy

dad

inxiy

dcx

mov

ora

jrnz

mov

ora

jrz

mvi

Ixi

call

ret

b,progend-start ;Count to check

start

h,9170h

d,0

e,0

d

b

a,b

c

chks

a,l
h

start

cdciof

d,'?'

bdos

;From sstart

;Checksum excess

;Check loop

;. . .adds bytes

;Should

;. . .beO

;Goodcode

;Bad code

;. . .print?

;. . .and

;. . .exit

;END OF CHECKSUM CODE -

start: ;Set stack and open file

sspd oldsp

Ixi sp.stktop

a

fcbex

fcbcr

d.fob

xra

sia

sta

Ixi

Initfcb

mvi copenf

call

ora

;Openbdos

a

read

d.opnerr ;Badopen

finis:

Ixi

mvi cprintf

call bdos

;restore stack and exit

Ispd oldsp

ret

read: ;read file

Ixix

Ixi

pflags

h,0

shld line

mvi

stx

e,128

e.lmit

mvi c, msecf

call bdos

mvix 3,count

Ixi d.fbegin

call rloop

ora a

jrnz close

push d

mvi e,48

stx ejmit

mvi c.msecf

call bdos

pop d

;Printflags base

;lnit sector count

; 128 sectors to read

;Save for rloop

;Set multisectors

;3 reads

;Start of read area

;Readupto48K

;Checkend of file

;. . .yes!

:Save dma address

;Read 48 more sectors

iSave for rloop

;Set multisectors

The Transactor 56 May 1987: Volume 7, Issue 06

close:

bytes:

bytelO:

eom:

eom10:

rloop:

badr:

rlp5:

rlp6:

rlp1O:

print:

mvix

call

Ixi

mvi

call

bdos

1 .count

rloop

d.fcb

colosef

;1 read

;Read up to 6K more

;Close

Calculate total chars

Ihld

mvi

dad

dcr

jrnz

Ixi

dad

mvi

dcx

cmp

jrz

mov

nx

cpi

jrz
mvi

inx

mvi

inx

mvi

shld

inx

shld

jmp

line

b,7

h

b

byte 10

d.fbegin

d

a.eomc

h

m

eom

a,m

h

If

eom 10

m,cr

h

ITl.lf

h

m.eomc

fend

h

linbuf

print

;Total sectors

;Count

; Double value

;.. .7 times

;Start

;End

;Find last char

;CR/LF at end

;End of file char

;End of file address

;Line buffer address

;output routine

;Reads multisectors and keeps count

push

mvi

call

Ixi

mvi

call

cpi

jro

d

csdmaf

bdos

d.fcb

creadf

bdos

2

rlp5

;Erroron read

Ixi

mvi

call

Ixi

mvi

call

imp

ora

jrnz

Idx

mov

mvi

d,rderr

cprintf

bdos

d.fcb

c.closef

bdos

finis

a

rlp6

h.lmlt

e.h

d,0

;Save dma address

;Setdma address

;Read multisectors

; Bad error?

;. . .no!

;Close

;Moretoread?

;No!

;Store full count

;# sectors read

;sum total sectors so far

Ihld

dad

shld

pop

cpi

rz

mvi

add

mov

dcrx

jrnz

xra

ret

line

d

ine

d

1

a,64

d

d,a

count

rloop

a

[Current count

;Add in sectors read

;End of file?

;Yes!

;Next dma address

;. . .up 128 sectors

;. . .or16KinDE

;Any more reads?

;Yes, continue reading

;more bytes status

initialize for printing file

mvi

sta

mvix

mvix

mvix

mvix

mvix

mvix

Ixi

mvi

inx

mvi

inx

a,40

mx

nscrol.stop

O.scroly

0,double

plus.dir

O.lnum

24,cnt1

h.fbegin-2

m.eomc

h

m.lf

h

;40 char buffer

;. . .for Find

;To scroll

;Not continuous

;dont double count

; Direction

;No line numbers

;24 lines a time

;Store beginning

;.. .of file

;. . .preamble

pr10:

j

ploop:

plp10:

plp12:

plp18:

plp20:

shld

Ixi

shld

call

jrnz

Ihld

shld

Ixi

shld

Ixi

shld

mvix

mvi

mvi

call

Ixi

mvi

call

call

line

h,1

lino

getln

pr10

lino

endln

h.fbegin

line

h,1

lino

O.lmit

e.lf

c.sdlmf

bdos

d,rawinp

c.sconm

bdos

clear

;Address of

;. . .first line

;. . .line number

;Get next line

;. . .until limit

;Store last line's

;.. .line number

;Start with

;.. .first line

;Clear limit

;Set LF

;. . delimiter

;. . for output

;Consolemode

I. . .set

;Clear screen

;Print loop controls output to screen

Idx

stx

call

Ixi

Idx

ora

jrnz

Ixi

mvi

call

Idx

ora

cnz

call

Ided

mvi

call

call

Idx

ora

jrz

mvix

jr
dcrx

jrnz

mvix

jr

a.cnti

a,cnt2

getkey

d.sfwd

a.dir

a

plp12

d,sbak

Cprintf

bdos

a.lnum

a

numout

buflin

linbuf

cprintf

bdos

getln

a.lmit

a

plp20

O.stop

plp1O

cnt2

plp10

O.stop

ploop

;Lines to output

Conditions output

; Forward

;. . .direction

;Backward

;Outp insert or delete

;. . .line string

;Checkline

;. . .numbering

;. . .on and output num

;Expand line in buffer

;Line buffer address

;Output

;.. .line

;Get next line pointer

;Check file limit

;. . .reached

;No!

;Stop output

[Countdown

;Count expired..stop

; Actions key input. . .loops until Stop cleared

getkey:

;

gk20:

gk22:

gk30:

gk34:

gk36:

iinput routine

call

ora

jrz

op

jrnz

xorx

stx

\<

cpi

jrnz

call

jr
cpi

jrnz
xorx

stx

call

I'

Cpi

jrz

jrnc

cpi

jrnc

mov

Idx

ora

mov

jrz
add

stx

jr
cpi

jrnz

xorx

stx

kscan

a

gkg60

number

gk20

Inum

a.lnum

gk48

tab

gk22

upln

gk48

alt

gk30

double

a.double

sound

gkg60

enter

gk48

gk36

11

gk34

b,a

a.double

a

a,b

gk34

a

a.cnti

gk48

nscrol

gk40

scroly

a.scroly

;Scan 128 keys

;No press

;Line Feed?

Joggle line

;. . .number flag

;Tab?

;Advance line

;. . .position

;Alt?

Joggle

;.. .double flag

;Sound bell

; Enter?

;Yes!

;Not a number key!

;Period key..24 lines?

;Yes!

;Doubleflag?

;Double1-(1)0

;New output count

;No Scroll?

Joggle

;. . .scroll flag

gkg60:

gk40:

gk44:

gk46:

gk47:

gk48:

gk50:

gk52:

gk54:

gk60:

J

gk62:

gk64:

gk70:

upln:

uplni:

getln:

uplus:

upp10:

upmin:

jr

cpi

jrnz

mvix

Ixi

shld

Ixi

jr
cpi

jrnz

mvix

Ihld

Ixi

call

Ihld

shld

call

mvix

Idx

stx

jr

cpi

jrnz

call

jrnz

mvix

mvix

jr

cpi

jrnz

xra

Idx

stx

cmp

jrz

jr

Idx

ora

jrz

mvix

Idx

oia

jrnz
mvix

Idx

ora

jz
ret

gk60

bgnof

gk44

plus.dir

h.fbegin

line

h,1

gk46

endof

gk50

O.dir

fend

b,2000

upmO2

endln

lino

clear

O.lmit

a.cnti

a,cnt2

gk64

help

gk52

find

gk47

1,cnt2

O.scroly

gk64

minus

gk54

a

b.dir

a.dir

b

gk62

gk47

a.scroly

a

gk70

1,cnt2

a.lmit

a

gk70

nscrol.stop

a, stop

a

getkey

;Advance 24 lines

Idx

ora

rnz

mvix

dcrx

cnz

jrnz

mvix

ret

a.lmit

a

25,count

count

getln

uplni

O.lmit

;Get next line

Ihld

Ixi

idx

ora

jrz

mvi

Ixi

ccir

mvi

cmp

jrnz

mvix

ret

Ida

ora

jrnz

Ida

cpi

jrz

line

b.2000

a.dir

a

upmin

a.lf

d,1

a.eomc

m

upm10

Limit

lino +1

a

upmO2

lino

1

upp10

;CursUp?

;Scroll up direction

;First line

;.. .address

;Line 1

;Curs Down?

;Scroll down dir

;End of file address

;Max length of line

;Go back 1 to last line

;Last line number

;l_ine number

;Clear screen

;Clear limit condition

;New count

;Help?

;Find input string

;1 line outut

;Clear scroll flag

;Minus?

;No, must be Plus!

;Update direction

; Direction changed

;Check scroll on

;No!

;Feed ongoing count

;Check limit reached

;Yes!

;Clear stop condition

;lf stop condition

;.. .then

;.. .loop until clear

;Dont advance

;.. .if

;. . .on limit

;Get next line

;Not on limit

;Clear limit if set to

;. . .dsp 1 st/last line

;Line address

; Max length

;Check direction

;Search char

;Find next line

;Reached limit

;No!

;Return limit

;. . .set

;Check

;. . .if

;.. .on

;. . .first

;. . .line

;Yes!

The Transactor 57 May 1987: Volume 7, Issue O6

upmO2:

upm10:

numout:

toasc:

toasi:

buflin:

bufHO:

bufl12:

bufl14:

bufl15:

bufl16:

;

find:

dcx

dcx

mvi

Ixi

ccdr

inx

inx

shld

mvix

Ihld

dad

shld

mvi

ora

ret

h

h

a,lf

d,-i

h

h

line

O.lmit

lino

d

lino

a,1

a

;Find previous line

;New line address

;Clear limit

; Update

;. . .line

;.. .number

; Return

;. ■ .good
condition

;Output line number

Ixiy

Ihld

Ixi

call

Ixi

call
Ixi

call

Ixi

call

mov

adi

sty

Ixi

mvi

call

ret

mvi

inr

dad

jc

mov

cma

mov

mov

cma

mov

inx

dad

sty

inxiy

ret

linasc

lino

d,-10000

toasc

d,-1000

toasc

d,-100

toasc

d,-10

toasc

a,l

'0'

a,0

d,linasc

c.printf

bdos

c,'0'-1

c

d

toasi

a,d

d,a

a,e

e,a

d

d

c,0

;Base for string

;Line number

Jen thousands

;Convert to ASCII

thousands

;Hundreds

;Tens

;0-9

;Print string

:Prepare line for output

Ibcd

Ihld

mvix

Idax

inx

cpi

jrnc

cpi

jrz
cpi

lrz
cpi

jrnz

mvi

inx

dcrx

jrnz

jr
mvi

inx

ori

mov

inx

cpi

rz

dcrx

U

jr

line

linbuf

8,count

b

b

20h

bufl16

cr

bufl16

If

bufne

tabc

bufl15

m,' '

h

count

bufl14

bufI10

m,'t'

h

40h

m,a

h

if

count

bufHO

bufl12

;Current line address

;Line buffer address

Jab count

Jrap control char

;Notone

;Carriage return?

; Line feed?

;Checkiftab

;No!

;Expandtab

;Convert control char

;. . .to two chars

;. . .for display

;Normal char

linefeed

;. . .ends line

;Search Input String function

call

Ida

ora

jrnz

kscan

ktable

a

find

;loop until

;.. .help

;.. .key is

;. . .released

findO2:

findiO:

find12:

find14:

find16:

find20:

sound:

revrse:

clear:

kscan:

kscn2:

kscn3:

call

call

call

Ixi

Idx

ora

jrnz

Ixi

mvi

call

Ixi

mvi

call

Ida

ora

rz

stx

Ihld

shld

Ihld

shld

Ibcd

mvi

Ixi

Idax

cmp

inx

nx

jrn?

inr

mov

cmpx

jrnz

jr
cpi

jrnz

call

jrnz

Ihld

shld

Ihld

shld

mvix

ret

;Bell

mvi

Ixi

call

mvi

ora

ret

revrse

getln

revrse

d.cbot

a.dir

a

findO2

d.ctop

cprintf

bdos

d.dmabuf

c.coninf

bdos

no

a

a.count

lino

tempn

line

tempi

line

e,0

h.rchar

b

m

h

b

find16

e

a,e

count

find14

sound

If

find12

getln

findiO

tempi

line

tempn

lino

O.lmit

cdciof

d.bell

bdos

8,1
a

;direction

;adjust line params

;Bottom line

;Check direction

Jop line

;Clear line

;Buffer for input

;Get input string

; Check char count

;Empty string

:Save

;. . .current line

;.. .params in case

;. . .no match

;Begin search loop

;String found

;Limit reached

;. . .so

;. . .restore

;.. .original line

;Clear limit

;Reverse current direction

mvi

xorx

stx

ret

a,plus

dir

a.dir

;Clear Screen

Ixi

rnvi

call

ret

d.clr

cprintf

bdos

;ScanC128Keys

di

Ixi

Ixi

mvi

outp

mvi

mvi

Ixi

outp

Ixi

inp

push

inp

cmp

pop

jrnz

cma

mov

mov

xra

ana

h, ktable

b,0dc00h

d.Offh

d

d.Ofeh

9,3

b,0d02fh

d

b,0dc01h

a

h

h

h

h

kscn3

b,m

m,a

b

m

;Key press/change table

;Key matrix drives for

;. . .C64 keys are

;.. .are disabled

;Driveonerow

;. . .of three

;Drives for

;.. .C128 keys

Jo read row

;Read keys

;A little delay

;.. .helps along the way!

;Debounce

;Check again

;Make 1'sof presses

; Previous keys

;New keys

;.. .gives changes

;.. .and pressed changes

kchng:

kchgi:

kchg2:

kchg3:

kchgiO:

kchg12:

kchg14:

kchg20:

dtable:

J

ktable:

opnerr:

rderr:

sfwd:

sbak:

ctop:

cbot:

clr:

linasc:

progend

fend:

linbuf:

line:

lino:

endln:

tempi:

tempn:

pflags:

oldsp:

stktop

fbegin

inx

mov

inx

rlcr

dcr

jrnz

h

m,a ;Save pressed changes

h ; Now for

d ;. . .next row

e

kscn2

;Process Changes

ei

Ixi

mov

ani

jrz

call

jmp

mov

am

inx

jrz

ora

mov

inx

inx

mvi

mov

cma

inr

ana

jnz

flex

dcx

dcr

jrnz

ret

h,ktable + 2 ;First

a,m ;.. .check

1 ;. . .ESC?

kchgi

clear ;Clear screen

finis ;. . .and exit

a,m

06h ; + /- presses?

h

kchg2

m ;Force a change

m,a

h

h

c,3 ;Count

a,m ;Pressed changes

a

m ;Extract one change

kchgiO ;Foundone

h ;Goto next row

h

c

kchg3

;No changes found

; Decode Change

Ixi

Ixi

dcr

add

jrnc

dad

mvi

dcr

jrz
dad

jr
mov

ret

h,dtable ;Key Decode table

d,8

e

a

kchg12

d

6,8
c

kchg20

d

kchg14

a,m ;Decoded value

;Key Decode Table

db

db

db

help,08,05,tab,02,04,07,01

00, plus, minus, number,enter,06.09,03

alt,10,24,bgnof,endof,00,00,nsorol

;Key Press/Change Table: rows 1 -3

db

db

db

db

db

db

db

db

db

db

db

equ

ds

ds

ds

ds

ds

ds

ds

ds

ds

ds

equ

equ

end

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

cr,lf,'nofile$'

cr.lf/bad read error$'

1bh,3dh,20h,20h,1bh,52h,1bh,3dh,37h,20h,0ah

1 bh,3dh,20h,20h, 1 bh,45h,0ah

1 bh,3dh,20h,20h, 1 bh,54h,0ah

1 bh,3dh,37h,20h,1 bh,54h,0ah

1ah,0ah

'00000: ',0ah

$;Used for checksum on code

2 ;File end address

2 ;Line buffer address

2 ;Current line address

2 ;Current line number

2 ;Last line number

2 ;Work area

2 ;Work area

10 ; IX register variables

2 ;Saved stack

128 ; Program stack

$

800h Jext file loads here

The Transactor 58 May 1987: Volume 7, Issue 06

That Guru Does Have A Message!
Betty Clay, Arlington, Texas

Has anyone escaped the GURU? At some terribly important

point, you see the requester box that says:

"Software error - task held.

Cancel ALL disk activity.

Select CANCEL to reset/debug."

When you press the button, the black and red alert box appears

with the 'Guru Meditation' message:

"SOFTWARE FAILURE! PRESS LEFT MOUSE BUTTON

TO CONTINUE"

followed by a number of many digits, such as

#03000007.000057A3 or #83010009.00002463. For the aver

age user, the only choice is to reset the computer. The mes

sages seem totally meaningless; sometimes they even appear

to be a cruel joke played on helpless users by the creators of the

Amiga. Why?

There truly is meaning in those guru meditations. We can all

learn what most of them mean if we are provided with the

necessary information. Serious programmers can attach a ter

minal to the Amiga with a null modem cable, set their work

bench programs to debug before they load the program, and

can work on their programs through the terminal without

changing the state of the Amiga. They can use the ROMWACK

debugger that exists on all KickStart disks, or the

GRANDWACK debugger that is part of the developers' pack

ages. And they will pore over the ROM KERNAL MANUALS as

they work. Those volumes are not written in what most of us

would call English, but they contain more information than

some of us ever expected Commodore to release to us, and it is

there that we find the explanations of the Guru Messages, more

properly called 'Alerts.'

It is not the purpose of this article to explain how to debug

programs using all of the needed equipment. It's purpose is to

give some meaning to the alerts, and to assure the reader that

there are programmers out there to whom these messages are

really useful.

First, let's break the messages into manageable pieces. Then

we'll try to make sense of each piece. Take a (hypothetical)

Guru Message number like:

#07060006.00008321

Break it up like this:

07 06 0006. 00008321

#07060006.00008321

The first part (07) denotes the device or library from which the

error message came. There are twenty of these devices, li

braries, etc., and they are listed in numerical order in the

reference page that accompanies this article. If you look there,

you will see that '07' indicates that the error occurred while

using the DOS library. The zero at the beginning indicates that

it would be possible to recover from this error, if we have the

proper equipment and knowledge to do the debugging. For

now, we must be content to know that if the beginning digit is

zero, the error might be correctable; a beginning digit of eight

or more indicates an error from which there is no hope of

recovery. Thus, you might have a DOS library error that began

with '07' (recoverable) or with '87' (hopeless). These are hex

adecimal digits, so you might find A, B, C, D, or E in the left

column.

To put it a bit more technically, if the error is irreversible, the

high bit is set. (Fatal errors also cause the entire screen to go

black, while recoverable ones only push the normal screen

down a bit.)

*07O60006.00008321

The second piece of information (06) may be one of the six

"general error codes." In this case, I chose the "I/O Error"

because it seemed appropriate for a disk error, though in reality

it is more likely to occur in other libraries. The six general error

codes are also listed in the reference page. The one you will

encounter most often is '01', insufficient memory. If the general

error is not attributable to one of these six codes, there should

be two zeros in this field of the error message.

*0706OOO6.00008321

The four digits immediately to the left of the decimal point tell

exactly what it was that went wrong. In our sample message,

the digits are '0006', and the reference chart will show that, in

the DOS Library, a code of six indicates a disk block sequence

error.

You probably would not memorize these numbers, for the

same number will mean different things for different libraries/

The Transactor 59 May 1987: Volume 7, Issue O6

devices. The reference chart includes a list of these codes as

they appear on Version 1.0 of the WACK disk, a debugging disk

that was provided for the developers. Commodore is now

offering this disk for sale, but the quoted price is $99 U.S.

Remember that the Guru Meditations were intended to help the

developers, so the explanations of the codes may not be

adequate for those of us with less knowledge, but this informa

tion from the 'exec.alerts' file provides strong clues about what

is going wrong. To learn much more would require learning

most of the ROM KERNAL MANUAL.

#07060006.00008321

The eight digits to the right of the decimal point give the

hexadecimal notation for the address of the task (program) that

reported the error. Since the Amiga is a multitasking machine,

all software must be relocatable, and these locations may be

different each time you load the program.

The codes in the chart have been broken into sections to make

them more readable than they are in the 'Guru Meditations".

You can see the library/device number in the first two digits;

the general error code in the second pair of digits is always

either '01' (not enough memory) or '00' in these examples; and

an attempt has been made to give at least some meaning to the

four digit code at the end. Notice, also, that few of these are

called fatal errors. Most of the errors in the Exec, Graphics, and

Intuition Libraries are fatal. Most others are not.

Here are a few examples:

#81000003.0000A325

81 - a fatal error in the Exec Library

00 - not one of the general errors

0003 - an error in the library checksum

.0000A325 - of the task starting at location $A325

#21000001.00001234

21 - recoverable error in the Disk Resource

00 - not a general error

0001 - the unit already has a disk

.00001234 - the task starts at location $1234

#84010005.00002345

84 - fatal error in Intuition Library

01 - caused by lack of memory

0005 - needed to open a new window

.00002345 - called by a task at location $2345

To a skilled programmer, armed with literature and an intimate

knowledge of the Amiga, this information could save hours.

There is another type of error that can bring a "Guru Medita

tion." These have all zeros except for the last digit or two before

the decimal point. They are errors reported by the 68000

microprocessor itself. For example,

Meditation #00000002.xxxxxxxxxx

. . .would indicate that the microprocessor had received an

illegal instruction. For most of us, it is adequate to know that if

the first six or seven digits are zeros, the error is irreversible,

and it was reported by the 68000 microprocessor. We can't do

anything about it, but we can recognize it.

For those of us who have yet to learn C and 68000 assembly,

making the corrections must wait - but it is reassuring to know

that we can look at the message and say to ourselves, "Well,

I've ruined my data and lost my program, but at least I know it

was because the Graphics Library didn't have enough memory

left to draw my text." That can be solved by adding more

memory. As our knowledge grows, the other problems will

become correctable, too.

Reference Chart Notes

There are a very few guru meditations that cannot be inter

preted using these tables. One was reported recently by

Claudio Nieder, a computer science student in Switzerland. He

kept getting a guru meditation number 84000009.48454C50.

Noticing that the address part bore a strong resemblance to

ASCII code, he translated it:

48 45 4C 50

HELP

Soon he received a reply from Dale Luck of Commodore-

Amiga. It seems that the Amiga exec, uses the word HELP

as a catchword. When Intuition finds the system to be in so

bad a state that the error message cannot even be dis

played, Intuition places the word HELP in location 0 and

then resets the system. As the system is brought back up,

location 0 is checked for the word HELP, and if it is there,

this message is displayed.

Carolyn Scheppner of Commodore Technical Support re

cently elaborated on some of the guru messages that are

made by the 68000 itself. The two microprocessor codes

that appear most often are 00000003 and 00000004. Code

3 (Address error) may be caused when an invalid, no-

longer-valid, or zero pointer is passed to a system routine,

causing an attempt to do word or longword manipulations

on an odd address. Code 4 (illegal instruction) could be

caused by poor coding, but it can also happen when

memory containing necessary code or vectors has been

overwritten.

It seems that some of the exec.alerts can even be used to

diagnose hardware problems. The examples given by Ms.

Scheppner were 87000008 and 8700000B, which indicate

"key already free" and "key out of range". She says that

these error codes could indicate problems with the key

board or with static.

The Transactor 6O May 5987: Volume 7, Issue O6

REFERENCE CHART FOR GURU MESSAGES

01

02

03

04

05

06

07

DEVICES,

Exec Library

Graphics Library

Layers Library

Intuition Library

Math Library

CList Library

DOS Library

LIBRARIES, AND RESOURCES:

08

09

10

11

12

13

14

RAM Library

Icon Library

Audio Device

Console Library

GamePort Device

Keyboard Device

TrackDisk Device

15

20

21

22

30

31

Timer Device

CIA Resource

Disk Resource

Misc. Resource

Bootstrap

Workbench

GENERAL ERROR CODES

01

02

03

04

05

06

Insufficient memory

MakeLibrary Error

OpenLibrary Error

OpenDevice Error

OpenResource Error

I/O Error

ExcptVect

BaseChkSum

LibChkSum

LibMem

MemCorrupt

IntrMem

CopDisplay

Coplnstr

CopListOver

CopIListOver

CopListHead

LongFrame

ShortFrame

FloodFill

TextTmpRas

BltBitMap

GadgetType

GadgetType

CreatePort

ItemAlloc

SubAlloc

PlaneAlloc

ItemBoxTop

OpenScreen

OpenScrnRast

SysScrnType

AddSWGadget

OpenWindow

BadState

BadMessage

WeirdEcho

NoConsole

SPECIFIC ERROR

EXEC LIBRARY: 01 00 0000

81 00 0001

81 00 0002

81 00 0003

81 00 0004

81 00 0005

81 00 0006

GRAPHICS

82 01 0001

82 01 0002

82 00 0003

82 00 0004

82 01 0005

82 01 0006

82 01 0007

82 01 0008

02 01 0009

82 01 OOOA

CODES

DOS LIBRARY: 07 00 0000

The CPU trap vector has incorrect checksum. StartMem 07 010001 Too little memory at startup.

ExecBase has a checksum error

Library has a checksum error

Not enough memory to make library

Free memory list is corrupted

Not enough memory for interrupt servers.

LIBRARY: 02 OO OOOO

No memory for copper display list

No memory for copper instruction list

Copper list overload (too long)

Copper intermediate list too long

No memory for copper list head

Not enough memory for LongFrame

Not enough memory for ShortFrame

Not enough memory to FloodFill

Not enough memory to draw text

BltBitMap, not enough memory

LAYERS LIBRARY: 03 00 0000

INTUITION

84 00 0001

04 00 0001

84 01 0002

84 01 0003

84 01 0004

84 01 0005

84 00 0006

84 01 0007

84 01 0008

84 00 0009

84 01 OOOA

84 01 000B

84 00 000C

84 00 000D

84 00 000E

84 00 000F

LIBRARY: 04 00 0000

Unknown gadget type, fatal

Recovery form of gadget type

No memory to create port

Item plane allocate, no memory

Not enough memory to suballocate

Plane allocate, no memory

Item box top < RelZero

No memory to open a screen

OpenScreen's raster allocate, no memory

Open sys screen, unknown type

Add SW gadgets, no memory

no memory to open window

Bad State return entering interrupt

Bad Message received by IDCMP (Intuition

Direct Communication Message Ports)

Weird echo causing incomprehension

Couldn't open the Console Device

EndTask 07 00 0002 The task didn't end!

QPktFail 07 00 0003 QPkt failure (Queue message?)

AsyncPkt 07 00 0004 Unexpected packet received

FreeVec 07 00 0005 FreeVec failed

DiskBlkSeq 07 00 0006 Error in disk block sequence

BitMap 07 00 0007 The bitmap is not valid

KeyFree 07 00 0008 ' Key is already free

BadChkSum 07 00 0009 The checksum is invalid

DiskError 07 00 OOOA Disk error

KeyRange 07 00 000B The key is out of range

BadOverlay 07 00 000C

TRACKDISK DEVICE: 14 OO 0000

TDCalibSeek 14 00 0001 Calibrate: seek error

TDDelay 14 00 0002 Delay: error on timer wait

DISK RESOURCE: 21 00 0000

DRHasDisk 21 00 0001 get unit: already has disk

DRIntNoAct 21 00 0002 Interrupt: no active unit

WORKBENCH: 31 00 OOOO

CPU ERROR CODES:

02 Bus Error

03 Address Error

04 Illegal instruction

05 Division by zero

06 CHK instruction (result fell outside designated

bounds)

07 Trap overflow

08 Privilege violation

09 Instruction trace

0A Line A Emulation - 68000 encountered an instruc

tion word with values between A000-AFFF

0B Line F Emulation - 68000 encountered an instruc

tion word with values between F000-FFFF

TRAP instructions - operating system call instructions

The Transactor 61 May 1987: Volume 7, Issue O6

The Transactor Amiga Structure Browser
by Chris Zamara and Nick Sullivan

- Your guided tour through the system

With this program and the information given in this article, you

will gain knowledge about your Amiga that you yearned for, but

couldn't find. This knowledge will make you a better programmer,

almost certainly making you more prosperous than you would

have been otherwise.

With all of your extra money, you can buy more expensive

computer hardware and advance yourself even further. You will

be successful, and that success will give you greater self-

confidence. People will turn to you for advice and you will help out

many others who would like to be as clever and successful as

yourself. By helping these people, not only will you gain deep

personal fulfillment, but you will become quite popular and well-

liked, which certainly can't hurt your sex life. Since so many

people will be looking up to you and following your advice, you

will wield quite a bit of power in the computer community and in

your business dealings in general. By feeling good about yourself,

you will certainly get into better physical shape and will definitely

live longer - maybe up to three hundred years!

In short, reading this article and typing in the program at the end

will give you knowledge, power, success and prosperity. It will

improve your sex life and give you greater self esteem and a feeling

of usefulness. You will be able to buy lots of expensive computer

hardware, and fast cars as well if you wish. You will live longer. But

the choice is yours - read this article and make those changes in

your life, or skip past it and possibly never realize the enormous

potential that you know is inside of you.

Okay, maybe you won't get all of those things but, if you want to

learn more about the Amiga's system structures, or you'd like an

easy way to look at vital data about programs while they execute,

you'll make good use of the Transactor Structure Browser.

If you read our Amiga programming article in the last issue, you

learned how important the various system structures are, since

they are the key to finding out about all entities known to the

system, like tasks, screens, windows, gadgets and the like. Struc

tures in the Amiga are the equivalent of a memory map on a

single-tasking machine, since there are no fixed memory loca

tions on the Amiga.

The structure has a direct C-language implementation, but we can

speak of a structure template (the definition of the structure)

independently of a language. A structure is just the particular way

that some data are grouped. For example, a structure called 'X'

might be defined as a word, followed by a pointer to another

structure 'X', followed by a pointer to a structure Y, followed by a

long word. By knowing a structure's template and where in

memory such a structure is stored, it is a simple matter for the

system or an application program to extract its data.

What kind of information can we find in various structures

throughout the system's memory? Well, some interesting things

are to be found, for example, in the Intuition-managed structures.

With the program presented here, you'll be able to look at Screen,

Window, and Gadget structures, among others. Information about

any program in the system can be gained by looking at these

structures, since everybody's windows, screens and gadgets are

maintained in a kind of network where they can be accessed via

pointers from other Screen, Window and Gadget structures.

A pointer to the first Screen is all that is needed to find everything

else, and that is found in the "IntuitionBase" structure, which, in

turn, is found when the Intuition library is opened by a call to the

OpenLibrary() function. (OpenLibrary() is in the Exec library, a

pointer to which is found in memory location 000004, the only

fixed location in the entire Amiga memory map. C-language

startup code opens the Exec library.) All programs that use Intui

tion have their information in these structures, so through them

you can learn things about almost any program currently running

in the system.

A screen structure contains everything Intuition needs to know

about a screen, like its size, title, number of bit-planes, a pointer to

its gadgets, flags describing what kind of screen it is, the colours it's

rendered in, etc. The screen structure points to a window structure

for the first window on the screen. A window structure has a

pointer that can point to another window structure, so that all

windows in a screen are linked together. If there is more than one

screen in the system (unless you have an application running that

opens its own screen, the only screen will be the Workbench

screen), there will be a pointer in the first screen structure to the

next screen; any number of screens can be linked together in this

way.

In a window structure you'll find the usual size and colour

information, along with an IDCMP Flags variable describing what

messages Intuition is getting from that window. A pointer to the

first gadget in a linked list of gadgets can also be found in the

window structure. A gadget structure totally describes a gadget (a

simple way to get input from the user through the mouse) - its

position, size, type, imagery, etc. The gadget structure is set up by

an application before the structure is submitted to intuition, so the

values within represent those that the programmer actually put

into his code - in other words, a peek into a program's gadget

structure can give some insight into how a program was written.

The Transactor 62 May 1987: Volume 7, Issue O6

Other structures of interest that are not implemented in Version

1.0 of Structure Browser: Menu, Image, Requester, View, ViewPort,

Layer, Interrupt, MemChunk, MsgPort, Message, Task, VSprite,

AnimOb. (Many of these structures, like Task and Interrupt, are

difficult to monitor since the data within are constantly changing.)

The key to finding the memory location of any structure is the

Library Base structures. Every shared library ("graphics.library",

"intuition.library", "layers.library", to name a few) has a library

base structure that contains pointers to structures of interest to

routines in that library. As mentioned above, the structures form a

kind of network, since you can reach structures through pointers

in other structures. In this network can be found nearly every item

of data that the system cares anything about: a direct link to the the

system's state of mind at any given moment. If we know the

definitions for the system structures (there are over a hundred of

them altogether), we can snoop around and discover anything we

wish to know about what the system knows. And in the Amiga, the

system knows a lot, because application software has to go through

the system for just about anything it wants to do.

The Structure Browser Program

The Structure Browser (SB from now on) makes it easy to snoop

through many of the structures in the system. You start with a list

of the library base structures; in the current version of the pro

gram, only IntuitionBase is available. To display the contents of the

library base structure, just move the pointer to the library base

name on the screen and press the left mouse button. The library

base structure will immediately be displayed, showing each struc

ture member's name (as defined in the standard Amiga header

files) and its data type. In the case of the IntuitionBase structure, all

members are either important structures in their own right, or else

pointers to such structures; to display any of these, just click on its

name as usual. This process can be repeated again in the new

structure, to bring you to other structures of interest.

You can always get to the structure you came from by clicking on

the "Previous Level" gadget at the bottom left of the window. You

can trace your steps as far back as you want, since the program

works recursively (the number of levels deep you are is displayed

in the heading at the top of the window). Structures that contain

more members than will fit on the window show the first 16

members and display a gadget that says "(MORE)". You can go to

the next page of structure members by clicking on (MORE), and go

to the previous page by clicking on the "Previous Page" gadget.

By going from structure to structure in this manner, it is easy to

view information about programs that would be difficult to find out

otherwise. For example - what kind of gadgets are being used in

that neat commercial program? Are they gadgets at all? Did the

programmer use a requester or a window for that prompt? Just by

mousing around with SB, you can find it all out!

The data type for each structure member is shown in the same way

that the members are declared in the C header files (the appropri

ate header file must be compiled - using the #include statement -

with any C program that wants to refer to a system structure).

These data types are standard in Amiga code, because they are

'typedefs' that are set up in the header file "exec/types.h". The

basic types are:

BYTE - signed 8-bit value (char)

UBYTE - unsigned 8-bit value (unsigned char)

SHORT - signed 16-bit value (short)

USHORT - unsigned 16-bit value (unsigned short)

LONG - signed 32-bit value (long)

ULONG - unsigned 32-bit value (unsigned long)

Pointers to any of the above are denoted as in standard C syntax,

with an asterisk (*). For example, a pointer to a SHORT would be

denoted by SHORT * in the type field. Structure members that are

pointers to other structures also use the C syntax; a pointer to a

'Window' structure, for instance, is denoted by 'struct Window *'.

A structure member that is an actual structure, not a pointer to a

structure, has no asterisk; SB does not display an address for such a

member, since it is contained within the structure being viewed,

whose address is already shown.

Structure members that represent not pointers to other structures,

but actual data that may be of interest, are displayed in various

ways depending on their nature. These data can be simple num

bers, like those giving a window's LeftEdge, TopEdge, Width and

Height. The item of interest might be a byte, word or longword

containing flags of some sort, like the flags indicating a window or

gadget type. Or the data you're concerned with might just be an

area of memory that contains a table of some sort or describes a

graphic image.

Simple data values, like LeftEdge, etc. are shown in black on the

SB window. Such structure members cannot be used to bring up

any further information by pointing on them and clicking -

nothing will happen if you do so. They are just what they appear to

be: a number for you to see. The values in black are often just what

you want to find out after getting to a structure of interest. When

one of these values is used for containing flags of some sort, it is

treated differently: you can click on it to get a list of what flags are

set. An example might be a "smart refresh" window with sizing,

close and drag system gadgets. The "Flags" member of such a

window's structure, when selected, would show:

WINDOWDRAG

WINDOWCLOSE

WINDOWSIZING

SMART_REFRESH

(Like the member names, the flag names are those defined in the

standard header files used for C or assembler program develop

ment.)

Another form of specialized output in SB is the hex dump. When a

structure member is an array of values or a pointer to an area of

memory like a bit-plane or image data, clicking on the member

name causes a hex dump of the data to be displayed. If the data

type is specified in the structure template, the data size is taken

into account in the hex dump - the hex values are shown as either

bytes, words, or long words.

The Transactor 63 May 1987: Volume 7, Issue O6

A Sample Tour

On paper, the process may sound rather involved, but using SB is a

breeze. Here's an example of how you could find out the type of

gadget used by a program that is currently running in the system.

Let's use as an example the Structure Browser program itself - we'll

take a look at the structure for the program's "Previous Level"

gadget.

First, we have to run SB. That's not hard: type 'sb' from the CLI. (or

'run sb' if you want to keep the CLI available for launching other

tasks while SB is running). SB will bring up a window that is the full

width of the screen, but isn't full height, leaving a bit of the

WorkBench screen visible at the top. On the window you will be

prompted to select a library structure. Since only one choice is

available in this version of the program, the decision isn't difficult:

select "Intuition" by pointing with the mouse and clicking the left

button. After clicking, a list of the "IntuitionBase" structure mem

bers will be displayed, with their types and values shown on the

right. All members are either whole embedded structures or else

structure pointers. The top two are parenthesized, meaning that

those structure types are not available in this version of the

program. To keep the magazine listing reasonably short, we only

implemented a few key structure types; references to data types

not handled by the browser are parenthesized, and clicking on

them has no effect.

Now, on with our travels to the gadget structure of interest. Since

the program we're interested in has a window on the Workbench

screen, we must get to that screen's structure first. We can get there

by clicking on the "ActiveScreen" member in the IntuitionBase

structure, since the active screen - the one we're currently work

ing on - is the WorkBench screen. One click, and up comes the

first page of the structure members in the Workbench screen

structure. You can tell you've got the right screen by looking at the

member called "Title"; to the right it should say "Workbench

Screen". To see more screen members, you can click on the

"(MORE)" gadget that has appeared at the bottom of the window,

and then click on "Previous Page" to get back. The second

member of the screen structure is called "FirstWindow", and it

points to the first window structure in a linked list containing all

windows on the screen.

Click on "FirstWindow" and a window structure will be displayed.

More than likely, this is the window we're looking for, the window

belonging to SB itself. The "Title" member will tell you what

window you're looking at, since it will say exactly what is on the

title bar of the corresponding window. If the window isn't the one

you're looking for, you can get to the next window structure in the

list by clicking on the first member of the structure, the one called

"NextWindow". The structure for the next window will then be

displayed - you can keep chaining through all the windows in the

screen in this way. Stop when you get to the Structure Browser

window (check "Title"). You'll also notice other items of interest in

the structure, like the window's dimensions and the flags set for

the window. Try clicking on the "Flags" member to show the

window flags. Even if you're not familiar with Intuition program

ming, the names of the flags should suggest their purpose.

Now that we've found the window structure we want, let's look for

a pointer to the gadget list attached to the window. There's nothing

like that on the first page, so click the "(MORE)" gadget to see more

window members. About half way down is the member

"FirstGadget", which points to a gadget structure (its type is 'struct

Gadget *', meaning a pointer to a Gadget structure). Click there,

and up comes the first in a linked list of gadget structures for that

window. By looking at the LeftEdge and TopEdge variables, you

can see the position of the gadget on the screen. To go to the next

gadget structure in the list, just click on the first member, "Nex-

tGadget". You can chain through the program's entire gadget list

this way, stopping when you wish to examine the flag variables

"Flags, "Activation", or "GadgetType". GadgetType will tell you if

the gadget is a BOOLGADGET (boolean), PROPGADGET (propor

tional), or STRGADGET (string).

Eventually, we get to a gadget with its TopEdge at -12, and its

LeftEdge at 10. Since the GRELBOTTOM flag is set in the Flags

variable, we know the TopEdge value indicates that the top edge of

the gadget is 12 pixels above the window's bottom border. That's

the "previous level" gadget that we're looking for. We can examine

the Gadget structure to see exactly how that gadget was set up in

the Structure Browser program. (Using the same imagery as

someone else's gadget in your programs might be considered a

violation of copyright, but the current version of SB doesn't

support Image structures anyway so there'll be no "Don't try this at

home, kids!" warning here.)

Structure Browser doesn't support all the system structures as it

stands now - there are just too many and the program would fill

the entire magazine. Rather, we have put in some of the more

interesting Intuition structures and we plan on adding more for

version 2.0 of SB, which will be found on The Transactor's first

Amiga disk, and will be uploaded to CompuServe's AmigaForum.

The program is designed so that it is easy to add new structures as

you wish - if you have access to the "include" files for develop

ment (or the listings of them in the ROM Kernal manual), it should

be easy for you to add whatever structures you're interested in to

the program. Information about doing this is given later in the

article. SB is public domain, so you're free to use and modify it as

you wish; if you do add new structures, though, please use the

standard Amiga member names and types exactly as they appear

in the include files. We plan to see how far the SB concept of

system structure browsing can be taken - a few ideas for enhance

ments are given later in this article.

Applications for SB

By now you've probably seen that SB is a great tool for learning

about the Amiga's internal data structures. But there are actually

quite a few good reasons to have SB around on your most-used

disk - maybe even in the C directory of your usual Workbench or

development disk.

For one thing, SB makes a very handy reference to the structure

templates themselves. It's easier to bring up SB and click to a

structure than to look up that structure definition in the ROM

Kernal manual. And if you don't have the manual, it's easier than

The Transactor 64 May 1987: Volume 7, Issue O6

looking through lots of include files. If you don't have the include

files, it's the only way!

SB can also be used as a debugging tool: if your program is acting

strangely, you can peek at Intuition's view of your windows,

gadgets, etc., to make sure they are properly set up and linked

together the way you intended. You can look at these things at any

time during your program's execution to see what happens when

certain actions are taken; kind of like a trace, but only pertaining to

the program's interaction with the operating system.

Another benefit of SB is that you can use it to learn programming

techniques by looking at how other applications have set up their

structures to achieve certain effects. By investigating the structures

of known system entities, you can see what effect certain flags and

variables have on their behaviour. If you're curious about the

tricks that some program is using, just take a browse through its

gadgets and windows. For instance, did you know that Workbench

uses a borderless, backdrop window that lies on the Workbench

screen just below the screen title? We didn't either, until we used

SB to look at the Workbench window structure. You can get some

good ideas from other people's use of Intuition's resources.

Future Versions of SB

Our main goal for SB is to eventually have it encompass nearly all

system structures and flags. The program can be expected to grow

in size considerably, but it will be worth it for a total map of the

system's inner thoughts. But besides expanding in scope, there

could also be more flexibility in the ways that lowest-level data

types are displayed. For example, graphic data could be displayed

not as a hex-dump, but as the actual image that it defines. Some

values, like the mouse's X and Y coordinates that are found in a

window structure, could be updated frequently to give current

readings. The hex dump should also display ASCII equivalents of

the bytes. Perhaps a less immediately-implemented feature will

be the saving of image and BitMap data to disk as IFF-format files.

There should be a way to save any structure and its current values

to a file as well, perhaps as C or assembler code for easy inclusion

in your own programs. If anyone has any good ideas, let us know.

Or better yet, implement them - we don't want all the glory for

ourselves! (read: we don't want to do all the work ourselves!)

Program Listing Notes

The C source for SB is broken into several files, each with its own

purpose. The mainline and general functions are in the file "sb.c".

The Intuition calls and all functions dealing with the program's

user interface is in the file "sbio.c". The other files contain the

individual routines to handle different structure types, "sbwin-

dow.c", "sbscreen.c", and "sbgadget.c" contain the functions that

handle the structures their names suggest, "sbgfx.c" handles the

graphics library-related structures, RastPort and BitMap. In addi

tion, a header file, "sb.h", contains various #define statements and

a structure definition - it should be stored in a subdirectory called

"header". All of these separate files can be compiled with Manx

Aztec C using "make" and the makefile provided. The makefile

takes advantage of Manx's pre-compiled header file capability to

speed up compilation by not having to re-compile "intuition.h" in

each of the six source files, if you are using this method, you can

delete the #include at the top of each source file as indicated in the

comment. For users of Lattice C, just compile all six files and link

them normally - don't worry about the makefile.

Since a requirement of this program was that it didn't use up too

many valuable magazine pages, we had to make a few compro

mises in the style department. For one thing, the program has far

too few comments - we hope to clear up main points regarding the

program's operation in this article. There are also very few blank

lines that might have made the program easier to look at. Function

parameter declarations are put on a single line, and on the same

line as the function declaration itself, if possible. The code isn't too

unreadable, though, and the disk/Compuserve version of SB

(V2.0) will be much prettier.

When entering the program, take extra care in entering the the

'structdata' arrays in each structure print function. The first charac

ter of each member name is either a space, minus, or left parenthe

sis; it is important to use the correct one. Also, if you use the wrong

data size constant (like putting in INTSIZE where it should be

PTRSIZE), you will get bad results when you try to display that

structure, or worse yet, a software error.

Program Notes

SB is quite useful as it stands, but you may want to modify it to

incorporate some other structures that you're interested in. If you

do, here is some explanation of the program to help you out. The

specifics are up to you; have a ball, hackers!

The principle behind SB is very simple. A specialized function

exists for each kind of structure. If a structure contains more

members than will fit on one page, there is a function for each

subsequent page. The function is passed a pointer to the structure

(and an offset, in the case of multiple-page structures), and it prints

the structure's members, types and values, then waits for input.

(The actual output and input is handled by functions in "sbio.c",

but more on that later.) Depending on the member selected by the

user, an appropriate routine is called to print that structure's

members and again wait for input. It may be that a routine calls

itself, as when chaining through a linked list of like structures.

In any case, each selection brings the program one level of nesting

deeper, and the only way to go up a level is by the user clicking the

"Previous Level" or "Previous Page" gadget, causing the return

from a function. (Since each extra level you visit represents an

extra level of function call nesting, you face a theoretical possibility

of stack overflow if you go too deep. Even with the system default

stack of 4000 bytes, though, we estimate you'd have to go well over

100 levels deep before there was any danger of this happening.)

Besides functions that handle specific structures, there are the

more general output functions that display hex dumps or flags -

these are in the file "sb.c". The function used to tell the output

function in "sbio.c" what to display is called put(), and is also in

The Transactor 65 May 1987: Volume 7, Issue O6

"sb.c" - it is called by all the structure output functions and is

passed a pointer to the structure and a pointer to an array of special

"StructData" structures. Setting up this array is the key to adding

more structures to SB's repertoire.

A "StructData" structure is defined in the file "sb.h" seen in the

listing. It contains information that SB needs to know about a

structure member: its name, type, print option, and size. The

name and type are just pointers to strings for display. The print

type is needed so that put() knows how to print the member's

value - as a byte, short, or long, signed or unsigned, or as a string

or pointer. See the put() function to see how the print codes are

interpreted. The other member of a struct StructData, the data size,

indicates the number of bytes used by the structure member. The

constants BYTESIZE, INTSIZE, and PTRSIZE are defined in "sb.h"

to specify the common sizes 1,2, and 4. When the member is a

structure (not a pointer to a structure, but an instance of the

structure itself), use the SZ macro defined in "sb.h" to calculate the

size of the structure, e.g. SZ(View) instead of sizeof(struct View).

By looking at the functions PrWindow(), PrScreen(), and

PrGadget() as examples, you should have no difficulty adding the

functions to display system structures of interest to you. If you add

a new structure, you'll have to allow the user to select it from

another structure by removing the parentheses from around the

member name and type. An opening parenthesis at the start of a

member name instead of a space prevents that member from

being selected by the user (doesn't make it a gadget). Just remove

these parentheses from all functions whose structure contains a

pointer to your newly-implemented structure, and add a call to

your new function in the SWITCH statement. Again, refer to the

functions mentioned above for clarification.

In the print function for any new structure you've added to the

program, set up a static 'structdata' array of StructData structures

(try saying that three times quickly!) as in the other functions.

Members' names should begin with a space for flags, arrays, or

pointers to structures that SB can handle (i.e. anything for which a

print function exists), a minus (-) for simple data elements that will

be rendered in black and will not be selectable by the user, or a

parenthesis for pointers to structures that are not supported by the

program.

The output of members to the window and the input of a response

from the user is handled by the same function, GetChoice().

Selectable structure members are implemented as Intuition gad

gets that have no rendering other than the associated IntuiText. An

array of 16 IntuiText structures is set up to contain the text for each

line printed to the window. An array of 16 boolean gadgets, each

pointing to a different IntuiText structure, is also declared. Gadget

structures also exist for the "Previous Level" and "(MORE)" gad

gets that appear on the window.

When GetChoice() is called, it calls Redisplay() to put up the

structure member names and build the required list of gadgets.

Redisplay() first removes all existing gadgets except the first in the

gadget list, the "Previous Level" gadget (BackGadg). Depending on

the number of structure members to be displayed, up to 16 passes

through a loop are made to either print an IntuiText or add the

associated gadget to the gadget list. After the loop, the "(MORE)"

gadget (MoreGadg) is added if there are more than 16 structure

members to display. Finally, a call to the Intuition function Re-

freshGadgets() displays the gadget text on the window.

After Redisplay() has done it job, GetChoice() waits for an IDCMP

(Intuition Direct Communication Message Port) event, which will

signify that the user has selected a gadget. If the window close

gadget was selected, CloseOut() is called to close up libraries and

the open window, then call exit() to fix up the stack and return to

CLI. If another gadget was selected, the gadget's ID is returned to

the caller of GetChoice(). The IDs of the structure member gadgets

are their ordinal values - 1 for the first and so on. The "Previous

Lever gadget has an ID of 0, and the "(MORE)" gadget's ID is the

constant MOREGADG, defined as 25 in "sb.h".

To SB 2.0... And Beyond!

As you've read, SB can be expected to expand v/ell beyond its

current capabilities. If anyone adds new structures, flags, or fea

tures to SB, we would be happy to incorporate the changes in the

latest version for wide public-domain distribution. We will play

'keeper of the source' and attempt to coordinate all improvements

to maintain the latest, greatest SB that will be uploaded to Compu

Serve and other services, and included on our oublic-domain

Amiga disks (probably available next issue).

Meanwhile, have fun picking Intuition's brains with SB 1.0, and

we'll see you next issue!

*•*****•*•***••*** "header/sb.h" *•**•*****•*«*•**••*****

♦include <intuition/intuitfon.h>

#define SZ(x) sizeof(struct x)

idefine DATASIZE (sizeof(structdata) / Eizeof(struct StrjctDatiO)

idefine PTRSIZE sizeof (APTR)

#define INTSIZE sizeof (int)

#define BYTESIZE sizeof (char)

#define MAXGADG 16

fdefine MOREGADG 25 /* ID of "more" gadget V

struct StructData {char "membername;

char *membertype;

int print type;

int datasize;

The Transactor Structure Browser (SB) V1.0

From Transactor Magazine, Volume 7, Issue 06

By Nick Sullivan and Chris Zamara (AHA!) (c) 1986

SB displays system structures via pointers found

in other structures. You start from lntuitionBase.

structures implemented in V1.0:

lntuitionBase, Window, Screen, RastPort, BitMap, Gadget

Usage is through intuition, clicking on structure member

names to display info or a new structure.

***** THIS PROGRAM MAY BE FREELY DISTRIBUTED *♦•••

/* include not needed for Aztec C using provided makefile */

#include "header/sb.h"

tfdefine MIN(x.y) ((x)<(y)?(x):(y>)

#define FLAGFIELDS 4

extern struct lntuitionBase MntuitionBase;

extern struct IntuiText ChoiceText [], BacklText;

APTR OpenLibrary ();

int level ■ 0; /* current level of nesting */

static char text I i nes [MAXGADG + 1H80];

The Transactor May 1987: Volume 7, Issue O6

main (}

{

int choice = -1;

SetupGedgO;

OpenStuffO; /* open intuition library t. window •/

while (choice) {

putHeaderCChoose a Library structure", NULL);

ChoiceText[0].IText = (UBTTE •)" Intuition struct Library";

BacklText.IText « (UBYTE •)» Ouit Program «;

switch (choice ■ GetChoice(D) C

case 1:

PrlntuiBase ("The IntuitiooBase structure", IntuitionBase);

break;

CloseOutO;

PrlntuiBase (string, IBose) char *string; struct IntuitionBase "IBase;

I

static struct StructData structdata[] ■ C

t "(LibNode",

< "(ViewLord",

t " ActiveWindow",

{ M ActiveScreen",

{ " FirstScreen",

"struct Library)11, 0, S2(Library»,

"struct View)", 0, SZ(View) },

•struct Window •", 5, PTRSIZE >,

"struct Screen ♦", 5, PTRSIZE),

"struct Screen •», 5, PTRSIZE)

Int (, sum, choice ■ -1;

level*-*;

while (choice) {

sum - SetOptionText(strtng, structdata, (APTR)IBase, DATASIZE, 0);

switch (choice • GetChoice(DATASIZE)) {

case 3:

if UBase->ActiveUindow)

PrUindowC'The currently active window", IBase->ActiveUindow);

break;

case 4:

PrScreen("The currently active screen", IBase->ActiveScreen>;

break;

case 5:

PrScreenCThe first screen on Intuitions list",

IBase->FirstScreen),•

b^eak,•

level--;

put (option, stuff, base, offset)

int option; struct StructData 'stuff; char *base; int offset;
{

register long Inum;

register int inum;

char buf [40];

int i;

sprintf(text lines[opt ion], "X-16sX-24s",

stuff->membername, stuff->membertype);
switch (stuff->printtype) {

case 0: /• don't print anything
buf[0] ■ 1\01;

break;

ease 1: /« print a long
Inum = *(long *)(base ♦ offset);

sprintf(buf, "SXSlx X10ld", Inum, Inum);

break;

case 2: /"print an int

inum = *(int *)(base + offset);

sprintf(buf, "i%8x X10d", inun, inum);

break;

case 3: /• print a byte
inum • *(base + offset);

sprintf(buf, "»X8x X10d", inum, inum)-

break;

case 4: /• print a string
if (Klnum = "(long *)(base + offset)))

sprintf(buf, "NULL");

else <

for (i =0; i < 30 && *((char *)lnum + i); i++)

buf [i + 1] >= *((char *)lnum ♦ i);

buftO] ■ bufti + 1] = 1\»";

buf[i + 2] = 1\01;

if (*((char *)lnum + i))

strcat(buf, "...");

>

break;

case 5: /• print a pointer

if (Klnum « *(long *)(base + offset)))

sprintf(buf, "NULL");

else

sprintf(buf, "$X8lx X10ld", Inom, Inum);

break;

case 11: /* print a long

Inum « *(long *)(base + offset);

sprintf(buf, "JXSlx XIOlu", Inum, Inum);
break;

case 12: /* print an int

inum * Vint *)(base + offset);

sprintf(buf, »$X8x X10u», inum, inum);

break;

case 13: /• print a byte
inum ■ '(base ♦ offset);

sprintf(buf, «tX8x X10u", inum, inum);
break;

>

strcat(textlines[option], buf);

ChoiceText[option].IText ■ (UBYTE *)textlines[optiorO;

FlagPrint (string, names, flags)

char *string, **names; ULONG flags;

{

int), line, fields » FLAGFIELDS;

char buf[321;

SetBockTextd); /* 'prev level1 */

for (i = 0; i < 8; I++) {

Btrcpy< text I ines [i], l1-11);

ChoiceText[i].lText « (UBYTE *)textlines[i];

}

putHeader(string, NULL);

for (i « line * 0; i < 32; i++) {

if ((flags I (1L « i)) U names[i]) {

sprintf(buf, "X-19S11, namesll]);

strcat(textlines[line], buf);

if (!--fields) {

ChoiceText[line].IText - (UBYTE *)textlines[line];

line++;

fields ■ FLAGFIELDS;

if (fields < FLAGFIELDS)

ChoiceTexttlfne].IText = (UBYTE *)textlines[line];

while (GetChoicedine + 1»

HexDump (string, address, unit, size)

char *address, *string; int unit; long size;

{

int line ■ 0, c;

char *buf[80];

BacklText.IText - (UBYTE *)" Exit Hex Dump ";

If (size « -1)

size " 0x7ffff;

do {

sprintf(buf, "Xs from Xlx (Xld)11,

string, address, address);

putHeader(buf, NULL);

if (line == MAXGADG)

line = 0;

while (line < MAXGADG && size > 0) {

HexLine(address, unit, line++, size);

size -= 16;

address += 16;

>

c ■ GetChoice(size > 0 ? MAXGADG + 1 : line);

} while (size > 0 S.S. c -- MOREGADG);

HexLine (address, unit, line, size)

UBYTE "address; int unit, line; long size;

USHORT i, j;

char buf[80];

static char hexdigit[] « "0123456789ABC0EF";

sprintf(textlines[line], U-X6lx: ", address);

for (i = 0; i < MINtsize, 16); i « unit) i

switch (unit) <

case BYTES IZE:

j « "(address + i>;

sprintf(buf, "XcXc ", hexdigit[j / 16], hexdigiUj X 16]);

break;

case INTSIZE:

sprintf(buf, "X04x ", "(int *)(address + i));

break;

case PTRSIZE:

sprintf(buf, "X08lx «, "(long "Xaddress ♦ I));

break;

strcat(textlines[line], buf);

ChoiceText[line].IText • (UBYTE *)textlines[line];

SetOptionText (hdrtext, data, object, size, offset)

char "hdrtext;

struct StructData "data;

APTR object;

int size, offset;

C

fnt i, sum;

SetBackTextC offset ? 1 : 0);

putHeader(hdrtext, object);

for (i ■ sum =0; i < size; i++) t

put(i, &data[i], object, sum + offset);

sum +• data[i).datasize;

)
return (sum ♦ offset);

The Transactor 67 May 1987: Volume 7, Issue O6

PrString (heading, string) char *he»din8, *string-

C

char 'newstring, *malloc();

putHeader(heading, NULL);

neustring « malloc(strlen(string) ♦ 1);
•newstring » '-';

strcpy(newstring + 1, string);

ChoiceText[0].IText • CUBYTE *)newstring;
GetChoiced);

free(newstring);

••****«*•*»••*«»»••* "sbio.c" **•»•••**«*•••*•••»♦•••••«•

/• include not needed for Altec C using provided makefile */
tfinclude "header/sb.h"

#define CHOICEUIDTH 280

#define CHOICEHEIGHT B

tfdefine SPACING 9

#define TOPGADG 30

#define PUTTEXTUext, x, y) <: MoveCrp, (long)x, (lonfl)y); \

TextCrp, text, (long)strlen(text)); >
struct IntuitionBase 'IntuitionBese » NULL;

struct GfxBase *GfxBase « NULL;

struct Window *OpenUindow(), *MainUindow * NULL;

struct RastPort *rp;

extern int level;

APTR OpenLibraryO;

struct IntuiText ChoiceText[MAXGADG + 1];

struct Gadget ChoiceGadg[MAXGADG + 1];

struct IntuiText BacklText = C

3, 2, JAM2,

5, 2,
NULL, NULL, NULL

}

struct

struct

>;

struct

struct

IntuiText MorelText = I

2, 3, JAM2,

5, 2,
NULL,

(UBYTE *)"(MORE)",

NULL

Gadget BackGadg * {

NULL,

10, -12, 140, 12,

GADGHCOMP | GRELBOTTOM,

RELVERIFY,

BOOLGADGET,

NULL, NULL, SBacklText,

NULL, NULL,

0, NULL /* gadget ID is zero V

Gadget MoreGadg « C

NULL,

300, -12, 59, 12,

GADGHCOMP | GRELBOTTOM,

RELVERIFY,

BOOLGADGET,

NULL, NULL, MorelText,

NULL, NULL,

MOREGADG, NULL

NeuWindow NUindow ■ <

0, 10, M0, 189,

■1, "I,
GADGETUP

| ClOSEUINDOW,

UINDOUDEPTH

WINDOWCLOSE

WINDOWSRAG

RMBTRAP

ACTIVATE

I NOCAREREFRESH

| SMARTREFRESH,
SBackGadg,

NULL,

(UBYTE *)"The Transactor Structure Browser V 1.0",

NULL, NULL,

0, 0, 0, 0, /• sizing limits (non-resiiable) */

WBENCHSCREEN

/• left, top, width, height

/* use screen colours

/• IDCHP flags

/* window flags

/* first gadget in list

SetupGadg ()

int i;

for (i * 0; i < MAXGADG; i++)

ChoiceText[i] .BackPen =

ChoiceText[i

ChoiceText[i

ChoiceText[i

ChoiceText[i

ChoiceText[i

ChoiceText[i

ChoiceGadg[i

ChoiceGadg[i

ChoiceGadg[i

.DrawMode =

.LeftEdge ■

.TopEdge =

.ITextFont *

.I Text

.NextText =

.LeftEdge =

.TopEdge ■=

.Width *

ChoiceGadg[i]-Height =

ChoiceGadg[i .Flags «

ChoiceGadnM] .Activation *

{

0;
JAM2;

0;

0;
NULL;

NULL;

NULL;

20;

i * SPACING ■>

CHOICEWIDTH;

CHOICEHEIGHT;

GADGHCOMP;

RELVERIFY;

♦ TOPGADG;

ChoiceGadg[i].GadgetType « BOOLGADGET;

ChoiceGadgli] .GadgetText ■ SChoiceText[il;
ChoiceGadgCi] .GadgetID = i + 1; /• gadget IDs start »t 1 */

GetChoice (num) int num;

{

struct IntuiMessage *GetMsg(), *message;

ULONG msgclass; /* message class from IDCMP •/
APTR IAddr; /• pointer to gadget from IDCMP •/

Redisplay(num); /* put up choices in window */
FOREVER { /•*♦ main event loop ***/

Wait <1L « MainWindow->UserPort->mp_SigBit);
while (message = GetMsg(MainWindow->UserPort)) {

/* get what we need from the message port */

msgclass = message->Class;

lAddr = messege->IAddress;

ReplyMsg(message); /* reply to message right away */
/* check for gadget selected */

if (msgclass •■ GADGETUP)

return (((struct Gadget *)IAddr)->GadgetID);
/* finish up if the close gadget is clicked */
else if (msgclass « CLOSEUINDOW)

CloseOutO; /* clean up and exit */

putHeadertstring, ptr) char *strinfl; APTR ptr;

/* put title and pointer at top of screen -

* if ptr is NULL, put string only.
*/

{

char buflSO];

SetAPen(rp, OL);

RectFilKrp, 1L, 10L, (long)MainWindow->Width-25, 27L>;
SetAPen(rp, 3L);

if (ptr) {

«printf(buf, "Xd: Xs (address Klx):», level, ttrinfl, ptr);
PUTTEXT(■#!•'•

" Hember Type Value (hex/decimal)",
20L, 10L + 2 • rp->TxHeight>;

}

else

sprintf(buf, "Xd: Xs:«, level, ttrins);

PUTTEXUbuf, 20L, 10L + rp->TxHeight);

}

OpenStuff ()

/* open intuition I graphics libraries and window •/

if (I(IntuitionBase ■ (struct IntuitionBase *)

OpenLibrary ("intuition. Iibrary" OL)))

CloseOutO;

if (KGfxBase ■= (struct GfxBase *)OpenLibrary("graphics. I ibrary" 0L)))
CloseOutO;

/* now attempt to open the main window */

if (KMoinWindow • OpenUindow(Mwindow)))
CloseOutO;

rp « MainWindow->RPort; /* rastport for graphics routines */

CloseOut ()

/• close everything up before ending •/
if (MainWindow) CloseWindow(MainWindow);
if (IntuitionBase) CloseLibrary(IntuitionBase);
if (GfxBase) CloseLibrary(GfxBase);
exit(0); /* exit program - we may be deeply nested ♦/

Redisplay(num) int num;

/* clear window, remove old gadgets, prepare and add new ones */

struct Gadget *gadg;

BOOL MoreFlag * FALSE;

int i, c;

SetAPen(rp, 0L); /* rectftll with background colour to clear */
RectFilKrp, 1L, (long)TOPGADG, (long)MainWindow->Width ■ 2

(long)MainWindow->Height - 2);
if (num > MAXGADG) {

num - MAXGADG;

MoreFlag = TRUE; /* put up "more" gadget */

/* remove all choice gadgets */
gadg « SBackGadg;

while(gadg = gadg->NextGadget)
RemoveGadgeUMainWindow, gadg);

/* render gadgets according to single-digit code at
* the start of the gadgets's intuitext */
for (i • 0; i < num; i++) <

ChoiceText[i].FrontPen - 1;

if ((c = *ChoiceText[i].IText) ■== '•' lie « '(') f
if (c « •■■) { "

•ChoiceText[i].IText « ' ';

ChoiceText[i].FrontPen « 2;

Print I Text(rp, SChoiceText[i],

dong)ChoiceGadg[i] .LeftEdge,

Uong)ChoiceGadg[i] .TopEdge);

The Transactor 68 May 1987: Volume 7, Issue O6

else

AddGsdgeUMainUindow, &ChoiceGadg[i], -1L);

if (MoreFlag)

AddGadget(MainWindow, iMoreGadg, -1L);

/* display gadget imagery (the text) */

RefreshGadgets(&BackGadg, MainWindow, NULL);

SetBackText (sflag) int sflag;

i

BacklText.IText = (UBYTE *>(sflag ?

" Previous Page " : " Previous Level ");

File "sbscreen.c"

"struct Screen *",

"struct Window •",

"SHORT",

"SHORT",

"SHORT",

"SHORT",

"SHORT",

"SHORT",

"USHORT",

"UBYTE *",

"UBYTE *",

"BYTE",

"BYTE",

"BYTE",

"BYTE",

"BYTE",

5, PTRSIZE

5, PTRSIZE

2, INTSIZE

2, INTSIZE

2, INTSIZE

2, INTSIZE

2, INTSIZE

2, INTSIZE

12, INTSIZE

4, PTRSIZE

4, PTRSIZE

3, BYTESIZE

3, BYTESIZE

3, BYTESIZE

3, BYTESIZE

3, BYTESIZE

},

),

},

),

),

),

),

),

),

),

),

>,

>,

),

J,

}

/* include not needed for Aztec C using provided makefile •/

#include "heeder/sb.h"

extern int level;

PrScreen(string, screen) char 'string; struct Screen "screen;

I

static struct StructDate structdata[] « <

< " NextScreen",

C " FirstWindow",

< "-LeftEdge",

{ "•TopEdge",

t "-Width",

{ "-Height",

< "-MouseY",

{ "-MouseX",

i " Flags",

{ " Title",

< " DefaultTitle"

< "-BarHeight",

{ "-BarVBorder",

("-BarHBorder",

I "-MenuVBorder",

{ "-MenuHBorder",

static char *flagnamestB] • {

"WBENCHSCREEN", "CUSTOMSCREEN", NULL, NULL,

"SHOWT1TLE", "BEEPING", "CUSTOMBITMAP", NULL

int i, sum, choice ■ -1;

ULONG bits;

level**;
while (choice) {

sun « SetOptionTexKstrins, structdata,

(APTR)screen, OATASIZE, 0);

switch (choice ■ GetChoice(MAXGADG ♦ 1)> {

case 1:

if (screen->NextScreen)

PrScreenC'The next screen in Intuition's list",

screen->NextScreen);

break;

case 2:

if (screen->FirstWindow)

PrWindowC'The screen's first window", screen->FirstWindow)

break;

case 9:

if ((bits « screen->Flags) & 2)

bits A« 1;

FlegPrintC'The Screen's Flags", flegnemes, bits);

break;

case 10:

PrStringC'The Screen's Title", screen->Title);

break;

case 11:

PrStringC'The Screen's Default Title", screen->DefaultTitle);

break;

case MOREGADG:

PrScreen2("Screen members (page 2)", screen, sum);

break;

level-■;

PrScreen2(string, screen, offset)

char "string; struct Screen "screen; int offset;

int i, sun, choice * -1;
level**;

while (choice) {

sun . SetOptionTexKstrins, structdata,

(APTR)screen, OATASIZE, offset)-
switch (choice « OetChoice(DATASIZE)) (

case 7:

PrRastPort(«The screen's RastPort", *scre«n->RastPort)-
break; '

case 8:

PrBitMapC'The screen's BitMap", »screen->BitMap);
break;

case 10:

if (screen->FirstGadget)

PrGadgetC'The screen's fir6t gadget", screen->FirstGadget)•
break,-

level•■;

File "sbwindow.c"

/* include not needed for Aztec C using provided makefile */
#include "header/sb.h"

extern int level;

PrWindow(string, window) char "string;

static struct StructData 6tructdata[]

struct Window "window;

< " NextWindow", "struct Window

{ "-LeftEdge", "SHORT",

< "-TopEdge", "SHORT",

I "-Width", "SHORT",

< "-Height", "SHORT",

i "-MouseY", "SHORT",

C "-MouseX", "SHORT",

{ "-MinWidth", "SHORT",

{ "-MinHeight", "SHORT",

C "-MaxWidth", "SHORT",

C "-MaxHeight", "SHORT",

< " Flags", "ULONG",

{ "(MenuStrip", "struct Menu

{ " Title", "UBYTE •",

{ "(FirstRequest", "struct Reques
C "(DMRequest", "struct Reques

static char *flagnames[32] = {

5, PTRSIZE },

2, INTSIZE },

2, INTSIZE },

2, INTSIZE),

2, INTSIZE },

2, INTSIZE),

2, INTSIZE >,

2, INTSIZE),

2, INTSIZE >,

2, INTSIZE),

2, INTSIZE),

11, PTRSIZE },

)", 5, PTRSIZE >,

4, PTRSIZE },

ter •)", 5, PTRSIZE),

ter *)", 5, PTRSIZE)

"W1NDOWSIZING",

"SIZEBRIGHT",

"BACKDROP",

"ACTIVATE",

"RMBTRAP",

NULL,

"WINDOWREFRESH",

'WINDOWDRAG",

"SIZEBBOTTOM",

"REPORTMOUSE",

"WINDOUACTIVE",

"NOCAREREFRESH",

NULL,

"WBENCHUINDOW",

"WINDOwDEPTH",

"SIMPLE_REFRESH"

"G1MMEZEROZERO",

"INREQUEST",

NULL,

NULL,

"WINDOWTICKED"

"WINDOWCLOSE",

"OTHERREFRESH"

"BORDERLESS",

"MENUSTATE",

NULL,

NULL,

int i, sum, choice ■ -1;

ULONG bits;

level**;

while (choice) {

sum = SetOptionText(string, structdata,

(APTR)window, DATASIZE, 0);

switch (choice = GetChoice(MAXGADG + D) {
case 1:

if (window->NextWindow)

PrWindowC'The next window in Intuition's list"

window->NextUindow);:

break;

case 12:

bits ' window->Flegs & -SUPERUNUSED;

switch ((bits & REFRESHBITS) » 6) {

case 0:

flagnames[6] = "SMART REFRESH";
bits |» 0x40;

break;

static struct StructData structdata Cl ■ {

{ "-WBorTop",

< "-WBorLeft",

i "-WBorRight",

{ "-WBorBottom",

< "(Font",

{ "(Viewport",

{ " RastPort",

C " BitMap",

C "(Layerlnfo",

{ " FirstGadget",

< "-DetailPen",

{ "-BlockPen",

< "-SaveColorO",

< "(BarLayer",

{ "(ExtData",

{ "(UserData",

"BYTE",

"BYTE",

"BYTE",

"BYTE",

"struct TextAttr *)",

"struct Viewport)",

"struct RastPort ",

"struct BitMap",

"struct Layer Info)",

"struct Gadget *",

"UBYTE",

"UBYTE",

"USHORT",

"struct Layer *)",

"UBYTE *)",

"U8YTE •)",

3, BYTESIZE >,

3, BYTESIZE >,

3, BYTESIZE >,

3, INTSIZE >,

5, PTRSIZE >,

0, SZ(ViewPort) >,

0, SZ(Ra8tPort) },

0, SZ(BitMap) },

0, SZUeyer Info)>,

5, PTRSIZE "),
13, BYTESIZE >,

13, BYTESIZE),

12, INTSIZE >,

5, PTRSIZE),

5, PTRSIZE >,

5, PTRSIZE >

case 1:

flagnames[6] •

break;

case 2:

f lagnames[7] ■

break;

case 3:

f lagnaflies[7] «

bits "• 0x40;

break;

"SIMPLE REFRESH"

"SUPER_B1TMAP";

"OTHER REFRESH"

FlagPrintC'Flags set in this window", flagnames, bits);

break;

case 14:

PrStringC'The Window's Title", window->Title);

break;

case MOREGADG:

PrWindow2("Window members (page 2)", window, sun);
break;

level--;

The Transactor May 1987: Volume 7, Issue O6

PrUindow2Cstring, window, offset)

char 'string; struct Window 'window; int offset;

C

static struct StructData structdataU ■ C

{ "-ReqCount",

t " WScreen",

{ " RPort",

t "-BorderLeft",

< "BorderTop",

-BorderRight",

-BorderBottom"

BorderRPort",

FirstGadget'1,

Parent",

Descendant",

{ "(Pointer",

{ "-PtrHeight",

< "-PtrWidth",

I "-XOffset",

{ "-YOffset",

"SHORT",

"struct Screen *",

"struct RastPort *"

"BYTE",

"BYTE",

"BYTE",

"BYTE",

"struct RastPort *"

"struct Gadget *",

"struct Window *",

"struct Window *",

"USHORT •)",

"BYTE",

"BYTE",

"BYTE",

"BYTE",

INTSIZE >,

PTRSIZE),

PTRSIZE >,

BYTESIZE >,

BYTESIZE),

BYTESIZE },

BYTESIZE },

PTRSIZE >,

PTRSIZE

PTRSIZE

PTRSIZE

PTRSIZE

BYTESIZE >,

BYTESIZE),

BYTESIZE),

BYTESIZE }

FlagPrintC'IDCHP flags set in this window",

IDCMPnemes, window->IDCMPFlags);

break;

case B:

PrStringC'The screen title when this window is activated"

window->ScreenTitie),•

break;

level--;

},

),

>,
},

***************** File "sbgadget.c

/* include not needed for Aztec C using provided makefile */

♦include "header/sb.h"

extern int level;

PrGadget(string, gadget) char 'string; struct Gadget 'gadget;

int i, sum, choice » -1;

level**;

while (choice) <

sum = SetOptionText(string, structdata,

(APTR)window, DATASIZE, offset);

switch (choice = GetChoice(MAXGADG + 1)) <

case 2:

if (window->WScreen)

PrScreenC'The screen referenced in the window structure",

window->WScreen);

break;

case 3:

if (window->RPort)

PrRastPortC'The window's RPort (RastPort)11, window->RPort);

break;

case 8:

if (window->BorderRPort>

PrRastPortC'The window's BorderRPort", window->BorderRPort);

break;

case 9:

if (window->FirstGadget)

PrGadgetC'The window's first gadget", window->FirstGadget);

break;

case 12:

printfC'Sorry, selection not implemented\n\n");

break;

case 10:

if (window->Parent)

PrWindow(»The 'parent' window", window->Parent);

break;

case 11:

if (window->Descendant)

PrWindow("The 'descendant' window", window->Descendant);

break;

case HOREGADG:

PrWindow3("Window members (page 3)", window, sum);

break;

level-

PrWindow3(string, window, offset)

char 'string; struct Window 'window; int offset;

static struct StructData structdataU • {

static struct StructData structdatai]

i " NextGedget",

i "-LeftEdge",

{ "-TopEdge",

{ "-Width",

C "-Height",

{ " Flags",

{ " Activation",

< " GadgetType",

("(GadgetRender1

< "(SelectRender1

{ "-GedgetText",

(«-MutualExclude»,»LONG",

{ "(Speciallnfo", "APTR)",

I "-GadgetID", "USHORT",

{ "-Useroate", "APTR",

static char *flagnames[16] • <

"GADGHBOX", "GADGHIMAGE",

"GRELRIGHT", "GRELWIDTH",

"GADGDISABLED"

"struct Gadget *",

"SHORT",

"SHORT",

"SHORT",

"SHORT",

"USHORT",

"USHORT",

"USHORT",

"APTR)",

"APTR)",

"struct IntuiText •",

5, PTRSIZE >,

2, INTSIZE >,

2, INTSIZE },

2, INTSIZE },

2, INTSIZE),

12, INTSIZE),

12, INTSIZE },

12, INTSIZE },

5, PTRSIZE >,

5, PTRSIZE >,

5, PTRSIZE >,

1, PTRSIZE >,

5, PTRSIZE),

12, INTSIZE },

5, PTRSIZE >

•GADGIMAGE",

"GRELHEIGHT",

static char *activenames[16] * C

"RELVERIFY", "GADG1MHEDIATE", "ENDGADGET",

"RIGHTBORDER", "LEFTBORDER", "TOPBORDER",

"TOGGLESELECT", "STR1NGCENTER", "STRINGRIGHT",

"AITKEYMAP", "BCOLEXTEND"

static char 'systypenames[16l • C

"SIZING", "WDRAGGING", "SDRAGGING",

"SUPFRONT", "WDOWNBACK", "SDOWNBACK",

NULL, NULL, NULL,

"REOGADGET", "GZZGADGET", "SCRGADGET",

static char 'applitypenames[16l « (

"BOOLGADGET", "GADGET0002", "PROPGADGET",

NULL, NULL, NULL,

NULL, NULL, NULL,

"REOGADGET", "GZZGADGET", "SCRGADGET",

"GRELSOTTOM"

"SELECTED",

■FOLLOWMOUSE",

"BOTTOMBORDER",

•LONGINT",

"HU'FRONT",

"CLOSE",

NULL,

"SYSGADGET"

"STRGADGET"

NULL,

NULL,

"SYSGADGET11

{ " IDCMPFlags",

< "(UserPort",

{ "(WindowPort",

C "(MessageKey",

{ "-DetailPen",

{ "-BlockPen",

{ "(CheckHark",

{ " ScreenTitte",

< "-GZZMouseX",

< "-GZZMouseY",

< "-GZZWidth",

< "-GZZHeight",

{ "(ExtData",

{ "(UserDeta",

{ "(WLayer",

static char 'IDCMPnamei

"S1ZEVERIFY",

"MOUSEMOVE",

"MENUPICK",

"REQCLEAR",

"DISKREMOVED",

"DELTAMOVE",

NULL,

NULL,

"ULONG",

"struct MsgPort •)»,

•struct MsgPort *)",

"struct IntuiMessage *)",

"UBYTE",

"UBYTE",

"Btruct Image *)",

"UBYTE *",

"SHORT",

"SHORT",

"SHORT",

"SHORT",

"UBYTE •)",

"BYTE *)",

"struct Layer •)",

SC32] - t

1,

5,

5,

5,

13,

13,
5,

4,

2,

2,

2,

2,

5,

5,

5,

PTRSIZE

PTRSIZE

PTRSIZE

PTRSIZE

BYTESIZE

BYTESIZE

PTRSIZE

PTRSIZE

INTSIZE

INTSIZE

INTSIZE

INTSIZE

PTRSIZE

PTRSIZE

PTRSIZE

>,

},

>,
>,

>,

),

>,

),

),

),

),

),

),

},

>

"NEWSIZE", "REFRESHWINDOW", "MOUSEBUTTONS".
"GADGETDOWN", "GADGETUP".

"CLOSEWINDOW", "RAWKEY",

"MENUVERIFY", "NEWPREFS",

"REOSET",

"REQVERIFY",

"DISK1NSERTED".

"WBENCHMESSAGE", "ACTIVEWINDOW", "1NACTIVEWINDOW

"VANILLAKEY", "INTUITICKS".

NULL, NULL,

NULL, NULL,

NULL

NULL,

"LONELYMESSAGE"

int i, sum, choice = -1;

level**;

while (choice) <

sun « SetOptionText(string, structdata,

(APTR)window, DATASIZE, offset);

switch (choice ■ GetChoice(DATASIZE)) {
case 1:

int i, sun, choice * -1;

USHORT bits;

level**;

while (choice) {

sum « SetOptionText(string, structdata,

(APTR)gadget, DATASIZE, 0);

switch (choice ■ GetChoice(DATASIZE)) <

case 1:

if (gadget->NextGedget)

PrGadgetC'The next gadget in Intuition's list",

gadget ->NextGadget);

break;

case 6:

bits ■ gadg.et->Flags;

switch (bits & GADGHIGHBITS) {

case 0:

flagnamesCO] • "GADGHCOMP";

bits |* 0x01;
break;

case 1:

flagnamesIO] • "GADGHBOX";

break;

case 2:

flagnamesCI] - "GADGHIMAGE";

break;

case 3:

flagnamesCI] ■ "GADGHNONE";

bits "• 0x01;

break;

FlagPrintC'Flags set for this gadget", flagnames, (ULONG)bits);

break;

case 7:

FlagPrintC'Activation flags set for this gadget",

activenames, (ULONG)gadget->Activation);

break;

case B:

bits = gadget->GedgetType;

if (bits I SYSGADGET) C

The Transactor 7O May 1987: Volume 7, Issue O6

>

)

level -

bits * (bits & OxffOO) | (1 « (((bits & OxfO) » 4)

FlegPrintC'Gadget type flags set for this gadget11,

systypenames, (ULONG)bits);

>

else <

bits ■ (bits I OxffOO) | (1 « ((bits & OxOf) - 1>>;

FlegPrintC'Gadget type flags set for this gadget11,

applitypenanes, (ULONG)bits);

>

break;

PrRastPort2CMore RastPort members", rastport, sun);

break;

******************** File "sbgfx.c" **************************

/* include not needed for Aztec C using provided makefile */

#include "header/sb.h"

extern int level;

PrBitMap(string, bitmap) char "string; struct BitMap *bit«ap;

{

static struct StructData structdateH * <

["-BytesPerRow",

{"•Rows",

{"•Flags",

{"■Depth",

{"•Pad",

{" Planes[8]",

"UWORD",

"UWORD",

"UBYTE",

"UBYTE",

"UWORD",

"PLANEPTR1

12,
12,

13,
13,

12,
. 5,

INTSIZE >

INTSIZE }

BYTESIZE >

BYTESIZE }

INTSIZE }

PTRSIZE * 8)

int i, sum, choice « -1;

I eve I++;

while (choice) (

sum ■ SetOptionText(string, structdate,

(APTR)bitmap, DATASIZE, 0);

if ((choice ' GetChoice(DATASIZE)) ■• 6)

PrPlanesC'BitPlanes belong to the BitMap", bitmap->Planes,

bitmap->Rows, bftmap->BytesPerRow);

level--:

PrPlanes(string, planes, rows, bytes)

char 'string; PLANEPTR planes!]; UWORD rows, bytes;
C

static struct StructData structdatat] • C

("

V

V

C"

C"
<"

C"

<"

BitPlane[0]"

BitPlane[1]"

BitPlane[2]"

BitPlane[3]"

BitPlaneKl"
BitPlane[5]"

BitPlane[6]"

BitPlane[7]"

"PLANEPTR"

"PLANEPTR"

"PLANEPTR"

"PLANEPTR"

"PLANEPTR"

"PLANEPTR"

"PLANEPTR"

"PLANEPTR"

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

int i, sum, choice « -1;

level++;

while (choice) <

sun « SetOptionTextCstring, structdata,

(APTR)planes, DATASIZE, 0);

choice = GetChoice(8);

if (choice >= 1 &£ choice « 8 M planestchoice - 1])

HexDLmp(structdata[choice ■ 1].membername,

planes[choice - 1], PTRSIZE, (long)(rows * bytes));

level••;

level-

PrRastPort2(string, rastport, offset)

char 'string; struct RastPort 'rastport; int offset;

static struct StructData structdataM

{"-cp_x", "SHORT",

{" minterms[8]",

{"•PenUidth",

{"-PenHeight",

{"(TextFont",

{"-AlgoStyle",

{"(TxFlags",

{"-TxHeight",

{"•TxWidth",

("•TxBaseline",

{"•TxSpacing",

{"•RPJJser",

{" wordreserved[7]'

{" longreserved[2]'

{" reserved[8]".

"SHORT",

"UBYTE",

"SHORT",

"SHORT",

"struct Font *)"

"UBYTE",

"UBYTE)11,

"UWORD",

"UWORD",

"UWORD",

"WORD",

"WORD",

"UWORD",

"ULONG",

"UBYTE",

2, INTSIZE >,

2, INTSIZE),

0, BYTESIZE * 8),

2, INTSIZE },

2, INTSIZE >,

5, PTRSIZE),

13, BYTESIZE >,

13, BYTESIZE >,

12, INTSIZE >,

12, INTSIZE },

12, INTSIZE },

2, INTSIZE >,

2, INTSIZE >,

0, INTSIZE * 7 },

0, PTRSIZE * 2 },

0, BYTESIZE • 8)

int i, sum, choice « -1;

level**;

while (choice) {

sum = SetOptionTexUstring, structdsta,

(APTR)rastport, DATASIZE, offset);

switch (choice ■ GetChoice(DATASIZE)) {
case 3:

HexDumpC'Hexdump of RastPort minterms bytes",

Srastport->ijiinterms[0], BYTESIZE, (long)BYTESIZE • 8);
break;

case H:

HexDump("Hexdump of reserved RastPort words",

trastport->wordreserved[0], INTSIZE, (long)INTSIZE * 7);
break;

case 15:

Hex0ump("Hexdump of reserved RastPort longwords",

«rastport->longreserved[0], PTRSIZE, (long)PTRSIZE * 2);
break;

case 16:

HexDumpC'Hexdump of reserved RastPort bytes",

&rastport->reserved[0], BYTESIZE, (long)BYTESIZE * 8);
break;

level--;

for Aztec make utility *•••♦*•*•••••

this makefile uses a pre-compiled header file to speed up

compiles by avoiding redundant compilation of intuition.h

OBJS = sb.o sbwindow.o sbscreen.o sbgfx.o sbgadget.o sbio.o

sb : t(OBJS)

In -w KOBJS) -Ic

PrRastPort(string, rastport) char *string

static struct StructData structdata[] • {

struct RastPort *rastport;

symbols.p : header/sb.h

cc ♦Hsymbols.p header/sb.h

S(OBJS) : symbols.p

cc +I6ymbols.p **.c

{"(Layer",

{" BitMap",

{"■Area Ptrn",

{"(TmpRas",

{"(Arealnfo",

{"(Gelslnfo",

{"-Mask",

{"-FgPen",

{"■BgPen",

{"•AOlPen",

{"-DrawMode",

{"■AreaPtSz",

{"■linpatcnt",

{"-dumy",

{"(Flags",

{"■LinePtrn",

"struct Layer *>"

"struct BitMap *"

"USHORT *",

"struct TmpRas *)

"struct Arealnfo

"struct Gelslnfo

"UBYTE",

"BYTE

"BYTE"

"BYTE",

"BYTE"

"BYTE"

"BYTE",

"BYTE"

"USHORT)",

"USHORT",

-1;

>,

},

},

>,

},

),

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

5, PTRSIZE

IS, BYTESIZE },

J, BYTESIZE >,

3, BYTESIZE >,

3, BYTESIZE >,

3, BYTESIZE),

3, BYTESIZE },

3, BYTESIZE >,

3, BYTESIZE },

12, INTSIZE >,

12, INTSIZE)

int i, sum, choice

level++;

while (choice) {

sum « SetOptionTexUstring, structdata,

(APTR)rastport, DATASIZE, 0);

switch (choice « CetChoice(MAXGAOG + 1)> {

case 2:

if (rastport->BltMap)

PrBitMapC'The BitMap for the RastPort", rastport->BitMap);

break;
case NOREGADG:

The Transactor 71 May 1987: Volume 7, Issue O6

Amiga File Structure -

A Second Look

Betty Clay

Arlington, Texas

Most readers of Transactor are familiar with the layout of the

diskettes formatted on all of the Commodore drives prior to the

Amiga. We have studied the books by Dick Immers and Gerry

Neufeld, read the articles by Mike Todd of ICPUG, and we have

learned about header gaps, tail gaps, and GCR. We know that the

directory is on track 18 (or 39 on the 8050/8250), that the number

of sectors increases as the head moves out to the edge of the disk,

and that the 4040, 2031, 1541, and 8050 drives write on the

bottom of the disk only. Most of us are adept at using track and

sector editors on those drives. This knowledge can help us on the

Amiga, but these diskettes are organized in a very different way.

PHYSICAL LAYOUT

The Amiga diskettes are laid out in tracks and sectors, but each

side of the disk has tracks numbered from zero through seventy-

nine. Each of these tracks (160 in all) has eleven sectors. Two

similarly numbered tracks from opposite sides of the disk make a

cylinder with a total of twenty-two sectors. These sectors are

numbered sequentially from zero through 1759, and the sector

number is stored within the sector. The cylinders are numbered

from the outside in. That is, cylinder zero is the outermost, and

cylinder 79 is nearest the center. The sectors begin at cylinder 0,

sector 0, surface 0 (the top side).

The drives have two heads that move in unison, but they can be

addressed individually. Head zero is on the upper side of the disk,

and head number one is below. The heads are moved to the

desired track with a SEEK command, and the entire track is read in

with a CMD_READ or and ETD_READ command. These, and

other commands, are used by the track-disk device to control the

drives. There are programs available to control the drives for C

programmers and for assembly language programmers, but I have

not found a way to make the necessary .bmap files to control them

from BASIC.

The data is written in MFM (Modified Frequency Modulation)

format, and is encoded or decoded in the blitter chip. It is possible

to set the drive to write in GCR, but this mode reads or writes at half

the speed of MFM. Someone will probably find a way to use this

mode so that we can read the normal Commodore disks with the

Amiga, and we are not likely to complain about speed if this ability

becomes possible.

LOGICAL LAYOUT

Each of the eleven sectors on a track has a sector-header of 16

bytes, plus 16 bytes that are reserved for future use, and 512 bytes

of 'usable data', so our 880K diskettes also contain 55K of label

data, making a total of at least 935K bytes per disk (there is a hint of

28K more). There are no header gaps or tail gaps, but each track

has one gap made up of nulls. Since each track has the same

number of sectors, one would assume that the gap of nulls grows

longer toward the outer edge of the disk.

The header or label area has the same pattern for all sectors, but

the 512 bytes of data are organized differently according to the type

of block. In a data file, there are 24 bytes of identification at the

beginning of the sector, followed by 488 bytes of actual data. A

directory block or a file header block has 24 bytes (six long-words)

for sector number, file type, checksum, etc., at the beginning of the

block, 288 bytes of hash-table or data, and fifty long-words for the

file name, comment, date, forward and backward pointers, etc., at

the end of the block.

On an Amiga disk, some information is coded in 8-bit bytes, some

in 16-bit words, and some in 32-bit long-words. A 'byte' still

means 8 bits, but we must distinguish between 'words' and 'long-

words.' In the diagram below, all of the 'words' are actually 32-bit

long-words.

DIAGRAM OF BLOCK LAYOUT

For any type of sector:

Label area: 2 bytes of 00

2 bytes of Al (a sync byte in MFM)

1 byte of format type (FF on 1.0)

1 byte of track number

1 byte of sector number

1 offset byte - MORE ABOUT THIS BELOW!

16 bytes of operating system recovery info (not cur

rently used)

4 bytes of header checksum

4 bytes of data-area checksum

For a data block, such as a sequential file:

Data Area: 1 word of file type

1 word for header key (sector where file begins)

1 word for the sequence number of this block

1 word for number of bytes of data in the block

1 word for the number of the next block in file

1 word for the checksum

up to 488 bytes of data

Or for a root directory block:

Data Area: 1 word of file type

1 word of sector number

1 word of file length

1 word of hash-table size

1 word not used

72 words of hash-table

1 word of bit map flag

25 words of bitmap pages (instead of BAM)

3 words of date and time last altered

13 words of disk name

3 words of date and time of disk creation

3 words of forward and backward pointers

1 word of secondary file type

The Transactor 72 May 1987: Volume 7, Issue O6

The software is written to allow for sectors of a different length in

the future versions. Instead of pointing to a particular word, the

identifying information in the last fifty words are accessed with

'Block-size - n', where 'n' is the number of longwords before the

end of the sector.

READING THE DISK

When the SEEK command is given, the heads move in unison to

the designated track. Upon receiving the READ command, the

heads read continuously for two full rotations of the disk, bringing

in the contents of an entire cylinder. Eleven sectors from one side

of the disk are read into one buffer, and the eleven from the other

side go into another. The heads do not wait for a sync mark, and

make no effort to find a particular sector. They do not even check

for the beginning of a sector! They just read in the data from

whatever part of the track is under the head when the READ

begins. The data is decoded by the blitter and the decoded bytes

are placed in the track buffer as they came from the disk. It is this

manner of reading that makes the offset byte of the label area so

important.

THE OFFSET NUMBER

The very first time a track is written to the disk, it will be written

with a gap of null bytes, and then the eleven sectors in numerical

order. In the track buffer, this first write would have this form:

Sector No. 0 123456789 10 nulls

Offset No. 11 10 98765432 1

and it would be encoded for the disk in the exact order it has in the

buffer. The offset number tells the data pointer how many more

sectors must be read or written before it reaches the gap of nulls.

When this sector is read back, however, the heads are not likely to

begin reading at the gap, nor at sector 0. Suppose that sector 7 were

under the head at the beginning of the READ. Then the track

buffer would be like this:

Part of sector 7 Gunk) and then:

Sector No. 8 9 10 nulls 0 12 3

Offset No. 3 2 1 11 10 9 8

4 5 6 7 (more junk)

7 6 5 4

Once in the track buffer, the pointer will find the first sync mark

and block move the data in sectors 8, 9, and 10 so that sector eight

is aligned with the beginning of the track buffer. Then it will move

past the nulls to find the next sync mark and move the remaining

sectors up to join the first ones, leaving the nulls at the end of the

buffer. When a sector is needed for use, the software sorts through

the sectors in the buffer, and brings in the ones that are needed.

The disk need not be read again until there is need to read a

different track. If the data has been changed, the current track will

be written back to the disk before the next track is read in.

When our hypothetical track is written back to the disk, the sectors

retain their original numbers, but not the original position. So now

the sector offsets will be changed to agree with the new order of the

sectors:

Sector No. 8 9 10 01234567

Offset No. 11 10 98765432 1

nulls

Each time the track is re-written, the sector offsets will be

changed, and the computer uses the offset numbers to find the

correct sector. This method of writing the sectors to the track, and

the practice of reading an entire track each time, removes the need

for interleaving and header- or tail-gaps, allowing about twenty

percent more information to be put on the disk. By reading an

entire track sequentially, disk access is much faster and more

efficient.

MFM ENCODING

When data is encoded in MFM, an extra digit is placed in front of

each bit to ensure that there will never be two Ts' in a row, nor

more than four zeros in a row. In MFM, a '1' bit becomes '01'. A '0'

bit will be encoded as '00' if it follows a' 1' bit, but as '10' if it follows

a '0' bit. Thus, for every bit of data to be recorded, two bits are

actually written. The Amiga software, using the blitter chip for

encoding and decoding, separates the odd bits from the even bits.

First the odd bits are encoded and written out; then the even bits

are shifted left one position, encoded, and written behind the odd

bits on the disk. When the data is read back, the blitter chip

removes the extra leading zeros and ones that were added for

encoding, leaving 'holes' between the odd bits for the even bits to

fall into.

The encoding process for the sector labels is interesting. The first

four bytes of the label are encoded as separate bytes—first the odd

bits, then the even bits of each byte. Then the next four (the

format, track number, sector number, and offset) are encoded as

one long-word. The 16 bytes of operating system recovery infor

mation are encoded as a block of 16 bytes. The header checksum

and the data-area checksum are each encoded as one long-word.

The 512 bytes of the data-block are encoded as a single block of

data—the odd bits of all 512 bytes, and then the even bits.

A BIT OF MATHEMATICS

Disks are timed to rotate at 300 revolutions per minute. For GCR

encoding, the Amiga writes at a rate of four microseconds per bit.

In MFM, it requires only two microseconds per bit. At 300 revolu

tions per minute, there would be five revolutions per second, or

two hundred milliseconds per revolution. Two microseconds per

bit permits the writing of 100,000 bits per revolution. It takes two

MFM bits for each actual data bit, though, allowing a maximum of

50,000 data bits per track. We have 160 tracks, making 8,000,000

possible data bits, or 1,000,000 bytes per disk. We have accounted

for 957,440 bytes (935 * 1024), excluding the gaps of nulls. Isn't

this remarkable efficiency?

AND A MYSTERY

There is a mystery about the sector labels. The ROM KERNAL

MANUAL says that there is a 16-byte section of descriptive data for

each sector, a total of 27.5K bytes. The drive, it says, does not

interpret these sections unless the programmer has instructed it to

do so. This cannot be the label area described above, because the

information in that area must be interpreted for normal drive

operations. Does this refer to the 16 bytes the RKM says are

currently unused, but are to be used for operating system recovery

information? Or is there another descriptive label area? Have YOU

found the answer to this mystery?

The Transactor 73 May 1987: Volume 7, Issue O6

Amiga Dispatches
by Tim Grantham, Toronto, Ontario

"And on the third quarter, Commodore arose."

I don't know about you but 1 got a big kick out of the fourth annual World of

Commodore show, held at the International Centre in Toronto during the

first week of December. After a year of being kept on the edge of our seats,

it was very satisfying to actually see the Sidecar, the Genlock and DOS 1.2

working and up for sale. True, Sidecar cost about $400 too much (I mean,

really, you can get a Commodore PC 10II for $1000 and that comes with a

keyboard), and the Genlock wasn't quite ready for sale, but these were

minor flies in the soup. With plenty of exhibitors, vendors and visitors, the

whole show positively radiated optimism and good times returned for

Commodore.

It was also a chance for me to meet the faces attached to the handles - if

you spend any time on the information networks you know what I mean

by that. 'Hazy' Dave Haynie (author of Disksalv), John Foust (editor of

Amazing Computing), Larry Phillips (sysop of the Amiga forum on The

Source) from Vancouver, and Brian Niessen and Wayne Schmidt (assistant

sysops on the Commodore Forums on CompuServe), Dave Paul... it was a

pleasure to actually meet them all face to face and exchange news and

views. The press was there in force - the Transactor, of course, repre

sented by the usual gang of idiots; Run and AmigaWorld, fronted by

publisher Steven Twombly and editor Guy Wright; Henry Shilling and

Linda Byrket Shilling of Ami Project; and Chris Willey of AmiTalk.

Other personages present included Jim Butterfield, Paul Higginbottom

(author of LPD Writer), Vladimir Schneider (author of Professional

Text Engine) and Bob Hoover of Mimetics (author of SoundScape).

All the major Amiga software companies were there, with the exception of

the game companies. (With the money Electronic Arts is making on the

Amiga I'm not surprised they didn't feel the need to show up, though they

have been there in the past.) The number of major vendors made for some

healthy competition: by show's end, a 512K Amiga with 1080 colour

monitor could be had for $1650 (Cdn.). And who ever thought Computer-

land would actually exhibit at a lowly Commodore show? (1 shouldn't

sneer. Computerland has done fairly well with the Amiga, and even better

with the PC 10 II. They'll be especially happy now that Commodore is

coming out with an AT compatible.)

What follows is not in any particular order; nor is it necessarily a balanced

view of the Amiga products exhibited - one of the nice things about the

show was that there was so much to see, I'm not sure I saw it all. My

apologies to anyone I've left out.

• Very Vivid - Without a doubt, the hit of the show. This product

received its premiere at the World of Commodore show, as part of the

"Crickets" multimedia performance and blew everyone away. It's not easy

to describe but try to imagine the following: a dancer stands in front of a

video camera, dressed in white. On the Amiga's screen, and on the other

monitors around the stage, we see his image in silhouette, moving on a

background graphic generated by the Amiga, a version of Leonardo da

Vinci's famous sketch of a multilimbed man standing inside a circle. The

performer reaches out. His digitized image on the Amiga screen reaches

out and his hand touches a small circle. Simultaneously, a synthesizer

connected via MIDI to the Amiga plays the first note of the opening fanfare

from Also Sprach Zarathustra. The performer, or rather his image,

touches other small circles above his head on the screen. Each time, the

circles pulse and produce the notes of the fanfare, a different note, and

sometimes a different timbre, being triggered on the synthesizer by each

circle. As the fanfare ends, he reaches up and touches yet another circle

and the background switches to a strange landscape. The two musicians

accompanying him start playing.

If we were to look at the performer in front of the camera, we would see a

human against a plain backdrop making odd gesticulations into thin air.

But our eyes are glued to the monitors, as we watch him jam with the

musicians, quickly touching this Amiga object for this sound, and another

object for that one. We watch as his image grasps one coloured circle and

paints the screen with it; then another, and another, until he stands amid

coils of colours. In one quietly amazing sequence, two coloured spheres

attach themselves to his arms, and stick there, lolling back and forth as he

waves his arms. Then, he snaps his arms, and the spheres detach, change

into birds, and fly off in opposite directions.

And so it went, effect after dazzling effect, beautifully conceived and

professionally performed, for a solid 20 minutes. The applause was

tumultuous and there were shouts of 'Bravo!'. I saw it three times.

The potential for this kind of product is mind boggling - not just for

performance applications but for production houses, educational pro

grams, therapeutic programs and - let's get serious, here - games! For the

first time, you, or a very reasonable facsimile thereof, will be able to

actually enter a game. And you thought Tron was idle fantasy.

• SoundScape, by Mimetics. This marvelous MIDI sequencer was used

to control not only the synthesizers in the "Crickets" performance but the

lights and video sequences as well. Electronic Arts has apparently written a

module for SoundScape that will let their Deluxe Music Construction

Set print SoundScape files. SoundScape has all the signs of becoming

the MIDI music software for the Amiga.

• Draw Plus and Sonix - Aegis Development were running their CAD

software on a packaged system they are co-marketing with Roland and

Commodore: a 512K Amiga, 1080 colour monitor, and a DXY 880 or 980

plotter. I've since had a closer look at Draw Plus: it's impressive software

that comes with good documentation and plenty of example drawings and

parts libraries. However, I am no design engineer and really have nothing

to compare it to. Sonix is the reincarnation of Musicraft with MIDI

capability and IFF compatibility added.

• PageSetter and Publisher - Commodore is now touting desktop

publishing programs like these two, published by Gold Disk and Brown-

Wagh, respectively, as the application that will make the Amiga take off.

While these programs certainly go well beyond Print Shop, they must be

The Transactor 74 May 1987: Volume 7, Issue O6

improved before they can compete with the likes of PageMaker: Gold

Disk does not appear to have kerning, for example (a process of adjusting

the space between letters depending on their shape), and neither has

Postscript capability, though both claim that such will soon be available.

The Macintosh will always have a lead in this field: as Henry Shilling of

AmiProject magazine reminded us in a TPUG panel discussion on the

future of the Amiga, the pixel size on the Mac's screen is exactly 1/72", or

one 'point' in typsetting jargon - in other words, it was designed from the

desktop up for publishing applications.

• System Monitor - This nifty utility is put out by a small American firm

called Zen Software. It may just be the product that will let Jim Butterfield

really find out what the hell is going on in the Amiga Kernel. Among other

things, it lets you assign a monitor window to any task and track its current

status, resource allocation, and CPU usage.

• Professional Text Engine - from Zirkonics of Montreal. If you ever

wished your favourite text editor had commands to, say, reverse the order

of adjacent characters or assign custom format commands to 'hot' keys,

this programmable text editor is the answer. Not only is the keyboard fully

programmable, using a simple macro language, even the drop-down

menus and the action of the mouse buttons can be customized. The

number of files that can be open at once is limited only by the memory

available. You can cut and paste freely between any file. Configuration files

to allow PTE to act like other editors, such as Wordstar, are available. But

the fun is programming it for all the features you couldn't have before.

Pretty good, for $150 (Cdn.).

• DOS-2-DOS - This is a utility that provides translation between

AmigaDOS and MS-DOS, stripping high bits if necessary, and taking care

of the linefeed/carriage return combinations. The software can also format

both kinds of disks, and search through sub-directories. When I pointed

out to the saleswoman that such utilities are provided in AmigaDOS 1.2,

she started to squirm, but pointed out that DOS-2-DOS permits use of

wildcards that can be used to automate the process to some extent.

• Key to C - another product worthy of note (grin). This is a library of

functions written in C for C programmers that closely approximate BASIC

statements and functions.

Other software at the show: Pro Video CGI-1, from JDK Images, a video

character generator; B.E.S.T. business management and accounting pro

gram, from Business Electronics Software & Technology; MiAmiga File II

file management software, MiAmiga Word word processor, MiAmiga

Ledger general ledger, all from SoftWood Company; JetSet, utilities and

fonts for the Hewlett-Packard LaserJet+ laser printer, from C Ltd.; Order

desktop organizer from Northeast Software Group; Datamat program

mable database software, from Transtime Technologies Corp, being mar

keted in Canada by Creative Systems; LPD Planner and LPD Writer,

spreadsheet and word processing software from Digital Solutions; Zing!, a

mouse-driven CL1, from Meridian Software; ProWrite multiple-font

word processor, from New Horizons Software; a version of Superkit for

the Amiga from Prism Software; and Superbase and Logistix program

mable database and integrated spreadsheet, from Progressive Peripherals.

What was particularly encouraging about the products shown at the show

was not so much what they did, but what they made possible. Sound-

scape, Very Vivid, PTE and others are marvelous because they have

been designed in the spirit of the machine - open-ended, smoothly

multitasking, providing the user with the most flexible tools possible for

her/his endeavours.

And the hardware...

• Amiga Sidecar - Complete and for sale. Everything works as prom

ised, including the ability to stick 2 megs of RAM in the Sidecar for use by

the Amiga.

• Genlock - Ditto, almost, it should be for sale by the time you read this.

(I know, 1 know, I've said that before.)

• DigiView - Tim Jenison, the developer, was at the show and demon

strated the improvements: cleaner images, motorized filter wheel, and

editing functions - impressive product.

• Both Xetec and C Ltd. were selling SCSI interfaces and 20 Meg

hard-drives for the Amiga for $1000 (US). Both permitted daisy-

chaining of further SCSI devices and both came with Amiga driver

software. As with the Microforge and Tecmar units, the Xetec controller

suspends operation of all other tasks on the Amiga during reads and

writes; I assume this is also true of the C Ltd. product.

• C Ltd. was also selling their aMEGA 1 megabyte memory expansion

units for the Amiga. They were joined by Comspec's AX2000 2 megabyte

board, and RS Data Systems' Pow*r*card, which can attach up to the full

8 megabytes of RAM. This last is an imposing unit which offers a lot of

memory at very reasonable cost. However, it is not auto-configuring: it has

to be added by calling 'addmem' in the startup-sequence.

A few of these memory expansion units (such as the ASDG Inc. RAM

board, Side Effects's Side-Store, and the Microbotics unit) come with

virtual disk capability. This works just like the RAM: disk but it can be write

protected. This means that should your Amiga crash while testing out your

latest tic-tac-toe game, say, you can reboot and the files in the virtual disk

will still be intact - your source and include files wouldn't need any

reloading... a tremendous convenience.

• Perfect Sound, from SunRize Industries, is a stereo sound digitizer for

the Amiga that comes with very good sound sample editing software. It is

currently the only stereo digitizer and sells for the extremely reasonable

price of $79.95 (US).

I'll finish this installment of A-D with some news about expansion

hardware that I was unable to put into the last column. I was hoping to see

this stuff at the WOC but little of it was shown. Nevertheless, it is very

heartening to see the broad variety of products available. There are

expansion boxes like the PAL unit from Byte-by-Byte, the Turbo

Amiga from CSA, and the Side-Arm from Side-Effects - they come in all

shapes and sizes but most offer at least two slots for 100-pin Zorro

standard option boards. You can fill them with RAM boards, SCSI inter

faces and hard drives, DMA hard drives, coprocessor boards, tape backup

drives - the list goes on and on.

One company in particular drew my attention with their Ethernet and

ARCNET interfaces. Ameristar Technologies also supplies a version of

Sun Microsystems's Network File System (NFS) with the Ethernet

interface that enables the Amiga to act as a graphics workstation on a

network with Sun workstations and other computers using an implemen

tation of NFS. Each interface is available in either a bus or backplane

version (86-pin or 100-pin). These capabilities, combined with the copro

cessor boards from CSA and others, are making the Amiga a serious

engineering workstation computer.

The essential features to look for in any expansion hardware are threefold:

if it is a bus attachment, does it have a pass-through? Does it auto-

configure? And is it a no wait-state device? If the manufacturer answers yes

to all of these, then you are safe to pass on to more mundane matters, such

as price, quality and availability.

Finally, my apologies to any of you who have sent me mail on Compu

Serve or PeopleLink. I was without a modem for over a month and was

unable to respond. After suffering acute withdrawal symptoms, I have

managed to obtain another, so if you have any questions or comments, you

can reach me at CIS 71426,1646 or PeopleLink AMTAG. Until next time,

may your mouse never squeak.

The Transactor 75 May 1987: Volume 7, Issue O6

Compu-toons

U/M6 fi MA//- HAS SAV£D ZJS 4S0O,0Ooi
e>uT, we /-ost -$750,600 for hot &ein&

to /js£ THe excuse T«e check /s iNrn

We're

j'M SoKRV fo &0T>1£ft YOU

YonR A\OHPAVS,MS. THoMh

E>UT / CA/VT /VA/P 'IV' /

OF t\UHT kHD PECK £>o&'s aactiesriofi To Torn the
officg RApff?Kss wasn't Receive?

The Transactor 76 May 1987: Volume 7, Issue O6

News BRK

Submitting NEWS BRK Press Releases

If you have a press release you would like to submit for the NEWS BRK column,

make sure that the computer or device for which the product is intended is

prominently noted. We receive hundreds of press releases for each issue, and

ones whose intended readership is not clear must unfortunately go straight to the

trash bin. It should also be mentioned here that we only print product releases

which are in some way applicable to Commodore equipment. News of events

such as computer shows should be received at least 6 months in advance.

Transactor News

Transactor Currency Standard Decreed

After a long day sweating in the Transactor Abbreviations Laboratory (TAL), our

scientists have come up with a new convention that will be Official Transactor

Policy (OTP) from now on. The rest of the world is invited to follow suit. Without

getting too technical, the idea is this: prices for our mail order products (MOPs)

and for products listed here in News BRK, will henceforth be given in one of

three forms: $xx (Cdn) for Canadian prices, $xx (US) for US prices, and $xx (US/

C) when the specified amount is to be paid in Canadian dollars by Canadians,

and US dollars by Americans. For an example of the new US/C abbreviation in

action, please refer to the final paragraph of the following announcement

(FPotFA).

Subscription Intersection Set

On closer inspection we have found the overlap of TPUG members and

Transactor subscribers to be about 1000, not 400 as previously reported. During

our first comparison, many went undetected due to differences between the two

mail list databases. It seems that a computer just can't tell if two names are the

same when a middle initial is included in one but not the other. To compensate, a

program was written that bordered on artificial intelligence. However, it's still

possible that some matches were missed, especially if the postal/zip code was

different in the two databases. So, if you're a TPUG member AND a Transactor

subscriber, and you're still getting two issues, please let us know and the two will

be combined.

Combining subscriptions has also proved to be an exercise in mind bending. We

had hoped to have updated the expiry date for all the combined subscriptions by

this issue. However, only those TPUG members whose memberships would

have expired before receiving this issue have had their expiry dates extended.

The remaining TPUG/Transactor combinations will have their expiry dates

updated by next issue.

Check your last magazine. If the expiry date shows "Dec 86" or "Jan 87", then

your expiry date should now be extended by "the number of issues remaining in

your Transactor subscription, times two months". When this date actually

arrives, you should have received the same number of magazines shown in the

table published in News BRK last issue.

At this point you'll receive a renewal notice. The notice will come from TPUG

because the combination is done by merging the two into the TPUG database.

Naturally you should renew to one OR the other. Renewing to both will mean

you'll start getting two magazines all over again, and after we get this situation

sorted out, we'd like it to be eliminated for good. The fact is, we could make a

career outa this. So, after all the existing overlapping memberships/

subscriptions have been combined and extended, any and all new ones will get

two magazines; one with an insert from TPUG, and another without an insert

from us. This applies mainly to those who are currently Transactor subscribers

and are not TPUG members, but considering becoming one.

If you're renewing a subscription, or subscribing for the first time, you'll have the

choice of getting the regular magazine (no TPUG insert) or becoming/remaining

a TPUG member, and getting the 8-page TPUG insert as part of your Transactor.

If you want just the Transactor, use the insert card in the magazine to subscribe/

renew. If you want the insert as well, send your TPUG renewal form to TPUG

(they'll send it to you before your current membership expires) or, if you're not

currently a member, contact them about becoming one. The current cost of a

TPUG 'associate' membership is $25.00 (US/C). For that you get the insert plus

access to TPUG's large public domain disk library, neither of which comes with

the $15.00 (US/C) subscription to the Transactor.

Disk Subscription Notes

Many of those who fall into the intersection set described above also have

Transactor Disk subscriptions. These will still be handled by us, and when they

expire, a notice will be sent. Some have pointed out that, "we would find it mush

easier to renew to both if they were to both expire at the same time. Now that our

memberships/subscriptions have been combined, the magazines end at one

issue and the disks at another". Good point. What we suggest is this: when you

renew your disk subscription, add $7.50 (US/C) for every disk necessary to

make your disk and magazine subscriptions concurrent.

Toronto CompuServe Node

The direct dial port to CompuServe in Toronto is 752-4150. This number has

been in effect since September '86. However, the CompuServe Intro-Paks that

were bound into the Gizmos and Gadgets issue (released Oct. 1) still show the old

number. If you haven't used your Intro-Pak yet, please make a note in the list at

the back of the booklet.

Free Transactor T's with Mag+Disk Subscription

Subscribe or renew to a combination magazine and disk subscription, and we'll

send you a free Transactor T-Shirt! You save 29% off the magazines, 16% off the

disks, and get a Transactor T worth $ 13.95 ($ 17.95 if you order the jumbo size!)

The T-Shirts come in 5 sizes (red only), with a 3-color screen featuring Duke, our

mascot, dressed in a snappy white tux, standing behind the Transactor logo done

in yellow with black "3-D" borders. The screen was done using a special "super-

opaquing" process that cost us quite a bit more than those decals that crack and

fade. Mine has been through the wash at least 25 times now, and it still shows

virtually no sign of wear due to "washing machine punishment".

Subscriber Mail Orders

If you're a Transactor subscriber, and you're using the postage paid order card to

purchase items other than a subscription, please write your subscriber number

on the card. This way your order is recorded along with your subscription

information in our database.

Customs/Duty on Hardware Products

Shipping hardware to the US from Canada often incurs customs and/or duty

charges at the destination. Some of our suppliers are in the US and for US orders

processed by us, we have the items shipped direct without bringing them into

Canada. However, other hardware items manufactured in Canada and sent to US

destinations may arrive with a surcharge payable. The Transactor cannot be

responsible for these charges. This may also add to delivery delays. If you've

placed an order for a hardware item and it seems to be taking a rather long time

to arrive, it may be sitting at your local customs office, in which case a notice is

probably on its way for you to come pick it up.

The Transactor 77 May 1987: Volume 7, Issue O6

Sold Out!

The Toolbox from Pro-Line, PAL and POWER for the 64, is now sold out.

Refunds will be sent for any orders beyond what could be filled.

Volume 4, Issue 03 and Volume 5, Issue 02 (The Transition to Machine Language

issue) are now only available on microfiche.

Transactor Mail Order

The following details are for products listed on the mail order card. If you have a

particular question about an item that isn't answered here, please write or call.

We'll get back to you and most likely incorporate the answer into future editions

of these descriptions so that others might benefit from your enquiry.

■ Moving Pictures - the C-64 Animation System, $29.95 (US/C)

This package is a fast, smooth, full-screen animator for the Commodore 64,

written by AHA! (Acme Heuristic Applications!). With Moving Pictures you use

your favourite graphics tool to draw the frames of your movie, then show it at full

animation speed with a single command. Movie 'scripts' written in BASIC can

use the Moving Pictures command set to provide complete control of animated

creations. BASIC is still available for editing scripts or executing programs even

while a movie is being displayed. Animation sequences can easily be added to

BASIC programs. Moving Pictures features include: split screen operation - part

graphics, part text - even while a movie is running; repeat, stop at any frame,

change position and colours, vary display speed, etc; hold several movies in

memory and switch instantly from one movie to another; instant, on-line help

available at the touch of a key; no copy protection used on disk.

■ Volksmodem 12, w/cable, and CIS Intro-Pack, $329.00 (Cdn), $199 (US)

Not only do you get the Volksmodem 12 (DOC approved), but you get the cable

at no extra charge (the C64 cable goes directly onto the User Port, and the RS232

cable is for any standard RS232 DB-25 female connector) Plus you'll receive a

free CompuServe Intro-Pak which contains a User ID, a Password, and $15.00 of

connect time! The Volksmodem 12 will work at 300 or 1200 baud, and is "Hayes

compatible" so it will work with virtually any terminal software because the

commands are controlled by you from the keyboard - just type "AT" (for

ATtention) and follow with any of several easy-to-remember commands - no

special POKing or elaborate dialing routines necessary! (I've been using a Hayes

for almost 3 years, and my Volks for over a year -1 love them both! - KJH) It

comes with (get this) a 5 year manufacturer's warranty on parts and labour! The

modem is shipped insured via UPS at no extra charge.

■ Intelligent I/O Interface Cards

■ BH100 I/O Interface Card w/documentation $129 (US), $199 (Cdn)

■ BH100-AD8 8-Channel A to D Conversion Module $45 (US), $69 (Cdn)

■ BH100 Beginners Course $159 (US), $239 (Cdn)

■ BH100-S Security System $25 (US), $39 (Cdn)

These products from Intelligent I/O will make great Christmas gifts! And if

you've been wondering what to do with that VIC 20 that doesn't get much

attention anymore, they're perfect! If you've ever wanted to start doing some real

world interfacing, real easy, and inexpensively, then these items are ideal. The

boards they sent us for evaluation are currently watching for floods in my

basement. Too bad I didn't think of it before the flood - it only took about an hour

using spare parts I had lying around - no resistors, no capacitors, just two strips

of metal, a piece of styrofoam, a brick, and about 20 feet of wire that was also

collecting dust. Once I get time, I intend to make it do some more surveillance

since only one channel is currently in use. And the program to do it? A quick and

messy 5 lines! Since the boards are memory mapped through the cartridge port,

a PEEK is all you need! The 22 page manual is clear and concise. All products

come with a 90 day manufacturer's warranty. Shipped insured via UPS at no

extra charge.

■ Transactor T-Shirts, $13.95 and $17.95 (US/C)

As mentioned earlier, they come in Small, Medium, Large, Extra Large, and

Jumbo. They're 13.95 each, $17.95 for the Jumbo. The Jumbo makes a good

night-shirt/beach-top - it's BIG. I'm 6 foot tall, and weigh in at a slim 150 pounds

- the Small fits me tight, but that's how I like them. If you don't, we suggest you

order them 1 size over what you usually buy. The design is screened using a

"super-opaquing" process so they wear much longer than your ordinary screens

and iron-ons.

■ The Transactor Book of Bits and Pieces *1, $14.95 (US/C)

Not counting the Table of Contents, the Index, and title pages, it's 246 pages of

Bits and Pieces from issues of The Transactor, Volumes 4 through 6. Even if you

have all those issues, it makes a handy reference - no more flipping through

magazines for that one bit that you just know is somewhere... Also, each item is

forward/reverse referenced. Occassionally the items in the Bits column ap

peared as updates to previous bits. Bits that were similar in nature are also cross-

referenced. And the index makes it even easier to find those quick facts that

eliminate a lot of wheel re-inventing.

■ The Tr@ns@ctor 1541 ROM Upgrades, $59.95 (US/C)

You can burn your own using the ROM dump file on Transactor Disk * 13, or you

can get a set from us. There are 2 ROMs per set, and they fix not only the SAVE®

bug, but a number of other bugs too (as described in PA. Slaymaker's article, Vol

7, Issue 02). Remember, if SAVE® is about to fail on you, then Scratch and Save

may just clobber you too. This hasn't been proven 100%, but these ROMs will

eliminate any possibilities short of deliberately causing them (ie. allocating or

opening direct access buffers before the Save).

■ The Micro Sleuth: C64/1541 Test Cartridge, $89.95 (US), $129.95 (Cdn)

This cartridge, designed by Brian Steele (a service technician for several schools

in southern Ontario), will test the RAM of a C64 even if the machine is too sick to

run a program! The cartridge takes complete control of the machine. It tests all

RAM in one mode, all ROM in another mode, and puts up a menu with the

following choices:

1) Check drive speed

2) Check drive alignment

3) 1541 Serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

A second board, that plugs onto the User Port, contains 8 LEDs that lets you zero

in on the faulty chip. Complete with manual.

■ Inner Space Anthology $14.95 (US/C)

This is our ever popular Complete Commodore Inner Space Anthology. Even

after a year and a half, we still get inquiries about its contents. Briefly, The

Anthology is a reference book - it has no "reading" material (ie. "paragraphs").

In 122 compact pages, there are memory maps for 5 CBM computers, 3 Disk

Drives, and maps of COMAL; summaries of BASIC commands, Assembler and

MLM commands, and Wordprocessor and Spreadsheet commands. Machine

Language codes and modes are summarized, as well as entry points to ROM

routines. There are sections on Music, Graphics, Network and BBS phone

numbers, Computer Clubs, Hardware, unit-to-unit conversions, plus much

more... about 2.5 million characters total!

■ AX 1000 Amiga 1 MEG RAM Box $729.00 (+$ 100 S&H) (US),

$1035.00 (+$25 S&H) (Cdn)

■ AX2000 Amiga 2 MEG RAM Box $899.00 (+$ 100 S&H) (US),

$1276.00 (+$25 S&H) (Cdn)

The AX2000 adds 2 Megabytes of "fast" RAM to the Amiga, allowing more tasks

to run in the system at once, or for use as a fast RAM-drive. The unit plugs into

the expansion connector on the side of the Amiga and duplicates the connector

for other devices to plug into. Up to two RAM boards may be plugged in together

(limited by the Amiga'a power supply), adding 4 Megabytes. The box has "auto-

config", so with Kickstart 1.2 the RAM will automatically be added to the system

when it is booted. If you are using Kickstart 1.0 or 1.1 (no auto-config), you can

use the program included with the AX2000 to add the memory to the system,

and change your startup-sequence to automatically add the memory on power-

up. Standard expansion bus architecture was used in the design of the AX2000,

ensuring compatability with all peripherals and operating system releases. The

The Transactor 78 May 1987: Volume 7, Issue O6

unobtrusive steel box is the same height and colour as the Amiga, and snugs up

to the side without taking up much extra space. The unit is built tough and comes

with a 1 year manufacturer warranty.

This seems to be the most highly-recommended Amiga RAM board, and the first

one to actually be available, so we're selling it here at The Transactor. You can

order the AX2000 or the 1-Meg AX1000 from the subscription form in this issue.

Shipping and Handling to the USA. is via courrier and includes all customs

clearance, or you can opt to clear shipments yourself and have it shipped

"collect".

■ Superpak 1.0 C64 $49.95 (US), $59.95 (Cdn)

■ Pocket Writer C64 $29.95 (US), $39.95 (Cdn)

■ Pocket Planner C64 $29.95 (US), $39.95 (Cdn)

■ Pocket Filer C64 $29.95 (US), $39.95 (Cdn)

■ Superpak 1.0 C128 $59.95 (US), $69.95 (Cdn)

■ Pocket Writer C128 $39.95 (US), $49.95 (Cdn)

■ Pocket Planner C128 $39.95 (US), $49.95 (Cdn)

■ Pocket Filer C128 $39.95 (US), $49.95 (Cdn)

■ Pocket Dictionary $14.95 (US), $19.95 (Cdn)

Version 2.0 of the software trio from Digital Solutions is now in production. The

new packages include both the 64 and 128 versions on the same disk. Each 2.0

Pocket package will sell for $59.95 (US), or $84.95 (Cdn). A Superpak will

include all three for $99.95 (US) or $139.95 (Cdn). The Pocket Dictionary is still

$14.95 (US), $19.95 (Cdn). However, they won't be available from us until next

issue.

Version 1.0 is still available, and at terrific prices! The 64 and 128 versions still

come in separate packages, but the real deal is the special price for all three. The

C64 Superpak is $49.95 (US) or $59.95 (Cdn). C128 Superpaks are $59.95 (US) or

$69.95 (Cdn). To top it off, we'll throw in the Pocket Dictionary program for free!

If you average the price of all four, it comes to less than the price of two!

■ The TransBASIC Disk $9.95 (US/C)

This is the complete collection of every TransBASIC module ever published up to

Volume 7, Issue 01. There are over 120 commands at your disposal. You pick the

ones you want to use, and in any combination! It's so simple that a summary of

instructions fits right on the disk label. The manual describes each of the

commands, plus how to write your own commands.

■ Super Kit 1541 $29.95 (US), $39.95 (Cdn)

Super Kit is, quite simply, the best disk file utility there is. No more losing those

valuable copy-protected originals (like what's happened to me twice too many

times). So far we've shipped over 600 Super Kits and orders continue to pour in.

■ Gnome Speed Compiler $59.95 (US), $69.95 (Cdn)

This compiler is for BASIC 7.0 on the Commodore 128.

■ Gnome Kit Utility $39.95 (US), $49.95 (Cdn)

Gnome Kit is a Commodore 128 utility with enhancements for the BASIC editor

(like Trace, Find, Renumber, Delete, Auto, etc.) as well as enhanced monitor

commands, and floppy disk monitor functions.

Transactor Disks, Transactor Back Issues, and Microfiche

All issues of The Transactor from Volume 4 Issue 01 forward are now available

on microfiche. According to Computrex, our fiche manufacturer, the strips are

the "popular 98 page size", so they should be compatible with every fiche reader.

Some issue are ONLY available on microfiche - these are marked "MF only". The

other issues are available in both paper and fiche. Don't check both boxes for

these unless you want both the paper version AND the microfiche slice for the

same issue.

To keep things simple, the price of Transactor Microfiche is the same as

magazines, with one exception. A single back issue will be $4.50 (US/C) and

subscriptions are $15.00 (US/C). The exception? A complete set of 18 (Volumes

4,5, and 6) will cost just $39.95 (US/C)!

This list also shows the "themes" of each issue. "Theme issues" didn't start until

Volume 5, Issue 01. The Transactor Disk *1 contains all program from Volume 4,

and Disk *2 contains all programs from Volume 5, Issues 1-3. Afterwards there

is a separate disk for each issue. Disk 8 from The Languages Issue contains

COMAL 0.14, a soft-loaded, slightly scaled down version of the COMAL 2.0

cartridge. And Volume 6, Issue 05 published the directories for Transactor Disks

Ito9.

I Vol. 4, Issue 01 (■ Disk 1) ■ Vol. 4, Issue 04 - MF only

I Vol. 4, Issue 02 (■ Disk 1) ■ Vol. 4, Issue 05 - MF only

I Vol. 4, Issue 03 (■ Disk 1) ■ Vol. 4, Issue 06 - MF only

I Vol. 5, Issue 01 - Sound and Graphics

I Vol. 5, Issue 02 - Transition to Machine Language - MF only

I Vol. 5, Issue 03 - Piracy and Protection - MF only

I Vol. 5, Issue 04 - Business & Education - MF only

I Vol. 5, Issue 05 - Hardware & Peripherals

I Vol. 5, Issue 06 - Aids & Utilities

I Vol. 6, Issue 01 - More Aids & Utilities

I Vol. 6, Issue 02 - Networking & Communications

I Vol. 6, Issue 03 - The Languages

I Vol. 6, Issue 04 - Implementing The Sciences

I Vol. 6, Issue 05 - Hardware & Software Interfacing

I Vol. 6, Issue 06 - Real Life Applications i

I Vol. 7, Issue 01 - ROM / Kernel Routines

I Vol. 7, Issue 02 - Games From The Inside Out

I Vol. 7, Issue 03 - Programming The Chips

I Vol. 7, Issue 04 - Gizmos and Gadgets

I Vol. 7, Issue 05 - Languages II

I Disk 1)

I Disk 1)

I Disk 1)

I Disk 2)

I Disk 2)

I Disk 2)

I Disk 3)

I Disk 4)

I Disk 5)

I Disk 6)

I Disk 7)

I Disk 8)

I Disk 9)

Disk 10)

Disk 11)

Disk 12)

Disk 13)

Disk 14)

Disk 15)

Disk 16)

Industry News

The following items, compiled by Astrid Kumas, are based on press releases

recently received from the manufacturers. Please note that product descriptions

are not the result of evaluation by The Transactor.

New Books from Abacus

Abacus Software has published another volume in their reference series of books

for the Commodore 128 - the C-128 BASIC Training Guide. The book is aimed at

the user who wants to learn the Commodore 128's built-in BASIC programming

language. The book aims to be a thorough introduction with numerous exam

ples to lead the reader from simple to more advanced programming techniques.

The suggested retail price is $16.95 (US).

The next book in the C-128 series - BASIC 7.0 Internals - was scheduled for

shipping in late December '86. The suggested retail price is $24.95 (US).

Another recent publication from Abacus Software is GEOS - Inside and Out,

written by Manfred Tornsdorf and R. Kerkloh. It includes introductory material

about GEOS, the Desktop, GEOSWRITE and GEOSPAINT, a large collection of

tips for every GEOS user, as well as a description of GEOS internals. The

suggested retail price is $19.95 (US). More information is available from:

Abacus Software

2201 Kalamazoo S.E.

P.O. Box 7211

Grand Rapids Ml

49510(616)241-5510

Eye-Scan for C-64/128

Digital Engineering has announced the release of its first product - Eye-Scan, a

video digitizer for the C-64, C-128 and SX64 computers.

Eye-Scan's hardware cartridge plugs into the computer's "user-port" making

graphics input simple: composite video in via an RCA jack. Conversion time is

approximately 6 seconds per grey level.

The Transactor 79 Moy 1987: Volume 7, Issue O6

Eye-Scan disk software utilizes pull-down windows to accomplish black and

white imaging, up to 8 grey levels, image inversion, disk and 1525 printer

support. Also included is a programmer's utility package that allows users to

utilize the image capturing algorithms in their own programs. Eye-Scan is

compatible with Koala, Doodle! and Blazing Paddles graphic programs.

Possible applications include animation, security, automated process control,

pattern analysis, robot vision and text recognition.

Eye-Scan can be ordered for $89.95 (US) from:

Digital Engineering and Design

2718 S.W.Kelly, Suite Cl 65

Portland, Oregon 97201

(503)245-1503

Spartan now with Apple II compatible disk drive

Effective November 1, 1986 Mimic systems has repackaged the Spartan, the

Apple 11 emulator for the C-64, to include an Apple compatible disk drive.

Spartan says the decision to discontinue the DOS card and include an Apple 11

compatible disk drive was prompted by numerous requests from customers, and

the amount of technical assistance required for the installation of the DOS card in

the 1541 diskdrive.

Cost of the Spartan including Apple compatible disk drive is $329.95 (Cdn). For

further information, call 1-800-663-8527 or contact:

Mimic Systems

c/o EDP Industries

#205-1401 West 8th Avenue

Vancouver, B.C. V6H 1C9

Peek A Byte 128

Quantum Software's Peek A Byte 64, a disk and memory utility for the C-64

programmer, has been upgraded for use on Commodore 128. The new version,'
Peek A Byte 128, will be available in February 1987.

In addition to all the features of the original product, Peek A Byte 128 presents

several other options, such as 80-column display, reading or writing to a 1571

double-sided disk, and converting 1541 single-sided to 1571 double-sided

format without harming data already on front side.

An enhanced version of the original product, Peek A Byte 64 V2.0 together with

the Disk Mechanic and new manual, will also be available at the same time.

Amongst features, added or improved, the manufacturer lists the following:

• read or write up to track 40 even with DOS header errors

• edit sector GCR data

• read "raw" track GCR data

• fast format single or multiple tracks up to 40

• do half-tracks up to track 40

• analyze disk errors

Users who own the original Peek A Byte 64 can order the Peek A Byte 128

upgrade package (including Peek A Byte 64 V2.0 and new manual) for the price

of $20.00 (US). For more information, contact:

Quantum Software

P.O. Box 12716

Lake Park

FL 33403

Commodore

■Fri., Feb. 20, 10:00-6:00

■ Sat., Feb. 21, 10:00-6:00

^G^ "Sun., Feb. 22, Noon-5:00

^Brooks Hall, Civic Center
San Francisco

EXHIBITS, EVENTS AND

DOOR PRIZES

NATIONAL COMMODORE

SPEAKERS

SHOW SPECIALS AND

DISCOUNTS

SEE THE LATEST INNO

VATIONS IN HARDWARE/

SOFTWARE TECHNOLOGY

The Commodore Show is the only

West Coast exhibition and

conference focusing exclusively on

the AMIGA, Commodore 128 PC

and C-64 marketplace.

REGISTRATION FEES:

One Day Only—$10

Three Day Pass—$15

For More Information Or To Reserve Exhibit Space Contact

COMPUTER SWAP, INC.
PO Box 18906 Snn Jose. CA 95158

(408) 978SWAP • 800-722-SWAP • IN CA 800-252-SWAP

Lincoln College

Commodore Computer Camp

with

JIM BUTTERFIELD
and other experts

July 19-25, 1987

Topics include:

• Amiga

• C-128

• Robotics

• Telecomputing

• Additional selected topics

For further information, contact:

Office of Continuing Education

Lincoln College

300 Keokuk

Lincoln, IL 62656

217/732-3155

The Transactor 8O May 1987: Volume 7, Issue O6

CompuServe.
You Dont Have Tb Know How ItWorks

Tb Appreciate All It Can Do.
CompuServe is a computer information

service. You subscribe to it. In return, you have

access to an incredible amount of information,

entertainment, communications and services.

Here are a few of the hundreds of amazing

things you can do.

COMMUNICATE

CB Simulator features 72 channels for

"talking" with other subscribers. National

Bulletin Boards let

you post messages

where thou

sands will

see

them.

Friends,

relatives and business associates can stay in

touch through EasyPlex™ Electronic Mail.

More than 100 CompuServe Forums

welcome participation in discussions on all

sorts of topics, oftware Forums help with

online solutio & to software problems.
Hardware Support Forums cater to spe

cific computers. There's even free software,

and online editions of computer periodicals.

HAVE FUN

Play all sorts of sports and enter

tainment trivia games, brain-teasing

educational games and the only

online TV-style game show with

real prizes. Or, for the ultimate

in excitement, get into an interac

tive space adventure.

SHOP

THE ELECTRONIC MALL™

takes you on a coast-to-coast

shopping spree of nationally

known merchants, without ever

leaving home.

SAVE ON TRIPS

With CompuServe's travel services you can

scan flight availabilities, find airfare bargains

and even book your own flights online. Plus,

there are complete listings of over 28,000

hotels worldwide.

BE INFORMED

CompuServe puts all of the latest news at

your fingertips, including the AP news wire,

the Washington Post, the St. Louis Post-

Dispatch, specialized business and trade

publications and more. Our executive news

service will electronically find, "clip" and file

news for you... to read whenever you'd like.

INVEST WISELY

Get complete statistics on

over 10,000 NYSE.AMEX and

OTC securities. Historic

trading statistics on over

90,000 stocks, bonds,

funds, issues and

options. Five years of

daily commodity quotes.

Updates on hundreds of

companies worldwide. Stan

dard & Poor's. Value Line. Over a

dozen investment tools.

So much for so little.

All you pay is a low, one-time cost for a

Subscription Kit (suggested retail price

$39.95 US.). Usage rates for

standard online time (when

CompuServe is most

active) are just 10C a

minute. In many major

metropolitan areas you

can go online with a local

phone call. Plus, you'll receive

a $25.00 U.S. Introductory

Usage Credit with the purchase of

your CompuServe Subscription Kit.

So easy the whole family

can go online.

CompuServe is "menu-driven," so begin

ners can simply read the menus (lists of

options) that appear on

their screens, then type in

their selections. If you ever

get lost or confused, type H

for help. Remember, you

can always ask ques

tions online through

CompuServe

our feedback ser

vice or phone our

Customer Service

Department.

Before you

can access CompuServe, you need

a computer, a modem (to connect your com

puter to your phone) and, in some cases, some

simple communications software. Now you're

ready to order. For your low, one-time sub

scription fee, you'll receive:

• a complete, easy-to-understand, 170-page

spiral-bound Users Guide

• your exclusive preliminary password

• a subscription to CompuServe's monthly

magazine, Online Today

• a $25.00 US. usage credit!

To buy a CompuServe Subscription Kit,

see your nearest computer dealer. To receive

our informative brochure or to order direct,

write or call 614-457-0802.

CompuServe. You don't have to know how

it works to appreciate all it can do—for you.

CompuServe*
Inform; tion Sei 'ices, P.O. Box 20212, 5000 Arlington

Centre L, i, Cuumbus, Ohio 43220 U.S.A.

An HSR Block Company

EasyPlex and ELECTRONIC MALL are trademarks ol
CompuServe Incorporated.

THE TIME SAVER

pe in a lot ot transactor programs?

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $8.95 Per Issue

6 Disk Subscription (one year)

Just $45.00

(see order form at center fold)

Also check out the TransBASIC Disk

Complete with 24 page manual, just $9.95!

