

Life Doesn't Stand Still...

Why Should Your Pictures?

Full Screen Animation On Your Commodore 64!

It used to be even the experts couldn't do it.

Now, anyone can.

Moving Pictures by AHA! is more than just another animation

package. It's a whole new breakthrough in software tech

nology.

Moving Pictures is fast, smooth, full-screen animation that is

totally under your control.

You use your favourite graphics tool * to draw the frames of

your movie, then show it at full animation speed with a

single command!

Write movie "scripts" in BASIC, using the powerful Moving

Pictures command set for complete control of your crea

tions!

Whether you're a programmer or a novice, you'll be able to

put together and display intricate scenes of your own

invention. You can even edit your scripts or execute a BASIC

program while a movie is being displayed - Moving Pictures

is a multitasking system!

Besides being fun in itself, Moving Pictures lets you easily

add animation sequences to your own BASIC programs.

Just a few of the many Moving Pictures features:

• allows split screen operation - part graphics, part text -

even while a movie is running

• repeat, stop at any frame, change position, and colours,

vary display speed and more

• hold several movies in memory and switch instantly from

one movie to the other

• instant, on-line help available at the touch of a key

• no copy protection used on the disk

• and here's the best part: the price is just $29.95!

" Graphics program not included. Moving Pictures uses a

standard hi-res bitmap, so many graphics programs are

fully compatible, including: Flexidraw™, Doodle™, Gold Disk

Art Package™, Print Shop Screen Magic™, Perspectives™.

Mail Orders: Transactor Publishing Inc., 5OO Steeles Avenue, Milton, ON, Canada, L9T 3P7 (416) 878-8438

(or use order card at center).

Canadian and International Dealer Inquiries To:

Norland Software Products, 251 Nipissing Road, Unit 3,

Milton, ON, Canada, L9T 4Z5. (416) 876-4774.

USA Dealer Inquiries To:

American Software Distributors Inc., Box 29O,

Urbana IL, USA618O1 1-8OO-225-7941.

Volume 7

Issue 05
Circulation at Large

72,000

More Languages

Start Address Editorial 3

Bits and Pieces 6
List 'n' Save

Saving C-128 Function Keys

Dvorak Layout

Finding Relative File Record Lengths

VIC Real-Time Clock Fix

C-128 Program Merge

One-Line Direct-Mode

File Printer

The 1541 Interleave Factor

Fixes For The Compressor

C-64 Time of Day Clocks

Screensave for the C64

Letters 11
Copy-All 64 and relative files:

Adapting Search and Print

Converting to Merlin

'With permission from the T.'

Plus/4's in our future?

Plus/4 anguish, addressed to Jim Butterfield

ML column bandwagon grows

In search of PET classics

More GAMES feedback

Unassembler and Symass fixes

Symass POKE discrepancy

1541 upgrade ROMs

Super Kit - the dark side

Squashing C-64 RS232 bugs

News BRK 77
Submitting NEWS BRK Press Releases

Subscription Intersection Set

No More GLINKS

Schedule IRQ

Late Note

Superpaks from Digital Solutions

Free Transactor T's with Mag + Disk Subscription

Transactor Disk Price Increase

Refund Policy

New Subscription/Mail Order Card

Transactor Disks, Back Issues, Microfiche

Sorry, Wrong Number

The MSD DOS Reference Guide

New Services on QuantumLink

PaperClip II for C-128

New Products for C-128 from Abacus

Extend-A-Key

Aegis Art Pak, Volume 1

File Archive Utility for the C-64

FORMATX from Powersoft

Portable Computer Protection

Updated TaxAid

Bookkeeper's Aid for Commodore computers

PROMAL News

TransBloopers ..
Low Cost Universal EPROM Programmer

Keyboard Expander 64: Vol. 7, Issue 3

16

iNet 2000 and CompuServe data library filename extensions 19

An IntrOdUCtiOn tO Amiga ML Control the system at the CPUIevel ..21

Programming the Amiga k, easier than you think! 24

A Tale OF TWO CS A look atC Power and Super C for the 64 and 128 34

Language Speed CompariSOnS Benchmarks for popular languages .. 39

CP/M block allocation calculator Read cp/Mfiiesm us mode! .. 42

Evaluating C-128 CP/M Ufe with the CP/M Beta versions 43

Assembling ASSemblerS The unique problems of writing an assembler ... 48

C64 StrUCtUred Programming Modernize your ancient BASIC 51

olaZin rOrth An inside look at the Blazin'Forth compiler DO

Cl 28 Programmer's Aid Afind,replace,andlist-scrolUngutUity 65

L"Di Z<JJ\. I\amLJlSK A fast way to temporarily save your programs I 1

Amiga DiSpatCheS More on the Amiga front 74

Note: Before entering programs,

see "Verifizer" on page 4

The Transoctor March 1987: Volume 7, toueO5

Itcinscictor
TTm T»ch/N*wt Journal For Commodore Computer*

Editor in Chief

Karl J. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

D'Artagnan Editor

Nick Sullivan

Art Director

John Mostacci

Administration & Subscriptions

Anne Richard

Kathryn Holloway

Contributing Writers

Ian Adam

Jim Barbarello

Anthony Bertram

Tim Bolbach

Anthony Bryant

Tim Buist

Jim Butterfield

Betty Clay

Joseph Caffrey

Gary Cobb

Tom K. Collopy

Robert V, Davis

Elizabeth Deal

Rolf A. Deininger

Frank E. DiGioia

Paul T. Durrant

Michael J. Erskine

Jack Farrah

William Fossett

Jim Frost

Miklos Garmaszeghy

Martin Goebel

R. James de Graff

Tim Grantham

Adam Herst

John Holttum

David Hook

Tomas Hrbek

Robert Huehn

Tom Hughes

David Jankowski

Bob Jonkman

Brian Junker

Clifton Karnes

Lome Klassen

Jesse Knight

James E. LaPorte

William Levak

James A. Lisowski

Scott Maclean

David Martin

Steve McCrystal

Stacy Mclnnis

Steve Michel

Chris Miller

Terry Montgomery

Ralph Morrill

Rick Morris

Michael Mossman

Gerald Neufeld

Noel Nyman

Kevin O'Connor

Richard Perrit

Donald Piven

Terry Pridham

Raymond Quirling

Gary Royal

John W. Ross

David Shiloh

Fred Simon

P. A. Slaymaker

Edward Smeda

Darren J. Spruyt

Aubrey Stanley

David Stidolph

Richard Stringer

Anton Treuenfels

Karel Vander Lugt

Audrys Vilkas

Jack Weaver

Evan Williams

Chris Wong

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower

case mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o"

will of course be in lower case. Secondly, the lower case L (T) is a straight line as opposed to the

number 1 which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours,

or function keys. These will also be shown exactly as they would appear on your screen, but

they're listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor

Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of

spaces you insert will not be critical to correct operation of the program. When it is, the required

number of spaces will be shown. For example:

print' flush right'' - would be shown as - print''[10 spacesjflush right'

Cursor Characters For PET / CBM / VIC / 64

Down - B

up -B
Right - |]

Left - [Ut]

RVS - D

RVS Off - 18

Insert - Q

Delete - Q

Clear Scrn - Q

Home

STOP

Colour Characters For VIC / 64

Black - D

White - B

Red - Q

Cyan - [Cyn]

Purple - [Pur]

Green - D

Blue - H

Yellow- [Yel]

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

F6-

F7-

F8-

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing
The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton,

Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. LISPS 725-050, Second Class

postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor, 277 Linwood Avenue, Buffalo, NY, M209 ISSN' 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other 121 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor. Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 878 8438. Note: Subscriptions are handled at this address ONLY.

Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use

postage paid card at center of magazine.

Please Note: The Transactor's

phone number is: (416) 878-8438

U.S.A. Distributor:

Capital Distributing

Charlton Building

Derby, CT

06418

(203)735 3381

(or your local wholesaler)

Quantity Orders:

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 5B4

(416)842 1555

(or your local wholesaler)

Norland Communications

251 NipissingRoad,Unit3

Milton, Ontario

L9T 4Z5

416 876 4774

SOLD OUT: The Best of The Transactor Volumes 1 &2&3; Vol 4 Issues 04, 05, 06, and Vol 5 Issues 03,

04 are available on microfiche only

Still Available: Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04, 05, 06. Vol. 6: 01, 02, 03, 04, 05, 06.

Vol. 7:01,02,03,04,05

Back Issues: $4.50 each. Order all back issues from Milton HQ.

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per

printed page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft,

Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos or illustrations will be included with articles depending on quality. Authors submitting diskettes

will receive the Transactor Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please

re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.

Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactof Match 1987: Volume 7, Issue OS

The Amiga is easily the most powerful, flexible and

easy-to-use microcomputer available, and is cheaper

than anything else in its class. Yet the Amiga doesn't

seem to be generating the sales it is capable of (we

hear reports, "through the grapevine", of 150,000

units), and we can't help but wonder why.

Part of the blame, of course, must fall with Commo

dore's marketing, both in their strategy and in

amount. Television ads encouraging parents to give

their child an unfair advantage by buying an Amiga

probably missed the Amiga's market entirely, and the

magazine ads weren't much better (what do they

mean by 32 instruments?). The people at

Commodore-Amiga did and are still doing a great job,

but Commodore's marketing department seems to be

working against them.

But it's not all Commodore's fault. The stagnation in

the micro industry caused by the IBM/MS-DOS stand

ard has made it hard for anyone with a new, exciting

product. The first thing you'll hear when you mention

a new machine is "how (IBM) compatible is it?" or,

"does it run Lotus?". Even for those not of IBM

persuasion, there is scorn for any machine that

doesn't have a huge base of software available. This

brings us to the old catch-22 of no software, no

machines sold / no machines sold, no software. But to

ensure that a healthy base of good software develops,

you have to pick a machine that you believe in and go

with it - if enough people do, the software will follow.

That's how it worked with the PET, the 64, and every

other software-abundant machine. If you buy a ma

chine early in its life, you may have to live with a lack

of commercial software for the first year or so, but you

have the benefit of having the opportunity at being a

pioneer; it's not hard to make new discoveries with a

new machine.

A common complaint about the Amiga is its price.

This one I can't figure out. The Amiga is much more

than just a 68000-based machine with exceptionally

fast and flexible graphics hardware, but if even you

look at it as only that, its competition is dedicated

graphics workstations costing over ten times as much.

It's a lot more than a home machine for running

games on, but an Amiga system today costs less than a

64 system did at its introduction. Considering infla

tion, it's considerably less. We all love the 64, but

comparing it with the Amiga is like comparing or

anges with fruitstands. To be fair, the state of the art

has changed, and people are used to paying less for

high technology. Compare prices, then, between an

Amiga system (512k unit plus monitor) with a Atari

1040ST (with disk drive and monitor). By looking at

the machines, you sure wouldn't think they're in the

same price range, but they are.

But our purpose here is not to sell Amigas; we have no

connections with Commodore, and could write about

Ataris just as easily if Commodore passed from the

face of the earth. What we are concerned with is the

state of the small computer market. It used to be that a

machine with more features and power than anything

before it would make people line up to get it. Add a fun

and easy user interface, multi-tasking, an extensive

library of operating system routines, and expandabil

ity, and you'd have a hit. That seems to be no longer

the case. Has the same market that was attracted to

the 64 in '82 evaporated? What, then, of the vertical

markets to which the Amiga lends itself: art, music

composition, video production? Has Commodore's

limited marketing efforts not reached these people

yet? Or are they falling on deaf ears? Maybe IBM has

made the industry change gears, but the same pio

neers that made stars of the PET, Apple II, VIC and 64

could really shift it into overdrive with an Amiga.

Th© Tronsoctor March 1987: Volume 7, toue O5

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from the

pages of The Transactor. It will let you check your work line by line as

you enter the program, and catch frustrating typing errors. The

VERIFIZER concept works by displaying a two-letter code for each

program line which you can check against the corresponding code in

the program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or

C64, Plus 4, C128, and B128. Enter the applicable program and RUN

it. If you get a data or checksum error, re-check the program and keep

trying until all goes well. You should SAVE the program, since you'll

want to use it every time you enter one of our programs. Once you've

RUN the loader, remember to enter NEW to purge BASIC text space.

Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 4096 to enable the Plus 4 version (off: SYS 4099)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

BANK 15: SYS 1024 for B128 (off: BANK 15: SYS 1027)

Once VERIFIZER is on, every time you press RETURN on a program

line a two-letter report code will appear on the top left of the screen in

reverse field. Note that these letters are in uppercase and will appear

as graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that

line at the last minute which changes the report code. However, this

will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type RETURN

over each in succession while checking the report codes as they

appear. Once the program has been properly entered, be sure to turn

VERIFIZER off with the SYS indicated above before you do anything

else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead

of POKE 53281,0. However, VERIFIZER uses a "weighted checksum

technique" that can be fooled if you try hard enough; transposing two

sets of 4 characters will produce the same report code but this should

never happen short of deliberately (verifizer could have been de

signed to be more complex, but the report codes would need to be

longer, and using it would be more trouble than checking code

manually). VERIFIZER ignores spaces, so you may add or omit spaces

from the listed program at will (providing you don't split up key

words!). Standard keyword abbreviations (like nE instead of next) will

not affect the VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer,

so if you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original destina

tion of the link after it's finished. When disabled, it restores the link to

its original contents.

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

01

JB

PA

HE

EL

LA

Kl

EB

DM

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

10rem* data loader for "verifizer 4.0" *

15 rem pet version

20cs = 0

30 for i = 634 to 754:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>15580 then print"***** data error **<

70 rem sys 634

80 end

100:

1000 data 76,138, 2,120,173,163, 2

1010 data 173, 164, 2,133,145, 88, 96

1020 data 145, 201, 2,240, 16,141,164

1030 data 144, 141, 163, 2,169, 165,133

1040 data 2,133,145, 88, 96, 85,228

1050 data 201, 13,208, 62,165,167,208

1060 data 254, 1,133,251,162, 0,134

1070 data 0, 2,168,201, 32,240, 15

1080 data 165, 253, 41, 3,133,254, 32

1090 data 198, 254, 16, 249, 232, 152, 208

1100 data 251, 41, 15, 24,105,193,141

1110 data 165, 251, 74, 74, 74, 74, 24

1120data141, 1,128,108,163, 2,152

1130 data 251,133,251, 96

VIC/C64 VERIFIZER

10 rem* data loader for "verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:reada:poke i,a

40cs = cs + a:next i

50:

60 if cs<>14755 then print" ***** data error

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,251,141,

1010 data 252, 141, 3, 3, 96,173,

1020 data 3,240, 17,133,252,173,

99,141, 2,

96,173,254,

0,189,

15,133,

32, 183,

;":end

,133,

,120,

2,

,144,

,165,

, 58,

,253,

,230,

,236,

,229,

0,

,105,

, 24,

144

165

165

169

217

173

189

253

2

165

128

193

101

1030 data 251, 169,

1040 data 3, 3,

1050 data 0,160,

1060 data 32,240,

1070 data 133, 90,

1080 data 232, 208, 229, 56,

1090 data 32,210,255,169, 18,

1100 data 89, 41, 15, 24,105,

1110 data 165, 89, 74, 74, 74,

1120 data 32,210,255,169,146,

1130 data 32,240,255,108,251,

1140 data 101, 89,133, 89, 96

2

3

2

3,169

1,133

0, 2,240

91,200,152

3, 198, 90

32, 240, 255

32,210

97, 32

74, 24

32,210

0, 165

3,

3,

3,

3,

89,

22,

41,

16,

, 169,

,255,

,210,

,105,

,255,

91,

':end

165

201

133

141

162

201

3

249

19

165

255

97

24

24

VIC/64 Double Verifizer Steven Walley, Sunnymead, CA

When using 'VERIFIZER' with some TVs, the upper left corner of the

screen is cut off, hiding the verifizer-displayed codes. DOUBLE

VERIFIZER solves that problem by showing the two-letter verifizer

code on both the first and second row of the TV screen. Just run the

below program once the regular Verifizer is activated.

The Transactor March 1987: Volume 7, toueO5

KM

BC

Dl

GD

IN

EN

KG

KO

FM

LP

100 for ad = 679 to 720:read da:poke ad,da:next ad

110 sys 679: print: print

120 print" double verifizer activated" :new

130 data 120, 169, 180, 141, 20, 3

140 data 169, 2,141, 21, 3, 88

150 data 96, 162, 0,189, 0,216

160 data 157, 40,216,232,224, 2

170 data 208, 245, 162, 0,189, 0

180 data 4,157, 40, 4,232,224

190 data 2,208,245, 76, 49,234

VERIFIZER For Tape Users Tom Potts, Rowley, MA

The following modifications to the Verifizer loader will allow VIC and

64 owners with Datasettes to use the Verifizer directly (without the

loader). After running the new loader, you'll have a special copy of the

Verifizer program which can be loaded from tape without disrupting

the program in memory. Make the following additions and changes to

the VIC/64 VERIFIZER loader:

NB

AL

IB

OC

MO

EG

BD

KH

GL

30 for i = 850 to 980: read a: poke i,a

60 ifcs<>14821 then print"*****dataerror*****": end

70 rem sys850 on, sys853 off

80 delete line

100 delete line

1000data 76, 96, 3,165,251,141,

1030 data 251,169, 121, 141, 2, 3,

1070data133, 90, 32,205, 3,198,

2000 a$ = " verifizer.sys850[space]"

2010 for i = 850 to 980

2020 a$ = a$ + chr$(peek(i)): next

2,

169,

90,

3, 165

3, 141

16,247

DC 2030 open 1,1,1,a$: close 1

IP 2040 end

Now RUN, pressing PLAY and RECORD when prompted to do so (use

a rewound tape for easy future access). To use the special Verifizer that

has just been created, first load the program you wish to verify or

review into your computer from either tape or disk. Next insert the

tape created above and be sure that it is rewound. Then enter in direct

mode: OPEN 1 :CLOSE1. Press PLAY when prompted by the computer,

and wait while the special Verifizer loads into the tape buffer. Once

loaded, the screen will show FOUND VERIFIZER.SYS850. To activate,

enter SYS 850 (not the 828 as in the original program). To de-activate,

use SYS 853.

If you are going to use tape to SAVE a program, you must de-activate

(SYS 853) since VERIFIZER moves some of the internal pointers used

during a SAVE operation. Attempting a SAVE without turning off

VERIFIZER first will usually result in a crash. If you wish to use

VERIFIZER again after using the tape, you'll have to reload it with the

OPENlrCLOSEl commands.

Plus 4 VERIFIZER

Nl

PM

EE

NH

Jl

AP

NP

JC

ID

PL

CA

OD

LP

EK

1000 rem * data loader for " verifizer + 4"

1010 rem • commodore plus/4 version

1020 graphic 1: scnclr: graphic 0: rem make room for code

1030cs = 0

1040 for j = 4096 to 4216: read x: pokej.x: ch = ch + x: next

1050 if ch<>13146then print "checksum error": stop

1060 print "sys 4096: rem to enable"

1070 print " sys 4099: rem to disable"

1080 end

16, 165,211,

141, 3, 3,

16,240, 17,

1090 data 76, 14,

1100 data 165, 212,

1110 data 3,201,

1120 data 2, 3, 133,211,169.

141,

96,

133,

39,

2,

173,

212,

141,

3

3

173

2

Dl

LK

GJ

DN

GJ

CB

CB

PE

DO

BA

BG

1140 data 20,

1150 data 0,

1160 data 176,

1170 data 240,

1180 data 200,

1190 data 16,

1200 data 165,

1210 data 0,

1220 data 24,

1230 data 0,

1240 data 96

133,208,

2,201,

3, 232,

22,201,

152, 41,

198,209,

208, 41,

12,165,

105, 193,

165,210,

162, 0,160,

48, 144, 7,

208,242, 189,

32,240, 15,

3, 133,209,

16,249,232,

15, 24, 105,

208, 74, 74,

141, 1, 12,

24, 101,208,

0,189

201, 58

0, 2

133,210

32,113

208, 229

193, 141

74, 74

108,211

133,208

CF

HA

DH

HL

CB

CP

CB

ME

FG

FK

MD

OJ

MF

OM

El

ON

NH

IJ

ML

DE

DN

LM

LE

HC

KE

OF

NC

LF

C128 VERIFIZER

1000 rem * data loader for verifizer 128

1010 rem * commodore d 28 - 40 and 80 column mode

1020 cs = 0

1030 for j = 3072 to 3226: read x: pokej.x: cs = cs + x: next

1040 if cs<>19526 then print " checksum error!": stop

1050 print " sys 3072,1: rem to enable"

1060 print " sys 3072,0: rem to disable

1070 rem

1080 data 201, 0,208, 13,

1090 data 20, 3, 165,254,

1100 data 96, 120,173, 21,

1110 data 17,133,254,173,

1120 data 169, 44,141, 20,

1130 data 21, 3, 88, 96,

1140 data 208, 94,165, 22,

1150 data 160, 0,189, 0,

120

141

3

20

3

165,253, 141

21, 3, 88

201, 12,240

3, 133,253

169, 12

165,240,201

133,250,162

2,201, 48,144

3, 232, 208, 242

22,201, 32,240

141

13

0

1160 data 7,201, 58,176,

1170 data 189, 0, 2,240,

1180 data 15,133,252,200,152, 41, 3,133

1190 data 251, 32,147, 12,198,251, 16,249

1200 data 232, 208, 229, 56, 32

1210 data 19, 32,210,255,169,

1220 data 255,165, 250, 41, 15,

1230 data 32,210,255,165,250,

1240 data 74, 24,105, 193,

1250 data 146, 32,210,255,

1260 data 108, 253, 0,165,252,

1270 data 133, 250, 96

240,255, 169

18, 32,210

24,105, 193

74, 74, 74

32,210,255, 169

24, 32,240,255

24,101,250

B128 VERIFIZER Elizabeth Deal, Malvern, PA

1130 data 3,169, 16,141, 3, 3, 96,165

1 rem save" @0:verifizerbi 28" ,8

10 rem* data loader for " verifizer b128" *

20cs = 0

30 bank 15:for i = 1024 to 1163:read a:pokei,a

40cs = cs + a:next i

50 if cs<>16828 then print" ** data error **": end

60 rem bank 15: sys 1024

70 end

1000 data 76, 14, 4,165,251,141,130, 2,165,252

1010 data 141, 131, 2, 96,173,130, 2,201, 39,240

1020 data 17,133,251,173,131, 2,133,252,169, 39

1030 data 141, 130, 2,169, 4,141,131, 2, 96,165

1040 data 1, 72,162, 1,134, 1,202,165, 27,133

1050 data 233, 32,118, 4,234,177,136,240, 22,201

1060 data 32,240, 15,133,235,232,138, 41, 3,133

1070 data 234, 32,110, 4,198,234, 16,249,200,208

1080 data 230, 165, 233, 41, 15, 24,105,193,141, 0

1090data208, 165,233, 74, 74, 74, 74, 24,105,193

1100 data 141, 1,208, 24,104,133, 1,108,251, 0

1110 data 165, 235, 24, 101, 233, 133, 233,' 96, 165, 136

1120data164, 137, 133, 133, 132, 134, 32, 38,186, 24

1130 data 32, 78,141,165,133, 56,229,136,168, 96

1140 data 170,170, 170, 170

Th© Trortsoctof Moreh 1987: Volume 7, Issue O5

b i t s

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - if we use it in "Bits", we'll credit you in the

column and send you a free one-year's subscription to The Transactor

List 'n' Save David Mackenzie

Bethesda, MD

Dvorak Layout

and Speedscript

Donald P Maple

Calgary, Alberta

I put a line like this at the beginning of nearly every BASIC

program I write:

5 rem" [6 deletes]open 15,8,15," sO:filename"

:close15:save" O:filename" ,8

(To create that line, type:

5 rem "[6 inserts][6 deletes]open. . .

When I " list 5", the line number and rem are overwritten by

the deletes, leaving just the open, close, and save. Then I just

move the cursor up to that line and press RETURN. This

technique encourages me to save changes frequently, and I

never use the wrong filename by mistake. It also avoids the

1541 save and replace bug (most of the time) by scratching and

then saving.

Saving C-128 Function Keys Daniel M. Bickford

San Francisco, CA

I program my C-128 function keys constantly while I am

programming to perform short routines or speed up typing. Of

course when I power down I'm back to reset values and, until

lately, typing my key definitions back in again.

The C-128 uses memory locations 4096-4351 for programmed

keys. Pre-programming my function keys, saving that memory

block to disk and having it autoboot I can free myself from

typing them in over.

To save the programmed key work area to disk simply:

BSAVE" filename" ,U8,B0,P4096 TO P4352

Load with BLOAD or ,8,1.

This is for all the people who typed in the Dvorak Keyboard For

The Commodore 64 that appeared in the May 1986 issue and

would like to use it from within the Speedscript word processor.

The conflict between these two programs occurs in the RAM

below Kernal ROM. Both programs use this area, Speedscript to

store text and the Dvorak program to store a copy of the

operating system. The "solution" to all this is to limit the

amount of memory available to Speedscript. This is unfortunate

but the only way short of rewriting Speedscript with built-in

Dvorak layout.

First of all, type in the following program and save it:

10 f = 40832 :t = 40866

20printchr$(147)+ "pokingfrom" f "to" t

30 for i = f to t: read x$: print chr$(19)chr$(17)chr$(18);i

40 I = 48: if asc(left$(x$,1))>57 then I = 55

50 r = 48: if asc(right$(x$,1))>57 then r = 55

60x = (asc(left$(x$,1))-l)*16 + asc(right$(x$,1)-r

:poke i,x: s = s + x: next

70 if s = 3593 then print" okey-dokey": end

80 print " something's wrong!": end

40832 data a9,35,8d,8e,09,8d,98,0e

40840 data 8d, 17,16,8d,df,14,8d,e6

40848 data 14,8d,b4,1d,8d,bb,1d,8d

40856 data 02,1e,8d,09,1e,a9,9f,8d

40864 data b1,09,60

To implement the Dvorak layout, do the following:

- load and run the Speedscript fix program listed above

- load (but do NOT run) Speedscript

- type " SYS 40832" and press RETURN

You now have a modified version of Speedscript. Save it for

future use. All that needs to be done next time is run the

Th© Transactor March 1987: Volume 7, Issue O5

Dvorak program first and then load and run Speedscript. Note

that the above above modification requires the use of

Speedscript 3.0.

Finding Relative File

Record Lengths

Elizabeth Deal and

Howard Harrison

When you open a relative file and specify the record length

using the " L" parameter, the file gets built and the record

length never changes. But by looking at the file afterwards, do

you really know its record length? How about the file you

created four years ago? How about a file from some commercial

program?

One thing that makes it hard to easily determine the record

length of a relative file is that some file are written so that some

of their records are shorter than their maximum allowable

length (the actual record length specified when the file was

created).

The solution to finding the real record length is quite simple: it

lies in the good, old, friendly error channel. If you position to

byte in a record beyond the record length, you get an OVER

FLOW IN RECORD error. To find the record length, then, you

could just code a loop that tried positioning to byte 1 in the

record, then 2, etc. (checking the error channel after each

position), until the overflow error came up. It couldn't be

simpler.

A faster approach is to use a binary-chop technique, as in the

program below. This method guarantees that the correct value

will be found in no more than 8 tries, rather than a maximum

of 255 tries with the sequential method described above. Also,

bear in mind that the disk only has to spin once - reading the

record over and over again doesn't involve any disk activity,

because the contents of the record is stored in a RAM buffer.

The below program will work with any commodore 5 1/4"

drive and 8-bit computer.

100 rem relfile record-length finder in 8 tries

110 rem elizabeth deal and howard harrison

120 rem independent of computer and disk roms

130 rem independent of relfile format (reg or jumbo)

140 rem does not scan any directory bytes

150 rem is a read-only routine - uses just channel 15

160 open 15,8,15: open 1,8,3, "relfile.r"

170 mn = 1: mx = 254 :rem record size range

180 if mn>mx then close 1: close 15: print" length = ";

mn-1 : end

190 sz = int((mn + mx)/2) :rem try length sz = midpoint

200 print#15," p" chr$(3 + 96)chr$(1)chr$(O)chr$(sz)

:rem rec#1, possz

210 input#15,e,e$,e2$,e3$: rem drive knows ail about

length!

220ife = 0 thenmn = sz + 1 : rem valid length, try higher

230 if e = 51 then mx = sz-1 : rem bad length, try lower

240 if e = 0 or e = 51 goto 180

250 print" bad disk error-" e;e$,e2$,e3$

VIC Real-Time Clock Fix Meyer Gottesman

Napa, CA

I've discovered if you POKE 37158,147 (the default is 137), you

correct most of the realtime clock error. The original IRQ rate

was slightly fast. This clock is about 53 seconds in 24 hours fast.

With the correction, the error is reduced to about 2.29 seconds.

Purists can adjust C-32, the trimmer in series with Y-l

(14.31818 MHz crystal).

Disabling the C-128

RUN key - even more

Ken Smith

Milton, Ont.

Having myself once succumbed to the deadly SHIFT-RUN/

STOP faux pas, I am quite aware of the value of a fix for this

feared bane of all C-128 programmers!

The solution suggested by George Leotti (Bits & Pieces Sep/86)

does, as explained, disable the RUN key. There is, however, the

unwanted side effect of effectively redefining the HELP key to

'dL" * " +chr$(13)', creating for us the same situation which it

sought to alleviate!

The cause of the problem lies in the way the programmable key

definitions are stored and accessed. By changing the defined

length of the RUN key from 9 characters to 0 (poke 4104,0),

without changing the actual length of the definition, the condi

tion for the occurence of the problem is created.

When a programmable key is pressed, the locations $1000-

$1009 (4096-4105) are checked for the current definition

lengths of the specific key, as well as the lengths of the

preceding definitions. The sum of the preceding values is a

pointer to the appropriate position within the definition list at

$ 100A-$ 1 OFF (4106-4351).

Since the definition length of RUN has been changed to 0

without changing the actual definition, the definition read for

the HELP key is in fact the first five characters (the defined

length of HELP) of the actual definition of RUN.

Hence, the unwitting CPU happily executes'dL" *" +chr$(13)'

when the HELP key is struck, much to the dismay of the

programmer!

Here is my solution. Before altering any of the other program

mable keys, modify the definition of the RUN key to the

relatively harmless command RUN by poking the following

locations:

The Transactor March 1967: Volume 7, toue O5

for i = 4159 to 4162: poke i,0: next

For convenience, combine this modification with any others

you may have for making your time at the keyboard more

profitable in a short program on the autoboot disk. Below is a

partial listing of my " programming mode" file:

1 fast

2 print chr$(27);" u": rem underline cursor

3 for i = 4159 to 4162: poke i,0: next: rem redefine run

4 keyV'flrun" +chr$(13):rem clear screen and run
5 key2," dload[16 crsr-right][5 spaces]" + chr$(13)

: rem load from directory

6 key6, "open4,4:cmd4:list" +chr$(13)+ " print#4

:close4" +chr$(13)

7 (etc. . .)

8 new

The following lines are noteworthy:

Line 4 clears the screen before executing a RUN. Saves having

to first moves the cursor to a clear spot.

Line 5 loads from a directory listing. Just cursor to desired file

and hit F2 key to load it!

Line 6 prints a listing and closes the file afterwards in one

keypress.

The suggestions are straightforward, but you'd be surprised at

how many folks have yet to set up a small programming aid

like this.

and I would like to know which fiend at Commodore is

responsible for this!

C-128 Program Merge Don Lawrence

Mississauga, Ontario

The following procedure will allow you to merge two BASIC

programs on the Commodore 128:

reset the computer

load the first program

p = peek(174) + peek(175)*256-2

poke 45,p-int(p/256)*256

poke46,int(p/256)

load the second program

poke 45,1: poke 46,28

Your computer will now have both BASIC programs in memory

as one. The second program will immediately follow the first

program even if its line numbers are smaller. Therefore, to

avoid confusion, you should make sure that the program's

highest line number is less than the second program's lowest

line number before merging the two.

You may find it interesting that the pointer to the end of text on

the C-128 is not the beginning of BASIC variables as it is on the

64. I found this to be more time consuming than interesting,

One-Line Direct-Mode

File Printer

Dean Gaudet

Bramalea, Ontario

Use this statement to dump a sequential text file to the screen

from direct mode:

openi ,8,2," filename" :fori = 0to1 :sys43906#1 ,a$

:i = st:?a$;:wait653,1,1 :next:close1

Use SHIFT to pause the output - the WAIT 653,1,1 halts basic

execution if the shift key is pressed.

The SYS 43906* calls the GET* routine, without a check for

direct mode.

The 1541 Interleave Factor Robert Huehn

Neustadt, Ont.

While looking for a way to magically speed up my disk drive, I

found out how to change the distance between its sectors. The

1541 zero page location at $0069 (105 decimal) holds the "

interleave" value, which is normally ten. The interleave is the

number of disk sectors between linked sectors in a file; the

default value results in a file's consecutive sectors being stored

ten sectors apart on the disk. An optimum interleave value

means the drive has to wait the least amount of time to read a

sector, since the next sector will be close to the head when the

drive is ready to read it. To change the interleave value, use the

" m-w" command:

open 15,8,15

print#15," m-w" chr$(105)chr$(0)chr$(1)chr$(value)

close 15

Any subsequent saves will then be stored on disk with the

sectors linked accordingly. (I checked with a sector editor to

make sure.) I hoped that Commodore's infinite cleverness had

made them overlook a better number than the normal ten. I

saved files at different interleaves, each 100 blocks long, and

timed the loading speed.

Unfortunately, it didn't have much effect at normal loading

speeds. But it made a dramatic effect when I used a fast loader.

The same file that took ten seconds at an interleave of eight

needed 25 seconds at seven. The reason was obvious: the fast

loader has to let those seven sectors pass by while it squirts the

previous one through the serial bus. Therefore, if you use a fast

loader, you should choose the smallest value that doesn't pass

by the head too soon. With the same fast loader, I saved one

second by using eight instead of the default ten interleave

value.

The Transactor Match 1987: Volume 7, bwie O5

During a normal load, over 60 sectors may pass while one is

being sent by the slow bus routines. Since the gap at the end of

the track passes several times, it makes each track and each

sector have different optimum interleaves. Anyway, it was a

good try.

Fixes For

" The Compressor"

John Robert Onda

Lanham, Maryland

"The Compressor" by Chris Zamara, published in Volume 6,

Issue 4, Jan. 1986, is a very fine program, and one which seems

to have inspired a number of public domain programs. How

ever, in my own experiments with the routine, I have come up

against a few problems.

I have worked exclusively with the " Listing 7" version which

saves and loads compressed hi-res graphics files to and from

memory. I have not experimented with the " Listing 6 " version

which works on disk files, but similar conditions most likely

apply. The following are the three problems I have encoun

tered:

1) The routine reads 8001 bytes, not 8000. " Piclen" is speci

fied as 8000 bytes, but the first byte is read as (byte),y with y = 0;

subsequently, y is set to 1 and all following bytes are read. This

is a very minor and easily corrected problem. Simply set

Piclen" to 7999, or even ignore the situation in most cases (but

make note of problem #2).

2) The construction of the " nextout" / " spl" routines are such

that the last group of identical bytes will not be written to disk.

(If byte #8001 is different than #8000, no problem is noticed;

that is usually the case with the example program " Listing 3".)

At the worst this could cause up to 256 bytes of information to

be lost from the compressed file. A simple solution is:

1210 nextout =

1220

1230

1240

1250

1260

1270

1280

1290

1300

[delete lines

jsr outbyte

Ida picptr+1

cmpendpic + 1

bne nextout

Ida picptr

cmpendpic

bne nextout

jsr writerep

rts

1310-1340]

3) The variables " repcount", " newbyt", " prevbyt", and "

endpic" are specified as ".byte 0"; they are not merely

reserved space but must be zeros upon entering the rou

tine. If left at previous values and the routine is called again,

results are unpredictable. A simple solution is to clear these

bytes before entering the main routine (jsr clear before

entering the compressor):

clear lda#0

sta repcount

sta newbyt

sta prevbyt

sta endpic

sta endpic+ 1

inc repcount

rts

Also, " Listing 5", which splits Animation Station files, incor

rectly assumes the background colour is stored as the last byte

of the file. In fact, the background colour is stored at a byte

within the "extra useless bytes" skipped in line 310. In

addition, Animation Station stores a border colour byte preced

ing the background colour bytes. One solution:

310fora = 1 to 63: rem useless bytes

311 get#8,a$

312 next

313 get#8,a$: bo = asc(a$ + chr$(0)): rem border colour

314 get#8,a$: ba = asc(a$ + chr$(0)): rem background

315 for a = 1 to 127: rem useless bytes

316get#8,a$

317 next

[delete line 410]

440 print ba

441 print" J^The border colour is:"
442 print bo

It is also worth noting that the " Animation Station" software is

a custom version of the program " Blazing Paddles" by Baud-

ville and the file formats are identical.

For those working with Koala files, which do not save a

separate border colour byte, generally the background colour is

used as the border colour; replace in Listing 4:

400 print he background and border colour is:'

(Thanks foryour efforts in correcting the compressor, John! The

bugs were fixed in later re-incarnations of the compressor

code, but we never printed the fixes or a de-bugged version.

Fortunately, because of people like you helping us out, our

readers are kept up to date! -CL)

C-64 Time of Day Clocks Raymond F. Genovese

Richmond, VA

The two time-of-day (TOD) clocks in the 6526 CIA chips are

often overlooked. They keep time in 0.1 second increments

and are not disturbed by either tape or disk I/O. In fact, TOD

clock *2 is not used at all by the C-64's operating system.

Starting at locations $DC08-$DC0B (CIA *1) and $DD08-

$DD0B (CIA #2) their registers are as follows: tenths (bits 0-3),

seconds (bits 0-3 & bits 4-6), minutes (bits 0-3 & bits 4-6),

Th© Tronsoctof Match 1987: Volume 7, Issue OS

hours (bits 0-3 & bit 4). The digits are loaded and stored in

binary coded decimal format, and thus are a little awkward to

work with. Writing to the hours register stops timing while

writing to the tenths register starts it. On the other hand,

reading from the hours register latches the time (but does not

stop it) while reading from the tenths register unlatches the

time. Listing 1 is an example routine that sets, reads, and

displays a TOD clock. Features not implemented in this exam

ple are the AM/PM flag (bit 7 of the hours register) and the

interrupt alarm features. In addition to keeping time, these

clocks can be used to control fairly precise time-delay loops.

Listing 2 demonstrates that technique.

Screensave for the C64 Steve Lukshides

Philadelphia, PA

Listing *1

MO

FK

MG

PB

AA

OJ

LA

OM

DA

NH

AE

JD

KO

DD

MA

OG

CF

AG

MF

AK

MK

Gl

MF

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

rem tod clock example

i gosub 150: print chr$(147)

i gosub 260: print t$;chr$(19)

i goto 120

i *

rem set and start the clock

ba = 56331: rem cia#1

input" enter the time (hhmmss)" ;t$

i if len(t$)<>6 then 170

i for x = 0 to 5 step 2

= val(mid$(t$,x + 1,2))

i y = int(y/10)* 16 + (y-int(y/10)* 10)

poke ba-x/2,y: next x

poke ba-3,0

return

rem read the time

11$ = "" :m$ = " am" :for x = 0 to 5 step 2

112$ = str$((peek(ba-x/2)and 112)/16)

+ str$(peek(ba-x/2)and 15)

t$=t$ + mid$(t2$,2,1) + mid$(t2$,4,1)

ifx<>4thent$ = t$+ ":"

next x: x = peek(ba-3)

return

Listing #2

OC

KP

GE

JM

GG

P!:-

AK

100 rem 5-second delay using tod clock

110 ba = 56584: rem cia#2

120 poke ba +3,0: poke ba +1,0

130 poke ba,0: rem start clock

140 if (peek(ba +1)and 15)<5 then 140

150 print "time's up!"

160 end

Screensave gives you peace of mind - you can leave your 64

unattended for as long as you like, and not worry about

burning out the monitor CRT!

This short program for the C-64 sets up an interrupt routine

that will help prevent images from being permanently burned

into your monitor screen. This can happen if the screen stays

on for a long period of time while displaying the same image -

you can observe this phenomenon by looking at the screens of

older video games at an arcade. Screensave will blank the 64's

screen if there is no keyboard activity for two minutes -

pressing any key (including shift, CTRL and logo) will turn the

screen on again, with its original contents intact. Screensave

runs in the background while it monitors the keyboard for

activity, so it doesn't affect the normal operation of your system

when it's active.

Just run the loader below to put screensave into the cassette

buffer and activate it. Screensave is relocatable, so you can

change lines 20 and 60 to store and execute it in any memory

area you wish. To disable screensave, use SYS 864.

CK

OB

JG

MJ

LA

AC

HP

AF

OM

LM

GO

KB

NN

FF

HC

ME

NM

GG

HF

KA

PO

HM

IF

NH

LE

HH

BB

CK

HO

CK

PD

10 rem* data loader for "

20 for

30 cs

40:

screensave" *

i = 828 to 1003:reada:pokei,

= cs + a:next i

a

50 if cs<>19715 then print" !data error!

60 sys 826

70 print" screen saver activated!"

80 end

90:

1000 data

1010 data

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

120,173, 20,

21, 3,141,

20, 3,169,

0, 141,240,

238, 3, 88,

141, 20, 3,

3, 88, 96,

17,208,240,

208, 60, 32,

240, 22,173,

169, 0,141,

169,239, 45,

40, 104, 108,

203,208, 5,

173,239, 3,

13, 17,208,

141,240, 3,

3, 24, 169,

240, 3,144,

241, 3,141,

205,240, 3,

241, 3,208,

3, 141,

237, 3,

3, 141,

3, 141,

96,120,

173,237,

72, 8

41, 169

197, 3

32,208

32, 208

17,208

236, 3

173, 141

141, 32

141, 17

141,241

1, 109

10, 24

241, 3

208, 10

3,238

236

169

21

241

173

3

169

64

173

141

141

141

169

2

208

208

3

240

169

96

169

238

end

3,173

111,141

3,169

3, 141

236, 3

141, 21

16, 44

197,203

238, 3

239, 3

238, 3

17,208

64, 197

240, 240

169, 16

169, 0

76,156

3, 141

1, 109

169, 32

28,205

3, 96

The Transactor 1O March 1987: Volume 7, Issue O5

Letters

Copy-All 64 and relative files: A version of Copy-All 64, which is

on the games disk (Transactor disk *13) and another early disk,

cannot copy relative files. The PET version is all right. Every once in a

while your readers ask how to copy, device to device, relative files. For

instance, on page 15 in Volume 7 Issue 2 was a query about an SFD to

SFD copy. It seems to me that Copy-All should handle that with little

effort. But there is a general misconception that Copy-All can't handle

relative files. Well, this isn't true. Jim Butterfield, long ago, fixed up

the C64 version, but the T must have a unique version.

The culprit is the CLRCHN routine which, unlike on the PET, in the

C64 clobbers the X register (as well as .A). Now, there is a little piece of

code in the old relative file section that goes like this:

JSR $FFE4 ;read first byte of ch. 15

TAX

JSR $FFCC

CPX #$30 ;isit"O"?

BNE QUIT ;quit if not

LDA $90 ;read ST, loop if good

etc.

The result is that the $FFCC routine immediately makes X not equal to

" 0" and causes Copy-All 64 to quit prematurely.

The solution is simpler than you think. $FFCC does not touch the Y

register. So substitute TAX by TAY and CPX by CPY, and you're in

business. The relative file copy code begins at $116E and the bytes to

change are a screenful later. You can make the changes using the

monitor and re-save.

Elizabeth Deal, Malvern, Pennsylvania

Thanks for the correction, Liz. Copy-All 64 goes on every Transactor

disk, so it's kind of embarrassing that this little bug has got past us for

so long. However, all future T. disks will go out with the corrected

version of the program, and Copy-All, one of the most useful and

durable of all Commodore programs, will be even better than before.

Adapting Search and Print: Mr. Boland's letter in the September

1986 issue was an excellent update on the various enhancement

packages available for SpeedScript, which gets better every day! My

article (Four wordprocessors) was submitted on October 10, 1985, at

which time none of the enhancement modules were available, hence

their absence. There is usually a delay of several months between

submitting an article and its publication and a lot can happen in that

period as was true in the case of SpeedScript.

I would like to take this opportunity to congratulate you for doing such

a great job. Transactor is a unique magazine and gets better as it

grows. I would also like to convey my praises to Jack R. Farrah for his

Hi-Res Search and Print utility which is a godsend! Users of B/Graph

would find it extremely useful, especially the double width screen

dump. This can be easily fiexby changing the '40' in line 1310 to '41'.

This would fix " clmcnt" so that 40 columns are printed before the

ckclm" routine quits.

Also, those who have Epson-code compatible printers (Epson, Pana

sonic, Roland etc.) should change the '51' in line 1290 to '65' and the

'16' in line 1300 to '8' and they should be able to use the program as

well. If Mr. Farrah is reading this and is thinking of further upgrading

his program, he might like to enchance the density of the printout by

using the high density feature of these printers (120 dots per inch).

This makes a nice dense printout which can be photographed for

slides or photocopied for overhead transparencies.

1 hope the above suggestions help.

Ranjan Bose, Winnipeg, Manitoba

Converting to Merlin: I have recently subscribed to the Transactor

and am interested in the programs listed as source code. My assem

bler is Merlin. Do you have any instruction sheets that would allow a

novice to convert the programs as listed to be used with my assem

bler?

Any help along these lines is appreciated.

Edward F. Weller, Jr., Sun City, Arizona

In most cases, translating between assembler formats is not that

difficult a job. Most assemblers adhere closely to the standard created

for the 6502 chip when it was first brought out; this is true of both PAL

(the assembler we usually use) and Merlin.

There are still a few things to watch out for. The main source of

incompatibility is the 'pseudo-ops \ like .BYTE and. WORD, which can

vary pretty wildly from one assembler to another. PAL's repertoire of

pseudo-ops is not large, and in nearly all cases you should be able to

find ready equivalents in Merlin. The three most commonly used are

.BYTE, . WORD and .ASQ which allow you to set up tables of bytes,

16-bit words and (Petscii) text respectively.

At the top of PAL programs you 'II generally see a directive beginning

with the. OPTpseudo-op, which specifies where the object code output

is to be sent. The usual possibilities are. OPT OO, which assembles to

directly to the origin address, and. OPT On, where n is the number of

an open disk file. The origin itself is set with a line like:

100*= $C000

instead of the. ORG directive used by most other assemblers.

Occasionally you 'II see source listings that are so closely tied to the

special capabilities of one assembler that they are very difficult to

adapt to a different one. An example is the Help utility in this issue,

which makes use ofPAL's .BASpseudo-op. Since .BASis not supported

by any other assembler we know of, you would have to do some

serious translation to port the source of this particular program.

'With permission from the T.': I wish to copy one or two short

articles (not more than a page, and no long listings), from various

issues of the Transactor for inclusion in our computer club newsletter

The Transactor March 1987: Volume 7, Issue O5

- the " Pasadena Commodore Computer Club Tid Bits'", which is

distributed free to members, giving credit to you and to the authors.

I am not a club officer, just one of its approximately 400 members. I

enjoy your magazine so much that I think the other club members

would enjoy utilizing the information also.

I note that J. Butterfield includes a release at the beginning of each of

his articles; this would of course be included with any of his work.

For articles by other authors, including the Transactor staff, is it

necessary to get a copyright release for each article individually, from

you - and/or from the author, or is it sufficient to give credit as noted

above in this free newsletter. If an article by article release is required,

I may just skip the whole thing, because the clearance procedure is so

time-consuming, thereby depriving the many members of your

expertise.

I have been a subscriber to the Transactor, both the magazine and the

disk, for several years and also have your " Best of" series. I plan to

continue the subscriptions, at least for the foreseeable future. Keep up

the same quality of content and I predict a long and successful future.

George I. Taylor, Jr., La Canada, California

Well, George, ahem... ifensuring that the members ofyour club aren't

deprived of Transactor material is the main concern here, then i have

an ideal solution which need not even be told. That "solution" times

400 would also contribute towards our "successful future " much more

than the quality of our product. However, re-printing one or two

particular articles (and this goes for all User Groups) is perfectly OK,

providing the author and The Transactor are credited.

PIus/4's in our future? I have a Commodore Plus/4 computer.

Please advise if your magazine will continue to support the Plus/4 in

the future.

Mrs. Kathe L. Holiday, Cape Coral, Florida

As you might expect, we are not exactly flooded with submissions

relating to the Plus/4, nor do Plus/4 users constitute a very large

portion of our readership. That means that you probably won't be

seeing a lot of Plus/4 material in issues of the T. from this point on.

Probably your best bet is to get in touch with PLUG, a Plus/4 users

group. You 11 find the address, and a lot of other information, in the

next letter, which Jim Butterfield extracted for us from his voluminous

correspondence.

Plus/4 anguish, addressed to Jim Butterfield: I am a Commo

dore Plus/4 computer owner. Since both the +4 and C16 are orphan

machines, I've had to write most of my own software because there

just isn't any viable support.

In the June issue of the Transactor, I read with interest your C128

memory maps. The Plus/4 runs a 3.5 subset of the C128 7.0 BASIC

and the two machines are very compatible in some respects. If I ever

get upgraded to a Cl 28 I'm sure I'll have little difficulty translating +4

map locations to C128 thanks to the excellent article.

I belong to a local Commodore users group where members mainly

use C64 and C128. Mine is the oddball machine in the lot and I have to

convert most of the good C64 software I find. One of the first things I

did after joining was to check out from the library your book on C64

machine language programming. Excellent book! You're a good

writer and I learned a lot about C64 internals. My big problem is the

conversion of software from the C64 map to the + 4 map.

BASIC conversions are not much problem for me if they contain just

the most common PEEKs and POKEs. There is only one modem

(1660 with modified +4 Higgy-Term software) that I'm aware of that

will run on the +4. Since I already have a C64 Total Communications

Package 300 baud modem I've been trying to make it work with the

+ 4. Big problem is that I can't convert all of the C64 PEEK & POKE

addresses to the +4 equivalents. What I'm needing are some very

detailed memory maps (all of memory including Kernal and BASIC)

for both C64 and Plus/4 machines so that I can make the conversions

and see if the modem will work. When it comes to ML in DATA

statements I'm totally lost because I've not yet written the translator

software to do table look-up and replace on the C-64 —> Plus/4

address conversion.

First of all, Jim, can you help me find the memory maps I need to set

up the conversion tables between the two machines?

Secondly, Jim, can you tell me how to write or find a piece of software

that I can modify (maybe a kind of pre-processor that will make

language translations) to take a lot of the conversion drudgery out by

doing a look-up on the conversion tables and then writing and

outputting the translated Plus/4 code?

'DEARTH' is one of my favourite words, and there is a pretty complete

DEARTH of Plus/4 support. I've got dozens of pent-up questions to

ask someone in the know like yourself, but I'll spare you the pain and

just hit some of the biggies.

For your information Jim:

PLUG (The PLUS/4 Users Group)

Box 1001

Monterey, California 93942

is one of the most active support channels for the + 4 computer. I am a

member even though it's half-way across the country from where I'm

at here in Arkansas. Calvin Demmon (a writer like yourself) is PLUG

editor, and if you have any 'pull' with Commodore, or could give

PLUG a plug in your upcoming books or articles, it sure would help

generate a little more interest and support.

More Plus/4 computers have been sold than are actively in use, and

most owners probably gave up on it because of Commodore's lack of

marketing and software support. If we can get out the word that there

is at least one active Plus/4 support avenue here in the USA, maybe

the support will begin to coalesce and suppliers will take notice.

Also Jim, I would like to get in more assembly-level programming on

the +4. Plus/4 has a built-in monitor similar to C128 and the C64

Supermon. However, I very much need a true assembler. Have you

seen any assembler software (however slow) that is written in BASIC

or ML that I can easily convert and implement on the Plus/4?

In a past issue of COMPUTEI's Gazette, there was an article entitled

'VIC Emulator' which ran on a C64 to emulate the VIC computer. It's

been in the back of mind to try and take some of the emulation

techniques used to write a transparent emulator wedge (better yet a

pre-processor) that would run on the +4 and allow use of the vast

majority of C64 software that is available. Seems to me that such a

compiler or language translator writer might just accomplish such a

Ttj© Ttansoctor 12 Match 1987: Volume 7, Issue O5

task if the hardware will allow. I am neither, and don't have the talent

or resources to tackle this kind of project but if you know of anyone

who is there are a lot of software hungry +4 owners out there who

would love to see such a piece of software (maybe even on a

commercial basis if the marketing effort is right). From my limited

knowledge, writing a piece of software like this probably wouldn't be a

very easy task without the proper resources and backing, but then I'm

not in a position to say so definitely or even if the potential risks are

too great because the + 4 is an orphan machine.

Jim's reply: Dear Gary,

Gary Hearn, N. Little Rock, Arkansas

The Plus/4 is a fine machine, but is indeed an orphan. You seem to be

coping well. The following may be of interest.

-The Inner Space Anthology, published by the Transactor, contains

detailed maps ofRAM and ROM for the Plus/4 and C16. I've tried to

keep wording consistent between maps, so you can do comparisons

with the 64 or 128 as needed.

-My book does cover the Plus/4 and CI6, and you can run almost all

the exercises on those machines. Don't let the title mislead you into

thinking that it's only for the 64 or 128.

-Many BASIC programs will run with little or no conversion. Snoop

out the POKE andPEEKstatements to see if conversion is needed. The

greatest work is in the area ofsound and graphics, since a completely

different chip is used.

-Machine Language may convert fairly well. Much of the problem

you'll need to solve in doing a conversion is to allow for a new

program location. Commodore 64 BASIC normally starts at address

$0400, 128 BASIC at S1C00; on the Plus/4 and C16, you'll normally

start at $1000. Thus, the machine language program will also likely

move up or down the same distance. Often, this isn't hard to fix:

disassemble the code and look for three-byte instructions; the third

byte is all that will need changing. As in BASIC, there are other

locations that may need adjusting.

-Commercial software is almost hopeless, especially if it has a

protection scheme. Such programs are too massive for an easy

rechop.

-I don't know of any conversion/emulator programs that would be

useful for your problem.

-I'm in touch with PLUG, and have donated some utility programs to

them. It's very useful for orphan-owners to have such a group.

-The SYMASS assembler, published by the Transactor, is public

domain and source is available. It's likely your best bet for conversion

to Plus/4.

Jim Butterfield, Toronto, Ontario

ML column bandwagon grows: Please let me be the 'nth' to join in

Rick Nash's timely plea for a Machine language Column. Let us hope

that your mail bags all burst in the generous flood of responses to this

important suggestion.

There must be countable thousands (or possibly even uncountable)

"out there" who are nearly rank-quality amateurs and who would

value such a column beyond all reasonable 'a priori' expectations.

Being in agreement with Nash, however, does not mean that I feel

restricted to his recipe for success. My own thoughts are quite different

and, I sincerely hope, so are those of other respondents.

My own deep desires for an ML Column include:

1. Large numbers of small ML programs that work!

2. Clear reference to the publications used including page numbers.

3. Documentation of each line with reasons why choices were made.

4. Author information, including address, response category (does he

or doesn't he)?

5. Does author require SASE (or is he independently wealthy)?

6. What assembler was used.

7. Mention of reference(s) pertinent to the subject routine.

Doubtless there are many other facets to this intriguing suggestion

which will be forthcoming from other inspired readers. I, for one, truly

hope so.

Finally, in your quest for new readers, how could you do better than to

extend a bi-monthly helping hand (the Transactor Machine Language

Amateur's Column) - possibly, page - ultimately book!! - to these

sincere and deserving people?

Robert G. Tischer, Starkville, Mississippi

Although a regular tutorial column on machine language for novices

isn 't totally out of the question, we do have a couple of reservations

about the idea. For one thing, you can't hope to learn machine

language in a series of small bimonthly doses - it would just take too

long. In our opinion, you 'd do a lot better to learn the basics from a

book (Jim Butterfield's would be ideal) then, once you're over the

initial hurdle, glean what you can from the source listings we publish

in every issue. Sure, there 'II be things you don't understand at first, but

you 'II be surprised at the proficiency you can attain by banging your

head on code that's too advanced to follow completely. And the other

thingyou have to do, of course, is write programs - lots ofthem, until it

starts to come naturally. The hardest part of learning machine lan

guage is the painful process of getting familiar with all those instruc

tions and addressing modes, and mastering some simple sequences to

do common operations like 16-bit math, setting and clearing bits, and

moving chunks of memory around. Once you're through that phase,

the going starts to get a lot easier.

In search of PET classics: I have just recently heard of the

Transactor, and I must say that I am most impressed by it. I particu

larly like the small amount of advertising, and the large amount of

utility-type programs.

I wonder if it would be a practical proposition for you to publish some

of the old, but good, public domain programs for the PET/CBM

machines, or possibly instruction on converting C/64 programs to

CBM.

You see, it is quite possible that there are people out there who, like

myself, purchased a second-hand CBM at a time when those ma

chines were cheaper than a new C-64.1 would think that there are a

lot of newcomers to the world of computing who would like to get hold

of some of the old PET classics. I know that this type of request is

usually met with " Join a user group". Well, I did that, but no good

public domain stuff for PET.

Also, I have now received my G-link and have installed it as per

instructions. The G-link works in both serial and parallel (IEEE)

The Transactor 13 Match 1987: Volume 7, Issue OS

mode. However, the G-link will not switch from serial to IEEE and

back again any more than two times before the computer locks up and

has to be reset (or switched off and on).

I am using a C-64,1541 drive and a SFD 1001. The idea is to have the

G-link switched to serial, load a program from the 1541, switch to

IEEE and save the program to the SFD 1001. This can be done twice

and the C-64 locks up; sometimes just the C-64 locks up, sometimes

the cursor just disappears, other times it remains immobile on the

screen. Now maybe it's not designed to go back and forth between

serial and IEEE in the manner in which 1 am using it. If that is the case

then I have a bonus; if it is supposed to switch back and forth between

serial and IEEE without locking up the C-64, then it would appear that

something is wrong. I would like to stress that it will work the SFD-

1001 on its own, as it will the 1541 on its own. Anyway, the thing is a

bit of a puzzle to me. Could you give me some more info? Does it work

with the C-l28?

Anyway, I still think that the G-link is pretty good, but I want you to

know what is happening - just in case Murphy's law is operating (is

it?).

Bill Bennett, North Lidcombe, New South Wales, Australia

Sorry, Bill, but itjust wouldn't be practical for us to start rerunning PET

listings in the Transactor. As it stands, we already don'/ have room for

all the material we would like to run on the new computers, and there

just isn't the demand tojustify reprising PEToldies. We do still run PET

versions ofsome of our new programs, when possible, so don't think

we 'ue given up on the green screens altogether. Also, the first couple of

Transactor disks have lots of material for the PETs, including some of

the classic utilities that you 'II use again and again.

Your G-Link is behaving normally. Switching back and forth between

serial and IEEE modes can, and frequently does, crash the computer

with the symptoms you describe. As far as I know, nobody has come

up with a definitive explanation of the cause of this crash.

Luckily, though, there is a way around it. It appears that the crash only

happens when the cursor is on the screen. That being the case, all you

have to do is ensure that the cursor isn't active when you flick the G-

Link switch. Ifyou don't use a Datasette, the easiest way of doing this

is to press SHIFT-RUN/STOP, flick the switch, and then press RUN/

STOP (unshifted). Otherwise, you could type WAIT 653,1, flick the

switch, and then press the SHIFT key.

As for using the G-Link with the C-l28 - sorry, it won't work, except in

C-64 mode. The G-Link operates by replacing the C-64 Kernal ROM

with a ROM of its own, and that isn if going to help you at all in C-l28

mode. If anybody does know of a good IEEE interface tor the C-l28,

we 'd appreciate it ifyou 'd let us know so that we can pass it on.

More GAMES feedback: I totally agree with Wayne Gurley, (Letters,

November), relative to the September issue on Games.

I have designed ML utility programs and a software protection

scheme. Now I am trying my hand at composing my own arcade game

which employs graphics. I have searched in vain for a book that

contains advanced techniques like raster interrupt and horizontal

zone scrolling. I wrote to a number of software producers with zero

response. It would have been nice if the Games issue contained some

techniques used in arcade games. There are tons of 'Beginner' books,

but absolutely nothing, to the best of my knowledge, for advanced.

John Augustine, Reading, Pennsylvania

Okay, everybody who wants to see another GAMES issue, with the

emphasis on graphics and sound, put up your hand. Or at least send

us a postcard, telling us what it was you would have liked to see in that

issue, but didn 't. If the response is sufficient, maybe we'll take another

crack at games in a future issue. Meanwhile, if you take a look back

through past issues as recently as Vol. 7, Issue 03, you'll find a small

article on raster interrupts that will help you get started with your

project.

Unassembler and Symass fixes: I am writing to thank you for two

wonderful programs. 1 am one of those who entered Symass from the

source listing and have converted it to write the ML program to disk as

a program file. I also added the Ascii codes for 'end', 'or', 'eor' and 'ror'

so that I can assemble source code which has been written directly to

disk.

This last modification was needed because 1 also converted Unas

sembler to write directly to disk as a program file. Rather than send

the token for each BASIC keyword, I chose to send the Ascii for the

keyword.

During the process of changing both of these fine programs, I discov

ered several problems with them. Symass has only one that I am

aware of. The listing on line 1020 should be CMP *"." rather than

CMP *" ". Symass has changed my life!

Unassembler has a number of problems. The most severe one is

associated with the 'absolute' commands. The reported problem with

the 'bit' command (A BIT of a Problem, May 1986) is a result of this

defect. It is not solved by simply changing all the bit commands to

.byte commands.

The problem shows up when there is a bit command in regular code

and also when there is any absolute mode code which has an address

less than 256. This will occur when the Unassembler is in Ascii tables

and encounters the following sequence: 'absolute command, address,

.byte 0'. The Unassembler recognizes the command. It then takes the

next two bytes and treats them as low/high. Multiplying the second

byte by 256 results in zero. It then stores the result as 'zero page

command, address', dropping the final '.byte 0'.

To correct this problem, load Unassembler and enter the following

lines:

1380 pp$= "":ad$= "":if t == 0 then 1405

1405 if n=14then 1430

1410 if n>0 and n<14 then pp$ = ad$ + n$ + " "

1430 if n>10 then on (n-10) gosub 1950,1980,2010,2015

1445 if n= 14then 1380

1732 if ad<256 then n = 14:return

1792 if ad<256 then n = 14:return

1852 if ad<256 then n = 14:return

2015 rem ***convert absolute address less than 256 to

.byte commands

2020 p$ = ad$ + " .byte " + str$(op) + " :.byte "

+ str$(ad)+ ":.byteO ;***was" +n$+ "***"

2022 n = 0:gosub 2150:p = p + 2:return

This modification will substitute .byte commands for the offending

absolute command and notify you what command was changed.

Also, the proper way to implement the 'bit to .byte' conversion is:

The Transoctor Match 1987: Volume 7, tosue O5

330 print" Do you want bit commands converted into .byte

commands?"

340 get an$:if an$ = "" then 340

350 if an$<>" y" and an$<>" n" then 340

360 if an$ = " y" then md(36) = 0:md(44) = 0

362 if an$ = " n" then md(36) = 14:md(44) = 14

Another minor problem with Unassembler when used with Symass is

in line 2010. The + " A" has to be removed or Symass will assign a

label to the 'A'.

By the way, one of the best ways to test both Unassembler and Symass

is to unassemble a short program such as C-64 wedge. Reassemble it

with Symass and it will be exactly the same if both programs are

working correctly. I have tested it on several programs and it always

works.

Thomas W. Gurley, Wills Point, Texas

P.S. 1 am the only staff programmer for the Pondaroda Nudist Resort. It

sure is a hard life!

Thanks for the detective work, Thomas. And you certainly have our

sympathies over your work situation. Let's hope things will get better

soon. It's a sobering thought for us, freezing complacently here in

Canada, that others, less fortunate than ourselves, are forced by a

cruel fate to run around with no clothes on in the Texas sunshine and

program microcomputers into the bargain. Who can understand the

workings of Fate?

Symass POKE discrepancy: Problem: in Vol. 7, Issue 2, Page 40,

you published a bug correction (Symass 3.12).

In Vol. 7, Issue 3, Page 14, you did another (Symass 3.13). But the

third pokes in these two articles do not agree. Which is correct?

Emil J. Volcheck, Jr., West Chester, Pennsylvania

Very observant, Emil! For the benefit of those who don'/ happen to

have those issues handy, the pokes in question are: POKE 5057,50

(Issue 2), and POKE 5057,51 (Issue 3). We're happy to report this isn't a

typo. What the second poke corrects is simply the version number

(3.13 instead of 3.12). The 50 in the first poke is the Ascii code for the

numeral '2'; the 51 in the second poke is the code for '3'.

1541 upgrade ROMs: In the November 1986 issue on page 77 there

is an offer for ROM upgrades for the 1541 disk drive selling for $49.95.

What I am not sure of from the information in this column is whether

the two ROMs are pin for pin compatible with the Commodore ROMs

(direct replacement), or are the provided ROMs of the type that would

need the 28 to 24 pin adapters?

Terrence Smith, Lachine, Quebec

The ROMs will plug right in, Terrence. As you 're probably aware, the

24-pin EPROMs are less common, hence more expensive, than the 28-

pin type. We could have used the 28 pin EPROMs, but this would have

required 28 to 24 pin adapters for each chip and the price would have

been no less. Besides that, the adapters raise the chips so high that you

can't get the lid back on the disk drive once they're installed.

Super Kit - the dark side: I finally received the Super Kit 1541 after

a long wait. Was it worth it? I don't think so. The Super Kit turned out

to be a Super Disappointment.

After slaving the whole weekend over this thing, I still have to

produce a workable copy of the Super Kit as instructed in the

accompanying booklet. 1 checked out my drive with an alignment

program, then one that reads track 1 and 35 only, and finally another

one from the original 1541 demo disk. My drive is in alignment. After

that I checked my drive speed and that seems to be in order too. My

drive was checked out 6 different ways and there is nothing wrong

with it.

Single Nibbler: produces a non-working copy of a disk with one single

error 23 on and places it elsewhere. I duplicated one disk that had an

error 23 on track 35, sector 16. It reproduced the error faithfully on

track 35, sector 3. Ergo, my program won't run.

Single Copier: Produces a workable copy of an unprotected disk.

However, only in the non-verify version. The Single Nibbler does the

same. It reads the first pass, then proceeds to write the first pass. Half

way through writing the first pass, the drive does a double-take,

continues for a while, then stops, as it should, waiting for the second

pass. Meanwhile, the screen stays bright, there is no message for the

second pass, and the computer is locked up and nothing works.

Scan: D option sends drive off into never-never-land most of the

time.

Disk Editor: In monitor mode gives wrong conversion: when asked to

convert 2049 decimal to hex, the answer is not correct, it comes up

with $0701. Binary is also wrong. Same thing for 1024 decimal: it

converts it to $0300. When asked the equivalents for $801 it brings

the right answer. The decimal to hex and binary is wrong.

Disk Surgeon: 1 was able to produce one copy of Karateka that was

actually working. I tried Skyfox. It produced a copy that at the end of

the loading process made my drive 'sing'. I thought it had stripped

some gears and I had a hell of a time getting the drive initialized.

With the Super Nibbler I came very close to producing a working copy

of Super Kit. However, the flashing border was absent and it showed

the first page of the menu, and locked up the computer.

Meanwhile, my expensive programs are still as vulnerable as ever,

without having a back-up copy.

I have tried to duplicate Super Kit at 38, 39 and 40 tracks to no avail.

My system is a C-64, a 1541, and a 1702 monitor. The joysticks were

disconnected. There was nothing else on the system, as I do not own

any other peripherals.

According to your note for Super Kit owners on page 13 of the

Transactor, Vol. 7, Issue 3, November 1986, there seems to be a

rewrite under way at Prism, to do away with these kinds of problems.

1 would appreciate your suggestions on this problem. Do you accept a

return of the product, as it is of no use to me at this stage, or should I

wait for a trade-in at a later stage (if you intend to make trade-ups to

the latest version)?

Roger Detaille, Ste. Therese, Quebec

Your problems with Super Kit illustrates some of the difficulties that

seem inevitably to attend this type of software. Super Kit is fast -

Th© Ttansciciof IS Motch 1987: Volume 7, Issue O5

blindingly fast - at both conventional and unconventional DOS opera

tions, and its error copying and scanning are among the most

sophisticated you'll find anywhere. Unfortunately, there are somejobs

that seem to work reliably only on the most perfectly set-up 1541, and

copying SuperKit itself (for which you should use the Super Nibbier

module, by the way) is one of them.

While the newer 2.0 version of the program does away with many of

the problems you mention in the other modules, Prism Software's

president, James Domengeaux, admits that many users have experi

enced difficulty in backing up SuperKit as advised in the manual.

Prism is currently working on ways around this problem, and we 're

hoping to see even newer updates fairly soon.

Meanwhile, ifyou have the 1.0 version and want to upgrade to 2.0, we

don't think you 'II be disappointed with the quality ofPrism's after-sales

support to registered users. The 2.0 Super Kit is even more powerful

and versatile than the first, and seems also to be more reliable. Again,

though, you can only expect consistently good results if your drive

timing and alignment are fairly accurate.

Squashing C-64 RS232 bugs: What prompted me to write was the

exchanges on RS232 in Vol. 6, Issue 6, Page 11, and a point not

covered in Lyle Giese's follow-up in Vol. 7, Issue 2. Albert Harsch

cites 'buffer problems' at 1200 and 2400 baud. Examination of the

Kernal at $EF39 onwards reveals the main RS232 bug in the C64: if

DSR or CTS disappear, the NMI interrupts are disabled. When these

signals return to 'OK', the NMIs are not restored except by a PRINT#2

physically executed after these lines return. As a result, x-line output

will leave the last buffer untransmitted unless:

a) the code is altered (my preference)

b) (up to) 256 Ascii nulls are PRINT*2-ed

c) after a real-time delay, some PRINT#2s are issued

As the last two are inelegant, and I use an EPROM Kernal, I chose the

first. This requires modification to both the output code at $EF39 and

the CLOSE routine. Incidentally, while I was remodelling in this area,

the buffers were shifted to pages $CE,CF. This permits OPENing an

RS232 channel at any time in a program, without a CLR. (Although

pages $DE,DF would have been preferable, they do not work in this

context.) This will facilitate use of serial printers with a variety of

utilities such as Easy Mail.

After fixing the 75 baud error in the PAL table, I also implemented

3600 and 4800 baud without any problems with printers. (Inciden

tally, the theoretical maximum baud rate for a PAL C64 is about 5000).

Final testing showed, however, that Easy Script and my Kernal did not

get along if an RS232 printer was tried. As I have 3 printers, all RS232,

this had to be fixed, and turned up the most staggering thing I have

seen in years - the RS232 transmission from Easy Script uses the

NTSC baud rate timing table, even on PAL machines!

Describing the code for RS232 handling in the C64 as primitive is an

act of extreme understatement.

For the record, the offending code is as follows:

EF2E LDA #$40 ;set DSR missing

EF30 BIT ;skip

EF31 LDA #$10 ;set CTS missing

EF33 ORA $0297

EF36 STA $0297 ;set bits in RSSTAT

. . .then falls into $EF39, which is the destination of the BEQ at $EF24

for buffer start = buffer end (i.e. empty) - this then shuts down NMIs,

which means no further transmission. To maintain service of CTS/

DSR line monitoring, it is essential to jump around this code. I have

done:

EF36JMP $FF43

FF43 STA $0297 ;as original

FF46 RTS ;avoid RSSTAT change

Clearly $FF43 isn't available to tape users! The $AA (TAX) area at

$E4B7 to $E4D9 is suitable. Incidentally, if you want to implement

4800 baud transmission, you will need to put the following:

E500 $37

E501 $00

E502 $02

E503 $00

;3600 lo

;3600 hi

;4800 lo

;4800 hi

for the PAL table. The original code $E500-$E504 can then be

relocated at $FFF3 to $FFF7. As Easy Script uses NTSC, this doesn't

help you there, BUT you can fudge the 4800 into the NTSC table

($FEC2-$FED4) in place of a rate you don't use, e.g. 134.5, and call it

up appropriately in Easy Script or whatever program you are using.

If anyone would wants to pursue this matter with me, I would

welcome correspondence at: 94 Grove Road, Lesmurdie 6076, West

ern Australia

Peter Morgan

TransBloopers

Low Cost Universal EPROM Programmer

A couple minor problems have surfaced here. .. nothing that would

go unnoticed for long though.

In the schematic on page 48, pin 14 of the 8255 IC to the left of the

diagram shows two pins numbered 14. The GND pin at the bottom

should be pin 7 (same as the GND pin of U2, the 8255 at the right of

the diagram).

There are also two pins numbered 14 on the ZIF Socket. The GND pin

is correct. The other pin 14 should be 15, pin 15 goes to 16, 17 to 18,

and 18 to 19 (i.e. add 1 to each from 14 through 18).

The personality socket for the 2716 on page 47 shows pin 12 going to

9. Correct this so that pin 12 goes to pin 21 (3 down from 24). Pin 9

correctly goes to pin 20 as shown.

Thanks to Ghislain Lamothe or Montreal, QUE. for these corrections.

Frank J. Hermann of Kitchener, Ont. also notes two little typesetting

errors in the software. In lines 2760 and 2770, the " should be

replaced by " " (ie. null string).

Keyboard Expander 64: Vol. 7, Issue 3

In the program " scroll.obj", the first loop READs 741 data elements

to ensure the checksum is correct. The second loop then attempts to

write 2745 data elements to a disk file. Change line 1070 to:

1070 FOR J = 1 TO 741: READ X

Our thanks to Dave Aulbertsberg, MCAS Kuneohe, Hawaii, for point

ing out this error, and our apologies for the slip-up.

TheT 16 March 1987: Volume 7, Issue O5

TeleColumn #2

iNet 2000

"iNet" stands for the "Intelligent Network", a service of Telecom Canada

which is an association of 10 of the country's major telecommunications

companies. It originally began as a "gateway service" to provide simplified

access to public databases around North America. For those accessing

several of the participating databases, only one bill would be issued by iNet

summarizing all the online charges. iNet then expanded the service adding

teleconferencing, electronic mail, user data workspace, editing of retrieved

information, and boolean searching capabilities.

Since iNet 2000 belongs to Telecom Canada, access to iNet is done mainly

through Datapac, another Telecom Canada project, and the main packet-

switching network in Canada. You call your nearest Datapac public dial

port (or node) and enter the call address for the iNet service much like

entering the call address for any other service accessible from Datapac.

So why pay iNet to transfer you to another database when you can simply

go directly there? Remember, Telecom Canada is marketing this service to

people rather unlike the typical micro-computer enthusiast (ie. "not us").

It's the difference between business and pleasure. When you're in it to try

and make (or save) a buck, you don't care who has the information you

need, you just need it! You also don't care what it costs to get (which is

obvious by the hourly rates of some iNet affiliated databases). Remember

ing several long call addresses that are often a mixture of numbers and

letters doesn't matter much to "us", much like "we" probably wouldn't

care about spending a little time handling several online bills if it meant

saving money.

However, probably the most downplayed feature of the service is the

ability to access it through toll free 1-800 numbers. This isn't surprising

though. Most of iNet's target market is probably within a local call of a

Datapac public dial port. But! If you're paying long distance charges to get

to the nearest dial port, this one feature makes iNet truly attractive.

To subscribe to iNet costs $50.00. You get a really nice manual and some

handy reference cards. After that it's $3.00 per month, plus your time

while connected to iNet. However, once you pass through the gateway to

another service, the iNet meter stops ticking, and you pay the regular

charges of the service you access, plus the Datapac surcharge which even

local callers pay. When you log off that service, you're back in iNet and the

clock resumes. iNet charges range from $ 15 per hour in prime time (6am to

6pm weekdays) to $11.25 per hour outside these times and weekends.

Once you get to know the commands for passing in and out of the gateway,

accessing your favourite online service will probably cost you less than a

dollar in iNet charges.

Even though iNet is available in the U.S. through Telenet, the toll-free lines

only apply to Canada. Ideally, a parallel service is what's needed for

telecomputing from remote areas in the U.S. If someone finds one, we'll be

most pleased to hear about it.

One other point: iNet, and the databases you can access from iNet, are

generally of the text based variety. These are services like CompuServe,

Delphi, The Source, or any database that can be controlled using any

standard communications program. Systems like Quantum Link and

Playnet require the use of their own software which usually handles the

sign-on procedure for you. These programs would need to be "aware" of

the extra step at the iNet gateway stage. It wouldn't be impossible for Q-

Link or Playnet to add this capability to their software, but until they do, it's

a situation where your terminal must be compatible with both iNet AND

their accessible databases.

In summary... if you're into telecomputing for the entertainment value,

then iNet is probably not for you. But if you live in Canada, and your long

distance bill makes your online bill look trivial by comparison, iNet 2000 is

definitely worth looking into.

CompuServe

Sometime between writing this article and printing it we'll be starting

construction of what we hope will be named "The Commodore MagNet".

This will be the Display Area we've been referring to that will host

information supplied by magazines publishing Commodore related mate

rial.

The section will be listed under CBMNET with the other Commodore

Forums. Selecting "Commodore MagNet" will bring up a menu of maga

zines, of which Transactor will be one. Selecting "Transactor" will display a

menu of activities that will be fundamentally the same for all of the

participating publications.

Reading articles and ordering subscriptions are two of these functions.

You'll also be able to download programs related to the articles, however,

the programs will be stored in a Data Library outside the MagNet area.

Once this section is working, there will be a beta-test period before it goes

"live". Hopefully by next issue we'll have all the operational details.

Uploading Time is Free!

When uploading your programs to CompuServe, the clock is turned off!

CompuServe figures that if you're generous enough to share your pro

grams with others, they'll reciprocate by suspending the meter while you

send in your files.

You might think this would precipitate an awful lot of software in the Data

Libraries. Well, you'd be right! Since making upload time free, Compu

Serve has been literally deluged with programs. Here are a couple tips to

remember if you're planning to add to the flood.

CompuServe supports four types of transfer protocols for sending and

receiving files from their Data Libraries (as explained last issue). However,

two of them are used more often than the others. "Xmodem" protocol has

been around a long time and is supported in many terminal programs. In

fact, just about any of the online services, including many Bulletin Board

Systems, that offer software to download will support Xmodem transfers.

The other is "B Protocol". This method was invented by CompuServe to

include some of the details that were missing in Xmodem.

CompuServe Filenames and Extensions

CompuServe lists all files in their data libraries using a filename (1 to 6

characters max.) followed by a period and a 3 character "extension". The

filename you enter is up to you. But the extensions are used to designate

what type of file belongs to the name, and there are a few conventions to be

aware of, especially when uploading programs.

If Xmodem protocol is used to upload a program, the extension ".BIN"

should be entered after the filename. ".IMG" is the abbreviation for an

Th© Transoctof 17 March 1987: Volume 7, Issue O5

"image" file uploaded with B protocol. Following these conventions will

make life a lot easier for those who download your donations. However,

there are exceptions.

The Exceptions

When uploading programs, please follow this convention:

Uploaded With: Extension

Xmodem .BIN

B Protocol .IMG

Naturally there are other kinds of data besides programs.

.TXT Generally describes text files. If it's text specific to one brand of

wordprocessor, the description of the file will usually say so.

.DOC Same as .TXT, only the contents are Documentation, usually for

another program available nearby.

.MEM A Memo file. Uncommon, but used to indicate a short TXT file that

will probably never need to be "printed on paper"

.HLP A Help file. Usually describes how to perform the various functions

on CompuServe

.CNF A Conference transcript. When a guest speaker comes online for a

formal conference, a sysop will sometimes record the "CO" and

upload the file for others who missed it.

.SEQ Describes anything from text files to data intended for use by

another program

.ARC An Archived file. .ARC files are files that have been compressed

using a program called "ARC" by Chris Smeets. ARC not only

compresses the size of a file, but also allows several files to be

combined. ARCing large donations means that downloading them

will take much less time, especially when several files are needed

(such as a program complemented by modules). Use Xmodem to

download them, but you'll need the ARC program in order to de

compress. As of this printing, ARC220 is the latest version, and is

available in the High Level Utilities section of CBMPRG.

Uploading Text

When uploading files that contain text, it must be sent in true ASCII. Like it

or not, CompuServe supports other brands of equipment besides Commo

dore. But Commodore is the only one that doesn't use true ASCII. So many

terminal programs written for Commodore machines include a translation

from PETSCII to ASCII. This is often done "on-the-fly" during an upload. So

if you're uploading text to CompuServe that is in PETSCII format, turn on

the translation switch. If you don't, the upload will appear to be working,

but a successful download will be impossible. Files that fall into this

category are PaperClip or Easyscript files saved as SEQs.

You also need to send Linefeeds after Carriage Returns during an upload.

Likewise, most programs implement this as an "ON/OFF" switchable

setting. Although another user will still be able to download this file

without the Linefeeds, there is another reason.

You don't have to download text files from CompuServe in order to read

them. Once in a Data Library, you can use the READ command to display

the contents of any file. You can READ a program, which may be

interesting, won't make a lot of sense, and is highly recommended for

adding up online charges. Or, you can READ the text files. For example, if

you're in DLO of CBMPRG:

READ HOW2CO.HLP

.. .will display the help file on how to use the Conferencing section. At 300

baud you could probably read it as fast as it's displayed. But at 1200 you

might want to open a capture buffer and read it later. However, depending

on your particular software, the absence of Linefeed characters may cause

each line of text to print over top of the last. Once again, turn Linefeeds

(and true ASCII) on when uploading text files.

So even if you have none of the necessary protocols for downloading, you

can still obtain text from the DLs. Depending on the quality of your

connection you may experience transmission errors. So if a perfect copy is

necessary, you may need to use a downloading procedure.

Downloading

First of all, B Protocol and Xmodem have only very slight differences. In

fact, you can download a program using Xmodem that's been uploaded

with 'B', or vice versa. But if you do, there are some "post-download"

adjustments you'll need to perform. Here are the four possible situations.

Downloading .BIN Files with Xmodem

With Xmodem, programs are transferred in blocks of 128 bytes each.

However, most programs won't be evenly divisible by 128 bytes. So the last

block is padded to make it fill out to 128. The padding character is a CTRL-

z, or CHR$(26). Usually this won't affect the operation of the program. If it

was a text file and you load it into your wordprocessor, you'll see the

characters at the end and just delete them. But if it's a BASIC program, it

means that the variable table will start just a little bit higher in memory.

Usually this won't matter. But sometimes it could be a non-relocatable

machine code program or something equally as sensitive. The extra bytes

at the end might cause the program to over-shoot its intended memory

area and write into CIA registers or some other program.

There is a program for dealing with files that are sensitive to the padding in

the last block. "XSTRIP.BIN" is in Data Library 8 of the CBMCOM Forum.

All it does is ask you for a filename and proceed to strip the CTRL z's off the

end of the file. This is done off-line using the file as downloaded on your

drive.

Downloading .IMG Files with B Protocol

Variable block size is one reason B Protocol was invented. If B Protocol is

used to download a .IMG file (ie. a file uploaded with B Protocol), you

should have no problems.

Another reason B was invented was to deal with the different types a files

that exist on disk such as PRG and SEQ. This information is contained in a

6 byte header that precedes the remainder of the data. Part of the header is

used to indicate that B Protocol is in effect. So when using B to download a

.IMG file, the transfer program will detect that the file was uploaded with B,

and the first 6 bytes will not be written to your disk drive.

Downloading .IMG with Xmodem

You may not have B Protocol, but you can still download .IMG files with

Xmodem. However, those first 6 bytes will be received as valid data and get

written to your disk. If it's a program you're downloading, the entire

program will be "skewed" by 6 bytes when you LOAD it. This won't do.

Therefore, another post-download utility was written called "BIN1MG.BIN"

and it's also in DL8 of the CBMCOM Forum. All it does is "eat" the first 6

bytes off the file, and write the rest back out.

If you're using CBTerm, this is done automatically. Other authors of

terminal programs are also starting to add this feature. The easiest way to

check if a B1NIMG.BIN adjustment is necessary is to LOAD and RUN the

program. If it's a BASIC program and you get a Syntax Error in some

strange line number, it needs the 6 byte header removed.

Downloading .BIN with B Protocol

B Protocol "looks" for that 6 byte header. If it's not there, B won't discard

those bytes. They will get written to disk and the program will simply

proceed with the download much like Xmodem would. You won't need to

The Transactor !8 March 1987: Volume 7, Issue O5

worry about the padding characters at the end

either. However, the file type will default to

SEQ on your Commodore drive.

There are two ways to remedy this. When the

program asks you for a filename to use on

your disk, follow with ",P". This will force a

PRG type file. If you forget and you end up

with a program that's locked inside an SEQ

file, simply add ",S" to your filename when

you LOAD it. This will avoid a ?File Type

Mismatch error. Once the program is loaded,

you can Scratch the old file, and SAVE a new

one.

Choose Your Weapons Carefully

You may have noticed the difference in con

nect time charges for 300 and 1200 baud.

Choosing one or the other for certain tasks can

help make your online fun more economical.

You can't change "mid-stream", so this deci

sion must be made before you sign-on

1200 baud is more expensive, but if you're

signing on with the intention of downloading

several programs, 1200 will often save you

money in the long run.

However, it's pretty hard to read text flying by

at 120 characters per second. It's also pretty

tough to type that fast. So for doing things like

reading or leaving messages, browsing

through DLs, or Conferencing, use 300 baud

to save yourself a little money.

CIS Directory

The following list is a summary of all the

different sections on CompuServe along with

their quick reference words - especially

handy for "touring". A "$" indicates an extra

charge for the service, and (E) indicates an

Executive Information Service option.

Next Issue

Color Mail is one of CompuServe's most ad

vanced offerings. With the Color Mail package

you can create animated greeting cards to

send to others. You don't need the Color Mail

program to receive them - an off-line decoder

lets you see your animated mail.

1-800-Floppys

AAMSI Communications

ABC Worldwide Hotel Guide

ACOG

ADCIS Forum

AESNET

AI EXPERT Forum

AI EXPERT Magazine

AMS/OIL Dealer

AOPA Forum ($)

AP Datastream

AP Videotex, Business

AP Videotex, Entertainment

AP Videotex, Politics

AP Videotex, Weather

AP Videotex, World News

AS1 Monitor

ASI Service Difficulty Reports

Academic Amer. Ency ($)

Access (Public File Area)

Access Phone Numbers

Adventures in Travel

Agri-Commodities

Air France

Aircraft

Alaska Teleshopper

American Airlines

American College of OB/GYN

American Express

American Express(R) ADVANCE

American Tire Buyers

Ameropa Travel

Amiga Forum

Antic Magazine

Apparel Concepts for Men

Apple User Groups Forum

Ashton-Tate Forum

Ashton-Tate Support Library

Ask Mr. Fed Forum ($)

Associated Press

Astrology

Astronomy Forum

Atari 16 Bil Forum

Atari 8 Bit Forum

Atari Developers Forum

Athlete's Outfitters

Auto Racing Forum

Autodesk Software Forum

Aviation Forum (AVSIG)

Aviation Menu

Aviation Safety Institute

Bacchus Wine Forum

Baffle Word Game

Banking Services

Banshi

Bantam Books

Beneficial National Bank

Biorhythms

Birkenstock Footwear

BlackDragon

Bloomingdale's By Mail

Bonds Listing ($)

Borland International

Braille

Broadcast Professionals Forum

Buick Magazine

Business Incorporating Guide

CB Interest Group

CB Pictures

CB Society

CBS/Fox Video

CP/M (CPM) Users Group

CW Communications

Calculate Net Worth

Careers

Carolina Health & Fitness

Casino

Castle Telengard Game

CastleQuesI

Casual Tee's

Changing Your Password

Changing Your Terminal Type

Checkbook balancer

Chevy Showroom

Christian Book Store

Citibank

Citizens Band Simulator

Classic Quotes

Coffee Emporium

College Press Service

Colonial National Bank USA

Color Graphics

DSK

AAM

ABC

ACOG

ADCIS

AESNET

AIE-100

AIE

AMS

AOPA

SPD-1005

APV

APV

APV

APV

APV

ASI-10

ASI-12

ENCYCLOPEDIA

ACCESS

PHONE

AIT

ACI

AF

AVIATION

AK

AA

ACO

AXM

AXP

ATB

AT

AMIGAFORUM

ANTIC

APC

APPUG

ASHFORUM

ASHTON

MMS-20

APN

GAM-45

ASTROFORUM

ATARI 16

ATARI8

ATAR1DEV

ATH

RACING

ADESK

AVSIG

AVIATION

ASI

WINEFORUM

BAFFLE

BANKING

BANSHI

BB

BNB

BIORHYTHMS

BF

BLACKDRAGON

BL

MMM-41

BORLAND

BRAILLE

BPEORUM

BU

INC

CBIG

CBPIX

CUPCAKE

CF

CPMSIG

CW

HOM-16

WS

HF

CASINO

CASTLE

CQUEST

CA

PASSWORD

TERMINAL

CHECKBOOK

CHV

DII

CI

CB-10

TMC-7

COF

CPS

CN

CIS-91

Color Mail Database

Color Mail Exchange Forum

Comic Book Forum

Command Decision

Commodities

Commodity Pricing ($)

Commodity Symbol Lookup

Commodore Arts and Games Forum

COLORMAIL

HALLMARK

COMIC

COMDEC

COMMODITIiJS
CPRICE

CSYMBOL

CBMART

Commodore Communications Forum CBMCOM

Commodore Programming Forum CBMPRG

Commodore Service Forum CBM-2000

Commodore Users Network CBMNET

Comp-U-Store CUS

Compu-Game CPG

CompuServe Billing Information BILLING

CompuServe Command Summary COMMAND

CompuServe Logon Instructions LOGON

CompuServe Node Abbreviations NODES

CompuServe Rates RATES

CompuServe Tour TOUR

CompuServe's Product Ordering ORDER

CompuServe's Subject Index TOPIC

CompuServe's software exchange SOFTEX

Computer Art Forum ARTSIG

Computer Club Forum CLUB

Computer Consultant's Forum CONSULT

Computer Express CE

Computer Language Magazine CLM

Computer Sports World CSW

Computers/Actrix/ Eagle/Timex CLUB

Computing Tutorials PCS-121

Conroy-Lapointe CL

Consumer Electronics Forum CEFORUM

Cooks Online Forum COOK

Cosmic Concepts CC

Current Day Quotes ($) QQUOTE

DEC PC Forum DECPC

DISCLOSURE II ($E) DISCLOSURE

DR. JOB DRJ

DataPac Logon Instructions LOG-41

Department of State STATE

Detailed Issue Examination ($) MMM-39

Digital Equipment Corporation DECUNET

Digital Research Forum DRFORUM

Digital Research Inc. DRI

Directory Of Public Officials OFFICIALS

Disabilities Forum DISABILITIES

Discount Computers DSC

Discover Orlando ORLANDO

Dividends and Splits ($) DIVIDENDS

Donoghue Organization DON

Dow Jones & Co. DJ

Download Pricing Data MMM-67

Dr Dobb's Journal DDJ

Dr. Dobb's Journal Forum DDJFORUM

EF Hutton EF

EMI Aviation Services ($) EMI

EMI PRO-PLAN Registration PROPLAN

EMI RNAV/LORAN Flight Plan ($) AERONAV

EMI Radar Map ($) AERORAD

EMI User Route Flight Plan ($) AEROROUTE

EMI VOR/Airway Flight Plan ($) AEROVOR

EMI Weather Briefing ($) AEROBRIEF

EPIE Database EPI

EPIE Forum EPIEFORUM

EasyPlex MCIMAIL

EasyPlex Electronic Mail EASYPLEX

Ebsco Magazine Entree ME

Ecopress Periodicals ECO

EdVENT II Seminar Directory EDVENT

Educational Research Forum EDRESEARC11

Educational Travel Connection EDTRAVEL

Educators Forum EDFORUM

Electronic Bounce Back EBB

Electronic Gadget Store EGS

Electronic Gourmet ($) GOURMET

Electronic's Mart ELM

Epson Forum EPSON

Equitable Life EL

Executive Engravers EX

Executive News Service ($E) ENS

Executive Option EXECUTIVE

Expert Investor/MQuote II ($) MMM-19

Express Music CDs EMC

FBI Ten Most Wanted List TEN

Family Computing Electronic Ed FAM

Family Computing Forum FAMFORUM

Feedback to CompuServe FEEDBACK

Fifth Avenue Shopper FTH

Financial Documentation IQH

Financial File Transfer FILTRN

Financial Forecasts EARNINGS

The Transactor 19 Morch 1987: Volume 7, Issue O5

Financial Surcharge List

Florida Forum

Florida Fruit Shippers

Flying

Flying Buffalo

Football

Foreign Language Forum

Fort Worth Computer Chronicles

Forth Forum/Creative Solutions

Forums

Futures Focus Stock Index Plus

Gamers Forum

GlobaLink

Golf

Good Earth Forum

Government Publications

HAMNET

Hallmark Color Mail

HamNet Online

Handicapped Users' Database

Hangman

Hardware Forums

Hawaiian Isle

Health Forum

HealthCom

HealthNet

Heath Users Group

Hewlett Packard Forum

Historical Pricing

Hobbit Hole / Wyandotte Wines

Hollywood Hotline ($)

Hollywood Hotline Art

Home Banking

Human Sexuality

Huntington National Bank

I/B/E/S($E)

IBES Earnings Estimate Reports

IBM Communications Forum

IBM Hardware Forum

IBM Junior Forum

IBM New Users Forum

IBM Software Forum

IBM Users Network

IIAA

IQuest

Incue Online

Independent Insurance

Information USA

Intelligence Test

Internal Revenue Services

International pur Wholesalers

Investors Forum

Island of Kesmai

Journalism Forum

Kaypro Users Forum

LDOS/TRSDOS6 Users Group

LOGO Forum

Legal Forum

Lincoln Manor Baskets

Literary Forum

Living Videotext Forum

Lobster Market

Logical Systems lnc Forum

MAUG(tm)

MAUG(tm) Apple II & III Forum

MAUG(tm) Apples Online

MAUG(tm) MacDeveloper's Forum

MAUG(tm) Macintosh Users Group

MEDSIG

MMS/Daily Comment ($)

MMS/Fedwatch Newsletter ($)

MMS/Market Briefings ($)

MUSUS Forum

Magic Castle Video

Market Highlights ($)

MaryMac Industries, Inc.

Max Ule Discount Brokerage

Max Ule's Mergersource

Max Ule's Tickerscreen

MegaWars 1

MegaWars 1 Pictures

MegaWars III

Mercury House

MicroPro Forum

MicroQuote ($)

Microsearch Reference Library

Microsoft Forum

Military Veterans Services

Milkins Jewelers

Minutiae Challenge

Misco Computer Supplies

Model Aviation Forum

Money Market Services

MMM-23

FLORIDA

FFS

AVIATION

BUFFALO

FOOTBALL

FLEFO

FWCC

FORTH

FORUMS

FFP

GAMERS

GLO

GOLF

GOODEARTH

GPO

HAMNET

COLORMAIL

HAM

HUD

HANGMAN

PCS-20

HI

HCM-660

HCM

HNT

HEATHUSERS

HP

PRICES

HH

HOLLYWOOD

HHA

BANKING

HUMAN

HNB

IBES

IBES

IBMCOM

IBMHW

IBMJR

IBMNEW

IBMSW

IBMNET

INS

IQUEST

INCUE

INS

IUS

TMC-32

IRS

RF

INVFORUM

ISLAND

JFORUM

KAYPRO

LDOS

LOGOFORUM

LAWSIG

LM

LITFORUM

LVTFORUM

SEA

PCS-49

MAUG

APPLE

AOL

MACDEV

MACUS

MEDSIG

DC

FW

MAR

MUSUS

MV

MMM-46

MM

MU

TKR

TKR

MEGAI

MW1PIC

MEGAIII

MER

MICROPRO

MQUOTE

MSH

MSOFT

VET

MJ

MINUTIAE

MO

MODELNET

MMS

Monthly Charges

Morrow's Nut House

Mortgage Calculator

Movie Reviewettes

Multi Issue Price History ($)

Multi-Player Games Forum

Music Alley Online

Music Forum

Music Video

NWS Aviation Weather ($)

NWS Weather

Naked Eye Astronomy

National Bulletin Board

National Issues Forum

National Tourism Citilog

Nationwide Catalog Shopper

Neighborhood Demographics ($)

Neiman-Marcus

New Adventure

New Car Showroom

News-A-Tron

Newsnet

Noload Mutual Funds Directory

OB-GYN

OMNI FORUM

OMNI Online

OP-NET Forum

OS9 Forum

Official Airline Guide EE

Official Airline Guides

Ohio Scientific Forum

Online Computer Connection

Online Today

Options Profile

Orch-90 Music Forum

Original Adventure

Outdoor Forum

PDP-11 Forum

PLASTISERV Plastics Inform

PR Link

PR and Marketing Forum

PSFS Direct Line Banking

Pan Am Travel Guide

PaperChase-MEDLINE

Pascal Forum

Personal Computing

Personal File Area

Personal Menu

Personality Profile

Peterson's College Guide

Pictures Support Forum

Plastics Associations

Plastics Buyer's Guides

Plastics Directories

Plastics Government Agencies

Plastics Legislation

Plastics Materials

Plastics Product Guide

Plastics Regulatory Update

Plastics Statistics

Plastics Suppliers

Portfolio Valuation ($)

PowerSoft's XTRA-80

Pricing Statistics ($)

Programmers Forum

Public Access

Question & Answer

Quick Quote ($)

Quick Reference List

Quick Way

RCA Direct Marketing

Rapaport Diamond Broker

Rare Disease Database

Record World

Religion Forum

Return Analysis ($E)

Rin Robyn Pool & Patio

RockNet

Rocky Mountain Connections

SBENET

SHOWBIZ Quiz

Safetynet Forum

Sailing Forum

Savings Scan

Science Fiction/Fantasy

Science Trivia Quiz

Science/Math Education Forum

Scott Adams' Games

SeaWAR

Sears, Roebuck & Co.

Securities Screening ($E)

Shareholders Freebies

Shawmut Bank of Boston

MONTH

NUT

HOM-17

MOVIES

QSHEET

MPGAMES

MAO

MUSICFORUM

MUS

AWX

WEA

NAKEDEYE

BULLETIN

ISSUESFORUM

CITIES

NCS

NEIGHBOR

NM

NEWADVENT

NEWCAR

NAT

NN

NOLOAD

OBG

OMNIFORUM

OMNI

SFP-4

OS9

OAG

OA

OSIFORUM

COMPUSERVE

ONUNE

OPRICE

ORCH-90

ORADVENT

OUTDOORFORUM

PDP11

SFP-13

PRLINK

PRSIG

PSFS

PANAM

PAPERCHASE

PCS-55

COMPUTERS

FILES

MENU

TMC-17

PETERSON'S

PICS

DIR

BUY

DIR

DIR

SPI

PRO

PRO

REG

SPI

BUY

PORT

PCS-56

STATS

PROGSIG

ACCESS

QUESTIONS

QQUOTE

QUICK

QWKWAY

RC

RDC

RDB

RW

HOM-33

RETURN

RR

ROCK

ROCKIES

SBENET

SHOWBIZ

SAFETY

SAILING

SAV

SCI

SCITRIVIA

SCIENCE

ADAMS

SEAWAR

SR

SCREEN

FRE

SHW

Shop-at-home

Simon David

Single Issue Price History ($)

Soap Opera Summaries

Social Security Administration

Society of Plastics Industry

Software Discounters of Amer

Software Publishing Forum

Software Publishing Online

Southeast Bank

Space Forum

SpaceWAR

Sports Forum

Standard & Poor's ($)

Standard and Poor's ($)

State Capitol Quiz

Stevens Business Reports

Students' Forum

Subscribers Directory

Sun Life Group

Sun N Sand Vacations

Sunland Camera

SuperSite ($E)

TELPLT ($)

THE ELECTRONIC GAMER(tm)

TRS-80 Model 100 Forum

TRS-80 Professional Forum

TYMNET logon instructions

Tandy Business Users Group

Tandy Color Computer Forum

Tandy Newsletter

TeleData«Guide

Telecommunications Forum

Telenet Logon Instructions

Texas Instruments Forum

Texas Instruments News

Text Editors

The Business Wire

The College Board

The Electronic MALL

The Game Getters, Inc.

The Grower's Store

The Heath Co.

The McGraw-Hill Book Company

The Multiple Choice

The National Satirist

The Tandy Users Network

The Whiz Quiz

The World of Lotus

Ticker Retrieval ($E)

Ticker and Cusip Lookup ($E)

Tiffany & Co.

Topgar Tobaccos

Touch-Type Tutor

Tour the West

Travel SIG

TravelVision

Traveler's Challenge

Travelshopper

Tropical Fish Forum

US Entrepreneurs' Network

USATODAY

Unified Management

United American Bank

VAX Forum

VIDPLT ($)

VIDTEX Information

VIDTEX Weather Maps

Vacuum Advance

Value Line Financials

Value Line Information

Value Line Projections ($)

Vermont Tourism

Videolog Electronics

Visa Advisors

VitaMenagerie

WITSIG

Waldenbooks

Walter Knoll Florist

Wayside Systems

West Coast Travel

What's New

What's New in Travel

Whole Earth Software Forum

Woodstock Leather

Word Scramble

Working-From-Home Forum

World of Computers

World-Wide Investment Systems

Worldwide Property Guide

Writers and Editors Forum

Xerox Direct Marketing

You Guessed It!

SHO

SIM

PRICES

SOAPS

SSA

SPI

SDA

SPCFORUM

SPC

SEB

SPACEFORUM

SPACEWAR

HOM-110

S&P

S&P

TMC-44

SBR

STUFO

USERS

SLG

SNS

SUN

DEMOGRAPHIC

MMM-9

EGAMER

M100SIG

TRS80PRO

LOG-11

TCBUG

COCO

TRS

TDG

TELECOMM

LOG-20

TIFORUM

TINEWS

PCS-12I

TBW

TCB

MALL

GG

SDG

HTH

MH

TMC

KCS

TANDYNET

WHIZ

LOTUS

TICKER

TICKER

TIF

TG

TMC

WEST

TRAVSIG

TRV

ETC-81

TWA

FISHNET

USEN

US

UMC

HOM-152

VAXSIG

MMM-47

VIDTEX

MAPS

VCS

MMM-10

VUNFO

MMM-7

VERMONT

VL

VISA

VM

WITSIG

WB

WK

WS

WESTCOAST

NEW

WNT

WHOLEEARTH

BAG

SCRAMBLE

WORK

woe

REAL ESTATE

WWX

WESIG

XDM

YGI

Th© Ttansocfor 2O March 1987: Volume 7. Issue O5

An Introduction to

Machine Language Programming on the Amiga
Rick Morris, Burnaby, British Columbia

After purchasing my Amiga and ogling some demo programs, I

decided it was time to start writing software myself. I had

bought the developer's kit, and included in it was plenty of

documentation on how to use the various system routines and

libraries. Unfortunately, the examples were all in 'C, a lan

guage I did not know. Learning C and the Amiga environment

proved to difficult, so I switched languages to Assembler,

something I have had some experience with.

The program that follows is a demonstration of how to access

system routines with Assembler. In itself it doesn't do much,

and is not a marvelous example of programming, but it pro

vides basic text input-output and forms the basis of a Com

mand Line Interface I am writing, taking advantage of the

Function keys and Menus. The program sections are num

bered in the right-hand margin, and I will refer to the sections

by number. Further, I will not go into great detail about the

specifics of each system routine, instead I refer you to the

AmigaDOS Developer's Manual.

Section 1 is System Equates, and most of them are found in the

assembler INCLUDE files. I find it best to put them right in the

program, since a considerable amount of time is taken up when

you include any files. If you must use the include files, I suggest

you at least strip the comments out of them. Alternately, you

can assemble the include files with the -e option, and include

the resultant file as you would any other include file. This

method saves the time the assembler normally takes to expand

the regular include files.

Section 2 tells the assembler that these 'xref'ed labels will be

resolved at link time, and are found in the "amiga.lib" file.

Section 3 is a Macro that saves me from typing the dreaded

LVO each time I want to use one of the system calls.

Section 4 is the start of the program. I call the beginning of the

program main from habit, and if you link in "Astartup.obj"

as well as "amiga.lib" when you ALink the object code, then a

routine will be included that allows your program to be run

from either CLI or WorkBench, and the label main must be at

the start of your code.

Here is where we use our first call to the system routines, the

call OpenLibrary(a6). A short discussion of the way the Intui

tion is set up is in order.

There are 2 basic types of system calls, Exec routines and

Libraries. All of the routines are accessed through jump tables.

You load the address of the beginning of the jump table into

address register a6, information required by the routine in the

other registers, and then you JSR LVORoutine(a6). The

routine performs the asked-for function and returns a value,

which may be an error code that you must test for. Our

LVOOpenLibrary (or any other system call) is turned into an

offset at ALink time, when you link with amiga.lib. For exam

ple, the Assembler syntax JSR LVOOpenLibrary(a6) be

comes, after linking, JSR $FFFE68(a6).

The starting address of the Exec jump table is contained in

Memory Location $000004, AbsExecBase, the only unchang

ing memory location in the machine. This jump table contains

system routines, such as OpenLibrary, AllocMem, and all of the

routines found in the Exec/doc section of the Rom Kernal

Manual. Each time you use one of these routines you must

have the pointer you saved from Location $000004 in address

register 6.

The next level of routines dealt with in the example is Library

routines. We call OpenLibrary to open the "dos.library" in

order to use dos routines such as Read and Write. They are

used in the same way that system routines are used. Our call to

OpenLibrary returned the address of the dos library jump table,

which we then store for later use. Note that zero may be

returned indicating an error, and we must test for this. Other

libraries, which may be disk-based and loaded into memory

only when opened, include the Translator, the Font library, and

the Math library. These libraries are used in the same way as

the Dos library: you call OpenLibrary with a pointer to the

name of the library, then use the pointer to the jump table

returned.

Section 5 uses one of the DOS routines to open a window, in

this case RAW:. This window is actually a file that does not pre-

process keystrokes, so we can get all keys, including cursor

The Transactor 21 March 1987: Volume 7, lnueO5

keys and function keys. You use the same process to open disk

files, and if the file type is MODE_NEWFILE, a new disk file is

opened for you to write to.

The parameter returned from Open is the 'handle' of the file,

and is one of the parameters we in turn pass to Read and Write.

The 'tst.l dO' instruction used here may appear redundant, and

in fact is if we re-arrange the instructions so that the 'move.l

dO.handle' comes before the 'tst.l dO' instruction, but illustrates

a point. The flags are not necessarily set upon return from a

system call, and you must explicitly test results yourself.

Sections 6 and 7 are housekeeping for pointers and printing a

'Hello' to the window we have just opened.

Section 8 is the logic of our program. It gets a keystroke, and

decides upon appropriate action. An 'escape' key ends the

program, a 'return' executes the CL1 command just typed in,

and any other key is echoed to the window.

Section 9 gets keys from our window. The WaitForChar routine

will wait for 500 microseconds, or until a key is pressed, and

return 0 for no key, -1 for a key pressed. When -1 is returned,

we Read the key into our buffer.

Once again, we seem to have a redundant routine. We could

just as easily have used Read, and let it wait for us until a key

was pressed. The reason we use WaitForChar is that this the

Amiga is a multitasking machine, and if no input is coming our

way, the WaitForChar allows the system to put our task to sleep

and service other routines, then wakes us up when a key is

pressed. It is always a good idea to let go of system resources

when you do not need them.

Section 10 prints the last key pressed. Notice that we put dO on

the stack and get it back before exiting the routine. Data

registers 0 and 1, and Address registers 0 and 1 are scratch to all

system routines, and all other registers will be preserved. Or at

least Commodore has stated that they will be when Kickstart

1.2 arrives.

Section 11 executes any command we type in before a 'return'.

This is almost ridiculously simple: we put the command string

address in dl (not al, strange but true), zero out d2 to say there

is only one command, put our File Handle in d3, and call

Execute - Dos does the rest. Any command that can be typed in

at the CLI prompt can be used, and the results will be sent to

our window.

Section 12 is called by Section 7, and prints our 'Hello' to the

newly opened window. Note that since we are using a RAW:

window, we must include line feeds (#10) in our message

string.

Section 13 closes our window, then the dos library. You should

always close any resource you open. This will give back the

memory the system reserved for you when you opened it, and

in the case of disk-based libraries, will allow the RAM used by

the library to be reclaimed.

Section 14 defines some strings used elsewhere in the program.

Section 15 also defines storage, but uninitialized. The 'section

bss' directive tells the assembler we need this amount of

storage, but it is not included in the assembly. At load time, the

system automatically sets aside this amount of free storage for

us, rather than loading in a bunch of blank bytes.

1 hope this example is helpful in starting others on Amiga

assembler programming. I have found that C Structures make

much more sense as ML data tables, and the system routines

available are quite easy to use and very powerful. And, of

course, the 68000 processor has a wonderful variety of instruc

tions and addressing modes available.

The assembly starts here.

* some system equates

AbsExecBase equ$4

timeout equ$500

rtn equ$d

esc equ$1b

MODE_NEWFILE equ1006

♦AbsExecBase (1)

♦ how long we wait for input

♦ascii carriage return

♦ascii escape key

♦file mode to create a new file

xref LVOOpenLibrary

xref LVOCIoseLibrary

xref_LVOOpen

xref_LVORead

xref_LVOWrite

xref_LVOWaitForChar

xref LVOExecute

xref_LVOCIose

xref_LVOInput

xref_LVOOutput

(2)

call MACRO

jsr _LVO\1

ENDM

♦ a macro to save typing (3)

♦open DOS

main move.l AbsExecBase,a6 * pointer to exec

move.l a6,execbase * and store it

lea dosname(pc),a1 ♦pointer to dos.library

moveq #0,d0 ♦version no.

call OpenLibrary(a6) ♦open

move.l dO.dosbase ♦savedosbase

beq close ♦library didn't open

(4)

♦Open the console device

lea conname(pc),a1

move.l a1,d1

(5)
♦name in d1?

♦move address to d1

The Transactor 22 Moreh 1987: Volume 7, Istue O5

move.l

move.l

call

tst.l

beq

move.l

#MODE_NEWFILE,d2 *file type is newfile

dosbase,a6

Open(a6)

dO

close2

dO.handle

•initialize the variables

lea

move.l

♦ print the welcome

jsr

buffer.ai

ai.bufptr

s message

mess

* the start of the routines

forever bsr

cmp.b

beq

bsr

cmp.b

beq

addi.l

bra

key

#esc,dO

close 1

print

#rtn,dO

docmd

#1 .bufptr

forever

*get a key without testing it

key move.l

move.l

move.l

call

tst.l

beq

move.l

move.l

move.l

move.l

call

move.l

move.b

rts

* print the last key f

print move.l

move.l

move.l

move.l

move.l

call

move.l

rts

handle.di

#timeout,d2

dosbase,a6

*get dosbase

♦ open console

♦check error

(6)

♦ initialize the buffer

♦ pointer

(7)

♦ print a welcome message

(8)

♦get a key

♦is it the escape key?

♦exit

♦ print the character

♦ is itac/r?

♦execute the command

♦ increment the buffer pointer

♦continue the loop

(9)
♦ handle for the console

♦timeout value

♦get the library pointer

WaitForChar(a6) *any keys in the input stream?

dO

key

handle.di

bufptr,d2

#1,d3

dosbase,a6

Read(a6)

bufptr.ai

(a1),dO

messed

dO-(sp)

handle.di

bufptr,d2

#1,d3

dosbase,a6

Write(a6)

(sp) + ,dO

♦execute a command

docmd move.l

move.b

jsr

move.l

The Transactor

bufptr.ai

#1O,(a1)

print

bufptr.ai

♦ no keys is 0

♦wait for a key press

♦ handle for the console

♦ load buffer pointer

♦ read one character

♦do the read function

♦ restore pointer

♦ return char in dO

(10)

♦ remember dO is scratch!

♦console handle

♦ register usage

♦one character to write

♦write one character

♦ getdO back

(11)

♦get the buffer pointer

♦a line feed character

* print it

♦get the buffer pointer

move.l

moveq.l

move.b

lea

move.l

move.l

move.l

call

lea

move.l

bra

a1,d1

#0,d2

d2,(a1)

buffer.ai

a1,d1

handle,d3

dosbase,a6

Execute(a6)

buffer, a 1

a1 .bufptr

forever

♦ the welcome message

mess lea

move.l

move.l

move.l

move.l

call

rts

♦exit program

closei move.l

move.l

call

close2 move.l

move.l

call

close rts

♦library defines

dosname dc.b

cnop

conname dc.b

cnop

message dc.b

dc.b

dc.b

cnop

section

buffer ds.l

bufptr ds.l

handle ds.l

dosbase ds.l

execbase ds.l

end

23

message(pc),a1

a1,d2

handle,d1

#77,d3

dosbase,a6

Write(a6)

handle.di

dosbase,a6

Close(a6)

dosbase.ai

execbase,a6

CloseLibrary(a6)

'dos.library',0

0,2

♦ and put into d1

♦inhandleiszero

♦zero over c/r

♦ get the buffer address

♦ put it in d1

♦output handle

♦get the library

♦ Execute the cmd

♦time to reset the buffer

♦ point to start of buffer

(12)

♦get the message pointer

♦put it in d2

♦our console handle

♦no. of characters

♦get dos base

♦call system write routine

(13)

♦ our console is open,

♦ so we must close it

♦close the file

♦ dos.library is open,

♦ so we close it

♦close dos.library

♦ return to cli

(14)

'raw:0/0/640/200/ASM Demo',0

0,2

'ASM Demo by Rick Morris', 13,10

'Copyright 1986' 13,10

'Permission to copy but not to sell',13,10,0

0,2

^ars.bss

20

1

1

1

1

(15)

♦ buffer, 80 bytes

♦current buffer pointer

♦console file read handle

♦dos library pointer

♦AbsExecBase pointer

March 1987: Volume 7, Issue O5

Amiga Programming Concepts
by Chris Zamara and Nick Sullivan

The Amiga is a complex machine,

but programming it can be easier than you might expect

Part 1: Fundamentals

In this, the first of a series of articles on programming the

Amiga, we are going to try to overcome some of the common

obstacles that discourage many would-be Amiga program

mers. Mostly we'll talk about programming in the C language,

with lesser coverage of 68000 Assembly language. We will not

attempt to teach you how to program in C or assembler - our

feeling is that the best place to learn a language is a good

textbook - but merely how to program the Amiga using one of

these languages as a tool. Even if C or assembler are not your

primary interests, we recommend that you become familiar

enough with them that you can follow source code and exam

ples: most documentation and explanations of the Amiga

Kernel use examples written in C; knowing a bit of assembler

can come in handy if you want to optimize compiled code.

Besides a good text on C (The definitive one is "The C Program

ming language" by Brian Kernighan and Dennis Ritchie), you'll

need the Amiga documentation: the Rom Kernel, Dos, and

Intuition manuals.

If you're worried that programming the Amiga is impossibly

complicated and you're intimidated by the bulk of the manuals

you need to wade through, here's a little secret you might be

interested in: programming the Amiga is easy. However hard it

may seem at first, the fact is that the operating system does so

much for you that performing major operations is often just like

filling in a form - simply assign the values you want to a system

structure, then call a built-in function to interpret the values

and do your bidding. In this article, we'll cover three important

areas that can be most confusing to the new Amiga program

mer: structures, include files, and libraries.

Structures

C programmers are familiar with the concept of a structure,

which may be thought of as a fancy array that can hold several

variables of different types. This section contains ideas that

might be redundant to those who already know C, but they are

stressed here because they are especially important when

programming the Amiga. The Amiga's operating system uses

structures heavily as a means of passing packages of data

between functions without having to specify each component

separately as a variable.

For example, consider the function OpenWindow() in the

Intuition library. To open a window, you just pass the

OpenWindow function a pointer to (that is, the address of) a

'NewWindow' structure that contains the necessary informa

tion about the window you want to open. The OpenWindow

function knows the definition (called a 'template') for the

NewWindow structure, and your program knows too, because

it obtained the definition from one of the standard 'include' files

(more about those in the next section). The OpenWindow

function returns a pointer to an instance of a "Window"

structure, which your program can subsequently use to find out

things about the window that was just opened (its current

width, etc), and which you may also use as an argument to

other Intuition functions. Structures are also used throughout

the system as a means of communication between tasks,

though this is not something that you need to worry about for

most applications.

It is important to keep in mind the difference between a

structure template and an instance of that structure. For exam

ple, we could define a "foo" structure like this:

struct foo {

char name[20];

unsigned int RefNumber;

struct foo *NextGuy; /* pointer to another structure */

Now "struct foo" is a variable type that we can use in declara

tions. So, if we want to declare two structures of type "foo", we

could use the declaration:

struct foo Customer, Client;

Now "Client" and "Customer" are structures of type "foo". Foo

is a structure template, while Client and Customer are in

stances of the foo structure. Individual members of Client and

Customer can now be referenced using the 'dot' operator, like

this:

n = Client.RefNumber;

The templates for system structures are generally defined in the

include files that your program uses, and the structures them-

Ihe Transactor 24 March 1987: Volume 7, Issue O5

selves are declared in your program. So, if you wanted to make

your own NewWindow structure and call it "MyNewWindow",

you would use the declaration:

struct NewWindow MyNewWindow;

Another important distinction to be made is the difference

between a pointer to a structure and the structure itself. When

using functions that pass information via structures, you usu

ally deal with pointers. When you are dealing with both

structures and pointers to structures, it is easy to get mixed up.

Don't, because you access the elements of the structure differ

ently in each case. For example, we declared a NewWindow

structure above called MyNewWindow; now let's declare a

pointer to a "Window" structure and call it "MyWindowPtr":

struct Window *MyWindowPtr;

We access a member of MyNewWindow like this:

MyNewWindow. LeftEdge = 100;

. . .and a member of MyWindowPtr like this:

x = MyWindowPtr->Width;

The arrow operator (->) is used when accessing a structure

member from a pointer, and dot (.) is used when using the

structure itself. As shown in the "foo" structure example, a

structure can contain pointers to other structures; this capabil

ity is often used to create a linked list of structures of the same

type.

In assembler, structures are simulated by defining the name of

each structure element as an offset into the structure. As with C

structure templates, these definitions take place in include files.

(The manner in which these definitions are done is quite

interesting, as they closely simulate C syntax through the use of

macros; it's worth taking a look through some include files to

see how it's done.) The number of bytes taken by each structure

is also defined, so that you can allocate space in your program

for any structure you need. This space in your program forms

the instance of the structure, and the label you assign to it is the

structure name. You can access a member of the structure by

using the member name (as defined in the include file) as an

offset to the structure name. For example, to "declare" a

NewWindow structure called MyWindow, you just make

enough space for it (probably at the end of your program) like

this:

MyWindow DS.B nw_SIZE

Now you can put the address of the structure in a register, like

this:

LEA MyWindow,a2

.. .and store a value into a structure member like this:

MOVE #100,nw_Width(a2)

That's enough about structures for now - let's get on to the next

topic!

Include Files

One thing that many people find hard to cope with when first

attempting to write a program on the Amiga is the multitude of

INCLUDES that always seems necessary at the top of every

source file. In other systems, you can write a lot of programs

without including anything other than "stdio.h". On the

Amiga, it's a different story, as you'll see if you take a look at the

source code of any Amiga-specific program, or through the

maze of files in the INCLUDE directory on a C development

disk.

Which include files you need to use in your program will

largely depend on which libraries and "devices" you are using.

For example, if you are using the Intuition library (more about

libraries in the next section), you will need the include file

"intuition/intuition.h". If you're not sure what you need to

include, just use the above guideline and attempt to compile

and link. If you get errors indicating that certain structures,

constants or macros are not defined, use the SEARCH com

mand to locate its symbol name in the include directory, then

INCLUDE the file in which it is found. The filenames of the

include files always end in ".i" for assembler, or".h" (for

header) for the C programs. Either way, they contain basically

the same information. You'll find the following kinds of item:

Defines (constants): These set up system-specific quantities

that represent modes, error conditions, flags and so on. When

you open a window through Intuition, for example, one of the

things you can specify is the set of system gadgets - the size

gadget, the drag bar etc. - you want to use. You can do this with

a line like:

newwindow.flags = WINDOWDRAG | WINDOWCLOSE;

which is equivalent to:

or even:

newwindow.flags = 0x0002 | 0x008;

newwindow.flags = OxOOOa;

The numeric values of WINDOWDRAG and WINDOWCLOSE

are defined, along with a host of other things, by #define

statements in the include file "include/intuition/intuition.h".

You could just use the numbers if you wished to, of course, but

that would be foolish - the names of the flags are much easier

to remember, and make your program independent of operat

ing system revisions.

Macros: These provide a shorthand method of incorporating

often-used pieces of code into your programs. A classic exam

ple is the MAX macro:

#define MAX(x.y) ((x) > (y) ? (x): (y))

The Transoctor 25 Moreh 1987: Volume 7, tesue O5

Some include files contain macro definitions to facilitate

Amiga-specific operations, such as setting bits in system varia

bles. An example from the file "include/graphics/

gfxmacros.h":

#defineSetWrMsk(w,m) {(w)->Mask = m;}

Simple macros such as these could be easily coded by hand

(e.g. rp->Mask=x; instead of SetWrMsk(rp,x);), but using the

provided macros ensures that your program will be compatible

with future operating system revisions. The Amiga manuals

recommend that you always use the standard macros instead of

coding such assignments yourself.

Structures: Structure definitions are one of the main purposes

of the include files. The operating system uses structures

extensively to maintain all kinds of necessary information

about the current state of the machine. For the most part, your

program communicates with the operating system routines

through structures that both the system and your program

know about.

Typedefs: In the include file "include/exec/types.h", there

are a bunch of typedef statements that define commonly used

variable types. The typedef statements have two purposes: To

make your program more portable, and for convenience. Here

are two examples of typedefs, taken from the "include/exec/

types.h" include file:

typedef short SHORT;

typedef unsigned char *STRPTR;

If you define a variable as SHORT (16 bits), and you wish to

later use a compiler that interprets a short int as 8 bits, for

example, you can just change the typedef statement instead of

changing all of your variable declarations. The second typedef

above can help to make your programs a bit shorter and

clearer, as you can define pointers to strings with:

STRPTR x, y;

instead of having to say:

unsigned char *x, *y;

Comments: The Amiga's include files are full of comments

that explain all of the structures and in many cases, how to use

them. Much valuable information can be gained from reading

the include files. To save space on your program development

disk, you can strip these comments out (there are public

domain programs available to do this), but you should keep

copies of the original files handy for reference - they can

sometimes clear up things that are confusing in the manuals.

Libraries

The term "library" can be confusing on the Amiga, as there are

two quite distinct kinds. There are the standard libraries that

you link with, as you would in any C or assembler program. For

example, you link your compiled C program with such a library

to include any standard functions like printf, strcmp, etc. With

Amiga's Lattice C compiler, you must link with "amiga.lib" to

use library functions; the Manx Aztec C equivalent is called

"c.lib". This sense of the word 'library' should be nothing new

for C or assembler programmers coming from other environ

ments.

But just to throw you off (c'mon, you don't want this to be too

easy, do you?), there is another kind of library in the Amiga. To

access any of the system routines, you have to open a library.

Several of these libraries are available, each one covering a

different aspect of operating system. An example is the graph

ics library, which is in ROM (actually, the writable control store,

but we'll stick to the convention and call it ROM), and contains

all the graphics primitives for drawing lines, plotting text, filling

areas, etc. There are over a dozen libraries like this available to

the Amiga programmer; some are in ROM and some are on the

WorkBench disk in the "libs" directory, but they are all used in

the same way. (If a program requests a library that is not in

ROM, the system will ask you to insert the disk you booted with

if it isn't already in the drive.)

To use any of the system's routines, you have to "open" the

library in which that routine is found. Opening the library

determines its "library base", which is the place in memory

where a jump table exists for all the routines in the library.

(Library bases are not constant: disk-based libraries can be

anywhere in RAM after they're brought in, and ROM-based

libraries can move around with different operating system

releases.) You never have to worry about the actual location of

the library base: in C, you just open the library you want using

the 'OpenLibrary' function, then call the routines in it just as

you would call any other function. In assembler, it's a bit more

complicated, and we'll postpone discussion of that till a bit later

on.

First, let's look into how the library routines are actually

executed. You don't need to know all of this stuff in order to use

system routines, but most programmers prefer to know what's

actually going on instead of just using a magic incantation

because it works.

When you call OpenLibrary, you give it the name of the library

you want to open (e.g. "graphics.library"), and the version

number of the operating system that your program needs (or

zero if it doesn't matter); it gives you back a pointer to the

library base. The system can call any routine in that library by

using offsets from the library base. Where does it get the values

of those offsets? They're defined in the library with which you

link ("amiga.lib" with the standard assembler and C compiler).

In memory locations below the library base, there is a jump

table for all of the routines in the library, just like the Kernal

jump table in the 8-bit Commodore machines. Above the

library base is a structure that holds global data needed by

routines in the library.

Now you may have noticed that we've pulled a fast one on you.

We've said that in order to use any system routine, you need to

Th© itansoctof 26 March 1987: Volume 7, toueO5

open the library containing it. We've also said that in order to

open a library, you use the OpenLibrary routine. "Hmmm",

you wonder, "how do you open the library containing the

OpenLibrary routine?" Good question. OpenLibrary is con

tained in "exec.library", which you can find by relying on the

only fixed memory location in the entire system. Location

000004 holds a pointer to "ExecBase", the library base for the

Exec library.

When you program in C, the Exec library is automatically

opened for you (as is the DOS Library), but in assembler you

have to use location 4 to get the pointer to ExecBase yourself.

Once you have this pointer, you can use the offset (whose value

will be defined when you link) to open the library. For details

about using system routines in assembler and some sample

code, see the article "An Introduction to Machine Language

Programming on the Amiga" in this issue. It covers that topic

nicely, so we'll concentrate a bit more on C right now.

When you get the library base pointer from the OpenLibrary

function, you must assign it to a specific variable name so that

the routines in "amiga.lib" know the library base. Your pro

gram can also use this variable, since it also points to the library

structure. (Remember, the jump table for the routines is below

the library base, the library structure is above.) The names of

the library base variables for some of the libraries are:

main()

{

Library

exec.library

dos.library

intuition.library

graphics.library

layers.library

clist.library

mathffp. library

translator.library

Library Base Name

ExecBase

DosBase

intuitionBase

GfxBase

LayersBase

ClistBase

MathBase

TranslatorBase

Since the library base is used as a pointer to the library

structure, you must declare it as such. (The library base struc

ture template, has been defined, as usual, in an include file you

used in your program.) The OpenLibrary function should be

declared as returning a generic pointer, since it is used to open

all kinds of libraries, with their own structure templates. Since

the library base variable has been declared as a pointer to the

library structure, you should 'cast' the OpenLibrary function in

the assignment. The following C program shows how to open a

library, in this case the intuition library.

#include <intuition/intuition.h> /* include for intuition library */

fmclude <exec/types.h> /* type definitions, etc. */

/* declare OpenLibrary as function returning a pointer */

/* (APTR is defined in " exec/types.h" as a generic pointer)

APTROpenLibrary();

/* declare library base as a pointer to library structure */

struct IntuitionBase * IntuitionBase;

*/

/* open the library and cast result to appropriate type */

IntuitionBase = (struct IntuitionBase *)

OpenLibraryf' intuition.library", 0L);

/* check if OpenLibrary failed for some reason */

if (IntuitionBase = = NULL)

exit(OL); /* (here we just bomb on failure) */

DoStuff(); /* your routine using calls to intuition routines */

/* you should close all libraries you opened ♦/

CloseLibrary(lntuitionBase);

Closing the library isn't strictly necessary for ROM-based

libraries, but if the library is WorkBench disk-based, closing it

will tell the system that it can kick the library out if it needs the

RAM space. Since all libraries are created equal, and you don't

want to worry about which are ROM and which are disk-based,

your programs should always close all libraries they have

opened.

For a more complete look at how system routines are used, you

should have a look at the source of a real program. Which

brings us, conveniently, to the next section.

Colours: A Sample Program

Rather than give a simple "Hello World" example to show

programming concepts, we decided to include here a real C

program - something that is actually useful in itself and not just

for instruction. To that end, the program "Colours" is presented

here. Colours opens a draggable window with depth-arranging

gadgets on the WorkBench screen. Proportional gadgets on the

window let you change the Red, Green and Blue components of

any colour register, as in the Preferences program. You can

switch to higher or lower colour registers by clicking up/down

arrow-gadgets. This in itself is fairly handy, but Colour's

greatest attribute is that it can operate on the colour registers of

another screen. It operates on either the frontmost screen or

the second screen from the front, depending on your selection

(click the right mouse button to select one or the other). This

gives you the superb luxury of changing the colours of just

about any program currently running in the system. For exam

ple, this article is being written on TextCraft, which has no

provision for changing any of the eight colours it uses for

various parts of the display. I currently have a purple back

ground, aqua page, orange top margin and other colours that

the people who wrote TextCraft probably only had nightmares

about. To get these colours, 1 just brought the WorkBench

screen to the front (using left-Amiga/N), where Colours was

running (it uses no CPU time when not in use, so you can bring

it up and forget about it). I then partially slid down the

Workbench screen, revealing TextCraft's screen. From there, I

just used Colours - set to "second screen" mode - and happily

The Transactor 27 March 1987: Volume 7, Issue O5

mucked about with each of the eight

colour registers, sliding the RGB gad

gets until I saw a colour I liked. The

actual value of the colour also appears

on the Colours window, so you can

reproduce any of the colours again, or

use them in your programs. Most pro

grams, including commercial games,

can have their colours changed on

them - right from under their nose!

Great fun. The only programs you can't

do that with are the ones that com

pletely hog the system and don't let

you get to other screens as long as the

program is up, but those are no fun

anyway and don't really belong on the

Amiga.

Other features of Colours: You can only

select "second screen" if there is one;

pressing and holding an arrow gadget

down for about half a second makes it

repeat rapidly, letting you quickly get

to any colour register (useful in 5-

bitplane screens, which have 32 colour

registers); the number of colour regis

ters you can select always corresponds

to how many are in the screen cur

rently being operated on; if you're

changing the colours of the screen con

taining the colours program, a small

block is rendered in the current colour

being changed; clicking anywhere on

the window outside of a gadget moves

the RGB gadgets to their "dead-on"

positions for the current colour value.

The program uses the Intuition library

extensively, using a window, propor

tional and boolean gadgets, and the

IDCMP (Intuition Direct Communica

tion Message Port) for receiving gadget

and mouse button events. The colours

are set by the Graphic Library's

SetRGB4() function, and the Move()

and Text() functions are used to place

various labels about the window. The

Intuition and Graphics libraries are the

only ones explicitly opened by this

program.

This program should show you that it's

not too hard to use the Amiga's rou

tines, Intuition's gadgets, and change

system parameters like colours. And as

a bonus, this is one of the few pro

grams around that actually lets you

change something on somebody else's

screen! Some may consider that rude,

but, at least in this case, it sure is

handy!

Amiga System Structures

Whenever you write any Amiga-specific code,

you'll find yourself using structures extensively to

communicate with the system's library routines. In

a way, structures on the Amiga are analogous to

important system locations (such as those in zero-

page) on a simpler computer like a Commodore 64.

Anything you need to find out about the system,

like colours of screens, sizes of windows, graphics

modes, etc. can be found in a structure some

where. Structures also contain pointers to other

structures, so you can get to just about anything by

using a bit of indirection. A good example of this

can be found in the Colours program listed at the

end of this article.

A structure is associated with each screen in the

system. To get a pointer to the 'Screen' structure for

the frontmost screen, we look in the 'IntuitionBase'

structure, which we got a pointer to when we

opened the Intuition library. The screen pointer is

assigned to a variable called 'TheScreen', like this:

TheScreen = lntuitionBase->FirstScreen;

From a known pointer to a structure, we got a

pointer to another structure of interest. Now, the

program needs to know how many colour registers

are in the first screen. Well, the Screen structure

contains a pointer to a 'ViewPort' structure, which

is a lower level representation of a Screen (a Screen

is an Intuition entity, whereas a ViewPort is used

by the lower level graphics routines that Intuition

itself calls). The ViewPort doesn't directly provide

what we're looking for, but does contain another

structure called a 'Raslnfo' structure - containing

information about a raster (all bitplanes making up

the display of a ViewPort). Inside the Raslnfo struc

ture is a pointer to a 'BitMap' structure, which

finally contains almost what we're looking for - a

member called 'Depth'. Depth is the number of

bitplanes of the screen, and we want the number of

colour registers, so we compute 2tDepth and we're

through. All of the above is done with the C

assignment:

numregs = 1 «((TheScreen->ViewPort)

.Raslnfo->BitMap->Depth);

The point is that you have to know what structures

contain what, and how to get from one structure to

another. The include files define the structures, so

looking at the right include file is all you need to do

to find out about any structure. The key is knowing

what include file to look at, and it's not always

obvious, since files include other files, which in

turn may include others. What everyone really

needs is a list of all include files, telling which files

each includes and what structures each defines.

And that, gentle reader, is exactly what we've

prepared for you.

Directories: intuition

exec

workbench

graphics

libraries

resources

hardware

devices

FILE intuition/intuitionbase.h

#include "exec/libraries.h"

#include " graphics/view.h"

struct IntuitionBase

FILE intuition/intuition.h

#include "intuition/intuitionbase.h*

#include " graphics/gfx.h"

include "graphics/clip.h"

finclude " graphics/view.h"

#include "graphics/rastport.h"

include "graphics/layers.h"

#include "graphics/text.h"

#include " exec/ports.h"

#include " devices/timer.h"

#include "devices/inputevent.h"

struct Menu

struct Menultem

struct Requester

struct Gadget

struct Proplnfo

struct Stringlnfo

struct Intuifext
struct Border

struct Image

struct IntuiMessage

struct Window

struct NewWindow

struct Screen

struct NewScreen

struct Preferences

struct Remember

FILE exec/exec.h

^include " exec/nodes.h"

#include " exec/lists.h"

#include " exec/interrupts.h"

#include " exec/memory.h"

#include " exec/tasks.h"

#include "exec/ports.h"

#include " exec/libraries.h"

#include "exec/devices.h"

#include "exec/io.h"

FILE exec/libraries.h

^include " exec/types.h"

include " exec/nodes.h"

extern struct Library

Th© Transoctof 28 March 1987: Volume 7, teue O5

FILE exec/execbase.h

#include " exec/types.h"

#include " exec/nodes.h"

#include " exec/lists.h"

#include " exec/tasks.h"

#include " exec/libraries.h"

#include "exec/interrupts.h"

struct ExecBase

FILE exec/tasks.h

#include " exec/types.h"

#include " exec/nodes.h"

#include " exec/lists.h"

extern struct Task

FILE exec/interrupts.h

#include " exec/types.h"

#include " exec/nodes.h "

#include " exec/lists.h"

struct Interrupt

struct IntVector

struct SoftlntList

FILE exec/execname.h

No includes or structures in this file.

FILE exec/devices.h

#include " exec/types.h"

#include " exec/nodes.h"

#include " exec/lists.h"

#include "exec/tasks.h"

#include " exec/ports, h"

#include "exec/libraries.h"

struct Device

struct Unit

FILE exec/errors.h

No includes or structures in this file.

FILE exec/alerts.h

No includes or structures in this file.

FILE exec/resident.h

#include " exec/types.h"

#include "exec/nodes.h"

struct Resident

FILE exec/nodes.h

include "exec/types.h"

struct Node

FILE exec/lists.h

#include " exec/types.h"

#include "exec/nodes.h"

struct List

FILE exec/io.h

#include "exec/types.h"

#include " exec/nodes.h"

#include " exec/lists.h"

#include "exec/tasks.h"

#include " exec/ports, h"

struct lORequest

struct lOStdReq

FILE exec/ports.h

#include " exec/types.h"

#include "exec/nodes.h"

#include " exec/lists.h"

#include "exec/tasks.h"

struct MsgPort

struct Message

struct Semaphore

FILE exec/types.h

No includes or structures in this file.

FILE exec/memory, h

#include "exec/types.h"

#include "exec/nodes.h"

struct MemChunk

struct MemHeader

struct MemEntry

struct MemList

FILE workbench/startup.h

#include "exec/types.h"

#include " exec/ports.h"

#include " libraries/dos.h"

struct WBStartup

struct WBArg

FILE workbench/icon.h

No includes or structures in this file.

FILE workbench/workbench.h

#include "exec/types.h"

#include " exec/nodes.h"

#include " exec/lists.h"

#include " exec/tasks.h"

#include " intuition/intuition.h"

struct DrawerData

struct DiskObject

struct FreeList

struct WBObject

FILE graphics/text.h

#include "exec/ports.h"

struct TextAttr

struct TextFont

FILE graphics/clip.h

#include <graphics/gfx.h>

#include <exec/ports.h>

struct Layer

struct ClipRect

FILE graphics/regions.h

#include <graphics/gfx.h>

struct RegionRectangle

struct Region

FILE graphics/gfxbase.h

#include <exec/lists.h>

#include <exec/libraries.h>

#include <exec/interrupts.h>

struct GfxBase

FILE graphics/copper.h

struct Coplns

struct cprlist

struct CopList

struct UCopList

struct copin it

FILE graphics/display.h

No includes or structures in this file.

FILE graphics/sprite.h

struct SimpleSprite

FILE graphics/view.h

#include <graphics/gfx.h>

struct ColorMap

struct ViewPort

struct View

struct Raslnfo

FILE graphics/rastport.h

#include <graphics/gfx.h>

struct Arealnfo

struct TmpRas

struct Gelslnfo

struct RastPort

FILE graphics/gfxmacros.h

#include<graphics/rastport.h>

FILE graphics/layers.h

#include <exec/pcrts.h>

#include <exec/lists.h>

struct Layer Info

FILE graphics/gfx.h

struct Rectangle

struct BitMap

The Transactor 29 Match 1987: Volume 7, Issue Q5

FILE graphics/graphint.h

#include <exec/nodes.h>

struct Isrvstr

FILE graphics/gels.h

struct VSprite

struct Bob

struct AnimComp

struct AnimOb

struct DBufPacket

struct collTable

FILE graphics/collide.h

No includes or structures in this file.

FILE libraries/mathffp.h

No includes or structures in this file.

FILE libraries/dos.h

#include " exec/types.h"

struct DateStamp

struct FilelnfoBlock

struct InfoData

FILE libraries/dosextens.h

#include " exec/ports.h"

#include " exec/libraries.h"

#include " libraries/dos.h"

struct Process

struct FileHandle

struct DosPacket

struct Standard Packet

struct DosLibrary

struct RootNode

struct Doslnfo

struct CommandLinelnterface

struct DeviceList

struct FileLock

FILE libraries/diskfont.h

include "exec/nodes.h"

#include " exec/lists.h"

#include " graphics/text.h"

struct FontContents

struct FontContentsHeader

struct DiskFontHeader

struct AvailFonts

struct AvailFontsHeader

FILE libraries/translator.h

No includes or structures in this file.

FILE resources/potgo.h

No includes or structures in this file.

FILE resources/cia.h

No includes or structures in this file.

FILE resources/misc.h

#include " exec/libraries.h"

struct MiscResource

FILE resources/disk.h

#include " exec/types.h"

finclude " exec/lists, h"

#include " exec/ports.h"

^include " exec/interrupts.h"

#include " exec/libraries.h"

struct DiscResourceUnit

struct DiscResource

FILE hardware/custom.h

struct Custom

FILE hardware/cia.h

struct CIA

FILE hardware/dmabits.h

No includes or structures in this file.

FILE hardware/blit.h

struct bltnode

FILE hardware/adkbits.h

No includes or structures in this file.

FILE hardware/intbits.h

No includes or structures in this file.

FILE devices/narrator.h

#include " exec/io.h"

struct narrator_rb

struct mouth rb

FILE devices/keymap.h

struct KeyMap

FILE devices/timer.h

#include " exec/io.h"

struct timeval

struct timerequest

FILE devices/printer.h

#include "exec/nodes.h"

#include " exec/lists, h"

#include " exec/ports.h"

struct lOPrtCmdReq

struct lODRPReq

FILE devices/serial.h

#include "exec/io.h"

struct lOTArray

struct lOExtSer

FILE devices/console.h

#include " exec/io.h"

FILE devices/gameport.h

struct GamePortTrigger

FILE devices/audio.h

#include "exec/io.h"

struct lOAudio

FILE devices/keyboard.h

#include "exec/io.h"

FILE devices/clipboard.h

#include "exec/ports.h"

struct ClipboardUnitPartial

struct lOCIipReq

struct SatisfyMsg

FILE devices/input.h

#include "exec/io.h"

FILE devices/parallel.h

#include "exec/io.h"

struct lOPArray

struct lOExtPar

FILE devices/trackdisk.h

#include "exec/io.h"

struct lOExtTD

FILE devices/bootblock.h

struct BootBlock

FILE devices/prtbase.h

#include "exec/ports.h"

#include "exec/libraries.h"

#include " devices/parallel.h"

include " devices/serial.h"

#include " devices/timer.h"

#include " libraries/dosextens.h"

#include " intuition/intuition.h"

struct DeviceData

struct PrinterData

struct PrinterExtendedData

struct PrinterSegment

FILE devices/inputevent.h

#include "devices/timer.h"

struct InputEvent

FILE devices/conunit.h

#include "exec/ports.h"

#include " devices/console, h"

#include "devices/keymap.h"

#include " devices/inputevent.h"

struct ConUnit

The Ikonsoctor 3O March 1987: Volume 7, Issue O5

>> Colours: The amazing colour-set control panel <<

>> From The Transactor «

October 1936, Version 1.0

- uses proportional gadgets for setting RGB

and allows alteration of any colour register

- operates on the TOPMOST OR SECOND SCREEN, so

lets you change the colours of any currently

executing program with its own screen

» THIS PROGRAM MAY BE FREELY DISTRIBUTED «

(c) 1986, AHAI (Acme Heuristic Applicationsl)

Written by Chris Zamara and Nick Sullivan

^include <exec/types.h>

i nc I ude < i ntui t i on/ i ntui t i on. h>

#include <graphics/gfx.h>

^include <graphics/view.h>

/* defines for defaults, positioning, sizes, etc. */

#define SCREEN2INIT FALSE /* default to topmost screen */

#define GADGHEIGHT 10L /*

#define RTOP 15L /*

tfdefine GTOP 28L /*

#define BTOP 41L /*

#define CVAL 177L /*

#define CPOSX 195L /*

#define CPOSY 63L /*

#define RPOSX 115L /*

#define SCRPOSX 15L /*

fldefine SCRPOSY 63L /*

#define UPGADGX 197L /*

#define UPGADGY 10L /*

#define DNGADGX 197L /•

#define DNGADGY 32L /*

#define COLORGADGET 1 /*

#define UPGADGET 2 /'

#define DOWNGADGET 3 /*

tfdefine ARROWDELAY 5 /*

#define POTINC 0x1111 /*

#define RTEXT (RTOP+(GADGHEIGHT

#define GTEXT (GTOP+(GADGHEIGHT

height of prop. RGB gadgets*/

y pos of top of Red gadget */

11 " " Green gadget */

" " " Blue gadget */

x pos of colour values */

x pos of coir reg indicator*/

y pos of

x pos of Register text

x pos of screen indicator

y pos of screen indicator

x pos of up gadget

y pos of up gadget

x pos of down gadget

y pos of down gadget

ID for RGB gadgets

ID for up gadget

ID for down gadget

of ticks before repeat

amt added to pot per click

D+2) /* gadget

1)+2) /* text

#define BTEXT (BTOP+(GADGHEIGHT » 1)+2) /* position

/* global structure declarations */

struct IntuitionBase MntuitionBase;

struct GfxBase *GfxBase;

struct ViewPort *vp;

struct Rastport *rp;

struct IntuiMessage *GetMsg(), *message;

struct Window *OpenWindow(), *gwind;

struct Screen "TheScreen;

/* function declarations */

APTR OpenLibraryO;

USHORT GetRGB4();

USHORT GadgPressedO;

BOOL GadgReleasedO;

/* co-ordinate of points of up/down arrows */

SHORT UpXY[8] = C13,0, 25,17, 0,17, 13,0};

SHORT DownXY[8] = {0,0, 25,0, 13,17, 0,0};

/* control knob Image structures */

struct Image knobR, knobG, knobB;

/* Proplnfo structures for control gadgets */

struct Proplnfo propinfR, propinfG, propinfB;

/* Border structure for Up-Arrow gadget •/

struct Border UpArrow = t

3, 2,
1, 0, JAM1,

4,

UpXY,

NULL

/* Border structure for Down-Arrow gadget */

struct Border DownArrow ■ t

3, 2,
1, 0, JAM1,

4,

DownXY,

NULL

/* gadget structure for colour controls */

struct Gadget gadgR ■ <

NULL, /* pointer to next gadget (set later) */

16, RTOP, 155, GADGHEIGHT, /* left/top/width/height*/

GADGHNONE | GADGIMAGE,

GADGIMMEDIATE | RELVERIFY,

PROPGADGET,

rendering (for autoknob) */

no select rendering */

intuitext ptr (none used) */

mutual exclude */

ptr to propinfo structure */

(APTR)SknobR,

NULL,

NULL,

NULL,

(APTR)&propinfR,

COLORGADGET,

NULL

/* ID used to check gadget type */

struct Gadget gadgG, gadgS;

/* gadget structure for up/down colour reg select arrows*/

struct Gadget gadgUp • {

NULL,

UPGADGX, UPGADGY, 31, 21,

GADGHCOHP,

GADGIMMEDIATE | RELVERIFY,
BOOLGADGET,

(APTR)SUpArrow,

NULL, NULL, NULL, NULL,

UPGADGET, /* gadget ID */

NULL

);

struct Gadget gadgDown;

/* define NewUindow structure for our window */

struct NewUindow GadgWind ■ {

100, 50, 233, 72, /* left, top, width, height

/* use screen colours

/* IDCMP flags

/* window flags

/* first gadget in list

1. "1.
GADGETDOUN

GADGETUP

MOUSEBUTTONS

INTUITICKS

CLOSEWINDOU,

UINDOUDEPTH

UINDOUCLOSE

UINOOUDRAG

RMBTRAP

ACTIVATE

SMART_REFRESH,

SgadgUp,

NULL,

(UBYTE *)"Colour Control 1.0", /* window title */

NULL, /* ptr to screen */

NULL,

0, 0, 0, 0, /* sizing limits (non-resizable) */

UBENCHSCREEN

/* array for fast'n'easy int to ASCII conversion */

char *cnum[32] = { "00", "01", "02", "03", "04", "05", "06", "07",

"08", "09", "10", "11", "12", "13", "14", "15",

"16", "17", "18", "19", "20", "21", "22", "23",

"24", "25", "26", "27", "28", "29") "30"^ "31"!

USHORT colreg = 0; /* current colour register */

BOOL Screen2Flag = SCREEN2INIT; /* f=top scr, t=2nd scr */

BOOL Old2Flag = ISCREEN2INIT; /* Screen2Flag prev val */

main (argc, argv)

message class from IDCMP */

message code from IDCMP */

pointer to gadget from IDCMP */

ID of selected gadget */

arrow repeat delay countdown */

t = colour gadget selected */

t = up or down gadget selected*/

= TRUE;

/* open intuition and graphics libraries */

if ((IntuitionBase = (struct IntuitionBase *)

OpenLibrary ("intuition.library", 0L)) == NULL)

exit (0L);

int argc
t

char *argv[];

(_

ULONG

USHORT

APTR

USHORT

USHORT

BOOL

BOOL

BOOL

msgclass;

msgcode;

IAddr;

UhichGadg;

TickStart;

GadgSel ■

RegSel • I

/*

/*

/•

: /*

; /*
FALSE;/*

:ALSE; /*

window sti 11 open

The Transactor 31 MorehW87:Votumo7,tauoQ5

if ((GfxBase ■ (struct GfxBase *)

OpenLibrary ("graphics.library", OL)) == NULL) <

CloseLibrary (IntuitionBase);

exit (OL);

>

/* second arg specifies default colour register */

if (argc == 2)

colreg ■ atoi(argv[1]);

/* fill in structures V

propinfR.Flags ■ FREEHORIZ | AUTOKNOB;

propinfR.HorizBody = 1 « 12; /* body increment 1/16 */

/* propinf structures for RGB gadgets all alike */

propinfG ■ propinfR;

propinfB ■ propinfR;

/* G and B gadgets same as R */

gadgG ■ gadgR;

gadgB = gadgR;

/* except for */

gadgG.TopEdge = GTOP;

gadgB.TopEdge = BTOP;

gadgG.GadgetRender = (APTR)&knobG;

gadgB.GadgetRender = (APTR)SknobB;

gadgG.Speciallnfo = (APTR)SpropinfG;

gadgB.Special Info • (APTR)&propinfB;

/* define down gadget in terms of up gadget •/

gadgDoun ■ gadgUp;

gadgDown.GadgetRender = (APTR)↓

gadgDown.LeftEdge ■ DKGADGX;

gadgDown.TopEdge ■ DNGADGY;

gadgDoun.Gadget ID = DOUNGADGET;

/• link all gadgets by pointers */

gadgUp.NextGadget = SgadgDown;

gadgDoMn.NextGadget ■ &gadgR;

gadgR.NextGadget ■ SgadgG;

gadgG.NextGadget ■ &gadgB;

/* now try to open the window containing the gadgets */

if ((gwind = OpenUindow(&GadgWind)) == NULL) {

C loseL i brary(GfxBase) ;

CloseLibrary(IntuitionBase);

exit(OL);
-v
J

1* get ptr to rastport for graphics routines */

rp = gwind->RPort;

/• set RGB gadget positions to current colours */

SetColrsO;

/* put up labels on window display */

UinTextO;

/* put up colour register number indicator */

ReglndicateO;

/*** main event loop ***/

while (window_still_open) t

/* wait politely, unless sliding a colour gadget */

if (1 GadgSel)

Wait (1L « gwind->UserPort->mp_SigBit);

while (message = GetMsg(gwind->UserPort)) {

/* get what we need from the message port */

msgclass ■ message->Class;

msgcode ■ message->Code;

IAddr = message->IAddress;

ReplyMsg(message); /* reply to msg right away */

/* now we can interpret the message V

/• check for gadget selected */

if (msgclass ■■ GADGETDOWN)

UhichGadg ■ GadgPresseoCIAddr, &GadgSel,

SRegSel, SJickStart);

/* check if gadget released, even if off gadget*/

else if ((msgclass == MOUSEBuTTONS

&& msgcode == SELECTUP)

|| msgclass == GADGETUP)

GadgSel ■

GadgReleaseddAddr, &RegSel, UhichGadg);

/* alternate affected screen if r. button down */

else if (msgclass = MOUSEBUTTONS) t

if (msgcode == HENUDOUN) {

Screen2Flag ■ IScreen2Flag;

UpdateColReg(O);
■v
I

/* update display if left button pressed */

else if (msgcode == SELECTDOWN)

UpdateColReg(O);

>

/* auto-repeat arrow gadgets after delay */

else if (msgclass ■■ INTUITICKS && RegSel) {

/* wait ARROWDELAY ticks before repeating */

if (TickStart++ > ARROWDELAY)

UpdateColReg(UhichGadg);

}

/* finish up if the close gadget is clicked */

else if (msgclass == CLOSEWINDOW)

window stillopen = FALSE;

)

if (GadgSel)

/• set colour to pot values */

ReadGadgO;

)

/* close everything up before ending */

CloseWindou(guind);

CIoseL ibrary(GfxBase);

C1oseLibrary(IntuitionBase);

>

USHORT GadgPressed (IAddr, GadgSel, RegSel, TickStart)

/* set flags, call right routines when gadget clicked */

struct Gadget *IAddr;

BOOL *GadgSel, *RegSel;

USHORT *TickStart;

t

USHORT UhichGadg;

/* get gadget type */

UhichGadg ■ IAddr->GadgetID;

/* rgb gadget? */

if (UhichGadg == COLORGADGET) {

•GadgSel ■ TRUE;

/* update settings if 2nd screen gone */

if (Screen2Ftag &&

IntuitionBase->FirstScreen->NextScreen =■ NULL)

UpdateColReg(O);

>

/* else, must be up/down gadget */

else <

*RegSel = TRUE;

TickStart ■ 0; / start delay timer */

UpdateColReg(Uhi chGadg);
■v
J

return (UhichGadg);

>

BOOL GadgReleased (IAddr, RegSel, UhichGadg)

/* gadget released - set flags, call relevant routines */

struct Gadget *IAddr;

BOOL *RegSel;

USHORT UhichGadg;

C

BOOL GadgSel = TRUE;

if (WhichGadg == COLORGADGET) {

ReadGadgO;

if ((((struct Proplnfo *)

(IAddr->SpecialInfo))->Flags) & KNOBHIT)

SetColrsO; /* reposition knob if it was moved */

GadgSel = FALSE; /* colour gadget no longer sel. */

}

else

*RegSel = FALSE; /• other gadget no longer sel. */

TTio Ttansoctor 32 March 1987: Volume 7, teue O5

return (GadgSel);
}

ReadGadg ()

/• read pot values, set register 'colreg1 accordingly */

{

USHORT RedVal, GrnVal, BluVal;

RedVal ■ propinfR.HorizPot / POTINC;

GrnVal = propinfG.HorizPot / POTINC;

BluVal = propinfB.HorizPot / POTINC;

/* get viewport of topmost or second screen */
vp = &(TheScreen->ViewPort);

/* change colour register */

SetRGB4Cvp, (ULONG)colreg, (ULONG)Redval,

(ULONG)GrnVal, (ULONG)BluVal

>;

PrintValues(RedVal, GrnVal, BluVal); /* nuns to right*/

}

PrintValues (R, G, B)

/* print colour values to right of gadgets */

USHORT R, G, B;

SetAPenCrp, 1L);

MoveCrp, CVAL, RTEXT);

TextCrp, cnumCR], 2L);

MoveCrp, CVAL, GTEXT);

TextCrp, cnumCG], 2L);

HoveCrp, CVAL, BTEXT);

TextCrp, cnumtB], 2L);

SetColrs C)

/* set gadget pot values according to rgb in 'colreg' */

USHORT CO, R, G, B;

ULONG hpR, hpG, hpB;

/* get viewport of topmost screen */

ScreenPickO; /• select screen one or two */

vp = &(TheScreen->ViewPort);

/* get rgb of specified colour register */

CO ■ GetRGB4(vp->ColorMap, (ULONGMcolreg));

/* convert rgb to HorizPot values */

R = (CO » 8) & OxF;

G = (CO » 4) & OxF;

B = CO & OxF;

hpR = R * POTINC;

hpG = G * POTINC;

hpB = B * POTINC;

/* change gadgets to reflect new colours */

HodifyProp(&gadgR, gwind, NULL,

(ULONG)propinfR.Flags, hpR, OL,

CULONG)propinfR.HorizBody, OL
> ■
j,

ModifyPropCSgadgG, gwind, NULL,

(ULONG)propinfG.Flags, hpG, OL,

(ULONG)propinfG.HorizBody, OL

ModifyProp(&gadgB, gwind, NULL,

(ULONG)propinfB.Flags, hpB, OL,

(ULONG)propinfB.HorizBody, OL

);

PrintValuesCR, G, B); /* colour numbers */

}

Reglndicate ()

/* show colour register number */

ULONG c;

/* first print register number */

MoveCrp, CPOSX, CPOSY);

SetAPenCrp, ID;

TextCrp, cnumCcolreg], 2L);

/* show a block in 'colreg' colour if this screen */

/* or background colour if another screen */

c = (IntuitionBase->ActiveScreen == TheScreen)

? colreg : 0;

HoveCrp, CPOSX+24, CPOSY); /* move past text */

SetDrHdCrp, INVERSVID); /• inverse mode •/

SetAPenCrp, c); /* set colour */

TextCrp, " », 1L); /* print a space */

SetDrMdCrp, JAM2); /• set mode to normal */

SetAPenCrp, 1L);

>

WinText C)

/* put up various labels on window */

SetAPenCrp, 1L);

MoveCrp, 5L, RTEXT);

Text fro "R" 1! "i •IvAl^l P| PA i I l_ } i

HoveCrp, 5L, GTEXT);

TextCrp, "G", 1L);

Move(rp, 5L, BTEXT);

Text(rp, "B", 1L);

HoveCrp, RPOSX, CPOSY);

TextCrp, " Register", 9L);

>

UpdateColReg (WhichGadg)

/* increment or decrement colour register */

/* if WhichGadg is 0, just display current settings */

USHORT WhichGadg;

C

USHORT numregs;

/* get number of bitplanes of screen */

ScreenPickO; /* set 'TheScreen' */

numregs = 1 « CCTheScreen->ViewPort).RasInfo->
BitMap->Depth);

/* Cwhewl) */

/* increment or decrement colour register */

if CWhichGadg == UPGADGET)
colreg++;

else if CWhichGadg — OOWNGADGET)

colreg--;

colreg ■ colreg X numregs;

ReglndicateO;

SetColrsO;

ScreenPick ()

/* select top screen if Screen2Flag false **

** or second screen if true **

** and update display if necesary **

TheScreen = IntuitionBase->FirstScreen;

MoveCrp, SCRPOSX, SCRPOSY);
O/tfADnn/nn 1 1 \-
SetAPenCrp, 1L);

SetBPenCrp, 3L); /* print in new background colour */

if CScreen2Flag) {

if CTheScreen->NextScreen == NULL) /* no 2nd scrn */

Screen2Flag ■ FALSE;

else {

/* set pointer to second screen */

TheScreen = TheScreen->NextScreen;

if (Old2Flag 1- Screen2Flag)

Text(rp, "SECOND SCREEN", 13L);

if (IScreenZFlag && Old2Flag)

Text(rp, " TOP SCREEN ", 13L);

SetBPenCrp, OL);

Old2Flag « Screen2Flag;

>

Th© Tronsoctof 33 March 1987: Volume 7, Issue OS

ATaleOfTwoCs Adam Herst

Toronto, Ontario

.. .the most recent programming revolution has

made it to Commodore machines in a big way.

It is the best of times, it is the worst of times. The C-64, revolution

ary in its time for its price/performance ratio, has been surpassed.

While the C-128 improves on the C-64, it offers no technological

advances and is in danger of being priced off the market. It often

seems that the newest and brightest technologies and programs

never make it to this part of the Commodore world. A good hard-

disk drive, for instance, is sorely lacking. Nonetheless, the most

recent programming revolution has made it to Commodore ma

chines in a big way. The C programming language, often said to be

the most-used language for large, complicated programming proj

ects, is now available for many Commodore machines.

The reasons for this are two-fold. With the introduction of the C-

128 and its very standard CP/M operating system, many tried and

tested C compilers now run on a Commodore machine. The

release of the Amiga has also seen the introduction of many C

compilers for it. While requiring custom versions for its unique

operating system, the Amiga's configuration of chips and OS make

it an ideal C machine. Finally, the successful implementation of

OS/9 on the SuperPET and the subsequent introduction of a full C

package for it helped extend the Commodore C shores.

While the new Commodore machines have helped make C a

viable alternative programming language for Commodore users,

the second reason is the interest and support given the language

by two software manufacturers. Abacus Software of Michigan and

Pro-Line Software of Toronto have, in the last couple of years,

introduced and supported versions of C for the C-64 and C-128.

Reasonably priced and relatively standardized, C is now available

for the most popular of Commodore machines.

Abacus software has been producing Super C for the C-64 for over

two years. While a good first offering, the original versions suffered

from poor organization, sparse function libraries and a non-

standard implementation. A serious programming environment

was not provided with the various components of the system

(editor, compiler and linker) linked together by a simple loader

menu. With the introduction of the C-128 came Super C version

3.0 for the C-128. Not content merely to port the compiler to the

new machine, many of the problems in the original C-64 version

have been addressed. Libraries have been dramatically improved

and now include graphic and math functions. In addition, all of the

component programs have been tied together under an operating

system-like shell that provides greater system control. Perhaps the

best news is that Super C for the C-64 has been upgraded to

version 2.0 and includes the library and shell enhancements of the

128 version. Programs for the two versions are portable within

machine restrictions.

Released at approximately the same time as Super C was C Power

from Pro-Line Software. Generally agreed to be superior to Super

C version 1.0, it included the extensive libraries and shell interface

that have only just appeared in the Abacus offerings. In addition,

the C Power implementation more closely adhered to accepted C

standards, a must for a language which claims portability as one of

its strong points. A C-128 version of C Power is now available,

offering little change from the C-64 version other than machine-

dependent improvements. (Unless otherwise noted, references to

one or the other of the two compilers will be to both the C-64 and

C-128 versions).

Documentation

Super C is clearly the winner here. A three-ringed binder with

close to 300 pages of tutorial and reference material is included in

the package. Divided into two sections, the first is a user guide and

comprises tutorials on the various shell utilities and short sample

programs to familiarize the novice with the operation of compilers

and the peculiarities of the C language. The second section is a

system guide and comprises an extensive reference to the shell

utilities and Abacus's implementation of the language. Despite the

volume of information, a much-improved index makes specific

references easy to find.

C Power suffers from poor documentation. A short-coming of the

C-64 version, it was alleviated somewhat by the inclusion of C

Primer Plus, an excellent introductory textbook. The small

amount of system specific information was contained in some 40

odd pages of very small type with no index provided. In the C-128

version of C Power, Pro-Line has not included C Primer Plus and

has made only small improvements to its documentation. Grown

to 60 pages, it now includes a number of examples and tutorials

and a one page index. Despite these improvements it conveys

nowhere near the amount of information as the Super C package.

The Environment

Both compilers make use of a shell to tie together the various

components of the programming environment. This is the first

program that must be loaded and in both cases, exiting the shell

resets the computer. As well as the compiler-specific files (editor,

compiler, linker) are a number of built-in and transient utilities for

system control.

Command-line driven, the Super C shell (an unintentional pun)

can only be described as an MS-DOS / CP/M mutant. Letters

represent drives which are logged into the system through their

The Transactor 34 March 1987: Vbfcime 7, taueO5

letter designations. Up to eight disk drives can be supported. Built-

in commands include DOS, time of day clock and a processor

speed toggle command (on the C-128 version only). Transient

commands include device, copy, type and a fast load command for

use with 1541s. While not a major criticism, there is no way to set

the screen colours for the system; cursor and text colours have

special meaning, reflecting the current status of the system. I was

never able to figure out what all the different colours meant and

would gladly have sacrificed this 'feature' for a blue screen with

white letters. A major plus is the ability to handle multiple

command lines. This allows the compilation and linking process to

be totally automated. In addition, parameters can be passed to the

called programs through the command line.

I have been told that the C Power interface closely resembles that

of the UNIX operating system. If so, I can understand why I've

never seen anyone using a UNIX machine. I never have and can't

confirm any resemblance. All in all, I wasn't impressed with the C

Power shell, finding it clumsy to use. Four drives are supported,

numbered 0 through 3, with drive 0 fixed as the logged drive.

While a drive path is searched on file load, most DOS commands

are directed to this drive. Also missing are the benefits of Commo

dore's unsurpassed full-screen editing. Incorrect command lines

must be retyped — in full. No cursoring up to make corrections.

There isn't even a way to recall the last command issued. Built-in

commands include the standard DOS commands and a set colour

command. Also provided is I/O redirection. Transient commands

(written in C with source code included) are provided mainly to

illustrate I/O redirection and include find, sort, and wordfreq.

Both systems use the C-128s extra memory as a RAM disk and

provide different commands with which to interact with them. The

benefits are two-fold. Single-drive users can avoid the intermina

ble disk swapping compilation requires and all users can benefit

from the vastly increased compile times. C Power provides 191

blocks shared between two disks, while Super C provides a single

disk of 239 blocks. The former includes commands for enabling

and disabling the disks, thereby freeing the memory for program

use, while the latter includes commands for the backup of the RAM

disk into a single file on a floppy. While Super C claims to support

the 1750 memory expansion with a RAM disk of up to 256K it is, as

yet, an unimplemented 'feature'.

The Editor

Both packages provide an editor with which to create C source

code. Given the fact that both packages seize control of the

machine, using a third party editor is impractical so a system editor

is a must. However, as these are compiler and not editor packages,

both leave a lot to be desired. Fundamental functions are pro

vided. Both have adequate search & replace and cut & paste

facilities. My biggest complaint here is that the cut and paste is line

rather than character oriented. Super C provides 43k for text space

that is divided between a main and an extra text area. C Power will

give variable amounts of space depending on the existence of RAM

disks and an unlimited number of editing buffers. Both provide the

extra characters crucial to C (curly braces, backslash, vertical bar,

tilde) although only the Super C editor will send the modified

characters to your printer (even a CBM 1526!)

Two versions of the editor are provided with C power. One gives a

larger text area while the second sacrifices editing space for syntax

checking. This is a worthwhile trade-off especially when porting

other source code. The code is loaded into the still full-featured

editor, and syntax is checked when the command is issued. The

process is halted on the first error and the cursor returns to

command mode. Exiting command mode leaves the cursor on the

source of the error. A very nice addition.

Both editors are adequate. Although Super C seems to have more

bells and whistles, the C power editor has a much nicer 'feel' (a

totally subjective opinion formed after using countless text editors

and word-processors for innumerable hours.) Much of this opin

ion is due to the absence of an 'insert' mode of text entry in the

Super C editor. This was compounded by a seemingly random bug

that caused stray numbers to appear in the text. This occurred

infrequently but did halt the compilation process a number of

times with syntax errors.

A second drawback to the Super C editor is a fault of the system as

a whole. To capitalize on the use of colour in the source code, the

Super C editor and compiler use a USR file format. While the editor

will load SEQ files (albeit in a garbled form), the compiler and

linker will only accept USR files. This makes it very difficult to port

foreign source code into the Super C system. File conversion is a

must. As a solution I have prepared Convert, a program in C that

will compile on both compilers. This program has also been used

for the comparative benchmarks. It will convert Super C to sequen

tial files and vice-versa.

Compiler

Both compilers support nearly standard implementations of the C

language. Missing in both are bit fields, a means of assigning the

number of bits that an object will require. It is unlikely that you will

miss them. As well both have non-standard aspects in their

initialization of variables and their definition of scope. This can

become a problem when porting foreign code. Both compilers

support all of the required data types. Super C holds the edge in

type sizes with long int equal to 4 bytes compared to C Powers 2,

and in precision with long float equal to 8 and 5 bytes respectively.

Both compilers generate error messages on compilation. Super C

directs these to an error file which can be loaded into the extra text

area of the editor for debugging. Extensive explanation of the error

messages are contained in the documentation. Compilation con

tinues until the end of the code or a fatal error has been reached. In

either case, enough information has been accumulated to make

major corrections to the source code. C Power will pause on

encountering an error, and seems to give up on compilation much

more readily. In addition, no error file is generated. These factors

would be a major annoyance if not for the preventive error

checking done by the C Power editor. Unfortunately, no documen

tation about the error messages is provided.

The compilation times for the Convert file are given below. All of

the 128 processing is done in fast mode with a 1571 disk drive. The

128 versions allow compilation to disk, and this is reflected in their

faster compilation times.

Trcmscictor 35 Morch 1987: Volume 7, lt*ueO5

Super C 64

C Power 64

Super C 128

C Power 128

To Disk

42 s

30 s

20 s

88 s

To RAM-Disk

NA

NA

4s

50 s

Linker

The linker is used to attach library files to the compiled source

code. Errors encountered during linking are written to the screen

for both systems. Super C is able to link files from and to the RAM

disk. Functions are contained in one of three library files, either

stdio, math or graphics. In all cases the entire library is linked to

the compiled source code. C Power, while claiming to allow

linking from and to the RAM disk, was not above occasionally

trashing my RAM disk during the process. Functions exist as

independent files, and only referenced functions are linked to the

compiled source. This can result in substantially smaller program

code. The various link times are listed below.

Super C 64

C Power 64

SuperC 128

C Power 128

Libraries

To Disk

85 s

77 s

44 s

71 s

To RAM-Disk

NA

NA

5s

47 s

The key to C's portability is its use of function libraries. While the

heart of a C compiler should remain constant across implementa

tions, I/O and machine specific functions are included by the

manufacturer as external libraries. The contents of the library

depend on the manufacturer and are one of the major determina

tions of a compiler's utility. A complete function library saves a

programmer many hours of writing his/her own libraries. Key

functions are outlined in the K&R standard for C and these are

contained in both the Super C and the C Power compilers. In

addition Super C provides extensive graphic and math functions

not available in the C Power package.

Machine Language

A function provided by both compilers allows access to machine

language functions. This is the callO function in Super C and the

sys() function in C Power. Since I do not program in ML (one of my

reasons for learning C) I was not able to test these functions.

Superficially, the C Power ML interface appears superior. It allows

the passing of bank, address and register parameters while the

Super C call() function passes a single address pointer. As well,

simple memory maps of the compiler environments are provided

to help the programmer prevent fatal interaction between the C

and ML code. Details on machine language access is the only area

in which the C Power documentation surpasses that of Super C.

Run Time

In all but the C-128 version of Super C, the product of linking can

be designated to run under the shell or as a stand-alone program.

For both versions of C Power and Super C for the C-64, this stand

alone-program will run from BASIC and can be freely distributed.

The C-128 version of Super C requires that a special disk be

prepared with the shell on it using the sysgen command. An

autoexec file can be included to cause the program to auto-boot.

Among other benefits, this allows the RAM disk to be distributed

with the program. (It should be noted, however, that the licensing

agreement prohibits the ".. xopy(ing) of any portion of this soft

ware package.. .for any purpose other than backup.". This indus

try is crazy.)

C Power holds the edge in program size. Resultant files are

considerably smaller than those produced with Super C. This is

due at least in part to the selective linking of library functions in C

Power compared with the all or none linking of Super C. File sizes

for the Convert program are provided below. Execution times were

measured using the Convert program to convert a 100 block file.

Sizes and times are presented below.

Super C

C Power

Super C

C Power

Conclusion

64

64

128

128

40

16

41

21

Size

blocks

blocks

blocks

blocks

Run time

6:19

4:44

4:00

3:57

Both the Super C compiler from Abacus Software and the C Power

compiler from Pro-Line are good implementations of the C lan

guage. Neither without fault, they have different qualities that

recommend both for different needs. C Power's weak documenta

tion cripples what would otherwise be a well rounded package.

More examples of compiler-specific functions and error messages,

and an expanded function library, are all that are needed. Super

C's major weakness only applies to the C-128 version. The

inability to create a run from BASIC program is one of the few

features that would have better been left unchanged from the

original C-64 version. Arnie — get on the ball!

Each of the compilers fill a different need. For the novice and

intermediate C programmer, Super C must be recommended on

the strength of its documentation and the breadth of its libraries. It

is an easy to use package with more power that most users should

need. Its major faults are only apparent to the discerning eye. For

the expert programmer or software developer the issue is a toss-

up. On the 128, Super C's ultra-fast compile and link times make

program development effortless. In addition there are a wide range

of graphic and math functions to choose from. If execution speed

or run from BASIC capacity is important, however, then C Power

may be the way to go.

The reasons for programming in C are myriad. A fully structured

language, C also provides extensive control over variables and

functions. Combined with this are many of the advantages of

programming in assembly language: fast execution and low-level

control of the machine. While no language is ever the ultimate

solution for all programming projects, C can fulfill important needs

in the Commodore community. Its transportability ties together a

wide range of Commodore computers in a way BASIC 2.0 was

never able to. It is gratifying to see that the 65xx family of

Commodore machines is not being left out of this most recent

programming revolution.

The TronsGctor 36 Mqreh!987:Volum»7,tauoO5

/* program to convert Super C */

/* files to/from SEQ files */

/* converting filetypes */

/* and control codes */

#define POUER

#ifdef POUER

#include "stdio.h"

tfdefine CLR '\223'

#else

#include "h:stdio.h"

#endif

char inname [25];

char outname [25];

#ifdef POWER

FILE inchan;

FILE outchan;

#else

file inchan;

file outchan;

#endif

mainO

{

int menuO;

int choice ;

int status = 0;

char inbuff[255];

char outbuff[255];

while ((choice = menuO) != '0')

<

choice = C choice == '1') ? 1 : 2 ;

putchar(CLR);

#ifdef POWER

getcharO;

#endif

namefile("Source ", inname);

namefile("Destination ", outname);

modnames(choice);

#ifdef POWER

inchan = fopenCinname,"r");

outchan = fopen(outname,"w");

#else

inchan = open(8,2,inname);

outchan = open(8,3,outname);

#endif

status = 0;

while (Istatus) /* read a line and convert

C

fgets(inbuff, 254, inchan);

#ifdef POWER

status = feof(inchan);

#else

status = EOF;

#endif

convert(choice, inbuff, outbuff);

fputs(outbuff, outchan);

printf("V«s", outbuff);

close(inchan);

close(outchan);

modnamesC choice) /* modify filename for */

int choice;

{ /* read/write usr/seq */
switch (choice)

f

case 1 :

strcat(inname, ",u,r"};

strcat(outnaroe, ",s,w");

break;

case 2 :

strcat(inname, ",s,r");

strcat(outname, ",u,w");

break;

namefile(filetype, name)

char *filetype;

char *name;

/* input filename */

/* pass pointer to filename */

it */

printf("\n%sfile name: ",filetype);

gets(name,16);

/* Super C gets() fix */

if (*(name + (strlen(name) -1)) == '\n')

*(name + (strlen(name) -1)) = '\0' ;

int menuO

C

int choice;

do

printf("%c\n",CLR);

printf(" 1. Super C to Sequent!al\n");

printfC 2. Sequential to Super C\n\n");

printfC 0. EXIT");

choice = getcharO;

while ((choice != '0') && (choice != '1') && (choice != '2'));

return choice;

convert(choice, inbuff, outbuff)

int choice;

char inbuff [];

char outbuff [];

static int linenum = 0 ;

int inndex=0;

int outndex=0;

if (linenum == 0)

switch (choice)

case 1:

inndex +=3 ;

tinenum = 1 ;

copybuff(inbuff, outbuff, inndex, outndex);

break;

case 2:

outbuff[0] = 133;

outbuff[1] = 129;

outbuff[2] = 5;

outndex +=3;

Ii nenum = 1;

copybuff(inbuff, outbuff, inndex, outndex);

break;

else

switch (choice)

<

case 1:

inndex++;

copybuff(inbuff, outbuff, inndex, outndex);

break;

case 2:

outbuff [0] = 5;

outndex++;

copybuff(inbuff, outbuff, inndex, outndex);

break;

copybuff(inbuff, outbuff, inndex, outndex)

char inbuff [];

char outbuff [];

int inndex;

int outndex;

do

outbuff[outndex] = inbuff[inndex];

inndex++;

outndex++;

>

while(inndex <= strlen(inbuff));

Th© Tronsoctor 37 March 1987: Volume 7, toueO5

/* program to convert Super C */

/* files to/from SEQ files */

/* converting filetypes */

/* and control codes */

/* #define POUER *** un-comment for C-Power */

#ifdef POUER

#include "stdio.h"

^define CLR '\223'

#else

#include "a:stdio.h"

#endif

char inname [25];

char outname[25];

#ifdef POUER

FILE inchan;

FILE outchan;

#else

file inchan;

file outchan;

#endif

mainO

{

int menuO;

int choice ;

int status ■ 0;

char inbuff[255];

char outbuff [255];

while ((choice = menuO) 1= '0')

{

choice = (choice == '1') ? 1 : 2 ;

putchar(CLR);

#ifdef POUER

getcharO;

#endif

namef HeC'Source ", inname);

namef He("Destination ", outname);

modnames(choice);

#ifdef POUER

inchan = fopen(inname,"r");

outchan = fopen(outname,"u");

#else

inchan = open(8,2,inname);

outchan = open(8,3,outname);

#endif

status = 0;

while ((status) /* read line and convert it */

fgets(inbuff, 254, inchan);

status = feof(inchan);

status = EOF;

#ifdef POWER

#else

#endif

convert(choice, inbuff, outbuff);

fputs(outbuff, outchan);

printf("\n%s", outbuff);

close(inchan);

close(outchan);

modnames(choice)

int choice;

/* modify filename for */

/* read/write usr/seq */

switch (choice)

C

case 1 :

strcat(inname, ",u,r");

strcat(outname, ",s,w");

break;

case 2 :

strcatCinname, ",s,r");

strcat(outname, ",u,w");

break;

namefile(filetype, name) /* input filename */

char *filetype;

char *name; /* pass pointer to filename */

{

printf("\n%sfile name: ",filetype);

gets(name,16);

/* Super C getsO fix */

if (*(name + (strlen(name) -1)) == '\n')

*(name + (strlen(name) -1)) = '\0' ;

int menuO

{

int choice;

do

{

printf("Xc\n",CLR);

printf(" 1. Super C to Sequential\n");

printf(" 2. Sequential to Super C\n\n");

printfC 0. EXIT");

choice = getcharO;

>

while ((choice != '0') && (choice != '1')

&& (choice 1= '2'));

return choice;

convert(choice, inbuff, outbuff)

int choice;

char inbuff [];

char outbuff [];

static int linenum = 0 ;

int inndex=0;

int outndex=0;

if (Iinenum == 0)

switch (choice)

case 1:

inndex +=3 ;

linenum = 1 ;

copybuff(inbuff, outbi-ff, inndex, outndex);

break;

case 2:

outbuff[0] = 133;

outbuffm = 129;

outbuff[2] = 5;

outndex +=3;

Ii nenum = 1;

copybuff(inbuff, outbuff, inndex, outndex);

break;

else

switch (choice)

{

case 1:

inndex++;

copybuff(inbuff, outbuff, inndex, outndex);

break;

case 2:

outbuff[0] = 5;

outndex++;

copybuff(inbuff, outbuff, inndex, outndex);

break;

copybuff(inbuff, outbuff, inndex, outndex)

char inbuff[];

char outbuf f[],■

int inndex;

int outndex;

{

do

t

outbufft outndex] = inbuff[inndex];

inndex++;

outndex++;

}

while(inndex <= strlen(inbuff));

The Trantoctor 38 March W87: Volume 7, Issue O5

A Comparison of Language Speeds
Anton Treuenfels, Fridley, Minnesota

Donald Piven, Chicago, Illinois

Brian Junker, Champaign-Urbana, Illinois

There are many reasons to consider using

a programming language other than Basic on the C64.

(Note: these results were originally reported in a specialized

"notesfile" devoted to Commodore on the Control Data PLATO

system. PLATO is primarily devoted to computer-assisted in

struction, but has also been an influential pioneer in such areas

as multi-player interactive games and electronic "bulletin

boards", things only recently rediscovered by organizations

like CompuServe and The Source.)

There are many reasons to consider using a programming

language other than Basic on the C64. Some of these reasons

are: use of a structured programming language, easy use of a

program originally written in another language, and taking

advantage of features unique to a particular language. The most

common reason, however, is speed. Basic is often perceived as

simply not fast enough to suit some need.

Speed is so paramount a concern that sometimes the only

question asked about a particular programming language (or a

particular implementation of that language) is, "How fast is it?".

Unfortunately, this is also a very difficult question to answer. A

particular language may be well-suited to task X but not really

meant for task Y, while for another language exactly the

opposite may be true. A test of only task X or only task Y might

not be very informative - particularly if a programmer's main

interest is task Z.

Bearing that in mind, we present here the cheerfully unscien

tific methods and results of an informal survey to see how long

it took to accomplish one particular task using several different

languages and implementations of those languages on the C64.

We also threw in a quick look at the Basic interpreters of the

C16andC128.

The task chosen was to determine the first 1000 prime num

bers. Prime numbers are positive whole numbers which can

not be evenly divided by any positive whole number smaller

than themselves except 1. The first few primes are 2, 3, 5, 7,11,

13, 17, and 19. While it is known that there are infinitely many

prime numbers, the only way to tell if any particular number is

prime is to check it and see. There is presently no practical use

for this information other than the amusement of people who

play with computers.

The algorithm used to find the first 1000 primes can be

described as follows: we give away the first two primes, 2 and 3.

We divide each number we are testing by all the primes we

have found so far. If any prime evenly divides the test number

(ie., there is no remainder), then the test number is not prime

and we can go on to the next test number. If, on the other hand,

we make it through all the primes found so far without a zero

remainder, we have found a new prime and can add it to the

list. This is the basic idea, but we can make two immediate

simplifications. First, we need only test odd numbers, because

the only even prime is 2. All other even numbers can be evenly

divided by 2. Second, we do not need to divide by every prime

we know, but only those up to the square root of the number

we are testing. This is because if there is a number larger than

or equal to the square root of the test number that evenly

divides it, the result of the division must be a number equal to

or smaller than the square root of the test number that also

divides it evenly - and we have just ruled all those out! In

practice, not all languages support square roots, so we use an

alternate method of keeping track of the last prime we need to

test. It is not perfect, but it keeps us 'close enough".

This is not the fastest possible algorithm (a prime sieve such as

that used by Gilbreath, "A High-Level Language Benchmark"

BYTE, September 1981, p. 180 would be faster), but it provides

a good comparison of the speed of simple calculations in the

languages tested.

Here is the algorithm coded in Basic V2.0

100NP = 1000

110DIMPN(NP)

120 PRINT CHR$(147)

130PN(1) = 2: PN(2) = 3

140TN=3:LT = 2: LP = 2

150 IFTN >PN(LT) * PN(LT)THEN LT = LT + 1

160TN=TN+2:PP = 2

170R = TN/PN(PP): IF R = INT(R) THEN 160

180IFLT>PPTHENPP = PP + 1 : GOTO 170

190LP = LP + 1 : PN(LP) = TN

200 PRINT TN,

210IFLP<NPTHEN 150

Th© TltHWKJCIOf 39 March 1987: Volume 7, Issue O5

The Basic V3.5 and V7.0 tests were run using the same code as

V2.0. The Simon's Basic version eliminates the GOTO state

ment by using the REPEAT..UNTIL and IF..THEN..ELSE con

structs. It then appears very similar to the Pascal version of the

algorithm.

Here is the algorithm coded in Oxford Pascal:

PROGRAM Primes;

CONST totalprimes = 1000;

VAR testnum, primeptr, lasttest, lastprime : integer;

primenum : array[1 ..totalprimes] of integer;

BEGIN

page;

primenum[1] := 2; primenum[2] := 3;

testnum : = 3; lasttest: = 2; lastprime : = 2;

REPEAT

IF testnum > primenumflasttest] * primenum [lasttest]

THEN lasttest: = lasttest + 1;

testnum : = testnum + 2; primeptr: = 2;

REPEAT

IF testnum MOD primenum[primeptr] <> 0

THEN primeptr: = primeptr + 1

ELSE BEGIN

testnum := testnum + 2; primeptr = 2;

END;

UNTIL primeptr > lasttest;

lastprime : = lastprime + 1;

primenurn[lastprime]: = testnum;

write(testnum:10);

UNTIL lastprime = totalprimes

END

Here is the algorithm coded in Super C

INCLUDE "stdio.c"

#DEFINE totalprimes 1000

MAIN(){

INT testnum, primeptr, lasttest, lastprime;

INT primenumftotalprimes];

primenum[l] = 2; primenum[2] = 3;

testnum = 3; lasttest = 2; lastprime = 2;

DO{

IF (testnum > primenumflasttest] * primenum[lasttest]) {

lasttest + +;

}

testnum + = 2; primeptr = 2;

DO{

IF (testnum % primenum[primeptr+ +] = = 0) {

testnum + = 2; primeptr = 2;

}

JWHILE (primeptr <= lasttest)

primenum[+ + lasttest] = testnum;

printf("%dlO",testnum);

}WHILE (lastprime < totalprimes)

}

Here is the algorithm coded in C64 FORTH (immediate mode):

3 variable testnum

2 variable primeptr

2 variable lasttest

2 variable lastprime

1000 constant totalprimes

: array<builds2* 2+ allot does> swap 2* + ;

totalprimes array primenums

: bumpptr 1 primeptr +!;

: bumpnum 2 testnum +! 2 primeptr!;

: notprime testnum @ primeptr @ primenums @ /mod

drop 0 = ;

: foundprime primeptr @ lasttest @ > ;

: getprime begin notprime if bumpnum else bumpptr

then foundprime until;

: storeprime 1 lastprime +! testnum @ lastprime @

primenums! ;

: alldone lastprime @ totalprimes = ;

: bumplast 1 lasttest +!;

: pastlast testnum @ lasttest @ primenums @ dup * > ;

: bumptest pastlast if bumplast then ;

: showprime testnum @ 10 .r;

: bigloop begin bumptest bumpnum getprime storeprime

showprime alldone until;

; setup 3 testnum ! 2 lasttest! 2 lastprime ! ;

2 1 primenums!

3 2 primenums!

: primes setup bigloop ;

The algorithm is simple enough that only very minor changes

in coding, if any, were needed to run the test using different

versions of the same language. Here are the results (all times in

minutes and seconds):

The Transactor 4O March 1987: Volume 7, Issue O5

LANGUAGE

Commodore LOGO

WATCOM Pascal

Nevada FORTRAN

BASIC 7.0

BASIC 3.5

BASIC 2.0

Simon's BASIC

BASIC 7.0

HES FORTH

FORTH 64

KYAN Pascal

C64 FORTH

SuperFORTH64

Insta-Speed

Super C

Insta-Speed

Oxford Pascal

Super Pascal

KYAN Pascal

C Power

Assembler

VENDOR

Commodore

WATCOM

Commodore

Commodore

Commodore

Commodore

Commodore

Commodore

HES

Abacus

KYAN Software

Performance

Parsec

Cimmaron

Abacus

Cimmaron

Precision

Abacus

KYAN Software

Pro-Line

Commodore

print no print

75:03

22:44

13:25

11:36

10:31

8:29

7:07

5:28

5:12

4:43

4:13

4:06

4:00

3:55

3:18

3:15

2:16

1:40

1:02

0:49

0:32

74:27

22:20

12:42

10:34

8:10

6:47

5:04

3:57

4:00

3:22

2:58

2:56

2:02

1:33

0:55

0:37

0:26

diff

0:36

0:24

0:43

0:53

0:19

0:20

0:24

0:46

0:13

0:44

0:20

0:19

0:14

0:13

0:07

0:12

0:06

rel speed remarks REMARKS:

140.72

42.63

25.16

21.75

19.72

15.90

13.34

10.25

9.75

8.84

7.91

7.69

7.50

7.34

6.19

6.09

4.25

3.13

1.94

1.53

1.00

D,l,5,6

C&D.l

C&D.2.7

B,l,4,8

B,l,4

B,l,4

C.1,5

B,l,4,9

C.3,5

D.3,5

D,2,4,10

D.3,4

D,3,4

D.2,4,11

D,2,4

D.2,4,12

D,2,4

D,2,5

D.2,4,13

D,2,4

D,4

B = built-in ROM, C = cartridge, D = disk

(1) Interpreted language.

(2) Compiled language.

(3) Incrementally compiled language.

(4) Stand-alone Basic-runnable programs

can be created.

(5) Stand-alone Basic-runnable programs

cannot be created.

(6) Estimates only. LOGO ran out of mem
ory at the 306th prime. These estimates

are based on time for finding 300 primes:

22:31 with printing, 22:20 without

(7) Nevada FORTRAN runs on the Commo
dore Z80 cartridge under the CP/M 2.2

operating system. Stand-alone CP/M-

runnable COM files can be created.

(8) C128 running at 1MHz.

(9) C128 running at 2MHz.

(10) Compiling to interpreted p-code.

(11) Insta-Speed (also distributed as

SpeedWriter by CodeWriter, also known

as DTL-Basic) is a Basic 2.0 compiler.

Compiling original Basic 2.0 program.

(12) Compiling using speed enhancing op

tions.

(13) Compiling to machine language.

On the whole the results speak for themselves, but we will
make a few comments anyway. First, when reading the results

bear in mind that comparisons between different implementa

tions of the same language may be more meaningful than

comparisons between different languages. The particular al

gorithm used for this test may not be suited to a given language

or not well-coded in that language. If so, then at least within

that language the different implementations are still on "com

mon ground" something that might not be as easy to tell with

respect to another language.

That the fastest "language" turns out to be assembler comes as

no surprise. Hand-coded native machine language is always

the fastest executing code on any machine. However, it is not

usually the fastest kind of code for a programmer to write.

Ideally a high-level language would execute as fast as assem

bler but be much easier to write in the first place. In practice,

although the ease of programming is there, the speed isn't. To

use the second fastest language, C Power, a programmer pays a

50% cost in speed using this algorithm (this is not to take

anything away from C Power - to pay only 50% is very good,

and still 10 times as fast as interpreted Basic 2.0).

At the other end of the spectrum, what accounts for the

lethargy of the slowest languages tested - the ones slower than

Basic 2.0? We can probably attribute most of the sluggishness

of Basic 3.5 and Basic 7.0 (at 1 MHz) to the frequent bank-

switching they must do to access the Basic interpreter, text, and

variables. WATCOM Pascal is an interactive, interpreted ver

sion of a language which is normally compiled, and among

other things probably has a lot of overhead calculating at run

time things other versions determine at compile-time. LOGO

does so poorly because we've assigned it a task which is a long

way from the language's strengths: list processing and power

ful, simple graphics. LOGO is like a simplified LISP (LISt

Processing), the premier language of artificial intelligence re

search, in the same way Basic is like a simplified FORTRAN.
The design needed by a language with good list processing

primitives - most likely each list (indeed, each LOGO variable)

is a binary tree whose nodes contain literal character strings -

virtually guarantees both the memory and speed problems we

encountered. In the case of Nevada FORTRAN, problems of

bank-switching, interpretation, and inappropriate language

design do not apply. It is possible that the lack of speed results

from the hardware - the Z80 is less efficient than the 6510 at

some operations, and on the C64 it runs at a slower clock speed

than it is capable of. On the other hand, perhaps the FORTRAN

compiler simply produces inefficient code.

A quick and dirty survey like this may begin to answer the

question, "Which language is fastest?". The answers to a

number of other relevant questions that might be considered

are not provided here, however. There is no description of how

easy or difficult a particular implementation is to work with, for

example. For languages with a separate compile step there is

no indication of how quickly the compiler does its job or the

size of the finished program file it produces. Many of the

languages have official or unofficial "standards" that describe

what should be included and how things should be done. Our

survey only says that the implementations of each language we

tried were complete enough that we could run our test; it does

not indicate where a particular implementation falls short of

the standard or has a non-standard extension of some kind.

Unique or unusually helpful features of some implementations

have not been mentioned. Questions of cost, availability, ven

dor support, and licensing arrangements (in the case of compil

ers capable of producing stand-alone Basic-runnable program

files) have not been addressed.

Nevertheless, we think our results are interesting and would

welcome additions to our list!

The Transactor 41 March 1987: Volume 7, tome O5

CP/M Block

Allocation Calculator

On the C-128, CP/M single sided disks are divided up into 170
logical blocks, called allocation units, of 1 K bytes each. The
allocation unit is the minimum amount of disk space that CP/M
will assign to a file or add to a file as it grows. Each allocation
unit consists of four physical disk sectors. Double sided CP/M

disks use 2 K byte allocation units, consisting of eight disk
sectors. Unfortunately, the pattern of sectors used for each

allocation unit is rather complex and is quite different from the
normal filling order of COMMODORE DOS blocks. CPM

BLOCK is a short BASIC 7.0 program that will calculate and
print out a list of the track and sector numbers corresponding to

each of the 170 allocation units for either single or double sided
disks.

The list can be used in conjunction with a disk sector editor
such as ■ DISPLAY T&S" on the 1541 demo disk, to trace the
contents of a CP/M file on the disk. The CP/M directory is

located in allocation units 0 and 1. Data starts at allocation unit

2 and normally filled in consecutive order. Files on disk that

have been written to and scratched a number of times may be

scattered widely over the disk. The allocation unit numbers

used in the print out correspond to the numbers found in the

allocation map (bytes 16 to 31) of each directory entry. For

double sided disks, CP/M fills side 0 first then side 1.

All single sided CP/M disks, C-128 included, are divided up

into 1 k byte logical areas called blocks or allocation units (AUs).

The allocation unit is the smallest space on the disk that a file

can occupy. For example, even if a file contained only one byte,

the other 1023 bytes in its allocation unit cannot be used by

another file. The C-128 single sided disk contains 170 alloca

tion units, numbered 0 to 169. AUs 0 and 1 contain the

directory, while the rest are used for data storage. Each AU is

logically subdivided into 8 "records" of 128 bytes each. The

record is the smallest addressable unit for finding or storing

data on a disk within a CP/M file. As files grow, they contain

more records and consequently more blocks are allocated from

the list of empty blocks.

Since the C-128 sector size is 256 bytes, each CP/M AU is

comprised of four physical sectors on the disk. The actual

structure of the C-128 CP/M disk is the same as a standard C-

128 disk in terms of sector size, number of sectors per track and

number of tracks per disk. The order in which the sectors are

filled, however, is quite different. The sector skew rate is 5. This

is easiest to visualize if you think of each track as a dartboard

with the segments numbered in consecutive order from 0 up to

the maximum number of sectors on that track. The sectors are

filled starting at 0 and jumping 5 each time to the next. That is

0, 5, 10, 15, etc. When you complete the circle once, you

should have gone past the 0. For 21 sectors per track you will

end up at sector 4. The cycle then repeats: 4, 9,14, 19, 3, 8, 13,

Miklos Garamszeghy

Toronto, Ontario

18, etc. until all the sectors on the track have been used and it
jumps to sector 0 of the next track. For any given track, this can
be expressed by the simple cyclical relationship:

next sector*=last sector* + 5: IFnext

sector*>maximum* on track THEN next

sector*=last sector* + 5 - number ofsectors on track

From this relationship, you can see that the actual filling order
of the sectors depends on the number of sectors on the track
Thus, there are four distinct filling orders used on the disk: one
for each of the four areas on the disk with different numbers of
sectors per track. Track 1, sectors 0 and 5 as well as track 18

sector 0 are reserved for special system functions and are not
included in the fill table. For reasons unknown to humans,
Commodore decided to structure the CP/M disk as 640 logical
tracks of one sector each. The numbering of the logical sectors

corresponds to the fill table. Double sided C-128 CP/M disks

have an allocation unit size of 2 k bytes or 8 physical sectors or

16 records. Side 0 is filled first, then side 1 in basically the same

order. Track 36 sectors 0 and 5 and track 53, sector 0 (corres

ponding to the unused sectors on side 0) are not used on side 1.

Basic Source Listing

rem save "0:block calc",8

print cs$" ** cpm block calculator **"

print " by m. garamszeghy"

print" ver2 86-04-01 ": print

cl$ = chr$(157): cs$ = chr$(147)

input " <s>ingle or <d>ouble sided" ;sd$

: sd = 1: if sd$ = " d" then sd = 2

input " <s>creen or <p>rinter" ;ot$

if ot$ = " p" then open 4,4: cmd4: else print cs$;

t=1:s = 10:tc = 2:sm = 20

print " 1571 cp/m disk block map" sd" sided"

print " block#",,," track:sector"

:sk=1

JC

EO

PN

FN

IC

OP

DE

KM

DL

OF

FH

NL

KB

KF

FO

JJ

KM

DP

DN

MC

FC

GC

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

;"right$(hex$(bc),2)")",

print " dec (hex)"

i for be = 0 to 169

i print: print bc;cl$

i for sc = 1 to4*sd

print t;cl$": "s,: s = s + 5: tc = tc + 1

if s>sm then s = s-sm-1

if tc>sm then t = t + 1:s = 0:tc = 0

if t = 18 or t = 53 then s = 5: tc = 1

if t>17 then sm = 18: if t>24 then sm = 17

if t>30 then sm = 16: if t>35 then sm = 20

if t = 36 and sk = 1 then s = 10: tc = 2: sk = 0

| if t>52 then sm = 18: if t>59 then sm = 17

if t>65 then sm = 16

next sc.be: if ot$= " p" then print#4: close4

Tronsocfof 42 March 1987: Volume 7, teue O5

Compatibility And Operability

OfTheC128CP/M +

Operating System

Ralph A. Morrill

Mercer Island, WA
© Copyright March 1986

In being so busy selling "features " CBM had dramatically

understated the full CAPABILITIES of this Mean Machine!

Prolog- To CBM

In July, 1985, we purchased our first C-128 computer, upgrad

ing after three years of use of a C-64 for our routine business

operations. We are a small R&D consulting firm dedicated to

the propagation of the considerable talents of our principal to a

distinguished list of clients, which includes top Fortune 500

firms. Most of our services are conducted on large mainframes

and minicomputers, but we have gained considerable respect

for the capabilities of the CBM microcomputers through practi

cal business use of the C-64.

Our first C-128 (July '85) was a beta unit, distinguished by a

two column grey right border on the graphics screen, and

improper vertical striping of all VIC output in odd color assort

ments. A replacement was not available until October, during

which time, denied full use of the 64 and 128 modes, we began

evaluating the CP/M mode. Ours was one of the first of many

letters to CBM pointing out the numerous "bugs" and deficien

cies in the first two issues of the CP/M+ operating system.

Long telephone conversations with John Fahey, CBM customer

relations, about our early findings resulted in a formal invita

tion in December to beta-test the 6 December '85 revisions and

CBM future upgrades to CP/M +.

Two preliminary "Letter Reports" were submitted on a timely

basis, allowing CBM sufficient time to respond to our recom

mendations. This is our final report to CBM of the results of our

tests and evaluations. It has not been paid for by CBM, nor will

it be. It is therefore PROPRIETARY COPYRIGHTED informa

tion and the property of RAMA Corporation, intended for

public release to the media catering to Commodore computer

users. It was submitted to CBM in March, 1986, for comment,

as a courtesy, before formal publication.

Introduction

Like Christmas, there is always a sense of tense excitement

when unwrapping your new Computer, be it the first, third or

nth. It was July '85 and I had anticipated this moment since last

February when the first public information releases had been

made on the new Commodore C-128 microcomputer. The

decision had been made then to upgrade our business com

puter system with the new C-128. I had read everything

available, even written a brief article about this "New Three-

In-One" for a local Commodore user group.

FINALLY! It had arrived and I eagerly got it out of the boxes and

quickly connected it to the existing peripherals (a compatibility

unusual in itself). The old C-64 was laid aside, retired from its

three years of daily fault-free service as our busy business

computer. I connect the 40/80 column screen switching box

(made a month earlier), then the modem, high-res composite

color monitor, printer, and two, new 1571 "smart" disk drives.

Now, let's see what this beauty will do!

I doff my hat to the sage who once said "anticipation is nine-

tenths of the pleasure. . .", however, in this case, he was wrong.

The C-128 was more than Commodore had said it would be

(and I had read every golden word). In being so busy selling

"features", CBM had dramatically understated the full CAPA

BILITIES of this Mean Machine! It was perfect for our business

use, and a great deal more.

The uneasiness caused by the opening screen - which states

that BASIC 7.0 was Copyrighted in 1977 by Microsoft, and

updated by CBM in 1985 - soon disappeared as I began to try

some of the BASIC features provided. Help, Tron, Sound,

Graphics, Sprites and the new BASIC 7.0 commands made

programming effortless - all greatly enhanced by the 40/80

column screens, extended Control and ESC codes. I BOOTed

the CP/M + , which I hadn't played with for years (V 1.4 as I

recall), and discovered a near CP/M-86 capability imbedded in

the calls that was approaching a REAL "Operating System",

that CP/M never was before.

I had purchased an early beta-test unit, distinguished by a

small brown dot under the "M" in the word COMPUTER on the

name tag, and a grey stripe on the right side of the graphics

Th© Ttansoctor 43 Morch 1987: Volume 7, tome O5

screen. This one had a ROM fault that caused random character

errors and also had a bad VIC chip. Our software worked all

right for business use, but the graphics were vertical striped in

an odd assortment of colors. This didn't bother me much,

having accepted it as a high probability for one of the first units

sold, but a replacement would not be available until October.

Discovering CP/M +

Denied the full use of graphics in the 64 and 128 modes of

operation until a replacement unit was received, I concentrated

on the fully independent CP/M mode, learning all there was to

know about the CBM upgrades to CP/M 3.0, and ordering the

"DRI Special Offer". The latter is one of the best buys in the

country, and probably the ONLY "support" we will ever receive

from Digital Research Incorporated (DRI) for their operating

system. The "Two Utility Disks" in this DRI offer are more than

just that; they contain the assembly level ASM/LIB files,

macros and object codes - plus the necessary MAC, RMAC,

SID, ED, etc., utilities which are essential if any programming is

to be done, or public domain software installed on the system.

The two inch thick, three-in-one manual(s) that comes with

these disks, also an essential, is cryptic to a fault; but I would

hate to do without it. It sort of explains the functions (NOT the

functional use) of the utilities and reveals the content and

details of the BIOS, BDOS, CCP and other incorporated subrou

tines of the operating system. A fourth manual, "Programmer's

Utilities Guide for the CP/M Family of Operating Systems"

referred to frequently in the above manual(s), is not available

from DRI's publisher for separate purchase. Rather than pay an

outlandish $75 for repeated purchase of the manual(s) materi

als, I recommend the Osborne/McGraw-Hill CP/M Users

Guide, Third Edition. CBM's Manual and Programmers Guide

should have eliminated this serious problem, but did not.

The first thing to do when starting any new system is read the

File Headers and DOC files. The HELP file on the first distribu

tion disks serves as a reference until the "DRI Special Offer"

arrives - although it is just as cryptic as the DRI manual(s).

There is nothing you can do with all these files until you obtain

some applications software or the essential utilities for pro

graming contained in the DRI utilities disks. You're stuck,

except to study what you have on the original distribution

disks, and try them out against each other. Furthermore, the

first two CP/M+ issues by CBM did not permit a required

DEVICE assignment to a modem (RS232 Port) - and thus NO

telecommunication and down-loading of applications pro

grams is possible. Remember, the big sales pitch by CBM for

the CP/M+ operating system was the "Free Software" availa

ble in the public domain - now inaccessible.

Discovering Problems In CP/M+

I tried the simple exercises of the CP/M + operating system and

utilities and fortunately, all the utilities DID work properly (I

have a few choice words later to describe my feelings about the

archaic SID and ED file editors). The first, most obvious prob

lem discovered was that the printer would not properly copy

(echo) the screen, no matter what I did to the interface configu

ration switches. This was later revealed to be a problem within

the interface (it works fine in 64 and 128 modes) that was not

designed to handle the eight-bit ASCII or PET-ASCII codes

(nulling the high-bit), and was "coloring" the printing with odd

"soft-returns" mid-line and mid-word. I also had some ran

dom graphics and font switching codes being sent to the printer

at carriage-returns. Asking others about their printer problems

revealed that only the Cardco Plus and Plus-G interfaces did

not have all these CP/M+ problems, although upper-case

characters were still being printed in italics. I had to get rid of

the PET-ASCII and print with the interface in transparent

mode.

Further testing revealed that, although the intent of CBM was to

default (Boot) the system in an ADM-31 terminal configura

tion, the BIOS KEYCODEs were wrong, resulting in a keyboard

that, at best, was an ADM-3A terminal configuration plus some

odd ESC codes unique to the C-128. The Console Command

Processor (CCP) was also deficient, and trying to install and run

commercial applications software was, in many cases, a disas

ter. In some, the opening screen and menus were in all

graphics characters (the alternate key-set produced by ESC-G-

1) or resulted in a resounding CRASH because they wrote

buffers into high memory overwriting the CCP. Furthermore,

random character errors kept showing up on the screen and

printer outputs, along with double characters. From this some

of the most annoying and unpredictable crashes resulted. At

that time I was compelled to advised CBM of my consternation

and frustrations. My letter was not complimentary; I learned

later that it had been read to the Board of Directors and

circulated to CBM management. The reply (I actually got one)

was from the CBM legal council denying all responsibility.

(Naturally! That's what he is paid for.)

When the "DRI Special Offer" finally arrived six weeks later,

the READ-ME file was not the least bit illuminating, but the

MAKEROM.DOC and MAKESYS.DOC files did guide me

through the exercises of assembling and linking the object

codes that fill these disks. DO NOT try to make sense of the file

names and headers with the DRI manual(s) - there is NO

CORRELATION between these, (this information should have

been in the READ-ME file, according to the DRI Manual). This

lack of correlation was the source of enormous frustration to

me and my innate compulsion to MAKE IT WORK! The second

curiosity was that although the MAKESYS exercise did, in fact,

assemble and install a new (and supposedly improved) CP/M +

system, ALL the faults discovered in the first issue prevailed -

including the denial of use of a modem for down-loads. In

addition, the MAKEROM exercise dead-ended with a set of

BIOS"CXROM. . .."files of absolutely no utility or reason, since

they had already been included in the MAKESYS files under

other/different object code file names. DRI refused to answer

The Transactor March 1987: Volume 7, Issue O5

my questions, sending me back to CBM's hot-line mummies.

The author, finally reached directly, admitted to me that this

mess was intentional, not an accident or oversight, in the

process of developing these files. It does provide us with a fairly

complete set of the CP/M + object codes, and we may all be

grateful to him for these in any future upgrades of our CP/M +

operating system.

Invited To Beta-Test CP/M+ Revisions

I tried using SID and ED to find and make corrections to the

CX ASM files that governed the functions that were faulty in

the BIOS/BDOS/CCP codes, and decided this was an exercise

in futility without very extensive study. Did you ever try to edit

someone else's code, on a limited display screen, without

seeing the cursor position and without having full screen edit

capability; it is AWFUL!! Furthermore, some of the most dra

matic crashes imaginable resulted from these efforts, resound

ingly slapping my sensitivities as to my own capability as a

programmer (now seriously in doubt). Once again, I let CBM

know about my concern and frustrations with this situation,

and was invited to help constructively solve them as a "Beta-

Tester" for the third issue of CP/M + which was alleged to solve

all these problems. It would accommodate the modem, RAM

disk and other DEVICE assignments, and much, much more.

Having already developed a small affection for this "Mean

Machine" - 1 agreed to beta-test the CP/M + revisions.

This latest CBM revision of CP/M+ (6 Dec. '85) for the C-128

was to be a fully corrected version, removing of all the faults I

had cited above. It would now allow modem (RS232 port)

operation in CP/M for down-loading software that would make

the beta-tests a significant exercise, and covering a wide range

of utilities and applications software. I immediately sent some

38 letters to all the top CP/M software suppliers (very few of

whom responded) for test samples. I also promptly down

loaded (in 128 mode) and converted the public domain release

of the 4 Dec. CP/M + BIOS, and went to work in getting a first-

class terminal (M0DEM7) program up and operating. Finding a

properly overlayed IMP244.LBR (which I highly recommend,

by the way) was a bit of a struggle, but it had just been made

available on CompuServe. My down-loading began, and over

the next few weeks - while waiting for CBM to send me the

Beta-Test issue of the CP/M+ BIOS - I accumulated an

outstanding set of utilities and software.

The First CP/M + Revision

The disk that arrived from CBM in January was folded into a U

and stuffed into our postal box. With heart-sick feelings about

the condition of the disk (and a bitter word or two to the

Postmaster), I hurried back to the office and was pleased to find

I could gently unfold it and use the disk in the 1571 drive -

copying everything promptly to a new disk, just in case.

Along with a new CPM + .SYS file was a SCREEN40.COM file

that I investigated immediately. This little ditty solved several

serious problems. It turned off the 40-column screen and

completely eliminated the random character errors experi

enced above, particularly in 1200 baud modem transfers. The

source was thus revealed for at least one of the faults in the

CCP/BIOS - although SCREEN40 is no more than a Band-Aid

for more serious problems that were still internal to the CP/

M + operating system. My down-loads from the BBSs would

now be clean of random errors that plagued our first test

software. About the same time, the C-128 "Configurator"

CONF.COM and its menued HLP file became available on the

public domain. With the proper settings of the O.S. using

CONF.COM, and the printer interface set transparent to eight-

bit ASCII, my Star Delta 10 printer properly receives and prints

the direct ASCII codes without interference from the interface.

Calling CONF PRT1 = ASCII turns off the PET-ASCII conver

sion (that has been fouled up in the CP/M + codes) needed for

CBM printers. Calling CONF 40COL=OFF turns off the 40

column screen (like SCREEN40), goes to two megahertz, and

gets rid of most of the random character errors at 1200 baud,

and double keying problems. There is a full menu of other

configuration control and set-up calls in CONF.COM, as well

(see below) that provides the needed configuration control of

the system - including screen colors. The controls provided by

CONF.COM are REQUIRED for the successful use of the 6

December issue of CP/M +. They are only a Band-Aid "fix",

however, to the many serious problems that are still imbedded

in the CP/M + source codes.

With the improvement of the printer operation (by setting the

PRT1= ASCII in CONF.COM), I realized my first real success

with echoing the screen and running several NLQ font pro

grams that bit-map output to the dot-matrix printer. I use the

"CBM emulate mode" of the interface only in 64 and 128

modes now, with the software designed for CBM printers. With

the beta-test CP/M+ you must still configure commercial

software for the ADM-3A terminal configuration, and thus are

denied use of the full keyboard features and the much faster

screens of ADM-31 terminal operation. Since this is not a

hardware problem, but a fault of the CP/M + codes, we should

expect CBM to properly correct this problem. Several of the

commercial and public domain software packages evaluated

require that the CCP be overlayed or made a PRL (program

relocatable) file to work with their resident commands. As the

CCP MUST be reprogrammed to correct remaining errors in its

codes, WE NEED an assembly level copy of the CCP (i.e.

CCP.ASM or CPR.ASM) to successfully run this excellent new

software. Several Z80 disassemblers I have tried crash the CP/

M+ O.S. - although nearly all CP/M 2.2 or 3.0 commercial

software and utilities run great on the C-128 (in ADM-3A

terminal mode with the Band-Aids affixed to the O.S.).

Not one piece of Osborne software from the First Osborne

Group's (FOG) public domain library that I have acquired will

run on the C-128. Yet nearly all CP/M-80 software from the

TTio nonsoctor 45 March 1987: Volume 7, Issue O5

SIG-M Library, and so called "vanilla" programs (i.e. without

special machine unique calls imbedded) down-loaded have

properly run. (I do not recommend that the C-128 CP/M+ be

reconfigured to accommodate Osborne software - even the

Osborne Executive's CP/M 3.0) All Osborne, QX-10 and Kay-

Pro disk configurations DO load and copy properly (even

between disk formats) with the 1571 disk drives. As a matter of

fact, the 1571 is remarkably fast and fault free in the CP/M

mode (although we cannot say the same for the 128 mode

where the DOS fails periodically). Although our C-128 unit

does have the infamous "shifted-Q" problem, our C-64 soft

ware is 100% compatible. Even the fully loaded Flight Simula

tor II will run without having to disconnect the printer interface

and cassette ports (thanks to CBM for cleaning this mess up).

Software Reports: Successes

The following abstracts are briefs of the software I have tested

that does operate successfully on the C-128 (under the certain

conditions stated above and with the band-aids) with the 6

Dec. beta-test issue of CP/M + . We anticipate that CBM will

make all necessary changes to the BIOS and CCP, and correct

the remaining faults discovered in the codes, for the final

release of the upgraded CP/M + operating system scheduled

for May of this year (now 5 months late). I will not belabor this

point further here. Only positive results are presented below,

but rest assured, there were many failures.

Modem Programs - Public Domain

MEX114.LBR - Contains an excellent terminal program (needs

jump table edits to work on the C-128). A full set of utilities and

large set of overlays for various systems and modems are

contained on several disks. The C-128 overlay has been

installed on one version available on local BBSs, but only for

the CBM 1670/Hayes modems. It is loaded with set-up con

trols and toggles, for those who like this feature, and will batch

transfer in several protocols that include CompuServe's. It is

very well documented and available on SIG-M Library Vol

#218, 219, 220 and 241.

IMP244.LBR - Another excellent terminal program with all the

features of MEX - but most are automatic and transparent to

the user. It also will batch transfer 128, 256 and 1K Byte Blocks

and has KMD or XMODEM (Christensen) protocols. I much

prefer this one (it's fool proof), and have recommended that

CBM license it and adapt it to all CBM modems. There is an C-

128 overlay (I2C8-1 .OVL for the 1670) and a converted version

(IMP-128.COM) available on most local BBSs. The needed

utilities are included only in the LBR file, so get both. It is very

well documented, but the overlays must be ordered from the

author.

Utilities From The Public Domain

CONF.COM/HLP - The C-128 configurator. These files MUST

be on the CP/M + update disk. It was released to the public

domain on 21 Jan. 86 by the author, Von Ertwine, and has been

a life-saver. The command and help file support the set-up of

system:

- 40COL : toggles on/off the 40 column screen (and elimi

nates random character errors).

- BAUD : sets the baud rate for the RS232 Port.

- BACK/BORD/CURSOR : set colors on the screen.

- DATE : sets system date and time.

- DRV : assigns disk drive device numbers to A:,B:, etc.

- DUMP : dumps 16 bytes of memory from ROM in hex

from a selected address.

- FEEL : sets key scan frequency.

- HELP : types the help menu and instructions

- MAP : maps the keyboard assignment by KEYFIG.

- PARITY : sets byte character (ie 8/N/1, etc.)

- POKE : pokes a hex code into memory at selected loca

tion.

- PRT(1 or 2): sets printer output to ASCII or PET-ASCII and

selects character set.

- REPEAT : toggles repeat keys on or off.

- VOL : sets audible key-click volume level.

NULU151.LBR - Menued and well documented LIB file utility.

Makes and un-makes libraries with squeezed files. Has fea

tures for reading, extracting, squeezing/un-squeezing, making

and erasing files. You will want to find the COM and DOC files

separately to get started (or get USQ.COM and DELBR.COM

files to open this LBR).

NUSWEEP107.LBR - Library file utility with some features not

found in NULU. Well documented and menued for ease of

operation. Actually, both are needed and compliment each

other. Both will allow indexing of files and in one "sweep",

extract only those files selected - un-squeezing as it goes.

USQ/DELBR/BISHOW.COM - A nice set of individual LIB file

utilities contained on all SIG-M Disks. Unsqueeze/Extract (ie

de-library)/Read files in squeezed or un-squeezed format,

respectively. BISHOW (or QSHOW) out performs the TYPE-

.COM utility on the CP/M+ distribution disk.

CPM3UTIL.LBR - Excellent set of CP/M+ utilities found in

SIG-M library volume 234. Contains the following:

- DISK3.COM : full directory listing and available space.

- EDIT3.COM : Text-editor enhanced over ED.

- IMAGE.COM : track by track disk copier, any disk for

mat.

- PASSWORD.COM : to protect the CP/M + System in PRO

FILE.

- UNLOAD.COM : converts binary file to Intel hex file.

The Transoctof 46 March 1987: Votume 7, l*jueO5

- VERIFY3.COM : checks all disk sectors - any format.

- DISKED3.COM : menued sector editor for direct read/

write.

- WRTSYS.COM : writes boot to system tracks of disks.

UNERA + .LBR - Poorly documented, it restores erased files.

SUPERZAP.LBR - Full-screen disk editor, with menus.

CPM3-CAT.LBR - Disk catalogue maker.

BRADFORD.LBR - NLQ printer software like fancy font. Few

fonts, not documented, "freeware", but worth it.

Commercial Software Tests

WORDSTAR 3.3 - Latest version of the word processor stand

ard. Do not bother with earlier versions. Good books are

available to cover documentation needs.

WORD FINDER - Thesaurus for use with WordStar. Excellent

to check for spelling as you type the document.

SUPERWRITER - Fine word processor with spell checker and

dictionary. Works with SUPERCALC2 to print full reports.

SUPERCALC2 - Great spreadsheet software that has Data File

Format Converter included for CP/M-86/80 formats. Works

with SUPERWRITER to produce full reports.

FANCY FONT - Excellent NLQ printer software in many type

styles and almost any ASCII file format. A very large library of

fonts are available, in sizes from 4-72 point. Very well docu

mented, bit-mapped and SLOW!!

TWIST & SHOUT - Sideways and banner printing utility for

dot-matrix printers. Few fonts compared with print shop.

TURBO-PASCAL - A must for any CP/M + system. Compiler,

editor and other utilities. Makes the public domain T-Pascal

software useable.

C/80 3.1 & MATHPAK - C compiler and utilities for C language

programming. Well documented and recommended.

GAMES - We tried ZORKII, Adventure 80, SNAKE, ELIZA and

some of the other CP/M text games, with some limited interest.

Not as exciting as the C-64/128 arcade games, to say the least.

COMPUTER CHEF - The main software of a set of four recipe

disks and meal planners. As an amateur chef I liked it, particu

larly the Chocolate Bytes Library. Auto-sizes recipes to the

number of guests.

ZCPR3.LBR - I'm still in the process of evaluating this MAS

SIVE set of files (seven disks full) to replace the CP/M CCP and

expand the limited capability of the operating system, Dramati

cally! It was written for CP/M 2.2, and will take a great deal of

time to install. I will report on this separately, later. I HIGHLY

recommend that CBM take a long and serious look at this

outstanding option.

Wrap-Up Of This Report - To CBM

We have taken the process of beta-testing of the CP/M +

upgrades to their logical conclusion consisting of the preceding

series of recommendations to CBM for needed correction of

several problems. The software tests are by no means com

pleted, but will continue and be published as appropriate for

unique software packages made available.

Our recommendation that CBM fully investigate ZCPR3 imple

mentation is taken seriously by Exchelon in California; it has

promise of making a Magnificent Monster out of this "Mean

Machine". The original CCP is a mess inherited from an archaic

CP/M concept. With its replacement, ZCPR3, the capability of

the C-l 28 will be greatly expanded to include; shells, aliases, 1/

0 redirection, flow control, named directories, search paths,

custom menus, multi-command lines, many resident com

mands, and much more! With it we will realize the UNIX-like

operating system capability from this microcomputer that ex

ceeds any other available on the market today in this price

range. A "Much Higher Intelligence - at a Much Lower Price" -

indeed!

On the hardware front, we do highly recommend that an

expansion package be made available, from CBM, to add two

more banks of 64K bytes of RAM/ROM in the "empty socket".

The upgraded CP/M + BIOS should accommodate this capabil

ity. Your promise of a GEM capability will thus be realized, and

the full utility of the C-l28 for us, the business community of

users, will be greatly enhanced.

We have enjoyed performing this extensive research and

evaluation exercise for CBM, and their loyal following of

Commodore computer users. We have recognized the enor

mous potential of the C-l28, better than most; perhaps better

than CBM at this time.

The Transactor 47 Maroh 1987: Volume 7. lwueO5

Assembling Assemblers Chris Miller

Kitchener, Ontario

Chris Miller is the author ofthe Buddy System-128

and Buddy System-64 Assemblers from Pro-Line.

Writing an assembler is like no other programming activity. It

has its own peculiar set of rewards and challenges. I would like

very much to pass on some observations, experiences and

solutions to readers who have decided to do their own from

scratch or to build on the Symass assembler as published in

Transactor.

It's Alive

Keep archives. Don't be in too big of a hurry to update

everything. Unlike almost any other type of program, an

assembler lives; it creates itself. Accidently killing it can leave

you in a most peculiar bind.

Suppose you've got several up-to-date backups of version 12.3

when you discover a tiny flaw in your error checking. No

problem; the fix is obvious and after making it you quickly re

assemble new version 12.4. In your excitement over having

finally taken out the last bug (again) you replace all your old,

slightly imperfect 12.3 source and code with your new, at-last-

perfect 12.4 stuff. Six minutes later you think of a great new

command to add. It's an easy update: a flag, a pointer, a little

code.. . but when you go to assemble it every single line of

source gives rise to an INVALID MODE OF OPERATION! error

message. You see, you forgot to include a crucial RTS when you

repaired the last version.

Panic sets in (as well it should). There are so many custom

macros and features in your source by now that no other

assembler can touch it. If you're lucky you may find an old

version 6.1 tucked away that you forgot to update way-back-

when that, although far from perfect, can still do the job.

Otherwise, you may have to spend a couple of days bringing

your source down to the level of whatever assembler you

started with and working your way up again.

It is also possible to have only wounded version 12.4 so that,

even though it seems to work, inaccurate code for version 12.5

is output and it isn't until you go to assemble version 12.6 (or

even much later on) that everything actually blows up in your

innocent but startled face. So keep a few of the older genera

tions around awhile, eh.

BASIC'S Terrible Tokenizer

If you want to be able to write your source on the Basic editor,

sooner or later you are going to have to do something about

tokenization. It is not enough to simply change the appearance

of mnemonics like EOR, AND and ORA and to tell people to

use $DEE+1 instead of $DEF. Consider the following perfectly

legal source lines:

20 remove = *

30 testdata ora #8

40 newdata jmp newline

In line 20 the " = " and "*" would hold their ASCII instead of

their tokenized values so that your assembler would not recog

nize them. The ORA would not be tokenized by the editor in

line 30 so that your mnemonic lookup routine would never

find it. Even though NEWLINE was defined, line 40 would give

rise to an UNDEFINED SYMBOL error. If you are not going to

un-tokenize source before assembling then you may not use

"REM" or "DATA" in any symbol name.

Personally, I have tried everything to get around BASIC'S

idiosyncratic tokenizer, including trying to live with the above

restrictions, placing all source within quotes and monkeying

with the editor itself, none of which proved satisfactory.

The thing to do is really not all that difficult: every line of source

must be un-crunched into a buffer by the assembler before

parsing. There is a Basic routine to do this and it is actually very

fast. The time lost in un-crunching is also compensated for by

the fact that you can now index source lines with both the .X

and .Y registers and that absolute addressing modes are faster

Th© TtansQCtor March 1987: Volume 7, taueOS

than indirect. This also removes all restrictions imposed on

your source by tokenization, makes your assembler easily

compatible with ASCII formats, and opens the door to disk

based assembling and easy display handling.

Look-Up Look-Outs

The Symbol Table.

The most time-consuming aspect of any assembly (excluding

I/O) usually involves building and accessing the symbol table.

A common structure involves allotting a fixed number of bytes

for each symbol (usually eight) plus two for the value and

stacking entries one-on-the-other (usually in a downward

direction) in memory. The advantage to this system is simplic

ity but there are two major drawbacks:

1. It can be very slow, especially once you begin chaining

source files and symbol tables become very large. If you do re

definition checking (almost a must) or phase alignment check

ing on pass two, a large, sequentially organized symbol table

will slow things down even more.

2. Symbol names must be restricted in size (I find eight to be not

quite enough) or a good deal of space must be wasted by

constantly providing for longer symbols. Consider variable

length entries: let the first byte of each entry represent its size.

You will be able to support unique symbols of any length and

conserve memory too. Of course, speed will not improve.

To really speed up the old assembler, try organizing the symbol

table like a binary tree. Each entry will, in addition to the name

and value, require space for two pointers (four bytes). Follow

ing is some pseudo code for placing a symbol in the table.

put'symbol

initialize entry'ptr (to root of tree)

compare'next

compare new symbol with entry

if same then re-definition error

if before (in alphabet)

then

if left'pointer = nil

then (not in table)

left'ptr = end'of'table'ptr

gototack'on'entry

else (branch left)

entry'ptr = left'ptr

go to compare'next

else (comes after in alphabet)

if right'ptr = nil

then (not in table)

right'ptr = end'of'table'ptr

goto tack'on'entry

else (branch right)

entry'ptr = right'ptr

go to compare'next

tack'on'entry

put new entry at end of table

new left/right ptrs = nil

update end'of'table'ptr

return

There are probably quite a lot of ways of coding the above idea

in assembler; far be it from me to deprive you of the pleasure. It

will usually be necessary to examine only a small portion of the

tabled symbols to find one or determine that it is undefined.

For example, if you were trying to find ZEEK in the table and

the first entry you compared it to was OTIS, then you would

never have to check any entries which came before OTIS in the

alphabet after that. Speed of access makes a binary symbol

table structure worth a few extra bytes of overhead.

Command Look-Ups

As with symbols, there are many ways of organizing the

instruction data. A sequential list of fixed length entries is again

the simplest, but also the slowest and the greatest waster of

memory. It is slow because any three-character symbol will

require a complete search of all the mnemonics from ADC to

TYA before you can be sure that you do not have a command.

Even if you try to keep the most popular instructions towards

the top of the list, it will often be necessary to scan through 50

or 100 of them until you find the one you're after. It's a waste of

space to follow each mnemonic, especially the inherent ones,

with a whole slew of filler bytes representing invalid modes of

operation surrounding usable op-code byte(s).

Pointers to Lists

Consider following the mnemonics in the look-up table with a

couple of address pointers: one pointing to a list of valid modes,

The Transactor 49 March 1987: Volume 7, toue O5

the other pointing to a corresponding list of op-codes. Attach a

(symbolic) value 1-12 to each mode. Suppose the assembler

runs across the statement LDX (PTR),Y which we all know can't

be done. Parsing the operand portion determines that indirect

indexed is being used. The mode'pointer list for LDX, however,

does not contain the value (e.g. 4) for this mode. You know this

as soon as you skip past from zero page (e.g. 2) mode to

absolute (e.g. 6) or the end-of-list flag (e.g. $ff) is reached.

All of the inherent commands will point to the same two-byte

list of valid modes (e.g. 1, $ff). Many of the other commands will

share the same list of valid addressing modes as well. Of

course, the opcode'ptr for each mnemonic will point to a

unique list of op-codes, however, no filler bytes will be re

quired because this list will correspond exactly to the list of

valid modes. If the mode value you were looking for was third

in the mode list, then the op-code you should use will be third

in the op-code list. Let's do something with some of the

memory you just saved.

Much better of course would be to have your command actually

open a file itself on pass two and if necessary close the previous

one. This way more than one object file can be created at once,

and if there is an error on the first pass, you can stop before the

file is created. Reading the error channel and always closing

files is also polite.

Hidden RAM

Bet if you take a hard look at the Basic ROM routines you're

using, you'll find that you can re-create and even improve on

them yourself. Then you can put your assembler under Basic

Rom from $A000-$BFFF. You'll need to turn bit-0 at address I

off and on from a safe place before starting and after finishing

an assembly. You could also put a C-64 FARJSR relay routine to

call Basic and Kernal ROM from their underlying RAM. Maxi

mize the amount of RAM free for source, symbol table and

testing.

Pointers to Pointers You're Hooked

Instead of one huge list, try breaking the mnemonics down into

a bunch of small lists based on the first letter of the command.

When you go to look up JMP, the value for "J" can quickly be

converted to 9 (e.g. LDA #"J":SEC:SBC #"A":AND #15).

Indexing a list of low byte and another of high byte pointer

values by this should provide you with a pointer to the list of

mnemonics which begin with the letter "J" (two in this case).

You'll never have to look through more than half dozen or so.

There other ways of massaging the 6510 mnemonics to pro

duce even more, smaller tables for even faster hash accessing. I

challenge anyone to come up with an algorithm that will

generate a unique, one byte value for every standard 6510

mnemonic.

Once you've come this far, there is no turning back. You're

bitten. What about a command to cause a specified source file

to be loaded into memory before continuing from the top. After

all, you can't expect to keep all of your source in memory at

once forever (even in the 128). Or what about commands to

Load and Save symbol tables for immediate use by the assem

bler as an alternative to the above sort of chaining. What about

conditional assembly? What about MACROS?

Writing an assembler can be a very useful, educational and

even profitable experience. I wish you success.

Output To Disk

Sooner or later it will become necessary to direct your output to

disk. For one thing it is not always possible to assemble your

code to the memory that it is destined for. An assembler

attempting to assemble itself to memory will overwrite code

that is being executed; risky business.

The easiest way to send everything to disk is to open the file

from Basic before the assembler takes over via 5 OPEN 5,8,5,"

0:NEATCODE,P,W" for instance, and then just use the Kernal

$FFD2 (Chrout) from within the assembler. Be sure to also send

out the value of the program counter before the first byte is sent

if you want to LOAD"NEATCODE" ,8,1. It is a small matter

indeed to create a command to set a flag which will tell the

assembler what to do with the object code on pass two.

The Transactor 5O March 1987: Volume 7, Issue O5

Structured Programming Frank DiGioia

on the Commodore 64 Stone Mountain, Georgia

The power of Pascal with the ease of BASIC

This article presents a BASIC language extension which will allow you to write

structured, Pascal-like programs in BASIC 2.0. This exciting capability will make it

possible for you to use your C64 to write programs for school, business and other

situations where normal, unstructured BASIC is traditionally considered inappro

priate.

There is a lot of talk these days about structured programming.

You won't find a computer science department in any school that

doesn't emphasize the importance of such programming tech

niques. Structured programming isn't just limited to universities,

however. Most large corporations require that all of their Informa

tion Systems employees use structured design and programming

techniques in all of their work.

Well, with all the emphasis being placed on structured program

ming, it makes sense that you might want to practice some of these

techniques on your own computer at home. Unfortunately, it is

very difficult, if not downright impossible, to implement structured

programs on the Commodore 64 due to the limitations of BASIC

2.0. In order to allow you to practice structured programming on

your C64, I've designed a BASIC extension program which will

implement some commonly used structured programming com

mands on your 64. Before going into a description of these new

commands, however, I should describe exactly what I'm referring

to when I speak of structured programming.

TOP DOWN DESIGN

The two most important concepts in structured programming are

TOP DOWN DESIGN and MODULAR PROGRAMMING. Very

briefly, top down design refers to the idea of taking a task and

breaking it down into smaller subtasks. These subtasks are, in

turn, broken down further into more subtasks until, ultimately, the

program is completely written. Top down design can be used in

implementing programs in any language, including assembler.

The essential idea of top down design is that you start writing a

program by designing the MAINLINE program first. This program

should consist almost exclusively of calls to subroutines. The next

stage in the process is to design the subroutines which are called

from the mainline program. Each of these subroutines should be

like a mini-mainline program in itself consisting, perhaps, of

several smaller subroutines. The word MODULE is generally used

to refer to a subroutine and its subordinates which carry out one

well-defined task for the main program.

MODULAR PROGRAMMING

The principle goal of MODULAR PROGRAMMING is to produce a

program which is made up of well-defined MODULES which can

be plugged into and pulled out of your program as needed without

affecting other unrelated parts of the program. Each module

should have only one entry point and only one exit point. With a

modularly designed program, you can add modules or completely

rewrite existing modules, without affecting the rest of the program

as your needs change. Modular design is most important for

business programs that are constantly mutating as the needs of the

business change. As an individual user, however, you might use

modular programming techniques to make your programs more

compatible between machines by grouping machine dependent

instructions into modules rather than having them sprinkled

throughout the program. For instance, suppose you write a huge

program on your C64 to compute your income tax and later decide

that you want to implement the program on an IBM PC. If the

program is well designed, you would probably only have to rewrite

the INITIALIZATION module (which would open all files, set

machine dependent parameters, etc.), the READ module (which

reads from disk) and the WRITE module (which displays data to

the screen or printer). Most other modules in the program could

probably remain unchanged. You should note also that as tax laws

change, you would only need to rewrite the modules affected by

any given change from the current laws.

STRUCTURED PROGRAMMING

This bring us to the final point - structured programming. Every

thing I've mentioned so far has been merely conceptual. The ideas

we've talked about have only to do with the DESIGN of a program.

Structured programming is the IMPLEMENTATION of these ideas

of top down design and modular programming but with some

additional rules to make program logic easy to follow, thus making

programs easier to debug and maintain. These additional rules

include severely limiting the use of the GOTO statement, indent

ing program text so that the nesting of loops can be clearly seen

and giving meaningful names to called program modules.

The Transactor 51 March W87: Volume 7, Issue O5

Clearly BASIC 2.0 is not well suited for the kind of programming

described above. This is, of course, the reason that I'm presenting

the program that accompanies this article. The new commands 1

am including here will allow you to write code which, for the most

part, conforms to the rules of structured programming. The com

mands I am including are similar to those you will find in

structured languages such as Pascal, COBOL, WATFIV and C.

(They most closely resemble those found in Pascal and WATFIV). I

chose these structures (WHILE/WEND, IF/THEN/ELSE,

REPEAT/UNTIL, CALL/PROC, etc) because they so readily adapt

themselves to the concepts of structured design. While I can't give

you a course in how and when to use these structures, I will

describe what each one does and leave you with examples of their

usage. As you program using these commands, their usage will

become natural to you and you will begin to appreciate their value.

If you already use a language such as Pascal on your 64 you will

appreciate having these structures available for use in the interpre

tative environment of BASIC. The ease of debugging in the BASIC

environment will cut your program development time down

dramatically from what it was when you had to load an editor,

compiler, linker and object module every time you needed to

make a change in your program.

USING THE NEW COMMANDS

60 PROC OUTPUT

70 PRINT " OUTPUT CALL #" ;l

80 RETURN

REPEAT/UNTIL — This structure is quite similar to the FOR/

NEXT loop except that instead of counting, like FOR/NEXT, the

REPEAT command repeats a block of instructions until some

condition becomes true.

10 REPEAT

15 X=X + 1

20 PRINT X

30UNTILX>= 10

WHILE/WEND — Clever use of the WHILE statement can elimi

nate a bunch of GOTOs from your code. It repeats a block of

instructions WHILE some condition is true. The WHILE statement

is similar to the REPEAT statement except the condition is checked

BEFORE the loop is entered. REPEAT/UNTIL and FOR/NEXT

loops, on the other hand, always execute the body of the loop at

least once.

10OPEN2,8,2,"TEST.FIL,S"

20 WHILE ST = 0

30 GET#2,A$

40 PRINT A$;

50 WEND

To use these new commands in your own programs, simply type in

the BASIC Loader (LISTING 1) and activate the extended BASIC

with SYS 49152. Here's a description of the commands available to

you:

EDIT — This command causes the C64 editor to view the SPACE

as a valid character. This feature allows you to indent your

program lines to clearly indicate nesting level (see the example

program). This indentation is part of structured programming

syntax. WARNING! When in EDIT mode you must eliminate

spaces from any direct mode commands (except when in quotes)

or a syntax error will result. Also, you should not type a space after

the line number when entering program lines in EDIT mode. Edit

mode is automatically turned off when you RUN a program.

KILL — This command will manually turn off EDIT mode.

BASIC2 — This command will disable the extended commands

and return you to BASIC 2.0. Commands can be re-enabled with

SYS 49152.

CALL/PROC — The CALL statement works exactly like GOSUB

except that you CALL the routine by name instead of using a line

number. This allows you to assign meaningful names to program

modules. The word PROC is used to mark the beginning of a

subroutine (PROCedure) and must be the first statement on the

line (No spaces may precede the word PROC - see error *6). A

procedure is ended with the word RETURN.

10 FOR 1 = 1 TO 10

20 CALL OUTPUT

30 NEXT I

40 END

50:

The above code will read a sequential file and display it to the

screen.

EXIT — You probably know that it is illegal to exit a FOR/NEXT

loop or a subroutine with a GOTO statement in BASIC 2.0. For the

same reasons, it is illegal exit a REPEAT/UNTIL loop, a WHILE/

WEND loop or a PROC with a GOTO statement. If a condition

arises such that you must make an 'emergency' exit from one of

the above structures, use the EXIT command. It works exactly like

a GOTO except that it cleans up the stack before it GOes.

The EXIT command is intelligent. That is, you don't have to tell it

what kind of loop or structure you are EXITing. It can figure out by

itself whether it is EXITing a FOR/NEXT, REPEAT/UNTIL, GO-

SUB, PROC or WHILE/WEND structure. You can only EXIT one

structure at a time. Thus, if you are nested three levels deep, you

must only exit one level at a time (reason: For maximum flexibility

the EXIT command only cleans one data set off the stack at a time).

10X = 1:INPUT "ENTERAN INTEGER";K

20FORI = KTO1 STEP-1

30 X = X*K*RND(0)

40 IFABS(X)>1E7THENEXIT90

50 PRINT "X = ";X

60 NEXT

'FINAL RESULT: ";X70 PRINT

80 END

90 PRINT

95 PRINT

99 PRINT

**** ERROR ♦***"

NUMBER TOO LARGE"

TRY AGAIN ":GOTO10

IF/THEN/ELSE — This simple one-line IF/THEN/ELSE allows

you to choose between two actions based on a conditional state

ment.

The Transactor 52 March 1987: Volume 7. toue O5

IF ABS(X)<1 THEN CALL NEWTON:ELSE CALL GAUSS TECHNICAL NOTES

That is read "If the absolute value of X is less than one, CALL

NEWTON. Otherwise, CALL GAUSS."

ERROR MESSAGES

Since this extended BASIC is intended to be used in 'real-life'

programming a full range of diagnostic error messages are in

cluded to aid in finding program bugs. Here is a list of the messages

and the probable cause of each one.

*1 UNTIL WITHOUT REPEAT (Either you left out the REPEAT

statement or you have improperly nested program structures.

Could also be caused by improper use of the EXIT command.)

#2 WEND WITHOUT WHILE (see *1)

*3 WHILE WITHOUT WEND (Your program has less WEND

statements than WHILE statements. See also #1.)

*4 MISSING LOGICAL EXPRESSION (The word WHILE or

UNTIL was not followed by a logical expression.)

*5 NO STRUCTURE TO EXIT (Attempted to use the EXIT

command outside of a structure. Could also indicate a problem in

program flow. For example a GOTO whose target is inside of some

structure.)

#6 PROCEDURE NOT FOUND (Either no such procedure

exists or the word PROC was not the first word on the line. Make

sure there is not an extra space at the beginning of the line before

the word PROC)

#7 OUT OF MEMORY (This indicates either very deeply nested

structures or problems in program flow. It usually occurs when

structures are not properly exited.)

*8 PROC WITHOUT CALL (Means you left off the END

statement before your procedure block. Also, could indicate prob

lems in program flow.)

EXAMPLE PROGRAM

The example program at the end of this article doesn't do anything

extremely novel and isn't the best example of structured program

ming but it DOES use all of the new commands included in this

extended BASIC. When you run the program it will give you the

option of reading a disk file or creating a disk file. If you choose to

READ a file, you will simply be asked for a filename and the

requested file will be displayed on your screen. If you choose to

CREATE a file, you will be asked to type in some data after

providing a filename. There are no restrictions on the type of data

you can enter. Every key on the keyboard is considered valid data.

When you have typed all you desire, simply hit the RETURN key

TWICE to close the disk file.

Listing 2 contains the complete source code for this language

extension. On my own system, I have implemented this program

in tokenized form for maximum efficiency. The tokenizer and list

routines were too long to include here so I rewrote the program in

non-tokenized form. Whenever you see a machine instruction in

the comment field in the source listing it means that in a tokenized

version (single tokens) you would use that instruction instead of

whatever instruction is shown on that line. If you are a TransBASIC

user you should be able to easily convert these commands to

TransBASIC modules (be sure to allow for the double token

scheme of TB). I'm sure Nick Sullivan can help you if you have

trouble with the conversion.

Because it involved some repetition of code, I neglected to imple

ment a block IF/THEN/ELSE structure like

10IFX>10THEN

20 PRINT "X IS GREATER THAN 10"

30 PRINT "WHOOPIE!"

40 ELSE

50 PRINT "X LESS OR EQUAL 10"

60 PRINT "BIG DEAL"

70ENDIF

If you would like to implement this structure yourself, here's an

outline of what the assembly language routine corresponding to

each keyword should do when executed.

IF — Check condition. If true, business as usual. If false, search for

ELSE and continue execution after the ELSE statement.

ELSE — If an ELSE is executed it means you have gotten to the end

of the IF block, so search for the ENDIF statement and continue

execution after it. Note: The search routine will be exactly like the

FNDWND routine in listing 3. This routine takes nesting into

account, etc.

ENDIF — ENDIF doesn't do anything other than mark the end of

the IF statement. Just execute an RTS.

If anyone out there is really ambitious, a modified CALL/PROC

routine which includes TRUE PARAMETER PASSING would be a

nice addition to your extended BASIC. This is a project I've

intended to take on for quite some time but if anyone would like to

save me the trouble, I'd love to see it here in the Transactor.

Structured BASIC Extension: Loader

AG

JD

BE

KH

AK

LO

FC

CK

HJ

JA

1000 rem loader for structured basic ext

1010 rem by frank digioia 6/2/86

1020 rem sys 49152 to activate

1030:

1040 for adr = 49152 to 50274:read ml

1050 cs = cs + ml:pokeadr,ml:next

1060 if cs<>136922 thenprint" data error"

1070:

1080 data 169, 49,141, 8, 3,169,192,141

1090 data 9, 3,169, 17,160,192, 76, 30

Th© iton&QCfor 53 Moreh 1987: Volume 7, Ittue O5

JB

PN

JP

NP

PG

DN

FL

CL

JC

DN

IF

HB

OA

HC

HM

CP

PC

AO

GE

MH

IE

DN

BK

CM

BO

PM

HB

GH

10

HJ

GO

PP

FM

LE

IB

NK

HC

NO

GN

KF

DH

DN

AP

GC

NM

JB

PH

El

BJ

NL

AC

NM

CH

LF

PF

HA

NH

FC

LM

PN

KC

1100 data 171,

1110 data 84,

1120 data 77,

1130 data 78,

1140 data 0,

1150 data 174,

1160 data 76,

1170 data 139,

1180 data 240,

1190 data 186,

1200 data 177,

1210 data 141,

1220 data 187,

1230 data 2,

1240 data 8,

1250 data 8,

1260 data 248,

1270 data 110,

1280 data 144,

1290 data 170,

1300 data 72,

1310 data 237,

1320 data 212,

1330 data 73,

1340 data 65,

1350 data 76,

1360 data 73,

1370 data 178,

1380 data 188,

1390 data 255,

1400 data 169,

1410 data 129,

1420 data 167,

1430 data 76,

1440 data 68,

1450 data 76,

1460 data 158,

1470 data 5,

1480 data 208,

1490 data 96,

1500 data 168,

1510 data 176,

1520 data 108,

1530 data 251,

1540 data 115,

1550 data 16,

1560 data 59,

1570 data 248,

1580 data 165,

1590 data 72,

1600 data 201,

1610 data 44,

1620 data 5,

1630 data 1,

1640 data 255,

1650 data 174,

1660 data 1,

1670 data 189,

1680 data 3,

1690 data 194,

1700 data 173,

62,

85,

77,

65,

32,

82,

65,

66,

32,115,

167, 76,

180,192,

208, 3,

235, 170,

192,201,

122,201,

186,192,

192,240,

240, 243,

41, 127,

232, 189,

232, 238,

192,152,

2, 230,

189,235,

76,115,

167, 0,

85, 78,

76,197,

76, 204,

83,197,

76, 204,

0, 129,

194,237,

192, 4,

255,133,

96, 169,

141

30

83,

69,

78,

76,

0,

84,

68,

68,

69,

32,

59,169,

201, 39,

76, 44,

48, 95,

87, 208,

128,240,

170,168,

64, 232,

202,189,

209,122,

187,192,

186,192,

24,101,

123,173,

192, 72,

67

79

69

13

76

0,

82,

84,

69,

80,

69,

66,

32,

69,

73,

88,

82,

68,

65,

65

72

67

69

75

67

193,155,

194, 136,

193,

129,

83,

69,

173,

9,

171

32,

68,

32.

169, 167

7, 32;

32,121

165, 122

2, 198

8, 3

168,104

0,221

245, 96

169, 169

168, 165

58, 72

76,174

231,208

32,158

170,168

136,185

0,149

167,154

44,169

195, 32

32, 251

165,123

165, 97

9,

96,

228, 141,

3,169,

96, 62,

68, 73,

0, 32,

121, 0,

32, 255,

99,193,

0,176,

56, 233,

123,160,

32, 6,

240, 13,

123,193,

69, 83,

3, 32,

123, 72,

165, 57,

167, 32,

40, 32,

173,186,

165, 97,

1, 1,

57, 202,

96,169,

2, 44,

121, 0,

163,165,

141,186,

208, 3,

82, 85,

32, 67,

83, 32,

68, 46,

67, 192,

32, 5,193

240, 243, 201

193,201, 138

160, 10,140

8,160, 1

52,169, 0

136,200,189

209,122,208

187,192, 16

240, 19,208

240, 37, 16

160,255, 76

122,133,122

186,192, 10

189,234,192

121, 0, 76

80, 69,

204, 87,

73,212,

79,195,

73,212,

83, 73,

193,217,193

195,126,193

193, 11,194

169, 32,133

8, 3, 169

28,160,193

32, 67, 77

83, 65, 66

115, 0, 32

201, 137,240

174,165, 97

170,208, 22

3, 76,160

1,133,122

0,104,104

169, 72, 32

162, 3, 32

208, 236, 202

76, 69, 76

251,163, 32

165,122, 72

72, 169,231

138,163,154

121, 0,240

138, 24,105

208, 19,162

149,122, 185

16,242, 76

0, 44,169

169, 3, 76

240,246,169

122,141,185

194, 32,158

76,101, 194

BG

BC

JE

JE

PC

JF

NK

IO

LP

DO

HJ

PI

NK

FG

Cl

HG

IH

MA

NJ

CN

OJ

Nl

FN

MA

LF

EM

ED

PL

OE

LH

FD

FC

OD

IN

IH

CL

GG

EG

LE

BN

LL

OF

ON

CG

GP

JG

KF

GL

BO

AB

OF

MB

OM

FN

CN

BB

GG

EH

AK

OG

DJ

1710 data 173, 186, 194, 72,173,185,194, 72

1720 data 165, 58, 72,165, 57, 72,169,235

1730data 72, 76,174,167, 32,138,163,154

1740data201,235,208,187, 32,121, 0,208

1750 data 185, 165, 123,141, 186,194, 165, 122

1760 data 141, 185,194,165, 58, 141, 188, 194

1770 data 165, 57,141,187,194,186,138, 24

1780 data 105, 5,170, 142,183, 194,168, 162

1790 data 1,136,185, 1, 1,149,122,185

1800 data 255, 0,149, 57,202, 16,242, 32

1810 data 158, 173, 165, 97,240, 3, 76,174

1820 data 167, 174, 183, 194, 154,162, 1,189

1830 data 185, 194, 149,122, 189, 187, 194,149

1840data 57,202, 16,243, 96,169, 0, 72

1850 data 32,248,168, 32,121, 0,170,240

1860 data 18, 32,115, 0,170,240, 12, 32

1870 data 142, 195, 240, 34, 32, 145, 195, 240

1880 data 35,208,229,160, 2,177,122,208

1890 data 3, 76,210,193,200,177,122,141

1900 data 187, 194,200, 177, 122, 141,188, 194

1910 data 32,251,168, 76,113,194,104,240

1920data 9, 76,104,194,169,235, 72, 76

1930 data 104,194,173,187,194, 133, 57, 173

1940 data 188,194, 133, 58, 76,248,168, 0

1950data 0, 0, 0, 0, 0,104,104,104

1960data201,129,240, 17,201,141,240, 16

1970data201,231,240, 12,201,235,240, 8

1980 data 169, 4, 76,189,195,169, 19, 44

1990 data 169, 6,141,184,194,186,138, 24

2000 data 109, 184,194,170,154, 32,121, 0

2010 data 32,160,168, 76,174,167,169, 3

2020 data 32,251,163,165,123, 72,165,122

2030 data 72,165, 58, 72,165, 57, 72,169

2040 data 141, 72, 32, 24,195,162, 1,181

2050 data 251, 149, 122, 181, 97,149, 57,202

2060 data 16,245, 32,248,168, 76,174,167

2070 data 165, 43, 133, 253, 165, 44, 133, 254

2080 data 165, 253, 133,251,165,254, 133,252

2090 data 160, 1,177,251,208, 5,169, 5

2100 data 76,189, 195,133,254,136, 177,251

2110 data 133, 253, 160, 4,177,251, 32,159

2120 data 195, 208, 221,160, 3,177, 251, 133

2130 data 98,136,177,251,133, 97,160, 7

2140 data 200, 177, 251, 201, 32, 240, 249, 152

2150 data 24,101,251,133,251,144, 2,230

2160 data 252, 160, 255, 200, 177, 122, 240, 24

2170 data 201, 58,240, 20,201, 32,208, 9

2180 data 230, 122,208, 2,230,123, 76,100

2190 data 195, 209,251,240, 230, 76, 32,195

2200 data 177, 251,240, 4,201, 58,208,152

2210data 96,169, 6, 76,189,195,162, 4

2220 data 44,162, 7,164,122,132,251,164

2230 data 123, 132, 252, 160, 255, 208, 4, 162

2240 data 255, 160, 3, 200, 232, 189,175, 195

2250 data 240, 4,209,251,240,245, 96, 80

2260 data 82, 79, 67, 0, 87,128, 0, 87

2270data 72, 73, 76, 69, 0, 10,170,189

2280data202, 195, 133, 34,189,203,195, 76

2290 data 69, 164, 216, 195, 236, 195, 254,195

2300data 16,196, 42,196, 62,196, 81,196

2310 data 85, 78, 84, 73, 76, 32, 87, 73

The Transactor March 1987: Volume 7, Issue OS

Jl

NA

FK

KC

GL

BE

BM

MN

CA

OF

GA

FF

AC

AC

EH

DC

PK

2320 data

2330 data

2340 data

2350 data

2360 data

2370 data

2380 data

2390 data

2400 data

2410 data

2420 data

2430 data

2440 data

2450 data

2460 data

2470 data

2480 data

84,

80,

32,

32,

73,

79,

77,

76,

69,

79,

85,

79,

79,

78,

196,

84

76

72,

69,

87,

87,

76,

85,

73,

79,

88,

206,

67,

32,

67,

79,

80,

72,

204,

79

65

73

72

69

84

83

71

80

78

84

69

69

84

82

79

0

85,

212,

84,

73,

32,

32,

83,

73,

82,

79,

85,

88,

68,

32,

79,

85,

84,

87,

72,

76,

87,

87,

73,

67,

69,

32,

82,

73,

85,

70,

67

84,

32,

69,

79,

197,

73,

69,

78,

65,

83,

83,

69,

212,

82,

79,

32,

32,

82,

78,

85,

87,

84,

78,

71,

76,

83,

84,

32,

80,

69,

85,

87,

67,

69

68

84

72

72

196

32

32

73

82

84

82

32

78

73

65

Structured BASIC Extension: Example Program

CL

Fl

GM

CA

MF

MC

AC

IN

EL

CD

FC

ML

Kl

BA

LB

AH

EM

OL

Ol

NE

MO

GO

JF

FH

NG

AB

El

GO

PJ

AH

IH

FH

BD

OG

GO

IJ

IO

KE

BE

AG

100'

110' structured demo — frank digioia

120'

130 call prompt

140 while a$O"x"

150 if a$ = " c" then call create:else call read

160 call prompt

170 wend

180 end

190:

200 proc create

210 call get-name

220open2,8,2,f$+ ",w"

230 print" enter data. . ."

240 call get-key

250 repeat

260 print a$;

270 print#2,a$;

280 repeat

290 call get-key

300 print a$;

310 print#2,a$;

320 until a$ = chr$(13)

330 call get-key

340untila$ = chr$(13)

350 print#2:close2

360 return

370:

380 proc read

390 call get-name

400 open2,8,2,f$

410 while st = O

420 get#2,a$

430 print a$;

440 wend

450 close2

460 return

470:

480 proc get-valid-key

490 repeat

PB

GF

EC

Gl

HJ

CE

PF

PM

CH

KG

MM

MJ

CJ

EL

FF

IL

AL

CB

IH

MP

MO

II

HP

HF

FP

KA

500 call get-key

510 until a$ = " c" or a$ = " d" or a$ = " x"

520 return

530:

540 proc get-key

550 a$ = " "

560 while a$= " "

570 get a$

580 wend

590 return

600:

610 proc get-name

620 f$=" "

630whilef$=" "

640 input" filename ";f$

650 wend

660 return

670:

680 proc prompt

690 print" ^ffltype c to create a data file"
700 print" type d to display a data file"

710 print"typex to exit program"

720 print" flnote: when creating a data file'
730 print" hit <return> twice to end input"

740 call get-valid-key

750 return

Structured BASIC Extension: PAL Source

OF

MF

JK

OM

Gl

HM

KJ

OJ

JG

LC

CM

MO

PK

NO

PL

NA

Fl

LO

MM

MB

NO

KN

KD

DA

PL

KM

PO

MG

JC

Al

AG

OA

OJ

GE

IN

CA

DB

AK

MC

HC

DF

PD

CA

1000;

1010 ;structured programming (parser)

1020 ;by frank e. digioia

1030;11/12/85

1040;

1050.

1060;

1070chrget

1080chrgot

1090 igone

1100;

1110 init

1120

1130

1140

1150

1160

1170

1180

1190;

1200 note

1210

1220;

1230 struct

1240

1250

1260

1270;

1280 rem

1290;

1300newrun

1310

1320;

1330chkout

1340

1350

1360

1370

1380

1390

1400

1410

1420;

= $c000

= $0073

= $0079

= $0308

= ,

Ida #<struct

sta igone

Ida #>struct

sta igone+1

Ida #<note

Idy #>note

jmp $ab1e

convenient start

;get byte of text

;get same byte

evaluation vector

.initialize routine

.asc " > structured commands"

.asc ' enablec

= *

jsr chrget

jsr chkout

jmp $a7ae

jmp $a93b

jsr kill

jmp basic

cmp #$27

beq rem

cmp #$8b

bne .+5

jmp if

cmp #$8a

beq newrun

tax

bmi basic

." :.byte$0d,$00

;get a byte of text

;' structured command?

;intepreterloop

;rem command

;kill edit mode

;give to basic

;" single quote?

;classy rem

;can't have new cmds

;without a new if

;'run' token

;end edit and run

; set flags

;token/give to basic

OP

AF

MN

BF

HJ

IB

BK

CP

MF

Ml

PI

PM

NN

KC

IJ

ON

NO

ML

FO

MF

OL

BM

IO

EC

Ml

EN

CH

CC

II

JM

ID

BD

HA

MF

IA

KG

El

FO

PA

EM

MJ

ME

PN

KL

1430

1440

1450

1460

1470

1480

1490

1500

1510;

1520 setup

1530

1540

1550

1560

1570;

1580 loop

1590

1600

1610

1620

1630

1640

1650;

1660 next

1670

1680

1690

1700

1710

1720

1730;

1740 find

1750

1760

1770

1780;

1790x1

1800

1810

1820

1830;

1840 exec

1850

1860

Idy #$0a

sty count

cmp#"w'

bne setup

Idy #$01

Ida ($7a),y

cmp #$80

beq exec

Ida #$00

sta count

tax

tay

dey

iny

Ida table.x

beq basic

inx

cmp ($7a),y

bne next

beq loop

dex

Ida table.x

bpl find

and #$7f

cmp ($7a),y

beq exec

bne x1

inx

Ida table.x

beq basic

bpl find

inx

inc count

Idy #$ff

jmp loop

= *

tya

clc

;checkon 'wend'

;pointto 'wend'

;" current char = 'w'?

; no/not wend

;yes/check next char

;next byte of text

;" 'end'?

;yes/execute wend

;clear all regs

;and keyword counter

;pre-loop decrement

;incr text index

;get table byte

;end of table

;incr table pointer

;cmpare with text

;find next word

;match/keep looking

;bump .x down once

;" end of table word?

; no/find end of word

;yes/mask flag

;" is it a match?

;hooray!!!

;go back for more

;find end of word

;look for negative

;end of table

; keep looking

; point to next word

;word # in table

; reset text index

;search some more

execution routine

; update text pointer

The Transactor 55 Moreh 1987: Volume 7, toueO5

NP

DF

HF

ME

MO

FK

NE

BC

ME

KD

GF

EG

PJ

GE

EO

CM

EG

HD

IH

HB

OK

NH

GA

EP

GC

HC

GA

ED

AH

GO

KB

DO

AJ

MD

IB

IC

MC

OE

FA

EN

EF

NC

GG

10

MH

MN

NJ

GJ

NL

DG

NM

MH

CE

IP

AO

FE

LC

FF

1A

JD

MB

PA

NA

KA

JA

KB

AB

CG

II

JL

CE

EA

EJ

EA

PC

AA

MH

HD

GE

BD

PE

DD

GA

NB

AJ

NB

1870

1880

1890

1900

1910;

1920

1930

1940

1950

1960

1970

1980

1990

2000;

2010 basic

2020

2030;

2040 count

2050;

2060 table

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160;

2170adrtab

2180

2190

2200

2210;

adc

sta

bcc

inc

Ida

asl

tax

Ida

pha

Ida

pha

imp

jsr

jmp

$7a

$7a

• +4

$7b

count

a

;get offset in table

;multiplybytwo

;use as index

adrtab+1;toi byte adr

adrtab

chrget

chrgot

$a7ed

.byte $C

.asc

.asc

.asc

.asc

asc

.asc

.asc

.asc

.asc

.asc

" repea

" unti"

" whil"

"exi" ;

"cal" :

"pro"

"els" :

"edi" ;

■kil" :

" basic

;as return adr hi

x ;lo byte adr

;as return adr lo

;execute routine

; reset flags

;give it to basic

" : .byte$d4

.byteScc

.byte$c5

byte$d4

byte$cc

.byte$c3

.byte$c5

.byte$d4

ayte $cc

: .byte$b2,$00

.wordrepeat-1,until-1

.wordwhile-1,exit-1,call-1

.word xproc-1 ,else-1 .edit—1 .kill—1

.word basic2-1 ,wend-1

2220 ;edit mode commands

2230;

2240 edit

2250

2260

2270;

2280 kill

2290

2300

2310;

2320 basic2

2330

2340

2350

2360

2370

2380

2390

2400 note2

2410;

Ida

sta

rts

Ida

sta

rts

Ida

sta

Ida

sta

Ida

Idy

|mp

rts

.asc

itm

$81

#$20

$81

#$e4

igone

#$a7

;ignore pi symbol

;alter chrget

;that's it!

;ignore spaces

;fix chrget

;fix igone vector

igone+ 1

#<note2 ;notifyuser

#>note2

Sable

">cmdsdisabled" :.byte$OO

2420 structured programming module

2430 ;by frank e. digioia

2440:11/23/85

2450;

2460 ;tokens for lookups & cmp" s

2470;

2480 whltok

2490 wndtok

2500 reptok

2510gosubs

2520 for

2530 proc

2540;

2550 stack

2560 frmevl

2570 getptr

2580 chkstk

2590;

2600 if

2610

2620

2630

2640

2650

2660

2670

2680 chkexp

2690

2700

2710

2720

=

m

m

=

=

=

-

=

=

=

jsr

jsr

jsr

$eb

Sec

$e7

$8d

$81

$e5

$0100

$ad9e

$a38a

$a3fb

chrget

$ad9e

$0079

cmp #$89

beq

Ida

jsr

Ida

bne

jsr

tax

bne

chkexp

#$a7

Saeff

$61

doit

fndels

cmmd

;6510 stack area

evaluate formula

;pntrtostackid

;check stack space

;get next byte

evaluate expression

;get last char

;" 'goto' token?

;yeah/check result

;'then' token

;checkon'then'

;' expression true?

;yes/execute cmd

;no/look for'else'

;" eoln?

; no/do else clause

AA

KC

BA

KB

OL

CF

GL

BH

BD

PP

DE

DN

EB

CK

OL

IM

OC

KM

FD

PE

CL

MC

LL

BD

AD

BK

KD

CD

JE

MG

ME

DB

AG

KO

EH

CP

MK

LN

GA

FO

GL

BA

KM

OA

ON

JA

CP

IP

GA

JG

EB

DD

BO

EM

PK

FE

OK

PC

OL

HH

JA

Cl

GJ

LO

JP

KK

KB

IP

IM

ID

EF

EE

LC

KA

BH

PE

Cl

Bl

MC

GC

GL

KE

KC

DM

DE

HN

2730

2740;

2750 doit

2760

2770

2780;

2790 decptr

2800

2810

2820

2830

2840

2850

2860;

2870 cmmd

2880

2890

2900;

2910 fndels

2920

2930

2940

2950

2960

2970 chkels

2980

2990

3000

3010

3020 noelse

3030;

3040 esle

3050;

3060 else

3070;

3080 repeat

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230;

3240 until

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380;

3390

3400

3410;

3420

3430 getdat

3440

3450

3460

3470

3480

3490

3500

3510;

3520 utrue

3530

3540;

3550 uerM

3560

3570 werri

3580

rts

jsr chrgot

bcs decptr

jmp $a8aO

Ida $7a

sec

sbc #$01

sta $7a

bcs «+ 4

dec $7b

Idy #$00

pla

pla

imp ($0308)

jsr $a906

pha

jsr $a8fb

pla

beq noelse

Idx #$03

jsr chrget

cmp esle,x

bne fndels

dex

bpl chkels

rts

asc "esle"

jmp $a93b

•

Ida #$03

jsr chkstk

jsr $a8f8

Ida $7b

pha

Ida $7a

pha

Ida $3a

pha

Ida $39

pha

Ida #reptok

pha

jmp $a7ae

■ *

jsr getptr

txs

cmp #reptok

bne uerri

jsr chrgot

beq nocond

jsr frmevl

tsx

txa

clc

adc #$05

tax

tay

Ida $61

bne utrue

Idx #01

dey

Ida stack +1

sta $7a,x

Ida stack-1

sta $39,x

dex

bpl getdat

jmp $a7ae

txs

rts

Ida #$00

.byte$2c

Ida #$01

.byte$2c

;yes/return to interp

;get last char

;not digit/execute it

;digit/execute goto

decrement txtptr

;clear .y for update

;clear return address

;execute via vector

;find next stmt

;save byte

; update txtptr

;get byte back

;" end of line?

;compare 4 byte

;get a byte

;comare bkwrd

; no/next stmt

;bump index

; keep checking

;doarem

;need 6 bytes

;check stack space

;point next statement

;save text pointer

;save line number

interpreter loop

;find id on stack

;replace pointer

;" repeat id?

;'missing repeat'

;" condition present?

;'missing cond.'

;evaluate expression

;get stack pointer

;placein .a

;backup5onstack

;check result (t/f)

;true/fix stack

;false/copy data from

;stack into program

.ypointer&curlin

;to continue execution

y ;at top of loop.

interpreter loop

; update stack pointer

KF

LO

CK

OC

EK

OH

GB

NN

AP

PB

NN

NJ

CE

JE

CG

ND

II

DA

AD

OL

Al

KN

IB

CK

AM

NJ

Gl

CB

IO

HH

IK

JJ

PO

HL

IB

DB

Cl

OO

HD

KO

DF

MP

PF

EN

LF

FO

IE

LF

NO

GG

KH

PM

CM

HO

IJ

PO

MH

OM

Al

LA

BE

PB

KN

CP

GF

BD

EO

HO

EC

JJ

FO

PE

JK

DO

OM

HN

FL

GO

DB

CJ

DM

DF

Dl

BJ

CF

DC

3590 werr2

3600

3610 nocond

3620

3630;

3640 while

3650

3660

3670

3680

3690

3700

3710

3720

3730

3740

3750

3760

3770 ;

3780 wtrue

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890;

3900 wend

3910

3920

3930

3940

3950

3960;

3970

3980

3990

4000

4010

4020

4030

4040

4050;

4060

4070

4080

4090

4100

4110

4120

4130;

4140

4150whldat

4160

4170

4180

4190

4200

4210

4220;

4230

4240

4250

4260

4270;

4280 wfalse

4290

4300

4310 wfill

4320

4330

4340

4350

4360

4370

4380;

4390 fndwnd

4400

4410

4420 wsrch

4430

4440

Ida #$02

.byte $2c

Ida

jmp

=

jsr

beq

Ida

jsr

Ida

sta

Ida

sta

jsr

Ida

bne

jmp

Ida

pha

Ida

pha

Ida

pha

Ida

pha

Ida

pha

jmp

jsr

txs

#$03

error

•

chrgot

nocond

#$03

chkstk

$7a

t1

$7b

t2

frmevl

$61

wtrue

fndwnd

t2

t1

$3a

$39

#whltok

$a7ae

getptr

cmp #whltok

bne

jsr

bne

Ida

sta

Ida

sta

Ida

sta

Ida

sta

tsx

txa

clc

adc

tax

stx

tay

Idx

dey

Ida

sta

Ida

sta

dex

bp!

jsr

Ida

beq

jmp

Idx

txs

Idx

Ida

sta

Ida

sta

dex

bpl

rts

s

Ida

pha

jsr

jsr

tax

werri

chrgot

werr2

$7b

t2

$7a

t1

$3a

II2

$39

111

#$05

stkptr

#$01

stack +1

$7a,x

stack-1

$39,x

whldat

frmevl

$61

wfalse

$a7ae

stkptr

#$01

t1,x

$7a,x

111,X

$39,x

wfill

+

#$00

$a8f8

chrgot

;print error msg

;" condition present?

; no/error mesg

;need 6 bytes

;check stack space

;save pointer to

;the conditional

expression for

;later use.

evaluate expression

;" true or false?

;true/load up stack

;false/find wend

;save pointer to

;the logical

expression on

;stack

;save line number

;on stack

;save id for while

;on stack

;find id on stack

;update pointer

;" id for while?

;'missing while'

;" end of statement?

; no/something wrong

;save text pointer

;get stack pointer

;place in .a

;backup5onstack

;store stack pointer

;get adr of while

condition into

,y;$7a/$7b and line

;numberinto$39/$3a

y ;for frmevl to use

evaluate expression

;" true or false?

;true/cont execution

;update stack pointer

; replace text pntr

;replace line number

;continue execution

;find wend statement

;setflagon stack

;find next stment

;" end of line?

The Itansoctor 56 Moich 1987: Volume 7, Issue O5

MF

LJ

LF

KH

CK

BL

KM

HB

LH

CD

IM

00

FP

PL

NB

LL

PB

MO

DC

AE

LN

AD

EL

IE

CG

OF

MN

IK

GP

Gl

EA

Ml

NH

01

JK

EC

AE

AG

KC

DP

AA

GC

ED

Gl

Ml

Bl

GL

AM

KJ

OD

AJ

AD

HC

EE

OD

IF

JN

IC

MB

GP

JC

AA

MB

HF

CB

CG

CH

FF

00

cc

OB

NP

IK

JG

AO

PA

PA

AO

LC

EP

ID

IA

DD

MB

PF

AD

4450

4460 xx

4470

4480

4490

4500

4510

4520

4530

4540;

4550 eolni

4560

4570

4580

4590

4600

4610

4620

4630

4640

4650

4660

4670;

4680 xwend

4690

4700

4710;

4720 xwhile

4730

4740

4750;

4760 wndfnd

4770

4780

4790

4800

4810;

4820 stkptr

4830 incrst

4840 t1

4850 t2

4860 111

4870 II2

4880;

4890 exit

4900

4910

4920

4930

4940

4950

4960

4970

4980

4990

5000

5010

5020

5030;

5040 getinc

5050

5060

5070

5080

5090

5100

5110

5120

5130

5140

5150

5160

5170;

5180 call

5190

5200

5210

5220

5230

5240

5250

5260

5270

5280

5290

5300

The Transactor

beq eolni

jsr chrget

tax

beq eolni

jsr chkwnd

beq xwend

jsr chkwhl

beq xwhile

bne wsrch

Idy #$02

Ida ($7a),y

bne • +5

jmp werr2

iny

Ida ($7a),y

sta 111

iny

Ida ($7a),y

sta II2

jsr $a8fb

jmp xx

pla

beq wndfnd

jmp wsrch

Ida #whltok

pha

jmp wsrch

Ida 111

sta $39

Ida II2

sta $3a

jmp $a8f8

.byte $00

.byte $00

.byte $00

byte $00

.byte $00

.byte $00

_ ,

pla

pla

pla

cmp #for

beq getinc

cmp #gosubs

beq getinc+ 3

cmp#reptok

beq getinc+ 3

cmp #whltok

beq getinc+ 3

Ida #$04

jmp error

Ida #$13

.byte$2c

Ida #$06

sta incrst

tsx

txa \

clc

adc incrst

tax

txs

jsr chrgot

jsr $a8aO

jmp $a7ae

•

Ida #$03

jsr chkstk

Ida $7b

pha

Ida $7a

pha

Ida $3a

pha

Ida $39

pha

Ida #$8d

pha

;yes/deal with it

;get next byte

;" end of line?

;yes/deal with it

;cmp#wndtok

;cmp#whltok

;check for end text

;' link hi = 0?

;no/continue search

;yes/missing wend

; no/get line*

;save line #

;update text pointer

;do search

;check flag

;foundit!!l

;loadline#

;find next statement

;find id on stack

;" for command?

;get # of bytes

;" gosub command?

;error number 4

;'nothing to exit'

; 19 bytes on stack

;skip next instr.

;6 bytes on stack

;incr for stkptr

;get stack pointer

;put in .a for add

increase stkptr

; replace it

;stack clean!

;get last char.

;goto command

interpreter loop

;need6bytes

;check stack space

;save text pointer

;saveline number

;id for gosub

ED

HC

BF

DM

NB

Dl

EB

LL

MA

Ol

FP

NO

MK

NO

Ml

KK

HB

Nl

IO

BG

CK

HH

JL

KB

DD

OC

ID

NC

PJ

KP

AG

NC

FE

Bl

CE

CJ

IK

DJ

HO

FK

EM

HC

AH

GE

BD

IK

BG

KA

LA

ON

DP

IG

HF

GE

BJ

KF

OM

LF

BA

NA

Ml

AB

DH

HE

PP

JG

JL

IA

BL

HB

IJ

EG

NE

OA

CO

CA

KB

GD

DO

NA

IC

GD

ON

CH

LD

KG

5310;

5320

5330

5340 z

5350

5360

5370

5380

5390

5400;

5410

5420

5430;

5440 fndprc

5450

5460

5470

5480

5490;

5500 srchlp

5510

5520

5530

5540;

5550

5560

5570;

5580

5590

5600

5610;

5620

5630

5640

5650

5660;

5670

5680

5690

5700

5710;

5720

5730

5740

5750

5760

5770

5780;

5790

5800 xspc

5810

5820

5830

5840;

5850

5860

5870

5880

5890

5900

5910;

5920

5930 compar

5940 chktxt

5950

5960

5970

5980

5990

6000

6010

6020

6030

6040;

jsr

Idx

Ida

sta

Ida

sta

dex

bpl

jsr

jmp

=

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Idy

Ida

bne

Ida

imp

sta

dey

Ida

sta

Idy

Ida

jsr

bne

Idy

Ida

sta

dey

Ida

sta

Idy

iny

Ida

fndprc

#$01

$fb,x

$7a,x

$61,x

$39,x

z

$a8f8

$a7ae

+

$2b

Sfd

$2c

$fe

Sfd

Sib

$fe

$fc

#$01

($fb),y

»+7

#$05

error

$fe

($fb).y
Sfd

#$04

($fb),y

chkprc

srchlp

#$03

($fb),y
$62

($fb),y

$61

#$07

($fb).y
cmp#"

beq

tya

clc

adc

sta

bcc

inc

Idy

iny

Ida

beq

xspc

$fb

$fb

.+4

$fc

#$ff

($7a),y

chklst

cmp#":"

beq chklst

cmp#"

bne

inc

bne

inc

imp

chknam

$7a

. + 4

$7b

chktxt

6050 chknam cmp ($fb),y

6060

6070

6080;

6090 chklst

6100

6110

6120

6130

6140;

6150xproc

6160

beq

jmp

Ida

beq

compar

srchlp

($fb),y
.+6

cmp#":

line

rts

Ida

jmp

srchlp

#$06

error

57

;find procedure adr

;use .x as index

;update text pointer

;update line number

;find next command

;to interpreter loop

;find procedure

;start of basic

;as pointer

; update link pntr

;use ,y as index

;hi byte next line

;" end of text?

;yes/error number 5

;'proc not found'

;save next adr hi

;bump pointer

;get next adr lo

;save it

;pointto 1st byte

;get the byte

;cmp #proc

;no/try next line

;yes/get line #

;gethibyte

;save it

;getlobyte

;save it

;ldy #$04

;skip leading spaces

;get byte of name

;"space?

;get offset in .a

;updateourtxtptr

;to first byte of

procedure name

;set .y = -1

; update index

; byte of name

;end of exec name

;" end of exec name?

;check end procname

;" space?

; no/check proc name

;forget spaces

;cmp proc name

;match/keep checking

;no/find next proc

;" end procname?

;error number 6

AJ

FD

MC

OK

HG

Nl

DK

HE

LG

EJ

NP

HM

PI

CB

LA

AO

AD

LF

GD

AM

OE

NN

PA

OM

Al

HC

BE

HF

IK

LA

IA

JN

AN

JD

JE

OO

GJ

JB

IF

EG

EK

PB

ED

KA

OP

CF

BG

ID

BC

FP

CJ

BK

PK

CK

CB

6170;

6180 ;this routine may be omitted if

6190 ;tokens are used (see article).

6200;

6210chkwnd

6220

6230 chkwhl

6240

6250

6260

6270

6280

6290

6300;

6310 chkprc

6320

6330;

6340 chkx

6350

6360

6370

6380

6390

6400 xit

6410;

6420 name

6430

6440

6450;

Idx #$04 ;offset for wend

byte $2c ;skip next instr

Idx #$07 ;offset to while

Idy $7a ;copy text pointer

sty $fb ;to $fb/$fc

Idy $7b

sty $fc

Idy #$ff ;pre-loop index

bne chkx ;do the check

Idx #$ff ;offset for proc

Idy #$03 ;pre-loop

iny ;compare loop

inx ;bump pointer

Ida name.x ;get byte of name

beq xit ;" end of name?

cmp ($fb),y ;compare to text

beq chkx ;match, keep on

rts

.asc "proc" : .byte $00

.asc "w" : .byte$80,$00

.asc "while" : .byte$00

6460 ;error processor — prints error

6470 ;messages and passes control to

6480 ;rom error routines

6490;

6500 ;frank e digioia

6510;12/17/85

6520;

6530 error

6540

6550

6560

6570

6580

6590;

6600 errmsg

6610

6620;

6630u1msg

6640 w1 msg

6650 w2msg

6660 ncmsg

asl a ;multerr#by2

tax ;use as index

Ida errmsg,x ;get mesg address

sta $22

Ida errmsg + 1,x

jmp $a445 ;process error

.word u1msg,w1msg,w2msg

.word ncmsg,nemsg,npmsg,nocall

asc " until without repea" : .byte $d4

asc " wend without whil" : byte $c5

asc "while without wen" : .byte$c4

asc "missing logical expressio"

: .byte $ce

6670 nemsg

6680 npmsg

6690 nocall

6700;

6710.end

asc " no structure to exi" : .byte $d4

asc " procedure not foun": .byte $c4

asc "procwithoutcal" : .byte$cc

March 1987: Volume 7, Issue O5

Blazin' Forth Scott Ballantyne

New York, New York
Copyright (c) 1986, by Scott Ballantyne.

Everything you wanted to know about Forth (but were afraid to ask).

This article contains a description of how a threaded-code

Forth compiler works, with specific reference to Blazin' Forth.

You'll find this information useful if you are interested in the

particulars of how Forth compilers work, or are interested in

improving or changing one. Specifically, I wrote the following

as an aid to people who might be trying to understand the

source to Blazin' Forth, and it should be considered part of the

documentation for the source files to the system.

To understand this document, you will need a decent knowl

edge of Forth. An understanding of pointers won't hurt any

either.

You don't need to know machine language to understand this

article, but you will, of course, need it to understand the actual

source.

I have attempted to provide sample code in hi-level forth that

illustrates the routines involved. This code is similar, but not

exactly the same, as the actual machine level routines in the

actual compiler. In particular, you should not expect these

routines to actually work if you type them into a forth system in

an attempt to build a " Forth in Forth ". They are provided to

add clarify, and that is their only function.

What is a Virtual Machine?

A Virtual Machine is a creation, in software, of a piece of

hardware. Note that this hardware does not actually have to

exist - it is only within the last year that an actual hardware

Forth computer has been built. Forth has been around a lot

longer than that.

All high level languages are essentially virtual machines, since

they implement instructions which are not part of the actual

hardware CPU. As an example, Forth uses two stacks, a

parameter stack, and a return stack. On an actual hardware

Forth computer, the built-in machine language of the com

puter would contain instructions for manipulating each stack,

and the pointers to the bottom of each stack. On the 6502, there

is actually only one stack - one or the other of the Forth stacks

must be emulated using software routines. So you could say

that one stack is a hardware stack, and the other stack is a

Virtual stack.

As another example, the function call mechanism (how the

actual functions, procedures, or words are eventually caused to

execute) of a high level language is rarely directly supported by

hardware instructions. On the majority of CPU's in use on

personal computers today, the only real function call mecha-

nism implemented in the hardware is the subroutine call

(usually referred to as a JSR or CALL instruction). This instruc

tion usually only saves the return address automatically. Any

other information or any other method of invoking a subrou

tine must be done by software that, essentially, is a software (or

virtual) function call, as opposed to the hardware function call

and return. This is particularly true of threaded code Forth, and

the routine which implements this function call mechanism is

called NEXT. Understanding NEXT is the key to understanding

the functioning of the Forth compiler at its lowest level.

Introducing NEXT.

To understand how NEXT (and the various Forth machine

registers that NEXT uses to do its thing) works, let's first take a

quick look at the structure of a compiled higher level Forth

word. It is essentially a list of addresses:

: EXAMPLE W1 W2 W3 ;

(Standard Forth Header goes here)

Address of W1

Address of W2

Address of W3

Address of EXIT (;)

NEXT uses several auxiliary registers to keep track of where the

user program is. On a CPU with many registers, these would be

kept in a selected CPU register. On the 6502, which has only 4

user-accessible registers, these are maintained as virtual regis

ters (page zero locations are used for greater speed). One of

these virtual registers is called the Interpreter Pointer, or IP for

short, and it is responsible for keeping track of the progress of

the current program. When NEXT is entered, in the course of

running a program, the IP will be pointed at the word we want

to execute. NEXT does some stuff (to be described in a moment)

to cause this word to begin to execute, but before transferring

control to this word, it moves the IP ahead to the next word's

address, so it will know what word to run the next time it is

called.

Here is a sample execution of EXAMPLE, given above:

IP -* Address of W1 (NEXT executes W1, first moving IP

ahead to W2)

IP — Address of W2 (NEXT executes W2, first moving IP

ahead to W3)

IP — Address of W3 (NEXT executes W3, first moving IP

ahead to EXIT)

IP — Address of EXIT

The Transactor 58 Match 1987: Volume 7, Issue O5

I like to think of the IP as a kind of Address Slider, that can be

moved ahead or behind to direct the flow of execution of the

current program.

Ultimately, of course, NEXT must cause machine language

instructions to be executed, which essentially means changing

the hardware program counter of the CPU to point to the

appropriate batch of instructions to be executed. It does this

using another virtual register called the Current Word Pointer,

or W for short. To understand this portion of NEXT, we have to

clear up exactly what we mean by " Address of Word" in the

above discussion.

The individual members of the list that makes up a Forth

definition's executable body are the addresses of the code field

in the header of the compiled word. (These " addresses of code

fields" will be referred to as " the execution address" of a word

in the rest of this document. When the term " code field" is

used, the reference will be to the actual code field portion of a

dictionary header. Or, at least, that is how I am going to try to

use these terms.) This execution address (as you may recall)

itself stores an address which points to machine level (assem

bly language) instructions. It is these instructions that NEXT

causes the CPU to execute, by forcing the CPU's program

counter to the address stored at the execution address of that

word. So we have a couple of levels of indirection here:

The IP points to a location which holds the execution

address of a word. The execution address pointed to by

the location pointed to by the IP points to executable

machine language instructions.

So the full story of NEXT is as follows:

1) NEXT retrieves the value stored at the address in the IP.

2) It saves this value (the execution address of a word) in W

(the current word pointer).

3) It then moves the IP ahead to point at the next word to be

executed.

4) Finally, it forces the hardware program counter to the value

stored at the address in W, which causes machine level

instructions to execute.

Here is an example of the full execution of a forth word. Let's

make up some example addresses for our example execution:

Address Contents Description

$A000 ($0600) W1 's execution address is $A000, and

contains $0600.

$B000 ($0700) W2's execution address is $BOO0, and

contains $0700.

$C000 ($0800) W3's execution address is $C000, and

contains $0800.

$0900 ($0880) EXIT'S execution address is $0900, and

contains $0880.

And here is how the compiled EXAMPLE word from earlier

looks - let's say that the body of example starts at $E000:

Address Contents

$E000 ($A000)

$E002 ($B000)

$E004 ($C000)

$E006 ($0900)

Description

Compiled Wl

Compiled W2

Compiled W3

Compiled EXIT.

So, at the entry to NEXT, the IP will contain $E000.

NEXT fetches the address stored here, and stuffs it into W, so W

will now contain $A000, which is the execution address of Wl.

NEXT now increments the IP to point at the next word, so the

IP will contain $E002.

Finally, NEXT forces the program counter of the CPU to the

address stored in the address stored in W. So here's a quickie

quiz - what will be the address in the hardware program

counter?

(Answer: $0600 - which is the address of the machine language

code for Wl).

Here is a quick synopsis of the values stored in the IP, W, and

hardware PC for the execution of EXAMPLE, given above. It

might be a good idea to pause here, and try to run through the

rest of the example on your own, to check your understanding

(and the clarity of my explanation) of how NEXT functions.

Word-to-Execute

Wl

W2

W3

EXIT

IP

$E000

$E002

$E004

$E006

W

$A000

$B000

$C000

$0900

IP-AT-EX1T

$E002

$E004

$E006

$E008

PC

$0600

$0700

$0800

$0880

As a final aid to understanding, here is an implementation of

NEXT in hi-level Forth:

: NEXT IP 2 +! // Get address of IP

@ // Get value of IP (address of next word to

execute)

@ // Get that word's execution address

W ! // And stuff into the current word pointer.

2 IP +! //Move IP along to next word, for next time.

W @ // Get the execution address from W.

@ // Get the actual address of the code.

PC! // Force into hardware PC, so that it will

execute.

Now that you understand NEXT (I hope), and the role of the

Forth registers IP and W, you are in a good position to

understand the rest of the Forth system.

EXECUTE - or how Forth launches programs

You might be wondering at this point exactly how an applica

tion gets launched in the first place. Since NEXT uses the IP,

and assumes that the IP is pointing at a compiled execution

address, how do words that you just type in from the terminal

get executed? Obviously, words typed directly to the interpreter

The Transoctof 59 Match 1987: Volume 7, tome O5

from the terminal don't have an address which is valid for the

IP. The answer is the Forth word EXECUTE, which takes an

execution address as its argument. When you type a word to

the interpreter that it can find in the dictionary, it pushes the

execution address of the word onto the parameter stack, and

calls EXECUTE. Execute first saves this execution address in W,

and then forces the PC to the address stored in this execution

address, just like the last part of NEXT. Here is EXECUTE in

high level forth:

: EXECUTE (execution-address —)

W ! // save in W - then do last part of NEXT

W @ @ // get the address of the code to execute

PC ! // and execute it.

Note that EXECUTE does not call NEXT - it assumes the

EXECUTEd word will be doing that.

At this point you are no doubt wondering how the IP gets

initialized at all. It's not hard to understand, but let's put off a

detailed discussion of it until we talk about the DOCOLON and

EXIT routines, a little further on, but here is a brief hint: When

EXECUTE executes your word, there is already a valid value in

the IP - it is pointing somewhere inside INTERPRET. If the

word you are executing is a colon definition, then the first thing

it does is save the current value of the IP, and then changes it to

point to itself. A CODE definition won't change the IP at all

(unless the code you write is supposed to), and so the pointer to

inside INTERPRET just hangs around until the code definition

gets to its NEXT call, which causes the INTERPRET word to

resume. This will all become clearer when you understand

exactly how DOCOLON and EXIT work.

Incidentally, there is also an EXECUTE inside of the compiler

loop - it's there to handle IMMEDIATE definitions - the ones

that execute even when you are compiling. The logic here is

the same as above. The only difference is that the IP will be

pointing somewhere inside), instead of inside INTERPRET.

How Forth Does Branching

In our discussion of NEXT, above, we only talked about

sequential execution of words. What happens if we need to

branch around words (as we do in conditionals like IF) or cause

the same words to be executed repeatedly (as we do in DO

LOOP or BEGIN UNTIL constructs)?

The answer is actually very simple - we just change the IP to

point to the word we want to branch to, and then execute

NEXT. If you followed the above discussion on NEXT, it should

be obvious that this causes a complete diversion of the flow of

control for the current word.

When a branch is compiled, two things are done: a special

word that controls the branch is compiled, and the destination

address of the branch is compiled. For example:

: CR'S BEGIN CR AGAIN ;

This word will just print new lines, until a rude action is taken

by the operator to stop it. Here is how the compiled word looks

in memory.

(Standard Forth Header goes here)

$A000 CR (execution address of CR)

$A002 BRANCH (execution address of BRANCH)

$A004 $A000 (addressto BRANCH to)

$A006 EXIT (execution address of EXIT)

When CR'S executes, NEXT executes CR, and then it executes

BRANCH. BRANCH takes the address immediately following it

in memory, in this case $A000, and stuffs it into the IP.

BRANCH then JMP's to NEXT. Since the IP is once again

pointing at CR, (having been changed by BRANCH), NEXT

once again executes CR, and then BRANCH, which causes the

IP to be changed, and so on, forever.

BRANCH is an example of an unconditional branching primi

tive - it always branches, no matter what. 7BRANCH is a

conditional branching word - it will branch if the value on the

top of the stack is FALSE - otherwise, no branch takes place.

Here is an example of a word that would cause 7BRANCH to be

compiled:

: CR? (BOOLEAN —) IF CR THEN ;

CR? will obviously print a CR if the top of the stack is non-zero,

otherwise, nothing happens. Here is how CR? would look in

memory:

(Standard Forth Header)

$A000 9BRANCH (execution address of 7BRANCH)

$A002 $A006 (destination address of branch)

$A004 CR (execution address of CR)

$A006 EXIT (execution address of EXIT)

In this case, the execution would execute ?BRANCH first,

which tests the value of the top of the stack. Notice that two

things can happen here, BOTH of which will change the IP:

1) If the top of the stack is FALSE, ?BRANCH will force the IP

beyond the branch address, by adding two. This will obvi

ously cause CR to be executed.

2) If the top of the stack is TRUE, ?BRANCH will act exactly like

BRANCH, and stuff $A006 (the word immediately following

?BRANCH) into the IP, which will obviously just EXIT the

definition.

In any branching word, one or the other of these two things will

happen. All of the branching words are compiled in exactly this

way, with the branching primitive first, and the destination

address of the branch immediately following it in memory. The

reason that there are more branching primitives in Blazin'

Forth than just these two has more to do with entry and exit

conditions that it does with the actual branching mechanism.

For example, IF-THEN, IF-ELSE-THEN, BEGIN-UNTIL,

BEGIN-WHILE-REPEAT, BEGIN-AGAIN are all implemented

with combinations of ?BRANCH and BRANCH, since all of

these involve boolean testing of the top of the stack.

The Transactor 6O Match 1987: Volume 7, Issue O5

Things like DO-LOOP and 7DO-LOOP and DO-+ LOOP, etc.

have additional things to do, like move the loop parameters to

the return stack, add or subtract the loop index, test the loop

index, and clean up the return stack on the loop exit. But the

actual mechanics of branching are exactly the same, only the

entry/exit conditions differ from word to word. Among other

advantages, it makes the compiler code much simpler, since

there are fewer 'special cases' to check for.

Once again, as an aid to understanding, here are sample

implementations of BRANCH and 7BRANCH in hi-level forth.

As you read these, keep in mind that when BRANCH or

7BRANCH is executing, the IP will be pointing at the branch

address - since it gets incremented before the execution of the

next word by NEXT:

: BRANCH (branch unconditionally STACK: —)

IP @ // Get the value of IP, ordinarily the address

// of the code field of the next word to

// execute. In this case, it is a branch address.

IP @ // Get the value stored at the address - which

// is the destination branch value.

IP ! // Change the IP to the destination address.

NEXT // and execute.

: 7BRANCH (conditional branch STACK: BOOLEAN —)

0 = IF // test top of stack - if FALSE (equal

to zero)

BRANCH // just execute BRANCH

ELSE // value was TRUE, don't branch.

2 IP +! // move IP over branch address, to

next word.

THEN

NEXT // and execute.

How Forth Does Nesting - DOCOLON and EXIT

In the above examples there was never any question of remem

bering where we came from - the course of execution of the

word was changed, and we never really cared to remember

what called what. But what about having one colon definition

calling another one? How does Forth remember where to come

back to when it has finished the called definition?

This is not particularly difficult either. Once again, the IP and

W, the current word pointer, play central roles. In what follows,

remember that W points to the actual address of the word we

want to execute, while the IP points to a memory location

which contains the address of the word.

What happens is this: NEXT starts to execute a colon definition.

All colon definitions have the same address stored at their

execution address, which is the address of a machine language

routine called DOCOLON or NEST. It is this routine that is

responsible for saving the current execution environment.

DOCOLON first pushes the current value of the IP (which holds

the address of the word we want to return to) onto the return

stack. At this point, W will be holding the execution address of

the new word to execute. We want to execute the body of this

word, so DOCOLON now adds two to the value in W, which

makes it point to the BODY of this definition, and stuffs it into

the IP. DOCOLON now calls NEXT, which causes the new word

to execute.

Eventually, NEXT will execute EXIT, which is the word com

piled by ; . EXIT'S job is to restore the previous execution

environment, and it does this by very simply by pulling the top

of the return stack, and stuffing it into the IP. It then calls NEXT,

which causes the calling word to resume execution as though

nothing had happened.

Here is an example:

: FOOBAR CR ;

:COLON-CALL FOOBAR ;

Compiled view of the above:

(Header for FOOBAR)

$A000 DOCOLON (Code field portion of header)

$A002 CR (Body)

$A004 EXIT

(Header for COLON-CALL)

$B000 DOCOLON (Code field portion of header)

$B002 FOOBAR (Body)

$B004 EXIT

And here is a simplified execution of COLON-CALL.

Word-to-Execute

FOOBAR

DOCOLON

CR

EXIT

EXIT (in CALL

-COLON)

IP

$B002

$B004

$A002

$A004

$B004

W

$A000

$A000

CR's EA

EXIT EA

EXIT EA

IP-AT-

EXIT

$B004

$A002

$A004

$B004

RETURN-

STACK

xxxxx

$B004

$B004

xxxxx

(NOTE: EA stands for Execution Address.)

Once again, here is a sample implementation in higher level

forth, of DOCOLON and EXIT:

DOCOLON IP @

>R

W@

2 +

IP!

// get current value of IP

// Save it on return stack

// Get execution addr of current word.

// Convert to Address of body.

// Change IP

NEXT // Execute new word

EXIT R< // Get old IP (saved by DOCOLON)

IP! // Restore

NEXT // Resume execution.

The Transactor 61 Moroh 1987: Volume 7, tome O5

Since the most recent caller is always at the top of the return

stack, the forth system can find its way through any number of

levels of nesting, no matter how deep. There is no theoretical

limit to the depth of nesting of forth words, although there is

the practical limit of the size of the return stack.

So how deeply can one nest definitions in Blazin' Forth? Well,

the obvious answer is around 123 levels, since there is an

entire page of memory allocated for the return stack. It is

equally obvious that certain actions can modify this, such as

pushing literals to the return stack in your definitions, or using

DO LOOPS, since DO LOOPS store the loop control informa

tion on the return stack.

Less obviously, you should note that CODE definitions do not

cause the above nesting to occur. The majority of the primitives

in Blazin' Forth are CODE definitions, and the desire to maxi

mize the level of nesting was one of the design considerations

that led to this decision.

In practice, I have never even approached the theoretical

maximum level for nesting, much less had a crash that was

traceable to return stack overflow, even when using highly

recursive words.

Forth's DOES> construct

The implementation of the DOES> feature of Forth is usually

one of the hardest for people to understand. The thing to

remember when we get down to the actual details of the

implementation is exactly how the current word pointer W

works. When a word is executing, W will contain the execution

address of that word. Stored at the address in W is the actual

address of the code that is executing. In Forth, we would say

that W @ is the execution address of the word, and W @ @ is

the address of the code. Keeping this in mind will help you to

understand what is going on.

First, a quick refresher on what DOES> does. DOES> is

possibly the most unique feature of forth, since it allows you to

extend the actual Forth compiler to compile new types of

words. DOES> words are compiler words, and as such, they

are used to create new words to execute. To help keep the

discussion clear, lets call words which contain DOES> parent

words, and words which are created by DOES> words, child

words.

When a parent word executes, it creates a dictionary entry for

the child. When the child executes, it leaves the address of its

body on the parameter stack, and then executes the hi-level

forth words after DOES> in the parent word. A common way to

teach beginners about DOES> is to redefine one of the Forth

primitives, such as CONSTANT, as a DOES> word. I'll do the

same thing here, but I will also try to explain exactly how these

words do their thing on an implementation level.

: CONSTANT CREATE, DOES> @ ;

Here we have our CONSTANT definition. When CONSTANT

(the parent) executes, it will create a dictionary entry with a

standard header (that's the function of the CREATE in our

definition). It then allocates two bytes of parameter space, and

compiles the value on the top of the stack into the dictionary

(that's the function of the ',' in our definition). The words

following the DOES> don't do anything when CONSTANT

executes - they execute when the child word (the word created

by CONSTANT) executes. When the child executes, it will leave

the address of its body on the stack, and then the words

following the DOES> will be executed. In this example, there is

only the @ - which will replace the address of the BODY with

the value stored there, just like CONSTANT should, and EXIT,

which will return us to wherever we came from. Thus:

10 CONSTANT TEN

creates a dictionary entry for the name TEN, and a 2 byte

parameter field for the value 10, which CONSTANT also stuffs

there. Executing

TEN

will first leave the address of TEN's body on the stack, and then

the words following DOES> (in the parent word CONSTANT)

will execute, which result in the value 10 being left.

Now for the implementation details. Here is how our definition

of CONSTANT would look in the dictionary:

(Preceded, as always, with the standard forth header)

$A000 DOCOL (codefield portion of header)

$A002 CREATE (execution address)

$A004 , (execution address)

$A006 (;CODE) (execution address)

$A008 JMP DODOES (actual machine lang. instructions)

$A00B @ (execution address)

$A00D EXIT (execution address)

And here is how the definition of TEN would look:

(Standard dictionary header goes here)

$B000 $A008 (code field portion of header)

$B002 10 (value stored in parameter field)

Ok, here is how it all sorts out. Remember that DOES> is

defined as an IMMEDIATE word, and so it executes when you

are compiling. The mysterious portion of the CONSTANT

definition, above - the (;CODE) and the JMP DODOES are

written into the dictionary whenever DOES> executes.

(;CODE) is an unusual primitive. When it executes, it over

writes the current contents of the code field of the last word

added to the dictionary with the address of the machine code

which follows it in the definition currently executing. In our

example above, it will cause all words created with CONSTANT

to have a code field whose value is $A008 - the address of the

JMP instruction in CONSTANT. This will obviously cause the

JMP DODOES instruction to be executed each time a word

created by CONSTANT is executed.

DODOES is the routine that does the actual magic. It must do

three things:

The Transactor 62 Match 1987: Volume 7, Issue 05

1) It must save the current value of the IP Qust like DOCOLON)

so Forth knows how to get back to the caller.

2) It must push the address of the child's body to the stack.

3) It must execute the words following the JMP DODOES in the

parent.

Using TEN as an example, DODOES must push the value

$B002 to the parameter stack, and it must then cause the words

starting at $A00B to be executed.

Here is how it's done in Blazin' Forth:

When TEN executes, it should be clear that the value stored in

the current word pointer (W) is $B000, which is the execution

address of TEN. The IP will be pointing somewhere important,

so DODOES first saves it, which it does exactly like DOCOLON,

by pushing it onto the return stack.

Once the IP has been safely tucked away, we have two tasks to

perform. We must push the address of the parameter field of

TEN to the stack, and we must then cause the hi-level forth

words in the DOES> part of CONSTANT to execute. We can use

the value of W to do both these things.

Remember that W, the current word pointer, is currently

pointing at the execution address of TEN, and so contains

$B000. So it is a simple matter to calculate the address of the

body of 10 - we just add two to the current value of W (which

gives us $B002), and push it to the parameter stack.

Now, the value stored at $B000 is $A008, which is the address

of the JMP DODOES instruction in CONSTANT. We want to

execute the hi-level forth words beyond this instruction - a

piece of cake. We simply add 3 (the size of an absolute JMP

instruction on the 6502) to the value stored at the execution

address of the child word TEN, and stuff it into the IP. Once this

has been done, all we need to do is call NEXT, which takes care

of everything else, since we just pointed the IP at the proper

spot.

Since we saved the previous value of the IP first off, when the

EXIT at the end of the DOES> stuff is executed, we get returned

to whatever called us.

Once again, here is an example of DODOES in hi-level forth:

: DODOES IP @ >R // Save current IP on return stack

W @ 2 + // Leave address of parameter field on

stack

W@ @ // Get address of JMP DODOES in

struction

3 + // Add in size of JMP absolute instruc

tion

IP ! // Set as new execution address

NEXT //and execute it.

That wasn't so hard, was it?

LITERALS, CONSTANTS, and VARIABLES

In this last section, I talk about how Blazin' Forth handles

compiled literals, and how the words defined by CONSTANT,

VARIABLE and USER are implemented.

There are two kinds of literals recognized by Forth, numeric

and string. Numeric literals are compiled automagically, by the

compiler loop, while string literals are compiled by ." (usually).

Numeric literals first. As you probably remember, when you

compile a definition, Forth attempts to look up each word in

the definition in the dictionary. If it finds the word, then it

compiles the execution address of the word into the dictionary

(unless the word is defined IMMEDIATE, of course!). If the word

is not found, then it attempts to convert the string of characters

you just fed it into a number. If it succeeds, then it compiles a

special primitive called (LIT) into the dictionary, and immedi

ately past that, it places the value of your literal. (If it can't

convert it to a number, then it issues the famous " NOT IN

CURRENT SEARCH ORDER" message.) Here is an example:

: BIG 1000;

and here is how it looks in the dictionary:

(standard forth header)

$A000 (LIT) (startof BIG's BODY)

$A002 1000 (The value of your literal)

$A004 EXIT (EXIT - Tadah!)

(LIT)'s function is to place the value following it in memory on

the top of the parameter stack, and to move the IP over the

literal value, to the next valid forth word. It's pretty simple in

practice, if you remember that if (LIT) is being executed, the IP

must be pointing at the address of the literal, since it was

incremented by NEXT. Here it is as an example FORTH

definition:

: (LIT) (— 16bit)

IP @ @ // Get value of literal to stack.

2 IP +! // Move IP past literal value, to next valid

word.

NEXT //and call NEXT

Blazin' Forth has a memory saving feature for values that will

fit in one byte. For these values another word, called CLIT is

compiled, instead of (LIT). It works very similarly to (LIT):

: CLIT (— byte-value)

IP @ C@ // get the byte to the parameter stack

1 IP +! // move over byte literal to next valid word.

NEXT // and execute next

The case of string literals is very similar. ." is an immediate

word which first compiles (."). It then searches the input

stream for an ending ", and moves everything before this final

quote into the dictionary, with a leading count byte, as is

The Transactor 63 March 1987: Volume 7, Issue O5

normal for Forth. It also moves the pointers to the input stream

past the string, so the interpreter won't try to evaluate it. Here is

an example:

: GREETING ." HELLO" ;

And here is how GREETING would look in memory:

(Header)

$A000 (.") (primitive to print the following in-line

string)

$A002 5 (the length of the string)

$A003 H E L L 0 (The chars are stored here, 1 per byte)

$A008 EXIT

The (.") primitive is one of the few low level words in Blazin'

Forth that is actually written in Forth (i.e. it's a colon defini

tion). Since (.") is a colon definition, this means that when (.")

is called, DOCOLON will save the current value of the IP on the

return stack. But, by a pretty stroke of fate, this will be exactly

the address of the string following (."). To get a little more

concrete about it:

When Greeting executes, the IP will eventually contain the

value $AOO0. This will cause NEXT to execute (."), but NEXT

will first, as always, bump the IP to $A002 (the start of the in

line string). When (.") executes, since it is a colon definition,

DOCOLON will push $A002 (the current IP) to the return stack,

and then enter the definition. So at entry, we have the address

of the string on the return stack. All we have to do is retrieve

the address, use COUNT and TYPE to display it, and adjust the

return address on the stack before we exit. Once the return

address has been adjusted and placed back on the stack, EXIT

will return us to the word past the end of the in-line string.

Here is (."), just as it appears in the Blazin' Forth:

:(•■')(—)
R@ (get string address from return stack)

COUNT (get the count byte, adjust address)

DUP 1 + (total length of string, including count byte)

R> + (get address, move past end of string)

>R (and restore, for EXIT)

TYPE (the string)

; (and return, using adjusted address as re

turn)

So much for literals.

Constants and variables' (including USER variables) run-time

action is determined by the routines pointed to by their code

fields. There is no special primitives compiled, as there is with

the literals.

Here is a short run-down of the actions of each: Constants

place the value stored in their body on the parameter stack.

Variables place the address of their body on the parameter

stack. User variables place the address of the associated varia

ble on the stack. The actual value stored in the parameter field

is an offset from a base address.

Armed with your present knowledge of the IP and W, under

standing these definitions should be a snap. They all work very

much the same. We start with variable, since it's the simplest.

When the code field of a variable (or constant or USER) is

executed, W will contain the execution address (the address of

the code field) of the word in question. So it's easy: take the

value in W, add two, and leave that value on the stack. Here is a

hi-level definition of DOVARIABLE:

:DOVARIABLE (— address)

W @ // Get the execution address of this

variable

2 + // Add two to get the body.

NEXT // and that's it!

Constants are very similar to variables - the only difference is

the extra step required to retrieve the value in the constants

body. Here is a hi-level definition of DOCONSTANT:

: DOCONSTANT (— value)

W @ 2 + // As in variable - get the address of

the body.

@ //Get the value stored there.

NEXT

USER variables are very similar to constants. The only addition

here is that we add the base address of the user area to the

value stored in the body of the user variable.

: DOUSER (— address)

W @ // get execution address of this user

variable

2 + C@ // get offset - we only use byte offsets

in Blazin' Forth.

UP@ //get base address of user area

+ // add to offset to get actual address of

variable

NEXT

Here is a question for those who want to test their general

comprehension of the topics discussed here. Why can't we use

the IP instead of W in the definitions of VARIABLE, CON

STANT, and USER ?

Answer: Aside from making the definition more complex, it

would be impossible to retrieve the addresses of variables, or

the values of constants, when we are typing their names

directly into the interpreter from the terminal! Remember that

the interpreter launches programs by stuffing the execution

address of a word into W. In the following situation, there is no

way to get from the address of the IP to the address of the

parameter field:

VARIABLE BLETCH

BLETCH . XXXX

since the IP is still pointing somewhere inside INTERPRET. The

only pointer that is valid to code such as DOVARIABLE in all

cases is W.

The Transactor 64 March 1987: Volume 7, Issue O5

Programmer's Aid

For The Commodore 128

Joseph F. Caffrey

Larksville, PA

Find, Replace, and List Scrolling for 40 or 80 columns.

What more could one ask for than BASIC 7.0? When the initial

thrill of playing with the new machine wears off, one notices that

find and replace commands would be nice, together with a means

to browse through the long listings you can create with all that

available memory.

The program presented today fills these needs. The job of bidirec

tional list scrolling has been simplified compared to the C64, since

Basic now contains a callable subroutine at $5123 which will list a

single program line. Furthermore, we have a new system vector at

$033C which can be used to intercept keystrokes before they are

entered into the buffer. This vector is used by the program to take

special action when a cursor up is entered with the cursor at the

top left of the screen window, or a cursor down entered from the

bottom left of the screen window. When this happens, instead of

being stored in the buffer, the keystroke is suppressed, the screen

is opened as a logical file, and the active screen area searched for a

Basic line number at the left of a logical line, starting from the

current cursor position. If a valid line number is found, a line is

inserted on the screen and the next (or previous, if at the top of the

window) line is listed to the screen. The cursor is then restored to

the start of the new line, so holding down either cursor down or up

causes scrolling through the listing.

If no valid line number is found after searching the whole active

screen, the cursor move is simply executed.

Given the possibilities of various window shapes, 40 or 80 column

output, and the inaccessibility of the 80 column chip memory in

the memory map, cursor positioning by brute force would be a

huge undertaking, so the kernal PRIMM subroutine, which prints

text following its invocation up to a $00 byte, is used to send escape

sequences to move the cursor about the screen. The code which

determines which line to list next allows for the special cases of

having found the final or initial line of the current program during

the screen search by inserting two blank lines and "rolling over" to

list the initial or final line as required.

After the initial installation, the list scrolling feature is transparent

- it just happens with no action by the user - in fact, it even

happens if you leave Basic for the monitor, which is a bit discon

certing, but doesn't appear to hurt anything!

The find and replace functions require creation of new Basic

commands. The technique used here is patterned after Brian

Munshaw's error wedge for the C64 (Transactor, Vol. 5, No. 6). The

code traps a syntax error produced by a 'commercial at' (@)

symbol. Rather than use literal phrases after the '@', I chose to

follow it with a valid Basic 7.0 keyword. This allows the new

command parser to check the single character following the '@' for

dispatching purposes. I admit there are probably more elegant

ways (there are a few more new vectors in page 3 of RAM) to do

this, but I was anxious to get the code running.

Syntactically, the result is as follows. For "find", the command is:

©GET " text to be found"

This may be followed by a line number range, if desired (no

comma, just the range immediately after the closing delimiter).

Either single or double quotes may be used for the delimiters, with

double quotes resulting in a search for the literal, nontokenized

text enclosed therein.

The syntax for the replace function is similar:

@IF "text to change" THEN " replacement text"

Again, a line number range may follow, and single or double

quotes may be used as delimiters.

The @GET command lists all lines containing the search text to

the screen. @IF replaces all occurrences with the replacement

string specified, and lists the changed line to the screen. Search

and replace strings may be up to 32 characters long.

Because of the way the input line is tokenized, you can find REM's

and DATA'S, but changing them is difficult. If you need to specify a

line number range after such a command, you can use the

Commodore + Q graphic between the first and last line numbers to

represent a tokenized minus (-) sign.

The replacement posed several problems. My first attempts in

volved temporarily resetting some system vectors, listing the

changed line to the screen, poking a carriage return to the key

buffer, letting Basic do the work of entry, then returning to my

code. Unfortunately, Basic line entry involves calling a subroutine

which resets the stack pointer, which confuses matters greatly.

Replacing JSR's by JMP's and even defining a new page for the

stack got me closer, but at that point I looked at the size to which

the code had grown and decided to move the memory around

myself, since it might be shorter and certainly faster than de-

tokenizing and re-tokenizing a line which you had in tokenized

form to begin with.

The Transactor 65 March 1987: Volume 7, Issue O5

The resulting move routines do some tortuous arithmetic at their

beginnings in order to set up pointers for a "let 'er rip" loop to effect

the actual move. For search and replace strings of equal lengths

the move routines are skipped, and if the replace string is longer

than the search, checks are performed for creation of a line which

is too long and (although I don't think it will happen soon)

exhaustion of available memory.

The method of patching into Basic deserves some comment. The

new capabilities of the 128 bring new responsibilities for ML

programmers. Now in addition to all the old caveat's (don't hurt

the stack, don't use some other routine's memory, don't mess up a

register that some other routine is going to use), you must always

be conscious of the current memory configuration the processor

sees. As the Basic interpreter does its thing, you can only be sure

that the first four pages of bank 0 RAM will always be visible to the

processor. This is the reason for the patch code written to $03E4.

The new error vector jumps to here, and we then make sure that

the processor sees bank 0 at $14A0 before jumping there.

Also, the routines which read from bank 0 (READFM61 = $42EC,

READFM7O=$42F1) leave the machine in a peculiar state. The

ROM's are re-enabled, but the processor sees the character genera

tor at $D000 instead of the I/O chips - this can wreak havoc with

kernal routines, so Basic contains a number of six byte long code

fragments which set up configuration 15 (which includes the I/O

chips) and jump to kernal routines. We make use of two of these

(BPRIMM = $9281, BCHROUT=$9269).

I've given it a lot of thought, but still can't see why you want the

character generator in the processor's address space in the first

place. Maybe the firmware was written by a committee?

As they stand, the @GET and @IF routines appear bug-free.

Perhaps with syntax that ugly, one doesn't need bugs. I think I

caught the last bug in the scroller a few days ago. It's really

necessary to cancel quote mode after each list. Otherwise listing a

line with an odd number of quotes on it results in a gentle crash,

with the cursor bouncing back and forth between the first and

second characters on the line. The interrupt is set at the start of the

scroller to eliminate re-entry problems, which otherwise will insert

blank lines randomly into your scrolling listing.

I have found two cases of aberrant behavior. When used with the

40 column screen, scrolling will present the first character of each

line listed in reverse video. Never having mastered the vagaries of

the software cursor on the 64,1 leave this for others to fix. Besides,

if it's a long program, you want to be on the 80 column screen

anyway. Also, after sitting with my finger on the cursor down key

for minutes at a time scrolling through a long listing, the routine

has sometimes failed by listing an incorrect line number and

proceeding to list there from. Fixes are welcome!

The routines are linked to Basic by a:

SYSDEC(1300)

Since a run/stop + restore sequence does not reset $0300, find and

replace are there for good. However the $033C vector is reset. To

allow scrolling to survive a restore sequence, the new error

handler takes a few microseconds to rewrite that vector each time

it is called, including, of course, immediately after the restore

sequence.

C128 Progaid: BASIC Loader

FM

GJ

JB

PK

HB

GN

IJ

JH

GA

AJ

OJ

FL

Nl

Kl

AG

Jl

PL

EF

KK

DJ

JN

LK

FJ

IO

EF

LA

LE

CP

CJ

OA

DE

GP

NJ

K!

MF

MG

DD

IK

FM

OL

GL

FO

FJ

JK

MM

OE

HG

DA

HC

NM

HI

KM

GC

DM

CE

ND

MF

LJ

1170 data 146, 145,

1180 data 32, 113,

1190 data 32, 100,

1200 data 134,

1000 rem save"0:progaid.ldr" ,8

1010 rem ** by Joseph caffrey larksville, pa

1020 rem ** scroll, find and replace for the d 28

1030 for j =4864 to 5887: read x: poke j,x:

ch = ch + x: next

1040 if ch<>112895 then print" checksum

error" : stop

1050 print " sys(4864): rem to enable": end

1060:

1070 data 76,219, 22, 36,127, 48, 9,120

1080data 72, 41,127,201, 17,240, 5,104

1090data 88, 76,173,198,165, 46,205, 17

1100 data 18,208, 9,166, 45,232,232,236

1110 data 16, 18,240,235,104, 48,103,165

1120 data 228, 197,235,208, 6, 165,230, 197

1130 data 236, 240, 4,169, 17,208,217, 32

1140 data 104, 20, 32, 4, 20, 32, 19, 20

1150 data 144, 22,165,229,197,235,208, 6

1160 data 32,113, 20, 76, 51, 19, 32,129

27, 74, 0, 76, 61, 19

20,169, 17, 32,105,146

80,144,206, 32,209, 22

97,133, 98,160, 1, 32,236

1210 data 66,208, 12, 32,129,146, 13, 13

1220 data 0,166, 45,165, 46,208,233, 32

1230 data 130, 20,169, 0,133,244, 32,129

1240data146, 27, 74, 0, 88, 96,165,229

1250 data 197, 235, 208, 6,165, 230, 197, 236

1260 data 240, 4,169,145,208,151, 32,104

1270data 20, 32, 4, 20, 32, 19, 20,144

1280 data 20, 165, 228, 197, 235, 208, 6,

1290 data 113, 20, 76,154, 19,169,141,

1300 data 105, 146, 76,164, 19, 32,113,

1310 data 32,100, 80,144,213, 32,143,

1320 data 166, 97,134,250,165, 98,133,251

1330 data 197, 46,208, 26,228, 45,208, 22

1340 data 56, 173, 16, 18,233,

1350 data 17, 18,233,

1360 data 32, 143, 20,

1370data165, 46,134, 97,133, 98, 32,209

1380 data 22, 197,251,208,245,228,250,208

1390 data 241, 76,127, 19,169,126,162, 3

1400 data 32,186,255, 32,192,255,162,126

1410data 76,198,255, 32, 92, 20,176, 67

41, 15,133, 22,

92, 20,144,

72, 6, 22,

32

32

20

20

2, 170, 173

0, 134,250, 133,251

32,143, 20,166, 45

1420 data

1430 data

1440 data

1450 data 166,

1460 data 176,

32,

15,

22,164, 23,

32,

1470 data 138, 101,

69,

2,

38,

6,

38,

22,

0,

24,

23,

22,

23,

152,

133,

96,

176,

38,

176,

101,

23

41

42

23

26

23

6, 22,

22,133,

1480data133, 23,176, 14,104,101, 22,133

1490 data 22,169, 0,101, 23,133, 23,144

1500 data 199, 36,104, 96, 32,228,255,201

1510 data 48,144, 3,201, 58, 96, 56, 96

1520 data 165, 236, 133, 250, 165, 235, 133, 251

1530data 96,169,126, 32,195,255, 32,204

1540 data 255, 165, 250, 133, 236, 165, 251, 133

1550 data 235, 96,160, 2, 32,236, 66,170

1560 data 200, 32,236, 66, 76, 35, 81, 32

1570 data 129,146, 27, 87, 0, 96, 72,169

in©
66 March 1987: Volume 7, Issue O5

JD

KC

EO

IE

BM

OF

DJ

CG

Gl

Cl

KP

FL

CE

EL

CO

MN

DP

JP

KD

BE

OP

CJ

LD

DA

GK

LL

LJ

GH

01

FM

ME

KP

NC

BH

FO

ON

PM

HJ

CB

PO

DP

EB

FA

LD

AA

KA

AO

MP

LH

HC

AE

FH

LC

NL

HL

KO

OJ

NO

FK

CN

EF

OK

1580 data 0,141,

1590 data 32,241,

1600 data 64,208,

1610 data 221, 207,

1620 data 48, 16,

1630 data 210, 20,

1640 data 128, 3,

1650 data 139, 212,

1660 data 241, 201,

1670 data 233, 133,

1680 data 132, 195,

1690 data 36, 127,

1700 data 167, 208,

1710 data 208, 200,

1720 data 32,152,

1730 data 132, 21,

1740 data 160, 3,

1750 data 240, 39,

1760 data 228, 195,

1770 data 32, 195,

1780 data 20, 32,

1790 data 197, 240,

1800 data 209, 32,

1810 data 32, 175,

1820 data 32, 128,

1830 data 177, 61,

1840 data 18,201,

1850 data 232, 200,

1860 data 76, 63,

1870 data 162, 11,

1880 data 133, 61,

1890 data 76,128,

1900 data 145, 91,

1910 data 230, 90,

1920 data 255, 96,

1930 data 91, 136,

1940 data 6,198,

1950 data 3,255,

1960 data 64, 8,

1970 data 165, 98,

1980 data 18, 56,

1990 data 18,229,

2000 data 40, 16,

2010 data 200,132,

2020 data 133, 89,

2030 data 32, 85,

2040 data 22,165,

2050 data 168,162,

2060 data 11,145,

2070 data 245, 132,

2080 data 129, 22,

2090 data 165, 89,

2100 data 90, 101,

2110 data 165, 89,

2120 data 233, 0,

2130 data 170, 21,

2140 data 101, 89,

2150 data 144, 2,

2160 data 198, 92,

2170 data 18,141,

2180 data 18,165,

2190 data 96, 24,

0,255,104, 76,160, 20

22,224, 11,208, 37,201

31, 32,128, 3,162, 1

20,240, 5,202, 16,248

104,104,138, 10,170,189

72,189,209, 20, 72, 76

162, 11, 76, 63, 77,161

20,212, 20,134,197,240

34,240, 4,201, 39,208

196,162, 0, 32, 88, 21

165,197,240, 33,162, 34

48,216, 32,132, 21,201

207, 32,128, 3,197,196

162, 32, 32, 88, 21,132

56,229,195,133, 94, 32

32,251, 94, 76, 80, 21

162, 0,200, 32,236, 66

221, 0, 11,208,243,232

208,240,165,197,240, 6

21, 32, 79, 79, 32,130

152, 85, 32,181, 75,165

6,165, 34,168,136,208

209, 22,134, 97,133, 98

22,144,195, 76,134, 3

3,160, 0,142, 1,255

142, 3,255,197,196,240

0,240, 19,157, 0, 11

192, 31,208,231,162, 23

77,192, 0,240, 1, 96

208,244, 24,152,101, 61

165, 62,105, 0,133, 62

3,141, 1,255,177, 89

200, 208, 249, 202, 240, 6

230, 92,208,240,141, 3

142, 1,255,177, 89,145

192,255,208,247,202,240

90,198, 92,208,238,141

96,132, 34,165, 94,240

152, 24,101, 97,133, 89

105, 0, 133, 90, 173, 16

229, 89,133, 91,173, 17

90,133, 92,166, 92,232

60,165, 91, 73,255,168

91,165, 89, 56,229, 91

165, 90,233, 0,133, 90

22, 32,147, 21, 32,107

34, 56,229,195,105, 0

0,142, 1,255,189, 32

97,200,232,228, 32,208

34,142, 3,255, 96, 32

32,159, 22,164, 91,136

24,101, 91,133, 89,165

92,133, 90,132, 91, 56

229, 91,133, 89,165, 90

133, 90, 32, 85, 22, 32

76, 6, 22, 24,165, 94

133, 91,165, 90,133, 92

230, 92,165, 94, 16, 2

96, 24,165, 94,109, 16

16, 18,144, 3,238, 17

94, 16, 3,206, 17, 18

165, 94,109, 16, 18,172

OM

MF

FA

AA

OE

KD

AE

HA

Gl

OA

Cl

CF

NA

CB

LI

2200

2210

data 17,

data 240,

2220 data 144,

2230

2240

2250

2260 <

2270 <

data 0,

data 94,

data 1,

data 23,

data 144,

2280 data 197,

2290 (

2300 (

data 96,

data 76,

2310 data 20,

2320 data 228,

2330 data 3,

2340 data 169,

PAL Source Listing

MK

AP

MP

LH

BO

ND

KJ

MM

OK

BO

IL

Kl

HA

JJ

GG

BD

OE

EN

AH

CD

GC

LF

KD

EN

EH

CE

MF

HN
PI

OH

EB

PD

DO

LN

F3

LL

KD

BA

Bi

PD

JK

GC

CH

AL

Ml

BE

HB

KN

PG

GO

CF

KD

GG

ON

LO

E

cc

HP

JK

JL

LN

KA

ED

OF

ON

MF
r-a
Ur

EN

II.

DM

DO

L?

AE

OK

1000 rem save' O:proqaid.pal'

18, 144, 1,200,

3,176, 6, 96,

250,162, 16, 76,

32,236, 66, 56,

176, 1, 96, 76,

32,236, 66,208,

160, 3, 32,236,

14,208, 12,136,

22,144, 4,240,

160, 0, 32,236,

236, 66,120,162,

157,228, 3,202,

141, 0, 3,169,

120, 72, 169, 3,

19,141, 61, 3,

8

1010 rem c-128 scroll, find, replace

1020 rem by Joseph caffrey, larksville, pa

1030 open 8,8,1,' O:progaid.obj'

1040sys700

1050 .opt 08

1060;

1070 constants

1080;

1090 bitins

HOOcrsdwn

1110crsup

1120 escape

1130wdgchr

1140 shiftrtn

1150 synerr

= $24

= 17

;opcode for bit zp instruction

;ascii characters

crsdwn + 128

= 27

$0d+128

11

1160nomemory 16

1170dironly = 34

1180 Ingstrng = 23

1190thentoken= $a7

1200;

1210 ;zero page locations used

1220;

1230linenum

1240replen

1250 pickup

1260 sob

1270 txtptr

1280 source

1290dest

1300 temp

. $16

= $20

= $22

= $2d

= $3d

= $59

source+ 2

= dest + 2

;basic error It's

;basic token for 'then'

;zp storage for line #

;temp string area

;holds start addr of workspace

;in chrget routine

1310 shift = temp + 1

1320 ;above zp loc's in fp math area

1330 ;will be used for mem moves

1340linkpntr

1350runmode

1360srchlen

1370 delimit

1380 flag

1390botline

1400 topline

1410leftedge

1420riteedge

1430 xpos

1440 ypos

1450qtsw

1460;aboveva

1470 ;of physiCc

1480xsave

1490ysave

1500;

. $61

= $7f

= $c3

= $C4

= $c5

= $e4

= $e5

= $e6

= $e7

. Sec

= $eb

= $f4

;for searching thru basic prgrm

0 if direct, 128 if running

used by tape load

tape load/save

screen editor variabes

;cursor position

;quote swtch used by screen ed

s relative to top left

screen- not window!

= $fa

= $fb ;unused by system

1510 ;system vectors and pointers

1520;

1530basbuf

1540 ierror

1550ikeystr

1560chrget

1570chrgot

1580 patch

1590eob

1600baslim

1610 casbuf

1620srchbuf

1630repbuf

1640;

= $0200

= $0300

= $033c

= $0380

= $0386

■ $03e4

= $1210

= $1212

= $0b00

casbuf

;basic input buffer

;vector for store key routine

free space in common ram

holds nd addr of program

end of workspace

c128 cassette buffer

use cassette buffe

= casbuf+ $20

1650 ;system rom locations
ififin ■IDOU ,

1670keystr

1680 mmu

1690 setlts

1700 open

1710 close

1720chkin

1730clrchn

$c6ad

= SffOO

= $ffba

= $ffcO

= $ffc3

= $ffc6

= Sffcc

;old key store routine

;memory management unit

204,

205

63,

229,

118,

3,

66,

32,

1,

66,

10,

16,

3,

141,

104,

19,
18,

77,

97,

21,

56,

197,

236,

36,

170,

189,

247,

141,

60,

88,

18

18

160

101

160

176

23

66

24

200

150

169

1

3

96

The Transactor 67 March 1987: Volume 7, toue O5

CL

ME

MC

AG

FB

HF

DF

JD

AD

NA

LB

OM

!J

MF

OB

HE

LB

MO

BO

AA

JK

CM

BE

EL

GJ

KC

01

CG

OD

NM

JN

BD

OH

BJ

MP

GA

DL

PD

DK

BM

NJ

01

PF

HN

KJ

FA

EF

EL

PC

Ml

HD

ID

FC

HD

GN

JG

PI

Bl

PN

AE

El

BB

LI

FK

AL

Fl

FD

LF

NC

LK

LN

EM

GL

LK

NP

HL

LB

PD

BC

KJ

CA

BH

HP

JK

JM

JA

HG

JL

PK

EN

PH

AN

Cl

KP

AP

01

CK

NA

NA

GP

HI

ED

IM

FF

1740getin

1750;

1760 ;basic rom rou

1770;

1780 readfm6

1790readfm70=

1800basstpky

1810errout

1820 relink

1830huntline

1840 listi

1850basiccr

1860 linerng

1870bprimm

1880bchrout

1890.

1900

1910;

1920newkystr

1930;

1940

1950

1960

1970

1980

1990

2000

2010

2020 bailout

2030

2040 onward

2050

2060

2070

2080

2090

2100

2110

2120onward1

2130

=

=

=

=

H

m

jmp

=

bit

bml

sei

pha
and

cmp

beq

pla

ell

imp

Ida

cmp

bne
Idx

inx

mx

cpx

heq

pla

bmi

2140 downward

2150

2160

2170

2180

2190

2200

Ida

cmp

bne

Ida

cmp

beq

2210 downout Ida

2220

2230 thisisit

2240

2250

2260 chkline

2270

2280

2290

2300

2310

2320

bne

=

jsr

jsr

jsr

bec

Ida

cmp

bne

jsr

imp

2330 moveitup •

2340 jsr

$tfe4

nes

$42ec

$42(1

$4bb5

$4d3f

$4(4f

$5064

$5123

$5598

$5e(b

$9281

$9269

$1300

hookup

runmode

bailout

#$71

#crsdwn

onward

keystr

sob +1

eob+1

onward f

sob

eob

bailout-1

upward

botline

ypos

downout

leftedge

xpos

thisisit

#crsdwn

bailout

savecrsr

opnscreen

huntnmbr

toundit

topline

ypos

moveitup

putback

downout

bprimm

2350 .byte crsup,escape,$4a,0

2360

2370 loundit

2380

2390

2400

2410

2420

jmp

m

jsr

Ida

jsr

jsr

bec

chkline

•

putback

#crsdwn

bchrout

huntline

downout

;lda(61),yfmbankO

;lda ($70),y fm bank 0 ram

;check stop key-break if pressed

;normal basic error handler

;relink basic wrkspace

;list 1 line tm workspace

;prinl a carriage return

calculate line range for find/replace

;get in bank 15-print following text

restore bank 15 & jmp chrout

;check for cursor moves off screen

;i1 running program

;turn off kybrd rupt

;to eliminate reenlrancy

;is it either up or down

;we may have to do something

;if no text

;which key is it

;if it's cursor up

;it's a cursor down!

;are we on bottom line-eh

; if not

;just print cursor down

;cursor down fm bottom left

;store cursor position

;turn on screen for input

.look for a line number on screen

;if number found

;else check if at

;top of window and

;look more if not

;move cursor up to next line

;send text

;cursor up,escape, "j"

;line number found

.restore cursor & ^o channel

;print a cursor down

;find line within basic workspace

;if H read is not a line*

2430 ;last line listed has been located within basic wrkspace

2440 ;nowgetlinka

2450

2460 setitup

2470

2480

2490

jsr

Six

sta

Idy

jsr

ddr of next line

rdnwlink

linkpntr

linkpntr +1

#1

read!m61

;read new link bytes

;point at next line

;check for zero

2500 ;whtch means line on screen was last line-

2510 ;of prgrm so must list first

2520

2530

bne

jsr

setup 1

bprimm

2540.byt$0d.$0d.00

2550

2560

2570

2580 setupi

2590

2600

2610

idx

Ida

bne

jsr

Ida

sta

jsr

sob

sob + 1

setitup

listit

#0

qtsw

bprimm

2620 .byt escape,$4a.O

2630

2640

2650;

2660 upward

2670

2680

2690

2700

2710

2720

2730 upout

2740

2750;

2760 itsanup

2770

Clt

rts

■

ida

cmp

bne

Ida

cmp

hLjq

Ida

bne

=

jsr

.

topline

ypos

upout

leftedge

xpos

itsanup

#crsup

downout +

savecrsr

;if not at end of prgrm

;print two blank lines

;point at first line

;always (basic never starts on zero page)

;cancel quote mode just in case

;restore cursor to left of line

;by printing esc-j

;and return

;for cursor up at top

2 Jong branch to bailout

OO

DN

NN

CC
Gl

MA

IB

JB

CK

PD

BK

NA

MG

BD

OE

CF

DD

HA

AE

AD

FA

GJ

BK

KF

ME

GH

CH

HH

HM

PH

JB

LI

HO

AB

IN

DC
DH

PD

HG

BN

EG

MH

GF

EN

NF

OG

FB

GD

HG

CN
GE

PM

MJ

GF

CM

LH

DM

CH

GJ

UK

CF

PJ

LG
IE

BG

HM

LF

JE

EO

FD

OA

JA

ON

DK

GC

PB

AK

NF

FK

IF

BF

OC

GH

PG

JL

CO

NE

DG

DA

EE

KJ

AG

MP

DJ

JK

NH

Kl

AO

ON

AO

ML

MO

OE

LG

2780 jsr opnscreen

2790 chklinup jsr huntnmbr

2800

2810

2820

2830

2840

2850

2860;

bec foundup

Ida botline

cmp ypos

bne movitdwn

jsr putback

jmp upout

2870 movitdwn=

2880

2890

2900

2910foundup

2920

2930

2940

2950

Ida #shittrtn

jsr bchrout

jmp chklinup

•

jsr putback

jsr huntline

bec upout

jsr scroldwn

;we found a line*

;are we at bottom of screen

;look lower rf not

;fix cursor & i/o

;& print the cursor up

;move cursor down screen

;print shifted return

;go back and do it agn

;we got a line §

;fix i/o & cursor

;see if it really exists

;if it's false

;make blank line at top

2960 ;now hunt from beginning of basic for line to be listed

2970 oldlnklo

2980 oldlnkhi

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170 init

3180

3190rstlink

3200

xsave

ysave

Idx linkpntr

six oldlnklo

Ida linkpntr +1

sta oldlnkhi

cmp sob + 1

bne init

cpx sob

bne init

sec

Ida eob

sbc #02

tax

Ida eob +1

sbc #0

stx oldlnklo

sta oldlnkhi

jsr scroldwn

jsr scroldwn

Idx sob

Ida sob + 1

stx linkpntr

sta linkpnlr+1

;zp storage for old link addr (line read fm screen)

;save link addr of top screen line

;was screen line first in prgrm

;tf not at start

;else aim at

;value stored in link of

;last program line

;print 2 blank lines

3210 ;aim linkpntr at appropriate address

3220

3230

3240

3250

3260

3270

3280

jsr rdnwlink

cmp oldlnkhi

bne rstlink

cpx oldlnklo

bne rstlink

jmp setup!

3290 opnscreert

3300

3310

3320

3330

3340

3350

3360;

Ida #126

Idx #3

jsr setlfs

jsr open

Idx #126

jmp chkin

3370huntnmbr= .

;get link of next line

;do we have a match

;keep lookin' if not

;is it really a match

;look more if not

;list line with linkpntr intact

;set screen as input device

;file#

;dev#

;open126,3

;make screen input device & rts

;hunt for line number on screen

3380 ;return carry clear if digit was read

3390

3400

jsr get1

bes doneline

;read 1 char fm screen

;if no digit found

3410 ;here valid digit 0-9 was found

3420

3430

3440

3450

and #$0f

sta linenum

Ida #0

sta linenum +1

3460 read Imoijer get1

3470

3480

3490

3500 addin

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

3740

3750

3760

bec addin

clc

rts

and #$0f

pha

asl linenum

rol linenum +1

bes badnmbr

Idx linenum

Idy linenum +1

asl linenum

rol linenum +1

bes badnmbr

asl linenum

rol linenum +1

bes badnmbr

txa

adc linenum

sta linenum

tya

adc linenum +1

sta linenum +1

bes badnmbr

pla

adc linenum

sta linenum

Ida #0

adc linenum +1

sta linenum +1

bec read 1 more

3770 .byt bitins

3780 badnmbrpla

3790 doneline rts

3800;

3810 geti •

;convert to binary 0-9

;set up for calculation

;read through all following digits

;after last digit found

;convert and save digit

;lnx2

;save x2 value

;now = x8

;carry is clear

;nowx10

;carry is clear

;mask out pla on fallthrough

;read 1 fm screen-check if digit

Tho iransocfor 68 March 1987: Volume 7, Issue O5

ON

CC

EK

GC

MG

EN

EB

CH

CG

JH

HH

GE

GG

JH

LL

KG

Ml-1

PH

JN

GJ

KC

QC

AD

NC

FD

BC

LE

NL

KH

FG

BB

OA

CK

ED

GL

AF

AN

JN

ML

KP

HJ

MP

AH

HM

LC

PG

CB

BP

IB

ME

IP

IK

GA

II

PL

AC

PB

M.I

LC

CM

01

CA
EE

MJ

OK

CP
CG

LG

CL

EB

Gl

Fl

CD

NB

FE

EL

KF

JN

PL

IH

MF

Ml
OF

EO

HC

FN

MF

00

EE

GO

BH

KC

AM

HK

NL

OP

CC

LD

FN

LM

AP

NP

PE

EB

3820

3830

3840

3850

3860

3870 lessO

3880

jsr getin

cmp #"0'

bcc lessO

cmp #':'

rts

sec

rts

3890savecrsr Ida xpos

3900

3910

3920

3930

3940 putback

3950

3960

3970

3980

3990

4000

4010

4020;

4030 listit

4040

4050

4060

4070

4080

4090

4100;

sta xsave

Ida ypos

sla ysave

rts

Ida #126

jsr close

jsr clrchn

Ida xsave

sta xpos

Ida ysave

sta ypos

rts

Idy #2

jsr readfm61

tax

iny

jsr readfm61

jmp listl

4110 scroldwn jsr bprimm

412O.bytescape,$57,O

4130

4140;

rls

;1 more than "9"

;w/ccfor '0-9'

;close screen file

;& restore io channels

;restore cursor position

;read line # into a&x

point at line# Io byte

;read it

;save it

point at line# hi byte

;read it

;let basic list line

print escape'w'

;to scroll down

4150 ;error wedge routine ford 28

4160;

4170ptchcode= .

4180

4190

4200

4210

4220

4230;

4240 Start

4250 patchlen

4260

4270

4280

4290

4300

4310;

4320 ourerr

4330

pha

Ida #00

sta mmu

pla

jmp start

.

,to be written to page 3

;getinbank15

;arrive here on error

start-ptchcode

jsr rstsysvc

cpx ffsynerr

bne wrong+ 2

cmp #wdgchr

bne wrong

jsr chrget

restore vector for scroll routine

parse added commands and dispatch

Idx #numcmds-1

4340chktable cmp cmdtable.x

4350

4360

4370

4380

4390;

4400 gotit

4410

4420

4430

4440

4450

4460

4470

4480

4490

4500

4510;

4520 wrong

4530

4540;

4550 cmdtable

4560 .byte $a1

4570. byte $8b

4580;

4590 jmptbl

beq gotit

dex

bpl chktable

bmi wrong

.

pla

pla

txa

asl a

tax

Ida jmptbl +1 ,x

pha

Ida jmptbl,x

pha

jmp chrget

Idx #synerr

jmp errout

;if command found

;keep checking

report syntax error otherwise

;here we execute command

remove one return address

multiply x by 2

,hi byte

;lo byte

;set up return addr

;get next chr & rts to new routine

;" get" token for find

;" if' token for replace

4600 numcmds= jmptbi-cmdtable

4610;

4620 .word find—1 ,replace-1

4630;

4640;128find&replace

4650 find

4660 replace

4670

4680

4690

4700

4710

4720 parsit

4730

4740

4750

4760

4770

4780;

4790

4800

4810

4820

4830

4840

4850

stx flag

• find

beq wrong

cmp #$22

beq parsit

cmp #""

bne wrong

sta delimit

Idx #0

jsr getstrng

sly srchlen

Ida flag

beq adjust

Idx #dironly

bit runmode

bmi wrong+ 2

jsr resetptr

cmp #thentoken

bne wrong

jsr chrget

; = 0forfind,2 lor

;if no params

;look for double quote

;or single quote

;only two above allowed

;save delimiter

;aim at search buffer

;length of search string-(3d) pointing at delimiter

;if not replacing

;for possible error

;check for direct mode if replacing

;fix textptr

;must have token for then-

;else syntax error

EJ

EA

Gl

JB

NF

AP

LK

DM

FP

AN

IF

AO

JO

MD

GC

JH

CB

LF

MD

CJ

PA

DB

PJ

DG

Al

CM

FP

DE

K

MA

OB

JK

GG

IL

OE

PM

AE

MJ

MG

CA

GG

FG

CH

3M

JC

CA

00
BJ

DF

Nl
CK

AH

AG

OC

CG

LB

MC

JE

JB

KJ

El

Gh

EL

OE
MF

CN

DJ

JN

EF

NA

LE

FK

CE

OG

NF

AG

IK

Fl

KJ

GM

OH

DA

LA

AH

KL

JN

OM

CK

LH

OF

FC
CK

F.i

BG

HP

NF

FD

HE

ML

AF

OH

EG

EJ

DJ

4860

4870

4880,

4890

4900

4910

4920

4930

4940

4950

4960 adjust

4970;

cmp

bne

Idx

jsr

sty

lya

sec

sbc

sta

jsr

4980 getlnrng jsr

delimit

wrong

#$20

getstrng

replen

srchlen

shift

resetptr

linerng

;then must have delimiter

;else error

point at repbuf

read replace string

replacement string length

replen to a

;find shift

point chrget at delimiter

;setup line range in (61) and (16)

4990 ; (61) holds point in basic workspace where search should start

5000 ;(16) holds highest line # which should be searched-now check if in range

5010 imp chkit

5020;

5030 search 1

5040

=

Idy

5050 searchn Idx

5060search12iny

5070

5080

5090

5100

5110

5120

5130

5140'

5150

5160

5170

5180

5190 listl In

5200

5210

5220

5230

5240

5250 recheck

5260

5270

5280

5290

5300 donextln

5310

5320

5330

5340 chkit

5350

5360

5370;

5380 getstrng

5390

5400

5410getstr1

5420

5430

5440

5450

5460

5470

5480

5490

5500

5510

5520

5530 toolong

5540 wrong 1

5550 doneget

5560

5570

5580;

5590 wrong2

5600

5610;

5620 resetptr

5630

5640

5650

5660

5670

5680

5690

5700;

jsr

beq

cmp

bne

inx

cpx

bne

ida

beq

jsr

jsr

jsr

jsr

jsr

Ida

beq

=

Ida

tay

dey

bne

|Sr

stx

sla

jsr

bcc

imp

jsr

Idy

stx

Ida

stx

cmp

beq

cmp

beq

sta

inx

iny

cpy

bne

Idx

imp

cpy

beq

rts

Idx

bne

clc

tya

adc

Sta

Ida

adc

sta

jmp

5710movedowa

5720;

5730 sla

5740 move Idvdda

5750

5760

5770

5780

5790

5800

5810

5820

sta

iny

bne

dex

beq

inc

inc

bne

5830 donedowaa

5840

5850;

5860 moveup

5870;

5880

rts

=

stx

5890 movel uplda

#3

#0

readfm61

donextln

srchbuf.x

searchn

srchlen

search 12

flag

listl In

insert

relink

listit

basiccr

basstpky

flag

donextln

,

pickup

searchn

rdnwtink

linkpntr

linkpntr + 1

chkhiln

search 1

chrgot

chrget

#0

mmu + 1

(Ixtptr).y

mmu + 3

delimit

doneget

#0

wrong2

srchbuf.x

#31

getstri

#lngstrng

errout

#0

wrong2

#synerr

wrong1

bdptr

txtptr

txtptr +1

#0

txtplr +1

chrget

*

mmu + 1

(source),y

(dest),y

movel dwn

donedown

source +1

desti-1

movel dwn

mmu + 3

mmu + 1

(source).y

;search thru program line for the search string

;to start off point at hi byte line #

;point to start of search buffer

point to next byte

;get byte fm wrkspace

;if atnd of line

;check for match

;do we have good match

;keep searching if not-but leave x pointing into buffer

.what are we doing-eh

;if search and no replace

put line in basic wkspc

;and fix up links

;list found or changed line

provide for bailout via stopkey

;test for find/replace

;if finding

;else go back and hunt for further matches

points one beyond replace string

;set up for further search-dey 'cuz search will iny

;go back and do again!

;adjust(61)

;hi byte next link addr

;and thence to basic

read a string from chrget into buffer

;advance pointer

;switch in bank 0

;switch in rom's

;at end of string

;check for line end before delimiter

;maximum string length

;or fall thru to error

;check for zero length

;with string length in y

;fix Io byte

rts thence with next char

;move memory downward

;into bankO

;on entry

;x = #pages to be moved +1

;y = 256-#excess bytes

;source = start of block -y

;dest = source-shift

;turnon rom's

;move mem upward

;into bankO

;when called

Th© Tronsoctor 69 March 1987: Volume 7, tone O5

DE

JH

FM

HD

LO

OK

Cl 1

IN

KK

HO

MF

AP

GD

EA

KJ

OC

IF

LI

FK

AE

CF

Jl

Al

PM

DPI

HB

BJ

HJ

BO

IB

HH

EN

DO

PM

EC

CC

GO

NP

AD

BG

HM

NL

M3

LD

DF

JH

HA

NN

Nl

AH

FP

AJ

Kl

OJ

PO

DL

HF

JP

FG

BK

AA

AJ

CK

CG

IG

EE

MN

PI

Dl

OG

OD

ND

II

FF

PM

IA

BH

El

Jl

NM

LF

DL

NM

BG

FN

LM

HP

NB

LK

31

NP

GE

PG

PL

OC

HG

CE

CB

PD

MP

DC

NB

FA

OB

5900

5910

5920

5930

5940

5950

5960

5970

5980

5990 doneup

6000

6010;

6020 insert

6030;

6040

6050

6060

6070

6080

6090

6100

6110

6120

6130

6140

6150

6160

6170

6180

6190

6200

6210

6220

6230

6240

6250

sta

dey

cpy

bne

dex

beq

dec

c.ec

bne

sta

rts

=

sty

Ida

beq

php

lya

clc

adc

sta

Ida

adc

sta

ida

sec

sbc

sta

Ida

sbc

sta

Idx

inx

Dip

bpl

6260 slewdown=

6270

6280

6290

6300

6310

6320

6330

6340

6350

6360

6370

6380

6390

6400

6410

6420;

6430 stuffit

6440

6450

6460

6470

6480

6490

6500

6510 stuff1

6520

6530

6540

6550

6560

6570

6580

6590

6600;

6610 slewup

6620

6630

6640

6650

6660

6670

6680

6690

6700

6710

6720

6730

6740

6750

6760

6770

6780

6790

6800

6810

6820

6830

6840;

6850 fixdest

6860

6870

6880

6890

6900

6910

6920

6930

Ida

eor

tay

iny

sty

Ida

sec

sbc

sta

Ida

sbc

sta

jsr

jsr

jsr

=

sec

Bbc

adc

tay

Idx

stx

Ida

sta

iny

inx

cpx

bne

sty

stx

rla

=

jsr

jsr

Idy

dey

Ida

clc

adc

sta

Ida

adc

sta

sty

sec

Ida

sbc

sta

Ida

sbc

sta

jsr

jsr

jmp

=

clc

Ida

adc

sta

Ida

sta

bcc

inc

(dest).y

#$fl

moveiup

doneup

source +1

dest + 1

moveiup

mmu + 3

pickup

shift

stuffit

linkpntr

source

linkpntr +1

#0

source+ 1

eob

source

dest

eob + 1

source +1

dest + 1

dest +1

slewup

a

dest

SSIt

dest

source

dest

source

source+ 1

#0

source +1

fixdest

movedown

fixeob

pickup

srchlen

#0

#0

mmu + 1

repbuf.x

(linkpntr),y

replen

stuffi

pickup

mmu + 3

roomatop

longline

desl

source

dest

source

source+ 1

dest +1

source +1

dest

source

dest

source

source +1

#0

source +1

fixdest

moveup

stuffil-3

shift

source

dest

source +1

dest + 1

checkdir

dest + 1

;y = #excess bytes-1

;x = #pagesto move+1

;source = end of block + 1 -#excess bytes = end-y

;dest = source + shift

;back to ong bank

.insert replacement string in program

points to final byte search string

;check if move needed

;go ahead if not

; save for later

;end of search string

;set source = start of block

;setdest = blocksize

;x- reg now set with tfpages + 1

;if moving up

;else move down

;y-reg now set

temporary

;adjust source

;common to up and down

;common to up and down

;insert replace string

;final byte search string

;point to first byte search string

;point y at replacement

;into bank 0

;aimed one beyond rep string

;restorerom's

replacement complete

;move mem upward

;check if mem available

;check if line will be too long

;y set for move

;source pnting to end of block

[temporary

;fixeob and rewrite line

;adjust dest pointer relative to source

;low byte done

;hi byte half done

;add 1 it carry set

FO

GP
CD

DJ

KL

CD

OM

OJ

PG

DK

EB

Dl

AG

OF

Nl

MO

CD

GE

GE

GB

HJ

EF

KF

PG

AK

IM

NN

FA

KM

Nl

IK

FC

CN

IA

LL

DP

FA

AJ

MP

MO

IJ

BD

MN

CG

KE

FM

JG

FP

JL

Jl

HO

MP

JL

CJ

DP

FN

BC
IE

HI

DA

HE

El

AB

MC
CB

GO

II

CM

EK

ML

OE

DJ

CG

PI

GL

OP

MD

FN

FM

JM

DK

JN

OJ

LI

NP

KO

OL

LC

0M

IB

IC

ID

AK

6940 checkdir Ida shift

6950

6960

bpl donedest

dec dest + 1

6970donedestrts

6980;

6990 fixeob

7000

7010

7020

7030

7040

7050

.

clc

Ida shift

adc eob

sta eob

bcc checkdM

inc eob+1

7060 checkdn Ida shift

7070

7080

bpl doneeob

dec eob + 1

7090 doneeob rts

7100;

7110roomatop= .

7120

7130

7140

7150

7160

7170

clc

Ida shift

adc eob

Idy eob+1

bcc roomenuf

my

7180roomenufcpy baslim+1

7190

7200

7210roomok

7220 litlroom

7230

7240 noroom

7250

7260;

7270 longline

7280

7290

7300

7310

7320

7330

7340

7350 wrong3

7360 chkhiln

7370

7380;

7390

7400

7410

7420comphi

7430

7440

7450

7460

beq litlroom

bcs noroom

rts

cmp baslim

bcc roomok

Idx #nomemory

jmp errout

Idy «0

jsr readfm61

sec

sbc linkpntr

adc shift

bcs wrong3

rts

jmp toolong

Idy #1

jsr readfm61

bne comphi

sec

bcs done

Idy #3

jsr readfm61

cmp $17

bcc done

bne done

;sub1 if shift<0

;low byte done

;add 1 if cs

;check for room in mem

;<new eob in a

;<hi byte

;il page boundary will be crossed

;test if changed line will be too long

;get <link to next line

;find length of current line

;get new length

;if line > 1 page

;get line link hi byte

;nonzero hi link means not at end of program

;else go back carry set

;get line # hi byte

;are we finished

;if lower than 17 read thru text-not done!

;if higher than 17 we are finished

7470 ;if hi byte ln# = (17) then check low byte

7480

7490

7500

75 10

7520

dey

jsr readfm61

cmp $16

bcc done

beq domore

7530 .byt bitins

7540 domore

7550 done

clc

rts

;get line # lo byte

; if lower than 16 carry clear

;if equal to 16 otherwise fall thru with carry set to

;bitzp intruction

;to indicate more to do

;return with carry clear if in range- carry set it beyond

7560 ;(61),0 still holds currenlline link low addr

7570;soreaim(61)

7580;

7590 rdnwlink

7600

7610

7620

7630

7640;

7650 hookup

7660;

7670

7680

Idy #0

jsr readfm61

tax

iny

jmp readfm61

- ,

sei

Idx tfpatchlen

7690 patchlup Ida ptchcode.x

7700

7710

7720

7730

7740

7750

7760

7770 rstsysvc

7780

7790

7800

7810

7820

7830

7840

7850

7860

sta patch,x

dex

bpl patchlup

Ida #<patch

sta ierror

Ida #>patch

sta ierror +1

sei

pha

Ida #<newkystr

sta ikeystr

Ida #>newkystr

sta ikeystr +1

pla

cli

rts

;low byte of next link addr

;linkinto x,a

;link into operating system

;revector system keypress store vector

Th© Transactor TO March 1987: Volume 7, Issue O5

Commodore 64

23K 'RAM Disk'

Anthony Bertram

Toronto, Ontario

Make use of all that unused RAM in the 64!

Here's a utility that makes use of all the unused RAM in the

C64, and is especially useful to those who are wishing for a

second (or first!) disk drive. It can hold a single program as large

as 93 blocks (23,808 bytes) and will save or load in either direct

or program modes at blinding speed.

The 23k Ram Disk adds only two commands to Basic:

& = save

\ = load

There is no scratch command since each time the save is used

it writes over whatever was previously saved.

When used in program mode it works in the same way as

loading from within a program using disk or tape; the second

program should be smaller than the first, and once loaded, the

second program will start to run automatically and all variables

and strings from the first program will remain. In direct mode it

is useful for program development, allowing fast storage and

retrieval of programs or source code, making it easy to check a

routine from another program, look at a directory or to tempo

rarily save the current program while another is RUN. It works

great as an UNDO feature when working on a Basic program,

although it can't UNDO a crash.

How it Works

The RAM DISK diverts the 1GONE vector at $308/$309 and

uses the RAM underneath the KERNAL, INPUT/OUTPUT and

BASIC ROMS from $A000 to $FD00 for storage. The program

saves whatever is in Basic memory, between the start of Basic

(44/45) and the start of Variables (45/46). First the size of the

program is calculated by simply subtracting the start of Basic

from the start of variables - if the program is too large, the

border colour will change, as a warning, and the program will

not be saved. The length of the program is then subtracted from

the top of the RAM DISK storage area ($fdOO) and the result is

the starting address at which the program is saved; the end of

the saved program is always at $fdOO, regardless of length.

Programs are always loaded back into the address pointed to by

the start of BASIC (44/45) and the start of variables pointer will

be set to point to its end.

The RAM DISK program resides at the top of Basic Ram from

$9EE8 (40680) to $9FFF (40959) so will not be compatible with

any programs that use this area or the Ram under the Kernal.

The programs storage capacity can be easily changed, by

changing one number in the loader programs' DATA state

ments or by POKE-ing the number of blocks into 40723, to any

size up to a maximum of 93 blocks. If there is a machine

language program between $C000 and $CFFF, the DOS wedge

for example, the maximum blocks should be 44 to ensure it's

not overwriten by the RAM DISK. With a 44 block maximum,

the memory from $D000 to $FD00 is used for RAM DISK

storage and the memory from $A000 to $CFFF is free for other

programs. Another example might be a revised version of Basic

in the RAM between $AOO0 and $BFFF, in which case a 60

block maximum would be safe to use. The longer the program

is, the closer to $A000 it will come. During the loading and

saving process, interrupts are stopped and all ROM memory is

switched for RAM. In order to try to conserve memory, the

program uses a Basic loader that pokes the ML into memory,

lowers the top of Basic and runs the program.

Compatibility

Zero page memory from $FB to $FE and $01 is used during

loading and saving but these locations are not changed because

they are stored temporarily in the RAM above $FD52 and

replaced after the Load or Save. The reason for this is to enable

the RAM DISK to reside with other programs that use these

popular locations. Another effort at being compatible is the use

of the vector $0308/$0309, which is copied and moved to the

top of the program so that if another program is in memory and

using this vector when the RAM DISK is started, there won't be

a conflict or a crash. It's a good idea, therefore, to LOAD and

RUN the RAM DISK after you have other programs installed.

The program is compatible with the DOS wedge and most

BASIC extensions that reside at 49152 or the start of basic,

including the FAST ASSEMBLER (computers gazette) on which

it was written and the popular PAL assembler.

Word of Caution

The load (\) command should never be used when the pro-

The Transactor 7i Moreh 1967: Volume 7, toueO5

gram is first started because it will cause the computer to crash

as it tries to load a non-existent program. Therefore its a good

idea to save the RAM as soon as the program is started. If you

change the 93 in line 1050 of the loader program, the check

sum will add up to the wrong amount and stop the program

with an error message. Either remove the checksum (line 130),

change its value or POKE 40723 with the number of blocks

after the program is loaded. A program to be saved must be at

least one byte less than the maximum allowable blocks.

Anyone that read the May '86 Bits and Pieces, Corrupting

RAMTAS update, will have guessed why the RAM DISK only

uses only 23.25k and leaves the top of memory (above $FD00)

alone. The RAMTAS routine writes to the RAM at $FD30 to

$FD4F each time the RESTORE key is hit and will destroy any

program that was stored there.

Conclusion

As you can see, the RAM DISK works much like a disk or tape

using program files. Its only drawback is that it can only hold

one program at a time, but on the positive side it is simple,

short and efficient and tries to be as compatible as possible with

other software.

C64 RAM Disk: BASIC Loader

EB

KK

DM

HE

IH

EG

CC

PA

NP

OL

MD

KE

FP

PG

CA

KC

OP

KP

GL

FP

FF

JM

AK

IL

PF

KE

GL

100 rem* i

110 for i =

data loader for " ramdisk64" *

40680 to 40959:read a:poke i,a

120 cs = cs + a:next i

130 if cs<>41825 then print" Idata

140 poke 55,231: poke 56,15E

150 sys 40680

160 print"

170 print"

180 print"

190 end

200:

1000 data

1010 data

1020 data

1030 data

1040 data

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

!:clr

ramdisk-64 activated!"

& to save"

\ to load"

173, 8, 3,141,

3, 141,255, 159,

3, 169, 158, 141,

1, 177, 122,201,

119,159, 32,115,

229, 44,201, 93,

208, 76, 194, 159,

165, 45,141, 90,

87,253,165, 46,

44,141, 88,253,

87,253, 133,253,

1110 data 253, 237, 88,253,

1120 data 159, 165, 43, 133,

1130 data 252, 160, 0,177,

1140 data

1150 data

251,208, 2,230,

2,230,254, 165,

254,

169,

9,

38,

0,

144,

32,

253,

141,

56,

141,

133,

251,

251,

252,

251,

3rror!": end

159, 173,

255, 141,

3, 96,

240, 3,

56, 165,

6, 206,

206, 159,

229, 43,

91,253,

169, 0,

252, 159,

254, 141,

165, 44,

145,253,

230,253,

205, 90,

9

8

160

76

46

32

56

141

229

237

169

253

133

230

208

253

KJ

JN

ML

OP

ON

AF

KK

FK

OK

EE

EL.

PA

LD

Cl

DB

MJ

GJ

MA

DE

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

data 208, 233,

data 226, 32,

data 92,208,

data 159, 173,

data 159, 133,

data 44, 133,

data 253, 230,

data 253, 208,

data 0,208,

data 228, 165,

data 253, 133,

data 231, 159,

data 32,161,

data 141, 89,

data 169, 0,

data 157, 82,

data 4, 189,

data 248, 173,

data 141, 13,

165,252,

231,159,

71, 32,

252, 159,

252, 165,

254, 160,

251,208,

2, 230,

234, 165,

123,201,

45, 165,

108,254,

225, 76,

253,169,

133, 1,

253, 202,

82, 253,

89,253,

220, 96,

205, 91,

76,194,

115, 0,

133,251,

43,133,

0,177,

2, 230,

254,165,

252,201,

2, 208,

254,133,

159, 32,

174,167,

127,141,

162, 4,

208, 248,

149,251,

133, 1,

0, 0,

253,208

159,201

32,206

173,253

253, 165

251,145

252,230

251,201

253,208

14,165

46, 32

231,159

165, 1

13,220

181,251

96,162

202,208

169, 129

0, 0

C64 RAM Disk: PAL Source Code

FD

GN

OO

CP

CA

EK

JA

PM

FP

LN

FN

AF

CG

DB

GG

OD

HB

AL

HD

PE

EG

HI

EH

HK

AE

EN

OJ

PI

GK

PG

NN

PB

KC

PC

AM

GN

100sys700

110 .opt oo

120;

130* = $9ee8

140;

150chrget

160 ciaint

170 bankin

180 tempzero

190tempbloc

200 tempreg

210 sov

220 basicvec

230 border

240;

=

=

=

=

=

=

=

$0073

$dcOd

$01

$fd52

$fd57

$fd59

$fd5a

$0308

$d020

250 ;*** change basic vector

260

270

280

290

300

310

320

330

340

350;

360;*** main

370 ram

380

390

400

410

420 r2

430

440

450

Ida

sta

Ida

sta

Ida

sia

Ida

sta.

rls

basicvec

tempvec ;move to end of program

basicvec +1

tempvec+1

#<ram

basicvec

#>ram

basicvec +1

outine starts here

Idy

Ida

cmp

beq

imp
jsr

sec

Ida

sbc

#$01

($7a),y ;look ahead of basic

#"&" ;checkfor character

r2

lode

chrget ;start of save

46

44

The Transactor 72 March 1987. Volume 7, Issue O5

KL

HO

BN

FM

NC

PH

EM

LK

CO

ND

PO

MK

NA

CJ

JN

Fl

GK

IJ

CO

PD

AP

DM

IP

IG

IN

PH

PO

NF

CN

IN

GP

LD

NA

CB

LF

BD

PC

ON

EC

DD

PB

CE

OJ

FF

JO

AD

NC

ON

AN

DF

CN

JO

IE

Gl

PE

IG

PH

LE

AN

IB

460

470

480

490

500 r3

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740 start

750

760

770

780

790 s2

800

810

820 s3

830

840

850

860

870

880

890

900 lode

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030 stlct

1040

1050

cmp

bcc

dec

jmp

jsr

sec

Ida

sta

sbc

sta

Ida

sta

sbc

sta

sec

Ida

sbc

sta

sta

Ida

sbc

sta

sta

Ida

sta

Ida

sta

Idy

Ida

sta

me

bne

inc

me

bne

inc

Ida

cmp

bne

Ida

cmp

bne

jsr

jmp

cmp

bne

jsr

jsr

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Idy

Ida

sta

inc

#93

r3

border

exit

zersa

$2d

sov

$2b

tempbloc

$2e

sov+1

$2c

tempbloc +

#$00

tempbloc

$fd

strdisk

#$fd

tempbloc +

$fe

strdisk +1

$2b

$fb

$2c

$fc

#$00

($fb),y

($fd),y

$fb

S2

$fc

$fd

S3

$fe

$fb

sov

start

$fc

sov + 1

start

zerlo

exit

#"\"

exit

chrget

zersa

strdisk

$fb

strdisk +1

$fc

$2b

$fd

$2c

$fe

#$00

($fb),y

($fd),y

$fb

;check size

;warn too large

;get number blkslow

1;number blks high

;subtract blks

;start address in ram disk

1

;source

destination

;keep going to the sov

;check for character

;start of load

;start address in ram disk

;store in source

;start of basic (low)

;destination (low)

;basic(high)

destination (high)

;source

;target

GF

PC

GC

GH

DF

DE

IM

LN

FF

IH

JP

DB

MA

FC

FP

EL

Kl

EB

GA

KH

JB

OG

NE

NL

AH

OK

AC

FF

BK

FN

OB

HP

LB

Dl

EG

JC

AJ

KL

HF

BL

FJ

DC

EK

EO

IM

DE

CL

JL

KH

1060

1070

108012

1090

1100

1 1 1 0 13

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250 exit

1260 prgm

1270

1280

1290 zersa

1300

1310

1320

1330

1340

1350

1360 zs1

1370

1380

1390

1400

1410 zerlo

1420 zl1

1430

1440

1450

1460

1470

1480

1490

1500

1510;********

1520 strdisk

1530tempvec

1540;

bne 12

inc $fc

inc $fd

bne 13

inc $fe

Ida $fb

cmp #$00

bne stld

Ida $fc

cmp #$fd

bne stld

Ida $7b

cmp #$02

bne prgm

Ida $fd

sta $2d

Ida $fe

sta 46

jsr zerlo

jmp (tempvec)

jsr zerlo

jsr $e1a1

jmp $a7ae

Ida bankin

sta tempreg

Ida #$7f

sta ciaint

Ida #$00

sta bankin

Idx #$04

Ida $fb,x

sta tempzero.x

dex

bne zs1

rts

Idx #$04

Ida tempzero.x

sta $fb,x

dex

bne zl1

Ida tempreg

sta bankin

Ida #$81

sta ciaint

rts

;check for running prgrm

;direct mode then set sov

;sov

;basicload routine

; back to interpreter

;switch out roms

;kill interupts

;move to a safe spot

; put back

; switch roms on

;start interupts

**** program variables

.byte 0,0

.byte 0,0

;start address in disk memory

; points to interpreter loop

The Transactor 73 March 1987: Volume 7. Issue 05

Amiga Dispatches
by Tim Grantham, Toronto, Ontario

Report from the Shadowlands

With the demise of TPUG Magazine and one of the best jobs

I've ever had, I found myself forced to accept work for one of

the major computer retailers, configuring and installing PC

compatibles for Fortune 500 clients. It's a dreary business. You

need a plug-in card for everything, and they're all expensive. A

Sysdyne colour/monochrome/graphics adaptor, for example,

costs over $300 and takes up a 3" by 4" printed circuit board.

(Exactly the same functionality is provided by a $30 chip in the

C-128.) By the time you've added enough cards for a PC XT to

actually do anything, you've spent three grand, and you still

don't have a monitor, much less any software to run on the

damn thing. But you'll never see a C-l 28 in a Bay Street office -

after all, how could any self-respecting computer sell for less

than $1000? Must be a game machine. I have developed a

grudging respect for such machines as the Toshiba laptops -

they're fast, they're compact, and they don't look like they were

designed by the Pentagon. And I have respect for such power

ful MS-DOS software as Word Perfect and AutoCAD. We need

the richness these programs provide to challenge the Amiga's

capabilities (they can keep the prices).

But then, I have just as much respect for good plumbing. My

daily exposure to the PC world has brought about a new

appreciation of the Amiga. It's in a class of its own: not just

another glorified cash register but a synergizing lens designed

by artists, for artists.

The Amiga will find a place in business. It's encouraging to see

the Mac gaining acceptance in the corporate world: now that

the business software is in place, the executives are realizing

that the graphic interface provides a built-in solution to what is

an added (and worse, hidden) cost on the PC compatibles -

operator training. And the Mac's success can only help the

Amiga.

Meanwhile, us wild-eyed creative types are having a wonder

ful time with the best unknown computer in the world.

Software News

The most important news is, of course, the release (at last!) of

1.2 Kickstart and Workbench, and of the Sidecar. I'll get to the

Sidecar later on in the hardware section.

At press time, 1.2 is to be released for about $15 (US) and

includes substantial documentation of the new features. That's

a bargain, considering the enormous improvements made -

MS-DOS upgrades typically cost $85 (US). Charlie Heath,

author of TXed, has as an excellent comparison review of

Lattice C and Aztec C in the November issue of Byte. Now that

1.2 has appeared, Lattice has released a major upgrade of its

compiler, and it addresses (no pun intended) every concern

raised by Cheath, and then some. According to a Lattice

announcement, the goodies include:

• A two-disk package that includes a bootable system disk to

simplify installation.

• A greatly enhanced library with over 255 functions (over 100

functions more than the standard Amiga C):

• Faster pointer and integer math

• Faster IEEE floating point routines (at least 5x)

• Direct support of the Amiga's FFP format floating point

library

• A full macro assembler

• And completely new, expanded documentation.

"While remaining compatible with previous software, we have

extended the object file format to include base-relative ad

dressing, and our linker will support base-relative addressing

modes and pc-relative branches to target locations that might

otherwise be out of range. Addressing modes may be freely

mixed in a program." A Professional Developer's Package is

also available and will include several development utilities,

and the highly rated Metadigm Metascope windowing debug

ger. The prices are as follows:

List Upgrade

Lattice AmigaDOSC Compiler V3.10 $225 $ 75

Professional AmigaDOS C Compiler $375 $225

And if you're still not happy with Lattice's new-improved

version of Alink, John Toebes VIII, of Hack fame, and the folks

at the Software Distillery have produced a compatible, fast

linker called Blink. It's available on the Fish disks, and public

networks.

ThO TKHMQCrOT 74 March 1987: Volume 7, toue O5

Aztec, meanwhile, is beta-testing an upgrade to their C com

piler that has a complete debugger and patches to run the

current version under 1.2

In other news on the wires: True Basic has a run-time module

available, to create stand-alone Basic programs. . . PTE (Pro

fessional Text Engine) from Vladimir Schneider of Montreal

provides fully programmable keyboard, menu, and mouse

control. .. Grabbit! can dump HAM pictures, and any other

screen, to any printer in Preferences. Won't print sprites,

though. . . If you run Online! from the CLI and add a * to the

command line ("online! *"), the program will come up in

interlace mode. I tried this trick with Scribble!, a product put

out by the same company, and that works too. . . After many

announcements, Flight Simulator for the Amiga has been

released, with two modes (Cessna, Lear Jet), and the ability to

open up windows with different views. Jet will offer the intrigu

ing possibility of hookup via modem — pilot your Amiga in a

dogfight with a friend across the world.. . Aegis has bought

vl.l of Musicraft and is selling it under the name Sonix.. .

Softeam is still struggling to produce their PC-ET IBM PC

emulation program: it works, apparently, and multitasks under

AmigaDOS, but is not fast enough. Many of the routines are

currently being re-written in assembler to improve speed. . .

Leader Board from Access has great golf graphics but Activi-

sion's Mean-18 is the greater challenge. . .

Aegis Draw runs faster if you have expansion ram. Aegis has

also released Draw Plus. . . The Spenser Organization, (201-

666-6011), is coming out with an APL interpreter for $300

(US). . . Brown-Wagh, the distributors of Scribble! and Ana

lyze!, is distributing Publisher! for the Amiga, written by North

eastern Software. For $200 (US) you get multi-column layout,

text justification with kerning, wordwrap, mixing of IFF files

within text (including resizing and cropping). . . There have

been persistent rumours that Ashton-Tate ported dBase III to

the Amiga some time ago. The story goes that they wanted a

large sum of money up front from CBM to bring it to market,

and CBM refused. Now it seems that they are waiting for

enough Amigas to be sold to justify bringing it out. Meanwhile,

the Word Perfect people are reportedly working on a full port of

their renowned PC program. They had completed a stripped-

down version, but decided Amigans would want a sophisti

cated word processor. Availability will apparently be the first

quarter of '87. . . Alfred Aburto reports that the 68881 chip is

supported under 1.2, but wasn't under 1.1. However, True

Basic still crashes with the 68020 CSA board installed. .. To use

the vtlOO emulation in Online! under WB1.2, you need to load

and run "setmap usaO" first.

It is possible to use outside fonts in DeluxePrint, according to a

Plinker who goes by the handle AHN769. Boot with DP, open a

CLI, and assign fonts: to whatever disk contains the desired

fonts. Then, load DPrint, and when the drive lights go out, put

in the fonts disk. The fonts will load and are available even

though the menus in Dprint will indicate the old ones.

Chessmaster 2000, also from Electronic Arts is getting good

response from purchasers. One can view the board from any

angle (in 2-D or 3-D), play through a library of championship

games, and have the program analyze one of your own games

after play. It is apparently possible to multitask with Chessmas

ter if you invoke it from a CLI (without using "run"), and then

use PopCLI (see below) to get another CLI.

There have been vociferous complaints about the first version

of Datamat, a highly touted relational database. Apparently, the

AmigaDOS version is riddled with bugs, is difficult to use, and

has dreadful documentation. Mark Callaghan of Transtime

Technologies says, however, that free upgrades will be out by

the time you read this that will fix bugs and provide Intuition

support. A new manual is supposed to be out within the next

six months. You can reach Mark at 716-874-2010.

I was never able to get the Transformer to run PCTalk, a fine

shareware terminal program. Others have had difficulty with

similar programs. But word comes that Qmodem vl.08 (and

only vl .08) will work fully under the Transformer. It's still very

slow, but you can use another MS-DOS program called

SPEEDY.COM to speed up the screen output.

Superbase for the Amiga has arrived! It's on sale in England

and should be available from Progressive Peripherals here

soon. It is relational, makes full use of Intuition, and can use

IFF data. The 'personal' version will sell for about $150 (US).

The 'development' version will arrive later, have a command

language and cost about $250. It is not copy-protected but uses

a dongle(l). Progressive Peripherals is also selling Logistix, a

programmable spreadsheet that can use the entire 8 megabytes

of RAM available to the Amiga.

Lastly, the richness of public domain software for the Amiga

continues to surprise and please me — the Fred Fish disks, the

Amicus disks, not to mention the wealth of freely distributable

software on the boards and nets. Graphics, sound, program

ming languages, games, often of high quality, are pouring forth.

A few notables: Blink and PopCLI, (the latter lets you get a new

CLI at any time, by just pressing an ESC-key combination),

from the Software Distillery; DJJames's Comm, a fine terminal

program; Fixhunk, a program you can use on programs like the

first version of Scribble! to deal with the problem of gadgets

mistakenly loaded into expansion memory (see last issue's

column); hi-res HAM graphics created with ray-tracing pro

grams on mainframes and transferred; and psound, a share

ware sampled-sound editor/player that rivals the commercial

versions from Futuresound and Mimetics.

And Alonzo Gariepy's impressive KickBench utility - this lets

you create a combined Kickstart/Workbench disk that's ideal

for such applications as bulletin board systems that must re

boot after a power failure. Lonnie has created a patch to

Kickstart that causes it to convert the Kickstart disk (during

bootup) to a standard AmigaDOS disk. If you have copied

The Transactor 75 March 1987: Volume 7, Issue O5

Workbench to your Kickstart disk (there's room only for a

stripped-down version), you can place another of Lonnie's

programs called "kick" in the startup-sequence. Kick will

rewrite the boot sectors on the disk to change it back to a

Kickstart disk so that, should the power go off, the machine will

reboot and the whole sequence start over again. It's ingenious

hacks like this that make life worth living.

Hardware News

Despite my disdain for things IBMish, the Sidecar is an impres

sive piece of hardware/software. It's a 256K PCompatible,

upgradable to 512K and with a built-in 5 1/4" drive, it can run

almost anything that can run on an XT, and display it in a

window on the Amiga. There are indeed three slots (I'm glad

the single slot idea was killed) where you can put a hard-card

that can be partitioned and used by both machines; a port for

another drive (5 1 /4" or 3 1 /2", usable by either the Sidecar or

the Amiga, but not both at the same time); and two port

extenders on the front for the mouse and joystick. Amiga

expansion memory can apparently be placed between the two

computers, partitioned, and used by both. Price in Canada will

be under a $1000, and will probably include MS-DOS. (No

keyboard port, more's the pity. Stick a display card in there,

and voila!, Siamese computers!)

Genlock should also be out shortly, after much delay. The Brits

couldn't wait and designed there own version: unlike the North

American one, it connects to the parallel port as well as the

RGBA port, can be software controlled and, according to Jez

San (author of Starglider for the Atari ST), can cause the video

signal to replace any colour on the Amiga's display. Only in

England, eh? Pity.

Jay Miner, designer of the custom Amiga chips, has announced

that Commodore is working on the next generation of the

Denise and Agnes chips. They will be able to address the full 2

Meg of chip memory; will have a much higher, non-interlaced

resolution; and the blitter will be able to move 4K blocks of

pixels rather than the current IK. These chips will be incom

patible with current Amiga 1000 hardware, but AmigaDOS

should only require a minor upgrade. It might be possible

though, to attach them to the expansion bus on a plug-in card.

Which brings to one of the more intriguing stories floating

around the nets. Commodore is eager to sell the Amiga custom

chips to third-party hardware developers. A gentleman called

Chris Barr, it appears, is engaged in serious negotiations with

C-A, to manufacture an Amiga card for a PC - that is, an entire

Amiga, complete with AmigaDOS in ROM and 4K of RAM, that

would plug into a regular PC slot! The Sidecar in reverse - the

Rumble Seat, maybe? An external drive would probably be

required to load Amiga programs, but it may be possible to

produce the card for well under $1000 (US).

Timbits

"Inside the Amiga", by John Thomas Berry, is essentially a

programming-in-C-on-the-Amiga book, something I, for

one, have been looking for to pull together the enormously

diverse information about the Amiga. This does the trick

admirably for $34.95 (Can.)... The Amigaforum in Compu

Serve is as busy as ever, but my favourite is now the Amiga

Zone on PeopleLink. The quality of the information there is

almost as good as the much more expensive CompuServe, and

there is just as much PD software, if not more. The sysops

there, CBM*HARV, DJJAMES, CBM*STEVE, and AMICUS

(John Foust) are friendly and unpretentious, and the Sunday

night CO (conference) is always well attended. Furthermore,

GSARFF and others are working on ACO (Amiga Conference).

This is like VMCO on the Mac - during CO's, the faces of the

people online are on the screen in caricature form and change

expression as the conversation flows... Auto-config is in

Kickstart so that Kickstart detects the extra ram and places the

system tables there, thus freeing up more of the chip memory

(this according to DJJAMES). There will also be a way provided

to patch Kickstart: vector tables to routines can be adjusted to

point to new routines in RAM.

Finally, Atari Corp. is going public and has issued a prospectus.

The interesting thing here is that they state that 150,000 ST's

have been sold, far less than the million or so machines

previously claimed by Compute!, and essentially the same as

the Amiga. However, the ST was released earlier, and the figure

includes European sales that have only just begun to happen

for the Amiga. The truth gets out eventually.

I would appreciate any comments or questions you may have

about the topics discussed. 1 can be reached c/o The Transac

tor, or on CompuServe (71426,1646), or on PeopleLink (AM-

TAG).

Tho TkonsQCfor 76 Morehl987:V6tume7,totue05

News BRK

Submitting NEWS BRK Press Releases

If you have a press release which you would like to submit for the NEWS BRK

column, make sure that the computer or device for which the product is

intended is prominently noted. We receive hundreds of press releases for each

issue, and ones whose intended readership is not clear must unfortunately go

straight to the trash bin. It should also be mentioned here that we only print

product releases which are in some way applicable to Commodore equipment.

News of events such as computer shows should be received at least 6 months in

advance.

Transactor News

Subscription Intersection Set

TPUG is now shipping The Transactor to its members. If you are a TPUG

member, you probably recall getting two Transactor magazines last issue. This

"overlap" situation has since been dealt with. Using a formula based on the

total number of pages, your Transactor and TPUG subscriptions have been

combined. The following chart shows how many Transactors with TPUG

inserts you'll receive based on the remainder of both combined.

Remaining: TPUGs

*T.'s

1

2

3

4

5

6

1

2

2

3

4

5

6

2

2

3

4

5

6

7

3

3

4

4

5

6

7

4

3

4

5

6

7

8

5

4

5

6

6

7

8

6

4

5

6

7

8

9

7

5

6

7

8

8

9

8

5

6

7

8

9

10

9

6

7

8

9

10

10

10

6

7

8

9

10

11

If for some reason we managed to miss an overlap and you again receive two

magazines, please let us know. There were less than 400 matches in the two

mail lists, but slight differences in names or addresses would result in unde

tected matches. These are nearly impossible to find without a thorough eyeball

search. So if you are still getting two, please call us or TPUG and the adjustment

will be made.

Although we have a list of the combined subscriptions, you won't notice any

change in the expiry date on your mailing label. Since we still need to keep

track of the expiry of each subscription, we will probably need to make changes

to our databases. Hopefully by next issue we'll have the labels adjusted too.

No More GUNKS

That's right, no more. We've just shipped the last of the G-Link C64 to IEEE

Interface, and no more will be made.

Schedule IRQ

Most of you probably thought this would be the "Simulations and Modelling"

issue. We interrupted our regularly scheduled programme to bring you this

"Languages" issue due to the abundant supply of Languages type material

we've received. We've also received very little material suitable for a Simula

tions and Modelling theme, so if you have something we might be interested

interested in, send it in soon. We now return you to our regular programming,

already in progress.

Late Note

The article "Blazin' Forth" in this issue is based on a Forth compiler actually

called "Blazin' Forth" written by Scott Balantyne. The compiler would take

eons to enter by hand so it isn't printed in the mag. It is, however, included on

The Transactor Disk for this issue.

Superpaks from Digital Solutions

Version 2.0 of the software trio from Digital Solutions is now in production. The

new packages include both the 64 and 128 versions on the same disk. Each 2.0

Pocket package will sell for $59.95 U.S. or $84.95 Cdn. A Superpak will include

all three for $99.95 U.S. or $139.95 Cdn. The Pocket Dictionary is still $14.95

U.S., $19.95 Cdn. However, they won't be available from us until next issue.

Version 1.0 is still available, and at terrific prices! The 64 and 128 versions still

come in seperate packages, and their prices can be found later in News BRK, or

on the Mail Order card. But the real deal is the special price for all three. The

C64 Superpak is $49.95 U.S. or $59.95 Cdn. Cl 28 Superpaks are $59.95 U.S. or

$69.95 Cdn. To top it off, we'll throw in the Pocket Dictionary program for free!

Free Transactor T's with Mag+Disk Subscription

For a limited time only, subscribe or renew to a combination magazine and disk

subscription, and we'll send you a free Transactor T-Shirt! You save 29% off the

magazines, 16% off the disks, and get a Transactor T worth $13.95 ($17.95 if

you order the jumbo size!) The T-Shirts come in 5 sizes (red only), with a 3-color

screen featuring Duke, our mascot, dressed in a snappy white tux, standing

behind the Transactor logo done in yellow with black "3-D" borders. The

screen was done using a special "super-opaquing" process that cost us quite a

bit more than those decals that crack and fade. Mine has been through the wash

at least 30 times now, and it still shows virtually no sign of wear due to

"washing machine punishment".

Transactor Disk Price Increase

A subscription to 6 Transactor Disks remains at $45.00. However, the price of

single order Transactor Disks has been increased from $7.95 to $8.95 each -

another good reason to take advantage of the above offer!

Refund Policy

Should any product you order be defective on receipt, return it and we'll send

you another for no additional charge. Recently we've had a few items returned

because "it's not quite what 1 wanted". We will credit your account (less

shipping and handling) for purchases of other Transactor products, but we ask

that you please be sure you need things like Micro Sleuths or RAM boards since

we can't refund your money. While we're on the subject, although we've never

had a subscriber ask for one, there are no refunds on subscriptions.

Transactor Mail Order News

New Subscription/Mail Order Card

We should have thought of this one sooner. The old mail order card brought

two main complaints from many of our readers: sending a cheque meant

pasting the card to an envelope, and the open face design left things like credit

card numbers exposed. Thanks to Fred Cusick of Newmarket Ontario, our new

card eliminates these problems. It also means we can increase the type size a

The Transactor 77 March 1987: Volume 7, tome O5

little, add more products, and still have room for some short descriptions.

However, if you're using the card to order, we still suggest you pull it out and

cross-reference with the list below for more details.

When folding up the card, please be sure the proper address shows on the

outside, if our Buffalo New York address is showing and you drop it in a

Canadian mail box (or vice versa), we're not sure what will happen to it! We are

sure it will slow things up for you. Also, please use tape to hold it together -

staples may upset the delicate balance of nature at the post office and your card

may become extinct.

■ Moving Pictures - the C-64 Animation System, $29.95

This package is a fast, smooth, full-screen animator for. the Commodore 64,

written by AHA! (Acme Heuristic Applications!). With Moving Pictures you use

your favourite graphics tool to draw the frames of your movie, then show it at

full animation speed with a single command. Movie 'scripts' written in BASIC

can use the Moving Pictures command set to provide complete control of

animated creations. BASIC is still available for editing scripts or executing

programs even while a movie is being displayed. Animation sequences can

easily be added to BASIC programs. Moving Pictures features include: split

screen operation - part graphics, part text - even while a movie is running;

repeat, stop at any frame, change position and colours, vary display speed, etc;

hold several movies in memory and switch instantly from one movie to

another; instant, on-line help available at the touch of a key; no copy protection

used on disk.

■ Volksmodem 12, w/cable, and CIS Intro-Pack, $329.00 Cdn., $199 U.S.

Not only do you get the Volksmodem 12 (DOC approved), but you get the cable

at no extra charge (the C64 cable goes directly onto the User Port, and the

RS232 cable is for any standard RS232 DB-25 female connector) Plus you'll

receive a free CompuServe Intro-Pak which contains a User ID, a Password,

and $15.00 of connect time! The Volksmodem 12 will work at 300 or 1200

baud, and is "Hayes compatible" so it will work with virtually any terminal

software because the commands are controlled by you from the keyboard - just

type "AT" (for ATtention) and follow with any of several easy-to-remember

commands - no special POKing or elaborate dialing routines necessary! (I've

been using a Hayes for almost 3 years, and my Volks for over a year -1 love

them both! - KJH) It comes with (get this) a 5 year manufacturer's warranty on

parts and labour! The modem is shipped insured via UPS at no extra charge.

■ Intelligent I/O Interface Cards

■ BH100 I/O Interface Card w/documentation $129 U.S., $199 Cdn

■ BH100-AD8 8-Channel A to D Conversion Module $45 U.S., $69 Cdn

■ BH100 Beginners Course $159 U.S., $239 Cdn

■ BH100-S Security System $25 U.S., $39 Cdn

These products from Intelligent I/O will make great Christmas gifts! And if

you've been wondering what to do with that VIC 20 that doesn't get much

attention anymore, they're perfect! If you've ever wanted to start doing some

real world interfacing, real easy, and inexpensively, then these items are ideal.

The boards they sent us for evaluation are currently watching for floods in my

basement. Too bad I didn't think of it before the flood - it only took about an

hour using spare parts I had lying around - no resistors, no capacitors, just two

strips of metal, a piece of styrofoam, a brick, and about 20 feet of wire that was

also collecting dust. Once I get time, I intend to make it do some more

surveillance since only one channel is currently in use. And the program to do

it? A quick and messy 5 lines! Since the boards are memory mapped through

the cartridge port, a PEEK is all you need! The 22 page manual is clear and

concise. All products come with a 90 day manufacturer's warranty. Shipped

insured via UPS at no extra charge.

■ Transactor T-Shirts, $13.95 and $17.95

As mentioned earlier, they come in Small, Medium, Large, Extra Large, and

Jumbo. They're 13.95 each, $17.95 for the Jumbo. The Jumbo makes a good

night-shirt/beach-top - it's BIG. I'm 6 foot tall, and weigh in at a slim 150

pounds - the Small fits me tight, but that's how I like them. If you don't, we

suggest you order them 1 size over what you usally buy. The design is screened

using a "super-opaquing" process so they wear much longer than your

ordinary screens and iron-ons.

■ The Transactor Book of Bits and Pieces *1, $14.95

Not counting the Table of Contents, the Index, and title pages, it's 246 pages of

Bits and Pieces from issues of The Transactor, Volumes 4 through 6. Even if you

have all those issues, it makes a handy reference - no more flipping through

magazines for that one bit that you just know is somewhere... Also, each item

is forward/reverse referenced. Occassionally the items in the Bits column

appeared as updates to previous bits. Bits that were similar in nature are also

cross-referenced. And the index makes it even easier to find those quick facts

that eliminate a lot of wheel re-inventing.

■ TheTr@ns@ctor 1541 ROM Upgrades, $59.95

You can burn your own using the ROM dump file on Transactor Disk #13, or

you can get a set from us. There are 2 ROMs per set, and they fix not only the

SAVE® bug, but a number of other bugs too (as described in P.A. Slaymaker's

article, Vol 7, Issue 02). Remember, if SAVE® is about to fail on you, then

Scratch and Save may just clobber you too. This hasn't been proven 100 %, but

these ROMs will eliminate any possibilities short of deliberately causing them

(ie. allocating or opening direct access buffers before the Save).

■ The Micro Sleuth; C64/1541 Test Cartridge, $89.95 US., $129.95 Cdn.

This cartridge, designed by Brian Steele (a service technician for several

schools in southern Ontario), will test the RAM of a C64 even if the machine is

too sick to run a program! The cartridge takes complete control of the machine.

It tests all RAM in one mode, all ROM in another mode, and puts up a menu

with the following choices;

1) Check drive speed

2) Check drive alignment

3) 1541 Serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

A second board, that plugs onto the User Port, contains 8 LEDs that lets you

zero in on the faulty chip. Complete with manual.

■ Inner Space Anthology $14.95

This is our ever popular Complete Commodore Inner Space Anthology. Even

after a year and a half, we still get inquiries about its contents. Briefly, The

Anthology is a reference book - it has no "reading" material (ie. "paragraphs").

In 122 compact pages, there are memory maps for 5 CBM computers, 3 Disk

Drives, and maps of COMAL; summaries of BASIC commands, Assembler and

MLM commands, and Wordprocessor and Spreadsheet commands. Machine

Language codes and modes are summarized, as well as entry points to ROM

routines. There are sections on Music, Graphics, Network and BBS phone

numbers, Computer Clubs, Hardware, unit-to-unit conversions, plus much

more... about 2.5 million characters total!

■ The Toolbox (PAL and POWER) $79.95

PAL and POWER from Pro-Line are two of the most popular programs for the

Commodore 64. PAL is an easy-to-use assembler (most assembler listings in

The Transactor are in PAL format), and POWER is a programmer's aid package

that adds editing features and useful commands to the programming environ

ment. They come with two nice manuals, and our price is $50 less than

suggested retail!

■ AX1000 Amiga 1 MEG RAM Box $729.00 (+ $100 S&H) U.S.,

$1035.00 (+$25 S&H) Cdn

■ AX2000 Amiga 2 MEG RAM Box $899.00 (+ $100 S&H) U.S.,

$1276.00 (+$25 S&H) Cdn

The AX2000 adds 2 Megabytes of "fast" RAM to the Amiga, allowing more tasks

to run in the system at once, or for use as a fast RAM-drive. The unit plugs into

the expansion connector on the side of the Amiga and duplicates the connector

for other devices to plug into. Up to two RAM boards may be plugged in

together (limited by the Amiga'a power supply), adding 4 Megabytes. The box

has "auto-config", so with Kickstart 1.2 the RAM will automatically be added to

the system when it is booted. If you are using Kickstart 1.0 or 1.1 (no auto-

The Ttansoctof 78 Moich 1987: Volume 7, Issue OS

config), you can use the program included with the AX2000 to add the memory

to the system, and change your startup-sequence to automatically add the

memory on power-up. Standard expansion bus architecture was used in the

design of the AX2000, ensuring compatability with all peripherals and operat

ing system releases. The unobtrusive steel box is the same height and colour as

the Amiga, and snugs up to the side without taking up much extra space. The

unit is built tough and comes with a 1 year manufacturer warranty.

This seems to be the most highly-recommended Amiga RAM board, and the

first one to actually be available, so we're selling it here at The Transactor. You

can order the AX2000 or the 1-Meg AX1000 from the subscription form in this

issue. Shipping and Handling to the U.S.A. is via courrier and includes all

customs clearance, or you can opt to clear shipments yourself and have it

shipped "collect".

■ Superpakl.O C64 $49.95 US, $59.95 Cdn

■ Pocket Writer C64 $29.95 US, $39.95 Cdn

■ Pocket Planner C64 $29.95 US, $39.95 Cdn

■ Pocket Filer C64 $29.95 US, $39.95 Cdn

■ Superpak 1.0 C128 $59.95 US, $69.95 Cdn

■ Pocket Writer C128 $39.95 US, $49.95 Cdn

■ Pocket Planner C128 $39.95 US, $49.95 Cdn

■ Pocket Filer Cl28 $39.95 US, $49.95 Cdn

■ Pocket Dictionary $ 14.95 US, $ 19.95 Cdn

As mentioned earlier, you can now get all 4 programs from Digital Solutions for

one low price! In fact, even if you average the price of all four, it comes to less

than the price of two!

■ The TransBASIC Disk $9.95

This is the complete collection of every TransBASIC module ever published up

to Volume 7, Issue 01. There are over 120 commands at your disposal. You pick

the ones you want to use, and in any combination! It's so simple that a

summary of instructions fits right on the disk label. The manual describes each

of the commands, plus how to write your own commands.

■ Super Kit 1541 $29.95 US, $39.95 Cdn

Super Kit is, quite simply, the best disk file utility there is. No more losing those

valuable copy-protected originals (like what's happened to me twice too many

times). So far we've shipped over 600 Super Kits and orders continue to pour in.

■ Gnome Speed Compiler $59.95 US, $69.95 Cdn

This compiler is for BASIC 7.0 on the Commodore 128.

■ Gnome Kit Utility $39.95 US, $49.95 Cdn

Gnome Kit is a Commodore 128 utility with enhancements for the BASIC editor

(like Trace, Find, Renumber, Delete, Auto, etc.) as well as enhanced monitor

commands, and floppy disk monitor functions.

Transactor Disks, Transactor Back Issues, and Microfiche

All issues of The Transactor from Volume 4 Issue 01 forward are now available

on microfiche. According to Computrex, our fiche manufacturer, the strips are

the "popular 98 page size", so they should be compatible with every fiche

reader. Some issue are ONLY available on microfiche - these are marked "MF

only". The other issues are available in both paper and fiche. Don't check both

boxes for these unless you want both the paper version AND the microfiche

slice for the same issue.

To keep things simple, the price of Transactor Microfiche is the same as

magazines, with one exception. A single back issue will be $4.50 and subscrip

tions are $15.00. The exception? A complete set of 18 (Volumes 4,5, and 6) will

cost just $39.95!

This list also shows the "themes" of each issue. "Theme issues" didn't start

until Volume 5, Issue 01. The Transactor Disk *1 contains all program from

Volume 4, and Disk *2 contains all programs from Volume 5, Issues 1-3.

Afterwards there is a separate disk for each issue. Disk 8 from The Languages

Issue contains COMAL 0.14, a soft-loaded, slightly scaled down version of the

COMAL 2.0 cartridge. And Volume 6, Issue 05 published the directories for

Transactor Disks 1 to 9.

■ Vol. 4, Issue 01 (■ Disk 1) ■ Vol. 4, Issue 04 - MF only (■ Disk 1)

■ Vol. 4, Issue 02 (■ Disk 1) ■ Vol. 4, Issue 05 - MF only (■ Disk 1)

■ Vol. 4, Issue 03 (■ Disk 1) ■ Vol. 4, Issue 06 - MF only (■ Disk 1)

■ Vol. 5, Issue 01 - Sound and Graphics (■ Disk 2)

■ Vol. 5, Issue 02 - Transition to Machine Language (■ Disk 2)

■ Vol. 5, Issue 03 - Piracy and Protection - MF only (■ Disk 2)

■ Vol. 5, Issue 04 - Business & Education - MF only (■ Disk 3)

■ Vol. 5, Issue 05 - Hardware & Peripherals (■ Disk 4)

■ Vol. 5, Issue 06 - Aids & Utilities (■ Disk 5)

■ Vol. 6, Issue 01 - More Aids & Utilities (■ Disk 6)

■ Vol. 6, Issue 02 - Networking & Communications (■ Disk 7)

■ Vol. 6, Issue 03 - The Languages (■ Disk 8)

■ Vol. 6, Issue 04 - Implementing The Sciences (■ Disk 9)

■ Vol. 6, Issue 05 - Hardware & Software Interfacing (■ Disk 10)

■ Vol. 6, Issue 06 - Real Life Applications (■ Disk 11)

■ Vol. 7, Issue 01 - ROM / Kernel Routines (■ Disk 12)

■ Vol. 7, Issue 02 - Games From The Inside Out (■ Disk 13)

■ Vol. 7, Issue 03 - Programming The Chips . (■ Disk 14)

■ Vol. 7, Issue 04 - Gizmos and Gadgets (■ Disk 15)

■ Vol. 7, Issue 05 - Languages II (■ Disk 16)

Industry News

The following items, compiled by Astrid Kumas, are based on press releases

recently received from the manufacturers. Please note that product descrip

tions are not the result of evaluation by The Transactor.

Sorry, Wrong Number

Arghg! Two wrong numbers actually. The phone number of SoftTools, page 80

of the last issue, should be (514) 739-3046. The number for Innovative

Software, also on page 80, should be (215) 372-5438. Our apologies for any

inconvenience these errors may have caused.

The MSD DOS Reference Guide

David Martin plans to release his first book publication on December 1,1986.

The book entitled, "The MSD DOS Reference Guide", is for MSD single and

dual drive owners who are interested in exploring their drive's Operating

System. The guide provides a fully commented RAM map and source code

ROM memory map. The ROM maps consist of source code so that a program

mer can follow the inner workings of the DOS much more easily. The book also

provides some nifty programs (utilities, etc.) that are ready to key in and enjoy.

A separate disk is available for folks that are too busy to type in the book's

programs. It will also include a collection of MSD public domain utilities as an

added bonus.

USA $20.00 Book $6.00 Disk $3.00 shipping (add $5.00 for COD)

Canada $30.00 Book $8.00 Disk $7.00 shipping

Make cheques payable to David W. Martin

1417 South Heron Drive

Seabrook, Texas, USA, 77586

New Services on QuantumLink

QuantumLink, a telecommunication service for Commodore computer owners

across United States and Canada, has added several new options to their

information and entertainment sections.

QuantumLink has recently added to its service a forum for users of GEOS.

GEOS, (Graphic Environment Operating System), is an icon- and menu-based

software program that gives a Commodore computer the look and feel of a

Macintosh. The new interest group provides support via Question and Answer

The Transactor 79 March 1987: Volume 7, taue O5

sessions with the developers of GEOS (Berkeley Softworks), conferences to

discuss GEOS applications, and news on the latest GEOS developments and

software.

In an effort to allow QuantumLink members to visualize their online acquaint

ances via digitized photos, an online Photo Gallery has also been introduced.

Special photographic equipment converts subscriber photographs into com

puter programs. Each program is then placed online in the Photo Gallery for

other users to download and display.

The Mall, QuantumLink's shopping section, has been expanded to include

additional discounted products and a live auction.

RockLink, QuantumLink's most entertaining addition, offers the latest news

and information on all aspects of the music industry. Special guests, including

musicians, writers and producers from around the world, appear monthly for

online discussions in the Auditorium. RockLink offers a rock library of

historical hits, a music review board for users to post their own opinions, a daily

music trivia question, backstage gossip, information on recent video releases,

concert dates etc.

Users who would like to subscribe for the QuantumLink services can obtain

more information by calling 800-392-8200. QuantumLink's basic service costs

$9.95 US a month and can be accessed with a Commodore 64 or 128 computer.

PaperClip II for C-128

Batteries Included have re-designed their best-selling wordprocessor Paper

Clip for use on Commodore 128. The new version, called PaperClip II, is now

available for $99.95 Cdn. or $79.95 US. PaperClip H's new features include:

• multiple columns, reverse video scroll, chaptering;

• fast, integrated 30,000-word spelling checker;

• maximum document size expanded to 999 lines;

• built-in telecommunications module to access on-line services;

• compatibility with C-64 PaperClip text files.

In preparation is PaperClip Elite - PaperClip's version for the Amiga. It will be

released some time next year. For more information, contact:

Batteries Included

30 Mural Street

Richmond Hill, ON

L4B1B5 (416)881-9941

New Products for C-128 from Abacus

Abacus Software has announced the release of three productivity packages for

the Commodore 128 computer.

SpeedTerm 128 is a command driven terminal program that can be used with

most modems for the C-128. In addition to the standard options, it also offers

support for Xmodem and Punter file transfer protocols, VT52 and VT100

terminal emulation with cursor keys, a 45K capture buffer and user definable

function keys.

TAS-128 is a technical analysis system for stock market charting. Using TAS-

128, the investor can automatically download indicators from DJN/RS or

Warner and then build a variety of charts on the split screen: 7 moving

averages, 3 oscillators, 5 volume indicators, comparison charts, trading bands,

least squares and others. The user can also take advantage of such features as

automatic and unattended logon, fast-draw charts using up to four windows,

and macro capabilities.

The last of the newly released products is PPM-128, an upgraded C-128

version of Personal Portfolio Manager for tracking the performance of stocks,

bonds or options.

Suggested retail price for each of these products is $59.95 US. For more

information, contact:

Abacus Software

2201 KalamazooS.E.

P.O. Box 7211

Grand Rapids Ml

49510(616)241-5510

Extend-A-Key

Extend-A-Key is a small device from Cox Enterprises. It should come handy to

users who upgraded from C-64 to C-128 computer, and at the same time own a

lot of C-64 software. Many old copyright protected programs operate only with

an accompanying key made for the C-64. The same key most often does not fit

into the C-128. Extend-A-Key allows for a simple retrofit of old keys and old

software to the new C-128. The device plugs directly into the joystick port on

the C-128.

The price for Extend-A-Key is $6.95 US including postage. The orders should,

be sent to:

Cox Enterprises

883 S.E. Bethel Place

Corvallis OR

97333

Aegis Art Pak, Volume 1

There is a new addition to Aegis' line of graphics software for the Commodore

Amiga.

The Art Pak series is designed to provide the Amiga user with precreated art. It

can be used with the Aegis Images professional paint program, Aegis Animator,

and with Aegis Draw, the entry-level CAD program for the Amiga. Art Paks

retail for $34.95 US each.

Volume 1 includes photograph quality artwork of buildings, which can serve as

backdrops, or as pieces of eel animations for creating one's own moving

animations. For additional information, contact:

Aegis Development, Inc.

2210 Wilshire Blvd. *277

Santa Monica CA

90403(213)306-0735

File Archive Utility for the C-64

ARC, a new product from Ampere Metal, creates file archives using data

compression techniques. It allows the user to combine any number of related

files into a single archive file which is generally 20 to 60 per cent smaller than

the combined lengths of the original files. Archives can later be dissolved to

obtain exact duplicates of the contained files.

ARC is available as an extension to the BASIC interpreter and adds several

direct mode commands including a simple text editor and an MS DOS like disk

interface. ARC supports multiple drives. An 80-column version is available for

the Batteries Included BI-80 adaptor.

ARC sells for $20.00 US, and can be ordered from:

Ampere Metal

80 Hale Road, Unit 4

Brampton, Ontario

Canada, L6W3M1.

The Transactor 8O March 1987: Volume 7, Issue O5

$29.95

"Sixth Sense 64v $39.95
It answers your phone, makes your calls, acts on both.

Sounds outrageous! It is! The Sixth Sense 64 modem software

understands a macro language that operates based on the time

of day, data received, internal counters or provided templates.

Over 160 functions at your control!

• 700 virtual line screen • 16 macro keys

• 16 condition strings spot prompt/initiate responses

• Clock functions key operations/stamp incoming data

Sixth Sense 128 $49.95
The spectrum of Prism expands to enhance your Commodore

128. With Sixth Sense 128 comprehensive modem control isn't a

mission impossible.

Sixth Sense 128 is the most comprehensive modem control

available. It operates based on the time of day, data received,

internal counters or provided templates. Harness the explosive

capabilities of Sixth Sense to do your next mission impossible.

• 800 line buffer/7,200 lines maximum with expanded RAM

• 20 active macros • Runs in 80 columns only

• 42 prewired command keys -10 to wire your way!

• Line/screen editors • SEARCH/GOTO commands in buffer

• CompuServe "B" & XMODEM CRC/Checksum file transfer protocol

Dataquick 64 $19.95
Extra! Extra! Calling all potential BBS and Exchange Operators!

Once again Prism Software offers the latest in software for the

Commodore 64 user! Now with Dataquick 64 you can operate a

BBS with 8 message bases and 10-25 messages per base.

Included with Dataquick is the Lightning Exchange which

makes multi-file transfers quick and easy.

Dataquick's EXTRAordinary features:

• Supports 1650/1660/1670, Westridge, Master Modem,

Volksmodem 12 & Hayes compatible modems.

• Supports 1-4 disk drives. • Supports new Punter protocol.
• Control access to drive 10 & 11. Restricts to high level users.

• Secure - users see only what you let them see. 10 access

levels for sysop control. Records hackers and leeches.

• Poll function - Storyboard - E-mail - Macros!

• Complete sysop support-documentation, maintenance

programs, samples, setup programs & membership to private

support line.

Lightning Exchange's shocking features:

Multi-file transfer

Superkit 1541
version 2.0 by Marty Franz & Joe Peter

SINGLE NORMAL COPIER - Copies a disk with no errors in 1

minute. Corrects all disk errors.

DUAL NORMAL COPIER - Copies a disk in 33 seconds with a

graphic/music display while working.

SINGLE NIBBLER - Nibble copies a protected disk in 1 minute.

DUAL NIBBLER - Nibbles a disk in 30 seconds and has a

graphic/music display while working. It's capable of copying

elongated headers, extra sectors and non-standard GCR.

FILE COPIER - Full screen display including buffer, starting

track & sector, file being copied and revives deleted/corrupted

files.

TRACK & SECTOR EDITOR - Capable of reading to track 40

and examines data under errors. Full editing capabilities in

HEX, ASCII or text. An ML monitor is built-in.

GCR EDITOR - Allows examination of a disk in its raw format

including the header, density, sync marks and non-standard

GCR bytes. You can even examine a full track at a time. It's a

great way to learn disk protection methods!

SUPER NIBBLER - The most powerful nibble available. It even

detects and duplicates density changes automatically.

DISK SURGEON - This is what a parameter copier should be! It

copies and places parameters on the disk. Now, over 400

parameters are included.

SUPER SCAN - Gives a video or printer display of errors and

density on a disk in under 35 seconds.

SUPER DOS FAST LOADER - Loads 150 blocks in 10 seconds.

It also includes an Auto-Boot maker.

All programs work with 1541/1571 single side drives made. All of

the copiers are the fastest on the market and include directory

options. The File Copier, Track & Sector Editor, Super Nibbler

and Disk Surgeon use 1 or 2 drives and include device number

change. All programs re-boot to main menu. SUPERKIT has an

easy to use menu-driven operation! Version updates are $10.

Parameter updates are $6.

Plus $3.00 Shipping/Handling Charge - $5.00 C.O.D. Charge

All of these programs come on a double-sided disk.

PRISM
SOFTWARE

401 Lake Air Drive, Suite D Waco, Texas 76710

Orders/Tech Help (817) 751-0200

Dealers and distributors are welcome.

_ _ MASTERCARDS VISA ACCEPTED
Supports same modems as Dataquick 64
Built-in terminal • Supports 1 -4 disk drives SUPERKIT 1541 is for archival use only! We do not condone nor encourage piracy of any kind.

THE TIME SAVER

Type in a lot of Transactor programs?

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $8.95 Per Issue

6 Disk Subscription (one year)

Just $45.00

(see order form at center fold)

Also check out the TransBASIC Disk

Complete with 24 page manual, just $9.95! .

