

If you want to get the most out of your Commodore 128 or 64,

we have goods news for you. The Pocket 128 and 64 Series

of Software both offer you serious, professional quality

software packages that are easy to use and inexpensive.

Pocket 128 or 64 Software is so easy, you're ready to start

using it as soon as it's loaded into memory. Even if you've

never been in front of a computer before, you'll be up and

running in thirty minutes. In fact, you probably won't ever need

the reference guide ... 'help' is available at the touch of a key.

That's how easy.

serious
Pocket 128 or 64 packages have all the power you're ever

likely to need. They have all of the features you'd expect in

top-of-the-line software, and then some. The good news is that

Pocket 128 or 64 Software Packages are priced way down

there ... where you can afford them.

Fast, powerful, easy to learn and inexpensive.

Say, that is good news!

All for one and one for all

Pocket 128 or 64 Software Packages offer you something

else you might not expect... integration. You can combine the

output of Pocket Writer, Pocket Filer and Pocket Planner

into one piece of work. You can create a finished document

with graphs, then send individually addressed copies.

The bottom line is Solutions

The word solutions is our middle name and bottom line. When

you purchase Pocket 128 or 64 software, you can count on

it to solve your problems.

'IfA 30 Wettheim Court Unil2
ff/ Richmond Hill Ontario
/ft Canada UB 1 B9
'f/l telephone (416) 731-8775

Pocket Writer 128 or 64
Word Processing

What you see is what you get

With Pocket Writer 128 or 64, there's no more guessing

what text will look like when you print it. What you see is what
you get... on screen and in print. There are no fancy codes to
memorize, no broken words at the end of a line.

Easy to learn and sophisticated. Pocket Writer 128 or 64
offers standard word processing features plus...

on-screen formatting and
wordwrap

on-screen boldface,
underlines and italics

no complicated format
commands to clutter text

on-screen help at all levels

spelling-checker lets you add
words to your dictionary

40 or 80 columns on screen

files compatible with
PaperClip™ or other word
processors

Pocket Planner 128 or 64
Computerized Spreadsheet

Make fast work of budgeting and

forecasting

Pocket Planner 128 or 64 software lets you make fast work
of all your bookkeeping chores. Cheque books, household
accounts, business forecasting and bookkeeping are just some
of the jobs that Pocket Planner 128 or 64 packages make
easier. You can even create four different kinds of graphs.

Accurate, sophisticated and easy to use. Pocket Planner
128 or 64 offers standard spreadsheet features plus...

• accuracy up to 16 digits,
about twice as many as most

spreadsheets for the

Commodore 128 or 64

• sideways printing available on

dot matrix printers, for
oversized spreadsheets that
won't fit on standard paper

• on-screen help at all levels

• compatible with VisiCalc™ files

• 80 column on-screen option
for the Commodore 64 in
addition to the standard 40

columns

• graphics include bar,
stacked bar, line and pie
graphs that can also be used

in word processing files

• smart evaluation of

formulae for accurate
complex matrices

Pocket Filer 128 or 64
Database Manager

Database management made

With Pocket Filer 128 or 64, you can organize mailing lists,
addresses, inventories, telephone numbers, recipes and other
information in an easily accessible form. Use it with Pocket
Writer 128 or 64 (or other word processors) to construct
individually customized form letters.

Pocket Filer 128 or 64 packages are fast, sophisticated and
truly easy to use. In addition to standard database features
they offer ...

:MPaperC//p (S o registered trademark

o< Sailer,es Included

• use up to 255 fields per record
(2,000 characters per record)

• sorts by up to 9 criteria, can
save 9 different sorts

• print labels in multiple
columns

• flexible report formatting
including headers ancf
footers

• optional password protection
including limited access
viewing or updating

• on-screen help at all levels

• print from any record to any
record

• arithmetic and trigonometric
functions in reports using up
to 16 digit accuracy

fWis/ca/c 'S a registe

Soflwore Arts

Solutions!

MAILORDERS:

Transactor Publishing Inc.

5OO Steeles Avenue

Milton, Ontario, L9T 3P7

1-416-878-8438

Or use order card at center.

Only The
Name Is New

The professional,

full-featured software

line from Digital Solutions

is now called Pocket

Software.

Pocket Writer 128/64.

Pocket Filer 128/64.

Pocket Planner 128/64.

The names are new, but

this super software is still

the same.

From now on, when you

hear the word Pocket, it

means software that's

full-featured, handy and

easy to use.

Pocket Software at pric

lat won't pick your

socket.

PW 128/64 Dictionary

also available at $14.95 (U

8 or 64

You want the very best software you can find for your

Commodore 128 or 64, right?

You want integrated software — word processing,

database and spreadsheet applications — at a sensible

price. But, you also want top-of-the-line features.

Well, our Pocket 128/64 software goes one better.

Serious software

that's simple to use.

n imagine... and then some. And Pocket 128/64 is so

easy to use, you won't even need the reference guide.

On-screen and in memory instructions will have you up

and running in less than 30 minutes, even if you've never

used a computer before.

The price? It's as low as you'd expect for a line of

software called 'Pocket'. Suggested Retail Price for the 64

software is $39.95 (U.S.) and $49.95 (U.S.) for the 128.

Any of the 64 products may be upgraded to their 128

version for $15.00 (U.S.) + $3.00 shipping and

handling. (Available to registered owners from Digital

Solutions Inc. only.)

Pocket Writer 128 or 64, Pocket Planner 128 or 64 and

Pocket Filer 128 or 64... Solutions at sensible prices

from Digital Solutions Inc.

International & Distributor enquiries to:

"* Digital

! Solutions

30 Wertheim Court, Unit 2

Richmond Hill, Ontario

Canada L4B 1B9
telephone (416) 731-8775

Pocket Writer 128 and 64 are now available in French.

JOIN TPUG
The largest Commodore Users Group

Benefit from:

Access to library of public domain software

for C-64, VIC 20 and PET/CBM

Magazine (10 per year) with advice from

Jim Butterfield

Brad Bjomdahl

Liz Deal

TPUG yearly memberships:

Regular member (attends meetings)

Student member (full-time, attends meetings)

Associate (Canada)

Associate (U.S.A.)

Associate (Overseas — sea mail)

Associate (Overseas — air mail)

— $35.00 Cdn.

— $25.00 Cdn.

— $25.00 Cdn.

— $25.00 U.S.

— $30.00 Cdn.

-$35.00 U.S.

— $45.00 U.S.

FOR FURTHER INFORMATION:

Send $1.00 for an information catalogue

(tell us which machine you use!)

To: TPUG INC.

DEPT. A,

101 DUNCAN MILL RD., SUITE G7

DON MILLS, ONTARIO

CANADA M3B1Z3

COMAL INFO
if you have COMAL—

we have information.

BOOKS:
COMAL From A TO Z, $6.95

COMAL Workbook, $6.95
Commodore 64 Graphics With COMAL, $14.95

COMAL Handbook, $18.95
Beginning COMAL, $22.95
Structured Programming With COMAL, $26.95
Foundations with comal, $19.95
Cartridge Graphics and Sound, $9.95
Captain COMAL Gets Organized, $19.95

Graphics Primer, $19.95

COMAL 2.0 Packages, $19.95

Library of Functions and Procedures, $19.95

OTHER:
comal today subscription, 6 issues, $14.95

COMAL 0.14, Cheatsheet Keyboard Overlay, $3.95
COMAL Starter Kit (3 disks, 1 book), $29.95

19 Different COMAL Disks only $94.05

Deluxe COMAL cartridge Package, $128.95

(includes 2 books, 2 disks, and cartridge)

ORDER NOW:
Call TOLL-FREE: 1-800-356-5324 ext 1307 visa or MasterCard

ORDERS only. Questions and information must call our

info Line: 608-222-4432. All orders prepaid only—no C.O.D.

Add $2 per book shipping. Send a SASE for FREE Info
Package or send check or money order in US Dollars to:

COMAL USERS CROUP, U.S.A., LIMITED
5501 Groveland Ten, Madison, wi 53716

TRADEMARKS; Commodore 64 of Commodore Electronics Ltd.;

Captain comal of comal users croup, U.S.A., Ltd,

From The Guru Himself!

The 1986 Commodore Reference Diary

A 65 page reference section that includes:

• All hardware specifications including

theCi28andPCi0/20

• Useful memory locations

• Useful programs

• SuperCharts

• BASIC and machine language hints

• Hexadecimal conversion

• Sound, video

• and more

The full calendar and date book includes:

• National holidays in ten countries

• Personal notes

• 1987 forward planner

• Name, address, telephone section

Just $5.95
(plus 50<C postage and handling)

Order Your Copy Today!

Canada

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T3P7

USA

The Transactor

277 Linwood Avenue

Buffalo, New York

14209

_ Dealer Orders: , _
Canada USA

Norland Agencies MicroPace Distributing

251 Nipissing Road 1510 North Neil Street

Milton, Ontario Champaign, Illinois

L9T4T7 61820

(416) 876 - 4774 1 800 362-9653

Volume 7

Issue 03
Circulation 64,000

IIII

O

IIII

Hill II

Programming The Chips

Start Address Editorial 3

News BRK 77
Transactor Writer's Guide Finally Finished

Subscription Timing

Free Transactor T's with Mag+Disk Subscription

Transactor Disk Price Increase

Refund Policy

Allow 2 to 6 Weeks

Transactor Mail Order News

Transactor Disks, Back Issues, and Microfiche

Sending Cheques For Transactor Products

The Transactor Communications Disk

CompuServe and Quantum Link

The Commodore Show, September 20 and 21, 1986

Twin Cities 128: The Commodore 128 Journal

iNet 2000

High-Powered FREE Terminal Program for the C64

Hardware Interconnection Products

Aegis Ships CAD Program for the Amiga

TransBloopers
Amiga Startup-Sequence

Eliminating SAVE®

Improving The SYS Command

SYMASS3.1 Fixes

C128 Memory Maps

14

Bits and Pieces 6
C-128 Program Entry Tips

Stop Amiga Disk-Death

Easy PAL to CBM Source Conversion

Micro STP

Border Cross

Disk Protection

Some C-128 Tips

Disabling The C-128 RUN Key

C-64 Upper/Lowercase Timescroll

Free C-128 CP/M Manual

Non-Random Surprises

Watchacallit?

Quicker Assembly on the Amiga

Changing Baud Rates For The C-64

with 1650/6240 Modems

Borrowing Money?

Letters 10
Column For Machine Language Sub-Routines?

New Testament Available On 1541 Disk Format

Flexible Vector Problem

G-Link Info

The SID Chip: Does It Really Exist?

Transactor Disk Directorytions

Super Empty SuperPET

VerifizerfortheC128

Disk Un-Assembler Once Again

Super Kit Users Notes

Games From The Outside Out

Another Vote Against The Atari Article

Rx For Grammar

Spel Cheker

TransBASIC Installment #11 15

Cj/Vr KJ OD a computerist's report from the Vancouver World's Fair <L<L

The AX2000 a 2 megabyte review 28

A Peek At Amiga File Structure 30

COpier COmpanSOn 6 backup utilities pitted head to head . . . 33

DO YOU TrUSt: a hourly synopsis of a fun-filled evening 40

CLOCK, a dual alarm for the 64 CIA TOD clocks 42

VIC-II Chip Interrupts 46

rlVOt Z80 and 8500 CPUs working together in the Cl 28 4o

MOnitOr a machine language profiler 52

o5b<3 VDC Chip all about the C128 Video Display Controller chip .. 57

der the last keyboard utility you'll ever need! 64

Compu-toons 81

Note: Before entering programs,

Verifizer" on page 4see

The Transactor Nov. 1986: Volume 7, Issue O3

Transactor
Th« T«ch/N*w> Journal For Comnwdor* Computer*

Editor in Chief

Karl J. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Anne Richard

Kathryn Holloway

Contributing Writers

Ian Adam

Daniel Bingamon

Neil Boyle

Anthony Bryant

Tim Buist

Jim Butterfield

Betty Clay

Gary Cobb

Jack Cole

Jeffery Coons

Pierre Corriveau

Robert V. Davis

Elizabeth Deal

Frank E. DiGioia

Yijun Ding

Paul T. Durrant

Michael J. Erskine

Jack Farrah

R. James de Graff

Jim Grubbs

Tom Hall

Bob Hayes

Andy Hochheimer

John Holttum

David Hook

Tomas Hrbek

Robert Huehn

Tom Hughes

David Jankowski

Chris Johnson

Mark Jordan

Clifton Karnes

Jesse Knight

James E. LaPorte

William Levak

James A. Lisowski

Jack Lothian

Scott Maclean

Don Maple

David Martin

Steve McCrystal

Stacy Mclnnis

Jim McLaughlin

Steve Michel

Chris Miller

Terry Montgomery

Michael Mossman

Gerald Neufeld

Noel Nyman

Dave Pollack

Richard Perrit

Terry Pridham

Raymond Quirling

Gary Royal

John W. Ross

Louis F. Sander

Fred Simon

P. A. Slaymaker

Edward Smeda

Darren J. Spruyt

Aubrey Stanley

David Stidolph

Richard Stringer

Nick Sullivan

Karel Vander Lugt

Audrys Vilkas

Steven Walley

Jack Weaver

Evan Williams

Chris Wong

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower

case mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o"

will of course be in lower case. Secondly, the lower case L (T) is a straight line as opposed to the

number 1 which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours,

or function keys. These will also be shown exactly as they would appear on your screen, but

they're listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor

Down, etal.

Occasionally programs will contain lines that show consecutive spaces. Often the number of

spaces you insert will not be critical to correct operation of the program. When it is, the required

number of spaces will be shown. For example:

print flush right " - would be shown as - print "[10 spaces]flush right

Cursor Characters For PET / CBM / VIC / 64

Down - 0

up -B

Right - D

Left - [Lft]

RVS - D

RVS Off - B

Insert - Q

Delete - Q

Clear Scrn - |~~

Home - _

STOP - Q
1

Colour Characters For VIC / 64

Black - B

White - Q

Red - Q

Cyan - [Cyn]

Purple - [Pur]

Green - Q

Blue - Q

Yellow- [Yel]

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

F5-

F6-

F7-

F8-

Please Note: The Transactor's

phone number is: (416) 878-8438

The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton,

Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class

postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor. 277 Linwood Avenue, Buffalo, NY. 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 post age/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 878 8438. Note: Subscriptions are handled at this address ONLY.

Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use

postage paid card at center of magazine.

U.S.A. Distributor:

Capita] Distributing

Charlton Building

Derby, CT

06418

(203) 735 3381

(or your local wholesaler)

Quantity Orders:

Master Media CompuLit

261 WyecroftR<fcflBox352

Oakville, OntarioDrt Coquitlam, BC

L6J5B4 V5C4K6
(416)842 1555 604 941 7911

(or your iocal wholesaler)

Norland Communications

251 Nipissing Road, Unit 3

Milton, Ontario

L9T 4Z5

4168764774

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 04, 05, 06, and Vol 5 Issues 03,

04 are available on microfiche only

StiU Available: Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04. 05, 06. Vol. 6: 01, 02, 03, 04, 05, 06.

Vol. 7:01,02,03

Back Issues: $4.50 each. Order all back issues from Milton HQ.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please

re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.

Programs listed in The Transactor are public domain; free to copy, not to sell.

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per

printed page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft,

Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos or illustrations will be included with articles depending on quality. Authors submitting diskettes

will receive the Transactor Disk for the issue containing their contribution.

The Transactor Nov. 1986: Volume 7, Issue O3

Copy Copy

My camera-ready art for page three this issue is a mixture of brain

overspills, mainly because 1 couldn't produce just one that would

cover the entire page. With so many projects on full burn over the last

two months (Writer's Guide, Bits Book, Q-Link/CIS, iNet, T-Shirts,

Communications Disk, Micro Sleuth, disk ROMs, typesetter formats,

plus others), I must admit I've been a little out of touch with the

market outside my immediate neighborhood of magazine dealings. So

much so that I even made some phone calls to help refresh my

opinionatedness. And today, with all front burners on full for so long,

my neurons aren't holding as strong a charge as usual. I suppose

every writer has this experience at one time or another - you start to

ramble just so you don't have to expand your type size and leading in

order to fill a page and appear like a uninspired door-knob that can't.

. . er, see what I mean? Ok Karl, get on with it.

First I'd like to retract a statement from page three last issue. I

suggested there probably isn't one computer hobbyist out there

without possession of at least one copy of a some piece of proprietary

software that they haven't paid for. I suppose I exaggerated a little, but

only to make a point: manufacturers need to offer more in package

than just a program to accrue sales. By including a "batch of goodies"

with the software, the customer who sincerely wants the item will be

less willing to settle for the bare-bones, unprotected version. Besides,

getting the occasional freebie isn't the worst crime in the world. But

large-scale distribution of a pirates de-protecting efforts is, quite

simply, detestable. That was my main point, which brings me to my

next.

We've been receiving a number of letters regarding local duplication

of Transactor Disks. Here's a few clippings:

". . ./would like to sell Transactor Disks through our club. . ." -

", . .we felt that since the programs are considered public domain that

the disks could be included in the club library. . ."

".. . we would also like a subscription to The Transactor Disk, which

we would make available to club members, with your permission."

"allow members who can show us a copy of the magazine to copy the

disk..."

". . . it seems to be a nuisance to mail off for them. ..""... the price

doesn 't seem to be a problem. . ."

", . .do not believe our members would be willing to purchase sub

scriptions at $45 even though that is a reasonable charge for 6 disks

that save typing the programs in.

Get the picture? Since introducing The Transactor Disk, we've re

ceived the same request no less than 50 times. Our policy is, "free to

copy, not to sell" (see bottom of opposite page). Although the disks are

marked "(c) copyright.. .", there is no copy protection and we couldn't

even afford any attempts at thwarting copy activity. But consider this:

we spend a lot of time on those disks - testing, editing, commenting,

sometimes de-bugging - Chris, Richard, and myself spend between

one and two days to complete each. Even with the price increase, they

still cost less than disks from many of the other magazines. And what

little profit we take (important revenue for us) doesn't even put a dint

in our total expenses.

I'm not saying you shouldn't copy the programs. In fact, if you would

like to put them into your club libraries, please do. Most club software

libraries are split into categories. All we ask is that you "de-unify" the

disks into their respective categories in the true sense of a "library".

Much like you can copy an article from any magazine at your local

public library, even at a nickel a page you wouldn't copy the entire

mag - it would cost less to go buy one. Same for the disks. If the

programs are split between two or three library entries, members can

still obtain machine-readable versions of the programs, but the uni

fied collection will cost less. If someone makes the odd dupe, from the

pages or sectors, so be it. But in the context of my second paragraph,

our product is software with inexpensive (usually required) documen

tation. Alternately, we offer a magazine with an optional inexpensive

service that can easily be justified in dollars per hour. Either way you

look at it, wide spread duplication will only help to shorten our life as

a supplier. Remember, we wouldn't be the first computer publication

to become another page in Chapter 11, although we're probably the

first to meet you half way.

Did I hear someone say, "you hypocrites - your SuperKit/1541 will

make copies of protected packages, and you're selling 1541 upgrade

kits that make only minor changes to the original."? No? Good.

Because once you buy a piece of software, you also buy the rights to

personal use as you see fit. Super Kit is for making personal backups -

handing them out is against the law, and that's not why we sell it.

Secondly, we're not cloning disk drives - we're upgrading the operat

ing system that 1541 owners have every right to use. Case in point: an

upgrade ROM is available for the onboard computer of new Corvettes.

It adds about 60 h.p. at around $10 per horse. Apparently the ROM

contains only slight mods to the original, but owning the car means

you have the right to install those mods. It's just like adding headers -

they're the same at both ends, different in the middle. Nobody is

breaking the law, but if a second manufacturer makes headers of

identical design, room exists for a conflict.

My last spill is open for discussion, and responses are welcome. When

the CBM 8096 was released, Visicorp decided they would not produce

a version of Visicalc that would access the extra 64K. 1 don't know

who, but someone else did. The 96K version powered up with an

incredible 70K of workspace (10K on the 8032 version) and it was

even offered to Visicorp free of charge! They still didn't want it, but

that did not make it ok to give out. Now that Visicorp has folded, what

about Visicalc. Is it public domain? I'm sure the "Y/N" fraction

contains many arguments here. Some would say nobody will suffer..

. except their existing competitors of course. What about other

suppliers who may be gone, but whos software is not forgotten. And

what about the law? Does anyone know? Personally, 1 could go either

way on this one. So readers, any ideas?

There is nothing as constant as change, I remain

KarlJ.H. Hildon, Editor In Chief

and [thought] wouldn't need to scrunch this page this time, huhg

The Transactor Nov. 1966: Volume 7, Issue O3

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from the

pages of The Transactor. It will let you check your work line by line as

you enter the program, and catch frustrating typing errors."The

VERIFIZER concept works by displaying a two-letter code for each

program line which you can check against the corresponding code in

the program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or

C64, Plus 4, C128, and B128. Enter the applicable program and RUN

it. If you get a data or checksum error, re-check the program and keep

trying until all goes well. You should SAVE the program, since you'll

want to use it every time you enter one of our programs. Once you've

RUN the loader, remember to enter NEW to purge BASIC text space.

Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off: SYS 637)

SYS 828 to enable the C64/VIC version (off: SYS 831)

SYS 4096 to enable the Plus 4 version (off: SYS 4099)

SYS 3072,1 to enable the C128 version (off: SYS 3072,0)

BANK 15: SYS 1024 for B128 (off: BANK 15: SYS 1027)

Once VERIFIZER is on, every time you press RETURN on a program

line a two-letter report code will appear on the top left of the screen in

reverse field. Note that these letters are in uppercase and will appear

as graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that

line at the last minute which changes the report code. However, this

will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type RETURN

over each in succession while checking the report codes as they

appear. Once the program has been properly entered, be sure to turn

VERIFIZER off with the SYS indicated above before you do anything

else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead

of POKE 53281,0. However, VERIFIZER uses a "weighted checksum

technique" that can be fooled if you try hard enough; transposing two

sets of 4 characters will produce the same report code but this should

never happen short of deliberately (verifizer could have been de

signed to be more complex, but the report codes would need to be

longer, and using it would be more trouble than checking code

manually). VERIFIZER ignores spaces, so you may add or omit spaces

from the listed program at will (providing you don't split up key

words!). Standard keyword abbreviations (like nE instead of next) will

not affect the VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer,

so if you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original destina

tion of the link after it's finished. When disabled, it restores the link to

its original contents.

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

01

JB

PA

HE

EL

LA

Kl

EB

DM

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EG

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

10 rem* data loader for' 'verifizer 4.0'' *

15 rem pet version

20 cs = 0

30 for i = 634 to 754:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>15580 then print' '***** data error *****'': end

70 rem sys 634

80 end

100:

1000data 76,138, 2,120,173,163, 2,

1010 data 173, 164, 2,133,145, 88, 96,

1020 data 145, 201, 2,240, 16,141,164,

1030 data 144, 141, 163, 2, 169, 165, 133,

1040 data 2,133,145, 88, 96, 85,228,

1050 data 201, 13,208, 62,165,167,208,

1060 data 254, 1,133,251,162, 0,134,

1070 data 0, 2,168,201, 32,240,

1080 data 165, 253

133, 144

120, 165

2, 165

144,169

165,217

58, 173

253, 189

230, 253

236, 2

229, 165

0, 128

105, 193

24,101

15,

41, 3,133,254, 32,

1090 data 198, 254, 16,249, 232, 152, 208,

1100 data 251, 41, 15, 24,105,193,141,

1110 data 165, 251, 74, 74, 74, 74, 24,

1120 data 141, 1,128,108,163, 2,152,

1130data251,133,251, 96

VIC/C64 VERIFIZER

10 rem* data loader for' 'verifizer'' *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>14755 then print' '***** data error *****'': end

70 rem sys 828

80 end

100:

1000 data 76, 74,

1010 data 252, 141,

1020 data 3,240,

1030 data 251, 169,

1040 data 3, 3,

1050 data 0,160, 0,189,

15, 133,

32, 183,

2,

3,

2,

169,

133,

3, 165,251, 141

3, 3, 96,173

17,133,252, 173

99,141, 2, 3

96,173,254, 1

0, 2,240,

91,200,152,

3,198, 90,

32, 240, 255,

18, 32,210,

1100 data 89, 41, 15, 24,105, 97, 32,

1110 data 165, 89, 74, 74, 74, 74, 24,

1120 data 32,210,255,169,146, 32,210,

1130 data 32,240,255,108,251, 0,165,

1140 data 101, 89,133, 89, 96

1060 data 32,240,

1070 data 133, 90,

1080 data 232, 208, 229, 56,

1090 data 32,210,255, 169,

3, 165

3,201

3,133

3, 141

89, 162

22, 201

41, 3

16,249

169, 19

255, 165

210,255

105, 97

255, 24

91, 24

VIC/64 Double Verifizer Steven Walley, Sunnymead, CA

When using 'VERIFIZER' with some TVs, the upper left corner of the

screen is cut off, hiding the verifizer-displayed codes. DOUBLE

VERIFIZER solves that problem by showing the two-letter verifizer

code on both the first and second row of the TV screen. Just run the

below program once the regular Verifizer is activated.

The Transactor Nov. 1986: Volume 7, Iswe O3

KM

BC

Dl

GD

IN

EN

KG

KO

FM

LP

100 for ad = 679 to 720:read da:poke ad,da:next ad

110sys679: print: print

120 print" double verifizer activated" :new

130 data 120, 169, 180, 141, 20, 3

140data169, 2,141, 21, 3, 88

150 data 96, 162, 0,189, 0,216

160 data 157, 40,216,232,224, 2

170 data 208, 245, 162, 0,189, 0

180data 4,157, 40, 4,232,224

190 data 2,208,245, 76, 49,234

VERIFIZER For Tape Users Tom Potts, Rowley, MA

The following modifications to the Verifizer loader will allow VIC and

64 owners with Datasettes to use the Verifizer directly (without the

loader). After running the new loader, you'll have a special copy of the

Verifizer program which can be loaded from tape without disrupting

the program in memory. Make the following additions and changes to

the VIC/64 VERIFIZER loader:

NB 30 for i = 850 to 980: read a: poke i,a

AL 60 if cs<>14821 then print" *****dataerror*****": end

IB 70 rem sys850 on, sys853 off

— 80 delete line

— 100 delete line

OC 1000 data 76, 96, 3,165,251,141, 2, 3,165

MO 1030 data 251, 169, 121,141, 2, 3,169, 3,141

EG 1070data133, 90, 32,205, 3,198, 90, 16,247

BD 2000 a$ = " verifizer.sys850[space]"

KH 2010tori = 850to980

GL 2020 a$ = a$ + chr$(peek(i]: next

DC 2030 open 1,1,1,a$: close 1

IP 2040 end

Now RUN, pressing PLAY and RECORD when prompted to do so (use

a rewound tape for easy future access). To use the special Verifizer that

has just been created, first load the program you wish to verify or

review into your computer from either tape or disk. Next insert the

tape created above and be sure that it is rewound. Then enter in direct

mode: OPEN 1 :CLOSE1. Press PLAY when prompted by the computer,

and wait while the special Verifizer loads into the tape buffer. Once

loaded, the screen will show FOUND VERIFIZER.SYS850. To activate,

enter SYS 850 (not the 828 as in the original program). To de-activate,

use SYS 853.

If you are going to use tape to SAVE a program, you must de-activate

(SYS 853) since VERIFIZER moves some of the internal pointers used

during a SAVE operation. Attempting a SAVE without turning off

VERIFIZER first will usually result in a crash. If you wish to use

VERIFIZER again after using the tape, you'll have to reload it with the

OPEN1:CLOSE1 commands.

Plus 4 VERIFIZER

N!

PM

EE

NH

Jl

AP

NP

JC

ID

PL

CA

OD

LP

EK

1000 rem * data loader for " verifizer + 4"

1010 rem * commodore plus/4 version

1020 graphic 1: scnclr: graphic 0: rem make room for code

1030 cs = 0

1040 for j = 4096 to 4216: read x: poke j,x: ch = ch + x: next

1050 if ch<>13146 then print " checksum error": stop

1060 print " sys 4096: rem to enable"

1070 print " sys 4099: rem to disable"

1080 end

1090 data 76, 14, 16, 165,

1100 data 165, 212,141, 3,

1110 data 3,201, 16,240,

1120 data 2, 3,133,211,

1130 data 3,169, 16,141,

211,

3,

17,

169,

3,

141,

96,

133,

39,

3,

2,

173,

212,

141,

96,

3

3

173

2

165

Dl

LK

GJ

DN

GJ

CB

CB

PE

DO

BA

BG

1140 data

1150 data

1160 data

1170 data

1180 data

1190 data

1200 data

1210 data

1220 data

1230 data

1240 data

20,

0,

176,

240,

200,

16,

165,

0,

24,

0,

96

133,208,162, 0,160, 0,189

2,201, 48,144, 7,201, 58

3,232,208,242,189, 0, 2

22,201, 32,240, 15,133,210

152, 41, 3,133,209, 32,113

198, 209, 16, 249, 232, 208, 229

208, 41, 15, 24,105,193,141

12,165,208, 74, 74, 74, 74

105,193,141, 1, 12,108,211

165,210, 24,101,208,133,208

C128 VERIFIZER

CF

HA

DH

HL

CB

CP

CB

ME

FG

FK

MD

OJ

MF

OM

El

ON

NH

IJ

ML

DE

DN

LM

LE

HC

KE

OF

NC

LF

1000 rem * data loader for verifizer 128

1010 rem * commodore d 28 - 40 and 80 column mode

1020 cs = 0

1030 for j = 3072 to 3226: read x: poke j,x: cs = cs + x: next

1040 if cs<>19526 then print " checksum error!": stop

1050 print "sys 3072,1: rem to enable"

1060 print " sys 3072,0: rem to disable

1070rem

1080 data 201, 0,208, 13,120,165,253,141

1090 data 20, 3,165,254,141, 21, 3, 88

1100 data 96,120,173, 21, 3,201, 12,240

1110 data 17,133,254,173, 20, 3,133,253

1120 data 169, 44,141, 20, 3,169, 12,141

1130 data 21, 3, 88, 96,165,240,201, 13

1140 data 208, 94, 165, 22, 133, 250, 162, 0

1150 data 160, 0,189, 0, 2,201, 48,144

1160 data 7,201, 58,176, 3,232,208,242

1170 data 189, 0, 2,240, 22,201, 32,240

1180 data 15,133,252,200,152, 41, 3,133

1190 data 251, 32,147, 12,198,251, 16,249

1200 data 232, 208, 229, 56, 32, 240, 255, 169

1210 data 19, 32,210,255,169, 18, 32,210

1220 data 255, 165, 250, 41, 15, 24,105,193

1230 data 32,210,255,165,250, 74, 74, 74

1240 data 74, 24,105,193, 32,210,255,169

1250 data 146, 32,210,255, 24, 32,240,255

1260 data 108, 253, 0,165,252, 24,101,250

1270data133,250, 96

B128 VERIFIZER Elizabeth Deal, Malvern, PA

1 rem save"@0:verifizerb128",8

10 rem* data loader for " verifizer b128" *

20 cs = 0

30 bank 15:for i = 1024 to 1163:read a:poke i,a

40cs = cs + a:next i

50 if cs<>16828 then print"** data error **": end

60 rem bank 15: sys 1024

70 end

1000 data 76, 14, 4,165,251,141,130, 2,165,252

1010 data 141, 131, 2, 96,173,130, 2,201, 39,240

1020 data 17,133,251,173,131, 2,133,252,169, 39

1030 data 141, 130, 2,169, 4,141,131, 2, 96,165

1040 data 1, 72,162, 1,134, 1,202,165, 27,133

1050 data 233, 32,118, 4,234,177,136,240, 22,201

1060 data 32,240, 15,133,235,232,138, 41, 3,133

1070 data 234, 32,110, 4,198,234, 16,249,200,208

1080 data 230, 165, 233, 41, 15, 24,105,193,141, 0

1090 data 208, 165,233, 74, 74, 74, 74, 24,105,193

1100 data 141, 1,208, 24,104,133, 1,108,251, 0

1110 data 165, 235, 24,101,233,133,233, 96,165,136

1120 data 164, 137, 133, 133, 132, 134, 32, 38,186, 24

1130 data 32, 78,141,165,133, 56,229,136,168, 96

1140 data 170,170, 170,170

Th© Transoctor Nov. 1986: Volume 7, Itsue O3

Bits and Pieces

Got an interesting programming tip, short routine, or an unknown

bit of Commodore trivia? Send it in - ifwe use it in the Bits & Pieces

column, we'll credit you in the column and send you a free one-

year's subscription to The Transactor

C-128 Program Entry Tips David J. Tajkowski

Baldwinsville, NY

Here are some tips for C-128 users who enter magazine program

listings using line verification utilities such as Transactor's VERIF1-

ZER. These tips can help make program entry less painful and

time-consuming.

The first is almost too easy - if you are in eighty-column mode

simply type the command FAST. This will reduce the noticeable

delay from the time you hit enter until the cursor returns or the

next line number appears (if you are using automatic line number

ing)-

The next tips concern the use of the function keys. The placement

of the C-128's function keys just above the numeric keypad and

the programmability of the keys can can greatly ease the entry of

programs. For example, when entering BASIC loaders which

require many lines of DATA statements, re-define Fl as 'DATA'

and F2 as','; then it will not be necessary for your hand to leave the

area of the keypad at all.

It is sometimes necessary to "go back" and re-check the verifica

tion codes of parts or all of a program. Changing the definition of

F7 to eliminate the CHR$(13) will make listing ranges of lines

easier by eliminating the need to type in the word LIST.

Lastly, you can automate the entire process even more by creating

a disk just for program entry. Set up the disk to auto-boct the

verification program (VERIFIZER) and add the function key re

definitions to the program itself. Then when then disk is booted

you will be set for fast, efficient and accurate entry of programs.

Stop Amiga Disk-Death

One of the most common causes of Amiga disk failure is pressing

the eject button while the drive light is on. This can mess up

important pointers on the disk, making it totally unreadable.

Ejecting a disk at the wrong time is easy to do, especially since

versions 1.0 And 1.1 of the operating system often put up disk-

change requesters before the drive light has gone out - oblige the

prompt speedily and your reward can be a zapped disk. (This has

been corrected in Kickstart 1.2.)

The general rule, then, is never press the drive eject button when

the red light is on. Well, almost never. If the system crashes with

the light on and it looks like it won't be coming back up with a

"guru meditation *" or by re-booting on its own, you should eject

the disk before you re-boot with Amiga/Amiga/CTRL. A forced

re-boot seems to zap the disk on occasion.

If the above advice comes too late and you already have a bad disk

in your collection, you may be able to recover it with "DiskEd", a

direct-access disk editor that comes with the developer's package

for the Amiga. DiskEd requires that you understand the format of

Amiga's file structure (Explained in an article next issue), but an

automatic disk-fixer called DiskDoctor is on the new version 1.2

software support disk. Just say diskdoctor dfO: (or dfl:), and the

program does its best to automatically fix up a bad disk the best it

can. Having a disk restoring program on hand may save you a lot

of re-typing time.

Easy PAL to CBM Source Conversion

A CBM assembler format source file is just a sequential text file

with no line numbers, while the PAL assembler uses a format

identical to a BASIC program. A surprisingly easy way to create a

CBM-format file on disk from a PAL file in memory involves just

one POKE to list the program without line numbers. On the C-64,

the entire conversion process can be accomplished like this:

open 1,8,2," filename.s,w": cmd 1: poke 22,35: list

(then poke 22,25 to return to normal listing mode)

On PET machines, the POKE is 19,32; and 19,22 to get back to

normal.

Micro STP Frank DiGioia, Stone Mountain, Ga

Chris Zamara published a nifty ML program in Transactor Vol. 5,

Issue 6 called STP. Later, in volume 6, issue 4, Jack Weaver

submitted a 10 line BASIC program to Bits & Pieces which worked

similarly to Chris's STP. Well, I couldn't resist adding my two cent's

worth. Here is a one-line BASIC program that I wrote which has all

the power of Chris's original program:

open 2,8,2," file": poke 781,2: poke 812,73: sys 65478

When you use it to execute a sequential file of BASIC direct mode

commands, it will execute all the commands in the file and then

attempt to execute blank lines until you hit STOP/RESTORE.

The Transactor Nov. 1986: Volume 7, Issue O3

When used to merge or tokenize a sequential program listing from

disk, it will perform the desired function and then terminate at end

of file with a syntax error (caused by the "READY." produced by

LIST). Not bad for a BASIC one-liner.

(Not bad indeed! What's more, you can go one step further and

execute any series of commands from a sequential file without

having to RESTORE. Just end the command file with CL0SE2:P0-

KE812,47:SYS65484, and the sequence will terminate properly,

closing the file and returning the system to normal! Other than the

fact that it displays the lines being entered, the "nifty" STP program

has nothing on this one! -CZ)

Border Cross Steve Lofton, Centralia, IL

Computing around one day, I was wishing, "It sure would be nice if

I could afford a Transactor subscription. But they're BIG league, I

said to myself." My hopes of winning a Bits & Pieces scholarship

crashed. Then my Commodore 64 whispered to me.

"Human unit, don't feel chr$(17) and chr$(31), send in that cute

IRQ routine you were working on yesterday."

"Okay", I said, stroking her keys, "I'll

Commodore."

give it a try, Connie

So here it is. This program will scroll a multicolour bar in the

border whenever a key is being held down. This adds new fun

when you cursor to and fro.

10 rem border cross - steve lofton

20 for i = 49152 to 49173: reada: pokei.a: next

30 data 169, 11,141,143, 2,169,192,141

40 data 144, 2, 96,160, 0,206, 32,208

50 data 200, 208, 250, 76, 72,235

$D530 LDA $0101 Load DOS type for drive # 0

$D533 BCC $D538 Branch to $D538

$D535 LDA $0102 Load DOS type for drive # 1

$D538 BEQ $D53F If DOS type is 00 branch to write job

$D53A CMP$FED5 If not compare to type 65

$D53D BNE $D572 If neither branch to error routine

$D53F TXA Continue write job

Some C-128 Tips Andy Hochheimer, Wallaceburg, Ont.

I found that you can enter the 128's Machine Language Monitor by

holding down the RUN/STOP key at power-up.

I've also found that some 80-column display programs don't take

advantage of the FAST command. They instruct you to insert the

disk, then power up with the 40/80 key down. Instead try this:

Depress the 40/80 display key, power up, type FAST, then insert

the program disk and enter the command BOOT. The program will

boot just as if you had the disk in as they instruct. Some programs

really benefit from this.

Disabling The C-128 RUN Key George Leotti

Glenolden, PA

Have you 128'ers ever pressed SHIFT-RUN/STOP by mistake, and

lost what was in memory? Here is my solution to this mis-key:

poke 4104,0 disables RUN key

poke 4104,9 enables RUN key

This works by changing the number of characters in the RUN key's

definition to zero, effectively disabling the key.

For more on defining the RUN and HELP keys, see last issue's Bits

& Pieces section. -CZ

Disk Protection Ric O'Neill, Calgary, AB

C-64 Upper/Lowercase Timescroll

Hiding on track 18, sector 00 of disks formatted on 1541 drives are

many important byte values used by DOS. Manipulating these

values can have a dramatic effect on how DOS interprets the data

read from the disk.

One particular byte of interest is the third byte on sector 00. This

byte indicates to DOS what type of drive was used to format the

disk. DOS uses this byte to determine if it can write to the disk. If it

finds an illegal value for the DOS type it will not allow the drive to

write to the disk. This so-called "soft protect" has been used by

some to prevent writing to a disk. This is done by changing the

value of byte three to almost any value other than 65. It seems to

be an accepted fact that the 1541 disk drive cannot write to a disk

formatted with any DOS type other than 65.

This is not correct. Disassembly of the code that checks the DOS

type reveals that a DOS type of 00 can be written to also. DOS

evidently checks for a DOS type of 00 first and if found continues

the write job. Here's the section of code:

Jimmy Watters,

Sussex, NB

Here is a neat "time scroll" for the C-64. Type it in and RUN it,

making sure to enter the correct number of spaces. The more text

on the screen, the better the result.

10 print Q";:[16 spaces]print"Q" ;:[16 spacesjgoto 10
20 rem each ":" is followed by 16 spaces

Try changing the number of spaces to get different effects. Pressing

a key changes things too. To really notice what is happening, add

the following line:

5 for i = 1 to 999: print chr$(169);: next

Free C-128 CP/M Manual Paul Reeves,

Hamilton, Ont.

I have stumbled across a very helpful piece of information which

will help all of you who hate spending 20-30 dollars on computer

The Transactor Nov. 1986: Volume 7, toue O3

manuals. If there was only a way to make one yourself. . . Now

there is; to get a "FREE" 40 page CP/M manual for the C-128, put

the CP/M System Disk in drive A and type the following:

For a C-128 and a 1541:

(A>) pip 1st: = help.hip

For a C-128 and a 1571:

certain exact rules. Hence if two series start with the same seed,

they will be identical through their entire length.

pipe: = a:help.*

(A>) help [extract]

(A>) 1st: = help.dat

With the 1541, the manual will have a few pages of junk at first but

after that all will be fine. When using the 1571 version, it will ask

you to insert disk E into drive A; when it does, insert a blank disk

formatted double-sided. You need to do this because all the

information will not fit on one side (the Help.HLP file is 83K).

Non-Random Surprises

Type this into your C64 and run it:

Harold Anderson,

Oakville, Ont.

10n = rnd(0)*1024

20 poke 1024 + n,24: poke 55296+ n,1

30 goto 10

You would expect to have the whole screen filled in a random

manner with white X's. Surprisingly, what you will find is that 3/4

of the locations are never filled and you end up with a pattern of

vertical stripes on the screen. Clearly, the number returned by

RND(0) is not very random. If you change RND(0) to RND(l) the

problem disappears.

I investigated this at some length and found that the number

returned by RND(O) is of the form:

RND(0)= A x 1/256 + B x 1/(256 x 256 x 256)

Where A is any integer 0 to 255

and B is any integer 0 to 63

This means that there are only 256 x 64 (16384) different values of

RND(0) Also notice that the second term in the above formula is

much smaller than the first. The result of this fact is that the

possible values of RND(0) are grouped in tight bundles around the

values indicated by the first term of the formula. This bunching

explains why the screen is not filled evenly in the test program.

The values of A and B in the formula are apparently derived from

the time, since messing with the length of time between successive

calls for RND(O) seems to affect the randomness even further.

The RND function on the C64 should be regarded as follows: A call

for RND(0) gives one of 16384 possible starting "seed" values for

16384 possible random series. A call for RND(l) gives a value

derived from the last value found by the RND function. While

RND(l) returns values which are truly randomly spaced, each

successive value is derived from the previous value according to

Watchacallit? J.G. Krol, Anaheim, CA

The symbol * is widely used in computer programming, as to

indicate multiplication. The name of * is not "star". It is called

asterisk.

The symbol / is also widely used, as to indicate division or optional

selection. The name of / is not "slash". It has two different names

depending on its usage. When / is used mathematically to indicate

division, like 4/5 = 0.8, it is called solidus. When / is used to

indicate optional selection, like his/her, left/right, or and/or, it is

called virgule.

A unit of time that is 1/60 (that's a solidus) of a second is widely

used within Commodore computers. It is called in Commodore

documentation a "jiffy". That is an unnecessary neologism. An

cient Babylonian astronomers divided an hour of time or a degree

of angle into 60 equal parts, each called a minute (MIN-ute), which

name is cognate to minute (my-NOOT) meaning very small. For a

smaller unit they divided a minute into 60 equal parts. That took a

second division by 60, so they called the unit a second. For a yet

smaller unit, they divided a second into 60 equal parts. That took a

third division by 60, so they called the unit a third. This "sexagesi

mal" system is still widely used 5000 years later for measuring

time and angle. It can be extended to "fourth", "fifth", and so on as

needed. Thus a so-called "jiffy" is actually a third, except that the

news hasn't reached Commodore's tech writers yet, not after 5000

years, which shows just how slow the mail is these days.

Mr. Krol is right - I looked it all up in a dictionary. But please,

programmer's jargon is confusing enough. You want to start using

Ancient Babylonian? -CZ

Quicker Assembly on the Amiga Norman MacDonald

Medicine Hat, Alberta

While using the Amiga Assembler I was disappointed at the

amount of time it took to assemble a short program when some of

the 'include' files were included in my source file. I have come up

with a simple solution to the problem that cut the assembler's

workspace and the assembly time in half. Here is what I did: I

wished to use some of the Intuition structures for setting up a

screen and window, so I made a source file as follows:

include 'exec/types.i'

include 'intuition/intuition.i'

You may wish to add other include files than the ones I used, but

be sure to have 'exec/types.i' as the first include file. When my

source file was set up, I assembled the source file above with the

following lines from CLI:

assem :infile -c w250000 -i :include -e :outfile.equ

This assembled an "EQU file" of all symbols that were present in

the source file. This "EQU file" may then be used in your source

The Transactor Nov. 1986: Volume 7, Issue O3

and will perform exactly as the include files would. You may even

wish to examine the file and trim some more fat off it by deleting

the definitions that you do not use.

The advantages of doing this is a large decrease in the assembly

time and less workspace is required to assemble a program. The

main disadvantages to doing this is that you do not have access to

the macros defined in the 'include files'. Another disadvantage is

that if you include two of these "EQU files" in an assembly and

they contain duplicate symbols, you will end up with some errors

during assembly. One solution to this problem is to change all the

EQUs in the EQU file to SETs; this will allow the symbols to be

defined more than once.

This is the fastest method of decreasing assembly time on the

Amiga that I have found. I hope it will be of use to anyone doing

assembly work on the Amiga.

A further increase in speed can be obtained by making an "in

clude" directory in the RAM-disk ("makedir ram.include"), copy

ing the include (or EQU) files that you need to "ram.include", and

using "ram.include" instead of ".include" as the "-/" assembly

option. Ifyou have expansion RAM beyond the built-in 512K, you

can put everything in the RAM disk (source, libraries, include files,

object, etc.) and get super-fast assembles. The same applies for

compiling. Even ifyou don't have extra RAM (a 2 Meg box is nice,

but expensive), try squeezing as much as possible into RAM before

assembling. You 'd be surprised at how much faster things go when

the system doesn 't spend its time waiting for the read/write head to

seek. -CZ

Changing Baud Rates For The

C-64 with 1650/6240 Modems

James Shelley

South Bend, In.

After reading Tony Valeri's article in Volume 6 Issue 2 and the tip

from Daniel Bingamon on modem speed-up to 450 baud, I

thought a different approach might be of interest. Several of my

friends and I have been working on a terminal program to use with

our BBS. We found it desirable to change the baud rate in our

terminals and BBS while on-line. As the 1650/6240 modems can't

communicate at 450 baud while set at 300, a way was needed to

change the baud rate and not re-run the terminal program or BBS

or close and re-open the RS-232 file. We use the four lines of

BASIC below. It will change the baud rate on the terminal and the

BBS without any ill effects. This method has been tested to 1200

bps with good results. This does not change any parity, word

length, etc. When the user logs off the BBS, a GOSUB in the log-off

routine passes through these lines with the variable 'baud' set to

300, and the BBS is back to 300, ready for the next call.

10 open 5,2,3,chr$(6) + chr$(0)

20:

30 rem - more pgm. lines -

40:

50 input" baud rate > " ;baud

60 a = int(1022730/baud/2-100): c = int(1022730/baud)

70 d = int(a/256): e = a-d*256: poke 661 ,e: poke 662,d

80 d = int(c/256): e = c-d*256: poke 665,e: poke 666,d

If the programmer's reference guide is consulted, it is obvious how

the memory locations are used. Locations $0295 - $0296 are "RS-

232 non-standard BPS". Locations $0299 - $029A are "RS-232

Baud rate". With about 40-50 terminal programs, along with the

programmer's reference guide and The Transactor, we came up

with this bit of painless BASIC code. I hope it helps ease the pain of

those who have had a chance to try and swallow the Programmer's

Reference Guide's advice on Baud change.

Borrowing Money?

After those fun programs, here's something that's actually useful.

Given the rate of interest of a loan and number of payments, it

prints a table with monthly payments from $10 to $1000 per

month in one column, and the amount of the loan in another. With

this table at your disposal, you can find out how much you want to

borrow based on what you are willing to pay each month. Alterna

tively, you can look along the right-hand column until you find

out how much you need to borrow, then look across to the left

column to see what it'll cost you for each payment. So, if you're

buying a new car, you can scan from Honda up to Porsche until

you see what you can afford.

The program formats the numbers so that the columns line up at

the decimal point regardless of the values. As listed, it prints table

to the screen - change the '3' in line 120 to '4' to get a print-out.

The payments on the left side go from $10 to $1000 in steps of $10

- you can change this with the for-next loop in line 200

PD

AD

DK

CJ

DD

CO

OO

JF

OF

CD

CM

BG

MN

CM

KA

NK

AF

LL

100 rem** loan principal - cz '86 **

110 s$ = "[13 spaces] ":l = 10

120 open 1,3: rem 3 = screen, 4 = printer

130 input" annual interest (°/o)[4 spcs] 12

[4 crsr lefts]" ;ai

140 input" number of payments[5 spcs]48

[4 crsr lefts]" ;n

150 i = ai/1200 :rem monthly interest

160 print#1 ,chr$(13): rem blank lines

170 print#1," interest = "ai"%, # payments = "n

180 print* 1," payment"," amount of loan"

190:

200 for pv = 10 to 1000 step 10

210 rem compute amount of loan

220 p = pv*(1-(1+i)t(-n))/i

230 rem format amount field

240 p$ = right$(s$ + str$(int(p* 100 + .5)),l)

250 print#1 ,pv,left$(p$,len(p$)-2)"." right$(p$,2)

260 next pv

270 print#1: closei

The Transactor Nov. 1986: Volume 7, Issue O3

Letters

Column For Machine Language Sub-Routines?: I think that

it is fair to say that The Transactor caters somewhat to the machine

language programmer. How about a column devoted to machine

language subroutines such as division, multiplication, base con

versions, memory moves, etc. Published routines could be divided

into two catagories:

1) The shortest - for programmers trying to cram as much into a

small place as possible.

2) The fastest - measured in machine cycles, for the programmer

who needs blinding speed.

Any routine could be updated if it's faster or shorter than its

predecessor. The result of all of this would be a fantastic library of

subroutines that would be useful to any ML programmer. Who

knows, these routines could even be compiled into a book at a

future time! There are plenty of clever ML programmers out there

sitting on hundreds of useful routines - why re-invent the wheel?

Rick Nash, Millersburg, Ohio

Sounds interesting enough. At the moment we tend to include these

in the Bits and Pieces section - perhaps a sub-section of Bits could

be used to host your idea. Of course it all depends on what kind of

mail we receive, so, starting now, if we get enough fast and short

MLs, we'll group 'em like you say. Same deal as Bits - free

subscriptions for those published. Thanks for the input!

New Testament Available On 1541 Disk Format: Once in a

while, I receive a telephone call or letter that makes my day. Today

was such a day. Randall J. Bernard in Arizona called to thank us

for running his letter with regards to the help he required to key in

the New Testament (see Volume 7, Issue 01). He said that he now

has the entire New Testament on four diskettes and has 60 people

working on keying in the Old Testament. All that was still required

was final editing of the New Testament and waiting for the keying

in of the Old Testament to be completed by all the people who

volunteered. He was overwhelmed by the response generated by

his single letter. In truth, it also overwhelmed me.

According to Randall, the final editing stage would be the most

time consuming thing to come. One suggestion was to ask the help

of a few Bible study groups to check for errors and omissions. If

anything, this would ensure an accurate transcription of the Testa

ment. Randall asked if I could mention that anyone who wanted

the New Testament on disk could have it for a phone call. Now, I

don't know about you but I feel that Randall has already put

enough into this venture. Between the time and effort that he has

already expended, and the additional time and effort from his

volunteers, I feel that it would be unjust to expect Randall to pay for

all the expenses. Randall mentioned to me, though, that it would

be morally wrong to charge anyone for the Bible. In this respect I

completely agree.

A nice way around this problem could be that anyone who wants

the New Testament, and later the Old Testament, on diskette,

should supply Randall with an equal number of diskettes (4 for the

New and approximately 10 for the Old) plus return postage. For

people outside ofthe US, remember that only USpostage is good in

the USA. Ask your post office for help. They will gladly oblige. One

additional thing to consider: Randall will have to pay for mailers to

mail your diskettes. Any small amount that you could send

towards the cost of the mailers would surely be appreciated. To

contact Randall:

Randall! Bernard

Box 630

Morenci, Arizona, 85540

(602) 865-3550

One final thought. Many different religious backgrounds make up

the world. As such, I feel that Randall's efforts should only be the

beginning. It would be beneficial for so many people to also have

English translations on disk for the Torah, Talmud, Koran and

other religious scriptures. If anyone would like to begin efforts

similar to that of Randall, please drop us a letter. If you are fully

willing to expend the effort, we will be more than willing to spread

the word. Richard Evers

Flexible Vector Problem: Murphy's law has intervened in my

efforts to use your Flexible Vector program (Transactor Volume 6

Issue 02 page 64).

Actually this same law has a corollary originated by Theophilus

Cole during the last century and it has become quite well known in

some circles as Coles Law which, with the spaces removed repre

sents a statement much more palatable than Murphy's law, even

though it has the same meaning.

Although 1 have copied the code with due vigilance and some

attention to detail, I am unable to obtain the results expected. The

code assembles well with PAL and responds to SYS by placing the

40—digit message on the top line. The difficulty is with the non-

erasability which doesn't exist in my rendition of the program.

Scrolling North erases lines, ultimately including the top-line

message. Run-Stop/Restore has the same effect.

As an earnest novice at assembly language, I would greatly

appreciate your advice in pointing to the error I must have made

which prevents the non-erasure option from working.

Bob Tischer, Starkville, MS

Below is a corrected version of the 'Flexible Vector Management'

program. The problems you encountered were not your fault. At

the time, Chris forgot one important fact oflife with the 64; the older

versions of the 64 had problems with colour and screen memory.

Line *'s 410-420 will solve this problem. Colour and screen

memory are both updated'during each interrupt to display the

message in white at the top of the screen.

The Tronsoctof 1O Nov. 1986: Volume 7,touoO3

100 rem save" 0:irq message" ,8

110 rem ** chris zamara - volume 6 issue 02 page 64

120:

130 sys 700

140 .opt oo

150 * = $c000

160;

170irqvec = $0314

180;

190 ;** initialization routine **

200 sei ;disable interrupts

210 Ida #<newirq ;low byte of destination address

220 sta irqvec ;irq vector low

230 Ida #>newirq ;hi byte of destination address

240 sta irqvec+1 ;irq vector hi

250 cli ;enable interrupts

260 rts ;back to the calling prg or basic

270;

280 ;** new irq routine *♦

290 newirq = *

300 jsr displin ;do disp routine

310 jmp $ea31 ;normal irqdest

320;

330 ;** irq vector-driven routine **

340 ;displays message on top scrn line

350 displin = *

360 Idx #39 ;message = 40 char (0-39)

370;

380 sfil = *

390 Ida message,x ;nextchar from message

400 sta $0400,x ;store in next scr mem byte

410 Ida #1 ;** char colour white **

420 sta $d800,x ;** store it in colour memory **

430 dex ;do all 40

440 bpl sfil ;byte#0 is the last one

450 rts

460;

470 message .asc "0123456789012345678901234567890

123456789"

G-Link Info: I think I want a G-Link Interface, as described in the May,

1986 Transactor, but need more information.

My purpose is to connect a C-64 computer to an MSD SD-2 dual disk

drive, using the parallel IEEE port to shorten disk access time. Questions

are:

1. Does the G-Link connect to the C-64 expansion for parallel operation?

2. If so, what speed advantage can I expect?

3. What additional cable must I supply?

4. Is necessary software included? (The article stated complete transpar

ency.)

5. Has the G-Link been used with the MSD drive with success? Just what

can I expect?

Willard E. Wright, Bellevue, Washington

The G-Link IEEE-488 interface connects to the C-64's cartridge port to

provide true, transparent IEEE-488 bus access. The only extra that you

will need to make use of our interface is a single Pet to IEEE cable. You

can expect a data transfer rate increase, in relation to a normal 1541, in

the area of 50 to 650 percent, depending on the drive used. The G-Link

has been used with the MSD drives with quite a degree ofsuccess.

Recently, I wrote an in-depth article about the G-Link IEEE-

488 interface to run in this issue. Unfortunately, it was

decided that our reading audience contained too few people

who would benefit from this article. I can honestly state that

the decision to cut my article really hurt.

To make amends to everyone who would have liked to learn

a bit more about the G-Link, we are offering it to you for the

price of a letter, phone call or visit to our office (we'll also be

including it with future G-Link orders). If you are at all

interested in the inner workings of the G-Link, orjust would

like to learn a bit more about the IEEE-488 bus, then drop us

a line. It would be nice to find that my efforts were not

wasted.

The SID Chip: Does It Really Exist?

A long and frustrating story made as brief as possible:

10/4/85 - I sent a money order for $28.00 to Commodore

Business Machines, C-2659,1200 Wilson Dr., West Chester,

PA 19380 to cover purchase and shipping of 1 6581 SID

chip, pn 906112-01.

Result: 6 weeks later, no chip.

C. 11 /15/85 -1 send a letter inquiring about the status of the

above order.

Result: nothing.

C. 12/15/85 - Another letter amplifying first.

Result: silence.

1/31/86 - I send tracer to Postal Service on money order.

Result: money order was cashed by Commodore Business

Machines 11/8/85. Status of chip: nowhere to be found.

I am sending this letter to Commodore and also several

magazines that serve Commodore users because I am hop

ing that if I can't get a response out of CBM, I can at least air

my complaint in public.

Calling (215) 436-4200 is a waste of time. The phone is

almost always busy and when it rings, no one answers.

This particular part cannot be purchased from any third

party that I know of. I can almost live without sound but

some software uses the random number generator in voice

3.

Roy M. Randall

6032 Edsall Road *203

Alexandria, Virginia 22304

What can I say? Obviously, your order went missing and

nobody has been designated to trace it back. I know for a

fact that quite a few people at Commodore read The Trans

actor. Perhaps somebody from CBM will contact Roy and

help straighten this out. If all else fails, try dialing (215) 431-

9100. This number at 1200 Wilson Drive, West Chester does

work and is usually not busy.

The Transactor Nov. 1986: Volume 7, touo O3

Transactor Disk Directorytions: I just received the disk for

Volume 5, Issues 1-3. When I put the diskette in my disk drive, I

write on my computer:

LOAD" *" ,8

and

LOAD"* ",8,1

Then when I write RUN the computer comes back to READY.

When I LIST, I get. . .

10 REM VOLUME 5 ISSUE 1

READY.

Please Help! What is the problem? My computer is a Commodore

C-64. It is not the first time that I LOAD a diskette. Could it be that

the program is not written on the diskette. I am waiting for your

answer.

Roger Laplante, Chateauguay, Quebec

There are 118 directory entries on that particular diskette. Of these

entries, 115 are usable programs for some type of Commodore

computer. Of these programs, many are Bits and Pieces items,

others are simply to be Loaded and Run, then the balance are

source code for the concepts covered in the related issue. You really

need to read each issue before attempting to use the programs in

such an elementary manner. The program that you Loaded was

the first program on disk. However, it is not really a program but

rather a marker that merely acts as a header to the files that come

after it. Ifyou were to look at the directory, you would have noticed

that the filename listed is the Volume and Issue number covered on

that portion of the disk. If you were to look through the directory

even further, you would find that similar markers exist for the start

of entries for Volume 5 Issue 02 and Issue 03.

There was a second reason for saving this marker as the first entry

in the directory: since it serves no other purpose it can be scratched

and replaced by some other more useful program that you would

rather have as the first program in the directory. Using LOAD " *"

would then give you access to your "favourite" program without

entering the entire filename.

Super Empty SuperPET: We bought a SuperPET last fall, which

helps us in our office. We do not have any programs to go with it,

so we have to create every program for use in the office.

Is it possible to get from you or some other people any programs

such as: inventory, mailing list and programs for office use?

Bruno Cote, 80 Leroux #104, Granby, Quebec, J2J-1S1

There are hundreds of programs available for the SuperPET. The

trick is to find them. In my own personal collection I have many of

the word processors, spread sheet programs, data base packages,

accounting systems and such that have appeared in past. The

trouble is, passing them about gratis is not too kosher. My sugges

tion is to locate a copy of the 'Commodore Software Encyclopedia'

by Sam's Books. It lists and describes many ofthe packages written

for all of the Commodore computers plus provides addresses for

the suppliers. A few good company names to remember in your

quest is Batteries Included, BMB Compuscience, BPI Micro-

Systems, Handic Software, ProLine Software, and Softwerx. These

are but a few of the good software manufacturers and suppliers for

the SuperPET, but whether they still stock programs may be

another matter.

Verifizer for the C128: I couldn't get the C128 version of

verifizer going. Is it me or you? I double double checked every

thing twice but I still could not get it to work. I finally disassembled

it and found that it starts with a branch. Is that right?

Mike Iafrate, Parkersburg, WV

Verifizer for the C128 works as listed - to make sure, I keyed it in

verbatim from the pages. Remember, you must be in 40 column

mode. To activate, 'SYS3072J" will do the trick (actually, any

thing from 1-255 will work as the parameter after the comma). To

de-activate, SYS3072,0 does it. I have noticed one problem,

though. SYS3072,0 does not always do it on the first shot. Twice in

a row always makes sure that it is turned off.

The branch at the beginning ofthe code is correct. The C128 allows

passing ofthe accumulator, x and y registers plus status register via

the SYS call. The code begins with - BNE INSTALL - In simple

terms, if the accumulator is greater than zero then activate the

routine else de-activate. A little bit simpler than the 64.

Disk Un-Assembler Once Again: Thanks to Transactor and J.

Lothian for the Disk Un-Assembler for the Commodore 64 in The

Transactor (Volume 6 Issue 04). Thanks also to John R. Menke for

his letter in The Transactor (Volume 6 Issue 06).

The program of Mr. Lothian and letter of Mr. Menke both contain

small errors. They both recommend adding line 61:

61 MD(36) = 0:MD(44) = 0

This cannot be done as the arrays are first dimensioned in line 120,

and values are read into the array in line 130.

I agree with Mr. Menke that BIT must be converted to BYTE with

the Commodore assembler. He is incorrect, however, when he

says:

"I note that lines 2020-2060 are never accessed in the un-

assembler, which is a shame because they would signal that a BIT

operation was converted to a .BYTE. Also, lines 310-360 in the

program are excess baggage, although it would be nicer if that

weren't the case."

The simple answer to the BIT to .BYTE problem is DON'T ADD

LINE 61. The best solution is to change line 1430 and line 2050.

1430 if n>10theon(n-10)gosub 1950,1980, 2010, 2040

In line 2050, reduce the (8 spaces) to (1 space) and as Mr. Menke

mentioned in line 1480, be sure to include a space between .BYTE

and $ in line 2050 also.

With these modifications, you can un-assemble using EITHER BIT

or .BYTE and if (BIT to .BYTE) is selected in lines 330-360, the

program will signal that a BIT operation was converted to .BYTE.

The MD(36)= 14 and MD(44)= 14 in line 360 accomplishes this in

line 1430, which accesses line 2040 to signal the change. Any

other .BYTE directives are listed normally.

Patrick P. Malloy, Milwaukee, WI

Th© Transoctor 12 Nov. 1986: Volume 7, Issue O3

Super Kit Users Notes: We have received quite a few letters and

phone calls from people who have bought SuperKit/1541 through

the magazine, ft seems a few people have had problems getting

SuperKit to duplicate itself as stated in the manual. Well, according

to the people at Prism, SuperKit is quite capable of this task. The

trouble may be that you have more than one Commodore 64, one

1541, and one monitor in your system, or that some hardware

mod or plug in cartridge is causing problems, or your disk drive is

slightly out to lunch. As a final might-be, it could be that the disk

you received is indeed bad. Many different factors could be causing

you problems. SuperKit, with its vast speed andpower seems to be

very particular about system configuration. According to Prism, a

re-write is under way that will straighten this problem out.

Now, to cover each problem sequentially. If you have a printer,

extra disk drive, modem or virtually any extra peripheral device

connected in any way to your computer or drive (even if it is not

turned on), this could cause problems. The Epson and Gemini

printers are the biggest trouble makers for SuperKit. Disconnect

everything extra completely from your system. Absolutely remove

the connectors and your problems might vanish. Please remember

that extra peripherals also include Fast Load cartridges and such

that are always taken for granted and forgotten. SuperKit is fast

enough without any additional help.

Hardware mods could include a new set of ROMs for your 64 or

1541 that have made improvements on Commodore's design.

There are lots of super ROMs out there that beef up the I/O

handling plus provide all sorts of programming goodies, but

SuperKit hates them. To get all the neat goodies for you to play

with, the ROM must contain substantially altered code from the

original. Normal ROM entry points are no longer, some features

have been completely removed to make way for the neat stuff and

pieces of code that are involved in critically timed routines are no

longer so critical. Any number of mods to your ROMs could affect

SuperKit, and for that matter any software package, with unpre

dictable results. Ifyou know that your system and SuperKit do not

cohabitate well together, then return the package to us (with sales

receipt included). It makes little sense for you to retain a package

that cannot live with your system.

The final problem that we know about could be that your drive is

not as tight as it was when conceived. The head could slap around

a bit too much, the belt could have a bit ofslack and any number of

other factors could turn your drive into something SuperKit has

difficulties dealing with. When trying to duplicate SuperKit using

the Super Nibbler on side two of the diskette, set the maximum

track number to 40. By telling SuperKit to bit copy as far out as

track 40, a slight bit of internal drive slack will not be a problem. If

your drive problems are worse than being just a little bit out to

lunch, then perhaps a service call is in order.

One other note: after using the Super Nibbler, it's best to send an

Initialize command to your drive. This brings the head back from

the "farreaches".

Let's hope that these few points make life with SuperKit easier. It is

truly a fine product, one that we gladly stand behind in every way.

It's just a shame that it cannot live in peace with more than its

immediate family. Perhaps the much desired re-write taking place

in Texas right now will cure it of its unsociable attitude. We 're pretty

sure it will. You may also want to look at the two articles in this

issue that address other aspects ofSuperKit and other copy uitlities.

Games From The Outside Out: I look forward every other

month to receiving my Transactor. For the most part, it is far above

average. Mostly, this letter is not as much of a "complaint" as it is a

"reader's point of view".

The cover for September said "The Tech/News Journal For Com

modore Computers". It also said "Games from the Inside Out"

showing pictures of demons, fighter planes, tanks, etc.

Mentally, I combined the slogan of Transactor, the image of the

dark secrets of Zork exposed, or Enchanter, or if not that then a

close look at multicolour, fast action of Zaxxon, or a clue as to the

fabulous programming techniques of Beach Head, or Seven Cities

of Gold. Oh, the thrill, the anticipation. . .

Then, eagerly, I scan from cover to cover: One (1) Game! Animals?

I had that 12 years ago (and a better version to boot) and IN

BASIC!(?)

Four valuable pages which could be spent telling me about

Commodore were used for a useless ATARI review. Oh, the pain. If

I want reviews, which I don't, I'll buy Compute!, which I don't.

Four more pages for Animals, and another wasted on silly car

toons. In those NINE pages you could have told a lot about

Commodore.

I am especially interested in how things are done and why they are

done in ML. A source of various ROM routines with comments

could be a great teaching tool for a Transactor column, as could

more information regarding the disk drive.

Please don't misunderstand - Transactor is by far the best, but it is

the best only when it is different! Please, no more reviews

(especially NON-COMS) and no more cartoons to waste valuable

space!

Wayne Gurley, Wills Point, Texas

Another Vote Against The Atari Article: At the risk of being

labeled an Amiga jingoist, I am a little distressed as to the inclusion

of the "Atari ST Notebook" in the latest issue. If the article was

included because the Atari is a 68000 machine, then by that logic, I

expect we will start seeing articles on the Macintosh. One reason

why I subscribe to your magazine is because of its narrow focus on

Commodore products.

My chief complaint is that the pages used for the Atari article could

have been used for an article on the Amiga operating system. The

Amiga operating system is woefully lacking in documentation.

Despite this mild complaint, I think you are producing an excellent

magazine. Keep up the good work.

J. Richard McEachern, Saint Louis, Missouri

Ouch. Being hit twice in a row about the Atari article really hurts!

We ran the article because it was exceptionally well written,

without any biased Atari hype. It did not contain any program

listings, so it didn 't require a machine in order to learn something

from it.

Although it went against our morals to cross over to the other side

for that article, we felt it was worth it. Jack Cole is such a good

The Transactor 13 Nov. 1986: Volume 7, Issue O3

author, and a master in R + D, that we had to run the article. At one

point, we had been tampering with an idea for a 6S000 magazine

as an insert within the Transactor every issue. The extra magazine

portion was abandoned, but Jack had already been working on

the article to help us out. To finish the article Jack fought against a

nasty flu bug to make deadline. Jack did pull through, and his Atari

Notebook was the result. With such devotion, would it have been

morally right for us to reject his efforts, especially after we had

initially solicited his aid? We say NO!

It might also be interesting to note that the ST is more like a

Commodore than anything Atari has built. Furthermore, the

Amiga is more like an Atari than anything Commodore has

produced. In fact, the Amiga project was originally commissioned

by the pre-Tramiel Atari Corp. Jay Minor, who is mostly responsi

ble for those three workhorse VLSI chips in the Amiga, was also the

chief designer of the "Antic" chip in the early Atari machines. And

the STproject is staffed mostly by former Commodore employees -

it's even possible that they started the ST before becoming ex-

Commodore. A twist of events like this leaves one pondering to be

sure.

Referring back to Mr. Gurley's letter, it would take months to

unravel the secrets of some games without source code from the

author(s). Time like that we unfortunately just don't have. Quite

simply, the bulk of any issue is a collection of submissions,

sprinkled with the odd item that we have time to write ourselves.

And lastly, although we can't promise to exclude the cartoons, we

can promise that comparisons will take priority over reviews. The

odd review may show up when it's important, but we will try to

keep them to a minimum.

Rx For Grammar: There ain't no such word as "irregardless".

Dr. James N. Little, Walnut Ridge, Arkansas

Too bad... It really was such a nice word to have around.

Spel Cheker: Through the magazine in Vol 7 *1, you misspelled

"colonel" as "kernal". It's "churnal", isn't it? You even misspelled

it on the kovar.

Jeff Jourard, Santa Monica, California

TransBloopers

Bits & Pieces: Volume 7 Issue 02 page 12

In the Amiga Startup-Sequence on page 12, the first greater-than

(>) in the DATE function argument should be a less-than (<).

Elininating SAVE®: Volume 7 Issue 02 page 33

The article did not mention that the complete ROM exists on the

Transactor disk for that issue. The file is 16k long and contains a

dump of the entire SAVE@-fix ROM for the 1541. It's a "PRG" type

file with a start address of $2000. Remember to strip the first two

bytes if your EPROMer doesn't - otherwise the start address will be

sent to the EPROM and throw everything off by two bytes!

Improving The SYS Command: Volume 7 Issue 01 page 64

The description of the routine at $AD9E, described under the

heading Routines used in passing parameters! said that the routine

evaluates an expression and if the result is a string, puts it at $0100.

In reality, the string doesn't go here at all; the routine returns a

pointer to the string descriptor in locations $64 and $65 (these

point to three bytes containing the string's address low, address

high, and length). Another point that should have been mentioned

is that you should call $B6A6 after $AD9E to clean up the string

descriptor stack. After calling $B6A6, a pointer to the string itself

will be in locations $22 and $23 (also in .X and .Y), and the

accumulator will hold the length of the string. If you call $B6A3

instead of $B6A6, it will first check that the expression was of a

string type.

SYMASS 3.1 Fixes

The Symass 3.1 Assembler on Transactor Disk #12 has a bug that

makes it corrupt the symbol table when it encounters an expres

sion defining a label as a function of another label (for example

LENGTH = ENDTAB-TABLE). To fix Symass 3.1 and turn it into

3.13, LOAD in SYMASS 3.1, make the follwing POKEs, and SAVE

the updated version as SYMASS 3.13.

POKE 3304,56

POKE 2965,234

POKE 5057,51

(The above changes turn SYMASS 3.1 into 3.12, as described in the

article "Save SYMASS Symbols" in Volume 7, Issue 02)

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

3312,98

3316,99

3318,98

3323,98

3328,99

3332,99

3370,98

3389,98

3393,98

5057,51

C128 Memory Maps: Volume 7 Issue 01 page 29

Mike Mellinger from Connellsville, PA wrote in to draw our

attention to a few more errors in these maps. Below is a list of the

incorrect lines, with the corrections to the right.

D800-D8E7 should be D800-DBE7

1178-1197 should be 1178-1179

1271-1274 4721-4274 should be 1271-1274 4721-4724

Decimal addresses from 2595 through 2602 should be 2597

through 2604 (they're all off by 2).

The Transactor M Nov. 1986: Volume 7, Issue O3

TransBASIC

Installment #11

Nick Sullivan

Scarborough, Ont.

TransBASIC Notes

TransBASIC has been a regular Transactor feature for almost two

years. Those who have been following the series know all about it.

Recently, however, we've received letters to the effect of "what is

TransBASIC?". Quite simply, TransBASIC is a method of adding new

commands to BASIC (see "Part /.•" below). The commands come in

'modules' which may contain one or more commands OR functions.

After merging the modules of your choice, the entire lot is assembled

and linked into BASIC. The new commands can then be usedjust like

any of the other commands that are already in the BASIC ROM when

the C64 is powered up.

The TransBASIC Disk

The TransBASIC Disk contains all of the modules published so far and

it comes with its own assembler, SYMASS 3.1. Any combination of

modules can be linked into BASIC with only a few simple steps. From

start to finish is usually no more than a couple of minutes. . . even less

once you get the hang of it. It comes with a handy reference for just

$9.95. See the order card at center page.

Note: A bug has been found in the SYMASS Assembler that shows up

when you define a label as a function of another label. So far we

haven't noticed it while using the TransBASIC Disk, only with other

unrelated source code. Check the Transbloopers column in this issue

for the fix.

TransBASIC Parts 1 to 8 Summary:

Part 1: The concept of TransBASIC - a custom command utility that

allows one to choose from a library only those commands that are

necessary for a particular task.

Part 2: The structure of a TransBASIC module - each TransBASIC

module follows a format designed to make them simple to create and

"mergeable" with other modules.

Part 3: ROM routines used by TransBASIC - many modules make use

of ROM routines buried inside the Commodore 64. Part 3 explains

how to use these routines when creating new modules.

Part 4: Using Numeric Expressions - details on how to make use of

the evaluate expression ROM routine.

Part 5: Assembler Compatibility - TransBASICmodules are written in

PAL Assembler format. Techniques for porting them to another assem

bler were discussed here.

Part 6: The USE Command - The command ADD'merges TransBA

SIC modules into te\t space. However, as more modules are ADDed,

merging gets slow. The USE command was written to speed things up.

USE also counts the number of statements and functions USEd and

updates the totals (source line 95) automatically.

Part 7 - Usually TransBASIC modules don't need to worry about

interfering with one another. When two or more modules want to alter

the same system vector, however, a potential crash situation exists.

Part 7 deals with avoiding this problem.

Part 8 - Describes the five modules for Part 8.

Part 9 - Describes the six modules for Part 9, and makes first mention

of The TransBASIC Disk.

Part 10 - Describes the six modules for Part 10, and details some

minor bugs in the modules "MC GRAPHICS", "MOVE & FILL", and

"PRGMNGMNT".

TransBASIC Installment *11

In this issue you'll find only one module, but it's a big one. The author

is Paul Adams of Revelstoke, British Columbia, who wrote it to fill a

personal need. Paul writes:

"I was writing a program to log my daily running (by foot, not by

computer) and needed some commands that would allow better

graphing capabilities than I could find. Of course, being an Engineer, I

like to graph everything.. ."

Well, if you like to graph everything too, this is the module for you.

Paul has come up with the interesting concept of combining two hi

res screen areas into one double-height drawing area for his graphs.

His plotting commands have the capability of addressing this area

with y-coordinates from 0 to 399 (to make things Cartesian, he has

put the zero y-coordinate at the bottom rather than the top of the

screen).

On this big plane you get the capability of drawing lines and rectan

gles, either solid or in a dot pattern of your choosing. You can also

write text to the screen, including a variety of special characters that

come in handy in graph work.

Because the hi-res screens take up 8000 bytes apiece, plus another

1000 bytes of video matrix for each one, you sacrifice a bit of BASIC

memory when you use this module. In fact, before you start using the

hi-res, you should give the command:

poke 56,140: poke 55,0: clr

to protect the BANK 2 video matrix at $8C00 and your BASIC strings

from writing all over each other.

A couple more things: if you should commit a syntax or other error

while you're in one of the hi-res screens, you will have to type the

DEFAULT command blind to get back. Alternatively you could in

clude William Turner's TRAP command from last issue in your

dialect, and make the DEFAULT command part of your TRAP routine.

Drawing large rectangles can take quite a while in hi-res, especially

when they're completely solid rather than patterned. I found myself

The Transactor 15 Nov. 1986: Volume 7, Issue O3

wanting a way to switch between the upper and lower sections of the

drawing area so that I could monitor what was going on, so I added a

few lines to the plotting routine that will cause the screens to be

swapped when you press and release the CTRL key (the swap actually

happens on the release). This feature is only operational while a plot is

actually in progress. Sometimes 1 also wanted to see debugging

information that I was printing to the text screen during a series of

plots, so 1 also added a trap for the LOGO key. The text screen is made

visible whenever this key is held down during a plotting operation;

the current hi-res screen is restored when the key is released.

If you look in the code for DEFAULT routine (in the neighbourhood of

program line 13080), you'll see a patch 1 had to put in to cure a very

odd hardware-related bug that occurred in the very standard routine

that switches video banks from BANK 3 to BANK 0. The net effect of

the bug was that the RTS at the end of that routine was frequently

executed as a JSR (a $20 rather than $60), which in this case was a JSR

into the never-never. The patch, which consists of synchronizing the

bank-switch to the position of the raster beam, does fix the problem,

but I have no notion why and would love to hear from someone who

does.

The unpatched code works correctly on a number of other 64s that 1

have tried. Mine is a standard-issue machine except that it has a

Cockroach TurboROM installed for fast disk operations. It seems

unlikely that the Cockroach is the cause of the bug, which occurs

whether or not the fast DOS routines are enabled, but perhaps it's not

impossible. If anyone out there wants to test and report on the

following code, particularly if you also have a Cockroach ROM

installed, I'd be interested to hear what comes of it:

Ida $ddO2 ;set up CIA #2 DDR

ora #3

sta $ddO2

loop Ida SddOO ;switch to bank 3

and #$fc

sta SddOO

Ida SddOO ;switch to bank 0

ora #3

sta SddOO

Ida $028d ;exit if SHIFT down

beq loop

rts

If you don't have the bug, this routine will just make your screen go

bananas till you press SHIFT. If you do have the bug, something else

will happen.

Back to graphing: the print command GPRINT in the GRAPHCMDS

module is set up, as I mentioned above, for the Epson MX-80, and

won't work on anything not compatible with that machine. If you

want to drive another printer with this module, however, there's no

reason why another version of GPRINT couldn't be dropped into the

module. Because another printer might need more code than Paul

required for his MX-80 (the 6 by 7 print-head matrix of the 1525/

MPS801, for example, is a bit tricky to write hi-res dumps for) I have

left some unused program lines that you can spill over into if

necessary (14614 to 14998).

Just so the news, when it finally breaks, won't come as a life-

threatening shock, 1 would like to officially start the rumour now that

next issue's TransBASIC column will be announced as the last of the

series. You don't have to believe it if you don't want to, but it just

might be true. See you then.

New Commands

PLOT (Type: Statement Cat *: 175)

Line Range: 12694-12972

Module: GRAPHCMDS

Example: PLOT X,Y

This statement sets the specified pixel in the hi-res drawing area. The

pixel is cleared if erase mode has been selected. X and Y can range

from 0 to 319 and 0 to 399 respectively.

GCLR (Type: Statement Cat *: 176)

Line Range: 12974-13016

Module: GRAPHCMDS

Example: GCLR

The hi-res drawing area is erased.

GCOL (Type: Statement Cat #: 177)

Line Range: 13018-13036

Module: GRAPHCMDS

Example: GCOL 16*6+14

The hi-res foreground and background colours are set by this com

mand. The foreground colour is set by the upper nybble of the

parameter, and the background colour is set by the lower nybble.

UPPER (Type: Statement Cat *: 178)

Line Range: 13038-13094

Module: GRAPHCMDS

Example: UPPER

The upper portion of the hi-res drawing area is displayed (y-

coordinates 200 through 399).

LOWER (Type: Statement Cat *: 179)

Line Range: 13042-13094

Module: GRAPHCMDS

Example: LOWER

The upper portion of the hi-res drawing area is displayed (y-

coordinates 200 through 399).

DEFAULT (Type: Statement Cat*: 180)

Module: GRAPHCMDS

Example: DEFAULT

The screen is restored to the default text mode, with the ROM's

uppercase/lowercase character set, and screen memory at $0400.

LINE (Type: Statement Cat *: 181)

Line Range: 13114-13548

Module: GRAPHCMDS

Example: LINE X1,Y1,X2,Y2

A line is drawn between the specified coordinates using the pattern set

in the last PATTERN command. The default pattern is $FF (a solid

line).

SLINE (Type: Statement Cat *: 182)

Line Range: 13096-13548

Module: GRAPHCMDS

Example: SLINE XL,YL,XH,YH

A line is drawn between the specified coordinates using a single-

dotted pattern (1 dot on, 1 dot off). This has the effect of setting the first

PATTERN parameter to $55.

DLINE (Type: Statement Cat *: 183)

Line Range: 13100-13548

Module: GRAPHCMDS

Example: DLINE X1,Y1,X2,Y2

A line is drawn between the specified coordinates using a double-

dotted pattern (2 dots on, 2 dots off)- This has the effect of setting the

first PATTERN parameter to $33.

Th© TtansQCior 16 Nov. 1986: Volume 7, Issue O3

NUNE (Type: Statement Cat #: 184)

Line Range: 13104-13548

Module: GRAPHCMDS

Example: NLINE XL,YL,XR,YR

A solid line is drawn between the specified coordinates. This has the

effect of setting the first PATTERN parameter to $FF.

QLINE (Type: Statement Cat *: 185)

Line Range: 13108-13548

Module: GRAPHCMDS

Example: QLINE X1,Y1,X2,Y2

A line is drawn between the specified coordinates using a quadruple-

dotted pattern (4 dots on, 4 dots off). This has the effect of setting the

first PATTERN parameter to $0F.

CHAR (Type: Statement Cat #: 186)

Line Range: 13550-13956

Module: GRAPHCMDS

Example: CHAR X,Y,CHR$(5)+ "GUMBOOT"

The string is printed at the specified location in the hi-res drawing

area. Most control characters are ignored. However, the cursor control

characters have their normal effects, and the following have special

meanings, as follows:

CHR$(18) (CTRL-9) Reverse on

CHR$(146) (CTRL-0) Reverse off

CHR$(31) (CTRL-7) Uppercase/lowercase

CHR$(30) (CTRL-6) Uppercase/graphics

CHR$(144) (CTRL-1) Erase mode on

CHR$(5) (CTRL-2) Erase moe off

Note that the last two of these are equivalent to setting the erase mode

with the ERASE command in this module.

SCHAR (Type: Statement Cat #: 187)

Line Range: 13958-14094

Module: GRAPHCMDS

Example: SCHAR 141,277,5

A special character (specified as the third parameter) is drawn at the

specified coordinates. The special characters are either 3 by 3 or 5 by 5

pixels in size. Those available are:

a 5 by 5 diagonal cross (x shape)

a 5 by 5 orthogonal cross (+ shape)

a 5 by 5 hollow square

a 5 by 5 hollow diamond

a 3 by 3 diagonal cross

a 3 by 3 orthogonal cross

a 3 by 3 hollow square

a 3 by 3 hollow diamond

a 5 by 5 solid square

a 5 by 5 solid diamond

a 3 by 3 solid square

#11: a 3 by 3 solid diamond

BAR (Type: Statement Cat *: 188)

Line Range: 14122-14220

Module: GRAPHCMDS

Example: BAR X1,Y1,X2,Y2

Plots (or clears, in erase mode) a bar in the area bounded horizontally

by XI and X2, and vertically by Yl and Y2. The bar is drawn with the

pattern last set by the PATTERN command. The default pattern is solid

(both parameters $FF).

#0

#\

n

#3

#4

#5

*6

*7

#8

#9

*10

SBAR (Type: Statement Cat #: 189)

Line Range: 14096-14220

Module: GRAPHCMDS

Example: SBAR X1 ,Y1 ,X2,Y2

A bar is drawn in the specified region using a single-dotted pattern

(one dot one, one dot off). This command sets the pattern parameters

to $55 and $AA.

DBAR(Type: Statement Cat #: 190)

Line Range: 14104-14220

Module: GRAPHCMDS

Example: DBAR X1.Y1 ,X2,Y2

A bar is drawn in the specified region using a double-dotted pattern

(two dots one, two dots off). This command sets the pattern parame

ters to $33 and $99.

NBAR (Type: Statement Cat *: 191)

Line Range: 14112-14220

Module: GRAPHCMDS

Example: NBAR X1,Y1,X2,Y2

A solid bar is drawn in the specified region. This command sets the

pattern parameters to $FF and $FF.

GSAVE (Type: Statement Cat *: 192)

Line Range: 14222-14384

Module: GRAPHCMDS

Example: GSAVE " BIG-GRAPHS"

The drawing area (or the portion of it specified in the SIZE command)

is saved as a sequential file to drive 0, unit number 8. The characters "

.g" are appended to the first fourteen characters of the specified

filename. The two hi-res screens that make up the drawing area are

stored contiguously in the file, which can hence be easily re-

examined only with the GLOAD command. The GSAVE routine

makes use of logical file *2 and secondary address #2 — make sure

these are available before attempting a save.

GLOAD (Type: Statement Cat *: 193)

Line Range: 14230-14440

Module: GRAPHCMDS

Example: GLOAD "HUGE-GRAPHS"

This restores a saved graph to the drawing area from drive 0, unit

number 8. If only a portion of the screen was saved to this file, the

GCLR command should be given before reloading. As with GSAVE,

logical file #2 and secondary address #2 must not be currently in use

when this command is given.

SIZE (Type: Statement Cat#: 194)

Line Range: 15008-15068

Module: GRAPHCMDS

Example: SIZE 240

An upper boundary is set in the hi-res drawing area, for use by the

GSAVE and GPR1NT commands. The boundary is set as a y-

coordinate (up to 399, which is also the default). The specified number

is then rounded up to the nearest 4-character (32 scan-line) boundary

for actual use. The purpose of this command is to save disk space and

printing time when part of the drawing-area is unused.

LMAR (Type: Statement Cat*: 195)

Line Range: 15000-15006

Module: GRAPHCMDS

Example: LMAR N

The printer left margin is set to N columns. The default is 11.

Th© Ttansoctor 17 Nov. 1986: Volume 7, Issue O3

GPRINT (Type: Statement Cat*: 196)

Line Range: 14442-14612

Module: GRAPHCMDS

Example: GPRINT

The current drawing area (to the limit set

by the SIZE command) is printed to an

Epson MX-80 print. Logical file #3 is used

by this command, and must be available

when the command is issued.

ERASE (Type: Statement Cat *: 197)

Line Range: 15070-15082

Module: GRAPHCMDS

Example: ERASE 0

If this command is given with a non-zero

parameter, erase mode is turned on. This

results in all drawing commands clearing

the affected pixels instead of setting them.

Erase mode is turned off by using a zero

parameter, as in the example.

PATTERN (Type: Statement Cat *: 198)

Line Range: 15084-15154

Module- GRAPHCMDS

Example: PATTERN N1.N2

The plot patterns are set for the BAR and

LINE commands. LINE uses only the first

of the two patterns; BAR uses both. For

BAR, the Nl parameter is applied verti

cally, and the N2 parameter horizontally.

The patterns effectively create a mask

over the region being drawn to: bits that

are set to 1 in the mask will be affected

(set or cleared, according to the erase

mode), while 0 bits are not affected. The

default patterns are $FF and $FF, select

ing all bits.

Editor's Note

This incredibly huge TransBASIC module

is listed here only for reference. Although

the Verfizer codes are shown, I'll be

shocked to find out someone actually

entered it by hand. My apologies for the

type size - it's the only way we could

justify including it.

Cl

FH

MP

HH

MN

JH

FF

LH

BO

NH

AF

KD

IG

CL

IH

IB

DB

MD

GF

GK

OK

AB

KB

OB

NN

IC

JM

IJ

OM

GH

Jl

OD

KC

GM

BN

AN

FG

LM

JG

FN

01

AJ

MA

BH

ON

HM

NH

AM

FJ
pn
UU

GD

NA

IE

NG

KE

Nl

KF

CB

OK

EJ

Ml

GB

MB

PE

ID

JK

EP

CP

AH

AJ

LH

IF

JG

MA

IP

LK

HG

GM

GA

El

NP

NK

PK

HF

NO

PH

NO

OL

NM

KJ

AG

IB

OJ

HA

CK

JM

LM

DM

Program 1

0 rem graphcmds (paul adams)

1 :

2 rem 24 statements, 0 functions

3:

4 rem keyword characters: 113

5:

6 rem keywords #175 to #198

7:

8 rem = = =

9:

39 setlfs

40 setnam

41 open

42 chkin

43 close

44 clrchn

45 getin

46 chkout

47 chrout

48;

49tmp

50 tmp2

51 tmp3

52 tmp4

400 .asc "

401 .asc "

402 asc "

403 .asc '

404 .asc "

405 .asc "

406 .asc "

= $ffba

= $ffbd

= $HcO

= $ffc6

= $tfc3

= Sffcc

= $ffe4

= $tfc9

= $tfd2

$57 ;morezp storage

= $59

= $5a

= $5c

ploTgclRgcoLuppeR"

loweRdefaulTlinE"

slinEdlinEnlinE"

qlinEchaRschaR'

baRsbaRdbaRnbaR"

gsavEgloaDsizE'

ImaRgprinTerasE'

407 asc ' patterN

1400 .word plo-1,gcl-1.gco-1,uppe-1

1401 wordlowe-1,deflt-1,plin-1

1402 .word slin-1 ,dlin-1 ,nlin-1

1403 .word qlin-1,cha-1,scha-1

1404 .word bba-1,sba-1,dba-1,nba-1

1405 wordgsav-1,gloa-1,siz-1

1406 .word lma-1,gprin-1,eras-1

1408 word patt-1

2620 usfp

2622

2624

2626

2628

2630

2632

2634;

Idx #0

stx $0d

sta $62

sty $63

Idx #$90

sec

jmp $bc49

3694 powers.byte 1,2,4,8,16,32,64,128
OCQC .
ooyo i

12694 plo jsr get2 ;read x,y params

12696plo1 sec ;entry

12698 Ida #$8f ;redef y, ty = 399-y

12700

12702

12704

12706

12708

12710

12712

sbc y

sta ty

Ida #1

sbc y + 1

sta ty + 1

bcs plo2 ;y>399 - too big

rts

12714 plo2 Idx #$c0 ;set base to upper

12716

12718

12720

12722

12724

Idy #$c0 ; or lower hi-res

Ida y + 1 ;base = $a000 (upper)

bne plo3 ;base = $c0c0 (lower)

Ida #$c7 ;lowery = 0-199

cmpy ;uppery = 200-399

12726 bcs plo4

12728plo3 Idx #0

12730 Idy #$a0

12732 plo4 stx tmp

12734

12736

12738

12740

12742

12744

12746

12748

sty tmp +1

Idx x ;test x<320

Ida x + 1

beq plo5 ; yes

cmp#1

bne plo2 ; no

cpx #$40

bcs plo2 ; no

12750plo5 ror ;dividexby8

12752

12754

12756

12758

12760

12762

12764

12766

12768

12770

12772

12774

12776

12778

12780

12782

12784

12786

12788

txa

ror ;3 left with hi bit

Isr

Isr

sta col ;column number

txa ;find bit # in col

and #7

eor #7 ;calc7-(bit#)

tax ;conv to bit mask

Ida powers.x ; in bitp

sta bitp

Idx ty ;find row and line

Ida ty + 1

ror

txa ; divide by 8

ror

Isr

Isr

sta row ;row number

LJ

NL

BP

AM

PK

Al

KE

GB

FF

JL

NP

KL

FJ

MH

ED

DH

LD

BP

PK

JL

GK

NL

EN

OG

KA

BA

OC

EK

HK

Al

DM

NH

AN

AJ

HA

NM

GL

HE

HN

FK

BJ

DA

LD

KC

HO

PE

MK

NO

PI

HN

to

EF

KN

JN

JH

CN

EF

AO

GC

NN

ML

KP

KO

FB

OA

BA

PK

EP

GO

EA

ML

KA

GJ

LJ

JO

EA

MH

IA

IF

HC

AM

GC

EP

Dl

BF

OM

AD

ON

Ol

GJ

CC

EO

FF

HJ

JA

HO

HF

FK

OL

12790

12792

12794

12796

12798

12800

12802

12804

12806

12808

12810

12812

12814

12816

12818

12820

12822

12824

12826

12828

12830

12832

12834

12836

12838

12840

12842

12844

12846

12848

12850

12852

12854

12856

12858 plo6

12860

12862

12864

12866

12868

12870

12872

12874

12876

12878 plo7

12880

12882

12884 plo8

12886

12888

12890
1 9RQ9I C-Oac.

12894 plo9

12896

12898 plo 10

12900

12902

12904plo11

12906;

12908cmltad

12910

12912

12914

12916;

12918 mltadd

12920

12922

12924

12926;

12928 add

12930

12932

12934

12936

12938

12940

12942

12944

12946;

12948 get2

12950

12952

12954

12956

12958

12960

12962

12964

12966

12968

12970

12972;

12974 gel

12976

12978

12980

12982

12984

12986

12988 gch

txa

and #7

sta rast

Ida row

Idx #6

jsr cmltad

Idx #2

jsr mltadd

Ida col

Idx #3

jsr cmltad

Idy #0

sty tmp2

Ida rast

jsr add

sei

Ida 1

and #$fc

sta 1

Ida (tmp),y

eor erflg

ora bitp

eor erflg

sta (tmp),y

Ida 1

ora #3

sta 1

cli

Idy $ddOO

Ida $028d

tax

and #2

beq plo7

jsr deflt

Ida $028d

tax

and #2

bne plo6

tya

and #3

cmp#3

beq plo11

eor #1

bec plo9

txa

and #4

beq plo11

Ida $028d

and #4

bne plo8

tya

dnu fro

bne plo10

jmp uppe

cmp#1

bne plo11

jmp lowe

rts

pha

Ida #0

sta tmp2

pla

asl

rol tmp2

dex

bne mltadd

pha

clc

adc tmp

sta tmp

Ida tmp2

adc tmp +1

sta tmp +1

pla

rts

jsr $ad8a

jsr $aefd

jsr comx

jsr $b7t7

sty x

sta x + 1

jsr $ad8a

jsr corny

jsr $b7f7

sty y

sta y+1

rts

Ida #$bf

sta t3

Ida #$ff

sta t5

Idx #$20

Idy #$40

Ida #0

pha

Jinc! line number

;add row.2t6 to

; base

;addrow.2t(6 + 2)

; for total row.320

;add col.(2t3)

;.y is index later

;disable irq

;switch out roms

;get byte to change

; invert if erasing

;add point

; invert if erasing

;write to screen

;switch in roms

;enable irq

;get current screen

;test logo key

;(save shift reg)

; not pressed

;text screen on

;wait for release

; not released

;get old screen

;test text

;yes

;switch screens

;branch always

;test Ctrl key

; not pressed

;wait for release

;switch screens
■foot \A/hir^h orrn r^niifc?bL winon bun] un

; not lower

;turn on upper scrn

; not upper

;turn on lower scrn

;entry to pre-clear

;tmp2

;mult by 2t(xreg)

;high bytetmp2

;low byte .a

;save low byte

;add to tmp

;restore low byte

;get numeric arg

;check comma

;check range

;conv to integer

;save 1st word

;get2ndarg

;check range

;conv to integer

;save 2nd word

;clear 32 pages

; of memory at

; $a000 and $e000

; (upper and lower

; hi-res screens)

;incompl. top page

;entry from gcol

The Transoctof 18 Nov. 1986: Volume 7, tetue O3

CG

OB

EC

ME

KD

GF

OF

HM

LO

BP

Jl

PM

CM

OE

BC

FD

PF

BB

HD

NH

FD

KM

OL

CG

JF

LM

CF

PM

NL

MA

BN

IN

CB

ON

EN

GO

GB

EO

DK

IJ

GJ

AO

FD

00

EC

GK

GA

CJ

LA

AA

JO

FJ

MJ

MN

FA

KE

JA

OK

NA

KD

KL

OK

GB

NM

GG

EN

GN

PG

CN

IA

MG

GD

PN

MH

LK

NK

GN

EO

LB

PH

FE

BP

Kl

FP

HP

FJ

LN

OC

CJ

FK

DA

CA

OK

MA

FO

FP

HP

OA

1 NG

12990

12992

12994

12996

12998 gcl2

13000

13002

13004

13006

13008

13010

13012

13014

13016;

13018 gco

13020

13022

13024

13026

13028

13030

13032

13034

13036;

13038 uppe

13040

13042 lowe

13044

13046 deffl

13048

13050

13052

13054

13056

13058

13060

13062

13064

13066

13068 def1

13070

13072

13074

13076

13078

13080

13082

13084;

13086 scrdat

13088

13090

13092

13094;

13096 slin

13098

13100 dim

13102

13104 nlin

13106

13108 qlin

13110

13112;

13114 plin

13116

13118

13120

13122

13124

13126

13128

13130

13132

13134

13136

13138

13140

13142

13144

13146

13148

13150

13152

13154

13156

13158

13160

13162

13164

13166

13168

13170

13172

13174

13176

13178

13180

13182

13184

13186

Ida

sta

sta

pla

day

sla

sta

bne

dec

dec

dex

bne

rts

jsr

Ida

sta

Ida

sta

txa

Idx

Idy

bne

Idx

#0

t2

.4

(t2).y

(t4).y

gcl2

t3

15

goia

$b79e

#$8f

t3

#$cf

t5

#4

#$e8

gch

#0

byte$2c

Idx #3

byte$2c

Idx

Ida

sta

inx

Ida

sta

Ida

ora

sla

mx

sei

Ida

bne

Ida

and

ora

sla

Cll

rts

m ,

#6

scrdat, x

$dO11

scrdat,x

$dO18

$ddO2

#3

$ddO2

$dO12

def1

SddOO

#$fc

scrdat, x

SddOO

; routine (below)

;get arg

;fill 4 pages of

; memory at

; $8c00 and $cc00

; (upper and lower

; video matrices)

;branch always

;display upper scr

;display lower scr

;display deflt scr

compensate lor

; hardware bug C?)

.byte$3b.$38,$01 ;upper

.byte$3b,$38,$00 ;lower

.byte$1b,$17,$03 ;default

Ida #$55

byte $2c

Ida #$33

.byte$2c

Ida #$fl

.byte$2c

Ida

sta

jsr

jsr

jsr

Idx

Idy

jsr

jsr
sty

sta

jsr

jsr

jsr

Idx

Idy

jsr

jsr

sty

sta

jsr

jsr

jsr

Idx

Idy

jsr

jsr

sty

sta

Ida

Idy

jsr

Ida

Idy

jsr

Idx

Idy

jsr

jsr

#$0t

dot

Sad8a

$aefd

comx

#<yo

#>yo

$bbd4

$b7f7

x1

x1 + 1

$ad8a

$aefd

corny

#<tmpf

#>tmpf

$bbd4

$b7f7

yi
y1 + 1

$ad8a

$aefd

comx

#<xo

#>xo

$bbd4

$b7f7

x2

x2 + 1

#<xo

#>xo

$bba2

#<yo

#>yo

$b850

#<dx

#>dx

$bbd4

$ad8a

;single dotted

;double dotted

;solid

;quad dotted

;get x1 arg

;check comma

;check range

;x1 to yo temp

;conv to integer

;get y1 arg

;check comma

;check range

;y1 totmpftemp

;conv to integer

;get x2 arg

;check comma

;check range

;x2 to xo temp

;recall x2

;mem-fac, x1-x2

;store dx

;get y2 arg

AL

MB

JB

KL

IB

BF

FL

HM

FC

FC

FJ

DP

MA

LB

NB

ED

FP

BH

FM

DC

KO

EF

GF

OK

BL

PA

JE

EA

EP

CF

HH

DF

FF

MG

BM

DE

GO

PB

PJ

DP

BF

FB

Cl

El

KN

GB

EH

KJ

MC

DO

BE

GK

Al

Cl

JJ

MO

NG

AB

AG

DF

FF

BJ

BC

PH

CC

HM

FA

DG

MF

JE

NK

HP

NO

DC

HB

PP

CA

MM

KD

IL

CC

KA

NA

LG

IL

GN

PF

OP

OM

HL

HI

El

CO

CL

FH

DN

FK

PL

EN

13188

13190

13192

13194

13196

13198

13200

13202

13204

13206

13208

13210

13212

13214

13216

13218

13220

13222

13224

13226

13228

13230

13232

13234

13236

13238

13240

13242

13244

13246

13248

13250

13252

13254

13256 Iin1

13258

13260

13262

13264

13266

13268

13270

13272

13274

13276

13278

13280

13282

13284

13286

13288

13290

13292

13294

13296

13298 Iin2

13300

13302

13304

13306

13308

13310

13312

13314

13316

13318

13320

13322

13324

13326

13328

13330

13332

13334 Iin3

13336

13338

13340

13342

13344

13346

13348

13350

13352

13354

13356 Iin4

13358

13360

13362

13364

13366

13368

13370

13372

13374

13376

13378

13380

13382

13384

jsr

Idx

Idy

jsr

Jar

sty

sta

Ida

Idy

jsr

Ida

Idy

jsr

Idx

Idy

jsr

Ida

beq

Ida

Idy

jsr

Idx

Idy

jsr

Ida

Idy

jar
jsr

Ida

Idy

jsr

Idx

Idy

jsr

Ida

Idy

jsr

Ida

beq

Ida

Idy

jsr

Idx

Idy

jar

Ida

Idy

jsr

jsr

Ida

Idy

jsr

Idx

Idy

jsr

Ida

Idy

jer

Isr

Idx

Idy

jsr

Ida

Idy

jsr

Isr

Ida

Idy

jsr

bmi

Ida

bmi

jsr

Ida

sta

Ida

sta

Ida

bne

Ida

sla

Ida

sla

jmp

Idy

Ida

sly

sta

Idx

sec

isr
Ida

Idy

jsr

Ida

Idy

jsr

jsr

jsr

corny

#<xo

#>xo

$bbd4

$b7f7

y2
y2 + 1

#<xo

#>xo

$bba2

#<tmpf

#>tmpf

$b850

#<dy

#>dy

$bbd4

$61

Iin1

#<dx

#>dx

SbbOf

#<sx

#>sx

$bbd4

#<tmpf

#>tmpf

$ba28

$bfb4

#<yo

#>yo

$b867

#<xo

#>xo

$bbd4

#<dx

#>dx

$bba2

$61

Iin2

#<dy

#>dy

$bbOf

#<sy

#>sy

$bbd4

#<yo

#>yo

$ba28

$bfb4

#<tmpf

#>tmpf

Sb867

#<yo

#>yo

$bbd4

#<dx

#>dx

$bba2

$66

#<tmpf

#>tmpf

$bbd4

#<dy

#>dy

$bba2

$66

#<tmpf

#>tmpf

$bc5b

Iin7

dy + 1

Iin3

swap

yi
y

y1 +1

y + 1

dy

Im4

x1

X

X1+1

x + 1

Iin6

y

y+1

S63

$62

#$90

$bc49

#<sx

#>sx

$ba28

#<xo

#>xo

$b867

$b849

$b7f7

;check range

;y2toxotemp

;conv to integer

;recall y2

;mem-fac, y1-y2

;store dy

;fac exponent

;fac = O

;mem/fac, dx/dy

;store slope, sx

;fac = fac»tmpf = sx*y1

;fac = -sx.y1

;fac = x1-sx»y1

;store xo

;dx to fac

;fac exponent

;fac = O

;mem/fac, dy/dx

;store slope, sy

;fac = fac»yo = sy<x1

;fac = -sy<x1

;fac = y1-sy»x1

;store yo

;dx to fac

;abs(fac)

;store abs(dx)

;dy to fac

;fac = abs(fac)

;test dy<dx

;yes

;m1 of dy

;y1-y2<0

;y-yi

;checkdy = 0

;setx = x1

; plot point, exit

;convy to float

;y«sx

;xo + y*sx = y

;add 0.5

;conv to integer

IK

BD

IP

LJ

OH

GD

HB

CM

JJ

EB

IH

IC

MH

EE

AO

OF

DE

HH

MG

EF

HF

CA

NB

KF

IM

GC

BP

IL

GB

EO

PP

FD

JO

CH

ID

GN

NL

OG

GF

BA

GN

GE

MM

HG

AN

Gl

MB

LE

AP

EL

CP

HG

IP

LG

CO

EK

AD

FJ

CK

GD

JE

BE

GB

OD

IF

LE

EE

Dl

HM

AD

EO

HG

AC

CF

NP

MC

NK

El

CO

HK

OD

CG

JB

Bl

PM

BO

Dl

GN

Bl

HM

IB

OG

GL

LA

FE

AB

AH

HM

AB

13386

13388

13390

13392

13394

13396

13398

13400

13402

13404 Iin5

13406

13408

13410

13412 Iin6

13414 Iin7

13416

13418

13420lin8

13422

13424

13426

13428 Iin9

13430

13432

13434

13436

13438

13440

13442

13444

13446

13448

13450

13452

13454

13456

13458

13460

13462

13464

13466

13468 lin10

13470

13472

13474

13476 tini 1

13478;

13480 swap

13482swa1

13484

13486

13488

13490

13492

13494

13496

13498;

13500f320

13502f400

13504;

13506 comx

13508

13510

13512;

13514 corny

13516

13518;

13520chek

13522

13524

13526

13528 chel

13530che2

13532;

13534dplot

13536

13538

13540

13542

13544

13546

13548;

13550cha

13552

13554

13556

13558

13560 cha1

13562

13564

13566

13568

13570

13572

13574

13576cha2

13578

13580

13582

sty x

sta x + 1

jsr dplot

Ida y + 1

cmp y2 +1

bne Iin5

Ida y

cmpy2

beq Iin6

inc y

bne Iin4

inc y+1

bne Iin4

jmp plol

Ida dx + 1

bmi line

jsr swap

Ida x1

sta x

Ida x1 +1

sta x + 1

Idy x

Ida x + 1

jsr usfp

Ida #<sy

Idy #>sy

jsr $ba28

Ida #<yo

Idy #>yo

jsr $b867

jsr $b849

jsr $b7f7

sty y

sta y+1

jsr dplot

Ida x + 1

cmp x2 + 1

bne lin 10

Ida x

cmpx2

beq Iin11

inc x

bne Iin9

inc x + 1

bne Iin9

jmp plol

Idx #3

Idy x1,x

Ida x2,x

sta x1 ,x

tya

sta x2,x

dex

bpl swa1

rts

;plot dotted point

;testy = y2

; no

;yes

increment y

;plot last point

;m1 of dx

;x1-x2<0

;x = x1

;conv x to float

;x.sy

;yo + x.sy = x

;add0.5

;conv to integer

; plot dotted point

;test x = x2

; no

; yes

increment x

;plot last point

;swapx1-x2, y1-y2

byte $90,$20,$00,$00,$00

byte $90,$48,$00,$00,$00

Ida #<f320

Idy #>f320

bne chek

Ida #<f400

Idy #>(400

Idx $66

bmi chel

jsr $bc5b

bpl che2

rts

jmp $b248

ror dot

php

rol dot

pip

ror dot

bcc chel

jmp plol

jsr get2

jsr $aefd

jsr $ad9e

jsr $b6a3

sta len

Idy #0

Ida ($22),y

tax

and #$7f

cmp #$20

txa

bcs cha6

Idy #9

cmp ctrls.y

beq cha3

dey

bpl cha2

;test x range

;test y range

/illegal qty'

;plot dotted line

; (rotate pattern

; register, don't

; plot if low

; bit clear.)

;get x,y location

;check comma

;eval expression

;make descriptor

;store length

;get character

;# of Ctrl chars

;ctrl char idem

The Transactor 19 Nov. 1986: Volume 7, tetue O3

IB

CB

PL

BO

HG

IH

FC

OH

PF

BA

Al

MJ

BH

JD

CK

IH

HI

IK

LC

BB

KH

JD

KE

EL

PH

NB

JK

KD

AO

GD

CM

BK

LC

LE

MC

CE

OM

CE

HD

AL

LH

IN

GO

BE

BG

El

CO

GG

GJ

KC

IC

HP

BL

FE

FF

FO

FP

BF

KP

OH

JA

OD

ML

JF

GB

MB

EO

KB

GO

OE

DF

KK

EP

OB

KB

NJ

HK

JB

CO

El

FB

PC

FN

Nl

Fl

OL

JC

BK

HJ

EK

OD

CE

FL

GE

PO

MK

OJ

HI

CL

13584

13586 cha3

13588

13590

13592

13594

13596

13598

13600

13602 cha4

13604 cha5

13606;

13608ctrls

13610

13612;

13614 ccrtns

13616

13618;

13620ccr

13622

13624ccl

13626

13628

13630;

13632 ccrx

13634

13636 ecu

13638

13640 ccul

13642

13644;

13646 cce

13648

13650 ccex

13652

13654

13656;

13658 ccdn

13660

13662ccup

13664

13666 ;

13668 cert

13670

13672 celt

13674

13676;

13678cha6

13680

13682

13684

13686

13688

13690

13692

13694 cha7

13696

13698

13700

13702 cha8

13704

13706

13708

13710

13712cha9

13714

13716

13718

13720 cha10

13722

13724

13726

13728

13730

13732

13734

13736

13738

13740

13742

13744 cha11

13746

13748

13750

13752

13754

13756

13758

13760

13762

13764

13766

13768

13770

13772

13774 cha12

13776

13778

13780

bmi cha4

tya

asl

tax

Ida ccrtns,x

sta t2

Ida ccrtns +1

sta t3

jsr cha5

jmp cha20

jmp (t2)

;unknown Ctrl char

;get routine addr

,x

.byte$12,S92,$1f

.byte $05,$11 $1d,$91,$9d

.word ccr,ccrx,ccl,ccu,cce

.word ccex,ccdn,cert,ccup,celt

Ida #4

.byte $2c

Ida #8

ora choff

bne ccul

Ida #$db

.byte $2c

Ida #$d7

and choff

sta choff

rts

Ida #$ff

.byte$2c

Ida #0

sta erflg

rts

Ida #$f8

.byte $2c

Ida #8

jmp yoff

Ida #8

.byte $2c

Ida #$f8

jmp xoff

and #$e0

emp #$60

bne cha7

txa

sec

sbc #$20

lax

bne cha9

emp #$80

and #$40

bee cha8

adc #$3f

sta t2

sec

txa

sbc t2

tax

Ida #0

sta tmp

txa

Idx #3

asl

rol tmp

dex

bne cha10

sta tmp4

Ida choff

clc

adc tmp

sta tmp4 +1

Ida #$f9

jsr yoff

Idy #7

sei

Ida 1

and #$fb

sta 1

Ida (tmp4),y

tax

Ida 1

ora #4

sta 1-

cli

tya

pha

txa

pha

Idx #7

pla

asl

pha

bec cha17

; reverse on

;upper/lowercase

;reverseoff

;uppercase/graphics

;erase on

;erase off

;cursor down

;cursor up

;add offset

;cursor right

;cursor left

;add offset

;retain bits 5-7

;test $60-$7f

; no

; branch always

;subtr $40 for

; either b6 or b7

;set

; clear for rotate

;get scr code

;times8

;save carry

;scr code offset

;add high offset

;hi byte offset

;set offset

;y=y-7
;char byte counter

;block interrupts

;i/o ram out

;save char byte

;i/o ram in

;enable interrupts

;save byte counter

;save char byte

;char bit counter

;rstr char byte

;bit to carry

;save char byte

;skip if bit = 0

ON

NN

OP

NC

KD

OE

JC

HC

DE

HB

GF

ED

IP

HP

EC

HE

OC

PH

IF

HB

NF

OD

HI

OE

FB

JN

AP

PO

JN

JE

NG

LP

ID

AJ

MA

HN

NO

LN

EE

DJ

FF

PA

DF

HN

FH

CF

IG

FE

PN

KA

BG

AC

PM

GL

II

OP

DH

LE

FC

PE

CN

IN

IM

FM

IA

GF

AK

FP

DE

ME

IN

MK

AC

GJ

NG

HE

DH

EP

KP

KO

KO

LC

JH

CM

IB

GG

OG

KP

AC

JB

JC

BL

NC

ML

IP

IE

MP

EM

GM

13782

13784

13786cha13

13788

13790

13792

13794

13796cha14

13798

13800

13802

13804

13806

13808

13810cha15

13812

13814

13816

13818

13820cha16

13822

13824

13826

13828

13830

13832

13834

13836

13838

13840cha17

13842

13844

13846

13848

13850cha18

13852

13854

13856

13858

13860

13862

13864

13866

13868

13870cha19

13872

13874 cha20

13876

13878

13880cha21

13882

13884

13886 cha22

13888;

13890 xoff

13892

13894

13896

13898

13900 xof1

13902

13904

13906;

13908 xoff2

13910

13912

13914

13916

13918

13920

13922;

13924 yoff

13926

13928

13930

13932

13934 yof1

13936

13938

13940;

13942yoff2

13944

13946

13948

13950

13952

13954

13956;

13958scha

13960

13962

13964

13966

13968

13970

13972

13974

13976

13978

Ida x + 1

bmi cha14

Ida #$fe

sta tmp

Ida #$c0

jsr xoff2

bpl cha13

Ida #1

sta tmp

Ida #$40

jsr xoff2

bmi cha14

Ida y+1

bmi cha16

Ida #$fe

sta tmp

Ida #$70

jsr yoff2

bpl cha15

Ida #1

sta tmp

Ida #$90

jsr yoff2

bmi cha16

txa

pha

jsr plol

pla

tax

dex

bmi chalB

Ida #1

jsr xoff

jmp cha12

pla

pla

tay

dey

bmi cha19

Ida #$f9

jsr xoff

Ida #1

jsr yoff

jmp cha11

Ida #1

jsr xoff

inc $22

bne cha21

inc $23

dec len

beq cha22

jmp cha1

rts

pha

emp #$80

bes xof1

Ida #0

.byte$2c

Ida #$ff

sta tmp

pla

clc

adc x

sta x

Ida tmp

adc x + 1

sta x + 1

rts

pha

emp #$80

bes yof1

Ida #0

.byte$2c

Ida #$ff

sta tmp

pla

clc

adc y

sta y

Ida tmp

adc y + 1

sta y + 1

rts

jsr get2

jsr $aefd

Ida #$fe

jsr xoff

Ida #$fe

jsr yoff

jsr $b79e

txa

sta tmp3

asl

asl

test x < 0

yes

subtract $0140

until x is neg

x = x-140

repeat while pos

add $140

until x is pos

x = x + 140

repeat while neg

test y<0

yes

subtract $0190

until y is neg

y = y-190

repeat while neg

add $0190

until y is pos

y = y + 190

repeat while neg

restore bit ctr

and save

plot single point

restore bit ctr

finished byte

set offset

x = x +1

get next bit

waste char (done)

byte counter

inished char

set offset

x = x-7

set offset

y = y + 1

get next byte

set offset

x = x +1

nc string ptr

decrement length

get next char

Dush offset

:est negative

yes

high byte 0

high byte $ff

add offset to x

push offset

test negative

yes

high byteO

high byte $ff

add offset to y

get x, y

check comma

set offset

x = x-2

set offset

y = y-2

char # to. x

save - mult x 5

x2

x2

CM

KH

GK

AP

Ml

NJ

CG

NP

LD

FJ

IH

Ol

AN

GH

MC

MJ

MF

ON

Bl

FE

GK

OJ

EE

Bl

IE

DC

JK

BK

MF

BK

Jl

MP

PL

AC

IF

PM

NA

DJ

DB

IN

KC

KN

GG

Al

NM

AG

BB

GP

FB

AB

CL

EP

JN

LM

EH

EA

JO

El

BG

NL

LP

Ml

DB

NH

DA

EJ

IF

NO

EF

NN

OJ

PC

MH

JD

MK

EB

MH

JF

IP

KJ

DO

AG

BN

HC

El

OD

LK

BD

LK

ED

HO

GN

DH

JD

Kl

BA

AF

CO

LA

13980

13982

13984

adc tmp3

sta tmp3

Idy #5

13986 sch1 Ida tmp3

13988

13990

13992

13994

tax

inc tmp3

Ida scx.x

Idx #5

13996 sch2 asl

13998

14000

14002

14004

14006

14008

14010

pha

bec sch5

Ida x+1

beq sch3

Ida x

emp #$40

bes sch5

14012 sch3 Ida y+1

14014

14016

14018

14020

beq sch4

Ida y

emp #$90

bes sch5

14022 sch4 txa

14024

14026

14028

14030

14032

14034

14036

14038

pha

tya

pha

jsr plol

pla

lay

pla

tax

14040sch5 Ida #1

14042

14044

14046

14048

14050

14052

14054

14056

14058

14060

14062

14064

14066

jsr xoff

pla

dex

bne sch2

Ida #1

jsr yoff

Ida #$fb

jsr xoff

dey

bne sch1

rts

; + 1

;save address

;byte counter

;restore address

;addr to .x

;incr addr

;get data byte

;bit counter

;bit to carry

;save byte

;no plot

;test x in bounds

; yes

; no

;test y in bounds

; yes

; no

;save counters

;plot x,y

;restore counters

;x = x+ 1

;restore byte

;decr bit counter

; next bit

;y = y+1

;x = x-5

; byte counter

; next byte

chars - 5 left bits of 5 bytes

14068 sex = .

14070

14072

14074

14076

14078

14080

14082

14084

14086

14088

14090

14092

14094

byte$88,$50,$20,$50,$88 ;5x5 x

byte$20,$20,$fc, $20,$20 ;5x5 +

byte$fc, $88,$88,$88,$fc ;5x5sqr

byte$20,$50,$88,$50,$20 ;5x5dmd

byte$00,$50,$20,$50,$00 ;3x3 x

byte$00,$20,$70,$20,$00 ;3x3 +

byte$00,$70,$50,$70,$00 ;3x3sqr

byte$00,$20,$50,$20,$00 ;3x3dmd

byte $fc, $fc, $fc,

byte$20,$70,$fc,

$fc, $fc ;5x5sqr

$70,$20 ;5x5dmd

byte$00,$70,$70,$70,$00 ;3x3sqr

byte$00,$20,$70,$20,$00 ;3x3dmd

14096 sba Idx #$55

14098

14100

14102

Ida #$aa

bne nb1

14104 dba Idx #$33

14106

14108

14110

Ida #$99

bne nb1

14112 nba Ida #$ff

14114 tax

14116 nb1 stx dot

14118

14120

sta Idot

14122 bba Ida dot

14124

14126

14128

14130

14132

14134

14136

14138

14140

14142

14144

14146

14148

14150

sta tmp3

Ida Idot

pha

jsr get2

sty y1

sta y1 +1

Ida x

sta x1

Ida x + 1

sta x1 +1

jsr $aefd

jsr get2

sty y2

sta y2 +1

14152 ba1 Idy y2

14154

14156

14158

14160

14162

Ida y2 + 1

sty y

sta y + 1

Ida tmp3

sta dot

14164 ba2 sec

14166

14168

14170

14172

14174

14176

Ida x

sbc x1

Ida x + 1

sbc x1+1

bee ba5

ror Idot

;single dot vert

;single line horiz

;double dot vert

;double line horiz

; no pattern

;save y pattern

;save x pattern

;get x1 ,y1

;store parameters

;check comma

;getx2,y2

;store y parameter

;x2 saved in 'x'

; in it y countdown

;restore y pattern

;test outer (x)

; loop complete

;yes

;rotate x pattern

The Transactor 2O Nov. 1984: Volume 7, Issue O3

DK

GD

ON

JO

OG

MG

CF

DK

KB

JG

HP

HL

FD

CD

JP

DG

HD

FP

JM

PD

GH

CA

AB

OB

JD

KA

HD

PJ

AB

DL

GE

FG

PI

HF

MD

KN

FH

Gl

JP

AM

IG

EJ

NG

CK

EE

Al

CO

AK

OJ

JC

DL

GB

AE

FO

PF

BG

DJ

AD

OD

DF

EK

AF

FK

Dl

BM

BF

KM

ID

LG

10

FN

AN

IE

1 ivi

EF

PM

IG

KG

LF

DC

JN

EK

Cl

AF

MO

DO

AB

IJ

PI

EC

JA

IP

AB

LF

MC

PD

HC

KB

KF

14178

14180

14182

14184

14186

14188 ba3

14190

14192

14194

14196

14198

14200

14202

14204

14206

14208 ba4

14210

14212

14214 ba5

14216

14218

14220;

14222 gsav

14224

14226

14228;

14230 gloa

14232

14234;

14236 gd1

14238

14240

14242

14244

14246

14248

14250 gd2

14252

14254

14256gd3

14258

14260

14262

14264

14266

14268 gd4

14270

14272

14274

14276

14278

14280

14282

14284

14286

14288

14290

14292

14294

14296

14298

14300

14302

14304

14306

14308gd5

14310

14312

14314

14316

14318

14320

14322

14324

14326

14328

14330gd6

14332 gd7

14334

14336

14338

14340

14342

14344

14346

14348

14350

14352

14354

14356

14358

14360

14362

14364

14366

14368

14370

14372

14374

php

rol Idot

pip
i or Idot

bcc ba4

sec

Ida y

sbc y1

Ida y+1

sbc y1+1

bcc ba4

jsr dplot

Ida #$«

jsr yoff

bcs ba3

Ida #$ff

jsr xoff

bcs ba1

pla

sta Idot

rts

Idx #0

Ida #"w"

bne gd1

Idx #1

Ida #"r-

sta gnsuf + 5

stx tmp2

jsr $ad9e

jsr $b6a3

cmp #$0f

bcc gd2

Ida #$0e

pha

tax

Idy #0

Ida ($22),y

; save low bit

; recover low bit

; complete rotation

;no draw if bit = 0

;test inner (y)

; loop complete

;yes

;draw if patt bit» 1

countdown y

;cc means y = -1

countdown x

;cc means x = -1

;restore x pattern

;save to disk flag

;'write'

;branch always

;load frm disk flag

;'read'

;eval filename

;make descriptor

;testlen> 14

; no

; max len

;save len

;counter

;get char

sta gfnam + 2,£opy to buffer

iny

dex

bne gd3

Idx #0

Ida gnsuf.x

;add '.g,s,r/w'

sta gfnam + 2,y

iny

inx

cpx #6

bne gd4

pla

clc

adc #8

Idx #<gfnam

Idy Ogfnam

jsr setnam

Ida #2

tay

Idx #8

jsr setlfs

jsr open

bcc gd5

cmp #4

bne gd8

Idy #0

sty tmp

Idx #2

Ida tmp2

bne gd9

jsr chkout

Ida hite

tay

jsr chrout

Ida hite + 1

jsr chrout

sta tmp + 1

sei

Ida 1

and #$fc

sta 1

Ida (tmp),y

pha

Ida 1

ora #3

sta 1

cli

pla

jsr chrout

Ida $90

bne gd8

iny

bne gd7

inc tmp + 1

beq gd8

Ida tmp + 1

cmp #$c0

bne gd7

Ida #$e0

;get length

; adjust

;lf#

;sec addr

;device #

;test filenotfound

; no - real error

;clr save startaddr

;file#

;save/load flag

;open output chan

;graph height

;lb addr counter

;hb addr counter

;disable irq

;switch out roms

;get byte to save

;switch in roms

;enable irq

;output byte

;check status

; exit condition

;top of upper block

;set lower block

LB

OE

LB

Jl

GK

AD

BF

GM

Ol

EO

OO

NG

MN

OL

KH

AA

CP

MP

CP

CP

KJ

Bl

DH

LF

MP

PD

JL

PN

GN

IJ

ED

IO

ON

NL

NC

EG

NL

DO

OD

KO

AF

IA

FM

FG

EF

LA

FL

ND

BN

BF

AB

MO

NO

LM

HC

DO

Al

BF

NO

GM

AP

OH

ND

BH

JJ

Bl

EE

GA

AJ

NO

DP

KG

BB

HI

DK

FJ

OE

HL

AE

AN

NB

NB

KD

Fl

FD

DA

PI

I ID

Ol

JK

NF

FN

OG

BN

DA

CP

EK

ED

HB

14376

14378gd8

14380

14382

14384;

14386gd9

14388

14390

14392

14394

14396

14398

14400

14402

14404 gd10

14406

14408

14410

14412

14414

14416

14418

14420

14422

14424

14426

14428

14430

14432;

14434 gfnam

14436

14438 gnsuf

14440;

14442 gprin

14444

14446

14448

14450

14452

14454

14456

14458

14460 gpr1

14462

14464

14466gpr2

14468

14470

14472

14474

14476

14478

14480

14482

14484 gpr3

14486 gpr4

14488

14490

14492

14494

14496

14498 gpr5

14500

14502

14504

14506

14508 gpr6

14510

14512

14514

14516

14518 gpr7

14520

14522

14524

14526

14528

14530

14532

14534

14536gpr8

14538gpr9

14540

14542

14544

14546

14548

14550

14552

14554

14556

14558

14560

14562

14564

14566

14568

14570

14572

bne gd6

jsr clrchn

Ida #2

jmp close

jsr chkin

jsr getin

sta hite

tay

Ida $90

bne gd8

jsr getin

sta hite+1

sta tmp+1

jsr getin

sta (tmp),y

Ida $90

bne gd8

iny

bne gd10

inc tmp+1

beq gd8

Ida tmp+1

cmp #$c0

bne gd10

Ida #$e0

sta tmp + 1

bne gd10

•

;close channel

;open input channel

;get Ib height

;lb addr counter

;test status

; no good

;get ub height

;hb addr counter

;byte from disk

;store

;test status

; no good

;bump addr counter

;bump addr high

;done

;top of upper block

;set bottom lower

; branch always

.asc "0:0123456789abcd.g,s,w-

.asc ".g,s,w"

Ida #0

jsr setnam

Ida #3

Idx #4

Idy #$ff

jsr setlfs

jsr open

bcc gpr1

jmp gpr12

Idx #3

jsr chkout

Idx #6

Ida ptrs.x

jsr chrout

dex

bpl gpr2

Ida #0

sta tmp

Ida hite + 1

sta tmp + 1

Idy hite

Idx #5

Ida ptrr.x

jsr chrout

dex

bpl gpr4

Ida #$28

sta tmp3

Idx #7

sei

Ida #$fc

and 1

sta 1

Ida (tmp),y

sta buff.x

iny

bne gpr7

inc tmp +1

dex

bpl gpr6

Ida #3

ora 1

sta 1

cli

tya

pha

Idy #7

Idx #7

rol buff.x

rol

dex

bpl gpr9

jsr chrout

dey

bpl gpr8

pla

tay

dec tmp3

bne gpr5

cpy #$40

bne gpr3

Ida tmp+1

cmp #$ff

beq gpr10

cmp #$bf

bne gpr3

;no name

;file#

; printer

;no secondary addr

;no error

;file#

;open output chan

;count 7 chars

;getchar

;to printer

;set tmp to start

;lb addr counter

;set prt to nxt row

;send cr, ht, and

; 320 dots

;column counter

;get 8 lines data

;switch out roms

;get byte

; to buffer

;switch in roms

;save addr lo

; byte counter

; bit counter

;bit to carry

bit to a

;to printer

; restore addr lo

;test row done

; no

;test screen done

; no

;low scr bottom

; restore prt

;upper scr bottom

MN

NE

ND

BB

JD

GE

BN

DL

EH

BH

IP

NH

MH

DB

JK

BH

MK

KL

MJ

Kl

OL

IM

MD

EB

HA

OM

AD

EK

EA

NA

EK

MM

NO

EN

BK

EO

NK

DL

JD

CM

AB

NK

EN

CC

AB

DM

MB

GC

OJ

AM

CN

FO

LM

JL

CF

KA

BA

JO

NP

PM

EN

AG

CK

OM

Bl

IN

HA

CO

OG

EP

IP

HA

LA

OB

DC

AE

FE

ED

ID

FF

JD

ND

HE

PD

CP

LE

MK

HG

CE

OP

IB

GF

BJ

KO

FE

AD

JD

IK

14574

14576

14578

14580

14582 gpr10

14584 gpr11

14586

14588

14590

14592gpr12

14594

14596

14598;

Ida #$eO

sta tmp + 1

Idy #0

beq gpr3

Idx #3

Ida ptrf.x

jsr chrout

dex

bpl gpr11

jsr clrchn

Ida #3

jmp close

;settolowscrn

;branch always

restore printer

;cr,line space

;close channel

;file #

;close file

14600 ;prt conditioning data strings

14602 ptrs

14604

14606 ptrr

14608

14610 ptrf

14612;

15000lma

15002

15004 Ima1

15006 ;

15008 siz

15010

15012

15014

15016

15018

15020

15022 sz1

15024

15026

15028

15030

15032

15034

15036

15038

15040

15042

15044

15046

15048

15050

15052

15054

15056

15058

15060

15062

15064 sz2

15066

15068 ;

15070 eras

15072

15074

15076

15078 era1

15080

15082 ;

15084 patt

15086

15088

15090

15092

15094

15096;

15098x1

15100 y1

15102x2

15104 y2

15106 dx

15108 dy

15110sx

15112 sy

15114 x

15116 y

15118 tmpf

15120XO

15122 yo

15124 ty

15126 bitp

15128 row

15130 rast

15132 col

15134 dot

15136 Idot

15138 addr

15140 erflg

15142 tx

15144 ty2

15146 hite

15148 buff

15150 choff

15152 len

15154;

.

.byte$00,$0d,$44,$1b,$08,$41,$1b

•

.byte $01 ,$40,$4b,$1 b.$09.$0d

.byte$32,$1b,$0d

jsr $b79e

stx ptrs +1

rts

jsr $ad8a

jsr corny

jsr $b7f7

sty tmp3

sta tmp3 + 1

Idx #$a0

stx hite + 1

sec

Ida #$6f

sbc tmp3

Ida #1

sbc tmp3 + 1

bmi Ima1

clc

Ida #$20

adc tmp3

sta tmp3

Ida #0

adc tmp3 +1

sta tmp3 + 1

clc

Ida #5

adc hite+1

cmp #$c0

bcc sz2

cmp #$e0

bcs sz2

ora #20

sta hite + 1

bne sz1

jsr $b79e

txa

beq era1

Idx #$ff

stx erflg

rts

jsr $b79e

stx dot

jsr $aefd

jsr $b79e

stx Idot

rts

.word $0040

.word $0040

.word $0080

.word $0080

. = . + 5

. = . + 5

. = .+5

. = . + 5

.word $0080

.word $0080

. = .+5

. = . + 5

. = . + 5

. = . + 2

. = . + 1

. = . + 1

. = . + 1

. = . + 1

.byte$ff

. byte $ff

. = .+2

.byte $00

. = . + 2

. = . + 2

.word $a000

. = . + 8

byte$dO

.byte $10

;set left margin

; for printing

;get graph height

;check range

;convto integer

;save height

;max height

;test height>367

finished

;tmp3 = tmp3 + 32

; (4 char heights)

;hite=hite + 5.256

; (4 char heights)

;test off $a000scr

; no

;test on $e000 scr

; yes

;advance pointer

;branch always

condition

; erase flag

;get line pattern

;check comma

;get bar pattern

Th© Tronsoctof 21 Nov. 1986: Volume 7, Issue O3

EXPO 86

Vancouver, British Columbia

Commodore and IBM head-to-head.
by Ian Adam, P.Eng., Vancouver,

Abstract

Any World's Fair promises a unique

blend of fun and education, and Expo

86 being held in Vancouver until Octo

ber of 1986 is no exception. The World's

Fair theme of Transportation and Com

munication offers a number of items of

interest to computerists. Computers are

used for everything from running the

transportation system, to coordinating

displays and finding lost children.

Where there are computers there is the

Transactor, and your reporter selected

two items of particular interest. The

World's Fair visitor information system

is a useful package of applied IBM tech

nology, each terminal combining a per

sonal computer with touch-screen

technology and an interactive videodisc

to create a friendly and useful informa

tion kiosk. Not to be outdone, Commo

dore is well represented with the Amiga

Studio Theatre, a sophisticated package

of arts and computers.

A Trip To EXPO

Now maybe I'm giving away a lot about

my age, but I still harbour many fond

memories of a trip to Montreal in 1967

to see Man and his World, the famed

Expo '67. Simply the mention of a

World's Fair still evokes such a wide

range of images and expectations for

me. On the one hand, like any fair, it

suggests an occasion for people to

gather for a good time: the proverbial

fun and games, but in an unusual, ex

otic context. At the same time, how

ever, a World's Fair promises so much

more. By virtue of its international na

ture, it represents an opportunity for

each country's best ideas and products

to be brought to one place, and put on

display for all the world to see.

Montreal's fair lived up to all of those

expectations, and did so admirably. It

combined fun and world-scale informa

tion into an overall package that

'clicked'. So it was with some mixed

Expo Centre, one of the theme pavilions at Expo 86. Its displays include the Futures

Theatre, in which the audience can vote on issues affecting the future using illuminated

buttons in the arms of the seats. Background: the Ontario pavilion includes a miniature

replica of Niagara Falls.

The Canada Pavilion, with its five-sailed fabric roof, located on a pier jutting out into

Vancouver Harbour. The rounded portion to the right contains the Amiga Studio Theatre.

Foreground: the Seabus, a harbour ferry.

The Transactor 22 Nov. 1986: Volume 7, Issue O3

feelings that 1 first heard of the plans for a World's Fair in Vancouver.

Yes, the mention of a Fair brought back all those great memories, and

what could be more convenient than right here in Vancouver? At the

same time, however, Montreal had set such a high standard away

back in 1967, that I feared Expo 86 might somehow tarnish the

concept by not quite living up to that image. After all, there have been

some recent disappointments in the Exposition arena.

However, these fears turned out to be groundless. Expo 86 has been

able to stand on its own two feet, and is extending the Canadian

reputation established in Montreal for putting on a good show. Since

this will probably be the last fair of the century in North America, 1

thought a bit about the aspects that are contributing to its success.

First, physically, it has a beautiful waterfront site in downtown

Vancouver, very much reminiscent of Montreal's island fair. With

ocean and harbour alongside, set against a backdrop of city and

mountains, the site alone is enough to draw the attention of one's

psyche away from the humdrum of day-to-day life, and open up a

broader vision of the world. And that, remember, is one of the primary

roles of a World's Fair.

Second, the fair has attracted considerable international attention.

Some 52 countries are represented at Expo 86, along with a dozen

provinces and states, better than 40 corporate participants, and a

number of special theme pavilions. This alone is sufficient to ensure a

wide variety of exhibits and a good level of interaction between

nations.

Third, the World's Fair theme of Transportation and Communications

is particularly topical, and offers ample latitude for exploration of high

technology.

Vancouver is a city that was founded on transportation, being the

western terminus of the Canadian railways, and the second busiest

port in North America (eclipsed only by New York). 1986 is the 100th

anniversary of the City, as well as of the transcontinental railway.

1986 is also a time when communication is rapidly taking over many

of the functions of transportation, promising to provide an alternative

to many types of personal travel. Computers will be a big part of the

communications revolution, just as they have played a major role in

transportation. As a result, the fair's theme offers a great deal of

material of interest to all computerists.

A World's Fair should naturally demonstrate the leading edge of

technology, and every memorable fair has had its own particular

specialization, an area of technology where notable advances were

brought forward and identified. At Montreal, much of the exploratory

work was devoted to film, and the results of that effort are still with us

today: giant screens, split-screen images, and all-enveloping film

experiences have become familiar elements of our society, all traced

back to the Montreal fair. The 1985 exhibition in Tsukuba, Japan, was

devoted specifically to the theme of technology and its impacts.

Robots that drew portraits, spun tops, and played sheet music were

the most memorable exhibits.

In Vancouver, a major legacy will be in computers, and Expo 86 may

well be known as the fair where computers came into their own, both

running the fair and relating to the visitors. In the theme area of

transportation, the rapid transit line to carry you to the site is fully

computerized, requiring no driver. Even the City's traffic signals are

coordinated by a new computer system. In the field of communica

tions, there is the Futures Theatre, in which illuminated buttons built

into the arms of the chairs allow the audience to vote on issues during

a multi-media presentation. These votes are then tallied by computer,

and reported back to the audience.

Contributions to a fair cah take many forms, ranging from formal

national pavilions to the 'official supplier' of everything from soup to

nuts and bolts (the latter ljiaving been developed ad infinitum at the

Los Angeles Olympics). Al Expo 86, two computer companies have

made substantial contributions, IBM Canada and Commodore. While

both demonstrate new installations of their equipment, the contrast

between the two applications is fascinating.

Information System:

IBM's contribution takes ithe form of applied big-blue technology.

Although I didn't go to thefair looking for IBM material to document, I

felt the system was so fascinating that you might like a peek at it. The

company has developed and is supplying a computerized visitor

information system that will assist fair-goers in finding their way

about the site. True to the tradition of World's Fairs, this system offers

a demonstration of new technology, while at the same time it is a

source of help and entertainment for the user.

A typical IBM Information System kiosk containing 7 touch

screen terminals all coordinated by a master PC/AT.

At first glance, the system could pass for a video game, with the

familiar colour monitor mounted in a cabinet. Faced with a series of

menus, the user simply touches the screen in order to select the

information desired. After a short pause, videodisc footage of the

selected item is shown on the screen. This combination - a sort of

'Dirk the Daring goes tojthe fair' - is particularly well-suited to the

application, and offers trouble-free access to the computer even for

the casual, non-computer-oriented user. Behind this seemingly sim

ple facade, however, lurks an impressive collection of the state of the

art in interactive computing technology.

The touch screen is an essential element of the overall concept,

providing trouble-free input from the user. A standard keyboard was

considered for input, but raises the obvious concerns of intimidating

users not familiar with Computers, as well as the potential for damage

Th© Itonsoctor 23 Nov. 1986: Volume?, Issue O3

from spills, chewing gum, and so on. A gummed-up keyboard would

mean a non-functional information system.

Similarly, the laser videodisc is critical to the overall plan, providing

television-quality moving images, and contributing to the overall

system image. The videodisc is a standard consumer item, requiring

only that the data be addressable by track. There is no program code

on the disc.

Intermingled with the video footage are screens of computer graphics,

used primarily for menus for the touch screen and for some elemen

tary animation (for example, to show amusement rides). Even a 20-

Meg hard disk has its limitations of speed and capacity (at up to 112K

for a digitized photo), so this animation will never be mistaken for

videodisc imagery. Nonetheless, it is an additional feature that intro

duces some variety. The system also has the capability to overlay

computer graphics onto the output of the videodisc, for example to

superimpose current messages about pavilion conditions or special

events.

Quite naturally, IBM has used the PC/AT as the heart of each display.

IBM's representatives indicated that the system could as easily run on

an XT or PC, but the AT's improved speed and other capabilities

provide for a superior user interface. (One can't help but wonder what

sort of system could have been created if the heart were Amiga gold

instead of blue!) The consoles are arranged in clusters of seven

screens. Each cluster, or kiosk, is linked internally by PCNetwork to

its master PC/AT, as well as to the 4381 mainframe on a batch basis.

Program Material

Aside from the technology, putting together the program discs has its

own challenges. One problem is just assembling the program mate

rial, when it has to come from 50 different countries and many other

sources. Many countries are unable or unwilling to release informa

tion about their pavilions, or simply will not conform to the required

format and schedule.

Another challenge is language. Bilingualism is a fact of life in Canada,

with both English and French entrenched as official national lan

guages. The stereo capability of the videodisc matches this perfectly,

with one channel used for each official language. However, the system

has not taken up the challenge of the 20 or more languages that could

be appreciated by World's Fair visitors!

The Potential

The World's Fair information system is strictly a prototype at this

point, assembled specifically for this purpose. However, one immedi

ately conjures visions of its potential. With little modification other

than a new videodisc, each console could be adapted to such tasks as

education, catalog shopping, or flight information at an airport. The

handicapped, if they have the mobility to reach the screen, could also

benefit. As evidenced by the usual lineups, the IBM information

system is a definite hit at Expo 86. This suggests strongly that it has

good potential for public acceptance in these other applications.

Commodore's Amiga Theatre

In contrast to IBM's straight display of high-tech, Commodore has

chosen an artistic forum to highlight the capabilities of the Amiga

computer. Commodore is an official corporate supporter at the Can

ada Pavilion, and has assumed sponsorship of the Amiga Studio

Theatre, a unique facility that complements live stage performances

with computerized special effects. This sponsorship consists of two

elements: as well as the usual financial support, Commodore has

supplied a number of Amiga computers for artistic use and theatre

operations.

The Canada Pavilion is a short train ride away from the rest of the site,

on a pier jutting out into Burrard Inlet, part of the Port of Vancouver.

Its five-sailed fabric roof is one of the trademarks of Expo '86, also

covering a cruise ship terminal. (Just so you hosers don't get confused

about where you are, the portal to the host pavilion features the

world's largest hockey stick and puck!)

The Amiga Studio Theatre is a 380-seat facility located near the

harbour end of the pavilion: in the accompanying photo, it is located

in the round structure near the right side of the pier. Doug Welch, the

proud Theatre Manager, filled me in on some of the details. Billed as

Canada's most technologically sophisticated theatre, this studio has

an intimate atmosphere with a distinct techno-mystical edge. While

the live performances themselves are clearly artistic in nature, the

stage is augmented by 6 projection screens, each 7Va by 10 feet in size

(approx 2.2 by 3 metres). The three screens above the stage are fixed

in place, and illuminated by ceiling-mounted video projectors; the

remaining three are at stage level, movable, and use a self-contained

rear-projection system. The six projectors, in turn, are backed up by a

technical extravaganza of Amigas, video cameras and recorders,

lasers, and other special effects.

The Transactor 24 Nov. 1986: Volume 7, Issue O3

The lobby of the Theatre features a colourful neon and sculptured mural display.

«i~ .

Interior of the Amiga Studio Theatre - seating area. The theatre is in the process of

being set up for another act.

Some of the 25 monitors used to entertain waiting patrons in the lobby.

During the course of the fair, the theatre has a

wide variety of scheduled performances, includ

ing dance, small orchestras, and stage plays, up

to nine events a day. The majority of these use

Amiga computers to generate performance mate

rial to complement the live performances. For

anyone seriously interested in this machine, or

even just in the potential of computers in the arts,

the theatre is worth a trip to the fair all on its own.

The number of Amigas and the jobs they look

after in the theatre are truly impressive. First of

all, Commodore is supplying computers to the

performing artists for advance preparation of

performance material. At any one time, 18 to 20

machines are out on loan in this manner to

groups who are commissioned to produce artistic

works. Later, when these groups arrive at the

theatre, there are two more Amigas in service in

the control room. Graphic material which the

performing groups have prepared previously and

stored on tape or disc can then be displayed; in

addition, the Amigas are applied to routine tasks

such as projecting title credits onto the screens. A

third Amiga in the control room is reserved for

interaction with the audience in a current show,

which I'll discuss further in a moment. Finally,

yet another Amiga is used to entertain visitors

waiting to enter the theatre. This computer pre

pares graphics displays (some pre-packaged,

others developing as they run), and shows them

on some 25 monitors arranged in the anteroom.

During a short visit to the control area, 1 tallied

six videodisc players, six tape players, chroma-

key and Fairlight equipment, some 27 video

monitors, and two windows (real ones) offering

the best stage view in the house. Horrors - the

four Amigas even had to share shelf space with

three Apple IPs!

Sample Applications

Your intrepid reporter selected a couple of per

formances to view the results - all in the line of

duty, of course. The technical capabilities of this

setup are difficult to describe in words, so per

haps it's better simply to explain how they are

applied in these two performances.

The first is a production by The Great Canadian

Theatre Company of Ottawa, entitled 'All 1 Get is

Static'. At its core, this is a fairly traditional stage

play concerning the lot of Reginald Fessenden, a

contemporary of Marconi who was the first to

transmit voice by radio, but was forgotten by

history. The performance begins with a five-

minute graphic-and-sound introduction: the

graphics were prepared on the Amiga and other

studio equipment, and include a mixture of digi

tized images, pure graphics, and video wallpa

per. This is followed by the main performance, a

live half-hour play by three actors. This would

be a worthwhile performance in its own right,

The Transactor 25 Nov. 1986: Volume 7, Issue O3

but is made far more entertaining through the layering of additional

characters, as well as background graphics, from the video system.

With this performance, all graphics were prepared in advance, and

displayed from videotape.

The control room of the Amiga Studio Theatre: the foreground

controls are for switching and special effects, while the Amiga

in the background is reserved for the TheatreSports event.

It would have been all too easy to detract from a worthwhile play by

superimposing unnecessary techno-pop graphics, merely to demon

strate the computers' capabilities. However, that is certainly not the

case with this performance. The graphics are very carefully inte

grated, woven into the production and throughout the plot, so that

they seem to be a natural part of the play. Oh yes, there's one more

role for an Amiga - being used as a stage prop.

The second performance makes much more dynamic use of the

Amiga. This production, by an improvisational group called Vancou

ver TheatreSports League, actually uses members of the audience to

construct a sort of life-sized video game; through twists of plot too

contorted to detail here, the audience eventually has to rescue the

theatre from an alien threat. In the course of achieving this, good use

is made of a variety of special effects, mostly computerized.

While the basic plot of this story is established in advance, it unfolds

differently with each performance. At various points, members of the

audience suggest bits of information - names, places, and concepts -

that are then worked into the developing plot. For example, someone

in the audience is asked to name a famous time or place in history. A

control-room Amiga contains a list of scenes stored on videodisc, and

an appropriate background is selected to represent the desired locale.

Cast members then improvise a scene in an off-stage studio, which is

superimposed on the video footage and projected for the audience.

Later in the show, another volunteer is taken from the audience and

included in the composite scene. The location, props, and plot

direction can all be varied in accord with audience input. While these

concepts are not entirely new, they are freshly presented in this

production, and made far more realistic as a result of the many

videodisc backgrounds available through the Amiga.

Even more innovative use of the Amiga is made when a number of

audience members, up to 52 in total, are given touch-sensitive input

devices to influence the progress of the game. Each of these devices

consists of two electrodes embedded in small Velcro cuffs that are

attached to two fingers of the subject's hand. According to the story

line, these 'fingerbinders' are used to measure and collect energy to

power the theatre: in fact, they are measuring the galvanic resistance

of the subjects' skin, an indicator of their mental state. This is where

the extra computers in the control room come into the picture - an

Apple II collects this information and passes it to the Amiga. The

Amiga then constructs a graph showing the 'energy level' using

different coloured bars for the 52 subjects; this graph is projected in

real time for the audience, and fed back into the story to influence the

outcome. A little corny, perhaps, but very effective.

Other productions I wasn't able to see include dancers on-stage

accompanied by video images of themselves, Amiga-synthesized

voices welcoming visitors to the studio, and many more fabulous

shows promised for later in the summer (after press deadline, unfortu

nately).

Behind the Scenes

Putting on innovative shows of this type involves the participation of

many people besides the performers. As well as the many assistants,

control room technicians, and so on, innovative work requires some

one to make it happen. I already mentioned Doug Welch, the Theatre

Manager. In charge of the several theatres and other performances is

John Cripton, Director of Cultural Programming for the Canada

Pavilion. It was his original vision at the inception of the pavilion that

provided the opportunity for a theatre combining artistic perform

ances with high-tech effects. While John is responsible for overall

coordination and lining up performers, it is Diana Bockus whose

experience and creative forces have brought the Amiga Studio The

atre to life. Over the past eighteen months, she designed the studio

facilities, oversaw their installation, and worked with each of the

performers in adapting their material. Any expert in this business

must be self-taught, since authoritative books and courses are only

now becoming available. Originally from Toronto, Diana's back

ground includes five years in development of interactive video; in a

young art-form such as this, five years looks a lot like forever!

Despite the imposing title of Video Development Manager, Diana

enthusiastically gave me the inside look at the technology, starting

with her own office. While a PC/XT sat idle to one side, she proceeded

to demonstrate on a fully-equipped Amiga system, with Tecmar

memory expansion and 20 Meg hard disk, an extra 3V2" drive,

printer and mouse, all hooked up to a Sony LDP 1000A videodisc

player and extra monitor. A venue like a World's Fair is a mixed

blessing - while it provides the opportunity for new techniques to

blossom, the tight five-month schedule leaves little room for experi

mentation. Nonetheless, Diana indicates that there will continue to be

The Transactor 26 Nov. 1986: Volume 7. taue O3

progress throughout the fair. She also sees ample area for continuing

growth of the medium, with the logical next steps being into artificial

intelligence, and into total automation of the theatre, with manual

override as necessary.

As for software, much of the work is done by custom programming,

either totally written for the task at hand, or else modified from

standard material. Software to retrieve videodisc imagery, for exam

ple, is actually a two-part job; one is the supervisory task of control

ling the machinery itself, while the other is the interface with the user,

who must be able to select from among hundreds of images quickly

and efficiently. The software for this purpose was written by Bill

Henning, a programmer at nearby Simon Fraser University, and

handles the different tasks well. One example of software requiring

modification is the use of chromakey to superimpose live actors on

the background scenes. The frame-grabber and genlock could be

applied to this task, but the present software configuration simply

does not respond to the requirements of live performance, primarily

in terms of the time needed to access these functions.

The office of Diana Bockus, Video Development Manager of the Amiga Studio Theatre.

This Amiga is fully equipped with 2 megabytes, a 20-meg hard disk, extra VI2" disk, and

videodisk player and monitor. A prairie scene from the videodisk player is displayed on

the second monitor.

Other software currently being used includes DPaint, DPSlide, and

DPVideo for titling and other graphics effects. These also had to have

some modifications to improve access time.

Other Applications

Beyond the Studio Theatre, Amigas are also in use in the interactive

displays in the main pavilion area. In a viewing area, a visitor stands

in front of a video camera, while his or her face is continuously

displayed by the frame grabber. At the touch of a button, the image is

frozen: the Amiga then produces that image at several different

resolution levels, and displays them on a series of video monitors.

This seemingly simple process is sufficient to draw a crowd and keep

them entertained.

Your intrepid reporter takes a self-portrait from

the frame-grabber display's monitor

Well, I'm sorry to talk at such length,

but the IBM information system and

the Amiga Studio Theatre seemed to

offer such optimistic views of the fu

ture of computers, that I just had to

elaborate. However, they only scratch

the surface of the computer activities

at Expo '86. Computers are used rou

tinely for just about everything, from

running the traffic lights and train sys

tem, to finding your lost children after

the computerized fireworks.

Just one last example - not far from

the Amiga Studio Theatre, there are

two computerized robot arms that me

thodically manipulate a piece of pa

per. This activity quickly draws a

curious crowd, anxious to learn what

the robots are up to. .. until they fin

ish folding their paper airplane, and

launch it into the crowd!

That amusing demonstration perhaps

epitomizes the World's Fair - while

you're having fun, you hardly notice

that you're being educated as well.

Judging by the enthusiastic response

of the crowds, the many computerized

displays at Expo 86 have quickly earned public acceptance in their

applications, thus contributing actively to broader role of a World's

Fair and, in the process, to a better understanding of our world.

For further information, contact the author at:

4425 West 12th Ave., Vancouver BC V6R 2R3 604-224-5879

or:

IBM Canada Ltd

PO Box 10132, Vancouver BC V7Y 1G1 604-664-6600

or:

Expo 86 Canada Pavilion, Vancouver BC V6C 3C1 604-666-2000

Th© Ttansoctor 27 Nov. 1986: Volume 7, tome O3

The Comspec AX2000:

2 Megabyte RAM expansion for the Amiga
Chris Zamara, Technical Editor

Price: $1276 ($899 US) (plus appropriate taxes)

Warranty: 1 year parts and labour

Manufacturer: Comspec Communications Inc.

153 Bridgeland Avenue, Unit 5

Toronto, ON. M6A 2Y6

(416)787-0617

Think about two Megabytes for a moment. That's 2,048 Kilobytes.

Putting that much memory on a micro sounds akin to strapping a

Jet engine to a Chevette, but believe it or not, it fits the Amiga more

like a high-boost turbocharger.

You see, the Amiga, by its very nature, loves using lots of memory.

Its internal 512K can quickly fill with screens and windows opened

by programs in the system. The multi-tasking nature of Amiga

makes it only too convenient to bring in another program on a

whim and have it sitting around in a window for whenever you

need it. 50K here and 100K there can quickly add up. (If anyone is

trying to run an Amiga with the minimum 256K, you know what I

mean.) Another RAM-eater is the built-in RAM disk, which can be

used to speed up program development, or cut down disk swaps

with a single-drive system. All of these factors contribute to

making Amiga a machine which greatly benefits from added

memory. That's a nice way to call it memory hungry.

Before getting into the review about the Comspec board specifi

cally, I'd like to say a few things about memory on the Amiga in

general - one 2 Meg expansion will function much like another.

Amiga holds two flavours of memory: "chip" ram, and "fast" ram.

Chip ram is accessible by the video chips, sound chip and DMA

channels, and cannot be expanded beyond the internal 512K. This

512K comprises the built-in 256K plus the optional 256K ex

pander which plugs in behind the front panel. All graphics infor

mation, such as screens, gadgets, sprites, windows, etc. must be

stored in this chip ram, so the number of graphic-intensive

programs you can run at once is limited no matter how much

expansion RAM you add. The video and sound chips access chip

RAM directly, and have priority over the CPU. If you are in hi-res

mode (640 X 200 or 640 X 400) and using 16-colours, for example,

the CPU will only be able to access chip RAM during the screen's

vertical and horizontal retrace - about 24% of the time. This will

obviously slow things down if you're trying to execute a program

residing in chip RAM while displaying a hi-res screen.

Fast RAM, on the other hand, does not conflict with DMA access

from the chips, so a program executing from fast RAM will run at

full speed regardless of any graphics or sound activity. A stock

Amiga has NO fast RAM, and any RAM expansion beyond the

512K chip RAM is "fast". Thus, Comspec's box reviewed below

gives you 2 Meg of FAST RAM.

Since non-graphic information such as programs are best stored in

fast RAM, the operating system tries to use fast RAM whenever a

programs asks for some memory. If a program just asks for any old

memory and doesn't specify what kind, the system will allocate

fast RAM . That creates problems for some programs, because they

were written on non-expanded Amigas and their authors didn't

think of allocating chip RAM for graphics information (for exam

ple, a gadget or sprite may be coded as part of the program itself,

which will reside in fast RAM). To the user, that means that some

programs that worked fine on the standard Amiga won't look right

when you run them on the expanded machine. That may lead you

to believe that the fault is with the added RAM, but the fault is

actually with the program itself. Even version 1.0 of Amiga's

operating system had a little trouble with RAM expansion. So

beware - the software you're using now may not run properly with

extra RAM on the system, but the problems will probably be fixed

on program updates and all future programs. The changes aren't

that hard to make.

So, if added RAM doesn't necessarily let you run more programs,

and some of your existing software won't work with it, is it really

worth the significant amount of cash that you'll have to put out for

it? That all depends on what you're using your Amiga for. If you are

developing programs, in C, assembler, or another language, the

use of a large RAM disk can speed up compiles greatly. If you use

AmigaDOS commands from CLI frequently, you may want to copy

all commands to RAM and have them execute instantly. If you

only have a single drive, bolting on a super-fast 2 Meg RAM drive

can definitely make life easier for you. And even for just running

application programs, you can have more data in memory at once

The Transactor 28 Nov. 1986: Volume 7, Issue 03

for your project, cutting down disk access and allowing longer

documents, bigger spreadsheets, faster database access, etc.

The greatest demand for expansion RAM, though, will probably

come from software developers, who will want to keep all of their

CLI commands, software tools, editor, compiler, libraries, source

files, and include files in RAM. You just can't do that with 512K. In

fact, for this kind of programming, even running just an extra 1

Meg would be tight. The added 2 Meg, along with the internal

512K is just about right for a good "turbocharge", and isn't as much

of an overkill as it sounds.

To get an idea of what the added RAM could do for compile times, I

tried compiling Commodore-Amiga's program "dotty.c" using the

Lattice C Compiler under three different conditions. The Compile

and link times for the three tests are given in minutes and seconds.

In the first test, the source code, compiler, linker, libraries and

include files are all on a single disk, and the .q, .o and executable

files are being written to the same disk. The second test involved

putting just the source and object files in RAM and using every

thing else from a single disk. In the final time test, everything -

Compiler, linker, include files, libraries, and source - was stored in

RAM. Using all of the includes from the developer's disk, plus a few

favorite DOS commands costs just under a Meg of RAM.

Test 1: Everything on a single disk:

Compile: 02:50

Link: 02:02

Test 2: Source and object in RAM:

Compile: 01:27

Link: 01:44

Test 3: Everything in RAM:

Compile: 00:44

Link: 01:12

As you can see, in this example compile time was over 3.8 times

faster when everything was in RAM. For source consisting of many

files, the RAM advantage would probably be even greater. To even

further reduce your waiting times, there's still room left in RAM for

your favorite editor and any programming utilities you like to have

kicking around. No wonder software developers like extra RAM so

much.

There are disadvantages to using RAM as a disk like this, though.

First of all, setting up for your programming session can take quite

a while, as copying a disk full of files into RAM is no instant

operation. And the worst part is that every time you have to re

boot (can you say, "Guru Meditation Time"?) you will lose every

thing in the RAM drive, meaning re-copying again. So you'll still

have to save any work you're doing on disk once in a while. Of

course, no amount of RAM expansion is a substitute for a hard

drive, but it would be so nice if there was some way for the RAM's

contents to survive a re-boot.

Comspec's 2-Meg RAM Box

Comspec Communications is a Toronto-based company known

among many Commodore users for their "Microshare multi-user

system" line of products. The Transactor has been convinced

enough about Comspec's reputability to offer their RAM board on

our mail-order card. The AX2000 goes for $1276 (Canadian, plus

federal and provincial taxes), and the 1-Meg AX 1000 is $1035. (US

prices are $899 and $729 respectively.) If you're a little wary of a

review about a product sold by the magazine reviewing it, keep in

mind that we reached our conclusions about this RAM board

before deciding to take it on.

The AX2000 is a small steel box which plugs into the expansion

slot on the right side of the Amiga. It has an identical slot on its side

for further expansion, and you can snap in the plastic slot cover

from the Amiga if you don't need to plug anything else in. The box

is Amiga-White, and measures 9 1/4" by 4 1/4" by 1 3/4" (not

including the protruding edge-card connector). The extra 1 3/4"

that it adds to the Amiga's width isn't too demanding of desk space,

and the box is the same height as the Amiga, creating a perfect spot

to the right of the monitor to place a second drive. Quite a compact

package for all that RAM, really.

Besides the unit's small size, there are other factors which give the

impression of a well designed piece of hardware. The two-

Megabyte board draws only 500 milliamps of current, the same as

competing one-Megabyte units. Because of the low power draw

and the design of the board, you can plug in two RAM boards, one

into the other, and add a whopping four Megabytes. There are no

ventilation slots anywhere on the box, since the little heat that is

internally generated is dissipated through the steel case. And a big

plus circuit-wise is that the board causes no wait states, never

making the CPU wait for the RAM to catch up to it.

The RAM will "auto-config" itself, providing that you're using at

least release 1.2 of Kickstart and Workbench, which have auto-

config implemented. This means that once you plug the box into

the Amiga, the RAM will automatically be added to the system

when the Amiga is powered up and fed its usual two-disk diet. The

auto-config process lets you plug in any configuration of RAM,

devices or whatever without worrying about setting DIP switches

to avoid memory conflicts. If you are using older operating system

versions, you can add the RAM to the system using a program

included on a disk which comes with the RAM box. This program

will do a RAM test, then add it to the system. You can include a call

to this program in your Startup-Sequence to automate the proce

dure, so running the RAM with older system versions isn't really

any more hassle.

The disk that comes with the AX2000 is actually a Workbench 1.1

disk with a special Startup-Sequence, two extra commands in the

C directory, and two "Read Me" files. The Startup-Sequence is

cleverly designed to first test the RAM and print installation

instructions if the test fails. This way, you can boot the disk when

you first get the RAM and learn how to install it, then use the same

disk once it's properly plugged in.

I have been using the AX2000 for several months now and have

had no problems with it. The difference it makes to programming

productivity and the amount of "work" it seems to save is incredi

ble. Now that I've been spoiled, life with the Amiga just wouldn't

be the same with a measly 512K. Then again, once an 8-Meg

board comes out, I'll probably be saying the same thing about only

2.5 Meg. Now, about installing that Jet engine...

Th© Transoctor 29 Nov. 1986: Volume 7, toue 03

A Peek At

Amiga Disk Structure

Betty Clay

Arlington, Texas

In order to understand the Amiga file structure, it is necessary

to learn some terms that have not been familiar to Commodore

users. We are accustomed to a directory track; the Amiga has a

hash-chain and a root block. We speak of the BAM; the Amiga

has bit-map pages. We are accustomed to a single directory on

the center track, and the Amiga can have many directories in

various locations, and even of different types. We are accus

tomed to program, sequential, and relative files, with most

sectors looking very much alike. The Amiga has root directory

blocks, user-directory blocks, header blocks (also called keys),

list blocks, extension blocks, and data blocks, not to mention

corrupt blocks and deleted corrupt blocks! Once the new words

are learned, however, there are some similarities.

The Amiga directory begins with the root block, which stores

the location of other directories on the disk, and of files not

assigned to one of the other directories. Just as we are accus

tomed to the directory track being at the center of the disk, so is

the root block on the center track of the Amiga disks.

On the current Amiga drives, a disk is formatted with eighty

tracks, each having twenty-two sectors, and each sector hav

ing 512 bytes. Each sector is divided into 128 slots containing

32 bits each, and each slot may hold one 32-bit value, two 16-

bit values, or four 8-bit values. The Amiga calls the tracks

'cylinders' and the sectors are called 'blocks', which is already a

familiar term. There is also a 'surface' number, which is always

given as zero by the DiskEd disk editor, but as either zero or

one by DiskDoctor!.

The root directory on each Amiga diskette is at block 880 (track

40, sector 0) on the current drives. The block contains 128 slots

for information, numbered 0 through 127. The zero slot holds

the file type identifier (a '2' for 'short file'). Slots one and two in

the root block always contain zeros; slot three currently holds

the value 72, but on other drives might hold other values.

Seventy-two is the value obtained when you subtract the

number of slots that hold identifying information (the first six

and the last fifty offsets) from the 128 that are available. If a

future DOS is set for blocks longer than 512 bytes, then there

will be more than 72 slots left for the hash table, and slot three

will hold a different value. Offset four is unused on the root

block, and number five holds the checksum on all types of

sectors.

Hash Tables

Offsets six through seventy-seven of the directory blocks

contain the 'hash-table'. 'Hashing' is a mathematical process

through which the name of a file is changed to a numerical

code, using a formula that will ensure that every possible name

will be encoded to a number within the range allowed for a

particular use, in this case a number between six and seventy-

seven, inclusive. The formula is built into the DOS and is

automatically calculated for us, so we do not need to know

exactly what the formula is. To understand the hash table, we

need only to understand that every possible file name will hash

to a value of six through 77, the same numbers as the slots in

the hash table.

If your file name has a hash value of twelve (and if it is the first

file in the directory that has that hash number), then the

number of the block in which your file begins will be stored in

slot twelve of the directory block. Each slot contains the block

number of a file whose name hashes to the same value as the

slot number. Were this the end of the matter, that would mean

that a directory would be limited to seventy-two files and that

no two could have the same hash-value. This would be an

intolerable limitation, so we must consider the hash-chain

also.

The Hash-Chain

Suppose that you have saved a file called "filename" in the root

directory. "Filename" has a hash-value of 59. Suppose this file

begins with its header block in block 884. Slot 59 of the root

directory will now contain the number 884. Suppose that later

you wish to save a file in the root directory and call it "File4",

which also has a hash value of 59. This file will begin on, say,

block 985. When the root directory is examined prior to storing

"File4", it will be discovered that slot 59 already contains the

number 884. Block 884 will then be read, and offset 124 (the

hash-chain slot) of that block will be examined to see whether

it contains a block number or a zero. Should it contain a block

number, that block would be examined to see if it contains a

zero in slot 124, and so on until a block in the chain is found

with zero in this offset. When the zero is found in the hash-

chain slot, the zero will be replaced with 985, placing "File4"

The Transactor 3O Nov. 1986: Volume 7, Issue O3

on the proper hash-chain. Then "File4" will be written to the

disk, beginning with its header-block in block 985. Slot 4 of

block 985 will hold the number of the next block used for

"File4", and slot 124 will contain a zero, showing that this is the

last file on the chain at this time. It is this hash-chain that

permits the Amiga to have an apparently limitless number of

directory entries, yet the drive has a relatively small number of

items to read in order to locate a specific file.

When you give a command for "File4" to be read back, a

similar process is followed. That is, the name will be converted

back to its hash-value, 59. Then offset 59 of the root directory

will be examined, and the 884 stored there will cause block 884

to be read. The two filenames will be compared and, since they

do not match, slot 124 will be read to find the number of the

header block of the next file with a hash-value of 59. In our

case, offset 124 will contain the number 985. Block 985 will

then be read, and the file name there compared with "File4".

These will match, so the file will be loaded.

The Other Fifty Slots

At the end of the root block are fifty more offsets which contain

information about the disk. Slot 78 holds a flag to indicate

whether the bitmap is valid, and is followed by twenty-five

slots reserved for the bitmap pages. The following three slots,

numbers 105-108 on current disks, contain the date and time

the disk was last altered. The date is held as a single number,

and is the number of days between Jan. 1, 1978 and the date of

alteration, (Don't forget to include leap years.) The time is

stored as the number of minutes since midnight and as the

number of seconds since the hour. The next twelve slots are

reserved to hold the name of the disk, which is limited to thirty

characters. Slots 121 - 123 hold the date and time of the disk's

creation, the next three are not used on a root block, and the

last one holds a number that indicates the secondary file type (1

for a root block).

value of 32, and had stored "Filename" in the user-directory.

Then the root block will store the block number assigned to the

user-directory in offset 32, and offset 59 of the user-directory

block will contain block 884. This is why the full directory path

must be spelled out when you call for a file. The root block

must be read to find the user-directory, the user-directory

block read to locate the key (block number) of the file, and then

the header-block of the file read to find the blocks in which the

data is stored. If you want a printout of the keys to your files,

you can get it by typing:

LIST TO PRT: directoryname KEYS.

File Header Blocks

A file-header block contains 512 bytes, 128 slots, but they are

used differently here. Offsets zero and one contain the usual

information (file type and number of this block), but on these

blocks offset two contains the number of blocks used for the

file, three tells how many of the slots (6 - 77) are used to store

numbers of data blocks, and slot four holds the block number

of the first data block. Slot five holds the checksum, as usual.

The next seventy-two offsets hold the numbers of the data

blocks used for the file. The block numbers begin at the end of

the table, slot 77, and move upward to number six. (In most

cases, the files are stored in eleven consecutive sectors, skip

twenty-one sectors, and then use eleven consecutive sectors

again. The Amiga reads an entire track at one time, making this

an efficient method of storage.) Offset number 80 holds

protection bits, and number 81 contains the size of the file in

bytes. There are twenty-two slots for your file comment, and

the rest of the information is the same as in the user-directory

except for number 126. It is used only if the data-block table is

too large to fit into the seventy-two slots in this block. When a

file contains more than seventy-two blocks, another block is

designated to hold the data about the overflow. It is called an

extension block, and its number is stored in slot 126.

User Directory Blocks

A user-directory block is quite similar to the root block. The

first six slots are the same except that slot one holds the block's

own number. The hash-table is just like that in the root block.

Instead of the bitmap, however, there are protection bits and

twenty-five slots in which your file comments are stored. Slots

105-107 contain the time and date the disk was formatted, held

in the same format as those in the root block, numbers 108-

123 are reserved for the name of the directory, and slot 124 is

for the hash-chain. Slot 125 of the user-directory holds the

header-block number of its parent directory, number 126 is

not used, and 127 contains a '2' to indicate the secondary type

'user directory'.

If you indicate a file path when you store your files, the header-

block number is stored in the proper offset in the user-

directory rather than in the root block. Suppose that you had

made a user-directory called "Datafiles", which has a hash

File List Blocks

The extension (file list) block begins with the now-familiar six

items of information: the file type, the block's own number, the

number of offsets in this sector used for the block list, the

number of the first data block, and the checksum. The data-

block numbers again begin in slot 77 and are stored upward

until they reach slot 6. If necessary, yet another extension block

is assigned. The area reserved for comments and the date are

unused on these blocks, and there is no hash-chain offset, but

the last three slots are used to indicate the number of the parent

directory, the number of the next extension block (if any), and

the secondary file type.

Data Blocks

On these blocks, only the first six items of file data are used.

They hold the type of block, the block's own number, the

Th© Transoctof 31 Nov. 1986: Volume 7, Issue O3

sequence number in the file for this block (is it number 5, etc.),

the number of bytes of data in this block, the number of the

next data block in this file, and the checksum. The remaining

bytes are used for the data. Normally, all data blocks will be

completely filled except the last, so the number of bytes will be

488. The last block will contain fewer bytes, and slot 4 will

contain zero for a forward pointer.

Editing Disks

Of what use is this information? Well, it answers some of the

questions that are asked about disk organization, of course. But

it is essential that the hash-chain and the hash-table be

understood if you are to edit your disks. File recovery is an

important part of disk maintenance, and files cannot be recov

ered if you don't understand the structure.

A disk came to me recently that was almost full, but the root

block contained only one key number, and that one was

incorrect —a completely corrupted disk. Every time we tried to

read a directory, or even insert the disk in the normal way, we

had to reset the computer. Yet we recovered that disk!

The disk editor we used was DiskEd, from the WACK disk

included in the developers' package. This disk is now available

for anyone to purchase. In order to recover the disk, we first

had to locate the header blocks of all the files we wanted to

resurrect. Most user directories and header blocks are stored in

the blocks between 880 and 1100. The blocks with smaller or

larger numbers are usually data blocks. By using DiskEd's 'g'

command to read the blocks in this range, we noted the header

blocks and hash-value of each of the files we needed. With our

information complete, block 880 was read, and the number of

each header block was restored in the offset that matched the

hash value of its file name. AmigaDOS is pretty smart. It

refused to accept the wrong block number in a slot! When all of

the headers had been restored to their proper positions in the

root block, the checksum was corrected and the block written

back to the disk. The directory was called, and the entire disk

was reclaimed. Only the root block had been damaged, but

without it the remainder was useless.

Had we wanted to eliminate a file that was making it impossible

to validate a disk, we could have put a zero into the slot that

referenced the bad file. This would make the remainder of the

disk usable, but that file would be permanently lost once

something was written to the disk. On the other hand, it could

also have been restored by placing the header-block number

back in the root block. Perhaps a reading of the file would make

it possible to correct its error and save the file.

The documentation for DiskEd is sketchy, and it has not

reached the popularity level it deserves. To use DISKED, place

the WACK disk in the drive and, at a CLI prompt, type:

cd df1 :wackstuff

Disked df1: (or dfO:).

You will see a notice that DiskEd has been activated, and each

line after that will begin with a prompt, "#". Some commands

you will need to use are:

g - to read the block you want to change or read (example: g

880)

i - to display information about the block just read

h - to get the hash-value (and thus the slot number) of the

filename. Type h and the file name.

t - to display the slot number or range of numbers you want

to examine. Put a space between the numbers in the

range - not a hyphen, as in 't 6 20'.

/ - to change a number in the slot. Type the slot number, a

slash, and the number you want to place in that slot.

Example:36/5 will change the value in slot 36 to 5.

k - to correct the checksum after you have made a change

x - to set or unset the write-protect mode

p - to write the corrected block to the disk

q - to get out of the disked program

If you follow this sequence of commands, you should be able to

edit your disk. It is not a complete explanation of DiskEd. There

are fourteen other commands available, but the nine given

here are sufficient. They will permit you to change any byte of

information on the disk. I have found DiskEd to be reliable and

easy to use.

Other disk editors? I just received a pre-release version of

Kickstart and Workbench vl .2, and there is a DiskDoctor in the

new "c" directory. For my first effort with it, I duplicated a disk

known to contain an error. DiskDoctor read the disk looking

for all the world like a formatting operation, except it said

"Reading cylinder 1", etc. Then came a series of reports

showing the files that were being replaced on the disk. When

ever a serious error was encountered, it was reported on the

screen as in "Hard error on cylinder 67." Multiple efforts were

made to correct each error. Finally, I was asked whether

corrupt files in a named directory should be deleted. The files

were not named - just the directory. I answered 'yes', anc<

found that the programs were not only deleted, the blocks in

which they had resided were completely reformatted as though

they had never been there. On another disk, I answered 'no',

and the files were not deleted. I tried it on a disk that had

managed to get the directory into an endless loop, and Dis

kDoctor corrected the error with no effort at all on my behalf.

Remember that I was using an alpha version of an early pre

release version. Perhaps when this version is complete, there

will be no need for knowledge on our part to repair disks, but

for now, it is better to learn the file structure and do it ourselves.

With DiskEd, we have complete control over every item writ

ten out to the disk. With DiskDoctor, we just sit and watch it do

its thing. It is easy as formatting a disk or making a backup.

Each of these tools will fill a need for most of us. DiskDoctor is

fast and easy, but the control offered by DiskEd will permit us to

change any byte on the disk. We'll want to do it both ways.

The Transactor 32 Nov. 1986: Volume 7, Issue O3

Disk Copier Comparison David Martin

Seabrook, Texas

Copy protection is becoming more and more complex month

after month, often making it extremely difficult for a person to

protect his newest software investment by keeping a duplicate

copy on hand.

In fact, some of the newest techniques push the 1541 to its

limits or beyond. They will often go where no 1541 has gone

before, recording data well out past track 35, even out as far as

track 40. These schemes are apparently very sensitive to drive

alignment problems, which means that if the alignment is off,

the program may not Load and Run.

Today users face a better opportunity in creating backups of

their valuable software through the use of state-of-the-art disk

copy programs which can considerably speed up copy times

and provide many other features to enhance disk drive usage.

The scope of this review is to help the reader decide which

copier is best in terms of features and cost while leaving the

final decision up to him. Therefore, I am basing my recommen

dations on cost and available features on a comparison basis,

since not every program offers the same features at the same

prices. So, make yourself comfortable as we begin to explore

the wide world of disk copiers.

Diskmaker V3.3

DiskMaker was introduced several years ago and has

since seen very little improvements in its arsenal.

However, earlier this year, Basix released V3.3, only a

small improvement over earlier versions, that incorpo

rates modular design and speed increases.

The modular design comes in the form of updates to the

disk nibbler called "Masterkey" modules. These up

dates are available individually or through subscription

at a very high price. Recent updates have also included

speed increases during disk copying.

I advise Commodore users to avoid this program until it

sees vast improvements. The program should see the

following improvements to justify it's high cost of

$49.95, which even then will cost too much. It needs

the addition of programs that will allow a fast copy on

two drives as well as a fast file copier. Also, the addition

of disk utilities would be wonderful. Basix has adver

tised a disk utility package called "Toolkit" for over a year that

retails at $39.95 and offers the features that DiskMaker sorely

lacks. However, the reader can see in the comparison chart that

expenses run high with products from this company, when

other vendors offer more features for under $30.00. Again,

until Basix prices change or features are added, this is one of

the titles to avoid at all costs. I rank this title a one on the 1-10

scale due to it's high cost, no added features and updates that

are not vastly improved since version 1.1.

Keymaster

Keymaster is MegaSoft's newest disk copier, which retails at

$29.95 and does incorporate some of today's newest disk copy

ideologies (parameters, fast DOS, etc.).

The program supports various disk drive configurations (single

or dual) using a 1541 or 1571. Also, the program is fast and will

copy disks on a single drive in under three minutes and under

one minute on dual drives. Additionally, it supports a fast

format that formats disks in about 10 seconds.

Keymaster also offers a method for fast file copying using a

rather unique method of transferring files from disk to disk.

Th© Tronsoctof 33 Nov. 1986: Vdume 7, Issue O3

This is done by fast loading a file into memory and then fast

saving it back to disk. A drawback to this method is that, since

the program does not use a buffer, which could hold more than

one program, the user is forced to swap disks many times (at

least 2 or more for each file he wishes to copy). Keep in mind

that this method will support one file at a time no matter how

large or small the file is.

A further enhancement to Keymaster is the ability to copy disks

using parameters for backing up some disk titles easier than

before. The program comes packaged with 50 parameters, and

more are available on disk at $10.00 per disk from MegaSoft.

Here again, I advise readers to avoid this program since it is not

cost effective due to the lack of features and lack of support

from MegaSoft (I'm a registered owner who was not advised of

recent updates from them). This program does perform as

advertised, under strict hardware configuration conditions, as

mentioned in its two page manual. My dual drive fast file copy

test failed because of Keymaster's lack of 1571 support, a

problem that the other programs did not face. Lack of support

and features as well as high cost ranks this program a low three

on a scale of 1-10.

Copy II 64/128

Copy II is Central Point Software's entry as a disk copier,

produced by a company that is well known for producing disk

utility software for other name brand computers. This program

does offer high speed copying and a few utilities in its arsenal. It

even offers a different method of presenting parameters via an

enclosed leaflet that tells how to set the programs parameters to

copy certain disks easier and accurately.

Currently, Copy II does support the C64 and Cl 28 as well as the

1541 and 1571 disk drives. It does provide a working copier on

these drives in single drive or dual drive set-up. The copier is

able to examine the hardware present to determine the single

or dual mode of operation, and uses the information to load the

appropriate program.

The utilities that Copy II currently supports are a delete file

program as well as a fast load for BASIC. It would be nice to see

more utilities for this program that could help a user in

determining how to set the programs parameters. This cur

rently is impossible, and requires that the user refer to their

enclosed parameter sheet. Thus, Copy II can very quickly

become outdated.

Again, as a copy program, Copy II does not offer anything that

makes it worth a cost of $39.95 (and half price for updates).

Here, the program is similar to Diskmaker since it offers very

little for such a high cost.

Although compounded by the lack of support outside the copy

process, the program does work well, but would work better

with some form of disk scanner with which users could check

disks not listed on the parameter sheet for protection to set the

program up accordingly. Hopefully, we will see these changes

in the near future from a company that supports better products

for other machines. At this time I do not recommend the

purchase of this program because it is not cost effective and

offers little added features, unlike other programs. This pro

gram is awarded a rank of five on the 1-10 scale.

Disector V3.0

Disector is the program from Starpoint Software that started it

all a few years back. The program has grown quite a bit from

version 1.0 that we all started with at one point or another.

Recent improvements to the program in version 3.0 have been

a welcome sight to the copier world with improvements that

have followed what I hope to see as a continuing trend towards

programs that carry more features at a very good price.

Disector is a program that has improved by supporting fast

DOS routines for both single and dual drive owners. These

programs are rather fast and do function on both 1541 's and

1571 's as well. I did, however, experience some trouble with

the dual disk copier when it got wind of certain protection

schemes (the single disk copier didn't experience any prob

lems). I would expect that an update will clear these problems

up.

One disappointing feature of Disector is its lack of a fast file

copier contrary to the packages advertisement of an "Ultra fast

file copier. . ..". I found this to be very disappointing after

examining the program's other features.

The program also provides a parameter copier which only

supports about 40 parameters (this is also disappointing - see

the comparison chart). This utility is basically like the others,

which require you to do a nibble copy then perform some type

of special function using the program.

For the most part, I do think that Disector is going in the right

direction and found that its disk drive monitor utility, that is yet

to find a rival, well worth the purchase price of $39.95. The

monitor itself will disassemble unimplemented opcode, and I

find it to be a very invaluable tool in my programming and

tinkering with the C64 and 1541 DOS. It does not currently

support printed output, but I have been told that a new version

of the program now supports printer output from the monitor.

A note here: A majority of the programs in Disector do not

support printer output where it is sorely needed. For example,

in the Format Editor you cannot print the results of a disk scan.

Currently, users are required to hand-write information about

the 1 to 40 tracks on the diskette - this can lead to writer's

cramp, which is quite painful, believe me! Hopefully, future

versions will clear up this very important problem.

Here again, I can see a program that comes from a reputable

company and would suggest its purchase for the drive monitor

alone. Hopefully, some of its flaws will be repaired and some

additions made to its features in a future update. Although this

program is awarded a seven on the 1-10 scale, it is still not the

most cost effective. However, read on and find the cure.

The Transactor 34 Nov. 1986: Volume 7, toue O3

Fasthack'em V3.0

Fasthack'em, one of the most popular disk copiers, by Mike J.

Henry of Basement Boys Software, is the program that started

current trends in disk copiers. In a manner of speaking, this is

the one the others are trying to beat, and currently, no one has

come close (but read on).

The program is quite good and does come with some rather

interesting programs supporting Commodore drives as well as

the MSD dual drive. At a retail cost of $29.95, I found it very

good value for the following three reasons.

First, the program does support a fast load program that is the

only one currently available, to my knowledge, that will work

on both the 1541/71 as well as the MSD. The program is

intelligent and, when activated, selects the type of drive in use

and works accordingly. This is nice because 1 can now load

programs faster on my MSD, which also allows more storage

then the 1541.

Second, the program supports a method in which the user may

disconnect the computer from the drives (MSD or 2 1541/71's)

and still copy disks. Fasthack'em will then take over the drives

and allow copying without the computer. Now, you can fool

your friends with C64 multi-tasking as you use a word proces

sor at the same time, or something like that (I usually use my

modem while all this is going on). However, remember not to

let them see the disconnected cables from the drives.

Third, the program not only supports the use of 1541/71's in

C64 mode, but will support them in C128 mode as well. I hope

to see the C128 support expand more and more in the near

future. Currently, the program will copy a double sided 1571

disk in a little over a minute. A little note here about speed; the

program will copy most disks in under two minutes, and

sometimes under three, depending on the amount of data and/

or degree of protection. However, Fasthack'em does have a few

drawbacks from an otherwise well thought out program.

First, the program currently does not support any form of disk

utility such as disk editors or scanners. These would be very

helpful in exploring the disks that Fasthack'em will not copy.

At times, when copying disks, a parameter change within the

nibbler might help a user create the backup, hence the need for

disk scanners and editors. Currently, users are unable to do so

and must experiment with the various copy programs on the

disk. Secondly, the program parameter copier, of which a

majority of programs have duplicated, will often display in

structions for copying disks and then exit to BASIC. It would be

nice if the parameter copier would execute as a copier without

having to load the various other programs in the Fasthack'em

arsenal.

The program Fasthack'em comes from a very reliable author

who plans on expanding Fasthack'em in the near future. I

highly recommend this program for MSD dual drive owners, as

it supports that drive quite well. This alone makes it well worth

the purchase price for MSD owners, as no one other than

Basement Boys produces such a great MSD utility product.

Also, the auto copy feature that does not require the computer

is nice for us lazy users, or people who wish to make multiple

backups (sigh, if only we could get it to put the disks in!).

Although I greatly enjoyed the usage of Fasthack'em, I must say

that its lack of utilities is giving some of its competition an edge,

and hopefully we will see it expand and be more valuable in

the near future (I am told that Version 4.0 will support some

utilities).

For MSD dual drive owners, I do recommend the purchase of

this product since it currently is the best and only supporter of

the MSD. However, for 1541 users, it does not really support

them to the full extent that it should, utility wise (which would

extend its ability to function). I am ranking this program a nine

on the 1-10 scale due to its lack of available features.

Super Kit/1541

Super Kit/1541, from Prism Software, is an innovative new

product that supports a majority of features for 1541/1571

users for a low cost of $29.95.

Having recently received this new product, I find it to have the

flavour and flare that I have been looking for for sometime. At

last, someone has released a full featured disk copier and disk

explorer for the Commodore 64/128. It uses most of the

current methods of disk copying as well as enhancing some of

the old stand bys.

SK is currently the fastest around, with Fasthack'em following a

close second. I found that version 1.1 was easy to work with

although a few problems do arise that become annoying after a

while. For instance, a user is unable to return to the main menu

from any of the other program modules. In later versions, this

feature will be added, if I know my users out there (and I do

because - wink! -1 am one). For the most part, this is the major

complaint with SK.

Another minor problem is the inability to view a directory from

the disk copiers (entire disk copiers, NOT the file copier). This is

also something that is now being incorporated into a future

version, and has been promised to appear in version 1.2 or

above this summer. For the time being, keep those disks

labeled!

Super Kit (SK) is truly the most cost effective copier to date. It

supports both single and dual drives (but not the MSD). The

program comes on a double sided disk featuring a total of ten

programs. Seven of these appear on side one and are composed

of dual and single nibblers as well as normal disk copiers. The

rest of the programs deal with file copying and disk editing.

Side two, composed of the last three files, includes another

nibbler (single drive only) as well as a scanner and disk

parameter copier.

The copiers included on the disk on side one are the fastest to

date, and involve the usage of recent advances in programming

Tho Tronsoctor 35 Nov. 1986: Volume 7, Issue O3

methods. The programs will operate at the maximum speed

possible without major data loss or corruption on Commodore

drives. The single drive copiers prove to be very fast and

reliable, giving the user a choice of whether or not to verify the

copies being made (which can speed up the copy process if

turned off). The dual versions offer the same type of options as

well as something interesting to do while you wait, which, by

the way, doesn't last very long - the dual versions are so fast

that it makes it worth going out and buying a second drive,

especially if you do a lot of disk copying (i.e. users groups). The

thing that I miss here is the automatic option of Fasthack'em

that one can become dependent on. However, the program

does provide some entertainment to ease the pain of losing the

automatic option. During the dual copy process, the program

plays music and displays graphics. Although it ain't Mr. Jack

son, it does suffice, and seeing those 1541 's on the display

working as hard as the ones on my desk was truly cute, to say

the least.

The SK program is also the first program to provide a dual file

copier as well as one for single drives. The copier program

operates in two different modes of operation; normal mode and

Super DOS mode. The program will copy or scratch files from

the disk in the same manner as other programs of this type. It

also supports a fast format that makes it easier to prepare disks

to receive files. The program will copy SEQ, USR, PRG, and

even DEL files from disk to disk. Operation is the fastest to date

in either single or dual drive modes. Please Note: According to

an inside contact at Prism Software, they are currently revising

the file copier to include features like fast verify and fast

scratch, among other things. Watch for these in future updates.

The secret of the Fast File copier's speed is in the two modes of

operation that it supports: normal and Super DOS. The normal

mode uses standard 1541 DOS, except it does speed it up a

whole lot. It only uses the standard DOS method of storing

information on disk where the files are linked normally. In

Super DOS mode, the sector blocks are linked every other fifth

block instead of every other tenth. For example, links usually

follow like this: 17,0 to 17,10 With Super DOS, they link

like this: 17,0 to 17,5 etc.. This can speed up load times

considerably as well as speed up copy times. This is because a

normal 1541 has a very slow rate of data transfer. When data is

retrieved from disk, it normally takes about ten sectors of

movement of the diskette in relation to the head at 350 rpm to

pass the data out of the bus. With Super DOS, data transfer is so

quick that by changing the spacing to every five sectors, a

noticeable improvement is provided over its already fast load

and copy times.

The File Copier also provides a BAM editor which will allow a

user to view and edit the Block Availability Map on the disk. A

user enters a plus or minus to allocate or de-allocate disk

blocks, then can re-write the edited version back to disk.

The remainder of side one provides the user with several

utilities, a sector editor and a GCR editor. These programs are

invaluable tools for those who like to tinker with new disk

protection schemes or develop their own ideas for such things.

The Sector Editor is basically a standard sector editor with a

built in machine language monitor, which does support the

printer for printed outputs of displayed data (the editor itself

also supports the printer). The monitor is a standard ML

monitor that supports assembling/disassembling as well as

number conversions. However, it does not support a method of

editing memory in the drive or unimplemented opcodes,

things that I hope future versions will support. In this module,

the BAM editor is also supported (see above).

The best disk utility published to date, that others have pre

sented in hardware or have attempted to do in either software

or hardware, has finally surfaced in SK with the debut of the

Group Code Recording Editor included in SK, for the basic cost

of $29.95 (with all the above and more!). Basix has advertised

such an addition to its DiskMaker product for over a year now

at a price of $39.95 (along with some other utilities), however,

such a product has yet to be delivered (I'm still waiting ... will

someone tell Basix to cancel my order?).

The GCR Editor is a wonderfully innovative addition to any

one's software library, be they novice or hacker. This will really

allow you to access the DOS in a way you could not do before. It

helps users to actually study and devise means or methods of

recording data on the 1541 disk drive. As a tool for exploring

different disk formats, it has proven to be an invaluable tool

and has helped me backup disks that I was not able to do

before. Plus, it has brought out the adventurous hacker out in

me and taught me a few things I didn't know before about

standard DOS formats or the unnatural ones.

Well, enough raving. On to the details. The program provides a

means of scanning headers as well as viewing and editing

tracks and data blocks. A user can then access a buffer area and

edit these sections, viewing and changing the information in

the buffers. Later, he may re-save the new information onto

disk.

Please Note: I must honestly not recommend this program for

the novice user. However, you're only new once, so tinker

away at it and experiment on non-important disks. The man

ual offers some help for novice users by offering a list of books

to read (see the end of this article) that will help tutor you in

really getting to know the DOS. They are highly recommended.

Also, the manual offers a small "book" in the back by Rob

Vaughn that is called "The History of Commodore 64 Program

Protection", a very nice change of pace, giving the reader a few

hints and tips.

The only problems that I encountered with the GCR editor was

the lack of printer support for dumping the data buffers contain

ing the GCR information. One reason for this is quite possible:

when dealing with the DOS, a programmer often cannot clearly

access the printer due to the havoc caused by some of the DOS

routines. So, for the time being, this is something that I would

like to see added to future versions as well. But, to date this has

only slowed my poking around a little bit and I am still enjoying

myself.

The Transactor
Nov. 1986: Volume 7, Issue O3

Side two of the SK disk provides even more innovative fea

tures. A Super Nibbler, a Super Disk Surgeon and the Super

Scan.

The Super Nibbler is a very fast nibbler copier for single drives

only, that does not support any parameter changes except track

ranges for copies. It is fully automatic and will detect most copy

protection schemes. This program is used to create backups of

SK that will only copy to one generation. In other words, the

copies will not copy. The manual mentions that backing up

your original SK disk is recommended not only to protect the

original but also to "customize" the program to best work on

your particular drive. This program was tested on what I

consider to be the hardest to backup program that I own:

Diskmaker V3.3. It would copy the program only if I skipped

track 6 which I call a "Wall" track. A "Wall" track is one that has

never been formatted, thus no sync. A drive attempting to read

such a track will "hang". "Hanging" means that the drive will

spin continuously and freeze up on that track.

However, the program created a backup of Diskmaker in under

a minute that worked just like the original. Except for the

parameter change above, I did no other editing. The program

automatically detected the disk protection and acted accord

ingly, producing a working copy in no time at all. 1 would try

this one first on all your programs before trying the others. It

works rather well.

The Sector Surgeon is the doctor to see if your disk backups still

will not work properly. Although it isn't the cure for everything,

this little program contains 270 parameters for copying a good

amount of todays most popular programs. Perhaps I should

correct myself and say "large" program. But no matter what the

size, the program does do a wonderful job.

The Surgeon even approaches disk parameter copying in a new

and innovative method that, by far, surpasses all other pro

grams around. This is accomplished after the user selects the

parameter he wishes to use. After selection, the program turns

itself into a fast disk copier (single drive only), therefore

removing the need to load another program to copy the disk.

During the copy process, the parameter copier will use the

parameter provided to make a working backup of the program.

The copies made with Sector Surgeon may often run better

then the originals, and will often run on drives they did not run

on before. This program is designed to remove those nasty

head rattling protection schemes that so many of us have

learned to hate. Also, once again, the copies are "customized"

to run better on your particular drive.

I readily approve of the Sector Surgeon doing all my delicate

disk surgery and hope to see a dual drive version soon. This

program also comes with the largest amount of parameters to

date, and is yet to be beaten in ease of use.

The last program on side two, Super Scan, provides users a

method of scanning disks for DOS errors and standard or non-

standard densities. This can aid in making backups of most

software using the dual or single drive nibblers. In other words,

you can set some program's parameters according to the

information you receive from a disk scan.

This is a utility that is most important in exploring disks, and

has yet to be bested by another vendor (although Disector does

come close). The format of this programs pictorial graph is a

form of BAM which shows all the disk tracks and how they

look. It helped me find out the exact tracks I needed to copy for

duplicating Diskmaker V3.3. The "Wall" track (Track 6) ap

peared as a pi sign that was not documented in the manual.

Perhaps it is something that might possibly change in its

appearance. My advice to users is that if you see anything other

than the standard 1, 2, 3, 4, then it's most likely a "Wall" track,

so skip it when copying or the drive will "hang."

This utility was truly marvelous except for its lack of printed

output (Note: Disector would also not print out its reports for

errors and density), and the inability to set a range of tracks to

test. My advice is this: When scanning a disk, do a density scan

first because if you find a "Wall" track on the disk, doing an

error scan may cause the drive to "hang" in the error checking

mode of operation (density scan is not affected and I have no

idea why). The information provided is not too lengthy in

detail, but printed outputs for reference would be a nice

addition. However, currently the lack of printer output of

density and errors is only annoying; future updates will fix this

problem. Note: the display that SK uses during a scan is easier

to record than Disector's and is also shorter. Also, the addition

of selectable scanning ranges has been promised in a future

upgrade. I was told that version 1.2 would also correct many of

the scanner's problems.

A final part of SK's arsenal is the Autobooter and Super DOS

disk fast load modules, which are the fastest around. These

utilities are placed on the SK disk to provide users a means of

getting their own programs to fast load in various methods.

The Autobooter allows a user to create the appropriate fast

loader for his program with a selection of which Super DOS to

use. The Super DOS programs offer much support of various

modes of operation having to do with selecting whether or not

to have the screen on or off as well as working around the

computer's interrupts. The Super DOS modules, at their best,

are able to load 150 blocks of data in about 10 seconds. One

note here is that Super DOS formatted files are still standard

DOS format compatible; they are made differently so that Super

DOS can load them faster (see above). The manual advises file

copying the original files in Super DOS mode to get the best

speed out of the fast boot.

Super Kit/1541 is the newest kid on the block of disk copiers,

and is to become the standard that the others will seek to

follow. On a cost/feature basis, I highly recommend this

program because of its very visible and innovative techniques

used. At the cost or less of other copiers, you can get a whole lot

more in Super Kit/1541. This program is awarded a rank of a

perfect ten, because as the advertisement truthfully states

Super Kit/1541, "Has it all!"

The Transactor 37 Nov. 1986: Volume 7, Issue O3

Conclusions Benchmark Table

The programs reviewed here follow two basic characteristics

that make them important; cost and the number of features.

Out of the group of six, the programs can be divided into two

groups; the ones to buy and the ones not to buy.

The first three programs reviewed, Diskmaker, Keymaster and

Copy II fall into that last category. These programs do not

provide enough to sustain their high costs. An examination of

the comparison chart will show you what is meant by this. I

truly feel that these products should cost less than they do until

more additions are made to their arsenals.

The following programs, Disector, Fasthack'em and Super Kit/

1541 should be purchased for a variety of reasons.

Disector's machine language monitor is very well put together

and can be an invaluable aid to the programmer. A person in

need of such a utility should run out and get Disector if your are

desperate for such a monitor. However, pretty much of the rest

of Disector proves to be a disappointment (Disector V2.0 was a

whole step forward - V3.0 was a half step), especially the file

copier which is said to be "Ultra Fast" on the program's

packaging. Unfortunately, this is an outright mistake on their

part.

The program Fasthack'em is a wonderful piece of software from

an author who could, and should have offered more with his

package. The program is invaluable to us MSD fans and C128

owners (as it supports the C128 in C128 mode). Fasthack'em is

a reliable product that I would advise purchasing if I were an

MSD or C128 owner, but as a C64 and 1541 owner, it does not

yet support you as fully as it should.

The program Super Kit/1541 is truly a light in the dark, and is

currently unrivaled in the cost/feature area and is the one that I

recommend investing in as a user's first disk copy utility. Being

the first product from a new company, Super Kit/1541 is truly

amazing, and I'm sure we will see more from Prism in the

months and years to come as they provide more and more

C64/128 support. Watch the software waves as this is the one

that the others are going to start trying to beat! Currently, at

$29.95, no one surpasses it.

Suggested Readings

I would suggest that readers interested in learning more about

the DOS and disk protection methods pick up the following

books:

1) Inside Commodore DOS by Richard Immers and Gerald

Neufeld

2) 1541 User's Guide by Gerald Neufeld

3) Program Protection Manual I by CSM Software

4) Program Protection Manual II by CSM Software

Normal Copy - Standard DOS Disk 0 Blocks Free.

Protected Copy - Attempted Backup of DiskMaker V3.3.

File Copy - 4 Standard Files each 150 Blocks long.

Equipment Used

Single Drive- Commodore 64 and 1541

Dual Drive - Commodore 128' and two 1571 's

MSD Drive - Commodore 64 and two MSD SD-2's2

Footnotes: 1 - In Commodore 64 Mode

2 - FastHack'em Only

FastHack'em MSD SD-2 Benchmarks

Program Name

Standard Nibbler

Deep Nibbler

Normal

01/04

01/09

Protected

01/00

01/06

Note: See Benchmark Table for Disks used for testing.

Time is Minutes/Seconds

Disk Copier Publisher Information

DiskMaker V3.3

Basix

3463 State Street Suite 1541L

Santa Barbara, CA 93105

Orders : (805) 687-1541 ext. 34

Tech : (805) 682-4000 ext. 33

Keymaster

MegaSoft, LTD.

PO. Box 1080

Battleground, WA 98604

(800)541-1541

(206) 687-5205

Copy II 64/128

Central Point Software

9700 SW Capital Hwy#100

Portland, OR 97219

(503) 244-5782

Disector V3.0

Starpoint Software

122 S.Broadway

Yreka, CA 96097

(916)842-6183

Fasthack'em

Basement Boys Software

PO. Box 30901

Portland, OR 97230-0901

(503)761-1114

Super Kit/1541

Prism Software

401 Lake Air Drive Suite D

Waco, TX 76710

Orders: (817) 757-4031

Tech : (817) 751-0200

Tho Trortsoctof 38 Nov. 1986: Volume 7, Issue O3

Disk Copier Comparison Chart

Name

Version

Publisher

Level (1)

Docs (2)

Easy to Use?

* of Disk Swaps(3)

Backs up self?

2 drive option(s)?

Works with MSD?

Price

Backup Cost

Upgrade Cost

Speed

Normal Copy

Protected Copy

File Copy

Speed

Normal Copy

Protected Copy

File Copy

Utilities

Sector Editor?

GCR Editor?

Fast Format?

Fast File Copier?

Parameters?

Fast Loader? (5)

DiskMaker

3.3

Basix

N

1

Yes

3 to 5

No

No

No

$49.95

$15.00

$24.95

Keymaster

1.0

MegaSoft

N

3

Yes

3 to 5

No

Yes

No

$29.95

No

$10.00

Copy II 64/128

2.6

Central Point

N

6

Yes

3 to 4

Yes

Yes

No

$39.95

backupable

$20.00

(1 drive- 1541X4) V = Verify VF = Verify Off

01/45

03/40

No

01/24

01/22

02/30

02/13

01/59

No

(2 drive - 2 1571'sX4) See FASTHACK'

No

No

No

02/03

01/57

Failed

02/43

03/40

No

Disector

3.0

Starpoint

NandE

8

Yes

3 to 5

Yes

Yes

Yes (6)

$39.95

backupable

$5.00

See Benchmark

01/31

01/41

16/00

Fasthack'em

3.0A

Basement Boys

N

7

Yes

3 to 5

Yes

Yes

Yes

$29.95

backupable

$12.00

Super Kit/1541

1.1

Prism Software

NandE

10

Yes

3 to 4

Yes(C)

Yes

No

$29.95

Backupable

$10.00

Table for Disks/Files Used for Testing

V02/31VF01/46

V02/09VF01/39

02/33

iM MSD Benchmark Table for MSC

00/59

Failed

16/00

V00/57 VF00/45

02/18

No

V02/13 VF01/37

V00/59 VF00/45

Nrm:02/17SD:01/52

> Information

V01/14 VF00/46

00/26

Nrm:02/14SD:01/47

No

No

No

No

No

No

KEY: 1 - Novice/Expert

2 - Scale 1 to 10

3 - Single Drive Only

4 - Minutes/Seconds

No

No

10 Sec

Yes(8)

Yes 50

No

No

No

15 Sec

No

Yes 200 (7)

Yes

Yes

No

8 Sec

No

Yes 40

No

5 - Fast Boot for BASIC

6 - Not All Features

7 - Not on Disk

8 - One File at a Time

No

No

10 Sec

Yes (9)

Yes 100

Yes 1541/MSD

Yes

Yes

10 Sec

Yes (A)

Yes 270

Yes (B)

9-100 Blocks/20 Seconds

A - 150 Blocks/23 Seconds

B- 150 Blocks/10 Seconds

C - Copy Protected

NOTE: Programs that failed did not work to specs or would not duplicate the Benchmark

Super Kit/1541 NRM = Normal Fast DOS SD = Super Dos Mode for File Copiers

Copyright 1986 By David W. Martin

Disk.

The Transactor 39 Nov. 1986: Volume 7, towie 03

WHO DO YOU TRUST?
by The Disk Orderly

This is mainly a tale of anguish and woe — describing twelve

hours in my life that I'd rather not relive. From the frustrations

experienced a few weeks ago, I ought to be sent to the funny

farm. The pseudonym is to protect the guilty — I'd rather not

be known as the perpetrator/victim of these misadventures.

Oh, about the name.. .

If Jim Butterfield is the guru, and Dick Immers/Gerry Neufeld

can lay claim to the (deserved) title of being the Disk Doctor(s),

then I suppose my qualifications rank me just above the

hospital volunteer "candy-stripers". If I could ever reach the

exalted heights of "nurse-hood", I would rejoice and probably

buy a real computer. Suffice it to say that the term "veteran"

could apply to my experience. I've done lots of programming

(including machine language), taught BASIC and written a few

articles in the past eight years. None of this experience quali

fied me for what that fateful day brought! To set the scene:

It was a dark and stormy night.. .Oops, apologies to Snoopy for

that lapse.

One day I purchased an Accolade game, since the SUPERKIT/

1541 package would enable me to obtain a backup. I once

proclaimed that I'd never patronize software publishers who

abuse legitimate owners as well as thieves, but that noble

principle has been abandoned, albeit reluctantly.

I raced home with the SUPERKIT like a kid with a new toy. I

should have known what was in store for me when I was

unable to make a backup copy of the second side of the disk.

Reset, reload, recopy. Futility, through three full cycles. Now

try the SUPERKIT original to make a game backup. No luck

here either, as the three hour mark came and went.

Drag out the 1541 alignment utility from Transactor Volume6,

Issue2; the light doesn't blink at all while confirming my

alignment is dead centre. On to Plan B. . .

Hour Four

So I call up my friendly dealer and ask him if he has a well-

aligned drive in the store. A 1571 running in 1541 mode will do

the trick. I hustle down there with a few blanks and make

copies of both the SUPERKIT and the Accolade game. The

copies run perfectly on his equipment. Now, I dash home and

hope that maybe the copies made there will run at my place.

My second hope is that those same copies will allow me to

make further copies on my own equipment. My third hope is

that my dinner will still be edible (some say I haven't missed a

meal in my life). Well, it was one. . .two. . .three strikes I'm out.

As hour four comes to a close, I'm no further ahead and losing

whatever patience I had at the outset.

Hour Five

On doing some deep thinking, I recalled running a speed test

from an American copier program. It reported some months

ago that I was running 309-310 r.p.m. If alignment wasn't the

bugbear, then maybe speed was killing me. After all, I rea

soned, the SUPERKIT must be using its own carefully-timed

routines to re-create all those fancy sectors from protected

disks.

So I located a drive speed test program from RUN magazine

(July 1985), typed it in and found my drive to be precisely on-

speed. The same issue told me how to disassemble my drive for

alignment/speed adjustments, but I couldn't picture myself

performing such a drastic action. Yet.

Who do I believe now? The article did hint that if the drive was

way off speed, then the program might erroneously report all

was well. Do I hang my hat on that?

Hours Six and Seven

These were totally wasted, as I pretended that the elapsed time

may have healed all the wounds. I repeatedly fired up the

computer, tried to copy both disks again, loaded the copied

programs and watched the computer crash. Time after time.

With the same agonizing results.

Hours Eight and Nine

It was time to call for help. The chap who had shown me the

other drive speed program lives just across town, and a nine

p.m. phone call would not threaten our friendship. He and his

64 welcomed me. Now I had three sets of programs (both

SUPERKIT and game): originals, copies made on my drive of

each (none worked), and copies made on the dealer's equip

ment. One by one, minute by (passing) minute, they were fed to

my friend's equipment. All failed. Even a full attempt to copy

The Transactor 40 Nov. 1986: Volume 7, Issue O3

everything on his system was a dismal failure. Then I loaded

the original game disk, and it didn't even run properly! So

much for the scientific method—if I'd tried that one first it

would have saved two hours.

When we located his drive speed program, lo and behold, my

friend's drive clocked in at 311 r.p.m. According to that copier

program, both our drives were out-of-whack. (His alignment

was also fine). Now I was firmly convinced that speed was the

problem. After all, I knew of no serious complaints with the

SUPERKIT package. Maybe the RUN program WAS wrong in its

OK status report.

Hour Ten

So I go home, with disks spilling from every pocket. Sure

enough the borrowed speed test program gave me the 310

r.p.m. verdict, as it had reported a long time ago. With that RUN

article in hand, I swallowed hard (three times) and started to

disassemble my drive. Me, the mechanical klutz, actually

taking my drive apart! Friends say, "You did what?", when I

relate this part of the saga.

With the drive upside down, and the chassis resting in its cover,

I notice that there's strobe markings for 50 Hz and 60 Hz. When

the drive is set spinning, the strobe markings are completely

stationary. (I woke up my wife after midnight to help me find an

old fluorescent desk lamp, so that there'd be no mistake). The

markings didn't budge, not a millimeter per minute. Nothing.

OK, so who do I believe now? The RUN speed test and the

strobe marks confirm 300 r.p.m. speed. I'm sure Ontario Hydro

knows enough to deliver 60Hz electricity! The other drive

speed program says 310 r.p.m. And the SUPERKIT won't make

copies. What's going on here?

Hour Eleven

Taking a screwdriver in hand, I nudge the adjustment screw a

little, until the copier drive speed program reports it's now 300

r.p.m. Meanwhile the strobe marks start spinning around like

the label on a record. With the drive upside down, I proceeded

to make my backup of the SUPERKIT and then the game.

Crossing all my fingers and toes, I reload the clones and try

them out. Miracle of miracles, everything works! But what

about all the stuff recorded at the "old" speed? Having a

hundred disks that won't work now, just to have a game and a

disk utility, is not a fair trade-off.

I decide that an intermediate speed, of say 305 r.p.m., accord

ing to the copier speed test, might let me work with both old

and new disks. After setting this speed, I again make successful

clones of everything. A few other commercial disks seem to

load OK, though the testing is superficial.

But what will happen when I flip the drive over, and seal the

case?

Hour Twelve

Gulping even more, I dust off the RUN instructions on how to

drill a hole in the 1541 's case. This makes the drive speed

adjustment screw accessible (once you have re-installed about

a thousand tiny screws). A 5/8-inch diameter hole in the

bottom of the case. Now my friends KNOW that I've totally

flipped.

Now if anything goes awry, I can crank the speed back to what

it was. I'm in the home stretch, as I put the chassis back into the

case, turn it over and try everything over again: speed (both

programs), clone the game and the SUPERKIT again, and run a

few other disk programs. The RUN program now tells me that

my speed is off by 3 ms, whatever that means. At least I have a

calibration mark for when this all stops working for me!

You should be able to determine by now that it is past two a.m.,

with Tuesday morning's alarm looming. After this marathon,

I'm too wired to sleep, so I play a few rounds with my game

clone.

But what a price!

Conclusion

Sometimes persistence pays off. My scientific training helped

me to accomplish my goal. How many of you would have

trashed both disks earlier in the adventure? Was it worth the

effort? Probably not.

I blame Accolade for one. Their "warranty" is a postcard, which

offers a $3 rebate on another Accolade purchase if you answer

their market research questions. By now we've all seen the

"non-warranties" on software that don't even promise that the

disk will load. Accolade sinks to new depths—they don't even

mention that there is anything in the package that you just

bought! Maybe that postcard is what I paid $40 for?

These questions disturb me:

How is it that two separate speed test programs, both reputable,

give wildly different readings? Which do I believe?

Why did I have to disregard the accurate strobe markings, and

the RUN speed test results? In adjusting my drive speed to the

copy program's version of 300 r.p.m., then the SUPERKIT

began to work. Why?

If anyone can help to explain what has happened here, I'd love

to hear about it. Right now, I find it hard to know who to trust.

The Transactor 41 Nov. 1986: Volume 7, toue O3

THE CLOCK

for Commodore 64

Donald P. Maple

Calgary, Alberta

It is very easy to become oblivious to all worldly things

while deeply involved in some profound programming task.

This handy little program will make sure that you will never

again miss anything because you got carried away while

working on your computer. It will enable you to display two

time zones and set audio and visual alarms for both!

How many times have you missed your favourite TV show,

been late for a date . . .etc, all because of your computer? It is

very easy to become oblivious to all worldly things while

deeply involved in some profound programming task on your

64, such as solving the ultimate question of life, the universe

and everything. (The answer to which, of course, is 42!) Well,

despair no more because the solution to all that is nigh! The

following program will offer not only one, but two clocks,

totally independent and both with alarm features. These can be

used to keep track of two time zones or one for the time and the

other as a stopwatch or anything else you can think of. . .

Further more, they will not interfere with anything you happen

to be running at the time! All this interest free, and no money

down! If you can't wait any longer and/or are not really

interested in the technical nitty-gritty of the program itself read

on and the next section will reveal all the "HOW TOs"

Shake Before Use

First and foremost you need peace of mind! Having achieved it,

type in the BASIC loader using the Verifizer. Having completed

the typing save the program first, and then run it. The screen

shows the range of memory locations into which the machine

language program is being loaded. The counter in reverse

video will constantly change to reflect the memory locations

stuffed as well as to provide a visual clue that the program is

running. The BASIC loader contains the checksum to assure

that the data loaded is correct. If everything has gone well you

can issue the SYS 12*4096 in line 60, otherwise the innocuous

"CHECKSUM ERROR" will be displayed to indicate it is time to

get agitated all over again, with optional 4-letter words. . .

Assuming that everything has gone well, or you have regained

your composure, you will now see two clocks in reverse video

on the topmost line of the screen. The left one in white,

affectionately known as CLOCK 1, and the right one in black,

nicknamed surprisingly enough, CLOCK 2! Note that the

clocks are not running. To get them going use the function keys

described below. They will start up only after the time has been

set. CLOCK 1 is controlled by holding the CTRL key in addition

to the function keys and CLOCK 2 is controlled by holding the

Commodore key in addition to the function keys. Or, if you

wish, the F-Keys tell the computer what to do, and the CTRL or

Commodore keys tell it who to do it to. This way the normal

F1-F8 are undisturbed.

Hold CTRL for Clock 1, C= for Clock 2.

Fl/2 - will toggle the display on and off. Sometimes the actual

display of one or both clocks is not desirable. It may get

in the way of whatever is listed on the screen. Pressing

the key will disable the display, then pressing the key

again will bring it back. The clock itself is unaffected by

this and continues ticking whether the display is on or

off.

F3/4 - will toggle the alarm on and off. The visual feedback for

the alarm is the asterisk following the AM/PM flag. If the

asterisk is present the alarm is on, if it's absent the alarm

is off. Again if the display of the clock is off the alarm is

unaffected and will wake you up as expected.

When the alarm is triggered the display color of the clock

rapidly changes and there is also an audible sound. The sound

will be heard even if the computer happens to be playing a

song! When the display is off, the alarm sound will still be

audible but there will be no rapidly changing colors. The

reason for not awakening the display at this time is to prevent

the destruction of whatever is in the appropriate corner on the

screen. After all if the display was turned off it must have been

for a reason!

Once activated the alarm will go on for a couple of forevers,

unless turned off by pressing the same F3/4. At this time the

display (if visible) returns to the default color, the buzzing

sound stops and the asterisk disappears.

F5/6 - sets the time

F7/8 - sets the alarm

The Transactor 42 Nov. 1986: Volume 7, toue O3

When these keys are pressed a snapshot of the current time or

alarm setting is displayed, using the default color, in the

following format:

TIME : 021055P

ALARM: 030000P

The cursor is on the first digit and the time/alarm can be set by

overtyping. To make the program as short as possible there is

no error checking and anything typed in a format other than

the default snapshot will set the timers to unusual settings.

However, this is easily remedied by resetting.

Having set the time/alarm, type "A" for AM or "P" for PM.

Finally before pressing RETURN the color of display can be

changed in the same fashion as in BASIC, that is by pressing

CTRL or Commodore key and numbers 1-8. The color can

actually be changed any time before RETURN is pressed.

When setting the alarm, the alarm flag (asterisk) is turned on

automatically. Note also that when the 64 is initially turned on

the two clocks are not running. They are started up by setting

the time.

THE CLOCK will not only work in direct mode (such as BASIC

editor or SUPERMON) but from within most programs as well.

The only programs that will disable it are those that change the

hardware interrupt vector. Also, while the editor is in the quote

mode the setting of both time and alarm, are temporarily

disabled.

Unlike the BASIC time functions obtained from the "jiffy-

clock" THE CLOCK is unperturbed by I/O activity on the serial

bus. The display may freeze temporarily but the clock con

tinues ticking. This is obvious when the display resumes.

During the testing, a couple of idiosyncrasies of the 6526 chip,

that contain the clocks, have been observed.

When setting the time/alarm any time beginning with 12 in the

hours will cause the chip to flip the AM/PM flag. For example

to set 5 minutes past noon (if "120500P" is used), the chip will

turn in into 12:05:00 AM! Apparently the clock sets the flag first

and then when it sees "12" it advances the flag causing this

problem. To circumvent this, in the example above use

"000500P" for correct setting. Strangely enough the clock will

handle the "12" properly if it arrived at it by itself. For example

11:59:59 AM will turn into 12:00:00 PM and eventually into

01:00:00 PM.

The second "bug" has to do with the alarm. For example if the

alarm is set for 03:10:00 PM it will go off as expected when this

time is reached. We would now turn the alarm off. However, if

the alarm is turned back on it will be triggered again when the

time reaches 03:11:00 PM??? The apparent reason for this is in

the way the internal clock handles the carry. When the clock

rolls 03:10:59 it turns briefly into 03:10:00 before the carry is

applied to minutes, turning 10 into 11. This brief time, how

ever, is enough to trigger the alarm. The same logic applies to

hours as well.

If you are unhappy with the audio alarm, the pitch can be

changed by poking assorted values in the following locations:

CLOCK 1 - 49785 ($C279) freq lo

49787 ($C27B) freq hi

CLOCK 2 - 49786 ($C27A) freq lo

49788 ($C27C) freq hi

Having completed the customizing (sound, colours) the whole

program can be saved using a monitor:

S" CUSTOM CLOCK" ,08,C000,C26E

Next time load your own clock using a non-relocating load:

LOAD "CUSTOM CLOCK",8,1

and activate it with:

SYS 12*4096

This command is actually a toggle and it alternates THE

CLOCK on and off. When turned off the actual timers keep on

ticking preserving the correct time. However, having disabled

THE CLOCK program, the alarms will not be checked. Note

that before saving your own version, THE CLOCK must be

turned off! This is so that when enabled it will set the interrupt

correctly.

The Life And Times Of 6526 CIA

CIA, as we all know contrary to unsubstantiated rumors, stands

indeed for COMPLEX INTERFACE ADAPTER. Your Commo

dore 64 has two of these. But what is this adapter and what

does is do? For one thing, it lives to communicate and it loves to

talk to peripherals in particular. As such it serves as a middle

person between the processor and the outside world. Outside

world, being a fairly complex machine, could not be handled

with only one interface so that's why your 64 has two. One

controls the RS-232 (modem for example), certain memory

management aspects and the serial bus (to which we connect

peripherals such as disk drive, printer, plotter, etc). The other

samples the keyboard and everything that hangs off control

ports 1 and 2, i.e. joysticks, paddles, light pen, trackballs,

Koalapad etc.

In order to chat with all of those, timing is essential to any

computer. That's why each CIA has three clocks on board. Two

of them are 16 bit timers and the third is a Time Of Day (call me

"TOD") clock. While the operating system uses the first two

timers extensively it has totally forgotten TOD. And that's

where we come in.

The Transactor 43 Nov. 1986: Volume 7, totuo O3

Each 6526 CIA has 16 registers used for various purposes. CIA

1 lives at $DC00 (56320) and CIA 2 at $DD00 (56576). For this

program we are only interested in 6 of those registers.

$08 (8) - TOD lOths of seconds

$09 (9) - TOD seconds

$0A (10)-TOD minutes

$0B (11)-TODhours

$0D (13) - Interrupt control register

$0F (15) - Control register B

To obtain the real addresses of the registers simply add the

offset shown above to the CIA start address. For example to get

the hours register for CIA 1, add $0B (11) to $DC00 (56320).

An interesting note here. The designers of the 64 have decided

not to decode all of the address lines pointing to these registers.

This leads to the occurence of so called "ghosting". What that

means in practical terms is that the 16 registers, in this case

actually occupy 256 locations. In other words they are repeated

16 times. So, for example, $DC00 will also appear at $DC10 and

$DC20 and $DC30 . . . etc!

The four TOD registers actually access eight internal registers.

In other words the same four addresses point to both time and

alarm functions. Which one of those functions is accessed

depends on bit seven of Control Register B. If this bit contains a

zero, writing to TOD registers will set the time, but if this bit

contains a one, writing to TOD registers will set the alarm.

bit 7 of $0F (15) = 0 - writing to $08-$0B (8-11) sets time

bit 7 of $0F (15) = 1 - writing to $08-$0B (8-11) sets alarm

Note that the state of bit 7 of Control Register B is of importance

only when writing to TOD. When reading from TOD we will

always get the time. In other words TOD contains a write only

ALARM and read/write TIME registers. Because of this THE

CLOCK program saves the alarm information independently.

The order in which the TOD registers are read from or written

to also plays an important role. Upon reading hours register at

$0B (11), TOD clock stops. It will resume only after reading

register $08 (8) - lOths of seconds. This does not apply to

minutes and seconds. They can be read without stoping the

clock. Actually the clock continues tick-tocking internally but

the output registers are latched until the read on lOths of

seconds occurs. The same sequence is necessary when writing

to either time or alarm registers. The clock will commence only

after a write to lOths of seconds occurs.

To make the life of programmers easy the designers of this chip

have decided to store all of the TOD data in BCD (binary coded

decimal) and that is how the data is read or written. On the

other hand, to make the life of programmers difficult the same

designers have decided to use the hour register at $0B (11) to

store the AM/PM flag! If bit seven of this register is zero it

denotes AM, and if it's one then is PM. To be fair, though, the

high nybble of this register is not used for anything else.

Finally there is the Interrupt control register at $0D (13). It is

used to enable and sense the occurence of alarm that was set as

previously described. This register is also connected to two

internal registers, a read only interrupt data register and a write

only interrupt mask register. When the alarm occurs is will

create an interrupt. Since there can be several sources of this

interrupt the program monitors bit 2 of this register. If this bit is

on then the time in TOD matches the time in the ALARM! And

that's all there is to it.

To do all this THE CLOCK modifies the hardware interrupt

vector. This interrupt occurs 60 times per second and at that

time the processor goes to a predetermined location and

executes the "interrupt routine". For 6502/6510 type proces

sors the address of where to go is at $FFFE-$FFFF. On

Commodore 64 it ends up getting the next address at locations

$0314-$0315. Without getting into it in more detail THE

CLOCK changes this vector to point to THE CLOCK itself. The

program, however, politely makes note of where these two

locations used to point to and, when done, jumps there to

resume regular processing. This means that if some other

program has already modified the vector, this utility will main

tain it. Normally, however, $0314-$0315 will point to $EA31.

Conclusion

This article and the accompanying program have only

scratched the surface of this, indeed, complex interface chip. If

you have any questions or suggestions you can contact me

either through this magazine or directly at the address below.

Donald P. Maple

P.O.Box 23, Station M

Calgary T2P 2G9

CANADA

Editor's Note:

We asked Don for a copy of the source code for this program

but apparently he used (believe it or not) the simple assembler

in Supermon to write it, and unfortunately, time did not permit

us to disassemble and comment it for you.

The Transactor Nov. 1986: Volume 7, Ittue 03

EG

LN

KP

DK

MA

BM

EG

JG

GO

DM

IM

PJ

IN

GN

PD

GP

MC

LJ

JN

KP

MC

BE

LM

GJ

El

KA

AE

Ml

JF

HL

GJ

Jl

HI

KP

HJ

BM

EM

DL

HM

KN

DP

AE

CO

GP

HE

Cl

AB

FD

ME

LI

CF

KG

10 f = 4915_2:t = 49837

20 print"

30 for j =

40 poke

^poking from " f" tc

f to t: read x : print"

,x: ch = ch + x : nex

50 if ch<>84866 then print "

60rem

70 rem

100 data

110 data

120 data

130 data

140 data

150 data

160 data

170 data

180 data

190 data

200 data

210 data

220 data

230 data

240 data

250 data

260 data

270 data

280 data

290 data

300 data

310 data

320 data

330 data

340 data

350 data

360 data

370 data

380 data

390 data

400 data

410 data

420 data

430 data

440 data

450 data

460 data

470 data

480 data

490 data

120, 174

135, 192

141, 21

192, 88,

232, 224,

116, 194

3, 144,

141, 2,

17, 169,

194, 185,

69, 193,

133,252,

133,254,

109, 194,

7,133,

173, 110,

104, 149,

192, 74,

144, 2,

72, 138,

3, 169,

194, 162,

74, 74,

177,251,

142, 194,

251,160,

157, 0,

202, 136,

73, 165,

232, 189,

5, 177,

109, 194,

4, 169,

121, 194,

145,253,

200, 169,

145,253,

111,194,

74, 176,

72, 162,

500 data 210, 104,

510 data

520 data

104, 193,

160, 4,

530data-212, 189,

540 data 194,189,

)"t

:

THE CLOCK:

'J

checksum error" : end

sys12*4096

20

141

3

96

4

240

31

74,

0,

122,

169,

169,

162,

32,

253,

194,

251,

144,

169,

72,

144,

0,

74,

41,

232,

12,

4,

16,

252,

109,

251,

9,

0,

145,

160,

15,

169,

96,

17,

0,

133,

74,

144,

109,

113,

3

20

142

162

208

38

192

74

44

194,

8,

0,

12,

137,

162,

32,

202,

82,

170,

160,

44,

177,

9,

15,

232,

104,

104,

241,

74,

194,

41,

128,

145,

253,

4,

145,

15,

169,

165,

32,

209,

74,

2,

194,

194,

172,

3,

135,

0,

248,

140,

7,

176,

169,

141,

133,

133,

172,

192,

39,

137,

16,

72,

141,

3,

169,

251,

176,

9,

136,

170,

72,

104,

162,

10,

4,

157,

253,

200,

169,

253,

141,

1,

209,

255,

96,

176,

160,

41,

157,

21, 3

173,136

192, 140

181,251

164, 197

116, 194

176, 27,

6, 74,

1,141,

80, 192,

251,169,

253, 169,

111,194,

230, 252,

172, 112,

192, 162,

250, 76,

74, 169,

153, 194,

177,251,

129, 141,

41, 127,

157,142,

176,232,

208, 228,

185, 141,

157, 0,

104, 74,

0, 144,

176, 22,

240, 51,

109, 194,

160, 0,

189, 123,

33, 145,

200, 169,

24,212,

32, 104,

72, 165,

233, 104,

169, 2,

25, 138,

11, 153,

127, 157,

111, 194,

173

192

136

72

204

192

173

144

115

32

220

212

173

169

194

3

27

160

152

16

151

74

194

157

177

194

216

144

1

160

189

160

189

194

253

240

254

193

210

133

32

74

0

109

96

BASIC

LJ

Ml

Ol

Ol

LE

OM

KA

GL

KK

PK

JG

EN

IP

HB

FN

NB

IM

KC

AA

GB

OA

BJ

PC

LP

EK

FC

IF

IN

LF

FH

PG

Bl

FC

FN

DP

NF

GN

PB

NC

JA

MO

Loader

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

data

data

data

data

data

data

data

data

data

data

174

194

212

8

2

76

162

172,

2

220,

data 254,

data

data

9,

154,

data 246,

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

910 data

920

930

940

950

data

data

data

data

129,

194,

194,

253,

162,

74,

41,

208,

169,

160,

10,

15,

208,

185,

7,

145,

115,

157,

13,

0,

0,

114,

0,

186,

141,

32,

32,

115

96

208

72

160

129,

15,

115,

169,

24,

160,

128,

194,

232,

176,

133,

41,

16,

65,

74,

15,

233,

157,

3,

153,

25,

232,

170,

9,

251,

194,

113,

32,

1,

0,

o,

o,

176,

170,

13,

13,

194,

160,

246,

72,

0,

234,

56,

194,

8,

109,

7,

44,

32,

240,

2,

254,

2,

5,

44,

9,

9,

138,

32,

32,

170,

170,

32,

194,

128,

145,

173,

194,

210,

0,

0,

0,

0,

183,

58,

58,

0,

93

147

169

72

132

162

173

185

133

115

177

41

210,

25,

169,

32,

240,

162,

177,

48,

48,

32,

210,

207,

194,

194,

207,

144,

144,

253,

134,

104,

255,

0,

10,

0,

145,

186,

69,

77,

0,

109,

44,

193,

165,

207,

7,

134,

113,

251,

194,

251,

127,

255,

165,

136,

69,

246,

80,

253,

32,

32,

210,

255,

255,

32,

153,

255,

4,

3,

136,

2,

141,

96,

64,

5,

8,

83,

178,

77,

82,

0,

194

160

72

206

32

24

2

194

133

133,

40,

145,

202,

254,

133,

193,

160,

41,

72,

210,

210,

255,

136,

10,

207,

170,

74,

41,

185,

16,

157,

134,

1,

0,

117,

0,

160,

183,

73,

65,

8

157

152

152,

174

19

144,

72,

141,

253,

252,

144,

251,

136,

74,

253,

189,

3,

127,

74,

255,

255,

160,

208,

10,

255,

194,

160,

127,

170,

246,

111,

2,

1,

0,

43,

0,

176,

160,

84,

76,

109

165

72

135

234

3

8

134

169

133

3

189

16

169

169

109

177

44

74

104

136

7

250

10

41

136

3

176

194

174

194

169

1

0

69

0

176

129

32

65

The Transactor 45 Nov. 1986: Volume 7, Issue O3

VIC-II Chip Interrupts Tomas Hrbek

Rocky Point, New York

This month's issue is about programming the Commodore chips.

The most known and programmed chip by the average user is the

SID chip, controlling sound and a few other things such as game

paddles. Then there are the two CIA chips used for the housekeep

ing functions of the C-64. They are the timers for data transfers

between the computer and different devices. They read joysticks,

determine which key on the keyboard was hit and also generate

the IRQ and NMI interrupts. There is also the VIC-II chip, which

manages the Commodore 64 architecture. It switches between the

four 16k banks, displays different kinds of modes, as for example

the text, hi-res and multicolor mode, controls sprites and other

features. In this article I would like to discuss the lesser known

features of the VIC-II chip.

As the title of this article suggests, the VIC-II chip is capable of

generating its own interrupts. These interrupts are of four different

natures. They can be generated by a lightpen, sprite to sprite or

sprite to background collisions, or by a specific raster line being

reached. The last interrupt mentioned is the least understood by

the average programmer, and is the one that I will discuss further.

You might be wondering what this raster line interrupt might be

and if you have ever seen it. You probably have, even though you

might not know about it. If you own the popular word processor

SpeedScript, the raster line interrupt generates the top message

line. Other programs that also have this feature are PaperClip ,

KMMM Pascal, Cad-3D and others. Here, the raster line capabili

ties are used to highlight a single line, but you will see that raster

line interrupts are much more powerful than that.

To gain an understanding of this interrupt, we have to begin by

examining how the computer displays information on the screen.

Attached to the back of your monitor's picture tube is an electron

gun that is used to generate an intense and accurate flow of

electrons towards the phosphor coated surface of the inside of the

picture tube. Monochrome monitors use one type of phosphor that

allows graduations of intensity between white and black (on and

off), to provide an illusion of color and shading. Colour monitors

use three types of phosphors throughout to produce three colours;

Red, Green and Blue (RGB). These phosphors are grouped accu

rately and very closely together to produce all possible colour

combinations depending on the combination of RGB chosen for

display. Phosphor, for those who are not sure just yet, is a

substance that will produce light when struck by an electron

particle.

In order for the picture on the screen to be of any quality, the

electron gun controlled by the computer has to generate over 250

visible lines and refresh them 20 times per second. Each line is

also divided into about 180 visible points. Because of the speed

with which each point has to be refreshed, the two VIC-II registers

that tell us the position of the electron gun, contain only the

number of the raster line, not each individual point.

As mentioned in the previous paragraph, there are about 250

raster lines displayed on the screen. However, the topmost visible

line is raster line number 30, which is in the border area of the

screen. The topmost line of the text area is raster line 40. The same

is true for the bottom. The text area ends at raster line 240 (200

screen lines, just like in high resolution mode), and the border

ends at about 280, although the electron beam continues on a little

past that. This is why sprites can disappear behind the screen

edges.

The two registers that contain the value of the raster line are

located at $D012 and $D011. Bit 7 of $D011 contains the overflow

from $D012. That is because a memory location can only hold a

value from 0 to 255. If a value is written to these registers, we

instruct the VIC-II chip to generate an interrupt at that location.

Before the interrupt can occur, however, we have to do some

preparatory steps.

To start, we have to tell the VIC-II that we are enabling one or

more of its interrupts. This is done by setting some bits in the

Interrupt Mask Register (IMR), location $D01A. Bit one tells the

VIC-II that we want to enable the raster line interrupt; bit two,

sprite to sprite collision interrupt; bit three, sprite to background

collision interrupt; and bit four, lightpen interrupt. The next three

bits are meaningless. Bit seven is used to indicate that any one or

more of the previous bits has been set.

Now that we know how to enable the raster line interrupt, we have

to adjust the IRQ routine so that we will be able to take advantage

of the interrupt generated by the VIC-II. Whenever any chip on the

C-64 generates an interrupt, it jumps through a vector at location

$314-$315, which points to the address $EA31. However, this

vector can be easily changed to point to our own custom routine.

In our IRQ routine, we have to check if this interrupt has been

generated by the raster line interrupt. This is done by reading the

Interrupt Raster Register (IRR) located at $D019. This register has

the same configuration as the IMR register. It, however, indicates

by setting the appropriate bits which device generated the inter

rupt. Since we only enabled the raster line interrupt, it is sufficient

to check bit seven, which indicates that the VIC-II generated this

interrupt. Thus, if this bit is not set, we simply proceed with the

usual interrupt routine. However, before we do that we have to

clear the CIA1 IRR by reading register $DC0D.

Now that we know that the routine was generated by the VIC-II,

we can proceed with our IRQ routine. Before doing that, we have

to clear the VIC-II IRR register, or it will generate another interrupt

as soon as we exit the IRQ handling routine. This is done by

writing the value we read from the VIC-II IRR back to the IRR

register. Having done all of this, we can finally write our program.

Th© Trcinscictof 46 Nov. 1986: Volume 7, Issue O3

The Program

My example is a very simple one. It highlights a line on top of the

text screen just like in SpeedScript. As I mentioned earlier, the

raster line is much more powerful. We can display more than eight

sprites on the screen at the same time, different kinds of modes,

more character sets, etc. We can even divide the screen into more

than one part (split screen). Of course, we can divide it only along

the horizontal lines.

After doing all of the preliminary steps, we decided that this

particular interrupt was generated by the VIC—II chip. We compare

the value of LINE2 to that of the RASLIN register, location $D012. If

the value of LINE2 is greater than that of the RASLIN register, we

store the value of LINE2 in the RASLIN register, change the screen

color and exit. However, if the LINE2's value is equal or smaller,

we load the accumulator with the lower value of the highlighted

line (LINE1), store it in the RASLIN register, change the screen

color and exit.

Here are some hints on how to utilize the raster line interrupt in

other ways. If you do not want text to scroll into the highlighted

line on top of the test screen, clear bit three of $D011. This will tell

the computer to display 24 instead of 25 lines per screen. Then if

you want to display something in the highlighted line, just poke

the message there. Poke the first 40 bytes of screen memory

usually starting at 1024 or $400. If you want to display more than

eight sprites each time you switch between the two parts of the

screen, just redirect the sprite pointers to the appropriate part of

the screen. The same thing applies to the hi-res or multicolor

screen. Just repeatedly switch in and out of these modes.

To wrap this session up, I must say that raster interrupts are very

powerful feature of the Commodore 64 that is unfortunately almost

unknown. It is certainly due to the fact that this kind of feature can

be only explored and utilized if one is a machine language

programmer. I hope that this article made it clearer how to use the

VIC—II chip in other ways than the usual ones. I also hope that it

will help you in further exploring the C-64 and in writing better

programs.

Basic Loader

PAL Source Listing

OE

KF

MM

00

NA

KH

CN

HL

LE

El

CP

EP

EB

FD

GM

IH

100 rem save" O:raster irq.ldr" ,8

110 rem ** by tomas hrbek rocky point, new york

120 rem ** raster demo for the c64

130 for j = 828 to 903: read x: poke j,x: ch = ch + x: next

140 if ch<>8431 then print" checksum error!": stop

150 sys828

91,141, 20, 3,169, 3

3,169, 50,141, 18,208

41,127,141, 17,208

26,208, 88, 96,173

25,208, 48, 7,173

88, 76, 49,234,173, 18

201, 58,176, 10,169, 1,141

208,169, 58, 76,130, 3,169

141, 33,208,169, 50,141, 18

76,188,254

160 data 120, 169,

170data141, 21,

180 data 173, 17,208,

190 data 169, 129, 141,

200 data 25,208, 141,

210 data "(3, 220,

220 data 208,

230 data 33,

240 data 0,

250 data 208,

PE

PD

AO

PA

CA

GL

DH

NH

BP

EJ

OK

PF

DH

AF

IC

AO

KH

Ol

BL

LM

JO

LN

JA

HC

PP

NG

ID

PL

LB

FA

OB

Gl

KB

El

DA

BL

DF

ME

DH

AM

PI

EH

CH

PA

AE

LE

GK

KH

KM

GO

DD

IN

OA

IL

GA

Ol

KA

AB

AD

CL

CD

CK

100 rem save"0:

110sys700

120 .opt oo

130*

140;

150 key

160cinv

170 raslin

180 irr

190 xmr

200 colreg

210 icr.

220 linei

230 Iine2

240 colori

250 color2

260;

270 setup

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420;

430 irqnew

440

450

460

470;

480

490

500

510;

520 vicrastr

530

540

550

560;

570

580

590

600

610;

620 greater

630

640

650

660;

670 exit

680

690

700;

710.end

=

=

=

=

=

=

=

=

=

=

=

=

sei

Ida

sta

Ida

sta

Ida

sta

Ida

and

sta

Ida

sta

cli

rts

=

Ida

sta

bmi

Ida

cli

jmp

=

Ida

cmp

bcs

Ida

sta

Ida

jmp

=

Ida

sta

Ida

=

sta

jmp

raster irq.

828

$ea31

$0314

$dO12

$dO19

$d01a

$dO21

$dc0d

50

58

1

0

*

pal" ,8

;cassette buffer

;old irq handling routine

;irq vector

;raster line

;flag for video interrupt

;video controller interrupt flag

background color register

;flag for timer interrupt

;start of highlighted line

; its end

;raster line color

background color

#<irqnew

cinv

#>irqnew

cinv +1

#line1

raslin

raslin-1

#$7f

raslin-1

;for interrupt

;clear hi bit

#%10000001 ;permit irq by raster

imr

#

irr

irr

vicrastr

icr

key

rasin

#line2

greater

#color1

colreg

#line2

exit

*

#color2

colreg

#line1

*

raslin

$febc

;clear interrupt flag

interrupt by raster line

;clear interrupt flag

;allow raster interrupt

;read raster line

;greater than or equal seconc

value

;next interrupt at 2nd line

;next interrupt

;to wrap things up and exit

The Transactor 47 Nov.TO6:Vo>umo7,touo03

Switcheroo Pivot Chris Miller

Kitchener, Ontario

An 8500 &Z80 Working Together In The C128

The C-128 is a two processor system. Inside are an 8500 and a

Z80. The 8500 is really just a 2mz. 6510. The Z80 is one of the

most advanced 8 bit processers around. The 8500 is a memory

based microprocessor. Even just to subtract the contents of one

register from another would require some free RAM. Indirect

addressing modes and a sparsity of internal registers make the

8500 very reliant on zero page pointers. The Z80 is a register

based microprocessor. It has two sets of general purpose

registers. Each of these sets contains an accumulator, a status

register and six, 8 bit, general purpose registers. The second set

can be used for the interrupt flip-flop (IFF) or by the exchange

(EXX) command to remember and restore register contents.

Data registers can also be paired for 16 bit addressing and

arithmetic. In addition to these there are four other 16 bit

registers: the PC (program counter), the SP (stack pointer) and

the (IX) and (IY) (index) registers.

8-Bit Internal Registers

A

B

C

D

E

H

L

F

A'

B'

C

D'

E'

H'

L'

F

accumulator

general purpose

flae (status^

16-Bit Register Pairs

BC B = hi byte C = low byte

DE D = hi byte E = low byte

HL H = hi byte L=low byte

The Transactor 48 Nov. 1986: Volume 7, toue O3

True 16-Bit Registers 6. The 8-Bit Arithmetic And Logical Group

IX index

IY index

SP stack pointer

PC program counter

The Z80 has several times as many commands as the 8500;

some therefore require more than one byte of opcode. These

commands can be functionally divided into 13 groups, each of

which is more extensive than its 8500 counterpart where

counterparts even exist.

1. The Eight Bit Load Group

The Z80 assembler load instruction, LD, might.more aptly be

named MOVE. There is no store instruction. Every LD will be

followed by two operands delimited by commas. The first

operand represents the destination and the second the source,

so that the instruction LD($C000),A means store the contents of

A at $C000 whereas LDA,($C000) would mean load A from

$C000. In Z80 mnemonics, parenthesis define a memory loca

tion; otherwise an immediate value is assumed.

2. The Sixteen Bit Load Group

This includes all the commands which move two byte values

either between registers or between registers and addresses.

Included here are the PUSH and POP instructions which is

handy since addresses are what stacks are mainly for.

These allow for manipulation of one byte values in pretty much

the same way 6510 programmers are used to. Addition and

subtraction are possible with or without carry.

7. The 16-Bit Arithmetic And Logical Group

Same as above but with two byte values being manipulated.

The logical AND, OR and XOR are not found in this group.

8. The CPU Control Group

Processor and interrupt modes and status flags are handled.

9. The Rotate And Shift Group

Many different types of shifts accessing both one and two byte

values via a variety of addressing modes are available.

10. The Bit Set Reset And Test Group

These commands provide for complete bit addressing. Each

takes two parameters. The first will specify which bit (0-7) is to

be set, reset, or tested; the second will designate the register or

memory location to be manipulated. For example SET3,(IX+0)

would set bit 3 in the address pointed to by the IX register; ie

OR it with the number 8.

3. The Exchange Group

Register contents can be swapped with the secondary set or

within the primary set. There's nothing like this on the 8500

although we often wish there was.

4. The Block Transfer Group

Set a few register pairs and use one of these to move or fill

memory a byte at a time or in a Z80 controlled loop. The short

Z80 routine which we will later call from Basic to copy its ROM

into 8500 visible RAM uses an LDIR loop.

11. The Jump Group

Conditional and unconditional jumps (direct) and branches

(relative) are supported. Anyone who has ever had to fake a

conditional jump in 6510 viaBNE* + 5:JMPFARoran uncondi

tional branch via SEC:BCS NEAR will appreciate the versatility

of this Z80 group.

12. The Call And Return Group

Subroutines may also be called and returned from condition

ally or unconditionally.

5. The Block Search Group

As above, the Z80 can automatically control looping by count

ing down the value contained in the BC pair and incrementing

the address pointed to by DE. Ranges of memory are compared

with the A register until a match is found or the BC pair

decrements to zero.

13. Input Output Group

These are specialized load and store instructions. In the C-128,

when accessing I/O memory (D000-DFFF), IN and OUT com

mands should be used instead of LD.

TbeTh 49 Nov. 1986: Volume 7, Issue O3

Programming The Z80 In 128 Mode

The Z80 brings a convenience and conciseness to ML program

ming that is sure to please and impress 6510 assembly lan

guage programmers. I hope the above has whetted your

appetite for doing a little exploring. It will inspire you to know

that this microprocessor can be used in conjunction with (not at

the same time as) the 8500 in the C-128, even from Basic;

switching between them is not much more difficult than

switching between memory banks once you know how.

Working Together

In order to figure out how the Z80 and 8500 worked together, it

was necessary to disassemble some Z80 ROM; in order to

access this ROM it was necessary to enter, and get back alive,

from Z80 mode—sort of a catch 22 situation. One hundred

cups of coffee and about a thousand crashes eventually pre

vailed. Disassembling the boot sector on the CP/M disk got the

ball rolling.

Bit 0 at $D505 (54533) controls the microprocessor mode. If it is

turned on then the 8500 becomes active; if it is off then the Z80

takes over.

You can't just poke it off (believe me). A little housekeeping is

first in order:

Disable 8500 interrupts via SEI because you are going to switch

to a memory configuration in which Kernal ROM is not visible.

Store a $3E (62) at $FF00 (the configuration register). This

leaves I/O RAM intact but switches everything else to RAM 0.

You're still not quite ready. The Z80 PC register holds $FFED

after 128 initialization. There is a NOP ($00) there. The first

actual Z80 command goes at $FFEE. If you look through the

monitor you will see a $CF there. This is an RST8 opcode byte

which will cause the Z80 to jump (ReSTart) to its own ROM

routine at 0008. You do not want this. After moving some 8500

code into place at $3000, the Z80 would return control to the

8500. The 8500 wakes up exactly where it left off after you

switched to the Z80. If you followed this switch with a NOP (lets

not wake it up too fast) and then a JMP $3000 (like the

operating system does) you would go into the 128's boot CP/M

routine. This is pretty useless from a programming standpoint,

so don't bother. Instead, put your own Z80 code at $FFEE.

Before you do any Z80 subroutine calls, you should set its stack

pointer register (SP) to point to some area that will not interfere

with your code or Basic. Switcheroo points it to $BFFF before

calling a user routine. The return address goes into memory at

$BFED in this case.

The last thing the Z80 will have to do is to turn the 8500 back

on. There are two ways to do this:

LD A,$B1

LD ($D505),A

This is inferior. There is a bleed through condition in the Z80

mode using this type of store. A $B1 will also be written to

underlying RAM. (This is where my Z80 cross-assembler sits,

making this feature especially bothersome.)

Here is the proper way:

LD BC,$D505

LD A,$B1

OUT (C),A

Not only does bleed through not occur using OUT storage but

I/O memory between $D000 and $DFFF can be written to. In

our Basic coding sample the background ($D021) and border

($D020) are poked via a Z80 OUT. This would not work using

LD($D020),0 which would put the value in RAM0.

Ordinarily you would have to bear in mind that the Z80 might

not necessarily take off at $FFEE the next time you activated it.

It, like the 8500, wakes up where it went to sleep. The best

procedure for switching back and forth is to try to always put

the microprocessors to sleep in the same spots. These switches

could be followed with jump commands. Before invoking them

you could set the jump address for the other microprocessor to

anywhere you like. Z80 ROM puts a RET ($C9) command after

the 8500 switch allowing the Z80 to CALL the 8500 from

anywhere and return when the 8500 switches back. Switch

eroo puts an RTS ($60) after the Z80 switch so that the 8500 can

JSR the Z80. This also makes the Switcheroo routine com

pletely relocatable.

Now it just so happens that there are two routines high in RAM

0 through which the two microprocessors can invoke each

other. The 8500 invokes the Z80 at $FFD0. When the Z80

returns control, the 8500 picks up at $FFDB. Leave the NOP

($EA). You can take over at $FFDC (65500).

The Z80 invokes the 8500 at $FFE1. When the 8500 returns

control, the Z80 picks up again at $FFEE—and so on and so on.

The Switcheroo Pivot

Switcheroo handles the Z80 stack, the user call, and controls

the "sleepy time" program counters for the two microproces

sors while making use of the RAM routines at $FFE1 and

$FFD0. The Switcheroo pivot thus allows you to easily execute

hybrid programs and, as our example shows, even call the Z80

from Basic.

The Switcheroo code sits at 3000, high in the 128's tape buffer.

The address of the Z80 code to be executed should be in the

8500's X (=low byte) and A (=high byte) registers. These can

The Transactor SO Nov. 1986: Volume 7, Issue O3

be passed directly from ML or even Basic via the 128's new

improved SYS command, which is exactly what our little Basic

example does. The program pokes some Z80 code in at $6000,

calls Switcheroo to execute it and then continues in Basic. The

Z80 code copies its ROM into RAM at $8000. Notice how easy it

is to code this move (4 instructions, 11 bytes). The Z80 then

pokes the screen colours just to show off.

The Switcheroo pivot isn't long at all, and should pave the way

for some serious exploring of the Z80 language and environ

ment in the 128 by 8500 buffs.

Switcheroo Pivot Basic Loader

KM

01

CC

FD

NF

KA

OK

BK

EA

JH

MD

BB

HI

LN

FD

DL

JP

LG

GA

HM

EM

LM

FO

NC

100 rem save"0:switcheroo.bas" ,8

110 rem ** this program will poke some z80

120 rem ** code into memory at $6000 and then

130 rem ** execute it via the switching

140 rem ** routine at 3000.

150:

160 rem ** now putz80 code into memory

170 for x = 24576 to 24598: read b: poke x,b: next

180 sys 3000,96,0: rem call z80 at $6000

190 print " back alive and well!!!": end

200:

210 rem ** the z80 code to copy 4k rom to $8000

in ram 0 **

220 data 33, 0, 0 :rem Id hl,0

230 data 17, 0, 128 :rem Id de,$8000

240 data 1, 0, 16 :rem Id bc,$1000

250 data 237, 176 :remldir

260 rem ** z80 code to poke background and

border colour **

270 data 62, 0 :remlda,0

280 data 1, 32, 208 :rem Id bc,$d020

290 data 237, 121 :rem out (c),a

300 data 60 :reminca

310 data 12 :remincc

320 data 237, 121 :rem out (c),a

330 data 201 : rem ret

Switcheroo Pivot Source Listing

DM

LN

JE

FK

GO

MA

HN

FA

AL

Bl

EH

IE

AL

GJ

GG

ND

AB

BP

FF

MO

FG

DA

GL

CG

EC

NC

ON

IO

NH

NN

KL

GB

KM

NC

OC

AO

DG

BM

GF

KO

MA

Ml

EP

100 rem save"

110 open 8,8,1

120 sys700

130 .opt 08

140*

150;

160z80pc

170invokez80

180c128pc

190 invokei28

200 z80stk

210;

O:switcheroo.pal

, "0:switcheroo"

=

=

=

=

=

=

3000

$ffee

$ffdO

$ffdc

$ffe1

$cfff

220 ;*** 'switcheroo' for hybrid

230 ;*** by chris miller, may 20,

240;

250

260

270

280

290

300

310

320;

330

340

350

360

370;

380

390

400

410

420

430

440;

450

460

470

480;

490

500

510

520

sty

Idy

sty

Idy

sty

Idy

sty

Idy

sty

stx

sia

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jsr

Ida

sta

cli

rts

$ffO1

#$31

z80pc

#<z80stk

z80pc +1

#>z80stk

z80pc + 2

#$cd

z80pc + 3

z80pc + 4

z80pc + 5

#$c3

z80pc + 6

",8

;z80 wakes up here

; by 8500

;wakes up here

;by z80

;safe place for stack

processing ***

1986

;set ram 0 config

;ld sp,($bfff)

;call (jsr) opcode

subroutine address

(sys parameters)

;jp (jmp) opcode

;invoke c128 when

can't continue

#<invoke128

z80pc + 7

#>invoke128

z80pc + 8

#$60

c128pc

invokez80

#0

$ffOO

; rts opcode

;back to basic

The Transactor 51
Nov. 1984: Volume 7,l»$ueO3

Program Trace Monitor Richard Stringer

Dallas, Texas

- A profiler for Commodore 64 machine language programs

This program will trace the execution of any program and show

how often each section of the program is executed. It is primarily

designed to be used with machine language programs, but can be

used for programs in any language. The output, in the form of a

chart, can be used either by another program or the programmer

himself to provide information on the execution speed, memory

use, location of called subroutines, and general efficiency of the

code.

The output of the program is in the form of a chart, which is sent to

the printer due to the large amount of data generated. No printer

codes are used, so any printer should work. Along the left side of

the chart is the high byte of addresses in the traced area, and along

the top are the low address bytes, in increments of 16. At the

intersection of a high/low address is found a hexadecimal value

which indicates how many times code has been executed within

that 16-byte area during the trace period. With this layout, you can

quickly look up areas of interest in your program to see if a section

is being executed, and if so, how frequently.

This program works in an atypical manner for a trace program on

65xx series computers. Since a great deal of programs use or alter

the system IRQ interrupt, 1 found that I could not insert the trace

vector into this interrupt and still get acceptable performance.

Another more serious difficulty was the frequency of the IRQ

interrupt. On the Commodore 64, the IRQ frequency is set at 60

Hertz (every 1/60 seconds). This is far too slow to trace an

assembly language program. Also, many programs disable the

system interrupt with a SEI instruction, which would shut off the

trace. To avoid these problems, the program uses the NMI (Non-

Maskable Interrupt) as its interrupt source.

The NMIs can occur at a user-selected rate, allowing you to

determine how many times per second the program makes a

count. You can select frequencies from about 9800 per second

down to less than 50. The frequency is varied by placing a value in

location 828 decimal. (A value of zero will default to one.) This

value is used as the upper 8 bits of a timer which generates an NMI

whenever it counts down to zero. The lower 8 bits is supplied by

the variable CCYCLE in the source listing, which is normally set to

100. The 16-bit timer value thus formed indicates the number of

cycles between interrupts - on the C64, a cycle is 1/977778

seconds.

The trace is performed by recording the data from the program

counter of the interrupted program. This is left on the stack as part

of the interrupt sequence, and can be accessed by using the stack

pointer as an index into the stack and using indexed addressing.

The actual value of the program counter is not stored. The data

buffer is arranged as a two-dimensional array and the data is used

as an index into this array. On program initialization, this array is

set to zero. The correct array element is simply incremented each

time an address is read from the stack. The counts are stored as 16-

bit values, allowing counts up to $FFFF, after which an overflow

counter is incremented. Also, a frequency counter is maintained to

show how many samples were taken. This is needed to interpret

the individual counts. The frequency counter is stored as 24 bits,

and the trace shuts off automatically when this counter overflows.

The Trace cannot be active during Input/Output operations due to

timing conflicts. For this reason I have implemented two jump

vectors to stop and start the trace without resetting any program

variables or the accumulated counts. A call to KILL will stop the

trace and turn NMI interrupts off. RESET will resume execution

and preserve any data in the buffer. A call to CHART at any time

will print the chart showing the current counts. Output can be

stopped by pressing the SHIFT and COMMODORE keys together.

It is important to call KILL before calling CHART to reset the

interrupt vectors.

Using The Program

Assuming the program is assembled at $8000, the entry points

look like this:

trace = 32768

kill = trace+ 3

chart = trace+ 6

reset = trace+ 9

The Transactor 52 Nov. 1986: Volume 7, Utue O3

To start the program once it's in memory, do a SYS TRACE. This will zero

all counts in the buffer and begin the trace. When you wish to see the

chart, do a SYS KILL: SYS CHART. KILL and RESET are used as explained

above.

The start and end addresses for which the trace takes place are defined in

the source code by the variables CBEGIN and CFINISH. As listed, these

are set to SAO and $FF respectively, to trace all code from $A000 to

$FFFF: the ROMs and the often-used $C000-CFFF block of RAM. Change

these and re-assemble the source to trace other areas. When assembling,

note that this source was assembled using the Commodore assembler.

The mathematical expression used in the subroutine ZBUFF may cause

some assemblers trouble - modify it or compute the values by hand if

necessary for your assembler.

All output is in the form of hexadecimal numbers. Leading zeros are

suppressed. Zero values are indicated by blank spaces on the chart.

Hexadecimal representation was chosen for the counts to fit more

information on an eighty column printout.

Interpretation of the chart can be done in several different ways. If the

objective of the trace is to improve program performance, the amount of

time spent in each section of code can be analyzed to determine what

portion of the code is using the most processor time; the most-used

routines can then be optimized. If certain branches are never being

taken, they can be removed. Branches can be arranged so that the one

taken most often is checked for first. There are a great many such small

changes that can result in a remarkable increase in execution speed.

If your program is not working at all, a trace chart can show what sections

of ocde are being executed. This is usually all you need to know in order

to get it running. Once the problem has been located, the fix is usually

quite simple. If the program is going into an endless loop, changing the

trace program to perform a JSR CHART before it ends due to frequency

counter overflow will let you see where the loop is taking place. If you are

jumping to a location out of the program area for some reason, you may

be able to see where the jump is going. This is sometimes enough

information to determine how the jump took place.

Running a trace on a BASIC program will show you a great deal about

how the interpreter works. It will show the location of ROM routines. It

will also show which routines are using the most time and resources. IRQ

routines, both user and KERNEL, are are also traced. All of this informa

tion can be useful to a programmer.

If anyone would like to correspond with me regarding this program or

any topic related to assembly language programming, feel free to contact

me at this address:

Richard Stringer

7805 Villa Cliff #111

Dallas, Texas 75228

Program Trace Monitor: Generates PRG object file on disk

PE

OP

GK

JD

IA

OK

GO

FO

100 rem* data loader for "trace" *

110for i = 1 to883:read a:cs = cs + a:next

120 if cs<>95794 then print" Idata error!" :stop

130 rem data ok, write to file

140 open 1,8,1,"0:trace.com"

150 restore

160 for i = 1 to 883: read a: print#1,chr$(a);: next

170 close 1: end

IC

IF

AM

NA

IF

HA

LF

IK

LE

HD

KH

IB

KP

EE

LO

OO

FK

FN

JC

FM

AO

BN

FH

OL

NN

JP

FA

FO

AN

LC

OC

PI

IH

EA

LG

JP

HG

BM

KD

BH

DJ

GL

LJ

BN

FL

MP

LK

KO

FA

DN

FE

MO

EB

JG

AC

DC

HO

CG

JB

AN

PG

Nl

GD

NH

DK

JF

1000 data 0,128, 76,

1010 data 76, 39, 129,

1020 data 130, 169, 0,

1030 data 131, 141, 124,

1040 data 24, 3, 141,

1050 data 24, 3, 173,

1060 data 169, 128,141,

1070 data 208, 5,169,

1080 data 6,221,169,

1090 data 0,141, 5,

1100 data 221,120, 169,

1110 data 1,141, 14,

1120 data 221, 88, 96,

1130 data 169, 0,141,

1140data173, 114, 131,

1150 data 131, 141, 25,

1160 data 152, 72,169,

1170 data 3, 76,149,

1180 data 127, 141, 13,

1190 data 127, 141, 13,

1200 data 221,141, 15,

1210data 141,121, 131,

1220 data 240, 2,144,

1230 data 176, 10, 56,

1240 data 88, 32,200,

1250 data 129, 234, 32,

1260 data 120,131, 173,

1270 data 74, 74, 141,

1280 data 162, 4, 10,

1290 data 249, 101,251,

1300 data 120, 131, 133,

1310 data 251, 24,105,

1320 data 251,105, 0,

1330 data 0,109,125,

1340 data 255, 145,251,

1350 data 131, 208, 13,

1360 data 238, 124, 131,

1370 data 96,169,160,

1380 data 129,162, 4,

1390 data 130, 32, 29,

1400 data 255, 173, 117,

1410 data 240, 2,176,

1420 data 58, 32,210,

1430 data 255, 160,255,

1440 data 173, 141, 2,

1450 data 13, 32,210,

1460data141, 116, 131,

1470 data 208, 43, 32,

1480 data 238, 117, 131,

1490 data 133, 251, 165,

1500 data 76, 58,129,

1510 data 130, 169, 4,

1520 data 255, 96,200,

1530 data 172, 116, 131,

1540 data 32,210,255,

1550 data 140, 61, 3,

1560 data 3, 32,220,

1570 data 220,129, 201,

1580 data 208, 7,160,

1590 data 255,152, 32,

1600 data 240, 74, 74,

1610 data 72,138, 41,

1620 data 104, 96,201,

1630 data 7,105, 48,

1640 data 130, 173, 24,

1650 data 169, 7,141,

12, 128,

76, 29,

141, 122,

131, 141,

114, 131,

25, 3,

25,

1,

3,

2,

128,

221,

3,

141,

0, 141,

221, 169,

65, 141,

221, 169,

169, 127,

15,221,

141, 24,

96,

44,

32,

76,

221, 169,

221, 186,

189, 6,

16,201,

233, 160,

128, 32,

29, 130,

121, 131,

121, 131,

46, 120,

133,251,

252, 172,

1,145,

145,251,

131, 141,

136, 145,

238,123,

208, 3,

141, 117,

32,201,

130, 169,

131,240,

71, 32,

255, 169,

200, 192,

201, 3,

255,144,

208, 45,

57,130,

24, 165,

252,105,

32, 71,

32, 195,

177,251,

32, 182,

172,113,

32, 197,

129, 76,

48, 208,

32, 208,

210,255,

74, 74,

15, 32,

10, 144,

96, 169,

208, 41,

16,130,

76, 97,128

128, 32, 38

131, 141,123

125,131, 173

169, 123, 141

141, 115, 131

173, 60, 3

60, 3,141

7,221, 169

100,141, 4

15,221, 169

130,141, 13

141, 13,221

141, 14,221

3, 173, 115

72, 138, 72

13,221,240

97, 128,169

76,254, 169

0,141, 14

189, 5, 1

1,201, 160

255,240, 2

141, 119,131

51,128, 76

169, 0, 141

41,240, 74

173, 119, 131

131,202, 16

165,252, 109

121, 131, 177

251,200, 177

144, 15,169

125, 131, 169

251,238, 122

131,208, 8

32, 97, 128

131, 32,250

255, 32, 71

13, 32,210

77, 201,255

197, 129, 169

32, 32,210

32,240, 32

208, 7,169

37, 177,251

200, 177,251

76, 89,129

251,105, 32

0, 133,252

130, 32, 96

255, 32,204

140, 113, 131

129,169, 32

131,208,163

129,173, 61

212,129, 32

8,192, 48

3, 32,210

96,170, 41

32,240,129

240,129, 168

3, 24, 105

255,141, 16

2,240, 5

169, 4,162

The Transactor 53 Nov. 1986: Volume 7, Issue O3

ID

LE

BK

CF

KK

HM

JL

AA

BN

KO

CM

HA

01

KB

HO

CD

BH

MC

KD

GE

HH

LF

AM

Kl

CC

NO

JO

HG

IA

KL

FO

LD

MJ

PM

JB

BC

PC

ND

ME

LF

JG

DF

MM

MC

BL

1660 data 4,160,

1670 data 32,189,

1680 data 126,133,

1690 data 32, 29,

1700 data 145, 251,

1710 data 208, 246,

1720 data 169,130,

1730 data 96,160,

1740 data 96,132,

1750 data 53,240,

1760 data 246, 96,

1770 data 130,172,

1780 data 129,160,

1790 data 160, 214,

1800 data 100,169,

1810data169,131,

1820 data 131, 32,

1830 data 220,129,

1840 data 32,220,

1850 data 131, 32,

1860 data 21,169,

1870 data 169, 131,

1880 data 32,220,

1890 data 169,131,

1900 data 210,255,

1910 data 13, 67,

1920 data 89, 67

1930 data 32, 32

1940 data 89, 67

1950 data 32, 32

1960 data 91, 0

1970 data 69, 32

1980 data 32, 32

1990 data 93, 0

2000 data 48, 32

2010 data 48, 32

2020 data 48, 32

2030 data 48, 32

2040 data 48, 32

2050 data 48, 32

2060 data 48, 32

2070 data 48, 32

2080 data 86, 69

2090 data 32, 32

2100 data 91, 32

255,

255,

251,

130,

200,

96,

32,

24,

53,

6,

160,

60,

21,

169,

0,

32,

79.

32,

129,

220,

131,

32

129

32

96

76

76

91

76

32

13

67

32

32

32

32

32

32

32

32

32

32

82

32

0

32,

32,

169,

162,

208,

140,

79,

169,

133,

32,

234,

3,

169,

130,

32,

79,

130,

212,

32,

129,

32,

79,

32,

79,

32,

79,

69,

0,

69,

40,

83,

79,

32

32

49

51

53

55

57

66

68

70

70

32

186,

192,

131,

12,

251,

113,

130,

131,

54,

210

169

169

131

32

182

130

173

129

212

32

79

130

212

130

32

67

32

13

83

66

65

85

91

■s:>

48

48

48

48

48

48

48

48

76

32

255,

255,

133,

160,

230,

131,

172,

32,

160,

255,

130,

0,

32,

79,

129,

160,

124,

173,

129,

212,

130,

173,

129,

169,

32,

75,

40,

13,

32,

41,

77,

78

32

32

32

32

32

32

32

32

32

0

, 79

, 32

169,

96,

252,

0,

252,

160,

113,

79,

0,

200,

32,

32,

79,

130,

160,

0,

131,

123,

173,

129,

160

125

160

13

58

32

65

13

32

32

80

84

0

32

32

32

32

32

32

32

32

13

87

32

Program Trace Monitor: Demo Program (note line

NN

DN

NE

NK

HE

DO

CO

EG

LH

FM

DJ

GF

IJ

NM

CK

PB

KA

KC

100 if peek(32768) h

110 load" trace.corr

0

169

96

152

202

209

131

130

177

208

79

182

130

160

21

169

32

131

122

160

92

131

21

32

0

67

41

67

32

32

76

32

32

48

50

52

54

56

65

67

69

79

83

32

110)

- peek(32769) = 88 then goto 160

120 this program will demonstrate the

130 use of the trace program 1

140 the same technique

rom

s used to

oasic

trace

150 an assembly language program

160 poke 56,128: rem protect program from basic

170 trace = 32768: kill = trace+ 3: chart =

180 poke 828,10:

190 sys trace:

200 for t = 1 to 110:

rem set frequency

rem:start trace

= kill +3

d = sin(t):f$ = str$(int(d) +

210 poke 53281,peek(53281) and

220 print peek (53281): print d

230 if t = 100 then gosub 250

240 next: end

250 sys kill

260 sys chart

270 return

,f$

15

1)

a0

a1 :

33

a4:

a5

a6

a7 ■at .

a8

a9:

aa:

ab

ac

ad:

ae :

af ■

bO;

bl

b2

b3

b4

b5

b6

b7

be
b9

ba

bb

be

bd

be

bf

cO

d

c2

c3

c4

c5

c6

c7

C8

c9

ca

cb

CC

cd

ce

cf

dO
H10 I

d2

d3
d4

d5

d6

d7

d8

d9

da

db

dc

dd

de

dl

eO

e1

e2

63

e4

65

e7

e8

e9

ca

eb

ec.

ed

si

fO

f1

12
p

\o

14

IS

f6

(7

18

19

fa

fb

fc

fd

fe

H

Program Trace Monitor: Sample Output
00 m ?n an 40 so 60 70 80 90 aO bO cO do eO

11

07

02

07

13

03

24

Of
72

03

09

01

07

03

23

01

06

Oa

05

01
18

09

07

01

02

7e 167

: Od

03

67 239

15

03

04

I e

01

Ob

6s

a2

00

cycles

03

14

01

Oa

02

3b

50

39

10

clock cycle

10

15

Od

30

42

a3

06

20

b)

a)

sample count

overflows

02

04

04

19

01

Oa

06

30

16

03

2f

07

16

02

1a

02

30

[Oa

02

2d

04

08

06

2d

18

38

3a

08

04

01

17

05

05

Of

40

1
[64]

03

12

0 I

06

05

3 b

52

24

01

03

07

08

50

[0038cb]

[00]

01

01

Oa

21

05

187

23

3 b

12

03

03

01

Ob

02

02

01

5e

01

Od

2e

06

Ob

06

01

5b

03 71

1 e9 2ce

1c

03

4a

63 111

02

01

01

Of

01

03

60

Oa

01

04

01

01

Oe

01

70

03

3c

ce

Ob

06

05
■«-

1 /

Oe

07

25

80

01

16

14

20

08

07

1e

06

34

61

38

19

1a

33

03

02

14

02

07

07

90

01

02

03

Od

1b

03

06

Oc

01

09

05

4a

ce

32

10

Oc

2b

02

V7O/

02

Of

aO

1b

Oa

07

28

Oc

03

02

Oc

Od

12

1aO

21

10

Od

27

02

49

03

06

bO

09

01

04

02

0!.

01

02

04

03

20

Oc

01)

06

1c

01

Oh

02

03

13

Oa

06

04

07

55

09

Oa

02

01

02

67

12

02

01

05

05

On

01,

04

3f

36

Ob

01

05

06 : 05

36 136d89

06

28

Oc

cO

03

14

05

10

do

01

05

08

eO

fO

Oc

09

02

02

Oa

15

52

02

01

28

39

Oc

41

1d

98

02

(0

The Transactor Nov. 1986: Volume 7, toue O3

Program Trace Monitor: PAL Source Code

EG

DM

KA

MH

BG

AJ

AH

KM

KJ

DK

CM

FN

GN

KA

IM

LG

GP

IA

LG

HC

GH

IM

AH

CD

NG

IC

El

KL

GE

BK

EC

MA

OJ

IK

IA

KN

KB

GE

GE

BC

BH

FJ

BK

DF

OP

MA

GC
LH

ON

PE

CK

JP

AB

HA

NC

AC

HF

JE

JH

CC

OE

AM

JF

IH

KF

DF

OJ

GO

MA

LH

GF

IP

OC

10

CE

OE

MJ

KA

NM

CL

OH

KK

MD

BP

GP

LB

The'

1000 open 1,8,1," 0:trace.com'

1010sys700

1020.opt o1

1030;

1040 ;program name-trace/nmi

1050;

1060 purpose -to trace and record

1070 ;the data from the <pc> in order

1080 ;to analyze the performance of

1090;a program

1100;

1110 ;last update-12/26/85

1120;

1130 ;author - r.w.stringer

1140; 7805 villa cliff #111

1150; dallastexas 75228

1160; (214)-327-3039

1170;

1180 ;special note-i/o cannot operate

1190 ;with nmi interrupts functioning

1200 ;the unset routine (kill jmp

1210 ;vector) should be called before

1220 ;any input/output

1230; -buffer size in the

1240 ; present configuration is limited

1250 ;to 3 kbytes.this is room for a

1260 ;trace of 24kbytes of address

1270 ;space.to trace more space the

1280;program will need to move the

1290 ;buffer or remove basic from the

1300 ;current address space.no basic

1310 routines are used

1320;

1330;

1340; system equates

1350zpg = $fb

1360 temp = 53

1370 skey = 653 ;shfl/ctrl/cmdre flag

1380cbegin = $a0 ;trace start address

1390 cfinsh = $ff ;trace end address

1400 ;above set range for trace

1410ccycle = 100 ;cycle count timer a

1420 milli = 828 ;timerb count

1430 vector = 792 ;nmi vector

1440 irqoff = %01111111 interrupt mask

1450 bmask = %00000010 ;timer b mask

1460talo = $ddO4 ;timer a latch low

1470 tahi = $ddO5 ; hi

1480 tactrl = SddOe ;timer a control reg

1490tblo = $ddO6 ;timer b latch low

1500tbhi = $ddO7 ; hi

1510tbctrl = SddOf ;timer b control reg

1520 ire = SddOd interrupt control reg

1530; kernal equates

1540 setlfs = $ffba

1550setnam = Sffbd

1560 open = SffcO

1570chrout = $ffd2

1580 close = $ffc3

1590clrchn = $ffcc

1600chkout = $ffc9

1610;

1620 ;the difference between cbegin

1630 ;and cfinsh can be no larger than

1640 ;$5f.the buffer at the present

1650 location is only 3k long

1660 ;in order to trace the complete

1670 ;64k address space you will need

1680 ;to allocate an 8k buffer.the

1690 ;chart will be 256 lines long.the

1700 ;buffer space formula is

1710 ;buffer = (#kbytes to trace)/8

1720;

1730 • m $8000 ; program orgin

1740;

1750; jump vectors

1760 trace jmp setirq ;start

1770 kill jmp unset ;stop

1780 chart jmp pntcht printout

1790 reset jmp settwo ;restart

1800;

1810 ;set up vectors zero variables

1820 ;set up and start timers

1830 ;timer b counts underflows

1840 ;from timer a and counts down

1850 ;the number of underflows in

MN

GB

El

IN

JP

BG

Al

ME

KF

FF

JO

OC

LP

HP

KK

IB

PB

GA

BG

AH

JP

IP

LM

FB

OK

HN

AM

PO

IP

PP

LA

LP

LB

NA

BD

OP

KD

CK

GD

OC

ML

PP

OF

GD

IF

BP

BJ

JJ

CG

PF

ID

KF

ID

MM

FA

OE

DN

Gl

El

KG

KJ

MB

EH

OG

AE

Fl

EF

FM

BF

HJ

LO

KP

IB

KH

FH

LE

IJ

BD

PM

LN

FG

CE

AB

HF

PH

JJ

OO

IP

1860 ;milli.on timer b underflow a

1870 ;nmi is generated.vector points

1880 ;to tstprg

1890;

1900 setirq jsr zbuff

1910 Ida #0

1920 sta freq

1930 sta freq +1

1940 sta freq+ 2

1950 sta vflag

1960 settwo Ida vector

1970 sta oldvec

1980 Ida #<tstprg

1990 sta vector

2000 Ida vector +1

2010 sta oldvec+1

2020 Ida #>tstprg

2030 sta vector+1

2040 sertmr Ida milli

2050 bne sttimb

2060 Ida #1

2070 sta milli

2080 sttimb sta tblo

2090 Ida #0

2100 sta tbhi

2110 Ida Occycle

2120 sta tahi

2130 Ida #<ccycle

2140 sta talo

2150 sei

2160 Ida #%01000001

2170 sta tbctrl

2180 Ida #%00000001

2190 sta tactrl

2200 Ida #%10000010

2210 sta ire

2220 cli

2230 rts

2240;

2250 ; reset vectors to normal and

2260 ;turn interrupts off.needed for

2270 ;i/o operations

2280;

2290 unset Ida #irqoff

2300 sta ire

2310 Ida #0

2320 sta tbctrl

2330 sta tactrl

2340 Ida oldvec

2350 sta vector

2360 Ida oldvec+1

2370 sta vector+1

2380 rts

2390;

2400 ;stop interrupts.pull address

2410 ;of next program step from stack

2420 ;check if in range.subtract offset

2430 ;from hibyte and store.store

2440 ;lobyte and jsr to array routine

2450 ;on return turn interrupts on

2460 ; reset timers and exit.

2470;

2480 tstprg pha

2490 txa

2500 pha

2510 tya

2520 pha

2530 Ida #bmask

2540 bit ire

2550 beq outjmp

2560 jmp swich

2570 outjmp jsr unset

2580 Ida #irqoff

2590 sta ire

2600 jmp $fe4c

2610 swich Ida #irqoff

2620 sta ire

2630 Ida #0

2640 sta taetrl

2650 sta tbctrl

2660 tsx

2670 Ida $0105,x

2680 sta lobyte

2690 Ida $0106,x

2700 emp #cbegin

2710 beq tryhi

2720 bec bugout

2730 tryhi emp #cfinsh

55

OA

ME

AG

AJ

EG

MF

KO

ON

HG

El

GK

JM

NP

DH

GL

CO

OF

CM

AN

HG

NH

LJ

CO

GG

GC

KC

NB

NA

NH

KF

GF

JE

PN

IE

CG

PA

GD

AE

KE

CN

Ol

NJ

FJ

HM

DC

DP

JK

PP

EK

MJ

GP

MG

IJ

MD

PK

DF

CJ

KM

FN

MB

NL

BA

LI

BO

BP

IF

DA

MG

Ol

BE

EB

FF

MC

JG

PL

GL

CC

Bl

El

EM

BO

EF

OF

JB

OL

GO

PF

MN

2740 beq issame

2750 bos bugout

2760 issame sec

2770 sbc #cbegin

2780 sta hibyte

2790;

2800 ;we need to allow system irq

2810 requests here because we are

2820 stealing so much cpu time

2830;

2840 cli

2850 jsr mainpg ; index array

2860 bugout jsr settmr

2870 jmp $ea81

2880;

2890 calculate array index and

2900 ; increment the proper array var

2910 ;array is- array[0.. .xx,0.. .15]

2920 ;of double integer [0.. .65535]

2930 ;array index is calculated as

2940; (hibyte-#cbegin).32 +

2950;(lobyte/16).2 +

2960 ; buffer start address

2970 ;overflow is checked for and

2980 ;sample count incremented.sample

2990 ;count is maintained as a 24 bit

3000 ;integer (2t24)-1 .trace is

3010 ;terminated on sample overflow

3020 ;a flag is set on var overflow

3030 ;var's are kept in lo/high format

3040;

3050 mainpg jsr setbuf

3060 Ida #0

3070 sta hibyte+1

3080 Ida lobyte

3090 and #$f0

3100 Isr a

3110 Isr a

3120 Isr a

3130 sta lobyte

3140 Ida hibyte

3150 Idx #4

3160mul32 asl a

3170 rol hibyte + 1

3180 dex

3190 bpl mul32

3200 adc zpg

3210 sta zpg

3220 Ida zpg +1

3230 adc hibyte+1

3240 sta zpg +1

3250 Idy lobyte

3260 Ida (zpg).y

3270 clc

3280 adc #1

3290 sta (zpg),y ;indexed

3300 iny ;element

3310 Ida (zpg),y

3320 adc #0

3330 sta (zpg),y

3340 bee testi

3350 Ida #0

3360 adc vflag

3370 sta vflag

3380 Ida #$ff

3390 sta (zpg),y

3400 dey

3410 sta (zpg),y

3420 testi inc freq

3430 bne test2

3440 inc freq +1

3450 bne test2

3460 inc freq+ 2

3470 bne test2

3480 jsr unset

3490 test2 rts

3500;

3510 ;print results in chart form

3520 ;with proper formating.leading

3530 ;zeros are suppressed on two

3540 ;byte hexadecimal numbers

3550;

3560;

3570 pntcht Ida #cbegin

3580 sta fre2

3590 jsr p2scr

3600 Idx #4

3610 jsr chkout

Nov. 1986: Volume 7, Issue O3

AP

M

CF

AN

FC

H

BA

FE

NC

Nl

JG

DC

v(H

CH

FH

NL

MG

MF

IB

DE

JIH

HN

LJ

OM

AN

GB

CB

IB

IC

MM

AB

CA

EO

PK

LP

BA

GK

NH

IP

FH

FA

HK

FM

BF

NO

MN

PB

AO

JO

MO

LM

DL

NA

Jl

HM

KM

PG

ON

KF

OE

FD

II

HD

KB

HI

OC

GM

IP

KD

JD

OH

LN

CJ

MO

cc

DP

CB

FC

HD

OF

IG

CH

MH

N

CP

ED

NJ

620

630

640pnch1

650

660

670

680

3690

3700

3710chks

3720

3730

3740

3750

3760

3770 pnloop

3780

3790

3800

3810

3820

3830

3840

3850

3860 pnch

3870

3880

3890

3900

3910

3920

3930

3940 pnch2

3950

3960

3970

3980

3990

4000

4010

4020

4030 pfini

4040

4050

4060

4070

4080

4090 bumpy

4100

4110 pntit

4120

4130

4140

4150

4160

4170

4180;

jsr phead

jsr setbuf

Ida #13

jsr chrout

Ida fre2

beq plini

cmp #cfinsh

beq chks

bcs pfini

jsr pnthex

Ida #''
jsr chrout

Ida #32

jsr chrout

Idy #255

iny

cpy #32

beq pnch2

Ida skey

cmp #3

bne pnch

Ida #13

jsr chrout

bcc pfini

Ida (zpg).y

sta lent

bne bumpy

iny

Ida (zpg),y

bne pntit

jsr pnt3sp

jmp pnloop

inc fre2

clc

Ida zpg

adc #32

sta zpg

Ida zpg +1

adc #0

sta zpg +1

jmp pnchi

jsr phead

jsr pntsta

Ida #4

jsr close

jsr clrchn

rts

iny

Ida (zpg),y

sty ysave

Idy lent

jsr hex16

Ida #32

jsr chrout

Idy ysave

bne pnloop

4190 ;output hexnumber <two bytes>

4200;

4210hex16

4220

4230

4240

4250

4260;

sty 829

jsr pnthex

Ida 829

jsr hexout

jmp nozera

4270 ;output hex number <one byte>

4280;

4290 pnthex

4300

4310

4320

4330

4340

4350

4360 nozera

4370 nozery

4380

4390

4400 hexout

4410

4420

4430

4440

4450

4460

4470

4480

4490

jsr hexout

cmp #"0"

bne nozera

cpy #"0"

bne nozery

Idy #32

bne nozery

jsr chrout

tya

jst chrout

rts

tax

and #$fO

Isr a

Isr a

Isr a

Isr a

jsr ho2

pha

txa

and #$0f

0

G

AD

OJ

0

HN

GE

M

Dl

KN

OG

LK

Cl

JJ

JF

BN

DM

EA

BE

LI

HM

FL

PO

EE

PG

PE

MA

Ol

CC

CK

GD

AN

JE

NM

GD

ON

Ch

JE

Gl

JL

HJ

JH

PO

MP

MC

FK

AJ

BC

DM

KG

OF

GG

CB

GP

AN

GH

PK

HB

EM

IF

JJ

MG

FC

AM

PP

KA

OJ

GB

CL

BE

HA

FK

PM

KO

PE

CG

BP

HD

GB

HB

KC

IH

G

N

AO

BN

JJ

IO

500

510

520

530

jsr ho2

tay

pla

rts

540 ho2 cmp #10

550 bcc nixadd

4560 clc

4570 adc #7

4580 nixadd adc #"0"

4590 rts

4600;

4610 ;open printer as device #4

4620;

4630 p2scr Ida #255

4640

4650

4660

4670

4680

4690

4700 ucase

4710

4720 pindex

4730

4740

4750

4760

4770

sta pindex +1

Ida 53272

and #2

beq ucase

Ida #7

sta pindex +1

Ida #4

Idx #4

Idy #255

jsr setlfs

Ida #0

jsr setnam

jsr open

rts

4780;

4790 ; reset buffer to start

4800;

4810 setbuf Ida #<trbuf

4820 sta zpg

4830 Ida #>trbuf

4840

4850

4860;

sta zpg +1

rts

4870 ;zero buffer area

4880;

4890 zbuff

4900

4910

4920

4930 zloopi

4940

4950

4960

4970

4980

4990

5000;

jsr setbuf

Idx #(cfinsh +1 -cbegin)>3

Idy #0

tya

sta (zpg),y

iny

bne zloopi

inc zpg + 1

dex

bne zloopi

rts

5010 ;print 3 spaces and a colon

5020;

5030 pnt3sp

5040

5050

5060

5070

5080

5090;

sty ysave

Idy #<space

Ida #>space

jsr pstrng

Idy ysave

rts

5100 ;print top of chart

5110;

5120phead

5130

5140

5150

5160;

Idy #<messg

Ida #>messg

jsr pstrng

rts

5170 ;print string a = > y = < address

5180;

5190pstrng

5200

5210

5220 pstrgi

5230

5240

5250

5260

5270 pstrg2

5280;

sty temp

sta temp +1

Idy #0

Ida (temp),y

beq pstrg2

jsr chrout

iny

bne pstrgi

rts

5290 ; print sample stats

5300;

5310 pntsta

5320

5330

5340

5350

5360

5370

Idy #<messg2

Ida #>messg2

jsr pstrng

Idy milli

Ida #0

jsr hex16

Idy #<messg5

Ol

P

OP

EK

HB

DD

N

DP

CE

0

DF

MF

CA

BH

IB

LF

CD

AK

JH

Ol

OL

HJ

IN

OH

JO

OP

EK

HA

PJ

IB

BP

CD

IN

DE

IO

DE

CG

GP

LM

KA

DK

MJ

IC

OD

PE

EM

AF

FJ

CM

MO

IH

BJ

OJ

EB

AK

KM

CD

OL

OK

NG

EK

DO

KB

IH

MB

GH

GJ

LK

AB

PM

LK

OK

FP

BD

JA

LJ

DF

MO

380

390

5400

5410

5420

5430

5440

5450

5460

5470

5480

5490

5500

5510

5520

5530

5540

5550

5560

5570

5580

5590

5600

5610

5620

5630

5640

5650

5660

5670

5680

5690

5700

5710

5720

5730

5740

5750

da #>messg5

sr pstrng

,dy #<messg3

Ida #>messg3

jsr pstrng

Idy #<ccycle

Ida #>ccycle

jsr hex16

Idy #<messg5

Ida #>messg5

jsr pstrng

Idy #<messg4

Ida #>messg4

jsr pstrng

Ida freq + 2

jsr hexout

jsr nozera

Ida freq +1

jsr hexout

jsr nozera

Ida freq

jsr hexout

jsr nozera

Idy #<messg5

Ida #>messg5

jsr pstrng

Idy #<messg7

Ida #>messg7

jsr pstrng

Ida vflag

jsr hexout

jsr nozera

idy #<messg5
Ida #>messg5

jsr pstrng

Ida #13

jsr chrout

rts

5760;

5770 program data and message tables

5780;

5790 space

5800 .byte 0

5810;

5820 messg3

.asc " :"

.byte 13

5830 asc " clock cycle (a) ['

5840. byte 0

5850;

5860 messg2 byte 13,13,13

5870 .asc "cycles (b) ['

5880. byte 0

5890;

5900 messg4 .byte 13

5910 asc "samplecount [

5920. byte 0

5930;

5940 messgE

5950 .byte 0

5960;

5970 messg

5980 .asc "

5990 .asc "

6000 .asc '

6010.asc '

6020 .byte 0

6030 messg'

.asc "]"

= «

00 10 20"

30 40 50 60"

70 80 90 aO"

bO CO dO eO fO"

.byte 13

6040 .asc " overflows

6050 byte 0

6060;

6070 ysave

6080 oldvec

6090 lent

6100 fre2

6110 hibyte

6120 lobyle

6130 freq

6140 vflag

6150trbuf

6160 .end

data

.byteO

.byte 0,0

byteO

.byte 0,0

.byte 0,0

.byteO

.byte 0,0,0

byteO

= •

The Transactor 56 Nov. 1986: Volume 7, toue O3

The 8563

Video Display Controller
David Stidolph

Madison, Wisconsin

The 80 column screen of the C128 is driven by a chip called the 8563 Video Display

Controller, or VDC for short. The VDC is extremely flexible, and almost every aspect of

the display (characters per line, lines per screen, height and width of characters, etc.)

can be changed to suit your preferences. Before describing how to use these features I
will explain how to access the VDC.

Accessing The VDC

The VDC contains 37 registers (numbered 0 to 36) which control how it displays

information contained in its own bank of 16K RAM (this memory is not accessible

directly by the CPU - only the VDC can get at it). Access to these registers is restricted

to two memory locations - $d600 and $d601. The register number you wish to read or

write is placed in $d600 and $d601 becomes "connected" with the register pointed to

by $d600. This complicated addressing scheme is made a little more difficult by the

possibility that the VDC is not ready to connect the register you want immediately

following a write to $d600. This is handled by making $d600 dual purpose. Writing to

$d600 specifies the register number. Reading $d600 returns status information. Below

is a description of the bits in $d600:

Location $d600 (VDC access registers)

d7 d6 d5 d4 d3 d2 dl dO

Write

Read

r5 r4 r3 r2 rl rO

status lp vblank — — verO verl ver2

When you read $d600, the highest bit is set if the information at $d601 is valid (for a

read or write). Bit 6 is cleared when the light pen signal has been sensed. Bit 5 is set

during vertical retrace. The lowest 3 bits return the version number of the VDC. An

easy test to determine a C128, in 64 mode, from a normal C64 is to PEEK this location.

A C64 will ALWAYS return a zero.

Programming the VDC seens impossible from BASIC (it is too slow), so all examples

will be shown in 8502 assembly code. Furthermore, the 80 column chip is just as

accessible from 64 mode, so all examples will work unchanged in either mode.

The following are two routines for reading and writing the VDC registers. When called,

register 'X' should have the VDC register number, and the accumulator is used to pass

the information. Register T is not affected.

READ

WA1T01

WRITE

WAIT02

STX

BIT

BPL

LDA

RTS

STX

BIT

BPL

STA

RTS

$D600

$D600

WAIT01

$D601

$D600

$D600

WAIT02

$D601

;WRITEREG#TOVDC

;WAIT FOR BIT 7 OF

; THE VDC TO BE SET

;LOAD REGISTER DATA

;AND RETURN

;WRITE REG* TO VDC

;WAIT FOR BIT 7 OF

; THE VDC TO BE SET

;PUT IN REGISTER

;AND RETURN

The following is a list of the VDC registers and their functions. Many of the registers

provide multiple functions, so each function is given its own line. The default (upon

power up) is given for each setting. An 'x' means that the bit position it is in is not used

for that function. For example, register 3 has two functions. One uses the upper four

bits to control the vertical sync width, and the other function uses the lower four bits to

control the horizontal sync width.

VDC Registers

Reg

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Normal

9601111110

96O1O1OOOO

9601100111

960100xxxx

%xxxxl001

9600100110

%xxxx0000

9601010000

9600100000

96xxxxxxOx

96xxxxxxxO

96xxxOOlll

96xOlxxxxx

96xxxOOOOO

96xxxOOlll

9600000000

9600000000

9600000000

9600000000

9600000000

9600000000

9600000000

96OOOOOOOO

9600000100

9600000000

%0111xxxx

96xxxxlOOO

%xxxx0111

96Oxxxxxxx

96xOxxxxxx

96xxlxxxxx

96xxxOOOOO

96 Oxxxxxxx

96xlxxxxxx

96xxOxxxxx

96xxx0xxxx

96xxxxOOOO

961111XXXX

96xxxxOOOO

%00000000

96OOlxxxxx

96xxxOxxxx

96xxxOOlll

9600000000

9600000000

9600000000

%00000000

9601111101

5601100110

96xxxx0101

Description

Horizontal Total

Horizontal Displayed

Horizontal Sync Position

Vertical Sync Width

Horizontal Sync Width

Vertical Total

Vertical Total Adjust

Vertical Displayed

Vertical Sync Position

Video Mode

Interlace-Syne Mode

Total Rasters/Character

Cursor Mode

Cursor Start: Raster Line

Cursor End: Raster Line

Display Start (HI byte)

Display Start (LO byte)

Cursor Address (HI)

Cursor Address (LO)

Light Pen Vertical

Light Pen Horizontal

Address Pointer (HI)

Address Pointer (LO)

Attribute Start (HI)

Attribute Start (LO)

Character Total Width

Character Displayed Width

Char Displayed, Vertical

Block Copy Mode

Reverse Entire Screen

Character Blink Rate

Vertical Smooth Scroll

Bit-Map Graphics Mode

Enable Attributes

Semi-Graphic Mode

Double Pixel Width

Horizontal Smooth Scroll

Foreground Color (RGBI)

Background Color (RGBI)

Address Increment Per Row

Character Set Start

8563 DRAM Type

Underline Raster Line

Word Count

Data Byte

Block Copy Source (HI)

Block Copy Source (LO)

Display Enable Begin

Display Enable End

DRAM Refresh Rate

Before we look at individual registers and functions,

we must look at how the VDC uses its 16K memory

bank, and how we can access it.

The Transactor 57 Nov. 1986: Volume 7, Issue O3

VDC Memory

The VDC has two 16K by 4-bit dynamic rams attached to it. These

rams can only be addressed by the VDC, so any access to them

MUST be through it. You first place the address you want to read or

write into the address pointers (registers 18 and 19). Then you read

or write the data byte register (#31). For example, to load VDC

memory location $10dc with the value $20, the following code

could be used:

SET20

address pointers are incremented. This means that you should use

one less than the number of characters you want to fill. The

following example clears the entire VDC memory.

LDX

LDA

JSR

INX

LDA

JSR

LDX

LDA

JSR

RTS

#18

*$10

WRITE

#$DC

WRITE

#31

#$20

WRITE

;HI BYTE

;NOWPOINTTO19

;LO BYTE

J

;DATA REGISTER

;BYTE TO WRITE

Due to an undocumented "bug" in the VDC, you should always

load the address pointer high byte first. If you load the high byte

last, you may get the wrong address.

One nice feature of the address pointers is that after each byte is

read or written through register 31, the address pointer is incre

mented to point to the next memory position. The following code

could be used to print my name to the VDC memory (we will use

the same location as the starting point):

#18

#$10

WRITE

#$DC

WRITE

#31

#00

NAME.Y

DONE

WRITE

PRTCHAR

;HIBYTE

;NOWPOINTTO19

;LO BYTE

■DATA REGISTER

;BEGINNINGOFNAME

;GET CHARACTER

; END CHARACTER?

; PRINT CHARACTER

;POINT TO NEXT

CLEAR

PRTNAM LDX

LDA

JSR

INX

LDA

JSR

LDX

LDY

PRTCHR LDA

BEQ

JSR

INY

JMP

DONE RTS

NAME .BYT'DAVID STIDOLPH',0

Of course the above example ignores the fact that the normal

definition of characters does not follow their ASCII equivalents

(unless you to set them up that way). The code also does not update

the attribute memory.

Fill and Copy Mode

If you want to clear the display by filling it with spaces (or any other

data), there is a special register to write the same byte to successive

VDC memory locations. This register (30) should be written AF

TER you have defined the starting address in the address pointer

registers and written the data to the data byte register. You must

remember, however, that as soon as you write a byte to the data

byte register, the memory location is set to that value and the

CLRPAG

LDX #18

LDA #00

JSR WRITE

INX

JSR WRITE

LDX #24

JSR READ

AND#$7F

JSR WRITE

LDX #31

JSR WRITE

LDX #30

LDA #255

JSR WRITE

LDY #47

LDA #00

JSR WRITE

DEY

BNE CLRPAG

RTS

;SET ADDRESS

; POINTER TO START

;OF MEMORY

;CLEAR COPY BIT

;LOAD DATA BYTE

; WITH 0 (CLEAR)

; AND CLEAR REST

; OF FIRST PAGE

;47 OTHER 256 BYTE

; PAGES TO CLEAR

;CLEAR 256 BYTES

;COUNTER ZERO?

;NO, CLEAR ANOTHER

;ROUTINE DONE!

Another feature of the VDC is the ability to COPY one area of VDC

memory to another area (up to 256 bytes at a time). This comes in

handy for scrolling the screen.

To copy memory the BLOCK COPY bit (register 24, bit 7) must be

set. You first set the address pointers (18 and 19) to the destination

address and the block copy source registers (32 and 33) to the

source of the memory to copy from. Then you write the number of

bytes to copy in the word count register (30). As with fill, a zero

value indicates 256 bytes are to be copied, however you do not put

a byte in the data register (31), so you do not need to write one less

than the number you want to word count register (30). The copy

process goes from low to hi, so be careful not to overlap your

copying.

Setting Up The Display

Most video chips are set to show a fixed number of characters per

line and lines per screen. The VDC, however, is more flexible than

most display controllers. The number of screen lines is controlled

by the vertical displayed register (6). As you increase or decrease

the number of lines, you will note that the top line stays fixed at the

same position. As you increment the vertical sync position register

(7), the screen will "move up", and as you decrease it the screen

will "move down". A good formula for setting the register is to add,

or subtract, one number for every other line added, or removed,

from the normal 25. A more mathamatical way to represent this

would be:

R7 = 32 + (R6-25)/2

The VDC allows you to design your display to be a "window" that

moves over a larger screen. Figure 1 shows the relationship of the

display to the theoretical screen. You could, for instance, have an

80 column display with 25 lines that moves about a 200 column

screen with 40 lines. The program examples here will assume only

the standard 80 columns.

The Transactor 58 Nov. 1986: Volume 7, litue O3

A

DISPLAY

ATTRIBUTES

A = Start of Display (R12, 13)

B = Start of Attributes (R20, 13)

C = Horizontal Displayed (R1)

D = Vertical Displayed (R6)

E = Total Number of Columns

R27 (Address Increment per Row) should be set to

the Total Number of Columns (E) minus

the Number of Displayed Columns.

You can "scroll" your entire display up or down by changing the

display start registers (12 and 13). Add 80 to them and the display

would start one line down, so the screen would appear to "scroll"

down. The following code shows how to move your display one

"line" down (this presumes that the new line bellow the display

already has data you want shown).

MOVEUP LDX #13

JSR READ

CLC

ADC *80

PHP

JSR, WRITE

DEX

JSR READ

PLP

ADC *00

JSR WRITE

RTS

;GET LO-BYTE

;OF DISPLAY

;ADD80AND

;SAVE CARRY

;STORE NEW VALUE

;N0W THE HIGH BYTE

; RECALL CARRY

;ADD IN CARRY

;STORE NEW HIGH BYTE

;AND RETURN

Vertical Smooth Scrolling

The type of scrolling shown above works, but is rather jerky. The

VDC, however, has the ability to smoothly scroll, pixel by pixel.

Since the display can be flexible in the number of lines that can be

displayed, we don't have to reduce the display in order to smooth

scroll. In order to smoothly scroll the display "down" a line, just

follow these steps:

1. Put the text that will be scrolled onto the screen when it moves

down a line into VDC memory. If the text is already there, skip

this step.

2. Increment the vertical smooth scroll register (24, bits 4-0) until

it is equal to the number of raster lines per character.

3. Add the number of characters per line (register 22) to the display

start registers (12 and 13) and set the vertical smooth scroll

register back to zero.

Here is an an example routine to scroll the screen down one line

smoothly. It is assumed that the text on the new line is already

there.

SMOOTH LDX *24

JSR READ

AND*%11100000

JSR WRITE

SMTH1 JSR READ

CLC

ADC #01

JSR WRITE

SMTH2 LDY *100

DEY

BNE SMTH2

AND*%00011111

CMP#7

BNE SMTH1

JSR READ

AND*111000000

JSR WRITE

JSR MOVEUP

RTS

;GET VERT SMOOTH

;SCROLL REGISTER

;AND SET TO NO

;SCROLL

;READ VALUE

;AND ADD ONE

;DELAY VALUE

;CHECK SCROLL AGAINST

;BOTTOM RASTER AND

CONTINUE UNTIL DONE

;GET REGISTER AGAIN

;AND CLEAR SCROLL

NOW MOVE UP ONE LINE

Horizontal Smooth Scrolling

In a similar manner, the screen can be scrolled smoothly left and

right. This is a little more complicated because you have to set up

the VDC to believe that there are more columns per line than it will

display. This is done through the address increment per row

register (27). The value of this register is added to the end of each

line to get to the beginning of the next line. For example, if you

wanted a "virtual" display line of 100 characters, with an actual

display line of 80, you would have to put the value 20 into register

27. Simple movement to the left or right one column is then a

matter of incrementing or decrementing the display start registers

(12 and 13).

The Transoctof 59 Nov. 1986: Volume 7, to»x>O3

Smooth scrolling the screen horizontally is similar in concept to

vertical smooth scrolling, except that Commodore has come out

with different versions of the VDC which require different initiali

zation, and use, of the smooth scroll register. When you read

$d600 for the status bit, you also get other information which

includes the version number of the VDC. If the lower three bits of

the VDC are all zero then the smooth scroll off setting is zero. If any

of the three bits are on, then the smooth scroll register should be

set to seven to be off. The difference between these chips is that the

first type is designed to scroll the text to the right, and the second is

designed for scrolling to the left. Either way it is a shame Commo

dore had to cause these incompatibility problems.

Attributes

Like the VIC—II chip, two bytes of memory are used for each

character on the display. One byte to determine what character

from the character set is displayed, and the other for the color it

will be shown in. Unlike the VIC-II chip, every bit in the attribute

byte is needed because each character has extra attributes that can

be attached to it. In simple terms, the lower four bits determine the

color, and the upper four bits determine its attributes. Attribute

memory is set up just like the display memory, and has a one-for-

one correspondence with it.

Attribute bytes are defined in the following table:

Intensity Off

Bit

7

6

5

4

3

2

1

0

Attribute

Alternate character set

Show character in reverse mode

Underline the character

Blink the character

Red

Green

Blue

Intensity

Bit 7 determines which character set is used for displaying the

character. If the bit is set the second (or upper) character definition

is used. This allows each character to select from either set,

allowing 512 possible characters.

Bit 6 is used to display the character in reverse mode. If a pixel in

the character definition is on, then it will be displayed of. If it is

defined off, then it will be displayed on.

Bit 5 allows you to underline any character (or combination) on the

screen. The raster line used for underlining is set by register 29. It

could be set to strike through (overline) by changing its value.

Bit 4 will make the character blink. The rate character blinks is set

by register 24, bit number 5. If this control bit is cleared, then any

character displayed with the blink mode set will be blink fast.

The lower nibble (bits 0-3) selects the color. The following tables

shows the result of "mixing" the colors:

Red

0

0

0

0

1

1

1

1

Green

0

0

1

1

0

0

1

1

Blue

0

1

0

1

0

1

0

1

Color

Black

Blue

Green

Cyan

Red

Purple

Brown

Light Grey

Intensity On

Red

0

0

0

0

1

1

1

1

Green

0

0

1

1

0

0

1

1

Blue

0

1

0

1

0

1

0

1

Color

Dark Grey

Light Blue

Light Green

Light Cyan

Light Red

Light Purple

Yellow

White

One thing to keep in mind, is that the normal C128 default settings

for the display has the attribute memory start right after the display

memory. If you increase the display size, or scroll down by

changing the display pointers, you must move the attribute pointer

to make room. I suggest you place attributes at $1000 to leave

plenty of room (4096 bytes for display and attributes each). If you

need more memory than that, you can turn off the attributes (the

VDC will no longer look for them) by clearing the attribute enable

control bit (register 25, bit 6). This would give you 8K for display

area, but limit you to monocolor and using the first character set

(as well as no underlining, blinking or reverse field).

Character Definitions

The VDC requires 16 bytes of definition for each character (verses

8 for the VIC-II) so that it can show as many, or as few, raster lines

per character that you want. By default (on C128 power up), the

VDC is set to display characters 8 pixels wide, and 8 pixels hight in.

This can be changed to make characters 5 pixels wide and 10 lines

tall. The only limits are that characters cannot be taller than 32

lines (the VDC will switch to 32 byte character definitions if you

define your characters to more than 16 lines) or wider than 8

pixels. You can also define a normal "space" between lines or

characters by use of "interspace". The following figure shows the

effect of interspace on display characters.

The Transactor 6O Nov. 1986: Volume 7, tesue O3

CHARACTER

DEFINITION

(16 bytes)

CHARACTER

DISPLAYED

h- J

F = Character Total Horizontal (R22 bits 7-4)

G = Character Total Vertical (R9 bits 4-0)

H = Character Displayed Horizontal (R22 bits 3-0)

I = Character Displayed Vertical (R23 bits 4-0)

J = Horizontal Interspace

K = Vertical Interspace

The default settings of the VDC set no interspace between charac

ters. By designing higher density characters, interspace might help

make the display more readable. Interspace could also be used to

provide a blank area under the character for the underline.

-The Cursor

The VDC provides a hardware cursor. This means that you provide

the cursor position (by memory address), turn the cursor on, and if

it is within the display area, the cursor will be displayed. The

cursor has 4 modes of display:

Register 10 - Cursor Mode

Value Meaning

Solid Cursor (no blinking)

No cursor

Blinking Cursor (fast)

Blinking Cursor (normal)

The cursor can also be set to any height from a block to an

underline. You set the starting raster line in register 10 (bits 4-0)

and the ending raster line, plus one, in register 11 (bits 4-0). This

could be used to show different types of typing modes, like an

insert mode in a word processor. The cursor color is set by the

color of the character it is over.

Interlace and Video Mode

The VDC provides three methods of displaying the video informa

tion to the RGB monitor. The normal method (by default) is called

non-interlaced. This means that the screen is sent 60 times a

second and provides a normal display. Another method (used by

normal TV's) is to send the even numbered raster scans first,

followed by the odd numbered raster, which effectively doubles

the resolution of the picture, but cuts the screen "speed" in half. By

turning the interlace mode on, the VDC displays the same number

of raster lines and duplicates them for the even and odd screens,

but sends the second screen one half scan line down, so the lines

are better "filled in."

The last display mode is called the interlaced sync and video

mode. This causes the VDC to display characters in up to double

the resolution, if your monitor can handle it. Try turning on this

mode and setting the number of raster lines per character (register

9) to a value greater than 8.

Graphics

The VDC offers a graphics mode that uses the VDC memory as a bit

map. Instead of taking the display area and using it as pointers to

the character set, the display area is used to display straight binary

data. It takes as many bytes to display a raster line as you have

columns in the display (each byte equals 8 pixels). In normal

display mode (25 lines of 80 columns) this would result in a 640 by

200 display screen. This screen requires 16,000 bytes, so no

memory is left for the attributes. In fact, several graphics programs

have already been written that allow you to draw on this graphics

screen in mono-color mode.

The bit map mode, however, follows the same rules as the text

display, so you can shrink the display size (freeing memory) and

make use of attributes or smooth scrolling. In order to shrink the

display, lower the value of the vertical displayed register (6), or the

horizontal displayed register (1). By reducing the number of

columns to 72, you could have a 576 by 200 graphic screen, and

still have enough room for the attributes. The attributes still work

only on a standard character size (8 by 8), so you would only have

the equivilant foreground/background selection of the hi-res

VIC-II chip, but with 80% more display area!

For those of you wanting to write printer "dump" programs of the

bit-map screen, remember that the address pointers (registers 18

and 19) are always incremented after a read of the data register

(31), so if you want straight raster data, you only have to specify the

start of the bitmap which is stored in display start pointers

(registers 12 and 13).

There are other features of the VDC, but more time will be needed

to uncover the proper settings of the other registers to use them

properly. For now, all I can suggest is to experiment with different

registers. The following program was written for the COMAL 2.0

cartridge that allows you to interactively change the different

register settings and see the results. For those of you who get The

Transactor Disks, there is a package that adds commands to

COMAL 2.0 for output on the 80 column screen.

The Transactor 61 Nov. 1986: Volume 7, Issue O3

0010 // delete " vdc'editor"

0020 // save " vdc'editor"

0030 // by David Stidolph

0040 //

0050 USE system

0060textcolors(6,6,1)

0070 DIM value(0:47)

0080 DIM name$(47) OF 20, reg(47)

0090 DIM start(47), fin(47)

0100 IF NOT superchip THEN

0110 IFNOTc128'in'memoryTHEN

0120 Iink'c128

0130 ENDIF

0140ENDIF

0150 USE C128

0160popover

0170 PAGE

0180 PRINT ' Initializing VDC display. .."

0190 initSO

0200 read'registers

0210 read'values

0220 display'screen

0230 PAGE

0240 PRINT ' Sample text has been written to the 80"

0250 PRINT 'column screen. This program requires"

0260 PRINT ' that you have two monitors or can swap"

0270 PRINT " between the 40 and 80 column displays."

0280 PRINT

0290 helpscreen

0300 //

0310 PROC helpscreen

0320 PRINT " These keys allow you to edit the VDC"

0330 PRINT

0340 PRINT "CRSR-up Move pointer up one register"

0350 PRINT "CRSR-down Move pointer down one reg."

0360 PRINT ' CRSR-left Move pointer to left column"

0370 PRINT'CRSR-right Move pointer to right column"

0380 PRINT "STOP ' Make POPOVER selection"
0390 PRINT" + Add one to register value"

0400 PRINT"- Subtract one from register"

0410 PRINT " H List of commands"

0420 PRINT " I INPUT number for VDC register"

0430 PRINT'S Show all VDC registers"

0440 PRINT " W Write PROCedure to disk that"

0450 PRINT" will initialize the VDC to"

0460 PRINT" the current settings"

0470 PRINT"- Restart VDC initialization"

0480 PRINT " Q Quit program"

0490 PRINT

0500 INPUT " Press RETURN to continue: ": dummyS

0510 ENDPROC helpscreen

0520 done: = FALSE

0530 pos: = 1

0540 PAGE

0550 display'registers

0560 REPEAT

0570 change'registers

0580 UNTIL done

0590 quit

0600 //

0610 PROC quit

0620 show'registers

0630 textcolors(-1,-1,13)

0640 PRINT " please send these settings to:"

0650 PRINT" COMAL Users Group, USA Limited"

0660 PRINT" 6041 MononaDrive"

0670 PRINT" Madison,Wl53716",

0680 textcolors(-1,-1,1)

0690 END " "145" "145" "

0700 ENDPROC quit

0710//

0720 PROC display'screen

0730 background80(0,0,0,0) // back = black

0740 color80(1,1,1,1)// char = white

0750 display80(1,42)

0760 page80

0770 FOR x: = 1 TO 80 DO

0780 IFx<10THEN

0790 print80(1 ,x," Line 1 - " (x))

0800 ELSE

0810 print80(1 ,x,CHR$((x DIV10) + 48))

0820 ENDIF

0830 print80(2,x,CHR$((x MOD 10)+48))

0840 ENDFORx

0850 FOR x:= 3 TO 40 DO

0860 print80(x, 1," Line " + STR$(x))

0870 print80(x,71," Right side")

0880 ENDFORx

0890 //

0900 FORi:=0TO1 DO

0910 color80(0,1,0.1)//It. green

0920 print80(4,i.30 + 10,' Color Table - Intensity "

0930 print80(5,i.30 + 10," = = = =========

+ state$(t))

= = = = ")

0940 print80(6,i-30 + 10,"Red Green Blue COLOR")

0950 row: = 7

0960 FORr: = 0TO1DO

0970 FORg: = 0TO1DO

0980 FOR b: = 0 T01 DO

0990 color80(0,1,1,1) //It cyan

1000 print80(row,i«30 + 10,state$(r))

1010 print80(row, i.30 +16,state$(gj)
1020 print80(row,i«30 + 23,state$(b))

1030 color80(r,g,b,i)

1040 print80(row,i«30 + 29,' color")

1050 row: + 1

1060 ENDFORb

1070 ENDFORg

1080 ENDFORr

1090 ENDFORi

1100 color80(1,1.0,1)//yellow

1110 attributes^ ,0,0,1)

1120 print80(17,27," This text is blinking")

1130 attributes(1,1,0,0)

1140 print80(19,27," This text is reversed")

1150 attributes^,0,1,0)

1160 print80(21,26," This text is underlined")

1170 attributes(1,1,0,1)

1180 print80(23,26," Reversed, Blinking text")

1190 attributes(1,0,1,1)

1200 print80(25,25," Blinking, Underlined text")

1210 attributes^ ,0,0,0)

1220 display80(1,25)

1230 ENDPROC display'screen

1240//

1250FUNCstate$(t)

1260 IF t THEN

1270 RETURN "ON"

1280 ELSE

1290 RETURN "OFF"

1300 ENDIF

1310 ENDFUNC states

1320//

1330 PROC read'registers CLOSED

1340 IMPORT name$O.regO

1350 IMPORT startO.finO

1360 count: =0

1370 WHILE NOT EOD DO

1380 count:+ 1

1390 READ name$(count)

1400 READ reg(count)

1410 READ start(count)

1420 READ fin(count)

1430 ENDWHILE

1440 //

1450 DATA " Horizontal Total

1460 DATA " Horiz Displayed

1470 DATA " Horiz Sync Pos

1480 DATA " Vert Sync Width

1490 DATA " Horiz Sync Width "

1500 DATA "VerticalTotal

1510 DATA "Vert Fine Adjust

1520 DATA "VertDisplayed

1530 DATA " Vert Sync Pos

1540 DATA " Interlace Mode

1550 DATA "VideoMode

1560 DATA " Lines Per Char

1570 DATA "Cursor Begin

1580 DATA "CursorEnd

1590 DATA "Cursor Mode

1600 DATA'TextStart HI

1610 DATA "TextStart LO

1620 DATA" Cursor Addr HI

1630 DATA " Cursor Addr LO

1640 DATA " Memory Point HI

1650 DATA " Memory Point LO "

1660 DATA "Attribute HI

1670 DATA " Attribute LO

1680 DATA "Char Total Width

1690 DATA " Char Disp Width

1700 DATA " Char Disp Vert

1710 DATA "Copy(1)/Fill(0)

1720 DATA " Reverse Screen

1730 DATA " Char Blink Rate

1740 DATA"V-SmoothScroll

1750 DATA "H-Smooth Scroll "

1760 DATA "Graphics/Text

1770 DATA " Mono/ATR - Color "

1780 DATA " Semigraphic Mode "

,0,0,7

,1,0,7

,2,0,7

,3,0,3

.3,4,7

,4,0,7

,5,0,4

,6,0,7

,7,0,7

,8,0,0

.8,1,1

,9,0,4

,10,0,4

,11,0,4

,10,5,6

.12,0,7

,13,0,7

,14,0,7

,15,0,7

,18,0,7

,19,0,7

,20,0,7

,21,0,7

,22,4,7

,22,0,3

,23,0,4

,24,7,7

,24,6,6

,24,5,5

,24,0,4

,25,0,3

,25,7,7

,25,6,6

,25,5,5

1790 DATA "DBL-PixelWidth ",25,4,4

1800 DATA " Foreground Color ",26,4,7

1810 DATA " Background Color ",26,0,3

1820 DATA " Offset Per Row ",27,0,7

1830 DATA " Character Base ",28,5,7

1840 DATA " Underline Raster ",29,0.4

1850 DATA " Word Count " ,30.0,7

1860 DATA " Data Register ",31,0,7

1870 DATA "Copy Block HI ",32,0,7

1880 DATA "Copy Block LO ",33,0,7

1890 DATA " Disp Enable ON ",30,0,7

1900 DATA " Disp Enable OFF ",35,0,7

1910 DATA "DRAMRelresh ",36,0,3

1920 ENDPROC read'registers

1930//

1940 PROC display'registers

1950 PAGE

1960 FORx: = 1TO47DO

1970 row:-x; col:-1

1980 IFx>24THENrow:-24;col:=21

1990 IF x = pos THEN

2000 PRINT AT row.col: " "18"" ;name$(x);" "146" ",

2010 ELSE

2020 PRINT AT row.col: " " +name$(x);

2030 ENDIF

2040 ENDFORx

2050 textcolors(-1,-1,10)

2060 PRINTAT24,22: " + ADD -SUBTRACT",

2070 textcolors(-1,-1,1)

2080 PRINT AT 25,1:"" 18" ' + nameS(pos) + ":" ;value(pos);

2090 PRINT" ■,TAB(31)."MAX:";

2100 PRINT USING " ###" 146" ": max(pos),

2110 ENDPROC display'registers

2120//

2130 PROC change'registers

2140 REPEAT

2150 new'pos: = pos

2160 valid: = TRUE

2170 CASE KEYS OF

2180 WHEN"q","Q"

2190 quit

2200 WHEN ""

2210 initSO

2220 read'values

2230 display'screen

2240 WHEN"h","H"

2250 PAGE

2260 helpscreen

2270 display'registers

2280 WHEN"w","W"

2290 write'registers

2300 display'registers

2310 WHEN "i","I"

2320 REPEAT

2330 INPUT AT 25,24,3: " ": dat'numS,

2340 TRAP

2350 ok: = TRUE

2360 new'num:=VAL(dat'num$)

2370 HANDLER

2380 ok: = FALSE

2390 ENDTRAP

2400 UNTIL ok AND new'num>-1 AND new'nunK = max(pos)

2410 value(pos): = new'num; make(pos)

2420 WHEN'sVS"

2430 show'registers

2440 PRINT

2450 INPUT " Press RETURN to continue: ": dummyS

2460 display'registers

2470 WHEN "" 17"" // cursor down

2480 IF pos<47 THEN new'pos: +1

2490 WHEN "" 145"" //cursor up

2500 IF pos>1 THEN new'pos:-1

2510 WHEN " " 29"" // cursor right

2520 IF pos<24 THEN new'pos: + 24

2530 WHEN " " 157"" // cursor left

2540 IF pos>24 THEN new'pos:-24

2550 WHEN ' + "

2560 IF value(pos)<max(pos) THEN value(pos): +1; makefpos)

2570 WHEN"-"

2580 IF value(pos)>0 THEN value(pos):-1; make(pos)

2590 WHEN CHR$(19) // home

2600 new'pos: = 1

2610 OTHERWISE

The Tronsoctor 62 Nov. 1986: Volume 7, tome 03

"2620 valid: = FALSE "
2630 ENDCASE

2640 IF new'posOpos THEN

2650 CURSOR (pos MOD 25) + (pos DIV 25),(pos DIV 25).20 +1

2660 PRINT " ' + name$(pos);

2670 pos: = new'pos

2680 CURSOR (pos MOD 25) + (pos DIV 25),(pos DIV 25).2O +1
2690 PRINT - -18' " + name$(pos);"" 146" ",

2700 valid: = FALSE

2710 PRINT AT 25,1: ' "18' '+name$(pos)+" " value(pos)
2720 PRINT - \TAB(31),"MAX:-;

2730 PRINT USING ' ###" 146"": max(pos),

2740 ENDIF

2750 UNTIL valid

2760 PRINT AT 25,1: " 18' " +name$(pos)+ ":" ;value(pos);

2770 PRINT" ",TAB(31),"MAX:";

2780 PRINT USING "###"146"": max(pos),

2790 ENDPROC change'registers

2800 //

2810 FUNC max(r)

2820 RETURN 2t((fin(r)-start(r)) +1)-1

2830 ENDFUNC max

2840 //

2850 PROC read'values

2860 FOR x: = 1 TO 47 DO

2870 byte: = read80(reg(x)); mask: = 0

2880 FOR y: = start(x) TO fin(x) DO

2890 mask:+2ty

2900 ENDFOR y

2910 byte: = byte BITAND mask

2920 value(x): = byte/(2tstart(x))

2930 ENDFORx

2940 ENDPROC read'values

2950 //

2960 PROC make(r)

2970 byte: = read80(reg(r))

2980 mask:=0

2990 FOR y: = start(r) TO fin(r) DO mask: + 2ty

3000 mask: = 255 BITXOR mask

3010 byte: = byte BITAND mask

3020 byte: = byte BITOR (value(r).(2tstart(r)))

3030 set80(reg(r),byte)

3040 ENDPROC make

3050 //

3060 PROC show'registers

3070 PAGE

3080 PRINT " " 18" Current VDC values / CTRL-P for Hardcopy" 146" "

3090 FORx:=0TO36DO

3100 CURSOR (x MOD 19) + 2,(x DIV 19).2O +1

3110 PRINT USING " Register ##: ###": x,read80(x)

3120 ENDFORx

3130 PRINT

3140 ENDPROC show'registers

3150//

3160 PROC write'registers

3170 PAGE

3180 PRINT " Do you wish to write a PROCedure to"

3190 PRINT " disk that would set up the VDC registers",

3200 PRINT " to produce the present display?"

3210 PRINT

3220 REPEAT

3230 INPUT AT 0,0,1: " (Yes/No): y" 157"": answers,

3240 UNTIL answers IN "yYnN"

3250 PRINT

3260 PRINT

3270 IF answers IN "vY" THENWi_ I V ' 1 Ul IUIIvI *4J 111 J III 1 1 1

3280 TRAP

3290 PRINT " writina the orocedure' SET'VDC to"*S 1— *-* ^J ■ Illlll II 1 1 III 1 y II Hj ^| ^^/|^UUI Ui \Jl 1 V l_>W lU

3300 PRINT " the file: " " proc.set'vdc''"

3310 PRINT

3320 OPEN FILE 5," proc.set'vdc" .WRITE

3330 PRINT FILE 5: "0100//"

3340 PRINT FILE 5: "0110procset'vdc"

3350 PRINTFILE5: "0120usec128"

3360 FORv: = 0TO36DO

3370 PRINT FILE 5: " 0" + STR$(v. 10 + 130);

3380 PRINT FILE 5: " set80(" ,v,

3390 PRINT FILE 5: read80(v),")"

3400 ENDFOR v

3410 PRINT FILE 5: "0500endprocset'vdc"

3420 CLOSE

3430 HANDLER

3440 CLOSE

3450 PRINT " Disk error:' ;ERRTEXT$

3460 ENDTRAP

3470 PRINT

3480 PRINT " Press RETURN to continue:";

3490 INPUT AT 0,0,0: "": answers

3500 ENDIF

3510 ENDPROC write'registers

3520 //

3530 FUNC superchip CLOSED

3540 USE system

3550 setpage(S84): chip: = TRUE

3560 RESTORE chipdata

3570 FORx: = S8014TO$8018DO

3580 READ num

3590 IF PEEK(x)Onum THEN chip = FALSE

3600 ENDFORx

3610 RETURN chip

3620 //

3630 chipdata:

3640 DATA 4,67,49,50,56

3650 ENDFUNC superchip

3660 //

3670 PROC link'd 28

3680 PAGE

3690 DIM aS OF 100

3700 a$:="LINK ""pkg.c128"" "13""

3710 a$: + 'RUN"13" "

3720 FOR x#: = 1 TO LEN(aS) DO

3730 POKE 49151+x#,ORD(a$(x#))

3740 ENDFORx*

3750 POKE$c866,0

3760 POKE Sc867,192

3770 POKESc865,LEN(aS)

3780 STOP

3790 ENDPROC link'd 28

3800 //

3810 FUNC c128'in'memory CLOSED

3820 USE system

3830 setpage(SOO); is'd 28: = TRUE

3840 RESTORE c128data

3850 FOR x: = $800e TO $8012 DO

3860 READ num

3870 IF PEEK(x)Onum THEN is'd 28: = FALSE

3880 ENDFORx

3890 RETURN is'c128

3900 //

3910c128data:

.3920 DATA 4,67,49,50,56

3930 ENDFUNC c128'in'memory

3940 //

3950 PROC popover CLOSED

3960 //copyright 1986 len lindsay

3970 // original by len lindsay

3980 INTERRUPT

3990 IMPORT quit,show'registers,read80

4000 IMPORT write'registers.helpscreen

4010 USE graphics

4020 TRAPESC-

4030 setup

4040 USE system

4050 DIMstart'screen$OF1505

4060 getscreen(start'screenS)

4070 clear'keys

4080 popup

4090 setscreen(start'screenS)

4100 clear'keys //optional line

4110 INTERRUPT popover

4120 //

4130 PROC popup

4140 col: = RND(3,15)

4150 current'row: = RND(2,9)

41f5fl PRINT AT rnw ml1 ""1fi"H IUU r nilN I AAI IUW.IjUI. IO

4170 PRINT AT row.col: "18": VDC Editor Menu

41 fifl PRINT AT rnw rnl- "MR"

4190 PRINT ATrow.col: " "18": C : SetColors

4200 PRINT AT row.col: " 18":«-: Restore VDC and

4210 PRINT AT row.col: " "18": : 80 column screen

4220 PRINT AT row.col: "" 18": H : Help Screen

4230 PRINT AT row.col: " " 18": S : Show VDC values

4240 PRINT ATrow.col: " "18": W: Write MERGEable

4250 PRINT AT row.col: " "18": : PROCedureto

4260 PRINT AT row.col: ""18": : initialize VDC

4270 PRINT AT row.col: " "18": Q : Quit Program

4PRH PRINT AT row rnl1 ""1fl"

4290 PRINT AT row.col: ""18": RETURN to continue
4^00 PRINT AT rnw rnl "MR"

4310 REPEAT

4320 done'popping:=TRUE

4330 CASE KEYS OF

4340 WHEN'cVC

4350 set'colors

4360 start'screen$(1): = CHR$(inq{1))

4370 start'screen$(2): =CHRS(inq(2))

4380 starfscreen$(3): =CHR$(inq(3))

4390 done'popping:=TRUE

4400

4410

4420

4430

4440

4450

4460

4470

4480

4490

4500

4510

4520

4530

4540

4550

4560

4570

4580

4590

4600

4610

4620

4630

4640

4650

4660

4670

4680

4690

4700

4710

4720

4730

4740

4750

4760

4770

4780

4790

4800

4810

4820

4830

4840

4850

4860

4870

4880

4890

4900

4910

4920

4930

4940

4950

4960

4970

4980

4990

5000

5010

5020

5030

5040

5050

5060

WHEN "q","Q"

quit

WHEN "h',"H"

PAGE

helpscreen

WHEN "s'.'S"

show'registers

PRINT

INPUT AT 0,0,0: - Press RETURN to

continue: ': dummyS.

WHEN "wVW"

write'registers

WHEN "" 13"' //carriagereturn

RETURN

OTHERWISE

done'popping: = FALSE

ENDCASE

UNTIL done'popping

ENDPROC popup

//

//

FUNC row

current'row: +1

RETURN current'row

ENDFUNC row

//

PROC clear'keys

WHILE KEYS>"" DO NULL

dummyesc: = ESC //clear stop key

ENDPROC clear'keys

//

PROC setup CLOSED

// setup by Jesse knight

TRAP ESC-

FORx#:=0TO12DO

READ byte#

POKE$c86a + x#,byte#

ENDFOR x#

POKE $c7e2,$6a

POKE Sc7e3,$c8

POKE $4d,PEEK($4d) BITOR $20

DATA $a5,$4d,$29,$08,$fO,$06,$a9

DATA $04,$05,$4d,$85,$4d,$60

ENDPROC setup

//

PROC set'colors CLOSED

USE system

USE graphics

PAGE

LOOP

PRINT AT 3,1: "" 18" set colors now"

PRINT AT 6,1: "press'18" f1 "146"

border color"

PRINT AT 8,1: "press "18" f3 "146"

background color"

PRINT AT 10,1: "press "18" (5 "146"

text color"

PRINT AT 13,1: "press "18" (7 "146"

or "18" q "146" quit colors"

CASE KEYS OF

WHEN "" 133""

textcolors((inq(1) + 1) MOD 16,-1,-1)

WHEN ■ "134""

textcolors(-1 ,(inq(2) +1) MOD 16, -1)

WHEN ' "135" "

textcolors(-1 ,-1 ,(inq(3)+1) MOD 16)

WHEN "136","qYQ"
EXIT

OTHERWISE

ENDCASE

ENDLOOP

ENDPROC set'colors

5070 ENDPROC popover

63 Nov. 1986: Volume 7, toue O3

Aubrey Stanley

Mississauga, Ontario

A Total Keyboard Utility For The Commodore 64

In our everyday life we use words to convey our thoughts. A

thought, perfect and spontaneous, must nevertheless be articu

lated by a far from adequate speech process. Unless we use

telepathy! In a manner of speaking, the keyboard replaces our

vocal chords when we are dealing with the computer. We type in

character after character to express a BASIC statement which had

formed instantly in our mind to begin with.

We use the Screen Editor in Direct Mode to create program source

in memory. And by executing BASIC statements directly, we can

control our development environment. Keywords are entered

over and over, and certain commands are used frequently. A Key-

To-String capability would be of extreme value. We could pre

define keywords, op-codes, pokes, commands, even complete

BASIC programs; for instant recall at the touch of a key. And with

an interactive feature which paused while we typed in variable

data, this function could be even more useful.

The Screen Editor would benefit from a few enhancements to take

the toil out of editing programs. We could have an alternative

Insert/Delete mode where we worked from the current cursor

position instead opening up space in the text or moving the cursor

past the final character to be deleted. A Tab key to move automati

cally back and forth through BASIC and DATA statements, and a

Clear from the current cursor position, are also worthwhile candi

dates.

If we were given the choice, most of us would re-arrange at least

some of the keys. Those shifted cursor functions might get relo

cated to other, unshifted positions. And DVORAK fans would likely

re-arrange their entire keyboard.

We only have to browse through the back issues for a wealth of

machine language routines designed to improve our development

environment. Many of us could put our talents to good use in this

area. Trouble is that these individually good programs refuse to

co-exist under the same roof. They vie for system vectors, chase

zero-page, run in the same RAM, etc. With a little adaptation, and

a traffic cop to direct their execution, any one of them could be

mobilized for instant action.

Welcome Keyboard Expander. Perhaps not a total utility, but it

could well become a cornerstone in your development environ

ment.

The Program

Keyboard Expander can make each key work for you in normal, shift,

commodore and control mode. Reposition any key, recall a sequence

of keystrokes, or run a routine of your choice. You may create your

own configurations or use it in its pristine form for the many Screen

Editor enhancements that it has to offer.

The program comes in the form of a loader which is run just like a

BASIC program. It will relocate itself up against the top of available

BASIC memory and then run transparently in the background while

you go about your normal work. At this stage all the enhanced editing

commands are available, mainly on the function keys.

If you wish to add more features, these are simply defined in a

Profiling program as array assignments. Run this BASIC program and

your keyboard will take on the profile you've given it. You also have

the option to generate another version of Keyboard Expander with the

new profile. This version can then be installed in future, instead of the

original.

Repositioned Keys

This feature allows you to re-define as many keys as you wish to. The

normal, shift, commodore, and control modes are treated quite

independently, so you can move individual functions of keys around.

Repositioned keys are always active, even in Run mode, allowing you

to use them in your programs.

Strings

This feature allows you to assign an unlimited sequence of keystrokes

to any key function. When you press the key, the string will instantly

be printed to the screen and actioned, as if you had typed it in

yourself. A special code can be encoded in the string to pause output

while you type in some variable data such as a filename. Then press

and release IRUN/STOP] to continue. Pressing I RETURN I instead, will

terminate string output, actioning whatever is displayed on the line.

Or you can press ISH1FTIIRETURNI to abort the process. The en

hanced editing features are temporarily disabled while entering varia

ble data.

The string feature is temporarily disabled in Run mode so as not to

interfere with your programs, and also when the editor is in Quote

mode so that graphics can be printed normally.

Routines

This feature allows you to tie a ML (machine language) interrupt

routine to a key function. The interrupt routine will run in the

keyboard (timer) interrupt. It may perform a specific task of its own or

be used to initiate a background routine or a parallel program.

A Background Routine, when initiated, will run in every subsequent

keyboard interrupt until it disables itself. It can also be started from

within a running ML program in the BASIC environment.

A Parallel Program normally multitasks with BASIC by running after

alternate interrupts. But it may elect to run exclusively for any period

of time. It does not run interrupt code and therefore can do anything a

The Transactor 64 Nov. 1986: Volume 7, Issue 03

normal program can do. Like a background routine, it can also be

started from a running ML program.

You can use the routine feature to execute your own commands. The

command line is converted to ASCII and copied to your program

space whenever ICTRLII RETURN I is pressed.

Routines tied to keys will not be activated in Quote or Run mode.

However, as mentioned, you may activate background or parallel

programs in Run mode.

Compatibility Issues

Keyboard Expander will co-exist with other, (properly installed),

programs. The word, Install, in the context of this article, refers to

programs that allocate room for themselves at the top of available

BASIC memory by modifying the top of memory pointer downward.

Both POWER and PAL (Proline S/W Ltd) run without trouble when

installed with Keyboard Expander, and probably SYMASS will too.

Keyboard Expander will not co-exist with programs that modify the

keyboard and IRQ vectors (locations 655 and 788). You may well find

other keyboard utilities practically redundant as Keyboard Expander

allows you to incorporate new features quite easily. Except for these

vectors, Keyboard Expander leaves the BASIC environment intact.

And it does not use any zero page or free RAM. As far as possible, try

to preserve this environment when creating your own configurations.

The memory it takes away from BASIC is IK of tables and approxi

mately 1.5Kof code.

GETTING STARTED

First type in and save the generator program, " KE.GEN ". Then run it

to create " KE" on disk. Now load and run KE just like a normal

BASIC program.

You'll see the start address and a copyright message. The start address

is the one you want to SYS to in order to restart after a RunStop/

Restore.

Four keys on the keyboard are intrinsic to the program. These are the

ISHIFTL [C^l, [CTRL] and 1RUN/STOPI keys. Built-in commands have

been mainly assigned to the function keys.

Terminate Program: ICTRLI |C = IISHlrTI

Click Mode: ICTRLI |C = I

In this mode each key will click as you type (if your volume is turned

up). This command will toggle the mode on and off.

CTRLllSHIFTlRepeats Mode:

In this mode all keys will repeat. Again, the command toggles.

Disable/Enable Program: ICTRLI IRUN/STOPI

KE can be temporarily disabled with this command. The keyboard

will then behave as it normally does until you press these keys again.

Use this command when you need to print an original key, one that

you've otherwise reassigned. However, if you are in quote mode, any

string or program assignments you may have made are automatically

disabled, so you don't need to disable the program in this case.

KE can be entirely eliminated by pressing these three keys together.

The keyboard will revert to its usual state. The memory used by the

program will be released to BASIC memory space only if no other

programs have been installed after KE. Otherwise the top of memory

pointer is left untouched.

Clear Quote Mode: ICTRLI [HOME]

This command does exactly what it says. It becomes especially useful

in KE, because when you're in quote mode all keys print to the screen,

even keys that initiate the built-in commands or those you may have

assigned to your own routines. This command also clears any inserts

left over after you have used IINSTI to open up space in the text.

Set Auto Insert/Delete Mode: [C=][DELi

In this mode the I INSTl key is no longer active. Instead everything past

the cursor on the BASIC line, (logical line of 80 characters), moves

right as you type, and the new character is placed at the cursor

position. When the BASIC line is full, characters will start to get

overwritten.

The cursor and home keys behave as they normally do, so you can

move around the text at will.

If repeat mode is on, then all keys will be repeated if held down.

Strings assigned to keys, however, will not be repeated.

The IDELI key behaves differently in this mode. Everything past the

cursor, up to the end of the BASIC line, is moved left one position and

overwrites the character at the cursor. In effect the key acts as a black

hole through which you may drop unwanted characters. It will repeat

if held down.

Clear Auto Insert/Delete Mode: ICTRLI [DELI

Returns the editor to the normal insert/delete mode of operation.

Set Quote Mode: \C=]IHOMEI

This could be useful when you are editing text between quotes as you

then don't have to enter the quote character.

One Character Quote: [F3l

This only affects the next character typed. It is like being in quote

mode for one character only.

Forward Tab: [FT]

This command is useful for tabbing through a BASIC or DATA line. Try

it to see how it works.

Back Tab:

This command works similarly to forward tab except that the move

ment is reversed.

Tab To End: EEHFTJ

The cursor moves forward to the position past the last character on the

BASIC line.

65
Nov. 1984: Volume 7, toue O3

Tab To Start: Configuration 2

The cursor moves to the beginning of the BASIC line.

Clear To End Of Line:

All characters on the BASIC line from the cursor onward are cleared.

Clear To End Of Screen: IC=I [F3i

All characters from the cursor to the end of the screen are cleared.

Screen Colour: ISHIFTI [F71

Each time you enter this command the background colour of the

screen will change to the next higher colour, i.e., black to white, etc.

By using this command in conjunction with the following two for

border and text, you should be able to set up an ideal colour

combination.

Border Colour: IC=I [F7]

Increments the border colour.

Text Colour:

Increments the text colour. The entire text displayed on the screen

changes instantly.

List Freezer:

Use this command to freeze the listing of a BASIC program as it flies

past on the screen. After typing this command, if you hold the ICTRLI

key down, the listing will continue to scroll at a slow rate. Releasing

the key freezes the listing again. The I RUN/STOP] key also behaves

similarly in this respect, except that the scroll will be faster.

It is really only useful for freezing a List, but will also freeze everything

if you use it otherwise.

Get out of a freeze by pressing the|C=I key on its own.

Phosphor Saver: ICTRLI [F5i

So named because it blanks out the screen completely, as if it were

powered off. It also does a complete freeze of anything that is running.

Use the |C = I key to get out of this one too.

CONFIGURATIONS

To unlock the door to Keyboard Expander and add your own key

board profile, you need to run a Profile program. But first a word about

the possible memory configurations. There are several, depending on

whether you are defining ML routines, whether these will reside in

free RAM or are to be installed, and whether you are going to generate

an absolute version to disk.

Configuration 1

The original program, KE, you have already seen. It is totally relocat

able and generally useful to have around without the overhead of

strings and routines.

KE is again totally relocatable, but you are adding a profile to it, with

your ML routines (if any) residing in free RAM. After installing KE, run

your profile program. Do not select the option to generate an absolute

version. This configuration is useful for testing out a new configura

tion.

Configuration 3

This is essentially the same as 2, except you want to install your ML

routines. As the Profile program defines the absolute start address of

each routine, the only way this is possible is for you to have assembled

your routines into an absolute memory block at the real end of BASIC

memory, which is normally $9FFF. Install your program (or programs)

before installing any other programs.

Configuration 4

This is the absolute version of 2. KE must be the first program

installed so that it sits at the real top of BASIC memory. Run your

profile program and this time choose to generate the absolute version

to disk. In future you can install your own version, instead of KE. Be

sure it is always the first program installed. Of course you still have to

load any ML programs into free RAM.

Configuration 5

This is the absolute version of 3, and one that will find the most use. It

is identical to 4 if there are no ML programs. ML programs must first

be installed, then KE, thus concatenating the programs at the real end

of BASIC memory. Now run the profile program and save the result to

disk.

KEYPOWER FROM KEYBOARD EXPANDER

The configuration process will now be explained in terms of Keypo-

wer, a program we will generate along the lines of configuration 5.

Type in " KE.PF", the Profile Program, and save it under this name.

This program is used to create profile programs by adding definitions

in the line range, 100 to 799. It should never be modified. With KE.PF

still in memory, type in "KPOWER.DEFS" and save it under the

name, "KPOWER.PF".

We are going to include two useful ML routines. One is a BASIC Line

Ruler for highlighting program lines and the other is a List Scrolling

routine that I have adapted from an article in the TRANSACTOR, Vol

5, Issue 6, by Darren Spruyt. Type in and save the generator program,

" SCROLL.GEN ", then run it to generate " SCROLL.OBJ" on disk.

Type in and save " INSTALL" which is a general purpose program to

install ML programs in memory.

To start with, no program should be installed, not even KE. If KE is the

only program installed at this stage, you can use the "Terminate"

command, described before, to eliminate it. Otherwise power up or

otherwise reset the computer. Load and run INSTALL. Enter the

filename, SCROLL.OBJ, when asked, and press return. Now load and

run KE. Finally load and run KPOWER.DEFS. It will take about 10

seconds, then ask if you wish to create an absolute version. Follow the

steps to do this, saving the file under the name, " KPOWER". You can

use Keypower now, as it is in memory.

66 Nov. 1986: V

You must use INSTALL to install Keypower in future. Just

loading it as an object program wont do the job. You can make

INSTALL specific by replacing line 22 with:- F$ = KPOWER. Also

remember that Keypower must always be the first program installed

so that it loads at the top of real BASIC memory.

In Keypower, all the KE commands are still there, but now you have

some additional ones.

Repositioned Keys

The Up and Left Arrow keys perform the Cursor Up and Cursor Left

functions respectively. However, the shifted cursor keys retain their

normal usage.

Read Error Channel:

Prints and executes a one line (line 8000) BASIC program to read the

disk error channel. The line is automatically deleted afterwards.

List Directory: ICTRLl \D\

Prints and executes a BASIC program (lines 8000-8008) which lists

the disk directory directly to the screen. Press any key to pause, or Q

to quit. The program lines are not deleted, so RUN 8000 will execute

the program again. To delete the program lines press ICTRLl [Z]. If

these lines clash with your BASIC program in memory, you can select

the "TEST" BASIC Partition (described below).

This program was copied from an example in the POWER Manual.

Test Partition:

This command creates a temporary BASIC partition immediately

following any BASIC program currently in memory. You may then use

the Test partition for whatever purpose. To release the TEST partition

and return to your original BASIC program environment, press ICTRLl

Load BASIC Program:

This function recalls an interactive command string. You enter a

variable filename to a (LOAD" " ,8) command. As for all

interactive strings, press and release IRUN/STOPI to continue after

entering your data from the keyboard. Pressing ISHIFTIIRETURN]

aborts the whole procedure. If you complete the command yourself

(e.g., you may want a ML load instead - ..." ,8,1), then thelRETURNI

key on its own will both action what is printed on the line as well as

terminate the remainder of the string output.

Run BASIC Program: ICTRLl[R]

Like the previous command, but also runs the program it loads.

Save BASIC Program: ICTRLl g]

Interactive command to save a BASIC program.

Load From Directory: ICTRLl [G]

This function loads the file displayed in a normal directory listing

when the cursor is positioned at the beginning of the displayed line. It

is a good example of how a tedious manual process can be replaced by

a string.

Initialize Drive:

Initializes the disk drive.

Validate Disk:

Validates the disk.

Rename File:

This interactive command lets you enter the new filename and then

the old filename. Press and release IRUN/STOP] after each filename is

entered.

List Scroll Down: [F5l

This key, when held down, will scroll a BASIC listing on the screen

(assuming the BASIC program is in memory). The listing will scroll

downward and display BASIC lines in order of decreasing line num

bers. If no BASIC lines are displayed on the screen, the listing will start

with the highest numbered BASIC line.

WARNING: If a List is currently in progress, press IRUN/STOPl to

stop the List before you use this function. This also applies for

scrolling up.

List Scroll Up: [FTJ

Like list scroll down, only the scroll is upward and lines are displayed

in order of increasing line numbers.

The Scroll routines have been implemented as a Parallel program.

BASIC Line Ruler: \C=][FJ]

This command will put a border (much like a transparent ruler)

around the BASIC line at the current cursor row. It is useful for

scrutinizing the BASIC line underneath it. The ruler remains on the

screen and will move in conjunction with the cursor.

This function can be used simultaneously with all the other functions

described so far.

The routine has been implemented as a Background routine. While

running, it uses the Tape Buffer (location 828) to generate the sprite

data.

Kill Line Ruler: ICTRLl [F51

This command terminates the Line Ruler function.

BASIC Keywords

Press the IC = I key in conjunction with the alphabet keys to print the

following keywords:

ASC(CHR$(DATA FOR GOTO INPUT LIST

MID$(NEXT OPEN PRINT RIGHT$$TR$(

Profile Update

With an absolute version like Keypower in memory, and no other

program installed, it is possible to run a profile program as many time

as you wish in order to add new definitions. You can even create disk

TheTn 67 Nov. 1986: Volume 7, toue O3

versions, but if strings have been replaced by new ones, there still will

remain the memory overhead for the old ones. Then it's best, at some

later stage, to create a fresh version.

BUILDING YOUR OWN PROFILE

As stated before, you must add your profile to KE.PF to generate a

Profile program. Use line numbers in the range 100 to 799 and don't

define any variables. Whatever you need to use has been declared in

KE.PF. Refer to KPOWER.DEFS for examples.

Each key has its own variable to define it as shown in Table 1.

Qualifying variables for the shift factors are shown in Table 3. Which

group to use will depend on the sense in which a key is defined, the

source key in an array or the target key for reposition.

Each key function has an entry in a two dimension array. The first

dimension specifies the shift factor and the second the key. Each

feature - reposition, string, routine - has its own array. There are also

two variables for defining the start address of a "jump vector table"

and a "command line" for ML programs. See Table 2.

When defining strings you will need to use the string variables shown

in Table 4.

Repositioned Keys

These get defined in array ZP(). For example, ZP(SD,2) = PO, moves

the QUOTE function to the unshifted POUND key. The QUOTE

function can still be used on its original key as long as you don't make

it the target of some other function. ZP(ND,UA) = LA + SF gives you

the normal UP ARROW display on the shifted LEFT ARROW key. In

the example below, the PLUS and MINUS keys have been completely

interchanged.

ZP(ND.PL) = MI:ZP(SD,PL) = Ml + SF:ZP(CD,PL) = Ml +

CF:ZP(TD,PL) = MI+TF

ZP(ND,MI) = PL:ZP(SD,MI) = PL + SF:ZP(CD,MI) = PL +

CF:ZP(TD,MI) = PL + TD

Strings

These get defined in the array ZS$(| . There are some elementary

rules to be followed.

Always start off a new string definition with S$. For example,

ZS$(CD,L) = S$+"LIST"+R$

will action the List command when you press |C = IfD.

If the complete string does not fit on the line, add in the remainder on

following lines. For example

ZS$(TD,B) = ZS$(TD,B)+"REMAINDER"

will continue the string from the previous line.

If you define more than 255 characters in a string, you'll get a BASIC

error. To get round this, you need to link the string to some other key.

Suppose that the string on the original key, C= - D is near or at 255

characters. You may link it to the key, Y, as follows:

ZS$(CD,D) = ZS$(CD,D) + LN$ + CHR$(Y)

ZS$(ND,Y) = L$ + " LINKED STRING"

Note the linking value, LN$, specifies a normal (unshifted) factor, and

CHR$() has its usual sense, as in BASIC. On the second line, L$ is

used as the first character in the linked string, instead of S$ which is

used to define a new string. This is always so for a linked key.

Any number of keys may be linked in this way. A key you link to does

not loose its original function, but you must not use it in another

string or routine definition. For this reason, it is advisable to use the

normal typing keys and save the shifted functions for strings or

routines.

When defining an interactive string, you need to insert the variable,

1$, at the positions you wish to pause at. For example,

ZS$(SD,K) = S$ + " INSERT DISKETTE" +1$ + N$

ZS$(SD,K) = ZS$(SD,K)+ "LOAD" +Q$+ "SYMASS" +

Q$+",8"+R$+"RUN" +R$

Routines

These get defined in array ZR(). For example, ZR(TD,G) = 49195, will

run the interrupt routine located at 49195 when you press I CTRL] [Gl If

you are using background or parallel programs, then the variable, ZV,

must be assigned the address of a 36 byte area for the "jump table". If

you are implementing your own commands, the variable, ZC, must

be assigned the address of a 40 byte area to hold the command line.

MACHINE LANGUAGE INTERFACE

With machine language you can realize the full potential of Keyboard

Expander. The simplest type of ML program is the Interrupt Rou

tine which you assign to a key. It will be entered as a subroutine

within the Keyboard (timer) interrupt every time the key is pressed.

The key matrix code (0 to 63), in case you need it, is passed in the .Y

register and the shift state in the .X register. These values are also

stored by the Kernel in locations 203 and 653.

For Background and Parallel programs, you will need to interface into

Keyboard Expander through a "jump vector table". This table takes 36

bytes and contains 12 jump instructions. Only the first six are of use to

you. Use the remaining 18 bytes for uninitialized data if you wish.

The jump table cannot be hard-coded because Keyboard Expander

can move about in memory. You have to assign the start address of the

table to the variable, ZV, in your profile program. When this program

is run, Keyboard Expander will copy the table into your program

space.

You will also need this table if you are initiating background routines

or parallel programs from within a running ML program. Here you

make use of the USER JUMP address at $311/$312. Store the address

for your table in low/high byte format. Then change location $310

from its normal $4c ("jmp" instruction), to any other value. Keyboard

Expander will detect the change and copy the table into your program

space. You can be certain the table has been copied when $310

contains the jump instruction again (within one timer interrupt
period).

In PAL source code, your table should look something like this:

I TheTrorooctof
68

Nov. 1986: Volume 7, Ittue O3

KEVECTOR =

BRSTART * =

BREND

PPSTART *

PPEXCL •

PPSHARE *

PPEND *

NOTUSED *

= * + 3

= *+3

;START ADDRESS

;START BACKGROUND

;END BACKGROUND

;START PARALLEL

;RUN EXCLUSIVE

;RUN SHARED

3 ;END PARALLEL

18 ;NOT RELEVANT

Background Routines

JSR BRSTART will initiate a background routine from your inter

rupt routine or ML program, provided one is not already in existence.

Pass the start address in the .X/.Y registers in low/high byte format. A

zero status return means your routine has started.

The routine is coded as a subroutine to run within the keyboard

interrupt. It will be called on every clock tick until it disables itself with

a JMP BREND

Parallel Programs

A Parallel program has the same start/end interface as the back

ground routine, only use PPSTART/PPEND instead. When first

started, it will multitask with BASIC by getting scheduled after every

alternate timer interrupt. This is all right for a memory bound

program, but if you're doing I/O to the disk, printer, etc, BASIC will be

almost unusable. In this case and also if you need to lock out the

keyboard, you must run exclusively by doing a JSR PPEXCL. When

you want to multitask again do a JSR PPSHARE.

Command Line

The interrupt routine assigned to the ICTRLI | RETURN I function has

the privilege of receiving the command line if you assign the start

address of a 40 byte data area to the variable, ZC, in the profile

program. On this keypress, the line will be converted to ASCII and

copied into the assigned area before your routine is entered. This will

allow you to implement commands like renumber, delete, merge, etc,

by starting a parallel program if necessary.

Installing ML Programs

Procedures to do this have been discussed in the section on Keypo-

wer. Normally, as for SCROLL.OBJ, you shouldn't need to run any

initialization code. But if you have to, the INSTALL program is smart

enough to enter your initialization routine provided you start your

program as follows:

JMPINIT ;to init routine

.ASC ' 'INIT' ' ;special string

INIT (code) ;init routine

CONCLUSION

Keyboard Expander works intimately with the Kernel keyboard inter

rupt to provide the interface through which you can manipulate any

key to your advantage. It has the potential and flexibility to become

whatever you want it to be, even a total keyboard utility. So if you do

develop any useful routines for it, don't be shy. Send them to the

TRANSACTOR so that we all can enjoy them. I'll really look forward to

that.

TABLE 1 - KEY VARIABLES

to (Z]

El to

ICURSOR RIGHT

ICURSOR DOWNI

IUPARROWI

VARIABLES

AtoZ

NO to N9

F1,F3,F5,F7

DE

RE

Rl

DO

UA

LA

PO

HO

SP

AT

CM

PL

AS

SE

SL

Ml

PE

EQ

CO

TABLE 2

STORAGE

ZP(3,62)

ZR(3,62)

ZS$(3,62)

ZV

ZC

- ARRAY/STORAGE

DESCRIPTION

REPOSITIONEDKEYS

ROUTINES

STRINGS

JUMP VECTOR TABLE

COMMAND LINE

TABLE 3 - SHIFT FACTOR

VAR

ND

SD

CD

TD

USE

ARRAY

ARRAY

ARRAY

ARRAY

VAR

—

SF

CF

TF

USE

TARGET

TARGET

TARGET

MODE

NORMAL

SHIFT

COMMODORE

CONTROL

TABLE 4 - VARIABLES USED IN DEFINING STRINGS

VAR

S$

L$

R$

N$

Q$

LN$

LS$

LC$

LT$

DESCRIPTION

Always the first in a new string

Always the first in a linked string

To encode a RETURN function

To encode a SHIFT RETURN function

To encode a QUOTE character

Normal factor when linking to another key

Shift factor when linking to another key

Commodore factor when linking to another key

Control factor when linking to another key

Th© Transactor 69 Nov. 1986: Volume 7, Issue O3

Keyboard Expander: Generates PRG file " KE" on disk.

GN

OB

GP

AM

NO

CD

GN

Bl

IL

CJ

IL

Gl

LK

PH

Al

JD

DP

FM

IL

NM

10

KB

AL

AO

IM

HC

PJ

KM

MC

Nl

NF

FL

CD

KE

MF

LH

PI

GD

KJ

LM

DG

IL

GL

AN

NP

BM

HK

HB

DA

NC

LB

JG

MC

EO

JD

JB

IE

BF

KD

CB

IF

BF

1000 rem |

1010 rem'

1020 rem s

Drogram to create file " ke" on disk

irst loop ensures checksum is correct

;econd loop writes file

1030 for j = 1 to 2745 : read x : ch = ch + ><: next

1040 if ch<>276146 then print "checksum error" : end

1050 restore

1060 open

1070 for j =

8,8,8, "0:ke,p,w"

= 1 to 2745 : read x

1080 print#8,chr$(x); : next

1090close8: end

1100 data

1110 data

1120 data

1130 data

1140 data

1150 data

1160 data

1170 data

1180 data

1190 data

1200 data

1210 data

1, 8, 13, 8, 10, 0,

48, 54, 51, 58,162, 0,

32, 62, 9, 32, 75, 9,

9, 32, 75, 9,201, 129,

169, 70, 32,210,255, 96,

240, 39, 32, 75, 9, 133,

75, 9,133, 54,165, 55,

56,229, 53,133, 55,133,

51,133, 53,165, 56,133,

54, 133, 56, 133, 28, 133,

54,165, 27,133, 29,165,

30,169, 0,168,162, 5,

1220 data 200, 208, 251,230, 30,202,

1230 data

1240 data

1250 data

1260 data

1270 data

1280 data

1290 data

1300 data

1310 data

1320 data

1330 data

169, 3, 24,101, 27,133,

0,101, 28,133, 30,160,

75,145, 29,200,169, 69,

200,169, 88,145, 29,200,

145, 29,200,200,200,200,

27,145, 29,200,165, 28,

200,165, 33,145, 29,200,

145, 29,165, 27,133, 29,

133, 30,160, 0, 32, 75,

26,201, 5,240, 33,201,

3, 32, 42, 9,165, 26,

1340 data 201, 4,208, 21, 32, 75,

1350 data

1360 data

1370 data

1380 data

1390 data

1400 data

1410 data

1420 data

1430 data

1440 data

1450 data

101, 27,133, 29, 32, 75,

28,133,, 30, 76,171, 8,

9,201, 1,208, 20, 32,

24,101, 27, 32, 49, 9,

9,101, 28, 32, 49, 9,

8,201, 2,208, 15, 32,

24,101, 27, 32, 49, 9,

9, 76,171, 8,201, 3,

32, 75, 9, 24,101, 27,

9,101, 28, 32, 49, 9,

8,201, 96, 48, 13, 41,

1460 data 232, 32, 42, 9,202,208,

1470 data

1480 data

1490 data

1500 data

1510 data

1520 data

1530 data

1540 data

1550 data

1560 data

1570 data

1580 data

1590 data

1600 data

1610 data

171, 8, 0, 32, 75, 9,

9, 96, 8,160, 0,145,

29,208, 2,230, 30, 40,

106,133, 31,169, 9,133,

1,133, 25, 96, 8,165,

45,165, 32,229, 46,176,

0,177, 31,230, 31,208,

32, 76,101, 9,169, 5,

108, 27, 0, 0, 16,129,

129, 76,188, 9, 99, 75,

80, 1, 16, 0, 4, 24,

0, 0, 1, 26, 4, 97,

1, 21, 4, 4, 68, 0,

0, 1, 51, 4, 97, 0,

47, 4, 97, 0, 0, 1,

158, 50

0, 0

32, 75

240, 6

165, 25

53, 32

133, 33

27,133

34, 229

52, 133

28, 133

145, 29

208, 246

29, 169

0,169

145, 29

169, 80

200, 165

145, 29

165, 34

165, 28

9, 133

128,144

41, 127

9, 24

9,101

76,103

75, 9

32, 75

76, 171

75, 9

32, 75

208, 17

32, 75

76, 171

159, 170

250, 76

32, 49

29, 230

96, 169

32, 169

31,197

13, 160

7,230

40, 96

42, 10

69, 88

0, 97

0, 0

97, 0

0, 1

55, 4

LJ

LD

PI

CH

KD

Fl

GL

MM

OP

MC

JH

GJ

FD

BC

FH

NG

FF

FF

HL

PM

JH

PL

JM

LG

JN

HC

El

KM

OK

CK

CN

JB

MO

EB

PN

MC

FJ

AA

BB

PC

AF

IB

BM

Nl

KF

CF

OH

KM

PL

IJ

GP

FL

CN

AG

FK

LF

EA

FN

KA

PO

NB

KO

EA

JP

1620 data

1630 data

97, 0, 0, 1,135, 4, 97, 0

0, 1,188, 4, 97, 0, 0, 1

1640 data 248, 4, 97, 0, 0, 1, 29, 5

1650 data

1660 data

1670 data

1680 data

1690 data

1700 data

1710 data

1720 data

1730 data

1740 data

1750 data

1760 data

1770 data

1780 data

97, 0, 0, 1, 42, 4, 97, 0

0, 1,115, 4, 97, 0, 0, 1

82, 4, 97, 0, 0, 1, 72, 5

4,124, 0, 97, 0, 0, 1, 42

5, 4, 72, 3, 97, 0, 0, 1

37, 4, 4, 21, 4, 97,169,191

129, 76, 167, 5, 97, 169, 64,129

32,157, 5, 97,169, 0, 97,133

212, 97,240, 7, 97,169, 1, 97

133,212, 96, 96, 97,169, 1, 97

133,216, 96, 96, 98,238, 32,208

96, 96, 98,238, 33,208, 96, 96

98,206,134, 2, 98,173,134, 2

97,162, 4, 97,160,216, 97,132

1790data246, 97,160, 0, 97,132,245, 97

1800 data 145,245, 96,200, 97,208,251, 97

1810 data 230, 246, 96,202, 97,208,246, 96

1820 data

1830 data

96, 97,166,214, 97,134,245, 96

232, 97,181,217, 97, 48, 3, 96

1840 data 232, 97,208,249, 97,224, 25, 97

1850 data

1860 data

176, 12, 97,181,217, 97, 9,128

97,149,217, 98, 32,255,233, 96

1870 data 232, 97,208,240, 97,166,245, 98

1880 data

1890 data

1900 data

1910 data

1920 data

32,240,233, 97,164,213, 98, 32

36,234, 97,169, 32, 97,145,209

98, 32,218,228, 96,136, 97, 48

4, 97,196,211, 97,176,242, 96

96, 97,164,211, 97,196,213, 97

1930 data 240, 81, 97,132,245, 97,166,214

1940 data

1950 data

129, 32,234, 4, 97,208, 9,129

32,174, 4, 97,176, 15, 97,240

1960 data 249, 97,208, 59,129, 32,174, 4

1970 data 97,176, 6, 97,208,249, 97,132

1980 data 245, 97,240,236, 97,164,245, 97

1990 data 16, 44, 96,200, 97, 196,213, 97

2000 data 240, 55, 97,176, 66, 97,192, 40

2010 data

2020 data

97,208, 49, 96,232, 97,208, 46

97,164,211, 97,240, 30, 97, 166

2030 data 214, 129, 32,223, 4, 97,176, 19

2040 data

2050 data

2060 data

2070 data

97,208, 7,129, 32,223, 4, 97

176, 12, 97,240,249,129, 32,223

4, 97,176, 5, 97,208,249,129

32,174, 4, 97,134,214, 97,132

2080 data 211, 96, 96, 96,136, 97,208, 3

2090 data

2100 data

2110 data

2120 data

2130 data

96, 56, 97,176, 18, 97,192, 39

97,208, 1, 96,202, 97,177,209

97,201, 58, 97,240, 6, 97,201

32, 97,240, 2, 97,201, 44, 96

24, 96, 96, 97,164,213, 97,166

2140data214, 97,192, 40, 97,144, 7, 97

2150 data 165, 211, 97,201, 40, 97,176, 1

2160 data

2170 data

2180 data

96,232,129, 32,234, 4, 97,201

32, 97,208,204,129, 32,223, 4

97,176, 4, 97,201, 32, 97,240

2190data247, 97,201, 32, 97,240,191, 97

2200 data

2210 data

2220 data

2230 data

208,186, 97,166,214, 97,164,211

97,192, 40, 97,144, 1, 96,202

97, 160, 0, 97, 240, 176, 98, 172

32,208, 97,169, 16, 98,141, 32

2240data208, 98, 77, 17,208, 98,141, 17

2250 data 208, 129, 32,104, 5, 97,224,223

The Transactor 7O Nov. WM: Volume 7. Issue O3

CG

EM

AC

KB

AH

LL

JA

MF

NG

JO

DO

NG

LA

GO

NK

KP

IB

ED

HD

NB

NA

AB

IL

CB

KF

FG

EA

MH

OF

Bl

FO

LI

GH

AH

AN

LM

NC

KH

NJ

OL

FB

DA

LB

EP

JK

NO

KA

MK

PK

ED

DC

NB

AH

GE

EJ

CL

LM

BE

FH

PE

IH

EF

GJ

PN

97,

6,

5,

98,

96,

45,

15,

2260 data 97,

2270 data 9;

2280 data 129,

2290 data 129,

2300 data 96,

2310 data

2320 data

2330 data

2340 data

2350 data

2360 data

2370 data

2380 data 136,

2390 data 96,

2400 data 97,

2410 data 104,

2420 data 97,

2430 data 208,

2440 data 4,

2450 data 97,

2460 data 141,

2470 data 6,

2480 data 3,

2490 data 97,

2500 data 140,

2510 data 9,

2520 data 130,

2530 data 97,

2540 data 235,

2550 data 2,

2560 data 12,

2570 data 97,

2580 data 19,

2590 data 201,

2600 data 96,

2610 data 2,

2620 data 144,

2630 data 16,

2640 data 105,

2650 data 0,

2660 data 96,

2670 data 240,

2680 data 240,

2690 data 177,

2700 data 41,

2710 data 162,

2720 data 96,

2730 data 96,

2740 data 96,

2750 data 96,

2760 data 141,

2770 data 129,

2780 data 245,

2790 data 169,

2800 data 23,

2810 data 3,

2820 data 97,

2830 data 152,

2840 data 16,

2850 data 3,

2860 data 129,

2870 data 48,

2880 data 129,

2890 data 96,

208, 249,

16, 98,

32,165,

32,135,

138, 97,

240, 246,

98, 206,

98, 76,

142, 0,

96, 96,

15, 4,

98,140,

97, 208,

104, 96,

105, 1,

97,105,

169, 8,

7, 97,

97, 208,

169,247,

15, 4,

131, 160,

98, 140,

160,234,

1, 4,

131,160,

162, 19,

208, 4,

98, 142,

96, 96,

97, 165,

160, 0,

234, 96,

63, 97,

10, 96,

96, 200,

2, 96,

0, 97,

16, 0,

98,174,

24, 97,

98, 140, 32

141, 17,208

5, 98,238

5, 129, 32

41,164, 97

97,201, 132

32,208, 129

126,234, 97

220, 98, 174

72, 97,169

97,240, 12

24,212, 96

253, 98, 140

96, 96, 104

129,141, 0

0, 129, 141

129, 45, 15

8, 129

98, 76

45, 15

96,130

6, 98

3, 97

129, 142, 0

96, 96,130

79, 9, 97

7,131, 160

97, 162, 72

143, 2, 98

97,165,207

206, 98, 174

97,132,207

96, 97, 165

176, 75, 97

10, 96, 10

96,200, 96

200, 96, 24

133,245, 96

97,133,246

169,

8,

129,

96,

80,

21,

96

4

97

15

7,

2,

245,

63,

97,

97,

97,

97,

2,

4,

4,

4.

27,

0, 97,

232, 97,

232, 97,

232, 96,

96, 96,

16, 4,

141, 17,

129,141,

76, 98,

98,141,

97, 133,

133,246,

9, 97,

248,129,

129, 32,

97

96

96

96

96

96

97

97

97

44,

81,

141,

104,

2,

97,

2,

96,

141,

105,

105,

105,

240,

133,203,

41, 192,

201, 64,

201,128,

232, 98, 142,

200, 97,177

96,200, 97

4, 96,200

4, 96

16, 3

3, 98

98, 173

97,160, 35

145,245, 96

173, 14, 4

6, 97

97, 240

5, 97

96,104

96,104

18,

205,

16,

245,

211,

4,

80,

4,

170,

208, 97

96, 96

32, 208

104, 5

201, 164

97, 208

32,174

162, 127

1,220

32, 129

97, 160

168, 96

24,212

96, 24

4,

1,

4,

13,

126,234

4, 129

162, 80

142, 20

162, 49

4, 129

162, 79

208, 10

19, 7

97, 160

140, 144

97, 240

135, 2

98, 32

203, 97

160, 0

97, 144

10, 97

130, 105

152,131

97, 169

240, 13

202,

202,

168,

170,

138,

240,

240,

240,

141,

245, 129

177,245

97,177

96, 97

97, 240

173, 17

18, 3

129, 185

136, 97

97, 240

169, 1

83, 97

169, 0

96, 168

129,141

97

97

97

97

97

12

7

2

2

KK

JJ

OP

FM

BN

KM

PN

HD

JD

LD

GO

NM

PC

oc

FF

KN

Bl

NG

HG

Gl

CF

JA

FD

JA

HC

Fl

KL

Gl

MG

HN

NJ

PA

FP

DF

NA

JE

NN

GP

FL

AB

JH

LK

BC

LK

NE

DN

FP

OC

CN

FL

OB

EK

JL

PK

FB

LI

GD

Cl

DB

CB

LE

EP

EB

IF

2900 data 9,

2910 data 96,

2920 data 129,

2930 data 96,

2940 data 129,

2950 data 5,

2960 data 96,

2970 data 129,

2980 data 129,

2990 data 129,

3000 data 129,

3010 data 129,

3020 data 129,

3030 data 129,

3040 data 142,

3050 data 169,

3060 data 141,

3070 data 97,

3080 data 2,

3090 data 141,

3100 data 169,

3110 data 15,

3120 data 4,

3130 data 129,

3140 data 98,

3150 data 240,

3160 data 129,

3170 data 169,

3180 data 160,

3190 data 97,

3200 data 208,

3210 data 0,

3220 data

3230 data

3240 data

3250 data

3260 data 132

3270 data 49

3280 data 98

3290 data 165

3300 data 97

3310 data 63

3320 data 208

3330 data 4

3340 data 129

3350 data 129

3360 data 129

3370 data 236

3380 data 5

3390 data

3400 data

3410 data

3420 data

3430 data 164,

3440 data 4,

3450 data 208

3460 data 129

3470 data 152

3480 data 96

3490 data 0

3500 data 201

3510 data 97

3520 data 98

3530 data 97

4, 96,

104, 129,

141, 12,

72,129,

173, 6,

4, 96,

72,129,

173, 12,

173,

173,

173,

142,

108,

173,

97

14,

97

47,

77

76

4

32

11,

10,

9,

4,

0,

14,

13, 4,

0, 96,

14, 4,

208, 2,

4, 96,

2, 4,

1, 129,

129, 142,

97, 162,

141, 2,

174, 141,

113, 97,

173, 15,

0, 129,

129,141,

165, 55,

33, 97,

97, 208,

134, 55,

0, 97,

166, 45,

97,132,

50, 129,

97,160,

140, 21,

203, 97,

197, 197,

97, 240,

22, 97,

97, 169,

141, 15,

32,113,

44, 15,

142, 2,

97, 208,

138, 2,

133, 7,

97,169,

235, 5,

203, 97,

97, 240,

16, 97,

173, 20,

129,206,

96,129,

129,141,

63, 97,

240,102,

129, 32,

208, 86,

7

97,

13

0

104,129,

141, 11,

4, 129,

173, 7,

4, 96,

72, 129,

173, 3,

4, 129,

4, 129,

4, 129,

4, 129,

4, 129,

4, 129,

4, 97,

129, 140,

96, 97,

96, 96,

97, 169,

96, 97,

129, 76,

44, 2,

7, 4,

0, 129,

4, 96,

2, 97,

224,

0,

141,

14,

129,205

165, 56,

26, 129,

97, 134,

132, 56,

97, 164

48, 97

32, 207

234, 98

3, 97

224, 4

97, 240

9, 97

133, 197

128, 129

4, 98

5, 129

4, 97

97, 240

11, 97

98, 141

97, 224

32, 97

129,

169,

28,

192,

4,

20,

32, 165

20, 4

176, 106

97, 36

113, 5

129,174

141, 10, 4

4, 96,104

173, 8, 4

4, 96, 72

72, 129, 173

173, 4, 4

4, 96, 72

141,

141,

141,

141,

140,

108,

208,

14,

169,

4

96

97

72

97

32

8

97

64

97

4

7,

6,

5,

3,

13,

8,129

4, 97

0, 129

97, 169, 129

1, 129,141

169, 65, 129

249, 6, 97

4, 97,208

129,140, 8

142, 6,

138, 96,

224, 3,

97, 208,

240, 12,

0, 97,169

97,208, 14

11, 0, 97

129,205, 12

174, 13, 0

51, 129, 172

97,132, 52

46, 97,134

49, 97

97, 162

20, 3

208, 34, 97

97,208, 34

30, 97,201

201, 51, 97

129, 76,

77, 15,

142, 142,

76, 73,

48, 248,

23, 97,224

169, 128, 98

138, 2,129

6, 97,208

208,208,129

61, 6, 97

129, 45,

196, 197,

97, 240,

240, 6,

97,240, 22

5, 97, 169

96,152, 97

97,197,197

157, 97, 16

97,166,212

18, 4, 97

134,

5,

142,

31

4

2

8

98

15

97

12

96

Th© Tronsoctof 71 Nov. 1986: Volume 7, Issue O3

OB

Kl

HH

PC

CH

GO

AE

CL

CK

CK

OL

Gl

Nl

DM

LP

KK

LL

GE

HG

HB

PL

JO

PO

DE

BH

EJ

CN

PD

FE

HC

MC

CP

MH

IM

AK

ME

KJ

DG

Nl

10

HA

EL

KD

EN

FO

IN

AN

PA

DB

OF

JC

BG

PC

Cl

HL

NC

FK

FC

JF

DF

AL

EO

FH

Fl

3540 data 240,

3550 data 12,

3560 data 97,

3570 data 184,

3580 data 97,

3590 data 141,

3600 data 0,

3610 data 173,

3620 data 0,

3630 data 97,

3640 data 145,

3650 data 162,

3660 data 155,

3670 data 203,

3680 data 2,

3690 data 4,

3700 data 129,

3710 data 133,

3720 data 98,

3730 data 96,

3740 data 166,

3750 data 97,

3760 data 220,

3770 data 162,

3780 data 11,

3790 data 240,

3800 data 4,

3810 data 235,

3820 data 97,

3830 data 72,

3840 data 148,

3850 data 97,

3860 data 200,

3870 data 32,

3880 data 206,

3890 data 1,

3900 data 142,

3910 data 3,

3920 data

3930 data

3940 data

3950 data

3960 data

3970 data

3980 data

3990 data 148,

4000 data 5,

4010 data 133,

4020 data 245,

4030 data 238,

4040 data 208,

4050 data 198,

4060 data 129,

4070 data 97,

4080 data 32,

4090 data 238,

4100 data 165,

4110 data 220,

4120 data 5,

4130 data

4140 data

4150 data

4160 data

4170 data

3

97

19

97

15

97.

76,

97,

32

76,

32,

1,

81,129,

129, 32,

177,245,

8, 97,

208, 41,

2, 97,

97, 240,

9, 0,

129, 141

177,209.

245, 96

141, 98

5, 129

98, 174

129,108

97, 112

32,165

245, 97

174,141

97, 162

212, 97

240, 224

97, 201

148, 98

97, 160

2, 97

129, 32

129, 32

133,212

235, 129

5, 97

169, 0

97, 177

235, 5

16, 4

97, 208

19, 4

220, 129

129, 32

201,

4,

201,

4,

240,

224,

98,

97, 165

216, 129

96, 170

19, 4

191,129

97, 208

76, 146

240, 238

195, 5

32, 208

198, 97

129, 32

97, 48

16,251

201, 5,

189, 8,

235, 5,

97, 208,

174, 16,

102, 9,

97, 240,

133, 197,

97, 169,

208, 34,

29, 97,

97, 133,

19, 4,

129, 32,

136, 97,

32, 38,

32,218,

141, 2,

17, 4,

3, 98,

5, 97,

165,203,

2, 97,

29, 97,

208, 12,

97,201,

51, 97,

44, 138,

4, 97,

160, 32,

31, 4,

135, 5,

97, 230,

32,174,

201, 3,

98,141,

245, 97,

129, 32,

97, 240,

2, 97,

97, 162,

32, 102,

135, 5,

97,176,

177,245,

97, 144,

80, 26,

129, 32,

97, 133,

38, 235,

198, 97,

172, 19,

98, 32,

129,206,

32, 135,

249, 98,

8, 129,

129,238,

98, 140,

129, 32,

208, 249,

135, 5,

17, 129,

98, 206,

129, 32,

98, 76,

97, 165,

11, 96,

10

96

97

7

16

97

20

38

4, 97,240

97, 160, 0

67,129, 76

97,201, 1

4, 98,205

129,173, 10

133,246,129

245, 97, 169

97,160, 39

113, 9, 97

16,246, 97

235,129, 32

5, 97, 164

98,142,142

129, 44, 15

76, 72,235

165,212, 97

97, 208,

240, 1,

208, 23,

97,201,

3, 97, 144

240,216, 97

2, 97,

197,197,

129,140,

98, 32,

97,165,245

197, 98, 32

5,129, 76

97,208, 2

141, 2, 96

133,203, 129

61, 6,129

97, 162

0, 129

98, 142

97, 208

97,165,198

247,129, 172

97,240, 65

192,129, 44

97,165,198

135, 5,129

212, 97, 162

129, 32,135

208,249, 97

4, 97,177

38,235,129

16, 4, 97

97, 165

3,220

16, 4

4,129

2, 98

5, 97

98,141, 3

129, 32,104

32, 104, 5

32,208, 129

31, 4,129

52,234,129

203, 97,201

104, 96,104

87,

162,

255,

9,

5,

141,

206,

19,

140,

135,

MF

CF

PL

BB

BN

GK

DL

CG

NM

JK

GK

GC

ED

EF

NE

HG

FE

NH

HL

ND

CH

Cl

KL

IL

JH

MH

HM

AB

JJ

CO

KB

DD

CE

EB

AE

EE

4180 data 98,

4190 data 129,

4200 data 1-29,

4210 data 173,

4220 data 129,

4230 data 14,

4240 data 16,

4250 data 129,

4260 data 112,

4270 data 97,

4280 data 141

4290 data 129,

4300 data 129

4310 data 129

4320 data 129

4330 data 129

4340 data 129

4350 data 96

4360 data 129

4370 data 250

4380 data 5

4390 data 133

4400 data 98

4410 data 73

4420 data 1

4430 data 98

4440 data 245

4450 data 97

4460 data 32

4470 data 97

4480 data 89

4490 data 88

4500 data 13

4510 data 56

4520 data 89

4530 data 89

206, 32,208,

76,146, 8,

173, 17, 4,

18, 4, 97,

141, 16, 4,

16, 4, 129,

2, 97, 9,

174, 19, 4,

2, 97, 9,

208, 8, 129,

19, 4, 97,

76,214,

76, 252,

76, 238,

76,218,

76,165,

76,201,

120, 97,169,

157, 0, 4,

129, 32,174,

96, 88, 129,

99, 129, 173,

97, 162, 144,

188, 98, 32,

98,185, 0,

32,210,255,

97,169, 13,

162, 0, 129,

210,255, 96,

144,245, 96,

66, 79, 65,

80, 65, 78,

118, 40, 67,

54, 32, 65,

32, 83, 84,

129, 32,

129, 76,

97, 133,

133,246,

97, 41,

44, 16,

128, 97,

97, 208,

64, 97,

77, 19,

169, 34,

129, 76,

129, 76,

129, 76,

129, 76,

129, 76,

129, 76,

0, 97,

96, 202,

5, 129,

173, 11,

12, 0,

96, 56,

221, 189,

1, 97,

96, 200,

98, 32,

189, 1,

232, 97,

96, 112,

• 82, 68,

68, 69,

41, 32,

85, 66,

65, 78,

6

6

5

5

5

201, 5

73, 8

245, 129

96, 96

63, 129

4, 97

144, 5

4, 97

201, 34

4,129

96, 96

228, 6

234,

244,

135,

174,

235,

162, 20

97, 16

32, 201

0, 97

97, 133

98, 32

97, 160

240, 6

97, 208

210,255

10, 98

224, 41

75, 69

32, 69

82, 96

49, 57

82, 69

76, 69

Keyboard Expander: Generates PRG file " SCROLL.OBJ "

EK

OB

GP

FA

PO

CD

MJ

Bl

IL

CJ

AK

EP

OC

ID

CE

ME

KA

GL

DM

ND

GD

FF

KB

OH

1000 rem program to create file " scroll.obj" on disk

1010 rem first loop ensures checksum is correct

1020 rem second loop writes file

1030 for j = 1 to 741 : read x : ch = ch + x : next

1040 if ch<>86049 then print" checksum error" : end

1050 restore

1060 open 8,8,8," 0:scroll.obj,p,w"

1070 for j = 1 to 2745 : read x

1080 print#8,chr$(x);: next

1090close8: end

1100 data 0,157, 76, 48,157, 76, 64,157

1110 data 76, 43,159, 76,145,159, 0, 0

1120 data 0, 0, 0, 0, 0, 0, 0, 0

1130 data 0, 0, 0, 0, 0, 0, 0, 0

1140 data 0, 0, 0, 0, 0, 0, 0, 0

1150 data 0, 0, 0, 0, 0, 0, 0, 0

1160 data 0, 0, 32, 88,157, 32,176,158

1170 data 32,114,157, 32,225,158,240,245

1180 data 208, 2,1, 32, 88,157, 32,176,158

1190 data 169, 24,133,214, 32,108,229, 32

1200 data 243, 157, 32,225,158,240,238, 76

1210data 27,157,140, 33,157,142, 34,157

1220 data 169, 255, 141, 41,157,141, 42,157

1230 data 104, 24,105, 1,170,104,105, 0

The Transactor 72 Nov. 1986: Volume 7, Issue O3

KA

JO

BD

KA

PE

BD

LD

LP

PP

EK

EL

IG

DG

MC

LH

NB

IB

KJ

FN

EG

CK

DA

CD

HO

CL

NO

IA

AJ

PN

MJ

JP

PC

DF

GD

KE

LJ

AF

MC

LF

BN

DN

LJ

Gl

BK

HL

HN

HN

LA

AH

GE

MO

El

BA

EC)

JP

PF

GO

HM

PE

JG

AE

JD

LI

FA

1240 data 168,

1250 data 25,

1260 data 124,

1270 data 133,

1280 data 95,

1290 data 1,

1300 data 44,

1310 data 160,

1320 data 249,

1330 data 245,

1340 data 136,

1350 data 64,

1360 data 217,

1370 data 162,

1380 data 128,

1390 data 1,

1400 data 240,

1410 data 48,

1420 data 158,

1430 data 20,

1440 data 208,

1450 data 208,

1460 data 255,

1470 data 21,

1480 data 9,

1490 data 233,

1500 data 104,

1510 data 177,

1520 data 0,

1530 data 63,

1540 data 20,

1550 data 240,

1560 data 63,

1570 data 104,

1580 data 233,

1590 data 240,

1600 data 144,

1610 data 101,

1620 data 133,

1630 data 32,

1640 data 24,

1650 data 157,

1660 data 100,

1670 data 3,

1680 data 165,

1690 data 38,

1700 data 21,

1710 data 2,

1720 data 40,

1730 data 204,

1740 data 157,

1750 data 133,

1760 data 157,

1770 data 236,

1780 data 165,

1790 data 207,

1800 data 159,

1810data141,

1820 data 157,

1830 data 169,

1840 data 162,

1850 data 162,

1860 data 16,

1870 data 169,

76,

240,

158,

20,

228,

96,

164,

0,

96,

200,

152,

105,

48,

0,

133,

142,

233,

11,

144,

133,

4,

5,

208,

32,

128,

162,

48,

95,

145,

165,

133,

13,

169,

104,

160,

38,

30,

209,

123,

107,

96,

173,

141,

32,

214,

157,

157,

173,

157,

174,

133,

211,

174,

142,

206,

32,

32,

46,

64,

255,

2,

6,

250,

96,

18,

11,

144,

133,

44,

202,

43,

177,

200,

177,

24,

0,

5,

32,

217,

146,

76,

181,

244,

21,

169,

232,

232,

19,

133,

24,

3,

240,

95,

96,

21,

173,

13,

104,

255,

201,

201,

133,

32,

169,

120,

1,

0,

30,

141,

169,

96,

39,

141,

37,

211,

32,

34,

2,

174,

19,

12,

157,

3,

157,

157,

169,

173,

141,

157, 162,

181,217,

242, 176,

21, 32,

208, 5,

228, 44,

136, 134,

63, 240,

177, 63,

63, 197,

101, 63,

133, 96,

162, 23,

104,233,

169, 39,

2, 202,

68, 158,

217, 16,

176, 9,

72, 208,

13,208,

181,217,

230, 20,

166, 165,

218, 162,

134,214,

32,210,

37,141,

132, 15,

133, 64,

76,215,

35,157,

32,210,

76,111,

200, 177,

32, 240,

58, 176,

122,165,

121,

174,

173,

3,

0,

36,

0,

141,

3,169,

157,169,

37,157,

0, 133,

120,169,

157,141,

1, 3,

157,134,

56, 233,

108,229,

157,196,

96, 165,

135, 2,

234, 96,

157,208,

141, 47,

202, 16,

64, 3,

91, 3,

13,157,

134, 2,

16,208,

255, 232, 224

16,247, 32

6, 169,255

19, 166, 164

196, 43,208

176, 5,166

64,132, 63

4, 200, 208

197, 95,208

96, 208, 238

133, 95, 165

162, 24,181

32, 255, 233

165,217, 9

133,213,162

134,214, 32

162, 25,202

249, 32, 124

169,255, 133

21,224, 24

245,224, 23

16,243,169

208, 2,230

218, 48, 9

1, 32,255

32, 240, 233

255,160, 1

35,157, 169

165, 95, 133

169,255, 133

166,224, 11

160, 1,145

255, 96, 104

158, 32,240

209,192, 39

245, 201,

26,152,

210, 105,

142, 36,

157, 56, 36

3,141, 39

40,157, 169

158,141, 1

255,133,204

165,211, 141

211, 88, 32

0, 141, 146

0, 3,173

169, 0, 133

214,173, 38

40, 144,

88,172,

197,208,

207, 240,

160, 0,132

162,153, 160

92,169, 0

157,162, 63

250,162, 2

202, 16,250

202, 16,250

248, 7,202

32,215, 159

56, 169,216

48

24

0

157

2

33

3

12

KF

HK

PJ

AA

JL

Nl

PK

BB

HG

JM

IC

JN

HE

CO

KE

1880 data 162, 8,

1890 data 202, 16,

1900 data 169, 56,

1910 data 29,208,

1920 data 46, 157,

1930 data 76, 15,

1940 data 207, 159,

1950 data 233,142,

1960 data 202, 138,

1970 data 162, 12,

1980 data 249, 169,

1990 data 2,169,

2000 data 159, 173,

2010 data 11,141,

2020 data 208, 202,

157, 0,208,

247,169, 8,

141, 12,208,

141, 21,208,

96,169, 0,

157, 36,157,

166,214,236,

46, 157, 181,

10, 10, 10,

157, 1,208,

0,162, 40,

127,141, 23,

134, 2,205,

47, 157,162,

16,250, 96

233, 48,202

141, 10,208

169, 127, 141

162, 25,142

141, 21,208

16,244, 32

46, 157,240

217, 48, 1

24,105, 49

202,202, 16

228,213,176

208, 76,144

47, 157,240

6, 157, 39

Keyboard Expander: Profile Program

ON

HC

BM

EO

IP

CH

ED

EA

Fl

KD

FA

GH

AE

DL

EE

EN

HG

LH

ME

BH

ON

PM

GJ

EG

MH

JA

MF

LN

IG

CG

MM

EN

IG

DP

ID

KH

ED

LP

keyboard expander profile prog

ke.pf

10 rem

12 rem

14 rem

16 rem

18 rem (program variables)

20 zx = 0:zy = 0:zd = O:zi = O:zj = 0:zb = O:zp = 0

22 rem

24 rem (factor for repositioned keys)

26sf = 64:cf=128:tf=192:remshft,c = ,ctrl

28 rem

30 rem (array dimensions source keys)

32 nd = 0:sd = 1:cd = 2:td = 3:rem *norm,shft,c = ,ctrl

34 rem

36 rem (used in strings for keys)

38 rem

40 s$= "" :l$ = chr$(0):i$ = chr$(0):rem new.linkand i'active

42 q$ = chr$(34):r$ = chr$(13):n$ = chr$(141):rem quote,

ret,shft+ret

44 ln$ = chr$(3):ls$ = chr$(1):lc$ = chr$(2):lt$ = chr$(4)

:rem norm,shft,c = ,Ctrl

46 rem

48 rem (variables for keys)

50 a = 10:b = 28:c = 20:d = 18:e = 14:f = 21 :g = 26:h = 29

:i = 33:j = 34:k = 37:l = 42:m = 36

52n = 39:o = 38:p = 41:q = 62:r=17:s=13:t = 22:u = 30

:v = 31:w = 9:x = 23:y = 25:z=12

54 nO = 35:n1 = 56:n2 = 59:n3 = 8:n4 = 11 :n5 = 16:n6 = 19

:n7 = 24:n8 = 27:n9 = 32

56f1=4:f3 = 5:f5 = 6:f7 = 3:de = 0:re=1:ho=51:ri = 2

:do = 7:ua = 54:la = 57

58 pi = 40:mi = 43:eq = 53:po = 48:at = 46:as = 49:sl = 55

60 pe = 44:co = 45:se = 50:cm = 47:sp = 60

62 rem

64 rem (jmp vector and command line)

66zv = 0:zc = 0:rem addresses, 0 = none

68 rem

70 rem (key definition array storage)

72 dim zs$(3,62),zp(3,62),zr(3,62)

74 rem

76 rem

78 rem - define your keyboard profile

80 rem - between lines 100 and 799

82 rem ** dont def any new variables **

84 rem

The Tronsoctof 73 Nov. 1986: Volume 7, Issue O3

EH

OD

AE

CE

LI

GB

AP

OM

MJ

MM

LL

DK

HB

NB

GC

KA

10

OF

HC

CD

JE

IE

JM

PF

MG

FM

AH

EC

AG

BM

DB

PH

OB

GE

86 rem

800 rem

802 rem (relocate tables)

804 rem

806 zi = fre(0):zp = peek(55) + 256*peek(56):rem prog start

808 zb = peek(zp + 7) + 256*peek(zp + 8):rem dscr base

810 ifpeek(zp + 3) = 75andpeek(zp + 4) = 69and

peek(zp + 5) = 88andpeek(zp + 6) = 80then814

812 print" error: cannot locate keyboard expander" :end

814 zx = (peek(47) + 256*peek(48)) + 9:rem array defs

816 forzi = 0to62:forzj = 0to3

818zd = zb + (zi*16) + (zj*4)

820 ifzp(zj,zi)thenpokezd,zp(zj,zi)

822zy = zr(zj,zi):ifzythenpokezd + 2,zy-int(zy/256)*256

:pokezd + 3,int(zy/256)

824 iflen(zs$(zj,zi)) = 0then830

826zy = zx + (zi*12) + (zj*3)

828 pokezd +1 ,peek(zy):pokezd + 2,peek(zy +1)

: pokezd + 3,peek(zy + 2)

830 nextzj:nextzi

832 rem

834 ifzvthenpoke785,zv-int(zv/256)*256

:poke786,int(zv/256):poke784,0

836ifzcthenpokezb-7,zc-int(zc/256)*256

:pokezb-6,int(zc/256)

838 zy = (peek(51) + 256*peek(52))-9:rem new start

840 forzi = 0to8:pokezy + zi,peek(zp + zi):next:pokezb-1,255

842pokezb-5,zy-int(zy/256)*256:pokezb-4,int(zy/256)

844 poke55,peek(zb-5):poke56,peek(zb-4):clr

:rem new top mem

846 rem

848 rem (store absolute version)

850 rem

852 input" create an absolute version - y/n" ;f$

854 iff$<>" y" andf$<>" n" then852

856 iff$ = " n" then864

858 input" filename for profile" ;f$

860sys57812f$,8

862 pokei74,0:poke175,160:poke193,peek(55)

:poke194,peek(56):sys62954

864clr:end

Keyboard Expander: Profile Definitions

ID

DK

LK

on

Kl

PO

01

IH

CJ

OF

GJ

IB

FF

PJ

OK

1 DO rpmI \J\J I J^l I I

102 rem keypower profile definitions

104 rem kpower.defs

1 OR rpmi \j{j | ^j 11

108 rem

110 rem (reposition shift cursor keys)

112 rem

114 zp(nd.ua) = do + sf:zp(nd,la) = ri + sf

116 rem

118 rem (commands on strings)

120 rem

122 zs$(td,s) = s$ + " save" + q$ + " 0:" + i$ + q$

+ ",8" +r$:rem save

124 zs$(td,p) = s$+ "open15,8,15," +q$+ "s0:" +i$

+ q$ + " :close15" + r$:rem purge

126zs$(td,n) = s$+ "open15,8,15," +q$+ " rO:" +i$

+ " = " +i$ + q$+ ":close15" +r$:rem rename

128 zs$(td,l) = s$ + " load" + q$ + " 0:" + i$

+ q$+ ",8" +r$:rem load

DP

PL

MN

HJ

MO

CK

ON

OK

FJ

BL

HF

DO

AK

GP

EG

PL

FP

BH

JE

DH

NA

EK

Bl

NN

OE

MJ

GF

FF

GN

KJ

IMJIN

Kl

GD

EP

JF

Cl

EO

DG

IO

LD

MO

LD

130zs$(td,r) = s$+ "load" +q$+"0:" +i$ + q$

+ " ,8" + r$ + " run" + r$:rem load-run

132zs$(td,i) = s$+ "open15,8,15," +q$+ "iO" +q$

+ " :close15" + r$:rem init disk

134zs$(td,v) = s$+ "open15,8,15," +q$+ "vO" +q$

+ " :close15" + r$:rem validate

136zs$(td,g) = s$+ load|||H|||||||||||||||H[3 spcs],8 +r$

:rem load from dir

138 zs$(td,pl) = s$+ "clr:poke43,peek(45):poke44,peek(46

:new" + r$:rem test part

140 zs$(td,mi) = s$ + " poke45,peek(43):poke46,peek(44):"

142zs$(td,mi) = zs$(td,mi)+ "poke43,1:poke44,8:clr" +r$

:rem back to norm

144 rem

146 rem (basic progs on strings)

147 rem

148 rem read error channel

150 zs$(td,e) = s$ + " 8000open15,8,15:input#15,a,b$,c,d

:printa,b$,c,d"

152 zs$(td,e) = zs$(td,e) + " :close15" + r$ + " run8000"

+ r$ + " 8000" + r$

154 rem list dir to screen

156 zs$(td,d) = s$ + " 8000n$ = chr$(0):open15,8,0,"

+ q$+ "$0" +q$+ ":get#15,a$,b$" +r$

158 zs$(td,d) = zs$(td,d)+ "8001get#15,a$,b$:ifst<>0

then8005" + r$

160 zs$(td,d) = zs$(td,d) + " 8002get#15,a$,b$

:printasc(a$ + n$) + asc(b$ + n$)*256;" + r$

162 zs$(td,d) = zs$(td,d) + " 8003get#15,a$

:ifa$= " +q$ + q$+ "thenprint:goto8006" +r$

164 zs$(td,d) = zs$(td,d) + ln$ + chr$(a)

166zs$(nd,a) = l$+ "8004printa$;:goto8003" +r$

168 zs$(nd,a) = zs$(nd,a) + " 8005close15:poke198,0

:end" +r$

170 zs$(nd,a) = zs$(nd,a) + " 8006k = peek(203)

:ifk = 64then8001 " +r$

172 zs$(nd,a) ■ zs$(nd,a) + " 8007ifk = 62then8005" + r$

174 zs$(nd,a) = zs$(nd,a) + " 8008goto8006" + r$

+ " run8000" + r$

176 rem delete basic lines

178 zs$fta,z) = s$ + " 8000" + r$ + " 08001" + r$
+ " 08002" + r$ + " 08003" + r$

180 zs$(td,z) = zs$(td,z) + TO8004" + r$ + " 08005"
+ r$ + " 08006" + r$ + " 08007" + r$

182 zs$(td,z) = zs$(td,z) + "08008" + r$ + " 08009"
+ r$+ "08010" +r$+J3|8011" +r$

184 rem

186 rem (some basic keywords)

i o / rem

188 zs$(cd, a) = s$ + " asc(": zs$(cd, c) = s$ + " ch r$("

:zs$(cd,d) = s$+ "data"

190 zs$(cd,f) = s$ + " for" :zs$(cd,g) = s$ + " goto"

:zs$(cd,i) = s$+ "input"

192zs$(cd,l) = s$+ "list":zs$(cd,m) = s$+ "mid$("

:zs$(cd,n) = s$+ "next"

194 zs$(cd,o) = s$ + " open" :zs$(cd,p) = s$ + " print"

:zs$(cd,r) = s$+ "right$("

196zs$(cd,s) = s$+ "str$("

198 rem

200 rem (jmp table and command line)

202 rem

204 zv = 40204:rem zc = 0 no command line*

206 rem

208 rem (interrupt routines)

The Transactor 74 Nov. 1986: Volume 7, Issue O3

AP

EM

IB

GP

Nl

210 rem

212 zr(nd,f5) = 40192:zr(nd,f7) = 40195

:rem list scroll down/up

214 zr(sd,f5) = 40198:zr(cd,f5) = 40201

:rem line rule enable/disable

216 rem

218 rem end of defs

Keyboard Expander: "INSTALL" Program

ON

LJ

JH

EO

DK

GL

LO

PE

MP

MO

PD

EO

JJ

FD

AJ

IE

BF

GP

NC

KP

CO

FF

JA

LL

10

12

14

16

18

20

22

24

26

28

30

34

36

38

40

42

44

46

48

50

52

54

56

58

general install program

install

rem

rem

rem

rem

ifa = 1 then36

poke55,0:poke56,32:clr

input" filename" ;f$

open15,8,15:open1,8,2,f$+ ",

input#15,a,b$,c,d

closei :close15:ifa = 0then34

printa,b$,c,d:end

gosub44:a= 1 :loadf$,8,1

if a$<>" kexp" anda$<>" init"

then40

sysad

poke55,lb:poke56,hb:new

rem

open1,8,2,f$+

get#1 ,x$:ifx$ =

lb = asc(x$)

get#1 ,x$:ifx$ = "" thenx$ = chr$(O)

hb = asc(x$):ad = lb + 256*hb

fori = 1 to3:get#1 ,x$:next

a$= n":fori = 1to4:get#1,x$

:a$ = a$ + x$

next:close1:return

" thenx$ = chr$(O)

Keyboard Expander: List Scroll Source

FN

NL

OP

IN

MA

IL

PN

BC

AO

AN

LK

NN

ON

OD

FM

GJ

AJ

BA

HJ

GP

HO

GD

MM

LL

IJ

KK

ND

EG

DG

DF

PM

CJ

JF

DM

IH

list scroll and line rule

scroll.s

1 rem

2 rem

3 rem

4 rem

10 open 2,8,1," O:scroll.obj"

12 rem open 4,4

14sys700

16.opto2

18;

20 msgflg

22 Istx

24 blnsw

26gdbln

28 blnon

30 tblx

32 Idtbi

34 txcadr

36 gdcol

38 Istshf

40 ;—

42 .

44

46

48

50

52;

54 ;vector tab for background rtns

56 ;set up by profile program

157

197

204

206

207

214

217

646

647

654

= $9d00

jmp

|mp

jmp

jmp

listup

listdn

Irule

Irkill

;run mode

;last keypress

;blinksw

;line#

;screen line links

;col for text

;last shift

;install address

;scroll up

;scroll down

;line ruler

;kill line ruler

58 brstart

60 brend

62 ppstart

64 ppexcl

66 ppshare

68 ppend

70 rescur

+ 3

= .+3

= .+3

= .+3

= .+3

= .+3

= .+3

;start int rtn

;end int rtn

;start parallel rtn

;run exclusive

;run shared

;end parallel rtn

; reset cursor

ML

AM

GN

DK

GM

JH

GC

NJ

RC

AE

LD

AD

LG

MP

KN

LL

OM

MP

KH

FN

NM

PO

ME

MO

NM

KC

OA

BF

LA

GH

BM

HK

FO

PN

GD

EA

IL

Cl

GE

EK

FF

AB

EB

AN

GB

Bt

PI

OC

Fl

HK

DE

EC

DP

OE

NM

NB

Nl

CK

Dl

CL)

DL

PA

OL

MD

LN

CJ

HJ

FJ

ME

ND

CK

JE

GK

IN

CF

JC

AK

HN

NH

MP

DK

LJ

OE

JE

MJ

MA

JG

EO

72 bgwork

74;

76 '

* = • + 15

78 ;the list scroll routines

80;

82 ;run time variables

84 skey

86 sshf

88 savel

90 savex

92 savec

94 savev

96 firsti

98 first2

100;

-

=

=

=

=

=

bgwork

skey +1

sshf + 1

savel +1

savex +1

savec + 2

savev + 2

firsti +1

102 ;—entry from interrupt

104 listup

106

108

110

112

114

116

118;

=

jsr

up

jsr

jsr

beq

bne

.

liston

jsr

Istup

listout

lup

lexit

120 ;—entry from interrupt

122 listdn

124

126 Idn

128

130

132

134

136

138

140 lexit

142;

=

jsr

jsr

Ida

sta

jsr

jsr

jsr

beq

jmp

•

liston

listin

#24

$d6

$e56c

Istdn

listout

Idn

ppend

remaining jmps

;scroll up

listin

;scroll down

144 ;—initiate parallel program

146 liston

148

150

152

154

156

158

160

162

164

166

168

170

172

174;

=

sty

stx

Ida

sta

sta

pla

clc

adc

tax

pla

adc

lay

imp

176;—listup

178 Istup

180

182luO4

184

186

188

190

192

194

196

198;

200 Iu12

202

204

206 Iu16

208

210

212

214

216

218

220;

222 lu20

224

226

228

230

232

234 Iu24

236

238

240 Iu28

242

244 Iu32

246

=

Idx

nx

cpx

beq

Ida

bpl

jsr

bcc

bcs

Ida

sta

sta

jsr

Idy

cpx

bne

coy

bne

rts

dex

cpx

bos

Idx

Idy

dey

stx

sty

Idy

Ida

beq

iny

bne

.

skey

sshf

#$ff

firsti

first2

#1

#0

ppstart

#Sff

#25

Iu12

$d9,x

luO4

gnum

luO4

Iu16

#$fl

$14

$15

$a613

$5f

$2c

lu20

$2b

lu20

$2c

Iu24

$2c

$2b

$40

$3f

#0

($3f),y

Iu36

Iu28

;common point for up/dn

; save entry key

;. . and shift value

;retaddr = start of parallel prg

;low byte

;high byte

;start parallel program

;all lines

Jinked

;get num

;none

;high line num

;find line

;lo byt

;hi byt

;with start

;no prev lines

;lower

;..than start

;correct

; search for

;end of line

GB

AH

KD

NN

NA

FK

EO

LL

PI

DO

HM

OE

Gl

IM

KB

KJ

FP

AO

KJ

FO

HF

PJ

DP

AC

GG

JO

FG

LC

KF

DC

NG

DD

PO

HF

AB

EJ

GL

BE

LM

AD

HF

NB

DB

NK

DC

NH

MC

MM

BH

LB

AM

CD

PA

ML

AB

FB

JB

FF

IC

KE

HD

NF

BJ

HC

Jl

BD

JC

GB

BM

MK

LE

LJ

BN

ND

IL

OO

NP

KB

OL

FK

OA

IG

IJ

LO

LL

BJ

GH

BJ

248

250;

252 Iu36

254

256

258

260

262

264

266

268

270

272

274

276

278

280

282

284

286

288

290

292

294 lu40

296

298

300

302

304

306

308

310

312

314

316

318

320;

rts

ny

Ida

cmp

bne

ny

Ida

cmp

bne

dey

tya

clc

adc

sta

Ida

adc

sta

Idx

Ida

bmi

Idx

jsr

Idx

jsr

Ida

ora

sta

Ida

sta

Idx

stx

dex

stx

jsr

jmp

322; list down

324 Istdn

326

328 ldO4

330

332

334

336

338

340

342;

344 ldO8

346

348

350 Id 12

352

354 Id 16

356

358ld18

360

362 ld20

364

366

368

370

372 Id24

374

376 ld30

378

380

382 Id32

384

386

388

390

392

394

396 Id36

398

400

402

404

406

408;

410;—

412 list

414

416

418

420

422

=

Idx

dex

bmi

Ida

bpl

jsr

bcc

bcs

Ida

sta

sta

pha

bne

cpx

bne

Ida

bne

cpx

bne

inx

Ida

bpl

Ida

bne

inc

bne

inc

jsr

Ida

bmi

ora

sta

Idx

jsr

Idx

stx

jsr

pla

bin

jsr

=

Idy

Ida

beq

sta

Ida

($3f).y
$5f

Iu32

($3f),y

$60

Iu32

$31

$51

$40

#0

$60

#24

$d9,x

lu40

#23

$e9ff

#0

$e968

$d9

#$80

$d9

#39

$d5

#1

$292

$d6

$e9fO

list

•

#25

ldO8

$d9,x

ldO4

gnum

ldO4

Id16

//$ff

$14

$15

ld30

#24

ld20

#$0d

Id12

#23

Id24

$d9,x

Id18

#$ff

Id12

$14

Id32

$15

$a613

$da

Id36

#$80

$da

#1

$e9ff

#24

$d6

$e9fO

list

$ffd2

•

#1

($5f),y

Is24

savel

#0

;no more

;chk

;link lo

; no match

;chk

;linkhi

;make match

;chk last line

;not linked

;2nd last

; erase

;to scrl dwn

;fix up link

;and length

;set insrt

;home

position

;all lines

Jinked

;get line num

;none

;set

;..for

;..1st line

;saveabyte

;last

;retchar

;2nd last

;lnum

;find line

;2nd line

;not linked

;unlink it

;erase line

;last line

;curs row

;set curs

;printret

The Transactor 75 Nov. 1986: Volume 7, Issue O3

!M

PC

EH

AL

ID

EH

HD

OH

Dl

AH

CD

Ml

JD

JK

EE

LD

FB

NB

KM

HG

HP

IE

NK

CN

LO

AF

KK

LK

IH

PP

AD

KN

GP

CD

KF

LL

BG

AJ

JK

EN
pi/

rrs

AH

FJ

JP

KK

PN

CA

Nif

OE

IN

EB

PI

NF

OP

Kl

EO

LG

DL

CJ

JG

CG

IA

KG

OM

ED

KK

ED

CL

GK

PK

FM

IF

FE

AP

MP

LO

CM

NC

NB

EN

EP

GD

CM

MB

Dl

LO

PD

DH

42-

426

428

430

432

434

436

438

440

442

444;

446 ;

448 Iserv

450

452

454

456

458

460 Is24

462

464

466;

468 Is32

470

472

474;

476;—

478 gnum

480

482

484gn10

486

488

490

492

494

496

498

500

502

504

506

508

510

512

514

516

518

520

522

524

526

528 gn20

530

532;

534 ;

536 listin

538

540;

542 serv

544

546

548

550

552

554

556

558

560;

562 scur

564

566

568

570

572

574

576

578

580

582

584

586

588.

590 ;

592 listout

594

596

598

sta

sty

Ida

sta

Ida

sta

Ida

sta

sta

jmp

=

cpx

beq

Ida

Idy

sta

Ida

jsr

rts

(S5f),y
$f

$5f

$3f

$60

$40

#$fl

S14

$15

$a6d7

■

#$0b

Is32

savel

#1

($3f),y

#$0d

$ffd2

pla pla

pla:pla

jmp

=

jsr

Idy

my

Ida

opy

beq

cmp

beq

cmp

bcc

cmp

bcs

lya

clc

ado

sta

Ida

adc

sta

jsr

six

jsr

Idx

sec

bit

rts

=

sei

=

Ida

sta

Ida

sta

Ida

sta

Ida

sta

.

jsr

Ida
sta

Ida

sta

Icia

sta

Ida

sta

cli

jsr

rts

=

sei

Ida

sta

Is24

•

$e9fO

#$ff

(Sd1),y

#39

gn20 + 1

#$20

gn10

#$30

gn20 +1

#$3a

gn20 + 1

$d1

$7n

$d2

#0

S7b

$79

savex

$a96b

savex

S18

$300

savev

$301

savev +

#<lserv

$300

#>lserv

$301

.

rescur

#255

blnsw

$d6

savec

$d3

savec +

#0

$d3

ppexcl

*

#0

$292

;to fool list

;list qote fig

;to max

;into list

;err vec entry

;err from

;..evalfxdpt

; restore

;ret

;end

;clr rtss

;get line num

;set line start addr

;end of line

;chrgot

;eval num to binary

;set err vect

;save cursor

;reset cursor

;set blink off

;column

;run exclusively

;clr scroll

OM

OL

EA

ON

KM

GO

KN

PH

ND

HH

KE

OL

EL

NF

FP

JA

IO

FG

IM

EP

IH

AB

IG

DD

AL

FE

AH

JO

GA

FG

PB

IE

KF

KL

GG

JO

IA

ED

BP

MB

AC

NL

EC

PN

CP

GL

BN

ML

AD

MP

OK

DC

AE

FN

MD

OO

Kl

KH

OK

NA

Jl

LL

BC

FJ

JB

DJ

NM

LC

CA

LJ

NN

OF

ND

CH

PJ

HK

MN

FB

IK

NC

CJ

NH

IF

HF

Fl

PK

NL

600;

602 rerv

604

606

608

610

612;

614rcur

616

618

620

622

624

626

628

630

632

634

636rcu10

638;

640 getkey

642

644

646

648

650

652

654 gk40

656;

=

Ida

sta

Ida

sta

=

Ida

sta

Idx

stx

Ida

sta

sec

sbc

bcc

sta

jsr

=

cli

Idy

Idx

cpy

bne

cpx

rts

savev

$300

savev +1

$301

.

#0

blnsw

savec

$d6

savec +1

$d3

#40

rcu10

$d3

$e56c

*

skey

sshf

Istx

gk40

Istshf

;rst err vect

;rst cursor

;set blink on

; not on 2nd

;fix curs

658 ; not used: same as rescur

660 rcurs

662

664

666

668

670

672

674

676rc10

678;

682;

=

Ida

beq

Ida

Idx

Idy

sty

jsr

rts

.

blnon

rc10

gdbln

gdcol

#0

blnon

$ea13

684 ;basic line ruler routine

686;

688 sprt

690 spr

692 scr

694 Irspyl

696 Irspyc

698;

700 Irule

702

704

706

708

710;

712

714

716

718

720 lr10

722

724

726

728

730 Ir12

732

734

736

738 Ir14

740

742

744;

746

748

750 lr20

752

754

756

758

760

762

764

766

768

770 Ir24

772

774

=

=

=

=

=

=

Idx

Idy

jsr

bne

Ida

sta

sta

Idx

sta

dex

bpl

Idx

Ida

sta

dex

bpl

Idx

sta

dex

bpl

Idx

Ida

sta

dex

bpl

Ida

jsr

Ida

sta

sec

Ida

Idx

sta

sbc

dex

832

53248

2040

;reset cursor

;check blink

;orig char

;orig coir

;clear blink

; reset blink

;sprite data area

;sprite register

;sprite variables

bgwork + 13

bgwork h

•

#<ruler

#>ruler

brstart

lr30

#0

Irspyl

Irspyc

#$3f

sprt.x

IrlO

#2

#$ff

sprt.x

Ir12

#2

sprt + 27

r14

#6

#13

scr.x

lr20

txcadr

lr50

#$60

spr + 16

#216

#8

spr.x

#48

-14

;entry from interrupt

;start addr of bg rtn

;start background rtn

resource is used!

;make sprite

iX

;ptrs

;color

;msbx

;xpos

PL

EA

HA

IL

HK

BM

EK

OO

DL

EA

ID

EJ

GJ

FO

HB

BB

PH

AA

CK

MP

CL

EH

BL

MK

GB

EP

MB

OC

AC

OF

FB

JC

PP

Ol

ID

KD

MD

IM

EO

FD

JG

BB

DB

OF

LE

BE

IE

DG

IP

PJ

AH

EO

OD

NF

FJ

LC

OH

KL

PM

AG

HD

NH

KA

MP

EG

776

778

780

782

784

786

788

790

792

794

796

798 lr30

800;

dex

bpl

Ida

sla

Ida

sta

Ida

sta

sta

Idx

stx

rts

802 ; kill line rul<

804 Irkill

806

808

810

812;

814;

816 ruler

818

820

822;

824 lr40

826

828

830

832

834

836

838

840

842 Ir42

844

846

848

850

852

854

R5fi Ir44you II ""

858

860

862

864

866

868

870

872

874 Ir46

876

878;

880 ;

882 Ircolr

884

886

888

890 IrSO

892

894 Ir52

896

898

900 Ir58

902;

904 end

=

Ida

sta

imp

=

bit

bpl

=

jsr

Idx

cpx

beq

stx

Ida

bmi

dex

txa

asl

asl

asl

clc

adc

Idx

sta

dex

dex

bpl

Ida

Idx

cpx

bcs

Ida

sta

imp

=

Ida

cmp

beq

sta

Idx

sta

dex

bpl

rts

Ir24

#8

spr+ 10

#56

spr + 12

#$7f

spr+ 29

spr+ 21

#25

Irspyl

i

*

#0

spr+ 21

brend

•

msgflg

Irkill

*

Ircolr

tblx

Irspyl

lr30

Irspyl

Idtb1,x

Ir42

a

a

a

#49

#12

spr +1 x

Ir44

,70

#40

$d5

Ir46

#$7f

spr + 23

lr30

•

txcadr

Irspyc

Ir58

Irspyc

#6

spr + 39

Ir52

;s5x

;s6x

;exp x

;enable

;dsabl

;finish

;run

position

■y DOS

;max

;yexp

x;color

The Transactor 76 Nov. 1966: Vohime 7, Issue O3

News BRK

Submitting NEWS BRK Press Releases

If you have a press release which you would like to submit for the NEWS BRK

column, make sure that the computer or device for which the product is

intended is prominently noted. We receive hundreds of press releases for each

issue, and ones whose intended readership is not clear must unfortunately go

straight to the trash bin. It should also be mentioned here that we only print

product releases which are in some way applicable to Commodore equipment.

News of events such as computer shows should be received at least 6 months in

advance.

Transactor News

Transactor Writer's Guide Finally Finished

That's right! After 3 years of collecting, compiling, re-arranging, and generally

ensuring completeness, The T. Writer's Guide is done. We kept all those

requests in a file and have sent out about 200 so far. If you would like one,

they're free for the asking. Call or write the office in Milton, Ontario.

Subscription Timing

Remember, if we receive your subscription order within two weeks of the

release of an issue, your subscription won't start until the next issue. The mail

list is sorted and printed about two weeks before each release date. All the mail

is processed, sometimes the "morning of", the day we print up the list. If your

subscription order comes in the day after, it won't appear on the "big list",

which means it won't be sorted into our mailing at second class postage rates.

We can't send out mags at first class postage rates, so if you sent your sub 2-3

weeks before a release date, and your Transactor doesn't show within 2-3

weeks after the release date, you should probably buy one more off the news

stand until your subscription gets "engaged".

Free Transactor T's with Mag+Disk Subscription

For a limited time only, subscribe or renew to a combination magazine and disk

subscription, and we'll send you a free Transactor T-Shirt! You save 29% off the

magazines, 16% off the disks, and get a Transactor T worth $13.95 ($17.95 if

you order the jumbo size!) The T-Shirts come in 5 sizes (red only), with a 3-color

screen featuring Duke, our mascot, dressed in a snappy white tux, standing

behind the Transactor logo done in yellow with black "3-D" borders. The

screen was done using a special "super-opaquing" process that cost us quite a

bit more than those decals that crack and fade. Mine has been through the wash

three times and so far shows no signs of "machine punishment" like my other

T's have.

Transactor Disk Price Increase

A subscription to 6 Transactor Disks remains at $45.00. However, the price of

single order Transactor Disks has been increased from $7.95 to $8.95 each -

another good reason to take advantage of the above offer!

Refund Policy

Should any product you order be defective on receipt, return it and we'll send

you another for no additional charge. Recently we've had a few items returned

because "it's not quite what 1 wanted". We will credit your account (less

shipping and handling) for purchases of other Transactor products, but we ask

that you please be sure you need things like G-Links or RAM boards since we

can't refund your money. While we're on the subject, although we've never had

a subscriber ask for one, there are no refunds on subscriptions.

Allow 2 to 6 Weeks

When a mail order arrives, it's processed and prepared within 5 business days.

But we find it takes about 1-2 weeks for the post office to deliver it. Coupled with

the fact that it takes 1-2 weeks for the order to get from you to us means it will

probably take somewhere between 2 and 6 weeks for an item to arrive from the

day you mail the order. Please bear with us.

Transactor Mail Order News

Our mail-order department is expanding nicely, but our mail-order card isn't.

Seems we just can't find any more room to put more text without making it so

small that you can't read it. So, if you're using the card to order, we suggest you

pull it out and cross-reference with the list below for more details.

■ Transactor T-Shirts, $13.95 and $17.95

As mentioned earlier, they come in Small, Medium, Large, Extra Large, and

Jumbo. They're 13.95 each, $17.95 for the Jumbo. The Jumbo makes a good

night-shirt/beach-top - it's BIG. I'm 6 foot tall, and weigh in at a slim 150

pounds - the Small fits me tight, but that's how I like them. If you don't, we

suggest you order them 1 size over what you usally buy. The design is screened

using a "super-opaquing" process so they should wear much longer than your

ordinary screens and iron-ons.

■ The Transactor Book of Bits and Pieces *1, $14.95

Not counting the Table of Contents, the Index, and title pages, it's 246 pages of

Bits and Pieces from issues of The Transactor, Volumes 4 through 6. Even if you

have all those issues, it makes a handy reference - no more flipping through

magazines for that one bit that you just know is somewhere... Also, each item

is forward/reverse referenced. Occassionally the items in the Bits column

appeared as updates to previous bits. Bits that were similar in nature are also

cross-referenced. And the index makes it even easier to find those quick facts

that eliminate a lot of wheel re-inventing.

■ The Tr@ns@ctor 1541 ROM Upgrades, $49.95

You can burn your own using the ROM dump file on Transactor Disk *13, or

you can get a set from us. This is an introductory offer to see how much

response we get - we only have 50 sets available. But if they become popular,

we'll certainly get more in, and the price may go up. There are 2 ROMs per set,

and they fix not only the SAVE® bug, but a number of other bugs too (as

described in P.A. Slaymaker's article, Vol 7, Issue 02). Remember, if SAVE® is

about to fail on you, then Scratch and Save may just clobber you too. This

hasn't been proven 100%, but these ROMs will eliminate any possibilities short

of deliberately causing them (ie. allocating or opening direct access buffers

before the Save).

■ The Micro Sleuth: C64/1541 Test Cartridge, $79.95 US., $99.95 Cdn.

This cartridge, designed by Brian Steele (a service technician for several

schools in southern Ontario), will test the RAM of a C64 even if the machine is

too sick to run a program! The cartridge takes complete control of the machine.

It tests all RAM in one mode, all ROM in another mode, and puts up a menu

with the following choices:

1) Check drive speed

2) Check drive alignment

3)1541 Serial test

4) C64 serial test

5) Joystick port 1 test

6) Joystick port 2 test

7) Cassette port test

8) User port test

Th© Tronsoctof 77 Nov. 1986: Volume 7, Issue O3

A second board, that plugs onto the User Port, contains 8 LEDs that lets you

zero in on the faulty chip. Complete with manual. Note: This is an introductory

offer - prices may go up by next issue.

■ Inner Space Anthology $14.95

This is our ever popular Complete Commodore Inner Space Anthology. Even

after a year and a half, we still get inquiries about its contents. Briefly, The

Anthology is a reference book - it has no "reading" material (ie. "paragraphs").

In 122 compact pages, there are memory maps for 5 CBM computers, 3 Disk

Drives, and maps of COMAL; summaries of BASIC commands, Assembler and

MLM commands, and Wordprocessor and Spreadsheet commands. Machine

Language codes and modes are summarized, as well as entry points to ROM

routines. There are sections on Music, Graphics, Network and BBS phone

numbers, Computer Clubs, Hardware, unit-to-unit conversions, plus much

more... about 2.5 million characters total!

■ The Toolbox (PAL and POWER) $79.95

PAL and POWER from Pro-Line are two of the most popular programs for the

Commodore 64. PAL is an easy-to-use assembler (most assembler listings in

The Transactor are in PAL format), and POWER is a programmer's aid package

that adds editing features and useful commands to the programming environ

ment. They come with two nice manuals, and our price is $50 less than

suggested retail!

■ AX1000 Amiga 1 MEG RAM Box $729.00 (+$100 S&H) U.S.,

$1035.00 (+$25 S&H) Cdn

■ AX2000 Amiga 2 MEG RAM Box $899.00 (+ $100 S&H) U.S.,

$1276.00 (+$25 S&H) Cdn

The AX2000 adds 2 Megabytes of "fast" RAM to the Amiga, allowing more tasks

to run in the system at once, or for use as a fast RAM-drive. The unit plugs into

the expansion connector on the side of the Amiga and duplicates the connector

for other devices to plug into. Up to two RAM boards may be plugged in

together (limited by the Amiga'a power supply), adding 4 Megabytes. The box

has "auto-config", so with Kickstart 1.2 the RAM will automatically be added to

the system when it is booted. If you are using Kickstart 1.0 or 1.1 (no auto-

config), you can use the program included with the AX2000 to add the memory

to the system, and change your startup-sequence to automatically add the

memory on power-up. Standard expansion bus architecture was used in the

design of the AX2000, ensuring compatability with all peripherals and operat

ing system releases. The unobtrusive steel box is the same height and colour as

the Amiga, and snugs up to the side without taking up much extra space. The

unit is built tough and comes with a 1 year manufacturer warranty.

This seems to be the most highly-recommended Amiga RAM board, and the

first one to actually be available, so we're selling it here at The Transactor. You

can order the AX2000 or the 1-Meg AX 1000 from the subscription form in this

issue. Shipping and Handling to the U.S.A. is via courrier and includes all

customs clearance, or you can opt to clear shipments yourself and have it

shipped "collect".

■ Pocket Writer C64 $39.95 US, $49.95 Cdn

■ Pocket Planner C64 $39.95 US, $49.95 Cdn

■ Pocket Filer C64 $39.95 US, $49.95 Cdn

■ Pocket Writer C128 $49.95 US, $69.95 Cdn

■ Pocket Planner C128 $49.95 US, $69.95 Cdn

■ Pocket Filer C128 $49.95 US, $69.95 Cdn

■ Pocket Dictionary $ 14.95 US, $ 19.95 Cdn

In our opinion, the Pocket packages from Digital Solutions are the best you can

get on their own - the fact that they work with each other makes them even

better. Planner and Filer data can be loaded into the Writer, Writer text can be

sent to the Filer, and etcetera. The Dictionary spell checker works with both
versions of the Writer.

■ The GUNK C64 to IEEE Interface $49.95

The GUNK plugs into the cartridge port, but doesn't extend the port for more

cartridges (for that you'll need a "motherboard" of some kind). The other side of

the GLINK is an IEEE card-edge suitable for a PET-IEEE cable. From there, any

IEEE device can be accessed including disk drives, modems, printers, etc. The

GLINK is "transparent" - that means it won't interfere with programs, except

those that rely on the serial routines which it replaces (ie. programs with built-

in "fastloaders" for the 1541 won't like the presence of the GLINK). It has no

manual (aside from one page of installation instructions) because it alters

nothing and leaves everything unchanged! An on-board switch allows you to

select Serial or IEEE. GLINK works with both the C64 and the Cl 28 in 64 mode,

but not on the VIC 20.

■ The TransBASIC Disk $9.95

This is the complete collection of every TransBASIC module ever published up

to Volume 7, Issue 01. There are over 120 commands at your disposal. You pick

the ones you want to use, and in any combination! it's so simple that a

summary of instructions fits right on the disk label. The manual describes each

of the commands, plus how to write your own commands.

■ Super Kit 1541 $29.95 US, $39.95 Cdn

Super Kit is, quite simply, the best disk file utility there is. No more losing those

valuable copy-protected originals (like what's happened to me twice too many

times). So far we've shipped over 300 Super Kits and orders continue to pour in.

■ Gnome Speed Compiler $59.95 US, $69.95 Cdn

This compiler is for BASIC 7.0 on the Commodore 128.

■ Gnome Kit Utility $39.95 US, $49.95 Cdn

Gnome Kit is a Commodore 128 utility with enhancements for the BASIC editor

(like Trace, Find, Renumber, Delete, Auto, etc.) as well as enhanced monitor

commands, and floppy disk monitor functions.

Transactor Disks, Transactor Back Issues, and Microfiche

All issues of The Transactor from Volume 4 Issue 01 forward are now available

on microfiche. According to Computrex, our fiche manufacturer, the strips are

the "popular 98 page size", so they should be compatible with every fiche

reader. Some issue are ONLY available on microfiche - these are marked "MF

only". The other issues are available in both paper and fiche. Don't check both

boxes for these unless you want both the paper version AND the microfiche

slice for the same issue.

To keep things simple, the price of Transactor Microfiche is the same as

magazines, with one exception. A single back issue will be $4.50 and subscrip

tions are $ 15.00. The exception? A complete set of 18 (Volumes 4,5, and 6) will

cost just $39.95!

This list also shows the "themes" of each issue. "Theme issues" didn't start

until Volume 5, Issue 01.

■ Vol. 4, Issue 01 (■ Disk 1) ■ Vol. 4, Issue 04 - MF only (■ Disk 1)

■ Vol. 4, Issue 02 (■ Disk 1) ■ Vol. 4, Issue 05 - MF only (■ Disk 1)

■ Vol. 4, Issue 03 (■ Disk 1) I Vol. 4, Issue 06 - MF only (■ Disk 1)

■ Vol. 5, Issue 01 - Sound and Graphics (■ Disk 2)

■ Vol. 5, Issue 02 - Transition to Machine Language (■ Disk 2)

■ Vol. 5, Issue 03 - Piracy and Protection - MF only (■ Disk 2)

■ Vol. 5, Issue 04 - Business & Education - MF only (■ Disk 3)

■ Vol. 5, Issue 05 - Hardware & Peripherals < ■ Disk 4)

■ Vol. 5, Issue 06 - Aids & Utilities < ■ Disk 5)

■ Vol. 6, Issue 01 - More Aids & Utilities (■ Disk 6)

■ Vol. 6, Issue 02 - Networking & Communications (■ Disk 7)
■ Vol. 6, Issue 03 - The Languages (■ Disk 8)

■ Vol. 6, Issue 04 - Implementing The Sciences (■ Disk 9)

■ Vol. 6, Issue 05 - Hardware & Software Interfacing (■ Disk 10)
■ Vol. 6, Issue 06 - Real Life Applications (■ Disk 11)

■ Vol. 7, Issue 01 - ROM / Kernel Routines (■ Disk 12)

■ Vol. 7, Issue 02 - Games From The Inside Out (■ Disk 13)
■ Vol. 7, Issue 03 - Programming The Chips (■ Disk 14)

Notes: The Transactor Disk *1 contains all program from Volume 4, and Disk

*2 contains all programs from Volume 5, Issues 1-3. Afterwards there is a
separate disk for each issue. Disk 8 from The Languages Issue contains COMAL

The Transactor
78

Nov. 1986: Volume 7, Istuo O3

0.14, a soft-loaded, slightly scaled down version of the COMAL 2.0 cartridge.

And Volume 6, Issue 05 published the directories for Transactor Disks 1 to 9.

Sending Cheques For Transactor Products

If you wish to send a cheque with your subscription/order form, or you wish to

conceal your credit card number, you can use an envelope and tape it to the

back of the subscription card. The post office has threatened to charge us extra

for sloppy business reply mail so please try to use an envelope that is smaller

than the card. Can't find one? Just trim the end off the envelope and tape along

that edge when fixing it to the card.

The Transactor Communications Disk

The "Transactor Communications Disk" is proving to be a bigger project than

we expected. Collating a suitable manual is turning into a task almost as large

as putting together a Transactor magazine. But it's not ready yet so don't send

any orders. More next issue.

CompuServe and Quantum Link

By the time you read this, The Transactor should have sections up and running

on both CompuServe AND Quantum Link.

On CompuServe use "GO CNV" for Commodore News and Views. There you'll

find a menu of popular Commodore related magazines. You'll be able to read

articles that have appeared in previous issues, as well as download programs

we've published (software for downloading from CIS is available free - see the

item later in News BRK). Questions concerning magazine related topics will

also be answered on a regular basis.

On Quantum Link you'll find us in the "Meet the Press" section of the

Commodore Information Service. You'll need the special software from Quan

tum Link before you can access the articles and software.

The Transactor will be featuring a regular section on our online activities for

both services. Next issue we'll be publishing a "Getting Started" summary with

complete step-by-step instructions for joining us online.

Industry News

The Commodore Show, September 20 and 21,1986

The West Coast Commodore Association is having another show at the Los

Angeles Airport Hilton, September 20th and 21st. Judging from their February

show in San Francisco, this one should be just as big a success. See the ad in

this issue.

Twin Cities 128: The Commodore 128 Journal

Last issue we published the address of The Twin Cities 128 Club. We copied the

address correctly from an incorrect copy. Here's the correct address:

Twin Cities 128

1607 Hewitt Avenue, Suite 4

PO Box 4625

Saint Paul, MN 55104

lNet2000

This is the service that the rest of the country has been waiting for! Unlike

metropolitan areas, calling your favourite data base from a remote area means

calling long distance to the closest public dial port of a national networking

service. And that can cost more than the service itself! iNet 2000 is a service

operated by Telecom Canada, and (I'm told) is also working on setting up

services in the U.S. There is a $50 subscriber fee, and hourly charges. Then,

from a menu, you can connect to over 1000 other online services, (including

CompuServe) through iNet. The best part is... for just $3.00 per month you can

call iNet using a 1-800 number! No more long distance charges!

Once connected to CIS, your iNet clock stops ticking. When you exit from CIS,

iNet starts the clock again until you connect to another service. The iNet

package comes with a lovely manual with reference cards. I haven't tried mine

out yet, but next issue a have a complete run-down of my results. If you can't

wait until then, call:

Sylvia Abretti

Telecom Canada

410 Laurier Avenue W. Room 240

Ottawa, Ontario, KIP 6H5

1-800 267 7400

High-Powered FREE Terminal Program for the C64

CBterm/C64 is an all-ML terminal program for the C64. It is set far above all the

rest of the terminal programs because of a number of special features. First and

foremost, the price is right; CBterm is FREE.

As for the rest of the features, CBterm supports the following:

• 40 column display and a split-screen 80 column display. (No extra hardware

needed).

• XMODEM and Punter file transfer protocols available. The XMODEM protot-

col will even correctly download CompuServe .IMG files.

• 22.5K RAM buffer with read/write and save/load to disk. Disaply RAM to

screen or transmit RAM to modem.

• ASCI1/PETSCI1 file conversion built in.

• Works with any and all modems. 1600,1650,1660,1670, HES, Mighty-Mo,

Hayes, RS-232 adapters.

•300 or 1200 baud.

• Auto dial and redial. (Even on a 1660 that does not have carrier detect.)

• VIDTEX Cursor control and positioning mode for use with CompuServe.

Includes Low Res Graphics.

• Full printer support. Send RAM data or control codes to printer. Even alter the

printer's secondary address while still on line.

• Full DISK control - send commands or list the directory.

• User-programmable FUNCTION KEYS to help automate your log-ins.

• Terminal parameter controls to provide compatibility with all BBS/computer

systems.

• Built-in HELP screen.

• Super extra: Direct display of the COMPUSERVE RLE encoded High Resolu

tion Pictures. This includes the NWS Radar Weather Maps, CB Users Pictures,

FBI 10 Most Wanted List pictures, etc.

• The high resolution screen (Text or pictures) may be dumped to any STAR or

EPSON dot matrix printer. Option overlay programs provide printing of these

pictures in a low resolution mode to ANY STANDARD printer. And they can

be saved to disk in KOALA picture format and can then be altered with

KOALA software.

CBterm/C64 is available for downloading from Data Library 2 of the CB Interest

Group SIG on the CompuServe network. This Data Library contains the

CBterm/C64 program along with all supporting documentation and overlay

programs. They may be downloaded with any XMODEM or CompuServe

executive program (Vidtex).

For those people who cannot download, or who are not on the CompuServe

network, CBterm/C64 is made available free by sending a blank disk, along

with a stamped self-addressed disk mailer to:

Chris Dunn

5848 N. WhippleSt.

Chicago, II. 60659

You must include postage and the return mailer.

Any questions can be directed to the SYSOP of the CB Interest Group SIG (CBIG)

on CompuServe (GO CBIG) or via EZplex to [76703,717]. CBterm, originally

written for use on CompuServe and its CB simulator, has grown into the

powerful program it is today and incorporates requests by users as to what they

Tho Tronsocfof 79 Nov. 19S6: Volume 7, toue O3

would like to see in a terminal program. New features are being added and are

released in DL2 of the CB1G SIG.

CBterm is distributed free, for non-commercial or private use so that all C64

users can enjoy the world of telecommunicating. CBterm/C64 and all related

files are (C) 1985 by Chrisdos. They may NOT be used for any commercial

purpose. All rights reserved. V1DTEX, EXplex and CB simulator are TM,

CompuServe Inc. Chris Dunn (Chrisdos) is an information provider/SYSOP and

is not an employee of CompuServe Inc.

The mail-in disk copy offer may be terminated at any time.

Hardware Interconnection Products

Master Software has announced four new interconnection products for Com

modore computers: "Modem Master", "Modem Master Plus", "Y-NOT?", and

the "80 Mono Cable".

"Modem Master" is a four-foot extender for the user port (modem port) of the

VIC 20, Commodore 64, SX-64, Plus/4, and Commodore 128, allowing devices

to be placed in a location more convenient than behind the computer. The

extender uses tangle-proof ribbon cable and connectors which are keyed to

prevent incorrect installation. List price of "Modem Master" is $29.95.

"Modem Master Plus" is a "Modem Master" with a reset switch. The reset

swithc is buffered to prevent electrical damage to the computer, and programs

to recover a BASIC program that was in memory at the time of reset are

included. Price is $34.95.

The question of whether two printers can be used simultaneously with

Commodore computers is answered: Y-NOT? "Y-NOT" is a six-foot long "Y"

cable for the six-pin serial port of all Commodore computers. "Y-NOT"

contains one male six-pin plug and two female six-pin jacks, and can be used

to operate two printers or to separate the disk drive and printer to opposite sides

of the computer set-up for added system flexibility. "Y-NOT?" is priced at

$15.00.

The "80 Mono Cable" will produce an 80 column monochrome display from

the Commodore 128 in 80 column mode on any compositte colour monitor or

monochrome monitor. It is six feet long and plugs into the RGBI port of the

computer and into the video input jack of the monitor. The "80 Mono Cable",

priced at $9.00, is ideal for word processing and spreadsheet applications, or

any time a colour display is not needed.

All prices include shipping to USA and Canada destinations. Discounts are

available for dealers, distributors, and computer clubs. Add 3.00 for C.O.D.

(Maryland residents must include 5% sales tax.)

Master Software

6 Hillery Court

Randallstown, MD21133

(301)922-2962

Aegis Ships CAD Program for the Amiga

Santa Monica, CA — Aegis Development, Inc. has begun shipments of Aegis

Draw, 1 2-dimensional CAD program for the Commodore-Amiga computer.

This is the program that many owners and potential owners of Amigas have

been waiting for, and Aegis Draw is being touted as the program the machine

was created for.

"Based on our intitial orders and end user requests, there are thousands of

people out there who have been waiting for Aegis Draw before buying their

Amiga. Now that the product is shipping, you can expect to see Amiga sales

increase significantly", Company president David Barrett stated. He went on to

say that, "This program was created specifically for the Amiga, and is not

simply a port from another computer. Therefore, we take advantage of many of

the Amiga's characteristics which make this program so powerful, such as

multitasking and multiwindowing. Aegis Draw is only the beginning. We are

planning 'expanded CAD' products in the future.

Aegis Draw requires a basic Amiga computer, 512K or RAM, and one disk drive

(although two drives and/or a hard drive is highly recommended, as well as

additional memory). Allowing use of the multitasking capabilities of the Amiga,

Draw will give the user two windows to work in - either two separate drawings,

or two windows of the same drawing (more windows are allowed when more

memory is available). Some of Draw's significant features include:

• Cloning of any part of a drawing

• Full editing controls

Infinite levels of Zoom

16 customizable colours

Lines, arcs, circles, rectangles, and freehand drawing tools

Independent window display features • Grid and Data snap (on/off toggle)

Numeric display • Save as IFF or ASCII files

Background plotting/printing • Customizable plotter driver

Undo feature allows last operation to be undone

Full rotation of any object/part • Parts library for each drawing

Interchangable parts between drawings* Resizing of any object/part

Automatic dimensioning of any part or piece of drawing

Customizable scale and grid size per window

Numerical input for precise positioning of objects/drawings

Horizontal or vertical printout

Works with digitizing tablets, plotters, or printers supported by the Amiga.

Aegis Draw also takes advantage of keyboard input with corresponding

keystrokes for the most popular tasks. This program can be used by novices as

well as experienced CAD engineers for simple to complex design. Aegis Draw is

available at authorized Amiga dealers and software stores. The suggested retail

price is $199.95 (U.S.). For more information, contact:

AEGIS DEVELOPMENT, INC.

2210 Wilshire Blvd. *277

Santa Monica, CA 90403 (213) 306-0735

SEPTEMBER 20 & 21 1986

SHOW TIMES 10AM - 6PM P.S.T.
LOS ANGELES AIRPORT HILTON

CALL 213-410-4000 for hotel reservations

• EXHIBITS, EVENTS, AND DOOR PRIZES

• NATIONAL COMMODORE SPEAKERS

• SHOW SPECIALS a DISCOUNTS

- SEE THE LATEST INNOVATIONS IN

HARDWARE/SOFTWARE TECHNOLOGY

FOR THE COMMODORE MARKET

The only West Coast exhibition and conference
focusing exclusively on the AMIGA,

Commodore 128, and C64 marketplace

REGISTRATION FEES: ONE DAY $10.00 TWO DAYS $15.00

FOR MORE INFORMATION AND DETAILS CONTACT:

WEST COAST COMMODORE ASSOCIATION, INC.
P.O. BOX 210638

SAN FRANCISCO, CALIFORNIA 94121

(415)982-1040 BETWEEN 8AM-5PM PST

The Transactor 8O Nov. 1986: Volume 7, Issue O3

s

Computoons

TV PINNERS VPT DINNERS

/iw*%//®-

A» to

IT WON'T \AJORK HELQi.
APPLE AND XNVCONIMODORE

"I have an older model, but it's very intelligent. . ."

The Transactor 81 Nov. 1986: Volume 7, Issue O3

2 MEGs For Your

AMIGA
Amust for software developers

Allows more programs to run simultaneously and faster

Can be used to increase system RAM and/or as a FAST RAM DRIVE

Uses standard memory bus architecture to allow for future compatibility

Allows full use of memory expansion port for additional peripherals

AX2000 2 MEG RAM Board $899.00 U.S. ($1276.00 CDN)

AXIOOO 1 MEG RAM Board $729.00 U.S. ($1035.00 CDN)

Complete in case, nothing else to buy!

1 year manufacturer warranty!

DEALER INQUIRIES INVITED

Comspec Communications Inc.

153 Bridgeland Avenue, Unit 5

Toronto, Ontario, Canada

M6A2Y6 (416)787-0617

Mail order through The Transactor

(see order card and News BRK)

Shipping via courrier: within Canada add $25.00. To U.S.A. add $100.00 U.S. - includes customs clearance

AMIGA is a registered trademark of Commodore Business Machine.

BY MARTY FRANZ & JOE PETER

SINGLE/DUAL NORMAL COPIER
Copies a disk with no errors in 32.68 seconds,

dual version has graphics & music.

SINGLE/DUAL NIBBLE COPIER
Nibble Copies a disk in 34.92 seconds. Dual

version has graphics & music.

SINGLE/DUAL FILE COPIER
7 times normal DOS speed. Includes multi-copy,

multi-scratch, view/edit BAM, & NEW SUPER

DOS MODE. In Super DOS Mode, it transfers

7-15 times normal speed, copies 150 blocks in 23

seconds.

TRACK & SECTOR EDITOR
Full editing of t&s in hex, dec, ascii, bin. Includes

monitor/disassembler with printout commands.

GCR EDITOR
Yes disk fans, a full blown sector by sector or

track by track GCR Editor. Includes TRUE Bit

Density/Track Scan.

3 SUPER DOS FAST LOADERS
Over 15 times normal DOS speed. Super DOS

Files are still Commodore DOS compatible.

Imagine loading 150 blocks in 10 seconds.

SUPER NIBBLER/

SUPER DISK SURGEON
Quite frankly, these will provide you the user with

the backup you need! Even copies itself.

$29.95 u.S.

PLUS $3.00 SHIPPING/HANDLING CHARGE - $5.00 C.O.D. CHARGE

T

PRISM
SOFTWARE

SUPER KIT/1541 is for archival

use only! We do not condone

nor encourage piracy of any kind.

f I I

401 LAKE AIR DR., SUITE D • WACO, TEXAS 76710

ORDERS (817) 757-4031 • TECH (817) 751-0200

MASTERCARD & VISA ACCEPTED

See center page for

mail order card.

V.

....... ■

:

THE TIME SAVER

1

Type in a lot of Transactor programs?

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $8.95 Per Issue

6 Disk Subscription (one year)

Just$45.00

(see order form at center fold)

Also check out the TransBASIC Disk

Complete with 24 page manual, just $9.95!

See The TransBASIC Column in this issue.

