

Disk

Has Arrived!
Simply code your co-ordinates onto the

postage powered order form and every pro

gram from each issue will be locked in,

energized, and transported from our star'

base directly to yours! Warp 9 will seem

slow compared to the time you save typing,

and the programs will give your machine

that look and feel of a fresh set of Dilithium

Crystals! Coast through the Neutral Zone

with The Transactor Disk!

Only $7.95 Each!

6 Disk Subscription

Just $45.00!

Volume 6

Issue 04
Circulation 64,000

nil

Implementing The Sciences

Start Address Editorial 3

Bits and Pieces 5
Multiple Directory Pattern-Matching

Corrupting RAMTAS Routine

Where am I?

QUAKE!!

The Schizophrenic Sprite

Try This

Error-Driven Catalog Routine lor VIC/64

Notes On REVCNT: The Error Recovery Count

ML Right Justify

Slipped Disks: Speeding up your drive

15<llders

C-64 BASIC STP

Gaussian Elimination Routine

The Lottery Companion

The Evil Swords Of Doom!

Letters 11
Twinkle Tones

Disk Risk?

Microfiche Interest

An organized submission

Profile cosmetic surgery

Case of the missing Space

Disk Woes

Remotely Noteworthy

The Error Of Our Ways:

More Often Oops Than Bloops

News BRK 78
Oops, Too Many Labels

Late Note On Transactor Disk 7

$4.50Too Much

Commodore Introduces Technical Bulletin

COMAL 0.14 Price Reduction

Deluxe Cartridge Price Cut

Price Protection Plan

Toronto Computes!

Cross Reference of Printers to Ribbons

New Commodore 128 Books

C Compiler for C64&C128

3D Graphics System

SUPERSHIPPER 64

Music Printer For the C64

SFD-1001 One Megabyte Disk Drive

Provoice Speech Synthesizer

COMPUTEREYES Video Acquisition Systems

Omnitronics Printmaster/ + G

EPSON HomeWriter 10

Remote Keyboard Conversion Kit

MITEY MO 300 Baud Modem

Mobile Data Terminal

Unique Radio/Data Communications System

TransBASIC Installment #6 15

oky 1 ravel Truly a work of art! 26

Accurate Sum Of Squares 28

The PrOJeCtOr Not 3D Holographies, but close! 30

1 lmer O i When a millionth of a second counts OO

Projectile Motion Activity via logic 38

SID'S Programmable Filter "Identical" does not equal "thesame" .. 42

The CompreSSOr A Hi-Resspace saver 45

Indestructible Variables Take the sung out of Editing 54

The UnaSSembler The true reverse assembler 57

Super SOUnd SID sound the easy way 62

Eliminating The BASIC Loader 66

U What: With notes on the new 1571 68

Solving Save® Ktn<*omy* 70

Compu-toons 72

Note: Before entering programs,

see "Verifizer" on page 4

The Transactor Volume 6, Issue O3

Transactor
The Tech/New« Journal For COfnmodor* Computer

print

Managing Editor

Karl J. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Lana Humphries

Contributing Writers

Ian Adam

Gary Anderson

Daniel Bingamon

Anthony Bryant

Tim Buist

Jim Butterfield

Gary Cobb

Bob Davis

Elizabeth Deal

Tony Doty

Michael J. Erskine

Jim Grubbs

Dave Gzik

Tom Hall

Bob Hayes

John Jay Hilfiger

Jesse Knight

Jack Lothian

Scott Maclean

Jim McLaughlin

Gerald Neufeld

Noel Nyman

Richard Perrit

Glen Reesor

John W. Ross

Louis F. Sander

Edward Smeda

Darren J. Spruyt

Nick Sullivan

Zoltan Szepesi

Karel Vander Lugt

Audrys Vilkas

Jack Weaver

Charles Whittern

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

The Transactor Is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton,

Ontario, L9T 3P7, Canadian Second Class tnaii registration number 6342. USPS 725-050, Second Class
postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor, 277 l.inwood Avenue. Buffalo, NY, 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated, Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade

marks of Commodore Inc.

Subscriptions:

CanadaSlSCdn. U.S.A.$15US. All other $21 US.

Air Mail (Overseas only) $40 US. (S4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,
Ontario, Canada, L9T 3P7, 416 878 8438. Note: Subscriptions are handled at this address ONLY.
Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use
postage paid card at center of magazine.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 04, 05,06, Vol 5 Issues 03, 04
Still Available:Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04, 05, 06. Vol. 6: 01, 02, 03, 04

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "a" will of course

be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the number 1 which has an

angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

insert will not be critical to correct operation of the program. When it is, the required number of spaces

will be shown. For example:

flush right" - would be shown as - print " [10 spaces]flush right "

Cursor Characters For PET / CBM / VIC / 64

Down - Jjj Insert - Q

Up - [| Delete - Q

Right - H Clear Scrn - Q

Left - [lit] Home - Q

RVS - Q STOP - Q

RVS Off - B

Colour Characters For VIC / 64

Black - Q

White - Q

Red - gg

Cyan - [Cyn]

Purple - [Pur]

Green - Q

Blue - B

Orange -

Brown

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt. Blue -

I
a
a
i
a

Yellow- [Yel] Grey 3 - [Gr3]

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

I
F5-

F6-

F7-

F8-

Please Note: The Transactor has

a new phone number: (416) 878 8438

Quantity Orders:

CompuLit

PO Box 352

Port Coquitlam, BC

V5C4K6

604 941 7911

U.S.A. Distributor:

Capital Distributing

Charlton Building

Derby, CT

06418

(203)735 3381

(or your local wholesaler)

Master Media

261 Wyecroft Road

Oakville, Ontario

L6.I 5B4

(416)842 1555

(or your local wholesaler)

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per
printed page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft,
Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.
Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.
Photos or illustrations will be included with articles depending on quality. Authors submitting diskettes
will receive the Transactor Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor
Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please
re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights
basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although
accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.
Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor Volume 6. Issue O4

The Amiga. It's been billed as "Commodore's Everything Machine?"

and "The Ultimate Micro?" but 1 can think of only one word to

describe it; Stunning!

In my last Start Address, my comments were somewhat less flattering.

Commodore doesn't often come tracking us down for a "show and

tell". In fact 1 still haven't seen one up close. What 1 have seen is an

edited video of the official launch held at Lincoln Center in New York.

Commodore's spending curbs were but a myth at this show.

There isn't a magazine rack in the world without an Amiga shown

prominently under the computer titles. But reading any one of them

won't have the impact of an audio-visual. The flick left no doubts

about the phenomenal speed capabilities. High resolution graphics

will impress just about anyone, until you start them moving. Not on

the Amiga. Part of the video started with a ballerina on the Amiga

screen. The program began with a stick drawing which eventually

became a rather nicely coloured hi-res pic. Enter the real ballerina

from stage right. The crowd liked how identical the two appeared. But

when they both started twirling in synchro, the question in everyone's

mind must have been "who's leading?". And I'm not so sure the

Amiga wasn't taking it easy on 'er.

If you haven't seen one yet, don't pass up the opportunity for a demo.

This machine will BLOW YOU AWAY. Even more impressive is the

amount of effort behind some of the demos. Mere ten line programs

create some of the most awesome displays imaginable. Memory is

expandable to a whopping 8 Meg! With that kind of space to play in,

I'm sure the best dazzlers have yet to be conceived.

PCophytes will find a new contender on the ballot. Yes, the Amiga will

be PC compatible. A Lotus 1-2-3 production line diskette was no

apparent struggle for the 68000 based machine. Commodore claims

even the Sub-Logic Flight Simulator will port to the Amiga, but go on

to say "why bother, an Amiga Flight Simulator is due shortly from

Sub-Logic". My guess has this program as the first to go beyond the

awesome demo.

Sound was equally impressive, although I think it will take more than

a demonstration to tax the analog department. Speech synthesis

appears to be included with the package, as well as sound digitizing.

With a microphone, one can record any sound for future playback,

and in stereo finally. The show included a short jam session with an

Amiga connected to a keyboard, but I'm sure that combo also has a

long road ahead of it.

Less visible (audible) is the fact that most of these tasks are performed

with very little effort from the 68000. Three VLSI super chips handle

operations that might otherwise take a good chunk of processor

attention. This leaves the CPU plenty of time to move data around,

and 1 get the impression these chips get awfully hungry.

1 could go on for pages about 4,096 colours, DMA 880K microfloppies,

I/O and expansion ports, ICON control, windowing, multitasking,

etc., but I only have one. Future Transactors will spend time on the

details but not until a few more get sold. Unofficially I heard that 5,000

are ready to be shipped, but where and to whom I don't know.

Amiga falls short of "the new wave" by my definition. However, if the

Amiga doesn't stir up white water on Commodore shores, it's hard to

imagine what will. Commodore has some PR patching to do with

many a retailer that are not eager to add shelf space for any new lines,

let alone CBM. Perhaps the calibre of this machine will help Commo

dore regain the healthy dealer relationship they'll need to attain

success the Amiga deserves.

Aside from hardware, there's another great deal you should be aware

of. Viewtron is a NAPLPS videotex service out of Miami, Florida. It's

run by Knight-Ridder Newspapers Inc., a company with a mere 1.7

billion (yes Billion) in sales last year. However, Viewtron is by no

means "new". For the last six years, Knight-Ridder has been develop

ing this service to the tune of 40 million dollars. Originally it was

available only to those willing to spend $600 on a videotex terminal,

and only in south Florida. Special videotex software for the 64 is

required to obtain some lovely picture graphics, and for just $9.95 it's

yours. It comes with a perfect little manual and though I can't detail all

the services Viewtron offers, the list is long and well documented.

Once you get your software, you answer a few questions and it does

the rest. Viewtron is available now through most of the major

networks. On your first call you'll be asked for a credit card number

and you only pay for the time you're on - your first hour is FREE.

Don't have a modem? Viewtron sells them too. And check this out.

Get the software and a 300 baud Westridge 6420 for just $49.95, or a

1200 baud Volksmodem 12 for $189.95. This kinda stuff normally

goes in News BRK, but I rather like bearing good news myself. In my

opinion, Viewtron is the safest money you can spend for your 64. And

Viewtron guarantees it. Their number is 1 800 543 5500 Operator*

825 (305 674 1444 in Canada).

Lastly, I hope it won't be long before our on-line plans go into full

swing. Viewtron has approached us several times and we're anxious

too. More next issue, or see you on Viewtron! (We still have plans for

Delphi too!)

There's nothing as constant as change, I remain,

Karl J.H. Hildon, Managing Editor, The Transactor

The Transactor Volume 6, Issue O4

Using "VERIFIZER"

The Transactor's Foolproof Program Entry Method

VERIFIZER should be run before typing in any long program from

the pages of The Transactor. It will let you check your work line by

line as you enter the program, and catch frustrating typing errors.

The VERIFIZER concept works by displaying a two-letter code for

each program line which you can check against the corresponding

code in the program listing.

There are two versions of VERIFIZER on this page; one is for the

PET, the other for the VIC or 64. Enter the applicable program and

RUN it. If you get the message, "***** data error *****", re-check

the program and keep trying until all goes well. You should SAVE

the program, since you'll want to use it every time you enter one of

our programs. Once you've RUN the loader, remember to enter

NEW to purge BASIC text space. Then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)

or SYS 634 to enable the PET version (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top left of

the screen in reverse field. Note that these letters are in uppercase

and will appear as graphics characters unless you are in upper/

lowercase mode (press shift/Commodore on C64/V1C).

Note: If a report code is missing it means we've editted that line at

the last minute which changes the report code. However, this will

only happen occasionally and only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type

RETURN over each in succession while checking the report codes

as they appear. Once the program has been properly entered, be

sure to turn VERIFIZER off with the SYS indicated above before

you do anything else.

VERIFIZER will catch transposition errors (eg. POKE 52381,0

instead of POKE 53281,0), but ignores spaces, so you may add or

omit spaces from the listed program at will (providing you don't

split up keywords!). Standard keyword abbreviations (like nE

instead of next) will not affect the VERIFIZER report code.

Technical info: VERIFIZER resides in the cassette buffer, so if

you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original

destination of the link after it's finished. When disabled, it restores

the link to its original contents.

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

": end

Listing 1a: VERIFIZER for C64 and VIC-20

10 rem* data loader for " verifizer" ♦

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>14755 then print" ***** data error *****

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,251,141, 2, 3,165

1010 data 252, 141. 3, 3, 96,173, 3, 3,201

1020 data 3,240, 17.133,252,173. 2, 3,133

1030 data 251, 169, 99,141, 2, 3,169, 3,141

1040 data 3, 3, 96,173,254, 1,133, 89,162

1050 data 0,160, 0,189, 0, 2,240, 22,201

1060 data 32,240, 15,133, 91,200,152, 41, 3

1070 data 133, 90, 32,183, 3,198, 90, 16,249

1080 data 232, 208, 229, 56, 32,240,255,169, 19

1090 data 32,210,255,169, 18, 32,210,255,165

1100 data 89, 41, 15, 24,105, 97, 32,210,255

1110 data 165, 89, 74, 74, 74, 74, 24,105, 97

1120 data 32,210,255,169,146, 32,210,255, 24

1130 data 32,240,255,108,251, 0,165, 91, 24

1140 data 101, 89, 133, 89, 96

Listing 1 b: PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

Ol

JB

PA

HE

EL

LA

Kl

EB

DM

10 rem* data loader for "verifizer 4.0" *

15 rem pet version

20cs = 0

30 for i = 634 to 754:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>15580 then print" ***** data error ***

70 rem sys 634

80 end

100:

1000 data 76,138, 2,120,173,163,

1010 data 173, 164,

1020 data 145, 201,

1030 data 144, 141,

1040 data 2,133,

1050 data 201, 13,

1060 data 254, 1,

1070 data 0, 2,

1080 data 165, 253,

1090 data 198, 254,

1100 data 251, 41,

1110 data 165, 251,

1120data 141, 1,

2, 133, 145,

2,240, 16,

88,

141,

2,133,

96, 120,

164, 2,

133,144,163, 2,169,165

145, 88, 96, 85,228,165,

208, 62, 165, 167,208, 58,

133,251,162, 0,134,253,

168,201, 32,240, 15,230,

41, 3,133,254, 32,236,

16,249,232, 152,208,229,

15, 24,

74, 74,

128, 108,

1130 data 251, 133,251, 96

105, 193, 141,

74, 74, 24,

163, 2,152,

0,

105,

24,

1: end

144

165

165

169

217

173

189

253

2

165

128

193

101

The Transactor Volume 6, Issue O4

Bits and Pieces

Got an interesting programming tip, short routine, or an un

known bit of Commodore trivia? Send it in - if we use it in the

Bits & Pieces column, we 11 credit you in the column and send

you a free one-year's subscription to The Transactor

Multiple Directory Pattern-Matching

Commodore's filename pattern-matching feature for disk di

rectories is more powerful than many people are aware. One

little-used ability is the use of multiple patterns in a directory

listing. For example, you could get a list of all files on the disk in

drive zero starting with either the letter " S" or the letter " D":

LOAD"$0:S*,0:D*",8

Up to five selective directories may be used in a single directory

filename.

Where am I? Noel Nyman, Seattle WA

Corrupting RAMTAS Routine Edward Smeda,

Victoria, Australia

RAMTAS (SFF87) is a C-64 Kernal routine which, among other

things, has the function of setting the top of memory pointer.

This is done by non-destructivefy testing RAM until it finds a

memory location which does not return the value written to it.

This location, usually $A000, then becomes the top ofmemory.

RAMTAS is part of the C-64 power-up routine ($FCE2).

Normally, no problems occur with this routine. However, ifyou

have any machine code or other information stored in the RAM

under BASIC ROM you will find that a hardware reset (reset

button) or software cold-start (SYS 64738) will always corrupt

the byte at SA000. This occurs because when RAMTAS tests

$A000, it writes the RAM with $55 but, on reading, it reads the

BASICROM instead and finds a different value. RAMTAS aborts

at this point, leaving $55 in the RAM at $A000.

While this does not really qualify as a bug, programmers

should be aware that it does occur and should make allow

ances. There are a number ofways around the problem, but the

simplest is to avoid using location $A000 for program or data.

Editor's note: On the other hand, this " feature" can be used to

check if a reset occurred since a program was last RUN

Relocatable machine language programs are the easiest to use.

Invariably some nifty routine from The Transactor sits in a spot

needed for another part of your program, it would be best if

authors made their code relocatable. This isn 't always easy.

JMPs within the code are usually necessary and to use JMP

commands, absolute addresses are required.

However, if the code can find its own location in memory, the

JMP addresses can be calculated regardless of where the user

stuck the program.

The " Where am I?" routine below stores a reference to its

beginning address before executing the main program. It uses a

JSR to force the program counter (the address of the JSR

instruction) to the stack, then retrieves the address.

JSR $FFDE ;read real-time clock, or any harmless JSR

TSX

DEX

DEX

TXS ;move the stack pointer to the stored address

PLA

STA $FD ;store high byte of address

PLA

STA $FC ;store low byte

(main program)

The vector stored at $FC/$FD is the starting address of "Where

am I?" plus two. By adding an offset to this value and using

indirect JMPs, the program can be made totally relocatable.

QUAKE!!

This is another one of those lovely Transactor specials, frivo

lous but somehow worth typing in anyway. QUAKE!! will

simulate the effect of a 6.0 on the Richter scale, or program

ming while using hallucinogenics. Good at parties or for practi-

The Transactor Volume 6, Issue O4

cal jokes; amaze your friends! The BASIC loader

generate the 191 bytes of machine code which

'quake mode" - you'll still be able

below will

unleashes

: to program normally

the quake is occurring. Quake mode

49152

plenty

AA

DK

KJ

LI

KF

DH

GK

FB

DD

EP

KF

IN

IH

DA

PB

BA

DD

FP

OC

FG

NC

MM

EJ

JH

EF

KO

BP

LH

MK

AK

PO

CN

DG

HF

PK

PG

and turned off with SYS 4

of air-sickness bags nearby

10 rem* data loader for

9155

i

while

is activated with SYS

Make sure you

quake" ♦

11 rem* transactor magazine '

15 rem save" @0:quake

20 cs = 0

bas"

30 for i = 49152 to 49342.read

40cs = cs + a:next i

50:

85 -cz

,8

a:poke i,a

60 if cs<>16666 then print" Idata error!'

70sys49152

80 rem sys 49155 to stop

90 end

100:

1000 data 76, 49, 192

1010 data 1, 2, 3

1020 data 7, 7, 7

1030 data 1,0, 0

1040 data 7, 7, 7

1050 data 1, 0. 0

1060 data 4,120,169

1070 data 192, 141, 21

1080 data 208, 169, 0

1090 data 208, 41, 119

1100 data 208, 41,247

1110 data 173, 25.208

1120 data 1,141, 25

1130 data 49,234, 104

1140 data 120. 169, 128

1150 data 141. 20, 3

1160 data 173, 22,208

1170 data 22,208, 173

1180 data 11,141, 17

1190 data 192, 173, 22

1200 data 192, 141, 22

1210 data 248, 29, 28

1220 data 6,192,173

1230 data 5,169, 0

The Schizophrenic Sprite

76,

4,

6.

0,

6.

0,

88,

3,

141,

141,

141,

41,

208,

168,

141,

169,

41.

17.

208.

208,

208.

192,

6,

141,

112, 192,

5, 6,

5, 4,

4, 5,

5, 4,

0, 1,

141, 20,

169, 1,

18,208,

17,208,

22, 208,

1,240,

32. 150,

104, 170,

26, 208,

234. 141,

240, 9,

208, 41,

88, 96,

41,248.

173, 17,

141, 17,

192,201,

6, 192,

end

0,

7,

3,

6.

3.

2.

3

141

173.

173,

88,

11,

192,

104,

169,

21.

8,

240,

174,

29.

208,

208,

21,

96

The shape of any C64 sprite is completely determined

bytes in memory. To change the

definitions are usually kept static.

point to definitions elsewhere in

shape of a sprite

and pointers are

, the

have

0

7

2

7

2

3

169

26

17

22

96

169

76

64

49

3

141

9

6

7

41

238

144

by 63

sprite

changed to

nemory. What about

the opposite - keeping the sprite pointer

the 6:

occur.'

code:

! bytes defining the sprite?

in screen memory? To fine

Wha

1 out,

doing

constant but changing

t if a sprite definition

enter this short bit of

10 rem schizo-sprite, cz85

20 vie = 53248: rem vie chip at SdOOO

30 poke vie,25 : poke vie + 1,100

40 poke vie + 21,1: poke vie + 39,1

50 poke vic + 23,1: poke vic + 29,1

60 poke 2040.16

A double-sized white sprite appears, whose shape changes

depending on the first 63 characters on the screen - the top

screen line and part of the second. The fun part comes by

playing. Fry different groups of characters: ioioioioi ..etc

produces the effect of three parallel ladders; repeating the

asterisk and english pound characters displays a repeating

checkerboard effect: 'cxcxcxcxcxcxcxc" is pretty interesting,

too (all of these were found by experimenting). Type in your

name to see what it " looks like ". As usual, we leave it to you to

find an application for the above bit of foolishness.

Try This

10geta$:ifa$= " " then printb$:: goto 10

20b$-b$ + a$: printb$;: goto 10

Press a few keys, then try some cursor controls. It will eventu

ally die with a ^STRING TOO LONG, but by then you'll be tired

of it anyway.

Error-Driven Catalog Routine for VIC/64

This machine-language program sits in the cassette buffer and

displays a directory of drive zero whenever a " >" (greater-

than) is entered. It works by trapping the syntax-error vector,

so it won't bother anyone when it's not in use.

LB

MM

NJ

HG

DD

KK

PE

JN

GK

FC

BD

ID

GB

CB

DD

IH

10 rem save" 0:errcat 64.bas" ,8

100 rem ** rte/85 - error vector driven catalog

routine for c64 and vie 20

110 rem ** press > then (return) for a catalog of

drive zero

120 for j - 828 to 951: read x: poke j,x: next

130sys(828)

140 rem

150 data 169, 71,141, 0, 3,169, 3,141

160 data 1, 3, 96,201, 49,208,104,169

170 data 2,162,182,160, 3, 32,189,255

180 data 169, 2,162, 8,160, 0, 32,186

190 data 255, 32,192,255,162, 2, 32,198

200 data 255, 169, 13, 32,210,255, 32,207

210 data 255, 32,207,255,160, 2, 32,207

220 data 255, 32,207,255, 32.207,255,170

230 data 32,207,255,132,251, 32,205.189

235 rem ok, ok, ok, ok, ok, ok, ok, 221

Note: use line 235 to change line 230 for vie 20

The Transactor Volume 6, Issue O4

LG

AC

LI

CD

KN

PK

ML

JJ

240 data 164, 251, 169, 32, 32,210,255 32

250 data 207, 255, 32,210,255, 32, 183," 255
260 data 208, 19,200,192, 28,208,240, 32

270 data 225, 255, 240, 9,169, 13, 32,210

280 data 255, 160, 0, 240, 201, 169^ 2, 32
290 data 195, 255, 32, 204, 255, 162, 128, 76

300 data 139, 227, 36, 48

305 rem 58, 196, ok, ok

Note: use line 305 to change line 300 for vie 20

Notes On REVCNT: The Error Recovery Count

Variable - CBM Drives

Your drive can tell you quite simply when it is out of alignment.

By writing a value of 193 to location REVCNT (see below), your

drive will err out immediately when an alignment error occurs.

The code and an explanation follows below:

1541/2031LP: print*15, "m-w"chr$(106)chr$(0)chr$(l)

chr$(193):remloc$006a

2040/4040 : print*15," m-w"chr$(252)chr$(67)chr$(l)

chr$(193):remloc$43fc

8050/8250 : print#15," m-w"chr$(245)chr$(16)chr$(l)

chr$(193):remloc$10f5

The Reasons Behind Choosing The Value 193 (Binary
11000001)

A quick note on the 6502 BIT instruction. When a BIT is

performed on a memory location, the NEGATION flag is set

from bit 7 of the location, and the OVERFLOW flag is set from

bit 6 of the location.

Original 1541 tip thanks to the Central Coast Commodore

Users Group Newsletter - April 2, 1985.

ML Right JustifyRichard Perrit, South Porcupine, Ont.

In Volume 5, Issue 6 we ran this one-line "right justify" for 80-

column computers:

fori = 1to8O:print"0;:forj = 1to24:print"||":next:next

Richard Perrit of South Porcupine, Ontario has since re-written

this special effect in machine language. The program is relocat

able and can be installed using the BASIC loader below.

CK

GD

LO

MJ

JE

GE

JL

EM

IL

EM

FK

IO

CO

AB

10 rem *** right justify 80 * * *

20 rem *** richard perrit ***

30 rem *** august 11/85 ***

40:

50 rem ad = 49152 for c-64

60 rem ad = 634 for pet

70 rem must have 80 columns

80:

110 ad = 634:fori = adtoad + 31:readx:ch = ch + x

:pokei,x:next

120 if chO4605then print" Idata error!": stop

140 data 169, 0,162, 1,160. 1.169, 19

150 data 32,210,255,169,148, 32,210,255

160 data 169, 141, 32,210,255,200.192. 24

170 data 144, 241,232, 224, 80,144,229. 96

A BIT instruction is performed on REVCNT by DOS for two

different reasons. First, after a BIT on REVCNT, a BVS is made

that branches past a routine that executes a track offset.

Second, after a BIT on REVCNT, a BPL is made that branches

past a routine that tosses a BUMP onto the job que. These two

reasons explain why Bits 7 and 6 were set (192), but still leaves

the last bit, Bit 0, unexplained. Look below for the answer.

Whenever an error occurs when reading or writing to disk, the

routine is attempted a set number of times before aborting.

Location REVCNT holds the key to the number of attempts.

The DOS will AND location REVCNT with #$3F, storing the

result in the Y register for a counter of the number of attempts.

If you were to AND 192 with $3F, the result would be zero:

11000000(192)

00111111 ($3F)

Slipped Disks:

Speeding up your disk drive

Scott Maclean,

Georgetown, Ont.

00000000 after ANDing

Therefore, in order to not loop through 255 cycles of attempts

(DEY, BNE routine), bit 0 has to be set. This gives a total value

of 193 (Bits 7, 6, and 0 set)

This article deals with speeding up dual drives - examples are

given for the 4040, 8050 and 8250. Unfortunately, the method

given here will not work on the 1541, because the method we

are using does not exist on the 1541.

In the dual drive memory map, at location $1000 (4096 deci

mal), to location $1003 (4099 decimal) are 3 interesting varia

bles. (Note: 8250 values also apply to the 8050 drives)

Contents Contents

Location (4040) (8250) Label Description

Hex Dec Hex Dec Hex Dec

$1000 4096 $0A 10 $03 3 ID Interrupt Delay

$1001 4097 $0D 13 SOD 13 MAD Motor accelera

tion delay

$1002 4098 $30 48 $30 48 MCT Motor ' cutoff
time

We can change the contents of these locations to change the

speeds of the different functions of the disk unit. We can

The Transactor Volume 6, Issue O4

change the value of the Interrupt Delay, which increases or

decreases the overall speed of the drive, including the transfer

rate of the drive. Very small delay rates will cause read errors

and the drive won't read a thing from disk. The most noticeable

thing this value changes is the speed at which a "drive bump"

occurs. For instance, set this to 5 on a 4040 and then open a file

to disk with the drive door open to cause an error. You will hear

a buzzing noise instead of the familiar "WHAPWHAPWHAP"

noise a 4040 makes. Also affected is the stepping rate, if you

send the head from track 1 to track 35, you will notice a

significant increase in stepping speed. A safe value for the 4040

is 9, and for the 8050/8250 is 2.

We can also change the Motor Acceleration Delay rate. When

you tell the drive to access the disk, it turns on the drive motor,

then waits for a certain amount of time for it to accelerate and

stabilize to exactly 300 RPM. We can change this value to

change how long the startup delay is. Safe values for all drive

types is 2. This value has the most visible effect, as it decreases

directory search times, and generally speeds all internal disk

access up. Using these two functions, you can read the direc

tory from a 4040 with about 1 second of drive motor time. After

setting these two locations and requesting a directory, the 4040

will do a drive bump, move to track 18 and seem to stop

instantly. However, it will continue sending directory data until

it has finished the directory.

The last location is the Motor Cutoff Time. This is the delay the

drive uses after a file is closed, or after data stops flowing.

Normally, after you finish using the drive, it will whirr for a few

seconds longer, even though it isn't doing anything. By chang

ing the value in this location you can control how long it will

continue to spin the disk. If you are used to the length the 4040

spins, and you then start to use an 8250, you will notice that the

8250 seems to take forever to stop spinning. Using all three

locations, it is possible to change the entire speed characteris

tics of the drive. Following is a table showing the safe values for

each location, followed by a short program that can be used to

change the values easily and quickly.

One last note: I would expect that the same method should

operate correctly on theSFD-1001, but don't quote me on that

as I have never used one of those units.

Location

Hex Dec

$1000 4096

$1001 4097

$1002 4098

Lower Limit

4040 8050/8250

$0A 10 $03 3

$02 2 $02 2

$02 2 $02 2

Upper Limit

4040 8050/8250

$F5 250 $F7 252

$FE 254 $FE 254

$FE 254 $FE 254

Editor's Note: The above Lower Limit values may not work on

all drives - experiment. Also, speeding up your drive may make

it less reliable; don't trust important data or complex disk

functions to a hyped-up machine.

10 rem **program to change velocity

20 rem **values of dual drives

30 rem **by scott maclean

40 open 1,8,15:rem **open command channel

50printchr$(147)

60 input " Interrupt Delay" ;id

70 input " Motor Accel. Delay" ;mad

80 input " Motor Cutoff Time" ;mct

90 print#1," uj" :rem **reset drive

100 print#1," m-w" chr$(0)chr$(16)chr$(3)chr$(id)

chr$(mad)chr$(mct)

110 rem **sets up at locations $1000-$1003

120 close 1

10 rem **quick program to speed up

20 rem **dual drives

30 open 1,8,15:rem **open command channel

40 print#1," uj" :rem ** reset drive

50pnnt#1,"m-w"chr$(1)chr$(16)chr$(2)chr$(2)chr$(2)

60 close 1

I welcome comments on this method, I may be contacted at:

MFP Enterprises

6 Marilyn Crescent

Georgetown, ON

L7G1K4

Or by modem at (416) 877-7762.

1541ders Daniel Bingamon, Batavia, Ohio

When I attempt to open a relative file with a record length of 58

(ASCII code for colon) I get errors. It appears that the 1541 likes

to think of the colon as a delimiter and since between the

comma and the colon is nothing, you get an error for opening a

file of record length zero. Maybe this will give Commodore the

hint to tear into their source and fix this along with a few other

problems (like SA VE@), if we find enough bugs.

The " UJ" command sent via the command channel is being

used by some widely sold software. Some drives (most of them)

require three seconds for the reset, but some software only waits

one second or less, this causes the computer to " hang up"

when further disk commands are given. This can occur when

the programmer writes a routine in BASIC, then compiles and

does not compensate for the speed increase in the FOR..NEXT

time delay loops.

C-64 BASIC STP Jack Weaver, Miami, FL

"STP" stands for "Sequential To Program". This is a BASIC STP

for those who don't want to STP the M/L way. Refer to Chris

Zamara's STP program in Transactor Vol 5, Issue 6.

The Transactor
Volume 6, Is >O4

This routine will enter any program that has been listed to a SEQ

file on disk. It uses the Dynamic Keyboard technique from BASIC.

As a dividend, BASIC STP may be used to append or merge several

programs together. The individual program lines must have no

duplicate numbers or your final program will be a total mess.

A great idea is to have a series of routines, with specific numbering

for each category of routine. Call and merge them together with

BASIC STP. Build a program of routines, using BASIC STP to do it.

To use it for appending a program or routine to an existing

program, you may LOAD Basic STP and list it to the screen. Then

LOAD the program you are using as the "master" program. Bring

the cursor up to the top line of BASIC STP, and hit RETURN over all

the lines, 63990 through line 63999. Now BASIC STP is appended

to the program.

RUN 63990, and enter the file name of the routine or program on

SEQ file you wish to append or merge with your "master" pro

gram. BASIC STP will do just that.

The last step is to delete BASIC STP lines, and SAVE the new

program.

poke828,169:poke829,0:poke830,76

poke831,49:poke832,243:close4

input" filename" ;f$:open4,8,4,f$

:get#4^la$:poke829,1:a$= " "

print "| 0|poke812,6O:poke813,3B
:ifa$<>" "then63995

get#4,a$

printa$;:ifa$Ochr$(13)then63994

get#4,a$:a = O:ifst = Othen

a = asc(a$ + chr$(O))

print" a$ = chr$(" a"):goto63993

ifstthenpoke829,0:close4:stop

poke198,3:poke631,13:poke632,13

:poke633,13:print"0" :end

The Lottery Companion

When you run out of birthdates, license numbers and hats to pull

numbers from, you might want to use this program the next time

you play a lottery. It will pick up to ten sets of six numbers, chosen

from a pot of 39 or 49, as you choose.

KK

FM

PG

MP

PI

Fl

IO

NB

BK

GO

63990

63991

63992

63993

63994

63995

63996

63997

63998

63999

00

KA

MJ

JG

DF

HD

NF

CF

IN

IG

FA

HN

Kl

CL

DH

MA

EB

AM

Ml

AO

HK

DH

EP

HD

MD

100 rem save" O:lottery" ,8

105 rem ** an evers co-production 1985 **

110dimwin%(49,10), out$(10): c$ = chr$(147)

115 print c$" select option"

120 print " 1) lottario 6/39"

125 print "2) lotto 6/49"

130 input x$: if x$<" 1 " or x$>" 2" then 130

135 lot = 39: if x$ = " 2" then lot = 49

140 input " output (3) screen (4) printer ";dv

: if dv<3 or dv>4 then 140

145 open 1,(dv)

150 input " required # sets (1-10)=" ;max

: if max<1 or max>10 then 150

155 print* 1," your 6/" mid$(str$(lot),2)" numbers

are:": print#1: print#1

160 rem assign the random values to the array

165 for try = 1 to max: for pik = 1 to 6

170 v% = rnd(0)*lot + 1: if win°/o(v%,try) then 170

: rem loop till un-used #

175 win%(v°/o,try) = 1: rem flag as used

180 next pik, try

185 rem ** got the numbers - build the strings **

190 for pik = 1 to max: for asn = 1 to lot

195 if win°/o(asn,pik) then out$(pik) = out$(pik)

+ right$(" [3 spaces]" + str$(asn),4)

200 next asn, pik

205 rem ** all ready - time to print **

210 for spt = 1 to 24 step 4: for prt = 1 to max

215 print#1 ,mid$(out$(prt),spt,4);

220 next prt: print#1: next spt

225 print#1: close 1: end

Gaussian Elimination Routine Audrys Vilkas, Goleta, CA

The following routine is capable of solving up to nine equations in nine unknowns

of the form Ax = b. It can also solve or yield information about non-square arrays. It

is done entirely off-screen but the user should be aware that a little gentleness in

key input is appropriate. The routine occupies 700 or so odd bytes in the raw and is

an excellent tutorial for those who study matrix theory.

rem * gaussian elimination routine *

print:input" Row Dimension" ;n:input"Column Dimension" ;m

dim a°/o(n,m + 1),b(n + m + 1): fori = 1ton: forj = 1tom + 1: k = i + j

print" a" i;j;: input" = " ;a(i,j,b(k))

print'J I" ;:next:next:print:print"HNext Row Dim" ;n-1;" Next
Col Dim" ;m-1

fori = 1 ton:forj = Horn + 1 :printa(i,j,b(k));:next:print:next:print

fori = 1 ton:forj = Horn + 1 :def fna(i) = -a(i-1,1 ,b(k))*a(i,j,b(k))

deffnb(i) = a(i,1,b(k))*a(i-1,j,b(k)):r = fna(i) + fnb(i)

r1 =-a(i-1,1,b(k))*a(i,j,b(k)):r2 = a(i,1,b(k))*a(i-1,j,b(k)):ra=M +r2

ri =a(i,1 ,b(k))*a(i-1 ,j,b(k)):r2 = a(i,1,b(k))*a(i-1 ,j,b(k))

:rb = r1 +r2:r = ra*rb

r = fna(i+ 1) + fnb(i + 1):printr;:next:print:next:ifm = 1and

n = 1then220

clr:goto110

y = a(n,m +1 ,b(k))/a(n,m,b(k)):print y;" is a solution": clr: goto 110

EL

Fl

LO

MN

AP

NG

PP

KK

KA

CD

GN

PP

PH

100

110

120

130

140

150

160

170

180

190

200

210

220

The Evil Swords Of Doom!

Beware as the evil sword slices through the screen

and wipes any characters unfortunate enough to

be in its way. Look out! Here comes another - you

never know where the next one will strike. Before

long, all characters have been slain by the EVIL

SWORDS OF DOOM! Stay tuned until next issue

for the conclusion of this exciting tale. (PHHH

Gimme a break Chris - KH)

10 rem evil swords of doom

20 a$ = " M|
30b$= "

40printchr$(142)

50 print chr$(19)tab(rnd(1)*41)

60 fori = 1 to19:printa$;

70 rem delay here if desired

80 next i: print b$;: goto 50

The Transactor Volume 6, Issue O4

Letters

Twinkle Tones: First of all, 1 would like to say thanks for the

great communications issue of Transactor (Vol 6 Iss 02). 1

enjoyed it very much as I am interested in telecommunications

with my C-64.

In your article (Tele-Tone 64) you mentioned the fourth

column that belongs to the set of Touch Tones. In the industry

Touch Tone is referred by the technical term of 4x4 signalling

as the full pad is 4x4. The extra column is used by the US

Military in their private Autovon system.

The tones are used in times of emergency to get important

phone calls through even though all circuits are busy. The call

is given a priority by the fourth column digit. It can override a

lower priority call in order to get through. The highest priority

call is 'Flash Over' (FO). Then 'Flash' (F) is second. 'Immediate'

(1) is next. The fourth priority is 'Priority' (P) and then at the

bottom is a call with no priority. However, all of these tones are

of absolutely no use to the average caller for those of you with

experimentation ideas. Your local Bell exchange will totally

ignore them.

As 1 work with Illinois Bell Telephone, I was interested in Tony

Valeri's article. The fact that he included the 'No Such Number'

was interesting as 1 don't know of any company or exchange in

the Northern Illinois area that still uses that tone.

One of the things that I have learned in playing with my C-64 is

the amount of mis-information available! The amount and

type errors in reference material is great and CBM puts out

more than their share of it also. The biggest error that comes to

mind is the RS-232 tables that are built-in the Kernal. It seems

that if you want to run a 1200 bps modem on the C-64, it won't

work (until you find out why).

From most reference material available including the Program

mer's Reference Guide, you would open the RS-232 channel

with the following syntax:

OPEN 2,2,0,CHR$(8) + CHR$(0)

For one stop bit, 8 bit words, 1200 bps, no parity, and full

duplex.

But guess what?? That won't work! It seems that the baud rate

table is wrong. Also, the PRG supports two more errors:

a) It infers that the User Defined Baud Rate is not implemented.

b) The formula that they give to figure the User Baud Rate is

wrong.

Now I don't pretend to be smart enough to have figured it all

out myself. I had deduced enough from what I had read and

done with my C-64, that a User Defined Baud Rate was used to

make a terminal program run 1200 bps on the C-64. Joe

O'Hara at Microtechnic Solutions was kind enough to tell me

the 'secret'. It turns out that his associate Rick Sterling had done

that math from the ground up and came up with the right

figures to make the C-64 work at 1200 bps. The command is:

OPEN 2,2,0,CHR$(0) + CHR$(0) + CHR$(57) + CHR$(1)

The two CHR$(0)'s activate the User Baud Rate determined by

the second two CHR$'s. As shown it's 57 + 1 x 256 for a total of

313. I'm also told that CHR$(59) may work better if CHR$(57)

causes any trouble (ie. 315 total).

I have since been able to modify and use several excellent

public domain terminal programs at 1200 bps. And I enjoy it

very much as I now can do as much as I used to do at 300 bps in

less time! But it seems that my wife does not think 1 spend any

less time with my C-64 though.

Hope that the information is of some use to you and keep up

the good work of giving us good Commodore information and

programs!. Lyle R. Giese, Woodstock, Illinois

Thanks for supplying the final piece to the Touch Tone puzzle. It

may interest you to know that I thought the extra row was for

military use, but without proofand working details, we couldn 't

risk printing it. With your help, the story is now complete.

Our compliments to Rick Sterling for his detective work with the

RS-232 tables. The Inner Space Anthology also suggests the

User Rate is unimplemented. Is it possible Mr. Sterling might

share his findings?

Disk Risk?: I have read a small amount of advertising infor

mation about the SFD 1001 disk drive as a data storage drive to

hold your data, but almost nothing is ever said whether or not it

can run commercial programs!, excepting one company (Pro-

tecto). They claim that if the program is back-upable, then the

drive will run the backed-up program. What I need if that is

true, it seems that the SFD 1001 would act as if it were a 1541.

Am 1 right in my assumption?

Jim McCoy, Opa-Locka, Florida

The SFD 1001 could be compared to 1/2 ofa Commodore 8250

drive. It has the capacity to store up to 1 megabyte of informa

tion on a single diskette, and it also has an IEEE port on the

back. It cannot act like a 1541 drive, no matter how hard you

try. Everything is different. The 1541/2031/2040/4040 type of

drives have a limit of 35 tracks on a diskette, with up to 21

sectors per track. The SFD 1001/8050/8250 have up to 154

tracks and a maximum of29 sectors per track. In simple terms,

the drives are not at all compatible.

The Transactor 1O Volume 6, Issue O4

IfProtecto states that if a diskette is back-upable, then the SFD

1001 will run the backed up program, then they are generaliz

ing too much. Ifyou can copy the program over to the SFD 1001

format, then you may be partially there. If the program does not

use direct access techniques with the drive, does not have the

1541 's ROM and RAM in mind while protecting itself, and does

not consider the 1541 s disk format for operation, then you may

be in luck. Programmers are a unique lot when it comes to

squeezing every ounce of storage space out of the 1541. If the

drive turns out to be other than a 1541, you may be in trouble.

The program will try its magic on the wrong drive and, pronto,

system bomb. A rotten end for a program just trying to be nice.

In summation, the SFD 1001 is a good drive. It offers great

scads ofstorage space for anyone who is interested. It would be

perfect for bulletin board systems, wordprocessor users, data

bases that only use the common file types like SEQ, REL, etc.,

also games, utilities, and programs that don't use the disk for

any tasks, andjust great for anyone who requires more storage

room than the 1541 offers, plus an increase in operating speed.

But a price has to be paid. The SFD 1001 is an IEEE drive,

therefore you need an IEEE interface for your 64 to use it. IEEE

links usually live in the 64 s cartridge port, therefore, you lose

the port. And some interfere with the 64 s architecture which

may confuse some programs, usually those that demand total

control of the machine and thus contend for memory that the

interface occupies. In general, though, most software people

and hardware people (ie link designers) have addressed this

problem and most of the more well developed packages can

cope with these configurations.

Following that, however, the format is not at all similar to the

1541. The SFD cannot read 1541 disks, and unless you have

some way to read from the 'serial' 1541 and transfer to the

'parallel' SFD, then you may have some troublejust getting your

programs onto SFD formatted disks, short ofusing a 4040 to do

the transfer (the 4040 is 1541 and IEEE compatible and could

be used to make an easy transfer). The only drive that is

compatible with the SFD is the Commodore 8250, which went

out ofproduction a short while ago. The next "almost" compat

ible drive is the 8050 with DOS 2. 7 ROMs. The trouble with this

is the SFD 1001 has two heads per diskette, or double-sided,

while the 8050 is only single sided. The SFD 1001 gives a total

capacity of 4133 blocks per diskette. The 8050, 2052 blocks.

Therefore, if you write past the half way point onto the "other"

side, you cannot expect to read it with the 8050. If you don't

require "diskette protability" then you need not be concerned

here though.

This may sound like a mouthfull, but on the other hand should

be second nature when considering such purchases. Get to

know the buss types and format differences from one piece of

equipment to the next. With often just a few facts one can

rehearse the events following a major system modification and

usually determine its success without actually making any

changes.

Microfiche Interest: I have just finished reading the Septem

ber issue of The Transactor. This is the third issue I have

bought and, although I haven't written to any other magazine, I

feel compelled to write to yours.

Although several other magazines are published that concern

themselves with the Commodore computer (usually intensify

ing themselves on the C64), they can't always be taken seri

ously as they tend to appeal to too broad an interest and ability

level. This is done honorably enough by the publishers to try to

help everyone who buys their publication, however it tends to

penalize those of us who have gone beyond the basics and to

some degree the intermediary level of computing. That is why I

am so fascinated by your magazine, it appeals to the higher

level user who needs more in depth knowledge without all the

in-depth explanation. That much said, I would like to encour

age you not to sacrifice the quality and integrity of your

magazine in an effort to do what everyone else is trying to do,

appeal to everyone. It's like we were all told as kids, "If

everyone jumped off a bridge, would you?"

This letter was actually written in response to a note in 'News

BRK' about the possibility of The Transactor appearing in

microfiche. I would like very much to see this happen as it

might make it a little easier to get a copy of your magazine in

light of the fact that it can be extremely hard to find at this time.

I do intend to subscribe myself, but I know that a greater

availability of a good publication benefits all Commodore

computer owners. I suppose this brings up the never ending

problems of copyright violations and, while I sympathize with

that view, 1 think that it's terrible that we have to sacrifice the

education of a large population of users in fear of the few

among us who insist on trying to get a free ride. But 1 see an

even more important advantage of this happening. There are

countless articles that were published in the early days of The

Transactor's existence that are unavailable to myself and any

other people who are newly acquainted with your magazine. If

these old issues become available' by microfiche, it would

provide a great service to those of us who crave all the

knowledge we can find about our 64's and other Commodore

computers to which we are fiercely devotes.

I would like to briefly summarize the rest of the things that I

enjoy about your magazine. First, the emphasis on machine

language. This kind of information and free use of such a vital

and important part of the computer is sadly lacking in other

popular publications. Secondly, the more in-depth look at the

1541, truly a mysterious drive which has so little available

documentation that it becomes frustrating to use when some

thing goes wrong, a minor problem becomes a major catastro

phe. And third, your policy on published programs which is far

better than the competition. If I type in a program and find it

useful, 1 am glad that 1 am free to give a copy to a friend to make

his life easier. It's this kind of exchange that unites users and

forms a more close knit bunch of enthusiasts that accomplish

things together to make computing easier and more accessible

to all of us.

The Transactor
Volume 6, Issue O4

In closing, please retain your high standards in the publication

of your magazine, but don't get so big that you're forced to

conform to the lower standards of your competitors. Keep up

the good work! Tim Blazier, Elgin, Illinois

Sorry, but effective next issue we will start to cover a whole new

horizon with our magazine, Basic Backet Weaving. In our

Basket Weaving issue, renamed The Transbasket, we will

address such problems as: The advantages of weaving to the

left instead of the right. Our thoughts on putting a plastic bag at

the bottom of the basket. Instructions on how to put a plant in

your finished basket. And finally, cheap gifts for Christmas,

Baskets!!. Talk about fun. Can't you wait??

I couldn 't resist. But The Transactor will continue to be pro

duced at the level we have come to expect of ourselves - if we

were not learning from our own work and research, we would

get bored and probably change jobs. We like it this way, and

letters like yours plus conversations with our readers is a large

part of our motivation.

Microfiche: Your letter is the very first that we have received

mentioning it. Perhaps very few people read our News BRK

section. Or perhaps people would like to see The Transactor on

microfiche, but don't write in feeling there wouldn 't be enough

others. Whatever the story, we want to go on microfiche, but

can'tjustify it until a demand is clearly shown. If any ofyou are

really interested, as Tim is, then drop us a letter. Once we are

sure, then microfiche will be on its way.

An organized submission: Hello from sunny Vancouver! I

realize that this program (Yellow Pages Directory Organizer) is

out of sync with your editorial schedule, but I am rather proud

of it, and it is public domain. I would be most pleased if your

would be most pleased if you would include it on your monthly

disk, should you find the room. In any case, you should find it

useful yourselves.

Complete documentation is included in the program.

I am a technician with Memorex. I work with 800 meg hard

drives, 200 inch/sec tape drives, etc. I've been involved with

Commodore computers since about 8 years ago when I bought

a second-hand PET 2001, with the old ROMs no less! A friend I

work with, Larry Philips, said he spoke with you folks at Marca

and you would like some authors. I'm busy sharpening my

pencil (figuratively, of course) and hope to submit an article

soon.

I enjoy your magazine very much, and wait impatiently for it to

arrive on my local dealer's shelf each month. I'd buy a subscrip

tion, but Canada Post is notoriously slow, especially, it seems,

with any magazine I subscribe to.

Yours for more public domain software.

Rick Morris, Burnaby, B.C.

Thanks to Rick, the Yellow Pages program will be appearing on

all future Transactor diskettes. The features of this program are

pretty impressive, such as; allows the C64-1541 user to move

filenames about easily within the directory. For an encore, files

can be selectively scratch protected and un-scratch protected

(locked and unlocked). Plus, you can scratch and un-scratch

files at will. If you want, you can also put a bar separator

between filenames that gives the directory listing a more pleas

ant and logical appearance. But you have to wait for his

program to make the rounds before finding out everything this

beauty does.

Thanks for all, Rick, and thank you Larry for the kind reference

- much obliged.

Profile cosmetic surgery: I enjoyed reading Dr. John Ross's

article regarding " Speeding Up Your BASIC Programs", which

appeared in the recent issue (Volume 6 Issue 3). Another fine

article in a fine publication.

After adapting his program for the Vic and putting it to use, it is

indeed a valuable utility.

As the author pointed out, it was written for a CBM 8032 but

should be readily adaptable to other CBM models. I wonder

how many of your readers who are Vic and 64 users, who may

not yet be able to do an adaptation, will miss out on this

valuable utility.

With this thought I sent along the Vic and 64 adaptation. The

Vic user of course requires at least 3k expansion, since the Dr.'s

program takes 4k for storage. The listing (for program 3) is for

the Vic; the 64 user will require changing the (bold face) 191's

to 49's . . . The only change required for the program 2 is the

variable LO in line 130; change to:

lo = peek(56)*256

The final change, from the original article, is that of the three

SYS; they are SYS 828, SYS 852, SYS 865 respectively.

If you are using a Commodore printer, you may want to change

chr$(223) in program 2, to chr$(l 66) to simulate a better graph.

R.C. Marcus, Agincourt, Ontario

Cl

NN

OB

OB

FD

BJ

PI

Cl

OP

LL

NJ

MB

NE

OO

OG

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

rem

poke

read

profiler loader -

i55,

n,l:

0: poke 56

for i =

: next: end

data

data

data

data

data

data

data

data

data

data

data

data

87

165

168

1

120

141

141

88

165

170

1

232

,828

, 56,

, 145,

, 166,

, 169,

, 21,

, 20,

, 96,

, 58,

,232,

, 9,

138,

1 tor

133,

0,

1,

110,

3,

3,

160,

5,

138,

8,

145,

- for vic/64

peek(56)-16:clr

l: read x: poke l,x: l =

1,169, 0,133,

230, 0, 208, 250,

224, 128,208,242,

141, 20, 3, 169,

88, 96, 120, 169,

169,234,141, 21,

0,165, 57,133,

56,133, 1,177,

145, 0,208, 13,

133, 1,177, 0,

0, 76,191,234

1 + 1

0

230

96

3

191

3

0

0

165

170

The Transactor
Volume 6, Issue O4

You're right. Dr. Ross did a smash up job with his article and

program. And it did deserve a Vic-20/C64 rewrite. Thanks for

the adaptation, ft s appreciated.

Case of the missing Space: Several members of our User's

Group and myself have typed in the programs of the above

listed article of the Sept. 1985 issue of The Transactor, and have

encountered some problems with the programs. In the first

program on the alignment check we kept getting "reading track

35 - error 70 - no channel", "drive has failed alignment

check", regardless of the drive we tested. On running a trace of

the program, we found that lines #135 and #155 don't seem to

be executing. The program runs good from 100 to 130, going to

gosub 160 and continuing to 185, where it ends.

We would appreciate knowing if there is a printing error or

possible an explanation of lines 110, 125, and 135. We also

experienced problems with line 30 of the second short program

and would appreciate an explanation of line 30.

William Nowak, Mohawk Valley Commodore Users Group

Tribes Hill, New York

The problems that you are having are perhaps partially due to

the programs as listed. Mr. Clutter used a syntax ofBlock-Read

that is seldom used, but works fine all the same. The statement:

print#15,"b-r2 0 1 9"

could also have been written:

print#15,"b-r"2;0;1;9

Delimiters ofspaces when inside quotes (as Ed Clutter used), or

semicolons when outside quotes are up to the users discretion.

Either method sends the same information to the DOS as long

as the individual parameters can be distinguished by the DOS.

Perhaps we should be a little more careful as the typesetter

doesn 't show spaces as clearly as necessary under such circum

stances. Below is a listing of the original program, followed by

the lines which you may want to alter to ensure proper delimit

ing.

1541 Alignment

100 d = 8: rem d = device number

105 open 15,d,15: open 2,d,2," #"

110 print#15," m-w" chr$(0)chr$(0)chr$(1)chr$(192)

115t = 35:h$= "-"

120t$ = str$(t)

125 print#15," b-r 2 0" t "9"

130 gosub 160

135 print#15(" b-r 2 0 1 9"

140t$ = str$(1)

145 gosub 160

1501—1-1: if t>0 then 120

155 close2: closei5: end

160 print: print " reading track " h$;t$,

165input#15,a$,b$,c$,d$

170 print a$;h$;b$;h$;c$;h$;d$

175 if val(a$)<2 then return

180 print " drive has failed alignment check"

185 goto 155

Track 00 Adjustment - Move Head To Track 1, Sector 0

10open 15,8,15

20 open 2,8,2, "#"

30 print#15," b-r 2 0 1 0"

Make the following changes for the alternate syntax. Notice that

fundamentally these lines are no different except for the delimit

ing ofparameters.

125 print#15," b-r" 2;0;t;9

135 print#15, "b-r"2;0;1;9

30 print#15," b-r" 2;0; 1 ;0

By the way, in line 110,

print#15," m-w" chr$(0)chr$(0)chr$(1)chr$(192)

was used to put a Bump on the 154 Vs job que to Bump the

head into position on Track 1, Sector 0. That is what the

clattering noise is all about when the program first fires up. You

could delete this line if you want, and the program would still

work Ok.

Disk Woes: I have a few things on the agenda in this letter,

any of which you may publish in future editions of your

magazine.

1 Volume 6, Issue 03, John Brunner of Chicago, Illinois, makes

some suggestions about your advertising. I agree whole

heartedly with him. Word-of-mouth is the best kind of adver

tising anyone can get! I also enjoy reading ads, as they give me

an idea of what's out there on the market. I like the idea of

keeping all advertising in one section of a magazine, almost

like a catalogue. In fact, I like your magazine so much, that I've

posted an ad on my Bulletin Board System, here in Ottawa,

Ontario, as well as sending in my first renewal fee to The

Transactor. (Besides, I could use some advertising, too!)

I have several 1541 's and two SFD-1001 (1 Mbyte) drives, and

have run into a particular difficult problem, with which I hope

someone may be able to help me. One of my important disks

was accidently NEW'd but I caught it during the head-rattling

and the disk came out with only one block destroyed . . . TRK

18, SEC 1! All programs where the filename is on any other

directory block load and run normally. Unfortunately, I don't

know how to find the first block of the programs where the

filenames reside on the damaged block, except the first file.

(DOS always puts first file to start on TRK 17, SEC 0) I'm

assuming that all the programs are still intact. Is there some

thing out there that can help me piece this directory block back

together again?

Chris K. Weisner

Ottawa Mail Forwarding Services

Box 793 Station 'B'

Ottawa, Ontario, KIP 5P8

BBS (613) 830-2923

The Transactor 13 Volume 6, Issue O4

It was awfully nice ofyou to advertise The Transactor on your

BBS. We LOVE free advertising. Also, let's hope that our printing

your complete name, address, and BBS * after helps you too.

Now, about your partially new'd diskette, (nude?) If the head is

caught mid-stream during a full new (during the rattling

phase), then little damage should have occurred to the diskette.

Even if the rattling had just stopped, and you popped the

diskette out of the drive, little damage again. During a full new

(with disk name and new id), the drive starts at Track 1, Sector

0, and works its way up sequentially to Track 35, Sector 16. You

could not lose Track 18, Sector 1 that fast.

Ifyou performed a quick new (no id), and left it for its duration,

then you would have retained every directory block but Track

18, Sector 1, and the BAM would have been re-written. As you

know, after a quick new the diskette appears clean. But after

changing two bytes (the link pointers to the next directory block

on the first directory block), you could find all but the first eight

filenames back. From this point, a validation would bring back

those files. Then a comparison for allocated sectors versus

sectors with data but not allocated begins. You could rebuild,

using false filenames, in this way. But quick NEW's are silent -

they do not rattle the head about. Something weird must have

happened during your full new.

If you turned the drive off during the head rattling stage, then

turned the power back on with the diskette still in the drive,

there is a pretty good chance that the power surge and your

head racing across the disk surface caused the glitch, not your

ill fated new. Your only recourse now is to salvage all you can

from the diskette by rebuilding it with whatever disk doctor type

program you can find. Several exist, and some have fairly

automatic features for doing just what you need - some are

even in the public domain. You might also obtain some infor

mation on disk format which could help when deciphering data

(Anthology page 47 to 49) Good luck.

Remotely Noteworthy: First, 1 would like to thank all of you

for one of the best Commodore computer related magazines

there is. 1 have gotten more information from my past year's

subscription to you than from any other magazine. In your

networking and communications issue, there was a program

called Remote-64 which allowed use of the computer through

the C-64 RS-232 port. I knew I could use this with my BBS, and

now after typing in the source, modifying the code, etc., 1 have

started to learn assembly language. I now have the routine

included in by BBS so I can call remote to do updating. I just

wanted to say thanks for the good work and please keep it up!!!

Your address/subscription info has been put on by BBS for all

users who want to make a good investment.

Joe Minuni, Royersford, Pennsylvania

When Chris was writing Remote-64, he told me that it would be

perfect for a bulletin board system. Since then he has been

waiting for the news you have given. Thanks for making Chris is

day.

The Error Of Our Ways: More Often Oops Than BIoops

As our sales figures continue to climb, so do the amount of

letters we receive. We appreciate these letters, because it keeps

us informed of your likes and disklikes regarding our maga

zine. Unfortunately, the number of complaints regarding our

program listings have also increased. At times, the complaints

are valid. On occasion, errors have been known to appear

somewhere between the time we edit the articles, and when all

is ready for print. A messed up byte over the phone lines, an

error due to an incorrect translation, or some place other than

we are looking. In truth, errors do slip by, but all too often they

are so insignificant that we can't even justify mentioning them

in a later issue.

Now, about 90 percent of all letters received can have their

errors traced back to keying the programs in. Complete pro

gram lines missing, periods instead of commas between ele

ments in a data statement, mispelled variable names, and a

multitude of other equally avoidable errors. Recently, I re

ceived a letter that really let us have it for three mistakes. The

first was ours, but it was only a missing quotation mark after a

print statement. An easy mistake to correct, considering that

the program was in our Bits and Pieces column.

The other two belonged to our reader. But the real rub came

when the reader stated emphatically that we were in the

wrong. A difficult form of criticism to swallow. 1 won't detail the

errors here for the same reason we find it difficult to answer

such letters publicly.

Instead of belabouring the point with similar stories, all I ask is

for you to check your work more closely before coming to the

conclusion that we messed up. We all make typing errors, and

depending on the hour or several other affecting conditions, an

error can be staring you in the face and you wouldn't see it if it

punched you in the nose. Believe me, I know! Sometimes I key

an entire line over, or have someone else take a look, or even

just explaining it to someone else can make the mistake pop off

the page. Although not perfect, we do scrutinize as best we can.

Every program is tested within reason and the listings go

straight into the typesetter much like you send one to your

printer. So have one more look - it will take you less time than

writing.

Thanks for your time, and please keep those letters coming.

Richard Evers, Editor

The Transactor 14 Volume 6, Issue O4

TransBASIC

Installment #6
This instalment of TransBASIC presents a grab-bag of new

modules, some of which contain general purpose routines that

could be used again in the future. The first module we'll look at

is a very long one, USE, which appears as Program 1.

USE is a fast merge command that will merge modules (or

BASIC programs) much more quickly than the ADD command

we have been using so far. In addition, it will automatically

update line 95 of the TransBASIC kernel (which gives the

number of statements and functions in the dialect) using the

information contained in line 2 of the merged module. The

presence of this feature, which proved unexpectedly hard to

code, is largely responsible for making Program 1 so long.

There are two differences between the merge algorithm in USE

and the standard one found in routines like ADD. Most merges

read in a program line from disk, and merge it individually,

using the same routines BASIC uses when you enter a new line

from the keyboard. This is a four step procedure: 1) search the

program in memory for a line with the same number and delete

it if found (moving all higher-numbered lines downward to

close the gap); 2) rechain the program, and perform CLR; 3)

open up a space to accommodate the new line (moving all

higher numbered lines upward again), and insert the new line;

4) again rechain the program, and perform CLR.

Anyone who has added a line to a long program knows that the

above procedure is by no means instantaneous, but can take a

good second or two before the cursor returns. When an entire

program, subroutine or TransBASIC module has to be merged

in this way, you can be left drumming your fingers on the desk

for quite a while before the work is finally done. USE sacrifices

the convenience of the ROM routines in favour of an approach

designed specifically for merging rather than entering a single

line at the keyboard. It goes like this: Lines are read into a

special buffer in free memory, and their numbers are compared

with a line number of the program in memory (the main

program). If the new line number is less than the line number

in the main program, another line is read and added to the

buffer, and the process repeats. If the line numbers are equal,

meaning that the line in the main program will be deleted, the

pointer into the main program is advanced to the line follow

ing, a new line is read from disk, and the process repeats. If the

new line number is greater than the one in memory, the

higher-numbered lines of the main program are moved up or

down the required number of bytes, the buffer is copied into

the main program, and the process repeats. The rechain and

CLR step is performed only at the end of the merge. The gain in

efficiency from this method results in merges that are virtually

as fast as regular program loads.

The first thing you should do with the module is replace the

"TB/ADD.OBJ" file used for constructing TransBASIC dia-

Nick Sullivan

Scarborough, Ont.

lects with a new file called " TB/USE.OBJ ". To do this, use the

following procedure:

1) Load and run the program " TRANSBASIC", which sets

up "TB/ADD.OBJ" and loads the TransBASIC kernel.

2) Merge the USE module with the command: ADD " USE

3) Alter line 95 to: 95 XTRA .BYTE 3,0

4) Assemble the source file with PAL or similar.

5) Save the resulting object file as " TB/USE.OBJ "

6) Load the " TRANSBASIC" program again, alter line 130 to:

130 A = 1: LOAD " TB/USE.OBJ ",8,1 , and resave it.

Three of the subroutines in the USE module may find use

elsewhere. One is the memory block move routine MVMEM

(lines 8250 to 8414). To use this routine, set up the pointers

MVSTRT, MVEND and MVDEST with the appropriate ad

dresses for the area you wish to move. The instruction SYS

MVM2 will perform the move. Sometimes it is convenient to

make MVEND point to the first free byte beyond the move area,

rather than the last byte within it. If you do this, call the move

routine with JSR MVMEM, which subtracts one from MVEND

then falls through into the main routine. If MVSTRT is greater

than or equal to MVEND, or if MVSTRT is equal to MVDEST, no

move will be performed, but no error is generated.

The second subroutine that might prove useful is DELINS (lines

8054-8172), which in turn makes use of MVMEM. DELINS

deletes text between the addresses pointed to by SDPTR and

T3/T4, and replaces it with text between SIPTR and T5/T6.

The start-of-variables pointer at $2D/2E is taken to mark the

first free byte beyond the affected memory area. In the case of a

BASIC program, this is what you would want. If you use

DELINS to modify some other part of memory, you would save

the start-of-variables pointer, write the appropriate address

into $2D/2E, call DELINS, then reload the start-of-variables

pointer before returning to BASIC. By the way, any time you

change a BASIC program from machine language, you should

always rechain and perform CLR before you return control. JSR

$A659: JSR $A533 will do this for you. Alternatively, if you are

returning to direct mode, you can do the whole operation by

exiting with: JMPSA52A.

The third subroutine is a very short one called ERRPGM. Its

purpose is to generate a 7SYNTAX ERROR if it is called in

program mode rather than direct mode. The main use for this is

in commands like USE that alter the program in memory.

There is no setup required, just JSR ERRPGM.

The module MOVE & FILL (Program 2) provides two com

mands that are more commonly found in machine language

monitors: move a block of memory, and fill memory with a

value. The FILL command uses a subroutine called MEMFIL

that you might want to use if you're writing a command to zero

The Transactor 15 Volume 6, Issue O4

an array or a high-res screen, for example to fill in a portion of

colour memory or screen memory. There are several entry

points, depending on the way you want to set up your parame

ters. The start address of the area to be filled can be supplied

either in .Y/.A (JSR MEMFIL or JSR MEMF1) or in T3/T4 (JSR

MEMF2 or JSR MEMF3). The size of the area to be filled can be

specified as either the end address of the area (JSR MEMF1 or

JSR MEMF2) or the number of bytes to be filled (JSR MEMFIL or

JSR MEMF3). The routine will get this parameter from $14/15.

In all cases, the value with which memory is to be filled is

supplied in the X register. The MEMFIL routine will exit

without doing anything if the start address is greater than the

end address, but will return an 7ILLEGAL QUANTITY ERROR if

you ask it to fill more bytes than are available between the start

address and $FFFF.

The third module this month is DOS SUPPORT (Program 3), by

Darren Spruyt of Gravenhurst, Ontario, which supplies Trans-

BASIC with a battery of commands similar to those in the DOS

WEDGE. Darren has written these commands in an interesting

way that avoids the need to open a file in the 64. You might find

it useful to study his coding to see how this trick is done.

One problem with very large BASIC programs is the time taken

by the interpreter to locate destination addresses for GOTOs

and GOSUBs, which can severely impair performance, espe

cially in the case of subroutine calls from within loops. This

problem is addressed in the LINE CALC module (Program 4),

which allows you to save time by calculating jump addresses in

advance. The LINE(function in this module returns the address

of a specified program line. You might use this in a number of

ways, but for the purposes of this module you are expected to

assign it to an integer variable. The statements JUMP (equiva

lent to GOTO) and CALL (equivalent to GOSUB) make use of

the address stored in the variable to go directly to the line

without having to search through the program to find it.

Program 5, the BEEP module, provides a convenient way of

generating a beep tone of a pitch and duration specified in the

command parameters (the default is a very short C in octave 5).

You can use this to give audible feedback for key presses, for

example, or even to generate simple sound effects, as in the

following little routine:

100 FOR 1 = 1 TO 50

110 BEEP 7,RND(1)*2400 + 2400

120 NEXT

BEEP uses voice 3 of the SID chip; the other voices are not

affected, except that the volume is set to 15 and the filters are

turned off.

The last program this time is not a TransBASIC module, but a

little BASIC/ML routine for those who use Brad Templeton's

POWER and PAL (from ProLine Software) in their program

development. The program is called STRIPPER (Program 6),

and its purpose is to remove comments from a PAL source

program in memory (a long job if you do it by hand). As shown,

you invoke the machine language with SYS 900, but the code is

relocatable if you want to put it somewhere else. Keep in mind

that it only works if you have POWER/MOREPOWER in

memory.

New Commands

This part of the TransBASIC column is devoted to describing

the new commands that will be added each issue. The descrip

tions follow a standard format:

The first line gives the command keyword, the type (statement

or function), and a three digit serial number.

The second line gives the line range allotted to the execution

routine for the command.

The third line gives the module in which the command is

included.

The fourth line (and the following lines, if necessary) demon

strate the command syntax.

The remaining lines describe the command.

USE (Type: Statement Cat #: 117)

Line Range: 7192-8052

Module: USE

Example: USE " MOVE & FILL

Example: USE " CURSOR POSITION " ,9

Like the ADD statement introduced in instalment *1, this

command merges a program in memory with one from disk. A

device number may be specified, as in the second example;

otherwise, the device set by the DEVICE statement (qv) is used,

with a default of 8. If the program being merged is a TransBA

SIC module, with a line 2 in the standard format giving the

number of statements and functions; and if the program in

memory has the TransBASIC kernal line 95, labelled XTRA,

giving the total number of statements and functions; then the

USE command will automatically update line 95 using the data

in the new line 2. USE is illegal in program mode, generating a

7SYNTAX ERROR.

MOVE (Type: Statement Cat *: 118)

Line Range: 8174-8248

Module: MOVE & FILL

Example: MOVE 1024,1523,1524: REM COPY TOP OF

SCREEN TO BOTTOM

Example: MOVE 53248;4096,12288: REM COPY CHARS

TO RAM

This is a standard block move, like the .T command of a

monitor. The syntax of the first example is comparable to that

used by most monitors: the first parameter is the address of the

first byte in the block to be moved; the second parameter is the

address of the last byte; and the third parameter is the destina

tion address of the move. The parameters are separated by

commas. The second example uses an alternative syntax. Here

the second parameter is the number of bytes to be moved, and

the first separator is a semicolon instead of a comma. If the

parameters do not make sense (for example, if the end address

is greater than the start address), no move takes place, but an

error is not generated. Also, if the destination address is the

same as the start address, no move takes place. You therefore

cannot use this command to directly copy the BASIC ROM into

RAM, for example.

The Transactor 16 Volume 6, Issue O4

FILL (Type: Statement Cat #: 119)

Line Range: 8504-8558

Module: MOVE & FILL

Example: FILL 832,1023: REM CLEAR CASSETTE

BUFFER

Example: FILL 631;10,13: REM PACK KEYBOARD

BUFFER WITH RETURNS

This statement fills an area of memory with a specified value. In

the first example, the two parameters, separated by a comma,

correspond to the start and end addresses of the area to be

filled. In the second example, where the separator is a semico

lon, the second parameter gives the number of bytes to fill. The

third parameter, if present, specifies the value with which

memory is to be filled; the default value is 0.

CAT (Type: Statement Cat*: 123)

Line Range: 8644-8740

Module: DOS SUPPORT

Example: CAT

This statement lists a disk directory to the current output

device. Programs in memory are not affected.

DOS (Type: Statement Cat #: 124)

Line Range: 8742-8764

Module: DOS SUPPORT

Example: DOS "S0:ITCHFILE"

This statement sends a command to disk.

DEV (Type: Statement Cat#: 125)

Line Range: 8766-8782

Module: DOS SUPPORT

Example: DEV 9

This statement sets the device number for the other disk

commands in the DOS SUPPORT module, and for the USE

statement (qv). Allowable device numbers are in the range 8-

11. The default device number is 8.

DLOAD (Type: Statement Cat #: 126)

Line Range: 8808-8812

Module: DOS SUPPORT

Example: DLOAD "0:MURPHY

This statement loads the named file from disk, using the

current device number.

DSAVE (Type: Statement Cat *: 127)

Line Range: 8814-8818

Module: DOS SUPPORT

Example: DSAVE "0.MURPHY.V2

This statement saves the named file to disk, using the current

device number.

DS$ (Type: Function Cat #: 128)

Line Range: 8598-8616

Module: DOS SUPPORT

Example: PRINT DS$

This function returns the disk error channel string, and clears

the channel (i.e. a subsequent call, with no disk operation

intervening, would return " 00,OK,00,00").

DS (Type: Function Cat #: 129)

Line Range: 8618-8642

Module: DOS SUPPORT

Example: U = DS

This function returns the error number from the disk error

channel, and clears the channel (i.e. a subsequent call, with no

disk operation intervening, would return 0). It is equivalent to:

VAL(LEFT$(DS$,2))

JUMP (Type: Statement Cat *: 130)

Line Range: 8846-8868

Module: LINE CALC

Example: JUMP QUIT%

The argument of this statement is an integer variable whose

value is the address of a BASIC program line. The effect is the

same as a GOTO, but is generally faster, considerably so in long

programs.

CALL (Type: Statement Cat #: 131)

Line Range: 8870-8900

Module: LINE CALC

Example: GOSUBJSTK%

The argument of this statement is an integer variable whose

value is the address of a BASIC program line. The effect is the

same as a GOSUB, but is generally faster, considerably so in

long programs.

LINE((Type: Statement Cat #: 132)

Line Range: 8902-8964)

Module: LINE CALC

Example: QUIT% = LINE(5000)

Example: QUIT% = LINE(GOTO 5000)

Example: J2STK% = LINE(J 1 STK% +100)

This function returns the address of the BASIC line whose line

number is returned by the argument expression. This can be a

simple line number (example 1), or any other expression

(example 3). The keyword GOTO will be ignored if it is used

before the line number (example 2). Its purpose is to allow

automatic renumbering of the line number with a renumbering

utility. If the referenced line number does not exist, the func

tion returns a value of zero.

BEEP (Type: Statement Cat #: 133)

Line Range: 8966-9042

Module: BEEP

Example: BEEP

Example: BEEP 6

Example: BEEP 16,3034

This statement produces a tone from the SID chip, using the

sawtooth waveform in voice 3. The volume and sustain are set

to 15; the attack, decay and release are set to 0, and filtering is

turned off. Without parameters (example 1), the tone produced

is a very short beep with a pitch of C in octave 5. The duration

of the beep can be set with the first parameter (example 2),

which will lengthen the beep by a factor of the parameter value

plus 1. The pitch is set with the second parameter (example 3).

Thus the default beep is equivalent to: BEEP 0,8583

The Transactor 17 Volume 6, Issue O4

Proaram 1: USE

Because of the sheer size of USE, we were rather doubtful

anyone would actually type it in. In fact I'm not sure why we

euen bothered to show the Verifizer codes (force of habit, I

suppose). However we did want to include it for the sake of

documentation. We apologize for the small type, but what

you see is a compromise; the source for USE couldn't

possibly have been printed at regular size. -M. Ed.

HJ

FH

Al

HH

DO

JLi

NJ

FM

VIH

GN

GM

BA

Al

LD

Cl

AF

KD

BE

Nl

Nl

IB

JK

EK

Ml

KK

PC

IF

Bi

KM

GH

Ml

MF

MB

NJ

KC

DD

OA

HH

JD

PJ

LB

EL

LH

IL

MM

ML

HF

IF

ID

NP

OH

PC

IA

DJ

HM

OL

HB

FJ

GN

HD

IC

EN

JO

KK

MP

LP

JK

NL.

JL

EP

Nl

JO

NH

HE

CA

HE

GA

GB

JL

AA

FF

0 rem use (June

1 :

18/85)

2 rem 1 statement. 0 function.

3 :

4 rem keyword characters: 3

5:

6 rem keyword

7 rem use

8 :

routine

uze

9 rem u/mvmem (8250/120)

10 rem u/delins (8054/122)

11 rem u/errpgm (9150/135)

12 :

13 rem = = = = = =

14 :

39 setlfs =

40 setnam =

41 open

42chkin

43 close

44 clrchn

45 getin

46;

132 .asc "usE

$ffba

Sffbd

$e1d

$eiie
$e1cc

Sffcc

$e124

1132 .word uze-1

7192 uze

7194

7196

7198

7200

7202

7204

7206

7208

7210 uz1

7212

7214

7216

7218

7220

7222

7224

7226

7228

7230

7232

7234

7236

7238

7240

7242

7244 uz4

7246

7248

7250

7252

7254

7256

7258

7260

7262

7264

7266

7268

7270

7272

7274

7276

7278

7280 uz5

7282

7284

7286

7288

7290

7292

7294

7296

7298

7300

7302

The Transactor

jsr errrnem

Ida #2

jsr $b4f4

jsr $ad9e

jsr $b6a3

jsr $b4f4

tay

bne uz1

jmp $afO8

Ida #","

sta ($33),y

iny

Ida #"p"

sta ($33),y

iny

tya

pha

Ida $33

pha

Ida $34

pha

jsr $79

beq uz4

jsr $aefd

jsr $b79e

.byte $2c

Idx device

stx t2

Ida #$62

jsr close

Ida #0

jsr setnam

Ida #$62

Idx t2

Idy #$0f

jsr setlfs

jsr open

Ida t2

jsr $ffb1

jsr $ffae

Ida $90

beq uz5

Idx #5

jmp ($300)

jsr dskchk

Ida #$63

jsr close

pla

tay

pla

tax

pla

jsr setnam

Ida #$63

Idx t2

tay

me ser#

7192 117

==H=======_-==

;check direct mode

;make space for ,p

;evaluate filename

;make space

;test null

;no

;'syntax error'

;add ,p

;push filename

; length

;push filename addr

;testdev parameter

;no

;check for comma

;evaluate device*

;'bif

; default device

;close 98

;open98,dv,15

;testdev present

; (listen)

; (unlisten)

; (check status)

;'dev not present1

;check error chan

;close99

;pull filename data

;open99,dv,99,

; "filename.p"

CF

OP

HA

EF

NC

Nl

GL

IL

LL

IM

GL

AG

JD

LO

ON

Nl

GJ

MG

IN

FN

DC

BK

OE

OO

HL

PL

LA

ON

PC

DL

HO

CB

DM

BI

LD

KL

CN

LK

II

DB

ME

MH

NH

ID

EH

PN

CO

HC

PE

LB

FK

Fl

JK

JD

KM

KM

HL

PK

FF

GO

KF

CO

KB

CP

IA

JN

LH

IH

Jl

IH

GN

DO

DE

CK

AO

FE

GM

JA

CM

DJ

PL

IN

KC

NC

GK

IK

NK

IF

DG

GA

PI

7304

7306

7308

7310

7312

7314

7316

7318

7320

7322

7324

7326

7328

7330

7332

7334

7336

7338

7340 uz6

7342 uz7

7344

7346

7348

7350

7352

7354

7356

7358

7360

7362

7364 uz8

7366

7368 uz9

7370

7372

7374 uz10

7376

7378

7380 uz11

7382

7384

7386

7388

7390

7392 uz12

7394

7396

7398

7400 uz13

7402

7404

7406

7408

7410

7412

7414

7416

7418

7420

7422

7424

7426

7428 uz14

7430

7432 uz15

7434

7436

7438 uz16

7440

7442

7444

7446

7448 uz17

7450

7452

7454

7456

7458

7460 uz18

7462

7464

7466

7468

7470

7472;

7474 dskchk

7476

7478

7480

7482

7484

jsr

jsr

jsr

jsr

Idx

jsr

jsr

jsr

Ida

Idy

sta

sty

Ida

s!a

sta

sta

sta

sta

isr

sec

Ida

sbc

Ida

sbc

sbc

bcs

Ida

beq

jsr

imp

jsr

jmp

Ida

beq

jsr

jsr

jsr

jmp

jsr

Ida

jsr

jsr

jsr

jmp

jsr

Ida

bne

jsr

jsr

bcc

php

jsr

sta

pip

bne

Ida

bne

Ida

Idy

sia

sty

sty

jsr

jmp

Ida

beq

jsr

jsr

bcs

jsr

clc

bcc

Ida

Idy

sta

sty

jsr

Idy

iny

Ida

sta

cpy

bne

beq

Idx

jsr

jsr

setlfs

open

dskchk

clrchn

#$63

chkin

prgget

prgget

$2b

$2c

t3

fl

m

uzf1

uzf2

uzf3

stmctr

functr

makbuf

$37

t5

$38

t6

#2

uz12

linflg

uz8

dlz

uz6

uz11

$a435

linflg

uz10

dlz

chkl95

UZ11

$a474

clrchn

#$62

close

$ffe7

$a533

$a659

getlin

uzf1

uz9

chkl2

compar

uz15

updabp

linflg

uz7

uzf2

uz14

t3

14

sdptr

sdptr + 1

uzf2

t3bump

uz7

linflg

uz16

dlz

compar

uz17

t3bump

uz16

te
t6

$22

$23

makbuf

#$ff

($22),y

(t5).y

linlen

uz18

uz13

#$62

chkin

prgget

cmp #"2"

bcc dkc2

cmp #" 7"

18

;check error chan

;discard start addr

;create ptr into

; program in memory

; at t3/t4

;dear flags

;end of disk prg

;lines to delete

;update line 95

;count new stmts

;countnewfuncs

;create receive-bfr

;test buffer can

; accommodate new

; program line

;yes

;test lines in bfr

;no

;merge lines

; create new buffer

;close files, clr

;'out of memory'

;test lines in bfr

;no

;merge lines

;handle line 95

;wrap up

;exitto 'ready'

;'clalT

;rechain

;clr

;getdisk prg line

;test if final line

;yes

;handle line 2

;test dsk line # <

; prg line # - no

;push compare flags

;adv buffer pointer

;set bfr-used flag

;test line #s equal

;no, more from disk

;test delete flag

; init'd - yes

;init start delete

; ptr from ptr into

; program in memory

;set delete flag

; advance prg ptr

;new line from disk

;test lines in bfr

;no

;merge lines

;test dsk line # <

; prg line # - no

;advance prg ptr

;loop

;save buffer ptr

;create new buffer

;copy most recent

; line into new

; buffer

;get error channel

; byte

;test err # < 20

;yes

;test err ft = 73

LO

CG

HH

BP

BC

NG

Gl

EN

BL

GP

MB

00

CC

NC

OL

IE

EN

AF

ON

HN

BI

JG

CP

IF

FF

KH

GD

HK

IH

00

IO

CP

IM

CO

KN

FJ

OB

OP

Jl

GC

FN

EJ

JC

PF

DE

BM

Ml

MJ

MJ

CO

00

NL

MH

HF

LJ

Nl

FL

BJ

NC

LE

KA

EK

AD

IJ

OD

FH

CK

OF

HH

BK

DK

OF

GF

El

PO

ID

MB

EK

GM

CF

CL

CG

JA

IE

BN

CA

AF

IN

EG

EC

PC

7486

7488

7490

7492

7494

7496

7498 dkd

7500 dkc2

7502 dkc3

7504

7506

7508

7510

7512

7514

7516

7518;

7520 prgget

7522

7524

7526

7528

7530

7532

7534 pgg1

7536

7538

7540

7542

7544;

7546 uzerr

7548;

7550 linflg

7552 linlen

7554 uzf1

7556 uzf2

7558 uzf3

7560;

7562 getlin

7564 gth

7566

7568

7570

7572

7574

7576

7578

7580

7582

7584

7586 gtl2

7588

7590

7592

7594 gtl3

7596

7598

7600

7602

7604

7606 gtl4

7608

7610;

7612 makbuf

7614

7616

7618

7620

7622

7624

7626

7628

7630

7632

7634

7636

7638

7640

7642

7644;

7646 updabp

7648

7650

7652

7654

7656

7658

7660

7662;

7664 compar

7666

bne dkd

jsr prgget

cmp#"3"

bne dkd

clc

.byte $24

sec

php

jsr prgget

Ida $90

beq dkc3

Ida #0

sta $90

pip

bcs pgg1

rts

jsr getin

pha

Ida $90

and #$bf

bne pgg1

pla

rts

jsr uz11

Ida #<uzerr

sta $22

Ida #>uzerr

jmp $a445

.asc "mergE'

.byteO

.byteO

.byteO

.byteO

.byteO

Idy #0

sty t2

jsr prgget

Idy t2

sta (t5),y

Idx $90

stx uzf1

bne gtl4

cpy #4

bcc gtl3

tax

beq gtl4

iny

bne gtn

jsr uz11

jmp $ab66

cpy #1

bne gtl2

tax

bne gtl2

dex

stx uzf1

sty linlen

rts

clc

Ida $37

adc $2d

pha

Ida $38

adc $2e

Isr

sta siptr+1

sta t6

pla

ror

sta siptr

sta t5

Ida #0

sta linflg

rts

sec

Ida linlen

adc t5

sta 15

Ida #0

adc 16

sta t6

rts

Idy #1

sec

;no

;no

;flag - ok

,'bit'

;flag - error

;pushflag

;get err msg byte

;test end of msg

;no

;clear status byte

;pull flag

;quit

;get disk byte

;test status error

; except 'eoi'

,yes

;close files, clear

;'merge error1

;disk prg end fig

;lines to del fig

;update line 95 fig

;get line from

; disk, store from

; first free byte

; in buffer

;status to disk prg

; end flag

;end of disk prg

;testlink, line*

;yes

;test end of line

;yes

;get another byte

;illegal 256th byte

; 'file data error'

;test link hi-byte

;no

; test link = 0

;no

;set disk prg end

; flag

;save line length

; put buffer half

; way between stai

; of variables and

; end of basic

;buffer start

;buffer pointer

;clear buffer-used

; flag

;advance buffer p

; by length of mos

; recent line

;test memory-prg

; ptr at end of prg

Volume 6, Issue O4

HE

Bl

NC

OM

HL

AD

OA

NL

HF

EK

MM

PP

IL

El

FK

CN

GC

Gl

AE

NO

EN

PJ

ED

Cl

IE

DA

Kl

GB

CK

CB

EG

JL

FN

GB

BJ

LN

KC

FL

FK

ND

MO

GC

DC

Jl

NA

LL

PF

FN

AE

CK

MC

KF

FD

KM

OE

FO

IE

IB

LF

AO

AF

IK

GO

AK

LI

MK

00

IK

HD

JC

LC

NC

PC

PM

AP

DC

OM

EF

GA

HG

EK

HA

DO

CG

HM

LO

GP

DF

PN

KE

DK

7668

7670

7672

7674

7676

7678

7680

7682

7684

7686

7688 com 1

7690 com2

7692

7694;

7696 t3bump

7698 mkul

7700

7702

7704

7706

7708 mku2

7710

7712

7714

7716

7718

7720

7722

7724;

7726 chkl2

7728

7730

7732

7734

7736

7738

7740

7742

7744

7746

7748

7750

7752 C2I1

7754

7756

7758

7760 C2I2

7762

7764

7766 C2I3

7768

7770

7772

7774 C2I4

7776 C2I5

7778

7780

7782

7784

7786;

7788 rdnum

7790

7792

7794

7796

7798

7800

7802

7804

7806

7808

7810

7812

7814

7816

7818

7820rdn1

7822 rdn2

7824;

7826 chk!95

7828

7830

7832

7834

7836

7838

7840

7842

7844

7846

7848

The Transactor

Ida (13),y

beq com2

Idy #3

Ida (t3),y

cmp(t5),y

bcc com1

bne com1

dey

Ida (t3),y

cmp (15), y

rts

Ida #1

rts

Idy #4

Ida (t3),y

beq mku2

iny

bne mkul

jmp pgg1

tya

sec

adc t3

sta 13

Ida 14

adc #0

sta t4

rls

Idy #2

Ida (t5),y

cmp#2

bne C2I4

iny

Ida (t5),y

bne C2I4

Ida 15

Idy t6

adc #2

sta $7a

bcc c2H

iny

sty $7b

jsr $73

cmp #$8f

bne c2I4

jsr rdnum

bcs C2I4

sty stmctr

cmp#","
beq C2I5

jsr $73

bne C2I3

rls

jsr rdnum

bcs C2I4

sty functr

inc uzf3

rts

isr $73

bcs rdn2

and #$0f

lay

jsr $73

bcs rdn1

and #$0f

sta $22

tya

asl

asl

asl

asl

ora $22

tay

jsr $73

clc

rts

Ida uzf3

beq rdn2

Ida #$5f

Idy #0

sta $14

sty $15

sty uzf3

jsr $a533

jsr $a613

bcc rdn2

Ida $5f

Idy $60

;yes - sec& exit

;set carry if

; current line # of

prg in memory >

line # from disk

clear processor

zflag

advance pointer

into program in

memory by length

of current line

illegal 256th byte

test if current

line from disk is

line #2

no

no

setchrget pointer

to start of line

in buffer

get first byte

test 'rem'

no - exit

get # new strmts

not a # - exit

scan for comma

found

get# newfuncs

nota# - exit

set update line

95 flag

get a byte

not a digit - exit

ascii to bed

save first digit

get a byte

not a digit- exit

ascii to bed

pack bed into

one byte

return # in .y

get next byte

;flag# valid

;test line 95

; needs update - no

;search for line 95

; (clear flag)

; (rechain)

; (search)

not found

line 95 address to

memory prg ptr,

LE

PC

BM

KA

EN

CG

EM

IJ

EA

LP

CE

OF

EM

IL

KK

CP

DA

HI

JJ

NG

DF

KB

DK

AE

BF

PI

HH

FG

IF

HH

IM

EH

JK

CD

PG

EH

IO

Cl

LB

IL

KH

GM

HG

AO

PO

PD

BD

OL

FO

DK

00

GF

Bl

GC

NK

IP

FO

IF

CC

KP

IP

Kl

AA

Kl

AK

FD

AO

FJ

LA

NA

PA

BB

DA

JA

OB

LH

FF

NA

DB

IC

GD

CM

BP

AO

IM

KN

IK

NB

GC

El

MO

7850

7852

7854

7856

7858

7860

7862

7864

7866c95l1

7868

7870

7872

7874 C95I2

7876

7878

7880

7882

7884

7886 C95I3

7888

7890

7892

7894

7896

7898

7900

7902

7904

7906

7908

7910

7912

7914

7916

7918

7920

7922 C95I4

7924

7926

7928

7930

7932 C95I5

7934

7936

7938

7940

7942

7944

7946

7948

7950

7952

7954

7956 C95I6

7958

7960

7962

7964

7966

7968

7970

7972

7974

7976

7978;

7980 I95put

7982

7984

7986

7988

7990

7992

7994

7996

7998

8000 I95p1

8002

8004

8006

8008

8010

8012;

8014 stmctr

8016 functr

8018;

8020 I95txt

8022

8024

8026

8028

8030

sta 13

sty 14

sta sdptr

sty sdptr+1

adc #2

sta $7a

bcc C95I1

iny

sty $7b

jsr $73

cmp#"x"

bne rdn2

jsr $73

beq rdn2

bcs C95I2

Ida $7a

bne C95I3

dec $7b

dec $7a

Ida stmctr

sta $24

Ida functr

sta $25

jsr C2I2

Ida uzf3

beq rdn2

sei

sed

clc

Ida stmctr

adc $24

sta stmctr

bcs C95I4

Ida functr

adc $25

sta functr

eld

Cll

bcs rdn2

jsr makbuf

Idy #0

Ida I95txt,y

sta (t5),y

iny

cpy #$0f

bne C95I5

Ida stmctr

jsr I95put

Ida #","
sta (t5),y

iny

Ida functr

jsr I95put

Ida I95txt,y

sta (t5),y

iny

tax

bne C95I6

dey

sty linlen

sty uzf2

jsr t3bump

jsr updabp

jmp diz

pha

and #$fO

beq I95p1

Isr

Isr

Isr

Isr

ora #$30

sta (t5),y

iny

pla

and #$0f

ora #$30

sta (t5),y

iny

rts

.byteO

.byteO

.byte 1,1,95,0

asc "xtra"

.byte 32

.asc " .byte"

; and delete start

; pointer

;set chrget ptr to

; start of line 95

;get first byte

;test='x' for xtra

;no-exit

;get a byte

;end of line - exit

motadigit

;back up eg ptr

;save# newstmts,

; functions

;get # stmts, funcs

;test update req'd

;no-exit

;calcnewstmt,

; func totals

;>99, unreasonable

;create buffer

;create new

; line 95 in

; buffer

incorporate new

; totals

;set line length

;set delete fig

;advance prg ptr

; advance buffer ptr

;merge new line 95

;packed bed to

; ascii, hi byte

;store to new line

;low byte

;storeto new line

.byte 32,32,32,32,32,32,32,59,32

.asc " stmts.funcs"

19

EF

IN

PJ

GJ

Kl

OO

PH

IM

AG

LL

KO

KD

LK

MF

Al

NM

NM

MJ

LD

CF

PE

Dl

HP

HC

MA

KL

KG

FG

AC

LB

CD

CG

HF

LD

LG

OL

AJ

KC

JA

IC

EN

NC

GB

CP

EL

NH

HJ

AN

PL

Bl

ML

BE

FM

LN

LL

AL

Ml

OA

IP

AL

KL

ON

OB

EJ

PP

KD

AO

MF

AE

BF

CG

KE

LH

BJ

CH

IL

Gl

JA

El

EB

NC

IO

BC

II

FD

PD

JC

KO

HA

CO

GO

8032

8034;

8036 dlz

8038

8040

8042

8044

8046

8048 dlz1

8050

8052;

8054 delins

8056

8058

8060

8062

8064

8066

8068

8070

8072

8074

8076

8078

8080

8082

8084

8086

8088

8090

8092

8094

8096

8098

8100

8102

8104

8106

8108

8110

8112

8114

8116

8118

8120

8122

8124

8126

8128

8130

8132

8134

8136

8138

8140

8142

8144

8146

8148

8150

8152

8154

8156

8158

8160

8162

8164

8166;

8168 sdptr

8170 siptr

8172 ;

8250 mvmem

8252

8254

8256 mvm1

8258;

8260 mvm2

8262

8264

8266

8268

8270

8272

8274

8276

8278

8280

8282 mvm3

8284

8286

8288

.byteO

Ida uzf2

bne dlz1

Ida t3

Idy t4

sta sdptr

sty sdptr + 1

Ida #0

sta uzf2

Ida t3

Idy t4

sta mvstrt

sty mvstrt+1

sec

sbc sdptr

sta $22

tya

sbc sdptr+1

sta $23

sec

Ida t5

sbc siptr

pha

Ida 16

sbc siptr+1

tay

pla

sec

sbc $22

sta $22

tya

sbc $23

sta $23

clc

Ida t3

adc $22

sta t3

sta mvdest

Ida t4

adc $23

sta 14

sta mvdest +1

clc

Ida $2d

sta mvend

adc $22

sta $2d

Ida $2e

sta mvend +1

adc $23

sta $2e

jsr mvmem

Ida sdptr

sta mvdest

Ida sdptr +1

sta mvdest +1

Ida siptr

Idy siptr +1

sta mvstrt

sty mvstrt+1

Ida 15

Idy t6

sta mvend

sty mvend +1

jmp mvmem

.word 0

.wordO

Ida mvend

bne mvm1

dec mvend +1

dec mvend

Ida mvstrt

sta $22

Ida mvdest

sta $24

set up start of

move

calc # bytes to

delete

$22/23

calc (# bytes to

insert) minus (#

bytes to delete)

add result to

prg-in-mem ptr

to yield move

destination addr

add same result

to start-of-vars

ptr to yield move

end address and

new start-of-vars

move prg in memory

get dest addr for

new lines

buffer addr is

start of move

buffer pointer

is end of move

memory move front

end - end addr

is 1 beyond

block to move

set up pointer

low bytes

Ida mvend + 1;test if any bytes

cmp mvstrt +1

bcc mvm5

bne mvm3

Ida mvend

cmp mvstrt

bcc mvm5

bytes to move

no

yes

no

Ida mvdest + Itest moving up

cmp mvstrt +1

bcc dmvmem

bne umvmem

no

yes

Volume 6, Issue O4

00

PC

BG

NA

0E

KM

EG

PD

ON

AH

CP

EE

GK

DE

GA

GP

CH

BF

NH

HH

NP

LL

AM

FH

ND

HO

HO

cc

DJ

Nl

ML

JH

AK

BH

EJ

BO

OF

KA

00

HL

KG

JN

Bl

LA

IL

EP

MM

KP

LG

DH

NH

CA

GL

EN

OK

CG

AB

AM

ME

GB

LL

Kl

EF

HI

EE

EJ

Gl

AL

CA

OD

8290

8292

8294

8296

Ida $24

cmp $22

beq mvm5

bcc dmvmem

8298 umvmem Ida mvend

8300

8302

8304

8306

8308

8310

8312

8314

8316

8318

8320

8322

8324

8326 mvm4

8328

8330

8332

8334

8336

8338

8340

8342

8344

8346

8348 mvm5

sec

sbc mvstrt

tay

Ida mvend +

sbc mvstrt +'

pha

clc

adc mvstrt +1

sta $23

pla

clc

adc mvdest +

sta $25

Ida ($22),y

sta ($24),y

dey

cpy #$ff

bne mvm4

Ida $23

cmp mvstrt +1

beq mvm5

dec $23

dec $25

jmp mvm4

rts

8350 dmvmem Ida mvstrt+1

8352

8354

8356

8358

8360

8362

8364

8366

8368

8370

8372

8374

8376

8378 mvrr>6

8380

8382

8384

8386

8388

8390

8392

8394 mvm7

8396

8398

8400

8402

8404

8406 ;

8408 mvstrt

8410mvdest

8412 mvend

8414 ;

8738 device

9150errpgm

9152

9154

9156

9158 epg1

9160;

sta $23

Ida mvdest +

sta $25

Ida mvend

sec

sbc mvstrt

sta t2

inc t2

Ida mvend +

sbc mvstrt +"

Idy #0

tax

beq mvm7

Ida ($22),y

sta ($24),y

iny

bne mvm6

inc $23

inc $25

dex

bne mvm6

Ida ($22),y

sta ($24), y

iny

cpy 12

bne mvm7

rts

.word 0

.word 0

.word 0

.byte 8

Idx $3a

inx

bne epg1

rts

jmp $afO8

;no move at all

;moving down

;init index with

; partial block

; to move

tpush whole blocks

; to move

;set up pointer

; high bytes

1

; perform move

; from end of

; block

;test if finished

;yes

; point 1 page lower

;move another block

;set up ptr

; high bytes

1

;init counter with

; part block size

tx counts whole

; blocks to move

;init index

;move whole

; blocks, working

; upwards

;move part block

;memory move start

;. . .destination

; . . end

;current disk #

;test hi byte of

; 'curlin' = $ff

;no

;'syntax error1

FE

FH

DH

HH

10

JH

NJ

Jl

OM

NH

HN

DL

Al

LD

Cl

KM

LD

NC

EN

GJ

GD

AO

EH

KP

PJ

Fl

MH

JL

Al

IP

HJ

HF

GO

MH

CB

KJ

PN

PC

GM

PD

OJ

NJ

BN

EC

JJ

JG

AL

Cl

GD

CO

II

KC

KP

AP

OK

KE

LH

BJ

CH

IL

Gl

JA

0 rem

1 ■

2 rem

3 :

4 rem

5:

6 rem

7 rem

8 rem

9:

Program 2: MOVE & FILL

move & fill Gune 18/85) :

2 statements, 0 functions

keyword characters: 8

keyword routine line ser #

move mov 8174 118

fill stuf 8504 119

10 rem u/mvmem (8250/120)

11 rem u/memfil (8416/121)

12:

13 rem = »« =—

14 :

133 .asc iovEI

1133

8174

8176

8178

8180

8182

8184

8186

8188

8190

8192

8194

8196

8198

8200

8202

8204

8206

8208

8210

8212

8214

8216

8218

8220

8222

8224

8226

8228

8230

8232

8234

8236

8238

8240

8242

8244

8246

8248

8250

8252

8254

8256

8258

8260

8262

.word mov-1,stuf-1

mov jsr $ad8a ;eval and store

jsr $b7f7 ; start address

sta mvstrt +1

sty mvstrt

jsr $79 push separator

pha

jsr $73

jsr $ad8a ;eval and push

jsr $b7f7 ; 2nd parameter

pha

tya

pha

jsr $aefd ;check for comma

jsr $ad8a ;eval and store

sta mvdest +1 ; destination addr

sty mvdest

pla ;2nd parameter to

tay ; .x/.y

pla

tax

pla ;test separator

cmp #";" ; semicolon

beq mvd ;yes

stx mvend + 1 ;store end address

sty mvend

cmp#"," ;test separator

beq mvm2 ;comma - move mem

jmp $afO8 ;'syntax error'

mvd clc ;add # of bytes to

tya ; move to start

adc mvstrt ; address, store as

sta mvend ; end address

txa

adc mvstrt + 1

sta mvend +1

bcc mvmem ;move memory

jmp $b248 ;o'flow - 'iq err'

mvmem Ida mvend ;memory move front

bne mvm1 ; end - end addr

dec mvend+ 1 ; is 1 beyond

mvm1 dec mvend ; block to move

mvm2 Ida mvstrt ;set up pointer

sta $22 ; low bytes

The Transactor 2O Volume 6, Issue O4

El

EB

NC

10

BC

II

FD

PD

JC

KO

HA

CO

GO

00

PC

BG

NA

OE

KM

EG

PD

ON

AH

CP

EE

GK

DE

GA

GP

CH

BF

NH

HH

NP

LL

AM

FH

ND

HO

HO

CC

DJ

Nl

ML

JH

AK

BH

EJ

BO

OF

KA

00

HL

KG

JN

Bl

LA

IL

EP

MM

KP

LG

DH

NH

8264

8266

8268

8270

8272

8274

8276

8278

8280

8282 mvm3

8284

8286

8288

8290

8292

8294

8296

8298 umvmem

8300

8302

8304

8306

8308

8310

8312

8314

8316

8318

8320

8322

8324

8326 mvm4

8328

8330

8332

8334

8336

8338

8340

8342

8344

8346

8348 mvm5

8350 dmvmem

8352

8354

8356

8358

8360

8362

8364

8366

8368

8370

8372

8374

8376

8378 mvm6

8380

8382

8384

8386

8388

8390

The Transactor

Ida

sta

Ida

cmp

bcc

bne

Ida

cmp

bcc

Ida

cmp

bcc

bne

Ida

cmp

beq

bcc

Ida

sec

sbc

lay

Ida

sbc

pha

clc

adc

sta

pla

clc

adc

sta

Ida

sta

dey

cpy

bne

Ida

cmp

beq

dec

dec

jmp

rts

Ida

sta

Ida

sta

Ida

sec

sbc

sta

inc

Ida

sbc

Idy

tax

beq

Ida

sta

iny

bne

inc

inc

dex

mvdest

$24

mvend + 1 ;test if any bytes

mvstrt + 1 ; bytes to move

mvm5 ;no

mvm3 ;yes

mvend

mvstrt

mvm5 ;no

mvdest +1 ;test moving up

mvstrt +1

dmvmem ;no

umvmem ;yes

$24

$22

mvm5 ;no move at all

dmvmem ;moving down

mvend ;init index with

; partial block

mvstrt ; to move

mvend + 1 ;push whole blocks

mvstrt + 1 ; to move

;set up pointer

mvstrt + 1 ; high bytes

$23

mvdest+ 1

$25

($22),y ;perform move

($24),y ; from end of

; block

#$ff

mvm4

$23 ;test if finished

mvstrt +1

mvm5 ;yes

$23 ;point 1 page lower

$25

mvm4 ;move another block

mvstrt +1 ;set up ptr

$23 ; high bytes

mvdest+ 1

$25

mvend ; in it counter with

; part block size

mvstrt

t2

t2

mvend+ 1 ;.x counts whole

mvstrt +1 ; blocks to move

#0 ; in it index

mvm7

($22),y ;move whole

($24),y ; blocks, working

; upwards

mvm6

$23

$25

CA

GL

EN

OK

CG

AB

AM

ME

GB

LL

Kl

EF

FH

HA

EA

PP

KE

PG

NJ

PM

IL

PH

IC

BM

KH

MB

HI

LK

LC

GL

IB

FN

FJ

AC

HF

KD

HM

OD

EA

LD

CA

GK

NC

OP

NK

GG

CH

LJ

Cl

HL

DF

OA

OL

MB

FP

MK

GH

LK

IL

FP

ML

MC

AM

FJ

21

8392

8394 mvm7

8396

8398

8400

8402

8404

8406;

8408 mvstrt

8410 mvdest

8412 mvend

8414;

8416memfil

8418

8420 memf 1

8422

8424

8426

8428 memf2

8430

8432

8434

8436

8438

8440

8442

8444

8446

8448 memf3

8450

8452

8454

8456

8458

8460

8462

8464

8466

8468 memf4

8470

8472

8474

8476 memf5

8478

8480

8482

8484

8486

8488 memf6

8490

8492

8494

8496

8498 memf7

8500 memf8

8502;

8504 stuf

8506

8508

8510

8512

8514

8516

8518

bne mvm6

Ida ($22),y

sta ($24),y

iny

cpy t2

bne mvm7

rts

.word 0

.word 0

.word 0

clc

.byte $24

sec

sty t3

sta t4

bcc memf3

Ida $14

sbc t3

sta $14

Ida $15

sbc t4

sta $15

bcc memf7

inc $14

bne memf3

inc $15

Ida $14

clc

adc t3

tay

Ida $15

adc t4

bcc memf4

bne memf8

tya

bne memf8

txa

Idy #0

Idx $15

beq memf6

sta (t3),y

iny

bne memf5

inc t4

dex

bne memf5

cpy $14

beq memf7

sta (t3),y

iny

bne memf6

rts

jmp $b248

jsr $ad8a

jsr $b7f7

pha

tya

pha

jsr $79

pha

jsr $73

;move part block

;memory move start

; . . .destination

; . . .end

; start + bytes flag

;'bit'

;start, end flag

;store start addr

;skip calc

;calc bytes to fill

; - end minus start

;end < start

;bump bytes to fill

;test fill area

; in memory

;yes

;no

;no

;getfill character

; init index

;# blocks to fill

;none

;fill a block

;test more to fill

;yes

;# bytes to fill

;none

;fill a byte

;'illegal qty'

;push start address

;push separator

;eval 2nd paramater

Volume 6, Issue O4

AL

LL

HH

EM

CE

FK

||

DC

AJ

FH

AN

OL

10

EM

Dl

FF

DM

KF

BO

EO

HJ

FH

Cl

HH

LJ

JH

NJ

KF

JB

OE

JL

KC

PM

DP

Cl

BF

El

pn1 \—J

Gl

MP

JB

HM

HH

MJ

LN

IB

GM

IN

OH

BB

FJ

NH

AM

HJ

FH

BA

OP

DG

OJ

JN

8520

8522

8524

8526

8528

8530

8532

8534

8536

8538

8540

8542

8544

8546

8548

8550

8552

8554

8556

8558

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

9 rem

jsr $ad8a

jsr $b7f7

jsr $79

beq stufi

jsr $aefd

jsr $b79e

.byte $2c

stufi Idx #0

pla

tay

pla

sta t3

pla

sta t4

cpy #","
beq memf2

cpy #";"

beq memf3

jmp $afO8

;test for 3rd param

;no

;check for comma

;get fill character

;' bit'

;fill with 0

separator to .y

;start address to

; t3/t4

;comma separator

;fill

;semicolon sep'r

;fill

;'syntax error'

Program 3: DOS SUPPORT

dos support (d. spruyt 1985) :

5 statements, 2 functions

keyword chars: 24

keyword routine

s/cat kat

s/dos comms

s/dev dvc

10rems/dload did

11 rem s/dsave dsve

12 rem f/ds$ dss

13 rem f/ds dsn

14:

15 rem u/usfp (2620/006)

16:

1 "7 rpnn
1 / 1 Cl

18:

134 .asc "caTdoSdeV"

135 .asc " dloaDdsavE"

620 .asc " ds" :.byte $a4:.asc

1134

1135

1620

2620

2622

2624

2626

2628

2630

2632

2634

8560

8562

8564

8566

8568

8570

8572

.word kat-1 ,comms-1,

.word dld-1,dsve-1

.word dss-1,dsn-1

usfp Idx #0

stx $0d

sta $62

sty $63

Idx #$90

sec

jmp $bc49

;

dss1 Ida device

sta $ba

Ida #$6f

sta $b9

Ida #0

sta $b7

jsr chpres

line ser #

8644 123

8742 124

8766 125

8808 126

8814 127

8598 128

8618 129

; " dS"

dvc-1

; routine to convert

; unsigned integer

; in .a (high byte)

; and .y (low byte)

; to floating point

; in fpa #1

;set device

;set secondary

;filename length

;chkdev present

BF

JC

ND

BC

DK

HG

CE

ML

HD

EC

PA

Al

PN

PE

ID

LG

Al

LD

NF

HP

NO

OB

FO

LL

BN

IG

EB

HO

NG

HK

LK

HL

CC

II

ID

JF

JM

NP

MH

JL

CB

EB

AP

HB

JK

AM

FJ

HH

JM

KD

ND

EH

EM

IH

AP

PA

MG

CB

Jl

GD

OF

KM

JK

Ml

8574

8576

8578

8580

8582

8584 dss2

8586

8588

8590

8592

8594

8596

8598 dss

8600

8602

8604

8606 dss3

8608

8610

8612

8614

8616;

8618 dsn

8620

8622

8624

8626 dsn1

8628

8630

8632

8634

8636 dsn2

8638

8640

8642;

8644 kat

8646

8648

8650

8652

8654

8656UUJU

8658

8660

8662

8664

8666

8668

8670

8672

8674

8676

8678 kat1

8680

8682

8684

8686

8688

8690 kat2

8692

8694 kat3

8696

8698

8700

Ida

jsr

Ida

jsr

Idy

iny

jsr

sta

cmp

bne

jsr

rts

jsr

tya

jsr

lay

Ida

sta

dey

bpl

jmp

jsr

Idx

Ida

and

cpx

beq

dex

adc

bcc

tay

Ida

jmp

Ida

sta

Ida

sta

Ida

Idy

Idx

jsr

jsr

Ida

jsr

Ida

jsr

Ida

sta

jsr

jsr

jsr

jsr

Idx

bne

tax

bne

jsr

jmp

jsr

jsr

sta

jsr

$ba

$ffb4

$b9

$ff96

#$ff

$ffa5

dsbuf.y

#$0d

dss2

$f642

dss1

$b47d

dsbuf.y

($62),y

dss3

$b4ca

dss1

dsbuf

dsbuf +1

#$0f

#" 0"

dsn2

#9

dsn1

#0

usfp

device

$ba

#$60

$b9

#1

#>dollar

#<dnllar7/^v VJ \J\ I Cli

Sffbd

$f3d5

$ba

$ffb4

$b9

$ff96

#0

$90

$ffa5

$ffa5

$ffa5

$ffa5

$90

kat2

kat3

$f642

$aad7

$aad7

$ffa5

t2

$ffa5

;send talk device

;send talkscndry

;get from disk

; and put into

; buffer until

; a return

;untalk device

;get disk message

;create space

;from buff

;to memory

;clean desc stack

;first digit (10s)

;second digit

;ascii to hex

;add 10s

;convert to

; floating point

;catalog f'n

;set device

;set sncdary

;set string

;send sa + string

;send talk

;send talk sa

;clear st

;discard load add

;discard line link

;test status

;end of file

;test link hi

;notend

;untalk

;print<cr>, exit

;print <cr>

;get "line #'

; (file size)

The Transactor 22 Volume 6, Issue O4

KH

CF

BJ

AL

AP

KO

AL

EK

OP

LO

MH

LD

EO

IE

El

DF

FD

FB

DG

KJ

OB

HB

AJ

CM

OJ
1 C

Jr

FD

BM

OL

FJ

DG

CL

FO

BB

AO

BC

EC

NL

NP

DJ

EM

DB

KN

PA

DM

Bl

NF

PK

KP

BG

EM

CJ

MN

FD

DL

CO

FO

IK

10

BC

CE

GE

KA

IN

8702

8704

8706

8708 kat4

8710

8712

8714

8716

8718

8720

8722

8724

8726 kat5

8728

8730

8732

8734

8736 dollar

8738 device

8740;

8742 comms

8744

8746

8748

8750
QTrn

8754

8756

8758

8760

8762

8764;

8766 dvc

8768

8770

8772

8774

8776

8778 dvd

8780 dvc2

8782;

8784 name

8786

8788

8790

8792

8794

8796

8798

8800

8802

8804

8806;

8808 did

8810

8812;

8814dsve

8816

8818;

8820chpres

8822

8824

8826

8828

Idx

jsr

jsr

jsr

Idx

bne

jsr

bne

jsr

beq

jsr

beq

jsr

beq

jsr

beq

bne

t2

$bdcd

$ab3f

$ffa5

$90

kat2

$ffd2

kat4

$ffe1

kat2

$ffe4

kat1

$ffe1

kat2

$ffe4

kat5

kat1

.byte "$"

.byte 8

jsr

jsr

sta

sty

stx
IrJa
IGcl

sta

Ida

sta

jsr

jmp

jsr

cpx

bcc

cpx

bcs

stx

rts

imp

Ida

sta

sta

jsr

Ida

sta

jsr

beq

jsr

jsr

jmp

jsr

jmp

jsr

jmp

Ida

sta

Ida

jsr

jsr

$ad9e

$b6a3

$b7

$bc

$bb

device

$ba

#$6f

$b9

chpres

$f3d5

$b79e

#8

dvc2

#$0c

dvc2

device

$b248

#0

$b9

$0a

$e257

device

$ba

$79

dvd

$aefd

$b79e

$e1ec

name

$e16f

name

$e159

#0

$90

$ba

$ffb1

$ffae

print it

print space

;get next char

;check st

print char

;not end of line

;test stop key

;yes - end

;getin

no keypress

;test stop key

;yes

;getin

;no keypress

;yes

;eval exp

;clr desc + check str

;save length

;save pntr to it

;set device

;set secondary

;chk dev present

;send sa + string

;get param

;test 8-11

;no

;no

;set device #

;illegal qty

;set secondary

;set load flag

;eval string to mem

;set device

;get char

;end of statement

;chkfor comma

;get device number

;handle setup

;check string

;load

;check string

;load

;clear status

;listen

;unlisten

IC

LB

OG

JO

Ml

OP

CF

CA

NA

FH

KC

HH

HE

JH

NJ

JE

MM

JH

OH

NE

Al

i n

Cl

EN

IL

HN

DJ

IB

GM

IN

OH

BB

FJ

NH

AM

IP

HF

Fl

AH

CH

Jl

NM

IH

PB

EE

GH

KB

IP

GB

EK

IC

LG

MC

FG

AD

DF

ED

Fl

ID

IG

8830

8832

8834

8836

8838

8840

8842

8844

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

9 rem

10:

Ida $90

bne chp1

rts

chp1 Idx #5

jmp ($300)

dsbuf * = * + $24

;test status

;bad

;'dev not present'

;disk msg buffer

Program 4: LINE CALC

line calc (7/85)

2 statements, 1 function

keyword characters:

keyword routine

s/jump jum

s/call cal

f/line(line

11 rem u/usfp (2620/006)

12:

1 "3 ror
I O I cl I i - ■

14:

136 .c

621 .£

1136

1621

2620

2622

2624

2626

2628

2630

2632

2634

isc "jumPcalL"

asc "line": .byte$a8

.word jum-1,cal-1

.word line-1

usfp Idx #0

stx $0d

sta $62

sty $63

Idx #$90

sec

jmp $bc49

;

8846 jum jsr $bO8b

8848

8850

8852

8854

8856

8858

8860

8862

8864

bit $0e

bpl jm1

Idy #0

Ida ($47),y

sta $60

iny

Ida ($47),y

sec

jmp $a8c7

8866jm1 jmp $ad99

8868

8870 cal Ida #3

8872

8874

8876

8878

8880

8882

8884

8886

8888

8890

8892

8894

jsr $a3fb

Ida $7b

pha

Ida $7a

pha

Ida $3a

pha

Ida $39

pha

Ida #$8d

pha

jsr $79

13

line ser#

8846 130

8870 131

8902 132

;routine to convert

;unsigned integer

;in .a (high byte)

;and .y (low byte)

;to floating point

;in fpa#1

;find variable

;test integer type

;no

;get line # lo byte

;set up for 'goto'

;get line # hi byte

;enter 'goto' rtn

;'var typ mismatch'

;test stack depth

push chrget ptr

push line #

push 'gosub' token

;enter 'goto' rtn

The Transactor 23 Volume 6, Issue 04

AH

AN

KD

LJ

Nl

KM

DE

MD

NL

JO

BK

CF

AK

GF

EG

KF

AB

OG

AD

PK

HE

BP

BG

KC

CK

Al

KL

OH

OP

Cl

HM

Gl

IM

GD

KH

CG

FH

Al

HH

EO

JH

NJ

EN

MH

OOww

OH

ML

KE

FK

NC

PP

AE

LI

JA

01

FN

NM

FP

BA

OA

8896

8898

8900;

8902 line

8904

8906

8908 linei

8910

8912

8914

8916

8918

8920

8922

8924

8926

8928

8930

8932

8934

8936

8938

8940

8942

8944 Iine2

8946

8948

8950

8952

8954

8956

8958

8960

8962

8964;

0 rem beep

1 :

jsr jum

jmp $a7ae

cmp#$89

bne linei

jsr $73

Ida #2

jsr $a3fb

Ida $14

pha

Ida $15

pha

Ida $5f

pha

Ida $60

pha

jsr $ad8a

jsr $b7f7

Ida #0

sta $61

jsr $a613

bcc Iine2

Idy $5f

Ida $60

jsr usfp

pla

sta $60

pla

sta $5f

pla

sta $15

pla

sta $14

jmp $aef7

Program 5:

(sept 1 /85)

;begin subroutine

;skip goto token

; if present

;check stack depth

;save current

; values of

; affected memory

;eval line # expr

;conv to integer

;zero fac 1

;find line address

;undef'd statement

;convert to

; floating point

; in fac#1

;restore memory

;check close paren

BEEP

2 rem 1 statement, 0 functions

3:

4 rem keyword characters

5:

6 rem keyword routine

7 rem s/beep bee

8:

Q rpm
C? 1 Cl II

10:

137 asc "beeP"

1137 .word

8966 bee

8968

8970

8972

8974 bp1

8976

8978

8980

8982

8984

8986

8988

The Transactor

bee-1

beq bp1

jsr $b79e

inx

.byte$2c

Idx #1

txa

pha

Idx #$21

Idy #$87

jsr 4)79

beq bp2

jsr $aefd

4

line ser #

8966 133

;no parameters

;eval duration

;bump duration

;'bit'

;default duration

;push duration

;default pitch

;test pitch param

;no

;checkfor comma

BB

MK

NO

OC

GH

IN

FL

BH

MH

GB

IG

OB

AO

MB

PO

NL

HA

KF

CE

PP

GE

FE

HE

OB

CD

MD

IM

IM

PL

GA

ON

NL

IN

EH

GO

BC

KO

CK

OL

AP

CB

EM

IH

AFrAl

LB

Fl

JG

AA

IJ

EA

LI

JL

KG

IJ

OA

BO

Ml

CN

HE

24

8990

8992

8994

jsr $ad8a

jsr $b7f7

tax

8996 bp2 sty $d40e

8998

9000

9002

9004

9006

9008

9010

9012

9014

9016

9018

9020

stx $d40f

Idx #0

stx $d413

stx $d417

Ida #$f0

sta $d414

Ida #$0f

sta $d418

Ida #$21

sta $d412

pla

sec

9022 bp3 Idy #8

9024 bp4 dex

9026

9028

9030

9032

9034

9036

9038

9040

9042;

100 rem

102 rem

104 rem

106:

108 for i

110 read

112 next

114:

116 u$ =

Note

118:

120 print

122 print

124:

126 for i

128 print

130 v$ =

132 print

134 print

136 print

138 next

140 :

142 print

144:

146 for i

148 for i

bne bp4

dey

bne bp4

sbc #1

bne bp3

Ida #$20

sta $d412

rts

Program 6

stripper

;eval pitch

;conv to integer

;write pitch tosid

;clear attack/decay

; and filter select

;sustain 15, rel 0

;volume 15

;gate on (sawtooth)

;pull duration

countdown duration

;gate off

' Stripper

remove comments from

oal source code

= 900 to i + 20

a: poke i,a

]":q$ = chr$(34)

: u$ = (1 apostrophe + 1 space) x 8 + 1]

"keycH(149),"

q$;":clr"

= 150 to 153

iprint

mid$(str$(i),2)

"keycH(";v$;"

"s/";nght$(u$,

"//" ;q$;" :clr"

i

" EEEfluse sys

= 1 to 19: print '

;q$;"s/' ;*]//";

2t(154-i) + 1);

900"

H";: next
= 631 to 635: poke i,13: next

150 poke 198,5

152 end

154:

156 data

158 data

160 data

162 data

160, 10,162,

169, 13,136,

138,202, 136,

16,242. 96

153, 132, 198

153.119, 2

153.119, 2

Volume 6, Issue O4

Sky Travel - A Review
Richard Evers, Editor

"Genius is the ability to reduce the complicated to the simple."- C.W. Ceram

The above statement must have been made with Frank Covitz

and Clif Ashcraft (authors of Sky Travel) in mind. Never before

have I been this impressed with any software package. Just

thinking about the task involved in writing this magnificent

piece of code leaves me in a panic. Most major software

applications are difficult to write, but Sky Travel must have

been close to impossible. And the trick is, Sky Travel makes it

all look so easy. Beautiful!!

Before continuing with my Sky Travel review, a little story is in

order.

The James Mitchener Story

For the past nine years, James Mitchener has been my favour

ite novelist. Although his writing style has given pleasure to

millions, a greater number have yet to discover his talent. If the

titles Hawaii, Tales of the South Pacific, The Source, Centen

nial, The Covenant, and Space fail to ring a familiar bell, then

prepare for an awakening. These are but a few of the novels

James Mitchener has written, written for the sole purpose of

giving literary pleasure and knowledge to all. Although his

writing style tends to be tedious and drawn out at the beginning

of each novel, rest assured that he is only laying the correct

ground work for the balance of the novel, and will soon have

you entranced in his literary spell. You will become one with

the story, you will be drawn into the settings, the people, and

the history as it progresses. You will be able to climb inside of

Mr. Mitchener's mind, and absorb all that he offers. His novels

are always extremely well researched, with a presentation

surpassed by few. Knowledge and pleasure. Who could ask for

more?

The reason why I have skirted the main subject and introduced

you to James Mitchener is because of the novel Space. This

novel was for me the starting point in my Astronomical learn

ing process. Before Space, I had little interest in Astronomy, nor

felt any need for it. Thanks to James Mitchener's talent, 1 was

given a basic understanding of Astronomy, in a manner that

was pleasant to digest. And thanks to the two years he spent

working at NASA, an insight was also supplied regarding the

complexities involved with space travel, and the steps taken to

solve the problems encountered. As a final salute, if you

haven't read any of his novels, start with Space. You will not be

disappointed.

Back To Sky Travel

The manual supplied with Sky Travel is probably one of the

finest quick Astronomical tutorials you will ever read. Along

with learning how to use the program, you will also be given

many important Astronomical facts, plus just enough trivia to

keep you intrigued. Front to back, the manual is a delight.

Through its reading, you will learn about Longitude and Lati

tude, Declination and Right-Ascention (same as Longitude and

Latitude but for space), and the Time Zones. Further to that you

will realize why leap years exist; each year is comprised of

365.2422 days! Due to this fact, you will learn about the

multitude of calendar systems used throughout the ages. One

of the great pains in writing this system must have been in

compensating for the calendar changes.

To further brighten my day while reading the manual, I found

the term 'precession'. This is a term used to describe the slight

wobble the earth experiences about its axis. This fact was

presented to me while researching the translation and interpre

tation of the writings of Michael Nostradamus, in particular

those pertaining to the "final war to end all wars in the year

1999". Through my research, 1 was able to disprove the 1999

theory entirely. As a bonus, I also found out about precession.

This slight wobbling effect has led to some strange changes,

from our viewpoint, in the cosmos. For example, everybody

knows of Polaris, the North Star. It's the first star in the Little

Dipper. Well, due to this wobble, Polaris has not always been

the North Star, nor will it continue to be in the future. Also, the

signs of the Zodiac are all slightly out of phase due to preces

sion. This known factor has never been incorporated into the

'science' of Astrology, therefore, the sign you were born under

may not be your sign!

A Birthday!!

To continue, another interesting fact derived from the Sky

Travel manual is that Jesus Christ was born on September 15 in

the year 7 BC. Now this is a miracle!! Born seven years before

conception!!

As history goes, a monk in the 6th century AD put forth the

idea to date the calendar from Jesus's birth, which was calcu

lated to be in the year 754 A.U.C. (Read the manual to figure

that one out.) This change was instantly accepted by Rome, but

The Transactor 25 Volume 6, Issue O4

it took another five centuries for the rest of the world to

conform. Don't you love good trivia?

The date of September 15 in 7 BC was calculated after consider

ing that King Herod died in the year 4 BC, before the recorded

birth. From that point, calculations were made to find the Star

of Bethlehem, as it became known. Without dragging the point

too far, the only occurence that could have led to such a bright

'Star' could have been the alignment of the Stars Saturn and

Jupiter on the night of September 15th in 7 BC. If the Christian

religions follow known astronomical calculations, then this fact

is correct. If the 'Star' was a special birthday present from the

powers above, then who really knows? December 25th seems

like a pretty good day for Christmas.

Without going on forever, the manual is great, and could sell as

a stand alone item. But, overshadowing the manual comes a

terrific program, Sky Travel.

Sky Travel: The Program

You will find, when first firing the system up, that more than a

few options present themselves. Through Sky Travel, you can

synthetically locate yourself accurately anywhere on Earth, at

any time, any date, in any year, in the past or future by 10,000

years. From this point, you can view the cosmos as you please.

You can stop time and just sit and view. You can advance the

rate of time by up to a factor of 64, forwards or backwards. And

you can change your screen viewing angle from 72 degrees

down to 9 degrees.

The display options given are pretty impressive, as shown

below:

Lines : Shows principal constellation lines when enabled

Names : Places abbreviations of the names of the constella

tions shown, next to the constellations when en

abled.

Symbols : Will display the commonly used symbols relating to

each planet, next to the planets displayed when

enabled.

Deep Sky: Displays the distant deep space nebula and galaxies

along with the normal display of our own galaxy

when enabled.

Track : Allows tracking of the Sun, Moon, the planets, or

Halleys Comet when enabled. Tracking means that

it will follow the desired object along its path as long

as it is observable.

Sound : With Sound on, your cross-hairs (cursor) will be

turned into a space ship on the screen, with sound

effects thrown in for good measure. When in Map

mode (setting your location on Earth), you will have

an airplane instead of the normal cross-hairs, along

with sound effects. This was implemented to en

courage children to use the system.

A Few More Nice Touches

To move ahead, you also have a Find function that lets you

rapidly find the Moon, Sun, any of the planets, any comet that

might happen to be around, or any constellation available that

appeals to you. A nice touch. As fascinating as the Find

function is the Inform function. All you do is line your cross

hairs up to any object on display, then press the Inform

function key. From disk will come a quick synopsis of up to

date data regarding the chosen object.

&i$
RGT ASCN
B3M2.3'
DECLIHAT
♦ 89»48'

RATE BX
VIEH 72*

Fl CHART
F3 OPTUS
F5 FIND
F? INFRH

The Transactor 26 Volume 6, Issue O4

As for the actual mode of display, two modes exist. They are

Sky and Chart. In Sky mode you can use the cursor keys, plus

assorted other special keys, to move about the screen, and

cause 'Skewing' into new areas of view. As you move the

cross-hairs to indicate viewing beyond the edge of the screen,

the computer skews the display to reflect this change. As you

move the cross-hairs on the screen, you will notice that the

Elevation, Azimuth, Right Ascention, and Declination given

on the screen are updated accordingly. And, if you require a

print out of the display shown, a (Shift) (p) will do the trick for

any serial printer, Unit #4, on line.

In Chart mode you will notice that your display is a reverse of

what you see in Sky mode. This mode is best used when

printing out high resolution displays to your printer for plot

ting purposes. The dark objects on a white background will

save your ribbon in relation to the reverse. In comparison,

other than the reverse image and the fact that you can no

longer skew beyond the edges of display, the Chart and Sky

mode appear identical.

1:13.B'

6ME

A Beef

Sky Travel is an incredible program, but still, I found one thing

to beef about; the disk protection used. The read errors

encountered during system initialization cause one heck of a

lot of head banging. Not such a nice thing to hear just after

getting my drive aligned!! In case you're interested, you can

turn off the 1541 's head bumping trick by executing the

following code before loading in the program.

open 15,8,15: print#15," m-w"chr$(106)

chr$(0)chr$(1)chr$(133): close 15

This sets bit 7 at location 106, REVCNT, tested by DOS with

a BIT command when an error is encountered on disk. If the

negation flag is set after the BIT, the code bypasses the

head bump routine, therefore bringing instant relief to all

service technicians.

The David Dunlop Observatory

Just after starting to write this review, I had the opportunity to

visit the University of Toronto's David Dunlop Observatory in

Richmond Hill, with my brother John. Both John and I are

budding junior astronomers, and therefore we were both ex

cited about the prospect of visiting the observatory. Although

we grew up in the Hill, and I currently live in the Hill with my

wife and daughter, it never occurred to us to take the time to

visit the observatory. One phone call and a free lecture, tour,

and peek up the scope was our reward.

Actually, we never got that peek up the scope that night. It was

our luck to pick a night when the sky completely emptied on

Richmond Hill. Monsoon season or something. Anyway, the

facilities are pretty good, the lecture was informative, and the

telescope, although 52 years old, has plenty of life left in her.

Weighing in at 30 tons, this telescope looks quite impressive. If

only we could have seen something through it.

During that night, we talked with a few people working at the

observatory, and found that nobody was using Commodore

equipment. But, once described to them, everyone seemed

quite excited about the possibilities available with the package

Sky Travel. Note To Commodore: Give the U of T's Faculty of

Astronomy a call. Good chance of snowballing some sales, with

the right approach.

In Summation

As you can guess, I feel that the program is A1. It is so well

designed, and appeals to such a specific market, that it must

have been written as a labour of love. I just hope that this

review will convince you that Astronomy can be as exciting as

you make it. With Sky Travel at your side, the universe is

within your reach.

"Sky Travel" or "Shy Travel"?

As brilliant as Sky Travel is, it too is not immune to the perils of the

software realm. You may find it difficult to find Sky Travel. The

package is a Commodore product but it appears once more that

Commodore has made a retreat from the software front. Many

retailers have trimmed their inventories down to the "big movers"

and have become fearful of "new dust catchers to add to their

collection". But it would seem unlikely that the number of Sky

Travels sold matches a typical minimum production run. For those

determined enough, Commodore could probably point you to

wards one - they must be out there, but where?Perhaps the 'Find'

command will help. We 11 try it and let you know.

The latest development in the Sky Travel story is Planet Travel.

Talk about stunning. When complete, this program will be the

"Flight Simulator" ofspace travel. A demonstration sampler shows

Saturn from several perspectives with the stars, sun, shadows,

moons, all accurately plotted. I suspect they'll be two seperate

items, though. Sky Travel already fills most ofthe disk so don't wait

- you 'II probably need both to "get it all". - M.Ed

The Transactor 27 Volume 6, Issue O4

Accurate Sum Of Squares John Jay Hilfiger

Ithaca, NY

Another technique for avoiding wrong answers

John Jay Hilfiger is Manager of the Statistical Computing Department at Cornell University. Rest assured

the following is not merely another re-hash of the binary arithmetic problem but rather an approach for

dealing with it. - M.Ed

Your Commodore computer can do difficult numerical analyses

with amazing speed, and is a very handy tool for this reason.

You may have come to rely on your computer for important

calculations, but sometimes those calculations may be very

wrong! This happens because computers can only approximate

some numbers. The BASIC interpreter on eight bit computers

like the Commodore 64 and VIC-20 represents most numbers

as nine digit approximations. This may seem like more than

enough precision, and it usually is, but there are times when it

gets us into trouble. Does this mean that small computers are

not for serious calculations? Alas, even the biggest computers

have limitations, but choosing the right algorithms and careful

programming can help us to get around many of those limita

tions.

Many problems in statistics and other branches of science

require finding the sum of the squares of a group of numbers,

S(x-x)?

where x is any number and x is the average. This is simply

the total of the squared differences between each number

and the average of all of them. Consider the numbers 0, 1,

2. Their average or "mean" is 1 and the sum of the squares

is 2. Program 1 finds the mean and sum of squares of this

set.

Program 1 makes two passes through the data, that is, it

reads all of the data twice. There is nothing wrong with this,

but if we had a lot of data, Program 1 would be very slow.

Many textbooks that were written with hand or calculator

computation in mind suggest the following algebraically

equivalent method of finding sums of squares, requiring

only one pass through the data:

Ix2 - (Ix)2/n

where n is the number of numbers in the data set. This formula

is often used by programmers of statistical software because it is

much faster than the two pass method and because they are

unaware of the inherent dangers. Methods designed for hand

calculation are not necessarily the best methods for computers

to use. Program 2 implements this formula, which we shall

refer to as the "calculator algorithm".

Either Program 1 or Program 2 gives the rights answers for the

simple data set 0,1,2. Let us try a more difficult set of numbers,

30000, 30001, 30002. The mean of this data set is 30001 and

the sum of squares is, once again, 2. Change the last line of

each program to:

500 data 30000, 30001, 30002

and RUN each of them. Program 1 gives correct answers but

Program 2 gives 1.75 for the sum of squares. Things get even

worse if we try the data set 100000, 100001, 100002. The sum

of the squares is still 2. Once again, Program 1 gives correct

answers, but Program 2 is way off with a sum of squares of 8!

We have seen that the calculator algorithm used in Program 2

works well when the data consists of small values, but as the

data values get larger, the results get progressively worse. This

happens because intermediate values X2 in line 140 and T2 in

line 170 are very large and cannot be represented exactly by

the computer, so they are rounded off. One rounded number is

subtracted from another rounded number in line 180 for the

final wrong answer. You may protest that numbers like those

used in the examples here are not likely to come up in ordinary

problems. This may be true, but with larger data sets, i.e. many

more than three data values, the same kinds of rounding errors

can occur when much smaller values are processed. In other

words, a tiny set of large numbers serves as a proxy for a more

realistic data set.

The Transactor 28 Volume 6, Issue O4

There is a third kind of algorithm we can use that is faster than

the two pass method and also very accurate. This method is

called an "updating algorithm". The idea is to read through the

data only once, but each time a data value is read, the mean

and sum of squares of all data values up to the most recent one,

are computed. There are actually several different updating

algorithms. One of them is implemented in Program 3. If you

try running Program 3 with each of the sample data sets given

above, you will find that all the answers are correct. The

updating algorithm offers both speed and accuracy and is the

method used by many sophisticated scientific packages on

mainframe computers.

This discussion of algorithms for computation of sums of

squares is directed not only to programmers of scientific soft

ware, but to users of applications programs as well. Statistical

packages use sums of squares in the calculation of variances,

standard deviations, and other statistics. Some spreadsheet and

database programs also calculate variances and standard devia

tions. Unfortunately, many programs, even relatively expen

sive commercial products, give wrong answers! The user must

be wary. The simple data sets given above, while not infallible

tests for all inaccuracies, are usually good indicators of program

reliability. If the program gives the "variance" of a group of

numbers, it should give a value of 1 for any of the sample data

sets. The "standard deviation" is the square root of the vari

ance, thus, in the present case, it should also be 1.*

Summary

Numerical results, such as sums of squares, can be calculated

in various ways. Formulas that are mathematically equivalent

may be very different with regard to speed and/or accuracy

when implemented on a computer. Programmers must take

care to select algorithms that do not allow intermediate compu

tations to wander beyond the limits of a computer's precision. If

proper care is taken, even inexpensive home computers can

produce perfectly acceptable levels of accuracy in difficult

numerical problems.

* The usual definition of variance is the sum of squares divided

by one less than the sample size, e.g. in the present case, 2/2 =

1. An alternative definition uses the sample size in the denomi

nator, or 2/3 = 0.67. In the latter example the standard

deviation would be the square root of 0.67, or about 0.82.

Program 1

NC

CK

KD

JD

CK

OP

PH

NL

MM

PO

PH

IO

OA

FM

CM

LF

JF

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

500

rem two-pass algorithm

t = O:s = O

rem find mean

for i = 1 to 3

read x

t = t + x

next i

m-t/3

restore

rem find sum of squares

for i = 1 to 3

read x

s = s + (x-m)*(x-m)

next i

print " mean = " ,m

print "sum sq = " ,s

data 0,1,2

Program 2

FK

EB

PC

IJ

AB

OP

PH

IF

JO

BN

KJ

DD

JF

100

110

120

130

140

150

160

170

180

190

200

210

500

rem calculator algorithm

x2 = 0:t = 0

for i = 1 to 3

readx

x2 = x2 + x*x

t = t + x

next i

t2 = t*t

s = x2-(t2/3)

m = t/3

print "mean = " ,m

print "sum sq = " ,s

data 0,1,2

Program 3

AE

AE

PC

IJ

Cl

MD

AB

Jl

Gl

PB

JF

100

110

120

130

140

150

160

170

180

190

500

rem updating algorithm

n = 0: m = 0: s = 0

for i = 1 to 3

read x

n = n + 1

s = s + (x-m)*(x-m)-(x-m)*(x-m)/n

m = m + (x-m)/n

next i

print " mean = " ,m

print "sum sq = ",s

data 0,1,2

The Transactor 29 Volume 6, Issue O4

The Projector Ian Adam

Vancouver, B.C.

As close to 3D as possible short of holographies...

Abstract

This article builds upon the high-resolution drawing routines

introduced in Volume 5, Issue 6 of The Transactor. It presents a

BASIC program to construct a three-dimensional plot, using these

routines. A matrix generated from either a mathematical formula

or empirical data may be plotted. The plot is self scaling, and

includes a title.

The Projector

In Volume 5 Issue 6 of the Transactor, Gary Kiziak introduced an

excellent high-resolution graphics utility for the Commodore 64.

That utility gives the programmer access to the extensive graphics

that are available with the 64 but not supported by BASIC. The

utility resides in the free RAM at $C000, and uses direct SYS calls to

plot on the high-res screen at $E000.

Well, the article sounded good, so I typed in the utility and gave it a

try. The routines work well, and are easy to access, with a good

range of functions available. I will also look forward to the circle

and ellipse routine that Gary promised. About the only complaint 1

could think of is that the hi-res screen at $E000, hidden under

neath the kernal ROM, is inaccessible to my screen dump routine.

Solving that may take some ingenuity.

One thing leads to another, however, and I soon found myself

experimenting long into the night with the new routines. What

came out of the mill was an interesting program, reproduced here,

which projects a three-dimensional representation of a matrix of

data. You have probably seen similar plots before, as they make for

a good way to show off the capabilities of a computer's graphics, or

indeed those of a printer. Thus, they are sometimes favoured by

manufacturers. In addition to demonstrations, a couple of other

applications spring to mind. By feeding in different mathematical

functions, you could use this program to help visualize and

understand the meaning of trigonometric formulae. A completely

different application would be to plot up the empirical results of a

scientific experiment, or ground contours, etc.

The 64 doesn't have a holographic display screen (at least not yet,

anyway), so the 3-dimensional data has to be confined to a 2-

dimensional display. This is achieved by viewing the Y-coordinate

at an angle, theta, from the X-axis. The horizontal component of Y

is expressed as a function of COS(theta), with the vertical compo

nent based on SIN(theta). The X-coordinate is simply viewed

horizontally, while the dependent variable Z(X,Y) is viewed verti

cally. Both have to be modified by a scale factor in order to fit

comfortably on the 64's screen.

The Program

The program itself is straightforward; these comments should help

in understanding it, and as a guide to any modifications you may

have in mind:

Lines 150-210 set up the plotting calls and load the machine

language.

Lines 240 and 250 contain the values for M and N, the number of

lines in the plot in the X-direction and Y-direction respectively.

There is a trade-off here. . . higher values will give better resolu

tion, but at the expense of speed. 260 and 270 set up the resulting

arrays.

Lines 290 to 340 are the loop to calculate function values. This is

where you can substitute other expressions in line 330, for differ

ent plots. Lines 390 to 490 contain other formulae to experiment

with. If you do change the formula, remember to change the title in

line 360.

Lines 530 to 580 are where the viewing angle is set, or defaulted to

60 degrees. This is a simplification, since in reality there are two

angles to be set, one a rotation in reference to the X-Y axes, and

the other the elevation above the X-Y plane. For simplicity, these

have been combined into one composite angle. Line 580 converts

to radians.

Lines 590 to 710 proceed to create a base grid with these parame

ters to fit the 64's screen, and set up the necessary arrays. The X-

coordinate is scaled to fit across the screen. The projection of the

Y-coordinate horizontally and vertically is specified in the YHRIZ

and YVERT arrays. The Z-coordinate plots the array Z(X,Y) verti

cally.

Lines 730 to 820 calculate the vertical scale, a critical factor in the

plot. Without going into all the details, the largest scale is selected

to contain the plot on the screen.

Lines 840 to 900 use this scale to construct a second matrix, R(X,Y).

Lines 930 and 940 set up the high-res screen, with orange plotting

on a black background.

With all that preparation out of the way, most of the rest of the

program actually projects the data. Lines 960 to 1020 plot the

horizontal lines, while 1040 to 1100 do the vertical lines. 1120 to

1190 draw the base of the projection, while 1220 prints the title.

Finally, line 11250 allows you to view the result, then press any

key to return to the text screen and decide how to proceed.

The Transactor 3O Volume 6, Issue O4

How To Use It

Type in the Projector program, and save it on the same disk as the

Hires machine language file. Make sure you have a copy saved, then

RUN. The program will LOAD the Hires file as its first step. Be patient;

preparing the data for plotting will take anywhere up to a minute or

so, depending on its complexity.

You will then be asked what viewing angle you want; enter a value

from 0 to 90 degrees. A small angle will emphasize the relief of the

plot, but may hide some details. A large angle gives a broader

overview. If in doubt, simply press 'return' for the default value of 60

degrees.

The plotting itself is interesting to watch, and only takes about 15

seconds. After viewing the plot, press any key to return to the text

screen. You will then have a choice of reviewing the same data from a

different angle, or ending the program. After ending, try one of the

other expressions in lines 390 to 490. Simply renumber one of the

formulae as line 330, and the corresponding title as 360. Remove the

REM in each case, then RUN. You may wish to substitute other

expressions of your own - the possibilities are limitless. If you need to

plot empirical information, enter it at the end as DATA statements,

then replace line 330 with READ Z(X,Y).

The program is fairly forgiving of errors, since it is self-scaling. It will

accept and plot some small negative numbers, though anything

excessive will stop it with an error message. The easiest way to correct

a negative number is to add a constant to the expression, as shown in

line 410.

This program grew out of Gary Kiziak's utility routines; you, in turn,

may wish to embellish it further. Add refinements, parallax, new

formulae, a hidden-line algorithm, whatever - there should be

enough to keep you busy on a rainy day. Sometimes the best ideas

don't happen all at once; like a lawn in the rain, they just grow!

Editor's Note

PICTRANS, the subroutine below, will transfer an 8K hi-res screen at

SE000 to memory at $2000. Add these lines to lan's program and

simply GOSUB 50000. Once transferred, a printout can easily be

made with either PICPRINT (Volume 5, Issue 03, Disk 2) or BIGPRINT

(Volume 5, Issue 06, Disk 5) or any similarprogram. BIGPRINT will be

included on The Transactor Disk (Disk 9) for this issue.

rem* data loader for "pictrans" *

cs = 0

for i = 828 to 869:read a.poke i,a

cs = cs + a:next i

if cs<>6573 then print" !data error!": end

sys 828

return

data 169, 32, 133, 254, 169, 224, 133, 252

data 169, 0,133,251,133,253,160, 0

data 120, 165, 1, 72, 41,253,133, 1

data 177, 251, 145, 253, 200, 208, 249, 230

data 254, 230, 252, 208, 243, 104, 133, 1

data 88, 96

NE

BN

LI

JL

MO

PM

AH

CL

EB

DP

HI

MM

BP

PN

KK

50000

50010

50020

50030

50040

50050

50060

50070

50080

50090

50100

50110

50120

50130

50140

SHELL ROOF

SPLASH

GRAUITV WftUES

The Transactor 31 Volume 6, Issue O4

CM

HO

MN

EL

AA

PK

PN

NA

LJ

CD

MH

Jl

AF

HO

GM

IN

AL

LO

Ml

DE

NL

HG

HH

EJ

CK

CN

OF

GO

CP

FA

PM

MB

HP

PP

FN

CF

CL

AA

CM

ID

KA

LF

FL

MH

BD

KF

GN

AN

AG

HH

BB

OH

EB

AD

KO

JD

LL

OB

CK

PN

EK

100 rem the projector - perspective plotter

110 rem by ian adam Vancouver, be

120 rem requires hires plotting routines

130 rem from the transactor vol 5 iss 06

140:

150 rem setup

160hi = 49152:co = 49173:dr = 49155

170 mo = 49161: pr = 49182: dm = 49167: te = 49179

180cd$ = chr$(17)

190:

200 if peek(hi + 1) = 194 then 240

210 load "hires ",8,1

220:

230 rem parameters

240 m =20: rem x-dimension

250 n = 16: rem y-dimension

260dimz(m,n),r(m,n)

270 dim xh(m),yh(n),yv(n)

280:

290 rem data to plot

300 print "creating data"

310 for x = 0 torn

320 for y = 0 ton

330 z(x,y) = 12*x + 10*y-1.25*x*y

340 next y: print x: next x

350:

360 a$ = " hyperbolic paraboloid": rem title

370:

380 rem insert other expressions in 330, and change title in 360

385 rem (change line # of desired function and title below)

390 rem z(x,y) = x*x-x*x*x/22 + 75*y-12*y*y + y*y*y/2

400 rem a$ = " contours"

410 rem z(x,y) = 560-exp(sqr(abs((x-10)*(y-8)/2)))

420 rem a$ = " shell roof"

430 rem tm = sqr(x*x + 1.5*y*y): z(x,y) = 10+ sin(tm) + y/4

440 rem a$ = " gravity waves"

450 rem tm = sqr((x-10)t2 + (y-8)t2): z(x,y) = 150-tm*55

+ tm*tm*8-tm*tm*tm/3

460 rem a$ = " splash "

470 rem a = 20-abs(x-10): b = 18-abs(y-8): z(x,y) = a

: ifb>athenz(x,y) = b

480 rem a$ ="house"

490 rem z(x,y) = y + (8-y)*((x>4)and(x<16))*((y>3)and(y<13))

500 rem a$ = " plateau"

510 rem or read empirical results from data

520:

530 rem projection

540 theta = 60: rem default angle

550 print cd$" enter viewing angle, or press return

560 print " for 60 degrees:

570 input th

580 th = th*3.14159265/180

590tmp=120*cos(th)

600 xgrid = int((309-tm)/m)

610 ygrid = int(96*sin(th)/n)

620 ystp = int(tm/n)

630:

640 rem calculate offsets

650 for x = 0 torn

660xhriz(x) = 10 + x*xg

670 next

680 for y = 0 ton

690 yhriz(y) = y*ys

FE

KM

EE

AA

HB

KF

PC

FM

CP

CL

OG

JB

KO

CL

CP

CJ

DJ

HM

BK

HF

JJ

CA

FB

GE

GH

KC

PE

BA

JB

GJ

KB

LN

BB

KH

OO

LE

EG

EN

AH

AD

DG

KM

LN

LP

DC

JD

GM

MF

HI

AD

EC

DL

BA

CE

AP

JB

ID

KG

LK

FC

LE

LG

IC

700 yvert(y) = 10 + y*yg

710 next

720:

730 rem vertical scaling

740 print "scaling data

750 vscalar = 9e9

760 for y = 0 to n

770 a = 0: for x = 0 to m

780 if z(x,y)>a then a = z(x,y)

790 next: rem find highest point on line

800 if a then tmp = (199-yv(y))/a

810 if vs>tm then vs = tm

820 next: rem select best feasible scale

830:

840 rem calculate rise

850 print ". . .still scaling!

860 for y = 0 ton

870 tm = yv(y)

880 for x = 0 to m

890 r(x,y) = z(x,y)*vs + tm

900 next x,y

910:

920 rem set up screen

930 sys hi,0,0,8

940 sys dm,1

950:

960 rem plot horizontal lines

970fory = 0to n

980tm = yh(y)

990 sys mo.tm + 10,r(O,y)

1000 for x = 1 to m

1010 sys dr.tm + xh(x),r(x,y)

1020 next x,y

1030:

1040 rem plot vertical lines

1050 for x = 0 torn

1060tm = xh(x)

1070 sys mo,tm,r(x,0)

1080 for y = 1 to n

1090 sys dr.tm + yh(y),r(x,y)

1100 next y,x

1110:

1120 rem draw box

1130sysmo,10,r(0,0)

1140sysdr,10,10

1150sysdr,xh(m),10

1160 sys dr,xh(m),r(m,0)

1170sysmo,xh(m),10

1180 sys dr,xh(m) + yh(n),yv(n)

1190 sysdr,xh(m) + yh(n),r(m,n)

1200:

1210 rem title

1220 sys co,13: sys pr, 1,24,a$

1230:

1240 rem wait for human

1250 wait 198,1: get b$

1260 sys te

1270:

1280 print cd$" press r to review from another angl>

1290 print " press any other key to end

1300 wait 198,1: get b$

1310 if b$ = "r" then 540

1320 end

The Transactor 32 Volume 6, Issue O4

HIRES Create

Gary I> hi-res utility will be included on Disk 9 for this issue. For a

complete description of the commands you 11 need the first Program

ming Aids and Utilities issue (Volume 5, Issue 06).

FN

JP

AH

HK

NB

JA

HA

Gl

MK

BL

IB

ED

FF

MJ

KF

EN

FD

HE

AB

OK

JE

IJ

MP

00

IC

LP

HJ

NC

OF

FD

GF

BC

JD

OH

DN

LC

LH

CE

KM

EJ

NM

PD

KL

LO

MO

CC

PN

NH

MN

DA

KB

CC

BK

OL

DH

CJ

AN

PM

HJ

IM

JL

1000 rem ** hires routine

1010 rem ** creates

1020:

1030 open 15,8,15:

1040input#15,e,e$

: stop

- written by gary kiziak

; load/run program on diskette **

open 8,8,8, "0:hires p,w

b,c: if e then close 15: print e,e$,b,c

1050 for j = 49152 to 51233: read x: print#8,chr$(x);

: ch = ch + x: next: close8

1060ifch<>24591<) then print " checksum error": end

1070 print " ** program complete **": end

1080:

1090 data 76,206

1100 data 200, 0

1110 data 0, 0

1120 data 7,248

1130 data 0, 0

1140 data 0, 0

1150 data 58, 192

1160 data 57, 192

1170 data 173, 17

1180 data 208, 141

1190 data 173, 0

1200 data 1, 3

1210data 3,141

1220 data 235, 192

1230 data 192, 141

1240 data 41, 193

1250 data 169, 8

1260 data 3, 3

1270 data 141, 24

1280 data 221, 173

1290 data 60, 192

1300 data 58, 192

1310 data 220, 165

1320 data 133, 1

1330 data 133, 1

1340 data 96, 16

1350 data 3, 44

1360 data 133, 20

1370 data 154, 169

1380 data 163, 168

1390 data 141, 0

1400 data 3,173

1410 data 42, 193

1420 data 76, 192

1430 data 13,160

1440 data 230, 252

1450 data 240, 10,

1460 data 208, 251,

1470 data 160, 0,

1480 data 160, 232,

1490 data 32, 43,

1500 data 224, 133,

1510 data 31, 133,

1520 data 76,218,

1530 data 173, 32,

1540 data 96, 32,

1550 data 43, 192,

1560 data 141, 45,

1570 data 162, 1,

1580 data 159, 162,

1590 data 44, 192,

1600 data 199, 205,

The Transactor

197,

0,

0,

0,

0,

208,

208,

173,

208,

60,

3,

201,

234,

169,

1,

173,

141,

96,

208,

59,

141,

96,

1,

104,

169,

3,

76,

169,

167,

32,

3,

41,

141,

76,

0,

198,

136,

145,

132,

132,

193,

252,

254,

192,

247,

253,

142,

192,

44,

0,

176,

45,

76, 199, 199

0, 0, 0

0, 0,255

0, 0, 0

1, 0, 15

0, 0, 0

27,173, 0

24,208, 141

141, 59,192

192, 32,110

201,231,208

192,240, 44

192,173, 1

231,141, 0

3,173, 2

3, 3,141

2, 3,169

173, 58,192

173, 57,192

192,141, 17

22,208, 169

72, 169, 127

141, 56,192

96, 72,173

129,141, 13

76, 139,227

192, 16,245

0,133, 21

72, 169,233

169, 192, 173

173,235, 192

193,141, 2,

3, 3,169,

131, 164, 164,

145,251,200,

254, 208, 243,

240, 5,145,

251, 96, 32,

251, 160,204,

253,160, 3,

169, 0, 133,

169, 64,133,

169, 0, 32,

32,253, 174,

183, 166, 21,

174, 32,124,

44,192, 32,

142, 46,192,

53,192, 16,

205, 43, 192,

3, 76, 72,

192,169, 0,

76

0

128

0

240

0

221

58

173

192

7

173

3

3

3

42

193

240

141

208

0

141

41

56

220

142

169

162

72

234,

141,

3,

0,

254,

208,

164,

251,

201,

132,

132,

251,

253,

43,

32,

165,

193,

121,

169,

4,

138,

178,

237,

4

0

0

0

240

173

141

192

22

96

173

0

141

169

141

193

141

26

0

173

141

13

253

192

104

13

0

250

76

192

1

173

141

240

251

253

136

192

252

254

169

169

193

138

20

141

193

63

169

237

169

46

33

GJ

AN

FN

LE

NG

KK

OP

DM

FH

KC

JN

OJ

BO

EF

BB

BN

BD

KB

EE

DJ

PG

FJ

BJ

EJ

JK

LH

OD

IC

FP

DN

NH

GJ

BO

EL

IJ

Ol

PP

GP

Ml

HI

JP

EE

DK

MN

HC

NE

GG

AM

MK

JE

NH

CP

HK

BC

Cl

EB

FG

EL

KH

OA

EF

BF

AC

KH

GC

GG

FM

MM

KF

IG

1610 data

1620 data

1630 data

1640 data

1650 data

1660 data

1670 data

1680 data

1690 data

1700 data

1710 data

1720 data

1730 data

1740 data

1750 data

1760 data

1770 data

1780 data

1790 data

1800 data

1810 data

1820 data

1830 data

1840 data

1850 data

1860 data

1870 data

192,144,241, 96, 32, 77,192, 32

121, 193,240, 2, 169, 128, 141, 53

192, 32,121, 0,240, 3, 32, 30

194,173, 0,221, 9, 3, 73, 3

141, 0,221,173, 24,208, 41, 7

9, 8, 9, 48, 141, 24,208, 173

17,208, 9, 32, 141, 17,208, 44

53, 192, 16, 12, 173, 22,208, 9

16, 141, 22,208, 169, 3,208, 10

173, 22,208, 41,239,141, 22,208

169, 7, 141, 54, 192, 73,255, 141

55,192,169,255,141, 51,192, 96

169, 1, 141, 65, 192, 173, 67, 192

141, 66,192,169,128,141, 52,192

32,135,193,173, 45,192, 10, 10

10, 10, 141, 62, 192, 141, 70, 192

173, 43, 192, 41, 15, 141, 61, 192

44, 53,192, 48, 12, 13, 62,192

141, 62,192,141, 70,192, 76, 75

193,141, 33,208, 32,121,193, 41

15, 141, 63, 192, 32, 121, 193, 141

64,192,173, 62,192, 76, 75,193

32,135,193,162, 3,189, 43,192

157, 39,192,202, 16,247, 96, 56

169,199,237, 41, 192, 72, 74, 74

74,133,252,160, 0,132,251, 74

102,251, 74,102,251,101,252,133

1880 data 252, 173, 39,192,174, 40,192, 45

1890 data

1900 data

1910 data

1920 data

55,192, 44, 53,192, 16, 6, 10

72,138, 42,170,104, 24,101,251

133,251, 138, 101,252, 133,252, 104

41, 7, 24,101,251,133,251,133

1930 data 253, 144, 2,230,252,165,252, 74

1940 data

1950 data

1960 data

1970 data

1980 data

1990 data

2000 data

2010 data

2020 data

2030 data

2040 data

2050 data

2060 data

2070 data

2080 data

2090 data

2100 data

2110 data

2120 data

2130 data

2140 data

2150 data

2160 data

2170 data

2180 data

2190 data

2200 data

2210 data

2220 data

2230 data

2240 data

2250 data

102,253, 74,102,253, 74,102,253

133,254, 44, 53,192, 48, 16, 24

169, 0,101,253,133,253,169,204

101,254,133,254, 76,249,194,173

65, 192, 201, 3,144, 234, 24, 169

0, 101,253, 133,253, 169,216,101

254,133,254, 24,165,251,105, 0

133, 251, 165, 252, 105, 224, 133, 252

173, 39, 192, 45, 54, 192, 170, 96

169, 0, 168, 44, 52, 192, 16, 4

112, 20, 80, 15, 36, 2, 48, 9

169,255,133, 2, 36,107, 48, 1

96,177,251, 77, 51,192, 44, 53

192, 48, 10, 61, 86, 195, 133, 97

189, 86,195,208, 8, 61, 94,195

133, 97,189, 94,195, 73,255, 49

251, 5, 97,145,251,177,253, 45

66,192, 13, 70,192,145,253, 96

128, 64, 32, 16, 8, 4, 2, 1

192, 48, 12, 3, 32,110,194, 32

121, 0,240, 11, 32,228,196, 32

121, 0,240, 3, 32,214,196, 32

201, 192, 32, 125, 194, 32, 14, 195

76,218,192,169, 1,149,106,169

0, 149, 107, 56, 189, 43, 192,253

39,192,149, 98,189, 44,192,253

40,192,149, 99, 16, 20,169,255

149,106,149,107, 56,169, 0,245

98,149, 98,169, 0,245, 99,149

99, 96, 21, 98,208, 4,149,106

149,107, 96,165, 99, 74,133,103

165, 98,106,133.102. 24.169. 0

2260 data 229, 98, 133 104! 169! o! 229 99
2270 data

2280 data

2290 data

2300 data

133,105, 96, 24,165,102,101,100

133, 102, 170, 165, 103, 101, 101, 133

103,197, 99,144, 19,208, 4,228

98, 144, 13, 138 56 229 98 133

Volume 6, Issue O4

CF

GO

PK

AC

MB

HJ

NB

FG

MG

Dl

MD

BM

OL

FJ

HM

HK

KL

BM

KA

FA

OB

HB

DH

FE

PA

MA

PC

PI

MK

FM

BL

FH

ME

CM

GO

GK

NH

GL

NM

EJ

BL

AG

BG

PB

NF

BJ

GP

Pi

CJ

EE

Jl

OD

ML

FK

LG

EN

JP

NH

1L

GK

KJ

MK

EP

GN

DK

HL

LL

DL

FJ

PF

44,

32,

0,

32.

2310 data 102

2320 data 96

2330 data

2340 data

2350 data

2360 data

2370 data 214,

2380 data 201,

2390 data 162,

2400 data 2,

2410 data 165,

2420 data 195,

2430 data 56,

2440 data 125,

2450 data 4,

2460 data 208,

2470 data 144,

2480 data 141,

2490 data 195,

2500 data 180,

2510 data 245,

2520 data 32,

2530 data 133,

2540 data 230,

2550 data 101,

2560 data 144,

2570 data 40,

2580 data 76,

2590 data 14,

2600 data 32,

2610 data 106,

2620 data 193,

2630 data 16,

2640 data 192,

2650 data 66,

2660 data

2670 data

2680 data

2690 data

2700 data

2710 data

2720 data 189,

2730 data 192,

2740 data 32,

2750 data 157,

2760 data 0,

2770 data 0,

2780 data 39,

2790 data 173,

2800 data 192,

2810 data 42,

2820 data 32,

2830 data 49,

2840 data 237,

2850 data 193,

2860 data 237,

2870 data 192,

2880 data 43,

2890 data 192,

2900 data 50,

2910 data 169,

2920 data 183,

2930 data 142,

2940 data 192,

2950 data 24,

2960 data 2,

2970 data 73,

2980 data 133,

2990 data 24,

3000 data 204,

96,

10,

53,

62,

41,

41,

165,

32,

201,

115,

201,

121,

196,

164,

0,

32,

99.

36,

169,

194,

230,

3,

9,

41,

76,

100,

32,

113,

108,

104,

108,

8,

192,

166,

195,

121,

106,

41,

22,

141,

192,

0,

10,

192,

192,

15,

15,

61,

141,

135,

47,

240,

240,

192,

40,

173,

192,

43,

192,

50,

32.

47,

237,

196,

141,

192,

0,

224,

73,

138,

165,

230,

192,

3,

72,

133.

103,

135,

164,

0,

44,

0,

32,

240,

134,

129,

229,

107,

0,

32,

105,

238,

24,

192,

91,
149,

185,

194,

32,

240,

141,

238,

32,

196,

32,

193,

141,

3,

141,

70,

189,

85,

10.

48,

76,

141,

141,

192,

66,

193,

192,

11,

3,

109,

192,

41,

141,

196,

141,

192,

43,

192,

48,

24,

45,

141,

133,

40,

192,

240,

251,

252,

101,

169,

105,

4,

229, 99,

193, 32,

208, 16,

32, 138,

208, 13,

201, 44,

43, 196,

220, 96,

2, 32,

195,165,

101, 144,

16, 10,

229, 108,

14, 195,

240, 102,

40, 192,

173, 41,

32, 125,

196,162,

100, 148,

195, 36,

56, 169,

125, 194,

31, 24,

41, 192,

39, 192,

125, 194,

36, 107,

113, 194,

41, 3,

52, 192,

240, 27,

65, 192,

192, 189,

7, 197,

170,255,

10, 141,

9, 13,

51, 197,

63,192,

64, 192,

141, 70,

192, 96,

162, 3,

202, 16,

32, 228,

32,214,

47, 192,

109, 48,

192, 141,

46, 192,

56, 173,

45, 192,

141, 46,

196, 56,

141, 43,

192, 141,

173, 45,

192, 173,

46, 192,

251, 133,

144, 3,

32,241,

18,224,

105, 40,

202, 208,

251, 133,

0, 101,

216, 133,

6,251,

14

98

16

10

133,103, 56

121, 0,240

32, 113, 194

193, 32,121

32,228, 196

208, 3, 32

32,121, 0

32,201, 192

129, 195, 162

98, 197, 100

62, 32,185

32, 113, 194

133,108, 32

230, 104,208

238, 39,192

32,209,195

192, 101, 108

194, 32,

1, 181,

98, 202,

107, 16,

0,229,108

32, 14,195

173, 41,192

32,209,195

208, 3,238

32, 14,195

16, 3, 32

76,218, 192

73, 3,106

96, 32,121

44, 53,192

170,189, 61

66,192,141

141, 51,192

32, 121, 193

62, 192, 44

61, 192, 141

32, 121, 193

32, 121, 193

174, 65,192

192,189, 66

32, 110, 194

189, 43,192

32, 121

32, 121

24,173

43,192

192.141, 44

45, 192, 173

32, 156, 193

45, 192,237

173, 46,192

192, 32,181

173, 43,192

192,173,

44, 192,

192, 109,

46, 192, 109

76, 43,196

252, 32,241

76, 72,178

183.142, 74

25, 176,237

133,251, 144

242, 24,173

251, 133,253

252, 133,252

254, 104,105

38,252, 6

247

196

196

141

44

32

49

AO

CM

NH

GP

CA

IH

GE

LB

HG

AB

DJ

BH

HF

GK

FL

Nl

BA

CL

HD

IJ

LP

JJ

MH

Cl

BM

GK

OP

GP

BG

DD

KG

II

GB

OJ

GB

AP

BH

IN

FC

JD

HI

GM

BP

EB

Dl

BD

AP

BM

NC

ND

EB

MN

IE

00

MC

BD

HD

HF

FB

CO

MJ

CO

PJ

Fl

IL

3010 data 251,

3020 data 165,

3030 data 174,

3040 data 166,

1,

76.

72,

28,

2,

21

2,

9,

14,

3050 data

3060 data

3070 data

3080 data

3090 data

3100 data 201

3110 data 144

3120 data 6

3130 data 17

3140 data 202

3150 data 208

3160 data 160

3170 data 199

3180 data 15

3190 data 248,

3200 data 10

3210 data 192,

3220 data 192,

3230 data 28,

3240 data

3250 data

3260 data

3270 data

3280 data 199

3290 data 28

3300 data 201

3310 data 192

3320 data 32

3330 data 208

3340 data 208

3350 data 251

3360 data 0

3370 data 252

3380 data 96

3390 data 3

3400 data 101

3410 data 165

3420 data 144

3430 data 174

3440 data 165

3450 data 5

3460 data 199

3470 data 16

3480 data

3490 data

3500 data

3510 data

3520 data

3530 data

3540 data

3550 data 247,

3560 data 208,

3570 data 72,

3580 data 173,

3590 data 165,

3600 data 1

3610 data 9,

3620 data 0

3630 data 193

3640 data 128

3650 data 0

6.

51.

31,

23.

6,

11.

6.

17,

63,

71,

5,

6,

6,

5,

96,

38,252,

252, 105,

32, 158,

182, 170,

96, 177,

60, 198,

165,215,

201, 96,

41, 63,

127,208,

125, 76,

32,219,

208, 11,

208, 250,

8, 169,

199,201,

76, 160,

221,205,

76, 160,

10, 10,

48,

32.

30.

22,

5,

10,

208,

201,

199,202,

18,208,

76, 160,

28, 199,

2,198,

2, 198,

233, 8,

133,252,

233, 224,

230, 253,

208, 2,

251, 133,

251,201,

3, 32,

75, 192,

199,160,

145,251,

200, 173,

8, 173,

192, 13,

199, 104,

169, 0,

6, 5,

24, 173,

173, 72,

32, 253,

183, 166,

3, 162,

192, 162,

14,220,

1, 41,

9, 4,

1, 141,

240, 15,

141,245,

44, 169,

0

6,251, 38

224, 133,252

173, 32, 143

160, 0,232

34, 32, 73

133,215, 138

48, 17,201

144, 4, 41

76, 110, 199

2,169, 94

108, 199,201

199, 76,160

162, 40, 32

76, 160, 199

1,141, 75

29,208, 6

199,162, 3

198,240, 6

199, 189,221

141, 62,192

13, 61,192

76, 160

28

25

4

13

32,216, 199

208, 11,162

208.250, 76

8, 169, 0

199,201, 29

76, 160, 199

254, 198,253

4,198, 3

133.251, 165

165,251,201

176, 3, 32

208, 2,230

230, 4, 24

251,144, 2

64, 165,252

28, 199, 96

240, 2, 9

7, 32,230

136, 16,249

61,192, 44

64, 192, 145

62, 192, 145

168, 104, 170

6, 6

6, 6

197,

16,

24,

0,

12,

10

53

62

5

1

1

8

133

38

71 192, 101

192,101, 6

174, 32,138

21,208, 9

208, 44,162

0,142, 71

41,254, 141

251,133, 1

133, 1,173

14,220, 96

32, 110, 192

192, 142,249

0,141, 76

252, 24

32, 253

173, 32

202, 208

198,200

72, 152

32, 144

223, 208

41, 127

201, 32

14,208

199,201

71, 199

201, 18

192, 76

32, 71

44, 162

202, 16

198,

44,

141,

199,

31,

27,

3,

15,201

76,160

40, 32

160, 199

141, 75

208, 143

165,253

165, 3

56, 165

252, 233

0, 165

71. 199

254, 230

169, 8

230, 252

233, 255

9, 64

128, 32

199, 177

32, 245

53, 192

253, 173

3, 32

96, 133

5, 38

5, 38

5, 133

133, 6

173, 32

165, 20

216, 142

192, 96

14,220

96, 165

14,220

32, 121

32, 121

192, 169

192, 96

The Transactor 34 Volume 6, Issue O4

Microsecond Timer

For The Commodore 64

Zoltan Szepesi

Pittsburgh, PA

Count microseconds for up to 70 minutes

I. Introduction.

The Commodore 64 computer provides four different ways for

the measurement of elapsed time intervals. These methods can

be used to measure time intervals of limited values and of

limited precision. The first three methods are useful only for

longer time intervals, up to 12 hours. However, the fourth

method, which is the subject of this paper, enables one to

measure down to 1 microsecond (one millionth of a second)

and up to 70 minutes. The following are the four methods in

question:

1. The Tl$ software clock, which gives the time in Hours,

Minutes and Seconds (as HHMMSS). It is useful when a

precision of + or - one second is satisfactory.

2. The TI jiffy clock with a precision of + or - 1/60 second

(16.67 milliseconds).

3. The C-64 has 2 Complex Interface Adapters (CIA#1 and

CIA#2, type 6526). Both have a time of day (TOD) clock with

a one tenth of a second counter, whence its precision is + or

- 100ms (ms = millisecond). This clock keeps the time more

accurately than the software clock (TI$ or TI), which is

disturbed when I/O operations disrupt the interrupt routine

or when the IRQ vector is changed.

4. Both CIA-s have two general purpose timers (A and B) with

an F= 1.022730 Mh (Megahertz = 1 million Hertz) clock (in

Europe the frequency is F = 0.985250 Mh, tuned to the PAL

TV system). Hence, we have (in the USA) a

T = 0.9777751704 microsecond (millionth of a second)

counter. Both timers have 2 bytes, therefore the total time

interval could be T*256*256 = 64.079 ms on one timer.

However, Timer B can be linked to Timer A, so that it counts

the number of times Timer A goes to zero. This way we have

a 4 byte (32 bits) timer, that can count from 1 microsecond up

to 70 minutes.

II. The ML Program.

Listing 1. is the source listing of the ML program. It starts at

address $9F00 and takes 65 + 4 bytes. (You could choose

another location for this program, e.g. the cassette I/O buffer,

or some part of the $C000 to $CFFF address, if it is not used for

other ML routine). The program is composed of two parts. The

first part (START) controls the starting of the clocks, the second

part (STOP) stops the clocks and stores their values in the 4

bytes following the ML program. We use the CIA*2 timers

because they are more independent from the general operating

system than the clocks of the CIA*1.

Timer A can be found at addresses $DD04-$DD05 (56580-

56581 decimal), low byte first, high byte second. Timer B is at

$DD06-$DD07. These timers count down from $FF (255) to 0.

Therefore, we first store the value *$FF into the 4 bytes of the 2

timers (at addresses $9F00 to $9F0D). For starting Timer A, we

have to store a value of *1 in location $DD0E, the Control

Register A (TCRA). Timer B will start by storing #1 in location

$DD0F, Control Register B (TCRB). Since we want to link Timer

B to Timer A, to ensure that Timer B only counts when Timer A

counts down to 0, we should set bit 6 of TCRB to 1, and its bit 5

to 0. This results in $40. Adding the starting byte 1 to this gives

$41, of which is stored in location $DD0F.

By setting location $DD0F before $DD0E, we set the start of the

counting to the end of the START routine. If we had started

Timer A first, the counting would have started 2 + 4 cycles

before the end of the START program, causing a 5.87 microsec

ond addition to the time measured. The RTS at the end returns

the program back to Basic, where our Basic program can SYS

up the the STOP routine.

The STOP routine starts at address $9F20 (7 bytes are left free

for possible ML commands). Storing *0 into the control regis

ters stops the counting. Here Timer A get stopped first. As you

see, we have 6 cycles until the 0 is stored at TCRA. This takes

5.87 microseconds. After storing #0 at TCRB too, the program

saves the 4 bytes of the timers at 4 locations after the end of the

STOP routine (at $9F41-$9F44), from where this data can be

read out, and the execution time can be calculated in Basic.

The Transactor 35 Volume 6, Issue O4

III. The BASIC Program.

Listing 2 is a Basic program/Data loader for starting the timer

with a SYS command (end of line 150) for the START routine

address, followed by stopping it by a SYS command (start of line

170) again for the STOP routine address. After, the program

reads out the clock data and calculates the counting time in

microseconds (lines 190 to 230). The following statements (240

to 280) calculate how many minutes, seconds, milliseconds,

and microseconds are in this time, and print out the ones with

an integer value greater than zero.

At the start of the program we also display the time measured

by the TI$ software clock. This could serve to see that our

program is correct, when the time interval measured is higher

than several seconds.

If you want to time a Basic command or program, write it into

lines 160 to 169 (renumber accordingly). Or, if it is a longer

program, you can place it in a subroutine (lines 440 up - above

the data statements), and enter:

160GOSUB440

At the end of the subroutine, use a RETURN. (First entering:

440 RETURN, you can measure how much time it takes the

GOSUB +RETURN + SYS commands to be executed - about

8ms), and you can subtract this time from the total measured

time).

If we write JMP STOP (4C 20 9F) at address $9F18, we measure

8.8 microseconds. This is just 3 cycles more than the previous

time and truly the JMP command needs 3 cycles.

Instead of JMP, put JSR STOP (20 20 9F) at address $9F18, and

you will measure 11.73 microseconds, what it takes to execute

12 cycles. And JSR needs 6 cycles, 3 more than the JMP

command.

For a longer ML program we only need to write in:

JSR START (20 00 9F)

where we want to start the timing and:

JSR STOP (20 20 9F)

where we want to stop the timing. After the program ends we

can read out the execution time with the Basic program by

entering:

RUN 170

V. Conclusion.

As we see from the above data, this program measures very

precisely the execution time, and can be used easily in Basic

and ML programs as well.

IV. Measurement Data.

I want to show a few simple examples for the use of this

program, and give some measured data.

We can measure the execution time of a simple Basic Loop

program as in line 160 of Listing 2. The number of loops (N) is

defined in line 140. If we first delete line 160, we will measure

the time it takes to execute the SYS command of statement 170,

which is about 6 ms. This value should be subtracted from the

measured time of the examined Basic program. Measuring the

loop of line 160, we get about T= 10.6-6 = 4.6 ms with N = l,

T=114 msfor N = 100 and T= 113.705 s for N = 100000. We

can also see that the execution time is 10 to 30% longer when

we write out the variable I after NEXT. Furthermore, we see

that when we repeat the program, the measured numbers are

not exactly the same; they can differ by several percent (also,

they are different in the various C-64's, depending on the ROM

revision it comes with).

In the ML program we can put the STOP routine immediately

after the START routine at address $9F18 and expect to mea

sure the time for 6 cycles (LDA *0: 2 cycles and STA TCRA: 4

cycles). The program gives 5.87 microseconds, which is exactly

6*0.97777517.

The Transactor 36 Volume 6, Issue O4

Listing 1: ML Source Code Listing 2: Basic Demo Plus Data Loader

EL

PI

LE

NH

EH

MA

EB

BC

PE

FN

IH

IE

HI

MJ

MK

LL

KH

Kl

KJ

KK

CK

MJ

NP

GO

MP

MP

CB

FK

KP

DH

KA

Gl

KB

BD

Cl

ID

CL

BM

KF

IG

CF

GL

CH

LM

MH

AO

MJ

FP

AD

EM

ED

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

rem save" 0:timer64.pal" ,8

rem time measurements from

rem 1 microsecond to 70 minutes

rem by zoltan szepesi

rem 2611 saybrook drive

rem Pittsburgh,pa 15235

open 4,8,1," 0:timer64.obj"

sys(700)

.opt o4

*=$9f00

talo

tblo

tcra

tcrb

timel

time2 =

time3

time4 =

J

start

Ida

sta

sta

sta

sta

Ida

sta

Ida

sta

rts

.bytSea, Sea

.byt$ea, Sea

;

stop

Ida

sta

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

rts

.end

$ddO4 ; timer a

$ddO6 ; timer b

SddOe ; control register a

SddOf ; control register b

* + $41

* + $42

*+$43

* + $44

*

#$ff

talo

talo +1

tblo

tblo +1

#$41

tcrb

#1

tcra

Sea

Sea, Sea

*

#0

tcra

tcrb

talo

timel

talo +1

time2

tblo

time3

tblo +1

time4

EL

NL

KG

CD

MH

EG

CB

IB

130

140

150

160

170

BO

OK

LG

GJ

GH

IL

JG

GG

IM

AG

JE

IJ

EN

PF

NF

DF

MB

HD

100

110

120

180

PA

MP

OA

AC

EA

IE

AL

AP

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

rem save" 0:timer64.bas" ,8

rem microsecond to 70 minute timer by

z.szepesi (c) 1985.

poke 55,255: poke 56,158: clr: rem set top

of basic below ml.

gosub 310: rem move code into position

n = 1: rem adjust this value for demo

print "timing started at "ti$" (hhmmss)"

: sys40704

for i = 1 to n: next

sys40736: print " timing finished at

"ti$" (hhmmss)"

a1 =.97777517: a2 = 256*a1: a3 = 256*a2

:a4 = 256*a3

t1 =(255-peek(40769))*a1

t2 = (255-peek(40770))*a2

t3 = (255-peek(40771))*a3

t4 = (255-peek(40772))*a4

t = t1 + t2 + t3 + t4: printchr$(17)"**execution

time= "chr$(145)

ml =t/(6e + 7): i1 =int(m1): if i1>0 then

printspc(17)i1 " minute"

m2 = (m1-i1)*60: i2 = int(m2): if i2>0 then

printspc(17)i2" second"

m3 = (m2-i2)*1000: i3 = int(m3): if i3>0 then

printspc(17)i3" millisecond"

m4 = (m3-i3)*1000: i4 = int(m4): if i4>0 then

print spc(17) int(m4*100 + .5)/100;

print " microsecond": end

rem ** timer64 code at $9f00 **

for j = 40704 to 40768: read x: poke j,x

: ch = ch + x: next

if ch<>8867 then print " checksum error": end

return

data 169,

data 141,

data 141,

data 96,

data 169,

data 173,

data 221,

data 67,

data 96

255,141

6,221

15,221

234,234

0, 141

4,221

141, 66

159, 173

4,221,

141, 7,

169, 1,

234, 234,

14,221,

141, 65,

159, 173,

7,221,

141, 5,221

221,169, 65

141, 14,221

234,234, 234

141, 15,221

159,173, 5

6,221, 141

141, 68,159

The Transactor 37 Volume 6, Issue O4

Projectile Motion
Karl J. Hildon and Chris Zamara

The following was originally presented in Transactor

Volume 5, Issue 01, back before our newstand distri

bution days. It makes several references to "80

columns'' but is readily portable to 40 columns, the 20,

and the 64.

Once you understand the techniques of putting objects on your

screen, you'll want to get them moving. After all, what good is a

sprite if it doesn't do anything. In this article we'll discuss some

simple motion techniques using the laws of physics and me

chanics.

Consider the screen of your computer as a 2-dimensional

plane. To make an object move in 2 dimensions, you simply

need supply a series of X and Y coordinates. Coordinate X

usually represents horizontal position and Y is usually vertical

position. Constantly changing the combination of these two

positions will result in the illusion of motion. Calculating X and

Y is a task determined by what pattern of motion you desire.

Calculating the path of a projectile can be done in one of two

ways: the hard way and the easy way. The hard way would be

probably end up as a collage of imaginative calculations that

somehow produce a fairly accurate simulation. The easy way is

the logical way. In any book of physics or mechanics you'll find

just about every formula for plotting the path of an object that is

directly affected by a forward velocity, an upward velocity, and

gravity - a projectile.

Forward Velocity

Every moving object on Earth has a forward velocity. Even if it

only goes straight up, then straight down, it has a forward

velocity. Of course this would be a forward velocity of zero.

Distance = Velocity * Time

Velocity is represented as some unit of distance, per some unit

of time (eg. 10 feet/second). Multiplying by time cancels the

time units. On the computer, the units of distance will be a

column on the screen or an X-coordinate for a sprite.

The units of time could be obtained from the internal clock, but

this imposes certain unnecessary complications. For one, the

lowest unit is seconds which is an awfully long time unless the

velocity too is very low. (We could use the TOD clock in the CIA

but that would limit this demonstration to CIA equipped ma

chines and using TI isn't all too portable either) Another, when

the seconds reach 59, it is up to the programmer to add the

minutes times 60 which steals processor time we may need.

There are probably more but the solution is simple: simulate

time with a simple FOR/NEXT loop. This offers several syn

thetic advantages. You can express time in any unit such as

tenths of seconds or even 3rds of seconds if you wish. Also, this

avoids the potential for losing time since the clock will not

increment until you have used the current "value" of time for

your calculation, and subsequently used the results of that

calculation for the plot. Further, simulated time can be gener

ated within any chosen limits to suit the size and scale of the

plotting surface. And unlike the clock, simulated time can be

frozen.

So far our formula will look like this:

100 fv = 10 : rem forward velocity

120fort = 0to 159 step .2

130 x = fv M

160 gosub 8000 : rem plot a point

180 next

The subroutine at 8000 is a plotting routine by Paul Higginbot-

tom from a previous Transactor article. Note: please see Pro-

The Transactor 38 Volume 6, Issue O4

gram 1 at the end of the article - the programs presented in this

text are meant to show the mechanics of our objective. Pro

gram 2 and 3 are the same simulation using sprites. The line

numbers are different and the task of plotting is much simpler,

but the mechanics are identical.

As you can see, time will be incremented from 0 to 159 in steps

of 0.2, simulating a fifth of a second clock. "0 to 159" reflects

the number of "half columns" available to the quarter-square

plotting routine on an 80 column screen. The X coordinate is

calculated and delivered to a subroutine that plots the coordi

nate on the screen, or the X-coordinate of sprite 0.

But no upward velocity has been given. In this case the

projectile will simply move horizontally until the clock stops.

Upward Velocity and Gravity

This is the next element of the path of a projectile. It too is

represented in distance per time unit, but unlike forward

velocity, it is affected by the phenomena of Gravity.

Gravity is a unit of acceleration. When you drop an object, it

starts with a velocity of zero and accelerates. Gravity is usually

given as -32.2 feet per second squared. Different locations on

Earth have gravitational constants slightly different than this

depending on height above/below sea level, etc., but we'll use

the natural constant for now. Further, if you go up high enough

to drop your object, it will accelerate to a maximum velocity of

about 119 mph, but we won't be doing that either.

The formula for our Y coordinate becomes the upward velocity

multiplied by time, minus the effect of gravitational pull:

Y = UV*T-

The program becomes:

100 fv = 10 : rem forward velocity

110 uv = 45 : rem upward velocity

120fort = 0to 159 step .2

130x = fv * t

140y = 5 + uv * t-.5 * 32.2 * t!2

160 gosub 8000 : rem plot a point

180 next

The value 5 at the beginning of line 140 is an initial height

which gives the projectile a "floor" to bounce on. This brings us

to the next consideration.

Impact and Decaying Velocity

As you well know, what goes up must come down. When our

object hits the Earth, it will bounce, unless it's made of wet

cement. Upon impact the object loses some of its initial upward

velocity. Technically this is referred to as decay or a damping

factor. However, our program poses another problem in its

present form.

When the object impacts, there is a brief moment when it

comes to a complete stop. Logically, time has become zero

again and the formula repeats itself at the new decayed upward

velocity. But our program shows time always incrementing.

Therefore we must have a method of resetting the clock when

the new cycle begins. The FOR/NEXT loop is the target for our

next modification. It will now be used to represent time in the

horizontal or X direction only. Vertical time will be stored in the

variable T so we can reset Y time without resetting X time. This

is not cheating - it merely makes the task simpler.

We need also know when the object impacts. Inotherwords,

where is ground. Since we started from an initial height of 5,

we'll say that ground is at 5. So when our calculation for Y

yields a result less than 5, we know the object has bounced.

This is also the point at which the decay takes effect. In this

example, only upward velocity will decay - the forward veloc

ity of a bouncing object is shown to be fairly constant, although

you could impose damping on it too if you wish. The program

becomes:

100 fv = 2 : rem forward velocity

110 uv = 45 : rem upward velocity

120 for j = 0 to 159

130 x = fv * j

140 y = 5 + uv * t- .5 * 32.2 * tt2

150 if y<5 then y = 5 : t = 0 : uv = uv.9

160 gosub 8000 : rem plot a point

170 t = t + .2

180 next

Notice that FV has been changed to 2 in line 100. This simply

allows more cycles on the screen to show the effect of impact.

Line 150 says if Y is less than 5 then Y equals 5. This little bit of

cheating makes the ball bounce at the same vertical spot on the

screen each time. Time is reset to zero and upward velocity is

reduced by 10 percent.

Summary

With the program now in its final form, several possibilities

exist. You can vary gravity slightly to show the effects of impact

at different spots on Earth, or vary it a lot to simulate gravity on

other planets. Your starting point does not necessarily have to

be the same as the point of impact when the object comes down

- you might project your object from some much higher

elevation (eg. a cliff). Also, the object might not be the bouncing

type - exploding objects don't usually bounce. If your object is

the type to bounce, try different decay values for objects made

from different materials. Depending on how hard they bounce

The Transactor 39 Volume 6, Issue O4

might affect the forward velocity too - somethinc

about.

to think

Remember one thing most - computer simulations are all too

often a task of logical thinking. The actions and reactions of a

real physical object are usually the best way to simulate that

object. Think first, program later.

Program 1 Portability Notes

The program has been set up for 80 column machines. Line

9010 prints two HOMEs to clear any windows, a clear screen,

followed by a set graphics mode - CHR$(142). For 40 column

PET/CBMs simply change LN = 80 to LN = 40 in line 9050.

As it stands, the program will leave a trail along the path of the

projectile. To remove the trail, add:

8005 poke bs + p, 32

Line 8005 will poke a space into the previous POKE position

thus erasing whatever was there. This is all that is required for

all machine models.

VIC 20, Commodore 64, and Cl 28 users (in 64 mode) will need

to make changes in the setup subroutine at 9000.

C64

Change

Add

9010 print 0
90501n = 40:bs=1024 + 24*ln

9055cs = 55296 + 24*ln

8025 poke cs + p, 1

Line 8025 is necessary for Kernal 2 C64s. POKing to the screen

must be followed by a simultaneous POKE to colour memory or

the characters will not show up.

VIC20

Change: 9010 print "0"
:90501n = 22:bs=7680 + 22*ln:...

Add :9055cs = 38400 + 22*ln

: 8025 poke cs + p, 2

VIC20 with expansion

Change: 9010 print "0"
:90501n = 22:bs = 4096 + 22*ln:. . .

Add :9055cs = 37888 + 22*ln

: 8025 poke cs + p, 2

Since VIC 20 screens have only 23 lines, it will also be

necessary to adjust the number 50 at the end of lines 410 and

430 to 46 (number of lines times 2). You will also nedd to

change the first two numbers in the calculation for Y2 at lines

230 and 330. Start with:

Warning: The plotting routine does not check to see if the

POKE value is outside of screen memory. The potential for

POKing into BASIC text space exists! Make sure you SAVE your

program before trying new functions.

All the plotting efforts are performed by the two subroutines at

3000 and 8000. Subroutine 3000 plots a line from XI,Yl to

X2.Y2 by using subroutine 8000 to plot the points between the

two coordinate pairs. When sub 8000 goes to plot a point, it

must first determine if the target character space already

contains a graphic. If it does, the new point must not interfere

with the existing point in that space.

Question: How would you make the ball bounce off the right

hand edge of the screen (ie. a wall). Hint: if x>79 then x = 160-

x. UseFV = 7:UV = 55.

C128 Notes

C128 users (in 128 mode) will have trouble adapting just about

any program that POKEs to the screen. If preliminary informa

tion is correct, it seems the screen from the 128 is not memory

addressable with just a POKE. More in a future Transactor.

Program 1

50 gosub 9000

500 rem * * * * bouncing ball * * * *

510 fv = 2 : uv = 55 : y1 = 1 : g = -32.2 : dc = .9

515 rem try fv = 15 : uv = 45. also fv = 0.2

520forj = 0to(ln*2-1)/fv

530x = fv*j

540 y = y1 + uv * t + .5*g * (tT2)

550 if y<y1 then y = y1 : t = 0 : uv = uv*dc

560 gosub 8000 : rem plot a point

570t = t+.2

580 next

590 end

8000 rem ********** plot x, y **********

8010 tx = int(x + ir):ty = int(y + ir) :sq = am(tx and am, ty and am)

8020 p = tx/dv-int(ty/dv)*ln : poke bs + p, c(i(peek(p + bs))orsq)

8030 return

9000rem ********** setup **********

9010 print "|^"chr$(142);

9020dimc(15), i(255), am(1,1)

9030 for i = 0 to 15 : read c(i): i(c(i)) = i: next

9040 for i = 0to1 : for j = 0to1 : am(j,i) = (j + 1)*4ti: nextj.i

9050 In = 80: bs = 32768 +24*ln :dv = 2:am = 1 : ir = .5

9060 data 32,123,108, 98,126, 97,127,252

9070 data 124, 255, 225, 254, 226, 236, 251, 160

9080 return

Y2 = 23 + 22 * . . .

The Transactor 4O Volume 6, Issue O4

Program 2 and 3 Notes Program 3

Chris ias eliminated the FOR/NEXT loop from the procedure.

Although distance is calculated differently, the result is the

same. The FOR/NEXT loop incorporates screen boundary

information. Here, XMAX is tested for the screen limits - once

again, same result.

Program 2 comes in two parts. Part 1 (lines 10 to 30 and the

data) rnerely creates a ball sprite in the cassette buffer. Enthusi-

asts might consider incorporating several ball sizes to add a

depth dimension. A perspective factor would affect not only the

size of the ball, but the ground level, the maximum X-

coordinate, and the forward velocity as seen by the observer.

Program 3 is identical, except it creates the sprite using a little

Zamara synthesis.

Program 2

ML

MK

OB

HM

ON

JC

DD

AB

NG

DA

MP

GH

CO

Fl

LA

MN

BO

NG

01

KE

KH

MD

DE

IH

HK

MN

OG

NN

MG

Jl

DC

JC

DE

KO

JM

EF

CN

10 rem* create ball sprite at 896 *

20 for i = 896to959:read a:poke i,a:next

30 end

1000 data 0, 0, 0, 0, 0, 0, 3,254

1010 data 0, 15,255,128, 63,255,224, 63

1020 data 255, 224, 127,255,240, 127,255,240

1030 data 127, 255, 240, 127,255,240, 127,255

1040 data 240, 127,255,240, 127,255,240, 63

1050 data 255, 224, 63,255,224, 15,255,128

1060 data 3,254, 0, 0, 0, 0, 0, 0

1070 data 0, 0, 0, 0, 0, 0, 0, 0

100 rem* bouncing ball simulation *

110:

120 ymax = 233: xmax = 344

130 fv = 1 :rem forward velocity

GH

CO

Nl

NE

MN

BO

EG

Ol

KE

KH

MD

GG

AF

HF

Ml

LL

AP

Cl

Ml

LP

Kl

HK

BE

HE

BG

IA

OM

CH

AP

KP

NO

MP

FG

OD

EN

140 uv= 100 :rem initial upward velocity

150 y1 = 0 : rem y start position

160x = 25 : rem x start position

170 g = -32.2 :rem gravity in feet/s/s

180 dc = .9 :rem elasticity of "ball"

1901 = 0 : rem time starts at 0

200:

210 vie = 53248 :rem vie video chip

220 poke vie+ 21,1 :rem enable sprite 0

230 poke 2040,14 :rem sprite shape

240 sx = vie: sy = vie + 1: xhi = vie + 16

250:

260 rem— main loop —

270x = x + fv

280y = y1 + uv*t +.5*g*(t*t)

290 if y<y1 then y = y1:t = 0:uv = uv*dc

300 poke sx,x and 255:poke xhi,-(x>256)

310 poke sy,ymax-y

320t = t + .2

330 if x< = xmax then 270

340 end

350:

100 rem* bouncing ball simulation *

110:

120 ymax = 237: xmax = 327

130fv = 1.4 :rem forward velocity

140 uv = 100 :rem initial upward velocity

150y1=0 : rem y start position

160x = 10 : rem x start position

170g = -32.2 :rem gravity in feet/s/s

180 dc = .9 :rem elasticity of "ball"

1901 = 0 : rem time starts at 0

200:

210 gosub410 'create sprite shape

220:

230 vie = 53248 :rem vie video chip

240 poke vie+ 21,1 :rem enable sprite 0

250 poke 2040,14 :rem sprite shape

260 sx = vie: sy = vie + 1: xhi = vie + 16

270:

280:

290 rem— main loop —

300 x = x + fv

310 y = y1 + uv*t +.5*g*(t*t)

320 if y<y1 then y = y1:t = 0:uv = uv*dc

330 poke sx,x and 255:poke xhi,-(x>256)

340 poke sy,ymax-y

350t = t+.2

360 if x< = xmax then 300

370 end

380:

390:

400 rem** create sprite shape at 896 **

410 fori = 896to959:pokei,0:next

420fori = 925to935step3:reada:pokei,a:next

430 data 24,126,126,24

440 return

The Transactor 41 Volume 6, Issue O4

SID's Programmable Filter Karel Vander Lugt

Sioux Falls, SD

the filter in one SID chip may not be identical to that in another

Introduction

In recent years many articles and several books (ref 1-3) have

been written on programming Commodore's SID (Sound Interface

Device) chip. These, along with Commodore's Reference Guide

(ref 4), do a good job of explaining most of the features of this

versatile chip. However, there is one aspect of the 6581 chip which

has received very little attention - its programmable filter. This is

surprising since in reference 4 we read that, "The filter is, perhaps,

the most important element in SID as it allows the generation of

complex tone colors via subtractive synthesis."

Since the information needed to intelligently program SID's filter

could not be found in the existing literature, the author conducted

a series of tests. The object of these tests was to determine the exact

effect of sending particular numbers to the four registers control

ling SID's filter. This article summarizes the results and is intended

to enable programmers to better utilize the full potential of the SID

chip. Unfortunately, it was also found that the filter in one SID chip

is not identical to that in another. This is discussed further in the

article.

Testing The Filter

The equipment used to study SID's filter included an audio

oscillator, a digital voltmeter, a frequency counter, a dual trace

oscilloscope and several Commodore 64 computers. An external

oscillator was used rather than one of the three internal voices

because the internal voices only go up to 4 kHz and do not produce

a pure sine wave.

goes through the filter. The lower three bits of register 23 remain

off since the internal voices are not used. The volume is set to

maximum with the lower four bits of register 24. The filter mode

(low pass, high pass, or band pass) is selected with bits 4 through 6

of register 24.

After the filter was programmed for a particular cutoff frequency,

resonance and mode, the RMS output voltage as a function of the

input frequency was obtained. About 30 readings, ranging from 10

Hz to 20 kHz, were taken for each set of data.

For each of the three filter modes, several sets of data were

obtained using different numbers in SID's registers controlling the

cutoff frequency and the resonance. Each set of data was plotted

with the y-axis as the normalized output in decibels and the x-axis

as the log of the frequency. The results are discussed in the next

section.

Results

A. The Three Filter Modes

An ideal low pass filter passes all frequencies below the cutoff

frequency and severely attenuates all those above it. A typical

response for SID's low pass filter is shown in Figure 1. The y-axis is

the output signal in decibels (y = 20*log(Vout/Vmax)). The x-axis

is the frequency of the input signal, also on a logarithmic scale. The

resonance was maximum (15) for the upper curve and minimum

(0) for the lower curve. In both cases, the number 800 was placed

in register 21-22.

The output of the oscillator, which

is maintained at a constant ampli

tude, is connected to the Audio

Input of the 5-Pin Audio/Video

cable. The voltmeter reads the

RMS value of the Audio Output,

which is the signal going to the

monitor. The frequency counter

provides accurate frequency mea

surements and the oscilloscope

permits simultaneous viewing of

the input and output signals.

The first step in the procedure is to

POKE a selected set of numbers

into the four filter control registers

on the SID chip. An 11-bit number

in register 21-22 selects a cutoff

frequency. The upper half of regis

ter 23 selects a resonance. Bit 3 of

register 23 is left on so that the

external signal from the oscillator

dB

-10

-10

-3 0

■ ■

■■■■■ BE

-^

m ■

\
\
1
1

■^—1—
\
\ 1
\ I
\ 1
\\\
Ml
11
\\

\\
\\
jt
\\
w
v
\i
n\\

—KV
i\r1 VI

....

111 1II UK

FIE(IE H CV, II.

Figure 1: The SID filter in its low pass mode. The upper curve is for maximum

resonance(15) and the lower curve is for minimum resonance(O).

The Transactor 42 Volume 6, Issue O4

The cutoff frequency is determined by

the -3dB point, that is, the frequency

at which the signal is attenuated to

70% of its maximum value. For this

particular C-64, a setting of 800 in

register 21-22 produces a low pass

cutoff frequency of 1840 Hz when the

resonance is 15 and a low pass cutoff

frequency of 1360 Hz when the reso

nance is zero.

With the resonance set at zero, fre

quencies above the cutoff point are

attenuated at a rate of approximately

14dB per octave. As seen from the

upper curve, the rolloff rate is even

higher for a resonance of 15.

Figure 2 illustrates a typical response

for SID's high pass mode. The upper

curve is for a resonance of 15 and the

lower curve is for a resonance of zero.

As before, the number placed in regis

ter 21-22 was 800. The -3dB cutoff

frequency is 1115 Hz for the upper

curve and 865 Hz for the lower curve.

The rate of attenuation below the cut

off point is approximately 8dB per

octave.

A typical response for the band pass

mode is shown in Figure 3. The upper

curve is for a resonance of 15. The low

frequency cutoff point is 890 Hz and

the high frequency point is 1900 Hz.

Thus the bandwidth is 1010 Hz. The

center frequency (the square root of

the product of the two cutoff frequen

cies) is 1300 Hz. The Q value (center

frequency/bandwidth) is 1.29.

When the resonance is set to zero, the

peak is broader and the cutoff points

shift to lower frequencies. This is

shown by the lower curve in Figure 3.

With the resonance at zero, the low

frequency cutoff is 520 Hz and the

high frequency cutoff is 1910 Hz. The

bandwidth is 1390 Hz. The center

frequency is 997 Hz and the Q value is

reduced to 0.72.

0

dB

10

10

30J

■

■

■ Mfc^lH ■■*■■

p. W
am — ■

A

,i £

-h

1 y

Jr/
A
/\
Y

-

f/

/ /

TTT

9
7"

*

■ "7"\

f

^. V,

■ ■ l^WM

~ia

pr-

MM

■ a -

i—n

10 HI III

FIE QV E N C», IZ.

Ill

Figure 2: The SID filler in its high pass mode. The upper curve is for

maximum resonance and the lower curve is for minimum resonance.

o

dB

-1 0

-10

-3 0

■

MHBM ■l ■ ■

j

Jr

t\

r

V

/

< \
\

v

Vv 1

--

L

L

V
\

-■-\-
II HI IK III

FIE QBE N CT, II.

Figure 3: The SID filter in the band pass mode. Again, the upper curve

is for a resonance of 15 while the lower curve is for a resonance ofO.

In both cases the rate of attenuation is approximately 4dB per

octave on the low frequency side and about 7dB per octave at high

frequencies. With the resonance at 15, the rolloff rate near the

upper cutoff point is considerably higher, about 25dB per octave.

B. The Cutoff Frequency

If one wants to use SID's filter to modify sounds, it is important to

know how the cutoff frequency can be adjusted with software. The

literature suggests the cutoff frequency can be adjusted between

approximately 30 Hz and 12 kHz by proper choice of the number

sent to register 21 -22. Some sources (ref 5) state the relationship is

linear while others (ref 2) imply it is exponential. The results of this

study indicate the relationship is neither linear nor exponential

and that the range varies greatly from one SID chip to another.

Figure 4 shows, for one particular Commodore 64, how the -3dB

point varies with the setting of register 21-22. The resonance is set

at zero. The upper curve is for the low pass mode and the lower

curve is for the high pass mode. Over the range of register 21 -22 (0

The Transactor 43 Volume 6, Issue O4

to 2047) the low pass cutoff point varies from 78 Hz to 7595 Hz.

The high pass cutoff point varies from 55 Hz to 4935 Hz. In either

case, the relationship is not linear over the entire range. Below a

setting of 800 the curves are approximately parabolic and above

800 they are approximately linear, but with different slopes and

intercepts. Using a curve fitting program it was found that the data

can be fit reasonably well with cubic polynomials.

Unfortunately, when the same series of tests was done using a

different C-64, a different result was obtained. In fact, there was

considerable variation among the several C-64s used. Figure 5

illustrates how the high pass cutoff point varies with the setting of

register 21-22 for three different Commodore 64s. The variation is

disappointingly large. For example, in one computer (lower curve)

a setting of 1500 in register 21-22 produces a high pass cutoff

frequency of 3365 Hz while in another computer (upper curve) the

same setting produces a high pass cutoff frequency of 11,000 Hz.

The low pass and band pass cutoff frequencies also exhibit these

large variations.

Conclusion

The SID chip is often touted for its excellent sound producing

capabilities. Much of the praise is deserved. Commodore's incor

poration of a programmable filter into the chip is laudable; how

ever, until more consistency can be obtained in the setting of the

cutoff frequencies via register 21-22, the filter is of limited use to

programmers.

Dr. Vander Lugt can be contacted at the following address:

Dr. K. Vander Lugt

Professor of Physics

Augustana College

Sioux Falls, SD 57197

(phone 605 336-4911)

15

II "

5 -

500 tOOt 1500

REGISTER 21-22

1000 510 1000 1 SOI

REGISTER 21-22

1001

Figure 4: Relationship between cutoff frequency and the number

POKEd to SID s cutoff frequency register. The upper curve is for the

low pass mode and the lower curve is for the high pass mode. The

cutoffpoints for the band pass mode fall between these curves. The

data in Figures 1,2 and 3 was taken with the number 800 POKEd

into SID register 21-22.

Figure 5: Relationship between high pass cutoff frequency and

register setting for three different Commodore 64s. Unfortunately,

the variation among SID filters is large.

REFERENCES

1. Vogel, James and Nevin B. Scrimshaw, "The Commodore 64

Music Book" (Boston,MA:Birkhauser).

2. Heilborn, John, "COMPUTEI's Beginner's Guide to Commodore

64 Sound" (Greensboro,NC:COMPUTE! Publications,1984)ppl54.

3. Behrendt, Bill L, "Music and Sound for the Commodore 64"

(EnglewoodCliffs,NJ:Prentice-Hall,1983).

4. "Commodore 64 Programmer's Reference Guide" (Commodore

Business Machines, 1982).

5. Leemon, Sheldon, "Mapping the Commodore 64" (Greens

boro,NC:COMPUTE! Publications, 1984)pp 166.

The Transactor 44 Volume 6, Issue O4

The Compressor:

A High-Resolution

Picture Compressor/Decompressor
Chris Zamara, Technical Editor

Store your high-res pictures in less than half the usual disk space!

High-res pictures are nice to look at, but they eat up lots of disk

space - to the tune of 8,000 bytes per picture, or 32 disk blocks.

That can be a problem if you're trying to write a game with

many different screens or an adventure with dozens of scenes -

you'll quickly reach the 664 block limit of a 1541 disk! Not only

that, but loading in a picture from the lumbering 1541 can take

way too long - about 20 seconds. As you may have guessed by

now, you're about to find a way out of both these problems:

THE COMPRESSOR.

The Compressor will compress your pictures (either hi-res or

multi-colour) by taking advantage of byte repetitions. This

occurs often in pictures, for example when a large area is one

solid colour, creating scores of consecutive zeroes or 255s in

the bitmap. Any picture with vast blank or single-colour areas

will benefit greatly by being compressed. An uncompressed

picture takes 32 blocks on disk, but a typical compressed

bitmap takes less than 20. The actual size of a compressed

picture varies greatly depending on the pattern, from about 90

bytes for a blank screen up to over 20 for a full-screen, highly

detailed display. Generally, the worst case for a picture -

something like a portrait which fills the entire screen - will be

compressed to about 20 blocks; that translates to about a 38

percent savings in disk space. (Actually, the extreme worst case

is a screen filled with random bytes; it takes up about the same

space compressed or uncompressed.) Better, though, are pic

tures with a pattern or outline drawing against a single-colour

background. For example, there is a picture of Snoopy on one

of the Toronto Pet User's group hi-res picture disks; Snoopy

gets compressed to a mere 9 blocks! That means about a 72

percent savings in space, and also in time when the picture is

brought in by the decompressor (which is part of the same

program). The average size for compressed pictures seems to

be about 15 blocks, less than half the usual space.

The Compressor was originally written to save a bitmap screen

from memory to a disk file. That version can find use in

applications where you've created a picture from BASIC or a

hi-res graphics utility and wish to save it in compressed form.

The save-from-memory version of The Compressor appears in

BASIC form in Listing 2. In many applications, however, you

already have a hi-res picture on a disk file, either from another

source or created with a commercial drawing package like

Koalapainter. To convert an existing hi-res picture, use the

version of The Compressor in Listing 1. The file to be converted

must be in LOADable form, i.e. it must be a PRG or SEQ file and

contain the load address as the first two bytes. The compressed

file created by The Compressor will be the same format, the

load address telling the uncompressor where to put the picture

when it is brought in. Picture files created with Koalapainter

(Koala pad software) or Commodore's Animation Station can

be directly compressed by The Compressor, but you'll probably

want to separate the bit-map and colour-map information into

separate files first. More on that later.

To use The Compressor, first create the machine-language

program file on disk by entering the BASIC loader in Listing 1

or 2 (depending on your preference) and running it. This will

put the file called "compl.obj" or "comp2.obj" on disk which

you can then bring into memory with a normal LOAD (using

,8,1 " after the filename). The example program in Listing 3

loads "compl.obj", so you'll have to create it before running

listing 3. If you have the Transactor disk, the object file is

already on disk and you can skip the above step.

Version 1: Compressing A Hi-Res Picture

Program File

Compressing and de-compressing a picture file can be easily

done using the example program in Listing 3. You can use this

program to compress a picture or load a compressed picture, or

you can use The Compressor from direct mode or in your own

programs. To compress a picture file with The Compressor (the

file-based one in Listing 1), you have to open the input and

output files in BASIC first. The input file - the one on disk to be

compressed - must be OPENed as file *8, and the new

compressed file which is to be created must be file *9. For

example, if you have a high-res picture stored on disk as a

The Transactor 45 Volume 6, Issue O4

program file called "design 1" and you wish to make a com

pressed version called "design 1/c", you could just use the

following BASIC:

open 8,8,2, "designi "

open 9,8,1," 0:design1/c": rem create PRG file

Then, to compress the file, just execute The Compressor with

sys49152

Note: Notice the absence of 'comma P', 'comma R' and 'comma

W after the filenames in the OPEN statements? When only a

filename is specified (SA 2 to 14), the DOS defaults to a Read of

ANY file type, unless Secondary Address 0 is used - then it

defaults to a Read of a PRG file. With Secondary Address 1 the

default is ',p,w' thus eliminating the need for a filename suffix.

After a little while (1 to 2 minutes with a 1541 drive), the disk

files will close and the computer will come back with the usual

READY. You now have the compressed file "design 1/c" on

disk, which should be considerably smaller than the original

"design 1". It will give you the identical screen image, however,

once you load it in with the de-compressor part of the program.

To de-compress a picture, just OPEN the file for input as file *8

and SYS 49155, like this:

open 8,8,2, "design1/c"

sys49155

The picture will then be put into memory at the start address

specified by the first two bytes in the original file (low, high). In

other words, the picture will go in the same place as the original

uncompressed version would if LOADed directly from BASIC.

Version 2: Compressing A Picture From Memory

Use Listing 2 to create the memory-based version of The

Compressor (or load" comp2.obj" ,8,1 from the Transactor

disk). To use this version, you don't need to open any files from

BASIC. Just supply the name of the file you wish to create, like

this:

sys49152, "filename"

The 8000 bytes of memory starting at $2000 (8192) will be

saved in compressed form under the given filename. If you

wish to save a picture from a different location, POKE the

desired address in locations 49158 and 49159 in low, high

format before doing the SYS. Since a high-res screen always

falls on an 8k boundary, you will usually just POKE 49159

(address high byte) with a multiple of 32. For example, if your

picture is in the RAM at $E000 (The Compressor always reads

the RAM, not ROM), you would save it with:

poke49159,224 : rem high byte, location $e000

sys 49152," filename" : rem save picture as " filename"

The Listing 2 version also uses the above method for loading a

compressed picture. Just use the SYS address 49155 instead of

49152, like this:

sys49155," filename" : rem load compressed picture

The above command will bring the picture "filename" into

memory at the address it was originally at when saved (i.e.

compressed).

"Koalapainter" and "Animation Station" Picture Files

To produce artistic-looking work on the 64, your best bet is to

use a graphics tablet of some kind and a good graphics

package. An inexpensive such system is the Koala Pad from

Koala Technologies Corp., Which consists of the Koala pad

touch tablet and Koalapainter software. Another excellent

software package is Commodore's Animation Station, which

can be used with the Koala Pad touch tablet. Pictures saved

with either of these packages go on disk as a PRG file contain

ing the bit-map and both colour maps for the multi-colour

image. If you wish to use these pictures in your own program or

just display them without using the graphics software, you can

use the programs in listing 4 or 5 to split the picture file into

three LOADable modules, which may then be compressed

with The Compressor.

The BASIC programs "Koala split" and "Anim split" in Listings

4 and 5 allow you to select the start address of the bit-map and

colour-map files which will be created from the original picture

file saved by the graphics software. You can then LOAD these

files directly from BASIC into whatever memory areas you

specified and display the picture by setting up the right VIC—II

video chip parameters. The idea, of course, is to use The

Compressor on the 8000-byte bit-map picture file to free up

valuable disk space and speed up retrieval of the picture.

The "Koala split" or "Anim split" program will ask for the start

address of the hi-res picture and the colour map, which you

must respond to in hexadecimal. Default values are provided

which locate the picture at $E000 and the colour map at $CC00

(these are good, out-of-the-way spots). The other colour map

resides in the Ik colour nybbles at $D800 and is not relocat

able. The program then asks for the filename of the picture.

The name used here is the one that is used in the graphics

software, not the actual name on disk. For example, an Anima

tion station picture called "design" would appear as "pi.design"

in the disk directory; just use "design" as the filename. Simi

larly, Koala pad files are preceded by a CHR$(129), which

appears as a reverse-A in the disk directory; just use the Koala

name itself, eg. "pic a design", "pic b house", etc.

The split program takes quite a while to do its thing, since it has

to copy over 10,000 bytes from one file to another, so better

schedule a run to coincide with your next coffee break. Also,

The Transactor Volume 6, Issue O4

make sure you have enough room on your disk to accommo

date the three new files that will be created, requiring a total of

40 additional blocks. These files will be named with the

filename you supplied as input followed by the extension

".pic", ".cl", or ".c2". The ".pic" file is the actual hi-res bitmap

which you'll probably want to cut down to size by unleashing

The Compressor on it. The ".cl" file is the relocatable colour

map which resides at the chosen location. The".c2" file has the

start address of $D800, where it must load into to supply the

third source of colour information for the picture (the first two

sources come from the ".cl" file).

After running the split program, you have three files which you

can LOAD into memory, and display if you wish by appropriate

POKEs to VIC chip registers. To display a picture at $E000 with

the colour map at $CC00, the BASIC would be:

poke53265)59:poke53272,63:poke53270,216:poke56576,0

To return to the normal text screen,

poke53265,27:poke53272,23:poke53270,200:poke56576,3

(See the article "VIC Parameters" in Volume 5, Issue 6 for more

on setting up the VIC chip registers.) Also, don't forget to

change the background colour at 53281 to the colour indicated

by the last byte in the picture file.

How The Compressor Works

There's no profound or amazing tricks used here; it's a very

straightforward approach that seems to work pretty well in

practical use. The compressor just looks at each byte and

compares it to the previous one. If it finds more than three

bytes in succession which are the same, instead of storing that

many bytes, it just stores a special control byte (arbitrarily 254)

followed by the byte which is to be repeated and the number of

repetitions. As an example, an uncompressed file containing

these bytes:

10 196 202 15 15 15 15 15 15 15 15 15 15 15 32 76

Would be compressed as:

10 196 202 254 15 11 32 76

The first three bytes are copied verbatim, but the group of

eleven 15s is represented by the control sequence '254 15 11'.

Groups greater than 255 bytes long are represented by more

than one control sequence. But what happens when a single

254 is encountered in the file? That is easily handled by the

control sequence:

254 254 1

As with any other byte, up to 255 consecutive '254's are

represented by a single control sequence. As you can see, a 254

all alone or in groups of two or three will use more memory

when compressed than uncompressed. Fortunately, that

doesn't happen often enough to be a concern.

The algorithm used to compress the data is quite simple: the

bytes in the file to be compressed are read one by one. If the

byte just read is the same as the one before it, a counter is

incremented. If not, the current count is zeroed, then used to

generate N repetitions of the previous byte, or if the count is

greater than three, a control sequence is written (254, previous

byte, number of repetitions). A control sequence must also be

generated if the count ever exceeds 255. That's it! Not too tough

a task, even in ML, but it gets the job done!

The decompressor is even simpler. It just reads a byte and

stores it unchanged if it isn't a 254. If it is, the next two bytes are

fetched and the given byte is copied into the next N memory

locations. The process repeats until the end of file is reached.

Other Applications

So far, you've seen that the compressor can be used with

ordinary high-res or multi-colour pictures, even those created

by commercial graphics software. But really, there's nothing

that says The Compressor can only compress picture informa

tion. Any data that are stored as a SEQ or PRG file on disk and

are likely to contain repetitions of a single byte can benefit by

being compressed. BASIC programs are not very good candi

dates for compression, but a long text file containing many

spaces, or a sequential database with many blank records

might be. Sprite definition files are perfect.

Using The compressor with high-res pictures, though, adds a

new dimension to graphics. The smaller and less detailed your

pictures are, the less space they'll take on disk. In other words,

there's a linear relationship between the physical size of a

picture on the screen, and the size of it in terms of disk blocks -

providing that the unused portions of the screen are blank.

With the compressor at your disposal, you may be more willing

to use small pictures or simple sketches in situations where an

entire 32 block picture file would be just too expensive (in

terms of disk space and loading time) to be worthwhile. After

all, just because a picture is worth a thousand words doesn't

mean it has to take up 8,000 bytes.

The Transactor 47 Volume 6, Issue O4

Listing 1: BASIC program to create "comp 1 .obj" file on disk. This

version will create a compressed disk file from an existing file. The

first two bytes of the file must be the load address. To use the

program, load" compl .obj" ,8,1, then OPEN file *8 as the input file

and file #9 as the output file. SYS 49152 to compress the file. To

load a compressed file, open the file as *8 for input, then sys49155.

AK

LI

BG

IE

KA

FJ

OF

Al

NC

IN

FB

LB

LH

KL

NK

KD

MH

JJ

LJ

HG

EJ

JA

GP

II

CJ

GJ

KJ

DP

LO

MK

FC

BA

PJ

KB

EO

LD

GG

EF

BB

JN

LC

LP

HF

BJ

10 rem* file creator for "compl .obj" *

20 cs = 0

30 for i = 49152 to 49418:read a:cs = cs + a:next

40 if cs<>37827 then print" Idata error!": stop

50 open 1,8,2," @0:comp1 .obj.p.w"

60 print#1,chr$(0)chr$(192);: rem $c000

70 restore

80 for i = 1 to 267:read a:print#1 ,chr$(a);:next

90 close 1

100:

1000 data 76, 10,192, 76, 40,192, 1, 0

1010 data 0, 0, 32,243,192, 32,228,255

1020 data 32,255,192, 32,210,255, 32,243

1030 data 192, 32,228,255, 32,255,192, 32

1040 data 210,255, 32, 72,192, 76, 58,

1050 data 32,243,192, 32,228,255,133,

1060 data 32,228,255,133,252,160, 0,

1070 data 200, 192, 32,204,255,169, 8,

169, 9, 32, 195,255,

192, 32,228,255,141,

93, 192, 173,

201

201

e

169,

1080 data 195, 255

1090 data 32,243

1100 data 192, 32

1110 data 248, 32, 174, 192, 96

1120 data 32,228,255, 72, 32

1130data 9,192,104,141, 7

1140 data 192, 208, 14,238, 6

1150 data 206, 6,192, 32,174

1160 data 192, 173, 6,192

1170 data 170, 173, 8,192

1180 data 32,255, 192, 173

1190 data 255, 202, 208, 250

1200 data 192, 76,167,192

1210data 7,192,141, 8

1220 data 192, 169, 254, 32

1230 data 192, 32,210,255,173

1240 data 210, 255, 169, 1,141

1250 data 32,228,255,201,254

1260 data 234, 192, 76,228,192, 32,228,255

1270 data 72, 32,228,255,170,104, 32,234

1280 data 192, 202, 208, 250, 32, 183, 255, 240

1290 data 223, 96,145,251,230,251,208, 2

1300 data 230, 252, 96, 72,138, 72,162, 8

1310 data 32,198,255,104,170,104, 96, 72

1320 data 138, 72,162, 9, 32,201,255,104

1330 data 170, 104, 96

192

251

32

32

96

8

9, 192,240

32,243, 192

183,255, 141

192,205, 8

192,208, 6

192, 76,167

6,176, 28

254, 240,

192, 32,

1, 141,

32, 174, 192,

192, 96, 32,

210,255, 173,

6, 192,

6, 192,

240, 6,

20

210

6

173

255

8

32

96

32

Listing 2: BASIC program to create machine-language program

"comp2.obj" on disk. "comp2.obj" will compress a high-res pic

ture in memory (default location $2000) and store it on disk under

the specified filename.

DK

Ml

CG

GC

NG

BM

BG

OO

JL

FJ

OF

GH

NC

IN

El

LN

JF

KM

OB

KH

DF

MD

KH

GG

KH

MG

JN

BM

FO

HN

LB

IA

BK

NB

KE

NH

OH

NB

BB

DC

GP

DE

NP

OD

NL

EJ

Fl

JK

BH

NB

DG

KF

NP

PK

DK

MF

DB

10 rem* file creator for "comp2.obj" *

20cs = 0: q$ = chr$(34)

30 for i = 49152 to 49493:read a:cs = cs + a.next

40 if cs<>45400 then print" Idata error!": stop

41 print" Elto compress pic at $2000:
42 print" sys49152, "q$" filename

43 print "0to load compressed picture:
44 print" sys49155," q$" filename"

50 open 1,8,1," @0:comp2.obj"

60 print* 1 ,chr$(0)chr$(192);: rem $c000

70 restore

80 for i = 1 to 342:read a:print#1 ,chr$(a);:next

90 close 1

100.

1000 data

1010 data

1020 data

1030 data 169,

1040 data 1

1050 data 186, 255

1060 data 32, 143

1070 data 200, 177

1080 data 104, 32

1090 data 8

1100 data 32

1110 data 255

1120 data 126

76,

1,

15, 192,

0, 0,

1,141, 11,

0, 141,

76,

0,

24,192, 0, 32

0, 0, 0,169

141, 12.

32,

192,160, 1,208, 7

11,192,160, 2,165

192,169, 8,170, 32

253,174, 32,158,173

173,160, 0,177

100, 170,200, 177

189,255,

160, 0,173,

201,255, 173,

173, 7,192,

100,

100,

32,

11,

6,

32,

192, 76,117,192,

1130 data 32,228,255,133,251,

1140 data 133, 252, 32, 42,193,

8, 32,195,255,1150 data 169

1160 data 192, 133,251

1170 data 192, 173, 7

1180 data 141, 14, 192

1190 data 192, 160, 1

1200 data 205, 14,192

1210 data 13,192,144

1220 data 6,193, 96

1230 data 192, 205, 10

1240 data 192, 208, 11

1250 data 193, 169, 1

1260 data 192, 173

1270 data 170, 173

1280 data 173, 10

1290 data 247, 169

1300 data 192, 32

1310 data 192, 173

1320 data 251, 208

1330 data 32,210

1340 data 255, 173

1350 data 120, 165

1360 data 251, 72

1370 data 104, 96

1380 data 11,145

1390 data 252, 76

1400 data 32,228,255

1410 data 251, 208

24,

192:

32;

32,

208,

239,

32,

105,

72

168

255,162

240, 21

32,210

255, 32

198,255

32, 228, 255

32, 204, 255

96,173,

141,

192

192

192

210

32

64

133,252, 105

24,193, 141

179, 192, 165

8, 165,251

96, 144,236

24,193

192,208, 19

206, 8,192

141, 8,192

8,192,201,

141,

238

32,

76

176,

6

13

31

10

252

205

32

9

8

6

249

25

10

192

1

6, 193, 169

9, 192, 141

2, 230, 252

255,173, 10

8,192, 32

1, 41,252,133,

173, 12,192,133,

192,201,254,240, 17

32,210,255,202,208

141, 8,192, 76,249

1,141, 8

10, 192,230

96, 169,254

192, 32,210

210,255, 96

1, 177

1, 88

32,228,255,201,254,240

251,230,251,208, 2,230

80,193, 32,228,255, 72

170, 104, 145,251,230

2, 230, 252, 202, 208, 245

1420 data 32,183,255,240,213, 96

The Transactor 48 Volume 6, Issue O4

Listing 3: BASIC program which uses "compl.obj" to com

press or de-compress a hi-res picture file. The code illustrates

how to use The Compressor

rem* compress or de-compress *

rem* a high-res picture on disk *

if a = 0 then a = 1 :load" compi .obj" ,8,1

open 15,8,15: rem error channel

print "E flSelectone:
print" Hi) Compress a picture file
print" 2) Load in a compressed file

get a$:if a$<>" 1 " and a$<>" 2" theni 70

rem bring in 'the compressor'

input" Hp|Cture filename" ;f 1 $
if a$ = " 2" then 330

NP

EG

MO

MB

PC

LL

ED

ID

GE

EP

BF

LK

GE

HI

ED

AH

Nl

El

BK

BG

LF

MC

KK

CE

KM

HO

PM

HJ

CH

AP

LP

LL

PI

AM

100

110

120

130

135

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

Listing 4: "Koala split". This program will take a Koalapainter

picture file and create three LOAD-able program files which

contain the bitmap and colour maps. The start address of the

bitmap and one colour map is relocatable.

rem* create compressed file *

input" name for new compressed file'

iopen8,8,2,f1$

gosub 400: rem check for disk error

i open 9,8,1, "0:" +f2$

i gosub 400: rem check for disk error

i sys 49152: rem compress file

print" new picture file now on disk"

i end

rem* load compressed file *

open8,8,2,f1$

gosub 400: rem check for disk error

> sys 49155: rem de-compress file

print" picture now in memory."

end

rem* get disk status subroutine *

>input#15,a$,b$,c$,d$

if val(a$)then print" Q0disk error: " aS
" b$"," c$"," d$: end

ireturn

;f2$

CM

JM

GA

GP

HL

JC

CD

IA

KO

AF

FO

ID

FJ

CP

DL

PA

AB

FH

GB

IP

KF

CE

ME

DD

KC

Ol

CN

OH

FG

MF

CG

LO

AA

OK

MC

FP

FG

JK

IK

NO

MC

Ol

FE

FA

JN

KA

100 rem* " koala split"

110 rem* split a koalapainter picture

120 rem* file into 3 loadable prg files

130:

140 z$ = chr$(0). open 15,8,15

150 input" ^ ^start of hi-res picture[3 spaces]
e000[7 lefts]" ;h$

160 gosub 1000: if er then print "PI" ::aoto150
170 pl = I: ph = h

180 input" start of colour map[7 spaces]

cc00[7 lefts] ";h$

190 gosub 1000: if er then print "| |";:goto150
200cl = l:ch = h

210 input" Hf''ename °f koala file" ;f$
220 openi ,8,12,left$(chr$(129) + f$ +

"[12 spaces] ",15)

230 gosub 2000: rem check for disk error

240get#1,a$,b$

250open2,8,11,"@0:" +f$+ ".pic.p.w"

260 gosub 2000: rem check for disk error

270 print#2,chr$(pl)chr$(ph);

280fori = 1to8000:get#1,a$:print#2,left$(a$ + z$,1);

:next

290 close2

300open2,8,11,"@0:" +f$+ ".c1,p,w"

310 print#2,chr$(cl)chr$(ch);

320 gosub 2000: rem check for disk error

330fori = 1to1000:get#1,a$:print#2,left$(a$ + z$,1);

:next

340 close2

350open2,8,11,"@0:" +f$+ ".c2,p,w"

360 print#2,chr$(0)chr$(216);: rem colour nybbles

370 gosub 2000: rem check for disk error

380 fori = 1 to1000:get#1 ,a$:print#2,left$(a$ + z$,1);

:next

390 close2

400 print" j ^The background colour is:";
410 get#1 ,a$: printasc(a$ + z$)

420close1: close15

430 end

440:

1000 rem* convert hex f$ to dec h,I *

1005er = 0

1010 if len(h$)O4thener = 1:return

1020 d = O:fori = 1 to4:h = asc(mid$(h$,i))-48

:d = d*16 + h + 7*(h>9):next

1030h = int(d)/256: l = d-h*256

1040 return

1050:

2000 rem* get disk status subroutine *

2010input#15,a$,b$,c$,d$

2020 if val(a$)then print" EBIdisk error: " a$",
" b$"," c$"," d$: end

2030 return

The Transactor 49 Volume 6, Issue O4

Listing 5: "Anim split". Performs the same function as Koala

split above, but for "Animation Station" files.

Listing 6: The assembly-code source listing for the version 1

compressor.

Fl

BE

NL

LA

PO

KA

LM

ND

OE

MB

OP

MG

JP

LK

CD

GA

HM

DC

PH

OC

KC

BM

GB

IH

AG

HE

JB

IE

MK

AP

JH

LE

KH

FE

JA

OB

MM

KE

AH

FG

JK

IK

NO

MC

01

FE

FA

JN

KA

100 rem* "anim split" *

110 rem* converts a picture file *

120 rem* created by the animation *

130 rem* station into 3 loadable *

140 rem* prg files. *

150:

160 z$ = chr$(O). open 15,8,15

170 input "IsBflstart of hi-res picture[3 spaces]
e000[7 lefts] ";h$

180 gosub 1000: if erthen print"0" ;:goto170
190 pi = I: ph = h

200 input" start of colour map[7 spaces]

cc00[7 lefts] ";h$

210gosub 1000: if er then print" PI" ::aoto170
220cl = l:ch = h

230 input" ^filename of animation station file" ;f$
240 open1,8,12, "0:pi." +f$+ " ,p,r"

250 gosub 2000: rem check for disk error

260get#1,a$,b$

270open2,8,11,"@0:" +f$+ ".pic.p.w"

280 print#2,chr$(pl)chr$(ph);

290 gosub 2000: rem check for disk error

300 fori = 1to8000:get#1 ,a$:print#2,left$(a$ + z$,1);

:next

310 fori = 1to192:get#1,a$:next: rem get extra

useless bytes

320 close2

330open2,8,11,"@0:" +f$+ ",c1,p,w"

340 print#2,chr$(cl)chr$(ch);

350 fori = 1 to1000:get#1 ,a$:print#2,left$(a$ + z$, 1);

:next

360 fori = 1to24:get#1 ,a$:next

370 close2

380open2,8,11,"@0:" +f$+ ",c2,p,w"

390 print#2,chr$(0)chr$(216);: rem colour nybbles

400 fori = 1to1000:get#1 ,a$:print#2,left$(a$ + z$,1);

:next

410 fori = 1to24:get#1 ,a$:next

420 close2

430 print "ES|The background colour is:"
440 get#1 ,a$: printasc(a$ + z$)

450close1: close15

460 end

470:

1000 rem convert hex f$ to dec h,l

1005er = 0

1010 if len(h$)O4then er = 1 :return

1020 d = O:fori = 1 to4:h = asc(mid$(h$,i))-48

:d = d*16 + h + 7*(h>9):next

1030 h = int(d)/256: I = d-h*256

1040 return

1050:

2000 rem* get disk status subroutine *

2010 input#15,a$,b$,c$,d$

2020 if val(a$)then print" ^fldisk error: " a$",
"b$","c$","d$: end

2030 return

BD

EO

DO

OJ

NK

IC

AK

DN

JC

ED

MF

IE

EE

HN

GG

ON

PH

El

OC

IN

NL

KG

GL

NP

FC

Fl

OE

PL

Kl

OA

MH

Fl

KB

PB

IN

PC

CB

NK

AA

ND

KD

FN

JB

PI

CJ

GN

AF

HO

CL

JJ

NF

IN

FB

NH

IC

ED

Al

EB

OB

NK

MN

100 sys700 ;

110;

;nable pal 64

120 ; picture compressor -

130; optimizes hi-res picture

140 ; and saves on disk

150; this version converts file#8 (r)

160 ; to file#9 (w) with same load addr

170;sys(*) compresses 8 to 9

180 ; sys(*+3)

190;

200;save"@0

210;

220 .opt oo

230

240;

250

260

270;

280 repcount

290 newbyt

300 prevbyt

310st8

320;

330 picptr

loads 8 to memory

:comp1.pal" ,8

=

jmp

jmp

.byte

$c000

compress

decomp

1

.byteO

.byteO

.byteO

=

340 ;kernel routines

350 chrout

360 getin

370 close

380chkout

390chkin

400 clrchn

410readst

420;

430 compress

440

450

460

470

480

490

500

510

520

530

540;

550 decomp

560

570

580

590

600

610;

620 fin

630

640

650

660

670;

680;

690 sendpic

700

=

=

=

=

=

=

=

=

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jmp

=

jsr

jsr

jsr

Iciy

jsr

=

jsr

Ida

da

rts

=

isr

$fb

$ffd2

$ffe4

$ffc3

$ffc9

$ffc6

$ffcc

$ffb7

#

setin

getin ;start addr lo

setout

chrout

setin

getin ;start addr hi

setout

chrout

sendpic ;send picture to file

fin

*

setin

getin: sta picptr ;load addr lo

getin: sta picptr+1 ; " "hi

#0

getpic ;get picture

clrchn

#8: jsr close

#9: jsr close

setin

The Transactor 5O Volume 6, Issue O4

IL

Bl

LN

Gl

JP

OP

OP

IP

Ml

GJ

FC

EF

AD

EM

AB

EO

Nl

IC

IC

KP

BC

MA

AB

CK

JK

CJ

AE

CL

BF

EC

ME

JG

CO

Dl

DD

CB

EK

OH

FL

GB

NC

HB

CM

IE

AF

OP

NC

PI

MB

HN

DK

FH

KL

OE

IF

DN

MD

KG

BO

BJ

FP

PO

JA

JC

710

720

730 nextout

740

750

760

770

780

790;

800;

810outbyte

820

830

840

850

860

870

880

890

900;

910

920

930

940

950 ok

960

970;

980 diff

990

1000

1010

1020 ;no, just

1030

1040

1050

1060

1070;

1080

1090

1100 nip

1110

1120

1130

1140

1150

1160;

1170 docode

1180

1190:

1200 obfin

1210

1220

1230

1240;

1250;

1260 writerep

1270

1280

1290

1300

1310

1320

1330

1340

The Transactor

jsr

sta

=

jsr

Ida

beq

jsr

rts

=

jsr

jsr

pha

jsr

pla

sta

cmp

bne

inc

bne

dec

jsr

=

jmp

=

Ida

cmp

bcs

getin

prevbyt

*

outbyte

st8

nextout

writerep ;last sequence

*

setin

getin

readst: sta st8 ;save status

newbyt

prevbyt

diff

repcount

ok ;count past 255"?

repcount

writerep ;write rep code

*

obfin

* ;new byte different

repcount

#6

docode ;morethan4 the same"?

print byte n times

tax

Ida

cmp

beq

jsr

Ida

=

jsr

dex

bne

Ida

jmp

=

jsr

=

Ida

sta

rts

=

jsr

Ida

jsr

Ida

jsr

Ida

jsr

Ida

;# reps for loop

prevbyt

#254 ;ctrl byte"?

docode ;yes, have to code it

setout

prevbyt

*

chrout

nip

#1: sta repcount

obfin

*

writerep

*

newbyt

prevbyt

* ;write repeat code

setout

#254 ;special control byte

chrout

prevbyt ;byte to repeat

chrout

repcount ;number of reps

chrout

#1

51

KA

MD

AN

KN

BE

KG

BO

HH

EM

PA

AJ

KC

HL

EM

OE

MP

BL

IH

PF

GC

FM

DH

IJ

NG

AL

GG

GD

KM

EN

EE

HD

KL

PG

NL

AN

AJ

EC

OC

EB

MO

NC

LN

JD

AO

EH

OH

Fl

MD

PH

CP

Jl

AD

KC

1350

1360

1370;

1380;

1390getpic

1400

1410

1420

1430 ;normal

1440

1450

1460;

1470 getrep

1480

1490

1500

1510

1520

1530replp

1540

1550

1560

1570;

1580gpfin

1590

1600

1610

1620;

1630;

1640 storbyt

1650

1660

1670

1680

1690sb0

1700

1710;

1720;

1730 setin

1740

1750

1760

1770

1780

1790;

1800;

1810 setout

1820

1830

1840

1850

1860

1870 .end

sia

rts

=

jsr

cmp

beq

repcount

*

getin

#254

getrep

byte, just store it

jsr

jmp

=

jsr

pha

jsr

tax

pla

=

jsr

dex

bne

=

jsr

beq

rts

=

sta

inc

bne

inc

=

rts

=

pha:

Idx

jsr

storbyt

gpfin

*

getin

getin

storbyt

replp

*

readst

getpic

#

(picptr),y

picptr

sbO

picptr +1

*

*

xa:pha

#8

chkin

pla:tax:pla

rts

= ♦

pha:txa:pha

Idx

jsr

#9

chkout

pla:tax:pla

rts

;re-initialize count

;uncompress

;rep indicator

;repeat byte n times

;byte to repeat

;# of repetitions

;stick it in memory

;do it .x times

;check disk status

;do until end-of-file

;put .a in memory

increment pointer

;set input to file #8

;set output to file #9

Volume 6, Issue O4

Listing 7: Memory-based version of The Compressor

NH

IN

Ml

DK

KC

LJ

JE

OH

IE

ED

AG

IE

EE

HN

GG

ON

PH

El

JJ

DN

BP

El

Dl

MH

HN

EN

KA

FC

NE

PK

CK

JN

LM

EJ

FA

AN

EF

CM

LM

AG

FG

LO

CN

NK

EB

MJ

AO

FC

OA

LO

MJ

IN

GN

DH

IL

BK

KJ

AJ

MG

PB

HA

100 sys 700 ;activate pal 64 assembler

110; picture compressor

120 ; optimizes, hi-res pic

130 ; and saves on disk

140 ; this version saves from memory

150 ; at $2000

160 ; sys(*)," d:filename"

170 ; or loads t

180 ; sys(*+3)

190;

o load addr:

."filename"

200; save"@0:comp2.pal",8

210:

220 .opt oo

230

240;

250

260

270;

280 picture

290 repcount

300 newbyt

310 prevbyt

320 sendflag

330 banksav

340 endpic

350;

360 piclen

370 picptr

=

imp

jmp

.wore

.byte

$c000

compress

decomp

$2000

1

.byteO

.byte

.byte

.byte

.wore

=

=

380 ;kernel routines

390 setlfs

400 setnam

410 open

420 chrout

430 getin

440 close

450 chkout

460chkin

470 clrchn

480 readst

490;

500 compress

510

520

530

540

550;

560 decomp

570

580

590

600

610;

620

630

640

650

660

670

680

690

700

The Transactor

=

=

=

=

=

=

=

=

=

=

Ida

sta

Idy

bne

=

Ida

sta

Idy

cp1

Ida

sta

Ida

tax

jsr

jsr

jsr

jsr

Idy

0

0

0

0

8000

$fb

$ffba

$ffbd

SffcO

$ffd2

$ffe4

$ffc3

$ffc9

$ffc6

$ffcc

$ffb7

#

#1

sendflag

#1

cp1

*

#0

sendflag

#2

=

1

banksav

#8

setlfs

$aefd

$ad9e

$ad8f

#0

;bitmap loc'n

;counts repetition

;current mem byte

;previous byte

;comp/decomp flag

;orig loc 1 value

;end of bitmap

; bitmap byte length

secondary address

secondary address

*

;bank select reg

;store for later

;file #8

;device#8

;open 8,8,1 or 2

;checkfor comma

;evaluate expression

;check for string

CM

GG

PL

JM

IF

Jl

OC

LJ

FA

GJ

FH

FN

IO

AK

NH

DB

KG

HB

LI

AO

PP

Dl

EJ

JP

IK

DC

PM

BE

EF

JA

NO

DF

Ml

Gl

AJ

CP

EN

BM

IL

AL

CO

EG

HE

AD

MD

OP

Dl

BD

CK

GC

LL

MP

EE

BE

CK

EP

BE

EL

Ol

AA

Cl

MK

PO

PJ

52

710

720

730

740

750

760

770

780

790

800;

810

820

830

840

850

860

870

880

890

900

910 nosnd

920

930

940

950

960

970

980 ss1

990;

1000

1010

1020

1030

1040;

1050;

1060sendpic

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160;

1170

1180

1190

1200;

1210nextout

1220

1230;

1240

1250

1260

1270

1280

1290

1300

1310 sp1

1320

1330

1340

Ida

pha: i

Ida

($64),y

ny

($64),v

tax: iny

Ida ($64),y

tay: pla

jsr

jsr

Idx

Idy

Ida

beq

jsr

Ida

jsr

Ida

jsr

jsr

jmp

=

jsr

jsr

sta

jsr

sta

jsr

=

jsr

Ida

jsr

rts

=

Ida

sta

clc

adc

sta

Ida

sta

adc

sta

jsr

sta

lay

=

jsr

Ida

emp

bne

Ida

emp

bec

rts

=

bec

jsr

rts

setnam

open

#8

#0

sendflag

nosnd

chkout

picture

chrout

picture + 1

chrout

sendpic

ss1

#

chkin

getin

picptr

getin

picptr +1

getpic

*

clrchn

#8

close

♦

picture

picptr

#<piclen

endpic

picture +1

picptr+1

#>piclen

endpic+ 1

getbyt

prevbyt

#1

■

outbyte

picptr +1

endpic +1

sp1

picptr

endpic

nextout

*

nextout

writerep

;string length

;string addr low

;string addr hi

filename = above string

;openfile

;file #8 for chkin/out

;compressor load

;nosnd = load

;output to file

;start addr lo

;start addr hi

;send picture to file

;close files and exit

;get load addr first

;load addr !o

;load addr hi

;get picture

;clear i/o channels

;close file #8

;all finished!

;compress picture

;start addr lo

;find last pic byte

;last byte lo

;start addr hi

;last byte hi

;read byte from mem

initialize prev byte

;get 2nd byte next

;fetch byte or group

;see if at pic end

;do next byte

;do next byte

;write last group

;all bytes done

Volume 6, Issue O4

ML

GM

PH

FF

FJ

FL

CB

CA

BL

HG

DJ

AE

LH

JH

FM

JJ

MF

OM

FO

HJ

AC

Fl

OP

JK

PE

FG

AM

ED

BN

AO

LI

EN

DE

BE

FA

KB

10

LK

PH

NH

ME

HA

DN

CK

DO

AP

PD

OE

CB

GK

AL

LC

IL

PC

PN

DE

ND

HF

GH

KA

EB

AN

MK

DN

1350;

1360;

1370outbyte

1380

1390

1400

1410

1420;

1430

1440

1450

1460

1470

1480

1490 ok

1500

1510;

1520 diff

1530

1540

1550

1560 ;no, just

1570

1580

1590

1600

1610;

1620 nip

1630

1640

1650

1660

1670

1680

1690

1700;

1710docode

1720

1730

1740

1750;

1760obfin

1770

1780

1790

1800

1810

1820ob1

1830

1840;

1850;

1860 writerep

1870

1880

1890

1900

1910

1920

1930

1940;

1950;

1960 getbyt

1970

1980

The Transactor

=

jsr

sta

cmp

bne

inc

bne

dec

jsr

Ida

sta

=

jmp

=

Ida

cmp

bcs

*

getbyt

newbyt

prevbyt

diff

repcount

ok

repcount

writerep

#1

repcount

*

obfin

*

repcount

#4

docode

print byte n times

tax

Ida

cmp

beq

=

Ida

jsr

dex

bne

Ida

sta

jmp

=

jsr

Ida

sta

=

Ida

sta

inc

bne

inc

=

rts

=

Ida

jsr

Ida

jsr

Ida

jsr

rts

=

sei

Ida

prevbyt

#254

docode

*

prevbyt

chrout

nip

#1

repcount

obfin

*

writerep

#1

repcount

*

newbyt

prevbyt

picptr

ob1

picptr +1

*

*

#254

chrout

prevbyt

chrout

repcount

chrout

*

1

;check next byte

;read byte from mem

;compare to previous

different"?

;same, inc count

;>255 repetitions"?

;set to 255

;write repeat code

;restart count

finished outbyte

;new byte different

;check count

;3 or more the same" ?

;yes, send rep code

;# reps for loop

; byte to repeat

;ctrl byte"7

;yes, must code it

; repeat loop

;send byte

;do .x times

;restart count

finished subrtn

;write repeat code

;restart count

;prev = new

;next address

;write repeat code

;special control byte

; byte to repeat

;number of reps

;disable interrupts

;cpu bank register

53

Nl

HK

CD

AG

GB

Cl

AJ

EJ

CA

GJ

AK

HA

AD

HK

ND

Kl

LC

FF

HH

BL

MN

OH

IB

AL

CL

MD

KO

PJ

GG

CE

HL

BO

GA

ND

MG

LN

MP

OK

Dl

EF

MH

ME

GE

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080;

2090;

2100getpic

2110

2120

2130

2140 ;normal

2150

2160

2170

2180

2190gr0

2200

2210;

2220 getrep

2230

2240

2250

2260

2270

2280 replp

2290

2300

2310

2320

2330 gr1

2340

2350

2360;

2370 gpfin

2380

2390

2400

2410.end

and

sta

Ida

pha

Ida

sta

cli

pla

rts

=

jsr

cmp

beq

#$fc

1

(picptr).y

banksav

1

*

getin

#254

getrep

byte, just store it

sta

inc

bne

inc

=

jmp

=

jsr

pha

jsr

tax

pla

=

sta

inc

bne

inc

=

dex

bne

=

jsr

beq

rts

(picptr),y

picptr

grO

picptr+ 1

gpfin

#

getin

getin

*

(picptr).y

picptr

gn

picptr +1

#

replp

*

readst

getpic

;select ram

;read byte

;get original state

;and restore

;uncompress

;rep indicator

;next address

; byte to repeat

;# of repetitions

; repeat byte n times

;next address

;read disk status

;do until end-of-file

Volume 6, Issue O4

Indestructible Variables Tom Hall

Zephyr, Ontario

Remember "SuperNumbers "? Well, this is different. SuperNumbers was published in Volume 6, Issue 01. It

presented a program that created a whole new type of variable that was impervious to NEW, CLR, or

anything short of tampering with their memory space. The following protects the regular everyday

variables we're all familiar with. How many of you have written a program, RUN it, and noticed

something you want to change. Enter an age old dilemma: "IfI stop and edit that, I lose all my variables,

but if I don't make the change my program will continue incorrectly. Hmmm. "At this time I would like to

say Thank You Tom Hall for eliminating one more classic struggle. - KarlJ.H. Hildon

Wouldn't it be nice if all variables, including arrays, were inde

structible. Well, here is my solution - a utility program which does

just that. To fully understand how it is possible to keep your

variables from being destroyed one must first look at how they are

stored and how BASIC inserts, changes, or deletes a line when you

press return.

The variables are kept in line by a series of pointers extending

from $2d-$34. The address at ($2d) points to the end of your

program and to the start of variable storage. The end-of-

variables/start-of-arrays is pointed to by ($2f), the end-of-arrays

by ($31) and the bottom of string storage is determined by ($33)

When BASIC senses that you have pressed RETURN it checks to

see if whatever was on the line started with a number. If it does

then BASIC clears all variables (by making their pointers equal to

the end-of-program pointer), searches for and deletes the line

indicated by the line number, tokenizes the new line, and inserts

the new line into your program if anything was after the line

number.

Now hold on a second, what if we intercept BASIC when it goes to

change a line and somehow make it move the variables up and

down at the same time as it is shifting parts of your program

around. Well that is almost exactly what I did.

The system vector at ($0302), called WARMSTART, normally

points to a routine in the ROMs which decides whether you want

to change a line or execute a direct mode command such as RUN.

By changing this vector to point at my program it can decide if it is

necessary to shift the variables with the program. I use a flag that I

will call "variables shifted flag" to signal when the variables are to

be moved around. What specifically happens is the following.

My program waits for you press RETURN and then checks for a

line number. If it does not find one then a direct mode command

(or RETURN on a blank line) is assumed and control is passed back

to the ROMs. Otherwise, assuming the "variables shifted flag" was

not set, the following occurs. All of those pointers previously

mentioned are put away in temporary storage. Then the end-of-

program pointer is moved up to equal the end-of-arrays pointer.

Now when BASIC moves parts of your program around the

variables will all float up and down with it. The "variables shifted

flag" is now set and control is given back to the ROMs.

The next time BASIC is ready for a line it again vectors through to

my program. This time however the "variables shifted flag" is set

and the variable pointers must be recovered before anything is

allowed to happen. This is done in the following manner.

The "variables shifted flag" is cleared and the previously stored

end-of-program pointer is subtracted from the present end-of-

program pointer. This gives us the difference between the old

position of the variables and their new position. This difference (it

may be positive or negative) is then added to each of the stored

pointers (except for the string pointer) in turn and then they are put

back into their usual locations at $2d-$32. The string pointer is

simply replaced with its old value since it was not involved in the

shifting but it was made equal to the top of memory pointer by

BASIC. Now everything is as it was before you modified your

program. All of your variables, strings and arrays are intact.

You may restart your program by a GOTO to a convenient line

number. Be forewarned however that CONT will not work (you

will only get a ?CAN'T CONTINUE ERROR) and RUN or CLR will

still clear all variables.

The utility does not provide any increase in speed of your program,

however it will give you the edge when programming. You can

repeatedly test parts such as output subroutines without having to

run the rest of your program over again and wasting your valuable

time.

One more thing: the program points the RESTORE vector ($0318)

to a part of itself so that if you press RUN/STOP-RESTORE any

machine language program gone crazy will still be stopped, but the

system vectors are not changed to point to the ROMs. This means

that the utility can not be accidentally disconnected so your

variables can not be inadvertently lost.

The only drawback I have found when using my utility is that

when used with another utility such as POWER (it uses the same

WARMSTART vector) they tend to cancel each other out. Simply

typing FIX brings POWER back, but disables my program. Type

SYS 49152 to re-enable your indestructible variables.

To start using the utility, type in the program in Listing 1. When

RUN, this program generates a machine code program on disk that

you load like this:

The Transactor 54 Volume 6, Issue O4

That'

$cooc

load" vars-indestruct ",8,1

,1 ' is very important - it specifies a non-relocating LOAD to

) where the machine code

type NEW, then SYS 49152 and

ble.

lives. Once you have LOADed it

all your variables are indestructi-

For those of you interested in studying the technique in greater

depth

LA

Gl

GL

PG

NA

BP

PL

PN

AA

LG

CO

CN

GD

LB

GD

PP

IG

MF

BD

GH

IL

ED

EF

DF

JF

NG

IJ

NL

BA

BO

GP

MB

AN

IK

AH

GO

AP

EK

HP

KG

KG

DH

GG

JG

GJ

ML

I have included the source code in Listing 2.

Listing 1: Create VAF

100 rem create program "vars-indestruct"

110 printchr$(147)" creating <

120 rem on disk

disk file"

130 open1,8,3," vars-indestruct,p,w"

140print#1,chr$(0)chr$(192)

150 ch = 0 : for i = 49152to49416

160 read d : ch = ch + d

170print#1,chr$(d);

180 next i: print " checksum

190 closei M3rint "should be

200 print "0program is
210 end

220 data 169, 27,141

230 data 25, 3, 169

240 data 192, 141, 3

250 data 76, 30, 171

260 data 32,225,255

270 data 32, 129,255

280 data 104, 170, 104

290 data 75, 169, 0

300 data 45,237,204

310 data 237, 205, 192

320 data 192, 101,251

330 data 101, 252, 133

340 data 101, 251, 133

350 data 252, 133, 48

360 data 251, 133, 49

370 data 133, 50,173

380 data 207, 192, 133

390 data 122, 132, 123

400 data 163, 162,255

410 data 121, 165, 76

420 data 72, 152, 72

430 data 160, 7.185

440 data 136, 16.247

450 data 47, 165. 50

460 data 168, 104, 170

470 data 0, 0, 0

480 data 0, 13, 10

490 data 84, 82, 85

500 data 69, 32, 86

510 data 76, 69, 83

520 data 32, 84, 79

530 data 76, 13, 13

540 data 73, 86, 65

550 data 0

The Transactor

; now

, 24,

, 52,

, 3,

, 72,

,208,

,108,

, 64,

,141,

,192,

, 133,

,133,

, 46,

, 47,

, 24,

, 173,

,206,

, 52,

, 32,

,134,

,225,

, 169,

, 45,

, 165,

, 133,

, 104,

, o,

, 73,

, 67,

, 65,

, 32,

, 77,

, 10,

, 84,

= " ;ch

29338"

on disk"

3, 169, 192, 141

141, 2, 3,169

169,209, 160, 192

138, 72,152, 72

9, 32,132,255

2, 3,104,168

173,208, 192,240

208,192, 56,165

133,251,165, 46

252, 24,173,200

45, 173,201, 192

24,173,202, 192

173,203, 192, 101

173,204, 192, 101

205, 192, 101,252

192,133, 51,173

32, 96,165,134

115, 0,170,240

58,144, 6, 32

167, 8, 72,138

128, 141,208,192

0, 153,200, 192

49,133, 45,133

46, 133, 48, 104

40, 76,156,164

0, 0, 0, 0

78, 68, 69, 83

84, 73, 66, 76

82, 73, 65, 66

45, 32, 66, 89

32, 72, 65, 76

18, 65, 67, 84

69, 68, 13, 10

55

Listing 2: VARS-INDESTRUCT Source Code

JL

KF

MD

MH

OF

AJ

NA

EK

LP

IL

KK

FH

LK

El

PD

BJ

Dl

HP

NG

PK

MH

Bl

KD

ED

OE

IP

CG

HN

CD

HO

NC

EJ

EC

FD

ED

AD

MJ

DG

JM

HH

OO

NN

CA

Dl

EF

GC

LG

KD

OG

AP

IK

PH

EP

FA

Ml

NN

AK

1000sys700

1010.opt oo

1020* = 49152

1030;

1040 ;truly indestructible variables

1050;

1060 ;(c)june 11,

1070;

1080 ;equates

1090;

1100 vars

1110 arrays

1120 endarrays

1130 strings

1140 temp

1150 restore

1160 warmstart

1170chkstop

1180 initio

1190 initvid

1200rewarm

1210 printmes

1220;

1230 start

1240;

1250 ;insert new

1260;

1270

1280

1290

1300

1310;

1320

1330

1340

1350

1985 by torn hall

_

=

=

=

=

=

=

=

=

=

=

=

45 beginning of variables

47 ;end of var/begin of

arrays

49 ;end of arrays

51 ;beginning of string

storage

251 temporary storage

792 ;restore vector

770 ;warmstart vector

$ffe1

$ff84

$ff81

$a49c

$ab1e

*

vectors

Ida

sta

Ida

sta

Ida

sta

Ida

sta

#<dorestore

restore

#>dorestore

restore +1

#<dowarm

warmstart

#>dowarm

warmstart +1

1360 print sign on message

1370

1380

1390

1400;

1410 dorestore

1420;

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530 nostop

1540

1550

1560

Ida

Idy

jmp

=

pha

txa

pha

tya

pha

jsr

bne

jsr

jsr

jmp
=

pla

tay

pla

#<message

#>message

printmes

*

;save registers

chkstop ;is stop key down

nostop

initio ;yes

initvid

(warmstart)

* ;no

Volume 6, Issue O4

NO

EL

KP

GL

LF

KM

Dl

HD

GD

MP

JO

GA

DL

FC

AD

EG

NG

KF

Gl

HJ

AG

GN

EE

HG

CN

MK

BJ

MP

KM

IN

NK

MN

KP

HN

ML

MF

GC

DP

AH

IE

NB

HG

AG

EH

KG

Ml

HF

OG

DA

HC

MJ

KF

Cl

CK

HF

HJ

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

tax

pi. i

rti

dowarm

;

Ida

beq

*

flag

noshift

fix variable pointers

Ida

sta

#0

flag

;flag starts as zero

;kill the flag

find correction amount for pointers

sec

Ida

sbc

sta

Ida

sbc

sta

;

clc

Ida

adc

sta

Ida

adc

sta

clc

Ida

adc

sta

Ida

adc

sta

clc

Ida

adc

sta

Ida

adc

sta

vars

storage + 4

temp

vars +1

storage+ 5

temp +1

storage

temp

vars

storage +1

temp +1

vars +1

storage + 2

temp

arrays

storage + 3

temp + 1

arrays +1

storage + 4

temp

endarrays

storage+ 5

temp + 1

endarrays +

restore bottom of strings

Ida

sta

Ida

sta

noshift jsr

stx

sty

jsr

tax

beq

Idx

stx

storage+ 6

strings

storage + 7

strings +1

$a560

$7a

$7b

$0073

dowarm

#$ff

$3a

;correct stored

pointers

;fix start of vars

;fix end of vars/start

of arrays

;fix end of arrays

1

;copied from the

;rom routines -

change,

;insert or delete a

line,

;or execute a direct

mode

;command

GG

AO

HA

OE

OA

MD

KA

ME

OB

DG

CD

GD

Gl

NK

EF

LE

FF

OB

NE

AH

OA

PN

IK

IF

Dl

CJ

DM

MC

AL

DM

GA

HF

KB

HG

OC

EH

ID

KD

KL

BL

FA

GC

MG

NH

Al

KC

GM

ML

AF

GJ

2130

2140

2150

bcc

jsr

jmp

2160linenum

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

save registers

php

pha

txa

pha

tya

pha

linenum

$a579

$a7e1

*

prepare for variable shift

and set shift flag

Ida

sta

Idy

store 1

Ida

sta

dey

bpl

Ida

sta

sta

Ida

sta

sta

recover registers

pla

tay

pla

tax

pla

pip

jmp

J

storage

.word 0,0,0,0

flag

.bytO

|

message =

|

.byt 13,10

#128

flag

#7

*

vars.y

storage,y

storei

endarrays

vars

arrays

endarrays +

vars +1

arrays +1

rewarm

*

*

*

.asc " indestructible variables

.byt 13,13,10

.asc "^activated"

.byt 13,10,0

;tokenize and

;execute command

;starts with a line

number

;save variable pointer:

;set start of variables

;and start of arrays to

;end of arrays

1

;re-enter warmstart

routine

- by torn hall"

The Transactor 56 Volume 6, Issue O4

Disk Un-Assembler

For The Commodore 64

J. Lothian

Ottawa, Ont.

Create Real Source From Object Files

As programmers, we frequently acquire machine language

code programs that we would like to analyze and understand,

but the lack of an assembler source code file or listing severely

limits our investigations. Perhaps we wish to understand the

programmer's technique, to identify the usable subroutines, or

to reconstruct a program that we previously wrote but for

which the documentation was lost. We may also wish to modify

the program slightly to relocate it, or to modify zero page

storage, or to change the I/O in some fashion. What we require

in such instances is a utility program that will scan a given

machine code program and produce a corresponding assembly

language source file that is usable by our assembler language

development package.

There are utilities available within the monitors of most assem

bler packages that satisfy some of these requirements and they

are referred to as dissemblers. Unfortunately, the dissemblers

provided with these packages have two serious shortcomings.

First, dissemblers typically display the assembled code on the

screen or printer but do not create source files that are compati

ble with the programmer's assembler/editor package. Second,

the dissemblers do not provide listings with symbolic labels.

Symbolic assemblers use labels to denote locations (addesses)

and expressions (values). Labels can be attached to any instruc

tion or expression to denote the memory location and then all

jumps or branches within the code are done by referencing

these labels. The labels can be any combination of letters and

numbers, but must start with a letter. The benefits of labels are

that they make code automatically relocatable and they reduce

the burden on the programmer since all references to locations

are relative and defined by a comprehensible mnemonic/label.

Also with labels, branching operations do not involve complex

hexadecimal calculations.

In the September 1982 volume of the Transactor, Paul Higgin-

bottom provided such a utility for CBM BASIC 4.0 machines

and called it an "Un-Assembler" in order to distinguish it from

a disassembler. That version was not appropriate for the C64 or

VIC20. This version will work with any Commodore machine

including the C64 and the VIC20 and it includes several extra

features. (For machines other than the C64 all POKEs and the

special characters in the print statements should be removed.)

A program that requires un-assembly does not need to be

resident in core since the utility reads the machine language

code from disk and writes the source code on the same disk

(using the 1541) or on another disk if a dual disk drive is

available. The source code files are compatible with the Com

modore 64 Macro Assembler Development System, but the

program can be easily modified to accommodate any other

assembler format. The output from the Un-assembler can also

be directed to the screen or printer instead of the disk drive.

Address labels are generated by the utility but not expression

labels. Label locations within the program and outside the

program are generated by the utility. Addresses outside the

program plus addresses that occur in the middle of instructions

are symbolically defined through the EQUATE(=) directive.

Labels are defined as character strings starting with "AD"

followed by the address of the target location in hexadecimal

notation.

The utility allows the programmer to choose the starting

location within the program for the un-assembly. This will

allow un-assembly of subroutines and the avoidance of byte

tables. The utility does not convert BIT operations to BYTE

operations as Paul Higginbottom's version did. I have rarely

encountered problems with this instruction and I have found

more use for the different start locations. It is easy to install this

feature by inserting the line:

61 MD(36) = 0: MD(44) = 0

The Un-assembler makes four passes through the machine

code file. In the first pass, the starting and ending addresses of

the machine code program are obtained. This allows the utility

to distinguish between in-range jumps and branches and those

with targets outside the program. These addresses are printed

to provide information to the programmer.

In the second pass, the user is asked to provide the starting

address for the un-assembly. Starting from this location, a label

table is constructed for all the jump and branch targets. The

program treats in-range and out-of-range labels differently.

The Transactor 57 Volume 6, Issue O4

In the third pass, invalid in-range labels are identified. Byte

tables or other problems with the code may result in a jump or

a branch instruction that has a target in the middle of another

instruction. Such labels are invalid and treated by the utility

like an out-of-range label.

In the fourth pass, the Un-assembler creates the assembler

source files. The files are created in a format that conforms to

the Commodore Macro Assembler and they can be modified

with the Commodore Editor. At the start of the file all the out-

of-range and invalid labels are defined by using the

EQUATE(=) assembler directive. Following this comes the

assembly code with labels attached to any in-range and valid

target lines. The utility will automatically create extra files if the

first file gets too large. The output produced can be re

assembled into exactly the same machine code with which you

started.

When using the utility, it will occasionally appear to freeze with

the disk drive red light remaining on. This is natural and it

occurs because the machine is undergoing garbage collection.

(This has been discussed in detail in previous issues of the

Transactor.)

Unfortunately, the Un-assembler will occasionally produce

incomprehensible source code. First, one of the most impor

tant features of an assembly language listing is the use of

mnemonic labels. Letter combinations are chosen for labels

that are suggestive of their significance in the program. Such

information can not be reasonably recovered from an un

known machine code program.

Second, there are apt to be minor ambiguities in translating

machine code into a given assembly language that are difficult

to resolve. For example, is the data byte $4B to be interpreted

as$4B, 75, 'A, or%01001011?

Third, there are inherent problems in dissembling machine

code programs containing tables of characters, addresses, data

bytes, etc. While it is unlikely that the bytes in a table would

constitute properly spaced opcodes, it can not be ruled out.

Such tables will tend to be improperly identified and this will

prevent accurate decoding of surrounding machine code.

Fourth, multiple entry points to subroutines hidden by BIT

instructions may reduce the readability of the assembler code.

Editing of the source files produced by the utility can reduce

some of these problems. Despite its limitations, the Un-

assembler will be a great benefit in analyzing machine code

programs for which there is no original source code.

The Un-Assembler

OA

AE

NG

LC

BP

JB

EG

GO

JL

Cl

HA

MK

OH

KK

KD

AJ

FE

CN

PD

KL

LN

Nl

NJ

FM

NO

IF

AJ

HI

MM

NC

EF

EG

Fl

IL

LK

PE

AJ

LJ

AD

LL

IE

10 rem disk un-assembler.long c64

20 rem originally by paul higginbottom

30 rem modified byj. lothian, Ottawa, Ontario

40 rem initialize variables

50poke53280,12:poke53281,15:a$= " ":q = .

:p = .:n = .:n$= " ":p$=" " :de = .:i = .:bc = .

60 n1 $ = chr$(0):he$ = " 0123456789abcdef"

:xx$ = chr$(13):ps = 1:mh = 256:lf=1000:ot = .

70 rem ^^^

80 print" E c-64 disk un-assembler"
90 print"n jack lothian"

:print"g please wait"

100 rem

110 rem arrays defining assembler op codes

120 dim md(255),mn$(255),11 (500),12(500)

130fori = 1to151:reada$,a,b:mn$(b) = a$

:md(b) = a:next

140 rem

150 rem check where source should be listed

160 print" 0 source code on print (p), screen (s),"
:input" or disk (d)" ;ot$

170 if ot$<>" p" andot$<>" s" andot$<>" d"

then160

180 rem

190 rem get object and source file names

200 input "|3 drive number of the program(0 or 1)" ;fd
: iffdOOandfdOl then200

210 input" program filename" ;f$

220 iflen(f$)>16thenprint" | flerror - file name is
too Iong0" :goto210

230gosub2410:f$ = chr$(fd)+ ":" +f$+ ",p,r"

240 openi ,8,9,f$:gosub2220:close1

250 ifea<>0thenclose15:goto210

260 if ot$<>" d" then330

270 input" 0 drive number for the source file" ;fo
:iffoOOandfd<>1then270

280 input" source filename" ;of$

290 iflen(of$)>12thenprint" | flerror - file name is
too long@" :goto280

300 of$ = str$(fo) + ":" + of$ + "." :gosub2420

310 rem

320 rem convert bit to .byte option

330 print"Q do you wish bit operations
converted[4 spcsjto byte operations?"

340 input "Hyes(y) or no(n)" ;an$
350 if an$<>" n" and an$<>" y" then 340

360 if an$ = " y" then md(36) = 14:md(44) = 14

370 rem

380 rem first pass - find start and end addresses

390 gosub2380:gosub2260:s = asc(a$ + n1 $)

+ asc(b$ + n1 $)*mh:e = s

400 get#1 ,a$:e = e +1:ifst = 0then400

410 close 1 :de = s:hn = 3:gosub2180

The Transactor 58 Volume 6, Issue O4

OD

MP

PG

AO

PG

KG

JE

PL

EN

MB

CN

JH

CN

DA

LJ

AF

AG

PK

KM

CM

GF

NO

Jl

EH

CL

DC

OM

CC

FC

FJ

JE

GP

CA

PJ

GG

KC

EE

HI

PI

MP

00

KF

GG

CG

EH

AJ

01

01

GH

420 print "0 starting address is:[1 spc]"
;s;" ($";h$;")M

430 de = e:gosub2180:print "0 ending address
is:[3spcs]";e;" ($";h$;")n

440 print" 0 length of the file is " ;e-s + 1;" bytes"
450 rem

460 rem read start address for un-assembly

470 print"0 un-assembly starting address"
480 input" [8 spcs]in decimal or hex ($)" ;an$

490 gosub2480:sa = de:if sa = Othensa = s

500 if sa<sorsa = >ethenpnnt" 0|error - out of
range address" :goto480

510 rem

520 rem second pass - construct label table

530gosub2380:p = s-1:gosub2260

540 gosub2090:gosub2120:op = q

550 on n gosub580,590,630,590,590,590,600,

600,600,600,590,590,580,580

560ifp< = ethen540

570close1:goto860

580 return

590 gosub2090:p = p + 1 :return

600 gosub2090:ad = q:gosub2090:ad = ad + q*mh

610 p = p + 2:ifad<sorad>ethengosub760:return

620gosub680:return

630 gosub2090:ad = p + q + (q>127)*mh + 2

640 p = p +1 :ifad<sorad>ethen return

650gosub680:return

660 rem

670 rem labels for addresses of in range branches,

jumps, Ida, etc

680 If = 1 :fori = 1 tolb + 1 :t = 11 (i):ift = adthenlf = 0

:goto720

690 if KadandtOO then 720

700 if t>adandlf then 11 (i) = ad:ad = t:goto720

710 if t = Oandlf then I1(i) = ad

720next:if If then lb = lb +1

730 return

740 rem

750 rem labels for addresses out of range

760 ifop<>32andop076andop<>108thenreturn

770 if ad = Othenreturn

780 If = 1 :fori = 1 tolo +1 :t = I2(i):ift = adthenlf = 0

:goto820

790 if KadandtOO then 820

800 if Oadandlf then I2(i) = ad:ad = t:goto820

810 if t = Oandlf then I2(i) = ad

820 next:if If then lo = lo + 1

830 return

840 rem

850 rem print summary of label counts

860 print "H number of in range labels: " ;lb
870 print "0 number of out of range labels: " ;lo
880 rem

890 rem third pass - check if all labels valid

900 if lb = 0 then 1120

CB

EM

CP

GG

PC

KA

GO

LF

FD

HN

LH

FK

EE

OC

HF

KC

ME

KC

KN

KG

AH

EH

II

LL

LK

GG

AL

ML

FH

OM

IF

FP

JJ

IP

AB

GK

HL

NL

IC

OL

NC

GG

AF

AK

910 gosub2380:p = s-1 :gosub2260:i = 1 :ad = 11 (i)

920 gosub2090:gosub2120:ifad = ptheni = i + 1

:ad = H(i)

930 on n gosub970,980,980,980,980,980,

1010,1010,1010,1010

940 if n>10 then on (n-10) gosub980,980,970,970

950ifp< = ethen920

960close1:goto1090

970 return

980 p = p +1 :if p>e then return

990 if ad = p then gosubi 060

1000gosub2090:return

1010 p = p + 2:if p>ethen return

1020 if ad = porad = p-1 then gosubi 060

1030 gosub2090:gosub2090:return

1040 rem

1050 rem invalid label change to out of range label

1060 Iv = Iv + 1 :lo = lo + 1 :l2(lo) = ad:i = i + 1

:ad = H(i):return

1070 rem

1080 rem print count of invalid addresses

1090 if Iv <>0 then print" 0 number of invalid
addresses: " Iv

1100 rem

1110 rem fourth pass - output assembler code

1120gosub2380

1130 rem

1140 rem open source and machine code files

1150nf$ = of$+ "1.s":p = s-1:nf = 2

1160 gosub2320:gosub2220:gosub2260

:nf = 2:lc = 1

1170 rem

1180 rem write starting address

1190de = p+1:hn = 3:gosub2180:p$= "[1 spc]*=$"

+ h$ + "; <starting address>" :gosub2150

1200 rem

1210 rem assign label values for addresses out

of range

1220 if lo = 0 then1270

1230 p$ = " ;<out of range jumps and subs>"

:gosub2150

1240 fori = 1 tolo:de = I2(i):gosub2180

1250 if i = lo-lv +1 thenp$= " ;[6 spcs]<invalid

Iabels>":gosub2150

1260 p$ = " [5 spcs]ad" + h$ +"=$"+ h$

:gosub2150:next

1270 It = 1 :t = 11 (It)

1280 iflcOlfthen 1350

1290 rem

1300 rem after 1000 lines create new file

1310nf$ = of$ + mid$(str$(nf),2)+ ".s":p$= ";"

:gosub2150:p$= " .fil" +nf$:gosub2150

1320 gosub2450:nf = nf + 1 :lc = 1 :gosub2320

:gosub2220

1330 rem

1340 rem start reading op codes

The Transactor 59 Volume 6, Issue O4

EE

OG

KB

KG

CE

LK

GL

BB

MJ

Kl

PK

CN

FL

CB

AP

AA

EK

PN

IB

Kl

IK

GD

CM

AK

OE

GL

LK

CH

EE

IN

AJ

PL

BC

OK

AO

BE

MM

JJ

PG

KL

AA

PM

IA

AP

1350 gosub2090:op = q:gosub2120

1360 rem

1370 rem check if this is a labeled address

1380 pp$= "[8spcs]":ift = 0then1410

1390 if t<p then It = It + 1 :t = 11 (It):goto 1380

1400 if t = p then de = p:hn = 3:gosub2180

:pp$ = "ad" +h$+ " [2 spcs]" :lt = lt+1:t = H(lt)

1410 if n<>Othenpp$ = pp$ + n$+ "[1 spc]"

1420on(n + 1)gosub1480,1510,1550,1580,

1640,1670,1700,1730,1790,1850,1910

1430 if n>10then on (n-10) gosubi 950,1980,2010

1440 if p> = e then 2700

1450 gotoi 280

1460 rem

1470 rem illegal op code .byte assumed

1480 de = op:hn = 1 :gosub2180:p$ = pp$

+ ".byte$" +h$:gosub2150: return

1490 rem

1500 rem implied mode

1510 p$ = pp$:gosub2150:return

1520gosub2150:return

1530 rem

1540 rem immediate mode

1550 gosub2090:de = q:hn = 1 :gosub2180:p$ = pp$

+ "#$" +h$:gosub2150:p = p + 1:return

1560 rem

1570 rem relative mode (branches)

1580 gosub2090:ad = p + q + (q>127)*mh + 2

:de = ad:hn = 3:gosub2180

1590 ifad<sorad>ethenp$ = pp$ + " $" + h$

:goto1610

1600p$ = pp$+ "ad" +h$

1610gosub2150:p = p + 1:return

1620 rem

1630 rem zero page mode

1640 gosub2090:p = p + 1 :de = q:hn = 1 :gosub2180

:p$ = pp$+ "$" +h$:gosub2150:return

1650 rem

1660 rem x-indexed zero page mode

1670 gosub2090:p = p + 1 :de = q:hn = 1 :gosub2180

:p$ = pp$ + " $" + h$ + " ,x" :gosub2150:return

1680 rem

1690 rem y-indexed zero page mode

1700 gosub2090:p = p + 1 :de = q:hn = 1 :gosub2180

:p$ = pp$ + " $" + h$ + " ,y" :gosub2150:return

1710 rem

1720 rem absolute mode

1730 gosub2090:ad = q:gosub2090:ad = ad + q*mh

:p = p + 2:de = ad:hn = 3:gosub2180

1740 p$ = pp$ + " ad" + h$:ifad> = s

andad< = ethen1760

1750 if op032andop076andop<>108orad = 0

thenp$ = pp$+ "$" +h$

1760gosub2150:return

1770 rem

1780 rem x-indexed absolute mode

LK

PF

EA

LA

EE

PC

HO

EK

CE

HE

Al

JF

DC

FJ

IK

PJ

LF

GM

AM

PK

EO

JB

KE

CA

DP

DL

CL

LP

ED

PH

DD

CF

BB

Dl

AH

LG

AN

Ol

FL

LJ

CO

GL

OD

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

gosub2090:ad = q:gosub2090:ad = ad + q*mh

:p = p + 2:de = ad:hn = 3:gosub2180

p$ = pp$+ "ad" +h$+ ",x":ifad> = s

andad< = ethen1820

if op032andop076andop<>108orad = 0

then p$ = pp$ + " $" + h$ + " ,x"

gosub2150:return

rem

rem y-indexed absolute mode

gosub2090:ad = q:gosub2090:ad = ad + q*mh

:p = p + 2:de = ad:hn = 3:gosub2180

p$ = pp$+ "ad" +h$+ ",y":ifad> = s

andad< = ethen1880

if op032andop076andop<>108orad = 0

thenp$ = pp$+ "$" +h$+ ",y"

gosub2150:return

rem

rem indirect mode

gosub2090:ad = q:gosub2090:ad = ad + q*mh

:p = p + 2:de = ad:hn = 3:gosub2180

p$ = pp$ + " (ad" + h$ + ")" :gosub2150:return

rem

rem x-indexed indirect mode

gosub2090:p = p +1 :de = q:hn = 1 :gosub2180

:p$ = pp$+ "($" +h$+ ",x)":gosub2150:retum

rem

rem y-indexed indirect mode

gosub2090:p = p + 1 :de = q:hn = 1 :gosub2180

:p$ = pp$+ "($" + h$ + "),y":gosub2150:return

rem

rem accumulator mode

p$ = pp$+ "a" :gosub2150:return

rem

rem bit converted to .byte operation

de = op:hn = 1:gosub2180:bc = bc + 1

p$ = " [8 spcs]" + " .byte $" + h$ + " ;<this was

a bit instruction>"

gosub2150:return

rem

rem read a byte (a$) from file and calculate

ascii value (q)

get#1 ,a$:q = asc(a$ + n1 $)::return

rem

rem decode instruction

p = p +1 :n$ = mn$(q):n = md(q):return

rem

rem output data line for assembler

p$ = p$ + xx$:print#6,p$;:gosub2220

:lc = lc + 1:return

rem

rem decimal (de) to hex (h$) conversion

dx = de:h$= " " :form = hntoOstep-1

:n% = dx/(16tm):dx = dx-n°/o* 16tm

h$ = h$ + mid$(he$,n% + 1,1):next:return

rem

rem read disk error channel

The Transactor 6O Volume 6, Issue O4

NK

CN

ON

MF

PK

HA

MK

OA

KB

NA

Fl

AD

HO

PA

GF

MO

KC

EH

OP

LC

HC

MJ

JM

MB

KL

HJ

FO

NC

Ml

LD

LO

DP

NA

NP

PF

IC

GM

GE

NH

Jl

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

input#15,ea,eb$,ec,ed:if ea then

pnnf'^Jdisk error" ;ea;eb$;"0"
return

rem

rem open file and get first two bytes

openi ,8,12,f$:get#1 ,a$,b$

if ps< = 2thenreturn

if p<(sa-1)thengosub2090:p = p + 1

:goto2280

return

rem

rem open source file

ifot$ = "d"thenp$ = "@" + nf$ +

",s,w":open6,8,3,p$:gosub2220

: return

ifotthenreturn

ot = 1:ifot$ = "p"thenopen6,4:return

open6,3:return

rem

rem print pass number

print"0jpass#";ps;" of the file to
be decoded":ps = ps +1 :return

rem

rem initialize the disk drive

openi 5,8,15, "i" + str$(fd):return

print#15,"i" + str$(fo): return

rem

rem end of source file

print#6,chr$(0);:close6:return

rem

rem convert string (an$) to decimal

(de) and hex (h$)

hd = 0:12 = 0:13 = 1:14 = len(an$)

:hn = 3

a1$ = mid$(an$,l3,1)

if a1 $<>chr$(32)then2540

13 = 13 + 1

if I3>I4 then de = 0:gosub2080

: return

goto2490

ifa1$ = chr$(36)thenhd = 1

:I3 = I3 + 1

I2 = I4-I3 + 1 :h$ = mid$(an$,l3J2)

ifhd = 0thengosub2640

:gosub2180:return

rem

rem hex to decimal (h$ to de)

de = 0:form = 1 tol2:forw = 0to15: if

mid$(h$,m,1) = mid$(he$,w + 1,1)

then 2610

nextw:m = I2:nextm:de = 0:return

de = de + w*(16t(l2-m)):nextm

:return

KF

GJ

BA

PC

JL

NK

GJ

AD

CD

NN

OL

LK

GM

IC

GJ

MD

DK

LI

OG

LB

NK

HN

MC

HI

GG

Ol

AA

IC

GC

CE

GO

NN

JF

HJ

ND

NP

BP

EB

NP

FF

FG

GA

NN

Ml

MO

CM

AG

DG

ED

LC

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

rem

rem string

de =

:forw

3:12 =

(h$) to decimal (d 3)

Ien(h$):form = 1tol2

= 0to9

if mid$(h$,

then 2670

nextw:m =

m,1) = mid$(he$,w + 1,1)

I2:nextm:de = 0:return

de = de + w*(10t(l2-m)):nextm:return

rem

rem end o

p$ =

program - close 1

'[1 spc];":gosub2150:

iles

p$ = "[2spcs].

:gosub2150:close1 :gosub2450:close1 f

print'

rem

rem r

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

EB un-assembly complete":end

nnemonic, addressing

brk,

php,

asl,

asl,

asl,

and,

rol,

bmi,

sec,

rti,

pha,

eor,

eor,

eor,

adc,

ror,

bvs,

sei,

sta,

dey,

stx,

sta,

txs,

Idx,

tay,

Ida,

Idy,

Ida,

Idx,

cmp,

dex,

bne,

eld,

cpx,

inc,

cpx,

sbc,

sbc,

1, 0, ora, 11

1, 8, ora, 2

7, 14, bpl, 3

5, 22, clc, 1

8, 30, jsr, 7

4, 37, rol, 4

13, 42, bit, 7

3, 48, and, 12

1, 56, and, 9

1, 64, eor, 11

1, 72, eor, 2

7, 77, Isr, 7

5, 85, Isr, 5

8, 93, Isr, 8

4,101, ror, 4

13, 106, jmp, 10

3, 112, adc, 12

1, 120, adc, 9

11,129, sty, 4

1,136, txa, 1

7, 142, bec, 3

5, 149, stx, 6

1,154, sta, 8

2,162, Idy, 4

1,168, Ida, 2

7,173, Idx, 7

5,180, Ida, 5

9,185, tsx, 1

9, 190, cpy, 2

4, 197, dec, 4

1,202, cpy, 7

3, 208, cmp, 12

1,216, cmp, 9

2, 224, sbc, 11

4, 230, inx, 1

7,236, sbc, 7

12,241, sbc, 5

9,249, sbc, 8

mode, hex

1, ora,

9, asl,

16, ora,

24, ora,

32, and,

38, pip,

44, and,

49, and,

57, and,

65, eor,

73, Isr,

78, bvc,

86, cli,

94, rts,

102, pla,

108, adc,

113, adc,

121, adc,

132, sta,

138, sty,

144, sta,

150, tya,

157, Idy,

,164, Ida,

169, tax,

174, bes,

181, Idx,

186, Idy,

, 192, cmp,

198, iny,

204, cmp,

209, cmp,

217, cmp,

225, cpx,

232, sbc,

237, inc,

245, inc,

253, inc,

>

and"

code

4,

13,

12,

9,

11,

1,

7,

5,

8,

4,

13,

3,

1,

1,

1,

7,

5,

8,

4,

7,

12,

1,

2,

4,

1,

3,

6,

8,

11,

1,

7,

5,

8,

A,

2,

7,

5,

8,

5, asl,

10, ora,

17, ora,

25, ora,

33, bit,

40, and,

45, rol,

53, rol,

61, rol,

69, Isr,

74, jmp,

80, eor,

88, eor,

96, adc,

104, adc,

109, ror,

117, ror,

125, ror,

133, stx,

140, sta,

145, sty,

152, sta,

160, Ida,

165, Idx,

170, Idy,

176, Ida,

182, civ,

188, Ida,

193, cpy,

200, cmp,

205, dec,

213, dec,

221, dec,

228, sbc,

233, nop,

238, beq,

246, sed,

254

4,

7,

5,

8,

4,

2,

7,

5,

8,

4,

7,

12,

9,

11,

2,

7,

5,

8,

4,

7,

5,

9,

11,

4,

7,

12,

1,

8,

4,

2,

7,

5,

8,

4,

1,

3,

1,

6

13

21

29

36

41

46

54

62

70

76

81

89

97

105

110

118

126

134

141

148

153

161

166

172

177

184

189

196

201

206

214

222

229

234

240

248

The Transactor 61 Volume 6, Issue O4

Super Sound Glen Reesor

Camrose, Alberta

SID Sound — The Easy Way!

How would you like to add eighteen sound-

related commands to your Commodore 64?

Well you can, with Super Sound. Super

Sound opens the door to easy and powerful

sound manipulation; no more fumbling

through all those POKEs. I'll bet you never

dreamed of being able to glance at a pro

gram and think: Ah yes, that sets the AT

TACK to 5, DECAY to 0, SUSTAIN to 12, and

RELEASE to 15. Or, how about being able to

easily change the SUSTAIN level without

changing the RELEASE rate?

Just type in the Super Sound generator pro

gram and save it. Before RUNning it, make

sure there is a disk in your drive because it

will make a copy of Super Sound for you on

that disk. Be careful to type in the data

statements carefully. Those numbers are the

actual Super Sound program. The new pro

gram on your disk is your working copy of

Super Sound. Just LOAD and RUN it like

any basic program.

These eighteen additional commands be

have just like normal commands in BASIC

— you can use them in program or direct-

mode and you can have multiple commands

on a line separated by colons. All com

mands added by Super Sound must be pre

ceded by the back-arrow (top left corner of

the keyboard).

Fun with SID

Once you have LOADed Super Sound you are ready to create some

sounds. Before I wrote this program, I sometimes had trouble

getting even one beep out of my 64. To show how easy it is with

Super Sound, type the following:

-"-clear

■"-volume 15

■•-wave 1 ,saw

"-sustain 1,15

1,2000

clear

volume X

wave X, tri

wave X, saw

wave X, pulse

wave X, noise

playX,FREQUENCY

offX

attack X,Y

decay X,Y

sustain X,Y

release X,Y

pulse X,Y

filter X, low, Y

filter X, high, Y

filter X, band, Y

filteroff X

syncX

syncoff X

ringX

ringoff X

resonance X

kill

Description of Commands

clear SID chip

set SID volume to X (0-15)

set voice X to specified waveform

set voice X to specified frequency and start ATTACK cycle

turn off voice X and start RELEASE cycle

set ATTACK rate for voice X to Y (0-15)

set DECAY rate for voice X to Y (0-15)

set SUSTAIN level for voice X to Y (0-15)

set RELEASE rate for voice X to Y (0-15)

set PULSE width for voice X to Y (0-4095)

FILTER voice X with desired filter, with a cut-off

frequency of Y (0-2047)

remember FILTER modes are additive, to change the filter, it

must first be turned off

turn off FILTER for voice X

SYNCHRONIZE voice X with another voice, which is deter

mined by the SID chip

turn off SYNCHRONIZATION for voice X

RING MODULATE voice X with another voice, which is

determined by SID

turn off RING MODULATION for voice X

set RESONANCE level to X (0-15)

turn on/off voice 3 (toggle)

Now type the command:

-off 1

The tone should stop. Notice that the tone stopped right away. To

change this, type the previous commands, but insert:

You should hear a tone coming from your computer. Now, try the

other waveforms. All you have to do is type the WAVE command

again, but with a different waveform specified. If you want to use

PULSE, remember to set the PULSE width.

■"-release 1,15

before the "-play command. Now when you type

should die-away very slowly.

-off 1 the tone

Now that you know how easy it is to make sounds, try some

experimentation with different waveforms, as well as different

values for ATTACK, DECAY, SUSTAIN, and RELEASE. You will be

The Transactor 62 Volume 6, Issue O4

amazed at what you can command SID to do. Remember to use the

■*—off 1 command to start the RELEASE cycle; otherwise when you

play another note, SID will not start the RELEASE cycle.

Try these four demos that create interesting effects using SYN

CHRONIZATION, RING MODULATION, and FILTERING.

10 rem synchronization

20 "-clear

30 -"-volume 15

40 "-wave 1 ,saw

50 -<-sustain 1,15

60 "-play 1,10000

70 -"-sync 1

80 for x = 0 to 10000 step 10:

90 end

Program to create Super Sound PRG file

(In summary, enter it, save it, run it, then load "super sound" and

run it.)

-play 3,x:next x

10 rem ring modulation

20 ^-clear

30 "-volume 15

40 «-wave 1 ,tri

50 "-sustain 1,15

60 "-play 1,10000

70 "-ring 1

80 for x = 0 to 10000 step 10: -play 3,x:next x

10 rem ring modulation and synchronization

20 "-clear

30 "-volume 15

40 "-wave 1 ,tri

50 "-sustain 1,15

60 "-play 1,10000

70

80

90forx = 0to 10000 step 10: ^play 3,x:next x

Try the following program with and without the resonance com

mand.

10 rem filtering (with and without resonance)

20 ^clear

30 "-volume 15

40 "-wave 1 ,saw

50 "-sustain 1,15

60 "-resonance 15

70 ^play 1,3000

80 for x = 0 to 2047 step 10: "-filter 1 ,low,x:next x

Now, with the aid of Super Sound, you too can make awesome

sound demos on your 64. With a little experimentation you will be

making professional-sounding sound effects with ease.

Editor's Note

There is a little less typing ahead than at first appears. Those

multiple lines of zeroes (probably .BYTE tables for parameter

storage) can be entered quickly by just changing the line number

each time. Speaking ofBYTE tables, our apologies for omitting the

source code for this one - it's just too long. However, this program

would be an ideal candidate for the Unassembler program also in

this issue. With a little work it wouldn 't be hard to convert Super

Sound into a TransBASIC module. M.Ed.

PA

KK

BK

EH

DJ

MD

JD

JG

DG

FH

OA

AH

LI

EN

HI

GH

DH

NM

EB

LP

IK

AM

BH

OL

IM

CN

MN

GO

AP

KP

EA

OA

IB

CC

MC

GD

AE

DF

EE

JL

GF

LA

MA

BF

LA

BL

LP

Fl

Nr

EF

CF

ME

BH

FL

AB

LL

Nl

AM

10 open 8,8,8, "0:super sound,p,w"

20prmt#8,chr$(1);chr$(8);

30 read a:ck = ck + a:ifa = 256then50

40 print#8,chr$(a);:goto30

50 close8:if ck<>257740 then print" error in

data statements" :stop

60 end

10,

0,

2,

0

55,133, 1,177,251.

120 data 251, 230, 251, 208, 2. 230, 252,

130 data 252, 201, 192,208,240, 169, 44,

140 data 251, 169, 160, 133, 252, 132, 253,

150 data 9, 133, 254, 177, 253, 145, 251,

70 data 12, 8,

80 data 54, 52,

90 data 88, 141,

100 data 3,160

110 data 252, 169

0, 158,

0, 0,

32. 50, 48

0, 129, 169

3, 169, 198, 141,

132,251. 169, 160.

3

133

145

165

133

169

230

160 data 251, 208, 2, 230, 252, 230, 253, 208

170 data 2,230,254,165,252,201, 161,208

180 data 234, 165,251,201, 157,208,228, 132

190 data 251, 169, 192, 133, 252, 132, 253. 169

200 data 11, 133,254, 177,253, 145,251,230

210 data 251, 208, 2, 230, 252, 230, 253, 208

208

96

220 data 2, 230, 254, 165, 252, 201. 198,

230 data 234, 165, 251, 201, 97, 208, 228,

240 data 0, 0, 0, 0, 0, 0, 0, 0

250 data 0, 0, 0, 0, 0, 0, 0, 0

260 data 0, 0, 0, 0, 0, 0, 0, 0

270 data 0, 0, 0, 0, 0, 0, 0, 0

280 data 0, 0, 0, 0. 0, 0, 0, 0

290 data 0, 0, 0, 0, 0, 0. 0, 0

300 data 0, 0, 0, 0, 0, 0. 0, 0

310 data 0, 0, 0, 0. 0, 0, 0, 0

320 data 0, 0, 0, 0. 0, 0, 0, 0

330 data 0. 0, 0. 0, 0, 0. 0. 0

340 data 0, 0, 0, 0, 0, 0, 0, 0

350 data 0, 0, 0, 0, 0, 0, 0, 0

360 data 0, 0, 0, 0. 0, 0, 0, 0

370 data 0, 0, 0, 0, 0, 0, 0, 0

380 data 0, 0, 0, 0, 0, 0, 0,192

390 data 192, 74,169, 44,184,103,225, 85

400 data 225, 100, 225, 178, 179, 35, 184, 127

410 data 170, 159, 170, 86,168,155,166, 93

420 data 166, 133, 170,

430 data 225, 122, 171,

440 data 188, 88,188,

450 data 179, 113, 191. 151, 224, 234, 185, 237

100,226, 107,226, 180,226, 14

13, 184, 124, 183, 101, 180, 173

139, 183, 236, 182, 0,183, 44

55,183,121,105,184,121, 82

123, 42,186,123, 17,187,127

191, 80,232,175,

179, 191,

69, 78,

41,225, 189,225, 198

65,166, 57,188,204

16, 3,125,179,158

460 data 191,

470 data 227,

480 data 183,

490 data 183,

500 data 184,

510 data 122,

520 data 125,

530 data 176,

540 data 69,

550 data 78,

70,229,175

90,211,174,100, 21

196, 70, 79,210, 78

88,212, 68, 65, 84,193, 73

80, 85, 84,163, 73, 78, 80

82, 69, 65

79, 84,207

82, 69, 83

84,163

560 data 85,212, 68, 73,205

570 data 196, 76, 69,212, 71

580 data 82, 85,206, 73,198

The Transactor 63 Volume 6, Issue O4

FE

PO

NK

IP

AC

HD

NF

NA

CN

JD

AF

CN

CD

CC

KF

FO

PE

PP

BG

FJ

PB

KJ

MH

IA

IM

PC

AC

KC

ED

OD

IE

CF

MF

GG

AH

KH

El

01

IJ

CK

MK

GL

AM

KM

EN

ON

10

PB

HO

MB

PN

PC

FF

EO

LF

HG

IC

DC

LG

BN

AB

KN

590 data 84,

600 data 194,

610 data 69,

620 data 212,

630 data 197,

640 data 69,

650 data 73,

660 data 212,

670 data 212,

680 data 89,

690 data 79,

700 data 215,

710 data 206,

720 data 206,

730 data 171,

740 data 79,

750 data 73,

760 data 210,

770 data 81,

780 data 69,

790 data 206,

800 data 69,

810 data 82,

820 data 67,

830 data 164,

840 data 73,

850 data 0,

860 data 0,

870 data 0,

880 data 0,

890 data 0,

900 data 0,

910 data 0,

920 data 0,

930 data 0,

940 data 0,

950 data 0,

960 data 0'

970 data 0,

980 data 0,

990 data 0,

1000 data 0

1010 data 0

1020 data 0

1030 data 0

1040 data 0

1050 data 0

1060 data 67

1070 data 85

1080 data 85

1090 data 67

1100 data 85

1110 data 76

1120 data 217

1130 data 69

1140 data 84

1150 data 70

1160 data 78

1170 data 82

1180 data 75

1190 data 82

1200 data 83

79,

82,

205,

76,

86,

198,

78,

67,

67,

211,

83,

84,

83,

78,

173,

210,

78,

70,

210,

88,

84,

69,

164,

72,

82,

68,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

, 0

, 0

, 0

, 0

, o

, 0

, 76

, 77

, 76

,203

, 83

, 69

, 79

, 82

, 69

,198

, 75

, 69

, 73

,201

, 197

82,

69,

223,

79,

69,

80,

84,

79,

76,

79,

197,

65,

80,

79,

170,

190,

212,

82,

82,

208,

65,

203,

86,

82,

73,

164,

0,

0,

0,

0,

0,

0,

0,

0,

o,

0,

0,

0,

0,

0,

0,

, 0

, 0

, 0

, o

, 0

, o

, 69

, 197

, 83

, 68

, 84

, 65

, 70

, 79

,210

, 83

, 70

, 83

, 76

, 83

, 78

197, 71,

84, 85,

79, 206,

65, 196,

82, 73,

79, 75,

163, 80,

78,212,

210, 67,

80, 69,

71, 69,

66,168,

67, 168,

212, 83,

175,222,

189, 188,

65, 66,

197, 80,

78,196,

67, 79,

206, 65,

76, 69,

65, 204,

164, 76,

71, 72,

71,207,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

, o, o

, o, o

, o, o

, o, o

, o, o

, o, o

, 65,210

, 87, 65

,197, 65

, 69, 67

, 65, 73

, 83,197

,198, 70

, 70,198

, 83, 89

, 89, 78

,198, 82

, 17, 65

, 204, 0

, 65,215

, 79, 73

79,

82,

87,

83,

70,

197,

82,

76,

77,

206,

212,

84,

84,

84,

65,

83,

211,

79,

76,

211,

84,

206,

65,

69,

84,

0,

0,

0,

0,

0,

0,

0,

0,

0,

o,

0,

0,

0,

0,

0,

0,

, 0

, 0

, 0

, o

, o

, o

, 86

, 86

, 84

, 65

,206

, 80

, 73

, 70

, 78

, 195

, 73

, 78

, 0

, 80

, 83

83,

206,

65,

65,

217,

80,

73,

73,

196,

67,

78,

207,

72,

69,

78,

71,

85,

211,

79,

83,

206,

83,

83,

70,

164,

0,

0.

0,

0,

0,

0,

0,

0.

0,

0,

0,

0,

0,

0,

0,

0,

, 0

, o

, 0

, o

, o

, o

, 79

, 197

, 84

,217

, 82

, 76

, 76

, 73

, 67

, 82

, 78

, 67

, 0

, 85

, 197

85

82

73

86

68

82

78

83

83

76

69

70

69

208

196

206

83

83

199

73

80

84

195

84

77

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

, o

, 0

, 0

, o

, 0

, o

, 76

, 80

, 65

, 83

, 69

, 65

, 84

, 76

, 79

, 73

, 199

, 197

, 84

, 76

, 0

IC

LE

ID

AH

JG

EP

NA

PC

JE

AB

HC

LC

MJ

JG

PA

DH

00

GG

CM

LL

NG

DL

CA

IK

BK

HD

FA

JN

FP

KE

MB

LI

BF

AN

PI

FO

GA

BE

LM

KE

FB

CG

CM

AD

OP

EJ

MF

JF

EK

II

FA

IL

DG

LF

DP

KE

DF

CO

BL

GG

OD

GA

1210data 76, 79,215, 66,175, 72, 73, 71

1220data200, 0, 0, 42,193, 57,193, 91

1230data193, 107, 195, 71, 194, 146, 194,217

1240 data 194, 36, 195, 208, 193, 28, 194, 144

1250 data 196, 181, 195,240, 196, 192, 196, 96

1260 data 197, 48,197,176,197,224,197, 96

1270 data 169, 0,141,253, 3,170,160,255

1280 data 141, 254, 3,189, 25,192, 16, 9

1290 data 72,169, 1,141,253, 3,104, 41

1300 data 127, 200, 232, 209, 122, 208, 8, 173

1310 data 253, 3,240,231, 76, 4,193,169

1320 data 0,141,253, 3,238,254, 3,238

1330 data 254, 3,160,255,189, 25,192,240

1340 data 45, 16, 4,232, 76,204,192,232

1350 data 76, 245, 192, 200, 230, 122, 208, 2

1360 data 230, 123, 136,208,247, 169, 156, 141

1370data 37,193,169,192,141, 38,193,174

1380 data 254, 3,240, 7,238, 37,193,202

1390 data 76, 27,193,108,156,192, 76, 96

1400 data 196, 169, 0,168,153, 0,192,153

1410 data 0,212,200,192, 25,208,245, 96

1420 data 32,158,173, 32,170,177,170,240

1430 data 3, 76, 72,178,192, 16, 16,249

1440 data 140, 252, 3,173, 24,192, 41,240

1450 data 13,252, 3,141, 24,192,141, 24

1460 data 212, 96, 32,158,173, 32,170,177

1470 data 170, 240, 3, 76, 72,178,152,240

1480 data 250, 192, 4, 16,246,169, 4,136

1490 data 240, 6, 24,105, 7, 76,112,193

1500 data 141, 252, 3, 32,253,174,169,128

1510 data 141, 205, 192, 141, 246, 192, 169, 96

1520 data 141, 14,193, 32,193,192,169, 25

1530 data 141, 205, 192, 141,246, 192, 169, 169

1540 data 141, 14,193,238,254, 3,238,254

1550 data 3,173,254, 3, 74,201, 3,208

1560 data 5,169, 4, 76,181,193,201, 4

1570 data 208, 2,169, 8, 10, 10, 10, 10

1580 data 172,252, 3,141,252, 3,185, 0

1590 data 192, 41, 15, 13,252, 3,153, 0

1600 data 192, 153, 0,212, 96, 0, 0, 32

1610 data 158, 173, 32,170,177,170,240, 3

1620data 76, 72,178,152,240,250,192, 4

1630data 16,246,169, 0,136,240, 6, 24

1640 data 105, 7, 76,229,193,141,252, 3

1650 data 32,253,174, 32,158,173, 32,112

1660 data 196, 72,152,172,252, 3,153, 0

1670 data 192, 153, 0,212,104,200,153, 0

1680 data 192, 153, 0,212,200,200,200, 185

1690 data 0,192, 9, 1,153, 0,192,153

1700 data 0,212, 96, 32,158,173, 32,170

1710 data 177, 170, 240, 3, 76, 72,178,152

1720 data 240, 250, 192, 4, 16,246,169, 4

1730 data 136, 240, 6, 24,105, 7, 76, 49

1740 data 194, 168, 185, 0,192, 41,254,153

1750 data 0,192,153, 0,212, 96, 32,158

1760 data 173, 32,170,177,170,240, 3, 76

1770 data 72,178,152,240,250,192, 4, 16

1780 data 246, 169, 5,136,240, 6, 24,105

1790 data 7, 76, 92,194,141,252, 3, 32

1800 data 253, 174, 32,158,173, 32,170,177

1810data170, 208, 220, 192, 16, 16,216,152

1820data 10, 10, 10, 10,172,252, 3,141

The Transactor 64 Volume 6, Issue O4

GL

MD

IL

Gl

NF

F!

NH

PN

OB

NJ

HP

LL

DP

CF

FB

MJ

AC

JJ

AA

EO

CN

PE

KA

KK

AD

DF

ND

IC

DM

10

JJ

FG

DK

NH

JK

NH

HM

Al

Fl

JA

KE

DN

KP

KA

OG

PD

OL

NH

LJ

GC

BE

DC

OF

BH

OA

GC

IJ

EH

LG

IL

IN

OM

1830 data 252, 3,185, 0,192, 41, 15, 13

1840 data 252, 3,153, 0,192,153, 0,212

1850 data 96, 32,158,173, 32,170,177,170

1860 data 240, 3, 76, 72,178,152,240,250

1870 data 192, 4, 16,246,169, 5,136,240

1880 data 6, 24,105, 7, 76,167,194,141

1890 data 252, 3, 32,253,174, 32,158,173

1900 data 32,170,177,170,208,220,192, 16

1910 data 16,216,152,172,252, 3,141,252

1920 data 3,185, 0,192, 41,240, 13,252

1930 data 3,153, 0,192,153, 0,212, 96

1940 data 32,158,173, 32,170,177,170,240

1950 data 3, 76, 72,178,152,240,250,192

1960 data 4, 16,246,169, 6,136,240, 6

1970data 24,105, 7, 76,238,194,141,252

1980 data 3, 32,253,174, 32,158,173, 32

1990 data 170, 177, 170, 208, 220, 192, 16, 16

2000 data 216,152, 172, 252, 3, 10, 10, 10

2010 data 10,141,252, 3,185, 0,192, 41

2020 data 15, 13,252, 3,153, 0,192,153

2030 data 0,212, 96, 32,158,173, 32,170

2040 data 177, 170, 240, 3, 76, 72,178,152

2050 data 240, 250, 192, 4, 16,246,169, 6

2060 data 136, 240, 6, 24,105, 7, 76, 57

2070 data 195, 141,252, 3, 32,253,174, 32

2080 data 158, 173, 32, 170, 177, 170, 208, 220

2090 data 192, 16, 16,216,152,172,252, 3

2100 data 141, 252, 3,185, 0,192, 41,240

2110 data 13,252, 3,153, 0,212,153, 0

2120 data 192, 96, 32,158,173, 32,170,177

2130 data 170, 240, 3, 76, 72,178,152,240

2140 data 250, 192, 4, 16,246,169, 2,136

2150data240, 6, 24,105, 7, 76,128,195

2160 data 141, 252, 3, 32,253,174, 32,158

2170 data 173, 32,170,177,201, 16, 48, 8

2180 data 201, 17, 16,215,192, 0,208,211

2190 data 170,152, 172, 252, 3,153, 0,192

2200 data 153, 0,212,200,138,153, 0,192

2210 data 153, 0,212, 96, 32,158,173, 32

2220 data 170, 177, 170, 240, 3, 76, 72,178

2230 data 152, 240, 250, 192, 4, 16,246,234

2240 data 234, 234, 234, 192, 3, 208, 1, 200

2250 data 140, 2, 0, 32,253,174,169,145

2260 data 141, 205, 192, 141,246, 192, 169, 96

2270 data 141, 14,193, 32,120,196,169, 25

2280 data 141, 205, 192, 141,246, 192, 169, 169

2290 data 141, 14,193,238,254, 3,238,254

2300 data 3,173,254, 3, 74,201, 3,208

2310 data 3, 24,105, 1, 10, 10, 10, 10

2320 data 141, 254, 3, 32,243,197, 32,158

2330 data 173, 32,170,177,201, 32, 48, 8

2340 data 201, 33, 16,161,192, 0,208,157

2350 data 170, 152, 41, 7,141, 21,192,141

2360 data 21,212,152, 74, 74, 74,141,252

2370data 3,138, 10, 10, 10, 10, 10, 13

2380data252, 3,141, 22,192,141, 22,212

2390data234, 234,234, 234, 173, 23,192, 13

2400 data 2, 0,141, 23,192,141, 23,212

2410 data 173, 254, 3, 13, 24,192,141, 24

2420 data 192, 141, 24,212, 96, 0, 0,169

2430 data 25, 141,205, 192, 141,246, 192, 169

2440 data 169, 141, 14,193, 76, 30,197, 32

CD

OJ

EL

FO

Fl

CN

AE

HN

KN

Gl

BM

OA

GH

ON

JD

DE

NP

KE

CL

CM

Al

JF

DN

AE

NE

KJ

CA

MP

HM

PM

PN

GN

OD

JF

AB

FO

MB

HG

CA

NE

HE

CH

PB

HF

JM

KC

KB

GG

FL

KB

HI

OM

EL

GN

El

LP

NL

PL

FN

OK

ID

FD

16,

2,

23,

18,

2450 data 247,

2460 data 1,

2470 data 122,

2480 data 0,

2490 data 158,

2500 data 76,

2510 data

2520 data

2530 data

2540 data

2550 data 158,

2560 data 76,

2570 data 16,

2580 data 105,

2590 data 192,

2600 data 212,

2610 data 158,

2620 data 76,

2630 data 16,

2640 data 105,

2650 data 56,

2660 data 192,

2670 data 122,

2680 data 122,

2690 data 158,

2700 data 76,

2710 data 16,

2720 data 105,

2730 data 192,

2740 data 212,

2750 data 53,

2760 data 76,

2770 data 16,

2780 data 105,

2790 data 56,

2800 data 192,

2810 data 122,

2820 data 122,

8,

0,

17,

76,

10,

23,

23,

0,

24,

2830 data

2840 data

2850 data

2860 data

2870 data

2880 data

2890 data

2900 data

2910 data

2920 data 197,

2930 data 212,

2940 data 20,

2950 data 122,

2960 data 122,

2970 data 162,

2980 data 198,

2990 data 0,

3000 data 2,

3010 data 173,

3020 data 208,

3030 data 245,

3040 data 3,

3050 data 208,

3060 data 54,

183,

177,

76,

0,

173,

72,

246,

45,

212,

5,

173,

72,

246,

7,

9,

96,

173,

72,

246,

7,

233,

153,

201,

76,

173,

72,

246,

7,

9,

96,

198,

72,

246,

7,

233,

153,

201,

76,

175,

0,

198,

72,

10,

192,

192,

0,

192,

10,

96,

165,

169,

208,

5,

122,

145,

230,

0,

2,

169,

230,

247,

133,

164,

122,

193,

0,

32,

178,

169,

23,

96,

5,

32,

178,

169,

76,

2,

0,

32,

178,

169,

76,

2,

0,

203,

193,

32,

178,

169,

76,

4,

0,

32,

178,

169,

76,

4,

0,

145,

193,

0,

0,

32,

178,

10,

41,

141,

0,

48,

74,

173,

122,

175,

2,

165,

202,

122,

123,

0,

198,

203,

122,

76,

1,

20,165,

16, 4,

192, 0,

0, 0,

170, 177,

152,240,

255, 56,

192, 141,

7, 12,

19, 15,

170, 177,

152,240,

4,136,

213,196,

153, 0,

0, 0,

170,177,

152,240,

4,136,

5,197,

57, 0,

212, 96,

208, 7,

192, 76,

170,177,

152,240,

4,136,

69, 197,

153, 0,

0, 0,

170,177,

152,240,

4, 136,

117, 197,

57, 0,

212, 96,

208,

192,

21, 96,160

41, 127, 145

0, 0, 0

0, 0, 32

170,240, 3

4

229

141

32

32

3

4

24

0

0

32

3

4

3

4

24

0

0

32

3

4

24

0,

0,

10,

76,

0,

0,

170,177,

192, 16,

10,141,

15, 13,

23,212,

0, 0,

5, 9,

141, 24,

254, 3,

208, 2,

160, 0,

230,123,

122,208,

208, 245,

162, 5,

202, 208,

0,162,

123,198,

160, 0,

208, 2,

158,173,

76, 131,

250, 192,

132, 2,

23, 192,

5, 14,

18, 0,

170,240,

250, 192,

240, 6,

168, 185,

192,153,

0, 0,

170,240,

250, 192,

240, 6, 24

168,169,255

192,153, 0

160, 3,177

169, 75,145

142,197, 32

170,240,

250, 192,

240, 6,

168, 185,

192, 153,

0, 0,

170,240,

250, 192,

240, 6,

168, 169,255

192,153, 0

3, 177

17, 145

8,175, 76

0, 0, 0

0, 0, 32

170,240, 3

16,249,152

252, 3,173

3, 141

0, 0

0, 173

76, 236

192,141, 24

201, 32,208

198,123, 198

145, 122,230

76,253, 174

2, 198,123

169, 145, 160

230, 122,208

247, 76,158

3, 165,122

122,202,208

145, 122,162

230, 123,202

0, 0,169

164, 0,256

160,

169,

252,

96,

0,

128,

The Transactor 65 Volume 6, Issue O4

Eliminating The BASIC Loader
Chris Zamara, Technical Editor

In the pages of The Transactor and also in many other

computer publications, you'll find machine language programs

listed in the form of lots of BASIC DATA statements, and a bit of

code to put the DATA values into memory. Our reason for

printing the program this way is simply so that any Commo

dore owner can enter the program, even without a machine

language monitor or assembler. We would alienate a large

number of readers if we assumed that they had certain software

and wrote all of our articles accordingly.

Entering a program as decimal numbers contained within

DATA statements isn't so bad, but it really is a waste of space

and time to constantly use the program in this form. Each

number in the DATA statements represents only one byte of

machine code, so a BASIC loader typically takes up about five

times as much memory as the machine language program

itself, which is put into memory somewhere when the BASIC

loader is RUN. Running the loader, especially for a big pro

gram, can also take a considerable length of time. Another

problem with having an ML program in BASIC form is the fact

that many ML subroutines are designed to be used from an

existing BASIC program, meaning that the loader has to be

merged, or loaded and run as an overlay, wasting more time

yet.

Ideally, once a machine language program has been entered, it

will exist in pure machine language form on disk or tape. Such

a file can just be LOADed into its appropriate memory address

and executed with a SYS command. The advantages of such a

program:

1) It takes up much less space on disk or tape than a BASIC

loader

2) It can be LOADed and not interfere with a BASIC program

currently in memory

3) There is no waiting for a BASIC loader to put the program

into memory

Using pure ML files on disk or tape, you can have a BASIC

program which loads an ML program, executes it, then loads

another one, etc. It is clearly desirable to put your BASIC

loaders into pure ML form.

There are two ways to create an ML program file from a BASIC

loader: RUN the loader, then save the resultant ML program

from memory, or use the loader to write directly to a disk (or

tape) file.

Eliminating the Loader, Method *1

As an example, let's use the "Quake" program from this issue's

Bits & Pieces section. It is listed in loader form (with verifizer

codes to cut down the entry errors). To create a pure ML

"Quake" program, we can just save it from memory after the

loader is RUN. From line 30 of the loader, we can see that the

ML program occupies addresses 49152 through 49342. All we

have to do is save that range to a program file on disk. That can

be accomplished with an ML monitor, or for the C64/VIC we

can use the technique given in Volume 5 Issue 5's Bits & Pieces

section to save a range of memory from BASIC:

sys57812" 0:quake.ml" ,8:poke193,0:poke194,192

:poke174,190:poke175,192:sys62954

(The start address, $C000 goes into 193-194 and the end

address, $C0BE into 174-175.)

The program "quake.ml" will now be on disk, and can be

loaded with the non-relocating LOAD command and exe

cuted:

load "quake.ml" ,8,1

sys49152

The SYS address is determined from the loader program, where

it is usually given in a REM statement or executed after

POKEing in the DATA values.

Method #2

The second method forces the loader to write the ML program

directly to disk, instead of putting it into memory. This is

superior to method #1 because it doesn't interfere with any

program that might be in memory when the loader is run.

The Transactor 66 Volume 6, Issue O4

The BASIC loader has to be modified slightly. The first thing to

do is to add a command at the beginning of the loader which

OPENs the file. Take the "Quake" loader, and add this line:

16 open 1,8,1, "0:quake.ml"

(You must use a secondary address of 1 unless the suffix ' ,p,w'

is added to the filename.)

The next step is to add a statement to the loader which will

write the program's LOAD address to the file. This will instruct

the LOAD command where in memory to put the program. The

LOAD address is the start value of the FOR. . .NEXT loop which

puts the program into memory. Looking at line 30 in the

"Quake" program, we see that the start address of the ML

program is 49152. This value must be written as the first two

bytes in the now-open program file, in low, high format. Use

the standard formula:

hi = 49152/256

lo = 49152-10*256

(lo = 0, hi = 192)

For this example, then, we add the line:

17 print #1 ,chr$(0)chr$(192);

Now, the main modification: change the loader so that it

PRINTs to the above file instead of POKEing to memory. To do

this, replace the statement in line 30: 'POKE I,A' with:

lPRINT#l,CHR$(A);'.

The final step is to add a CLOSE statement after all writing to

disk (this is crucial):

45 CLOSE 1

Once the loader has been modified in this way, RUN it and wait

while it writes the file. After it's finished (assuming no DATA

errors), you'll have the file " quake.ml" on disk, and the loader

will never be needed again. You'll probably want to keep it,

though, as a backup.

LOADing the ML Program

Your newly-created ML program can't be simply LOADed and

RUN like the loader. You have to use the non-relocating LOAD

command to place the program at its proper load address, then

you have to execute the program with a SYS (or possibly a USR)

command:

load "quake.ml" ,8,1

sys49152

There is a slight complication when LOADing an ML program

of this nature. BASIC sets it start and end program pointers after

a direct-mode LOAD, so they will be messed up after you

LOAD the ML program. You will not be able to edit your BASIC

program after the load. The easy but possibly undesirable

method is to issue a NEW after loading the ML program.

Alternatively, if you are using the programmer's utility package

'POWER', a FIX or PTR command will fix up the pointers for

you.

The other solution is to LOAD the ML program from an

executing BASIC program. When a LOAD is encountered in a

program, it does not change the pointers. It does re-run the

BASIC program, though. If you want to LOAD an ML program

from somewhere within the depths of a BASIC program, then

continue execution, you can take advantage of the fact that

variables aren't destroyed by the auto-run. For example:

10 on a goto 30,60,180

20a=1:load"mlprg1 ",8,1

30. ..

40. ..

50a = 2:load"mlprg2",8,1

60. ..

170 a = 3: load "ml prg3" ,8,1

180. ..

Method #2 Summary

1) Add to start of loader:

open 1,8,1, "O:prog name"

print#1,chr$(lo)chr$(hi);

Where lo.hi are the program start address

2) Replace 'POKE I,A' with lPRINT#l,CHR$(A);'

3) Add after FOR. ..NEXT loop:

CLOSE 1

By choosing your favorite method from the above, you can

transform all of your ungainly loader programs into efficient,

ready-to-use machine language routines. Just one more way to

conserve the precious commodities of time and space.

The Transactor 67 Volume 6, Issue O4

U What ? Jesse Knight

Brazoria, TX

It's a case of mutual confusion. . .

If you wanted to send a reset command to the 1541, you might

use code like this:

OPEN 1,8,15: PRINT#1," UJ ": CLOSE 1

That seems simple enough; open the command channel, send

the command UJ, close the command channel. It would be

simple, and it would work fine, if it weren't for the CLOSE 1 at

the end.

When the 1541 receives the UJ command, it begins the full

reset sequence. This involves the testing of its 16K of ROM and

2K of RAM. While it is doing this, it ignores everthing else. The

CLOSE command, in the example above, complicates things

because it causes the computer the send a command byte to the

drive. The computer tries to send the byte to the drive, but it

encounters a problem.

To send the byte to the drive, the computer first sends an

ATTENTION signal over the serial bus. Then the computer

looks for an ATTENTION ACKNOWLEDGE signal from the

drive. In this case, it receives one. Not because the drive

actually sent it, at this point the drive is still busy with the

ROM/RAM tests, but because of the value in the data port for

the serial bus by the drive. The next thing the computer does is

wait for another signal, called READY FOR DATA, from the

drive. It will wait for this signal forever.

Normally this is an important and useful part of the serial bus 1/

0. If the drive happened to be busy formatting a disk and it

received the ATTENTION signal, it would respond with the

ATTENTION ACKNOWLEDGE signal. Then it would finish

formatting the disk. After it finished formatting the disk, it

would send the READY FOR DATA signal and the communica

tions could continue. If the drive didn't send the ATTENTION

ACKNOWLEDGE signal, the computer would generate a DE

VICE NOT PRESENT error.

That's what might happen normally, but the problem is what

happens during the reset sequence. The computer has received

the ATTENTION ACKNOWLEDGE and is waiting for the

READY FOR DATA signal. Once the drive finishes the reset

sequence, it waits for something to do. It doesn't know it's

supposed to be listening to the computer. It's a case of mutual

confusion with the drive waiting on the computer and the

computer waiting on the drive.

There are two solutions to this problem. The first should be

rather obvious. Use a delay after sending the UJ command

before attempting to access the drive. I have found a FOR NEXT

loop from 1 to 1000 will work fine. The second solution is to use

the alternate reset command, UI. The UI command performs a

reset but it skips the ROM/RAM tests. This makes two differ

ences. First, it takes less time. Secondly, most of the 2K of RAM

is not altered, whereas UJ sets it all to zero.

There are actually two things the UI command can be used for.

UI alone causes the reset skipping the ROM/RAM test. The

second is to set a timing value the 1541 uses for the serial I/O.

UI + causes it to be set to work with the 64, while UI- causes it

to be set to work with the VIC-20. It will work with the VIC-20

with either setting, but using UI- gives a slight increase in data

transmission rate. The longer delay is needed with the 64

because of the VIC II chip.

The program in listing 1 will allow you to see part of the serial

bus I/O. The program copies the BASIC and KERNAL ROMs to

RAM and makes a patch to the routine used to send data over

the bus. This patch causes the screen border color to be

incremented each time the bus is checked for the READY FOR

DATA signal. When executed, the program uses three methods

to reset the 1541, so you can see how they work. When it gets to

the last one, UJ without any delay, the computer will appear to

lock up. The border will be a mass of colored lines. Press the

RUN/STOP and RESTORE keys to regain control.

At this point the command POKE 1,53 will switch to the

modified KERNAL in RAM. Now each time the computer sends

data to the drive the border color will change. Try loading and

saving programs or data files and watch what happens. Some

thing else you may want to try is this: use something like:

OPEN 15,8,15, "N0:EXAMPLE,XX"

to start a disk format. While the format is in progress, give the

command:

LOAD "$",8

The Transactor 68 Volume 6, Issue O4

Watch what happens now, and when the disk format is fin

ished.

Who knows, you might have a flashing good time.

rem visual uj jk 8/23/85

print chr$(147)" copying rom to ram. . ."

print " takes about one minute"

for x = 40960 to 49151: poke x,peek(x): next

for x = 57344 to 65535: poke x,peek(x): next

i for x = 0 to 5: read a: poke 49152 + x,a: next

poke 60763,0: poke 60764,192

poke 1,53

print: print " press space to continue"

get a$: if a$<>" [1 space]" then 190

print: print: print " uj using delay."

i open 1,8,15

print#1, "uj"

i for x = 1 to 1000: next

input#1,en$,em$,et$,es$

print en$,em$

i close 1

print: print " press space to continue"

get a$: if a$<>" [1 space]" then 280

print: print: print " ui without delay."

i open 1,8,15

print#1," ui"

input#1 ,en$,em$,et$,es$

print en$,em$

i close 1

print: print " press space to continue"

get a$: if a$<>" [1 space]" then 360

print: print " uj without delay."

i open 1,8,15

print* 1, "uj"

input#1 ,en$,em$,et$,es$

print en$,em$

i close 1

data 238, 32,208, 76, 169,238

1571 Notes

The 1571 drive is a very capable unit. Commodore promised

that this drive would be totally compatable with the 1541, and

it really appears to be.

It is also intelligent. When connected to the 128 computer, it

works in 1571 mode. If it happens to be connected to a 64, it

works like a 1541. That is done automatically.

There are added commands that allow the modes and features

to be controlled through software as well. To help maintain

compatability with the 1541, these commands were added as

BM

KO

JK

JA

OA

AA

OG

GL

Dl

NG

CL

KE

Bl

KM

DJ

GN

HN

NN

GM

EL

EK

IN

DO

GC

HC

NC

CB

BF

EP

LC

DD

GH

HH

LC

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

part of the U0 command. On the 1541, the U0 command was

only used to reset the pointer to the user command jump table.

On the 1571 it is used for much more.

The command U0>M0 places the drive in 1541 mode. In this

mode it acts just like a 1541.

The command U0>Ml places the drive in 1571 mode. In this

mode the fast serial bus routines can be used. Disks are double

sided by default in this mode. That means 1328 blocks free

instead of just 664. The back side of the disk is formatted with

tracks 36 through 70. This is treated the same way as with the

8050 and 8250 drives. The single sided disks can be read in the

double sided mode and the front side of double sided disks can

be read in single sided mode.

If you think that's confusing, wait until you read about the next

command. The commands U0>H0 and UO>H1 are used to

select which head to use. This command only works when the

drive is in 1541 mode. This allows each side of a disk to be

treated as a separate disk, with tracks 1 through 35 on each

side. It's not the same as cutting an extra notch in a disk to use

the back side, since the rotational direction is different.

The command "U0>R" +chr$(X) sets the DOS variable RE-

VCNT to the value of X. REVCNT is used to control the number

of tries made to recover from a read error. The upper bit is used

to control the the head 'bump'. The number of retries can be set

to 10 and the head bumping disabled by using "U0>R"

+ chr$(138).

The command " U0>S" +chr$(X) sets the sector interleave to

the value of X. The normal interleave is 10.

There is even a command for setting the device number.

U0>" + chr$(X) sets the device number to the value of X. It may

be any value from 4 through 30.

The device number can still be changed through hardware.

Fortunately, the case doesn't have to be opened to do this.

There are two DIP switches on the back of the drive to use.

Device numbers from 8 to 11 can be selected this way.

There are more commands, but they are mostly for the MFM

mode. One command lets you determine the disk format (MFM

or GCR). Another is for formatting a disk in MFM format. Even

in MFM mode the 1571 is flexible. It can handle tracks with

128, 256, 512, or 1024 byte sectors.

There's no doubt that the 1571 is a capable unit. It will work

fine with disks and software for the 1541. The new commands

and features make it a really nice drive. It's at least enough to

keep a person busy.

The Transactor 69 Volume 6, Issue O4

Solving SAVE®: "So Close We Can Taste It!
KarlJ.H. Hildon

If you've been following the SAVE® scene, then you've proba

bly read by now the article in Compute by Phillip A. Slaymaker.

Mr. Slaymaker has presented some truly significant informa

tion. His program demonstrates the bug in any 1541 thus

proving that nobody is immune.

Slaymaker's program creates a disk that will show a failure to

allocate sectors that are used by a PRG file. Once the disk is set

up, he specifies a LOAD followed by three SAVE@'s. On the

third SAVE® the Blocks Free count is 4 greater than it should

be. However, if the LOAD command is entered with a drive

number 0 included, the third SAVE® does not fail.

Using this information along with the veritable encyclopedia of

other data we've collected, we managed to produce some

rather interesting results.

First of all, Slaymaker states in the article that, "the key to

avoiding the SAVE® bug is to always specify drive 0 when

performing any disk drive function, or to always reset the drive

before any SAVE® operation.". A 'UJ' command is suggested

for resetting the drive, but as you'll note in the previous article

("U What?" page 68) there are certain pitfalls to be aware of. In a

telephone conversation with Phillip Slaymaker I learned that

he too is aware of the UJ problems but, understandably,

including them was beyond the scope of his article.

Before we even entered the Slaymaker demo program, we

tested the drive 0 theory with the Whittern SAVE® loop we

published some issues back. Whittern's program omits the

drive number in all three LOAD commands. The program was

modified to include "0:" in each. Then, using a newly format

ted disk, 5 programs consisting only of REM statements, all

equal in size, were SAVEd to the disk, followed by the modified

Whittern test. The drive was reset with a power off/on and the

test program was LOADed with drive 0 prefixed to the fi

lename.

Guess what. No sooner had the second SAVE® been per

formed when I got the urge to hit the STOP key. A quick look at

the files showed the program selected by the second SAVE®

had overwritten the program selected in the first SAVE®.

Inotherwords, the first SAVE® failed to allocate sectors, and the

second SAVE® came along and clobbered them. As it turned

out, the program that got clobbered was "program 1" - the first

in the directory and the first to be written to the fresh diskette.

The 5 programs stored were short 2 block files. All 5 programs

plus the test program fit comfortably on one track. Slaymaker

claims that files spanning more than one track are more

susceptible. Further tests showed this claim to be true, how

ever it seems that no file is absolutely safe. Further in our

telephone conversation we also agreed on this.

Although P.A. Slaymaker has planted an impressive milestone,

there are still some unexplained phenomena. For example, the

block allocate failures are not limited to SAVE®. A Scratch

followed by a SAVE in place of SAVE® in the Whittern test will

also scramble files. Secondly, the Slaymaker demo was re-cut

for the 4040 drive but failed to show any problem. Based on the

number of SAVE® reports prior to the 1540/41, recent devel

opments, AND personal experience, it is highly doubtful that

the other CBM drives are failsafe (and I could probably find at

least a few people who would agree). Mr. Slaymaker has indeed

discovered an important flaw, but it may not be the only one! In

our conversation we agreed on this too, however, the Slayma

ker demo is so far the closest most finite test there is for solving

this mystery.

Using Slaymaker's approach, we decided to make new test

programs that would monitor the internal activities of the DOS.

The fact that 1541 DOS is a descendent of the dual drive DOS is

clearly explained in Slaymaker's article and clearly evident

from looking at 1541 DOS code. We all know the 1541 has only

one drive, but under certain predictable conditions the DOS

prepares itself to handle two.

Before I continue, I'd like to point out that this is probably the

most difficult explanation I've ever attempted. Should you

notice some repetition, it's purely in the interest of clarity.

When no drive number is specified in commands sent to a dual

drive, the DOS will activate both drives (if necessary). For

example, Initialize without a drive number will initialize both

drives. Same with Validate, and a LOAD will access both drives

before reporting File Not Found. Even though the 1541 only

has one drive, the DOS will allow for the "presence" of drive 1.

That is, a LOAD with no drive number may find the file on

drive 0, but DOS allows for the possibility that drive 1 may need

service. This possibility means that work space must be set

aside in disk RAM to service drive 1 for things like the drive 1

Block Availability Map (BAM). Remember, this activity is the

result of residue left over from dual drive DOS.

The Transactor 7O Volume 6, Issue O3

The 1541 DOS uses five pages of disk RAM as "buffers". A

buffer is 256 bytes long and always begins at a page boundary.

The first buffer is at $0300 to $03FF. The second buffer is at

$0400, and the fifth buffer starts at $0700. Two other buffers,

the Command Buffer and the Error Buffer, are situated in page

$02 and treated as the sixth buffer. The DOS treats this buffer

much like the others, but arranges for this space to be flagged

as "always in use" so that no other buffer related activities can

disturb it.

Now at this point we are very close to publication and

have conjured several theories about the internal work

ings of DOS. From here on we can only offer what we

believe to be correct based on observations. We fully

intend to continue our investigations and will probably

have a more accurate story to tell by next issue.

Theoretically, the 1541 need only accommodate one BAM.

Upon performing the very first disk operation, the drive 0 BAM

is transferred from the diskette into the buffer at $0700 which is

flagged as "in use", leaving four buffers unused. If the first

operation implies there may be a second drive, the DOS

activates another buffer to host the drive 1 BAM. This leaves

three buffers unused.

Let's assume only one buffer has been allocated for the BAM of

drive 0. During a write operation to the disk, the DOS needs to

use buffers that are often occupied by the BAM. A very peculiar

activity begins here called "floating BAMs". The DOS actually

transfers the contents of the BAM buffer to other buffers which,

in turn, become the new BAM buffer. As each block is pumped

onto the diskette surface, the DOS must update the BAM with

the new allocated sectors. Things are happening pretty quickly

at this point (believe it or not) and the DOS doesn't have time to

make all the calculations necessary to zoom in on the bit

representing the sector it just wrote to. Instead, an "image" of

part of the BAM is placed elsewhere in memory and updates

occur here. Later the BAM is updated using the updated image.

Let's expand on this.

Since writing occurs to the sectors of one track at a time, the

BAM information for that track is transferred from the BAM

buffer to a BAM image at $O2A1 to $02B0. Each track requires

four bytes to represent the free/used sectors of the track. The

first byte tells how many free sectors on the current track, the

remaining three bytes show which sectors they are. A bit set to

zero means used, bit = l means free. Three bytes times eight

bits equals 24 bits, which is enough for even the largest tracks

at the outside edge of the diskette. The 16 bytes from $O2A1 to

$02B0 store track information for two tracks of drive 0 and two

tracks of drive 1. The last eight bytes should never be used.

(One theory we toyed with was the possibility of updating to or

from the drive 1 image by mistake, but have since discounted

that theory as drive 0 is specified in the SAVE® commands)

As the write progresses, the image is adjusted for the sectors

that have been written to. When all free sectors of the current

track have been used up, a new track will be needed to

continue. The DOS transfers the four-byte image back to the

BAM buffer and it appears they will always be put back to the

same four addresses they came from. As the BAM is updated

the image is cleared with zeroes. So even if not all the sectors

on the track were used, the image will now look as if they were.

(This may be why some have reported diskettes that mysteri

ously "fill up" as opposed to too many Blocks Free - we intend

to investigate that too!)

After the BAM is updated, the DOS searches out a new track

with available sectors. Another tracks' worth of bytes are

placed in the image, and the BAM buffer floats away again as

the writing plows on. The BAM is only written to the diskette at

the end of the operation.

With only one buffer active as a BAM buffer, this operation

seems to go without trouble, at least with the Slaymaker demo.

But when two buffers are taken for BAM storage (remember

way back when DOS allowed for the phantom drive?) the DOS

is now burdened with the extra task of floating two BAM buffers

instead of one.

During a write, the DOS is desperate for buffer space. Buffers

that are active must be made inactive so the DOS can re-use

them. This is done by a routine that "steals" buffers. In my

conversation with P.A. Slaymaker, we agreed that the stealing

routine could very possibly steal the buffer hosting the drive 0

BAM. Should this happen the BAM would disappear com

pletely from disk RAM! Then another routine comes along and

detects that nowhere in RAM is there a copy of the BAM. What

happens now? The DOS re-reads the BAM from track 18, sector

0. But this BAM reflects the state of the diskette before the

writing started. Any information that was swapped from the

image into the BAM buffer would be lost forever! This is what

happens during Slaymaker's demo.

We've come up with several theories and if it weren't for a

printing press that can't do anything without this page we may

have had time to eliminate all but one. By next issue we should

know:

1) Why the BAM is lost when two BAM buffers are activated,

but also when only one is active.

2) Why disks are filling up due to incorrect image swaps.

3) Why SAVE® fails on the 4040 which doesn't use the floating

BAM concept.

4) The bytes to change in ROM to eliminate this bug.

The Transactor 71 Volume 6, Issue O3

Compu-toons

HAAAAA! Egor. . . We've done it. . .

Expanded memory to 3 Billion K!

Forget it Ed. . . Your stupid computer isn't

gonna tell us where the fish are.

y f^

I'm Sur* lhfy'\] evolve wl

OK Ethel. . . One more POKE

and we're Instant Millionaires

The Transactor 72 Volume 6, Issue O3

6EUEVJE. VQU VW KNO^J)
MV GUEST..^—1:—^

GOTTO

HIM..

To BE

The Transactor 73 Volume 6, Issue O3

News BRK

Transactor News

Submitting NEWS BRK

Press Releases

If you have a press release which you

would like to submit for the NEWS BRK

column, make sure that the computer or

device for which the product is intended is

prominently noted. We receive hundreds

of press releases for each issue, and ones

whose intended readership is not clear

must unfortunately go straight to the trash

bin. It should also be mentioned here that

we only print product releases which are in

some way applicable to Commodore equip

ment, with the exception of products or

news of interest to the general computing

public.

Oops, Too Many Labels

Did anyone receive two magazines last

month? Or maybe you received a magazine

even though your subscription had ex

pired. The reason? When a subscription

expires, our data base flags it as 'inactive' as

opposed to deleting it completely. If that

particular subscriber renews, only the flag

need be changed which saves us the trou

ble of re-entering from scratch. After 6

months inactive, the record is discarded.

When the labels are printed, the system

looks at this flag. Except last issue it didn't.

So instead of printing just the active sub

scribers, it dumped the entire data base.

Those few who received two are probably

in our data base twice; once as 'active', the

other 'inactive'. Regardless, if you received

a magazine you weren't expecting, please

keep it with our compliments.

Late Note On Transactor Disk 7

Transactor Disk 7 for the Networking and

Communications issue contains a set of

terminal programs for the 64. You may

have noticed some problems with these

programs but the fix is easy:

open 1,8,15

print*l, "rO:firstterm3 bt = 0:firstterm3 boot'

Renaming that one file will eliminate all

but one problem: the program "extra ex

tra" contains some brief instructions that

refer to the file "firstterm3 boot", but only

perfectionists will want to change that.

$4.50 Too Much

Transactor back issues are $4.50 each. If

you send us $4.50 for a back issue we've

just run out of, our policy was to send a

refund of $4.50. But some U.S. readers

have told us it costs them as much as $7.50

to cash the cheque. So unless you object,

we'll add 2 issues to your subscription in

stead.

Commodore News

Commodore Introduces

Technical Bulletin

Toronto — To provide the latest in techni

cal information, Commodore Business Ma

chines Limited is introducing

TECHTOPICS - a bulletin program an

nouncing modifications, troubleshooting

and other technical topics concerning

Commodore computers and peripherals.

The first seven issues in the series include:

Troubleshooting tips for the 1702 monitor;

specs and assembly upgrade for the 1541

disk drive; C64 PCB assembly update; C16

and +4 troubleshooting aides plus a listing

of line definitions for the C16 and +4

Issues of TECHTOPICS are available upon

request from the Support Department,

Commodore Business Machines Limited.

For further information:

Rainer Scharnke,

National Service Manager,

Commodore Business Machines

3370 Pharmacy Avenue

Agincourt, Ontario

M1W2K4 (416)499-4292

COMAL News

COMAL 0.14 Price Reduction

The power of Pascal, ease of BASIC, and

fun of Logo turtle graphics can now be

yours for only $7. This price includes the

full COMAL 0.14 system as well as an

interactive tutorial and automatic demon

stration disk. It is not copy protected. In

fact, you are encouraged to make copies!

Deluxe Cartridge Price Cut

Now, for a limited time, you can get the 64K

COMAL 2.0 cartridge at almost $40 off the

regular price. The DELUXE COMAL 2.0

CARTRIDGE PAK is now only $89.95 and

includes a 320 page tutorial guide and 5

demonstration disks.

Price Protection Plan

If you buy any COMAL book, disk, or car

tridge from COMAL Users Group, USA Lim

ited, you are now protected for one month.

If the price drops within that time, you are

entitled to a credit of the difference. This

protection is just one of the many benefits

shared by COMAL TODAY readers. For

information about this new service contact:

Denise Bernstein

COMAL Users Group, USA, Limited

6041 Monona Drive

Madison, WI 53716 (608) 222-4432

Product News

Toronto Computes!

Toronto Computes! is a monthly, mass-

circulation paper keeping its readers up to

date on the local microcomputer scene.

70,000 copies are distributed free through

computer stores in the Toronto area and to

homes in mid-town Toronto, a prime mar

ket area. The publication is geared towards

all microcomputer users from the enthusi

ast to the novice. Toronto Computes! has

information on the local scene that all com

puter users want to read - where to buy,

available services, coming events, classi

fieds, innovative uses of computers in town

and much more. Unlike the national and

international computer magazines, To

ronto Computes! is not packed with high-

level technical information of interest

mainly to the computer buff.

Cross Reference of

Printers to Ribbons

Aspen Ribbons, Inc., of Lafayette, Colorado

U.S.A., has recently published its 1985 cat

alog of "Ribbons for Computer Printers,"

and a new (first edition) "Cross Reference

Guide."

The Transactor 74 Volume 6, Issue O3

The 40-page catalog of "Ribbons for Com

puter Printers" contains the photographs

and names of 840 computer printer rib

bons, complete with "How-to-Order" in

structions and information on ribbon

recycling and colors. It's attractive, easy to

read, and FREE to anyone requesting a

copy. Most of the ribbons listed are manu

factured by Aspen Ribbons, Inc.

The new "Cross Reference Guide" contains

over 8,000 ribbon-to-printer listings and

over 1,500 computer ribbon model num

ber listings arranged in a 2-color, 56-page

booklet. For more information:

Aspen Ribbons, Inc.,

555 Aspen Ridge Drive

Lafayette, CO 80026 303 666-5750

New Commodore 128 Books

Commodore is once again drawing lots of

attention with its new C-128 computer.

And with virtually no competition in the

low-cost home market, the C-128 will be a

runaway success - just like its predecessor,

the C-64.

I

So Abacus Software is announcing the first

titles that will become part of a complete

and in-depth reference library for the C-

128. The initial titles and their availability

are:

C-128 Internals -An inside look at the

three computers inside the C-128. Includes

ROM listings of BASIC 7.0 and operating

system-Fall 1985

C-128 Tricks and Tips -collection of

helpful techniques for anyone who pro

grams the C-128-Fall 1985

1571 Internals - An inside look at the

brand new 1571 disk drive, includes ROM

listings-Winter 1985

CP/M on the C-128 -A closeup view of

the CP/M operating system as found on the

C-128-Winter 1985

Artificial Intelligence -Intro to AI using

the C-128 and C-64-Fall 1985

Arnie Lee

2201 Kalamazoo S.E.

Grand Rapids, MI, 49510

(616)241-5510, Telex 709-101

C Compiler for C64 & C128

Abacus Software announces the addition of

two exclusive products - XPER and Super

C Language Compiler for the Commodore

home computer market.

XPER is the first expert system for the C64

and C128. Ordinary data base systems are

good for reproducing facts, but by using an

expert system you can derive knowledge

from a mountain of facts and make expert

decisions. Using this unique knowledge-

based package, you first build the informa

tion into your data base using XPER's

simple loading procedures. Then, by using

very efficient searching techniques XPER

can easily guide you through the most

complex decision making criteria. XPER is

currently used by scientists, doctors, and

professionals in their research and studies.

The XPER System includes full reporting

and data maintenance capabilities.

The Super C Language Compiler is a com

plete development system. The powerful

editor handles source files up to 41K in

length. The fast compiler produces 6510

machine code. The linker accepts up to

seven modules and the library supports

standard as well as Commodore oriented

functions. It conforms to the Kernighan &

Ritchie standard.

3D Graphics System

Victoria, BC — In co-operation with Inkwell

Systems, Pioneer Software Inc. announced

the release of "FLEXF'AIDED DESIGN, a

3D graphics creation/manipulation/

animation system for the C-64 and C-128.

The combination of "FLEXF'AIDED DE

SIGN and FLEXIDRAW used with Inkwell

System's quality light-pen, provides the

end-user with a complete graphics system,

offering a price/performance ratio which

has been completely unheard of until now.

Imagine being able to take a group of ob

jects (we'll use a city as our example) and

view it from any angle (overhead, far away,

nearer, from the inside looking out). How

about taking your city and enlarging it,

reducing it, rotating it on different axes or

doing any of these manipulations on a

single object within the city, one of the

buildings, perhaps. How about taking a

group of views and creating an animation?

All of the above and more is possible using

"FLEXI"AIDED DESIGN and your C-64 or

C-128. "FLEXF'AIDED DESIGN'S operating

system is destined to become a standard

among Commodore users. Through the

use of light-pen controlled, pull-down

menus, windows, and graphics creation

and manipulation, the user need never

touch the keyboard once the computer is

running.

SUPERSHIPPER 64

SuperShipper 64 is the complete invoicing

and shipping system for your Commodore

64. All you need is a C-64, monitor, 1 dual

disk drive OR two single drives, and 1 or

more printers. SuperShipper FEATURES:

• Menu-Driven for ease of use.

• Flexible - virtually any combination of

single or dual disk drives (including MSD)

will work!

• High Capacity - 800 accounts per disk,

500 invoices & 200 products per disk.

Expandable to 2,200 products with an

additional disk drive.

• User-Friendly - disk and printer crashes

are virtually nonexistent with SuperShip-

per's thorough checking.

• Easy Data Entry with machine language

driven, full cursor controlled editing win

dows for entry of account, invoice and

product data.

• Efficient Disk Use minimizes disk access

time while taking full advantage of your

disk drive's capacity.

• Protect Your System with two levels of

access - Executive and Operator.

• Prints invoices of up to 31 lines on your

choice of 8 1/2" X 11" paper or two types

of NEBS pre-printed invoice forms.

• Prints C.O.D. tag with UPS Zone, UPS

Shipper Number and user-selectable in

structions.

• Prints mailing or shipping labels - fea

tures customized label formatting!

• Pri nt alphabetical listings of accounts and

products.

• Print lists of accounts and products sorted

by data "keys" that you can specify!

• Prints a list of back orders.

• Invoices have provisions for Credit, Addi

tional Charges, Tax and C.O.D. charges.

• Set up your own formula for shipping &

handling charges.

• Four price categories for each individual

product.

• Fixed or percentage commission break

downs for each individual product.

• Set "default" values to streamline entry of

account, invoice and product data.

Progressive Peripherals & Software

2186 South Holly,

Suite n

Denver, CO 80222 303 759-5713

Music Printer For the C64

Sight & Sound Music Software, Inc., an

nounces that in response to tremendous

demand from users of its Music processor (a

software program for musical composi-

The Transactor 75 Volume 6, Issue O3

tion), it has added a music printout feature

to this program. The quality and accuracy

of the printed notation ensure its recogni

tion as the finest music print program now

available for the Commodore 64.

The Music Processor now becomes the per

fect program for musical composition, both

for those with limited musical knowledge

or for the more serious musician. With the

new program, the user can compose a

piece, then edit or make changes to it, then

record the same piece and print out the

final composition. All of these functions

can be performed using up to three voices,

thereby taking full advantage of the Com

modore 64's unique three-voice SID chip.

To enhance an original composition, it's

possible to make use of 99 preset instru

mental sounds and special effects. Or for

professional results with minimal effort, by

using the joystick, the user can select from

and change these 99 sounds and incorpo

rate them into the 16 prerecorded songs

that are part of the program.

Several other music software programs

from Sight & Sound are compatible with

the Music Processor. The Computer Song

Albums make available dozens of contem

porary hit tunes that the user can recreate

by changing sounds and special effects.

The Incredible Musical Keyboard fits over

the Commodore keys and enables the user

to play the Commodore keyboard just like a

synthesizer. But the ultimate in creative

expression is achieved when combining

the Music Processor with the Music Video

Kit. Now it's possible to design, orchestrate

and record computer-animated music vid

eos on the personal computer.

The new, upgraded Music Processor with

printout feature retails for $29.95. Owners

of the original can upgrade to the complete

new program for just $15.00.

To upgrade, simply send proof of owner

ship and a check or money order made out

to Sight & Sound Music Software, Inc. Own

ership may be proven by either returning

the original disk or cutting out the UPC and

ISBN product numbers from the packaging.

Please allow two to four weeks for delivery.

For additional information, contact:

Jane Billings

Sight & Sound Music Software, Inc.

3200 South 166th Street

P.O. Box 27, Department R2D2

New Berlin, WI 53151 414 784-5850

SFD-1001 One Megabyte Disk Drive

The SFD-1001 (Super Fast Drive) is now

available. With double-sided double-

density format, over One Megabyte can be

stored on a single floppy disk. One hun

dred 1541-formatted disks can be reduced

to only sixteen SFD-1001-formatted disks.

By using the intelligent IEEE bus and a bus

expansion IEEE interface, the SFD-1001

loads programs and data over twice as fast

as the 1541 drive, and all this inside a case

the size of the 1541 's!

Fully compatible with any Commodore

computer that has an IEEE interface. Free

utility disks for both the CBM 8032 and the

C-64 are included! Transfer all your files

and programs easily from any Commodore

disk drive to your SFD-1001!

The SFD-1001 is available now from Pro

gressive Peripherals & Software, Inc., your

quality Commodore software and hard

ware source. Suggested retail price is only

$399.95. Dealers inquiries are invited. .

.call for more information or for the name

of the dealer nearest you.

The 1541 loads 32K bytes of data in approx

imately 1 minute, 20 seconds, the SFD-

1001 loads 32K bytes of data in only about

35 seconds (bus expansion interface) or

approximately 1 minute, 4 seconds (serial

interface).

Progressive Peripherals & Software, Inc.

2186 South Holly,

Suite 200

Denver, CO 80222 303 759-5713

Provoice Speech Synthesizer

Bethlehem, PA — Genesis Computer Corp.

of Bethlehem, PA announces ProVoice, the

latest version of its highly successful COM-

voice speech synthesizer, for the Commo

dore 64 and compatible computers.

ProVoice speaks an unlimited English vo

cabulary and contains the most sophisti

cated text to speech translation ever

introduced for the Commodore computers.

ProVoice has unique features such as

screen echoing, which allows virtually any

BASIC program to become a talking pro

gram, and variable translation modes for

conversational, verbatim and character by

character speech output. The screen echo

ing feature makes ProVoice an ideal aid for

the visually impaired.

ProVoice adds 13 new BASIC commands,

including a HELP feature for quick refer

ence. All BASIC commands and text-to-

speech translation are handled by

Pro-Voice's on-board ROM. ProVoice is a

single plug-in device containing the ROM

and speaker/amplifier.

ProVoice will retail for $99.95 US, and a

Talking Terminal package with modem,

soon to be available, will have a targeted

retail price of under $150 US.

Genesis Computer Corp.,

Ben Franklin Technology Center, Lehigh

University,

Bethlehem, PA 18015 (215) 861-0850

COMPUTEREYES Video

Acquisition Systems

Digital Vision, Inc. announced the appoint

ment of PHASE 4 DISTRIBUTORS INC. as

Canadian Distributor for the COMPUTE

REYES line of video acquisition systems for

personal computers. Priced surprisingly

low, COMPUTEREYES represents the first

cost-effective means of capturing real-

world images on the computers' high-

resolution graphics display. A complete

system including COMPUTEREYES and a

high-quality video camera is also available

at a very reasonable price.

COMPUTEREYES is an innovative slow-

scan device that connects between the

computer and any standard video source

(video tape recorder, video camera, vi-

deodisk, etc.). Under simple software con

trol, a b/w image is acquired in less than

six seconds. A unique multi-scan mode

also provides realistic grey-scale images.

The Transactor 76 Volume 6, Issue O3

The accompanying images are printer

screen dumps of images acquired by the

system.

Many of the applications of COMPUTE-

REYES are obvious. These include pattern

recognition, security, quality control, spa

tial measurement, robotics and artificial

intelligence, industrial controls, computer

art, education, and entertainment. Other

applications are bound to surface, once the

product is in the hands of the creative

members of the personal computer com

munity.

Comprehensive software is provided with

the system and includes: machine lan

guage image capture routines; a menu-

driven executive that provides everything

even first-time users need to capture im

ages; image save-to-disk capability; and

image packing and unpacking routines that

save disk space and speed loading and

saving. To encourage application develop

ment and promote ease of use, the software

is not copy-protected. Optional software is

also available at a nominal charge to sup

port many of the popular graphics manipu

lation programs, such as Print Shop and

the Koala Pad.

The COMPUTEREYES package includes

interface module, complete easy-to-use

software support on disk, owner's manual,

and one year warranty. The system is cur

rently available for the Commodore 64 and

the Apple II series, with an Atari 800/

800XL/65XE/130XE version available.

Phase 4 Distributors Inc.

7157 Fisher Road S.E.

Calgary, ALTA T2H 0W5 403 252-0911

Omnitronics Printmaster/ + G

The PRINTMASTER/+ G is a full featured

parallel printer interface compatible with

all Commodore computers which use the

Commodore type serial bus (C64, Plus4,

C128, etc.).

The PRINTMASTER/+ G allows complete

emulation of a Commodore 1525 or 801

printer, including full graphics and graph

ics characters. Several advanced graphics

features are also selectible, such as en

hanced graphics, double density, and re

verse graphics. Prints 6 or 8 bit wide

Commodore graphics characters. Graphics

printing speed is 6 to 12 times faster than

many other printer interfaces. Prints a line

of 80 graphics characters in 4 seconds. The

PRINTMASTER/+ G is compatible with

virtually all popular printers, including Ep

son, Gemini, Tally, Okidata, Banana, and

NEC. The PRINTMASTER/ + G comes with

a disk containing Hi-res printing program,

graphics screens, banner program, and

program examples. Cassette port or exter

nal power supply.

Intellifeatures are the advanced capabilities

of the PRINTMASTER/ + G, many of which

are not available on any other interface.

LOAD"S",4,1 displays a complete printer

interface status on your computer screen.

LOAD"$",4,1 displays disk the directory

without erasing a BASIC program. Second

ary Address Lock, Margin and Page length

settings, Single Page pausing, and more.

An optional PRINTMASTER 16K Buffer Ex

pansion adds additional buffer memory for

quickly freeing up your computer, plus a

second expansion ROM which adds even

more advanced capabilities to the

PRINTMASTER/ + G. LOAD"RENUM",4,1

renumbers a BASIC program.

LOAD"OLD",4,1 recovers a NEW'd BASIC

program. Even faster graphics printer.

Prints a line of 80 graphics characters in 2

seconds. Dot graphics printing faster also.

Design and upload your own character set.

Many more features.

The PRINTMASTER/+ G and the PRINT

MASTER 16K BUFFER Expansion are

available now for $119.95 and $89.95 re

spectively. Product reviews are desired.

For a full brochure, or to order, contact;

Omnitronix, Inc.

P.O. Box 43

Mercer Is., WA 98040 206 236-2983

EPSON HomeWriter 10

Fully compatible with all software for the

C64, the HomeWriter is capable of printing

in Standard print, Expanded print, Reverse

field print, Expanded Reverse field prints,

not to mention graphics capabilities.

One of the unique features of the EPSON

HomeWriter 10 is SelecType print mode

selection from the front panel, allowing

easy access to a wide variety of print modes

such as:

• Near Letter Quality text for word process

ing

• Emphasized print

• Double Strike print

• Compressed print for spreadsheets, for

example

The PIC (Printer Interface Cartridge) which

is quickly and simply installed in the back

of the printer allows the same printer to

work on a variety of computers such as the

C64, Apple lie and Atari home computers.

Epson America, Inc.

2780 Lomita Blvd.

Torrance, CA 90505 213 539-9140

Remote Keyboard Conversion Kit

If you have a Remote Keyboard Conversion

Kit - Here's what you have:

• A keyboard for your lap, lean back-relax

• A keyboard to pass around when playing

games

• A keyboard not restricted in movement

by 5 cables

• A computer with cable plugs facing you

• A computer you can change cabling and

accessories easily

• A color keyed to match original unit

Friendly Systems, Inc.

1845 Range Street

Suite A

North Boulder, CO 80301

MITEY MO 300 Baud Modem

MITEY MO is alive and getting better all the

time. The upgraded version of the MITEY

MO, being marketed exclusively by Com

puter Devices International of San Lean-

dro, CA, now includes the "Smart 64 plus

4" terminal software in its new and en

hanced package.

There has been some confusion surround

ing the MITEY MO since it's originator, USI,

filed bankruptcy and liquidated in the fall

of 1984. Computer Devices International,

CDI, purchased the rights to the product

line, and is continuing to honor the three

year warranty. CDI is also providing techni

cal support, as well as a 48 hour turn

around for any units that may need repair.

Adding to the confusion is the fact that

there were a few thousand of the original

MITEY MO's, without the "Smart 64 plus 4"

terminal software, that were already in dis

tribution when USI filed bankruptcy. These

units are being sold at below market prices

The Transactor 77 Volume 6, Issue O3

through some discount houses and distrib

utors. These cheaper units should be be

confused with the MITEY MO's that are

being advertised and reviewed by com

puter magazines and critics.

Currently, the only authorized Canadian

distributors of the new MITEY MO are T.C.

Data in Montreal, and Phase 4 Distributors

in Calgary.

Anyone who has purchased on of the origi

nal MITEY MO's, without the new software,

can upgrade it by contacting CDI directly.

They are selling the "Smart 64 plus 4"

terminal software for $19.95 US $, plus

$3.00 US$ for shipping.

Computer Devices International

1345-A2 Doolittle Drive

San Leandro, CA 94577 415 633-1899

Mobile Data Terminal

Motorola's Communications Sector an

nounces its newest member of a family of

"wireless" data terminals; the KDT 480

Mobile Data Terminal.

Now it is possible to take full advantage of

computerized operations in a vehicle with

the same computer access capability avail

able in an office. Plus, Motorola's KDT 480

terminal can be used as a dedicated radio

system, or it can be incorporated into an

existing radio system.

Field personnel can access computer net

works from remote locations, customer

sites and even after routine business hours

for maximized efficiency in a mobile envi

ronment.

Storage of up to 3,000 characters in RAM

are dynamically allocated to meet users'

varying message mix and length.

Featuring a text area of over 20 sq. in., the

highly visible CRT display can accommo

date up to 480 high resolution, easy to read,

characters, formated into 12 lines of 40

characters each for easy viewing. (Two ad

ditional lines provide 80 characters of oper

ational status information)

The terminal display was designed for

varying light conditions of the vehicular

environment, to assure visibility.. .even in

direct sunlight!

An emergency indicator enables a driver to

transmit an alert by pressing a function key

or remotely mounted switch.

The compact keyboard features full sized

typewriter style keys, color coded by func

tion for easy operation.

To meet varying requirements, the KDT

480 terminal's modular design allows sepa

rate mounting of all components for truly

customized installations.

Unique Radio/Data

Communications System

Motorola's Communications Sector intro

duces an industry first, designed to extend

data networks into the mobile environ

ment previously identified with two-way

radio. The KDT 800 Portable Data Com

munications System operates in the 800

MHz frequency range. Two-way digital ra

dio replaces traditional telephone lines to

provide real-time communications be

tween people on the move and computers.

A key element in the Motorola system is

the battery operated KDT Computer Termi

nal which contains an 800 MHz data radio,

internal antenna, a telephone modem and

intelligence in excess of many personal

computers. The environmentally rugged

unit weighs less than 28 oz. and measures

7.5 by 4 by 1.3 inches.

The portable terminal features a 2-line

LCD display of 27 characters per line. The

59 position keyboard has full alphabetic

capability in standard typewriter arrange

ment, programmable function keys, and a

numeric calculator pad.

Memory capacity is expandable to 160K

bytes of ROM and 80K modules, one of

which is externally pluggable. Application

software has access to external memory

and peripheral devices via either serial or

parallel I/O interfaces. The KDT portable

terminal can accommodate 1 megabyte of

physical address space.

A spectrally efficient system design can

support more than one thousand portable

terminal users on a single radio channel

within a geographic area with average mes

sage traffic. The system operates at 4800

bps, over standard 25 KHz or 12.5 KHz

channels. In areas without radio coverage

the portable terminal communicates with a

central data base by connecting the built-

in 300 bps telephone modem to any tele

phone.

Motorola's radio data network design can

be implemented in a campus/plant envi

ronment (local area network) and for city-

wide usage (Metropolitan area network).

Metropolitan area networks can be linked

to provide nationwide coverage. Over two-

way radio channels, the portable units

send and receive messages through fixed

transmitter/receiver stations optimized for

data traffic. The NCP-2000 network control

processor provides message coordination

across the entire terminal system. It tracks

location of the KDT data terminal user,

directs messages between the computer

network and the terminal user, and con

trols operation of the radio equipment. In

its full configuration, the network control

processor contains seventeen 68000 micro

processors and has sixty-four ports pro

grammable for interface inward to host

computers or outward to fixed transmitter/

receiver stations. The system also contains

full remote and self-diagnostic capabilities.

The electronic office can now be carried in

a pocket in the form of a KDT Computer

Terminal. To receive additional informa

tion, contact:

Pat Schod

Motorola, Inc.

Communications Sector

Public Relations Department

1301 E. Algonquin Road

Schaumburg, !L 60196 312 576-6612

The Transactor 78 Volume 6, Issue 03

Seeing

IsBelieving
I don't have enough time orspace to list all the good points!" -noiandBmwn, midmtesoftware gazette

This disk is fantastic!" -- Tom Lynch. THE USERS PORT

"Why all the enthusiasm? Because COMAL is a composite of the best features of the most popular

programming languages... the familiarity of BASIC commands with the structural programming

environment of Pascal and the turtle graphics of Logo." - narkBmwn, mro 64

"COMAL wasjust What I was looking for." - Colin Thompson, RUN

Seeing is Believing. Take a look at what COWAL has to offer:

the complete COPIAL0.14 System forCommodore64™ includes the

Tutorial Disk* (teaches you the fundamentals ofCOMAL), plus

the Auto-Run DEMO Disk* (demonstrates 26 COMAL programs

including games, graphics, sprites and sounds),

all forjust $7.00!

You can add the reference book, COMALfrom A toZ,

forjust $4.00 more.

$7 or $11 - either way you're a winner!

"Everybody who gets it, likes it! (I'll guarantee it.)" -- Len Lindsay, President, COIWL Users Group

For more information or to place an order call

(608) 222-4432. Visa or Master Card accepted; checks or

money orders must be in U.S. dollars.

All orders prepaid only - no C.O.D.

Send check or money order in US Dollars to:

COMAL USERS CROUP U.S.A.. LIMITED

6041 Monona Drive, #110, Madison, WI 53716

phone: (608) 222-4432

'Programs win come on 2 disks or 1 double sided disk - each disk Includes COMAL.

Commodore 64 is a trademark of Commodore Electronics

■THE WORLD OF
COMMODORE III

The 1984 Canadian

World of Commodore show was

the largest and best attended show

in Commodore International's

history. Larger than any other

Commodore show in the World

and this year's show will be

even larger.

World of Commodore III

is designed specifically to appeal

to the interests and needs of

present and potential Commodore

owners.

Everything about your

present or future Commodore

computer - from hardware to

software, Business to Personal to

Educational - from over 90

International Exhibitors. Price of

admission includes free

seminars, clinics,

contests and free

parking.

JOIN TPUG
The largest Commodore Users Group

Benefit from:

Access to library of public domain software

for C-64, VIC 20 and PET/CBM

Magazine (10 per year) with advice from

Jim Butterfield

Brad Bjomdahl

Liz Deal

TPUG yearly memberships:

Regular member (attends meetings)

Student member (full-time, attends meetings)

Associate (Canada)

Associate (U.S.A.)

Associate (Overseas — sea mail)

Associate (Overseas — airmail)

—$35.00 Cdn.

—$25.00 Cdn.

—$25.00 Cdn.

—$25.00 U.S.

-$30.00 Cdn.

—$35.00 U.S.

— $45.00 U.S.

FOR FURTHER INFORMATION:

Send $1.00 for an information catalogue

(tell us which machine you use!)

To: TPUG INC.

DEPT. A,

1912A AVENUE RD., SUITE 1

TORONTO, ONTARIO

CANADA M5M 4A1

COMAS. INFO
if you have comal—

we have information.

BOOKS:
COMAL From A TO Z, S6.95

COMAL Workbook, $6.95

Commodore 64 Graphics With COMAL, 514.95
comal Handbook, $18.95

Beginning COMAL, $22.95
Structured Programming With COMAL, $26.95

Foundations With COMAL, $19.95
Cartridge Graphics and Sound, $9.95
Captain COMAL Gets Organized, $19.95

Graphics Primer, S19.95

COMAL 2.0 Packages, $19.95

Library of Functions and Procedures, $19.95

OTHER:
COMAL TODAY subscription, 6 issues, $14.95
COMAL 0.14, Cheatsheet Keyboard Overlay, $3.95

COMAL Starter Kit (3 disks, 1 book), $29.95
19 Different COMAL Disks only $94.05

Deluxe comal Cartridge Package, $128.95
(includes 2 books, 2 disks, and cartridge)

ORDER NOW:
call toll-free: 1-800-356-5324 ext 1307 VISA or MasterCard

ORDERS only. Questions and information must call our

info Line: 608-222-4432. All orders prepaid only—no C.O.D.

Add $2 per book shipping. Send a SASE for FREE info

Package or send check or money order in US Dollars to:

COMAL USERS CROUP, U.S.A., LIMITED
5501 Groveland Ten, Madison, Wl 53716

TRADEMARKS: Commodore 61 of Commodore Electronics Ltd.;

Captain COMAL of COMAL Users Croup. U.S.A., Ltd.

The Transactor presents,

The Complete Commodore

Inner Space Anthology

■

Over 7,000 Delivered Since March '85

Postage Paid Order Form at Center Page

