

. ;. ■ '

od news!
If you want to get the most out of your Commodore 128 or 64,

we have goods news for you. The Pocket 128 and 64 Series

of Software both offer you serious, professional quality

software packages that are easy to use and inexpensive.

Pocket 128 or 64 Software is so easy, you're ready to start

using it as soon as it's loaded into memory. Even if you've

never been in front of a computer before, you'll be up and

running in thirty minutes. In fact, you probably won't ever need

the reference guide ... 'help' is available at the touch of a key.

That's how easy.

ow serious?
Pocket 128 or 64 packages have all the power you're ever

likely to need. They have all of the features you'd expect in

top-of-the-line software, and then some. The good news is that

Pocket 128 or 64 Software Packages are priced way down

there ... where you can afford them.

Fast, powerful, easy to learn and inexpensive.

Say, that is good news!

Pocket 128 or 64 Software Packages offer you something

else you might not expect... integration. You can combine the

output of Pocket Writer, Pocket Filer and Pocket Planner

into one piece of work. You can create a finished document

with graphs, then send individually addressed copies.

e bottom line is Sollufions

The word solutions is our middle name and bottom line. When

you purchase Pocket 128 or 64 software, you can count on

it to solve your problems.

For information write to:

Digital Solutions

30 Wertheim Courl. Unit 2

Richmond Hiil, Ontario
Canada14B1B9

telephone (416) 731-8775

Pocket Writer 128 or 64
Word Processing

What you see is what you get

With Pocket Writer 128 or 64, there's no more guessing

what text will look like when you print it. What you see is what
you get... on screen and in print. There are no fancy codes to
memorize, no broken words at the end of a line.

Easy to learn and sophisticated. Pocket Writer 128 or 64
offers standard word processing features plus ...

• on-screen formatting and

wordwrap

• on-screen boldface,

underlines and italics

• no complicated format
commands to clutter text

• on-screen help at all levels

spelling-checker lets you add
words to your dictionary

40 or 80 columns on screen

files compatible with
PaperClip™ or other word

processors

Pocket Planner 128 or 64
Computerized Spreadsheet

Make fast work of budgeting and

forecasting

Pocket Planner 128 or 64 software lets you make fast work
of all your bookkeeping chores. Cheque books, household
accounts, business forecasting and bookkeeping are just some
of the jobs that Pocket Planner 128 or 64 packages make
easier. You can even create four different kinds of graphs.

Accurate, sophisticated and easy to use. Pocket Planner
128 or 64 offers standard spreadsheet features plus...

• accuracy up to 16 digits,

about twice as many as most

spreadsheets for the
Commodore 128 or 64

sideways printing available on

dot matrix printers, for
oversized spreadsheets that
won't fit on standard paper

on-screen help at all levels

compatible with VisiCalc™ files

80 column on-screen option

for the Commodore 64 in

addition to the standard 40
columns

graphics include bar,
stacked bar, line and pie

graphs that can also be used
in word processing files

smart evaluation of

formulae for accurate
complex matrices

Pocket Filer 128 or 64
Database Manager

Database management made easy

With Pocket Filer 128 or 64, you can organize mailing lists,
addresses, inventories, telephone numbers, recipes and other

information in an easily accessible form. Use it with Pocket
Writer 128 or 64 (or other word processors) to construct

individually customized form letters.

Pocket Filer 128 or 64 packages are fast, sophisticated and
truly easy to use. In addition to standard database features
they offer ...

™PoperOip is a registered trademark

of Batteries Included

• use up to 255 fields per record
(2,000 characters per record)

• sorts by up to 9 criteria, can

save 9 different sorts

• print labels in multiple
columns

• flexible report formatting
including headers ana
footers

optional password protection

including limited access
viewing or updating

on-screen help at all levels

print from any record to any
record

arithmetic and trigonometric

functions in reports using up
to 16 digit accuracy

™Visico/c rs a registered trademark of

Software Arts

MAILORDERS:

Transactor Publishing Inc.

5OO Steeles Avenue

Milton, Ontario, L9T3P7

1-416-878-8438

Or use order card at center.

Only The

Name Is New

The professional,

full-featured software

line from Digital Solutions

is now called Pocket

Software.

Pocket Writer 128/64.

Pocket Filer 128/64.

Pocket Planner 128/64.

The names are new, but

this super software is still

the same.

From now on, when you

hear the word Pocket, it

means software that's

full-featured, handy and

easy to use.

Pocket Software at prices

that won't pick your

pocket.

You want the very best software you can find for your

Commodore 128 or 64, right?

You want integrated software — word processing,

database ana spreadsheet applications — at a sensible

price. But, you also want top-of-the-line features.

Well, our Pocket 128/64 software goes one better.

ou'll find all the features you

can imagine... and then some. And Pocket 128/64 is so

easy to use, you won't even need the reference guide.

On-screen and in memory instructions will have you up

and running in less than 30 minutes, even if you've never

used a computer before.

The price? It's as low as you'd expect for a line of

software called 'Pocket'. Suggested Retail Price for the 64

software is $39.95 (U.S.) and $49.95 (U.S.) for the 128.

Any of the 64 products may be upgraded to their 128

version for $15.00 (U.S.) + $3.00 shipping and

handling. (Available to registered owners from Digital

Solutions Inc. only.)

Pocket Writer 128 or 64, Pocket Planner 128 or 64 and

Pocket Filer 128 or 64... Solutions at sensible prices

from Digital Solutions Inc.

International & Distributor enquiries to:

Serious software

that's simple to use.

/// Digital

f/j Solutions
f/ft Inc.

30 Wertheim Court; Unit 2

Richmond Hill, Ontario

Canada L4B1B9

telephone (416) 731-8775

Pocket Writer 128 and 64 are now available in French.

r

2 MEGs For Your

AMIGA
Amust for software developers

Allows more programs to run simultaneously and faster

Can be used to increase system RAM and/or as a FAST RAM DRIVE

Uses standard memory bus architecture to allow for future compatibility

Allows full use of memory expansion port for additional peripherals

AX2000 2 MEG RAM Board $899.00 U.S. ($1276.00 CDN)

AXIOOO 1 MEG RAM Board $729.00 U.S. ($1035.00 CDN)

Complete in case, nothing else to buy!

1 year manufacturer warranty!

DEALER INQUIRIES INVITED

Comspec Communications Inc.

153 Bridgeland Avenue, Unit 5

Toronto, Ontario, Canada

M6A 2Y6 (416) 787-0617

Mail order through The Transactor

(see order card and News BRK)

Shipping via courrier: within Canada add $25.00. To U.S.A. add $100.00 U.S. - includes customs clearance

AMIGA is a registered trademark of Commodore Business Machine.

1

Volume 7

Issue 02
Circulation 64,000

Games From The Inside Out
Start Address Editorial 3

Bits and Pieces 5
Head Cleaning For The 2031

SuperGET

Turning off REMOTE 64

Freakout and Farzoid

Device Not Present Update

Display T&S Fix

Underline Cursor for the 64

Complete Joystick Keyboard Equivalents

Define Extra C-I28 Keys

Setting the B-128 Interrupt Rate

More B-128 Info

B-Series Sound

Find A Program's Start and End Address

Finding Relative File Record Lengths

SID Whistle-Killer

Disk Rescue

LOAD By Track and Sector

A Use For The Periodic Table!

Pythagorean Triplet Generator

Easy DATA Viewing

Textcraft Files On Amiga's External Drive

C-64 Easy Filename Retrieval

C128CP/M ASCII Output

Un-Assembler Speed-Up

Bigger Stacks For Healthy Assembly

Amiga ABasiC Program Boot

Easy Speed-Up For The 1541

Amiga Date-Prompt Startup Sequence

Letters 13
The Mutant Vic The Copy Blues

Postal Service Blues Vic Time

Hex - An Evil Spell 1200 Bits Per Second per second

Left Wing Interference Revisited "2

A Comparison Of Four Word Processors Revisited

NewsBRK 76
Amiga RAM Expansion by Comspec

Paperback Writer now "Pocket Writer"

Gnome Speed Compiler = SM Compiler

No Sales Tax on Books

Sending Cheques For Transactor Products

The Transactor Communications Disk

Demise of Viewtron

Quantum Link and Timeline

Using Transactor Programs In Proprietary Software

1986 Midwest Commodore Conference/Expo

MSD Still Alive And Prospering!

Twin Cities 128: The Commodore 128 Journal

Creative Writer

Sector Surgeon For The C-64

Three MIDI Data Storage Programs For The 64

The Electronic Shoe Box Accounting Systems

Freedom Assembler-128 For The Commodore 128

Rebel Assembler/Editor For The 64 and 128

Liz Deal's Basic Program Converter

10 and 20 Megabyte Hard Disk Drives For The C64

Quick Brown Box: An 8k Read/Write Cartridge

1540/1541 Drive Alignment System

Astrology Program For Commodore 64

Multiplex Eight RS232 Ports Onto A Single X.25 Line

/SPEEDPAK/ Speedscript Enhancer

Speed-Plus Speedscript Enhancer

TransBASIC Installment #10 18

The Atari ST Notebook 24

BOOT BaSiCS JimButterfieldonC128BOOT 28

New Loops: The C128 Stack 30

Eliminating SAVE® and Other 1541 Bugs 33

FORMAT TRACK 36 36

An Amiga Printer Cable a hardware to hardware project 38

SaVe SYMASS SymbolS a SYMASS Assembler Utility 40

Transcribe 64 8rel me copier utility 42

a simple expert system that's also a game 4u

Key 64 interrupt without breaking upl 50

MOVE: A Propagating Memory Move Routine 54

Sprite Bit AddreSSing masking techniques 56

Sprite Numbers display messages the easy way 57

Adding Depth To Your Screens 60

VieWpOrtS hi-res and multi-colour mode windows! Ol

A C64 Hi-Resolution Draw Routine 66

Hi-ReS Search and Print a versatile hires print utility 68

C128 Hi-Resolution Graphics 72

Compu-toons 75

Note: Before entering programs,

see "Verifizer" on page 4

The Transactor Sept. 1986: Vbtume 7. taue O2

Ttcnsador
Th. t»et!/ltowi Journal K»Commo<!oi« eomp<i!»™

Editor in Chief

Karl J. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Ann Richard

Contributing Writers

Ian Adam

Daniel Bingamon

Neil Boyle

Anthony Bryant

Tim Buist

Jim Butterfield

Gary Cobb

Jack Cole

Jeffery Coons

Pierre Corriveau

Robert V. Davis

Elizabeth Deal

Frank E. DiGioia

Yijun Ding

Paul T. Durrant

Michael J. Erskine

Jack Farrah

R. James de Graff

Jim Grubbs

Tom Hall

Bob Hayes

John Jay Hilfiger

Andy Hochheimer

John Holttum

David Hook

Robert Huehn

Tom Hughes

David Jankowski

Chris Johnson

Mark Jordan

Clifton Karnes

Gary Kiziak

Jesse Knight

James E. LaPorte

William Levak

James A. Lisowski

Jack Lothian

Scott Maclean

Steve McCrystal

Stacy Mclnnis

Jim McLaughlin

Steve Michel

Terry Montgomery

Michael Mossman

Gerald Neufeld

Noel Nyman

Dave Pollack

Richard Perrit

Terry Pridham

Raymond Quirling

Glen Reesor

Gary Royal

John W. Ross

John Russell

Louis F. Sander

Fred Simon

Perry Shultz

P. A. Slaymaker

Edward Smeda

Darren J. Spruyt

Nick Sullivan

Zoltan Szepesi

Karel Vander Lugt

Audrys Vilkas

Andrew Walduck

Steven Walley

Jack Weaver

Charles Whittern

Evan Williams

Chris Wong

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower

case mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o"

will of course be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the

number 1 which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours,

or function keys. These will also be shown exactly as they would appear on your screen, but

they're listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor

Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of

spaces you insert will not be critical to correct operation of the program. When it is, the required

number of spaces will be shown. For example:

print flush right - would be shown as - print " [10 spaces] flush right

B

Cursor Characters For PET / CBM / VIC / 64

Down - B Insert - Q

Up - Q Delete - Q

Right -|| Clear Scrn-~

Left - [Lft] Home

RVS - D STOP

RVS Off - D

Colour Characters For VIC / 64

Black -

White -

Red - E

Cyan - [Cyn]

Purple - [Pur]

Green - Q

Blue - B

Yellow- [Yel]

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

F5-

F6-

F7-

F8-

D

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

The Transactor is published bi-monlhly by Transaclor Publishing Inc., 500 Steeles Avenue, Milton.

Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class

postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The
Transaclor, 277 Linwood Avenue. Buffalo, NY, 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 878 8438. Note: Subscriptions are handled at this address ONLY.
Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use
postage paid card at center of magazine.

Please Note: The Transactor has

a new phone number: (416) 878 8438

Quantity Orders:

U.S.A. Distributor:

Capital Distributing

Charlton Building

Derby, CT

06418

(203) 735 3381

(or your local wholesaler)

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 5B4

(416)842 1555

(or your local wholesaler)

CompuLit

PO Box 352

Port Coquitlam, BC

V5C 4K6

604 941 7911

Norland Communications

251 Nipissing Road, Unit 3

Milton, Ontario

L9T 4Z5

416 876 4774

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 04 05 06 Vol 5 Issues 03 04
Still Avallable:Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04, 05, 06. Vol. 6: 01, 02, 03, 04, 05, 06. Vol. 7: 01,' 02

Back Issues: $4.50 each. Order all back issues from Milton HQ.

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per
printed page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCrafl,
Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.
Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.
Photos or illustrations will be included with articles depending on quality. Authors submitting diskettes
will receive the Transactor Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor
Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please
re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights
basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although
accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.
Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor Sept. 1986: Volume 7, Issue 02

The Games Game

TSE - Toronto Stock Exchange? Nope, not this time. Today it stands

for "Toronto Software Express" and I hesitate to even mention it.

Although what I have to say will not be pretty, I regret giving free

publicity to a thorn.

Recently I saw a program demonstrated. It was a game, and a rather

professional looking game with high resolution screens that obviously

required considerable time and effort. I don't recall the name of the

game, but what I remember most was the opening screen. It too must

have taken considerable time and effort. It proudly displayed the

name of the person who unravelled the protection on the game, the

letters "TSE" in large hi-res characters, and a hi-res message that

scrolled from right to left containing the names and numbers of TSE

bulletin boards in the immediate area. The next screen was a list of no

less than 10 more numbers for boards also affiliated with the TSE.

From any of these numbers, one can use their computer to call and

download software of all type and make at absolutely no charge. True,

most of the programs are public domain, but many are not. I could fill

the rest of this page with words I'd like to use describing this sort of

activity. Words like deplorable, detestable, despicable, and immoral

don't even begin to express how I feel about this.

Since the operators of these services collect no fee, they would

probably argue "no wrong doing". However, the manufacturers of

these programs are also collecting nothing for these copies. During a

year they may spend thousands on development and production, not

to mention taxes, overhead, shipping, billing, and a host of other

expenses.

All of this has been said before, I know. Likewise, the question arises

once again, "would they have bought it if they couldn't get it for free?"

Probably not. But what do you suppose would happen if you loaded

the latest Whitney Houston tape into a high speed duplicator and

started passing the copies out to anyone willing to come and get one.

Many people, myself included, probably wouldn't bother. But I sus

pect someone would ask you to stop, myself included.

Now I'd be willing to bet there isn't one computer hobbyist out there,

regardless of the brand name on their equipment, without possession

of at least one program currently for sale that they have used without

paying for. Getting something for nothing is human nature. But it's

also an effective sales tactic which manufacturers have just started

using. We all know that without a manual, many programs are

virtually unusable. Spreadsheets, wordprocessors, databases, assem

blers, and many others are protected this way because sending out

free manuals can get expensive. Games seem to be the most vulnera

ble, especially games which require little or no instruction. Offers like

free updates, discounts on other products, exquisite colour manuals,

contests for trips or cash prizes, and other more imaginative incen

tives are planting the idea that "I can go looking for a free one, but if I

buy one I also get. . ."

Except it doesn't always work. There are still those who don't care

about updates or manuals, or can't get away to Australia. The freebie

is just too tempting. So what should be done? Many online services

have made themselves responsible for software available on their

systems. Their users are warned not to upload copywritten software

and those who do can usually be identified. Since these organizations

have much to lose (ie. everything), they are less reluctant to invoke

disciplinary measures on the culprit than would a basement opera

tion. Action like publicly announcing termination of access privileges

is usually enough to eliminate further instances.

That leaves the bulletin boards, which are so often run by young

hobbyists on phone lines billed to their parents. They obtain a BBS

program (public domain BBS software is readily available) and load it

up with as many programs as their system will handle. Gaining

popularity is one of their main objectives. Naturally. But even though

there are hundreds of great programs in the public domain, they

assume they have nothing to lose by offering proprietary software.

Wrongo! New legislation is close to becoming, or may already be law.

And if some manufacturer complains, YOU may be first in line to test

it out.

If the RCMP came knocking on my door asking for help, would I

oblige? You bet I would. But on certain conditions only. First of all, I

don't have copies of those phone numbers to offer, but that doesn't

mean I couldn't find them. I would need proof of plans for a nation

wide campaign. Toronto isn't the only center for this activity. Next, I

would need a guarantee that criminal charges would not be strewn

about left and right. In my opinion, criminal charges are too easy to

get and not easy enough to get rid of. Most of these BBS operators are

bright young individuals with brilliant careers ahead of them. Much as

I deplore this abuse of freedom, new laws can be easily abused too as

law enforcement agencies go looking to "set an example". There are

probably other boards run by those old enough to know better, but I

would still refuse to participate in ruining the future of talented

Canadians without first ensuring them the opportunity to correct their

own mistakes.

If you're involved, get out while you can. Keep your BBS, but

eliminate the programs that others depend on for income... income

that keeps them from changing jobs! Besides, you may not be given

an early warning. Large corporations often include the cost of penalty

before engaging in any covert activity. But take a moment to consider

what effect a $15,000 fine might have on your personal savings.

I don't have all the answers, but who knows - there just may be a

manufacturer out there willing to investigate the potential for support

ing the BBS method of local distribution. For those resourceful

enough to make an effort, you may just be able to turn a perilous

situation into a profitable one - legally! AND, I'd be only too happy to

act as a catalyst, because...

There is nothing as constant as change, I remain

Karl

Th© Transoctof Sept. 1966: Volume 7, Ittue 02

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from

the pages of The Transactor. It will let you check your work line by

line as you enter the program, and catch frustrating typing errors.

The VERIFIZER concept works by displaying a two-letter code for

each program line which you can check against the corresponding

code in the program listing.

There are two versions of VERIFIZER on this page; one is for the

VIC or C64, the other for the C128. Enter the applicable program

and RUN it. If you get a data or checksum error, re-check the

program and keep trying until all goes well. You should SAVE the

program, since you'll want to use it every time you enter one of our

programs. Once you've RUN the loader, remember to enter NEW

to purge BASIC text space. Then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)

or SYS 3072,1 to enable the C128 version (off with SYS 3072,0)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top left of

the screen in reverse field. Note that these letters are in uppercase

and will appear as graphics characters unless you are in upper/

lowercase mode (press shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited

that line at the last minute which changes the report code.

However, this will only happen occasionally and usually only on

REM statements.

VERIFIZER for C64 and VIC-20

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

10 rem* data loader for' 'verifizer'' *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>14755 then print' '***** data error *****'': end

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,251,141, 2, 3,165

1010 data 252, 141, 3, 3, 96,173, 3, 3,201

1020 data 3,240, 17,133,252,173, 2, 3,133

1030 data 251, 169, 99,141, 2, 3,169, 3,141

1040 data 3, 3, 96,173,254, 1,133, 89,162

1050 data 0,160, 0,189, 0, 2,240, 22,201

1060 data 32,240, 15,133, 91,200,152, 41, 3

1070 data 133, 90, 32,183, 3,198, 90, 16,249

1080 data 232, 208, 229, 56, 32, 240, 255, 169, 19

1090 data 32,210,255,169, 18, 32,210,255,165

1100 data 89, 41, 15, 24,105, 97, 32,210,255

1110 data 165, 89, 74, 74, 74, 74, 24,105, 97

1120 data 32,210,255,169,146, 32,210,255, 24

1130 data 32,240,255,108,251, 0,165, 91, 24

1140 data 101, 89,133, 89, 96

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type

RETURN over each in succession while checking the report codes

as they appear. Once the program has been properly entered, be

sure to turn VERIFIZER off with the SYS indicated above before

you do anything else.

VERIFIZER will catch transposition errors (eg. POKE 52381,0

instead of POKE 53281,0), but ignores spaces, so you may add or

omit spaces from the listed program at will (providing you don't

split up keywords!). Standard keyword abbreviations (like nE

instead of next) will not affect the VERIFIZER report code.

Technical info: C64 VERIFIZER resides in the cassette buffer, so

if you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original

destination of the link after it's finished. When disabled, it restores

the link to its original contents.

C128 VERIFIZER (40 column mode)

PK

AK

JK

NH

OG

JP

MP

AG

ID

GF

MG

HE

LM

JA

El

KJ

DH

JM

KG

EF

CG

EC

AC

JA

CC

BO

PD

1000 rem * data loader for' 'verifizer c128''

1010 rem • commodore d 28 version

1020 rem * use in 40 column mode only!

1030 cs = 0

1040 for j - 3072 to 3214: read x: poke j,x: ch = ch + x: next

1050 if ch<>17860 then print' 'checksum error'': stop

1060 print' 'sys 3072,1: rem to enable''

1070 print' 'sys 3072,0: rem to disable''

1080 end

165,253,141,

3,

1090 data 208, 11

1100 data 254,141

1110 data 201

1120 data 3

1130 data 169

96

2,

173,

12,141,

1140 data 133, 250,162,

3

12,240, 17,133,254,173

133,253,169, 38,141, 2

3, 3, 96,165

0,160, 0,189

2012,201, 48,144,

165

3

2

3

22

0

58,176

2,

1150 data

1160 data 3, 232, 208, 242, 189, 0, 2, 240

1170 data 22,201, 32,240, 15,133,252,200

1180 data 152, 41, 3,133,251, 32,135, 12

1190 data 198, 251, 16,249,232,208,229, 56

1200data 32,240,255,169, 19, 32,210,255

1210 data 169, 18, 32,210,255,165,250, 41

1220 data 15, 24,105,193, 32,210,255,165

1230data250, 74, 74, 74, 74, 24,105,193

1240 data 32,210,255,169,146, 32,210,255

1250 data 24, 32, 240, 255, 108, 253, 0, 165

1260 data 252, 24,101,250,133,250, 96

Th© Transoctof Sept. 1986: VMume 7, tome O2

Bits and Pieces

Got an interesting programming tip, short routine, or an un

known bit of Commodore trivia? Send it in - if we use it in the

Bits & Pieces column, we'll credit you in the column and send

you a free one-year's subscription to The Transactor

Head Cleaning D. Tomblin

For The 2031 Parksville, BC

If you own a Commodore disk drive and would like to use a

head cleaner disk on it you must run the drive motor for about

45 seconds. Since Commodore didn't see fit to include a " run

disk motor for about 45 seconds" command we must look

elsewhere. Luckily there is a command that will allow you to

execute programs within the drive. Using " m-e" chr$(addr lo)

chr$(addr hi) we can turn the drive motor on and off at will.

Since Peter Boisvert wrote a program to do the job on a 1541

(Bits and Pieces Trans.V6/3) I will give you the 2031 version.

The 1541 won't work with this program. In case you missed

Peter's program, substitute chr$(l 26)chr$(249)in line 50 for use

with the 1541.

MA

OL

HJ

NJ

AH

BO

LF

GO

MC

GA

NA

IL

BA

EG

10 print chr$(14);" Q This is to be used on a

2031 type"

15 print" drive only. Do you wish to continue?"

20 print: print" (Y/N)"

25 poke 198,0: rem vie and 64

26 rem use poke 158,0 on 2.0-4.0 pets

30 get a$: if a$ = "" then 30

35ifa$O"y" then end

40 open 15,8,15

50 print#15,"m-e" chr$(204)chr$(249)

60 print" | Press Any Key To Stop Motor"
70geta$: if a$= "" then 70

80 print#15," m-e" chr$(54)chr$(250)

90 close 15

100 end

SuperGET Duane Barry, Cambridge Ont.

Here's a very useful subroutine which will use the GET state

ment instead of an input. The subroutine is inside a tiny

demonstration program.

To use the subroutine, first set the variable MX to the maximum

number of characters to put into the input field, then GO-

SUB140. The delete key works so that you can only delete as far

as the beginning of the field. When the RETURN key is pressed,

the input string is returned in the variable C$.

Note: In lines 150, 210, and 260, "[Logo + p]" is an underline

character obtained with the Commodore Logo key and an

unshifted P.

ID

BN

IB

MJ

OO

KO

GE

EM

KM

LL

DF

GP

Al

IJ

NP

DL

OF

DL

BK

AG

LO

Kl

AJ

BD

LF

BG

BJ

FM

10 rem* super get statement *

20 rem duane barry - Cambridge, ont.

30 print "name: ";

40mx = 15 :rem set max input length

50 gosub 140 :rem call super get

60 print "Qhello " c$
70 end

80:

100 rem** super get subroutine **

110 rem set max input length in 'mx'

120 rem input string returned in 'c$'

130:

140l = 0:a$= "":c$= ""

150 print" [Logo + p][Crsr Left]"; :rem print

fake cursor

160 get a$: ifa$= "" then 160

170 if a$ = chr$(20) and I = 0 then 160

180 if a$ = " [crsr left]" or a$ = " Q" or a$ = " Q"
or a$ = " ID" or a$ = chr$(19) then 150

190 if a$Ochr$(20) and a$Ochr$(148) then 220

200 rem delete last char

210 1 = 1-1: print" [spc, 2 crsr lefts] [Logo + p]

[crsr left]"; : c$ = left$(c$,l): goto 160

220 if a$ = chr$(13) then print" " :return

230 if I = mx then pokei 98,0: gotoi 60

240 print a$; :rem print new char.

250 poke 212,0 :rem turn off quote mode

260 print" [Logo + p] [crsr left]"; :rem print cursor

270c$ = c$ + a$:rem add char to string

2801 = 1 + 1 :rem add to char count

290 goto 160 :rem get next char

The Transactor Sept. 1986: Volume 7, Issue O2

Turning off REMOTE 64 John Obeda

London, Ont.

John Obeda called to point out a problem with REMOTE 64

(Volume 6 Issue 2): it doesn't quite work as advertised if you try

turning it off and re-initializing it. The method given to disable

REMOTE 64 was to re-set the IRQ vector. Actually, you'll have

to restore a whole bunch of vectors to ensure safe re

initializing. Fortunately, there is a Kernel routine which will

re-set all system vectors to their default state. The routine is in

the jump table at $FF8A (65418 decimal). To turn off REMOTE

64, just:

SYS 65418

Then SYS 49152 to turn REMOTE 64 back on when you need

it.

Freakout and Farzoid Marc Moorcroft

Toronto, Ont.

Here's a couple ofjust-for-fun curiosities for your 64. The first

one, freakout, restores normal- control of your machine, but

adds the dubious benefit ofstrange sound effects to accompany

your every command. "Farzoid" is a graphics toy which

switches between background colours quickly enough to out-

speed the raster beam and produce a dazzling display.

Freakout:

This C-64 program sets up an interrupt routine that gets the

saved processor registers from the stack and puts them into the

voices of the SID chip.

OM

DN

HD

KO

AP

LC

EJ

JJ

HF

90 rem freakout by marc moorcroft

100s = 54272:1 = 49152: pokes+ 24,15

110 for t = s + 4 to s +18 step7:poke t +1,0:

poke t + 2,240:poke t,17:next

120 for t = I to l + 21:read a:poke t,a:next

130 poke 56334, peek(56334) and 254

140 poke 789,l/256:poke 788,l-peek(789)*256

150 poke 56334,peek(56334)or1

160data186, 189, 1, 1, 141, 1,212, 189,2, 1

170 data 141, 8, 212, 189, 3, 1, 141, 15,212,76,

49,234

Try listing a long program while holding down the CTRL key.

For more interesting sounds, try increasing the rate of the

interrupts:

or

poke 56325,1

poke 56324,30: poke 56325,0

Farzoid:

Pick two colours (numbers 0 through 15) for the first prompt,

then a speed value for the next. The values 0,5,14,19,25,38,49

and 50 give good results. To stop the program and try a new

speed value, hit RESTORE. Press RETURN at the speed prompt

to go back to the colour prompt, and RETURN at the colour

prompt to exit the program.

OB

NE

NB

BO

EL

MP

HF

HE

EF

CG

FO

HO

GA

100

110

120

130

140

150

160

170

180

190

200

210

220

for t = 828 to 868: reada: poke t, a: next_

print" EHfarzodH by marc moorcrof
a = -1 :input" Q yflip between which
colours[7 spcs, 7 crsr lefts]" ;a,b

ifa<0orb<0ora>15orb>15then end

poke 863,a: poke868,a and not b or b and

not a: print

d =-1: input "Hdelay (0-121)[7 spcs,
7 crsr lefts]" ;d

ifd<0 or d>121 then 120

for t = 869 to 868 + d: poke t,234: next

poke 869 + d,16: poke 870 + d,249-d:

a = peek(53281)

sys851: poke 53281,a: goto 150

data 173, 13,221, 169,4, 141, 13,221, 169,

71, 141,24,3, 169,254, 141,25,3

data 88, 104, 104, 104,96, 120, 169,60, 141,

24,3, 169,3, 141,25,3

data 169, 3, 141, 33, 208, 73, 1

Device Not Present Update John Menke

Mt. Vernon, IL

Dave Pollack's cure for the 'DEVICE NOT PRESENT' bug in the

C-64 operating system is good news (Volume 6, Issue 6, page

6). It works well in my tests, after a slight modification based on

my observation that the value of ST is not always exactly -128

when a serial bus device is disconnected. I have found values of

-125 and -128, and presumably other values are possible.

Probably any negative value of ST correctly signals that a serial

device is not present.

Display T&S Fix John Houghton

Collingwood, Ont.

I use the program DISPLAY T&S on this disk that came with my

1541 quite a bit. Recently I had some weird problems when

accessing some files 1 was studying. I would display the direc

tory track to find the first track and sector, and when the

program displayed the next track and sector for the block, it

was either a wrong or illegal track or sector. I could only see the

first track and sector then CRASH.

What was frustrating was that the files would load fine so DOS

was seeing the right numbers, and a DISK DOCTOR program I

The Transactor Sept. 1986: Volume 7, Issue O2

have read out the correct information all the time. Obviously

something was wrong with the program DISPLAY T&S.

The fix is in line 270. In line 410, the program memory-reads

$0500 (buffer *2), but the OPEN command in line 270 only

requests ANY buffer for use. Change line 270 to read:

270 open 2,8,2," #2": gosub 650

This will reserve buffer two for your use. For some reason the

program was getting the wrong track and sector info from the

buffers.

A note: this is only happening to me on one disk, which leads

me to think that re-NEWing the disk has done something,

because I did re-NEW the disk before its use. If this is happen

ing to anyone else the fix is above. Works for me, so far, every

time.

Underline Cursor for the 64 Ben Russel

North Sydney, NS

Here's a program to give you an underline-type cursor on the

64 whenever the character under the cursor is a space. The

program also sets the background, border, and character

colours after a RESTORE.

Following are some POKEs for using the cursor program.

For users of the Fastload cartridge:

poke 49189,106: poke 49190, 223

To change background and border colours:

poke 49176, colour

To change the cursor colour:

poke 49184, colour

To change the blink speed of the cursor (default is 20; lower

numbers = faster):

ON

LI

KG

DH

GK

KA

DD

AF

10

20

30

40

50

60

70

80

poke 49209, n

rem* data loader for "cursor" *

cs = 0

for i = 49152 to 49257:read a:poke i,a

cs = cs + a:next i

if cs<>13386 then print" !data error!": end

sys49152

end

IN

CB

CK

IC

OO

KE

HI

ME

FG

LL

LE

ME

EB

IP

MP

100:

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

data

data

data

data

data

data

data

data

data

data

data

data

data

data

169, 11,141

3, 3, 96,

3, 169, 192,

0,141, 32

9, 141, 134,

234,255, 76,

165,204,208,

169, 20,133,

174,135, 2,

207, 133,206,

141,135, 2,

201, 32,240,

73,128, 76,

98, 192

2, 3,169,192,141

120,169, 39,141, 20

141, 21, 3, 88,169

208,141, 33,208,169

2, 76,131,164, 32

48,192, 76, 97,234

249, 198,205,208,245

205,164,211, 70,207

177,209,176, 17,230

32, 36,234,177,243

174,134, 2,165,206

9,201,100,240, 5

94,234, 73, 68, 76

Complete Joystick

Keyboard Equivalents

Robert Blain

NSW. Australia

In a previous Bits and Pieces, we gave ways to simulate some

joystick positions via the keyboard. From Robert Blain comes

this complete list. The left column tells which key or keys to

press to give the joystick equivalent in the right column.

JOY1

CTRL

«-

1

2

1 + 2

*- + 2

*- + CTRL

1 + CTRL

Space

= West

= South

= North

= East

= North

= South

= South

= North

= Fire

East

East

West

West

JOY2

Space -

Space -

Space -

Space -

Space -

Space -

Space -

Space -

Space -

C-128

h C

h Z

i- Fl

i- B

i- C +

I- B +

i- B +

I- C +

I- M

Keys

Z

z

Fl

Fl

= West

= South

= North

= East

= North

= South

= South

= North

= Fire

East

East

West

West

Richard Young

Greenwood, NS

The Commodore 128 System Guide covers function key defini

tions, using the KEY command, but the HELP and RUN (SHIFT

RUN/STOP) keys can also be defined. All of these definitions

The Transactor Sept. 1986: Volume 7, Issue O2

are located from $1000 to $10FF (4096-4351 decimal). It

is easiest to re-define HELP and RUN before re-defining

the function keys because the definitions move in this

area of memory according to the length of the definitions.

For example, to re-define RUN from DLOAD " * and

RUN to simply "RUN:", memory locations $103F to

$1047 (4159-4167) must be altered:

Enter the MONITOR and display M 103F 1047

You will see the dL"* and RUN in ASCII.

Change $ 103f to $ 1047 to read:

00 00 00 00 52 55 4E 3A 0D

exit from the monitor (X) and define other keys if desired.

SAVE your key definitions from the monitor with:

S "KEYS",8,1000,1100

or from BASIC with

BSAVE " KEYS" ,B0,P4096 TO P4351

The key definitions can now be recovered at any time

with:

BLOAD" KEYS'

Setting the B-128 Interrupt Rate Elizabeth Deal

Malvern PA

Interrupts on the B-machines are handled by the tri-port

chip at $de00. It appears that any valid cia2 source, in

addition to the TOD-alarm, can be used to interrupt.

Normally, IRQs occur at the power line frequency (bit 0 at

$de02). They can be turned off and replaced by another

source, for instance, timer-A falling through zero, as on

the c64. It's a pest, but can be done.

You can type the bytes under the ******** using the

monitor. To get it going, use:

bank 15:sys7*256

The little reset button kills the project.

One use might be U.K. Software which relies on the 50/

sec irqs. You may try it with Superscript (which bounces

keys due to the 60 HZ irq): start the code using the SYS

call above (not monitor!), then load and run Superscript

as you normally do. My keyboard does not bounce the

keys anymore and always types correct characters.

f0700

f0701

f0704

f0707

f0709

f070c

f070e

fO711

fO713

fO716

fO719

fO71b

fO71d

f0720

fO723

fO725

fO727

fO72a

fO72c

fO72f

fO731

fO734

fO735

fO736

fO738

fO739

fO73c

fO73d

fO73f

fO741

fO742

fO745

fO746

fO747

fO748

fO74b

fO74d

fO74f

10751

fO754

fO457

fO45a

fO45c

fO45f

More

Some

78

ad

8d

a9

8d

a9

8d

a9

8d

ad

29

09

8d

ad

29

09

8d

a9

8d

a9

8d

58

60

a5

48

ae

8a

29

dO

8a

4c

ea

ea

ea

ad

29

fO

a9

8d

8d

ad

09

8d

4c

07

07

40

04

9c

05

81

0d

Oe

80

01

Oe

05

fe

40

05

36

00

07

01

01

07

04

04

f5

Od

02

10

00

06

07

Of

18

Of

81

B-12*

de

de

dc

dc

dc

dc

dc

de

de

03

03

(•)

de

fb

dc

dc

dc

dc

dc

fc

sei

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

and

ora

sta

Ida

and

ora

sta

Ida

sta

Ida

sta

cli

rts

Ida

pha

Idx

txa

and

bne

txa

jmp

nop

nop

nop

Ida

and

beq

Ida

sta

sta

Ida

ora

sta

jmp

.Info

additions to the

128 version

$de02 : irq latch.

7

not

used

$deO7

$de07

#$40

$dcO4

#$9c

$dcO5

#$81

$dc0d

$dc0e

#$80

#$01

$dc0e

$deO5

#$fe

#$40

$deO5

#$36

$0300

#$07

$0301

$01

$deO7

#$04

$0745

$fbf5

$dc0d

#$02

$075f

#$00

$dcO6

$dcO7

$dcOf

#$18

$dcOf

$fc81

;clear latch & air

;set timer a for 50hz ($9c40)

;(60hz = $8235)

;icr-enableta irqs only

;cra-leave 50/60hz flag alone for tod

;start ta in continuous mode

;tri—port irq mask . . .

; ignore power line flips

; enable cia2 irqs instead

;switch irq routine to (*)

;irq patch

;look at irq flag

;was it cia2" ?

;yes, go around

; no. . .

; . . .do usual stuff

;yes - try 'inc $dO43' here

get/clear cia2-irq flag

is ieee-timeout bit set" ?

nope, go around

yup, force it on

so that disk routines can see

this bit.

set timer-b for one shot mode

so it won't time out all the time

but disk will still see it once

do keyboard scan, etc. . . rti

Transactor V4 5 Issue for Protecto/CBM B-

poke zero to

6

not

used

8

clear 1 bit, read $de07 to clr all

4 3 2 10

irq acia cial cia2 ieee 60hz

pend ip srq pwr

The Transactor Sept. 1986: Volume 7, Issue O2

$deO6: cb is unconnected (both bits are high)

$dcOd: bit 1, timer b (cont.mode) is set for ieee 65ms

timeouts, bit 1 is tested only, no irqs.

$dcOe: cia2 era. bit 7 is zero (1 in u.k.) tod will use 60hz.

bit 3 is set at ioinit time - ta one shot and never used.

B-Series Sound Edward Shockley

Deerfield Beach, FL

Those of you who own a B-series machine may not realize that

it contains the same 6581 SID chip as the C64, Cl 28, and SX64!

And you can take a BASIC 2.0 program written for the SID and

run it on the B-series with little modification. Simply add 1536

($600 hex) to the C64 program's SID memory locations. Leave

the values alone, they're the same on all machines.

For instance, the SID starts at 54272 ($D400) on the C64 and at

55808 ($DA00) on the B-series. Adding 1536 to 54272 yields

55808, the B-series location. Follow through the program,

adding 1536 to each POKE of the SID chip. If the program

assigns the voices separate from playing them, you may need

to add a BANK 15 statement just before both routines.

Of course, you can convert the B-series programs to the C64 by

reversing the process.

Find A Program's

Start and End Address

Russ Thomas

Bridgewater, NS

The following program will give the start and end address of a

program on disk. The program finds the end address in a rather

unique way. Instead of walking through a program to the end,

this program attempts to verify the file. Because the program is

not in memory, a verify error occurs (the program being

checked MUST NOT BE IN RAM for this to work). When the

program ends due to the error, it continues due to some

commands poked into the keyboard buffer. At this point,

locations 174 and 175 hold the end address, which is converted

to hex and printed out.

Note: the cursor movements in lines 130 and 140 must be

typed in exactly as listed, or the program will not continue after

it hits the verify error.

Gl

FB

EG

JK

FG

CK

20 print" 0this program will give the start'
30 print" and end address of a program"

50 input" 0what is the filename" ;f$
60 open 2,8,2,f$+ ",p,r"

70 get#2,lo$: lo$ = lo$ + chr$(0)

80 get#2,hi$: hi$ = hi$ + chr$(0)

90 close 2 :la = asc(lo$) + 256*asc(hi$)

00

DA

DC

KB

EM

JN

FC

EE

CP

OO

JP

PP

DD

PD

DM

EP

FE

DC

PG

Jl

PD

AD

ID

EC

Cl

Ml

LL

LP

CH

100

110

115

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

print" Iworking"
poke198,2:poke631,13:poke632,13:

oc = peek(646): rem save old chr coir

print" Hjooke646,peek(53281)and15

print JH fflventy ;chr$(34);f$;chr$(34);

poke198,3:poke631,13:poke632,13:

poke633,13:end

ea = peek(174) + 256*peek(175)-1

poke 646,oc: rem restore char color

h$="0123456789abcdef"

x = la

for i = 3 to 0 step-1

n°/o = x/(16ti):x = x-n%* 16ti

he$ = he$ + mid$(h$, n°/o + 1,1)

next

p$= "0123456789abcdef"

z = ea

for i = 3 to 0 step-1

n% = z/(16ti):z = z-n%* 16ti

pe$ = pe$ + mid$(p$,n% + 1,1)

next

print" start address : "la; "dec. " ;he$;" hex"

print" end address :"ea;"dec. ";pe$;"hex'

clr

print "| ^anotherfile? y/n"
geta$: if a$= "" then 350

if a$ = " y" then 50

end

Finding Relative File Record Lengths

Use this short program to find the record length of a relative file

on a 1541 or 2031 drive:

10 input "file name" ;f$

20 open 15,8,15

30 open 1,8,9,f$'
40 print#15," m-r" chr$(200)chr$(0)chr$(1)

50get#15,rl$

60 print" record length of file " ;f$;" is" ;asc(rl$ + chr$(0))

70 close 7: close 15

For 8050, 4040, or 8250 drives, change the (200) in line 40 to

(114).

SID Whistle-Killer Peter Vdovich, Pickering, Ont.

Recently I purchased a Voice Messenger speech synthesizer to

use with my 64, and was rather dismayed by the high-pitched

whistle that was present when it set the level of the SID chip.

(This whistle is also present, to a lesser degree, any time the

The Transactor Sept. 1986: Volume 7, Issue O2

chip provides maximum output.) A few tests confirmed that

this racket does indeed come directly from the SID.

Because I work as a repair technician (and I'm a cheapskate), I

decided to try and eliminate the whistle myself. I opened up the

computer and installed a .005 mfd. capacitor in parallel with

C37 on the circuit board. (The added capacitance attenuates

high frequencies. Different capacitor values will produce differ

ent results, but .005 mfd seems best.) The operation was fast

and easy, and although the whistle is not completely gone it is

greatly reduced. The synthesizer sounds much better too!

UI8

SlD

Disk Rescue H.C. Doennecke, Tulsa, OK

When used with certain disks, My 1541 became increasingly

confused when loading or saving. The red light would blink

and the end stop would rap repeatedly, after which the opera

tion might or might not be successful. Whenever I checked the

error message it would be Number 21, "No sync character".

However, my purchased software loaded normally and various

checks said the drive was OK. I decided the disk surfaces were

going bad and discarded a couple of disks before I awoke to the

fact that the disks were dragging in their envelopes. Now

whenever a disk starts to do this I bend open one end of the

envelope, carefully remove the disk, and root around in the

envelope, especially to the edges, with a plastic drafting trian

gle. Then 1 replace the disk, add a bit of tape to hold the end flap

down, and the disk works as good as new.

All of my disks that have had this problem have been Memteks

which have been used about a year and a half.

LOAD By Track and Sector S.L. Mickelson

London, England

It is known that using LOAD" *" ,8 with the 1541 will load the

previously loaded program. The drive keeps pointers in RAM

which point to the first track and sector of the last file loaded. So

when LOAD" * " ,8 occurs, the drive doesn't access the direc

tory first but instead goes to the track and sector stored in these

RAM pointers and begins the load from there. By changing the

pointers, we can get the drive to load any program we wish,

making all sorts of things possible.

For instance, you could write a menu program which would

load programs from disk without accessing the directory; the

starting track and sector of all programs on disk could be

known by the menu program, and the programs don't even

need to be in the disk directory. This would speed up program

loads, and make for an un-cluttered directory as well.

To load a program starting at a given track and sector (using

LOAD" *" ,8), use the program below:

101 = 17: s = 0: rem - example first track and sector of file to

be loaded

20 open 15,8,15, "iO"

30 print#15," m-w" chr$(126)chr$(0)chr$(1)chr$(t)

40 print#15," m-w"chr$(111)chr$(2)chr$(1)chr$(s)

50 load" *" ,8

To implement the menu program mentioned above, you'll

have to start with a normal disk and find out the start track and

sector of each program. There are a few public domain pro

grams which will give you the track/sector information, or you

can use this short program:

1 rem displays the name + first track

2 rem and sector of every file on disk

10 open 15,8,15, "iO": close 15

20 open 1,8,3, "$0"

30 for i = 1 to 254: get#1 ,a$: next

40 f$ = "": m = m +1: get#1 ,a$,t$,s$: t$ = t$ + chr$(0):

s$ = s$ + chr$(0)

50 for i = 1 to 16: get#1,a$: f$ = f$ + a$: next

60 for i = 1 to 10: get#1 ,a$: next: if st<>0 then close 1: end

70 if t$Ochr$(0) then print f$" t = " asc(t$)" s = " asc(s$)

80 get#1 ,a$: if m<8 then get#1 ,a$,a$: goto 40

90m = 0: goto 40

A Use For The Periodic Table! Robert G. Tischer

Starkville, Mississippi

The Complete Commodore Inner Space Anthology finds itself

in daily use in our shop and does so because of its many

thoughtfully constructed and easily usable tabulations.

One extra use I've found is in providing interesting disk ID's.

For this purpose, the periodic table on page 121 is IDeal. It

provides over a hundred ID letter combinations, guaranteed to

be different, meaningful, useful as a learning aid, and, no

doubt, in other yet unrecognized ways.

Moreover, the table itself represents a checking device, useful

in determining which ID's have already been used.

In the event that you are a really heavy disk user, the ID list

could be expanded easily, still retaining the basic structure of

The Transactor IO Sept. 1986: Volume 7, Issue O2

the periodic table by using the first letter of each element, Textcraft Files On

accompanied by the letters of the alphabet, in order. Amiga's External Drive

Ewan Grantham

Atlanta, GA

This would provide more than 2600 ID's. If you need more

than that, you're on your own.

Pythagorean Triplet Generator R.A. Israelson

Kingston, Ont.

The following program will generate integer solutions to the

right triangle according to the theorum of Pythagoras, based on

the variables U and V as shown.

Run the program to see if you can determine the required

relationship between U and V, if the generated data is to be

non-redundant. You can vary the number of solutions pro

duced by changing the value of N in line 130.

AB

HJ

IJ

LK

KB

PI

ML

JM

GO

BF

FL

JP

GB

HJ

NJ

100 rem Pythagorean triplets by rai -86

110 print"| I u v ut2-vt2 2uv ut2 + vt2'
120 print" [37 " = " signs] "

130 n = 10: rem number of solutions

140dima(n-1),b(n-1),c(n-1)

150quit = n: j = 0: u = 2: v = 1

160 u2 = u*u: v2 = v*v

170 a(j) = u2-v2: b(j) = 2*u*v: c(j) = u2 + v2

180 print tab(2);u;tab(6);v;tab(15);a(j);tab(25);

b(j);tab(34);c(j)

190 j = j +1: if j = quit then end

200 if u-v = 1 then goto 220

210v = v + 2: goto 160

220u = u + 1:v = 1

230if(uand 1) = 1 thenv = 2

240 goto 160

Easy DATA Viewing Philip Sharman

Calgary, Alberta

Just typed in a program with a lot of DATA statements that now

need proofreading? Add this line to the beginning of your

program:

1 read x: print x: wait 653,1: wait 653,1,1: goto 1

Then just hit the SHIFT key and the numbers in the DATA

statements will be printed, one by one, on the screen. Much

easier than staring at a screen full of numbers! It's even easier

than proofreading from a printout.

It'll stop harmlessly with an "out of data" message when it

runs out of numbers. Just erase line 1 when you're finished.

According to the Textcraft manual, you can store documents on

an external drive, but they must be on the internal drive to

open them. Actually, you can establish a pathway to the

external drive to both save and open documents.

To do this, put your document disk in the external drive, and

the Textcraft disk in the internal drive. Open Textcraft from the

external drive by double-clicking the mouse on one of the

document icons from the external drive. This will load Tex

tcraft and the selected document. Interestingly enough, this

establishes the save pathway to the external drive. To open

other documents from the external drive, save the first docu

ment to the external drive using:

"df1: <filename>".

After doing this, you can open and save documents on your

external drive, reducing the chances of hurting the Textcraft

master disk.

C-64 Easy Filename Retrieval Russ Thomas

Bridgewater, N.S.

In the May, 1986, Volume 6, Issue 06, Jeffrey Coons gives an

on-screen one-liner to find the filename after a FILE NOT

FOUND ERROR. Try this instead:

SYS 62913

A nice trick - fast, easy to remember, and it prints to the screen.

Good for the C64; VIC owners can use SYS 63065.

C128 CP/M ASCII Output Richard D. Young

Greenwood, N.S.

The additional CP/M documentation and utility disks offered

for the Commodore 128 and available from Commodore Busi

ness Machines for $29.95 may be worth it for anyone who is

going to use CP/M at all. One of the disks contains complete

source files and instructions for regenerating the CPM + sys

tem. These files, in source assembler (.ASM), are reasonably

well documented with comments and can be an excellent aid

to learning the new machine language and the operating

system.

After using CP/M for some time, including output to a printer

via an interface that converted CBM ASCII to true ASCII, I

experienced some frustration with this process of conversion.

As a general rule, 1 have always preferred to convert to true

ASCII in software prior to output to the printer. CP/M on the

Commodore 128 appeared to offer no alternative until I had a

look at the source code.

The Transactor Sept. 1986: Volume 7, Issue O2

Among the files is one called CXPRINTE.ASM. This is the

printer driver, and contains the routine for converting charac

ters for output to an assumed Commodore printer. It turns out

that characters are carried in true ASCII until this conversion

routine is called. Specifically, the line in the source code is

CALL CONVERT". Deleting this line, or replacing it with a

NOP and a comment, then regenerating the CPM+ system by

following the instructions with the source disk was sufficient to

allow output of true ASCII to the printer.

Amiga ABasiC Program Boot James Cooper Jr.

Fayetville, NC

Un-Assembler Speed-Up David Shiloh

Eugene, OR

I thoroughly enjoyed Mr. Lothian's Un-Assembler (Jan '86),

which does not suffer at all from garbage collection. It is,

however, doing extra floating point operations in pass two as it

builds the label arrays. The replacement lines below make pass

two over five times as fast (for 6K, 14 minutes instead of 81). Mr.

Menke (Letters, May '86) should now be able to unassemble

21K of code in just over two hours.

530 gosub 2380: p = s-1: gosub2260: 11 (0) = s:

H(1) = e + 3:lb = 1:l2(0) = 0

540 rem print p" Q " to watch pass two
680 for i = Ib to 0 step-1: if ad<H (i) then 710

690 if ad = 11 (i) then i = 0: goto 710

700forq = lb + 1 to i + 2 step-1: 11 (q) = 11 (q-1):next:

H(q) = ad:i = 0:lb = lb + 1

710 next: return

720 [DELETE]

730 [DELETE]

770 [DELETE]

780 If = 1: for i = 0 to lo: if ad>l2(i)then 810

790 if ad = I2(i)then If = 0: i = lo: goto 810

800 for q = lo +1 to i + 1:12(q) = l2(q-1): next:

I2(q) = ad:lf = 0:i = lo:lo = lo + 1

810 next: if If then I2(i) = ad: 10 = 10 +1

820 return

830[DELETE]

and. . . Line 1430 needs to end with " ,2040" for the bit to .byte

option

Bigger Stacks For Healthy Assembly

When assembling a large file on the Amiga, the system can

crash because of lack of stack space. Before assembling, give

yourself more space with the STACK command from CLI. A

value of 20,000 should be safe. When in doubt, use more. The

command looks like this:

STACK 20000

You may want to put this in the batch file you use for assem

bling, or even in your Startup-Sequence. You also need a larger

stack when running ABasiC from CLI (8000 is safe).

When ABasiC (the early Metacompco BASIC) is loaded, it looks

for a file named " init.bas", first in the current directory, then

in the " :s" subdirectory. If found, ABasiC automatically loads

and runs this file. I use this feature to set my screen to 80

columns before I start typing.

As an added extra, ANY script file may be placed in the " :s"

subdirectory, as execute looks there if it cannot find your file in

the current directory. This way, you do not have to worry if you

have changed the current directory when you try to execute the

file.

Easy Speed-Up For The 1541 Ralph Doncaster

East Bay, N.S.

For people who are trying to squeeze every bit of speed out of

their 1541 or who are just interested in the workings of the disk

drive, then this is just for you. Type in, save, and run the

following:

10 open 15,8,15," m-w" chr$(94)chr$(0)chr$(2)chr$(1)chr$(41)

20 print#15," m-w"chr$(100)chr$(0)chr$(1)chr$(3): close 15

This speeds up the movement of the read/write head by

changing the acceleration and the amount of time between

steps. Time to move the head is reduced by more than half,

giving speedier program and file access.

Amiga Date-Prompt

Startup Sequence

Benjamin Dobkin

Rego Park, NY

I use this file as my S/STARTUP-SEQUENCE:

echo " "

echo" Welcome Master Benjamin!!"

echo "

echo " Our last session was on:"

date

echo "

date> "con:0/100/350/25/DD-MMM-YY HH:MM:SS [en

ter new date:]" >* ?

date

loadwb

endcli > nil:echo

This makes a new window containing a date-time prompt (a la

IBM), and right after you respond to the prompt it will display

the full date and time.

At this point if you press control-d, the startup sequence is

broken and you are returned to CLI without going into Work-

Bench.

The Transactor 12 Sept. 1986: Volume 7, Issue 02

Letters

The Mutant Vic: In a city not so far away, in a time but four

years ago, a disenchanted university (biology) grad unable to

find work in his own field decided to escape his day time job

and purchased his night time dream machine, a 3.5k Vic 20 (for

roughly lOx what you would pay for one now).

He subscribed to all the beginner magazines and really enjoyed

himself for about six months and then some virus bit him. The

Vic grew out of control. It grew to 32k, it learned how to transfer

ROM cartridges to tape and grew chip switches. It took over a

room in the house. It became so much fun that he started

taking a data processing certificate at a community college. Two

years passed and the Vic spawned a mutant, a C-64, more

powerful than itself. It demanded a disk drive, then a printer,

then another disk drive, more languages. And then all of a

sudden the biology grad was running a main frame computer

with multi partitions for the same company he used to pick and

pack orders for. Another year passed and now he was a

programmer. Who would have ever guessed that a 3.5k Vic 20

would lead to this. This summer he would graduate from

college.

But along the way something else happened. All those maga

zine subscriptions just weren't pulling their weight anymore.

They were fine to start with but they didn't grow, they re

mained superficial barely scratching beneath the surface. One

by one they weren't resubscribed to until only one remained.

The Transactor. Please find enclosed my renewal to my sub

scription of The Transactor and keep up the excellent work.

S.J. Balduck, London, Ontario

In another city not so far away from yours, in a time but four

weeks ago, a letter would arrive at the office of a computer

magazine. The letter would describe the experiences of a

determined young university grad who would become inter

ested in a completely different field than the one printed on his

diploma. The letter would turn out to be written by one and the

same. A wonderful letter as it would allow the editor of the

computer magazine to respond in a writing style he would

enjoy immensely.

Thank you for the compliments and best of luck in your new

found career. However, (and this probably need not be said)

don't be dissappointed about the time you spent learning

biology. I too spent a long time obtaining my diploma in

electronics engineering. Although I have been lucky to be able

to apply SOME of what I learned, I have found that the "paper

chase" was the most valuable lesson of all. Learning how to

learn or "learning discipline" is a gift that most grads don't

realize they 've received until the time comes to put it to use. For

those still in schools of higher ed, perhaps I've revealed too

much. But let me just say this: STAY THERE! What you're

seeing now is much less than what you 'II get out of it later, I

assure you! - K.J.H

Postal Service Blues: What happened to the days of the

valued subscriber? You remember; subscribe at a small reduc

tion of cost and get your issue a week before the news stand.

I recently received my notice of renewal for my Transactor

magazine. My much awaited Transactor magazine I might add.

I have to wait too long to receive them! Tell me how the editors

of magazines expect the general buying public to put out a

years subscription price and then wait anxiously. Wait for one

or two weeks after the magazine has already arrived on the

news stand. I've dropped my other subscriptions for the same

reason! There really was a time when the subscriber was

privileged; receiving his or her copy in advance of the general

public.

I still look forward to getting my Transactor. No ads. Lots of

substance. So much so, I won't wait a minute longer than I have

to! That's the best compliment anyone could receive. . .

James R. Clefstad, Mackenzie, British Columbia

Yours is typical ofmany letters we receive as well as phone calls

and personal comments. We would like to apologize for the

delivery problems that have plagued any and all ofour readers,

but would also like to take this opportunity to describe the

process.

When an 80 page Transactorgoes on the press, the pages come

off in 2 sheets of 32 (16 pages each side), one sheet of 16, plus

the cover and any other inserts (eg. the subscription card). All

this gets moved over to another rather large mechanical con

traption called a "binder".

However, before MacLean-Hunter (our printer) will fire up the

binder, they insist we submit our mailing list ofsubscribers. The

list is sorted by postal/zip code and printed on a dot matrix

printer (at our office) on regular 132 column paper such that

there are four labels across by eleven down on each page. The

labels must be very carefully positioned on the page according

to specs provided by MacLean-Hunter. The entire stack of

subscriber labels are loaded into a hopper at the end of the

binder, and the process begins.

The binder machine takes the various sheets and folds them

this way and that until each 2-page set is seperated by a fold (a

2-page set is page Xplus the page it's attached to at the opposite

end of the magazine). At about the half way mark, the folded

pieces are stacked in order, and the entire stack is stapled

together. The staples actually start out as a spool of wire that is

cut and bent into what you see as staples. Next the bound stack

is bent in half along the staples, and a "trimmer" comes

smashing down and sheers off the folds at the top, bottom, and

right hand edge. As you can imagine, the trimming must be

done last. If it were done any earlier, each page would be a

slightly different length leaving a rather untidy appearance to

the three exposed edges of the paper.

The Transactor 13 Sept. 1986: Volume 7, Issue O2

About three feet later, the finished magazine enters the labeller.

The 4 by 11 sheets of labels are sliced and diced, dipped in glue,

and slapped onto the cover. As I metioned earlier, the labels

must be carefully positioned on the paper else the slicer/dicer

would trim offpart ofthe data. The labelled mags go from there

into a bundler. The bundler operator watches the destination of

the magazines very carefully so that those going to one province

or state don t get bundled with those going to the next province/

state. The bundles (about 20 in each) go onto skids, one skidper

province. The U.S. isseperatedinto 8 "zones", hence 8skids for

delivery to the Buffalo main postal dispatch.

How does this affect delivery? Well, it doesn 't. . . wejust thought

you might like to know. However, it is easier for MacLean-

Hunter to do the subscriber copies first. To do them last would

mean anticipating the point at which about 10,000 unbound

copies remain before switching on the labeller. By doing them

first means simply using up all the labels. When the labels are

all gone, the rest of the magazines go to the news stand

distributor. But remember, we print about 64,000 copies, ap

proximately 10,000 of which go to subscribers. When the last

label is pasted on, there are still 54,000 mags to go. This takes

several hours. When the last magazine is bound and trimmed,

the subscriber copies are usually well on their way (MH doesn't

fool around - they don't like having 15 to 20 skids ofmail taking

up precious floor space). In fact, Canada Post makes regular

pick ups at MH en route to their major distribution points. The

only mail that goes to the Toronto center is the mail for the

Toronto area. The rest goes directly to Montreal, Edmonton,

Vancouver, etc. The U.S. mail goes to Buffalo, and from there

on to the other zones.

Admittedly, Transactor mail doesn't fill an entire truck load so

MH combines it with other titles going to the same places.

However, the process is about as streamlined as it can get, and

you can bet the entire lot goes out on pretty much the same day.

Your complaint, though, is not unjustified - quite the contrary.

Except to get subscriber copies out earlier would probably

mean warehousing the news stand copies for two weeks to give

the others a head start. As you can see, it's one bind after

another (pun intended).

A Comparison Of Four Word Processors Revisited: I

would like to make a few comments about your article entitled

'A Comparison Of Four Word Processors'.

First of all, in your article it was stated that SpeedScript could

only display 40 columns. This is partially true. Through the use

of Preview-80, it is possible to scroll around your SpeedScript

document using the arrow keys. This is not true 80 columns,

but then again it is handy when you want to see what your

document will look like before you print it out. Special printer

functions such as the underline and bold text modes cannot be

displayed. Functions such as headers and footers can be

displayed. Preview-80 can be found in the November 1985

issue of Computed Gazette (issue 29, vol. 3, no.l).

It was also stated that SpeedScript does not have a spelling

checker. Again, this is partially true. In the December 1985

issue of Computed Gazette (issue 30, vol. 3, no. 12) a program

called SpeedCheck was published. This is a spelling checker,

but there is no pre-made dictionary disk. The program allows

you to make your own custom dictionary by going through

your SpeedScript document, checking for all words that are

more than 5 characters in length, and asking if you want this

word in your dictionary. In future documents, if the word it is

checking is already in the dictionary, it passes it by and goes on

to the next word. There are a few understandable shortcomings

to this spell checker. For example, what if you exchange 'their'

for 'there'.

In a recent Compute! (I'm not positive of the month, but it was

the issue with SpeedCalc 64) an option was added for different

on screen character sets. This, however, works on your TV.,

not your printer.

Another spell checker is available from Upstart Publishing

(Dept. G3, POB 22022, Greensboro, N.C. 27420) for $15. Also

available from this same place is SpeedPak. This SpeedScript

expander allows for alternate screens, macros, file encryption,

help screens, different character sets, mail merge, DVORAK

keyboard, and three more printer codes (for use with the mail

merge options). This program is also $15.

Another SpeedScript enhancement program is available from

Lidon Enterprises (POB 773, Elm Grove, WI 53122). This

enhancement allows the following functions:

PowerPrint - set the cursor where you want to start printing

and print one character, one sentence, one paragraph or the

entire document.

PowerParams - assign multiple printer commands to one key.

These parameters (macros) are saved with your document for

future use.

PowerSet - allows all Commodore compatible printers to

switch between both character sets.

This program is available for either $4.98 for the typed listing,

or $7.98 on disk or cassette.

I don't mean to criticize your magazine in any way. Rather, I am

a SpeedScript enthusiast who wishes to add further insight into

the SpeedScript series. Thank you for providing one of the best

Commodore magazine on the market.

Jon S. Boland, Park Falls, WI

Hex - An Evil Spell: 1 was very amused by the letter titled

'The Horror of Hex' in the May issue of The Transactor. In it, an

exasperated reader flamed that Hex 'is utter nonsense.'

My amusement was, however, bitter-sweet. I too remember

first encountering hexadecimal notation. My first attempts at

learning machine language involved looking up the com

mands in the Programmer's Reference Guide, finding their Hex

opcodes, translating them to decimal and POKEing the

damned creatures in! Naturally, this was not exceptionally

The Transactor 14 Sept. 1986: Volume 7, Issue O2

efficient. Soon I DESPISED Hex, and I observed that the word

Hex was defined by my dictionary as 'An evil spell'!

I have often heard people voice the opinion that hexadecimal is

somehow 'unnatural' and that decimal numbers are an inher

ent property of our universe! In my enlightenment, however, I

have come to wish that humans all had 16 fingers.

Meanwhile, for those who do not wish to delve into the elegant

world of machine language, there are a number of solutions.

One is to use Basic extensions such as TransBASIC and Meta-

BASIC (published in April 85 Computed Gazette), which fea

tures Hex to decimal conversion commands. Another is to get a

good memory map. I use 'Mapping the Commodore 64' by

Sheldon Leemon, which features both hexadecimal and deci

mal equivalents for each address.

As for the 'private clique' of us who program in ML, well, we

can use wonderful monitors such as Micromon and assemblers

such as PAL. Using these beauties, we don't need to convert.

Besides, what does the number 4096 signify? It's just an

address, whether expressed as 4096 or $1000.

Now OCTAL That's unnatural!

Nick Barrowman, St. John's, Newfoundland

Imagine, for a moment, having 16 fingers. In that same mo

ment something tells me a byte would have 10 bits.

The Copy Blues: I am a subscriber to The Transactor and find

many good things that are passed on to our Users group here in

Germany.

At the present time we are using two of the new SFD1001

drives in our BBS, and find the capacity terrific!!! However, the

different formats present unique problems when it comes to

the maintenance on board. We cannot find a file copy program

that will transfer REL files, either to or from the 1541 and SFD.

We would also like to find a full disk copy program that would

make copies of the full disk from one SFD to the other SFD, so

far with no success.

We realize that you have better things to do than worry about

our problems, however, with the increased use of the SFD, this

cannot be an isolated issue.

As a NATO organization here, we have several Canadian

members in our group. They have said that if anyone can help,

the Transactor can!!!! We surely hope so.

Major R.H. Jacquot

Secretary/Treasu rer:

Commodore Computer Users Group Heidelberg

Although this letter was sent to us back in October of '85, it took

till now to be able to reply. His request is not unique in that we

have received many others like it. The drive types have varied

from the SFD1001 as above through the MSD and Indus drives.

One underlying factor always prevails; relative files are a drag

to copy using a single disk drive.

After many months of trying to find the time to write a relative

file copy program, we can now present Transcribe 64 in this

issue. Transcribe 64 is a relative file copy program for the

Commodore 64 that allows you to copy REL files of any length

using a single drive, to and from any Commodore or compati

ble drive that you can interface to your 64. The only limitation

in using IEEE drives with Transcribe is the interface you use. If

the interface consumes RAM in the same places that Transcribe

does, problems will develop. The source for Transcribe has not

been printed this issue, but it does exist on the Transactor Disk

*13 for all so inclined. If you find conflicts in using Transcribe

with your interface, you can either re-write the source, provid

ing you know where the conflicts have developed, or purchase

a transparent interface. Your choice.

Vic Time: I own a Vic 20 (good old Vic!), 1541, a home-made

24k expansion and a printer with a Centronics port. They told

me that you "couldn't" do that without an interface that would

have cost me several hundred dollars, so I wrote my own

interface and put it in the cassette buffer driven through the

output vector. The only hardware is the cable.

In your editing please remember that there are a lot of us Vic

owners around who have this queer idea that the Vic we've got

is still able to do all the things we want it to do, so why spend

$400 (in NZ) for a C64? I have recast programs like the R65C02

Assembler to work on the Vic screen and with my printer. It's a

great program. Now I just have to get the Unassembler going,

and adjust to produce code that can be handled by the Assem

bler.

I'm always glad to see 'translation' done for me. Like the

Profiler. I was still getting around to doing it. Much simpler to

see it all tested and in print. Keep it up.

Any chance of TransBASIC kernal for us Vic owners?

An idea for a TransBASIC module. How about SORT, SORT%,

SORTS which will take two elements from a numerical, integer

or string array respectively and put them in the right order. Eg.

SORT,a$(i),a$(i+ 1). Since this is definitely a 'speed' function, it

helps if the programmer tells the interpreter what sort of array

is involved and not make it use up time finding out for itself.

Hence three functions. For completion, there could also be an

UNSORT that reverses the order regardless.

We've been getting tantalizing tidbits on the 1541 Inner Space

but not enough to do to be able to do 'serious' programming in

it yet. Now that we have a 1541 map of all the functions, how

about some articles telling us some details of what to do with

them. Richard T. Evers tells us it is done by putting the different

job numbers on the JOB QUE, warns us of the dire conse

quences of not setting up RAM pointers correctly, and leaves it

at that. Some people out there are reprogramming the drive, so

the information is available. Who has it ??

Terry Montgomery, Aukland, New Zealand

The Transactor 15 Sept. 1986: Volume 7, Issue O2

The problems that we have always had with the Vic are two

fold. First, the screen is only 22 characters wide. This is a real

limitation when writing software that is universal for the Com

modore machines. 80 columns is just right, 40 columns is often

times a pain and 22 columns is always a major drag.

Second, although the Vic is A1 for nice ROM routines and RAM

vectors, it is always unpredictable when writing code to work

with a specific memory configuration. The Vic was one of

Commodore s initial success stories, but it was far from perfect.

We have printed code written and modified for the Vic in past,

and will continue to do so in the future, but without one

standard memory configuration that we know is common

among our readers, we can never make the Vic a habit. Wejust

have to continue printing the. source as often as possible, and

hope that people such as you can make the conversions. Sorry

about that.

As for programming the drive, one really terrific book exists that

details all you will ever need to know about programming the

1541. The book name is 'Inside Commodore DOS', written by

Richard Immers and Gerald C. Neufeld, published by Bradey,

ISBN 0-88190-366-3. You will not find a better book to help

you understand the inner workings of your drive. I hope this

helps.

1200 Bits Per Second per second: 1 am glad that my letter

generated some mail and more information was gathered from

the discussion that ensued.

However, I think that Mr. Harsch was a little over-critical in his

treatment of my letter.

I know very well that 1200bps modems work with the C-64, as

I use a Volksmodem 12 modem all the time. But maybe Mr.

Harsch would listen to Steve Punter in his explanation of how

he discovered the secret of running 1200bps on a C-64.

The following is paraphrased from Mr. Punter's explanation of

how he modified and successfully wrote the necessary code to

run 1200bps from within his 'famous' BBS program.

When Mr. Punter tried to open an RS-232 channel at 1200bps

by using OPEN 2,2,0,CHR$(8) + CHR$(0), he found that he

could send to the modem with no problems (which goes along

with Mr. Harsch's method of driving RS-232 printers). How

ever, receiving was not so easy; he got nothing but garbage!

But he discovered that by poking different values to $0295/96,

he was able to fine tune the receive timing values and make

1200bps work with his BBS program. If you look at the Kernal

routines to open an RS-232 channel, the bytes are loaded into

locations $0293 to $0296. But if the lower nybble of the control

register is not zero, the Kernal goes to the lookup table and

loads the values found there into bytes $0295/96.

Some of the more advanced terminal programs around give

you the option of adjusting the values at $0295/96 so that you

can use the value that works best with your modem.

On reference to the PRG (Programmers Reference Guide), I

submit from page 349 the second paragraph after the heading

•OPENING AN RS-232 CHANNEL':

' Up to 4 characters can be sent in the filename field. The first

two are the control and command register characters; the other

two are reserved for future system options.'

Most people I have talked to personally and myself have taken

that to mean that the 3rd and 4th bytes of the filename are

either ignored or overwritten. Other sources of 64 information

have stated the same thing. Take the book 'Anatomy of the C-

64' from Abacus Software. On page 28, the table they show to

determine the lower nybble of the control byte specifically

states that the User Defined Baud Rate option is not imple

mented.

In the first edition of Sheldon Leemon's book 'Mapping the 64',

he also continued the same myth. However, in subsequent

editions that error was corrected.

I agree that the PRG tells us how to calculate the User Defined

Baud Rate but the above quoted statement usually keeps most

people from trying, until they know better.

One more proof for the problem 1 found was with Firstterm5 by

Tom Hughes. It is a fine Punter protocal term program. I used it

a lot at 300bps. But when I upgraded to 1200bps, I found that it

did not work at 1200bps. I received nothing but garbage (ala

Mr. Punter).

The program is written in ML and I got out my favourite

monitor and started to poke around in it. 1 found that Mr.

Hughes used 2 byte filenames to open his RS-232 channels. He

had options for all the speeds listed in the PRG (50-9600

BAUD).

I was able to to find room here to eliminate all the speeds

except 300 and 1200bps. I used a 4 byte filename and used the

value of CHR$(57) and CHR$(1) for the optional baud rate. Lo

and behold, it worked!

I again hope that this helps to clear up a few cloudy points on

this issue.

Lyle R. Giese, Woodstock, IL

Left Wing Interference Revisited #1: 1 reference to Jack

Ryan's 'Left Wing Interference' letter in The Transactor Volume

6, Issue 06.

Before I purchased a 1702 monitor, I used a monochrome

Zenith monitor, model ZVM-123. The Operating Guide con

tains the following cryptic sentence:

Note: For best results, keep the Disk Units away from the left

side of the Monitor (facing screen).

This might refer to the same type of gremlins you saw men

tioned in the GT-4 cartridge manual.

The Transactor 16 Sept. 1986: Volume 7, Issue O2

Jack's problem reminded me of something that happened to

me with my Datasette when I first got my Commodore 64.

I'd just moved my equipment - C-64, Datasette and old black-

and-white TV that served as monitor - from the dining room

table to the family room, and plunked everything down on a

folding metal picnic table that we'd had for years.

Before long 1 noticed that I was getting an inordinate number of

tape I/O errors when trying to load programs. 1 immediately

assumed the Datasette was too close to the TV, so 1 moved it

away.

This had absolutely no effect at all, so 1 moved it again,

separating the two even more. Still no improvement.

I eventually reached the point where the TV and Datasette

were on opposite ends of the table - eight feet apart - and still

the errors came. Things were getting frustrating now.

One Saturday morning I resolved to sit down at the computer

and not get up until I had solved the mystery. And so I started

experimenting with various configurations.

Some time in the early afternoon I noticed that 1 could elimi

nate the errors completely if I held the tape unit in my hand, at

least a foot above the surface of the table. Proximity to the TV

didn't seem to matter, as long as the Datasette wasn't actually

touching the table top.

I decided that the table top was conducting the television's

magnetism, so I tried insulating the Datasette. First I tried

resting it on three issues of Compute! magazine (the old fat

ones). That seemed to help a little, but I still had too many

errors. A slab of pine shelving left over from an old project was

next. That didn't help either.

It struck me somewhere along the way that what I needed was

not just insulation from the table but physical separation from

it. So my next step was to place the Datasette on an 8" x 14"

block of white styrofoam, the kind used to protect microcom

puters during shipping. That did it: the errors finally stopped.

What caused the tape errors? I never did figure it out com

pletely, although I suspect that the table had actually, to some

degree, become magnetized. I don't recall that the problems

occurred when I first moved on the the metal, but only after a

few weeks use.

Would this also happen with a disk drive? I don't know,

because about the same time 1 got a 1541 1 got a wooden

computer desk, and never saw the problem again.

Frank Figlozzi, Bowie, MD

Left Wing Interference Revisited #2: Reading the letters

about 'Left Wing Interference' in the May '86 issue reminded

me of a very similar experience. I have been using a C-64 since

late '82 with an old industrial B/W Electrohome monitor. The

image waved gently at the edges. I blamed the C-64 and

bought a new Zenith CRT. The waves were less but still there. I

could have lived with this imperfect image if it were not for the

fact that my 1541 drive suddenly failed to read program code

that previously loaded perfectly. The drive was indeed sitting at

the LEFT of the new monitor.

Because the Electrohome CRT was totally enclosed in a

grounded metal case, and the Zenith CRT had only a plastic

enclosure, I suspected that stray electromagnetic fields from the

CRT were disturbing the operation of the disk drive. This gave

me the key to testing my hypothesis and finding a simple cure.

A large ungrounded metal plate of 16x10 inches between the

Zenith and the drive eliminated the load errors. So the cure was

simply a good shield. An unsightly metal plate was not a

practical solution. And I was not willing to reshuffle all the

carefully positioned hardware on the computer desk. There are

two alternative means of shielding:

1. Eliminate the source of the radiation by coating the inside of

the monitor case with a conductive paint which is then

grounded.

2. Keep radiation out of the drive with the coating inside the

case.

Unfortunately, this method is not available to most of us. Early

Apple computers were treated this way for similar reasons.

Some time ago, I built a small wooden telephone box that

straddled the drive unit from side to side, while leaving about

one inch of air space at the top. With some aluminum foil from

the kitchen, contact cement and duct tape, I 'coated' the inside

of the box to form a shield. After attaching a grounding wire, I

found that the box when placed in its usual position over the

drive, provided the necessary protection. I have not had a

single load error since. The Electrohome has now given way to

an equally'leaky' 1701 colour monitor. The problem recurs the

moment I take the box away. The flyback transformers in both

CRTs are in fact located at the left side. 1 do not recommend

application of the plastic case. It is not possible to get a bond

that will stand up to the temperature swings over time. You

don't want any short circuits either.

One of my friends took his drive back to the store for an

exchange at least twice. I asked him what monitor he was

using, and where it was sitting. He had put the drive on TOP of

the monitor. Of course there was nothing wrong with the drive

once he moved it to the right of the CRT. As a parting remark,

similar load errors show up with tape transfers if the Datasette

is held towards the left side of the monitor. Relocating it to the

right does the trick. Guess where my tape unit has been all

along until I moved it?

John C. Hollemans, Oakville, Ontario

The Transactor 17 Sept. 1986: Volume 7, Issue O2

TransBASIC

Installment#10

Nick Sullivan

Scarborough, Ont.

TransBASIC Notes

Ifyou have purchased The TransBASIC Disk, a couple ofminor

bugs have been found in the SYMASS 3.1 Assembler. See the

article later this issue titled "Save SYMASSSymbols " for details.

TransBASIC has been a regular Transactor feature for almost

two years. Those who have been following the series know all

about it. Recently, however, we 've received letters to the effect of

"what is TransBASIC?". Quite simply, TransBASIC is a method

of adding new commands to BASIC (see "Part /:" below). The

commands come in 'modules' which may contain one or more

commands OR functions. After merging the modules of your

choice, the entire lot is assembled and linked into BASIC. The

new commands can then be used just like any of the other

commands that are already in the BASIC ROM when the C64 is

powered up.

The TransBASIC Disk

The TransBASIC Disk contains all of the modules published so

far and it comes with its own assembler, SYMASS 3.1. Any

combination of modules can be linked into BASIC with only a

few simple steps. From start to finish is usually no more than a

couple of minutes. . . even less once you get the hang of it. It

comes with a handy reference for just $9.95. See the order card

at center page.

TransBASIC Parts 1 to 8 Summary:

Part 1: The concept of TransBASIC - a custom command

utility that allows one to choose from a library only those

commands that are necessary for a particular task.

Part 2: The structure ofa TransBASIC module - each TransBA

SIC module follows a format designed to make them simple to

create and "mergeable" with other modules.

Part 3: ROM routines used by TransBASIC - many modules

make use of ROM routines buried inside the Commodore 64.

Part 3 explains how to use these routines when creating new

modules.

Part 4: Using Numeric Expressions - details on how to make

use of the evaluate expression ROM routine.

Part 5: Assembler Compatibility - TransBASIC modules are

written in PAL Assembler format. Techniques for porting them

to another assembler were discussed here.

Part 6: The USE Command - The command 'ADD' merges

TransBASIC modules into text space. However, as more mod

ules are ADDed, merging gets slow. The USE command was

written to speed things up. USE also counts the number of

statements and functions USEd and updates the totals (source

line 95) automatically.

Part 7 - Usually TransBASIC modules don't need to worry

about interfering with one another. When two or more modules

want to alter the same system vector, however, a potential

crash situation exists. Part 7 deals with avoiding this problem.

Part 8 - Describes the five modules for Part 8.

Part 9 - Describes the six modules for Part 9, and makes first

mention of The TransBASIC Disk.

TransBASIC Installment #10

Time presses extremely this issue, so I'll do little more here

than briefly introduce the six short modules below. First,

though, one matter that can't wait.

John Houghton of Collingwood, Ontario, has drawn our atten

tion to a bug in the MC GRAPHICS module of TransBASIC

Installment #8 (volume 6, number 6). The bug consists of

several lines that I inadvertently transposed in editing the code.

To fix it, load in the source code, and type the following lines:

11080lda$d018

11082 sta mcuvid + 2

11098 Ida#$68

11100sta$d018

The Transactor 18 Sept. 1986: Volume 7, Issue 02

A bit later in the same module, a dollar sign found its way into

the following line, from which it must be deleted (unlike the

previous one, this bug would have been reported as a syntax

error when you assembled the module):

11264 stxt5

I apologize to anyone who has had trouble because of the

above errors.

Mr. Houghton also points that "When returning to the original

text screen, sometimes the screen colours will be mangled.

This is because the colour RAM is not stored when entering and

exiting MC GRAPHICS. A new module would be needed to take

care of this, or perhaps use MOVE & FILL. This leads to the next

bug. FILL works fine, but beware, as written, MOVE does not.

The bug is in lines 8200 to 8202. The destination address is not

changed from Floating Point notation to Integer. Add line 8201

as:

8201 Jsr$b7f7;fp1 to int

With this fix, one can preserve colour RAM with MOVE prior to

entry, and MOVE it back on exit."

One extremely trivial bug occurs in the PRG MNGMNT mod

ule. Line 11 is a only a remark, but the REM was left off. If this

were the last module USEd, assembling would stop with a

?SYNTAX ERROR. Simply insert the "REM" at the beginning of

line 11 (or delete line 11 if you like), and RUN it again. This has

been fixed on The TransBASIC disk.

This issue's modules are LWRITE (Program 1), by Steve Ham

mer of Muscatine, Iowa; RESTORE (Program 2) and CLRA

(Program 3), both by past contributor Wayne Happ of North

Babylon, New York; CCMDS (Program 4), by Joel M. Rubin of

San Francisco, California, also a previous contributor; SPEED

(Program 5), by Guido Struben of Calgary, Alberta; and TRAP

(Program 6), by William Turner of Winnipeg, Manitoba.

Several of these modules alter system vectors, which has

meant that the PAL-specific assembler directive:

,IF>(*&255) *&1)

was needed on a few occasions. Users of Robert Huehn's

SYMASS assembler should change these lines to:

PAD

when typing the modules in. This change will also be required

in the MC GRAPHICS module at line 12150 and the PRG

MNGMNT module at line 182. Once again, if you have The

TransBASIC disk, these changes have already been made.

Well, as I said, things are a trifle hasty this time around, so

that's all for now. See you next time, I hope at greater length.

New Commands

LDVN (Type: Statement Cat *: 161)

Line Range: 12190-12210

Module: LWRITE

Example: LDVN 5

This statement sets the printer device number for the LWRITE

and LLIST commands contained in this module. Device num

bers 4 through 7 are legal. The default is 4.

LSEC (Type: Statement Cat #: 162)

Line Range: 12212-12218

Module: LWRITE

Example: LSEC 7

This statement sets up a secondary address to be used by the

LWRITE and LLIST commands contained in this module. The

allowed range is 0 through 255. The default is 255.

LWRITE (Type: Statement Cat*: 163)

Line Range: 12212-12314

Module: LWRITE

Example: LWRITE " A PERMANENT RECORD"

Example: LWRITE A,B$,C(3) + 2;

This statement is almost exactly the same as the standard

PRINT statement, except that output is directed to the serial

device specified with the LDVN command in this module

(default 4). The command eliminates the need for opening and

closing a file to the printer. The keyword LWRITE was used

instead of the standard LPRINT in order to avoid a collision

with TransBASIC's LP command, which appeared in the

SOUND THINGS module.

LLIST (Type: Statement Cat *: 164)

Line Range: 12212-12314

Module: LWRITE

Example: LLIST

Example: LLIST 37-150

This statement is the same as the standard LIST statement,

except that output is directed to the serial device specified with

the LDVN command in this module (default 4). The command

eliminates the need for opening and closing a file to the printer,

and for using the BASIC CMD command to divert output there.

RESTORE (Type: Statement Cat *: 165)

Line Range: 12316-12344

Module: RESTORE

Example: RESTORE

Example: RESTORE 100

This statement is the same as a BASIC RESTORE, but accepts a

target line number if one is provided. Subsequent data reads

will begin from the target line.

CLRA (Type: Statement Cat *: 166)

Line Range: 12346-12356

Module: CLRA

Example: CLRA

The Transactor 19 Sept. 1986: Volume 7, Issue O2

This statement eliminates any arrays that have been created,

without affecting regular variables.

CGOTO (Type: Statement Cat*: 167)

Line Range: 12358-12362

Module: CCMDS

Example: CGOTO 100 + 10*N

The target line number in this variant of the GOTO statement is

calculated from the argument, which can be any valid BASIC

expression.

CGOSUB (Type: Statement Cat *: 168)

Line Range: 12364-12394

Module: CCMDS

Example: CGOSUB SR

The target line number in this variant of the GOSUB statement

is calculated from the argument, which can be any valid BASIC

expression.

CRUN (Type: Statement Cat *: 169)

Line Range: 12396-12404

Module: CCMDS

Example: CRUN -100*(M =4)

The target line number in this variant of the RUN statement is

calculated from the argument, which can be any valid BASIC

expression. Unlike RUN itself, CRUN cannot be used alone —

the argument expression is required.

CRESTORE (Type: Statement Cat #: 170)

Line Range: 12406-12446

Module: CCMDS

Example: CRESTORE 25

This version of the RESTORE statement requires an argument

expression, which specifies the line from which data is to be

read by subsequent READ statements.

SPEED (Type: Statement Cat*: 171)

Line Range: 12448-12542

Module: SPEED

Example: SPEED 15

This statement specifies a speed at which all printing will be

performed. Larger arguments slow printing, to a maximum of

255. A zero argument restores normal-speed printing.

TRAP (Type: Statement Cat *: 172)

Line Range: 12544-12664

Module: TRAP

Example: TRAP 100

This statement specifies a line at which program execution will

resume if an error, such as a syntax or illegal quantity error,

should occur. The only other effect on the program is that the

stack is cleared, ending any current FOR-NEXT loops and

escaping to top level from any currently-executing subrou

tines.

ERROR (Type: Function Cat *: 173)

Line Range: 12666-12670

Module: TRAP

Example: IF ERROR = 11 THEN PRINT " BAD SYNTAX!"

This pseudo-variable contains the BASIC error number of the

most recently trapped program error.

ERRLIN (Type: Function Cat *: 174)

Line Range: 12672-12692

Module: TRAP

Example: PRINT " THE ERROR WAS IN LINE" ;ERRLIN

This pseudo-variable contains the number of the line in which

the most recently trapped program error occurred.

Program 1: LWRITE

LK

FH

JH

HH

DF

JH

NJ

BL

BF

FN

CC

PH
\S p.

Bl

FK

NH

El

NK

BJ

NA

FN

KJ

GJ

CC

IH

AL

IC

Kl

FJ

EK

AD

BL

JL

LJ

CA

IH

LG

JK

OC

CE

LA

BO

EO

0 rem Iwrite (s. hammer 12/85)

1 :

2 rem 4 statement:

3:

;, 0 functions

4 rem keyword characters:

5:

6 rem keyword

7 rem s/ldvn

8 rem s/lsec

9 rem s/lwrite

10 rem s/llist

11 :
j O rC\rr\

i c_ r6m = = = = = = = = —

13:

routine

Idv

Ise

Iprn

1st

19

line ser#

12190 161

12212 162

12236 163

12252 164

149 .asc "IwritEldvNIseCllisT"

1149 .word lprn-1

12190 Idv jsr

12192 cpx

12194 bcc

12196 cpx

12198 bcs

12200 stx

12202 rts

12204;

12206 badev Idx

12208 jmp

12210;

12212 Ise jsr

12214 stx

12216 rts

12218;

12220opf jsr

12222 Ida

12224 jsr

12226 Ida

12228 Idx

12230 Idy

12232 jsr

12234 jmp

12236;

122381pm jsr

12240 Idx

12242 jsr

,ldv-1,lse

$b79e

#3

badev

#8

badev

dv

#9

$a437

$b79e

se

Ipr1

#0

$ffbd

#$78

dv

se

$ffba

SffcO

opf

#$78

$79

3-1,iSt-1

;get device #

;test 3< = dv< = 8

; no

; no

;'illegal device*'

;get sec address

;ensure file closed

;no name

;kernal setnam

;file#120

;kernal setlfs

;kernal open

;open print file

;file#

The Transactor 2O Sept. 1986: Volume 7, Issue O2

JK

AH

HH

CE

CF

PF

OG

DP

FA

FG

EF

PH

PP

EG

DA

FG

NG

JD

CA

AG

PK

CB

MOIVIW

IH

CO

LI

LL

OB

IH

LG

PB

II

JD

MK

KA

AJ

IA

FH

Al

HH

HO

JH

NJ

KO
uu
ivi n

on

OH

LL

PK

BF

FN

LP

IM

EE

OA

KF

12244

12246

12248

12250

12252

12254

12256

12258

12260

12262

12264

12266

12268

12270

12272

12274

12276

12278

12280

12282

12284

12286

1 009.9.

12290

12292

12294

12296

12298

12300

12302

12304

12306

12308

12310

12312

12314

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

9 ■o .

Q rpm<y 1 Cl 11

10:

jsr

Ipr1 jsr

Ida

jmp

1st jsr

jsr

Idx

stx

jsr

jsr

jsr

jmp

Ifix Ida

Idy

sta

sty

Ida

Idy

sta

sty

rtc

Iret Ida

Idy

sta

sly

jsr

jsr

jmp

$aa90

$abb5

#$78

$ffc3

opf

Ifix

#$78

$13

$e118

$aad7

$79

$a6a4

$0300

$0301

wsvec

wsvec +

#<lret

#>lret

$0300

$0301

wsvec

wsvec +

$0300

$0301

$aad7

Ipr1

$e386

dv .byte 4

se .byte $ff

wsvec .word $e38b

>

Program 2:

rest (w. happ)

1 statement

print rtn entry

;basic clrchn

;close file

ikernal close

;open print file

;grab warmstt vec

;file#

; basic chkout

;printcr & If

;reget byte

;basic list entry

;direct warmstart

; vector to

; routine below

1

;restore old

1 ; ws vector

;print cr & If

idrchn, close

;exit to ready

;printdev#

;printsecaddr

;warmstart rtn

REST

, 0 functions

keyword characters:

keyword

s/restore

150 .asc " restorE

1150.

12316

12318

12320

12322

12324

12326

12328

word res-1

res beq

jsr

jsr

bcc

Idx

Idy

dex

routine

res

1

re2

$a96b

$a613

re3

$5f

$60

7

line ser #

12316 165

;no parameter

;ascii to integer

;test line exists

; no

;get line address

;point to null byte

GE

HO

LF

IF

OB

IG

FG

OK

AN

FH

Al

HH

EO

JH

NJ

PI

MH

no

OH

EM

BO

PM

IO

LM

GG

OC

KL

IB

FH

JH

HH

IE

JH

NJ

MD

KH

CP

BP

PH

KD

RlLJ 1

CP

Cl

PO

NP

AM

GC

ML

KE

OM

BB

12330 bne re1

12332 dey

12334re1 stx $41

12336 sty $42

12338 rts

12340re2 jmp $a81d

12342re3 jmp $a8e3

12344;

Program 3:

0 rem clra (w. happ)

1 :

; before line

;update data ptr

; basic restore

;'undef statement'

CLRA

2 rem 1 statement, 0 functions

3:

4 rem keyword characters:

5:

6 rem keyword routine

7 rem s/clra clr

8:

Q rpmc? iciii

10:

151 .asc "clrA"

1151 .wordclr-1 .

12346 clr Ida $2f

12348 Idy $30

12350 sta $31

12352 sty $32

12354 rts

12356;

4

line ser#

12346 166

;set end-of-arrays

; ptr to start-of-

; arrays

Program 4: COMPUTED CMDS

0 rem computed cmds (j- rubin sept/85):

1 :

2 rem 4 statements, 0 functions

3:

4 rem keyword characters:

5:

6 rem keyword routine

7 rem s/cgoto cgto

8 rem s/cgosub cgsb

9 rem s/crun crn

10 rem s/crestore crsr

11 :

1 O ram\ C. I Cl I I

n ■

23

line ser #

12358 167

12364 168

12396 169

12406 170

152 .asc "cgotOcgosuBcruNcrestorE"

1152 .word cgto-1 ,cgsb-'

12358 cgto jsr din

12360 jmp $a8a3

12362;

12364 cgsb Ida #3

12366 jsr $a3fb

12368 Ida $7b

12370 pha

12372 Ida $7a

,crn-1,crsr-1

;eval line #

;enter goto

;check stack space

;push chrget ptr

The Transactor 21 Sept. 1986: Volume 7, Issue O2

CN

LA

GN

JP

KN

MG

ON

GH

KE

ND

AO

Al

JN

PN

EH

KO

HN

PG'
GP

MD

KP

MO

HK

OG

LE

CH

II

EB

Jl

ND

IA

GF

CC

AN

FH

OD

EB

JM

FH

Al

HH

FO

JH

NJ

OJ

MH

00

OH

NK

JJ

IC

EL

NF

10

GM

CF

12374

12376

12378

12380

12382

12384

12386

12388

12390

12392

12394

12396

12398

12400

12402

12404

12406

12408

12410

12412

12414

12416

12418

12420

12422

12424

12426

12428

12430

12432

12434

12436

12438

12440

12442

12444

12446

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8:

9 rem

10:

pha

Ida $3a

pha

Ida $39

pha

Ida #$8d

pha

jsr $79

cgs1 jsr cgto

jmp $a7ae

;

crn Ida #0

jsr $ff90

jsr $a660

beq cgs1

;

crsr jsr clin

Ida $7a

pha

Ida $7b

pha

jsr $a8a3

sta $42

Ida $7a

sta $41

pla

sta $7b

pla

sta $7a

cre1 rts

;

clin jsr $ad8a

jsr $b7f7

cmp #$fa

bcc cre1

jmp $b248

Program 5:

speed (guido strben

;push line #

;push gosub token

; "crun" entry

interpreter loop

;kernal msgs off

;clr

;branch always

;eval line #

;push chrget ptr

; basic goto

;new chrget ptr to

; data pointer

;restore chrget ptr

;eval num expr

;convto integer

;test < 64000

; yes

;'illegal qty'

SPEED

11/85) :

1 statement, 0 functions

keyword characters

keyword routine

s/speed spd

=================

153 .asc "speeD"

1153.

2125

2555

9162 r

9165

9178

9180;

word spd-1

jsr morvec

jsr kilvec

norvec = *

jsr spdon

rts

5

line ser #

12448 171

================

;print $326

MJ

AJ

KN

GG

BK

EK

KB

KA

Dl

EK

BK

CD

BJ

II

OG

FF

IG

MN

BB

ED

MG

GH

AE

NH

EE

IG

BK

Ml

EM

Jl

FM

PL

HK

CG

HK

GG

MH

IF

OJ

KM

LN

EC

IN

EG

KB

00

PP

MG

BN

BG

GN

EH

9182 kilvec

9185

9198

9200;

12448 spd

12450

12452

12454

12456

12458

12460

12462

12464

12466

12468sp1

12470

12472sp2

12474

12476 sp3

12478;

12480 dly

12482

12484

12486

12488

12490

12492 dl1

12494 dl2

12496

12498

12500

12502

12504

12506

12508

12510

12512

12514;

12516spdon

12518

12520

12522

12524

12526;

12528spdoff

12530

12532

12534;

= *

jsr spdoff

rts

jsr $b79e

stx xbyte

cpx #0

beq spdoff

Ida $0326

cmp prvec

beq sp1

Ida $0327

cmp prvec +

bne sp3

Ida #<dly

Idy #>dly

sta $0326

sty $0327

rts

pha

txa

pha

tya

pha

Idx xbyte

Idy #$c8

dey

bne dl2

dex

bne dl1

pla

tay

pla

tax

pla

jmp (prvec)

Ida $0326

Idy $0327

sta prvec

sty prvec +

rts

Ida prvec

Idy prvec +

bne sp2

12536.if>(*&255) + 1: * =

12538prvec

12540 xbyte

12542;

.word 0

.byteO

;print $326

;get byte in ,x

;put it away

;test speed 0

; yes

;test vec altered

; no

1

; yes

;point to delay

; routine

;push registers

;get speed

;init counter

;eattime

;restore registers

;print

1

1

* + (*&1)

The Transactor 22 Sept. 1986: Volume 7, Issue O2

NM

FH

El

HH

LE

JH

NJ

BJ

ME

CK

OH

JD

Al

NO

KC

GJ-

II

IC

EL

NF

NF

KE

GM

CF

MJ

ID

CC

KN

GG

JM

10

GN

El

GO

CH

ND

EF

ON

EJ

CP

Gl

LD

KC

MN

MF

DH

JJ

HL

PJ

PM

DM

CJ

Ml

MC

IE

BK

LM

OC

IE

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

9 rem

10:

Program 6: TRAP

trap (william

1 statement

turner)

, 2 functions

keyword characters: 1 i

keyword

s/trap

f/error

f/errlin

11 rem = = = = = = = = =

12:

154 .asc "traP"

routine

tra

erro

errl

623 .asc " erroRerrliN "

1154.

1623.

2125

2555

9162 r

9164

9166

9178

9180;

91821

9184

9186

9198

9200;

word tra-1

word erro-1

jsr

jsr

norvec =

jsr

jsr

rts

ulvec =

jsr

jsr

its

9202 autoff Ida

9204

9206

9208

9210

9212;

sta

Ida

sta

rts

9214auton Ida

9216

9218

9220

9222

9232;

10082

10084

10086

12544

12546

12548

12550

12552

12554

12556

12558

12560

12562

12564

12566

12568

12570

12572

sta

Ida

sta

its

,if>(*&255)

,errl-1

morvec

kilvec

*

auton

erron

*

autoff

erroff

wrmsrt

$302

wrmsrt +1

$303

$302

wrmsrt

$303

wrmsrt +1

+ 1: * = * +

wrmsrt .word 0

tra jsr

jsr

sty

sta

tax

bne

tya

beq

tra1 bit

bmi

Ida

Idy

sta

sty

Ida

$ad8a

$b7f7

tlin

tlin + 1

tra1

erroff

trflag

tra2

#<newv

#>newv

$0300

$0301

#<warm

line ser #

12544 172

12666 173

12672 174

;warm start $302

;error $300

;warm start $302

;error $300

;from d. spruyt's

; prg management

; module

;from d. spruyt's

; prg management

; module

(*&1)

;get addr for trap

;store line #

;test trap off

; no

; yes

;test trap on now

; yes

;use new err vec

;use new ws vector

AG

FN

ID

JG

FJ

IO

AK

FB

DK

NF

HE

PA

IF

AP

EN

Ol

BB

IA

NG

IN

CE

FK

BJ

CP

KM

JJ

IM

MB

AG

JK

JD

OO

EN

LL

OO

HB

KH

IJ

GF

CO

JA

GB

KB

OD

CG

OO

PL

OK

EP

BJ

GA

ME

MP

CG

NO

IP

IK

EO

Ol

KA

12574

12576

12578

12580

12582

12584 tra2

12586;

12588 newv

12590

12592

12594

12596

12598

12600

12602

12604

12606

12608

12610

12612

12614

12616

12618

12620

12622

12624

12626;

12628 warm

12630

12632 ;

12634

12636

12638;

12640 erroff

12642

12644

12646

12648

12650

12652;

12654 erron

12656

12658

12660

12662

12664;

12666 erro

12668

12670;

12672 errl

12674

12676

12678;

12680eout

12682 errvec

12684 tlin

12686 errno

12688 eline

12690 trflag

12692 ;

Idy

sta

sty

Ida

sta

rts

bmi

stx

Ida

Idy

sta

sty

bit

bpl

Ida

Idy

sta

sty

Idx

txs

Ida

pha

Ida

pha

jmp

jsr

jsr

jsr

Idx

jmp

Ida

Idy

sta

sty

Isr

rts

Ida

Idy

sta

sty

rts

Idy

jmp

Idy

Ida

jmp

#>warm

$0302

$0303

#$80

trflag

warm

errno

$39

$3a

eline

eline +1

trflag

eout

tlin

tlin + 1

$14

$15

#$fa

#$a7

#$ad

$a8a3

erroff

autoff

ownrtn

#$80

($0300)

errvec

errvec +1

$0300

$0301

trflag

$300

$301

errvec

errvec +1

errno

$b3a2

eline

eline+ 1

usfp

.byte $4c

.word 0

.word 0

.byte 0

.word 0

.byteO

;trap flag on

;branch on run-stop

;store error #

;store line #

;test trap on

; no

;get trap line*

;clear stack

;push interpreter

; loop address

;goto trap line

;cancel hi-resetc

;exitto 'ready.'

;trap flag off

;jmp

;old error vector

;trap line

;error number

;erroneous line #

;trap set flag

The Transactor 23 Sept. 1986: Volume 7, Issue O2

The ATARI ST Notebook Jack Cole

Kitchener, Ont.

New hardware is, after all, new hardware. And using a new

operating system is, after all, like opening a can of worms. . .

Sometime early in the summer of 1985 we became one of the

first developers privileged to receive a pre-production version

of the Atari 520ST. To say we were privileged is of course

dependent on your point of view. We were all excited at the

prospects of playing with the beast, but the thought of doing

real work on it left us quite apprehensive. New hardware is,

after all, new hardware. And using a new operating system is,

after all, like opening a can of worms - with your teeth. And

pre-releases are generally best left until they are no longer

pre-releases. And pre-releases with windows and rodents are

best dragged quickly over to the trash can symbol (or so we

believed). The ST had tremendous potential in this regard; it

could be potentially difficult to get our code where we wanted

it, and it could be potentially impossible to debug. New ma

chines very often wither away and die from these maladies as

may the programmers who beat their heads against them.

As it turned out, we needn't have concerned ourselves. The ST

is a refreshingly solid and simple system.

Our mission was to investigate and hopefully port our network

(IMAGINET) and software products from the PC-10, Compaq,

and IBM compatible machines to the new Atari, there to

provide low cost and high performance network workstations

for our database (The Manager). This notebook will provide an

overview of the Atari programming environment and how we

found in a development atmosphere. Please remember that

our needs and desires in a computer may bear little resem

blance to yours, so some of our criticisms and preferences may

seem trivial to you. They probably are!

The Hardware

First of all a brief description of the ST hardware may be in

order. 1 won't go into much detail here though; lots of articles

have been written in other places about the 520 and it's new

big brother the 1040. Especially see the November 1985 issue

of The Transactor and the March 1986 issue of BYTE which

looks inside the 1040 in very nice detail. Our experience has

mostly been with the 520 without the operating system in

ROM; however our recent 1040 investigations indicates that

comments here apply to all versions of the machines.

The ST comes in several pieces; more on this later. Both colour

and monochrome monitors are available. The monochrome,

operating in high resolution mode, offers 640 by 400 pixels; the

colour offers 640 by 200 with four colours (medium resolution)

or 320 by 200 with 16 colours (low resolution). What this really

means is that in order to view 80 columns - an absolute

necessity for professional programming or business use - only

four colours can be used. This turns out to be a bit restrictive for

some applications, but not fatal.

The 1040 has a built-in 3.5 inch double-sided floppy drive.

The external drives (you may have two drives attached) come

in either single- or double-sided versions, with formatted

capacities of 360k and 720k respectively. The drives seem to be

slower than they should, but the real drag with the externals is

that each requires a separate power supply, and operates at the

end of a very short cord from the main system unit. As a result

(especially true of the 520) the drives and paraphernalia tend to

be annoyingly in the way.

Our prototype hard disks - a slight variation of SCSI disks,

dubbed ACS1 by ATARI - have performed well. The 20 mega

byte drive is extremely quick and seems very reliable. Now that

this drive is ready for the general public, it should knock

several layers of socks off, and at a very affordable price!

The DMA port, through which the hard disk is connected, is

intended to support up to 8 devices. Already developed and

waiting for the "right time" is a CD-ROM - a very large

capacity, read only storage system using compact disk technol

ogy. ATARI is supposedly waiting for a CD that can be used both

for audio and with the ST. The DMA port is also the logical

place for a network connection, and indeed is where ours

connects, looking for all the world to the ST like a collection of

hard disks. The two complaints we have with the DMA port are

that (again) the cables must be very short, and the ST has

difficulty (electrically) in handling more than one device. ATARI

(or a third party) is believed to be building an eight connector

box to remedy these problems.

The system unit is the real meat. Driven by a Motorola 68000

16-almost-32 bit processor, it also contains the RAM (512k or

1M), the operating system in ROM (early versions of the

machine did not have TOS in ROM, but it is now available),

MIDI, RS232, mouse and parallel ports, interfaces for the disk

drives and monitors, power supplies for the 1040, and so on.

Oh, and one other thing. The system unit is really the key

board.

The layout of the keyboard is very similar to that of an IBM PC;

undoubtedly a good bit of planning as it makes migration from

that machine a bit easier. It has 10 function keys, an 18 key

numeric cluster and an extra 8 key cluster, in addition to the

The Transactor 24 Sept. 1986: Volume 7, Issue 02

regular alpha key layout. The feel of the keyboard is, however,

less than satisfactory. The keys are dead to the touch offering

no tactile feedback, so that a former PC user would be very

uncomfortable typing on the ST. The 1040 has made very slight

improvements in this area; more are needed.

The second major complaint with the physical side of the ST is

that it does indeed come in pieces. A two-floppy 520 develop

ment system comprises 3 power supplies, 4 power cords, and 3

other very short cables, apart from the 4 basic components.

This results in a cluttered and awkward desk, and a difficult

system to transport. The plethora of cables means that the

keyboard is virtually fixed in place. The 1040, by building in

two of the supplies, one floppy and an RF modulator (in some

models) will make the ST much tidier and easier to pick up and

take home from the office. In the mean time there's a fortune to

be made selling nice little cases to pack your ST into.

The Operating System

Many 68000 based machines have been brought to market in

the last 3 or 4 years, necessitating 68000 based operating

systems. Most developers went to some UNIX variation or

another, because UNIX had been well shaken down on various

Digital Equipment machines and the 68000 suited UNIX to a

tee. Besides which, it was trendy to have UNIX available; sort of

like the flavour of the month at the local Yuppie Gourmet Tofu

Palace. So,, many 68000 boxes come with an official UNIX

System, some other port (with a UNI prefix or IX suffix) or a re-

implementation by another software house. Motorola, as the

chip developer, got off to an early start with its own VersaDOS

system and then jumped on the bandwagon by offering UNIX

as an alternate system for their VME line. Commodore, as was

discussed in a recent issue of The Transactor, came out with

a new multi-tasking multi-window DOS for the Amiga. But

what I believe these people missed when bringing their stuff to

market, was that such offerings are much too complex for

nearly everyone's needs. (Mind you, only one of these compan

ies is truly aiming at the mass market!) As a one-time UNIX

system's fanatic (I, too, was once guilty of porting UNIX to a

new 68000 box) I can appreciate its tremendous power and

efficiency. However putting UNIX-type products in front of

most users, is like giving them a 747 when they asked for a

Toyota. It has way too many gadgets, takes way too many

resources, makes mostly noise and smoke, requires lots of

special training and probably doesn't fit in the garage anyway!

On the whole it creates more problems than it solves; more

people will give up than will manage to take off.

Some percentage of the (briefly euphoric) latter group may

actually land safely again.

The ST operating system (TOS) turned out to be a very pleasant

surprise. When ATARI needed an operating system developed,

they went to Digital Research (DRI) - literally; ATARI supplied

most of the people and did much of the work while DRI

retained the rights. Using DRI proved to be both a blessing and

a curse. The curse is that much of TOS is now out of ATARI'S

hands, and so problems with TOS may take a long time to be

fixed, simply because ATARI does not have the means and DRI

does not have the inclination. Hopefully these issues will be

resolved, so that future releases of TOS can correct some of the

existing problems.

The blessings are that TOS has so few of these "problems", and

is not simply "son of UNIX" or even "son of CPM" as it could

easily have ended up. While there are some CPM/68K hold

overs, the really good news about TOS is that it is basically (are

you ready) an MSDOS compatible system! That's right, DRI

took the foundation of MSDOS and recreated it on the ST. Note

that this does not mean that programs from your PC will run on

the ST. It does mean that they can be moved to the ST much

more easily. While they were at it, DRI moved their GEM

windowing environment (developed for MSDOS) as well. Peo

ple familiar with windows will find GEM's Desktop very famil

iar (Apple believed it was much too familiar, and sued DRI); the

trash can, disk and file icons are there, as are the standard

mouse operations. The screen is quite nicely done; much

cleaner than the Amiga screen. Those of you who dislike

rodents will be pleased to know that the windowing environ

ment can be punted (if it is in RAM), leaving a shell (the proper

name for a Command Line Interpreter) which will execute

commands from the keyboard.

The on-disk structures are identical to those of MSDOS (very

conveniently allowing PC's and ST's to share disks on a

network). The resulting fitesystem is very straightforward; it is

not easily damaged and quite simple to repair. The operating

system calls (open a file, read a file, etc.) are nearly the same as

MSDOS, making the job of software porting very direct. This

was another smart move by ATARI, as it should speed up the

availability of popular software packages.

However, all is not perfect. TOS has not yet been equipped with

the adequate set of utilities that make up MSDOS. If you work

outside of the windowed environment, you must be prepared

for frustrations. The shell has a few-built in commands (COPY,

RENAME, TYPE etc.) but they are awkward and do not accept

wildcards properly. There are very few external commands,

and they are equally crude. Fortunately, the C compiler, assem

bler and linker included with our development kit worked fine

(well, nearly so) and we were able to surmount these problems.

The first things- we moved to the ST were our own screen

editor, shell, object librarian, file system patcher, copy pro

gram, and a collection of other useful utilities. Our familiar

programming environment from the PC was all in place on the

ST in 3 or 4 weeks, so that we now have two nearly indistin

guishable systems to work on.

TOS Calls

As mentioned, the operating system calls are nearly identical to

those of MSDOS version 2. Some of the more subtle things were

missed, leading us to suspect that DRI didn't really know how

the MSDOS versions performed but instead worked from a

manual. A few calls have been removed and a couple of them

work slightly different, but the discrepancies are very minor.

All are reached by building a parameter block on the stack and

issuing a special 68000 instruction, TRAP 1. The item at the

The Transactor 25 Sept. 1986: Volume 7, Issue O2

top of the stack is the 16-bit function

number as described below, followed

by the function's parameters. This pa

rameter passing convention is the

same as that used by C and other high

level languages, and makes high level

calls to TOS quite simple. Most results

are returned via data register 0. Table 1

summarizes the TOS function calls,

and their MSDOS equivalents. You will

notice that most of the unimplemented

calls are either for obsolete or obscure

functions.

In addition there are (at last count) 50

TOS or BIOS variables whose memory

locations are "cast in concrete". These

include very useful items such as a

timer tick counter, disk buffer list,

magic'vectors and configuration infor

mation. To examine/modify these

items a program must first change to

supervisor mode (TOS function 32),

then change back when finished.

BIOS Too

There is also a fairly extensive set of

BIOS (ROM resident) routines, for

working at a level closer to the hard

ware. These functions are accessed in

the same way as the TOS calls, but

through TRAP 13 and TRAP 14 in

structions. These functions are in no

way related to the PC; compatibility

does not extend down to the BIOS

level. Some hi-lights of the BIOS

functions are summarized in Table 2.

Now that you know more than you

probably ever expected to about the ST, let me close with some

warnings. TOS and GEM are still infected with a few rather

unpleasant bugs. This is not surprising; even MSDOS went

through some pretty poor releases before they got it right. The

people at ATARI seem very anxious to sort these things out (it is,

after all, probably life or death for them) and get full marks from

us for co-operation. Many of the bugs that we reported last

summer and fall were fixed in the two or three updates we have

since received. We were even able to visit ATARI and talk to the

developers about some of the problems. Regrettably however,

some rather nasty bugs have stuck around long enough to get

into the first set of TOS ROMs, and thereby are assured a place

in history.

One such bug allows the creation of a file when another file of

the same name is already open, resulting in two files with the

same name. Another prevents the use of disks with a cluster

size (the number of sectors making up a disk allocation unit)

greater than two. This turns out to be a nasty problem with

networks of ST's and PC's, where such disks may already exist.

*(dec.)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

18

19

20

21

22

23

24

25

26

27

28

29

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

TABLE

FUNCTION

Terminate current process

Read standard input with echo

Display character to standard output

Read character from serial port

Write character to serial port

Write character to the printer

Direct console I/O - read AND write

Read standard input without echo

Same as 7, but check for control characters

Print string to standard output

Read a line from standard input

Check standard input for character ready

Not implemented

Not implemented

Select default disk drive

Not implemented

Check standard output ready

Check printer ready

Check serial port character ready

Check serial port character ready

Check serial port output ready

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Get current drive number

Set disk transfer address

Not implemented

Not implemented

thru 31 Not implemented

Toggle from user to supervisor mode

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Get current date

Set current date

Get time

Set time

Not implemented

Get disk transfer address

Get version number

1

COMMENTS

different terminating character

MSDOS: Clear input buffer and do input

MSDOS: Flush disk buffers

TOS: returns more information

MSDOS: old file open

MSDOS: old file close

MSDOS: old find file

MSDOS: old find next

MSDOS: old find next

MSDOS: old file delete

MSDOS: old sequential read

MSDOS: old sequential write

MSDOS: old file create

MSDOS: old file rename

MSDOS: neither

TOS: has 16 maximum

used by function 78

MSDOS: get default disk ID

MSDOS: get specific disk ID

MSDOS: neither

MSDOS: Not implemented

MSDOS: old random read

MSDOS: old write

MSDOS: old get file size

MSDOS: old FCB operation

MSDOS: set interrupt vector

MSDOS: old and sleazy program exec

MSDOS: old multiple record read

MSDOS: old multiple record write

MSDOS: old and sleazy filename parser

format of date is different

format of date is different

format different; TOS: poorer resolution

format different

MSDOS: set verify switch

The most serious known bug imposes a limit on the number of

sub-directories which may be touched on all devices from one

ST boot to the next. By "touched" I mean even passed over

during directory listings. The limit on the 520ST is 40 sub

directories; the 1040 limit is about 15 higher. Once this limit

has been reached, TOS, having exhausted a valuable resource,

is unable to recover, and dies a slow death giving Out of

memory errors.

The hypothesized origin of this bug is rather interesting, and

actually demonstrates four individual problems. As 1 men

tioned earlier, it appears that the TOS implementors were not

MSDOS wizards. This shows itself in the workings of the "find

first file" call, function 78. This call is often followed by multiple

calls to function 79, "find next file". To allow tree searching, the

calls must be recursive; that is, while doing one set of "find

files" one may find a directory and branch down into another

sub-tree, do more and different "find files", and then wish to

continue the original set. Hence the "find file" calls must

remember the environment they were working with at each

The Transactor 26 Sept. 1986: Volume 7, Issue O2

* (dec.)

49

50

51

52

53

54

55

56

57

58

59

60

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

TABLE

FUNCTION

Terminate process and stay resident

Not implemented

Not implemented

Not implemented

Not implemented

Get disk information/free space

Not implemented

Not implemented

Make directory

Remove a directory

Change current directory

Create a new file

Remove a directory

Change current directory

Create a new file

Open a file

Close a file

Read from a file

Write to a file

Delete a file

Seek within a file

Change file attributes (read only etc.)

Not implemented

Duplicate a file handle

Force a duplicate of a file handle

Get current directory

Allocate memory

Free allocated memory

Shrink a memory block

Exec another process

Terminate a process and restart parent

Not implemented

Find first matching file

Find next matching file

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Rename a file

Change a file's date and time

1 (cont'd)

COMMENTS

MSDOS: neither

MSDOS: control-break check

MSDOS undocumented: get busy flag

MSDOS: get interrupt vector

MSDOS undocumented: get/set switch character

MSDOS: get country dependent information

ST bug: file is always opened for writing

MSDOS: I/O control for devices

TOS: works differently at root

MSDOS: allocated in chunks of 16 bytes

MSDOS: can also grow a block

MSDOS: get return code. TOS: part of exec

MSDOS undocumented: switch processes

MSDOS undocumented: get current process id

MSDOS undocumented: get DOS tables

MSDOS: neither

MSDOS: get verify state

MSDOS: neither

TOS: broken

TABLE 2

returns IBM scan codes

13-1 Return input status of character device

13-2 Return character from input device

13-3 Output a character to a device

13-4 Read/write sectors on a device

13-5 Get or set interrupt vector

13-7 Get disk parameters

13-8 Get character device output status

13-9 Check for disk media change

13-10 Get a list of existing disks

13-11 Get/set status of shift, alt, control keys

14-0 Initialize mouse handler

14-2 Get the screen's physical base address

14-3 Get the screen's logical base address

14-4 Get the screen resolution

14-5 Set the preceding 3 parameters

14-6 Set the colour palette registers

14-7 Change one colour in palette

14-8 Read raw floppy device

14-9 Write raw floppy device

14-10 Format a track on a floppy

14-12 Write a string to the MIDI port

14-15 Configure RS232 port

14-16 Get keyboard translation tables

14-17 Get a random number

14-20 Dump screen to printer

14-28 Read or write registers on the sound chip

14-32 Submit a program to the sound generator

14-33 Get or set printer configuration

14-38 Execute some code in supervisor mode

14-39 Throw away the window stuff frees up 190k if TOS in RAM

"find first". MSDOS buries this infor

mation in a user-supplied buffer, put

ting the onus on the caller and

allowing a number of searches limited

only by the number of buffers a user

can afford. When the process making

these calls terminates, the buffers (be

ing part of the process) are freed auto

matically. TOS unfortunately keeps

this necessary information in internal

buffers, which it takes from a (finite

sized) small pool it keeps for such pur

poses. This is the first problem. When

the pool is used up, the second bug

steps in and kills TOS with the mislead

ing out of memory condition. Even this

might be infrequent enough to be of

little concern were it not for bugs three

and four. Inexplicably, TOS decides to

allocate one of these buffers every time

it touches a sub-directory, even if it

doesn't open it! Further, the buffers are

not given back to the pool after a proc

ess terminates. Consequently, TOS

blows up much more often than it

should.

Now admittedly, 40 sub-directories is a

fair lot especially for a floppy disk sys

tem. However, for a hard disk system

or a multiple hard disk network this

limit is a killer. One pass over our

office's network mail system, and TOS

blows up! Real good.

The Finish

I hope this has served as a useful "inside" introduction to the

ST. If you crave additional data, there's lots more where this

came from. Despite some negative remarks that may have

appeared, we are all extremely positive about the ST. Many of

our complaints have already been addressed by the 1040, and

those remaining are more than offset by the tremendously

good price of this powerful and flexible box. Besides, fore

warned is forearmed. The ST is the logical next choice for those

looking for more capabilities than their 8-bit home computer

provides, without having to learn to fly a 747. From our

perspective it is also a viable choice for professional business

and programming people. I think you'll be seeing a lot of ATARI

from here on in.

Jack Cole is Research and Development Project Leader at BMB

CompuScience in Milton, Ontario.

The Transactor 27 Sept. 1986: Volume 7, Issue O2

Commodore 128

Disk Boot Basics

Jim Butterfield

Toronto, Ontario

You probably know that the Commodore 128 has an Autoboot

feature. If you have a disk in your drive at the time you turn on the

power, you may get a message such as BOOTING. . . following which

a program may start automatically.

I'd like to talk about how the BOOT mechanism works; there are a

surprising number of combinations built into the system. Most users

have a Bootmaking program which will generate a simple autoboot.

Methods

All of the following events happen after the computer has been

completely initialized. Basic is in place and everything is running

normally; but just before saying " READY", Basic checks for a Boot.

1. Just after Basic starts up or when the command BOOT is given, the

computer reads the contents of track 1, sector 0 from the disk into

addresses 0B00 to OBFF. Even if the disk doesn't contain a " boot"

pattern, the information will be there if there's a disk in the drive. You

could set up your own coding there.

2. If the first three characters on the sector are the ASCII characters "

CBM", this is a Boot disk. The program will print BOOTING and we

will follow the steps listed below. Otherwise, the system returns to

Basic which now says READY.

3. The next four locations are checked; if they are non-zero, the

program will read in " boot sectors" from track 1 (and subsequent

tracks if necessary). The first two locations contain the address where

the load should start. The third location specifies the bank number for

the load, and the fourth tells how many blocks are to be loaded. (I

have not seen this feature used on a boot disk).

4. Starting at byte 7 (the eighth byte) there may be ASCII text followed

by a zero byte, or there may be just a zero byte. The system prints

anything it finds before the zero byte; the text, if any, will appear

behind the word BOOTING on the screen. The message BOOTING . .

. is now completed with three dots. Whatever is printed need have

nothing to do with any file name.

5. Starting behind the last zero (which terminated the BOOTING

message), there may be ASCII text followed by a zero byte, or there

may be just a zero byte. If there is any text there, it's taken to be a file

name. The name is prefixed with " 0:" (for drive 0), and then the

computer performs a BLOAD of that file from disk. (This feature is not

used with a disk set up with the AUTOBOOTMAKER program, even

though such a disk loads and runs a Basic program named by the

user). .

6. Behind this second name (if any) there must be machine language.

It may be nothing more than a hexadecimal 60, the RTS command to

return to Basic.

Count the Ways

Let's run through the different ways we can use these mechanisms to

get a program into the computer.

1. Without the CBM pattern, we'll still load track 1, sector 0; if we are

sure that the code is there, we may use it even though no BOOT

message is seen.

2. There may be a machine language program entirely within the

block at track 1, sector 0, and we want it to run immediately. We might

follow the CBM pattern with six zero bytes (four for no boot blocks,

one for no message, one for no load) with the code itself, which would

start running instantly.

3. There may be a machine language program entirely within the

block, but we don't want it to run until called. We could use a pattern

similar to that described above, except that we would prefix a RTS

command (hex 60) at the start of our code. That way, the system

would return to Basic at boot time, and we could call the program with

a SYS when we needed it.

It would be better to give the user some help rather than have him or

her trying to remember what SYS address to use. We could put the SYS

command onto a function key - see the DOS SHELL detail given

below (but avoid using BANK 12). Or to make it more simple, we

could give the SYS address as part of the BOOT name. Here's how it

would go: suppose our machine language code starts at address $40

within the block. We'd write the block as follows:

Start with ASCII CBM (hex 43 42 4D). Follow that with four zeros (no

boot blocks). Follow that with the ASCII message " SYS2880" - 2880

is the decimal equivalent of hex $B40 followed by a zero; that would

be 53 59 53 20 32 38 38 30 00. Now another zero to signal that no

program should be loaded. Now the " immediate" machine language

program; just the RTS (hex 60). When this disk boots, you will see the

command BOOTINGSYS2880. . . which will tell the user what to do.

4. You could have a massive machine language program arranged on

track 1 (sectors 1,2,3, and so on). It could even be big enough to need

space of tracks 2 or 3. The four bytes right behind the CBM will tell the

system to do this load.

5. In addition to all the above: You could have the computer do a

BLOAD of any program in the disk's directory. Just put the name of

the program file before the last zero. This will not cause the program

to run, but you can arrange to do that with the machine language code

that follows.

6. On top of all the other features you must now write some machine

language, even if it's only the RTS to terminate the boot and return to

Basic. In this machine language you may do anything you like,

including loading files, printing messages, or whatever you think is

appropriate.

The Transactor 28 Sept. 1986: Volume 7, Issue O2

Some Examples

I have analyzed the contents of three C128 boot disks; what they

contain may be interesting for study (and plagiarism) purposes.

First, there's a disk generated by use of the AUTOBOOTMAKER

program. Note that the program does not use boot blocks, and

(surprisingly) doesn't use the load-a-file feature. It does the whole job

in the machine language section, setting up the Basic command, RUN

" FILENAME " and then asking Basic to execute this command.

Secondly, there's the CP/M boot disk. Again, no boot blocks, no

program load; everything is done in machine language. The program

consists of some simple cosmetic setups and then a jump to RAM 0 at

address FFDO. The code there will make the switch to CP/M. By the

way, the code at FFDO in RAM did not come from the Kernal

technical types might like to puzzle out exactly where it did come

from.

Thirdly, the DOS SHELL. No boot blocks. Program DOSSHELL is

loaded; the BOOTING message prints a name which is slightly

different from the file name. The machine language part moves Basic

so that it starts at $5A01 (ugh!); function key Fl is redefined, and an

information message is printed.

BANK 12, used by the DOS SHELL program, is not a good bank

configuration for you to use. It makes RAM 0 available for addresses

up to $7FFF rather than its normal limit of $3FFF. You'd be better off

using BANK 15, allowing the machine language program itself to set

up more memory space if needed (the program would probably do

this with LDA *$0E . .. STA $FF00).

The contents of track 1, sector 0 is annotated in the three examples.

With a little study, you too will be able to customize your own boot

disks.

You can use a "disk doctor" type of program to write that track and

sector, or you can write your own with a U2 type of disk command.

Either way .. . have fun.

Disk Created with AUTO BOOTMAKER

The disk was created to load and run a programed called VANCOU

VER.

Bytes 00 to 02: "CBM"

Bytes 03 to 06: all zero, no boot blocks.

Bytes 07 to OF: " VANCOUVER"; name to be displayed in BOOT

message

Byte 10 : binary zero (end of display name)

Byte 11 : binary zero (no load name)

Bytes 12 to 18: machine language code:

A2 18 LDX #$18

A0 0B LDY *$0B

4C A5 AF JMP $AFA5

. . .which forces Basic to starting running code starting at $0B19 (and

that's the code following, of course).

Bytes 19 to 25: tokenized Basic line, reading:

RUN"VANCOUVER

CP/M Disk

The CP/M track 1, sector 0 starts up this way:

Bytes 00 to 02: "CBM"

Bytes 03 to 06: 00 00 00 00 no boot blocks

Byte 07 : 00, no name for the BOOTING message

Byte 08 : 00, no program name to load

Bytes 09 to 23: machine language code:

78

20

A9

8D

A9

8D

A9

8D

A9

8D

4C

DOS SHELL Disk

84

3E

00

C3

EE

08

EF

00

FO

DO

FF

FF

FF

FF

FF

FF

SEI

JSR

LDA

STA

LDA

STA

LDA

STA

LDA

STA

JMP

$FF84

*$3E

$FF00 (sort of Bank 0)

#$C3

$FFEE

*$08

$FFEF

*$00

$FFF0

$FFD0

The boot block starts up like this:

Bytes00 to02: "CBM"

Bytes 03 to 06: 00 00 00 00 no boot blocks

Bytes 07 to 15: name, C128 DOS SHELL, followed by 0

Bytes 16 to IF: filename, DOS SHELL, followed by 0

Bytes 20 to 73: machine language code:

(Set up key Fl):

A9

85

A9

85

A9

85

A9

A2

A0

20

74

2D

0B

2E

OF

2F

2D

01

12

21 CO

LDA

STA

LDA

STA

LDA

STA

LDA

LDX

LDY

JSR

#$74

$2D

*$0B

$2E

*$0F

$2F

*$2D

#$01

*$12

$C021

(A call to FF65 would be more standard)

(Set start-of-Basic to $5A00):

(The three zeros):

A0

A9

(0B39)99

88

10

03

00

00 5A

FA

(Basic Start and

A9

85

A9

85

A2

8E

8D

01

2D

5A

2E

03

10 12

11 12

(Set screen cursor):

18

A2

A0

20

05

ID

F0 FF

(Print message):

20 7D FF

LDY

LDA

STA

DEY

BPL

#$03

#$00

$5A00,Y

0B39

End pointers):

LDA

STA

LDA

STA

LDX

STX

STA

CLC

LDX

LDY

JSR

JSR

*$01

$2D

#$5A

$2E

#$03

$1210

$1211

#$05

#$1D

$FFF0

$FF7D

(0B5A) message (DOS SHELL ON, etc.)

(0B73)60

Bytes 74 to 86: Function key

RTS

definition:

BANK 12:SYS 6656 + CHR$(13)

The Transactor 29 Sept. 1986: Volume 7, Ismo O2

New Loops:

The Commodore 128

Basic Stack

Jim Butterfield

Toronto, Ontario

. .Some programmers have a knack forgetting themselves tangled up in code. . .

Even if you're just a Basic person, you've likely heard about the

"stack". That's the place where the computer leaves temporary

notes for itself. . . how to get back from a subroutine or

interrupt, plus other small bits of data.

From the Basic end, the stack holds two items of interest:

information on live FOR/NEXT loops, and information on

active subroutines. Whenever your program commands FOR.

.. or GOSUB.. . the computer notes the command location and

the current line number. That's so it will know where to come

back to when it encounters a NEXT or RETURN as the case may

be, and so it can reinstate the line number in case an error

notice is needed.

That's all that is noted for a GOSUB, since all the program

needs to know is how to RETURN. The FOR command puts

away lots more data, however. It gives the variable identity, the

step value, the loop limit, and whether the loop is counting up

or down (say, with a STEP -1). That way, NEXT can modify the

loop variable by the right amount and then test to see whether

to go around the loop again.

All this adds up to: seven items on the stack to log a GOSUB,

and eighteen items to record a FOR. These items are reclaimed

later - at least they should be. RETURN wipes out the GOSUB

entry, and NEXT will kill the FOR entry when the loop has

been exercised the proper number of times.

On earlier Commodore machines, this stuff went onto the

"hardware" stack. That's the area from 506 going down to 320

(hex $01 FA down to $0140), or about 186 locations. That

means that you can nest about ten FOR/NEXT loops, or you

can go about 24 subroutines deep. Try to go further and you'll

get an ?OUTOFMEMORY error, which is puzzling to beginners

since there seems to be lots of memory left.

Most programmers get 7OUTOFMEMORY because of sloppy

subroutine handling. Within a subroutine, they forget to RE

TURN and instead leap directly back into the main code with a

GOTO statement. The used part of the stack never gets re

stored, and eventually the program runs out of space. The

fastest demonstration of this is the one-line program, 100

GOSUB 100, which will bomb faster than you can say EBCDIC.

The C128

The 128 has a much bigger stack - over 500 bytes - and it's

reserved purely for Basic activity. This stack logs not only FOR

(eighteen bytes per item) and GOSUB (five bytes per item) but

also the new command LOOP (five bytes per item). Even

though this stack is much bigger, you can still fill it up quickly

with foolish programming.

The new stack is implemented in software, not hardware. It's

located in bank 0 in the area from hexadecimal 09FE down to

0800. There's a pointer stored at address 125 and 126 (hex 7D

and 7E) which indicates the last location in use. The stack fills

from the top down; if the stack is empty, the pointer will say

$09FF, if it's nearly full the pointer will have dropped to the low

800's.

Here's a detailed rundown of what goes on the Basic stack for

each type of entry:

FOR - hex $81 to indicate a FOR entry;

loop variable address (two bytes);

increment floating value (five bytes);

increment sign, 01 or FF (one byte)

variable limit, floating (five bytes);

line number (two bytes);

return address (two bytes).

The Transactor 3O Sept. 1986: Volume 7, Issue O2

GOSUB - hex $8D to indicate a GOSUB entry;

line number (two bytes);

return address (two bytes).

DO - hex $EB to indicate a DO entry;

line number (two bytes);

return address (two bytes).

Mechanics

It's useful to get a feeling for the workings of these. When a

Basic program executes a FOR, GOSUB, or DO, the appropriate

entry is placed on the Basic stack. Extras: FOR searches to see if

the stack contains a previous FOR entry with the same variable

name; if so, it strips the stack back to that point and then makes

the entry. . . but it can only look through FOR entries. Exam

ple: a sequence such as FORJ. . . GOSUB. . . FOR! would work

badly; the new FORJ wouldn't catch the previous FORJ that

had been started outside the subroutine.

DO may also have an extra: If WHILE or UNTIL is part of this

statement, Basic will check and if necessary skip ahead to the

appropriate LOOP statement. Note that although a FOR/NEXT

must be executed at least once, a DO/LOOP may have its

contents skipped entirely - a straight hop from the DO to the

LOOP with everything in between ignored.

Now we come to the other end of these constructs. A NEXT will

cause all earlier FOR entries to be searched for a matching

variable name, although the computer will not search across a

GOSUB or DO entry. When the right entry is found, the

variable is "stepped" and tested for within range. If it's in range,

Basic goes back; if not, the stack entry is scrapped and the

program proceeds.

A RETURN will cause a scan of the entire stack. . . the most

recent GOSUB entry found will be honoured and the stack

stripped back to that point. Note that if FOR loops or DO

structures had been opened within the subroutine, they will be

scrapped upon RETURN.

A LOOP action depends on whether or not the command is

followed by a WHILE or UNTIL. Assuming the LOOP statement

is found to be active, it will scan the entire stack. The most

recent DO entry found will be honoured and the stack stripped

back to that point. Note that if FOR loops or subroutines had

been opened within the DO structure, they will be scrapped

upon LOOP.

Sample Program

Let's write a Cl 28 program to allow names to be entered, sorted

and listed. We'll look at the stack, commenting on some of the

workings. Here's the program:

1 -ENTER NAMES'

2-LIST NAMES"

3-QUIT"

PROGRAM: LOOPER

100DIMN$(100)

110DO

120 PRINT

130 PRINT

140 PRINT

150 PRINT

160 PRINT

170 INPUT " YOUR CHOICE" ;C

180 ON C GOSUB 200,300,400

190 GOTO 170

200 INPUT "NAME";X$

210J = N

220 DO WHILE J>0

230 K = J-1

240 IF X$>N$(K) THEN EXIT

250 N$(J) = N$(K)

260 J = K

270 LOOP

280 N = N + 1

290N$(J) = X$

300FORJ = 0TON-1

310 PRINT N$(J)

320 NEXT J

330 RETURN

400 END

500 LOOP

Enter the program; you might like to play with it, entering

names and seeing them come out in alphabetic order. In a

moment, we'll change it in order to allow ourselves to look

around.

You should know that the array N$(..) uses element zero as the

first item. Thus, if N (the number of items) equals 3 the array

goes from N$(0) to N$(2).

The DO ... LOOP that extends from lines 220 to 270 is

different from the comparable FOR . . . NEXT, and usefully so.

Here's why. As we put each item into the table, we compare it

with the existing items. But the first time through, there's

nothing in the table to compare with. If I coded

FORJ = N-1 TOO STEP-1

. . .I'd be stuck on the first item (where N equals 0), since a

FOR/NEXT insists on exercising its contents at least once. No

such problem with the DO/LOOP, which skips over the inter

vening code when the first item is encountered.

We're about to look into the mechanics a little. If you don't like

tinkering with the works, or if you feel threatened by hexadeci

mal numbers, you might prefer to skip this section.

The Transactor 31 Sept. 1986: Volume 7, Istue O2

We want to analyze the stack, just to show that it's there and

can be viewed whenever you like. Let's put a STOP command

in at line 305:

305 STOP

RUN the program once again; call option 1 and enter any

name. When the program stops, command MONITOR.

Now we'll examine the Basic stack pointer. Command M7D7E

and look at the line that results. The first two bytes should be

E3 09, meaning that the stack pointer is down to 09E3. Good -

we'll look at the stack with command M9E39FF.

Let's review what we know of the program's "state". The first

thing that happened is that line 110 executed a DO. When we

selected option 1, line 180 performed a GOSUB. Line 220

performed another DO, but the LOOP at line 270 cancelled it.

The next thing that happened, just before the STOP at 305, was

that a FOR loop was opened by line 300.

So we have a FOR entry inside a GOSUB entry inside a DO

entry. Let's see if we can find them on the stack.

Address 9E3 contains a value of 81 - that's the FOR flag. You

can see that the variable is at address 0410 (variables are kept

in Bank 1). Floating point numbers are hard to read, even if you

know the secret, but beyond them we can see 2C 01 for line

number 012C - that's hex for 300.

Eighteen locations along, at 9F5, we see the 8D flag signalling a

GOSUB entry. Again, we could read the line number entry as

hex 00B4 or 180. Five more locations along, at 9FA, we see EB

for the LOOP item, with line number 6E for line 110.

It's all there, and you can look at it any time you get fuddled

over loops. Now return to Basic with command X, and then

delete line 305.

The Untangler

Some programmers have a knack for getting themselves tan

gled up in code. I get calls that sound like this: "I'm seven

subroutines deep, and now I've found a situation where I want

to give up and return to the menu. How do I get out?"

The proper answer is: you should never have gotten yourself

into that mess. Start over, use variable flags to give return

signals, and next time do it right.

In the past, I've taken pity on some of these unfortunates by

digging out a SYS or suggesting a brief machine language

routine to set things to rights. At least these people have

learned (sometimes the hard way) that you can't just go back to

the menu with a GOTO or you'll leave a messy stack and

eventually get an OUTOFMEMORY message.

But with the 128, there's an easier way out. If you have only

one DO/LOOP active, you can clean out all subroutine and

FOR/NEXT entries just by going to the LOOP.

Examine the sample program. Note that a DO appears very

early in the coding, and that the corresponding LOOP can

never be reached. Here's the trick: if we ever do get to that

LOOP - assuming no other DO's are open - we'll immediately

be transported back to the menu and the stack will be neatly

trimmed. It's a little like the magic word FROBOZZ that trans

ports you back to the vault.

Here's a simple example. Suppose in the above program, we've

picked option 1 and are asked to enter a name. At this point, we

say something like, "Gosh ... I don't really want to enter a

name after all". It would be nice to abort back to the menu.

Suppose we say, "OK, if the user types an asterisk character

instead of a name we'll go back to the menu". We might try a

new line at 205 which says something like:

IFX$="*" GOTO 120

But if we do so, we'll eventually have problems, since we have

never cleared away the subroutine call from line 180.

The solution is simple. Enter line 205 as:

205IFX$= "*" GOTO500

When an asterisk is entered, we'll go to the LOOP statement at

line 500. This will search for the last corresponding DO, finding

it at line 110. The Basic stack will be trimmed back to that

point, in this case removing the subroutine entry, and the

program will resume by printing the menu.

It's a simple example, and doesn't trim much from the stack.

But once you understand the principle, you can use it more

generally.

The Transactor 32 Sept. 1986: Volume 7, Issue O2

Eliminating SAVE@

And Other 1541 Bugs

Phillip A. Slaymaker

Palm Beach Gardens, FL
Copyright 1986, P.A.S

At Long Last! - The Code To Do It!

The 1541 Disk Operating System (DOS) has a number of bugs or

idiosyncrasies, the Save-with-Replace command (SAVE®) bug in

particular, which have plagued Commodore users for a number of

years. This article presents a number of patches to the 1541 DOS

which fix the SAVE® bug and a few other related bugs under most

conditions. These changes have been programmed into EPROMS and

tested successfully in two 1541 drives.

The SAVE® bug has been a continuing subject of controversy in

numerous issues of The Transactor. The author recently published a

two part explanation of SAVE® in COMPUTE! October and Novem

ber 1985, "Save With Replace: Debugged At Last" including a pro

gram which unequivocally demonstrated the bug's existence. A

review of the reasons for the bug will be given - for a full review the

reader should refer to the aforementioned articles.

As part of our testing of 1541 DOS for the SAVE® bug, we have

reviewed the 1541 source code. It is documented in two good sources.

A complete disassembly of one version of DOS V2.6 is presented with

comments in "The Anatomy of the 1541", by L. Englisch, et al, 1984

from Abacus Software. A full analysis of the DOS V2.6 routines,

specified by name and address, is given in "Inside Commodore DOS",

by R. Immers and G. Neufeld, 1984 from Datamost. We will use the

DOS subroutine names and addresses listed in "Inside Commodore

DOS" since most people who will read this will have a copy of the

book.

Our testing was done by creating a master disk with three directory

sectors of files. All test sequences were done starting with a fresh copy

of the master disk and with the drive in a completely reset state. The

disk drive memory and the disk BAM, directory, and sector data were

examined after each SAVE® command using our Peek A Byte 64 disk

and memory utility (available from Quantum Software, P.O. Box

12716, Lake Park, FL 33403, 305-840-0249). Internal pointers were

noted before and after each load or SAVE® with the drive number

specified only in the SAVE@. These tests were repeated with the drive

number always specified. Tests were also performed using new

EPROMS which were burned for the 1541. This was done to test

possible patches to the DOS and to help diagnose the drive operation.

SAVE® Bug Explanation

DOS V2.6 has 5 internal buffers, with buffers 0 to 4 starting at memory

pages $300, $400, $500, $600, and $700, respectively. DOS assigns

channels and buffers to the BAM, directory sector, and file sectors

being read or written. Normally DOS assigns two read or two write

channels and uses only 3 of the 5 buffers. The SAVE® command,

however, requires all 5 buffers - two read, two write, and the BAM. If

the DOS can't find a free buffer, then the DOS tries to steal an

assigned, but inactive buffer. If the BAM is stolen, SAVE® may fail.

Not specifying the drive number can cause a buffer to be stolen. When

the directory is accessed, AUTOI ($C63D) reads the BAM of the disk in

the specified drive, and also tries to initialize drive 1 if no drive was

specified. Usually buffer 3 ($600) is allocated for the phantom drive 1

(not present in a 1541 drive) BAM and a Bl SEEK command is issued

to the disk controller. An internal DRIVE NOT READY error occurs in

the disk controller and puts the error code *$0F in the job queue at

$03. This error code is then trapped by AUTOI and not reported

outside the disk drive. This leaves buffer 3 allocated but inactive.

Since the SAVE® command requires all 5 buffers and only 4 are now

available, DOS steals an inactive buffer by calling STLBUF ($D339).

STLBUF can be called several times during a SAVE® command

causing the BAM and directory sectors to be reassigned to different

buffers during a single SAVE®. STLBUF ($D339) should not steal the

drive 0 BAM, but should instead steal back the unused buffer incor

rectly assigned to drive 1. It never steals the drive 1 BAM buffer *3 at

$600 because STLBUF cannot take a buffer if the buffer had a drive

error occur.

SAVE® works most of the time because after the BAM is stolen, it is

read back in when needed and updated using the BAM images. A

BAM image for each of two tracks is stored at BAM ($2A1 - $2B0).

Each time a new block is allocated by WUSED ($EF90), it is in the

BAM image. When a new track is tested for free sectors, the DOS

checks if it has a BAM image for it. If not, it calls SWAP ($F05B) which

first updates the BAM with the BAM image from the second to last

track, copies the new track's BAM map into the BAM image, and then

zeros that track in the BAM. Only TWO tracks can be updated,

however, since there are only two images. If more than two tracks

have been accessed by SAVE®, the BAM may NOT be correctly

updated. A track may either be updated correctly, be left unchanged

or may be fully allocated, depending on when the BAM was stolen.

Possible DOS ROM Modifications

We have tried several modifications to the DOS by programing

EPROMS. These included:

1) STLBUF ($D339) should be modified to allow stealing a buffer with

a DRIVE NOT READY error. It could also be prevented from

stealing the drive 0 BAM buffer, but this may be required and so this

second patch was not done.

2) A drive 0 could be forced by modifying ONEDRV ($C312) and

SETDRV ($C33C) to set drive 0 rather than setting the default drive.

Alternately, the DOS could be prevented from ever switching to

drive 1. We tried modifying TOGDRV ($C38F) so only drive 0 is

allowed and this patch works. Other routines must be modified to

keep from searching the directory twice. However, these DOS

The Transactor 33 Sept. 1986: Volume 7, Issue O2

patches can't be done on a dual drive and so were not imple

mented.

3) More drive memory and buffers should be added. We added 8K of

memory to our drive, but a hardware change is beyond most

individuals.

Recommended Modifications

We made a number of modifications which correct a number of bugs

in the 1541 V2.6 DOS release 5. (The release number of the $E000

ROM is 901229-05. The $C000 ROM was never changed and is

325302-01). The addresses shown assume that the ROMs were read

into the computer memory from $2000 - $5FFF (ROM addresses

$C000 - $DFFF and $E000 - $FFFF) in preparation for burning new

EPROMs. All of the extensive patch code starts at SCO 10 for conven-

The first patch replaces the incorrect use of zero page indexed

addressing with absolute addressing for the NODRV ($FF and $100)

flags which indicate whether a drive is present. Since $FF,X address

ing "wraps around" to $00, the flag for no drive 1 was stored in the job

queue and caused the 74, DRIVE NOT READY error (which occurred

all too often). It only indirectly affected the SAVE® bug.

Briefly, it is claimed that the drive listens to the NMI (non-maskable

interrupt) line from the computer before the drive is done updating

the BAM and directory. If a new command is sent before SAVE® is

completed, the BAM or directory may not be updated correctly since

the new command will be executed. The article incorrectly refers to

ATN signal as an NMI line - the ATN signal can be interrupt disabled -

and the technical details or proof of the theory are not given. 1 have

not tested his theory either, however, the ATN bug patch given below

should prevent the drive from prematurely listening to the serial bus

from the computer.

203b ad Of 18

203e 4c 5b e8

2041 ad Of 18

2044 4c d7 e8

Ida $180f

jmp $e85b

Ida $180f

jmp $e8d7

clear ATN interrupt flag

clear ATN interrupt flag

The following routine patches the interrupt handling routine so that a

user supplied routine stored in the drive RAM will intercept every

interrupt, whether caused by the serial bus or by the internal timer. As

written it requires that extra RAM be installed in the drive at $A000 -

$BFFF. (A memory expansion kit and instructions are available from

CSM Software, Inc., P.O. Box 563, Crown Point, IN 46307, 219-663-

4335). The routine can be used to investigate interrupt driven disk

routines including the SAVE® bug.

2010

2012

2015

2016

2017

201a

201b

201 d

201 f

2021

2023

a6

bd

60

98

9d

60

a9

fO

a9

95

fO

7f

ff 00

ff 00

00

f8

00

1c

f2

Idx

Ida

rts

tya

sta

rts

Ida

beq

Ida

sta

beq

$7f

$0Off,x

$OOff,x

#$00

$2017

#$00

$1c,x

$2017

DRVNUM normally 0

get NODRV flag

store NODRV flag

set WPSW write

protect status to 0

2047

204a

204d

2050

2052

2055

2057

205a

205d

205e

acl

ac

cd

dO

cc

dO

20

ad

60

6c

fe

ff

00

08

01

03

5e

Od

02

ff

ff

aO

aO

cO

18

aO

Ida

Idy

cmp

bne

cpy

bne

jsr

Ida

rts

jmp

$fffe

$ffff

$a000

$205a

$a001

$205a

$cO5e

$180d

($a002)

#$67 pattern to match

#$ff

must be #$67

must be #$ff

skip routine if pattern wrong

jump to subroutine

specified in $A002 and $A003

The next patch corrects a bug which put the value *$02 at $ 197 in the

drive memory. This bug can cause problems with programs which

download routines into the disk drive (especially fast loading pro

grams). The calling routine prevents y from exceeding *$0C - a value

of y = *$FE causes $197 to be addressed.

2025

2026

2027

2029

202c

0a

a8

a9

99

60

02

99 00

asl

tay

Ida

sta

rts

#$02

$0099:

called from $DCBE and $DCCB

times 2

y

STLBUF ($D339) must be allowed to steal a buffer with an *$0F error

(DRIVE NOT READY) - the following patch does this.

202d c9 Of

202f dO 03

2031 4c 73 d3

2034 a6 6f

2036 eO 07

2038 4c 6f d3

cmp #$0f

bne $2034

jmp $d373

Idx $6f

cpx #$07

jmp $d36f

compare error code with #$0f

steal if equal

else

check next channel

A possible SAVE® related bug is in the serial bus communication

routines. Occasionally the ATN (attention) interrupt flag bit of $180D

INTERRUPT FLAG REGISTER is not cleared by the TSTATN routine

($EA59). Addressing $180F (or $1801) clears the flag bit.

Gerry Neufeld's theory of a serial bus ATN related SAVE® bug is

presented in INFO issue *9 Dec 85 - Jan 86 by the magazine's editors.

The following patches are short and are explained in the comments.

21b3 ea nop

21 b4 20 1b cO jsr $c01b store #$00 in NODRV

2661 20 16 cO jsr $cO16 store .A in NODRV

2664 dO 03 bne $2669

2666 20 42 dO jsr $dO42

2669 a6 7f Idx $7f

266b 4c 12 cO jmp $cO12 load .A with NODRV

3021 20 45 e6 jsr $e645 call CMDER2 instead

3071 ea

3072 20 1f cO

336b 4c 2d cO

336e ea

3cba c9 07

3cbc bO 03

3cbe 20 25 cO

3cc1 b5 ae

3cc3 09 80

3cc5 95 ae

3cc7 c9 07

3cc9 bO 03

3ccb 20 25 cO

nop

jsr $cO1f

jmp $cO2d

nop

cmp #$07

bcs $3cc1

$cO25

$ae,x

#$80

$ae,x

cmp #$07

bcs $3cce

jsr $cO25

jsr

Ida

ora

sta

initialize WPSW and NODRV

check for #$0F error code

be sure .A < #$07

store #$02 in $0099,Y

be sure .A < #$07

store #$02 in $0099,Y

,:45b7 dO 41 53 20 44 4f 53 20 pas dos - author's ID

The Transactor 34 Sept. 1986: Volume 7, Issue O2

4a68 4c 3b cO jmp $cO3b TSTATN patches

4a6b 4c 41 cO jmp $cO41

4ae4

4ae5

4ae6

4ae8

4ae9

ea

ea

eO cO

ea

ea

nop

nop

cpx #$cO

nop

nop

eliminate ROM

checksum routine

4cO4 4c 3b cO jmp $cO3b TSTATN patch

5017 ea nop

5018 20 10 cO jsr $c010 get NODRV

501 b fO 05 beq $5022

501 d a9 74 Ida #$74

501 f 20 45 e6 jsr $e645 call CMDER2 instead

5e6c 20 47 cO jsr $cO47 interrupt routine patch

The following list summarizes the memory locations of all the

changes.

2010

201a

2024

202e

2038

2042

204c

2056

2060

266d

3cba

3cca

4a6d

501a

2011

201b

2025

202f

2039

2043

204d

2057

21 b3

3022

3cbb

3ccb

4ae4

5020

2012

201c

2026

2030

203a

2044

204e

2058

21 b4

3071

3cbc

3ccc

4ae5

5e6c

2013

201d

2027

2031

203b

2045

204f

2059

21 b5

3072

3cbd

3ccd

4ae8

5e6d

2014

201 e

2028

2032

203c

2046

2050

205a

21 b6

3073

3cbe

45b7

4ae9

5e6e

2015

201 f

2029

2033

203d

2047

2051

205b

2661

3074

3cbf

45b8

4cO5

2016

2020

202a

2034

203e

2048

2052

205c

2662

336b

3ccO

45b9

4cO6

2017

2021

202b

2035

203f

2049

2053

205d

2663

336c

3cc7

4a69

5017

2018

2022

202c

2036

2040

204a

2054

205e

266b

336d

3cc8

4a6a

5018

2019

2023

202d

2037

2041

204b

2055

205f

266c

336e

3cc9

4a6c

5019

Burning New EPROMs

A full discussion of burning EPROMs is beyond the scope of this

article. Two good sources of information and EPROM hardware are

CSM Software, Inc. and their EPROM Programmers Handbook, or

Jason-Ranheim Company (580 Parrott Street, San Jose, CA, 95112).

The 1541 drive ROMs are not always in sockets. Obtain professional

help if desoldering of the ROMs is required - it is not for beginners.

Two 2764 ROMs and two 28 pin to 24 pin adapters will be required. If

the ROMs are easily removable, they should be read with the EPROM

programmer into memory starting at $2000 for the $C000 ROM and at

$4000 for the $E000 ROM so that they correspond to the addresses

given in this article. The patches may be made with any machine

language monitor program, either in mini-assembler or in HEX.

Editor's Notes

Well it's about time 1 got to write the following: Thank you Mr. Phil

Slaymaker, not only for the article, but for taking the time to eliminate

the longest running, unsolved bug mystery. Your laborious research

will be appreciated world-wide, and so it should. 1 hereby nominate

Phillip A. Slaymaker for a spot in the Commodore Hall of Fame.

Anyone second it?

However.. . , there's only one slight problem. I still contend that the

SAVE® bug was first reported before the 1541 was built. The 4040

was the first carrier of this plague, but since these beasts are fast

becoming dinosaurs, and the fact that we can't seem to force out a

demonstration of the hap, I must officially surrender this battle until

such time that both necessity and solid evidence can be supplied to

once again open the file. Therefore, as they say, "the case rests".

For those who wish to burn chips with these patches, there are two

approaches. The first, as suggested in the article, is with the popular

2764 EPROMs. The 28 to 24 pin adapters are also available from CSM,

but for the so inclined we've supplied assembly instructions below.

Unfortunately, with the adpater in place, chances are the top of the

1541 case will not fit back on. Although this "blessing in disguise"

keeps the drive cooler, certain situations may warrant. ..

The second, if money is no object, is with Motorola's MCM68764

EPROMs which are pin-for-pin compatible with the Commodore

ROMs. You'll need two, and they're about $16.00 a piece (available

from Jameco among others).

Commodore is well aware of Mr. Slaymaker's findings, and word is

that new 1571s will soon be equipped with Revision 4 ROMs that fix

these bugs (currently all 1571 s house Revision 3 ROMs). An update kit

for the 1541 is NOT currently under consideration, but we'll keep you

posted if we hear otherwise.

2764 (28 pin) TO 2364 (24 pin) Adapter

2364 2764

DO

Dl

D2

D3

D4

L)5

IX,

D7

A0

Al

A2

A3

Al

A5

A6

A7

A8

A9

A10

All

A12

CS

Vcc

GND

9

10

11

13

1-1

15

4

3

2

1

23

22

19

18

21

20

24

22

27

12

NC

DO

1)1

[)2

D3

[)l

D5

D6

D7

A0

Al

A2

A3

Al

A5

Ati

A7

A8

A9

A10

All

A12

G

Vpp

Vcc

PGM

GND

E

NC

Use a 28 pin WW socket and a 24 pin ribbon cable header (male).

On the 28 pin dip, cut down pins 1, 2, 20, 23, 26, 27, and 28 to

about 3/8". Using wire wrap, short pins 1,27, and 28. Connect pin

27 to pin 24 of the cable header, pin 23 to pin 18, pin 20 to pin 12,

and pin 2 to pin 21. The long pins will plug directly into the cable

header such that pin 3 of the 28 pin WW goes to pin 1 of the 24 pin

header (pin 4 to pin 2, 5 to 3, etc, 25 to 23, 26 to 24).

The Transactor 35 Sept. 1986: Volume 7, Issue O2

FORMAT TRACK 36 David A. Hook

Barrie, Ontario
© 1986 David A. Hook

. . .the appeal ofsuch a program? In my case,

I wished to perform an elementary disk protection scheme. . .

Michael Mossman's article (1541 RAM Expander) in Transactor

Vol. 6, Issue 5 really caught my fancy. He described how to add

a 3K VIC RAM cartridge to the 1541 drive, thereby expanding

that device's capability to store programs for direct execution

within the disk drive.

He also provided a couple of example programs: one demon

strated how to format extra tracks on a diskette, beyond the

normal 35 provided by Commodore's DOS (which is stored in

ROM, of course). The extra RAM allowed him to copy the disk

ROM code, substituting his modifications. By executing this

code directly (from its new RAM location), the new format

routine could generate these extra tracks. (Mr. Mossman indi

cated 38 tracks would be formatted, however only 37 are

actually done). Nonetheless, the idea is fascinating.

With my acknowledged clumsiness with a soldering iron, and

an expensive disk drive at stake, I sought an alternate to the

construction project. Armed with the two 1541 books I re

viewed previously (Ref. 1, 2), the task was completed success

fully.

I used the normal disk formatting routine to set things up. Then

a machine language program goes into disk RAM buffer #3.

Perform a seek operation to Track 35, then execute the pro

gram from disk RAM. Much of the code used by Mr. Mossman

comes from the 1541 ROM—752 bytes of the 3K extra RAM

was consumed. In my case, I needed to do everything in the

minimum space of an unmodified 1541—preferably less than

256 bytes (or one disk buffer's worth). The Immers/Neufeld

book was invaluable, and my program borrows from a couple

of their creations.

Be very careful with the values in the DATA statements. By

programming the Floppy Disk Controller (FDC) directly, you

are bypassing all the checks and safeguards that Commodore

put in there. If you tell the drive head to go to TracklOO, it will

happily try to oblige. Immers & Neufeld speak with experience

in describing the need to disassemble the drive to effect

adjustments when this happens. Needless to say, neither I nor

the Transactor can accept any liability for damage wrought by

use of these routines, but they have been checked on two

different drives.

Well what was the appeal of such a program? In my case, I

wished to perform an elementary disk protection scheme,

without bumping the drive head. By formatting a disk (with 36

tracks) using one ID sequence then reformatting (normally)

with a different ID, I had its foundation. The main program to

be protected included a seek routine to Track36 which picked

up the special ID and used it as a key variable in the program.

Since the main program was compiled, this was not very

visible. When the program could not get the special ID, it

caused wrong answers to be generated. As the calculations

were fairly complex, these wrong answers were not obvious—a

nasty trick to use in a financial type program!

For machine language fans, the PAL source code has been

provided.

References:

1. Inside Commodore DOS by Richard Immers and Gerald

Neufeld. Datamost published this originally (1983). Now

published by Brady Communications Company, c/o Pren

tice Hall, W. Nyack, NY 10994.

2. The Anatomy of the 1541 Disk Drive by Lothar Englisch and

Norbert Szczepanowski. Abacus Software, Grand Rapids, MI

49510.

Format > 35: BASIC Loader

MK

LF

PK

KM

ID

GO

10 rem format a track > 35

20 rem (c) 1986 d. a. hook, all rights reserved

30 print "Qinsert blank disk, then
press <return>"

40 get z$: if z$Ochr$(13) goto 40

50 input " EBIdisk name, id "; n$, id$
60 open 15, 8, 15, " nO:" + n$ + "," + id$:

gosub 800

The Transactor 36 Sept. 1986: Volume 7, Issue O2

JN

PB

KO

AC

PB

HH

El

IA

JH

HO

EE

EH

JE

MG

JD

NA

FL

Cl

NC

AM

GL

GE

AM

PO

OH

FE

CD

PB

LK

BC

AF

LB

BG

70 count = 0

99 rem put jimp $0400 into buffer #3

100 print#15, " m-w"; chr$(O); chr$(6); chr$(3);

chr$(76); chr$(O); chr$(4)

110gosub800

199 rem set to track 35/sector 0

200 print#15, " m-w"; chr$(12); chr$(O); chr$(2);

chr$(35); chr$(O)

210gosub800

299 rem read ml into disk ram ($0400)

300 restore: for i = 0 to 69: read d

310 print#15, " m-w"; chr$(i); chr$(4); chr$(1);

chr$(d)

320 next

399 rem execute from $0003

400 print#15, "m-w"; chr$(3); chr$(0); chr$(1);

chr$(224)

499 rem read disk error code

500 print* 15, " m-r"; chr$(3); chr$(0)

510 get#15, e$: e = asc(e$)

520 if e = 1 then print " done, ok": close 15: end

530ifcount=10goto900

540 count = count +1: goto 100

800 input#15, e, e$, t, s: if e = 0 then return

810 print e; e$; t; s; " failed": close 15: end

900 if e<17 then print " controller error #"; e

910gosub800: goto 810

1000 data 165, 34,133, 81,169, 1,141, 32

1010 data 6,169, 64,141, 33, 6,169, 15

1020 data 141, 34, 6,169, 16,133, 67, 32

1030 data 40, 4, 32, 40, 4,230, 81,165

1040 data 81,201, 36,144,242, 76, 12,251

1041 rem It highest track number

(>35) to be formatted

1050 data 174, 0, 28,232,138, 41, 3,133

1060 data 20,173, 0, 28, 41,252, 5, 20

1070 data 141, 0, 28,160, 5,162,255,202

1080 data 208, 253, 136, 208, 250, 96

Format > 35: PAL Source Code

NP

EK

GJ

IN

OL

EL

EA

AC

KJ

ED

PN

IE

OE

HI

100 rem format track 36 source code

110 rem (c) 1986 d. a. hook

120 rem

130 rem code stored in disk buffer#3

140 rem loaded from the basic program

150 rem

160 sys 700 ;for pal 64 assembler

170;

180* =$0400

190;

200 ;*** 1541 ram locations ***

210;

220drvtrk = $22 ;current track number

230 sectr = $43 ;sector counter

FE

AH

JC

El

Ol

GN

GM

MK

NL

OA

KM

Ml

NC

NO

CE

MP

DE

II

KB

KM

GD

DM

NK

CN

HO

AG

GB

EH

GH

OO

AN

EB

II

PG

MG

KJ

LM

IN

EO

PI

GP

CF

NC

JF

BE

OJ

CD

CK

240 ftnum

250;

260 dskcnt

270;

280;

290 start

300

310;

320

330

340;

350

360

370

380

390;

400

410

420;

430 bigger

440

450

460

470

480

490;

500

510;

520 step

530

540

550

560

570

580

590

600

610;

620

630

640;

650

660

670

680

690

700;

710.end

=

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jsr

jsr

inc

Ida

cmp

bcc

jmp

Idx

inx

txa

and

sta

Ida

and

ora

sta

Idy

Idx

loop

bne

dey

bne

rts

$51

$1c00

drvtrk

ftnum

#1

$0620

#$40

$0621

#$0f

$0622

#16

sectr

step

step

ftnum

Ttnum

#36

bigger

$fbOc

dskcnt

#%11

$14

dskcnt

#%111

$14

dskcnt

#5

#$ff

dex

loop

loop

;format track number

;disk controller

;current track #

;keep it

;no errors allowed

;trial # of bytes on 1/2

track

;allow 16 sectors/track

;move head twice

;are we there yet

;enter rom routine now

;move head out 1/2 track

;unused ram loc'n

11100

;delay loop (for head

settling)

The Transactor 37 Sept. 1986: Volume 7, Issue O2

An Amiga

Parallel Printer Cable

Steve Michel

Sterling, IL

In the Volume 6, Issue 6, the Article, "The Amiga: A User's Perspective" touted the

Amiga 'a ability to work easily with any printer. It didn 't mention, however, the difficulty

involved in hooking up a printer in the first place. This article addresses that problem.

If you have tried to hook your brand new

AMIGA to a Centronics-type parallel inter

face printer, you probably ran into a little

trouble. Well, you aren't alone. So did every

one else in the world!!

The reason for this problem is fairly simple.

The 25 pin connector at the rear of the

AMIGA that is designated as the parallel port

is a called a DB-25 connector. Your printer

cable has a DB-25 connector on one end to

attach to the AMIGA and a 36 pin connector

on the other end to attach to your printer.

These connectors are fairly standard connec

tors throughout the industry and have al

lowed us the limited amount of compatibility

between computers and peripherals that we

now enjoy.

So, if the AMIGA and the printer cable use

the same standard connectors, what's the

problem ? All connectors come in two forms:

MALE and FEMALE. In order to connect two

cables together, one must have a female

connector and the other must have a male

connector. The standard printer cable that

you would purchase has a male DB-25 con

nector. Guess what type of DB-25 connector

is supplied in the rear of the AMIGA? If you

said male, you must be a long-time Commo

dore user and used to such goings on.

The use of a male DB-25 connector on the

AMIGA puzzled me at first, especially since

two other connectors in the rear (DISK

DRIVE and SERIAL) are female connectors.

However, after a little checking in my printer

manual and the Introduction to AMIGA man

ual, I found that some pins on the AMIGA

DB-25 are not directly connectible with a

standard off-the-shelf printer cable. There

fore, in an attempt to keep an unwary user

from just plugging in a cable that could cause

some serious damage to either the AMIGA or

the printer, a male connector was used on

the AMIGA. This forces the user to obtain the

correct cable.

There are three possible solutions to the above problem: (1) don't use a printer, (2)

wait for Commodore or some other second source to produce an appropriate

cable or (3) construct your own cable.

Option 1 is unacceptable. Option 2 is okay if you are the patient type. The

remainder of this article focuses on Option 3.

Table 1 shows the pin connections necessary to correctly interface the AMIGA

parallel DB-25 connector with a 36-pin parallel connector for a Centronics

interface printer. The parallel function labels and pins numbers were obtained

from a Panasonic KX-P1090 printer manual. The AMIGA function labels and pin

numbers were obtained from the Introduction to AMIGA manual (Reference 7-

13). The wire colors column has been left blank to assist in creating your own

cable.

TABLE 1

Parallel

Function

Label

STROBE

DATA1

DATA2

DATA3

DATA4

DATA5

DATA6

DATA7

DATA8

ACK

BUSY

PE

SELECT

GND

GND

GND

GND

GND

GND

GND

GND

GND

PRIME

Wire

Colour

(fill in)

Pin Number

Parallel

Connector

1

2

3

4

5

6

7

8

9

10

11

12

13

19

20

21

22

23

24

25

26

27

31

Pin Number

Female DB-25

Connector

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

25

Amiga

Function

Label

DRDY

DO

Dl

D2

D3

D4

D5

D6

D7

ACK

BUSY

POUT

SEL

GND

GND

GND

GND

GND

GND

GND

GND

GND

RESET

The Transactor 38 Sept. 1986: Volume 7, Issue O2

Making The Cable:

1. Obtain the necessary cable components: (the parts numbers

are Radio Shack numbers)

36 pin male Centronics connector (276-1534A)

25 pin female DB-25 connector (276-1548)

Headshells for both connectors

An appropriate length of 25 conductor cable

If you have access to a good electronics store, the above list

should prove no problem. However, in my area the 25 conduc

tor cable was impossible to obtain. The next best approach was

to buy a standard printer cable with connectors already in place

and alter it to fit the AMIGA. In this case, you only need the

standard cable (26-1401) and the 25 pin female DB-25 connec

tor. As an alternative, 25-conductor ribbon cable will work

well.

2. If altering a standard printer cable, go to STEP 4.

3. Each wire in the 25 conductor cable will be color coded.

Choose any color for pin 1 and write it in Table 1. Continue

selecting a different coloured wire for each of the 23 pins listed

in the Table. The two excess wires may be snipped off. Go to

STEP 6.

4. Remove the hood from the 25 pin male DB-25 connector

and expose the wires at the rear of the connector. Remove the

connector completely by snipping all the wires. Save this male

connector for future projects.

5. Using a continuity tester or Ohm meter, decipher the color

coding for each pin on the 36 pin parallel connector. Do this by

placing one lead of the continuity tester on pin 1 of the parallel

connector and then systematically testing each of the wire ends

that were just disconnected from the male DB-25 connector.

When the continuity tester light (or buzzer) turns on, write that

wire color in Tablel. Continue this process for each of 23 pins

listed. Be sure to use the pin numbers listed under the parallel

connector column. When this has been completed, there will

probably be several wires "left over". That is because only 23 of

the possible 36 are going to be used. These "left over" wires

may be simply snipped off making sure that no exposed metal

ends come in contact with each other.

6. Using Table 1, solder each of the colour coded wires to the

correct pin numbers on the DB-25 connector. (If starting with

all separate components, solder the same coloured wire to the

corresponding pin on the parallel connector as well.) Please

note that the first thirteen wires are connected "straight

through" and the first pin number change occurs at pins 19 on

the parallel and 14 on the DB-25.

7. When all the wires have been soldered, RE-CHECK each of

the pin connections with a continuity tester one last time to

insure that all is right with the world. Too much haste at this

point could be deadly to your AMIGA and/or printer.

8. Replace the headshell(s) on the connector(s).

9. Connect the cable and you should be on your way. Happy

printing.

TransBloopers

Volume 7, Issue 01, page 54

The sub-heading for the article "Adding Functions to Basic" should

not be there. It says "Execute machine language programs inside

your 1541", which came from an article in a previous issue and has

absolutely nothing to with this one. Also, the source listing in the

same article (on pages 56 and 57) was converted to PAL assembler

format from CBM format, and all of the question marks in the

comments were tokenized to read as PRINT. A clear case of the

3AM-make-it-for-deadline disease, which attacks us mercilessly

from time to time.

Volume 7, Issue 01, page 30

The unexpected happened in our last issue. Jim Butterfield's C-128

RAM map was not quite perfect! On page 30 you will find three

mistakes. All of them are in Bank Zero. First, the correct decimal

equivalent of $OA1D-$OA1F is 2589-2591. Second, the correct

decimal equivalent of $1COO-$1FF7 is 7168-8183. And, finally, the

correct decimal equivalent of $ 1 FF8-$ 1FFF is 8184-8191. We hope

that these minor errors haven't fouled up your programming

efforts too much.

Transactor Disk #12 Fix

We've been receiving reports of some real problems with Disk *12.

Somehow the file pointers of the first 7 entries each point to the

next entry in the directory. That is, if you try loading the second

program in the dir, you'll actually get the third program, loading

the 3rd gives you the 4th, etc. The 9th file and all afterwards are ok.

The following program will fix this problem, but don't run it with

any other disk in the drive but Transactor Disk *12. As written it

should work on 1541 /40, 4040, MSD, Indus, or any other 35 track

compatible.

HF

DH

FK

PH

FE

DB

PB

CB

JA

DP

IP

01

CH

PL

100 rem save" O:the fix" ,8

110 rem ** rte/86- to fix transactor's disk #12

120 rem ** when complete, all files but (aid4' and

130 rem ** 'vie aid.rel' will have been repaired

140dv = 8: open 15,dv,15: open8,dv,8, "#":

print#15," u1:" 8;0;18;1

150 for x = 0 to 7: for y = 0 to 31

160 get#8,a$: a$(x) = a$(x) + chr$(asc(a$ + chr$(0))):

next y,x

170 if mid$(a$(0),4,1) = chr$(0) then 230: rem has

already been repaired

180 rp$ = chr$(0) + chr$(O): for x = 0 to 7

1901$ = mid$(a$(x),4,2): a$(x) = mid$(a$(x),1,3) +

rp$ + mid$(a$(x),6): rp$ = t$

200 next: print#15," b-p:" 8;0

210 for x = 0 to 7: print#8,a$(x);: next

220print#15, "u2:"8;0;18;1

230close8: close15: end

We noticed some other problems too. Some stray glitch really

gave us the slip! Besides "AID4" and "VIC AID.REL" (as

mentioned in the rems above), "VERIFIZER.PET" is also virtu

ally a write-off, but these are on most of the other Transactor

Disks should you need them. "C128 MESSAGE" and "ARCHI-

TESTER" for the C128, both load ok and look ok, but are not

tokenized properly for correct operation on the C128. Both are

short. . . simply load them and hit RETURN over each line.

SAVE them back to disk and they'll be fine forever after.

The Transactor 39 Sept. 1986: Volume 7, Issue O2

Save SYMASS Symbols Robert Huehn

Neustadt, Ontario

Create Symbol Table Files Accessible From The BASIC Editor

SYMASS3.1 Assembler Notes program's symbol table. You can load the file as a normal

program, and list it on your screen or printer to help with

SYMASS 3.1 has a few features not mentioned in last issue's debugging.

article.

First, obtain a copy of SYMASS, type in the SSS source code,

1. Binary numbers can be used with the % prefix. and assemble it. At this point, if you type:

2. The offending line is listed when an error condition occurs. sys820"st.sss

3. All instructions like 'Ida 0,y', which have no zero page mode, . . .a PRG file called "st.sss" will be created on disk containing a

are assumed to be absolute. list of every symbol and its value. This file starts with:

SYMASS 3.1 has two bugs, one which prevents using the

opcode TXS. At the beginning of the source code NOPS should

equal 56, not 55, to let the last op in the table be recognized.

Also, the high byte of an addition isn't stored to memory, only

the low one, so values greater than 255 won't work. The fix is

easy enough:

Load in SYMASS 3.1, and type:

poke 3304, 56

poke 2965, 234

poke 5057, 50

Save the updated version as SYMASS 3.12.

All programmers should be aware that 'def is not only a BASIC

token, but also a valid hexadecimal number. SYMASS will give

an illegal quantity error, but unfortunately, PAL will quietly

assemble the wrong value. Instead of $def use $dee+1, or use

$deeO+ 10 instead of $defO when using either assembler.

SSS or Save SYMASS Symbols

Save SYMASS Symbols is a useful utility for machine language

programming. It works with SYMASS, the symbolic assembler

published last issue in The Transactor, to produce a disk file of a

1 memsiz = $37

2 symptr = $52

3 symend = $57

When developing a large ML program, a symbol table will help

you find unique names for routines and variables. SYMASS

does NOT check for redefinition, allowing you to have multiple

entries in the table under the same name. Use SSS to make sure

you don't have that problem.

Since the symbol table is in program format, it can be modified

using delete and renumber commands, such as the ones in

TransBASIC's Prg Management module. Merge together a num

ber of Kernal routines you use regularly, and you can merge

their definitions into your new programs with TransBASIC's

USE command.

Editor's Note

The SYMASS Assembler is available on Transactor Disk 12. For

the most part, it is PAL compatible, except for some of PAL's

more exotic features. Otherwise, SYMASS can be used to

assemble virtually any machine language program published

in The Transactor. The original source code is also on Disk 12

so you can see just how an assembler works. For a complete

description of SYMASS, see Volume 7, Issue 01, page 69.

SYMASS 3.1 is also included on The TransBASIC Disk. "

The Transactor 4O Sept. 1986: Volume 7, Issue O2

SSS Source Code

FD

AM

MG

DD

GG

MA

DD

JL

KL

PP

BO

CG

AK

DI

EP

OH

GJ

GH

01

KO

OM

MK

BB

FC

HG

II

KC

KN

FF

NO

LF

NP

OG

CC

PA

El

DC

DO

IN

HH

GK

AH

FJ

MN

PG

PG

GO

II

EL

MN

HB

FF

IG

100sys700

110; <« save symass symbols >»

120;

130 ; robert 1

140*

150;

160 memsiz

170 symptr

180 symend

190 line

200 clr

210eval

220 chkstr

230 setnam

240 setlfs

250 open

260 chkout

270 chrout

280 clrchn

290 close

300 ready

310;

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500 sss 1

510

520

530

540

550

560 sss2

570

580

590

600

610

620

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Ida

Ida

Ida

jsr

jsr

jsr

jsr

Ida

tax

ldy

jsr

jsr

ldx

jsr

Ida

Ida

Ida

jsr

Ida

sec

sbc

sta

bcs

dec

cmp

Ida

sbc

bcc

Ida

inc

bne

1.3

luehn mar 1986

820

$37

$52

$57

$39

$a663

$ad9e

$b6a3

$ffbd

$ffba

$ffcO

$ffc9

$ffd2

$ffcc

$ffc3

$a474

memsiz:sta

;820 to 1021

;top of memory

;pointer to table

;bottom of table

;line number

;do clr

;evaluate expression

;check for string

;set file name

;set logical file

;open file

;output channel

;print

;clear channels

;close

; ready

symptr ;protect

memsiz + 1 :sta symptr + 1 ;symbol

symend:ldx

lower

eval

chkstr

setnam

*8

*1

setlfs

open

*8

chkout

*l:jsr dout

symend + 1 ;table from

;basic's evaluate

;get length and pointer

;for kernal routine

;file 8, dev 8

;sec addr 1

;fake start address

*0:sta line:sta line+ 1

symptnldx

lower

symptr

*10

symptr

sss2

symptr +1

symend

symptr +1

symend +1

done

*l:jsr dout

line

sss3

symptr +1

;move memsiz back

;check for end of

.symbol table

;save fake link and new

;line number

GO

DP

PM

PN

CK

FA

KC

DE

KA

AI

AO

CP

GP

EA

CO

NH

BC

MJ

MD

OG

DB

FF

DB

FE

FM

NC

KA

MG

FO

NB

EG

LF

OM

FD

BN

IM

630

640 sss3

650

660

670 sss4

680

690

700

710

720 sss5

730

740

750

760 sss6

770

780

790 hex

800

810

820

830

840 hel

850

860

870 he2

880

890 lower

900

910

920 dout

930

940 done

950

960

970

980

inc

Ida

Ida

ldy

Ida

beq

jsr

iny

bne

Ida

Ida

Ida

ldy

dey:l

Ida

jmp

=

pha

line+ 1

line:jsr chrout

line + l:jsr chrout

*0

(symptr),y

sss5

chrout ;save symbol name

:cpy *8

sss4

#" " :jsr chrout

*$b2:jsr chrout ;save ' =$'

#" $" :jsr chrout ;and hex value

#9:lda (symptr),y:beq sss6:jsr hex

da (symptr),y:jsr hex

#O:jsr chrout

sssl

* ;print hex number

lsr:lsr:lsr:lsr

jsr hel

pla:and #$0f

cmp

bcc

adc

adc

jmp

=

sta

jmp

=

jsr

Ida

Ida

jsr

jsr

jmp

*10

he2

*6

#$30

chrout

*

memsiz:stx memsiz +1

clr

*

chrout:jmp chrout

#O:jsr dout

*8 ;finish

close

clrchn

ready

The Transactor 41 Sept. 1966: Volume 7, Issue O2

Transcribe 64
Richard Evers, Editor

A Relative File Copy Utility For The Commodore 64

Since the day that the Vic 20 made it's debut, programmers have

purposely avoided relative files. The reasons given, if any, are

usually the speed and reliability of the 1540/1541 serial drives and

the regression to Basic 2.0 syntax. What was once a trusted friend

among the Basic 4.0 Pet/CBM users had degenerated to a level of

outcast among all. Even today, after scores of books and magazine

articles have been written about the subject, fears persist.

In the face of these fears and misconceptions, some brave pro

grammers have battled the odds and won. Many data base,

accounting and communications systems have been written, some

well - others not so well, making use of relative files as their main

data storage medium. Although relative files have a few inherent

limitations such as a maximum record length of 254 characters, a

maximum number of records in a file of 65535 and a cap on the

maximum amount of space available for use by a relative file on

disk, good planning and a few programming tricks have been

known to minimize the problems. And so, on to the purpose of this

article.

The Purpose

Transcribe 64 is 1361 bytes of code that will do what no program

has done before (the shadow of Star Trek looms overhead). It will

single drive copy relative files using the Commodore 64 with any

Commodore or compatible drive. After all these years, you can

now duplicate all of your relative data files without being forced

into bit copying the entire diskette each time. Although a little late,

it has arrived.

As stated above, Transcribe 64 will copy relative files using any

Commodore or compatible drive supporting them. If the drive

requires that you use an IEEE interface then the interface might be

the only stumbling block in your way. I tested the program using a

GLINK IEEE interface to communicate with my 9090, 8250 and

2031 drives. Access to my 1571 (in 1541 mode) was made in the

normal fashion. The GLINK is unique in that it uses no RAM

whatsoever. It operates by swapping ROM depending on the

setting of the serial/parallel switch. Transcribe 64, written entirely

in assembler, uses all RAM from $1000-$FFFF except the $D000-

$DFFF area (52k of storage). It also uses 6 bytes of zero page ($57-

$5C) plus location $01 for swapping out RAM and ROM. Further to

that, the input buffer ($0200-) is used to retrieve and modify the

name of the file to be copied. And finally, the program itself

occupies memory from the start of Basic up by 1361 bytes ($0801 -

$0D51). Other than that, memory is untouched. If your interface

does not rely on RAM in any of the areas mentioned, you're okay.

If not, you can either re-write the source, which shouldn't be too

difficult, or change interfaces. Your choice if you are forced into

making it.

The program has been written to perform as many 52k passes as

required to copy the relative file chosen. Remember, though, that

not all diskettes are created equal with regards to relative file

storage space. The 1540, 1541, 2031 and 4040 can store a maxi

mum of 658 blocks of relative data in one file. The 1571, in double

sided mode from 64 mode, and the DOS 2.5 version of the 8050

can handle 720 blocks in total per file. The DOS 2.7 version of the

8050, after setting it up to handle expanded relative files, allows a

maximum of about 508k of data per file. The DOS 2.7 8250 allows

a maximum of about 1.04 megabytes of data per file. The Commo

dore 9060 and 9090 hard drives allow a maximum of 4.9 meg and

7.35 meg of data/relative file consecutively. As a fail safe rule

when copying relative files remember, when in doubt, think.

Imagine trying to fit 7.35 megabytes of data on a 167k, 1541

diskette. It could be tight. Error detection has been built into the

program so that if a problem develops then all files will be closed

up, the offending error number will be displayed and control will

be passed back to Basic. Not too awful.

How It Works

To start, not all of the available RAM is used for the storage of

relative data. One byte/record is consumed as a count of the

number of characters read from each record. This method is

employed due to the funny nature of relative files. If, for example,

you have a relative record length of 40 characters but, after

positioning to the first byte in the record, you only write 10

characters, you will find that you can only retrieve 10 characters

from that record later. Regardless of what was in the record before

the last write, DOS will prevent you from retrieving more than 10

characters. After reading in the tenth character, the variable ST

will be set to a value of 64, end-of-file. If you persist in reading

data beyond this point, the DOS will foil your foolish attempts and

position to the next record automatically. One byte/record con

sumed in RAM is my method of compensating for the strange

behavior of DOS.

The program has been written to simply Load and Run. No strange

SYS addresses or special theatrics to perform before using. Once it

is up and running, you will be prompted to place the source

diskette in drive zero and enter the filename in which you wish to

copy. Dual drive users beware: drive zero is the only one allowed

for the occasion. When you enter the filename, you can enter it

with or without a drive number. The length of the actual name

entered is checked to make sure you don't exceed 16 characters.

Once you have supplied the filename, the program will Open and

The Transactor 42 Sept. 1986: Volume 7, Issue O2

read through the disks directory (via the equivalent of open 8,8,8,

" $0"), looking specifically for relative file program types ($84). If

found, a byte for byte check is made against the filename. If a

match occurs and the filename length is less than 16 then the next

byte in the directory filename is checked to see if it is a Shifted

Space ie. CHR$(160). A complete filename in the disks directory is

always followed by enough Shifted Spaces to pad in the complete

length of 16. If the name has a length less than 16 then anything

other than a CHR$(160) will signify that the match is incorrect.

Once the filename has been verified, the next three bytes follow

ing the filename are read in: the first side sector track + sector plus

the relative record size. The record size is retained, the file is

closed up and the program continues along its predetermined

path.

With the record length known, one last variable remains to be

found: the number of records in the file. To solve this problem, we

need to open up the relative file for a quick pass through. First, a

suffix of " ,1," plus the record length is added to the filename with

the length of the filename updated accordingly, then the file is

opened up. Once open, a loop begins which positions to records #1

upwards until an error *50, no-record-present, is discovered via

the command channel. With this error received, the record posi

tion is backed off 1 notch and the actual copy session is ready to

begin.

The file is not closed after determining the highest record number.

To save time, the copy session is entered directly. First, record *1 is

positioned to and location SFFFF is marked as the first record

character count address. Data is stored in RAM from $FFFF

downwards. Following this, the data retrieved from the record is

stored in RAM sequentially until ST = 64. When this occurs, the

record position is incremented, the new record is positioned to,

error *50 is checked for to see if the end has come and, if not, the

retrieval session begins again. Before actually bringing in the data

each time, though, a quick bit of math is performed to see if:

current RAM location - the record length - 1 (count) < lowest

position in RAM storage. If not then the session continues.

Special Indicators

Two special indicators are used in lieu of the character count. They

are available for use because the number of characters/record can

never be equal to them. They are:

Byte Value $00: Indicates that the end of file has been reached and

no more data is left to copy. When the write section of the copy

routine discovers this value, it closes up all files, displays a 'copy

complete!' message for the viewing audience and returns to Basic.

Byte Value $FF: When the read session runs out of available

storage space, it flags a count of 255 to indicate that more data

remains to be copied from the source file. When found by the write

section, the destination file is closed up, a prompt is displayed

asking that the diskettes be swapped and a wait until <carriage

return> loop begins. Once <return> is pressed, the source file is

re-opened and the read session starts up where it left off. Tran

scribe will make as many passes as necessary to copy the entire

relative file.

The Write Session

The write session is really a read session in reverse. All data is

pulled sequentially from RAM address $FFFF downwards, with

the count of characters for each record used as an index for the

write. There are no special tricks performed in this session. It

simply gets the data and writes it to the correct record number.

One note must be made about the write session, though. On the

first pass, the destination file must be created before it can be

accessed. Relative files are funny in this respect. Unlike sequential,

user or program files that expand as you fill them, relative files

need predetermined borders in which to operate. To create a

relative file, you first open it for the first time with the correct

record length then position to the maximum record number that

you will need. From there you print CHR$(255); to that record.

DOS then builds the file automatically. Once complete and the

error channel reports that the creation went okay, the actual write

session begins. Although the file could have been expanded,

record by record, as the data presented itself without creating the

entire file first, I felt it best to do it this way to make sure that the

complete file would fit on disk. In providing this feature, the source

and object was increased in size considerably. The final result

seems to be worth the extra effort involved.

At this point I would like to mention two very special people who

helped me with making this program come alive. While I was in

the last throes of writing Transcribe, a rotten roadblock material

ized with the 1541. Although the program worked perfect with my

IEEE drives, the 1541 was having a tantrum. The program would

repeatedly bomb out after creating the destination file for the first

time. An error message number 4 (?) would be displayed each time

after creation. At this stage, the 1541 would be in an error

condition, flashing it's lights in a rather disturbing manner. By

reading the error channel, a 'record-not-present' error was found.

An odd state of affairs.

After repeated attempts to cure the problem, I did the obvious; I

called Jim Butterfield. Jim, in his usual patient way, told me that I

must have done something stupid. An error number 4 cannot

happen in Basic, therefore, my coding was at fault. He proceeded

to run through a few possible ways in which the code could be

messing things up, of which only one rang a faint bell. After a few

more minutes of idle chatter on my part, we hung up. The faint bell

started to get louder. He had asked if I was reading ALL the data

from the error channel until I reached a CHR$(13). I was not but, in

my typical myopic manner, I could not see how my IEEE drives

could live with an incompletely read error channel when the 1541

could not. To quickly finish up, Jim was right. After modifying the

code to read the entire message, the 1541 was happy. Jim B. to the

rescue once again.

The program was finally working just fine, so it was time to phone

Chris Zamara to boast a little. At the time he was busily putting

together his 'Animals' program which relies on relative files for

record keeping. During our conversation I mentioned that one

thing was still bothering me after completing the code; would the

1541 reliably write the data each time. I had tested it quite a bit but

still did not completely trust it. After so many years of bad press,

old fears die hard. Chris came up with an article in Compute!

magazine from back in July 1985 that stated that you should

always position to a record, write your data, then position once

again to the same record to prevent 'spill-over'. It sounded odd but

it seemed to work for Chris. I had been positioning twice to each

record before a read or write, just to be on the safe side. It was now

43 Sept.

clear that I was in the dark. Another phone call was in order.

On the conclusion of our conversation, I called up Dr. Gerald

Neufeld, the co-author of 'Inside Commodore DOS' (Datamost

ISBN 0-88190-366-3) and author of the '1541 User's Guide'

(Datamost ISBN 0-88190-396-5). If a reliable answer was needed,

why not go to the source?

Gerald was terrific. We talked, his grandaughter played in the

background, and I learned that for sequential access to relative

files, no special tricks need be performed. A single position and a

write would work just fine. If writing in a random sequence to

records was required, though, the record should be positioned to

twice, a time delay of about .5 second should be imposed then the

write could be performed safely. After a few more minutes of

conversation, we said goodbye and I began removing all the

duplications of positioning within my code. Needless to say, it still

worked just fine. Transcribe 64 was a completed commodity.

Before finishing up, I should mention a few points that I gleaned

from the '1541 User's Guide' and from Jim Butterfield. First, three

record sizes are not allowed when creating relative files. They are

42, 58 and 63. Apparently, Gerald discovered this after many days

of exhaustive testing with the 1541. He figured that DOS gets

confused with the characters '*' CHR$(42), ':' CHR$(59) and '?'

CHR$(63). Further to this he states that the position within the

record statement, ie.:

print#15," p" chr$(SA OR 96)chr$(Rec* Low)chr$(Rec# Hi)chr$(Pos)

. . .is definitely not an option. Problems will develop when left off.

When it was used, though, he found it to be reliable. From Jim B. I

learned not to create a relative file that takes up less than one

sector (254) of data. Apparently the side sector information will not

be written, therebye creating a mess. It's so nice to get good

information.

In conclusion, a little not so great news. We are not printing the

source for Transcribe 64 this issue mainly because it measures in

around 16k. Although the program is quite useful, we have so

much more to print that my source gets last priority. It will be

included on The Transactor Disk *13 along with the Load and Run

module Transcribe 64. For those of you so inclined, my code has

been written using only one non-kernel routine, Input. The

source is well commented throughout and has been written in PAL

format. For all intentions, I now consider the program and source

to be in public domain and I wish you all the best of luck with it. If

you make modifications to the source code and feel it worthy of

general use, please drop us a copy so we can include it on our

Transactor disks. If you make a revision, though, make sure to

update the version number and, in the least, put your name and

date in the source listing. This will help when determining the

latest update.

Transcribe 64: BASIC Loader

DL

Jl

PB

NP

El

Cl

1000 rem save"0:transcribe64.bas"

1010 rem ** transcribe 64: rte/86

1020 rem ** a relative file copy prg

1030 rem * * for the commodore 64

1040:

1050 rem ** this program will create

,8

PN

FJ

MK

DE

BN

DD

BH

LC

IO

KP

KC

EG

BL

ND

BN

NN

PA

OP

JB

OP

PN

JC

MC

KE

HA

JJ

El

IJ

OE

.KD

KJ

KF

MG

GP

IJ

AM

BJ

NM

HM

ON

BM

BD

EM

LB

EB

BD

EP

OP

KA

OH

KE

BF

CD

PK

DD

HC

PG

Kl

HL

1060 rem ** a load and run module on

1070 rem ** disk called 'transcribe 64'

1080:

1090 open 15,8,15: open 8,8,1, "O.transcribe 64"

1100 input#15,e,e$,b,c: if e then close 15:

print e;e$;b;c: stop

1110 for j = 2049 to 3411: read x: print#8,chr$(x);:

ch = ch + x: next: close8

1120 if ch<>136167 then print " checksum

error!": stop

** module created **":

11, 8,

49, 0,

12, 32,

2, 240,

17,141, 64,

58,208, 5,

54,

87,

0,

1130 print

1140:

1150 data 1,

1160 data 48,

1170 data 32,

1180 data 189,

1190 data 169,

1200 data 201,

1210 data 13,236, 64, 13,

1220 data 13,169, 15,162,

1230 data 186, 255, 169, 0,

1240 data 192, 255, 32,185,

1250 data 3, 76

1260 data 160, 8

1270 data 54,160

1280 data 255, 32

1290 data 76,207

1300 data 160, 8

1310 data 1,208

1320 data 206, 64

1330 data 208, 106,206,

1340 data 206, 64, 13,

1350 data 160, 0,140,

1360 data 201, 58,208,

1370 data 13

1380 data 65

64,

0,

96,

3,

13,

169,

176,

end

0, 158,

0, 162,

165, 162,

50

0

0

232, 208, 248

173, 1,

19, 141,

216, 142,

160, 15,

189,255,

2

64

56

32

3232

11,192, 0,240

207, 11,169, 8,162, 8

32,186,255,169, 2,162

13, 32,189,255, 32,192

119, 11,192, 0,240, 3

11,162, 8, 32,198,255

162, 32,142, 64, 13,192

5,162, 30,142, 64, 13

32,207,255,201,132

64, 13, 32,207,255

32,207,255,152, 72

65, 13,173, 1, 2

2, 160, 2

32,207,255,217, 0

238, 65, 13,200,204

13,

1390 data 208, 236, 172, 65,

1400 data 25,206, 64, 13,

1410 data 160, 208, 39,240,

1420 data 238, 65, 13,172,

1430 data 208, 243,

1440 data

206, 64

2,208

56, 13

13,192, 16,240

32, 207, 255, 201

6, 32,207,255

65, 13,192, 15

32, 207, 255

13, 32,204

32, 207, 255,

32,207,255,141, 60,

1450 data 255, 169, 8, 32,195,255,104, 76

1460 data 30, 9,104,168, 32,207,255,206

1470 data 64, 13,208,248, 32,183,255,240

1480 data 13, 32,204,255,169, 8, 32,195

1490 data 255, 162, 84, 76, 87, 12,136,208

1500 data 3, 76,119, 8, 76,121, 8,174

13,160, 0,185, 57

2,232,200, 192,

60, 13,157, 0,

1510 data 56,

1520 data 0,

1530 data 173,

1540 data 56,

1550 data

1560 data

1570 data

1580 data

1590 data 237, 238,

1600 data 13,173,

1610 data 206, 70,

1620 data 13,141,

1630 data 13,165,

1640 data 141, 76,

12, 192,

13, 76, 207,

70,

69,

80,

13,157

3, 208, 244

2,232, 142

0,240

1,141, 69

13, 32, 0

50, 240

69, 13,208

13,208,232,206, 69

13,201,255,208, 3

13,141, 79, 13,173, 70

13,169, 1,141, 81

13, 32,230, 11,192,

3, 76,207, 11,169,

13,169, 0,141, 70,

0,240, 7,192,

11, 238,

1, 141,

13, 169,

77, 13,

1, 141,

41,252

74, 13

Sept. 1986: Volume 7, Issue O2

EL

HL

Ml

ML

JB

JK

CM

MP

HJ

PN

EP

AE

OF

EK

FL

GP

KC

JB

IJ

GJ

PM

IC

GG

BC

LN

OG

HJ

EO

KJ

GM

DK

PP

NB

EJ

CM

BM

KB

00

DK

LJ

BA

PA

IF

NK

EG

JB

LH

NE

CG

EF

DN

Ml

GH

FJ

BO

LK

El

JO

JE

LC

00

AG

1650 data

1660 data

1670 data

1680 data

1690 data

1700 data

1710 data

1720 data

1730 data

1740 data

1750 data

1760 data

1770 data

1780 data

1790 data

1800 data

1810 data

1820 data

1830 data

1840 data

1850 data

1860 data

1870 data

1880 data

1890 data

1900 data

1910 data

1920 data

1930 data

1940 data

1950 data

1960 data

1970 data

1980 data

1990 data

2000 data

2010 data

2020 data

2030 data

2040 data

2050 data

2060 data

2070 data

2080 data

2090 data

2100 data

2110 data

2120 data

2130 data

2140 data

2150 data

2160 data

2170 data

2180 data

2190 data

2200 data

141, 72

141, 73

173, 72

13,141

169,255

13, 165

132, 91

9, 169

48, 10

173, 65

1, 144,

32, 0,

50, 208,

76, 48,

32, 198,

78, 13,

32, 204,

0, 240,

78, 13,

13,208,

9, 169,

13,141,

73, 13,

107, 12,

25, 12,

11, 173,

75, 13,

90,169,

65, 13,

192, 0,

90, 133,

174, 76,

177, 91,

201, 0,

173, 72,

13, 173,

75, 13,

103, 32,

185, 11,

3, 76,

78, 13,

192, 0,

76, 207,

169, 15,

87, 12,

55, 11,

204, 255,

70, 13,

65, 13,

192,255,

201,223,

208, 4,

13,201,

172, 65,

1, 177,

1, 88,

2210 data 240, 3,

2220 data

2230 data

2240 data

2250 data

2260 data

96, 162,

255, 208,

223, 208,

6,201,

162, 15,

13,169, 0,141, 75, 13

13,169, 0,141, 63, 13

13,141, 69, 13,173, 73

70, 13, 169, 0, 133, 87

133, 88,160,255,140, 65

88,133, 92,172, 65, 13

32, 19, 11,224, 2,208

255,160, 0,145, 91, 76

165, 88,201, 16,208, 11

13, 56,237, 60, 13,233

230,169, 0,141, 78, 13

12,192, 0,240, 15,192

8,169, 0,168,145, 91

10, 76,207, 11,162, 1

255, 32,207,255, 72,238

32,183,255,141, 63, 13

255,104, 32, 12, 11,224

227,224, 1,240,170,173

160, 0,145, 91,238, 69

142,238, 70, 13, 76,184

1, 32, 195,255, 173, 69

72, 13,173, 70, 13,141

162,103, 32, 87, 12, 32

173, 81, 13,240, 10, 32

192, 0,240, 3, 76,207

74, 13,141, 69, 13,173

141, 70, 13,169,255,133

0,133, 89,160,255,140

32,185, 11, 32,230, 11

240, 3, 76,207, 11,165

92,169, 0,133, 91,120

13,134, 1,172, 65, 13

174, 77, 13,134, 1, 88

240, 71,201,255,208, 47

13,141, 69, 13,141, 74

73, 13,141, 70, 13,141

169, 1, 32,195,255,162

87, 12, 32,107, 12, 32

32,230, 11,192, 0,240

207, 11, 76,154, 9,141

32, 88, 11, 32, 0, 12

240, 22,192, 50,240, 3

11,169, 1, 32,195,255

32,195,255,162,164, 76

162, 1, 32,201,255, 32

206, 78, 13,208,248, 32

238, 69, 13,208, 3,238

76,126, 10,162, 0,172

145, 87,206, 65, 13,136

208, 18,198, 88,165, 88

208, 6,169,207,133, 88

201, 15,240, 8,173, 63

64,208, 2,232,232, 96

13,120,173, 76, 13,133

89, 72,173, 77, 13,133

32, 88, 11,104,224, 0

76,207, 11, 32,210,255

0,206, 65, 13,136,192

20,198, 90,165, 90,201

6,169,207,133, 90,208

15,208, 2,162, 1, 96

32,198,255, 32,207,255

FO

BE

ID

BF

EP

DC

IA

CC

MD

Al

BM

EE

AJ

AH

DP

DD

CG

PA

Kl

IM

AO

GP

MB

GP

OD

MP

KM

DE

OB

EC

MK

EH

AK

Nl

Al

HK

DL

DL

PN

FK

JL

KO

HC

JK

KA

OA

HB

NO

JE

DG

LB

LE

Dl

GC

EC

HE

MN

LO

Al

2270 data

2280 data

2290 data

2300 data

2310 data

2320 data

2330 data

2340 data

2350 data

2360 data

2370 data

2380 data

2390 data

2400 data

2410 data

2420 data

2430 data

2440 data

2450 data

2460 data

2470 data

2480 data

2490 data

2500 data

2510 data

2520 data

2530 data

2540 data

2550 data

2560 data

2570 data

2580 data

2590 data

2600 data

2610 data

2620 data

2630 data

2640 data

2650 data

2660 data

2670 data

2680 data

2690 data

2700 data

2710 data

2720 data

2730 data

2740 data

2750 data

2760 data

2770 data

2780 data

2790 data

2800 data

2810 data

2820 data

2830 data

2840 data

2850 data

141

13

32

48,

66,

173,

66,

0,

73,

255,

169,

87,

173,

1,

173,

189,

96,

189,

5,

11,

185,

79,

141,

12,

32,

11,

104,

169,

189,

232,

13,

84,

69,

32,

32,

13,

32,

68,

68,

82,

69,

18,

79,

33,

80,

84,

69,

85,

69,

69,

79,

18,

79,

32,

82,

48,

0,

1,

0,

61

32

204,

141,

13,

62,

13,

96,

32,

32,

15,

12,

62,

162,

56,

255,

162,

67,

208,

96,

11,

13,

70,

162,

210,

152,

168,

13,

115,

208,

208,

73,

32,

86,

82,

18,

83,

73,

82,

79,

78,

32,

84,

32,

32,

69,

83,

82,

65,

83,

78,

32,

77,

0,

82,

0,

0,

1,

0,

13,

207,

255,

66,

202,

13,

168,

162,

210,

204,

32,

173,

13,

8,

13,

32,

15,

13,

245,

162,

192,

141,

13,

1,

255,

72,

169,

32,

12,

245,

249,

86,

67,

49,

84,

32,

79,

83,

73,

32,

65,

70,

32,

0,

68,

83,

83,

78,

84,

84,

32,

67,

80,

68,

79,

44,

0,

0,

0

32,

255,

173,

13,

208,

56,

192,

15,

255,

255,

195,

61,

32,

160,

162,

192,

32,

32,

32,

138,

0,

69,

32,

32,

32,

169,

0,

210,

240,

96,

96,

69,

79,

46,

69,

80,

85,

75,

86,

13,

77,

73,

70,

18,

73,

32,

32,

62,

73,

73,

70,

79,

76,

73,

82,

76,

0,

1,

207

201

61

24

250

233

20

32

169

32

255

13

210

12

0

255,

201,

210,

204,

32,

240,

13,

230,

201,

204,

1,

141,

255,

6,

32,

82,

32,

80,

48,

47,

76,

82,

32,

69,

13,

69,

76,

79,

32,

83,

58,

60,

32,

78,

78,

73,

80,

69,

83,

32,

44,

80,

0,

255,

13,

13,

162,

141,

48,

176,

201,

48,

119,

162,

32,

255,

32,

160,

32,

255,

255,

255,

87,

1,

173,

11,

255,

255,

32,

81,

32,

32,

228,

69,

70,

73,

48,

56,

65,

67,

73,

32,

70,

32,

69,

85,

83,

75,

32,

82,

0,

71,

65,

76,

89,

84,

75,

35,

0,

108,

0,

141,

208,

56,

9,

66,

24,

2,

255,

32,

11,

182,

210,

96,

186,

2,

119,

162,

232,

32,

12,

96,

80,

32,

169,

32,

195,

13,

210,

210,

255,

76,

73,

69,

32,

54,

67,

69,

78,

90,

73,

63,

32,

78,

87,

69,

80,

69,

67,

32,

84,

69,

32,

69,

32,

0,

0,

1,

0,

62

249

233

109

13

109

160

169

210

96

32

255

169

255

32

11

0

224

119

32

173

13

0

255

119

255

96

255

255

201

65

76

82

45

13

69

32

32

69

76

0

78

68

65

84

82

84

82

68

73

0

67

33

69

36

0

0

0

TheTrai ctor 45 Sept. 1986: Volume 7, Issue O2

Animals:

An Exercise In Artificial Intelligence
Chris Zamara, Technical Editor

This program is presented as a game, but it uses principles of

artificial intelligence that could make it useful in all sorts of

interesting ways.

Programs like this have appeared in publications in the past,

including the books " What to do after you press RETURN" from

People's Computing, and David Ahl's " 101 BASIC Games". As far

as I know, it may have been around on mainframes long before

that, so this is nothing new: just an implementation which will run

on the PET/64/VIC/ + 4/B128 etc., and some ideas about applica

tions. The first time I heard about the " animals" program concept

was in Jim Butterfield's article called "Artificial (Fake?) Intelli

gence " in a recent TPUG magazine. Jim's mention of animals

inspired me to write the program presented here.

Put simply, Animals is a Database which increases its knowledge

as it is used, and locates records in the Database by asking specific

questions. It is called animals because in its simple form as

presented here, it can be used as a " guess the animal" game,

where the computer tries to guess an animal that you're thinking

of by asking questions. To begin with, the program knows only two

animals and one question, and builds its knowledge of animals as

it is used, learning a new animal each time it makes a wrong guess.

To illustrate how it does this, take a look at this sample session.

The only thing the program knows at first is the question " Does it

live in the water?" and the animals " Fish" and " Horse".

Does it live in the water? no

*** It might be a Horse

Is that correct (y/n)? yes

Alright! guess I'm pretty smart! Like to play again?

In the above case, the player was coincidentally thinking of one of

the animals the computer knew, but let's try again, thinking of a

bird.

Does it live in the water? no

*** It might be a Horse

Is that correct (y/n)? no

Ok, what were you actually thinking of?

Bird

What yes/no question could I ask to distinguish a Horse from
a Bird?

? Does it fly

And regarding a horse, Does it fly? no

Thank you for teaching me a new animal!

Play again?

The program has now learned a new animal, and will ask " Does it

fly" whenever it get a " no" to " Does it live in the water?", and

guess " bird" or " horse" depending on the answer. As the

program is used more and more, it learns new animals, and can

intelligently" guess many animals correctly if the people who

teach it give good questions. The interesting thing about this

program is that the programmer who wrote it may know little more

than the animals Horse and Fish, but after his program has been

used by others for awhile, it may know hundreds of animals that

he's never heard of. (The animals and questions are stored on disk

in a relative file, independent of the program itself.) Left in a

classroom, or better yet, with a few zoologists, the program would

be quite well-educated, as it would assimilate the sum knowledge

of all who used it.

After a bit more use, a sample session with the same program

might go something like this:

Does it live in the water? no

Does it fly? no

Can you ride it? no

Does it have soft fur? no

Is it covered with hair? no

Does it have legs? no

Does it tough-skinned? yes

Does it eat ants? yes

It might be an aardvark. Is that correct? yes

The program gets smarter as it is used, but only when given

questions which properly distinguish the two animals. Also, the

questions given are most useful when they split the " yes" and "

no" answers into nearly equal groups. For example, If you were to

give a question to distinguish a dog from a chicken, "Does it

bark?" would be not much better than " Is it a dog", since so

many more possibilities exist on the " no" side than the " yes". A

better question in this case would be " Does it have feathers?", or

even " Does it lay eggs?", since such questions give a more even

split and will lead to the final answer quicker. The system is

basically a binary tree, where each branch is a question that leads

to two more questions or answers. Choosing good questions will

result in an evenly distributed tree.

Another thing to keep in mind when teaching the program a new

animal is that once you reach the end of a branch of the tree, there

is no way to add on to that branch. Because of that, you can't teach

the program an animal like " bird", and then later want to get

more specific and teach it " sparrow" or " robin". Once it guesses

bird, it'll be right or wrong, and if it's right, you've reached the end

of the line. If you want to have a more specific database, you could

teach it a sparrow and use "is it a bird" as the distinguishing
question.

Sept.l986:V9lume7. Issue 02

A good use of the program, which gets around the above problem,

is to use it to guess specific people instead of animals. Questions

like " is he/she female?", " Does he/she have brown hair?", etc.

could be used to lead to the names of your friends. Each of your

friends could in turn introduce new people to the program, and

before long you'll have hundreds of people in your database, and

you would be able to find a the name (and perhaps even phone

number) of someone simply by answering the computer's ques

tions about their physical appearance or likes and dislikes.

Notice how we've just found a completely different use for the

same program, simply by giving it different information. In fact,

you could have a " people" as well as an " animals" data file on

disk, and use the identical program, since it asks you the filename

of the data when you run it. You could build up lots of files

containing different types of information, and then just RUN the

program and tell it " animals", " people", " aircraft", " famous

people", or whatever you care to find out about. From a descrip

tion of an airplane or an actor, you could find out the identity,

based on what the program knows so far.

If you do start using the program to build large databases, you'll

find that it has limitations which make it difficult to use in a

practical way. For example, if someone puts in a bad or incorrect

question somewhere along the way, there's no easy way to repair

the damage, making the database unreliable. Ambiguous ques

tions could end up with an animal (or whatever things you're

using) ending up in two different places in the tree. And a tree that

started with specific instead of more general questions (like asking

" Is it a marsupial" right off) would need to ask many questions

before getting to the end of a branch.

By expanding on the program, all of the above drawbacks could be

addressed. The program could check the tree for animals in two

places, and ask questions to find the correct place. The branches in

the tree could be re-arranged, putting the most common questions

at the beginning. It could check whether a new animal being

entered is correct based on all previous questions in the path, and

ask questions to make the necessary corrections if a discrepancy is

found. Branches of the tree which are never accessed could be

labelled as possibly "bad", and the program could determine

which questions to ask to fix it up. And the problem of expanding

beyond the end of a branch could be solved by allowing multiple-

choice answers instead of just yes or no, for example, " it could be

a: l)sparrow, 2) robin, 3)duck".

An animals program incorporating all of those features could be

used as a kind of " expert system", learning from those who use it

and providing answers to questions based on observed facts. As an

example, let's use Animals as a car problem diagnosing tool. At

first, all it knows is the question " Does the engine turn over?" and

the answers " Check the ignition cap", and " Check the battery".

You find your car doesn't turn over and the program tells you to

check the battery. You find that the problem isn't the battery, go to

a mechanic, and he finds a cooked starter solenoid. " I thought it

was the battery", you say. " No", says the mechanic, " Look how

bright the headlights are, and they don't even dim when you try to

start - obviously, it's the starter or the solenoid." After visiting

your friendly local loans officer so that you can pay the mechanic,

you head home to teach " Animals" something new. When it says

" Try the battery. Is that correct?", you say " no", and tell it about

the solenoid. When it asks how to distinguish a weak battery from

a cooked solenoid, you say, " Do the headlights dim when attempt

ing to start?", and say " no" for the bad solenoid. Now, much to

the dismay of your mechanic and bank manager, you are on your

way to building a complete car-maintenance database.

If you were to use the program for the life of your car, it might learn

a few things, but nothing that you didn't learn yourself. But if the

program was properly used at, say, a car dealership's service

department, the dumb little animals program would have the

experience of a dozen mechanics at its disposal. Using the 1541

drive, you could fit over 1,700 questions and diagnoses onto a disk

- the number is only limited by disk space. You could actually do

this with the program listed here, but you may be frustrated if you

mess up the database somehow. There are, however, expert

systems for microcomputers that use a similar concept, and are

designed for use in everyday situations. This program is just for

fun, and to show how easy it is to achieve a " artificial intelligence

on a simple level.

Before you RUN the "Animals" program in the following listing,

you'll have to create the relative file containing the database. Part

of the program is set up to do this for you: RUN 51000 to create the

file. You will be asked the filename (the default is " animals.dat"),

and the maximum number of records in the file. 2000 is a good big

number, creating a file which takes 358 blocks on disk. It will take

a short while for this file to be created. Once created, the first

question and the animals fish and horse will be written to the file to

start you off. You can change the start question and answers in

lines 51110 to 51130. If at any time, you wish to re-start the

database without re-creating the file, just RUN 51100. To copy a

relative file used by Animals, you can use the program "Tran

scribe", from page 42 in this issue.

Once the file is created, just RUN the program and enter the

database filename or press RETURN to use " animals.dat". From

there on, you can use animals as described above. To answer the

yes/no questions, just press 'y' or 'n' without RETURN. The

program has been tested on an 8032, C-64, and B500, and on both

the 8050 and 1541 drives. It should work on the VIC, +4 and C-

128 as well.

When using the program, please note that no disk error checking

is done. The program is all in BASIC, so you can easily add error-

checking yourself. The program was kept minimal to make it easy

to type in.

How The Program Works

For all its seeming brilliance, "Animals" is a very simple pro

gram, and was quite easy to write. Each question or animal is

stored as a record in a relative file. The first four bytes of each

record store two pointers, which are all zero in the case of an

animal, and point to other records in the case of a question. A

Question's first pointer points to the record read for a "yes"

answer, and the second is for a " no". Adding a new question

merely consists of inserting it in this chain, between a question

and an animal, and making it point to the appropriate animals.

For example, when the program first starts up, there are three

records filled (actually 4, since record #1 holds a pointer to the next

47
Sept. 1986: Volume 7, Issue 02

available record). Record *2 contains the question " Does it live in

the water" and the "yes" pointer points to record *3, "Fish",

and the " no" pointer points to " Horse" in record #4. If you are

thinking of a bird, you answer " no" to the question and tell it

Bird". You then give it the question " Does it fly" and say for a

birds the answer is " yes". The program then changes the " no"

pointer of "Does it live in the water" to point to "Does it fly",

the "yes" pointer of "Does it fly" points to the new animal,

Bird", and the " no" pointer points to the animal which previ

ously ended the branch, "Horse". A new question has been

inserted between a question and an animal, with the old and new

animal forming the two branches of the new question. Record 5

now holds the new question, 6 the new animal, and the next-

record pointer is set to 7. To see how the file looks, RUN 50000 to

display the file along with the record numbers and pointers. You'll

see the questions and where they point to, and how questions and

animals are stored in alternate records.

When the program restarts after guessing correctly, it chains

through each question by following the " yes" or " no" pointers

depending on the answers to the questions. When an animal is

reached and it is incorrect, the above process is followed again to

insert a new question and animal. Simple, straightforward code

that an intermediate programmer could produce with little effort.

If nothing else, this program may de-mystify the concepts of

programs that learn by their errors and appear to be " smart". It is

a lot of fun to play with, and may actually be useful as a simple

expert system. Give it a try and mystify your friends with " fake"

intelligence!

Thanks goes to Jim Butterfield for his insights and his article "

Artificial (Fake?) Intelligence", which inspired this program.

Animals (Please note: some lines were altered slightly just

before printing. Verifizer codes for these lines will show as "—".)

AB

CE

HB

EF

LP

PI

EB

NN

GD

LP

AO

GE

OB

EK

KO

MJ

ID

DE

AN

01

AK

IJ

100 rem "animals" ai program

110 rem a simple expert system

120 rem run 51000 to create file

130 rem run 51100 to initialize file

140 rem run 50000 to print file

150 rem save "@0:animals 2.0" ,8

160:

170z$ = chr$(0)

180 sp$ = " [56 spaces]

190 rl = 44: rem rel record size-1

200 input" Name of data file[4 spcsjanimals.dat

[13 lefts] ";f$

210:

220 rem* main program loop *

230 open 15,8,15

240 open 1,8,9,f$

250 print#15," p" ;chr$(9)chr$(1)chr$(0)chr$(1)

260 rem first record holds next available record

270get#1,m1$,m2$: rem in low, hi format

280m1$ = left$(m1$ + z$,1):m2$ = left$(m2$ + z$,1)
290max = asc(m1$) + 256*asc(m2$)
300:

310 print "0**[8 spcsJThink of an
animal[10spcs]**";

Ol

NG

IM

Kl

HA

OB

EC

KP

JG

LE

OJ

IB

HG

GD

LF

PA

HB

JC

PP

oc

EL

HA

FG

NH

BJ

HO

CH

LN

EO

OB

JL

DE

CM

JD

Dl

IA

DG

LC

JB

PP

HG

LI

GL

FN

AH

PE

AL

320 print" ** Answer questions with 'y' or

'n'

330rp = 2:rem point to first question

340:

350 r= rp: gosub 20000 'read in data

360 if yes = 0 and no = 0 then 460 'end of chain

370 rem chain to next branch

380 print m$;"? ";

390 gosub 10000: rem get y/n response

400 bp = rp: remember old record #

410 if yn$ = " y" then a$ = " yes": rp = yes: ob = 0

420 if yn$ = " n" then a$ = " no" : rp = no : ob = 1

430 print a$: rem yes or no

440 goto 350

450:

460 rem end of chain - give guess

470 print "0*** It might be a " ;m$
480 print" > Is that correct (y/n) ";

490 gosub 10000 'get answer yes or no

500 if yn$ = " y" then 950 'found answer, wrap up

510 rem got wrong answer, let's learn from it

520 print" no": print" 0OK, what were you actually
thinking of"

530 input" >";animal$

540 print"ElWhat yes/no question could I ask"
550 print" to distinguish a"

560 print" " ;m$

570 print "from a'

580 print"

590 input

600 print

610 print

620 print

" ;animal$

.nd regarding a"

";m$;",": print q$

> (y/n)";

630 gosub 10000 'get yes/no

640 rem create new question pointing to current or

new animal

650 if yn$ = " y" then a$ = " yes": yn = rp:

nn = max + 1: rem new yes/no pointers

660 if yn$ = " n" then a$ = " no" : yn = max +1:

nn = rp: rem new yes/no pointers

670 print a$: rem yes or no

680 rr = max: gosub 40000 'record#(max)

690 n = yn: gosub 30000: yn$ = lh$: rem convert n to

lh$ (low + hi)

700 n = nn: gosub 30000: nn$ = lh$: rem convert n to

lh$ (low + hi)

710print#1,yn$;nn$;left$(q$ + sp$,rl-4)
720 gosub 40000 're-position to foil bug

730 rem point old question to new

740 r = bp : gosub 20000 'read in old question

750 n = max: gosub 30000 'find low.hi of new

record position

760 if ob = 0 then yes$ = lh$: rem point 'yes' ptr to
new question

770 if ob = 1 then no$ = lh$: rem point 'no' ptr to
new question

780 rr = bp: gosub 40000 'record#1 ,(bp)

790 print#1,yes$;no$;m$: rem re-write modified
record

800 gosub 40000 're-position to foil bug

810 rem now put new animal in next available record

I The Transactor

Sept. 1986: Volume 7, Issue O2

FL

HH

IE

KM

DE

OK

KD

DL

CO

BG

GB

LI
r—f. |

FN

ED

GC
1—v * «

DM

LI
\r\
IU

AH

CF

AH

NM

HF

PD

KO

EO

DF

DL

Gl

10

CP

HC

PD

Bl

NJ

CG

PH

BN

GE

CO

HE

LL

KK

MA

EF

FE

AG

CM

MM

Jl

820 rr-max + 1: gosub40000 'record#1,(max + 1)

830 print#1 ,z$;z$;z$;z$;left$(animal$ + sp$,rl-4)

840 gosub 40000 're-position to foil bug

850 rem now update max. record pointer

860 rr = 1: gosub 40000 ' 1 st rec has ptr

870 max = max + 2 : rem 2 records have been added

to file

880 n = max: gosub 30000 'convert to 2-byte pointer

890 print#1 ,lh$;left$(sp$,rl-2): rem pad with spaces

900 gosub 40000 're-position to foil bug

910 print: print "^Thank you for teaching me a
new animal!"

920 goto 970

930:

940 rem got right answer, wrap up

950 print" yes": print"0Alright! Guess I'm pretty
smart."

960:

970 close 1: close 15

980 input "EJplay again[3 spcs]y[3 lefts]" ;yn$
990 if yn$ = " y" then 230
i c\r\r\ /-\r*.i-i
1000 end

1010 :

1020:

10000 rem* subroutine to accept y or n

10010 k = 0: for i = 0 to 1

10020 get yn$

10030 rem flash fake cursor

10040 print mid$(" Q3" ,sgn(k and 8) + 1,1);
" [1 spc, 1 crsr left]";

10050 k = (k + 1) and 255

10060 i = -(yn$ = " y" or yn$ = " n"): next

10070 rem until 'y' or 'n' pressed

10080 print Q ";: rem erase cursor
10090 return

10100:

10110:

20000 rem subroutine to read record* (r) in

yes$,no$,m$

20010 rr = r: gosub 40000: rem record* 1 ,(r)

20020 get#1,y1$,y2$,n1$,n2$

20030 yes$ = left$(y1$ + z$,1) + Ieft$(y2$ + z$,1)

20040 no$ =left$(n1$ + z$,1) + Ieft$(n2$ + z$,1)

20050 yes = asc(y1$ + z$) + 256*asc(y2$ + z$)

20060 no =asc(n1$ + z$) + 256*asc(n2$ + z$)

20070 input*"! ,m$

20080 rem strip trailing spaces

20090 lc = 0: for k = 1tolen(m$):if mid$(m$,k,1)<>

"thenlc = k

20100 next: if Ic then m$ = left$(m$,lc)

20110 return

20120:

30000 rem* subroutine to convert 16-bit 'n' to

low.hi 'lh$' *

30010 hh% = n/256: ll% = n-256*hh%:

lh$ = chr$(ll%) + chr$(hh%)

30020 return

30030:

30040:

40000 rem* subroutine to simulate rrecord#1,(rr)' using

basic 2.0 *

PN

NL

KH

MN

GO

JD

IB

MH

IG

LK

MC

LF

KL

MF

LP

AO

JE

PA

IC

IM

IJ

NL

KP

IH

Cl

EH

KF

IJ

EB

DB

EO

JE

NJ

AK

GA

FL

JK

HM

FB

HP

AF

GJ

MN

KE

MF

IM

KD

MN

OM

AP

DO

DO

GE

40010 rh°/o = rr/256: rl°/o = rr-256*rh°/o

40020 print#15," p" ;chr$(96 + 9)chr$(rl%)chr$(rh%)

chr$(1)

40030 return

40040 :

40050 :

50000 rem** dump relative file

50010 open 15,8,15

50020 input" Name of data file[4 spcsjanimals.dat

[13 lefts]" ;f$

50030 open 1,8,9,f$

50040 z$ = chr$(0)

50050 print#15," p" ;chr$(9)chr$(1)chr$(0)chr$(1):

get#1,l$,h$

50060 nr = asc(l$ + z$) + 256*asc(h$ + z$)-1

50070 print " 1 :" nr" records in fileQ"

50080 rl = 2: rh = 0: rem record #, lo/hi

50090 for i = 2 to nr

50100 print#15," p" ;chr$(9)chr$(rl)chr$(rh)chr$(1)

50110 get#1 ,x1 $,x2$,x3$,x4$: input#1 ,a$

50120 p1 = asc(x1 $ + z$) + 256*asc(x2$ + z$)

50130 p2 = asc(x3$ + z$) + 256*asc(x4$ + z$)

50140 print i;":";p1,p2,"["a$"]"

50150 rl = rl +1: if rl>255 then rl = 0: rh = rh + 1

50160 next: close 15

50170 end

50180:

50190:

51000 rem** create new animal file

51010 input" Name of data file[4 spcs]animals.dat

[13 lefts] ";f$

51020 input "maximum number of records[6 spcs]

2000[6 lefts]" ;m

51030 open 15,8,15

51040 open 1,8,9,f$ +",!,"+ chr$(45): rem rec len = 45

51050 rr = m: gosub 40000

51060 print#1,left$(sp$,44)

51070 close 1: close 15: goto 51110

51080 input" Name of data file[4 spcsjanimals.dat

[13 lefts] ";f$

51090:

51100 rem** teach first two animals

51110 ii$= " Does it live in the water" :rem first

question

51120 r2$= " Fish" : rem 'yes' answer

51130 r3$= "Horse": rem 'no' answer

51140z$ = chr$(0)

51150 sp$ = " [56 spaces]

51160 open 15,8,15

51170 open 1,8,9,f$

51180 rr=1: gosub 40000

51190 print#1 ,chr$(5);z$;left$(sp$,40)

51200 gosub 40000: rr = rr +1: gosub 40000

51210 print#1 ,chr$(3);z$;chr$(4);z$;left$(r1 $ + sp$,40)

51220 gosub 40000: rr = rr +1: gosub 40000

51230 print#1 ,zzzz;left$(r2$ + sp$,40)

51240 gosub 40000: rr = rr +1: gosub 40000

51250 print* 1 ,zzzz;left$(r3$ + sp$,40)

51260 close 15

51270 end

The Transactor 49 Sept. 1986: Volume 7, Issue O2

BREAK KEY 64 Frank E. DiGioia

Athens, Georgia

. alter parameters while a program is running.

If you have ever used a mainframe computer, you are probably

familiar with the BREAK key. If output is scrolling by too fast, you

can halt it with the BREAK key and then cause it to resume, when

you are ready, by pressing return. In addition to just stopping

output, most mainframe computers allow one to give commands

which affect program output while in break mode. These are

usually referred to as BREAK-TIME COMMANDS. In this article

we will examine a wedge which converts the RESTORE key on the

C64 into a BREAK key, thus allowing the user to enter break-time

commands to alter certain parameters while a program is running.

This exciting capability can be a tremendous aid in program

development and makes using other people's programs -more

enjoyable.

Why a BREAK Key?

Here's the scenario: You get a disk full of public domain software

and boot up the first program (an address filer of course). You're

instantly blinded by the authors choice of colors — orange on cyan

on purple. What do you do? Simply hit the BREAK key to interrupt

the program, adjust the colors exactly the way you want them and

then hit RETURN to continue execution. Easy! But that is only the

beginning — BREAK KEY 64 will also allow you to redirect output

to or from the printer, set new default colors for RUN/STOP-

RESTORE, make a hardcopy of the current text screen or perform

a cold system reset. It is compatible with most utilities including

Epyx Fastload, the DOS wedge, last issue's command wedge and

function wedge and almost every non-commercial program there

is. In addition, BREAK KEY 64 is open ended so you can easily add

your own custom break-time commands.

How Does It Work?

Most readers are probably aware that when the RESTORE key is

struck, it generates a Non-Maskable Interrupt (NMI) to the 6510

chip. That is, the 6510 finishes the instruction it is currently

working on, saves the STATUS REGISTER and PROGRAM

COUNTER on the stack and jumps to the address found at $0318/

$0319. If the STOP key is not pressed, hitting the RESTORE key

appears to do nothing even though it actually interrupts whatever

the computer was doing and executes some ROM routines before

returning from the interrupt. Clearly, all we need to do in order to

trap the RESTORE key is to change the vector at $0318/$0319 to

point at our own routine. We must be especially careful, however,

not to change any registers or memory locations which could affect

the BASIC or machine language program which will be interrupted

by the break key. This means that care must be taken in selecting

ROM routines to use in your break code since some of these

routines use the floating point accumulator and other vital zero

page locations as a workspace. One consequence of this limitation

is seen in the very simple parser used by BREAK KEY 64. Rather

than rely on ROM routines for numeric input, I opted to settle for

simple one-character commands. It should be noted, however,

that you could always copy all of zero page memory into a buffer

then use any ROM routine you choose and finally replace the zero

page memory before continuing program execution.

BREAK KEY 64 Description:

To enter break mode with BREAK KEY 64, whether a program is

running or not, you need only to strike the RESTORE key. To leave

break mode press RETURN. One thing which might confuse you at

first is the fact that upon entering break mode, no message is

printed to the screen to let you know that you are in break mode.

This is to prevent the display from being corrupted in case you

want to make a hardcopy of the screen. To enter a command, type

a slash (/). The slash is not echoed until it is clear that you are not

requesting a hardcopy of the screen. After you type the slash, the

parser waits for a valid command key press. The following lines list

the valid commands and explain what they do. The command key

will always be echoed in the top right hand corner of your screen.

The Transactor 5O Sept. 1986: Volume 7, Issue O2

/H The H command makes a hardcopy of the screen. This

command is perfect for copying down instruction screens,

neat looking title screens, any low resolution graphics, etc.

When the copy is complete, hit RETURN to continue the

program. You can abort the hardcopy command by pressing

the STOP key.

/P The P command redirects all subsequent output from the

screen to the printer. This command simply opens a file to the

printer using the same character set as the screen (ie upper/

lower or upper/graphics) and then changes the default output

device to device #4. Be certain that your printer is turned on

before using /P.

/S This command 'undoes' the /P command. It closes the printer

file and changes the default output device back to the screen.

Note: If the /P command doesn't seem to work, it probably

means that you never issued a /S after your last /P to clear

BREAK KEY 64's internal output flag. Issuing a /S should

correct the problem.

/C This command changes the current screen colors. After typing

/C you are in COLOR mode. Press T to change the text color.

Press E to change the Edge (border) color and and press G to

change the (back)Ground color. When you have adjusted the

colors to your liking, press RETURN to exit COLOR mode. You

are then back to BREAK mode.

/D This command sets the current screen, border and text colors

as the default colors for RUN-STOP/RESTORE. For instance,

if you issue this command while the current screen colors are

green, blue and gray and then change the colors to anything

else, when you hit RUN-STOP/RESTORE the screen will go

back to green, blue and gray.

/* The * command causes a cold system reset. This command is

included in case the C64 ever refuses to obey commands from

the keyboard. You should still be able to make it respond to the

RESTORE key. This simple command is the same as SYS

64738.

You will undoubtedly think of some other commands to add to

BREAK KEY 64 as you program and use other people's programs.

Some ideas might include a HIRES screen dump or a BSOUT

wedge to alter the print speed, etc.

Final Notes:

There are several minor limitations to BREAK KEY 64. (1) It

should NEVER be used to interrupt disk operations such as LOAD,

SAVE or printing a directory with the DOS wedge. Interrupting a

disk operation will almost certainly cause the C64 to miss a

handshaking signal with the drive causing the computer and drive

to 'hang up'. Now, before you blame BREAK KEY 64, note that the

computer will always get 'hung up' if you press the RESTORE key

during a disk operation either with or without BREAK KEY 64

being present (if you don't believe this is true, type LOAD" $" ,8

and strike the RESTORE key a few times while the directory is

loading). (2) BREAK KEY 64 doesn't allow recursion. That is, you

can't reenter break mode until you finish the current break mode

task. There is nothing wrong with allowing recursion if you want -

- there just isn't much point to it since its main affect is simply that

if you hit RESTORE ten times, you'll have to hit RETURN ten times

to leave break mode. (3) It is possible to double or triple bounce the

RESTORE key causing you to end up with the C64 default colors

on the screen instead of the defaults you selected and BREAK KEY

64 will be deactivated. This situation does not normally occur

unless you really try to make it happen. If it does occur, however,

you will have to reactivate BREAK KEY 64 with SYS 50432.

There are two program listings included with this article. LISTING

1 is the BASIC loader for BREAK KEY 64. LISTING 2 is the

assembly language source code for the program. There are several

stand-alone subroutines included in BREAK KEY 64 which you

may find useful in your own programs. These routines include

LOPEN, LCLOSE, DECODE, STOP and CHGTXT.

BREAK KEY 64 is activated with:

SYS 50432

($C500) and is, of course, immune to RUN/STOP-RESTORE.

BREAK KEY 64: BASIC Loader

HO

JC

OK

GP

NN

HG

HI

OB

KG

BN

HP

ND

KH

AA

IC

DK

DP

JG

IK

EJ

PJ

FE

JE

MH

FN

IG

CJ

AG

NG

EJ

EF

GO

NF

BO

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

rem basic loader for restore wedge

rem by frank digioia 02/27/86

rem sys 50432 to activate

for adr = 50432 to 51007:read ml

cs = cs + mhpoke adr,ml:next

ifcs<>73014thenprint" error in data"

data 169,

data 41,

data 3,

data 75,

data 78,

data 0,

data 162,

data 32,

data 88,

data 201,

data 65,

data 32,

data 197,

data 17,

data 15,

data 13,

data 76,

data 198,

data 24,

data 108,

data 169,

data 251,

data 251,

data 210,

data 192,

data 255,

18,

141,

96,

69,

83,

72,

198,

239,

32,

47,

197,

228,

201,

201,

201,

96,

226,

32,

229,

2,

123,

169,

32,

255,

40,

173,

160,

24,

66,

89,

84,

138,

141,

198,

88,

208,

32,

255,

72,

67,

83,

76,

252,

21,

32,

160,

32,

4,

249,

32,

144,

231,

197, 32,

3, 169,

82, 69,

32, 54,

65, 76,

72, 152,

24, 3,

208, 3,

197,201,

245, 32,

7, 197,

240,251,

240, 54,

240, 16,

240, 14,

127, 198,

76, 109,

253, 32,

201, 198,

169, 146,

6, 199,

133,252,

197, 32,

239, 198,

235, 169,

197, 32,

30,171, 169

197,141, 25

65, 75, 32

52, 32, 73

76, 69, 68

72, 169,223

142, 25, 3

76, 137,197

13,240, 10

94,197, 76

76, 188,254

96, 32, 88

80, 240

42, 240

68, 240

21, 198

76

201,

201,

201,

76,

198,

163,253,

67

32

32, 7,197

141,

162,

160,

231,197

0, 134

0, 177

232, 197, 32

240, 32,200

13, 32,210

210,255,165

The Transactor 51 Sept. 1986: Volume 7, Issue O2

DL

AA

AC

LM

CG

NA

FG

II

NB

OF

MD

ND

CL

HJ

BM

OE

MK

OP

PD

FF

JH

OF

NM

EA

EO

JO

NL

CE

MF

ED

AB

MP

NH

MH

IK

LF

PF

Fl

EC

AH

JH

DG

LO

PO

OM

EO

96

48.

32

72

95

1

2

69

440 data 251,

450 data 230,

460 data 204,

470 data 133,

480 data 16,

490 data

500 data

510 data

520 data

530 data

540 data

550 data

560 data

570 data 198,

580 data 76,

590 data 173,

600 data 208

610 data 93,

620 data 39

630 data 32

640. data 95

650 data 122

660 data 16

670 data 227

680 data 76

690 data 216

700 data 219

710 data 145

720 data 144

730 data 251

740 data 197

750 data 96

760 data 147

770 data 173

780 data 138

790 data 3

800 data 4

810 data 32

820 data 4

830 data 199

840 data 160

850 data 162

860 data 189

870 data 76

880 data 169

890 data 104

24,

252,

255,

215,

2,

72,

10,

210,

169,

198,

96,

32,

208,

201,

26,

134,

141,

198,

4,

141,

198,

141,

32,

169,

6,

133,

133,

251,

243,

144,

254,

173,

198,

93,

72,

76,

199,

225,

199,

173,

7,

4,

255,

201,

13,

76,

105,

232,

169,

41,

9,

173,

72,

255,

18,

32,

201,

147,

6,

71,

198,

2,

92,

96,

169,

37,

173,

94,

95,

255,

199,

252,

254,

32,

24,

2,

208,

91,

173,

198,

152,

137,

142,

255,

40,

24,

44,

32,

32,

255,

32,

195,

40, 133,251,

224, 25,144,

123, 76, 43,

63, 6,215,

128,112, 2,

231,197, 48,

169, 146, 141,

104, 96,104,

208,240, 169,

88, 197,201,

84,208, 9,

198, 76, 26,

238, 32,208,

208,221,238,

169,

141,

198,

1,

4,

91,

173,

0,

32,

198,

33,

10.

38,47, 141

4, 96,169,

94,198, 16,

198, 76, 43,

198,173, 94,

141, 94,198,

169, 0,133,

169,232,133,

160, 0,173,

178,198, 32,

169, 1,101,

230,252, 96,

4, 165,251,

198, 141, 134,

92,198, 141,

141, 33,208,

72, 32,239,

197, 76,188,

5,199, 32,

8, 174

96, 0

208,201

160, 0,173

186,255, 169

192,255, 174

72,170, 32

210,255, 32

255, 14, 0

5,

0,

21,

BREAK KEY 64: Source Code

100 ;restore wedge — break-time cmds.

110 ; by frank e. digioia

120:11/19/85

130;

140. = $c500

150;

144, 2

206, 32

199, 146

36,215

9, 64

14, 104

231,197

16,252

3, 32

13,208

238, 134

198,201

76, 26

33,208

95, 198

173, 32

208, 141

122, 141

4, 169

19, 32

245,169

199,169

198, 48

169, 122

251, 169

253, 169

134, 2

190,198

251,133

165,252

197,253

2, 32

32,208

96, 72

198,208

254,141

188,246

199, 173

141, 60

240, 3

60,199

0, 32

60, 199

201,255

204, 255

255, 255

160chrout

170getin

180 cold

190;

200

210

220

230;

240 brkint

250

Ida

Idy

jsr

Ida

sta

$ffd2

$ffe4

$fce2

#<msg

#>msg

Sable

#<rwdg

$0318

; print char in .a

;check keyboard

;cold system reset

point to mesg

;printmesg

;setup nmi wedge

;nmi vector

FB

OM

EA

NE

MO

MK

GB

OP

AN

FB

to

IO

PB

Ml

PE

GL

KB

OD

PO

NF

FM

ME

HM

JA

JB

OC

GL

Ol

JB

MJ

PE

GH

KL

IC

EJ

OE

CO

cc

NO

HO

MJ

03

MP

MP

ED

MB

PM

MD

JF

CG

AA

IH

FB

IO

DL

GE

FE

OL

BH

AD

OG

LE

EB

Gl

BA

OA

HH

BF

GB

GO

NA

HC

LO

NN

MG

IA

MH

AG

GB

AL

JJ

FK

BM

OD

Jl

FC

AO

Al

OG

OP

BJ

260

270

280

290 msg

300

310;

320 rwdg

330

340

350

360

370;

380

390

400

410

420;

430

440

450

460

470;

480 wrloop

490

500

510

520

530

540

550;

560 return

570

580;

590 waitlp

600

610

620;

630 chkcmd

640

650

660

670

680

690

700

710

720

730

740

750

760

770;

780 jmptab

790

800

820

830

840;

850 newrsr

860

870

880

090

900

910

920;

930 ;hrdcpy

Ida

sta

rts

.byte

#>rwdg

$0319

'break key 64 installed1

.byte $00

pha

txa

pha

tya

pha

Ida

Idx

sta

stx

jsr

bne

imp

cli

jsr

cmp

beq

cmp

bne

jsr

imp

jsr

imp

jsr

beq

rts

jsr

cmp

beq

cmp

beq

cmp

beq

cmp

beq

cmp

beq

cmp

beq

rts

=

imp
imp

jmp

imp

m

jsr

jsr

jsr

jsr

jsr

imp

#<brk2

#>brk2

$0318

$0319

stop

. + 5

newrsr

waitlp

#$0d

return

#■■/"

wrloop

chkcmd

wrloop

brkint

$febc

getin

waitlp

waitlp

#"h"

hrdcpy

#-p"
jmptab

#" c"

;save regs

;disable recursion

;scan stop key

;not pressed

;run/stop-restore

; allow keyboard

;check keyboard

;" carriage return?

;" command coming?

;no/keep waiting

;check command

;wait for more

; restore wedge

;restore regs/rti

;check keyboard

;" key pressed?

;getcmmd byte

;" hardcopy?

;" printer?

;" colors?

jmptab+ 3

#"."

jmptab 4

#" s"

jmptab +

#"d"

jmptab +

•

prnter

colors

rscrn

defalt

$fd15

$fda3

$e518

setdef

brkint

($a002)

;" reset?

6

;" restore screen?

9

;" defaults?

12

;go to wait loop

;jump table

;new stop-restore

initialize vectors

;lnit sid/vic regs

; reset screen

;set default colors

; initialize wedge

; basic warm start

-- dumps the text screen

940 ; to the printer. use to save

950 ;lo-res graphics, notes,

960;

970 open

980 close

990 clrch

1000chkout

1010 setlfs

1020setnam

1030;

1040hrdcpy

1050

1060

1070

1080

1090

1100

1110

1120

1130;

1140rwioop

1150

1160;

1170chloop

=

=

=

=

=

Ida

sta

Ida

jsr

Idx

stx

Ida

sia

=

Idy

=

SlfcO

$tfc3

$ffcc

$ffc9

$ffba

$ffbd

,

#$92

revflg

#$7b

lopen

#$00

$fb

#$04

$fc

#$00

*

etc.

;open a file

;closeafile

;set standard i/o

;set output device

;set file parms

;setfn parms

;dump screen to printer

;normal mode flag

;set reverse flag

;file #123

;open printer file

;store screen adr

;as a pointer

;loop over rows

;reset column count

;loop over columns

The Transactor 52 Sept. 1986: Volume 7, Issue O2

MN

DE

KA

NN

EF

KL

IL

BF

HC

MG

LC

NG

LP

LK

GC

KP

CL

PM

MG

OK

FG

ID

GJ

KO

CA

PK

OH

KC

FE

ED

OC

IE

IE

KE

HE

KE

GF

LB

01

NO

FH

CJ

PK

LC

IK

CL

NM

JP

BH

MP

AP

KF

KB

OH

CP

FM

EM

LO

OC

JE

ID

PE

Ml

AO

CJ

GG

CB

II

Al

FC

OM

ED

CO

CE

PB

GB

AE

JG

EJ

IC

AK

CO

CN

HP

KA

EG

GE

MO

CN

Imd

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270;

1280 eopl

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420;

1430hend

1440

1450

1460

1470;

1480 revflg'

1490;

1500 ;decode

Ida

jsr

jsr

jsr

jsr

beq

iny

cpy

bcc

=

Ida

jsr

Ida

jsi

Ida

clc

adc

sta

bcc

inc

inx

cpx

bcc

=

jsr

Ida

imp

($fb),y

chkmde

decode

chrout

stop

hend

#$28

chloop

•

#$0d

chrout

revflg

chrout

$fb

#$28

$fb

. + 4

$fc

#$19

rwloop

•

clrch

#$7b

Iclose

.byte $92

;getchr from screen

;" normal or reverse?

;screen code to ascii

;print the char.

;scan stop key

; yes/finish up

;" 40th column yet?

;end of physical line

;carriage return

;outputit

;get last mode value

;set the mode

; update screen pointer

;to next row

;" need to incr hi byte?

;incr row counter

;" 25th row yet?

finished!

; restore normal i/o

;close printer

— this routine converts

1510 ;a character from its screen

1520 ;code representation to ascii.

1530 ;this is copied directly from

1540 ;the kernal rom at $e63e (cursor

1550 ;stuff removed

1560;

1570 decode

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670;

1680;chkmde

=

sta

and

asl

bit

bpl

ora

bvs

ora

rts

$d7

#$3f

$d7

$d7

.+4

#$80

.+4

#$40

;screen code to ascii

;store code

;maskouttop2 bits

;multcode by two

condition flags

;" bit 7 clear?

;no - set bit 7 in .a

;" bit 6 set?

;no - set bit 6

;ascii code now in .a

— checks on normal or

1690 ;reverse & sends code to printer

1700;

1710chkmde

1720

1730

1740

1750

1760

1770

1780hc1

1790

1800

1810chkx

1820;

1830nermal

1840

1850

1860

1870

1880;

pha

Ida

bmi

pla

bmi

pha

Ida

sta

jsr

pla

rts

pla

bpl

pha

Ida

bne

revflg

nermal

chkx

#$92

revflg

chrout

chkx

#$12

hd

1890 ;/c command (colors)

1900;

1910 colors

1920

1930 zloop

1940

1950

1960

1970;

1980

1990

2000

2010

2020

2030;

2040

2050

2060

2070

Ida

jsr

jsr

cmp

bne

rts

cmp

bne

nc

jsr

imp

cmp

bne

me

imp

#$03

output

waitlp

#$0d

.+3

#" t"

• + 11

$0286

chgtxt

zloop

#" e"

• + 8

$d020

zloop

;save screen code

;" what mode current?

;normal mode/skip

; retrieve screen code

; reverse/no sweat

;save code again

;normal/kill reverse

.toggle flag

;print the code

;restore screen code

;get screen code

; normal/no sweat

;save code again

;rev/switch mode

;finish up

;codefor 'c'

'.print command name

;wait for key

;"return?

;no/keep going

;" text?

; no/check on edge

;inc text color

;change text color

;" edge (border)?

; no/check on ground

;inc border color

GJ

FK

MC

OK

OG

IM

JB

MN

LE

OF

BJ

DM

GN

PE

MO

Gl

CA

BO

KE

MM

GN

GB

IB

MH

GA

AJ

LK

CL

ID

FM

KO

IN

EP

AO

EH

EP

FO

BL

AM

MH

GA

AC

MJ

GH

OE

ED

CG

MA

HA

OC

KO

AE

OB

FH

CK

LI

GM

MD

KN

HM

CJ

IP

BC

ND

JL

CP

MG

AO

MH

HP

CF

OG

GG

AN

EL

JB

NK

FP

CK

FK

LO

AH

KC

FP

JG

OF

CP

PN

HJ

PJ

2080;

2090

2100

2110

2120

2130;

cmp

bne

inc

imp

#"g"
zloop

$dO21

zloop

;" (back)ground?

;no/mustbetypo

;inc bckgrnd color

2140 ;/d command (set defaults)

2150;

2160 defalt

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260;

2270 d1

2280 d2

2290 d3

2300 pflag

2310;

=

Ida

jsr

Ida

sta

Ida

sta

Ida

sta

rts

•

#$04

output

$0286

d1

$d020

d2

$dO21

d3

.byte $01

.byte $00

,byte$0a

.byte$7a

2320 ;output subroutine

2330;

2340 output

2350

2360

2370

2380

2390

2400 oxit

2410;

=

sta

Ida

sta

Ida

sta

rts

•

$0427

#$2f

$0426

#$20

$0425

;codefor 'd'

;print it

;get text color

;save it

;get edge color

;save it

;get ground color

;save it

;that's all folks

;echo command

;corner of screen

;slash code

;corner of screen

;space code

;corner of screen

;all done!

2420 ;/s command (output to screen)

2430;

2440 rscrn

2450

2460

2470

2480

2490

2500

2510

2520;

=

Ida

jsr

Ida

bpl

Ida

sta

imp

•

#$13

output

pflag

oxit

#$7a

pflag

Iclose

;codefor 's'

;echo command

;" printer online?

;no/don't bother

;file#122

;set flag/offline

;close it up

2530 ;/p command (output to printer)

2540;

2550 prnter

2560

2570

2580

2590

2600

2610

2620

2630

2640;

=

Ida

jsr

Ida

bmi

Ida

sta

Ida

imp

a

#$10

output

pflag

oxit

#$ff

pflag

#$7a

lopen

2650 ;text color subroutines

2660;

2670 colrst

2680 colrnd

2690;

2700 chgtxt

2710

2720

2730

2740

2750

2760

2770

2780;

2790

2800;

2810cfloop

2820

2830

2840

2850

2860;

2870 incrmt

2880

2890

2900

2910

2920

2930

2940;

2950 chek

2960

2970

=

=

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Idy

Ida

sta

jsr

jsr

bcc

clc

Ida

adc

sta

bcc

inc

its

Ida

cmp

bne

$d800

$dbe8

#<colrst

$fb

#>colrst

$fc

#<colrnd

$fd

#>colrnd

$fe

#$00

$0286

($fb),y

incrmt

chek

cfloop

#$01

$fb

$fb

• +4

$fc

$lc

$fe

.+6

;codefor 'p'

;echo command

;" printer online?

;yes/don't bother

;set printer online

; set flag

;file#122

; start color mem

;end color mem + 1

;set up adr

;pointer for start

;and end of color

;memory for fill.

;.y is always zero

;get text color

;fill color memory

;increment$fb/$fc

;compare start/end

;" end reached yet?

;16 bit increment

increment of 1

increment lo byte

;update it

;" increment hi byte?

;compare 16 bit #'s

;comparehi bytes

;'nuff said/return

MD

PL

EJ

ID

IF

BA

BF

NF

DO

LO

IM

OP

CJ

MM

GA

OO

AM

FA

EN

IN

MP

Al

ON

KK

KA

JE

GH

MO

AG

BO

LJ

GN

FC

KN

OG

FJ

NM

Ml

EM

LB

Dl

MM

CO

DD

FB

AM

BE

AP

FK

KM

KE

HL

GC

NO

BA

Ml

CN

EK

CL

FB

NL

PA

PD

BD

KJ

EK

NC

JG

HK

MM

HI

LD

NH

FP

LO

PF

KK

NJ

PE

AD

KF

EE

EL

2980

2990

3000

3010;

3020 setdef

3030

3040

3050

3060

3070

3080

3090

3100;

3110brk2

3120

3130

3140

3150

3160

3170;

3180

3190

3200

3210

3220;

3230 stop

3240

3250

3260

3270

3280

3290

3300

3310

3320;

3330 areg

3340 xreg

3350;

3360 ;lopen -

Ida $fb

cmp $fd

rts

Ida d1

sta $0286

jsr chgtxt

Ida d2

sta $dO2O

Ida d3

sta $dO21

rts

pha

txa

pha

tya

pha

jsr stop

bne » + 5

jmp newrsr

jmp $febc

sta areg

stx xreg

jsr $f6bc

jsr $ffe1

php

Idx xreg

Ida areg

pip

rts

.byte $00

.byte $00

;hi bytes equal so

;low bytes get to

;make the decision

; default text col

;set text color

;fill color mem

;default edge color

;set border color

;default ground color

;set background col

;userbreak2

;save regs

;scan stop key

;not pressed/continui

; pressed/warm reset

; restore regs & rti

;save .a in memory

;save x in memory

;set stop flag

;read stop flag

;save status word

;get.x back

;get.a back

;get status word

- this routine opens a

3370 ;file to the printer (file no.

3380 ;is in .a on entry), the

3390; printer s opened to whichever

3400 ;mode the screen is in. i. 3. if

3410 ;the screen is in the uppercase/

3420 ;lowercase mode, the printer

3430 ; will be also, the same applies to

3440 ;uppercase/graphics mode.

3450;

3460 lopen

3470

3480

3490

3500

3510

3520

3530 ug

3540

3550

3560

3570

3580

3590

3600

3610

3620;

3630;

3640 ;lclose -

sta Ifn

Ida $dO18

cmp #21

beq ug

Idy #$07

.byte$2c

Idy #$00

Ida Ifn

Idx #4

jsr setlfs

Ida #$00

jsr setnam

jsr open

Idx Ifn

jmp chkout

;open a printer file

;which char setprint

;uppercase/graphics

;sa for printer (u/l)

;skip next instr

;sa for upper/graphic

;# for serial printer

;system open routine

;get file number

;open output channel

routine to close a

3650 ;file to the printer, filenurr

3660 ;in .a upon entry.

3670;

3680 Iclose

3690

3700

3710

3720

3730

3740

3750

3760

3770;

3780 Ifn

3790;

3800 .end

pha

tax

jsr chkout

Ida #$0d

jsr chrout

jsr clrch

pla

jmp close

.byte$Oe

;close a printer file

;savefile number

;get file number in .x

;open the channel

;carriage return

;send to printer

; reset standard i/o

;get file number

;close the file

The Transactor 53 Sept. 1986: Volume 7, Issue O2

MOVE:

A General Purpose

Propagating Move Routine

R. J. de Graff

Winnipeg, Manitoba

As documented in a previous issue (July 85 Bits & Pieces), the

built in memory move routine can be used to move blocks of

memory hither and yon. Unfortunately, the page 0 locations

that must be primed are also used by BASIC. Therefore, to use

this routine from within a BASIC program requires that a front

end be built to copy the parameters from user selected ad

dresses to those used by the move routine.

Rather than do this I decided to write my own move routine,

MOVMEM. This routine resides in the ever popular cassette

buffer and is a mere 37 bytes long. Its parameters are poked

into page 0 locations 25-30. The calling program specifies

source address start, destination address start and the number

of bytes to copy (all in low byte/high byte format).

MOVE is fast. It also has the advantage of being able to perform

what is known as a propagating move. More on that in a

moment. For now, let's look at how MOVE can be used from

BASIC. One example that comes to mind is moving BASIC from

ROM into the underlying RAM so that it can be modified.

Typically this is done by the loop:

100fori = 40960 TO 49151

105 poke i,peek(i)

110 next i

115 poke 1,54

Timing this loop we find it takes 37 seconds to execute. Now

let's see how the same thing is done using MOVE. For the sake

of clarity I will define two functions FNH and FNL that break up

a 16 bit integer into high and low bytes suitable for poking. The

parameters for MOVE are as follows:

BYTES 25-26 source address (low/high)

BYTES 27-28 destination address (low/high)

BYTES 29-30 number of bytes (low/high)

100deffnh(x) = int(x/256)

105deffnl(x) = x-256*fnh(x)

110:

115 bs = 40960 : rem basic start

120 nb = 8192 : rem length of basic

125:

130 poke 25, fnl(bs): poke 26, fnh(bs)

135 poke 27, fnl(bs): poke 28, fnh(bs)

140 poke 29, fnl(nb): poke 30, fnh(nb)

145sys828

While this requires more code it executes in less than one

second. If the move is to be done frequently (copying bit maps

in hi-res mode for example) then the grunt work can be moved

into a subroutine such as the following:

900 poke 25, fnl(sa): poke 26, fnh(sa) :rem source address

905 poke 27, fnl(da): poke 28, fnh(da) :rem destination addr

910 poke 29, fnl(nb): poke 30, fnh(nb) :rem number of bytes

915sys828: return

The Transactor 54 Sept. 1986: Volume 7, Issue O2

Just don't forget to define FNH and FNL.

As I mentioned earlier, this routine can be used to

perform a propagating move. This type of move

results when the destination address is one more than

the source address. For example, let's say we want to

clear out an area of memory 1000 bytes long to use for

a hi-res bit map. Assuming that BM contains the

address of our bit map, this is accomplished by the

following:

200 poke bm,0

205sa = bm: da = bm + 1: nb = 999: gosub900

Fast and painless. Exactly what has happened? The

bytes were copied as follows:

SA + 0 copied to SA+ 1 (which is DA)

SA+1 copiedtoSA + 2(DA+l)

SA + 2copiedtoSA + 3

SA + 999 copied to SA +1000

The zero value poked in line 200 was propagated all

through the 1000 bytes.

This is a side effect not possible with the built in

routine due to the algorithm used. The built in routine

copies blocks in the order byte 0 then bytes 255 to 1

whereas MOVE copies bytes in the order 0, 1, 2, ...

255. Assembler source and BASIC loader follow.

BASIC Loader Subroutine

900 cs = 0

905 for i = 828 to 864

910 read b : poke i,b : cs = cs + b

915 next i

920:

925 if cs <> 4327 then print " checksum error" : stop

930:

935 data 165, 30,240, 27,169, 0,141

940 data 96, 3,160, 0,177, 25,145

945 data 27,200,204, 96, 3,208,246

950 data 230, 26,230, 28,198, 30, 48

955 data 6,208,236,165, 29,208,227

960 data 96

965:

970 return

Program Listing (Commodore Assembler)

*

j

srce

dest

nbytes

;

nblks

j

move

start

J

nxtbyt

donebl

done

remain

= 828

= 25

= 27

= 29

= nbytes +1

Ida nblks

beq donebl

Ida *0

sta remain

ldy #0

Ida (srce),y

sta (dest),y

iny

cpy remain

bne nxtbyt

inc srce+ 1

inc dest +1

dec nblks

bmi done

bne nxtbyt

Ida nbytes

bne start

rts

* = * +1

;parameter - location of srce address

;parameter - location of dest address

;parameter - location of number of bytes

;number of full blocks to move

;get number of full blocks to move

;if none then test for partial block

;set comparison value for transfer

;256 byte blocks (0 = 256)

;set index to point to first byte of block

;get next source byte

;store at next destination slot

;set index to point to next byte

;compare to remaining bytes value

;if not all moved then do next byte

increment srce address by one block

;increment dest address by one block

decrement number of full blocks to move

;if minus then we are done all bytes

;if positive we have more blocks to do

;do we have a partial block

;if yes then move it

;return to calling routine

;number of bytes to move in current block

Editor's Note

MOVE works great for mooing all sorts of stuff; sprite

definitions, colour memory, low-res screen data, or even

snapshots of zero-page and the like. And, as mentioned

in News BRK, feel free to use any subroutine published in

The T. in any program, anytime, anywhere, and for any

purpose. M.Ed.

Th© TronsQCtof 55 Sept. 1966: Volume 7, tetue 02

Bit Addressing

Of Sprite Controls

Stacy Mclnnis

Upland, California

One good reason to switch from BASIC to assembly language

programming is to increase the speed with which you can move

and change your sprites. An added advantage is the ease with

which you can do bit manipulations. Several of the locations that

control sprites must be addressed at the bit level. Among these are

$D010 which contains the most significant bits of the X positions of

your sprites on the screen and $D015 which controls the enabling

and disabling of individual sprites. Each byte that contains sprite

information for all the sprites is arranged in the same order. Sprite

zero is represented by the least significant or right most bit while

sprite seven is represented by the most significant or left most bit.

As there are eight sprites allowed and eight bits in a byte, this

works out very nicely.

Looking at the 6510 microprocessor instruction set, it is clear that

there are no instructions that will let you address any selected bit

with a single instruction. However, a combination of these instruc

tions can be used to do the job. But first, let us define some data.

Find sixteen locations that you will not be disturbing and dedicate

them to holding masks. A mask is a number that lets you use

masking tape to prevent painting beyond your desired area. Our

mask will be set up to allow the changing or testing of a single bit

without disrupting the other bits in a byte.

Example Of Defining Mask

; The first mask array will be used with the ORA instruction to turn

a bit on

ldx #3 ;x contains a 3

Ida $dO15 ;the sprite enable register

and maskan.x ;use $f7 so no bits are altered except bit

3

sta $dO15 ;reset the register and enable sprite 3

But why write all that code with the masks and indexes? If you

want to enable sprite 3, why not just write:

Ida $dO15

ora *$08

sta $dO15

Certainly this would be the better way to enable a single sprite. But

in most instances the same code is being executed for several

sprites and so it is desirable to use indexing.

Now for a complex example. Assume you would like to expand

multi-colored sprites horizontally. You also want to disable high-

resolution sprites. But you only want to do this for sprites 2 to 7.

Sprites 0 and 1 are to remain untouched.

Ida *5

loop =

;6 sprites total

Ida $d01c ;the multi color register

ora maskor + 2,x ;select only bit to consider

beq maskor ;zero is to be disabled

; if here is multi-color so expand it

maskor = *

.byt $01

.byt $02

.byt $04

.byt $08

.byt $10

.byt $20

.byt $40

.byt $80

; The second mask

[urn a bit off

maskan = *

;bits 00000001 sprite 0

;bits 00000010 sprite 1

;bits 00000100 sprite 2

;bits 00001000 sprite 3

;bits 00010000 sprite 4

;bits 00100000 sprite 5

;bits 01000000 sprite 6

;bits 10000000 sprite 7

array will be used with the AND instruction to

ora

sta

bne

j

; are here if

;

dable =

Ida

and

sta

;

eloop

dex

bpl

SdOld

$d01d

eloop

have a

*

;horizontal expansion

; reset expansion

;always branch

single colored sprite to be disabled

maskan + 2,x ;select mask

$d015

$dO15

*

loop

;the enable/disable register

;reset register with sprite disabled

;index to next mask

;loop until sprites 7 to 2 are tested

.byt $fe ;bits 11 111 110sprite0

.byt $fd ;bits 11111101 sprite 1

.byt $fb ;bits 11111011 sprite 2

.byt $f7 ;bits 111 10111 sprite 3

.byt $ef ;bits 11101111 sprite 4

.byt $df ;bits 11011111 sprite 5

.byt $bf ;bits 10111111 sprite 6

.byt $7f ;bits 01111111 sprite 7

Now, let us try the simple task of enabling Sprite 2. To enable sprite

3, set bit 3 of location $dO15 to 1.

Another instruction that works well with mask is the EOR. Assume

that you wish to horizontally expand a sprite if it is unexpanded or

unexpand if it is expanded. In other words, whatever the bit is, we

want to change it. Again, the sprite to be changed is in register X.

Ida $d01d ;the horizontal expansion register

eor maskor.x ;change the bit

sta $d01d ;reset register

If you are writing software that is sprite intensive, your masks will

be well worth the sixteen bytes you took to define them.

The Transactor Sept. 1966: Volume 7, Issue O2

Sprite Numbers James A. Lisowski

S. Milwaukee, Wisconsin

A painless way to flash numbers on text or graphics screens.

The sprite number technique is potentially useful for just about

any program that needs a numerical display. Normally, sprites

are made into graphic shapes for use as game markers or other

indicators and require some drawing to define the sprite's

shape. The demonstration program presented here will take a

three digit positive number and create a sprite that displays the

same value - without any drawing on your part. What's so great

about a sprite number? Well, first of all the sprite can be a

colour that is different than the existing foreground and back

ground. A sprite can also appear in front or behind an existing

text or graphic display, including a high resolution screen -

without altering it. Of course, the sprite number can also move

anywhere around the screen as fast or slow as desired. The

sprite number could also be flashed on and off or in different

colors to capture attention. And, best of all, the sprite number

can be expanded to twice the size of normal text characters.

If those features don't give you any application ideas, here are a

few suggestions: Sprite numbers make great action game score-

cards. For example, when that big ship gets hit by your laser, a

sprite number can be placed right next to the hit to show the

bonus points scored. With extra programming, you could make

the number fade in, break up or flash. If you need an X / Y

position display for that hi-res drawing program, sprite num

bers will do the job without changing your drawing or taking up

space. Likewise, a digital clock made of sprites won't disrupt

your wordprocessing. If your application includes process con

trol, an out of range sensor reading can come into view at any

time. If you want to get fancy, the sprite can be part number and

part graphic - say a digital display and a bar chart representa

tion of the same value, for ease of viewing and precision. I'm

sure you can think of many more uses for sprite numbers.

Although my program does have REMarks, I'll explain the

program, line by line, so that anyone who needs sprite num

bers can understand how they are made and used.

All of the lines before line 500 just do some initial set up work; a

sample mainline program covers lines 500 through 760 and

the actual sprite number subroutine occupies lines 900 through

1270. The example uses sprite number zero for number dis

plays, of course, any sprite will work just as well. Here is how

the demonstration program works:

Line 30 makes variable VS equal to the address of the VIC II

graphic chip's first register so that any register may be selected

by adding an offset value VS (eg. VS + 16 selects register 16).

Lines 30 and 40 create variables (SX, SY, SN), that correspond

to sprite zero's horizontal and vertical position control registers

as well as the register that controls whether the sprite is visible

or not, the enable register. These variables are used often

enough to merit special names. Line 60 tells VIC II to look for

the shape information for sprite zero in the 13th area reserved

for sprite shapes. (In the normal VIC II configuration, area 13

runs from decimal location 832 to 895.) If this number is

changed to another value and the corresponding shape area is

filled with a number shape, one sprite can be used to display

several predefined sprite numbers, each one switched in by

changing the shape area number in location 2040. Line 90

expands the size of sprite 0 in the X and Y dimensions for

emphasis. If this line were not present (or if the one values were

changed to zeros), the sprite numbers would be the same size

as the normal characters, but when they are expanded to twice

the normal size, they really stand out. With various combina

tions of one and zero, the sprite numbers can also have other

height / width ratios.

OK, so far the program has done some fairly normal sprite

operations. Now comes the tricky part: stealing the dot patterns

that make up a number shape from the 64's character ROM. In

most computers, the character ROMs can only be read by the

computer's video circuitry. If you wanted to use or alter the

character shapes, you would have to draw the patterns and

then duplicate them as one and zero (video dot on and off)

patterns for your program's use. This is not only tedious but it

also uses much of BASIC program memory just to store charac

ter patterns. The Commodore 64 has two very nice features

that can be used to overcome these problems. One feature is

that the microprocessor and the VIC II video chip can directly

read the contents of the character ROMs; the other feature is

plenty of RAM memory to store user defined character sets

without using up BASIC program space. Here's how my pro

gram takes advantage of these attributes:

Lines 130 and 142 turn the usual timekeeping interrupt OFF

for a while and switch the character ROM into the microproces

sor's normal address space so that the number patterns can be

read directly. (If the interrupt routine is not switched off, the

computer will " freeze up" and not respond to normal com

mands because the routine doesn't allow for the character

ROM's presence.) A side effect is that, since the interrupt

routine normally updates the system real-time clock, (the time

value found in variable TI$), this time value will not be correct

and will " lose time" as long as the interrupt routine is turned

off. When switched in, the character ROM appears at location

The Transactor 57 Sept. 1986: Volume 7, Issue O2

53248. Since each pattern takes up eight bytes and the number

patterns start at the 48th character position, Line 160 sets

variable CS to the starting address of the ROM's number

patterns. Line 180 sets variable CM to a value that corresponds

to a section of high RAM memory that BASIC never uses. Line

210 reads 80 bytes (the 10 number patterns) from ROM and

stores them in the high RAM area for later use. Lines 230 to 240

finish the procedure by switching the ROM out and turning the

interrupt routine back on. Line 310 blanks out any old data in

the the sprite shape memory area to complete the set up

section.

The demonstration mainline starts on line 530. This is a short

program that shows how to use the sprite number subroutine.

In normal use, you would keep the set up and subroutine

sections and create your own application mainline. Line 530

makes sure that the MSB (Most Significant Bit) of the sprite's X

position is off, so that the sprite travels on the left side of the

video screen. Line 560 sets the sprite's X/Y initial screen

position. Line 590 clears the screen and prints a title in normal

text characters. Lines 620 and 650 generates random colors

and three digit number values (NU) for the sprite. Line 700 calls

the actual sprite number subroutine. Lines 740 and 745 move

the finished sprite number horizontally across the screen to

show off a bit, then disables (turns off) the sprite, resets the X

screen position and goes back to the random number / color

section to start over with a new sprite. Occasionally you won't

see the sprite because it is the same color as the background. If

you wish you can change the mainline to make the sprite move

in the Y direction or over some text background.

Finally, here is what the sprite number subroutine does: Line

1000 disables (turns off) the sprite so that the transition from

one number pattern to the next is invisible. (If you want to

watch the process change the zero in Line 1000 to a one.) Line

1030 blanks out the old sprite pattern. Line 1070 formats the

number (NU) to become a sprite. First the number is changed

into string format with the STR$ function. Since the random

number string's length can range from two characters (a space,

because it is a positive number, and one digit), to four charac

ters (a space and three digits), a space is added to the right side

of the number string and the right-most three characters of this

total combination are extracted with the RIGHT$(,3) statement.

This operation will always yield a three character string, with

leading spaces and place it into variable NU$. Now that the

number string has been put together properly, the next opera

tion is to take it apart again!

Line 1130 starts a FOR / NEXT loop that selects the characters,

one by one. Also a counter, IN, that will be used later is reset to

zero. The MID$ function in Line 1140 extracts one character

from NU$ and places it into CH$. The first time through the

loop, the left-most character is selected, then the middle

character and then the right-most character, according to the

position value (CH + 1). To save time, since the sprite has been

cleared to a blank state, if the extracted character is a space, no

further processing is done and Line 1150 directs program

execution to the NEXT statement in Line 1230. Otherwise, the

extracted digit character is changed back to number form with

the VAL function and placed in ND. ND will be used as an index

to the proper starting position of that digit's character pattern.

The FOR loop in Line 1200 steps the variable I through eight

values that correspond to eight bytes in the sprite's shape

memory. Sprite shape memory is linear, but the resulting sprite

is displayed in a format where three pattern bytes lie side by

side. The STEP index of 3 in Line 1200 places the eight dot

pattern bytes so that they all line up in the same vertical

column. Also in Line 1200 the variable CH (which changes

value from zero to one as the FOR loop in Line 1130 pro

gresses) offsets the sprite shape memory value so that the first

character pattern goes into the first sprite display column, the

second digit pattern goes into the middle column and the right

digit pattern goes in the right-most sprite column. This is

definitely not your average FOR / NEXT loop but it does work!

Line 1210 takes this sprite shape memory position (I) and fills it

with a byte of the proper character pattern from the high RAM

storage area. To figure out which byte to take (PEEK), the start

of high RAM number pattern storage (CM) is added to the

starting position of the desired digit (ND*8, the NDth digit

position times eight pattern bytes per digit) plus the index IN

which steps through (IN = IN+ 1), the eight sequential pattern

bytes that make up the digit shape. Thus the result of Lines

1200 through 1220 are that the desired digit pattern is taken

out of high RAM and placed in the proper position in the sprite.

The NEXT statement in Line 1230 directs program execution

back to the FOR statement in Line 1130 which then selects the

next digit character to be loaded into the sprite (and resets

index IN), until all three string characters have been processed.

At this point the sprite number has been built, but the sprite is

still invisible. Line 1270 enables the sprite and RETURNS

execution back to the mainline program. As outlined above,

the mainline merrily moves the new sprite along then goes

back and creates a new random sprite number. If you've

followed all of these math and logic brain twisters you must

now think that computers are pretty wonderful and that pro

grammers ARE CRAZY! However, if you are still feeling like an

experiment or two might clarify the operation of this demon

stration, I would suggest:

1) changing Line 1000 to: 1000 POKE SN, 1 (so that the sprite is

enabled and you can see what is happening) and

2) sprinkle in a few PRINT statements that will show the values

of those obscure variables.

When you are done with that, here are a few other things to

ponder. First of all, if you want, you can dispense with copying

the character patterns to high RAM and just take them from the

character ROM each time they are needed. But remember, the

real-time clock loses time each time you disable the interrupt

and if anyone ever hits RUN / STOP while the program is

gathering patterns, the next button to press is ON/OFF (or

RESET if you have it).

Another note is that this routine does not use the entire sprite.

There is still room in the bottom portion of the sprite to place a

second set of three digits. (If you want to see this area change

The Transactor 58 Sept. 1986: Volume 7, Issue 02

the zero in line 310 to 255.) If you want to add the second

number to the sprite just call the subroutine twice and add an

offset

in the

usefu

a two

to I in Line 1210 to place the second pattern a little lower

: sprite. Used this way, a dual number sprite makes a

X/Y position readout for your hirez drawing program or

player scorecard for your favorite action game. The only

limitation to two-in-one sprite numbers versus two separate

sprite numbers is that both numbers have the same color in the

former case but can be different colors in the latter.

One other drawback for fast changing programs, is that all the

math makes for a slow routine. Compiling and integer variables

will help but the fastest routine would be pure machine lan

guage . And that, as they say in computer class, is left for the

reader as an exercise.

The Sprite Numbers program with demo

JL

NK

DN

BO

JH

PK

II

II

KF

EB

Ml

DM

LK

AO

IJ

IN

OK

MO

MC

KP

OL

FA

AP

AH

Al

IC

NC

FJ

EC

DA

IL

00

OG

BD

IH

EL

OL

BF

CH

NF

MB

1 rem sprite number demo v4

2 rem James a. lisowksi, 902 willow In.

3 rem s. milwaukee, wi 53172

4 rem public domain software

5:

10 rem set up sprite zero

20:

30 vs = 53248:rem first vic-ii register

40 sx = vs:sy = vs + 1:rem sprite x/y reg.

50 sn = vs + 21:rem sprite enable reg.

60 poke2040,13:rem sprite mem area 13

79:

80 rem remove rem in line 90 for

82 rem un-expanded character size

90 pokevs + 29,1 :pokevs + 23,1

100:

110 rem set up number patterns

120:

130 rem turn interupt off, switch rom in

140 poke56334,peek(56334)and254

142 poke1,peek(1)and251

145:

150 rem start of rom number patterns

160 cs = 53248+ 8*48

170 rem start of ram storage area

180 cm =49152

190 rem take character info from rom

200 rem and place in into protected ram

210 fori = 0to80:pokecm + i,peek(cs + i):next

220 rem turn interupt on, switch rom out

230poke1,peek(1)or4

240 poke56334,peek(56334)or1

250:

300 rem clear sprite pattern

310 fori = 832to894:pokei,0:next

320:

330:

500 rem = = = = demo mainline

510:

520 rem set msb of x position to off

530 pokevs+ 16,0

AJ

JP

ID

OK

HN

HF

MM

PL

PD

KO

KG

DF

IA

CM

KJ

HM

JL

KD

LM

OB

CK

IN

CG

OD

GH

Al

JL

CA

FC

DN

GG

DM

FB

El

ML

NJ

HK

MK

BA

NJ

KF

NF

JM

GG

Ol

MC

GE

Dl

FL

AP

IM

DK

LL

ME

HA

OF

JM

540:

550 rem set sprite x/y position to 100

560 pokesx,100:pokesy,100

570:

580 rem clear and title the screen

590 print" Ssprite number demo 1234567890"

600:

610 rem set sprite random sprite color

620 pokevs+ 39,rnd(0)* 15

630:

640 rem get a 1 to 3 digit positive #

650nu = int(rnd(0)*999)

660:

670 rem goto the sprite subroutine,

680 rem turn number nu into a sprite

690 rem and display it in motion

700gosub 1000

710:

720 rem wait a while, then try another

730 rem number

740 ford = 1000to2000step5:pokesx,d/10

745 nextd:pokesn,0:pokesx,100:goto610

750:

760 rem = = = = = end of mainline

770:

780:

900 rem sprite number subroutine

910:

920 rem—turn the sprite off

1000 poke sn,0

1010:

1020 rem—clear part of sprite

1030 fori = 832to852:pokei,0:nexti

1040:

1050 rem—make nu a string 3 characters

1060 rem in length with leading spaces

1070 nu$ = right$(" " +str$(nu),3)

1080:

1090 rem—select the 3 digit

1100 rem characters, one at a time

1110 rem and change the character into

1120 rem a number nd, skip spaces

1130forch = 0to2:in = 0

1140 ch$ = mid$(nu$,(ch + 1),1)

1150 if ch$ = " "then 1230

1160nd = val(ch$)

1170 rem—get the character pattern for

1180 rem this number and place it in

1190 rem the proper sprite memory area

1200 for i = (832 + ch)to(855 + ch)step3

1210 poke i,peek(in + cm + nd*8):in = in + 1

1220 next i

1230 nextch

1240:

1250 rem—turn finished sprite on and

1260 rem return to main program

1270 poke sn,1 :return

The Transactor 59 Sept. 1966: Volume 7, Issue O2

Adding Depth

To Your Screens

Stacy Mclnnis

Upland, California

- Some Tips on 3-D Sprite Animation

Artists use various techniques to make their flat canvasses

appear to have depth. When you begin to draw a screen for

your sprites to move upon you can use many of those same

techniques. But you have an additional advantage in adding a

three dimensional appearance to your screen. Your sprites can

move and change size and colour.

For discussion, assume your game takes place in a small town

which is being invaded by monsters. First let us look at the

background screen. Buildings and trees should be larger near

the bottom of the screen and smaller towards the top. This will

help give the illusion that the bottom of the screen is nearer to

the viewer. Openings in a building can be used to give depth as

our monsters can be seen passing behind them. Images that

overlap also give depth to a picture. For instance, a tree can be

placed in front of a building with its base lower than the base of

the building. This will give the illusion that the tree is closer

than the building. Either designing your own character graph

ics set or building a bit map screen will enable you to more

readily use such techniques as roads that narrow in the dis

tance, that is as they move from the bottom of the screen to the

top, and buildings in the distance that are smaller and contain

smaller windows.

Once your background is set you are ready to move your

sprites onto the screen. Remember our monsters attacking the

village? Set sprite zero to our laser gun fire. It only shows when

you push the joystick button. Sprite one is our fighter plane that

has flown in to protect the village from the dreaded monsters.

Since we have eight sprites available, this leaves us with six

monster sprites to move on the screen.

If your six monsters are to move horizontally across the screen,

make sure that monster sprite 2 is on the bottom of the screen.

Sprite 3 is next and sprite 7 is the highest. When the sprites

cross each other's paths, the sprite with the lowest sprite

number remains visible, obscuring the higher-numbered

sprites as if they were behind it.

Another method to add depth is to change the size of your

monster as he moves down the screen. This is particularly

effective if the sprite is to appear to be attacking from a distance

and is moving very fast towards you. The sprite may be made to

change its size as it passes a given position on the screen (as the

X and Y co-ordinates in $D000 to $D011 change). In general,

the sprite should become larger as it approaches the bottom of

the screen. The easiest way to change the sprite size is by using

the vertical expansion register (location $D017) and the hori

zontal expansion register (location $D01D). When the sprite

first appears, the bits in the expansion register for the sprite

should be zero to set the sprite to the regular size. Then as the

sprite passes a selected point on the screen, you can set the

expansion bits and have the sprite double in size. Depending

on the speed and shape of the sprite, you may want to first set

only the horizontal bit, then expand vertically further down the

screen. Experiment to find the best effect.

Alternatively to working with the horizontal and vertical regis

ters, you may change youj sprite size by using different sprite

definitions or images. To do this, change the appropriate sprite

data pointer to point to a new definition. Each new definition

should be a similar image but a different size. This of course

involves more time in creating the sprites and more memory to

store them than just using the expansion registers. Three

different sizes for attacking monsters seem sufficient but more

could certainly be used to create a smoother transition.

Another method to give an impression of depth is the use of

colour. Assume that you have a black background. Your sprite

could show up first as dark grey, then as it approaches, turn

light grey, then lighter and finally white or yellow. It is even

more effective if the sprite is multicolour and eventually ap

pears a brilliant combination of yellow and red. You can use

similar techniques in reverse to show a monster retreating into

the distance. However, the nature of monsters is such that they

tend to attack.

Use you sprite/background display priority (location $D01 B) to

control whether a sprite moves in front of or behind the

background. If a sprite is supposed to be at a great distance then

it should move behind the background. In our example, the

background would be the trees and buildings. If a sprite is close

it should move in front of the village. It is most effective if some

sprites move in front while others move in the background.

Since you know the location of your sprite, you can change its

background display priority as a function of where it is on the

screen. However, before you do this be sure and check the

sprite/background collision register at $D01F or you may

cause a monster to cut right through the middle of a building.

With the above ideas in mind you may add a new dimension to

your graphics screens.

Th© Tronsoctor 6O Sept. 1986: Volume 7, Issue 02

Viewports

For The Commodore 64

Anthony Bryant

Winnipeg, Manitoba

A Hi-res and Multicolour Mode Windowing Utility

In Volume 5, Issue 06 of The Transactor, Gary Kiziak presented his

'HIRES' graphics utility package for the C-64. That package gives

the programmer an array of flexible drawing commands. HIRES

resides in the free RAM at $C000-$C81 E and uses direct SYS calls

to plot on the bitmap at $E000. Viewports works in conjunction

with HIRES adding additional commands, in like manner, and

resides at $C864-$CBFF.

If at any one time the programmer would like to devote his

attention to a particular area of the hires screen, the new com

mand, VIEW, allows the definition of subsets of the screen, called

VIEWPORTS. Once a viewport has been defined, all subsequent

drawing appears within that viewport. VIEW compresses the old

screen coordinates to fit into the new viewport. Therefore, scaling

is easily accomplished.

Refer to the article by Gary Kiziak for details on the screen

coordinates, character cells and HIRES commands. Viewports

closely follows that structure, style and labelling.

'VIEWPORTS.BAS' is a BASIC loader that, when run, will create a

program file called 'VIEWPORTS' on your disk. (Make it the same

disk that holds 'HIRES') This is the machine code that contains

VIEW and a number of supporting commands which makes

Viewports quite powerful.

Editor's Note: Gary Kiziak's HIRES utility has found it's way into

yet another application. The 'HIRES' create loader is not printed

here, but the loadable 'HIRES' file will be included on Transactor

Disk #13 for this issue. For a complete description of the Kiziak

HIRES utility, see Volume 5, Issue 06, titled "Aids and Utilities".

'DEMO 1' and 'DEMO 2' are sample Basic programs that demon

strate the new commands. Before looking at these, let's go through

the new commands, their syntax and the various options availa

ble.

A viewport is set up on character cell boundaries and is similar to

the make up of a normal text screen but, once defined, it behaves

like a hires screen.

LC,TR is the top left-hand corner of the viewport, which, if you

were to define the whole screen as a viewport, would be 0,0. eg:

SYS VIEW,0,0,40,25

There is a shorter way:

SYS VIEW

.. .with no parameters defines the whole screen as a viewport.

HIRES uses the Cartesian system of coordinates where point x,y

equal to (0,0) is the lower left hand corner and x,y equal to

(319,199) <or (159,199) for multicolour mode> is the top right

hand corner of the hires screen. Wherever a viewport is located,

point (0,0) is the lower left hand corner of the viewport, and point

(319,199) <or (159,199) for multicolour mode> is the top right

hand corner of the viewport.

Now, plotting using HIRES commands PLOT, MOVE, DRAW, and

BOX is scaled automatically to fit the viewport. All of the HIRES

commands keep their original syntax, so old programs which used

these commands can be viewported.

It is also possible to fill a viewport with new colours by adding on

colour parameters with a line like:

and

100 SYS VIEW,LC,TR,WIDTH, DEPTH, BG.C1

(in hires mode)

100 SYS VIEW,LC,TR,WIDTH,DEPTH, BG.C1 ,C2,C3

(in multicolour mode)

1. Setting Up A Hi-Res Viewport

To define a viewport, a line with the following syntax is required. 2. Colouring The Viewport

100 SYS VIEW,LC,TR,WIDTH,DEPTH

where BG, Cl, C2 and C3 are the backgound and plotting colours

from HIRES.

When these extra colour parameters are included in a VIEW

command, they are passed on to VCOLOUR, the next command.

where:

LC is the left-most column (0-39)

TR is the top-most row (0-24)

WIDTH is the number of columns wide (1-40)

DEPTH is the number of rows deep (1-25)

and

200SYSVCOLOUR,BG,C1

(in hires mode)

200 SYS VCOLOUR,BG,C1 ,C2,C3

(in multicolour mode)

Tti© Tronsoctof 61 Sept. 1986: Volume 7, Istue O2

VCOLOUR actually changes the background and plotting colours,

filling the screen colour memory WITHIN the currently defined

viewport.

3. This Is A Frame Up

With this simple command:

300SYSVFRAME

A box is drawn around the perimeter of the currently defined

viewport.

300 SYS VFRAME.C.M

also works, as the frame is drawn in the currently active plotting

colour, where C is the SELPC and M is the DMODE. (See the HIRES

BOX command)

4. A Wipe Out

New commands VIEW and VCOLOUR do not affect the bitmap, but

there are occasions when you would want a clean viewport amidst

a cluttered hires screen.

400 SYS VWIPE

clears the bitmap within the currently defined viewport.

HIRES commands draw on the bitmap located at $E000 (under the

Kernal ROM). Viewports allows for an alternate bitmap located at

$A000 (under the BASIC ROM).

400 SYS VWIPE, 1

clears the alternate bitmap (unseen) - an area the same dimen

sions as the currently defined viewport. Note: ',1' is merely a flag

and could be ',' anything between 0-255.

5. A Bitmap Swap

The alternate bitmap is useful for saving viewports or parts of

viewports.

500 SYS VSWAP

does a byte for byte exchange of the HIRES bitmap with the

Viewports alternate bitmap. Only that portion of the bitmaps

within the currently defined viewport is swapped. Consequently,

smaller viewports take less time to swap and wipe and multiple,

overlapping viewports are possible.

6. Scroll Your Rows

7. Scrolling Columns

700 SYS VLFT

scrolls the currently defined viewport left one column, throwing

away the left most column and filling blanks into the right column.

700 SYS VLFT, 1

changes the scroll to the wrap around type, where the left-most

column is moved to the right-most column after all columns are

moved left.

Only that portion of the bitmap within the viewport is scrolled, so

narrower viewports scroll faster. In addition, screen colour mem

ory is NOT scrolled, so it is desirable to keep to a uniform colour

scheme within a viewport when scrolling.

Technical Notes

Viewports patches directly into the HIRES routines, modifying

PLOT, MOVE, DRAW and BOX to allow scaling. Scaling is accom

plished using 16 bit integer math routines (not BASIC'S floating

point routines) so it is very fast and does not slow down PLOT,

MOVE, DRAW or BOX much. If SYS VIEW is used without

parameters (or the equivalent SYS VIEW,0,0,40,25) so that the

whole screen is defined as the viewport, then the scaling math

routines are simply bypassed and the slow down is now only a few

machine cycles.

The new commands make use of many routines from HIRES. For

example, VFRAME sets up the x,y parameters and then jumps into

the BOX command to do the actual plotting. So if HIRES isn't in

place, the new commands will crash.

Viewports occupies free RAM space below HIRES, at $C864-

$CBFF and, like HIRES, the first memory addresses comprise the

command jump table. Besides the use of the alternate bitmap

memory area RAM from $A000-$BFFF, a portion of RAM from

$DE00-$DF40 is used in the scrolling routines.

•DEMO 1'

'DEMO 1' is a demonstration program that shows how easy it is to

scale an existing program (in this case, Gary Kiziak's pie chart

making program) and manipulate multiple viewports. It's just a

matter of setting up a viewport and GOSUBing to the original pie

drawing subroutines. The do-nothing FOR/NEXT loops just slow

down the demo.

600 SYS VUP

scrolls the currently defined viewport up one row throwing away

the top row and filling the bottom row with blanks.

600 SYS VUP, 1

changes the scroll to the wrap around type, where the top row is

moved to the bottom row after all rows are moved up.

'DEMO 2'

'DEMO 2' does a simulation of a hires menu manager. Computers

like the Macintosh don't have text screens and must communicate

only using hires screens.

Experimenting with HIRES VIEWPORTS may lead you down new

and exciting paths.

The Transactor 62 Sept. 1986: Volume 7, Issue 02

Bask

LM

JD

GF

CF

LB

01

Ml

JO

EG

GL

FO

LN

EN

ME

EH

PD

MP

CC

ON

PM

Dl

JN

JK

CK

EF

Dl

HC

JB

GE

OD

PC

DN

PD

CM

HA

LK

HG

EL

El

NH

MJ

BM

EE

BH

KE

JK

Gl

LK

HL

HA

HN

:Loader Tc

1000

1010

rem

rem

1020 rem

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

rem

rem

rem

rem

rem

»Create Object File On Disk

save" 0:viewports.bas" ,8

** an enhancement package

** for garry kiziak's 'hires'

** by anthony bryant

** Winnipeg, manitoba

** this program will create

** a load and run module on

** disk called 'viewports'

open 15,8,15: open 8,8,1," 0:viewports"

input#15,e,e$,b,c: if e then close 15:

print

forj:

e;e$;b;c: stop

= 51300 to 52219: read x: print#8,chr$(x);:

ch = ch + x: next: close8

if ch<>119481 then print "checksum

error

print

data

data

!": stop

" ** module created **": end

100,200, 76,156,201, 76,

76, 88, 202, 76, 243, 202,

data 202, 76, 59,203, 76, 62,

1200 data

1210

1220

1230

1240

1250

1260

1270

1280

data

data

data

data

data

data

data

data

1290 data

1300

1310

1320

1330

1340

1350

1360

1370

1380

data

0, 40, 25, 0, 0, 0,

0, 173, 125,200, 174, 126,

30,201,173,122,200, 10,

73,255, 24,105,200,162,

58,201, 32,113,194, 76,

169, 0,141,121,200,141,

169, 40,141,123,200,169,

124,200, 96,169,218,160,

111, 194, 140, 112, 194, 141,

140,249, 195,169,221, 160,

10,196,140, 11,196,169,

data 200, 141, 71,197,140, 72,

data

data

data

data

data

32,253,174, 32,138,193,

201, 24,109,125,200,144,

32, 30,201, 32, 37,201,

127,200, 32, 58,201, 76,

32,253,174, 32,138,193,

data 201, 32, 37,201, 76,156,

data

1390 data

1400

1410

1420

data

data

data

1430 data

1440 data

1450 data

1460 data

1470

1480

1490

1500

data

data

data

data

43,192,174, 44,192,172,

192, 40,240, 8, 32, 65,

40, 32,103,201,141, 43,

44,192, 96,173, 45,192,

192,172,124,200,192, 25,

32, 65,201,160, 25, 32,

141, 45,192,142, 46,192,

20,134, 21,132, 34,132,

0,162, 8, 70, 34,144,

101, 20, 106,102, 34,202,

166, 21,240, 3, 24,101,

35,170,165, 34, 96,133,

21,132, 34,169, 0,133,

17,202

76,246

203, 0

0, 0

200, 32

10, 10

0, 32

125, 194

122,200

25,141

200,141

248, 195

200,141

250,160

197, 96

32, 9

1,232

24, 109

156, 193

32, 9

193, 173

123,200

201,160

192, 142

174, 46

240, 8

103,201

96,133

36,169

3, 24

208,245

36, 133

20,134

36, 133

PJ

JH

AB

HC

OF

Al

EB

CG

AG

BJ

CD

Bl

Fl

NE

HI

NL

KE

NK

MH

IB

GC

Dl

HN

DF

MC

KN

PC

NN

Bl

LE

LC

FL

LB

OF

JB

EK

AL

KM

PK

HG

MF

PH

GP

HB

DB

KH

EF

FJ

HC

OK

AC

OL

EG

NC

JB

CM

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

37,

36,

168^
36,

38,

72,

32,

224,

241,

200,

109,

123,

24,

142,

141,

48,

data 200,

data

data

data

data

data

data

124,

24,

200,

241,

32,

192,

data 208,

data

data

data

data

data

70,

0,

144,

253,

200,

data 200,

data

data

data

data

1850 data

1860

1870

1880

1890

1900

1910

data

data

data

data

data

data

1920 data

1930

1940

1950

1960

1970

1980

1990

2000

data

136,

123,

56,

152,

0,

177,

128,

192,

133,

101,

232,

2,

252,

data 254,

data

data

data

data

data

data

2010 data

2020

2030

2040

2050

2060

data

data

data

data

data

91,

1,

133,

164,

96,

200,

41,

200,

134,

202,

6,

0,

162,

38,

165,

133,

21,

178,

121,

40,

183,

32,

121,

200,

109,

124,

125,

10,

144,

200,

105,

32,

183,

11,

16,

173,

192,

32,

247,

144,

144,

173,

152,

200,

233,

32,

173,

253,

200,

8,

251,

253,

236,

162,

133,

133,

105,

133,

253,

2,

169,

32,

191,

208,

251,

76,

32,

141,

16, 38

37, 56

37, 233

37, 202

166, 21

32,162

0,240

176,235

224, 25

241,183

200, 201

32, 241

122,200

200, 173,

200, 162,

173, 125,

1, 232,

24, 109,

26, 10,

121, 0,

138, 41,

197, 32,

15, 173,

62, 192,

162, 0,

75, 195,

24, 165,

2, 230,

228, 76,

124,200,

162 n

10, 10,

1, 168,

30,201,

128,200,

72, 177,

48, 3,

208, 229,

144, 2,

133,253,

123,200,

0, 165,

92, 165,

94, 32,

64, 133,

252, 24,

165, 94,

200, 204,

0, 44,

30, 203,

134,253,

9, 172,

133,252,

218,192,

241, 183,

129,200,

20

o,

208,

165,

200,

54,

142,

176,

138,

41,

183,

201,

121,

0,

200,

142,

122,

10,

208,

15,

131,

61,

13,

142,

200,

253,

254,

51,

10,

3?

10,

138,

76,

240,

251,

104,

152,

230,

144,

144,

251,

253,

129,

251,

165,

105,

124,

169,

166,

133,

129,

160,

32,

169,

32,

38, 21, 38

JlJ, C-C-\D, OH"

144, 4,132

229, 38, 20

20, 96, 76

32, 181,200

32,241, 183

121,200, 32

225, 142, 122

240,216, 24

176,208, 142

138,240, 199

26, 176, 191

200, 10, 10

44, 53, 192

10, 141, 125

126,200, 173

200, 73,255

10, 141, 127

1, 96, 32

141, 61,192

200, 44, 53

192,141, 33

63, 192, 141

66, 192, 160

204, 123,200

105, 40,133

232,236, 124

197, 32,131

10, 10,168

58,201, 173

144, 1,232

233, 0,170

73, 197,160

15, 48, 3

145,253, 173

145,251,200

24, 101,251

252,152, 24

2, 230, 254

201, 96,132

133, 91,165

133, 93,165

202, 24,165

165, 92,105

93, 105, 64

1, 133,254

200, 144, 199

1,141, 128

251, 165,252

254, 172, 128

200,240, 4

0, 32,185

121, 0,240

1, 44, 169

131,200, 32

The Transactor 63 Sept. 1986: Volume 7, Issue O2

GO

LG

JD

OL

MH

LK

JB

JN

IJ

LG

AJ

DL

CH

ND

10

PD

KB

LC

MA

GL

KM

IC

NG

NM

JB

2070 data 201, 192, 165, 1, 41,248,

2080 data 96,169, 0, 44,169, 1,

2090 data 200, 169, 255, 141, 128, 200,

2100 data 203, 173, 130, 200, 208, 66,

2110 data 169, 222, 134, 253, 133, 254,

2120 data 165, 252, 134, 97,133, 98,

2130 data 200, 32,185,202,166, 97,

2140 data 134, 253, 133, 254, 160, 1,

2150 data 202, 166,253,165,254, 134,

2160 data 252,162, 0,169,222,134,

2170 data 254, 173, 129, 200, 141, 128,

2180 data 124, 200, 32,185,202, 76,

2190 data 160, 0,132, 2,165,251,

2200 data 165, 252, 133, 92, 162, 0,

2210 data 134, 253,133, 254,166, 251,

2220 data 134, 97, 133, 98, 174, 123,

2230 data 129, 202, 166, 97, 165, 98,

2240 data 133, 254, 162, 1, 32,129,

2250 data 253, 165, 254, 134, 251, 133,

2260 data 0,169,222,134,253,133,

2270 data 129, 200, 141, 128, 200, 174,

2280 data 32,129,202,169,255,141,

2290 data 24,165, 91,105, 64,133,

2300 data 92, 105, 1,133,252,164

2310 data 204, 124, 200, 144, 157, 76

Demonstration Program Number 1

JE

BH

KH

GM

AA

KE

EB

PO

LA

OM

MF

BC

LC

KF

Al

KC

MA

EN

Ml

MN

AA

NB

GN

EB

PH

JJ

100 rem save" 0:demo 1" ,8

110 rem 'viewports' demonstration

133,

141,

32,

162,

166,

172,

165,

32,

251,

253,

200,

218,

133,

169,

165,

200

134

202

252

254

123

128

251

2

218

120 if peek(49153)<>194 then load" O:hires"

1

130

30

0

251

124

98

185

133

133

172

192

91

222

252

32

253

166

162

173

200

200

165

200

192

,8,1

130 if peek(51301)0156 then load"0:viewports" ,8,1

140:

150 lc$ = chr$(14): cd$ = chr$(17): rv$ =

160:

170 rem 'hires' variables

chr$(1i

180 hires = 49152: draw = hi + 3: plot = dr + 3

190 move = pi + 3: clscr = mo + 3: dmode = cl + 3

200 selpc = dm + 3: colour = se + 3: box = co + 3

210 text = bo + 3: prnt = te + 3: chset = pr + 3

220trap = ch + 3

230:

240 rem 'viewport' variables

250 view = 51300: vcol = vi + 3: vframe =

260 vwipe = vf + 3: vswap = vw + 3: vup =

270vlft = vu + 3

280:

290 rem begin the demonstration

vc + 3

= vs + 3

300 c = 0: r = 0: width = 40: depth = 25: bg = 1

310a$ = a$+ ""

320 sys hires,O,bg,d: poke 53280,1

330 sys view: sys vwipe, 1

340 a$ = lc$ + " Pie Charts are Easy"

350 a$ = cd$ + rv$ +"[10 spcs]" + a$ +

rv$+ "[11 spcs]"

:c1=6

OJ

JC

Nl

LD

MN

GM

PC

CP

HA

00

Dl

MH

CD

GB

LK

CH

GA

Dl

KM

IJ

MA

AC

EE

CM

JH

DE

PL

LE

HD

KF

LE

EA

PD

CF

GD

JP

IC

GP

IF

NF

Gl

BJ

NA

JC

EM

LC

ID

ED

EG

GM

GN

NC

FE

OG

AK

360 gosub630 'frame & do big pie chart

370fori = 1to1000: next

380 width = 19: depth = 12

390c = 0: r = 0: bg = 7:d =0

400 a$ = lc$ + rv$ + " [4 spcs]Viewport #1 [4 spcs]"

410 gosub610 'frame & scale pie chart

420 depth = 16

430c = 21: r = 0:bg = 3:d =0

440 a$ = lc$ + rv$ + " [4 spcs]Viewport #2[4 spcs]"

450 gosub610 'frame & scale pie chart

460 width = 34: depth = 8

470c = 3: r = 17: bg = 4:d =0

480 a$ = lc$ + rv$ + " [4 spcs]Viewport #3[4 spcs]"

490 gosub610 'frame & scale pie chart

500fori = 1to1000: next

510:

520 rem now swap viewports back

530bg = 1:c1 =6

540 sys view, 0,0,19,12,bg,c1: sys vswap

550 sys view,21,0,19,16,bg,c1: sys vswap

560 sys view,3,17,34, 8,bg,c1: sys vswap

570 wait 198,1: get a$: sys text

580 end

590:

600 rem the pie drawing subroutines

610 sys view.c.r, width,depth,bg,c1

620 sys vswap

630 sys vframe: sys prnt,c,r,a$

640 sys colour.d

650 xc = 159: yc = 100: xr = 70: yr = 50: inc = 10

660 sa = 45: ea = 75: gosub870

670 sa = 75: ea = 160: gosub870

680 sa = 160: ea = 240: gosub870

690 sa = 240: ea = 325: gosub870

700 xc = 175: sa = -35: ea = 45: gosub870

710 sys box,14,170,291,160

720 sys box,8,174,305,168

730 return

740:

750 rem draw arc

760 z1 = sa*7t/180: z2 = ea*n/180: z3 = inc*n/180

770 x = xc + xr*cos(z1): y = yc + yr*sin(z1)

780 sys move.x.y

790 for i = z1 to z2 step z3

800 x = xc + xr*cos(i): y = yc + yr*sin(i)

810 sysdraw.x.y

820 next

830 sys draw.xc + xr*cos(z2),yc + yr*sin(z2)

840 return

850:

860 rem draw pie

870 gosub760

880 sys draw.xc.yc

890 sys draw.xc + xr*cos(z1),yc + yr*sin(z1)

900 return

The Transactor 64 Sept. 1986: Volume 7, Issue 02

Demonstration Program Number 2

LE

BH

CN

CC

AA

PG

EB

PO

LA

OM

MF

BC

LC

KF

Al

KC

MA

EN

Ml

AH

BJ

EN

KA

OL

HB

NA

00

Kl

AP

PL

BF

PL

IB

PB

LH

KJ

FB

FH

GE

NN

CE

FL

LI

JM

LI

GP

JN

OK

CG

PA

HG

CO

JE

100 rem save" 0:demo 2" ,8

110 rem 'viewports' demonstration

120 if peek(49153)0194 then load" hires" ,8,1

130 if peek(51301)0156 then load" viewports" ,8,1

140:

150 lc$ = chr$(14): ro$ = chr$(146)

160:

170 rem 'hires' variables

180 hires = 49152: draw = hi+ 3: plot = dr + 3

190 move = pi + 3: clscr = mo + 3: dmode = cl + 3

200 selpc = dm + 3: colour = se +3: box = co + 3

210 text = bo + 3: prnt = te + 3: onset = pr + 3

220trap = ch+3

230:

240 rem 'viewport' variables

250 view = 51300: vcol = vi + 3: vframe = vc + 3

260 vwipe = vf+ 3: vswap = vw + 3: vup = vs + 3

270vlft = vu + 3

280:

290 rem a hires menu manager simulation

300bg = 1:c1=0

310 sys hires,0,bg,c1: poke 53280,3

320 sys view: sys vwipe,1

330:

340 rem set up menu command line

350 c = 0: r = 0: sys view.c.r, 40,1 ,bg,d

360 a$ = lc$ + ro$ + " Draw[3 spcsJFile

[3 spcs]View[3 spcs]Options"

370 c = 3: sys prnt,c,r,a$

380:

390 rem set up green workbench

400 c = 0: r = 1: sys view,c,r,40,24,13,d

410 sys vframe

420:

430 rem select menu item 'draw'

440 c = 2: r = 0: sys view,c,r,6,1,0,1

450 r = 1: sys view,c,r,9,8,14,1

460 sys vswap: sys vframe

470 c = 3: r = 3: sys prnt,c,r,lc$+ "Circles"

480 r = 4: sys prnt,c,r,lc$+ " Boxes"

490 r = 5: sys prnt,c,r,lc$ + " Arcs"

500 r = 6: sys prnt,c,r,lc$+ "Lines"

510 for i = 1to1000: next

520 sys view,c,r,7,1,1,6

530fori = 1to1000: next

540c = 2: r = 1: sysview,c,r,9,8,13,d

550 sys vswap: sys vwipe,1

560 c = 2: r = 0: sys view,c,r,6,1,bg,c1

570:

580 rem return to green workbench

590 c = 0: r = 1: sys view,c,r,40,24,13,d

600 sys move,0,0

610forj = 1to50

620 sys draw,rnd(1)*320,rnd(1)*200

IF

HD

OP

JP

NH

CJ

LP

AE

HN

HI

MG

LJ

LL

LE

DO

CP

GB

EJ

GH

HC

DH

JE

CK

OB

LH

BD

OM

IA

EF

CJ

PH

MO

GL

CP

LN

PG

KP

630 next j

640fori = 1to1000: next

650:

660 rem select menu item "file"

670 c = 9: r = 0: sys view,c,r,6,1,0,1

680 r = 1: sys view,c,r,20,20,3,c1

690 sys vswap: sys vframe

700 c = 10: r = 2: sys view,c,r,18,18

710 r = 18: gosub820 'print filenames

720fori = 1to1000: next

730 c = 9: r = 15: sys view,c,r,20,1,0,3

740fori = 1to1000: next

750c = 9: r = 1: sysview,c,r,20,20,13,d

760 sys vswap

770c = 9: r = 0: sysview,c,r,6,1,1,0

780 waiti 98,1: geta$: sys text

790 end

800:

810 rem make up some filenames & scroll

820a$=">dir [13spcs] ": gosub970

830 a$ = " [19 spcs] ": gosub970

840 a$ = " C-64 Wedge ": gosub970

850 a$ = " Dos 5.1 ": gosub970

860 a$ = " Display T & S ": gosub970

870 a$ = " Unicopy64 ": gosub970

880 a$ = " Supermon64.V1 ": gosub970

QQn q<R " " ■ nnci ihQ7D

900 a$ = " Commands.text demo ": gosub970

910 a$ = " Commands.ml ": gosub970

920 a$ = " Hires demo program ": gosub970

930 a$ = " Hires.ml ": gosub970

940 a$ = " Viewports demo prg ": gosub970

950 a$= " Viewports.ml ": gosub970

960 a$ = "

970 sys prnt,c,r,a$: sys vup

980fori = 1to100: next

990 return

Th© Transocfor 65 Sept. 1986: Volume 7, Issue O2

Commodore 64 High

Resolution Draw Routine

David Jankowski

Cairns, Australia

A High-Res Utility You Can Incorporate Into Your Own Programs

This interesting ML Hi-Res routine resides at $C000 (49152) and is

invoked by passing a string variable from your basic program with

SYS49152,A$.

The Hi-Res draw routine can be used with keyboard input,

joystick or drawing pad.

Listing 1 creates the ML program which actually plots your draw

ing on the Hi-Res screen.

Listing 2 and 3 give you some practical examples how you could

use Hi-Res Draw from within your own Basic programs and

Listing 4 is a complete joystick drawing program ready for use.

Commands

B Moves Pixel Cursor X pixel(s) DOWN and LEFT. B + chr$(X)

where X = 1-199

C CLEARS the High-Res screen.

D Moves Pixel Cursor X pixel(s) DOWN. D + chr$(X) where X =

1-199

H Moves Pixel Cursor X pixel(s) U P and LEFT. H + chr$(X) where

X = 1-199

J Moves Pixel Cursor X pixel(s) UP and RIGHT. J + chr$(X) where

X = 1-199

K Sets pixel KOLOUR to X and screen KQLOUR to Y. K + ch-

r$(X) + chr$(Y) where X and Y = 0-15

L Moves Pixel Cursor X pixel(s) LEFT. L + chr$(X) where X = 1-

255 (repeat to maximum 320 pixel positions).

N Moves Pixel Cursor X pixel(s) DOWN and RIGHT. N + chr$(X)

where X = 1-199

O Starts a repeating LOOP. (i.e. O + chr$(100) + L + ch-

r$(10) + D + chr$(l) + Z. This draws a BAR, 10 pixels wide, 100

pixels down from the current cursor position.)

P PLOT. Plots a pixel anywhere on the screen. P + chr$(Xl) + ch-

r$(X2) + chr$(Y) where XI = 1-255, X2 = 0-1 andY = 1-199.

Note: XI should not be greater than 64 when X2 = 1. (i.e.

64 + (lx255) = Xl+(X2) = 320)

R Moves Pixel Cursor Xpixel(s) RIGHT. R + chr$(X) where X = 1-

255 (repeat to maximum 320 pixel positions)

U Moves Pixel Cursor Xpixel(s) UP. U + chr$(X) where X= 1-199

Z Indicates 'NEXT' in loop started with O.

0 Pen ERASE. Pen draws in screen colour.

1 Pen DOWN. Pen draws in cursor colour.

2 Pen UP. Pen does NOT draw. Cursor may be moved to

anywhere on the screen.

+ Cursor OFF. Switches Cursor OFF.

- Cursor ON. Switches Cursor ON.

Listing 1: Hi-Res 64 Basic Loader

EG

LM

1000 rem save"0:hi-res64.bas" ,8

1010 rem ** written by: david jankowski, cairns

qld 4870, australia

AH

AK

CB

AA

IJ

BM

EP

PI

FC

JL

JM

HK

DA

JJ

JP

HL

FO

NM

CK

HM

JD

FL

NO

PG

IL

NG

MP

EB

DH

FIB

Bl

CJ

IL

OM

PM

Bl

IL

CJ

FA

FJ

JN

Dl

DP

EG

DN

KJ

CH

CE

JP

LO

MK

EH

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

for j = 49152 to 49920: read x: poke j,x:

ch = ch + x: next

if ch<>89345 then print " checksum error":

stop

print " data okay - read article to use": end

data 32, 253,

data 182, 134,

data 141, 31,

data 32, 58,

data 58, 192,

data 141, 53,

data 3, 32,

data 104, 96,

data 205, 30,

data 195, 177',

data 32,200,

data 208, 7,

data 192, 201,

data 252, 76,

data 169, 2,

data 75, 208,

data 32, 58,

data 24, 42,

data 195, 32,

data 255, 195,

data 201, 68,

data 24, 192,

data 193, 76,

data 32, 196,

data 208, 6,

data 201, 78,

data 33, 195,

data 1, 32,

data 193, 174,

data 208, 234,

data 33, 32,

data 0,142,

data 194, 169,

data 195, 232,

data 24,192,

data 192, 141,

data 195, 169,

data 32,244,

data 33, 195,

data 72,208,

data 195, 162,

data 32, 168,

data 174,

data 234,

data 32,

data 195

34,

76,

58,

140,

data 90,208,

174,

253,

195,

192,

141,

3,

61,

172,

195,

253,

194,

169,

49,

24,

133,

37,

192,

24,

58,

32,

208,

201,

24,

193,

32,

208,

162,

33,

34,

76,

58,

34,

1,

236,

201,

33,

1,

193,

208,

33,

0,

193,

195,

24,

192,

36,

23,

32, 158,

132,254,

160,255,

201, 80,

52, 3,

32, 58,

194, 76,

30, 195,

240, 242,

96,201,

76, 24,

1, 133,

208, 7,

192,201,

252, 76,

169, 0,

13,255,

42, 24,

192, 13,

224, 194,

6, 32,

82, 208,

192,201,

76, 24,

165, 193,

33, 32,

0, 142,

194, 169,

195,232,

24, 192,

192,141,

195, 169,

32, 199,

33, 195,

74, 208,

195,162,

32, 168,

174, 34,

234,

32,

142,

169,

232, 236,

192,201,

141, 35,

195, 76,

172, 35,

195

30

6

76,

58,

34,

1,

173, 32,163

56,233, 1

140, 30,195

208, 45, 32

32, 58,192

192,141, 54

24, 192, 104

173, 31

200, 140

67, 208

192,201, 48

252, 76, 24

169, 0,133

50,208, 7

24, 192,201

141,255, 195

195, 24, 42

42, 141,255

255,195,141

76, 24,192

30,194, 76

6, 32,241

76,208, 6

192,201, 85

76, 24,192

58, 192, 141

34, 195, 169

1, 32,244

236, 33,195

201, 66,208

33,195,162

1, 32, 33

193, 174,

208, 234,

33, 32,

0,142,

193,169,

195,232,236

24,192,201

192,141, 33

195,169, 1

32,199,193

33,195,208

79,208, 15

195,172, 30

24, 192,201

195,136, 140

34

76

58

34

1

The Transactor 66 Sept. 1986: Volume 7, Issue 02

UN

NN

KE

IM

EJ

DK

IJ

OE

BB

PP

FC

IG

EN

IP

GA

EC

FK

LB

FH

KA

BA

OD

FO

CG

IG

KE

OC

ID

LE

HA

IP

FK

HE

CA

IK

AF

AH

PB

EK

KH

LD

MM

GD

MJ

BC

NM

EN

GO

JE

01

1540 data 35, 195

1550 data 192, 172

1560 data 24, 192

1570 data 141, 181

1580 data 208, 8

1590 data 24,192

1600 data 141, 37

1610 data 136, 140

1620 data 61, 194

1630 data 195, 208

1640 data 37, 195

1650 data 233, 1

1660 data 38, 195

1670 data 232, 236,

1680 data 53, 3,

1690 data 193, 32,

1700 data 0,173,

1710data 19,141,

1720 data 61, 194,

1730 data 195, 208,

1740 data 140, 53,

1750 data 192, 141,

1760 data 3, 200,

1770 data 32, 61,

1780 data 37, 195,

1790 data 2,208,

1800 data 52, 3,

1810 data 4,152,

1820 data 3,172,

1830 data 133, 3,

1840 data 0,133,

1850 data 251, 202,

1860 data 251, 133,

1870 data 2,133,

1880 data 101, 4,

1890 data 133, 3,

1900 data 166, 6,

1910 data 208, 252,

1920 data 72, 81,

1930 data 162, 165,

1940 data 73,255,

1950 data 6,160,

1960 data 169, 0,

1970 data 162, 32,

1980 data 208, 251,

1990 data 169, 0,

2000 data 169, 0,

2010 data 152, 162,

2020 data 208, 251,

2030 data 238

192, 0

36, 195

201, 43

194, 76

169,240

76, 8

195, 162

54, 3

174, 38

234, 96

162, 0

144, 19

32, 61

37,195

136, 140

58,192,

52, 3,

52, 3,

174, 38,

230, 96,

3, 76,

37, 195,

140, 54,

194, 174,

208, 234,

1, 96,

133, 5,

41, 7,

54, 3,

152, 41,

251, 162,

208, 249,

3,152,

2, 144,

133, 2,

165, 3,

232, 169,

166,252,

2, 145,

162,201,

49, 2,

0, 17,

133, 2,

160, 0,

230, 3,

133, 2,

141, 0,

4, 160,

230, 3,

208

140

208

24

141

175

0

142

195

32

173

141

194

208

53

141

24

142

195

172

1,

162,

3,

38,

96,

173,

152,

133,

152,

248,

3,

165,

41,

2,

165,

101,

0,

240,

2,

2,

145,

2,

169,

152,

202,

169,

4,

0,

202,

, 3

30

8

192

181

32

172

38

232

58

52

52

174

230

3,

37,

105,

38,

232,

53,

194,

0,

142,

195,

166,

53,

41,

6,

74,

133,

6,

3,

7,

230,

3,

5,

56,

27,

169,

240,

2,

145,

32,

145,

208,

4,

172,

145,

208,

76

195

169

201

194

58

54

195

236

192

3

3

38,

96,

76,

195,

1,

195,

236,

3,

32,

172,

38,

232,

252,

3,

248,

173,

74,

2,

2,

24,

24,

3,

105,

133,

106,

160,

0,

250,

24,

2,

133,

2,

246,

133,

255,

2,

246,

24

76

208

45

76

192

3

32

37

141

56

142

195

172

212

162

176

32

37

200

58

54

195

236

224

172

133

55

74

169

38

101

101

24

32

3

202

0

133

104

144

96

3

136

96

3

195

136

96

Listing 2: Bar-Graph Generator For Use With Hi-Res 64

NC

LG

LE

PD

CE

OM

GH

HJ

ML

CD

FB

100 rem save" O:hi-res 64 bargen"

110 rem ** bar graph generator **

8

120 draw = 49152: hn = 0: print chr$(147

130s$= "-1ck" +chr$(0) + chr$(1)+ "p

+ chr$(O) + chr$(O) + chr$(199)

140 print spc(14)" *bar graph*

150 printspc(14)"end with -1

160 dim a(100): i = 0

170 input "bar value

180ifa(i)<>-1 theni

190:

": print

" ;a(i): if a(i)>hn then

= i +1: goto 170

200 rem ** find height & width of bars **

hn = a(i)

LH

AF

JO

CP

NC

MN

OD

GP

LL

HA

210 fa = 200/hn: x1 = int(320/i)

220:

230 rem ** set up screen **

240 poke 53265,peek(53265)or32:

poke 53272, peek(53272)or8

250 sys draw,s$

260 for j = 0 to i-1

270fc = a(j)*fa: iffc<1 thenfc = 1

280 b$ = " o" + chr$(fc) + " r" + chr$(x1 -2) + " I"

+ chr$(x1 -2) + " u" + chr$(1) + " z"

290 sys draw,b$: sys draw," 2d" + chr$(fc) + " r"

+ chr$(x1)+ "1 ": next

300 wait 198,1: poke 198,0: poke 53265,27:

poke 53272,21: print chr$(147);

Listing 3: Letter Generator For Use With Hi-Res 64

OG

NH

DH

GP

BF

NN

DN

MK

IC

DA

Kl

HD

HE

MB

CG

FN

100 rem save" O:hi-res 64 letter" ,8

110 rem ** draw hi-res letters **

120 input " letter size " ;lz: draw = 49152

130:

140 rem ** set up hi res screen **

150 s$ = " + ck" + chr$(3) + chr$(0) + " p" + chr$(10)

+ chr$(0) + chr$(0)

160sysdraw,s$

170 poke 53265,peek(53265)or32:

poke 53272,peek(53272)or8

180:

190 rem ** letter definitions **

2OOI1=lz/2

210a$(1)= "2r" +chr$(H)+ "1b" +chr$(M)+ "d"

+ chr$(H)+ "u" +chr$(H)

220a$(1) = a$(1)+ "r" +chr$(M*2)+ "d"

+ chr$(H)+ "u" + chr$(M) + "h" +chr$(H)

230a$(1) = a$(1)+ "2r" +chr$(H)

240sysdraw,a$(1)

250 wait 198,1: poke 198,0: poke 53265,27:

poke 53272,21: print chr$(147);

Listing 4: Joystick Hi-Res Draw Routine

EK

JM

MO

MM

Ol

KK

CB

NH

DK

BP

MD

MG

IK

LC

PB

KJ

100 rem save" 0:hi-res 64 joystk" ,8

110 rem ** joystick hi-res draw rtn **

120:

130 rem * * set up variables * *

140 poke 53265,peek(53265)or32:

poke 53272,peek(53272)or8

150 draw = 49152: a$(0) = "": a$(1) = " u" + chr$(1):

a$(2)="d" +chr$(1):a$(3)=""

160a$(4)= "I" +chr$(1):a$(5)= "h" +chr$(1):

a$(6)="b"+chr$(1):a$(7)=""

170a$(8)= "r" +chr$(1): a$(9)= "j" +chr$(1):

a$(10)="n" +chr$(1)

180s$= " +1ck" +chr$(1) + chr$(0)+ "p"

+ chr$(160) + chr$(0) + chr$(100)

190sysdraw,s$

200:

210 rem ** read the joystick **

220 jv = peek(56320): fr = jv and 16:

jv = 15-(jv and 15)

230 if len(a$(jv)) then sys draw,a$(jv): goto 220

240 if frO16 then s = 1 -s: c$ = right$(str$(s), 1):

sys draw,c$

250 goto 220

The Transactor 67 Sept. 1986: Volume 7, Issue O2

Hi-Res

Search and Print

Jack R. Farrah

Cincinnati, Ohio

The Complete Hires Printer Utility!

The Commodore 64 is capable of producing striking graphic

images in high resolution mode and there are many good commer

cial and public domain programs available which support their

creation. When you want to print these images, you're generally

forced to do so from within the environment of the graphics

package they were created with. If you have several of these,

you're faced with a lot of wasted time booting up each separate

program just to print the pictures.

For those of you with a Gemini SG10 printer and MW350 (or

similar) interface, Hires Search and Print will allow you to print

any bitmapped you've created and saved on disk. You can do this

in either of two sizes, in positive or negative and as a mirror image.

This gives you eight possible picture variations! Just type in and

save the basic loader program and follow the instructions below.

After saving, load and run Hires Search and Print. After the Ready

prompt, type NEW and then load any hires picture file that you

wish to print. You should load it in as a relocatable file with:

LOAD" Filename" ,8 (don't use ,8,1)

Although the normal location of this file would probably require a

relocating load, the ability of Hires Search and Print to deal with a

wide variety of program files lies in being able to access all bitmap

images in the same general area of memory. Therefore, all picture

files are loaded into the basic program area. Once there, the

bitmap image portion of the file can be located through Hires

Search and Print's unique search function.

Some drawing packages may save pictures in multiple files. You

are only interested in the file containing the bitmap image. Color

information is not necessary for this program as we're dealing

strictly with black and white. If you're not sure which file contains

the bitmap, load either and you'll easily find if its the correct one.

After your picture file is loaded, hit the F5 key. Your screen now is

in hires with a black and white image. Don't be alarmed if its a

jumbled pattern of dots. If it is, its time to begin searching for the

hires image. Use the cursor up/down key to cycle through mem

ory. This key re-draws the hires screen starting one screen line

further into memory each time its hit. Holding the key down will

do this very quickly or just tap the key for slow cycling. You can go

backwards through memory by using the SHIFT key with the up/

down cursor. You can scan through memory again and again if you

like, but the picture we're searching for will be within one or two

screens of where we started. The reason you must search for the

picture is because different drawing programs save not only the

bitmap, but also color memory information in their files and the

format of these files varies considerably. Some save the bitmap

first, some last and some in between color data. As you're cycling,

you will begin to see the hires picture appear. It will probably look

out of registration and not be centered properly on the screen. Get

as much of this image on the screen as you can with the cursor up/

down key.

After "ballparking" the hires image, you're now ready to fine tune

into proper resolution and screen centering. For this you use the

left/right cursor key. Operation is identical to the up/down cursor

except that now the screen is re-drawn starting just one byte

further into memory each time. Again, using the SHIFT/cursor

combination allows reverse movement in the event you overshoot

the mark.

At any point in this process you can return to the text screen area

of memory. Simply press the space bar to do so. If you have done a

considerable amount of cursoring to find your picture, you may

return to a blank screen and or one with no visible cursor. If the

cursor is lost, just hit RUN STOP/RESTORE. This will disable Hires

Search and Print so you'll need to:

SYS 49152

to reactivate it. None of this will affect the hires image you've

previously located and you may return to it by pressing F5 again.

Once you've located a hires picture and oriented it on the display,

you can load and display additional pictures created with the same

drawing package and they too will be properly centered without

the need for further searches, unless you have altered the setting

while in hires mode.

Now let's print our picture. Turn on your Gemini printer and

choose the image option you want from the list below.

a) Fl - prints a small, positive image of the hires screen (3.25" by

4.5")

b) F3 - prints a twice size, positive image (6.5" by 9")

c) Control and Fl or Control and F3 - prints a small or twice size

negative image.

d) Shift and Fl or Shift and F3 - prints a small or twice size

positive mirror image.

e) Shift.Control and Fl or F3 - prints a small or twice size

negative, mirror image.

The Transactor 68 Sept. 1986: Volume 7, Issue O2

When using the negative and mirror options, be sure and have the

Control and or Shift keys depressed before hitting the function key.

To discontinue printing in the middle of a screen dump without

shutting off the printer, just hit the Run/Stop key.

That's all there is to it! A printer utility that can handle all your

hires needs in one compact package.

One final note. The program assumes that you are using a parallel

printer interface with your Gemini printer that is put in transparent

mode with a secondary address of 5. If your interface requires a

different number, simply replace the Data number five at 49317

(Line 1260 of the BASIC Loader) with the correct number.

Hires Search and Print: BASIC Loader

LA

AF

FN

Bl

HM

ID

NF

IC

LI

KH

LO

BH

NK

KJ

JD

LC

CJ

Gl

AL

NL

FB

GO

BF

FA

GE

Dl

OG

GC

BB

DK

JH

GJ

OK

PL

GH

FJ

PG

Fl

JF

HL

HM

MK

IB

GO

GP

1000 rem hires search and print

1010 rem jack r. farrah

, 1020 for j = 49152 to 50032 : read x

1030 poke j,x : ch = ch + x : next

1040 if ch<> 123062 then print "checksum error"

: end

1050 rem

1060 data 120, 169, 24,141, 20, 3,169,192

1070data141, 21, 3,169, 0,141,233,193

1080 data 141, 253, 193, 141, 3,194, 88, 96

1090 data 76, 39,192, 76,228,194, 76, 19

1100 data 195, 76,197,194, 76,106,194,165

1110 data 197, 201, 64,208, 8,169, 0,141

1120 data 233, 193, 76, 49,234,174,233,193

1130 data 208, 248, 201

1140 data 240, 223, 201,

1150 data 240, 212,201,

1160 data 208, 224, 169,

6,240,230,201, 60

2,240,213,201, 7

4,240, 24,201, 5

1,141,253,193, 169

1170 data 0, 141,254, 193, 169, 144, 141,249

1180 data 193, 169, 1,141,250,193,169, 1

1190 data 141, 233, 193, 169, 0, 141,252, 193

1200 data 141, 0,194,173,141, 2, 41, 5

1210 data 240, 38,201, 4,144,

1220 data 142, 252, 193, 201, 5,

1230 data 1,141,

9,162,255

208, 25, 169

24,141, 650, 194, 169,

1240 data 193, 169, 105, 141, 66, 193, 169, 176

1250data141, 73,193,169,238,141, 78,193

1260 data 169, 4,162, 4,160, 5, 32,186

1270 data 255, 169, 0, 32,189,255, 32,192

1280 data 255, 162, 4, 32,201,255,169, 27

1290 data 32,210,255,169, 51, 32,210,255

1300 data 169, 16, 32,210,255, 32,172,193

1310data169, 25,141,237,193,169, 40,141

1320 data 238, 193, 173, 0,194,208, 21,173

1330 data 251, 193, 24,105, 1,141,234,193

1340 data 133, 252,169, 56, 141,235, 193, 133

1350data251, 76,251, 192, 173,251, 193, 141

1360 data 234, 193, 133, 252, 169, 0, 133, 251

1370 data 141, 235,193, 160, 0,162, 8,173

1380 data 0,194,208, 42,177,251,106, 46

1390 data 236, 193,202,208,249, 173,236, 193

1400 data 153, 239,193, 200, 192, 8, 208, 229

1410 data 173, 253, 193, 240, 3, 32, 6,194

1420 data 32,196,193,206,237,193,240, 11

1430 data 32,158,193, 76,251,192,177,251

1440 data 76, 16,193, 32, 77,194,206,238

EM

DF

AA

IC

GB

LK

GN

DM

FE

PH

LJ

IA

BF

LC

NO

GD

JH

LG

CL

oc

ID

MJ

LA

OM

FK

OJ

OM

BM

HP

CC

PO

DC

AF

BP

IA

BG

FD

CP

KK

OC

EC

JL

CF

EF

Bl

PK

AO

Bl

ML

EL

GN

NH

FM

AC

HN

EJ

NN

EF

EA

IK

GA

AC

1450 data 193

1460 data 193,

1470 data 251,

1480 data 193,

1490 data 193,

1500 data 76,

1510 data 169,

1520 data 195,

1530 data 253,

1540 data 249,

1550 data 233,

1560 data 193,

1570 data 234,

1580 data 24,

1590 data 1,

1600 data 255,

1610 data 189,

1620 data 4,

1630 data 193,

1640 data 253,

1650 data 252,

1660 data 208,

1670 data 96,

1680 data 0,

1690 data 75,

1700 data 0,

1710 data 169,

1720 data 32,

1730 data 193,

1740 data 208,

1750 data 76,

1760 data 236,

1770 data 236,

1780 data 208,

1790 data 10,

1800 data 240,

1810 data 254,

1820 data 193,

1830 data 193,

1840 data 1,

1850 data 0,

1860 data 141,

1870 data 2,

1880 data 173,

1890 data 251,

1900 data 230,

1910 data 173,

1920 data 0,

1930 data 128,

1940 data 71,

1950 data 240,

1960 data 141,

1970 data 208,

1980 data 193,

1990 data 217,

2000 data 173,

2010 data 2,

2020 data 131,

2030 data 238,

2040 data 76,

2050 data 173,

2060 data 1,

240,

56,

144,

173,

133,

251,

64,

255,

193,

193,

141,

169,

104,

105,

133,

169,

247,

208,

77,

193,

193,

228,

0,

0,

200,

1,

4,

67,

24,

241,

61,

193,

193,

198,

10,

23,

193,

133,

96,

141,

221,

5,

194,

1,

145,

254,

0,

221,

141,

195,

248,

0,

169,

76,

173,

1,

194,

194,

1,

131,

141,

194,

40,

233,

3,

234,

252,

192,

32,

32,

141,

169,

66,

206,

104,

64,

252,

10,

193,

245,

252,

240,

32,

165,

0,

0,

0,

8,

141,

194,

46,

173,

194,

206,

153,

96,

10,

173,

240,

251,

173,

233,

141,

194,

133,

194,

253,

165,

221,

173,

24,

76,

32,

221,

0,

49,

141,

194,

169,

206,

194,

194,

2,

56,

32,172,193

8, 141,235

76, 86,193,

193,133,252,

169, 25,141,

169, 27, 32,

210,255, 169,

204,255, 169,

250, 193,169,

56,141, 65,

193, 169, 144,

141, 78,193,

76, 99, 193,

133,251,165,

96,169, 13,

32,210,255,

32,210,255,

96,162, 0,

193, 32,210,

9, 189,239,

210,255,232,

197,201, 63,

0, 0,

0, 0,

64, 0,

0, 0,

255, 193, 185,

10,176, 21,

236, 193,206,

236, 193, 153,

46,236,193,

255, 193,208,

239, 193,200,

174,254,193,

10, 96,173,

254,193, 73,

13, 104,104,

32,172,193,

3,194,208,

193,141, 3,

4, 194, 173,

169, 64,133,

252,169, 0,

133,251,160,

200, 208, 249,

254,201, 96,

41,252, 9,

24,208, 41,

208, 32, 89,

50,192, 173,

80, 195, 173,

173, 5,194,

141, 3,194,

234,173, 3,

2, 41, 1,

201, 0,208,

255,141, 1,

1,194, 76,

208, 3,238,

173, 3,194,

41, 1,240,

233, 64,141,

,173,235

,193,133

206, 234

173, 234

237, 193

210,255

4, 32

0, 141

200, 141

193,169

141, 73

76, 49

165,251

252, 105

32,210

162, 0

232, 224

189,239

255,173

193, 77

224, 8

240,177

0, 0

0, 27

0, 0

160, 0

239,193

46, 236

255, 193

239,193

56, 46

220, 173

192, 8

240, 4

253, 193

1, 141

173,235

76, 86

83,169

194, 173

24, 208

254, 173

133,253

0, 177

230,252

208, 239

2,141

135, 9

195, 32

3,194

4,194

141, 24

141,233

194,240

240, 24

11,206

194, 76

131,194

2, 194

240,170

20, 173

1,194

The Transactor 69 Sept. 1986: Volume 7, Issue O2

GC

LF

ME

MK

GM

EN

KA

IH

KL

JP

2070 data

2080 data

2090 data

2100 data

2110 data

2120 data

2130 data

2140 data

2150 data

2160 data

173, 2,194,233,

76, 131, 194, 169,

194,141, 1,194,

194,141, 2,194,

17,208, 9, 32,

173, 17,208, 41,

96,160, 0,162,

0, 96,157,250,

157,238, 98,232,

96

1,

64,

169,

76,

141,

223,

0,

96,

224,

141,

24,

1,

131,

17,

141,

169,

157

250

2,

109,

109,

194,

208,

17,

1,

244,

208,

194

1

2

173

96

208

157

97

237

Hires Search and Print: Merlin Format Source Code

Mr. Farrah's program source could have easily been converted to

PAL and verifized, but we didn't expect anyone would be entering

it by hand - it's here for reference only.

•hires screen dump program, vertical screen read tech

•byjackfarrah

•hires picture to be loaded into basic prog, memory

•hires screen located at $4000

•f5 turns on hires screen, space bar returns to text screen

•cursor right advances mem. read by one byte.

■cursor up adva/ices by 320 bytes (1 screen line)

•shift key decrements mem.by same amount

•pictures are printed sideways in dump

•f1 prints small picture.f2 prints enlarged picture

•control prints negative image.shift prints mirror image

•control and shift can be used simultaneously

•constants'

chrout = $ffd2

open = SffcO

chkout = $ffc9

setlfs = Sffba

setnam = Sffbd

clrchn = $ffcc

close = $ffc3

rqvec = $314

bmreg = $d011

vidbas = $dO18

bank = $ddOO

colmem = $6000

org $c000

sei

Ida #<new

sta irqvec

Ida #>new

sta irqvec+1

Ida #0

sta prgflg

sta picllg

sta hiflg

cli

rts

;kernal print

;open file

;designate output file

;set file & sec. add.

;file name

;restore default devices

;close file

;irq vector

;enable hires register

;mem.bank/screen register

;set mem. bank register

;color mem. for hires

;49152

;busy flag

;clear lor small print

;hires mode flag

•new wedged routine to print hires screen

•and search for hires screen

new jmp start

•springboards to display and search routines

set1 jmp sett

setupi jmp setup

rstoM jmp rstor

dsplyi jmp dsply

start Ida $c5

cmp #64

bne ckmor

Ida #0

sta prgflg

exit jmp $ea31

;right cursor routine

;up cursor routine

;space bar routine

idisplay hires routine

;check current key pressed

;64 = no key pressed

;something, check it out

;nothing.keep fig clear

;normal irq routine

•main loop when keypress detected

ckmor Idx prgflg

bne exit

cmp #6

beq dsplyi

cmp #60

beq rstoM

cmp #2

beq set1

cmp #7

beq setupi

cmp #4

beq doit

cmp #5

;if program flag set, we're

;busy now, so exit

;f5 key?

;yes,branch

;no.space bar?

;yes

;no.cursor right?

;yes

mo.cursor down?

;yes

;no.M?

;wasf1. print screen

;no.f3?

doit

jstmir

bne

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

sta

Ida

and

beq

cmp

boo

Idx

stx

cmp

bne

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

•set up printer

setpr Ida

Idx

Idy

jsr

Ida

jsr

jsr

Idx

jsr

Ida

jsr

Ida

exit

#1

picflg

#0

pass

#144

code+ 2

#1

code+ 3

#1

prgfig
#0

rvflg

mirflg

$28d

#$05

setpr

#4

jstmir

#255

rvflg

#5

setpr

#1

mirflg

#24

ckclm + 14

#105

ckclm + 15

#176

subhi-5

#238

subhi

#4

#4

#5

setlfs

#0

setnam

open

#4

chkout

#27

chrout

#51

;ton/144thsinch

jsr

Ida

jsr

chrout

#16

chrout

;not f1 or (3. exit

;itsf3

;set for large print

;setuplor 1st pass

;new code for 400

icharacters to be sent

;to printer for expanded

iprintmode

;set flag to show we're busy

;clear reverse flag

;and clear mirror flag

;check for control & shift

;mask out all but sig.bits

;if 0, neither set

;somethingson

;i<4,mustbebitO

;>1 so set reverse flag

;is it both rev.&mirror?

;just reverse so branch

;set mirror flag

;alter codes in ckclm

;routinetoadd8after

;each column instead

;of subtracting

ifile #

;device #

isec.add.to set interface trans.

;no file name

;open the file

;file 4 for output

; escape

;send to printer

;sg10 code for line spacing

;send it

;n = 16.16/144ths=1/9

;send it

•routine to get hires screen bytes, convert and print

jsr

Ida

sta

Ida

sta

Ida

bne

Ida

clc

adc

sta

sta

Ida

sta

shft

#25

rocnt

#40

clmcnt

mirflg

mir

btmp

#$01

savad

$fc

#$38

savad +1

;sendcr,lf and codes

;set row counter to 25

;set column counter to 40

;check if mirror print

;if set.skipadd 312

;get bitmap address high byte

;add 256

;store it

;and on zero page

;(S6)

;put in low byte storage

mir

sta

jmp

Ida

sta

sta

Ida

c'.i i i

sta

$fb
strt

btmp

savad

$fc

#0

Sfb

savad +1

;and at zero page pointer

;put start address of

; bitmap in zero page

; pointers

•start address for reading the screen at beginning

•of last screen column

• (312 bytes from start of bitmap)

strt

gtbyl

rotat

store

prntit

Idy

Idx

Ida

bne

Ida

ror

rol

dex

bne

Ida

sta

my

cpy

bne

Ida

beq

jsr
jsr

dec

beq

; next column

jsr

#0

#8

mirflg

mkmir

(Sfb).y

hldbyt

rotat

hldbyt

bytkp.y

#8

gtbyl

picflg

prntit

exp

prnt

rocnt

ckclm

add

initialize y to count bytes

;x to count rotations

;check if mirror print

;if set,skip rotate routine

;get bitmap byte from mem.

;put low byte in carry

;put carry in low byte holder

;lower rotate counter

;do it 8 times

;after altering byte

;store it here till we get 8

;raise byte counter

;have we done 8?

;no. go back for another

;normal or large print?

; normal

;large modify bytes

;yes. print the 8 bytes

;lower row counter

;if we've done 25, do

;not finished with column

;so reset pointer for next 8 bytes

mkmir

ckclm

jmp

Ida

jmp

jsr

dec

strt

(Sfb).y

store

ckpic

clmcnt

;lower column counter

subhi

rest

end

beq

jsr

Ida

sec

sbc

sta

sla

bcc

jmp

dec

Ida

sta

Ida

sla

Ida

sta

jmp

Ida

jsr

Ida

jsr

Ida

jsr

jsr

Ida

sta

sta

Ida

sla

Ida

sta

Ida

sla

Ida

sta

Ida

sta

imp

end

shft

savad +1

#8

savad +1

Sfb
subhi

rest

savad

savad

$fc

savad

$fc

#25

rocnt

strt

#27

chrout

#64

chrout

#4

close

clrchn

#0

picflg

code+ 3

#200

code+ 2

#$38

ckclm + 14

#$e9

ckclm + 15

#$90

subhi-5

#$ce

subhi

$ea31

;go get the next 8

;for mirror, just put bytes

unchanged in storage

;normal or large print?

;we finished 1 column,so

;if we finished 80, close up

;we're not done.do cr.lf

;get prev. column add. low byte

;subtract 8 to back up

;to next column

;save the new low byte

;and at zero page pointer

;if cc, need to reduce high byte

;no borrow required

;lower high byte

;get it

;put in zero pg.pointer

;get old high byte

; reset zero page

;re—initiafize row counter

;back for next column

;escape code

;send it

;code to initialize printer

;send it

;close file 4

; reset to default devices

;reset print size flag

;reset printer codes

;if altered by enlarged

;print routine

; restore values in ckclm

;routine to do subtract

;in case have been altered

;by the mirror routine

;exit thru normal ira

•routine to handle stop key during printing

slop pla ;pull return address

pla

jmp

■ qi ihrAi it in Ac*

end

;off the stack

;and close up shop

•oUUIUUllllfcJo*

•reset zero page pointer for next lower screen position

•in current column by adding 320

add Ida $fb ;get low byte pointer
dn

adc #$40 :add 64

I The Itansactor
7O

Sept. 1986: Volume 7. Issue O2

sla $fb

Ida $fc

adc #$01

sta $fc

rts

;put new value back

;get high byte

;add 1 (value of 256)

;store it back

;return

•send code to printer to do carriage return, line feed

•and send printer codes for graphics.200 bytes to follow

•400 bytes if enlarged print mode chosen

shft Ida #$0d

jsr chrout

Ida #10

jsr chrout

Idx #0

mrcd Ida code.x

jsr chrout

inx

cpx #4

bne mrcd

rts

;13.carriage return

;send il

;line feed code

;send it

;x as index

;get code

;send it

;raise index

finished all 4?

;no. do more

;yes.return

•routine to print the 8 converted byles

prnt Idx #0

nxtbyt Ida bytkp.x

eor rvflg

jsr chrout

Ida picflg

beq incx

Ida bytkp.x

eor rvflg.

jsr chrout

incx Inx

cpx #8

bne nxtbyt

Ida $c5

cmp #63

beq stop

rts

prgflg ds 1

savad ds 2

;add.(hi/lo order)

hldbyt ds 1

rocnt ds 1

clmcnt ds 1

bytkp ds 8

code dfb 27,75,200,0

;x counts bytes

;get saved/conv.byte

;switch bits if reverse

;send it

;normal or expanded?

;normal, branch

;expanded.print byte

;twice

;raise counter

;done all 8?

;no.gel another

; check if key hit

;stop key

;yes, so close up

;yes.return

;prg. in progress flag

;holder for current sc. column

;holder for revised order byte

iscreen row counter

;screen column counter

;storage for 8 convert, bytes

>codes-escape,set for bitmap mode,# byles coming(l/h)

btmp hex 40

rvflg ds 1

;no reverse.set,reverse.

picflg ds 1

;for expanded print

pass ds1

• iscreen column we're on

bitcnl ds 1

;print byte conversion

mirflg ds 1

srclo hex 01

srchi hex 08

hiflg ds 1

bnkstor ds 1

bastor ds 1

;high byte of bitmap screen

;reverse print flag.clear,

;clear for normal,set

;flag to show which pass thru

;counter for bits in expanded

;flag for mirror print

;low byte source screen

;high byte same

ihires mode flag

;text sc. reg. save

;same

•conversion routine to double scale high or low

•nybble of byte for expanded print

exp Idy #0

gel Ida #4

sta bitcnt

Ida bytkp.y

jsr pascnt

nxtbt asl

bcs set

rol hldbyt

clc

rol hldbyt

dec bitcnt

bne nxtbt

Ida hldbyt

sta bytkp.y

jmp reset

set rol hldbyt

sec

rol hldbyt

dec bitcnt

bne nxlbt

Ida hldbyt

sta bytkp.y

reset iny

cpy #8

bne get

rts

initialize index into table

;set counter for 4 bits

;get byte

;which pass?

;shift bit 7 into carry

;bilwason

;carry into low bit holder

; twice

;lower bit counter

;do next bit(a still has byte)

;we've done 4

;save it

;update counter

;bit was set.put in holder

;set carry to put 2 set

;bits in holder

;lower bit counter

;if more to do, get it

idonealU

;save expanded nybble

;byte done,reset for next

finished 8?

;no, get another

;yes,return

•adjust byte for pass 1 or 2

pascnt Idx pass

beq relrn

asl

asl

asl

asl

retrn rts

; 1st or 2nd pass?

; 1 st. no change needed

;2nd pass, move low

;nybbletohigh

•after doing a column, check if in expanded mode

•and if so, adjust pass counter

ckpic Ida picflg

beq nochg

Ida pass

eor #01

;0 it's now 1.if it was 1,

; its now 0

sta pass

beq nochg

pla

pla

Ida savad +1

sta $fb

jsr shft

jmp rest

;which mode?

;if clear, just return

;gel pass value

;switch the bit. if it was

;pul new value back

;if O.we just did 2nd pass

;pull return address

;from stack

;restore low byte elm point.

;do cr.lf and codes

;restore high pointer.reset

;row counter and redo last elm.

nochg rls

•routine to display bitmap

dsply Ida hiflg

bne sb

Ida #1

sta prgflg

sta hiflg

Ida bank

sta bnkstor

Ida vidbas

sta bastor

;are we in hires?

;yes, so exit

;no.set flag to show

;we're busy and

;in hires mode

;get text screen vie

register and save il

;same for this register

•entry point from cursor routines

enter Ida #$40

sta $fe

Ida srchi

sta $fc

Ida #00

sta $fd

Ida srclo

sta $fb

Idy #0

;high byte of display screen

;into zero page

;source block high byte

;into zero page

;low byte display screen

;low byte source block

initialize y

•copy 8000 bytes from source to display

lup Ida ($fb).y

sla (Sfd).y

iny

bne lup

inc $fc

inc $fe

Ida $fe

cmp #$60

bne lup

Ida bank

and #$fc

ora #$02

sla bank

Ida vidbas

and #$87

ora #$80

sta vidbas

;lower half of bank

jsr filcol

jsr bilon

sb jmp exit

;get source byte

;store in display

; raise index

;get 256 bytes

;after 256, raise high byte

;source and display

;get value in display

finished when = $60

; not done, get more

;get register

;mask out bits 0 & 1

;set bit 1

;settobank1($4000-7fff)

;get register

;clear bits 3,4,5 & 6

;set bit 7

;sc.mem.at $6000, hires in

;set color mem to black/white

;turn on the hires screen

;exit thru normal irq

• routine lo reset to text screen in response to space bar

rstor Ida hiflg

beq sb

jsr bitof

Ida bnkstor

sta bank

Ida bastor

sta vidbas

Ida #0

sla hiflg

sta prgflg

jmp $ea31

;are we in hires?

;no, so exit

;yes. turn off bitmap

;get text screen register

; restore it

;get2nd register

; restore it

;clear the busy and

;hires flags

;exit thru normal irq

• routine lo increment/decrement source screen start

• by one byte in response to right cursor

sett Ida hiflg

beq sb

Ida $028d

and #$01

beq adlo

Ida srclo

;are we in hires?

;no, so exit

;yes.shift key pressed?

;maskallbutbitO

;clear so increment

;set so subtract

sb2

adlo

cmp #0

bne sb2

dec srchi

Ida #255

sta srclo

jmp enter

dec srclo

jmp enter

inc srclo

bne sb1

inc srchi

;is source low byte 0?

;no, so lower low byte by 1

;yes.decrement hi byte

:and add 255 to low byte

;for effective 1 byte reduction

;go update screen

subtract 1 from low byte source

;update screen

;add 1 to source low byte

;if new value notO

:if low bvte rolled over

;to 0, increment hiah bvte

sb1 imp enter :uodate screen

• routine to increment/decremenl source start by 320 bytes

setup Ida hifla ;are we in hires?

addit

beq sb

Ida $028d

and #$01

beq addit

Ida srclo

sec

sbc #64

sta srclo

Ida srchi

sbc #1

sta srchi

jmp enter

Ida #64

clc

adc srclo

sta srclo

Ida #1

adc srchi

sta srchi

imp enter

;no.exit

;yes.shift pressed?

imaskall but bit 0

;if0, no shift

;it was set. subtract

;get low byte source

subtract 64

;store new value

■get hiah bvte

;subtract1 (= 256)

;store new value

;update screen

;add 64 lo source low byte

;and 1 (256) to source

;high byte to raise

ipointer by 1 screen line

;store new values

;update screen

• routine to turn on hires screen

biton Ida bmreg

ora #$20

sta bmreg

rts

;get enable register

;set bit 5

;store new value back

: return

• routine to turn hires screen off

bitof Ida bmreg

and #$df

sta bmreg

rts

;get enable register

;clear bit 5

istore new value

:return

•routine to set hires color memorv

filcol

colup

Idy #0

Idx #0

Ida #$01

initialize y

and x

;0 = color code black. 1 = white

sta colmem.x ;put in all 1000 byles

sta colmem + 250.x

sta colmem 4-500x

sta colmem + 750.x

inx

cpx #250

bne colup

rls

;raise index

;do 250 times

;notdone.domore

;return

The Transactor 71 Sept. 1986: Volume 7, Issue O2

Commodore 128

High-Res Graphics

Paul T. Durrant

Long Prairie, Minnesota

Hi-Res Graphics On The Commodore 128's 80 Column Screen Using BASIC 7.0 Commands.

The Commodore 128 computer includes some very useful

graphics commands in its BASIC implementation. It also in

cludes two video chips: a 40 column chip (the VIC)—as in the

Commodore 64—and an 80 column chip (the VDC). The VDC

can display a single color (plus background) High-Resolution

graphics image which is 640 dots wide by 200 dots tall: twice

the horizontal resolution of the VIC screen.

Unfortunately, the Hi-Res graphics commands included in

BASIC 7.0 do not support the VDC. Using the accompanying

program, you can create Hi-Res graphics on the 40 column

screen and transfer them to either side of the 80 column screen

(and back again). With this technique, a 640 dot wide Hi-Res

image may be created in two halves, using BASIC 7.0 com

mands.

Even if you aren't interested in having 80 column Hi-Res

graphics, the program may be useful to you. The VDC has

access to 16K of its own dedicated memory—outside of the

normal address space. Thus you may store and retrieve two 40

column Hi-Res screens without any loss of main memory.

Use Of The Program

The SYS command in BASIC 7.0 allows you to directly pass a

value to the processor's accumulator (and other registers).

SYS <address>,<value>

. . .will start the machine language program at <address> with

<value> in the accumulator. This program takes advantage of

this expanded capability of the SYS command. As presented,

the routine begins at location 2816 ($b00)—in the 128's

cassette buffer.

As noted, the 80 column Hi-Res screen can display two 40

column screen's worth of information—one on the left side,

one on the right. This program allows you to select which half

of the 80 column screen to use. Not only can you transfer an

image to the 80 column screen from the 40 column screen, you

also may transfer one back again. Four different combina

tions are possible:

SYS 2816,0 - transfers the 40 column screen to the left side of

the 80 column screen.

SYS 2816,1 - transfers the 40 column screen to the right side of

the 80 column screen.

SYS 2816,2 - transfers the left side of the 80 column screen to

the 40 column screen.

SYS 2816,3 - transfers the right side of the 80 column screen to

the 40 column screen.

In addition, SYS 3023 can be used to clear and restore the VDC

screen to text mode.

You may easily program the Function Keys to execute these

commands.

How It Works:

Before discussing the program, it's necessary to review a little

of how Hi-Res graphics images are created by the two chips. A

single text character is composed of 64 bits in an 8 by 8

matrix. Each time the monitor scans a single screen line, it

picks up one byte (8 bits) and either turns the " light beam" on

or off for each bit. Data for a Hi-Res image in the 40 column

mode start at address $2000. Location $2001 refers to the

second byte of the "character" in the upper left corner

(which is on the second screen line). Location $2002 refers to

the third byte, etc. After creating the dots for the top row of the

first character, the next set of dots on the monitor must

come from the top byte of the second character. So the VIC

reads every eighth byte as it goes across the screen, moves

down one byte from where it started, and then displays every

eighth byte again, until the whole first row of "characters" is

displayed. This arrangement is illustrated below:

The Transoctor 72 Sept. 1986: Volume 7, Issue O2

$2000 $2008 $2010 ... $2138

$2001 $2009 $2011 ... $2139

$2002 $200a $2012 ... $213a

$2007 $200f $2017 ... $213f

$2140 $2148 $2150 ... $2278

Anyone who has dabbled with Hi-Res graphics on the Commo

dore 64 (which uses the same procedure) knows that this is a

rather clumsy technique.

The new VDC uses a simpler method. When in Hi-Res mode,

location $0000 of the VDC's dedicated memory refers to the

first byte on the top screen line. Location $0001 refers to the

next byte on the top screen line, etc. As you can see, this is a

much simpler arrangement:

$0000 $0001 $0002 ... $0049

$0050 $0051 $0052 ... $00a0

At the beginning of the program the accumulator is checked to

see if it contains one of the four defined instructions. If so, the

VDC is placed in graphics mode, the instruction is saved, and

pointers are initialized. ROW.COUNT is initialized to 25, 40 "

characters" worth of data are moved, pointers are updated and

ROW.COUNT is decremented. The program is finished when

ROW.COUNT gets to zero. The accompanying annotated disas

sembly of the machine language code tells it all.

Much of the code could be written in one large routine, but I've

chosen to break it into several smaller ones. Some of the

subroutines are only called once from a single higher routine,

but the resulting code is easier to follow.

Even though this is a machine language program, it takes a

second or so for a transfer between screens to be completed.

This is caused by the different arrangements of Hi-Res data in

memory, the indirect addressing required for the VDC's 16K of

dedicated memory, and the fact that 8K of data is being moved

each time.

;Entry/initialization:

OObOO c9 04 cmp#$04

00b02 90 01 bcc $0b05 ;Branch if (ace) < 4

00b04 60 rts ;else ignore "illegal" com

mand.

00b05 48 ■ pha

00b06

00b09

OObOa

OObOd

OObOf

00b11

00b13

00b15

00b17

00b19

00b1b

00b1e

00b20

00b22

20

68

8d

29

to

a9

85

aO

84

84

8c

a9

85

8d

c7 Ob

dc Ob

01

02

28

eO

00

e1

fb

de Ob

20

fc

df Ob

;Move screen:

00b25

00b27

00b2a

00b2d

00b2f

00b31

00b34

00b36

00b38

00b3a

00b3d

00b40

00b42

a9

8d

20

e6

a5

8d

dO

e6

a5

8d

ce

dO

60

19

dd Ob

43 Ob

fb

fb

de Ob

02

fc

fc

df Ob

dd Ob

e8

jsr

pla

sta

and

beq

Ida

sta

Idy

sty

sty

sty

Ida

sta

sta

Ida

sia

jsr

me

Ida

sta

bne

inc

Ida

sta

dec

bne

rts

;Move 40 characters:

00b43

00b45

00b48

00b4b

00b4e

00b51

00b53

00b54

00b57

a9

8d

20

20

ce

dO

60

20

dO

08

eO Ob

59 Ob

98 Ob

eO Ob

01

a9 Ob

ef

;Move40 bytes:

00b59

00b5c

00b5e

00b60

00b63

00b66

00b68

00b6a

00b6d

00b70

ad

c9

90

20

8c

aO

91

ac

20

dO

dc Ob

02

12

cO Ob

e1 Ob

00

fb

e1 Ob

84 Ob

ee

Ida

sta

jsr

jsr

dec

bne

rts

jsr

bne

Ida

$0bc7

$0be6

#$01

$0b13

#$28

$eO

#$00

$e1

$fb

$0be8

#$20

$fc

$0be9

#$19

$0be7

$0b43

$fb

$fb

$0be8

$0b38

$fc

$fc

$0be9

$0be7

$0b2a

#$08

$0bea

$0b59

$0b98

$0bea

$0b54

$0ba9

$0b48

$0be6

emp #$02

bcc

jsr

sty

Idy

sta

Idy

jsr

bne

$0b72

$0bc0

$0beb

#$00

($fb),y

$0beb

$0b84

$0b60

;Set 80 col screen to graphics.

;Save TRANSFER.DIREC

TION.

;lf (ace) = 1 now, refers to

;right side of 80 col screen,

;so start at middle.

;(Acc) = 0 or 40 now.

;$e0/e1 arethe80.COL.PTR.

;Lowbyteof40.COL.PTR

;BEGINningof40colROW.

;High byte of 40.COL.PTR.

;Ditto, for BEGIN of 40 col

ROW.

;25 screen rows.

;ROW.COUNTER.

;Do " move 40 characters".

;Set40.COL.PTRto

;next row.

;Save it in BEGIN.ROW, too.

;Adjust high bytes of

;both if necessary.

;ROW.COUNTER.

; Repeat if not done,

;else rts.

;Each "character" has 8

bytes.

;So count BYTE.ROW down.

;jsr " move 40 bytes",

;and move to next 80 col row.

;lf done 8 times,

;then

;rts.

;Else move to next 40 col row

;and branch always.

;TRANSFER.DIRECTION.

;lf <2 then

;branch to move from 40 to 80.

;Else move from 80 to 40.

;Save (y) as ptr to col on 80

;col screen and use for indirect

;storeto40.

; Restore (y) and

;increment pointers.

; Branch always.

Transoctor 73 Sept. 1986: Volume 7, Issue O2

;Move a byte from 40 to 80:

00b72

00b75

00b77

00b79

00b7c

00b7f

00b82

8c

aO

b1

ac

20

20

clO

el

00

fb

e1

be

84

ee

; Increment 40.

00b84

00b85

00b87

00b89

00b8a

00b8b

00b8c

00b8d

00b8f

00b91

00b93

00b95

00b97

c8

cO

90

68

68

60

18

a9

65

85

90

e6

60

28

03

08

fb

fb

02

fc

Ob

Ob

Ob

Ob

COL

;Next80col row:

00b98

00b9a

00b9b

00b9d

00b9f

00ba1

00ba3

00ba5

00ba8

aO

18

a9

65

85

90

e6

20

60

00

50

eO

eO

02

e1

e6 cd

;Next40col row:

00ba9

OObac

OObaf

OObbi

00bb3

00bb6

00bb9

OObbb

ee

ad

85

dO

ee

ad

85

60

de

de

fb

03

df

df

fc

Ob

Ob

Ob

Ob

sty

idy

Ida

Idy

jsr

jsr

bne

.PTR

iny

cpy

bec

pla

pla

rts

clc

Ida

adc

sta

bec

nc

rts

Idy

clc

Ida

adc

sta

bec

inc

jsr

rts

inc

Ida

sta

bne

me

Ida

sta

rts

$0beb

#$00

($fb),y

$0beb

$Obbc

$0b84

$0b72

#$28

$0b8c

#$08

$fb

$fb

$0b97

$fc

#$00

#$50

$eO

$eO

$0ba5

$e1

$cde6

$0be8

$0be8

$fb

$0bb6

$0be9

$0be9

$fc

;Save (y) as ptr to col on 80

;screen.

;Get byte from 40 col

;screen

;and store in 80.

increment pointers and

; branch always.

;Have 40 bytes been moved?

; Branch if not.

;Else pull return address off

;stack and return to

;" move 40 characters".

;Add

;8 to 40.COLPOINTER to get.

;next byte this screen line.

;Start with first byte.

;Add 80 to 80 col ptr.

;ROM routine which sets

location in VDC's memory.

;BEGIN.ROW

;$0be8 points to beginning of a

;row of bytes in 40 col screen.

;This routine is called after

;40 bytes have been moved, to

;set40.COLPTRto

;the next row of bytes.

;Store a byte in VDC's memory:

OObbc 48 pha ;Set VDC memory location

OObbd 4c 54 cc jmp $cc54 ;and store a byte there.

;Get a byte from VDC's memory:

OObcO 20 e6 cd jsr $cde6 ;Select VDC memory location

and

00bc3 20 d8 cd jsr $cdd8 ; read a byte from there.

00bc6 60 rts

;Turn on VDC's graphics mode:

00bc7 a2 19 Idx #$19

00bc9 a9 80 Ida #$80

OObcb 20 cc cd jsr $cdcc

OObce 60 rts

;Return VDC to text mode:

OObcf

OObdi

00bd3

00bd6

00bd8

OObda

OObdd

OObeO

00be3

a2

a9

20

a5

30

20

20

20

4c

19

40

cb

d7

03

2c

42

2c

Oc

Ob

cd

d

cd

ce

Idx

Ida

jsr

Ida

bmi

jsr

jsr

jsr

jmp

#$19

#$40

$0bcb

$d7

$Obdd

$cd2c

$c142

$cd2c

$ce0c

;Text mode.

;Cursor in 80 col screen?

;Branch if so,

;else switch screens.

;Clear screen.

;Switch to 40 col screen.

; Restore VDC character set

| TheTWruoctpf
74

Sept. 1986: Volume 7, Issue 02

Computoons

RUNNING A PROGRAM'

R. ttolfe ffc
"This darn human is down more than it's up!"

"You mean there's a fruit name after a computer?!"
'According to this Home Finance program, we're

broke because we bought this computer."

The Transoctof 75 Sept. 1986: Volume 7, toue O2

News BRK

Submitting NEWS BRK Press Releases

If you have a press release which you would like to submit for the NEWS BRK

column, make sure that the computer or device for which the product is

intended is prominently noted. We receive hundreds of press releases for each

issue, and ones whose intended readership is not clear must unfortunately go

straight to the trash bin. It should also be mentioned here that we only print

product releases which are in some way Applicable to Commodore equipment.

News of events such as computer shows should be received at least 6 months in

advance.

Transactor News

Transactor Mail Order News

Our mail-order department is expanding nicely, but our mail-order card isn't.

Seems we just can't find any more room to put more text without making it so

small that you can't read it. So, if you're using the card to order, we suggest you

pull it out and cross-reference with the list below for more details.

■ Inner Space Anthology $14.95

This is our ever popular Complete Commodore Inner Space Anthology. Even

after a year, we still get inquiries about its contents. Briefly, The Anthology is a

reference book - it has no "reading" material (ie. "paragraphs"). In 122

compact pages, there are memory maps for 5 CBM computers, 3 Disk Drives,

and maps of COMAL; summaries of BASIC commands, Assembler and MLM

commands, and Wordprocessor and Spreadsheet commands. Machine Lan

guage codes and modes are summarized, as well as entry points to ROM

routines. There are sections on Music, Graphics, Network and BBS phone

numbers, Computer Clubs, Hardware, unit-to-unit conversions, plus much

more... about 2.5 million characters total!

■ The Toolbox (PAL and POWER) $79.95

PAL and POWER from Pro-Line are two of the most popular programs for the

Commodore 64. PAL is an easy-to-use assembler (most assembler listings in

The Transactor are in PAL format), and POWER is a programmer's aid package

that adds editing features and useful commands to the programming environ

ment. They come with two nice manuals, and our price is $50 less than

suggested retail!

Amiga RAM Expansion by Comspec

■ AX 1000 Amiga 1 MEG RAM Box $729.00 (+$100 S&H) U.S.,

$1035.00 (+$25 S&H)Cdn

■ AX2000 Amiga 2 MEG RAM Box $899.00 (+$100 S&H) U.S.,

$1276.00 (+$25 S&H) Cdn

The AX2000 adds 2 Megabytes of "fast" RAM to the Amiga, allowing more tasks

to run in the system at once, or for use as a fast RAM-drive. The unit plugs into

the expansion connector on the side of the Amiga and duplicates the connector

for other devices to plug into. Up to two RAM boards may be plugged in

together (limited by the Amiga'a power supply), adding 4 Megabytes. The box

has "auto-config", so with Kickstart 1.2 the RAM will automatically be added to

the system when it is booted. If you are using Kickstart 1.0 or 1.1 (no auto-

config), you can use the program included with the AX2000 to add the memory

to the system, and change your startup-sequence to automatically add the

memory on power-up. Standard expansion bus architecture was used in the

design of the AX2000, ensuring compatability with all peripherals and operat

ing system releases. The unobtrusive steel box is the same height and colour as

the Amiga, and snugs up to the side without taking up much extra space. The

unit is built tough and comes with a 1 year manufacturer warranty.

This seems to be the most highly-recommended Amiga RAM board, and the

first one to actually be available, so we're selling it here at The Transactor. You

can order the AX2000 or the 1-Meg AX1000 from the subscription form in this

issue. Shipping and Handling to the U.S.A. is via courrier and includes all

customs clearance, or you can opt to clear shipments yourself and have it

shipped "collect". For dealer information, contact:

Comspec Communications Inc.

153 Bridgeland Avenue

Toronto, Ont.

M6A2Y6 (416)787-0617

Paperback Writer now "Pocket Writer"

To avoid confusion with products by Paperback Software International of

California manufactured for the IBM market, Digital Solutions has changed the

name of their Paperback series of software to Pocket Writer, Pocket Planner,

Pocket Filer, and Pocket Dictionary. The new packaging will commense when

current stock runs out, but the software inside will be identical.

■ Pocket Writer C64 $39.95 US, $49.95 Cdn

■ Pocket Planner C64 $39.95 US, $49.95 Cdn

■ Pocket Filer C64 $39.95 US, $49.95 Cdn

■ Pocket Writer Cl28 $49.95 US, $69.95 Cdn

■ Pocket Planner C128 $49.95 US, $69.95 Cdn

■ Pocket Filer Cl28 $49.95 US, $69.95 Cdn

■ Pocket Dictionary $ 14.95 US, $ 19.95 Cdn

In our opinion, the Pocket packages from Digital Solutions are the best you can

get on their own - the fact that they work with each other makes them even

better. Planner and Filer data can be loaded into the Writer, Writer text can be

sent to the Filer, and etcetera. The Dictionary spell checker works with both

versions of the Writer.

■ The CLINK C64 to IEEE Interface $49.95

The GLINK plugs into the cartridge port, but doesn't extend the port for more

cartridges (for that you'll need a "motherboard" of some kind). The other side of

the GLINK is an IEEE card-edge suitable for a PET-IEEE cable. From there, any

IEEE device can be accessed including disk drives, modems, printers, etc. The

GLINK is "transparent" - that means it won't interfere with programs, except

those that rely on the serial routines which it replaces (ie. programs with built-

in "fastloaders" for the 1541 won't like the presence of the GLINK). It has no

manual (aside from one page of installation instructions) because it alters

nothing and leaves everything unchanged! An on-board switch allows you to

select Serial or IEEE. GLINK works with both the C64 and the C128 in 64 mode,

but not on the VIC 20.

■ The TransBASIC Disk $9.95

This is the complete collection of every TransBASIC module ever published up

to Volume 7, Issue 01. There are over 120 commands at your disposal. You pick

the ones you want to use, and in any combination! It's so simple that a

summary of instructions fits right on the disk label. The manual describes each

of the commands, plus how to write your own commands.

■ Super Kit 1541 $29.95 US, $39.95 Cdn

Super Kit is, quite simply, the best disk file utility there is. No more losing those

valuable copy-protected originals (like what's happened to me twice too many

times). So far we've shipped over 100 Super Kits and orders continue to pour in.

Gnome Speed Compiler = SM Compiler

■ Gnome Speed Compiler $59.95 US, $69.95 Cdn

In last issue's NEWS BRK section, the SM compiler was incorrectly listed at

$39.95 U.S. The SM compiler's real name is "Gnome Speed" as introduced in

the last page ad, and sells for the price listed in the ad and on the subscription

card: $59.95 U.S. This compiler is for BASIC 7.0 on the Commodore 128.

The Transoctof 76 Sept,1986:Vblume7, Is ■O2

■ Gnome Kit Utility $39.95 US, $49.95 Cdn

Gnome Kit is a Commodore 128 utility with enhancements for the BASIC editor

(like Trace, Find, Renumber, Delete, Auto, etc.) as well as enhanced monitor

commands, and floppy disk monitor functions.

Transactor Disks, Transactor Back Issues, and Microfiche

All issues of The Transactor from Volume 4 Issue 01 forward are now available

on microfiche. According to Computrex, our fiche manufacturer, the strips are

the "popular 98 page size", so they should be compatible with every fiche

reader. Some issue are ONLY available on microfiche - these are marked "MF

only". The other issues are available in both paper and fiche. Don't check both

boxes for these unless you want both the paper version and the microfiche slice

for the same issue.

To keep things simple, the price of Transactor Microfiche is the same as

magazines, with one exception. A single back issue will be $4.50 and subscrip

tions are $15.00. The exception? A complete set of 18 (Volumes 4,5, and 6) will

cost just $39.95!

This list also shows the "themes" of each issue. "Theme issues" didn't start

until Volume 5, Issue 01.

■ Vol. 4, Issue 01 (■ Disk 1) ■ Vol. 4, Issue 04 - MF only (■ Disk 1)

■ Vol. 4, Issue 02 (■ Disk 1) ■ Vol. 4, Issue 05 - MF only (■ Disk 1)

■ Vol. 4, Issue 03 (■ Disk 1) ■ Vol. 4, issue 06 - MF only (■ Disk 1)

■ Vol. 5, Issue 01 - Sound and Graphics (■ Disk 2)

■ Vol. 5, Issue 02 - Transition to Machine Language (■ Disk 2)

■ Vol. 5, Issue 03 - Piracy and Protection - MF only (■ Disk 2)

■ Vol. 5, Issue 04 - Business & Education - MF only (■ Disk 3)

■ Vol. 5, Issue 05 - Hardware & Peripherals (■ Disk 4)

■ Vol. 5, Issue 06 - Aids & Utilities (■ Disk 5)

■ Vol. 6, Issue 01 - More Aids & Utilities (■ Disk 6)

■ Vol. 6, Issue 02 - Networking & Communications (■ Disk 7)

■ Vol. 6, Issue 03 - The Languages (■ Disk 8)

■ Vol. 6, Issue 04 - Implementing The Sciences (■ Disk 9)

■ Vol. 6, Issue 05 - Hardware & Software Interfacing (■ Disk 10)

■ Vol. 6, Issue 06 - Real Life Applications (I Disk 11)

■ Vol. 7, Issue 01 - ROM / Kernel Routines (■ Disk 12)

■ Vol. 7, Issue 02 - Games From The Inside Out (■ Disk 13)

Notes: The Transactor Disk *1 contains all program from Volume 4, and Disk

#2 contains all programs from Volume 5, Issues 1-3. Afterwards there is a

separate disk for each issue. Disk 8 from The Languages Issue contains COMAL

0.14, a soft-loaded, slightly scaled down version of the COMAL 2.0 cartridge.

And Volume 6, Issue 05 published the directories for Transactor Disks 1 to 9.

No Sales Tax on Books

Residents of Ontario need not add the 7% sales tax for the Inner Space

Anthology and Jim Butterfield's 1986 Diary as indicated on the subscription

card.

Sending Cheques For Transactor Products

If you wish to send a cheque with your subscription/order form, or you wish to

conceal your credit card number, you can use an envelope and tape it to the

back of the subscription card. The post office has threatened to charge us extra

for sloppy business reply mail so please try to use an envelope that is smaller

than the card. Can't find one? Just trim the end off the envelope and tape along

that edge when fixing it to the card.

The Transactor Communications Disk

We're still working on the "Transactor Communications Disk". Of course the

Viewtron software is no longer being considered. And the fact that we're now

working on a new home for our on-line services means that this project had to

"pushed ahead". Time for the project has been "slotted" and we hope to have it

near completion either before or slightly after release of the next issue. When

finished it could host as many as 15 different modem programs and may even

require two diskettes. We also plan an "all-in-one" manual to go with it so you'll

never be without a telecommunications program for virtually any host com

puter and protocol. But it's not ready yet so don't send any orders. More next

issue.

Demise of Viewtron

Yes, it really happened: newspaper chain Knight-Ridder pulled the plug on the

Viewtron online service that we've been raving about so much lately. And just

when the Transactor section was doing so well (Heavy sigh). Perhaps some of

the other services will take Viewtrons place in the future.

Quantum Link and Timeline

We're currently investigating Quantum Link and Timeline (a Montreal based

multi-user online service) as the new homes for The Transactor Online Data

Service. At the moment, however, neither is readily available to all our

subscribers simultaneously. Timeline access is through DataPac, a packet

switching service that seems to be only in Canada. Quantum Link can be

accessed via Uninet and Telenet which don't yet extend beyond the U.S.

TymNet has recently installed nodes in 5 or 6 major Canadian centers, but does

not carry the Quantum Link service. However, remote areas would still need to

call long distance. The ideal solution would be to have Quantum Link on

DataPac which they are reportedly close to completing. Unfortunately we can't

offer any more definite plans, but can say that it is on top of the priority list for

things to do between now and next issue.

Using Transactor Programs In Proprietary Software

Our policy concerning the use of our routines in your own software, commer

cial or otherwise, is this: you have our blessings. If you can find a use for

something that we've published, well, that's what we're here for. We won't

demand royalties or even a free copy, but we'd be happy if you gave the

Transactor credit in some way, as well as the author of your assistance.

Industry News

1986 Midwest Commodore Conference/Expo

The 1986 Midwest Commodore Conference/Expo is to be held on August 9th

and 10th, 1986 at the Holiday Inn Convention Centre, 72nd and Graver in

Omaha, Nebraska. There will be over 30 workshops and both local and

national vendor support. Speakers include Jim Butterfield from Toronto,

Ontario, Dr. Richard Immers, the co-author of "Inside Commodore DOS" from

Detroit, Michigan, Valerie Kramer, a computer language expert from Los

Angelas, California, Dr. James Alley, Art Professor (Amiga) from the Savannah

College Of Arts, Savanaugh, Georgia, and Pete Baczor, the Commodore Users

Group Coordinator. It looks to be one of the biggest Commodore shows in the

country. For more information, contact:

The Greater Omaha Commodore Users Group

P.O. Box 241155

Omaha, Nebraska

Attention: Tim Trabold

MSD Still Alive And Prospering!

In Volume 7, Issue 01 's NEWS BRK column, we reported the demise of Micro

System Development, better known as MSD. Well, a Mr. Allen Dermody sent us

a letter pointing at that the company is still doing well, as he had his MSD drive

recently serviced by them. It seems that they are no longer developing disk

drives for Commodore machines, but still exist as a company, doing mainly

Tile Tronsoctof 77 Sept. 1986: Volume 7, toue O2

because of special modules which generate individualized vocabulary and

syntax files which can be utilized by the main program. Th flexibility of C.W.

makes it possible to do everything from analysis and simulation of established

authors to curse-generation tailored to abuse your 'favourite' politicians and

friends.

The randomly generated sentences are infinitely variable in terms of vocabu

lary and sentence structure, and they are grammatically correct. The products

of a 'creative writing session' can be saved to disk as a standard sequential file

(for later editing with a word-processor) or streamed to a printer. While we ean't

promise you that C.W. will write the Great Canadian Novel for you, we can

promise that it will be one of the most amusing and unusual pieces of software

in your collection!

Creative Writer has a retail price of $29.95. To order, phone or send a cheque or

money-order to:

The G.A.S.S. Company

970 Copeland

North Bay, Ontario, Canada

P1B-3E4 (705)474-9602

Sector Surgeon For The C-64

Sector Surgeon is the first advanced disk repair program for the C-64, SX-64 and

C-128.

Unlike its predecessors, Sector Surgeon is written totally in machine language.

Sector Surgeon uses FDC disk routines instead of the less versatile IP routines

to enhance its flexibility. This also allows writing and reading of protected disks

from tracks 1 to 35. Also, the block availability map sector need not be intact for

Sector Surgeon to work. Instructions are available at the touch of a key.

The sector information is displayed in a window in screen code and the byte

under the cursor is displayed simultaneously in (1) screen code (2) decimal (3)

hex (4) binary (5) basic. All header information and data block checksums can

be displayed in decimal, hex and screen codes. Shows actual track number and

displays the forward link.

Sector Surgeon will read information under almost all errors and will write

information underneath header errors. Error 23 will be corrected automatically

upon writing to a disk. You can copy sectors even to another disk.

Sector Surgeon has been tested and found to work with the 1541, V1C-1541,

1540,1541 Flash! and SX-Flash! For more information contact:

Bak Room Boys Software

2306 N MacArthur Blvd.

Oklahoma City, OK 73127

(405) 946-2888

Three MIDI Data Storage Programs For The Commodore 64

The CZ Dumpstor is a patch librarian for the Casio CZ101, CZ1000, CZ3000 and

CZ5000 synthesizers. Three banks of sixteen patchs can be in memory at one

time, and the program includes 128 professional patches. The CZ Dumstor sells

for $54.95 (US funds).

The Data Dumpstor is a very powerful data storage program that stores patches,

sequences, drum patterns and other MIDI information from over 20 different

instruments. Data is accepted from the DX-7, RX-11, TX-7, DX-9, QX-7, and the

new DX-100, and several more Yamaha instruments. Data from instruments by

Korg, Sequential, Oberheim and others can also be stored and retrieved. It

holds 36k and MIDI info from several instruments can be stored or sent at the

same time. The Data Dumpstor sells for $59.95 (US funds).

The TR-707 Dumpstor accepts drum patterns and songs from the Roland TR-

707 and TR-727 drum machines. It eliminates the need for cassette data

point of sale cash registers, and apparently doing quite well. MSD may be

reached at:

MSD Systems, Inc.

10031 Monroe Drive Suite 206

Dallas, Texas 75229

(214)357-8587

The address for the MSD Information Exchange is:

Paul Eckler

2705 Hulman Street

Terre Haute, IN

47803

Twin Cities 128: The Commodore 128 Journal

As quoted from the April, 1986 edition; Volume 1, Issue 4

" 1571 Music Critic: While doing some simple file transfers to disk while

listening to ZZ-Top's Afterburner album, I noticed my 1571 was having

problems saving. The green light was furiously winking on and off in dazed

distress, and the read/write head was buzzing loudly in a vain attempt to find

the proper place on the disk to do its job."

If you had read through the balance of this article, you would discover that the

Commodore 1571 drive dislikes the music of ZZ Top (the kick-drums knock the

drive out of alignment) but loves Stevie Nicks; that is, according to The

Abominog's Ruminations column. Although a little bit on the weird side at

times, reading through this journal is a delight to be enjoyed by all.

What better way to tell of a journal's contents than to list it - The Table Of

Contents:

Rumors, Opinions, Mayhem

Abominog's Ruminations

Sid Vicious Bytes

Print Using Explained

Intro To Music 7.0

CP/M Update

Printer Files Explained

Commodore Experts Speak

Sparrow's Slick Tips

... plus reviews on Paperback Filer, Commodore 1350 Mouse, Commodore

1670 Modem, Fleet System 3/128, Matrix, Leader Board and Project: Space

Station

As stated all along, a journal not to be without. $1.75 (US funds) per issue or

$22.00 for a year's subscription. Available from:

Twin Cities 128

1607 Hewitt Avenue, Suite 4

PO Box 4526

Saint Paul, MN 55104

Creative Writer

"Although the computer was quite elegantly constructed, it was not as sleek as

Sharon's calf." The preceding sentence was not written on a computer: it was

written by a computer. CREATIVE WRITER is not a word-processor. It is a

writer, a writer who never gets writer's block. And it is one of the most unusual

and amusing and educational programs ever written for the C-64.

The program was written by a Canadian poet and novelist for use in teaching

creative-writing in Ontario schools, where both students and teachers have

invariably found it both fascinating and hilarious. While extremely easy to use,

C.W. is quite capable of extremely complex linguistic investigation. This is

The Transactor 78 Sept. 198<J: Vbtume 7, Issue O2

storage, and also uses the ultra-fast disk MIDI file loading routine used by the

CZ Dumpstor and the Data Dumpstor. It sells for $39.95 (US funds). For more

information, contact:

Music Service Software

801 Wheeler Road

Madison, WI 53704

The Electronic Shoe Box Accounting Systems For The C64

Dating back to its original release in 1983 for use with the Pet/CBM microcom

puters, the new Shoe Box II Accounting and Shoe Box Payroll systems for the

Commodore 64 and C128 have arrived. Two years of unrelenting work has

gone into making the Shoe Box systems the right choice for all your accounting

needs. While retaining complete compatibility with the previous Shoe Box data

structures, the speed of program execution has now been further increased by a

factor of six times. Copy protection is employed with this package, but the "

dongle" method of protection has been chosen to allow duplicates of program

and data files without problems. The manuals supplied are well written, well

presented and very well bound. From all aspects, the new Shoe Box accounting

systems have the markings of a truly good system, one that may be just right for

your accounting needs.

Take a look at the fine features to be enjoyed in the use of this system:

• easy initial set-up (20 minutes).

• calculates tax, CCA and prorated expenses automatically.

• automatic posting to General Ledger.

• automatic addressing of invoices and customer statements.

• print and sort by 5 digit code.

• prints mailing labels.

• supports most Commodore and compatible disk drives and printers.

• 97 General Ledger accounts.

• income statement and balance sheet.

• Canadian half-year rule for CCA.

• 200 "Aged" customer sub-accounts.

• 70 data journals per disk with up to 13,000 journal entries.

• 9 million dollar account limit.

Plus much, much more. The Shoe Box Canadian Payroll package has a retail

price of $79.95 (Canadian funds). The Shoe Box II Accounting system has a

retail price of $89.95 (Canadian funds). For more information, contact:

John Dunlop and Associates Ltd.

RR Number 5

Orangeville, Ontario, Canada

L9W-2Z2 (519)941-9572

Freedom Assembler-128 For The Commodore 128

The Freedom Assembler-128 is a symbolic assembler, written entirely in

assembly language, by a professional computer programmer. Now, you too can

write programs for the 6502/6510/65C02/8502 family of microcomputers.

With this assembler, programming is faster and easier than ever. The Freedom

Assembler-128 takes full advantage of the C-128's lighting speed and super

memory capacity. No more having to link too long files, no more long waits for

your disk assembler to load. The Freedom Assembler-128 is always ready

when you need it. The cartridge format allows it to remain plugged into your

computer until it is needed, with no interference with your other programs. The

Freedom Assembler-128 works in both 40 and 80 column mode.

The Freedom Assembler-128 is available for $49.95 (US funds). Postage is paid

by Hughes Associates. Order from:

Hughes Associates

45341 Harmony Lane

Belleville, Ml 48111

(313)699-1931

Rebel Assembler/Editor For The Commodore 64 and 128

A new dawn is on the horizon for Commodore programmers who program in

the native machine language of either the Commodore 64 or Commodore 128

PC.

A sophisticated 65XX/85XX assembler that assembles source code at unbeliev

ably lighting speed, Rebel is integrated in both the 64 and 128 versions with an

extremely versatile and helpful screen editor. The 128 editor in the 80 column

mode even provides an on-screen help menu and true split-screen editing.

Rebel takes no functions away from the user, giving total access to the

computer's powerful Basic language at all times, while providing extra facilities

such as a file lister, list freezer, search and replace functions and much more.

The 64 version, because of the limitations of Basic 2.0, adds other features such

as fast renumber, page flipping, hexadecimal - decimal - ASCII conversions, list

scrolling and more.

A nice thing about Rebel is that it is available now, at a suggested retail price of

only $29.95. For more information, please contact:

Nu-Age Software

2311 28th Street North

St. Petersburg, FL 33713

(813)323-8389

Liz Deal's Basic Program Converter

List/conv by Elizabeth Deal is a program which converts programs from one

Commodore machine into a format such that they can be listed and edited on

another machine. If you don't know which machine a particular program

comes from, List/conv will do its best to figure it out for you. The newly created

program may not directly run on the target machine, but at least the keyword

tokens won't be messed up; they will be converted to equivalent tokens in the

new machine, or actual ASCII strings where no such keywords exist.

Included on the disk with Liz's List/conv at no charge is Jim Butterfield's

public-domain "lister" program, which runs a bit slower than the machine

language List/conv, but tends to handle control characters better. The disk with

both programs is only $10.00 U.S., available from:

Liz Deal

337 West lstAve

Malvern, PA, 19355

10 and 20 Megabyte Hard Disk Drives For The C64

Fiscal Information Services have broken the speed barrier with the first really

fast hard disk system for the Commodore 64. How fast is really fast. It's fast

enough to Load a full screen of high-resolution color graphics (about 11 kbytes)

in less than one second! In fact, it is up to 43 times faster than Commodore's

standard 1541 floppy disk drive.

FIS's Lt. Kernal disk drive carries an on-board DOS. It's a substantial upgrade to

C64's Basic since it adds run-time functions and several CP/M like command

line function. Lt. Kernal interfaces via the expansion/cartridge port and

transparently implements all Commodore 1541 DOS functions.

The capacity of 10 or 20 MB is standard; larger capacities and streaming tape

backup are available as extra-cost options. The price of the 10 MB Lt. Kernal is

$1,595.00 (US). For more information:

Fiscal Information Inc.

143 Executive Circle

Daytona Beach, FL 32014

(904) 253-6222

The Transactor 79 Sept. 1986: Volume 7, Issue O2

Quick Brown Box:

An 8k Read/Write Cartridge For The Commodore 64

The Quick Brown Box is a battery-backed-up RAM cartridge for the C-64 (or C-

128 in 64 mode) that allows the Basic or machine language programmer to load

or write programs and save them for immediate availability at power up. For

the Expansion Port, up to 8k of frequently used utilities, wedges, or games may

be stored, using no hardware besides the computer itself. Includes Write

Protect switch and Reset button, and is shipped with Auto-Start, Basic utilities

and M.L. Monitor. USA $39.00 plus $3.00 Handling and Mailing, Canadian

$50.00 plus $4.00 H&M. Cheques accepted.

Brown Boxes, Inc.

26 Concord Road

Bedford, MA 01730

(617)275-0090

1540/1541 Drive Alignment System By SchuLace Enterprises

As good as they are, in normal usage, the 1540/1541 Disk Drives are subject to

knocking themselves out of alignment. It happens enough to warrant the

attention of all users. SchuLace uses drive electronics coupled with a pair of

innovative indicators to correct the problem. We economically show you how

to get your problem drive reading those early-recorded and commercial

diskettes. As the name implies, it will get you back Cm-Track. The On-Track

System is the product of nearly two years research, development and improve

ment. It's multi-functions and advantages will prove its immeasurable value

with use. On-Track has a suggested retail price of $15.98 (US funds) plus $2.00

P&H. For more information, contact:

SchuLace Enterprises

P.O. Box 771

Cascade, Maryland 21719

Astrology Program For Commodore 64

This program will run on a Commodore 64 system with a disk drive and printer

(optional). Choose between TROPICAL or SIDEREAL zodiac. It is based on a

unique ancient eastern system of astrology using divisions of zodiac into 12

signs, 27 asterisms, 108 navamsa quarters and 249 sub-asterismal divisions.

Uses a unique lunar progression (vimsottary dasa). It also has a time-tested

horary chart option for drawing charts for answering questions or when the

birth time is unknown. Longitudes of 9 planets and 2 lunar nodes, their

positions, strengths, aspects and planetary periods, etc., are displayed on

screen. The screen can be dumped to a connected printer (device #4). In

addition, a separate formatted hardcopy option supports 1526/MPS-802

and Epson Standard Code compatible printers. A quick horoscope snapshot

option and directory display are supported. Documentation for operating the

program and a treatise outlining the predictive aspects (with important refer

ence material and example horoscope analysis) are included for those wishing

to learn the system. Backup disk included. Available for $50.00 (Canadian

funds) from:

ROHINI

P.O. Box 9

St. Norbert Post Office

Winnipeg, Manitoba, Canada

R3V-1L5

Multiplex Eight RS232 Ports Onto A Single X.25 Line

New from Black Box Corporation. X.25 PAD/Concentrator lowers cluster

access costs. The use of X.25 packet data networks (such as DataPac) has grown

rapidly as users recognise PDN's cost-saving advantage over leased lines. Now,

get even greater use out of a single X.25 access line with Black Box's X.25 PAD/

Concentrator. This device has an X.25 "in" connector and 8 bi-directional

RS232 female ports. It permits up to eight terminals or computer ports to

multiplex onto a single X.25 line, making it a cost effective way to connect a

cluster of remote asynchronous terminals to a non X.25 host, or provide

multiple remote terminal access to an X.25 host computer.

Easy to install, maintain and troubleshoot, X.25 PAD has a powerful, user

friendly command facility which provides a comprehensive set of configuration

and control functions, such as long call forms, abbreviated call and autocall,

class selection, channel calling restrictions and incoming call validation. It can

support direct, dedicated and dial up terminal connections at speeds up to 9600

bps. The unit is fully compatible with CCITT, X.3, X.28, X.29, X.121 and X.25

access lines.

For a free catalog that describes this and 500 other data communications and

computer devices available from Black Box, write:

X.25 PAD/Concentrator

Black Box Corp.

P.O. Box 12800

Pittsburgh, PA

15241 (412)746-5500

/SPEEDPAK/ Speedscript Enhancer

Upstart Publishing proudly presents /SPEEDPAK/, the C64 Speedscript 3.0-3.2

enhancer. /SPEEDPAK/ adds six new commands, three printer codes, and

eight user-definable 31-character macro phrase keys to Speedscript. Among the

new features are:

Alternate screens: Edit, cut, and copy between documents instantly

Help screen installer: use one built-in help screen at a time. Four free samples

are included, or you can create your own.

SCREEN font installer: four special character sets are included for onscreen

viewing (these do not print to the page).

File encryption: For security, scramble your text files before saving and

recover them after loading (using your own 32-character code).

Code conversion: Convert screen codes to Commodore ASCII and vice versa.

Defaults: Set disk or tape as default storage device, and set a standard printing

device and secondary address.

Dvorak keyboard option: Use the world's fastest keyboard arrangement -

including a special help screen for beginners.

Three additional printer codes work with the alternate screen feature to provide

a RAM-based for letter mail merge, allowing you to merge a record into the form

letter, or skip forward or backward through records - all with no disk access

during printing.

Best of all, you can save Speedscript, /SPEEDPAK/, a character set, a help

screen, and preset defaults (including background and border colours) as one

easy to load bundle! And the /SPEEDPAK/ disk comes with printed instruc

tions, three disk-base'd tutorials, and three sample files that show you how to

use /SPEEDPAK/'s handy functions. Price is $15.00 US, $12.00 for quantities

of ten or more. Order from:

Upstart Publishing Dept. TN

P.O. Box 22022

Greensboro, NC 27420

Speed-Plus Speedscript Enhancer

The Speed-Plus Speedscript enhancer from Lidon Enterprises adds the follow

ing features to Speedscript 3.0-3.2: Justification, Tabs, 2 column/2 side print

ing, word wrap toggle, preview of output to screen, printing of any section of a

document, user-defined printer commands, and change of printer secondary

address "on the fly". Price is $24.95 US including P&H, from:

Lidon Enterprises Dept. UP

P.O. Box 773

Elm Grove, Wl 53122

The Transactor 8O Sept. 1986: Volume 7, Issue O2

JOIN TPUG
The largest Commodore Users Group

Benefit from:

Access to library of public domain software

for C-64, VIC 20 and PET/CBM

Magazine (10 per year) with advice from

Jim Butterfield

Brad Bjomdahl

Liz Deal

TPUG yearly memberships:

Regular member (attends meetings)
Student member (full-time, attends meetings)

Associate (Canada)

Associate (U.S.A.)

Associate (Overseas — sea mail)

Associate (Overseas — airmail)

— $35.00 Cdn.

—$25.00 Cdn.

— $25.00 Cdn.

—$25.00 U.S.

—$30.00 Cdn.

— $35.00 U.S.

— $45.00 U.S.

FOR FURTHER INFORMATION:

Send $1.00 for an information catalogue

(tell us which machine you use!)

To: TPUG INC.

DEPT. A,

101 DUNCAN MILL RD., SUITE G7

DON MILLS, ONTARIO

CANADA M3B1Z3

COMAL INFO
if you have comal—

we have information.

BOOKS:
COMAL From A TO Z, S6.95

COMAL Workbook, $6.95

Commodore 64 Graphics With COMAL, $14.95
COMAL Handbook, $18.95
Beginning COMAL, $22.95

Structured Programming With COMAL, $26.95
Foundations With COMAL, $19.95
Cartridge Graphics and Sound, $9.95
Captain COMAL Gets Organized, $19.95
Graphics Primer, $19.95

COMAL 2.0 Packages, $19.95

Library of Functions and Procedures, $19.95

OTHER:
COMAL today subscription, 6 issues, $14.95
COMAL 0.14, Cheatsheet Keyboard Overlay, $3.95
COMAL Starter Kit (3 disks, 1 book), $29.95
19 Different COMAL Disks only $94.05

Deluxe COMAL Cartridge Package, $128.95

(includes 2 books, 2 disks, and cartridge)

ORDER NOW:
Call TOLL-FREE: 1-800-356-5323 ext 1307 visa or MasterCard

ORDERS ONLY. Questions and Information must call our

Info Line: 608-222-4432. All orders prepaid only—no C.O.D.

Add $2 per book shipping. Send a SASE for free info

Package or send check or money order in US Dollars to:

COMAL USERS CROUP, U.S.A., LIMITED
5501 Groveland Ten, Madison, wi 53716

TRADEMARKS: Commodore 64 of Commodore Electronics Ltd.;

Captain comal of COMAL users Croup, U.S.A., Ltd.

Commodore

Reference

1986
COMPUTER DIARY

From The Guru Himself!

The 1986 Commodore Reference Diary

A 65 page reference section that includes:

• All hardware specifications including

theCi28andPCi0/20

• Useful memory locations

• Useful programs

• SuperCharts

• BASIC and machine language hints

• Hexadecimal conversion

• Sound, video

• and more

The full calendar and date book includes:

• National holidays in ten countries

• Personal notes

• 1987 forward planner

• Name, address, telephone section

Just $5.95
(plus 501 postage and handling)

Order Your Copy Today!

Canada

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

USA

The Transactor

277 Linwood Avenue

Buffalo, New York

14209

_ Dealer Orders:
Canada

Norland Agencies

251 Nipissing Road

Milton, Ontario

L9T 4T7

(416)876-4774

USA

MicroPace Distributing

1510 North Neil Street

Champaign, Illinois

61820

1 800 362-9653

THE PROGR

GNOME KIT '

Hacker Gnome's tool kit is a collection of programming, designing

and debugging aids for writing both BASIC and machine code

programs. By simply loading this transparent kit at the start of your

work session, you will have a full range of powerful commands—such

as find, dump, merge, renumber, move and trace—at your gnometips.

And, for you more sophisticated gnomes, you can easily write

machine code programs with the full assembler/disassembler and

editor — Even extend DOS, create REM routines and restore corrupted

disks.

No Copy Protection!

For both C-64 and C-128

GNOME KIT is just $39.95 U.S.

Don't forget GNOME SPEED, the BASIC 7.0 compiler. Transform

virtually any BASIC 7.0 program into super fast, super compact

machine code. Only $59.95.

U.S. Mail Orders:

SM Software, Inc.

P.O. Box 129

Kutztown, PA 19530

(215) 683-5699

Canadian Mail Orders:

The Transactor

(416) 878-8438

Dealer Inquiries

Micro-Pace, Inc

(217) 356-1884

See Order Card

M R O D LJ C N G

SUPER Kl

BY MARTY FRANZ & JOE PETER

SINGLE/DUAL NORMAL COPIER
Copies a disk with no errors in 32.68 seconds,

dual version has graphics & music.

SINGLE/DUAL NIBBLE COPIER
Nibble Copies a disk in 34.92 seconds. Dual

version has graphics & music.

SINGLE/DUAL FILE COPIER
7 times normal DOS speed. Includes multi-copy,

multi-scratch, view/edit BAM, & NEW SUPER

DOS MODE. In Super DOS Mode, it transfers

7-15 times normal speed, copies 150 blocks in 23

seconds.

TRACK & SECTOR EDITOR
Full editing of t&s in hex, dec, ascii, bin. Includes

monitor/disassembler with printout commands.

GCR EDITOR
Yes disk fans, a full blown sector by sector or

track by track GCR Editor. Includes TRUE Bit

Density/Track Scan.

3 SUPER DOS FAST LOADERS
Over 15 times normal DOS speed. Super DOS

Files are still Commodore DOS compatible.

Imagine loading 150 blocks in 10 seconds.

SUPER NIBBLER/

SUPER DISK SURGEON
Quite frankly, these will provide you the user with

the backup you needl Even copies itself.

$29.95 u.s.

PLUS $3.00 SHIPPING/HANDLING CHARGE - $5.00 C.O.D. CHARGE

T

b^PRISM
SOFTWARE

SUPER KIT/1541 is for archival

ise only! We do not condone

lor encourage piracy of any kind.

I

I I I

401 LAKE AIR DR., SUITE D • WACO, TEXAS 76710

ORDERS (817) 757-4031 • TECH (817) 751-0200

MASTERCARD & VISA ACCEPTED

See center page for

mail order card.

\

Type in a lot of Transactor programs?

Joes the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $7 95 Per Issue

6 Disk Subscription (one year)

Just $45.00

(see order form at center fold)

