

THE TIME SAVER

Type in a lot of Transactor programs?

Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $7.95 Per Issue

6 Disk Subscription (one year)

Just $45.00

(see order form at center fold)

Volume 6

Issue 05
Circulation 64,000

1

I

<D

II

mi

i i mil

inn mil

Hardware and Software Interfacing

Start Address Editorial 3

Bits and Pieces 5 M.weRn^ 7a
C-64 Input Routine With Screen Editing! llCWa OIUV (O
Quick Screen Code to ASCII Conversion Transactor Subscription Prices...

C-64/VIC20 Mini-Datafier Viewtron Starter Kit

Dale's Dazzler Viewtron Now Available To Commodore Owners

Commodore 64 Meets The Alien From More Viewtron News

The Cheap Sci-Fi Movie West Coast Commodore Show II

VERIFIZER For Tape Users Commodore 128 On Dealer Shelves

Improved 1541 Head-Cleaning Program The Commodore Ham's Companion

PRINT AT Update Starting Your Computer Services Business

C"128 Blls 1986 Printer Directory and Specification Guide
More Bl 28 Bits From Liz Deal Scenery Disks Now Available for
Un-Scratcher For Commodore Drives Rj h, Simu|ator „ and Je,

Hardware Device Number Change ZIPP-CODE-48 Development System For C64

1541 Wri°e-ProCtece.nChecl< Aul°™[ed telecommunications Package For
C-64 Memory Fill ROM Routine J ^\, \ D
Relocate! e Software From Progressive

Progressive Distributes CBM 8023P Printers

Progressive Releases E-Link

LetterS 10 Low Cost Temperature Monitoring For The 64
Oops - I Really Blew That One! Communications Chips Seen Rising in Sales

Pet Accessories: CP/M In The Transactor?: As Semiconductor Industry Continues to Slow

A Coded Message: Medium Interest:

Monitormented: SX Effects:

Whereware: Bloops Blues:

More Ad-vice: SuperPet Switch Glitch:

1 lie VerillZer F-liminate program entry errors 4

TransBASIC Installment #7 17

C128: Impressions and Observations 25

MaXimS lOr the Cl 2.O Machine language tips from Jim Butterfield 26

Commodore 128 Memory Maps important locations 27

MIDI: Musical Instrument Digital Interface 28

The REL64 Cartridge Interfacing to the real world 34

1541 RAM Expander Add3Kofinternalelbowroom 36

Assembly Language Disk Access i/o need not be slow 44

DireCtOry MatCh Take pattern matching one step further 48

C64 Memory Configurations secrets of .he pla 51

UndOCUmented 6510 OpCOdeS Onelastlookat the mystery ops ... 58

Undocumented 6500 Series Instructions Er. two snooks . 59

A Computer Rolltop Stand Hidingduner with class 61

Build your own programmable number pad 04

g A number crunching demo in BASIC DO

Getting On Viewtron: It's This Easy! 68

The SAVE® Saga A brief update, more next issue 69

Compu-toons 69

The Transactor Disk Directory contents of Disks i through 9 71

The Transactor Volume 6, Issue O5

Transactor
Th« T»ch/H»w» Journal For Commodore Compute™

Editor in Chief

Karl J. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Lana Humphries

Contributing Writers

Ian Adam

Daniel Bingamon

Anthony Bryant

Jim Butterfield

Gary Cobb

Pierre Corriveau

Bob Davis

Elizabeth Deal

Michael J. Erskine

Jim Grubbs

Tom Hall

Bob Hayes

John Jay Hilfiger

John Holttum

Mark Jordan

Jesse Knight

James E. LaPorte

William Levak

Jack Lothian

Scott Maclean

Jim McLaughlin

Michael Mossman

Gerald Neufeld

Noel Nyman

Richard Perrit

Raymond Quirling

Glen Reesor

John W. Ross

Edward Smeda

Darren J. Spruyt

Nick Sullivan

Zoltan Szepesi

Karel Vander Lugt

Audrys Vilkas

Andrew Walduck

Jack Weaver

Charles Whittern

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of course

be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the number 1 which has an

angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

insert will not be critical to correct operation of the program. When it is, the required number of spaces

will be shown. For example:

print" flush right " - would be shown as - print " [10 spaces]flush right "

Cursor Characters For PET / CBM / VIC / 64

Down - H

Up -D

Right - D

Left - [Lft]

RVS - B
RVS Off - B

Insert - Q

Delete - Q

Clear Scrn - Q

Home

STOP

Colour Characters For VIC 7 64

Black -

White -

Red

Cyan -

Purple -

Green -

Blue -

8
Q

[Cyn]

[Pur]

D
B

Orange -

Brown

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt. Blue -

Grey 3 - [Gr3]

Function Keys For VIC / 64

Fl -

F2-

F3-

F4-

0
n

Q

F5-

F6-

F7-

F8-

Please Note: The Transactor has

a new phone number: (416) 878 8438

The Transactor is published bi-monthly by Transactor Publishing Inc.. 500 Steeles Avenue, Milton,

Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class

postage paid at Buffalo NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor. 277 Linwood Avenue, Buffalo, NY, 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. Ail other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,.

Ontario, Canada. L9T 3P7, 4!6 878 8438. Note: Subscriptions are handled at this address ONLY.

Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use

postage paid card at center of magazine.

Quantity Orders:

U.S.A. Distributor:

Capital Distributing

Chariton Building

Derby, CT

06418

(203) 735 3381

(or your local wholesaler)

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 5B4

(416)842 1555

(or your local wholesaler)

CompuLit

PO Box 352

Port Coquitlam, BC

V5C 4K6

604 941 7911

Norland Communications

631 Cloverpark Cres.

Milton, Ontario

L9T 4T7

416 878 8435

SOLD OUT: The Best of The Transactor Volumes 1 &2&3; Vol 4 Issues 04. 05, 06, Vol 5 Issues 03. 04

Still Available:Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04, 05, 06. Vol. 6: 01, 02, 03, 01 05

Back Issues: $4.50 each. Order all back issues from Milton HQ.

Editorial contributions are always welcome. Writers arc encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per

printed page. Preferred media is 1541, 2031, 4040, 8050. or 8250 diskettes with WordPro, WordCraft,

Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos or illustrations will be included with articles depending on quality. Authors submitting diskettes

will receive the Transactor Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any fnrm without permission is in violation of applicable laws. Please

re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective. The Transactor cannot assume liability for errors in articles or programs.

Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor Volume 6, Issue O5

Of Mice And Metaphors

We may be at a historical moment in the use of personal computers.

Operating systems using mice, icons, desk-top metaphors, and win

dows seem to be catching on and only time will tell if they become the

usual way of doing things in the future. We've seen it on Apple's Lisa

and Macintosh, then the Atari 520ST, and now on the outstanding

Amiga from Commodore. But is this a go-with-the-latest-computing-

trend marketing effort, or a real step towards that difficult-to-measure

goal of increased productivity?

Take the Icon. Please. Seriously, the concept of having a little picture

on the screen instead of a word to represent a function is a good one,

but can also be confusing. It is said that a picture is worth a thousand

words, but that can be a problem when you want just one specific one.

Does a jagged line icon in a graphics program indicate line drawing,

graph plotting, straightening curves, or what? I suppose you could

point to it to find out, but it would be nice to glance at the screen and

know your options; key words like 'GRAPH', 'LINES', 'STRAIGHTEN',

etc. would do the job nicely. Likewise, the word CUT may be clearer

than a hard-to-visualize (especially on a low-res screen) pair of

scissors. Words are more universal than pictures in the sense that not

everyone interprets images in the same way; if you want proof, try

playing "what do you see in the clouds?" with ten people. Today it

may sound like a step backwards, but I often prefer good old-

fashioned words over undecipherable symbols. Didn't mankind dis

cover that thousands of years ago?

Throughout Canada, many of our road signs have gone symbolic.

When you enter crown land, you may be greeted by a sign covered in

little stick figures in various positions indicating the intended purpose

of the land. If instead, the sign read, "hunting, fishing, camping,

sightseeing. . ." perhaps it wouldn't be necessary to pull over, get out

of the car and muse, "Hmmm. . . what's that guy doing? Is he using a

shotgun or a walking stick?. . .". Similarly, the words SLOW and FAST

on a piece of machinery are no doubt more easily understood than a

picture of a tortoise and a hare, even if it means learning two words of

English.

Which brings up one of the advantages of icons when used properly:

they are international. Stress when used properly, because the tempta

tion for software developers to transmit messages in a cute way

through the icon is sometimes too great to resist. For example, The

Amiga comes with a 'Software Demo Package' giving a sneak preview

at some excellent-looking upcoming software from Electronic Arts. As

the demo cycles, you can stop it at any time by pressing the right

mouse button, and while the demo is stopped, an icon containing two

- what are they? - um, pawprints appears on the screen. Get it? Paws -

Pause! Ha ha. Cute and clever, and everyone gets a laugh when they

figure it out or someone explains it to them, but that's the problem: are

we now doomed to deciphering some unknown programmer's bad

puns when all we want to do is use a piece of software? At the risk of

sounding like a spoilsport, there's nothing wrong with a bit of fun, but

not at the expense of clarity and ease-of-use.

Enough about Icons; what about software metaphors themselves? The

simulated desktop using 'windows' makes it easier for the non-

computer type to get things done with a computer, because it relates to

something he's familiar with. In a way, that's a big step forward

because we are teaching machines to adapt to man rather than man to

adapt to the machines. As a result, computer operation is becoming

more intuitive rather than more complex. On the other hand, forcing

a new office tool to behave like an old one in the interest of

compatibility can be restrictive if the new tool is significantly more

powerful and flexible. The ideal metaphor would probably mimic the

human mind, not a human working environment, but that kind of

software is no doubt many years off. Overall, the same rule applies to

software metaphors as to icons: they can be good when used reasona

bly, but taken too far or used out of context, can be a hindrance.

I do like the windows themselves. At least, I like the way windows are

handled on the Amiga - I haven't used any other system long enough

to decide. True, you can lose track of what's behind what, and a lot of

moving and clicking gets done, but it seems to be the best solution to

keeping track of multiple tasks around. Still in its infancy, the

windowed environment will probably get even more powerful and

automated, and I'll like it even more.

What about the mouse? In my opinion, fun to use and precise, but isn't

there a better way to point at something on the screen without

clearing a space on your desk and still knocking over a cup of coffee

once in a while? These things need SPACE to be used effec

tively, and that's something that there can be a real shortage of - at

least in my office there is. There's always the trackball, but it's not as

easy to CLICK, since your hand doesn't stay in one place. The

alternative, of course, is the keyboard, but I won't say I prefer it to the

mouse because I'm still having too much fun with the little plastic

rodent.

So, at the start of this new age of computing, does it look like Utopia

ahead? Will any non-computerist businessman or housewife be able

to buy a computer and a bunch of software, and do all of the things

that the ads have been telling them they could do? It seems that the

new operating systems can deliver on that promise, but only if

software developers use them in the spirit in which they were

intended. When designed properly, a Mouse/icon-driven Windowed

environment can be easy to use and enormously productive. When

used as a gimmick, or when flash prevails over substance, it can be an

enigma to the user.

Chris Zamara, Technical Editor

The Transactor Volume 6, Issue O5

Using "VERIFIZER"

The Transactor's Foolproof Program Entry Method

VERIFIZER should be run before typing in any long program from

the pages of The Transactor. It will let you check your work line by

line as you enter the program, and catch frustrating typing errors.

The VERIFIZER concept works by displaying a two-letter code for

each program line which you can check against the corresponding

code in the program listing.

There are two versions of VERIFIZER on this page; one is for the

PET, the other for the VIC or 64. Enter the applicable program and

RUN it. If you get the message, "***** data error *****", re-check

the program and keep trying until all goes well. You should SAVE

the program, since you'll want to use it every time you enter one of

our programs. Once you've RUN the loader, remember to enter

NEW to purge BASIC text space. Then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)

or SYS 634 to enable the PET version (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top left of

the screen in reverse field. Note that these letters are in uppercase

and will appear as graphics characters unless you are in upper/

lowercase mode (press shift/Commodore on C64/VIC).

Note: If a report code is missing it means we've editted that line at

the last minute which changes the report code. However, this will

only happen occasionally and only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type

RETURN over each in succession while checking the report codes

as they appear. Once the program has been properly entered, be

sure to turn VERIFIZER off with the SYS indicated above before

you do anything else.

VERIFIZER will catch transposition errors (eg. POKE 52381,0

instead of POKE 53281,0), but ignores spaces, so you may add or

omit spaces from the listed program at will (providing you don't

split up keywords!). Standard keyword abbreviations (like nE

instead of next) will not affect the VERIFIZER report code.

Technical info: VERIFIZER resides in the cassette buffer, so if

you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original

destination of the link after it's finished. When disabled, it restores

the link to its original contents.

Listing 1a: VERIFIZER for C64 and VIC-20 Listing 1b: PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

oc

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

10 rem* data loader for " verifizer"

15 rem vic/64 version

20 cs = 0

30 for i = 828 to 958:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>14755 then print"**

70 rem sys 828

80 end

100:

1000 data 76, 74

1010 data 252, 141

1020 data 3,240

1030 data 251, 169

1040 data 3, 3

1050 data 0,160,

1060 data 32,240,

1070 data 133, 90,

1080 data 232, 208,

1090 data 32,210,

1100 data 89, 41,

1110 data 165, 89,

1120 data 32,210,

1130 data 32,240,

1140 data 101, 89,

3, 165

3, 3

17, 133,

99, 141,

96, 173,

0,189,

15, 133,

32,183,

229, 56,

255, 169,

15, 24,

74, 74,

255,169,

255, 108,

133, 89,

*** data error

251

96

252

2

254

0

91

3,

32,

18,

105,

74,

146,

251,

96

141, 2

173, 3

173, 2

3,169

1, 133

2,240

200, 152

198, 90

240, 255,

32,210,

97, 32,

74, 24,

32,210,

0, 165,

3,

3,

3,

3,

89,

22,

41,

16,

169,

255,

210,

105,

255,

91,

": end

165

201

133

141

162

201

3

249

19

165

255

97

24

24

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

OI

JB

PA

HE

EL

LA

Kl

EB

DM

10 rem* data loader for "verifizer 4.0" *

15 rem pet version

20 cs = 0

30 for i = 634 to 754:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>15580 then print "***** data error * * * *

70 rem sys 634

80 end

100:

1000 data 76,138, 2,120,173,163, 2

2,133,145, 88, 96

2,240

2

88

76, 138,

1010 data 173, 164,

1020 data 145, 201,

1030 data 144, 141, 163,

1040 data 2,133,145,

1050 data 201,

1060 data 254,

1070 data 0,

1080 data 165, 253,

1090 data 198, 254,

1100 data 251, 41,

1110 data 165, 251,

133,

120,

16,141,164, 2,

169, 165, 133, 144,

96, 85,228,165,

13,208, 62,165,167,208, 58,

1,133,251,162, 0,134,253,

68,201, 32,240, 15,230,

41, 3,133,254, 32,236,

16,249,232, 152,208,229,

15, 24,105,193,141, 0,

74, 74, 74, 74, 24, 105,

1120 data 141, 1,128,108,163, 2,152, 24,

1130 data 251, 133,251, 96

': end

144

165

165

169

217

173

189

253

2

165

128

193

101

The Transactor
Volume 6, Issue O5 ~]

Bits and Pieces

Got an interesting programming tip, short routine, or an unknown

bit of Commodore trivia? Send it in - if we use it in the Bits & Pieces

column, we'll credit you in the column and send you a free one-

year's subscription to The Transactor

C-64 Input Routine

With Screen Editing!

Dale Lambert,

Tupelo, MS

This little INPUT substitute allows any characters to be entered

and also allows full screen editing. It uses the input routine that

BASIC uses in direct mode.

1 sys42336:forb = 512to592:ifpeek(b)OOthennext

2 in$ = "" poke peek(71) + 256*peek(72) + 1,0

:poke peek(71) + 256*peek(72) + 2,2

3pokepeek(71) + 256*peek(72),b-512

:in$ = mid$(in$,1)

Quick Screen Code

to ASCII Conversion

Dale Lambert

This line will convert screen code (in the variable S) to ASCII:

a = (s and 127)or((s and 64)*2)or((64-s and 32)*2)

C-64/VIC20 Mini-Datafier Dale Lambert

This program will quickly and easily make DATA statements for a

machine-language program.

All you have to do is put the starting address of the code in variable

S, put the end address in E, put the sttarting line number of the

DATA statements in Z, and the amount to increment the DATA line

numbers by in variable I. For example:

1 s = 49152(start):e = 50000(end):z = 1000(line #):i = 10(incr)

And here's our program:

1 s = 49152:e = 49400:z = 1000:i = 10

2 print"^ §J"z" data ";: if s>e then end
3 k = s + 6: if k>ethen k = e

4 for s = sto k: print mid$(str$(peek(s)),2)",";: next

: print chr$(157);chr$(32) :rem 1 left, 1 spc

5 print"s= " s" :e= "e" :z= "z + i" :i= " i" :goto£

:poke631,13:poke632,13:poke198,2:end

Dale's Dazzler

Try this on the 64:

1 a = 192:b = 200:c = 53270:fori = 1 to1 OOOstep.001

:pokec,a:pokec,b:next

Commodore 64 Meets The Alien

From The Cheap Sci-Fi Movie

Give this a listen, Earthlings:

Giuseppe Amato

1 s = 54272:a = peek(162)and199:pokes + 24,15

:pokes + 6,90:pokes + 4,21 :pokes +1 ,a

2 pokes + 15,abs(99-a):goto1

VERIFIZER For Tape Users Tom Potts

Rowley, MA

The following modifications to the Verifizer loader (see the VERIFI

ZER page in this issue) will allow VIC-20 and C-64 owners with

Datasettes to use the verifizer directly (without the loader) and just

SYS to activate it.

After running the new loader, you'll have a special copy of the

verifizer program which can be loaded from tape without disrupt

ing the program in memory.

Just run the program below, pressing PLAY and RECORD when

prompted to do so (use a rewound tape for easy future access). To

use the special verifizer that has just been created, first load the

program you wish to verify or review into your computer from

either tape or disk. Next insert the special program tape created

above and be sure that it is rewound, then enter in direct mode:

OPEN1:CLOSE1. Press PLAY when prompted by the computer,

and wait while the special verifizer loads into the tape buffer. Once

it has loaded, the screen will show FOUND VERIFIZER.SYS850. To

activate VERIFIZER, enter SYS 850 (not the 828 as in the original

program). To de-activate, use SYS 853. These moves in the SYS

addresses were required because of the method used to store and

retreive the program in the tape buffer.

The Transactor Volume 6, Issue O5

If you are going to use your tape recorder to SAVE a program, you

must turn off VERIFIZER first (SYS 853) since VERIFIZER moves

some of the internal pointers used during a SAVE operation.

Attempting a SAVE without turning off VERIFIZER first will usually

result in a crash.

If you wish to use VERIFIZER again after using the tape, you'll have

to reload it with the OPEN 1:CLOSE1 commands.

Make the following additions and changes to the present VERIFI

ZER loader listed in the magazine on page 4.

Line:

NB 30 for i = 850 to 980: read a: poke i,a

AL 60 if cs<>14821 then print" *****dataerror*****"

: end

IB 70 rem sys850 on, sys853 off

— 80 delete line

— 100 delete line

OC 1000 data 76, 96, 3,165,251,141, 2, 3,165

MO 1030 data 251, 169, 121,141, 2, 3,169, 3,141

EG 1070 data 133, 90, 32,205, 3,198, 90, 16,247

BD 2000 a$ = " verifizer.sys850[space]"

KH 2010 for i = 850 to 980

GL 2020a$ = a$ + chr$(peek(i)):next

DC 2030 open 1,1,1,a$: close 1

IP 2040 end

Improved 1541

Head-Cleaning Program

David Peterson,

Irvine, CA

Volume 6 Issue contained a program by Peter Boisvert which

turned the 1541 's motor on for 60 seconds to allow cleaning the

head using a cleaning disk. This prompted David Peterson to write

in with the following improvement. It turns the motor on, then

steps the head slowly along the surface of the disk to utilize the

entire cleaning surface. David Peterson explains how it works:

After turning on the drive motor, the program peeks location $24 in

drive RAM. This location contains the track number that the read/

write head is currently at. After finding the head, the program steps

it quickly to track 1, then slowly across the disk to track 35.

Movement of the head is controlled by bits 0 and 1 of location

S1C00 in drive RAM. After peeking S1C00, the head is moved

outward to track one by cycling bits 0 and 1 of$1 COO. To move the

head outward the low bits are decremented (say 01 to OOto 11 to 10

to 01 etc.). To move the head inward to track 35 the two low bits

are cyclically incremented. The head is stepped twice for every

track, since the stepper motor mooes the head in 1/2 track steps.

The NEW at the end of the program is not an attempt at program

protection, it's there as drive protection. This direct method of

stepping the head does not update location $24. If the program was

immediately rerun, the drive head could end up being stepped to

track 35 or to bump up against the stop at track 0. Therefore use the

loop in line 280 to control how long the process takes.

Here's the new cleaning program; make sure you save it before

running!

LM

LD

Nl

AL

EE

HP

JD

EC

IA

PH

EL

FO

GN

CD

ID

MH

BL

FJ

EF

KO

ll-l

FE

HL

IM

FB

CH

CG

CE

GF

AF

JM

CG

AP

FF

HM

Fl

HF

100 rem* improved 1541 head cleaning prg *

110 print "@insert cleaning disk and hit return"
120 geta$:ifa$Ochr$(13)then120

130 open 15,8,15:print#15," m-e" chr$(126)chr$(249)

140 rem locate head

150 print#15," m-r" chr$(24)chr$(0)

160 get#15,a$:x = asc(a$ + chr$(0))

170 print" drive head at track #" x

180 rem read $1c00

190 print#15," m-r" chr$(0)chr$(28)

200 get#15,sc$:sc = asc(sc$ + chr$(0))

210 rem select bits 0 and 1

220 bt = sc and 3

230 rem # tracks to 1

240sp = 2*(x-1)

250 rem move head to track 1

260 print "Qstepping to track #1 "
270 for y = 1 to sp

280bt = bt-1:bt=btand3

290s = (scand252)orbt

300print#15,"m-w"chr$(0)chr$(28)chr$(1)chr$(s)

310 next y

320 rem step out to 35

330 print" stepping out to track #35. .

340 print#15," m-r" chr$(0)chr$(28)

350 get#15,a$:sc = asc(a$ + chr$(0))

360bt = scand3

370fory = 1 to 68

380 print" HHtrack #" int(y/2 + 1)

400bt = bt+1:bt = btand3

410s = (scand252)orbt

420 print#15," m-w" chr$(0)chr$(28)chr$(1)chr$(s)

430 ford = 1 to220: nextd

440 next y

450 print#15," m-e" chr$(232)chr$(249):close15

460 new: rem to prevent re-running without a normal

disk operation first

PRINT AT Update Stephen Gast, Champaigne. IL

In the Bits and Pieces column of Volume 6, Issue 3, a C64/VIC20

PRINTA Tcommand was suggested:

poke 781 ,row: poke 782,col: sys 65520: print" message"

The above method utilizes the documented KERNAL routine

PLOT. The general technique is a useful one but can be unreliable

when accessed through the KERNALjump table at 65520 ($FFF0).

If the carry flag is set, the routine will GET the current cursor

position! Not exactly what we had in mind. To correct this the

current row and column coordinates should still be placed directly

into the register storage area in 781 ($030D9 and 782 ($030E).

Then simply bypass the logic of the cursor get/set routine at SE50A

and SYS directly to 58636 ($E50C). In both the VIC 20 and the

Commodore 64 this will work:

poke 781 ,row: poke 782,col: sys58636: print" message"

The Transactor Volume 6, Issue O5

Now let's talk a little about some other things you can do on a 64.

First, the following line is an alternative to the above example:

poke 211 ,col: poke 214,row: sys 58640: print" message"

This enters the plot routine a little later and avoids two steps (big

deal at ML speeds). But secondly, ifyou do this a lot in a program,

here is a neat 25 byte machine language routine that makes life a

little simpler:

0806 20 fd ae jsr $aefd ;scan past the comma

0809 20 9e b7 jsr $b79e ;put row in .X

080c 86 d6 stx $d6 ;store row in TBLX (current cursor

line*)

080e 20 f1 b7 jsr $b7f 1 ;scan past comma and put column

in.X

0811 86 d3 stx $d3 put column in PNTR (current cur

sor column #)

0813 4c 10 e5 jmp $e510 ;set the cursor

The following short BASIC program will place this routine in a

REM statement:

10 rem xxxxxxxxxxxxxxxxxxxxxxxxx [25 x's]

20 for x = 2054 to 2069: read y: poke x,y: next x

30 data 32,253,174,32,158,183,134,214,32,241,183,

134,211,76,16,229

Be sure 25 x's follow the REM in line 10. After typing the program

in, run it and delete lines 20 and 30. Save the remaining line 10 to

disk as a program and simply load and use it as the first line of any

program in which you want to easily be able to position the cursor.

The syntax is now simplified to:

SYS 2054,row#,column#: PRINT" message"

C-128 Bits Randy Linden, Willowdale, Ont.

Here are a couple of " C64 mode" peculiarities: The CAPS-lock

key can be read in C64 mode, and the most interesting feature -

2Mhz. clock speed is available in C64 mode!

The CAPS-lock key can be checked with bit 6 in memory location

$0001 of the C64 side. If bit 6 is set, then the CAPS-lock key is NOT

pressed; if it is zero, the key is pressed. Example:

if (peek(1)and64) = 0 then print" caps lock on".

Bit 0 in memory location $D030 controls the speed of the micro

processor. In C64 mode, this bit is normally zero, running the

system at lMhz. If you set this bit, the computer will run at 2Mhz!

Example:

poke 53296,peek(53296)or1

to set 2Mhz mode. The catch is that in C64 mode, the VIC video

chip cannot operate at warp 2 and is disabled when 2Mhz mode is

set, displaying a blank screen. However, for operations which do

not need the video screen, such as assembling programs in

machine language or sorting lists, the screen can be turned off for a

speed increase of 100%!

For a simple demonstration, try the following program in C64

mode.

10 print"C64 at2Mhz- Randy Linden"

20 print" Caps-lock down for 2Mhz,"

30 print "Caps-lock up for 1Mhz."

40 for d = 0 to 36

50 read rl: poke 52992+ d,rl: ck = ck + rl: nextd

60 if ck<>3571 then print " ?Data error!": stop

70 sys 52992: print" Now installed.": end

100 data 169, 11, 141,20,3, 169,207, 141,

21,3,96, 165, 1,41,64,73,64, 10, 10,42

110 data 141, 37, 207, 173, 48, 208, 41, 252,

13, 37, 207, 141, 48, 208, 76, 49, 234

The code resides at $CF00-$CF25 in memory on the Commodore

64. When run, it changes the IRQ vector to point to a routine at

$CF0B which scans the CAPS-lock key and turns on 1 Mhz mode if

it is up, or 2Mhz mode if it is down.

More B128 Bits From Liz Deal

1. COLLECT is a variant of the DOS native command VALIDATE

(V). The B machine actually thinks at the time of validation.

Example: if you've just written a file of 6 blocks but didn't close it,

the directory shows 6 blocks and a *. At this point "V" would get

rid of the file, but COLLECT closes it. Not bad.

2. An important control byte exists at $258: Logical file number of

CMD file. It's used for printing integers (line numbers) on a CMD

device. It permits sending disk directories directly to a CMD

device, so:

OPEN 4,4:CMD 4: CATALOG

Does just that to the printer. Neat.

3. everybody knows that LIST is a harmless command. . .or is it?

Try it on the B128 with a program from the plus 4 containing the

keyword SCALE (that's token number $E9). TThe machine either

crashes dead or ends up in the machine language monitor. And if

that weren't enough, the program you just tried to list NEWs itself.

Brilliant.

4. Locations $20-$21 are important in working dynamic strings.

They hold temporary pointers to strings. Do not ever use them for

anything else if you do 't want your strings mangled, FRE crashing,

and so on.

5. New center of B information, besides TPUG, is now:

Norman Deltzke

4102 N. Odell

Norridge, IL

60634

- Send 2 SASEs.

The Transactor
Volume 6, Issue O5

Un-Scratcher For Commodore Drives

Oops! Just scratch the wrong file by mistake and wipe out 3 hours of work?

Don't panic - use the Un-Scratcher. If you haven't done any more saving since,

the scratch, your old file is still recoverable. The Un-Scratcher program below

will ask you the type of drive you have (you may want to hard-code this into the

program if you're always using the same drive), and display the filenames of

scratched programs one by one, asking if you wish to un-scratch them. It will

then write in the new directory information and validate the disk, asking for

confirmation before each step. After that your life may continue normally since

your precious work has been restored. Even if you have to enter it by hand, this

is a routine that can really pay for itself!

CN

NL

Fl

LO

FM

MP

KE

EN

GD

MG

KD

LE

BD

FF

100 rem save"0:un-scratch",8: rem ** rte/85

110 z$ = chr$(0): cr$ = chr$(13): sc = 1: dr = 0

: rem dirsec + drvnum

120 print " ** disk file un-scratcher **" cr$" enter drive type"

130 print " a) 1541/2031 "cr$" b) 2040/4040"cr$" c) 8050/8250

140

150

160

170

180

190

200

210

220

230

LE

KD

KN

ML

OK

KM

CH

KE

EB

AH

MK

PA

NE

OG

CO

PF

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

input "yourchoice ";dt$: ifdt$<"a" ordt$>"c" then 140

dt = 18: bh = 3: if dt$ = >"b" then bh = 17

: ifdt$ = "c" thendt = 39

open 15,8,15: open 8,8,8, "#0"

print#15," u1:" 8;dr;dt;sc: rem read dir sector

print#15," m-r" chr$(0)chr$(bh)chr$(2): get#15,nt$,ns$

: rem next trk/sec

flag = 1: for Ik = 0 to 7: ps = lk*32

: print#15," m-r" chr$(2 + ps)chr$(bh)chr$(19)

get#15,sb$,ft$,fs$: if len(sb$) or len(ft$) = 0 then 310

print " 1 st data track" asc(ft$)" sector" asc(fs$ + z$)

print "filename ";: for name = 1 to 16: get#15,n$: print n$;

: next

print#15," m-r" chr$(30 + ps)chr$(bh)chr$(2): get#15,l$,h$

: rem file size

print: print " size" asc(l$ + z$) + 256*asc(h$ + z$)" block(s)"

input " un-scratch (y/n) ";us$: if us$O"y" then 310

: rem * nope

input " file type: s, p, u, r " ;ft$: us = 0

for chk = 1 to 4: if ft$ = mid$(" spur" ,chk, 1) then us = chk +128

next chk: if us = 0 then 260: rem incorrect reply

print#15," m-w" chr$(2 + ps)chr$(bh)chr$(1)chr$(us)

print " done !!": print: flag = 0

next Ik

if flag then 350: rem no change in sector

input " write block to disk (y/n) " ;yn$: if yn$<>" y" then 350

print#15, "u2:"8;dr;dt;sc

dt = asc(nt$ + z$): sc = asc(ns$ + z$): if dt then 170

: rem more to go

if us = 0 then 390: rem nothing to un-scratch

input " validate the diskette (y/n) " ;yn$: if yn$<>" y" then 390

print#15," v" + str$(dr): print "» validating disk «"

close8: close15: end

Hardware Device Number Change

for the 2031 Drive

The 2031 single drive can be hard-wired as device

number 9 or 10. The number is determined by two

diodes on the PC board, CR18 and CR19. Both diodes

are normally connected for device number 8; snip

one of the leads on CR18 for device 10 or CR19 for

device 9.

C64 Doodle Screen Tom White,

Sudbury, ON

If you 'ue ever drawn pictures on the screen with the

standard graphics and editor on the C-64, you've

probably hit the RETURN key by accident more than

once. This results in a READY or 7SYNTAX ERROR

message partly wiping out your creation. To counter

this menace, simply enter the following before you

start your masterpiece:

poke 768,123: poke 769,164

While in this mode, all of the BASIC commands still

work, so take care not to type LIST, RUN or any

similar instruction that might ruin your picture. To

return the error messages back to normal, type:

poke 768,139: poke 769,227

1541 Write-Protect Check Craig McQueen,

Guelph, ON

Have you ever wanted a routine to find out if there is a

write-protect switch on a disk? All one has to do is

read the value of $lC00, bit 4. If the bit is 0, then the

write protect is on. Here is a memory-read routine to

do the checking for you.

5 rem check for write-protect (1541)

10 open 15,8,15

20 print#15," m-r" chr$(0);chr$(28)

30 get#15,a$: a = asc(a$ + chr$(0))

40if(aand16)then70

70 print" write protect is on!"

60 goto 80

50 print" no write protect"

80 close 15

The Transactor
Volu

C-64 Memory Fill

ROM Routine

Thomas Henry writes:

Thomas Henry

North Mankato, MN

In the Volume 6, Issue 1 Bits & Pieces section, you described the use

of the memory transfer subroutine contained within the BASIC

ROM. One vital piece of information is missing, though. The

memory transfer routine is not " intelligent". Specifically, it fails to

work correctly if you attempt to move a block of data in the

downward direction AND if the source block overlaps the destina

tion block. In all other cases however, it worksjust fine.

By the way, the routine has this limitation since it was originally

designed to spread apart BASIC lines in memory. The designers

apparently never intended for it to be used for any other purpose

than making room for new BASIC lines in RAM. Ofcourse, this type

ofmemory transfer will always be occuring in an upward direction

(from lower to higher adresses). Now that we know the limitation,

however, we hackers can use it for other purposes as well.

Here's a neat trick that actually exploits the shortcomings just

mentioned to good advantage. See if you can figure out how it

works. (The following addresses are for the C-64; refer to the

abovementioned issue for for the corresponding addresses in the

PET/CBMand VIC-20.)

THE TASK: We wish to fill a block ofRAM with a specific byte. We 11

call this a memory fill subroutine. Possible uses include clearing a

bit-map screen, setting colour memory to some value, filling a

buffer with zeroes, etc.

THESOLUTION: Suppose the addresses of the start of the block to

be filled is START and the last address of the block is END. For

example sake, let's imagine we wish to fill this block with zeros.

Perform the following steps:

1. Store a zero (or whatever byte you wish to fill memory with) in

location END

2. Store address END in location $58 (low byte, high byte).

3. Store address END+1 in location S5A.

4. Store address START+1 in location S5F

5. Call subroutine $A3BF(The memory transfer subroutine)

The block from STARTto END (regardless of length or location) will

be filled with the specified byte - zeros in this case.

One limitation of the block fill routine is that it cannot be accessed

from BASIC. Apparently the POKE number orSYS number evalua-

tor plays havoc with locations $58 through $60. However, the

routine works just great with machine language and is far simpler

to use than " rolling your own".

Relocate!

When creating sprite files, high-res screens, character sets and the

like, you don't always know where in memory you'll want to put

them. You'd also like those files to be LOADable programs that will

go into whatever spot you want. For example, some drawing

packages create a high-res screen PRG file on disk that can be

LOADed into memory starting at $2000 (8192). If you wish to use

that picture but put it at, let's say, $E000, you need to change the

picture file's load address on disk. Guess what RELOCATE does?

Just tell it your drive type, the filename of the program, and your

desired load address, and it changes the load address of the file.

Right now. Yes, it is fast, because it goes directly into disk memory

to change the first two bytes of the file and writes the block back to

the disk surface.

rem save" 0:relocate" ,8

rem ** rte/85 - allows quick change of prg load

address **

5 = chr$(0)

' print "drive type:"

i input " 1)1541/2031, 2)4040, 3)8050/8250" ;d

fd<1 or d>3 then 125

ifd = 1 thendl = 144:dh = 2:di = 4:dt=18:bl = 0

:bh=3: rem 1541/2031

. if d = 2 then dl = 150: dh = 67: di = 4: dt = 18: bl=0

bh = 17: rem 2040/4040

'if d = 3 then dl = 96: dh = 67: di = 8: dt = 39: bl = C

bh = 17: rem 8050/8250

i input " drive #, filename " ;dr,f$

: f$ = str$(dr) + ":" +f$

input " new start address (decimal) " ;sa

: sh% = sa/256: si = sa-256*sh°/o

i open 15,8,15: open 8,8,8,(f$): get#8,a$

if st then close8: stop

print#15," m-r" chr$(dl)chr$(dh): get#15,s$

rem sector

' print#15," m-r" chr$(dl + di)chr$(dh): get#15,i$

rem index

. s = asc(s$ + z$): i = asc(i$ + z$) + 1

i close 8: open 8,8,8, "#0"

i print#15," u1:" 8;dr;dt;s: rem read in directory

track/sector

print#15," m-r" chr$(bl + i)chr$(bh)chr$(2)

rem get 1 st data block ptr

• get#15,t$,s$: t = asc(t$ + z$): s = asc(s$ + z$)

i print#15," u1:" 8;dr;t;s: rem get first data block

i print#15," m-w" chr$(bl + 2)chr$(bh)chr$(2)

chr$(sl)chr$(sh°/o)

print#15," u2:" 8;dr;t;s: rem write block back

i close 8: close 15

print " ** address changed **"

i end

HD

AF

CO

GK

CK

GH

DD

HC

OF

FA

AJ

HE

MP

FL

IP

ID

II

AH

BD

OM

HF

DM

BP

IE

GE

BO

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

The Transactor
Volume 6, Issue O5

Letters

Oops - I Really Blew That One! Within minutes after the

last issue was released, or so it seemed, I ended up on the

receiving end ofa telephone conversation with Chris Wiesnerin

Ottawa. The conversation we had made me blush for the first

time in years. It seems that in his letter, as we reproduced it in

on page 13 of last issue, I really fouled up - twice. The first was

to spell his name incorrectly (I before E except after C). The

second, and this was pretty awful, was to incorrectly state the

telephone number of his Bulletin Board System in Ottawa.

Chris, in a blast of ingenuity, was going to contact the people

belonging to the number listed, and lend them his answering

machine. Can you imagine how rotten it would be to have your

phone ring constantly through the night, only to hear a com

puter screaming at you when you pick it up. Pretty bad.

Anyway, sorry Chris, and multiple sorry to the people who

belonged to that line. Unlike my 'The Error Of Our Ways: More

Often Oops Than Bloops' note from last issue (page 14), of

which Chris made sure to mention, we do foul up at times.

Below is the proper name and address of Chris's BBS. Ed.

Chris K. Wiesner

Ottawa Mail Forwarding Service

PO Box 793 Station B

Ottawa, Ontario, K1P-5P8

(613) 830-2823

Pet Accessories: I am the proud owner of a Pet 4032

computer and know several others in my area. Our problem is

that there is so little support for the Pet in this area. In fact,

nobody has even heard of it! I have need of certain information

that I hope you will help me get.

There is an upgrade kit available for the 4032 that is supposed

to turn it into an 8032. This is from Comspec Communications

Inc. in Toronto, Ontario. Does this really convert the 4032 to an

8032? Also, does this conversion effect the compatibility of the

upgraded Pet to existing software? 1 have also heard of an

upgrade kit which adds 64k of memory to the Pet. Where is this

available? The Commodore SFD 1001, one megabyte disk

drive has recently arrived on the scene unannounced, with

little fanfare and even less technical data. It is available from

Protecto and Progressive Peripherals. Is this drive software

compatible with other Commodore drives? Which ones? What

commercial software is available for the Pet in either the 40 or

80 column configurations? What drive is this software designed

for? William Uhler, Richmond, VA

For such a small letter, you sure squeeze in a lot of questions.

First, Comspec does sell an update kit for the 4032 to turn it into

a true 8032. This update also allows the user to switch back

and forth between 4032 and 8032 mode. The trick with this

update is that the 4032 has a different keyboard than that ofthe

8032. To get around this problem, they have written in a control

key sequence that allows the user to produce any normal CBM

key sequence desired. For an added bonus, quite a few useful

but normally unavailable special effects can also be produced.

This conversion will not affect the execution of any program

written specifically for the 4032 or 8032. The machine will

behave exactly as expected. The address for Comspec follows

this reply.

In reply to the myth of an extra 64k board for the Pet, it is

partially true. First, the Pet has to become an 8032. From that

point on the extra 64k is no problem, providing you are willing

to shell out $399.00 Cdn. The 64k in question is really the extra

board provided with a Commodore 8096 computer, originally

designed in Great Britain. The 64k is mapped in a really strange

way, though, ft overlays screen memory and ROM when

enabled, and cannot be used from within Basic. Although this

may appear to be a major obstacle in your way, it may not be.

A few software packages have been written for the 8096. For

example: Wordpro 5+, Paperclip Expanded, Calc Result, and

Silicon Office. For a laugh, VisiCalc is also available through

the bootleg community for the 8096. Although VisiCorp origi

nally wrote Pet and CBM versions years ago, they had a fallout

with Commodore before cutting a version for the 8096. Enter

the mysterious hacker. Not only was the package broken

(originally ROMprotected), but it was also converted over to the

8096. Speaking from personal experience, the package is Ok.

Lots of user workspace, and no apparent bugs. I'm sure

VisiCorp wasn 't too happy with that one.

The SFD 1001, as mentioned last issue, is completely read/

write compatible with the now defunct Commodore 8250 drive.

With a little bit of effort, and keeping in mind the fact that the

SFD 1001 uses both sides ofthe diskette, the Commodore 8050

is read/write compatible. The 8050 uses only one side of the

diskette, 77 tracks - 540k, therefore, when an 8050 diskette is

used in an SFD 1001 drive, it will have to be initialized once

before access can begin. The first attempt at initialization will

always err out, but any access thereafter will be Ok. Ifput in the

reverse situation, SFD 1001 diskette in a 8050 drive, it is

completely read/write compatible, providing that no programs

to be accessed span onto the opposite side of the diskette. One

last note to mention before continuing. The SFD 1001 is a

parallel drive, ie. IEEE, therefore anyone wanting to use this

beast with their 64 will also need to purchase an IEEE interface.

As a final wrap up ofyour letter, there is quite a bit of really fine,

and not so fine, software available for both the Pet and CBM

machines. If you were to prowl around a few of the older user

group libraries, you should find plenty of Pet stuff. Contact

TPUG and ask if they can help you with this one. As far as

commercial software goes, there are quite a few packages

available, but locating them may be a bit of a problem now.

The Transactor 1O Volume 6, Issue O5

Packages such as Superscript, Paperclip, Wordpro, Wordcraft, We get some ofthe most unusual letters, but never before one as

VisiCalc, Calc Result, The Manager, Jinsam, Ozz, Pal, Power, unusual as this. For everyone reading, this letter has been

plus great gobs more, are around. Try finding a copy of the reproduced exactly as it was sent to us.

latest 'Commodore Software Encyclopedia \ published by Sams

Books, and take a peek inside. They not only have listings of Sorry for not covering as many languages as hoped for in our

recent software for the newer Commodore machines, but also Languages issue, but it wasn 't due to a lack of effort. For quite

have pages of listings of Pet/CBM software, complete with some time prior to the Languages issue, we chased about trying

descriptions, drive and memory requirements, plus distributors to locate people who would be willing to write about the various

names and addresses. languages available. For our efforts we received many prom

ises, but few results. Such is life. The issue was still good, but did

Comspec not cover the languages as extensively as hoped.

153 Bridgeland Avenue, Unit #5

Toronto, Ontario, Canada About Promal. I contacted their distributor a fair time before the

M6A-2Y6 (416) 787-0617 Languages issue was to begin, but received the package after

Attention: Nick Hooper the issue rolled off the press. The answer to this puzzle came to

me while using the package. The compiler's date stamp was

just days prior to my receiving it. The package wasn't corn-

Pi. Coded Message: pleted until after we finished the issue! Not to rain on Promal's

day altogether, it seems to be a terrific package, one worthy of

Dear Sirs review in some future issue.

PROGRAM LETTER (INPUT, OUTPUT); And finally, I like your tidy bit of advertising. If some of you

TYPE SCALE OF [1... 10]; missed it near the bottom of the letter,

DECUS : FILE OF INFORMATION FOR DIGITAL EQUIPMENT COMPANY here it is again. If you are interested in

TRANSACTOR : FILE OF INFORMATION; otherprogramming languages, you can

CONST VALUE-OF-TRANSACTOR = 10 ON SCALE; contact the National Commodore Lan-

ISSUE-NOVEMBER = 8 ON SCALE; guage Interest Group (NCLIG) at 1812

VAR COMOL, MACHINE : ABUSED; TV. /. Street, in Fremont, NE, Zip 68025,

C ; ENJOYABLE; tel* (402) 721-4346.

GAZETEER OF LANGUAGES : CHAR FROM DECUS;

LOGO : PLEASE;

DONE: BOOLEAN;

DR. ROSS: THANK YOU;

BEGIN;

DONE:= FALSE

WHILE NOT DONE DO;

BEGIN; (*DECUS*)

READLN(DATE-PUBLICATION);

WRITELNf Parts of'.GAZETEER OF LANGUAGES,' were in'.DATE-PUBLICATION);

END; (*DECUS*)

RESET DECUS;

BEGIN; (*OTHER STUFF*)

WRITELN('Where is the Pascal, Ada, Fortran and Promal?');

READLN(WHERE IS THE BEEF);

WRITELNfMaybe programmers should learn an other language, ENGLISH');

END; (*OTHER STUFF*)

LOGO:= 'Why noy use Pilot?'

BEGIN; (*NATIONAL COMMODORE LANGUAGE INTEREST GROUP*)

IF READER = INTERESTED IN OTHER PROGRAMMING LANGUAGES

THEN BEGIN;

WRITELN('Contact NCLIG');

WRITELN('1812 N.I. Street');

WRITELN('Fremont, NE 68025');

WRITELN('[402] 721-4346');

END;

END;

DONE:= TRUE;

END.

Kent Tegels, Fremont, Nebraska

The Transactor li Volume 6, IssueoT

Monitormented: I am the proud owner and user of Commo

dore machines, but I'm having trouble with one of their

animals, namely the 8032 Assembler/Monitor. You see, I don't

have the users manual for the creature and regardless what

commands 1 feed it - .A, .D., .R, etc. - it burps up the " ?". Very

aggravating! I've tried both decimal and hex for starting ad

dresses, accumulator values, etc., to no avail. One of you guys

must know how to feed it. Please HELP.

Randy Guimond, Baie Ste. Anne, New Brunswick

It sounds like you 're referring to the Machine Language Monitor

that resides in the 8032 ROMs. Ifso, it doesn 't do a whole lot. It's

useful, but limited. It has no Assembler, or Disassembler, or any

of the more sophisticated commands found in many MLM

extension programs available. Here is the command set of the

resident MLM (remember, the period preceding the command is

supplied by the machine).

.G Go to a specific address of code, or whatever is in the PC

. L Load a file - syntax L" drive.filename", device* (ie. 08)

M Display computer memory in hex. Syntax; M ssss eeee ;

where ssss is the start 16 bit hex address to view, and eeee

is the ending 16 bit address.

.R Displays registers - alter by typing new hex values over the

existing ones, and hit return

.S Save a file - syntax S"drive.filename",device * (ie.

08),start,end+l

.X Exits to Basic

However, it's also possible you 're referring to a program you are

loading, perhaps from a diskette. As mentioned above, this

would be a monitor extension program. There are many of

these - Extramon, Supermon, Micromon, to name a few - that

link themselves into the resident MLM for extra commands like

Hunt, Fill, Walk, and many more. If this is the case then I'm not

sure which extra commands you may or may not have. If there

are any, a sure clue is the Disassemble command -1 can't think

ofany extension that doesn't include it. (Try .D followed by any

16 bit hex address) Get a copy ofExtramon or Micromon, all in

public domain, and then try your luck. They are guaranteed

Ok.

Whereware: To begin this letter I must congratulate you on

what I consider the best magazine currently available which

covers the Commodore line of computers! PLEASE keep up the

good work and keep the magazines coming!

In the September issue (1985) of The Transactor, there was a

letter from Real Gagnon, of Quebec, asking about a 40/80

column adapter for the VIC-20 from Data-20. As of February of

this year, Data-20 (at the address you listed) still had their 40/

80 column adapter with 16k memory, at a close-out price of

$70.95 including shipping. When I ordered one for my VIC, I

got the impression that they were not moving very fast, so there

may still be some left.

THANKS for the assembler program for the Rockwell R65C02

chip! I have also recently purchased and installed one in my

VIC, and now I can write software for it. Now all I have to do is

to re-write the screen editor in the Data-20 40/80 column

adapter to utilize the new op-codes - and to correct some of the

glitches in the editor.

Also, in regard to the letter from Bill Uhler, of T.R.A.C.E., 1

agree that when the distributor or publisher of software is no

longer in business, it is a pain in the tutu. Keep in mind that

often a copyright is only assigned to the marketing company for

the period that it is in business, and usually reverts to the

author upon the demise of the marketing company. Have you

considered starting a clearinghouse, to keep track of the au

thors and publishers of software for Commodore computers?

You could either get permission from the copyright holder to

produce the software yourself, and charge for the copying, or

you could maintain a database of copyright holders, and sell

lists of the names. If enough people wrote to the author of a

program to request permission to copy it, perhaps the author

would be convinced to either start publishing it again, or

release it to the public domain.

To add my own 2-cents worth to the copy protection contro

versy: I can well understand the viewpoint of the authors and

'publishers' of software, but I am also a buyer of software. There

is only one pirate-prevention method which I have any respect

for - the 'dongle' system as used by Batteries Included on their

Consultant and Paperclip software packages. Not only is the

software first-rate, but I can also make an infinite number of

back-up copies, even give them to my friends, but only one

copy will run at a time! They also make the best 80 column

adapter there is for the Commodore 64! THANK YOU Batteries

Included.

K.J. Rogerson, Farmington Hills, MI

Thanks for the tremendous vote of confidence. It's nice when a

reader takes the time to respond to matters we expose each

issue. Also, Batteries is sure to feel pleased when they read of

the respect you hold for their policies and product line. I agree.

Their products are fine and the dongle protection scheme is top

class. If only a few more software manufacturers felt the same

as the public seems to. Although disk protection is said to be

used to keep prices down, all it usually accomplishes is to raise

the red flag for the pirates, and to keep the legitimate pur

chasers ticked off at the inconvenience.

A clearinghouse is ideal theory, but implementing such a

service would require a lot of legwork, and it seems there are

not enough seconds in a minute as it is. Any volunteers?

More Ad-vice: I was on the brink of writing to you to ask why

you don't include more advertising when in came the Nov 85

issue with John Brunner's letter on the same topic.

The Transactor 12 Volume 6, Issue O5

1 have recommended Transactor to several friends, some of

whom have responded that they don't like the fact that it has no

advertising! 1 like to see some too, especially all the little ones

(things like cheat sheets for example, and specialized software

from little known sources).

It is a good idea to keep it all in one place, and I favour the

middle. It can then be removed without harming the magazine

when the file has to be thinned out maybe six months or a year

after receipt. Wherever it is, it should be bound in such a

manner that the advertising pages can be removed without

releasing the editorial pages. I guess seven pages is a good

number if it includes the back cover.

If you want to keep advertising down, but are in a position to

accept ads, you have the best of both worlds. You can set the

rates at a level which attracts only the number of ads you want

to accommodate. Set the rates deliberately high in the first

place, and if you don't get enough advertisers, reduce the rate

until you achieve the desired amount. And if you are accepting

ads with a certain degree of reluctance, you don't have to worry

about the old adage about who pays the piper calls the tune. It

doesn't apply if the piper has an independent source of income.

R.C. Eldridge Pemberton, British Columbia

Since we published John Brunner's letter of advice, we have

been getting a number of really choice letters to back up

Brunner's philosophy. Bob, thanks for the great advice. You

may be right about the middle section of the magazine. Al

though it would mess up the nice flow we try so hard to attain, it

would have the advantage of being quite easily removed when

no longer required. Super idea.

As for your idea of setting rates as high as possible, then

adjusting to get just the right amount of advertising, another

bright idea. How does $5000.00 per page sound to start with?

Although ourprint run is far below many ofour competitors, we

do cater to a more select crowd of people. We feel that our

readers are the ones that write the software, design the hard

ware, and pull the trigger of the industry, as it relates to

Commodore. How's that for cheeky. An advertiser with the

right product would get a much better response with us than

with our competition. The problem is that advertisers with

quality products like to have their ads placed alongside similar

products to allow comparison by the readers. Although we

could sift out all but the ads for quality products, it might mean

discriminating between two equally "paying customers" which

isn 't fair. But we 're working on it! Thanks again.

CP/M In The Transactor?: I have been very pleased with

the technical nature of your magazine. I only wish I could buy

12 issues a year. Keep up the good work. I have a few thoughts

that keep running through my head that I'd like to pass on to

you.

First, I was wondering now that I've bought a C128, do you

intend to deal with the CP/M in the same way as CBM topics or

would we be better advised to subscribe to a CP/M oriented

magazine such as Dr. Dobb's or Language? I ask this because

CP/M is almost an entirely new world, as is the Amiga, and to a

lesser extent the C128.1 have serious reservations that justice

can be done to all this new material.

Second, I would like to respond to your intent to marginally

increase the advertising content of your magazine. I, and I

suspect many others, have mixed feelings on the subject. I

think that advertisements can be an important source of infor

mation to the reader (I will, on occasion, buy a Byte just for a

listing of available products on the market). Advertisers are

obviously an important source of revenue to your magazine. I

think that for your own growth as a competitive magazine you

cannot ignore the necessity of incorporating more advertise

ments. Unfortunately, advertisements traditionally tend to pro

vide little substance to a magazines content. I would like to

suggest some possible remedies of a somewhat radical nature:

I - Enforce advertising standards. (I don't know if this has ever

been done?) Insist that advertisers include user information of a

technical nature. Make advertisements a coordinated segment

of your magazine. I would like to see cost, content, compari

sons, and more. If advertisements provided all of that then

maybe people would be more accepting of them. (Can you tell

advertisers what to do?)

II - Allow advertisements only on a annual basis (or longer) and

charge more. This would require an index of some nature. This

index could be cross-referenced by company and subject with

advertisers paying for extra index entires. You could even

expand the index to include references to Transactor articles.

(Am 1 getting carried away here?) In any case, under such a

plan, the information content goes up and the number of ads

goes down.

III - Institute reader service cards. Incomplete information is

often more irritating than no information. User cards put

complete information within easy reach and, in my view, make

advertisements much more palatable. I know that one of the

primary reasons I am a computer nut is because I am an

information nut. The more quality information you make

available, the more I like you.

By incorporating these concepts, all parties should be happy.

Readers have a better quality advertisement and an index to

allow comparison shopping when they are interested in it.

Transactor can keep down the space required for advertise

ments while at the same time increasing their advertising base.

Advertisers are insured that readers who are interested in their

product have easy access to their information for an extended

period of time via the index. This format would also encourage

advertisers to place ads in issues whose content relates to their

product.

The Transactor 13 Volume 6, Issue O5

Finally, have you seen Info Magazine's method of providing

disk versions of their listings? Rather than selling by issue, they

let you choose what you want and you get charged by the

number of disks sent. I find myself not ordering disks because I

have little interest in half of what's on the disk. I would

recommend that you consider this method. It is an exception

ally well conceived idea, and it would fit in well with an already

well put together magazine.

Eric B. Wolff, Cinti, OH

We do not intend to cover the CP/M option of the C128 to any

great extent. Many ofthe other magazines have been operating

in CP/M foryears now, so it would be difficult for us to break in

so late and expect to compete. Covering the Amiga is another

story, though. The Amiga appears to be a fresh, new entry in a

market stagnating with compatibles and clones, and as such

deserves a little press ala The Transactor. As a matter of fact,

just a few days ago a friend of mine, Jesse Knight, called from

Texas to offer his services in the Amiga writing department.

Jesse has an Amiga development system and is so impressed

with it that he can't wait to tell the world. We should have our

own Amiga pretty soon and The Twill be firmly on the receiving

end of our own Amiga discoveries.

About your advertising comments, not too bad. We appreciate

the time and effort you must have spent in composing your

letter.

You have probably read the answer to our previous letter by

now. Once again, we're working on it, and thanks again for the

suggestions. As for the index, you probably have not seen some

of the earlier Transactors. Each had an Advertising Index that

looked much like what you describe, but quite frankly, they

didn t leave much of an impact with our readers or advertisers.

Or am I wrong here?

Making additional technical info a mandatory advertising

requirement would be terrific for the readers. Advertising that

actually lasts longer then the turn of a page. A sharp concept.

But it would be difficult to enforce and we might end up right

where we are - no advertisers. Indeed there are many aspects

to examine.

Including a reader service card would be a natural for us if we

start running ads again. Not only would it appeal to the

advertisers, but it would also provide a better service to our

readers. Our ads won't come cheap, but then quality goods

usually don't.

The last point mentioned regarding Info Magazine's disk serv

ice is hard for me to comprehend. We deal in such a vast

number of diskettes every issue that a custom selection would

be next to impossible. For us, the idea would not be feasible

even with reduced sales. Our staff is just not large enough to

provide such a service plus get a magazine out. Sorry to say that

the idea sounds great for the consumer but would be difficult to

provide from our viewpoint. We're considering making our

programs available for downloading from a timesharing serv

ice. However, downloading just two or three programs from

one disk might costjust as much as the disk itself. Downloading

three programs from three different disks might save you

money, but the service may not have space for more than one of

our Transactor disks at a time.

As a final note, I would like to thank you for your ideas.

Through advice like yours will be built a magazine that will

appeal to everyone associated with it. Thanks once again.

Medium Interest: If the magazine appears on microfiche, I

will immediately switch my subscription to that medium. I will

also order as many back copies as I can afford. There are

certainly many others in your readership who will do likewise.

Jim Alix, North Vancouver, British Columbia

Alright! Another vote for microfiche. That adds up to two so far.

For everyone reading who is so inclined, the microfiche ques

tion remains unresolved. We need your letters to qualify our

decision to provide microfiche service. Thanks for taking the

time to write.

SX Effects: I presently own a 64-SX computer with a single

disk drive. I would like to add one more disk drive to the

computer but can't get an answer from Commodore. Any help

you could give me would be appreciated.

Tim Fucile, Thunder Bay, Ontario

To get the answer to your question, I went to the local SX64

expert, Jeff Goebel. His answer was yes, you can add an extra

drive or two to the SX64. Of course ifyou add a drive that has a

device number of 8, you 11 have two device 8's. Not good. So the

trick is to change the unit address of the internal drive first, say,

to *9:

open1,8,15

print#1, " m-w" chr$(119)chr$(0)chr$(2)chr$(9 + 32)chr$(9 + 64)

Then plug in the external drive and use it as device *8.

Ifyou want the internal drive to be *8 and the external drive *9,

you 11 have to do some juggling. First you 11 have to send the

internal drive number "to a neutral corner". Change it to, say,

*15 by replacing the two 9 + in the above command string with

15+. Then plug in the external drive *8, change it to *9, and

change *15 back to *8. You'll have to open two command

channels, one for each device.

The reason for the computerized gymnastics is because you

cannot turn offthe internal drive separate from the SX64. When

you connect an external drive that is still wired for device *8,

you can't change the device number of one without changing

The Transactor Volume 6, Issue O5

them both. A seperate power switch for the drive would have

been ideal.

We get an awful lot of letters in our mailbox every working day

and can imagine Commodore getting several times more.

Answers often take time and research. To everybody who has

ever sent us a letter but has not received a reply, please do not

take it personally. It gives us great pleasure to get such reader

response. However, economizing on answers is all too often

necessary. It means we have to select an intersection set of

questions. Commodore is no doubt bound by the same eco

nomics. Perhaps getting less questions than Commodore is one

reason we have time for the occasional exception.

Bloops Blues: Not being sure if it's misprints or me, I am

writing for help regarding a couple of programs in the Volume

5, Issue 04 of Transactor. (I think that's right, but not sure as on

page 1 upper left in large letters it says issue 5. On bottom right

of all the pages it says issue 4)

To help pinpoint the issue, it starts with a Hildon article " We're

so Misunderstood!"

First problem dealt with program by Rick llles in the Bits &

Pieces section. After entering program name and type, disk

runs (red light on) then screen goes to READY, keyboard locks

up and drive led flashes. I have a C64 so entered the 4 changed

lines 110, 120, 130, 300. Even tried it after changing 130 to

read ,.*peek(56):s = t & still no go. (yes, have proof read the

entries against the printed cbpy)

Next comes " Learning the Languages of DOS" by Evers. On

page 50, he writes ". . ..check article 'Drive Peeker' in this

issue." Well, I've looked and looked and didn't find any article

titled 'Drive Peeker'; am I going blind?

Further, I typed in memory read program. It will not accept any

$0000 or any number with an alpha character in it, as a start or

end address. So I entered a number like 0300; however, the

screen listing didn't start at 0300, the same was true no matter

what starting number I used.

1 will say though that I found all the articles to be informative

and well written.

N.J. Schoenmaker, Ludington, Michigan

To clarify, the title of the issue in question is 'Hardware and

Peripherals', Volume 5, Issue 05, dated March 1985 but actually

released around Decemberl984. The designation ofIssue 04 on

the bottom of each page was caused by a minor slip during

typesetting. We forgot to update the border routine to reflect the

correct Volume and Issue numbers. We had hoped nobody

would notice.

Rick llles Single Disk Copy Program will work by changing line

130 to read:

130 t = peek(55) + 256*peek(56): s = t

As you specified, location 46 was referenced instead of 56. But

after this change, the program works fine as printed.

My 'Drive Peeker' article did make it to the type shop for that

issue, but was not printed due to priorities. We had such a

multitude of great articles that Drive Peeker got the boot. The

sad part is that my 'Learning . . .' article was not updated to

reflect this last minute cut. Drive Peeker did appear in the issue

following, Volume 5 Issue 06, Programming Aids and Utilities,

on page 71.

The Memory-Read demonstration program in the 'Learning

The Language of DOS' article does work as listed. When you

run the program, though, you must enter the start and ending

address to view in decimal, not hex. The routine will display the

disk contents in Hex andAscii, along with showing the current

location within DOSRAM orROM in 16 bit hex at the beginning

of each eight character line. The program works, but could

have used a bit more explanation I suppose.

Thanks for the final vote of confidence at the end ofyour letter.

It's letters like yours that keep us on our toes.

SuperPet Switch Glitch: I have a few questions that I hope

either you or your readers will be able to help me with. I

recently purchased a Pet system. It consists of a Super Pet

(SP9000), D9090 and 2031 Disk Drives, and a 8023P Printer.

My first question regards the two three position switches

located on the right side of the Super Pet. I have found that the

one switch, marked 'Prog-6502-6809' selects from Waterloo to

CBM Basic. The second switch seems to make no difference in

operation of the computer regardless of its position, it is

marked 'Prog-R/W-Read', what do these two switches really

do?

As you may have guessed, I do not have a SP9000 manual. I

received a 'Series 8000' manual. Is this the correct manual or is

there a SP9000 manual and should I try to get one? The only

software that I received was 'The Manager' with its two man

uals and the required 'dongle' to run it. I would greatly like to

get hold of the 'Waterloo' language programs for the SP9000. I

have all the manuals, Basic 6809, assembler, micro apl, micro

pascal, and micro fortran, but no programs. Any information as

to where I could get these programs would be greatly appreci

ated.

With the help of a friend I have found out how to run my C64

basic programs on the SP9000, so I found some uses for the

SP9000, but not the one I really want.

C. Daniel Schein Jr.

2455 McKinley Avenue

West Lawn, PA 19609

The Transactor 15 Volume 6, Issue O5

The SP9000 has 32k of user RAM at $0000-$ 7FFF, screen RAM

at $8000-$8FFF, plus an extra 64k of Bank Switched RAM at

location $9000, accessed in 16-4k blocks. In 6809 mode, with

an interpreter Loaded and executing, this RAM is not to be used.

The Interpreter lives in it. But, if working from 6809 assembler,

or in any mode with the 6502 processor, this area is open for

whatever use you may have.

There are two memory locations that are important for use

when programming the SP9000. They are:

$EEF8, the System Latch

$EEFC, the Bank-Select Latch

The bit configurations are listed below.

SEEF8 System Latch

Bit Description

0 CPU Select: 0=Motorola 6809, I = MOS 6502

1 Memory Protect: 0=Read Only, 1 = Read/Write

2 Unused

3 Diagnostic Sense

4-7 Unused

If the toggle switches are not set to their 'Prog.' positions, all

work with the System Latch will be ignored. Bit 3 should be set

before switching into MOS 6502 mode. This has been imple

mented due to the destructive reset sequence the Pet follows on

reset. When the Diagnostic Sense is set, this reset sequence is

not followed, thereby retaining RAM in transit.

$EEFC Bank-Select Latch

Bit Description

0-3 RAM Bank Number In Use: 0-15

4-6 Unused

7 Must be set (1) when accessing the System Latch,

otherwise should be cleared (0).

The two three position switches perform the following func

tions.

Switch #1

Read When set, is the Read Only position ofthe bank switched

RAM at $9000.

R/W When set, allows Reading from and Writing to the RAM

at $9000.

Prog. Software control of the write protect state of the RAM at

$9000 (see System Latch).

Switch *2

6809 The Motorola 6809 and Waterloo operating system is

provided in this position.

6502 The MOS 6502 and Commodore operating system is

provided in this position.

Prog. Selection of the processor in use through software con

trol (see System Latch).

The manuals supplied with the SP9000 were as follows:

The Commodore Business Computer User's Guide Series 8000

The Commodore SuperPETSystem Overview

The Commodore SuperPET Waterloo 6809 Assembler

The Commodore SuperPET Waterloo microAPL

The Commodore SuperPET Waterloo microBASIC

The Commodore SuperPET Waterloo microCOBOL

The Commodore SuperPET Waterloo microFORTRAN

The Commodore SuperPET Waterloo microPASCAL

The last time I looked, SAM's books carried all ofthe SuperPET

manuals listed above.

Two diskettes were supplied with the SP9000:

1. "The Commodore WCS", which contains the Waterloo APL,

Basic, Cobol, Fortran, and Pascal interpretated languages,

the 6809 Assembler-/Editor system, plus the Waterloo library

routines, and

2. The Commodore Tutorial diskette, which contains all of the

tutorial examples referenced by the various software man

uals supplied.

Both diskettes were once a standard stock item for Commodore

here in Canada, but that was a few years ago. You could try to

contact Commodore up our way for help, or maybe even

Commodore down in West Chester. You never know. Commo

dore may have some old stock still kicking about. Just in case

they don't, I have included your complete address at the bottom

ofyour letter. Hopefully, a kind reader will contact you to offer a

few suggestions. If all else fails, you could contact The Univer

sity of Waterloo in Waterloo, Ontario, Canada. Although ru

mour has it that they don't support the SuperPET any longer,

they won't bite you for trying.

Please remember, even if you don't succeed in your quest for

SuperPET information, the machine still makes a great com

puter. As explained earlier in this column, the 40 and 80

column Pets had quite a selection of top notch software on the

market before the advent of the 64. Just find a copy of the

Commodore Software Encyclopedia (SAM's Books), and go

shopping. Between the software listed in this book, plus the

great scads ofsoftware available through many of the older Pet

users groups, there should be no trouble in locating plenty of

good software. Best of luck.

Th© Tronsoctof 16 Volume 6, Issue O5

TransBASIC

Installment #7

Nick Sullivan

Scarborough, Ont.

TransBASIC Parts 1 to 3 Summary:

Part 1: The concept of TransBASIC - a custom command

utility that allows one to choose from a library only those

commands that are necessary for a particular task.

Part 2: The structure ofa TransBASICmodule - each TransBA

SIC module follows a format designed to make them simple to

create and "mergeable" with other modules.

Part 3: ROM routines used by TransBASIC - many modules

make use ofROM routines hurried inside the Commodore 64.

Part 3 explains how to use these routines when creating new

modules.

Part 4: Using Numeric Expressions - details on how to make

use of the evaluate expression ROM routine.

Part 5: Assembler Compatibility - TransBASIC modules are

written in PAL Assembler format. Techniques for porting them

to another assembler were discussed here.

Part 6: The USE Command - The command ADD' merges

TransBASIC modules into text space. However, as more mod

ules are ADDed, merging gets slow. The USE command was

written to speed things up. USE also counts the number of

modules USEd and updates line 95 automatically.

To take advantage of the TransBASIC command system, one

must first obtain a copy ofthe TransBASIC Kernel. The Kernel is

only about 500 bytes long, but the source listing of the Kernel is

quite long and can't be printed each time. Volume 5, Issue 05

(Hardware & Peripherals) contains the printed listing, however

The Transactor Disk for every issue will include this file, plus

files from the current and all previous TransBASIC articles.

TransBasic Part 7

If you have been following TransBASIC for the last several

issues, you will be relieved to learn that this installment is

rather shorter than the two that preceded it. This is due to a

lack of time, however, not to a lack of fresh modules, which are

in plentiful supply.

Darren Spruyt is back this issue with a set of three editing

commands. Included are a block delete, automatic line num

bering, and line renumbering. The AUTO command in Dar

ren's module works by intercepting the BASIC warm start

vector. This marks the first time that TransBASIC has altered

any system vector apart from those used by the kernel, and it

introduces the possibility of a new problem that we will have to

deal with.

The problem will arise when more than one module changes

the same vector. When you build a TransBASIC dialect, the

various modules you merge into the source code have no

knowledge of each other and, if they happen to want to use a

vector, there is no way for them to take into account the

possibility that other modules might also be claiming that

vector for their own purposes. It is not very likely that the

resulting conflict would be peacefully resolved, and a crash

would probably ensue.

I suppose it would be possible to graft some supervisory routine

onto the kernel even at this late date, which could arbitrate

access to the various vectors in some reasonable way. How

ever, it seems better to me to deal with vector conflicts manu

ally. To make this easy requires only that we establish a couple

of rules to be followed in writing modules that alter vectors.

The first rule is that the routine to initialize the vector should be

called from a line within a special area of source code labelled

'MORVEC; and that the routine to restore the vector should be

called from a another area labelled 'KILVEC. MORVEC is

permanently assigned lines 9162 through 9180; KILVEC gets

the next twenty lines, from 9182 to 9200. The code in these

areas is executed with JSR MORVEC on line 2125, and JSR

KILVEC on line 2555. These instructions must also be included

in any module that alters vectors.

The second rule requires that if a particular vector has been

used by an existing module, the lines assigned to it in MORVEC

and KILVEC are also to be used in any future module that alters

the same vector. This will mean that if both modules occur in

the same dialect, only one will function, since the second one

to be merged will overwrite the initialization call of the first.

This might be a nasty surprise, but it should avoid crashes.

By the way, a thorough discussion of vector conflicts, and of

what can be done about them, can be found in Chris Zamara's

article, 'Flexible Vector Management', in Volume 6, Issue 2.

Another module in this issue comes from Anton Treuenfels,

who has provided versions of RESTORE, GOTO and GOSUB

with computed destination lines. Anton's own version of this

module used the keywords CRESTORE, CGOTO and CGOSUB.

However, the native BASIC command is in each instance a

subset of the computed command, so I dropped the Cs for the

version published here. Decoding the line numbers via the

The Transactor 17 Volume 6, Issue O5

expression evaluator, as this module does, is going to be a hair

slower than the conversion routine used by the ROM, but this

won't often matter. If you would prefer to have the ROM

commands co-exist with Anton's computed commands,

change the keywords back. (This is not necessary with RE

STORE, of course, since the ROM version won't accept a line

number anyway.)

The other modules in this issue provide a couple of commands

borrowed from LISP via LOGO (the FIRST$(and BF$(func

tions), and a command to return a random integer in a specified

range.

Last issue The Transactor published a very handy unassembler

for the C-64, by J. Lothian of Ottawa. Unfortunately for PAL

users, the program generates sequential files of assembly lan

guage source code, without numbers. Such files are used by the

Commodore assembler, but are not compatible with PAL.

Converting from one format to the other is not arduous,

however. The short BASIC program given as Program 5 will

take care of converting the sequential file to a numbered

program in memory. There will still be some editing needed to

make the file fully PAL-compatible — as a start, you'll need to

delete the conversion routine itself, and put a SYS 700 line at

the top of the file.

Next issue, look for a multicolour graphics package from

Darren Spruyt, a modified INPUT or two, and more.

New Commands

AUTO (Type: Statement Cat #: 136)

Line Range: 9406-9480

Module: PRG MANAGEMENT

Example: AUTO 100,10

Begin automatic line numbering from line 100, with incre

ments of 10. This command intercepts the BASIC warm start

vector at $0302. It will not be compatible with any future

TransBASIC commands that use this vector.

DEL (Type: Statement Cat *: 137)

Line Range: 9234-9404

Module: PRG MANAGEMENT

Example: DEL 275-890

Example: DEL -

Delete specified lines. The line number syntax is the same as

the LIST command, except that DEL by itself does nothing. The

second example is equivalent to NEW — be careful.

REN (Type: Statement Cat#: 138)

Line Range: 9482-10096

Module: PRG MANAGEMENT

Example: REN 300-600,20,5

Example: REN 10,1

Renumber a range of lines with a specified new starting line

number and increment. Statements with target line numbers

(GOTO, GOSUB, ON-GOTO, etc.) are modified accordingly,

with the exception of LIST and RUN. If no line range is given, as

in the second example, the whole program is renumbered.

RESTORE (Type: Statement Cat *: 139)

Line Range: 10124-10148

Module: COMPUTED CMDS

Example: RESTORE

Example: RESTORE 1200

Example: RESTORE N +100

Identical to BASIC'S RESTORE statement except that, as in the

second example, a line number may be given specifying a point

in the program at which the next data read is to begin. The line

number is evaluated as a BASIC expression, hence the third

example is legal.

GOSUB (Type: Statement Cat#: 140)

Line Range: 10150-10180

Module: COMPUTED CMDS

Example: GOSUB SQR(PX + C°/o(6))*RND(1)/SIN(1.2)

This is a computed GOSUB. The target line is determined by

evaluating the expression after the GOSUB keyword.

GOTO (Type: Statement Cat #: 141)

Line Range: 10182-10188

Module: COMPUTED CMDS

Example: GOTO 100

Example: GOTO BLAZES

This is a computed GOTO. In the second example, the target

line is the determined by evaluating the variable BLAZES.

RANDOM((Type: Function Cat #: 027)

Line Range: 3216-3268

Module: RANDOM

Example: FOR 1 = 1 TO 220: PRINT RANDOM(100,999);

:NEXT

A random integer is returned in the specified range (inclusive).

The range boundaries are treated as integers.

FIRST$((Type: Function Cat *: 028)

Line Range: 3330-3452

Module: PHRASE SPLITTERS

Example: PRINT FIRST$(" TRIALS, TROUBLES,

TRIBULATIONS")

The first word in the string argument is returned, up to but not

including the first space or shifted space. Leading blanks are

ignored. If the string is null or consists only of blanks, a null

string is returned.

BF$((Type: Function Cat *: 029)

Line Range: 3334-3452

Module: PHRASE SPLITTERS

Example: PRINT BF$(BF$(BF$(A$)))

The argument string is returned beginning with the space or

shifted space after the first word. BF stands for 'but first', after a

LOGO primitive with a similar purpose. If the argument string

is null, or consists only of blanks, or has only one word and no

trailing blanks, a null string is returned.

The Transactor 18 Volume 6, Issue O5

NG

FH

GH

HH

DJ

JH

NJ

FD

FD

OE

OH

PJ

Al

FK

HA

IC

EL

01

AJ

MA

BH

ON

HM

NH

AM

EE

EJ

Gl

AL

Kl

OD

NF

NF

GM

CF

MJ

ID

KN

GG

FN

MH

IE

El

GO

CH

HK

OM

AF

EJ

OK

EJ

GL

EJ

KP

Gl

HB

LL

EK

Program 1 : PRG MANAGEMENT

0 rem prg management (d.
1 :

spruyt 1985):

2 rem 3 statements, 0 functions

3:

4 rem keyword chars: 10

5:

6 rem keyword

7 rem s/auto

8 rem s/del

9 rem s/ren

10:
1 -| .

12:

139.

1139

2125

2555

2620

2622

2624

2626

2628

2630

2632

2634

9150

9152

9154

9156

9158

9160

9162

9164

9178

9180

9182

9184

9198

9200

9202

9204

9206

9208

9210

9212

9214

9216

9218

9220

9222

9224

9226

9228

9230

9232

9234

9236

9238

routine

car

dlt

rnum

asc "autOdeLreN"

.word car-1,

jsr

jsr

usfp Idx

stx

sta

sty

Idx

sec

jmp

i

errpgm Idx

inx

bne

rts

epg1 jmp

i

morvec =

jsr

rts

I

kiivec =

jsr

rts

\

autoff Ida

sta

Ida

sta

rts

auton Ida

sta

Ida

sta

Ida

sta

Ida

sta

rts

;

dlt jsr

jsr

Idx

line ser#

9406 136

9234 137

9482 138

dlt-1 ,rnum-1

morvec

kiivec

#0

$0d

$62

$63

#$90

$bc49

$3a

epg1

$afO8

auton

*

autoff

wrmsrt

$302

wrmsrt +

$303

$302

wrmsrt

$303

wrmsrt +

#>auto

$303

#<auto

$302

errpgm

$a96b

#$50

;test hi byte of

; "curlin" = $ff

;no

;'syntax'

;warm start $302

;warm start $302

1

1

;get fixed pt number

AC

KA

OD

OB

OD

KL

OA

Ml

CF

DC

LJ

JM

FF
r\i
UL

GF

DA

BN

HH

JD

PH

KG

BP

CM

OD

OH

DG

IK

GN

HB

II

DB

Ml

GO

MM

AB

FA

CF

AN

OJ

BD

EE

FL

NE

DN

AH

CF

GK

OB

BC

LC

GL

GG

DN

GK

El

GG

CM

NJ

DD

AC

9240

9242

9244

9246

9248

9250

9252

9254

9256

9258 dlt1

9260 dlt2

9262

9264
oocc
9266

9268

9270

9272

9274

9276

9278 dlt3

9280

9282

9284 dlt4

9286

9288

9290

9292

9294

9296

9298

9300

9302

9304

9306 dlt5

9308

9310

9312

9314

9316

9318

9320

9322

9324

9326 dlt6

9328

9330

9332

9334

9336

9338 dlt7

9340

9342 dlt8

9344

9346

9348

9350

9352

9354 dlt9

9356

9358

jsr store

cmp#$ab

bne dlt2

jsr $73

bne did

Ida #$ff

sta $52

sta $53

bne dlt4

jsr $a96b

sec

Ida $14

sta $52

sbc $50

Ida $15

sta $53

sbc $51

bcs dlt3

jmp $afO8

inc $52

bne dlt4

inc $53

Idx #$50

jsr uns

jsr $a613

Ida $5f

sta $22

Ida $60

sta $23

Idx #$52

jsr uns

jsr $a613

jmp dlt11

sec

Ida $2d

sbc $5f

sta t2

Ida $2e

sbc $60

tax

inx

Idy #0

beq dlt7

Ida ($5f),y

sta ($22), y

iny

bne dlt6

inc $60

inc $23

dex

bne dlt6

cpy $02

beq dlt9

Ida ($5f),y

sta ($22), y

iny

bne dlt8

tya ;calculate

clc

adc $22

;save it

;" -" token value

;if no top, then

;set upper

;limitto$ffff

;get fixed ptnum

;movetop line

;num to ($52)

;and check that

;num2 >= num1

;'syntax'

;bump num2

;num1 to ($14)

;find line

;copy pntr

; to ($22)

;num2to($14)

;find line

;skip over seg

;move from

; ($5f)-($2d)

; to ($22) t

;calc pages

;+ remainder $02

;init .y

transfer data

;more pages

;yes

;copy remainder

; new start-of-

; variables pntr

The Transactor 19 Volume 6, Issue O5

Kl

HL

ND

CM

FJ

Gl

JB

JC

AC

IJ
I/O

KB

LN

OG

DB

DE

KJ

GC

DL

IF

FK

DO

GK

CD

GJ

Al

NL

HH

PE

OK

OM

IG

BJ

GE

EE

IL

HP

LH

MB

HE

GF

EL

KO

BJ

IL

FH

MJ

LB

ED

MA

PH

NC

PL

Fl

KN

GO

EJ

KC

EF

PM

CL

9360

9362

9364

9366 dlt10

9368

9370

9372 dlt11

9374

9376

9378
noon .
yoou ,

9382 store

9384

9386

9388

9390

9392;

9394 uns

9396

9398

9400

9402

9404 ;

9406 car

9408

9410

9412

9414

9416

9418

9420

9422

9424;

9426 auto

9428

9430

9432 aut1

9434

9436

9438

9440

9442

9444

9446 aut2

9448

9450 aut3

9452

9454 aut4

9456

9458

9460

9462

9464

9466

9468

9470 aut5

9472

9474

9476

9478

The Transactor

sta $2d

bcc dlt10

inc $23

Ida $23

sta $2e

rts

jsr dlt5

jsr $a533

jsr $a659

jmp $a474

Idy $14

sty 0,x

Idy $15

sty 1 ,x

rts

Idy 0,x

sty $14

Idy 1,x

sty $15

rts

jsr errpgm

jsr $a96b

jsr aneval

sta step

Ida $51

Idy $50

Idx #1

stx cont

jmp aut3

Idy $200

bne aut1

sty cont

Idy cont

beq aut5

Ida $14

clc

adc step

bcc aut2

inc $15

tay

Ida $15

jsr strng

Idy #$ff

iny

Ida $100,y

sta $277,y

bne aut4

Ida #$20

sta $277,y

iny

sty $c6

Ida wrmsrt

sta $14

Ida wrmsrt +

sta $15

jmp ($14)

;move mem

; re-chain

;clr/fix pntrs

;return to ready

;copy from

;($14)to

;0,x

; copy from

;0,x

;to($14)

;auto function

;get num

;evaluate expr

;step value

;set flag

;print value

;($302) vector

;line entered

;zero lock

;get lock

;no go

;take currline#

;and add step

; value to it

;make string

;push string

; into kb buffer

;add space

;set buff chars

;create indirect

1

;jmpthru

OH

OA

El

AM

DD

CC

Ol

GB

Cl

JD

MA

EC

IJ

Cl

PD

IO

CK

KC

EK

Ol

LE

OG

LJ

IA

FF

FP

HP

CA

GA

IE

CC

BH

AJ

NC

EB

EO

LB

II

BE

AN

GG

NC

EE

GC

II

NC

NM

DL

Dl

PF

MC

Jl

IL

BK

PC

EH

DN

MJ

IB

KE

2O

9480;

9482 rnum

9484

9486

9488

9490

9492

9494

9496

9498

9500 mm1

9502 rnm2

9504

9506

9508

9510

9512

9514

9516

9518

9520

9522

9524 rnm3

9526

9528

9530

9532

9534

9536

9538 rnm4

9540

9542

9544

9546 rnm5

9548

9550

9552

9554

9556

9558

9560

9562

9564

9566

9568

9570

9572

9574

9576

9578

9580

9582

9584

9586

9588

9590

9592

9594 rnm6

9596

9598 rnm7

jsr errpgm

jsr $a96b

cmp #$ab

bne mm3

Idx #$45

jsr store

jsr $73

cmp #$2c

bne rnm2

jmp $afO8

jsr $79

jsr $a96b

cmp #$2c

bne rnm1

Idx #5

jsr store

jsr $73

jsr $a96b

cmp #$2c

bne rnm1

beq rnm4

Idy #0

sty $45

sty $46

dey

dey

sty t5

sty t6

jsr aneval

inc t5

bne rnm5

inc t6

Ida $45

sta $14

Ida $46

sta $15

jsr $a613

Ida $5f

sta $ac

Ida $60

sta $ad

Ida t5

sta $14

Ida t6

sta $15

jsr fndlin

Idy #1

Ida ($5f),y

beq rnm7

Idy #3

Ida ($5f),y

cmp $ab

bne rnm6

dey

Ida ($5f),y

cmp $aa

bcs rnm7

jmp $b248

Ida #0

;eval num

;" -" token

;save start line

;disallow comma

;'syntax'

;eval num

;comma required

;save end line

;eval num

;comma required

;if no start/end

; were specified

; renumber whole prg

;eval start/step

;bump end

;($45)to($14)

;find line

;($5f) to ($ac) as

; pntr to start of

; section to be

; renumbered

;($05)to($14)

;calc new top line#

;link zero-okay

;next line hi

;new top hi

;next line lo

;newtoplo

;no conflict

;illegal quantity

;clr on/goto/gosub

Volume 6, Issue O5

JD

GO

AB

PD

KE

DN

OG

JG

LB

HK

HI

BH

NK

01

AM

CA

Kl

IA

CM

MA

LF

CE

BD

HG

GB

NP

NP

DA

ND

ED

GM

DH

JO

EC

HK

EB

HN

OD

AK

AC

FF

ON

FL

DF

PE

OP

LG

NH

FP

OL

PK

BK

FA

MO

KA

DA

OH

BL

IJ

KG

9600

9602

9604

9606

9608

9610 rnm8

9612

9614

9616

9618

9620

9622 rnm9

9624 mm10

9626

9628

9630

9632

9634

9636

9638

9640

9642

9644

9646

9648

9650

9652 rnm11

9654

9656

9658

9660

9662

9664

9666

9668rnm12

9670

9672

9674

9676 rnm13

9678

9680

9682

9684

9686rnm14

9688

9690

9692

9694

9696

9698

9700

9702

9704

9706

9708

9710

9712 mm15

9714

9716

9718

sta onflg

Ida $2b

sta $3f

Ida $2c

sta $40

Idy #2

Ida ($3f),y

sta $39

iny

Ida ($3f),y

sta $3a

iny

Ida ($3f),y

beq rnm14

cmp #$3a

beq rnm14

cmp #$89

beq rnm16

cmp #$8d

beq rnm16

cmp#$cb

bne rnm11

jsr nxtchi

cmp #$a4

beq rnm16

bne rnm10

cmp #$a7

bne rnm12

jsr nxtchi

cmp #$30

bcc rnm10

cmp#$3a

bcc rnm17

bcs rnm10

cmp #$91

bne rnm13

sta onflg

jmp rnm9

cmp#$2c

bne rnm9

Ida onflg

beq rnm9

bne mm16

Idx #0

stx onflg

cmp #$3a

beq rnm9

Idy #1

Ida ($3f),y

beq rnm15

tax

dey

Ida ($3f),y

sta $3f

stx $40

jmp rnm8

Idx #5

jsr uns

jsr number

jsr $a659

; flag

;start-of-basic

; to ($3f) trace

;copy line number

;to ($39)

;get byte

;zero byte

;colon

;goto token

;gosub token

; go token

; followed by to

;token to

;then token

;check for

; numeric

;on token

;set on flag

;commas

;fetch next byte

;on not active

;on active

;clr on state

;colon

;fetch next

;check link hi

;end of memory

;get link lo

;start new line

;renumber lines

;clr

GD

Nl

PA

AO

EK

IL

FB

OC

NM

FG

CD

IK

FN

GJ

BP

ON

GB

IP

Fl

PJ

IA

Al

Cl

DG

IC

AG

JL

GG

GG

DL

OL

JN

FM

AO

AO

BM

OF

NB

JK

IA

EG

KJ

LM

PM

LA

PP

LD

IL

GL

LN

MK

JB

HH

Bl

LP

CD

NM

LL

MG

BK

9720

9722rnm16

9724rnm17

9726

9728

9730 ;match

9732rnm18

9734

9736

9738

9740

9742

9744

9746

9748

9750

9752

9754

9756

9758

9760

9762

9764

9766

9768

9770

9772

9774

9776

9778

9780

9782

9784

9786

9788

9790;lineto

9792rnm19

9794 rnm20

9796

9798 rnm21

9800

9802

9804

9806

9808

9810

9812

9814;addin

9816

9818

9820

9822

9824

9826

9828

9830

9832

9834

9836

9838 rnm22

jmp $a474

iny

jsr rnm18

Idy $97

jmp rnm10

for change

jsr nextch

sty $97

clc

tya

adc $3f

sta $7a

sta $41

Ida $40

adc #0

sta $42

sta $7b

jsr $79

jsr $a96b

sec

Ida $7a

sbc $41

sta t2

sec

Ida $14

sbc t5

Ida $15

sbc t6

bcs rnm19

sec

Ida $14

sbc $45

Ida $15

sbc $46

bcs rnm20

be renumbered

jmp rnm31

jsr fndlin

Idy #$ff

iny

Ida $100,y

bne rnm21

tya

sec

sbc t2

bmi rnm26

beq rnm28

.a spaces

sta t2

sec

Ida $38

sbc $2e

bne rnm22

sec

Ida $37

sbc $2d

cmpt2

bcs rnm22

jmp $a435

Ida $41

;'ready.'

;next char

; change l#

; restore .y

;return

;cutthru space

;save .y

;fix chrget

; to .y plus

; ($3f) - also

;to($41)

; set flags

;eval number

;find length

;of

;chk number is

; in range

;line above top

;line below bottom

here

;figure newl#

;newlineat$100

;new length

;sub initial len

; remove some

;right size

;check for space

;between end of mem

;and start of

variables

;space available

;out of memory

;start of block

The Transactor 21 Volume 6, Issue O5

GH

IN

KD

FP

PG

MG

CN

DF

CJ

GP

AG

IM

Cl

GG

HM

NB

DO

OG

LD

KO

JF

PE

GC

CO

GB

HO

CA

JP

MG

AJ

PM

AF

CM

II

BO

JB

FG

LD

GF

HI

IC

EM

EK

IH

LE

AL

CE

FP

AK

NK

PC

BB

OF

JO

FG

PK

KL

FB

ML

JA

9840

9842

9844

9846

9848

9850

9852

9854

9856

9858

9860

9862 rnm23

9864

9866

9868

9870

9872

9874

9876 mm24

9878

9880

9882 rnm25

9884

9886 rnm26

9888

9890

9892

9894

9896

9898

9900

9902

9904

9906

9908

9910

9912rnm27

9914

9916rnm28

9918 rnm29

9920

9922

9924

9926

9928 rnm30

9930 rnm31

9932;

9934fndlin

9936

9938

9940 number

9942

9944

9946

9948

9950

9952

9954

9956fdln1

9958

sta

Ida

sta

Ida

sta

Idx

stx

clc

adc

bcc

inx

stx

sta

sta

stx

inc

bne

nc

inc

bne

inc

jsr

jmp

eor

clc

adc

sta

Ida

sta

Idx

stx

clc

adc

sta

bcc

inx

stx

jsr

Idy

Ida

beq

sta

iny

bne

jsr

rts

Ida

Ida

$5f

$42

$60

$2d

$5a

$2e

$5b

t2

rnm23

$2e

$2d

$58

$59

$5a

rnm24

$5b

$58

rnm25

$59

$a3bf

rnm28

#$ff

\n

t2

$41

$22

$42

$23

t2

$5f

rnm27

$60

dlt5

#0

$100,y

rnm30

($4i),y

rnm29

$a533

#0

#0

,byte$2c

Ida

sta

Ida

sta

Ida

sta

Ida

Idx

stx

sta

#$80

numb

$50

$aa

$51

$ab

$ad

$ac

$5f

$60

;to move ($5f)

;end of block

;to move ($5a)

;end of new block

;when moved

;($58)

;inc($5a) by 1

;inc($58)by 1

;move memory

put in line #

;calc # bytes move

;($22) = bottom

;($5f) = old bottom

;dlt5

;move($5f)-($2d)

;to ($22)-($2d)

;put in linenum

;finish up

;re-chain

;end

;finds line, calcs

; new line number

;also renums

;if entry number

;set start l#

;set start pntr

HA

LD

PO

DD

Ol

NK

BB

GA

HJ

BN

LG

LF

AB

CO

PE

KN

IO

DG

DA

DG

Ol

BC

LI

KA

MO

IL

PC

FJ

Bl

KB

PO

IM

DE

DD

OH

OB

GK

Ml

OB

MA

GB

OA

NG

CN

GL

KH

EK

MA

BK

MB

AA

FA

BF

DC

KM

JN

AG

FA

DK

KE

9960 ;assumed line# is in ($14)

9962

9964

9966

9968

9970

9972

9974

9976

9978 fdln2

9980

9982

9984

9986

9988

9990

9992

9994

9996 fdln3

9998

10000

10002

10004

10006

10008

10010

10012

10014

10016fdln4

10018

10020

10022

10024

10026

10028fdln5

10030

10032;

10034 strng

10036

10038fdln6

10040

10042

10044

10046

10048;

Idy #3

Ida ($5f),y

cmp $15

bne fdln2

dey

Ida ($5f),y

cmp $14

beq fdln6

bcs fdln5

bit numb

bpl fdln3

Idy #2

Ida $aa

sta ($5f),y

Ida $ab

iny

sta ($5f),y

Ida $aa

clc

adc $52

sta $aa

bcc fdln4

inc $ab

Ida $ab

cmp #$fa

bcc fdln4

jmp $b248

Idy #0

Ida ($5f),y

tax

iny

Ida ($5f),y

bne fdlni

Ida #$f9

Idy #$ff

jsr usfp

jmp $bddf

Ida t2

beq fdln5

Ida $ab

Idy $aa

jmp strng

10050 aneval Idx #$50

10052

10054

10056

10058

10060

10062

10064

10066anev1

10068;

10070 nxtchi

jsr store

jsr $73

jsr $b79e

stx $52

txa

bne anevi

jmp $b248

rts

iny

10072 nextch Ida ($3f),y

10074

10076

10078

cmp #$20

beq nxtchi

rts

;get line hi

;check it

;get line lo

;test if found

; yes

; no

;test renum pass

;no

;yes, put

; new line number

; into memory

;take ($aa) and

; add step value

test over 64000

no

'illegal quantity'

get new link lo

get new link hi

continue if >0

drop here if =0

set num to 63999

make fp val

make strng at $100

if old len 0 then

make new 63999

make string

evaluate two

params & save

used

with num

and auto

skip thru

until

non-space

The Transactor 22 Volume 6, Issue O5

GN

BE

KC

MN

OL

AG

LM

DH

GO

EA

FH

GH

HH

NE

JH

NJ

GG

HI

MD

OH

JD

Al

Al

NC

LM

IH

EG

CP

PG

MG

PO

NA

PF

BB

EB

Dl

KB

PD

GB

FB

IC

LG

MC

Gl

AD

DF

ED

GM

ID

JB

NF

FO

KD

KK

DK

DG

CE

10080;

10082.if >r*&255U7: * = *

1008^

10086

1008c"

1009C

1009^

1009^

10096

0 rem
-| .

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

9 rem

10:

\ wrmsrt.wordO

icont .byteO

)step .byte$0a

! onflg .byteO

I numb .byteO

+ (*&1)

Program 2: COMPUTED CMDS

computed cmds (a. treuenfels) :

3 statements, 0 functions

keyword characters: 16

keyword routine

s/restore restor

s/gosub cgosub

s/goto cgoto

11 r©rp - - —

12:

line ser#

10124 139

10150 140

10182 141

140 .asc "restorEgosuBgotO"

1140.

10124

10126

10128

10130

10132

10134

10136

10138

10140

10142

10144

word restor-1 ,cgosub-1,cgoto-1

restor jsr $79

bne crs1

jmp $a81d

crs1 jsr $ad8a

jsr $b7f7

jsr $a613

bcc crs2

Ida $5f

sbc #1

Idy $60

jmp $a824

10146crs2 jmp $a8e3

10148

10150

10152

10154

10156

10158

10160

10162

10164

10166

10168

10170

10172

10174

10176

10178

10180

10182

10184

10186

10188

cgosub Ida #3

jsr $a3fb

Ida $7b

pha

Ida $7a

pha

Ida $3a

pha

Ida $39

pha

Ida #$8d

pha

jsr $79

jsr cgoto

jmp $a7ae

cgoto jsr $ad8a

jsr $b7f7

jmp $a8a3

;chk end of stmt

;no

;regular restore

;get num expr

;conv to line*

;search for line

; not found

;line link low

;find line start

;line link high

;set data ptr

;'undef'd stmt'

;chk stack space

;save chrget ptr

;push crnt line #

;push gosub token

;get crnt char

;get subrtn strt

;execute stmts

;get num expr

;convto line*

;enter goto rtn

PA

FH

EC

HH

HO

JH

NJ

JE

MH

Dl

HI

PH

KD

Bl

KM

EO

LJ

CE

HD

HC

NA

KE

DFl-JLL

MM

IA

AP

PO

AP

II

LD

AN

GL

FG

KD

BJ

BA

IP

El

HA

CP

GF

OA

KD

EG

GD

FC

HJ

GF

OJ

CH

LB

GC

EF

GL

PD

GN

DH

OF

Program 3: RANDOM

0 rem random (aug 24/84)

1 :

2 rem 0 statements, 1 function

3:

4 rem keyword characters: /

5:

6 rem keyword

7 rem f/random(

8:

routine

rndm

9 rem u/pshfp1 (3270/063)

10 rem i i/m HK7 mnR/nfiAi

11 :

12 rem

13:

605.

1605

3216

3218

3220

3222

3224

3226
QQOO
OC.C.Q

3230

3232

3234

3236

3238

3240

3242

3244

3246

3248

3250

3252

3254

3256

3258

3260

3262

3264

3266

3268

3270

3272

3274

3276

3278

3280

3282

3284

3286

3288

3290

3292

3294

3296

3298

asc " randorrl"

.word rndm-1

rndm jsr

jsr

jsr

jsr

jsr

jsr

ir>r
jsr

jsr

jsr

Ida

Idy

jsr

jsr

$ad8a

$bccc

pshfpi

$aefd

$aef4

$bccc

$b849

$b849

pul57

#$57

#0

$b850

$bc2b

cmp#1

beq

jsr

jsr

jsr

Ida

Idy

jsr

Ida

Idy

jsr

jmp

rdm1 jmp

pshfpi Ida

jsr

pla

sta

pla

sta

jsr

Idx

phf1 Ida

pha

inx

cpx

bne

phf2 Ida

pha

rdm1

$bc58

$bbc7

$e0be

#$5c

#0

$ba28

#$57

#0

$b867

$bccc

$b248

#3

$a3fb

$71

$72

$bbca

#0

$57,x

#5

phfl

$72

f

line ser#

3216 027

;eval num1

;conv to integer

;push fac 1

;check comma

;eval num2, chk)

;conv to integer
- *-\ t~i /-J f\ C +i A i]/-y/-\
,300 U.D IWICe

;pull num1 to $57

;num1-num2

;get sign of result

;test if positive

;yes

;abs(fac 1)

;copy fac 1 to $5c

;rnd(1)tofac1

;* (num2 + 1-num1)

;+ num1

;conv to integer

;'illegal quantity'

;chk stack space

;save return addr

;fac 1 to $57

;push $57-$5b

;restore rtsaddr

The Transactor 23 Volume 6, Issue O5

BH

CG

EN

AG

GA

JL

IH

AM

Al

NA

JN

BL

DA

EO

GH

3300

3302

3304

3306;

3308 pul57

3310

3312

3314

3316

3318 pl57

3320

3322

3324

3326

3328;

Ida

pha

rts

pla

sta

pla

sta

Idx

pla

sta

dex

bpl

bmi

$71

;save return addr

$71

$72

#4 ;pull $57-$5a

$57,x

pl57

phf2 ;branch always

Program 4: PHRASE SPLITTERS

AO

FH

DH

HH

DE

JH

NJ

NF

NO

NH

inIL>

PH

IF

JH

CP

AN

OB

JO

FO

LD

MN

PE

Ol

LM

CJ

GF

CG

PL

DN

IK

GO

JJ

DM

GG

HA

HD

PE

BL

LG

LD

HH

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

9:

1 0 rar

phrase splitters (aug 25/84) :

0 statements, 2 functions

keyword characters:

keyword

f/first$(

f/bf$(

I U I CM I I - ■

11 :

routine

first

bf

606 .asc "firstbf"

1606

3330

3332

3334

3336

3338

3340

3342

3344

3346

3348

3350

3352

3354

3356

3358

3360

3362

3364

3366

3368

3370

3372

3374

3376

3378

3380

3382

.word first—1

first sec

.byte

bf cic

php

jsr

jsr

sta

txa

pha

tya

pha

Ida

jsr

pla

sta

pla

sta

Idy

sty

fbf1 iny

fbf2 cpy

beq

Ida

and

,bf-1

$24

$aef4

$b6a3

t3

t3

$b47d

$23

$22

#$ff

t4

t3

fbf4

($22),y

#$7f

cmp #"

beq

Ida

fbf3

#0

11

line ser #

3330 028

3334 029

;flag set = first

;flag clr = bf

;push flag

;eval str, check)

;set up ptr to str

;save length

;push str data addr

;reserve space in

; string storage

;store data addr

; at ($22)

;set up .y index,

; and flag in t4

;bump index

;test = str len

;yes

;test current str

; byte is space

; or shift-space

;yes

;clear flag - not

GF

OA

JF

IH

BM

GP

PF

PO

LA

OP

NF

EP

MM

BO

EM

OP

OM

JD

DB

PP

Fl

GC

NC

PA

AM

NJ

LD

EE

NO

Bl

GD

Cl

FE

OE

CP

3384

3386

3388 fbf3

3390

3392

3394

3396

3398

3400

3402 fbf4

3404

3406

3408

3410

3412

3414

3416

3418

3420

3422

3424

3426

3428

3430

3432 fbf5

3434

3436

3438 fbf6

3440

3442

3444

3446

3448

3450 fbf7

3452;

sta

beq

bit

bpl

dec

inc

bne

inc

bne

pip

bcs

tya

pha

sec

sbc

eor

cic

adc

lay

pla

adc

sta

bcc

me

tya

jsr

tay

dey

cpy

beq

Ida

sta

bcc

jmp

t4

fbf1

t4

fbf4

t3

$22

fbf2

$23

fbf2

fbf5

t3

#$ff

#1

$22

$22

fbf5

$23

$b47d

#$ff

fbf7

($22),y

($62),y

fbf6

$b4ca

; a space

; branch always

;test prev char was

;space - no

;dec effective str

; len, bump

; effective addr

.branch always

;test if 'first'

;yes

;push index

subtract from

; str len

;use as new index

;add old index to

; address

;reserve space for

; new string

;copy string to

;new space

;create descriptor

Program 5: Convert SEQ source to PAL source

IG

CP

IK

NH

GD

EG

LJ

CD

NH

1 open1A2," 0:seqfile" :I = 1000

2 nrint"Effl" :fori = 0to8:printl::l = I + 2
3get#1,a$:s = -(st = 0):ifs = 0goto5

4 ifa$Ochr$(13)thenprinta$;:goto3

5 print:nexti

6 ifsthenprint" I = ";l;":poke152,1:goto2

7 fori = 631 to639 + s:pokei, 13:next

8 poke198,9 + s:close1-s:print"@
9:

The Transactor 24 Volume 6, Issue O5

The Commodore 128:

Impressions and Observations

John Holttum

Seattle, WA

Since I have been commissioned by a local software company to

translate a book of BASIC 2.0 games to BASIC 7.0,1 was able to obtain

a C128 and 1571 directly from Commodore during the first week of

September (as part of my contract). Now, even with three weeks of

programming and evaluation time under my belt, the honeymoon is

far from over. As I've told some of my friends, programming in 128

mode evokes feelings close to guilt that so much is so easy! It makes

one realize how inhibiting BASIC 2.0 can be. Yet there have also been

some disappointments which are worth bringing to light.

First, the machine is not 100% bug-free; not that anyone expected it

to be, but one always hopes. So far the problems seem minor. One

merely academic bug is in the sequence which brings the keyboard

out of auto-insert mode (yes, Virginia, there is auto-insert, and flash,

and on-screen underlining). It does not work as stated. That is, if you

enable auto-insert with ESC-A, you won't get out of it with ESC-O.

However, there is an alternate sequence (ESC-C) which does disable

the feature as well as cancelling quote mode.

The second problem is a little more sobering. The SAVE-® bug is

alive and well in the 1571!! I was one of those individuals who had

never had too much trouble with SAVE-® on my 1541, having only

been stung by it once even with liberal use of the command. Yet my

1571 has already replaced inappropriate files twice while in 128

mode. Personally, I think the bug is an ancient Gypsy curse placed on

CBM and all its descendants, but who's to say?

My final complaint is not a bug at all, but a bit of frustration over the

user's manual. As promised, this is the first clearly written and truly

attractive book seen from CBM, but I'm repeatedly disappointed by

how shallow the material is. Perhaps we C64 hackers are spoiled,

having "grown up" with such a well-understood machine. I know

that my own history with Apple computers and documentation makes

the new 128 manual look more than adequate in content. Still, I am

irritated that there is no detailed memory map nor table of vital

memory locations (like keyboard buffer, character sets, etc.). Further

more, the CP/M section offers little practical information, especially

for those of us new to the venerable operating system. I asked CBM

about that and about the ESC-0 problem through CompuServe's CBM

Hotline and was informed that the new reference manual was on the

way to the printers, whatever that means, but that the Service Manual

(part *314001-07) is available by sending $28.00 to the following

address:

Commodore Service Dept.

C-2654

1200 Wilson Drive

West Chester, PA 19380

They knew nothing about the ESC-0 bug, but said they would contact

the Technical Support Group about it. It may be unique to my

machine. So as not to sound too negative, let me say that the BASIC

7.0 encyclopedia contained in the manual is very helpful and well-

organized.

So what do I really think of the 128? I think it's undoubtedly

Commodore's best effort to date. And despite the above irritations I

find it the most satisfying PC I've worked on yet, including the Apple

He, II +, He, C64, and IBM PC. The 128 mode is not just a fat C64. The

ESC sequences provide for editing functions far above those for the

64, such as downward scrolling of text, line insertion, partial screen

clearing, and easy window formation, all of which are available within

programs as well. The 1571 seems to be able to read anything I put

into it, including Kaypro disks, old C64 CP/M disks, and a couple I

don't know what they are. RGB output to my $249 Sears TVS monitor

(requires a $15 cable and includes a TV and composite monitor) is

quite nice. It's not the Amiga, but frankly, on my budget, 1 neither

need nor want an Amiga. The 128 system is certainly more computer

than I expected to own for many years.

Observations

In the interest of revealing the 128's innards, I have noted three

keyboard scanning memory locations I divined by continuously

displaying the first 256 bytes of memory on screen and pressing keys

to see what happened. I hope they're helpful.

Locations 212 and 213 read most of the keys on the 128 keyboard.

The values returned when one of these locations is PEEKed are listed

below. These values remain the same whether or not the CONTROL,

SHIFT, or CBM keys are also pressed.

A-10

B-28

C-20

D-18

E-14

F-21

G-26

H-29

1-33

J - 34

K-37

L-42

M-36

N-39

0-38

P-41

Q-62

R-17

S -13

T-22

U-30

V-31

W-9

X-23

Y-25

Z-12

0-35

1-56

2-59

3-8

4-11

5-16

6-19

7

8

9

+

-

£

-24

-27

-32

-40

-43

-48

HOME-51

DEL

t

®

-0

-54

-49

-46

: -45

; -50

, -47

. -44

/ -55

= -53

*- -57

SPACE-60

F1/F2-4

F3/F4 - 5

F5/F6 - 6

F7/F8

ESC

TAB

HELP

L.FEED

-3

-72

-67

-64

-75

NO SCROLL-87

RETURN

NO KEY

-1

-88

The Keypad on the right has codes separate from the number keys on

the main keyboard. They are:

0-

1-

2-

81

71

68

3-

4-

5-

79

69

66

6-

7-

8-

77

70

65

9-

+-

78

82

73

-

ENTER-

74

76

Likewise, the cursor keys above the keyboard have different codes

from those at the bottom. At the bottom, the LEFT/RIGHT key has a

value of 2, while the UP/DOWN key has a 7. At the top of the

keyboard, UP = 83, DOWN = 84, LEFT =85, and RIGHT = 86.

CONTROL, C= (CBM logo), SHIFT, ALT, and CAPS LOCK are all read

by location 211. It appears that the first three bits of this byte indicate

the status of SHIFT, C =, and CONTROL, respectively, since the value

of PEEK(211) is 1 if SHIFT alone is pressed, 2 if C= only is being

pressed, and 4 if just CONTROL is pressed. A value of 3 is returned if

SHIFT and C= are held simultaneously, 5 for SHIFT and CONTROL,

and 7 for all three. Similarly, ALT and CAPS LOCK are represented by

bits 4 and 5, respectively. The value of PEEK(211) is 8 when ALT is

pressed and 16 when CAPS LOCK is on.

These locations peeked alone or in combination give you control over

input of any key on the 128's keyboard, even keys that aren't

recognized by the GET or GETKEY commands.

The 128 is not to be underestimated. There is much more to it than at

first appears. Happy scanning!

The Transactor 25 Volume 6, Issue O5

Machine Language:

Maxims for the Commodore 128

Jim Butterfield

Toronto

. . .the Commodore 128 doesn 't call for a new game. . .

. . .but there are some new things you'll need to know. . .

The 8500 processor in the Commodore 128 follows the same rules

and uses the same instructions as previous Commodore microproces

sors - the 6502, 6510, 7501, 6509, etc. There are no new instructions;

there's only a new arrangement of pins on the chip (and a new speed

capability which can be invoked).

If you know your way around machine language on other Commo

dore machines, you'll be at home. Same instruction set, same Kernal,

similar architecture. But there are some new things you'll need to

know.

Here's a set of rules which will keep you out of trouble when you try

your hand at programming the Commodore 128 in its Cl 28 mode. All

these rules may be broken - when you're smart enough and know

your way around. But they will keep you out of trouble when you're

just feeling your way around.

1. Use only BANK 15. In fact, you can get along without using the

BANK command at all, since bank 15 will be selected if you

haven't changed it.

2. Keep program and data below address $4000. Below this point,

there isn't much conflict between banks.

3. If you want to put coding into the cassette buffer, remember it

starts at $0B00. Nobody except the cassette uses that page, so

you can use the area from $0B00 to $0BFF without worry.

4. Don't try to POKE the screen - the 80 column screen, in

particular, is not mapped into main memory. Use the Kernal's

CHROUT - SFFD2 - in the conventional way.

5. The built-in machine language monitor is convenient. It's

similar to Supermon. Call it in from Basic with MONITOR, not

with some kind of SYS command. You don't need to give a

five-character address in most cases when you want to do

things such as examine memory, change memory, disassem

ble, and so on.

6. You'll find the I/O chips at the same addresses as on the

Commodore 64, used for 40-column screen, sound, I/O, etc.

Feel free to use them in the traditional way, but stay away from

(formerly) unused addresses; they may be live and may do

unpleasant things to the system.

7. If you need space in zero page for indirect address pointers, use

$FA to $FF (decimal 250-255).

8. Remember that Basic programs will start at address $ 1C01; this

may influence where you want to put your program. Remem

ber that Start-of-Variables no longer tells you where your

Basic program ends (variables are stored in a different memory

bank). Avoid the GRAPHIC command in Basic unless you

know what you're doing; it will reorganize memory and move

things around.

Remember: you may break any and all of the above rules when you're

ready. When you start, using the rules will help you get working

programs going.

Simple Example

Let's write an idiotically simple program to print the alphabet on the

screen. Go into C128 mode and type MONITOR. Enter the following

(the lines will change as you press RETURN, but that shouldn't

confuse you):

A 0B00 LDX #$41

A 0B02 TXA

A 0B03 JSR $FFD2

A 0B06 INX

A 0B07 CPX #$5B

A 0B09 BNE0B02

A 0B0B LDA#+13

A OBOD JMP FFD2

A 0B10 (press RETURN)

Disassemble to check (with D 0B00 0B0F). Now ask what the decimal

equivalent of $0B00 is by typing $0B00. You'll see a value of +2816.

Return to Basic with command X.

Ready? Now command SYS 2816 and see the alphabet print.

By the way, exactly the same code will run in all other Commodore

machines ... so the Commodore 128 doesn't call for a new game.

Now. . . when you've learned a little confidence, start experimenting

on how to break the above rules.

SUPERMON+ 64

A new version of the Machine Language Monitor program Super

mon has now been released; it's called SUPERMON +. There are

versions available for Commodore 64 and for V1C-20.

The new Supermon is designed to closely match the commands

of the built-in monitor of the Commodore 128. Users who go

from one machine to another (or from C128 side to C64 side

within the Commodore 128 computer) might be otherwise con

fused in trying to remember which commands and which formats

need to be used with which monitor.

Some of the useful new features of Supermon + are: ability to

enter decimal or binary numbers anywhere within a command;

memory display including ASCII equivalents; number base con

version; and a built-in "wedge" command. On this last feature,

command "@" will yield disk status, and command "@,$0" (note

the comma) will call up a directory listing.

Supermon+ , like Supermon, is public domain and can be ob-

tained from a variety of sources including TPUG.

The Transactor 26 Volume 6, Issue O5

COMMODORE 128 Memory Maps: Important Locations

These maps apply to

Jim Butterfield, Toronto, Ontario

(Abridged: August 15/85)

the machine when used in 128K mode. In 64 mode, the machine's

There are 28 pages of overheac

Architecture: " Bank numbers

configuration numbers". Bank

; before the start of Basic. This brief list shows some of the

map is identical to that of the Commodore 64.

more important locations.

as used in Basic BANK and the MLM addressing scheme are misleading; in fact, they are more correctly

0 shows RAM level 0, which contains work areas and the user's Basic program. Bank 1 also shows RAM, this

time (for addresses above hexadecimal 0400) level 1 which contains variables, arrays, and strings. Dther "banks" are really configurations,

with various types of ROM or I/O overlaying RAM. Thus, bank 15 (the most popular) is ROM and I/O covering RAM bankO. Bank 14, however,

is ROM and the character generator overlaying RAM bank 0. Architecture is set so that <

bank switching (more complex than the simplified 16-bank concept)

stored masks by writing to $FF01-FF04.

All Banks:

Hex

0000 -0001

000F

0010

0015

0016 -0017

002D - 002E

002F - 0030

0031 -0032

0033 -0034

0035 -0036

0039 -003A

003B -003C

003D -003E

0041 -0042

0043 -0044

0047 -0048

0049 -004A

0063

0064 -0067

0068

006A - 006F

0070

0071

007D - 007E

0090

0091

0098

0099

009A

009D

00A0 - 00A2

00AE - 00AF

00B7

00B8

00B9

00BA

00BB - 00BC

ooco

00C8 - 00CB

OOCC - 00CD

^■00D0

00D1

00D3

00D5

00D6

00D7

00D9

00EO -00E1

00E2 - 00E3

00E4 -00E7

00E8 - 00E9

OOEB

OOEC

-»00FA -00FF

0100 -01FF

0100 -013E

0100 -0124

0125 -0138

0200 -02A0

02A2 -02AE

02AF - 02BD

02BE - 02CC

02CD - 02E2

02E3 - 02FB

02FC -02FD

Decimal

0-1

15

16

21

22-23

45-46

47-48

49-50

51-52

53-54

57-58

59-60

61-62

65-66

67-68

71-72

73-74

99

100-103

104

106-111

112

113

125-126

144

145

152

153

154

157

160-162

174-175

183

184

185

186

187-188

192

200-203

204-205

208

209

211

213

214

215

217

224-225

226-227

228-231

232-233

235

236

250-255

256-511

256-318

256-292

293-312

512-672

674-686

687-701

702-716

717-738

739-763

764-765

Description

I/O port, similar to C64

Type: FF = string; 00 = numeric

Type: 80 = integer; 00 = floating point

Current I/O prompt flag

Integer value

Pointer: start-of-BASIC (for bank 0)

Pointer: start-of-variables (bank 1)

Pointer: start-of-arrays

Pointer: end-of-arrays

Pointer: string-storage (moving down)

Pointer: limit-of-memory (bank 1)

Current BASIC line number

Textpointer: BASIC work point

Current DATA line number

Current DATA address

Current variable name

Current variable address

Accum* 1: exponent

Accum* 1: mantissa

Accum'l: sign

Accum*2: exponent, and so on

Sign comparison, Acc'l versus *2

Accum'l lo-order (rounding)

BASIC pseudo-stack pointer

Status word ST

Keyswitch IA: STOP and RVS flags

How many open files

Input device, normally 0

Output CMD device, normally 3

I/O messages: 192 = all, 64 = errors, 0 = nil

Jiffy Clock HML

Tape end adds/End of program

Number of characters in file name

Current logical file

Current secondary address

Current device

Pointer to file name

Tape motor interlock

RS-232 input/output buffer addresses

Keyboard decode pointer (bank 15)

Number of characters in keyboard buffer

Number of programmed chars waiting

Key shift flag: 0 = no shift

Last key code: 88 if no key

Input from screen/from keyboard

40/80 columns: 0 = 40 columns

Character base: 0 = ROM, 4 = RAM

Pointer to screen line/cursor

Color line pointer

Screen margins: bottom, top, left, right

Input cursor log (row, column)

Position of cursor on screen line

Row where cursor lives

UNUSED

Processor stack area

Tape error log

DOS work area

PR1NTUSING work area

BASIC input buffer

Bank peek subroutine

Bank poke subroutine

Bank compare subroutine

JSR to another bank

JMP to another bank

Function execute hook

iddresses below $0400 reference bank 0 only. Other

is accomplished via storing a mask to address $FF00, or calling up pre-

0300 -0311

0312 -0313

0314 -0315

0316 -0317

0318 -0319

031A -032D

032E -033D

033E -0349

^-034A - 0353

0354 -035D

035E -0361

0362 -036B

036C - 0375

0376 -037F

0380 -039E

0386

039F -03D1

03DF

FF00

FF01 -FF04

BankO:

0400 -07E7

07F8 - 07FF

0800 -09FF

0A00 - 0A01

0A05 - 0A06

0A07 - 0A08

0A18

0A19

0A1A

0A1B

0A20

0A22

-•« 0B00 - 0BBF

0C00 - 0DFF

0E00 - 0FFF

1000 - 10FF

117A -117B

117C -117D

11E9 -11EA

1200 -1201

1202 - 1203

1204 -1207

1208

1209 - 120A

1210 - 1211

1212 -1213

1218 - 121A

121B - 121F

2000 -3FFF

4000 -FBFF

Bankl:

0400 - FBFF

768-785

786-787

788-789

790-791

792-793

794-813

814-829

830-841

842-851

852-861

862-865

866-875

876-885

886-895

896-926

902

927-938

991

65280

65281-65284

1024-2023

2040-2047

2048-2559

2560-2561

2565-2566

2562-2563

2584

2585

2586

2587

2592

2594

2816-3007

3072-3583

3584-4095

4096-4351

4474-4475

4476-4477

4585-4586

4608-4609

4610-4611

4612-4615

4616

4617-4618

4624-4625

4626-4627

4632-4634

4635-4639

8192-16383

16384-64511

1024-64511

BASIC links

Unused

IRQ vector

Break interrupt vector

NMI interrupt vector

Kernal vectors

Kernal links

Keyboard matrix shift vectors

Keyboard buffer

Tab stop bits

Line wrap bits

Logical file table

Device number table

Secondary address table

CHRGET subroutine

CHRGOT entry

Subroutines to fetch from RAM banks

Accum* 1: Overflow

MMU configuration register

MMU load config registers

40-column screen memory

Sprite identity area (text)

BASIC pseudo-stack

Vector: Basic restart

Bottom of memory pointer

Top of memory pointer

RS-232 receive pointer

RS-232 input pointer

RS-232 transmit pointer

RS-232 send pointer

Keyboard buffer size

Key repeat: 128 = all, 64 = none

Cassette buffer

RS-232 input, output buffers

System sprites (56-63)

Programmed key lengths and definitions

Float-fixed vector

Fixed-float vector

Light pen values, X and Y

Previous Basic line number

Pointer: Basic statement for CONT

PU characters (,.$)

Error type ER

Error line number EL

End of Basic (Bank 0)

Basic program limit [FFOO]

USR program jump

RND seed value

Screen memory (hi-res)

BASIC RAM memory (hi-res)

Basic variables, arrays, strings

Bank 14: Same as Bank 15, below, except:

D000 - DFFF

Bank 15:

4000 -CFFF

D000 - D030

D400-D41C

D500 - D50A

D600 - D601

D800 - D8E7

DC00 - DC0F

DD00-DDOF

DF00 - DF0A

E000 - FEFF

FF05 - FFFF

53248-57343

16384-53247

53248-53296

54272-54300

54528-54538

54784-54785

55296-56295

56320-56336

56576-56591

57088-57098

57344-65279

65285-65535

Character generator ROM

ROM: BASIC

40-col video chip 8564

SID sound chip 6581

MMU 8722 memory setup registers

80-column CRT contr 8563

Color nybbles

CIA 1 (IRQ) 6526

CIA 2 (NMI) 6526

DMA controller

ROM: Kernal

ROM: Transfer, Jump Table

The TransactOf 27 Volume 6, Issue O5

MIDI - Musical Instrument Digital Interface
Richard Evers, Editor

The idea started slow, but rapidly picked up speed.

Throughout the ages, man has always strived for new and

exiting ways in which to amuse himself. Man is the master

amuser. One way in which amusement was found, and still is

today, is with music. In the beginning, there is a hint that the

first musical instruments were rocks, producing a somewhat

pleasing sound when smashed together in whatever unison

they could muster. Soon, wood was found to possess the

enthralling capacity to produce various sounds when struck.

As time passed, man developed the art of cutting and forming

pieces of wood to produce other truly unique sounds. From this

simple beginning, we now have every instrument from the

bongo drum to the grand piano. Over thousands of years of

patient evolution, man has developed the most beautiful art of

all - music.

This unique beginning is a primer to enable you to gain easy

entrance into todays world of digital music synthesis, a world

far removed from what music has been in past. Although the

music synthesizer is capable of cloning the sounds of all man

made instruments, it also has the ability to allow or disallow the

limitations imposed on the instrument by mans capabilities.

With a statement sure to be written off as sheer personal

judgement, I will state that the finest of todays music synthesiz

ers are capable of mimicking the sounds of man made instru

ments to such an extent that the synthetic counterpart will be

preferred. But, as with all new concepts, many people will

strive to retain the older, more familiar yet less refined methods

of past.

Today, in what is known as the age of the microprocessor, the

true " State Of The Art" (what does that mean?) phase of our

existence, analog systems still persist in great numbers. Al

though the digital movement has taken all forms of music

reproduction by storm, ie. the compact disk, digital recorded

record albums and, of course, music sythesis, analog is still

with us. Time will be the sole test of our loyalty to a friend long

past its prime. Achieving results that were once thought impos

sible using analog logic now appear common place due the

advent of todays digital high technology. But, justly enough,

within a few years travel, our current high tech will also be

considered obsolete. The sad fate of time. Obsolescence.

To get on track, a few years ago, when digital synthesis was

beginning to reach its apex, a very obvious road block material

ized. There were no standards to meet, no industry standard

that would allow various components to be easily connected

together for use. The manufacturers were producing terrific

products, but the buyer was restricted to one name brand for

add ons. A restricting situation.

To solve this problem, a few key people in the music sythesis

industry started thinking, talking, and attracting attention

along this line. The idea started slow, but rapidly picked up

speed. MIDI, The Musical Instrument Digital Interface, was the

solution presented to combat this problem.

The MIDI system is a series of guidelines that manufacturers

should meet in order to ensure the compatibility of their

products with others. As with all set guidelines, MIDI is not

perfect and does actually impose limitations at times. Without

coming down too hard at first, let me explain the guidelines.

The system is based on the almost current 8 bit technology,

mainly because the designers were trying to produce a system

that would easily fit into the budget of most starving artists.

They chose a universal cable connection of the 5 pin DIN plug,

using only 3 of the 5 pins. Pin #2 is ground, with pin #'s 4 and 5

being used for a current loop.

" The interface operates at 31.25 kilobaud (±1 %), asynchron

ous, with a start bit, 8 data bits (DO to D7), and a stop bit. This

makes a total of 10 bits for a period of 320 microseconds per

serial byte. "

The above paragraph was lifted directly from the MIDI 1.0

Specifications, Document No. MIDI-1.0, Dated August 5, 1983.

The Transactor 28 Volume 6, Issue O5

With each MIDI equipped unit, you will

notice either two or three connectors for

MIDI use. There is the MIDI In, MIDI Out,

and possibly, MIDI Through (American

spelling Thru). MIDI In is the connector

for data coming into the unit from other

MIDI equipped units on line. This can

include drum and rhythm machines, ex

tra keyboards, electric guitar and drum

interfaces, controllers and sequencers, or

extra synthesizers.

A total of 16 channels, numbered 1

through 16, are allowed under MIDI but

more than 16 instruments can be on line

at any one time. By assigning duplicate

channel numbers to units, or having

some units respond to all messages (see

Omni Mode), vast numbers of units can be

serviced. One main limitation to this pro

vision is the extended line length re

quired, which produces added line loss

and a greater time delay with transmitted

and received data. By reading more than a

few articles on this subject, one fact be

comes apparent. When using more than a

couple of MIDI units on line, noticeable

delays appear in what is deemed simulta

neous sound reproduction. But, I have

recently read an outstanding interview

with a person well qualified in the field.

He stated that the time delay between

units was not completely the fault of the

MIDI implementation. In his opinion, the

rate at which the units process the infor

mation provided leads to the noticeable

time lag. Without greater experience in

the subject, it is hard to take a side.

MIDI Out is the data being transmitted

from the MIDI equipped unit. MIDI

Through is a copy of the information cur

rently being passed into the unit through

MIDI In. This feature, if provided, gives

the user the ability to slave units together.

According to MIDI specs, the cable length

between units cannot exceed 50 feet, us

ing shielded, twisted cable with Pin #2

connected to the shielding at both ends.

The transmitted data is quite easy to iden

tify. All transmitted information is 8 bits in

length, with the Status bytes having the

high bit set and data bytes having the high

bit clear. As we will soon discuss, the

Status byte has been provided to control

the system. Within the Status class will be

found all commands necessary to deter

mine what the system will do, when it will

do it, and how it should be done. The Data bytes are really the workers of the system.

Not only do they carry information such as the note value to be played, but they also

labour under the rule of the Status bytes to ensure that all commands are under

stood. For the purpose of this article, the eight bit byte is arranged from bits 7 to 0,

with bit 7 acting as the high bit.

The charts below have been prepared to show all the possible byte values encoun

tered while working with the MIDI system. Complete explanations will follow.

Table Of Notes Corresponding To Data Values

Expressed In Hex

Octave

_

0

1

2

3

4

5

6

7

8

9

C

$00

$oc

$18

$24

$30

$3C

$48

$54

$60

$6C

$78

C*

$01

$0D

$19

$25

$31

$3D

$49

$55

$61

$6D

$79

D

$02

$0E

$1A

$26

$32

$3E

$4A

$56

$62

$6E

$7A

D*

$03

$0F

$1B

$27

$33

$3F

$4B

$57

$63

$6F

$7B

E

$04

$10

$1C

$28

$34

$40

$4C

$58

$64

$70

$7C

Notes

F

$05

$11

$1D

$29

$35

$41

$4D

$59

$65

$71

$7D

F#

$06

$12

$1E

$2A

$36

$42

$4E

$5A

$66

$72

$7E

G

$07

$13

$1F

$2B

$37

$43

$4F

$5B

$67

$73

$7F

G*

$08

$14

$20

$2C

$38

$44

$50

$5C

$68

$74

A

$09

$15

$21

$2D

$39

$45

$51

$5D

$69

$75

A#

$0A

$16

$22

$2E

$3A

$46

$52

$5E

$6A

$76

B

$0B

$17

$23

$2F

$3B

$47

$53

$5F

$6B

$77

Status Bytes With Messages

Bit Pattern Decimal Value Hex Value Data Bytes Status Byte Message

1000 xxxx 128 to 143 $80 to $8F 2 Note Off

1001 xxxx 144 to 159 $90 to $9F 2 Note On

1010 xxxx 160 to 175 $A0 to $AF 2 Polyphonic Key Pressure

After Touch

1011 xxxx 176 to 191 $B0to$BF 2 Control Change

1011 xxxx 176 to 191 $B0to$BF 2 Select Channel Mode

1100 xxxx 192 to 207 $C0 to $CF 1 Program Change

1101 xxxx 208 to 223 $D0 to $DF 1 Channel Pressure

After Touch

1110 xxxx 224 to 239 $E0 to $EF 2 Pitch Wheel Change

1111 0000 240 $F0 variable System Exclusive

11110001 241 $F1 Unimplemented

11110010 242 $F2 2 Song Position Pointer

11110011 243 $F3 1 Song Select

11110100 244 $F4 Unimplemented

11110101 245 $F5 - Unimplemented

11110110 246 $F6 0 Tune Request

11110111 247 $F7 0 End Of Exclusive

11111000 248 $F8 0 Timing Clock

11111001 249 $F9 - Unimplemented

1111 1010 250 $FA 0 Start

1111 1011 251 $FB 0 Continue

1111 1100 252 $FC 0 Stop

11111101 253 $FD - Unimplemented

11111110 254 $FE 0 Active Sensing

11111111 255 $FF 0 System Reset

The Transactor 29 Volume 6, Issue O5

After that unrelenting barrage of MIDI information, I feel that it

is only fitting to supply you with a bit more of a detailed

description. To begin, the frequency data bytes, hex values $00

to $7F, are obviously the note values as expressed through

almost 10 complete octaves. This is one drawback of the

system. 7 bits of resolution is not sufficient to allow graduations

in smaller increments than semitones. One recent speculation

made regarding this point stated that future revisions of the

system specifications should allow note increments in gradua

tions of cents, 1/100's of a semitone. A possible but difficult to

implement idea.

Status Messages, in contrast to the note values, require more

than a little explanation before becoming coherent to any

degree. Therefore, there are two different Status messages that

can be encountered. The Channel Message and the System

Message.

if the information is desired. Real-Time messages are com

prised of the Timing Clock, Start, Continue, Stop, Active Sens

ing, plus System Reset. Explanations will follow.

There is only one Exclusive Message, of which carries one

Status byte, plus any length of data bytes following. It is

terminated by either the Common message End Of Exclusive

(EOX), or any other Status byte. An Exclusive Message is one

that has been incorporated to identify the manufacturer of each

piece of equipment, plus allow the manufacturer to transmit

whatever message they please. A form of personalized service,

finally.

Status Byte Explanations

Message:Note Off

Pattern: lOOOxxxx

The Channel Message

A Channel message is one that states a message and a specific

unit number to which the message is addressed. The lower 4

bits, bits 0-3, are used for this identification. In the charts

shown above, plus the descriptions to follow, this has been

signified by the xxxx in place of the lower nibble in each

appropriate bit pattern. This 4 bit channel designation also

explains the limitation of this system to 16 channels (decimal

range 0-15).

There are two types of channel messages; Voice and Mode.

Voice messages control each separate units voices, which are

sent over the voice channels. The Mode message defines the

instruments response to the Voice messages, sent over the

instruments basic channel. The Mode message can control

such things as Local Control On and Off, All Notes Off, Omni

Mode On or Off, Mono Mode On/Poly Mode Off, or Poly Mode

On/Mono Mode Off. See message Select Channel Mode for

more information.

The System Message

System messages are ones that do not pertain to any one

specific channel. Being the elite of the system entitles them to

speak and except all to listen, immediately. Within the realm of

the System message falls the Common, Real-Time, and Exclu

sive messages.

Common messages are directed to all units, regardless of

channel number. The Common messages are comprised of

Song Position Pointer, Song Select, Tune Request, and End Of

Exclusive. Each Common message consists of a single byte, of

which an in depth explanation will follow promptly.

Real-Time messages are also intended to be heard by all units

in the system, at any time, even during the transmission of

other data by a Status byte. A Real-Time message is one in

which can be tested for and ignored by the units, or acted upon

The Note Off Message, used in conjunction with the Note On

message, determine when each note will start and stop for the

channel affected. Following this byte are always two data bytes.

The first byte determines which note within a specific octave is

to be affected, as can be demonstrated in the note chart above.

The second byte is the Note Off Velocity. This value is used in

synthesizers capable of ADSR (attack, decay, sustain, release),

to set the rate of release from the sustained level. In synthesiz

ers not so enabled, the release is immediate.

Message:Note On

Pattern: 1001 xxxx

As specified above, the Note On command is used to determine

which note is stuck on a specified channel. The Note On

Velocity, the second data byte, has a unique use this time. It

determines the loudness setting of the note value struck. In

units capable of ADSR, this level of loudness will be attained

within a user predetermined time limit. If the unit is incapable

of ADSR, the level will be reached immediately. The maximum

loudness setting, considering we are working with the lower 7

of 8 bits, is a decimal value of 127. A value of 0 would be the

same as turning the Note Off. According to specs, a value of 1 is

equivalent to "triple pianissimo", very quite. A value of 127

(maximum), is "triple forte", very loud. The middle of the

scale is 64, which is somewhere between " mezzo-piano" and

" mezzo-forte" - middle scale. If the unit is incapable of

various velocity settings, a value of 64 is used and transmitted.

Message:Polyphonic Key Pressure After Touch

Pattern: 1010 xxxx

Polyphonic Key Pressure After Touch is really just what is

implied. The new value of key pressure attained after touching

it. If the value has been set before to reflect the key pressure

exerted, and the user strikes the key once again, this new

pressure must be reflected. This status byte has two data bytes

following. The first byte is the note stuck, with the second value

byte representing the pressure. The values of pressure range

fromO, no pressure at all, to 127, bashed through the keyboard.

The Transactor 3O Volume 6, Issue O5

Message: Control Change

Pattern: 1011 xxxx

Control Change is a status byte that is transmitted whenever a

controller mechanism is adjusted. Controller mechanisms in

this context refer to foot pedals, knobs (pots), modulation

wheels, sliders, and switches. Two data bytes are used after the

status message to reflect this change. The first byte indicates

which controller was affected, while the second byte deter

mines the new value attained. There are four ranges allowed

for various controller mechanism used, as shown below.

Value Range Controller Type

$00 to $3F Continuous (ie. Foot Pedals, Knobs,

Modulation Wheels, Sliders)

$40 to $5F Switches

$60 to $7A Presently Undefined

$7B to $7F Channel Mode Messages

(see Select Channel Mode following)

The first range, Continuous, often requires a more subtle range

of graduations in comparison to say a switch. Either a switch is

off or on, 0 or greater than 0. Continuous devices such as a

slider can graduate across the scale in as large or small

increments as desired, therefore a very subtle range is re

quired. For this reason, the Control Change message allows for

three data bytes if necessary. As stated before, the first data byte

determines the controller affected, with the second data byte

determining the value to set. This acts as the High Byte, or

increment of 256 Lower Bytes. By now you know that the third

byte is the Low Byte, thereby allowing a range of 14 bits, or

16,384 graduations. The Low Byte is not mandatory, therefore

it can be left off if not required.

The term Poly refers to Polyphonic sound reproduction, which

is the ability for the unit to allow more than one note to be

played simultaneously. Mono refers to Monophonic sound

reproduction, which is reproduction of sound that only allows

one note to be played during any one time period.

Omni is a term that is used to describe the ability for a unit to

respond to all system messages, or only ones addressed to it's

basic channel. When Omni is Off, the unit will only listen for

messages addressed to itself. When Omni is On, it will listen

and act upon every message coming over the bus.

Local Control is the ability for a unit to act through, or bypass

it's own circuitry for the generation of sound. With Local

Control On, the synthesizer will act like it normally does. With

Local Control Off, the keyboard will still produce MIDI data as it

is played, but the synthesizer will not produce any sound to

compliment the data. This feature was incorporated to allow

keyboards to control instruments other than the synthesizer

attached.

Message: Program Change

Pattern: 1100 xxxx

Program Change is used with synthesizers that have banks of

memory set aside for various user chosen sounds. Often times

these sounds are assigned by changing the bank or patch

number currently in use. Program Change allows a reflection of

a change in this bank number for the channel affected, with

one data byte assigned for the bank number chosen. The bank

number can have a value of 0 to 127.

Message:Channel Pressure After Touch

Pattern: 1101 xxxx

Message: Select Channel Mode

Pattern: 1011 xxxx

Select Channel Mode is a unique message that allows altera

tions to the way a MIDI unit will respond to, and transmit MIDI

channel messages. Two data bytes are used to allow this

transformation, with the first data byte having a limited range

of $7A to $7F. This limitation is imposed due to the fact that two

different messages share the same bit pattern (see Control

Change above). The second data byte is used in conjunction

with the first to achieve the result desired, as shown below.

Byte 1 Byte 2 Result

Local Control Off

Local Control On

All Notes Off

Omni Mode Off, All Notes Off

Omni Mode On, All Notes Off

Mono Mode On, Poly Mode Off,

All Notes Off (x = number channels)

Poly Mode On, Mono Mode Off,

All Notes Off

$7A

$7A

$7B

$7C

$7D

$7E

$00

$7F

$00

$00

$00

$0x

$7F $00

The Channel Pressure After Touch is an interesting feature that

determines the average pressure values for the unit at any

instant. With this average pressure determined, a desired

variation of the overall timbre value or volume of the instru

ment can be calculated by determining the deviation from the

average required. The single data byte allowed can have a

value of 0, no pressure, to 127, as much pressure as possible all

around.

Message:Pitch Wheel Change

Pattern: 1110 xxxx

This message is one that allows a reflection of any change in

the setting of the pitch wheel. As with Continuous Controller

Mechanisms such as sliders, a fairly large scale is required to

reflect variations in the pitch wheel setting. For this purpose,

14 bits of resolution have been provided. One odd point to note

about the MIDI system specs at this point. With the Control

Change message, a resolution of 14 bits was available if re

quired. The data bytes were read High to Low. For a Pitch

Wheel Change, 14 bits are also provided, but they are read Low

to High. This poorly thought out variation could lead to confu

sion in writing code if taken for granted. So much for conven

tions.

The Transactor 31 Volume 6, Issue O5

Message:System Exclusive

Pattern: 1111 0000

A System Exclusive message is one that I find to be refreshing.

It allows identification of the manufacturer, and also allows the

same to get his two bits in. A System Exclusive message is

comprised of the first data byte signifying the identification

number assigned to the manufacturer, as per the IMA (Interna

tional MIDI Association In California), and as many bytes

following as the manufacturer requires to tell his story. This

message is terminated either by an End Of Exclusive Message

(EOX - 1111 0111), or any other Status byte that happens by.

Below can be found a partial list of manufacturers ID codes, as

supplied by the IMA.

Manufacturer ID

Sequential Circuits Inc. $01

Big Briar

Octavew/ Plateau

Moog Music

Passport Designs

Lexicon

Bon Tempi

S.I.E.L.

Kawai

Roland

Korg

Yamaha

$02

$03

$04

$05

$06

$20

$21

$40

$41

$42

$43

Message:End Of System Exclusive (EOX)

Pattern: 11110111

The EOX message is a single Status byte, no data bytes, that

flags when a System Exclusive Message has been completed.

Message:Timing Clock

Pattern: 1111 1000

The Timing Clock Message is one that can be used to synchro

nize all sequencers and/or rhythm machines on line. The

clock transmits its message at a rate of 6 messages per beat. As

stated earlier, this type of message will appear at a regular

intervals, regardless of the current state of other Status mes

sages.

Message:Start

Pattern: 1111 1010

As before, this Status message is intended for use with a

synthesizer equipped with a sequencer or rhythm machine.

This message will inform the sequencer/rhythm machine to

begin playing a pre-arranged song or note sequence from the

beginning. There is only one Status Byte, no data bytes, for this

message. See the Song Select Message for a little more informa

tion regarding Start.

Message:Song Position Pointer

Pattern: 1111 0010

The Song Position Pointer is a 14 bit value that allows a record

to be kept of the number of beats since the start of a song

session. This has been incorporated for use with synthesizers

equipped with a sequencer (digital recorder), or for a rhythm

machine. With this feature enabled, a flag can be set to allow

music to be played from a specific location within the song. The

two data bytes are read Low to High.

Message:Song Select

Pattern: 1111 0011

As with the Song Position Pointer, Song Select is also meant to

be used with synthesizers equipped with a sequencer, or for a

rhythm machine. Song Select uses one data byte to select

which song or note sequence is to be played after a Start

message has been received.

Message:Continue

Pattern: 1111 1011

As before, the Continue message has been incorporated for use

with synthesizers equipped with a sequencer or rhythm ma

chine. This message is used to restart the current song se

quence after receiving the next Timing Clock message. The

sequence is then picked up from the next position in the Song

Position Pointer. This message is flagged by the user pressing

the Continue button on the sythesizer. As before, this message

carries one Status byte and no data bytes.

Message: Stop

Pattern: 1111 1100

Again, the Stop message is for synthesizers equipped with a

sequencer or rhythm machine. When received, this message

tells the sequencer to stop playing its current sequence. This

message carries one Status byte and no data bytes.

Message:Tune Request

Pattern: 1111 0110

Tune Request is a throw back into the age of Analog synthesiz

ers. This single Status byte, no data bytes, is used to request a

tuning of the Analog synthesizers oscillators.

Message: Active Sensing

Pattern: 1111 1110

This message is one that is transmitted by any MIDI instrument

on line, powered up, but not actively involved in anything.

This message is transmitted once every 300 milliseconds if

The Transactor 32 Volume 6, Issue O5

there is no activity on the MIDI bus. One Status byte and no

data bytes.

Message:System Reset

Pattern: 1111 1111

The System Reset message performs exactly as you might

expect. It tells all MIDI instruments on line to perform a power

up sequence to return them to a freshly powered up state.

Retrospect

The MIDI system, as has been expressed throughout this

article, is a series of well thought of specifications. Through

each manufacturers implementation, musicians can use instru

ments of different origin and expect predictable results. This is

the basic flaw in the industry today. MIDI on paper appears

quite explicit in its goals. But soon after implementation, the

manufacturers discovered many minute points not completely

taken into consideration by MIDI Version 1.0. Today, it is this

problem that confronts every musician who considers the step

into the world of music synthesis.

In partial explanation, manufacturers immediately found prob

lems implementing MIDI 1.0 following its release. Although

each manufacturer tried their best to work the MIDI system

within the boundaries of their machines, hindsight informed us

of the inevitable. The manufacturers did not work together to

make sure the systems were compatible. Each operated within

their own collective vacuum, producing equipment meeting

untested specifications, without considering the fact that MIDI

1.0 might be vague enough to allow multiple interpretations.

When the first MIDI machines were released on the market,

problems became apparent immediately. Although many of

the machines were compatible, some subtle to extreme cases of

incompatibility did exist. And, as with any manufacturer faced

with high R&D costs, plus further misinterpretations, many of

the problems went unresolved. Take for example the Yamaha

DX7 music synthesizer. It's a great machine, yet- its MIDI

implementation is not completely compatible with say a Ro

land or a Korg. In this relatively new field of digital music

synthesis, it is not hard to find people who have personally

become victims in this rush to compatibility.

Although I may appear to hold conflicting opinions regarding

the MIDI, this is not so. MIDI in general does have its fine

points. But I think that it is time for the manufacturers to get

together and try to work their problems out. The specifications

do not have to be altered just yet, just clarified down to the

finest detail. Following this, each manufacturer can regroup to

produce low cost true MIDI updates for the machines currently

out. The longer this move is neglected, the greater the chance

of more permanent problems. So much for a bit of sage advice.

In Summation

In closing, I would like to reflect on possible extensions to the

MIDI 1.0 specifications. Due to the fact that 16 and 32 bit chips

have dropped in price, implementations using these chips

could be considered. With these chips, high speed communica

tions, multi tasking, and unbelievable control over vast

amounts of RAM and ROM could be taken advantage of.

Further to this, we have had a chance to work with the MIDI 1.0

for quite a while now. This time of reflection has enabled

musicians from all over to discover most of the weak points

inherent in the system. With these points in mind, plus the

technology available to us today, a true implementation could

be performed, with one problem. The market has already been

flooded with MIDI 1.0 equipped units. A revision at this stage

would make everything else obsolete, as far as current thought

allows. Due to this single fact, the MIDI specifications will not

be allowed revision on a radical scale for some time to come.

Although it may be hard to accept this twist of fate, the human

side of this story requires consideration. Musical technology is

slated to stagnate for the next few years, after which time will

come an age of radical change. What our dreams are composed

of today is the reality of tomorrow.

Finally, I would like to thank a few people who have helped me

understand MIDI more than I ever thought possible. They

include Vera Barycky, who supplied me with vast amounts of

hard to get information that otherwise would be inaccessible.

My father, Ted Evers, for his continuous stream of information

and knowledge, and my brother, John Evers, for all his related

experience working within the field, from which I was able to

extract some particularly critical information.

References

The MIDI Handbook

MIDI Specification 1.0

The Roland Juno-60 Manual

The Roland JX-3P Implementation

The Yamaha RX15 Digital

Rhythm Programmer Manual

Keyboard Magazine

Mix Magazine

Computing Now

A stack of IMA newsletters

by Paul Vytas

by the IMA in California

by Roland

by Roland

by Yamaha

June 84 & July 85

August 1984

December 1984

by the IMA in California

The Transactor 33 Volume 6, Issue O5

Real-World Interfacing

With The REL64 Cartridge

James E. LaPorte

Blacksburg, VA

Dr. LaPorte is Assistant Professor of Industrial Arts at The Virginia

Polytechnic Institute and State University. M.Ed.

Sooner or later, there becomes an overwhelming desire among most

computer enthusiasts to connect their machine to the outside world

and control lights, motors, and other devices. The recent increase in

articles devoted to this subject in virtually all computer publications is

evidence of such a desire. On the other hand, many of these articles

require at least some knowledge of electronic components, the ability

to prepare printed circuit boards, and perhaps even a moderate

knowledge of electronic theory. In addition, it takes a bit of bravery to

connect the prescribed hardware to the computer, anticipating ruin

ing the system due to an error.

There is a product that has been available for over two years that

reduces some of the above problems. Originally called the VIC-REL, it

is now called the REL 64 Relay Cartridge and is marketed by Handic

Software, Inc. (400 Paterson Plank Rd., Carlstadt, NJ 07072 - $39.95

U.S.). The cartridge plugs into the user port and is compatible with any

Commodore computer that has one.

Details of the Cartridge

As illustrated in Figure 1, there are a series of terminal screws on the

end of the cartridge to which wires can be attached. The first six pairs

of terminals (nos. 1-12) are equivalent to the terminals on six simple

switches. Thus, six separate output devices can be controlled.

In addition, the cartridge is capable of detecting input from two

separate sources. This is accomplished by sensing the presence or

absence of 5 volts d. c. across terminal pairs 17-18 or 19-20. Though

care must be taken to avoid short circuits, this voltage can be obtained

from the power supply of the computer across terminals 14 and 15.

Terminals 13 and 16 are unused.

Programming for Output

Only two memory locations need to be accessed to use the REL 64

cartridge. Though the specific locations for the Commodore 64 will be

given as examples, the equivalent locations for the V1C-20, Plus 4,

and other models with a user port can be readily found in program

ming reference guides.

The first of these locations is the data direction register (DDR) for the

user port, 56579 decimal. When a bit at the user port is to be used for

output, the operating system in the computer requires that the

corresponding bit in the DDR be set high (on). Likewise, if a bit is to be

used for input, the corresponding bit in the DDR is set low (off). The

cartridge uses the first six bits to control the switch terminals, thus

they are outputs from the computer. The remaining two bits are input.

So, to configure the user port in a manner consistent with the

cartridge, the number 63 is POKEd into the DDR, turning the first six

bits on.

Figure 1. The VIC-REL (REL 64) Cartridge with Ribbon Cable and Discarded Telephone Connector Attached.

The Transactor 34 Volume 6, Issue O5

Once the port has been properly configured, control of output is

accomplished by setting the appropriate bit at the user port (data port

B) high. On the C64, this is decimal 56577. For example, if a 1 is

POKEd into this location, the first bit is turned on and there will be

electrical continuity between terminal screws 1 and 2 of the cartridge.

Thus, a light bulb or similar device with one side of the supply in

series with these terminals (like a switch) would be turned on.

Likewise, a 2 POKEd into 56577 would turn on the second bit and

provide electrical continuity between terminals 3 and 4, and so forth.

Programming for Input

The last two bits (6 and 7) of the user port are assigned for input. If a

voltage between 5 and 12 volts d. c. is applied across terminals 17 and

18, then bit 6 is changed to a low state (off). If the same voltage is

applied across terminals 19 and 20, then bit seven is set low. Note that

this is opposite to what would normally be expected - the bit is off

when voltage is applied.

To read input, the respective bit must be exclusively PEEKed so that

the changing status of the other bits does not interfere. This is done by

ANDing the bit during the PEEK. For example, to read the status of bit

6, the following program line would be used:

10 J = PEEK (56577) AND 64

If a zero is returned by the variable J, then the bit is off and 5 volts is

present across terminals 17 and 18. If J returns a 64, then no voltage is

present. Likewise, for bit 7, this line would be used:

20 K = PEEK (56577) AND 128

Variable K will return a zero if the bit is on and 128 if the bit is off.

Controlling Heavy Loads

The output capability of the 64 Relay Cartridge is designed for a

maximum of 24 volts at 10 watts. Depending on the specifics of the

intended application, this may be a serious limitation. There is,

however, a relatively easy method to solve this problem by using a

relay.

A relay is an electromagnetic switch. When current flows in the coil of

the relay, it draws a contact toward it, completing an electrical circuit.

Since the contacts of the relay are completely isolated from the coil,

virtually any load desired can be controlled. The only requirement is

that the voltage and power necessary for the coil of the relay does not

exceed the maximum limits of 24 volts at 10 watts.

Radio Shack and other electronic component suppliers have a wide

variety of relays that are suitable. The Radio Shack #275-218 relay, for

example, has contacts that will handle a device rated at 10 amps, at

125 volts. This means the relay can control a load of up to 1250 watts

(Wattage = Voltage x Amperes). On the other hand, this particular

relay has a coil designed to operate on 12 volts at .075 amps. (0.9

watts) - well within the maximum limits of the cartridge.

The only problem in implementing relays is that a separate power

supply for the relay coils must be used. Since the 12 volts necessary

for the relay coils is quite common, a suitable supply might be found

in a discarded " power pack" from a portable appliance, radio, etc.

Such a supply might also be purchased from surplus electronic

dealers. Of course, the power supply can be easily built with a

minimum of knowledge.

Regardless of how the supply is secured, it must have sufficient power

to supply the number of relays to be used. If six relays of the type

referenced above are used, thus utilizing the full capability of the REL

64 Cartridge, the supply must deliver 450 milliamperes (6 times .075

amps = .450 amps).

A schematic for one relay is shown in Figure 2. As mentioned

previously, up to six relays could be connected. The power supply

connections would simply be extended to the additional relays and

additional pairs of terminals (3&4, 5&6, etc.) on the cartridge would be

connected.

TO TERMINALS 1&2

ON CARTRIDGE

RELAY

CONTACTS

IN SERIES

WITH LOAD

RELAY

COIL

TO 12 VOLT D.C.

POWER SUPPLY

Conclusion

Figure 2: Schematic of connections

for a relay to control heavy loads

The REL 64 cartridge is an easy way for a computer enthusiast to get

involved in controlling real world devices with minimal knowledge of

electricity. Burglar alarm systems, weather stations, model railroads,

and automatic door openers are but a few of the many possible

applications.

The cartridge is designed in such a way that the electrical connections

are isolated from the computer. Though a gross wiring error could

damage the cartridge, it cannot damage the computer. The only

exception to this is the 5 volts that are available across terminals 14

and 15. Though having this voltage available makes it easy to utilize

the input functions of the cartridge, care must be taken since a short

across these two terminals could damage the computer.

Though the cartridge is fixed to control six outputs and sense two

inputs, this should not be a major limiting factor, especially for the

beginner. In addition, relays allow the development of circuits with

virtually any current or voltage desired, reducing the limitation of

rather low current and voltage maximums of the cartridge itself.

Several of the cartridges have been used in teaching college students

the basic concepts of computer interfacing in the Industrial Arts

Program Area at Virginia Tech. Even students with limited experience

with microcomputers have been able to construct interesting and

challenging computer-controlled projects. What is more, they seem to

leave the course with a clear understanding of bits and bytes, unlike

that when traditional methods are used.

The Transactor 35 Volume 6, Issue O5

1541 RAM Expander

Are you tired of running out of memory when writing programs for

your 1541? How about a little extra room to move around in?

That's the question that got me into this problem. I started digging into

the schematic diagrams of the 1541 and discovered that it had an

address decoder of 1K steps. That's interesting, because the 3K ram

expander for the Vic 20 is decoded in IK steps also. These 3K

expanders can be bought at a reasonable price through stores that

carry Commodore products. Now to hook it up!

Installing The RAM

Turn off the drive and remove all the plugs. Remove the four screws in

the bottom cover. Carefully turn over the unit and remove the top

cover. Take out the two screws that hold the perforated metal cover

and pull up on the screw side to remove it.

Now we need to build a bracket to hold the expander. I formed mine

out of Vi6 inch aluminum stock. Figure 1 shows the mechanical

details. This bracket is fastened to the front of the 1541 chassis with

two >/4 inch #48 machine screws. The chassis of the 1541 is already

drilled and tapped for this size screw. (Just a note here to 1540 owners.

This memory expansion can also be done to your disk drive but you

will have to mount the expander externally. The reason is that you

have the longer board and there is no room inside.) The 22/44 pin

connector sits in the upper elbow of the bracket and is fastened with

two 1 inch #48 machine screws with nuts. Thats all for the hardware,

now for the wiring.

Remove the six plugs that attach to the main board and note from

where they came. If necessary, mark each plug with a pen and

masking tape. Remove the four screws on top that hold down the

board. Next take out the two screws mounted in the side of chassis

that hold down the heat sink. Now the board can be removed.

Locate on the top side of the board the 6502 microprocessor and the

7442 decoder. Turn the board over and locate the pins of these two

chips. Figure 2 shows these two chips as seen from the bottom of the

board. Attach 27 wires to the pins that are named. Each wire is 1.5 feet

long. Take your time and make sure that you don't cause any shorts. I

used ribbon cable from Radio Shack but any fine insulated wire will

do. Stranded wire is best because it is less susceptible to breakage. The

pins marked n/u are not used for the ram expander but could be used

in normal circuit operation. The wires come out from underneath the

board on the same side as the group of five plugs. 1 say this because it

helps to angle the wires properly when you solder them to the pins.

Now bring the wires out the correct side and sit the board back in

place.

Connect the wires name for name from the board to the 22/44 pin

connector (Figure 3). Shorten wires to the appropriate length. Connect

all pins on the connector marked "GND" together. Now it should be

all hooked up. Take the time to check the wiring for shorts and

routing. Double check it. Remember that it is your disk drive!

Reassemble the drive in reverse order from when taken apart. The

perforated metal cover will not go back on as it is. It can either be left

off or the front flap can be removed. Remember to insert the ram

expander into the connector.

Michael Mossman

Quispamsis, NB

There it is all done. You now have 3K of ram added to your 1541.

RAM1

RAM2

RAM3

$0800-$0BFF

$0C00-$0FFF

$1000-$13FF

The nice thing about this added memory is that it will never be used

by the operating system unless you tell it to. You also have a safe area

to place a program when you start up your drive and it can be called at

a later time. (Note-the VIC-1211 Super Expander can also be used but

the + 5 volts to the rom chip will have to be disconnected.)

Some Applications

I have included two programs to use this extra area. The first program

is a little thing that creates an extra sector header on any track. You

can use this as security for a disk. The next program creates three

extra tracks on a disk. This creates a type of security or a safe area to

hide things on a disk. With a few changes this program can be used to

reformat any or all tracks. Each program has a basic part (runs in the

VIC-20 or C64) and a machine language part (runs in the 1541).

I used PAL to assemble the programs to disk (sorry VIC users) and

Chris Johnsen's program (See "DOS File Executor" in The Transactor,

Volume 6 Issue 1) to create an "&:execute" file of the M.L. programs. If

you have the DOS Exec filer program, this method is highly recom

mended, since the drive will be able to automatically load and run the

machine language programs. Alternatively, The M.L. programs can be

converted into data statements and "M-W" can be used to poke them

into 1541 memory. I had to make a couple of changes to Chris's

program to handle the extra memory but his routine is excellent and

should be on everyone's utility disk. The changes I made to Chris's

program are given in Listing 4.

With the extra RAM at your disposal, the 1541 becomes much more

flexible to an enterprising programmer. How about a disk that can

read and write to 4040 disks? What about a completely hidden

directory? Enough of that, now for the program listings.

TOP

co cm t-

(3 +zzz(rira:<rzzzzaoaa2aa8o

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

ZYXWVUTSRPNMLKJHFEDCBA

2

0
23233^^?o)co z
zzzzz<<<<<<<<<<<<<0

BOTTOM

Figure 3: Rear of 22/44 pin connector

that is mounted to the bracket

Radio Shack Part# 276 - 1551

The Transactor 36 Volume 6, l«tueO5

Screw PIN1

CM CO

•^ CM CO

UC7
cd in ^t

3 3 3

UC6

UC5

f IO CD N O3

7442
CO CM i- O jjj

3 3 3 3 3

7400

7404

Front \
Of

Connector

0-<MCO^LOCDr^COC35?^

1- CM

O CD

■* CO

co

CO

CO

I— CD
CO CO

CD

CO

S CO O)

UC4

■sf CO CM
CO CO CO

o

CO

1- CM CO

6502

O CT> CO
CO CM CM

r--

C\l

LO

CD
CM

cd r^.

CM CM

CO

CO
CM

CM
CM

O

C\J

Hill II i

Figure 2: Showing UNDERSIDE of

1541 Main Board (partial view)

Listing 1

BASIC program which uses the program in 1541 RAM (Listing 2) to create

an extra header block on any track. Lines 30-50 load the program into

drive memory using the " DOS Executor" feature. Delete these lines if

using the loader in Listing 2 to put the program into drive memory.

AD

DG

MN

CL

PP

KG

IB

DB

10 rem*******this program creates an extra

header block on any track***********

20 rem ******* it does not create a data

block for the extra header block*******

30open15,8,15

40 print#15," &:extra header"

50 forx = 0to4000:next:close15

60 print" please insert disk to have extra sector

header block added and press";

70 print" return."

80geta$:if a$= ""then 80

90ifa$Ochr$(13)then80

IA

BM

CK

DE

BN

JJ

DC

IG

HL

JP

IL

Fi

BP

CL

JK

HL

CM

CD

OL

ON

JE

MN

LH

AP

CO

EA

HM

NC

OM

NJ

NO

CH

DJ

PI

Figure 1: Bracket mounted on top front of 1541

100 print" do you want the disk formatted;yes or no"

110 get a$:ifa$= ""then 110

120a$ = left$(a$,1)

130 if a$<>" y" and a$<>" n" then 100

140 if a$ = " n" then 190

150 input" please print disk name" ;a$

160 input "please print two digit i.d. code";b$

170open15,8,15

180 print#15," n:" ;a$;"," ;b$:close15

190 openi5,8,15:print#15," i" :gosub400:close15

200 input" what track do you want the extra

header block on, 1 -35 ";c

210 ifc< 1 or c>35 then 200

220 ifc>0 and c<18 then d = 21

230 ifc>17 and c<25 then d = 19

240 ifc>24 and c<31 then d = 18

250 ifc>30 and c<36 then d = 17

260open15,8,15

270 print#15," m-w" chr$(254)chr$(19)chr$(02)

chr$(c)chr$(d)

280 gosub 400

290e = d-1:count = 0

300 print#15," m-w" chr$(00)chr$(04)chr$(03)chr$(76)

chr$(03)chr$(08)

310 gosub 400

320 print#15," m-w" chr$(08)chr$(00)chr$(02)

chr$(c)chr$(e)

330 gosub 400

340 print#15, "m-w"chr$(01)chr$(00)chr$(01)chr$(224)

350 gosub 400

360 if f$ = " 00" then print" done,all ok" :close15:end

370 if count = 10 then 390

380 count = count +1 :go to 300

390 gosub 400:goto 420

400input#15,f$,g$,h$,i$

410 if f$ = "00"then return

420 print f$,g$,h$,i$," failed"

430close15:end

The Transactor 37 Volume 6, Issue O5

Listing 2.

The BASIC loader for the " header block" machine code. This

program will put the program directly into the new drive RAM at

$0800

IK

JH

PL

Bl

HK

MN

BH

AK

LA

10

LM

CM

IN

FL

ID

OK

BD

EA

FG

NA

JF

OM

JK

AM

LM

HD

MH

IL

DF

BO

OF

01

ON

HK

BA

10 rem* data loader for " header block"

11 rem* this puts the program directly

12 rem* into 1541 expansion ram at 0800

13:

20 for i = 1 to 175:read a:c = c + a:next

30 if c<>20663 then print" Idata error!": end

40 hi = 8:lo = 0: rem 0800 in drive memory

50 restore: open 15,8,15

60 for i = 1 to 175: read a

70 print#15, "m-w:"chr$(lo)chr$(hi)chr$(1)chr$(a)

80 lo = lo +1 :if lo>255then lo = 0:hi = hi +1

90 next i: close 15

100:

1000 data 76,160,234,173,254, 19,133, 24

1010 data 173, 255, 19,133, 25,169, 0, 69

1020 data 22, 69, 23, 69, 24, 69, 25,133

1030 data 26, 32, 52,249,162, 0,181, 36

1040 data 157, 0, 16,232,224, 10,208,246

1050 data 173, 254, 19, 133, 6, 174, 255, 19

1060 data 202, 134, 7,169, 0,133, 61,133

1070 data 51,133, 48,169, 6,133, 50,169

1080 data 3,133, 49, 32, 16,245, 32, 86

1090 data 245, 80,254,184,173, 1, 28,145

1100 data 48,200,208,245,160,186, 80,254

1110 data 184, 173, 1, 28,153, 0, 1,200

1120 data 208, 244, 184, 80,254,184,173, 1

1130 data 28,201, 85,240,246,173, 12, 28

1140 data 41, 31, 9,192,141, 12, 28,169

1150 data 255, 141, 3, 28,169,255,141, 1

1160 data 28,162, 5, 80,254,184,202,208

1170 data 250, 162, 0, 80,254,184,189, 0

1180 data 16,141, 1, 28,232,224, 10,208

1190 data 242, 162, 9, 80,254,184,169, 85

1200 data 141, 1, 28,202,208,245, 32, 0

1210 data 254, 169, 1, 76,105,249, 69

Listing 3.

The BASIC code for the C64 which will format a disk with 38 tracks. It

uses t

Lines

using

IM

HA

CM

CE

HP

CP

JE

DN

PA

tie program in Listing 4 which resides in the new drive RAM.

10-20 assume a "DOS Executor" file on disk; delete them if

the loader in Listing 4.

10open15,8,15

20print#15,"&:format38"

30 print" please insert disk to have extra tracks ";

40 print" and press return."

50geta$:if a$= " "then 50

60 if a$Ochr$(13) then 50

70 input" please print disk name" ;a$

80 input "please print two digit i.d. code" ;b$

90 print#15," n:" ;a$;"," ;b$:gosub260

HP

EB

LJ

KD

HE

IB

IF

EA

GE

MH

ON

DH

PO

IJ

EE

BC

BG

GO

NJ

DA

CK

CO

100 count = 0

110 rem ;put jmp $0803 in buffer #3($0600)

120 print#15," m-w" chr$(00)chr$(06)chr$(03)

chr$(76)chr$(03)chr$(08)

130gosub260

140 rem ;put track 35 and sector 0 in $000c/d of

the header table

150 print#15," m-w" chr$(12)chr$(00)chr$(02)

chr$(35)chr$(0)

160gosub260

170 rem ;put execute code in $0003

180 print#15," m-w" chr$(03)chr$(00)chr$(01)chr$(224)

190 rem ;now read the disk controller error code

200 print#15," m-r" chr$(03)chr$(00)

210 get#15,er$:er = asc(er$)

220 if er = 01 then print" done.all ok" :close15:end

230ifcount=10then300

240 count = count +1 :go to 120

250 gosub 260:goto 280

260input#15,f$,g$,h$,i$

270iff$= "00"then return

280 print f$;g$;h$;i$;" failed"

290close15:end

300 if er <17 then print" controller error #" ;er

310 goto 250

Listing 4

The loader for " format38", which puts the new formatting routine

into drive memory.

ME

JH

PL

Bl

OK

KO

FC

BH

AK

CB

IO

LM

CM

IN

AK

JC

II

GN

LI

BM

LL

CC

DH

JH

ID

AK

CF

CH

10 rem* data loader for "format38"

11 rem* this puts the program directly

12 rem* into 1541 expansion ram at 0800

13:

20 for i = 1 to 752:read a:c = c + a:next

30 if CO83435 then print" Idata error!": end

35 print" data ok, now loading to drive ram

40 hi = 8:lo = 0: rem 0800 in drive memory

50 restore: open 15,8,15

60 for i = 1 to 752: read a

70 print#15, "m-w:"chr$(lo)chr$(hi)chr$(1)chr$(a)

80 lo = lo + 1:if lo>255then lo = 0:hi = hi +1

90 next i: close 15

100:

1000 data 76,160,234,165, 34,133, 81,169

1010data 20,141, 32, 6,169, 64,141, 33

1020data 6,169, 15,141, 34, 6,169, 16

1030 data 133, 67, 32,207, 10, 32,207, 10

1040 data 230, 81,165, 81,201, 36,144,242

1050 data 32,163,253, 32,195,253,169, 85

1060 data 141, 1, 28, 32,195,253, 32, 0

1070 data 254, 32, 86,245,169, 64, 13, 11

1080data 24,141, 11, 24,169, 98,141, 6

1090 data 24,169, 0,141, 7, 24,141, 5

1100 data 24,160, 0,162, 0, 44, 0, 28

1110 data 48,251, 44, 0, 28, 16,251,173

1120 data 4, 24, 44, 0, 28, 16, 17,173

1130 data 13, 24, 10, 16,245,232,208,239

The Transactor 38 Volume 6, Issue OS

NH

PF

Dl

BK

AC

LI

MM

GC

CK

KM

HO

OF

JF

DA

LH

KA

LG

FB

CE

NB

BG

NJ

DH

JK

LK

II

HE

NJ

GM

HJ

JA

BK

KP

FK

NC

EP

HE

DE

KC

JP

FF

MD

LE

El

KC

DL

NL

AM

LI

CO

BH

LA

CO

NL

GP

LJ

LK

KP

NL

KP

AC

1140 data 200,

1150 data 134,

1160 data 173,

1170 data 173,

1180 data 239,

1190 data 10,

1200 data 152,

1210 data 73,

1220 data 208,

1230 data 144,

1240 data 112,

1250 data 113,

1260 data 40,

1270 data 0,

1280 data 208,

1290 data 189,

1300 data 42,

1310 data 24,

1320 data 6,

1330 data 38,

1340 data 245,

1350 data 37,

1360 data 152,

1370 data 36,

1380 data 10,

1390 data 176,

1400 data 142,

1410 data 5,

1420 data 39,

1430 data 0,

1440 data 200,

1450 data 200,

1460 data 19,

1470 data 0,

1480 data 200,

1490 data 250,

1500 data 89,

1510 data 6,

1520 data 152,

1530 data 208,

1540 data 254,

1550 data 245,

1560 data 245,

1570 data 133,

1580 data 1,

1590 data 208,

1600 data 184,

1610 data 202,

1620 data 169,

1630 data 169,

1640 data 1,

1650 data 254,

1660 data 232,

1670 data 177,

1680 data 169,

1690 data 141,

1700 data 24,

1710 data 208,

1720 data 32,

1730 data 169,

1740 data 165,

208,236,169

113, 132, 114

4, 24, 44

13, 24, 10

200, 208, 236

56,138,229

229, 114, 168

255,168,138

1,200,152

24, 6,112

109, 33

109, 34

8, 162

28, 16

245, 200, 208

10,138, 10

141, 36, 6

141, 11, 24

166, 67,160

6, 144, 1

73, 255,

6,176,

73, 255,

6, 16,

168, 138, 162

3, 136, 48

38, 6,224

76,189, 10

6, 169, 0

166, 61,165

200,173, 40

165, 81,153

153, 0, 3

3,200,169

153, 0, 3

2, 89,251

253, 2,153

173, 40, 6

72,232, 138

250, 169, 3

104, 168,136

253,169, 5

133, 58,

50, 32,

28, 162,

250, 162,

185, 0,

208.243, 162

85,141, 1

255,162, 5

28, 202, 208

184,189, 0

208.244, 160

48,141, 1

85,174, 38

1, 28,202

105, 10,133

147, 80,254

0,254,169

0,133, 48

67,141, 40

2, 76,

162, 0,

0, 28,

16,245,

169, 2,

113, 170,

133, 113,

73, 255,

208, 4,

38, 113,

141, 33,

141, 34,

160, 0,

80, 249,

242,169,

141, 37,

169,191,

169,102,

0, 152,

200, 200,

105, 0,

206,

105,

169,

0,

3, 232,

4,176,

101,

40,

153,

153,

36,

0,

4,

56,

24

141

57

6

0, 3,

200,181,

15,153,

200, 169,

2, 89,

249, 2,

197, 67,

157, 0,

133, 49,

32, 229,

133, 49,

143,247,

254, 169,

80, 254,

164, 50,

141, 1,

9, 80,

28, 202,

80, 254,

247, 162,

1, 141,

0, 80,

28, 200,

6, 80,

208, 247,

50, 206,

184, 80,

200, 141,

169, 3,

6, 32,

189, 10

160, 0

48, 17

232, 208

76, 189

133, 112

16, 11

170,232

224, 4

24, 165

6,165

6, 76

184, 173

184,232

3, 76

6, 152

45, 11

141, 38

24,109

202, 208

24, 109

■ 6, 170

24,109

76, 189

229, 67

208, 245

5,169

67, 141

6,160

0, 3

0, 3

200, 181

18,153

0, 3

0, 89

252, 2

238, 40

144, 187

5,232

32, 48

253, 32

32, 233

169, 0

255, 141

184,202

80, 254

28, 200

254,184

208, 245

184, 141

187, 80

1, 28

254,184

208, 245

254, 184

165, 50

40, 6

254,184

35, 6

133, 49

86, 245

DC

OK

OG

LC

LD

AP

KC

FP

AE

OJ

Nl

IK

OG

BG

NN

PF

DM

DL

LL

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

data 162

data 1

data 208

data 48

data 207

data 245

data 28

data 242

data 28

data 208

data 81

data 169

data 169

data 240

data 81

data 0

data 19

data 19

data 202

10, 160,

28, 209,

242, 24,

76, 126,

169, 6,

160, 187,

217, 0,

162,252,

217, 0,

241,206,

201, 38,

255, 133,

1, 76,

3, 76,

200, 132,

28, 232,

173, 0,

141, 0,

208, 253,

0, 80,254,

48,208, 14,

165, 48,105,

10,206, 35,

76,189, 10,

80,254,184,

1,208,230,

80,254, 184,

5,208,214,

40, 6,208,

176, 3, 76,

81,169, 0,

105,249,206,

40, 8,160,

80, 76,105,

138, 41, 3,

28, 41,252,

28,160, 5,

136,208,250,

184, 173

200, 202

10, 133

6,208

32, 86

173, 1

200, 208

173, 1

200, 202

174, 165

26, 8

133, 80

32, 6

255, 132

249, 174

141,255

13,255

162,255

96, 32

Listing 5

Changes to make to the" DOS Executor" program (July 85 Transactor)

to allow it to work with the expansion RAM.

change line 370 print" bam buffer-1792 $0700"

add line 375 print"expansion ram-2048 $0800"d$

change line 400 ifval(dm$)>7419thenprintd$d$" not higher then

7419" :printuuuuu$:goto380

add line 461 ifcnt = 0thencnt=1:goto470

add line 462 dm = dm + 250

add line 463 hi = int(dm/256):lo = dm-hi*256

add line 501 ifcnt = 0thencnt=1:goto510

add line 502 dm = dm+ 250

add line 503 hi = int(dm/256):lo = dm-hi*256

HJ

EB

IP

ML

OJ

GK

CL

KO

KC

GC

GL

IE

DL

MJ

NE

PK

IM

KG

BN

NJ

CP

GM

100

110

120

130

140

150

160

170

180

190

200 ■

210;

220

230

240

250

260

270

280

290

300

310

rem open1,8,1, "0:format38.obj

rem save"@0:format38.pal",8

sys700 ;pal 64 assembler

blocks free.

this program lives inside the 1541

and will format with 38 tracks

it should be used with its basic

counterpart in the c64

.opt oo

$0800

jmp $eaa0

Ida $22

sta $51

Ida #$14

sta $0620

Ida #$40

sta $0621

Ida #$0f

sta $0622

Ida #$10

;cold start of disk drive

;current track #

;track # for formating

;set to allow 20 errors

;set $0621/2 to 4000 as a

;guess to the # of bytes

on half a track

;set to allow 16 sectors

The Transactor 39 Volume 6, Issue O5

LA

KL

FD

FB

JM

AP

Dl

MP

FD

KF

KO

EJ

NO

ME

FC

ID

MM

AM

BD

IM

DP

NN

FO

ED

HH

JG

OM

MG

NJ

GF

HH

GP

KB

GH

PL

KH

HG

CJ

LH

FL

KC

AF

EP

MB

LB

NE

Jl

CL

AK

EM

AC

LM

EC

DH

MD

HI

PF

EN

KP

320

330 bigger

340

350

360

370

380

390;

400 start

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570 sync

580

590 nonsync

600

610 reset

620 read

630

640

650

660

670

680

690

700

710

720

730;

740 here

750

760

770

780 reseti

790 readi

800

810

820

830

840

850

860

870

880

890

900;

sta

jsr

jsr

inc

Ida

cmp

bcc

jsr

jsr

Ida

sta

jsr

jsr

jsr

Ida

ora

sta

Ida

sta

Ida

sta

sta

Idy

Idx

bit

bmi

bit

bpl

Ida

bit

bpl

Ida

asl

bpl

inx

bne

iny

bne

Ida

imp

stx

sty

Idx

Idy

Ida

bit

bmi

Ida

asl

bpl

inx

bne

iny

bne

Ida

jmp

$43

step

step

$51

$51

#$24

bigger

$fda3

$fdc3

#$55

$1cO1

$fdc3

$feOO

$f556

#$40

$180b

$180b

#$62

$1806

#0

$1807

$1805

#0

#0

$1c00

sync

$1c00

nonsync

$1804

$1c00

here

$180d

a

read

reset

reset

#2

error

$71

$72

#0

#0

$1804

$1c00

now

$180d

a

readi

reseti

reset 1

#2

error

on these tracks

;move head half a track

;and again

increase track #

;if not on track 36 then

move head

;erase track

;write sync area

;write non-sync area

;kill write mode

;waitfor sync

;set timer

;sety and x as count

;read sync

;read non-sync

; reset flag

;read non-sync

;store count

;set count

; reset flag

;read sync

GK

ME

PD

HH

OH

HH

KG

DK

JK

KG

KJ

LM

KL

IL

FO

AA

JG

IB

FF

BL

BH

OJ

ND

KF

EP

CB

LA

BG

DD

KC

Al

JN

EE

AJ

NC

OK

CM

HN

DM

GN

KP

BN

CB

FO

HD

KK

AN

KJ

KF

BE

JD

Ol

OF

PI

CP

OD

LA

CJ

910 now

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090 pos

1100

1110

1120

sec

txa

sbc

tax

sta

tya

sbc

tay

sta

bpl

eor

tay

txa

eor

tax

inx

bne

iny

tya

bne

cpx

bcc

1130 tryagain asl

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230;

1240 ok

1250

1260

1270 test

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370;

1380 timer

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

rol

clc

Ida

adc

sta

Ida

adc

sta

jmp

Idx

Idy

civ

Ida

bpl

bvc

civ

inx

bne

iny

bne

Ida

jmp

txa

asl

sta

tya

rol

sta

Ida

and

sta

Ida

sta

;caculate time

$71

$70

$72

$71

pos ;is the difference

postive

#$ff

#$ff

pos

tryagain

#4 ;is the difference

greater then 4

ok

$70

$71

$70

$0621

$0621

$71

$0622

$0622

start

#0 ;set counter

#0

$1c00 ;test for sync

timer

test

test

test

#3

error

;store the count

a

$0625

a

$0624

#$bf ;caculate the number of

$180b ;bytes on this track

$180b ;by the number of

sectors

#$66

$0626

The Transactor 4O Volume 6, l*sueO5

LL

HC

NJ

MO

IH

DL

00

PH

JN

AA

ON

BM

HC

KM

LN

LF

HP

PM

ND

ID

LB

Bl

EC

ED

EM

PL

AD

GF

CE

IK

FE

DB

PK

LB

BO

JC

BK

IC

AA

JL

Cl

BG

AN

GP

MN

DC

FG

DJ

OH

HA

AO

PH

AP

PN

OM

NN

IB

MO

OC

GD

1490

1500

1510

1520 cad

1530

1540

1550

1560 cac2

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660 cac3

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760;

1770 cac4

1780

1790

1800cac5

1810

1820

1830

1840

1850 cac6

1860

1870 cac7

1880

1890

1900

1910

1920;

1930 headers

1940

1950

1960

1970

1980

1990

2000 headeri

2010

2020

2030

2040

2050

2060

2070

2080

Idx

Idy

tya

clc

adc

bcc

iny

my

dex

bne

eor

sec

adc

clc

adc

bcs

dec

tax

tya

eor

sec

adc

clc

adc

bpl

Ida

jmp

tay

txa

Idx

sec

sbc

bcs

dey

bmi

inx

bne

stx

cpx

bcs

Ida

jmp

clc

adc

sta

Ida

sta

Idy

Idx

Ida

sta

iny

iny

Ida

sta

iny

Ida

sta

$43

#0

$0626

cac2

cad

#$ff

#0

$0625

cac3

$0624

#$ff

#0

$0624

cac4

#4

error

#0

$43

cac6

cac7

cac5

$0626

#4

headers

#5

error

$43

$0627

#0

$0628

#0

$3d

$39

$0300,y

$0628

$0300,y

$51

$0300,y

;set up all of the

;headers for this track in

;buffer#O

;header block id

code ($07)

;skip checksum

;sector number

;track number

KA

EC

EF

IC

PD

CH

GE

CL

AJ

EG

EK

IH

PK

OB

MC

KD

IE

LK

CG

GH

EM

GH

NL

Ml

GP

IN

NG

OG

HE

ND

JE

FO

CP

DE

JD

CN

CP

BP

JG

CE

OJ

IO

JL

OJ

IJ

AO

MN

KF

PB

GN

FN

OJ

PI

IC

CG

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350 data

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540 write

2550

2560

2570 waiti

2580

2590

2600

2610

2620

2630 wait2

iny

Ida

sta

iny

Ida

sta

iny

Ida

sta

iny

sta

iny

Ida

eor

eor

eor

eor

sta

inc

Ida

cmp

bcc

tya

pha

inx

txa

sta

inx

bne

Ida

sta

jsr

pi a

tay

dey

jsr

jsr

Ida

sta

jsr

sta

jsr

Ida

sta

jsr

Ida

sta

Idx

bvc

civ

dex

bne

Idx

Idy

bvc

$13,x

$0300,y

$12,x

$0300,y

#$0f

$0300,y

$0300,y

#0

$02fa,y

$02fb,y

$02fc,y

$02fd,y

$02f9,y

$0628

$0628

$43

headeri

$0500,x

data

#3

$31

$fe30

$fde5

$fdf5

#5

$31

$f5e9

$3a

$f78f

#0

$32

$feOe

#$ff

$1c01

#5

waiti

waiti

#$0a

$32

wait2

;id

;id

;off byte

;caculate checksum

;store checksum

increase sector counter

;set up dummy data

block in

;buffer#2

;set buffer pointer

;convert headers to

gcr code

;jsr moveup

;jsr movovr

;set buffer pointer

;jsr chkblk-to caculate

;checksum for

data block

;jsr bingcr-to convert

data block to gcr

;jsr clear-to clean track

;now the track is to be

written out

;write out 5 sync marks

;10 bytes for

each header

;set y to header pointer

The Transactor 41 Volume 6, IttueOS

PK

CD

KE

OE

PC

KP

HE

JL

CG

PE

KJ

FH

CE

GO

AA

AB

CL

AO

LL

Kl

Dl

DF

00

FA

GC

GC

CN

JK

AK

ED

FB

MG

AH

KB

BJ

BO

HP

El

CL

Nl

CG

CH

KG

HF

OM

LJ

JA

MG

CP

HI

GA

IN

MO

JC

JA

GD

BH

NE

2640

2650

2660

2670

2680

2690

2700

2710 waiti3
2720

2730

2740

2750

2760

2770

2780

2790 wait4

2800

2810

2820

2830

2840

2850 wait5

2860

2870

2880

2890

2900

2910

2920 wait6

2930

2940

2950

2960

2970

2980

2990

3000 wait7

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110wait8

3120

3130wait9

3140

3150

3160

3170

3180 try

3190

3200

3210

civ

Ida

sta

my

dex

bne

Idx

bvc

civ

Ida

sta

dex

bne

Ida

Idx

bvc

civ

sta

dex

bne

Idx

bvc

civ

Ida

sta

inx

bne

Idy

bvc

civ

Ida

sta

iny

bne

Ida

Idx

bvc

civ

sta

dex

bne

Ida

clc

adc

sta

dec

bne

bvc

civ

bvc

civ

jsr

Ida

sta

Ida

sta

Ida

sta

$0300,y

$1cO1

wait2

#9

wait3

#$55

$1cO1

wait3

#$ff

#5

wait4

$1cO1

wait4

#$bb

wait5

$0100,x

$1cO1

wait5

#0

wait6

($30),y

$1cO1

wait6

#$55

$0626

wait7

$1cO1

wait7

$32

#$0a

$32

$0628

write

wait8

wait9

$feOO

#$c8

$0623

#0

$30

#3

$31

;write out header

;header gap size

;header gap

;sync mark

;sync size

;overflow buffer - write

data block

; buffer #2

;tail gap

;numberoftail

gap bytes

;kill write mode

;now verify track with

200 trys

;set buffer pointer

BJ

KG

Nl

FH

HA

LI

CJ

Cl

CP

AE

IN

JL

GA

Ml

CK

Dl

EP

FH

OL

HJ

BO

NF

KM

AP

LM

GL

BD

EG

EF

NM

CB

KK

CN

LO

HL

EL

EK

II

CG

KP

LN

AD

NO

OF

EG

DL

OC

JF

KO

LI

PE

NH

AG

DB

GE

KE

NN

DO

JD

3220

3230

3240 cont

3250

3260

3270 chk1

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400;

3410error1

3420

3430

3440

3450;

3460 more

3470

3480 chk2

3490

3500

3510

3520

3530

3540

3550

3560 chk3

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700;

3710 done

3720

3730

3740

3750

3760

3770 error

3780

3790

3800 next

Ida

sta

jsr

Idx

Idy

bvc

civ

Ida

cmp

bne

iny

dex

bne

clc

Ida

adc

sta

imp

dec

bne

Ida

jmp

jsr

Idy

bvc

civ

ida

cmp

bne

iny

bne

Idx

bvc

civ

Ida

cmp

bne

iny

dex

bne

dec

bne

Ida

cmp

bcs

jmp

Ida

sta

Ida

sta

Ida

jmp

dec

beq

jmp

Idy

$43

$0628

$f556

#$0a

#0

chk1

$1cO1

($30),y

errori

chk1

$30

#$0a

$30

more

$0623

try

#6

error

$f556

#$bb

chk2

$1c01

$0100,y

errori

chk2

#$fc

chk3

$1c01

$0500,y

errori

chk3

$0628

cont

$51

#$26

done

bigger

#$ff

$51

#0

$50

#1

$f969

$0620

next

start

#$ff

;num of sectors on

this track

;wait for sync

;check header

;wait for sync

;overflow buffer-we

are checking

;the data block

;buffer#2data

;sector counter

;track number

;are 38 tracks done

;do more tracks

;reset values

;jobdoneok

;main error handler

;error counter

The Tronsoctor 42 Volume 6, tome O5

JA

MM

KB

GJ

CG

AP

CN

FB

FF

DO

JG

El

PD

LP

HI

NL

ME

HE

AG

Ml

MJ

NB

00

00

EJ

IH

IK

AO

AC

CM

MK

LG

CF

AL

LF

HM

LA

LM

HN

DO

PO

LB

Ml

PL

DH

Kl

KD

ND

MD

EP

GP

BN

BF

PM

BN

EL

LI

Ml

3810

3820

3830

3840

3850 step

3860

3870

3880

3890

3900

3910

3920

3930

3940

3950

3960 loopi

3970

3980

3990

4000

100open1,8

sty

iny

sty

jmp

Idx

inx

txa

and

sta

Ida

and

ora

sta

Idy

Idx

dex

bne

dey

bne

rts

,1,"0:f

105 rem save" @C

110sys700

120;

$51

$50

$f969

$1c00

#$03

$13ff

$1c00

#$fc

$13ff

$1c00

#$05

#$ff

loopi

loopi

leader, obj

:header.pal'

130 this program lives inside the

;main error handler

;move head half a track

;allow head to settle

,8

;pal 64 assembler

1541

140 and creates an extra header block

150 it should be used with its basic

160 counterpart in the c64

170;

180 .opt o1

190*

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

The Transactor

=

jmp

Ida

sta

Ida

sta

Ida

eor

eor

eor

eor

sta

jsr

Idx

Ida

sta

inx

cpx

bne

Ida

sta

Idx

dex

stx

Ida

sta

sta

sta

$0800

$eaa0

$13fe

$18

$13ff

$19

#$00

$16

$17

$18

$19

$1a

$f934

#$00

$24, x

$1000.x

#$0a

loopi

$13fe

$06

$13ff

$07

#$00

$3d

$33

$30

;reset disk drive

;track #;rentry from basic

; sector*

;checksum for header

;convert header to gcr

;store our header

;image in a safe place

;set up for reading

;last sector on this track

43

BB

GK

JB

HL

BK

BG

KL

ON

OM

LC

KB

KL

LE

AO

EC

EB

Gl

AG

CA

GF

EL

LK

KF

HE

HD

Kl

OO

NM

GO

FL

KO

HB

MP

DL

EL

GP

FP

CM

JM

JE

KN

OD

AG

AG

DG

EB

PN

KD

IH

GA

AL

LI

MF

El

MN

CC

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

980

990

1000

1010

1020

Ida

sta

Ida

sta

jsr

jsr

bvc

civ

Ida

sta

iny

bne

Idy

bvc

civ

Ida

sta

iny

bne

civ

bvc

civ

Ida

cmp

beq

Ida

and

ora

sta

Ida

sta

Ida

sta

Idx

bvc

civ

dex

bne

Idx

bvc

civ

Ida

sta

inx

cpx

bne

Idx

bvc

civ

Ida

sta

dex

bne

jsr

Ida

jmp

#$06

$32

#$03

$31

$f510

$f556

waiti

$1c01

($30),y

waiti

#$ba

wait2

$1c01

$0100,y

wait2

hold

$1c01

#$55

hold

$1c0c

#$1f

#$c0

$1c0c

#$ff

$1cO3

#$ff

$1c01

#$05

wait3

wait3

#$00

wait4

$1000.x

$1c01

#$0a

wait4

#$09

wait5

#$55

$1c01

wait5

$feOO

#$01

$f969

;read in header block

;wait for sync

;read in data block

;see if tail gap is

;over

;write out 5 sync markers

;write out extra header

; block that was

;savedat$1000

;write out header gap

terminate write mode

;jump to error handler

;with a job all ok

Volume 6, Issue O5

Assembly Language Disk Access
Richard Evers, Editor

. . .it's no more difficult than Basic, once you try it. . .

For many programming applications, disk accessing through

Basic is sufficient. At times, though, the speed of Basic disk

access tends to induce a neanderthal reaction within us. This

transformation is one in which we all take on from time to time,

and as such, it is also one that is best left hidden. The solution:

write the disk access routines in assembler.

There is a stigma attached to working with the drive at a

machine code level. Programmers from all walks of life will

often produce code destined for greatness, yet these same

programmers will shy away from taking on the drive. The

'perhaps it will bite' syndrome prevails. This article has been

written to dispel all such fears and show that the rumours have

been more hysteria than fact. Enough babbling, time to pro

duce.

If we were to write a simple file read routine in Basic, it would

go something like this;

100 input "filename " ;f$

110 open 7,8,9,(f$)

120 get#7,a$: print a$;: if st = O then 120

130 close 7

Not too difficult. Well, doing it in assembler is a bit more

tedious, but easy to grasp after performing it a few times. Below

is the flow of operations for the code written for this occasion.

1. Input filename from keyboard

2. Determine length of filename

3. Set-up parameters for the filename

4. Set-up logical address, secondary address, and

device number

5. Open the file

6. Set input device as the file to be read

7. Read a character from disk and print it to the screen

8. Check the file status - if not the end of file, get

another character (7)

9. Clear channel, close the file, and return to Basic

This is a very simple example of a sequential file read routine.

Notes On Direct Mode

If you were to assemble the source below and try to use it from

direct mode, you will generate a syntax error on return to Basic.

Why? Because direct mode statements are sent to the Basic

input buffer for use. When a SYS statement is performed, the

return address is placed on the stack, to be used when return to

Basic is desired. Now the problems develop. In direct mode the

SYS command will generate a return address that points right

into the Basic input buffer. My examples use an Input routine to

capture the desired filename. Input also uses the Basic input

buffer. When the RTS is executed to return to Basic, it will land

back into a pile of data it cannot understand, the filename.

Instant syntax error. In program mode this will not happen

since the return address will point into Basic text.

To get around this problem, a few methods exist. The first is to

clear out the input buffer with zeros before returning to Basic.

The next method is to retain the input buffer contents on

entrance to the routine, and swap it back into the buffer before

exit. A third method is to jump to a Basic warm start on exit

instead of the RTS. A warm start will bring you cleanly back

into direct mode Basic, irregardless of the mode in which you

were working prior, direct or program mode. A thought to

remember.

Procedure

In the first block of source, written for the Basic 4.0 Pet/CBM

machines, you will notice that it looks a tad awkward in

relation to the second block of source, written for the C64. The

reason is that Commodore grew wiser, as far as programming

goes, as time went by. They used their noggins and produced

some really nice kernal routines to help make writing easier. In

fact, my C64 source is virtually perfect for the VIC 20, with the

exception of two ROM routines. The first routine, INPUT, is the

Input routine, of which the address is located in the source. The

second, PRTSTR, is a routine that will print a string of charac

ters pointed to by the Y register (high byte), and the Accumula

tor (low byte). This routine will continue printing characters

until a zero byte terminator is found. It's address can also be

found listed in the source.

The Transactor Volume 6, Issue O5

When you get a little better acquainted with the techniques

involved, I am sure that you will be able to find quite a few

shortcuts to take to produce the same effect. One shortcut is to

use a Logical and Secondary address of 8. Instead of;

Ida #7

sta logadd

Ida #8

sta devnum

Ida #9

sta secadd

set logical address

set device number

; set secondary address

for the Pet/CBM, you could simply:

Ida #8 ; la, sa, devnum

sta logadd

sta devnum

sta secadd

It would save all of four bytes. For the C64 version, the code:

Ida

Idx

Idy

#7

#8

#9

; logical address

; device number

; secondary address

could be optimized into:

Ida #8 ;

tax

tay

la, sa, devnum

Saving all of two bytes. If you are willing to stoop to a level of

lack of clarity and further lack of adaptability, you can save a

byte here and there. But wait until you understand the code

properly.

Another note that might bother you. I used a very simple

method to retrieve the filename, an Input statement. If you

have been reading our magazine for any length of time, you

might have noticed a few really sharp routines covered in prior

issues. My favourite is the method of parsing the filename as a

string following the SYS address when entering the routine. For

purposes of simplicity, my example shows the Input statement.

For you own creations, try to find one that suits the occasion

best.

Very little more requires to be said about the routine that

follows. It is a simple file read routine and performs no major

miracles. Perhaps, though, you want to write to a file. This

might be a tad more difficult, depending on the file type

desired.

The easiest would be to create a Program file on disk. To do

this, change the Secondary Address used in our example to a 1.

With a Secondary Address of 1, all file work automatically

defaults to a write, with the created file becoming a PRG type.

As you can probably guess, this feature was incorporated to

make the Saving of Basic programs a little easier. Any Second

ary Address greater than 1 and less than 15 will read from a file

on default.

Once you have created a PRG write file, you have to be able to

write to it. The code below shows the normal flow of opera

tions. Below that is the changes required to make be able to

write:

- Before -

Idx logadd ; get logical address

jsr chkin ; set input device

;... get and print chars from file . . .

more = *

jsr chrin ; get a char from disk

jsr chrout ; print it to the screen

- After -

Idx logadd ; get logical address

jsr chkout ; set output device

;... get and print chars to file . . .

more = *

jsr getchr ;** your routine to supply the data

jsr chrout ; output to disk

Pretty easy. Instead of setting the input device (CHKIN), you

now set the output device (CHKOUT). The Kernal address for

CHKOUT is $FFC9. Time for a quick interjection. If you want to

simultaneously read from one file and write to another, there is

one small problem. You would have to set the input device,

read the character, set the output device, write the character,

and continue this process until the input file has been read to

your satisfaction. See below ;

Idx #readla

jsr chkin

jsr chrin

pha

Idx #wrtla

jsr chkout

pla

jsr chrout

read logical address

set input device

get a character

retain the byte

write logical address

set output device

get it back

output char

A little more tedious, but it works. Time to move on to file

formats other than the PRG type.

Writing to a Sequential or User type file is a bit more difficult. A

slight addition will have to be made to the filename, plus an

alteration of the filename length will also have to be made to

reflect this. The altered code could be something like this:

The Transactor 45 Votume6,totueO5

doit = *

Idy #0

;. . . add write suffix to filename . . .

alter = *

Ida write,y ; get data to add

sta inpbuf.x ; place it following the filename

Basic 4.0 - Pet/CBM Version

inx

my

cpy #length

bne alter

end of extra data

not yet

stx lennam ; set filename length

The " ,s,w" at label WRITE should be placed near the

data for the label PROMPT, just to keep it all in one

place and out of the way. See below for label WRITE:

write = *

.asc " ,s,w"

length = *-write

; change s to u for a user file

This covers writing to a Program, Sequential, and

User file. As far as Relative files go, the modifications

to my source would be a little more difficult. The

Opening of a Relative file wouldn't be too horrific, but

the positioning of records, writing for the first time,

plus reading and writing thereafter could be code

consuming. If you feel that life is not complete without

this extra bit of knowledge, drop me a letter. With

more than a couple requests, maybe.

As a final closing paragraph, I think a brief discussion

regarding Opening files without a filename is in order.

You may want to do this from time to time, as in the

case of Opening the drives command channel for

direct access work. The trick to this is simple. Don't

bother with the filename pointers, and set the fi

lename length to zero. If it was not a disk channel but

a printer that required Opening, similar to the Basic

incantation "OPEN 4,4", then assigning a value of 255

to the secondary address would perform the service.

Two fast solutions for a few occasional problems. And

so, with this article complete, I wish you luck in the

land of disk access. With patience, and your thoughts

collected, difficulties should not arise.

MA

HO

Fl

PB

DK

BN

GB

MA

GE

JK

CK

DE

GL

IF

NK

CG

CH

FF

BL

KO

Fl

BF

GL

DM

KM

LM

GB

EM

LI

CD

HN

AB

HL

NK

OA

FD

IK

MD

GF

LJ

JE

LJ

NK

Dl

HA

DK

GK

DD

ND

EP

DF

OF

100

110

120

130

140

150

160

170

180

190

200

rem save" 0:disk 1 .pal" ,8

rem ** rte/85 - disk access in assembler - basic 4.0

pet/cbm **

open 4,8,1,"0:disk I.obj"

sys(0)

.opto4

= $027a

;

status = $96 ;file status

lennam = $d1 ;length of filename

logadd = $d2 ;logical address

secadd = $d3 ;secondary address

210 devnum= $d4 ;device number

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

name = $da ;filename (ptr)

inpbuf = $0200 ;input buffer

input = $b4e2 ;input routine

prtstr = $bb1 d ;print string from y/a (hi/lo)

close = $f2e2 ;close file

open = $f563 ;open file

chkin = $ffc6 ;open channel for input (kernal)

clrchn = $ffcc ;restore default i/o (kernal)

chrin = $ffcf ;input char from channel (kernal)

chrout = $ffd2 ;output char to channel (kernal)

; ** disk read routine **

;. . . ask for filename . . .

Idy #>prompt

Ida #<prompt

jsr prtstr ;print string

jsr input ;input filename into input buffer

Idx #0

;. . . determine length of filename . . .

getlen = *

Ida inpbuf.x ;get char from inpbuf

beq doit ;if = 0 then end of filename

inx

bne getlen ;un-conditional branch

;

;. . . set-up filename . . .

doit = *

stx lennam ;set filename length

Ida #<inpbuf ;set ptrsto name

sta name

Ida #>inpbuf

sta name +1

;

; . . . set-up file for open . . .

Ida #7

sta logadd ;set logical address

Ida #8

sta devnum ;set device number

The TronSQCtOf 46 Volume 6, Issue OS

JG

LO

HM

AA

BA

NC

HN

DD

CD

FB

IJ

LC

HL

DB

GK

IH

BM

ED

DL

PC

KK

NG

MJ

Ml

CN

CE

620

630

640

650;

660;...se

670

680

690

700;

Ida #9

sta secadd ;set secondary address

Idx #0

t length then open . . .

jsr open ;open file

Idx logadd ;get logical address

jsr chkin ;set input device

710 ; ... get and print chars from file . . .

720 more

730

740

750

760

770;

780

790

800

810

820;

830 prompt

840

850

860;

870 .end

= *

jsr chrin ;get a char from dish

jsr chrout ; print it to the screen

Ida status ;check if end-of-file

beq more ;not yet-go for some more

jsr clrchn ;clear channel

Ida logadd ;logical address

jsr close ;close file

rts ;return to basic

= *

.asc "filename? "

.bytO

Commodore 64 Version

OA

CN

Jl

NB

DK

PM

GB

MB

PI

KJ

CH

FP

PG

Dl

NJ

DJ

MM

HG

DD

100 rem save"O:disk 2.pal" ,8

110 rem ** rte/85 - disk access in assembler

- c64 version **

120 open 4 8,1,"0:disk2.obj"

130sys(700)

140 .opt o4

150*

160;

170inpbuf

180 input

190 prtstr

200 readst

210 setlsf

220 setnam

230 open

240 close

250 chkin

260 clrchn

270 chrin

280 chrout

The Transactor

= $033c

= $0200 ;input buffer

= $a560 ;input routine ($c560 for vie)

= Sable ;print string from y/a ($cb1efor vie)

= $ffb7 ;read file status

= $ffba ;set la, sa, and devnum

= $ffbd ;set-up filename

= SffcO ;open file

= $ffc3 ;close file

= $ffc6 ;open channel for input

= $ffcc ;restore default i/o

= $ffcf ;input char from channel

= $ffd2 ;output char to channel

(kernal)

(kernal)

(kernal)

(kernal)

(kernal)

(kernal)

(kernal)

(kernal)

(kernal)

47

IJ

FK

MK

NK

IP

GK

NG

EB

JL

CP

JJ

PI

AP

HB

Kl

OB

ID

NH

LC

DC

EN

LM

LG

OH

DK

JD

MO

LN

LE

DN

HM

JN

IN

LL

OD

BN

NF

NF

ME

OB

HG

JN

PH

ML

AF

DB

CE

CD

IH

IO

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

; ** disk reac

J

routine **

; . . . ask for filename . .

lay

Ida

jsr

jsr

Idx

#>prompt

#<prompt

prtstr

input

#0

; . . . determine length o

getlen =

Ida

beq

inx

bne

*

inpbuf.x

doit

getlen

; . . . set-up filename . .

doit

txa

Idx

Idy

jsr

;

*

#<inpbuf

#>inpbuf

setnam

print string

input filename into input

buffer

filename. . .

get char from inpbuf

if = 0 then end of filename

un-conditional branch

.a = length

,x = name ptr lo

.y = name ptr hi

set-up filename

;. . . set-up file then open . . .

Ida

Idx

Idy

jsr

jsr

Idx

jsr

;... get and

more

jsr

jsr

jsr

beq

jsr

Ida

jsr

rts

prompt =

.asc

.bytC

.end

#7

#8

#9

setlsf

open

#7

chkin

logical address

device number

secondary address

set la, sa, and devnum

open file

logical address

set input device

print chars from file . .

*

chrin

chrout

readst

more

clrchn

#7.

close

'filename?

get a char from disk

print it to the screen

check if end-of-file

not yet - go for some more

clear channel

logical address

close the file

Volume 6, Issue O5

Directory Match Pierre Corriveau

Montreal, Quebec

As time passes by, your library of programs

grows bigger and bigger. Utility programs,

games, educational programs, and a lot of them

have similar names.

Then one evening, you need to find that one

utility program, you don't remember the whole

name but you know there was the word " test"

in it. Was it " Prt test pgm", " Test printer" or "

Print, test" ? Which disk was it on ?

There you go, looking through all your disks,

typing LOAD " $" ,8 and LIST dozens of times.

Pattern matching can't help you since you don't

know where the word " test" is located in the

filename. You have to examine each filename; a

long and boring job.

That's why DIR MATCH was created. Now all

you have to do is load it in, insert the disk you

want to search in the drive and type SYS 49152,

" test". DIR MATCH will list any filename that

contains " test" in it. You can also type SYS

49152 alone and it will list the whole directory

on screen. To stop the listing, hold the SHIFT

key. To abort it, press the BACK ARROW key.

Also, the program is made so that it can be

relocated. The basic loader will take care of that.

The PAL source code is included for those who

are tuned to the fast paced world of machine

language.

But wait a minute, what if you also forgot which

disk DIR MATCH was on ?!?

DIR MATCH Basic Loader

CP

CN

JH

NC

MB

OJ

PN

CA

AB

MO

Nl

AE

AJ

GO

EG

JO

AM

PL

HO

CA

BK

HF

OA

DM

CE

BA

MG

FL

IJ

KH

NA

AE

CF

HP

Cl

HO

MO

EN

PC

HC

IH

EE

HF

KC

DM

El

JF

OJ

PL

KC

DE

DJ

LN

BK

100 rem the routine uses channels #13 and #15

110 ad = 49152:rem change if you wish

120 print"Hdirectory search routine"
130 print" Bsys" ad" = directory listing"
140 print"flsys" ad"," chr$(34)" mon" chr$(34)
150 print" will list filenames containing"

160 print" 'mon' like 'micromon' and '64mon'

170 print" Hsys" ad" ,a$ also works"
180 print"0pause listing with shift"
190 print" halt with run/stop"

200 print" ^relocatable: look at line 110"
210 print". . .please wait. .

220 gosub-250

230 end

240:

250 a = ad:rem change if you wish

260 read d:ifd = -1 then 280

270 poke a,d:ck = ck + d:a = a +1 :goto 260

280 if ck<>48226 then print" error in data lines 390-840" :end

290 a = ad

300 for i = 1 to 11

310 read rt:ch = ch + rt

320 read of:if of = -1 then 360

330 ch = ch + of

340 poke a + of +1 ,int((a + rt)/256):pokea + of,(a + rt)-256*int((a + rt)/256)

350 goto320

360 next

370 if ch<>8490 then print" error in data lines 870-920" :end

380 return

390 data 169, 0,141, 75,193, 32,121, 0

400 data 240, 47, 32,253,174, 32,158,173

410 data 32,143,173,169, 13, 32,210,255

420 data 160, 0,177,100,201, 17,144,5

430data162, 23, 76, 58,164,141, 75,193

440 data 200, 177, 100, 133, 20, 200, 177, 100

450 data 133, 21,165,100,164,101, 32,219

460 data 182, 169, 0, 32,189,255,169, 15

470 data 162, 8,160, 15, 32,186,255, 32

480 data 192, 255, 144, 8, 72, 32,232,192

490 data 104, 76, 59,164,169, 1,162,205

500 data 160, 235, 32,189,255,169, 13,162

510 data 8,160, 0, 32,186,255, 32,192

520 data 255, 176, 225, 162, 15, 32,198,255

530 data 32,207,255,201, 48,240, 3, 76

540 data 220, 192, 32, 204, 255, 162, 13, 32

550 data 198, 255, 32,207,255, 32,207,255

560 data 32,204,255, 32,246,192, 32, 47

570 data 193, 32,225,255,240, 8, 32,246

580data192, 16, 6, 32, 47,193, 76,232

590 data 192, 173, 75,193,208, 7,173,141

600 data 2,208,251,240,225,162, 0,189

610 data 80,193,232,201, 34,208,248,142

620data 77,193,160, 0,189, 80,193,201

630 data 34,240,206,209, 20,240, 8,238

The Transactor 48 Volume 6, Issue OS

NN

PD

LO

IA

KF

AF

CH

HE

Dl

ME

Nl

FD

FL

BO

CB

DB

MK

MC

GD

AE

DE

GM

HA

HD

EG

PA

Nl

Kl

MP

640 data 77,193,174, 77,193,208,235,200

650 data 232, 204, 75, 193, 208, 230, 32, 47

660 data 193, 76,145,192, 32,210,255,165

670 data 144, 208, 5, 32,207,255,208,244

680 data 32,204,255,169, 13, 32,195,255

690 data 169, 15, 32,195,255, 96,169,255

700 data 141, 76,193,162, 13, 32,198,255

710 data 32,207,255, 32,207,255,240, 32

720 data 32,207,255,141, 78,193, 32,207

730 data 255, 141, 79,193,160,255,200, 32

740 data 207, 255, 153, 80,193,240, 9,201

750 data 34,208,243,141, 76,193,240,238

760 data 32,204,255,173, 76,193, 96,174

770 data 78,193,173, 79,193, 32,205,189

780 data 160, 255, 169, 32, 32, 210, 255, 200

790 data 185, 80,193,208,247,169, 13, 32

800 data 210,255, 96, 0,255, 0, 32, 32

810 data 32, 32, 32, 32, 32, 32, 32, 32

820 data 32, 32, 32, 32, 32, 32, 32, 32

830 data 32, 32, 32, 32, 32, 32, 32, 32

840 data 32, 32, 32, 32, -1

850:

860 rem relocation code

870 data 331, 3, 38,162,210, -1,220,120

880 data -1,246,140,151, -1,303,143,156

890 data 215, -1,232,159, 78, -1,336,176

900 data 189, 283, 321, -1, 333, 184, 200, 203

910 data -1,145,218, -1,332,249,292,300

920 data -1,334,268,304, -1,335,274,307, -1

DIR MATCH PAL Source Code

FD

LN

00

KO

NH

FM

CL

JO

MD

CK

EL

PB

DA

BB

Al

CG

CJ

El

CB

NA

PM

EF

AL

AM

CA

PO

BF

HA

CA

NF

LN

EH

100sys700

110 ;print the disk directory

120;

130 .opt oo

140* = $c000

150 setfls = $ffba

160 setnam = $ffbd

170 open = $ffcO

180chkm = $ffc6

190chrin = $ffcf

200 clrchn = $ffcc

210 close = $ffc3

220 chrout = $ffd2

230 stop = $ffe1

240 st = $90

250 chrgot = $79

260 string = $14

270;

280 ;check if param is present

290 Ida #0

300 sta strlen

310 jsr chrgot

320 beq opencmd

330;

340 ;get the string

350 jsr $aefd ;check comma

360 jsr $ad9e ;get parameter

370 jsr $ad8f ;check if string

380 Ida #13

390 jsr chrout

400 Idy #0

410 Ida ($64),y ;get string length

The Transactor

OF

NA

OP

MM

ME

FC

AM

EB

LI

ON

ON

LG

AL

NB

PP

AL

OC

HN

DE

DC

IP

NM

MG

CE

IAIM

MK

OR

AM

Kl

JL

IF

MJ

KF

HE

PA

PO

DA

AC

BO

AK

EE

EM

PJ

NJ

EB

KN

JL

AP

KP

GH

DJ

CL

BD

GM

KH

AE

EB

ME

OF

KD

DA

IO

LA

ME

LK

FD

49

420

430

440

450

460 okstrlen

470

480

490

500

510

520

530

540

550

560

570 ;

cmp

bcc

Idx

jmp

=

sta

iny

Ida

sta

iny

Ida

sta

Ida

Idy

jsr

580 ;set command

590 opencmd =

600

610

620

630

640

650

DDW

670

fiRO ■uou ,

690 knerror\J *-J \j I \ 1 1 '^/ 1 1 W 1

700

710

720

730

740;

iaa

jsr

Ida

Idx

Idy

jsr

jsr

bcc

pha

pla

jmp

#17

okstrlen

#23

$a43a

+

strlen

($64),y

string

($64),y

string +1

$64

$65

$b6db

;if > 16 error

;string too long error

;save length

;save pointer to string

;clean descriptor stack

channel for open

*

#0

setnam

#15

#8

#15

setfls

op©n

noerror

*

fini

$a43b

750 ;set channel #13 for open

760 noerror

770

780

790

800

810 ;

_

Ida

Idx

Idy

jsr

*

#1

#$cd

#$eb

setnam

820 ;set file name to " $"

830

840

850

860

870

880

890;

Ida

Idx

Idy

jsr

jsr

bcs

#13

#8

#0

setfls

open

knerror

900 ;check if everything ok

910

920

930

940

950

960

970;

980 ;looking

Idx

jsr

jsr

cmp

beq

jmp

good.

#15

chkin

chrin

#"0"

br1

perror

disconnect <

990 ;and start printing

1000;

1010 br1

1020

1030

1040

1050

1060

1070

_

jsr

Idx

jsr

jsr

jsr

jsr

*

clrchn

#13

chkin

chrin

chrin

clrchn

;save error number

tIosp channpl #15| \J 1 V*/**J \J Wl 1 <—L t 1 1 1 \^t III 1 °*~J

;print kernal error msg

;ptto '$' of keybrd mat.

;'0' means ok

;print error and exit

;h#15

;skip load adrs

;with 2 chrins

Volume 6, Issue O5

OK

FE

OJ

LA

NO

AA

HJ

OE

KN

NC

CN

PP

EJ

HM

GO

PG

JM

DF

KO

JF

GH

KN

KF

GK

CL

PN

IB

IB

FF

Cl

LO

LD

00

KB

JD

EF

FJ

KK

EP

CH

DF

Nl

HE

MO

MM

FE

FE

El

DG

PK

FE

MK

PP

Al

NP

EN

HJ

JE

PN

EA

AK

JH

KB

LN

IA

JM

1080;

1090 ;printdisl

1100

1110dir

1120

1130 nextfile

1140

1150

1160

1170

1180

1190 done

1200

1210 notdone

1220

1230

1240 waitshft

1250

1260

1270

1280;

(name

jsr

jsr

jsr

beq

jsr

bpl

jsr

jmp

Ida

bne

=

Ida

bne

beq

getfile

prtfile

■'.-■

stop

done

getfile

notdone

prtfile

#

fini

#

strlen

match

*

$028d

waitshft

dir

1290 ;check for a match

1300 match

1310

1320match2

1330

1340

1350

1360

1370

1380 match 1

1390

1400;

1410 nextchar

1420

1430

1440

1450

1460

1470

1480

1490

1500charmat

1510

1520

1530

1540

1550;

=

Idx

=

Ida

inx

cmp

bne

stx

=

Idy

=

Ida

cmp

beq

cmp

beq

inc

Idx

bne

ss

iny

inx

cpy

bne

1560 ;gotamatch !

1570

1580

1590;

jsr

jmp

1600 ;there was an f

#

#0

flname + 2,x

#34

match2

flindex

*

#0

*

flname + 2,x

#34

nextfile

(string),y

charmat

flindex

flindex

match 1

*

strlen

nextchar

prtfile

nextfile

srror; print it

;stop key pressed " ?

;if so exit

;prt nb of blks

;close all files and exit

;null string "?

;shift key flag

.search for first quote

;store in index

;pt to 1st char of string

;quote = end of filename

;does char match "?

;no, check nextchar

;jump

partial match, bump index

;if not whole string

;done, check nextchr

1610 ;the first char of the error msg

1620 ;is already in the accumulator

1630;

1640 perror

1650

1660

1670

1680

1690

1700;

1710 ;all done

1720 fini

1730

=

jsr

Ida

bne

jsr

bne

*

chrout

st

fini

chrin

perror

go back to basic

=

jsr

*

circhn

;done. back to basic

;jump

CF

LE

MG

PF

AO

EH

NM

ON

DP

MJ

EA

MJ

HK

AD

DF

PG

ME

EH

GP

El

BC

HO

IL

NL

CD

FB

CJ

NG

EM

OP

FO

CK

IE

NK

KO

JE

Al

FE

NG

OD

CN

JJ

IC

KD

LJ

LF

BD

EG

FG

FD

HJ

KK

Dl

EB

OG

JM

IO

MH

BL

IN

PG

CE

1740

1750

1760

1770

1780

1790;

Ida

jsr

Ida

jsr

rts

1800 ;input filename

1810 ;on return flag

1820;

1830;

1840 getfile

1850

1860

1870

1880

1890

1900

1910

1920;

1930cont

1940

1950

1960

1970

1980;

flag

=

Ida

sta

Idx

jsr

jsr

jsr

beq

=

jsr

sta

jsr

sta

1990 ;let's get text

2000

2010 text

2020

2030

2040

2050

2060

2070

2080

2090

2100 get2

2110

2120

2130

2140;

Idy

=

iny

jsr

sta

beq

cmp

bne

sta

beq

=

jsr

Ida

rts

#13

close

#15

close

in buffer

= 255 means end

= 34 means ok

*

#255

flag

#13

chkin

chrin ;skip forward chain

chrin ;except zero chain

get2 ;means end

*

chrin ;get nb of blocks

flname

chrin

flname+ 1

#255

*

chrin

flname + 2,y

get2 ;0= end of line

#34 ;quote "?

text ;no, get some more

flag ;yes, set the flag

text ;jump

*

circhn

flag

2150 ;routine to print filename

2160 ;filename ends with a zero byte

2170 prtfile

2180

2190

2200

2210

2220

2230 prt1

2240

2250

2260

2270

2280

2290

2300

2310;

2320 strlen

2330 flag

2340 flindex

2350 flname

=

Idx

Ida

jsr

Idy

Ida

=

jsr

iny

Ida

bne

Ida

jsr

rts

byte

.byte

.byte

,asc

#

flname ;print nb of blocks

flname +1

$bdcd

#255

#" " ;1 space

*

chrout

flname + 2,y

prt1

#13

chrout

0

255

0

;30 spaces

The Transactor 5O Volume 6, Issue O5

Commodore 64

Memory Configurations

William Levak

Ann Arbor, MI

Effects Of The PLA Chip In All Situations

The major obstacle to understanding the Commodore 64's

memory is the 82S100 programmed logic array (PLA) that

controls it. What we need is the truth table for the chip. A truth

table is a table that shows the output on every output pin for

every possible combination of inputs on the input pins. We

would normally find the truth table for a chip on the manufac

turer's data sheet. However, a programmed logic array does not

have a truth table until it is programmed (in this case by

Commodore), and Commodore has not puhlished the truth

table. I have therefore read out the chip and obtained the truth

table which is shown in the first table.

How To Read The Truth Table

At the left side of the table are the names of the inputs (pins 10-

115) and outputs (pins F0-F7) of the PLA as given in the circuit

diagram in the Commodore 64 Programmer's Reference Guide.

The 26 columns in the table each represent a combination of

inputs recognized by the PLA and the outputs that combination

causes. The first column with all the inputs marked with a '-'

represents the default output state, that is, if none of the other

input conditions are met, then the output will be as indicated in

this column. For all the other columns, a '1' indicates a high

input state (+ 5 V), a '0' indicates a low input state (0 V), and an

'x' represents an input that is ignored for this column. If the

input conditions in a particular column are met then the

outputs will be changed from the default condition.

A "1" indicates that the output will change from low to high,

a "0" indicates that the output will change from high to low,

and

an "x" indicates that the output will remain in the default state.

It is possible that more than one input condition will be met at

the same time, and their outputs will then be combined. This

occurs only with certain timing signals necessary to access

RAM.

Although the truth table is the most complete description of the

PLA possible, it is not very useful to the average programmer. I

have therefore produced memory maps of the fourteen possi

ble memory configurations of the Commodore 64. The mem

ory configuration is selected by five lines on the PLA:

LORAM, HIRAM, and CHAREN are controlled

by bits 0, 1, and 2 at memory location 1.

GAME and EXROM are two lines on the

cartridge expansion port and are

controlled by the circuitry on the cartridge.

All five lines are normally high.

The addresses at the left of the table are the beginning to

ending addresses of each 4K block. KERNL, BASIC, and

CHARA refer to the kernal, BASIC and character ROMs respec

tively. I/O refers to the 4K I/O block which contains all the I/O

chips and the color memory. ROM H and ROM L refer to two

cartridge ROMs which can be up to 8K in length. The 4K ROM

H blocks in the VIC column in the last configuration (the game

configuration) are the top 4K of the 8K ROM H block seen by

the CPU. Ram, of course, refers to random access memory.

Each memory map contains four columns. This is because the

memory configuration differs according to the device accessing

it and whether it is reading or writing. The column on the right

is what the VIC chip sees when reading. The column on the left

is what the CPU sees when writing. Both columns in the center

are what the CPU sees when reading, but under different

conditions. The VIC chip and the CPU share the same address

and data busses, but on opposite phases of the clock cycle.

Occasionally the VIC chip needs the busses longer than half a

clock cycle. When this occurs, the VIC chip pulls line BA low.

When the CPU sees that BA is low it runs for three clock cycles

and then halts. During these three cycles the memory configu

ration is as described in the column marked R(-BA). At all other

times it is as described in the column headed R(BA). Notice that

this affects only the CPU reading the I/O block. During these

three cycles the I/O block is unavailable and RAM is seen

instead. Writing to the I/O block is still possible however.

Some final notes: In compiling this information I have read out

three PLAs and each had different numbers on them. In order

to eliminate transcription errors, all the tables were generated

directly by computer programs from a disk file containing the

information from the PLA. The careful reader will spot differ

ences between the information presented here and that con

tained in the Commodore 64 Programmer's Reference Guide.

All such differences were verified manually against the original

data file created by reading out the PLA, which itself was

verified against two other PLAs as noted above.

The Transactor 51 Volume 6, Issue O5

Inputs

10 CAS

11 LORAM

12 HIRAM

13 CHAREN

14 VA14

15 A15

16 A14

17 A13

18 A12

19 BA

110 AEC

111 R/W

112 EXROM

113 GAME

114 VA13

115 VA12

Outputs

F0 CASRAM

F1 BASIC

F2 KERNAL

F3 CHAROM

F4 GR/W

F5 I/O

F6 ROM L

F7 ROM H

Commodore 64 PLA

X

X

X

X

X

X

X

X

X

X

1

X

1

0

1

1

1

X

X

X

X

X

X

0

GAME

X

X

X

X

X

1

1

1

X

X

0

X

1

0

X

X

1

X

X

X

X

X

X

0

X

X

1

X

X

1

0

1

X

X

0

1

0

0

X

X

1

X

X

X

X

X

X

0

1

EXROM 1

CHAREN 1

HIRAM 1

LORAM 1

$F000

$E000

$DOO0

$C000

$B000

$A000

$9000

$8000

$7000

$6000

$5000

$4000

$3000

$2000

$1000

$0000

-FFFF

-EFFF

-DFFF

-CFFF

-BFFF

-AFFF

-9FFF

-8FFF

-7FFF

-6FFF

-5FFF

-4FFF

-3FFF

-2FFF

-1FFF

-OFFF

X

X

X

X

X

1

0

0

X

X

0

X

1

0

X

X

1

X

X

X

X

X

0

X

X

1

1

X

X

1

0

0

X

X

0

1

0

X

X

X

1

X

X

X

X

X

0

X

X

X

1

1

X

1

1

0

1

X

0

0

X

X

X

X

1

X

X

X

X

0

X

X

X

X

X

X

X

1

1

0

1

X

0

0

1

0

X

X

1

X

X

X

X

0

X

X

CPU

W

ram

ram

I/O

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

<ERNL

<ERNL

ram

ram

BASIC

BASIC

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

I/O

ram

BASIC

BASIC

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

X

1

0

1

X

1

1

0

1

X

0

0

X

X

X

X

1

X

X

X

X

0

X

X

X

X

1

1

X

1

1

0

1

1

0

1

X

X

X

X

1

X

X

X

X

0

X

X

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

X

X

X

X

X

1

1

0

1

1

0

1

1

0

X

X

1

X

X

X

X

0

X

X

X

1

0

1

X

1

1

0

1

1

0

1

X

X

X

X

1

X

X

X

X

0

X

X

0

X

X

X

X

1

1

0

1

X

0

X

X

X

X

X

X

X

X

X

0

X

X

X

X

X

X

X

1

X

X

X

X

X

1

X

0

X

0

1

1

X

X

0

X

X

X

X

X

X

X

X

1

X

X

X

X

X

1

X

1

1

0

1

1

X

X

0

X

X

X

X

X

X

1

0

X

1

1

0

1

X

0

X

X

1

X

X

1

X

X

0

X

X

X

X

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$COO0 - CFFF

$B000 - BFFF

$AOO0 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 - 1FFF

$0000 - OFFF

X

1

0

0

X

1

1

0

1

X

0

X

X

1

X

X

1

X

X

0

X

X

X

X

X

X

1

0

X

1

1

0

1

X

0

X

0

0

X

X

1

X

X

0

X

X

X

X

X

X

1

X

X

1

1

1

X

X

0

X

X

1

X

X

1

X

0

X

X

X

X

X

X

X

1

X

X

1

1

1

X

X

0

X

0

0

X

X

1

X

0

X

X

X

X

X

GAME

X

1

1

X

X

1

0

1

X

X

0

X

X

1

X

X

1

0

X

X

X

X

X

X

-

-

-

-

-

—

—

—

-

-

-

-

-

-

_

-

0

1

1

1

1

1

1

1

1

EXROM 1

CHAREN 0

HIRAM 1

LORAM 1

1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

1

X

X

X

X

X

X

X

0

X

X

X

X

X

1

X

X

X

X

X

1

0

X

X

1

X

X

X

X

X

X

X

0

X

X

X

X

X

0

1

X

X

X

X

1

0

X

X

1

X

X

X

X

X

X

X

0

X

X

X

X

X

0

0

1

X

X

X

1

0

X

X

1

X

X

X

X

X

X

X

0

X

X

X

X

X

1

0

0

X

X

X

1

0

X

X

1

X

X

X

X

X

X

X

CPU

W

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

3HARA

ram

BASIC

BASIC

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

CHARA

ram

BASIC

BASIC

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

The Transactor 52 Volume 6, Issue O5

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 OFFF

The Transactor

GAME 1

EXROM 0

CHAREN 1

HIRAI\/1 1

LORAM 1

W

ram

ram

I/O

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

GAME

CPU

R(BA)

KERNL

KERNL

ram

ram

BASIC

BASIC

ROML

ROML

ram

ram

ram

ram

ram

ram

ram

ram

0

EXROM 0

CHAREN 1

HIRAN/ 1

LORAM 1

W

ram

ram

I/O

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

CPU

R(BA)

KERNL

KERNL

ram

ram

ROMH

ROMH

ROM L

ROML

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

I/O

ram

BASIC

BASIC

ROML

ROML

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

I/O

ram

ROMH

ROMH

ROML

ROML

ram

ram

ram

ram

ram

ram

ram

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

53

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

GAME 1

EXROM 0

CHAREN 0

HIRAM 1

LORAM 1

W

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

CPU

R(BA)

KERNL

KERNL

CHARA

ram

BASIC

BASIC

ROML

ROML

ram

ram

ram

ram

ram

ram

ram

ram

GAME 0

EXROM 0

CHAREN 0

HIRAM 1

LORAM 1

W

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

CPU

R(BA)

KERNL

KERNL

CHARA

ram

ROMH

ROMH

ROML

ROML

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

CHARA

ram

BASIC

BASIC

ROML

ROML

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

CHARA

ram

ROMH

ROMH

ROML

ROML

ram

ram

ram

ram

ram

ram

ram

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

Volume 6, issue O5

$F000 - FFFF

$E000 - EFFF

$DOOO-DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

The Transactor

GAME 0

EXROM 0

CHAREN 1

HIRAIV 1

LORAM 0

W

ram

ram

I/O

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

GAME

CPU

R(BA)

KERNL

KERNL

ram

ram

ROMH

ROMH

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

1

EXROM

CHAREN 1

HIRAM 1

LORAM 0

W

ram

ram

I/O

ram

ram^

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

CPU

R(BA)

KERNL

KERNL

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

I/O

ram

ROMH

ROMH

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

I/O

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

54

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

$F000 - FFFF

$EOO0 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

GAME 0

EXROM 0

CHAREN 0

HIRAM 1

LORAM 0

W

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

CPU

R(BA)

KERNL

KERNL

CHARA

ram

ROMH

ROMH

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

GAME 1

EXROM x

CHAREN 0

HIRAM 1

LORAM 0

W

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

CPU

R(BA)

KERNL

KERNL

CHARA

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

CHARA

ram

ROMH

ROMH

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

KERNL

KERNL

CHARA

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

Volume 6, Issue O5

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

The Transactor

GAME

EXROM

CHAREN

HIRAM

LORAM

W

ram

ram

I/O

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

GAME

EXROM

CHAREN

HIRAM

LORAM

W

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

1 0

x 0

1 1

0 0

1 1

CPU

R(BA)

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

1 0 0

x 0 0

x x 0

0 0 0

0 0 1

CPU

R(BA)

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

ram

ram

I/O

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

55

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

$F000 - FFFF

$E000 - EFFF

$D000 - DFFF

$C000 - CFFF

$B000 - BFFF

$A000 - AFFF

$9000 - 9FFF

$8000 - 8FFF

$7000 - 7FFF

$6000 - 6FFF

$5000 - 5FFF

$4000 - 4FFF

$3000 - 3FFF

$2000 - 2FFF

$1000 -1FFF

$0000 - OFFF

GAME 1

EXROM x

CHAREN 0

HIRAM 0

LORAM 1

CPU

W R(BA)

ram ram

ram ram

ram CHARA

ram ram

ram ram

ram ram

ram ram

ram ram

ram ram

ram ram

ram ram

ram ram

ram ram

ram ram

ram ram

ram ram

GAME 0

EXROM 1

CHAREN x

HIRAM x

LORAM x

CPU

W R(BA)

ROM H ROM H

ROM H ROM H

I/O ram

ROM L ROM L

ROM L ROM L

ram ram

R(BA)

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

ram

R(BA)

ROMH

ROMH

I/O

ROML

ROML

ram

VIC

R

ram

ram

ram

ram

ram

ram

CHARA

ram

ram

ram

ram

ram

ram

ram

CHARA

ram

VIC

R

ROM H

ram

ram

ram

ROMH

ram

ram

ram

ROMH

ram

ram

ram

ROMH

ram

ram

ram

Volume 6, Issue O5

Jim

SAX

ASO

RLA

ARR

ALR

Undocumented

OpMne Mode

cb*acm

Ob*ann

2b*ann

6b*arr

4b asr

AXS 83 axs

87 axs

8f axs

93*axs

97 axs

MKA9f*axs

DCM

INS

XAA

LAX

XAA

OAL

RLA

RRA

c3

c7

cf

d3

d7

db

df

e.3

e7

ef

f3

n

fb

ff

bb

dcm

dcm

dcm

dcm

dcm

dcm

dcm

isb

isb

isb

isb

isb

isb

isb

Isa

9b*lss

a3

a7

af

b3

b7

bf

ltx

ltx

ltx

ltx

ltx

ltx

8b*oxa

ab

23

27

2f

33

37

3b

3f

63

67

6f

73

77

7b

7f

eb

oxx

rln

rln

rln

rln

rln

rln

rln

rrd

rrd

rrd

rrd

rrd

rrd

rrd

sbc

The Transactor

#$nn

*$nn

#$nn

#$nn

#$nn

(Szp.x)

$zp

Saddr

($zp),y

$zp,y

Saddr.y

(Szp.x)

$zp

Saddr

($zp),y

Szp.y

Saddr.y

Saddr,x

(Szp.x)

Szp

Saddr

($zp),y

Szp.x

Saddr.y

Saddr.x

$addr,y

Saddr.y

(Szp.x)

Szp

Saddr

($zp),y

Szp.y

Saddr.y

#$nn

*$nn

(Szp.x)

Szp

Saddr

(Szp).y

Szp.x

Saddr.y

Saddr.x

(Szp.x)

Szp

Saddr

($zp),y

Szp.x

Saddr.y

Saddr.x

#$nn

1st

(and)

and

and

and

and

(and)

(and)

(and)

(and)

(and)

(and)

dec

dec

dec

dec

dec

dec

dec

inc

inc

inc

inc

inc

inc

inc

(txs)

(txs)

Ida

Ida

Ida

Ida

Ida

Ida

(ora)

(ora)

rol

rol

rol

rol

rol

rol

rol

ror

ror

ror

ror

ror

ror

ror

sbc

6510 Op-Codes (see V6105

2nd Comment

(cmp)xr = (ar&xr)-#$nn:cmp flags

(ror)

lsr

store

store

store

store

store

store

cmp

cmp

cmp

cmp

cmp

cmp

cmp

sbc

sbc

sbc

sbc

sbc

sbc

sbc

store

store

tax

tax

tax

tax

tax

tax

(and)

(and)

and

and

and

and

and

and

and

adc

adc

adc

adc

adc

adc

adc

Same as 29: and *$nn

Butc=l if bit 7=1

duplicate of Ob

Page 58) -

And: Rotate carry Right

bit 7 = shift out of c:c = shift out of bit 7

v - shift out of bit 7 or bit 6

z=l if result = O

And, Shift Right into carry

M = ar&xr:ar,xr,flags unchanged

M = ar&xr&Szz

M-ar&xr&Szz

cmp flags

sp = xr = ar = M&$F6:AND flags

sp = ar&xr: M = ar&xr&Szz

xr = ar = M

ar = ar!$EE&xr&#$nn

(tax) xr = ar = ar!$EE&xr&#$nn

Rotate Left thru carry: aNd

Rotate Right thru carry: aDc

duplicate of standard e9 sbc #$nn

Si

Jim

ASO

LSE

MKX

CIM

NOP

SKB

SKW

- Raymond Quirling, Kerby, OR

OpMne Mode

03

07

Of

13

1 7

lb

If

43

47

4f

53

57

5b

5f

slo

slo

slo

slo

cln

slo

slo

sre

sre

sre

sre

sre

sre

sre

9e*xas

9c

02

12

22

32

42

52

62

72

92

b2

d2

f2

la

3a

5a

7a

da

fa

04

14

34

44
CA

64

yas

dth

dth

dth

dth

dth

dth

dth

dth

dth

dth

dth

dth

nop

nop

nop

nop

nop

nop

skb

skb

skb

skb

cL-h

skh

74 skb

80 skb

82 skb

89*skb

c2 skb

d4 skb

e2 skb

f4

Oc

lc

3c

5c

7c

dc

fc

skb

skw

skw

skw

skw

skw

skw

skw

(Szp.x)

Szp

Saddr

($zp),y

Saddr.y

Saddr.x

(Szp.x)

Szp

Saddr

($zp),y

Szp.x

Saddr.y

Saddr.x

Saddr.y

Saddr.x

!!!

!!!

in

!!!

in

||l

Ml

!!!

in

!!!

ill

#$nn

#$nn

*$nn

*$nn

#$nn

*$nn

#$nn

*$nn

*$nn

*$nn

#$nn

*$nn

#$nn

Saddr

Saddr

Saddr

Saddr

Saddr

Saddr

Saddr

1st

asl

asl

asl

asl

a c 1

asl

asl

lsr

lsr

lsr

lsr

lsr

lsr

lsr

(and)

(and)

2nd

ora

ora

ora

ora

ora

ora

eor

cor

eor

eor

eor

eor

eor

store

store

Comment

Shift Left into carry: Ora

Shift Right into carry: Eor

M = xr&$zz

M=yr&$zz

death-lockup

death-lockup

death-lockup

death-lockup

death-lockup

death-lockup

death-lockup

death-lockup

death-lockup

death-lockup

death-lockup

death-lockup

pc+ 1

pc+ 1

pc+ 1

pc+ 1

pc+ 1

pc+1

pc + 2

pc + 2

pc + 2

pc + 2

pc + 2

pc + 2

pc + 2

pc + 2

pc + 2

pc + 2

pc + 2

pc + 2

pc + 2

pc + 3

pc + 3

pc + 3

pc + 3

pc + 3

pc + 3

pc + 3

Volume 6, Issue O5

Undocumented 6500 Series Instructions (see V6 105 Page 59) - Noel Nyman, Seattle, WA

Name/Operation Mode M.L. Form Op Bytes Name/Operation Mode M.L. Form Op Bytes

AAX

A&XtoM

AND A with X

Zero Page

Zero Page.Y

Pre-Indexed,X

Post-Indexed,Y

Absolute

AAX $aa

AAX $aa,Y

AAX ($aa,X)

AAX ($aa),Y

AAX $aaaa

87 2

97 2

83 2

93 2

8F 2

DCP

A-(DECM)

Decrement M,

Compare with A

Zero Page

Zero Page.X

Pre-Indexed,X

Post-Indexed,Y

Absolute

Absolute.X

Absolute.Y

DCP $aa

DCP $aa,X

DCP ($aa,X)

DCP ($aa),Y

DCP $aaaa

DCP $aaaa,X

DCP $aaaa,Y

C7

D7

C3

D3

ISB

A-(INCM)-C to A,C

Increment M,

Subtract from A

Zero Page

Zero Page.X

Pre-Indexed,X

Post-lndexed,Y

Absolute

Absolute.X

Absolute.Y

ISB $aa

ISB $aa,X

ISB ($aa,X)

ISB ($aa),Y

ISB $aaaa

ISB Saaaa.X

ISB Saaaa.Y

E7

F7

E3

EF

FF

FB

LAX

MtoA.MtoX

Load A and X

Zero Page

Zero Page.Y

Pre-lndexed,X

Post-Indexed,Y

Absolute

Absolute.Y

LAX$aa

LAX $aa,Y

LAX ($aa,X)

LAX ($aa),Y

LAX $aaaa

LAX Saaaa.Y

B7

A3

B3

AF

BF

LAN

(ROLM)&A to A

Rotate M left,

AND with A

Zero Page

Zero Page.X

Pre-Indexed.X

Post-Indexed,Y

Absolute

Absolute.X

Absolute.Y

Immediate

LAN $aa

LAN $aa

LAN ($aa,X)

LAN ($aa),Y

LAN $aaaa

LAN $aaaa,X

LAN Saaaa.Y

LAN Imm

3B

2B

LOR

(ASLM)OR A to A

Shift M left,

OR with A

Zero Page

Zero Page.X

Pre-Indexed,X

Post-Indexed,Y

Absolute

Absolute.X

Absolute.Y

Immediate

LOR $aa

LOR $aa,X

LOR ($aa,X)

LOR ($aa),Y

LOR $aaaa

LOR $aaaa,X

LOR $aaaa,Y

LOR Imm

07

17

03

13

IF

IB

OB

REO

(LSRM)EOR A to A

Shift M right,

Exclusive OR with A

Zero Page

Zero Page.X

Pre-Indexed.X

Post-Indexed,Y

Absolute

Absolute.X

Absolute.Y

REO $aa

REO $aa,X

REO ($aa,X)

REO ($aa),Y

REO $aaaa

REO Saaaa.X

REO Saaaa.Y

47

57

43

53

5F

5B

CF 3

DF 3

DB 3

F3 2

A7 2

27 2

37 2

23 2

33 2

2F

3F

RAD Zero Page RAD $aa 67 2

(RORMJ + A + C to A.C Zero Page.X RAD Saa.X 77 2

Rotate M right, Pre-Indexed.X RAD ($aa,X) 63 2

Add with Carry Post-Indexed.Y RAD ($aa),Y 73 2

Absolute RAD $aaaa 6F 3

Absolute.X RAD Saaaa.X 7F 3

Absolute.Y RAD Saaaa.Y 7B 3

OF 3

4F 3

TEA (A&X&((>M)+l))toM Absolute.Y TEA Saaaa.Y 9F 3

Increment the high byte of the address of M, AND with A AND X

TEX (X&((>M)+l))toM Absolute.Y TEX Saaaa.Y 9E 3

Increment the high byte of the address of M, AND with X

AXM (A&X)-M to X

AND A with X, subtract M, store in X

Immediate AXM Imm CB 2

RAM LSR(A&M)toA

AND A with M, Shift right and store in A

Immediate RAM Imm 4B 2

RBM ROR(A&M)toA

AND A with M, Rotate right and store in A

Immediate RBM Imm 6B 2

XMA AND X with M,(X&M)&(AOR*$EE) to A Immediate XMA Imm

ORAwith#$EE, AND the two resulting bytes and store in A

TEY (Y&*$01)toM

test bit 0 in Y

Absolute.X TEY Saaaa.X 9C 3

AMA (M&*$EE)OR(A&M&#$11) to A Immediate AMA Imm AB 2

LAS MtoA, MtoX, MtoSP

Store M in A, X, andSP

Absolute.Y LAS Saaaa.Y BB 3

AXS (A&X)toSP,(A&X&*$01)toM Absolute.Y AXS Saaaa.Y 9B

AND A with X, store in SP, AND SP with *$01, store in M

NPA to NPF

Identical with NOP

Implied

Implied

Implied

Implied

Implied

Implied

NPA

NPB

NPC

NPD

NPE

NPF

1A

3A

5A

7A

DA

FA

MNA to MNN

Add *$02 to PC

Implied

Implied

Implied

Implied

Implied

Implied

Implied

Implied

Implied

Implied

Implied

Implied

Implied

Implied

MNA

MNB

MNC

MND

MNE

MNF

MNG

MNH

MNI

MNJ

MNK

MNL

MNM

MNN

(14

14

34

44

54

64

74

D4

F4

80

82

89

C2

E2

DNA to DNG

Add *$03 to PC

Implied

Implied

Implied

Implied

Implied DNE

Implied DNF

Implied DNG

DNA

DNB

DNC

DND

OC 3

1C 3

3C 3

5C 3

7C 3

DC 3

FC 3

SBC Immediate SBC Imm

Executes identically with the documented SBC op-code SE9

EB 2

CRA to CRL

Processor halts, must

be hardware reset

CRA 02

CRB 12

CRC 22

CRD 32

CRE 42

CRF 52

CRG 62

CRH 72

CRI 92

CRJ B2

CRK D2

CRL F2

The Transactor 57 Volume 6, Issue O5

6510 Opcodes Raymond Quirling

Kerby, OR

Editor's Note: These next two articles came in the same batch of

mail. They're both about further investigation of the undocumented

op-codes. They both have an intersection set of data, but each had

other additional observations and examples that we didn 't want to

exclude. Besides, the two tables together make a good cross reference,

considering there are no official specs.

People who investigate undocumented opcodes deserve all the head

aches they get! 1 started with Joel Shepherd's list in Oct 83 Compute!

and discovered a few weird things. Now Jim McLaughlin's list in

Transactor Vol 6, Issue 3 has added a few more surprises. 1 thought I

had done everything right but McLaughlin proved me wrong. But

after I looked over the list again 1 still come up with a few disagree

ments with Jim's list. If he and 1 are both right it could mean that

different 6510's have different responses to the undocumented codes.

The attached listing (page 56) is marked with asterisks where 1 still

disagree with Jim. The first column is Jim's mnemonics (as he listed

the code). The 1st operation is performed on the address contents,

then the second operation is performed on the new contents. Paren

thesis indicate that something non standard is going on.

CB (acm) produces CMP flags: v (overflow) is not affected. OB (ann) and

2B (ann) are identical and very similar to the normal AND opcode.

The c flag is weird and 1 did not detect any shifting of the immediate

location. The clock cycles Jim found also point to a simple AND

function. 6B (arr) has some really weird flags! It is not safe to make

assumptions about how the flags work. 8B (oxa) and AB (oxx) are both

affected by the strange ORA *$EE. 89 (skb) is a two byte nop for me,

but it does look out of place.

BB (Isa) and 9B (lss) both affect the stack. Neither McLaughlin nor

Shepherd indicated this, but Jim did note his difficulty in timing BB

(probably impossible to do with the stack flitting about). But the most

weird of all is the $zz store operation that affects five opcodes 93 (axs),

9B (lss), 9C (yas), 9E (xas) and 9F (axs). Shepherd noted the effect on

9F and 9E but was unable to determine the source of the operand for

the mysterious AND operation. 1 figured it out after noting that my

operand was different than Joel's and changed after switching to a

different memory location to do the testing. After McLaughlin failed to

note the effect 1 repeated it and discovered the surprising result when

a page boundary is crossed.

1 counted 105 undocumented 6510 opcodes from pages 256 through

259 of the "Commodore 64 Programmer's Reference Guide". They

were tested one by one using Butterfield's Supermon. Flag changes

were pure drudgery to document. Sorry, no 6502 comparisons. 1

retained the three character mnemonic description even though it

isn't always informative with some of the more involved operations. 1

liked Jim's skip mnemonics but prefer dth (death) to his CIM (crash

immediate). Pick your own personal mnemonics to taste!

The "death" opcodes are suspicious. What trickyness lies hidden

therein? Are they interrupts or subroutine calls to an infinite loop?

Maybe the kernal is dropped out? I looked for changes to memory,

including the stack area, without success.

Are these codes safe to use? That is, can you write software using the

new codes for use in other C-64's or with the new C-128? Some of the

codes appear to be "accidental" rather than planned. These might

change when going from one generation chip to another, or even from

one 6510 to another. All the NOP's, SKW's and SKB's fit this category.

Be safe! check it out!

1 have installed the new opcodes in a disassembler written in Basic.

(No assembler yet.) It is available to anyone who sends a disk with

return postage to R. Quiring, P.O. Box 135, Kerby, OR 97531.

Legend

ar,xr,yr register contents M contents of address

sp

c,z,n,v

$zp

*$nn

$addr

stack pointer

status flag bits

zero page address

immediate value

absolute address

logical OR

logical AND

equals, or 'is assigned to'

indicates disagreement

with McLaughlin findings

$zz explanation

Used by 93 axs ($zp),y

9b lss $addr,y

9c yas $addr,x

9e xas $addr,y

9f axs $addr,y

$zz = msb(addr)+l

memory = address mode: M = $zz&(opcode specific value)

If a page is crossed then (surprise):

memory = M * $100 + lsb(address mode)

Example using 9b lss $addr,y:

ar xr sp addr yr addr.y memory zz M

3f

3f

3f

3f

3f

ff

ff

ff

ff

ff

3f

3f

3f

3f

3f

500f

500f

5010

500f

5011

00

fO

fO

11

fO

500f

50ff

5100

5100

5101

500f

50ff

1100

1100

1101

51

51

51

51

51

11 (ar&xr&$zz)

11

11

11

11

Example using 93 axs ($fc),y: OOfc = Of, OOfd = 50:

ar xr sp addr yr ($zp),y memory zz M

ff 3f xx 500f fO 500f 50ff 51 11 (ar&xr&$zz)

ff 3f xx 500f fl 5100 1100 51 11

Example using 9c yas $500f,#$fl:

ar xr sp addr yr addr.x memory zz M

ff fl xx 500f 3f 5100 1100 51 11 (yr&$zz)

The Transactor 58 Volume 6, Issue OS

The Undocumented 6500

Series Instructions: A Summary

Noel Nyman

Seattle, WA

Editors Note: To make this article complete, I felt it best to

print Mr. Nyman's opening letter enclosed with the article, to act

as a qualifier of the data presented today. After reading his

letter, lam sure you will feel that Mr. Nyman is quite adequately

qualified to reach the conclusions he has. As a note from us,

Noel, thanks for thinking of us. Noel's table has been repro

duced on page 57

Letter by Noel Nyman

I was very interested in "Hidden Op-Codes" by Jim McLaugh-

lin in Transactor 6-03.

Several months ago I and other local programmers worked on

these undocumented op-codes for Reflexive Software. The

block editor in their Disk Maintenance package will optionally

disassemble these op-codes.

While doing the research, we tried most of the codes on several

different 65XX series MPU's, including those in PET's, VIC-

20's, C64's, Plus4, and an APPLE 11. We tried to find 65XX's

made by Synertek or Rockwell, the two licensees of MOS

Technologies, without success.

All of the op-codes we tested worked identically on all the

MPU's we tried.

Mr. McLaughlin's four 'peculiar' codes worked reliably for us

on different MPU's, although they gave us different results than

his. Readers can easily test the codes by using any ML monitor,

storing the short programs on the following pages into memory

using the 'M' command, then executing the code with either

'Go' or 'Walk' and examining the registers and memory loca

tions afterwards.

Mr. McLaughlin's chart lists two op-codes which he did not

discuss, $9E and $9F. He lists as a reference the Joel Shepherd

article "Extra Instructions" in the October 1983 COMPUTE!

This was the first source we found that gives a function for

these two codes.

Shepherd states that the two codes AND registers in the 65XX

with $04, although he didn't know where the $04 came from.

The Complete Commodore Inner Space Anthology lists these

op-codes with the same explanation.

The code will execute much as Shepherd describes, so long as

the absolute memory location is in $03 page. I suspect that

Shepherd and his predecessors have used the tape buffer for

their test code. The $9E and $9F instructions actually use

absolute indexed Y addressing and AND the respective regis

ters with the high byte of the memory ADDRESS plus one.

For example, place the test code in the tape buffer area, $033C

and use memory address $0350. The results are as Shepherd

and the Anthology report, $04 will appear at location $0351 (Y

is loaded with $01 for the test). Now change the memory

address to $7050 and execute the code. A $71 appears at

location $7051.

The whole subject of undocumented op-codes is probably at

best a curiosity. I've heard that some commercial programs use

these codes for security, both West and Butterfield have said so.

But I've yet to see an example. I'd be very interested in any

differences from our list your readers encounter.

I'm including a copy of the chart we made for Reflexive

Software which we believe to be accurate. For your conven

ience, I've included a disk with the chart, this letter, and the

attached pages in EasyScript files.

Sincerely, Noel Nyman, Seattle WA

Some example using Noel's notation follow on the next page.

The Transactor 59 Volume 6, Issue O5

A Few Examples

$8B (X&M)&(AV#$EE) to A (Immediate)

AND X with M, AND the result with (A OR SEE) and store in A

Sample code:

CLC

LDA *$00

LDX #$FF

XAA *$FF

BRK

From memory mode, store:

. 18 A9 00 A2 FF 8B FF 00

After executing, examine the A register.

$9B (A&X)toSP (A&X&*$01)toM (Absolute.Y)

AND A with X and store in Stack Pointer. AND Stack Pointer

with *01 and store in M.

Sample code:

CLC

LDA *$0F

LDA *$07

LDY *$01

XAA $00FB,Y

BRK

From memory mode store:

. 18 A9 OF A2 07 A0 01 9B

. FB 00 00

Before executing code, use the 'Register' mode of the monitor

to change the Stack Pointer to $FF and location SOOFC to $00.

After execution, check the Stack pointer and $00FC.

$BB M to A, M to X, M to SP (Absolute.Y)

Store M in A, X, andSP

Sample code:

LDX *$00

LDA *$0F

STA $FC

TXA

LDY *$01

LAS $00FB,Y

BRK

From memory mode, store:

. A2 00 A9 OF 85 FC 8A A0

. 01 BB FB 00 00

Before executing, use the 'Register' mode of the monitor to

change the Stack Pointer to $FF. After execution, check A, X

and the Stack Pointer.

$EB A-M to A (Immediate)

Subtract M from A and store in A. This executes identically with

the documented SBC code $E9

Sample code:

SEC

LDA *$80

SBD *$01

BRK

From memory mode store:

. 38 A9 80 EB 01 00

After executing code, examine A.

$9F (A&X&((>M) + 1) to M (Absolute.Y)

Increment the high byte of the address of M, AND with A AND

X, store in M.

Sample code:

LDA #$FF

LDX *$FF

LDY *$01

MKA$7050,Y

BRK

From memory mode, store:

. A9 FF A2 FF A0 01 9F 50

. 70 00

After executing, examine memory location $7051. If you

change the $70 to $30 you'll duplicate the code as described by

Shepherd.

$9E (X&((>M)+l)toM (Absolute.Y)

Increment the high byte of the address of M, AND with X, store

in M.

To test, use the sample code for $9F and change the op-code to

$9E.

The Transactor 6OVolume6, Issue O5

A Computer Rolltop Stand Mark Jordan

Ligonier, IN

Until I built this rolltop computer stand, I was like most of the

other computer people 1 know — disorganized. I had my black

and white TV "monitor" mounted on a couple of thick books,

sitting behind my 64, my disk drive to the left. Books, maga

zines, disks and other hi-tech refuse were strewn about. This

provision worked until I brought home a printer. I shoved my

disk drive over thisaway, moved my TV over thataway, and

dropped my printer down on the only bare acreage I could find.

A complex array of cords and wires were then tied with little

twistee things and carefully positioned behind the desk where

everything was sitting to allow space for my paper to snake

through. I sat down to compute.

It was too crowded. Reference books were on the floor, opened.

Disks were propped between TV and disk drive where mag

netic fields are strongest. Demonstrating the printer to my

technologically-unsophisticated wife was embarassing: the pa

per kept tearing en route to the printer. This put me in a

snapping bad mood.

I decided I must build a desktop stand to put some order in my

life. The rolltop model depicted here is the result. The stand

itself does wonders for my desktop organization but what really

makes this piece a winner is the rolltop design. I now am a

zealot proclaiming the virtues of having a two-tiered, rolltop

computer workplace.

You don't have to be a carpenter or fine woodworker to build

one. Basically the project consists of five parts. Only two are

tricky: routing a groove for the tambour (the sliding part) to

slide in and building the tambour itself. And even these two

aren't too tricky.

The first order of business is to buy your wood. The only

problem is, I can't tell you the exact dimensions because you

are going to customize this stand to fit your workspace. But you

can easily figure what lumber you'll need by performing the

following simple calculations. Please refer to the exploded

drawing (figure 1) throughout.

. . .Not only order, but the appearance

of order even if there is none.

First, to simplify matters and to save you time and money, all

the lumber in the project will be common stock. The sides will

be two by eights, the brace a two by four, the top a twelve inch

wide shelf piece, and the slats three-eights by three-quarter

inch moldings.

To figure the length of the brace (C), simply subtract four inches

from the top's length.

Finally, to determine the number and length of slats you'll need

for the tambour, perform these calculations. Take half of the

sides' length and add two inches. Now divide this number by

.75. The result equals the number of slats you'll need since

each slat will be three-quarters inch wide. The length of the

slats will simply be the length of the brace plus three-fourths

inch.

You may have to do some asking to find out just what is

available for your slats. Be sure to ask about window and door

moldings and lattice. If your yard doesn't carry anything that's

three-eights inch thick by three-quarters inch wide, you can

simply readjust your calculations for how many pieces you'll

need and buy whatever widths they have, don't buy any pieces

wider than one inch because you'll have difficulty with them

negotiating the curve when they are sliding. Feel free to use as

narrow of stock as they sell.

The next order of business is to buy (or scrounge) a piece of

fabric to glue your tambour to. It needs to be tough material

(denim is good) and it needs to be as big as your finished

tambour will be.

You are now ready to start building. Cut all pieces to the proper

length. Now refer to figure 1 and notice that the sides begin

sloping on the top edge midway along its length (see point 1).

Mark that spot on your piece. Next note point 2 on figure 1. It is

located three inches up from the bottom of the front of the side

piece. Mark this on your sides and then use a straightedge to

connect points 1 and 2 and cut them along this line.

The Transactor 61 Volume 6, Issue O5

The curve is not official science. If you have good sanding

equipment (like a belt or disk sander), then you might just sand

a gentle curve. Lacking one, you could nibble away at the sharp

corner first with a saw until you get it to the hand-sandable

stage. Anyway, you need to end up with a nice flowing curve.

And, you need to make both sides identical. So sand the

finishing touches with the two pieces clamped together.

The tambour groove needs to be done next. You need a router

unless you like chiseling. If you have a router with an adjusta

ble guide, use it to make the groove. Lacking a good guide,

make a template for the router to ride against and clamp it to

the side piece while routing.

A word of caution here. Routing is to woodworking what the

GO and RUN commands are to programming. Things happen

fast and sometimes, stuff gets messed up. That's why smart

programmers save their work before a Go or RUN and that's

why smart woodworkers only take a little wood at a time when

they rout. In fact, they first do a dry run, checking to see exactly

where the bit will byte (sorry, I'm getting as sick of those puns

as you are but you have to admit, it really fit there).

The depth and width of the groove are recorded in figure 1 but

I'll repeat them here: one-half inch by one-half inch. This will

allow for just enough slop in your tambour for it to slide easily.

Now, on to the top. Cut it to size and it's done.

Now, on to the brace. Cut it to size and it's done.

Now, on to the tambour. Cut all the slats to size and lay them

together tightly on a large sheet of scrap plywood or anything

flat. Next tack down a couple of scrap wood pieces to keep them

tight and square. Get some Elmer's Glue-All or other wood/

fabric glue, pour it all over the slats, rub it around with your

fingers until the slats are well covered, and take your piece of

fabric and lay it onto this gooey surface. Press it down until you

are sure the fabric has made full contact. Keep pressing until

the fabric stays put (about fifteen minutes).

Let the tambour dry for a day.

Assembly time. Stand the sides on edge and set the top on it.

Position the sides so that you allow a one-inch overhang of the

top to the sides. Square everything up, then carefully remove

the top and apply glue to the top edge of the side pieces.

Carefully replace the top, re-square everything and either

screw or nail the top in place. For looks, if you screw it down,

be sure to countersink the screws so that you can cover them

later with dowels or putty.

Now lay a bead of Elmer's on the top edge of the back brace and

slip it up between the sides and under the top. It will be flush

with the back of the top and sides (see figure 2). Nail or screw it

from the top.

Finally, take your tambour and guide it up into the open groove

from the bottom of the sides at the front and slide it all the way

up and back. You will find it extends out about an inch from the

top piece. If you wish, you can fashion a handle to pull the

tambour with (see finished drawing), or you can just pull on the

tambour itself. A handle is nothing more than a piece of

molding glued to the bottom slat in the tambour.

Except for the finished work (sanding, staining, varnishing,

etc.) you are done. Before doing any of that dreary stuff, hustle

your new computer addition into the house and set it on your

desk. Put everything the way you want it. Instant organization.

Now for the clincher. Pull down the tambour and, Eureka!

everything is hidden. Your desk looks neat. All disks, books,

Coke cans—everything—is hidden beneath that wonderful

sliding front.

Well, it just goes to show you, there are some bargains left in

life. You built this stand to organize your work station, and you

got not only order, but also, the appearance of order even

when there is none. And you got it all for only a few hours

labor. Now that's what I call a good deal.

I
Hails or Screws

Figure 2

The Finished Rolltop

The Transactor 62 Volume 6, Issue O5

Slopee begins; at midpoint

3"
min.

Groove should be

1/2" x 1/2"

placed apr.

3/6" from edge

Make Side length same as your desk's deptto]

IBI

Make Top equal

-,.. to me length

—-\, of your desk

I-' 1/2'jl Hit—

Length of Top 1 \ >k|
minus 4 \ ^

Exploded View

of

Rolltop Assembly P:int^

yi ilk

JR

Hall of toi-al lens+.h

1

r
Point 1

1

figure 1

The Transactor 63 Volume 6, Issue O5

Superkey Andrew Walduck

Orillia, Ontario

A Homebrew External Keypad

if you've ever used a PET computer you know how nice it is to have a

numeric keypad at your beck and call. You can blitz through data

statements, whiz through number crunching and blast through line

numbers. Now you can have this for your 64 and more. Superkey

adds 16 new keys to your 64 that repeat, are redefinable and available

for your use in either program or direct modes, and the best part about

it is that it will cost you under $30.

Superkey Hardware

Superkey is designed around 1 major integrated circuit, a 74154 TTL 4

line to 16 line decoder. What a 74154 does is take the 4-bit binary

number on its inputs (coming from the joystick port) and makes the

corresponding output low and keeps all other outputs high. If the

switch on that line is closed, the low signal is applied to the input of

the joystick port where the software can tell if that key is pressed.

Superkey Software

The Superkey software is tied into the IRQ vector so that it is operated

60 times every second. The first thing it does is see if the keyboard

buffer is full. If it is, it jumps to the normal interrupt routine. If not, the

software sequentially writes the numbers from 0 to 15 into the second

joystick port register, reading the status of the 4th bit each time. If it is

low, it means that a key is pressed and the software then stores the

correct character in the keyboard buffer.

Building Superkey

To build Superkey you will need the following parts

1 74154 4 line to 16 line decoder

1 16-key keypad (jameco part* k— 19 is good)

1 d-9 socket (joystick port socket)

1 24 pin ic socket

miscellanous items

wire, solder, blank printed circuit board

After constructing Superkey according to the schematic, double check

the wiring to make sure that it is correct and then plug it into joystick

port 2 and turn the computer on. If the computer doesn't power up in

the usual fashion, check your wiring again. If all is ok so far, press and

release all of the 16 keys individually. None of them should have any

effect on the screen. If any do, once again check the wiring of the

circuit.

Type in and run the following program (don't forget to save it). If no

error message is printed, make sure the keypad is plugged into

joystick port 2 and enter:

SYS49152

to enable Superkey. Now pressing the keys on the keypad should

have an effect on the screen (ie " 0" on the keypad should print 0 on

the screen). If something appears wrong, recheck the program and the

wiring of the keypad. To disable Superkey enter:

SYS 49155

Suggestions

To change the keycodes that Superkey prints, change the data state

ments beside the rem statements that tell you the key number, to the

ASC() value of the character you would like printed when that key is

pressed.

One setup that I use quite frequently for entering data statements is a

keypad with the numbers 0 to 9, a return key, a " d" key , a shifted "

a", the delete key, a comma key, and the shift-return key. To do this

merely, redefine the various keys on the keypad.

Another setup that I use regularly is one with the cursor keys set up in

a diamond pattern with the home key in the center.

If you have any suggestions, problems or ideas regarding Superkey

please write me. Andrew Walduck, 441 Barrie Rd #52, Orillia, On

tario, L3V 6T9

Editor's Note: You may not end up building Andrew's keypad, but

the program shows how you would service the joystick port in

machine language should you ever need to.

in

CD 0 d UJ Ld

in t « hi h
M -H H H

INPUTS

>r 74154

OUTPUT*

OH Nflf

Suggested Foil Side of PCB and Pinout of 74154 IC

TO D-9
SOCKET

PIN 6

H Z

O

r»T u j

niu *y

PIN 3
PIN 4

PTM Qr in a
riTU •»

23
22
21
26
19

12 J
24 2

t
f_
1

I

2

3

4
5
6
7
8
9

10
11
13
14
15
16
17

KEV
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Schematic for Superkey 16-key Keypad

The Transactor 64 Volume 6, Issue O5

EO

MP

JG

KO

CA

PB

DC

NN

GL

MD

EF

AB

HP

OG

00

PK

KH

KL

JO

HB

FN

PC

LK

IN

AE

EN

IH

NN

PK

DL

HM

FL

NE

FM

DC

DD

Gl

CJ

CJ

BA

HN

IG

FH

EM

FO

FN

AP

Fl

KB

OD

LD

CP

HC

GN

MF

Ml

JM

NO

DP

CP

100

110

120

130

140

150

160

170

180

190

200

210

22C

23C

24C

25C

26C

27C

28C

29C

30C

31C

32C

33C

34C

35C

36C

37C

38C

39C

40C

41C

42C

43C

44C

45C

10 rem* superkey *

20 rem* software driver for ext.

30:

40 fori = 49152to49266:readda

Superkey Basic

keypad

Loader

:ck = ck + da:pokei,da:nexti:

50 pokei,da:nexti:ifck<>14190thenprint" error

60 print" superkey now in memory $c000

70 print"sys 49155 to deactivate" :end

80:

1000 data 76, 18, 192,

1010 data 20, 3, 173,

1020 data 88, 96, 120,

1030 data 192, 173, 21,

1040 data 47, 141, 20,

1050 data 3,169, 16,

1060 data 137, 2,197,

1070 data 141, 2,220,

1080 data 173, 0,220,

1090 data 254, 208, 8,

1100 data 4,208, 2,

1110 data 114, 192, 166,

1120 data 198, 208, 5,

1130 data 132, 254, 169,

1140 data 49,234

1150:

sys700 ;pal 64 assembler

; superkey driver program

* = $c000

.opt oo

bufnum = 198

bufmax = 649

datapt = $dc00

ddr = $dcO2

keybuf = 631

irqvec = 788

cntr = $fd

pkey = $fe

delay = 20

rpt = 4

Ikey = 16

•

jmp setup

sei

Ida oldirq + 1

sta irqvec

Ida oldirq + 2

sta irqvec +1

cli

rts

;

setup sei

Ida irqvec

sta oldirq +1

Ida irqvec+1

sta oldirq + 2

Ida #<start

sta irqvec

Ida #>start

sta irqvec +1

Ida #lkey

120,

113,

173,

3,

3,

133,

198,

160,

41,

198,

169,

198,

200,

255,

ori = '

n data statements

to $cO81 "

173, 112, 192, 1

192, 141,

20, 3, 1

141, 113, A

169, 192, ■

254, 88,

240, 57, "

0, 140,

16,208,

253, 208,

21,

41, '

92, 1

41,

96, '

69,

41

3

12

69

21

73

15

0,220

28, "

27, ■

20, 133,253, ■

157, 119,

96

69

85

2,230

192, 16,208,;

141, 2,;?20,

>13

76

.print"

49267to49281:readda

" :end

sys 49152 to activate"

LK

OK

PL

LK

ML

NM

ON

PO

AA

BB

CC

PM

BO

DP

FA

HB

EA

Superkey PAL Source Code

;connect

;disconnect

LI

EG

MM

AG

LD

GG

NL

BL

PL

IL

LC

BM

BC

DK

EN

EP

LA

IC

PO

BL

IB

PK

KB

DD

NB

GK

AG

BL

EB

NM

OA

MG

CO

GH

Cl

MC

AB

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

start

kread

not

store

nokey

end

reset

oldirq

table

sta

cli

rts

Ida

1160 rem*

1200 data

1210 data

1220 data

1230 data

1240 data

1250 data

key definitions follow *

48 : rem key #0

49 :rem key #1

50 :rem key #2

51 :remkey#3

52 :rem key #4

53 :rem key #5

1260data54:remkey#6

1270 data

1280 data

1290 data

1300 data

1310 data

1320 data

1330 data

1340 data

1350 data

pkey

bufmax

cmp bufnum

bee

Ida

sta

Idy

sty

Ida

anc

bne

cpy

bne

dec

bne

Ida

bne

Ida

sta

Ida

idx

sta

no

bne

iny

cpy

bne

sty

Ida

sta

jmp

.asc

oldirq

55 :rem key #7

56:remkey#8

57 :rem key #9

65 :remkey#10

66:rem key #11

67 :rem key #12

68 :rem key #13

69 :rem key #14

70 :rem key #15

;check if keybuffer full

; branch if yes

#%00001111

ddr

#$00

datapt

datapt

;set up data direction register

;start key count at zero

;store count in port 2

#%00010000 ;check if key pressed

nokey

pkey

not

cntr

reset

#rpt

store

#delay

cntr

table.y

bufnum

keybuf,x

bufnum

end

#lkey

kread

pkey

#%111111

ddr

$ea31

;branch if not pressed

;is current key same as last

;branch if not the same

;decrement count until repeat

; branch if not time for repeat

;set up counter for next repeat

;lda with character from table

;current key in keybuffer

;store char

;add 1 to # of chars in buffer

;branch always!

;add 1 to current key number

;is loop doneprint

;branch if not done

;save y in previous key pressed

11

;restore data direction registr

;go to old irq routine

: "0123456789abcdef"

;table of characters for keys

.end

The Transactor 65 Volume 6, Issue O5

String Calc Daniel Bingamon

Batavia, Ohio

Here is a simple and yet transportable program written in Basic Set value flag on. The Value flag off means that the next

for evaluating expressions in strings. character is a symbol. If it is a value then the amount will be

placed in the variable " V".

100 va=1:v = val(x$)

If the contents of X$ is not a value then set the value flag back to

off.

105 ifval(x$) = Oandleft$(x$, 1)<>" 0" thenva = 0

The program will evaluate the string in a left to right order (not

algebraically) like the way you would enter it on a very simple

calculator. The program is shown below with a description of

what each section does:

First, a simple screen clear.

10printchr$(147)

If the symbol is a PI symbol or the word PI then toss PI into V

The user is prompted for a formula, passed from a different and set value flag back to on.

subroutine instead of the input statement.

110 ifleft$(x$,2) = " pi" thenv = 3.14159265:va = 1

120ifleft$(x$,1)="n"thenv = 3.14159265:va = 120 input" enter formula" ;f$

Program is terminated if stop is typed.

30 iff$ = " stop" thenstop

The variable " A" will be used as an accumulator for the result.

40a = 0

If value flag is on then goto process value routine otherwise find

out what type of symbol is used.

130ifva = 1then230

Handle subtotals.

135ifleft$(x$,1)= thenprinf'st = ";a:goto310

A space is put on the end of the formula as a terminator in case

the user did not supply one. " P$", Is the work string for the Load first position into string and compare,

parser and " ID" is flag which determines what type of opera

tion will be performed, " 9" is the initial mode. " DN " is the

finish flag.

140id$ = left$(x$,1):id = 0

Compare to possible symbols and set up a symbol code.

50f$ = f$+ " ":p$ = f$:id = 9:dn = 0

150ifid$= " + "thenid = 1

This loop looks to see the length of an element by looking 160 ifid$= "thenid = 2

ahead for the next separator character (space). If it not found

then an error message occurs. An error should not occur on

line 70 since line 50 insures against it.

170ifid$= "*"thenid = 3

180ifid$= "/"thenid = 4

190ifid$= "t"thenid = 5

60fori = 1tolen(p$)

65ifmid$(p$,i,1)= " "then80

70 next:print"?invalid formula" :goto20

If symbol could not be found then spit out error.

195 if(id>0)and(id<90)andmid$(x$,2,1)<>" "then

print"Terror" :goto20

Now a check to see if the program finished flag should be set by

determining if the pointer to the end of formula matches the Skip over extra spaces,

size of the formula.

200ifid$=" "then310

80 ifi = len(p$)thendn = 1

If accumulator is still zero then skip test for rounding.

Set up string from the work string to the next separator (space).

203ifa = 0then210

90x = i:x$ = left$(p$,x)

The Transactor 66 Volume 6, Issue O5

Round by tens requested?

204 ifid$ = " @" thenam = val(mid$(x$,2,1))

:am = -am:goto207

Round by tenths requested?

205ifid$O";"then210

Round by raising to the specific power to make the affected

position lie in the tens position, add .5 to the number, truncate

and reverse the process to take the number back to original

power.

206 am = val(mid$(x$,2,1)):ifa = 0then210

207 a = int(a*(1 Otam) + .5):a = a/(1 Otam)

:id = 0:goto310

If no ID code for symbol found then it must be an invalid

symbol, spew out error message.

210 ifid = Othenprint" ?bad symbol" :goto20

Symbol processed. Get then next element. Normally it should

be a value unless, the accessory functions such as rounding or

subtotals are used.

220goto310

Take the accumulator and the value being processed and

merge them by the instruction code created by the Symbols.

230 ifid = 1thena = a + v

240 ifid = 9thena = v:id = 0:goto310

250 ifid = Othenprint" ?error" :got20

260 ifid = 2thena = a-v

270 ifid = 3thena = a*v

280 ifid = 5th ena = atv

Division by zero trap.

290 ifid = 4andv = Othenprint" ?div by zero" :goto20

300 ifid = 4thena = a/v

If done flag set exit here to show result and request new

formula.

310ifdn = 1then330

Move forward to the next element by removing the old ele

ments as we go along.

320 p$ = right$(p$,(len(p$)-len(x$))):goto60

Display result and clear accumulator.

330 print" result = " ;a:a = 0:goto20

Sure, it doesn't do everything the internal machine language

routine that evaluates expressions in your Commodore com

puter does but, it helps give you a BASIC idea on how a

computer can perform these functions. The program can be

used in a number of applications and might even be expanded

to give some operations priority and even process the paren

thesis () symbols.

String Calc, uninterrupted

10printchr$(147)

20 input" enter formula" ;f$

30 iff$ = " stop" thenstop

40a = 0

50f$ = f$+ " ":p$ = f$:id = 9:dn = 0

60fori = 1tolen(p$)

65ifmid$(p$,i,1)= " "then80

70 next:print" ?invalid formula" :goto20

80 ifi = len(p$)thendn = 1

90x = i:x$ = left$(p$,x)

100va=1:v = val(x$)

105 ifval(x$) = Oandleft$(x$, 1)<>" 0" thenva = 0

110ifleft$(x$,2)="pi"thenv = 3.14159265:va = 1

120 ifleft$(x$, 1) = " n" thenv = 3.14159265:va = 1

130ifva = 1then230

135ifleft$(x$,1)= thenprint"st = ";a:goto310

140 id$ = left$(x$, 1):id = 0

150 ifid$ = " + " thenid = 1

160ifid$= "-"thenid = 2

170ifid$= "*"thenid = 3

180ifid$= "/"thenid = 4

190ifid$ = "t"thenid = 5

195 if(id>0)and(id<90)andmid$(x$,2,1)<>" " then

print"?error" :goto20

200ifid$=" "then310

203ifa = 0then210

204 ifid$ = "@"thenam = val(mid$(x$,2,1))

:am = -am:goto207

205ifid$O";"then210

206 am = val(mid$(x$,2,1)):ifa = 0then210

207 a = int(a*(1 Otam) + .5):a = a/(1 Otam)

:id = 0:goto310

210 ifid = Othenprint" ?bad symbol" :goto20

220goto310

230 ifid = 1thena = a + v

240 ifid = 9thena = v:id = 0:goto310

250 ifid = Othenprint" ?error" :got20

260 ifid = 2thena = a-v

270ifid = 3thena = a*v

280 ifid = 5thena = atv

290 ifid = 4andv = Othenprint" ?div by zero" :goto20

300 ifid = 4thena = a/v

310ifdn = 1then330

320 p$ = right$(p$,(len(p$)-len(x$))):goto60

330 print "result = ";a:a = 0:goto20

The Transactor 67 Volume 6, Issue O5

Getting On Viewtron: It's This Easy!

First, you need the Viewtron Starter Kit. If you live in the U.S.

you can call their toll free number:

Viewtron

1 800 272 5400

1111 Lincoln Road, 7th Floor

Miami Beach, Florida

33139

It's just $9.95 and it comes with handy 46-page reference

guide, a disk with software that works superbly, and an hour of

Viewtron free.

Viewtron is fast, flexible, versatile, capable, and, it's in color!

With a nice color monitor, some of the screens are rather

pleasing. The software is somewhat specialized for the NAPLPS

videotext protocal, but it can download, send to printer, re-

dial, plus lots of other stuff - it's all in the manual.

Canadian orders that get stuck in customs can take as long as

six weeks to get to you from Miami. Instead, let us send you one

- it's about the same price after exchange and you can use our

postage paid subscription form. See News BRK for more details.

The simplest part about Viewtron has to be signing on. The

disk is 4040/1541 format. You LOAD" * " ,8,8 (or ',8,1' if you

like) and you'll get two options. 1 to sign on, 2 for set-up. Once

you get the Viewtron software set up with your ID and Pass

word, hit 1 for sign-on and the program does the rest. If you

don't have an auto dial modem you'll need to call your local

network manually, but after that the program does the rest. It

pumps out the Viewtron call address for you, followed by your

ID and Password. The first screen you see is the main index

which informs you of any new mail, current events, and away

you go. You're On!

Setting Up For Viewtron

The "set-up" option will rarely be used more than once. Before

loading the Viewtron software, however, you should first load

another program that comes on the disk:

load "phone" ,8,8

run

Enter your area code and a list of phone numbers will be

displayed for the major telecommunications networks (see

below). You can access Viewtron from any of these networks so

pick a number (preferably a local call) and write it down along

with the network it belongs to. Some numbers may not appear

in this list but it's easy to change these parameters should you

find ways to fine tune your software later on (ie. more local call

or 1200 baud line).

Now load the Viewtron program (load " * " ,8,8) and choose

option 2. The menu will show three sections that need to be

completed.

1: Modem

The following has been reproduced from the "set-up" option

and should give you an idea of which modems are compatible

with the Viewtron software.

1 Volksmodem 1200

2 Westridge 6420

3 Hesmodem I

4 Smartmodem

5 1064 Modem

7 Commodore 1660

8 More modems, takes you to:

1 Vicmodem 1600

2 64modem

3 Volksmodem 6420

4 Commodore 1650

5 Commodore 1670

6 Other auto (dialing) 1200

7 Other auto (dialing) 300

8 More modems, takes you to:

1 Manual 1200

2 Manual 300

8 More modems, repeats from start.

2: Built in Networks

1 Telenet

2 Uninet

3LADT

4 Tymnet

5 Datapac

6 Other

Selecting any of the above will prompt for a phone *. This is the

local number for the network you have chosen (which you may

have found from the "phone" program earlier). Option 6 allows

you to enter the phone number of any network, followed by the

call sequence to access, theoretically, any service. However,

the Viewtron software is somewhat specialized and compatibil

ity with other online services, NAPLPS or otherwise, has not

been tested.

3 ID and Password

Option 3 prompts for your Viewtron ID and Password from the

card inside the Viewtron Pack. Enter these as shown but hang

The Transactor 68 Volume 6, Issue O5

on to the card - the ID and Password are sent automatically by

the software when you sign on, but some sections of Viewtron

will ask you for your password so keep it handy.

Once back at the menu, hit Return and everything will be

stored to disk. Don't worry about mistakes, changes are easy.

You can even change your password after you get your

Viewtron account established.

Your First Time On Viewtron

Now select option 1: Sign-On. If you have an auto-dial modem,

sit back and relax. If not, dial the number for your local

network manually and wait for the connect tone. Signing on

generally takes about 30 seconds but any more than a minute

means try again - hit C= and R for Redial.

You'll be asked for your first name, your last name, address,

etc., and get your credit card, you'll need that too.

Once Viewtron has all your particulars, you're ready to wander.

You may find it strange to have 'New Mail' waiting for you since

this is your first time on, but read it anyway for the experience.

Try 'CB' - you'll be asked to enter your "handle" so you may

want to think one up ahead of time. Try some of the other

keywords listed in the manual. It doesn't take long and

Viewtron will as easy as loading the software.

The Transactor is currently investigating the potential for a

'Transactor' section on Viewtron. Articles would be made

available as well as programs for downloading. To get an idea of

what a Transactor section might be like, try the Protecto (enter

protecto) section. Entering transactor would take you to a

similar screen where you would select from a number of

options.

So check it out and let us know what you think. We'll have

more about Viewtron next issue.

Compu-toons

The SAVE® Saga

If you've been following the SAVE® saga you've probably

read the brilliant investigative work of P.A.Slaymaker in

Compute. Part 2 of Phillip's article uncovered some impor

tant missing pieces of the mystery. Unfortunately we didn't

have time to make any additional study for this issue. Phil

has agreed to make more of his discoveries available to us,

including the code changes he discussed in Compute,

hopefully by next issue.

The latest news, however, is that SAVE® is equally offen

sive in the MSD drives (as noted by Roy Dancy, Dothan,

AL) as well as the new Commodore 1571. It's interesting

how the same bug can get from one DOS to another, even

with two completely different manufacturers. Hmm.

I told you this new anti-copy protection doesn't fool around.

'INPUT. . . OUTPUT. . . SHOT PUT"

The Transactor 69 Volume 6, Issue O5

(JKffiC,

X Hf\ S BEEk}
d^ rLoiZkYls

CAPTAIA7 '5 SCI EM-

With only 16 characters

Transactor Disks have s

explanatory, others have

The Transactor Disk

per filename, many of the programs on

omewhat deceiving titles. Most are self-

been appended with additional briefings.

Programs with block counts of only 1 or 2 are usually just subroutines

for use within other programs. A "dazzler" is our way of describing the

more entertaining (as opposed to useful) programs. And a "demo"

indicates illustration of a concept as opposed to a demonstration of the

cosmetic variety. A 'VI'

look

1

1

23

4

14

2

7

2

2

9

7

3

1

1

2

1

1

2

2

2

1

3

2

3

12

8

7

22

6

1

3

4

7

2

6

3

11

11

5

2

2

2

6

10

15

6

6

2

or a similar filenami

n these descriptions indicates Version 1 -

3 on a later disk for an update. 'ML' denotes

"transactor diski"
"-vol4issue01-"

"opt illusion 4.0"

"unassembler 4.0"

"string thing 4.0"

"bmbstringthing"

"stringthing.bin"

"chain tracer"

"ieee modem drivr"

"keyboard setup"

"SPet terminal"

"vie aid.rel"

"vie modem driver"

"-vol 4 issue 02-"

"ftoutsm 4.0"

"brain bender 4.0"

"vertical message"

"vertmsg part2"

"screen marker"

"writing a file"

"reading a file"

"coding comments"

"translator.src"

"translator.ldr"

"translator demo"

"sid friend parti"

"skiffle band 1"

"skiffle band 2"

"basic aid editor"

"joystick reader"

"-vol 4 issue 03-"

"kaleidoscope 80"

"disk append 4.0"

"string thing 64"

"tapemaker 64"

"univ disk change"

"screen center"

"catstrapolator"

"catstrapolator64"

"sid friend part2"

"char sets prog 1"

"char sets prog2"

"char sets prog3"

"character editor"

"high res dumper"

"labeler.src"

"label loader.vic"

"label loader.c64"

"label test prog"

prg

prg dazzler

prg

prg 4.0 string utility

seq source code

prg object code at $7e00

prg traces disk files

prg

prg indexed arrays demo

prg in basic

prg tiny basic aid

prg

prg

prg dazzler

prg dazzler

prg vertical printing demo

prg

prg cursor positioning

prg basic code from

prg an article by

prg jim butterfield

prg a translation table

prg utility for basic 4

prg

prg c64 sid keyboard demo

prg programmed sid music

prg

prg extension to basic aid

prg

prg

prg dazzler

prg append to basic text

prg string utility

prg send disk files to tape

prg change device*

prg center text demo

prg catalog info retrieval

prg of blocks free, ID, etc.

prg

prg move c64 char set

prg from rom to ram

prg

prg for hi-res chars

prg to 8023 printer

prg for labelling basic

prg to allow goto & gosub

prg to use labels instead

prg of line numbers.

Machine Language, '.bas' i.

Assembler source code file.

TransBASIC files propagate

; a BASIC file, and '.pal' or '.src' is a PAL

forward to each new disk. Descriptions of

TransBASIC files will appear only on the first disk on which they were

offered. However, most TB

briel

modules can not possibly be described in

. Commands within modules are listed in REM statements -

complete descriptions of the commands can only be obtained from

the magazine. Summaries of all commands can be found in the

TransBASIC column. The prefix 'TB:' will be used in this list to show

TB command files.

12

1

2

2

1

3

2

2

8

10

5

4

6

3

23

20

31

6

13

1

1

8

2

5

2

2

4

15

23

2

9

1

2

3

8

5

6

2

2

4

3

3

8

6

38

8

9

2

"c64 tiny aid Idr"

"-vol 4 issue 04-"

"1 linesquiggle"

"cathode ray prg1"

"cathode ray prg2"

"datadjuster"

"retina wrencher"

"wordpro lister"

"hard disk backup"

"superkey 64"

"redecode8032"

"sid friend part3"

"sound help"

"sound help demo"

"sprite palette"

"graphics utility"

"graphic util.src"

"raster irq demo"

"raster irq.src"

"-vol 4 issue 05-"

"-vol 4 issue 06-"

"incrementation"

"moneyout"

"palindrome"

"autoliner 4.0 v1"

"autoliner 64 v1"

"datadjust update"

"refield"

"create"

"updating 4.0"

"mid string dream"

"get subroutine 1"

"get subroutine 2"

"get subroutine 3"

"menu type 1"

"menu type 2"

"menu type 3"

"directory type 1"

"directory type 2"

"datesubrtn 1"

"datesubrtn2"

"st interrogate"

"univ disk rtns"

"sid friend part4"

"sid friend part5"

"function key 64"

"copier64 generat"

"copy file 64"

71 blocks free.

prg c64 tiny basic aid

prg

prg dazzler

prg dazzler

prg dazzler

prg for controlling data reads V1

prg dazzler

prg

prg 9060/9090 to floppies

prg keyword burst keys

prg keyboard interception demo

prg

prg sid sound utility

prg

prg sprite editor

prg hi-res utility

prg

prg c64 raster interrupts

prg

prg ref. issue - no programs

prg

prg dazzler

prg formatting dollar figures

prg see dictionary

prg auto line# generate

prg for entering progs V1

prg datadjuster V2

prg extension for The Manager

prg for use with 'refield'

prg updating programs demo

prg mid$ demo

prg

prg

prg

prg menu driver demos

prg

prg

prg display disk

prg dirs from basic

prg input valid

prg date strings

prg status word handling

prg basic disk file readers

prg

prg

prg define function keys

prg generates next prog

prg for single drive copies

The Transactor 71 Volume 6, Issue O5

1

2

2

3

2

2

2

3

2

2

2

1

1

3

2

1

5

6

22

14

8

9

10

25

2

7

6

6

7

7

4

4

8

9

8

3

5

2

1

3

1

5

1

1

2

2

2

2

2

.2

3

3

4

3

3

2

2

3

3

1

4

5

12

12

39

11

3

7

"transactor disk2"
"-vol 5 issued-"

"the brain"

"marquis 80"

"marquis 64"

"marquis 40"

"marquis 20"

"the boxer"

"the plunge"

"sequins 40/80"

"sequins 64"

"curtains"

"graphic print"

"reverse rvs"

"1 line pet emulr"

"on error goto"

"but seriously"

"zoundz"

"a-maze-ing"

"waves 64"

"vie 20 sound"

"pet sound fx"

"sound maestro 64"

"quarter master"

"sprite rotate"

"quasimob loader"

"quasimob.src"

"change screen 64"

"harmonic motion"

"qtrsqr plot 80"

"qtrsqr plotc64"

"qtrsqr vie norm"

"qtrsqr vie expd"

"projectile 4.0"

"projectile 64"

"talk clock 4.0"

"talk clock 64"

"talk clock vie"

"cartridge sim"

"generate demo 64"

"gen generate 64"

"-vol 5 issue 02-"

"down scroll 64"

"color ftoutsm 64"

"ftoutsm.ml"

"ama-zamara-ing"

"stop disable 64"

"autoliner4.0 v2"

"autoliner64 v2"

"screen copy vie"

"eepeep4.0"

"mirror 80"

"mirror 40"

"mirror 64"

"ram scan 80"

"ram scan 40"

"ram scan 64"

"crystal"

"un cursor 80"

"un cursor 40"

"un cursor 64"

"un cursor 20"

"popc64"

"un token memory"

"un token disk"

"merge 4.0"

"merge c64"

"basic monitor 64"

"pi program"

"rocket64 ml.run"

"rocket64 bas.run"

The Transactor

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

pry

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

dazzler

banner program

dazzler

dazzler

dazzler

dazzler

graphs weighted by letters

alternate rvs on/off

for most pet programs

error trapper

drum roll, cymbals

sid sound demo

maze generator

sid surf sound

bach for vie 20

popular sound effects

sid sound utility

the song

get more than 8 sprites

colour changes

plotting routine

quarter square plotter

plotting a projectile path

talking clock for use

with votrax sc-01

simulate cartridges

program generator

dazzler

dazzler

screen effects

disable run/stop restore

generate line numbers

version 2

screen to printer

basic 4.0 irq sound

text mirroring

ML memory display

draw crytaline pattern?

clear returns from stack

a basic lister

merge basic text

a basic MLM

calculate pi

ML thrust vs. gravity demo

basic version

2

2

8

10

8

3

6

16

7

5

2

1

1

1

2

1

1

3

4

2

4

3

5

3

2

2

2

3

4

15

1

23

1

9

17

4

8

9

7

4

4

10

10

5

4

15

7

16

24

1

1

1

1

1

3

3

3

3

1

2

1

3

1

4

4

7

72

"rocket.sprt"

"rocket,obj"

"rocket listing 2"

"rocket listing 3"

"rocket listing 4"

"rocket listing 5"

"string insert 64"

"cia timer demo"

"tod clock 64"

"joycursor 64"

"sx64 emulate pt1"

"sx64 emulate pt2"

"-vol 5 issue 03-"

"linedoodaa"

"colour test 64"

"bytefinder ram"

"bytefinderdisk"

"un-dim 4.0/2.0"

"un-dim vic/64"

"errorouter 64"

"line hider"

"ghost liner"

"list decorator"

"etchasketch"

"default colours"

"restore x64"

"led demo"

"led knight rider"

"led roulet wheel"

"quadra 64 loader"

"quadra 64 init"

"quadra 64.sre"

"basmon part2"

"picprint 64"

"picprint64.src"

"basic compare"

"scramble.bas"

"scramble.ml"

"scramble64.ml"

"password prot 1"

"password prot 2"

"disk defender"

"disk defend 8050"

"Iockdisk4.0"

"Iockdisk64"

"drive protect"

"disk view/change"

"diskmod4.0"

blocks free.

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

"transactor disk3
" + business & ed.+

"quick beep 64"

"colour bar 64"

"dazzle attack4.0"

"aquarius80"

"intscan64.src"

"intscan4.0.src"

"file ripper 4.0"

"file ripper 64"

"file loader"

"ascii/cbm"

"magic number"

"safe val subrtn"

"prime number gen"

"short prime gen"

"expeval 64 Idr"

"expeval plot"

"expeval 64.pal"

" prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

insert strings into strings

time of day clock demo

control cursor with joystick

dazzler

contrast adjustment

find byte values

clear arrays

trap errors

hide entire lines

hide lines but not line#

control over LIST

after run/stop restore

control DATA read pointer

user port demo

partition text space

ML monitor in basic

hi-resto printer V1

compare basic prg files

basic encryption technique

password encryption

file protection

disk protection demo

force run after load

disk utility

examine disk contents

compare colours

dazzler

dazzler

keyboard scanning

fast seq reader

successive loading demo

converter

arithmetricks

VAL(substitute

expression evaluator

Volume 6, Issue O5

5

5

14

25

11

3

5

5

3

3

11

3

30

31

28

29

15

39

3

13

17

33

291

1

8

8

7

8

10

9

10

10

10

10

2

23

1

2

2

2

3

3

3

3

3

5

6

3

15

10

23

4

5

1

2

2

6

3

5

4

6

2

8

8

8

399

"compound intrest"

"get string loadr"

"getsrc.pal"

"sort 64.pal"

"sort 64 create"

"sort 64"

"sort64 demol"

"sort pet demol"

"sort 64 demo2"

"sort pet demo2"

"sort pet create"

"sort pet"

"philemaster pet"

"philemaster 64"

"philemas pet cas"

"philemas64cass"

"home budget"

"basic monitor 64"

"count wpm"

"speller"

"autoswap 64.Idr"

"autoswap64.pal"

blocks free.

prg

prg

prg

prg

prg

pry

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

"transactor disk4'
" + hardwar/periph h

"aid2"

"aid4"

"vicaid.rel"

"c64 tiny aid Idr"

"supermon2.rel"

"supermon4.rel"

"super vicmon2"

"supermon64.v1"

"copy-all"

"copy-all64"

"copy file 64"

"unassembler 4.0"

"memory save 64"

"control keys 64"

"instcolr chng64"

"drowning in garb"

"single disk copy"

"single copy 64"

"clear/plot bas64"

"hex table"

"large chars 64"

"reset protector"

"transbasic instr"

"tb/kernel"

"add"

"tb/add.src"

"tb/add.obj"

"screen things"

"hard cornr prg1"

"hard cornr prg2"

"hard cornr prg3"

"hard cornr prg4"

"keyboard click"

"projector Ctrl"

"linked lists 1"

"linked lists 2"

"linked lists 3"

"disk datafier 4"

"disk datafier 64"

"disk datafier 20"

blocks free.

•" prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

get subroutine

cascading sort routine

simple database

count words per minute

spelling drill

multitasking utility

tiny basic aid for basic 2

for basic 4.0

for the vie 20

for the c64

M.L. monitor prog

for basic 4.0 machines

for vic20

for c64

for unit to unit disk copying

for multiple 1541s

single 1541 copier

make source from object code

save memory ranges

detect special keys

change screen colours

dazzler

basic file copier

c64 version of above

point plot/hi-res clear routine

prints dec/hex table

char rom demo

emulate cartridges

brief transbasic instructions

transbasic kernel

TB: add source code

kernel source + add source

object code for above

TB: border, background, etc.

read data reg bits

read user port switches

read 4x4 keyboard matrix

scan c64 keyboard hardware

keyboard audio feedback

slide projector hardware

sort without sorting

a faster basic loader

for ML data

1

8

7

8

10

9

10

10

10

10

2

3

4

15

23

10

5

4

4

1

2

2

2

3

2

1

1

3

5

5

5

4

3

1

7

4

3

4

3

18

41

45

33

52

5

10

8

13

3

6

15

10

8

7

47

10

10

8

1

31

31

4

11

11

"transactor disk5"
"aids & utilities"

"aid4"

"vicaid.rel"

"c64 tiny aid Idr"

"supermon2.rel"

"supermon4.rel"

"super vicmon2"

"supermon64.v1"

"copy-all"

"copy-all64"

"copy file 64"

"transbasic instr"

"tb/add.obj"

"tb/kernel"

"tb/add.src"

"add"

"screen things"

"verifizer.vic/64"

"verifizer.pet"
ii M

"wordprodump"

"regain"

"border flasher"

"double directory"

"c64 disk status"

"cbmscrndump80"

"cbm scrn dump 40"

"phone speller"

"keyword pet.bas"

"keyword c64.bas"

"keyword vic.bas"

"irq display.pal"

"line clear.pal"

"— articles—"

"verigenc64"

"doke& deek"

"bit twiddlers"

"check & await"

"keywords"

"error wedge.bas"

"error wedge.pal"

"keywiz64"

"linked lists"

"hi-res listing 1"

"listing 2"

"listing 3"

"listing 4"

"vicparms"

"bigprint"

"sprite ed1"

"sprite ed2"

"list scroll"

"stp.bas"

"stp.pal"

"quote killer"

"gap fill"

"print ml.c64"

"print ml.vid"

"print ml.vic2"

"super cat"

"numeric keypad"

"disk/exmon @8000"

"disk/exmon @1000"

"drive peeker"

"file compare.pet"

"file compare.c64"

0 blocks free.

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

usr

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

program entry checker

un-new utility

warm-start demo

double width disk dirs

error channel reader

phone# letter combinations

keyword burst keys

irq driven text display

clear all but top 3 lines

generate verifized files

TB: double poke/peek

TB: set, clear, flip

TB: input interception commands

TB: show keywords present

adds commands (use '<§>' as prefix)

keyboard driver

generates file "hires"

hires pie graphs

hires bar charts

hires expression plotter

vie II chip parameter calc.

hi-res screen to printer

two short sprite

editors

using crsr keys

seq to prg - execute from

a seq file (like batching)

quote mode utility

remove dir gaps left by Scratch

ML loader technique

dir info extractor

utility for the c64

disk extramon for c64

adds disk plus MLM commands

inner disk utility

compare two files

byte by byte (in ML)

The Transactor 73 Volume 6, Issue O5

1

8

7

8

10

9

10

10

10

10

3

4

15

23

10

5

4

7

5

4

4

4

10

1

1

1

3

3

3

3

2

2

3

13

2

2

34

26

3

4

7

6

8

2

11

1

1

4

4

10

15

12

4

4

4

10

8

6

13

16

31

44

9

1

4

135

"transactor disk6
"more aids+ utils"

"aid4"

"vie aid.rel"

"c64 tiny aid Idr"

"supermon2.rel"

"supermon4.rel"

"super vicmon2"

"supermon64.v1"

"copy-all"

"copy-all64"

"copy file 64"

"transbasic instr"

"tb/add.obj"

"tb/kernel"

"tb/add.src"

"add"

"screen things"

"cursor position"

"set sprites"

"within"

"read sprites"

"verifizer.vic/64"

"verifizer.pet"

"stp loader"

"stpsys49152"

"stpsys828"

"racer pet"

"racer 64"

"racer vie"

"racer +4"

"tickertape 64"

"dec to base b"

"screen save vie"

"save® exposed!!!"

"dos exec filer"

"create device 9"

"create anti-nok"

"alpha dir. bas"

"alpha dir.pal"

"auto-default, bas"

"auto-def. create"

"auto-default, pal"

"file pursuit"

"supernumber.bas"

"supernum array"

"supernumber.pal"

"supnum sys49152"

"varptr"

"func keys, bas"

"func keys.pal"

"bootmaker 64"

"datapokeaid"

"load & run.pal"

"I &r create.c64"

"I & r create.pet"

"I & r create.vie"

"a/d pet.basic"

"a/d pet.pal"

"chopper"

"chopper.pal"

"labelgun"

"labelgun.pal"

"r65cO2 assembler"

"fig 1 new ops"

"fig 3a writechrs"

"fig 3b writechrs"

"fig 4 linker eg."

blocks free.

"

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

pry

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

seq

seq

seq

seq

TB: set or check crsr pos.

TB: sprite commands

TB: test number for 'within range'

TB: sprite monitoring

seq to prg (batch) utility

cheap video game

with sound effects

convert to base b

save screen to disk

@ replace bug demo

execute programs in disk memory

device* changer and head knock

eliminator for use with above

alphabetize disk directories

change reset default values

trace and size

indestructible variables

returns address of variables

screen editor extensions

makes boot for common loads

data entry utility

load and run ML programs

automatically without

necessarily knowing

start addresses

analog to digital input

utility with hardware

PAL file line splitter

PAL label re-definition

fortheR65C02CPU

SEQ files for use with

above program

1

8

7

8

10

9

10

10

10

10

2

3

4

15

23

10

5

4

7

5

4

5

20

4

4

10

1

1

1

4

4

1

3

1

5

3

7

8

14

13

3

16

5

11

2

8

15

7

4

4

1

17

7

7

3

4

6

3

1

54

3

132

3

1

41

"transactor disk7"
"comm + networkin" seq

"aid4"

"vie aid.rel"

"c64 tiny aid Idr"

"supermon2.rel"

"supermon4.rel"

"super vicmon2"

"supermon64.v1

"copy-all"

"copy-all64"

"copy file 64"

"transbasic instr'

"tb/add.obj"

"tb/kernel"

"tb/add.src"

"add"

"screen things"

"cursor position"

"set sprites"

"within"

"read sprites"

"strip & clean"

"scrolls"

"verifizer.vic/64"

"verifizer.pet"

"stp loader"

"stpsys49152"

"stpsys828"

"flash"

"boxspiral +4"

"hires text"

"c64 fastkey"

"banner"

"screen sizzle"

"b to xx32.bas"

"1541 align"

"tdd termprog"

"remote.bas"

"remote.pal"

"c64bbslink"

"sort64"

"tele-tone 64"

"1541 dual drive

"vector manager

" I I I I I I I I I I I I I I I

"extra extra"

"terminal.r12"

"term.r12"

"intelcom3"

"intelcom4"

"spetterm"

"term6s.g"

"terminal/vie, d"

"term/vie,d"

"firstdial3 boot"

"firstdial3"

"miteydialer3 bt'

"miteydialer3"

"firstterm3 boot"

"firstterm3"

"firstdial3 print"

"firstdial3 doc"

"firstdial3 fkeys"

"higgyboot +4"

"higgyterm +4"

28 blocks free.

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

+' prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

seq

seq

prg

prg

TB: string purging

TB: scroll screen windows

flash characters for c64

plus4 box demo

copy ROM chars to hi-res screen

GET speed increaser

simple marquis program

dazzler

convert B machine files

1541 head alignment

TDD communications terminal

c64 remote control utility

bbs numbers database

load this (.8,1) for use with above

touch tone generator

simulation using 2 1541 s

cascade irq routines

instructions for following prgs

pet/cbm terminal prog

usessuperpetacia

vie 20 rs232 terminal

c64 with autodial

c64 with mitey mo modem

without autodial

documentation

fkey definitions

plus 4 terminal

The Transactor 74 Volume 6, Issue O5

1

8

7

8

10

9

10

10

10

10

2

3

4

15

23

10

5

4

7

5

4

5

20

10

5

8

7

7

3

18

4

4

10

1

1

2

3

12

1

1

2

1

2

1

4

A

2

2

2

3

2

1

3

4

4

4

2

3

4

12

23

2

5

131

5

10

6

6

6

21

42

20

"transactor disk8"
"the languages"

"aid4"

"vie aid.rel"

"c64 tiny aid Idr"

"supermon2.rel"

"supermon4.rel"

"super vicmon2"

"supermon64.v1"

"copy-all"

"copy-all64"

"copy file 64"

"transbasic instr"

"tb/add.obj"

"tb/kernel"

"tb/add.src"

"add"

"screen things"

"cursor position"

"set sprites"

"within"

"read sprites"

"strip & clean"

"scrolls"

"labels"

"token & var"

"instring"

"place"

"arcfunctions"

"printat"

"sound things"

"verifizer.vic/64"

"verifizer.pet"

"stp loader"

"stpsys49152"

"stpsys828"

"RUN ME!"

"RUN ME TEXT"

"RUN ME FORM"

"1541 spini"

"1541 spin2"

"blksfree-1541"

"save-protect"

"scratch&save. bas''

"scratch&save.pal"

"menu prg"

"list freeze"

"waving spokes"

"kaleidoscope"

"ascto bin.pal"

"bin toasc.pal"

"lett'erfly!"

"18-0 un-screw"

"star0.14"

"star 2.00"

"profiler.pal"

"profiler.bas"

"profiler.Idr"

"hi-res text demo"

"hi-res text Idr"

"hi-res text sre"

'' I I I M I II I I I I I I I i'i i n f T 1 f r r 1 1 1 T IT

"bootcomal"

"comal80.can"

"comalerrors"

"generror.e.l"

"hi"

"see'information"

"see'instructions"

"information83nov"

"instructions0.14"

"logo'book'sample"

37 blocks free.

seq

prg

prg

prg

prg

prg

prg

prg

PIT]

prg

prg

prg

prg

prg

prg

pig

prg

prg

prg

prg

prg

prg

p'g

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

seq

seq

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

seq

seq

prg

prg

prg

prg

prg

prg

prg

prg

prg

seq

seq

prg

prg

prg

seq

seq

prg

TB: basic code labelling

TB: token$(, var(

TB: string compare

TB: scan strings

TB: arcsine, arccos

TB: print® col,row

TB: sid control

prints subscription form

spin 1541 drive motor

uses SHIFT for on/off

reports 1541 blocks free

1541 BAM adjuster

SAVE® alternative

menu driver

plus4 graphics demo

dazzler

in ML

GET tips

disk utility

forCOMAL0.14

for cartridge COMAL 2.00

analyze time consumption

of basic programs

print scaled hi-res text

boot for COMAL 0.14

notice the block count

1

8

7

8

10

9

10

10

10

10

2

17

3

4

15

23

10

32

5

4

7

5

4

20

10

5

8

7

7

3

18

12

11

5

3

3

A

4

10

1

1

2

3

12

1

6

5

2

2

2

3

4

1

1

1

1

11

9

13

6

4

3

4

12

20

2

2

5

6

2

4 I

10

116

"transactor disk9"
"impl. sciences"

"aid4"

"vie aid.rel"

"c64 tiny aid Idr"

"supermon2.rel"

"supermon4.rel"

"super vicmon2"

"supermon64.v1"

"copy-all"

"copy-all64"

"copy file 64"

"yellow pages 1.2"

"transbasic instr"

"tb/add.obj"

"tb/kernel"

"tb/add.src"

"add"

"use"

"screen things"

"cursor position"

"set sprites"

"within"

"read sprites"

"strip & clean"

"scrolls"

"labels"

"token & var"

"instring"

"place"

"arcfunctions"

"printat"

"sound things"

"move& fill"

"dos support"

"linecalc"

"beep"

"stripper"

"verifizer.vic/64"

"verifizer.pet"

"stp loader"

"stpsys49152"

"stpsys828"

"RUN ME!"

"RUN ME TEXT"

"RUN ME FORM"

"quake"

"errcat 64/20"

"rt justify pet"

"drive speed"

"basic stp"

"gauss elim"

"lottery"

"swords of doom"

"sum of squares 1"

"sum of squares 2"

"sum of squares 3"

"projector"

"hires"

"bigprint"

"timer64.bas"

"timer64.pal"

"projectile pet"

"projectile 64"

"compl.pal"

"comp2.pal"

"comp1.obj",8,8:

"comp2.obj",8,8:

"koala split"

"anim split"

"vars-indestruct"

"unassembler"

"supersound"

blocks free.

seq

Pro

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

pry

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

pry

prg

prg

seq

seq

prg

org

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

pig

prg

prg

prg

prg

prg

prg

prg

prg

prg

prg

c64 disk utility

TB: like add, only faster

TB: memory transfers

TB: dos command wedge

TB: for gotos & gosubs

TB: SID beep

removes PAL comments

dazzler

catalog routine

right justify demo

alter drive parameters

seq to prg in basic

gaussian elimination routine

lottery numbers generator

dazzler

summing techniques to

help overcome problems

with binary inaccuracies

plot graphs with 3 dimensions

for use with projector

for use with projector

microsecond timer

bounce plotter

bouncing sprite plotter

data compressor programs

for use with compressor, splits

koala/animation station pictures

edit without losing variables

make source code from object

SID sound utility

The Transactor 75 Volume 6, Issue O5

News BRK

Submitting NEWS BRK

Press Releases

If you have a press release which you

would like to submit for the NEWS BRK

column, make sure that the computer or

device for which the product is intended is

prominently noted. We receive hundreds

of press releases for each issue, and ones

whose intended readership is not clear

must unfortunately go straight to the trash

bin. It should also be mentioned here that

we only print product releases which are in

some way Applicable to Commodore

equipment.

Transactor News

Transactor Subscription Prices...

Are remaining at the old price of only

$15.00 per year, even with the new News

stand price of $3.50/copy. Now a subscrip

tion to The Transactor saves you even

more - 29 % over the newsstand price! Now

is the time to finally get around to sending

in that subscription card you've been hold

ing on to.

Viewtron Starter Kit

The Viewtron Starter Kit will be available

in Canada from Transactor Publishing. The

price is about the same after the exchange

rate, but experience has shown that order

ing goods from the U.S. into Canada can

take longer than migrating tortoises. Also,

phone orders from Canada mean a long

distance call to Miami since toll-free 1-800

numbers don't cross international borders.

And speaking of borders, well... we all

know what happens to packages that even

look dutyable.

The Starter Kit is a nifty package, too. The

software is terrific. It comes with files con

taining several phone numbers for the ma

jor networks and a program that displays

those within your area code. Once your ID

and Password are recorded, signing on is

simply a matter of loading the Viewtron

communications program and hitting one

key. You'll like the manual - 46 pages of

handy reference and instructions for every

thing from using Viewtron CB to dumping

to printer, disk, etc. For more on Viewtron,

see the article in this issue.

So if you live in the U.S., call Viewtron's toll

free line (see next item). But if you're order

ing the kit for delivery within Canada, you

can use our postage paid order form and let

us arrange for the first half of it's journey.

Viewtron Now Available

To Commodore Owners

Viewdata Corporation of America is now

offering its Viewtron videotex service to

Commodore personal computer owners in

most cities throughout Canada and the U.S.

Viewtron subscribers can save time gather

ing valuable information. They can get up-

to-the-minute news, weather forecasts,

continuous sports scores, current stock

prices, airline schedules and fares, con

sumer reports and movie and book re

views.

Viewtron subscribers can also send elec

tronic messages, and, through a growing

list of banks, pay bills and get account

balances. They even have access to an up-

to-date encyclopedia.

In addition to the basic Viewtron service,

there are enhanced services for Commo

dore subscribers. Some of these include:

• Commodore software reviews and ratings

• Software and hardware advice from ex

perts and other subscribers

• Discounts on top-selling Commodore

software

• Discounts on computer hardware

• Commodore special interest clubs

Viewtron is the first complete on-line serv

ice that runs in colour on Commodore 64s.

To get Viewtron, Commodore owners will

need to purchase the Viewtron Software

Starter Kit for $9.95 (US). The kit includes a

diskette with communications software,

one free hour of service, an ID and pass

word, and a user manual.

Subscribers will pay only for their use of the

service. No monthly minimums will be

charged. Rates are: nine cents a minute,

weekday nights (after 6 p.m.) and week

ends; and 22 cents a minute weekdays.

And, unlike other services, there is no

extra charge for subscribers using 1200-

baud modems. (Prices may vary in some

cities.)

Viewtron also runs on the Commodore

128, and will run on the Amiga in 1986. For

more information, call the Viewdata Corpo

ration at 1-800-272-5400

More Viewtron News

Commodity traders almost anywhere in

the U.S. can now keep up with the volatile

and complex futures market with

VIEWTRON®, the electronic information

service offered by Viewdata Corporation of

America, Inc.

VCA offers trading prices of nearly 100

commodities, ranging from aluminum to

wheat, updated every 10 minutes. Prices

are gathered from 14 exchanges by Com

modity News Services, Leawood, Kansas.

Both companies are owned by Knight-

Ridder Newspapers.

When a subscriber requests a price quota

tion, all of the contracts in a given com

modity are listed, with their opening, high,

low and last available prices, along with the

change from the previous settlement price.

Contact: John L. McCarthy,

V.P. Business Information Services

(305) 674-3499

The Transactor 76 Volume 6, Issue O5

West Coast Commodore Show II

The West Coast Commodore Association

proudly announces "THE COMMODORE

SHOW 11" to be held on Saturday, February

8th and Sunday, February 9th, 1986 from

10:00 am to 6:00 pm at the Cathedral Hill

Hotel in San Francisco.

This Commodore-specific trade show will

feature the latest in software and hardware

for the vast Commodore users market. THE

COMMODORE SHOW II will cover the

newest Commodore machines; the Amiga

and the C-128 as well as the 64 and Plus 4.

The show will also feature noted Commo

dore experts speaking on graphics, tele

communications, music, business

applications and other subjects of interest

to Commodore users.

The first COMMODORE SHOW held in

February of 1985 drew 5200 attendees and

next year's show promises to be bigger and

better.

For information on booth space and ad

vance ticket sales, interested users groups

and hardware/software vendors should

contact:

West Coast Commodore Association

P.O. Box 210638

San Francisco, CA 94121

(415)982-1040

Commodore 128 On Dealer Shelves

Toronto, Ont. — Commodore Business Ma

chine Limited announced that the Commo

dore 128 Personal Computer is in stores

across Canada effective October 1. Over

1,000 retail outlets including mass mer

chandisers, department stores and com

puter dealers, will carry the new C128.

The Commodore Ham's Companion

Springfield, Illinois — QSKY Publishing in

troduces a new book designed to fill the

need for information on using Commodore

computers in the amateur radio "ham

shack". "The Commodore Ham's Compan

ion", written by Jim Grubbs, K9EI, helps

show the way toward effective use of Com

modore machines for this purpose.

The book's fourteen chapters address

many subjects, including:

• Selecting a Commodore machine for the

ham shack, or upgrading your present

system.

• The basics behind programming for data

including RTTY, Morse, AMTOR and

Packet.

• The ins and outs of information manage

ment, like log, dupe and awards pro

grams, are explained.

• Why Commodore machines are the easi

est to interface

• "Telehamming" - connecting to amateur

radio information by telephone line.

• Where to find specialized software for

slow scan television, satellite tracking

and many other exotic applications.

• How to obtain a dramatic increase in

speed without learning machine lan

guage.

Additionally, a set of valuable appendices

include over 80 sources for software and

hardware for amateur radio applications. A

bibliography with over 60 magazine artic

les and columns on Commodore com

puters in the radio shack is also included. A

glossary and other resource list rounds out

the book.

Retail price for the 160-page paperback is

$15.95 U.S. plus $2.50 for shipping and

handling. For more information or to order,

contact:

QSKY Publishing

P.O. Box 3042

Springfield, IL

USA 62708

Starting Your Computer

Services Business

J.V. Technologies, Inc. announces the re

lease of the new book Starting Your Com

puter Services Business by Dr. John

Desiderio for those interested in using their

computer to earn extra income. This com

prehensive manual discusses the various

phases and stages of starting a business,

examining pitfalls and reviewing the

proper steps to successfully organizing a

new business.

Various business formats, such as, sole pro

prietorships, partnerships and corpora

tions, are examined in detail with a clear

discussion of the advantages and disadvan

tages of each. The book not only reviews

the typical computer services of consulting

and word processing, but extends beyond

these to discuss how activities such as

teaching, telecommunications, article and

book writing, software development, etc.

can also contribute to starting and main

taining a flourishing computer services

business. Persons interested in working

either part- or full-time, from their home or

in a small office, will find this book to be an

invaluable resource.

Also included is a separate chapter on ad

vertising and a complete section of repro

ducible forms for keeping track of your

business activities, such as advertisements,

orders, etc. The introductory cost of the

publication is $9.95 (US) and a 30 day

money-back guarantee is also offered. Con

tact:

J.V. Technologies, Inc.

P.O. Box 563

Ludington, MI 49431

(616)843-9512

1986 Printer Directory

and Specification Guide

Gorham International is initiating the

"1986 Printing Directory and Specification

Guidebook Series". The series consists of

four volumes:

TITLE Scheduled Publication Date

Thermal Printing Oct. 31, 1985

Toner Based Printing Nov. 30, 1985

Colour Hard Copy Printer Dec. 31, 1985

Ink Jet Printing Jan. 31,1986

Primary features of this four volume series

include:

• Specifications of each printer system pre

sented in a standard, easy to use format

from Gorham's computerized database

• Inclusion of actual manufacturer's prod

uct literature and print samples in all

possible cases.

• Gorham's computerized database pro

vides a detailed summary and overview

section in each publication. This enables

useful categorizations of competitive

products and grouping of products by

selected specifications, applications, etc.

• Hardbound reference volumes designed

to aid current and potential users in their

identification, evaluation and selection of

printer products. These limited edition

publications of 500 copies each provide a

unique presentation format by which

product manufacturers can provide prac

tical information, literature and samples

to marketplace.

Vicki Woodbrey, who manages Gorham's

database, states that "all manufacturers

and suppliers of hardware, consumables,

components, services, etc. are encouraged

to contact her to assure their product infor

mation has been incorporated into the

Gorham database."

The Transactor 77 Volume 6, Issue O5

Each of the four volumes are available

individually at a price of $250.00 U.S. in

cluding shipping for prepaid orders (addi

tional $25.00 for overseas airmail). For

additional information or to verify product

inclusion, please contact:

Alvin G. Keene or Vicki Woodbrey

GORHAM INTERNATIONAL INC.

P.O. Box 8

Gorham, ME 04038

Scenery Disks Now Available

for Flight Simulator II and Jet

SubLOGIC is pleased to announce the re

lease of six different Scenery Disks for the

Commodore 64 and IBM PC. These Scen

ery Disks expand the potential flying envi

ronment of SubLOGIC flight simulation

products including Flight Simulator II, Jet,

and the (IBM) Microsoft Flight Simulator.

Six Scenery Disks covering the entire west

ern half of the Continental United States

are now available. Each disk covers a geo

graphical region of the country, and in

cludes the major airports, radio-nav aids,

cities, highways, rivers, and lakes located

in that region. Enough detail is included on

each disk for either visual or instrument

cross-country navigation.

Each Scenery Disk package comes com

plete with appropriate sectional charts plus

full airport and nav-aid directories. Individ

ual Scenery Disk packages are available for

$19.95 (US) each. The Western U.S. six-

disk set, packaged in a vinyl three-ring

notebook with dividers, may be purchased

for $99.95 (US).

To order, specify computer system and

which disks you want, add $2.00 ($5.00 for

the six-disk set) for postage, and specify

UPS or first class mail delivery.

SubLOGIC Corporation

713 Edgebrook Drive

Champaign, IL 61820

(217)359-8482

Order Line: 1-800-637-4983

ZIPP-CODE-48 Development

System For C-64

Now you can write code on the Commo

dore 64/128 for smart peripherals, robotics

and other applications using the 8048/

8748 family of microcontrollers.

The ZIPP-CODE-48 Cross Assembler is a

powerful, symbolic assembler for the 8048

microprocessor family. In addition to the

basic instruction set used with the 8048/

8748 NMOS microprocessors, the ZIPP-

CODE-48 System correctly

cross-assembles, disassembles, and simu

lates four other related instruction sets.

(8021, 8022, 80C48/49/50.)

Additional features of the assembler are: a

built-in simulator for debugging; works

with standard BASIC-format source files;

excellent error-detection; works with tape

or disk, with or without printer.

Extra utilities included with the package

are a print utility with with alphabetical

cross-reference symbol table; a line disas

sembler; a machine-code save utility; and a

full-featured machine code monitor pro

gram.

ZIPP-CODE-48 is available for $49.95 (US).

Order from:

Hughes Associates Software

45341 Harmony Lane

Belleville, MI 48111

(313)699-1931

Automated Telecommunications

Package For The 64 and 128

Progressive Peripherals & Software, Inc. of

Denver, Co. has announced the introduc

tion of BOBSTERM PRO, a uniquely power

ful telecommunication software program

for the Commodore 64 and 128 personal

computers. BOBSTERM PRO is unique be

cause it allows complete user control over

every aspect of telecommunications.

Every feature of BOBSTERM PRO can be

automated through the use of macro pro

gramming. Log-on, password entries, auto

start, auto-answer, auto-dial, and

transmission of files are a few of the many

operations that can be reduced to a single

key stroke. Linked together, these macro

commands make continuous BBS mainte

nance simpler and a great deal faster. Com

plete screen editing, formatting, screen

colours and status line information are

available to the user. Seven custom charac

ter sets are built in for hard copies, with

space reserved for three user-defined fonts.

BOBSTERM PRO is compatible with nine

popular modems and can be easily adapted

to many more. Data transfer can be accom

plished through the use of straight ASCII,

straight binary, sequential line with prompt

wait, XON/XOFF, Punter protocol, XMO-

DEM protocol, or entire disk (C64 to C64).

With the special FILL feature, the normal

28.5 K memory can be expanded to handle

94 K files. BOBSTERM PRO is also compati

ble with all COmmodore and second party

computer hardware. Contact:

Progressive Peripherals & Software, Inc.

464 Kalamath Street

Denver, CO 80204

(303)825-4144

More 64 Software From Progressive

Progressive Peripherals & Software, North

American agent for Precision Software of

Surrey, England, is pleased to announce

SUPERBASE STARTER, a user friendly soft

ware database for the Commodore 64 and

128 personal computers.

The Transactor 78 Volume 6, Issue O5

SUPERBASE STARTER is an electronic fil

ing cabinet to store, retrieve, update, dis

play, and print information in a multitude

of ways. SUPERBASE STARTER is a begin

ning version of the bestselling SUPER-

BASE. The program runs with application

starter packs, making it ideal for non

technical users. The package comes with a

manual written with this user in mind.

Easy to understand menus of commands

and built-in Help Screens are designed to

ease the user into the program with a

minimum of stress. An audio-learning cas

sette is also available, upon registration, as

an excellent aid to learning SUPERBASE

STARTER.

Another addition to the growing line of

"SUPER" software programs is SUPER-

TYPE for the CV-64 and 128. SUPERTYPE

is a complete educational tool, addressing

the developmental needs of the informa

tion age. SUPERTYPE builds touch typing

skills in 19 tiered lessons, each leading to

the next. Colour tabs are provided to delin

eate each finger's relationship to a group of

keys on the keyboard. A built-in metro

nome encourages proper rhythm to in

crease speeds.

SUPERTYPE provides accurate assessment

of the student's progress through 'Results

Screens' at the end of each session. Times

are calculated in sentences typed, errors

during exercises, and words per minute

corrected and uncorrected. SUPERTYPE

then points out which fingers need to be

practised and which fingers are making the

most mistakes. The steno-style SUPER

TYPE manual stands alone, so the student

can progress easily through the lessons

without hunting for instructions.

Progressive Distributes

Commodore's 8023P Printers

Progressive Peripherals & Software, Inc.

has become a major distributor for Commo

dore's 8023P Printer. After successfully

opening the market for Commodore's SFD

1001 disk drive, Progressive has decided to

distribute the 8023P Printer. In the Com

modore microcomputer industry, the

8023P Printer is best known for its high

speed and 15 V2 inch wide carriage. The

printer has both business applications and

home use advantages. The 8023P Printer is

ideal for business use, as it features these

options: condensed print, Commodore

graphics, wide carriage for printing out

large spread sheets, and 150 CPS high

speed. The advantages for home use of the

8023P Printer are a near letter-quality

mode, longevity, and it is twice as sturdy as

the average printer. The 8023P Printer is

fully compatible with word processing, da

tabase, and other business and personal

software. The printer will retail for $299.00

(US).

Progressive Releases E-Link

Progressive Peripherals & Software, Inc. is

shipping their newly released Commodore

serial to IEEE interface. The E-Link is de

signed for compatibility with Commodore

IEEE peripherals and is totally transparent

to the Commodore 64. According to Kris

Halverson, Product Manager, "There is a

strong demand for an interface that gives

the consumer access to the many high-

powered Commodore peripherals on the

market. The customer will need only one

E-Link regardless of the number of IEEE

peripherals in use."

Halverson used computer aided design to

ensure the rugged reliability of E-Link. E-

Link has the following features: uses no

internal C-64 memory; independent power

supply; and microprocessor controlled.

The response to E-Link by Commodore

dealers has been strong because E-Link

provides needed accessibility to the many

available Commodore disk drives and

printers. The interface will retail for $99.95

(US). Contact:

Progressive Peripherals & Software, Inc.

2186 South Holly

Denver, Colorado 80222

(303)759-5713

Low Cost Temperature Monitoring

For The Commodore 64

Applied Technologies, Inc. announces a

breakthrough in low cost data logging and

temperature monitoring with Commodore

computers.

Features include display of 8 or 16 temper

ature channels, temperature range of -15

degrees to +180 degrees Fahrenheit at

approximately 1 degree resolution, elec

tronic interface plugs directly into the joy

stick port, inexpensive weather-protected

sensors, and menu-driven software in

cluded.

The 8-channel system starts at $89.95 (US).

For more information, contact:

Applied Technologies, Inc.

Computer Products Division

Lyndon Way, Kittery, Maine 03904

Communications Chips Seen

Rising in Sales As Semiconductor

Industry Continues to Slow

Norwalk, CT — Very few people still be

lieve that 1985 will be a good year for the

semiconductor industry. In fact, some esti

mates say the market will be down close to

20 percent this year alone. But integrated

circuits for communications equipment

will see a 30 percent average growth rate

for the rest of this decade, according to a

just-published 157-page research report

from international Resource Development

Inc., a Norwalk, CT market research and

consulting firm.

The report, entitled Telecommunications

Integrated Circuits (#659), covers over fifty

major players in the communications IC

marketplace, and predicts that even when

growth resumes in the semiconductor mar

ket as a whole, telecommunications and

data communications integrated circuits

will continue to outpace the general chip

market.

Further details of the $1,650.00 report, in

cluding a free table of contents and a de

scription of the topics covered, are

available from:

International Resource Development Inc.

6 Prowitt Street

Norwalk, CT 06855

(203) 866-7800; Telex 64 3452

The Transactor 79 Volume 6, Issue OS

.

Transactor
Th«T*ch/N«wi Journal ForCommadon Computan

PAYS

$40

per page for articles

We're also looking for

professionally

drawn cartoons!

Send all material to:

The Editor

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

Issue*

1

2

3

4

5

6

1

2

3

4

5

6

Volume 6 Editorial Schedule

Theme Copy Due Printed

More Aids & Utilities

Communications & Networking

Languages

Implementing The Sciences

Hardware & Software Interfacing

Real Life Applications

Febl

Apr 1

Jun 1

Augl

Octl

Decl

Mar 22

May 24

Jul26

Sep20

Nov22

Jan 24

Volume 7 Editorial Schedule

ROM Routines / Kernel Routines Feb 1 Mar 21

Games From The Inside Out

Programming The Chips

Gadgets and Gizmos

Simulations and Modelling

Programming Techniques

Apr 1

Jun 1

Augl

Octl

Decl

May 23

.Jul 25

Sep26

Nov21

Jan 23

Release Date

April 1/85

June 1

August 1

October 1

December 1

February 1/86

April 1

June 1

August 1

October 1

December 1

February 1/87

Advertisers and Authors should have material submitted no

later than the 'Copy Due' date to be included

with the respective issue.

COMAL INFO
if you have comal—

we have information.

BOOKS:
COMAL From A TO Z, S6.95
COMAL Workbook, $6.95

Commodore 64 Graphics With COMAL, 514.95

COMAL Handbook, S18.95
Beginning COMAL, S22.95

Structured Programming With COMAL, $26.95

Foundations With COMAL, $19.95

Cartridge Graphics and Sound, $9.95
Captain COMAL Gets Organized, $19.95
Graphics'Primer, $19.95

COMAL 2.0 Packages, $19.95

Library of Functions and Procedures, $19.95

OTHER:
COMAL TODAY subscription, 6 issues, $14.95

COMAL 0.14, Cheatsheet Keyboard Overlay, $3.95
COMAL Starter Kit (3 disks, 1 book), $29.95

19 Different COMAL Disks only $94.05

Deluxe COMAL Cartridge Package, $128.95
(includes 2 books, 2 disks, and cartridge)

ORDER NOW:
Call TOLL-FREE: 1-800-356-5324 ext 1307 VISA or MasterCard

ORDERS ONLY. Questions and information must call our

info Line: 608-222-4432. All orders prepaid only—no C.O.D.

Add $2 per book shipping. Send a SASE for FREE Info

Package or send check or money order in US Dollars to:

COMAL USERS CROUP, U.S.A., LIMITED
5501 Groveland Ten, Madison, wi 53716

TRADEMARKS: Commodore 64 of Commodore Electronics Ltd.:

Captain COMAL of COMAL users Croup, U.S.A., Ltd.

JOIN TPUG
The largest Commodore Users Group

Benefit from:

Access to library of public domain software

for C-64, VIC 20 and PET/CBM

Magazine (10 per year) with advice from

Jim Butterfield

Brad Bjomdahl

Liz Deal

TPUG yearly memberships:

Regular member(attends meetings)

Student member (full-time, attends meetings)

Associate (Canada)

Associate (U.S.A.)

Associate (Overseas — sea mail)

Associate (Overseas — airmail)

— $35.00 Cdn.

—$25.00 Cdn.

-$25.00 Cdn.

—$25.00 U.S.

-$30.00 Cdn.

-$35.00 U.S.

-$45.00 U.S.

FOR FURTHER INFORMATION:

Send $1.00 for an information catalogue

(tell us which machine you use!)

To: TPUG INC.

DEPT. A,

101 DUNCAN MILL RD., SUITE G7

DON MILLS, ONTARIO

CANADA M3B1Z3

The Transactor presents,

The Complete Commodore

Inner Space Anthology

■

Over 7,000 Delivered Since March '85

Postage Paid Order Form at Center Page

