

If you want to get the most out of your Commodore 128 or 64,

we have goods news for you. The Paperback 128 and 64 Series

of Software both offer you serious, professional quality

software packages that are easy to use and inexpensive.

Paperback 128 or 64 Software is so easy, you're ready to start

using it as soon as it's loaded into memory. Even if you've

never been in front of a computer before, you'll be up and

running in thirty minutes. In fact, you probably won't ever need

the reference guide ... 'help' is available at the touch of a key.

That's how easy.

low serious?

Paperback 128 or 64 packages have all the power you're ever

likely to need. They have all of the features you'd expect in

top-of-the-line software, and then some. The good news is that

Paperback 128 or 64 Software Packages are priced way down

there ... where you can afford them.

Fast, powerful, easy to learn and inexpensive.

Say, that is good news!

II for rail

Paperback 128 or 64 Software Packages offer you something

else you might not expect... integration. You can combine the

output of Paperback Writer, Paperback Filer and Paperback

Planner into one piece of work. You can create a finished

document with graphs, then send individually addressed

copies.

The bottom line is Solutions

The word solutions is our middle name and bottom line. When

you purchase Paperback 128 or 64 software, you can count on

it to solve your problems.

r*

ition wrile to:

Digital Solutions

PO. Box 345, Station A

Willowdole, Onloi

M2N 5S9

Paperback Writer 128 or 64
Word Processing

What you see is what you get

With Paperback Writer 128 or 64, there's no more guessing

what text will look like when you print it. What you see is what
you get... on screen and in print. There are no fancy codes to

memorize, no broken words at the end of a line.

Easy to learn and sophisticated. Paperback Writer 128 or 64
offers standard word processing features plus...

• on-screen formatting and
wordwrap

• on-screen boldface,

underlines and italics

• no complicated format
commands to clutter text

• on-screen help at all levels

spelling-checker lets you add
words to your dictionary

40 or 80 columns on screen

files compatible with
PaperClip™ or other word

processors

Paperback Planner 128 or 64
Computerized Spreadsheet

Make fast work of budgeting and

forecasting

Paperback Planner 128 or 64 software lets you make fast work
of all your bookkeeping chores. Cheque books, household
accounts, business forecasting and bookkeeping are just some
of the jobs that Paperback Planner 128 or 64 packages make
easier. You can even create four different kinds of graphs.

Accurate, sophisticated and easy to use. Paperback Planner

128 or 64 offers standard spreadsheet features plus...

• accuracy up to 16 digits,
about twice as many as most

spreadsheets for the

Commodore 128 or 64

• sideways printing available on
dot matrix printers, for

oversized spreadsheets that

won't fit on standard paper

• on-screen help at all levels

• compatible with VisiCalc™-files

80 column on-screen option

for the Commodore 64 in
addition to the standard 40

columns

graphics include bar,
stacked bar, line and pie
graphs that can also be used
in word processing files

smart evaluation of

formulae for accurate
complex matrices

Paperback Filer 128 or 64
Database Manager

Database management made easi

With Paperback Filer 128 or 64, you can organize mailing lists,
addresses, inventories, telephone numbers, recipes and other
information in an easily accessible form. Use it with Paperback
Writer 128 or 64 (or other word processors) to construct
individually customized form letters.

Paperback Filer 128 or 64 packages are fast, sophisticated and
truly easy to use. In addition to standard database features
they offer...

• use up to 255 fields per record
(2,000 characters per record)

• sorts by up to 9 criteria, can
save 9 different sorts

• print labels in multiple
columns

• flexible report formatting
including headers ana
footers

1 optional password protection
including limited access
viewing or updating

on-screen help at all levels

print from any record to any
record

arithmetic and trigonometric
functions in reports using up
to 16 digit accuracy

Solutions!

PW 128/64 Dictionary

also available at S14.95 (U.S.)

Paperback
Writer 128

MAILORDERS:

CRYSTAL COMPUTER INC.

In Michigan 1-517-224-7667

Outside Michigan 1-800-245-7316

24 hours o day, 7 days a week.

Serious software

that's simple to use.

Paperback
"anner133

You want the very best software you can find for your

Commodore 128 or 64, right?

You want integrated software — word processing,

database ana spreadsheet applications — at a sensible

price. But, you also want top-of-the-line features. Well,

our Paperback 128/64 software goes one better.

With Paperback 128 or 64, you'll find all the features you

can imagine... and then some. And Paperback 128/64 is

so easy to use, you won't even need the reference guide.

On-screen and in memory instructions will have you up

and running in less than 30 minutes, even if you've never

used a computer before.

The price? It's as low as you'd expect for a line of

software called 'Paperback'. Suggested Retail Price for

the 64 Software is $39.95 (U.S.) and $49.95 (U.S.) for

the 128. Any of the 64 products may be upgraded to

their 128 version for $15.00 (U.S.) + $3.00 shipping and

handling. (Available to registered owners from Digital

Solutions Inc. only.)

Paperback Writer 128 or 64, Paperback Planner 128 or

64 and Paperback Filer 128 or 64 ... Solutions at

sensible prices from Digital Solutions Inc.

International & Distributor enquiries to:

'//// Digital

//// Solutions
P.O. Box 345, Station A

Willowdale, Ontario

Canada M2N 5S9
1-416-221-3225

Paperback Writer 128 and 64 are now available in French.

JOIN TPUG
The largest Commodore Users Group

Benefit from:

Access to library of public domain software

for C-64, VIC 20 and PET/CBM

Magazine (10 per year) with advice from

Jim Butterfield

Brad Bjomdahl

Liz Deal

TPUG yearly memberships:

Regular member(attends meetings)

Student member (full-time, attends meetings)

Associate (Canada)

Associate (U.S .A.)

Associate (Overseas — sea mail)

Associate (Overseas — air mail)

— $35.00 Cdn.

-$25.00 Cdn.

-$25.00 Cdn.

— $25.00 U.S.

-$30.00 Cdn.

-$35.00 U.S.

— $45.00 U.S.

FOR FURTHER INFORMATION:

Send $1.00 for an information catalogue

(tell us which machine you use!)

To: TPUG INC.

DEPT. A,

101 DUNCAN MILL RD.(SUITE G7

DON MILLS, ONTARIO

CANADA M3B1Z3

COMAL INFO
if you have COMAL—

we have information.

BOOKS:
COMAL From A TO Z, $6.95

COMAL workbook, S6.95

Commodore 64 Graphics With COMAL, S14.95
COMAL Handbook, $18.95

Beginning COMAL, $22.95
Structured Programming With COMAL, $26.95

Foundations With COMAL, $19.95
Cartridge Graphics and Sound, $9.95
Captain COMAL Gets Organized, $19.95

Graphics Primer, $19.95

COMAL 2.0 Packages, $19.95

Library of Functions and Procedures, $19.95

OTHER:
COMAL TODAY subscription, 6 issues, S14.95

COMAL 0.14, Cheatsheet Keyboard Overlay, $3.95
COMAL Starter Kit (3 disks, 1 book), $29.95

19 Different COMAL Disks only $94.05

Deluxe COMAL Cartridge Package, $128.95

(includes 2 books, 2 disks, and cartridge)

ORDER NOW:
Call TOLL-FREE: 1-800-356-5324 ext 1307 VISA or MasterCard

orders only. Questions and Information must call our

Info Line: 608-222-4432. All orders prepaid only—no COD.

Add S2 per book shipping. Send a SASE for FREE Info

Package or send check or money order in US Dollars to:

COMAL USERS CROUP, U.S.A., LIMITED
5501 Croveland Ten, Madison, wi 53716

TRADEMARKS: Commodore 64 of Commodore Electronics Ltd.:

Captain COMAL of COMAL users Croup. U.S.A., Ltd.

From The Guru Himself!

The 1986 Commodore Reference Diary

A 65 page reference section that includes:

• All hardware specifications including

theCi28andPCi0/20

• Useful memory locations

• Useful programs

• SuperCharts

• BASIC and machine language hints

• Hexadecimal conversion

• Sound, video

• and more

The full calendar and date book includes:

• National holidays in ten countries

• Personal notes

• 1987 forward planner

• Name, address, telephone section

Just $5.95
(plus 501 postage and handling)

Order Your Copy Today!

Canada

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

USA

The Transactor

277 Linwood Avenue

Buffalo, New York

14209

„ Dealer Orders:
Canada

Norland Agencies

251 Nipissing Road

Milton, Ontario

L9T 4T7

(416)876-4774

USA

MicroPace Distributing

1510 North Neil Street

Champaign, Illinois

61820

1 800 362-9653

Volume 7

Issue 01
Circulation 64,000

III

II Illl

li iiiii

ROM Routines / Kernel Routines

Start Address Editorial 3

Bits and Pieces 5
1541 Error Allocater

Coloured Remarks Without REM

Directory Filename Highlighter

Easy Speedup For The C-128 With 1541 Drive

C-128 Key Repeat

C-64 Load It My Place Not Yours!

C-64 Italics

The SCNKEY Kernal Routine

C-64 and VIC Un-NEWs

Fast Memory Clear Using Garbage

(PRINT AT Update) Update

User Friendly Commands

REM RAM: Tag-Along Program Variables

Stringings

Rhetorical Loops

SYSing With The C-128

Running ABasiC From The CLI On The Amiga

C-64 Auto-Start

The C-64 Great Escape

Return of The Swords Of Doom

Date Conventions

The Hidden Message

Verfizer For The Plus 4 and C128

C-128's Help Key Redefined

Amiga Lattice C Notes

Reading 8250-Formatted Disks with an 8050

1571's Can Be loo Smart

Holy Input-Buffer, Batman!

Letters 13
Help: Line Scanner Required

Attention Hot 1541 Owners

"... but if you fool me twice then I'm indeed a fool."

Relative File Access In ML

Real Programmers. . . Verifizer Update

Help Required Sky Travel Support

The Drive Disaster LADS to PAL Conversion

News BRK 77
Transactor on Microfiche

Transactor Mail Order News

The Viewtron Starter Kit

Transactor Open On Viewtron!

The Transactor Communications Disk

Music Workshops

Distressed Commodore Users Hotline

The 1541 Revealed

Used Computer Listing Service

Steve Jobs and Pixar Employees Buy Pixar

MSD Disk Drive Information Exchange

Introducing Super Kit/1541

DISKORGANIZER For The C64

Amiga Spreadsheet, Telecommunications and BBS

The Sourcerer 6500 Series Disassembler

Help Master For The Commodore 64

RESWITCH from Compusave

Uninterruptible Power Supply

80 Column Mono Cable For The C-l 28

40/80 Column Switch Cable For The C-128

TransBASIC Installment #9 18

Longer Life For The C64 and 1541 25

MatriX ManipUlatOr mlarray access techniques 26

Jim Butterfield's C128 Memory Maps 29

The C128-You Can Bank On It 34

Getting The C128's CP/M In Gear 36

Cl^O KAM DlSK a non-hardware project <JO

AmigaBASIC Function Plot 42

Kernel Routines In The B128 44

Unmasking The Kernel 46

Kernel WhO: more on the mysterious Kernel 48

Adding Functions To BASIC 54

Command Wedge intercepting BASIC commands 58

Improving The SYS Command 63

AutOLOad and the EPROM automatic load and run on power-up ... 66

SYMAoS FOr The C64 a symbolic assembler that's PAL compatible! . . . 69

Note: Before entering programs,

see "Verifizer" on page 4 and 11

The Transactor July 1986: Volume 7, Issue Ol

Ttrcusador
Ih» T*ch/N*w« Journal For Commodor* Compu)«n

Editor in Chief

Karl J. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Lana Humphries

Contributing Writers

Ian Adam

Daniel Bingamon

Neil Boyle

Anthony Bryant

Tim Buist

Jim Butterfield

Gary Cobb

Jeffery Coons

Pierre Corriveau

Robert V. Davis

Elizabeth Deal

Frank E. DiGioia

Yijun Ding

Michael J. Erskine

Jim Grubbs

Tom Hall

Bob Hayes

John Jay Hilfiger

Andy Hochheimer

John Holttum

Robert Huehn

Tom Hughes

Chris Johnson

Mark Jordan

Clifton Karnes

Gary Kiziak

Jesse Knight

James E. LaPorte

William Levak

Jack Lothian

Scott Maclean

Steve McCrystal

Jim McLaughlin

Terry Montgomery

Michael Mossman

Gerald Neufeld

Noel Nyman

Dave Pollack

Richard Perrit

Terry Pridham

Raymond Quirling

Glen Reesor

Gary Royal

John W. Ross

John Russell

Louis F. Sander

Fred Simon

Perry Shultz

Edward Smeda

Darren J. Spruyt

Nick Sullivan

Zoltan Szepesi

Karel Vander Lugt

Audrys Vilkas

Andrew Walduck

Steven Walley

Jack Weaver

Charles Whittern

Evan Williams

Chris Wong

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower

case mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o"

will of course be in lower case. Secondly, the lower case L ('I') has a flat top as opposed to the

number 1 which has an angled top.

Many programs will contain reverse video characters that represent cursor movements, colours,

or function keys. These will also be shown exactly as they would appear on your screen, but

they're listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor

Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of

spaces you insert will not be critical to correct operation of the program. When it is, the required

number of spaces will be shown. For example:

print flush right " - would be shown as - print " [10 spaces]flush right

Cursor Characters For PET / CBM / VIC / 64

Down - Q

up H

Right - |]

Left - [Lft]

RVS - Q

RVS Off - 18

Insert - g|

Delete - Q

Clear Scm - Q

Home

STOP I

Colour Characters For VIC / 64

Black - C

White - B

Red - Q

Cyan - [Cyn]

Purple - [Pur]

Green - Q

Blue - Q

Yellow- [Yel]

Orange -

Brown

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt. Blue -

Grey 3 -

3!
Q
a
a
3
a
a
Gi

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

F5-

F6-

F7-

F8-

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Please Note: The Transactor has

a new phone number: (416) 878 8438

The Transactor is published bi-monthly by Transactor Publishing Inc.. 500 Steeles Avenue, Milton.

Ontario. L9T3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class
postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor, 277 Linwood Avenue. Buffalo. NY, 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, GA) are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail {Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor. Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada. L9T 3P7, 416 878 8438. Note: Subscriptions are handled at this address ONLY.

Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use

postage paid card at center of magazine. „___ ___

Quantity Orders:

U.S.A. Distributor:

Capital Distributing
Chtirlton Building

Derby. CT

06418

(203)735 3381

(or your local wholesaler)

Master Media

261 Wyecroft Road
Oakvifle. Ontario
LfiJ 5B4

(4 Hi) 842 1555

(or your local wholesaler)

CompuLil

PO Box 352

Port Coqulllarn, BC
V5C 4KG

604 941 7911

Norland Communications
251 Nipissing Road. Unil 3
Milton. Ontario

L9T 4Z5
4 Hi 8764774

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 04, 05, 06, Vol 5 Issues 03, 04 ■

Still Available:Vol. 4: 01. 02. 03. Vol. 5: 01. 02, 04, 05, 06. Vol. 6: 01, 02, 03, 04. 05

Back Issues: $4.50 each. Order all back issues from Milton HQ.

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per

printed page. Preferred media is 1541. 2031. 4040. 8050. or 8250 diskettes with WordPro, WordCraft.

Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos or illustrations will tie included with articles depending on quality. Authors submitting diskettes

will receive the Transactor Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All m

Publications Inc. Reproduction in any form without permission is in vi

re-confirm any permissions granted prior to this notice. Solicited mat

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily lh<

accuracy is a major objective. The Transactor cannot assume liability fi

Programs listed in The Transactor are public domain: free to copy, not I

lerial is copyright by Transactor

lation ol applicable laws. Please
is accepted on an all rights

se of The Transactor. Although

r errors in articles or programs,

sell.

The Transactor July 1986: Volume 7, Issue Ol

Special April Feature:

S.N.I.F.F. :

A Bold New Vision In Recording Media

Software with an added dimension of realism

Transactor magazine has just scooped the story on an incredi

ble breakthrough in floppy-disk technology which promises to

add a new dimension to software realism. Sensory Laboratories

of Fremont Wyoming, a company which develops more natu

ral man-machine interfaces, has been secretly developing their

new floppy-disk technology, called "Sensory Nasal Interface

For Floppies", or SNIFF.

The technology is now ready to be released for license by major

software companies. Sensory Labs has managed to embed

scents within the magnetic particles on a magnetic disk's

surface. The basic idea works much like the "Scratch-n-Sniff"

scent samples provided on paper carriers. The disk-based

smells, however, are released by the heat-producing friction

caused by the pressure pad opposite the Read/Write head. As

the disk spins and the pressure pad rubs on the disk surface,

the disk surface is slightly worn and heated, releasing the

smells to the surrounding air, which is then wafted into the

room through the drive's ventilation slots.

Software vendors should be excited by the new sniff-disks

(known as "floppy-sniffs"), since they can add a realism to their

programs which was never before possible. Sensory Labs'

President, Terrence Price, explains: "The first computers

printed all their results on paper. Then, we had the CRT, which

eventually opened up the wonderful visual world of computer

graphics. Now we have high-quality sound and speech synthe

sis as well. The sense of smell is the next logical step in human

interface technology."

The first batch of disks will be released in 4 TPS (Tracks Per

Sniff) format. On a 35-track disk like the Commodore 1541

uses, this will give eight different smells which can be released.

(The directory tracks are not scented because they need to be

accessed periodically during a sniff-access.) A program releases

a desired scent by moving the Read/Write head to the proper

sniff-track and holding it there for at least three seconds. (This

is called a "Sniff access" or just a "Sniff".) Sniff-access time is

expected to improve in future advancements of the technology.

Applications are expected to include games (smell the musty

dungeon in an adventure); and a whole range of Sniffware for

the blind, who have a keener sense of smell and will be able to

follow scent prompts from the programs.

Price admits that the idea is not completely original; he was

inspired by the cinema technique known as Smell-o-Rama,

most recently used in the movie "Polyester". But he maintains

that Sensory Labs is going beyond simple one-at-a-time sniffs,

into the exciting science of compound scent. Scientists at

Sensory Labs have broken down smells into nine primary

elements, out of which almost all other smells can be created.

Smells can thus be synthesized from the primary smells on

disk, as the Read/Write head quickly seeks from one track to

another, blending the smells to create new ones.

"Once we come out with the 3 TPS format", explains Price,

"We'll be able to put all of the primary smells on a floppy,

making true sniff-synthesis a reality. At that stage, we can sell

our 'Sniff-Writer' software which will allow developers or even

users to create any smell they need without having to place a

special order."

One of the problems being worked on still is the sniff-life of a

disk; currently a typical track is good for about five sniff-hours.

This may be enough for most games, but serious Sniffware will

demand greater Sniff-lives. Improvements are on the way

though, and Sensory Labs is even hoping to come out with a

Hard-disk version called the "Hard-Sniff". Another potential

problem is that in the event of certain hardware failures, the air

in the room can be contaminated quickly. Sniff-disks come

with warnings to use only in well-ventilated areas. This is

especially true for programs using some of the stronger smells:

for example, in an Adventure game the player may enter a

recently-used bathroom.

Looking towards the future, Sensory Labs hopes to have 3.5

inch Sniff-disks out by June, and the Hard-sniff by next year.

When asked about the future of Sniff-disk technology, Price

predicts: "I see a major demand for Sniffware in the next few

years, because people are always looking for new methods of

getting information from their computers. And as we say here

at Sensory Labs, 'a picture may be worth a thousand words, but

a sniff is worth a million'".

And remember. .

Edition - CZ

you read it first in The Transactor April

The Transactor July 1986: Volume 7, Issue O1

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from

the pages of The Transactor. It will let you check your work line by

line as you enter the program, and catch frustrating typing errors.

The VERIFIZER concept works by displaying a two-letter code for

each program line which you can check against the corresponding

code in the program listing.

There are two versions of VERIFIZER on this page; one is for the

PET, the other for the VIC or 64. Enter the applicable program and

RUN it. If you get the message, "***** data error *****", re-check

the program and keep trying until all goes well. You should SAVE

the program, since you'll want to use it every time you enter one of

our programs. Once you've RUN the loader, remember to enter

NEW to purge BASIC text space. Then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)

or SYS 634 to enable the PET version (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top left of

the screen in reverse field. Note that these letters are in uppercase

and will appear as graphics characters unless you are in upper/

lowercase mode (press shift/Commodore on C64/VIC).

Note: If a report code is missing it means we've editted that line at

the last minute which changes the report code. However, this will

only happen occasionally and only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type

RETURN over each in succession while checking the report codes

as they appear. Once the program has been properly entered, be

sure to turn VERIFIZER off with the SYS indicated above before

you do anything else.

VERIFIZER will catch transposition errors (eg. POKE 52381,0

instead of POKE 53281,0), but ignores spaces, so you may add or

omit spaces from the listed program at will (providing you don't

split up keywords!). Standard keyword abbreviations (like nE

instead of next) will not affect the VERIFIZER report code.

Technical info: VERIFIZER resides in the cassette buffer, so if

you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original

destination of the link after it's finished. When disabled, it restores

the link to its original contents.

KE

JF

LI

BE

DH

GK

m

KP

AF

IN

EC

EP

oc

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

Listing 1 a: VERIFIZER for C64 and VIC-20

10 rem* data loader for " verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>14755 then print" ***** data error *****": end

70 rem sys 828

80 end

100:

1000 data

Listing 1b: PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

76, 74

1010 data 252, 141

1020 data 3,240

1030 data 251, 169

1040 data 3,

1050 data

1060 data

1070 data 133,

1080 data 232,

1090 data 32,

3,

0, 160,

32, 240,

90,

208,

210,

41,

89,

3

3

17

99, 141

96, 173,254,

0,

165.251, 141

3, 96,173

133.252, 173

2, 3,

1,

2,

91,200,

0, 189,

15, 133,

32,183, 3,198,

229, 56, 32,240,

255,169, 18, 32,

1100 data 89, 41, 15, 24, 105, 97,

1110 data 165, 89, 74, 74, 74, 74,

1120 data 32,210,255,169,146, 32,

1130 data 32,240,255,108,251, 0,

1140 data 101, 89,133, 89, 96

2

3

2

169

133

240

152

90

255

210

32

24

210

165

3,

3,

3,

3,

89.

22,

41,

16,

, 169,

,255,

,210,

, 105,

,255,

91,

165

201

133

141

162

201

3

249

19

165

255

97

24

24

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

Ol

JB

PA

HE

EL

LA

Kl

EB

DM

10 rem* data loader for "verifizer 4.0" *

15 rem pet version

20cs = 0

30 for i = 634 to 754:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>15580 then print "***** data error

70 rem sys 634

80 end

100:

1000 data

": end

76,138, 2,120,173

1010 data 173,164, 2,133,145

1020 data 145, 201, 2,240, 16

1030 data 144, 141, 163, 2,169

1040 data 2,133,145, 88,

1050 data 201, 13,208, 62,

1060 data 254, 1,133,251,

1070 data 0, 2,168,201,

1080 data 165, 253, 41,

1090 data 198, 254, 16,

1100 data 251, 41, 15,

1110 data 165, 251, 74,

1120 data 141, 1,128,

1130 data 251, 133,251

3.

249

24

74

108,

96

96,

165,

162,

32,

133,

232,

105,

74,

163,

163, 2

88, 96

141, 164

165, 133

85, 228

167,208

0, 134

240, 15

254, 32

152,208

193, 141

74, 24

2, 152

, 133,

, 120,

2,

144,

, 165,

58,

,253,

,230,

236,

,229,

0,

105,

24,

144

165

165

169

217

173

189

253

2

165

128

193

101

The Transactor July 1986: Volume 7, Issue Ol

Bits and Pieces

Got an interesting programming tip, short routine, or an un

known bit of Commodore trivia? Send it in - if we use it in the

Bits & Pieces column, we 'II credit you in the column and send

you a free one-year's subscription to The Transactor

1541 Error Allocater Scott Gray, New Bloomfield, MO

Do you have a disk you can't use because of errors on it?

Rejoice, for help is here! Type in and SAVE Error Allocater.

Place the faulty disk in the drive and RUN the Allocater. In a

few minutes every sector with an error on it will be allocated.

Now, since DOS won't try to write to those sectors, you can

SAVE programs to that disk without encountering the dreaded

Read Error!

DA

Kl

MN

GD

CO

FA

ML

HA

OL

PB

FK

10 rem 1541 error allocater

20c$ = chr$(147): h$ = chr$(19): l$ = chr$(157):

30 print c$: open 15,8,15," u;": open 2,8,2, "#"

40 gosub 110: if ef then stop

50 for t- 1 to35:fors = 0

to 20 + 2*(t>17) + (t>24) + (t>30)

60 print h$" track" t" sector" s;

70 print tl$" [3 spaces]": print#15," u1:" 2;0;t;s

: gosub 110: ifef = Othen 100

80 print#15," b-f:" O;t;s: pnnt#15," b-a:" O;t;s

90 print: print" error" er" on " t"," s"

100 next: next: close 2: close 15: end

110input#15,er,er$,e1,e2

: ef = 1 + (er = 0 or er = 65 or er = 73): return

Coloured Remarks

Without REM

Luis Pistoia

Argentina

Here is a simple way to make important REMs, such as those

identifying subroutines, to stand out in program listings.

Instead of the usual REM, like

1000 rem *** sound routine ***

Make your subroutine-identifying remark like this:

1000 rem "| 3|[YEL]*** sound routine ***^

To get the Reverse-M, enter the line with a space in its place at

first, then move the cursor over the space and press RVS ON,

shift-M, and RETURN.

When you list your program, the above line will appear in

yellow as:

*** sound routine ***

You can use your favorite colour instead of yellow, or use RVS-

ON to highlight the message.

Directory

Filename Highlighter

Dino Bavaro

Don Mills, ON

Here is a handy disk utility which allows you to highlight any

filename in the directory. This is useful in making certain

programs stand out, such as program boots; or to title various

sections of the directory. The highlighting is achieved by

renaming the file with four special characters preceding it. The

four characters are: shifted space, two delete characters and a

reverse-on. This leaves enough space for only twelve charac

ters for the rest of the filename. The routine below will first ask

you whether you want to highlight or un-highlight and then

ask for the filename. To load a highlighted file from the

directory you can use:

load" [shifted space]???filename" ,8,1

NM

BN

Gl

FN

FG

MD

KL

BB

GM

NA

OJ

AA

MF

KA

BH

CA

EG

AC

GE

IB

10 rem filename highlighter

20 open 15,8,15: gosub1000

30 hd$ = chr$(160) + chr$(20) + chr$(2O) + chr$(18)

40 input" 1:highlight, 2:un-highlight" ;n

50 on n gosub 100,200

60 end

70:

100 input "filename to highlight" ;hp$

110 print#15," rO:" + hd$ + hp$ + " = " + hp$

120 gosub 1000 :rem check disk error

130 return

140:

200 input" filename to un-highlight" ;dp$

210 print#15," rO:" + dp$ + " = " + hd$ + dp$

220 gosub 1000 :rem check disk error

230 return

240:

1000input#15,e,e$,t,s

1010 if e then print e,e$: end

1020 return

The Transactor July 1986: Volume 7, Issue Ol

Easy Speedup For

The C-128 With 1541 Drive

Richard Young

Greenwood, NS

Here's the BASIC Loader:

Remember the VIC-20 and the 1541 disk drive? Remember the

instruction in the disk drive manual for adjusting the 1541 for

use with the VIC-20? Actually, the command OPEN 15,8,15,"

UI-" was not required to make the 1541 VIC-20 compatible,

but rather it allowed the 1541 to function faster with the VIC.

Now note the FAST command in the Commodore 128 (in 128

mode); it turns off the 40-column screen - no big deal because

every 128 user should run it in 80 columns for anything but

graphics - and allows the 128 to function much faster. Natu

rally, it can easily keep up with the 1541 set for the VIC-20

speed. An estimated 17 to 18 percent increase in speed for all

disk I/O is the result. With a 1541 and Commodore 128 in 80

columns, enter:

fast: open 15,8,15, "ui-"

Now you're in for faster business without special speed-up

software! Note that " UI+ " puts the 1541 back to the slower

speed required for the 64 mode and 128 in 40 columns. Of

course, a 1571 is much faster still. ..

EH

ME

IE

HO

IC

Nl

LC

NC

BG

DF

KD

LI

AJ

NH

KJ

PG

PA

10rem "load.it.here" by frank colaricci

15 rem loads a prg at a given address

20 rem 100% relocatable - edit line 35

25 rem syntax:

30 rem sys a," filename" .device number,

load address

35 a = 49152

40 for i = a to a + 72: read b: poke i,b: next

45 end

50 data 032, 253, 174, 032, 158, 173, 032, 143

55 data 173, 169, 100, 160, 101, 032, 219, 182

60 data 160, 002, 177, 100, 153,251,000, 136

65 data 016, 248, 165, 251, 166, 252, 164, 253

70 data 032, 189,255,032,253, 174,032, 158

75 data 173, 032, 247, 183, 152, 170, 169, 008

80 data 160, 000,032, 186,255,032,253, 174

85 data 032, 158, 173, 032, 247, 183, 072, 152

90 data 170, 104, 168, 169, 000, 032, 213, 255

95 data 096

C-128 Key Repeat Mort Adler, Winnipeg, MB C-64 Italics Glen Mackinnon, Hanover, ON

The C-128 has auto-repeating keys as a default after power- Do you wish the Commodore 64 had more than one built-in

up. To disable the auto-repeat, simply type: character font? Thanks to the VIC II chip you can design your

own custom fonts, unlike PET owners who are stuck with the

poke 2594,64. Commodore set.

To re-enable auto-repeat, type:

poke 2594,128

C-64 Load It My Place Not Yours! Frank Colaricci

Winter Park, FL

The Volume 6 Issue 05 Bits & Pieces section contained a

program named " relocate". I would like to suggest a relocat

able load as an alternative to editing the load address of a disk

file.

Here's a routine that can be appended to your program that will

load in PRG files where you want them. The ML program that

LOAD.IT.HERE" creates is relocatable and may be loaded

wherever you have 73 bytes of free memory. Please note that

locations 251 through 253 are used during the execution of this

ML program.

The syntax of using LOAD.IT.HERE is:

SYS start," filename" .device numberjoad address

Custom character sets are usually reproduced in magazines via

hundreds of DATA statements, but this short program creates

the new characters by modifying the old character patterns in

memory. This program uses the built-in character set to create

a new set of pseudo-italic characters.

The program shifts the upper four rows of each character to the

right (the N/2 in line 70), giving them an italics-type slant. The

new character set is located at 12288 (hex $3000) and is

enabled by a POKE 53272,29. Since this program uses straight

forward POKEs and only a divide-by-2 (shift right in machine

language), it is a challenging but not impossible task for

beginners learning machine language to try to translate. In fact,

this program should be translated to machine language for

increased speed; it is presented here in BASIC to clearly show

the method of italicizing the characters.

After the program runs, the upper and lower-case characters

are unchanged, but replacing the reverse characters are the

italic—like letters (this has the side effect of destroying the

cursor). To use the italics, just print or type your desired text in

reverse-field. To switch back to the regular character set, use

POKE 53272,21.

The Transactor July 1986: Volume 7, Issue Ol

El

BF

PO

MK

JO

CC

AM

DF

LM

HB

HM

10 rem italics for the c64

20 poke 53272,29: rem change char, set

30 ad = 55296: t1 = 12288: t2 = 13312

40 poke 56333,127: poke 1,51: rem disable

irq, get char, rom

50 for i = 0 to 1023: n = peek(ad + i)

60 poke t1 +i,n

70if(iand4) = 0thenn = n/2

80 poke t2 + i,n: next i

90 poke 1,55: poke 56333,129: re-enable irq,

normal rom

100 print" normal characters"

110 print" ^italics characters!"

The SCNKEY Kernal Routine (Author Unknown)

Here it is, the naked truth: the SCNKEY Kernal routine has

been sadly neglected. Well, no more! For speedy keyboard

input, it is unparalleled, a hare to GETIN's tortoise.

To tell you the truth, I'm not even sure how it was that I

stumbled across this handy routine (located at 65439 - $ff9f). I

noticed that in all the memory maps, it was marked as not

returning any values, but decided to try it out anyway. Voila!

When the routine is called, the Ascii value of the current key

down is returned in the .X register!. This was something I'd

been looking for for a long time, and has since proved to be

superior to GETIN to check for keypresses.

It works this way: the GETIN routine takes a character from the

keyboard buffer and returns it in the accumulator. All keys can

be made to repeat by putting a 128 in location 650, but a delay

loop in the keyboard scan means that only about 7 characters a

second are returned.

C-64 and VIC Un-NEWs Shea T. Small, Thornhill, ON

It's probably happened to everyone. While working on some

BASIC program you accidentally type "NEW". Usually that's

the end of that. All those hours of work gone down the drain.

But there is a way out of that. Enter this line:

For the 64 - poke2050,1 :sys42291 :poke45,peek(34)

:poke46,peek(35):clr

For the VIC - poke4098,1 :sys50483:poke45,peek(34)

:poke46,peek(35):clr

Fast Memory Clear Using Garbage Donald Fulton

Stoneman, MA

Garbage can be useful. The BASIC line below will clear most of

free memory, from 40K to 8K in only 2 seconds. Doing the

same job with POKE would take almost 2 minutes.

z$ = " ": for x = 1 to 255: z$ = z$ + chr$(0): next

In generating one active string of 255 characters, an amazing

32K of dead strings are left behind in dynamic string space. The

math is the sum of 1 + 2 + 3 +. . . + 254 + 255.

This technique is effective in clearing a hi-res screen (or filling

it with any given byte) if the screen is located within the normal

free RAM area (below $A000). Do the clear before moving the

top of BASIC down.

(PRINT AT Update) Update Mike Schmidt

North Tonawanda, NY

But SCNKEY has no such limitations. It is called as part of the

standard interrupt process and updates the keyboard buffer

and all key locations. However, reading from the buffer is slow

and the locations (such as location 203) return values other

than Ascii codes. It's the .X register that's the key. The value left

here takes into account the shift, CTRL and Commodore-logo

keys and reflects the state of the keyboard when SCNKEY is

called. Best of all, SCNKEY can be called and the keyboard read

even when interrupts are disabled. Try this; the speed is So, to set the cursor position:

amazing.

In the Volume 6, Issue 5 Bits and Pieces column an article titled

" PRINT AT Update" stated that the Kernal PLOT routine was

unreliable when entered through the jump table at 65520

($FFF0).

This is not the case if the carry is set or cleared before calling

the routine by POKEing the desired status into memory loca

tion 783 ($030F). Before executing the routine, BASIC will put

the contents of 783 into the processor status register.

The SCNKEY routine can be used to great advantage in both

ML and BASIC. To use it from BASIC, SYS 65439 and then

PEEK(781) to get the Ascii value of the key currently held To read the cursor position:

down. I only hope that future memory maps will give this great

little piece of code its due.

poke 781 ,row: poke 782,col: poke 783,0

: sys 65520: print" message"

poke 783,1 :sys 65520: row = peek(781)

: col = peek(782)

The Transactor July 1986: Volume 7, Issue Ol

User Friendly Commands Frank E. DiGioia

Athens, GA

Commodore Trivia Department: Did you know that there are

two commands on the C64 which cannot give a syntax error no

matter what kind of arguments you use with them (if any)? Can

you guess which ones they are? (Hint: they aren't STOP and

END.)

The Answer: GOTO and GOSUB

Place the following program in memory (so we'll have some

thing to GOTO) and then try to crash the GOTO or GOSUB

statements.

0 print "this is line 0"

1 print "this is line 1"

Now give them your worst:

goto (fred)

goto $$$

gosub "stringvar"

gosub for/next

You simply cannot crash these commands.

REM RAM:

Tag-Along Program Variables

Herbert R. Coburn

Spokane, WA

Here's a trick I have not seen in any magazine or book about

Commodore.

The two bytes at $43 and $44 point to the start of BASIC text.

Start your program with a REM statement and a chr$(34) to gain

a block of reserved memory imbedded in the program. Add six

to the pointer at $43 and it points to the first byte of the

reserved block. The block of memory can be as much as 74

bytes, depending on whether or not you allow the line to be

listed. The chr$(34) following the REM token lets most values

POKEd into the line to be displayed.

The value of this trick is that the block of memory rides along

with the program when it is SAVEd. For those of us not

enamoured by copy protection, it lets the user copy an installed

program without having to worry about tag-along files. I use it

to store initial values that depend upon a user's configuration.

Simple instructions to the user can guide him, or her, through

placing the correct values in the line by using the Screen Editor

and SAVEing the program under another name. Or, one can be

more ambitious and have the program determine if it has been

'installed'. It can then ask the appropriate questions, POKE the

right values, SAVE and RUN itself. This way, all previously set

up parameters are there as soon as the program is LOADed -

no need to store them in separate files anywhere.

Editor's Note: A good example of this technique is the program

which Mr. Cohen enclosed with this article, but was not printed

here for lack of space. When first run, the program allows you

to set up the background, border and character colours to your

liking, then stores these values in the REM statement as

described above, and finally, SAVEs itself. The next time you

LOAD and RUN the program, it restores these colours by

looking at the three bytes it stored in the REM statement. Using

the REM storage technique, a program can know whether it

was run before, and it can find out some information from the

previous run as well. -T.Ed

Stringings Jonathan Hill, Bloomfield, CT

In Commodore BASIC, there are some conditions that occur

when using such character string functions as LEFT$, RIGHT$,

and MID$ that programmers should be aware of. The condition

can first be described when using the function:

b$ = left$(a$,3)

This command appears fine: B$ should contain the first three

characters that are in A$. But look again! If A$ is shorter than

three characters, B$ will also be less than three characters long.

This is definitely something to be wary of, as sometimes in a

program, strings must be of a known fixed length.

One solution is to use a decision statement before the string

function to see if the character string is long enough to fill the

bounds set by the string function, but there is a better solution.

In the above example if three spaces are added to A$, then B$ is

guaranteed to be three characters long, even if A$ hasn't been

assigned anything yet and contains a null (a zero-length

string). For example:

b$ = left$(a$ + " [3 spaces]")

A similar method will work for RIGHT$ and MID$, simply

adding spaces to the right or left of the character string, where

needed. Keep in mind, too, that you can pad the string with

characters other than spaces.

Finally, this solution also provides a handy formatting tool for

the PRINT statement. C-64 BASIC has no PRINT USING com

mand, such as is used on other computers to set up fixed length

output fields, but you can achieve the same effect by printing

strings of a fixed length using the above technique. Numerical

data can be formatted by first converting to a string with the

STR$ function. The following are examples:

print right$(" [4 spaces]" + c$,4)

print "amount payable" ;right$(" **»

print mid$(e$+ " [2 spaces]" ,2,1)

str$(amt),6)

The Transactor July 1986: Volume 7, Issue Ol

Rhetorical Loops SYS address,A,X,Y,P

The following program is just a nine-digit counter which starts

at zero and counts up. Big deal. But it uses nested FOR/NEXT

loops to do it, and the variable names used are unconventional

enough to turn the code into readable nonsense. Here's the

program:

1 rem " Programmable Prose by Chris Zamara

and Nick Sullivan

100 ford = automobile

110 fork = food tool

120 for a nice time = call antoinette

130 forty thieves = far too many

140 forsaken = stood up

150 forest = treetops

160 fort knox = hard to rob

170 formula = highly top secret

180 foreigner = visitor

190:

300 print d;k;an;ty;sa;es;tk;mu;ei

310 next ei.mu,tk.es,sa,ty,an,k,d

The above program is fairly useless, but shows that if you really

want to, BASIC will let you write strange-looking and difficult

to understand code. It's the programmer's responsibility to use

meaningful variable names and put spaces in the right place.

On the other hand, perhaps "programmable prose" could be a

new form of expression.

Any or all of the parameters can be left out, and they will

default to what's in the memory locations indicated above. For

example, you could code "SYSaddr,20" to set the accumulator

to 20, or "SYS addr,,,,l" to set the carry flag (processor

status = 1) before entering the routine.

Using your favorite Kernal routine from BASIC has never been

simpler than on the 128! You can make your BASIC programs

more efficient by making calls directly to ROM routines. This

makes for awful, unportable code, but if you need more speed,

a few strategic SYSes may do the trick.

Running ABasiC From

The CLI On The Amiga

Robert Case

Springfield, OR

To run ABasiC from the CLI (instead of by clicking the ABasiC

icon from WorkBench), you have to first increase the stack size

to prevent a crash. From the CLI, enter:

STACK 8000

RUN ABASIC

ABasiC will then come up on a screen of its own. To return to

the CLI or WorkBench, first reduce the ABasiC window size and

move the window to reveal the ABasiC template on the top line

of the screen. You can then slide down the ABasiC screen or

click it behind with the re-ordering gadgets to reveal the

WorkBench screen and other open windows.

SYSing With The C-128

The C-128, like the 64, allows you to pass values to a machine

language routine through the A, X and Y registers, and also

read the contents of these registers after the routine has

finished. You can POKE the desired values into special RAM

locations to initialize the registers, SYS to the routine, then

PEEK the locations to find the values set by the ML routine. The

locations are as follows:

Register

Accumulator

.X register

.Y register

.P (Processor Status) register

But wait! With the C-128 it's even easier than that. You can

pass values of A, X, Y and P to a machine language program

directly from the SYS statement. To do this, just put the parame

ters after the SYS like this:

C-64 Auto-Start

Location

C64

780

781

782

783

C128

6

7

8

5

Steen Pederson

Frederiks, Denmark

Here is a compact BASIC program which will turn any program

into one which will automatically RUN when loaded. Just enter

and run "Autostart 1.1 " listed below, and it will ask for the

name of the program to convert. It then asks for the name of the

new, auto-start version of the program to put on disk. After a

while (depending on the length of the program), Autostart will

finish, but leave the machine in a confused state. You'll have to

reset the machine (turn OFF then ON) at this point.

The new file created on disk must be loaded in the following

way:

load "filename" ,8,1

Your program will then LOAD and automatically RUN. The

STOP and RESTORE keys will be disabled, so your auto-start

programs will be protected from being modified and re-saved

to disk.

The Transactor July 1986: Volume 7, Issue Ol

BE

CK

AO

KM

MH

CO

EC

FL

CD

OG

NO

Cl

AC

OH

PK

OG

PE

GD

MJ

JK

IG

EG

GF

CM

100 print" Enter name of program to be auto-started"

110 input" present name" ;f$

120 print" Enter filename for new auto-boot program"

130 input" new name"; n$

140 poke 649,0: open 1,8,1," 0:" + n$

150 print#1 ,chr$(199);chr$(2);

160 for i = 1 to 61

170 read v: print#1 ,chr$(v);: next

180 for i = 772 to 2048

190 print#1,chr$(peek(i));: next

200 open 2,8,3,f$: get#2,g$,g$

210 for i = 0 to 1

220 get#2,g$: if g$ = "" then g$ = chr$(0)

230 i = st: print#1,g$;: next

240 close 1: close 2

250:

260 data 169, 47,133,

270 data 169, 0,133,

280 data 82, 141, 119,

290 data 2

300 data 133

310 data 164

320 data 3

169,

198,

141,

169,

13.

169,

3,

173,

0,

157,

2,

141,

131,

3,

141,

169,

32,

169,213

121

141

169

24

55,133, 1

68,229, 169

141,120

169, 3

3, 169

141, 20

76,116

2,

2,

52,

3,

330 data 164, 139, 227, 199, 2

The C-64 Great Escape David Claussen

Menomonee Falls, WI

Below is a short machine language program for the C-64 that

creates the effect of an escape key. An escape key, which is

normally found on IBM compatibles, is normally not available

for Commodore owners. What an escape key does, simply put,

is let the user " escape" from whatever he or she may be doing

at the time.

While programming in BASIC, what this function does is clear

the screen line that the cursor is on and position the cursor at

the first column. It also turns off quote mode, which allows

normal use of the cursor and other control keys. And finally, it

turns off reverse mode.

The back-arrow key (located at the top left corner of the

keyboard) becomes the escape key. If you wish to use the back-

arrow key in a program, hold down the Commodore-logo key

while pressing back-arrow.

FB

FM

HF

FB

GK

GJ

AM

10 rem ** escape key - press backarrow **

20 for j = 49152 to 49227: read x: poke j,x

: ck = ck + x: next

30 if ck<>8698 then print" data error": stop

40sys49152

50:

100 data 120, 169, 13,141, 20, 3,169,192

110 data 141, 21, 3, 88, 96,165,197,201

OJ

KL

OM

BJ

JL

CH

FN

LG

120

130

140

150

160

170

180

190

data 57,

data 240,

data

data

data

data

data

data

0

119

2

0

169

198

208, 54,173,

47, 166,214,

24, 32, 10,

2, 169, 157,

133, 198, 169,

133, 199, 169

157, 141, 120

76, 49,234

141,

32,

229,

141,

0

32

2

2,

255,

169,

120,

133,

141

169

201,

233,

29,

2,

212,

119,

2,

2

160

141

169

169

2

133

Return of The Swords Of Doom Arthur Wolf

Wichita, KS

We told you they'd be back! This time, thanks to Mr. Wolf's

program, the Evil Swords appear as comets! Ooh, scary stuff,

kids!

EP

JE

KN

Nl

BP

KG

AB

FP

MC

OC

LM

FP

BE

10 rem for frustrated comet gazers

15 rem here's this rendition of chris's

20 rem " Evil Swords of Doom" (6/4 p.9)

25:

30 l$ = chr$(157)

35 poke 53280,0: poke 53281,0

40 a$= "[BLUElMflMfl[CYAN]ME|MEIrWHT1

45b$ =

50 print chr$(142)

55 print"s"tab(rnd(1)*41)

60 for i = 1 to 19: print a$;

65ford = 1 to 15: next

70 next i: printbS;: goto55

Date Conventions R.C. Eldridge

Pemberton, BC

There has always been confusion because of the U.S. conven

tion of expressing the date in the order " month-day-year"

and the rest of the world using day-month-year. Several years

ago an international standards body recommended that every

one use year-month-day and it is slowly catching on.

If you use year-month-day as a date reference in one field of a

data file, the computer will automatically sort references into

the right chronological order. For logging purposes where

precise time is important the number can be extended to year-

month-day-hour-minute.

The basic idea is useful in a two-day amateur radio contest log.

If you use the form day-hour-minute for the time entry, the log

can be re-sorted easily into chronological order after having

sorted into callsigns or countries or whatever for analysis.

The Transactor 1O July 1986: Volume 7, Issue Ol

The Hidden Message Jim Butterfield, Toronto

There's an encrypted message in the Commodore 128. You'll

never find it by inspecting memory, since it is definitely in code

. . . and not an easy one to crack.

I'll tell you where it is located. It's in bank 15 - that's ROM - at

addresses 44644 to 44799. It's not easy to crack; since every

one of the 156 characters has a different " key" value, it's not a

simple Caesar cipher. In fact, if the 156 keys were independent

and random, the code would indeed be uncrackable, since no

key is repeated. But each key is mathematically related to the

previous one, and a cracker with time and ingenuity might -

perhaps - be able to break it. I'm about to give it away, so you

might like to stop reading right now if you're a serious cipher

solver.

Secret code can often be found in software. Sometimes it's a

personal signature by the author. Sometimes it's a secret proof

of copyright. Sometimes it's an amusement. Here's a simple

Basic program to make the code readable.

By the way, if you just want to read the message, I'll give you a

quick method at the end of this article.

Enter the following crude decoding program on your Commo

dore 128. Use 40 column mode, because I'm POKE-ing to the

screen.

100 bank 15

110 print chr$(147);chr$(14)

120 print:print:print

130 for j = 1 to 156

140x = xor(xor(peek(44643+j),j),59)

150 m = 192:if(xand m) = 0 or (x and m) = m then m = 0

160 if (xor(x.m) and 32)>0 then m = xor(128,m)

170 poke 1023 +j,255 and xor(j,m)

180 next j

You'll see the message in crude screen format - formatting

characters such as RETURN will appear as control characters,

but it's readable.

If you just want to read the message, and don't care where it's

stored or in the decoding process, there's an easier (and neater)

way to see it on your 128 screen. Just type:

sys 32800,123,45,6

Verfizer For The Plus 4 and C128

By next issue we'll have a Verifizer for the B Machines and for

the C128 in 80 Column mode. They'll all appear up at the front

with the other Verifizer programs.

Plus 4 Verfizer

I Nl I 1000 rem * data loader for "verifizer +4"

The Transactor 11

PM

EE

NH

Jl

AP

NP

JC

ID

PL

CA

OD

LP

EK

Dl

LK

GJ

DN

GJ

CB

CB

PE

DO

BA

BG

C128

PK

AK

JK

NH

OG

JP

MP

AG

ID

GF

MG

HE

LM

JA

El

KJ

DH

JM

KG

EF

CG

EC

AC

JA

cc

BO

PD

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

rem * commodore plus/^

graphic 1

version

scnclr: graphic 0: rem make

room for code

cs =

for j

:ch

0

= 4096 to 4216: reac

= chn-x: next

ifch<>13146then print

: stop

print

print

end

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

"sys

"sys

76,

165,

3,

2,

3,

20,

0,

176,

240,

200,

16,

165,

0,

24,

0,

96

x: pokej, X

'checksum error"

4096: rem to enable"

4099: rem to disable"

14, 16,165,

212,141, 3,

201, 16,240,

3, 133,211,

169, 16,141,

133,208, 162,

2,201, 48,

3, 232, 208,

22,201, 32,

152, 41, 3,

198,209, 16,

208, 41, 15,

12, 165,208,

105, 193, 141,

165,210, 24,

Verifizer (40 column mode)

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

rem

rem

rem

cs =

for j =

:ch =

211

3

17

169

3

0

144

242

240

133

249

24

74

1

101

141

96

133

39

3

160

7

189

15

209

232

105

74

12

208

2, 3

173, 3

212, 173

141, 2

96, 165

0, 189

201, 58

0, 2

133,210

32, 113

208,229

193, 141

74, 74

108,211

133,208

* data loader for " verifizer d 28"

* commodore c128

* use

3

version

in 40 column mode

= 3072 to 3214: read

= ch + x: next

if ch<>17860 then print

: stop

print

print

end

data

data

data

1120 data

1130 data

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

data

data

data

data

data

data

data

data

data

"sys

"sys

208,

254,

201,

3,

169,

133,

2,

3,

22,

152,

198,

32,

169,

15,

data 250,

data

data

data

32,

24,

252,

3072,1: rem to

3072,0: rem to

11, 165,253,

141, 3, 3,

12,240, 17,

133,253, 169,

12,141, 3,

250,162, 0,

201, 48,144,

232, 208, 242,

201, 32,240,

41, 3,133,

251, 16,249,

240,255, 169,

18, 32,210,

24, 105, 193,

74, 74, 74,

210,255, 169,

32, 240, 255,

24, 101,250,

only

x: pokej, X

checksum error"

enable"

disable"

141,

96,

133,

38,

3,

160,

7,

189,

15,

251,

232,

19,

255,

32,

74,

146,

108,

133,

2,

173,

254,

141,

96,

0,

201,

0,

133,

32,

208,

32,

165,

210,

24,

32,

253,

250,

3, 165

3, 3

173, 2

2, 3

165, 22

189, 0

58, 176

2,240

252,200

135, 12

229, 56

210,255

250, 41

255, 165

105, 193

210,255

0, 165

96

July 1986: Volume 7, Issue Ol

C-128's Help Key Redefined Walter Kiceleff

Buenos Aires, Argentina

I really like your magazine and I would like to contribute by

sending you this 'Curiosity' I discovered in my computer.

In the Commodore 128, you can redefine the 'HELP' key to use

it like a Function key. The HELP key has a memory assignment

of only 5 bytes (4168-4172). If you Poke these locations with

the Ascii value of the characters you want to use; Presto! It

works. For example:

10fon = 4168to4172

20 read a$: poke i,asc(a$)

30 next i

40 data p,r,i,n,t

If you want to add a carriage return, poke 4172,13. Then your

message with have 4 letters (not 5) plus a carriage return.

Amiga Lattice C Notes Robert Case

Springfield, Oregon

While using the Amiga Lattice C Compile, version 3.02, I

encountered two problems. A description of each problem

follows:

First Problem: scanf. .. When scanfwas used in the following

form, the program didn't halt and wait for keyboard input:

scant (" °/of°/oc\n", &first, &second);

When the form was changed to:

scanf (" %f %c\n", &tirst, &second)

The program would halt and wait for keyboard input. The

addition of a space before each '%' corrected the problem.

Second Problem: letters " E" and/or " e". . . when these

letters were used as a key to " exit" the program using 'scanf',

their use was not recognized. When the letter "Q" was

substituted for the letter " E", the program worked as ex

pected. Is it possible that the letter " E" is a reserved word in

this version of C?

Another point: it is often helpful while working from the CLI to

have a larger STACK to prevent a system crash. I reset the stack

to 8000 or even higher before programming and testing. (See

next Bit)

Reading 8250-Formatted Disks with an 8050

Since the 8250 uses both sides of a diskette, you can't use an

8050 to read any data on the opposite side. Fortunately, the

8250 only uses the other side when the first side gets full. To

find out if any data has been placed on the opposite side, check

the number of blocks free. If there's less than 2052 blocks free,

you can read all the files on the disk with an 8050.

157l's Can Be too Smart

We all know that the 1571 is the greatest thing since the return

of the mini-skirt. But it tries so hard that it can confuse instead

of help. For example, consider this sequence of events:

1) LOAD in a short (1 block) program from the C128

2) Remove the disk, put it into a 1541 and use a C-64 to replace

the program with a different one

3) Put the disk back into the 1571 and LOAD" *" ,8

You would expect it to load in the new version of the program,

right? Well, the 1571 still has the program in its RAM buffer,

and thinks it can be smart and save time by giving you the copy

from RAM instead of going out to disk. So, you get the original,

un-modified program that doesn't even exist on the disk

anymore. Proof that " A little knowledge is a dangerous thing".

Or, as Nietzsche put it, " Better know nothing than half-know

many things".

Holy Input-Buffer, Batman!

" Robin. . . I think there is a diabolical plot brewing at Commo

dore headquarters."

" Say it isn't so, Batman!"

" I'm afraid it is. Are you familiar with the Input buffer in the

Commodore 64?"

"Well, Batman, from the Bat-Computer I've learned that

BASIC program lines are stored in the input buffer after they're

entered."

" Right Robin! I believe that after the lines are stored, they are

also tokenized in the buffer, are they not?"

" Gosh, Batman, you're so right!"

"Very perceptive of you, Boy Wonder. Now I have but one

more question for your keen mind: is the line number stored in

the Input Buffer?"

" This one I know! Just like the Bat-Buffer here in the Cave, the

C-64 Input Buffer only stores the line itself, without the line

number."

" Excellent Robin! Now look at this Bat-Dump of the Commo

dore 128 Input buffer right after a line has been entered."

" Holy RAM-Chip! There's the line number at the start of the

buffer, just as it was enterd by the user, leading zeros, trailing

spaces and all! In ASCII! What kind of a fiend would concoct

such a scheme?"

"The world is full of forces we don't understand, Robin.

Commodore is just one of them. They've done the same with

the Plus 4 and C-16 as well! Just thank the good Lord that we

have Bat-Dumps, Bat-Anthologies, and the minds to compre

hend them."

"Well said, Bat-Friend!"

The Transactor 12 July 1986: Volume 7, Issue Ol

Letters

Help: Line Scanner Required: Some time ago, in 'some' com

puter magazine, I saw an advertisement for what I believe might

have been called a 'line copier' or 'line scanner' for PCs. It was

supposed to be able to copy printed or typed text directly from

paper and put it in the computer's memory and, presumably, onto

disk as sequential files. Is such a device available for the Commo

dore 64 ?

William R. Carr

R.R/3, Box 233

Harrisburg, IL, USA

62946

About a year ago, The Transactor appeared at a computer show

called the Computer Fair in the heart of Toronto. The booth next to

ours was displaying a product that really caught our eye. It was a

line scanner called the Omni-Reader. It worked in a novel man

ner: the "eye" of the reader was mounted on a vertical/horizontal

slider assembly. A document would be placed underneath it and

you would scan each line by hand with the slider. At a pretty good

pace, it would recognize about 6 or 8 different type fonts, and send

out their character codes to an RS232 port. We were impressed. So,

in the true spirit of advancing with the times, Karl struck up a

conversation with the sales rep, who promptly agreed to lend us

one for a few days to try out.

Well, the people representing the Omni-Reader must have fallen

off of the edge of the world because we never heard ofthem again.

Too bad; an item like that deserves some terrific free press. My

advice today is to hope that this letter/reply will generate some

response from our reading audience. If anyone reading knows ofa

line scanner for the Commodore 64, or for that matter any

computer, please drop us or William a line. We would really

appreciate it.

Attention Hot 1541 Owners: Here's a bit of helpful information

to help hot disk drive users to cool down.

An easy and inexpensive way to prevent overheating of your 1541

disk drive is to buy four new pencils and cut them down to two and

a quarter inches, measured from the end of the eraser. Bevel the

cut ends slightly with a pencil sharpener. Place the bevelled ends

into the recessed screw holes on the underside of the disk drive.

This allows fresh air to get to the breathers located on the

underside of the drive.

I would also like to ask a question. If I get a C-128 will my C-64

modem be compatible with the C-128 in all modes? What about an

interface for a printer?

Duane Barry, Cambridge, Ontario

A 1541 on four legs. It might catch on. I am pretty sure that 'hot'

1541 users all over will appreciate your advice. Thanks.

About the C64 modem. The modem will work in the C128 mode

but not the CP/M mode, at least not yet. The modem itself is not at

fault on this one. It's just that Commodore did not include a driver

for the RS-232 port just yet in their release version of CP/M Plus.

Word's out, though, that a version is available through Compu

Serve that supports RS-232 communications, and that within a few

months Commodore will be releasing the same for general public

consumption. About CompuServe and CP/M: apparently, Commo

dore has included some extra software that re-configures your

C128 in C128 mode to act like a CP/M machine so you can

download the new CP/M and store it on a CP/M formatted

diskette. Just make sure that you are in C128 mode with an

appropriate terminalpackage when you phone in, and have a CP/

M formatted disk handy.

A regular Commodore serial printer will work in all modes of the

C-128. If you have an interface that hangs off the serial port to

some strange type ofprinter, chances are that it will workjust fine.

But if your interface, whatever the type, connects to the cartridge

port, as with an IEEE interface, you can be pretty well assured that

the C128 won't like it.

Take for example an IEEE interface that we all use at the maga

zine. It has been dubbed the GLINK (Garvin 's Link). It is a terrific

true-to-life IEEE interface for the Commodore 64. Its true beauty lies

in the fact that it doesn 't do anything: no extra commands and no

special tricks. Itjust supplies a really fast IEEE interface for your 64

without consuming memory. It does this by swapping itself into >fc

of the E ROM. The RAM underneath is left alone, assuming that

one lead is hooked up correctly inside ofthe 64 to a resistor. But the

C128 is a totally seperate system and the GLINK is not compatible

with Cl28 ROM.

However, the GLINK will work on the C128 in 64 mode, as will

most ofthe cartridge port cards for the 64. Be careful though - some

have leads that are connected internally and the C128 PC board is

much different than the C64. The GLINK, for instance, has a lead to

the left lead ofR44 on the 64; on the C128 it goes to Pin 29 of the

OS8502 chip. This little trick was supplied to us by a gentleman we

met recently while out in San Francisco.

One last point: the GLINK works fine with both Viewtron and

Quantum Link downloads. The Viewtron software loads and runs

fine from the IEEE drives, but the Quantum software must be

loaded from a 1541 or compatible. But Quantum downloads to the

IEEE work -just flip the GLINKswitch back to serial when it's done.

The Transactor 13 July 1986: Volume 7, toue Ol

"... but if you fool me twice then I'm indeed a fool.":

Thank you very much for publishing John Holttum's The Commo

dore 128: Impressions and Observations' in Vol. 6, Issue 5. Like

many C-64 owners I suspect, I felt wined and dined by Commo

dore's advance advertising for the new C-128. But I was mildly

suspicious because of their poor record with the Plus/4 and C-16,

notably their failure to provide good documentation and program

mer's support for those models, i.e. something akin to the 'Com

modore 64 Programmers Reference Guide'. Also, the C-1541 disk

drive's SAVE® and SCRATCH (yes Ma, there's a SCRATCH bug too)

bugs are a perpetual pain in the you-know-what for (a) program

mers during the process of writing code, and (b) for the prospects of

reliable database systems which involve scratching or replacing

files on disk.

Thanks to Mr. Holttum and The Transactor, I no longer have any

problem deciding whether to purchase the C-128/1571 system.

Actually, I decided that my next disk drive would have to be a dual

drive and presumably the 1572 is essentially just two 1571 's in the

same case. But in any case, I will not be buying the C-128/1571/

1572 until there are plenty of independent public reports that

Commodore has remedied the above mentioned problems. You

can fool me once (the C-1541), but if you fool me twice them I'm

indeed a fool.

John R. Menke, Chessoft Ltd., Mt. Vernon, IL

Nice to hear from you again John. There is a rumour that new 1571

ROMs are under construction that fix Saue@ as well as other bugs.

When it will be released and under what kind of offer we probably

won't know 'till it's ready.

Documentation seems to be coming. Commodore is releasing a

technical reference through SAM's again, Abacus has the "Inter

nals" book and another on the way, andJim Butterfield's book will

be updated too.

Relative File Access In ML: Loved your excellent article on disk

access from machine code in Volume 6 Issue 5, and yes I would

like to see more code on the use of relative files.

So here's some stuff. The syntax in Basic for relative files is:

OPEN the command channel OPEN 15,8,15

OPEN the relative file OPEN 2,8,2," O:filename"

Set the POINTER to the record with:

PRINT#15," P" + CHR$(channel* + 96) + CHR$(lo-rec#)

+ CHR$(hi-rec#) + CHR$(character)

WRITE or READ the file with PRINT*2, INPUT#2, or GET*2

CLOSE the channels after use.

One word of caution; if you write to the file, IMMEDIATELY after

writing the file, reset the pointer to the beginning of the file

accessed with a recall to the set POINTER routine. This will stop

any mess-up of files.

Sorry I don't have PAL but I'm saving my pennies up to get it. In

machine code the routines are similar to your article.

OPEN Command Channel

Ida *$0f

tay

ldx *$08

jsr $ffba

#$00Ida

jsr $ffbd

jsr $ffcO

jsr $kerr

OPEN Relative File:

Ida *$02

tay

ldx *$08

jsr $ffba

Ida *<nam

Ida *>nam

jsr $ffbd

jsr $ffcO

jsr $kerr

jsr $derr

Pointer Routine

ldx #$0f

jsr $ffc9

ldy #$00

;setlfs

;setnam

;open

your kernal error routine

load =

Ida

jsr

iny

cpy

bne

jsr

word,y

$ffd2

;setlfs

;lo address file name

;hi address file name

;setnam

;open

; kernal error

;disk error check routine

;chkout channel 15

;length of word to send

;load word

;output word to command channel

;end of word yet?

;clrchn

word .byte $50, $5c, $01, $00, $01

*$05

load

$ffcc

The characters in WORD are:

$50 = Ascii for the letter 'p'

$5c = Ascii for channel * + 96(2 + 96)

$01 = Ascii for lo byte record * (#1)

$00 = Ascii for hi byte record * (*0)

$01 = Ascii for character * (first char)

To access any record all you have to do is update the 3rd, 4th, and

5th characters of WORD (lo/hi byte record*) before you call the

POINTER routine. To write or read the data use the appropriate

input or output routines as in your article.

It's easy and simple to use relative files. They are fun, fast and NOT

computer memory robbers. Hope this info is of use.

John Houghton, Collingwood, Ontario

// 's nice to hear a kind word mixed with somegood advice. Thanks

for all. I agree that a pretty large hole was left in my article by

excluding relative file access, but I felt it hard to write pure theory

without including a ML relative file access demo that worked in a

The Transactor !4 ■My 1986: Volume 7, Istue Ol

friendly way, ie. verbose. As you have shown, ML relative file

access is not code consuming. At the time I knew that the only code

consuming part would be through trying to make it easily useable.

Perhaps in a future issue I'll write up a good and friendly data base

or something that people can use and learn from. Might be worth a

shot.

In case it hasn 't been noticed yet, I did encourage a little bit of bad

practice in my article with the file read/write technique employed.

With the PET, CBM, VIC and 64, code such as:

ldx #lfinp

jsr chkin

jsr chrin

pha

ldx #lfout

jsr chkout

pla

jsr chrout

;set input device

;get a character

;set output device

;write the character

Would have been acceptable, as stated in the article. Unfortu

nately, with a machine such as the C128 a mess would have

developed. You have to make sure that CLRCHN was performed

before setting either the input or output channels. For the example

above, the statement 'JSR CLRCHN' should be inserted before the

'LDX *LF' for both input and output. This is actually good practice

irregardless ofthe machine you are working on. A temporary lapse

into bad form caused this unfortunate slip. Sorry about that.

Real Programmers...: In light of my first letter, I thought I'd

better send you this. I found it after many hours of research (i.e. I

got lucky looking through some old files). At any rate, I would

really like to thank you for giving the ICLIG some free press.

Anyway, I have enclosed my subscription for The Transactor.

Nasty trick on your part. Raising the price so we get a better

discount. Gee, I wish I would have thought of that sooner.

Kent Tegels

Manager: International Commodore Language Interest Group

18112 North I

Fremont, NE, 68025

Real Programmers Don't Write Specs by Peter S. Hill

NCA Corporation

As taken from 'The Special Character Set' - September 1, 1983

Real programmers don't write specs - users should consider them

selves lucky to get any programs at all and like what they get.

Real programmers don't comment their code. If it was hard to

write, it should be hard to understand.

Real programmers don't write application programs; they program

right down on the bare metal. Application programming is for

feebs who can't do systems programming.

Real programmers don't eat quiche. In fact real programmers don't

know how to SPELL quiche. They live on Twinkies, Doritos, Coke

and Swechwan food.

Real programmers don't write in COBOL. COBOL is for wimpy

applications programmers.

Real programmers' programs never work right the first time. But if

you throw them on the machine they can be patched into working

in 'only a few' 30-hour debugging sessions.

Real programmers don't write in FORTRAN. FORTRAN is for pipe

stress freaks and crystallography weenies.

Real programmers never work 9 to 5. If any real programmers are

around at 9 AM it is because they were up all night.

Real programmers don't write in BASIC. Actually, no programmers

write in BASIC after the age of 12.

Real programmers don't write in PL/1. PL/1 is for programmers

who can't decide whether to write in COBOL or FORTRAN.

Real programmers don't play tennis, or any other sport that

requires you to change clothes. Mountain climbing in OK, and real

programmers wear their climbing boots to work in case a moun

tain should suddenly spring up in the middle of the machine room.

Real programmers don't document. Documentation is for simps

who can't read the listings or the object code.

Real programmers don't write in PASCAL or BLISS or ADA or any

of those PINKO computer science languages. Strong typing is for

people with weak memories.

We do receive the odd piece of mail from time to time. Thanks for

relaying that strange bit of tongue-in-cheek programming advice.

My addition today to Mr. Hill's list is 'Real programmers do it in

their drives!'. A bit wierd but it seems to follow the pattern.

Help Required: I am looking for people interested in helping me

type in the New Testament using a word processor. The processor I

am presently using is SpeedScript, but another processor would be

acceptable as long as the files are compatible, or could be con

verted for our use. I am using a Commodore 64, with a 1541 disk

drive.

After collecting, compiling and editing all the incoming data, I

would distribute the finished work to all the participants. If you are

interested please call or write for assignments.

Randall J. Bernard

Box 630

Morenci, Arizona

85540 (602)865-3550

Wow! What a doozy ofa task. With a good database and indexing

system though, it would be a terrific item. The ability to search the

The Transactor 15 July 1986: Volume 7, Ittue Ol

New Testament via disk would be ideal for report references. Let us

know when it's done.

The Drive Disaster: Re: Trans. Disk #10. A Frantic Wave-Off! I

tried 'Improved 1541 Head-Cleaning Program'. DISASTER! Drive

was 100% OK before using prg. Drive is now in shop for re

alignment!

D.C. Kerrigan, Greenville, SC

The program as listed in the magazine, Volume 6 Issue 05 page 6,

is perfect, as is the copy on disk *I0. Although we can assure you of

this and feel confident that the code was OK, your drive is still in

intensive care. For this we offer two possible explanations.

1) The Commodore drives have an awful habit of getting stuck at

times, causing them to no longer function properly for apparently

no reason. The real crunch is that even after powering down, the

drive doesn t return to normal. Often times this prompts people to

bring their drive in for service. Unfortunately, this is often a waste of

time and money. A simple initialization of a diskette in the

offending drive will cure the problem. This strange occurence can

be traced back to the drive's head being pushed out to an extreme

position in either direction. Once in that position there exists a

chance that the head will get stuck. Once stuck nothing but a drive

initialization or a little internal push on the mechanism will help.

Your drive may have been one of the unluckies that gets stuck in

extreme positions.

2) The 'Improved Head-Cleaning Program' article stated that the

program was not to be run twice in a row, as the quote to follow

explains:

"The NEWat the end of the program is not an attempt at program

protection, it's there as drive protection. This direct method of

stepping the head does not update location $24. Ifthe program was

immediately rerun, the drive head could end up being stepped to

track 35 or to bump up against the stop at track 0."

As a test, I deleted line 460 of the program then ran it for the first

time. Following that I immediately re-ran the program to see what

would happen. Around track 22 the drive mechanism started

making an awful noise and continued to do so through track 35.

Following this, I loaded in the directory. The drive chattered a bit

initially but did finally load the directory. There was no permanent

damage to the drive. My drive is almost new and in perfect

mechanical shape. A drive that has had a few miles on it might not

have faired as well. If this was the case, I still feel that an

initialization would force the drive's head back into reality once

again. Although running the program twice in a row would have

been almost impossible as it was supplied on disk and listed in the

magazine, it could have been accomplished as I stated above. Your

problem can probably be written off to explanation *]. Just

remember, when in a bind, initialize.

Verifizer Update: After recently retiring from 21 years of design

ing 'Little Black Boxes' for Cesna Aircraft Co., I purchased a C-64.

I am primarily interested in graphics and animation. What little I

have learned so far seems to indicate that machine language is the

way to go. In pursuit of this I have been attempting to learn what I

can about ML but have been disappointed with what I have found.

It seems to me that your publication has much to offer towards this

goal...

. .. One small problem: When using 'Verifizer', the left character of

the check signal hides in the upper left corner of the monitor. How

do I move it about two spaces to the right?

W.D. Ackerson, Wichita, Kansas

As you have discovered, The Transactor lives for machine lan

guage. However, there are a few good books on the market to

teach you the basics through extremes of talking to your computer

in its mother tongue. One book, which I can't say enough good

things about, is Jim Butterfield's Machine Language Book. Pub

lished by Bradey/Prentice-Hall, it's an educational dream front to

back. If you ever see it in a book store, do it the service of a quick

look-over. You will probably be impressed.

About your Verifizer blues: there is a cure. Steve Walley, a reader in

Sunnymead CA, ran into the same problem that you did, and as

such sent us his modified version of Verifizer that prints two sets of

Verifizer checksums on the screen. See 'Double Verifizer'in Volume

6 Issue 06 on page 5.

Sky Travel Support: I enjoyed the review of Sky Travel and

would like to mention that I agree with your assessment of the

program. What's more. I might just mention a couple of quick

utilities:

A seasoned veteran amateur astronomer friend of mine was so

delighted with Sky Travel, he dumped his color computer system

and purchased a Commodore 64. During December and January

we used the program to locate Halley's Comet (as well as several

other objects) with surprising accuracy. As a rank amateur astrono

mer, (I barely know the correct end of a telescope to look in) I was

able to locate the comet using hard copy from the program, a

compass and binoculars. However, for those with sophisticated

systems, the data generated for right ascention and declination

seem to be right on the button (provided of course your location

and times are correct).

Several friends of mine who are also ham radio operators, are

experimenting with using the program for moon bounce. The

tracking feature and program's apparent accuracy make this a

natural.

I have also used the program with my children (and myself) to

become a bit more familiar with the southern New Jersey skies

(when the garbage in the air is not too bad).

It's a first rate package and one which ought to cost at least three or

four times more than it does... an extraordinary buy for $29.95 -

especially given what you can do with it and the information it

contains. . . and especially given how much is charged for many

poor packages.

The Transactor 16 July 1986: Volume 7, Issue Ol

Commodore did us a favour putting that one out. . . hope people

do take advantage of it.

Peter R. Bent, West Deptford, NJ

Frank Covitz reads The Transactor. Frank Covitz wrote Sky Travel.

I am pretty sure that Frank is smiling right about now. But only

about the compliment, ft seems that Sky Travel is often times pretty

difficult to locate. Frank wrote the package but Commodore kind of

distributed it. At one point, right about the time that my review was

published, Sky Travel was close to being listed as missing in action.

But a mixture ofpublic pressure andcommon logic brought the Sky

Travel back from the dead into retail distribution once again. If for

any reason anyone would like to get a copy ofSky Travel but can't

find it anywhere, then either phone or write Commodore direct, or

if that doesn't work, drop us a line. We'll make sure that your

request does not go unheard. Frank did too good of a job to allow

Sky Travel to fade away so easily.

LADS to PAL Conversion: My recent subscription to The

Transactor has gone far in rescuing this amateur from some sort of

computer oblivion. Other mags are just fine and often very helpful

but games and ads get in the way quite a lot. In The Transactor one

finds a balanced, practically fat-free diet of pertinent, challenging

and useful information. In short, I'm a very happy customer.

Quite apart from this statement of unbridled joy, I found a state

ment by Nick Sullivan on page 15 of my first issue (Vol.6, Issue 03)

indicating that his Transbasic practically requires the use of a PAL

assembler.

I use a RAM-based version of Richard Mansfield's LADS/64 assem

bler and find it very dependable and easy to use.

Without experience with any other assembler, I find it difficult to

decide whether it would be possible to translate Transbasic for

assembly with the unit I use. Your advice would be helpful at this

point.

R.G. Tischer, Starkville, MS

To best help out everyone trying to convert PAL format to their own

special brand of assembler, it might be best if I run down a few of

the main PAL directives to be found in The Transactor. They are as

follows:

.OPT

This pseudo-op is a directive of output (OutPuT). There are a

number of ways to use it. For example:

.OPT N ;Outputs nothing. Just checks assembly to see if errors

exist.

.OPT 00 ;Outputs object to origin (memory).

.OPT 08 ;Outputs object to device #8 (ie. OPEN 8,8,1, "0:fi-

lename" before)

.OPT P ;Outputs source listing to the default output device

during assembly

.0PTP4 ;Outputs source listing to device #4 (ie. OPEN 4,4

executed before)

Further to this, .OPT can be forced to perform multiple directives

of output. For example:

.OPT 08, P4 ; would output the Object to unit 8 and Print the

source listing to unit #4.

To continue, you will notice a SYS700 at the start of all PAL source

listings for the 64. This calls PAL so that whatever follows will be

treated as assembler source code. For other assemblers, this is

either omitted or substituted with whatever command starts up the

assembly process.

To set the origin that you would like your code to be assembled,

you would use a statement such as this:

*=$C000

The '*' represents the current program counter, so in effect you are

telling the assembler that the program counter should equal

$C000. Some assemblers use .ORG but the "splat" is more com

mon.

.WORD and .BYTE

These pseudo-ops allow either bytes to be assigned to RAM, or

space to be set aside for the same. Most assemblers use the same

conventions but I have seen .DW (define word, I guess) and .DS

(define storage?). .WORD 0,0 is Ok as is .BYTE 0,1,2,3,4,5,6,7,8

etc. They both allow RAM vectors to be set, or byte tables, or word

tables.

.ASC allows strings to be placed in memory such as:

.ASC " A STRING IN MEMORY"

Other than these few quicky psuedo ops, you will find we rarely

use any of others, such as .FILE to chain in other source files, .BAS

to write Basic code within your assembly listing, and great scads

more. For a more detailed synopsis of PAL commands, look in

Karl's 'Complete Inner Space Anthology'. You will find that most

RAM-based assemblers can take advantage of our source listings.

TransBASIC, however, requires that modules be "merged" to

gether. This is why they seem, at first glance, to have odd line

number sequences. You'll notice that certain "areas" of each

module are written in very specific line ranges. This is so they

merge together with the same "areas" of other modules. If your

assembler 1) uses the BASIC editor to create source code files, or 2)

has a merge feature, you should have no problem after making the

previously mentioned adjustments. Otherwise you may have to

simulate the merging process.

Don't forget, The TransBASIC Disk is now available and comes

complete with the SYMASS assembler. For $9.95, TransBASIC

becomes a totally self-contained utility. See our order card.

The Transactor 17 July 1986: Volume 7, Issue O1

TransBASIC

Installment #9

Nick Sullivan

Scarborough, Ont.

The TransBASIC Disk

The TransBASIC Disk contains all of the modules published so

far and it comes with its own assembler, SYMASS 3.1. Any

combination of modules can be linked into BASIC with only a

few simple steps. From start to finish is usually no more than a

couple of minutes. . . even less once you get the hang of it. It

comes with a handy reference forjust $9.95. See the order card

at center page.

TransBASIC Parts 1 to 8 Summary:

Part 1: The concept of TransBASIC - a custom command

utility that allows one to choose from a library only those

commands that are necessary for a particular task.

Part 2: The structure ofa TransBASIC module - each TransBA

SIC module follows a format designed to make them simple to

create and "mergeable" with other modules.

Part 3: ROM routines used by TransBASIC - many modules

make use of ROM routines buried inside the Commodore 64.

Part 3 explains how to use these routines when creating new

modules.

Part 4: Using Numeric Expressions - details on how to make

use of the evaluate expression ROM routine.

Part 5: Assembler Compatibility - TransBASIC modules are

written in PAL Assembler format. Techniques for porting them

to another assembler were discussed here.

Part 6: The USE Command - The command 'ADD' merges

TransBASIC modules into text space. However, as more mod

ules are ADDed, merging gets slow. The USE command was

written to speed things up. USE also counts the number of

statements and functions USEd and updates the totals (source

line 95) automatically.

Part 7 - Usually TransBASIC modules don't need to worry

about interfering with one another. When two or more modules

want to alter the same system vector, however, a potential

crash situation exists. Part 7 deals with avoiding this problem.

Part 8 - Describes the five modules for Part 8.

TransBASIC Part 9

This issue I want to do nothing more than present a few short

modules that will bring this column into step with the new

TransBASIC Disk.

First off (Program 1) is String Synthesis, which contains a

handful of specialized functions for generating special strings.

The most instructive of these from a module-creator's point of

view is the BUILD$(function, which is a sort of glorified CHR$(

that can take multiple PETSCI1 arguments, including ranges, to

build special strings.

The ability of BUILD$(to handle multiple arguments means

that we have to be careful in managing the memory used for

intermediate results, since each argument can itself be a com

plex expression with its own function calls, theoretically even

including calls to BUILD$(itself. For this reason, BUILD$(uses

the two routines PSHTEM and PULTEM, which together take

care of saving and restoring the temporary memory registers

T2 through T6 whenever a new argument is evaluated.

This might be a good time to mention a couple of things that

distinguish statements from functions with respect to zero page

storage. One is that the locations $14 and $15 are used by

statements only, never by functions, so you can expect data

store in those locations to survive expression evaluations

intact, no matter how complex the expression may be. The

POKE statement, for example, stores the POKE address at $ 14/

15 before evaluating the POKE value. Just remember never to

use $14/15 for storage when writing functions of your own, or

you'll end up clobbering some innocent statement that calls

your function.

Another point is that both statements and functions have

access to the TransBASIC storage area T2 through T6. If you use

this area and then evaluate an expression, do not expect the

registers to be unchanged. Either push the values onto the

stack with the PSHTEM routine, or one like it, or create a

storage area within your own program code.

The Delay module (Program 2) contains a single statement,

DELAY, which hangs the computer for a specified number of

hundredths of seconds. One thing you might want to adopt for

your own programs is the check for the STOP key (JSR $A82C),

which will break automatically to direct mode if the key is

down.

The Transactor 18 July 1986: Volume 7, Issue Ol

The Slide module (Program 3) contains the statement SLIDE,

which lets you move a sprite by specifying a displacement

(relative) rather than a destination (absolute). SLIDE will wait

until the raster scan is off the current location of the sprite

before allowing it to move: in most cases this eliminates the

shearing effect that arises when the raster catches a sprite in

motion. Another interesting thing about SLIDE is that you can

specify the direction of movement either as an integer or as a

string. The routine that interprets the input might be useful in

other commands as well.

The Make module (Program 4) contains the statement MAKE,

which prints a specified number of repetitions of a string. You

can use this to produce patterns and borders, and strings

requiring repetitive cursor movement.

The Centre module (Program 5) contains the statement CEN

TRE, which prints a specified string of up to 40 characters

centred on the monitor screen. The handy thing about this

command is that it ignores control characters in the string (RVS

and colour control characters, for example) when deciding how

far to indent the string.

Finally, the Vocab Manager module (Program 6) contains two

statements and two functions that will help in vocabulary

searching applications like adventure games. The FILE state

ment, which is similar in structure to DATA, reads in alphanu

meric strings and stores them under the BASIC ROM. With the

SCAN(function, you can find the position of a particular string

within the vocabulary.

When Vocab Manager is combined with other modules like

Inline (in TransBASIC #8), First & BF$ (#7), and Strip & Clean

(#4), many applications that depend on input parsing become

much simpler to program. Not only that, but the strings stored

in the vocabulary are unknown to BASIC itself, and will not

create garbage collection problems.

New Commands

DELAY (Type: Statement Cat#: 026)

Line Range: 3180-3214

Module: DELAY

Example: IF A = B THEN DELAY 100: PRINT " WHAT?"

Execution is suspended for the specified number of hundredths

of seconds (0 to 65535). The timing is not accurate for very

small values.

SLIDE (Type: Statement Cat *: 043)

Line Range: 3830-3928

Module: SLIDE

Example: FOR I = 1 TO 30: SLIDE 0," E": NEXT

Example: SLIDE 3,2,84

Example: Dl$ = " U": SLIDE 7,DI$,2

This command takes two arguments plus an optional third.

The first is the sprite number (0-7), the second the direction in

which it is to be displaced, and the third is the amount of

displacement. If the third argument is not present it is taken to

be one. The second argument may be given as a number from

0 to 3; as a string beginning with one of " n", " e", " s", " w";

or as a string beginning with one of " u", " r", " d", " 1". The

strings may be in either upper or lower case.

MAKE (Type: Statement Cat#: 048)

Line Range: 4106-4142

Module: MAKE

Example: MAKE 22," TRANSBASIC" + CHR$(13)

The string argument is printed the specified number of times

(up to 255) from the current cursor position.

CENTRE (Type: Statement Cat *: 049)

Line Range: 4144-4192

Module: CENTRE

Example: CENTRE "A PAINTED SHIP UPON A PAINTED

OCEAN"

The string is centred on the current screen line. Control

characters are ignored in calculating the offset from the margin.

Strings longer than 40 characters (not counting control charac

ters) generate a STRING TOO LONG error.

FILE (Type: Statement Cat#: 050)

Line Range: 4194-4272

Module: VOCAB MANAGER

Example: FILE "SWORD.MACE.SPEAR,POISON-TIPPED

BANANA

The strings separated by commas are stored under the BASIC

ROM starting at $A001 (40961). A pointer (FLPTR) points to the

next free byte. Only alphanumerics are stored. Upper case

alphabetics are converted to lower case. A vocabulary built by

FILE statements can be searched with the SCAN(function

(053). The only quote allowed in a FILE statement is the one

that precedes the string data; also, no other statement may

follow the FILE statement on the same line.

INITFP (Type: Statement Cat#: 051)

Line Range: 4274-4306

Module: VOCAB MANAGER

Example: INITFP

Example: INITFP 43257

The FILE statement pointer is initialized. If no parameter is

present the pointer is initialized to address 40961. If a parame

ter between 40961 ($A001) and 49151 ($BFFF) is present the

pointer is initialized to that address. The second form of the

INITFP statement would normally be used only when a pre

pared vocabulary is loaded from disk, instead of being gener

ated from FILE statements within a program. In this case the

FILE statement pointer would have to be initialized to the value

determined with the FPLOC function (052) after the vocabulary

was first generated.

FPLOC (Type: Function Cat *: 052)

Line Range: 4308-4314

Module: VOCAB MANAGER

Example: PRINT FPLOC-40961

A quasi-variable returning the current value of the FILE

statement pointer (40961 to 49151).

The Transactor Juty 1966: Volume 7, Issue O1

SCAN (Type: Function Cat#: 053)

Line Range: 4316-4468

Module: VOCAB MANAGER

Example: IF SCAN(AN$)<83 GOTO 770

The vocabulary compiled by the FILE statement is searched for

an entry matching the argument string. Only alphanumerics

are used in the comparison, and upper case alphabetic charac

ters are converted to lower case. The number of the first

matching vocabulary entry is returned, counting from one.

Zero is returned if the search is unsuccessful.

ALPH$ (Type: Function Cat*: 021)

Line Range: 2894-2900

Module: STRING SYNTHESIS

Example: PRINT LEFT$(ALPH$,13)

A quasi-variable that returns a string consisting of the lower

case alphabet.

UCALPH$ (Type: Function Cat *: 022)

Line Range: 2902-2908

Module: STRING SYNTHESIS

Example: PRINT ALPH$ + UCALPH$

A quasi-variable that returns a string consisting of the upper

case alphabet.

NUM$ (Type: Function Cat *: 023)

Line Range: 2910-2926

Module: STRING SYNTHESIS

Example: A = AWAIT(NUM$)

A quasi-variable that returns a string consisting of the digits

from 0 to 9.

RVS$ (Type: Function Cat#: 024)

Line Range: 2928-2984

Module: STRING SYNTHESIS

Example: PRINT RVS$(" RUMPELSTILTSKIN ")

Returns the argument string in reverse order (in this case,

NIKSTLITSLEPMUR").

BUILD$ (Type: Function Cat *: 025)

Line Range: 2986-3098

Module: STRING SYNTHESIS

Example: A$ = BUILD$(36,48;57,32,65;70)

Returns a string specified by its ASCII components. Individual

values may be specified, as well as ranges. In the latter case the

low and high ends of the range are separated by a semicolon.

The string " $0123456789 ABCDEF" is returned by the exam

ple.

OE

FH

MH

HH

CF

JH

NJ

Ml

CB

Program 1: STRING SYNTHESIS

rem string synthesis (aug 29/84) :

rem 0 statements, 5 functions

rem keyword characters: 28

rem keyword

rem f/alph$

rem f/ucalph$

routine

alph

ucalph

line ser#

2894 021

2902 022

OE

BK

MO

Al

EN

KP

HP

El

PD1 \-J

Gl

LC

CF

KK

MB

OB

EE

HH

KM

DG

MM

PH

CN

IB

OL

CM

PE

EM

DK

MM

AH

EO

AJ

PK

CD

KK

AH

EG

KE

EH

CM

IM

MB

PL

FB

GK

HB

FC

LP

GK

PA

NN

DF

NC

OH

HN

AO

HO

GD

PG

OB

HK

KG

AH

DL

CG

9 rem f/num$

10 rem f/rvs$(

11 rem f/build$(

12:

num

rvs

build

13 rem u/pshtem (3100/060)

14 rem u/pultem (3134/061)

15 rem u/kpftop (3156/062)

16:

1 * 1 Ol 11

18:

603 .asc" alph

:.byte$a4:

604 .asc" rvs$

2910 023

2928 024

2986 025

" :.byte$a4:.asc" ucalph"

.asc "num":.byte$a4

" :.byte$a8:.asc" build$" :.byte$a8

1603 .word alph-1 ,ucalph-1,

1604 .word rvs-1 ,build-

2894 ucalph

2896

2898

2900;

2902 alph

2904

2906

2908;

2910 num

2912

2914 num1

2916

2918

2920

2922

2924

2926;

2928 rvs

2930

2932 rv1

2934

2936

2938

2940

2942

2944

2946

2948

2950 rv2

2952

2954

2956

2958

2960

2962

2964

2966

2968

2970

2972

2974

2976

2978

2980

2982 rv3

2984;

2986 build

2988

2990

2992 bu1

2994

Ida

Idx

bne

Ida

Idx

bne

Ida

Idx

sta

Ida

sta

Ida

sta

bne

jsr

jsr

sta

stx

sty

jsr

tay

beq

dey

Ida

sta

sty

Ida

pha

Idy

Ida

tax

pla

sla

txa

Idy

sta

beq

inc

dey

cpy

bcs

jmp

idy

sty

sty

jsr

jsr

#" A"

#"Z"

num1

#"a"

#"z"

num1

#" 0"

#"9"

t3

#0

t2

#$80

t4

bu2

$aef4

$b6a3

$61

t5

t6

$b47d

rv3

[2

13

(t5),y

t2

(t5),y

($62),y

t3

($62),y

rv3

[2

t2

rv2

$b4ca

#0

t2

t4

pshtem

kpf1

num-1

;range of upper

; case alphabet

;range of lower

; case alphabet

;range of digits

;eval expr, chk')'

;create descriptor

;save length

;save pointer

; to string

;allocate memory

;test string null

; yes

;index to last char

;indexto 1st chart

;lower index save

;upper index save

;get upper char

;set it aside

;get lower index

;get lower char

;set it aside

; re-get upper char

;store as lower

; re-get lower char

; and upper index

;store as upper

;when len(str) = 1

;bump lower index

;back upper index

;test indices cross

; not yet

; return str descr

;clear temp storage

;pusht2-t6

;eval byte to .x

The Transactor 2O July 1986: Volume 7, Issue 01

OK

GA

KK

HH

EL

LA

MJ

EA

LJ

AM

IB

ML

HN

BK

CA

EJ

MO

LM

DD

LI

BN

NE

PC

HE

OP

LH

FH

FE

PD

LO

DJ

FJ

KC

NN

MJ

JL

NJ

DF

FO

OG

EC

LO

FD

OM

EO

JG

KP

DA

KF

HP

OK

A 1

EA

IC

LH

NO

MK

EP

NM

HC

IK

FO

EH

KG

AL

DM

2996

2998

3000

3002

3004

3006

3008

3010

3012

3014

3016

3018

3020 bu2

3022

3024

3026

3028

3030

3032

3034

3036

3038

3040

3042

3044

3046

3048

3050

3052

3054

3056 bu3

3058

3060

3062

3064

3066

3068 bcc

3070 bu4

3072

3074

3076

3078

3080

3082

3084 bu5

3086 bu6

3088

3090

3092

3094 bu7

3096 bu8

3098 •\J\J\3\J ,

3100pshtem

3102

3104

3106

3108

3110

3112

3114 pht1

3116

3118

3120

3122 Dht2v_J 1 l_ 1— VJ 1 1 L £—

3124

3126

Th© TVonsoctof

stx

jsr

Idx

stx

jsr

cmp

bne

jsr

jsr

stx

jsr

Idx

txa

sec

sbc

bcc

adc

bcs

pha

adc

bcs

sta

pla

stx

jsr

stx

sty

Idx

sta

Idy

txa

iny

cpy

beq

sta

dex

bu3

bit

bmi

jsr

cmp

bne

jsr

bne

jsr

Ida

Idx

Idy

jmp

jmp

jmp

Ida

jsr

pla

sta

pla

sta

Idx

Ida

pha

dex

bpl

Ida

pha

Ida

$67

pultem

$67

t3

$79

#";"

bu2

pshtem

kpftop

$67

pultem

$67

t3

bu7

#0

bu8

t2

bu8

t2

t3

$b47d

$22

$23

t3

t3

#$ff

t3

bu4

($62),y

t4

bu6

$79

bu5

$73

bu1

$aef7

t2

$62

$63

rv1

$b248

$a571

#3

$a3fb

$71

$72

#4

t2,x

pht1

$72

$71

; and save

;pullt2-t6

; retrieve byte

; and save

;test range char

; no

;pusht2-t6

;eval byte to .x

; and save

;pullt2-t6

retrieve byte

;test upper bound

; >= lower bound

; no

;test rangesize 256

; yes

;push rangesize

;test result > 255

; yes

;save result so far

;pull rangesize

;save upper bound +1

; reserve str space

;create pointer to

; string data

;get upper bound+ 1

;save string size

;init index to str

;char to store

;bump index

;test = string size

; yes

;store character

;next char down

; branch always

;test alph$ etc

; yes

;test more to build

; no

;skip comma

; branch always

;check close paren

;create descriptor

;reverse the string

;'illegal quantity'

;'string too long'

;check 6 stack

; bytes free

;save return addr

;pusht6tot2

■rptripvp rts addr

EL

GC

CL

PB

LA

KM

CB

DD

FN

GG

IC

Fl

PK

IM

AO

HN

EN

10

IN

OA

IM

OC

MO

PC

EF

AO

HK

FH

Al

HH

FO

JH

NJ

JO

MH

un

OH

DH

IG

KB

CC

OK

MC

NG

PF
nn

Afi

FN

IC

MG

PG

FN

OA

PG

IG

KK

EA

HL

FH

21

3128

3130

3132

3134

3136

3138

3140

3142

3144

3146

3148

3150

3152

3154

3156

3158

3160

3162

3164

3166

3168

3170

3172

3174

3176

3178

pha

rts

;

pultem pla

sta $71

pla

sta $72

Idx #$fb

plt1 pla

sta $7,x

inx

bmi plt1

bpl pht2

kpftop jsr $73

kpf1 Ida $33

pha

Ida $34

pha

jsr $b79e

pla

sta $34

pla

sta $33

rts

Program 2:

0 rem delay (aug 25/84)

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8:

Q rprr
E7 1 Cl I

10:

;save return addr

;pullt2tot6

;retrieve rts addr

;skip separator

;pushfretopptr

;eval byte to .x

;pull fretop ptr

DELAY

1 statement, 0 functions

keyword characters.

keyword routine

delay dela

106 .asc "delaY"

1106

3180

3182

3184

3186

3188

3190

31Q?\J I <J C-

3194O I JH

3196

3198

3200

3202

3204

3206

3208

3210

3212

3214

0 rem

1 :

.word dela-1

dela jsr $ad8a

jsr $b7f7

del Idy #$0e

de2 Idx #$85

de3 dex

bne de3

dey

hnp rip?\J\ 1 O KJ\jC

jsr $a82c

Idx $14

bne de4

Idy $15

beq de5

dec $15

de4 dec $14

jmp del

de5 rts

t

Program 3:

slide (aug 25/84)

5

line ser#

3180 026

;eval num expr

;convtointat$14

;count 1/100 sec

;check stop key

;decrement counter

;countdown complete

;not done yet

SLIDE

;

July 1986: Volume 7, Issue Ol

Al

HH

FO

JH

NJ

JL

MH

DP

CM

GL

KN

Bl

MC

NO

El

pn

Gl

Dl

GJ

PB

JO

OC

HL

OF

EE

AN

JD

FO

FG

IF

JB

EB

FN

GF

CO

FJ

GO

HF

MJ

MO

LL

PA

NN

OH

Nl

NN

EC

KC

EO

KH

ON

JF

Bl

NP

DO

PB

GE

JD

AB

CC

HF

CB

HO1 1 \—/

IA

2 rem

3:

4 rem

5:

6 rem

7 rem

8:

9 rem

1 statement, 0 functions

keyword characters: 5

keyword routine

s/slide slid

u/chkspr (3664/037)

10 rem u/raschk (3676/038)

11 rem u/direct (3930/044)

12 rem d/powers (3694/039)

13:

line ser#

3830 043

14 rem this module also contains one

15 rem line from set sprites -

16:

17 rpri / idii

18:

110.;

1110

3624

3664

3666

3668

3670

3672

3674

3676

3678

3680

3682

3684

3686

3688

3690

3692

3694

3696

3830

3832

3834

3836

3838

3840

3842

3844

3846

3848

3850

3852

3854

3856

3858

3860

3862

3864

3866

3868

3870

3872

3874

3876

3878

uuuu

3882

The Transactor

isc "slidE"

.word slid—1

xs3 jmp $b248

chkspr jsr $73

chs1 jsr $b79e

cpx #8

bcs xs3

rts

;

raschk pha

ras1 Ida $dO12

sbc $d001,x

bcc ras2

cmp#$2b

bcc ras1

ras2 pla

rts

J

-3624

;'illegal quantity'

;skip byte

;eval exprto .x

;test valid sprite

; no

;get raster pos'n

;test above sprite

; yes

;test below sprite

; no

powers .byte 1,2,4,8,16,32,64,128

;

slid jsr chs1

stx $14

jsr $aefd

jsr direct

pha

Ida $14

pha

Ida #1

sta t3

jsr $79

cmp #","

bne sl1

jsr $b79b

stx t3

sh pla

tay

asl

tax

pla

jsr raschk

bne sl2

Ida $d001,x

sbc t3

sta $d001 ,x

rts

olp rmn#?

bne sl3

;eval sprite #

;save

;check for comma

;get direction

;push direction

;push sprite*

;save default

; displacement

;test for comma

; no

;eval displacement

; and store

;pull sprite*

;mask index .y

position index .x

;pull direction

;wait for raster

;direction not up

;subtractdisp

; from y-pos'n

■tpot Hjr Hnwn
i!COL Ull UUVVI 1

; no

KE

NA

EE

FG

AC

EG

MB

OJ

NN

CF

CH

IH

LH

GF

OB

on

NG

NG

Cl

El

JF

LK

OM

LO

JA

DD

OB

LK

KE

IC

EF

MP

KJ

MD

CB

ED

CO

NG

JE

FD

Ml

EH

KC

LF

NF

CH

BE

AA

CD

EA

AM

FH

Al

HH

EO

JH

NJ

10

MH

HD

OH

22

3884

3886

3888

3890

3892

3894 sl3

3896

3898

3900

3902

3904

3906

3908 sl4

3910

3912

QQIA

3916 sl5

3918

3920

3922

3924

3926 sl6

3928;

3930 direct

3932

3934

3936

3938

3940

3942

3944

3946 di1

3948

3950

3952

3954

3956

3958 di2

3960

3962

3964

3966 di3

3968 di4

3970

3972

3974

3976 di5

3978;

3980 dirs

3982;

clc

Ida $d001,x

adc t3

sta $d001 ,x

rts

cmp#1

bne sl5

Ida $d000,x

clc

adc t3

sta $d000,x

bcc sl6

Ida $d010

eor powers.y

sta $d010
rtq
I LO

Ida $d000,x

sec

sbc t3

sta $d000,x

bcc sl4

rts

jsr $ad9e

bit $0d

bmi di1

jsr $b7a1

cpx #4

bcs di5

txa

rts

jsr $b6a6

tay

beq di3

Idy #0

Ida ($22),y

Idy #$0f

cmpdirs.y

beq di4

dey

bpl di2

jmp $afO8

tya

Isr

Isr

rts

jmp $b248

;add disp

; toy-pos'n

;test dir right

; no

;add disp

; toy-pos'n

;don't cross seam

;toggle msb

; of x-pos'n

subtract disp

; from x-pos'n

;cross seam

;eval direction

;test expr type

; string

;eval numeric to .x

;test < 4

; no

;retum dir in .a

;create descriptor

;test length zero

; yes

;get first char

;test valid dir

; yes

;'syntax'

;reduce to numeric

;'illegal quantity'

.asc "UuNnRrEeDdSsUWw"

Program 4: MAKE

0 rem make (aug 25/84)

1 :

2 rem 1 statement, 0 functions

3:

4 rem keyword characters: 4

5:

6 rem keyword routine

7 rem make

8:

^ 1 Cl II

10:

mak

line ser#

4106 048

July 1986: Volume 7, Issue Ol

LI

CF

FD

OC

Kl

CA

MM

BA

HJ

FC

AH

DN

PI

FD

OE

AE

DG

AL

JF

DN

EK

FD

FH

Al

HH

GO

JH

NJ

KG

MH

HD1 1 \—J

OH

PO

IL

MP

PB

NF

HJ

MG

PK

MA

AA

Cl

JJ

OM

HM

KD

PO

FK

PM

NK

MC

DJ

CB

KM

KJ

IJ

OP

DP

BL

PF

111 .asc " makE"

1111 .word

4106mak

4108

4110

4112

4114

4116

4118

4120

4122

4124

4126 mak1

4128

4130

4132

4134

4136

4138

4140 mak2

4142;

mak-1

jsr $b79e

txa

pha

jsr $aefd

jsr $ad9e

jsr $b6a3

tay

pla

sta t3

tya

Idx t3

beq mak2

dec t3

pha

jsr $ab24

pla

jmp mak1

rts

;eval # repetitions

;push

;check for comma

;eval string

;make descriptor

;string length

pull # repetitions

;countdown register

;get remaining reps

;all done

;count down

;print string

Program 5: CENTF

0 rem centre (sept 4/84)

1 :

2 rem 1 statement, 0 functions

3:

4 rem keyword characters:

5:

6 rem keyword routine

7 rem centre cntr

8:

Q rpm
J 1 Cl II

10:

112 .asc "centrE"

1112.word

4144 cntr

4146

4148

4150

4152

4154 ce1

4156

4158

4160

4162

4164

4166

4168

4170

4172ce2

4174

4176

4178

4180

4182

4183

4184

4185

4186

4187 ce3

4188

4189

cntr-1

jsr $ad9e

jsr $b6a3

tay

pha

Idx #0

dey

cpy #$ff

beq ce2

Ida ($22),y

and #$7f

cmp #$20

bcc ce1

inx

bne ce1

txa

sec

sbc #$29

bcs ce4

eor #$ff

Isr

Idx $d3

cpx #$28

bcc ce3

adc #$27

sta $d3

pia

jmp $ab24

6

line ser#

4144 049

;eval string

;make descriptor

;index from strend

;push string length

;# printable chars

;back up index

;test done

; yes

;get a character

;clear high bit

;test Ctrl char

; yes

;bump counter

; branch always

;test counter < = 40

; no

;negate and halve

; result

;test logical line

; 40 or 80

;40

;add 40 (carry set)

;set cursor horiz

;pull string length

;print string

LP

GN

CL

FH

JH

HH

CE

JH

NJ

KM

IE

JL

JD

PH

OH

PE

CN

NN

El

PD

Gl

DN

OB

PF

EC

HC

OK

LK

FM

OB
p 1

Cl

GK

AH

DN

OO

ON

HM

NH

AM

AE

LM

HK

CO

KP

NL

OH

NC

CD

FM

IJ

Ol

DD

OM

AP

GP

HE

GE

MF

NE

GH

4190ce4 jmp $a571

4192

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

9 rem

Program 6: VOCAB MANAGER

vocab manager (aug 29/84) :

2 statements, 2 functions

keyword characters: 20

keyword routine

s/file fil

s/initfp infptr

f/fploc fplo

10 rem f/scan(scan

11 :

12 rem u/cifchr (2560/003)

13remu/usfp (2620/006)

14 rem u/cifnum (4092/047)

15remd/flptr (4470/054)

16:

17 rem -==--====-=====--=

18:

113 .4

610.£

1113

1610

2560

2562

2564

2566

2568
QC~7f\

2572

2620

2622

2624

2626

2628

2630

2632

2634

isc "filEinitfP"

line ser#

4194 050

4274 051

4308 052

4316 053

isc " fploCscan" :.byte$a8

.word fil-1 .infptr—1

,wordfplo-1,scan-1

cifchr cmp#$5b

bcc cid

clc

bcc cic2

cid cmp #$41
i-->if~>o rtc

usfp Idx #0

stx $0d

sta $62

sty $63

Idx #$90

sec

jmp $bc49

4092cifnum cmp#":"

4094

4096

4098

4100

4102

4104

4194

4196

4198

4200

4202

4204

bcc cin1

clc

bcc cin2

cin1 cmp#"0"

cin2 rts

;

fil cmp #$22

bne fi4

Idy flptr

Ida flptr+ 1

sty $22

sta $23

4206 fil Idy #0

4208

4210

4212

4214

4216

4218

4220

jsr $73

bcc VS

cmp#0

beq fi3

cmp #$22

beq fi4

cmp#","

;test alphabetic

; and if so return

; carry set

;convert .a/.y

; to floating point

; from unsigned

; 16-bit integer

;test numeric

; and if so return

; carry set

;test leading quote

; no

;make pointer to

; first free byte

;set up index

;get a character

;numerics ok

;test end of line

; yes

;test embedded qte

; yes

;test end of word

The Tronsoctof 23 July 1986: Volume 7, Istue Ol

OE

MN

OB

FD

MB

AK

HH

JF

GB

GP

FF

ON

PC

HL

EP

AF

MP

ED

FC

MM

Ml

AH

LA

NF

IL

LE

GC

LO

01

CL

OJ

JK

GN

PK

IK

OA

DF

CD

MF

HO

HM

LM

ML

IE

GO

FJ

OF

AF

NH

GL

HC

EE

FD

CG

PJ

GG

MJ

HC

EE

IN

NA

LE

Al

OL

4222

4224

4226

4228 fi2

4230

4232

4234

4236

4237

4238

4240

4242

4244 fi3

4246

4248

4250

4252

4254

4256

4258

4260

4262

4264

4266

4268

4270 fi4

4272;

4274 infptr

4276

4278

4280

4282

4284

4286

4288

4290 ifp1

4292 ifp2

4294

4296 ifp3

4298

4300 ifp4

4302

4304

4306;

4308 fplo

4310

4312

4314;

4316 scan

4318

4320

4322

4324

4326

4328

4330

4332

4334

4336

4338

4340

4342

4344

4346

beq fi3

jsr cifchr

bcc fi1

tax

sta ($22),y

inc $22

bne fi1

inc $23

Ida $23

cmp #$c0

bne fi1

jmp $a435

pha

dey

dec $23

txa

ora #$80

sta ($22),y

inc $23

pla

cmp#","

beq fi1

Idy $22

Ida $23

bne ifp4

jmp $afO8

beq ifp2

jsr $ad8a

jsr $b7f7

cmp #$a0

bcc ifp1

beq ifp3

cmp #$c0

bcc ifp4

jmp $b248

Idy #1

Ida #$a0

cpy #0

beq ifp1

sty flptr

sta flptr+ 1

rts

Idy flptr

Ida flptr+1

jmp usfp

jsr $aef4

jsr $b6a3

sta t3

sta t4

txa

pha

tya

pha

Ida t3

jsr $b47d

stx $24

sty $25

pla

sta $23

pla

sta $22

;yes

;test alphabetic

; no

;save byte

;store to buffer

;bump pointer

;test end of buffer

; ($c000)

; no

;'out of memory'

push new byte

;pointto previous

; byte in buffer

;get old byte

;set high bit

;store to buffer

;fix pointer

;pull new byte

;test comma

; yes

;store new pointer

; value to flptr

;branch always

;'syntax error'

;no param

;eval param

;convert to integer

;test > = $a000

; no

; = is special case

;test < $c000

; yes

;'illegal quantity1

;default init

; to $a001

;test = $a000

; yes

;init flptr

;get flptr value

;return asfl. pt.

;evalstr, test)

;get descriptor

;store length

;push data address

;reserve memory

;makeptrto

; reserved space

;make ptr to

; argument data

AA

LB

ND

MC

Jl

GG

DB

BP

IL

HB

Al

OG

FN

KO

MP

NN

BD

AO

FN

KC

NC

PN

OH

JP

OJ

EC

IH

BH

FB

MP

GM

HF

HL

NA

EE

PL

LF

DB

FM

JG

DP

JG

OP

FA

DD

GG

JP

Dl

JF

CC

EJ

OO

FE

Ol

AL

MJ

GA

IB

BC

DF

KO

PA

00

4348

4350

4352

4354 seal

4356 sca2

4358

4360

4362

4364

4366

4368

4370

4372

4374 sca3

4376

4378

4380 sca4

4382

4384

4386

4388

4390

4392

4394

4396 sca5

4398

4400

4402 sca6

4404

4406

4408

4410

4412sca7

4414

4416

4418

4420 sca8

4422

4424

4426

4428

4430

4432

4434 sca9

4436

4438

4440 seal 0

4442

4444

4446

4448

4450

4452 seal 1

4454

4456 seal 2

4458

4460 bmp62

4462

4464

4466 b62

4468;

4470 flptr

4472;

dec 1

Idy #$ff

Idx #0

dec t4

iny

cpy t3

beq sca4

Ida ($22),y

jsr cifnum

bes sca3

and #$7f

jsr cifchr

bcc seal

sta ($62,x)

jsr bmp62

bne sca2

stx t5

stx t6

bit t4

bmi sca11

Ida #1

sta $62

Ida #$aO

sta $63

inc t5

bne sca6

inc t6

Ida $63

cmp flptr+ 1

bne sca7

Ida $62

cmp flptr

txa

tay

bes seal 2

dey

iny

Ida ($62),y

cpy t4

beq sca9

cmp ($24),y

beq sca8

bne sca10

sbc ($24),y

cmp #$80

beq sca11

Ida ($62,x)

php

jsr bmp62

pip

bpl sca10

bmi sca5

Idy t5

Ida t6

inc 1

jmp $b391

inc $62

bne b62

inc $63

rts

.word $a001

;switch out basic

;init spare index

;decr arg byte cntr

;test end of word

; yes

;get arg byte

;test numeric

; yes

;conv cap to lower

;test alphabetic

; yes

;add to new string

;bump new str ptr

; branch always

;reset word counter

;test srch str null

; yes

;init vocab pointer

; to $a001

;bump word counter

;set carry if vocab

; pointer at end

; of buffer

;.x = .y = 0

;end of buffer

;set up pre-incr

;bump pointer

;get vocab byte

;test last arg byte

; yes

;test arg = vocab

; yes

; no

;test last vocab

; byte

; yes

;advance vocab

; pointer to

; end of word + 1

;try next word

;get word counter

;switch in basic

;return asfl. pt.

;bump ptr at $62/63

;return z clear

;ptr to file bufr

The Transactor 24 July 1986: Volume 7, Issue Ol

Longer Life

For Your 64 and 1541

Robert V. Davis

Salina, KS

With the price of Commodore 64 computers at one-fourth what it was

when the machines first hit the market, the temptation to replace an older

64 with one of the later models is strong. But for those of us willing to break

out the screwdriver and soldering iron, there are some minor improve

ments possible to prolong the life of our computers and disk drives. Note

that all the following instructions will invalidate your warranty, if any, and

anyone who is not comfortable with the idea of digging into electronic

equipment should go to the next article.

The first modification to the Commodore 64 is to improve its video quality

. . . this only applies to those of us who have the earlier model C-64s with a

five pin video output jack. The addition of some of the luminance signal to

the composite colour video will usually sharpen the picture noticeably on a

colour monitor. Note Figure 1, the illustration of the top centre of the C-64

main printed circuit board.

Between the five pin video connector and the aluminum box containing

the TV modulator will be a resistor (usually 470 ohms). As shown in Figure

1, this resistor will connect the solder pad labelled number two to the

ground at the edge of the board, passing over 'point I1. Using a small

soldering iron (25 Watts), undo the ground end of the resistor. Then solder

a 150-ohm quarter-watt resistor to point one. Attach the other end of that

150-ohm resistor to the still-connected end of the original resistor at point

two. Then, probably using additional wire, re-attach the other end of the

470-ohm resistor to the ground, all the while avoiding solder bridges, bare

wires touching each other, and so on.

By the way, if you are using a monochrome video monitor on your C-64, a

better display results from taking the luminance output instead of the

normal video output containing colour information to your video display.

You will have to move a wire in the five-pin DIN connector from pin four

to pin one. Again, both of these hints are appropriate to those older C-64s

which have a five-pin video connector.

Some C-64s came from the factory without a heat sink attached to the five

volt regulator chip which is mounted next to the joystick ports. That

regulator supplies power to the video circuitry and runs rather hot. The

addition of a heat sink, along with heat transfer compound will really help

the regulator do its job. Look next to the joystick ports on the right side of

the board for a small device on three legs soldered close to the corner of the

video and system shield box. If a flat black slotted hunk of metal about one

inch square is bolted or riveted to the regulator, you are OK. If not, the

regulator will be sticking up with a hole through its top just begging you to

help it cool down. The parts list suggests a possible heat sink which will

probably require some bending before it will properly fit.

A couple of ways to keep your 1541 (or 2031LP) disk drive cooler are in

order now. The hard work involves taking the drive completely apart and

adding heat sink grease to help transfer heat from the big black heat sink at

the back of the drive to the frame of the unit. 1 have found this helpful in

both old and new 1541 drives, to help get the heat from the drive and

twelve volt regulators spread around inside the unit, instead of concen

trated near the 6502 and 6522 chips.

Note again, you will have to remove the plastic top of the drive, the RF

shield on top of the main PC board, and then remove the PC board itself to

get to the part of the heatsink where you can apply the heat transfer

compound. Tins is not for the faint of heart. Keep paper towels handy to

clean up any heatsink grease other than that on the proper surfaces.

Finally, a foot or so of 5/16 inch wooden dowel rod cut into two to three

inch lengths with four matching rubber feet can be (with some sanding)

forced into the holes on the bottom of the 1541 where the screws holding

the top of the case reside. (Ends ofpencils work great for this! -Ed.) These

legs will raise the drive and allow improved air circulation through it,

prolonging the life of the electronic internals.

There you have some ways of keeping your system in good health at a

minimum of expense. Good luck!

Parts list:

(Radio Shack Part numbers listed)

150 ohm 1/4 watt resistor *271-1312

Heatsink *276-1363

Heatsink grease *276-1372

5/16 wooden dowel rod (4 two-inch lengths)

5/16 inch rubber feet for ends of dowel

(Four brand new pencils, cut to the proper length, may be used to replace

the dowels and rubber feet)

FIUE PIN

VIDEO CONNECTOR

/

TOP CENTER COMMODORE

V

1

2

64 TUOUTPUTMODULE
Figure 1

*-—

o—

JOVSTICK PORT

TWO

1

o

RIGHT SIDE

COMMODORE 64

...

JOVSTICK PORT

ONE

Figure 2

The Transactor 25 July 1986: Volume 7, Issue Ol

Matrix Manipulator Richard Richmond

Springfield, Ohio

Machine language program to set one array equal to another.

Because operations in BASIC must be handled through the

interpreter, some tasks can be very slow. For example, the

following BASIC line can take a very long time:

for i = 1 to n:a(n) = b(n):next n

Many operating systems for larger computers have machine

language (ML) routines that allow matrices or arrays (arrays are

just one-dimension matrices) to be manipulated like non-

dimensioned variables. In such a system, the above example

could be written like A = B. For large, multi-dimensional

arrays, or for repetitive operations, the time saved with such a

utility could be very significant.

What The Program Does

To perform the operation in the above example, use SYS 51800

" A,B" with the array names in quotes (to avoid conflicts with

other ML utilities that start at 49152, this program is moved up

to just below where the BASIC wedge would be loaded). Any

properly dimensioned arrays may be used. The only restric

tions are that both arrays must be of the same type and

dimensioned the same size. The utility will not check for this,

only that both names are in the array table. Unlike BASIC, the

subroutine will not automatically dimension an array. Instead,

an error message is printed and the program halts if both arrays

have not been dimensioned.

As stated earlier, any type of array can be used and the

subroutine does recognize the difference between types. For

example, A,A % and A$ would be treated as different arrays just

like in BASIC. When the subroutine returns to BASIC, each

element of the first array will be the same as the corresponding

element in the second array. The second array will not be

affected. Note, the order in which the arrays are dimensioned is

not important, only that the arrays are dimensioned before

calling the routine. Also just to avoid possible confusion, I have

been using A and B as my examples but there are no restric

tions on the names that you can use, except for the normal

BASIC restrictions.

How The Program Works

For those interested in ASSEMBLY programming, the com

mented listing in Program 1 should be useful. The listing is

compatible with the IEA Assembler, but can be easily adapted

to other Assemblers. In general, the following tasks are per

formed; ROM routines are used to find the location and length

of the string in the calling SYS command. The two array names

are then separated and the appropriate type designator is

added. In BASIC, all arrays are stored in a block of memory.

The starting address of this block is stored in locations $30,$2f.

This address is loaded and the array memory area is scanned to

find the starting address of the first array passed from BASIC.

Some juggling of the array names then takes place so that the

same portion of code can be used to find the address for the

second name.

The length of the second array (actually the offset to the

beginning of the next array in the storage area) is then found.

The second array is then stored byte by byte in the first array.

This simple byte for byte operation is why the routine is able to

handle any type of variable. It is also the reason that the

programmer must use similar arrays. If the first array was

shorter the the second, the program would write past the end of

the first array with possibly fatal results!

Typing It In

Program 2 is a ML loader program for the routine. As usual, first

type it in and save it. With a disk in your drive, run the

program. When the program is finished, you will have a file on

your disk; "MATRIXML". To use the routine type LOAD "

MATRIXML",8,1 and (RETURN). Then type NEW,(RETURN)

and load your BASIC program.

The Transactor 26 July 1986: Volume 7, Issue Ol

To illustrate the speed of this routine type in and run the

following program:

Matrix Manipulator BASIC Loader

OK

DF

BG

Gl

IH

CF

AA

JJ

BP

AL

DE

PJ

KL

GA

100dimb(1000),d(1000)

110 print" beginning basic loop"

120t1=ti

130 for i = 0 to 1000:b(i) = d(i):next

140t2 = ti

150 print" end of basic loop

160 print" beginning ml loop

17013—t!

180sys51800 "b,d"

190t4=ti

200 print" end of ml loop

210 print" basic = " ;t2-t1;" jiffies

220 print "ml = " ;t4-t3; "jiffies

230 stop

This program just sets D equal to C. The actual values in the

array are of no interest in this case because we are only

interested in the relative speeds of the two methods. On my

machine, BASIC takes 425 jiffies and ML only 22. That means

that the ML routine is 20 times faster than BASIC. If the arrays

are changed to integer (C%,D%) the times are 429 and 9,

making ML almost 50 times faster! Different size arrays would

yield different time savings. For all but the very shortest arrays,

the ML routine should provide a significantly faster operation.

Future Additions

At present, I am working to expand this routine into an entire

matrix operations package. Some of the other operations that I

am working on include:

1. Initialize the array - set the entire array equal to a user

defined value.

2. Four function math operations - add, subtract, multiply or

divide an array by a variable or by another array.

3. Find maximum or minimum values of an array.

Such a package would be useful in graphics or other programs

where large arrays of data must be worked with. These addi

tional operations will included in a single program and be

reached through different entry points.

GA

BE

HH

KO

HF

EF

NC

FB

PO

EA

AE

AL

DJ

AL

LJ

LB

BH

LO

GK

Nl

FC

JO

DA

PA

OB

OF

IC

LD

KD

MG

DG

BL

IL

LF

10

Fl

DK

JF

OP

AC

FL

NG

FN

EP

MM

OO

GN

PC

DF

IP

10

JC

AA

PB

CB

DH

GL

30 hi = int(51800/256):lo = 51800-hi*256

40 open 1,8,1," 0:matrixml"

50 print#1 ,chr$(lo)chr$(hi);

60 for i = 51800 to 52203

70 read da:print#1 ,chr$(da);

80 next

90 close 1

100 data 76, 117,202, 128, 44,

82, 82, 65, 89, 32,

32, 68, 73, 77, 69,

79, 78, 69, 68, 0,

110 data

120 data

130 data

140 data

65

84

73

32, 163, 182,134,251

150 data 160, 0,140,173, 2,

160 data 177, 251,141,172, 2,

170 data 251, 201, 47,144, 6,

180 data 76, 141,202,201, 44,

190 data 37,208, 8, 173, 172,

200 data 141, 172, 2,173,173,

210 data 141, 173, 2,200,202,

220 data 47, 144,248, 141,170,

230 data 240, 32,177,251,201,

240 data 141, 171, 2, 76,190,

250 data 208, 8,173,170, 2,

260 data 170, 2,173,171,

270 data 171, 2,160,

280 data 91,202, 136,

290 data 3,153,139,

300 data 167, 2,165,

2,

3,185,

16,247,

0,136,

48,133,

2,177,310 data 133, 251,160,

320 data 200, 177, 251, 133, 254,

330 data 251, 205, 172, 2,208,

340 data 251, 205, 173, 2,240,

350 data 24,101,254,133,252,

360 data 101, 253, 133,251,144,

370 data 165, 50,197,252,208,

380 data 197, 251,240, 3, 76

390 data 95,160,202,134,251

400 data 0,177,251

410 data 200, 76

420 data 26, 76

430 data 2,165

440 data 205, 167

450 data 141, 172

460 data 2,173

470 data 2,133

480 data 202, 173

490 data 2,133

500 data 252, 136

510 data 24, 101

520 data 101, 251

530 data 169

540 data 230

550 data 208

560 data 145

240,

203,

7,

32,73

55, 164, 165

252, 141, 169

240, 28

173, 171

2, 133

139,238, 167

169, 2,133

160, 3

141, 133

252,133,254

133,253,208

2.

2,

169,

141,

177,

4, 101, 141, 133,

142,169, 4,101,

2,230, 140, 160,

139,230, 141,208,

570 data 230, 139, 208, 2,230,

580 data 228, 253, 208, 234, 166,

590 data 208, 228, 160, 3,185,

600 data 16,250, 96, 0

144,214,

78, 79,

78, 83,

32, 158, 173

132,252, 170

140,171, 2

200,202, 177

141,173, 2

240, 20,201

2, 9,128

2, 9,128

177,251,201

2, 200, 202

47,144, 6

202,201, 37

9, 128, 141

9, 128, 141

139, 0,153

169, 0,160

208.250, 141

252,165, 47

251, 133,253

160, 0,177

8,200, 177

62, 165,252

165.251, 24

2, 230, 252

6,165, 49

2,203, 162

132.252, 160

32,210,255

226,203,162

251, 141, 168

2,169, 1

173,170, 2

2, 141, 173

140, 173, 168

2, 76,250

142, 173, 168

177,141, 133

251, 165, 142

165,141, 24

2, 230, 254

141,208, 2

139, 133, 139

0, 177, 141

2,230, 142

140, 166, 141

142,228,254

91,202, 136

The Transactor 27 July 1986: Volume 7, Issue Ol

Matrix Manipulator Source Code

100 ;ml routine to set a = b

110 ;where a,b are arrays

120 ; written by

130 ;richard richmond

140 ;308 rosewood ave

150 -Springfield, Ohio 45506

160 ;(513)322-7650

170 • = $ca58
1 Rfl imn otort

1 OU

190zpage

200 ♦

210 two

220 one

230 chrout

240 word

250

260

270 start

280

290

300

310

320

330

340

350

360 first

370

380

390 ab

400

410

420

430

440

450

460

470 skip

480

II 1 ■[_/ OlCll L

• +4

= $02aa

$02ac

= $ffd2

;sys51800 "a,b"

.asc ' array not dimensioned"

.byteO

jsr $ad9e

jsr $b6a3

stx $fb

sty $fc

tax

Idy #$00

sty one+ $01

sty two+ $01

Ida ($fb),y

sta one

ny

dex

Ida ($fb),y

sta one+ $01

bcc skip

sta one+ $01

jmp ab

beq second

;use rom routine

;to get string

;address

;length

;first character

; 1 st array

;2nd char

; comma

490 ;check for '$,%' in last character

500 ;name. bit 7 set in both bytes if

510 ;array is integer

520 ;bit7 in 2nd byte set if

530 ; array is string

540

550

560

570

580

590

600 skipi

610

620

630

640 second

beq second

cmp #$25

bne skipi

Ida one

ora #$80

sta one
t

Ida one+ $01

ora #$80

sta one+ $01
= *

650 ;repeat for second argument

660

670

680

690

700

710

720 sec2

730

740

750

760

770

780

790

800

810 ac

820

830

840

850

860

870 ad

880

890

900

910 done

iny

dex

Ida ($fb),y

cmp #$2f

bcc second

sta two

,

iny

dex

beq done

Ida ($fb),y

cmp #$2f

bcc ac

sta two+ $01

jmp sec2

•

cmp #$25

bne ad

Ida two

ora #$80

sta two

*

Ida two+ $01

ora #$80

sta two+ $01
= .

;check for

;string end

;checkfor

;alphanum

920 ;done with names, now save part

930 ;of zero page 8b-8e

940

950 szpage

960

970

980

990

1000

1010

1020 clear

1030

Idy #$03

= *

Ida $008b,y

sta zpage.y

dey

bpl szpage

Ida #$00

Idy #$03

sta $008b,y

1040 dey

1050 bne clear

1060 sta $02a7 ; initial cntr

1070done1 = •

1080 ;store address of beginning

1090 ;of array storage in fc.fb

1100 Ida $30

1110 sta $fc

1120 Ida $2f

1130 sta $fb

1140 dO - •

1150 Idy #$02

1160 Ida ($fb),y

1170 sta $fd ;offsetlo

1180 iny

1190 Ida (Sfb).y

1200 sta $fe ;offsethi

1210 Idy #$00

1220 ;load 1 st character of array

1230 ; and compare with 1 st of

1240 ; argument

1250 Ida ($fb),y

1260 cmp one

1270 bne d2

1280 iny

1290 Ida ($fb),y

1300 cmp one+ $01
1310 beq b3 ;jmpwhen

1320 ;array found

1330 d2

1340 Ida $fc

1350 clc

1360 ;add hi byte offset to address

1370 adc $fe

1380 sta $fc

1390 Ida $fb

1400 clc

1410 ;add lo byte offset to address

1420 adc $fd

1430 sta $fb

1440 bcc d4

1450 inc $fc

1460d4 - •

1470 ;check if end of array

1480 ;storage has been reached

1490 Ida $32

1500 cmp $fc

1510 bne d3

1520 Ida $31

1530 cmp $fb

1540 beq out

1550 ;branch to error routine

1560 ; if end of array storage

1570 d3

1580 jmp dO

1590 ;jmp back and check next array

1600 out = • beginning of error routine

1610 ;print error message

1620 Idx #>word . Idy #sword

1630 stx $fb

1640 sty $fc

1650 Idy #$00

1660 error = «

1670 Ida ($fb),y

1680 beq return

1690 jsr chrout ; rom routine

1700 iny

1710 jmp error

1720 return = .

1730 jsr reset ;restorezpage

1740 Idx #$1a

1750 jmp $a437 ;exit through

1760 ; rom routine to print error

1770 b3

1780 ; store address of first array

1790 ; in argument

1800 Ida $fb

1810 sta $02a8

1820 Ida $fc

1830 sta $02a9

1840b4 = .

1850 Ida #$01 ;check

1860 cmp $02a7 ;pointer

1870; jmp to b5 2nd time

1880 ; through loop

1890 beq b5

1900 ; transfer second argument

1910 ; address to 1st storage

1920 Ida two

1930 sta one

1940 Ida two+ $01

1950 sta one+ $01

1960 ; transfer address of first

1970 ; argument to zero page

1980;at$8c,$8b

1990 Ida $02a9

2000 sta $8c

2010 Ida $02a8

2020 sta $8b

2030 inc $02a7

2040 ;increment pointer and

2050 ; branch back to find address

2060 ; of second argument

2070 jmp donei

2080 b5

2090 ;address of second argument

2100 ; stored at $8e,$8d

2110; length of arrays stored

2120;at$fc,$fb

2130 ; only second array length

2140 ; used, both arrays must have

2150 ; dimensioned the same size

2160 Ida $02a9

2170 sta $8e

2180 Ida $02a8

2190 sta $8d

2200 Idy #$03

2210 Ida ($8d).y

2220 sta $fc

2230 dey

2240 Ida ($8d),y

2250 sta $fb

2260 Ida $8e

2270 clc

2280 ;ending address of second

2290 ; array stored at

2300 ; $fe,$fd

2310 sta $fe

2320 Ida $8d

2330 clc

2340 adc $fb

2350 sta $fd

2360 bne b7

2370 inc $fe

2380 b7 = *

2390 ; skip 4 bytes

2400 ; this skips past the name and

2410 ; offset bytes in array storage

2420 Ida #$04

2430 adc $8d

2440 sta $8d

2450 bne b8

2460 inc $8e

2470 b8 = •

2480 Ida #$04

2490 adc $8b

2500 sta $8b

2510 bne b9

2520 inc $8c

2530 b9

2540 ; now ready to begin transfering

2550 ; data from 2nd array to 1 st

2560 Idy #$00

2570 b13

2580 ;load data byte by byte

2590 Ida ($8d),y

2600 ;store in 1st array

2610 sta ($8b),y

2620 ; increment pointer - 2nd

2630 inc $8d

2640 bne b10

2650 inc $8e

2660 b10

2670 ; increment pointer - 1st

2680 inc $8b

2690 bne b11

2700 inc $8c

2710 b11

2720 ; compare pointer with end

2730 ; end of 2nd array

2740 Idx $8d

2750 cpx $fd

2760 bne b13

2770 Idx $8e

2780 cpx $fe

2790 bne b13

2800 reset

2810 ; when finished, restore

2820 ; zero page memory and return

2830 ; to basic

2840 Idy #$03

2850restorez = .

2860 Ida zpage.y

2870 dey

2880 bpl restorez

2890 rts

2900 .end

The Transactor 28 July 1986: Volume 7, Issue Ol

Jim ButterfiekTs Complete C128 Memory Map

A few issues back we published an abridged C128 RAM/ROM map as

prepared by Jim Butterfield. At the time we were quite pleased to have the

privilege of publication. Although the maps were not in any way complete,

they were good enough to start many hungry programmers on their way

with the C128.

After many months of careful and very well calculated pestering on our

part, Jim has finally consented to allow us to publish his yet unreleased

C128 Map. This opportunity comes as a form of prelude to Jim's yet

unreleased new version of, "Machine Language For The Commodore 64

And Other Commodore Computers". Jim has carefully re-written it to

include the C128, and as is usual with Jim's books, articles, videos, TV

shows, etc., etc., etc., his Machine Language book takes the reader by the

hand and gently force feeds knowledge without any painful infliction.

Jim's new book is expected to be released in April of 1986, published by

Bradey, a division of Simon and Shuster. As with his last Machine

Language book, this version will be available most everywhere through

many of the major book stores. If after this incredible bit of JB propaganda

you remain unmoved, let me assure you that 1 am not being paid for this,

except for a bottle of Steam beer he bought me in San Francisco (for which 1

paid him back promptly). If ever you get the chance, have a read... you

will not be disappointed. - RTE

COMMODORE 128 Memory Maps Jim Butterfield

These maps apply to the machine when used in the 128K mode. When

used in the 64 mode, the machine's map is identical to that of the

Commodore 64.

Architecture: "Bank numbers" as used in Basic BANK and the MLM

addressing scheme are misleading; in fact, they are more correctly

"configuration numbers". Bank 0 shows RAM level 0, which contains

work areas and the user's Basic program. Bank 1 also shows RAM, this

time (for addresses above hexadecimal 0400) level 1 which contains

variables, arrays, and strings. Other "banks" are really configurations,

with various types of ROM or I/O overlaying RAM. Thus, bank 15 (the

most popular) is ROM and I/O covering RAM bank 0. Bank 14, however, is

ROM and the character generator overlaying RAM bank 0. Architecture is

set so that addresses below $0400 reference bank 0 only. Other bank

switching (more complex than the simplified 16-bank concept) is accom

plished via storing a mask to address $FF00, or calling up pre-stored

masks by writing to $FF01-FF04.

The Commodore C128 Memory Map as of February 1986
All Banks:

Hex Decimal Description 0076 118

0000 0 I/O directional register 0077 119

0001 1 I/O port, similar to C64 0078-0079 120-121

0002 -0004 2-4 SYS address, MLM registers(SR, PC) 007A-007C 122-124

0005-0009 5-9 SYS, MLM register save (A, X. Y.SR/SP) 007D-007E 125-126

000A 10 Scan-quotes flag 007F 127

000B II TAB column save 0080-0081 128-129

000C 12 0= LOAD, 1= VERIFY 0082 130

000D 13 Input buffer pointer/number of subscripts 0083 131

000E 14 Default DIM flag 0084 132

000F 15 Type: FF=slring; 00=numeric 0085 133

0010 16 Type: 80 = integer; O0 = floating point 0086 134

0011 17 DATA scan/LIST quote/memory flag 0087-008A 135-138

0012 18 Subscript/FNxflag 008B-008F 139-143

0013 19 0 = INPUT;$40 = GET;$98 = READ 0090 144

0014 20 ATN sign/Comparison evaluation flag 0091 145

0015 21 Current I/O prompt flag 0092 146

0016-0017 22-23 Inlegervalue 0093 147

0018 24 Pointer: temporary string slack 0094 148

0019-0023 25-35 Slack for temporary strings 0095 149

0024-0027 36-39 Utility pointer area 0096 150

0028-002C 40-44 Producl area for multiplication 0097 151

002D-002E 45-46 Pointer: start-of-BASIC (for bank 0) 0098 152

002F-0030 47-48 Pointer: start-of-variables (bank 1) 0099 153

0031-0032 49-50 Pointer: starl-of-arrays 009A 154

0033-0034 51-52 Pointer: end-of-arrays 009B-009C 155-156

0035-0036 53-54 Pointer: string-storage (moving down) 009D 157

0037-0038 55-56 Utility string pointer 009E-009F 158-159

0039-003A 57-58 Pointer: limit-of-memory (bank 1) 00A0-00A2 160-162

003B-003C 59-60 Current BASIC line number 0OA3-0OAB 163-171

003D-003E 61-62 Textpointer: BASIC work point O0AC-0OAD 172-173

003F-0040 63-64 Utility Pointer 00AE-00AF 174-175

0041-0042 65-66 Current DATA line number 00B0-00B1 176-177

0043-0044 67-68 Current DATA address 00B2 -00B3 178-179

0045-0046 69-70 Input vector 00B4 -00B6 180-182

0047-0048 71-72 Current variable name 00B7 183

0O49-0O4A 73-74 Current variable address 00B8 184

OO4B-OO4C 75-76 Variable pointer for FOR/NEXT 00B9 185

OO4D-OO4E 77-78 Y-save; op-save; BASIC pointer save 00BA 186

004F 79 Comparison symbol accumulator 0OBB-0OBC 187-188

0050-0055 80-85 Miscellaneous work area, pointers, and soon OOBD-O0C5 189-197

0056-0058 86-88 Jump vector for funclions 00C6-00C7 198-199

0059 -0062 89-98 Miscellaneous numeric work area 00C8 -00CB 200-203

0063 99 Accum'l: exponent 00CC-00CD 204-205

0064-0067 100-103 Accum'l: mantissa 00CE-00CF 206-207

0068 104 Accum'l: sign 00D0 208

0069 105 Series evaluation constant pointer 00D1 209

006A-006F 106-111 Accum'2: exponent, and so on O0D2 210

0070 112 Sign comparison. Ace' 1 versus "2 00D3 211

0071 113 Accum'l lo-order (rounding) 00D4 212

0072-0073 114-115 Cassette buffer len/Series pointer 00D5 213

0074-0075 116-117 Auto line number increment 00D6 214

Graphics (lag 00D7 215

Color source number 00D8 216

Temporary counters 00D9 217

DS$ descriptor 00DA-00DF 218-223

BASIC pseudo-slack poi nler 00E0 -00E1 224-225

Flag: 0 = direct mode 00E2 -00E3 226-227

DOS, USING work flags 00E4 228

Stack pointer save for errors 00E5 229

Graphic color source 00E6 230

Multicolor 1(1] 00E7 231

Multicolor 2 (2) 00E8 -00E9 232-233

Graphic foreground color (13) 00EA 234

Graphic scale factors, X & Y 00EB 235

Graphic work values 00EC 236

Status word ST 0OED-OOEE 237-238

Keyswilch IA: STOP and RVS flags 00EF 239

Timing constant for tape 00F0 240

Work value, monitor, LOAD/SAVE 00F1 241

Serial output: deferred character flag 00F2 242

Serial deferred character 00F3 243

Cassette work value 00F4 244

Register save 00F5 245

How many open files 00F6 246

Input device, normally 0 00F7 247

Output CMD device, normally 3 00F8 248

Tape parity, output-received flag 00F9 249

I/O messages: I92 = all, 64 = errors,0 = nil 00FA-00FF 250-255

Tape error pointers 0100-01FF 256-511

Jiffy Clock HML 0100-0I3E 256-318

I/O work bytes 0100-0124 256-292

Pointer: tape buffer, scrolling 0125-0138 293-312

Tape end adds/End of program 0200-02A0 512-672

Tape liming constants 02A2-02AE 674-686

Poinler: start of tape buffer 02AF-02BD 687-701

RS-232, Misc work values 02BE-02CC 702-716

Number of characters in file name 02CD-02E2 717-738

Current logical file 02E3 -02FB 739-763

Current secondary address 02FC-02FD 764-765

Current device ' 0300-0301 768-769
Pointer to file name 0302-0303 770-771

I/O work pointers 0304 -0305 772-773

Banks: I/O data, filename 0306-0307 774-775

RS-232 input/output buffer addresses 0308 -0309 776-777

Keyboard decode pointer (bank 15) O30A-030B 778-779

Print siring work poinler 030C-030D 780-781

Number ol characters in keyboard buffer 030E-030F 782-783

Number of programmed chars waiting 0310-0311 784-785

Programmed key character index 0312-0313 786-787

Key shift flag: 0 = no shift 0314-0315 788-789

Key code: 88 if no key 0316 -0317 790-791

Key code: 88 if no key 0318-0319 792-793

Input from screen/from keyboard 031A-031B 794-795

40/80 columns: 0=10 columns

Graphics mode code

Character base: 0 = ROM, 4 = RAM

Misc work area

Pointer to screen line/cursor

Color line pointer

Current screen bottom margin

Current screen top margin

Current screen left margin

Current screen right margin

Input cursor log (row, column)

End-of-line for input pointer

Position of cursor on screen line

Row where cursor lives

Maximum screen lines, columns

Current I/O character

Previous character printed

Character color

Temporary color save

Screen reverse flag

0 = direct cursor: else programmed

Number of INSERTS outstanding

255 = Auto Insert enabled

Text mode lockout

0 = Scrolling enablled

Bell disable

Not used

Processor stack area

Tape error log

DOS work area

PRINT/USING work area

BASIC input buffer

Bank peek subrouline

Bank poke subroutine

Bank compare subroutine

JSR to another bank

JMP to another bank

Function execute hook [4C78]

Error message link

BASIC warm start link

Crunch BASIC tokens link

Print tokens link

Start new BASIC code link

Get arithmetic element link

Crunch FE hook

List FE hook

Execute FE hook

Unused

IRQ vector [FA65]

Break interrupt vector [B003]

NMI interrupt vector [FA40]

OPEN vector |EFBD]

The Transactor 29 July 1986: Volume 7, Issue Ol

031C

031E

0320

0322

0321

0326

0328

032A

032C

032E

0330

0332

0334

0336

0338

034A

0354

035E

0362

036C

0376

0380

0386

O39F

(BAB

03B7

03CO

03C9

03D2

03D5

03D6

03DA

-03 ID 796-797

-03 IF 798-799

-0321 800-801

-0323 802-803

-0325 804-805

-0327 806-807

-0329 808-809

-032B 810-811

-032D 812-813

-032F 814-815

-0331 816-817

-0333 818-819

-0335 820-821

-0337 822-832

-0339 824-825

-0353 842-851

-035D 852-861

-0361 862-865

-036B 866-875

-0375 876-885

-037F 886-895

-039E 896-926

902

-03AA 927-938

-03 B6 939-950

-03BF 951-959

-03C8 960-968

-03D1 969-977

-O3D4 978-980

981

-03D9 982-985

986

03DB -03DD 987-989

03DF 991

03E0 -03E1 992-993

03E2 994

03E3 995

03F0 -03F6 1008-1014

FFOO 65280

FFOl

FF02

FF03

FF04

FFOl -FF04 65281-65284

BankO:

0400 -07E7 1024-2023

07F8

0800

OAOC

OAOD

-07FF 2040-2047

-09FF 2048-2560

2572

2573

ROM Map

4000 Basic Enlry Jumps

4009

4023

4045

4112

417A

4189

418D

419B

1251

4267

4279

42CE

42D3

42D8

42 DC

42E2

42E7

42EC

42F1

42F6

42FB

4300

4305

430A

43E2

4417

46FC

47D8

4828

4846

484B

4A82

4B34

Basic Reslart

Basic Cold Start

CLOSE vector [Fl 88]

Sel-inpul vector [F106]

Set-output vector [F14C]

Restore I/O vector [F226]

Inpul vector [EF06]

Output vector |EF79]

Test-STOP vector [F66E]

GET vector |EEEB]

Abort I/O vector [F222]

Machine Lang Monitor link

LOAD link

SAVE link

Control code (low) link

High ASCII code link

ESC sequence link

Keyboard buffer

Tab slop bits

Line wrap bits

Logical file table

Device number table

Secondary1 address table

CHRGET subroutine

CHRGOT enlry

Fetch from RAM bank 0

Fetch from RAM bank 1

Fetch from RAM bank 1

Fetch from RAM bank 0

Fetch from RAM bank 0

Unused

Current BANK lor SYS, PEEK

1NSTR work values

Bank location for siring

Sprite work bytes

Accum*!: Overflow

Sprite work bytes

Graphic/Text backgrounds

Graphic/Multi color log

DMA link code

MMU configuration register

BankO

Bankl

Bank 14

Bank 14 over RAM 1

MMU load config registers

40-column screen memory

Sprite identity area (text)

BASIC pseudo-stack

CIA 1 interrupt log

CIA 1 timer enabled

0A0F

0A18

0A19

0A1A

0A1B

-0A17

0A1D-0AIF

0A20

0A21

OA22

0A23

0A24

0A25

OA26

0A27

0A2B

0A2C

0A2E

0A40

0A60

0AC0

0AC1

0B00

0BC0

ocoo

0E00

1000

100A

1100

1131

1I6F

1170

1171

1178

117A

117C

117E

11D6

11E6

11E7

11E9

11EB

1IEC

11 ED

I1EE

1204

120B

1210

1212

4B3F Execute/Trace Statement

4BCB Perform [stop]

4BCD Perform end]

Set-Up Basic Constants 4BF7 Setup FN Reference

Chime 4C86 Evaluate <or>

Set Preconlig Registers 4C89 Evaluate <and>

Registers For $D501 4CB6 Evaluate <compare>

Init Sprite Movement Tabs 4D2A Print'ready'

Print Startup Message

Set Basic Links

Basic Links

Chrget For $0380

Get From (S50) Bank

4D37 Error or Ready

4D3A Print 'out of memory'

4D3C Error

4DAF Break Entry

1 4DC3 Ready For Basic

Get From (S3F) Bank 1 4DE2 Handle New Line

Get From ($52) Bank 1 4F4F Rechain Lines

Get From ($5C) Bank 0 4F82 Reset End-of-Basic

Get From (S5C) Bank

Get From ($66) Bank

1 4F93 Receive Inpul Lint

1 4FAA Search B-Stack For Match

Gel From($61)BankO 4FFE MoveB-Stack Down

Get From ($70) Bank 0 5017 Check Memory Space

Gel From ($70) Bank

Get From ($50) Bank

Get From ($61) Bank

1 5047 Copy B-Stack Pointer

1 5050 Set B-Stack Pointer

1 5059 Move B-Slack Up

Get From ($24) Bank 0 5064 Find Basic Line

Crunch Tokens 50A0 Gel Fixed Pi Number

Check Keyword Malch 50E2 Perform [lisl

Keywords

Action Vectors

Function Vectors

Defunct Veclors

5123 List Subroutine

51D6 Perform [new]

51F3 SelUpRun

51F8 Perform [clr]

Unimplemented Commands 5238 Clear Stack & Work Area

Messages

Find Message

5250 Pudef Characters

5254 Back Up Text Pointer

Update Continue Pointer 5262 Perform [return]

-0A2A

-0A2F

-0A5A

-0A6D

-0AC4

-0BBF

-OBFF

-0DFF

-OFFF

-1009

-10FF

-1130

-U6E

-1173

-1177

-1197

-1I7B

-117D

-11D5

-11E5

-11E8

-11EA

-1IFF

-1207

-120C

-1211

-1213

2575-2583 RS-232 work values

2584 RS-232 receive pointer

2585 RS-232 input pointer

2586 RS-232 transmit pointer

2587 RS-232 send pointer

2588-2590 Sleep countdown; FFFF = disable

2592 Keyboard buffer size

2593 Screen freeze flag

2594 Key repeat: 128 = all, 64 = none

2595 Key repeat timing

2594 Key repeat pause

2595 Graphics/text toggle latch

2596 40-col cursor mode

2597-2600 40-col blink values

2601 80-col cursor mode

2602 40-col video $D018 image

2606-2607 80 col pages - screen, color

2624-2650 40/80 pointer swap SEO-FA

2656-2669 40/80 data swap $354-361

2752 PAT counter

2753-2756 ROM Physical Address Table

2816-3007 Cassette buffer

3008-30/1

3072-3583 RS-232 input, output buffers

3584-4095 System sprites (56-63)

4096-4105 Programmed key lengths

4106-4351 Programmed key definitions

4352-4400 DOS Command staging area

4401-4462 Graphics work area

4463 Trace mode: FF = on

4464-4467 Renumbering pointers

4468-4471 Directory work pointers

4472-4473 Graphics index

4474-4475 Float-fixed vector [849F]

4476-4477 Fixed-float vector [793C]

4478-4565 Sprite motion tables (8x11 bytes)

4566-4581 Sprite X/Y positions

4582 Sprite X-high positions

1583-4584 Sprite bump masks (sprite, backgnd)

4585-4586 Light pen values, X and Y

4587 CHRGEN ROM page, text [D8]

4588 CHRGEN ROM page, graphics [DO]

4589 Secondary address for RECORD

4590-4607 Unused "

4612-4615 PU characters! ,.$)

4619-4620 TRAP address: FFFF if none

1624-4625 End of Basic (Bank 0)

4626-4627 Basic program limit [FFOO]

528F Perform [data/bend]

529D Perform jrem]
52A2 Scan To Next Stmnt

52A5 Scan To Nexl Line

52C5 Perform [if)

5320 Search/Skip Begin/Bend

537C Skip String Constant

5391 Perform [else]

53A3 Perform [on]

53C6 Perform [let]

54F6 Check String Location

553A Perform [print"]

5540 Perform [cmd]

555A Perform [print]

5600 Print Format Char

5612 Perform [gel]

5635 Getkey

5648 Perform [input']

5662 Perform [input]

569C Prompl & Inpul

56A9 Perform [read]

57K4 Perform [next]

587B Perform [dim]

5885 Perform [sys]

58B4 Perform [Iron]

58B7 Perform [iroff]

58BD Perform [rreg]

5901 Assign <mid$>

5975 Perform [auto]

5986 Perform [help]

59AC Insert Help Marker

59CF Perform [gosub]

59DB Perform [goto]

5AI5 Understatement

5A1D

5A3D

5A60

5A9B

5ACA

5AF0

5AF8

5BAE

5BFB

5D19

5D68

5D75

5D89

5D99

5DA7

5DC6

5DDF

5DEE

5DF9

5E87

5EFB

5F34

5F4D

5F62

5FB7

5FD8

5FDB

5FE0

6039

608A

60B4

6OB7

60DB

60E1

1214 -1217

1218 -121A

121B -121F

1222

122F

1234 -1237

1239 -123E

123F -1270

123F -1248

1249 -1252

1253 -125C

125D -1266

1267 -1270

1271 -1274

1275

1276 -1278

1279 -127E

127F

1280

12B1

1300 -17FF

1800 -IBFF

1C00 -FBFF

1C00 -1FF7

4628-4631

4632-4634

4635-4639

4642

4655

4660-4663

4665-4670

4671-4720

4671-4680

4681-4690

4691-4700

4701-4710

4711-4720

4721-4274

4725

4726-4728

4729-4734

■1735

4736

4785

4864-6143

6144-7167

7168-64511

7168-8186

1FF8 -1FFF 8187-8191

2000 -3FFF 8192-16383

4000 -FBFF 16384-64511

Bankl:

0400 -FBFF 1024-64511

Bank 14: Same as Bank 15

D000 -DFFF 53248-57343

Bank 15:

4000 -CFFF

D000 -D02E

D400 -D41C

D500

D501 -D5O4

D5O5 -D506

D5O7 -D50A

D600 -D601

10 -11

12 -13

1A

IF

D800 -D8E7

DC00 -DC0F

DD00 -DD0F

DF00 -DF0A

E000 -FEFF

FF05 -FFFF

Put Sub To B-Stack

Perform [go]

Perform [cont]

Perform [run]

Perform [restore]

16384-53247

53248-53294

54272-54300

54528

54529-54532

54533-54534

54535-54538

54784-54785

16-17

18-19

26

31

55296-56295

56320-56336

56576-56591

57088-57098

57344-65279

65285-65535

Keywords To Renumber

Perform [renumber

Renumber-Continued

Renumber Scan

Convert Line Number

Get Renumber Star

Count Off Lines

Add Renumber Inc

Scan Ahead

Set Up Block Move

Block Move Down

Block Move Up

Check Block Limit

Perform [for]

Perform [delete]

Get Line Number Range

Perform [pudef]

Perform [trap]

Perform [resume]

Reinstate Trap Poin

Syntax Exit

Print 'can't resume'

Perform [do]

Perform [exit]

Perform [loop]

Print loop not found'

Print 'loop without do'

Eval While/Until Argument

Define Programmed Key

DO work pointers

USR program jump [7D28]

RND seed value

Sound tempo

Music sequencer

Note image

Current env pattern

Envelope tables.,

AD(SR) pattern

(AD)SR pattern

Waveform pattern

Pulse width pattern

Pulse width hi pattern

Note: xx,xx,volume

Previous volume image

Collision IRQ task table

Collision IRQ address tables

Collision mask

Collision work value

PEN work value

Unused

Reserved for key functions

BASIC RAM memory (text)

Video (color) matrix (hi-res)

Sprite identities (hi-res)

Screen memory (hi-res)

BASIC RAM memory (hi-res)

Basic variables, arrays, s rings

, below, except:

Character generator ROM

ROM: BASIC

40-col video chip 8564

SID sound chip 6581

Memory Management Unit 8722

MMU primary config reg ster

MMU preconfig registers

MMU mode, ram registers

MMU page 0, page 1 regs

80-column CRT contr 8563

X, Y positions

On-chip RAM address

Background color

On-chip RAM data

Color nybbles

CIA 1 (IRQ) 6526

CIA2(NM1)6526

DMA slot

ROM: Kemal

ROM: Transfer, Jump Table

610A Perform [key]

61A8 Perform [pain

627C Check Painting Split

62B7 Perform [box]

642B Perform [sshape]

658D Perform [gshape]

668E Perform [circle]

6750 Draw Circle

6797 Perform [draw

67D7 Perform [char]

6955 Perform [locale]

6960 Perform [scale

69E2 Perform [color]

6A4C Color Codes

6A5C Log Current Colors

6A79 Perform [sent r]
6B06 Fill Memory Page

6B17 Set Screen Co jr

6B30 Clear Hi-Res Screen

6B5A Perform [graphic]

6BC9 Perform [bank]

6BD7 Perform [sleep]

6C09 Multiply Sleep Time

6C2D Perform [wait

6C4F Perform [sprite]

6CB3 Bit Masks

6CC6 Perform [movspr]

6DE1 Perform [plav

6E02 Analyze Plav Character

6EB2 Set SID Sound

6EFD Play Error

6F03 Dolled Note

6F07 Note Length Char

6F1E NoleA-G

The Transactor 30 July 1986: Volume 7, Issue Ol

6F52

6F69

6F6C

6F78

6FD7

6FE-1

6FF.7

6FEC

702F

7039

70-16

70C1

7161

7190

71136

71C5

71 EC

72CC

7335

7372

7691

76EC

77B3

7701

77D7

77DA

77DD

77E7

77EA

77EF

78D7

793C

7950

795C

796C

7978

7A85

7AAF

7B3C

7B46

7CAB

7D25

7D28

7E3E

7E71

8000

8020

804A

8052

8076

80C5

80E5

80F6

8139

8142

816B

8182

818C

819B

8203

824D

82AE

82FA

831E

8361

837C

8397

83E1

8407

8434

8490

849A

849F

84A7

84AD

84C9

84D0

84D9

84DD

84 E0

84 E5

84 F5

84 FA

8528

853B

85AE

85BF

85D6

860A

861C

.. votxum..

Sharp

Flat

Resl

Perform [tempo]

Voice Times Two

Length Characters

Command Characters

Chime Seq

SID Voice Steps

Perform [filler]

Perform [envelope]

Perform [collision]

Perform [sprcolor]

Perform [width]

Perform [vol]

Perform [sound]

Perform [window]

Perform [boot]

Perform [sprdefj

Sprite Vectors

Perform [sprsav]

Perform [fast]

Perform [slow]
Type Malch Check

Confirm Numeric

Confirm String

Print 'type mismatch'

Prinl 'formula too complex1

Evaluate Expression

Evaluate llein

Fixed-Float

Eval Within Parens

Check Cumin,i

Syntax Error

Search For Variable

Unpack RAM 1 lo FAC'l

Locate Variable

Check Alphabetic

Create Variable

Set Up Array

Print 'bad subscript'

Prinl illegal quantity'

Compute Array Size

Array Pointer Subrln

Evaluate <fre>

Decrypt Message

Evaluate <val>

String lo Floal

Evaluate <dec>

Evaluate <peek>

Perform [poke]

Evaluate <err$>

Swap x Wilh .v

Evaluate <hex$>

Byte to Hex

Evaluate <rgr>

Get Graphics Mode

Evaluate <rclr>

Evaluate <joy>

Evaluate <pot>

Evaluate <pen>

Evaluate <pointer>

Evaluale <rsprite>

Evaluate <rs|>co!or>

Evaluale <bump>

Evaluate <rspos>

Evaluate <xor>

Evaluale <rwindow>

Evaluale <rnd>

Rnd Multiplier

Value 32768

Floal-Fixed Unsigned

Evaluale Fixed Number

Float-Fixed Signed

Float (.y,.a)

Evaluate <pos>

Check Direct

Prinl 'illegal direct'

Print "undef'd function'

Set Up 16 Bl Fix-Float

Print 'direct mode only'

Perform [del]

Check FN Syntax

Perform [In

Evaluale <s rS>

Evaluate <chrS>

Evaluale <lefl$>

Evaluate <rght$>

Evaluate <mid$>

The Transactor

864D

8668

866E

8677

8688

869A

874E

877B

87E0

87F1

8803

8815

882E

8831

8845

8848

8917

894E

895D

899C

89CA

8A0E

8A24

8A27

8A89

8AB4

8AE3

8B17

8B2E

8B33

8B38

8B49

8B4C

8BD4

8BF9

8BFC

8C00

8C28

8C38

8C47

8C57

8C65

8C68

8C75

8C84

8C87

8CC7

8CFB

8D22

8DB0

8E17

8E26

8E32

8E42

8F76

8F7B

8F9F

8FB7

8FBE

8FCI

8FFA

9005

9033

90D0

90D8

90DF

90E5

90EB

90FD

9112

9129

912C

918D

919A

91AE

91DD

91E3

91EB

91F6

9243

9251

9257

925D

9263

9269

926F

9275

927B

9281

9287

Pull Siring Parameters

Evaluate <len>

Exit String Mode

Evaluale <asc>

Calc String Vector

Set Up String

Build String to Memory

Evaluale String

Clean Descriptor Stack

Input Bvle Parameter

Params For Poke/Wait

Float/Fixed

Subtract From Memory

Evaluate <subtract>

Add Memory

Evaluate <add>

Trim FAC'l Left

Round Up FAC'l

Print 'overflow'

Log Series

Evaluale <log>

Add 0.5

Multiply By Memory'

Evaluate <multipiy>

Unpack ROM lo FAC'2

Unpack RAM 1 lo FAC'2

Adjust FAC'l/'2

Multiply By HI

+ 10

Print 'division by zero'

Divide By 10

Divide Into Memory

Evaluate <divide>

Unpack ROM lo FAC'l

Pack FAC'l lo S5E

Pack FAC'l to $59

Pack FAC'l to RAM 1

FAC'2 lo FAC'l

FAC'l lo FAC'2

Round FAC'l

Gel Sign

Evaluale <sgn>

Byte Fixed-Float

Fixed-Float

Evaluate <abs>

Compare FAC* 1 lo Memory

Floal-Fixed

Evaluate <int>

String to FAC'l

Get Ascii Digil

Conversion Values

Print in'...

Print Integer

Float lo Ascii

+ 0.5

Decimal Constants

T! Constants

Evaluale<sqr>

Raise lo Memory' Power

Evaluate <power>

Evaluate <negate>

Exp Series

Evaluate <exp>

I/O Error Message

Basic 'open'

Basic chroul'

Basic input'

Redirect Output

Redirect Input

Perform [save]

Perform [verify]

Perform [load]

Perform [open]

Perform [close]

Get Load/Save Parameters

Gel Nexl Byte Value

Get Character or Abort

Move lo Next Parameter

Get Open/Close Params

Release I/O Siring

Call 'status'

Call 'setlls'

Call 'selnam'

Call 'getin'

Call 'chroul'

Call 'clrchn'

Call 'close'

Call 'clall'

Print Following Text

Set Load/Save Bank

928D

9293

9299

92EA

9409

9410

9459

9485

94B3

91E3

9520

99C1

9B0C

9B30

9BFB

9019

9C70

9CCA

9CE3

9D1C

9D2-1

9DF2

9E2F

9E32

9F29

9F3D

A022

A07E

AUD

A134

A157

A16F

A18C

A1A4

A1A7

A1C8

A218

A267

A2A1

A2D7

A322

A32F

A346

A362

A36E

A37C

A3BF

A5E7

A5EA

A5ED

A627

A7E1

A80D

A8-15

A81D

AAIF

AA24

AA29

AE64

AF00

B000

B009

B00C

B021

B03D

B050

B053

B08B

BOBC

BOBF

B0E3

B0E6

BOFC

B11A

B12A

B13D

B152

B194

B1AB

B1CC

BID6

B1DF

B1E8

B20E

B231

B234

B2C3

B2C6

B2CE

B337

Call plot'

Call gel'

Make Room For String

Garbage Collection

Evaluate <cos>

Evaluate <sin>

Evaluate <tan>

Trig Series

Evaluale <atn>

Series

Print Using

Evaluate <instr>

Evaluate <rdol>

Draw Line

Plol Pixel

Examine Pixel

Set Hi-Res Color Cell

Video Matrix Lines Hi

Posilion Pixel

Bil Masks

Calc Hi-Res Row/Column

Restore Pixel Cursor

Parse Graphics Command

Get Color Source Param

Conv Words Hi

Conv Words Lo

Move Basic to SI CO 1

Perform [catalog/directory]

Perform [dopen]

Perform [append]

Find Spare SA

Perform [dclose]

Perform jdsave]
Perform [dverifv]

Perform jdloadj
Perform [bsave]

Perform [bload]

Perform [header]

Perform [scratch]

Perform [record]

Perform [dclear]

Perform [collect]

Perform [copy]

Perform [concat]

Perform [rename]

Perform [backup]

Parse DOS Commands

Print 'missing file name'

Prinl illegal device number'

Print 'string loo long'

DOS Command Masks

Print "are vou sure?'

Release Siring

Sel Bank 15

IRQ Work

Perform [stash]

Perform [fetch]

Perform [swap]

Encrypted Message

Basic Vectors

Perform [monitor]

Break Entry

Print 'break'

Print'call'entry

Prinl 'monitor'

Perform [r|

Print 'pc sr...'

Get Command

Error

Print".''

Perform [x]

Commands

Vectors

Read Banked Memory

Write Banked Memory

Compare Banked Memory

Perform [m]

Perform [;]

Perform [>]

Prinl esc-o. up'

Perform [g]

Perform [j]

Display Memory

Prinl ':<rvs-on>'

Perform [c]

Perform [l]

Add 1 to Op 3

Do Nexl Address

Perform [h]

Perform [Isv]

31

B3C7

B3DB

B406

Hxii;

B57C

B57F

B58B

B599

B5BI

H5IM

B5F5

B659

B6A1

B6C3

B715

B721

B7A5

R7CF.

B88A

B88E

B892

B8A5

B8A8

B8AD

B8B4

B8B9

B8C2

B8D2

B8E7

B8E9

B901

B90E

B922

B93C

B950

B960

B974

B983

B9B1

BA07

BA47

BA5D

BA90

cooo

C006

C009

cooc

COOF

C012

C018

C021

C024

C027

C02A

C02D

C033

C04C

C065

C06F

C07B

C142

C150

C156

C15C

C17C

C194

C234

C29B

C2BC

C2FF

C30C

C320

C33E

C363

C37C

C3A6

C3DC

C40D

C4A5

C53C

C53E

C55D

C651

C6DD

C6E7

C72D

C77D

C79A

C7B6

C802

Print 'error'

Perform [f]

Perform [a]

Print 'space <esc-q>'

Check 2 A-Matches

Check A-Match

Try Nexl Op Code

Perform [d]

Print'<cr><esc-q>'

Display Instruction

Prinl '<3 spaces>'

Classify Op Code

Get Mnemonic Char

Mode Tables

Mode Characters

Compacted Mnemonics

Input Parameter

Read Value

Number Bases

Base Bits

Display 5-Digil Address

Display 2-Digit Byte

Print Space

Prinl Cursor-Up

New Line

Blank New Line

Oulpul 2-Digit Bvte

Byte lo 2 Ascii

Get Input Char

Get Character

Copy AddO lo Add2

Calculate Add2-AddO

Subtract

Subtract 1

Increment Pointer

Decrement Pointer

Copy to Register Area

Calculate Step/Range

Perform [$ + &%]

Convert to Decimal

Transfer Address

Output Address

Perform |@]

-cint-

Get From Keyboard

Screen Input Link

Screen Prinl Link

-screen-

-senkey-

-plol-

Define FN Key

IRQ Link

Upload 80 Col

Swap 40/80

Set Window

Screen Address Low

Screen Address High

I/O Link Vectors

Keyboard Shift Vectors

Initialize Screen

Reset Window

Home Cursor

Golo Lefl Border

Sel Up New Line

Do Screen Color

(IRQ) Split Screen

Get a Key

Input From Screen

Read Screen Char

Check For Quotes

Wrap Up Screen Print

Ascii lo Screen Code

Check Cursor Range

Do New Line

Insert a Line

Scroll Screen

Delete a Line

Move Screen Line

Clear a Line

Set 80-column Counter to 1

Set 80-column Counter

Keyboard Scan Subrln

Key Pickup & Repeat

Programmed Keys

Flash 40 Column Cursor

Print lo Screen

Esc-o (escape)

Vectors

Print Control Char

Print Hi-Bit Char

C854 Chr$(29) Cursor Right

C85A ChrS(17) Cursor Down

C875 ChrS(!57)Cursor left

C880 Chr$(14) Texl

C8A6 Chr$(ll) Lock

C8AC Chr$(12) Unlock

C8B3 Chr$(19) Home

C8BF Chr$(146)ClearRvsMode

C8C2 Chr$(18) Reverse

C8C7 Chr$(2) Underline-On

C8CE Chr$(130) Underline-Off

C8D5 Chr$(15) Flash-On

C8DC Chr$(143) Flash-Off

C8E3 Open Screen Space

C91B Chr$(20) Delete

C932 Restore Cursor

C94F Chr$(9) Tab

C961 Chr$(24) Tab Toggle

C96C Find Tab Column

C980 Esc-z Clear All Tabs

C983 Esc-v Set Default Tabs

C98E Chr$(7) Bell

C9B1 Chr$(10) Linefeed

C9BE AnalvzeEsc Sequence

C9DE Vectors

CAM Esc-t Top

CA16 Esc-b Botlom

CA1B Sel Window Part

CA24 Exit Window

CA3D Esc-i Inserl Line

CA52 Esc-d Delete Line

CA76 Esc-q Erase End

CA8B Esc-p Erase Begin

CA9F Esc-@ Clr Remainder of Scrn

CABC Esc-v Scroll Up

CACA Esc-w Scroll Down

CAE2 Esc-I Scroll On

CAE5 Esc-m Scroll Off

CAEA Esc-c Cancel Auto Insert

CAED Esc-a Auto Inserl

CAF2 Esc-s Block Cursor

CAFE Esc-u Underline Cursor

CB0B Esc-e Cursor Non Flash

CB21 Esc-f Cursor Flash

CB37 Esc-g Bell Enable

CB3A Esc-h Bell Disable

CB3F Esc-r Screen Reverse

CB48 Esc-n Screen Normal

CB52 Esc-k End-of-Line

CB58 Gel Screen Char/Color

CB74 Check Screen Line of Lo

CB8I Extend/Trim Screen Line

CB9F Sel Up Line Masks

CBB1 Esc-j Slarl-of-Line

CBC3 Find End-of-Line

CBED Move Cursor Right

CC00 Move Cursor Left

CC1E Save Cursor

CC27 Print Space

CC2F Print Character

CC32 Print Fill Color

CC34 Put Char to Screen

CC5B Get Rows/Columns

CC6A Read/Set Cursor

CCA2 Define Function Key

CD2C Esc-x Switch 40/80

CD57 Position 80-col Cursor

CD6F Sel Screen Color

CD9F Turn Cursor On

CDCA Sel CRTC Register 31

CDCC Set CRTC Register

CDD8 Read CRTC Register 31

CDDA Read CRTC Register

CDE6 Sel CRTC lo Screen Address

CDF9 Sel CRTC lo Color Address

CE0C Sel Up 80 Column Char Sel

CE4C Ascii Color Codes

CE5C System Color Codes

CE6C Bit Masks

CE74 40-Collnil Values ($E0)

CE8E 80-Collnil Values ($0A40)

CEA8 Prog Key Lengths

CEB2 Prog Key Definitions

E000 Reset Code

E04B MMU Set Up Byles

EO56 -restor-

E05B -veclor-

E073 Vectors lo $0314

E093 -ramtas-

E0CD Code For High RAM Banks

July 1986: Volume 7, Issue Ol

E105

E109

El DC

E1F0

E242

E24B

E263

E26B

E2BC

E2C0

E2C4

E2C7

E2F8

E33B

E33E

E43E

E4D2

E4EO

E5O3

ES15

E526

E535

E545

E54E

E557

E560

E569

E573

E59F

E5BC

E5C3

E5D6

E5FB

E5FF

Ffi4A

RAM Bank Masks

-ioinit-

Sel Up CRTC Registers

Check Special Reset

Reset lo 64/128

Switch lo 64 Mode

Code lo $02

Scan All ROMs

ROM Addresses Hi

ROM Banks

Print 'cbm' Mask

VIC 8564 Set Up

CRTC 8563 Set Up Pairs

-talk-

-listen-

-acptr-

-second-

-tksa-

-ciout- Print Serial

-untlk-

-unlsn-

Reset ATN

Set Clock High

Set Clock Low

Set Data High

Sel Data Low

Read Serial Lines

Stabilize Timing

Restore Timing

Prepare For Response

Fast Disk Off

Fast Disk On

Fast Disk On/Off

(NMI) Transmit RS-232

RS-232 Handshake

E68E

E69D

E75F

E795

E7CE

E7EC

E805

E850

E878

E8A9

E8D0

E919

F.980

E987

E99A

E9BE

E9C8

E9DF

E9E9

E9F2

EA15

EA26

EA7D

EA8F

EAA1

EAEB

EC1F

ED51

ED5A

F.D69

ED8B

ED90

EE2E

EE57

KF.9R

Set RS-232 Bit Count

(NMI) RS-232 Receive

Send to RS-232

Connect RS-232 Input

Get From RS-232

Interlock RS-232/Serial

(NMI) RS-232 Control I/O

RS-232 Timings

(NMI) RS-232 Receive Timing

(NMI) RS-232 Transmit Timing

Find Any Tape Header

Write Tape Header

Get Buffer Address

Get Tape Buffer Start & End Addrs

Find Specific Header

Bump Tape Pointer

Print 'press play ...'

Check Tape status

Print 'press record..'

Initiate Tape Read

initiate Tape Write

Common Tape Code

Wait For Tape

Check Tape Stop

Set Read Timing

(IRQ) Read Tape Bits

Store Tape Chars

Reset Pointer

New Char Sel Up

Send Transitn to Tape

Write Data to Tape

(IRQ) Tape Write

(IRQ) Tape Leader

Wind Up Tape I/O

Switch IRQ Vector

EEA8

EEBO

EEB7

EEC1

EEC8

EEDO

EEEB

EF06

F.F48

EF79

EFBD

FOBO

FOCB

F106

F14C

F188

FIE I

F2O2

F212

F222

F226

F23D

F265

F27B

F32A

F3A1

F3EA

F48C

F4BA

F4C5

F503

F50C

F50F

F521

F533

IRQ Vectors

Kill Tape Motor

Check End Address

Bump Address

(IRQ) Clear Break

Control Tape Motor

-getin-

—chrin—

Get Char From Tape

-chrout-

-open-

Set CIA to RS-232

Check Serial Open

-chkin-

-chkout-

-close-

Delete File

Search For File

Sel File Parameters

-clall-

-clrchn-

Clear I/O Path

-load-

Serial Load

Tape Load

Disk Load

Burst Load

Close Off Serial

Gel Serial Byle

Receive Serial Byte

Toggle Clock Line

Print 'uO' Disk Reset

Print 'searching'

Send File Name

Print loading1

F53E

F5B5

F5BC

F5C8

F5F8

F63D

F65E

F665

F66E

F67C

F67F

F682

F685

F688

F68B

F68E

F691

F694

F697

F6B0

F7IE

F722

F731

F738

F73F

F7! 1

F757

F75C

F75F

F763

F772

F781

F786

F79D

F7A5

-save-

TerminateSerial Input

Print saving'

Save to Tape

-udtim-

Watch For RUN or Shift

-rdtim-

-seltim-

-slop-

Print 'too many files'

Prim'file open'

Print 'file nol open'

Print 'file not found'

Prim 'device nol presen

Print 'not input file'

Print 'not output file'

Print 'missing file name

Prinl 'illegal device no

Error '0

Messages

Prinl II Direcl

Prinl I/O Message

-selnam-

-setlfs-

Sel Load/Save Bank

-rdsl-

Set Status Bit

-selmsg-

Set Serial Timeoul

-memlop-

-membot-

-iobase-

Search For SA

Search & Sel Up File

Trigger DMA

F7AE

F7BC

F7C9

F7D0

F7DA

F7E3

F7EC

F7F0

F800

F85A

F867

F890

F90B

F92F

F98B

F9B3

F9FB

FA08

FA 15

FA17

FA40

FA65

FA80

FAD1I

FB32

FB8B

FBE4

FFOO

FF05

FF17

FF33

FF3D

FF47

FFFA

Get Char From Memory

Store Loaded Byte

Read Byle lo be Saved

Get Char From Memorv Bank

Store Char lo Memory Bank

Compare Char With Memory

Load Mem Control Mask

Bank Masks

Subrlns to SO2A2-SO2FB

DMA Code to S03F0

Check Auto Slarl ROM

Check For Boot Disk

Prinl 'booting'

Prinl'...'

Wind Up Disk Bool

Read Nexl Boot Block

To 2—Digit Decimal

Block Read

Prinl'T

Prinl a Message

NMI Sequence

(IRQ) Normal Entry

Kevboard Matrix Un-Shifted

Keyboard Matrix Shifted

Kevboard Matrix C-Key

Keyboard Matrix Control

Keyboard Matrix Caps Lock

MMU Controls

NMI Transfer Entry

IRQ Transfer Entry

Return From Interrupt

Reset Transfer Entry

Jumbo Jump Table

Transfer Vectors

8502 Processor I/O Registers DMA Controller

i ii ji ir j

inn]

X

X

ll^m 1 =0111

Time
Motor

() = in 1 -out

Tape
Oul|)iil

1 = oul

HiRes

1 =Oli!

l.oRe.s

l=oul

Color

Access

D50I-
[if.ul

i 1311.-,

D506

D5O7

D508

D509

D50A

8722 Memory Management Unit

RAM seled
0-3

40/80

Key Modi

Video-Bank

—

—

HIGH RAM
/ROM

Preconfigura

Similar to C

Cartr-Sense
Color-Bank

X X

Zero Page Po

MID KAM
/ROM

on registers,

500. above

Pasl
Disk X

Shared RAM
hi low

liter (SIHIOOI

Stack Page Pointer (SIXMO)

.0
RAM

X

CGEN

Z80

Shared RAM
0= IK

1.

11

L

II

1)01 II10

1)001)1

54528

54529-
54532

5453:)

54534

54515

54536

54537

54538

DFOO

DF01

DF02

DF03

DF04

DF05

DRI6

DF07

DF08

DF09

DFOA

Busy

Exec

—

Paull

Sum

X

X

X X X X X

X IRQ In;- Mode

1.

Host Address

11

i.

— Expansion Address

H

X

—

X X X X Expansion Bank

1.

Transler Length

II

Checksum

Ver ion. Maximum-Memory

57088

5708!)

57091

57091

57092

57093

5709-1

57095

57091

57097

57098

6526 CIA 1 (IRQ)

(Same as CIA 1 for C64, until DC0C)

6526 CIA 2 (NMI)

(Same as CIA 2 for C64)

DCO0

DC0I

DC02

DC03

DC04

DC05

DC06

DC07

DGIC

DC0D

DCOE

DCOF

Paddle Seled
A 1! Fire Right

Joystick 0
Left Down Up

Keyboard Row Seled (inverted)

Fire Right
Joystick 1

' Left Down

Keyboard Column Read

Up

SFF-.All Output

$00-All Input

—

—

TimerA

Timer B

1.

1.

H

Serial (shift) Register

IRQ X

S Reg I/O

X Flag S.Reg

Load , O/S

Load , O/S

X Tiin.B

Timer A
Toggle |

Timer B

Tim.A

Slarl

Start

PRA 56321

PRB 56321

DDRA 56322

DDRB 56323

TAI. 56324

TAII SKffi

TBL 5632f

TBII 56327

5G332

56333

56334

56335

DDO0

DDII1

DD02

DD03

DD04

DD05

DD06

DD07

DD0D

DDDE

DDOF

Sena
IN

DSR
\

IN

Clock
IN

ITS

IN

IN

Serial
OUT

OUT

Clock
OUT

DCD'
IN

(HIT

ATN

OUT

Rl'
IN

OUT

RS232
OUT

DTR
OUT

OUT

Video

RTS

OUT

OUT

Block

RS232
IN

OUT

$06 for RS232

—

—

Tim

Tim

erA

erB

1.

H

1.

II

RS232
IN 1 "S"

Tuner
A

Miner
A Stan

Inner
BSl.nl

' Connected but nol used by OS

■■ PRB is the Parallel User Port

DDRA = WFal reset

PRA 5[i57li

PRB'' 56577

DDRA 56578

DDRB 56579

TAL 56580

TAII 56581

TBI. 56582

TBII 56583

ICR 56589

CRA 56501)

CRB 56591

The Transactor 32 July 1986: Volume 7, Issue Ol

8564 Video Chip

Control & Miscellaneous Registers

Don

D012

D013

DOM

D016

D018

D019

D01A

D020

D021

D022

D023

D024

D025

D026

D02F

D030

Extended

Clr. Mode

Kit

Mao

Display

Enable

Row
Select

Y-Scroll

Raster Register

- Light Pen Input
X

Y

X X Reset Multi
Colour

Column
Seleel

X-Scroll

Screen

VMI3 . VM12 . VM11 . VM10

IRQ Interrupt Sense:

Interrupt Enable:

Character Base
CB13 CB12 CBIl
DgTTi
Pen

Ligfii
Pen

Spr-Spr

Collision

Spr-Spr

I 'ollisiuns

Spr-Biick

Collision

Spr-Back

Collisions

X

Raster

Raster

X

X

X

X

X

X

X

XXX

XXX

Colour Registers

Exterior Colour (Border)

Background Colour "0

Background Colour "1

Background Colour #2

Background Colour *3

Sprite MultiColour *()

Sprite MultiColour "1

x x [Keyboard Rows]

Y v Y -r- , Fast
XXX lesl clock

53265

53266

53267

53268

53270

53272

53273

53274

53280

53281

53282

53283

53284

53285

53286

53295

53296

6581 SID Sound Chip

(Identical to 6581 onCivi)

Voice 1

D400

D40I

D4O2

D403

D404

D405

D406

Voice 2 Voice 3

D4II7 WOE

D4O8 D40F

Dill!) D4II)

D4IIA D41I

1)401! D-112

D40C D413

D40D D414

D415

D4I6

-

0

NSF.

(1 0

Voice IVpe
, PUL , SAW

Attack lime
, 2ms-l8sec

Sustain Lt-vi

Frequency

Pulse Width

(1

TRI |

1

i 1

Decay
, finis-2

Release
6ms-2

inie:

tme

1.

1.

L

II

Key

Voices are "write-only"

\

0

toll

0

Reso

Pass
HI

ar ce

.1
!P

0

Filter F

1.0

(

equs

i;

|

ncy

Filler Voi
1 | V3

Master Vol

es

jme

L

H

VI

Voiee 1

54272

54273

54274

54275

54276

54277

54278

54293

54292

512%

Voice 2

54279

54281)

54281

54282

54283

54284

54285

VoiceS

54286

54287

54288

54283

5429(1

54291

54292

Filter and Volume (write only)

D4I9 Paddle X (A/I)'I)

Paddle Y(A/D "2)

Noise 3 (random)

F.nvelopc 3

Sense (read only)

Noie: Special Voice Features

(TEST, RING, MOD, SYNC)

are omitted [rum the above diagram

Sprite Sprite

0 7

1 *

D(K)t) D00E

D001 D00F

D027 D02E

8564 Video Chip

Sprite Registers

X Position

Y Position

Sprite Colour

Sprite

0

1

53248

53249

53287

Bit For Sprite*

8563 80-Column CRT Controller

DfiOO read (s

D60I)

D600

54784

I)$OI)

1 Sill

2SO2

3 $03

4 $04

5 $05

6 $06

7SO7

8 $08

9 $09

IDSOA

11 SOB

I2S0C

13 SOD

14S0F

15 SOP

16 $10

I7S1I

IS $12

HI $13

20 $14

21 SIS

22*16

23 $17

24 $18

25 $19

211SIA

27 SIB

28 SIC

29 $10

30 Sit'

31$IF

32 $20

33 $21

34 $22

35 $23

36 S24

atus):

Status
Ughl
Pen

Verl
Blank X X X X X

DfOI

54785

Horizontal Total

Horizontal Characters Displayed (80)

H jrizonlal Sync position

Vertical Sync Width

X

X

X

X

X

X

X

X

X

—

—

—

Horizontal Svnc Width

Vertical Total

X X Vertical Total Adjust

Vertical Displayed (25)

Vertical Sync Position

X

X

Curs{

X

X

Charac

X

Block
Copy

Bit
Map

X

Scrn
RVS

Colour

Enable

X

X

Mode

X

XXX Interlace

Scan Lines per Character

Cursor Start

Cursor End

Display Address

H

Curaot Address

H

Light Pe i Input

H
Video RAM Address (See register 31)

11

Coloui Address —
1.

er Total

X

Blink

Rate

Semi
Graph

Character Display Horizontal

Character Display Vertical

V Scroll

Wide
Pixel

Foreground Colour

H Scroll

Backgrou id Colour

Scroll Control Horizontal

Char Set Address

X X X

RAM X X X X

Underline Scan Line Count

Character Count

Video RAM data (see registers 18,19)

II

Block Copy Start Address

X X X

begin
Display F.nable

end

X DRAM Refresh Rale

54784

Typical

Value

126

80

102

1 and 3

32 or 39

0

25

29 or 32

•

■

;

(1

0

varies

varies

varies

varies

8

0

:„

32

B4or71

2411

0

32

7

varies

varies

varies

varies

125

101)

5

DO 10

D015

D017

D01B

D01C

DO ID

DO IE

D01F

7

I

6
1

5 13 2

1 i i 1

X-Position High

Sprite Enable Flags

Y-Expand

Background Priority

Sprite MultiColour Mode

X-Expand

Interrupt: Sprite Collision

Interrupt: Background Collision

]

1

0

i

Sprite

7

I

53262

53263

53294

53264

53269

53271

53275

53276

53277

53278

53279

The Transactor 33 July 1986: Volume 7, Issue Ol

The C128 -

You Can Bank On It

Jim Butterfield

Toronto, Ontario

You may have noticed that the Commodore 128 has sixteen "memory

banks". In Basic, you may call whatever bank you want (for PEEK,

POKE, SYS or WAIT) by using the BANK command with a value from

Oto 15. Similarly, machine language types will reference banks in the

monitor by prefixing an address with a digit from 0 to F - the same

bank values of 0 to 16.

However, the average programmer - with no cartridge, internal ROM,

or RAM expansion - can only make use of four of these numbers. The

only ones that make sense are banks 0, 1, 14 and 15 (hex 0, 1, E, and

F)

What about the other numbers? Banks 2 and 3 are reserved for

memory expansion. Banks 4 to 7 and bank 12 are only useful if the

empty socket inside your machine has been fitted with an "internal"

ROM chip. Banks 5 to 11 and 13 are only useful if a cartridge ROM is

plugged into your machine. And even if you have these extra things

fitted, chances are that a commercial software house has taken care of

all the banking you're likely to need, leaving you with little to look at

for fun.

1 don't like the term 'bank' as it is used on this machine. These

numbers represent configurations; each so-called bank is an assem

bly of varying parts of memory.

Only 'Bank 0' is not a mixture: it uses one kind of memory only, the

RAM where your Basic programs are held (usually called RAM 0). All

the others are mixtures of different types of memory appearing at

various addresses. Even bank 0 is slightly "impure" - addresses hex

FF00 to FF04 are not RAM, they hold a special memory control chip

called the MMU (memory management unit).

Bank 1, for example, is almost entirely the RAM where Basic's

variables, arrays and strings are stored (RAM 1). But there's a little bit

of bank 0 still in there, at addresses 2 to 1023; and the MMU is still

present at FF00 to FF04. In fact, these items will be there in all

"normal" configurations.

Banks 0 and 1, then, are pure RAM, random access memory. You can

store things there, and you can read the contents of these addresses.

But you'd have trouble running most machine language programs in

one of these banks (don't let terminology throw you: I mean, "in one

of these configurations"). You have no input/output paths available

from these configurations, and you don't have the built-in operating

system (the 'Kernal ROM') to help the program do its job. In most

cases, you'd find bank 15 (hex F)to be much more useful for running a

program.

Excuse the hexadecimal numbers, but serious architecture students

will want to see them that way. Bank 15 (F) has RAM 0 from address 2

to $3FFF; above that is the ROM that holds the Basic logic, from 4000

to BFFF; above that is the Kernal operating system, in two chunks

from C000 to CFFF and E000 to FFFF; and finally, the block from

D000 to DFFF is used for the Input/Output (I/O) chips. If you need to

use the character generator, Bank 14 (E) has the same architecture

except that the block from D000 to DFFF contains the character set

instead of I/O.

When you give a BANK command, nothing happens; the number you

supply is stored (at address $03D5). It won't be used until you give a

command which needs this number: POKE, PEEK, SYS, WAIT and

some of the DOS commands such as BLOAD and BSAVE. Even then,

the computer will only set up the configuration for a fleeting moment

while it transfers material to or from the selected bank.

Roll Your Own

So you have only banks 0,1, 14 and 15 for your work. No problem for

a Basic programmer who might occasionally PEEK and POKE. But for

the serious machine language programmer, it's somewhat limiting. To

keep the Kernal and I/O, the programmer is forced to select BANK 15;

and that limits the program to RAM in the area below $4000 (decimal

16384). This could be somewhat restricting, especially when a high-

resolution screen might reside in the same area.

There's hope. In fact, there are sixteen architectures that the ML

programmer can use. Only four of them have BANK numbers, but the

others can be reached by storing a value at $FF00.

Table 1 shows all the practical combinations. Here's a quick rundown

on some of the most important:

00 - Storing this value in FF00 causes the C128 to take up its

"normal" BANK 15 configuration. Use this before returning to Basic.

3F and 7F - Storing $3F into FFOO creates the BANK 0 architecture;

storing $7F creates BANK 1. Careful: you have no I/O or Kernal ROM.

There's a shortcut to these architectures: storing anything to FF01

creates Bank 0; storing anything to FF02 creates Bank 1.

OE and 4E - Storing $0E into FFOO creates the RAM 0 for addresses

up to BFFF; storing $4E creates RAM 1 for this area. The Kernal and 1/

O take up their normal positions. This are the "ideal" configurations

for serious machine language stuff: 0E for a program in RAM 0, and 4E

for a program in RAM 1. Basic is removed, and you have lots of

memory to play with.

OF and 4F - These are similar to 0E and 4E above, except that the

character generator chip is at addresses $D000 to DFFF instead of I/O.

The Transactor July 1986: Volume 7, Issue Ol

Use one of these configurations (briefly) when you need to examine

the pixels of the character generator; but don't call any input or output

when you are set up this way.

02, 03, 42 and 43 - These are curious configurations that keep the

upper half of Basic (from 8000 to BFFF). They would not be used

much except by enthusiasts who wanted to get at the floating point

math routines in that area.

Summary

You can arrange any of a number of custom architectures if you need

to. The standard BANKS are of limited help; use them to get from

Basic and then organize your own architecture with a POKE to FF00.

FFOO

Poke

Value

00

01

02

03

0E

OF

3E

3F

40

41

42

43

4E

4F

7E

7F

Table 1.

(

(

0123

RAM0

RAM0

RAM0

RAM0

RAM0

RAM0

RAM0

RAM0

RAM1

RAM1

RAM1

RAM1

RAM1

RAM1

RAM1

RAM1

The sixteen 'useful' architectures.

Addresses whose

4567

ROM

ROM

RAM0

RAM0

RAM0

RAM0

RAM0

RAM0

ROM

ROM

RAM1

RAM1

RAM1

RAM1

RAM1

RAM1

digits are

89AB

ROM

ROM

ROM

ROM

RAM0

RAM0

RAM0

RAM0

ROM

ROM

ROM

ROM

RAM1

RAM1

RAM1

RAM1

first he;

CEF

ROM

ROM

ROM

ROM

ROM

ROM

RAM0

RAM0

ROM

ROM

ROM

ROM

ROM

ROM

RAM1

RAM1

{)

)
D

I/O

CGEN

I/O

CGEN

I/O

CGEN

I/O

RAM0

I/O

CGEN

I/O

CGEN

I/O

CGEN

I/O

RAM1

Bank

Number

"BANK 15"

"BANK 14"

"BANK0"

"BANK 1"

Store

to

FF03

FF01

FF04

FF02

Note that in all configurations, the first 1K of memory (addresses 0002

to 03FF) is always RAM0. Addresses 0 and 1 are internal to the

processor chip.

An Architecture-Testing Program

You might like to try your hand at checking the type of architecture

that results when specific values are poked into location $FF00. Run

this program, supply a value, and see what you get.

The "business end" is a machine language program which tries the

architecture and peeks various locations, reporting what it finds. Such

a program must be tucked into the first 1K of memory: that's the only

place that is safe from architecture switches.

The specific locations examined by the program are (hex): 3000, 6000,

B000, F000, and D020. A value of 0 is poked to these locations in RAM

0, a value of 1 in RAM 1. The ROM values are fixed, hopefully: 6000

contains 60, bOOO contains 4C, and F000 contains 29. At D020, the

character generator contains 78, and we make sure that the video chip

border colour is set to its normal value of FD.

The machine language program sets the requested value into FFOO,

and then tests the contents of the specific locations. A zero is taken to

be RAM 0; a 1 to be RAM 1; other values are tested for a match to the

known ROM values. If none of these are recognized, the numeric

value is printed. Each location is tested five times; if the value is not

constant for every read, it's likely "not there" and is shown as

VARYING.

C128Architester

10 data 120, 141,

20 data 174,

30 data 174,

40 data 174,

50 data 174,

60 data 174,

70 data 169,

0,255

0, 48, 142, 128, 2

0, 96, 142, 129, 2

0, 176, 142, 130, 2

0,240,142,131, 2

32,208, 142, 132, 2

0,141, 0,255, 88, 96

80 for j = dec(" 250") to dec(" 278 ")

90 read x:t = t + x:poke j,x

100 next j

110 if t<>4305 then stop

120forj = 3to0step~1

130 bankj

140 poke dec(" 3000"),j:a(0,0) = -1

150 poke dec(" 6000"),j:a(1,0) = dec(

160 poke dec(" bOOO"),j:a(2,0) = dec(

60'

'4c"

170 poke dec(" fOOO"),j:a(3,0) = dec(" 29"

180 poke dec(" d020"),j:a(4,0) = dec(" 78'

190 next j

200 bank 15

210 poke dec(" d020'

220 a$(0) =

230a$(1) =

240 a$(2) =

250 a$(3) =

260 a$(4) =

"),253

110400-3fff"

"4000-7fff"

"8000-bfff"

11 cOOO-cfff/eOOO-ffff"

" dOOO-dfff"

270 input " value of SffOO poke(hex)" ;x$

280 x = dec(x$):if x>255 goto 270

290 for t = 1 to 5

300 sysdec("0250"),x

310 for j = 0 to 4:a(j,t) = peek(j + dec(" 0280")):next j

320 nextt

330forj = 0to4:q = fre(1)

340 a = a(j,1):r$ =

350 for t = 2 to 5:if a<>a(j,t)then a = 444

360 nextt

' ramO"

' ram1 "

1 ram2"

" ram3"

410 if a = a(j,O) then r$ = " rom" :if j = 4 then r$ = " cgen'

420 if j = 4 and a = 253 then r$ = " i/o"

430 if a = 120 then r$ = " cgen"

440 if a = 444 then r$ = " varies"

450 if r$ = "" then r$ = str$(a)

460 print a$(j);" - ";

470 print r$

480 next i

370 ifa = Othenr$ =

380 if a= 1 then r$ =

390 if a = 2 then r$ =

400 if a = 3 then r$ =

The Transactor 35 July 1986: Volume 7, Issue Ol

Getting The C128's

CP/M+ In Gear

Clifton Karnes

Greensboro, NC

After stating we felt there was not enough demand for more CP/M

info than is already available, we were deluged with letters. Several of

the responses explained it wasjust the contrary - that what little CP/M

info is around, is hard to find. So here is the first of what we hope will

be more articles on C128 CP/M+. - EIC.

One of the nicest things about the new C128 and 1571 disk drive is

that they have a CP/M mode that can read real CP/M disks. The

system as supplied has some excellent features but unfortunately it is

incomplete. There is, however, a solution.

In this article I will discuss how to get the Cl28's CP/M + system up to

par, how to begin tapping the huge source of public domain software,

and describe some language implementations (both commercial and

public domain) that I've tried on the Cl 28 in CP/M mode.

Where's the Assembler?

The first thing you'll notice about the CP/M+ disks is that they

contain no Assembler (MAC), debugger (SID), or any of the other

utilities and source files that are supposed to come with CP/M + . This

problem is easily solved. Just send in the card for the "DRI Special

Offer" (and $19.95). Commodore will send you the missing utilities

and a huge manual.

Where's the I/O?

The next thing you'll notice about the CP/M+ is that, besides the

console and disk, all the serial I/O routines are null. This means that

the User's Port is dead. If your printer uses this port or you have a

modem you would like to use, you are out of luck. But don't despair.

Where's the Standard ASCII?

The next question that may arise regards ASCII. CP/M uses standard

ASCII and the 128 implies it does (see the SETKEY utility). This is true

in part. The characters sent to the screen are standard representations

(characters unusual to Petscii are formed with the CTRL key plus the

key that most nearly resembles the character eg. CTRL [and CTRL]

for left and right curly brackets, CTRL / for backslash). But the codes

sent to the printer are Petscii and there's no way to change that. In

other words, if you've got a flexible printer like the Star SG-10 and an

interface, you can't get out of emulation mode to use any of the

printer's extra features or for that matter its standard characters that

aren't part of Petscii. There's hope.

Commodore, CompuServe and Irv Hoff to the Rescue!

CBM Engineering (in the guise of Von Ertwine) has been working on

these problems and there is a new approved CP/M+ operating

system available free to all on CompuServe. This new operating

system enables the serial I/O so your User's Port is undead. In

addition to the new operating system, there's a new utility called

CONF that allows you to configure your system using an ASCII printer,

dual disk drives, define baud rate, screen and cursor colors, key feel,

and much more. If this weren't enough there is even a modem

program for the 128 available on CompuServe: IMP by Irv Hoff. IMP is

the latest CP/M modem program in the honorable line that began

with MODEM7. This modem program is excellent and opens up the

world to CP/Mers.

How can you get this stuff? First you must be a member of Compu

Serve. If you're not then this is a good time to join. You'll need VIDTEX

4.0C to start downloading. All of this material is in DL3 of CPM-IG.

CPM-IG (the CP/M Special Interest Group on CompuServe) has

started DL3 as a Data Library specifically for C128 CP/Mers. Nice.

The thing to do first is download C128.IRV. This file explains which

other files are needed and how to get them. You'll need NEWSYS-

.COM (this creates a new CP/M + operating system), IMP-C8.BIN and

IMP.DOC (this is the modem program and its documentation), I2C8-

l.ASM (this is an overlay to let you customize the modem program),

CONF.COM and CONF.HLP (these allow you to set system parameters

and tell you how), C1571 .COM (this nearly doubles the write speed of

the 1571 in CP/M mode). In addition there are two files to help you

with the downloading process: BIBOOT.IMG (for single drive users)

and 64CONV (for users with two drives). Even at 300 baud none of

these files are long enough to be very expensive to download. I

recommend that if you're not a member of CompuServe you join, but

if for one reason or another the way of getting this software I've

described isn't appealing, then you can send me a formatted CP/M +

disk, and SASE and $3.00 and I'll copy the files for you.

Free Software

Now that you've got your system tuned up you'll want to get some free

software. The best place to get started is to look into two books on the

subject: Free Software by Robert A. Froelich (New York: Crown

Publishers, 1984) and How to Get Free Software by Alfred Glossbren-

ner (New York: St. Martin's Press, 1984). Both of these works give

excellent introductions to obtaining free software.

There are two basic ways to get public domain software: download it

or buy the disks. You can download from a commercial database, like

CompuServe or from a bulletin board. You don't actually buy public

domain software (or shouldn't) but most user's groups charge a

donation for equipment wear-and-tear, etc. and there are copy

services that copy public domain programs for profit (you're paying

The Transactor 36 July 1986: Volume 7, Issue Ol

for their service - not the software). Which procedure is more

economical? That depends on your situation. If you've got a 1200 bps

modem and a local bulletin board or if the files you're interested in are

fairly short then downloading is the way to go. If, however, you're not

in this situation, it can become very expensive to download programs

with all the relevant files. The costs vary with buying the disks

themselves from something like a dollar a disk for local user's groups

(you'll usually have to join the group too, which will be around $10 -

$25) to $15 and up for copy services.

There are two principal national sources of CP/M public domain

software on disks: CP/M User's Group (CPMUG) and the Special

Interest Group for Microcomputers (S1G/M). These groups both have

extensive libraries. These books discuss both these sources at length.

As for the formats that will work on your 128: Kaypro2, 4, IBM CP/M

86 and Osborne Double-Density all work fine. That covers a lot of

territory. Most of the public domain software out there is for CP/M 2.2,

but I haven't found any incompatibilities yet with the CP/M 3.0 on the

128.

Programming Languages

The main reason many of you are interested in CP/M is the program

ming languages available. Many languages are even in the public

domain. The most famous of these is perhaps Small-C. What follows

is an annotated listing of commercial programming languages and

editors I've tried that are low in price and that work on the 128,

followed by some public domain packages available from the national

user's groups mentioned above.

The Beginning

Although this is the end of our smorgasbord of information on C128

CP/M + , I hope it will be the beginning for you. Find a source and

start checking the stuff out. Maybe the Transactor will even start

giving a page each issue to Cl 28 CP/M + developments.

Clifton Karnes

2519OverbrookDr.

Greensboro, NC 27408

(919)373-7892

Addresses of Software Sources Mentioned

Mix Software

2116 E. Arapaho

Suite 363

Richardson, TX 75081

(214)783-6001

Ellis Computing

3917 Noriega St.

San Francisco, CA 94122

(415)753-0186

Software Toolworks

14478 Glorietta Dr.

Sherman Oaks, CA 91423

(818)986-4885

S1G/M Main Office (write to them

to find your nearest SIG/M repre

sentative)

Box 97

Iselin, NJ 08830

CPMUG

1651 Third Ave.

New York, NY 10128

C User's Group (CUG)

Box 97

McPherson, KS 67460

(216)241-1065

Language Description Price Supplier

M1XC Full K&R C compiler with UNIX functions, 400-page manual $39.95 MIX Software

Nevada FORTRAN Fortran IV with 77 extensions $49.95 Ellis Computing

Nevada COBOL ANSI COBOL 74 with level II features $49.95 Ellis Computing

LISP/80 InterLISP dialect $39.95 Software Toolworks

MIX Edit Full screen / Split screen, programmable $29.95 Mix Software

Nevada Edit Full screen $49.95 Ellis Computing

(I received excellent service from all of commercial sources listed above). In addition to the these commercial packages there are several

languages available in the public domain. These include:

EBASIC Gordon Eubank's Master's thesis and a forerunner of the widely used

CBASiC

Free CPMUG Volume 30

Small-C 'C programming language by Ron Cain, with only int and char data types

but widely used. Comes with source code.

Free C User's Group

XLiSP Experimental Lisp by David Betz. Comes with source code in C. Soon to be

upgraded to a subset of Common Lisp.

Free SIG/M Volume 118

FORTH-83 Forth-83 implementation version 2.0 Free SIG/M Volume 204

E-Prolog A small Prolog implementation. Comes with ASM source and a VALGOL

compiler written in Prolog.

Free SIG/M Volume 242

JRT Pascal Full Pascal implementation Free CPMUG Volume 82

This is just a list of the more popular languages available - there are others. And lots of other software including: assemblers, text editors,

disk utilities (there are tons of these - one of the best is SWEEP in its latest version), and games. As the two books mentioned above show

there is no such thing as completely free software, the price you pay for public domain programs (either in downloading time or to user's

group or copy service) is usually a very small fraction of the value of work. Also, most of the above-mentioned public domain works can be

downloaded from any number of sources if you choose that route.

The Transactor 37 July 19M: Volume 7, Issue Ol

C128 RAM Disk Noel Nyman, Seattle, WA

AddA 16K RAM Disk To YourC-128 With No Additional Hardware!

A RAM disk is a chunk of random access (read/write) memory that acts

like a disk drive. LOAD and SAVE work with it. It cannot be reached by

store, PEEK or POKE. RAM disk is external hardware, a circuit board with

chips of various sorts. If it has enough memory to be practical it is

physically large and expensive.

The advantage of RAM disk is speed. Files can be located and LOADed

rapidly. Some database users find RAM disks worthwhile. But a 170K RAM

disk costs about what you would pay for a 1541, and the memory goes

away when the power is turned off.

If you own a C-128 you can try RAM disk with no additional outlay for

hardware. Every C-128 has 16K of RAM that is not part of the regular

memory map - the eighty column video RAM. Although a 16K RAM disk is

small by commercial standards, it will hold 62 blocks of Basic programs or

one-fourth of the Basic variable memory. A new Basic program, or a whole

new set of variable values, can be brought into memory in about two

seconds.

To understand how our RAM disk will work, you must know a little about

the eighty column display system. We only have access to the 8563 eighty

column video chip and its RAM through two addresses or " ports". One of

these ports, located at Bank 15, address 54784 ($D600 in hexadecimal), is

used to select a register in the 8563. The other port, located at 54785

($D601 hex), is used to read from or write to the selected register. The

video chip uses the register data to make changes on the screen. The buzz

word used to describe this situation is " pipelined architecture".

There are 37 registers in the video chip. Some of them are high/low

address vectors (pointers) to the video RAM. Others change eighty column

screen functions by passing numbers or setting and clearing flags. We'll

only be concerned with three of the registers.

Registers 18 and 19 hold the vector to an address in video RAM. The vector

is stored in HIGH/LOW order. Machine language programmers are used to

two byte addresses being stored in the opposite sequence, so it's important

to note the difference.

Register 31 is the CPU Data register. The value at the address pointed to by

registers 18/19 is available in register 31. If we access register 31 and store

a number at the data port ($D601), it will be placed at the video RAM

address pointed to by registers 18/19. The vector at 18/19 is then

incremented automatically.

When we store a new register value at address $D600, the video chip is

probably busy updating the eighty column screen. We have to wait until

the chip is ready to look at our data, or we get erratic results. Bit *7 of

address SD600 is held low when the video chip is busy, and goes high

when it is ready to accept new data. The ROM routine below is used by the

8502 processor to check bit *7.

FCDCA

CDCC

CDCF

CDD2

CDD4

CDD7

A2 IF

8E 00 D6

2C 00 D6

10 FB

8D 01 D6

LDX *$1F

STX $D600

BIT $D600

BPL SCDCF

STA $D601

RTS

The video register to be accessed is stored in the X register of the 8502 and

the routine is entered at address $CDCC. The value in X is stored at $D600.

Then the BIT command checks for bit *7 to go high. Until it does, the BPL

command will branch back to the BIT instruction. Once bit *7 goes high,

the video chip is ready and the new data is stored at the data port, $D601.

If we want to store data in register 31, the routine is entered at address

$CDCA which stores 31 ($1F) in X for us. There is a complementary

routine starting at $CDD8 that reads a video chip register.

The following programs will store data to the 16K video RAM and retrieve

it for later use. You must use the 40 column screen with them, since any

printing done to the 80 column area will garble the data you've placed

there. Before RUNning the programs, switch to 40 column mode. If you

have an 80 column monitor available, clear the 80 column screen and type

the following:

POKE 54784,25: POKE 54785,128

Storing 128 in register 25 puts the video chip in Hi-Res or bit mapped

mode. The two sets of vertical bars at the top of the screen are the text

(CHR$(32) on a cleared screen) and attribute (color ram) screens. The

horizontal bars below are remnants of the RAM test done on power-up.

The five columns at the bottom are the character sets data. The blank

spaces are there for additional character information for a double wide

character mode.

By switching to bit mapped mode, you'll be able to see the data and

programs being SAVEd to RAM disk.

Listing *1 is a Basic loader for a routine designed to copy portions of

memory from any Bank to RAM disk. Enter the loader, RUN it, then SAVE

the resulting machine language program by typing:

BSAVE " MEMORY DRAM", BO, P3072 TO P3184

To use the routine, set-up the beginning and ending addresses of memory

using these commands:

SYS3072,lb,hb

SYS3077,le,he

Where:

lb = low byte of address of beginning of memory

hb = high byte of address of beginning of memory

le = low byte of address (+ 1) of end of memory

he = high byte of address (+ 1) of end of memory

For example, if you want to save all the variables (except dynamic string

data) created by a Basic program, type:

SYS 3072, PEEK(47), PEEK(48)

SYS3077, PEEK(51), PEEK(52)

Be sure that no more than 16K of memory is involved. Then type:

SYS 3082,0,0,1

The Transactor 38 July 1986: Volume 7, Issue O1

The first two numbers after the SYS address are the low/high vector to the

location in video RAM where the memory will be stored. The third number

is the Bank number of the memory to be copied. For variables, this would

be Bank 1.

After storing to RAM disk, type:

PRINT PEEK(251)1PEEK(252)

This will give you the low/high vector of the next available location in

video RAM. You can store several blocks of memory and retrieve them

independently by keeping track of their video RAM starting addresses.

To get the data back, set up the starting and ending addresses as above.

Then SYS to the routine using the same video ram address vectors. Add "

128" to the Bank number to signal the routine to retrieve from the video

RAM rather than copy to it. If retrieving variables for use with Basic, you

should also POKE the appropriate values in locations 47/48 and 51/52.

If you want to use the eighty column text screen, you can still have access

to 4K of disk RAM. The area between video RAM addresses 4049 and 8191

is unused in text mode. If you store more than 4K in this area, you'll

overwrite the character set data.

Listing *2 is a Basic loader for a routine to SAVE and LOAD Basic

programs. As before, enter the program, RUN it, and type the following to

SAVE the machine code:

BSAVE " BASIC DRAM", BO, P2956 TO P3573

To activate the routine enter

SYS 2956.

BASIC DRAM Adds 3 Commands to the C-128.

MSAVE SAVEs the Basic program in memory to RAM disk, assigns it a

number, and shows the amount of memory remaining in

RAM disk.

MLOAD LOADs a program from RAM disk to the current Basic

memory space in Bank 0. The command must be followed

immediately, no spaces, with the number (0-9) of a program

already MSAVEd.

MSCRATCH Asks for a starting program number and "scratches" that

program and all programs with higher numbers from the

RAM disk.

MLOAD can be followed by a colon and other commands in direct mode.

For example:

MLOAD2:RUN

will place program #2 from RAM disk into memory and RUN it.

The C-128 has two 256 byte pages permanently designated for RS-232 use

that sit below the Basic program area. These are destined to become

popular " safe" locations for machine code. The MEMORY DRAM code is

located in the RS-232 input buffer. The BASIC DRAM program is longer

and uses both buffers and the top of the tape buffer as well. If you RUN a

Basic program that uses any of these buffers, the computer will probably "

crash".

You can also use the video RAM from C-64 mode. The eighty column

screen will be accessible, provided that you've used the command "GO64"

after first booting in C-128 mode. Listings #3 and *4 are the C-64 mode

versions of the MEMORY and BASIC DRAM programs. They are relocated

to start at 51200 ($C800) in the C-64 memory map. This is half way

between the popular 49152 ($C000) location used by many machine

language routines and 52224 ($CC00) used by the DOS 5.1 wedge.

To use the C-64 MEMORY DRAM, enter:

SYS51200,lb,hb

SYS 51212,le.he

SYS 51224,0,0,0

The three zeroes after the last SYS represent any low/high byte address in

video RAM and the flag to store or retrieve memory. Since there are no

Banks in C-64 mode, use a zero to store and 128 to recover.

For C-64 BASIC DRAM, SYS 51200 to initialize the program. The same

three commands are added and follow the same rules as C-128 mode,

except that additional commands cannot be used on the same line as

MLOAD.

To disable BASIC DRAM in either mode, use the reset switch near the on-

off switch or manually change the ERROR vector at $0300/$0301 to its

default value. The BASIC DRAM (for both modes) is a compromise

between features and length. It will give you a " DISK FULL" error if you

try to SAVE more than ten programs. But it doesn't check for actual

memory left in video RAM. If you SAVE something too large, the address

registers will merrily " roll over" to zero and store on top of data you've

already placed there.

Assigning numbers to the programs is another compromise. It would have

been best to intercept the LOAD and SAVE routines, assign an unused

device number to the RAM disk, use file names, etc. This would have

required a lot more code, too much to type in from a magazine listing.

Possibly the most significant compromise was made to allow the RUN-

STOP/RESTORE key combination to halt Basic programs. The C-128

RESTORE routine clears both screens when executed. Since clearing a

RAM disk isn't what we had in mind, the NM1 vector is relocated to point to

an abbreviated routine that leaves the RAM disk alone. The normal

RESTORE resets several pointers, NMI among them. Since we can't have

that either, the pointer routine was also eliminated. RESTORE uses several

JSR calls to ROM routines. To leave out only small portions of these

routines, we would have to put the balance of them in our program, and

you would have to type them in. Instead, we've left out several of the JSR

calls, and kept the minimum to get Basic to work properly. If you have a

favorite program that uses any machine code, test it thoroughly when

using it with BASIC DRAM.

These problems don't plague the C-64 version. There is no eighty column

screen to clear on a C-64, so RESTORE doesn't have that function. We can

leave the normal NMI routines intact.

We did have to add some code to the C-64 version, however. The SYS

command in the C-128 looks for values separated by commas following

the SYS address. The first three will be transferred to the A, X, and Y

registers of the 8502. This makes passing values to ML short and sweet. (A

fourth value will be placed in the Status Register, but beware of that! The

value placed there will affect all the flags, including decimal mode. The

processor will also set bit *5, the unused flag, even if your passed value left

in clear.)

The Transactor 39 July 1986: Volume 7, Issue Ol

The C-64 doesn't have this feature, and to keep the commands the same,

the code must be added. We also needed to add the routines to access the

register and data ports for the video chip.

Both BASIC DRAM's use the error wedge technique described by Brian

Munshaw in Transactor 5-6 ("A New Wedge for the Commodore 64").

The three added commands cause a "syntax error". Our program inter

cepts all error messages and passes on any except syntax errors. These are

examined for the use of an illegal character in front of a LOAD, SAVE, or

SCRATCH token. Since any illegal character will work, XSAVE will have

the same effect as MSAVE.

The C-64 doesn't tokenize the word " scratch", so some additional code is

required. To eliminate excess typing, we've decoded only the "sc"

portion. MSCREAM will work as well for MSCRATCH.

We hope that you enjoy experimenting with RAM disk and find it useful.

For example, you could MSAVE several programs such as Disk Doctor,

Directory Reorganizer, Two Column Directory Printer, etc. prior to a heavy

disk reorganization session. Then a simple MLOAD* will quickly bring in

each program as you need it. This would be a real advantage to anyone

using a 1541 /C—128 combination.

The Merlin source code for the DRAM programs will be found on The

Transactor Disk for this issue. If you'd prefer hard copy of the source code,

mail $2 (either Canadian or US) and a large addressed envelope to:

Noel Nyman

Geoduck Developmental System

PO Box 58587

Seattle, WA 98188

Listing One

LL

GG

CH

LJ

El

EE

PC

KM

HK

ML

CP

MJ

Kl

HL

BP

LA

OL

KH

NM

1000 rem save"0:mem dram.ldr" ,8

1010:

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

for j = 3072 to 3183: read x: pokej.x:

ch = ch + x: next

if ch<>19056 then print " checksum error"

138,

32,

42,

32,

data 133, 251,

data 254, 96,

data 72

data 104

data 48

data 255

data 230, 252,

data 165, 252,

data 32,218,

data 205, 133,

data 169, 251,

data 166, 250,

data 2,230,

data 236, 165,

134,252,

133,200,

162, 18,

204, 205,

166,250,

202, 205,

165,251,

197,254,

205, 133,

251, 96,

141,185,

32, 119,

252, 165,

252, 197,

96, 133,

134,201,

32, 204,

160, 0,

169,251,

230,251,

197,253,

208, 228,

252, 232,

41, 15,

2, 32,

255, 230,

251, 197,

254, 208,

253, 134

132,250

205, 232

165,250

32,116

208, 2

208,234

162, 18

32,218

133,250

216,205

251,208

253, 208

230, 96

Listing Two

JJ

OE

LH

JJ

MG

2000 rem save" 0:bas dram.ldr" ,8

2010:

2020 for j = 2956 to 3571: read x: poke j,x:

ch = ch + x: next

2030 if ch<>69893 then print " checksum error"

2040:

ID

GB

Al

EM

LI

FF

MC

GL

AG

NE

MC

AN

IK

JH

EA

Jl

DF

MN

HA

JN

FM

IL

MB

LP

NA

AB

FE

CG

EK

PE

Bl

PP

OM

EM

CM

HM

HI

AF

IL

DL

MB

AM

FL

KE

JJ

DM

MH

CM

DP

GB

BD

EO

BH

MD

HB

AA

EJ

HJ

NM

EM

LI

PG

NO

DN

2050 data 120,

2060 data 141,

2070 data 11,

2080 data 141,

2090 data 169,

2100 data 0,

2110 data 201,

2120 data 148,

2130 data 60,

2140 data 223,

2150 data 255,

2160 data 73,

2170 data 27,

2180 data 182,

2190 data 13,

2200 data 13,

2210 data 18,

2220 data 173,

2230 data 202,

2240 data 133,

2250 data 32,

2260 data 208,

2270 data 208,

2280 data 164,

2290 data 205,

2300 data 218,

2310 data 125,

2320 data 32,

2330 data 32,

2340 data 187,

2350 data 32,

2360 data 170,

2370 data 32,

2380 data

2390 data

2400 data

2410 data

173, 0,

179, 11,

169, 181,

1, 3,

13, 141,

224, 11,

147, 208,

240, 7,

13, 169,

13,201,

13

83

81

12

18,

75,

141,

10,

83.

73

65

27

2420 data 142.

0,

7,

32,

15,

13,

2430 data

2440 data

2450 data

2460 data

2470 data

2480 data 165

2490 data 204

2500 data 32

2510 data 32

2520 data 133

2530 data 18

2540 data 254

2550 data 32

2560 data 230

2570 data 197

2580 data 208

2590 data 169

2600 data 141

2610 data 32

2620 data 71

2630 data 71

2640 data 82

2650 data 201

2660 data 48

2670 data 15

2680 data 13

162, 18,

232, 32,

133,253,

17, 18,

205, 165,

252, 160,

116,255,

2, 230,

234, 165,

200, 200,

133,252,

205, 133,

255, 141,

80, 82,

0, 169,

12, 32,

32, 0,

169, 62,

125,255,

32, 82,

78, 71,

77, 32,

81, 141,

201, 162,

132, 98,

186, 169,

93, 186,

205, 223,

10, 168,

200, 185,

205, 133,

204, 205,

216,205,

251, 101,

165, 46,

169,251,

216,205,

251,208,

253, 208,

230, 32,

141,

67,

0,

83,

83,

32,

77,

32,

87

32

63

0,240

144, 39

205,223

133,200

3,201, 63,

173, 1, 3,

141, 0, 3,

169, 195, 141,

25, 3, 88,

240, 3,108,

3, 76,208,

201,242,208,

0,141, 0

10,144, 28

82, 65, 77

32, 70, 85.

0, 32, 142

168, 133,200

32, 204, 205

204,205, 56

229, 45, 32

133,254,229

45, 133,251

0,162, 0

32, 202, 205

252, 165,251

252, 197,254

200,162, 18

153,224, 13

251,153,225

83, 65, 86

79, 71, 82

0, 174,223

125,255, 27

56, 169, 128

229,252, 32

32, 66,

69, 77,

32, 73,

68, 73,

0, 238, 223

128, 108, 179

133, 97, 134

0,162, 8

96, 32,128

13,144, 3

169, 0,141

224, 13,162

252,232, 185

32,216,205

133,254, 24

253, 133,253

133,252, 101

141,185, 2

162, 0, 32

2, 230, 252

236, 165,252

79, 79, 76

0, 255,

82, 65,

65, 82,

84,

85,

0,

208, 29

141,180

169, 11

24, 3

96, 0

179, 11

12,201

238, 76

255,173

32, 125

32, 68

76, 76

201, 76

185,224

185,225

173, 16

202, 205

46, 32

165, 46

169,251

230, 251

197, 253

208, 228

32,218

232, 32

13

69,

65,

13,

81,

32

68

77

32

141

229, 251

89

65,

78,

83,

187,

84,

73,

32,

75,

13,

12

69

78

82

32

32

73,

78,

32,

249,

201,

32,210

58, 176

13, 176,

230, 200,

28

6

11, 160

96, 32

160, 3

3, 41

76, 158

0,255

18, 32

225, 13

133,253

165, 45

141, 16

254, 133

160, 0

119,255

165,251

197,254

162, 82

125,255

67, 72

73, 78

32, 80

66, 69

228, 255

255, 201

35, 41

141,223

200, 164

The Transactor 4O July 1986: Volume 7, Issue Ol

KM

FP

LK

DD

AD

Bl

KJ

EO

KL

JB

NO

OL

IM

ND

GG

HG

CJ

El

HD

KE

NF

II

IG

CO

IP

DE

BN

FJ

NH

DH

GH

ON

BE

00

NB

BP

BB

GG

AE

FH

BA

OE

MF

Jl

MG

MN

FE

BB

CF

BP

IA

PL

FC

MB

LL

LO

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

data 200,

data 13,

data 182,

data 78,

data 82,

data 85,

data 0,

data 169,

data 32,

data 169,

data 76,

data 0,

data 0,

169, 0,

200, 200,

12, 32,

86, 65,

79, 71,

77, 66,

32, 142,

127, 141,

61,246,

147, 32,

51, 255,

0, 0,

0, 0,

153,224,

192, 20,

125,255,

76, 73,

82, 65,

69, 82,

201, 76,

13,221,

32,225,

210,255,

0, 0,

0, 0,

0, 0,

13, 153,225

208, 244, 76

141, 18, 73

68, 32, 80

77, 32, 78

27, 81,141

182, 12,216

172, 13,221

255, 208, 8

108, 0, 10

0, 0, 0

0, 0, 0

0, 0, 0

Listing Three

1000 rem save" 0:64mem dram.ldr" ,8

1010:

1020 for j = 51200 to 51374: read x: pokej.x:

ch = ch + x: next

1030 if ch<>26408 then print " checksum error"

1040:

1050 data 32,152,200,165,170

1060 data 171, 133, 252, 96, 32

1070 data 170, 133,253, 165

1080 data 32, 141,200, 165

1090 data 170, 133, 168, 162

1100 data 232, 165, 167, 32

1110 data 165, 171, 48,

1120 data 200, 230, 251,

1130 data 251, 197,253,

171,

169,

18,

115,

37

208

208

1140 data 254, 208, 233, 162

1150 data 133, 252, 232, 32

1160 data 96, 32,127

1170 data 208, 2,230

1180 data 208, 239, 165

1190 data 96, 162

1200 data 214, 16

1210 data 31

1220 data 251

1230 data 32

1240 data 32

1250 data 177,

1260 data 173,

142

173

158

253

132

31,

251,

0,

1,

173,

174,

170,

200

252

252

142

141

214

214

32, 170

32, 158

32, 253

133,251

152,200

133,254

133, 167

32, 115

200, 160

177,251, 32

2, 230, 252

239, 165,252

18, 32,129

129,200, 133

145,251

165,251

197,254

0,214

1, 214

44, 0

96, 32

177

173

174

230,

197,

208,

44,

165

165

96

165

200

0

113

165

197

200

251

251

253

233

0

32, 170, 177, 132, 171,

Listing Four

96, 162

214, 16

253, 174

132, 169

32, 170

32, 158

96

2000 rem save" 0:64bas dram.ldr" ,8

2010:

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

for j = 51200 to 51777: read x: poke j,x:

ch = ch + x: next

if ch<>67582 then print " checksum error"

data 120,

data 141,

data 200,

data 141,

data 11,

data 0,

data 201,

data 32,

data 115,

data 201,

173,

29,

169,

1,

240,

201,

148,

121,

0,

173,

data 169, 170,

0, 3,

200, 173,

31, 141,

3, 88,

3, 108,

147,208,

240, 21,

0,201,

201, 67,

45, 202,

162,201,

201, 139,

1, 3,

0, 3,

96, 0,

29, 200,

3, 76,

169, 1,

83, 208,

208,221,

201, 10,

32, 30,

208, 19

141, 30

169,200

0, 224

32,121

234,200

133, 122

228, 32

76,

144,

171,

72

10

76

FO

MO

HA

CJ

DE

EO

MO

IK

KA

KP

NM

GC

LB

GA

LF

HD

BJ

ND

HB

GC

MM

KN

Al

HI

HG

Ml

DK

CG

CP

AA

OA

DP

EF

JL

KJ

PF

LP

DE

JN

LO

CP

JC

Fl

HI

OP

LK

BD

HM

JM

IN

BO

AP

HO

GO

BA

NO

DA

GB

BE

Ml

GJ

IE

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

data 229,

data 202,

data 202,

data 133,

data 46,

data 165,

data 160,

data 251,

data 253,

data 233,

data 158,

data 32,

data 169,

data 0,

data 203,

data 128,

data 32,

data 30,

data 29,

data 15,

data 201,

data 32,

data 144,

data 156,

data 251,

data 44,

data 46,

data 230,

data 197,

data 208,

data 169,

data 228,

data 255,

data 35,

data 141,

data 167,

data 153,

data 244,

data 32,

data 142,

data 141,

data 214,

data 214,

data 68,

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

200, 10,

162, 18,

232, 32,

253, 229,

133,254,

43, 133,

0, 177,

208, 2,

208, 239,

164, 167,

201, 133,

158,201,

187, 160,

174, 45,

160,201,

229, 251,

205, 189,

171,238,

200, 32,

205, 45,

10, 168,

144,201,

201, 32,

201, 133,

101,253,

133,252,

160, 0,

251,208,

253, 208,

233, 32,

238, 160,

255,201,

201, 48,

41, 15,

45, 202,

164, 167,

47, 202,

76, 229,

30, 171,

0,214,

1, 214,

44, 0,

96, 141,

73, 83,

32

44

76,

68,

77,

66,

77,

73,

73,

67.

84,

87.

32,

63,

65,

71,

66,

0,

0,

0,

141,

32,

32,

89,

65,

78,

83,

82,

65.

73,

78,

32,

76,

82,

69,

0,

0,

0

0,

80,

0,

84,

73,

32,

75,

65,

82,

84,

85,

0,

73,

65,

82,

0,

0,

168, 133, 167

32, 144,201

144,201, 56

43, 32, 142

229, 44

251, 165

251, 32,142,

230,252, 165,

165.252, 197,

200.200, 162,

252,153, 46,

133,251, 153,

201, 32, 30,

202, 32,205,

32, 30, 171,

170,169, 62,

169,207, 160,

45,202, 162,

115, 0,176,

202, 144, 3,

185, 46,202,

232,185, 47,

156.201, 133,

254, 24,165,

133.253, 133,

101.254, 133,

32, 156,201,

2, 230, 252,

239, 165,252,

51,165, 76,

201, 32, 30,

0, 240, 249,

144, 39,201,

205, 45,202,'

133, 167,230,

169, 0,153,

200,200, 192,

200,169, 19,

76, 229, 200,

44, 0,214,

96,162, 31,

214, 16,251,

82, 65,

32,

83,

79,

32,

83,

73,

65,

185, 46

185, 47

165, 45

201,165

142,201

133,252

201,230

251, 197

254, 208

18, 32

202, 232

47,202

171,169

189, 169

56, 169

229, 252

201, 32

128, 108

246, 41

76, 132

162, 18

202, 32

253, 32

43,133

45, 165

254, 133

145,251

165,251

197,254

229, 200

171, 32

32,210

58, 176

176, 28

167, 6

46, 202

20,208

160,202

162, 31

16,251

18,

75,

141,

82,

141,

69,

78.

82,

32, 141,

84, 67,

84, 73,

32,

66,

72,

77,

141,

68,

77,

141,

0,

0,

18,

32,

32,

0,

0,

0,

70,

65,

71,

32,

32,

78,

77,

0,

72.

78,

80,

69.

73,

80,

78,

0,

0.

0.

142,

173,

77,

85,

86,

82,

0,

82,

71,

32,

141,

32,

71,

71,

82,

78,

82,

85,

0,

0,

0,

0

1

32

/6

69

65

32

69

32

68

83

83

32

77

32

86

79

77

0

0

0

The Transactor 41 July 1986: Volume 7, Issue Ol

AmigaBasic Function Plot
Chris Zamara, Technical Editor

An Auto-Scaling Plotting Demo

This program will open a new window with all the standard

gadgets and display the graph of a function within it,

including the X and Y axes. The graph always fills the entire

window, and will re-plot to a new size if you resize the

window with its sizing gadget. The function to be plotted is

defined in the program with a DEF FN statement, over a

range of X values defined by the variables DOMAIN 1 and

D0MAIN2.

Before plotting the function, the program finds the highest

and lowest values of the function so that it can scale to the

size of the output window. The message "Scaling. . ." will

be printed while this process takes place. After scaling, the

function is plotted, taking up the entire height of the win

dow, with the lines X = 0 and Y = 0 plotted in colour 2

(default colour black). You can move the output window

around with the drag bars in the usual manner, and if you

re-size the window, the program re-plots the function to fill

the window at its new size. Since the function is only re-

evaluated for each pixel in the width of the window, you'll

find that the function plots faster when the window width is

smaller.

When the output window is first opened by the program, it

is sized so that a function is aspect-ratio corrected. That is,

the X and Y co-ordinates are the same size on the screen, if

not the same number of pixels. Thus, the function Y = X will

describe a true 45-degree angle. This, of course, can be

changed by re-sizing the window, stretching the function in

the X or Y direction.

The output window is opened and selected by the following

line in the program:

WINDOW 2,title$,(5,10)-(502,115),31 'new window

The above command will open a NEW window, leaving the

standard BASIC window in place. The window is also auto-

refreshed: moving it around won't mess up what's inside.

That takes up a lot of memory, so if you only have 256K,

you'll have to change it to WINDOW 1, replacing the BASIC

window. Or, you can just remove the line altogether, using

the BASIC window with its original size and title.

To set up the function to be plotted, just change the DEF FN

function definition as shown in the listing, and change the

DOMAIN 1 and D0MAIN2 variable assignments to define

the start and end X values for which the function is evalu

ated, as listed, the program will plot the function Y = SIN(X)

from 0 to 2n, which is good for demonstration purposes but

a bit boring. Several other functions appear as comments,

along with recommended domain parameters. Take out the

comment character "'" (apostrophe) and comment out the

"DEF FN Y(X) = SIN(X)", then set up the DOMAIN 1 and

D0MAIN2 variable assignments to try one of the listed

functions.

The program uses many of AmigaBasic's advanced capabili

ties. It uses no line numbers or labels, using control struc

tures to control program flow. The scaling and plotting are

done by local procedures, which only affect the required

variables and produce no side effects like a standard BASIC

subroutine does.

The only bug I know about is that sometimes the function

will re-plot twice after a window re-sizing operation. It

probably occurs when the window is re-sized between

checks for window width and height.

The method of providing the function to the program is

obviously primitive. A more polished program could easily

grow from the humble bit of code presented here today.

Pull-down menus could be used to select functions and the

domain of the functions. A good idea might be a kind of

"function construction kit", pulling out individual terms of

an equation and combining them to create the desired

function. Another good idea might be to allow different

functions to be plotted on different windows, or maybe on

the same window. A fairly easy feature to add would be a

magnify function: pick a start and end point on the graph,

and re-plot the chosen section. You could also get it to plot

pre-calculated data from DATA statements or a disk file.

The Transactor 42 July 1986: Volume 7, Issue Ol

' function plot from Transactor Magazine

' this program may be freely disributed

1 Mar 86 - CZ

' Plots any function and scales

' to the size of the output window.

1 Set the function using DEF FN below

1 and set the range of X values

1 with the 'domaini' and 'domain2' variables.
i

pi = 3.141592

'put your function below. . .

title$ = "y = sin(x)" 'output window title

DEF FN y(x) = SIN(x) 'use 0 to 2*pi for domain

'.. .or try one of these

'DEFFNy(x) = SIN(x) + C0S(2*x) 'domain = (0, 2*pi)

'DEFFNy(x) = SIN(x) + 2*SIN(15*x) 'domain = (-pi, +pi)

'DEFFNy(x) = -5*x-2*x*x-3*x*x*x 'try (-10, +10)

' DEF FN y(x) = SQR(9-x*x) '(-3, +3)

'..set the domain of X values here

domaini = 0 'x start

domain2 = 2*pi 'x end

■

'make new window to display graph

WINDOW 2,title$,(5,10)-(502,115),31 'new window

'find highest and lowest y values for scaling

CALL scale(range1, range2)

prev.width = 0: prev.height = 0

WHILE 1 'continuous loop

new.width = WIND0W(2)

new.height = WIND0W(3)

'plot graph if window is re-sized

IF new.widthOprev.width OR new.heightO prev.height THEN

CALL PlotGraph(range1, range2)

END IF

prev.width = new.width

prev.height = new.height

WEND

The Transactor 43

SUB scale(range1, range2) STATIC

' find max. and min. y values of function

' from domaini to domain2

SHARED domaini, domain2

SHARED FN y()

PRINT "Scaling.. ."

s = (domain2-domain1)/WINDOW(2)

rangei = FN y(domaini)

range2 = rangei

FOR x = domaini TO domain2 STEP s

y = FN y(x)

IF y < rangei THEN rangei = y

IF y > range2 THEN range2 = y

NEXTx

END SUB

SUB PlotGraph(range1, range2) STATIC

1 Plot Graph of function Y to scale

' of current output window

SHARED domaini, domain2

SHARED FNyO

window.width = WIND0W(2)-1

window.height = WIND0W(3)-1

X.scale = (domain2-domain1)/window. width

Y.scale = window.height/(range2-range1)

Y.zero = range2*Y.scale

X.zero = -domain1/X. scale

'draw axis: lines y = 0 and x = 0

CLS

LINE (0, Y.zero)-(window.width, Y.zero),2

LINE (X.zero, 0)-(X.zero, window.height),2

'plot first point

PSET(0, Y.zero-FN y(domain1)*Y.scale)

'now plot whole function

FOR x.pixel = 0 TO window.width

x = x.pixel*X.scale + domaini

Y = FN y(x)

y.pixel = Y.zero - y*Y.scale

LINE -(x.pixel, y.pixel)

NEXTx.pixel

END SUB

July 1986: Volume 7, Issue Ol

Kernel Routines

InTheB128

Liz Deal

Malvern, PA

This is a list of 46 KERNEL routines in the B128. It is somewhat

different from the list in the Protecto/CBM Guide. Most of the

routines in the B128 are similar to the C64, but some call

addresses have been changed, setup registers sometimes differ,

and there is more impact on the registers than was the case

with the C64. This list is also valid for the B256 models which

have the same Kernel ROM as the B128. Some B256 machines

(in Europe) may have a different Kernel ROM. They can be

distinguished from the most recent version by the presence of

code in the "patch area", $ECB0-ECE8.

Making this list would not have been possible without help

from Jim Butterfield in the form of memory maps and a superb

disassembler.

Unless otherwise noted, long addresses are normally sent/

returned in this order: A = bank*, Y=high byte, X=low byte of

address.

Usually in zero page, it is kept in the lo-hi-bank order. Often a

register points to the first of the three bytes.

A, X, Y are data registers. If unchecked, it means, positively,

that the routine has no effect on the register. The "C" column

refers to the carry flag. It is a rare subroutine that does not affect

the C status. So to avoid ambiguous clutter, the only time C is

checked off is when it means something. Much of the time in

the I/O routines C indicates an error, but ST does the job better

- it may show an error while C is clear. ST = 64 at the end of file;

this is not indicated in the table below.

Jumbo Jump Table in Chronological Order - CBM names

ff6c

ff6f

ff72

ff75

ff78

ff7b

ff7e

ff81

ff84

ff87

ff8a

ff8d

ff90

ff93

ff96

ff99

H9c

H9f

ffa2

ffa5

ffa8

ffab

ffae

ffbl

ffb4

jmp $fe9d

jmp $fbca

jmp $fe33

jmp $eO22

jmp $fcab

jmp $f9fb

jmp $e004

jmp $f400

jmp $fba9

jmp $fba2

jmp $f660

jmp $f678

jmp $fb5a

jmp ($324)

jmp ($326)

jmp $fb78

jmp $fb8d

jmp$eO13

jmp $fb74

jmp ($328)

jmp($32a)

jmp ($32c)

jmp($32e)

jmp ($330)

jmp ($332)

$f274

$f280

$f30a

$f297

$f2ab

$f2af

$(234

$f230

;txjump

;vreset

;ipcgo

;funkey

;iprqst

;ioinit

;cint

;alocat

;vector

;restor

;lkupsa

;lkupla

;setmsg

;second

;talksa

;memtop

;membol

;scnkey

;settmo

;acptr

;ciout

;untlk

;unlsn

llislen

;talk

transfer of execution jump

power on/off vector reset

loop for ipc system

function key vector

send ipc request

i/o initialization

screen initialization

allocation of memory

read/set i/o vectors

restore i/o vectors

match sa

match la

enable/disable os messages

send sa after listen

send sa after talk

set/read top of memory

set/read bottom of memory

scan keyboard

set ieee timeout

handshake ieee byte in

handshake ieee byte out

send untalk to ieee

send unlisten to ieee

send listen to ieee

send talk to ieee

ffb7

ffba

ffbd

ffcO

ffc3

ffc6

ffc9

ffcc

ffcf

ffd2

ffd5

ffd8

ffd8

ffde

ffel

ffe4

ffe7

ffea

ffed

fffO

fff3

fff6

fff9

fffa

jmp $fb4a

jmp $fb43

jmp $fb34

jmp ($306)

jmp ($308)

jmp ($30a)

jmp ($30c)

jmp ($30e)

jmp ($310)

jmp ($312)

jmp ($3 la)

jmp($31c)

jmp $f90e

jmp $f8e6

jmp ($314)

jmp ($316)

jmp ($318)

jmp $f979

jmp$e010

jmp$eO19

jmp$e01c

sta $O:rts

.byte 1

$f6bf

$f5ed

$f549

$f5a3

$f6a6

$f49c

$f4ee

$f746

$f84c

$f96b

$f43d

$f67f

Hardware vectors: nmi

;readst

;setlfs

;setnam

;open

;close

;chkin

;chkout

;clrchn/restio

;chrin/basin/input

;chrout/basout

;load

;save

;settim

:rdtim

;stop

;getin

;clall

;udtim

;scrorg/screen

;plot

;iobase

.goodbye

$fb31, reset $f997,

read/set st

set files la.fa.sa

set file name length and adrs.

open logical file

close/abort logical file

connect input channel

connect output channel

reset default i/o devices

input a byte from open ch.

output a byte to open ch.

load from file

save to file

set TOD clock

read TOD clock

check STOP key-

get byte from KB or channel

close or abort files

last row KB scan

return screen size

read/set cursor position

return i/o base address

goes to another bank

irq $fbd6.

The Transactor July 1986: Volume 7, Issue Ol

CBM

Label

ACPTR

ALOCAT

CHKIN

CHKOUT

CHRIN

CHKOI T

CINT

CIOUT

CLAI.L

CLOSE

CLRCHN

FUNKF.Y

GETIN

IOBASE

1OINIT

IPCGO

IPRQST

LISTEN

LKUPLA

LKL1PSA

LOAD

MEMBOT

MEMTOP

OPEN

PLOT

RDTIM

READST

RESTOR

SAVE

SCNKKY

SCREEN

SECOND

SETLFS

SETMSG

SETNAM

SETT1M

SETTMO

STOP

TALK

TLKSA

TX.II Ml'

UDTIM

UNLSN

UNTLK

VECTOR

VRESET

Jump

addr

FFA5

FF81

FFC6

FFC9

FFCF

FFD2

FF7E

FFA8

FFE7

FFC3

FFCC

FF75

FFE4

FFF3

FF7B

FF72

FTTH

FFB1

FF8D

FF8A

FFD5

FF9C

FF99

FFCO

FFFI)

FFDE

FFB7

FF87

FFI is

FF9F

FFED

FF93

FFBA

FF90

FFBD

FFDB

FFA2

FFE1

FFB1

FF96

IT6C

FFEA

FFAE

I-'KAH

FF8 1

FF6F

The Transactor

lud

addr

328

—

30a

30c

310

312

—

32a

318

308

:«>(■

316

—

—

—

330

—

—

31a

—

—

306

—

—

—

31c

—

—

324

—

...

—

—

-

314

332

326

—

32e

32c

—

—

Real

code

[30a

1400

(549

f5a3

f49c

I4ee

e()4-l

[297

f67f

f5ed

[6a6

e6f8

f43d

eO3a

f9fb

fe33

(cab

123-1

f678

[660

(746

fb8d

fb78

(6bf

eO25

(8e6

fb-la

[ba2

(84c

e013

eOlO

(274

[1)43

fb.Sa

[1)3-1

(90e

fb74

[96b

f230

f280

fe9d

f979

f2af

f2ab

fba9

fbca

B128 Kernel Routines

Gel byte from IEEE

Allocate YX bytes relative to top of user memory'

Open channel (or input

Open channel for output

Input character

Output character

Operation Details

out: C= 1 and ST = 2 if timeout

in:X = lowY = high

out:C=l if failed (use MEMTOP)

in: X = logical file*

out: C=() if keyboard or RS232

iE IEEE, C= 1 if no file,no device

(see CHKIN)

out: C = (I if keyboard or IEEE (use ST)

RS232 if STOPped turns C=l

out: C = 0 if screen or IEEE (use ST)

RS232 if STOPped turns C=l

Initialize screen editor, top of user memory, function keys

Output byte to IEEE

Close or abort all files

Close one file

Restore default devices

Print/Edit (unction key definitions

Get a byle

Returns address of I/O devices

Initialize I/O and TOD clock

Loop for other processor

Send ipc request

Make IEEE device listen

Lookup parameters [or file*

Lookup parameters on known sec.addrs

Load after call to SETLFS.SETNAM

Read/Set bottom of memory'

Read/Set top of memory

Open a logical file

Read/Set cursor position

out: C= 1 and ST= 1 if timeout

in: A = dev', C = 0 aborts, does CLRCHN

C= 1 closes until error, aborts files after first error

in: A = log. Hie", (' = 0 aborts file, C= 1 real close file

Print all dins-in: Y = 0

Edit key- in: Y = key*

A = zero pg ptr to length of dfn and long addr.

out:XY unchanged in RS232/IEEE

C = 0 in keyboard,RS232,IEEE (use ST)

out:bank 15,X = low.Y - high addr

in: A = device"

in: A = log. file*

out: A = log. file', X = dev' Y = sec addr, C= 1 if no file LA

in: Y = secondarv address

out: A = log. file", X -- dev" Y -■= sec addr, C = 1 if no file matches SA

in: A bit 7-0 to load, bit 7- 1 to verify, bits 0-3 dest. bank*

Y,X=destination addr hi.lo (X = Y = $FF lo load al header addr)

out: A,Y,X = long addr. last byte in.

set: C = 0; A,Y,X = long address

read: C= 1; A,Y,X = long address

in: C=0;A,Y,X=long address

out: C= 1; A,Y,X = long address

in: C = 0 [or normal open

C= 1 temp IEEE channel, no table.

read- in: C- 1

out: X = row Y = column

set- in:C = 0;X = row Y=column

Read TOD clock in BCD (see book (or bit assignments)

Read/Set ST

Restore system delault vectors

Save any memory

Scan keyboard

Return screen size X = columns Y = rows

Send secondary adrs after listen

Set file parameters

Enable/Disable OS messages

Set file name

Sel TOD clock using BCD values

Enable/Disable IEEE timeout

Check Stop key

Make IEEE device talk

Send secondarv address after talk

Jump to code at long address AYX

Part of KB scan (no clockwork!!)

Unlisten all IEEE devices

Unlalk all IEEE devices

RAM vectors storing

Set button-reset code to bank 15 at X,Y

read- in: C — 1

set- in:C = 0 A = value logo to ST

in: X = zero pg ptr to long start addr

Y = zero pg plr to long end addrs

out: AXY are NOT final address

in :A = log. file", X = dev", Y = sec addr

in: A bit 1 = I KERNEL msgs on, bit 6= 1 Control msgs on

in: A = lenglh of (ile name, X zero pg plr to long name addi

in: bits assignments-see book

in: A bit 7 = 0 enable, bit 7 = 1 disable

out: Z=0 il STOP not used: X unchanged

Z= 1 if STOP used, X changed by call to CLRCHN

in: A = device*

in: A = secondarv address

logs keys: enter, + ,-,/,stop

in: C=0 moves user list at AYX to vector area

C= 1 moves vectors lo addr AYX

in:X = low Y = high

A

-

-

-

-

a

-

a

a

a

a

-

-

-

-

-

a

a

-

a

a

a

-

-

a

-

-

-

a

a

a

a

a

-

a

a

a

-

-

a

-

IN

XYC

x y -

x —

x - -

- - c

— c

_ y _

- y -

- v -

X V -

X V C

- - c

x y c

— c

- — c

— c

x y c

— c

— c

-

x y -

x y -

x —

x y -

x y -

x y c

XV-

MOD

\ X \ (■

a — c

a ,x y c

a x - c

ax —

a — c

c

a x y -

- - - c

a x y c

a x \' -

IX--

a x y -

a x y -

a x v -

- x y -

a x y -

a x y -

a x v -

a

a x v c

a x y c

a x y -

a x y -

a x v -

a x y -

-XV-

a

a x y -

a

a x y -

a x y -

a x y -

- x y -

a

a

ax —

a

a - - -

a x y c

a ■

a

a — - -

a x y -

a

MOD

ST

.

*

■

•

■

*

»

45 July 1986: Volume 7, Issue Ol

Unmasking The Kernal

- A collection of notes about using the I/O routines

John Russell

St. John's, NF

Every programmer who takes up machine language soon runs into those

puzzling phenomena known as the "Kernal Routines". Those who have

already attained enlightenment use them with abandon and urge others to

do the same, but they can be pretty darn confusing if you have barely

passed the "LDA #$00" stage. At least, they were to me, armed as 1 was

with only a C64 Programmer's Reference Guide and a copy of Supermon.

I was by no means an overnight success at learning machine language. At

first 1 shunned the machine language section of the Guide as if 1 was afraid

the pages would bite me. But older, wiser heads assured me that if I

progressed to the point where I needed speed beyond that of Basic, I would

have to become involved with machine language. 1 was tough to convince,

but eventually 1 was gripped with curiosity.

And so one day 1 decided to give M-L a try. 1 studied carefully the

explanations and examples from the Reference Guide. 1 fiddled with

Supermon. 1 printed the alphabet. 1 changed the colour of the screen, and

finally figured out what numbers such as $D020 stood for. 1 memorized the

mnemonics and their functions. I printed the alphabet again. But it was

here that 1 was stopped cold, because 1 couldn't really cause anything to

happen (aside from changing the screen colours and the ever-popular

alphabet printing). 1 needed two things : y-indexed loops and Kernal

Routines. The former were described well enough in the Guide, 1 just had

to think a bit about where to use them; the Kernal Routines, however, were

downright confusing. This might not seem like a major crisis - who needs

them, anyway? What exactly do they do? Well, the easiest way to explain it

is to say that without them, the only way to make the computer communi

cate with the outside world (i.e. you or another user) is by poking

information either to screen memory or to the mysterious "CIA chips" (one

bit at a time!). This did not seem to me to be a real possibility, so 1 set about

to figure out exactly what the Kernal was all about.

Don't laugh, but I thought that Supermon would understand the names of

each routine, so 1 had commands like "JSR CHROUT" without benefit of an

assembler (Supermon, Micromon et al, with their narrow format for

entering instructions, are monitors). I couldn't figure out the order of many

sequences. There are a host of routines that can be used to access the disk

or printer, and just to be safe, 1 would always use as many as 1 could.

Needless to say, it was a nice while before I could do anything with the

drive or printer.

My biggest beef was that many important routines, like "CLRCHN" are not

identified as important, and routines like "LISTEN" (which 1 have never

once needed to call directly) are not identified as unnecessary. How could

that be a problem, you ask? I "listened" and "unlistened" my drive to death

but never did a "CLRCHN", so 1 always ended up with a locked up

computer, an error light, and a star file in my directory.

The universal input/output routines are not identified as such, so I could

never decide which one was the right one (CHROUT and GETIN are

always best, with one exception - simulating a Basic INPUT statement).

Also, there was no step-by-step guide to opening a file and performing I/O

functions. I ran out of stack space in my head trying to follow all those

preparatory routines back to the beginning. And putting " ,s,w" or " ,p,w"

in the filenames in order to write anything to the disk escaped me for quite

some time.

An extreme case? Learning disabilities? 1 was beginning to suspect that

such had to be true. In contrast to my quick grasp of commands and

techniques in Basic, 1 was a snail at learning machine language.

Looking back, 1 can see that it wasn't really that bad. Once 1 learned the

op-codes and the different types of indexing I could do anything I wanted

to, limited only by my knowledge of the 64's input/output chips. Now

when I'm asked questions about machine language by learners, 1 find I'm

able to give detailed answers without referring to memory maps or the

Guide - because I was forced to figure such things out for myself and test

them by trial and error.

I suspect that everyone has similar problems, at least starting off. And

accessing the Kernal Routines properly is likely to be the highest hurdle

you'll have to clear on your way to becoming a proficient M-L program

mer.

So: here's my guide to using Kernal Routines.

- Learn the hex addresses of the important routines. Using the symbolic

labels in an assembler such as PAL is all very well and good, but you'll

have difficulty understanding disassemblies or other people's code other

wise. 1 find "jsr $FFD2" just as easy to type and recognize as "jsr

CHROUT".

- However, those who have access to an assembler can save themselves

time and bother by assigning labels to important routines early in a

program (eg OPEN = $FFC0). For those who do programming which

makes extensive use of the Kernal, save a PAL symbol table or a Library

file (for the Commodore Macro Assembler) which consists of nothing but

the labels and addresses of frequently used Kernal routines. Use a ".1st" in

PAL or ".lib" in the Macro Assembler to have the labels assigned automati

cally.

- To print a character to any device (including screen) use CHROUT

($FFD2). No need to ever use CIOUT, LISTEN, or SECOND, because the

routine at $FFD2 checks to see if the character is going to disk or printer

and calls these routines when they are necessary.

- To receive a character from any device (including keyboard) use GETIN

($FFE4). This does away with the need for ACPTR, CHRIN, TALK, UNTLK,

and TKSA, for the same reasons as above.

- Of course, this means that any time you want to send to or get from disk,

printer, modem, etc. you must first indicate this to the computer (Aha! you

say). After a file has been opened, use CHKIN or CHKOUT to select that file

for the proper operations. To avoid serial bus confusion, use CLRCHN first.

It's easier to remember if you put in a routine called "toprinter" or

"fromdisk" which will call CLRCHN, then CHKIN or CHKOUT whenever

necessary (or if you're not sure where your data is going to or coming

from).

The Transactor 46 July 1986: Volume 7, Issue 01

■

- The friendliest routine to use both before and after doing disk or printer
work is CLRCHN ($FFCC). Anytime you perform input or output to
peripherals, use this afterwards to make sure input and output go back to
keyboard/screen. Use it often; you can never be too careful.

- Use CHR1N only as the equivalent of a Basic input statement, and in
exactly the way it's shown in examples. This is a bizarre routine which can

have unpredictable results if not handled carefully. Try calling it a single
time if you're not convinced.

- When using LOAD and SAVE, don't use OPEN first. They perform OPEN
automatically.

- CLALL doesn't always do what you'd expect. Use the CLOSE routine on
each individual file. If you're lazy (like me), have several files open, or have

a program crash with the drive light on and file number unknown OPEN

the disk command channel, then CLOSE it. This closes all open files to the
disk, so never CLOSE the command channel if you're not finished with
your other files.

- If you are sending disk commands, using block read or write, checking
the error channel, or anything that requires you to have the command
channel to the disk open, keep it open for the duration. It can't hurt, and
you will suffer no ill effects if it isn't closed at the end. There will, however,

be nasty surprises if you close it before finishing up with your other files. '

- Sending a command to the disk is most easily done by setting the
filename to be the command (e.g. " sO.test") before performing the OPEN.

Then simply open the command channel. If no command is to be set, use a
filename of length zero. Disk commands after the first must be printed to
the channel, as in the Basic command print* 15," iO".

- The READST routine ($FFB7) is used mainly to detect the end of a file
(this is the cryptic "EOI line" mentioned in the C64 Guide; it stands for

"End Or Identity"). A loop using it would look something like this :

getm

chrout

readst

loop

=

=

=

=

jsr

jsr

jsr

and

beq

$ffe4

$ffd2

$ffb7
*

getin

chrout

readst

#$40

loop

;getachar

print it

;check status

;is bit 6 (EOI) still clear

; yes, go back

- When reading the error channel, a loop must be used to get characters

until a return (chr$(13)) is received in order to turn off the error light.

- If you get "searching for..." and similar messages when loading and

saving with machine language you can turn them off with "asl $9d". This

clears a certain bit and avoids the hassle of the SETMSG routine.

- Use drive and file-type declarations in filenames to avoid errors - don't

call it "test", call it "0;test,p,w". The exceptions to this rule are LOAD

and SAVE, which don't require file type to be specified. It is, however,

possible to get a look at a sequential file by doing a LOAD of " name.s.r".

The resulting program is somewhat garbled, but it can be a useful time-

saver.

A few examples (in PAL format) should serve to make things more clear.

Users of M-L monitors should use actual numbers and addresses in place

of labels.

To open program file " test" on disk for reading.. .

; •*** below is equivalent of: 'open 8,8,8, "name"

Ida #$08 ;the file number the computer refers to
ldx #$08 .device number 8 - the drive
Idy #$08 secondary address 8 - anything other than

15, 0, or 1 is safest

jsr $ffba ;setlfs -use the above numbers
Ida #$0a ; 10 chars in filename

Idx #<name ;the $34 in an address like $1234
Idy #>name ;the $12 in an address like $1234
jsr $ffbd ,set the file's name

jsr $ffcO ;do the actual opening

Idx #$08 .file #8 (NOT device 8)

jsr $ffc6 ;chkin - ignore keyboard, receive charac
ters from file #8

(routine using $FFE4 to read from file)

; **** close file #8 ****

jsr $ffcc finished with disk for now

Ida #$08 ;file#8again

jsr $ffc3 ;close file #8

r's ;and we're done

name = *

.asc "O:test,p,r"

filename goes below

;NB: users of monitors must poke their

; filenames into memory and figure

i out the hex addresses themselves

To save memory from $1234 to $5678 as " prog" on disk.

start = $1234

end = $5679

Ida #$08

tax

tay

jsr $ffba

Ida #$06

Idx #<name

Idy #>name

jsr $ffbd

Ida #>start

sta $fa

Ida #<start

sta $fb

Ida #$fa

Idy #<end

Idx #>end

jsr $ffd8

rts

name = *

.asc "0:prog"

; start of ram to save

;end of ram +1

;3 8's, as in above example

;6 chars in filename

;lower 2 hex digits of address

;higher2 hex digits

;set the filename

;start of save

;goes into $fa,$fb

;aslo-byte, hi-byte

; because $fa was used above

;one more than

;end of save

; now save it

;could be anywhere

;no file type needed for load & save

Notice that when save was used, there was no need to open a channel or

set an output device. Doing so can lead to a file with file type "del" in the

directory.

Of course, it's impossible to cover all aspects of the Kernal routines in a

single article - you could write a sizable manual on their intricate

workings. The best bet is for programmers to refer to a work like the

Programmer's Reference Guide (hence the name) for detailed how-to-use

information and the quirks each routine has. And, of course, keep reading

The Transactor!

The Transactor 47 July 1986: Volume 7, Issue Ol

Kernal Who? Evan Williams

Williams Lake, BC

I started computing when FORTRAN IV was popular and the machine

filled the basement of one of the halls on campus. Interactive was a

word used in teaching, not in programming. All jobs were run in batch

mode; you punched your card deck, dropped it off at midnight, and

came back at 3 AM to get the printout. A few of the well-equipped

physics labs had a PDP-4 model or two, a mini-computer. In those

days "mini" meant really small (like skirts). The PDP series was lucky

to have 8k of memory installed, and many had 4k. I dropped out of

computing for a number of years, not being able to afford 2-3 million

for a computer or a van to port it around in. Then came PET. 1 eagerly

laid out $1200 dollars for one of the first ones to hit B.C. back around

1978 and took it home to see what it could do. 1 soon discovered the

great feeling of being able to change a program the moment a mistake

was discovered. This was interactive programming. To add to this, the

PET has one of the best screen editors ever implemented (long before

IBM PC or Tl Professional). One thing led to another, and soon I was

searching for a way to boost performance. There is only one really

practical way to do this, and that is machine language.

What's a KERNAL?

Machine language is SUPER SPEEDY compared to BASIC, but you

have to do every little thing yourself and it is difficult to make your

routines as flexible as BASIC. Fortunately, there is help, and it resides

within the ROMs included with your computer. This help is in the

form of a useful set of general-purpose machine language routines that

perform a variety of functions. These functions are primarily input,

output and internal housekeeping. The routines are set up so that they

will access the correct device, passing information back and forth

from your program in a simple and predefined way. This block of

machine language routines is the heart of the computer's operating

system, and in the C-64 has a ROM chip all of its own to live in.

Around these routines are built many of the functions utilized by

BASIC or most any other program written in machine language.

Because the routines are such a central element of the computer, the

name KERNAL is applied. Many programming languages exist that

have a core of predefined routines that may be used to assemble more

complex functions. In these languages the central core routines are

often called the KERNAL. The method of using these routines in

Commodore computers is the same, regardless of which model you

own. To Commodore's credit, the requirements for entering each

routine and the results have been kept as constant as possible on

different machines.

The Jump Table

The jump table is the way by which all KERNAL routines should be

called. This table is a sequence of ML jump instructions found near the

top of memory. They are in the same place in all Commodore

computers except for routines that are unique to a specific machine.

To call a KERNAL routine one must first call any prerequisite routines

and then load certain registers with byte values needed to transfer

The Transactor

required information to the KERNAL routine. Some routines need no

setup at all, while others need one or two previous routine calls to get

things ready. For the purposes of this discussion we will use the C-64

jump table as an example. Those of you using other models of

Commodore computers, particularly the PET series, will find the jump

table similar, generally containing a subset of the C-64 jump table. If

you have a machine language monitor handy for your computer,

(such as supermon, micromon, etc.) you should have a look at the

section of memory starting at $FF81. When this area is disassembled,

you will find a sequence of "JMP $xxxx" instructions where "$xxxx"

is an address of either a routine in the ROM or of an indirect jump

vector.

In the case of an indirect vector the address of the actual routine will

be contained in two consecutive memory locations starting with the

one referenced by the "JMP" instruction. The target address is stored

in the vector location with the low order byte in the low order memory

address and the high byte in the high order memory location. For

example, the CHROUT ($FFD2) routine (see table I) vectors through

location $0326 by means of a "JMP ($0326)" instruction in the jump

table. When this instruction is executed, the microprocessor will fetch

the two bytes contained in locations $0326 and $0327 and install

them in the program counter. Program execution will then continue

starting at this new address.

A very important feature of the routines using an indirect jump vector

is the fact that the vectors are stored in R/W memory (usually known

as RAM even though ROM's are also Random Access Memory). This

means that the programmer may change these vectors to point to his

own routines, or simply to a RTS instruction so as to disable a routine.

"Patching" these vectors is a simple and effective way of adding or

modifying the operation of the computer operating system. As an

example, new commands may be added to BASIC by changing the

error message vector ($0300) to point to your routine. This routine

would then use the CHRGET routine to re-get the offending statement

and compare it to your list of valid commands. If no match were found

then the accumulator value would be restored and control passed on

to BASIC by JMPing to the normal error routine ($E38B). Another

technique for changing KERNAL vectors, particularly those using

direct JMP commands, is to copy the KERNAL to the underlying RAM

and switching off the KERNAL ROM. It is now possible to change

anything you wish in the KERNAL including any and all jump table

vectors.

Using The KERNAL

Most of the KERNAL routines require some form of setup before being

called. Some, however, do not. Generally, the routines that reset or

clear something do not require any preparation. For example, the

RESTOR routine does not require any prior KERNAL calls or register

setup. When called, it will rewrite the jump table vectors starting at

$0300 to the default values. An idiosyncrasy of the manner in which

July 1966: Volume 7, Issue Ol

this routine is written causes it to also write the jump table vectors to

RAM locations $FD30-$FD4F. This happens because the routine

VECTOR uses part of the same code and is written to allow moving of

the vectors. As a result, if you have anything important stored in

$FD30-$FD4F it will be over-written when RESTOR is called. RESTOR

is one of the routines called when the keys RUN/STOP-RESTORE are

pressed. (You will notice these bytes being over-written if you view a

high-res screen at $E000, then RUN/STOP-RESTORE and view it

again.)

More commonly, the KERNAL routines require some register setup

before use. Probably the most-used such routine and perhaps the

most complex is CHROUT ($FFD2). This routine is used to output a

single character. The byte value of the character is placed in the

accumulator with a LDA XX command and CHROUT is called using

JSR $FFD2. If printing on the screen is desired, no other setup will be

required. The CHROUT routine will examine several flags to find out

what channel is to be used. If no channels are open or enabled,

CHROUT will then examine the byte value and determine if it is a

control character.

If not, the correct screen location will be calculated, the character

translated to the correct screen code, reverse printing checked, the

value placed in screen memory, the color memory updated, screen

scrolling checked/done, line link table updated and more. When

done, CHROUT and all other KERNAL routines return with an RTS

command.

The nice part is that the programmer does not have to worry about

any of this. The KERNAL does it for you. Another well used routine is

GETIN. This functions in almost the same manner as the BASIC GET

statement. When GETIN is called, with no channels open, a single

character from the keyboard buffer will be returned in the accumula

tor. If the keyboard buffer is empty, the value zero will be returned.

PROGRAM 1

Program 1 is a simple input routine in machine language which uses

the GETiN routine to fetch characters from the keyboard buffer. The

program exits when a return is pressed. Only alpha-numeric input is

allowed with no control or cursor characters recognized or printed.

Unlike the BASIC input routine this program will accept up to 255

characters as input. It is not possible to move off the line as only the

delete key may be used to edit. When the return key is pressed, the

program alters the pointer of the first BASIC variable declared by the

BASIC program to point at the input buffer. For this reason, the first

variable declared in the BASIC program should be a string variable.

Upon return from this program this first variable will contain the input

data. The length of input may be controlled by the second variable

declared in the BASIC program. This must be an integer variable with

a value range of 0-255. Program 1 as written will use $C000 to $C0FF

as the input buffer. See table II for entry address and examples of use.

Program 1 gets all input from the keyboard and puts all output to the

screen. This is because no input or output channels other than the

default ones have been specified. To get information from some

channel or device other than the keyboard, it is necessary to call some

preparatory routines first. Similarly, to output to a device other than

the screen, some setup is required.

PROGRAMS 2 and 3

Program 2 is a low resolution screen dump routine. This program

opens a file to disk and writes the contents of the screen including

sprite pointers on the disk. It functions by first obtaining the location

in memory of the first variable declared in a BASIC program and using

the contents of this string as the file name/command string to send to

the disk drive. The KERNAL routine SETNAM is then called to set up

system pointers to this string.

The logical file number, the device number and the secondary

address are then loaded in the correct registers and the SETLFS

routine is called. At this point all that remains is a call of the OPEN

routine and we have a open file. This sequence produces exactly the

same result as the BASIC statement OPEN 1,8,2, "0:test,s,w" assum

ing the string variable passed from BASIC to program 2 contained

"0:test,s,w". The file name/command string may be located any

where in memory. All that is necessary is to place the low/high values

of the start address of the command sequence in the .x and .y registers

along with the length in the .A register (Accumulator) and call the

SETNAM routine.

Next in program 2 the CHROUT routine is directed to the device used

by file #1 by loading the .x register with the file number and calling

the CHKOUT routine. This means that any calls of CHROUT will send

the byte in the accumulator to the disk. All values (0-255) are written

with no filtering of exceptions. After reading all bytes from the screen

and sending them, the accumulator is loaded with the file number and

the CLOSE routine is called. This closes the file and notifies the disk

drive that it is the end of the file. The CLALL routine is called next; this

resets all I/O to the default channels and clears the file table.

Program 3 is the screen read routine and is very similar to program 2.

The main difference is that the file opened is a read file (O:test,s,r) and

the channels opened are input channels. It should be noted that a

channel may be enabled for input using CHK1N without affecting the

output channel when calling CHROUT. The same is true for output. It

is therefore possible to input from disk using GETIN and print to the

screen using CHROUT. Conversely, input from the keyboard using

GETIN and output to disk or printer using CHROUT is possible. An

important difference in program 3 is the use of a temporary storage

location for the index variable used in the ,y register. This is necessary

because all registers are clobbered by the GETIN (SFFE4) routine (see

TABLE I).

The file opened in programs 2 and 3 is exactly the same as a file

opened by a BASIC program. Because of this, if a machine language

program is to be used as a subroutine of a BASIC program, it is

perfectly okay to open and close the file within the BASIC portion of

the program. It is recommended that when fetching data from the disk

the GETIN routine be used instead of the CHRIN routine. The reasons

are the same as for using GET in BASIC instead of INPUT in that

GETIN will accept any and all characters. The nice thing about

machine language is that GETIN will work just as fast as the CHRIN

routine when all the overhead of BASIC is absent. Program 3 does not

test for a valid character after calling GETIN since the file length is

always constant.

PROGRAM 4

Program 4 is the most complex. This program provides instant

checking of the disk error channel when the Commodore and control

keys are pressed together. The disk status is printed on the top line of

the screen and the cursor position is maintained. If it is desired to call

this program from within another program, the last instruction can be

changed to a RTS, the error check BCS EXIT changed to NOP's, and

the program called at BEGIN.

49
July 1986: Volume 7, Issue Ol

Program 4 uses the serial bus communication routines in the

KERNAL without opening a file. The serial device is commanded

"speak" with the TALK ($FFB4) routine and the secondary address

sent using the TKSA ($FF96) routine. The Commodore Programmers

Reference Guide incorrectly states that to send the secondary address

one loads the accumulator with the secondary address value and calls

the routine. The GUIDE does not mention that the secondary address

value must first be OR'ed with the hex value $60. To access the disk

command channel, secondary address $6F must be sent ($0F OR $60

= $6F). This applies only to the direct serial secondary address

routines TKSA and SECOND. The SETLFS routine requires only the

unmodified correct secondary address value.

When program 4 is run, the interrupt vector at $0314—$0315 is set to

point at the main body of program 4. Sixty times per second the

system interrupt causes the code at START to execute. If a match

between location $028D and $FE is found, the rest of the program will

execute. If no match is found the normal interrupt routine is JMP'ed

to. When the program executes a new value is placed in the count

down timer $FE and the TALK ($FFB4) routine is called with a device

number of eight. Following, the TKSA ($FF96) routine is called with

secondary address $6F. This opens the command channel in the disk

drive for talking (to the computer).

Next the PLOT ($FFF0) routine is called with the carry bit set. This

returns the row and column position of the cursor in the .x and .y

registers. These are stored. The cursor is now set to the home position

by a call toCHROUTwith a value of $13 in the accumulator. Next the

status byte (same as ST in BASIC) is set to zero.

The ACPTR ($FFA5) routine is then called and the returned value

printed on the screen by CHROUT. A call to READST ($FFB7) follows

to determine if an EO! was sent. If not, the program loops to NEXT and

repeats until READST returns a non-zero value. This indicates the

disk has said all it is going to and isn't speaking to us anymore.

We then try to reset the cursor back where it came from and run into a

problem in the PLOT routine. Unfortunately, the values returned

when PLOT is called to obtain cursor position are not always the same

as the values we must use to restore cursor position. The problem

comes up when the cursor is positioned on a wrap line, ie. one that is

longer than 40 characters. The restore position part of the PLOT

routine incorrectly handles the row calculations. We must test the

column position returned by PLOT and if it is greater than $27

(decimal 39) we must subtract $28 before calling PLOT.

Finally we call the UNTLK ($FFAB) routine to untalk the serial bus

devices and then JMP to the normal interrupt handler.

PROGRAM 5

Program 5 is a BASIC program that generates a machine language

program file on disk. This file will contain all four example programs

with the call addresses as listed in TABLE II. Just type it in and place a

ready to use disk in the drive. Then RUN the program. The ML

program can be loaded with LOAD " KERNAL WHO C100" ,8,1.

Problems and tips

A few problems have been noted when using the KERNAL routines to

talk to the disk drive. If a UNTLK is followed immediately by a TALK

command the computer may "crash". This appears to be caused by

the drive not being able to respond to another command until it has

finished some internal work thus causing it to miss the attention

sequence from the computer. This takes a few milliseconds and it is

best to wait at least 100 milliseconds before sending a new command.

This is one reason for the countdown timer logic in program 4. That

logic is also implemented since program 4 is executed on the interrupt

and these interrupts occur every 16.7 milliseconds. It is necessary to

prevent the routine from being called by a second interrupt that

occurs while the routine is still executing. In most interrupt driven

routines this is not a problem but the serial bus communication

routines have a nasty habit of clearing the interrupt flag thus allowing

further interrupts.

Something that is not specifically mentioned in the GUIDE is the fact

that the KERNAL routines never call any routines in the BASIC ROM

residing at $A000-$BFFF. This means that the BASIC rom may be

turned off and the KERNAL used as much as you like. This allows you

to use the 8k of RAM there for your own programs. Keep in mind that

the BASIC ROM makes frequent use of the KERNAL so the converse is

not true.

Another system characteristic that is not mentioned anywhere is that

sprites MUST be turned off when the serial bus is used. It is not

sufficient to hide them on the edge of the screen, they must be OFF!

The VIC chip steals time from the 6510 cpu when sprites are turned on

and this will clobber the serial bus timing routines, particularly the

EO1 (end of information) detection. Your computer will occasionally

miss the EOI signal and then wait until the sun burns out to get it.

Using sprites does not seem to affect the RS-232 routines since the

timing windows are much wider.

When using the system RS-232 routines it is only necessary to OPEN

a file to device number two and output with CHROUT or input with

GETIN after setting the correct I/O channels. Do not use CHRIN with

RS-232 since CHRIN is dependent on receiving a carriage return to

terminate the routine. Also, the RS-232 interrupt system uses the

non-maskable interrupt (NMI) as does the serial bus. Therefore, you

cannot send or receive RS-232 data and serial bus data at the same

time.

Another item of interest is the way the CLOSE routine handles the RS-

232 channel. If CLOSE is called then the RS-232 file is killed along

with the buffers. The user port will be set to default I/O values. If the

RS-232 file is to be closed without affecting these things call the

CLALL routine instead. This will wipe out the file table and set default

I/O but the user port is unaffected and the buffers remain allocated.

One problem with RS-232 is that when a RS-232 file is OPENed, the

user port is set to a standard default condition. This means that if you

were using some of the pins for certain non-implemented functions,

such as telephone line control, your output conditions and port values

may be disrupted. The only way to deal with this is to open the RS-

232 file "manually". To do this you will have to setup all the table and

file flags, allocate buffers, set interrupt timers etc. yourself. A full

description of this process is beyond the scope of this article but may

be the subject of a future article.

Full details of the entry, exit and error conditions to be considered are

i n the Commodore 64 Programmers Reference Guide. I have listed the

KERNAL routines in TABLE I in order by address because the table in

the GUIDE is in alphabetical order by label and that is very inconven

ient when you are looking through a disassembly and trying to find
out what routine is used.

Using the KERNAL is not difficult. Many of the operations are not

much different from the way BASIC works. It saves time and will make
life a lot easier for the programmer.

The Tronsoctor
SO

July 1986: Volume 7, Issue Ol

TABLE I

Commodore 64 KERNAL Jump Table In Address Order

Label

I0IN1T

RAMTAS

RESTOR

VECTOR

SETMSG

SECOND

TKSA

MEMTOP

MEMBOT

SCNKEY

SETTMO

ACPTR

CIOUT

UNTLK

UNLSN

LISTEN

TALK

READST

SETLFS

SETNAM

OPEN

CLOSE

CHKIN

CHKOUT

CLRCHN

CHRIN

CHROUT

LOAD

SAVE

SETTIM

RDTIM

STOP

GETIN

CLALL

UDTIM

Call

addr

$FF84

$FF87

$FF8A

$FF8D

$FF90

$FF93*

$FF96*

$FF99

$FF9C

$FF9F

$FFA2

$FFA5*

$FFA8*

$FFAB*

$FFAE*

$FFB1*

$FFB4*

$FFB7

$FFBA

$FFBD

$FFC0

$FFC3

$FFC6

$FFC9

$FFCC

$FFCF

$FFD2

Vector

addr

_

_

-

-

-

-

-

_

-

-

-

-

-

-

-

-

-

($031 A)

($031C)

($03 IE)

($0320)

($0322)\ * '—' KJ — M j

($0324)

($0326)

$FFD5**{$0330)

$FFD8*H$0332)

$FFDB

$FFDE

$FFE1

$FFE4

$FFE7

$FFEA

-

-

($0328)

($032A)

($032C)

-

Target

addr

$FDA3

$FD50

$FD15

$FD1A

$FE18

$EDB9

$EDC7

$FE25

$FE34

$EA87

$FE21

$EE13

$EDDD

$EDEF

$EDFE

$ED0C

$ED09

$FE07

$FE00

$FDF9

$F34A

$F291

$F20E

$F250

$F333

$F157

$F1CA

$F49E

$F5DD

$F6E4

$F6DD

$F6ED

$F13E

$F32F

$F69B

Function

Description

initialize i/o

ram tpsfifiiii i v, 11

move vectors

control kernal msg

send listener second

send talker second

set top ram pointer

set start ram point

scan keyboard

set IEEE timeout

input serial byte

output serial byte

untalk serial bus

unlisten serial bus

listen serial device

serial device talk

read i/o status byte

set-up logical file

set file name

open a logical file

close a single file

enable input channel

enable output chan

^pt rh/UTi to rlpfaitltOCl Lllul fo \.\J UddUlL

input characters

output a character

load to memory

save from memory

set jiffy clock

read jiffy clock

test stop key

get char from chan

clear/close files

update jiffy clock

Res

entry

_ _ _

- x y

a —

a —

a —

- x y

- x y

a —

a —

_ _ _

_ _ _

a —

a —

_ _ _

a x y

a x y

a —

- x -

- X -

_ _ _

a —

a x y

a x y

a x y

— _

lister Usage

return

- X

a -

a -

- X

_ x

a -

a -

a -

a -

a -

a -

a -

a -

a -

a -

a -

a -

a -

a x

a -

—

a x

a -

a -

—

y

_

_

y

y

_

_

_

_

_

_

_

_

_

_

y

_

y

_

_

-

used

a x y

a x y

a x y

a x y

a —

a —

a —

- x y

- x y

a x y

a —

a x -

_ _ _

a —

a —

a —

a —

a —

a x y

a x y

a x y

a x y

a x -

a x -

a A —

a x -

a —

a x y

a x y

a x y

a x y

a x -

a x y

a x -

a x -

Notes:

Registers indicated as being used in

the "used" column may contain the

same value loaded to call the routine.

If no usage is indicated, then the regis

ter is safe to use for other purposes, eg.

indexing, counting, storing, etc. When

GETIN is called for RS-232 input, the

.x and ,y registers are not affected. The

processor status register and the accu

mulator carry bit are affected by

nearly all KERNAL routines.

When sixteen-bit values are passed in

or out of a routine, the .x register

contains the low byte and the ,y regis

ter contains the high-order byte.

Detailed information on using specific

routines may be found in the Commo

dore 64 Programmer's Reference

Guide.

* Serial I/O routine only, not com

patible with some IEEE-488

adapters

** These routines use an indirect

jump link AFTER being entered

Program 1

Keyboard input routine using GETIN and CHROUT with 255 charac

ter buffer and automatic BASIC variable access. Stores characters at

$C000-$CFFF. The first variable in the BASIC program should be a

string (eg. a$= " "). When the program is called this variable will

contain the input. The length of input is controlled by the second

variable declared by the BASIC program. This variable must be an

integer (eg. a% = 10) and have a value of 0-255.

LDA #$00 ;azero in .a

STA $FE ;index storage

STA $CC ;flag to flash cursorvariable offset

LDY #$0A variable offset

LDA ($2D),Y ;get low byte of second var

STA $FD ;save it

LOOP JSR $FFE4 ; "GETIN ", go get a character

CMP #$00 ;is it azero?

BEQ LOOP ;if zero then loop

CMP #$0D ;is it a return key?

BEQ END ;exit if return pressed

CMP #$14 ;is it a delete key?

BNE NODEL ;not delete then skip

LDY

BEQ

DEC

JMP

NODEL TAX

AND

CMP

BCC

TXA

LDY

CPY

BCS

INC

BNE

DEC

JMP

PUT STA

OUTPUT JSR

LDA

STA

JMP

END LDY

LDA

$FE ;buffer pointer

LOOP ;loop if buffer empty

$FE ;delete by decrementing pointer

OUTPUT ;jmp output

;save .a in the .x register

#$7F ;remove high bit from char

#$20 ; is it a control character?

LOOP ;if less than #$20 yes so loop

;restore character to .a reg

$FE ;retrieve buffer index

$FD ;checkif limit reached

LOOP ;carry set, limit reached

$FE ;increment buffer pointer

PUT ;if buffer not full skip to " PUT"

$FE ;oops, buffer full so back down one

LOOP ;loop

$C000,Y ;place byte in $c000 buffer

$FFD2 ;" CHROUT" - print the character

#$00 ;zero

$D4 ;disable quote mode

LOOP ;play it again sam

#$02 ;offset to string variable length

$FE ;buffer pointer

The Transactor 51 July 1986: Volume 7, Issue Ol

STA

INY

LDA

STA

INY

LDA

STA

INC

LDA

JSR

RTS

PROGRAM 2

($2D),Y

#$00

($2D),Y

#$C0

($2D),Y

$CC

#$20

$FFD2

;put in first variable length byte

;inc index y offset to pointer low byte

;low order byte buffer location

;store it in string variable pointer

-.increment index

;high order byte

;store it in string variable pointer

;turn off cursor

;a space to clear the cursor block

;print it,

;and return

Dump screen contents to disk using name found in first variable

declared in BASIC program calling this routine. The first variable

should be a string variable or the name may be rather strange.

;offset to string length

;get string length

;zero length, quit while ahead

;save length on stack

;increment index

;get low address of string

;put in .x

;increment index

;get high order pointer

;put in .y

;pull length from stack

;SETNAM: set file name

;logical file*l

;device #8

-.secondary address

;SETLFS: set logical file

;OPEN

;if carry set then error out

;file number

;CHKOUT: set output channel to file 1

;zero index

;set pointer low byte

;start of screen high byte

;set pointer high byte

;get screen character

;CHROUT: output a byte to disk

increment index

;not256yet?

;increment high byte of pointer

;get pointer high byte

;done four pages yet?

;if carry clear then no

;file number 1

;CLOSE: close the file

;CLALL: restore default i/o channels

;return to BASIC

START

START

LOOP

EXIT

LDY

LDA

BEQ

PHA

INY

LDA

TAX

INY

LDA

TAY

PLA

JSR

LDA

LDX

LDY

JSR

JSR

BCS

LDX

JSR

LDY

STY

LDA

STA

LDA

JSR

INY

BNE

INC

LDA

CMP

BCC

LDA

JSR

JSR

RTS

PROGRAM 3

#$02

($2D),Y

EXIT

($2D),Y

($2D),Y

$FFBD

#$01

#$08

#$02

SFFBA

$FFC0

EXIT

#$01

$FFC9

#$00

$FD

#$04

$FE

($FD),Y

$FFD2

LOOP

$FE

$FE

#$08

LOOP

#$01

$FFC3

$FFE7

Load screen contents frc

LOOP

EXIT

LDY

LDA

BEQ

PHA

INY

LDA

TAX

INY

LDA

TAY

PLA

JSR

LDA

LDX

LDY

JSR

JSR

BCS

LDX

JSR

LDY

STY

STY

LDA

STA

JSR

LDY

STA

INC

BNE

INC

LDA

CMP

BCC

LDA

JSR

JSR

RTS

#$02 ;offset to string length

($2D),Y ;get string length

EXIT ;zero length, quit while ahead

;save length on stack

;increment index

($2D),Y ;get low address of string

;put in .x

;increment index

($2D),Y ;get high order pointer

;put in .y

;pull length from stack

$FFBD ;SETNAM: set command string

#$01 ;logicalfile*l

*$08 ;device #8

*$02 secondary address

SFFBA ;SETLFS: set logical file

SFFCO ;OPEN

EXIT ;if carry set then error out

#$01 ;file number

$FFC6 ;CHKIN: set input channel to file 1

#$00 ;zero index

$FC ;zero index temp

$FD ;set pointer low byte

#$04 ;start of screen high byte

$FE ;set pointer high byte

$FFE4 ;GETIN: get a byte from disk

$FC ;get index temp

($FD),Y ;store byte on screen

$FC ;increment index

LOOP ;not 256 yet?

$FE ;increment high byte of pointer

$FE ;get pointer high byte

#$08 ;done four pages yet?

LOOP ;if carry clear then no

#$01 ;file number 1

$FFC3 ;CLOSE: close the file

$FFE7 ;CLALL: restore default i/o

;return to BASIC

PROGRAM 4

Fetches disk status and displays on top line of screen when the control

and Commodore keys are pressed together.

declared in BASIC program calling (his routine. The first variable

should be a string variable.

[NIT

START

EXIT

BEGIN

SEI

LDA

STA

LDA

STA

CLI

LDA

STA

RTS

LDA

CMP

BEQ

LDA

CMP

BEQ

DEC

JMP

LDA

STA

#H,START

$0315

#L,START

$0314

#$06

$FE

$028D

$FE

BEGIN

#$06

$FE

EXIT

$FE

$EA31

#$2D

$FE

interrupts off

;high order byte of start

;change high order vector

;low byte of start

;low byte of vector

interrupts on

;match value

;save it

; return

;load keyboard shift pattern

;6= control + Commodore key

;if pressed then do it

countdown limit

; reached yet?

;if yes then continue

;countdown one more jiffy

;finish interrupt

;45 jiffys (.75 second)

xountdown location

The Transactor 52 July 1986: Volume 7, Issue Ol

LDA

JSR

LDA

JSR

BCS

SEC

JSR

STX

STY

LDA

JSR

LDA

STA

NEXT JSR

JSR

JSR

CMP

BEQ

LDX

LDA

CMP

BCC

SBC

GOPLOT TAY

CLC

JSR

JSR

JMP

*$08

$FFB4

*$6F

SFF96

EXIT

SFFFO

$FB

$FC

*$13

SFFD2

*$00

$90

$FFA5

$FFD2

SFFB7

*$00

NEXT

$FB

$FC

#$28

GOPLOT

*$28

$FFF0

$FFAB

EXIT

;device number

;TALK: command disk to talk

;secondary address 15

;TKSA: send second

;error abort

;set carry bit

;PLOT: fetch cursor location

;save it

;save it too

;home cursor character

;CHROUT: print it

;a zero

;clear the status word

;ACPTR; get error channel character

;CHROUT: print it

;READST: read status byte

;if zero

;get another character

;cursorx position

;cursory

;short line?

;if yes go plot

;subtract 40

;move to y register

;clear carry

;PLOT: set cursor back

;UNTLK: untalk serial devices

ifinish

TABLE II

Call Address For Programs 1, 2. 3 and 4

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

All four programs are storec

HEX DECIMAL

1 SC100 49408

2 $C15F 49053

3 $C1A6 49574

4 SC1F2 49650

1 as a block occupying the space from

SclOO to SC257. $C000 to SCOFF is used as buffer space by program 1.

To call program 1

Sample BASIC Programs

10 clr: a$= " ": a°/o=1O

20 sys 49408

30 print:printa$

To call program 3

To call program 2

10 clr: a$ = " 0:screen dump.s.w"

20 sys 49053

To call program 4

10 clr: a$ = "0:screen dumD.s.r" svs 49650

20 sys 49574

Program 5 is a BASIC program that will generate a machine language

program on disk. This program contains the above four programs and

will have the name " kernal \

LUIIIIIlal 1U.

vhoclOO . Load this program with the

LOAD "kernal who d 00 ",8,1

I nen type iNtW auu press icium.

The Transactor S3

PROGRAM 1-4 Generator

BO

KG

PI

EA

CC

BL

MH

EP

Cl

IL

DC

FG

EK

CB

DF

MM

IH

EE

AF

PO

DL

EL

NK

PH

IE

AH

NM

OF

Dl

Fl

ED

GN

EF

NF

DD

LN

AK

HC

HB

FF

DH

Ml

MM

LI

FF

JF

AE

PK

PG

MA

DF

MC

JO

MD

DN

JO

KK

CG

FP

OG

100 rem object file creator for

110 rem programs 1, 2

120 rem for article

, 3 and 4

i "KERNALWHO?"

130 rem " Evan Williams 1986

140 print "@place disk in drive and press return."

150 get a$: if a$Ochr$(13)then 150

160 print "0ok, please
170 for i= 1to344:

180ifck<>50143

statements":

190 print "0data
200 open! ,8,2, "0

read

then

end

1 wait"

a: ck = ck + a:

print "Qj
next

|error in data

ok, creating disk proaram file"

:kernal who c100,o,

210 restore: print#1,chr$(0);chr$(193)

220fori = 1to344: readc

230print#1,chr$(a);

240 next: closei

250 print "0done
260:

270 data 169, 0

280 data 177, 45

290 data 0, 240

300 data 20, 208

310 data 254, 76

320 data 32, 144

330 data 176, 218

340 data 76, 12

350 data 255, 169

360 data 160, 2

370 data 0,145

380 data 230, 204

390 data 2,177

400 data 45, 170

410 data 189, 255

420 data 32, 186

430 data 162, 1

440 data 253, 169,

450 data 210,255,

460 data 254, 201,

470 data 195, 255,

480 data 177, 45,

490 data 170, 200,

500 data 255, 169,

510 data 186, 255,

520 data 1, 32,

530 data 132, 253,

540 data 255, 164,

550 data 245, 230,

560 data 237, 169,

570 data 255, 96,

580 data 169, 3,

590 data 133, 254,

600 data 240, 11,

610 data 198, 254,

620 data 254, 169,

630 data 32, 150,

640 data 255, 134,

650 data 210 255

660 data 255, 32,

670 data 0, 240,

680 data 40, 144,

690 data 240, 255,

i

i":end

, 133

, 133

,249

9

62

225

230

193

0

165

45

169

45

200

169,

255,

32,

4,

200,

8,

32,

240,

177,

1,

32,

198,

169,

252,

254,

1,

120,

141,

96,

169,

76,

8,

255,

251,

169,

210,

243,

3,

32,

254, 133

253, 32

201, 13

164,254

193, 170

138, 164

254, 208

153, 0

133,212

254, 145

200, 169

32, 76

240, 61

177, 45

1, 162

32, 192

201,255,

133,254,

208, 248,

144,240,

231,255,

66, 72,

45, 168,

162, 8,

192,255,

255, 160,

4, 133,

145,253,

165,254,

32, 195,

169, 194,

20, 3,

173, 141,

6, 197,

49, 234,

32, 180,

176,237,

132,252,

0, 133,

255, 32,

166,251,

233, 40,

171,255,

,204

,228

240

240

41

254

5

192

76

45

192

210

72

168

8

255

160,

177,

230,

169,

96,

200,

104,

160,

176,

0,

254,

230,

201,

255,

141,

88,

2,

254,

169,

255,

56,

169,

144,

183,

165,

24,

76,

w"

, 160

,255

49

237

127

196

198

32

12

200

145

255

200

104

160

176,

0,

253,

254,

1,

160,

177,

32,

2,

39,

132,

32,

252,

8,

32,

21,

169,

197,

240,

45,

169,

32,

19.

32.

255,

252,

168,

18,

, 10

201

201

198

201

253

254

210

193

169

45

160

177

32

2

34

132

32

165

32

2

45

189

32

162

252

228

208

144

231

3

6

254

2

133

111

240

32

165

201

201

32

194

uly 1986: Volume 7, Issue Ol

Adding Functions to Basic Frank E. DiGioia

Athens, Georgia

Execute Machine Language programs inside your 1541

How would you like to be able to add functions to BASIC with as much

ease as you are able to add commands through the use of wedge

programs? It can be done. And, in fact, it is just as easy to implement a

function wedge as it is to implement any other type of wedge program.

The natural question is, of course, if it is so easy, why haven't we seen

function wedges before? I think that the reason is simply because the

types of wedges we are most familiar with are the ones which are least

suitable for adding functions.

If you try to think of a CHRGET wedge or an IERROR wedge returning

a function value, then, it does, indeed, look like a tough job, because

these types of wedges are not really suitable for returning values. We

need a whole new type of wedge. In this article and the two that will

follow it, we will explore several different types of wedges which are

not in common use, but which have great potential for opening up

new avenues of programming for those who desire to enhance the

working environment of their computer.

Why A Function Wedge?

Perhaps you're wondering why we even need a function wedge. After

all, Commodore was good enough to include the USR function in

BASIC 2.0 which allows us to add our own functions to BASIC. While

it is very true that we can add almost any function we desire via the

USR function, the advantages of a function wedge include the fact that

many new functions can be defined at one time as well as the fact that

with a function wedge, we are free to determine the number of

parameters, method of input, etc. For example, take the program line:

10 print !cosh(.5),!sinh(.9),!sec(.12)

While the purist may argue that the line could be implemented with

USR functions, it would take several lines to implement and would not

be nearly as clear as the above line. Further, what if you need multiple

arguments like:

20z=!mod(x,y)

You could say Z= USR(X),Y I suppose, but it just isn't the same.

Create A New Environment

While the above are good enough reasons for using a function wedge,

an even more novel way to use added functions is to change the

BASIC programming environment. That is, give the illusion of adding

new commands, and changing the capabilities of BASIC. For example,

a function named @ that takes two parameters and returns a null

string can be used to plot the cursor, thus creating a PRINT@(x,y)

statement. And who says we need to enclose the function argument in

parentheses? Suppose we make a function named '$' which converts

from ASCII Hex characters to internal floating point. Then we can

execute statements like:

10poke$c000,$b4

20 x = $a000

30 print $d000,peek($d000)

or add a function named % for binary and you can

20 poke $033c,peek($033c)and%1111

Admittedly, the above could be done with a USR function but by using

a function named '$' or'%' we create the illusion of a new operating

system.

How To Implement The Wedge

Now that you are fully convinced that a function wedge is a worth

while endeavor, let us examine how to implement one. It isn't hard at

all. The vector we will be changing to point to our evaluation routine

is named 1EVAL and is located at $030A/$030B. In addition to just

executing our routine, however, we must tell BASIC whether the

result was string or numeric and where to find it. As far as the type

goes, storing a zero at location SOD indicates numeric and tells BASIC

to look for the result in the FAC (The floating point accumulator — if

you don't know where or what that is, don't worry, there are ROM

routines that take care of all of that for you.). Storing a $FF at location

SOD indicates that the result is of type string and BASIC looks on the

temporary string stack to find it. If you don't understand how to set up

a string, don't worry, we will use a ROM routine to do this for us, too.

Our evaluation routine will default to type numeric and the ROM

routines we will use to set up a string will set the type to string so we

never have to worry about setting the type flag ourselves. In fact, the

only thing out of the ordinary that we will have to do, is to set up the

string descriptor if the result of our function is a string. You will see

how this is done in the example program.

An Example Function Wedge

At the end of this article is a very useful example of a function wedge

that you can use and add your own functions to. It is activated by

SYS49152 and is immune to RUN/STOP-RESTORE. Here are the

functions we will include and an example of how they are used:

The '@' function: Plot the cursor and return a null string. (Note: more

than one @ is allowed in one print statement). Type: STRING

Ex. print@(0,14)" my report" ;@(2,12)" by John smith"

The Transactor 54 July 1984: Volume 7, Issue 01

The '$' and '%' functions: Convert HEX and BINARY characters to

floating point. Type: NUMERIC

Ex. poke$d016, peek($dO16) and %11101111

The '*' function: Convert from LO/HI format to 16 bit floating point.

(This routine is included just as an example to show how to convert

your results to floating point if they aren't already). Type: NUMERIC

Ex. print #(peek(43),peek(44))

could be used to read the start address of BASIC. To read any address,

just PRINT #(LO,H1).

Finally, since all the above functions so far have been kind of off the

wall, I will include a parser and some examples of functions similar to

what you might add yourself; including a straightforward string

function, IDSTAT, and a somewhat serious numeric function, !M0D,

which shows that even YOU can do floating point operations from

machine language.

The IDSTAT function returns the disk status as a string. The status is

cleared once it is read so save it in a variable if you need it.

Ex. (Print A Sequential File)

10 open2,8,2," filename": a$ = Idslat: if val(a$)<>0 then

print a$: end

20 for i = 0 to 1: get#2,b$: printb$: i = st: next: close2

The !M0D(X,Y) function returns the integer remainder from dividing

X by Y. MOD has two sister functions, DIV and FRAC, which return

the integer quotient and fractional remainder, respectively.

Ex. hi = !div(x,256)

lo = !mod(x,256)

zz = !frac(x,y)

Any functions that YOU may want to add can be included via the !

symbol which immediately causes parsing for the function name to

execute.

Although the source code for this example is fully commented, I will

briefly discuss some important points for those interested in adding

their own functions with this code.

How It Works

The wedge itself is very simple. If not for the I commands, the wedge

would only be a few lines long. When a function name starting with !

is found, control is passed to the parser which looks through the

command table for a match and jumps to the corresponding address

via RTS. That is, it places the address of the routine (minus one) on the

stack and then executes an RTS (at the end of CHRGET) to jump to the

routine. The parser code is well worth studying. If you want to add

your own funtions to BASIC, simply put the name of your function in

the TABLE being sure to add $80 to the last byte of the name. Then put

the address-1 in the ADRTAB and you are in business.

The IDSTAT function is straightforward and may be used as a model

for adding your own string functions. It talks to the drive and then puts

the length of the resulting string in .A and in line 2420 asks BASIC

where to put the string. DLOOP2 copies the string there and we end

our function in line 2500 by telling BASIC where the string can be

found. (Note that XPLOT (The @ function) returns a null string by

reserving space for a string of length zero before setting up the string

descriptor.)

Writing numeric functions is easy. Just be sure to leave the final result

in the FAC. If you were doing an integer calculation, you can convert

the result to floating point in exactly the same way as the # function

does it. See lines 2980-3020.

Final Notes

The function wedge is the best way possible to add functions to BASIC.

It is immune to RUN/STOP-RESTORE, it is compatible with almost

every other utility that I know of including the DOS wedge and Epyx

Fastload Cartridge (no, the $ commands do not conflict) and it

provides a natural way to pass the results back to BASIC. Any of these

new functions can be used in any way that an old one can be used. I.E.

the following statement is perfectly legal:

a = $ffOd*%11011+ sin(!mod($ffabcd,%11101))

There are a few very minor limitations to the functions presented

here. If you are like me, the first test you will try with the $ function is

PRINT SABCDEF. This will result in a syntax error because the BASIC

keyword DEF is embedded in the number. Adding a space before the

F will solve the problem (The $ routine ignores spaces). The only

other limitation is that the MOD/DIV/FRAC group is intended to be

used with positive operands only. Don't forget when using the @

function in direct mode that the screen will scroll if you print too close

to the bottom. This problem can be easily fixed with a WAIT state

ment. Try this line:

print@(0,14)" my report" @(2,13)" by John

doe" @(24,14)" page 1 ";:wait198,1

I hope that you will be able to use the functions presented here and

that this example will provide you with the skills necessary to add any

additional functions that you may need. The next article, "Command

Wedge", will focus on a wedge for modifying existing BASIC com

mands. Before going there, try these relatively simple projects:

(1) Add two functions !HI(X) and !LO(X) which return the hi and lo

bytes, respectively, of the number X.

(2) add a function, IS1ZE, which returns the length of the BASIC

program currently in memory.

(3) If you have two drives, make IDSTAT require a device number like

!DSTAT8or!DSTAT9.

HINTS: (Don't read unless you are stuck)

(1) Try something like this: Look at the definition of LO and HI in

terms of IMOD and IDIV above. Use JSR $AEF1 to get parm into

FAC. (This routine takes care of parentheses, etc.) Store FAC at

TEMP. (See lines 4190-4210). Get 256 into FAC (See lines 2980-

3020) Store at MODLUS (See lines 4260-4280) Set flag for MOD or

DIV as required and JMP to line 4300.

(2) Easy. Subtract address of start of BASIC (found at locations 43/44)

from address of start of variables (found at 45/46). Convert this

result to FAC.

(3) Simply replace line 2220 with JSR GETBYT. Then add some checks

so that no one can hang it up by giving it a crazy device number.

Have fun!

The Transactor 55 July 1986: Volume 7, Issue Ol

NO

FK

NL

GP

JC

HG

DJ

OB

FO

IN

AH

HL

HO

ND

OC

EN

ND

DP

NB

Nl

PA

II

FB

HN

DD

1-1B

ND

MO

GP

LJ

Gl

LK

HL

LP

IJ

AO

JC

OO

JB

JG

IC

JL

ML

LF

CE

PD

PG

FC

FF

CM

EJ

AG

Bl

FB

DA

BA

JL

JL

MJ

NN

BG

DA

IC

BN

AH

MA

JJ

LE

FG

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

rem basic loader for function wedge

rem by frank e. digioia 11/14/85

rem sys 49152 to activate

for adr = 491 52 to 49634:read ml

cs = cs + ml:poke adr,ml:next

ifcs<>59800thenprint" error in data"

Function Wedges Source Code

data 169,

data 11,

data 115,

data 240,

data 240,

data 0,

data 32,

data 169,

data 189,

data 208,

data 16,

data 208,

data

data

data 133

data 192

data 152

data 77

data 73

data 142

data 162

data 169

data 0

data 201

11,

3,

0,

21,

19,

76,

193,

0,

136,

2,

8,

8,

16,248,

76, 63,

122,

10,

192,

79,

214,

193,

8,

111,

32,

13,

data 138,

data 12,

141, 10

96, 169

201, 36

201

201

141,

141,

193,

16,248,

32,242,

178,

255,

180,

12,

138,

12,

242,

56,

1,

115,

114,

104,

5,

16,

144,

7,

data

data

data 72

data 240

data 202

data 142

data 183

data 174

data 32

data 144,

data 169,

data 32,

data 32,

data 193,

data 162,

data 144,

data 65,

data 233,

data 50, 176,

data 65, 144,

data 72, 178,

data 139,

data 176,

data 185,

data 1,

data 250,

data 193,

data 138,

data 193,

data 32,

data 188,

data 32,

data

data

73;

96,

193,

4,

4,

44,

174,

32,

173,

32,

15,

173,

83,

225,

184,

0,

64

33,

174,

76,213,

141, 132,

192, 240

240, 243,

41, 127

232, 189

232, 238

192, 200

144, 2

170, 189

72, 96

196, 70

68, 83

145, 193

134,186

133,185

165,255

208,245

12, 193

185, 60

76,202

192,224

192, 40

169, 0

32, 250

193, 32

72, 32

193, 96

192,134

76, 73

141,139

0, 240

193, 32

104, 76

149, 97

174,139

230,201

174,139

12, 56

206,201

166, 97

189, 137

133, 97

1, 0

169,255,

32, 138,

212, 187,

32, 247,

212, 187,

187, 32,

139, 193,

184, 173,

160, 193,

32, 204,

0

3, 169,

0, 133,

240, 22,

240

240

76,

192,

20,

18,

29,

76,

192, 170,

64, 232,

202, 189,

209, 122,

136, 192,

132, 192,

152, 24,

230, 123,

153, 192,

0, 76,

82, 65,

84, 65,

139, 193,

138, 32,

32, 150,

157, 60,

32, 171,

32, 125,

3, 145,

180, 32,

25, 144,

176, 249,

32, 125,

174, 32,

253, 174,

247, 174,

0, 32,

99, 132,

188, 169,

193, 32,

14, 32,

126, 189,

121, 0,

202, 16,

193,208,

71, 176,

193, 240,

233, 48,

91, 176,

240, 15,

193, 24,

104, 96,

169, 0,

141, 139,

173, 162,

32, 253,

174, 162,

169, 230,

12, 188,

240, 23,

139, 193,

32, 40,

188, 32,

192, 141

13, 32

201, 37

201, 35

32, 121

193, 76

13,193

168,200

209, 122

136, 192

240, 19

240, 37

160, 0

101,122

173,132

72,189

8, 175

195, 68

212, 0

159, 192

180,255

255, 162

3, 232

255,202

180, 172

98, 136

115, 0

3, 76

24, 32

180, 76

158, 183

32, 158

104, 168

115, 0

98, 162

0, 44

62, 193

72, 193

76, 40

169, 0

251, 96

24,201

16, 56

4,201

96,201

202, 76

72, 174

101, 97

76, 126

44,169

193, 32

230, 160

174, 32

225, 160

160, 193

32,204

165, 97

48, 13

186, 32

27, 188

Of

BH

JK

DM

Gl

HM

KJ

CJ

JG

IA

JN

MM

GP

PD

MD

PE

JC

OH

C3

NM

ND

BD

KD

DD

DC

EJ

DO

IL

PC

CN

GE

M0
AK

GM

BN

ID

MM

AN

ID

DA

BP

JK

CG

MA

HP

Ml

BH

Jl

HJ

IE

AG

NJ

HP

FJ

MA

OG

IH

IJ

EN

PN

El

cc

ID

CA

JH
|Q

SO

HL

HB

IL

KB

ED

Fj

FC

BK

ME

BJ

GB

JJ

EH

HL

NA

3 b

GA

3r

PF

-if-

LN

GA

EF

000;

010 junction wedge

020 ;by frank e. digioia

030:11/12/85

040;

050 •

060;

070 chrget

1080chrgot

1090 ieval

1100 type

1110;

1120 init

1130

1140

1150

1160

1170

1180;

1190fwedge

1200

1210

1220;

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

=

=

-

=

=

Ida

sta

Ida

sta

rts

=

Ida

sta

jsr

cmp

beq

cmp

beq

cmp

bep

cmp

bep

cmp

beq

ScOOO

$0073

$0079

$030a

$0d

#<fwedge

ieval

#>fwedge

ieval +1

,

#$00

type

chrget

#■$'

jump

#'%'

jump+ 3

*'&
jump + 6

|ump + 9

rr

parser

1340 ;notoneofours

1350

1360

1370;

1380 jump

1390

1400

1410

1420

1430;

1440 parser

1450

1460

1470

1480

1490;

1500ploop

1510

1520

1530

1540

1550

1560

1570:

1580 next

1590

1600

1610

1620

1630

1640

1650

1660 find

1670

1680

1690

1700;

710x1

720

730

740

750;

760 found

770

780

790

800

810

820

830

840

850

860

870

880

890

jsr

imp

=

jmp

jmp

jmp

jmp

=

Ida

sta

tax

tay

iny

Ida

beq

nx

cmp

bns

beq

dex

Ida

bo!

ar d

cmp

beq

bne

nx

Ida

beq

bpl

inx

inc

Idy

jmp

=

iny

tya

clc

adc

sta

iXC

inc

Ida

asl

tax

Ida

pha

chrgot

$ae8d

.

hex

bin

xplot

expand

•

#$00

count

table.x

error

($7a),y

next

ploop

table.x

find

#$7f

($7a).y

found

x1

table.x

error

find

count

#$00

ploop

,

$7a

$7a

.+4

$7b

count

a

adrtab + 1

convenient start

;get byte of text

;get same byte

;evaluation vector

;typeflag

initialize routine

;this is the wedge

;flag for numeric

;set type flag

;see what we've go!

;hex conversionprin!

;binary conversionprin

;plotfunctionprint

;the # commandprint

;usetheparserprint

;set flags again

;use original routine

:jump table for fns

; parse & execute

;clear all regs

;and counter

;incr text index

;get table byte

;end of table

;incr table pointer

;cmpare with text

;find next word

;match/keep looking

;bump ,x down once

;end of table wordprmt

;no/findendof word

;yes/mask flag

;is it a matchprint

;hooray!H

;go back for more

;find end of word

;look for negative

;end of table

;keep looking

;poinl to next word

;word # in table

; reset text index

;search some more

execution routine

point to next byte

;updatetext pointer

;get offset in table

;multiply by two

;use as index

(hi byte adr

:as return adr hi

July 1986: Volume 7, Is

AB

OB

ND

AA

DN

MM

OB

JJ

CD

AM

CF

JD

KF

CB

JC

IH

LK

Ml

GJ

EG

KK

LC

OL

MP

BL

BK

MD

DE

KC

1 K

OA

CC

KM

AE

EH

GD

OH

HK

NJ

BH

CH

KH

IG

EH

AA

BK

PA

EM

CM

IC

OB

NH

FC

OP

GM

LB

HE

CP

HB

BP

EE

OE

GB

Ml

MG

IC

KH

LI

GE

HO

IK

JM

DE

MH

LJ

PO

DB

NE

CE

AH

CF

AO

KD

ND

ED

MC

IC

EK

BE

JP

CO

1900

1910

1920

1930;

1940 count

1950 error

1960;

Ida

pha

rls

adrtab,>

.byte $00

imp

1970 ;data tables-

$afO8

;lo byte adr

;as return adrlo

;execute routine

;syntax error

- add your own

1980 ;routine names and addresses

1990 ;here. be sure to add $80 to

2000 ;last character of name and

2010 subtract 1 from the address

2020;

2030 table

2040

2050;

2060 adrtab

2070;

2080;

.byte

byte

'mo',$c4

'di',$d6,

.word mod-1,

,'fra',$c3

dsta',$d4,$00

rac-1,div-1,dstat-1

2090 function calculation routines

2100;

2110;dstat function

?120;

?130acptr

2140 fa

2150 sa

2160 wbuf

2170 talk

2180tksa

2190 untalk

2200;

2210 dstat

2220

2230

2240

'250

?260

'270

280

290

300;

310dloop

320

330

340

350

360

370

380;

390

400

410

420

430

440;

450 dloop2

460

470

480

490

500

510;

520;

=

=

•

-

=

=

=

=

Idx

stx

txa

jsr

Ida

sta

jsr

Idx

=

jsr

sta

inx

cmp

bne

jsr

dex

txa

sta

jsr

Idy

=

Ida

sta

dey

bpl

imp

$ffa5

$ba

$b9

$033c

Sffb4

$ff96

Sffab

•

#$08

fa

talk

#$6f

sa

tksa

#$00

•

acptr

wbuf.x

#$0d

dloop

untalk

len

$b47d

len

•

wbuf,y

($62),y

dloop2

$b4ca

;get byte from serial port

;device number

secondary address

; buffer for string

;tell device to talk

;send 2nd adr for talk

;free serial bus

;device number (disk)

;first address

;tell drive to speak

;channel 15 (or $60)

secondary address

;send it to drive

;read command channel

;get byte from drive

;store character

;carriage returnprint

;free serial port

;forget the <cr>

;put length in .a

;save it

; reserve space for string

;use length for index

;copy string for basic

;get byte of string

;put in string mem.

;bump pointer down

;put dscrptr on stack

530 ;@(row,col) function - plot

540 ;cursor and return null string

550;

560 chklft

570 chkrht

580 chkcom

590 getbyt

600 plot

610;

620 xplot

630

640

650

660

670 bad

680chky

690

700

710

720

730

740

750;

760 getprm

770

780

790

800

810

=

=

=

=

M

jsr

jsr

cpx

bcc

jmp

cpy

bcs

clc

jsr

Ida

jsr

jmp

=

jsr

jsr

stx

jsr

jsr

$aefa

$aef7

$aefd

$b79e

SfffO

•

chrget

getprm

#$19

chky

iiegal

#$28

bad

plot

#$00

$b47d

$b4ca

•

chklft

getbyt

len

chkcom

getbyt

;check left paren

;check right paren

;check on comma

;get byte into x

; plot/fetch cursor

;get next byte

;get row/col in x/y

;row less than 25print

;yes/check column

;no/illegal quant.

;col less than 40print

; no/trash it.

ljust for looks

;plot the cursor

;set len to zero

; reserve space

;putdescrptr on stack

;get(a,b) into.x/y

;check open paren

;get first parm

;save it here

;check on comma

;get second byte

FF

EA

EP
CF

IP

PC

MC

CF

KM

EN

NG

EN

CP

Bl

KD

OG

JO

BO

LD

PE

JK

ME

GF

OO

BP

AE

LL

II

EJ

GA

MJ

AO

KL

NC

HM

EO

DA

IJ

GP

EE

FE

NF

AO

Ml

OI

MD

EG

CG

PK

EG

AD

IH

viF

LN

IP

AK

EP

DL

DC

OD

CN

DP

CG

AJ

EO

GM

HN

EA

MF

HD

AL

IA

IG
FE

NG

PE

CM

CP

Gl

GK

\IH

NG

MA

DA

NG

MM

GN

IN

HJ

CP

CD

EK

2820

2830

2840

>850

2860

2870

2880

2890 len

2900;

>910;

txa

pha

jsr

pla

tay

Idx

rts

chkrht

len

byte $00

?920 ;the #(lo,hi) command -

2930 ;lo/hi to 16 bit number.

2940;

2950 expand

2960

?970

E980

2990

3000

3010

3020

3030;

3040;

=

jsr

jsr

stx

sty

Idx

sec

jmp

chrget

getprm

$63

$62

#$90

$bc49

;put in.a

;keepitsafe

;check closing paren

retrieve 2nd parm

;putin ,y

retrieve 1st parm

- convert

;get next byte of text

;get parms into x/y

;lo byte in $63

;hi byte in $62

;set exponent to 15

;don't invert mantissa

;convert to fac

3050 ; hex/binary conversion routine —

3060 ;this routine converts ascii

3070 ;hex or binary numbers to floating

3080 ;pomt

3090;

100addbyt

110 iiegal

120oflow

130exp

140;

150 hex

160

170 bin

180

190

200;

210 loop

220

230

240

250

260

270;

280 quit

290

300cdone

310;

m

=

=

=

Ida

$bd7e

$b248

$b97e

$61

#$00

,byte$2c

Ida

sta

jsr

jsr

beq

jsr

jsr

jsr

imp

pla

pla

jmp

#$01

flag

zero

chrgel

cdone

convrt

incexp

addbyt

loop

chrgot

320 ;hex/bin subroutines

330;

340 zero

350

360

370;

380 zilch

390

400

410

420;

430 convrt

440

450

460

470

480

490

500

510

520

530 digit

540

550

560

570 okay

580

590

600;

610chkerr

620

630

640

650

660 err2

670;

680;

690 incexp

700

710

720

730

=

Ida

Idx

sta

dex

bpi

rts

=

bcc

Idx

bne

cmp

bcc

cmp

bcs

sec

sbc

Idx

beq

cmp

bcs

sec

sbc

rts

=

cmp

bcc

cmp

bcs

imp

=

Idx

beq

pha

Idx

«

#$00

#$05

exp.x

zilch

•

digit

flag

chkerr

#'a'

quit

#'g'

chKerr

#$07

flag

okay

#'2'

err2

#$30

•

#$41

quit

#$5b

quit

iiegal

•

exp

exit

flag

;add .a to fac

;illegal quantity

;overflow error

;exponent of fac

;flag for hex

;skip next instr.

;flag for binary

;save flag

;set fac to zero

;get next char.

;end of statement

;convert from ascii

;incr. fac exponent

;add the byte to fac

;pull return adr.

;set flags & rts

;set fac to zero

;here's the zero

;5 bytes + sign

;zero out byte

;bump index down

;counter roll overprint

;ascii digit to true value

;chrget flag/dig itprint

;hexor binaryprint

;binary non-digit

;check lower limit

;lessthan 'a'

;check upper limit

;biggerthan f

;account for extra 7

;hex or binaryprint

;hex/any digit is fine

;bin/check upper limit

;biggerthan 1

;convert to true value

;check illegal quant.

;compare with 'a

;lessthan'a'

; compare with '['

;greater than 'z'

; illegal quantity

; increment exponent

;get exponent

;fac = 0, don't incr.

;save byte in a

;use flag for offset

EH

MB

AG

CL

MO

OJ

OM

IF

CP

JE

LH

Al

Kl

CO

Bl

IL

LE

ML

GL

LN

EN

LA

Cl

Ml

CM

MA

FC

MM

KC

ED

ON

DD

NB

EL

GH

LD

Cl

EK

JO

IJ

ND

BB

GL

KH

BG
PD

DD

JG

EC

OC

NK

AB

DO

EF

JB

ID

AE

GJ

DH

OL

CL

EH

IE

PI

CJ

LE

MP

AL

JJ

KJ

OM

BA

JO

MO

FK

OE

KA

BB

AN

PJ

GJ

BO

GE

MP

AN

EG

KA

PC

Cl

CP

3740

3750

3760

3770

3780

3790

3800 exit

3810;

3820 err1

3830 incr

3840 flag

3850;

3860;

Ida

clc

adc

bcs

sta

pla

rts

jmp

incr.x

exp

err1

exp

oflow

.byte$04,$01

.byte $00

3870 ;div/mod/frac

;get incr in a

;add exp to incr.

;overflow error

;update exponent

retrieve byte to .a

— these routines respectively

3880 ;return the integer-quotient,

3890 ;integer-remainder, or fractional

3900 ;part of the quotient a/b.

3910;

3920 exp

3930 facarg

3940 facmem

3950 mdiv

3960 subtrt

3970mmult

3980 facint

3990 round

4000 add5

4010frmnum

4020;

4030;

4040 div

4050

4060

070 mod

4080

090

100frac

110

120

130;

=

=

=

=

=

=

=

_

_

Ida

$61

$bc0c

$bbd4

$bbOf

$b853

$ba28

$bccc

$bdb

$b849

$ad8a

t

#$00

.byte$2c
=

Ida

*

#$01

.byte$2c
m

Ida

sta

140 ;get first parm

150 ;parm in arq.

160;

170

180

190

200

210

220

230

240

250;

260

270

280

290;

300

310

320

330

340

350;

jsr

jsr

Idx

Idy

jsr

jsr

jsr

jsr

Idx

Idy

jsr

Ida
Idy

jsr

jsr

jsr

#$ff

flag

;adr of exp of fac

;copy fac to arg

;store fac at adr in (x/y)

;divide fac by mem

subtract fac from arg

;multfacbymem(a/y)

;convert fac to integer

;round the fac

;add .5 to fac

;get numeric parm into fac

;entry for div

;flag for div

;skip next instr

;entry for mod

;flag for mod

;skip next instr

;entry for frac

;flag for frac

;set the flag

in fac and 2nd

chklft

frmnum

#<temp

#>temp

facmem

chkcom

frmnum

chkrht

#<modlus

#>modlus

facmem

#<temp

#>temp

mdiv

facarg

facint

360 ;check flag, if div function

370 ;then done, else continue

380;

390

400

410;

420

430

440;

Ida

beq

Ida

jsr

flag

done

exp

subtrt

450 ;check flag, if frac functior

460 ;then done, else continue

470;

480

490

500;

510

520

530

540

550

560;

570 done

580

590;

600 modlus

610 temp

620;

630 .end

Ida

bmi

Ida

Idy

jsr

jsr

jsr

jsr

rts

. = .

flag

done

#<modlus

#>modlus

mmult

add5

facint

round

+ 5

+ 5

;open parenprint

;get first value

;lo byte of address

;hi byte of address

place in temp

;commaprint

;get2nd parm

;dosing parenprint

;get adr of modlus

;in .x/.y

;store fac at modlus

;adrof 1st parm (to)

;adrof 1st parm (hi)

:fac = temp/fac

;arg = fac

;fac = int(fac)

;must have exp in .a

;fac = arg - fac

i

;get address of the

;modulusin ,a/.y

;fac = fac • modlus

;add .5 for roundoff

;truncate garbage

; round the fac

The Transactor 57 July 1986: Volume 7, Issue Ol

Command Wedge

Modifying BASICs Commands

Everyone has their own ideas on how the BASIC interpreter should

carry out certain commands. We've all caught ourselves thinking, "If I

had written this interpreter, I would have done thus and so. . .". The

fact ofthe matter is that whoeverDID write the BASIC interpreter didn 't

write it just for you and me. They designed the interpreter anticipating

what the needs of the A VERAGE user would be. Unfortunately, it was

written some years back, when they expected the average user to own

a tape drive and not be a particularly sophisticated programmer.

Well, times have changed, and thus it seems only fitting that in this

issue, which is dedicated to the ROM routines, we should discuss how

to modify the existing BASIC commands in order to create a version of

BASIC which is perfectly customized to OUR needs today.

In the previous article we explored a new wedge which allowed us to

easily add functions to BASIC. The vector that we used for that wedge

is named IEVAL and is located at S030A/S030B. In this issue, we will

be using IEVAL's twin sister, IGONE located at $0308/50309. These

two vectors are almost identical in purpose, the only difference

between them being that IEVAL is used for evaluation of functions,

and IGONE is used to execute commands. Therefore, before we go

any further, please note that all of the material from last issue's article

on adding functions through the vector IEVAL can be applied to

adding commands through the vector IGONE. The converse is true as

welt: Everything that we do in this article to modify existing BASIC

commands, through the use of IGONE, can be directly applied to

modifying existing BASIC functions through the vector IEVAL Now

that we've got that straight, let us begin our example.

Implementing A Command Wedge

While modifying the built-in commands of the BASIC interpreter may

sound like quite a job, let me assure you that it is really quite easy to

do. Whenever BASIC wants to execute a command, it JMPs through

the vector named IGONE at $308/$309. The execution routine calls

CHRGET to get the token of the command into the accumulator. Bit 7

of this token is then masked off and the resulting value is multiplied

by two. This result is the offset into the address table for the address

(minus 1) of the routine to execute. This address is then placed on the

stack and a JMP is made to CHRGET to get the next byte of text. The

RTS in CHRGET causes the PC to be loaded with the address of the

routine to execute since this address was just placed on the stack.

(Note: This method is almost exactly the same as the one I used in the

parser for our function wedge in the last issue.) Armed with this

knowledge, we can easily wedge into the execution routine, get the

command token and decide if it is one of the ones that we wish to

modify. If it is, then we will place the address of OUR routine on the

stack, thus executing the new routine instead of the old one. If it is not

one that we wish to change, we will give the token back to BASIC for

further processing.

An Example Wedge

As an example of this technique, 1 have written a wedge which

changes the action of several of the most commonly used BASIC

By Frank E. DiGioia

Athens, Georgia

commands. The source code is provided and should be studied in

order to gain a full understanding of the technique. Even if you have

no interest in learning the techniques described here, you should find

this example command wedge most useful in your own program

developement.

Listing 1 contains a BASIC loader for the wedge. Listing 2 is the source

code. Listing 3 is an example program which illustrates the use of

some of the modified commands. This short program may give you

ideas for your own applications in addition to allowing you to test your

copy of the wedge.

The commands that we will modify are:

RESTORE

LIST

IF/THEN

GOSUB

LOAD

INPUT

GOTO

SAVE

NEW

WAIT

VERIFY

In addition, we will make the apostrophe (') act like the REM com

mand and the English pound sign act like an ELSE statement. It is

noteworthy that each modified command will work exactly like the

original command when the original syntax is used. This feature is

very important in maintaining compatibility with older programs.

What follows is a description of the modified commands with an

example of each one.

The Transactor 58 July 1986: Volume 7, Issue Ol

(1) The first change in our modified BASIC is that the apostrophe is

now treated as a REM statement. This provides much neater

looking listings.

Ex. 10'this is a comment

(2) The RESTORE command originally accepted no parameters and

was used to set the data pointers back to the beginning of the

program. However, there was no means provided to access a

particular element of data when needed. The NEW RESTORE

command provides TRUE RANDOM ACCESS to your data state

ments. It takes from zero to two parameters. If no parms are given,

the original RESTORE is used.

Ex. 10 read,a,b,c:data 2,4,6,8,10

20 data " PAM"," PAUL"," KELLY"

30 restore 20: read a$

40 restore 10,4:read x

The RESTORE command in line 30 sets the data pointer to line 20

and A$ will be assigned the value "PAM". In line 40, the RE

STORE command sets the data pointer to the 4th data element of

line 10, so X will be assigned the value 8. Attempting to RESTORE

to a line* or data element that doesn't exist will result in an

informative error. (Try this with the example program in listing 3)

(3) The new GOTO and GOSUB commands allow variable expressions

as arguments.

Ex. 10 if x>0 then goto x* 10

20 draw = 1000: paint = 2000

30 gosub draw:gosub paint

(4) The new WAIT command does exactly what the name implies. It

simply waits until a key is pressed. This command is incredibly

handy and as an added bonus, once a key is pressed, the new

WAIT command leaves the ASCII value of the key at location 2.

Ex 10 print" Touch any key to continue"

20 wait:print" ascii value " ;peek(2)

(5) The new INPUT command is called INPUTS and, as the name

implies, is used to input string variables. What sets this command

apart from the OLD INPUT is the fact that INPUTS will accept any

character including quotes, colons and commas with no problems.

This capability is extremely important in writing any kind of data

processing program. (How many public domain database and

mailer programs have you seen that crash if you try to include a

comma or colon in an entry?)

Ex. 10 print "enter datA: ";:inputa

(6) The main point of the new IF command is the fact that it is

compatible with the modified commands presented here. Since I

had to write this routine anyway, I went ahead and added the

capability to execute an ELSE clause in the event that the expres

sion evaluates to false. Rather than using the word ELSE, how

ever, the English pound sign (next to CLEAR/HOME) is used as a

'token' for the word ELSE. Be sure to place a colon before the

pound sign. In the example below, <L> represents the english

pounds sign.

Ex. if x>10 then print" greater" :<L>print" less than"

(7) The new LIST command is exactly like the old, except that it can be

used in a program. The old list, you will recall, always returns to

direct mode when finished. The new LIST command is invoked by

adding an exclamation point after the word LIST. In order to

preserve the integrity of the stack, the STOP key is not honored by

the new LIST command.

Ex. open4,4:cmd4:list!:print#4:close4

You could use a FOR/NEXT loop to list multiple copies of your

program (to give to the members of your user's group, etc.).

Another way to use this new capability would be in writing a

programming tutorial. You could list the lines before executing

them. For example:

10 print" this code moves the sprite"

20 list! 1000-1030:wait:gosub1000

(8) LOAD/SAVE/VERIFY — A radical change for these three com

mands! Not only do you no longer need to specify the device

number, you don't even need to specify a name! Suppose you

LOAD " STAT1 and after modifying the program, you want to save

the updated copy. Just type SAVE (with no name) and the program

will automatically be replaced for you. But this is not a simple

scratch & save. The new SAVE first backs up the old file and THEN

replaces it. The backup filename will be the first two letters of the

original filename followed by the suffix " .BAK".

Ex. Suppose we load STAT1, then we modify it and type SAVE. It

will create a file named ST.BAK which is the OLD STAT1 and then

it will replace the old STAT1 with the new, updated copy. There

fore, you can safely and confidently type SAVE when you finish

modifying a program knowing that a backup will be made in case

the modifications are wrong. The program can then be verified by

just typing the word VERIFY. (Note: Only one quote is required

when a filename is used with any of these commands)

Ex. (All of these are legal)

load" $

load" stat

load"stat"

load "stat ",8,1

save:REM save & replace

save" name" :rem save (no replace)

etc.

If you type LOAD, SAVE, or VERIFY with no filename and no name

has yet been defined, you'll get a 'MISSING NAME' error (Unless you

have Epyx FASTLOAD in place — it defaults to a filename of M or

something on LOAD). Note: Once a name is defined by using it in

either LOAD, SAVE or VERIFY, this name will be the default for all

three commands until a new one is defined. While LOAD & VERIFY

don't mind a filename with a * in it, SAVE is unable to backup such a

file and will abort.

Also note: A program can be LOADED and RUN by depressing the

SHIFTED RUN/STOP key.

(9) The NEW command has been modified so that it clears the default

name when you type NEW so that you don't accidentally try to save an

empty workspace.

The Transactor 59 July 1986: Volume 7, Issue O1

Final Notes

The above is just a glimpse of what you can do with the vector IGONE.

In addition to just modifying commands, this vector is one of the best

places to ADD commands to BASIC. Don't forget, you can add

COMMANDS through this vector using exactly the same technique

that we used to add FUNCTIONS to BASIC through IEVAL in the last

issue. (Likewise, you can modify existing BASIC functions through the

vector IEVAL just as we modified existing BASIC commands through

the vector IGONE in this issue.)

Up until now, we have been examining wedges which make our lives

as programmers a bit easier. In my next article, we will examine a

very useful, though somewhat unusual, special purpose wedge which

makes makes USING a program easier. Until then, 1 will leave you

with the following simple projects:

(1) Add a command or a function (your choice) called !NAME which

either prints or returns the name of the file currently in memory.

Use the article from last issue as a guide.

(2) Add a command called !SEND which will send any command to

the disk drive. For example !SEND"SO:DATA" will scratch the file

named DATA.

(3) Modify the LIST command so that if you type LlST*n it will do a

listing to the previously opened file number n. For example:

OPEN 1,8,1," PROG.L" : LIST#1 : CLOSE1

Hints:

(1) You can do this without a hint.

(2) See last issue how to install new commands then just store the DOS

command string in a place named CMD and call SEND (see listing

2) as a subroutine.

(3) This code at the beginning of the routine should do it for you:

cmp #'#'

bne wherever

jsr $b79b

jsr $ffc9

etc. . .

;number sign?

;no/do whatever

;get file# in .x

;set output device

;sameaslist!

As was the case with our function wedge, this wedge is immune

to RUN/STOP-RESTORE and is compatible with most utilities

including the DOS Wedge, the Function Wedge and Epyx Fas-

tload Cartridge.

Command Wedge BASIC Loader

FK

MK

EM

LN

CA

KD

NG

PN

KK

IK

EG

IK

AK

IP

NL

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

rem basic loader for command wedge

rem by frank e. digioia 12/18/85

rem sys 49664 to activate

for adr = 49664 to 50356:read ml

cs = cs + ml:poke adr,ml:next

ifcs<>85465thenprint" error in data"

data 169, 11,141, 8, 3,169,194,141

data 9, 3, 96, 32,115, 0, 32, 23

data 194, 76,174,167, 76, 59,169,201

data 39, 240, 249, 201, 92, 240, 245, 170

data 16, 32,162, 0,141, 72,194,189

data 73, 194, 240, 22, 205, 72, 194, 240

data 3,232,208,243,138, 10,170,189

AN

AH

DF

JA

OK

PJ

AN

CO

HG

Ol

AO

EL

CP

BH

KA

HI

CE

CB

LJ

BM

CL

HB

CD

IB

DO

DK

AP

PM

PN

EO

AA

GN

JG

NJ

KK

NA

GC

NF

BG

GL

FM

DD

IH

DH

BJ

ML

BJ

GE

IK

NP

MO

JH

LB

OO

LB

GC

FN

AN

ML

LL

FD

NL

NC

DA

115 data 86,

116 data 115,

117 data 0,

118 data 147,

119 data 195,

120 data 195,

121 data 196,

122 data 32,

123 data 233,

124 data 66,

125 data 174,

126 data 240,

127 data 208,

128 data 58,

129 data 44,

130 data 101,

131 data 96,

132 data 200,

133 data 209,

134 data 194,

135 data 247,

136 data 227,

137 data 69,

138 data 78,

139 data 68,

140 data 121,

141 data 32,

142 data 32,

143 data 72,

144 data 141,

145 data 201,

146 data 156,

147 data 71,

148 data 3,

149 data 139,

150 data 3,

151 data 76,

152 data 0,

153 data 255,

154 data 32,

155 data 168,

156 data 168,

157 data 176,

158 data 168,

159 data 240,

160 data 240,

161 data 13,

162 data 243,

163 data 69,

164 data 71,

165 data 76,

166 data 195,

167 data 32,

168 data 180,

169 data 136,

170 data 60,

171 data 240,

172 data 240,

173 data 169,

174 data 1,

175 data 255,

176 data 240,

177 data 153,

178 data 196,

194, 72,189

0, 32,121

133, 139, 140

148, 149, 162

106.194, 4

247.195, 7

249, 194,208

212, 194, 165

1,176, 1

32,121, 0

32, 158,183

38,160, 4

31,200, 177

240, 40,201

208, 239, 202

65,133, 65

169,131, 44

177, 65,240

208,245, 169

76, 69,164

32, 19

96,

69,

84,

183,

168,

76,

79,

128, 169,

0,

247,

5

6

52

3

0

3;

76,

183,

251, 163, 165

165, 58, 72

72, 32,

33, 240,

166, 169,

141, 0,

32, 115,

141, 0,

169, 49,141

210,255, 32

201, 137,240

174,165, 97

11, 169, 170

32,121, 0

165,122, 56

2, 198,123

104, 104, 108

3, 76,191

15, 162

240, 32

169, 186, 133,

164, 77, 73,

32, 86, 65,

69, 128, 142,

32, 139,176,

163, 182, 173,

160, 2,185,

16,248, 172,

3,145, 98,

3, 76, 45,

251,133, 2,

0,133, 10,

141, 197, 196,

162, 8, 32,

19, 141, 170,

181, 196, 136,

208, 248, 240,

0

157

85, 194,

0, 76,

137, 141,

0, 149,

195, 13,

196, 14,

3, 76,

95, 164,

136, 133,

240, 50,

138,240,

177, 65,

65, 240,

34, 240,

208, 236,

144, 2,

169, 34,

6, 197,

227, 133,

32, 138,

166, 176,

65, 84,

69, 78,

70, 79,

141, 170,

166, 32,

163, 168,

123, 72,

165, 57,

195, 76,

32, 121,

141, 20,

169, 195,

32, 156,

169,227,

20, 3,

158, 173,

5, 169,

208, 11,

208, 24,

176, 3,

233, 1,

160, 0,

8, 3,

171, 32,

32, 207,

60, 3,

34, 169,

83, 83,

82, 73,

170, 196,

133, 73,

170, 196,

97, 0,

170, 196,

136, 16,

184, 32,

96, 169,

169, 0,

169, 0,

219,225,

196, 168,

177, 187,

38, 173,

72, 76

237, 167

155, 146

195, 90

195, 39

196, 4

29, 168

96, 56

65, 132

32, 253

41,202

201, 131

44,201

21,201

152, 24

230, 66

133,251

251,240

34, 169

173,

3,

65,

84,

85,

196,

138, 173

169, 3

165, 122

72, 169

174, 167

32

76

32

32

78

32

0,

3,

141,

76

169

1

166, 169

1

13

141

169

32, 121

167, 32

162, 92

76, 251

76, 160

133, 122

32,251

201, 36

115, 0

255, 201

232, 208

195, 76

73,

65,

32,

132,

32, 117

145, 73

136, 185

248, 96

228, 255

1, 44

44, 169

32, 189

165, 183

169, 0

153, 181

170, 196

78

66

86

74

The Transactor

LD

LE

NB

IE

CP

OH

NM

BC

PA

EC

NL

FF

AO

HN

KM

DE

179 data 240, 33,173,197,196,240, 18

180 data 181, 196. 141, 174, 196. 173, 182

181 data 141, 175, 196, 32,114,196, 32

182 data 196, 173, 170, 196, 162, 181, 160

183 data 32, 189, 255, 173, 197, 196, 208

184 data 76,111,225,166, 45,164, 46

185 data 43, 32,216,255,144, 3, 76

186data224, 96,169, 83,141,171,196

187 data 0,141,180,196, 76,140,196

188data 82,141,171,196,169, 61,141

189 data 196, 76,140,196,169, 8,133

190 data 32, 177,255, 169, 111, 133, 185

191 data 147, 255, 162, 0, 189, 171, 196

192 data 6, 32,168,255,232,208,245

193 data 174, 255, 0, 83, 48, 58, 0

194 data 46, 66, 65, 75, 0

Command Wedge Demo Program

IF

OF

MG

NK

BO

Kl

EJ

AC

NL

CE

CF

CE

JK

ED

LD

AD

GB

IB

FH

FN

CO

II

AO

AA

HP

LE

JH

DH

CG

GP

LN

EA

HH

EM

ID

AM

BG

PI

NL

10'

20 ' command wedge demo

30'

40 ' by frank e. digioia

50 11/17/85

60'

70

80 print" press any key to start" :wait

90 print:print" key found! ascii" peek(2)

100 print "0touch any key to test list"
110 wait:list!:print "0list done!"
120 print"0choose a subroutine 1,2,3"
130 wait:subr = peek(2)-asc(" 0")

135 if subr<1 or subr>3 then goto 120

140 gosub subr*300 + 50:'computed gosub

142 print:print" type any chars: " ;:input$ z$:print

150 print:input" goto 170, 180 or 190" ;a

155 ifa<>170and a<>180and a<>190then150

160 goto a

170 print "Hline#170 ":goto200
180 print "Blline #180" :goto200
190 print "Blline #190"
200 print "0Jtouch any key for restore demo "
210 wait:data 1,2,3,4,5,6,7,8,9,10

220 print "EBIdata in line 210 printed backwards
230 fori = 10to1step-1:restore210,i:reada:printa;:

240 data " georgia"," clemson"," use"

250 data "colons:::", "commas,,,", "dot."

260 data " c64 "," 1541 "," mps801 "

270 print:print" choose a data line:"

280 input" 240, 250 or 260" ;line

285 if NO240 and NO250 and li<>260 then 270

290 print:print" choose a data element:"

300 input" 1, 2or3";de:ifde<1then300

310 restore line,de:read a$

320 print "0elementis: "a$:goto270
350 print" executing subr #1 " :return

650 print" executing subr #2" :return

950 print "executing subr #3": return

, 173

, 196

127

196

3

169

249

169

169

180

186

32

240

76

0

"you typed: "z$

" :print

next:print

Command Wedge Source Code

1000;

1010 ;command wedge

1020 ;by frank e digioia

1030;11/17/85

1040

1050.

1060;

1070 init

1080

1090

1100

1110

= $c200

Ida #<cwedge

sta $0308

Ida #>cwedge

sta $0309

rts

1120 ;

1130cwedge = •

1140

1150

1160

1 170;

1180 rem

1190;

1200chktok
191 nI d. I U

1220

1230

1240

1250

1260;

1270

1280

1290lloop

1300

1310

1320

1330

1340
1 tsh ■

1360 exec

1370
1 ^anI JOU

1390

1400

1410

1420

1430

1440;

1450 wexil

1460

1470;

1480 token

1490 ;

1500 toktab

1510

1520 ■

1530newadr

1540

1550

1560 ■

1570 ;restore

1580;

1590chrget

1600chrgot

1610 frmnum

1620facint

1630 ;

1640restor

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780;

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890;

1900 loop

1910

1920

1930

1940

1950

|sr chrget

jsr chktok

imp $a7ae

imp $a93b

emp #$27

oeq rem

emp #$5c

beq rem

tax

bpl wexit

Idx #$00

sta token

Ida toktab,x

beq wexit

emp token

beq exec

inx

bne tloop

txa

asl a

tax

Ida newadr+1,

pha

Ida newadr.x

pha

jmp chrget

jsr chrgot

imp $a7ed

byte $00

:install wedge

;this is the wedge

;get next byte

;whatisit?
interpreter loop

; basic rem command

;smgle quote7

;new rem command

;'else- pseudo-token

;handleas rem

;set flags

;nota token

;use .x as index

;save for compare

; byte from table

;end of table

;a match''

; yes/execute it

;no/bump index

;keep looking

;put offset in .a

;mult by Iwo

;use as index

<; put address

;of new routine

;on slack.

;next byte & rts

;get byte again

;give it to basic

.byte$85,$8b,$8c,$89.$8d

byte $9b,$92,$93.$94.$95,$a2.$00

. word inp-1, if-1, restor-1

word goto-1 ,gosub-1.list-1 .wait-1

word load-1.save-1,verfy-1,new-1

x.y — all parms optional

= $0073

= $0079

$ad8a

. $b7f7

_ ,

bne • + 5

imp $a81d

jsr getprm

Ida $5f

Idy $60

sec

sbc #$01

bes < + 3

dey

sta $41

sty $42

|sr chrgot

beq rdone

isr $aefd

isr $b79e

txa

beq rdone

dex

beq rdone

Idy #$04

Ida ($41).y

emp #$83

bne findat

my

Ida ($41).y

beq notfnd

cmpl':1

beq notfnd

emp #$22

;gel next byte

;get last byte

;get numeric parm

;changefac to int

;new restore cmd

;any parms?

; no/use rom routine

;yes/get line&adr

;address lo

;address hi

subtract 1

;decr hi byte?

;data pointer lo

;data pointer hi

;another parm?

;no/we'redone

;yes/check comma

;getbyte into .x

;O'th element???

; 1 'st element/done

;.y is text index

;get byte of text

;data statement9

;no/find it

;comma search loop

;get byte from line

;end of line

;colon?

;end of data stmnt

;quote?

The Transactor 61 July 1986: Volume 7, Issue Ol

1960

1970

1980

1990

2000

2010 ;

2020 '
2030

2040

2050

2060

2070

2080 rdone

2090 ;

2100 findat

2110

2120 ;

2130 finqte

2140

2150 ;

2160bloop

2170

2180

2190

2200

2210

2220

2230 ;

2240 notfnd

2250

2260

2270

2280

2290 ;

2300 getprm

2310

2320

2330

2340

2350

2360 found

2370;

2380 msg

2390 eom

2400 ;

2410 ;new —

2420;

2430 new

2440

2450

2460

2470;

2480 ;goto -

2490;

2500 goto

2510

2520

2530;

2540 ;gosub

2550;

2560 gosub

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700;

beq finqte

cmp#','

bne loop

dex

bne loop

tya

clc

adc $41

sta $41

bcc ♦ + 4

inc $42

rts

Ida #$83

.byte$2c

Ida #$22

sta $fb

iny

Ida ($41),y

beq notfnd

cmp$fb

beq loop

bne bloop

Ida #<msg

sta $22

Ida #>msg

jmp $a445

jsr frmnum

jsr facint

jsr $a613

bcs found

jmp $a8e3

rts

;find closing quote

;comma?

;no/try again

;found one!

;need x more

;put offset in .a

;update the data

;pointers

;token for data

;skip next instr.

;ascit lor quote

;save byte to find

;find byte at $fb

;get byte of text

;endof line

;found it?

;yes/goto main loop

;no/keep looking

;printmesg &die

;output err mesg

;get parm & check it

;get parm in fac
;convert to int.

;getadr of line

;line found?
;no/undef'ed line

.byte 'data element not found'

.byte $80

clear default name

Ida #$00

sta Jen

jsr chrgot

jmp $a642

;set length zero

;to clear name

;get last byte

;basic new command

- computed goto statement

jsr frmnum

jsr facint

imp $a8a3

;get parm in fac

;convertto integer

;that's all folks!

- computed gosub statement

Ida #$03

jsr $a3fb

Ida $7b

pha

Ida $7a

pha

Ida $3a

pha

Ida $39

pha

Ida #$8d

pha

jsr goto

jmp $a7ae

2710 ;list - a list subroutine

2720;

2730 list

2740

2750

2760

2770;

278011

2790

2800

2810

2820

2830

2840

2850

2860;

2870 rtrn

2880

2890

2900

2910

2920

2930 cr

2940

cmp#'!'

beq 11

jsr chrgot

jmp $a69c

Ida #$34

sta $0314

Ida #<rtrn

sta $0300

Ida #>rtrn

sta $0301

jsr chrget

jsr $a69c

Ida #$8b

sta $0300

Ida #$e3

sta $0301

Ida #$31

sta $0314

Ida #$0d

jmp $ffd2

;half # of bytes

;enough stack space?

;text pointer hi

;text pointer lo

;line number hi

;line number lo

;token for gosub

;as i.d. on stack

;doagoto

interpreter loop

;our command?

;yes/use our routine

; no/reset flags &

;use normal list

;disablestop key

;lo byte of irq

point error

;vector at return

;address for list

;get next byte

;real listcmd

;set error

;vector back to

;normal.

;enable stop key

;lo byte of irq

;carriage return

;output it

2950;

2960 ;if — allows extended statements

2970;
2980 if jsr $ad9e evaluate expression

2990

3000

3010

3020

3030

3040 chkexp

3050

3060

3070

3080

3090

3100

3110

3120 doit

3130

3140

3150;

3160decptr

3170

3180

3190

3200

3210

3220

3230;

3240 cmmd

3250

3260

3270

3280;

3290;mput$

3300;

3310 wbuf

3320;

3330 inp

3340

3350

3360

3370

3380;

3390

3400 getit

3410

3420

3430

3440

3450

3460;

3470 x1

3480

3490

3500

3510 noprm

3520;

3530 eoi

3540

3550

3560

3570

3580

3590

3600

3610

3620 i4

3630

3640

3650

3660;

3670

3680

3690 i5

3700

3710

3720

3730

3740;

3750 ;wait —

3760;

3770 wait

3780

3790 wloop

3800

3810

3820

3830;

jsr $0079

cmp #$89

beq chkexp

Ida #$a7

jsr $aeff

Ida $61

bne doit

Idx #$5c

jsr $a90b

tax

bne cmmd

jmp $a8fb

jsr chrgot

bcs decptr

imp $a8a0

Ida $7a

sec

sbc #$01

sta $7a

bcs > + 4

dec $7b

Idy #$00

jsr $a8fb

pi a

pla
imp ($0308)

— input any strin

= $033c

cmp#'$'

beq * + 5

jmp $abbf

jsr chrget

beq x1

Idx #$00

jsr $ffcf

cmp #$0d

beq eoi

sta wbuf,x

inx

bne getit

Ida #<noprm

sta $22

Ida #>noprm

jmp $a445

;get last char

;" goto" token?

;yeah/check result

;" then" token
;checkon "then"

expression true?

;yes/execute cmd

;psuedo token for 'else'

;lookfor "else"

;eoln?

;no/do else clause

;yes/update txtptr

;and return to interp

;get last char

; not digit/execute it

;digit/execute goto

decrement txtptr

;clear .yfor update

;update text pointer

;execute via vector

3

;our command?

;yes/it'sours

;no/old input

; next byte

;missing parameter

;input byte

;camage return?

; yes/end of input

;save it

;absolutejump

;set up error mesg

.output mesg

.byte 'missing variable',$80

stx len

jsr cr

jsr $bO8b

sta $49

sty $4a

jsr $b6a3

Ida len

jsr $b475

Idy #$02

Ida $61,y

sta ($49),y

dey

bpl i4

Idy len

dey

Ida wbuf,y

sta ($62),y

dey

bpl i5
rts

;save len

;output<cr>

;look up variable

;save address

;as pointer

;free string

;get length

; reserve space

;3 bytes to copy

;copy string dscrptr

;to variable table

;bump counter

;till done

;get length

;bump down

;copy string data

;to reserved loc.

;bump counter

;till done

- pause until key pressed

beq • +5

jmp $b82d

jsr $ffe4

beq wloop

sta $02

rts

,any parms?

;yes/use old wait

;get character

;buffer empty?

;save character

3840 ;load/save — all parms optional

3850;

3860 setnarr

3870 setlfs

3880;

3890 verfy

3900

3910 load

3920

3930

= Sffbd

= Sffba

Ida #$01

,byte$2c

Ida #$00

sta $0a

Ida #$00

;set name parameter

;set file parameter

;verify flag

;skip next instr.

;flag for load

;store system flag

;act like load now

3940

3950 save

3960

3970

3980

3990

4000

4010

4020

4030 ;

4040

4050

4060

4070

4080;

4090 nloop

4100

4110

4120

4130

4140 ;

4150 noname

4160

4170

4180

4190

4200 ;

4210

4220

4230

4240

4250;

4260

4270

4280;

4290 setup

4300

4310

4320

4330;

4340 exit

4350

4360

4370 ;

4380 save2

4390

4400

4410

4420

4430

4440

4450;

4460 scrach

4470

4480

4490

4500

4510

4520;

4530 rename

4540

4550

4560

4570

4580

4590;

4600;

4610;send-

.byte$2c

Ida #$01

sta Isflag

Ida #$00

jsr setnam

Idx #$08

jsr $e1db

Ida $b7

beq noname

sta len

lay

Ida #$00

sta name.y

dey

Ida ($bb).y

sta name.y

bne nloop

beq exit

Ida len

beq exit

Ida Isflag

beq setup

Ida name

sta abr

Ida name + 1

sta abr + 1

jsr scrach

jsr rename

Ida len

Idx #<name

Idy #>name

jsr setnam

Ida Isflag

bne save2

jmp $e16f

Idx $2d

Idy $2e

Ida #$2b

jsr $ffd8

bcc • + 5

jmp $e0f9

rts

•

Ida #'s'

sta cmd

Ida #$00

sta equal

jmp send

= +

Ida #'r'

sta cmd

Ida #' = '

sta equal

jmp send

;skip next instr.

;flag for save

; store our flag

;default length

;set default name

;default device*

;get any parms

;length of name

;no name specified

; store new name

;use .y as index

;end name with 0

;copy new filename

;get byte of name

;save it

;keep it up

continue commanc

;no name specified

;is name defined9

; no/error coming up

;load or save?

.load/finish up

;setuptwochar

abbreviation of

filename for

;easy backup

;scratch old backup

;create backup cop1

;get parameters

;for filename to

; load or save

;set parameters

;load or save?

;save command?

;continue load cmd

;end adr of save

;i.e. start of vars

; point to start adr

;continue save cmd

;normal termination

;no/"break" error

;scratch backup

;'s' for scratch

;set command

;end of buffer

;no equal sign

;send doscommanc

;renameold file

;'r' for rename

;set command

;equal sign

;whereelse?
;send dos comma™

- this routine can be used

4620 ;to send any dos command to drive

4630 ;be sure to end command with zero

4640;

4650 ciout

4660 listen

4670 second

4680 unlstn

4690;

4700 send

4710

4720

4730

4740

4750

4760;

4770

4780 dloop

4790

4800

4810

4820

4830;

4840 exiH

4850;

4860 len

4870 cmd

4880 abr

4890 equal

4900 name

4910 Isflag

4920 .end

= $ffa8

= $tfb1
= $ff93

= $tfae

Ida #$08

sta $ba

jsr listen

Ida #$6f

sta $b9

jsr second

Idx #$00

Ida cmd.x

beq exiti

jsr ciout

inx

bne dloop

jmp unlstn

.byte $00

.byte's0:'

.byte $00,$00,'

byte $00

. = . + 16

.byte $00

;send serial port

;tell drive listen

;send 2nd adr Istn

;quit listening

;device number

; store for system

;listen to command

;ch # or'ed w/$60

secondary adr

;send it to drive

;use .xas index

;get byte of cmd

;0 byte marks end

;output to drive

;bump pointer

;jmp to dloop

;all done!

bak'

The Transactor 62 July 1986: Volume 7, Issue Ol

I

Improving

The SYS Command

Neil Boyle

Calgary, Alberta

. .make use of those machine language

routines supplied free by Commodore.

The SYS command in BASIC is very useful - it gives the

programmer access to the fast, precise world of machine

language. The writers of the Commodore BASIC interpreter

realized that programmers often wish to transfer values from

BASIC to machine language, so they included the USR com

mand, a specialized form of SYS. Unfortunately, the USR

command is limited to transfering one numeric value. A useful

extension of the SYS command would allow the passing of

multiple parameters in the form of values, variables, equations

and strings. A simple method of doing this would be to

calculate the values in BASIC and poke them into memory,

then SYS to the ML program and have it read the values.

Effective, but awkward, slow and clumsy.

A faster and more elegant method is to make use of some of the

machine language routines supplied free by Commodore -

those in the BASIC interpreter and the KERNAL. There are

routines for converting floating point values to integer and

back, for evaluating BASIC expressions, for manipulating

strings, for printing data in numeric or string form, for storing

data in variables, and for printing interpreter or KERNAL error

messages. In addition, all mathematical functions handled by

the Commodore 64 can be used from a machine language

program. These routines are fairly simple to use, and open up

innumerable opportunities.

The data which can be passed back and forth between the two

languages usually takes one of three forms: string, integer or

floating point. Strings are fairly straightforward, and are han

dled much the same way in each language. Integers, too, are

fairly simple, but can be stored in one, two or more bytes.

Numbers outside the range of BASIC integers (-32768 to

32767), or those with decimal points, are stored in floating

point format, and require 5 or 6 bytes. One advantage of using

the interpreter routines rapidly becomes apparent: floating

point values can easily be converted to integer and back. Thus,

data can be converted from one form to another, manipulated,

and converted back, effortlessly (well, almost).

The real problem lies in transferring the parameters from one

program to the other. A simple method of doing this using

these routines takes the following format:

SYS PA, valuel, value2, value3

where PA is the starting address of the ML routine, and valuel-

3 are the parameters to be passed. For each parameter, ML

routines must be called to check for the comma and to evaluate

the parameter. The routine at $AEFD checks for a comma and

returns an error message if it is not found. The value following

the comma can be evaluated by the routine at $AD9E. The

value can be anything that BASIC can evaluate: strings and

string functions, integer or real or boolean equations, variables,

etc. If the value is a string or a string function, the result is

stored at $0100, and if numeric, it is stored in floating point

format in FAC1. FAC1, or floating point accumulator *1, is

located at $62 to $65, and is used by the BASIC interpreter for

floating point value manipulation. If the type of data to be

passed is unknown, reference to two flags will sort this out. The

location $0C is used to indicate the type of data - 255 for string,

and 0 for numeric. The type of numeric data is indicated at $0D

- 128 for integer and 0 for floating point. An alternate evalua

tion routine exists at $B79E. Following this evaluation, the

expression is stored as a one-byte integer (range 0-255) in the

X register.

I wrote the following relocatable ML program to demonstrate

this method of extending the SYS command. The program is a

PRINT AT routine which allows the programmer to specify the

column and row of his/her output to the screen. This is simpler

and cleaner than fiddling about with embedded cursor con

trols. The format is:

SYS PA, col, row, value

PA - the address of the start of the ML routine

col - the number of cols from the left screen border (0-39)

row - the number of rows from the top of the screen (0-24)

value - anything the PRINT command can handle

The Transactor 63 July 1986: Volume 7, Issue Ol

In this example, the SYS command is followed by the parame

ters to be passed, separated by commas. This line SYS's to PA,

the location of the ML routine. The ML program then checks for

a comma, evaluates the next parameter, col, and stores the

value in the X register. If it is within the acceptable range, it is

stored on the stack. The row parameter is placed in the X

register in the same manner, and checked for size. The col

parameter is pulled from the stack, transfered to the Y register,

and the KERNAL Plot routine is used to relocate the cursor.

Should either parameter be out of range, the error message

"ILLEGAL QUANTITY" is printed.

;check for comma after SYS

;evaluate expression for column number

(col), store in .X

;must be less than 40 ($28)

;if not, print error message

;store column value on stack

;check for comma after col

;evaluate expression for row number (row),

store in .X

;mustbelessthan25($19)

;if not, print error message

;retrieve col from stack and

;store in .Y

;clear carry for KERNAL plot routine

;Kernal plot - put cursor at location speci

fied in .X and .Y

;setup for BASIC interpreter print routine

;BASIC PRINT routine - print following

expression

error ldx *$0e ;error*14 - illegal quantity

jmp $a437 ;print error specified by value in .X

The following BASIC source program will place the program at

memory location PA:

)sr

jsr

cpx

bcs

txa

pha

jsr

jsr

cpx

bcs

pla

tya

clc

jsr

jsr

jmp

$aefd

$b79e

*$28

error

$aefd

$b79e

*$19

error

$fffO

$0073

$aaaO

AB

KA

AB

CB

DM

GO

DK

DG

100rem print at - source program

110 pa = 49152: rem location of ml program

120forj = patopa + 38:reada:pokej,a:next

130 data 32,253,174, 32,158,183,224,

140 data 176, 24,138, 72, 32,253,174,

150 data 158, 183,224, 25,176, 12,104,

160 data 24, 32,240,255, 32,115, 0,

170 data 160, 170, 162, 14, 76, 55,164

40

32

168

76

Possible locations for the ML program are unused Page

Two RAM $02A7 (679), the tape buffer $033C (828) or free

RAM $C000 (49152). In the program, let PA equal your

choice of location and it will be stored there.

One convenient but unusual place to store a short (less

than 75 byte) ML program is in a REM statement. To do this,

delete line 110 from the source program, and add the line

10 listed below. Line 10 sets PA equal to the memory

address of the first of the 39 spaces in the REM statement

and line 120 stores the ML program in the REM statement.

RUN the program, then use line 10 as the first line of your

program. The remaining lines can be erased, and line 10

can be renumbered, used and stored as wished, but it must

remain the first line in the program if PA is kept as location

2063.

10 pa = 2063:rem' <39 spaces>

Example: sys pa,4,6," *" ;pa;sqr(144) + 12*6

This example will print an asterisk in column 4 row 6, followed

by the value stored in PA (starting location of the ML program),

and then the value of the equation (84).

Following is a short list of some of the more useful data

manipulation routines in the BASIC interpreter and KERNAL:

Routines used in passing parameters:

$aefd checks for a comma in the BASIC statement.

$ad9e evaluates any expression in the BASIC statement and, if

numeric, leaves the results in FAC1. If the expression is

a string, it is stored starting at $0100, and ends with a

zero.

$b79e evaluates the expression in the BASIC statement, stores

the value in FAC1, then converts FAC1 into a an integer

in the range 0 to 255, and stores the result in the X

register.

Routines to convert

floating point values in FAC1 to integer values:

$bc9b converts a floating point value in FAC1 to a four-byte

integer in FAC1.

$bl bf converts a floating point value in FAC1 to a fixed point

integer stored in $64 and $65, range -32768 to 32767.

$b7al converts a floating point value in FAC1 to a fixed point

integer in the X register, range 0 to 255.

$blaa converts a floating point value in FAC1 to a 2-byte

integer leaving the high byte in the accumulator and

the low byte in the Y register.

Routines to convert

integer values to floating point values in FAC1:

$bc44 converts a 2-byte integer in $62 and $63 to a floating

point value in FAC1.

$bc3c converts the accumulator to a floating point value in

FAC1.

$b3a2 converts the Y register to a floating point value in FAC1.

$b391 converts a 2-byte integer, high byte in the accumulator

and low byte in the Y register, to a floating point value

The Transactor 64 July 1986: Volume 7, Is

in FAC1.

Routine to convert

a floating point value in FAC1 to an ASCII string:

$bddd converts a floating point value in FAC1 to an ASCII

string starting at $0100.

Other useful routines:

$a437 prints the error message (from the table at $A19E)

corresponding to the value in the X register. For exam

ple, loading a 14 in the X register and then jumping to

this routine produces the error message " ILLEGAL

QUANTITY".

$aaaO PRINT command - prints whatever follows, checking

for TAB, SPC, commas and semicolons. A jsr to the

CHRGET routine is needed before jumping to this

routine.

Useful routines and flags

from Zero Page and the KERNAL:

$73 - CHRGET - gets the next character in a BASIC state

ment.

$0c - flag: type of data. A value of 255 indicates a string, and

a zero indicates numeric data.

$0d - flag: type of numeric data. A value of 128 indicates an

integer, and a zero indicates a floating point value.

$fffO - KERNAL plot routine - if the carry flag is cleared, the

cursor is placed at the column in the X register and the

row in the Y register.

Reference locations:

FAC1 -$62-$65 (floating point accumulator)

FAC2 -$69-$6E

accumulator -$30c (780) (.A)

X register -$30d (781) (.X)

Y register -$30e (782) (.Y)

Using these BASIC interpreter routines opens many possibili

ties in combining BASIC and ML programs. All forms of BASIC

data, equations, and variables can be passed to ML programs,

and ML data can easily be passed back. For a more complete

description of these routines, I refer the reader to "Computel's

VIC-20 and Commodore 64 Tool KIT: BASIC" by Dan Heeb,

which has been the source of innumerable ideas for me.

Thanks also to Sheldon Leemon and his invaluable book,

"Mapping the Commodore 64", for descriptions of these rou

tines. For those more interested in the actual code for these

routines, it can be found in "The Anatomy of the Commodore

64" from Abacus Software.

OM

GD

GC

IG

CE

BH

KH

KC

CG

OD

IE

KG

OC

GH

KD

JK

GL

JA

IJ

OC

OC

LN

GE

IA

HO

KG

ML

HE

NL

AH

JG

KB

PF

EH

GB

IL

MO

GE

AH

DP

HA

100

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

rem printer version

open4,

print#4

close4

open4,

sys700

.opt oo

4

,chr$(27)"p"

4,2

p4

;ml print at

;

;

chrget

errprt

print

=

=

=

comchk=

evalxr

setcrs

;

error

col

row

toobig

=

=

=

jsr

jsr

cpx

bcs

txa

pha

jsr

jsr

cpx

bcs

pla

tay

clc

jsr

jsr

jmp

rts

Idx

jmp

.byte

.byte

.byte

$73

$a437

$aaa0

$aefd

$b79e

$fffO

$c000

comchk

evalxr

col

error

comchk

evalxr

row

error

setcrs

chrget

print

toobig

errprt

40

25

14

chr$(66)

;get next character

;print error type .x

;basic print

;checkfor comma

;put exp in .x 0-255

;kernal-place cursor

;checkfor comma

;evaluate col in .x

; branch if col >= 40

; store col on stack

;check for comma

;evaluate row in.x

; branch if row>= 25

;get col from stack

;set cursor at x,y

;first char for print

;parameter too big

;print error .x

;# of columns

;#of rows

; illegal quantity

The Transactor 65 July 1986: Volume 7, Issue Ol

Autoload & the EPROM
by Tom Hughes & Steve McCrystal

Milwaukee, Wisconsin

When the power comes up, so does your application program!

Imagine you're using your Commodore 64 to operate a comput

erized bulletin board and one stormy day a stray lightning bolt

knocks out the local power station. Your BBS crashes. Of

course you're not around to pick up the pieces, so when power

finally is restored your 64 sits idly, flashing its cursor, while

your modem keeps answering and answering and answering

those incoming phone calls.

If your 64 had been equipped with Autoload, the computer

would have automatically loaded and run the first disk pro

gram (your BBS loader) immediately after power was restored.

You could have been miles away.

Autoload is a short routine that resides in the 64's KERNAL.

Think of Autoload as a "hard" wedge as opposed to the "soft"

DOS 5.1 wedge which vanishes as soon as the 64 is turned off.

Since it is designed to become a permanent part of the com

puter's operating system, the only practical way to use Auto

load is to burn it into an EPROM (along with the rest of the

KERNAL) and then replace your old KERNAL with the Auto

load EPROM.

Autoload is able to load and run a disk file because it bypasses

the 64's normal start-up or RESET routine. Normally, on

power-up or a cold start the 64 jumps to the RESET vector at

$FFFC-FFFD which points to $FCE2. This routine sets the VIC

II chip and the operating system's soft vectors at $0300,

initializes BASIC, resets the stack, and finally turns control of

the 64 over to the BASIC interpreter. Autoload performs all of

these housekeeping functions, but it also does a LOAD " 0:* " ,8

and then stuffs the keyboard buffer with the BASIC command

RUN. Finally, it jumps to BASIC, which sees it has a RUN

command waiting, and that's that.

What if you're not running a BBS? If you're 64 isn't a "dedi

cated" or single-purpose computer, Autoload could become

quite a nuisance. Each time you flipped on the 64's power the

computer would always - repeat always - try to load and run. To

get around this potentially annoying feature, Autoload pauses

about 1 minute before loading, and at any time during this

delay you can abort the load by simply pressing the Commo

dore logo key. This delay also serves a second purpose; it

allows a disk drive enough time to reset itself. For some drives

that do a self-initialization, like the 4040, there's a chance of a

"device not present" error occurring if the drive is accessed too

soon.

Nothing's free . . . you'll need to get a suitable EPROM and

have access to an EPROM burner, for example, the Promenade

(see section below). Also, forget about using a cassette with

Autoload because Autoload resides at $F72C and effectively

erases part of a KERNAL cassette routine. However, patches

have been placed in the KERNAL which protect you from

attempting any cassette operations. One final note: Replacing

the KERNAL that came with your 64 with the Autoload custom

KERNAL will void your computer's warranty.

If you're willing to part with the use of a cassette, then there's a

fair amount of "free space" in the KERNAL for other customiz

ing. For example, the cassette locations between $F72C-FB8D

and $FB97-FCD0 seem to be ripe territory. Since all this space

is available, why not make use of it?

Other KERNAL modifications might include:

• writing your own power-up message at $E479.

• adding a "hard" DOS wedge.

• an IEEE KERNAL.

• a routine to read and set the time-of-day clocks.

• or any number of short, general purpose programs that

you use repeatedly.

Thanks to the bank-switching capabilities of the Commodore

64, custom KERNAL routines can usually be soft tested; that is,

run without using an EPROM. The source code for Autoload,

for example, includes a conditional assembly variable, called

EPROM, that allows Autoload to be soft run "under" the

KERNAL ROM itself.

The Transactor 66 July 1986: Volume 7, Issue Ol

Here are the steps involved for soft running Autoload:

(1) Assemble Autoload with the variable EPROM = 0.

(2) Load a machine language monitor and run it.

(3) Using the monitor, save the KERNAL ($E000-FFFF) as a

disk file. Then load it back. You now have an exact copy of

the KERNAL in the RAM under the KERNAL.

(4) Transfer BASIC to itself. For example, most monitors have

a transfer command such as T A000 BFFF A000'. This

moves BASIC to the RAM under itself.

(5)* Load the assembled Autoload from disk. This adds Auto

load to the RAM KERNAL.

(6) Create this bank switching routine with the monitor:

START SEI

LDA *$35

STA $01

CLI

RTS

This short machine language routine will flip out both the

KERNAL and BASIC ROMs when it is called and transfer

control of the 64 over to the customized Autoload KERNAL.

(7) Exit the monitor and do a SYS to START. Autoload is now

in place. Next, type SYS 64738 (a RESET) and Autoload

should do its stuff.

* NOTE: Commodore's assembler won't allow its object code to

be directly assembled to ROM. However, CBM's HILOADER64

and LOLOADER64 programs can be modified to assemble into

ROM with a few pokes which place 6502 NOP instructions in a

comparison routine:

For LOLOADER64, POKE 2388,234 and POKE 2389,234

For HILOADER64, POKE 51525,234 and POKE 51526,234

Using the Promenade EPROM Programmer

Making a modified KERNAL can be done using any of several

EPROM programmers or "burners" available to home users. I

use the Promenade sold by Jason-Ranheim Co. of San Jose,

California, and recommend it highly because it's inexpensive,

simple to operate and very versatile.

Until recently, I used the 2764-type EPROM as a KERNAL

replacement chip because of its low cost. However, this is a 28-

pin chip. Since the KERNAL ROM has a 24-pin configuration,

the 2764 requires an adapter socket and some jumper wires

before it can be plugged into the 64's circuit board.

But because of recent price decreases in the Motorola MCM-

68764, this chip is now my EPROM of choice. The Motorola

EPROM, unlike the 2764, is pin compatible with Commodore's

KERNAL chip. The additional cost of the MCM-68764 is offset

by not having to fool around with an adapter socket interface.

To program a custom KERNAL with the Promenade, the

modified machine code must be loaded into the 64's memory.

For example, I relocate the custom KERNAL at $2000 simply

because it's easy to remember. The EPROM is then pro

grammed or "burned" by the EPROM programmer. Using the

Promenade (with the Promenade software) with the KERNAL

at $2000 and the 68764 chip, the programming command has

the following syntax:

7i8192,16383,0,48,0

"8192" = decimal start address of the code to be burned

($2000).

"16383" = decimal end address of the code ($3FFF).

"0" = first byte of the EPROM to be programmed. (Re

member, computers start counting from zero).

"48" = Promenade "control word" which tells the burner

what type of EPROM it's burning.

"0" = Promenade "program method word" or PMW. This

gives the Promenade instructions on how the

68764 should be programmed.

Promenade owners take note: You won't find the above PMW

listed in your documentation. I was forced to develop my own

PMW because the suggested ones failed to work on the 68764

about 90% of the time.

EPROM burning takes about 4 minutes. If the error light isn't

flashing on the Promenade after the burning, then the custom

ized KERNAL is ready to install.

Motorola MCM-68764 EPROMs are available from JAMECO

Electronics in the United States as well as other sources.

Besides being a direct replacement for the KERNAL, this

EPROM can also replace BASIC as well as the 1541 disk drive's

ROM.

Autoload Kernal Patch (CBM Assembler format)

put"@:s/kauto"

opt nosym

* *

* autoload kernal *

on powerup or reset, loads

the 1 st file from drive 0

and then runs the program.

however, a delay period is

provided allowing the user

time to abort the load by

pressing the cmdr logo key.

* - by torn hughes v240685 - *

The Transactor 67 July 1986: Volume 7, Issue O1

.skip (; sends line feed(s) to printer)

;

;c64 equates

basic

basini

basmsg =

clall

close

clrchn =

dobas

keyd

load =

ndx =

setlfs

setnam =

settim

shflag

time

vartab =

vec300 =

.skip

;

;constants

eprom =

wait =

$0801

$e3bf

$e422

$ffe7

$ffc3

$ffcc

$a474

$0277

$ffd5

$c6

$ffba

$ffbd

$ffdb

$028d

$aO

$2d

$e453

0

3

.page 'diversions'

i

; basic starts here

initialize basic

;print powerup message

;closeall files

;close one file

;i/o to defaults

;basic warm start

; keyboard buffer

;load ram from disk

;# of chars in keybrd buff

;set file parameters

;set file name

;set jiffy clock

;shift pattern register

;jiffy clock (3)

; basic variable start (2)

;set page 3 o.s. vectors

; 1 = eprom/0 = soft kernal

;wait * 4 = delay in sees

;cassette routine patches

I

.skip

;note: attempted use of

;will result in

.skip

* —

jmp

* =

jmp

* =

jmp

*

jmp

.skip 2

* =

;divert system

.skip

.if n eprom <

stx

jsr

jsr

jsr

jsr

cli

a cassette routine

llegal device #"

$f2ce

$f271

$f38b

$f713

$f539

$f713

$f65f

$f713

$fcef

reset

$dO16

$fda3

$fd50

$fd15

$ff5b

;fix cassette close

;fix cassette open

;fix cassette load

;fix cassette save

;reset vicii chip,

initialize i/o,

;memory pointers,

;soft i/o vectors,

;screen & keyboard

jmp autold

.page 'autoload'

* = $f72c

;powerup autoload

.skip

autold

autolO

.skip

;autorur

;

auto20

auto30

.skip

filnam

run it

.end

jsr

jsr

jsr

Idx

txs

Ida

jsr

Ida

emp

beq

Ida

emp

bne

jsr

Ida

Idx

Idy

jsr

Ida

Idx

Idy

jsr

Ida

Idx

Idy

jsr

stx

sty

Ida

jsr

jsr

vec300

basini

basmsg

#251

#0

settim

shflag

#2

auto30

time +1

#wait

autolO

clall

#2

§8

#0

setlfs

#3

#<filnam

#>filnam

setnam

#0

#<basic

#>basic

load

vartab

vartab +1

#2

close

clrchn

routine

Idy

Ida

sta

ny

cpy

bne

sty

jmp

.byt

.byt

#0

runit.y

keyd.y

#4

auto20

ndx

dobas

'0:*'

'run',13

;go to autoload

;set $0300 vectors,

;initialize basic,

;print powerup message,

;and reset stack

;zero jiffy clock

;if cmdr key pressed,

;skip the load

;else wait till delay is up

;then close all files

;ignore file header

;load "0:*",8

;set end-of-basic ptrs

;close load channel

;write " run" + cr

;to keyboard buffer

;and set buffer size

;then run the program

The TransactOf July 1986: Volume 7, Issue Ol

SYMASS:

A Symbolic Assembler

For The Commodore 64

Robert Huehn

Neustadt, Ontario

Now Assemble Any Transactor Program, Anytime!

Symbolic assemblers, used to assemble machine language

programs, are essential tools for serious programmers. The

merits of machine language need not be discussed here. If you

haven't broken down and bought one yet, you've probably

been using a monitor such as Supermon. Monitors were never

meant for program development. After trying to insert a couple

of instructions into a long program with a monitor, you must

also readjust the rest of your program properly. Then you think

very hard about alternatives.

Unfortunately there were very few choices until now. SYMASS

was written to fill the gap. It is a very fast, compact, easy to use

assembler with enough features for serious programs. Besides,

it's in the public domain. After experiencing SYMASS in action,

you will gladly demote your monitor to debugger.

You're likely already familiar with SYMASS syntax, since it is

totally compatible with PAL. PAL source code is published

often in each issue of The Transactor. SYMASS syntax evolved

through many changes from its beginning as a BASIC program

(which would take over twenty minutes to assemble early

versions.) It now includes most of PAL's features, including the

ones most often used in Transactor programs. PAL has no

problems assembling SYMASS itself, but SYMASS is faster.

SYMASS source code is about 18 K bytes long and PAL takes

about 17 seconds to assemble it. SYMASS assembles itself in six

seconds.

Type in SYMASS 3.0.GEN, then run it. (It's not long, but you

might consider getting the Transactor disk for this issue, espe

cially if you want the source code.) It will create the final

program, SYMASS 3.0, on disk. (The generator program could

also be modified for tape, since SYMASS doesn't use the disk

drive.) The SYMASS 3.0 loader will relocate itself at the top of

memory when it is run. Source code is entered with the BASIC

editor; use 'sys 700' alone on the first line to call SYMASS.

Leave out the PAL's .opt xx statement since SYMASS assembles

to memory only. Type 'run' and save the object code with a

monitor.

Probably the major limitation of SYMASS is both source and the

resulting object code must reside in memory along with SY

MASS. SYMASS doesn't take up much room, (about 2.6 K) but

you will have problems if the source is too long to fit with the

object code.

A partial list of SYMASS/PAL compatible features follows:

* = $c000 ;define start of program

name = $ff ;assign a value to a symbol

* = * + n ;skip n bytes for storage

; ;comments follow

$;hexadecimal value, default is decimal

% ;binary value

;ASCI1 value of character

! ;force absolute addressing

>high, <low ;low or high byte of word

+ ,- ;add, subtract

.byte $ff ;store bytes

.word Sffff ;store words

.asc " text" ;store string of characters

.end ;end assembly

You can use SYMASS without knowing how it works, but the

explanation will help you get the most out of it.

SYMASS itself is composed of small modules, each performing

a specific function. In general, each module could be replaced

by another section of code, if it performs the function correctly.

This makes it easier to modify small sections without any side

effects. SYMASS was debugged that way.

SYMASS makes two passes over the source code. During the

first pass, SYMASS builds a symbol table of all the symbols

which appear in the program. It then stores the object code to

memory on the second pass, after all unknown symbol values

have already been defined. A variable called FLAG is set to 0 or

1, depending which pass SYMASS is currently on.

The Transactor 69 July 1986: Volume 7, Issue Ol

The source code has already been tokenized by the BASIC

editor, but this causes no problems. It even reduces the amount

of memory needed for the source. Opcodes such as 'and' are

already stored as tokens internally, as are custom pseudo-ops

like '.end'.

WORD is the most basic routine to find the next word. WORD

defines a word as a sequence of characters ending with a space,

colon, semi-colon, or equal sign. It also ignores leading spaces,

and has a quote mode that accepts any character except the

end of line.

A pointer, AD, and the .y register is always used to access the

source code. When WORD is called, the pointer AD is ad

vanced over leading spaces, then the .y register is advanced to

the end of the word and the result is stored in LEN. Therefore,

LEN is the length of the word, l(ad),y' gives the stop character

when .y equals LEN, and the first character when .y equals

zero. Two routines, NEXTWORD and NEWWORD, set up AD

and call WORD. NEXTWORD starts at the current stop charac

ter, so will only get another word if a space separates them.

NEWWORD, on the other hand, skips over the stop, and is

used to get the expression after an equals sign.

It's important to understand how those routines work if you

wish to use them in your own additions to SYMASS.

SYMASS creates a symbol table which starts at the top of

memory and grows downward to the end of the source code. A

symbol table overflow results if not enough memory is availa

ble. Each entry takes ten bytes; eight to store the name, and

another two for the value. If tokens are embedded in the name,

its actual length could be longer than eight characters, but it's

not a good idea.

CRSYM creates a symbol table entry. It decides if there is

enough room, then copies the current word into the table. It is

your responsibility to make sure a symbol isn't defined twice.

Whenever the value of a symbol is needed, FINDSYM is called.

FINDSYM returns with the value in the .a and .x registers, or

prints an 'undefined symbol' message.

FINDSYM uses the simplest possible search method, searching

from beginning to end. It might be worthwhile to use a different

method, such as a hash function, to save time. (Calculate the

storage address with a special function, such as the remainder

of table size / ASCII sum of name.)

The opcode table makes up 728 bytes of SYMASS. Again,

FINDOP does a linear search. The more commonly used

opcodes are close to the beginning. You could fine-tune the

table to your style by counting the number of times each

opcode appears in your programs, then rearranging the table in

that order. If you do so, change the brk op* and bit op* in

DOOP and PUTOP to their new positions. You could also easily

add extra opcodes such as skb (skip byte) to the table, changing

NOPS to reflect the change.

Two other major routines are EVAL and PUTOP.

EVAL takes the current word, an expression containing no

spaces, evaluates it, and returns the result. It can add or

subtract symbols, decimal, and hexadecimal numbers. A char

acter enclosed in single quotes will return its ASCII value. A >

or < can be placed at the beginning of the expression to return

either the high or low byte of the result. The number conver

sion routines only convert from BASIC'S format as a string of

characters to a useful two-byte binary number, not both ways.

This is why SYMASS gives the end of assembly as a decimal

number instead of hex. The BASIC ROM routine that prints 'in

xxxxx' is used.

During the first pass DOOP keep track of the current object

address with a pointer called PTR. PUTOP is used on the

second pass to store the machine code into memory. It recog

nizes all addressing modes. Since there is no difference in

syntax between zero and absolute modes, the correct mode

may sometimes be ambiguous.

Suppose you are storing variables in memory after the end of

your program, with a label to identify the location. On the first

pass, an instruction such as 'Ida variable' would normally cause

FINDSYM to give an undefined symbol error. FINDSYM there

fore tries to guess your meaning by returning the value of PTR

for undefined symbols on the first pass. Other assemblers may

use zero, and cause an instruction like 'Ida variable+1' to

produce a phase error. A phase error results when the assem

bler makes the wrong guess, and reserves an incorrect number

of bytes for an instruction.

SYMASS doesn't have phase errors. You can force SYMASS to

use absolute mode with a ! prefix, or to zero page by a <, which

works by returning the low byte.

You can add your own specialized commands to SYMASS by

adding them to the CUSTOP routine. One such command,

'.pad' will add a zero to the object code if the current address is

odd. You might use it sometime to make sure a jump table

doesn't cross a page boundary.

SYMASS leaves room for optimization; the major goals in its

design were simplicity, speed and ease of use. WORD, since it is

used so often, is a good candidate. PAL doesn't seem to

recognize ' =' as the end of a word. If the relevant parts of

SYMASS were changed, the check could be taken out of

WORD. A useful, but probably more complicated improvement

is assembly to disk.

SYMASS's hidden strength is the ease with which it can be

modified, compared to commercial programs which do not

provide source code. You can also study SYMASS just to learn

how to write an assembler. In the end though, SYMASS is a tool

which will enable you to write machine language programs as

complex as your growing skills allow.

The Transactor 7O July 1986: Volume 7, Issue Ol

SYMASS Source Listing

The source code (or SYMASS 3.1 has not been verifized - it's here

for reference only - we couldn't imagine anyone entering it by

hand. II you want source we suggest you tvpe in the loader and

unassemble i

100sys700

110; <<

120;

otherwise get Disk '12 for this issue

< <symass3.1 > > > >

symbolic assembler

130; robert huehn June. October 1985

140;

150. = $c()00

160;

sm3.103

170 ;zero page equates

180sta5rc

190 stavar

200 memsiz

210 link

220 line

230 ad

240 symptr

250 symend

260 ptr

270opptr

280 len

29011

30012

310ss

32013

33014

34015

350 (lag

360 .constant

370 nops

380 ready

390 inline

400 conlbas

410 list

420tindline

430;

$50 ;startol source

- $2d ;end of source

$37 .lop of symbol table

= $4e ;basic line link

= $39 :current line number

$7a ;current source address

■ $52 ;symbol value pointer

= $57 ;boltom of symbol table

$59 ;current object address

= $5b ;opcode table pointer

> $5d Jenglh of word

= $26 temporary number

■ $28 ;storage for eval

= $2a ;sign save

= $5e

= $51

= $60

$02 ;first or second pass

- 55 ;numberol instructions

= $a474 ;basic ready

* $bdc2 ;r>rinl 'in line'

= 5a7ae xonlinue basic

■ $a6c9 ;lisl line

= $a613 ;find basic line

440 ;main program

450:

460 init

470;

480

490

500

510

520

530

540

550

560

570 ill

580

590

600

610

620

630

640

650

660

670 H2

680

690

700

710

720

730;

740 newline

750;

760

770

780

790;

800gelword

810;

820

830

840

850

860

870 gwl

880

S90

900

910

920

930 gw2

940

950

960

970 gw3

980

990

1000 gw4

1010

1020

• ;begin first pass

Ida '0

sla flag

idx '<messstar ;start

:dy *>messstar

sr printmsg

dx $3a

mx

}ne ill

mp ready .since in direct mode

idx "<messfir ;(irst pass

Idy *>messfir

isr printmsg

Ida memsiz ;init symbol table

sta svmend

;da memsiz+1

sla symend + l

inc ad

Dne it2

inc ad+1

Ida ad

sla slasrc

sla link

Ida ad+1

sta slasrc+1

sta link+l

■ • ;slatt next line

jsr nextline

bne getword

jmp secpass

- ' ;process word

jsr word

bne gwl

emp '$b2 ;= token

bne next

jmp addval

Idx "0 ;checklor. = . + l

Ida (ad.x)

emp '$ac ;■ token

bne gw2

jsr doplr

jmp next

Ida (ad),y

emp '$b2 ;=

bne gw3

jmp addsym

jsr findop

bec gw4

jmp doop

Idy '0

Ida (ad).y

emp '"

1030

IO40

1050;

1060 label

1070;

1080

1090

1100

1110

1130

1140

1150;

1160 nexl

1170;

1180

1190

120(1

121(1

1220

1230

1240

1250 nl

1260

1270

1280

1290
130(1

13Hi

1320 n

1330;

1340 secpass

1350;

1360

1370

1380

1390

1400

1410

1420

1430

1440;

1450newline2

1460;

1470

1480

1490

1500;

1510gelword2

1520;

1530

1540

1550

1560

1570

1580

1590

1600

1610g2wl

1620

1630

164Og2w2

1650

1660

1670

1680

1690;

17OOnext2

1710;

1720

1730

1740

1750

1760

1770

1780

1790 n2xl

1800

1810

It! 211

1830

1840

1850

1860 n2x

1870;

1880 Finish

1890;

1900

1910

1920

1930

1940

1950

I960

1970

1980

1990;

bne label

jmp custop

= • ;save word, current address

jsr crsym

Idv "0

Ids ptr

sla (symptr).y

iny

Ida ptr+1

sta (svmptr).y

= • ;gel ready (or next word

Idv len

Ida (ad),y

emp ■'

beq nl

emp '':'

beq nl

jmp newline

iny

lya

clc

adc ad

sla ad

bec n

inc ad+1

jmp getword

= * ;begin second pass

inc flag

Idx '<messsec ;second pass

Idy ">messsec

jsr printmsg

Ida slasrc ;pul link at start

sla link

Ida slasrc +1

sla link+l

= • ;starl next line

jsr nextline

bne getword2

jmp finish

= • ;process word

jsr word

beq next2

Idx '0

Ida (ad.x)

emp '$ac •

bne g2wl

jsr doptr

jmp next2

jsr lindop

bec g2w2

jmp putop

Idy '0

Ida (ad),y

emp ''. "

bne nexl2

jmp custop

= • ;gel ready lor nexl word

Idv len

Ida (adj.y

emp '520

beq n2xl

emp '53a

beq n2xl

jmp newline2

inj

lya

clc

adc ad

sla ad

bec n2x

inc ad+1

jmp getword2

= * ;end

ld.\ '<messac .assembly complete

Idy '>messac

jsr printmsg

Ida ptr

sta line

Ida plr+1

sta line+1

jsr inline

jmp ready

2000 subroutines used bv main program

2010;

2020 addsym = . ;save symbol with value

2030;

2040

2050

2060

2070

2080

2090

2100

2110

212d

2130;

2140 addval

2150;

2160

2170

2180

2190

2200

2210

2220

223(1

2240

2250 crsym

2260;

2270

2280

22911

2300

2310

2320

2330 csl

2340

2350

2360

2370

2380

2390

2400

2410

2420 cs2

2430

2440

2450

2460

2470

2480

2«0

2500

2510 cs4

2520

253(1

2540

2550 cs5

2560

2570

2580

2590

260d

2610;

2620 doop

2630;

2640

2650

268)

2670

268(1

2690

2700

2710

2720

2730

2740

2750 dol2

2760

2770 do3

2780

2790

2800 dol

2810

2820

2830

2840 do2

2850

2S60

2870

248(1

239"

29(10

2910

2920

2930

29-ld

2950

2960

2970

2980

2990

son

3010

3020

jsr crsym

jsr newword

jsr evat

Idy '0

sta (symptr).y

iny

Ixa

sta (symplr).y

jmp nexl

= * ;change label into symbol

jsr newword

jsr eval

Idy '0

sla (symptrly

iny

txa

sla (symptrly

jmp next

= • ;create symbol table entry

Ida symend ;lower symend to

sec ;make room

sbc '10

sta svmend

bes csl

dec svmend+1

emp stavar ;check for

Ida symend+l

sbc stavar+1

bes cs2

Idx '<messsto ;symbol table

Idy '>messsto overflow

jsr printmsg

jsr inline

imp listline

clc ;poinl symptr to

Ida svmend ;symbol value address

adc '8

sta symptr

Ida symend+l

adc '0

sta symptr+1

Idv '8 ;erase space lor name

Ida "0

dey

sla (symend).y

bne cs4

Idy len ;max length is 8

dey ;copy symbol name

Ida (ad).y

sla (symendj.y

lya

bne cs5

rts

= • ;move pir past instruction

Idv "0

Ida (ad),y

emp ••)'

beq do3

emp ''b'

bne dol

cpx '$21 ;brk op"

beq dol

cpx "$20 .bit op'

beq dol

jsr nextword

Ida '2

bne do

jsr nextword

Ida '3

bne do

jsr nextword

bne do2

Ida '1

bne do

Idv ■()

Ida (ad).y

emp *"'"

beq dol2

emp ''('

beq do!2

Idv len

dey

beq do5

dey

beq do5

Ida (ad).y

emp •','

bne do5

inv ;recognize intended absolute

Ida (ad).y

Idy '7

emp *'x*

beq do7

3030

3040 do"

3050

3060

3070

Mill

3100

3110

3120

313(1

3140

3150do5

3160do6

3170 dol3

3180 do

3190

32(10

3210

3220

3230 do4

3240;

3250 doplr

3260;

3270

3280

329u

33(10

3310

3320

3330;

iny

Ida (opptr).y

emp 'Sla

beq dol3

Idv len

dey:dey

sty len

jsr eval

inc len

inc len

cpx "0

jmp do6

jsr eval

beq dol2

Ida '3

clc

adc ptr

sta ptr

bec do4

inc ptr+1

jmp next

= * ;change ptr eg. » = » + 2

jsr nextword

jsr newword

jsr eval

sta ptr

stx ptr+1

rts

3340 ;eval routines begin here

3350;

3360 literal

3370;

3380

339H

3400

3410

3420

3430

3440

3450;

3460 sym

3470;

3480 svl

3490

3300

3510

3520

3530

35.1(1

355(1

3560 sv

3570

3580

3590

3600

3610

3620;

3630 eval

3640;

3650

3660

;i(i?o

:««()

3690

3700 evl

3710

3720

3730

3740

3750ev8

3760

3770

3780

3790

380(1

3810

3820

3830

3840

3850

3860 ev9

3870

;ss8o

3890

Wild

3910

3920;

3930 hilo

3940;

3950

3960

3970

3980

3990 hi

4000

4010;

4020 ptrval

= « ;return single ascii value

iny

Ida (ad),v

sla tl

Ida '0

sla 11 + 1

inyriny

jmp last

= • :lind end and call lindsyn:

iny

cpy len

beq sv

Ida (ad),y

emp '$aa ; +

beq sy

emp '$ab ;-

bne svl

sty li
jsr lindsvm

Idy 11

sla 11

stx tl + 1

jmp last

= • evaluate single expression

Ida '0

sta 12

sta 12+1

sta ss

sla t4

Idv '0

Ida (adj.y

emp *"$"

bne ev8

jmp hex

emp '$22 ;'

beq literal

emp 'Sac ;•

beq ptrval

emp 'Sbl ;>

beq hilo

emp *$b3 :<

beq hilo

emp **%'

bne ev9

jmp bin

sec

sbc "530

bee sym

emp *S0a

bes sym

jmp deci

= • ;> or < byte extractions

sta t4

inc ad

bne til

ine ad+1

dec len

bne evl

= • ;give current address

The Transactor 71 July 1986: Volume 7, Issue Ol

4030-

4040'
4050

4060

4070

4080

4090;

4100 lasl

4110;

4120

4130

4140

4150

4160

4170

4180

419Oev3

4200

4210

4220

4230

4240

4250

4260

4270

4280

4290 ev4

4300

4310

4320

4330

4340

4350

4360

4370;

4380 sign

4390:

4400

4410

442"

4430

4440

4450

4460

4470

4480

4490

4500

451Oev5

4520

4530

4540

4550

4560

4570 ev

4580

4590

4600

4610

4620 ev6

4630

4640

4650

4660

4670 ev7

4680

4690

4700;

4710 hex

4720;

4730

4740

4750

4760

4770 hxl

4780

1790

4800

4810

4820

4830

4840

4850

4860

4870

4880 hx2

4890

1901)

4910

4920

4930

4940

4950

4960

4970

4980

4990

5000

5010

5020

iny

Ida ptr

sla il

Ida plr + 1

sta 11 + 1

= . ;perform lasl sign

Ida ss

bne ev3

Ida 11 ;nosign

sla 12

Ida Il + l

sla 12+1

imp sign

cmp '$aa ; +

bne ev4

clc

Ida II

adc 12

sta 12

Ida Il + l

adc 12 + 1

bcc sign

imp iq

sec ;-(default)

Ida t2

sbc 11

sla 12

Ida 12+1

sbc Il + l

sta 12 + 1

bcc iq

= . ;save sign or slop

cpv len

beq ev

Ida (ad),y

sta ss

inv

lya

clc

adc ad

sla ad

bcc ev5

inc ad+1

sec

Ida len

sly len

sbc len

sla len

jmp evl

Ida 14

bne ev6

Ida 12

Idx 12 + 1

rts

cmp '$bl ;>

bne ev7

Ida 12+1

Idx '0

ns

Ida 12 ;<

Idx '0

rts

• .convert hex number

iny

Ida '0

sla II

sla 11 + 1

Ida (ad),y

sec

sbc '530

bcc hx

cmp "SOa

bcc hx2

sbc 'ill

bcc hx

cmp 'S06

bcs hx

adc "$0a

asl 11

rol 11 +1

bcs iq

asl II

rol Il + l

bcs iq

asl 11

rol 11 +1

bcs iq

asl II

rol Il + l

bcs iq

adc 11

sla II

Ida Il + l

5030

5040

5050

5060

5070

5080 hx

5090:

5100 iq

5110

5120

5130

5140

5150

5160;

5170 deci

5180;

5190

5200

5210

5220 del

5230

5240

5250

5260

5270

5280

5290

5300

5310

5320

5330

5340

5350

5360

5370

5380

5390

5400

5410

5420

5430

5440

5450

5460

5470

5480

5490

5500

5510
5520

5530

5540

5550 de

5560;

5570 bin

5580;

5590

5600

5610

5620

5630 bnl

5640

5650

5660

5670

5680

5690

5700

5710

5720

5730

5740

5750

5760

5770

5780

5790 bn

5800;

adc '0

sla Il + l

bcs iq

iny

bne hxl

jmp lasl

= t .illegal quanity

Idx '<messiq

Idy ">messiq

jsr prinlmsg

jsr inline

jmp listline

= • ;converi decimal

Ida ■()

sla il

sla Il + l

Ida (ad).y

sec

sbc '$30

bcc de

cmp 'SOa

bcs de

pha

Ida il

Idx 11+ 1

asl II

rol Il + l

bcs iq

asl 11

rol Il + l

bcs iq

adc II

sla II

txa

adc tl + l

sla Il + l

bcs iq

asl tl

rol Il + l

bcs iq

pla

adc 11

sta 11

Ida Il + l

adc "0

sla Il + l

bcs iq

iny

bne del

imp lasl

= . ;convert binary

inv

Ida "0

sla 11

sla Il + l

Ida (ad).y

sec

sbc "S30

bcc bn

cmp "2

bcs tin

asl II

rol Il + l

bcs iq

adc 11

sta II

Ida Il + l

adc '0

sla Il + l

iny

bne bnl

jmp last

5810 findop = • ;sel carry if opcode.

5820 ;opplr poinis lo position.63999

5830 ;.x holds opcode number

5840;

5850

5860

5870

5880

5890

5900lol

5910lo2

5920

5930

5940

5950

5960

5970

5980 Io3

5990

6000
6010

6020 Io4

Ida "<optab ;opcode table

sta opplr

Ida ">oplab

sla opplr+1

Idx "0

Idy "0

Ida (opplrl.y

beq Io3

cmp (ad),y

bne fo4

iny

cpy "3

bcc Io2

cpv len

bne Io4

sec

rts

inx

6030

6040

6050

6060

6070

6080

6090 fo5

6100

6110

6120

Ida opptr

clc

adc "$l)d

sta opptr

bcc Io5

inc opptr +1

cpx "nops

bne fol

clc

rts

6130;

6140findsym = ■ ;find symbol, return

6150; value in .a ,x

6160;

6170 Ida memsiz

6180

6190

6200

6210 fsl

6220

6230

6240

6250

6260

6270 fs2

6280

6290

6300

6310

6320

6330

6340

6350

6360 Is8

6370

6380

6390

6400

6410 Is3

6420 fs4

6430

6440

6450

6460

6470

6480

6490 fs7

6500

6510 Is9

6520

(K<0

6540

11550

6560

6570;

6580lisllme

6590;

6600

6610

6620

063H

6640

6650

6660

6670;

6680 nexllm

6690;

6700

6710

6720

6730

6740

6750

6760

i',77"

6780

6790

6800

S810

6820

6S3i i

6840

6850

6860

6870

6880

6890

6900

6910

6920

6930 nl

6940;

sla symplr

Ida memsiz+ 1

sta svmplr+l

tda symplr

sec

sbc '10

sta svmplr

bcs Is2

dec symplr+1

cmp symend

Ida symplr+ 1

sbc symend +1

bcs fs3

Ida Hag

bne Is8

Ida ptr ;relurn plron 1st pass

Idx plr+1

rts

Idx "<messus undefined symbol

Idy *>messus

jsr prinlmsg

jsr inline

imp listline

Idy "0

Ida (svmplr).v

beq Is7

cmp (ad).v

bne fsl

iny

cpy '8

bcc Is4

cpy 11 ;length

bne Isl

Idy '9 :loundil

Ida (symptr).y

lax

dey

Ida (symplr).y

rts

= . ;list offending line

Ida line

sla 114

Ida line+l

sla $15

jsr lindline

jsr list

imp ready

e = • ;ready for next line

Ida link ;move ad to next line

sla ad

Ida link+1

sla ad +1

Idy '0 ;new link

Ida (ad|.y

sla link

inv

Ida (ad),y

sla link 1

beq nl ;end ol source return z set

inv ;new line number

Ida (ad).y

sla line

iny

Ida |ad),y

sla line+l

clc ;move ad over link and line

Ida ad

adc '4

sta ad

bcc nl

inc ad+1 ;returnzclear

rts

6950 newword = - ;gel next word past =

6960;

6970

6980

6990

7000;

Idy len

inv

.byte S2c

70IOnexlword = • ;gel next word

7020;

7030

7040

71150

7060

7070

7080

7090

7100 nw

7110;

7120 printmsg

7130;

7140

7150

7160

7170 pml

7180

7190

72i"

7210

Idy len

Iva

clc

adc ad

sla ad

bcc nw

inc ad+1

jmp word

= . ;prinl message

six II

sly il+ 1

Id'v "0
Ida (ll|.y

beq pm

jsr Sffd2 ;print character

iny

bne pml

7220 pm ns

7230;

7240 ;pulop routines begin here

7250;

7260 relative

7270;

7280

7290

7300

7310

7320

7330

7340

7350

7360

7370 rll

7380

7390

71Oil

7410

7420

7430

7440

7450

7460

7470

7480

7490

750"

7510

7520

7530

7540 rl

7550

7560

7570;

7580 imm

7590;

7600

7610

7620

7630iml

7640

7650

7660

7670

7680

71190

7700;

7710 indirec

7720;

7730

7740

7750

7760mdl

7770

7780

7790

7800

7810

7820

7830

7840

7850

7860 ind2

7870

7880

7890

7900

7910

7920

7930

7940;

7950 pulop

7960;

7970

7980

7990

Sow

8010

8020 pop5

= « calculate offset

Idy "3

Ida (opplT).y

jsr puloulop

jsr nexlword

jsr eval

sec

sbc '1

bcs rll

dex

sec

sbc plr

sla 11

txa

sbc plr+1

lax

clc

Ida II

adc 'S80

Ixa

adc '0

beq rl

Idx "<messboor .branch out ol

Idy ">messboor ;range

jsr prinlmsg

jsr inline

jmp listline

Ida II

jsr puloul

jmp nexl2

. ;do immediate mode"''

inc ad

bne iml

inc ad+1

Idy 'S0a

Ida (opplrl.y

jsr putoulop

dec len

jsr eval

jsr puloul

jmp nexl2

= • ;do(,x)else().y

inc ad

bne indl

inc ad+!

Ida len

sec

six- -1

lay

slv len

Ida |ad).v

Idy "11

cmp •",'

beq ind2

inv

Ida (opptr).y

jsr puloulop

jsr eval

jsr puloul

inc len

inc len

inc len

jmp nexl2

= ■ generates machine code

Idy "(I

Ida (ad|.y

cmp •"]'

bne pop5

jmp jump

cmp '"!>'

The Transactor 72 July 1986: Volume 7, Issue Ol

803O

8040

8050

8060

8070

8080

8090 popl

8100

811(1

8120

8130

8140

8150 pop2

8160

8170

8180

8190

8200 pop3

8210

8220

8230 pop4

8240

bne popl

cpx "$21 :brk op"

beq popl

cpx "$20 ;bil op"

beq popl

jmp relative

jsr nextword

bne pop2

Idy "9

Ida (opptr).y

jsr putoutop

jmp nex!2

Idv "0

Ida (ad).y

cmp "'"'

bne pop3

jmp imm

cmp •"("

bne pop4

imp indirect

cmp '"!"

bne absolute

8250; forced absolute bv! prefix

8260

8270

8280

8290 fr

8300

8310;

inc ad

bne fr

inc ad+1

dec len

.byle He

8320 absolute • . ;lhree bvte mode

8330;

8340

8350

>!37t)

8380

8390

8400

8410

8420

8430

844(1

845(1

S4B1

8470

8480

8490

8500

8510

8520 abl

8530

8540

8550 ab4

8560

8570

8580

8590

8600

8610

8620

8630 at.2

8640

8650

8660

8670

8680

8690

870(1

8710

8720

8730 ab3

8740

8750

8760

8770

8780 ab

8790;

8800 jump

8810;

8820

8830

8840

8850

8860

,?;;■[)

1880

8890

8900

8910

8920

8930

8940

8950 jpl

8960

8970

8980 |p2

8990

9000

9010

9020

Ida "0

sla 15

Idx "3

Idy len

dey

beq abl

dev

beq abl

Ida (ad).y

cmp "*.*

bne abl

sty len

inx

inv

Ida (ad),y

cmp '"x"

beq abl

inx

six 13

jsr eval

beq ab2

Idy 13

Ida (opplr),y

jsr putoutop

Ida 12

jsr putout

Ixa

jsr pulout

jmp ab3

Ida 15

bne ab4

Idy 13

my:iny:iny

Ida (opptr).y

cmp "$fa

beq at)4

jsr putoutop

Ida 12

jsr putout

Idy 13

dey:dey:dey

beq ab

inc len

inc len

jmp next2

• ; jmp, jsr and jmp ()

jsr nextword

Idv -0

Ida (ad),y

cmp "'('

beq |pl

Idy "3

Ida fopptrj.y

jsr putoutop

jsr eval

jsr putout

Ixa

jsr putoul

jmp nexl2

inc ad

bne jp2

inc ad+1

dec len

dec len

Idy "4

Ida (opplrj.y

jsr puloutop

9030

9040

905(1

9060

9070

9080

9090;

9100putouto

9110;

9120

9130

9140

9150

9160

9170

9180

9190;

9200 putoul

9210;

9220

9230

9240

9250

9260

9270 pi

9280;

9290 word

jsr eval

jsr putoul

Ixa

jsr puloul

inc len

imp nexl2

= * ;verify op mode

cmp 'Sfa

bne puloul

Idx "<messim ;illegal mode

Idy *>messim

jsr prinlmsg

jsr inline

jmp lislline

* ;output object code

Idy "0

sla |plr).y

inc ptr

bne pi

inc plr+l

rts

= • ;basic routine to gel word

9300 ;|ad) must point lo start

9310 ;ignores leading spaces

9320;':;= '

9330 ;relurn.

9340;

9350

9360

9370 wl

9380

9390

91011

9410

9420

9430

9440

9450

9460

9470

9480

9490

9500

9510 w2

9520

9530 w3

9540

9550

956(1

9570

9580

9590 w4

9600

9610

9620

9630 w5

9640

9650

9660;

9670 cu slop

9680;

9690

9700

9710

9720

9730

9740 cpl

9750

9760

9770 cp2

9780

9790

9800 cp3

9810

9820

9830 cpl

9840

9850

9860 cpS

9870

9880

9890

990(1

9910;

9920 cp

9930

9940

9950 cp6

9960;

9970 bvte

9980;'
9990

10000

10010

10020

copied only in quote mode

'-length, slop char in a

Idx "0

Idy "0

Ida (ad),y

beq w5 ;end ol line

cmp '$22 ;"

beq w4

cpx '580

beq w2

cmp ■':'

beq w5

cmp *"; *

beq w5

cmp "$b2 ;.

beq w5

cmp ""

beq w3

iny ;copv

bne wl

cpy '0 ;leading space

bne w5

inc ad

bne wl

inc ad +1

bne wl

txa ;toggle

eor "$80

tax

jmp w2

sly len

cpy "0

rts

= • ;cuslom pseudo-ops

inv

Ida (adj.y

cmp '"b"

bne cpl

jmp byte

cmp *"w"

bne cp2

jmp byle+2

cmp 'Sc6 ;ast

bne cp3

imp asc

cmp '$80 ;end

bne cp4

jmp end

cmp '"p'

bne cp5

jmp pad

Idx "<messip ;illegal

Idy '>messip ;pseudo-op

jsr printmsg

jsr inline

jmp listline

Ida Hag

bne cp6

jmp next

jmp next2

= • ;,byle and .word

Ida '0

sla 15

jsr nextword

sly t3

10030 bvl

10040 by2

10050

10060

10070 bv9

10080 '
10090

10100 by.3

10110

10120

10130

10140

10150

10160

10170

1018(1

10190

10200

10210

10220bv4

10230 '
10240

10250

10260

10270

10280 by5

10290

10300

10310

10320

10330

10340

10350

10360

10370

10380

10390 by6

10400

10410

10420

10430 by?

10440

10450

10460

10470

10480 by8

10490

10500 by

10510;

10520 asc

10530;

10540

10550

10560 asl

10570

10580

10590

10600

10610

10620

10630

10640 as2

10650

10660

10670 as

10680 as3

10690

10700

10710

10720;

10730 end

10740;

10750

10760

10770

10780 en

10790

10800

10810

10820

10830

10840

10850

10860

10870

10880;

10890 pad

Idy "0

Ida lad'.y

cmp '.' ;splil up expressions

beq by3

inv

cpy 13

bne by2

Ida Hag

beq by6

sty len

inv

Ida 13

sly 13

sec

sbc 13

sla 13

bes bv4

Ida •(')
sla 13

jsr eval ;eval and

jsr putout .puloul one bvle

Ida 15

beq by5

Ixa

jsr puloul ;or one word

Ida 13

beq bv

Idy len

iny

tya

clc

adc ad

sta ad

bec byl

inc ad+1

bne bvl

clc

Ida 15

beq bv"

Ida "1

adc '1

adc ptr ;inc ptr on first pass

sla plr

bec by8

inc ptr+1

cpv 13

bne by9

jmp cp

= « ;.asc

jsr nextword

Idy "1

Ida (ad).y

cmp "$22 ;"

beq as

Idx Hag

beq as3

sty t3

jsr puloul

Idy 13

iny

cpy len

bne asl

jmp cp

inc ptr

bne as2

inc ptr+1

bne as2

= > ;.end

Ida flag

bne en

jmp secpass

jsr nextword

Idx *<messac

Idy ">messac

jsr prinlmsg

Ida ptr

sta line

Ida plr+l

sta Itne+I

jsr inline

jmp conlbas

. ;padobject with at) ifal

10900 ;odd bvle lo keep jmp tables sale

10910

10920

1(1930

10940

10950

nwai

10970

10980 pa

10990 pal

11000

11010

11020

Ida ptr

and "1

beq pa

Ida Hag

beq pal

Ida "0

jsr pulout

jmp cp

inc ptr

bne pa

inc ptr+1

bne pa

11030;

I1040oplab = • :opcode table

11050;

11060 .asc ' Ida' :.bvte$ad. Sbd. Sb9. SaS. $b5. $fa. $la, $a9. Sal. $bl

11070 .asc'sla' :.byle $8d. S9d. $99. S85. $95. $la. $la, $la. $81.$91

11080 .asc" bne' :.bvle SdO, Sla. Sla. Sfa. Sfa, $fa, $la, $la. Sla. Sla

11090.asc'beq' :.byleSI0. Sfa. Sla, Sla, Sla, Sia, Sfa, Sla. Sla. Sfa

11100 .asc' cmp' :.bvle Scd, (dd, Sd9. $c5. Sd5. Sfa, Sla. Sc9, Scl, Sdl

11110.asc'jsr' :.byte $20. Sfa. $fa, $fa. $fa. $la, $la, $la, Sfa. Sla

11120 .asc'Idx' :.byle Sae. Sla. $be. $a6. $la. $b6. $fa, Sa2, Sla. Sfa

11130 .asc'rts' :.byte Sla. Sfa. Sfa. $la. Sfa, Sfa, $60. Sla, Sla, Sla

II140 .asc'Idy' :.byleSac, Sbc, Sfa. $a4.Sb4,Sfa. $fa, SaO. Sfa. Sfa

lUSO.asc "bmi" :.byte S30. Sla. Sla. Sla. Sla, Sla. Sfa. Sla, Sla. Sla

MlSO.asc "dec" :.byteSee, $de. $la, $c6, $d6, $fa, Sla, Sla. $la. Sla

11170 .byle Sal,0,0,S2d,$3d,$39.$25,$35.$la,$la,S29.S21.531 ;and

lllSO.asc "bes" :.byte$b0. Sla. $la, $la. $fa. Sla. Sla. Sla, Sla. Sla

11190.asc "inc' :,bvteSee, $le, Sla, $e6. $16. $la, $la, $(a, $la, $fa

11200.asc "bec" :.bvte$90. $la, $la. $fa, $fa. $la. Sla. Sla. Sla. Sla

11210 asc" tya" :.bvte$(a. Sla, Sfa, Sfa, $fa. Sfa. $98. Sfa. Sfa. Sfa

11220 .asc "bpl" :.byte$10. Sla, Sfa, $la, $fa. $fa. $la. $la, $la, $la

11230 .asc' asl" :.byte $0e. $le. $la. $06. $16. $fa. $0a. $fa. $la. $la

11240 .asc'clc' :.bvte$la. $la. $la. $la, $la. $fa. $18. $la. $la. $la

11250 .asc'adc" :.byte $6d. $7d. $79. $65. $75. $fa. $la. $69. $61. $71

11260 .byte $45,$bO,O.S4d.S5d,$59,$45.$55.$la,Sla,S49.$41.$51 ;eor

11270.asc'Ixa' :.byte$fa. $fa. $la. $la, $fa, $fa. $8a, $fa, $la. $fa

11280 .asc'cpx' :.byte $ec. $la, Sla, Se4, $fa, $fa, $la, $e(), $la, $fa

11290 .asc "jmp" :.bvte$4c. $6c, $la, $la, $la, $la. $la. $la, $la, $la

11300.asc'tax' :.byle$la, $la. $la, $la, $la. $la, Saa. Sla. Sla, Sla

11310.asc'iny' :.byleSla, $la. Sla. Sla, Sla. Sla. $c8, $la, $fa. $la

11320.asc 'sty' :.bvteS8c, Sla. Sla. S84.S94.Sfa. Sla. Sla. Sfa. Sia

11330 .bvte $b0.$41.d.S0d,$ld1$l9.S()5,SI5.Sfa,$la.$09,S01.$ll;ora
11340 .asc'dey' :.byle$la. $fa. Sla. Sla. Sla, Sfa. $88. Sla. Sla. Sla

11350 .asc "dex" :.byle$la, $la. Sfa. Sla, Sla. Sla. Sea. Sla. Sla. Sla

11360.asc'six' :.bvle$8e, $la, $la, $86, Sla. $96. $fa. Sla. Sla, Sfa

11370 .asc'sbc' :.byle $,ed, $ld. SI9, Se5, $15. Sla. Sfa. Se9, Sel.SIl

11380.asc'bit' :.byte$2c, Sla, $la, $24, Sfa, Sfa. Sla. Sfa. Sfa, Sfa

11390.asc 'brk' :.byle$la. $la, $fa. (la. $fa, $fa, $00, Sfa. Sfa. Sla

11400 .asc'bvc' :.byte$50. Sfa. $la. $la. $fa. $fa. $fa. Sfa. Sla. Sla

11410.asc "bvs" :.byleS70, Sla. Sla, Sla, Sfa, Sfa, Sfa. Sfa. Sfa. $la

11420.asc "eld" :.bvleSfa. Sfa, Sla, Sla. Sla, Sla, $d8, Sfa. Sfa. Sfa

11430 .asc "cli" :.byteSla, Sla. Sla, Sla, Sfa, Sla, S58. Sla, Sla, Sla

11440.asc "civ" :.byleSfa, Sfa, Sfa, $fa, Sfa, Sla, Sb8, Sla, Sla, Sla

11450.asc'cpy" :.by!e$cc. Sla. Sla. $c4, Sla, Sla, Sla, ScO, $la. $la

11460.asc"inx" :.byle$la. Sla. Sla. Sla. Sla, Sla, Se8. $la, $(a. $la

11470 .asc' Isr" :.byle $4e, S5e. Sla, $46, S56, Sla, S4a, $la, $la, $la

11480 .asc "nop" :.byle$la, $la, $la. $la. Sla. Sla, $ea. $la. $la. $la

11490 .asc "pha" :.bvte$fa, Sfa. Sfa. $fa. Sfa. Sfa, $48. $la. $fa, $fa

11500 .asc "php" :.byle$la, $la. $la, $la. Sfa. Sfa, $08. Sfa. Sfa. Sfa

11510 asc "pla" :.byte$la, Ma, $la, $la, Sfa, Sfa, $68. Sfa, Sfa, Sfa

11520.asc "pip' :.byteSfa. Sfa. Sfa, Sla, Sfa. Sfa, $28. Sfa. Sla, Sla

11530 .asc' rol" :.byte S2e, $3e. Sla. $26, $36, Sfa, $2a, Sfa. Sfa, Sla

11540 .byte $52,$b0,0,$6e,S7e.$la.S66,$76,$la,S6a.$la.$la.$la;ror

11550 .asc " rti" :.byteSfa. Sfa. Sfa. Sfa. Sfa, Sfa. $40. Sfa, Sfa. Sfa

11560 .asc'sec' :.byteSla, $la. Sfa. Sfa, Sla, Sfa, $38. Sla. Sla. $la

11570 .asc'sed' :.byle$!a, Sla. Sla. Sla. $la. $la. $18. $la. Sla. Sla

11580.asc'sei' :.byleSla. $la, Sla. Sla. Sla, Sla. $78. Sfa. Sfa. Sla

II590.asc'lay' :.byle$la. $la, Sfa. Sla, Sla, $(a, $a8, Sla, Sla, Sfa

11600 .asc'Isx' :.byte$la, $la, Sla. Sla, Sfa, Sla, $ba. $la, Sla, Sla

11610.asc'txs' :.byte$fa, $la. Sla. Sfa. Sla, Sfa, $9a, $fa, $fa, $fa

11620;

11630 ;symass messages

11640;

11650 messsiar .asc' Jymass3.10 robert huehn feb 1986' :.byte 13.0
11660 messlir .byte 13:.asc ' lirsi pass..." :.byle 0

] 1670messsec .asc'secondpass...':.byteO

11680 messac .byte 13:.asc " assembly complete" :.byte 0

11690messslo .byte I3:.asc'symbollableoverflow*:.byte0

I1700messiq .byte I3:.asc "illegalquantity' :.bylel)

11710 messus .byle I3:.asc " undefined symbol" :.byte 0

11720 messboor .byle 13:.asc " branch out of range* :.bvle 0

11730messim .byle 13:.asc "illegal mode':.bvle0

11740messip .byte 13:.asc 'illegalpseudo-op' :.byle(l

The Transactor 73 July 1986: Volume 7, Issue Ol

SYMASS Loader

Generates diskfile " symass 3.1" which you then load and run. Don't

forget to save this program first.

PF

NM

PO

BL

PF

Nl

AK

MM

HO

OC

OC

KC

ND

MD

KB

IL

LK

GF

MJ

Nl

HG

JE

NN

LP

DK

MC

AP

FF

PA

DD

Fl

DA

DA

GC

LE

PJ

JB

KM

CL

01

BF

NE

HD

PC

NH

JK

KK

HF

EG

JC

JJ

CH

GL

DJ

DA

PM

LN

Al

HL

GN

OB

ED

CK

NM

100 open1,8r1, "0:symass3.1 "

110 print#1 ,chr$(1)chr$(8);

120 fora = 2049to5253:readd:c = c + d

130 print#1,chr$(d);:next

140 close 1

150 ifc<>400792thenprint" data error"

160 end

8,

0,

1000 data 11, 8, 10, 0,158, 50,

1010 data 49, 0, 0, 0,165, 55,

1020 data 165, 56,133, 41,165, 45,

1030 data 165, 46,133, 39,160, 0,

1040 data 208, 2,198, 39,198, 38,

1050 data 201, 3,176, 79, 72,165,

1060 data 2,198, 39,198, 38,177,

1070'data 3,144, 50,170,165, 38,
1080data198, 39,198, 38,177, 38,

1090 data 55,133, 42,138,101, 56,

1100 data 208, 16,165, 40,208, 2,

1110 data 198, 40,138,145, 40,165,

1120 data 144, 10,201, 1,208, 4,

1130 data 144, 2,165, 42, 72,165,

1140 data 2,198, 41,198, 40,104,

1150 data 24,144,163,201,127,208,

1160 data 76,141,188, 2,165, 40,

1170data 2,133, 55,165, 41,141,

1180 data 133, 56, 32, 99,166,169,

1190 data 58, 76,188, 2, t27, 169,

1200 data 133, 2, 2,162, 58,255,

1210 data 58,255, 1, 32,150,249,

1220 data 58,232,208, 3, 76,116,

1230 data 94,255, 2,160, 94,255,

1240 data 150, 249, 0,165, 55,133,

1250 data 56,133, 88,230,122,208,

1260 data 230, 123, 165, 122, 133, 80,

1270 data 165, 123, 133, 81,133, 79,

1280 data 249, 0,208, 3, 76,201,

1290 data 32, 38,251, 0,208, 7,

1300 data 208, 59, 76, 78,246, 0,

1310 data 0,161,122,201,172,208,

1320 data 26,247, 0, 76,172,245,

1330 data 122, 201, 178, 208, 3, 76,

1340 data 0, 32,201,248, 0,144,

1350 data 160,246, 0,160, 0, 0,

1360 data 201, 46,208, 3, 76, 97,

1370 data 32, 95,246, 0,160, 0,

1380 data 89,145, 82,200,165, 90,

1390 data 164, 93,177,122,201, 32,

1400 data 201, 58,240, 3, 76, 96,

1410 data 200, 152, 24,101,122,133,

1420 data 2, 2,230,123, 76,104,

1430 data 230, 2, 2,162,109,255,

1440 data 109, 255, 1, 32,150,249,

1450data 80,133, 78,165, 81,133,

1460 data 88,249, 0,208, 3, 76,

1470 data 0, 32, 38,251, 0,240,

1480 data 0, 0,161,122,201,172,

1490 data 32, 26,247, 0, 76, 8,

1500 data 32,201,248, 0,144, 3,

1510 data 250, 0,160, 0, 0,177,

1520 data 46,208, 3, 76, 97,251,

1530 data 93,177,122,201, 32,240,

1540 data 58,240, 3, 76,218,245,

1550 data 152, 24,101,122,133,122,

1560 data 2, 230, 123, 76, 226, 245,

48,

133,

133,

165,

177,

54

40

38

38

38

38, 208

38,201

208, 2

24, 101

170, 104

198, 41

42, 24

138, 24

40, 208

145, 40

237, 169

141,189

190, 2

255,133

0, 0

2, 160

0, 166

164, 162

1, 32

87, 165

2, 2

133, 78

32, 88

245, 0

201,178

162, 0

6, 32

0, 177

58,246

3, 76

177, 122

251, 0

0, 165

145, 82

240, 7

245, 0

122, 144

245, 0

2, 160

0, 165

79, 32

37, 246

33, 162

208, 6

246, 0

76, 37

122,201

0, 164

7,201

0,200

144, 2

0, 162

PN

GF

FH

LF

AE

HA

HL

IK

JK

HM

PM

BM

KJ

CP

HA

EK

PM

HB

ED

CA

AA

DA

FD

HB

LB

OC

PK

FD

HJ

HN

GD

MN

BB

Ol

KJ

PG

IP

JA

MK

PJ

OJ

AO

IC

AL

HP

JD

FB

MC

MD

MN

FF

KC

OB

GG

DH

JG

BH

NJ

AJ

BA

EB

GG

DM

CP

CN

KJ

HO

AL

Dl

AM

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

32,

82,

0,

0,

124,255

150,249

90, 133

164, 32

0,

145,

245,

247,

138, 145

87, 56

2, 198

46, 176

143,255

194, 189

87, 105

0, 0

0, 136

136, 177

96, 160

240, 19

240, 18

249, 0

135,249

135, 249

208, 67

35,240

93, 136

122,201

160, 7

177, 91

136, 136

230, 93

10,247

171, 169

144,

0,

0,

90,

0,

247,

122,201

241,132

38, 133

0, 169

133, 42

122,201

0,201

39,201

19,201

0, 56

176, 174

230, 122

93,208

165, 90

165, 38

76,210

24,165

39, 101

0, 56

165, 41

196, 93

200, 152

2, 2

93,229

0, 165

41, 96

162, 0

0, 96

133, 39

53,201

2, 160,

0, 165,

58, 32,

95, 246,

83, 247,

200, 138,

32, 131,

160, 0,

82, 76,

233, 10,

88, 197,

13, 162,

1, 32,

76, 71,

8, 133,

133, 83,

145, 87,

122, 145,

0, 0,

201, 66,

224, 32,

169, 2,

0, 169,

0, 208,

160, 0,

228, 201,

240, 43,

44, 208,

201, 88,

201,250,

132, 93,

230

0,

3,

2

32

32

96

0

0

93,

32,

24,

2, 230,

135, 249,

83, 247,

200, 177,

133, 39,

200, 196,

170,240,

38, 32,

38, 134,

0, 0,

133, 95,

36, 208,

34, 240,

177, 240,

37, 208,

233, 48,

76, 91,

208, 2,

198, 200,

133, 39,

133, 40,

247, 0,

38, 101,

41, 144,

165, 40,

229, 39,

240, 27,

24,101,

230, 123,

93, 133,

95, 208,

201, 177,

0, 96,

200, 169,

177, 122,

10, 144,

124, 255,

89, 133,

194, 189,

0, 32,

0, 160,

145, 82,

249, 0,

0, 145,

172,245,

133, 87,

45, 165,

143,255,

150,249,

249, 0,

82, 165,

160, 8,

208,251,

87, 152,

177, 122,

208, 22,

240, 14,

2, 208,

3, 208,

4, 169,

0, 177,

40, 240,

136, 240,

34, 200,

240, 1,

240, 23,

32, 83,

224, 0,

83,247,

101, 89,

90, 76,

0, 32,

0, 133,

122, 133,

200, 200,

93, 240,

4,201,

250, 248,

39, 76,

133, 40,

160, 0,

3, 76,

188,201,

23,201,

3, 76,

144, 178,

248, 0,

2, 230,

165, 89,

165, 42,

165, 39,

201, 170,

40, 133,

18, 76,

229, 38,

133, 41,

177, 122,

122, 133,

56, 165,

93, 76,

5, 165,

208, 5,

165, 40,

0, 0,

56,233,

10,233,

1, 32

57, 165

76,116

131,249

0, 0

76, 172

32, 83

82,200

0, 165

176, 2

88,229

2, 160

0, 32

24, 165

88, 105

169, 0

164, 93

208.248

201, 74

224, 33

32,135

83, 32

76, 32

1, 1
122,201

224,164

40, 177

177, 122

1,200

164, 93

247, 0

0, 76

0, 240

133, 89

172,245

131.249

89, 134

38, 169

76, 160

10, 177

171,208

0, 164

160,247

133, 41

0, 177

8,248

172, 240

179, 240

161,248

201

133

10

95

123, 198

38

11

41

16

133

208

133

208

40, 165

78,248

133, 40

144, 124

133, 42

122,144

93,132

93,247

40, 166

165, 41

162, 0

133, 38

48, 144

17, 144

TTi© TronsQctof 74 July 1986: Volume 7, Issue Ol

DG

MD

DN

CL

FK

LG

KC

PC

OJ

NB

GG

KC

KP

HO

JC

FM

ON

DD

DO

Gl

FP

PE

JA

HL

NA

KL

JJ

CG

GD

JJ

JD

EG

GK

DK

FL

MH

HE

EJ

GP

NO

KA

JJ

LI

FP

DM

CA

JN

PL

FK

FO

JL

JO

CD

OD

GA

Jl

NO

OM

IE

MM

IC

FJ

GE

KE

Ml

10

IP

KK

LG

DM

45

38

39.

24,

38

2270 data

2280 data

2290 data

2300 data

2310 data

2320 data 133,

2330 data 160,

2340 data 166,

2350 data 194,

2360 data 0,

2370 data 233,

2380 data 72,

2390 data 39,

2400 data 209,

2410 data 133,

2420 data 1 76,

2430 data 39,

2440 data 200,

2450 data 169,

2460 data 122,

2470 data 2,

2480 data 149,

2490 data 0,

2500 data 160,

2510 data 91,

2520 data 0,

2530 data 9,

2540 data 144,

2550 data 96,

2560 data 91,

2570 data 208,

2580 data 165,

2590 data 10,

2600 data 197,

2610 data 165,

2620 data 90,

2630 data 255,

2640 data 189,

2650 data 177,

2660 data 200,

2670 data 196,

2680 data 82,

2690 data 133,

2700 data 76,

2710 data 79,

2720 data 133,

2730 data 21,

2740 data 122,

2750 data 133,

2760 data 164,

2770 data 101,

2780 data 123,

2790 data 39,

2800 data 32,

2810 data 3,

2820 data 135,

2830 data 233,

2840 data 229,

2850 data 24,

2860 data 0,

2870 data 202,

2880 data 194,

2890 data 32,

2900 data 230,

2910 data 10,

2920 data 93,

2930 data

2940 data

2950 data

6

39

30.

38.

38

201

38

176

6,

133,

39, 176,

247, 0,

255, 1,

189, 76,

133, 38-,

48, 144,

165, 38,

176,215,

101, 38,

39, 176,

192, 104,

105, 0,

208, 195,

0, 0,

56, 233,

176, 19,

101, 38,

0, 133,

247, 0,

169, 98,

0, 160,

209, 122,

243, 196,

232, 165,

144, 2,

219, 24,

56, 133,

133, 82,

87, 165,

2, 2,

96, 162,

1, 32,

76, 71,

82, 240,

192, 8,

160, 9,

96, 165,

21, 32,

116, 164,

133, 123,

78, 200,

200, 177,

133, 58,

122, 144,

93, 200,

122, 133,

76, 38,

160, 0,

210,255,

177, 91,

249, 0,

1, 1,

89, 133,

165, 38,

240

255

41

36.

38.

39,

39,

176,

176,

6,

38,

165,

6, 200,

162, 166,

32, 150,

71, 249,

133, 39,

54,201,

166, 39,

6, 38,

133, 38,

198, 6,

101, 38,

0, 133,

76, 160,

133, 38,

48, 144,

6, 38,

133, 38,

39, 200,

169, 98,

252, 1,

0, 0,

208, 11,

93, 208,

91, 24,

2, 230,

96, 165,

83, 165,

176, 2,

83,229,

208, 5,

184,255,

150, 249,

249, 0,

9, 209,

144, 243,

177, 82,

57, 133,

19, 166,

78,

0,

0,

2,

4,

2960 data 201,

13,

1,

189, 76,

27,251,

122,208,

177, 91,

32, 83,

76, 8,

2, 230,

168, 132,

44, 240,

165

160

177, 122,

122, 133,

24, 165,

2, 2,

44, 164,

122, 144,

251, 0,

0, 177,

200, 208,

32, 10,

32, 83,

176, 1,

38, 138,

105, 128,

162,202,

32, 150,

71, 249,

0, 76,

2, 2,

32, 10,

247, 0,

246, 0,

123, 165,

93, 177,

1, 1,

, 105.

6

38,

176,

105,

208,

255,

249,

0,

177,

10,

6,

38,

138,

38,

133,

39,

247,

133,

23,

38,

165,

208,

252,

133,

177,

200,

2,

105,

92,

55,

82,

2,

88,

165,

2,

0,

160,

122,

196,

170,

20,

32,

133,

0,

133,

57,

122,

230,

93,

2,

134,

38,

246,

251,

247,

1,

229,

138,

255,

249,

0,

8,

230,

251,

32,

230,

93,

122,

200,

10, 6

38, 38

39, 176

18, 101

0, 0

196, 76

2, 160

0,

169,

122,

176,

38,

32

0

56

50

38

39, 176

101, 39

38, 39

38, 165

176, 179

0,200

39, 177

201, 2

39, 176

39, 105

226, 76

2, 133

92, 162

91, 240

192, 3

2, 56

13, 133

224, 55

133, 82

56,233

198, 83

176, 22

89, 166

160, 184

32, 194

0, 0

208, 205

38, 208

136, 177

165, 58

201, 166

122, 165

177, 122

79, 240

200, 177

105, 4

123, 96

152, 24

2,230

38, 132

240, 6

96, 160

0, 32

0, 56

202, 56

90, 170

105, 0

2, 160

0, 32

165, 38

246, 0

123, 160

0, 198

27,251

122,208

56,233

160, 11

177, 91

LJ

IN

CN

JL

BK

HF

PL

DA

FH

ND

IP

MN

ME

DM

NK

GJ

KC

AD

EG

EN

HC

AM

MJ

BJ

DE

CG

HD

IJ

LB

AL

DF

DP

HB

CP

PD

BE

LP

KF

CF

EO

DD

FK

DF

GM

BD

MF

BB

IH

CM

HK

MH

NO

HC

IJ

JL

CD

FC

HN

CD

Gl

EE

FB

LE

LO

IM

FC

BJ

OF

FH

ND

2970 data 32,

2980 data 32,

2990 data 230,

3000 data 0,

3010 data 203,

3020 data 33,

3030 data 167,

3040 data 10,

3050 data 0,

3060 data 177,

3070 data 249,

3080 data 249,

3090 data 208,

3100 data 169,

3110 data 93,

3120 data 122,

3130 data 200,

3140 data 232,

3150 data 19,

3160 data 0,

3170 data 32,

3180 data 165,

3190 data 200,

3200 data 1.0,

3210 data 0,

3220 data 230,

3230 data 32,

3240 data 122,

3250 data 91,

3260 data 0,

3270 data 251,

3280 data 208,

3290 data 93,

3300 data 0,

3310 data 0,

3320 data 76,

3330 data 162,

3340 data 32,

3350 data 71,

3360 data 230,

3370 data 162,

3380 data 240,

3390 data 240,

3400 data 240,

3410 data 240,

3420 data 208,

3430 data 208,

3440 data 251,

3450 data 200,

3460 data 158,

3470 data 160,

3480 data 3,

3490 data 41,

3500 data 72,

3510 data 237,

3520 data 194,

3530 data 2,

3540 data 8,

3550 data 32,

3560 data 0,

3570 data 196,

3580 data 51,

3590 data 56,

3600 data 0,

3610 data 32,

3620 data 138,

3630 data 36,

3640 data 133,

3650 data 24,

3660 data 1,

10,251,

27, 251,

93, 76,

177, 122,

250, 0,

240, 7,

249, 0,

160, 9,

76, 8,

122,201,

0, 201,

0,201,

2, 2,

0, 0,

136,240,

201, 44,

177, 122,

134, 94,

164, 94,

165, 40,

27, 251,

96, 208,

177, 91,

251, 0,

164, 94,

93, 230,

135, 249,

201, 40,

32,

32,

0,

2,

160,

32,

138,

10,

27,

76,

2,

4,

83,

32,

8, 246,

223, 255,

150,249,

249, 0,

89, 208,

0, 0,

46, 201,

16,201,

30,201,

3, 200,

15,230,

213, 138,

0, 132,

177, 122,

251, 0,

251,

252,

252,

252,

255,

189,

208,

246,

135,249,

177, 122,

94, 208,

132, 93,

229, 94,

0, 133,

27,251,

32, 27,

164, 93,

122, 144,

165, 96,

105, 1,

0,

0,

0,

0,

1,

76,

3,

0,

0,

0,

8,

201,

201,

224,

32,

177,

246,

35,

40,

33,

230,

133,

20,

208,

201,

32,

177,

32,

0,

233,

201,

165,

136,

93,

0,

240,

251,

251,

8,

230,

177,

247,

27,

0,

2,

0,

160,

2,

160,

34,

58,

178,

208,

122,

73,

93,

201,

201,

201,

201,

201,

162,

32,

71,

76,

169,

0,

201,

245,

200,

133,

94,

0,

251,

200,

192,

240,

1,

32, 83

230, 93

246, 0

74,208

66,208

32, 240

135,249

91, 32

0, 160

208, 3

208, 3

208, 9

123, 198

96, 162

136,240

11,132

88,240

83,247

91, 32

27,251

76, 189,

164, 94,

250, 240.

40, 32,

136, 136,

76, 8,

160, 0,

20, 160,

0, 32,

0, 138,

246, 0,

123, 198,

91, 32,

0, 32,

251, 0,

201,250,

160, 223,

32, 194,

0, 0,

2, 230,

0, 0,

240, 35,

240, 34,

240, 26,

225, 192,

208,217,

128, 170,

192, 0,

66, 208,

87, 208,

198,208,

128,208,

80, 208,

237, 255,

150,249,

249, 0,

172,245,

0, 0,

132, 94,

44, 240,

165, 2,

165, 94,

94, 176,

32, 83,

165, 96,

0, 165,

152, 24,

230, 123,

2, 2,

101, 89,

247, 0

230, 93

160, 0

3, 76

11,224

3, 76

0,208

10,251

0, 0

76, 226

76, 250

230,122

93, 44

3, 164

17, 177

93,232

1, 1

0,240

10, 251

0, 138

250, 0

200, 200

222, 32

27, 251

240, 4

246, 0

0, 177

3, 177

83,247

32, 27

230, 122

93, 198

10,251

27, 251

230,

208,

255,

189,

145,

90,

93

13

1

76

89

96

177, 122

224, 128

201, 59

201,

0,

32

0

230, 123

76, 70

96

76

76

76

76

76

160

0,

3,

3,

3,

3,

3,

2,

0,

165,

0,

133,

160,

32

2

76

96

0

5,200

2,240

132, 94

4, 169

247, 0

240, 4

94,240

101, 122

208, 188

169, 1

133, 89

The Transactor 75 July 1986: Volume 7, Issue Ol

FK

NM

IJ

NK

KK

PO

FO

EA

Nl

Ml

EL

KG

MP

IO

BA

GL

BH

JL

KD

OJ

FO

CG

CN

OE

OJ

KB

KL

GN

KD

ON

DO

KM

GD

MM

PJ

LB

MP

PF

ND

EP

DJ

NC

PD

CM

KP

DL

IG

BD

OH

CN

MH

DH

IF

AM

BK

PP

AP

MJ

JD

KN

KO

DM

NL

DJ

CA

BG

HE

AH

CE

LA

3670

3680

3690

3700

3710

3720

3730

3740

3750

3760

3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

'data

data

data

data

data

data

3940 data

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

4240

4250

4260

4270

4280

4290

4300

4310

4320

4330

4340

4350

4360

The Transactor

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

144, 2, 2,230, 90,196, 94,208

175, 76,148,251, 0, 32,135,249

0, 160, 1, 1, 177, 122, 201, 34

240, 16, 166, 2, 2, 240, 15, 132

94, 32, 27,251, 0,164, 94,200

196, 93,208,234, 76,148,251, 0

230, 89, 208, 244, 230, 90, 208, 240

165, 2, 2,208, 3, 76,201,245

0, 32,135,249, 0,162,124,255

2,160,124,255, 1, 32,150,249

0,165, 89,133, 57,165, 90,133

58, 32,194,189, 76,174,167,165

89, 41, 1, 1,240, 9,165, 2

2,240, 8,169, 0, 0, 32, 27

251, 0, 76,148,251, 0,230, 89

208, 249, 230, 90, 208, 245, 76, 68

65, 173, 189, 185, 165, 181, 250, 250

169,161,177, 83, 84, 65,141,157

153, 133, 149, 250, 250, 250, 129, 145

66, 78, 69, 208, 250, 250, 250, 250

250, 250, 250, 250, 250, 66, 69, 81

240, 250, 250, 250, 250, 250, 250, 250

250,250, 67, 77, 80,205,221,217

197,213,250,250,201,193,209, 74

83, 82, 32, 250, 250, 250, 250, 250

250,250,250,250, 76, 68, 88,174

250, 190, 166, 250, 182, 250, 162, 250

250, 82, 84, 83, 250, 250, 250, 250

250, 250, 96, 250, 250, 250, 76, 68

89, 172, 188, 250, 164, 180, 250, 250

160,250,250, 66, 77, 73, 48,250

250, 250, 250, 250, 250, 250, 250, 250

68, 69, 67,206,222,250,198,214

250, 250, 250, 250, 250, 175, 0, 0

0, 0, 45, 61, 57, 37, 53,250

250, 41, 33, 49, 66, 67, 83,176

250, 250, 250, 250, 250, 250, 250, 250

250, 73, 78, 67, 238, 254, 250, 230

246, 250, 250, 250, 250, 250, 66, 67

67, 144, 250, 250, 250, 250, 250, 250

250, 250, 250, 84, 89, 65, 250, 250

250, 250, 250, 250, 152, 250, 250, 250

66, 80, 76, 16,250,250,250,250

250, 250, 250, 250, 250, 65, 83, 76

14, 30,250, 6, 22,250, 10,250

250, 250, 67, 76, 67, 250, 250, 250

250, 250, 250, 24, 250, 250, 250, 65

68, 67,109,125,121,101,117,250

250,105, 97,113, 69,176, 0, 0

77, 93, 89, 69, 85, 250, 250, 73

65, 81, 84, 88, 65,250,250,250

data 250, 250, 250, 138, 250, 250, 250, 67

data 80, 88, 236, 250, 250, 228, 250, 250

data 250, 224, 250, 250, 74, 77, 80, 76

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

108, 250, 250, 250, 250, 250, 250, 250

250, 84, 65, 88, 250, 250, 250, 250

250, 250, 1 70, 250, 250, 250, 73, 78

89, 250, 250, 250, 250, 250, 250, 200

250,250,250, 83, 84, 89,140,250

250, 132, 148, 250, 250, 250, 250, 250

176, 65, 0, 0, 13, 29, 25, 5

21,250,250, 9, 1, 1, 17, 68

69, 89, 250, 250, 250, 250, 250, 250

136,250,250,250, 68, 69, 88,250

250, 250, 250, 250, 250, 202, 250, 250

250, 83, 84, 88,142,250,250,134

250,150,250,250,250,250, 83, 66

67, 237, 253, 249, 229, 245, 250, 250

233,225,241, 66, 73, 84, 44,250

250, 36, 250, 250, 250, 250, 250, 250

KH

KG

OP

AN

IH

PL

LA

Bl

NP

LJ

OG

JE

CM

OA

NM

JK

ID

EM

BB

AL

FA

NF

FC

CH

EC

NP

IJ

AH

LB

BJ

Al

IM

EK

IJ

JA

NL

PO

HE

AP

AC

OP

JB

EP

GB

JF

KC

EE

El

BF

GJ

JK

NF

IK

LG

CH

IN

NK

PM

KN

EL

NL

MK

AB

LF

76

4370 data

4380 data

4390 data

4400 data

4410 data

4420 data

66,

250,

67,

250,

250,

67,

4430 data 250,

4440 data

4450 data

4460 data

4470 data

4480 data

4490 data

250,

250,

250,

80,

250,

250,

4500 data 250,

4510 data

4520 data

4530 data

4540 data

4550 data

4560 data

86,

80,

250,

250,

80,

250,

4570 data 250,

4580 data

4590 data

4600 data

4610 data

4620 data

4630 data

4640 data

4650 data

4660 data

250,

250

79

42

110

250

250

69

56

4670 data 250

4680 data

4690 data

4700 data

4710 data

4720 data

4730 data

250

250

89

250

250

84

4740 data 250

4750 data

4760 data

4770 data

4780 data

4790 data

4800 data

4810 data

4820 data

4830 data

4840 data

4850 data

4860 data

4870 data

4880 data

4890 data

4900 data

4910 data

4920 data

4930 data

4940 data

4950 data

4960 data

4970 data

4980 data

4990 data

5000 data

77

48

32

69

0

32

0

32

0

66

76,

89,

66,

70,

76,

85,

0,

78,

79,

78,

79,

0,

65,

0.

76,

45,

82,

0,

80,

250,

250,

76,

216,

250,

250,

250,

89,

192,

250,

76,

250,

250,

250,

250,

72,

8

250

250

250

76

250

126

250

250

67

250

250

83

250

250

250

250

88

154

65

32

72

66

0

80

0

80

0,

76

69

77

76,

76,

76,

65,

13,

69,

76,

67,

70,

0,

76,

13,

32,

79,

75,

0,

250,

250,

250,

68,

250,

250,

67,

250,

204,

250,

250,

83,

74,

250,

250,

250,

80,

250,

250,

80,

250

46

250

250

82

250

250

250

250

69

120

250

250

250

83

250

83

82

85

32

13

65

83

65

13,

89,

84,

66,

69,

79,

69,

78,

85,

68,

0,

72,

32,

13,

32,

73,

80,

80,

250,

250,

250,

66,

250,

250,

250,

250,

76,

184,

250,

250,

250,

82,

250,

250,

80,

250,

250,

250,

250

76

40

62

250

102

84

64

250

250

250

73

250

250

84

250

250

250

83

79

69

49

70

83

69

83

65

32

69

79

32,

87,

71,

84,

78,

32,

0,

32,

82,

73,

77,

76,

83,

0,

250,

250,

250,

86,

250,

250,

250,

250,

86,

250,

250,

73,

250,

78,

250,

250,

72,

72,

250

250

250

80

250

250

82

118

73

250

250

83

250

250

250

250

83

186

250

250

32

66

72

57

73

83

67

83

83

67

0

76

79,

0,

65,

73,

68,

83,

13,

79,

65,

76,

79,

76,

69,

0

250,

250,

250,

83,

250,

250,

67,

250,

250,

250,

196,

78,

232,

94,

250,

250,

65,

250,

250,

80,

250,

250,

250,

38

176

250

250

250

250

69

248

250

250

250

88

250

250

18

51

69

78

56

82

46

79

46

83

79

0,

32,

86,

0,

76,

84,

69,

89,

66,

85,

78,

76,

68,

69,

85,

250

66

250

112

250

250

76

88

250

250

250

88

250

250

78

250

250

250

250

76

104

250

250

54

0

106

250

250

250

68

250

250

84

250

250

250

250

83

46

82

32

54

83

46

78

46

69

77

13

84

69

13

32

89

70

77

82

84

71

69

69

71

(38

uly 1986: Volume 7,

250

86

250

250

250

250

73

250

250

67

, 250

,250

,250

, 70

, 79

,234

,250

,250

,250

, 65

,250

,250

, 82

,250

, 0

,250

, 250

, 83

,250

,250

,250

,250

, 65

, 168

,250

,250

,250

, 89

, 49

, 84

, 70

, 13

, 84

, 46

, 68

, 46

, 77

, 80

, 83

, 65

, 82

, 73

, 81

, 0

, 73

, 66

, 65

, 32

, 69

71

0

65

79

Issue Ol

News BRK

Submitting NEWS BRK Press Releases

If you have a press release which you would like to submit for the NEWS BRK

column, make sure that the computer or device for which the product is

intended is prominently noted. We receive hundreds of press releases for each

issue, and ones whose intended readership is not clear must unfortunately go

straight to the trash bin. It should also be mentioned here that we only print

product releases which are in some way Applicable to Commodore equipment.

Transactor News

Transactor on Microfiche

We now have 18 Transactor Magazines on microfiche! - all of Volume 4,

Volume 5, and Volume 6. According to Computrex, our fiche manufacturer, the

strips are the "popular 98 page size", so they should be compatible with every

fiche reader.

To keep things simple, we're making the price of the fiche the same as

magazines, with one exception. A single back issue will be $4.50 (remember,

you can now get those 5 Transactors that are no longer available on paper!),

and subscriptions will also be the same price as shown on the order card. The

exception? A complete set of 18 (Volumes 4,5, and 6) will cost just $39.95!

Transactor Mail Order News

Our mail-order department is expanding nicely, but our mail-order card isn't.

Seems we just can't find any more room to put more text without making it so

small that you can't read it. So, if you're using the card to order, we suggest you

pull it out and cross-reference with the list below for more details.

■ Inner Space Anthology $14.95

This is our ever popular Complete Commodore Inner Space Anthology. Even

after a year, we still get inquiries about its contents. Briefly, The Anthology is a

reference book - it has no "reading" material (ie. "paragraphs"). In 122 pages,

there are memory maps for 5 CBM computers, 3 Disk Drives, and maps of

COMAL; summaries of BASIC commands, Assembler and MLM commands,

and Wordprocessor and Spreadsheet commands. Machine Language codes and

modes are summarized, as well as entry points to ROM routines. There are

sections on Music, Graphics, Network and BBS phone numbers, Computer

Clubs, Hardware, unit-to-unit conversions, plus much more... about 2.5

million characters total!

■ The Toolbox (PAL and POWER) $79.95

PAL and POWER from Pro-Line are two of the most popular programs for the

Commodore 64. PAL is an easy-to-use assembler (most assembler listings in

The Transactor are in PAL format), and POWER is a programmer's aid package

that adds editing features and useful commands to the programming environ

ment. They come with two nice manuals, and our price is $50 less than

suggested retail!

■ The GUNK C64 to IEEE Interface $49.95

The GLINK plugs into the cartridge port, but doesn't extend the port for more

cartridges (for that you'll need a "motherboard" of some kind). The other side of

the GLINK is a IEEE card-edge suitable for a PET-IEEE cable. From there, any

IEEE device can be accessed including disk drives, modems, printers, etc. The

GLINK is "transparent" - that means it won't interfere with programs, except

those that rely on the serial routines which it replaces (ie. programs with built-

in "fastloaders" for the 1541 won't like the presence of the GLINK). It has no

manual (aside from one page of installation instructions) because it alters

nothing and leaves everything unchanged! An on-board switch allows you to

select Serial or IEEE. GLINK works with both the C64 and the Cl 28 in 64 mode.

■ The TransBASIC Disk $9.95

This is the complete collection of every TransBASIC module ever published.

There are over 120 commands at your disposal. You pick the ones you want to

use, and in any combination! It's so simple that a summary of instructions fits

right on the disk label. The manual describes each of the commands, plus how

to make your own commands.

■ Jim Butterfield's 1986 Diary $5.95 (plus 50« p&h)

Jim has put together a handy pocket reference that includes the most-used

areas of memory maps, command summaries, equipment summaries, some

short programs, sound and video, machine language, and a glossary, followed

by a pocket diary and a neat colour map of the London England Underground,

in case you're going there.

■ The SM Compiler $39.95 US, $49.95 Cdn

This compiler is for BASIC 7.0 on the Commodore 128. We've compared it with

two others, and this is the one we like. Watch for that comparison in an

upcoming issue.

■ Super Kit 1541 $29.95 US, $39.95 Cdn

Super Kit is, quite simply, the best disk file utility there is. No more losing those

valuable copy-protected originals (like what's happened to me twice in the last

month). See the News BRK item ahead.

■ Paperback Writer C64 $39.95 US, $49.95 Cdn

■ Paperback Planner C64 $39.95 US, $49.95 Cdn

■ Paperback Filer C64 $39.95 US, $49.95 Cdn

■ Paperback Writer C128 $49.95 US, $69.95 Cdn

■ Paperback Planner C128 $49.95 US, $69.95 Cdn

■ Paperback Filer Cl28 $49.95 US, $69.95 Cdn

■ Paperback Dictionary $ 14.95 US, $ 19.95 Cdn

In our opinion, the Paperback packages from Digital Solutions are the best you

can get on their own - the fact that they work with each other makes them even

better. Planner and Filer data can be loaded into the Writer, Writer text can be

sent to the Filer, and etcetera. The Dictionary spell checker works with both

versions of the Writer.

As mentioned earlier, all issues of The Transactor from Volume 4 Issue 01

forward are now available on microfiche. Some issue are ONLY available on

microfiche - these are marked "MF only". This list also shows the "themes" of

each issue. "Theme issues" didn't start until Volume 5, Issue 01.

I Vol. 4,

I Vol. 4,

I Vol. 4,

I Vol. 5,

I Vol. 5,

I Vol. 5,

I Vol. 5,

I Vol. 5,

I Vol. 5,

I Vol. 6,

I Vol. 6,

I Vol. 6,

I Vol. 6,

I Vol. 6,

I Vol. 6,

I Vol. 7,

Issue 01

Issue 02

Issue 03

Issue 01

Issue 02

Issue 03

Issue 04

Issue 05

Issue 06

Issue 01

Issue 02

Issue 03

Issue 04

Issue 05

Issue 06

Issue 01

Diskl) ■ Vol. 4, Issue 04

Diskl) ■ Vol. 4, Issue 05

Diskl) ■ Vol. 4, Issue 06

-Sound and Graphics

- Transition to Machine Language

- Piracy and Protection - MF only

- Business & Education - MF only

- Hardware & Peripherals

- Aids & Utilities

-More Aids & Utilities

- Networking & Communications

- The Languages

- Implementing The Sciences

- Hardware & Software Interfacing

- Real Life Applications

- ROM / Kernel Routines

- MFonly

- MFonly

- MFonly

Disk 1)

Disk 1)

Disk 1)

Disk 2)

Disk 2)

Disk 2)

Disk 3)

Disk 4)

Disk 5)

Disk 6)

Disk 7)

(■ Disk 8)

(■ Disk 9)

(■Disk 10)

(■ Disk 11)

(■ Disk 12)

(I

Notes: The Transactor Disk *1 contains all program from Volume 4, and Disk

*2 contains all programs from Volume 5, Issues 1-3. Afterwards there is a

separate disk for each issue. Disk 8 from The Languages Issue contains COMAL

The Transactor 77 July 1986: Volume 7, Issue Ol

0.14, a soft-loaded, slightly scaled down version of the COMAL 2.0 cartridge.

And Volume 6, Issue 05 published the directories Transactor Disks 1 to 9.

The Viewtron Starter Kit

Since Viewtron is now shipping starter kits for free ($2.50 US. p&h), we've

discontinued distribution. See the ad this issue for more details.

Transactor Open On Viewtron!

Remember, any of the above items can be ordered from our Transactor Section

on Viewtron. Just sign on, enter "transactor", and proceed to the order section.

We'll respond to confirm, and usually have your order out the same week. See

the "Viewtron Keywords" article on page 26 of this issue for more info.

In the next Transactor we'll have a complete rundown on using the Transactor

section, which, for the most part, will apply to just about any Viewtron section.

If you get on before that, leave us some mail - we'll be happy to hear from you!

The Transactor Communications Disk

We're currently working on a "Transactor Communications Disk". We already

have permission from Viewtron to include their software and hope to include

many more. When finished it could host as many as 15 different modem

programs and may even require two diskettes. We also plan an "all-in-one"

manual to go with it so you'll never be without a telecommunications program

for virtually any host computer and protocol. But it's not ready yet so don't send

any orders. More next issue.

Industry News

Workshops In Computer-Assisted Instruction In Music

The lab for Computer-Assisted Instruction in Music at Brooklyn College will be

offering two workshops this summer for music teachers who are interested in

using computers as a teaching tool. Each workshop will last five days and

include 15 hours of classroom instruction on the Commodore 64 computers

and their applications in teaching music. The cost: $200.00/workshop. The

dates are July 7-11,1986 and July 14-18, 1986.

These workshops are offered in affiliation with the Center for Computer Music

at Brooklyn College. For further information and application, contact:

Gary S. Karpinski, Director

Lab for CA1 in Music

Conservatory of Music

Brooklyn College, Brooklyn, NY 11210

(718)780-5286

Distressed Commodore Users Hotline

On January 1st, 1986, David Bradley began operating a brand new Freeware

service for new Commodore computer users. It is a hotline for users to call

when they are having trouble(s) with their new machines. The hotline operates

Monday to Friday from 2:00 PM to 10:00 PM and the number for users to call is

(416) 488-4776. Users that want more information about the service can write

to:

Distressed Commodore Users Hotline

147 Roe Avenue

Toronto, Ontario, Canada

M5M2H8

Or they can call any line of the Bradley Brothers Bulletin Board System at (416)

487-5833, (416) 481-8661, (416) 481-9047 or (416) 277-9991. All four lines

operate 24 hours a day, 7 days a week.

The 1541 Revealed

"The 1541 Revealed" is a 48-page booklet from Write Protect Publishing.

Written by Felix Rivera and Evelio Quiros, the book contains information and

diagrams concerning the 1541 disk drive's internals, and practical tips to

prolong the unit's life. Sections of the book include: An overview of the 1541,

how and why problems arise, "The Naked 1541", Cleaning, lubricating,

adjusting and aligning. A section on modifications explains how to: change

device numbers, add a front-mounted power switch, change the head end-stop

to a "springy" one, and add a write-protect switch. The writing style is informal

and easy to understand.

A labelled general board layout of the 1541 is found in the centre of the booklet,

and a "track checker" program and a list of references is included at the end.

Price of the booklet is $5.00. For more information, contact:

Write Protect Publishing Company

Suite 4E, 135 Charles Street

New York, NY 10014

Used Computer Listing Service

Due to widespread demand, Comp-Used, which has helped buyers and sellers

of used computer equipment in the North East for two years, is expanding its

services.

Comp-Used is a listing service that facilitates the sale and purchase of used

computer equipment. Anyone with equipment worth over $100 can contact

the Comp-Used computer to register the product for sale. In the same vein,

anyone in the market to purchase equipment can call the Comp-Used computer

for information. Comp-Used connects the buyer and seller and they finalize the

sale. When a transaction takes place, the seller pays Comp-Used a small

commission; there is no charge to buy.

To talk with the Comp-Used telephone computer, call (203) 762-8677

Comp-Used

85 Rivergate Drive

Wilson, CT 06897

Steve Jobs and Pixar Employees Buy Pixar

San Raphael, CA. - Pixar, the computer graphics division of Lucasfilm Ltd., has

announced that it has been acquired by Steven P. Jobs and the employees of

Pixar. Pixar, now an independent company, will design, manufacture and

market high performance computers and software specifically tailored for state

of the art computer graphics and image processing applications.

The new firm has a product, the Pixar Image Computer, ready for market.

Developed during the last three years at Lucasfilm Ltd., the Pixar Image

Computer is nearly 200 times faster than conventional minicomputers at

performing complex graphic and image computations. At these specialized

tasks, the Pixar Image Computer is also faster than a $6 million supercomputer.

The Pixar Image Computer will be introduced to the commercial and scientific

markets within the next 90 days and will sell for approximately $ 125,000.00.

Pixar was originally formed in 1979 by George Lucas to bring high technology

to the film industry. Lucasfilm Ltd. will continue to use the Pixar Image

Computer and other technologies to produce computer animation for films

through its special effects division, Industrial Light & Magic (1LM), and for home

entertainment through its Games Group.

MSD Disk Drive Information Exchange

Now that Micro System Development, the maker of MSD Disk Drives, is no

longer in business, an information exchange is being set up to serve the needs

of MSD disk drive users. The first project is a database of compatible software.

The Transactor 78 July 1986: Volume 7, Issue Ol

Users of MSD disk drives are encouraged to participate in the exchange. DISKORGANIZER For The C64

The MSD Information Exchange is a no fees, not-for-profit, user service. Those

who contribute information to the exchange will be provided the following

services:

1. For a self-addressed stamped envelope, a printout of available information in

one selected category.

2. For a blank disk with mailer and return postage, a copy of the Information

Exchange data disk in Superbase 64 format (data disk only).

Typical entries in the exchange data base include-

Word Processor, PaperClip 64, Batteries Included, 64C Edition

SD-2: Fully compatible serial or parallel (Quicksilver interface)

Spreadsheet, Multiplan 64, Hesware, v. 1.06

SD-2: Partially compatible. Data files may not be saved.

Backup, MSD Shure Copy, Megasoft

SD-2: Serial compatible. Parallel: Incompatible with Quicksilver

Entertainment, Flight Simulator II, Sub Logic

SD-2: Incompatible

The information exchange will also maintain files on the availability of

technical information on MSD disk drives including parts, service, service or

maintenance manuals, wiring diagrams, memory maps, etc. as provided by

users.

Software News

Introducing Super Kit/1541

Prism Software is proud to introduce Super Kit/1541 for the Commodore 64.

Super Kit is the most full-featured 1541 utility package to be found today. Just

look at the features offered:

Single/Dual Normal Copier: Copies a disk with no errors in 32.68 seconds.

Dual version has graphics and music.

Single/Dual Nibble Copier: Nibble copies a disk in 34.92 seconds. Dual version

has graphics and music.

Single/Dual File Copier: 6 times normal DOS speed. Includes multi-copy,

multi-scratch, view-edit BAM, and new Super DOS Mode.

Track and Sector Editor: Full editing of t&s in hex, dec, ascii, bin. Includes

monitor/disassembler with printout commands.

GCR Editor: Yes disk fans, a full blown sector by sector or track by track GCR

editor. Includes Bit Density Scan.

Super DOS I: Fast boot for Super DOS. 150 blocks in 10.12 seconds.

Super DOS II: Screen on and still loads 150 blocks in 14.87 seconds.

Super Nibbler: Quite frankly, if it can be copied on a 1541, this will do it!

Including Abacus, Timeworks, Accolayde, Epyx, Acti-vision, Electronic Arts.

The price, $29.95 plus $3.00 shipping and handling.

Prism Software

401 Lake Air Drive, Suite D

Waco, Texas 76710

Orders (817) 757-4031 (or use order card at center)

Tech (817)751-0200

You probably bought your computer, at least partially, to help you get orga

nized. And you probably started with a handful of disks on which you stored all

your files. But now you have boxes and boxes of disks with directories that look

like they were organized by a not particularly bright chimpanzee. You like

elegance and order, and you wish you could organize your disks, but this seems

such a gargantuan task that you keep putting it off. The order of the files on a

Commodore disk directory seems to be engraved in stone. (The same stone

holds the header.) The only way to reorganize the directory is through

laborious file copying to a fresh disk, right? Wrong! We have good news:

DISKORGANIZER for the C-64.

With this ultimate disk utility for the C-64 you can quickly and easily sort and

rearrange the disk directory of any unprotected disk to meet your own

specifications, and the new directory is actually written back onto the disk!

Using a convenient screen editor you can also change the header, scratch files,

copy files of any size to another disk, rename files, add 'fences' to mark off

sections of the disk for easy reading and independent sorting, 'scratch-protect'

any file, position individual files anywhere in the directory, and, of course, print

out copies of your revised directories.

You may have a copier utility or utility to rename the header or you may use the

wedge for common disk commands. But you don't have a single program that

will take care of all your disk housekeeping (even housekeeping you didn't

think possible) quickly and easily. But you will, if you get DISKORGANIZER

and get organized. DISKORGANIZER is available for $29.95 from:

The G.A.S.S. Company

970 Copeland

North Bay, Ontario, Canada

P1B-3E4

(705)474-9602

Amiga Spreadsheet, Telecommunications and BBS

Micro-Systems Software Inc. has released three new software tools for the

Amiga. The first is a spreadsheet called Analyse!. Similar in concept to Lotus 1-

2-3, the $99.95 program takes maximum advantage of Amiga's capabilities

(pull down menus, mouse, workbench) and can produce professional sized

spreadsheets (256 columns x 8,156 rows).

The second package, Online!, is a full-featured telecommunications system for

the Amiga that retails for $69.95. The third package, BBS-PC, is a versatile

electronic bulletin board system that transforms any Amiga into an online

information network.

The $99.95 program easily interfaces to a hard disk or keeps up with a 2400 bps

modem. In addition, BBS-PC works in the "background", so the Amiga can

answer the phone and take messages while users are working on other

projects.

All three packages are being distributed by Softeam, National Software Distribu

tors and Computer Software Services in the U.S, and in Canada by Phase 4

Distributors. For additional information contact:

Brown-Wagh Publishing

100 Verona Court

Los Gatos, California 95030 (408) 395-3838

The Sourcerer 6500 Series Disassembler

The Sourcerer is a multi-pass disassembler which converts 6500 series ma

chine language (object code) into Assembly Language (source code). It operates

disk-to-disk, disk-to-screen, or disk-to-printer. The commented Assembly Lan

guage which is produced can be immediately re-assembled with the Commo

dore assembler, or loaded for editing with the Commodore editor. Any specified

The Transactor 79 July 1986: Volume 7, Issue Ol

range of code within a program can be disassembled. Long programs automati

cally produce linked disk files for easy editing. All addresses referenced in the

code are converted to labels, in several sorted catagories. The Sourcerer is

written in 100% machine language for fast operation, and will disassemble a

20k program with several thousand address labels in less than 13 minutes. The

time required for the final output of source code depends on the speed of the

output device (disk, screen, or printer).

The Sourcerer is only $29.95 ppd. on a 1541 disk complete with operating

instructions. Order from:

Chessoft Ltd.

723 Barton Street

Mt. Vernon, 1L 62864

Help Master For The Commodore 64

Help Master 64 is a software/book package that will aid Basic programmers.

Help Master 64 provides instant, on-line help screens on each and every Basic

command used by the Commodore 64 computer.

Once loaded, Help Master 64 remains hidden in memory until you need it. It

takes up absolutely none of the Basic RAM, is completely compatible with the

DOS wedge, and has no effect on your ability to write, edit, load, save or run

any Basic program.

When you need help, typing the quote mark plus the name of the command

will instantly produce a half-screen overlay showing the Commodore abbrevia

tion for the command, the proper syntax, a description of the command and

reference page numbers in various manuals which will provide more informa

tion than is available on-screen. This half-screen format will allow you to view

both your actual program line and the Help Master example at the same time so

you can see what the differences are.

After viewing the help screen, you may restore the information that was on the

top half of the screen, or you can correct your program line while the help

screen is still being displayed.

Help Master 64 comes with the 'Handbook Of Basic for the Commodore 64', an

excellent 368 page reference manual on Commodore Basic by Frederick E.

Mosher and David I. Schneider, published by Bradey Communications, Inc.

The package has a retail price of $29.95. For more information contact:

Master Software

6 Hillery Court

Randallstown, MD 21133 (301) 922-2962

Hardware News

RESWITCH from Compusave

Reswitch is a reset switch/power-on indicator for the Commodore 64 which

replaces the existing power-on LED. Installation requires no drilling or cutting,

as the unit pops into the same hole as the existing LED. The Reswitch is a

transparent pushbutton containing an LED and acts exactly like the original

LED except that pushing down on it causes the 64 to reset. The package comes

with detailed installation instructions and everything needed to hook up. Price

is $10.00. Contact:

Comp U Save

115 Essex St. Suite* 146

New York, NY 10002

Uninterruptible Power Supply

An on-line, sine wave Uninterruptible Power Supply is being introduced by

Electronic Specialists. Capable of supplying up to 20 minutes power during

extended power outages, the on-line unit operates without disruptive switching

transients. Automatic internal battery recharge is incorporated.

Wide band EMI/RFI filtering and High-Speed, High-Current Spike Suppression

provide extended protection. Added protection is provided by an integral over

load/short-circuit proof configuration.

A front panel TEST switch permits convenient power removal to check front

panel monitors and complete system operation.

Line phase lock, automatic Blackout illumination, Battery-Saver automatic

shut-down option and external battery option are featured. Available in 250

and 500 watts. For more information, contact:

Electronic Specialists Inc.

171 South Main Street

Natick, Massachusetts

01760 1-800-225-4876

80 Column Mono Cable For The C-128

This is the cable for an 80 column monochrome display as described in many

Commodore specific magazine. It eliminates the need for an RGB monitor and

allows the use of any composite color or monochrome monitor. Excellent for

data base and word processing applications. (See next item for address)

40/80 Column Switch Cable For The C-128

A flip of a switch on the connector is all that's needed to change from 40 to 80

column display and back again. Plus a simple keystroke (ESC X). In 40 column

mode all 16 colors are available on your color monitor.

It's small and easy to install, with no bulky switches, boxes or exposed

components.

The 80 Column Mono Cable retails for $9.95. The 40/80 Column Switchable

cable retails for $23.95. For more information contact:

Innovative Computer Accessories

1249 Downing Street, PO Box 789

Imperial Beach, CA 92032-0837 (619) 224-1177

COMMODORE ASSOCIATION SOUTH/EAST

presents

THE

COMMODORE

SHOW
at the

Opryland Hotel
Nashville, Tennessee

April 26th & 27th, 9:00 a.m. to 5:00 p.m.

NATIONAL COMMODORE SPEAKERS!

VENDORS AND DISPLAYS!

SHOW SPECIALS AND DOOR PRIZES!

SEE INNOVATIONS AVAILABLE FOR THE COMMODORE MARKET!

THE ONLY COMMODORE CONFERENCE IN THE SOUTH EAST!

USER GROUP ORIENTED!

2-DAY REGISTRATION FEE: $10.00 ($7.50 before April 15)

Tickets are available at all affiliated clubs,

or for more information, contact:

CA.S.E. • P.O. BOX 110386 • NASHVILLE, TN 37222

(615) 834-5679 • (615) 834-2073 • (205) 854-3496

The Transactor 8O Jury 1986: Volume 7, Issue Ol

Transactor

PAYS

$40

per page for articles

We're also looking for

professionally

drawn cartoons!

Send all material to:

The Editor

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T3P7

Volume 6 Editorial Schedule

Issue* Theme Copy Due Printed

1

2

3

4

5

6

1

2

3

4

5

6

More Aids & Utilities

Communications & Networking

Languages

Implementing The Sciences

Hardware & Software Interfacing

Real Life Applications

Feb 1

Apr 1

Jun 1

Augl

Oct 1

Dec 1

Mar 22

May 24

Jul26

Sep20

Nov22

Jan 24

Volume 7 Editorial Schedule

ROM Routines / Kernel Routines Feb 1 Mar 21

Games From The Inside Out

Programming The Chips

Gadgets and Gizmos

Simulations and Modelling

Programming Techniques

Apr 1

Jun 1

Aug 1

Octl

Dec 1

May 23

Jul25

Sep26

Nov21

Jan 23

Release Date

April 1/85

June 1

August 1

October 1

December 1

February 1/86

April 1

June 1

August 1

October 1

December 1

February 1/87

Advertisers and Authors should have material submitted no

later than the 'Copy Due' date to be included

with the respective issue.

THKTls How you bo it

hile driving deep into the Black Forest of Germany,
our slow and unreliable Volkswagen started sputtering and puttering and then to our dismay, just quit

running. After hours of unrelentlous tinkering, our poor little mobile was running, slowly, but running.

And we wanted to get out of that dank and dark forest quickly. Befuddled and confused, we were ecstatic

to see a strange little Gnome emerge from behind a tree. This creature, who called himself Hacker,

used his infinite wisdom and wizardry to fix our Volkswagen and get us speedily on our way.

Well, we were so impressed with Hacker Gnome's wizardry, that we convinced him to reveal his

secrets for speed and reliability. And we are passing these secrets along to you so that you can

write the very best Basic Programs.

INTRODUCING-GNOME SPEED
(A Basic 7.0 Compiler for your Commodore 128)

Gnome Speed allows you to

transform virtually any Basic 7.0

Program into a compiled version that

is as sophisticated and fast as if it

were written in machine code.

Simply compiling your program with

Gnome Speed not only gives you

super-fast execution speed, but also

informs you of all your program

coding errors, so that your compiled

program is error-free. And for those

of you who want to sell your

program, all your efforts and

programming secrets will remain

yours, since only the compiled

version — not your Basic source

code need be included on the disk.

The price? Only $59.95 (U.S.)

NO DONGLES!!

NO COPY-PROTECTION!!!

U.S.A. MAIL ORDERS:

SM Software, Inc.

1-215-682-4920

CANADIAN MAIL ORDERS:

The Transactor

1-416-878-8438

(see order card)

DEALER INQUIRIES:

Micro-Pace, Inc.

1-217-356-1884

Sui
SM SOFTWARE, INC.

P.O. Box 27

Mertztown, PA. 19539-0027

1-215-682-4920

R O D U C

BY MARTY FRANZ & JOE PETER

SINGLE/DUAL NORMAL COPIER
Copies a disk with no errors in 32.68 seconds,

dual version has graphics & music.

SINGLE/DUAL NIBBLE COPIER
Nibble Copies a disk in 34.92 seconds. Dual

version has graphics & music.

SINGLE/DUAL FILE COPIER
7 times normal DOS speed. Includes multi-copy,

multi-scratch, view/edit BAM, & NEW SUPER

DOS MODE. In Super DOS Mode, it transfers

7-15 times normal speed, copies 150 blocks in 23

seconds.

TRACK & SECTOR EDITOR
Full editing of t&s in hex, dec, ascii, bin. Includes

monitor/disassembler with printout commands.

GCR EDITOR
Yes disk fans, a full blown sector by sector or

track by track GCR Editor. Includes TRUE Bit

Density/Track Scan.

3 SUPER DOS FAST LOADERS
Over 15 times normal DOS speed. Super DOS

Files are still Commodore DOS compatible.

Imagine loading 150 blocks in 10 seconds.

SUPER NIBBLER/

SUPER DISK SURGEON
Quite frankly, these will provide you the user with

the backup you need! Even copies itself.

$29.95 u.s.

PLUS $3.00 SHIPPING/HANDLING CHARGE - $5.00 C.O.D. CHARGE

i T

PRISM
SOFTWARE

SUPER KIT/1541 is for archival

use only! We do not condone

nor encourage piracy of any kind.

f

I I I

401 LAKE AIR DR., SUITE D • WACO, TEXAS 76710

ORDERS (817) 757-4031 • TECH (817) 751-0200
MASTERCARD & VISA ACCEPTED

See center page for

mail order card.

\ \

V

THE TIME SAVER

Type in a lot of Transactor programs?

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $7.95 Per Issue

6 Disk Subscription (one year)

Just $45.00

(see order form at center fold)

