
The Tech/News Journal For Commodore Computers

95% Advertising Free! Jan. 1987: Volume 7, Issue 04. $3.50

idaets
An Inexpensive Robot Project

C64 Frequency Counter

Universal RS-232 Cable

C64 Capacitance Meter

EPROM Programmer

C12848K RAM Disk

C64 RAM Cartridge

Printerface Reset

Modem Emulator

Amiga Dispatches

MFM on the 1571

C64 Mini-Tra

Plus: CompuServe, Transactor's

New Online Headquarters!

And: Stamping out 1541

REL File Bugs!

FREE

T-Shirt

Offer!
see page 77

If you want to get the most out of your Commodore 128 or 64,

we have goods news for you. The Pocket 128 and 64 Series

of Software both offer you serious, professional quality

software packages that are easy to use and inexpensive.

low easy?

Pocket 128 or 64 Software is so easy, you're ready to start

using it as soon as it's loaded into memory. Even if you've

never been in front of a computer before, you'll be up and

running in thirty minutes. In fact, you probably won't ever need

the reference guide ... 'help' is available at the touch of a key.
That's how easy.

nous?

Pocket 128 or 64 packages have all the power you're ever

likely to need. They have all of the features you'd expect in

top-of-the-line software, and then some. The good news is that
Pocket 128 or 64 Software Packages are priced way down

there ... where you can afford them.

Fast, powerful, easy to learn and inexpensive.

Say, that is good news!

Ill for one ai

Pocket 128 or 64 Software Packages offer you something

else you might not expect... integration. You can combine the

output of Pocket Writer, Pocket Filer and Pocket Planner

into one piece of work. You can create a finished document

with graphs, then send individually addressed copies.

The bottom line is Solutions

The word solutions is our middle name and bottom line. When

you purchase Pocket 128 or 64 software, you can count on

it to solve your problems.

Digital Solutions

30 Werlheim Court. Unit 2
Richmond Hill, Ontario

Conoda L4B 189

telephone (416} 731-8775

■

PocketWriter 128 or 64
Word Processing

What you see is what you get

With Pocket Writer 128 or 64, there's no more guessing

what text will look like when you print it. What you see is what
you get... on screen and in print. There are no fancy codes to
memorize, no broken words at the end of a line.

Easy to learn and sophisticated. Pocket Writer 128 or 64
offers standard word processing features plus...

• on-screen formatting and
wordwrap

• on-screen boldface,

underlines and italics

no complicated format
commands to clutter text

on-screen help at all levels

• spelling-checker lets you add
words to your dictionary

40 or 80 columns on screen

files compatible with
PaperClip™ or other word
processors

Pocket Planner 128 or 64
Computerized Spreadsheet

Make fast work of budgeting and

forecasting

Pocket Planner 128 or 64 software lets you make fast work
of all your bookkeeping chores. Cheque books, household
accounts, business forecasting and bookkeeping are just some
of the jobs that Pocket Planner 128 or 64 packages make
easier. You can even create four different kinds of graphs.

Accurate, sophisticated and easy to use. Pocket Planner
128 or 64 offers standard spreadsheet features plus...

accuracy up to 16 digits,

about twice as many as most

spreadsheets for the

Commodore 128 or 64

sideways printing available on
dot matrix printers, for
oversized spreadsheets that
won't fit on standard paper

< on-screen help at all levels

compatible with VisiCalc1" files

80 column on-screen option

for the Commodore 64 in
addition to the standard 40

columns

graphics include bar,

stacked bar, line and pie
graphs that can also be used

in word processing files

smart evaluation of

formulae for accurate
complex matrices

Pocket Filer 128 or 64
Database Manager

Database management made easy

With Pocket Filer 128 or 64, you can organize mailing lists,
addresses, inventories, telephone numbers, recipes and other
information in an easily accessible form. Use it with Pocket
Writer 128 or 64 (or other word processors) to construct

individually customized form letters.

Pocket Filer 128 or 64 packages are fast, sophisticated and
truly easy to use. In addition to standard database features
they offer...

• optional password protection
including limited access

viewing or updating

• on-screen help at all levels

• print from any record to any

record

use up to 255 fields per record
(2,000 characters per record)

1 sorts by up to 9 criteria, can
save 9 different sorts

"*PoperClip is a registered traderr

al Batteries Included

print labels in multiple

columns

flexible report formatting

including headers and
footers

arithmetic and trigonometric
functions in reports using up

to 16 digit accuracy

'vVisicalc ts a registered traderr

So/lwore Arts

Solutions!

Pocket
Writer 64

MAILORDERS:

Transactor Publishing Inc.

5OO Steeles Avenue

Milton, Ontario. L9T 3P7

1-416-878-8438

Or use order card at center.

Only The

Name Is New

The professional,

full-featured software

line from Digital Solutions

is now called Pocket

Software.

Pocket Writer 128/64.

Pocket Filer 128/64.

Pocket Planner 128/64.

The names are new, but

this super software is still

the same.

From now on, when you

hear the word Pocket, it

means software that's

full-featured, handy and
easy to use.

Pocket Software at prices
that won't pick your

pocket.

Serious software

that's simple to use.

PW 128/64 Dictionary
also available at S14.95 (U.S.)

Pocket
er64

Pocket
128

Your Commodore 128 or 64

You want the very best software you can find for your

Commodore 128 or 64, right?

You want integrated software — word processing,

database and spreadsheet applications — at a sensible
price. But, you also want top-of-the-line features.

Well, our Pocket 128/64 software goes one better.

>uil find all the features you

n imagine... and then some. And Pocket 128/64 is so

easy to use, you won't even need the reference guide.

On-screen and in memory instructions will have you up

and running in less than 30 minutes, even if you've never
used a computer before.

The price? It's as low as you'd expect for a line of
software called 'Pocket'. Suggested Retail Price for the 64
software is $39.95 (U.S.) and $49.95 (U.S.) for the 128.
Any of the 64 products may be upgraded to their 128
version for $15.00 (U.S.) + $3.00 shipping and

handling. (Available to registered owners from Digital
Solutions Inc. only.)

Pocket Writer 128 or 64, Pocket Planner 128 or 64 and
Pocket Filer 128 or 64... Solutions at sensible prices
from Digital Solutions Inc.

International & Distributor enquiries to:

' Digital

Solutions

30 Wertheim Court, Unit 2
Richmond Hill, Ontario
Canada L4B 1 B9
telephone (416) 731-8775

Pockef Writer 128 and 64 are now available in French.

THE TIME SAVER

Type in a

..e above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $8.95 Per Issue

6 Disk Subscription (one year)

Just $45.00

(see order form at center fold)

Also check out the TransBASIC Disk

Complete with 24 page manual, just $9.95!

See The TransBASIC Column in this issue.

Volume 7

Issue 04
Circulation at Large

72,000

Gizmos and Gadgets

Start Address Editorial 3

Bits and Pieces 5 Letters 10
C-64 RESTORE Key Sensitizer No Fun In GAMES
A Quirk In Calculated Array Subscripts £128 Memory Questions Plus More
,, ., „.. , .„..,...,/ To the readers (and editors) of the Transactor
Unassembler Files to SYMASS 3.13 Pe(e Baczor To The Rescue

Using the DOS Wedge With Two Drives sky Trave, lost and Found

Fast File Looking Back At The 1541 Head Cleaner

Modifying The Epyx Fast Load Cartridge Omni Reader Update

1541 Disk Swap Checker Moving With Caution

Easy Retrieval of Last Filename Used North American Commodore For Use In Europe

Chromatic Scale Register Values

C-64 Underlined Characters NeWS BRK 77
Machine Language Debugging Tip Submitting NEWS BRK Press Releases

Twisted Sister Goes Digital Transactor Writer's Guide Finally Finished

Touch Typer's Trick ?tee Transactor T's with Mag + Disk Subscription

Program Stashing Transactor Disk Price Increase

C-128 Additional BASIC {^ Pollcy
Accessing the 80-Column Chip Transactor Mail Order News
C-128 HELP and RUN/STOP definition Transactor Disks, Back Issues, and Microfiche

C-128 80-column CHAR bug Sending Cheques For Transactor Products

Protect Those Vectors! The Transactor Communications Disk

Printing Greeting Cards with Deluxe Paint MARCA 1986

The Autographed Amiga IM^S&^.ng
Digital Sound, Digital Drums

Do-it-yourself Amiga Calculator

Interrogate, Modify and Trace

BusMate from ICS

TransBASIC Installment #12 15

the first for a new regular feature 19

test your BBS system without using the telephone 24

RS-232 Cable a do-it-yourself gender mender 26

reset your printer without powering down £u

The C64 Capacitance Meter 30

C64 Frequency Counter 34

An Inexpensive Robot Project 37

EPROM Programmer with personality modules for 5 different EPROMs ... 42

C64 RAM Cartridge a programmable cartridge that's easy to erase 49

C128 48K RAM Disk expand video memory to 64K 54

Banking On The TumS Cl28 architecture updates from Jim Butterfield ... 56

OOtt Write PrOteCt protect disks from erasure without the tabs JO

Amiga DiSpatcheS the latest on the Amiga front 60

MFM On the 1571 make the 1571 read almost any disk format 63

C64 Mini-TraCer works in low res and high res modes 68

billion S Raid squashing 1541 bugs, this time on relative files 7«J

Compu-toons 81

Note: Before entering programs,

see "Verifizer" on page 4

Tho Transocfor Jan. W87: Volume 7. taueO4

Tfdnsoctor
n» T»ch/H«w» Jewnnol Fof RmwwdMi Coiiq>y»»ii

Editor in Chief

KarlJ. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

D'Artagnan Editor

Nick Sullivan

Art Director

John Mostacci

Administration & Subscriptions

Anne Richard

Kathryn Holloway

Contributing Writers

Ian Adam

Jim Barbarello

Tim Bolbach

Anthony Bryant

Tim Buist

John Bush

Jim Butterfield

Betty Clay

Gary Cobb

Jack Cole

Tom K. Collopy

Robert V. Davis

Elizabeth Deal

Rolf A. Deininger

Frank E. DiGioia

Paul T. Durrant

Michael J. Erskine

Jack Farrah

William Fossett

Jim Frost

Miklos Garmaszeghy

Martin Goebel

R. James de Graff

Tim Grantham

Bob Hayes

John Holltum

David Hook

Tomas Hrbek

Robert Huehn

Tom Hughes

David Jankowski

Bob Jonkman

Mark Jordan

Clifton Karnes

Lome (Classen

Jesse Knight

James E. LaPorte

William Levak

James A. Lisowski

Scott Maclean

Don Maple

David Martin

Steve McCrystal

Stacy Mclnnis

Jim McLaughlin

Steve Michel

Chris Miller

Terry Montgomery

Michael Mossman

Gerald Neufeld

Noel Nyman

Kevin O'Connor

Dave Pollack

Richard Perrit

Terry Pridham

Raymond Quirling

Gary Royal

John W. Ross

David Shiloh

Fred Simon

P. A. Slaymaker

Edward Smeda

Darren J. Spruyl

Aubrey Stanley

David Stidolph

Richard Stringer

Karel Vander Lugt

Audrys Vilkas

Steven Walley

Jack Weaver

Evan Williams

Chris Wong

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower

case mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o"

will of course be in lower case. Secondly, the lower case L (T) is a straight line as opposed to the

number 1 which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours,

or function keys. These will also be shown exactly as they would appear on your screen, but

they're listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor

Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of

spaces you insert will not be critical to correct operation of the program. When it is, the required

number of spaces will be shown. For example:

print'' flush right' - would be shown as - print' '[10 spacesjflush right''

Cursor Characters For PET / CBM / VIC / 64

Down - Q

Up -■

Right - |

Left - [Lft]

RVS -D
RVS Off - ■

Insert - Q

Delete - Q

Clear Scrn -

Home

STOP §

Colour Characters For VIC / 64

Black - H

White - Q

Red - Q

Cyan - [Cyn]

Purple - [Pur]

Green - |

Blue - ■

Yellow- [Yel]

Orange

Brown

Lt. Red

Greyl

Grey 2 - £

Lt. Green - |]

Lt. Blue - E

Grey 3 - [Gr3]

Function Keys For VIC / 64

n
F2- Q

F3- ||

F4- n

F5-

F6-

F7-

F8-

Production

Attic Typesetting Ltd.

Please Note: The Transactor's

phone number is: (416) 878-8438

Printing

Printed in Canada by

MacLean Hunter Printing
The Transactor is published bi-monlhly by Transactor Publishing Inc., 500 Sleeles Avenue, Milton,
Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class
poslage paid at Buffalo, NY, lor U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor. 277 Linwood Avenue, Buffalo, NY, 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore
Incorporated. Commodore and Commodore product names (PET, CBM, VIC. 64) are registered trade

marks of Commodore Inc.
Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 878 8438. Note: Subscriptions are handled at this address ONLY.

Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use

postage paid card at center of magazine.

U.S.A. Distributor:

Capital Distributing

Charllon Building

Derby, CT

06418

(203)735 3381

(or your local wholesaler)

Quantity Orders:

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J5B4

(416)842 1555

(or your local wholesaler)

Norland Communications

251 Nipissing Road, Unit 3

Milton, Ontario

L9T4Z5

416 876 4774

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 04, 05, 06, and Vol 5 Issues 03,

04 are available on microfiche only

Still Available: Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04, 05, 06. Vol. 6: 01, 02, 03, 04, 05, 06.

Vol. 7:01,02,03,04

Back Issues: $4.50 each. Order all back issues from Milton HQ.

Editorial contributions are always welcome. Writers are encouraged to prepare material according to
themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per
printed page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft,
Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos or illustrations wili be included with articles depending on quality. Authors submitting diskettes
will receive the Transactor Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please

re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.

Programs listed in The Transactor are public domain; free to copy, not to sell.

Tt>© Ttansoctof Jan. 1987: Volume 7, touoO4

Not Enough Minutes in an Hour!

About 5,356,800 seconds ago I was ending my last editorial. And

believe me, every one of those seconds were squeezed for every

fraction! If anyone's interested, I always write page 3 last. Once the

other 79 pages are complete, it allows me to concentrate on this task

alone, as opposed to dealing with 79 others simultaneously. In about

11 hours from right now, I'll be boarding a flight to L.A. for the WCCA

show that starts Saturday - and I have yet to pack! This kind of time

accounting has been daily routine since the last Start Address, and

squeezing a summary into one page is going to be a challenge. Here

goes.

After catching up on some much needed sleep (re: V7,103, pg3) it was

back to work on the Bits Book. The typesetting equipment centers

around a 12 year old, 10 meg hard drive - the kind with the

removable platter. It's a multi-user system with 4 work stations. The

odd read/write error meant re-booting the system from scratch (3

min.). Occasionally a "refresh" would be necessary to unscramble

files containing hours of work (20 min.).

Meanwhile, Chris was working frantically on the 1541 upgrade ROMs,

Richard was drowning in articles for this issue, and no sooner was the

Bits Book done, when CompuServe calls requesting we meet to

discuss the operation of their Commodore section. August 31 was on a

plane to Columbus (no long weekend for me). Airport to CompuServe

HQ (25 min.). At 3:00 AM we weren't half way through the list of

details. 8:30 Monday morning we were back at it, and didn't stop 'till

after midnight.

Previous to this 1 had already planned to visit Capitol Distributing in

Derby Connecticut. Between there and Columbus lies West Chester.

Tuesday at 7:15, take off for Philadelphia. I dropped in on Paul

Higginbottom, Dave Berezowski, Liz Deal, Bob Albright, and a num

ber of others. Three 17-hour days later, I'm back at Philadelphia being

told my luggage isn't going to make it to my plane bound for New

Haven, and of course, the gate is the furthest one down the corridor.

Philly to New Haven (1 hour), to Capitol (25 min.), and through a list of

magazine distribution concerns in one afternoon. Back to New Haven,

land in LeGuardia, off to Toronto, arrive Friday the 8th, 9 PM.

Ah, this weekend I'm going to relax, or so I thought. Waiting for me at

home was my CompuServe manuals, and a package of hardware from

Intelligent I/O. Then I get a call from The Toronto PET Users Group.

'How much would you charge us to supply Transactors to TPUG

members with a bound-in TPUG insert?". Coming up with a price was

the simplest part. The details involved would prove to be enormous.

Foremost was the extent of subscribers that subscribe to both TPUG

and The T. Fortunately our mailing lists are both maintained using the

IBM Manager. A quick analysis (10 hours, thanks to Rich and Chris)

would show an overlap of just 350 dual subscribers. A meeting or two

later, it was set - the next Transactor would be supplied to almost

9,000 more people than before.

IRQ: For this issue only, there will be about 350 subscribers receiving

two copies of The T. One will contain a TPUG insert, one won't. We

have a plan to eliminate this duplication, but there just wasn't time to

implement it for this issue. A refund would be impractical as some

U.S. subscribers would end up paying $7.00 U.S. to cash a cheque for

an average of $7.50 Canadian. We've tossed around several ideas

including free books, disks, etc., gift subscriptions, and extending

subscriptions. One way or another, if you're part of the subscriber

intersection set, you'll receive the full dollar value of material you paid

for, if not more. The next issue will have all the details.

RTI: September 1, Nick Sullivan, Editor of TPUG Magazine joins The

Transactor. Producing the insert would require time that none of us

had, not to mention the additional task of managing the CompuServe

activity. The issue you're holding was already underway, and the

typesetting equipment was feeling more ill than ever. System crashes

were more frequent, approaching logarithmic - where "number of

terminals in use" was the exponent. Needless to say, this was making

it difficult to get any work done, and the trip to L.A. was coming up

fast. If the T. wasn't finished, I would have to cancel. Donna and

Richard are expecting a new addition to their family, and it was

looking like Nick was about to take his first business trip.

Then the ultimate disaster. Tuesday September 2 it was raining most

of the day, and well into the night. I left the typeshop at about 4:00

AM., only to arrive home and find two feet of water at the bottom of

my stairway. It took about 3 seconds to sink in, that if there's two feet

of water at the bottom of the stairs, there's also two feet of across the

entire basement! This, of course, includes my computer room where I

do nearly all of my end of the production. The power bar to my

equipment was completely submerged. Also, a VCR, an oscilloscope,

guitars, amplifiers, our TV, hundreds of books and magazines (most

collectors items), the Anthology original film, two drawers full of

diskettes, our furniture and carpeting, washer/dryer, furnace, floor

freezer, and dozens of other items were damaged or completely

ruined. About $12,000 in losses total. Wednesday we gutted the entire

basement. Our driveway and backyard had so much strewn about

articles, it looked like a garage sale convention.

Surprisingly, not one piece of computer equipment was affected. In

fact, my SuperPET was still running my terminal program to the

modem and the 64 was still flashing its cursor! So much for the theory

of unfriendly relations between water and electricity. A few days later

my transformer to the 64 packed it in, but I think it was approaching

fubar anyway. And I must admit, our TV converter box was burnt to a

crisp! The whole ordeal sliced about 4 days out of my forecast.

Well, our basement is almost dry, CompuServe is buzzing and we're

all getting up off the steep part of the learning curve, the magazine is

done, and I'm going home to pack - I've got 9 hours. So, correction, it

was 5,308,200 seconds ago I was typing.. .

There is nothing as constant as change, I remain

Karl J.H. Hildon, Editor In Chief

and I just remembered, the cover still isn'l finished - Arghg!

Tho Transactor
Joa 1987: Vbiume 7, Issue O4

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from the

pages of The Transactor. It will let you check your work line by line as

you enter the program, and catch frustrating typing errors. The

VERIFIZER concept works by displaying a two-letter code for each

program line which you can check against the corresponding code in

the program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or

C64, Plus 4, C128, and B128. Enter the applicable program and RUN

it. If you get a data or checksum error, re-check the program and keep

trying until all goes well. You should SAVE the program, since you'll

want to use it every time you enter one of our programs. Once you've

RUN the loader, remember to enter NEW to purge BASIC text space.

Then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a program

line a two-letter report code will appear on the top left of the screen in

reverse field. Note that these letters are in uppercase and will appear

as graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that

line at the last minute which changes the report code. However, this

will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type RETURN

over each in succession while checking the report codes as they

appear. Once the program has been properly entered, be sure to turn

VERIFIZER off with the SYS indicated above before you do anything

else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead

of POKE 53281,0. However, VERIFIZER uses a "weighted checksum

technique" that can be fooled if you try hard enough; transposing two

sets of 4 characters will produce the same report code but this should

never happen short of deliberately (verifizer could have been de

signed to be more complex, but the report codes would need to be

longer, and using it would be more trouble than checking code

manually). VERIFIZER ignores spaces, so you may add or omit spaces

from the listed program at will (providing you don't split up key

words!). Standard keyword abbreviations (like nE instead of next) will

not affect the VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer,
so if you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities
goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original destina

tion of the link after it's finished. When disabled, it restores the link to
its original contents.

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

CF

HA

DH

HL

CB

CP

CB

ME

FG

FK

MD

OJ

MF

OM

El

ON

NH

IJ

ML

DE

DN

LM

LE

HC

KE

OF

NC

LF

VIC/C64 VERIFIZER

10 rem* data loader for' 'verifizer'' *

15 rem vic/64 version

20 cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>14755 then print' '•*♦** data error *****'': end

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,251,141, 2,

1010 data 252,141, 3, 3, 96,173, 3,

1020data 3,240, 17,133,252,173, 2,

99,141, 2, 3,169,

96,173,254, 1,133,

0,189, 0, 2,240,

15,133, 91,200,152,

32, 183,

1030 data 251, 169,

1040 data 3, 3,

1050 data 0,160,

1060 data 32,240,

1070data133, 90, 32,183, 3,198, 90,

1080 data 232, 208, 229, 56, 32,240,255,

1090 data 32,210,255,169, 18, 32,210,

1100 data 89, 41, 15, 24,105, 97, 32,

1110 data 165, 89, 74, 74, 74, 74, 24,

1120 data 32,210,255,169,146, 32,210,

1130 data 32,240,255,108,251, 0,165,

1140 data 101, 89,133, 89, 96

3, 165

3,201

3, 133

3, 141

89, 162

22, 201

41, 3

16,249

169, 19

255, 165

210,255

105, 97

255, 24

91, 24

C128 VERIFIZER

1000 rem • data loader for verifizer 128

1010 rem * commodore d 28 - 40 and 80 column mode

1020 cs = 0

1030 for j = 3072 to 3226: read x: poke j,x: cs = cs + x: next

1040 if cs<>19526 then print' 'checksum error!'': stop

1050 print' 'sys 3072,1: rem to enable''

1060 print' 'sys 3072,0: rem to disable

1070 rem

0,208, 13,120,165,253,141

3, 165,254, 141,

1080 data 201,

1090 data 20,

1100 data 96,120

1110 data 17,

1120 data 169,

1130 data 21,

1140 data 208,

1150 data 160,

1160 data 7,201

1170 data 189, 0

133

44

3

94

0,

173,

254,

141,

88,

165,

189,

58,

2,

21,

173,

20,

21,

3,201,

20, 3,

3, 169,

3, 88

12,240

133,253

12, 141

96,165,240,201, 13

22,133,250,162, 0

0, 2,201, 48,144

176, 3,232,208,242

240, 22,201, 32,240

1180 data 15,133,252,200,152, 41, 3,133

1190 data 251, 32,147, 12,198,251, 16,249

1200 data 232, 208, 229, 56, 32, 240, 255, 169

1210 data 19, 32,210,255,169, 18, 32,210

1220 data 255, 165, 250, 41, 15, 24,105,193

1230 data 32,210,255,165,250, 74, 74, 74

1240 data 74, 24,105,193, 32,210,255,169

1250 data 146, 32,210,255, 24, 32,240,255

1260 data 108, 253, 0,165,252, 24,101,250
1270 data 133, 250, 96

The Transactor
Jan. 1987: Volume 7, It

Got an interesting programming tip, short routine, or an unknown bit of

Commodore trivia? Send it in - if we use it in "Bits", we'll credit you in the

column and send you a free one-year's subscription to The Transactor

C-64 RESTORE Key Sensitizer Paul Bahlawan

Mississauga, Ont.

On some 64s the RESTORE key has to be tapped several times

before the computer will respond. With reference to the C-64

schematic you can see the RESTORE key is coupled to the 556

timer chip with a capacitor. This capacitor will only allow high

frequency pulses to be passed, therefore it is necessary to tap the

key quickly. By soldering a 50 pF capacitor (marked " 500") in

parallel with C38 you allow lower frequency pulses to pass. (Any

low value capacitor should work, but 50 pF seems fine.) Now the

RESTORE key will respond to normal keystrokes, which is much

nicer than a lot of tapping.

A Quirk In Calculated

Array Subscripts

Type in the following bit of code and run it:

Arne Storjohann

Scotland, Ont.

10a$(0) = " cell 0"

20 a$(1) = " cell 1 "

30x = 2.1 -1.1

40 print "a$(";x;")= ";a$(x)

Since the variable X equals one, the string " cell 1" should be

printed in line forty. Right? Wrong! Because of the fact that all

decimal numbers can't be converted exactly (only a close approxi

mation can be achieved) to floating point numbers and vice-versa,

the value of the variable X given as 'X = (2.1 - 1.1)' will be stored

differently than if it were given as 'X = 1'. Since array subscripts can

only be integer values any decimal portion of a calculated array

subscript is simply chopped off. This leads to the quirk in line forty.

Change the 'a$(x)' to 'a$(int(x + .05))\ This will take care of the

problem. Any time you have to calculate an array subscript using

non-integer values it's a good idea to use the INTeger function in

this way.

Unassembler Files

toSYMASS3.13

Lome Chartier

Calgary, Alta.

Volume 7, Issue 01 introduced an exceptional, PAL compatible

assembler entitled SYMASS 3.13. The assembler featured a wide

variety of functions that were extremely useful for assembling

quality machine code. However, without a compatible disas

sembler, you cannot edit or examine ML programs that lack a

source file. Fortunately, with a little ingenuity and the help of a

couple of previous Transactor programs, you can easily remedy

this problem. Type in the unassembler from Volume 6, Issue 04.

Following are the changes to the program to make it SYMASS

compatible.

172 input" starting line number" ;ln

174 input" increment" ;li

1185 p$ = " [SPACE]sys 700": gosub 2150

2150 p$ = str$(ln) + " [SPACE]" + p$ + xx$: In = In + li

2155 print#6,p$;: gosub 2220: lc = lc+1: return

Now save the program. When run, it will ask for a starting line

number, and a line increment. This is the feature that makes it

compatible with SYMASS — any disassembling will create a

sequential source file to disk that will include sys 700 as the first

line, and line numbers before each line. The final step is to turn

Th© Tronsoctof Jon. 1987: Volume 7, toueO4

this sequential file into a BASIC-format (SYMASS compatible)

program using Chris Zamara's STP program from Volume 5, Issue

06; or the C--64 BASIC STP found in the bits and pieces column in

the same issue as the unassembles Use STP to convert the file to

BASIC, then save the resulting source. This file is entirely compati

ble with SYMASS 3.13, and can be assembled immediately after

loading. Once you have changed the unassembler to its new

format, the conversions take no time at all.

Using the DOS Wedge

With Two Drives

Joel Pickett

Levelland, Texas

I use the DOS support program that comes with the 1541 disk

drive. I have two drives, but the DOS program only works on one. I

modified the DOS loader so it will run on the drive it is loaded

from. To do this, line 5 (below) was added — it peeks location 186,

which holds the number of the last device used. Also, the 'dv' in

line 10 replaces the '8'.

5 dv = peek(186): rem location 186 is current device #

10 if a = 0 then a = 1: load" dos 5.1" ,dv, 1

20 if a = 1 then sys 12*4096 + 12*256

30 new

The DOS support program (at $CC00) gets the current device

number from location 186 and stores it internally at $CC77

(52343). Whenever you want to use a DOS command on another

drive, simply POKE 52343,(device number).

Should you disable the DOS with a warm start (sys 64738), you can

often run it again this way:

poke 186,8: sys 52224: return

Fast File Rick Nash, MUlersburg, Ohio

Here is a short utility that can speed up programs that read from

disk files. It works with any kind of file, but it especially handy for

direct access (reading a given sector), since the INPUT command is

not always reliable under these circumstances. The INPUT com

mand stops reading data whenever it sees a delimeter character

(carriage return, colon or comma), so to read unpredictable data

the GET command must be used to read the bytes one at a time.

This is far too slow for most applications. The program below, Fast

File, will read a given number of bytes from a disk file into a string

variable, and only stop reading when the given number of charac

ters have been read, or end of file occurs. It reads the data as fast as

the disk drive can supply it, since the program is in machine

language.

The syntax for using Fast File is:

sys49152,#f,n,v$

where 'f is the file number (the * must be present), 'n' is the

number of characters to read, and 'v$' is the name of a string

variable that will receive the data.

For example, to read a sequential file:

1000 open 1,8,2, "file"

1010 sys 49152,#1,255,a$

1020 print a$;

1030 if st = O then 1010

1040 close 1

To read 128 bytes of track 18, sector 0 (you can't read all 256 bytes

of a sector, since a string can only hold 255 bytes):

1000 open 15,8,15

1010 open 2,8,2, "#"

1020print#15,"u1:";2;0;18;0

1030 sys 49152, #2, 128, a$

1040 print a$

1050 close 15

The program is fully relocatable; just change the assignment in

line 30 of the BASIC loader below. Using Fast File instead of GETs

will give you typical speed increases of nine to eleven times!

NK

NE

PG

AA

BK

HC

KL

HC

GM

EN

HN

IN

EP

AO

OM

MA

DP

OA

10 rem** fast file **

20 rem read from a file into a variable

30 a = 49152: rem program is relocatable

40 print" usage: sys" ;a;" ,#<file#>,<# bytes>,

<string var$>"

50 for i = atoa + 85: read d: c = c + d: poke i,d: next i

60 if c<>11661 then print" Idata error!": stop

70:

100 data 32, 253, 174, 169, 35, 32, 255, 174

110 data 32,158,183,134,251, 32,253,174

120 data 32,158,183,134,252, 32,253,174

130data 32,139,176,133, 73,132, 74, 36

140 data 13, 48, 3, 76,153,173,165,252

150 data 32,125,180,166,251, 32,198,255

160 data 176, 15,165,252,240, 26,160, 0

170 data 165,144, 208, 8, 32, 19,238,144

180 data 8, 76,249,224,132, 97, 76, 80

190data192,145, 53,200, 196,252, 144,232

200 data 32, 204, 255, 76, 100, 170

Modifying The Epyx

Fast Load Cartridge

James Craig

Waco, TX

When using the Epyx Fast-load cartridge with the C—128, you

have to shut off the machine and install the cartridge in order to

switch from C—128 to 64 mode. Besides being a nuisance, this can

quickly wear out the cartridge port.

I decided something had to be done. I took the Fast Load cartridge

apart and found that my troubles were little ones. I installed a

switch in the "EXROM" line to take the ground off the circuit when

using C-128 mode. By throwing the switch to connect the ground

and hitting the reset button, I was immediately in C-64 mode with

the Fast Load cartridge enabled! To go back to C-128, just throw

the switch to disconnect the ground, then hit reset again.

To open the cartridge, feel around the top surface for the indenta

tion of the screw that holds the unit together. Just cut away enough

to remove the screw. Cut around the box at the seam, then using a

Tho Tronsoctof Jan. 1987: Volume 7, toueO4

knife blade, pry up all around the box and lift straight up to avoid Easy Retrieval

damaging the interlocking catches. of Last Filename Used

Dave Newberry

Duluth, Minnesota

Install a SPST slide or toggle switch at any convenient location.

This could even be outside the case someplace. Cut the printed

circuit lead from the #9 male prong about where it makes a bend

going to the EXROM connector. Solder a wire on each side and run

to each terminal of the switch — it doesn't make any difference

which wire goes where on the switch. Reassemble the case and

you're in business. Enjoy your C-64 again!

In the Bits & Pieces section of Volume 6, Issue 06, Jeffrey Coons

wrote in with a one-liner that allowed you to find the name of the

last file used (Finding the missing file page 5). Though the line

works well, there is an easier way to achieve the same result. A

single SYS call is all it takes to get the name of the last file accessed.

The magic number is 62913. A SYS 62913 will print the filename

on the screen for al! to see.

FAST LOAD Chromatic Scale

Register Values

Arne Storjohann

Scotland, Ont.

1541 Disk Swap Checker John Chong, Syracuse, NY

The following program waits until the current disk in the drive is

removed, and another disk (or the same one) re-inserted. It does

this by checking the write-protect status of the drive to see if a disk

is there or not. It only works if the disks being inserted are NOT

write-protected, and even then it can be fooled if you partially

remove and then re-insert the disk. Although not bullet-proof, the

program shows the technique of checking the write-protect status,

and the subroutine at 3000 that actually does the checking may

come in handy in one of your programs.

2000 print" please change disks."

2010 open 15,8,15

2020 gosub 3000: if a<>0 then 2020

:rem wait for disk to be removed

2030 gosub 3000: if a<>16 then 2030

:rem wait for no disk in drive

2040 gosub 3000: if a<>0 then 2040

:rem wait for disk to be inserted

2050 for d = "I to 1500: next: close 15

2060 print "ok, thanks!"

2070 end

2080:

3000print#15,"m-r";chr$(0)chr$(28)chr$(1)

:get#15,a$:a = asc(a$)and16: return

The following routine generates the SID chip register values which

correspond to eight octaves of chromatic scale. The values are

separated into high and low byte format and stuffed into two

ninety-six element integer arrays to allow for maximum speed of

use later in your BASIC program. Due to the ninth place constant

D, the values generated are exceedingly precise, limited in resolu

tion only by the 1 through 65535 range imposed by the SID chip.

The usual approach is to use data statements and read the 192

values into an array, but with a running time of less than three

seconds, this routine is much more compact, efficient, and above

all, a more elegant solution.

Anyone who has ever tried to program music on the 64 will

appreciate this algorithm!

LI

MP

AO

AA

EH

DK

FF

DP

CD

LH

GE

MM

BB

OA

FJ

EF

EF

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

rem** routine to generate chromatic

rem** scale register values (hi/lo)

rem** by arne storjohann - 86,05,04

dim lo°/o(95),hi%(95): g = 2t(1/12)

f = 3520*g*g: d = 0.06095948: b = 256

for i = 95 to 0 step -1: n = f/d: hi°/o(i) = n/b

lo%(i) = n-hi°/o(i)*b: f=f/g: next

rem ** demo **

s = 54272: for i = s to s +15: poke i,0: next

poke s + 5,96: poke s + 6,251: poke s + 4,33

poke s + 24,15: for i = -72 to 72

x = 71 -abs(i) +16: poke s,lo°/o(x)

poke s + 1 ,hi°/o(x):for j = 1 to200: next

next: pokes+ 4,32: end

C-64 Underlined Characters D. Munro

Port Elizabeth, South Africa

This program is based on the C-64 italics program in Bits & Pieces,

Volume 7 Issue 01. Instead of giving italics in place of reverse

characters however, it gives underlined characters. Both of the

64's built-in character sets are altered, so that underlined letters

are available from either upper/lowercase or graphics modes. The

new character set is located from 8192 (hex $2000) to 12287

($2FFF). Consequently, the start of BASIC is moved to $3001.

Tho ironsocior Jaa 1987: Volume 7, toueO4

After running the program, the normal characters are unchanged

but all reversed characters are replaced by underlined characters.

Due to the fact that reversed characters no longer exist, the cursor

is now denoted by a flashing underscore instead of a reverse space.

When the cursor is moved over a character, it just flashes an

underscore beneath the character instead of flipping it to and from

reverse field. To return to the normal character set, hit RUN/

STOP-RESTORE or POKE 53272,21.

After running "underline", all BASIC programs may be loaded and

saved normally, as the operating system takes care of relocating to

the new start of BASIC. Just be sure to LOAD with ',8' instead of

',8,1'.

Here's the program. Make sure you SA VE it before running!

DP

LI

KG

DH

GK

AB

AD

EM

IE

MC

CO

BP

BN

BH

MB

IE

KE

PM

IF

NE

KM

GG

BN

OD

ID

10 rem* data loader for " underline

20cs = 0

*

30 for i = 49152 to 49257:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>14259 then print" Idata error!"

70 sys 49204

80printchr$(147);"

: enc

poke 44,48: poke 12288, D: new"

90 print chr$(18);" reverse characters are underlined!"

100 poke 631,19: poke 632,13: poke 198,2: end

110:

1000 data 162, 16

1010 data 0, 32

1020 data 238, 9

1030 data 8,160,

1040 data 162, 8

1050 data 200, 208

1060 data 253, 208,

1070 data 241, 9

1080 data 51,133

1090 data 133, 251

1100 data 133, 253

1110 data 251, 169

1120 data 253, 32

1130 data 88, 96

Machine Language

Debugging Tip

160, 0,185,

200, 208, 247,

192,202,208,

0, 177,251,

169, 0, 73,

240, 230, 252,

232, 96,173,

8,141, 24,

1, 32, 0,

169, 36,133,

32, 23,192,

44, 133,252,

23, 192, 169,

0,

238,

238,

202,

255,

165,

24,

208,

192,

252,

169,

169,

55,

208,

6,

96,

208,

145,

252,

208,

120,

169,

169,

0,

48,

133,

153

192

162

4

251

197

41

169

0

38

133

133

1

John Augustine

Reading, PA

It is hard to avoid mistakes. In fact, I am reminded of Murphy's Law

more than ever when composing machine language source code.

To help me track down what sections of code are executing and

what sections are not, I use an area of memory that 1 initialize with

zeroes using an ML monitor or other means. Then, at strategic

points in my code, I add a simple 'INC ADDRESS' (the start of the

area initially filled with zeroes). At other points, I 'INC AD

DRESS +1', then ADDRESS + 2, etc., making notes of the program

locations for reference. After you set up all of your test points,

assemble your source and test-run the resulting object code. After

your program has run, or you've exited with a RESTORE or reset,

use an ML monitor or PEEKs from BASIC to examine the contents

of your test area of memory. The numbers you see will show you if

the parts of your program with the INC instructions executed, and

how many times they were executed (up to 255).

One word of caution when using this technique: be careful that

you do not put the INC instructions at points in your program

where the state of the processor status flags are vital. For example,

DO NOT insert the INC instruction between a compare and branch

instruction, as the INC will alter the flags and cause an incorrect

branch. If you must put the INC in such a location, or you're not

sure if you need the status flags, just put a PHP instruction before,

and a PLP instruction after the INC to save and restore the

processor status register.

Twisted Sister

Goes Digital

Kevin Smith

Edmonton, AB

Yes, now you too can convert your $1,000 computer system into a

$10 cassette player! First enter this short machine language rou

tine into your Commodore 64. Now the hard part: try to remember

where you left your ancient datassette.

Next, pop in your favourite cassette tape and listen to your

computer choke on "Twisted Sister".

100 for i = 49152 to 49180: read a: poke i,a: next

110 print "press play on tape": wait 1,16,16: sys 49152

120data169, 11,141, 17,208,169, 7,133

130 data 1,173, 13,220, 41, 16,240,249

140 data 169, 15,141, 24,212,169, 0,141

150 data 24,212, 76, 9, 192

Touch Typer's Trick James Yost, Boston, MA

For touch typists who would like to find home position by touch

after hitting RETURN: place a small drop of epoxy in the centre of

the index finger home keys. That raised dot saves plenty of looking

back at the keyboard. Never leave home without it!

Commodore 128 Bits

Program Stashing Charles Van Lingen, Mossley, Ont.

When I purchased a 1750 RAM expansion unit for my C-1281 was

eager to use it with my BBS software to switch between BASIC

programs. One would tend to think that you could store and

retrieve a program from a RAM bank with the following state

ments:

stash 45000, 7168, 7168, [bank*]

fetch 45000, 7168, 7168, [bank*]

This does work if you only wish to run the program in the other

bank and not edit it, but the top of text pointer must be set to allow

editing. I came up with this formula which I define as function keys

in my programs:

key 4," b = [SPACE]:slow:bankO:stash 2,4624,4624,b

: stash 45000,7168,7168,b:bank15:fast" + chr$(27) +

"j" +chr$(29) + chr$(29)

key 6," b = [SPACE]:slow:bankO:fetch 2,4624,4624,b

: fetch 45000,7168,7168,b:bank15:fast" + chr$(27) +

"j" +chr$(29) + chr$(29)

(Note: leave out the FAST command in 40 column mode)

Trofwoctor Jon. W87: Volume 7, l«tuaO4

When you use these keys, enter a bank number from 0-7 (or

0-1 if you have a 1700) for your program to be stored to or

retrieved from, then press RETURN. In this way, you can work

on up to 8 programs simultaneously, quickly switching from

one to another as the need arises. This-isn't a particularly

efficient way to use the extra memory but it is quick and

painless and provides a sort of crude (but FAST) ramdisk.

According to the manual, the fetch and stash commands work

at one megabyte per second, but I haven't bothered to check

it out. Anyway, I highly recommend the expansion unit if you

are into programming and I hope these keys help.

C-128 Additional BASIC Ian Adam

Vancouver, BC

So you think the Commodore 128 is a fantastic improvement over

the 64, because of all those extra features — in fact, everything you

could possibly want is right there in that computer! Wrong, byte

breath! There's something they didn't tell you about.

Yes it's true: BASIC 7.0 contains an additional command that isn't

documented in either the 128 System Guide or the Programmer's

Reference Guide. The extra command is RREG, and it returns the

values contained in the CPU's registers after the last SYS command

to whatever variables you specify.

The main application of this is following a machine-code routine.

SYS has been expanded to allow passing variables to the routine,

and RREG provides the reverse function, getting values back. The

syntax is also the same:

sys 4864,1,5,5,0: rem jump to code and place values shown

in the a, x and y registers

rreg a,x,y,s: rem put register values in variables shown

Accessing the 80-Column Chip Ian Adam

David Stidolph's article in Volume 7 Issue 03 showed how to work

the registers in the 8563 video controller. This allows the program

mer access to a wide variety of fascinating capabilities.

Because BASIC was seen as being too slow, David provided short

machine language routines for reading and writing to the registers.

There is a way to get at the chip from BASIC, however. Assuming

you're still in BANK 15, there are ROM routines to take care of the

details.

The routine at 52684 will write the value in the accumulator to the

video chip register specified in X, while that at 52698 will read a

register. For example, this program will list the current value of all

registers:

for i = 0 to 36: sys 52698,0,i: rreg a: print i,a: next i

This program will allow you to tinker with the registers at will. Of

course, you will need David's table showing the description of

each register.

10 do:

20 input " register #" ;x

30 sys 52698,0,x: rreg a

40 print " current value" ;a

50 input "newvalue";a

60 sys 52684,a,x

70 for i = 1 to 8: print " 0123456789'

80 loop

: next

C-128 HELP and

RUN/STOP definition

Tim Thompson

Gadsden, AL

The Commodore 128 actually has ten programmable function

keys. Eight of them are the normal ones located above the numeric

keypad. The ninth is the SHIFted RUN/STOP key, and the tenth is

the HELP key. While the first eight have a built-in BASIC com

mand to reprogram them, the other two do not. There is a Kernel

routine, however, which will reprogram any of the ten. The

following program will re-define the SHIFTed RUN/STOP key to

simply RUN the program (instead of LOAD and RUN).

10z9$= "run" +chr$(13)

20 z8 = 9: rem 9 = shift-run/stop, 10 = help

30 for jj = 1 to Ien(z9$)

40 poke 3071 +jj, asc(mid$(z9$,jj,1))

50 next: poke 250,0: poke 251,12

60 sys 65381, 250, z8, Ien(z9$)

To re-define any programmable key, simply set Z9$, in line 10, to

what you want the key defined as (including a carriage return if

needed). Set Z8 equal to the number of the key to redefine.

Function keys Fl through F8 are key numbers 1 through 8. The

SHIFTed RUN/STOP key is key 9, and the HELP key is 10. You can

use this as a subroutine in any BASIC program.

C-128 80-column CHAR bug Richard D. Young

Greenwood, N.S.

I would describe this as a minor bug: it is potentially disastrous but

is easy to avoid. The problem occurs only in 80-column (RGB)

mode, and when the CHAR instruction is executed. It affects two

memory locations in RAM 0, specifically $D600 and $D601 (54784

and 54785). These two memory locations are clobbered, leaving

$D600 with $0F (15) and $D601 with some number that varies

with the cursor location set by CHAR. Avoiding the problem is as

easy as avoiding use of these two memory locations (few BASIC

programs are that long), restoring proper values after execution of

CHAR, or avoiding CHAR.

It appears that an image of the 80-column video controller (VDC)

registers at $D600 and $D601 are left in RAM 0 when CHAR is

executed in 80-column mode. The value $0F refers to the VDC

register that controls cursor position, low byte, and the value in

$D601 is the value of the cursor position.

To confirm that the problem exists (it may not in all machines),

store some number other than 15 in location $D600 (BANK 0),

execute a CHAR instruction to print something on the screen, then

check $D600 (BANK 0) for the value 15.

Th© Transoctor Jan. 1987: Volume 7, taueO4

RAM 0 is, of course, the area for BASIC programs. One way of

avoiding disaster with the occasional very long BASIC program is

by doing:

bankO: a = peek(54784): b = peek(54785): bank 15

.. .before the CHAR command, then:

bank 0: poke 547854,a: poke 54785,b: bank 15

.. .after. If this area of memory must be used normally (the DOS

SHELL utility for example), CHAR should be avoided in very long

BASIC programs in 80-column mode.

Protect Those Vectors! Philip C. Herold

Seattle, WA

We all know what pressing RUN/STOP-RESTORE on the 64 does

to our IRQ-driven wonders: it resets the IRQ vector and disables

them. That doesn't have to be the case on the 128. The BASIC

warm-start entry is vectored through $0A00. So after a RESTORE

resets the Kernel and interrupt vectors, we can intercept the

warm-start routine at its BASIC entry point and put our vectors

back. Here's one way to accomplish it:

entry Ida

sta

Ida

sta

jsr

rts

setback jsr

jmp

setirq sei

Ida

sta

Ida

sta

cli

rts

#<setback ;change the basic entry vector

$0a00

#>setback

$0a01

setirq

setirq

$4003

#<irqrtn

$0314

#>irqrtn

$0315

irqrtn

jmp $fa65

;irq-driven routine starts here

;exit through end of irq routine

Keep the code in bank 15, below $4000, to avoid problems. This

technique can be applied to any vectors that a warm-start resets,

not just the IRQ vector.

Amiga Bits

Printing Greeting Cards

with Deluxe Paint

Lindsey Fong

Sacramento, CA

Can you believe us greeting card makers have no program yet?!

While waiting for the "PRINT SHOP" or "DELUXE PRINT" to be

released, I have figured out a way to print greeting cards with

"DELUXE PAINT" and my Okimate 20 printer. Here's how it

works. When you load DELUXE PAINT and get the CU prompt,

type "preferences". Set the page length to 32, right margin to 5 and

left margin to 50. Select the "graphic select" icon and set ASPECT

to "vertical" and "SHADE" to "grey scale" or "black and white".

Now, close preferences, and enter "dpaint" to run the program.

Now you can "paint" the front of the card using the full screen for

your canvas. Don't forget to paint under the control panel by

hitting F10 so your picture will be centred on the paper.

Fortunately, DELUXE PAINT has text capability, so you can type

messages with your picture. I would suggest that you set you

pallette to shades of grey to get a better idea of how your card will

look when it prints.

Lining up your paper for printing will depend on the type of printer

you have, but I line up the left edge at the "10/9.5" marker box on

the printer. The top edge should line up with the top of the

printhead. Lining up the paper is not so critical if you use a white

background and don't paint near the edges of the screen.

To print, select "print" from the menu. In a few seconds, the front

of your card will print. The picture will print sideways on the

bottom left quadrant of the paper — that's what you want. Now

clear the screen and work on the inside of your card. To print the

inside of your card, remove your previously printed paper, turn it

around and insert the opposite side, lining up the paper as before.

Now you can print the inside of your card. If you have an Amiga

with 512K, you can use the spare screen option (hitting 'j') and

work on completing both pictures first before you print your card.

After you're finished printing, you should have the front of your

card on the bottom left quadrant of the paper and the inside of the

card on the top right quadrant of the paper, upside-down. Now

french fold the paper and PRESTO! You have a greeting card.

This method may take a bit longer than making a card on the

PRINT SHOP, but unlike the versions of the PRINT SHOP now

available for other computers, you have TOTAL control of how you

want your card to look. You are not limited in graphics or lettering

placement.

Happy card making!!

The Autographed Amiga JoeFoos

Santa Barbara, CA

The Amiga people have done something very interesting, even

though they were not the first: If anyone has opened their Amiga

yet, they have probably already noticed that molded into the

inside of the top cover are the signatures of all the people involved

in designing the Amiga. In case you ever wanted your Amiga to be

autographed by one of your Amiga heroes (R.J. Mical.Dale Luck,

Robert Pariseau or any others), then your wish has come true.

Perhaps this only goes to show how proud the Amiga designers are

that they are involved in personal computer history.

K>

Letters

No Fun In GAMES: You would do well to read up on truth in

advertising. The cover of Sept. '86 "The Transactor" shows an

Amiga and its amazing graphics. Then you add GAMES to it. I was

thoroughly sucked in. I'm green in the personal computing field

and considering buying an Amiga. Buy the mag, get home, open it

and what do I get? Data files, tricks on programming, number

crunching, etc., etc., ad nauseam. Rest assured it won't happen

again.

P.S. Commodore makes a good product. Too bad "The Transactor"

smudges its reputation. D. Fraser, Lethbridge, Alberta

It's pretty clear our GAMES issue wasn't quite what you were

expecting. Still, I'd ask you not to throw away that issue. When you

have a bit more programming under your belt you 'II probably find

it a lot more useful than you do now. You might even find it

entertaining.

When The Transactor covers a particular application field of

programming - such as games - we don't tend to provide complete

and ready-made example programs for our readers to type in.

Instead, we try to explore what makes those programs tick, to

provide tools and methods that readers can make use of in their

own programs. At the same time, remember that programming is

programming, whether the end product is to be a game, a spread

sheet or an operating system, so you'll notice certain common

themes - like data files, programming tricks and number crunching

- showing up again and again, each time from a somewhat

different perspective.

The magazine you acquired is not the magazine you wanted. But

we have good evidence for believing that many readers do want a

magazine that gets heavily into the technical side ofprogramming

and, as I said above, we hope that at some point you'll be one of

them.

C128 Memory Questions Plus More, As Addressed To Jim

Butterfield: For several years now I have enjoyed reading your

articles about the Commodore 64. Perhaps you can answer several

questions that I have regarding the Commodore 128. When the

computer is first turned on, typing the following:

PRINT FRE(O) returns the free bytes for Basic storage (58,109).

PRINT FRE(l) returns the free bytes for variable storage (64,256).

1. Can you think of the logical reason why Commodore assigned

more free bytes to variable storage rather than to storage for the

Basic program?

2. What are examples of variables that are stored in variable

storage?

3. Is there a way to increase the number of free bytes for Basic

storage at the expense of the free bytes for Basic variable

storage?

I have taken the liberty of enclosing two short programs that I have

written. The first program involves address modification, how can

I change line #20 without typing GOSUB 220 and eliminate the

SYNTAX ERROR?

The second program INPUTs numbers from the keyboard and

sorts them before determining the highest number. How can I

change the program to have the computer enter the RANDOM

numbers into the SORT routine thus eliminating the need to enter

the numbers from the keyboard?

Since I have spent considerable time trying to solve these prob

lems, I would appreciate it if you could be of some assistance.

H.S. Rosenblatt, Las Vegas, Nevada

Address Modification

10gosub210

20x = 220:gosubx

50 end

210 print "a = 210": return

220 print " b = 220": return

.. Results: A = 210, Syntax Error In 20

10 rem ** sort routine (4 numbers) **

20 rem this routine determines the highest of four

30 rem random numbers, the numbers are 2-14 and any

40 rem number less than 10 that is typed in must be

50 rem preceded by a zero.

80 for y = 1 to 4

90x = rnd(-ti)

100 n = int(rnd(1)*7) + int(rnd(1)*7) + 2

110 print n

120 next

130dimw$(4)

140forx = 1 to 4

150 input " n" ;w$(x)

160 if w$(x) = " " then x = 4

170 next

180s = 0

190forx = 1 to 3

200 if w$(x)< = w$(x +1) then 230

210 a$ = w$(x): w$(x) = w$(x +1): w$(x +1) = a$

220 s = 1

230 next

240 if s = 1 then 180

250 if w$(x)<>" " then print " the highest number is " ;w$(4)

260 end

Reply From: Jim Butterfield, Toronto, Ontario

Dear Mr. Rosenblatt

Good questions...

1.1 don't know Commodore's exact reasoning. But when faced

with two banks of 64256 bytes each, and the need to set aside

TTw Tronsoctor Jon. W«7: Volume 7, towO4

buffers and work areas, I'd agree with their choice ofremoving it

from Bank 0 (the program area). Few people will need to write

programs exceeding 50K in size; and even if they do, they can

usually work around memory limitations by using chaining or

overlay techniques. Thus, trimming the program area will sel

dom be limiting. On the other hand, many programs make use

of huge tables of data: arrays of numbers or of strings (say,

names and addresses). Many serious users use as much mem

ory space as they can get, and would feel limited if "variable

space" were curtailed.

2. Variable storage contains: three types of variables (floating

point, integer, and string), each of which takes up 7 bytes; three

types of arrays (floating point arrays take up 5 bytes per item;

integers, 2 bytes per item; string descriptors, 3 bytes per item;

plus a little overhead to set up each array). Strings are stored in

two parts: a "descriptor" which identifies the string, and the

string itself, also in bank 1. The details ofhow each item is stored

is a little complex and would take up too much space here; but

you 're free to PEEK in bank 1 (start at address 1024) to see what

kind of things your program has created in memory.

3. Ifa program is too big to fit in bank zero, it's usually better to use

chaining (DLOAD), overlay (BLOAD) or new-program (RUN)

techniques to expand it rather than trying to take space from

bank 1, which would be tricky.

Microsoft Basic does not allow computed GOTO or GOSUB; a line

number is not intended to be contained in a variable. The idea is

for the program to be a' 'rigid skeleton " with no surprise switches in

the execution sequence. You might be able to "gimmick " this effect

with clever use of the TRAP/RESUME commands, but I recom

mend against it. Best to use programming constructs such as:

ON X GOTO 200,210,230. .

ON Y GOSUB 250,280,370

or,

... either of which will allow you to go to a variable place without

any program "surprises".

Place your X=RND(-TI) near the start of the program to be

executed one time only (X=RND(0) is equally acceptable)... line

50, outside the loop, is preferable to the location you show. To

generate strings containing random number values, delete lines

140 to 170 and insert:

115W$(Y)=STR$(N)

Trust this will help "unblock" some ofyour problems.

Jim Butterfield

To the readers (and editors) of the Transactor Magazine:

In the case of the People vs. The Transactor Magazine, I have

voluntarily placed upon myself the post of Defendant for the

actions of the magazine and the people behind it. I must insist that

The Transactor is not guilty to the charges of treason, un-

patriotism, and criminal negligence in presenting the article enti

tled "Atari ST Notebook." I think that The Transactor had the right

and showed good judgement in including an article on the Atari ST

in the September issue of The Transactor.

In the first place, I am sure no one will refute the fact that The

Transactor is one of the forerunners when it comes to presenting

its readers with new products and developments. Were they not

the first ones to publish a fix for the 1541 save with replace bug?

Did they not introduce us to the Super Kit/1541 software (which I

have bought and enjoyed) in the pages of this very magazine

months before any other of the "leading" Commodore magazines

like Computers Gazette and RUN even had ads for it? I would think

that the ST is such a new and impressive machine that even a

strictly Commodore magazine shouldn't totally overlook it.

Secondly, there has been trouble with strictly Commodore maga

zines in that they tend to give the readers too narrow a viewpoint

on the computer industry. The Transactor is better than most in

this respect, so I think the ST article was right on target with the

direction the magazine has chosen to take. Thirdly, both the

Amiga and the ST represent great technological advances. I, for

one, am mainly in the computer hobby because I am enchanted by

technology and I suspect that it is at least a motivating factor for a

lot of you. I would like to encourage The Transactor to present

reviews of other new computers which come out in the future

provided that 1) they represent new and exciting advances in

technology (the advances being in graphics, speed, memory,

power, or price to produce) and that 2) they not be some boring

IBM clone. Both the Amiga and ST fulfill both of these qualifica

tions admirably.

Lest anyone get me wrong, I am not an Atari fan. I would not buy

an Atari XL system for half of the price of my Commodore 64

system (although maybe for a quarter or fifth). If I had the money

for an Atari ST system, I would wait just a little longer till I have the

few hundred dollars more I need to get my Amiga system. But the

ST needs to be taken on its own, forgetting the company behind it

and its past blunder computers.

Given the above evidence, I contend that The Transactor maga

zine must be held NOT GUILTY.

By the way, in response to a letter by Roy M. Randall which

appeared in the November issue of The Transactor, Commodore

isn't the only place to get custom chips (actually, I didn't even

know you could order them directly from Commodore, but then

again, Roy has apparently found out the hard way that you can't).

Jameco Electronics has for a while been selling Commodore VIC

20 and Commodore 64 (and now C-128) chips. Prices are about

$20.00 for the VIC II and SID chips, about $ 15.00 for the CIA, etc. If

you want specs, you can get them for an extra $1.50. And I know

that Jameco has them, because I had to order a CIA chip from them

already. Jameco regularly has ads in BYTE magazine, or you can

ask for a catalog at:

Jameco Electronics

1355 Shoreway Road

Belmont, CA 94002

David Godshall, Goshen, IN

/ haven't seen this much heat over an issue since Bill 94 was driven

through Ontario parliament recently. The ST, as David has pointed

out, is a machine worthy of notice. It may not be everyone's cup of

bits, but it is much more powerful and full featured than anything

Tho Ttansdctor 12 Jan. 1987: Volume 7, touoO4

Commodore has ever built, aside from the Amiga. Although it is

always nice to stay within a familiar shell, breaking out once in a

while does provide a new perspective. Looking at, playing with,

and understanding the ST can give you a totally new outlook on

the computer age. This outlook mayprompt you to abhor the Atari,

for all of its faults, adore the Atari, for all of its good points, or

remain neutral. Experience, no matter how distasteful, is always

invaluable. Here's a kicker. The Atari ST 520/1040 uses the same

disk format that an IBM Convertible does. The Atari can read from

and write to an IBM PC 3.5" diskette, but the PC cannot read from

or write to the Atari diskette. The Atari has a better controller in

their drives. Don't you love trivia?

Pete Baczor To The Rescue: The following comes from Pete

Baczor, Manager, Customer Support, Commodore West Chester, in

response to a letter published concerning the lost order of 1 SID

chip from Mr. Roy Randall (also mentioned above).

Dear Mr. Randall:

I read of your plight pertaining to ordering a 6581 SID chip in the

most recent issue of The Transactor. Fortunately, yours is not the

norm when ordering parts from our company.

Hopefully, by this time you have received the chip you ordered,

but just in case you have not, I have enclosed a 6581 for you.

I apologize for any inconvenience that this has caused you. Thank

you very much for your continued support of Commodore pro

ducts. Sincerely, Pete Baczor

Thank you Mr. Baczor, for attending to what could certainly turn

into a distressing situation for even the most seasoned Commodore

aficionado.

Sky Travel Lost and Found: Since reading your interesting

review on Sky Travel, I have tried to obtain a copy of this program

and would appreciate it if you could forward me the name of a

supplier who I could contact to obtain a copy.

R.H. Yeates

43 Railway Street

Bluff Point, 6530

West Australia

No problem. From the advice of Commodore Canada comes a

sure bet supplier-

Canadian Software Source

5318 Yonge Street

North York, Ontario

M6N5P9 (416)229-4513

Contact: James Milne

The package currently retails for $29.95 in Canadian funds.

Looking Back At The 1541 Head Cleaner: As the author, and

frequent user of "The Improved 1541 Head-Cleaning Program", I

was quite surprised to see in Volume 7, Issue 01 of The Transactor,

the letter from Mr. Kerrigan who felt that the program had thrown

his drive out of alignment. Although I had not experienced any

problems with the program, I reviewed the code I had written in

light of this information. I feel certain that if used under ordinary

conditions, the program will not harm the drive. This lead me to

investigate extraordinary conditions that might account for the

reported misalignment. The conditions tested are listed below:

1. After removing the program disk, but before running the pro

gram, an attempt was made to load the directory or another

program, resulting in a disk error.

2. After loading the program, the drive was turned off, then on

again before the program was run.

Condition one above seemed to cause the head to bump once

against the stop beyond track 1, but the drive worked fine when

the program had ended. Condition two was another matter. Upon

power up reset, the drive sets location $24 to 0. When run, the

head cleaning program, believing the head is already out at its

furthermost step, begins the task of moving it to track 35.

Subsequent loads yielded only a flashing red light; however, each

time simply sending an "Initialize" command to the drive freed the

head, and the drive once again worked flawlessly. Those who

occasionally reset their drives between operations may wish to add

this line to the program:

165 if x = 0 then end

As pointed out in the Editor's reply to Mr. Kerrigan's letter, never

assume your drive is out of alignment until you are sure that the

drive head is moving properly. David Peterson Irvine, CA

Omni Reader Update: Quite a few readers have been kind

enough to send us information about one company in California

that is selling the Omni Reader. Apparently Byte magazine has

been running their ads for some time, but we have been too blind

to see the ads. Thanks to all of you, we now can find an Omni

Reader. The address of the supplier is listed below:

California Digital

17700 Figueroa Street

Carson, CA 90248

Order: 800-421-5041

Tech/CA 213-217-0500

The advertised price is $179.00 in US funds.

Moving With Caution: I've just finished reading the September

1986 Transactor. Congratulations on another excellent magazine.

I have some comments on two of the articles. "MOVE: A General

Purpose Propagating Move Routine" by R.J. DeGraff outlines a

very handy memory copying utility with the added benefit of a

"fill" command using the "propagating" feature. Readers should

be cautioned, however, about using this routine to copy portions of

memory that overlap. If 200 bytes are copied to a location starting

Tn© TronsocTOf 13 Jan. \9St: Volume 7, toue O4

50 bytes higher in memory, for example, the utility

will corrupt the data since it will copy over the

original. For any overlapping memory copies, the

MOVMEM routine described in the July 85 Trans

actor should be used. It avoids the problem by

starting with the highest byte and working back

wards.

"Commodore 128 High-Res Graphics" by Paul T.

Durrant is a well written piece of code that does the

job elegantly. Paul probably has an early C128

with a revision *7 8563 video chip. VDC register

#25, which controls hires and text modes, also

holds other information. Specifically, the first three

bits hold horizontal smooth scroll data. Unfortu

nately, the newer revision #8 VDCs use different

data in this register, and Paul's code as written will

show a nasty sparkling line on the screen, spoiling

the hires display on newer C128s. "Superbase

128" fell afoul of this trick, too.

The solution is to add a few bytes of code to change only the text/

hires bits and leave the others intact, regardless of what they

contain. Attached is the necessary code. Note that it skips seven

bytes at the end of Paul's code which he (and I) used for temporary

storage. Noel Nyman, Seattle, Washington

Two Changes In Original Code As Shown

00bc7 a2

00bc9 a9

00bcb20

OObce 60

OObcf a2

00bd1a9

19

80

ed

19

40

00bd320ed

00bd6a5

00bd830

00bda20

d7

03

2c

00bdd20 42

00be0 20 2c

0b

0b

cd

d

cd

Idx

Ida

jsr

rts

Idx

Ida

jsr

Ida

bmi

jsr

jsr

jsr

#$19

#$80

$0bed ;change in jsr address

#$19

#$40

$0bed ;change in jsr address

$d7

$0bdd

$cd2c

$c142

$cd2c

00be34c0cce jmp $ce0c

Addresses $0BE6-$0BEC are used for temporary variables. New

code starts at $0BED.

00bed8dec0b sta $0bec ;store data temporarily

OObfO 20 da cd jsr $cdda ;get current value in vdc reg 25

00bf3 29 3f and #$3f ;strip off top two bits

00bf5 Od ec 0b ora $0bec ;set top bits based on hires or

00bf8 20 cc cd jsr $cdcc ;text, and store in register 25

OObfb 60 rts

P.S. Many months ago a friend and I were using up a roll of film

after taking some pics of a 1541 add-on board. In the process, I

came up with the enclosed.

Between your articles, letters, AND photos, you are helping make

The T. a top-notch journal. Thanks for everything. We appreciate

it.

'1541 with on-board garbage collection"

North American Commodore For Use In Europe: I would

highly appreciate an authoritative answer to my problems. I am

considering the purchase of a Commodore 128 computer with the

following peripherals: 1902 Monitor, 1571 Disk Drive, Datassette,

Dot Matrix Printer, Joysticks, etc.

This set will be used in Europe with a power supply of 220 VAC/50

Hz. A suitable transformer will step-down the voltage but the

frequency will remain unchanged. My question is: will this set

work properly at 50 Hz?

I have visited numerous dealers in the New York area and the

number of answers "yes", "no" and "I don't know" is roughly

equal. A letter mailed a month ago to the manufacturer remained

unanswered. If your answer will be "No", then please give me

information of a dealer who would be able to handle the problem

of delivering specified items either here or to my permanent

address in Poland. Obviously, all these items may be easily

purchased in Western Europe but with the current exchange rate

for US dollars, prices there are double that of the US.

M.H. Trenkner, M.D., Visiting Research Professor

Chairman School, Gdansk, Poland

The system described will work just fine at 50 Hz. Once you have

stepped the voltage level up properly, you can expect only a few

problems. One problem will be that the occasional North American

software package could rely on the IRQ taking place at 60 Hz.

instead of 50 Hz. You will never have problems with software that

you or your friends/business associates write, but a couple of the

commercially available packages in North America couldgive you

problems. One example of a headache in Europe is Prism Soft

ware's SuperKit/1541, which is so heavily dependent on a 60 Hz.

IRQ that it becomes indignant when faced with anything else.

Word is that they're working on a 50 Hz. version. Perhaps shop

ping for all ofyour software in Europe is the answer.

Th© Transoctof 14 Jqn.W87: Volume 7, b»ueO4

TransBASIC

Installment #12

Nick Sullivan

Scarborough, Ont.

TransBASIC Notes

TransBASIC has been a regular Transactor feature for two years.

Those who have been following the series know all about it.

Recently, however, we've received letters to the effect of "what is

TransBASIC?". Quite simply, TransBASIC is a method of adding

new commands to BASIC (see "Part /." below). The commands

come in 'modules' which may contain one or more commands OR

functions. After merging the modules ofyour choice, the entire lot is

assembled and linked into BASIC. The new commands can then

be usedjust like any of the other commands that are already in the

BASIC ROIvt when the C64 is powered up.

The TransBASIC Disk

The TransBASIC Disk contains all of the modules published so far

and it comes with its own assembler, SYMASS 3.1. Any combina

tion of modules can be linked into BASIC with only a few simple

steps. From start to finish is usually no more than a couple of

minutes... even less once you get the hang of it. It comes with a

handy reference for just $9.95. See the order card at center page.

TransBASIC Parts 1 to 8 Summary:

Part 1: The concept of TransBASIC - a custom command utility

that allows one to choose from a library only those commands that

are necessary for a particular task.

Part 2: The structure ofa TransBASIC module - each TransBASIC

module follows a format designed to make them simple to create

and "mergeable" with other modules.

Part 3: ROM routines used by TransBASIC- many modules make

use of ROM routines buried inside the Commodore 64. Part 3

explains how to use these routines when creating new modules.

Part 4: Using Numeric Expressions - details on how to make use

of the evaluate expression ROM routine.

Part 5: Assembler Compatibility - TransBASIC modules are writ

ten in PAL Assembler format. Techniques for porting them to

another assembler were discussed here.

Part 6: The USE Command - The command 'ADD' merges

TransBASIC modules into text space. However, as more modules

are ADDed, merging gets slow. The USE command was written to

speed things up. USE also counts the number of statements and

functions USEd and updates the totals (source line 95) automati

cally.

Part 7 - Usually TransBASIC modules don't need to worry about

interfering with one another. When two or more modules want to

alter the same system vector, however, a potential crash situation

exists. Part 7 deals with avoiding this problem.

Part 8 - Describes the five modules for Part 8.

Part 9 - Describes the six modules for Part 9, and makes first

mention of The TransBASIC Disk.

Part 10 - Describes the six modules for Part 10, and details some

minor bugs in the modules "MC GRAPHICS", "MOVE&FILL", and

"PRGMNGMNT".

Part 11 - Describes one huge module called "GRAPHCMDS". It's

used for plotting graph data, and printing it effectively. Also

mentions that the next TransBASIC Column will be the last in the

"series".

TransBASIC Installment #12

In agreement with the rumour mentioned last issue, this TransBA

SIC column is the last of the series. This is not to say that The

Transactor will not be publishing more modules in the future (in

fact, I'd still like to have one or two appear in every issue), but it

does mean that TransBASIC will get a lot less space (and require a

lot less preparation time) than it has in the past. If you're new to

TransBASIC, and want to know what modules have appeared in

previous issues, think about ordering the TransBASIC disk (see

News BRK or mail order card at center). There you'll find all the

modules we've published to date, along with the TransBASIC

kernel, the SYMASS assembler, and a number of support utilities

that will get you going with the TransBASIC system in no time.

Besides the six modules that appear below, we still have several

others on hand that will be published over the course of the next

few months, and new submissions are still welcomed. If the

backlog gets too big, we always have the option of putting the raw

modules (unedited and unintegrated) onto a supplementary disk

for people to.use as they see fit.

Meanwhile, I'd like again to thank all those authors who have

contributed to TransBASIC over the past two years for their time

and effort. Programming by committee has a deservedly bad

reputation, but in this case it seems to have worked out well.

Owing to a breakdown in the massive TransBASIC bureaucracy,

the line assignments for the keywords and routine addresses in

Paul Adams' GRAPHCMDS module, published last issue, were

incorrect. The official line range for the keywords is 155 through

162; for the routine addresses it is 1155 through 1162.

This time around we have a collection of small modules that you

can add to a TransBASIC dialect at very little cost in memory — or

keyboard fatigue. The authors are: Stewart Watton of Windsor,

Ontario (STRINGS, Program 1); Wayne Happ of North Babylon,

New York (UNEW, Program 2; FREE, Program 3; and FACT,

Th© Transocfor 15 Jan. 1987: Volume 7, touaO4

Program 4); Andrew Walduck of Barrie, Ontario (SPEEDUPS,

Program 5); and Steve Hammer of Muscatine, Iowa (DATAFY,

Program 6).

And in closing,

SYS 49155 :REM DISABLE TRANSBASIC

New Commands

STRING$((Type: Function Cat*: 199)

Line Range: 15156-15196

Module: STRING

Example: PRINT" " ;STRING$(38," *")

This function returns the first character of the string argument (the

second argument) repeated the number of times specified in the

numeric argument.

UNEW (Type: Statement Cat *: 200)

Line Range: 15198-15216

Module: UNEW

Example: UNEW

This statement restores the BASIC program that was in memory prior

to an accidental NEW or software reset.

FREE (Type: Function Cat*: 201)

Line Range: 15218-15234

Module: FREE

Example: IF FREE < 256 THEN PRINT "NOT ENOUGH

MEMORY"

This pseudo-variable does what the FRE(O) function should always

have done, returning the number of bytes remaining in BASIC

workspace as an unsigned quantity.

FACT((Type: Function Cat*: 202)

Line Range: 15236-15272

Module: FACT

Example: PRINT FACT(7)

This function returns the factorial of its argument. Arguments in the

range 0 through 33 are accepted; smaller arguments generate an

ILLEGAL QUANTITY error; larger arguments exceed the 64's floating

point capacity and so generate an OVERFLOW error.

FAST (Type: Statement Cat#: 203)

Line Range: 15274-15288

Module: SPEEDUPS

Example: FAST

This statement speeds the CPU operation of a Commodore 64 by

blanking the video screen, providing an advantage in processing

speed of a bit more than 6 per cent. On a Commodore 128 in C-64

mode it also switches the CPU to 2MHz operation.

SLOW (Type: Statement Cat *: 204)

Line Range: 15290-15304

Module: SPEEDUPS

Example: SLOW

This statement restores the normal operating speed of a Commodore

64 (or Commodore 128 in C-64 mode) after it has been accelerated by

the FAST command in this module.

DATAFY (Type: Statement Cat*: 205)

Line Range: 15306-15522

Module: DATAFY

Example: DATAFY 8,5000,10,8, "SPRITE.DAT"

This statement converts a disk file to DATA statements that are

appended to the program currently in memory. If there is a load

address in the file, that is converted too (and should generally be

removed — just take out the first two DATA items by hand). The

parameters are, in order: the disk device number (8 to 11), the starting

line number for the DATA (should be higher than the highest line

number currently in the program), the line number increment (1 to

255), the number of DATA items per line (1 to 62), and the name of the

file containing the bytes to be made into DATA statements.

Program 1: STRING

Kl

FH

EC

HH

PH

JH

NJ

EL

MH

oo

OH

BN

OD

DN

KO

EL

LM

FH

LC

CO

EA

CK

LF

OG

KN

FK

HD

GG

IC

AG

NF

DF

HD

CN

0 rem

1 :

string (Stewart watton , jan/86):

2 rem 0 statements, 1 function

3:

4 rem

5:

6 rem

7 rem

8:

Q rom<J 1 Cl 1 1

10:

<eyword chars: 8

keyword

f/string$(

624 .asc " strings

1624.

15156

15158

15160

15162

15164

15166

15168

15170

15172

15174

15176

15178

15180

15182

15184

15186

15188

15190

15192

15194

15196

routine

string

line ser#

15156 199

: .byte$a8

word string-1

string jsr

txa

pha

jsr

jsr

jsr

Idy

Ida

sta

jsr

pla

jsr

tay

beq

Ida

str1 dey

sta

cpy

bne

str2 jmp

$b79e

Saefd

$ad9e

$b6a3

#0

($22),y

t2

$aef7

$b47d

str2

2

($62),y

#0

str1

$b4ca

;get # of reps

;check comma

;eval string expr

;make descriptor

;get first char

;check right paren

;# of reps

; reserve space

;make index

;exit if no reps

;copy to str space

;test finished

; no

;return the string

Program 2: UNEW

EK

FH

AI

HH

PG

JH

NJ

OL

MH

NL1 N L_

OH

HB

FK

0

1

2

3

4

5

6

7

8

g

rem

rem

rem

rem

rem

rom

10:

unew (wayne happ) :

1 statement, 0 functions

keyword chars: 4

keyword routine line ser#

s/unew une 15198 200

163 .asc "uneW"

1 163 word une-1

Th© Tronsoctof 16 Jon. 1987: Volume 7, luueO4

KP

PC

EE

LE

KP

BF

EG

JM

OJ

GO

15198 une

15200

15202

15204

15206

15208

15210

15212

15214

15216;

DG

FH

EC

HH

PG

JH

NJ

OC

MH

00

OH

GJ

DP

Ol

AJ

MA

BH

ON

HM

NH

AM

II

CL

OM

GG

JE

KA

GB

Ml

IP

LD

FH

EC

HH

DH

JH

NJ

EG

MH

NL

OH

CM

HF

BE

DP

ED

Ida #1

tay

sta ($2b),y

jsr $a533

Ida $22

Idy $23

sta $2d

sty $2e

jmp $a660

;write non-zero to

; first link-hi

;re-chain program

;set start-of-vars

perform clr

line

15218

Program 3: FREE

0 rem free (wayne happ)

1 :

2 rem 0 statements, 1 function

3:

4 rem keyword chars: 4

5:

6 rem keyword routine

7 rem f/free fre

8:

9 rem =«».«»======«o«===

10:

625 .asc " freE"

1625 .word fre-1

2620 usfp Idx #0

stx $0d

sta $62

sty $63

Idx #$90

sec

jmp $bc49

ser#

201

2622

2624

2626

2628

2630

2632

2634;

15218 fre

15220

15222

15224

15226

15228

15230

15232

15234;

jsr

sec

Ida

sbc

tay

Ida

sbc

jmp

$b526

$33

$31

$34

$32

usfp

;garbage collection

subtract top of

; arrays from

; bottom of strings

;conv to float pt

Program 4: FACT

0 rem fact (wayne happ) :

1 :

2 rem 0 statements, 1 function

3:

4 rem keyword chars: 5

5:

6 rem keyword routine line ser #

7remf/fact fact 15236 202

8:

9 rem ===============================

10:

626 .asc "fact" : ,byte$a8

1626 .word fact-1

15236 fact jsr $aef4 ;eval argument

15238 jsr $b7a1 ;convtoint in .x

15240 txa ;test arg = 0

FC

Gl

IH

JG

DL

KF

DF

FB

IF

FH

CO

PE

CO

EA

AC

OB

15242

15244

15246 fad

15248

15250fac2

15252

15254

15256

15258

15260

15262

15264

15266

15268

15270fac3

15272;

bne

Ida

sta

jsr

jsr

dec

Ida

cmp

bcc

jsr

Ida

Idy

jsr

jmp

rts

fad

#1

t2

$bc3c

$bbca

t2

t2

#2

fac3

$bc3c

#$57

#$00

$ba28

fac2

; no

;0! = 1!

;conv to float pt

;copy to $0057

;decr index

;index to .a

;test if done

; yes

;conv to float pt

;times accumulated

; value at $0057

;loop

BC

FH

DH

HH

PH

JH

NJ

JK

NN

NH

ID

PH

BE

IB

KN

EN

Fl

BG

CJ

CJ

CK

OC

OF

Bl

FJ

HH

KO

CK

CL

OD

AE

FH

Al

HH

GO

JH

NJ

PO

MH

OO

Program 5: SPEEDUPS

0 rem speedups (a. walduck, june/86)

1 :

2 rem 2 statements, 0 functions

3:

4 rem keyword chars: 8

5:

routine

fas

slo

line

15274

15290

6 rem keyword

7 rem s/fast

8 rem s/slow

9:

10 rem = = = = = = = = = = = = === = === = = =

11 :

164 .asc "fasTsloW"

1164.wordfas-1,slo-1

ser#

203

204

15274 fas

15276

15278

15280

15282

15284

15286

15288;

15290 slo

15292

15294

15296

15298

15300

15302

15304;

Ida $d011

and #$ef

$d011

$d030

#1

$d030

sta

Ida

ora

sta

rts

Ida

ora

sta

Ida

$d011

#$10

$d011

$d030

and #$ef

sta $d030

rts

;blank screen

;enable2mhzmode

;show screen

;disable 2mhz mode

Program 6: DATAFY

rem datafy (steve hammer 3/86) :

rem 1 statement, 0 functions

rem keyword characters: 6

rem keyword routine line ser #

rem datafy dafy 15306 205

0

1

2

3

4

5

6

7

8:

9 rem

Th© TronsQCtor Jan. 1987: Volume 7, toueO4

OH

AF

KD

IG

CL

IH

IB

DB

PP

HJ

10

MJ

CM

AL

IL

OD

LJ

EE

AP

KK

LE

FL

HJ

OJ

KN

NM

MM

AD

Gl

PN

FK

EO

PD

HO

NK

MA

LL

BA

00

EE

DG

MN

JE

KM

DJ

JM

NL

JM

OH

NE

JA

IB

PP

OM

FG

ID

EO

JB

HF

KM

AD

BG

GD

DH

10:

39 setlfs

40 setnam =

41 open

42chkin

43 close

44 clrchn

45 getin

$ffba

$ffbd

$ffcO

$ffc6

$ffc3

$ffcc

= $ffe4

165 .asc "datafY"

1165 .word dafy-1

9150errpgm

9152

9154

9156

9158epg1

9160;

15306dafy

15308

15310

15312

15314

15316

15318

15320daf1

15322

15324daf2

15326

15328

15330

15332

15334

15336

15338

15340

15342

15344

15346

15348daf3

15350daf4

15352

15354

15356

15358

15360

15362

15364

15366

15368

15370

15372

15374

15376

15378

15380

15382daf5

15384daf6

15386

15388

15390daf7

15392

15394

15396

15398

15400

Idx $3a

inx

bne epg1

rts

jmp $afO8

jsr

jsr

sty

cpy

bcc

cpy

bcc

Idx

jmp

jsr

sty

sta

jsr

tya

beq

sty

jsr

tya

beq

cpy

bcc

jmp

sty

sty

Ida

Idx

Idy

jsr

jsr

jsr

jsr

jsr

jsr

Idx

jsr

Ida

bne

dec

dec

Ida

jsr

jsr

jsr

Ida

bne

dec

beq

Ida

errpgm

gn1

dvice

#8

daf1

#$0c

daf2

#9

$a437

getnum

In

ln + 1

getnum

daf3

incr

getnum

daf3

#$3f

daf4

$b248

numit

itcnt

#$79

dvice

#0

setlfs

$aefd

$ad9e

$b6a3

setnam

open

#$79

chkin

$2d

daf5

$2e

$2d

#1

incsov

wrtlin

maknum

$90

daf9

itcnt

daf8

#$2c

;check direct mode

;get device number

;test device > = 8

; no

;test device < 12

; yes

;'illegaldev#'

;get start line #

;get incr value

;test > 0

; no

;get items/line

;test > 0

; no

;test<63

;yes

;'illegal quantity'

;save items/line

;open121,dv,0

;check comma

;eval filename

;set up for setnam

;open channel

;backupstart-of-

; variables pointer

;set fwd-link hi

;add line #, 'data'

;add data item

;test status

; end of file

;count down items

; line complete

;add comma

EP

CC

JA

MB

CB

DA

CL

GH

LL

IJ

DL

BO

LK

KL

BG

EA

AM

CN

PF

OC

AG

DD

KB

OM

AM

GC

AH

KC

Ml

OC

BD

CD

AO

LN

AL

OP

OG

GK

HG

00

HG

CB

AP

DE

HC

HD

DJ

NK

GG

PJ

EA

00

DH

GA

MA

KH

ME

JD

MG

NB

IB

15402

15404

15406 daf8

15408

15410

15412

15414 daf9

15416

15418

15420

15422

15424

15426

15428;

15430 incs2

15432

15434;

15436 incsov

15438

15440

15442

15444

15446 ics1

15448;

15450 wrtlin

15452

15454

15456

15458

15460

15462

15464

15466

15468

15470

15472

15474

15476

15478 wrl1

15480;

jsr

bne

Ida

sta

jsr

bne

jsr

jsr

jsr

Ida

jsr

jsr

jmp

Ida

jsr

Idy

sta

inc

bne

inc

rts

Ida

jsr

Ida

jsr

Ida

jsr

Ida

jsr

clc

Ida

adc

sta

bcc

inc

rts

15482 maknum jsr

15484

15486

15488

15490

15492 mkn1

15494

15496

15498

15500

15502;

15504 getnum

15506 gn1

15508

15510;

15512 numit

15514 itcnt

15516 dvice

15518 incr

15520 In

15522;

iay

jsr

jsr

Idx

Ida

beq

jsr

inx

bne

jsr

jsr

jmp

incsov

daf7

numit

itcnt

incs2

daf6

incs2

incsov

clrchn

#$79

close

$a533

$a660

#0

incsov

#0

($2d).y
$2d

ics1

$2e

In

incsov

ln + 1

incsov

#$83

incsov

#$20

incsov

incr

In

In

wrh

ln + 1

getin

$b3a2

$bddd

#1

$0100,x

wrh

incsov

mkn1

$aefd

$ad8a

$b7f7

.byteO

.byteO

.byteO

.byteO

.word 0

; reset counter

;add two zeros

; branch always

;add two zeros

; and one more

;shut down disk

;rechain

;basic clr

;add two zeros

;call then fall

; index

;add to program end

;bump sov pointer

;add line #

;'data' token

;space

;add line inrement

;get disk byte

;conv to —

; floating point

; asc str at $0100

;skip leading space

;end at first null

;add char to prg

;check comma

;eval num expr

;conv to integer

Tho Ttansoctof M Jan.l987:Vmum>7,lt«ueO4

TeleColumn

First Transactor Online Conference!

Saturday, November 1,1986
see below

Welcome to the newest regular feature of The Transactor!

TeleColumn is where you'll find out about all our latest activity

in the exploding world of online communications.

Those of you who are regulars on the CompuServe Information

Network already know that The Transactor has been coordinat

ing the Commodore Programming and Commodore Communi

cations Forums on that service since September 1.

Although most of the activity we're directly involved in is on

the CompuServe Information Network, we'll be including any

pertinent news regarding the online industry. Multi-user sys

tems is our main interest, but BBS systems and BBS networks

are invited to participate by sending us material that would

interest Transactor readers. Packet switching networks (ie.

Tymnet, Telenet, and DataPac) are also an integral part of the

online phenomena, and anyone with tips on using these

services are encouraged to share them in TeleColumn.

Equipment capability is the single most important ingredient

for effective tele-computing. TeleColumn will be the place to

obtain the latest on great new communications hardware and

software, and the not so great.

The CompuServe Information Network

Sept. 1,1986: Transactor Online Finds New Home!

The following is a letter we received from CompuServe wel

coming us to our new online headquarters:

Dear Mr. Hildon:

On behalfofthe subscribers, sysops and staff, welcome to

the CompuServe Information Service!

As I indicated to you in our earlier conversations, we're

really pleased to have you and The Transactor aboard as

administrators of The Commodore Programming Forum

(CMBPRG) and The Commodore Communications Fo

rum (CMBCOM), and we look forward to a long, harmo

nious and productive working relationship. We're sure

that the combination of our service with your acknowl

edged expertise with the Commodore line of computers

will make these forums a hot item with users everywhere.

Once again, any time you need help with anything

relating to your online activities, please feel free to call, or

drop me a line on the system.

Sincerely,

Jim Rulfs

Manager, Online Computing Services

CompuServe Incorporated

Thank you Mr. Rulfs. I hope that with a little patience, practice,

and perseverance we'll be able to make our online efforts as

productive as our offline routine, and one day, maybe vice-

versa!

And We're Off!. ..er, On!

The word "information" hardly describes the seemingly end

less activities that you can access on the CompuServe Network.

As mentioned, Transactor Publishing Inc. will be managing the

activities of two sections of The Commodore Network on

CompuServe. CBMNET is only one service CompuServe. There

are Networks for Atari, Apple, IBM, and everything else from

Golf to Rock Music.

The two sections we'll be managing are the Commodore

Programming Forum, and the Commodore Communications

Forum. Both forums are functionally the same, but are different

in content. Each forum has literally hundreds of programs

available for downloading at no extra charge other than your

connect time charges. CBMPRG has programs aimed at those

writing software such as assembler subroutines, programming

utilities, and machine language monitors. CBMCOM has pro

grams aimed at the intermediate level programmer, and also

contains several terminal programs for just about any modem

available.

Both forums have their own Message Boards too. Much like the

Data Libraries, the messages contain information that relates to

the content of the forum. They're also full of questions and

answers for everything from the most common of problems to

the obscure.

There are three other forums you should also know about:

CBMART is the Commodore Arts/Games forum. This is where

you'll find just about any public domain game, along with

Tho Tronsoctof

Doodle and Flexidraw files, CAD programs, music software,

plus anything dealing with graphic design.

The Amiga Forum is, naturally, for those of you with Commo

dore's latest equipment line. And The Commodore Service

Forum is run by the Telecommunications Department of Com

modore HQ in West Chester. We'll have more details about

these forums in future issues. Stay tuned!

Coming up in the very near future (before next issue, barring

catastrophes) will be the Transactor Display Area, where you'll

be able to get in touch with us directly on magazine-related

matters. This area will have lots of uses, including some we

haven't yet thought of no doubt, but the following will give you

some idea of what to expect:

1. Reading Articles: You'll get an opportunity to catch up on

past issues you may have missed by reading articles on-line.

Of course, we're hoping too that the availability of Transactor

articles in this area will help bring new readers to the printed

edition, just as we're hoping that many of you reading this

will take the time to look us up on CompuServe.

2. Magazine Mail: Want to write a letter to the editor but you've

never got around to putting it on paper? Got a complaint? A

comment? A compliment? A subscription or delivery prob

lem? Now you'll be able to get in touch with the Transactor

staff more easily than ever before, and get answers faster too.

3. Subscriptions and Mail Order: Do you just hate filling out

those little cards in the centre of the magazine? We'll have

online ordering, which a lot of people find more convenient

than mail order, and we'll be able to keep you up-to-date on

new products, prices, and so on.

By the way, Transactor programs will be available in the

CBMPRG forum (free, except for connect time charges), and not

in the Display Area. As for articles that contain lots of embed

ded code.. . we'll judge each case on its merits.

The SYSOPS (SYStem OPeratorS)

Keeping our forums running smoothly takes a lot of hard work,

and a lot of learning for us. Luckily we have the aid of several

very able assistant SYSOPS; in these early days, we depend on

them especially heavily for their expert guidance and unfailing

energy. Here is a complete list of the sysops on CBMPRG and

CBMCOM, along with our User IDs so that you can find us

easily on the system. Don't hesitate to get in touch with us if

you have any technical questions, or if you have problems

using the service.

Karl Hildon

Richard Evers

Chris Zamara

Nick Sullivan

Brian Niessen

Gary Farmaner

Jim Oldfield

76703,4242

76703,4243

76703,4245

76703,4353

76703,4034

76703,3050

76703,4033

Betty Knight 76703,4037

Wayne Schmidt 76703,4032

Jake Lund 76703,3051

Steve Sileo 76703,4244

The Amiga Forum also has its own set of SYSOPS:

Steve Ahlstrom

Jim Nangano

Don Curtis

76703,2006

76703,4254

76703,4321

You'd also like to meet our neighbours on the CBMART forum.

Their names and IDs are:

November 1: The First Transactor Online Conference

On Saturday, November 1 at 10:00 PM., Karl Hildon, Richard

Evers, Chris Zamara, and Nick Sullivan will all be participating

in the first official Transactor online conference! That's right!

All four of us will be will be on stage for any inquiry you care to

throw at us. Just sign on and GO CBMCOM or CBMPRG, and

enter "CO" at the main function prompt. It's possible we may

be using facilities other than the regular conferencing area, but

these details will be displayed when you arrive. See you there!

Getting Started

If you're a Transactor Subscriber, you may have noticed the

CompuServe Intro-Pak bound into this issue. It contains a

CompuServe User ID, a Password, plus $15.00 of connect time.

It also contains complete instructions for signing on. If you

don't have a modem, please don't throw it away - instead, you

could give it to someone who does enjoy telecomputing, but we

really suggest that you buy yourself a modem and join in! The

telecommunications industry is literally exploding. Compu

Serve has over 250,000 subscribers, with the ratio of those

using Commodore equipment at over 1 in 3!

For those of you who are just getting started on CompuServe,

here are a few tips to make things a little smoother at the outset:

1. When you sign on, the system normally asks you first for

your User ID (formerly known by the now obsolete term

PPN, or Programmer Project Number), then for your pass

word. To save time, you can enter both of these on the same

line by putting a backslash ("\") after your User ID, then

continue straight on with your password. Nothing you type

after the backslash will appear on your screen. By the way,

on the Commodore 64, the equivalent of a backslash is the

British pound sign, just to the right of the minus key (for

those using CompuServe's own VIDTEXm, terminal software,

use Control £).

2. To get to the CBMNET area, type GO CBMNET at the main

system prompt ('G' works just as well as 'GO'). The next thing

you should see is a menu that will give you access to the five

CBMNET forums: AMIGAFORUM, CBMART, CBM2000,

CBMPRG and CBMCOM. You can get to any of these directly

(without using GO CBMNET) by typing GO plus the name of

the forum you want to visit (e.g. GO CBMPRG). By the way,

CBMART is the Commodore Art and Graphics Forum, man

aged by our good friend Betty Knight of Bellevue, Washing

ton, and CBM2000 is the Commodore Service Forum, which

Th© Trartsoctof 2O Jon. 1987: Volume 7, Issue O4

is managed by Commodore itself. Take the time to visit

them, too, while you're online. And, of course, those of you

with Amigas won't want to miss the AMIGAFORUM, which

is currently one of the most active on the system.

3. Once you're in the forum of your choice, the first thing you'll

probably want to do is check out the messages. This is

probably the easiest way to get a feeling for how and why

people use CompuServe. There are usually more than 500

messages on a board at any given moment, so you may want

to experiment with message reading, rather than try to read

all the messages on your first visit. Try RF (Read Forward),

RR (Read Reverse) and the others (Entering 'IN' at the

Function prompt will give you complete instructions for

using all the forum features), however, the most popular

method for reading is RTN which stands for "READ

THREAD NEW". A thread is a sequence of related messages,

so this command lets you read all the messages relating to a

particular subject as though they were numbered sequen

tially in the message base, which they almost certainly won't

be. When you've exhausted one thread, the system will take

you back to the point you started from, and pick up the next

thread thereafter.

One caution — if you quit reading in the middle of a thread,

your "current message pointer", which is saved for you when

you leave a forum, will be pointing to the current message

number, not to the start of your thread, and there could well be

unread messages (from other threads) intervening. This means

that if you go back to the forum later on and type RTN again,

you'll miss those unread messages. Should you wish to stop

reading the messages deep within some interminable thread,

you can issue a T at the prompt between messages which will

take you back to the main menu. Jot down the message

number that you were "reading replies to", and at the main

function prompt, type 'HI' followed by this number. This sets

the "Highest message read" so the next message you read will

be this message number +1. Now you can start another RTN.

Next Issue

TeleColumn will be a regular feature from now on, and we

hope it will be useful as a kind of liaison between the hardcopy

and the electronic activities of the magazine. In TeleColumn #2

we bring you up to date on our first two months online, and we

might also tell you about something called Color Mail — an

animated greeting card service run by Hallmark Cards.

We'll also tell you more about iNet, the Intelligent Network.

This is a service of Telecomm Canada that's also available in

the U.S. It has several features of its own, but the most valuable

is the 1-800 numbers available for users in remote areas.

Access via these lines costs no more than your regular monthly

fee of $3.00 per month plus iNet online charges (which halt

once you go through their "gateway" to another service, like

CompuServe)

Signing on through DataPac may create problems for those

downloading programs. Next issue we'll have more details

about DataPac commands necessary for avoiding difficulties.

Until next issue, the next article details the aspects of down

loading from CompuServe using Xmodem and 'B' protocols.

Downloading with Xmodem protocol is a Catch-22 situation if

you don't have terminal software that supports Xmodem proto

col. The short BASIC program is a "get-by". It will allow you to

download a somewhat superior program using the Xmodem

protocol. Once you have the better terminal program, you

won't need the program listed next, but you will need it to get

by the Catch 22.

See you all next issue, and hopefully on CompuServe before

then! Once signed on, type GO CBMPRG or CBMCOM and

'L'eave us a message!

Downloading From CompuServe

by Christopher Dunn, Chicago, Illinois

How to get something for (almost) Nothing.

So, you just logged on to CompuServe, and spent an hour or

two looking around at all the goodies. There is the CB Simula

tor, the games, the financial reports, the user forums, and all

the rest, but did you discover all the available free software you

can download and run on your C64 or 128? It's ALMOST free,

you still pay for your connect time while downloading, but

there are hundreds of well written and useful programs availa

ble, from pictures and games to full blown BBS systems. This

article will help you get started downloading from Compu

Serve.

I am going to assume that you have familiarized yourself a little

with the way CompuServe works, and that you can find your

way to the Commodore Fourms. The Fourms (sometimes

called a 'SIG' for Special Interest Groups) are akin to local BBS

systems you might have in your area. You can leave messages,

read bulletins, and up and download files. Each Forum has a

group of DATA LIBRARIES (known as a DL) that contains the

files. There are sometimes up to 10 DLs with the files they

contain in groups. One DL might be games, another might be

music programs, etc.

CompuServe supports 4 protocols for transfering files. They are

DC2/DC4, "A", "B", and XMODEM. A protocol is simply a

standard that both ends of a line agree on and the format in

which the data is sent and checked. Of the 4 protocols, DC2/

DC4 is only useful for text files, and is basically a RAM buffer

capture. "A" protocol is used on some older non-Commodore

computers. "B" Protocol is used in CompuServe's Vidtex termi

nal program and provides for just about automatic transfer of

files. XMODEM is also used in most popular public domain

terminal program for Commodore equipment. You may notice

that Punter protocol is not supported, simply put Punter is a

Commodore only protocol, and CompuServe must cater to a

wide market of all computer types. XMODEM is much easier to

implement, is supported by a wide variety of computers, and is

just as fast in transfering a file, if not faster when written in

machine language. As a matter of fact, I have included a small

IrQRSOCfOT 21 Jan. 1967: Volume 7, taueO4

XMODEM Bootstrap Downloader terminal program that you

can use to download a fullblown XMODEM terminal program

from CompuServe.

1 will cover the steps required to download with XMODEM

protocol from CompuServe here. If you already have a copy of

CompuServe's Vidtex, then you are using "B" Protocol, and just

about everything is automatic and explained in your vidtex

manual.

Once you are in a forum, you can access the Data Libraries by

entering: DLn Where n is the number of the Data Library you

want to see the files of. This places you into that Data Library

and you can now start looking through the files. The display

shows the name of the file as it is called on CompuServe, and a

description. If you were BROwsing through the DL, you will be

prompted to either Read, DOWnload, or continue browsing

through the files. At the prompt after each file you can enter:

DOW /proto:xmodem DOW for download, and /

proto:xmodem tells CompuServe to use XMODEM protocol

right off, otherwise you would have been prompted for 1 of the

4 protocols to use. If you know the name of the file you want to

download, you can also say so directly from the main data

library prompt, simply by:

DOW <filename> /proto:xmodem

When you request a download in XMODEM, CompuServe will

respond:

Starting XMODEM Transfer

Please initiate XMODEM transfer

and press <CR> when the transfer

is complete.

At this point you do what is required to place your terminal

into receiving mode. The file should then start downloading to

your disk. When you get an indication that the transfer is

finished, you return to terminal mode and hit your <RETURN>

key to indicate to CompuServe that the download is ended. You

should now have a runable copy of the program on disk. You

can download something else, or log off and run your new

program.

There are many places to find programs and text files for your

computer on line, of course there are the Commodore Forums,

but other places as well contain items of interest. All files fall

into 2 catagories, TEXT and PROGRAMS. Text are just that, files

that contain written information, possibly the documentation

for a program, or maybe a cooking recipe. Programs are

runable code, such as Basic or Machine Language routines. To

help tell Text and Program files apart, a standard was formed in

the naming of the files. On CompuServe file names can be 6

characters long, then a period, then 3 more characters. These

last 3 characters are called the file name extension. A typical

file name might be: CBTERM.TXT The extension indicates this

is a TEXT file. 2 special extensions are set aside for programs,

and these are BIN and IMG. BIN stands for Binary, and is what

is used when you work with XMODEM. IMG stands for Image,

and is produced with "B" protocol in Vidtex. Any other exten

sions are generally text files. TXT, DOC, and MEM could

indicate text, documemtation, or memo files. Some files may

not even have extensions, but the file description should make

clear what the file is. ARC is an extension that means archive,

and requires a special program to unpack the file once it is

downloaded. ARC is a way of compressing a group of files

together into one to save on uploading and downloading time.

As I stated, file names ending is BIN or IMG are programs, you

can directly download any BIN file with a XMODEM terminal

program, and it should produce a runable program on your

disk. IMG files on the other hand were created with "B"

protocol, and the file contains a few extra bytes before the start

of the program itself. If you download an IMG file with a generic

XMODEM terminal program, the downloaded file will not run

untill the extra bytes are stripped from the front of the file.

There are utilities available for doing this, but by far the easiest

thing to do is use a XMODEM terminal program that has the

IMG byte stripper built in. The popular terminal program

CBterm/C64 is one of these, and directly downloads both BIN

and IMG files.

Now to the problem some of you might have, and that is how

can you download anything if you don't have a terminal

program that supports B or XMODEM protocol. Well you will

find a possible solution in the program below. It is a tiny

terminal/XMODEM downloading program that I call the Boot

strap XMODEM Downloader (BXD for short). It provides the

barest of terminal functions and XMODEM error checking, but

will download. You should only really use it to download a full

terminal program like CBterm/C64.

BXD should work on both the 64 and 128:

Cl

FH

LI

EN

AH

NM

KE

JK

JC

LP

LA

Fl

JG

CM

GF

EB

PH

IP

5 open5,2,0,chr$(6)xlim

10 printchr$(14)" ISBBBI Bootstrap XMODEM
Downloader Ver 1.0"

20 print" Written by Christopher Dunn

30 print" |j [| Use the <F1 > key to start the
Download"

100 print" [Terminal Mode]

110 get#5,a$:if st = 8 gotoi 70

120 a = asc(a$ + ch r$(0))and 127

130 if a = 8 then a = 157:goto160

140 if a> = 65 and a< = 90 then a = a + 32:goto160

150 if a> = 97 and a< = 122 then a = a-32

160 print chr$(a);

170geta$:ifa$= " " goto110

180 a = asc(a$ + ch r$(0)): if a = 20 then a = 8

: goto220

190 if a = 133 goto 1000:rem do xmodem

200 if a> = 193 and a< = 218 then a = a-128

: goto220

210 if a> = 65 and a< = 90 then a = a + 32

220 print#5,chr$(a);

230 goto 110

1000 rem xmodem download

The Transoctof 22 Jon. 1987: Vohime 7, Issue O4

CH

HN

MB

NG

KH

KH

AO

MF

CC

MC

EE

EB

NN

HC

FD

El

MN

PP

HH

1010 ack$ = chr$(6):nak$ = chr$(21)

:eot$ = chr$(4):b = 1

1020 print" Q Xmodem Downloader.
1030 print" Enter file name for your disk:";

:f$= " ":input f$: if f$= " " goto 100

1040 print" Working! Please standby"

1050open8,8,8,f$+ ",p,w"

1060forx = 1to25:get#5,n$:next:q = 0:print#5,nak$

1070 get#5,c$:if st = 8 goto 1170

1080 q = q +1 :i%(q) = asc(c$ + chr$(0)): print".";

1090 if q = 1 and c$ = eot$ then close8

:print"DONE!":print#5,ack$:goto100

1100z = 0:ifq<132goto1070

1110 printprint" Checking Block"

1120 ck% = O:forx = 1 to 131 :ck% = (ck% + i%(x))

and255:next

1130 if ck°/o<>i%(132) then print" Bad

Checksum! ":goto1060

1140forx = 4to131:print#8,chr$(i°/o(x));:next

:get#5,n$

1150 print "Block "b" OK. ":b = b + 1

:print#5,ack$:q = 0

1160 goto1070

1170 rem check for time out

1180 z = z+1:ifz<500 goto 1070

1190 print "Block time out! Retrying. . .."

:z = 0:goto1060

BXD has 2 main areas, lines 5 - 230 are the terminal routines,

and most of that is to convert the Commodore's PETSCII

character set to standard ASCII and back again. Lines 1000 -

1190 are the XMODEM download routines. The only shortfall

to BXD comes when it has to deal with dialing your modem.

There are so many different kinds that there is no simple way to

write a dialing routine for all of them. If you have a manual

connect (1600) or a HAYES compatible (1670, etc.) just log on

using your manual mode or ATDT commands as normal. If you

have other types, see if you can dial in on your phone and trick

the modem into going on line. Lines 40-90 were left blank so

you could write dialing routines for your modem into BXD if

required. On the other hand, if you have a BASIC terminal

program for your modem already, you could add lines 1000 -

1190 to it so you could call the XMODEM routine.

You should use BXD first off to download a fast, full featured

terminal program. I recommend CBterm/C64. CBterm sup

ports XMODEM, 40 or 80 column display screen, dialing

routines for just about all modems, full disk and printer sup

port, 22.5K RAM buffer, screen clock, direct display of high

resolution RLE graphics and weather maps, and alot more.

With optional overlays CBterm will also do New Punter proto

col or emulate a Vidtex terminal. CBterm can be found in Data

Library 2 (DL2) of the CB Interest Group Forum. You get to

CBIG by entering: GO CBIG. Then enter the library with the

command: DL2. The filename on CompuServe is CBT45.BIN,

so you would type:

DOW CBT45.BIN /proto:xmodem

and CompuServe would respond with the "Starting XMODEM

Transfer " message. At this point you would press the

<F1> key to put BXD into download mode, and would be

prompted for a disk file name. Enter:

CBTERM

BXD will now download the program. As BXD progresses, you

will see periods print across the screen, each one is a received

character. Xmodem downloads in blocks of 128, so after each

128 characters you will see BXD print it is "Checking Block". If

the checksum matches, BXD will print "Block * OK" and write

the data to disk. If there was line noise or the data was bad, BXD

will print "Bad Checksum!" and have CompuServe resend the

data. If a character was lost in transmission, you will see the

message "Block time out.. ." and the block will be resent.

If you continue to receive error messages after 4 or 5 attemps by

BXD to get a block, then hang up, validate your disk to close the

open file, and try from the beginning.

Unless you have a very noisiy telephone line, BXD should

work well. CBterm Version 4.5 is 49 DISK BLOCKS long, which

will be about 100 XMODEM blocks. At 300 baud it should take

about 15 or 20 minits to download. Two other important files

for CBterm are CBTP1.DOC and CBTP2.DOC, these are the

instructions for using CBterm's many features. You can read

these files online or capture them with CBterm's RAM buffer or

another terminal program. All CBterm functions are activated

by holding the Commodore key and a letter or digit. Once you

have a copy of CBterm, you just:

load" cbterm", 8

. . .and RUN. You are prompted for the baud rate, enter 3 for

300 or 12 for 1200. You will then see the opening screen and

you can press C= and H for the HELP screen. It will display

most of the features and what keys to press.

That is XMODEM in a nutshell. Once you have a copy of

CBterm/C64 you can download just about any file on Compu

Serve, and this includes the IMG files. If you inspect the Data

Libraries of CBIG you will find many programs and files for the

C64. While not strictly a Commodore forum, CBIG has many

Commodore followers. In its DL3 you can find many High

Resolution RLE (Run Length Encoded) pictures that CBterm

will directly display to screen and printer. These images range

from the abstract to the standard computer room nudes. You

can also find programs to convert your images to RLE format so

you can upload your artwork. Other CBIG DLs contain pro

grams and data like the CB Personal Ads or indexs of files for

other computers. Give CBIG a look around while you are there.

If you have any questions or comments about XMODEM, BXD,

CBterm/C64 or anything else I might be able to help with,

leave a message in CBIG to SYSOP. I will be glad to help. Enjoy

Downloading!

The Transactor 23 Jan. 1987: Volume 7, tetue 04

Build a Modem Emulator Bob Jonkman

Hamilton, Ontario

... The idea was to place two C-64s side by side, with one

running a BBSprogram and the other running a terminal program. . .

Last year at the World of Commodore II show I came across a booth

selling connectors for the C-64 user port. These things are as scarce as

hen's teeth, and I figured I would buy two, even though I had no

immediate application for them. It was a good thing I did, because I

haven't found any other source for them, and they came in handy for

a BBS demonstration.

The idea was to place two C-64s side by side, with one running a BBS

program and the other running a terminal program, without using a

modem or phone lines. This way everyone could see how a BBS is run

as someone was actually using it.

The most important piece of hardware required is a cable to connect

the two RS-232 lines (Transmit to Receive, and vice versa) in the user

ports. This allows the two computers to communicate. Two other

items are necessary: Something to alert the C-64 running the BBS that

the other C-64 was present (the Ring Detect); and something to

simulate the carrier signal normally provided by the modem. Without

the simulated carrier the BBS would assume that the terminal pro

gram had broken the connection, so it would "hang up the phone"

and log off. The Ring Detect is faked with two momentary switches

connecting the RI lines of the RS-232 ports (one on each machine) to

ground; similarly the Carrier Detect is faked by connecting the DCD

and CTS lines to ground.

The connections in the user port we are concerned with are:

Pin*

A

B

C

F

H

K

M

N

RS-232

GND

SIN
c
'-'IN

RI

DCD

CTS

Sour
GND

Description

Protective Ground

Received Data

Received Data

Ring Indicator

Received Line Signal (Carrier)

Clear To Send (Carrier)

Transmitted Data

Signal Ground

The complete table can be found on page 143 of the User's Guide (with

6526 ID abbreviations), or page 355 of the Programmer's Reference

Guide.

Equipment and Supplies:

5 conductor cable (approx. 2 metres)

2 normally open single pole momentary switches

1 single pole single throw toggle switch

1 medium sized hobbyists box

2 female edge connectors (2x12 pin, 5/32" spacing)

Some skill in soldering would be helpful, although this is an excellent

project to learn on. You'll also need to drill holes in the hobby box for

the switches.

Hook-up

The first thing to do is to put some holes in the hobby box. Drill a

small hole in each of the ends of the box (the smallest sides). This will

be where the cable goes through. While you're at it, you can also drill

the holes for the switches. For a neat looking layout, divide the top of

the box into thirds both horizontally and vertically using a pencil (that

should look like a tic-tac-toe grid). Drill the holes for the Ring Detect

switches at the intersections along the upper line, and drill the hole for

the Carrier Detect switch in the centre of the lower line. You might as

well mount the switches in the box now. That will make it easier to

solder the cable to them later.

Thread the cable through the two holes on the side of the box. It is a

good idea to tie two knots in the section of the cable inside the box so

that it cannot be pulled out accidentally. Make sure you leave enough

slack inside the box so that when you cut the wires they will be able to

reach the contacts of the switches.

Remove about 2 inches of the sheath on the ends of the cable, and

carefully strip away the sheath between the two knots. At this point I

usually assign an order to the wires in the cable according to the

resistor codes:

1 Black 6 Green

2 Brown 7 Blue

3 Red 8 Purple

4 Orange 9 Grey

5 Yellow 10 White

This will be the order in which I connect the wires (if all the colours

are not in your cable, just use the ones that are in this order).

First, the ground wire. Although two different grounds are indicated

in the chart above, for our purposes they are identical and we can

connect them together. Connect the first wire to pins A and N of both

connectors. You may have to use an extra piece of wire as a jumper to

connect A to N on the connectors. Inside the box, connect this wire to

one side of all three switches. Again, a bit of extra wire is useful here.

Make sure that the wire is still connected all the way through, that is, it

should come in one side of the box, connect to each switch, and

continue out the box to the other connector.

Second, connect the Ring Indicator. Connect the second wire to pin F

on both connectors. Inside the box, cut this wire in two. Connect one

end to the remaining terminal of the closest momentary switch, and

connect the other end to the other momentary switch. Now, when a

switch is pressed it sends a "Ring Detect" signal to one of the

computers.

Next, the Carrier Detect. Connect the third wire to pins H and K at

Th© Tronsoctof 24 Jan. 1987: Volume 7, toue O4

each connector. Use some extra wire as a jumper to make it easier.

Inside the box, strip some insulation from the middle of the wire, and

connect it to the remaining terminal of the toggle switch. When this

switch is turned on, it will send a "Carrier Detect" signal to both

computers at the same time (with modems, if one detects a carrier it

immediately sends a carrier of its own, so that both modems detect

carriers).

Now we connect the Transmit line of one connector to the Receive

lines of the other. Connect the fourth wire to pin M on one connector.

On the other connector fasten this wire to pins B and C. There are no

connections inside the box. Connect the fifth wire to pins B and C of

the first connector, and to pin M of the second. This sounds awfully

confusing, so check Fig. 1 to make sure you've got it right.

There! Everything should now be hooked up and ready for its first trial

run. Go over every connection you've made to make sure the wires

are connected to the right terminals, and make sure there are no

solder bridges (great blobs of solder that connect two or more termi

nals that shouldn't be connected. Solder bridges are never made by

technicians — they generate spontaneously when everyone has their

backs turned. . .). Even if you only have one computer you can still

test it out. You'll need a terminal program like TERM24K that has a

Ring Indicator in the status line. Plug one of the edge connectors into

the user port of our C-64, and then switch it on. Load your terminal

program, and watch the status line. Press the Ring Detect switch for

that connector. On TERM24K you will see an R appear in the status

line. Flip the Carrier Detect switch. You will see a C in the status line.

Turn off the power to your computer before you check out the other

connector. Of course, if you see smoke coming out of your computer,

throw up your hands in despair, wildly run around in circles, and take

your computer to Dr. Eric to find out what got fried. If you've followed

these instructions, you shouldn't have any problems.

.. .And I Did It My-y-y-y Way...

Far be it for me to follow my own instructions. When I bought the

hobby box and the switches, I was mostly concerned with appear

ances. Since my box was black, 1 bought matching black momentary

switches because they looked so much better than red momentary

switches. It wasn't until I got home that I found out that black switches

are normally closed, and red switches are normally open.

Being too cheap to buy new switches, I found another solution. As

long as the RI line is held at about 5 volts, it is off. When it is held at

ground potential (0 volts), it is active (sends a Ring Detect signal).

What I did was to connect a sixth wire to pin 2 on each connector (a

source of 5 volts), and attached that to one terminal on the momentary

switch. I connected the other side of the switch to the RI line (the

second wire). In addition, I also connected a 1000 Ohm resistor to this

wire, and connected the other end of the resistor to ground (See Figure

2). Now, as long as the switch was closed, the 5 volts would go straight

to RI line, keeping it off. It would also go through the resistor to ground

(without the resistor there would have been a short circuit). When the

switch was open (pressed), the RI line would be connected through

the resistor to ground (0 volts), making it active. This was just what I

was after!

If anyone builds a modem emulator, I'd be interested in hearing from

you. You can contact me through the T36 bulletin board in Toronto

(416 385-8772, user 29).

MODEM Emulator

Figure 1

F

A

2

RI

GND

+ 5v

Figure 2 R,

Table 1

SPST Switch

N.O. SP Switch

N.C.SP Switch

1 K ohm Resistor

The Transoctor 25 Jon. 1987: Volume 7, lstueO4

Universal

RS-232 Cable

Martin Goebel

St. John's, Nfld.

A Simple Do-It-Yourself Project

There is more to connecting a pair of devices on a RS-232

(serial) port than simply plugging them in. This universal cable

which is also known as a breakout box, can be used to

overcome many problems which are due to different pin

designations.

Background Information

The RS-232 standard defines the electrical characteristics for

an interface for connecting a piece of data terminal equipment

(DTE) and a piece of data communications equipment (DCE)

such as a modem. This standard is not as far reaching as might

be inferred by the common sales pitch, "Includes a Standard

RS-232 Port". In fact, many pieces of equipment with a RS-232

port use the "standard" in different ways. Thus two pieces of

equipment, even if they can be plugged together, will not

necessarily work as intended.

Consider for instance two microcomputers interfaced with RS-

232. Which one is the DTE and which one is the DCE? Another

example is the interfacing of certain devices such as printers

and plotters. Generally these devices only receive data, but on

occasion they also send information back, error messages

being an example. To make matters even more complicated,

communications between microcomputers is always handled

using software. The design of such programs may require that

certain electrical connections be present but there is no set

standard practice for how the RS-232 is to be used.

Fortunately, the RS-232 standard has sufficient common

ground that it is possible to interface most equipment. The trick

is to modify the interfacing cable so that the transfer of data

occurs on the correct lines as required by the equipment or

software. This simple project aids this task by allowing lines to

be exchanged using jumper cables. Furthermore, by making

this universal RS-232 cable you need never buy another cable

no matter what equipment is to be interfaced and it may be

cheaper than buying a ready made cable.

The "Standard" RS-232 Interface

The RS-232 uses a conventional 25 pin connector called a DB-

25. There are 13 pins in the top row and 12 pins in the bottom

row. The male and female connectors are mirror images of

each other, thus pin 1 in the male connector can only meet

socket 1 in the female connector. The 25 pins are generally

assigned to signals according to Table 1. Note that signals on

pins 2, 4, 14, 19, 20 and 24 originate with the DTE and that

signals on pins 3, 5, 6, 8, 12, 13, 15, 16, 17,21 and 22 are from

the DCE. Pins 1 and 7 are shared and pin 23 is indeterminate.

The reserved and unassigned pins may be used for anything.

Table 1: Common RS-232 Pin Designations

Pin

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

RS-232 Signals

Protective Ground

Transmitted Data

Received Data

Request to Send

Clear to Send

Data Set Ready

Logic Ground

Carrier Detect

. . .reserved. . .

. . .reserved. . .

.. .unassigned...

Sec. Carrier Detect

Sec. Clear to Send

Sec. Transmitted Data

Transmit Clock

Sec. Received Data

Receiver Clock

.. .unassigned. . .

Sec. Request to Send

Data Terminal Ready

Signal Quality Detect

Ring Detect

Data Rate Select

Transmit Clock

.. .unassigned. . .

Initial

(TXD)

(RXD)

(RTS)

(CTS)

(DSR)

(dcd;

(DTR)

Tho Ttonsoclor 26 Jan. 1987: Volume 7, tosue O4

RS-232 Usage With Commodore

The usage of the electrical connections varies somewhat and is

different among the various Commodore computers. My Super-

PET uses only pins 1 to 8 and pin 20. These pins are assigned

the functions as in the above table. In addition pin 13 is

connected to a + 5 VDC power supply. On the B Series, + 5

VDC can be found on pin 11 and -12 VDC on pin 18, and it

seems pin 24 is implemented. Adapters for use with the VIC-20

and C-64 can result in other minor variances. Obviously you

will have to refer to the manual for your particular piece of

equipment to be certain about how your RS-232 is imple

mented.

Because this universal cable allows access to each line, one can

easily connect a voltmeter to any pin and one can therefore

find out what is going on both from a hardware as well as a

software point of view by observation and by trial and error.

Building the Universal Cable

This project is extremely simple to build. It would definitely

belong in a beginners category. You will need one DB-25

connector to plug into your computer (check if male or female)

and then two more connectors, one male and one female. Then

you will need either a 5 foot length of 25 conductor ribbon

cable or a few different coloured spools of single conductor

wire.

If you get the flat ribbon cable, (Radio Shack #278-772), make

sure you buy the solderless DB-25 connectors (Radio Shack

#276-1559 and #276-1565). This is actually the easiest way to

go as it will save you lots of soldering. The single conductor

route is cheaper but soldering the wires into the DB-25 connec

tors (Radio Shack #276-1547 and #276-1548) is tricky.

Also you will need 50-1 1/4 inch finishing nails and a piece of

scrap 1/2 inch plywood or particle board measuring about 5 by

8 inches. Later you may also need a package of 8 jumper wires

with alligator clips attached. All of this should cost less than a

ready made cable.

The actual assembly of the parts is as follows:

1. Make two photocopies of the DB-25 connector and cut them

out from the paper. Glue them to the board as shown in the

diagram. These will serve as templates for putting in the

nails and will provide a means of labelling the pins.

2. Drive the nails into the board in accordance with the tem

plate.

3. Attach the connector that will go to your computer to a 2 foot

length of cable and at the other end of the cable carefully

separate the individual strands of wire for about 4 inches.

Strip a 1/2 inch of insulation from each wire.

4. Carefully locate pin *\ on the connector. You may need a

magnifying glass but it should be written on the plastic near

the pin or socket. Now locate the corresponding wire (you

may wish to check using an ohmmeter or a battery and light

bulb.

5. Neatly wrap the bare end of this wire around nail #1 and

fasten with a dab of solder. (Don't worry, the paper will not

burn up!)

6. Connect the remaining wires to the corresponding nails in a

similar manner. You need only connect those wires you will

actually use on your computer but I recommend connecting

all 25 since this device may later be used with some other

machine.

7. Attach both a male and a female DB-25 to one end of the

remaining 3 feet of ribbon cable, making sure that pin *\ and

socket #1 are connected to the same wire. If using the

solder-type connectors, you will have to prepare 2 separate

cables.

8. Connect the cable(s) to the other bank of nails as in steps 4

and 5.

You are now ready to plug one end of your universal cable into

your computer and the other end into the device. Having both

genders of plug on the device side allows you to connect

regardless of which type of connector the device may have.

Connect the jumper cables with the alligator clips to the nails to

make the desired connections between the various pins.

The advanced electronics hobbyist may mount this device in a

suitable box, install crossover switches to the more common

connections and add LED's to indicate signals on the various

lines. This device can also function as a null modem by

jumping the outgoing lines back to the incoming lines.

Common RS-232 Usage

Some knowledge about the conventional methods of interfac

ing RS-232 devices is a helpful starting point for using the

universal cable in a new application.

A minimal hookup can be accomplished with as few as 3 lines

connected. An RS-232 link could be as follows:

2 2

DTE 3 3 DCE

7 7

Such a hookup would give no hardware handshaking capabili

ties. If 2 DTE's are to be connected, the transmitted data (TXD,

pin 2) must be sent to the received data (RXD, pin 3) on the

other terminal. Therefore the hookup is as follows:

TKa
in© 27 Jan. 1987: Volume 7, Issue 04

2 3

nfF 3 ? P)TF

7 7

Suppose a printer is connected to a terminal. A signal from the

printer that its buffer is full may be needed. The printer may not

be equipped to send any code back to the terminal. The data set

ready line, (DSR, pin 6) may be used:

2 2

DTE 6 6 Printer

7 7

DSR has other purposes. It is used with modems to indicate that

power is on, for instance. Things get more complicated from

here on. RTS and CTS, pins 4 and 5, are a pair of handshaking

lines used with half-duplex modems. Carrier detect (DCD, pin

8) is used to indicate the presence of an active device or it may

be used to signal a computer that someone is trying to make

contact. Data terminal ready (DTR), pin 20) is complementary

to DSR, that is the terminal will indicate that it is ready to

receive data.

Jumping one line to another is a means of fooling the host

computer into thinking that all necessary lines are active. For

example, to connect a SuperPET to another computer, say a

Radio Shack Model 100, the SuperPET side has pins 4 and 5

jumpered as well as pins 6, 8 and 20. This arrangement is as

follows:

1 i

2 3

SuperPET 3 2 Model 100

7 7

4x5

6 x 8 x 20

One other important line is the protective ground (pin 1). It is

used to connect the chassis of the two devices so they have a

common ground potential. Sometimes the logic ground is

actually the same as the protective ground. The other pins are

rarely used or supported. While there may still be voltage

differences, communications protocol incompatibilities or soft

ware problems which will interfere with proper interconnec

tion of two RS-232 devices, chances are that if pins 1 to 8 and

pin 20 are correctly connected, the interface will work.

14 15 16 17 18 19 20 21 22 23 24 25

DB-25 Connector

Male

DB-25 to

Computer

-29 Conductor Cable

(length not to tccl*)

5" X 8" Base

Universal RS-232 Cable Layout

The Transactor 28 Jon. 1987: Volume 7, tome O4

A $2.00 Printer Interface

Reset Switch

Miklos Garamszeghy

Toronto, Ontario

. .to exit from a locked-in interface mode, you

must normally turn off the power to the computer.

Power Plug to

Cassette Port

SPST

Sw itch

Many Commodore computer users connect non-Commodore

printers, with standard Centronics style parallel input, to their ma

chines via a special hardware interface. On the VIC-20, C-64 and C-

128 computers, this is generally done by converting the serial bus

signal. Some of the printer interfaces, such as the CARDCO line,

provide various degrees of Commodore printer emulation through the

use of special secondary addresses when the printer file is OPENed.

The CARDCO interfaces also allow you to "lock in" a particular

operating mode, which can only be re-set by turning off the com

puter. These locked modes disable or enable certain software selecti-

ble interface features (such as PETSCII to ASCII conversion) and are

generally used when you want to prevent such a selection from

occurring accidentally (such as for bit image graphics work, where all

sorts of strange character data may be sent to the printer). Unfortu

nately, to exit from a locked-in interface mode, you must normally

turn off the power to the computer. This is not always desirable,

especially when you are in the middle of a long program. My solution

to this problem is to install a reset switch on the power line to the

interface.

Most printer interfaces draw their power from the cassette port. By

installing a switch in this power line, the power to the interface can be

shut off, thus resetting it without crashing the printer or computer.

The switch can be any type of SPST toggle switch, or a normally closed

(NC) momentary contact SPST pushbutton can be used instead. A

suitable switch can be purchased in a vast variety of styles, with either

screw or solder type connections, at an Electronics supply store such

as Radio Shack for a few dollars or less. Since the voltage and current

handled by the switch is minimal, the electrical rating of the switch is

not very important.

Connect the switch as shown in figure 1. Make sure that all connec

tions are neat and tight, with no loose strands of wire hanging off. The

switch can be mounted on a small piece of scrap perf board (or similar

stiff plastic) or in a small case. (I use an old 35mm film can.) The perf

board can be permanently attached to the back or top of the computer

Interface

To

Printer

Serial Port Plug

with a dab of 5 minute epoxy or similar type of high strength glue. It is

also possible to mount a small switch inside the case of some of the

larger printer interfaces, such as the CARDCO +G. In this case, make

sure that you can locate the correct wire for for the power inside the

interface (it should be marked on the circuit board, but use a voltmeter

if you are not sure), and that the switch connections will not short out

against something inside the interface. The switch can also be perma

nently installed by making a small hole in the back of the case of the

computer.

In addition to acting as a reset switch, a printer interface power switch

can also provide other benefits. The most obvious one is that it allows

you to cut off the power to the interface when it is not being used.

Commodore computer power supplies tend to be stretched to their

operating limits — cutting out unnecessary power drains, however

small, may be beneficial to the life of your power supply. The second

benefit deals with recognition of the printer when it is turned on.

Some combinations of printers and interfaces will not work (i.e.

device not present error) unless you turn on the printer before you

turn on the computer. (My Roland printer with a G-WIZ interface

won't work unless it is turned on first, but my old daisywheel doesn't

care when it is turned on.) This would normally present a bit of a

complication if, for example, you decided to print out a document

with your favorite word processing program, but didn't turn on the

printer before you started. In these cases, all that is required is that

you turn on the printer before turning on the PRINTER INTERFACE

power. With the reset switch installed, this is a simple task!

Th© Ttansoctor 29 Jan. 1987: Volume 7, IstueCM

The Commodore 64

Capacitance Meter

. . .a capacitance meter can only measure

capacitance, and can cost $100 and up!

The C-64's user port provides a convenient and easy interface to the

outside world. With just a little hardware and the right software, you

can make the C-64 do some amazing things.

One simple but powerful application is making the C-64 double as a

test instrument. The electronic hobbyist uses many types of compo

nents, the most common being resistors and capacitors. A multimeter

that can measure the value of a resistor may cost as little as $15 and

serve multiple utility by measuring voltage and current also. But a

capacitance meter can only measure capacitance, and can cost $100

and up! Most electronic hobbyists own multimeters, but very few own

capacitance meters. With under $15 worth of parts, a little time and

appropriate software, you can have your C-64 double as a very precise

capacitance meter.

A capacitance meter can measure capacitors with cryptic or missing

markings, test capacitor stability, or even measure large quantities of

purchased capacitors to insure they are within specifications (com

monly called an incoming inspection "go-no go" test). With minor

software modification, a computerized meter can measure the value

of a capacitor and then use that value to compute the other parame

ters for oscillators or monostable multivibrators (one aspect of com

puter aided design).

Aside from producing a low cost and useful product, this project will

provide you with an insight into how you can experiment with the

user port.

MEASUREMENT CAPACITANCE:

If a capacitor is provided with a fixed voltage, it will charge to a specific

voltage level within a time that can be determined mathematically.

The circuit of Figure 1 is a 555 Timer Integrated Circuit (IC) connected

in the monostable (one shot) mode. When a low voltage is provided to

pin 2, the voltage at pin 3 immediately rises to the supply voltage (V +)

and the unknown capacitor (C) begins charging. After a time equal to

1.09866 x R x C, the capacitor has been charged to two thirds of V +

and the voltage at pin 3 returns to ground. If the same capacitor and

resistor are used, this time will not change.

With the value of R and the charging time known, the above formula

can be used to calculate the value of C. This very simple circuit forms

the basis of an accurate capacitance meter. In practice, the C-64 sends

out a very short negative pulse to pin 2 of a 555 IC, starting the timing

cycle. It then counts until the voltage level at pin 3 of the IC changes

from V+ to ground. The count is used in a formula to calculate the

value of the unknown capacitor.

THE HARDWARE:

The schematic diagram of Figure 2 shows the capacitance meter. It

differs from Figure 1 in that the 555 Timer IC (Ul) is now connected to

Jim Barbarello

Englishtown, NJ

+5U

m 1.09866 » R » C

Figure 1: 555 Timer Specs

the C-64 user port, the unknown capacitor has been replaced by two

binding posts, and an additional timing resistor and integrated circuit

switch (U2) have been added. The user port will provide the trigger

and sense Ul's status. The binding posts will be used to attach an

unknown capacitor to the circuit. The additional IC and resistor will

provide the capability to measure a broad range of capacitance values.

With Rl only, the meter can measure capacitors with values between

20 picofarads (pf) and about 0.2 microfarads (uf). Placing R2 in parallel

with Rl decreases the effective resistance between pins 7 and 8 of Ul

from 10 megohms to 10 kilohms. This allows the meter to measure

capacitance between 0.1 uf and 150 uf. U2 is an electronic switch.

When the input voltage to the control pin (13) is at ground, the switch

is open and the resistance between pins 7 and 8 of Ul is 10 megohms.

When the voltage at pin 13 of U2 is raised to 5 volts the switch closes,

placing Rl and R2 in parallel and decreasing the effective resistance to

10 kilohms. Switch U2 allows the meter to switch ranges under

computer control. Power is provided from pins 1 (ground) and 2 (+ 5

volts) of the user port.

THE SOFTWARE:

While most of the software is written in Basic, the portion that triggers

the hardware and counts until done is machine language. This is

necessary since, with a capacitor value of 20 pf, the time to be

measured by our meter would be 1.09866 x 20 E-12 x 10 E + 6, or

approximately 22 microseconds. Basic is just too slow for this task.

The machine language utility is imbedded in the Basic program and

called via the SYS command.

The software must also set up the user port with line PBO as an input,

and lines PB1 and PB2 as outputs. Pages 360 and 361 of the

Commodore Programmer's Reference Guide identify the data direc

tion register at memory location 56579. Poking this location with the

number 254 (1111110 binary) causes lines PB7 through PB1 to be set

as outputs and line PBO to be set as an input.

The Transactor 3O Jon. 1987: Volume 7, toue O4

Figure 2: Schematic Diagram

OJ BPl(red)

6) BP2(blk)U2-7.OO

U2-14-+SU

PB2

Figure 3: PC Board, Component Side

UJ
»-

UJ

n
CL
CC
U

I

u

BIB TECHNlCfH. CONSULTING, INC
nflNRLHPflN, NJ 07726

© ©
© O

Figure 4: PC Board, Wiring Side

Poking memory location 56577 (CIA chip #1, Port B) changes the voltage level

on the lines that have been set as outputs. For instance, poking 56577 with a 2

(00000010 binary) will cause line BP1 to go high, PB2 through PB7 to go low,

and PB0 to remain unchanged (since it was set as an input line). Alternatively,

peeking 56577, and performing a logical AND on the results (PEEK(56577) AND

1) will indicate PBO's logic state. A zero result means PB0 is low and a one result

means PB7 is high. The software first addresses the data direction register at

56579 to define which lines are inputs and outputs. It then momentarily

changes the status of line PB1 from high to low to high again, beginning the

timing cycle for Ul. Then it continually senses the status of line PB0 until it

senses a ground voltage condition, counting the number of times it has checked

PB0. Finally, the software uses a mathematical relation to convert that count

into a capacitance value. If the user selects the low range, the software pokes

56577 with a 2 (00000010 binary), making line PB2 low and opening the U2

switch. If the high range is selected, address 56577 is poked with a 6 (00000110)

to keep PB1 high but close the U2 switch. Line PB1 (trigger input) must remain

high at all times except when the hardware is to be triggered.

CONSTRUCTION:

While the circuit could be constructed with any standard

method (including point-to-point wiring), best results are

obtained with a printed circuit board (PCB). Fabricate a

printed circuit board using the patterns shown in Figures 3

and 4. When completed, mount the components on the PCB

as shown in Figure 5 (clip off the excess resistor leads after

soldering and save for jumpering as described below). Note

that IC sockets are soldered to the PCB and the ICs inserted

in the sockets in the orientation shown. U2 is a CMOS

(Complimentary Metal Oxide Semiconductor) device and,

as such, is sensitive to static field damage. Handle this IC as

little as possible, preferably by the ends. Before handling,

touch a ground point (such as the screw holding an electri

cal outlet cover) to drain any excess charge present on your

body. Solder the eleven leads on the 22 pin connector to the

component side of the PCB. Turn the PCB over and bend

the remaining eleven pins down to touch the eleven PC

leads below them and solder to the PCB.

Note the three holes marked "J" in Figure 5. For each hole,

place an excess resistor leads in the hole. Solder the lead to

the pad on each side of the PCB. Clip off the excess lead.

Mount the two binding posts on the PCB as shown in Figure

5. For each hole, place an excess resistor leads in the hole.

Solder the lead to the pad on each side of the PCB. Clip off

the excess lead.

Mount the two binding posts on the PCB as shown in Figure

5. Melt a small amount of solder onto each of the two

rectangular pads on the PCB. Place the end of a short length

of wire onto one of the pads and reheat the solder, connect

ing the wire to the pad. Attach the other end of the wire to

the binding post. Repeat this procedure with another short

length of wire, connecting the remaining binding post to the

other rectangular pad.

USE:

Type in and save program listing 1 using the name "CAP".

Slide the meter connector (Jl) onto the user port PC edge-

board (left rear of the computer) so tne ICs are on the top

surface of the board and the binding posts are on the left.

Power up the computer, then load and run the "CAP"

program.

A representation of a meter will appear on the screen with a

display area (the blue rectangle) near the meter top. Below

the display area are four "buttons" labelled Fl (low range),

F3 (high range), F5 (clear display) and F7 (off). Pressing any

of the corresponding function keys will cause the label to

reverse color while the associated function is being per

formed. The low range is used to measure capacitors be

tween 20 pf and 0.2 uf. The high range measures capacitors

between 0.1 uf and 150 uf. For unmarked capacitors use

either range. If the capacitor being measured is not within

the range selected, the indication "OUT OF RANGE" will

appear in the display area of the current reading or mes

sage. Pressing F7 ends the program and displays the mes

sage "METER OFF - PROGRAM ENDED".

The Transactor 31 Jan. 1987: Volume 7, taueO4

OPTIMIZING PERFORMANCE:

Two factors affect the final accuracy of the meter; values of resistors

Rl and R2, and the stray capacitance of the hardware. These

factors will vary with the specific resistors and fabrication method

you use. Note the variables R(0), F(0), R(l) and F(l) in line 10.

These are the values of the resistance and stray capacitance for the

low (0) and high (1) ranges. To optimize your meter, you'll need a

digital multimeter capable of measuring resistance up to 11 meg

ohms (an analog multimeter has an accuracy of about 3 percent

and, therefore, is not accurate enough for this task).

With the meter disconnected from the computer, remove both Ul

andU2. Measure and note the value of Rl andR2in megohms (EX:

10.01 for Rl and .00979 for R2). Change the value of R(0) in line 10

to the value you measured for Rl. Similarly, change the value of

R(l) to the value you measured for R2. Save the modified program.

(NOTE: If a digital multimeter is not available, use the nominal

values of 10 and .01 for R(0) and R(l).).

Replace Ul and U2, being sure to observe the orientation shown in

Figure 5. Reinstall the meter, power up the computer and load the

cap program. Edit line 110 to add the statements .PRINT X:STOP at

the end of the line. With no capacitor connected, select the low

range. A number will appear along with the message "BREAK IN

110". Note this number as F(0). Repeat this procedure, this time

selecting the high range and noting the resulting number as F(l).

Change the values of F(0) and F(l) to the values you just noted.

Delete the :PRINT:STOP statements you added to line 110 and

resave the program.

Once this procedure to optimize the program to your specific

hardware has been performed, it need never be repeated. The

meter will retain its accuracy without any further calibration.

SUMMING IT UP:

This low cost, simple project provides a useful test tool for the

electronic hobbyist and shows how the C-64 user port can be used

for low cost, effective interface to the outside world. I'd like to hear

your thoughts on this type of simple hardware project, and if you'd

like to see others in the future. Please address any correspondence

to me at RD#1, Box 241 H, Tennent Road, Manalapan, NJ. I'll

answer any questions that are accompanied by a self addressed

stamped envelope.

List Of Materials

BP1 Red 5-way Binding Post

BP2 Black 5-way Binding Post

Jl 12/24 Contact PC Card Edge Connector (.156 spacing,

solder eyelet terminals)

Rl 10 megohm, 1/4 watt, 5% fixed resistor

Rl 10 kilohm, 1/4 watt, 5% fixed resistor

501 8 Pin 1C Socket (for Ul)

502 14 Pin IC Socket (for U2)

Ul 555 Timer IC

U2 4016 CMOS Quad Bilateral Switch IC

Miscellaneous: Double sided PC board (see text)

two short lengths (1,25each) of #22 solid wire

solder, etc.

NOTE: A kit containing all parts, the CAP program, a 555 timer design

program using direct input from the meter (both on disk) and an

instruction manual, is available for $15.00 (plus $2.00 U.S. shipping)

from B & B Technical Consulting, Inc., RD#1, Box 241H, Tennent Road,

Manalapan, NJ 07726. Specify Kit C64CAP. NJ residents include $0.90

additional sales tax.

BP1 (RED)

an cbuo

on
Ul
I—

l±J

n
o.
(Z
u

u

) U2

J

©

J

o

O-Rl-O

©

> Ul

J

©

nnnnnnnnnnnn

Jl (TOP)

J=JUMPER. SHORT LENGTH OF
UIRE PflSSED THROUGH

HOLE flND SOLDERED ON

BOTH SIDES OF BOflRD.
BOflRD BOTTOM

UIRE CONNECTIONS(2)
UIRE TflCK SOLDERED

TO SOUflRE PflO

Figure 5: Component Placement

Listing 1: The CAP Program

JO

EN

KL

BF

OP

Nl

DE

AE

CF

IH

1 rem ********************************

2rem** capacitance meter software **

3 rem** name: cap ♦*

4 rem ** (c) 1985, j.j, barbarello **

5 rem ** manalapan, nj 07726 **

6 rem ** v 1.1, 11 nov85 **

7 rem ********************************

10 gosub 440: print: r(0) = 9.75: f(0) = 19: r(1) = .00979

:f(1) = 2

20 data 120,169, 0,141, 1,221,169, 2,141,

30 data 221,162, 2,160, 0,169, 1, 45, 1

40 data 240, 15, 232, 234, 234, 234, 234, 234

50 data 224, 0, 208, 239, 200, 192, 0, 208, 234

60 data 142, 0,193,140, 1,193, 88, 96,999

70a = 49152:c = a:fori = 1 to 16: sp$ = sp$ +

" [1 spc]": next

80 b1 $ = chr$(176) + " CC" + chr$(174)

90 b2$ = chr$(173) + " CC" + chr$(189)

100 read b: if b<>999 then poke a, b: a = a +1: goto 100

1

221

The Transactor 32 Jan. 1987: Volume 7, tome O4

EG

JJ

HG

LO

FD

CK

KC

OM

FO

NH

NC

GA

LJ

FP

FE

NA

OG

NJ

KM

PG

Gl

AK

OF

IG

HN

JF

FG

FH

EO

MH

OM

ND

NL

IB

AD

AN

GD

LB

DC

NL

NL

BD

LC

PO

KH

OA

FO

110 gosub 620: poke 56579,254: poke 56577,6

120 col = 10: ro = 9: gosub 670: print b1 $: ro = 10

: gosub 670: print" Bf1 B";

130 print b$;" "-low range": ro = 11: gosub 670

: print b2$

140'ro = 12: gosub 670: print b1 $: ro = 13: gosub 670

: print"Bf3B";b$;""-high range"

150 ro=14: gosub 670: print b2$: ro=15: gosub 670

: print b1$

160 ro=16: gosub670: print" Bf5B" ;b$;

" -"-clear display": ro = 17: gosub 670: print b2$

170 ro = 18: gosub 670: print b1 $: ro = 19: gosub 670

: print" Bf7B";b$;"«-off"

180 ro = 20: gosub 670: print b2$: goto 270

190 co = 12: ro = 5: gosub 670: print sp$

200 sys c: x = peek(49409)*256 + peek(49408)

210 if ri = 0 and x<f(O) + 5 then x = 0: goto 240

220 if x>1000 then 240

230 av = 0: for i = 1 to 10: sys c: x = peek(49409)*256

+ peek(49408): av = av + x: next: x = av/10

240 printchr$(159): if x< = f(ri) then x$ =

" [3 crsr leftsjout of range": x = 0

250 co =18: row =5: gosub 670: x = (x-f(ri))/(43300»r(ri))

: gosub 510: print x$

260 ro = rr: co = 11: gosub 670: print fu$

270 get a$: if a$ = "" then 270

280 g = asc(a$): if g< 133 or g>136 then 270

290 on g-132 goto 300,320,340,360

300 ro = 10: co = 11: gosub 670: printchr$(18);" f 1 "

: rr=10: fu$= "f1 "

310 poke 49159,2: poke 56577,2: ri = 0: fi = 0: goto 190

320 ro = 13: co = 11: gosub 670: printchr$(18);" f3"

: rr = 13:fu$= "f3"

330 poke 49159,6: poke 56577,6: ri = 1: goto 190

340 gosub 400: goto 270

350 poke 49408,0: poke 49409,0: goto 190

360 rem** end

370 printchr$(147): ro = 12: co = 10: gosub 670

380printchr$(18);" meter off ";chr$(146);

- program ended."

390 print: print: print: end

400 rem** clear display (f5 function)

410 ro = 16: co=11: gosub670: printchr$(18);"f5"

420 co = 12: ro = 5 : gosub 670: print sp$

: for i = 1 to 200: next i

430 ro= 16: co= 11: gosub 670: print "f5": return

440 rem** format screen =

450 poke 53280,6: poke 53281,6: printchr$(147)

460 b$ = chr$(30) + chr$(18): bl$ = " [8 spcs]"

+ b$ + " [24 spcs]": printbIS

470 printtab(8);chr$(30)chr$(18)chr$(142);" c-64

capacitance meter "

480 printbIS: bb$ = " [8 spcs]" + b$ + " [2 spcs]"

+ chr$(146) + " [20 spcs]" + b$ + " [2 spcs]"

490 printbbS: printbb$: printbbS

500 for i = 1 to 14: printbIS: next i: print bl$: return

510 rem ** format output

520 if x< = 0 then return

530 p$= right$(str$(x),4): if asc(p$)<>69 then 580

540 p = val(right$(p$,2)): po = p + 2

550 x$ = str$(int(x* 10tpo + .5))

560x$ = right$(x$,len(x$)-1):if p = 5then

x$ = left$(x$,2)

570 x$ = x$ + " [1 spc]" + chr$(18) + " pf": return

MN

EE

GA

Pi

CO

BM

Jl

NK

AL

BJ

EM

580 p = 1: if x<1 then p = 1000: goto 610

590 if x<10then p = 100: goto 610

600ifx<100thenp = 10

610 x = int(x* p + .5): x = x/p: x$ = str$(x)

: x$ = right$(x$,len(x$)-1)+ " uf": return

620 rem* cursor control using plot kernel ($fffO)

630 data 162, 0, 160, 0, 24, 32, 240, 255, 96, 999

640 a = 49300: sc = a

650 read b: if b<>999 then poke a,b: a = a + 1: goto 650

660 return

670 poke sc + 3,col: poke sc +1 ,row: sys sc

680 return

Listing 2: Capmeter measuring utility source code

+ —

sei

Ida

sta

Ida

sta

Idx

$c000

#0

$ddO1

#2

$ddO1

#1

Idy #0

cont Ida

and

beq

inx

nop

nop

nop

nop

nop

cpx

bne

iny

cpy

bne

done stx

sty

Cll

rts

#1

$ddO1

done

#0

cont

#0

cont

$c100

$c101

;execution start at 49152

;disable interrupt requests

;set register mask for all 0's. Basic program

has previously set the data direction register

and set PB1 (trigger) high.

;bringPB1 low to trigger.

;set register mask for PB1 high.

;bring PB1 back high.

;x will be the least significant bit (LSB) of the

count.

;y will be the most significant bit (MSB) of the

count.

;A to be ANDed with $DD01 contents.

;if timing cycle done, PB0 will be low and

ANDing results in zero.

;if zero result, counting done.

;otherwise, increment count by one.

;add 10 machine cycles to slow

; down the count. This produces

; a count consistent with values

; of resistance in the hardware

; and desired measurement ranges.

;has x reached 256 (overflow to 0)?

;no. go back for next count.

;yes. increment MSB.

;has count reached 65536?

;no. go back for next count.

;store LSB count at $C100 and MSB

; at SC101 for retrieval by Basic prg.

;re-enable interrupt requests.

;return to Basic program.

.end

Listing 3: Utility for use of "PLOT" Kernel for screen cursor place

ment (source code)

* = $cO94 ; execution starts at 49300

Idx #0 ;row number will be poked into location now

storing #0 when utility is called.

Idy #0 ;col number will be poked into location now

storing #0 when utility is called,

clc ; clear carry flag tells Kernel you want to move

the cursor, not read its current location,

jsr SfffO ;call "Plot" Kernel to move cursor,

rts ;return to Basic program,

.end

The Troraoctor 33 Jan. 1987: Volume 7. toue O4

Commodore 64

Frequency Counter

Lome Klassen

East Kelowna, BC

Put some of the 64 s idle hardware to work!

I have always been interested in practical applications for

personal computers. There are many more things that can be

done with one besides playing the latest game. This article

describes one such application. Many of the features of the chip

set in the 64 are either unused or underused by the operating

system. The 6526 CIA chips can be used for many other

functions besides timing and I/O. The timers in the 6526 can

be used to count external signals which are applied to the CNT

pin. This pin is available on the user port. By using this feature,

one can count external signals and then process that count.

There are several applications for this, but one of the most

interesting is to use this for measuring the frequency of an

applied signal.

How The Program Works

To measure the frequency of a signal, one must count the

number of pulses for a certain length of time and then convert

that count to the frequency. If the time length used is one

second, then the count will be the frequency in cycles per

second and no other conversion is necessary. The biggest

restriction here is that one is limited to the maximum count

that the registers can hold. This can be overcome by either

shortening the time length, dividing down the signal before it is

applied, or using another register. With this program one can

select either one second or one-tenth second gate time. I have

used the CIA *2 chip for this program as its timers are not used

by the operating system. Only timer A is used , but one can

adjust the program to use both timers if a larger count is

desired.

By setting bit 5 of the control register for timer A, it will count

external signals. The assembly listing is fairly self-explanatory,

but a few items should be noted. The IRQ vector is changed to

point to our routine. This allows one to update the count more

accurately than a BASlC-only program would allow. A start

address of $C000 is used but one can re-assemble to a different

location if desired.

Since the IRQ happens 60 times a second and we only want to

get the count every 0.1 second or 1 second, a flag register is

used. This register is first loaded with a value equal to the

desired number of IRQ's per count update, then decremented

each IRQ. When the flag register has been decremented to zero,

the count is updated. The gate value is stored at 822. It contains

the value to be loaded into the flag register. If changed while

the program is running, it will change the gate time. 822 is set

to 60 at start-up.

One problem with the CIA timers is that they are down-

counters and what we want is up-counters. By initially setting

the counter to $FF and then Exclusive-ORing the final count

with $FF results in the counters effectively being up-counters.

This is done in the machine code so that it does not have to be

done in BASIC. To get the count, one must stop the counter,

read out the count, reset the counter and then restart it. After

the count is stored, the routine jumps to the regular IRQ

routine. Be aware that there could be a slight error here if a very

short gate time is used. There is a slight delay between the time

the counter is stopped and the time it is restarted. Even when

using a 0.1 second gate time this error is not significant. If you

use an extremely short gate time, the count should be adjusted

to correct this. The count is stored at locations 680 and 681 in

standard low byte, high byte format. If the count exceeds

$FFFF, the counter will not give a true reading. If this happens

either bit 0 or bit 1 of the interrupt control register will be set,

depending on which timer is used. To indicate this, the ICR is

ANDed with % 00000011 to mask off the undesired bits, then

stored at location 823. Anything other than a zero here indi

cates an overflow condition.

A short BASIC program is included more as a demonstration

than anything else, although for most low-frequency applica

tions it will suffice. The BASIC program allows the selection of

either 0.1 or 1 second gate time and displays the frequency on

the screen. If an overflow condition occurs, the word 'overflow'

will appear under the count value. This indicates that the count

is not correct and the 0.1 second gate should be selected. If you

are already using that, then you must either use a pre-scaler to

divide down the input signal or modify the program to utilize a

shorter gate time. The shortest gate time possible is 1/60

second. This would give a maximum count of nearly 4 Mhz.

However, this is too high for the 6526 to count accurately, so a

pre-scaler should be used above 1 Mhz to avoid errors.

There are many modifications possible, such as storing the

frequency at set time intervals or sending the display to a

printer. Also, one can use both timer A and timer B. The

machine code would have to be changed to include reading

timer B. Also the Control Register for B would have to be set to

count underflow from timer A. I leave these modifications up to

the user.

Th© TfORSQCtor 34 Jan. 1987: Volume 7, Ittue O4

Hardware Notes

Since we are using the CIA *2, we must use the CNT2 connec

tion on the user port as the input for the unknown frequency.

This is pin #6. Refer to the diagram shown for more informa

tion. Any signal applied to this pin MUST be TTL (+5 volt

maximum) compatible. If you are sure your signal is that, then

you can apply it directly to this pin. If not, a level shifting circuit

must be used. The signal applied should also have a fast rise

time to ensure it will be counted. The use of a Schmidt trigger

here will eliminate that problem. If your signal has an ampli

tude of less than about 3 volts then some sort of amplifier must

also be used.

Commodore 64 User Port

gnd +5v CNT2

1 2 3 4 5 6 7 8 9 1011 12

ABCDEFHJKLMN

(Edge-on view)

FA

JC

GK

CL

NJ

HN

GD

HG

BG

HI

EA

HE

IO

Jl

NL

OA

120 print £ 3 " tab(12)" frequency counter"
130 print tab(12)" "

140 print: print tab(6)" press ' + ' for 1 sec. gate"

150 print: printtab(6)" press'-'for 0.1 sec. gate"

160 print: print tab(10)" any other key to quit"

170 sys 49152 :rem start address

180 c = peek(680) + 256*peek(681): if c = cx

then 230 :rem count has not changed

190 print" {][7 spcs, 7 crsr lefts]"
;c;d$," cycles per second"

200 cx = c

210 if peek(823) then print" overflow"

220 if peek(823) = 0 then print" " :rem 8

spaces

230 geta$: if a$ = "" then 180

240 if a$ = " + " then poke822,60: d$ = ""

:goto180

250 if a$ = " -" then poke822,6: d$ = " [1 crsr

left]O": goto 180

260 sys 49155 :rem disconnect address

270 end

By using a one second gate value, the maximum frequency

is 65535 Hz. With a 0.1 second gate, the maximum fre

quency is 655350 Hz. If you want to count higher frequen

cies than this, then you must either shorten the gate time or

use a pre-scaler to divide down the input. Shortening the

gate time will increase the maximum frequency, but it is

best to avoid going any higher than about 1 Mhz. or the

chip itself may not count accurately. You also must make

sure that any circuitry that the signal is routed through has

the necessary bandwidth for your application. Any circuitry

used should be mounted as close as possible to the user

port. Try to keep all wires as short as possible, to avoid

problems.

Listing 1. BASIC portion of the frequency counter program.

Run the loader in listing 2 or assemble the machine language

portion to disk before running this.

Listing 2. BASIC program to create machine-language file

" freq.cntr.@cOOO" on disk.

KN

LJ

KO

MJ

01

NH

EC

KP

OM

GF

BN

10rem frequency counter

20 rem lorne klassen

30 rem east kelowna.b.c.

40:

50 rem uses cnt2 (pin #6) on the user port to read

in the frequency.

60 rem any signal applied to this pin must be at

ttl level.

70 rem count is stored at 680 and 681.

80 rem gate time is stored at 822, overflow at 823

90:

100c = c + 1: if c= 1 then load "freq.cntr.

@c000",8,1

110cx=-1

DD

LI

Fl

GK

BP

IO

DM

BC

PB

IL

DL

GP

BM

BL

OO

DH

HJ

BC

JO

BF

Ml

KD

MJ

NF

PI

PC

JF

EF

GP

10 rem* data loader for "freq

20 cs = 0

30 for i = 1

50:

to 133: read a: cs =

cntr"

cs + a: next

60 if CSO13602 then print" Idata error!"

70 rem create

80 open 1

90 print#1

8,1,

object file on disk

"0:freq.cntr.@c000'

chr$(0);chr$(192);

100 restore: for t = 1 to 133: read a

110 print#1,chr$(a);: nexti

120 close

130:

1000 data

1010 data

1020 data

1030 data

1040 data

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

1110 data

1120 data

1130 data

1140 data

1150 data

1160 data

1: end

76

20

169

173

3

3

141

141

2

141

208

169

73

73

4

14

55

, 23,192,120

, 3,173, 53

, 0,141, 14

, 20, 3,141

,141, 53, 3

169, 192, 141

4,221, 141

54, 3,173

169, 0,141,

14,221, 88

48,173, 54,

32,141, 14,

255,141,168,

255, 141,169,

221,141, 5,

221,173, 13,

3, 108, 52,

173

3,

221,

52,

169,

21,

5,

54,

13,

96,

3,

221,

2,

2,

221,

221,

3

52,

141,

88,

3,

77,

3,

221,

3,

221,

206,

141,

173,

173,

169,

169,

41,

: end

3,

21,

96,

173,

141,

169,

169,

141,

169,

167,

167,

4,

5,

255,

49,

3,

141

3

120

21

20

255

60

167

49

2

2

221

221

141

141

141

The Ttartfoctof 35 Jon. 1987: Volume 7, lime O4

BG

00

A0

LP

PRr D

CJ

BM

kin
In VJ

PM

GH

GG

PB

NL

MF

FO

CD

PL

KN

DM

PC

OB

Jl

EA

AF

GK

ED

LK

EJ

Ml

MP

JJ

EM

ND

FC

El

HL

HD

JP

ME

IH

AO

EH

EL

MA

HI

OP

NF

NG

AB

Listing 3.

Assembler source code for the frequency counter program.

100remopen 1,8,1,"@0:freq.cntr.@c000" :remfile

for object code

110 sys 700 ;pal 64 assembler

120 .opt oo

130 ; save" @O:freq cntr.pal" ,8

1 ah ■i mj ^

150;- frequency counter

160 ;- source code

17n ■
I / U ,"

180 ; uses cia #2, timer a

190 ; count is stored at 680, 681

200 ; gate value is stored at 822

210 ; overflow sets 823

220 ;.opt o1 ;sends object code to disk

230;

240* = $c000 ;start address

250 ;sys 49152-to start counting

260 ;sys 49155-to stop counting and disable interrupt

wedge

270 ;system equates

280 cia2 = $ddOO

290 talo = cia2 + $04 ;timer a count registers

300tahi = cia2 + $05

310 icr = cia2 + $0d ;cia interrupt control

register

320 era = cia2 + $0e ;cia control register

330 oldirq = $0334 ;storagefor old irq

340 irqvec = $0314

350 flag = 679

360 count = 680

370 gate = $0336 ;storage for count down

value

380 overflow = 823

390;

400 jmp connect

410 disconnect routine

420 sei

430 Ida oldirq ;put old irq vector back

440 sta irqvec ; in

450 Ida oldirq + 1

460 sta irqvec +1

470 Ida #$00

480 sta era ;stop timer

490 cli

500 rts

510;

520 connect = *

530 sei ;disable interrupts

540 Ida irqvec

550 sta oldirq ;store old irq vector

560 Ida irqvec+1

570 sta oldirq +1

580 Ida #<start ;point to our routine

HP

DA

NM

JC

CB

FG

BB

NN

HF

NL

FN

IC

AG

PG

IG

Nl

EG

HF

IG

Cl

AG

BB

MN

FH

FM

AH

PD

KL

OA

PH

EL

MC

LB

FF

OD

KP

NC

AB

HP

LG

Kl

OF

IG

FF

KE

Gl

GP

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750;

760 ;counte

770 start

780;

790

800

810getcnt

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

980

990

1000;

1010;

1020 done

1030

1040;

1050 .end

sla

Ida

sta

Ida

sta

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

cli

rts

irqvec

#>start

irqvec +1

#$ff

talo

tahi

#60

aate

gate

flag

#$00

icr

;same with high byte

load timer latch with1 1 \S V-*\—* L 1 1 1 1 V 1 1 V-* Lw II IT Ikl 1

maximum count

;use a default value of 60

;get count-down value

;put it in the flag register

;disable cia interupts

#%00110001

era

routine starts here

=

dec

bne

=

Ida

sta

Ida

sta

Ida

eor

sta

Ida

eor

sta

Ida

sta

sta

Ida

sta

Ida

and

sta

=

jmp

flag

done

.*-

gate

flag

;force load and start

counting

;all done so return

;check countdown flag

;not timed out so exit

;routine to read count

;reset flag for next time

#%00100000;setbit5

era

talo

#$ff

count

tahi

#$ff

count+1

#$ff

talo

tahi

;to stop timer

;convert to up-counter

and store result

;same with high byte

;reset timer latch

#%00110001 ;forceload + start

era

icr

timer

#%00000011 ;mask off upper 6 bits

overflow

*

(oldirq)

of status register

;and save it

;go to normal irq

routine

The Transactor 36 Jon. 1987: Volume 7, Issue O4

An Inexpensive Teaching Robot

For An Inexpensive Microcomputer
Rolf A. Deininger, Kevin O'Connor, and Tom K. Collopy

University of Michigan

Ann Arbor, Michigan

Figure 1. Armatron Robot Arms. The left model on top of the disk drive is unmodified and shows the two joysticks

for control. At right the modified robot arm sits on top of the power supply and interface box.

INTRODUCTION

Robotics is a fascinating topic and of great interest to everyone

from kindergarten to graduate school. Not a single day passes

without articles in newspapers about robots and their replacing

humans in the work force. There is a lot of mystique about robots,

yet they can be very simply explained and demonstrated. The

presently existing robots like the HERO (1) or the RHINO (2) are in

the thousands of dollar range and too expensive for the average

computer hobbyist and teacher. We were interested in a robot

which would cost well below $100 and be controllable by an

inexpensive microcomputer also less than $100. We chose the

ARMATRON (3) toy robot for under $50 and a V1C-20 computer.

More recently, Radio Shack has also been selling this robot for

around $30.

THE ROBOT

The ARMATRON toy robot is a marvelous small robot arm pow

ered by one single motor. It has all the functions of an industrial

robot—a hand which opens and closes, a wrist, a shoulder, an

elbow and a base. It is normally controlled by two joysticks at the

base. These joysticks engage and disengage a variety of cams and

gears to operate the functions of the robot. These mechanical

linkages—a beauty in design—were removed and replaced by six

individual motors to be controlled by the computer. Figure 1

shows two of the Armatron robot arms. The robot at left, pur

chased from Radio Shack, is the unmodified arm which is being

controlled by the two joysticks in front. The robot arm at right is

the one which was modified for connection to the computer. The

box below this arm houses a 6 volt power supply and the circuit

board.

Th© Transodof 37 Jon. 1987: Volume 7, Ittue O4

Figure 2. Modification of the Armatron robot arm required the removal of the joysticks. The assembly at right

shows the six individual motors with worm gears which drive the robot arm.

It is somewhat difficult to describe the process of

removal of the arms, but the entire joystick assem

bly was removed and replaced by a set of 6 individ

ual motors. Figure 2 shows the open Armatron

with the assembly of the six motors sitting to right.

Four of the motors were mounted horizontally,

and two vertically to connect via the worm gears to

the gears of the Armatron which control the six

major functions.

Potentiometers

Interface

THE COMPUTER

The computer chosen was a VIC-20 (4), which is

one of the most versatile and inexpensive micro

computers on the market today. The user port of

the VIC is ideal for interfacing it to the outside

world, and simple POKE statements allow the

control of external devices. The game port of the

VIC-20, usually used for the paddles and joysticks,

is ideally suited for feedback of an analog signal.

THE COMPUTER TO ROBOT INTERFACE

The computer to robot interface was housed to

gether with a power supply in a small box (see

Figure 2). Figure 3 shows the general layout of the

system and Figure 4 documents the circuit in

general form.

Power

Supply

Multiplex

Relays

Control

Lines

Motor Lines

User Port

Armatron

Robot

Game Port

VIC-20 Computer

Figure 3. Schematic layout of microcomputer, interface and robot.

Th© "ftonsoctof 38 Jon. 1987: Volume 7, Issue O4

PBO

to all motor grounds

PB1

PB2

♦6V

♦5V

♦6V

♦6V

♦ 6V

♦ 6V

RELO

REL1

REL2

REL3

REL4

REL5

MO

M1

M2

M3

M4

M5

Figure 4. VIC-20 to robot arm interface and controller.

The interface circuit is fairly straightforward and repetitious. It can

perform essentially three major functions: (1) manual control of

the motor speed, (2) selection of on/off and forward/reverse for all

motors, and (3) individual motor selection.

The first function, motor speed control, is regulated by the variable

resistor, Rv. The resistor controls the current injected into the base

of the transistor (Q8), which in turn regulates the amount of current

passing from the collector to the emitter and through the motor.

The second function, motor direction and switch, is controlled by

the two lines PBO and PB1 on the user port of the VIC-20. When

both relays are off (00), or both are on (11), the relays switch

between +5 volts and ground, respectively. Thus, when a '00' or

'11' is sent to these lines, the motors are tied to the same potential

and no current flows; the motors are OFF. If a '10' or a '01' is sent,

one relay is tied to + 5 volts and the other to ground, thus current

may flow to a motor. Going from a '01' to '10' reverses the direction

of the motor. The inverters on the input lines are used as line

drivers to protect the VIC-20.

Th© Trcmsoctof 39 Jon. 1987: Volume 7, l*sueO4

Finally, the third, and most important function is the motor selection. The

motors are addressed with lines PB2, PB3 and PB4 where the following bit

patterns represent a distinct motor:

PB4 PB3 PB2 Motor No.

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

2

3

4

5

The decoder pulls the selected line low and sets all other lines high; thus

inverters are used for each line to reverse this bit pattern (NAND gates were

used because of availability of chip). When a line goes high, current flows into

the base of the transistor causing it to go into saturation and allowing current to

flow from the collection to the emitter. This current closes the relay contact and

the motor is switched ON. The transistors used in this function act as switches

and are needed to drive the relay. Rv is used as a current limiter protecting the

TTL circuitry of the inverters.

To cut the cost of batteries and allow us operation of the motors at various

voltages, we used a regulated 5 volt power supply which we mounted in a steel

cabinet together with the relay board. The total cost of the power supply, relays,

chips connectors and cables was in the order of $50. The 5 volt DC motors were

from Radio Shack.

OPERATION OF THE INTERFACE

The operation of this controller is accomplished by POKEing bit patterns to the

USER I/O PORT. Memory location 37138 is the Data Direction Register (DDR)

of the VIC-20 and controls input/output of Port B. First, one must make the

lines used, PB0-PB4, output lines. This is accomplished by writing to memory

location 37138 a "bit" pattern where a 1 in the respected line position

represents an output line. To make PB0-PB4 outputs, we must send a XXI1111

(binary) to 37138 (X = don't care) thus a POKE 37138,31 makes PB0-PB4 all

output lines. These lines can now be set high (1) or low (0) by writing the

appropriate bit patterns to memory location 373136, which is the actual port B

itself. The required bit pattern is shown in Table 1. The BASIC command is

POKE 37136.X.

A small program which tests each of the motors in both directions is shown in

Listing 1. The motors are controlled by typing the first letter of the robot arm

element (i.e. B for base) and the direction (i.e. R for CCW, L for CW).

Table 1: Required Bit Patterns to Operate Motors

PB4 PB3 PB2 PB1 PBO X Motor No. Motor Action

2

5

6

9

10

13

14

17

18

21

0 22

*CCW - counterclockwise

0 Base - rotate CCW*

0 Base-rotate CW**

1 Elbow - rotate CCW

1 Elbow - rotate CW

2 Shoulder-up

2 Shoulder-down

3 Wrist - CW

3 Wrist - CCW

4 Hand - close

4 Hand - open

5 Wrist - up

5 Wrist - down

**CW-clockwise

In any robot operation, feedback on the position of the

robot arm is essential. These are only two convenient

places where a simple potentiometer can determine

the position of an element of the robot, namely at the

wrist and at the elbow. Therefore, only the move

ments of the wrist and the elbow are fed back into the

VIC-20 (actually, the VIC has only two analog inputs).

Two 200 K potentiometers were attached to the wrist

and elbow with the wiper arm locked to the elbow and

shoulder, respectively. The elbow potentiometer was

connected to pin 9 (POT X) and the wrist potentiome

ter was connected to pin 5 (POT Y) of the Game I/O

port. Potentiometer ground was carried to pin 8. A

simple PEEK in BASIC will then tell the approximate

position of the wrist or elbow.

Elbow: PEEK (36872)

Wrist: PEEK (36873)

PEEK Values and Position

5 far left

38 centre

62 far right

120 down

72 centre

13 up

A SIMPLE PROGRAM

To demonstrate a simple movement of the robot, the

example program in Listing 2 will cause the robot arm

to grab an object, lift it over a barrier, rotate it for

theatrical effects, and place it down on the other side

of the barrier and release it. After a 15 second rest, the

robot will pick up the object again and return it to its

previous position.

SOME LIMITATIONS

The attachment of the motors to the gears is not as

precise as we wished to be. Some motor-gear slippage

takes place. Occasionally a motor will jam or will not

be pressing hard enough against the gears to drive

them. Therefore some adjustments will be needed

from time to time. It is also desirable to run the motors

at low speed to make them and the gears last a long

time.

Since we have feedback on only two movements—the

elbow and the wrist—the robot arm must always be

put into a known initial position. The robot will return

to approximately the same position—not exactly,

since there is some play in the plastic gears and

linkages.

CONCLUSIONS

The ARMATRON toy robot together with a VIC-20

computer allows a demonstration of robotics at a very

The Transactor 4O Jon. 1987: Volume 7, Issue O4

low cost. The movements of the robot are not precise enough for a

real world application, but are good enough for demonstration and

teaching purposes. The mystique of programming and control of a

robot is thus simply shown and appreciated by students of all ages.

REFERENCES

1. HERO-1. Manufactured by Heath Company, Benton Harbor, MI

49022

2. RHINO. Manufactured by Rhino Robots, Inc. 2505 S. Neil St.,

Champaign, IL 61820.

3. ARMATRON. Imported by Tomy Corp. 901 E. 233rd Street, P.O.

Box 6252, Carson, California 90749.

4. VIC-20. Manufactured by Commodore Business Machines, Inc.,

Wayne, PA 19087

Listing 1: Simple test program for robot arm motors

NE

IC

AE

AB

LF

PB

LE

OO

MM

AP

DP

CO

LO

AH

DJ

BG

EO

IC

1 rem manual control of robot motors

2 rem rolf a deininger July 1983

10 poke 37138,15 :rem all lines output

20 poke 37136,0 :rem turn all motors off

30 dim cs$(13),cn(13)

40 for i = 1 to 13:read cn(i):next i

50 data 2,1,6,5,9,10,13,14,17,18,21,22,0

60 cs$= " brblerelsusdwrwlhchowuwdst"

70 print" robot motor control" :print

80 print "command ";

90 input cm$:cm$ = left$(cm$,2)

100 if cm$= "en" then poke37136,0:end

110 for i = 1 to 13

120 ifcm$Omid$(cs$,i*2-1,2)then 130

125 poke 37136,cn(i):print " ":goto80

130 next i

140 print" unknown command"

150 goto 80

Listing 2: Example program to lift an object, move it, and

AH

JP

CE

OM

PA

JM

Ol

BD

PP

LB

HO

PH

PA

LL

FD

HB

JH

GJ

BE

LC

LF

LN

ON

JA

OL

BB

JH

AB

PP

EL

EH

IB

DL

IK

NM

FC

FP

NH

MF

JA

PF

MH

ED

BB

BE

MK

IL

return it to approximately the same place.

5 rem demonstration program for robot arm

10 rem kevin o'connorapril 1983

15p = 37136 :rem port address

20 poke 37138,255 :rem make all lines output

30 poke p,9 :rem shoulder up

40 for i = 1 to 15000: next i

50 poke p,21 :rem wrist up

60 x = peek(36873) :rem feedback for wrist

70 if x<>23 then goto 60

80pokep,13 :rem spin wrist

90 for i = 1 to 10000: next i

100 poke p,2 :rem rotate base cw

110 for i = 1 to 15000: nexti

120 poke p,6 :rem elbow cw

130 x = peek(36872) :rem feedback for elbow

140ifx<>48thengoto130

150 poke p,22 :rem wrist down

160x = peek(36873)

170ifx<>77thengoto160

180 poke p,10 :rem shoulder down

190 for i = 1 to 14000: nexti

200 poke p, 18 : rem open hand

210 for i = 1 to 5000: nexti

220 poke p,0 :rem off

230 ti$ = " 000000" : rem 15 second wait

240 if ti$<>" 000015" then goto 240

250 poke p, 17 :rem close hand

260 for i = 1 to 5000: nexti

270 poke p,9 :rem shoulder up

275 for i == 1 to 15000: next i

280 poke p,21 :rem wrist up

290x = peek(36873)

300 if x<>12 then goto 290

310 poke p, 14 :rem wrist ccw

320 for i = 1 to 10000: nexti

330 poke p,1 :rem base ccw

340 for i = 1 to 15000: next i

350 poke p,5 :rem elbow ccw

360x = peek(36872)

370 if x<>29 then goto 360

380 poke p,22 :rem wrist down

390x = peek(36873)

400 if x<>77 then goto 390

410 poke p,10 :rem shoulder down

420for i = 1 to 14000: nexti

430 poke p,0

440 end

The Transactor 41 ■Jon.l987:Vohime7,lnueQ4

Low Cost Universal

EPROM Programmer

Tim Bolbach, P.Eng.

Toledo, Ohio

„■;«

Overview

It seems that too often when a computer is used as the control

device in an interface project it involves expensive, rare, or large

numbers of integrated circuits. Then this is usually supported by a

minimum amount of software. The design detailed in the next few

pages represents what I feel is a good marriage of hardware and

software. The idea for this peripheral came from my need of an

inexpensive EPROM programmer to assist in the building of small

microprocessor control boards and firmware add-ons for the C64.

The system had to be reliable and easy to use. The software had to

be capable of copying an EPROM, as well as programming from a

manually entered program file. The programmer must also pro

gram many different types of EPROM chips. This design is the

result of many hours of experimentation.

The programming of an EPROM requires that the system provide a

stable address, stable data input, a programming voltage (12.5v -

25v dependent on the EPROM used), and a programming pulse of

50 ms duration. Various other control signals are required by

different EPROMs, such as chip enable, output enable, program

enable and combinations of the above. Therefore, to make this

device universal it had to generate all of the different control

signals.

Note: Extreme care must be taken when building any

device that connects directly to the expansion port. A

small wiring error can cause extensive damage to the

computer. It is suggested that a careful check with an

ohmmeter be completed before plugging in the program

mer.

Hardware

To generate the different signals the circuit uses two Intel 8255

programmable parallel interface chips. These were chosen over

6522's or 6526's mainly from a cost standpoint. From my local

supplier (JDR Microdevices) the 8522's represent a 2.5 to 1 savings

over the 6522's and a 18 to 1 savings over the 6526's. Not to

mention, the 8522's are readily available from many different

suppliers and suit the application well. The only other integrated

circuit required is a 7400 to select the PIO's.

The universal part of the design comes in with the use of a 24 pin

socket and header as a 'personality' module. This allows customiz

ing the pinout of the programming socket for many different types

of EPROMs. If the programmer is to be used for only one type of

EPROM or family of EPROMs, then the 'personality' socket can be

eliminated. Some header pinouts for popular EPROMs are given in

this article but are not the only arrangements that can be used.

l iT|3T'] I' 'sil'11' 'el'!"' i' '?l''' i'!
*",S£ tc I .etc,] .sic Lie i oe

iJ.i.Uul.i. .i.l.i.ljJ.i.l.iJ.tl.ili.i.i.i.iJ.i.i.i. .i.I.ui.Li.I.i.I.u.i.lJ,i

Figure 1

The programmer requires the proper voltage to program the chips.

Most popular EPROMs use 25 volts but some like the 2732A use 21

volts. This voltage can be supplied by several batteries with a zener

regulator or an AC powered transformer rectifier regulator circuit

(see figure 2). The cost of the programmer is affected by the method

chosen. I have even used 5 volt to 25 volt converter boards for the

supply. This is the easiest method but can be expensive. I used a

relay to turn the programming supply on and off. With a little

careful circuit design it could be eliminated and a MOSFET

switching circuit used. The relay was used for simplicity in the

prototype.

Point to point wiring was used on the prototype. Sockets were used

to protect the chips. This does increase the cost, but the added

protection well outweighs the cost. Wire wrapping is another

possible method as the layout is not critical. Care must be taken to

keep address leads and data leads as short as possible to prevent

radiating RFI. A 28 pin zero insertion force (ZIF) socket is used for

holding the EPROM while programming. For 24 pin devices the

EPROM is inserted in the rear of the socket. This type of socket

prevents damage caused by inserting and removing the EPROM.

The transistors shown in the schematic are general purpose NPN

switching transistors. They must be rated for collector currents of

150 mA or more. A complete parts list is part of the schematic

drawing.

An attempt was made to use as much of the decoded signals that

the 64 supplies to keep hardware costs down. Commodore was

thoughtful in their planning to leave two I/O pages decoded and

ready for interfacing. The programmer uses both the decoded

addresses of $DE00 and $DF00 for selecting the PIO's. These

addresses were reserved for future I/O expansions and help

eliminate extra decoding hardware. One problem that this creates

is that some firmware cartridges (such as FASTLOAD and SIMON'S

The Transactor 42 Jon. 1987: Volume 7. tome O4

BASIC) use these addresses to turn themselves on and off. Since

the programmer need be the only device plugged into the expan- 25.2V ac

sion port, this should cause no problem.

The 8255's are like the 6522's in that they are programmable, but

this is where the similarity ends. The 8255 requires that a control

word be written to the control register to configure the entire three

ports at one time. Ports A, B and C on the PIO #1 are configured as

output ports at all times. These are the low and high address bits 25.2V ac

and control buss signals to the EPROM. Port B of PIO *2 is the data

buss port. During reading of the EPROM it is configured as an input

port, but, during programming it must supply a stable data buss

input signal to the EPROM and is configured as an output port. The

versatile control register allows us to accomplish this with no

problem. Refer to the manufacturer's spec sheets on the 8255 for

more details on configurations. The chart below gives the ad

dresses for the different control and data ports of the 8255's for the

programmer.

PIO*1

$DE00 56832

$DE01 56833

$DE02 56834

$DE03 56835

PORT A DATA EPROM LOW ADDRESS BYTE

PORT B DATA EPROM HI ADDRESS BYTE

PORT C DATA EPROM CONTROL SIGNALS

8255 CONTROL

• vpp

+ 5V

IN

I

+ 5VTo

+ 25V

Converter

-Q VPP

OUT

I

PIO#2

$DF00 57088

$DF01 57089

$DF02 57090

$DF03 57091

PORT A DATA (NOT USED)

PORT B DATA EPROM DATA

PORT C DATA (NOT USED)

8255 CONTROL

Port C of PIO *1 needs some explanation. Bit PC0 is used to turn on

the programming supply during programming. Bit PCI is a '1'

during standby but a '0' during reading or programming pulses. Bit

PC2 is a '1' during standby, a '0' during reading pulses and '1'

during programming. Bit PC3 is a '1' during standby, a '1' during

reading and is a '0' during programming pulses. These signals

comprise all of the combinations of signals required by most

EPROMs for reading or programming. A special signal which uses

PCI and the relay supplies a '1' during standby, a '0' during read

pulses and connects the programming voltage (usually 25 volts) to

this EPROM pin. This is referred to as OE/VPP on the spec sheets

for the 2732 EPROMs. A chart of states for the different control

signals is shown in figure 3. These signals plus the 'personality'

socket feature allows configuring the programming socket for

many applications. I even use the programmer to read masked

roms to verify that they are functional.

Personality

Socket

Terminal

24

23

22

21

20

Signal

CE

OE1

OE3

PGM

VPP/VCC

Read

0

0

0

1

vcc

Standby

1

1

1

1

VCC

Program

0

VPP

1

0

VPP

9V „ . 9V ♦ . 9V +

IMI'M||[
220

12VZener

12VZener

-OVPP

Open

9V Zener

Close For 21 Volts,

For 24 Volts

Figure 2

Software

Figure 3

The program supplied was written and intended to be user

friendly. The use of menu screens and prompts makes the pro

gram straight forward and easy to use. Basic makes the program

easily understood so that modifications and customizing is possi

ble. Because it is in the nature of BASIC to be slow, programming

an EPROM can take up to 3 minutes per 1024 bytes (Ik). I use a

compiled version of the program to speed things up. But speed of

programming an EPROM should not be a factor unless you are

mass programming.

The menu screen provides seven options which are discussed

below.

1-List an EPROM

This function lists the data stored in the EPROM. It is a good check

to see if the EPROM was programmed. The address starting at

$0000 is displayed along with the data data in HEX format. To

Th© Transoctor Jon. 1987: Volume 7, tome O4

pause the listing press and hold the SHIFT key. The listing

continues indefinitely so pressing the Commodore logo key will

stop the listing and return to menu.

2 - Program an EPROM

This allows the actual programming of the EPROM. The program

asks for the size of the EPROM to adjust the loop parameters for

programming. The next request is for the name of the file to be

programmed on the EPROM. The file is stored as a program file.

This is done for a few reasons. First, since it is a program file, it can

be loaded and saved by a machine code monitor as such. It can

also be listed and modified using the memory dump features of the

monitor. The software takes care of eliminating the first two bytes

of the disk file which are used as a pointer to the memory load

location for file. This also allows you to create your own program

file manually to be programmed on an EPROM. PAL can be used to

assemble PAL source code as a program file to be written on an

EPROM. If the file requested is found, the the programmer waits

for the operator to press a key. At this time a blank EPROM can be

inserted if one is not already there into the programming socket.

When a key is pressed the rest is automatic. Note that the

programmer does not verify the data during programming, nor

does it check for a blank EPROM before trying to program. Two

menu selections allow verifying that an EPROM is erased and that

the EPROM contains the data from a particular file.

3 - Write EPROM to disk

This function reads an EPROM from the programming socket and

creates a program file on the disk. A dummy two-byte program

load pointer is written to the file first to allow this program to be

used as a program file by a machine code monitor. The program

requests the size of the EPROM and the name of the new file. This

feature is used to copy an EPROM or rom to a disk file to

transferred later to an EPROM.

4 - Verify EPROM with disk

As it was stated previously, the programmer does not verify the

data on the EPROM at the time of programming. This part of the

program reads the disk file and verifies it with data on the EPROM.

The size of the file is requested first then the name of the file to

verify against the EPROM. If an error is found, the option termi

nates and indicates at what memory location the error was found.

5 - Check for erasure

This option does exactly as it says. A blank EPROM is inserted into

the programming socket, then the size of the EPROM is requested

and the option begins. Each memory location of the EPROM is

checked for a blank word (255 or $FF). Eproms contain all Ts' in

the blank state. If a location is found not erased the option

terminates and returns to the menu.

6 - Directory

This option lists the directory of the disk on the screen.

7 - List disk file to screen

Option 7 reads a disk file and displays the file in HEX on the

screen. It was included to verify that the file created by writing an

EPROM to the disk was indeed written.

Figure 4 shows a simple EPROM eraser. This device uses an ultra

violet light bulb used in electric dryers years ago. The bulb is still

available at appliance part supply houses. Erasing time is approxi

mately 20 minutes. Over erasing can sometimes cause damage to

an EPROM so use a timer or clock to time the exposure.

Caution: Do not look at the ultra violet light when it is on.

Ultra violet Ught can cause damage to the eyes. Turn the

light on only after making sure that no ultra violet light

will escape.

EPROM Programmer Software

AF

AF

OG

FP

JK

KB

FC

BD

ND

FE

ON

NG

DM

JD

BE

MO

FJ

HC

HL

LB

Cl

MO

10

PP

PL

HO

OC

1000 rem** program by tim bolbach / graphics

by rich bozman **

1010 poke56835,128:poke56834,254:poke57091,255

:poke53281,11:poke53280,0

1020 rv$ = chr$(18): sp$ = rv$ + " [28 spcs]"

1030 co = 36:li = 24:gosub31 OO:print chr$(147)

chr$(144)

1040 fort =1 to 21

1050 next t

1060 poke2020,195

1070poke2021,195

1080 poke2022,195

1090poke2023,253

1100 print" B Q" spc(9)" eprom handler mem
1110 print" 1 list eprom on screen"

1120 print" 2 program eprom"

1130 print" 3 write eprom to disk"

1140 print" 4 verify eprom with disk"

1150 print" 5 check for erasure"

1160 print" 6 directory"

1170 print" 7 list disk file to screenJH"
1180 print" [6 spcsjfl logo Q| = commodore key"

1190 pokei 98,0:wait198,1 :geta$

1200 a = val(a$):ifa<1 ora>7then1190

1210 onagotoi 220,1520,1820,2100,2450,2680,2920

1220 rem *** read eprom ***

1230 c$ = " 0123456789abcdef"

1240 print "I |" spc(8)" Qlist eprom on screen"
1250 print "Hshift = npause|3 shift lock =H

1260

NL

HF

LB

MB

BA

NH

BC

DA

IA

HB

AH

DM

OG

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

a = 0:poke56835,128:poke57091,255

:rem**** set ports for read ******

poke56834,254

ad = a

gosub 1440

print rv$;"$";a$;":R ";

fort = 0to7

ah = int((ad + t)/256):al = (ad + t)-(ah*256)

poke56832,al :poke56833,ah

poke 56834,8

d = peek(57089)

poke56834,254

gosub 1490

print d$;" ";

next t

The Ttansoctor Jon.l987:V6tume7,toueQ4

KK

OB

CE

LJ

HK

CN

HG

KA

EO

HO

JA

CA

CH

FN

HF

HB

ON

Dl

Al

EP

LK

ID

BK

HO

IH

NJ

ID

JF

FB

CK

El

CC

MP

ID

BG

FM

IM

OK

OL

AF

FN

FF

JC

PP

LI

DE

KA

PK

AM

AC

HN

1400 print

1410 on peek(653) goto 1410, 1010

1420a = a + 8

1430 goto 1280

1440 d1 =int(a/4096):x = a-(d1*4096)

1450 d2 = int(x/256):x = x-(d2*256)

1460 d3 = int(x/16):d4 = x-(d3*16)

1470 a$ = mid$(c$,d1 +1,1) + mid$(c$,d2 + 1,1)

+ mid$(c$,d3 + 1,1) + mid$(c$,d4 + 1,1)

1480 return

1490d1=int(d/16):d2 = d-(d1*16)

1500d$ = mid$(c$,d1+1,1) + mid$(c$,d2 + 1,1)

1510 return

1520 rem *** burn eprom ***

1530print"@";:poke56835,128:poke56834,254
:poke57091,128

1540 print spc(13)"^Jburn eprom"

1550gosub3120

1560x = ((2ta)*1024)-1

1570 input" Qffile name" ;n$
1580open8,8,8,n$+ ",p,r"

1590open15,8,15

1600get#15,a$,b$

1610er = val(a$ + b$)

1620print"H";a$ + b$;
1630get#15,a$:printa$;:ifa$ = chr$(13)then1650

1640 gotoi 630

1650 ifer>0thenclose8:close15: fort = 1 to 1000:nextt

:goto1010

1660 printspc(7)" Q ^press key when ready"
:poke198,0:wait198,1

1670 get#8,a$:get#8,a$:rem ** get rid of file

address***

1680 poke56834,255:fort= 1 to 1000:nextt

1690 printspc(12)"Hlocation:" :printspc(13)

" BBIlogo = Qabort"
1700 fore = 0 to x:li = 19:co = 21 :gosub3100:

1710 printleft$(sp$,7-!en(str$(c)))c

1720 get#8,d$:ifd$ = "" thend$ = chr$(0)

1730d = asc(d$)

1740 ah = int(c/256):al = c-(ah*256)

1750 poke56832,al:poke56833,ah

1760poke57089,d

1770 poke56834,5

1780poke56834,255

1790 ifpeek(653) = 2thenc = x

1800 next c

1810 poke56834,254:poke57091,255:close8

:close15:goto1010

1820 rem *** write eprom to disk ***

1830print"@";:poke56835,128:poke56834,254
:poke57091,255

1840 print spc(9)" ^write eprom to disk"

1850gosub3120

1860x = ((2ta)*1024)-1

1870 input"Hfile name" ;n$
1880open8,8,8,n$+ ",p,w"

1890open15,8,15

1900get#15,a$,b$

KD

MA

FK

PL

KF

AP

KL

CH

FK

EE

PG

DN

FL

KL

JM

OE

IG

NO

NG

KG

HB

GH

LF

CC

HM

EM

ID

PO

CF

BB

CK

HN

CH

IA

CN

Al

BP

KH

GG

BJ

FP

HN

GE

LO

KF

BK

EJ

JB

1910 er = val(a$ + b$):printa$;b$;

1920 get#15,a$:printa$;:ifa$ = chr$(13)then1940

1930 gotoi 920

1940 ifer>0thenclose8:close15:fort=1 to 1000:next t

:goto1010

1950 printspc(7) "Q Jpress key when ready"
:poke198,0:wait198,1

1960 poke56834,254:fort=1 to400:nextt

1970 printspc(12)"Hlocation:" :printspc(13)

"BBIlogo = flabort"
1980 print#8,chr$(0);:print#8,chr$(0); :rem ** put in

fake file address**

1990 fore = 0 to x:Ii = 18:co = 21 :gosub3100:

2000printleft$(sp$,7-len(str$(c)))c

2010 ah = int(c/256):al = c-(ah*256)

2020 poke56832,al:poke56833,ah

2030 poke56834,8

2040d = peek(57089)

2050 poke56834,254

2060 d$ = chr$(d):print#8,d$;

2070 ifpeek(653) = 2thenc = x

2080 nextc

2090 poke56834,254:poke57091,255:close8:close15

:goto1010

2100 rem *** verify eprom with disk ***

2110print"@";:poke56835,128:poke56834,254
:poke57091,255

2120 print' |j 3" SPC(7)" Dvenfy eProm with disk"
2130 gosub 3120

2140x = ((2ta)*1024)-1

2150 input" Qfile name" ;n$
2160open8,8,8,n$+ ",p,r"

2170 openi 5,8,15

2180get#15,a$,b$

2190 er = val(a$ + b$):printa$;b$;

2200get#15,a$:printa$;:ifa$ = chr$(13)then2220

2210goto2200

2220 ifer>0thenclose8:close15: fort = 1 to 1000:nextt

:goto1010

2230 printspc(7)" | Hpress key when ready"

:poke198,0:wait198,1

2240 poke56834,254:fort= 1 to 400:nextt

2250 printspc(12)"Hlocation:":printspc(13)

"BBilogo = Qabort"
2260 get#8,a$:get#8,a$:rem ** get fake file address

out of the way*

2270 fore = 0 to x

2280 li = 18:co = 21 :gosub3100:

2290printleft$(sp$,7-len(str$(c)))c

2300 ah = int(c/256):al = c-(ah*256)

2310 poke56832,al:poke56833,ah

2320 poke56834,8

2330 d = peek(57089):print" [2 spes]"

left$(sp$,5-len(str$(d)))

2340 poke56834,254

2350 get#8,a$:ifa$ = "" thena$ = chr$(0)

2360 a = asc(a$):ifa<>d then 2430

2370 ifpeek(653) = 2thenc = x

2380 next c

The Transactor 45 Jan. 1987: Volume 7. taue O4

JJ

BJ

DG

MD

FD

NC

CD

EG

FN

HH

DM

LI

EJ

IJ

KO

PP

EB

Ml

OH

JK

NA

PO

EP

DA

BD

MM

JA

KH

JK

10

LD

HE

JG

DG

NG

HH

IJ

BM

OJ

FH

KF

DC

KO

BL

DM

FK

AF

KA

2390 poke56834,254:poke57091,255:close8:close15

:goto1010

2400 print "^ Heprom program verifiedQ"
2410 printspc(4)"| j|press any key to continue"

:poke198,0:wait198,1

2420 close8:close15:goto1010

2430 print"^ HJ[6spcs]!H error
found !!![11 spcs]";

2440 printspc(4)" CBthe error is at location Q"

c:goto2410

2450 rem *** check for erasure ***

2460 print" ^9" SPC(13)" Dcheck erasure"
2470 a = 0:poke56835,128:poke57091,255:rem* set

ports for read *

2480 poke56834,254

2490gosub3120

2500 poke56834,254

2510x = ((2ta)*1024)-1

2520 printspc(8)"B fljpress key wnen ready"
:poke198,0:wait198,1

2530 printspc(12)"Hlocation:" :printspc(13)

"BBlogo - flabort"
2540 fore = 0 to x

2550 if peek(653) = 2 thenc = x:goto2640

2560 li = 15:co = 21 :gosub3100:

2570printleft$(sp$,7-len(str$(c)))c

2580 ah = int(c/256):al = c-(ah*256)

2590 poke56832,al:poke56833,ah

2600 poke56834,8

2610d = peek(57089)

2620 poke56834,254

2630 if d<>255 then 2660

2640 next c:ifd<>255then2660

2650 printspc(8)"BHreprom erased" :goto2670
2660 printspc(7)"H Heprom is not erased !!"
2670 printspc(9)" impress key for menu"

:poke198,0:wait198,1 :goto1010

2680 rem *** directory ***

2690 printE 9 spc(12)" ||disk directory"
2700 print" HJ[6 spcs]shift = Hpause0"

spc(9)" logo = HJmenufly"
2710open1,8,0,"$0"

2720get#1,a$,b$

2730get#1,a$,b$

2740get#1,a$,b$

2750c = 0:u$= ""

2760 if a$<>" then c = asc(a$ + chr$(0))

2770 if b$<>" then c = c + asc(b$ + chr$(0))*256

2780 printright$(sp$,9-len(str$(c)))c" ";

2790 get#1 ,b$:if st<>0 then 2890

2800 if b$Ochr$(34) then 2790

2810 get#1 ,b$:if b$Ochr$(34)thenu$ = u$ + b$

:b$= " ":goto2810

2820 get#1 ,b$:if b$ = chr$(32) then2820

2830 printchr$(34)u$right$(sp$, 16-len(u$))chr$(34)

" " •■r»*R — " "

2840c$ = c$ + b$:get#1,b$:if b$<>" " then2840

2850 printleft$(c$,3)

2860 ifpeek(653) = 1then2860

AM

LJ

LD

LI

II

KJ

BE

FD

BM

GB

OO

JP

DP

FJ

OO

MD

HI

Gl

JE

OO

PI

GO

OE

GC

KJ

PA

EM

EN

GO

GM

OM

GC

KB

MJ

2870 ifpeek(653) = 2thenclose1 :goto1010

2880 if st = O then 2730

2890 print" blocks free"

2900 printspc(11)" 9 H^press key for menu"
:poke198,0:wait198,1

2910close1:goto 1010

2920 rem **** display disk file ******

2930 print" EH" spc(9)" (display disk file"

2940 print "Ht4 spcs]shift = Hpause0"
spc(9)" logo = ||menu(H"

2950 h$ = " 0123456789abcdef"

2960 input"B file nameQ" ;n$
2970open8,8,8,n$+ ",p,r"

2980 get#8,a$:get#8,a$

2990 for t= 0 to 8191

3000 for r= 0to7

3010 get#8,a$:ifa$ = "" thena$ = chr$(0)

3020 d = asc(a$)

3030q = int(d/16):w = d-(q*16)

3040 d$ = mid$(h$,q + 1,1) + mid$(h$,w + 1,1)

3050 printdS;" ";

3060 next r

3070 if peek (653) = 2 then close8:goto1010

3080 if peek (653) = 1 then 3080

3090print:nextt

3100 poke211 ,co:poke214,li:sys58732:return

3110:

3120 print" HJselect eprom sizeHJ"
3130 print" 1 2k"

3140 print" 2 4k"

3150 print" 3 8k"

3160 print" 4 16k"

3170 print" 5 32k"

3180 poke198,0:wait198,1

3190 geta$:a = val(a$):ifa<1 ora>5then3180

3200 return

m w

The Transactor 46 Jan. 1987: Volume 7, l««ue 04

I o

o

o

o

o

\1

o 24-

o

o

0

o

o

0

o

111

Personality Socket Wiring

o

o

o

o

r
_V r\

O

0

1 o

o

o

0

•-

VL>

■«?+• o

o

0

0

VI.

o

0

o

0

•—

•—

? •--

*

f-'— —o

0

o

o

0

14-

40 Watt 120V

40 Watt Bulb

Porcelain

Fixtures

Coffee Can.

Block Of Wood

EPROM

Mercury UV Lamp

120 VAC

Used In Older Models

Of Norge Electric Dryers

_ M UV Lamp

Conductive

Foam

Figure 4: EPROM Eraser

Transoctor Jon.W87:V0kima7,toueO4

Parts List

Rl 4.3K 1 /4 Watt Carbon Resistor

R2 220 ohm 1 /4 Watt Carbon Resitor

R3, R4 150 ohm 1 /4 Watt Carbon Resitor

R5 2.2K 1/4 Watt Carbon Resistor

Cl 100 uF 16 Volt Electrolytic Capacitor

LED 1, 2 Standard Red Light Emitting Diode

Ql, Q2 NPN General Purpose Transistor 2N3905,

or equivalent

U1,U2 INTEL 8255 PIO

U3 74LS00 Quad NAND Gate

SI SPST Momentary Pushbutton

Miscellaneous Items

1 - 28 PIN Zero Insertion Force Socket for EPROM

1 - 24 PIN DIP Socket for Personality Socket

2-40 PIN DIP Sockets

As Req'd - 24 PIN DIP Header for Personality Plugs

Kl DPDT Miniature Relay, 5 Volt Coil

EPROM Programmer Schematic

Th© Transoctof Jan. 1987: Volume 7, Issue O4

A C64 Cartridge Without EPROMs
John Bush and Noel Nyman

Seattle, Washington

you won't need any expensive programming devices to make your

own cartridges for a C64 or C128 with this special technique

Cartridges are convenient and easy to use. Programs on cartridge

Load instantly. You can make a cartridge using EPROMs (Erasable

Programmable Read-Only Memories) for about $25, if you shop

carefully.

But, the EPROMs must be programmed or "burned" using an

EPROM burner, which costs about $125. If you make any mis

takes, or want to change the programs, you'll need an EPROM

eraser, another $40.

The inexpensive EPROM cartridge requires close to $200 in start

up costs.

An alternative is to use RAM (Random Access Memory) in place of

EPROMs. RAM can be programmed by the computer itself, and the

information can be changed at any time. No addition?] special

equipment is required.

The problem with RAM is that it loses everything in memory when

the power is turned off, not exactly what we have in mind for a

cartridge. But, by using special CMOS (Complementary Metal

Oxide Semiconductor) RAMs that have low stand-by current

requirements, we can use a small battery to hold the information

in the RAM. The memory is retained even with the computer

turned off or when the cartridge is removed. The 4464-15s, made

by NEC Corp, used in this project have a typical stand-by current

drain of 0.1 micro-amperes. A battery the size of a quarter can

power them for several years.

Building The RAM Cartridge

We used a Vector 3795-1 "perf" board for our prototype. It has 44

circuit traces (22 on each side) at the proper spacing to line up with

the C64 expansion socket. If you have the equipment to etch your

own circuit boards, that may be a less expensive alternative. You

may be able to adapt an old cartridge board, or purchase one

intended for use in a C64. Be sure that address lines A13 through

A15 (pins F, H, and J) are available on the board you use. They

aren't needed by EPROM cartridges and may not appear on circuit

boards designed for that purpose.

Although we used wire-wrap to build the circuit, any wiring

method will work. Sockets are recommended for the integrated

circuits, but are not mandatory. Be sure to observe proper precau

tions when working with the CMOS RAM's. They can be perma

nently damaged by improper handling.

Figure #1 shows the schematic for an 8K RAM cartridge. Figure #2

has the additional circuitry required to add another 8K. Switch SI

controls the power to the CMOS RAMs. With the switch closed,

power comes from the C64. With either SI open or the computer

turned off, the battery takes over and retains the data in memory.

52 controls the READ/WRITE signals to the RAMs. With this

switch closed, the computer can change the data. Opening S2

makes the RAMs look like ROM to the C64.

53 and S4 allow the RAM cartridge to emulate the three types of

cartridge used with the C64, which we'll look at shortly. S5 is used

only with the 16K version. It allows us to "move" the upper 8K of

RAM to an area where it can be programmed. The diodes electri

cally remove the battery from the circuit when the computer is

supplying power and prevents the battery from trying to run the

entire C64. The various resistors establish default values for the

signal lines and switch the RAMs to their low current stand-by

state when SI is opened.

The 74LS42 is a decoder that monitors the three highest address

lines (A13 - A15), and produces a discrete output for each combi

nation of these addresses. There are eight outputs, so we can select

eight 8K banks of memory with this chip. Capacitors Cl and C2 are

used to remove any noise from the power line. Cl should be

placed close to the edge of the board that plugs into the computer.

C2 should be mounted as close as possible to the 74LS42.

You may find other 8 x 8K RAMs with similar stand-by current

characteristics. If they have 150ns (nano-second) access time or

less, they should work for this application. Be sure to get data

sheets for them. The pin-outs may be different from those shown

on these schematics. See the end of this article for a source for the

NEC 4464-15s we used, or check your yellow pages under "Elec

tronic Equipment" for a local NEC distributor.

Parts List

B1 - 3 Volt Circuit Battery (see text)

Cl, C2 - 0.05 mfd 12VDC Ceramic Disk Capacitor

D l -D4 - 1N4148 or Similar Small Signal Diode

R1,R3,R4,R5,R7 - 2K 1/4 Watt Resistor

R2.R6 - 22K 1 /4 Watt Resistor

S1-S4 - SPST Switches, DIP Arrays Work Well

S5 - SPDT Miniature Switch

74LS42 - 1 of 10 BCD Decoder

4464 - Low Stand-By Current CMOS Static RAM (see

text)

Th© Ttansocfor 49 Jan. 1987: Volume 7, blue O4

(2,3) +5 VDC

r>2 D3

(F)

(H)

(J!

A15

A14

A13

Bl

VI V2 I

13

1 5

16

-74LS42-

3,12

-♦- $6000

VI

R£>

K2

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

D7

D6

D5
DA

D3

D2

Dl

DC)

(5) READ/

WRITE S2

22

-4464-

19
18

17

16

15
13

12

i 1

,20

2

2 3

2.1

24

25

3

4

5

6

7

8

9

10

A12

All

A10

A9

A8

■ A7

- A6

- A5

- A4

- A3

- A2

- Al

- AC

(K)

(L)

(M)

(N)

(P)

(R)

(S)

(T)

(U)

(V)

(V)

(X)

(Y)

R/W

(9)

(8)

XROM

GAME

S3

(1) GROUND

Figure 1: All references in parentheses are pin numbers for the C64

expansion port, see pg.396 of the C64 Programmers Reference Guide.

$6000*

(B) ROMH

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

A12 (K)

All (L)

A10 (M)

A9 (N)

A8 (P)

A7 (R)

A6 (S)

A5 (T)

A4 (U)

A3 (V)

A2 (W)

Al (X)

A0 (Y)

R/W ►

Figure 2: Additional parts required for a 16K cartridge.

How Cartridges Work

The C64 uses a PLA (Programmed Logic Array) to control

the access of RAM, ROMs, and cartridges to the address

and data buses. For an excellent discussion of how the

PLA works, see "Commodore 64 Memory Configura

tions" by William Levak (Transactor 6-05). Cartridges

can have three configurations. The PLA identifies the

cartridge by two control lines. These are called "GAME"

(pin 8) and "XROM" (pin 9). The RAM cartridge uses

switches S3 and S4 to activate the control lines.

An 8K cartridge always appears at address range $8000 -

$9FFF. It has an internal jumper that pulls the XROM line

low. Closing S4 simulates that configuration. A 16K

cartridge also has 8K at $8000 - $9FFF. The upper 8K can

reside in one of two other areas. If only the GAME line is

low (S3 closed, S4 open), the upper 8K appears at $EO0O

- $FFFF. If both GAME and XROM are low (S3 and S4

closed), all 16K is contiguous from $8000 - $BFFF.

An 8K cartridge normally contains either a self contained

program, or one that uses the BASIC and Kernal ROM

routines built into the C64. A 16K cartridge in the $8000

- $BFFF range replaces the BASIC ROM. The upper 8K

may contain a modified BASIC, and the lower 8K may

have BASIC extensions. The third configuration was

intended for games only. Levak's article shows that in

this mode, the VIC chip will look for the character set at

the upper portion of the $E000 - $FFFF memory. This

makes for easier low resolution graphics for games, but is

unsuitable as a Kernal replacement. The programs in

these cartridges must stand entirely on their own.

All memory chips, RAM or ROM, are switched onto the

address and data buses with "chip select" lines. In the

C64, the PLA controls these lines, and so decides

whether RAM, or one of the system ROMs, or the car

tridge is selected. If the PLA senses that a cartridge is in

place (through the GAME and XROM lines), and a

"READ" command is issued by the microprocessor, the

cartridge memory will be selected. The PLA controls this

selection through the "ROML" (pin 11) and "ROMH" (pin

B) lines. If a "WRITE" command is issued, the PLA

switches off the cartridge memory and selects RAM at

those addresses instead.

Commodore never intended that cartridges would con

tain RAM. So the PLA will not write data into our RAM

cartridge. To accomplish that, we by-pass the PLA and

do our own decoding. Some is done automatically by the

74LS42 chip, and some we control manually with switch

S5.

Programming The RAM Cartridge

When the C64 is turned on, reset with an external reset

switch, or the "RESTORE" key is pressed, routines in the

Kernal ROM look for a cartridge. All cartridges will have

8K starting at location $8000. The Kernal looks for the

code "CBM80" starting at address $8004. The high bit of

Th© TrontocrOf so Jan. 1987: Volume 7. toueO4

each letter must be set. If the code is there, the normal initialization

routines are bypassed, and control is passed to the program in the

cartridge. On power-up or hardware reset, the address stored in

low-high order at $8000/$8001 is used for an indirect jump. If

"RESTORE" has been pressed, the address stored at $8002/$8003

is used instead.

To create an auto-starting program in cartridge, you'll need to

install the code phrase and the proper addresses. You may also

need to call some of the bypassed initializing routines. You can

store machine code in the RAM cartridge without the auto-start

phrase and SYS to the code from BASIC or direct mode instead of

auto-starting.

If you want to use the RAM cartridge to store a favourite BASIC

program, use the program in Listing *1. RUNning the program

creates a file called "RAMCART" on disk device #8. You can

change those defaults in line 100. The source code of the file is

shown in PAL format in Listing *2.

To use the program, install the RAM cartridge, and close SI and S2.

Be sure S3 and S4 are both open. Then turn on the computer. The

cartridge RAM is now "in parallel" with system RAM. The two are

examined together by the C64, and the same data is stored in each

at the corresponding addresses. This step is important. If the two

RAMs contained different data, they would fight each other on the

data bus.

LOAD the "RAMCART" program with ",8,1". This places the code

at the start of RAM cartridge memory. Now LOAD the BASIC

program you want to store. Do not RUN it. Type

SYS 32882

The machine code stored by "RAMCART" will copy the BASIC

program into the cartridge RAM. If the program is too big, over 31

disk blocks, you'll get an error message instead. When the

"READY" prompt appears, open S2. This disconnects the cartridge

from the READ/WRITE line, and the data cannot be changed by

the computer.

Turn off the C64. The battery will retain the program in the

cartridge RAM. Close S4 to tell the PLA that this is an 8K cartridge,

and turn the computer back on. The auto-start code in the RAM

cartridge will cause the system to initialize BASIC normally. Then

it copies your program back to the BASIC memory area. The

"RUN" command is placed in the keyboard buffer and the com

puter executes it, starting your program.

The RUN-STOP/RESTORE combination will bring you out of your

BASIC program and display the "READY" message. To re-RUN

the program in the cartridge, use a hardware reset switch or type

SYS 64738

A different technique is required to program the upper 8K of RAM

in a 16K cartridge. We need to use the ROMH line from the PLA to

select the cartridge memory, since the PLA will switch system

ROM in otherwise. But the PLA will not let us write data to the

memory selected by ROMH. S5 switches the upper 8K RAM select

line between the ROMH output from the PLA and the $6000 -

$7FFF output from the 74LS42. With S5 in the $6000 position, you

can change the upper 8K of data by writing to the RAM at this

lower location. Moving S5 back to the ROMH side causes the PLA

to switch in the RAM at either $A000 or $E000, depending on the

settings of S3 and S4.

For example, to change BASIC, place a 16K ram cartridge in the

computer. Close SI and S2, open S3 and S4, and move S5 to the

$6000 position. Turn on the computer. LOAD a machine language

monitor that resides below $6000 or above $C000, and use it to

copy the BASIC ROM to the RAM at $6000. Use the memory

examine mode to look at the nine bytes starting at $6378. This is

the text "READY." followed by a "RETURN" ($0D), a line feed

($0A), and a terminating zero byte ($00). Use the monitor to

change the text.

Now open S2 to lock the changes in RAM, and turn off the

computer. Move S5 to the ROMH position. Close S3 and S4. This

tells the PLA to place the 8K of RAM with the modified BASIC in

the address area normally used by the BASIC ROM. Turn on the

computer and you'll see your modified "READY" prompt. You'll

also see only 30,719 BASIC bytes free, because the lower 8K of ram

cartridge is also switched in by the PLA. You can use the lower 8K

to hold BASIC programs, or extensions in addition to any modifica

tions you make to the BASIC operating system.

The switch settings for programming and using the cartridge are

summarized in Figure 3.

Figure 3

SI S2 S3 S4 S5

Reading From Cartridge:

8K Cartridge

16K Cart., Upper 8K At $A000

16K Cart., Upper 8K At $E000

Writing To Cartridge:

8K Cartridge

16K Cartridge

The ram cartridge is fully compatible with expansion cards which

allow several cartridges to be plugged in at the same time. Be sure

to turn SI off when you select a different cartridge so the RAM at

$8000 will be removed from the buses. You can use the ram

cartridge on a C128 also. The GAME and XROM lines aren't used

in C128 mode. The MMU (Memory Management Unit) looks for a

different code instead. You'll have to write a C128 auto-boot

routine, but use the procedure above from C64 mode to install it.

We think you'll find the ram cartridge an inexpensive alternative

to purchasing an EPROM burner and eraser to make your own

cartridges. Even if you already have EPROM programming equip

ment, the ease and speed of making changes to your cartridge

software may be an asset.

Although Geoduck Developmental is not in the retail component

sales business, we will make 4464-15 RAMs and battery/socket

kits available at cost for Transactor readers. Please send $15

(Canadian) for each RAM and $5 for each battery and socket. For

orders outside Canada or the USA, add $5 for postage. Send orders

or any questions or comments on the ram cartridge to:

ON

ON

ON

ON

ON

OFF

OFF

OFF

ON

ON

OFF

ON

ON

OFF

OFF

ON

ON

OFF

OFF

OFF

X

ROMH

ROMH

X

$6000

Th© TVonsoctof 51 Jan. W87: Volume 7. touoO4

Geoduck Developmental Service:

PO Box 58587

Seattle WA

USA

98188

Listing 1: Basic Loader To Create RAMCART Module On Disk

FO

AH

IK

KF

El

Cl

JB

HO

MK

NC

BN

FH

ED

LC

10

NL

PI

LH

AM

FO

KO

PM

OD

KC

AN

AB

AG

GL

CA

NG

PL

NE

GL

DG

GF

CO

El

OG

KN

DA

CH

FA

MO

HP

1000 rem save" O:ramcart.ldr ",8

1010 rem ** by: John bush and noel nyman - Seattle, wa

1020 rem ** auto-start support prg

1030 rem ** forc64

1040:

ram cartridge

1050 rem ** this program will

1060 rem •* a load

create

" ,8,1 " module on

1070 rem ♦* disk called 'ramcart'

1080:

1090 open 15,8,15:

1100input#15,e,e$

stop

open 8,8 1," 0: ramcart"

b,c: if e then close 15: print e;e$;b;c:

1110 for j = 32768 to 32999: read x: print#8,chr$(x);:

ch = ch + x: next: close8

1120ifch<>28345 then print " checksum error!": stop

1130 print " ** module created **": end

1140:

1150 data 0,128

1160 data 205, 56

1170 data 32,163

1180 data 253, 32

1190 data 32,191

1200 data 128,174

1210 data 172, 228

1220 data 134, 96

1230 data 132, 88

1240 data 1,202

1250 data 133, 91

1260 data 163,169

1270 data 141,120

1280 data 169, 13

1290 data 198,108

1300 data 44,170

1310 data 31,176

1320 data 128, 56

1330 data 229,128

1340 data 228,128

1350 data 95,165,

1360 data 164, 45

1370 data 140, 226

1380 data 134, 91

1390 data 133, 88

1400 data 160,128

1410 data 79, 71

1420 data 79, 32

1430 data 13, 0

9, 128

48,162

253, 32

91,255

227,162

225,128

128,174

172,226

134, 89

132, 45

169, 0

82,141

2,169

141,122

2, 3

165, 45

67,140

169,159

169,255

165, 43

44, 141

166, 46

128,132

169, 160

32, 191

32, 30

82, 65

76, 65

0, 0

, 94,254

5, 142

, 80,253

88, 32

251,154

132, 43

229,128

128,174

136,192

,134, 46

133, 90

,119, 2

78,141

2,169

, 56,165

229, 43

228,128

237, 229

237, 228

141,224

225,128

200, 208

90,142

133, 89

163, 96,

171, 96,

77, 32

, 82, 71

, 0, 0,

Listing 2: PAL Source for support program

MM

AH

IL

KH

1000 rem save" O:ramcart.pal",

1010 rem ♦* by: John bush and

1020 rem ** auto-start support

1030:

8

195, 194

22,208

32, 21

83,228

172,224

134, 44

132, 95

227,128

255, 208

169,160

32,191

169, 85

121, 2

4,133

46, 229

168,224

142,229

128,141

128, 141

128,133

133, 96

1,232

227,128

169, 0

169,204

80, 82

84, 79

69, 10

0, 0

noel nyman - Seattle, wa

prg for c64 ram cartridge

JP

LO

HE

EB

OK

FP

CM

KM

HL

BL

Kl

MC

NC

BC

IK

HA

LK

LG

DN

DF

LL

HA

HM

EA

NP

Al

GE

EJ

BG

PM

AE

Kl

FH

Ol

KN

LF

GK

ID

AD

MA

BH

FE

EH

Fl

EF

EF

KG

MO

FN

DA

KA

El

PL

JH

IP

DM

OP

AM

PI

IJ

1040 open 8,8,1, "0:ramcart

1050 sys 700

1060 .opt 08

1070* = $8000

1080;

1090 ;**♦ equates ***

1100;

1110txttab = $2b

1120vartab = $2d

1130 source = $5f

1140 end = $5a

1150 dest = $58

1160 ndx = $c6

1170keyd = $0277

1180 warm = $0302

1190 copy = $a3bf

1200strout = $ab1e

1210 vicctrl = $dO16

1220 vectors = $e453

1230 init = $e3bf

1240 ioinit = $fda3

1250ramtas = $fd50

1260restor = $fd15

1270 cint = $ff5b

1280nmicont= $fe5e

1290;

1300 ;*** auto-start basic

1310;

;start of basic text

;end of basic text

;start of source to copy

;end +1 of source to copy

;end +1 of destination

;no of characters in keyboard

buffer

;start of keyboard buffer

;basic warm start vector

;copy memory

print string

;vic control register

;copy basic vectors to ram

; initialize basic interpreter

initialize i/o

initialize memory pointers

; restore i/o vectors

;init screen and keyboard

;continue with nmi routine

program ***

1320 ;place start of code in cartridge vectors

1330 .byte <start,>start

1340 .byte <nmicont,>nmicont

1350 ; 'cbm' with bit 7 set

1360 .byte $c3,$c2,$cd

1370 .asc "80"

1380;

1390 ;'start' calls most of the routines

1400 ;which would be executed if a cartridge

1410 ;had not been detected, system vectors

1420 ;and basic are initialized.

1430;

1440 start Idx #5

1450 stx vicctrl

1460 jsr ioinit

1470 jsr ramtas

1480 jsr restor

1490 jsr cint

1500 cli

1510 jsr vectors

1520 jsr init

1530 Idx #$fb

1540 txs

1550;

initialize stack pointer

1560 ;copy the basic program from

1570 ;the area under $a000 to the start-of-basic

1580 ;and set up the basic text and variables

1590 ;vectors. place 'run'

1600 ;enter basic through

1610;

1620 Idy txtt

1630 Idx txtt + 1

n the keyboard buffer and

the warm start vector.

;store start of basic

;saved with program

Tho Transactor 52 Jon. 1987: Volume 7, tou»O4

OK

LE

PM

LJ

LJ

DG

GA

FA

FN

HO

PJ

FA

MP

NH

ND

FK

NN

PB

HA

ME

KD

HI

KN

EK

KP

DK

AB

IP

GC

GB

IB

JN

OB

DO

JC

NF

OB

MM

DA

PA

ND

JE

Cl

GL

NC

DM

PP

Jl

FN

BC

NO

Cl

DP

HG

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780cont

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960;

sty

stx

Idy

Idx

sty

stx

Idy

Idx

sty

stx

dey

cpy

bne

dex

sty

stx

Ida

sta

Ida

sta

jsr

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jmp

txttab

txttab +1

stsour

stsour+1

source

source +1

vart

vart +1

dest

dest + 1

#$ff

cont

vartab

vartab +1

#$a0

end + 1

#0

end

copy

#V

keyd

rv

keyd +1

#"n"

keyd+ 2

#$0d

keyd + 3

#4

ndx

(warm)

;at op system vector

;store start of source

;at vector for copy routine

;store end of destination

(+ 1)
;at copy routine vector

subtract one from low byte

;subtract borrow

;store op system vector

;end of source (+1) =

$a000

<return>

number of characters

1970 ; * * * store basic program to cartridge * * *

1980 calculate the size of the

1990; print an error message

2000 ;in the cartridge, if okay

2010;from

i basic text, and

if too large to fit

, subtract the size

$9fff to get the location of the start

2020 ;of the copy to be saved to cartridge, save

2030 ;that vector and the start and end of basic

2040 ;text for future use. set-up vectors for

2050;copy

2060;

2070 store

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

routine and copy

sec

Ida

sbc

tax

Ida

sbc

tay

cpx

bes

sty

stx

vartab +1

txttab+1 ;

vartab

txttab

#$1f ;

error ;

c

stsour ;

stsour + 1

program to cartridge.

find size of basic program

max size allowed

print error message and

}uit

store size temporarily

hA

CP

NP

DD

JG

HF

PI

GD

EJ

Jl

HC

EP

JG

PF

LK

KP

CK

KA

BF

IM

IH

PL

OE

HO

PF

LD

CJ

OH

CB

LJ

GC

LD

JC

NM

EM

IF

JG

AE

NE

Al

AK

EJ

AD

Jl

IC

ML

MC

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360 conti

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460;

sec

Ida

sbc

sta

Ida

sbc

sta

Ida

sta

sta

Ida

sta

sta

Idy

Idx

iny

bne

inx

sty

sty

stx

stx

Ida

sta

Ida

sta

jsr

rts

#$9f

stsour + 1

stsour +1

#$ff

stsour

stsour

txttab

txtt

source

txttab +1

txtt +1

source+ 1

vartab

vartab +1

conti

vart

end

vart+1

end + 1

#$a0

dest +1

#0

dest

copy

subtract size from $9fff to

find

;start of program in car

tridge memory

;store start of basic for

cartridge

;use and in vector for copy

routine1 V*' Vw' LI 1 1 \^>

;store end of basic (+1) for

cartridge

;use and vector for copy

routine

;store $a000 (end of car

tridge memory + 1)

;in vector for read routine

2470 ;*** print error messaqe **•

2480;

2490 error

2500

2510

2520

2530;

Ida

Idy

jsr

rts

2540 messafe

2550 .asc

2560 .byte

2570;

#<message

#>message

strout

*

"program too large"

$0a,$0d,$00

2580 ;*** system

2590;

2600 txtt

2610 vart

2620 stsour

2630;

2640 .end

.word

.word

.word

vector storage **•

0

0

0

;start of program in ram

;end of program in ram

;start of source in cartridge

The Transactor S3 Jon. 1987: Volume 7,touoO4

Upgrade Your C128

With A 48K RAM Disk

Noel Nyman

Seattle, WA

If you tried the C128 RAM Disk programs in Transactor 7-01, you may

have been frustrated by the limited memory available for storage and

the loss of your eighty column screen. With access to good soldering

equipment, a C128 out of it's warranty period, and two new integrated

circuit chips, you can easily upgrade your C128's eighty column

screen to 64K of RAM (Random Access Memory).

This will give you normal eighty column screen capability plus 48K of

RAM to use as file storage, additional text screens, or both.

To make the change, you'll have to unsolder the two RAM chips used

by the VDC (Video Display Controller, the 8563 chip). This is NOT a

task to be taken on lightly. The C128 uses a double sided board, and

the chips sit in tight quarters inside a metal shield. If you don't have

both experience with such de-soldering and the proper tools, have

the job done by a qualified technician. Anyone who repairs micro

computers should be able to install sockets in place of the RAM chips

for a small fee.

The C128 uses two 18-pin 16K DRAM (Dynamic RAM) chips for VDC

memory. Each chip stores four bits or one nibble of data. There are

only eight address lines (see figure 1). The 8563 sends each address in

two parts. The low portion of the address is placed on the bus first, and

the RAS (Row Address Strobe) line is brought low. The RAM chips

"latch" the low part in internal registers. Then the 8563 places the

high portion on the address bus and brings CAS (Column Address

Strobe) low.

The RAM chips use the row and column information to select an

address from a 64x256 array (16K). They place the corresponding data

on the data bus, or store data from the bus depending on the state of

the Write line.

Commodore's schematic identifies the chips as 4416's. I'm told there

is a pin-for-pin compatible chip numbered 4464. The devices with

that number I found turned out to be 24 pin 8x8K CMOS static RAM's,

which won't do the job here. If you locate 4464's, be certain that they

are 18 pin DRAM's before buying them.

My C128 contains MB81416's made by Fujitsu. Their MB81464 is pin

compatible and available for about $8.50 (US). The 41464 from NEC is

compatible except for the address lines, and sells for $6.00 (US). It also

worked in my computer. The chips in my C128 are 120 nano-second

types, a '-12' follows the chip number. The 150 nano-second chips,

which are cheaper and more common, also worked in this applica

tion.

Another brief warning. There are at least two versions of the 8563

chip (the chip in my machine says "REV 8"). The 64K conversion

seems to work with both. But Commodore is under no obligation to

support 64K mode in future revisions. If you have a later (or earlier)

chip than those we've tested, it may not work in 64K mode. If you're

careful about unsoldering the RAM chips, you can replace them in the

sockets you install and return your machine to its original form.

After making the chip changes, turn on the C128 in eighty column

mode. You should see the normal start-up screen. Connect a forty

column monitor or TV set also, so you can enter commands to control

the eighty column screen. From forty column mode, enter:

POKE 54784,25: POKE 54785,128

On Jim Butterfield's 8563 diagram on page 33 of Transactor 7-01,

you'll see that bit 7 of register 25 controls bit map or hires mode. If you

have a sparkling line on the far right side, you have a newer version of

the 8563. Change the '128' in the POKE to '135' to set the Horizontal

Scroll bits.

Now we'll look at the next 16K of RAM. On the forty column screen

enter:

POKE 54784,12: POKE 54785,64

Register 12 holds the high byte of the start-of-display address. If you

think the screen looks unchanged, you're right. Before we explain, try

one more command:

POKE 54784,12: POKE 54785,128

This time you should see some changes. The VDC, when working in

16K mode, does not support the second highest address bit. So, when

you tried to look at the second 16K block, you saw the "mirror image"

of the first 16K. For some reason, the highest address bit is supported,

and a new 16K block and mirror image appear when you address the

upper 32K of memory.

To switch the 8563 to 64K mode, we have to set bit 4 of register 28,

labeled "RAM" in Butterfield's diagram. This register also tells the

chip where to find the character set data, so we have to leave that

information in place. Enter:

POKE 54784,28: POKE 54785,48

The screen will change dramatically. Patterns of lines (the default

values in the RAM chips when they power-up) have infiltrated

portions of the text, attribute, and character set areas. The 8563

expects some different RAM chips in this mode (4164's) so it looks at

the addresses differently. Now try:

POKE 54784,12: POKE 54784.X

Where X = 0,64, 128, and 192. You should see four different displays,

one for each 16K block. To return to text mode, use the command

above to POKE a zero in register 12, then enter:

POKE 54784,25: POKE 54785,64

(use 71 if you used 135 earlier)

Remember that switching RAM modes scrambled the memory. To

return things to normal, you'll have to re-copy the character sets to

RAM and cleanup things generally.

Listing *1 creates the ML code to do that. It will also allow you to

access all of the added RAM as text screens. After running the

program, type:

The Trarwoctof 54 Jan. 1987: Vohan* 7, Ictue O4

BSAVE " SETUP/SWAP", BO, P3584 TO P3713

This SAVEs the ML to disk. Type "SYS 3584" and after a few moments

your startup screen will re-appear. Now type:

SYS 3672, 8,10, 20: PRINT " SCREEN #8"

You'll be switched to screen #8 (starting at $4000 in the new RAM). To
switch back, type:

SYS 3672,0, 0, 0

The first number following the SYS is the destination screen. Screen

*0 is the default screen starting at $0000. The program will not allow

you access to screen #1 (the default attribute map) or screens *4

through *7 (the character sets) since the "READY" prompt and

anything you type would garble the data.

The second and third numbers are the row and column for the cursor

on the new screen. If you don't specify row and column, you will get
erratic results.

The "SETUP/SWAP" program is located at $0E00. This overwrites the

sprite data area, but makes this program compatible with the RAM

Disk programs in Transactor 7-01. Listing *2 shows the modifications

to change to a 48K BASIC RAM Disk. No modifications are necessary

for the "Memory DRAM" program. Just use a starting lb = 0, and

hb = 64 to begin saving to the RAM at $4000.

You can use additional text screens and RAM Disk at the same time, so

long as you don't switch to a text screen area holding a SAVEd file.

Text screens *2 and #3 aren't used by the BASIC RAM Disk and are
always safe.

Since all text screens share the same attribute RAM (unless you

change the vector at registers 20 and 21), any change in character set,

color, etc., will change the same screen locations on ALL text screens.

This can be a feature or a bug, depending on your application. You

can avoid unexpected changes by disabling the attribute map. To do

that, clear bit #6 in register 25:

POKE 54784,25: POKE 54785, PEEK(54785) AND 191

Only the upper case/graphics character set will be available. You can

select character color for the entire screen by changing the high four

bits in register 26. The lower four bits select background color in all

modes.

The only problem with your 64K RAM is that a RUN-STOP/RESTORE

or system RESET disables it. If you initialize the "BASIC DRAM"

program, you won't have the RESTORE problem. "BASIC DRAM"

jumps around the RESTORE routines.

The other method is to change the kernal operating system ROM so

the eighty column chip is always initialized in 64K mode. I should

have a new version of the kernal available by the time you read this. It

will support the 64K chips, have the RAM Disk routines in ROM, and

fix the CAPS-LOCK 'Q' bug as well. If you'd like a copy of the code in

order to make your own replacement ROM, send $2 (either US or

Canadian) and a disk to:

Noel Nyman

Geoduck Developmental Systems

PO Box 58587

Seattle WA 98188

If you can't find the 64K dynamic RAM chips locally, you can contact

the following sources. Both have a $25 (US) minimum order restric
tion.

For 81464s (Fujitsu) contact:

Integrated Electronics Corp.

1750 124th NE

BellevueWA 98005

206 455-2727

For 41464s (NEC) contact:

Marshall Industries

14102 NE 21st

BellevueWA 98007

206 747-9100

- 8I4K4

(SELECT) JS •

oe

D±

n

HAS

AS

A-4

<5 VDO VCC

<SELECT> JS

D8

Di.

n

RAS

A8

Al •

<S UDC) UCC

2

3

A

5

6

T

8

9

1
18

±7

16

15

±4

13

12

11

ia

1

2

3

-*

5

6

T

e

9

18

IT

16

IS

1-4

13

12

11

18

USS (GROUND)

D3

CAS

D2

A8

A2

A3

A7

USS (GROUND)

D3

CAS

D2

A6

A3

A<4

A5

AT

BM

00

IE

GP

LD

ME

HP

OD

EL

NP

HN

HM

OP

GD

FA

PE

HP

FC

GJ

HJ

FL

Listing *1

100 rem save"0:setup/swap.ldr" ,8

110 for j = 3584 to 3712: read x: poke j,x: ch = ch + x: next

120 if ch<>15875 then print " checksum error!": stop

130:

140 data 169, 48,162, 28, 32,204,205,169

150 data 0,162, 18, 32,204,205,232, 32

160 data 204, 205, 160, 0,169,255,162, 30

170 data 32,204,205,169, 32, 32,202,205

180 data 136, 208, 241, 32,

190 data 48, 10, 169, 27,

200 data 88, 32,210,255,

210 data 0, 0, 16, 24,

220 data 64, 72, 80, 88,

230 data 128, 136,144, 152, 160, 168, 176, 184

240 data 192, 200, 208, 216, 224, 232, 240, 248

250 data 134, 235, 132, 236, 168, 185, 56, 14

260 data 141, 46, 10,162, 12, 32,204,205

32,204,205, 166,235, 189

10,133,224,189, 76,192

42, 13, 46, 10,133,225

12,206,165,215

32,210,255, 169

32,155, 65, 96

0, 0, 0, 0

96, 104, 112, 120

270 data 162, 14,

280 data 51, 192,

290 data 41, 3,

300 data 96

Listing #2: To change the " BASIC DRAM" program from Transactor

7-01 to work with 64K RAM, enter the two replacement lines below in

the BASIC loader.

BK

DI

2360 data 170, 169,254, 229, 252, 32,187, 12

2790 data 76, 51,255, 0, 64, 0, 0, 0

Tho ss Jan. 1987: Volume 7, Issue O4

The Commodore 128

- Banking On The Turns

Jim Butterfield

Toronto, Ontario

A previous Transactor article talked about the Commodore 128

"memory banks". (See "The C128 - You can Bank On It", The

Transactor, July 1986). In case you missed that one, I'll give you a

quick summary.

Commodore BASIC seems to indicate that there are 16 banks (num

bered 0 to 15) that may be selected by using the BANK command. The

same scheme is used in the machine language monitor - an address

will be prefixed with a digit from 0 to F - the same bank values of 0 to

15.

But it turns out that the average programmer - with no cartridge,

internal ROM, or RAM expansion - can only make use of four of these

banks: 0, 1, Hand 15 (hex 0, 1, E and F).

Going a little deeper into the matter, we find that these 16 "banks" -

more accurately, configurations - are really just a sampling of what

can be done. A machine language programmer can create 256

different configurations by storing a selected value into address

$FF00, the MMU's "configuration register".

Not all 256 configurations are useful. There are sixteen architectures

that the ML programmer can use. Only four of them have BANK

numbers, but the others can be reached by storing the appropriate

value at $FF00. Table 1 shows these combinations.

FFOO

Poke

Value

00

01

02

03

0E

OF

3E

3F

40

41

42

43

4E

4F

7E

7F

Table 1.

(

(
0123

RAM0

RAM0

RAM0

RAM0

RAM0

RAM0

RAM0

RAM0

RAM1

RAM1

RAM1

RAM1

RAM1

RAM1

RAM1

RAM1

The sixteen 'useful' architectures.

Addresses whose first he)

4567

ROM

ROM

RAM0

RAM0

RAM0

RAM0

RAM0

RAM0

ROM

ROM

RAM1

RAM1

RAM1

RAM1

RAM1

RAM1

digits are

89AB

ROM

ROM

ROM

ROM

RAM0

RAM0

RAM0

RAM0

ROM

ROM

ROM

ROM

RAM1

RAM1

RAM1

RAM1

CEF

ROM

ROM

ROM

ROM

ROM

ROM

RAM0

RAM0

ROM

ROM

ROM

ROM

ROM

ROM

RAM1

RAM1

i)

)
D

I/O

CGEN

I/O

CGEN

I/O

CGEN

I/O

RAM0

I/O

CGEN

I/O

CGEN

I/O

CGEN

I/O

RAM1

Bank

Number

"BANK 15"

"BANK 14"

"BANK0"

"BANK1"

Store

to

FF03

FF01

FF04

FF02

Note that in all configurations, the first 1K of memory (addresses 0002

to 03FF) is always RAM0. Addresses 0 and 1 are internal to the
processor chip.

More Detail

The previous article discussed the configurations, including those

created by using values 0E and 4E. Storing $0E into FFOO creates the

RAM 0 for addresses up to BFFF; storing $4E creates RAM 1 for this

area. The Kernal and I/O take up their normal positions. These two

were described as "ideal" configurations for serious machine lan

guage stuff: 0E for a program in RAM 0, and 4E for a program in RAM

1. Basic is removed, and you have lots of memory to play with.

That's correct as far as it goes. But the RAM 1 configuration, created

with mask value $4E, has a problem. If the machine language

program calls a Kernal routine, the Kernal will want to use locations

within RAM 0 memory. Some of these locations are available and

ready: as Figure 1 shows, all addresses below 1024 decimal (hex 0400)

use RAM 0. For all practical purposes, RAM 1 doesn't start until

address 1024.

But other locations in RAM 0 that the Kernal uses are above 0400 . . .

and if your program in RAM 1 calls a Kernal subroutine, there's a good

chance that the Kernal coding will cheerfully assume that it's viewing

RAM 0 and will unknowingly go into RAM 1 for important values. And

if it does that, it will probably goof up.

The most important area above $0400 used by the Kernal is in page

0A. Addresses 0A00 to 0AC4 in RAM 0 are used for numerous system

things, and the Kernal will foul up if it tries to get (or store) values in

RAM 1 by mistake.

The address you're likely to meet first is when you're sending to the

screen using the Kernal routine at $FFD2. Location $0A21 (bank zero,

of course) is the "screen freeze flag" - it's an interrupt-set image of the

"no scroll" key which is located at the top of the keyboard. When this

location contains a zero, printing to the screen will take place nor

mally. When it contains any other value, the computer will wait until

it's zero. Under normal circumstances, releasing the no-scroll key will

put a zero into address $0A21 (bank zero, of course), and the

computer will proceed with printing to the screen. But if the computer

is watching the wrong memory bank, it will NEVER do the job

because it will never see a zero at $0A21.

Figure 1

Configuration obtained by storing mask

value $4E into address SFFOO. Note $cpoo

the slight (IK) overlap of

RAM 1 and RAM 0.

SFF^FF

Figure 2

Configuration

obtained by additionally

storing $41 to address $D506. Note

that the overlap has increased to 4K

Jan. 1987: Volume 7. taueO4

Fixing It

Okay, so if we want to program in RAM 1, we must find some way to

"expose" more addresses in RAM 0 for the use of the Kernal. The

solution is quick and simple.

Here's the story: we know that the first IK of memory is always RAM

0, no matter what configuration has been chosen. That size - 1K - is

user adjustable. You can adjust it without problems by storing a new

value at $D506. That's the register in the MMU that sets "common

RAM", which is the proper name for this piece of "bank-shared"

memory.

The normal value stored in location $D506 is 4 ... that creates a

shared ("common") RAM for all addresses below 1024 decimal (hex

0400). If we change it to 5, the shared memory area zooms up to 4K: in

other words, all addresses below 4096 (hex 1000) will be taken from

RAM 0; RAM 1 will never be referenced in this memory area. If you're

interested, value 6 would give 8K common RAM and value 7,16K. But

we don't need to go that far.

Compare Figures 1 and 2. Both show the computer in the configura

tion created by storing a value of $4E into address $FF00. Figure 1 is

"normal" common RAM . .. Figure 2 shows "extended" common

RAM, created by putting a value of 5 into the register at $D506.

Once we've extended the common RAM, as shown in Figure 2, the

Kernal will give us no trouble ... it has easy access to the memory it

needs in bank zero, page 0A.

No Problems

You should understand that changing the size of common RAM is a

fundamental system change. It affects all parts of your computer...

user programs, Basic, Kernal, interrupt routines, and possibly the

video chip. It will not be effected by values stored to $FF00 or by

BANK commands. It seems dangerous; but in fact, it's relatively safe.

If you feel like experimenting, you may go the machine language

monitor and arrange to change the contents of $FD506 to 5. Do it the

same way as you'd perform any memory change; note that we need to

specify bank 15 with a leading "F". If you do this, you'll quickly

discover that all memory locations below $1000 are the same regard

less of bank number. In other words, if you display the contents of

OOAOO and then of 10A00, you'll get the same values. This was not

true before you changed D506. Restore the value in $FD506 to 4

before you leave the monitor.

If you change the common RAM value, I recommend that you put it

back when you're finished. Why? There's only one reason I can think

of: Basic variables start in RAM 1 at address $0400 (1024). If you're

going to use Basic, you'll want to reduce common RAM space to its

original value so that Basic variables can go into their proper bank.

They'd make a terrible mess if they starting going into RAM 0.

An Example

The following program is based on work done by John Gager. It's

written in Basic to allow easy entry.

100 BANK 1

110 FOR J =32768 TO 32802

120 READY

130T = T + Y

140 POKE J,Y

150 NEXTJ

160 IF TO4057 THEN STOP

170 BANK 1

180 SYS 32768

190 BANK 15

200 DATA 169,78,141,0,255

210 DATA 169,5,141,6,213

220 DATA 160,0

230 DATA 185,29,128,32,210,255

240 DATA 200,201,13,208,245

250 DATA 169,4,141,6,213

260 DATA 96

270 DATA 72,69,76,76,79,13

The program is embedded in the DATA statements: the loop at 110

puts it into RAM 1 at addresses $8000 to $8022. The extra BANK 1 in

line 170 isn't really needed; it's just a reminder that the following SYS

leaps into RAM 1. The BANK 15 in line 190 is purely for neatness'

sake, restoring the machine to its original state.

Let's look at the machine language code:

18000 A9 4E LDA#$4E

18002 8D00 FF STA $FF00

This sets the configuration to RAM 1 plus Kernal. Until we do this, the

computer is in "Bank 1" configuration; that means that the Kernal is

not present. 18005 A9 05 LDA*$05

18007 8D06 D5STASD506

Here's where we expand "common RAM" to allow the Kernal to see

addresses in the region of 0A00 in RAM 0. We'll put things back later.

By the way, this will work only if we have done the earlier store to

$FF00; can you see why?

1800A A0 00 LDY*$00

1800C B9 ID 80 LDA$801D,Y

1800F 20 D2 FF JSR $FFD2

18012 C8 INY

18013 C9 0D CMP*$0D

18015 DO F5 BNE$800C

A straightforward loop to print a simple message to the screen. But it

would not work if we hadn't (i) installed the Kernal with our store to

$FF00, and (ii) opened up access to RAM 0 with our store to $D506.

18017 A9 04 LDA#$04

18019 8D06 D5STA$D506

1801C 60 RTS

The above code returns the common RAM to 1K and then quits. Note

that we don't need to restore the "bank 1" configuration.

The program is followed by a few more bytes containing the message

to be printed.

Conclusion

Yes, you can put programs in RAM 1, but it's more complex than for

RAM 0. It's useful to see how the architecture can be manipulated.

The Commodore 128 has surprising system flexibility.

Thanks go to John Gager who pointed out the nature of the problem

and made a significant contribution to its solution.

The Transactor 57 Jon. 1987: Volume 7, Issue O4

Software On/Off

Write Protect for the 1541

William Fossett

San Diego, CA

Write-protect disks of your choice — with a single command to your 1541!

In the July, 1985 issue of Transactor (Vol. 6, Issue 01), Chris

Johnsen introduced the little known '&" (ampersand) com

mand and file structure for the Commodore 1541 disk drive.

The following article will explain this DOS feature further, and

expand the concept into a method for write protecting diskettes

using a software protection scheme. Two programs are listed at

the end of the article: one is a source listing, written in standard

Commodore assembler format, and the second is a BASIC

loader which will create the program " &WP" on a diskette; it,

in turn, can be used to write protect (or un-write protect) any

diskette. The assembler code source listing is provided for

explanation and documentation; only the BASIC loader needs

to be typed in.

The Commodore 1541 disk drive contains (among other

things) a CPU, 16K of ROM, and 2K of RAM. The 16K of ROM

contains the Disk Operating System (DOS) and the 2K of RAM

is used by the DOS for a variety of functions. The structure of

the RAM is similar to the RAM in the C-64: zero page ($0000-

$00FF) is used for frequent and important storage; most of page

one ($0100-$01FF) is the stack area for the drive; page two

($0200-$02FF) is used as a work area; the remaining 5 pages of

RAM (page three through page seven, or $0300-$07FF) are

referred to as buffers 0, 1, 2, 3, and 4. Each buffer is $0100 hex

(256 decimal) bytes long - the exact size of one sector on a

diskette. As you might have guessed, these buffers are used to

transfer blocks of 256 bytes from a diskette to the computer, or

vice-versa. The DOS has its own methods of loading and

unloading these buffers, depending on the specific operation,

and which buffers are already being used. We, as program

mers, have the option to use this RAM also, but with the DOS

program being so big (16K) and RAM so small (2K), the DOS

has a tendency to write over anything we might put in RAM.

We actually can use buffers 0, 1, 2, and 3 ($0300-$06FF) quite

freely, if we write our program, execute it and then get out.

However, buffer 4 is a "special" buffer which contains an exact

copy of the Block Availability Map (BAM) of the diskette

currently in the drive. As a rule, it's probably best to avoid

writing to, or otherwise tampering with, this buffer, as anything

you write there may end up on the header (track 18, sector 0) of

your diskette. However, knowing this, we can construct a

useful tool which will allow us to "soft" write protect a diskette.

An '&' file is usually referenced as a utility loader. As it is used

here, and as it has been previously used (Transactor, Vol.6 #1),

it is similar to a block execute command. The '&' file is loaded

from diskette into disk memory and executed with one com

mand. Used in this fashion, an '&' file may be of any type (USR,

PRG, SEQ), and need only include two specific features in its

structure: 1) a length byte following the load address (# of bytes

after this byte up to the checksum) and, 2) a checksum byte at

the end (a sum of all bytes from the load address up to the

checksum and all carry bits). If the file meets these 2 criteria, it

is a valid '&' file. Executing the '&' file is accomplished with a

standard disk command string - I prefer the shortened syntax

of:

OPEN 15,8,15, "&filename":CLOSE15

No colons, drive numbers, or special syntax need be associated

with the '&' file on the 1541 (other than it needs the '&' as the

first character).

The BASIC program at the end of this article (PROGRAM 1),

when run, creates a program named " &WP" on a standard

1541 diskette. This "ampersand" program (" &WP") will allow

you to write protect (or un-write protect) the diskette by

executing the command:

OPEN 15,8,15," &WP": CLOSE15

If the command is executed to a previously unprotected disk

ette, it will write protect it; if the diskette is already write

protected (using this command) then it will un-write protect it.

It will "flip-flop", as it were, between the two conditions

(protected/unprotected) each time it is executed. A look at the

source code (PROGRAM 2) reveals how this is accomplished:

the file " &WP" loads and runs in buffer 3 ($0600); the BAM is

loaded from the diskette into buffer 4 of the 1541 by initializing

the drive; the third byte in the buffer is changed from an 'A' to

an 'E' (or back again if un-write protecting) with an Exclusive

OR; this change is also reflected in the disk title block ($07A6);

the disk version byte ($0101) is set to A (this step is superfluous

if we are write protecting, but necessary if we are un-write

protecting - see below); the (modified) buffer contents are

written back to the BAM; and, finally, the drive is initialized

Tho Tronsoctof
58

Jan. 1987: Volume 7, Is

again to update the disk version byte ($0101) so

it reflects the current condition. The creation of

a visual "flag" in the disk title block is purely

cosmetic as far as the DOS is concerned. But it is

important to you: " 2A" in the disk title block

indicates a normal (un-write protected) condi

tion; " 2E", however, indicates the diskette is

write protected - you will not be able to delete,

rename, or save files on this diskette.

This write protection is not equivalent to the

one you perform when you put a tab over the

notch on a diskette. The present scheme

changes a byte on the diskette that the DOS

checks to find out what type of drive the diskette

was formatted on (an 'A' indicates the diskette

was formatted on a 1540 or 1541, an 'E' corres

ponds to a non-existent drive). If the byte does

not match the correct format, reading can be

performed, but writing is not allowed. Any writ

ing to this diskette will produce a DOS error

message (#73). However, this scheme will not

prevent a format instruction from working -

WARNING: you should still use a write protect

tab if you are using disk copy programs or have

possible format execution commands to per

form. Un-write protecting a previously write

protected diskette is a simple matter of fooling

the DOS. The DOS checks location $0101

(DSKVER) in memory to see the format version

of the diskette it is dealing with. If we change

that location from an E to an A (indicating the

disk was formatted on a 1541) then we can write

to the diskette even if there is an E in the format

byte on the diskette. Thus, we can re-execute

&WP' (OPEN 15,8,15," &WP": CLOSE 15) and

the diskette will be un-write protected once

more.

About The Author

Bill Fossett is the owner of Hacker's Hardware, a

software producer for the C-64 / 1541 equip

ment line. He has authored a utility package

that alters the C-64 computer to operate under

RAM control rather than Kernal ROM. Inquiries

concerning this product should be directed to

P.O. Box 7933, San Diego, CA 92107.

Listing 1: BASIC program to create the " &wp " file on disk.

10 rem courtesy of hacker's hardware

15 rem w fossett - I.&wp.050485

20:

25 rem this program creates a file

30 rem on diskette that will write

35 rem protect or un-write protect

40 rem the diskette, use as follows:

45:

50 rem openi 5,8,15, "&wp" :close15

55:

60 open 8,8,8," &wp,p,w"

65 for i = 1 to 29: read j: print#8,chr$(j);

70 next i: close 8

75

80

85

90

95

99

data

data

data

data

0,

173,

2,

65,

data 239,

end

6,

2,

7,

141,

76,

25,

7,

141,

1,

66,

32,

73,

166,

1,

208,

66,

4,

7,

32,

25

208

141

169

7

Listing 2: 6502 Source code for the 1541-resident " wp " program.

00001

00002

00003

00004

00005

00006

00007

00008

00009

00010

00011

00012

00013

00014

00015

00016

00017

00018

00019

00020

00021

00022

00023

00024

00027

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0002

0003

0006

0009

000b

OOOe

0011

0013

0016

0019

001c

001 d

001 d

* utility to load and execute *

* a soft on/off write protect *

* for 1541 format - w fossett *

00 06

19

20 42 dO

ad 02 07

49 04

8d 02 07

8d a6 07

a9 41

8dO1 01

20 07 ef

4c 42 dO

19

initdr =

buff4 =

dskver =

sb10 =

.word $0600

.byte 25

jsr initdr

buff4 + 2

#$04

buff4 + 2

$07a6

#$41

dskver

sb10

initdr

Ida

eor

sta

sta

Ida

sta

jsr

jmp

.byte $19

.end

$dO42

$0700

$0101

$efO7

;load addrfor pgm

;# bytes * +1 to cksum

;load bam to buff4

;dos ver in bam image

;flipatoe/etoa

;update bam image

;and visual flag (2?)

;changing dskver to

;1541 if doing un-wp

;write bam to disk

;update dskver to new

;checksum 4 thru *-1

Th© Tronsoctof 59 Jon. 1987: Volume 7, l««ueO4

Amiga Dispatches
by Tim Grantham, Toronto, Ontario

It's been a year now since the Amiga, amid great pomp and

ceremony, was bestowed upon us like a veritable gift from

Mount Olympus. Commodore has just had its first profitable

quarter in almost two years and there is every indication that

that will continue. Reasonably effective software is available

now, at reasonable prices, and some very sophisticated hard

ware has appeared, at equally sophisticated prices. It's time to

come up for air and take a hard look at the state of the machine.

There is no question that the machine has established credibil

ity. Even those who worship at the shrine of IBM have deigned

to graciously acknowledge the Amiga's graphics power; but

asking an IBM clone (I find that the term sometimes applies as

much to the users as to their machines) to recognize the Amiga

as a serious business or development machine, is like asking

an American sports commentator to acknowledge the Toronto

Blue Jays as World Series contenders — the facial expression

resembles the gentle puzzlement of an elephant felled by a

blowgun.

Despite the excitement over the Sidecar, it's become apparent

to me that most of those developing serious applications are

coming from anything but a PC background: some are moving

up from 8-bit machines, (and finding it hard to climb the steep

learning curve); many more are dropping in from a UNIX

environment — not surprising, considering the many func

tional and design similarities between the Amiga OS and UNIX.

It is much easier to port programs from the multitasking UNIX

OS than from MS-DOS.

As befits the nature of the machine, Amiga users are an eclectic

bunch. They range from engineers who find that a Turboed

Amiga (see hardware news) is faster and cheaper than a

MicroVAX; to former 64 and Atari owners who want to play the

very best computer games; to artists and musicians for whom

the Amiga was the first computer they felt any affinity for. It's

the engineers and the artists who I feel will become the major

users of the Amiga — many former 8-bitters have felt intimi

dated by the complexity of AmigaDOS and the CLI, and

underwhelmed by Intuition and multitasking. (More about

multitasking later.)

Sensing this trend, CBM got smart and started pitching the

Amiga to vertical markets in advertising, engineering, and

media production houses. (I still wince when I see the ads

saying "Give your child an unfair advantage." Aside from the

emotional blackmail aspect, the idea is a perfect example of

yuppie overkill. An 8-bit computer is perfectly adequate and a

heckuva lot cheaper.) The promotion appears to be working:

my sources at SIGGRAPH (the computer graphics conference)

told me the Amiga was the hit of the show, evoking tremen

dous interest from engineers, artists, and, oddly enough, the

military. The last may be because the US Department of

Defense has granted the Amiga a 'no bid' status: this means

simply that a department within the DOD may simply go out

and purchase one — they are not required to put out a call for

bids from competing manufacturers.

Which leaves us with best guesses of between 60,000 and

100,000 machines sold and a solid core of professionals for

users — not at all the scenario CBM envisioned, I believe, but

one they would do well to capitalize on. The popular accept

ance will come later when the machine and extra memory are

cheaper, when the Amiga can be integrated with CD-ROMs

and VCRs, and when both users and developers learn to take

full advantage of that great concept in the sky, 'multitasking'.

Taking multitasking to multitask

"When I was working with mainframes, multitasking made the

invention of BASIC possible and practical." says Jim Butter-

field. "Here was something wonderful — instead of waiting a

day to have your program keypunched, two days waiting for it

to be processed, and another day to get the output back, twenty

people could simultaneously, at their own terminal, bash away

at their programs, get immediate results, and make immediate

changes. 1 imagined that, at least with BASIC, multitasking on

the Amiga would be the same sort of thing: you could have one

BASIC program running in the background, perhaps compar

ing two files, while you worked on another in the foreground.

The interpreter would be handling both programs on an

interrupt basis. It turned out that if you want to run two BASIC

programs simultaneously on the Amiga, you have to run two

BASIC interpreters."

The Thinsactof 6O Jan. 1987: Volume 7. toueO4

That, in a nutshell, is the 'problem' with multitasking on the

Amiga — it's still essentially a single-user machine. I really

like the Amiga because I'm a multitaskin' kinda guy: I may

switch many times a day between a word processing program,

a terminal, a text editor, a C compiler, a BBS program, and

(whispering) a game. It's really nice to have some or all of these

going on the same machine at the same time — I've been able

to retire the multitasking desk chair I was using to roll from one

computer to another.

But I don't believe I'm a typical user. Most people do one thing

at a time on their machines. Using Sidekick or a print spooler is

about all they need in the way of multitasking.

That certainly doesn't mean that multitasking on the Amiga

can't provide some definite advantages to the ordinary user: it's

just that developers must change their traditional view of

multitasking. Instead of seeing it as a way to provide com

pletely self-contained, incorruptible environments for several

programs running under one MPU, they should try to see it as a

way to provide a communal environment. As Jim says, "It

would be great to able to have a spelling checker program, for

example, running as a separate task, that did its job as you

entered the text into your word processor." This sort of thing is

already available in so-called integrated software on other

machines. However, typically only one or two modules work

really well in these programs (usually because of memory

restrictions), and they are not intended to work in a strictly

concurrent fashion.

The Amiga could provide the environment for this type of

sharing of data, though it would not be a task for careless

programmers. The multitasking EXEC still has its roots in

mainframe-style multitasking. Messages can be sent to and

from tasks, but it's a dodgy business having two programs

operating on the same data. Perhaps the best approach is that

exemplified by Mimetics's SoundScape MIDI software. Here,

the various modules are independent programs that can mesh

with the other modules if they are run simultaneously. Mimet-

ics is making available to other developers the structures and

formats used by their modules so that these developers can

create modules that will also mesh with the Mimetics series.

It is precisely this sort of cooperation between software houses,

CBM, and the informed user that resulted in the adoption of IFF

(Interchange File Format) for the Amiga. It permits the use by

one program of files created by another. In the case of Deluxe

Paint and Aegis Images, it has resulted in many artists buying

both programs — IFF allows them to take advantage of

features one program has that the other lacks. Nobody loses,

everybody gains.

Others who gain are the makers of expansion RAM for the

Amiga — Comspec Communications, Allegra, Skyles, RS Data

Systems, et cetera. Add-on RAM is fast becoming the most

popular peripheral for the Amiga, ahead of hard drives and

printers and not far behind external floppy drives. Aside from

the fact that, until recently, fast hard drives were not available,

you just couldn't take advantage of multitasking because 512K

simply wasn't enough memory. (It's still hard for this C64 user

to say that without experiencing a peculiar feeling of vertigo.)

Comspec kindly lent me an evaluation unit of their 2 Meg RAM,

and let me tell you, it was returned with great reluctance.

This board allowed me to try the following experiment: After

booting with the supplied version of Workbench vl.l (1.2 will

autoconfigure the RAM), I used the run command to get BBS-

PC!, a bulletin board program for the Amiga, going; then after

loading Workbench, I ran Online!, a terminal program, Scrib

ble!, a word processor, and finally, Mind Walker, a wonderful

arcade-style game. They all worked, with the following provi

sos: All the programs loaded after BBS-PC! (v4.04) were drasti

cally slowed. Mind Walker's score sounded like a tape

recording played back at slow speed. Scribble's screen updates

were eons apart.

That was minor however, compared to the fact that all of

Scribbles icons, gadgets, and pointers disappeared! They

worked, if you could (by trial and error) find them. You just

couldn't see them!

The reason for this is quite simple. The graphics chips can only

'see' the first 512K of memory, or 'chip' memory, as it is called.

Shape data for the pointers, gadgets, and indeed any graphic,

must reside in chip memory. However, unless otherwise told,

the Amiga will load a program into 'fast' memory (if it is

available) — that is, memory above chip memory. To cope with

this, programs written with the Lattice C compiler, must be

ATOMized: ATOM is a utility that marks which part of a

program must be loaded into chip memory, and which can be

loaded into fast memory. There is a free upgrade available now

for Scribble! that adds spell-checking and mail merge, and

Micro-Systems Software tells me that the gadgets are back

where they're supposed to be.

Pushing Mind Walker behind the Workbench screen demon

strated that Intuition knows nothing about sprites — I sat and

watched helplessly as a 'bad thought' popped into my CLI

window and zapped my current persona as he stood innocently

in the Online! window.

Although, BBS-PC! monitors the serial port for a carrier detect,

I was still able to dial out with Online!. BBS-PC! appeared to

freeze while Online! was using the serial port, but unfroze as

soon as the serial port was free.

BBS-PC! also monitors the keyboard, however, and I'm guess

ing that this is the cause of the drastic slowdown in the other

programs. BBS-PC! probably puts itself into a busy loop while

waiting for a key to be pressed, rather than calling the EXEC

WaitO function. The WaitO function puts the process to sleep

until a significant event happens. This would mean that, until a

The Transoctof 61 Jan. W87: Volume 7, l«tu»O4

key was pressed, or until it detected a carrier, BBS-PC! would

take up almost none of the 68000's processing time, instead of

the 30 or 40 per cent it appears to be grabbing now. I'm eager to

check the new version of BBS-PC! to see if this has changed.

Expansion RAM is almost a necessity for anyone programming

in compiled languages. The speedup offered by the ability to

compile and link in RAM is phenomenal compared to floppy

disk speeds. Even Alink becomes almost livable with.

And now the news

The hottest news right now is, of course, the imminent arrival

of Kickstart and Workbench 1.2. The folks at Commodore-

Amiga in Los Gatos had held a wrap party upon the completion

of beta 7 — too early, it seems, for rumour indicates that HQ in

West Chester sent it back for some minor cleanup before

release in late September or early October.

From what I've seen of 1.2, though, I'm very impressed with

the improvements. Using the mount command, I was able to

not only use an Amiga 5 1/4 inch drive under AmigaDOS, I

was able to partition it into three separate 145K drives! Mount

works by looking in the devs directory for a text file called

mountlist. Here you specify such things as the number of

tracks, the sector interleave, and so on. (The version of 1.2 I

played with provided a template mountlist for the 5 1/4 inch

drive.) This approach permits the Amiga to use non-standard

devices.

Readers of the very first edition of Amiga Dispatches will recall

mention of a 68020/68881 board produced by Computer

Systems Associates. For $1500 dollars (US) you could pull out

your 68000, plug this board into the empty socket, and get a

tremendous boost in speed. CSA is now making an expansion

chassis for the Amiga called the Turbo Amiga. Inside the box is

the 68020/68881 board, a 512K-byte, 32-bit static RAM board,

a 20 Meg. hard drive, two empty sockets and a power supply.

The price is $5475 (US). The internal single-board version is

still available.

The August 4 issue of Infoworld carried an article containing

interviews with two users of the Turbo Amiga: one, a materials

scientist at MIT, said that programs ran as fast as or faster than

those on a VAX 11/780, with virtually the same precision.

Likewise, a company in California engaged in 'Star Wars'

research for the DOD, has found the Turbo Amiga combination

to be more cost effective than a PC-AT to "perform complex

graphics transformations for analysis of a jet fighter simulation

running on a Harris mainframe."

The Turbo Amiga would really come in handy with the next

item. I have received two reports of a product called Caligari,

from Octree in New York City. This is a 3D solid-model

animation program that apparently produces output equivalent

to that of a $50,000 Cubicomp system. The company also has a

hardware unit called a frame controller (for a VCR) that permits

the recording of a computed frame of animation to one frame

on 3/4 inch video tape. Once a sequence has been recorded it

can be played back at the appropriate speed. Such a system

might be useful for such organizations as film production:

expensive or dangerous stunt sequences, for instance, could be

envisioned on the Amiga first, before attempting to produce.

For further information, contact Roman Ormandy at (212) 921-

2119.

I've seen True BASIC in the stores. This latest version was

written by the original authors of BASIC, John Kemeny and

Thomas Kurtz, and has been ported to the Amiga and the Mac,

among others. Rumour indicates that it is faster than AmigaBA-

SIC, easier to edit, has structured programming features includ

ing local variables, and the source code is highly compatible

with True BASIC on other machines. There are extensions

available for 3D graphics and string manipulation, among

others, that can be purchased separately, or as part of a

package.

The next upgrade of the assembler that comes with the Manx

Aztec C compiler will apparently fully support the Metacomco

assembler directives and labels... The two ROM Kernel Man

uals, Libraries & Devices ($52.95 Can.) and The EXEC ($37.75

Can.) are now available from Addison-Wesley... A fine

programmer-oriented newsletter (the best periodical of its

type, in my opinion) called The Amigan: Journeyman and

Apprentice is put out by Dick Barnes, who is also editor of the

SuperPET Gazette. In particular are two excellent columns

written by John Toebes VIII (of Hack! fame) and Joe Bostic

(author of Aedit) on C and assembly language respectively. You

can become a member of The Amigans by sending $24 (US) if

you live in the US or Canada, or $34 (US) if you don't, to The

Amigans, P.O. Box 411, Hatteras, North Carolina, US 27943...

Marble Madness is a lot easier to play with a trackball than a

joystick or a mouse, it seems. The Wico trackball is recom

mended. ..

Finally, I've had a look at two audio digitizers: Futuresound and

the Mimetics SoundScape sampler. Both produce high fidelity if

brief recordings from either a microphone or line inputs.

Futuresound is more expensive at $299.95 (Can.), but it comes

with a microphone, a very nice sound editing program (play it

backward, forwards, at any speed!), and, to my ears, a lower

signal-to-noise ratio. The Mimetics device, $219.95 (Can.),

comes with sequencing software, can be used in combination

with a MIDI interface, and turns the Amiga keyboard into a

musical keyboard. Both products produce IFF sounds for use as

instruments in other programs, such as Electronic Arts' Instant

Music and Deluxe Music Construction Set. I was impressed by

the quality of both products.

I appreciate any comments or questions you may have about

topics I have discussed. You can reach me c/o The Transactor,

or on CompuServe (71426,1646) or on PeopleLink (AMTAG).

Th© Transoctof 62 Jon. 1987: Volume 7. tew04

Exploring The World Of

MFM On The 1571 Disk Drive

M. Garamszeghy

Toronto, Ontario

.. .a combination BASIC and machine language program

which allows you to examine virtually any type ofMFM disk..

The 1571 disk drive is capable of reading a wide variety of foreign

disk formats. Unfortunately, custom machine language code is

required to access this feature and Commodore did not upgrade

the "Display Track and Sector" program on the demo disk to allow

you to examine these disks. Listing 1, Display MFM, is a combina

tion BASIC and machine language program which allows you to

examine virtually any type of MFM disk. The machine language is

POKEd into the cassette and RS-232 buffers. The routines contain

several entry points:

Hex Dec Function

0B00 2816 Write SEQ Binary File

0B03 2819 Read 256, 512 or 1024 Byte MFM Sector

0B06 2822 Read 128 Byte MFM Sector

0B09 2825 Analyze Disk Format

0C45 3141 Write SEQ File, Convert ASCII to PETSCII

For those who are interested, the assembler source code follows

the BASIC listing below. The code follows the routines explained

in detail in a series of articles by this author published in TPUG

magazine under the title of "A Layman's Guide to Burst Mode"

from May to August 1986.

Display MFM will automatically determine the number of sides (1

or 2), the number of bytes per sector (128, 256, 512, or 1024) and

the number of sectors per track and the sector numbering system.

After a brief pause while the ML is being POKEd into memory, you

will be asked to insert the disk to be examined. A few whirs, buzzes

and clicks later and the format will be analyzed and displayed on

the screen. If the disk is a Commodore GCR disk or an unreadable

format (such as APPLE), an error message will be displayed.

For a single sided diskette, you will be asked to enter a track and

sector number to examine. The track number must be in the range

of 0 to 39 (MFM tracks are numbered starting from 0) and the sector

number must be in the range specified by the format analysis. For

a double sided disk you will also be asked to enter a side number (1

or 2).

The data will be displayed on the screen in chunks of 128 bytes.

Thus a 512 byte sector will require 4 screens to display completely.

The 128 byte segment is displayed in 16 lines of the following

format:

XXXX: FF FF FF FF FF FF FF FF .ABCDEFGH

Where XXXX is a hexadecimal number representing the offset

from 0 where the data are located on the sector. FF, etc., are the

hex values of the data bytes, and ABC, etc., are the ASCII charac

ters associated with each byte. Unprintable characters are repre

sented by a period ("."). The data display is followed by the the

message "press any key to continue".

At this point there are several special keys you can press. These

are:

<escape> to abort the current sector and return to the select

(side), track and sector screen.

<cursor up> increment the track* (sector & side stay same)

<cursor down> decrement the track* (sector & side stay same)

<cursor right> increment the sector* (track & side stay same)

<cursor left> decrement the sector* (track & side stay same)

c capture the contents of the sector to the 50k byte capture buffer

k kill the contents of the capture buffer

s switch sides (double sided disks only) (track & sector stay the

same)

w write capture buffer to a C-128 GCR data file (SEQ type). You

will be asked to enter a file name. A null file name (i.e just

<return>) will return to the select (side), track, sector screen.

You then put the C-128 disk in the drive. Just before the file is

written, you will be asked to select either a PETSCII or ASCII

file. The write operation does not automatically kill the buffer.

This must be done manually, if desired with the k command

outlined above.

Any other key (including s for single sided disks) will display the

next 128 byte segment. When the entire segment has been

displayed, the program will return to the select (side), track, sector

screen. The c and k keys return to the select (side), track, sector

screen. The w key returns to the initial "insert disk to be exam

ined" screen.

Some words of caution:

1. The captured sectors will be in ASCII not PETSCII. If they are

text files, you should use the <P>ETSCII option for the write.

This will create a standard PETSCII file from the ASCII data. The

<A>SCII option will give you exactly what you see on the

screen with no conversion.

2. Be careful with what you are doing. The techniques required to

read MFM disks are NOT very tolerant of stupid errors such as

removing the disk during a read, etc. Follow the prompts on the

screen and do not insert a new disk unless it tells you to. These

types of errors may cause the C-128 to lock up in such a fashion

that <run-stop>-<restore> may not work. (Keyboard inter

rupts are temporarily disabled during certain segments of the

ML code.)

Table 1 is a summary of some of the common MFM disk formats.

The list is by no means complete, but can be used as a guide when

exploring various types of MFM disks. It is worth noting that many

other brands of computers use formats similar to those outlined in

the table.

Th© Tronsocfoc 63 Jan. W«7: Volume 7, tou»O4

Table 1: Summary Of 1571 Supported CP/M MFM Disk Formats

Forma

CP/M

t Name

Formats:

OSBORNE DD

SLICER

EPSON EURO (SD)

EPSON QX-IO(SD)

EPSONQX-IOI(DD)

IBM CP/M-86 SS

IBM CP/M-86 DS

KAYPRO II

KAYPRO IV (* = "side*")

Other MFM Formats:

IBM-PC-DOS:

1 side;

2 side;

1 side;

2 side;

8 sector

8 sector

9 sector

9 sector

TRS-80 DD

TRS-80 SD

FO

DB

NC

BE

El

II

GN

HP

JO

MA

JB

HM

EN

KD

PI

CM

GM

IG

FF

GL

FP

HN

PB

FE

* Sides

1

2

2

2

2

1

2

1

2

1

2

1

2

1

1

Sector

Size

1024

512

256

256

512

512

512

512

512

512

512

512

512

256

256

Sector*

Range

1- 5

1- 8

1-16

1-16

1-10

1- 8

1- 8

0- 9

*0: 0-9

*1: 10-19

1-8

1-8

1-9

1-9

1-18

1-10

AU

Size

IK

2K

2K

2K

2K

IK

2K

IK

2K

.5K

IK

.5K

IK

Total

Capacity

200K

320K

320K

320K

400K

160K

320K

200K

400K

160K

320K

180K

360K

180K

100K

Data

Capacity

183K

314K

284K

300K

376K

154K

314K

193K

390K

157K

314K

175K

354K

* Directory

Entries

64

64

128

128

128

64

64

64

128

64

112

64

112

64

64

Directory Starts At

Side Track Sector

0 3 1

0 1 1

0 4 1

0 2 1

0 2 1

0 1 1

0 1 1

0 1 0

1 0 10

0 0 4

0 0 4

0 0 6

0 0 6

0 17 1

0 17 1

Data Area Starts At

Side Track Sector

0 3 3

0 1 5

1 4 1

1 2 1

0 2 9

0 1 5

0 1 5

0 1 4

1 0 19

0 0 8

1 0 4

0 1 1

1 0 4

0 0 2

0 0 2

Listing 1: Display MFM Disks

1000 rem save" 0:display mfm" ,8

1010 rem ** written by m. garamszeghy, toronto, Ontario

1020 rem * * for use with the commodore d 28 and

1571 drive

1030 rem ** will determine disk format and display data

if mfm

1040:

1050 e1 = 2816: rem write seq binary file

1060 e2 = e1 + 3: rem read 256, 512 or 1024 byte mfm

sector

1070 e3 = e2 + 3: rem read 128 byte mfm sector

1080 e4 = e3 + 3: rem analyse disk format

1090 e5=3141: rem write seq file, convert ascii to petscii

1100 d2$ = chr$(13) + chr$(13): hd$ = chr$(19) +

d2$ + d2$

1110 cp$ = chr$(17) + chr$(27) + chr$(29) + " cksw" +

chr$(145) + chr$(157): rem Ctrl chars

1120:

1130 bank 15: color 0,7: color 4,7: color 5,2

: print chr$(14)chr$(11)

1140 gosub1610:bp = 13056

1150 print d2$ tab(7)" * please wait *": ca = 0

1160 gosub 1810: gosub 1610: rem move in code then

display intro

1170 print d2$" insert disk to examine then"

: gosubi 540: sd = 2: io = 1: gosubi 560

1180 x = peek(3072): if x<2 then print d2$" gcr disk"

:gosub1540:goto1170

1190 ss = 0: bs = xand48: if bs = O then ss = 128: else if

bs = 16 then ss = 256

1200 if bs = 32 then ss = 512: else if bs = 48 then

ss = 1024

1210 print d2$" mfm disk: ";sd"side(s)"

: print d2$;ss" bytes / sector";

1220 ts = peek(3074): print "; " ts" sectors / track"

1230 sl(1) = peek(3076): sh(1) = peek(3077)

KK

LF

Nl

JH

NA

IH

GM

FJ

IM

CM

DO

MF

DG

NN

LK

HL

IK

FH

DH

HH

FJ

GB

1240 print " side 1: min sector #" sl(1)" max sector

#"sh(1):ifsd = 1 then 1270

1250 sl(2) = peek(3084): sh(2) = peek(3085)

1260 print " side 2: min sector #" sl(2)" max sector

#"sh(2)

1270 si = 1: poke 208,0: print d2$

1280 if sd = 1 then input " track.sector" ;t,s: b1 = 64

: gotoi 300

1290 input " side,track.sector" ;si,t,s: b1 =64: if si = 2

thenbi =80

1300 if si<1 or si>sd or t>39 or t<0 or s<sl(si) or s>sh(si)

then 1650

1310 open 15,8,15, "uO" +chr$(b1) + chr$(t)-

chr$(s) + chr$(1)

1320 bl = bp-int(bp/256)*256

1330 if ss = 128 then sys e3,bl,bp/256: else sys e2,

ss/256,bl,bp/256

1340 dclose: gosubi 560

1350 gosubi 610

1360 for i = bp to bp-10 + ss stepi 28: gosubi 630

1370forj = 0to127step8:s$="":ad = i+j-bp

: ah$ = hex$(ad): print ah$": ";

1380 for k = 0to7: z = i+j + k: z$ = right$(hex$(peek(z)),2)

: print z$" ";

1390 if peek(z)>31 and peek(z)<128 the

a$ = chr$(peek(z)): else a$ = "."

1400 s$ = s$ + a$: next: print ":" s$: next: gosubi 540

1410 a = asc(a$): if instr(cp$,a$, 1) = 0 then 1530

: rem mask out non-control chars

1420 if a = 27 then 1210: rem <esc>

1430 if a = 87 then 1660: rem W (write)

1440 if a = 145 then t=t +1: if t>39 then t = 0

: rem <cursor up>

1450 if a = 17 then t = t-1: if t<0 thent = 39

: rem <cursor down>

Th© Tronsoctof 64 Jan. 1987: Volume 7, l*sueO4

PA

BE

PP

LK

EF

PD

JH

IL

DN

FG

Jl

LO

EB

EG

MF

HA

ME

IK

El

AK

HC

FC

BC

KK

EB

EO

OJ

PE

GK

BE

DF

ME

BB

CH

CF

MD

ON

ML

EK

BJ

OD

IE

IN

JA

1460 if a = 29 then s = s +1: if s>ts then s = 1

: rem <cursor right>

1470 if a = 157 then s = s-1: if s<1 thens = ts

: rem <cursor left>

1480 if a = 67 then 1730: rem 'c' (capture)

1490 if a = 75 then 1770: rem 'k' (kill)

1500ifa = 83andsd = 2thensi = si-1: b1 =64

: ifsi<1 then si = 2: b1 =80: rem 's'

1510 if a = 83 and sd = 1 then 1530: rem 's' (side)

1520dclose:goto1310

1530 next: gotoi 210

1540 print d2$" press a key to continue": poke 208,0

: getkeya$: goto1610

1550 print d2chr(18)" disk error» " ds$: gotoi 540

1560close15: open15,8,15: if ds then gosub1550

: gotoi 170

1570 print#15," uO" + chr$(10): sys e4,0

1580 if iothenclose15: open15,8,15, "uO" +chr$(26)

: syse4,8: dclose: io = 0

1590 if ds then sd = 1: closei 5: openi 5,8,15," uO"

+ chr$(10): dclose

1600 return

1610 print chr$(147)" *♦ 1571 display mfm t&sv2 **"

1620 print " by M. Garamszeghy 86-05-01": print

: return

1630 char, 1,24," side >" + str$(si) + " track >"

+ str$(t)+ " sector >" +str$(s) + hd$

1640 return

1650 print d2$ " illegal sector": gosubi 540: gotoi 210

1660 f$ = "": print d2$: input" file name to save " ;f$

1670 if f$ = "" then 1210: else print d2$" insert c-128

disk then ": gosub1540

1680 input " <p>etscii or <a>scii" ;ft$

1690 print d2$" writing file » " f$

: open 8,8,8," 0:" + f$ + " ,s,w"

1700 if ds then print d2$" disk error» " ds$

: gosub1540: dclose: goto1660

1710 if ft$ = " p" then poke 252,bp/256 +1

: sys e5,8,0,51: dclose: gotoi 170

1720 poke 252,bp/256 +1: sys e1,8,0,51: dclose

:goto1170

1730ca = ca+1: bp = bp + ss

1740 if bp>65024 then print: print " buffer full"

:gosub1540:goto1210

1750 print d2$" side" si" track" t" sector" s: print

1760 print " captured": print d2$;ca" sectors captured

total": sleep3: goto1210

1770 print: input" kill buffer (y/n)" ;kb$: if kb$<>" y"

then 1350

1780 bp = 13056: print d2$" buffer killed": sleep3

: ca = 0: goto1210

1790:

1800 rem ** code for mfm disk procedures **

1810 ch = 0: for j = 2816 to 3045: read x: poke j,x

: ch = ch + x: next

1820 if ch<>27222 then print" checksum error!": stop

1830 goto 2160: rem move the balance of the code also

1840:

1850data 76,185, 11, 76,141, 11, 76, 70

1860 data 11,133,250,162, 12,134,251,160

1870 data 0,120, 44, 13,220, 32,129, 11

1880 data 32, 97, 11,201, 2,144, 23, 41

1890data 14,208, 19, 32, 97, 11, 41, 14

NO

PL

AL

PI

GK

DJ

ON

PO

NJ

GO

BN

OJ

BP

FP

ML

OG

DK

KE

HF

BA

KA

IC

KF

IJ

AN

—

KJ

AD

AK

CA

MM

KM

FJ

NL

JJ

CH

HB

HB

NA

PP

CD

1900 data 208, 22

1910 data 32, 97

1920 data 204, 255

1930 data 142, 1

1940 data 134, 251

1950 data 255,120

1960 data 32, 97

1970 data 96,169

1980 data 173, 0

1990 data 173, 12

2000 data 145, 250

2010 data 96,173

2020 data 221, 173

2030 data 250, 132

2040 data 0, 255

2050 data 11, 32

2060 data 160, 0

2070 data 249, 230

2080 data 96,133

2090 data 0,142

2100 data 255, 160

2110 data 177, 250

2120 data 210,255

2130 data 252,197

2140:

32,

11,
169,

12,

160,

44,

11,

8,

221,

220,

162,

0,

12,

251,

120,

97,

32,

251,

253,

0,

0,

162,

200,

251,

97, 11

32, 97

8, 32

76, 54

255,162

13,220

192, 128

44, 13,

73, 16,

162, 63,

0,142,

221, 73,

220, 96,

160, 0,

44, 13,

11, 41,

97, 11,

198,252,

134,250,

255,166,

162, 63,

0,142,

208, 238,

208, 230,

32, 97, 11

11, 88, 32

74,255, 96

11,133,250

0,142, 0

32,129, 11

208,249, 88

220, 240, 251

141, 0,221

142, 0,255

0, 255, 200

16,141, 0

133,252,134

162, 0,142

220, 32,129

14,208, 15

192, 0,208

208,243, 88

132,251,162

253, 32,201

142, 0,255

0,255, 32

230,251,165

96

2150 rem code to write seq file, convert ascii to petscii

2160ch = 0:forj = 3141 to 3228: read x: pokej.x

: ch = ch + x: next

2170 if ch<>12780 then |

2180 return

2190:

2200 data 133, 253

2210 data 32,201

2220 data 0, 255

2230 data 255,133

2240 data 26,240

2250 data 192, 240

2260 data 7,165

2270 data 165, 254

2280 data 254, 32

2290 data 251,166

2300 data 204, 255

134,

255,

177,

254,

48,

20,

254,

41,

210,

251,

96,

Drint " checksum error!": stop

250,132,

160, 0,

250,162,

201, 10,

201, 64,

165,254,

9, 128,

95, 76,

255, 200,

228, 252,

169, 0,

Display MFM: PAL Source Code

GG

IL

IF

KE

El

FE

FP

BF

KD

IL

AL

PN

DJ

PG

FP

EM

1000 rem save"0:1571 mfm 1.pal"

251, 166,253

162, 63,142

0,142, 0

240, 37,201

240, 26, 41

41, 32,208

76,134, 12

134, 12,165

208, 198,230

208, 190, 32

76,134, 12

,8

1010 rem ** m. garamszeghy - toronto, Ontario

1020 rem ** allows access to most Tifm diskettes by

1030 rem ** using the commodore c128 with 1571 drive

1040:

1050 open 8,8,1 ,"0

1060sys700

1070 .opt 08

1080*=$0b00

1090;

1100clkout

1110 ptr

1120 count

1130logadd =

1140 flag

1150dlsdr

:1571 mfm I.obj"

%00010000;tc

$fa

$fc

$fd

$0c0

change state of clock

;(pointer) for storage/

retrieval of data in ram

; block count

;logical address

I

$dc0c ;serial data register

Th© Transactor 65 Jan. W87: Volume 7, toueO4

JE

LG

FL

MG

FK

OP

KN

EE

BB

FM

AA

MK

GH

NN

DO

NP

BP

NH

FN

HE

AH

EE

IJ

FF

00

FP

MJ

MA

Kl

NB

JO

ED

CL

ML

GM

AN

GG

MN

CJ

AJ

DB

EN

IB

MK

MC

JA

NJ

EN

EA

OA

AB

PE

NK

BO

FM

HE

AE

CO

CE

JM

KM

1160 dlicr

1170d2pra

1180 mmucon

1190eainit

1200chkout

1210clrchn

1220 ch rout

1230;

—

=

=

=

=

=

=

1240 ;** jump table

1250

1260

1270

1280;

jmp

jmp

jmp

$dcOd

SddOO

$ffOO

$ff4a

$ffc9

$ffcc

$ffd2

interrupt control register

;serial port 6526 cia 2

;mmu control port

;set standrd i/o devices

;set output device

;clear all channels

;outputachar

to keep it simple **

wrtseq

rd256

rd128

;write seq binary file

;read256, 512 or 1024

byte mfm sector

;read 128 byte mfm sector

1290 ;** analyse disk format **

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400;

1410

1420

1430;

1440

1450

1460

1470;

1480

1490

1500

1510

1520;

1530 return

1540

1550

1560

1570

1580

1590;

1600 setflg

1610

1620

1630;

1640 ;** read

1650rd128

1660

1670

1680

1690

1700

1710

1720

1730

1740;

1750 getmor

1760

sta

Idx

stx

Idy

sei

bit

jsr

jsr

cmp

bcc

and

bne

jsr

and

bne

jsr

jsr

jsr

jsr

=

cli

jsr

Ida

jsr

rts

=

stx

jmp

ptr

#12

ptr + 1

#0

dlicr

chkmod

read it

#2

return

#%00001

return

readit

#%00001

setflg

readit

readit

readit

readit

*

clrchn

#8

eainit

*

flag

return

;retain .a

;clear interrupt control

register

;check mode (gcr/mfm)

110;$e

110;$e

; set flag then return

;clear all channels

;set standard i/o devices

128 byte mfm sector * *

=

sta

stx

Idy

Idx

stx

sei

bit

jsr

=

jsr

*

ptr

ptr + 1

#$ff

#0

mmucon

dlicr

chkmod

*

readit

;set to normal config

interrupt control register

;check mode (gcr/mfm)

PL

BM

EH

GJ

OP

CJ

JG

LC

AL

PG

GE

DO

IN

AG

LA

FM

EC

Ol

FJ

Al

JP

NF

GK

ML

AF

JJ

CO

Nl

HE

GK

CA

GJ

NO

DN

HE

JF

PB

HK

NK

BJ

DB

MA

OK

Cl

FB

GA

MC

LA

AE

MJ

IM

FE

AP

CH

IG

GL

IB

KJ

LO

GM

OC

1770

1780

1790;

1800

1810

1820;

1830 readit

1840

1850;

1860 waiti

1870

1880

1890;

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010;

2020 chkmod

2030

2040

2050

2060

2070

2080;

2090;** read

2100rd256

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230;

2240

2250;

2260 more

2270

2280

2290

2300;

2310

2320

2330

2340;

2350 nomore

2360

2370

cpy

bne

cli

rts

=

Ida

=

bit

beq

Ida

eor

sta

Ida

Idx

stx

sta

Idx

stx

iny

rts

=

Ida

eor

sta

Ida

rts

256,

=

sta

stx

sty

Idy

Idx

stx

sei

bit

jsr

jsr

and

bne

Idy

=

jsr

cpy

bne

inc

dec

bne

=

cli

rts

#128

getmor

#8

*

dlicr ;wait for byte

waiti

d2pra ;read serial port

#clkout ;change state of clock

d2pra ;store back

dlsdr ;get data from serial data

register

#%00111111 ;ram 0 and kernal

mmucon ;set as config

(ptr),y ;store status

#0

mmucon ;back to normal config

*

d2pra ;read serial port

#clkout ;change state of clock

d2pra ;store back

dlsdr ;get data from serial data

register

512 or 1024 byte mfm sector **

*

count ;max # blocks

ptr ;(ptr)

ptr + 1

#0

#0

mmucon ;set to normal config

dlicr interrupt control register

chkmod ;check mode (gcr/mfm)

readit

#%00001110;$e

nomore

#0

readit

#0

more

ptr + 1 ;highbyte + 1

count ;decrease count of blocks

more

*

TT>© Ttansocfor 66 Jon. 1987: Volume 7, toueO4

CM

KO

IJ

NH

Fl

LE

PM

DL

AB

HJ

LP

AD

LC

IM

PM

PL

DD

HJ

LF

KO

BH

EJ

HH

GA

EM

OK

GM

GE

KN

KE

2380;

2390 ;** write

2400 wrtseq

2410

2420

2430

2440

2450

2460

2470

2480

2490;

2500 wrtmor

2510

2520

2530

2540

2550

2560

2570

2580

2590;

2600

2610

2620

2630

2640;

2650

2660;

2670 .end

Display MFM: ASCI

HG

IL

CB

KH

OD

LO

HE

CF

OK

OP

EB

LF

MD

HN

JG

CM

OJ

IA

LH

JL

EB

HI

CK

PL

DC

IF

FG

AP

HP

1000 rem save

1010 rem ** it

seq binary file **

=

sta

stx

sty

Idx

stx

Idx

jsr

Idy

=

Idx

stx

Ida

Idx

stx

jsr

iny

bne

inc

Ida

cmp

bne

rts

#

logadd

ptr

ptr +1

#0

mmucon

logadd

chkout

#0

*

#%00111

mmucon

(ptr),y
#0

mmucon

chrout

wrtmor

ptr + 1

count

ptr + 1

wrtmor

;logical write address

;(ptr)

;set to normal config

;la

;set output device

111 ;ram 0 and kernal

;set as config

;get data from ram

;back to normal config

;write data

;have we hit the end yet

;more to go

[to PETSCII Conversion Source

"0:1571 mfm2

. garamszeghy

1020 rem ** ascii to

1030:

1040 open 8,8

1050sys700

1060 .opt 08

,1,"0

1070*=$0c45

1080;

1090 ptr

1100 count

1110logadd

1120 work

1130 mmucon

1140chkout

1150clrchn

1160 chrout

1170;

1180;** write

1190

1200

1210

1220

1230

1240

1250;

1260 loop

1270

1280

=

=

-

=

=

=

=

=

.pal",8

- toronto, Ontario

petscii conversion routine

:1571 mfrr

$fa

$fc

$fd

$fe

SffOO

$ffc9

$ffcc

$ffd2

i2.obj"

;(pointer) to data in ram

;count of blocks to print

;logical address

;keep data byte

;mmu control

;set output device

;clear all channels

;outputachar

seq file - convert ascii to petscii **

sta

stx

sty

Idx

jsr

Idy

=

Idx

stx

logadd

ptr

ptr + 1

logadd

chkout

#0

•

#%00111

mmucon

;logical write address

;(pointer) through ram

;set output device

111 ;ram0and kernal

;set as config

KA

LF

NN

JA

LG

BL

ML

NA

ON

KN

OE

NP

IP

CE

Dl

GB

KK

OM

CN

OD

CN

HM

OL

GG

AP

EA

GC

AP

IJ

JE

GD

GL

NF

NP

EN

MJ

CF

LN

MP

PN

FC

GO

KH

OC

EE

IL

ME

AN

FN

MM

EH

EO

1290

1300

1310

1320

1330

1340

1350;

1360

1370

1380;

1390

1400

1410;

1420

1430

1440;

1450

1460

1470

1480;

1490

1500

1510

1520;

1530 maskit

1540

1550

1560

1570;

1580 flash

1590

1600;

1610showit

1620

1630;

1640 noshow

1650

1660

1670;

1680

1690

1700

1710

1720;

1730

1740

1750;

1760sndnul

1770

1780

1790;

1800 .end

Ida (ptr),y

Idx #0

stx mmucon

sta work

cmp #10

beq noshow

cmp #26

beq sndnul

cmp #64

beq showit

;set back to normal config

;retain data in work area

linefeed

;skip display

;'sub'

;send null instead

;'@'
;ok - print it

and #%11000000 ;test bits 7 + 6

beq flash

Ida work

;no prob - just display

and #%00100000 ;test for bit 5

bne maskit

Ida work

; needs conversion before

display

ora #%10000000 ;set reverse flag

jmp showit

= *

Ida work

and #%0101

jmp showit

= *

Ida work

ES *

jsr chrout

= *

iny

bne loop

inc ptr +1

Idx ptr + 1

cpx count

bne loop

jsr clrchn

rts

= *

Ida #0

jmp showit

1111 ;display mask

;outputachar

;go for some more

;more to go

;clear all channels

Th© Tronsoctof 67 Jon. W87: Volume 7, toueO4

C64 Mini-Tracer Jim Frost

La Mesa, California

A Trace Utility For The C64 That Works In Low and High Res Mode

Mini-Tracer is a short machine language wedge utility that allows

single step operation of conventional and HIRES BASIC programs.

The current line number is displayed in the lower right-hand

corner of the screen. The trace routine is located at $CB80 (52096)

as this area of memory is seldom used by the short machine

language routines often included with BASIC programs. Mini-

Tracer is not compatible with most (if any) of the DOS wedge

programs, and should not be loaded when a wedge is in use.

Mini-Tracer was first written several years ago, when magazines

did not publish verifizer programs. In those days, even a minor

typing error could lead to a system crash that took days to locate.

With Mini-Tracer, the cause of a crash can usually be located in

minutes.

As my computing skills increased and published programs became

more complex, Mini-Tracer was rewritten to include single-step

and HIRES trace modes. The current version is most useful in

finding out how a BASIC program works or why it doesn't.

Program logic flow can be traced for various input conditions and

the effect of each BASIC line on screen action can be easily

observed. In programming or debugging, there is no substitute for

planning and logical thinking; however, Mini-Tracer provides a

useful tool that allows you to concentrate your thinking on an

isolated subroutine, an incorrect variable, or a few faulty lines of

code.

To start Mini-Tracer, load and run the loader program. In about 20

seconds, the machine language will be poked into place and

BASIC line numbers will start displaying. BASIC programs can

then be loaded and run normally, except that program flow is

traced. To toggle single-step on, press the Commodore key. BASIC

will now execute one line each time any key is pressed. Normally,

you should press the shift or control keys to prevent filling the

keyboard buffer with gibberish. When the program requires an

input, use the standard keyboard. Keys can be held down for a

very slow execution of BASIC lines. Single-step can also be

controlled from within a program. Just add POKE 52232,1 to any

BASIC line to start single-step. Pressing the Commodore key a

second time (or POKE 52232,0) will disable single-step. STOP is

sluggish when single-step is enabled but the computer will re

spond if the stop key is held for a few seconds. When a BASIC

program is stopped while in single-step, the first command in

direct mode must be followed by pressing an additional key after

return. Additional direct mode commands work normally.

Programs with custom characters present a problem since the line

number may consist of alien pieces of dragon tails instead of

readable numbers. To prevent this, locate the line which selects

the new character set and temporarily replace the POKE to 53272

with POKE 53272,21. The aliens will look like ones and twos but

that can be fixed when the bugs are squashed.

Technical Details

The remaining text describes the operation of the program. If you

are interested only in using Mini-Tracer to understand and debug

BASIC programs, stop reading at this point. If you are interested in

studying machine language or modifying Mini-Tracer to suit your

needs, then the assembly listing and the remaining text will be of

interest.

Mini-Tracer consists of five main modules: Initialization, Control,

Formatting, Standard Display and Bit Map Display. The initializa

tion routine sets up the wedge, then pokes screen and color

memory with the title page and instructions. The control module

checks line numbers, flags, and key presses to direct program flow.

Conversion of the line numbers from HEX to screen display

characters is handled by the formatting module. Each module will

be functionally described. All addresses are given in hexadecimal.

Those addresses that can be used from BASIC have the corres

ponding decimal address following in parenthesis.

Initialization

A routine called CHRGET is used by BASIC to gather individual

characters from the BASIC program. The characters are inter

preted and commands are then executed. Mini-Tracer (and many

other wedge utilities) works by placing a jump in the middle of

CHRGET to divert the program to the new code. When the new job

is done, the program jumps back to finish CHRGET. The main loop

of Mini-Tracer starts at $CC7E, so the initialization routine pokes

CHRGET with JMP $CC7E.

Control

Since CHRGET is entered for each byte of BASIC program, execut

ing a long wedge slows BASIC considerably. To keep BASIC as fast

as possible, Mini-Tracer first checks the BASIC line number at $39

and $3A (57 and 58) against the previous line number at $CC09

and $CC0A. When the line numbers are different, the present line

number is saved and the remainder of the trace routine is exe

cuted.

Single Step is controlled by a flag at $CC08. If the flag is off

($CC08 = 0), the program will execute at maximum speed. Before

Th© Tronsoctof 68 Jan. 1987: Volume 7, toueO4

testing flags, the status of special keys determined by testing

SHFLAG at $028D. If the Commodore key is pressed ($0280 = 2)

the single step flag is toggled. When the single step flag is off, the

program jumps directly to the number formatting. When the single

step flag is on, the program checks for standard or special keys

pressed (standard key memory is $C5 (197)). If no keys are pressed,

the program keeps looping until a key is pressed. When a key press

is found, a delay timer is started (ML is so fast that without a delay,

several lines will execute before you can lift your fingers). The

delay is timed by counting zero transitions of the raster position at

$DO12 (53266). The raster completes a full scan in 1/60 second so

it is changing much too fast to be very useful with BASIC, yet there

is time for several thousand machine language instructions. Wait

ing 96 raster scans provides approximately 1.5 seconds delay.

Formatting

Converting the line number from binary to decimal utilizes a

technique described by Jim Butterfield in Compute! (July 83). The

method involves alternately adding (in decimal mode), then multi

plying by the base. Converting this way will work with any

number system, as long as you remember to multiply by the

correct base.

Prior to handling the details of screen printing, the formatting

module checks the screen location. Usually, the screen is at $0400

(1024), but the program being traced might have a different screen

location or use screen flipping for animation. The screen location

is calculated by adding the selected bank (determined by the

lowest 3 bits of $DDOO (56576) to the screen base address at

$0288 (648). An additional 3 is added to the high byte of the screen

address to place the line number at the bottom of the screen.

Display of the standard screen line numbers is handled by the

subroutine labeled NOBIT on the listing. Each byte of a BCD

number contains two decimal numbers, one each in the high and

low nibble. These are separated and $30 (48) is added to convert

the numbers to screen codes. The converted numbers are then

poked on the screen. When this is finished, Mini-Tracer pulls the

original A and X registers from the stack and goes back to

CHRGET.

The bit map output was a bit trickier. With bit map, individual

pixels produce the display, so characters cannot be poked directly

to the screen. To display the numbers, 1 could have gathered the

required 8 bits from the standard character set and poked them on

the screen. Since I had to handle 8 bits per number anyway, I

decided to design a custom set of numbers which would work with

multicolor also. The data for these is given (in HEX) in the

assembly listing, should you want to use them with your own

multicolor programs.

The next obstacle was locating the 8K bitmap screen. The bitmap

screen can be located at the beginning or middle of four different

16K banks. The eight possible screen addresses are found in a

table called BANKTAB. The bank is determined by placing the low

3 bits of $DDOO in the X register, then checking bit 8 of $DO18 to

find the bank half in use and adding $4 to x when the screen is in

the high half of the bank. With the screen located, another $ 1F (31)

is added to position the line numbers at the bottom of the screen.

The 8 bits for a desired number are found by multiplying the

number by 8 then using the product as an index to the correct

position in the character table. Each byte is then poked to the bit

mapped screen. After printing the line number on the hires screen,

Mini-Tracer returns to the Basic interpreter by jumping back to

CHRGET.

Mini-Tracer: BASIC Loader

KB

EK

NP

ME

NJ

NA

CA

HJ

PF

NJ

CG

GG

BG

DG

FN

LH

LL

IH

BC

ME

JP

Gl

JO

JL

GK

DL

IM

IP

LC

KB

NA

AE

CE

KE

LI

PF

Gl

ON

CK

AK

MF

HG

EH

AP

EM

AN

BL

PB

AL

HF

1000 rem save" 0:trace44.ldr" ,8

1010 rem ** minitracer - trace/single step routine for

1020 rem ** basic programs and bit map - c64

1030 rem ** written by: jim frost - rev. 12/12/85

1040 for j = 52096 to 52904: read x: poke j,x

: ch = ch + x: next

1050 if ch<>89485 then print" checksum error!"

: stop

1060 print " sys(52096): rem to enable": end

1070 data 141, 137, 142,137, 32, 32, 32,160

1080data 32, 98, 95,160,105, 98, 95,160

1090 data 105, 98, 95,160, 32, 98,254,160

1100 data 32, 98, 95, 0,160, 32,160,160

1110 data 32,226, 32,160, 32,226, 32,160

1120 data 32,160,160,160, 32,226,160,160

1130 data 32,226, 32, 0,160, 32,160,160

1140 data 32,160,123,160, 32,160, 32,160

1150 data 223, 226, 233, 160, 32, 226, 251,160

1160data 32,160,123, 0, 16, 18, 5, 19

1170 data 19, 32, 3, 61, 32, 20, 15, 32

1180 data 20, 15, 7, 7, 12, 5, 32, 19

1190 data 9, 14, 7, 12, 5, 45, 19, 20

1200 data 5, 16, 16, 18, 5, 19, 19, 32

1210 data 19, 8, 9, 6, 20, 32, 15, 18

1220 data 32, 1, 14, 25, 32, 11, 5, 25

1230 data 32, 20, 15, 32, 19, 20, 5, 16

1240 data

1250 data

1260 data

1270 data 2, 1, 1, 0, 1, 0, 63, 51

1280 data 51, 51, 51, 51, 63, 63, 60, 60

1290 data 12, 12, 12, 12, 63, 63, 63, 51

1300 data 3, 63, 48, 51, 63, 63, 63, 51

1310 data 3, 15, 3, 51, 63, 63, 51, 51

1320 data 51, 63, 3, 3, 3, 3, 63, 48

1330 data 48, 63, 3, 51, 63, 63, 63, 51

1340 data 48, 63, 51, 51, 63, 63, 63, 51

1350 data 3, 3, 3, 3, 3, 3, 63, 51

1360 data 51, 63, 51, 51, 63, 63, 63, 51

1370 data 51, 63, 3, 51, 63, 63,192,128

1380 data 64, 0,224,160, 96, 32, 72,138

1390 data 72,162, 0,165, 57,205, 9,204

1400 data 240, 4,232,141, 9,204,165, 58

1410 data 205, 10,204,240, 4,232,141, 10

1420 data 204, 224, 0, 208, 3, 76, 123, 205

1430 data 162, 3,181,251,157, 17,204,202

1440 data 16,248,173,141, 2,201, 2,208

1450 data 13,173, 8,204, 73, 1,141, 8

1460 data 204, 173,141, 2,208,251,173, 8

1470 data 204, 240, 45,165,197,201, 64,208

1480 data 5,173,141, 2,240,220,162, 48

1490 data 173, 18,208,208,251,173, 18,208

o,

o,

1,

0,

0,

0,

0,

0,

1,

0,

0,

1,

0,

0,

1,

0,

0,

0,

0,

1,

1,

0

0

1

TTvo Tronsoctof 69 Jon. 1987: Volume 7, tauaO4

MN

GA

CM

FA

BE

EP

ME

GB

CN

10

Ml

EC

NJ

JC

NM

CG

EH

EJ

0M

AC

CP

GN

NO

BL

JH

IL

NP

OB

LA

HB

IA

ND

EG

KC

LD

MN

DF

KL

PD

OG

BB

OJ

Nl

JH

PJ

BO

CN

AL

AB

ID

AF

OA

EP

OG

EB

OB

BN

Ml

JK

1500 data 240, 251,173,141,

1510 data 12,169, 0,141,

1520 data 2,208,251,240,

1530 data 162, 2,181, 56,

1540 data 0,157, 11,204,

1550 data 11,204,162, 15,

1560 data 16,204,120,248,

1570 data 204, 121, 11,204,

1580 data 16,244,216, 88,

1590 data 136, 2,133,252,

1600 data 3,170,189,118,

1610 data 105, 3,133,252,

1620 data 173, 17,208, 41,

1630 data 136, 205, 162, 0,

1640 data 204, 72, 74, 74,

1650 data 145, 251,200,104,

1660 data 145, 251, 232, 200,

1670 data 162, 6,173, 33,

1680 data 185, 22,204,157,

1690 data 250, 162, 3,189,

1700 data 202, 16,248,104,

1710 data 176, 3, 76,128,

1720 data 173, 24,208, 41,

1730 data 232, 232,232, 189,

1740 data 31,133,254,169,

1750 data 0,141, 21,204,

1760 data 204, 189, 11,204,

1770 data 170,189, 38,204,

1780 data 192, 8,240, 10,

1790 data 192, 40,240, 2,

1800 data 15, 10, 10, 10,

1810 data 145, 253,232, 200,

1820 data 192, 32,240, 6,

1830 data 208, 235,238, 21,

1840 data 5,169, 16,145,

1850 data 76, 96,205,169,

1860 data 126,133, 125, 169,

1870 data 1,173, 33,208,

1880 data 208, 1,202,138,

1890 data 216, 157, 0,217,

1900 data 147, 32,210,255,

1910 data 32,210,255,202,

1920 data 162, 240, 157, 255,

1930 data 162, 4,189,127,

1940 data 202, 208, 247, 160,

1950 data 21,204,169, 88,

1960 data 133, 252, 189, 132,

1970data251,232,200, 208,

1980 data 232,160, 0,206,

1990 data 160, 29,185,204,

2000 data 185, 234, 203,153,

2010 data 241, 169,240,133,

2020 data 252, 162, 4,160,

2030 data 251, 160, 39,169,

2040 data 157, 206, 202, 208,

2050 data 122, 145, 251,169,

2060 data 169, 76,145,251,

2070 data 105, 40,133,251,

2080 data 96

2,201,

8, 204,

3, 202,

157, 14,

202, 208,

14, 15,

160, 2,

153, 11,

202, 16,

173, 0,

204, 24,

169,224,

32, 240,

160, 0,

74, 74,

41, 15,

224, 3,

208, 41,

223,219,

17,204,

170,104,

0, 76,

8, 240,

118,204,

0,133,

160, 0,

72, 41,

145,253,

192, 24,

208, 235,

170,189,

192, 16,

192, 48,

204, 208,

251,136,

76,133,

204,133,

41, 15,

162, 0,

232, 208,

162, 13,

208, 250,

3, 202,

203,157,

0,169,

133,251,

203, 240,

245, 32,

21,204,

203,153,

109, 5,

251,169,

0,169,

103,145,

238,160,

111,136,

96, 24,

144, 2,

2,208

173,141

208, 224

204,169

243,141

204, 46

185, 11

204,136

229,173

221, 41

101,252

133,251

3, 76

189, 11

9, 48

9, 48

208,230

15,168

202,208

149,251

201, 58

138, 0

4,232

24,105

253, 169

174, 21

240, 74

232,200

240, 6

104, 41

38, 204

240, 10

240, 7

191,160

16,251

124,169

126,162

201, 1

157, 0

247,169

169, 17

169,160

208, 250

57, 4

3, 141

169, 4

6,145

157,206

208,234

29, 5

136, 16

133

145

32

39, 169

208,249

165,251

230,252

Mini-Tracer PAL Source Code

4,

101,

251,

BA

EK

NP

ME

El

CF

FP

BF

FG

IL

CE

GG

LM

JL

DH

OG

OJ

IA

FO

EA

HE

AD

NJ

GG

GN

NK

GB

AC

IP

IE

FL

AF

OJ

KH

AD

ME

LF

HN

KN

HL

IF

CH

GJ

AB

GB

CD

HG

FH

PG

IE

JN

Cl

GG

KM

EM

El

PI

OL

CK

FB

GL

GC

HA

PA

LB

IO

NL

MD

FH

BF

CC

HD

MD

MG

EC

CB

Ml

KK

1000 rem save" 0:trace44 pal' ,8

1010 rem •• minitracer - trace/single step routine for

1020 rem •• basic programs and bit map -c64

1030 rem • • written by: jim frost - rev. 12/12/85

1040:

1050 open 8,8,1," 0:trace44.obj"

1060sys700

1070 .opt 08

1080. = $cb80

1090;

HOOcurlin = $39

1110keyflg = $c5

1120 shflag = $028d

1130hibase = $0288

1140 raster » $dO12

1150 bgcol = $dO21

1160chrout = $ffd2

1170;

1180 ;•• screen data >•

1190 mini = »

1200 .byte $8d, $89, $8e,

1210;

1220 tracer = ♦

1230 .byte $20, $20, $20,

1240 .byte $69, $62, $5f,

1250 .byte $20, $62, $fe,

1260. byte $aO, $20, $aO,

1270 .byte $20, $e2, $20,

1280 .byte $20, $e2,$aO,

1290 .byte $aO, $20, $aO,

1300.byte $20, $aO, $20,

1310.byte $20, $e2,$fb,

1320;

1330 msg1 = •

; current line #

; which key pressed

; raster position

; output a char

ssy

$aO, $20, $62,

$aO, $69, $62,

$aO, $20, $62,

$aO, $20, $e2,

$aO, $20, $aO,

$aO, $20, $e2,

$aO, $20, $aO,

$aO, $df, $e2,

$aO, $20, $aO,

1340 .byte $10, $12, $05, $13, $13, $20,

1350 .byte $20, $14, $0f,

1360 .byte $0c, $05, $20,

$20, $14, $0f,

$13, $09,$0e,

1370 .byte $05, $2d, $13, $14, $05, $10

1380;

1390 msg2 = •

1400 .byte $10, $12, $05,

1410.byte$09, $06,$14,

1420 .byte $0e, $19, $20,

1430.byte $0f, $20, $13,

1440;

1450 ;•• variables ••

1460ssflg .byteO

1470 linlo .byteO

1480 linhi .byteO

1490;

1500bcdhi = ♦

1510.byte 0, 0, 0,

1520;

1530 tlnlo .byteO

1540 tlnhi .byteO

1550;

1560ztemp = •

1570 .byte 0, 0, 0,

1580;

1590count .byteO

1600;

$13, $13, $20,

$20, $0f, $12,

$0b, $05, $19,

$14, $05, $10

0

0

$5f, $aO

$5f, $aO

$5f, $00

$20, $aO

$aO, $aO

$20, $00

$7b, $aO

$e9, $aO

$7b, $00

$03, $3d

$07, $07

$07, $0c

$13, $08

$20,$01

$20, $14

1610 ;•• colors compatable with background ••

1620coltab = .

1630 .byte $01, $00, $01,

1640.byte$01,$01,$02,

1650;

$00, $01, $01,

$01, $01, $00,

1660; * • character set for bit map • •

1670chrtab = «

1680 .byte $3f, $33, $33,

1690 .byte $3c,$3c,$0c,

1700 .byte $3f, $33, $03,

1710 .byte $3f, $33, $03,

1720 .byte $33, $33, $33,

1730 .byte $3f, $30, $30,

1740 .byte $3f, $33, $30,

1750 .byte $3f, $33, $03,

1760.byte $3f, $33, $33,

1770 .byte $3f, $33, $33,

$33, $33, $33,

$0c, $0c, $0c,

$3f, $30, $33

$0f, $03, $33

$3f, $03, $03

$3f, $03, $33

$3f, $33, $33

$03, $03, $03

$3f, $33, $33

$3f, $03, $33

$01, $00

$01, $00

$3f, $3f

$3f, $3f

$3f, $3f

$3f, $3f

$03, $03

$3f, $3f

$3f, $3f

$03, $03

$3f, $3f

$3f, $3f

;zero

;one

;two

; three

;four

;five

;six

;seven

;eight

;nine

TT>© Transactor TO Jqal9«7: Volume 7, Imu»O4

KG

BG

PE

CP

CJ

AD

GJ

DA

IP

KM

MO

FC

AG

HM

GP

IC

Bl

EB

Dl

EO

KJ

HA

GE

GL

LL

EG

JL

GG

GD

Ml

FP

AK

JG

LI

OL

DN

HL

OC

HC

NK

KP

HK

FK

OM

HK

MC

PC

OA

AB

EF

CM

OA

LO

MH

IC

EM

OL

EK

GN

Jl

KJ

MM

MH

DB

KO

IK

AB

IA

NB

OF

GB

AD

IE

MD

T

1780;

1790; * • table of bank addresses • •

180Obanktab= •

1810 .byte $cO, $80, $40, $00, $eO, $aO, $60, $20

1820;

1830;»» start of wedge ••

1840 start

1850

1860

1870

1880

1890

1900

1910

1920;

1930

1940

1950;

1960 samelo

1970

1980

1990

2000;

2010

2020

2030;

2040 samehi

2050

2060

2070;

2080

2090;

2100 trace

2110

2120;

2130savzp

2140

2150

2160

2170

2180;

2190 nokeys

2200

2210

2220

2230;

2240

2250

2260

2270;

2280 finger

2290

2300

2310;

2320 tstflg

2330

2340

2350;

2360

2370

2380

2390;

2400

2410

2420;

2430 keyprs

2440

2450;

2460 delayi

2470

2480

2490;

2500 delay2

2510

•

pha

txa

pha

Idx #0

;save a and x on stack

;clear temp flag inx

Ida curlin ;low byte of current line #

cmp linlo

beq samelo

inx

sta linlo

= »

Ida curlin+ 1

cmp linhi

beq samehi

inx

sta linhi

— ♦

cpx #0

;set temp flag

;high byte current line #

;if x still 0 then

bne trace ;then we are on same line

jmp quickout

= *

Idx #3

= •

Ida $fb,x

sta ztemp.x

dex

bpl savzp

»

Ida shflag

cmp #2

bne tstflg

Ida ssflg

eor #1

sta ssflg

= *

Ida shflag

bne finger

= *

Ida ssflg

beq nopause

Ida keyflg

cmp #64

bne keyprs

Ida shflag

beq nokeys

= *

Idx #$30

= *

Ida raster

bne delayi

= ♦

Ida raster

;save user zero page

;so trace can share

;get special keypress

;c="?"

;no. jump to flag test

;else toggle the flag

;and store the new flag

;wait until fingers are

lifted

;if ssflg = 0 then skip ss

;check key

;if 64 then no keys

pressed

;else keys pressed so

continue

;repeat until keys

pressed

;raster position

;repeat until raster = 0

ON

IF

LN

GF

FG

Al

PC

GA

OJ

NJ

JH

BC

GM

KE

KN

FP

PC

LG

CA

BG

LO

AC

MJ

KB

LK

NL

PN

NJ

GF

AH

HK

FO

01

IL

LG

CH

IN

LP

DK

EN

EN

KD

GD

Ml

LE

FK

KB

IC

GE

JH

NF

ME

GO

JA

FB

DA

DN

IP

CJ

JP

DB

JF

FN

KG

BP

PJ

NC

MO

EE

AA

GC

2520

2530;

2540

2550

2560

2570;

2580

2590

2600;

2610 thumb

2620

2630

2640;

2650

2660;

2670 delay3

2680

2690

2700;

beq

Ida

delay2

shflag

cmp #2

bne

Ida

sta

=

Ida

bne

beq

=

dex

bne

2710nopause=

2720

2730 ;

2740 clrmem

2750

2760

2770

2780

2790

2800

2810;

2820

2830

2840;

2850 htod

2860

2870

2880

2890

2900

2910;

2920decadd

2930 '

2940

2950

2960

2970

2980;

2990

3000

3010

3020

3030;

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

3190;

3200

3210;

Idx

=

Ida

sta

Ida

sta

dex

bne

sta

Idx

=

asl

rol

sci

sed

Idy

=

Ida

adc

sta

dey

bpl

old

cli

dex

bpl

Ida

sta

Ida

and

tax

Ida

clc

adc

adc

sta

Ida

sta

Ida

and

beq

jmp

delay3

i!0

ssflg

•

shflag

thumb

nopause

*

delay 1

f

#2

♦

curlin-1,x

tlnlo-1 ,x

#0

bcdhi.x

clrmem

bcdhi

#$0f

tlnlo

tlnhi

#2

*

bcdhi.y

bcdhi.y

bcdhi, y

decadd

htod

hibase

$fc

$ddOO

#3

banktab.x

$fc

#3

$fc

#$e0

$fb

$d011

#$20

nobit

bitout

; repeat until raster not

zero

;check for request to

;exit single step

;if no request.continue

wait

;else clear flag

;wait for fingers up

;and resume trace

;repeat until x = 0

;save basic line #

;clear mem for new

bed numbers

;get one bit at a time

;from the basic

;line# and add it

;to the bed # being

formed

;high byte of screen

address

;video bank in low two

bits

;offset to screen

bottom

3220 ;•• lo-res line number display •♦

71

GO

PO

NP

CD

OA

PE

OC

AJ

HM

BN

LN

OE

CH

AA

MG

EH

BE

NG

OC

MD

NG

IC

AP

BM

BO

JP

BD

LH

LD

GD

AM

PM

FJ

LH

IG

JE

MH

PI

HD

IE

FO

JE

IL

HO

KF

LC

CP

JC

LH

OP

BH

CB

PM

CM

AD

EA

Al

PD

DH

HO

MG

MN

GO

AP

KP

OJ

HP

CC

ML

Fl

PH

3230 nobit

3240

3250

3260;

3270 gethi

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450;

3460 col2

3470

3480

3490

3500

3510

3520;

3530 cmem

3540

3550

3560

3570;

3580

3590;

3600 zrest

3610

3620

3630

3640

3650;

■ *

Idx #0

Idy #0

= *

Ida bcdhi,x

pha

Isr

Isr

Isr

Isr

ora #$30

sta ($fb),y

iny

pla

and #$Of

ora #$30

sta ($fb),y

inx

iny

cpx #3

bne gethi

= *

Idx #6

Ida bgcol

and #$0f

tay

Ida coltab.y

= .

sta $dbdf,x

dex

bne cmemi

Idx #3

= *

Ida ztemp.x

sta $fb,x

dex

bpl zrest

3660 quickout= •

3670

3680

3690

3700

3710

3720;

3730

3740;

3750 eg 1

3760

3770;

pla

tax

pla

cmp#$3a

bes cg1

jmp $80

= •

jmp $8a

;get bed number

;save it on stack

;shift high nibble to low

;convert to screen

code

;and poke on screen

;get save bed number

;throw away high

nibble

;convert to screen

code

;poke it on screen

; repeat until six digits

;check background

color

;getcompatable color

from table

;and poke color

memory

;finish chrget

3780;* hires line number display >

3790 bitout

3800

3810

3820

3830;

3840

3850

3860

3870

3880;

= *

Ida $dO18

and #8

beq lowbank

inx

inx

inx

inx

3890 lowbank= •

3900

3910

3920

3930

Ida banktab.x

clc

adc #$1f

sta $fe

Jan 1987:

;bit 8 set puts

;bit map in upper half

;mask unwanted

;offset to bottom of

bitmap

Volume 7, Issue O4

PE

AJ

DG

EJ

HN

MA

AG

KN

LC

NO

FN

FF

EJ

MF

FO

HA

NB

KO

IP

NK

JH

MK

EP

AN

KM

JB

00

10

DC

MP

LH

CJ

DH

LC

DG

NG

HJ

ME

DM

KA

NA

KN

10

EK

JL

MJ

JM

HN

KL

00

IN

IN

NA

MO

Gl

OH

GL

EB

FM

HA

CO

MD

LA

GF

PJ

CA

OG

KE

Cl

ID

PF

AC

ND

3940

3950

3960

3970

3980

3990;

4000 getbcd

4010

4020

4030

4040

4050

4060

4070;

4080 nextrou

4090

4100

4110

4120

4130

4140

4150;

4160

4170

4180;

4190

4200

4210;

4220

4230;

4240 low

4250

4260

4270

4280

4290

4300

4310;

Ida #0

sta $fd

Ida #0

sta count

Idy #0

= .

Idx count

Ida bcdhi.x

pha

and #$fO

Isr

tax

i = •

Ida chrtab.x

sta ($fd),y

inx

iny

cpy #8

beq low

cpy #$18

beq low

cpy #$28

beq low

bne nextrow

- *

pla

and #$0f

asl

asl

asl

tax

4320 nextlow = •

4330

4340

4350

4360

4370

4380

4390;

4400

4410

4420;

4430

4440

4450;

4460

4470;

Ida chrtab.x

sta ($fd),y

inx

iny

cpy #$10

beq countup

cpy #$20

beq countup

cpy #$30

beq scolor

bne nextlow

4480countup= •

4490

4500

4510;

4520 soolor

4530

4540

4550;

4560 cm1

4570

4580

4590

4600;

4610

4620;

inc count

bne getbcd

= *

Idy #5

Ida #$10

= •

sta ($fb),y

dey

bpl cm1

jmp co!2

4630 ;•• initialize chrget ••

4640

4650

4660

Ida #$4c

sta $7c

Ida #<start

;get bed number

;save on stack for low

nibble

;mask low nibble

;high nibble is

16«value

;divide by 2 for 8»value

;and get indexed

character

;poke on bitmap

;done with character 1

;print box right and left

;done with character 3

;done with character 5

;fetch bed for low

nibble

;mask high nibble

;multiply by 8

;get indexed character

; poke on bitmap

;done with character 2

;done with character 4

;done with character 6

;insert the wedge

;by poking chrget with

jmp$cd78

;low byte start address

CE

ND

JF

MJ

PO

FC

FD

FG

EA

AH

IB

KP

KG

HA

AE

PI

IC

FD

OM

BN

MH

EM

KO

LP

NP

CG

IL

AL

BE

HB

EP

KO

EN

JE

IA

HC

DF

HG

HP

KD

NB

OE

FC

Kl

BC

HL

OP

Kl

IC

JB

EE

OI

CG

DE

JH

KN

KN

EH

IF

CA

CB

MH

Kl

BM

ED

FC

LO

IL

BD

PL

HA

KH

EO

OI

Dl

PG

4670

4680

4690

4700

4710

4720

4730

4740

4750;

4760

4770;

4780 white

4790

4800

4810;

4820 color

4830

4840

4850

4860

4870;

sta

Ida

sta

Idx

Ida

and

$7d

#>start

$7e

#1

bgcol

#$0f

cmp#1

bne

dex

=

txa

Idx

=

sta

sta

inx

bne

white

•

flO

*

$d800,x

$d900,x

color

4880 ;»• print initial screen •

4890

4900

4910

4920

4930;

4940 cdwn

4950

4960

4970

4980;

4990

5000

5010;

5020 rvs1

5030

5040

5050

5060;

5070

5080;

5090 mil

5100

5110

5120

5130

5140;

5150

5160

5170

5180

5190

5200

5210

5220;

5230 tr1

5240

5250

5260;

5270

5280

5290

5300

5310;

5320 nxtrow

5330

5340

5350

5360

5370

5380;

5390

5400;

5410 ms1

5420

Ida

jsr

Idx

Ida

=

jsr

dex

bne

Ida

Idx

=

sta

dex

bne

Idx

=

Ida

sta

dex

bne

Idy

Ida

sta

Ida

sta

Ida

sta

=

Ida

bee

sta

inx

iny

bne

! =

jsr

inx

Idy

dec

bne

Idy

=

Ida

#$93

chrout

#$0d

#$11

*

chrout

cdwn

#$aO

#$fO

*

$03ff,x

rvs1

#4

.

mini-1,x

$0439,x

mh

#0

#3

count

#$58

$fb

#4

$fc

,

tracer, x

nxtrow

(Sfb),y

tr1

•

pl40

#0

count

tr1

#$1d

msg1,y

;high byte of start

;white

;mask high nibble

;is background white

;no, leave text white

;else change color to

black (0)

•

;clear screen

;print 13 cursor downs

; print 6 rows of reverse

spaces

;print mini

KG

KH

CJ

PA

II

ON

LM

IJ

JH

PK

JO

KB

MO

DA

PO

IE

LH

CO

GG

EE

NL

PE

II

AK

DF

GK

HL

AM

AL

DB

AB

CO

FN

MP

KL

KA

IE

EJ

IC

KJ

BA

MO

OK

KF

PO

OG

EF

IP

Ml

MP

;print tracer

; print top message

5430

5440

5450

5460

5470

5480;

5490

5500

5510

5520

5530

5540;

5550 side

5560

5570

5580

5590

5600

5610

5620

5630

5640

5650;

5660

5670

5680;

5690 bott

5700

5710

5720

5730

5740;

5750

5760

5770

5780;

sta

Ida

sta

dey

bpl

Ida

sta

Ida

sta

Idx

=

Idy

Ida

sta

Idy

Ida

sta

jsr

dex

line

Idy

Ida

=

sta

Ida

dey

bne

Ida

sta

rts

$051 d,y

msg2,y

$056d,y

ms1

#$fO

$fb

U

Sfc

,'M

•

#0

#$65

($fb),y

#$27

#$67

($fb).y

pl40

side

#$27

#$7a

*

($fb),y

#$6f

bott

#$4c

($fb),y

;and bottom message

;set $fb for printing box

;left side

;right side

;addto$fbfor nextrow

;finished when x = 0

;print box bottom

;right side

; bottom

; left side

;back to basic

5790 ;•• add 40 to $fb for next screen row ••

5800 pl40

5810

5820

5830

5840

5850

5860;

5870

5880;

5890 ph

5900

5910;

5920 .end

=

clc

Ida

adc

sta

bec

inc

=

rts

*

$fb

#$28

$fb

pl1

Sfc

•

The Transactor 72 Jan. 1987: Volume 7, tauoO4

Shiloh's Raid:

1541 Relative File Bug Spray

David Shiloh

Eugene, Oregon
© 1986 by David Shiloh

First we squashed the SA VE@ bug with Phillip Slaymakers article. . .

now David Shiloh kills the dastardly relative file bug — right at its roots!

It appears that there has not previously appeared in print a

dissection of the huge relative file bug in the DOS, although the

save" @0:bug" was a major controversy for years: the reason

of this escapes me somehow, since relative files seem more

major in relation to practical uses of the 1541.. .how have the

gurus been distracted from such a serious problem with the

DOS?

Dr. Gerald Neufeld, whose Inside Commodore DOS has proved

to be indispensable, mentions the bug in his 1541 User's Guide,

correctly locating it in the "position" command and offering an

effective fix that exacts a 30%-40% access-time penalty. While

his fix reaches two of the specific DOS failures that are in

volved, his discussion does not define the conditions under

which problems occur, and his test program yields results that

establish the existence of the bug but are otherwise almost

completely misleading. Until now, this has been the most

comprehensive mention of this bug.

The Position Command

The actual write to a relative file uses the same PRINT*

command as any other write operation. With relative files,

however, the write goes to a specific record within the file: DOS

has to be positioned to the record you want to write to, and to

the spot within that record where you want to begin writing.

This is done with the "position" command, sent on the DOS

command channel; the actual information to be written to that

record is sent to the relative file following the position com

mand. The position command is sent with the syntax:

print#FN," p"chr$(96 + SA)chr$(lo)chr$(hi)chr$(po);

where "p" is the actual "position" instruction, followed by

three parameters and a final semicolon (";") to suppress the

sending of a carriage return after the command string.

The chr$(96 + SA) sends DOS the secondary address (SA) of the

relative file OPEN command, which is used by DOS to assign

internal channels and buffers for the relative file operations:

this value is OR'd with 96 ($60) to form the byte sent to the

DOS.

The chr$(lo) and chr$(hi) are one parameter, the record num

ber (nu): lo is the low byte of the record number in low-byte/

high-byte format, "hi" is the high byte, taken by

hi = int(nu/256):lo = nu-hi*256

The chr$(po) is the exact position within the relative record

where the write is to begin, and is an optional parameter.

However, unless you suppress the carriage return that follows

the command string, this parameter chr$(po) must be included:

otherwise, DOS will read the chr$(13) carriage return as the

parameter and point there.

When the position command is sent, DOS retrieves the record

sector you have addressed into its RAM buffers and sets the

relative file channel to the selected position in the record. The

same "position" command is used to position the relative file

channel for reading from the file.

The Bug

Theoretically, the "position" command will allow you to posi

tion to any character in any record. In fact, this is true only for

reading the file: for writing, it is 100% reliable except under

certain conditions in which it is 100% unreliable.

When DOS receives a position command, it checks to see

whether the desired bytes are already in one of the two buffers

allocated for records. If the necessary sector is not in the

"active" buffer, but the immediately preceding file sector is,

then DOS simply "toggles" the buffers and makes the one

containing the necessary sector active: unless it just toggled

during the last access for that reason. This convenience also

sets up the bug: the fatal sequence is as follows:

1. A write is performed that runs from one sector (A, in buffer a)

to the next (B, in buffer b). During the write, DOS toggles

from buffer a to buffer b and makes a note of the toggle.

2. A second write is performed to a record that is entirely

contained on sector B in the now-active buffer b. This write

does NOT toggle, and DOS makes a note of the no-toggle.

Now the bug is waiting.

Tho TransoCfOr 73 Jon.t987: Volume 7, tou»O4

3. A third write is directed to the sector following B; and instead

of fetching sector C, DOS toggles from buffer b to buffer a

since no toggle was performed during the last access.

Unfortunately, sector A is still in buffer a and this third write

goes to exactly the same place on sector A that it should have

gone to on sector C — and often overwrites two records, the

last characters of one and the first characters of the next. Thus

three records are in jeopardy: these two and the one that did

not get written to sector C.

The program listing below demonstrates the bug, then sprays it

with Shiloh's Raid.

The program creates a relative file of 100 records for each

record size from 42 through 88, spending about 10 minutes

with each (6 minutes compiled). Since the entire program runs

over 8 hours, I set it up to rotate among my three 1541 drives,

which are hardware set to device numbers 8, 9 and 10. The

program will rotate among any number of drives by changing

the 'nd = 1' in line 1140; the lowest drive number used can be

changed from 8 by modifying the 'sd = 8' in line 1130. If you

are using just one drive, you may want to use a cooling fan, or

run the test for fewer trials (reduce the value of 'el' in line 1120).

If you are using the program with a non-Commodore printer,

check the control codes in lines 1660, 1830 and 2010 (control-

j, chr$(10) for a line-feed) for compatibility with your interface.

Also, in line 1090-1120, "nr= 100" determines the size of the

relative file (number of records); "nt= 15" is the number of test

strings written to the file (it must be a multiple of 15); si = 41 is

the record length of the first test file; and el = 88 is the record

length of the last test file (the entire test is performed using files

with record lengths from 'si' to 'el')

Lines 1880-2050 reset the drive, short new the disk, open a

relative file, force creation of 'nr' empty records, and then write

a unique identifying string to each 8-character field of every

record, in the format

nnnn/ff*

where nnnn is a four-digit record number (with any leading

zeroes) and ff is a two-digit field number (with any leading

zero). Thus every record looks like this:

0123/01 *0123/02*0123/03*0123/04*0123/05*012

(this is 43-character record #123), with a longer final field if the

record length is not a multiple of 8.

Then the fun begins. . .three passes are made through the file.

Pass 1 selects a random field of a random record and tests to

insure that the write (which goes to the end of the record) spans

two sectors, then constructs a string to overwrite the selected

record fields with the identifying string already there. (In

literally over a million trials, we found that the initial write to

the records always works. If you're skeptical, put a 'GOSUB

1600' in line 2060 to verify the contents of all records.) This

pass then calls the position routine at line 1420, and the write is

sent to the disk. A second write is sent to the next record, which

lies entirely in the sector where the first write ended; and a

third to a record lying entirely in the next sector in the file.

Pass 1 will produce an error on every third write, corrupting

one or two records and leaving the "updated" record un

touched. It may write the same series of three more than once

during the pass: a detailed report is sent to the printer for study.

The first (identifying) field of each re-write, the number of the

sector (in file sequence) and the initial byte (2-255) of the write,

are stored in an array in the order written. On completion of

nt/3 sets, the entire file is read by the subroutine at line 1610;

and on detection of a variance, this array is sent to the printer

from line 1510 followed by a report on the corrupted record (its

number within the file, the starting sector and byte) and the

actual contents from the disk. Subsequent variances are also

printed with their identifying data: this information enables

you to see exactly what was overwritten, by which write in

which set of three; as well as what might have been restored by

a later write and any duplicated sets (duplication confuses the

error count). The printer output is formatted to produce a one-

page report on each record size (two if needed).

Shiloh's Raid

We have been able to develop a short subroutine to anticipate

the bug and apply a fix only when it is needed — less than 1 %

of the time — and otherwise use the position command as

already described, without the 30%-40% time penalty. This

subroutine is situated in lines 1380 through 1470 and includes

the usual position routine and a variation on Dr. Neufeld's

"point twice and wait" fix, which it selectively incorporates.

Line 1380 is the write entry point: if the immediately previous

call to the position routine spanned two sectors, then it identi

fies the second and jeopardized sectors arising from that call

and sets a counter to be active during the next two accesses.

Line 1390 (the read entry point since reads do not need

protection but do need to set a flag) calculates the end position

of the current record within the record sector and, if a split

record, the start position; and flags a split-write condition

when the current access spans two sectors. This is the flag

detected during the next position call in Line 1380. Line 1420

(the "index search" entry point, when a single character is to be

retrieved for a search comparison, since a single-character

retrieval cannot span two sectors) calculates the high and low

bytes of the record number; and if a jeopardy flag has been set

up by one of the two previous calls to the position routine,

checks the sector of the current access against the sectors

identified in line 1380; pointing once and setting up the wait

Th© TransQCtor 74 JCTT.W87: Volume 7, touoO4

flag when an endangered sector is being accessed. Line 1450

sends the position command and, if the wait flag is set, waits 30

jiffies before returning from Line 1470.

Pass 2 performs exactly like Pass 1 except that it calls Shiloh's

Raid at line 1380 and produces no errors.

Pass 3 makes 20*nt random selections, not writing a sequence

of records unless they occur as a result of the random selection,

and counts the number of times (1) that a flagged condition

arises and (2) that a full fix is required. Although actual relative

file use is not usually as random as this, the 1-2-3 sequence of

passes 1 and 2 is just as untypical in the opposite direction. Pass

3 does, however, give some idea of how often Shiloh's Raid

calls the delay fix, sending the count to the printer at the end of

the pass. Our results depended on the size of the file: fewer

waits with larger files, 0.08% in half a million accesses of disk-

sized (664-block) files.

The time involved in the flagging algorithm also varied with

the size of the file. Calls to Shiloh's Raid cost from 0.039

seconds per call for larger files to 0.048 seconds per call for

smaller files: smaller files more often randomly encountered

the flag conditions. Enlarge the file and change the subroutine

call for Pass 3 in line 2210, and you will get an idea of how often

C-64/1541 users encounter this bug: since it bites on 100% of

these occasions, the two-jiffy price of reliability is low.

Dr. Neufeld's fix — point a second time and wait half a second

— forces DOS to look at the active buffer, where it finds the

wrong sector, writes that (previously changed) sector back to

the disk, and then fetches the correct sector. The wait is

necessary because without it, an immediately following

PRINT* command causes an ATN interrupt that is waiting (with

a higher IRQ priority than the fetch job) to take over when the

DOS comes back from writing the old sector, before the fetch

job is put in either the job queue or the buffer's track and sector

pointers. The write is performed to the buffer, the buffer dirty

flag is set, the poisoned sector is written over the last write-to-

disk with the mis-directed information, and then the correct

sector is fetched from the disk into the buffer. .. but too late.

Although the position command is entirely reliable for reading

from the file, the bug may bite on a write that follows a read

access, making the detection algorithm necessary on read

accesses since it flags a condition about to arise. Shiloh's Raid

still allows retrieval to the screen of an 85-character record in

an average 1.17 seconds from a disk-sized file.

With Shiloh's Raid in place, the position command is 100%

reliable. Now, perhaps CBM will consider an upgrade chip,

since the 1541 outsold their wildest expectations and is still

selling: I'd prefer that to a shiny new plastic face. I need three. .

. just send them to me at PO Box 10976, Eugene OR 97440, and

I'll express my complete surprise and profound astonishment

in an appropriate fashion. . .

Shiloh's Raid: The Program

CN

JN

DH

MJ

GE

GH

IB

MK

NM

NA

DK

Bl

LL

JH

KN

MP

PD

CH

PM

EC

AP

LP

IH

EL

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

rem*

rem*

rem*

rem*

rem*

rem*

OP

AG

Fl

JJ

JL

EE

BF

MC

FM

IF

KL

DA

GD

PM

LO

AH

JC

PL

FH

IC

CP

GH

KN

MD

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

,*******************************

"Shiloh's Raid" *

this program demontrates *

the 1541 relative file bug, *

and gives an efficient way *

to work around it. *

(c)1986davidshiloh *

rem********************************

nr = 100:rem* number of records

nt =15 :rem* number of writes

si =41 :rem* start record length

el = 88 :rem* end record length

sd = 8 :rem* first drive number

nd = 1 :rem* number of drives

ed = sd + nd-1

gosub 1710: rem* initial prompts

goto 1810: rem* continue main routine

rem* subroutines follow

rem** create formatted output **

r$(ct) = left$(r$,7)+";"

r$(ct) = r$(ct) + right$(" "

+ str$(q% +1 + (l>q)),3) + ":"

r$(ct) = r$(ct) + left$(mid$(str$(q-l + p

+1 -(q-l + p<1)*254),2) + " [3 spcs]" ,4)

return

rem** create record contents **

r$ = "": n$ = right$(z$ + mid$(str$(n),2),4)

for fs = f to nf +1

fs$ = z$ + mid$(str$(fs),2)

r$ = r$ + n$ + " /" + right$(fs$,2) + " *"

next

r$ = left$(r$,l-8*(f-1))

return

rem** shiloh's raid subroutine **

rem (write relative record)

if sr then r1 = sr +1: r2 = sr + 2: r = 2

q = n*l: q% = q/254: q = q-q°/o*254

:sr = q°/o*-(l>q)

if sr then sr = q°/o*-(q-l + p<1)

rem* entry point for no-fix write

h°/o = n/pg: lo = n-h°/o*pg

rem point twice & wait if needed

if r then r = r-1: rs = rs + r: if q°/o = r1 or q% = r2

then gosub 1450: w = 162

print#1," pB" chr$(lo)chr$(h°/o)chr$(p);

if w then poke w,2: wait w,32: w = 0: c = c +1

return

■ no 75 Jan. 1987: Volume 7, touoO4

NG

MN

GG

NA

EA

LK

BP

OJ

BA

IE

KK

OJ

DG

AA

MD

IL

GH

MK

AG

MK

OA

EJ

HO

KH

NF

KG

ME

MP

OF

IG

CN

MH

HH

IH

GB

EK

HC

JC

OM

JA

AB

ID

KO

DB

CO

LH

GO

GF

1490 rem** print bad record message **

1500 if e goto 1540

1510 print#7,r$(0)

1520 for t = 1 to nt + 1: print#7,r$(t);: next

1530 print#7: x = x + nt/5 + 3

1540e = e + 1: q = (n-1)*l + 1: q°/o = q/254

:q = q-q%*254

1550 if nOsn then print#7," record" n" sector"

q°/o +1" byte" q +1: te = te +1: x = x +1

1560 sn = n +1: print#7,ck$: x = x +1 -(l>80)

1570 if ps<3 then gosub 1420: print#2,r$;: n = n-1

1580 return

1590:

1600 rem** read and check all records

1610 print: p = 1:f = 1:e = 0:te = 0

1620 for n = 1 to nr: print" reading" ;n

1630 gosub 1280: gosub 1420

1640 input#2,ck$: if ck$Or$ then gosub 1500

1650 next

1660 print#7," Q" r$(O)te" errors in" e" records,"
rs" calls," c" to wait routine"

1670 print" HPass" ;PS:":" ;te; "bad t0 " 'e'
" records" ;rs; "calls" ;c

1680 return

1690:

1700 rem** print initial prompts **

1710 print" ISffBIOutnut to (S)creen or (P)rinter ?"
1720 get a$: if a$<>" p" and a$<>" s" goto 1720

1730sp = 3:ifa$= "p" thensp = 4

1740 print" Insert a scratch disk and

press RETURN."

1750 get a$: if a$Ochr$(13) goto 1750

1760 return

1770:

1780 rem *************************

1790 rem** mainline follows: ***

1810 pg = 256: l$ = chr$(157): s = rnd(-ti): d = sd

1820 open 7,sp,7: rem printout file

1830 z$ = " 000": dim r$(nt +1)

: r$(nt + 1)= "^errors:"
1840:

1850 rem- do for all record lengths -

1860 for I = si to el

1870 kn = 254/1

1880 rem- reset drive -

1890close1:open1,d,15," ui": for t = 1 to 500: nextt

1900 b = int(nr*l/254) + 1: n = nr: nf = int(l/8): f = 1: p = 1

1910:

1920 rem- new disk & open rel file -

1930 x$ = " O:test" + str$(l): print#1," n" x$

1940close2:open2,d,2,x$+ ",l," +chr$(l): ps = 0

1950 print "| H^hiloh's Raid: Relative File
Bug Spray"

1960 print " (c) 1986 by David Shiloh"

DJ

AD

OO

CJ

PB

Cl

EJ

AF

NC

OD

AG

AN

CJ

HI

HM

AF

EH

LC

GG

JK

OA

KB

HH

II

HJ

LC

DN

IN

KA

IE

CP

ID

DA

MO

MB

OG

CA

NO

OC

1970 print "BBtest" l;l$" x" mid$(str$(nf),2)nr;b

" sectors" nt" testfiH"
1980:

1990 rem- initialize all records -

2000 for t = 0 to nt: r$(t) = "": next

2010 print#7,"(test" I;nr" records" nf"fields" b

" sectors" nt" re-writesfl"
2020 print" setting up the file. . .": gosub 1420

: print#2

2030 for n = 1 to nr: gosub 1280

2040 print" writing " left$(r$,20)". . .Q"

: gosub 1420

2050 print#2,r$;: next

2060 print

2070 rem- write random records -

2080 for ps = 1 to 3: rem three passes

2090 r$(0) = "HPass" + str$(ps) + " re-writes:"
2100 ne = 0: c = 0: rs = 0: sr = 0: print r$(0)

2110 rem- write nt records -

2120 for ct=1 tont-(ps = 3)*19*nt

2130 if ne then n = n + 1-(ne = 2)*int(kn): goto 2180

2140n = int(rnd(1)*(nr-kn) + 1):f = int(md(1)*nf+1)

:p = 8*f-7

2150 if ps = 3 goto 2190

2160 gosub 1390: if sr = 0 goto 2140

2170 sr = 0

2180 ne = ne +1: if ne>2 then ne = 0

2190 gosub 1280: print" writing " left$(r$,7);ct

2200 rem* write rec with or w/o " raid"

2210 on ps gosub 1420,1380, 1380: print#2,r$;

2220 if ps<3 then gosub 1220

2230 next ct

2240 gosub 1610:rem verify written records

2250 next ps

2260:

2270 r$= " full wait in" + str$(int(50*c/nt)/10)

2280 r$ - r$ + " %" + str$(nt*20) + " pass 3

accesses"

2290 print r$: print#7,r$

2300 rem -page printer & do next file-

2310 for t = x to 55-66*(x>54): print#7: next t

2320 d = d +1: if d>ed then d = sd: rem for

multiple drives

2330 next I

2340 close 1: close 7

2350 end

Th© Trcmsoctof 76 Jan. 1987: Volume 7, taue O4

News BRK

Submitting NEWS BRK Press Releases

If you have a press release which you would like to submit for the NEWS BRK

column, make sure that the computer or device for which the product is

intended is prominently noted. We receive hundreds of press releases for each

issue, and ones whose intended readership is not clear must unfortunately go

straight to the trash bin. It should also be mentioned here that we only print

product releases which are in some way applicable to Commodore equipment.

News of events such as computer shows should be received at least 6 months in

advance.

Transactor News

Transactor Writer's Guide Finally Finished

That's right! After 3 years of collecting, compiling, re-arranging, and generally

ensuring completeness, The T. Writer's Guide is done. We kept all those

requests in a file and have sent out about 350 so far. If you would like one,

they're free for the asking. Call or write the office in Milton, Ontario.

Free Transactor T's with Mag+Disk Subscription

For a limited time only, subscribe or renew to a combination magazine and disk

subscription, and we'll send you a free Transactor T-Shirt! You save 29% off the

magazines, 16% off the disks, and get a Transactor T worth $13.95 ($17.95 if

you order the jumbo size!) The T-Shirts come in 5 sizes (red only), with a 3-color

screen featuring Duke, our mascot, dressed in a snappy white tux, standing

behind the Transactor logo done in yellow with black "3-D" borders. The

screen was done using a special "super-opaquing" process that cost us quite a

bit more than those decals that crack and fade. Mine has been through the wash

at least 20 times now, and it still shows virtually no sign of wear due to

"washing machine punishment".

Transactor Disk Price Increase

A subscription to 6 Transactor Disks remains at $45.00. However, the price of

single order Transactor Disks has been increased from $7.95 to $8.95 each -

another good reason to take advantage of the above offer!

Refund Policy

Should any product you order be defective on receipt, return it and we'll send

you another for no additional charge. Recently we've had a few items returned

because "it's not quite what I wanted". We will credit your account (less

shipping and handling) for purchases of other Transactor products, but we ask

that you please be sure you need things like G-Links or RAM boards since we

can't refund your money. While we're on the subject, although we've never had

a subscriber ask for one, there are no refunds on subscriptions.

Oh No!

Some Transactor readers have noticed a problem with the last issue, i.e.

duplicate pages. The real problem, however, is that the duplicates caused other

pages to go missing. The following is an excerpt from a letter received from our

printer, Maclean-Hunter.

We have investigated the problem and found that a press problem resulted

in the printing ofone 16 page signature as two 8 page signatures for part of

the run. A duplicate signature must have been placed in the wrong pocket

on the binder. Each pocket holds 200 to 300 sheets, and we hope that

would limit the extent ofthe problem. This is backed up by the fact that we

did not run short of any pages at the end of the pressing.

Since then we have received several calls and letters concerning this unfortu

nate mishap, and new copies have been sent out. It's still possible that more

exist and we will replace them. Simply return the bad copy, and another will be

sent to you at no charge.

Transactor Mail Order News

Our mail-order department is expanding, but our mail-order card isn't. Seems

we just can't find any more room to put more text without making it so small

that you can't read it. So, if you're using the card to order, we suggest you pull it

out and cross-reference with the list below for more details.

■ Volksmodem 12, w/cable, and C1N Intro-Pack, $299.00 Cdn., $169 U.S.

The Volksmodem 12 is now available from Transactor Publishing, and check

out the price! This is an introductory offer ONLY. The price goes up to at or near

suggested retail by next issue! Not only do you get the Volksmodem 12 at this

incredible price, but you get the cable at no extra charge (the C64 cable goes

directly onto the User Port, and the RS232 cable is for any standard RS232 DB-

25 female connector) Plus you'll receive a free CompuServe Intro-Pak which

contains a User ID, a Password, and $15.00 of connect time! The Volksmodem

12 will work at 300 or 1200 baud, and is "Hayes compatible" so it will work

with virtually any terminal software because the commands are controlled by

you from the keyboard - just type "AT" (for ATtention) and follow with any of

several easy-to-remember commands - no special POKing or elaborate dialing

routines necessary! (I've been using a Hayes for almost 3 years, and my Volks

for over a year -1 love them both! - KJH) It comes with (get this) a 5 year

manufacturer's warranty on parts and labour! The modem is shipped insured

via UPS at no extra charge! But it won't last long so order soon.

■ Intelligent I/O Interface Cards

■ BH100 I/O Interface Card w/documentation $129 U.S., $199 Cdn

■ BH100-AD8 8-Channel A to D Conversion Module $45 U.S., $69 Cdn

■ BH100 Beginners Course $159 U.S., $239 Cdn

■ BH100-S Security System $25 U.S., $39 Cdn

These products from Intelligent I/O will make great Christmas gifts! And if

you've been wondering what to do with that VIC 20 that doesn't get much

attention anymore, they're perfect! If you've ever wanted to start doing some

real world interfacing, real easy, and inexpensively, then these items are ideal.

The boards they sent us for evaluation are currently watching for floods in my

basement (see editorial). Too bad I didn't think of it before the flood - it only

took about an hour using spare parts I had lying around - no resistors, no

capacitors, just two strips of metal, a piece of styrofoam, a brick, and about 20

feet of wire that was also collecting dust. Once I get time, 1 intend to make it do

some more surveillance since only one channel is currently in use. And the

program to do it? A quick and messy 5 lines! Since the boards are memory

mapped through the cartridge port, a PEEK is all you need! The 22 page manual

is clear and concise. All products come with a 90 day manufacturer's warranty.

Shipped insured via UPS at no extra charge. See the News BRK item for more

information.

■ Transactor T-Shirts, $13.95 and $17.95

As mentioned earlier, they come in Small, Medium, Large, Extra Large, and

Jumbo. They're 13.95 each, $17.95 for the Jumbo. The Jumbo makes a good

night-shirt/beach-top - it's BIG. I'm 6 foot tall, and weigh in at a slim 150

pounds - the Small fits me tight, but that's how 1 like them. If you don't, we

suggest you order them 1 size over what you usally buy. The design is screened

using a "super-opaquing" process so they wear much longer than your

ordinary screens and iron-ons.

The Transactor 77 Jan. 1987: Volume 7, toueO4

■ The Transactor Book of Bits and Pieces *1, $14.95

Not counting the Table of Contents, the Index, and title pages, it's 246 pages of

Bits and Pieces from issues of The Transactor, Volumes 4 through 6. Even if you

have all those issues, it makes a handy reference - no more flipping through

magazines for that one bit that you just know is somewhere... Also, each item

is forward/reverse referenced. Occassionally the items in the Bits column

appeared as updates to previous bits. Bits that were similar in nature are also

cross-referenced. And the index makes it even easier to find those quick facts

that eliminate a lot of wheel re-inventing.

■ The Tr@ns@ctor 1541 ROM Upgrades, $59.95

You can burn your own using the ROM dump file on Transactor Disk #13, or

you can get a set from us. There are 2 ROMs per set, and they fix not only the

SAVE® bug, but a number of other bugs too (as described in P.A. Slaymaker's

article, Vol 7, Issue 02). Remember, if SAVE® is about to fail on you, then

Scratch and Save may just clobber you too. This hasn't been proven 100%, but

these ROMs will eliminate any possibilities short of deliberately causing them

(ie. allocating or opening direct access buffers before the Save).

■ The Micro Sleuth: C64/1541 Test Cartridge, $79.95 US., $99.95 Cdn.

This cartridge, designed by Brian Steele (a service technician for several

schools in southern Ontario), will test the RAM of a C64 even if the machine is

too sick to run a program! The cartridge takes complete control of the machine.

It tests all RAM in one mode, all ROM in another mode, and puts up a menu

with the following choices:

1) Check drive speed

2) Check drive alignment

3) 1541 Serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

A second board, that plugs onto the User Port, contains 8 LEDs that lets you

zero in on the faulty chip. Complete with manual. Note: This is an introductory

offer - prices may go up by next issue.

■ Inner Space Anthology $14.95

This is our ever popular Complete Commodore Inner Space Anthology. Even

after a year and a half, we still get inquiries about its contents. Briefly, The

Anthology is a reference book - it has no "reading" material (ie. "paragraphs").

In 122 compact pages, there are memory maps for 5 CBM computers, 3 Disk

Drives, and maps of COMAL; summaries of BASIC commands, Assembler and

MLM commands, and Wordprocessor and Spreadsheet commands. Machine

Language codes and modes are summarized, as well as entry points to ROM

routines. There are sections on Music, Graphics, Network and BBS phone

numbers, Computer Clubs, Hardware, unit-to-unit conversions, plus much

more... about 2.5 million characters total!

■ The Toolbox (PAL and POWER) $79.95

PAL and POWER from Pro-Line are two of the most popular programs for the

Commodore 64. PAL is an easy-to-use assembler (most assembler listings in

The Transactor are in PAL format), and POWER is a programmer's aid package

that adds editing features and useful commands to the programming environ

ment. They come with two nice manuals, and our price is $50 less than

suggested retail!

■ AX1000 Amiga 1 MEG RAM Box $729.00 (+ $100 S&H) U.S.,

$1035.00 (+$25 S&H) Cdn

■ AX2000 Amiga 2 MEG RAM Box $899.00 (+$100 S&H) U.S.,

$1276.00 (+$25 S&H) Cdn

The AX2000 adds 2 Megabytes of "fast" RAM to the Amiga, allowing more tasks

to run in the system at once, or for use as a fast RAM-drive. The unit plugs into

the expansion connector on the side of the Amiga and duplicates the connector

for other devices to plug into. Up to two RAM boards may be plugged in

together (limited by the Amiga'a power supply), adding 4 Megabytes. The box

has "auto-config", so with Kickstart 1.2 the RAM will automatically be added to

the system when it is booted. If you are using Kickstart 1.0 or 1.1 (no auto-

config), you can use the program included with the AX2000 to add the memory

to the system, and change your startup-sequence to automatically add the

memory on power-up. Standard expansion bus architecture was used in the

design of the AX2000, ensuring compatability with all peripherals and operat

ing system releases. The unobtrusive steel box is the same height and colour as

the Amiga, and snugs up to the side without taking up much extra space. The

unit is built tough and comes with a 1 year manufacturer warranty.

This seems to be the most highly-recommended Amiga RAM board, and the

first one to actually be available, so we're selling it here at The Transactor. You

can order the AX2000 or the 1-Meg AX1000 from the subscription form in this

issue. Shipping and Handling to the U.S.A. is via courrier and includes all

customs clearance, or you can opt to clear shipments yourself and have it

shipped "collect".

■ Pocket Writer C64 $39.95 US, $49.95 Cdn

■ Pocket Planner C64 $39.95 US, $49.95 Cdn

■ Pocket Filer C64 $39.95 US, $49.95 Cdn

■ Pocket Writer Cl 28 $49.95 US, $69.95 Cdn

■ Pocket Planner C128 $49.95 US, $69.95 Cdn

■ Pocket Filer C128 $49.95 US, $69.95 Cdn

■ Pocket Dictionary $14.95 US, $19.95 Cdn

In our opinion, the Pocket packages from Digital Solutions are the best you can

get on their own - the fact that they work with each other makes them even

better. Planner and Filer data can be loaded into the Writer, Writer text can be

sent to the Filer, and etcetera. The Dictionary spell checker works with both

versions of the Writer.

■ The GLINK C64 to IEEE Interface $49.95

The GLINK plugs into the cartridge port, but doesn't extend the port for more

cartridges (for that you'll need a "motherboard" of some kind). The other side of

the GLINK is an IEEE card-edge suitable for a PET-IEEE cable. From there, any

IEEE device can be accessed including disk drives, modems, printers, etc. The

GLINK is "transparent" - that means it won't interfere with programs, except

those that rely on the serial routines which it replaces (ie. programs with built-

in "fastloaders" for the 1541 won't like the presence of the GLINK). It has no

manual (aside from one page of installation instructions) because it alters

nothing and leaves everything unchanged! An on-board switch allows you to

select Serial or IEEE. GLINK works with both the C64 and the C128 in 64 mode,

but not on the VIC 20.

■ The TransBASIC Disk $9.95

This is the complete collection of every TransBASIC module ever published up

to Volume 7, Issue 01. There are over 120 commands at your disposal. You pick

the ones you want to use, and in any combination! It's so simple that a

summary of instructions fits right on the disk label. The manual describes each

of the commands, plus how to write your own commands.

■ Super Kit 1541 $29.95 US, $39.95 Cdn

Super Kit is, quite simply, the best disk file utility there is. No more losing those

valuable copy-protected originals (like what's happened to me twice too many

times). So far we've shipped over 600 Super Kits and orders continue to pour in.

■ Gnome Speed Compiler $59.95 US, $69.95 Cdn

This compiler is for BASIC 7.0 on the Commodore 128.

■ Gnome Kit Utility $39.95 US, $49.95 Cdn

Gnome Kit is a Commodore 128 utility with enhancements for the BASIC editor

(like Trace, Find, Renumber, Delete, Auto, etc.) as well as enhanced monitor

commands, and floppy disk monitor functions.

Transactor Disks, Transactor Back Issues, and Microfiche

All issues of The Transactor from Volume 4 Issue 01 forward are now available

on microfiche. According to Computrex, our fiche manufacturer, the strips are

the "popular 98 page size", so they should be compatible with every fiche

The Transactor 78 Jon. 1987: Volume 7, taueO4

reader. Some issue are ONLY available on microfiche - these are marked "MF

only". The other issues are available in both paper and fiche. Don't check both

boxes for these unless you want both the paper version AND the microfiche

slice for the same issue.

To keep things simple, the price of Transactor Microfiche is the same as

magazines, with one exception. A single back issue will be $4.50 and subscrip

tions are $ 15.00. The exception? A complete set of 18 (Volumes 4,5, and 6) will

cost just $39.95!

This list also shows the "themes" of each issue. "Theme issues" didn't start

until Volume 5, Issue 01.

I Vol. 4, Issue 01 (■ Disk 1) ■ Vol. 4, Issue 04 ■

I Vol. 4, Issue 02 (■ Disk 1) ■ Vol. 4, Issue 05 •

I Vol. 4, Issue 03 (■ Disk 1) I Vol. 4, Issue 06 ■

I Vol. 5, Issue 01 - Sound and Graphics

I Vol. 5, Issue 02 - Transition to Machine Language

I Vol. 5, Issue 03 - Piracy and Protection - MF only

I Vol. 5, Issue 04 - Business & Education - MF only

I Vol. 5, Issue 05 - Hardware & Peripherals

I Vol. 5, Issue 06 - Aids & Utilities

I Vol. 6, Issue 01 - More Aids & Utilities

I Vol. 6, Issue 02 - Networking & Communications

I Vol. 6, Issue 03 - The Languages

I Vol. 6, Issue 04 - Implementing The Sciences

I Vol. 6, Issue 05 - Hardware & Software Interfacing

I Vol. 6, Issue 06 - Real Life Applications

I Vol. 7, Issue 01 - ROM / Kernel Routines

I Vol. 7, Issue 02 - Games From The Inside Out

I Vol. 7, Issue 03 - Programming The Chips

I Vol. 7, Issue 04 - Gizmos and Gadgets

MFonly

MFonly

MFonly

Disk 1)

Disk 1)

Disk 1)

Disk 2)

(■ Disk 2)

(■ Disk 2)

(■ Disk 3)

(I Disk 4)

(■ Disk 5)

(■ Disk 6)

(■ Disk 7)

(■ Disk 8)

(■ Disk 9)

(■Disk 10)

(■Disk 11)

(■ Disk 12)

(■ Disk 13)

(■ Disk 14)

(■Disk 15)

Notes: The Transactor Disk *1 contains all program from Volume 4, and Disk

*2 contains all programs from Volume 5, Issues 1-3. Afterwards there is a

separate disk for each issue. Disk 8 from The Languages Issue contains COMAL

0.14, a soft-loaded, slightly scaled down version of the COMAL 2.0 cartridge.

And Volume 6, Issue 05 published the directories for Transactor Disks 1 to 9.

Sending Cheques For Transactor Products

If you wish to send a cheque with your subscription/order form, or you wish to

conceal your credit card number, you can use an envelope and tape it to the

back of the subscription card. The post office has threatened to charge us extra

for sloppy business reply mail so please try to use an envelope that is smaller

than the card. Can't find one? Just trim the end off the envelope and tape along

that edge when fixing it to the card.

The Transactor Communications Disk

The "Transactor Communications Disk" is still NOT ready. Our new Compu

Serve duties have forced some projects to the back burner. However, our

experience with CompuServe will no doubt help us make this item even better

when it's done. We intend to make this "the complete telecomputing package",

but please stand by... when it's ready, you'll hear about it.

Industry News

MARCA 1986

The first New England "All-Commodore" Computer Fair will be held Saturday,

November 15,1986 at the Best Western Hotel in Marlboro, Massachusetts (just

outside Boston at the intersection of Interstate 495 and Route 20), from 10 a.m.

to 8 p.m.

The event is being sponsored by the New England member groups of MARCA

(Mid-Atlantic Region Commodore Association). MARCA is the largest associa

tion of Commodore User Groups in the country.

The Fair will feature vendor exhibits, seminars for beginners through advanced

users, and information resource tables. A large collection of public domain

software will be available for purchase. Special emphasis will be places on

telecommunications, computer graphics, music, and home utility uses for the

Commodore machines. Instructional seminars will be scheduled throughout

the day. One of the highlights will be a concert of computer-assisted music by

Al Hospers.

This show will be of interest to all C-64, C-128 and Amiga users. For additional

information, contact:

Frank Ordway, President of MARCA

6 Flagg Road

Marlboro, Massachusetts 01752

(617)485-4677

Interfacing via the Cartridge Port

Intelligent I/O, Inc. has recently announced the release of its new version of the

BH100 General Purpose Input/Output Interface Card for the Commodore 64

and VIC 20 (also the Apple 11+ and Apple He). This card provides a total of 32

digital input lines, and 32 digital and buffered output lines. Since the ports are

memory-mapped, data is sent and retrieved by single POKE and PEEK

commands (or their ML equivalents). The BH100 User Manual includes

complete instructions, sample programs (including simple BASIC subroutines

for all I/O) and diagrams of typical hookups. Knowledge of advanced program

ming techniques is not needed.

A Complete Beginner's I/O Interface Course is designed for beginners, and

includes the BH100 I/O Interface, a Beginner's Module, and an easy-to-read,

illustrated Course Manual. The Beginner's Module is a circuit board that

"piggy-backs" onto the top of the BH100 I/O Interface and has 8 LEDs, 8

switches and a relay for general switching applications. The Course Manual and

Beginner's Module are also available separately.

For those who want to use their computer for a practical application, Intelligent

I/O offers the BH100-S Security System Module, which plugs into the BH1001/

O Interface Card and includes everything needed for an eight "zone" advanced

security system, including a 120 dB siren. Complete instructions, switches and

software round out the package. Any normally closed sensor can optionally be

used as a switch (for fire, motion, heat sensors, etc.).

Also available are two models of an Analog-to-Digital Conversion Module (1

channel and 8 channel). These 8-bit A/D converters plug into one of the input

ports on the BH100 I/O Interface and automatically digitize an analog input

signal (0-5VDC) and read it into memory.

Possible BH100 applications include controlling lights, appliances, relays,

motors, heating/cooling systems and other electrical devices; laboratory data

acquisition, automated testing/experimentation and security systems; moni

toring temperature, pressure, light intensity, humidity, moisture, smoke, heat

and fluid levels.

Prices: The BH 100 General Purpose Input/Output Interface Card, $ 129.00; The

Complete Beginner's I/O Interface Course, $159.00; the Course Manual alone,

$15.00; The BH100-S Security System Module, $25.00; the Analog-to-Digital

Conversion Module, $30.00 (1 channel) and $45.00 (8 channels); VIC 20

adapter, $10.00. All prices are in U.S. dollars. A free brochure is available by

calling (315) 265-6350, or write to:

Intelligent I/O, Inc.

P.O. Box 70

Potsdam, NY

13676 (315)265-6350

79 Jan. 1987: Volume 7, ls«uoO4

Extending BASIC for Telecommunicating Do-it-yourself Amiga Calculator

SoftTools of Montreal has announced the release of its first product, The Boss, a

BASIC extension for the Commodore 64 that adds over 40 new commands and

functions to BASIC V2. Most of the added commands are designed to facilitate

data communications programming.

Originally designed to provide an electronic bulletin board system with

machine language speed, The Boss includes commands to perform input/

output operations with a modem, and also provides disk support. Among the

former group are commands such as SEND, GETLN, HANGUP, CARRIER and

DIAL, with which you can send lines to a modem, get user inputs of specified

lengths from the other end, turn a modem on or off, check for carrier, and dial a

phone number on 1650-compatible or Mitey Mo modems. The Boss handles

all ASCII translation, and also provides for accurate time-keeping by using the

built-in system timers. Among the disk commands are DEVICE, SEARCH and

DISKIN*, to set the disk device number, search the directory for a certain type

of file, and get lines from a disk file including commas, colons and quotation

marks.

Sample programs on the disk include a small terminal program, a bulletin

board system and a disk management system, all written in BASIC using The

Boss. The Boss is documented with a reference guide that explains each

keyword in detail. The Boss may be ordered directly from SoftTools for $35.00,

which includes postage and handling. Address all inquiries and orders to:

SoftTools

Snowdon P.O. Box 1205

Montreal, Quebec

H3X3Y3 (514)793-3046

Digital Sound, Digital Drums

Micro Arts Products is now shipping two new digital sound sampling products

for the Commodore 64: the SAMPLER-64 digital sound sampler/editor and the

COM-DRUM sampled digital drum software.

The SAMPLER-64 lets you do things like record your dog's bark, then mix in

your own voice, add a little echo or reverb, mix the sound further, then play

your new sound over two octaves from the computer's keyboard in any melody

or non-melody you'd like. The melodies can be recorded into the sequencer

and stored on disk along with your sound samples.

The SAMPLER-64 comes with a small hardware unit that plugs into the user

port of the Commodore 64 (the SID chip is not used), a microphone (sounds can

also be recorded from line level signals), a cable, and menu-driven software on

disk.

The COM-DRUM software turns the SAMPLER-64 hardware unit and the

Commodore 64 into an eight piece drum kit using pre-recorded drum sound

samples supplied on the COM-DRUM disk. The COM-DRUM has two sequenc

ers: a real-time sequencer for sounding out a rhythm on the computer

keyboard and storing it to disk, and a step-time sequencer for extensive on

screen composition and editing of a rhythm track. The COM-DRUM allows for

any 3 percussive samples to be sounded simultaneously. Included with the

software are 3 different 8-piece drum kit samples: rock, latin, and what the

manufacturer describes as "something that sounds like a Tupperware party".

The SAMPLER-64 is sold by mail for $89.95 US plus $3.50 shipping and

handling. The COM-DRUM sells for $14.95 when purchased with the

SAMPLER-64 (Philadelphia residents must add 6 per cent sales tax). Visa and

Mastercard are accepted. Contact:

Micro Arts Products

P.O. Box 2522

Philadelphia, PA

19147 (215)336-1199.

If you've always wanted to own your own calculator but went and blew the

money on an Amiga instead, you might want to check out Quicksilver

Software's debut product: Calculator Construction Kit, designed to let you

replace the Workbench calculator with the customized number-cruncher of

your dreams. The program lets you build your own calculator by dragging

buttons into place to suit your taste. More than 80 functions are available to

choose from. A new and different calculator can be built at any time.

Among the options are different number bases (binary, octal, hex and decimal)

and a print capability for hardcopy printouts. Quicksilver says their product will

serve special needs such as financial and surveying calculations, and reverse

Polish notation.

The price of the non-protected program is $49.95 (US) plus $3.00 handling,

plus $4.00 for C.O.D. Call (712) 258-2018 or write to:

Quicksilver Software

418 West 7th Street

Sioux City, Iowa 51103

Interrogate, Modify and Trace

I/M (Interrogator/Modifier) is a new Commodore 64 product from Innovative

Software that shares some of the main features of a regular machine language

monitor, such as a disassembler and hex/ASCII dumps.

One feature that sets it apart is its Hunt command. In an ML monitor, a Hunt

lets you search for a string of hex bytes or ASCII characters. I/M lets you search

instead for a 6502 opcode (entered as a mnemonic) or an addressing mode.

This approach avoids the ambiguity between opcode and operand bytes that in

a standard monitor can result in you finding many false matches for a particular

Hunt.

The Modifier portion of the program lets you replace old addresses and/or

opcodes with new ones. This is useful for patching machine code for which you

do not have the source.

The package also includes three separate tracers (command, floating and single

step), each of which comes in multiple version for different locations in

memory. These provide an incorruptible address display in the upper left

corner of the screen. Source code for the tracers, along with a few other

auxiliary utilities, is included on the disk.

The price for I/M is $24.00 (US), plus $2.00 postage and handling. Make your

check or money order payable to:

Innovative Software

530 North 9th Street

Reading, PA, 19604 (216)372-5438

BusMate from ICS

San Jose, CA — ICS Electronics Corporation has introduced BusMate, a plug-

on addition that turns any personal computer with an RS-232 serial port into a

full-featured IEEE 488 Bus controller capable of operating up to 14 indepen-

dant devices. (The IEEE 488 is a bus standard used extensively for scientific

instruments; several Commodore floppy disk drives also use IEEE 488 com

munications.) BusMate is self-contained and self-powered, and provides full

control of instruments connected to the 488 bus without taking any control of

the personal computer; it is operated completely through the serial port.

Price is $695 (U.S.) in unit quantities and delivery is from stock to 45 days. Rack

mounting kits and various lengths and type of interconnection cables are

available as options. For more information, contact:

ICS Electronics Corporation

2185 Old Oakland Road

San Jose, CA 95131

The Trarwoctof 8O Jan. 1987: Volume 7, Issue O4

Computoons

CORNPRED
SLIOERUUE
fAAKKEf
IN

81 Jan. 1987: Volume 7, Ittue O4

Hacker Gnome's wizardry that will not only transform your p

grams into super fast and compact Gnome Code, but will also cu

■r programming time in half (leaving you time for more gi

OMPILER

Compile virtually any BASIC program

into super fast, compact Pseudo-Code.

Simple to use. Easy error correction and

powerful directives for compacting code,

optimizing speed and producing indis-

pensible programming testing and aids.

Whether developing games or serious

applications for your own use—or to

sell—no gnome should be without this

compiler.

C-128 GNOME SPEED $59.95 U.S.

KIRACORP.

The programming tool kit is a comprehen

sive set of utilities that provides an un

matched range of features for BASIC 7.0,

2.0 and Machine Language programming

and Direct Access DOS manipulation.

Full Merge, Find, Selective Line Renum

bering, Extended DOS Wedge, Extended

Machine Language Monitor and Disk

Editor are just some of the features in

this transparent programmer's utility.

Another must for serious gnomes.

C-64, C-128 GNOME KIT $39.95 U.S.

KIRACORP.

NO COPY PROTECTION

U.S Mail Orders:

BRIWALL

P.O. Box 129-Dept. 87

Kutztown, PA 19530

(215) 683-5433 (24 hr. service)

Canadian Orders:

THE TRANSACTOR

(416) 878-8438

See Order Card

Dealer Inquiries:

Micro-Pace, Inc.

(217) 356-1884

T 7 BY MARTY FRANZ & JOE PETER
V

SINGLE/DUAL NORMAL COPIER
Copies a disk with no errors in 32.68 seconds,

dual version has graphics & music.

SINGLE/DUAL NIBBLE COPIER
Nibble Copies a disk in 34.92 seconds. Dual

version has graphics & music.

SINGLE/DUAL FILE COPIER
7 times normal DOS speed. Includes multi-copy,

multi-scratch, view/edit BAM, & NEW SUPER

DOS MODE. In Super DOS Mode, it transfers

7-15 times normal speed, copies 150 blocks in 23

seconds.

TRACK & SECTOR EDITOR
Full editing of t&s in hex, dec, ascii, bin. Includes

monitor/disassembler with printout commands.

GCR EDITOR
Yes disk fans, a full blown sector by sector or

track by track GCR Editor. Includes TRUE Bit

Density/Track Scan.

3 SUPER DOS FAST LOADERS
Over 15 times normal DOS speed. Super DOS

Files are still Commodore DOS compatible.

Imagine loading 150 blocks in 10 seconds.

SUPER NIBBLER/

SUPER DISK SURGEON
Quite frankly, these will provide you the user with

the backup you need! Even copies itself.

329.95 u .s.

PLUS $3.00 SHIPPING/HANDLING CHARGE - $5.00 C.O.D. CHARGE

SUPER KIT/1541 is for archival

jse only! We do not condone

nor encourage piracy of any kind.

401 LAKE AIR DR., SUITE D • WACO, TEXAS 76710

ORDERS (817) 757-4031 • TECH (817) 751-0200

MASTERCARD & VISA ACCEPTED

See center page for

mail order card.

-A V

THE WORLD OF

COMMODORE

