a0

P RS TR

e My Mot Beprind Withaot Memmission

5
O
Q
i~ The Tech/News Journal For Commodore Computers

95% Advertising Free! Jan. 1986: Volume 6, Issue 04. $2.95
Implementing The Sciences

» The Projector For The 64: Plot In 3 Dimensions * Gaussian Elimination and Calculating Accurate Sums
« Sky Travel: The Astronomers’ Accessory Reviewed Even More Indestructible Variables
* Test Report: The 6581 SID Programmable Filter * Microsecond Timer For The 64
” ‘ * Projectile Motion: Path Calculating With Mechanics * SID Super Sound
Ay 2

*» The Unassembler: Make Real Source Code Out Of Object Files

» The Compressor: Squeeze Files By Up To 50%

» Solving SAVE@: The Search Continues Plus:
Notes on the 1541 Reset Sequence
and the New 1571 Floppy Drive

Rl L TR = e o, T

B e TR R o

" : o e W X e
% - i]
; . 01 &S

] | | g Carfo Mastacs 84
N | .

1 0 -

|

) : ‘ ‘

| f22456%00594"™
o b _'"

D~ ey
e a— B

www.Commodore.ca

Volume 6
Issue 04

Circulation 64,000

May Not Reprinf Withouf Perm

Implementing The Sciences

Start Address Editorial « e oeeeeeeeeeeeeeeeneees 3

3 3
Bits and Pieces 5
Multiple Directory Pattern-Matching
Corrupting RAMTAS Routine
Where am I?
QUAKE!!
The Schizophrenic Sprite
Try This
Error-Driven Catalog Routine for VIC/64
Notes On REVCNT: The Error Recovery Count
ML Right Justify
Slipped Disks: Speeding up your drive
1541ders
C-64 BASIC STP
Gaussian Elimination Routine
The Lottery Companion
The Evil Swords Of Doom!

Letters 11

Twinkle Tones
Disk Risk?
Microfiche Interest
An organized submission
Profile cosmetic surgery
Case of the missing Space
Disk Woes
Remotely Noteworthy
The Error Of Our Ways:
More Often Oops Than Bloops

News BRK

Oops, Too Many Labels

Late Note On Transactor Disk 7

$4.50 Too Much

Commodore Introduces Technical Bulletin
COMAL 0.14 Price Reduction

Deluxe Cartridge Price Cut

Price Protection Plan

Toronto Computes!

Cross Reference of Printers to Ribbons
New Commodore 128 Books

C Compiler for C64 & C128

3D Graphics System

SUPERSHIPPER 64

Music Printer For the C64

SFD-1001 One Megabyte Disk Drive
Provoice Speech Synthesizer
COMPUTEREYES Video Acquisition Systems
Omnitronics Printmaster/ + G

EPSON HomeWriter 10

Remote Keyboard Conversion Kit

MITEY MO 300 Baud Modem

Mobile Data Terminal

Unique Radio/Data Communications System

78

TransBASIC Installment #6
Sky Tl’avel Truly a work of art!

Accurate Sum Of Squares 28
The Projector otsp Holographics, butcloset — + « + v v oo v n . 30
Timer 64 whenamitionth ofasecondcounts « + + v v v v v v s een 30
Projectile Motion acwiyvialoge —« v v v 38
SID’s Programmable Filter ienticar does not equat “the same” . . 42
The Compressor amiresspacesaver v v ovvvv v o .. 45
Indestructible Variables ke the stingout of Editing « + « « o « .+ . 54
The Unassembler e e reverseassembler .+« v v v v ov vt .. 1
Super Sound sisoundtheeasyway ... e e u e 62

Eliminating The BASIC Loader
U What? withnotesonthenewtszto v oo o d e e 68
Solving Save@ s not over e
Compu-toonsouii... 2

Note: Before entering programs,
see “Verifizer’’ on page 4

1 Volume 6, Issue O3

|

ssion

www.Commodore.ca

The

The Tech/News Journal For Commodore Computers

May Not Reprint Without Permission

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

Managing Editor
Karl J. H. Hildon

Editor
Richard Evers

angled top.

mode. To clarify two potential character mix-ups, zeroes will appear as ‘0’ and the letter “o” will of course
be in lower case. Secondly, the lower case L (‘') has a flat top as opposed to the number 1 which has an

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

Technical Editor
Chris Zamara

Art Director
John Mostacci

Administration & Subscriptions

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you
insert will not be critical to correct operation of the program. When it is, the required number of spaces
will be shown. For example:

Lana Humphries print " flushright © - would be shownas- print "[10 spaces]flush right "
Contributing Writers

lom. At Cursor Characters For PET / CBM / VIC / 64
Gary Anderson =
Daniel Bingamon Down - m Insert -
Anthony Bryant Up - Delete - [l
Tim Buist Right - [} Clear Scrn -
Jim Butterfield Left - [Lft] Home

Gary Cobb rvs -H STOP

qu Davis RVS Off -

Elizabeth Deal

Tony Doty

Michael J. Erskine Colour Characters For VIC / 64

o Grut.)bs Black - n Orange -
'll?c?r‘:xel-lcazlllk White - [Brown -

Bob Hayes Red - Lt.Red -

John Jay Hilfiger Cyan - [Cyn] Greyl -
Jesse Knight Purple - [Pur] Grey2 -

Jack Lothian Green - Lt. Green -
Scott Maclean Blue - EH Lt. Blue - [
Jim McLaughlin Yellow - [Yel] Grey3 - [Gr3]

Gerald Neufeld
Noel Nyman
Richard Perrit

Function Keys For VIC / 64

Glen Reesor

John W. Ross
Louis F. Sander
Edward Smeda
Darren J. Spruyt
Nick Sullivan
Zoltan Szepesi
Karel Vander Lugt

F1- @ F5 -
F2- [l F6 -
F3- @ F7 -
Fa- [F8 -

Audrys Vilkas
Jack Weaver
Charles Whittern

Production

Please Note: The Transactor has
a new phone number: (416) 878 8438

Attic Typesetting Ltd.

Printing
Printed in Canada by
MacLean Hunter Printing

The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton,
Ontario, LT 3P7. Canadian Second Class mail registration number 6342, USPS 725-050, Second Class
postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The
Transactor, 277 Linwood Avenue, Buffalo, NY, 14209 ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore
Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade-
marks of Commodore Inc.
Subscriptions:
Canada $15Cdn. U.S.A. $15US. All other $21 US.
Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,
Ontario, Canada, L9T 3P7, 416 878 8438. Note: Subscriptions are handled at this address ONLY.
Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ. For best results, use
postage paid card at center of magazine.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 04, 05, 06, Vol 5 Issues 03, 04
Still Available:Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04, 05, 06. Vol. 6: 01, 02, 03, 04

Quantity Orders:

Compulit

PO Box 352

Port Coquitlam, BC
V5C 4K6

604 941 7911

U.S.A. Distributor:

Capital Distributing
Charlton Building

Master Media
261 Wyecroft Road

Derby, CT Oakville, Ontario
06418 L6J 5B4
(203) 735 3381 (416) 842 1555

(or your local wholesaler) (or your local wholesaler)

Editorial contributions are always welcome. Writers are encouraged to prepare material according to
themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per
printed page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft,
Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.
Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.
Photos or illustrations will be included with articles depending on quality. Authors submitting diskettes
will receive the Transactor Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor
Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please
re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights
basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although
accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.
Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor

Volume 6, Issue 04 |

« www.Commodore.ca

The Amiga. It’s been billed as “Commodore’s Everything Machine?”
and “The Ultimate Micro?” but [can think of only one word to
describe it; Stunning!

In my last Start Address, my comments were somewhat less flattering.
Commodore doesn’t often come tracking us down for a “show and
tell”. In fact [still haven’t seen one up close. What I have seen is an
edited video of the official launch held at Lincoln Center in New York.
Commodore’s spending curbs were but a myth at this show.

There isn't a magazine rack in the world without an Amiga shown
prominently under the computer titles. But reading any one of them
won't have the impact of an audio-visual. The flick left no doubts
about the phenomenal speed capabilities. High resolution graphics
will impress just about anyone, until you start them moving. Not on
the Amiga. Part of the video started with a ballerina on the Amiga
screen. The program began with a stick drawing which eventually
became a rather nicely coloured hi-res pic. Enter the real ballerina
from stage right. The crowd liked how identical the two appeared. But
when they both started twirling in synchro, the question in everyone’s
mind must have been “who’s leading?”. And I'm not so sure the
Amiga wasn't taking it easy on ’er.

If you haven’t seen one yet, don’t pass up the opportunity for a demo.
This machine will BLOW YOU AWAY. Even more impressive is the
amount of effort behind some of the demos. Mere ten line programs
create some of the most awesome displays imaginable. Memory is
expandable to a whopping 8 Meg! With that kind of space to play in,
I'm sure the best dazzlers have yet to be conceived.

PCophytes will find a new contender on the ballot. Yes, the Amiga will
be PC compatible. A Lotus 1-2-3 production line diskette was no
apparent struggle for the 68000 based machine. Commodore claims
even the Sub-Logic Flight Simulator will port to the Amiga, but go on
to say “why bother, an Amiga Flight Simulator is due shortly from
Sub-Logic”. My guess has this program as the first to go beyond the
awesome demo.

Sound was equally impressive, although I think it will take more than
a demonstration to tax the analog department. Speech synthesis
appears to be included with the package, as well as sound digitizing.
With a microphone, one can record any sound for future playback,
and in stereo finally. The show included a short jam session with an
Amiga connected to a keyboard, but I'm sure that combo also has a
long road ahead of it.

Less visible (audible) is the fact that most of these tasks are performed
with very little effort from the 68000. Three VLSI super chips handle
operations that might otherwise take a good chunk of processor
attention. This leaves the CPU plenty of time to move data around,
and [get the impression these chips get awfully hungry.

I could go on for pages about 4,096 colours, DMA 880K microfloppies,
170 and expansion ports, ICON control, windowing, multitasking,
etc., but [only have one. Future Transactors will spend time on the
details but not until a few more get sold. Unofficially I heard that 5,000
are ready to be shipped, but where and to whom I don’t know.

Amiga falls short of “the new wave” by my definition. However, if the
Amiga doesn't stir up white water on Commodore shores, it’s hard to
imagine what will. Commodore has some PR patching to do with
many a retailer that are not eager to add shelf space for any new lines,
let alone CBM. Perhaps the calibre of this machine will help Commo-
dore regain the healthy dealer relationship they’ll need to attain
success the Amiga deserves.

Aside from hardware, there’s another great deal you should be aware
of. Viewtron is a NAPLPS videotex service out of Miami, Florida. It’s
run by Knight-Ridder Newspapers Inc., a company with a mere 1.7
billion (yes Billion) in sales last year. However, Viewtron is by no
means ‘“‘new”. For the last six years, Knight-Ridder has been develop-
ing this service to the tune of 40 million dollars. Originally it was
available only to those willing to spend $600 on a videotex terminal,
and only in south Florida. Special videotex software for the 64 is
required to obtain some lovely picture graphics, and for just $9.95 it's
yours. It comes with a perfect little manual and though I can’t detail all
the services Viewtron offers, the list is long and well documented.
Once you get your software, you answer a few questions and it does
the rest. Viewtron is available now through most of the major
networks. On your first call you'll be asked for a credit card number
and you only pay for the time you're on - your first hour is FREE.

Don’t have a modem? Viewtron sells them too. And check this out.
Get the software and a 300 baud Westridge 6420 for just $49.95, or a
1200 baud Volksmodem 12 for $189.95. This kinda stuff normally
goes in News BRK, but I rather like bearing good news myself. In my
opinion, Viewtron is the safest money you can spend for your 64. And
Viewtron guarantees it. Their number is 1 800 543 5500 Operator*
825 (305 674 1444 in Canada).

Lastly, | hope it won't be long before our on-line plans go into full
swing. Viewtron has approached us several times and we're anxious

too. More next issue, or see you on Viewtron! (We still have plans for
Delphi too!)

There’s nothing as constant as change, | remain,

Karl J.H. Hildon, Managing Editor, The Transactor

May Not Reprinf Without Perm

The Transactor

Volume 6, Issue 04 |

ission

www.Commodore.c

Using “VERIFIZER”

May Not Reprint Without Permissi

The Transactor’s Foolproof Program Entry Method

VERIFIZER should be run before typing in any long program from
the pages of The Transactor. It will let you check your work line by
line as you enter the program, and catch frustrating typing errors.
The VERIFIZER concept works by displaying a two-letter code for
each program line which you can check against the corresponding
code in the program listing.

There are two versions of VERIFIZER on this page; one is for the
PET, the other for the VIC or 64. Enter the applicable program and
RUN it. If you get the message, ‘“###xx data error ##:x=" re-check
the program and keep trying until all goes well. You should SAVE
the program, since you'll want to use it every time you enter one of
our programs. Once you've RUN the loader, remember to enter
NEW to purge BASIC text space. Then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)
or SYS 634 to enable the PET version (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN on a
program line a two-letter report code will appear on the top left of
the screen in reverse field. Note that these letters are in uppercase
and will appear as graphics characters unless you are in upper/
lowercase mode (press shift/Commodore on C64/VIC).

Note: If a report code is missing it means we've editted that line at

the last minute which changes the report code. However, this will
only happen occasionally and only on REM statements.

Listing 1a: VERIFIZER for C64 and VIC-20

KE | 10 rem= data loader for " verifizer " =

JF | 15 rem vic/64 version

LI | 20cs=0

BE | 30 fori=8281t0 958:read a:poke i,a

40 cs=cs+a:nexti

50:

FH | 60 if cs<>14755 then print " s data error === ": end

KP | 70 rem sys 828

AF | 80 end

IN | 100 :

EC | 1000 data 76, 74, 3,165,251,141, 2, 3,165

EP | 1010 data 252,141, 3, 3, 96,173, 3, 3,201

1020 data 3,240, 17,133,252,173, 2, 3,133

1030 data 251, 169, 99, 141, 2, 3, 141

1040 data 3, 3, 96,173,254, 1, , 162

1050 data 0,160, 0,189, 0, 2,240, 22,201

1060 data 32,240, 15,133, 91, 200, | ,

1070 data 133, 90, 32,183, 3,198, 90, 16, 249

1080 data 232, 208, 229, 56, 32, 240, !

1090 data 32, 210, 255, 169, 18, 32, . 165

1100 data 89, 41, 15, 24,105, 97, 32,210, 255

JC | 1110 data 165, 89, 74, 74, 74, 74, 24,105, 97

EP | 1120 data 32,210, 255, 169, 146, 32, , 255, 24

1130 data 32, 240, 255,108,251, 0,165, 91, 24
1140 data 101, 89, 133, 89, 96

With VERIFIZER on, just enter the program from the magazine
normally, checking each report code after you press RETURN on a
line. If the code doesn’t match up with the letters printed in the box
beside the listing, you can re-check and correct the line, then try
again. If you wish, you can LIST a range of lines, then type
RETURN over each in succession while checking the report codes
as they appear. Once the program has been properly entered, be
sure to turn VERIFIZER off with the SYS indicated above before
you do anything else.

VERIFIZER will catch transposition errors (eg. POKE 52381,0
instead of POKE 53281,0), but ignores spaces, so you may add or
omit spaces from the listed program at will (providing you don't
split up keywords!). Standard keyword abbreviations (like nE
instead of next) will not affect the VERIFIZER report code.

Technical info: VERIFIZER resides in the cassette buffer, so if
you're using a datasette be aware that tape operations can be
dangerous to its health. As far as compatibility with other utilities
goes, VERIFIZER shouldn’t cause any problems since it works
through the BASIC warm-start link and jumps to the original
destination of the link after it’s finished. When disabled, it restores
the link to its original contents.

Listing 1b: PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

Cl | 10 rem= data loader for "verifizer 4.0" =

CF | 15rem pet version

LI | 20cs=0

30 for i=634 to 754:read a:poke i,a

40 cs=cs+amnexti

50:

60 if cs<>15580 then print " «« == data error s "
JO | 70 rem sys 634

AF | 80 end

IN | 100 :

1000 data 76, 138,

cend

2,120,173,163, 2,133,144
IB | 1010data 173, 164, 2,133,145, 88, 96, 120, 165
1020 data 145,201, 2,240, 16,141,164, 2 165
EB | 1030 data 144, 141, 163, 2, 169, 165, 133, 144, 169
HE | 1040 data 2,133,145, 88, 96, 85,228, 165,217
Ol | 1050 data 201, 13,208, 62, 165, 167,208, 58,173
JB | 1060 data 254, 1,133,251,162, 0, 134,253,189
PA | 1070data 0, 2,168,201, 32,240, 15,230, 253
1080 data 165, 253, 41, 3,133,254, 32,236, 2
EL | 1090 data 198, 254, 16, 249, 232, 152, 208, 229, 165
LA | 1100 data 251, 41, 15, 24,105,193, 141, 0, 128
Kl | 1110 data 165, 251, 74, 74, 74, 74, 24,105,193
EB | 1120 data 141, 1,128,108, 163, 2,152, 24,101
1130 data 251, 133, 251, 96

=

l

The Transactor

Volume 6, Issue O4

< www.Commodore.ca

Bits and Pieces

Got an interesting programming tip, short routine, or an un-
known bit of Commodore trivia? Send it in - if we use it in the
Bits & Pieces column, we’ll credit you in the column and send
you a free one-year’s subscription to The Transactor

Multiple Directory Pattern-Matching

Commodore’s filename pattern-matching feature for disk di-
rectories is more powerful than many people are aware. One
little—used ability is the use of multiple patterns in a directory
listing. For example, you could get a list of all files on the disk in
drive zero starting with either the letter "S" or the letter "D ":

LOAD"$0:5+,0:.D*",8

Up to five selective directories may be used in a single directory
filename.

Corrupting RAMTAS Routine Edward Smeda,

Victoria, Australia

RAMTAS ($FF87) is a C-64 Kernal routine which, among other
things, has the function of setting the top of memory pointer.
This is done by non-destructively testing RAM until it finds a
memory location which does not return the value written to it.
This location, usually $A000, then becomes the top of memory.
RAMTAS is part of the C-64 power-up routine ($FCE2).

Normally, no problems occur with this routine. However, if you
have any machine code or other information stored in the RAM
under BASIC ROM you will find that a hardware reset (reset
button) or software cold-start (SYS 64738) will always corrupt
the byte at $A000. This occurs because when RAMTAS tests
$A000, it writes the RAM with $55 but, on reading, it reads the
BASIC ROM instead and finds a different value. RAMTAS aborts
at this point, leaving $55 in the RAM at $A000.

While this does not really qualify as a bug, programmers
should be aware that it does occur and should make allow-
ances. There are a number of ways around the problem, but the
simplest is to avoid using location $A000 for program or data.

Editor’s note: On the other hand, this "feature" can be used to
check if a reset occurred since a program was last RUN

Where am I? Noel Nyman, Seattle WA
Relocatable machine language programs are the easiest to use.
Invariably some nifty routine from The Transactor sits in a spot
needed for another part of your program. it would be best if
authors made their code relocatable. This isn't always easy.
JMPs within the code are usually necessary and to use JMP
commands, absolute addresses are required.

Howeuver, if the code can find its own location in memory, the
JMP addresses can be calculated regardless of where the user
stuck the program.

The " Where am I?" routine below stores a reference to its
beginning address before executing the main program. It uses a
JSR to force the program counter (the address of the JSR
instruction) to the stack, then retrieves the address.

JSR $FFDE ;read real-time clock, or any harmless JSR
TSX
DEX
DEX
TXS
PLA
STA $FD
PLA
STA $FC ;store low byte
(main program)

;move the stack pointer to the stored address

;store high byte of address

The vector stored at $FC/$FD is the starting address of “Where
am 1?7 plus two. By adding an offset to this value and using
indirect JMPs, the program can be made totally relocatable.

QUAKE!

This is another one of those lovely Transactor specials, frivo-
lous but somehow worth typing in anyway. QUAKE!! will
simulate the effect of a 6.0 on the Richter scale, or program-
ming while using hallucinogenics. Good at parties or for practi-

W@

The Transactor

Volume 6, Issue O4

ission

cal jokes; amaze your friends! The BASIC loader below will
generate the 191 bytes of machine code which unleashes
“quake mode” - you'll still be able to program normally while
the quake is occurring. Quake mode is activated with SYS
49152 and turned off with SYS 49155. Make sure you have
plenty of air-sickness bags nearby!

AA | 10 rem=* data loader for "quake" *

DK | 11 rem= transactor magazine ‘85 -cz

KJ | 15rem save" @0:quake.bas” 8

LI | 20cs=0

KF | 30 fori=49152 to 49342:read a:poke i,a

DH | 40 cs=cs+a:nexti

GK | 50:

FB | 60 if cs<>16666 then print " !data error! " : end

DD | 70 sys 49152

EP | 80 rem sys 49155 to stop

KF | 90 end

IN | 100:

IH | 1000 data 76, 49,6192, 76,112,192, 0, O
DA | 1010data 1, 2, 3, 4, 5 6, 7, 7
PB | 1020data 7, 7, 7. 6, 5 4, 3 2
BA | 1030data 1, O, O, O, 4, 5 6 7
DD | 1040data 7, 7, 7, 6, 5 4, 3 2
FP | 1050data 1, O, 0, O, O, 1, 2 3
OC | 1060 data 4,120,169, 88,141, 20, 3, 169
FG | 1070 data 192, 141, 21. 3,169, 1,141, 26
NC | 1080 data 208, 169, 0O, 141, 18,208,173, 17
MM | 1090 data 208, 41,119, 141, 17,208, 173, 22

EJ | 1100 data 208, 41,247,141, 22,208, 88, 96
JH | 1110 data 173, 25,208, 41, 1,240, 11,169
EF | 1120data 1,141, 25,208, 32,150,192, 76
KO | 1130 data 49, 234, 104, 168, 104, 170, 104, 64
BP | 1140 data 120, 169, 128, 141, 26, 208, 169, 49
LH | 1150 data 141, 20, 3,169,234, 141, 21, 3
MK | 1160 data 173, 22,208, 41.240, 9, 8, 141
AK | 1170 data 22,208,173, 17,208, 41,240, 9
PO | 1180 data 11,141, 17,208, 88, 96,174, 6
CN | 1190 data 192, 173, 22,208, 41,248, 29, 7
DG | 1200 data 192, 141, 22,208,173, 17,208, 41
HF | 1210 data 248, 29, 28,6192, 141, 17,208, 238
PK | 1220 data 6,192,173, 6,192,201, 21,144
| PG | 1230data 5,169, 0,141, 6,192, 96

The Schizophrenic Sprite

The shape of any C64 sprite is completely determined by 63
bytes in memory. To change the shape of a sprite, the sprite
definitions are usually kept static, and pointers are changed to
point to definitions elsewhere in memory. What about doing
the opposite — keeping the sprite pointer constant but changing
the 63 bytes defining the sprite? What if a sprite definition
occurs in screen memory? To find out, enter this short bit of
code:

c‘ www.Commodore.ca
i ithout-Permission

10 rem schizo-sprite, cz85

20 vic =53248: rem vic chip at $d000
30 poke vic,25 : poke vic+ 1,100

40 poke vic +21,1: poke vic + 39,1

50 poke vic +23,1: poke vic + 29,1

60 poke 2040,16

A double-sized white sprite appears, whose shape changes
depending on the first 63 characters on the screen - the top
screen line and part of the second. The fun part comes by
playing. Try different groups of characters: "ioioioioi" ..etc
produces the effect of three parallel ladders; repeating the
asterisk and english pound characters displays a repeating
checkerboard effect: " cxexexexexexexe” is pretty interesting,
too (all of these were found by experimenting). Type in your
name to see what it "looks like " . As usual, we leave it to you to
find an application for the above bit of foolishness.

Try This

10 geta$:ifa$="" then printb$:: goto 10
20 b$ =Db$ +a$: printb$;: goto 10

Press a few keys, then try some cursor controls. It will eventu-
ally die with a 7?STRING TOO LONG, but by then you'll be tired
of it anyway.

Error-Driven Catalog Routine for VIC/64

This machine-language program sits in the cassette buffer and
displays a directory of drive zero whenever a ">" (greater-
than) is entered. It works by trapping the syntax-error vector,
so it won't bother anyone when it's not in use.

LB | 10 rem save " O:errcat 64.bas” 8

MM | 100 rem = rte/85 — error vector driven catalog
routine for c64 and vic 20

NJ | 110 rem =+ press > then (return) for a catalog of

drive zero
HG | 120 for j=828to 951: read x: poke j,x: next
DD | 130 sys(828)
KK | 140 rem
PE | 150 data 169, 71,141, 0, 3,169, 3, 141
JN | 160 data 1, 3, 96,201, 49,208, 104, 169
GK | 170data 2,162, 182,160, 3, 32, 189, 255
FC | 180 data 169, 2,162, 8,160, 0, 32,186
BD | 190 data 255, 32,192,255,162, 2, 32,6198

ID | 200 data 255, 169,
GB

13, 32,210,255, 32,207
210 data 255, 32,207,255, 160, 2, 32,207
CB | 220 data 255, 32,207,255, 32,207,255,170
DD | 230 data 32,207, 255,132, 251, 32,205, 189
IH | 285rem ok, ok, ok, ok, ok, ok, ok, 221
Note: use line 235 to change line 230 for vic 20

The Transactor

Volume 6, Issue O4 J

LG | 240 data 164, 251,169, 32, 32,210, 255, 32
AC | 250 data 207, 255, 32,210, 255, 32, 183, 255
LI | 260 data208, 19,200, 192, 28,208, 240, 32
CD | 270 data 225, 255,240, 9,169, 13, 32,210
KN | 280 data 255, 160, 0, 240, 201, 169, 2, 32
PK | 290 data 195, 255, 32, 204, 255, 162, 128, 76
ML | 300 data 139, 227, 36, 48

| JJ | 305rem 58,196, ok, ok

Note: use line 305 to change line 300 for vic 20

Notes On REVCNT: The Error Recovery Count
Variable - CBM Drives

Your drive can tell you quite simply when it is out of alignment.
By writing a value of 193 to location REVCNT (see below), your
drive will err out immediately when an alignment error occurs.
The code and an explanation follows below:

1541/2031LP : print*15, " m-w" chr$(106)chr$(0)chr$(1)
chr$(193) : rem loc $006a

2040/4040 print*15, " m-w " chr$(252)chr$(67)chr$(1)
chr$(193) : rem loc $43fc
8050/8250 print*15, " m-w " chr$(245)chr$(16)chr$(1)

chr$(193) : rem loc $10f5

The Reasons Behind Choosing The Value 193 (Binary
11000001)

A quick note on the 6502 BIT instruction. When a BIT is
performed on a memory location, the NEGATION flag is set
from bit 7 of the location, and the OVERFLOW flag is set from
bit 6 of the location.

A BIT instruction is performed on REVCNT by DOS for two
different reasons. First, after a BIT on REVCNT, a BVS is made
that branches past a routine that executes a track offset.
Second, after a BIT on REVCNT, a BPL is made that branches
past a routine that tosses a BUMP onto the job que. These two
reasons explain why Bits 7 and 6 were set (192), but still leaves
the last bit, Bit 0, unexplained. Look below for the answer.

Whenever an error occurs when reading or writing to disk, the
routine is attempted a set number of times before aborting.
Location REVCNT holds the key to the number of attempts.
The DOS will AND location REVCNT with #$3F, storing the
result in the Y register for a counter of the number of attempts.
If you were to AND 192 with $3F, the result would be zero:

11000000 (192)
00111111 ($3F)

00000000 after ANDing

Therefore, in order to not loop through 255 cycles of attempts
(DEY, BNE routine), bit 0 has to be set. This gives a total value
of 193 (Bits 7, 6, and 0 set)

Original 1541 tip thanks to the Central Coast Commodore
Users Group Newsletter - April 2, 1985.

ML Right JustifyRichard Perrit, South Porcupine, Ont.

In Volume 5, Issue 6 we ran this one-line “right justify” for 80~
column computers:

fori=1to80:print" ;:forj =1t024:print" @R " :next:next
Richard Perrit of South Porcupine, Ontario has since re-written

this special effect in machine language. The program is relocat-
able and can be installed using the BASIC loader below.

CK
GD

10 rem = right justify 80 »
20 rem #*#* richard perrit
LO | 30 rem *#* august 11/85
MJ | 40:

JE | 50 rem ad =49152 for c-64

GE | 60 rem ad=634 for pet

JL | 70 rem must have 80 columns

EM | 80:

IL | 110 ad =634 fori =adtoad + 31:readx:ch = ch + x
:pokei,x:next

EM | 120 if ch<>4605 then print " data error! " : stop

FK | 140data169, 0,162, 1,160, 1,169, 19
IO | 150 data 32,210, 255, 169, 148, 32, 210, 255

CO | 160 data 169, 141, 32,210, 255, 200, 192, 24
AB | 170 data 144, 241, 232, 224, 80, 144,229, 96
Slipped Disks: Scott Maclean,

Speeding up your disk drive Georgetown, Ont.
This article deals with speeding up dual drives — examples are
given for the 4040, 8050 and 8250. Unfortunately, the method
given here will not work on the 1541, because the method we
are using does not exist on the 1541.

In the dual drive memory map, at location $1000 (4096 deci-
mal), to location $1003 (4099 decimal) are 3 interesting varia-
bles. (Note: 8250 values also apply to the 8050 drives)

Contents Contents
Location (4040) (8250) Label Description
Hex Dec Hex Dec Hex Dec
$1000 4096 $0A 10 $03 3 ID Interrupt Delay
$1001 4097 $0D 13 $O0D 13 MAD Motor accelera-
tion delay
$1002 4098 $30 48 $30 48 MCT Motor cutoff

time

We can change the contents of these locations to change the
speeds of the different functions of the disk unit. We can

2 www.Commodore.ca
WM&Mfsion

The Transactor

Volume 6, Issue O4

« www.Commodore.ca

change the value of the Interrupt Delay, which increases or
decreases the overall speed of the drive, including the transfer
rate of the drive. Very small delay rates will cause read errors
and the drive won't read a thing from disk. The most noticeable
thing this value changes is the speed at which a “drive bump”
occurs. For instance, set this to 5 on a 4040 and then open a file
to disk with the drive door open to cause an error. You will hear
a buzzing noise instead of the familiar “WHAPWHAPWHAP”
noise a 4040 makes. Also affected is the stepping rate, if you
send the head from track 1 to track 35, you will notice a
significant increase in stepping speed. A safe value for the 4040
is 9, and for the 8050/8250 is 2.

We can also change the Motor Acceleration Delay rate. When
you tell the drive to access the disk, it turns on the drive motor,
then waits for a certain amount of time for it to accelerate and
stabilize to exactly 300 RPM. We can change this value to
change how long the startup delay is. Safe values for all drive
types is 2. This value has the most visible effect, as it decreases
directory search times, and generally speeds all internal disk
access up. Using these two functions, you can read the direc-
tory from a 4040 with about 1 second of drive motor time. After
setting these two locations and requesting a directory, the 4040
will do a drive bump, move to track 18 and seem to stop
instantly. However, it will continue sending directory data until
it has finished the directory.

The last location is the Motor Cutoff Time. This is the delay the
drive uses after a file is closed, or after data stops flowing.
Normally, after you finish using the drive, it will whirr for a few
seconds longer, even though it isn’t doing anything. By chang-
ing the value in this location you can control how long it will
continue to spin the disk. If you are used to the length the 4040
spins, and you then start to use an 8250, you will notice that the
8250 seems to take forever to stop spinning. Using all three
locations, it is possible to change the entire speed characteris-
tics of the drive. Following is a table showing the safe values for
each location, followed by a short program that can be used to
change the values easily and quickly.

One last note: [would expect that the same method should
operate correctly on the SFD-1001, but don’t quote me on that
as | have never used one of those units.

Location Lower Limit Upper Limit
Hex Dec 4040 8050/8250 4040 8050/8250
$1000 4096 $0A 10 $03 3 $F5 250 $F7 252
$1001 4097 $02 2 $02 2 $FE 254 $FE 254
$1002 4098 $02 2 $02 2 $FE 254 $FE 254

Editor’s Note: The above Lower Limit values may not work on
all drives - experiment. Also, speeding up your drive may make
it less reliable; don't trust important data or complex disk
functions to a hyped-up machine.

May Not Reprint Without Permission

10 rem **program to change velocity
20 rem #+values of dual drives
30 rem #:#by scott maclean
40 open 1,8,15:rem **open command channel
50 print chr$(147)
60 input " Interrupt Delay " ;id
70 input "Motor Accel. Delay *;mad
80 input "Motor Cutoff Time";mct
90 print#1, " uj" :rem ==reset drive
100 print#1, "m-w " chr$(0)chr$(16)chr$(3)chri(id)
chr$(mad)chr$(mct)
110 rem =*=*sets up at locations $1000-$1003
120 close 1

10 rem #*quick program to speed up

20 rem =+dual drives

30 open 1,8,15:rem #+*open command channel

40 print#1, " uj" :rem =+reset drive

50 print#1, " m-w " chr$(1)chr$(16)chr$(2)chr$(2)chr$(2)
60 close 1

[welcome comments on this method, I may be contacted at:

MFP Enterprises

6 Marilyn Crescent

Georgetown, ON

L7G 1K4

Or by modem at (416) 877-7762.

1541ders Daniel Bingamon, Batavia, Ohio
When I attempt to open a relative file with a record length of 58
(ASCII code for colon) I get errors. It appears that the 1541 likes
to think of the colon as a delimiter and since between the
comma and the colon is nothing, you get an error for opening a
file of record length zero. Maybe this will give Commodore the
hint to tear into their source and fix this along with a few other
problems (like SAVE@), if we find enough bugs.

The "UJ" command sent via the command channel is being
used by some widely sold software. Some drives (most of them)
require three seconds for the reset, but some software only waits
one second or less. this causes the computer to "hang up"
when further disk commands are given. This can occur when
the programmer writes a routine in BASIC, then compiles and
does not compensate for the speed increase in the FOR..NEXT
time delay loops.

C-64 BASIC STP Jack Weaver, Miami, FL
“STP” stands for “Sequential To Program”. This is a BASIC STP
for those who don’t want to STP the M/L way. Refer to Chris
Zamara's STP program in Transactor Vol 5, Issue 6.

|__The Transactor

Volume 6, Issue O4

< www.Commodore.ca

This routine will enter any program that has been listed to a SEQ
file on disk. It uses the Dynamic Keyboard technique from BASIC.

As adividend, BASIC STP may be used to append or merge several
programs together. The individual program lines must have no
duplicate numbers or your final program will be a total mess.

A great idea is to have a series of routines, with specific numbering
for each category of routine. Call and merge them together with
BASIC STP. Build a program of routines, using BASIC STP to do it.

To use it for appending a program or routine to an existing
program, you may LOAD Basic STP and list it to the screen. Then
LOAD the program you are using as the “master” program. Bring
the cursor up to the top line of BASIC STP, and hit RETURN over all
the lines, 63990 through line 63999. Now BASIC STP is appended
to the program.

RUN 63990, and enter the file name of the routine or program on
SEQ file you wish to append or merge with your “master” pro-
gram. BASIC STP will do just that.

The last step is to delete BASIC STP lines, and SAVE the new
program.

KK
FM
PG

63990 poke828,169:poke829,0:poke830,76
63991 poke831,49:poke832,243:close4
63992 input " filename " ;f$:0pen4, 8,4 1$
‘get#4,a$,a$:poke829,1:a$= " "
63993 print* [SEEEIpoke812,60:pokes 13, 3"
ifa$<>" "then63995
63994 get#4,a$
63995 printa$;:ifa$<>chr$(13)then63994
63996 get#4,a$:a =0:ifst=0then
a=asc(a$ +chr$(0))
63997 print"a$=chr$("a"):goto63993
63998 ifstthenpoke829,0:close4:stop
63999 poke198,3:poke631,13:poke632,13

MP

Pl
F
(@)

NB
BK
GO

:poke633,13:print" | " :end

Gaussian Elimination Routine

The following routine is capable of solving up to nine equations in nine unknowns
of the form Ax=b. It can also solve or yield information about non-square arrays. It
is. done entirely off-screen but the user should be aware that a little gentleness in
key input is appropriate. The routine occupies 700 or so odd bytes in the raw and is

an excellent tutorial for those who study matrix theory.

Audrys Vilkas, Goleta, CA

' ithout-Permission
The Lottery Companion

When you run out of birthdates, license numbers and hats to pull
numbers from, you might want to use this program the next time
you play a lottery. It will pick up to ten sets of six numbers, chosen
from a pot of 39 or 49, as you choose.

OO | 100 rem save " O:lottery " ,8
KA | 105 rem #* an evers co-production 1985 =
MJ | 110 dim win%(49,10), out$(10): c$ =chr$(147)
JG | 115 print c$ " select option "
DF | 120 print " 1) lottario 6/39 "
HD | 125 print "2) lotto 6/49"
NF | 130 input x$: if x$<"1" or x$>"2" then 130
CF | 13510t=39:ifx$="2" then lot=49
IN | 140 input "output (3) screen (4) printer ";dv
: if dv<3 or dv>4 then 140
IG | 145 open 1,(dv)
FA | 150 input "required # sets (1-10) = " :max
- ifmax<1 or max>10 then 150
HN | 155 print#1, " your 6/ " mid$(str$(lot),2) " numbers
are:": print#1: print#1
160 rem assign the random values to the array
Kl | 165 for try =1 to max: for pik=11t0 6
CL | 170 v% =rnd(0)*lot + 1: if win%(v%,try) then 170
: rem loop till un—-used #
DH | 175 win%(v%,try)=1: rem flag as used
MA | 180 next pik, try
EB | 185 rem #* got the numbers - build the strings **
AM | 190 for pik =1 to max: for asn=1 to lot
MI | 195 if win%(asn,pik) then out$(pik) = out$(pik)
+right$(" [3 spaces] " + str$(asn),4)
AO | 200 next asn, pik
HK | 205 rem =+ all ready - time to print ==
DH | 210 for spt=1 to 24 step 4: for prt=1 to max
EP | 215 print#1,mid$(out$(prt),spt,4);
HD | 220 next prt: print#1: next spt
MD | 225 print#1: close 1: end

The Evil Swords Of Doom!

Beware as the evil sword slices through the screen
and wipes any characters unfortunate enough to
be in its way. Look out! Here comes another - you
never know where the next one will strike. Before
long, all characters have been slain by the EVIL
SWORDS OF DOOM! Stay tuned until next issue
for the conclusion of this exciting tale. (PHHH
Gimme a break Chris - KH)

10 rem evil swords of doom

20a$=" MEMEMEMEM I E
30b%=" !

40 print chr$(142)

EL | 100 rem = gaussian elimination routine *
Fl | 110 print:input " Row Dimension " ;n:input " Column Dimension *;m
LO | 120 dim a%(n,m+ 1),b(n+m+ 1): fori= 1ton: forj=1tom+1: k=i+]
MN | 130 print"a"i;j;: input” = ";a(i,j,b(k))
AP | 140 print"m" ;:next:next:print:print "Next Row Dim";n-1;" Next
Col Dim";m-1
NG | 150 fori = 1ton:forj= 1tom + 1:printa(i,j,b(k));:next:print:next: print
PP | 160 fori= 1ton:forj=1tom + 1:def fna(i) =-a(i-1,1,b(k))*a(i,j,b(k))
KK | 170 def fnb(i) =a(i,1,b(k))*a(i-1,j,b(k)):r = fna(i) + fnb(i)
KA | 180 r1 =-a(i-1,1,b(k))*a(i,j,b(k)):r2 =a(i,1,b(k))*a(i-1,j,b(k)):ra=r1 +r2
CD| 190 r1 =a(i,1,b(k))*a(i-1,,b(k)):r2 =a(i,1,b(k))*a(i-1,j,b(k))
rb=r1+r2r=ra*rb
GN | 200 r=fna(i+ 1) + fnb(i + 1):printr;:next:print:next:ifm = 1and
n=1then220
PP | 210 clr:goto110
| PH | 220 y =a(n,m+ 1,b(k))/a(n,m,b(K)):print y; "is a solution " : clr: goto 110

50 print chr$(19)tab(rnd(1)*41)
60 fori = 1to19:printa$;

70 rem delay here if desired
80 next i: print b$;: goto 50

I

The Transactor 9

Volume 6, Issue 04 |

« www.Commodore.ca

Letters

Twinkle Tones: First of all, I would like to say thanks for the
great communications issue of Transactor (Vol 6 Iss 02). I
enjoyed it very much as | am interested in telecommunications
with my C-64.

In your article (Tele-Tone 64) you mentioned the fourth
column that belongs to the set of Touch Tones. In the industry
Touch Tone is referred by the technical term of 4x4 signalling
as the full pad is 4x4. The extra column is used by the US
Military in their private Autovon system.

The tones are used in times of emergency to get important
phone calls through even though all circuits are busy. The call
is given a priority by the fourth column digit. It can override a
lower priority call in order to get through. The highest priority
call is ‘Flash Over’ (FO). Then ‘Flash’ (F) is second. ‘Immediate’
(I) is next. The fourth priority is ‘Priority’ (P) and then at the
bottom is a call with no priority. However, all of these tones are
of absolutely no use to the average caller for those of you with
experimentation ideas. Your local Bell exchange will totally
ignore them.

As I work with Illinois Bell Telephone, | was interested in Tony
Valeri's article. The fact that he included the ‘No Such Number’
was interesting as [don’t know of any company or exchange in
the Northern Illinois area that still uses that tone.

One of the things that | have learned in playing with my C-64 is
the amount of mis-information available! The amount and
type errors in reference material is great and CBM puts out
more than their share of it also. The biggest error that comes to
mind is the RS-232 tables that are built-in the Kernal. It seems
that if you want to run a 1200 bps modem on the C-64, it won't
work (until you find out why).

From most reference material available including the Program-
mer’s Reference Guide, you would open the RS-232 channel
with the following syntax:

OPEN 2,2,0,CHR$(8) + CHR$(0)

For one stop bit, 8 bit words, 1200 bps, no parity, and full
duplex.

But guess what?? That won't work! It seems that the baud rate
table is wrong. Also, the PRG supports two more errors:

a) It infers that the User Defined Baud Rate is not implemented.
b) The formula that they give to figure the User Baud Rate is
wrong.

Now I don’t pretend to be smart enough to have figured it all
out myself. | had deduced enough from what | had read and

May Not Reprint Without Permission

done with my C-64, that a User Defined Baud Rate was used to
make a terminal program run 1200 bps on the C-64. Joe
O’Hara at Microtechnic Solutions was kind enough to tell me
the ‘secret’. It turns out that his associate Rick Sterling had done
that math from the ground up and came up with the right
figures to make the C-64 work at 1200 bps. The command is:

OPEN 2,2,0,CHR$(0) + CHR$(0) + CHR$(57) + CHR$(1)

The two CHR$(0)'s activate the User Baud Rate determined by
the second two CHR$’s. As shown it's 57 + 1x 256 for a total of
313. I'm also told that CHR$(59) may work better if CHR$(57)
causes any trouble (ie. 315 total).

I have since been able to modify and use several excellent
public domain terminal programs at 1200 bps. And I enjoy it
very much as | now can do as much as I used to do at 300 bps in
less time! But it seems that my wife does not think I spend any
less time with my C-64 though.

Hope that the information is of some use to you and keep up
the good work of giving us good Commodore information and
programs!. Lyle R. Giese, Woodstock, Illinois

Thanks for supplying the final piece to the Touch Tone puzzle. It
may interest you to know that I thought the extra row was for
military use, but without proof and working details, we couldn't
risk printing it. With your help, the story is now complete.

Our compliments to Rick Sterling for his detective work with the
RS-232 tables. The Inner Space Anthology also suggests the
User Rate is unimplemented. Is it possible Mr. Sterling might
share his findings?

Disk Risk?: | have read a small amount of advertising infor-
mation about the SFD 1001 disk drive as a data storage drive to
hold your data, but almost nothing is ever said whether or not it
can run commercial programs!, excepting one company (Pro-
tecto). They claim that if the program is back-upable, then the
drive will run the backed-up program. What | need if that is
true, it seems that the SFD 1001 would act as if it were a 1541.
Am | right in my assumption?

Jim McCoy, Opa-Locka, Florida

The SFD 1001 could be compared to 1/2 of a Commodore 8250
drive. It has the capacity to store up to 1 megabyte of informa-
tion on a single diskette, and it also has an IEEE port on the
back. It cannot act like a 1541 drive, no matter how hard you
try. Everything is different. The 1541/2031/2040/4040 type of
drives have a limit of 35 tracks on a diskette, with up to 21
sectors per track. The SFD 1001/8050/8250 have up to 154
tracks and a maximum of 29 sectors per track. In simple terms,
the drives are not at all compatible.

The Transactor

Volume 6, Issue O4

If Protecto states that if a diskette is back-upable, then the SFD
1001 will run the backed up program, then they are generaliz-
ing too much. If you can copy the program over to the SFD 1001
format, then you may be partially there. If the program does not
use direct access techniques with the drive, does not have the
1541's ROM and RAM in mind while protecting itself, and does
not consider the 1541's disk format for operation, then you may
be in luck. Programmers are a unique lot when it comes to
squeezing every ounce of storage space out of the 1541. If the
drive turns out to be other than a 1541, you may be in trouble.
The program will try its magic on the wrong drive and, pronto,
system bomb. A rotten end for a program just trying to be nice.

In summation, the SFD 1001 is a good drive. It offers great
scads of storage space for anyone who is interested. It would be
perfect for bulletin board systems, wordprocessor users, data-
bases that only use the common file types like SEQ, REL, etc.,
also games, utilities, and programs that don't use the disk for
any tasks, and just great for anyone who requires more storage
room than the 1541 offers, plus an increase in operating speed.
But a price has to be paid. The SFD 1001 is an IEEE drive,
therefore you need an IEEF interface for your 64 to use it. IEEE
links usually live in the 64’s cartridge port, therefore, you lose
the port. And some interfere with the 64’s architecture which
may confuse some programs, usually those that demand total
control of the machine and thus contend for memory that the
interface occupies. In general, though, most software people
and hardware people (ie link designers) have addressed this
problem and most of the more well developed packages can
cope with these configurations.

Following that, however, the format is not at all similar to the
1541. The SFD cannot read 1541 disks, and unless you have
some way to read from the ‘serial’ 1541 and transfer to the
‘parallel’ SFD, then you may have some trouble just getting your
programs onto SFD formatted disks, short of using a 4040 to do
the transfer (the 4040 is 1541 and IEEE compatible and could
be used to make an easy transfer). The only drive that is
compatible with the SFD is the Commodore 8250, which went
out of production a short while ago. The next “almost” compat-
ible drive is the 8050 with DOS 2.7 ROMs. The trouble with this
is the SFD 1001 has two heads per diskette, or double-sided,
while the 8050 is only single sided. The SFD 1001 gives a total
capacity of 4133 blocks per diskette. The 8050, 2052 blocks.
Therefore, if you write past the half way point onto the “other”
side, you cannot expect to read it with the 8050. If you don't
require “diskelte protability” then you need not be concerned
here though.

This may sound like a mouthfull, but on the other hand should
be second nature when considering such purchases. Get to
know the buss types and format differences from one piece of
equipment to the next. With often just a few facts one can
rehearse the events following a major system modification and
usually determine its success without actually making arny
changes.

ber issue of The Transactor. This is the third issue | have
bought and, although I haven't written to any other magazine, I
feel compelled to write to yours.

Although several other magazines are published that concern
themselves with the Commodore computer (usually intensify-
ing themselves on the C64), they can’t always be taken seri-
ously as they tend to appeal to too broad an interest and ability
level. This is done honorably enough by the publishers to try to
help everyone who buys their publication, however it tends to
penalize those of us who have gone beyond the basics and to
some degree the intermediary level of computing. That is why |
am so fascinated by your magazine, it appeals to the higher
level user who needs more in depth knowledge without all the
in-depth explanation. That much said, I would like to encour-
age you not to sacrifice the quality and integrity of your
magazine in an effort to do what everyone else is trying to do,
appeal to everyone. It's like we were all told as kids, “If
everyone jumped off a bridge, would you?”

This letter was actually written in response to a note in ‘News
BRK" about the possibility of The Transactor appearing in
microfiche. | would like very much to see this happen as it
might make it a little easier to get a copy of your magazine in
light of the fact that it can be extremely hard to find at this time.
I do intend to subscribe myself, but I know that a greater
availability of a good publication ‘benefits all Commodore
computer owners. | suppose this brings up the never ending
problems of copyright violations and, while [sympathize with
that view, I think that it’s terrible that we have to sacrifice the
education of a large population of users in fear of the few
among us who insist on trying to get a free ride. But | see an
even more important advantage of this happening. There are
countless articles that were published in the early days of The
Transactor’s existence that are unavailable to myself and any
other people who are newly acquainted with your magazine. If
these old issues become available' by microfiche, it would
provide a great service to those of us who crave all the
knowledge we can find about our 64’s and other Commodore
computers to which we are fiercely devotes.

I would like to briefly summarize the rest of the things that |
enjoy about your magazine. First, the emphasis on machine
language. This kind of information and free use of such a vital
and important part of the computer is sadly lacking in other
popular publications. Secondly, the more in-depth look at the
1541, truly a mysterious drive which has so little available
documentation that it becomes frustrating to use when some-
thing goes wrong, a minor problem becomes a major catastro-
phe. And third, your policy on published programs which is far
better than the competition. If I type in a program and find it
useful, I am glad that [am free to give a copy to a friend to make
his life easier. It's this kind of exchange that unites users and
forms a more close knit bunch of enthusiasts that accomplish
things together to make computing easier and more accessible
to all of us.

r The Transactor

n

Volume 6, Issue 0441

g www.Commodore.ca
Microfiche Interest: | have just finished reading the geptem- wHon

www.Commodore.ca

In closing, please retain your high standards in the publication
of your magazine, but don't get so big that you're forced to
conform to the lower standards of your competitors. Keep up
the good work! Tim Blazier, Elgin, Illinois

Sorry, but effective next issue we will start to cover a whole new
horizon with our magazine, Basic Backet Weaving. In our
Basket Weaving issue, renamed The Transbasket, we will
address such problems as: The advantages of weaving to the
left instead of the right. Our thoughts on putting a plastic bag at
the bottom of the basket. Instructions on how to put a plant in
your finished basket. And finally, cheap gifts for Christmas,
Baskets!!. Talk about fun. Can't you wait??

I couldn't resist. But The Transactor will continue to be pro-
duced at the level we have come to expect of ourselves - if we
were not learning from our own work and research, we would
get bored and probably change jobs. We like it this way, and
letters like yours plus conversations with our readers is a large
part of our motivation.

Microfiche: Your letter is the very first that we have received
mentioning it. Perhaps very few people read our News BRK
section. Or perhaps people would like to see The Transactor on
microfiche, but don't write in feeling there wouldn’t be enough
others. Whatever the story, we want to go on microfiche, but
can't justify it until a demand is clearly shown. If any of you are
really interested, as Tim is, then drop us a letter. Once we are
sure, then microfiche will be on its way.

An organized submission: Hello from sunny Vancouver! |
realize that this program (Yellow Pages Directory Organizer) is
out of sync with your editorial schedule, but I am rather proud
of it, and it is public domain. I would be most pleased if your
would be most pleased if you would include it on your monthly
disk, should you find the room. In any case, you should find it
useful yourselves.

Complete documentation is included in the program.

[am a technician with Memorex. | work with 800 meg hard
drives, 200 inch/sec tape drives, etc. I've been involved with
Commodore computers since about 8 years ago when | bought
asecond-hand PET 2001, with the old ROMs no less! A friend |
work with, Larry Philips, said he spoke with you folks at Marca
and you would like some authors. I'm busy sharpening my
pencil (figuratively, of course) and hope to submit an article
soon.

I'enjoy your magazine very much, and wait impatiently for it to
arrive on my local dealer’s shelf each month. I'd buy a subscrip-
tion, but Canada Post is notoriously slow, especially, it seems,
with any magazine | subscribe to.

Yours for more public domain software.
Rick Morris, Burnaby, B.C.

Thanks to Rick, the Yellow Pages program will be appearing on
all tuture Transactor diskettes. The features of this program are

pretty impressive, SUCI%IMHSV He'dRaeling Witbews Prsppission

filenames about easily within the directory. For an encore, files
can be selectively scratch protected and un-scraich protected
(locked and unlocked). Plus, you can scratch and un-scratch
files at will. If you want, you can also put a bar separator
between filenames that gives the directory listing a more pleas-
ant and logical appearance. But you have to wait for his
program to make the rounds before finding out everything this
beauty does.

Thanks for all, Rick, and thank you Larry for the kind reference
- much obliged.

Profile cosmetic surgery: | enjoyed reading Dr. John Ross’s
article regarding " Speeding Up Your BASIC Programs ", which
appeared in the recent issue (Volume 6 Issue 3). Another fine
article in a fine publication.

After adapting his program for the Vic and putting it to use, it is
indeed a valuable utility.

As the author pointed out, it was written for a CBM 8032 but
should be readily adaptable to other CBM models. | wonder
how many of your readers who are Vic and 64 users, who may
not yet be able to do an adaptation, will miss out on this
valuable utility.

With this thought I sent along the Vic and 64 adaptation. The
Vic user of course requires at least 3k expansion, since the Dr.’s
program takes 4k for storage. The listing (for program 3) is for
the Vic; the 64 user will require changing the (bold face) 191’s
to 49's . .. The only change required for the program 2 is the
variable LO in line 130; change to:

lo =peek(56)+256

The final change, from the original article, is that of the three
SYS; they are SYS 828, SYS 852, SYS 865 respectively.

If you are using a Commodore printer, you may want to change
chr$(223) in program 2, to chr$(166) to simulate a better graph.
R.C. Marcus, Agincourt, Ontario

Cl | 100 rem profiler loader - for vic/64

NN | 110 poke 55,0: poke 56,peek(56)-16: clr

OB | 120 read n,l: fori=1to n: read x: poke |,x: | =1+ 1

:next: end

OB | 130 data 87, 828

FD | 140 data 165, 56,133, 1,169, 0,133, 0

BJ | 1560 data 168, 145, 0,230, 0, 208, 250, 230

Pl | 160data 1,166, 1,224,128,208, 242, 96

Cl | 170 data 120, 169, 110, 141, 20, 3,169, 3

OP | 180 data 141, 21, 3, 88, 96, 120, 169, 191

LL | 190 data 141, 20, 3,169,234, 141, 21, 3

NJ | 200 data 88, 96,160, 0,165, 57,133, 0

MB | 210 data 165, 58, 5, 56,133, 1,177, 0

NE | 220 data 170, 232, 138, 145, 0,208, 13,165

OO |230data 1, 9, 8,133, 1,177, 0,170
| OG | 240 data 232, 138, 145, 0, 76,191, 234

The Transactor

12

Volume 6, Issue O4

l

< www.Commodore..ca

You're right. Dr. Ross did a smash up job with his article and
program. And it did deserve a Vic-20/C64 rewrite. Thanks for
the adaptation. It's appreciated.

Case of the missing Space: Several members of our User’s
Group and myself have typed in the programs of the above
listed article of the Sept. 1985 issue of The Transactor, and have
encountered some problems with the programs. In the first
program on the alignment check we kept getting “reading track
35 - error 70 - no channel”, “drive has failed alignment
check”, regardless of the drive we tested. On running a trace of
the program, we found that lines #135 and #155 don’t seem to
be executing. The program runs good from 100 to 130, going to
gosub 160 and continuing to 185, where it ends.

We would appreciate knowing if there is a printing error or
possible an explanation of lines 110, 125, and 135. We also
experienced problems with line 30 of the second short program

and would appreciate an explanation of line 30.
William Nowak, Mohawk Valley Commodore Users Group
Tribes Hill, New York

The problems that you are having are perhaps partially due to
the programs as listed. Mr. Clutter used a syntax of Block-Read
that is seldom used, but works fine all the same. The statement:

print#15,"b-r2019"
could also have been written:
print#15,"b-r"2;0;1;9

Delimiters of spaces when inside quotes (as Ed Clutter used), or
semicolons when outside quotes are up to the users discretion.
Either method sends the same information to the DOS as long
as the individual parameters can be distinguished by the DOS.
Perhaps we should be a little more careful as the typesetter
doesn't show spaces as clearly as necessary under such circum-
stances. Below is a listing of the original program, followed by
the lines which you may want to alter to ensure proper delimit-

ing.

1541 Alignment
100 d=8:rem d = device number
105 open 15,d,15: open 2,d,2,"#"
110 print#15, "m-w " chr$(0)chr$(0)chr$(1)chr$(192)
115t=35:h$="-"
120 t$ = str$()
125 print#15,"b-r20" t "9"
130 gosub 160
135 print#15,"b-r2019"
140 t$ =str$(1)
145 gosub 160
150 t=t-1: if >0 then 120
155 close2: close15: end
160 print: print " reading track "h$;t$,
165 input#15,a$,b$,c$,d$
170 print a$;h$;b$;h$;c$;h$;d$
175 if val(a$)<2 then return
180 print " drive has failed alignment check
185 goto 155

Track 00 Adjustment - Move Head To Track 1, Sector O
10 open 15,8,15
200pen2,8,2,"#"
30 print#15,"b-r2010"

Make the following changes for the alternate syntax. Notice that
fundamentally these lines are no different except for the delimit-
ing of parameters.

125 print#15, "b-r"2;0;t,9
135 print#15, " b-r"2;0;1;9

30 print#15, " b-r"2;0;1;0
By the way, in line 110,
print#15, " m-w " chr$(0)chr$(0)chr$(1)chr$(192)

was used to put a Bump on the 1541’s job que to Bump the
head into position on Track 1, Sector 0. That is what the
clattering noise is all about when the program first fires up. You
could delete this line if you want, and the program would still
work OR.

Disk Woes: | have a few things on the agenda in this letter,
any of which you may publish in future editions of your
magazine.

[Volume 6, Issue 03, John Brunner of Chicago, Illinois, makes
some suggestions about your advertising. | agree whole-
heartedly with him. Word-of-mouth is the best kind of adver-
tising anyone can get! I also enjoy reading ads, as they give me
an idea of what’s out there on the market. [like the idea of
keeping all advertising in one section of a magazine, almost
like a catalogue. In fact, I like your magazine so much, that I've
posted an ad on my Bulletin Board System, here in Ottawa,
Ontario, as well as sending in my first renewal fee to The
Transactor. (Besides, | could use some advertising, too!)

I have several 1541’s and two SFD-1001 (1 Mbyte) drives, and
have run into a particular difficult problem, with which I hope
someone may be able to help me. One of my important disks
was accidently NEW’d but I caught it during the head-rattling
and the disk came out with only one block destroyed . . . TRK
18, SEC 1! All programs where the filename is on any other
directory block load and run normally. Unfortunately, | don'’t
know how to find the first block of the programs where the
filenames reside on the damaged block, except the first file.
(DOS always puts first file to start on TRK 17, SEC 0) I'm
assuming that all the programs are still intact. Is there some-
thing out there that can help me piece this directory block back
together again?

Chris K. Weisner

Ottawa Mail Forwarding Services
Box 793 Station ‘B’

Ottawa, Ontario, K1P 5P8

BBS (613) 830-2923

ssion

The Transactor

13

Volume 6, Issue O4

It was awfully nice of you to advertise The Transactor on your
BBS. We LOVE free advertising. Also, let’s hope that our printing
your complete name, address, and BBS # after helps you t0o.

Now, about your partially new’d diskette. (nude?) If the head is
caught mid-stream during a full new (during the rattling
phase), then little damage should have occurred (o the diskelte.
Even if the rattling had just stopped, and you popped the
diskette out of the drive, little damage again. During a full new
(with disk name and new id), the drive starts at Track 1, Sector
0, and works its way up sequentially to Track 35, Sector 16. You
could not lose Track 18, Sector 1 that fast.

If you performed a quick new (no id), and left it for its duration,
then you would have retained every directory block but Track
18, Sector 1, and the BAM would have been re-written. As you
know, after a quick new the diskette appears clean. But after
changing two bytes (the link pointers to the next directory block
on the first directory block), you could find all but the first eight
filenames back. From this point, a validation would bring back
those files. Then a comparison for allocated sectors versus
sectors with data but not allocated begins. You could rebuild,
using false filenames, in this way. But quick NEW's are silent -
they do not rattle the head about. Something weird must have
happened during your full new.

If you turned the drive off during the head rattling stage, then
turned the power back on with the diskette still in the drive,
there is a pretty good chance that the power surge and your
head racing across the disk surface caused the glitch, not your
ill fated new. Your only recourse now is to salvage all you can
from the diskette by rebuilding it with whatever disk doctor type
program you can find. Several exist, and some have fairly
automatic features for doing just what you need - some are
even in the public domain. You might also obtain some infor-
mation on disk format which could help when deciphering data
(Anthology page 47 to 49) Good luck.

Remotely Noteworthy: First, [would like to thank all of you
for one of the best Commodore computer related magazines
there is. | have gotten more information from my past year’s
subscription to you than from any other magazine. In your
networking and communications issue, there was a program
called Remote-64 which allowed use of the computer through
the C-64 RS-232 port. [knew I could use this with my BBS, and
now after typing in the source, modifying the code, etc., | have
started to learn assembly language. | now have the routine
included in by BBS so I can call remote to do updating. I just
wanted to say thanks for the good work and please keep it up!!!
Your address/subscription info has been put on by BBS for all
users who want to make a good investment.

Joe Minuni, Royersford, Pennsylvania

When Chris was writing Remote-64, he told me that it would be
perfect for a bulletin board system. Since then he has been
waiting for the news you have given. Thanks for making Chris’s
day.

c‘ www.Commodore.ca
The Error Of Our Ways: More Often Oops Than Bloops i

As our sales figures continue to climb, so do the amount of
letters we receive. We appreciate these letters, because it keeps
us informed of your likes and disklikes regarding our maga-
zine. Unfortunately, the number of complaints regarding our
program listings have also increased. At times, the complaints
are valid. On occasion, errors have been known to appear
somewhere between the time we edit the articles, and when all
is ready for print. A messed up byte over the phone lines, an
error due to an incorrect translation, or some place other than
we are looking. In truth, errors do slip by, but all too often they
are so insignificant that we can’t even justify mentioning them
in a later issue.

Now, about 90 percent of all letters received can have their
errors traced back to keying the programs in. Complete pro-
gram lines missing, periods instead of commas between ele-
ments in a data statement, mispelled variable names, and a
multitude of other equally avoidable errors. Recently, I re-
ceived a letter that really let us have it for three mistakes. The
first was ours, but it was only a missing quotation mark after a
print statement. An easy mistake to correct, considering that
the program was in our Bits and Pieces column.

The other two belonged to our reader. But the real rub came
when the reader stated emphatically that we were in the
wrong. A difficult form of criticism to swallow. | won'’t detail the
errors here for the same reason we find it difficult to answer
such letters publicly.

Instead of belabouring the point with similar stories, all I ask is
for you to check your work more closely before coming to the
conclusion that we messed up. We all make typing errors, and
depending on the hour or several other affecting conditions, an
error can be staring you in the face and you wouldn't see it if it
punched you in the nose. Believe me, | know! Sometimes [key
an entire line over, or have someone else take a look, or even
just explaining it to someone else can make the mistake pop off
the page. Although not perfect, we do scrutinize as best we can.
Every program is tested within reason and the listings go
straight into the typesetter much like you send one to your
printer. So have one more look - it will take you less time than
writing.

Thanks for your time, and please keep those letters coming.

Richard Evers, Editor

The Transactor 14

Volume 6, Issue O4 —I

n

< www.Commodore.ca

TransBASIC
Installment #6

This instalment of TransBASIC presents a grab-bag of new
modules, some of which contain general purpose routines that
could be used again in the future. The first module we’'ll look at
is a very long one, USE, which appears as Program 1.

USE is a fast merge command that will merge modules (or
BASIC programs) much more quickly than the ADD command
we have been using so far. In addition, it will automatically
update line 95 of the TransBASIC kernel (which gives the
number of statements and functions in the dialect) using the
information contained in line 2 of the merged module. The
presence of this feature, which proved unexpectedly hard to
code, is largely responsible for making Program 1 so long.

There are two differences between the merge algorithm in USE
and the standard one found in routines like ADD. Most merges
read in a program line from disk, and merge it individually,
using the same routines BASIC uses when you enter a new line
from the keyboard. This is a four step procedure: 1) search the
program in memory for a line with the same number and delete
it if found (moving all higher-numbered lines downward to
close the gap); 2) rechain the program, and perform CLR; 3)
open up a space to accommodate the new line (moving all
higher numbered lines upward again), and insert the new line;
4) again rechain the program, and perform CLR.

Anyone who has added a line to a long program knows that the
above procedure is by no means instantaneous, but can take a
good second or two before the cursor returns. When an entire
program, subroutine or TransBASIC module has to be merged
in this way, you can be left drumming your fingers on the desk
for quite a while before the work is finally done. USE sacrifices
the convenience of the ROM routines in favour of an approach
designed specifically for merging rather than entering a single
line at the keyboard. It goes like this: Lines are read into a
special buffer in free memory, and their numbers are compared
with a line number of the program in memory (the main
program). If the new line number is less than the line number
in the main program, another line is read and added to the
buffer, and the process repeats. If the line numbers are equal,
meaning that the line in the main program will be deleted, the
pointer into the main program is advanced to the line follow-
ing, a new line is read from disk, and the process repeats. If the
new line number is greater than the one in memory, the
higher-numbered lines of the main program are moved up or
down the required number of bytes, the buffer is copied into
the main program, and the process repeats. The rechain and
CLR step is performed only at the end of the merge. The gain in
efficiency from this method results in merges that are virtually
as fast as regular program loads.

The first thing you should do with the module is replace the
"TB/ADD.OBJ" file used for constructing TransBASIC dia-

Nick Sullivan
Scarborough, Ont.

lects with a new file called " TB/USE.OBJ " . To do this, use the
following procedure:

1) Load and run the program " TRANSBASIC ", which sets
up "TB/ADD.OBJ" and loads the TransBASIC kernel.

2) Merge the USE module with the command: ADD " USE

3) Alter line 95 to: 95 XTRA .BYTE 3,0

4) Assemble the source file with PAL or similar.

) Save the resulting object file as " TB/USE.OBJ "

) Load the " TRANSBASIC " program again, alter line 130 to:
130 A=1: LOAD "TB/USE.OBJ",8,1 , and resave it.

o U1

Three of the subroutines in the USE module may find use
elsewhere. One is the memory block move routine MVMEM
(lines 8250 to 8414). To use this routine, set up the pointers
MVSTRT, MVEND and MVDEST with the appropriate ad-
dresses for the area you wish to move. The instruction SYS
MVM2 will perform the move. Sometimes it is convenient to
make MVEND point to the first free byte beyond the move area,
rather than the last byte within it. If you do this, call the move
routine with JSR MVMEM, which subtracts one from MVEND
then falls through into the main routine. If MVSTRT is greater
than or equal to MVEND, or if MVSTRT is equal to MVDEST, no
move will be performed, but no error is generated.

The second subroutine that might prove useful is DELINS (lines
8054-8172), which in turn makes use of MVMEM. DELINS
deletes text between the addresses pointed to by SDPTR and
T3/T4, and replaces it with text between SIPTR and T5/T6.
The start-of-variables pointer at $2D/2E is taken to mark the
first free byte beyond the affected memory area. In the case of a
BASIC program, this is what you would want. If you use
DELINS to modify some other part of memory, you would save
the start-of-variables pointer, write the appropriate address
into $2D/2E, call DELINS, then reload the start-of-variables
pointer before returning to BASIC. By the way, any time you
change a BASIC program from machine language, you should
always rechain and perform CLR before you return control. JSR
$A659: JSR $A533 will do this for you. Alternatively, if you are
returning to direct mode, you can do the whole operation by
exiting with: JMP $A52A.

The third subroutine is a very short one called ERRPGM. Its
purpose is to generate a ?SYNTAX ERROR if it is called in
program mode rather than direct mode. The main use for this is
in commands like USE that alter the program in memory.
There is no setup required, just JSR ERRPGM.

The module MOVE & FILL (Program 2) provides two com-
mands that are more commonly found in machine language
monitors: move a block of memory, and fill memory with a
value. The FILL command uses a subroutine called MEMFIL
that you might want to use if you're writing a command to zero

[The Transactor

15 Volume 6, Issue 04

i itheut-Permission

www.Commodore.ca

an array or a high-res screen, for example to fill in a portion of
colour memory or screen memory. There are several entry
points, depending on the way you want to set up your parame-
ters. The start address of the area to be filled can be supplied
either in .Y/.A (JSR MEMFIL or JSR MEMF1) or in T3/T4 (JSR
MEMF?2 or JSR MEMF3). The size of the area to be filled can be
specified as either the end address of the area (JSR MEMF1 or
JSR MEMF?2) or the number of bytes to be filled (JSR MEMFIL or
JSR MEMF3). The routine will get this parameter from $14/15.
In all cases, the value with which memory is to be filled is
supplied in the X register. The MEMFIL routine will exit
without doing anything if the start address is greater than the
end address, but will return an ?2ILLEGAL QUANTITY ERROR if
you ask it to fill more bytes than are available between the start
address and $FFFF.

The third module this month is DOS SUPPORT (Program 3), by
Darren Spruyt of Gravenhurst, Ontario, which supplies Trans-
BASIC with a battery of commands similar to those in the DOS
WEDGE. Darren has written these commands in an interesting
way that avoids the need to open a file in the 64. You might find
it useful to study his coding to see how this trick is done.

One problem with very large BASIC programs is the time taken
by the interpreter to locate destination addresses for GOTOs
and GOSUBs, which can severely impair performance, espe-
cially in the case of subroutine calls from within loops. This
problem is addressed in the LINE CALC module (Program 4),
which allows you to save time by calculating jump addresses in
advance. The LINE(function in this module returns the address
of a specified program line. You might use this in a number of
ways, but for the purposes of this module you are expected to
assign it to an integer variable. The statements JUMP (equiva-
lent to GOTO) and CALL (equivalent to GOSUB) make use of
the address stored in the variable to go directly to the line
without having to search through the program to find it.

Program 5, the BEEP module, provides a convenient way of
generating a beep tone of a pitch and duration specified in the
command parameters (the default is a very short C in octave 5).
You can use this to give audible feedback for key presses, for
example, or even to generate simple sound effects, as in the
following little routine:

100 FORI=1TO 50
110 BEEP 7,RND(1)*2400 + 2400
120 NEXT

BEEP uses voice 3 of the SID chip; the other voices are not
affected, except that the volume is set to 15 and the filters are
turned off.

The last program this time is not a TransBASIC module, but a
little BASIC/ML routine for those who use Brad Templeton’s
POWER and PAL (from ProLine Software) in their program
development. The program is called STRIPPER (Program 6),
and its purpose is to remove comments from a PAL source
program in memory (a long job if you do it by hand). As shown,
you invoke the machine language with SYS 900, but the code is

. G——WWW?WWW_W—’ ' [thoafr Permission
relocatable if you want to put it somewhere else. Keep 1 min

that it only works if you have POWER/MOREPOWER in
memory.

New Commands

This part of the TransBASIC column is devoted to describing
the new commands that will be added each issue. The descrip-
tions follow a standard format:

The first line gives the command keyword, the type (statement
or function), and a three digit serial number.

The second line gives the line range allotted to the execution
routine for the command.

The third line gives the module in which the command is
included.

The fourth line (and the following lines, if necessary) demon-
strate the command syntax.

The remaining lines describe the command.

USE (Type: Statement Cat #: 117)

Line Range: 7192-8052

Module: USE

Example: USE "MOVE & FILL

Example: USE "CURSOR POSITION *,9

Like the ADD statement introduced in instalment #1, this
command merges a program in memory with one from disk. A
device number may be specified, as in the second example;
otherwise, the device set by the DEVICE statement (qv) is used,
with a default of 8. If the program being merged is a TransBA-
SIC module, with a line 2 in the standard format giving the
number of statements and functions; and if the program in
memory has the TransBASIC kernal line 95, labelled XTRA,
giving the total number of statements and functions; then the
USE command will automatically update line 95 using the data
in the new line 2. USE is illegal in program mode, generating a
?SYNTAX ERROR.

MOVE (Type: Statement Cat #: 118)
Line Range: 8174-8248
Module: MOVE & FILL
Example: MOVE 1024,1523,1524: REM COPY TOP OF
SCREEN TO BOTTOM
Example: MOVE 53248;4096,12288: REM COPY CHARS
TO RAM
This is a standard block move, like the .T command of a
monitor. The syntax of the first example is comparable to that
used by most monitors: the first parameter is the address of the
first byte in the block to be moved; the second parameter is the
address of the last byte; and the third parameter is the destina-
tion address of the move. The parameters are separated by
commas. The second example uses an alternative syntax. Here
the second parameter is the number of bytes to be moved, and
the first separator is a semicolon instead of a comma. If the
parameters do not make sense (for example, if the end address
is greater than the start address), no move takes place, but an
error is not generated. Also, if the destination address is the
same as the start address, no move takes place. You therefore
cannot use this command to directly copy the BASIC ROM into
RAM, for example.

The Transactor

Volume 6, Issue O4

g% www.Commodore.ca
DS (Type: Function Cat #:129) ission

FILL (Type: Statement Cat #: 119)

Line Range: 8504-8558
Module: MOVE & FILL

Example: FILL 832,1023: REM CLEAR CASSETTE
BUFFER
Example: FILL 631;10,13: REM PACK KEYBOARD

BUFFER WITH RETURNS

This statement fills an area of memory with a specified value. In
the first example, the two parameters, separated by a comma,
correspond to the start and end addresses of the area to be
filled. In the second example, where the separator is a semico-
lon, the second parameter gives the number of bytes to fill. The
third parameter, if present, specifies the value with which
memory is to be filled; the default value is 0.

CAT (Type: Statement Cat #: 123)

Line Range: 8644-8740

Module: DOS SUPPORT

Example: CAT

This statement lists a disk directory to the current output
device. Programs in memory are not affected.

DOS (Type: Statement Cat #: 124)

Line Range: 8742-8764

Module: DOS SUPPORT

Example: DOS "SO:ITCHFILE"

This statement sends a command to disk.

DEV (Type: Statement Cat #: 125)

Line Range: 8766-8782

Module: DOS SUPPORT

Example: DEV 9

This statement sets the device number for the other disk
commands in the DOS SUPPORT module, and for the USE
statement (qv). Allowable device numbers are in the range 8-
11. The default device number is 8.

DLOAD (Type: Statement Cat #: 126)

Line Range: 8808-8812

Module: DOS SUPPORT

Example: DLOAD "0:MURPHY

This statement loads the named file from disk, using the
current device number.

DSAVE (Type: Statement Cat #: 127)

Line Range: 8814-8818

Module: DOS SUPPORT

Example: DSAVE "0:MURPHY.V2

This statement saves the named file to disk, using the current
device number.

DS$ (Type: Function Cat #: 128)

Line Range: 8598-8616

Module: DOS SUPPORT

Example: PRINT DS$

This function returns the disk error channel string, and clears
the channel (i.e. a subsequent call, with no disk operation
intervening, would return "00,0K,00,00").

Line Range: 8618-8642

Module: DOS SUPPORT

Example: U=DS

This function returns the error number from the disk error
channel, and clears the channel (i.e. a subsequent call, with no
disk operation intervening, would return 0). It is equivalent to:
VAL(LEFT$(DS$,2))

JUMP (Type: Statement Cat #: 130)

Line Range: 8846-8868

Module: LINE CALC

Example: JUMP QUIT%

The argument of this statement is an integer variable whose
value is the address of a BASIC program line. The effect is the
same as a GOTO, but is generally faster, considerably so in long
programs.

CALL (Type: Statement Cat #: 131)

Line Range: 8870-8900

Module: LINE CALC

Example: GOSUB JSTK%

The argument of this statement is an integer variable whose
value is the address of a BASIC program line. The effect is the
same as a GOSUB, but is generally faster, considerably so in
long programs.

LINE((Type: Statement Cat #: 132)

Line Range: 8902-8964)

Module: LINE CALC

Example: QUIT% = LINE(5000)

Example: QUIT% = LINE(GOTO 5000)

Example: J2STK% = LINE(J1STK% + 100)

This function returns the address of the BASIC line whose line
number is returned by the argument expression. This can be a
simple line number (example 1), or any other expression
(example 3). The keyword GOTO will be ignored if it is used
before the line number (example 2). Its purpose is to allow
automatic renumbering of the line number with a renumbering
utility. If the referenced line number does not exist, the func-
tion returns a value of zero.

BEEP (Type: Statement Cat #: 133)

Line Range: 8966-9042

Module: BEEP

Example: BEEP

Example: BEEP 6

Example: BEEP 16,3034

This statement produces a tone from the SID chip, using the
sawtooth waveform in voice 3. The volume and sustain are set
to 15; the attack, decay and release are set to 0, and filtering is
turned off. Without parameters (example 1), the tone produced
is a very short beep with a pitch of C in octave 5. The duration
of the beep can be set with the first parameter (example 2),
which will lengthen the beep by a factor of the parameter value
plus 1. The pitch is set with the second parameter (example 3).
Thus the default beep is equivalent to: BEEP 0,8583

The Transactor

Volume 6, Issue O4

els www.Commodore.ca
(0]

Program 1: USE CF | 7304 ist setlfs Maay Not Regriat Witheamt Permission
OP | 7306 jsr open CG | 7488 jsr prgget
Because of the sheer size of USE, we were rather doubtful HA | 7308 jsr dskchk ;check error chan HH | 7490 cmp#"3"
anyone would actually type it in. In fact I'm not sure why we EF | 7310 jsr clrchn ;discard start addr BP | 7492 bne dkct Hale}
even bothered to show the Verifizer codes (force of habi, 1 NC| 7312 ldx #$63 BC | 7494 cle Jflag - ok
suppose). However we did want to include it for the sake of NI | 7314 jsr chkin NG| 7496 byte $24 ;'bit’
documentation. We apologize for the small type, but what GL | 7316 jsr prgget Gl | 7498 dkct sec .flag - error
you see is a compromise; the source for USE couldn't IL | 7318 jsr - prgget EN | 7500 dkc2 php ;push flag
possibly have been printed at regular size. -M.Ed. LL | 7320 lda $2b ;create ptr into BL | 7502 dkc3 jsr prgget ;geterr msg byte
IM | 7322 Idy $2c : program in memory | GP | 7504 Ida $90 test end of msg
HJ | 0 rem use (june 18/85) : GL | 7324 sta 3 ; att3/t4 MB | 7506 beq dkc3 ;no
FH | 1: AG | 7326 sty t4 00| 7508 Ida #0 ;clear status byte
Al | 2rem 1 statement, O functions JD | 7328 lda #0 iclear flags CC| 7510 sta $90
HH| 3: LO | 7330 sta uzfl ;end of disk prg NC| 7512 plp ;pull flag
DO | 4 rem keyword characters: 3 ON | 7332 sta uzf2 Jlines to delete OL | 7514 bcs pggt ;quit
JH|5: NI | 7334 sta uzf3 :update line 95 IE | 7516 rts
NJ | 6 rem keyword ~ routine line ser # GJ | 7336 sta stmctr :count new stmts EN| 7518;
FM | 7 rem use uze 7192 117 MG| 7338 sta functr ;count new funcs AF | 7520 prgget jsr getin ;get disk byte
MH| 8: IN | 7340 uz6 jsr makbuf create receive-bfr |ON| 7522 pha
GN | 9 rem u/mvmem (8250/120) FN | 7342 uz7 sec ;test buffer can HN| 7524 Ida $90 ;test status error
GM | 10 rem u/delins (8054/122) DC | 7344 lda $37 ; accommodate new | Bl | 7526 and #3bf ; except ‘eol’
BA | 11 rem u/errpgm (9150/135) BK | 7346 sbc t5 ; program line JG | 7528 bne pgg1l \yes
Al | 12: OE | 7348 Ida $38 CP | 7530 pla
LD | 13rem================================ 00| 7350 sbc t6 IF | 7532 rts
Cl | 14: HL | 7352 sbc #2 FF | 7534 pgg1 jsruzit ;close files, clear
AF | 39setls = $ffba PL | 7354 bcs uzi12 \yes KH | 7536 Ida #<uzerr ;'merge error’
KD | 40 setnam = $ffbd LA | 7356 Ida linflg stest lines in bfr GD| 7538 sta $22
BE | 41open = $elct ON | 7358 beq uz8 Halo) HK| 7540 Ida #>uzerr
NI | 42chkin = $elle PC | 7360 jsr dliz ;merge lines IH | 7542 jmp $a445
NI | 43close = $elcc DL | 7362 jmp uzé ;create new buffer 00| 7544,
IB | 44clrchn = $ffcc HO | 7364 uz8 jsr o uzit ;close files, clr 10 | 7546 uzerr .asc "mergE"
JK | 45getin = $el24 CB | 7366 jmp $a435 ;'out of memory' CP | 7548 ;
EK | 46; DM | 7368 uz9 Ida linflg ;test lines in bfr IM | 7550 linfig .byte 0
MI | 132 .asc "usE” Bl | 7370 beq uz10 Hale) CO| 7552 linlen .byte 0
KK | 1132 .word uze-1 LD | 7372 jsrdiz ;merge lines KN | 7554 uzf1 .byte 0 ;disk prg end flg
PC | 7192 uze jsr errmem ;check directmode | KL | 7374 uz10 jsr chkl9s ;handleline 95 FJ | 7556 uzf2 .byte 0 Jlines to del flg
IF | 7194 lda #2 :make space for ,p CN | 7376 jsr - uzid ;wrap up OB | 7558 uzf3 .byte 0 ;update line 95 flg
Bl | 7196 jsr $b4fd LK | 7378 jmp $a474 exitto ‘ready’ OP | 7560 ;
KM | 7198 jsr $ad9e ;evaluate filename Il | 7380 uz11 jsr clrchn JI | 7562 getlin Idy #0 ;get line from
GH | 7200 jsr $b6a3 DB | 7382 Ida #%$62 GC | 7564 gtl1 sty t2 ; disk, store from
MI | 7202 jsr - $baf4 :make space NE | 7384 jsr close FN | 7566 jsr prgget ;firstfree byte
MF | 7204 tay itest null MH | 7386 jsr - $ffe7 ;clall’ EJ | 7568 Idy t2 ; in buffer
MB | 7206 bne uz1 ;no NH | 7388 jsr $ab33 ;rechain JC | 7570 sta (t5)y
NJ | 7208 jmp $af08 ;'syntax error’ ID | 7390 jmp $a659 ;clr PF | 7572 ldx $90 ;status to disk prg
KC | 7210 uz1 Ida #"," ;add ,p EH | 7392 uz12 jsr - getlin ;get disk prg line DE | 7574 stx uzfl ;end flag
DD| 7212 sta ($33)y PN | 7394 Ida uzf1 itest if final line BM| 7576 bne gtl4 ;end of disk prg
OA| 7214 iny CO| 7396 bne uz9 \yes Ml | 7578 cpy #4 itestlink, line #
HH| 7216 Ida #"p" HC | 7398 jsr - chkl2 ;handle line 2 MJ | 7580 bce gti3 yes
JD | 7218 sta ($33)y PE | 7400 uz13 jsr compar ;testdsk line # < MJ | 7582 tax ;testend of line
PJ | 7220 iny ;push filename LB | 7402 bce uz1s prgline # - no CO| 7584 beq gtl4 \yes
LB | 7222 tya ; length FK | 7404 php ;push compare flags | OO | 7586 gtl2 iny ;get another byte
EL | 7224 pha Fl | 7406 jsr updabp ;adv buffer pointer NL | 7588 bne gti1
LH | 7226 |da $33 ;push filename addr | JK | 7408 sta linflg ;set bfr-used flag MH | 7590 jsr o uz11 ;illegal 256th byte
IL | 7228 pha JD | 7410 plp itest line #s equal HF | 7592 jmp $ab66 ;'file data error’
MM| 7230 Ilda $34 KM | 7412 bne uz7 ;no, more from disk | LJ | 7594 gtl3 cpy #1 stest link hi-byte
ML | 7232 pha KM | 7414 lda uzf2 ‘test delete flag NI | 7596 bne gtl2 ;no
HF | 7234 jsr $79 test dev parameter | HL | 7416 bne uz14 ;init'd - yes FL | 7598 tax itestlink = 0
IF | 7236 beq uz4 ;no PK | 7418 Ida t3 ;init start delete BJ | 7600 bne gti2 Hale)
ID | 7238 jsr - $aefd ;,check for comma FF | 7420 Idy t4 ; ptr from ptr into NC | 7602 dex ;set disk prg end
NP | 7240 jsr $b79e ;evaluate device # GO | 7422 sta sdptr ; program in memory | LE | 7604 stx uzfl ; flag
OH | 7242 .byte $2c ,'bit’ KF | 7424 sty sdptr+1 KA | 7606 gtl4 sty linlen ;save line length
PC | 7244 uz4 ldx device ;default device CO| 7426 sty uzf2 ;set delete flag EK | 7608 rs
IA | 7246 stx 2 KB | 7428 uz14 jsr t8bump ;advance prg ptr AD | 7610;
DJ | 7248 Ida #$62 ;close 98 CP | 7430 jmp uz7 ;new line from disk IJ | 7612 makbuf clc ;put buffer half
HM| 7250 jsr close IA | 7432 uz15 Ida linflg stest lines in bfr OD| 7614 Ida $37 ; way between staft
OL | 7252 lda #0 ;open 98,dv,15 JN | 7434 beq uz16 Halo} FH | 7616 adc $2d ; of variables and
HB | 7254 jsr setnam LH | 7436 jsrdiz ;merge lines CK| 7618 pha , end of basic
FJ | 7256 lda #$62 IH | 7438 uz16 jsr compar ;testdsk line # < OF | 7620 lda $38
GN | 7258 ldx t2 JI | 7440 bes uz17 ; prgline # - no HH | 7622 adc $2e
HD | 7260 Idy #80f IH | 7442 jsr t3bump ;advance prg ptr BK | 7624 Isr
IC | 7262 jsr setlfs GN | 7444 cle ;loop DK | 7626 sta siptr+1 ;buffer start
EN | 7264 jsr open DO | 7446 bcec uz16 OE | 7628 sta t6 :buffer pointer
JO | 7266 Ida t2 ;test dev present DE | 7448 uz17 lda t5 ;save buffer ptr GF | 7630 pla
KK | 7268 jsr - $ffb1 (listen) CK | 7450 Idy 16 El | 7632 ror
MP | 7270 jsr $ffae ; (unlisten) AO | 7452 sta $22 PO | 7634 sta siptr
LP | 7272 lda $90 ; (check status) FE | 7454 sty $23 ID | 7636 sta t5
JK | 7274 beq uz5 GM| 7456 jsr makbuf ;create new buffer MB| 7638 lda #0 ;clear buffer-used
NL | 7276 ldx #5 JA | 7458 Idy #$ff ;copy most recent EK| 7640 sta linflg ; flag
JL | 7278 jmp ($300) ;'dev not present’ CM| 7460 uz18 iny ; line into new GM| 7642 rs
EP | 7280 uz5 jsr dskchk ;check error chan DJ | 7462 Ida ($22),y . buffer CF | 7644 ;
NL | 7282 Ida #$63 ;close 99 PL | 7464 sta (t5),y CL | 7646 updabp sec ;advance buffer pt
JO | 7284 jsr close IN | 7466 cpy linlen CG| 7648 Ida linlen ; by length of mos
NH | 7286 pla ;pull filename data KC | 7468 bne uz18 JA | 7650 adc t5 ; recent line
HE | 7288 tay NC | 7470 beq uz13 IE | 7652 sta t5
CA | 7290 pla GK| 7472; BN | 7654 lda #0
HE | 7292 tax IK | 7474 dskchk ldx #$62 ;get error channel CA | 7656 adc 6
GA | 7294 pla NK | 7476 jsr - chkin ; byte AF | 7658 sta t6
GB | 7296 jsr setnam ;open 99,dv,99, IF | 7478 jsr prgget IN | 7660 rts
,;SJ\/LA ;ggg Ida #$63 ; "filename,p” DG | 7480 cmp#"2" testerr # < 20 EG| 7662 ;
ldx t2 GA | 7482 bce dke2 yes EC | 7664 compar Idy #1 ;test memory-pr
FF | 7302 tay Pl | 7484 cmp#"7" testerr # = 73 PC | 7666 sec ; ptr atend oyf pprgg

[The Transactor 18 Volume 6, Issue 04 |

7668

Bl | 7670
7672
7674
7676
7678
7680
7682
7684
7686
7688 com1
7690 com?2
IL | 7692

El | 7694 ;
7696 t3bump
7698 mku1
7700

Gl | 7702
7704
7706
7708 mku2
7710
7712

Cl | 7714

IE | 7716
7718

Kl | 7720
7722
7724 ;
7726 chkl2
7728
7730
7732
7734
7736
7738
7740
7742
7744
7746
7748
7750
7752 c2I1
JI | 7754
7756
7758
7760 c212
7762
7764
7766 c2I13
7768
7770
7772
7774 c2l4
7776 c2I5
7778

IE | 7780

B | 7782
7784
7786 ;
7788 rdnum
IK | 7790
7792
7794

LI | 7796
7798
7800

IK | 7802
7804
7806
7808
7810
7812
7814
7816
7818
7820 rdni
7822 rdn2
7824 ;
7826 chkl95
7828
7830
7832
7834
7836
7838
7840
7842
7844
7846
7848

lda (13)y
beq com2
ldy #3
lda (t3)y
cmp (t5),y
bce com1
bne com1
dey

Ida (13),y
cmp (t5).y
rts

Ida #1
rts

#4

(B)y
mku2

Idy
Ida
beq
iny
bne
jmp
tya
sec
adc 3
sta t3
Ida t4
adc
sta t4
rts

mku1
pggt

Idy #2
Ida (15),y
cmp #2
bne c2l4
iny

Ida (t5),y
bne c2l4
Ida t5
Idy t6
adc #2
sta $7a
bce c2l
iny

sty $7b
jsr $73
cmp #$8f
bne c2l4
jsr - rdnum
bcs c2l4
sty stmctr
cmp#","
beq c2I5
jsr $73
bne c2I3
rts
jsr
bes
sty
inc
rts

rdnum
c2l4
functr
uzf3

$73
rdn2
#$0f

jsr
bes
and
tay
jsr
bes
and
sta
tya
asl
asl
asl
asl
ora
tay
jsr
cle
rts

$73
rdn1
#$0f
$22

$22
$73

uzf3
rdn2
#$5f
#0
$14
$15
uzf3
$a533
$a613
bce rdn2
Ida $5f
Idy $60

Ida
beq
Ida
Idy
sta
sty
sty
jsr
jsr

;yes - sec & exit
;set carry if

; currentline # of

; prg in memory >
; line # from disk

;clear processor
; zflag

;advance pointer

; into program in

; memory by length
; of current line

;illegal 256th byte

stest if current

; line from disk is
; line #2

Halo)

Hale)

;set chrget pointer
; to start of line

; in buffer

;get first byte
itest ‘rem’

;No — exit

;get # new stmts
;not a # - exit

;scan for comma
;found

;get # new funcs
:not a # - exit

;set update line
; 95 flag

;geta byte

:not a digit - exit
;ascii to bed
;save first digit
;geta byte

;not a digit - exit
,ascii to bed
;pack bed into

; one byte

return #1in .y
;get next byte
Jflag # valid

;test line 95
, needs update - no
;search for line 95

; (clear flag)

; (rechain)

; (search)

;not found

;line 95 address to
; memory prg ptr,

LE
PC
BM
KA
EN
cG
EM

1J
EA
P

CE
OF
EM

I
KK
cP

DA
HI
&
NG
DF
KB
DK
AE
BF
PI
HH
FG

IF

HH
M
EH
JK
CD
PG
EH
10
cl
LB

I

KH

GM
HG
AO
PO
PD
8D
oL
FO
DK
00
GF

BI

NK
IP
FO
IF
cc
KP
P
KI
AA
K
AK
FD
AO
FJ
LA
NA
PA
BB
DA
JA
08B
LH
FF
NA
DB
Ic
GD
cM
BP
AO
M
KN
K
NB
GC
El
MO

7850
7852
7854
7856
7858
7860
7862
7864
7866 c95I1
7868
7870
7872
7874 c9512
7876
7878
7880
7882
7884
7886 c95I13
7888
7890
7892
7894
7896
7898
7900
7902
7904
7906
7908
7910
7912
7914
7916
7918
7920
7922 c9514
7924
7926
7928
7930
7932 c9515
7934
7936
7938
7940
7942
7944
7946
7948
7950
7952
7954
7956 c9516
7958
7960
7962
7964
7966
7968
7970
7972
7974
7976
7978 ;
7980 195put
7982
7984
7986
7988
7990
7992
7994
7996
7998
8000 195p1
8002
8004
8006
8008
8010
8012;
8014 stmctr
8016 functr
8018;
8020 195txt
8022
8024
8026
8028
8030

sta 3 ; and delete start
sty t4 ; pointer

sta sdptr

sty sdptr+1

adc #2 ;set chrget ptr to
sta $7a ; start of line 95
bce c95I1

iny

sty $7b

jsr $73 ;get first byte
cmp#"x" itest="x" for xtra
bne rdn2 ;no — exit

jsr $73 ,get a byte

beq rdn2 ;end of line — exit
bes 9512 ;not a digit

lda $7a ;back up cg ptr
bne c95I13

dec $7b

dec $7a

Ida stmctr ;save # new stmts,
sta $24 ; functions

Ida functr

sta $25

jsrcal2 ;get # stmts, funcs
lda uzf3 ;test update req'd
beq rdn2 ;N0 — exit

sei

sed

clc

Ida stmctr ;calc new stmt,
adc $24 ; func totals

sta stmctr

bes c9514 ;>99, unreasonable
Ida functr

adc $25

sta functr

cld

cli

bes rdn2

jsr makbuf ;create buffer
Idy #0 ;create new

Ida 195txt,y ;line95in

sta (t5),y ; buffer

iny

cpy #3$0f

bne ¢9515

Ida stmctr ;incorporate new
jsr195put ; totals

Ida #","

sta (t5),y

iny

Ida functr

jsr 195put

Ida 195txt,y

sta (t5).y

iny

tax

bne c9516

dey ;setline length
sty linlen

sty uzf2 ;set delete flg

jsr t3bump ;advance prg ptr
jsr updabp ;advance buffer ptr
jmp diz ;merge new line 95
pha ;packed bcd to
and #3$f0 ; ascil, hi byte
beq 195p1

Isr

Isr

Isr

Isr

ora #$30

sta (t5).y ;store to new line
iny

pla ;low byte

and #3$0f

ora #$30

sta (t5),y ;store to new line
iny

rts

.byte 0

.byte 0

.byte 1,1,95,0

.asc "xtra”

.byte 32

.asc ".byte"

.byte 32,32,32,32,32,32,32,59,32
.asc " stmts,funcs”

IN
PJ
GJ
Kl
00
PH
IM
AG
LL
KO
KD
LK
MF
Al
NM
NM
MJ
LD
CF
PE

CcO

ww.Commodore.ca

8034 ;
8036 diz
8038
8040
8042
8044
8046
8048 diz1
8050
8052 ;
8054 delins
8056
8058
8060
8062
8064
8066
8068
8070
8072
8074
8076
8078
8080
8082
8084
8086
8088
8090
8092
8094
8096
8098
8100
8102
8104
8106
8108
8110
8112
8114
8116
8118
8120
8122
8124
8126
8128
8130
8132
8134
8136
8138
8140
8142
8144
8146
8148
8150
8152
8154
8156
8158
8160
8162
8164
8166 ;
8168 sdptr
8170 siptr
8172;
8250 mvmem
8252
8254
8256 mvm1
8258 ;
8260 mvm2
8262
8264
8266
8268
8270
8272
8274
8276
8278
8280
8282 mvm3
8284
8286
8288

W
er Wb My QI Reprint Without Permi

lda uzf2
bne diz1

lda t3

Idy t4

sta sdptr
sty sdptr+1
Ida #0

sta uzf2

Ida t3

Idy t4

sta muvstrt
sty muvstrt+1
sec ;calc # bytes to
sbc , delete

sta ; $22/23

tya
sbe
sta
sec
Ida t5

sbc siptr
pha

Ida t6

sbc siptr+1
tay
pla
sec
sbc
sta
tya
sbc
sta
cle
Ida t3

adc $22
sta t3

sta mvdest
Ida t4

adc $23
sta t4

sta mvdest+1

cle ;add same result
Ida ; to start-of-vars
sta , ptr to yield move
adc ; end address and
sta ; new start-of-vars
Ida
sta
adc
sta
jsr
Ida
sta
lda
sta
Ida
Idy

;set up start of
; move

sdptr
$22

sdptr+ 1

$23

;calc (# bytes to
; insert) minus (#
; bytes to delete)

$22
$22

$23

$23

;add result to

, prg-in-mem ptr
; to yield move

; destination addr

$2d
mvend
$22

$2d

$2e
mvend + 1
$23

$2e
mvmem ;move prg in memory
sdptr ;get dest addr for
mvdest ; new lines
sdptr+ 1

mvdest + 1

siptr ;buffer addr is
siptr+1 ; start of move

sta muystrt
sty muvstrt+1
Ida t5

Idy t6

sta mvend
sty mvend+1
jmp mvmem

;buffer pointer
; is end of move

.word 0
.word 0

Ida
bne
dec

mvend ;memory move front
mvm1 ;end - end addr
mvend + 1; is 1 beyond

dec mvend ; block to move
lda muvstrt ;setup pointer

sta $22 ; low bytes

lda mvdest

sta $24

Ida mvend + 1;test if any bytes

cmp mvstrt+ 1; bytes to move

bcc mvm5 ;no
bne mvm3 ;yes
Ida mvend
cmp mvstrt
bcc mvmS5 ;no

lda mvdest+ ttest moving up
cmp mvstrt + 1

bcc dmvmem ;no

bne umvmem ;yes

ssion

The Transactor

19

Volume 6, Issue O4

& www.Commodore.ca
Pro

00 | 8290 Ida $24 2 MfoVics Fgerint Without Permission
PC | 8292 cmp $22
BG | 8294 begq mvm5 ;nomove atall .
NA | 8296 bce dmvmem;moving down FE | O rem move & fill (june 18/85)
OE | 8298 umvmem Ida mvend ;initindex with FH 1
: partial block : ,
Eg gggg iii mvstrt ;&a;nlsve * DH | 2 rem 2 statements, O functions
PD | 8304 tay I HH | 3:
ON | 8306 Ida mvend+ tpush whole blocks)
AH | 8308 sbac mzslrt++1 ; l(L)J mov\v/e IO | 4rem keyword characters: 8
CP | 8310 plha t - JH | 5:
EE | 8312 clc ;set up pointer . ;
oK | 8314 ade mystrt=+ 1. high bytes NJ | 6rem keyword routine line ser#
DE | 8316 sta $23 JI | 7 rem move mov 8174 118
Al h B OM | 8 rem fill stuf 8504 119
CH | 8322 adc mvdest + 1 NH | 9:
BF | 8324 lsdla ($$2252) ; HN | 10 rem u/mvmem (8250/120)
NH | 8326 mvm4 a .y perform move)
Hii| 8328 sta (S24)y | fromendol DL | 11 rem u/memil (8416/121)
NP | 8330 dey : block Al |12
LL | 8332 cpy #3ff LD | 418 (e meessecsssscesesress o= o5 ceEsamas
AM | 8334 b ma
FH | 8336 |dnae gzvs test if finished Cl | 14
HB ggjg g”‘p mvs"s‘” KM | 133 .asc "movEfilL"
eq mvm yes
HO | 8342 deg $23 :point 1 page lower LD | 1133 .word mov-1,stuf-1
%S 3342 dec $25 . S NC | 8174 mov jsr $ad8a ;eval and store
4 jmp mvm ;move another bloc A .
NI | 8348 mvms ris EN | 8176 jsr $b7f7 ; start address
ML | 8350 dmvmem Ida muvstrt+ 1;set up ptr GJ | 8178 sta mvstrt+ 1
JH | 8352 sta $23 ; high bytes
AK | 8354 lda mvdest + 1 GD | 8180 sty mvstrt
BH | 8356 sta $25 AO | 8182 jsr - $79 ;push separator
EJ | 8358 Ida mvend ;init counter with EH | 8184 pha
BO | 8360 sec , part block size)
OF | 8362 sbc mvstrt KP | 8186 jsr $73
gg gggg sta g PJ | 8188 jsr $ad8a ;eval and push
nc : "
HL | 8368 Ida mvend + 1.x counts whole FI | 8190 jsr $p7f7 ; 2nd parameter
KG | 8370 sbc mvstrt+ 1; blocks to move MH | 8192 pha
JN | 8372 ldy #0 ;initindex JL | 8194 tya
BI | 8374 ta
LA | 8376 bt:q mvm7 Al | 8196 pha
L gotmns B oy moie, P | 819 jst Saeld icheck for comma
MM | 8382 fni kd ;upwa,alv ¢ HJ | 8200 jsr $ad8a eval andl store
Eg gggg bne ;ﬁzv:gnS HF | 8202 sta mvdest+1; destination addr
Inc
DH | 8388 inc $25 GO | 8204 sty mvdest
NH | 8390 dex MH | 8206 pla ;2nd parameter to
CA | 8392 bne mvmé .
GL | 8394mvm7 Ida ($22)y ;move partblock CB | 8208 tay ;xly
EN | 8396 sta ($24)y KJ | 8210 pla
OK | 8398 iny PN | 8212 tax
a5 | 8402 2 PC | 8214 pla ;test separator
;\\A’\é 2382' rs GM | 8216 cmp#";" ; semicolon
GB | 8408 }nvstrt .word 0 ;memory move start PD | 8218 beq mvcT Y€S
LL | 8410 mvdest .word0 ;.. .destination OJ | 8220 stx mvend+ 1 ;store end address
Kl | 8412 mvend .word 0 ...end
£F | 8414 NJ | 8222 sty m”ve”nd
HI | 8738 device .byte 8 ;current disk # BN | 8224 cmp #°, ;test separator
EE g:gg errpgm ::x $3a est ?i t')y—tes?f; EC | 8226 beg mvm2 ;comma - move mem
ol i e _— ik JJ | 8228 jmp $af08 “’syntax error’
AL | 9156 rts JG | 8230 mvct cle ;add # of bytes to
Sg g;gg epg! jmp $af08 ;'syntax error’ AL | 8232 ya Gt Sart
e ‘ Cl | 8234 adc muvstrt ; address, store as
GD | 8236 sta mvend ; end address
CO | 8238 txa
I | 8240 adc mvstrt+1
KC | 8242 sta mvend + 1
KP | 8244 bcc mvmem ;move memory
AP | 8246 jmp $b248 ;0'flow - ‘ig err’
OK | 8248 ;
KE | 8250 mvmem Ida mvend ;memory move front
LH | 8252 bne mvmi ;end - end addr
BJ | 8254 dec mvend+1 ;is 1 beyond
CH | 8256 mvm1 dec mvend ; block to move
IL | 8258 ;
Gl | 8260 mvmz2 l[da mvstrt ;set up pointer
JA | 8262 sta $22 ; low bytes
| The Transactor 20

Volume 6, Issue O4

< www.Co'mmodorel.ca

El
EB
NC

10
BC

Il
FD
PD
JC
KO
HA
CO
GO
00
PC
BG
NA
OE
KM
EG
PD
ON
AH
CP

EE
GK
DE
GA
GP
CH
BF
NH
HH
NP
LL
AM
FH
ND
HO
HO
CcC
DJ

NI
ML
JH
AK
BH
EJ
BO
OF
KA
00
HL
KG
JN

Bl
LA

IL
EP
MM
KP
LG
DH
NH

8264
8266
8268
8270
8272
8274
8276
8278
8280
8282 mvm3
8284
8286
8288
8290
8292
8294
8296

8298 umvmem

8300
8302
8304
8306
8308
8310
8312
8314
8316
8318
8320
8322
8324
8326 mvm4
8328
8330
8332
8334
8336
8338
8340
8342
8344
8346
8348 mvm5

8350 dmvmem

8352
8354
8356
8358
8360
8362
8364
8366
8368
8370
8372
8374
8376
8378 mvm6
8380
8382
8384
8386
8388
8390

[da mvdest

sta $24

Ida mvend+ 1 ;testif any bytes
cmp mystrt+1 ; bytes to move

bcc mvm5 ;N0
bne mvm3 ;yes
lda mvend
cmp mvstrt
bcc mvm5 :NO

Ida mvdest+ 1;test moving up
cmp mystrt+ 1

bcc dmvmem ;no

bne umvmem ;yes

lda $24

cmp $22

beg mvm5 :no move at all
bcc dmvmem ;moving down
lda mvend ;init index with
sec ; partial block
sbc mvstrt ; to move

tay

Ida mvend+1 ;push whole blocks

sbc mvstrt+1 ; to move

pha

clc ;set up pointer
adc mvstrt+1 ; high bytes

sta $23

pla

clc

adc mvdest + 1

sta $25

lda ($22),y ;perform move
sta ($24),y ;fromend of
dey ; block

cpy #$ff

bne mvm4

[da $23 ;test if finished
cmp mvstrt +1

beg mvm5 ;yes

dec $23 ;point 1 page lower
dec $25

jmp mvmé4 ;move another block
rts

lda mvstrt+1 ;setup ptr

sta $23 : high bytes
lda mvdest+ 1

sta $25

[da mvend ;init counter with
sec ; part block size
sbc mvstrt

sta t2

inc t2

[da mvend+1 ;.x counts whole

sbc muvstrt+1 ; blocks to move
Idy #0 ;init index

tax

beq mvm7

Ida ($22),y ;move whole
sta ($24)y ; blocks, working
iny ; upwards

bne mvm6

inc $23

inc $25

dex

CA
GL
EN
OK
CG
AB
AM
ME
GB
LL
KI
EF
FH
HA
EA
PP
KE
PG
NJ
PM
IL
PH
Ic
BM
KH
MB
HI
LK
LB
GL
1B
FN
FJ
AC
HF

HM
oD
EA
LD
CA
GK
NC
OoP
NK
GG
CH
LJ
Cl
HL
DF
OA
oL
MB
FP
MK
GH
LK
IL
FP
ML
MC
AM
FJ

8392

8394 mvm7
8396

8398

8400

8402

8404

8406 ;

8408 mvstrt
8410 mvdest
8412 mvend
8414 ;

8416 memfil
8418

8420 memfi
8422

8424

8426

8428 memf2
8430

8432

8434

8436

8438

8440

8442

8444

8446

8448 memf{3
8450

8452

8454

8456

8458

8460

8462

8464

8466

8468 memf4
8470

8472

8474

8476 memf5
8478

8480

8482

8484

8486

8488 memf6
8490

8492

8494

8496

8498 memf7
8500 memf8
8502 ;

8504 stuf
8506

8508

8510

8512

8514

8516

8518

bne mvm6
Ida ($22),y
sta ($24)y
iny

cpy t2
bne mvm7
rts

.word 0
.word 0
.word 0

cle

.byte $24
sec

sty t3

sta t4
bcc memf3
lda $14
sbc t3

sta $14
lda $15
sbc t4

sta $15
bcc memf7
inc $14
bne memi3
inc $15
Ida $14
cle

adc t3

tay

lda $15
adc t4

bcc memf4
bne memf8
tya

bne memf8
txa

Idy #0
ldx $15
beg memf6
sta (t3)y
iny

bne memf5
inc t4
dex

bne memf5
cpy $14
beg memf7
sta (i3),y
iny

bne memf6
rts

jmp $b248

jsr $ad8a
jsr $b7f7
pha

tya

pha

jsr $79

pha

jsr $73

m

;move part block

;memory move start
... .destination
.. ..end

;start + bytes flag
bit’

;start, end flag
;store start addr

;skip calc
;calc bytes to fill
; —end minus start

:end < start
;bump bytes to fill

;test fill area
; iIn memory

yes
‘NO

:NO

;get fill character
;init index

:# blocks to fill
:none

fill a block

;test more to fill
YES

:# bytes to fill
:none

fill a byte

Villegal gty’

;push start address

;push separator

;eval 2nd paramater

ssion

| The Transactor

21

Volume 6, Issue O4

www.Commodore.ca

HJ
FH
cl
HH
LJ
JH
N
KF
JB
OE
JL
KC
PM
DP
Cl
BF
El
PD
Gl
MP
JB
HM
HH
MJ
LN
B
GM
IN
OH
BB
FJ
NH
AM
HJ
FH
BA
OoP
DG
oJ
N

8520
8522
8524
8526
8528
8530
8532
8534 stufl
8536
8538
8540
8542
8544
8546
8548
8550
8552
8554
8556

8558 ;

jsr $adBa
jsr - $b7{7
jsr $79
beqg stufi
jsr $aefd
jsr $b79e
.byte $2¢
ldx #0
pla

tay

pla

sta t3
pla

sta t4
cpy #°,"
beg memf2
cpy #°"
beg memf3
jmp $af08

;test for 3rd param
:NO

:check for comma
;get fill character
bit’

Aill with O
;separator to .y
;start address to
(t3/t4

;comma separator
;fill

;semicolon sep'r
Sfill

;'syntax error’

Program 3: DOS SUPPORT

0 rem dos support (d. spruyt, 1985) :

1

2 rem 5 statements, 2 functions

ser #
123
124
125
126

line

8644
8742
8766
8808
8814
8598
8618

127
128
129

3:

4 rem keyword chars: 24
5

6rem keyword routine
7 rem s/cat kat
8rem s/dos comms
9rem s/dev dvc
10rems/dioad did

11 rems/dsave dsve
12 rem f/ds$ dss

13 rem f/ds dsn

14 :

15 rem u/usfp (2620/006)
16:

17 réM ===========z====z===z=======z=======
18:

134 .asc "caTdoSdeV"
135 .asc "dloaDdsavE "
620 .asc "ds":.byte $a4:.asc "dS"
1134 .word kat-1,comms-1,dvc-1
1135 .word dld-1,dsve-1
1620 .word dss-1,dsn-1

2620 usfp
2622
2624
2626
2628
2630
2632
2634 ;
8560 dss1
8562
8564
8566
8568
8570
8572

ldx #0
stx $0d
sta $62
sty $63
ldx #$90
sec

jmp $bc49

|lda device
sta $ba
lda #%6f
sta $b9
lda #0
sta $b7
jsr chpres

: routine to convert
; unsigned integer
;in.a (high byte)
;and .y (low byte)

; to floating point
;in fpa #1

;set device
;set secondary

;filename length
;:chk dev present

BF
JC
ND
BC
DK
HG
CE
ML
HD
EC
PA
Al
PN
PE
ID
LG
Al
LD
NF
HP
NO
OB
FO
Bl
BN
IG
EB
HO
NG
HK
LK
HL
cC
Il
D
JF
JM
NP
MH
JL
CB
EB
AP
HB
JK
AM
FJ

JM
KD
ND
EH
EM

AP
PA
MG
CB
Ji
GD
OF
KM
JK
Ml

8574
8576
8578
8580
8582
8584 dss2
8586
8588
8590
8592
8594
8596
8598 dss
8600
8602
8604
8606 dss3
8608
8610
8612
8614
8616 ;
8618 dsn
8620
8622
8624
8626 dsn1
8628
8630
8632
8634
8636 dsn2
8638
8640
8642 :
8644 kat
8646
8648
8650
8652
8654
8656
8658
8660
8662
8664
8666
8668
8670
8672
8674
8676
8678 kat1
8680
8682
8684
8686
8688
8690 kat?2
8692
8694 kat3
8696
8698
8700

$bg10y Not Reprint Without Permissipn
jsr $ffb4 :send talk device
Ida $b9
jsr $ffo96 ;send talk scndry
Idy #3ff
iny
jsr - $ffadb ;get from disk
sta dsbufyy ;and putinto
cmp #$0d ; buffer until
bne dss2 ;areturn
jsr $fe42 :untalk device
rts
jsr dssi ;get disk message
tya
jsr $b47d .create space
tay
lda dsbuf,y ;from buff
sta ($62),y ;tomemory
dey
bpl dss3
jmp $bdca ;clean desc stack
jsr dssi
|dx dsbuf Jfirst digit (10s)
lda dsbuf+1 ;second digit
and #30f :ascii to hex
cpx #'0" ;add 10s
beq dsn2
dex
adc #9
bcc dsni
tay ;convert to
lda #0 ; floating point
jmp usfp
lda device ;catalog f'n
sta $ba ;set device
lda #3$60
sta $b9 ;set sncdary
Ida #1
Idy #>dollar
ldx #<dollar
jsr - $ffbd ;set string
jsr - $f3d5 ;send sa + string
Ida $ba
jsr $ffb4 :send talk
lda $b9
jsr $ffo6 :send talk sa
lda #0
sta $90 ;clear st
jsr $ffab ;discard load add
jsr - $ffab
jsr $ffab ;discard line link
jsr - $ffab
ldx $90 ;test status
bne kat2 ;end of file
tax ;test link hi
bne kat3 ;not end
jsr - $f642 ;untalk
jmp $aad7 ;print <cr>, exit
jsr $aad7 ;print <cr>
jsr - $ffad ;get ‘line #'
sta t2 ; (file size)
jsr $ffad

[The Transactor

22

Volume 6, Issue O4

8702
8704
8706
8708 kat4
8710
8712
8714
8716
8718
8720
8722
8724
8726 katb
IE | 8728

El | 8730
8732
8734
8736 dollar
8738 device
8740 ;
8742 comms
8744
8746
8748
8750
8752
8754
8756
8758
8760
8762
8764 ;
8766 dvc
8768
8770
8772
8774
8776
8778 dvci
8780 dvc2
| 8782
8784 name
8786
8788
8790

Bl | 8792
8794
8796
8798
8800
8802
8804
8806 ;
8808 dld
8810
8812 ;
8814 dsve
IK | 8816
8818 ;
8820 chpres
8822
8824
8826

IN | 8828

ldx
jsr
jsr
jsr
ldx
bne
jsr
bne
jsr
beq
jsr
beg
jsr
beq
jsr
beq
bne

t2
$bdcd
$ab3f
$ffadb
$90
kat2
$ffd2
kat4
$ffel
kat2
$ffed
kat1
$ffet
kat2
$ffed
kats
kat1

byte "$"
.byte 8

jsr

jsr

sta
sty
Stx
lda
sta
lda
sta

jsr
jmp

jsr
cpx
bcc
CpX
bcs
stx
rts

jmp

Ida
sta
sta
jsr
Ida
sta
jsr
beqg
jsr
jsr
jmp
jsr
jmp
jsr
jmp
lda
sta
Ida
jsr
jsr

$ad9e
$b6a3
Sb7
$bc
$bb
device
$ba
#$6f
$b9
chpres
$f3d5

$b79e
#8
dvec2
#3$0c
dvc2
device

$b248

#0
$b9
$0a
$e257
device
$ba
$79
dvct
$aefd
$b79e
$elec

name
$e16f

name
$e159

#0
$90
$ba
$ffb1
$ffae

;print it
.print space
;get next char

:check st
print char
:not end of line
‘test stop key
;yes — end
;getin

;No keypress
;test stop key
yes

;getin

:no keypress
yes

;eval exp

;clr desc + check str
;save length

;save pntrto it

:set device

;set secondary
;chk dev present
;send sa + string

;get param
‘test 8-11
Hale}

Hale}
:set device #

;illegal gty

;set secondary
;set load flag
;eval string to mem

:set device

:get char

;:end of statement
:chk for comma
:get device number
;handle setup

;check string
;load

;check string
;load

:clear status
listen

:unlisten

IC

LB
oG
JO
MI

OoP
CF

CA

NA
FH
KC
HH
HE
JH
NJ

MM
JH
OH
NE
Al

Cl
EN
H=
HN
DJ
B
GM
IN
OH
BB
FJ
NH
AM
IP
HF
F
AH
CH
Ji
NM
IH
PB
EE
GH
KB

GB
EK
IC
LG
MC
FG
AD
DF
ED
F
ID
G

8830

8832 bne chp1 ;bad

8834 rts

8836 chpl ldx #5 ;"dev not present’
8838 jmp ($300)

8840;

8842 dsbuf *=++3$24 :disk msg buffer
8844 ;

Program 4: LINE CALC

0 rem line calc (7/85)
1
2 rem 2 statements, 1 function

3:

4 rem keyword characters: 13

93

6 rem keyword routine line ser #
7 rem s/jump jum 8846 130
8 rem s/call cal 8870 131
9 rem f/line(line 8902 1832
10:

11 rem u/usfp (2620/006)

12

13rem ====================z===z==z==z==zz==z
14 .

136 .asc "jumPcallL”

621 .asc "line": .byte $a8
1136 .word jum-1,cal-1
1621 .word line-1

2620 usfp Idx #0 ;routine to convert
2622 stx $0d :unsigned integer
2624 sta $62 ;in.a (high byte)
2626 sty $63 ;and .y (low byte)
2628 ldx #$90 :to floating point
2630 sec ;in fpa #1

2632 jmp $bc49

2634 ;

8846 jum jsr $b08b ;find variable
8848 bit $0e ;test integer type
8850 bpl jm1 Halo)

8852 Idy #0 ;getline # lo byte
8854 Ida ($47),y

8856 sta $60 ;set up for ‘goto’
8858 iny :get line # hi byte
8860 Ida ($47)y

8862 sec

8864 jmp $a8c7 ;enter ‘goto’ rtn
8866 jm1 jmp $ad99 ;'var typ mismatch’
8868 ;

8870 cal lda #3 ;test stack depth
8872 jsr $a3fb

8874 lda $7b ;push chrget ptr
8876 pha

8878 Ida $7a

8880 pha

8882 lda $3a ;push line #
8884 pha

8886 lda $39

8888 pha

8890 lda #%8d :push ‘gosub’ token
8892 pha

8894 jsr $79 ;enter ‘goto’ rtn

Q; www.Commodore.ca
[da $90 :test status

FSion

| The Transactor

23

Volume 6, Issue 04 |

< www.Commodore_.c_:a

AH
AN
KD
LJ
NI
KM
DE
MD
NL
JO
BK
CF
AK
GF
EG
KF
AB
oG
AD
PK
HE
BP
BG
KC
CK
Al
KL
OH
OoP
Cl
HM
Gl
IM
GD

| KH |

CG
FH
Al
HH
EO
JH
NJ
EN
MH
00
OH
ML
KE
FK
NC
PP
AE
LI
JA
ol
FN
NM
FP
BA
OA

8896 jsrjum
8898 jmp $a7ae ;begin subroutine
8900 ;
8902 line cmp #3$89 ;skip goto token
8904 bne linel . if present
8906 jsr $73
8908 line1 Ida #2 ;check stack depth
8910 jsr $a3fb
8912 lda $14 ;save current
8914 pha ; values of
8916 lda $15 ; affected memory
8918 pha
8920 lda $5f
8922 pha
8924 lda $60
8926 pha
8928 jsr $ad8a ;eval line # expr
8930 jsr $b7f7 ;conv to integer
8932 lda #0 :zero fac 1
8934 sta $61
8936 jsr $a613 ;find line address
8938 bcc line2 ;undef'd statement
8940 Idy $5f ;convert to
8942 lda $60 ; floating point
8944 line2 jsr usfp ;in fac #1
8946 pla ;restore memory
8948 sta $60
8950 pla
8952 sta $5f
8954 pla
8956 sta $15
8958 pla
8960 sta $14
8962 jimp $aef7 ;.check close paren
8964 ;

Program 5: BEEP
0 rem beep (sept 1/85)

1

2 rem 1 statement, O functions
3:

4 rem keyword characters: 4
B

6 rem keyword
7 rem s/beep
8:

ser #
133

routine line
bee 8966

10
137 .asc "beeP"
1137 .word bee-1

8966 bee beq bp1 ;N0 parameters
8968 jsr $b79%e ;eval duration
8970 inx ;bump duration
8972 .byte $2¢ ;bit’

8974 bp1 Idx #1 ;default duration
8976 txa ;push duration
8978 pha

8980 ldx #$21 ;default pitch
8982 Idy #3$87

8984 jsr 879 ;test pitch param
8986 beqg bp2 Hale)

8988 jsr $aefd ;.check for comma

BB

NO
oC
GH
IN
FL
BH

GB
G
OB
AO
MB
PO
NL
HA
KF
CE
PP
GE
FE
HE
0B
CcD
MD
IM

IM

PL
GA
ON
NL
IN

EH
GO
BC

KO
CK
oL
AP
CB
EM
IH
AE
LB
F
JG
AA
IJ
EA
LI
JL
KG
IJ
OA
BO
M
CN

HE

8990 jsr $ad8a ;eval pitch
8992 jsr $b7f7 ;conv to integer
8994 tax
8996 bp2 sty 3$d40e ;write pitch to sid
8998 stx $d40f
9000 ldx #0 ;Clear attack/decay
9002 stx $d413 ; and filter select
9004 stx $d417
9006 Ida #8$f0 ;sustain 15, rel 0
9008 sta $d414
9010 Ida #$0f ;volume 15
9012 sta $d418
9014 lda #3$21 ;gate on (sawtooth)
9016 sta $d412
9018 pla ;pull duration
9020 sec
9022 bp3 Idy #8 ;countdown duration
9024 bpd dex
9026 bne bp4
9028 dey
9030 bne bp4
9032 sbc #1
9034 bne bp3
9036 lda #%20 .gate off
9038 sta $d412
9040 rts
9042 ;
Program 6: Stripper
100 rem stripper

102 rem remove comments from

104 rem pal source code

106 :

108 for i=900 to i+ 20

110 read a: pokei,a

112 next

114

116u$="" /7171 7]":q=chr$(34)
Note: u$ = (1 apostrophe + 1 space) x 8 + 1]

118:

120 print " keycH(149),";q$; "s/’ ;=) ;

122 printg$; " clr”

124 :

126 fori=150 to 153

128 print:print

130 v$ = mid$(str$(i),2)

132 print "keycH(":v$;"),":q$;

134 print "s/" ;right$(u$,21(154-i) + 1);

136 print "//";g%; " clr”

138 next |

140:

142 print " [Elelelguse sys 900"
144 :

146 fori=1to 19: print m ;o next
148 for i=631 to 635: poke i,13: next
150 poke 198,5

152 end

154 :

156 data 160, 10, 162, 153, 132, 198
158 data 169, 13,136,153,119, 2
160 data 138, 202, 136, 153, 119, 2
162 data 16,242, 96

on

|7 The Transactor

24

Volume 6, Issue O4

Sky Travel - A Review

Richard Evers, Editor

“Genius is the ability to reduce the complicated to the simple.” - C.W. Ceram

The above statement must have been made with Frank Covitz
and Clif Ashcraft (authors of Sky Travel) in mind. Never before
have [been this impressed with any software package. Just
thinking about the task involved in writing this magnificent
piece of code leaves me in a panic. Most major software
applications are difficult to write, but Sky Travel must have
been close to impossible. And the trick is, Sky Travel makes it
all look so easy. Beautiful!!

Before continuing with my Sky Travel review, a little story is in
order.

The James Mitchener Story

For the past nine years, James Mitchener has been my favour-
ite novelist. Although his writing style has given pleasure to
millions, a greater number have yet to discover his talent. If the
titles Hawaii, Tales of the South Pacific, The Source, Centen-
nial, The Covenant, and Space fail to ring a familiar bell, then
prepare for an awakening. These are but a few of the novels
James Mitchener has written, written for the sole purpose of
giving literary pleasure and knowledge to all. Although his
writing style tends to be tedious and drawn out at the beginning
of each novel, rest assured that he is only laying the correct
ground work for the balance of the novel, and will soon have
you entranced in his literary spell. You will become one with
the story, you will be drawn into the settings, the people, and
the history as it progresses. You will be able to climb inside of
Mr. Mitchener’s mind, and absorb all that he offers. His novels
are always extremely well researched, with a presentation
surpassed by few. Knowledge and pleasure. Who could ask for
more?

The reason why I have skirted the main subject and introduced
you to James Mitchener is because of the novel Space. This
novel was for me the starting point in my Astronomical learn-
ing process. Before Space, | had little interest in Astronomy, nor
felt any need for it. Thanks to James Mitchener's talent, | was
given a basic understanding of Astronomy, in a manner that
was pleasant to digest. And thanks to the two years he spent
working at NASA, an insight was also supplied regarding the
complexities involved with space travel, and the steps taken to
solve the problems encountered. As a final salute, if you
haven’t read any of his novels, start with Space. You will not be
disappointed.

Back To Sky Travel

The manual supplied with Sky Travel is probably one of the
finest quick Astronomical tutorials you will ever read. Along
with learning how to use the program, you will also be given
many important Astronomical facts, plus just enough trivia to
keep you intrigued. Front to back, the manual is a delight.
Through its reading, you will learn about Longitude and Lati-
tude, Declination and Right-Ascention (same as Longitude and
Latitude but for space), and the Time Zones. Further to that you
will realize why leap years exist; each year is comprised of
365.2422 days! Due to this fact, you will learn about the
multitude of calendar systems used throughout the ages. One
of the great pains in writing this system must have been in
compensating for the calendar changes.

To further brighten my day while reading the manual, | found
the term ‘precession’. This is a term used to describe the slight
wobble the earth experiences about its axis. This fact was
presented to me while researching the translation and interpre-
tation of the writings of Michael Nostradamus, in particular
those pertaining to the “final war to end all wars in the year
1999”. Through my research, I was able to disprove the 1999
theory entirely. As a bonus, I also found out about precession.
This slight wobbling effect has led to some strange changes,
from our viewpoint, in the cosmos. For example, everybody
knows of Polaris, the North Star. It’s the first star in the Little
Dipper. Well, due to this wobble, Polaris has not always been
the North Star, nor will it continue to be in the future. Also, the
signs of the Zodiac are all slightly out of phase due to preces-
sion. This known factor has never been incorporated into the
‘science’ of Astrology, therefore, the sign you were born under
may not be your sign!

A Birthday!!

To continue, another interesting fact derived from the Sky
Travel manual is that Jesus Christ was born on September 15 in
the year 7 BC. Now this is a miracle!! Born seven years before
conception!!

As history goes, a monk in the 6th century AD put forth the
idea to date the calendar from Jesus’s birth, which was calcu-
lated to be in the year 754 A.U.C. (Read the manual to figure
that one out.) This change was instantly accepted by Rome, but

c; www.Commodore.ca
: f ission

The Transactor

25

Volume 6, Issue 04 |

< www.Commodorel.ca

it took another five centuries for the rest of the world to
conform. Don'’t you love good trivia?

The date of September 15 in 7 BC was calculated after consider-
ing that King Herod died in the year 4 BC, before the recorded
birth. From that point, calculations were made to find the Star
of Bethlehem, as it became known. Without dragging the point
too far, the only occurence that could have led to such a bright
‘Star’ could have been the alignment of the Stars Saturn and
Jupiter on the night of September 15th in 7 BC. If the Christian
religions follow known astronomical calculations, then this fact
is correct. If the ‘Star’ was a special birthday present from the
powers above, then who really knows? December 25th seems
like a pretty good day for Christmas.

Without going on forever, the manual is great, and could sell as
a stand alone item. But, overshadowing the manual comes a
terrific program, Sky Travel.

Sky Travel: The Program

You will find, when first firing the system up, that more than a
few options present themselves. Through Sky Travel, you can
synthetically locate yourself accurately anywhere on Earth, at
any time, any date, in any year, in the past or future by 10,000
years. From this point, you can view the cosmos as you please.
You can stop time and just sit and view. You can advance the
rate of time by up to a factor of 64, forwards or backwards. And
you can change your screen viewing angle from 72 degrees
down to 9 degrees.

The display options given are pretty impressive, as shown
below:

: Shows principal constellation lines when enabled

: Places abbreviations of the names of the constella-

tions shown, next to the constellations when en-

abled.

Will display the commonly used symbols relating to

each planet, next to the planets displayed when

enabled.

Displays the distant deep space nebula and galaxies

along with the normal display of our own galaxy

when enabled.

: Allows tracking of the Sun, Moon, the planets, or
Halleys Comet when enabled. Tracking means that
it will follow the desired object along its path as long
as it is observable.

- With Sound on, your cross-hairs (cursor) will be
turned into a space ship on the screen, with sound
effects thrown in for good measure. When in Map
mode (setting your location on Earth), you will have
an airplane instead of the normal cross-hairs, along
with sound effects. This was implemented to en-
courage children to use the system.

Lines
Names

Symbols :

Deep Sky:

Track

Sound

A Few More Nice Touches

To move ahead, you also have a Find function that lets you
rapidly find the Moon, Sun, any of the planets, any comet that
might happen to be around, or any constellation available that
appeals to you. A nice touch. As fascinating as the Find
function is the Inform function. All you do is line your cross—
hairs up to any object on display, then press the Inform
function key. From disk will come a quick synopsis of up to
date data regarding the chosen object.

' ithoutPermissi

PN

[The Transactor

26

Volume 6, Issue O4 J

o www.Commodore.ca

As for the actual mode of display, two modes exist. They are
Sky and Chart. In Sky mode you can use the cursor keys, plus
assorted other special keys, to move about the screen, and
cause ‘Skewing’ into new areas of view. As you move the
cross—hairs to indicate viewing beyond the edge of the screen,
the computer skews the display to reflect this change. As you
move the cross-hairs on the screen, you will notice that the
Elevation, Azimuth, Right Ascention, and Declination given
on the screen are updated accordingly. And, if you require a
print out of the display shown, a (Shift) (p) will do the trick for
any serial printer, Unit #4, on line.

In Chart mode you will notice that your display is a reverse of
what you see in Sky mode. This mode is best used when
printing out high resolution displays to your printer for plot-
ting purposes. The dark objects on a white background will
save your ribbon in relation to the reverse. In comparison,
other than the reverse image and the fact that you can no
longer skew beyond the edges of display, the Chart and Sky
mode appear identical.

A Beef

Sky Travel is an incredible program, but still, I found one thing
to beef about; the disk protection used. The read errors
encountered during system initialization cause one heck of a
lot of head banging. Not such a nice thing to hear just after
getting my drive aligned!! In case you're interested, you can
turn off the 1541's head bumping trick by executing the
following code before loading in the program.

open 15,8,15: print#15, " m-w " chr$(106)
chr$(0)chr$(1)chr$(133): close 15

This sets bit 7 at location 106, REVCNT, tested by DOS with
aBIT command when an error is encountered on disk. If the
negation flag is set after the BIT, the code bypasses the
head bump routine, therefore bringing instant relief to all
service technicians.

The David Dunlop Observatory

Just after starting to write this review, [had the opportunity to
visit the University of Toronto’s David Dunlop Observatory in
Richmond Hill, with my brother John. Both John and I are
budding junior astronomers, and therefore we were both ex-
cited about the prospect of visiting the observatory. Although
we grew up in the Hill, and I currently live in the Hill with my
wife and daughter, it never occurred to us to take the time to
visit the observatory. One phone call and a free lecture, tour,
and peek up the scope was our reward.

Actually, we never got that peek up the scope that night. It was
our luck to pick a night when the sky completely emptied on
Richmond Hill. Monsoon season or something. Anyway, the
facilities are pretty good, the lecture was informative, and the
telescope, although 52 years old, has plenty of life left in her.
Weighing in at 30 tons, this telescope looks quite impressive. If
only we could have seen something through it.

During that night, we talked with a few people working at the
observatory, and found that nobody was using Commodore
equipment. But, once described to them, everyone seemed
quite excited about the possibilities available with the package
Sky Travel. Note To Commodore: Give the U of T’s Faculty of
Astronomy a call. Good chance of snowballing some sales, with
the right approach.

In Summation

As you can guess, | feel that the program is Al. It is so well
designed, and appeals to such a specific market, that it must
have been written as a labour of love. [just hope that this
review will convince you that Astronomy can be as exciting as
you make it. With Sky Travel at your side, the universe is
within your reach.

“Sky Travel” or “Shy Travel”?

As brilliant as Sky Travel is, it too is not immune to the perils of the
software realm. You may find it difficult to find Sky Travel. The
package is a Commodore product but it appears once more that
Commodore has made a retreat from the software front. Many
retailers have trimmed their inventories down to the “big movers”
and have become fearful of “new dust catchers to add to their
collection™. But it would seem unlikely that the number of Sky
Travels sold matches a typical minimum production run. For those
determined enough, Commodore could probably point you to-
wards one - they must be out there, but where? Perhaps the ‘Find’
command will help. We'll try it and let you know.

The latest development in the Sky Travel story is Planet Travel.
Talk about stunning. When complete, this program will be the
“Flight Simulator” of space travel. A demonstration sampler shows
Saturn from several perspectives with the stars, sun, shadows,
moons, all accurately plotted. I suspect they’ll be two seperate
items, though. SRy Travel already fills most of the disk so don't wait
- you'll probably need both to “get it all”. - M.Ed

L'—MUV‘NUT'REWW\UU‘V’PEWW

The Transactor

Volume 6, Issue O4

ssion

Accurate Sum Of Squares

John Jay Hilfiger
Ithaca, NY

Another technique for avoiding wrong answers

John Jay Hilfiger is Manager of the Statistical Computing Department at Cornell University. Rest assured
the following is not merely another re-hash of the binary arithmetic problem but rather an approach for

dealing with it. - M.Ed

Your Commodore computer can do difficult numerical analyses
with amazing speed, and is a very handy tool for this reason.
You may have come to rely on your computer for important
calculations, but sometimes those calculations may be very
wrong! This happens because computers can only approximate
some numbers. The BASIC interpreter on eight bit computers
like the Commodore 64 and VIC-20 represents most numbers
as nine digit approximations. This may seem like more than
enough precision, and it usually is, but there are times when it
gets us into trouble. Does this mean that small computers are
not for serious calculations? Alas, even the biggest computers
have limitations, but choosing the right algorithms and careful
programming can help us to get around many of those limita-
tions.

Many problems in statistics and other branches of science
require finding the sum of the squares of a group of numbers,

2(x-X)

where x is any number and X is the average. This is simply
the total of the squared differences between each number
and the average of all of them. Consider the numbers 0, 1,
2. Their average or ‘mean’’ is 1 and the sum of the squares
is 2. Program 1 finds the mean and sum of squares of this
set.

Program 1 makes two passes through the data, that is, it
reads all of the data twice. There is nothing wrong with this,
but if we had a lot of data, Program 1 would be very slow.

Many textbooks that were written with hand or calculator
computation in mind suggest the following algebraically
equivalent method of finding sums of squares, requiring
only one pass through the data:

X2 - (Xx)¥/n

where n is the number of numbers in the data set. This formula
is often used by programmers of statistical software because it is
much faster than the two pass method and because they are
unaware of the inherent dangers. Methods designed for hand
calculation are not necessarily the best methods for computers
to use. Program 2 implements this formula, which we shall
refer to as the “calculator algorithm”.

Either Program 1 or Program 2 gives the rights answers for the
simple dataset 0, 1, 2. Let us try a more difficult set of numbers,
30000, 30001, 30002. The mean of this data set is 30001 and
the sum of squares is, once again, 2. Change the last line of
each program to:

500 data 30000, 30001, 30002

and RUN each of them. Program 1 gives correct answers but
Program 2 gives 1.75 for the sum of squares. Things get even
worse if we try the data set 100000, 100001, 100002. The sum
of the squares is still 2. Once again, Program 1 gives correct
answers, but Program 2 is way off with a sum of squares of 8!

We have seen that the calculator algorithm used in Program 2
works well when the data consists of small values, but as the
data values get larger, the results get progressively worse. This
happens because intermediate values X2 in line 140 and T2 in
line 170 are very large and cannot be represented exactly by
the computer, so they are rounded off. One rounded number is
subtracted from another rounded number in line 180 for the
final wrong answer. You may protest that numbers like those
used in the examples here are not likely to come up in ordinary
problems. This may be true, but with larger data sets, i.e. many
more than three data values, the same kinds of rounding errors
can occur when much smaller values are processed. In other
words, a tiny set of large numbers serves as a proxy for a more
realistic data set.

|7The Transactor

Volume 6, Issue O4

< www.Co'mmodore..c‘:a

e'—MUV'NCT’RE'p'WWWHUUT’PEWWSﬂO

n

There is a third kind of algorithm we can use that is faster than
the two pass method and also very accurate. This method is
called an “updating algorithm”. The idea is to read through the
data only once, but each time a data value is read, the mean
and sum of squares of all data values up to the most recent one,
are computed. There are actually several different updating
algorithms. One of them is implemented in Program 3. If you
try running Program 3 with each of the sample data sets given
above, you will find that all the answers are correct. The
updating algorithm offers both speed and accuracy and is the
method used by many sophisticated scientific packages on
mainframe computers.

This discussion of algorithms for computation of sums of
squares is directed not only to programmers of scientific soft-
ware, but to users of applications programs as well. Statistical
packages use sums of squares in the calculation of variances,
standard deviations, and other statistics. Some spreadsheet and
database programs also calculate variances and standard devia-
tions. Unfortunately, many programs, even relatively expen-
sive commercial products, give wrong answers! The user must
be wary. The simple data sets given above, while not infallible
tests for all inaccuracies, are usually good indicators of program
reliability. If the program gives the “variance” of a group of
numbers, it should give a value of 1 for any of the sample data
sets. The “standard deviation” is the square root of the vari-
ance, thus, in the present case, it should also be 1.*

Summary

Numerical results, such as sums of squares, can be calculated
in various ways. Formulas that are mathematically equivalent
may be very different with regard to speed and/or accuracy
when implemented on a computer. Programmers must take
care to select algorithms that do not allow intermediate compu-
tations to wander beyond the limits of a computer’s precision. If
proper care is taken, even inexpensive home computers can
produce perfectly acceptable levels of accuracy in difficult
numerical problems.

* The usual definition of variance is the sum of squares divided
by one less than the sample size, e.g. in the present case, 2/2 =
1. An alternative definition uses the sample size in the denomi-
nator, or 2/3 = 0.67. In the latter example the standard
deviation would be the square root of 0.67, or about 0.82.

NC
CK
KD
JD
CK
OP
PH
NL
MM
PO
PH
IO
OA
FM
CM
LF
JF

FK
EB
PC
N
AB
OP
PH
IF
Jo
BN
KJ
DD
JF

AE
AE
PC
IJ
Cl
MD
AB
Ji
Gl
PB
JF

c; www.Commodore..

Program 1

100 rem two-pass algorithm
110t=0:5=0

120 rem find mean
130fori=1t03

140 read x

150 t=t+x

160 next

170 m=1t/3

180 restore

190 rem find sum of squares
200 fori=1to3

210 read x

220 s =5+ (X—m)*(Xx—m)

230 nexti

240 print "mean =",m

250 print "sumsqg =",s

500 data 0,1,2

Program 2

100 rem calculator algorithm

110x2=0:t=0
120fori=11t03

130 read x

140 X2 = X2 + X*X

150 t=t+x

160 next i

170 t2 =t*t

180 s =x2—(t2/3)

190 m=t/3

200 print "mean =",m

210 print "sumsqg =",s
500 data 0,1,2

Program 3

100 rem updating algorithm
110n=0:m=0:s=0

120 fori=1to3

130 read x

140n=n+1

150 s =5+ (X—m)*(X—-m)—(X—m)=*(x-m)/n
160 m=m + (x-m)/n

170 nexti

180 print "mean =",m

190 print "sumsqg =" s
500 data 0,1,2

The Transactor

29

Volume 6, Issue O4

Ca

sion

www.Commodore.ca

The Projector

May Nof Reprint Without Permissi

Ian Adam
Vancouver, B.C.

As close to 3D as possible short of holographics. . .

Abstract

This article builds upon the high-resolution drawing routines
introduced in Volume 5, Issue 6 of The Transactor. It presents a
BASIC program to construct a three-dimensional plot, using these
routines. A matrix generated from either a mathematical formula
or empirical data may be plotted. The plot is self scaling, and
includes a title.

The Projector

In Volume 5 Issue 6 of the Transactor, Gary Kiziak introduced an
excellent high-resolution graphics utility for the Commodore 64.
That utility gives the programmer access to the extensive graphics
that are available with the 64 but not supported by BASIC. The
utility resides in the free RAM at $C000, and uses direct SYS calls to
plot on the high-res screen at $E000.

Well, the article sounded good, so [typed in the utility and gave it a
try. The routines work well, and are easy to access, with a good
range of functions available. [will also look forward to the circle
and ellipse routine that Gary promised. About the only complaint
could think of is that the hi-res screen at $E000, hidden under-
neath the kernal ROM, is inaccessible to my screen dump routine.
Solving that may take some ingenuity.

One thing leads to another, however, and [soon found myself
experimenting long into the night with the new routines. What
came out of the mill was an interesting program, reproduced here,
which projects a three-dimensional representation of a matrix of
data. You have probably seen similar plots before, as they make for
a good way to show off the capabilities of a computer’s graphics, or
indeed those of a printer. Thus, they are sometimes favoured by
manufacturers. In addition to demonstrations, a couple of other
applications spring to mind. By feeding in different mathematical
functions, you could use this program to help visualize and
understand the meaning of trigonometric formulae. A completely
different application would be to plot up the empirical results of a
scientific experiment, or ground contours, etc.

The 64 doesn’t have a holographic display screen (at least not yet,
anyway), so the 3-dimensional data has to be confined to a 2-
dimensional display. This is achieved by viewing the Y-coordinate
at an angle, theta, from the X-axis. The horizontal component of Y
is expressed as a function of COS(theta), with the vertical compo-
nent based on SIN(theta). The X-coordinate is simply viewed
horizontally, while the dependent variable Z(X,Y) is viewed verti-
cally. Both have to be modified by a scale factor in order to fit
comfortably on the 64’s screen.

The Program

The program itself is straightforward; these comments should help
in understanding it, and as a guide to any modifications you may
have in mind:

Lines 150-210 set up the plotting calls and load the machine
language.

Lines 240 and 250 contain the values for M and N, the number of
lines in the plot in the X-direction and Y-direction respectively.
There is a trade-off here. . . higher values will give better resolu-
tion, but at the expense of speed. 260 and 270 set up the resulting
arrays.

Lines 290 to 340 are the loop to calculate function values. This is
where you can substitute other expressions in line 330, for differ-
ent plots. Lines 390 to 490 contain other formulae to experiment
with. If you do change the formula, remember to change the title in
line 360.

Lines 530 to 580 are where the viewing angle is set, or defaulted to
60 degrees. This is a simplification, since in reality there are two
angles to be set, one a rotation in reference to the X-Y axes, and
the other the elevation above the X-Y plane. For simplicity, these
have been combined into one composite angle. Line 580 converts
to radians.

Lines 590 to 710 proceed to create a base grid with these parame-
ters to fit the 64’s screen, and set up the necessary arrays. The X-
coordinate is scaled to fit across the screen. The projection of the
Y-coordinate horizontally and vertically is specified in the YHRIZ
and YVERT arrays. The Z-coordinate plots the array Z(X,Y) verti-
cally.

Lines 730 to 820 calculate the vertical scale, a critical factor in the
plot. Without going into all the details, the largest scale is selected
to contain the plot on the screen.

Lines 840 to 900 use this scale to construct a second matrix, R(X,Y).

Lines 930 and 940 set up the high-res screen, with orange plotting
on a black background.

With all that preparation out of the way, most of the rest of the
program actually projects the data. Lines 960 to 1020 plot the
horizontal lines, while 1040 to 1100 do the vertical lines. 1120 to
1190 draw the base of the projection, while 1220 prints the title.

Finally, line 11250 allows you to view the result, then press any
key to return to the text screen and decide how to proceed.

on

The Transactor

Volume 6, Issue O4

How To Use It

Type in the Projector program, and save it on the same disk as the
Hires machine language file. Make sure you have a copy saved, then

< www.Commodore.ca
t itheut-Permission

RUN. The program will LOAD the Hires file as its first step. Be patient;
preparing the data for plotting will take anywhere up to a minute or
so, depending on its complexity.

You will then be asked what viewing angle you want; enter a value
from 0 to 90 degrees. A small angle will emphasize the relief of the
plot, but may hide some details. A large angle gives a broader
overview. If in doubt, simply press ‘return’ for the default value of 60
degrees.

The plotting itself is interesting to watch, and only takes about 15
seconds. After viewing the plot, press any key to return to the text
screen. You will then have a choice of reviewing the same data from a
different angle, or ending the program. After ending, try one of the
other expressions in lines 390 to 490. Simply renumber one of the
formulae as line 330, and the corresponding title as 360. Remove the
REM in each case, then RUN. You may wish to substitute other
expressions of your own — the possibilities are limitless. If you need to
plot empirical information, enter it at the end as DATA statements,
then replace line 330 with READ Z(X,Y).

The program is fairly forgiving of errors, since it is self-scaling. It will
accept and plot some small negative numbers, though anything
excessive will stop it with an error message. The easiest way to correct
a negative number is to add a constant to the expression, as shown in

line 410. SPLASH
This program grew out of Gary Kiziak’s utility routines; you, in turn,
may wish to embellish it further. Add refinements, parallax, new
formulae, a hidden-line algorithm, whatever - there should be
enough to keep you busy on a rainy day. Sometimes the best ideas
don’t happen all at once; like a lawn in the rain, they just grow!

Editor’s Note

PICTRANS, the subroutine below, will transfer an 8K hi-res screen at -
SE000 to memory at $2000. Add these lines to lan’s program and
simply GOSUB 50000. Once transferred, a printout can easily be
made with either PICPRINT (Volume 5, Issue 03, Disk 2) or BIGPRINT
(Volume 5, Issue 06, Disk 5) or any similar program. BIGPRINT will be
included on The Transactor Disk (Disk 9) for this issue.

GRAVITY HWAVES

NE | 50000 rem# data loader for " pictrans " *
BN | 50010 cs=0

LI | 50020 for i=828 to 869:read a:poke i,a
JL | 50030 cs=cs+a:nexti

MO | 50040 :

PM | 50050 if cs<>6573 then print" !data error! " : end
AH | 50060 sys 828

CL | 50070 return

EB | 50080 :

DP | 50090 data 169, 32, 133, 254, 169, 224, 133, 252

HI | 50100 data 169,
MM
BP
PN
KK

0, 138, 251, 133, 253,160, O
50110 data 120, 165, 1, 72, 41,253,133, 1
50120 data 177, 251, 145, 253, 200, 208, 249, 230
50130 data 254, 230, 252, 208, 243, 104, 133, 1
50140 data 88, 96

The Transactor 31

Volume 6, Issue O4]

www.Commodore}.c.a

CM
HO
MN
EL
AA
PK
PN
NA
LJ
CD
MH
Ji
AF
HO
GM
IN
AL
LO
MI
DE
NL
HG
HH
EJ
CK
CN
OF
GO
CP
FA
PM
MB
HP
PP
FN
CF
CcL

AA
CM

ID
KA
LF
FL
MH
BD
KF
GN
AN
AG
HH
BB
OH
EB
AD
KO
JD
LL
OB
CK
PN
EK

100 rem the projector — perspective plotter

110 rem by ian adam vancouver, bc

120 rem requires hires plotting routines

130 rem from the transactor vol 5 iss 06

140:

150 rem setup

160 hi=49152: co=49173: dr=49155

170 mo=49161: pr=49182: dm=49167: te =49179

180 cd$ =chr$(17)

190 :

200 if peek(hi+ 1) =194 then 240

210 load " hires" 8,1

220

230 rem parameters

240 m=20: rem x-dimension

250 n=16: rem y-dimension

260 dim z(m,n),r(m,n)

270 dim xh(m),yh(n),yv(n)

280 :

290 rem data to plot

300 print "creating data"

310 forx=0tom

320 fory=0ton

330 z(x,y) = 12+x + 10*y—1.25%xx*y

340 next y: print x: next x

350 :

360 a$ = "hyperbolic paraboloid " : rem title

370:

380 rem insert other expressions in 330, and change title in 360

385 rem (change line # of desired function and title below)

390 rem z(X,y) = X X—=X#X*X/22 + 75xy—12x%yxy + yryxy/2

400 rem a$ = " contours "

410 rem z(x,y) = 560-exp(sqr(abs((x—10)=(y-8)/2)))

420 rem a$ = " shell roof"

430 rem tm =sqr(x*x + 1.5xy*y): z(x,y) =10 + sin(tm) + y/4

440 rem a$ = " gravity waves"

450 rem tm =sqr((x-10)12 + (y-8)12): z(x,y) = 150-tm*55
+ tm#tm*8—-tm=+tm=tm/3

460 rem a$ = "splash”

470 rem a=20-abs(x-10): b=18-abs(y-8): z(x,y)=a
s ifb>athenz(x,y) =b

480 rem a$ = "house"

490 rem z(x,y) =y + (8-y)*((x>4)and(x<16))*((y>3)and(y<13))

500 rem a$ = " plateau”

510 rem or read empirical results from data

520

530 rem projection

540 theta =60: rem default angle

550 print cd$ " enter viewing angle, or press return

560 print " for 60 degrees:

570 input th

580 th =th*3.14159265/180

590 tmp = 120*cos(th)

600 xgrid = int((309-tm)/m)

610 ygrid =int(96+sin(th)/n)

620 ystp =int(tm/n)

630 :

640 rem calculate offsets

650 forx=0tom

660 xhriz(x) =10 + x*xg

670 next

680fory=0ton

690 yhriz(y) = y*ys

FE
KM
EE
AA
HB
KF
PC
FM
CP
CL
OG
JB
KO
CL
CP
CJ
DJ
HM
BK
HF
Jd
CA
FB
GE
GH
KC
PE
BA
JB
GJ
KB
LN
BB
KH
00
LE
EG
EN
AH
AD
DG
KM
LN
LP
DC
JD
GM
MF
HI
AD
EC
DL
BA
CE
AP
JB
ID
KG
LK
FC
LE
LG
IC

700 yvert(y) =10+ y*yg

710 next

720 :

730 rem vertical scaling

740 print "scaling data

750 vscalar =9e9

760 fory=0ton
770a=0:forx=0tom

780 if z(x,y)>a then a=2z(x,y)
790 next: rem find highest point on line
800 if a then tmp =(199-yv(y))/a
810 if vs>tm then vs=tm
820 next: rem select best feasible scale
830:

840 rem calculate rise

850 print ". . .still scaling!

860 fory=0ton

870 tm =yv(y)

880 forx=0tom

890 r(x,y) =z(x,y)#vs +tm

900 next x,y

910 :

920 rem set up screen

930 sys hi,0,0,8

940 sys dm,1

950 :

960 rem plot horizontal lines
970 fory=0ton

980 tm = yh(y)

990 sys mo,tm + 10,r(0,y)
1000 for x=1tom

1010 sys dr,tm + xh(x),r(x,y)
1020 next x,y

1030 :

1040 rem plot vertical lines
1050 for x=0tom

1060 tm = xh(x)

1070 sys mo,tm,r(x,0)

1080 fory=1ton

1090 sys dr,tm + yh(y),r(x,y)
1100 next y,x

1110:

1120 rem draw box

1130 sys mo,10,r(0,0)

1140 sys dr,10,10

1150 sys dr,xh(m),10

1160 sys dr,xh(m),r(m,0)

1170 sys mo,xh(m),10

1180 sys dr,xh(m) + yh(n),yv(n)
1190 sys dr,xh(m) + yh(n),r(m,n)

1200 :

1210 rem title

1220 sys c0,13: sys pr,1,24,a$
1230 :

1240 rem wait for human

1250 wait 198,1: get b$

1260 sys te

1270

1280 print cd$ " press r to review from another ang!
1290 print " press any other key to end

1300 wait 198,1: get b$

1310if b$="r" then 540

1320 end

C‘_Mammpmmmwm

=

[The Transactor

32

Volume 6, Issue O4

n

www.Commodore.ca

o
. 46&’41 "Msay Nl ReprigWigzout Permis

sion

HIRES Create GJ | 1610 data 192,
AN | 1620 data 121, 193, 240, 2,169, 128, 141, 53
Gary’s hi-res utility will be included on Disk 9 for this issue. For a FN | 1630 data 192, 32,121, 0,240, 3, 32, 30
complete description of the commands you'll need the first Program- LE | 1640 data 194,173, 0,221, 9, 3, 73, 3
ming Aids and Ulilities issue (Volume 5, Issue 06). NG | 1650 data 141, 0,221,173, 24,208, 41, 7
KK | 1660data 9, 8, 9, 48,141, 24,208,173
OP | 1670 data 17,208, 9, 32,141, 17,208, 44
FN | 1000 rem == hires routine — written by gary kiziak DM | 1680 data 583,192, 16, 12,173, 22,208, 9
JP | 1010 rem == creates load/run program on diskette # FH | 1690 data 16, 141, 22,208,169, 3,208, 10
AH | 1020 : KC | 1700 data 173, 22,208, 41,239,141, 22,208
HK | 1030 open 15,8,15: open 8,8,8, " 0:hires,p,w " JN | 1710 data 169, 7,141, 54,192, 73, 255, 141
NB | 1040 input#15,e,e$,b,c: if e then close 15: print e,e$,b,c OJ | 1720 data 55, 192, 169, 255, 141, 51,192, 96
: stop BO | 1730 data 169, 1,141, 65,192,173, 67,192
JA | 1050 for j=49152 to 51233: read x: print#8,chr$(x); EF | 1740 data 141, 66, 192,169, 128, 141, 52, 192
: ch=ch+x: next: close8 BB | 1750 data 32, 135,193, 173, 45,192, 10, 10
HA | 1060 if ch<>245919 then print " checksum error " : end BN | 1760 data 10, 10, 141, 62,192,141, 70,192
Gl | 1070 print " #* program complete #+ ": end BD | 1770 data 173, 43,192, 41, 15,141, 61,192
MK | 1080 : KB | 1780 data 44, 53,192, 48, 12, 13, 62,192
BL | 1090 data 76, 206, 197, 76,199,199, 76, 4 EE | 1790 data 141, 62,192,141, 70,192, 76, 75
IB | 1100data200, O, O, O, 0O, O, O, O DJ | 1800 data 193, 141, 33,208, 32,121,193, 41
ED | 1110data 0, 0, 0, 0, 0,255/128, O PG | 1810data 15, 141, 63,192, 32,121, 193, 141
FF | 1120data 7,248, 0, O, O, O, O, O FJ | 1820 data 64,192,173, 62,192, 76, 75,193
MJ | 1130data 0, O, 0O, 1, 0, 15,240,240 BJ | 1830 data 32, 135,193,162, 3,189, 43,192
KF | 1140data 0, 0,208, 0O, O, 0O, 0,173 EJ | 1840 data 157, 39, 192,202, 16,247, 96, 56
EN | 1150 data 58, 192,208, 27,173, 0,221, 141 JK | 1850 data 169, 199, 237, 41,192, 72, 74, 74
FD | 1160 data 57,192,173, 24,208, 141, 58,192 LH | 1860 data 74, 133,252, 160, 0, 132,251, 74
HE | 1170data 173, 17,208, 141, 59,192,173, 22 OD | 1870 data 102, 251, 74,102,251, 101, 252, 133
AB | 1180 data 208, 141, 60,192, 32,110,192, 96 IC | 1880 data 252, 173, 39, 192, 174, 40,192, 45
OK | 1190data173, 0, 3,201,231,208, 7,173 FP | 1890 data 55,192, 44, 53,192, 16, 6, 10
JE | 1200data 1, 3,201,192,240, 44,173, 0 DN | 1900 data 72,138, 42,170, 104, 24,101, 251
IJ | 1210data 3, 141,234,192,173, 1, 3,141 NH | 1910 data 133, 251, 138, 101, 252, 133, 252, 104
MP | 1220 data 235, 192, 169, 231, 141, 0, 3,169 GJ | 1920data 41, 7, 24,101,251, 133, 251, 133
OO | 1230 data 192, 141, 1, 3,173, 2, 3,141 BO | 1930 data 2583, 144, 2,230, 252, 165, 252, 74
IC | 1240data 41,193,173, 3, 3,141, 42,193 EL | 1940 data 102, 253, 74,102,253, 74,102,253
LP | 1250 data 169, 8,141, 2, 3,169, 193, 141 IJ | 1950 data 133, 254, 44, 53,192, 48, 16, 24
HJ | 1260data 3, 3, 96,173, 58,192,240, 26 Ol | 1960 data 169, 0, 101, 253, 133, 2583, 169, 204
NC | 1270 data 141, 24,208,173, 57,192,141, O PP | 1970 data 101, 254, 133, 254, 76, 249, 194,173
OF | 1280 data 221,173, 59,192,141, 17,208,173 GP | 1980 data 65,192,201, 3,144,234, 24,169
FD | 1290 data 60, 192, 141, 22,208,169, 0, 141 MI | 1990 data 0, 101, 253, 1383, 253, 169, 216, 101
GF | 1300 data 58,192, 96, 72,169, 127, 141, 13 HI | 2000 data 254, 133, 254, 24,165,251,105, O
BC | 1310data 220, 165, 1,141, 56,192, 41,6253 JP | 2010 data 133, 251, 165, 252, 105, 224, 133, 252
JD | 1320 data 133, 1,104, 96, 72,173, 56, 192 EE | 2020 data 173, 39,192, 45, 54,192,170, 96
OH | 1330 data 133, 1,169, 129, 141, 13,220, 104 DK | 2030 data 169, 0, 168, 44, 52,192, 16, 4
DN | 1340 data 96, 16, 3, 76,139,227, 142, 13 MN | 2040 data 112, 20, 80, 15, 36, 2, 48, 9
LC | 1350data 3, 44, 76,192, 16,245,169, 0 HC | 2050 data 169, 255, 133, 2, 36,107, 48, 1
LH | 1360 data 133, 20,169, 0,133, 21,162, 250 NE | 2060 data 96, 177,251, 77, 51,192, 44, 53
CE | 1370 data 154, 169, 167, 72,169,233, 72, 76 GG | 2070 data 192, 48, 10, 61, 86,195, 133, 97
KM | 1380 data 163, 168, 32, 169, 192, 173, 234, 192 AM | 2080 data 189, 86, 195,208, 8, 61, 94,195
EJ | 1390 data 141, 0, 3,173,235,192, 141, 1 MK | 2090 data 133, 97,189, 94,195, 73,255, 49
NM | 1400 data 3,173, 41,193,141, 2, 3,173 JE | 2100 data 251, 5, 97,145,251,177,253, 45
PD | 1410data 42,193,141, 3, 3,169, 0, 141 NH | 2110data 66,192, 13, 70, 192, 145 253, 96
KL | 1420 data 76,192, 76,131, 164, 164, 254, 240 CP | 2120data 128, 64, 32, 16, 8, 4, 2, 1
LO | 1430 data 13,160, 0, 145,251, 200, 208, 251 HK' | 2130 data 192, 48, 12, 3, 32,110,194, 32
MO | 1440 data 230, 252, 198, 254, 208, 243, 164, 253 BC | 2140data 121, 0,240, 11, 32,228,196, 32
CC | 1450 data 240, 10, 136,240, 5, 145,251,136 Cl | 2150data121, 0,240, 3, 32,214,196, 32
PN | 1460 data 208, 251, 145, 251, 96, 32, 201, 192 EB | 2160 data 201,192, 32,125,194, 32, 14,195
NH | 1470 data 160, 0, 132, 251, 160, 204, 132, 252 FG | 2170data 76,218,192, 169, 1,149, 106, 169
MN | 1480 data 160, 232, 132, 253, 160, 3, 132, 254 EL | 2180data 0, 149, 107, 56, 189, 43, 192, 253
DA | 1490 data 32, 43,193,169, 0,133,251, 169 KH | 2190 data 39, 192, 149, 98,189, 44, 192, 253
KB | 1500 data 224, 133, 252, 169, 64, 133, 253, 169 OA | 2200 data 40, 192, 149, 99, 16, 20, 169, 255
CC | 15610 data 31,133,254, 169, 0, 32, 43,193 EF | 2210 data 149, 106, 149, 107, 56, 169, 0, 245
BK | 1520 data 76,218,192, 32, 253,174, 32,138 BF | 2220 data 98, 149, 98,169, 0,245, 99, 149
OL | 1530 data 173, 32,247,183, 166, 21,165, 20 AC | 2230 data 99, 96, 21, 98,208, 4,149,106
DH | 1540 data 96, 32,253,174, 32,124,193, 141 KH | 2240 data 149, 107, 96, 165, 99, 74,133, 103
CJ | 1550 data 43,192,142, 44,192, 32,121,193 GC | 2250 data 165, 98, 106, 133, 102, 24,169, 0
AN | 1560 data 141, 45,192, 142, 46,192, 169, 63 GG | 2260 data 229, 98, 133,104, 169, 0, 229, 99
PM | 1570 data 162, 1, 44, 53,192, 16, 4,169 FM | 2270 data 133, 105, 96, 24, 165, 102, 101, 100
HJ | 1580 data 159, 162, 0, 205, 43, 192, 138, 237 MM | 2280 data 133, 102, 170, 165, 103, 101, 101, 133
IM | 1590 data 44,192,176, 3, 76, 72,178, 169 KF | 2290 data 103, 197, 99, 144, 19,208, 4,228
JL | 1600 data 199, 205, 45,192,169, 0,237, 46 IG | 2300 data 98, 144, 13,138, 56,229, 98, 133

| The Transactor 33 Volume 6, Issue 04 |

www.Commodore.ca

3010 data 251,&

CF | 2310 data 102, 165, 103, 229, 99, 133, 103, 56 AO 2sMaydNot Repgnbiithomt Permission
GO | 2320 data 96, 32,135,193, 32,121, 0,240 CM | 3020 data 165, 252, 105, 224, 133, 252, 32, 253
PK | 2330 data 44, 201, 164,208, 16, 32,113, 194 NH | 3030 data 174, 32, 158,173, 32,143,173, 32
AC | 2340 data 32,115, 0, 32,138,193, 32, 121 GP | 3040 data 166, 182, 170, 160, 0, 232, 202, 208
MB | 2350 data 0,201, 44,208, 13, 32,228,196 CA | 3050data 1, 96,177, 34, 32, 73,198,200
HJ | 2360 data 32,121, 0,201, 44,208, 3, 32 IH | 3060data 76, 60, 198,133,215, 138, 72, 152
NB | 2370 data 214, 196, 32, 43,196, 32,121, 0 GE | 3070 data 72, 165,215, 48, 17,201, 32,144
FG | 2380 data 201, 164, 240, 220, 96, 32,201,192 LB | 3080 data 28,201, 96,144, 4, 41,223,208
MG | 2390 data 162, 0,134, 2, 32,129, 195, 162 HG | 3090 data 2, 41, 63, 76,110,199, 41,127
DI | 2400 data 2, 32,129,195, 165, 98, 197, 100 AB | 3100 data 201, 127,208, 2,169, 94,201, 32
MD | 2410 data 165, 99, 229, 101, 144, 62, 32, 185 DJ | 3110 data 144, 125, 76, 108, 199, 201, 14,208
BM | 2420 data 195, 36,107, 16, 10, 32,113,194 BH | 3120data 6, 32,219,199, 76, 160, 199, 201
OL | 2430 data 56, 169, 0,229, 108, 133, 108, 32 HF | 3130 data 17,208, 11,162, 40, 32, 71,199
FJ | 2440 data 125,194, 32, 14,195, 230, 104, 208 GK | 3140 data 202, 208, 250, 76, 160, 199, 201, 18
HM | 2450 data 4, 230, 105, 240, 102, 238, 39, 192 FL | 3150 data208, 8,169, 1,141, 75,192, 76
HK | 2460 data 208, 3,238, 40,192, 32,209, 195 NI | 3160 data 160, 199, 201, 29,208, 6, 32, 71
KL | 2470 data 144, 9, 24,173, 41,192,101, 108 BA | 3170data 199, 76,160,199, 162, 3, 44, 162
BM | 2480 data 141, 41,192, 32,125,194, 32, 14 CL | 3180data 15,221,205, 198, 240, 6,202, 16
KA | 2490 data 195, 76, 91,196,162, 1,181, 98 HD | 3190 data 248, 76, 160, 199, 189, 221,198, 10
FA | 2500 data 180, 100, 149, 100, 148, 98,202, 16 IJ | 3200data 10, 10, 10,141, 62,192, 44, 53
OB | 2510 data 245, 32,185,195, 36,107, 16, 10 LP | 3210data 192, 48, 6, 13, 61,192,141, 62
HB | 2520 data 32, 113,194, 56,169, 0,229, 108 JJ | 3220 data 192, 32, 51,197, 76,160,199, 5
DH | 2530 data 133, 108, 32, 125, 194, 32, 14,195 MH | 3230 data 28, 30, 31, 16, 28, 30, 31, 1
FE | 2540 data 230, 104, 240, 31, 24,173, .41, 192 Cl | 3240data 21, 22, 23, 24, 25, 26, 27, 1
PA | 2550 data 101, 108, 141, 41,192, 32,209, 195 BM|3250data 2, 5 6 0, 4, 7, 3, 8
MA | 2560 data 144, 8,238, 39,192,208, 3,238 GK | 3260data 9, 10, 11, 12, 13, 14, 15,201
PC | 2570data 40,192, 32,125,194, 32, 14,195 OP | 3270data 14,208, 6, 32,216,199, 76, 160
Pl | 2580data 76, 166,196, 36,107, 16, 3, 32 GP | 3280 data 199, 201, 17,208, 11,162, 40, 32
MK | 2590 data 14,195, 32,113,194, 76,218, 192 BG | 3290 data 28, 199, 202, 208, 250, 76, 160, 199
FM | 2600 data 32, 121,193, 41, 3, 73, 3,106 DD | 3300 data 201, 18,208, 8,169, 0,141, 75
BL | 2610 data 106, 106, 141, 52,192, 96, 32, 121 KG | 3310data 192, 76, 160, 199, 201, 29, 208, 143
FH | 2620 data 193, 41, 3,240, 27, 44, 53,192 Il | 3320data 32, 28,199, 76,160, 199, 165, 253
ME | 2630 data 16, 22,141, 65,192,170, 189, 61 GB | 3330data208, 2,198, 254, 198, 253, 165, 3
CM | 2640 data 192, 141, 70,192, 189, 66, 192, 141 OJ | 3340 data 208, 2,198, 4,198, 3, 56,165
GO | 2650 data 66,192, 189, 7,197, 141, 51,192 CB | 3350 data 251,233, 8, 133, 251, 165, 252, 233
GK | 2660 data 96, 0, 85,170,255, 32,121,193 AP | 3360 data 0, 133, 252, 165, 251, 201, 0, 165
NH | 2670data 10, 10, 10, 10,141, 62,192, 44 BH | 3370 data 252, 233, 224,176, 3, 32, 71,199
GL | 2680 data 53,192, 48, 9, 13, 61,192, 141 IN | 3380 data 96, 230, 253,208, 2, 230, 254, 230
NM | 2690 data 62, 192, 76, 51,197, 32,121,193 FC | 3390 data 3,208, 2,230, 4, 24,169, 8
EJ | 2700 data 41, 15,141, 63,192, 32,121,193 JD | 3400 data 101, 251, 133, 251, 144, 2, 230, 252
BL | 2710data 41, 15,141, 64,192,174, 65,192 HI | 3410 data 165, 251, 201, 64, 165, 252, 233, 255
AG | 2720 data 189, 61, 192, 141, 70,192, 189, 66 GM | 3420 data 144, 3, 32, 28,199, 96, 9, 64
BG | 2730 data 192, 141, 66,192, 96, 32,110, 194 BP | 3430 data 174, 75,192,240, 2, 9,128, 32
PB | 2740 data 32, 135,193,162, 3,189, 43,192 EB | 3440 data 165, 199, 160, 7, 32,230,199, 177
NF | 2750 data 157, 47,192,202, 16,247, 32,121 DI | 3450 data 5, 145, 251, 136, 16,249, 32,245
BJ | 2760data 0,240, 11, 32,228,196, 32,121 BD | 3460 data 199, 200, 173, 61,192, 44, 53,192
GP | 2770data 0,240, 3, 32,214,196, 24,173 AP | 3470 data 16, 8,173, 64,192, 145,253, 173
Pl | 2780data 39,192,109, 47,192, 141, 43,192 BM | 3480 data 63,192, 13, 62,192,145 3, 32
CJ | 2790 data 173, 40,192, 109, 48,192, 141, 44 NC | 3490 data 71,199, 104, 168, 104, 170, 96, 133
EE | 2800 data 192, 173, 41,192, 141, 45,192,173 ND | 3500 data 5,169, 0,133, 6, 6, 5, 38
JI | 2810 data 42,192,141, 46,192, 32,156, 193 EB | 3510data 6, 6, 5 38 6, 6 5 38
OD | 2820 data 32, 43,196, 56,173, 45,192,237 MN | 3520 data 6, 24,173, 71,192,101, 5,133
ML | 2830 data 49, 192, 141, 45,192,173, 46, 192 IE | 3530 data 5,173, 72,192,101, 6,133, 6
FK | 2840 data 237, 50,192, 141, 46,192, 32, 181 00 | 3540 data 96, 32,253,174, 32,138,173, 32
LG | 2850 data 193, 32, 43,196, 56,173, 43,192 MC | 3550 data 247, 183, 166, 21,208, 9,165, 20
EN | 2860 data 237, 47,192,141, 43,192,173, 44 BD | 3560 data 208, 3, 162,208, 44,162,216, 142
JP | 2870 data 192, 237, 48,192, 141, 44,192, 32 HD | 3570 data 72,192, 162, 0,142, 71,192, 96
NH | 2880 data 43, 196, 24,173, 45,192,109, 49 HF | 3580 data 173, 14,220, 41,254,141, 14,220
IL | 2890 data 192, 141, 45,192,173, 46, 192, 109 FB | 3590 data 165, 1, 41,251,133, 1, 96, 165
GK | 2900 data 50, 192, 141, 46,192, 76, 43,196 CO|3600data 1, 9, 4,133, 1,173, 14,220
KJ | 2910 data 169, 0, 133,251, 133, 252, 32, 241 MJ | 3610data 9, 1,141, 14,220, 96, 32, 121
MK | 2920 data 183, 224, 40,144, 3, 76, 72,178 CO | 3620data 0,240, 15, 32,110,192, 32, 121
EP | 2930 data 142, 73,192, 32,241,183, 142, 74 PJ | 3630 data 193, 141, 245, 192, 142, 249, 192, 169
GN | 2940 data 192, 138, 240, 18,224, 25,176, 237 FI | 3640 data 128, 44,169, 0,141, 76,192, 96
DK | 2950 data 24, 165, 251, 105, 40, 133,251, 144 | IL | 3650data 0, O

HL | 2960 data 2, 230, 252, 202, 208, 242, 24,173

LL | 2970 data 73,192, 101, 251, 133, 251, 133, 253

DL | 2980 data 133, 3,169, 0,101,252, 133, 252

FJ | 2990 data 24, 72,105,216, 133, 254, 104, 105

PF | 3000 data 204, 133, 4, 6,251, 38,252, 6

[The Transactor

Volume 6, Issue 044

www.Commodore.ca

Microsecond Timer

For The Commodore 64

May Not Reprint Without Permi

Zoltan Szepesi
Pittsburgh, PA

Count microseconds for up to 70 minutes

I. Introduction.

The Commodore 64 computer provides four different ways for
the measurement of elapsed time intervals. These methods can
be used to measure time intervals of limited values and of
limited precision. The first three methods are useful only for
longer time intervals, up to 12 hours. However, the fourth
method, which is the subject of this paper, enables one to
measure down to 1 microsecond (one millionth of a second)
and up to 70 minutes. The following are the four methods in
question:

1. The TI$ software clock, which gives the time in Hours,
Minutes and Seconds (as HHMMSS). It is useful when a
precision of + or — one second is satisfactory.

2. The TI jiffy clock with a precision of + or - 1/60 second
(16.67 milliseconds).

3. The C-64 has 2 Complex Interface Adapters (CIA#1 and
CIA#2, type 6526). Both have a time of day (TOD) clock with
aone tenth of a second counter, whence its precision is + or
- 100ms (ms = millisecond). This clock keeps the time more
accurately than the software clock (TI$ or TI), which is
disturbed when 1/0 operations disrupt the interrupt routine
or when the IRQ vector is changed.

4. Both CIA-s have two general purpose timers (A and B) with
an F=1.022730 Mh (Megahertz= 1 million Hertz) clock (in
Europe the frequency is F=0.985250 Mh, tuned to the PAL
TV system). Hence, we have (in the USA) a
T=0.9777751704 microsecond (millionth of a second)
counter. Both timers have 2 bytes, therefore the total time
interval could be T#256+256=64.079 ms on one timer.
However, Timer B can be linked to Timer A, so that it counts
the number of times Timer A goes to zero. This way we have
a4 byte (32 bits) timer, that can count from 1 microsecond up
to 70 minutes.

II. The ML Program.

Listing 1. is the source listing of the ML program. It starts at
address $9F00 and takes 65-+4 bytes. (You could choose
another location for this program, e.g. the cassette I/0 buffer,
or some part of the $C000 to $CFFF address, if it is not used for
other ML routine). The program is composed of two parts. The
first part (START) controls the starting of the clocks, the second
part (STOP) stops the clocks and stores their values in the 4
bytes following the ML program. We use the CIA*2 timers
because they are more independent from the general operating
system than the clocks of the CIA#1.

Timer A can be found at addresses $DD04-$DD05 (56580-
56581 decimal), low byte first, high byte second. Timer B is at
$DD06-$DD07. These timers count down from $FF (255) to 0.
Therefore, we first store the value #$FF into the 4 bytes of the 2
timers (at addresses $9F00 to $9F0D). For starting Timer A, we
have to store a value of #1 in location $DDOE, the Control
Register A (TCRA). Timer B will start by storing #1 in location
$DDOF, Control Register B (TCRB). Since we want to link Timer
B to Timer A, to ensure that Timer B only counts when Timer A
counts down to 0, we should set bit 6 of TCRB to 1, and its bit 5
to 0. This results in $40. Adding the starting byte 1 to this gives
$41, of which is stored in location $DDOF.

By setting location $DDOF before $DDOE, we set the start of the
counting to the end of the START routine. If we had started
Timer A first, the counting would have started 2+4 cycles
before the end of the START program, causing a 5.87 microsec-
ond addition to the time measured. The RTS at the end returns
the program back to Basic, where our Basic program can SYS
up the the STOP routine.

The STOP routine starts at address $9F20 (7 bytes are left free
for possible ML commands). Storing #0 into the control regis-
ters stops the counting. Here Timer A get stopped first. As you
see, we have 6 cycles until the 0 is stored at TCRA. This takes
5.87 microseconds. After storing #0 at TCRB too, the program
saves the 4 bytes of the timers at 4 locations after the end of the
STOP routine (at $9F41-$9F44), from where this data can be
read out, and the execution time can be calculated in Basic.

sion

The Transactor

Volume 6, Issue O4

www.Commodore.ca

III. The BASIC Program.

Listing 2 is a Basic program/Data loader for starting the timer
with a SYS command (end of line 150) for the START routine
address, followed by stopping it by a SYS command (start of line
170) again for the STOP routine address. After, the program
reads out the clock data and calculates the counting time in
microseconds (lines 190 to 230). The following statements (240
to 280) calculate how many minutes, seconds, milliseconds,
and microseconds are in this time, and print out the ones with
an integer value greater than zero.

At the start of the program we also display the time measured
by the TI$ software clock. This could serve to see that our
program is correct, when the time interval measured is higher
than several seconds.

If you want to time a Basic command or program, write it into
lines 160 to 169 (renumber accordingly). Or, if it is a longer
program, you can place it in a subroutine (lines 440 up - above
the data statements), and enter:

160 GOSUB 440

At the end of the subroutine, use a RETURN. (First entering:
440 RETURN, you can measure how much time it takes the
GOSUB+RETURN+SYS commands to be executed — about
8ms), and you can subtract this time from the total measured
time).

IV. Measurement Data.

[want to show a few simple examples for the use of this
program, and give some measured data.

We can measure the execution time of a simple Basic Loop
program as in line 160 of Listing 2. The number of loops (N) is
defined in line 140. If we first delete line 160, we will measure
the time it takes to execute the SYS command of statement 170,
which is about 6 ms. This value should be subtracted from the
measured time of the examined Basic program. Measuring the
loop of line 160, we get about T=10.6-6 = 4.6 ms with N=1,
T=114 ms for N=100 and T=113.705 s for N=100000. We
can also see that the execution time is 10 to 30% longer when
we write out the variable [after NEXT. Furthermore, we see
that when we repeat the program, the measured numbers are
not exactly the same; they can differ by several percent (also,
they are different in the various C-64’s, depending on the ROM
revision it comes with).

In the ML program we can put the STOP routine immediately
after the START routine at address $9F18 and expect to mea-
sure the time for 6 cycles (LDA #0: 2 cycles and STA TCRA: 4
cycles). The program gives 5.87 microseconds, which is exactly
6+0.97777517.

May Not Reprint Without Permissid

If we write JMP STOP (4C 20 9F) at address $9F18, we measure
8.8 microseconds. This is just 3 cycles more than the previous
time and truly the JMP command needs 3 cycles.

Instead of JMP, put JSR STOP (20 20 9F) at address $9F18, and
you will measure 11.73 microseconds, what it takes to execute
12 cycles. And JSR needs 6 cycles, 3 more than the JMP
command.

For a longer ML program we only need to write in:
JSR START (20 00 9F)
where we want to start the timing and:
JSR STOP (20 20 9F)
where we want to stop the timing. After the program ends we
can read out the execution time with the Basic program by

entering:

RUN 170

V. Conclusion.

As we see from the above data, this program measures very
precisely the execution time, and can be used easily in Basic
and ML programs as well.

b

The Transactor

Volume 6, Issue O4

« www.Commodore.ca

Listing 1: ML Source Code

May Not Reprinf Withouf Permiksion

Listing 2: Basic Demo Plus Data Loader

EL | 100 rem save " O:timer64.pal",8 EL | 100 rem save " O:timer64.bas" 8
Pl | 110 rem time measurements from NL | 110 rem microsecond to 70 minute timer by
LE | 120 rem 1 microsecond to 70 minutes z.szepesi (c) 1985.
NH | 130 rem by zoltan szepesi KG | 120 poke 55,255: poke 56,158: clr: rem set top
EH | 140 rem 2611 saybrook drive of basic below ml.
MA | 150 rem pittsburgh,pa 15235 CD | 130 gosub 310: rem move code into position
EB | 160: MH | 140 n=1: rem adjust this value for demo
BC | 170 open 4,8,1," 0:timer64.obj" EG | 150 print "timing started at "ti$" (hhmmss)"
PE | 180 sys(700) - sys40704
FN | 190 .opt 04 CB | 160 fori=1ton: next
IH | 200 = =$9f00 IB | 170 sys40736: print "timing finished at
IE | 210; "ti$" (hhmmss)"
HI | 220 talo = $dd04 ;timera BO | 180 a1 =.97777517: a2 =256+a1: a3 =256+*a2
MJ | 230 tblo = $dd06 ;timerb a4 =256+a3
MK | 240 tcra = $ddOe ;control register a PA | 190 t1 = (255-peek(40769))*afl
LL | 250 tcrb = $ddOf ;control register b MP | 200 t2 = (255-peek(40770))+a2
KH | 260time1 = =+ %41 OA | 210 t3 =(255-peek(40771))+a3
Kl | 270tme2 = #4842 AC | 220 t4 = (255-peek(40772))+a4
KJ | 280time3 = =+$43 EA | 230 t=t1+12 +1t3 +1t4: print chr$(17) " **execution
KK | 290tme4 = =+$44 time = "chr$(145)
CK | 300; IE | 240 m1=t/(6e+7): i1 =int(m1): if i1>0 then
MJ | 310 start = * print spc(17)i1" minute”
NP | 320 lda #$ff AL | 250 m2 =(m1-i1)*60: i2 =int(m2): if i2>0 then
GO | 330 sta talo print spc(17)i2" second”
MP | 340 sta talo+1 AP | 260 m3 =(m2-i2)+1000: i3 =int(m3): if i3>0 then
MP | 350 sta tblo print spc(17)i3" millisecond "
CB | 360 sta tblo+1 OK | 270 m4 =(m3-i3)*1000: i4 =int(m4): if i4>0 then
FK | 370 lda #$41 print spc(17) int(m4=100 + .5)/100;
KP | 380 sta tcrb LG | 280 print " microsecond”: end
DH | 390 lda #1 GJ | 290:
KA | 400 sta tcra GH | 300 rem == timer64 code at $9f00 =
Gl | 410 rts IL | 310 for j=40704 to 40768: read x: poke },x
KB | 420 ; :ch=ch+x: next
BD | 430 .byt $ea, $ea, $ea JG | 320 if ch<>8867 then print "checksum error": end
Cl | 440 .byt $ea, $ea, $ea, $ea GG | 330 return
ID | 450; IM | 340
CL | 460 stop e # AG | 350 data 169, 255, 141, 4,221,141, 5, 221
BM | 470 lda #0 JE | 360 data 141, 6,221,141, 7,221,169, 65
KF | 480 sta tcra IJ | 370data 141, 15,221,169, 1,141, 14,221
IG | 490 sta tcrb EN | 380 data 96, 234, 234, 234, 234, 234, 234, 234
CF | 500 lda talo PF | 390 data 169, 0, 141, 14,221, 141, 15,221
GL | 510 sta timet NF | 400 data 173, 4,221,141, 65,159,173, 5
CH | 520 lda talo+1 DF | 410 data 221, 141, 66,159,173, 6,221, 141
LM | 530 sta time2 MB | 420 data 67,159,173, 7,221,141, 68,159
MH | 540 lda tblo HD | 430 data 96
AO | 550 sta time3
MJ | 560 lda tblo+1
FP | 570 sta time4
AD | 580 rts
EM | 590;
| ED | 600 .end
The Transactor 37

Volume 6, Issue 04 |

www.Commodore.ca

Projectile Motion
Karl J. Hildon and Chris Zamara

The following was originally presented in Transactor
Volume 5, Issue 01, back before our newstand distri-
bution days. It makes several references to “80
columns” but is readily portable to 40 columns, the 20,
and the 64.

Once you understand the techniques of putting objects on your
screen, you'll want to get them moving. After all, what good is a
sprite if it doesn’t do anything. In this article we’ll discuss some
simple motion techniques using the laws of physics and me-
chanics.

Consider the screen of your computer as a 2-dimensional
plane. To make an object move in 2 dimensions, you simply
need supply a series of X and Y coordinates. Coordinate X
usually represents horizontal position and Y is usually vertical
position. Constantly changing the combination of these two
positions will result in the illusion of motion. Calculating X and
Y is a task determined by what pattern of motion you desire.

Calculating the path of a projectile can be done in one of two
ways: the hard way and the easy way. The hard way would be
probably end up as a collage of imaginative calculations that
somehow produce a fairly accurate simulation. The easy way is
the logical way. In any book of physics or mechanics you'll find
just about every formula for plotting the path of an object that is
directly affected by a forward velocity, an upward velocity, and
gravity — a projectile.

Forward Velocity

Every moving object on Earth has a forward velocity. Even if it
only goes straight up, then straight down, it has a forward
velocity. Of course this would be a forward velocity of zero.

Distance = Velocity * Time

Velocity is represented as some unit of distance, per some unit
of time (eg. 10 feet/second). Multiplying by time cancels the

May Not Reprinf Without Permission

time units. On the computer, the units of distance will be a
column on the screen or an X-coordinate for a sprite.

The units of time could be obtained from the internal clock, but
this imposes certain unnecessary complications. For one, the
lowest unit is seconds which is an awfully long time unless the
velocity too is very low. (We could use the TOD clock in the CIA
but that would limit this demonstration to CIA equipped ma-
chines and using Tl isn’t all too portable either) Another, when
the seconds reach 59, it is up to the programmer to add the
minutes times 60 which steals processor time we may need.

There are probably more but the solution is simple: simulate
time with a simple FOR/NEXT loop. This offers several syn-
thetic advantages. You can express time in any unit such as
tenths of seconds or even 3rds of seconds if you wish. Also, this
avoids the potential for losing time since the clock will not
increment until you have used the current “value” of time for
your calculation, and subsequently used the results of that
calculation for the plot. Further, simulated time can be gener-
ated within an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>