
The Tech/News Journal For Commodore Computers

95% Advertising Free! Sept. 1985: Volume 6, Issue 02. $2.95

Networking and Communications

Commodore 64 Remote Control Program! .

Accessing The TDD Network: Software & Hardware

Hardware: Easy Intercomputer Connection ;

More On The Save With Replace Bug .

Tele-Tone 64: A Touchtone Synthesizer

The. Commodore RS232 Bus Demystified

Worldwide Telecomputing via HAM Radio

A Review of 3 Popular Multi-User Systems

More 1541 Fun: Recovering from the Error Slues

Flexible Vectors: An Intelligent Approach to Vect

«*

Has Arrived!
Simply code your co-ordinates onto the

postage powered order form and every pro

gram from each issue will be locked in,

energized, and transported from our star*

base directly to yours! Warp 9 will seem

slow compared to the time you save typing,

and the programs will give your machine

that look and feel of a fresh set of Dilithium

Crystals! Coast through the Neutral Zone

with The Transactor Disk!

Only $7.95 Each!

6 Disk Subscription

Just $45.00!

:■ \

1 n

Volume 6

Issue 02
Circulation 64,000

I

Start Address Editorial . . .

News BRK ... 69
Delivery Information

Submitting NEWS BRK Press Releases

Transactor on Microfiche

inner Space Anthology Discounts

Dry Mail

C-64 Users Group Of Canada

And The Winner Is. . .

C Experts Gather For Fall Seminar

International Communications and Computer Exhibition

Paperback Writer

Sixth Sense

C64 & APPLE II + Compatibility

'C POWER' For The 64

PROM AL - New Structured Programming Language

Freedom Assembler/Monitor

Sight & Sound Expands Floppies To Flippies

Keyboard Chord/Scale Master

Light Pen Reading Series from MicroEd

Master Software Releases Reset Master

ABL-64 (Automatic Boot-Loader Cartridge for the 64)

Studio 64 Gets New Keyboard

Black Box Modem 1200's at Half Price

New Markers Write Safely On Diskettes

Bits and Pieces
C64 Keyboard Joystick Simulation

1-Line SEQ file read

C-64 Character Flash Mode

Plus 4/16 Pretty Patterns

C-64: Text on a Hi-Res Screen

"Someone's coming" or "Boss" mode

Fast Key Repeat

Modem Speed-Up

1200 Baud Fallacy

B to PET/CBM Program Converter

C64 Screen Sizzle

C64 Simple Banner Program

Break Box Baffler

3

4

Letters 8
Available deVICes?

Plotter Plight

B Users Group

1541 Alignment Notes

Brown Bibles For Sale

Piracy vs. The Software Publishers Association

Public Right vs. Copyright

The Copyright And You

Book Review: Using CompuServe 11

TransBASIC Installment #4 12

Telecomputing: From Concept To Connect 18

A Comedy Ol ErrOrS The trials and tribulations of connecting a Modem . . 24

World Communications Computer meets Shortwave Radio 26

The Electronic Mailbox The wired office 28

Networking SyStemS Specifications on 3 popular networks 30

Helping to Communicate - The TDD Network . 34

Easy Intercomputer Connection Let two c-64s talk to each other 40

JAemOie Oi Control your 64 from a remote terminal T^-

Riding the RS—232 BUS All About Commodore RS-232 45

The BBS Link A Database For Bulletin Boards 50

Tele—Tone 64 ASynthetic Telephone Using Your SID Chip 52

Fun With YOUr 1541 Programming the Disk Drive CPU 55

Simulating a Dual Drive Make two 1541s Behave as a DualDrive ... 60

In Defence Of The Frontal Assault An Editorial 62

VeCtOring Vector Programming Techniques DO

Save @ Exposed: The Debate Continues 68

Compu-toons 76

Note: Before entering programs,

see "Verifizer" on page 4

The Transactor VoIume 6, Issue 02

Program Listings In The Transactor

Managing Editor

KarlJ. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Lana Humphries

Contributing Writers

Gary Anderson

Don Bell

Daniel Bingamon

Anthony Bryant

Jim Butterfield

F. Arthur Cochrane

Gary Cobb

Elizabeth Deal

Domenic DeFrancesco

Tony Doty

Robert Dray

Mike Forani

Jeff Goebel

Jim Grubbs

Gary Gunderson

Bob Hayes

Thomas Henry

David A. Hook

Chris Johnsen

Garry Kiziak

Scott Maclean

Mario Marrello

Chris Miller

Brian Munshaw

Gerald Neufeld

Michael Quigley

Howard Rotenberg

Louis F. Sander

K. Murray Smith

Darren J. Spruyt

Aubrey Stanley

Nick Sullivan

Tony Voleri

Charles Whittern

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of course

be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the number 1 which has an

angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

insert will not be critical to correct operation of the program. When it is, the required number of spaces

will be shown. For example:

print" flush right" - would be shown as - print" [spacel()]flush right"

Cursor Characters For PET / CBM / VIC / 64

Down - ^

up -QJ

Right - ||

Lett - [Lft]

RVS - Q

RVS Off - H

Insert - Q

Delete - Q

Clear Scrn - Q

Home - 0

STOP - R

Colour Characters For VIC / 64

Black - Q

White - B

Red - Q

Cyan - [Cyn]

Purple - [Pur]

Green - Q

Blue - B

Yellow- [Yel]

Orange -

Brown

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt. Blue -

Grey 3 - [Gr3

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

F5

F6

F7

F8

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing
The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton.

Ontario. L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class

postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor. 277 Linwood Avenue, Buffalo, NY, 14209, 716-884-0630. ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade

marks of Commodore Inc.

Subscriptions:

CanadaSlSCdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7, 416 876 4741. From Toronto call 826 1662. Note: Subscriptions are handled al

this address ONLY. Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4. Issues 04, 05, 06, Vol 5 Issue 03

Still Available:Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04, 05

CompuLit
PO Box 352

Port Coquitlam, BC

V5C 4K6

604 438 8854

U.S.A. Distributor:

Capital Distributing

Charlton Building
Derby, CT

06418

(203)735 3381

(or your local wholesaler)

Quantity Orders:

Micron Distributing

409 Queen Street West

Toronto, Ontario, M5V 2A5

(416)593 9862

Dealer Inquiries ONLY:

1 800 268 9052

Subscription related inquiries

are handled ONLY al Milton HQ

Master Media

261 Wyecroft Roiid

Oakville, Ontario

L6J 5B4

(416)842 1555

(or your local wholesaler)

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per

printed page. Preferred media is 1541. 2031, 4040, 8050. or 8250 diskettes with WordPro, WordCraft.

Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos or illustrations will be included with articles depending on quality. Authors submitting diskettes

will receive the Transactor Disk for the issue containing their contribution.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please

re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective. The Transactor cannot assume liability for errors in articles or programs.

Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor Volume 6, Issue 02

June 1 three years ago was a Monday, the day I pushed The

Transactor from its nest at Commodore Canada. Exactly one

year ago we were signing the contract for international

distribution. And today we ship to over 35 countries outside

North America. Although our print run has stabilized at

about 64,000, The Transactor is by no means coasting. Our

third year-end figures indicate that now more than ever is

the time to forge ahead. There are other reasons too.

Another way too cold Ontario winter has passed, and

another way too short Ontario summer is upon us. As this

third summer picks up speed, an expected trend is failing to

make itself apparent. Computing, in all its many facets, is

typically a winter activity, or so we thought until this

summer. Being subjected to vast quantities of crystallized

and solid water tends to make one more appreciative of the

fact that it also comes in two other states; liquid and gaseous.

Words like 'hot', 'humid' and 'sticky' are music to the ears.

Even a dozen SID chips could not compete. The computer

hobby would not completely grind to a halt, but the click of a

driver could be heard more often than the clack of a drive. It

seems that the seasonal ingredient, however, is becoming

less influential. While others are reporting decreases, we're

happy to announce that both the temperature AND sub

scriptions are still on the rise.

I suppose there are other factors involved. Now that we send

Transactors to places that have no real winter season may

be partially responsible. The Transactor Disk might also

take some credit. But the general trend of the market just

cannot be ignored. The number of home computer sales

could probably be compared to the number of new home

sales. The impulse buying trend of three years ago has been

replaced by the 'educated acquisition'. Those purchasing

computer systems today are more serious about computing

from the start, as opposed to building towards a serious

level. In our own humble opinion, we believe this is our

domain, and though we can't claim first or second spot on

the charts, we will not let it slip from our sights.

Telecomputing is also becoming less seasonal. Bulletin

Board Systems that greet you with a busy signal all winter

are busy all summer too. Many readers have asked why The

Transactor has not installed a BBS of our own. Reasons

include the unavoidable problem of contention for that one

single line and the long distance aspect. We think we may

now have a solution. Currently we are investigating the

possibility of our own section on the Delphi Network.

Unfortunately, the idea of an article detailing Delphi came to

us too late for this issue, but by this time next issue we'll

have plenty more to say. I met briefly with John W. Gibney,

Delphi's key proponent and formerly of CompuServe, who

is at this moment preparing a package for us to peruse.

Several angles will be studied before we 'take the plunge',

but based on Delphi's connect-time rates and their geo

graphic availability, a Transactor SIG is a promising outlook.

Last issue I feel I may have been a little hasty with the

demise-of-Atari overtones. At the Computer Fair in Toronto,

Atari was out in full force. It's now obvious to me that Jack

and crew are as genuine in their intentions as any new

outfit. Besides that, the ST looks like a fabulous machine.

The 68000 based Atari has a 24 bit address buss allowing for

over 16 million bytes of addressable memory without the

hassles of bank switching and the like. RS232 and Centron

ics parallel are there as well as plenty of other peripheral 1/

O. But their most impressive announcement had to be a

thing they presently call the 'C.D.ROM'. According to J.T.,

this mysterious name will adorn a unit with over 500 megs

of storage for about $500, sometime this fall.

Although we have no plans for regular coverage of the new

Atari, a not too distant Transactor will feature a technical

overview of the ST. We thought if we were interested, you

might be too. If that doesn't quench your curiosity, contact

Atari. Neil Harris, formerly of Commodore's publishing

department, is now producing 'The Atari Explorer', and

doing a fine job I might add. Atari HQ is in Sunnyvale, CA,

and they also have a Toronto office. On a final note, I can't

help wondering if the ST wouldn't have been a new Com

modore product if Jack were still skipper.

guess there's nothing as constant as change. But I remain,

Karl J.H. Hildon, Managing Editor

The Transactor Volume 6, Issue 02

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from

the pages of The Transactor. It will let you check your work line by

line as you enter the program, and catch frustrating typing errors.

The VERIFIZER concept works by displaying a two-letter code for

each program line which you can check against the corresponding

code in the program listing.

There are two versions of VERIFIZER on this page; one is for the

PET, the other for the VIC or 64. Enter the applicable program and

RUN it. If you get the message, "***** data error *****", re-check

the program and keep trying until all goes well. You should SAVE

the program, since you'll want to use it every time you enter one of

our programs. Once you've RUN the loader, enter NEW, then turn

VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)

or SYS 634 to enable the PET version (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top left of

the screen in reverse field. Note that these letters are in uppercase

and will appear as graphics characters unless you are in upper/

lowercase mode (press shift/Commodore on C64/VIC).

Note: If a report code is missing it means we've editted that line at

the last minute which changes the report code. However, this will

only happen occasionally and only on REM statements.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type

RETURN over each in succession while checking the report codes

as they appear. Once the program has been properly entered, be

sure to turn VERIFIZER off with the SYS indicated above before

you do anything else.

VERIFIZER will catch transposition errors (eg. POKE 52381,0

instead of POKE 53281,0), but ignores spaces, so you may add or

omit spaces from the listed program at will (providing you don't

split up keywords!). Standard keyword abbreviations (like nE

instead of next) will not affect the VERIFIZER report code.

Technical info: VERIFIZER resides in the cassette buffer, so if

you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original

destination of the link after it's finished. When disabled, it restores

the link to its original contents.

Listing 1a: VERIFIZER for C64 and VIC-20 Listing 1 b: PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

10 rem* data loader for " verifizer"

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40 cs = cs + a:next i

50:

*

60 if cs<>14755then print" ***** data error *

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,

1010 data 252, 141, 3, 3,

1020 data 3,240, 17,133,

1030 data 251, 169, 99,141,

1040 data 3, 3, 96,173,

1050 data 0,160, 0,189,

1060 data 32,240, 15,133,

1070 data 133, 90, 32,183,

1080 data 232, 208, 229, 56,

1090 data 32,210,255, 169,

1100 data 89, 41, 15, 24,

1110 data 165, 89, 74, 74,

1120 data 32,210,255, 169,

1130 data 32,240,255, 108,

1140 data 101, 89,133, 89,

251

96

252

2

254

0

91

3

32

18

105

74

146

251

96

141, 2,

173, 3,

173, 2,

3, 169,

1, 133,

2, 240,

200, 152,

198, 90,

240, 255,

32,210,

97, 32,

74, 24,

32,210,

0, 165,

****": end

3, 165

3,201

3,133

3, 141

89, 162

22, 201

41, 3

16,249

169, 19

255,165

210,255

105, 97

255, 24

91, 24

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

Ol

JB

PA

HE

EL

LA

Kl

EB

DM

10 rem* data loader for

15 rem pet version

20 cs = 0

30 for i = 634to754:read

40cs = cs + a:next i

50:

verifizer 4

a:poke i,a

60 if cs<>15580 then print"**

70 rem sys 634

80 end

100:

1000 data 76, 138, 2

1010 data 173,164, 2

1020 data 145, 201, 2

1030 data 144, 141, 163

1040 data 2,133,145

1050 data 201, 13,208

1060 data 254, 1,133

1070 data 0, 2,168

1080 data 165, 253, 41

1090 data 198, 254, 16

1100 data 251, 41, 15

1110 data 165, 251, 74

1120 data 141, 1,128

1130 data 251, 133,251

120,

133,

240,

2,

88,

62,

251,

201,

3,

249,

24,

74,

108,

96

0" *

**• data error

173,

145,

16,

169,

96,

165,

162,

32,

133,

232,

105,

74,

163,

163

88

141

165

85

167

0

240

254

152

193

74

2

2

96

164

133

228

208

134

15

32

208

141

24

152

■":end

?, 133,

3, 120,

2,

144,

3, 165,

1, 58,

1,253,

j, 230,

>, 236,

3,229,

0,

1, 105,

24,

144

165

165

169

217

173

189

253

2

165

128

193

101

The Transactor Volume 6, Issue 02

Bits and Pieces

C64 Keyboard Joystick Simulation

If you ever need to try out a joystick-driven program but you don't

have a joystick plugged in, you can simulate the stick by using the

keyboard. The keyboard can be used instead of the joystick in port 2

by holding down the space bar while pressing C,Z,B,M or Fl to

perform the functions in the table below. The port 1 joystick can't be

simulated in some video games, like those which use the keyboard as

well as the joysticks, but in most programs you can get joystick 1

functions by just pressing a single key - refer to the table below.

colour will blink at approximately the same speed as the cursor. Line

65 sets up the flash colour as 5 for green - change it to whatever you

wish.

JOY2:

space + C =

space + Z =

space + Fl =

space + B =

space + M =

JOY1:

CTRL =

*-

1 _

2

spc

left

down

up

right

fire

left

down

up

right

fire

1-Line SEQ file read

You've probably typed in a little sequential file-read program many

times. Although utilities such as BASIC AID and POWER have such a

feature built in, the utility isn't always installed when you need to look

at a file. To save typing in several program lines whenever you wish to

view a sequential CBM ASCII file, here's a short program to do it. It will

print the file to the screen and stop and close the file when the end is

reached. You can just tack this line to the beginning of the program in

memory and delete it when you don't need it anymore.

1 open8,8,8," filename" :fori = 0to1 :get#8,a$:i = st

:printa$;:next:close8:end

C-64 Character Flash Mode

One of the many features of the plus 4 and 16 machines is a "flash"

mode, which operates like reverse on/off, but causes all characters

printed in that mode to continuously flash at the rate of the cursor.

Flashing is a great way to highlight important text, signal an error

condition, etc. Below is a program to simulate flash mode on the C-

64. One of the 16 text colours becomes the "flash" colour; anything

printed in the flash colour (default green) or the current background

NN

LI

CG

DH

GK

HI

Jl

DD

AF

IN

NA

KO

GO

LI

ID

BJ

NG

GB

OH

GK

NF

AL

10 rem* data loader for " flash

20 cs = 0

30 for i = 49152 to 49245:read

40 cs = cs + a:next i

50:

*

a:poke i,a

60 if cs<>12150 then printT! data error: end

65 poke 49152+ 19,5 :rem flash colour =

70 sys 49152

80 end

100:

1000 data 173, 21,192,141,

1010 data 24, 141, 20, 3,

1020 data 3, 88, 96, 5,

1030 data 206, 22,192,208,

1040 data 141, 22,192,173,

1050 data 141, 20,192,160,

1060 data 216, 133, 252, 238,

1070 data 192, 41, 1,170,

1080 data 205, 19,192,240,

1090 data 208, 5,189, 19,

1100 data 208, 234, 230, 252,

1110 data 208, 226, 76, 49,

22, 192

169, 192

0, 20

61, 173

33, 208

0, 132

23,192

177,251

5,205

192,145

165,252

234, 252

= 5 (green)

120, 169

141, 21

0, 0

21, 192

41, 15

251, 169

173, 23

41, 15

20, 192

251,200

201,220

Plus 4/16 Pretty Patterns

Here's a short one. Try changing the step value for different effects,

and the values of 'B' and 'E' for different sizes.

10 graphical : b = 20:e = 190

20 for i = b to e step7 : draw 1 ,b,i to i,e : next

This next one gives a different pattern each time. After a pattern is

drawn, press any key for a new one. Try a few - some are pretty

incredible. It works by drawing boxes of different sizes rotated at

different angles, thanks to the flexible BOX command in BASIC 3.5.

100 rem* +4 boxspiral -cz *

110 graphic 1,1: color 1,1

120 x1 = 0:y1 = 0:x2 = 100:y2 = 100

130n1=md(0)*10:n2 = rnd(0)*10

150 for angle = 0 to 180 step 5

160 box 1 ,x1 ,y1 ,x2,y2,angle

170x1 =x1 +n1: y1 =y1 +n2

190 next angle

200 rem* run again when key pressed

210getkey a$: run

The Transactor Volume 6, Issue 02

C-64: Text on a Hi-Res Screen Fast Key Repeat David Jankowski, Manoora Australia

The hi-res screen is so much more fun than just plain, boring old text.

You know, a picture is worth. . . But we work with words and

numbers so much that it's sometimes hard to give meaning to a

diagram such as a bar graph without words of explanation and

numbers for scales. The subroutine below lets you label your crea

tions by displaying a given ASCII character on a hi-res screen. The

character must lie in one of the usual character cells (25 down by 40

across). Before calling the routine, specify the column (0 to 24) in 'CY'

and the row (0-39) in 'CX'. The character itself must be in the variable

'CC$'. The program copies the eight-byte character definition from

ROM into hi-res screen memory addressed at $2000.

1000 rem* put text on hi-res screen *

1010 rem* character rom

1020 rom = 13*4096 +1024*(peek(53272)and2)

1030 c = asc(cc$): print" @";
1040 rem* convert ascii to screen code

1050 cc = c + 64*(c>64andc<192) +128*(c>191)

1060 rem turn off irqs and select character rom

1070 poke56334,peek(56334)and254

1080 poke1,peek(1)and251

1090 rem* copy from character rom to hires screen

1100 br = rom + cc*8:bs = 8192 + cy*320 + cx*8

1110 for i = br to br + 7:poke bs.peek(i)

1120bs = bs + 1:next

1130 rem* switch back i/o in place of char rom

1140 poke1,peek(1)or4

1150 poke56334,peek(56334)or1

1160 return

Subroutine notes:

1) Line 1020 chooses upper/lowercase or uppercase/graphics mode

for displaying the character, depending on the current mode.

2) If the hi-res screen is located in memory somewhere other than

$2000, change the '8192' in line 1100 to the actual location.

"Someone's coining" or "Boss" mode

For those of us who work with computers as an occupation, it's hard to

load up a game for a bit of stress-relief without feeling some guilt. If

you work in an office, you may find yourself looking over your

shoulder between blasting meanies in space - some stress relief.

To let you play at ease, several games for the IBM PC (which are

primarily used for business - no having fun allowed) have a "some

one's coming" mode. When you hit the "boss" key, the game instantly

disappears from the screen and is replaced by a fake spreadsheet,

word processor or bar graph display. When the big guy once again

leaves the room, you can continue your game right from where you

left off with another strike of the boss button.

Sounds like a good idea. Might be good for the home computer in case

you're killing klingons when you should be cutting the grass. When

your wife looks in on your progress, just hit the button and, "just a

minute dear, have to balance last month's budget first." To cover all

bases, maybe every game should have "boss", "spouse", and "parent"

functions built in. Well, game developers? How about it?

David (age 11) writes:

"I would like to submit this small interrupt-driven routine. Its purpose

is to speed up the keyboard repeat (about 74% faster) for game

programs that use the GET command to receive instructions. The

program sits in the cassette buffer and runs on the C64.

5 rem c64 fast key repeat

10 for i = 828 to 847: read a: poke i,a: next

20 data 120, 169, 3,141,21, 3,169,73,141, 20

30 data 3, 88,96,169, 0,133,197,76, 49,234

For the VIC, change the second last value in line 30(49) to 191.

Modem Speed-Up

Daniel Bingamon of Batavia, Ohio gives this command to speed up a

1600, 1650 or 1660 modem to 450 baud:

open 5,2,3,chr$(0) + chr$(0) + chr$(12) + chr$(4)

Now you might be asking, "Who would you connect to at 450

baud? Most are either 300 or 1200." Well, the sequence above

has been around just long enough for some authors, like Steve

Punter, to make provisions in their bulletin board software. Once

connected, you have the option of changing to the higher speed.

1200 Baud Fallacy

Have you ever been told that 1200 baud transmission is too fast for

normal telephone lines? The Phone Company, and their gullible

subscribers, will rhyme off a rather technically believable line like,

"the bandwidth of the signal encoding equipment is not wide enough

to handle some frequencies at 1200 bits per second - you need a

special line installed to avoid dropouts", which costs you more, of

course.

Don't believe it! I have talked to bulletin board systems as far as 3000

miles away with absolutely no trouble. In fact, the entire Transactor

magazine is sent over a regular garden variety phone at none other

than 1200 baud - no sweat.

True, most 1200 baud modems are somewhat overpriced but there

are some deals to be had. A Milton based firm offers one for about

$400 CDN. (Contact The Personal Computer Store on Steeles Avenue ,

Milton Ontario.) And once you start downloading at 4 times the speed

you're familiar with, you'll be spoiled for life. Actually, 1200 is

becoming quite popular. Some systems will even detect your trans

mission speed at connect time and automatically adjust themselves to

suit.

B to PET/CBM Program Converter

A quick B fact. Basic programs SAVEd by a B machine have a start

address of $0003 in zero page. The B machine accepts and relocates

PET/CBM Basic programs as if they were its own, just as the Vic and

C64 do. But just try to LOAD the Basic program back into the PET or

CBM. It will destroy zero page, the stack, and whatever else lies in its

wake depending on the size. A horrible awakening for PET people,

until now. The program listed below will take your Basic B program

The Transactor Volume 6, Issue 02

and relocate it for the PET or CBM. It will re-create a new Basic

program on diskette starting at $0401, with each link address also

correctly relocated. A pretty terrific utility. Our special thanks to Jack

Weaver of Input Systems Inc. in Florida for this one.

C64 Simple Banner Program Jeremy Stewart

North Bay, Ontario

PH

FL

LF

CD

AA

IA

FK

KH

AM

IP

JD

160

170

180

190

200

FA

HO

GB

AO

GD

FH

OF

HM

ED

Ol

FJ

AC

HK

BL

OD

FJ

KE

EC

PM

PD

BF

100

110

120

130

140 :

150

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

rem ** change b-128 program to run on 80/4032

rem •* jack weaver input systems, inc.

rem ** 15600 palmetto lake dr. miami fl 33157

rem ** phone (305) 252-1550

cu$ = chr$(145): cd$ = chr$(17): cl$ = chr$(157)

: ry$ = chr$(18): rn$ = chr$(146)

c$ = chr$(0)

open 15,8,15, "iO

def fn r(x) = (b2*256 + b1) +1022

ifdO

print cu$;ry$;" name of b-128 prog to

change" rn$" ";

input of$

print cd$" new name of the 80/4032 program ";

input nf$

print " b-128 prg = "ry$;of$

: print "80/4032 prg = "ry$;nf$

print cd$;cd$" OK (y/n) n"cl$;cl$;cl$;

input yn$

if yn$<>" y" then stop

a = 1025: open 4,8,4,of$: if ds then print ds$: stop

get#4,a$,b$: a1 =asc(a$ + c$): a2 = asc(b$ + c$)

: if a1<>3 then next: stop

open 5,8,5," @0:" + nf$ + " ,p,w": if ds then

print ds$: stop

print#5,chr$(1)chr$(4);

if s then 390

get#4,a$,b$: b1 =asc(a$ + c$): b2 = asc(b$ + c$)

x = fn r(x): if x = 1022 then s = 1: goto 390

: rem check for end of prg

hi = int(x/256):lo = x-hi*256

: print ry$;a;rn$;b1;b2;x;lo;hi

a = a + 2: print#5,chr$(lo)chr$(hi);

if a = x then 320

a = a +1

if s then print#5,c$;c$;c$;: close5: close4

: print " converted !": end

get#4,a$: s = st: print#5,chr$(asc(a$ + c$));

goto 370

Here's a short banner program for the C-64 and a printer. The

message can be up to 255 characters long, and will reproduce any

character including graphics.

100 rem** banner by Jeremy Stewart **

101 rem** for c64 and 80-col printer **

105:

110l = 53248:open1,4

120 as$ ="********* ":sp$= "

130 rem 9 asterisks, 9 spaces -reduce for shorter characters

135:

140 input"@input message" ;m$:print"@" m$
150 for y = 1024 to 1023 + len(m$):n = peek(y)

160 for z = 1 to 8:a$(z) = "" :next z

170 poke 56334,peek(56334)and254

180 poke 1, peek(1)and251

190 for a = 7 to 0 step-1: b = 2ta

200 for c = (I + (n*8) + 7)to(l + (n*8))step-1

210 p = peek(c): x = abs(a-8)

220 if(p and b) = b then a$(x) = a$(x) + as$: goto 240

230 a$(x) = a$(x) + sp$

240 next c,a

250 poke 1,peek(1)or4

260 poke 56334,peek(56334)or1

270 for j = 1 to8:for k=1 to4:print#1,a$(j):next k,j

280 next y:close1

Notes:

1) Alter the height of the letters as indicated in line 130.

2) Use a character other than asterisks in line 30 for different effects.

3) Change the 'for k=l to 4' loop in line 270 for wider or narrower

characters.

Break Box Baffler Tom Johnson, Jefferson, MO

Here's a terrific bit of code to retard the code buster blues. Written for

the Commodore 64, you will find great benefits in locating it high up at

$8000 in RAM. This is the area looked at during system reset for the

presence of a cartridge. If the correct code is present, ie. CBM 80 etc.,

then it will be executed. Tom's code takes advantage of this trick.

Upon an NMI break in, the code will be executed, thus throwing the

64 into an endless loop. Pretty bad news all packed into 50 bytes.

C64 Screen Sizzle James Cashin

Corner Brook, Newfoundland

For the Bits & Pieces obligatory screen blitz, we are proud to present

this little two-liner for the 64 from James, alias the 'Happy Hacker':

10poke53280,0:poke53281,1:printchr$(147):poke53281,0

:poke53272,18:cs = 2304

20 fori = 0to1 stepO:b = rnd(1)*256:forj = 1 to7:pokecs + j,b:next j,i

The program fills the screen with spaces, and continually changes the

character definition for a space. If you've never thought that staring at

a CRT can be nasty to your eyeballs, try this one out. A starving

optometrists' delight!

63000 for i = 32768 to 32818 : read j: poke i,j: next i: return

63010 data 9,128,216,128,195,194,205, 56

63020 data 48, 120, 169, 128, 162, 9,141, 3

63030 data 3,142, 2, 3,141, 21, 3,142

63040data 20, 3,141, 23, 3,142, 22, 3

63050 data 141, 25, 3,142, 24, 3,141, 41

63060 data

63070 data

3,142, 40,

76, 9,128

3,169, 48,133, 1

The Transactor Volume 6, Issue 02

Letters

Available deVICes?: 1 have read with great pleasure the fifth issue

of your magazine because 1 am a VIC 20 owner. 1 was particularly

interested by the paper signed by AJ. Barlaan on page 70 about the

Audio/Video cable adapter. This author is talking about a 40/80

column adapter for the VIC. Since the accessories for this microcom

puter seem to become harder to find, 1 would greatly appreciate you

sending me the address of the company "Data 20" which is distribut

ing that device.

Real Gagnon, Neufchatel, Quebec

Unfortunately for VIC owners, many companies with VIC accessories

have "gone away". Before sending any money for VIC products (or

any item for that matter) please check that the company exists. You

may also want to check with a local computer club. Data 20 may still

be in business but we 've seen very little activity under that name and

strongly doubt it. Their last address was in Laguna Hills, CA. Call long

distance information (I-area code-555 1212) - it costs you nothing and

may save you much.

B Users Group: There are over 9,000 B's in the USA, and well over

25,000 in Europe. Since Protectos sale of this machine, a B128 Users

Group has been established. As of last week, the membership was

well over 500 B128 owners. The Users Group charge is $20.00 per

year (includes a newsletter) and the address is:

B128 Users Group

701 E. North Avenue - Suite C

Lompoc, CA 93436

The initial issue described such items such as the parts and proce

dures involved to bump the B to 256K. Future topics/projects include

CP/M and Intel's 8088 co-processors, various software reviews, etc.

I had one of the first proto-types and feel that for the bank switching

capabilities and as an 8 bit machine, it's tough to beat. Most C-64

sound programs will easily adapt to the B as well. James L. White,

Rapid City, South Dakota

Plotter Plight: I have purchased the last issue of your magazine and

admired it very much. I am impressed with your reviews. Under your

editorial Letters 1 wish to express my problem. 1 have recently

purchased a Commodore 1520 Plotter/Printer but, alas, I am not a

programmer. I need the address of any person or firm that produces

software that will allow me to use the unit as a simple printer or to use

it as a plotter. I am well aware of its drawbacks, but I thought it would

be nice as a specialty printer. Any assistance you can give me would

be most appreciated.

Dan E. Hedgpeth, 10036 Ben Nevis Blvd., Riverside, CA 92509

Off the top of our noggins we can produce little to nothing in the form

ofplotter software. With luck this letter will be read by many, of which

a few may have the answer. If this is the case, we would appreciate if

you could either send us or Mr. Hedgpeth a letter directly. In all

probability, there is more than one person looking for some plotter

software. Drop us a line and we 'II spread the word.

B Notes: In reply to the note concerning the B128 on page 10 of V5,

#6, there are two manuals, not very technical, available for the

machine. Actually, they are the same, except for one difference.

Commodore Business Machines (UK), 1 Hunters Lane, Corby, Nor-

thants, England has one available for 12 pounds, 60 pence, air postage

included, and Protecto has what appears to be a copy of the UK

manual. This version costs $25.00 US, but it also includes circuit

diagrams, which the UK version does not, so it may be the better buy

of the two, even at the higher price.

When 1 ordered the UK version, I asked if they had anything else for

the 700 (as they style the Bl28), but received no reply to that question.

Lawrence Williams, San Antonio, Texas

It's nice to know a few B people are reading. Thanks for the tip. The B

buffs will appreciate it.

1541 Alignment Notes: I read your article "Aligning the Commo

dore 1541 Disk Drive" in issue 06. It's good to make the alignment

information available to users, but some of the article is not altogether

right. For instance, formatting a blank disk is NOT a good way to

check the alignment of the 1541.1 can take a 1541 that is far enough

out of alignment that it will not read a known good disk and format a

blank disk fine (with a steady red light). Also, I am able to read and

write to the newly formatted disk with no errors and a steady red light.

The reason for this is: 1 formatted a disk with a 1541 out of alignment

and I wrote to the disk with the same unaligned 1541. The disk and

1541 think everything is fine until I try to read a known good disk.

This same reasoning disqualifies using the PERFORMANCE TEST on

the TEST DEMO disk as a 1541 alignment check. The PERFORM

ANCE TEST has you put a scratch disk in the drive and then formats

and writes to the disk. The program then reads the same disk with the

same unaligned drive. The 1541 sees nothing wrong with the disk it

formatted and wrote to. Don't get me wrong, the PERFORMANCE

TEST has its place. It is checking all functions of your drive but NOT

your alignment.

The short program enclosed is a far better alignment check. It first

bumps the head to it's mechanical track 00 stop. This makes sure the

1541's head is where your drive thinks it should be. 1 say thinks it

should be, because if your drive is out of alignment it may not be in

the right position. The program then reads (Reads Only) every track

35 to 1 to 34 to 1 to 33 to 1 and so on. Keep in mind to use only your

TEST DEMO disk or a known good disk (NOT a disk formatted by your

unaligned 1541). Using a disk of unknown credibility or a copy

protected disk would be useless. The enclosed program reads only

and therefore will not harm the TEST DEMO disk.

If the tested 1541 reads the whole disk with no flickers (I mean not

only the slightest flicker) of the red light and makes no tapping noises

while coming back to track 1 each time it is reasonably safe to assume

the 1541 is in alignment. If the 1541 makes a tap every time it reads

track one, it's possible that the track 00 adjustment is out (see

drawing). If the red light flickers while reading, the stepper motor

The Transactor Volume 6, Issue 02

adjustment is probably to blame. You MAY be able to adjust the

stepper motor slightly and re-run the enclosed program checking for

no flickers or taps.

At the very start of the program you should hear a rapping noise, the

same noise you hear at the start of a disk NEW command. This

rapping noise should be a sharp and fast rap, like a machine gun. If it

sounds dull and uneven it could be the beginning of alignment

problems.

Ed Clutter, Tucson, Arizona

100 d = 8: rem d = device number

105 open 15,d,15: open 2,d,2,"#"

110 print#15, "m-w" chr$(O) chr$(0)chr$(1)chr$(192)

115 t = 35: h$= "-"

-- - -1201$ = str$(t)

125 print#15," b-r 2*0 V t^ 9

130gosub160 ' ' Ji
135 print#15," b-r 2 0*1 9"

140t$ = str$(1)

145gosub 160

150t=t-1: if t>0 then 120

155 close2: closei 5: end

160 print: print " reading track "h$;t$,

165 input#15,a$,b$,c$,d$

170 print a$;h$;b$;h$;c$;h$;d$

175 if val(a$)<2 then return

180 print " drive has failed alignment check"

185 goto 155

Track 00 Adjustment: First step head to track 1 with a program like

this:

10open 15,8,15

20 open 2,8,2, "#"

30 print#15," b-r 2 0 1 0"

Next, adjust stop for a clearance of less than 0.25 mm (0.01 inches).

Stop

Stepper Motor

Shaft

It seems that the alignment article we ran a while back caused quite a

stir all over. Some people were pleased, others were not. Thanks to

your thoughts on the matter, 1541 users everywhere now have an

alternate method to accurately check their 1541 's. Thanks for the help.

The program works just right.

Brown Bibles For Sale: In Volume 5, Issue 06 of The Transactor

Magazine, on Page 5 ("Bits and Pieces "), you show a one line Decimal

to Binary Conversion. I believe I have a better way:

for i = 7 to 0 step -1: print sgn(x and 2ti);: next i

1 feel this is much less confusing, and obviously requires less state

ments. It also automatically spaces the bit values, making the binary

equivalent easier to read.

Incidently, we still have about 50 copies of Volume 4, Issue 05, "The

Reference Issue". If you have readers requesting this issue, please give

them our name, address, and telephone number.

Philip Strapp

Computer House, c/o 97 Sandys Street

Chatham, Ontario, N7L3P5, (519)354-7882

Thanks for the better binary conversion. Although the Reference Issue

has since been superceded by The Complete Commodore Inner Space

Anthology, the "Brown Bible "has become somewhat a collectors item

- we have absolutely none left.

Piracy vs. The Software Publishers Association: 1 have just

completed reading the open letter to user group presidents, etc. from

the executive director of the Software Publishers Association pub

lished in Compute! of March, 1985.1 am not a president or sysop but

this is my letter in response.

I am the newsletter editor and corresponding secretary of our Commo

dore users group and I was perhaps the most active person in the

organization of our group, TRACE, The Richmond Area Commodore

Enthusiasts, and one of the most interested and dedicated members.

Piracy is something that 1 personally am constantly fighting within our

group, and 1 am always crusading against it. I am a firm believer in the

free enterprise system and support any efforts to maintain it. The fight

against piracy is one of those efforts. The reason we have good

software available to us is that those persons with the genius and

talent to write software can and will be rewarded for their efforts. If

they can do the job, I hope that they make a million! I would like to see

all commercial software protected in the manner of Paper Clip from

Batteries Included. You need a key to make the program work. I love

it!

Persons who make copies for their own personal use or give copies to

others are not profiting monetarily from the act of piracy, but are as

guilty as if they had. They are stealing potential profits from the

rightful recipients. I believe that this group of people is the biggest

threat to the industry. They have little respect for the system of free

enterprise and if they were the software authors themselves, they

would holler the loudest.

One concept blatantly missing from the open letter was reference to

the responsibility of publishers in contributing to piracy by encourag

ing it. We get disks for our group at less than $1.50 each in large

quantities so we are aware of the actual cost of the media. The

question that comes to mind of many buyers is; Why is the cost of

software so high? The cost of copying a disk is slight compared to the

price of the finished product. Many can not justify the tremendous

mark-up. If prices were more reasonable, piracy would be less

tempting.

The Transactor Volume 6, lisue 02

The thing that is my pet peeve is that once software is no longer

available for sale it is legally no longer available at all. This stinks!

New owners do not have access to software that is no longer available

at retailers. A lot of software that was written for the Vic 20 and Atari

computers, for instance, is no longer available legally.

New owners are denied full use of their machines and enjoyment of a

lot of terrific software without piracy. Programs published in maga

zines are not available if the issues no longer exist. This also stinks! I

recently bought a PET computer and 1 would dearly love to be able to

get software for it legally. I have been offered copies by owners of

copy-righted software which 1 have reluctantly refused.

Recently 1 was developing a program for use by members of our group

and wanted to incorporate a program that 1 got from a magazine into

my program. In order to remain legal I had to completely re-write the

program using only the basic idea behind it. New owners of Commo

dore computers can not legally obtain this particular program because

it is no longer in print. 1 suppose that 1 could get permission from

somewhere to use it but the time and effort to do so would be

prohibitive. It is easier to re-write it.

What I suggest is that when a piece of software is no longer of realistic

potential profit to the authors and publishers, that it come under a

different status other than 'limbo'. I would love to see some way of

finding out what software has been available for my VIC and PET and

would be willing to pay whatever cost was necessary to obtain such

material. This, in turn, would provide additional profit to the correct

persons. Quick Brown Fox is a great word processor. I am using it to

write this letter. The company is out of business but the software is still

protected by law from being copied. Think about it. The company no

longer exists. The author can no longer receive any profits from the

sale of the package. Who does the law protect? Nobody! It only

prohibits people from benefiting from the particular software in

question. There should be an agency to act as a clearing house for

such software. I realise that it would require a lot of work but I feel that

with each publisher contributing, it could be done to the benefit of

everyone concerned. Perhaps efforts could be made to make changes

in the copy right laws to cover this problem. If the publishers would

aid the buyers in this respect it would be a great improvement.

T.R.A.C.E. (The Richmond Area Commodore Enthusiasts) support all

Commodore computers and their friends. We teach introductory

BASIC for new computerists, have an imaginative newsletter, and are

operating our own exciting bulletin board. Contact us by writing or

calling:

Bill Uhler, 2316 LaFayette Ave,

Richmond VA. 23228, (804) 266-0601

Public Right vs. Copyright: I am offended by the affrontery of

commercial software vendors who presume to know every detail of

what I, as a customer, want a program to do, including even the

optimum colour selections for best legibility on my monochrome

display, and by their "protection" schemes making it difficult to alter

routines i purchase, or to concatenate them for my particular pur

poses. When I purchase software and find it is undocumented, my

personal feeling is that the creator is UNDESERVING OF ANY PRO

TECTION, COPYRIGHT, OR OTHER. If accompanied by a proper

assembly listing, or a least enough information that I can find and

modify major routines, it is reasonable to consider that the supplier

has met a contractual obligation, and that I should respond in kind.

Those who deliberately hide the code of their routines so that I cannot

modify them oft-times inspire me to deliberately break their "protec

tion" schemes and disseminate their programmes as widely as I can!

In many respects, I consider the so called "protection" schemes for

commercial software in the same vein as the damnable failure on the

part of some vendors to provide a schematic with an electronic item, a

TV receiver, amateur receiver, microwave oven, computer, or the like.

Commercially produced software, like commercially made hardware,

must be a compromise to attempt to address the largest market. I have

no quarrel with that. But, why in Hell should I not be able to modify

the product I buy to best suit MY needs or desires, and be provided

with reasonably-expected data with which so to do. The "protection

ist", I believe, deserve to be done in - horribly!!!!! This is, by the way,

one of my PET peeves (pun intended) with Commodore - they even

deleted a part of their own CP/M book after preparation, deleting not

only the schematics, but critically needed code as well. BAH

I suppose that this should be expected, though, from a company that

publishes such lies as claiming an RS232 port which isn't, ASCII that

fails to meet the American Standard Code for Information Inter

change, etc.

B. Chandler Shaw, Granada Hills, California

Senior Staff Engineer with Allied Bendix Aerospace

/ seem to recall the possibly of a Canadian law that states "a

manufacturer is obligated to supply the schematics of an electronic

item on request". Perhaps a similar law could be effective for software

provided they don't legislate it prior to laws that safely protect manu

facturers from being clobbered by those with less than honourable

reasons for obtaining documents like commented source code, etc.

Feeling 'safe' is a nice feeling no matter what business you 're in. Once

programmers feel safe about releasing tender information, you'll no

doubt see a lot less reluctance.

The Copyright And You: Is there any possible way in which a

group such as ours (Fellowship Baptist Church, Racine, Wisconsin)

can share your programs legally? For instance, I own The Transactor

Volume 5 Issue 04, which contains "Autoswap". It is quite possible

that another member of our group would be interested in this

program, and yet as we understand the law, there is no legal way for

me to share it with him. I realize that it would be possible to apply to

you for specific permission to use the program, or even to purchase a

back issue of the magazine if it is available. Both of these options seem

quite cumbersome and prohibitive, however. Is there an alternative?

Irwin J. Cobb, Union Grove, Wisconsin

There is an alternative. Our standard policy on a program printed in

our magazine that we control copyright on is that the programs are

free to copy (give away), but not to sell (see page 2). Ifyou want to give

a copy ofour programs to eveiy friendyou have, we won't stop you. If

you want to sell a copy to someone, we ask that you don't. Besides, it's

sleazy. The respect you feel for us will ultimately determine the future

of this policy. More importantly it will mean that we continue to bring

you programs worthy of disseminating.

Although we do sell The Transactor Disk at a slight profit, it's only

enough to keep the service alive. There is no protection on Transactor

Disks and the same policy as above still applies. Giving away diskettes

can become a noticeable expense, but that s what we expect from you

in return for our permissiveness. Even justifying the cost of giving the

programs away constitutes selling the programs and it's only natural

that we 'II be unhappy. What's worse is if we find ourselves competing

against parasites, our enthusiasm will change to discouragement, and

the service will be discontinued.

The Transactor 10 Volume 6, Issue 02

How To Get The Most Out of CompuServe
A review by Robert Adler, Montreal, Quebec

Authors

Publisher

Price

Audience

: Charles Bowen

: Bantam Books, Inc.

666 Fifth Avenue

New York, NY 10103

1984, 278 pages

: $12.95 US ($14.95 Canadian)

: Modem users

Question: How do you get the Most Out of CompuServe?

Answer: Buy the book entitled; How to Get the Most

Out of CompuServe.

I have used CompuServe on many occasions. When I first bought my

modem, I used up my free hour of connect time in what seemed to be

5 minutes! Then, anxious to see what this vast information center

actually contains, 1 signed up with my VISA card. One day, 1 spent

hours looking for a certain program I had read was available in the

public domain databases of CompuServe. When I finally found it, 1

spent hours trying to download it. This cost me $20 an hour! For this

reason, 1 retired early as a CompuServe subscriber.

Many months later, a friend came over to my house and demanded

that I show him CompuServe so that he could leave his friend, who

lives in the United States, a message using electronic mail. We went

through many menus. We found the electronic mail section. We could

not understand what the menu options were all about. The help files

were a waste of time. 1 remembered that the best way to get an answer

to a problem on CompuServe is to use the feedback option. Using this

option, you can enter a question to the employees at CompuServe and

they usually respond, in plain English, within two days.

Two days later, I logged onto the service and was told that 1 had mail

waiting. I read the mail with delight and had all my questions briefly

answered. One of my questions was about getting some kind of

documentation on how to use the various features of CompuServe. It

was suggested that I buy a book entitled How to Get the Most Out of

CompuServe. Using the CompuServe employee's directions, I quickly

found the Electronic Mail (tm) where 1 gladly purchased the book.

It arrived a few weeks later, very well packaged. I digested all the

information in the book within a few days. I was sorry that I had never

bought this book before.

How to Get the Most Out of CompuServe serves as a tutorial manual

and a reference guide. The authors, Charles Bowen and David

Peyton, take readers by the hand and guide them through the various

services of CompuServe on four on-line tours. In the first tour of

CompuServe, the reader learns how to log on, use the menus, and

play some on-line games. The reader also learns how to search for a

particular service and a few very important commands.

The authors do not waste much time while the reader is on-line. They

wait until the reader has logged off for elaboration on certain topics.

In the second on-line tour, the reader is introduced to on-line

electronic conferencing. This is a feature whereby any number of

computer users can type messages to each other as if they were on an

enormous party line. The authors talk about the procedures, the

ethics, the commands, and the different sections of the conferencing

area.

In the third on-line tour, the reader is shown the National Bulletin

Board. The reader is shown how to read messages selectively, as well

as how to leave messages to others who use the service. In this tour,

the reader also learns how to use the CompuServe line editor. The

reader is also taken into his or her personal file area, a private 128k

storage section which is allocated to every CompuServe subscriber

The reader is told how to manage his or her personal disk space. In

this on-line tutorial, the reader is also taken through public-access, a

database of public domain programs, and shown how to download a

program. Many commands are learned in this on-line tutorial as is the

case with all the others.

In addition to explaining the many commands and features found on

CompuServe, the authors discuss shortcuts, and ways to customize

CompuServe to each user's likings. Readers are introduced to one of

the many Special Interest Groups (SIGs) in CompuServe and shown

many ways of finding or reading the messages contained in the SIG's

database(s).

What makes CompuServe so useful is not the ability to leave messages

and read messages but rather services such as shop at home, or bank

at home. The reader is shown such things as how to read stock quotes,

how to order a briefcase, and a demonstration of home banking.

Approaching the end of the book, the reader is given a short descrip

tion of many of the on-line games. This chapter should serve as a

reference to those looking for a fun game to play alone or with others

while on CompuServe.

The end of the book has a large appendix called the On-line Survival

Kit. It serves as a quick reference to those having trouble logging on,

or remembering commands. It also answers many commonly asked

questions from CompuServe subscribers. Among the many other

things compended into this section of the book is a way to contact the

authors on the service itself.

The main objective of the authors of this book are to teach the reader

how to use and get the most out of CompuServe. The authors do not

attempt to take the reader into every nook and cranny of Compu

Serve, but rather to train the reader how to find and efficiently utilize

the services offered on CompuServe. Because the book was written in

late 1983, some menu options may have changed slightly. The

authors have noted may points where CompuServe may have

changed a particular menu or added a new service. The reader is

taught to a level where he or she would not have to be concerned

about minor changes in the service.

The price of $12.95 (U.S.) is a bargain considering the time that will be

saved while on CompuServe. Each of the on-line tutorials should take

up to no more than one hour's time. I, personally, cheated and saved

four hours of connect time by using the simulated screen displays in

the book, since 1 was already familiar with a few of CompuServe's

services.

The book's fine writing, short chapters, and many simulated screen

displays make the book a pleasure to read. Using the detailed table of

contents, the seven page index, the "on-line survival kit", and an easy

way to contact the authors does not allow for questions to be left

unanswered. If you have a modem, and have never tried Compu

Serve, or have tried CompuServe but gave it up because of its complex

structure, buy this book!

The Transactor 11 Volume 6, Issue 02

TransBASIC

Installment #4

Nick Sullivan

Scarborough, Ont.

TransBASIC Parts 1 to 3 Summary:

Part I: The concept of TransBASIC - a custom command utility that allows one to

choose from a library only those commands that are necessary for a particular task.

Part 2: The structure of a TransBASIC module - each TransBASIC module follows a

format designed to make them simple to create and "mergeable" with other

modules.

Part 3: ROM routines used by TransBASIC - many modules make use of ROM

routines burried inside the Commodore 64. Part 3 explains how to use these routines

when creating new modules.

To take advantage ofthe TransBASIC commandsystem, one must first obtain a copy

of the TransBASIC Kernel. The Kernel is only about 500 bytes long, but the source

listing of the Kernel is quite long and can't be printed each time. Volume 5, Issue 05

(Hardware & Peripherals) contains the printed listing, however The Transactor Disk

for every issue will include this file, plus files from the current and all previous

TransBASIC articles.

The next issue, our Languages issue, will have a bumper TransBASIC Column. One

of Nick's original goals for TransBASIC was to generate user response. Well the

response has been fabulous! Letters have come in from around the world with new

TransBASIC commands for the library and next issue seems like the best possible

place for them. Keep them coming too - it won t be long and there will be as many

TransBASIC commands as Commodore BASIC commands. Also, next issue we 11

give a brief re-hash of the procedure for building a typical TransBASIC from the

commands published so far. - M.Ed

Using Numeric Expressions

The most powerful set of routines in Commodore BASIC is the

one responsible for the evaluation of numeric expressions. Are

you a machine language programmer? Try sitting down for an

hour or two and whip up a little code to evaluate an expression

such as this (don't forget to include complete error-checking):

peek(u + v/2) + sqr(abs(fnq(sin(c)))/a(u))-len("YIPE!")

You will find that this is not an easy task, yet there are many

programming situations in which one would like to have an

evaluation routine that would allow such complex expressions.

It is nice, in those situations, to make use of the following

instruction, which does all the work for you:

JSR $AD8A

The routine entered at $AD8A in the Commodore 64 BASIC

ROM does several things. It reads a BASIC expression from the

input stream (whether in program or direct mode), checks that

it is of numeric type (or a SYNTAX ERROR ensues), and

evaluates it. The result is left in the area of zero page called

Floating Point Accumulator #1 (FPA *1), where it is accessible

to other routines. Arithmetic operators, function calls, defined

functions and nesting are automatically dealt with along the

way.

Evaluating the expression is only a first step. If you have

floating point arithmetic to do, now is the time, since numeric

functions and operations act upon the value in FPA *\. If you

want to reduce the floating point value to a 16-bit or 8-bit

integer, that is also possible by calling the appropriate routine

The Transactor 12 Volume 6, Issue 02

(for an extensive list see TransBASIC Installment #3 in the last

issue).

Suppose, for instance, that we decided to write a TransBASIC

statement called HEX? (pronounced hex-print) to print the

hexadecimal equivalent of a 16-bit integer in decimal form. If

we typed 'HEX? 49152', the computer would respond '$C000'; if

we typed 'HEX? ABS(U*10)', the expression 'ABS(IMO)' would

be evaluated, and the corresponding hex value given. How

would we go about writing such a statement?

The first step would be to put the HEX? keyword on an

available line in the TransBASIC statement keyword list (for a

discussion of available line ranges in source code see TransBA

SIC Installment *2). Let's use line 500. We have to remember

that the last character of the keyword has to be shifted (high bit

set). The last character of HEX? is the question-mark with an

ASCII value of $3F. Setting the high bit gives a value of $BF,

thus:

500 .ASC "HEX": .BYTE$BF

The address of the execution routine should be on a line whose

number is greater by one thousand than the keyword line.

We'll call the execution routine 'HEX'. Remember that we have

to subtract one from the address owing to the way that Trans

BASIC routines are invoked:

1500 .WORD HEX-1

All that remains is to write the execution routine itself. When

we enter the routine, the CHRGET pointer will be pointing to

the first non-blank character following the keyword - the first

byte of our numeric expression. To evaluate that expression,

and store the result in FPA *1, we call BASIC'S expression

evaluator as described above:

50000 HEX JSR $AD8A

Following this call the CHRGET pointer is directed to the first

character following the evaluated expression. This will presum

ably be a statement terminator — either a colon or a zero-byte

— since no further parameters are expected.

Now we want to turn the floating point value into a 16-bit

integer. Looking through the list of ROM routines in the last

issue we find the following entry:

47095 $B7F7

Now all we need is a stock routine to convert a 16-bit number

into hex form. We begin by outputting the dollar sign:

50004

50006

50008

50010

50012

50014

50016

50018

50020

50022

50024

50026

50028

50030

50032

50034

50036

50038

50040

LDA

JSR

LDA

JSR

LDA

HE1 PHA

LSR

LSR

LSR

LSR

JSR

PLA

AND

HE2 CMP

BCC

ADC

HE3 ADC

JMP

* ■ $ ■

$FFD2

$15

HE1

$14

HE2

#$0F

#$0A

HE3

*6

#$30

$FFD2

That's all there is to it. The HEX? statement can be written up as

a module and added to your TransBASIC library, if you like,

although my preference would be to rewrite it as part of a

module of numeric conversion functions like those provided in

BASIC 3.5 (Plus/4 and C-16). The best part of it is that the full

power of the BASIC expression evaluator will be effortlessly

applied to the expression part of the command.

Postscripts

As was pointed out in Transbloopers in the last issue, the

listings for the CURSOR POSITION module were not given (as

promised) in Installment #2, but did make it into Installment

*3. Also, some readers have written to point out that the shifted

bracket character ($A8) was omitted from the functions CHECK

and AWAIT in the 'CHECK & AWAIT' module in Installment #2.

If you haven't caught it yet, change line 602 to read:

602 .asc "check": ,byte$a8: .asc "await": ,byte$A8

One final error occurred not in the magazine but on at least

some copies of the disk, in the short boot program that loads

"TB/ADD.OBJ" and "TB/KERNEL". The error is that "TB/

ADD.OBJ" is referred to as "TB/ADD.M", leading to a 'FILE

NOT FOUND' error when the program is run.

Convert the number in FPA #1 to an unsigned integer in .Y (low Lastly, I want to thank those readers who have sent me their

byte) and .A (high byte), and in $14/15.

This appears to be exactly what we need. Let's do it.

50002 JSR $B7F7

letters with comments on and ideas for TransBASIC. Several

modules contributed by readers are now being edited into the

TransBASIC library and will appear in future columns. More

contributions are always welcome — please don't hesitate to

write.

The Transactor 13 Volume 6, Issue 02

New Commands

This part of the TransBASIC column is devoted to describing

the new commands that will be added each issue. The descrip

tions follow a standard format.

The first line gives the commands keyword, the type (statement

or function), and a three digit serial number.

The second line gives the line range allotted to the execution

routine for the command.

The third line gives the module in which the command is

included.

The fourth line (and the following lines, if necessary) demon

strates the command syntax.

The remaining lines describe the command.

STRIP$((Type: Function Cat *: 045)

Line Range: 3984-4090

Module: STRIP & CLEAN

Example:

A$ = STRIP$(" TWO BURGHERS, THREE SHEIKS")

The argument string is returned stripped of everything except

alphanumerics; all alphabetic characters are converted to

lower case: " twoburghersthreesheiks".

CLEAN$((Type: Function Cat #: 046)

Line Range: 3988-4090

Module: STRIP & CLEAN

Example:

Q$ = CLEAN$(" TRANSIENT'S DENTAL MEDITATION?!")

The argument string is returned stripped of everything except

alphanumerics and blanks. Alphabetic characters are con

verted to lower case, and multiple blanks are reduced to single

blanks: " transients dental meditation".

USCROL (Type: Statement Cat#: 067)

Line Range: 5260-5644

In Module: SCROLLS

Example: USCROL 12,18,6,30

Example: USCROL/0,24,0,39

A rectangular area on the screen, defined by four numerical

parameters, is scrolled upwards one character row. If a slash

character is present, as in the second example, the top row of

the scroll area is moved into the space occupied by the bottom

row before the scroll; that is, the scroll includes 'wraparound'. If

the slash character is absent, the top row vanishes and the

bottom row is filled with blanks. The significance of the

numerical parameters is explained under DEFWDW below.

Both colour memory and character memory (the video matrix)

are scrolled.

DSCROL (Type: Statement Cat *: 068)

Line Range: 5264-5644

In Module: SCROLLS

Example: DSCROL 3,17,11;39

A rectangular area is scrolled downwards on the screen one

character row. For the significance of the the numerical param

eters and of the optional slash character, consult 067/USCROL.

LSCROL (Type: Statement Cat *: 069)

Line Range: 5268-5644

In Module: SCROLLS

Example: LSCROL/0;1,0;20

A rectangular area is scrolled leftwards on the screen one

character row. For the significance of the the numerical param

eters and of the optional slash character, consult 067/USCROL.

RSCROL (Type: Statement Cat *: 070)

Line Range: 5272-5644

In Module: SCROLLS

Example: RSCROL/0; 11,5,25

A rectangular area is scrolled rightwards on the screen one

character row. For the significance of the numerical parameters

and of the optional slash character, consult 067/USCROL.

DEFWDW is a routine used by the scroll commands; it is also

available for use by other commands if required. Four parame

ters in the form of numerical expressions are fetched from the

input stream to define a rectangular area on the screen. The

first and third parameters specify the row and column of the top

left corner of the rectangle, numbering from 0 to 24 and 0 to 39

respectively. If the first parameter is followed by a comma, then

the second parameter is taken to be the bottom row of the

rectangle. If the third parameter is followed by a comma, then

the fourth parameter is taken to be the rightmost column of the

rectangle. If the first parameter is followed by a semicolon

instead of a comma, the second parameter is taken to be the

depth of the area to be scrolled, numbering from 1 to 25. If the

third parameter is followed by a semicolon instead of a comma,

the fourth parameter is taken to be the width of the area to be

scrolled, numbering from 1 to 40. The memory address of the

top left corner of the rectangle is contained in a word labelled

CORNER. The corresponding address in colour memory is in a

word labelled COLCOR. The depth and width of the area, now

counting from 0 to 24 and from 0 to 39, are returned in the

byte-size locations DEPTH and WIDTH respectively.

The Transactor 14 Volume 6, Issue 02

LE

FH

DH

HH

JE

JH

NJ

LI

EL

NH

MH

PM

Al

LD

Cl

OA

CJ

IH

HA

EM

JP

OB

FJ

Cl

OB

GM

IL

GE

HP

DG

KG

EH

01

DE

AC

NF

EC

OG

DN

LL

BN

KD

IH

HA

JE

KK

JC

LN

FM

GF

AP

NO

LC

PP

GO

PG

GP

AO

AO

EO

GE

OC

MN

BN

0 rerr

1 :

2 rerr

3:

4 rerr

5:

6 rerr

7 rerr

8 rerr

9:

Program 1

strip & clean (aug 29/84)

0 statements, 2 functions

keyword characters: 14

keyword routine

f/strip$(strip

f/clean$(clean

10 rem u/cifchr (2560/003)

11 rem u/cifnum (4092/047)

12:

13 rem

14:

609.

1609

asc "strip$": .byte$a8

.word strip-1,clean-1

2560cifchr cmp#$5b

2562

2564

2566

2568

2570

2572

3984

3986

3988

3990

3992

3994

3996

3998

4000

4002

4004

4006

4008

4010

4012

4014

4016

4018

4020

4022

4024

4026

4028

4030

4032

4034

4036

4038

4040

4042

4044

4046

4048

4050

4052

4054

4056

4058

4060

bcc cid

clc

bcc cic2

cid cmp #$41

cic2 rts

;

strip Ida #$80

,byte$2c

clean Ida #0

pha

jsr $aef4

jsr $b6a3

sta t3

pla

sta t4

txa

pha

tya

pha

Ida t3

jsr $b47d

pla

sta $23

pla

sta $22

stx $24

sty $25

Idx #0

stx t5

Idy #$ff

cln1 iny

cpy t3

beq cln4

Ida ($22),y

and #$7f

jsr cifchr

bcs cln2

jsr cifnum

bcs cln2

bit t4

bmi cln1

bvs cln1

cmp #$20

bne cln1

clc

4062 cln2 sta ($24.x)

line ser #

3984 045

3988 046

.asc "clean$": .byte$a8

;return carry set

;if accumulator

;contains

alphabetic

;strip - bit 7 set

;'bif

;clean - bit 7 clr

;saveflag

;eval string expr

;getstr len, addr

;save length

; get flag

;store it

;push address

;get length

;adjust b-o-s ptr

;pointerto input

; string at $22/23

; pointer to output

; string at $24/25

;init len counter

; - result string

;check if done

;get input char

;..unshift it

;..branch if it's

; alphabetic or

; numeric

;test flag

;strip - skip char

;skip mult spaces

;skip char if

; not a space

;space - carry clr

:charto outstring

GP

FD

FP

KE

PB

CC

CF

FL

PE

NO

HK

PL

ON

AH

BJ

EC

rn

CO

KP

NL

OH

OL

FH

JH

HH

KE

JH

NJ

CF

NB

ME

EE

PH

ML

OP

Cl

ND

El

NN

PP

FJ

AK

JC

CM

HE

NG

PA

BH

PD

AB

FF

HB

NG

AG

00

HL

KL

GC

NK

GD

OA

OK

BE

4064 Ida t4

4066 and #$80

4068 bcs cln3

4070 ora #$40

4072 cln3 sta t4

4074 inc t5

4076 inc $24

4078 bne cln1

4080 inc $25

4082 bne cln1

4084 cln4 Ida t5

4086 sta $61

4088 jmp $b4ca

4090;

4092 cifnum cmp #":"

4094 bcc cini
/lflQfi clr
HKJZJU OIU

4098 bcc cin2

4100 cini cmp#"0"

4102 cin2 rts

4104;

Program

0 rem scrolls (mar 30/85)

1 :

igetflag

;keephigh bit

;set bit 6 if char

; is a space

;bumpoutstr len

;bump pointer to

; output string

; then go for a

; new character

;get outstr len

;set up descriptor

;return carry set

;if accumulator

jConidirib numeric

2

2 rem 4 statements, 0 functions

3:

4 rem keyword characters: 24

5:

6 rem keyword routine

7 rem s/uscrol uscro

8 rem s/dscrol dscro

9 rem s/lscrol Iscro

10 rem s/rscrol rscro

11 :

12remu/by40 (5646/071)

13 rem u/defwdw (5668/072;

14:

16:

118 .asc "uscroLdscroL"

119 .asc "IscroLrscroL"

1118 .word uscro-1 ,dscro-1

1119 .word Iscro-1,rscro-1

5260 uscro Idx #$40

5262. byte $2c

5264 dscro Idx #$c0

5266 .byte $2c

5268 Iscro Idx #$00

5270 .byte $2c

5272 rscro Idx #$80

5274;

5276 stx scrdir

5278 Idx #0

5280 cmp #$ad

5282 bne scroi

5284 jsr $73

5286 Idx #$80

5288 scroi txa

5290 pha

5292 jsr defwdw

5294 pla

5296 sta t2

5298 Ida corner

5300 Idx corner+ 1

line ser#

5260 067

5264 068

5268 069

5272 070

;'bif

;save direction

;flag - no wrap

;slash / means wrap

;move past slash

;flag - wrap

;save wrap flag

;fetch window params

;screen address of

;top left corner of

The Transactor 15 Volume 6, Issue 02

IC

IB

EF

NJ

El

LD

Bl

KH

PJ

FG

PN

BO

CB

BP

NA

EO

Nl

LH

Al

FG

OD

EE

KH

IC

OC

JF

KD

PK

Kl

AJ

CF

IF

AN

HB

NB

IN

EK

NA

00

GJ

FA

BF

OF

II

OJ

NP

BN

MJ

Bl

IP

LC

PP

BF

BN

GH

AK

GL

CP

JO

EL

JJ

LO

FE

AO

IN

DE

5302

5304

5306

5308

5310

5312

5314

5316

5318scro2

5320

5322

5324

5326 scro3

5328

5330

5332

5334

5336

5338

5340

5342

5344

5346

5348

5350

5352 scro4

5354

5356 scro5

5358

5360

5362

5364

5366

5368

5370

5372 scro6

5374

5376

5378

5380 scro7

5382

5384

5386

5388

5390

5392

5394

5396

5398

5400

5402

5404 scro8

5406

5408 scro9

5410

5412

5414

5416

5418

5420

5422

5424

5426

5428scro10

5430

5432

Idy

sta

sta

stx

sty

bit

bvc

jmp

Idx

Idy

beq

Idy

Ida

sta

Ida

sta

inx

Ida

clc

adc

sta

sta

bcc

inc

inc

dec

bpl

sec

Ida

sbc

sta

sta

bcs

dec

dec

dex

bmi

Idy

bne

cpy

beq

iny

Ida

pha

Ida

dey

sta

pla

sta

iny

bne

Idy

beq

dey

Ida

pha

Ida

iny

sta

pia

sta

dey

bne

Ida

pha

Ida

colcor + 1

t3

t5

t4

tfi

scrdir

scro2

scro14

#0

scrdir

scro3

width

(t3),y

buffer, x

(t5),y

colbuf.x

t3

#$28

t3

t5

scro4

t4

t6

depth

scro3

t3

#$28

t3

t5

scro6

t4

t6

scro13

scrdir

scro8

width

scrc-10

(t3),y

(t5),y

(t5),y

(t3),y

scro7

width

scrolO

(t3),y

(t5),y

(t5),y

(t3),y

scro9

buffer.x

colbuf.x

;scroll area to t3/t4

;colour memory

iaddress to t5/t6

horizontal scroll

;vertical scroll

;init buffer ptr

;init column ptr

; for scroll dir

;put rt col char

; in buffer

;put rt col coir

; in buffer

;bump buffer ptr

;set screen and

; colour pointers

; to next row

;count down depth

;save whole column

;set screen and

; colour pointers

; to previous row

;dec buffer ptr

;to count columns

;scroll right if

;scrdir non-zero

;skip if whole

; row scrolled

;get screen byte

;get screen byte

;get colour byte

;move left

;put colour byte

; put screen byte

;do another

;skip if width 0

;get screen byte

;get colour byte

;move right

;put colour byte

; put screen byte

;do another

;recover right

; col screen,

; coir, data

EG

KK

FF

JJ

EG

CF

OM

BF

AM

HH

BJ

JB

BE

DC

HG

CH

OF

MM

BD

AM

GM

PH

KH

MJ

MM

FE

Cl

CD

IN

KN

EM

AM

DN

IL

JD

MM

MJ

DK

EL

KK

EC

NO

CC

EB

Dl

LM

KL

PF

CM

JG

FO

EC

MC

EN

NE

JC

OG

GH

CN

HH

KN

Bl

NL

BG

JG

OE

5434

5436

5438

5440

5442

5444

5446

5448

5450

5452

5454

5456

5458

5460

5462

5464

5466

5468

5470

5472

5474

5476

5478

5480

5482

5484

5486

5488

5490

5492

5494

5496

5498

5500

5502

5504

5506

5508

5510

5512

5514

5516

5518

5520

5522

5524

5526

5528

5530

5532

5534

5536

5538

5540

5542

5544

5546

5548

5550

5552

5554

5556

5558

5560

5562

5564

scroi 1

scro12

scro13

scro14

scroi5

scro16

scro17

scro18

scro19

bit

bmi

pla

Ida

bne

sta

pla

sta

clc

bcc

rts

Ida

and

tay

beq

Idy

jsr

clc

adc

sta

sta

php

txa

adc

sta

pip

txa

adc

sta

Idy

Ida

sta

Ida

sta

dey

bpl

Idx

dex

bmi

Ida

bit

bpl

sec

sbc

sta

sta

Ida

sta

Ida

sta

bcs

dec

dec

bne

clc

adc

sta

sta

Ida

sta

Ida

sta

bcc

inc

nc

Idy

t2

scroi1

#$20

scro12

(t5),y

(t3),y

scro5

scrdir

#$80

scro15

depth

by40

corner

t3

15

corner +1

t4

colcor + 1

t6

width

(t3),y
buffer.y

(t5),y

colbuf.y

scro16

depth

scro21

t3

scrdir

scro18

#$28

$22

$24

t4

$23

t6

$25

scro19

$23

$25

scro19

#$28

$22

$24

t4

$23

t6

$25

scro19

$23

$25

width

;test wrap flag

; branch to wrap

; clear stack

;load space

;put coir data

;putscrn data

;handle prev row

;get direction

;test hi bit

;upward scroll

; calculate

; offset

;convert to bottom

; left corner address

;save carry state

;get offset high byte

;recall carry state

;get offset high byte

;copy row to buffer

; for later wrap

; if needed

;skip when done

;get direction

;branch to scroll up

;calculate addresses

; for row above -

; screen in $22/23

; colour in $24/25

calculate addresses

; for row below

;no scroll if

The Transactor 16 Volume 6, Issue 02

GA

BF

CJ

01

NF

Dl

LA

Dl

0L

ED

LF

GD

FG

OD

GA

BA

HK

DH

IJ

FD

DO

IA

GN

LN

OM

OG

KH

PG

HL

ND

GO

CH

EK

GO

IH

AO

MO

OH

CO

Cl

LL

JJ

FD

JD

EM

BO

NP

IP

KC

FO

IJ

EM

LB

KD

OB

LE

KO

PI

OD

DH

OE

OK

KO

IE

DA

IF

5566

5568 scro20

5570

5572

5574

5576

5578

5580

5582

5584

5586

5588

5590

5592

5594

5596 scro21

5598 scro22

5600

5602

5604

5606

5608

5610

5612

5614

5616scro23

5618

5620

5622 scro24

5624

5626

5628;

5630 buffer

5632

5634;

5636 colbuf

5638

5640;

5642 scrdir

5644;

5646 by40

5648

5650 byf1

5652

5654

5656

5658

5660

5662

5664 byf2

5666;

beq scro22

Ida ($22),y

sta (t3),y

Ida ($24),y

sta (t5),y

dey

bpl scro20

Ida $22

sta t3

sta t5

Ida $23

sta t4

Ida $25

sta t6

bne scro17

Idy width

Ida buffer.y

pha

Ida colbuf.y

bit t2

bmi scro23

pla

Ida #$20

sta (t3),y

bne scro24

sta (t5),y

pla

sta (t3),y

dey

bpl scro22

rts

= *

= * + $28

= *

= * + $28

.byteO

Ida #0

tax

cpy #0

beq byf2

dey

adc #$27

bcc byf1

inx

bne byf1

rts

5668 defwdw jsr $b79e

5670

5672

5674

5676

5678

5680

5682

5684 dfw1

5686

5688

5690

5692

5694

5696

stx corner

jsr $79

cmp #";"

bne dfw2

jsr $b79b

dex

bmi dfw3

stx depth

Ida corner

clc

adc depth

bcs dfw3

cmp #$19

bcs dfw3

; width zero

;scroll

; current row

;target row

; becomes source row

;fetch data from

; wrap buffer

;set aside

;colour data too

;test for wrap

;wrap required

;otherwise leave

; colour same

; and put space

; on screen

;put wrap colour

;put wrap char

;handle next col

;area to save screen row

;or col to wrap around

;area to save colour row

;or col to wrap around

;scroll direction

;16-bit accumulator

; set to zero

;exitwhen done

countdown

;add 40 (carry is set)

;get corner row

;check separator

;get window depth

; adjust

;must be some depth

;get corner row

;8—bit overflow

;check depth

;deeper than screen

AE

FJ

OP

MP

LM

FL

JB

Cl

GF

HB

LG

ED

MG

AF

Nl

OB

BM

IK

AK

PD

AO

HG

KH

OP

KE

OH

LM

FG

OC

NP

NB

LE

EM

OH

LO

KA

LJ

AM

MJ

MG

BK

KB

KE

DD

AB

MC

El

HJ

IB

BA

MN

EJ

AC

GP

MO

IJ

OF

KC

5698

5700 dfw2

5702

5704

5706

5708

5710

5712

5714 dfw3

5716dfw4

5718

5720

5722

5724

5726

5728

5730

5732

5734 dfw5

5736

5738

5740

5742

5744

5746

5748

5750 dfw6

5752

5754

5756

5758

5760

5762

5764

5766 dfw7

5768

5770

5772

5774

5776

5778 dfw8

5780

5782

5784

5786

5788

5790

5792

5794

5796

5798

5800

5802;

5804 depth

5806 width

5808 corner

5810colcor

5812;

bcc dfw4

jsr $aefd

jsr $b79e

txa

sec

sbc corner

tax

bcs dfw1

jsr $b248

jsr $aefd

jsr $b79e

stx corner+ 1

jsr $79

cmp#";"

bne dfw6

jsr $b79b

dex

bmi dfw3

stx width

Ida corner+ 1

clc

adc width

bcs dfw3

cmp #$28

bcs dfw3

bcc dfw7

jsr $aefd

jsr $b79e

txa

sec

sbc corner+ 1

tax

bcs dfw5

bcc dfw3

Idy corner

jsr by40

clc

adc corner +1

bcc dfw8

inx

sta corner

sta colcor

txa

pha

clc

adc #$d8

sta colcor +1

pla

clc

adc 648

sta corner +1

rts

.byteO

.byteO

.word 0

.word 0

;must be comma

;get bottom row

;check>= top row

;skip comma

;get corner column

;check separator

;get window width

;adjust

;must be some width

;get corner col

;check width

;8—bit overflow

;wider than screen

;must be comma

;get right column

;check>= left col

;get corner row

;calc scrn offset

;add column

;sav offset lo byt

; scrn and coir

;hold high byte

;add coir ram base

;save colour addr

;get offset hi byte

;add screen base

;save screen addr

;registers to

; return window

; parameters to

; calling routine

The Transactor 17 Volume 6, Issue 02

Telecomputing:

From Concept to Connect.

This article is actually four articles combined into one. Some facts are repeated from one

to the next, but by the time you get to the end you will have assimilated the facts enough

times that when you hear them again, you will say to yourself "I knew that", which is the

nicest part about learning.

The first part, by Jeff Goebel, conceptualizes telecomputing and gives you and idea of

what to expect as you progress toward your individual interests.

In the second part, Geoffrey Welsh describes the BBS in a little more detail, particularly

the "Punter" type BBS written by Steve Punter, author of the WordPro series of

wordprocessor programs and a well-known pioneer of the BBS for Commodore users.

Part three offers still more terminology with tips for spotting communications problems if

and/or when you encounter them. It seems our Robert Dray has experienced all the

most common misfortunes, and his contribution should indeed save even more serious

head-scratching.

Mario Marrello winds it up with part four and a study of the RS232C standard of

communicating serial data.

An Introduction to MODEMS
Jeff Goebel, Georgetown, Ontario

In this article, I look into some of the myths of owning and

using a modem. If you have just bought a modem, and don't

know what it does, or if you are still toying with the idea, then

read on.

First of all; what is a modem? Simply put, a modem is an

interface. You have an interface to your disk drive and you may

have an interface to your printer. A modem is an interface to

another computer. It allows you to connect your computer up

to someone elses computer and transfer information between

the two. The main difference between a modem, and some

other interface, is that instead of a simple cable; with a modem,

the telephone lines are used.

With a modem, you will discover a whole new use for your

computer. It is unlike any other accessory you can buy. The

modem is FUN, HELPFUL and useful. Can you say your printer

is FUN, or your joystick is HELPFUL? Using a modem allows

you to use other people's computers from your own home, and

to benefit from their knowledge. It also allows many people to

operate their business more effectively by opening up the

possibility to work from their own den, or on location.

As stated above, the modem is "just another interface". It's

actually very similar to operating your disk drive. You open up

a channel to your modem and input data and output data just

like you would to a sequential file on the disk drive or cassette.

The main thing to remember is that you'll be interfacing two

computers together, not a computer to an accessory. What I

mean by this is, the computer at the OTHER END of your

connection must WANT to communicate, and it must be set up

so that telecommunication is possible. Don't believe all these

TV shows you see where kids with modems can call up all the

computers around the world and print out messages on their

screens. This is fiction. In order to establish any connection at

all, the computer on the other end of the line (referred to as the

HOST COMPUTER) must be expecting your call. If you bought

your modem so you could link up with your office computer

and do your work at home, I hope you first checked that your

office has already set up a system that allows that type of

transacting.

So what kind of things can I do with my modem? In nearly

every city there is at least one "BULLETIN BOARD SYSTEM"

(often abbrieviated to BBS) which is either free to use or asks a

small yearly membership fee. These systems are simply com

puters that have been set up to answer the phone and provide a

message service. In the Toronto local dialing area, for example,

there are over 40 numbers, and more and more people are

opening up their own BBS systems all the time. You dial up

The Transactor 18 Volume 6, Issue 02

these computers and they allow you to read and send messages

or private letters.

If you need to know something but you don't know who to ask,

you can leave the request on a public BBS and call back later. . .

you'll probably be flooded by several messages from other

modem owners who know the answer. An example: You are

playing an adventure game and you've come to a standstill.

You know that you've got to get a box open, but you've tried

everything and nothing seems to work. All you have to do is

pick up your phone; dial a BBS and leave your name and

question; "How do I get the blue box open?". Later that same

day you call back and see if anyone has left you the answer. At

the same time, you may see some questions you know the

answer to. You may even get involved in a detailed political

debate with some of the other users.

Most BBS systems offer other features as well as message

reading and posting. Some systems in Toronto even have the

provision to actually LOAD and SAVE programs to and from

your disk drive over the phone. Most offer a variety of Bulletins.

Everything from IN STORE SPECIALS to movie and restaurant

reviews. There are BBS's that specialize in GAMES, MEDICINE,

HUMOUR, COMPUTERS, HAM RADIOS and just about any

other specific interests.

Apart from this type of computer service, there are also some

BIG systems which charge you for the time you spend on them.

Systems like these do MUCH MUCH more. COMPUSERVE, one

of the most popular, has literally HUNDREDS of things to do on

line. Larger systems like this one offer the unique opportunity

to actually CHAT with other users because COMPUSERVE

allows more than one user to access at once. You can be ON

LINE with thousands of other users all across Canada and the

United states. There's even a C.B. simulation that allows you to

"talk" to people as far away as Hawaii or Alaska. Systems like

these run on huge mainframe computers.

These are just some of the things you can do with your modem

TONIGHT! Modems have other uses too. If you want more

ideas on what to use your modem for, ask the people on the

BBS systems what they use their modems for. I'm sure you'll

get lots of answers back. Many owners have really specific uses

for their modems, others use them JUST for the BBS systems.

In Toronto, most of the universities allow their computer

science students to access the computers from home using

modems.

Now you'll have to decide whether the modem life is the life for

you. Some people love it, some people never use it. With

modem prices starting as low as $149 (for the Commodore

VICMODEM), you really don't have much to lose. If you do buy

a modem and find little use for it; call up a BBS and place a

classified ad on it: MODEM FOR SALE! It'll sell in no time. If

you like, you can leave messages for me on many of the local

Toronto BBS systems. Just look for JEFF GOEBEL in the users

list. HAPPY MODEMING! •

Using A Modem

and The "Punter BBS"
Geoffrey Welsh, Islington, Ontario

Commodore has made using a modem easy and inexpensive

with their 1600 line of modems. Still, however, many Commo

dore users are blind to the advantages using a modem can give

you. Once you have a modem, not only can you use it for

electronic mail (to ask questions, trade ideas, or advertise that

used 1541 you'd like to sell), but also to get the latest computer

news and to trade public domain programs. Many of the

programs in the TPUG library (especially the C-64 library) are

available through local bulletin board systems ("BBS's").

What IS a Modem? A Non-Technical Explanation

MODEM or MOdulator - DEModulator is simply a device that

"translates" electronic signals to sound and back again. Those

of you who study digital electronics know that there are two

logic "levels", 0 and 1. The modem transmits one frequency for

0, and another for 1. Similarly, when it receives certain tones, it

sends a corresponding logic signal to the computer. In this way,

digital signals can be sent between computers without cables -

using only sound. Fortunately, we all have access to a sound

network: the telephone.

Responsibilities

I know that some of you will try some of the things I will be

discussing here, so I thought I'd better discuss responsibilites

now. Using a modem also involves using the telephone, so you

must be prepared for wrong numbers, prank numbers, and

numerous other mishaps. As much as I hate to think that

readers need lessons in basic telephone manners, my experi

ence has shown that the nicest people can forget their man

ners.

Make sure you call during the hours that the BBS is up. If no

hours are given, assume it operates from 7 PM on. Never trust

numbers given to you. If you have an autodialler, do not use it

the first time you call, just in case the number was wrong or

misprinted, or the bulletin board has moved. First time, call at a

reasonable time (before 10 PM) so you won't disturb anyone

any more than you have to. If a person does answer, have the

courtesy to say hello, and excuse yourself for bothering them.

There is nothing more annoying than answering the telephone

and having the person on the other end hang up as soon as

they know a computer didn't answer! (And besides, even at

long distance, the minimum charge is for one whole minute

whether you use it up or not. - M.Ed.)

There is a misconception that bulletin boards are a great place

to swap commercial software and otherwise contribute to

piracy. Most SYSOPs (SYStem OPerators) go out of their way to

make sure that no copyright programs are sent to or taken from

the bulletin board, and that no one uses the message system to

The Transactor 19 Volume 6, Issue 02

arrange meetings for the purpose of piracy. If the program is

worth trading and it isn't copyrighted, upload (send) it to the

bulletin board!

Getting down to Business: How to Use BBSes

How to dial and connect to a BBS varies from modem to

modem, so I cannot go into it here. Read carefully the docu

mentation that comes with your modem. Once you've done it

once, though, it will become second nature.

For the sake of simplicity, I will now discuss how to use PET

and Commodore-64 based bulletin board systems written by

Steve Punter. There are a lot of these around, and they are all

similar. I will discuss all the latest features (including those now

being developed), but be warned that most BBSes do not have

the latest versions of the program, and some of these features

may not yet be available by the time you read this.

Once you and the BBS have been connected, you must tell the

BBS that you are there and are ready to sign on. To do this,

simply press RETURN. The BBS will introduce itself - it will

display its name, the names of those running it, the name of the

programs's author, and the time. It will ask you for your first

name. Enter it and press RETURN (capital letters are NOT

important). It will then ask for your last name, which you enter

in the same way. If you make a mistake entering your first

name, just type RETURN without entering anything when the

BBS askas for your last name, and it will go back to your first

name. Once it has your name, the BBS will search for you in its

user list. Of course, if you have never used that BBS before, it

won't find you. NOTE: If the board is private, it may ask for a

password, or it may tactfully tell you that the BBS is private, and

hang up on you.

If the BBS finds your name (because you've been on before), it

will ask for your user code. Enter it and skip the next two

paragraphs.

If the BBS can't find your name, it will ask you if this is your first

time on the BBS. If you press 'n' and RETURN, it will ask for

your name again (if you have been on the BBS before and it

can't find you, it figures that you mispelled your name). Be

cause it's your first time, press 'y' and RETURN. The BBS will

ask you for your city & province and a user code so that, in the

future, when someone signs on under your name the BBS will

know it's you and not an imposter. Remember your user code!

You cannot sign onto that BBS again for a while if you forget it! 1

say "for a while" because most SYSOPs will routinely delete

inactive users from the user list.

After you are finished entering your city and code and you have

verified that these are correct, the BBS will show you a list of

the commands that work on that BBS. This will vary, depend

ing on how old the BBS program version is, and how many

custom modifications the system operator has made to it.

Once you have "logged on", the BBS will tell you how many

active messages there are, and its hours of operation. Then,

what is called an "opening bulletin" is displayed. This is like

the operator's "column", and is usually dated and contains

important information about what's going on. Make sure you

read it every time a new one comes out. To stop the transmis

sion, hit 's'. To resume it, hit 'c' for continue. If this doesn't

work, hit 's' again. If, after stopping the transmission, you

decide not to read it all, hit 'a' for abort.

After you have read (or aborted) the opening bulletin, the BBS

will tell you when you last signed on, and how many messages

there are waiting for you. Then the BBS will prompt for

"Command" and wait for your instruction.

Editor's Note

At this point an whole new realm lies ahead of you. To explain

the details would take all the fun away. Instead, you should try

one first-hand. Follow the steps that Geoff has given here and

your initiation will be much less intimidating - the main reason

I find most computerists are reluctant to approach the local

BBS. One thing is certain. . . your first call will determine how

many more you make. Nine times out of ten, a new addiction

will develope. "Telecomputeritis" afflicts computer users of all

ages. In its early stages the symptoms are signing on to as many

local boards as possible, followed by checking the phone

company for the hours of reduced long distance charges. In its

advanced stages you'll notice an urge to start your own BBS

and exploring the possibilities for improvements. Seriously,

though, it is a lot of fun, something everyone can't try just

once. •

Data Communications
Robert W. Dray, Peterborough, Ontario

One of the more powerful uses of a microcomputer is for data

communications. Your humble home computer can "talk

with", and use the facilities of the large mainframe computers,

or it can access some of the large data bases to find answers to

almost any question.

There must be a link between two computers if they are to

communicate with one another. This link may be one of the

following: a series of copper wires joining the computers

directly, the local telephone wires, a coaxial cable, a fiber optics

cable, microwave networks or even satellites. If the communi

cations is over long distances, it is likely that the signal is

carried by several of these.

The digital signal produced by the computer is in the form of a

series of discrete on or off signals, while the telephones are set

up to carry sounds, which consist of continually varying tones.

To convert the computer's digital signal to a form that can be

carried by the telephone lines, requires a MODEM.

This device MODulates or modifies a carrier tone that can be

carried by the phone lines. It then DEModulates the signal it

receives from the phone, back to a digital form that can be used

The Transactor 20 Volume 6, Issue 02

by the computer. If the modem is an acoustic coupler, it

actually has a little speaker that creates the modified tone and a

microphone that hears the incoming tone. The hand-set of the

phone fits into two rubber cups so that the modem and the

phone can "talk" to each other.

Another type of modem is the direct connect variety in which

the modem plugs into the wall jack, and the phone plugs into

the modem. A switch on the modem allows you to select the

normal phone use, or connect the computer to the phone line.

The direct connect modems are less susceptible to interference

from such sources as noise in the room, but they are a little less

portable since they require jacks or some other means of direct

connection, as opposed to simply resting the phone in the

rubber cups.

You can get modems that will automatically answer the phone,

or even dial for you, but all modems take a digital signal from

the computer and convert it to a signal that can be sent over the

phone lines, and then convert it back.

The rate at which information is sent can be varied from less

than 50 bits per second, (baud) to greater than 200,000 baud.

Very high baud rates, would require very good quality com

munication links, such as fiber optics or microwave systems.

Most small systems use 300 or 1200 baud modems. The higher

speed modems are more expensive, but if you are paying for

the time that you are connected to another computer, it is nice

to have the data transferred very quickly. You would usually

dump the data directly to disk, then sign off. Once you are no

longer paying, you can look at the data at your leisure.

When computers send signals, each character usually consists

of: 1 start bit (this says that data is coming), the 7 bit ASCII code

(the actual data), a parity bit (more later), and finally 1 or 2 stop

bits (these say that "that's all"). Thus it may take 10 or 11 bits to

send one character, which means that 300 baud is about 30

characters per second.

The parity is set at one of the following: odd, even, mark, space,

or none. If parity is set at odd, then the parity bit is set so that

the total number of "on" bits is odd. If the signal sent is

1100101, so that there are 4 "on" bits, then the parity bit will be

'1' to make an odd total. If the parity had been set at even in this

example, the parity bit would be left as '0', since the number of

bits is already even.

The computer can use this as a check that the data wasn't

scrambled in transmission. Of course, if two bits were switched,

the parity would still check out and the mistake would be

missed, although there are other ways of watching for this

problem.

If parity is set at mark, the bit is always '1', and space is always

'0'. Sometimes the parity is set at none, and that bit is included

to make an 8 bit word, rather than a 7 bit word.

If your computer is working on even parity, and the one you are

talking to is working on odd parity, both machines will think

that everything they receive is wrong, and communication will

break down. In a similar manner, the length of the word may

be altered, and if the machines do not work under the same

rules, they will mix up stop, start and parity bits with the data

bits. Again, there is a breakdown in communications.

The links between the computers are classified as: simplex,

half duplex or full duplex. Simplex lines allow data to flow one

way only, while the other two allow two way flow of data. While

half duplex allows only one computer to talk at a time, a full

duplex line allows both to talk at the same time.

Most lines we use are full duplex, although there are reasons

why you may want to set your modem to half duplex. Most

mainframe computers assume full duplex lines, and they will

echo back whatever you send them. If your computer is set at

full duplex, it "expects" this echo, and therefore it does not

print to the screen when you press a key. Typing the letter Z,

will cause your computer to send a Z down the line, where it

will be echoed back by the "big guy". Your machine will then

print the echo on the screen. If the distances are not too great,

and you are not a speed typist, you will never notice the delay.

If the other computer does not echo back the signal, you will

see nothing on the screen when you type. You will see only

what the other computer sends. To solve this problem, set your

computer to half duplex. Now your machine does not expect

the echo, and so it prints directly to your screen whatever key

you press.

If the other computer is echoing, and you work on half duplex,

you will see the character on the screen that was printed when

you pressed the key, as well as the one printed when the echo

is received. Everything you type appears double on the screen.

When sending files, you have the option of sending an "end of

record" signal at the end of each record or not. If one of the

computers is expecting the signal, and the other is not sending,

there will be communication problems.

As you can see, there are many factors that must be in

agreement between two computers before they can success

fully communicate. For this reason, one should not be too

upset when your first attempt at talking with another computer

doesn't work.

Along with the modem, one needs a terminal program to

enable the computer to send and receive data. Some of these

program do not allow many of the items mentioned in this

article to be varied, and unless the other person has the same

program, you may have problems getting together.

There are many excellent communication programs available

such as PETCOM for the SuperPet, which allow you to vary

many of the settings and thus communicate with a wide variety

of other computers. If you haven't tried it yet, you have missed

a very enjoyable application of your computer. •

The Transactor 21 Volume 6, Issue 02

The MODEM and RS-232C
Mario Marrello, Rexdale, Ontario

The purpose of this article is to provide an introduction to

communications using a remote terminal and a modem. Mo

dem operation, proper set up procedures, and software consid

erations will be discussed.

In this article, the word terminal will represent the data trans

mitter; i.e. the terminal or terminal emulating computer. The

word computer will refer to the host computer that the terminal

or terminal emulating computer is talking to.

This article covers two topics. These are: 1) A discussion of the

theory behind modem operations; and 2) The most common

form of interfacing for data communications.(i.e. the RS232

standard).

Modems

The word MODEM is a contraction of two words; MOdulator

and DEModulater. To modulate means to adjust or vary tone or

pitch (as in a speaking voice), or to alter amplitude, frequency

or phase of a wave using a wave of a lower frequency to convey

a signal. Demodulation is the separation of the modulated

signal into the modulating wave and the wave carrying the

information for the terminal to process. As the names imply,

demodulation is just the opposite of modulation. For most

telephone modems, a form of frequency modulation is used.

But why bother with modulation at all?

The telephone lines have been set up to handle voice commun

ications. Therefore they can only handle a limited frequency

range. The high speed clicks that a computer uses to communi

cate will not carry over these lines, so it is necessary to convert

these clicks into something that the telephone lines can han

dle. The modulation process mixes in a lower frequency audio

signal, creating a signal that can be reliably transmitted over

phone lines. When the signal reaches its destination, it is

demodulated and the desired signal is separated from the

modulating frequency.

There are many different types of modems and communication

'protocols' but the one used most often by people with home

computers is a 300 baud modem with the BELL 103A type

protocol. This type of modem is designed to be used over

standard telephone lines (i.e. those that are used to transmit

voice). A discussion of the BELL 103A protocol follows.

With this type of telephone modem, there are two sets of

signals used. Each signal has two different tones designated Fl

and F2. Each of these tones is broken up into two more

individual tones - these are called 'mark' and 'space' and

represent the logic values 1 and 0 respectively.

In the originate mode, (originate meaning that this particular

modem is doing the calling) the transmitted tone is designated

as F1M (mark) and has a frequency of 1270 Hz. The other tone

is F1S (space) and has a frequency of 1070 Hz. In answer mode,

(the modem being called should be in this mode) the frequen

cies are F2M (2225 Hz) and F2S (2025 Hz). This type of

modulation is called 'frequency shift keying' (FSK), a special

ized form of FM (frequency modulation) which is similar to the

technique used for FM radios.

The BELL 103A type modem can be operated in half duplex

mode or full duplex mode. In half duplex mode, the signal is

sent but not returned by the host computer, therefore all

characters that appear on your screen must come directly from

your terminal. In full duplex mode, a character is first sent to

the host computer then returned to your terminal which finally

displays it on the screen. Thus the information you see on the

screen has already been seen and processed by the remote

computer. This is useful for error checking and implementing

special features, for example "hiding" passwords by not echo

ing back the characters.

(Editor's Note: There may be some confusion regarding use of

the terms "half duplex" and "full duplex". The definitions

above are commonly used, since data is usually echoed back

from the host computer in a full duplex system and echoed

locally by the modem or terminal in a half duplex system.

Usually, but not necessarily. The terms actually refer to the

communications circuits themselves, not the communications

protocols. The true definition of a full-duplex system is one

which allows data to be sent and received simultaneously;

BELL 103A type modems are full duplex, since they use sepa

rate frequencies for send and receive. In half-duplex communi

cations, the modem can either send or receive, but not at the

same time. (A third system exists called simplex, which allows

one way transmission only.) The system of printing characters

as they are echoed back from the host computer is called

"echoplexing". What's called "half duplex" mode on most

modems actually enables modem local copy, where the mo

dem echos everything back to the terminal locally. Alterna

tively, the terminal itself can print each character as the keys

are struck, and the modem need not echo locally - and thus

can be used in its "full duplex" mode. It all boils down to this: If

the host computer echos back everything it receives, your

modem doesn't have to echo - it should be set to "full duplex

mode ". If the host computer doesn 't echo back each character it

receives, the terminal itself must be set up for local copy, or the

modem may be set to "half duplex" mode where it echos back

locally.)

The RS232 Interface

The standard interface used in data communications is the

serial RS232C. This interface has an operating range of 0 to

20,000 baud synchronous and asynchronous. Synchronous

communications is used with systems that have special 'proto

cols'. Most IBM equipment uses this form of communication. It

is most suitable for sending large quantities of information at

once. Asynchronous communications is suited to sending

single characters. This is the type of communications available

with most 300 baud host computers such as a BBS.

The Transactor 22 Volume 6, Issue 02

The RS232C standard involves two connectors, a male and a

female. In general, (but not always) the female connector is

used on the DCE (data communications equipment, i.e. the

modem) and the male connector is on the DTE (data terminal

equipment i.e. the terminal)

Some other important information on the RS232C standard

follows:

- The recommended distance for an RS232 connection is about

50 feet, however, in practice much longer distances have

been used with no apparent problems.

- The signal level ranges from -25 V to +25 V.

- + 3 V to + 25 V is considered a ' 1' or mark.

- -3 V to -25 V is considered a '0' or space.

- For the control lines (see table), -3 to -25 is off, and + 3 to

+ 25 is on. The voltage levels of +25 or -25 volts are

considered extremes and a level of +/-15 V is more com

monly used.

The DB25 Connector

13 12 11 10 9 8 7 6 5 4 3 2 1

ooooooooooooo

\ooooooooooo o /

252423222120191817161514

Female Connector

The chart following is the pin-out configuration for the RS232C

standard using DB25 male and female connectors. Anyone

constructing a cable for an asynchronous modem should follow

these guidelines. DB25 type connectors are available every

where, but make sure your cable will fit when it's finished -

some cables will be male at one end, female at the other, but

cables with both ends identical are not unheard of.

It is not necessary to use all these pins when connecting an

RS232 line. The most important lines are pins 2,3,7 and 20.

Commonly, an RS232 cable has wires connecting pins 1

through 8 and 20, with pins 2 and 3 reversed between the two

ends. Thus pin 2, Transmit, goes to pin 3, Receive, from either

end, naturally. However, as with every rule there is an excep

tion; some manufacturers attempt to do you a favour by

reversing pins 2 and 3 before installing the connector. Al

though very uncommon, it can happen, which means you'll

need a cable that runs pin 2 to pin 2, pin 3 to pin 3. Of course

the end result is the same.

In some applications, such as localized transmissions (see

"Easy Intercomputer Connection" this issue), only pins 2, 3 and

7, Signal Ground, are used. As you require more accuracy and

flexibility, the other pins will enter the picture. Just how many

you need to connect will depend on the demands you make of

your particular communications link.

RS232C PIN CONFIGURATION

PIN LABEL

1 Protective ground

2 Transmitted data (TxD)

3 Received data (RxD)

4 Request to send (RTS)

5 Clear to send (CTS)

6 Data set ready (DSR)

7 Signal ground

8 Received line signal detector

9 Not assigned

10 Not assigned

11 Not assigned

12 Secondary Received line signal detector

13 Secondary clear to send chan nel.

14 Secondary transmitted data

15 Transmit Clock

16 Secondary received data

17 Receiver signal element timing.

18 Not assigned

19 Secondary request to send

20 Data terminal ready (DTR)

21 Signal quality

22 Ring indicator (RI)

23 Data signal rate selector. (DCE)

24 Transmitter signal element timing (DTE)

25 Busy

COMMENT

Common physical equipment ground.

Data sent to DCE.

Data received from the DCE.

Turns on modem's transmit carrier.

Indicates the modems transmit carrier is on.

Indicates the modem is on.

Ground for signal carrying circuit.

Asserted when the modem hears a carrier.

Used by some high speed equipment.

Used by systems with a secondary channel.

Secondary transmitted data.

For external transmit frequency generator

Secondary received data.

Timing signal, synchronous modems only.

Turns on secondary carrier.

Asserted by terminal when ready to use modem.

Used by some fancy modems.

For electrically detecting a phone call (auto-answer modems)

Make a connection in high speed mode.

Timing signal sent to the DCE.

May be used by auto-originate modem.

The Transactor 23 Volume 6, Issue 02

A Comedy Of Errors

Introduction

The idea of communicating with other computers over the

telephone lines has fascinated me for years. There are many

traps, however, for the unwary explorer.

The tale that follows is a true account of my first experiences

with a modem. Perhaps my misadventures can forewarn oth

ers and make their first attempts more satisfying.

Prologue

My love affair with the modem began innocently enough. It

looked like a good idea to save some time while preparing

university assignments at home. It would open my door to the

great memory banks at "The Source" and allow me to send

electronic mail.

The only problem was the modem and 1 seemed to have

incompatible personalities (we hadn't visited a computer dat

ing service) and it wasn't long before the marriage went sour

and a divorce was brewing.

I was totally to blame. I was overly demanding and insensitive

to her needs. I didn't appreciate her finer points. But maybe I

should start this tale at the beginning.

Error 1: You Want A What?

I visited my local computer store armed with all the buzz

words. Parity, baud rate and half-duplex rolled off my tongue

effortlessly. The salesman was suitably impressed until I men

tioned that I had a Pet 4032 computer.

David Sale

Acton, Ontario

It took me nearly five minutes to calm his hysterical laughter

and between chortles he was only able to plutter, "But that's

been out of production for months. You don't expect me to

STILL carry peripherals for it, do you?"

I muttered an apology for being so presumptuous and slipped

out the back door.

Error 2: Direct Connect To What?

Thumbing through back issues of computer magazines I lo

cated a supplier of PET modems. My money order was in the

mail within an hour and for the next weeks I waited, fantasizing

about the fun I would have when my modem unlocked the

door to the real world of the mainframes.

When the simple grey box finally arrived, I fondled it lovingly

then attempted to connect it to my computer and telephone.

But wait, something was wrong. . . The picture in the box

showed the modem neatly connected BETWEEN the hand set

and the base of the telephone but my hand set was not

removable.

Error 3: There's More Than One Size?

The local electronic supply store provided the necessary plugs

and jacks to solve the problem and within a mere three hours I

had a telephone with a removable hand set. The hand set lead

was now encased in black electrical tape and plastic shielding

and would never be caught dead in the finer homes of subur

ban Mudville.

The Transactor 24 Volume 6, Issue 02

It was a small sacrifice, one that we must be prepared to make if

we are to enter the communication revolution. I quickly forgot

its sorry state and began once again to attach the modem. First,

you detach the hand set and plug it into the modem. What a

time to find out that telephone jacks come in slightly different

sizes and the ones I had so carefully attached were the wrong

size.

Error 4: Which Software For Which Port?

Another hour in the basement workshop cut the plugs down to

size and all the parts went together. I turned on the modem and

began to explore her software. Although it was beautifully

written, there was no provision for saving incoming messages.

I loaded another modem program that I had acquired some

time before. The screen went blank. I typed furiously but the

distant computer failed to answer and my long-distance call

was cut off.

Disassembly of the machine code revealed that the modem

program was directing the output to the PET's parallel port

instead of through the IEEE where the modem was attached. I

reluctantly reloaded the original driver and redialed.

Error 5: Half, Full or Empty?

Merrily I typed along, pecking my way through the access

codes. When I looked up from my pecking, the screen was once

more totally blank.

My poor modem, my exasperating modem was a full-duplex

model, while the computer I had contacted was half-duplex.

My signals were not being echoed back to the screen correctly.

The only solution was to tear apart ten pages of machine code

to insert the necessary echoing. Otherwise, I would have to

explore this strange new world with a white cane.

Error 6: Password Please!

Now I was on a roll. Nothing could stop me. The great gates

were about to open. I reached the trunk line, raced past the

computer access codes and entered my password. The distant

computer politely burped and printed "Invalid Password".

I re-entered it with the same result before my connection was

cut. It appeared that only Ma Bell was going to come out a

winner that day.

A short call by conventional telephone to the computer center

(once again long distance) revealed that a secretary had inad

vertently reversed two letters when informing me of my pass

word. 'Aliment' became 'Ailment'. Computers are notoriously

unsympathetic to perceptual handicaps.

Error 7: Cursed Cursor!

What else could possibly go wrong to spoil that budding

relationship with the outside world? I didn't want to ask so the

computer told me immediately. . .

No sooner was I on line and shaking hands with my new

mainframe buddy than my screen began to fill with garbage.

'Enter' became 'Edqndqtdqedqrdq' and 'Print' was

'Pdqrdqidqndqtdq'.

Steam was beginning to escape from my ears but fortunately

not in sufficient amounts to blind me to the obvious pattern.

The regularly recurring 'dq' had to be some kind of cursor

prompt from the host computer. My dumb terminal could not

be translating from standard ASCII to PET ASCII correctly.

More machine code disassembly and another added loop

trapped the incoming 'dq's and converted them into a block

and backspace to simulate a cursor.

Full screen editing didn't work, however, and any errors

required that the entire line be re-typed. But that wasn't going

to stop me.

Error 8: It's My Party!

Now I was running. I was talking with the real world. I could

feel the power flowing from my fingertips as I carefully typed

line after line of letter-perfect code. I lost all track of time (but

Ma Bell didn't. . .) and an hour later I had successfully written

my first Fortran program on a distant computer.

All I had to do was enter the Run commands. . . but disaster

struck. My screen display jumped, the phone connection died

and my program was lost. Someone on our party line had

picked up the phone and attempted to dial, not recognizing the

weird buzzes as earth-shattering electronic communication.

Epilogue

More than fifteen hours had been spent to "save time" on a one

hour assignment for my computer course. My telephone had

been butchered and the telephone company could erect their

new office building with my next month's bill. I sat limply

staring at the screen then turned off the computer and went to

bed, licking my wounds.

As for the modem, perhaps I was too harsh. That subscription

to "The Source" was still good and it certainly was a lot cheaper

than an encyclopedia. Perhaps I could investigate the local

bulletin board or talk to other computer nuts.

Maybe I should reconsider and give her another chance. After

all, it was my fault, my ignorance and my stupidity. I think I

really would like to try again. I should be able to find that sleek

grey box. I couldn't have thrown it that far. . .

The Transactor 25 Volume 6, Issue 02

World Connection

Telecompute Without The 'Phone'

Jim Grubbs

Springfield, Illinois

With your personal computer and a modem, you are able to access

thousands of computerized data bases around the world. Everything

from the local bulletin boards, to research computers at universities,

and special "added value networks" like to Source and CompuServe

are no further away than a telephone connection.

The prices for these services vary of course. Many local BBS opera

tions are free, some require a small yearly membership fee, other

services charge an hourly connect rate. In addition to these charges

our old friend the phone company gets a very large piece of the action.

Would you be interested to know that there are many data services

that are swirling around you at this very moment that don't cost a

thing, not even a phone charge? A special version of bulletin boards,

nearly all the major press services, international weather information,

military services and a lot more enter your home twenty four hours of

every day. There are even computer hobbyists exchanging programs

over thousands of miles without it costing one penny for telephone

charges.

No, this is not an article about cheating the phone company. It is a

perfectly legal way of connecting your computer to the outside world.

All of the services mentioned are available for the asking on the

international short wave bands!

Let's take a moment to consider normal data communication. The

first ingredient is a computer or terminal. Most of us these days use

our home computers rather than a dedicated terminal. In order to

make our computer act like a terminal, software is required. The

software can be very simple. Many computers come with a terminal

program built into them, or at least provide a simple BASIC listing for

a terminal program.

Terminal programs can become very complex, allowing for features

like auto dialing, built in text buffers that act like mini-word proces

sors, and other bells and whistles. It is then necessary to take the

digital data formatted by the terminal program and convert it into

audio frequency tones that can be sent over regular telephone lines.

There are hundreds of modems available to accomplish this conver

sion. The simplest of modems handle only the data to tone conver

sions necessary. More advanced units may contain some or even all of

the necessary terminal software on chips inside the modem itself.

These units are known as smart modems.

The final link in the chain is the telephone line. It serves as a "carrier"

for the data much as it serves as a "carrier" for voice transmission.

Data communications via radio follows these steps too. First you need

a computer or terminal. Next, you need terminal software for your

machine. Since radio transmission of data is not as universal as

telephone transmission, the software must be more versatile than the

usual terminal package. Many different protocols are used. In order to

get the maximum use of a radio connection your software must be

able to handle most of the commonly used formats.

It is still true that the digital data from the computer must be

transformed at some point into audio tones. This can be done at

several points, but with modern day technology, it is usually done

once again in a specialized modem called a terminal unit. Function

ally a terminal unit or TU as it is abbreviated operates much like a

modem, but selects different frequency pairs for the audio tones than

are normal for "land line" communications.

The final connection is to the radio transmitter if you are the sending

station. Most of you are interested in being on the receiving end, so

your final connection will be to a short-wave receiver.

Becoming an SWL (short wave listener) can be a lot of fun, whether

your interest is in intercepting data transmissions, or simply listening

to broadcasters from around the world. Several international short

wave broadcasters have regular features spotlighting computer hob

byists. Radio Nederland has even experimented with direct transmis

sion of computer programs to its listeners!

The selection of a short wave receiver does not have to be difficult or

unnecessarily expensive. You should look for a unit that covers the

full frequency range from about 3 to 30 megahertz. The unit must be

stable, so that the signals don't drift after you tune them in, and it must

have a BFO (beat frequency oscillator). On some units this may show

up only as the unit having SSB (single side band) capabilities. Accept

able units range from a cost of about $200(US) new at your local

discount store, to $700(US) or more for the Cadillac of short wave

receivers. Still sound like too much? Particularly during the summer

months, amateur radio clubs sponsor "hamfests". This is nothing

more than a big electronic flea market. Typically you can find older

short wave receivers that are somewhat bulky by today's standards

but still perform quite well in the $50 to $100 range. Try to enlist the

aid of either an experienced SWL or amateur radio operator before

making your purchase.

After you have the receiver, you will need a terminal unit. There is a

fairly wide selection of terminal units available, ranging in price from

about $69.95 to over $500. For your purposes (unless you insist on

driving a Cadillac) the lower range units will work quite well. Several

units are designed for the SWL specifically, while many others include

the hardware necessary for transmitting. Unless you are a licensed

amateur radio operator you really don't need this ability. This feature

will go unused for the SWL.

The final consideration is the software. There are many software

packages available ranging from $13.95 to over $100. The old adage

of you get what you pay for applies here. Many of the inexpensive

programs are written in BASIC. That's OK for some applications, but a

The Transactor 26 Volume 6, Issue 02

real hindrance in others. Not all software will support all modes of

data reception. Let's look at what is available as you tune across the

bands.

The earliest form of data communications was a simple on and off

keying of a signal. Samuel Morse created a system of codes for sending

messages that is still used. You will still find numerous morse code or

CW (continuous wave) stations transmitting today. Commercially, this

type of transmission is mainly used for ship to shore messages and of

course can be found on the amateur radio bands. Most morse code

transmission takes place in the under twenty word-per-minute

range. With the proper software and a terminal unit, you will be able

to have morse code printed directly on your monitor screen at well

over sixty wpm with no knowledge of the code on your part!

One of the next forms of data communications was the teletypewriter.

When connected by radio it is called RTTY for radio teletype. Most

commercial services use a somewhat slow 50 baud or 67 wpm speed.

Teletype code is structured differently than computer ASCII code. It

consists of only five bits of data and one start and stop bit. The number

of different characters is therefore limited. Many South American

countries as well as African nations still use this form of transmission.

The Navy still uses it too. You'll find press transmissions (frequently in

Spanish) and lots of weather information. At 45 baud or 60 wpm you

will find amateur operators exchanging information via RTTY.

Perhaps of the most interest to the compter hobbyist are the MSO

(message storage operations) that are available on the ham bands. An

MSO serves as an international BBS where messages about equip

ment for sale, new computer programs, and other related information

can be found.

RTTY is also transmitted at 75 wpm and 100 wpm. Most modern

organizations use 100 wpm. Included in this category is the US

Information Service. I recently copied the entire text of a speech

President Reagan hadn't given yet!

Transmissions also occur at different shifts. Amateurs and some

commercial stations use narrow shift at 170 hertz. Typically, most

press transmissions use that more standard 450 hertz shift, while the

Navy and some older systems still hang on to 850 hertz shift. This can

be an important consideration when choosing a terminal unit. Not all

units will handle all the different shifts.

Why, you may ask, doesn't anyone use ASCII transmission. Although

such transmissions are still the exception rather than the rule they are

beginning to show up. The protocol is virtually identical to land line

communications, so almost any terminal software can be used. I have

even been successful at connecting the audio from my short wave

receiver into my modem (not recommended unless you know what

you're doing!) and copying radio ASCII transmissions that way!

Perhaps the final form of data communications you will encounter,

particularly on the marine channels is TOR (teletype over radio). This

form of transmission uses the Moore code, a specialized seven bit

code. It is structured to minimize transmission errors. Software to

decode this method of transmission has become available to the home

computerist in the last year or so. It is a fascinating system, but

somewhat beyond the scope of this overview.

Generalizations are nice, but specific examples often help to make

new ideas clear. Let's look at a unique software/hardware package

that is currently available from Kantronics for the Commodore com

puters.

Appropriately named, SUPERTAP comes with everything you need to

connect your computer to your short wave receiver. The package

consists of specialized terminal software on cartridge, a receive only

terminal unit, a power supply to run the TU and a guide to what you

can find on the bands. Thoughtfully, an audio cassette tape has been

included to help guide the novice SWL in tuning morse code and

teletype signals properly.

The overall performance of SUPERTAP is quite good. The software

allows reception of morse code, radio teletype, TOR and ASCII

transmissions. It also contains several features unique to the SUPER-

TAP package.

It can often be difficult to determine the speed of transmission of an

RTTY signal. The "scope" function allows you to use your computer

monitor as a storage oscilloscope to help determine the speed of the

sending station.

In addition to the "standard" Baudot RTTY code, some stations

"scramble" the normal code for security purposes. The SUPERTAP

package allows you to try different combinations of bit inversion in

order to break these codes. It can be fascinating watching the software

"do its thing".

The weak link in the package would have to be the terminal unit. The

circuitry used does not have the interference and weak signal abilities

of some more expensive units. It is still a good dollar value however,

and more than adequate for the beginning SWL. I've just been spoiled

by units such as the Kantronics Interface II that do a superb job as

terminal units!

There is another category of packages available that combine the

terminal software and terminal unit on one plug in module. The AEA

Micropatch falls into this category. Such units are particularly attrac

tive for someone wishing to minimize the amount of space and the

number of wires that must be connected.

So why not think about linking up with some new forms of data

communications via short wave. I've included a listing of some of the

more popular suppliers of software and terminal units.

Suppliers of SWL Hardware and Software

AEA, Inc.

P.O. Box C2160

Lynnwood, Washington 98036

Kantronics

1202 East 23rd Street

Lawrence, Kansas 66044

MFJ

P.O. Box 494

Mississippi State, MS 39762

Microlog Corporation

18713 Mooney Drive

Gaithersburg, Maryland 20879

Interested in more? Send Author correspondence to:

Jim Grubbs

P.O. Box 3042

Springfield, IL

62708 217 753-1995

The Transactor 27 Volume 6, Issue 02

Electronic Mail

In The Office

Aubrey Stanley

Mississauga, Ontario

Office work involves a major proportion of the total work force

in one way or another. So it is not surprising that a great deal of

effort is expended in automating the office, especially in this

decade of sharply reducing hardware costs. Electronic Mail will

account for a large chunk of this automation process simply

because mail is the life breath of the office. If the mail suddenly

stopped to move, most of our office activities would come to a

standstill.

If we had to choose an alternative to the traditional forms of

paper-based mail, what exactly would we go for?

Before we begin to answer this question, we should consider

carefully just what it is that we are replacing! Faster delivery on

its own cannot make up for convenience and flexibility. An

Electronic Mail system is not just one word processor talking to

another over a point-to-point link or via some store and

forward facility. This may be a quick way to send a letter, but it

has little effect on the overall conservation of time in the office.

Any move towards Electronic Mail should be a step closer to

conserving this most valuable resource and avoiding repetition

of effort.

If we use the Post Office to mail a document, we first of all have

to prepare the contents on paper, place it in an envelope,

address the envelope and then deposit the envelope in a

postbox. From that point on we rely on the carrier to deliver the

envelope to the mailbox of the receiver. Then its up to the

receiver to check the mailbox for received mail.

The key factor is the use of an external agency to deliver the

mail. The carrier will automatically forward the mail if the

receiver has changed address. We need not be aware of this

fact. And if we have requested recorded delivery or registered

the envelope, then the carrier will perform these functions as

well. Electronic Mail should first of all provide the basic func

tionality of the traditional service.

Electronic Mail is similar to paper based mail, only the media is

electronic. Envelopes of electronic data are moved between the

sender's postbox and the receiver's mailbox by some sort of

computer based distribution process which replaces the tradi

tional carrier. The improved performance of electronic distri

bution gives Electronic Mail its great advantage over traditional

mail, and the data, in the form of electronic files", can easily be

integrated into the automated office system.

In the office, the IN TRAY is used to store incoming mail prior to

processing. In the electronic office, the In Tray stores incoming

mail in electronic form. Associated with the In Tray is an IN

LOG which holds IN NOTES for all incoming mail in chronolog

ical order. Each In Note contains a brief description of the item

in the In Tray, including things like sender, date, reference/

subject headings of a memo, urgent status, reply requested

status, etc. The receiver can rapidly scan the In Log and select

particular items from the In Tray for display or printing. Mail

may be forwarded to other persons without having to be

rekeyed. Automatic Reply facilities enable a reply to be gener

ated without the tedium of redoing the address list. Text from

the received document may be extracted and merged into the

reply with comments, etc. The Follow-up facility enables you

to remove a message from your In Tray for a specified period of

time - useful for sending reminders to yourself on upcoming

appointments.

The electronic OUT TRAY is obsolete in the traditional sense,

as mail is immediately posted. Instead the Out Tray becomes a

means of tracking mail in progress. A copy of each item sent is

held in the Out Tray and the OUT LOG can be scanned for

status on a particular item. The sender can determine whether

mail was delivered to the receiver's mailbox, if the receiver had

seen it, whether a reply has arrived for it, etc.

Each user of the system has a MAILBOX. This is really a

combination of the In and Out Tray facilities. Review of mail in

the Mailbox may be further enhanced by selective search

facilities. For example we may review mail by sender or

receiver name, date, subject string, etc.

When an item in the Mailbox is no longer required, it may be

deposited into the electronic WASTEBASKET. It remains there

for some specified period before it is disposed of completely.

Until then, the item may be retrieved, much like fishing out a

letter you may have crumpled into a wastebasket by mistake.

Just as you may fill in a formatted sheet on your desk, so also in

Electronic Mail you enter appropriate fields on your terminal

screen. These fields define the address list, subject, reference,

date, message content, etc. Lines of text from some other

document (from your In Tray, for example), may be extracted

and merged, perhaps with annotations. A pre-defined distribu

tion list file may be copied into the address list. A report created

on your word processor or the listings from your Cobol compi

lation may be attached to the document being prepared.

The Transactor 28 Volume 6, Issue 02

Attributes may be specified, such as urgent, confidential, reply

requested, delivery confirmation, postdated delivery, etc.

The Electronic Mail system maintains a personal PROFILE on

each user. Each profile contains user and system modifiable

parameters. A user may record a forwarding address for auto

matic forwarding of his or her mail; a secretary may be

authorized to view and/or send mail through her manager's

mailbox; the system may maintain statistics on each individ

ual's use of the system, etc.

The backbone of the Electronic Mail system is its DIRECTORY.

This is normally on-line to users for interrogation of names,

locations, departments, telephone numbers, titles, etc. This

DIRECTORY ASSISTANCE facility may be used for automatic

filling in of addressee details in the receiver list. For example

you may open the Directory at a particular user initial, scan the

contents, and mark the required name for transfer to the

receiver list.

The above are but a few examples of the potential of an

Electronic Mail system.

When a document is prepared for posting, it is passed over to

the Distribution facility for mailing. A copy is maintained in the

Out Tray of the sender and the document is mailed to each

person specified in the address list, using information supplied

in the Directory. In fact, the destination need not be a person.

You may wish to send mail to the "mailroom" ("hot printer") at

a particular location, or to a department printer. For example,

your boss may be visiting another location where he or she

does not have mailbox facilities. Knowing the department he or

she will be visiting, you may address the document to the

department printer at that location. Or alternatively, you may

specify the department secretary as the recipient. You need not

be aware of details like printer number, secretary name, etc. All

this information will be extracted from the Directory.

There are several possible implementations for an Electronic

Mail system. We will describe one. In this case, a computer

(mainframe, mini or super micro) serves the needs of one or

more offices. A user at any office ("location" to the computer)

accesses the computer from his or her terminal. This may be

through dial-up facilities or maybe the terminals are connected

through a Local Area Network (LAN). The terminal could be

any suitable one - an IBM 3270 or PC, even a Commodore 64.

The computer will format the screen for the terminal being

used. The user is known to the computer by the special sign-on

procedure used. The user's profile is fetched and the name,

location, department details, etc, recorded. These will be used

to automatically insert the sender details in any document

mailed. The user is then given access to his or her mailbox and

informed if any new mail has arrived. A Master Menu screen

permits the use of any supported features - In/Out Tray, Create

mail, etc. Say the user prepares a document for mailing. When

the "send"key is pressed, the computer will verify the input,

and if everything is in order, a unique serial number is assigned

and the mail item is written to the DISTRIBUTION DATABASE.

This database serves as the POSTBOX for users of the local

computer.

The Distribution program services its Database. Running in

background mode, it does not interrupt the user who has just

posted an item. The user may continue with other work in

foreground. Mail items are processed one at a time from the

database. An In note is generated for each receiver who has

mailbox facilities on the local computer, and this is written to

the receiver's In Log in the receiver's LOCATION DATABASE.

Each office has its own Location database to store all mail

generated or received for that office. The In Note will record the

item serial number and serve as an index to the mailed item.

The body of the mail item is itself written to the Location

Database (but only once) in the form of Addressee and Text

records, each keyed with the serial number of the mailed item.

Thus only one copy of the mail item is retained in a Location

Database with the In Notes recording receive status for each

receiver at that location. When a user scans his or her In Log,

the In Note will point to this copy which is then used to provide

the user with the required information.

As well as creating the In Note, the Distribution task creates an

Out Note in the sender's Location Database.

If a receiver is recorded in the Directory as existing at some

other office not connected to the local computer, then steps are

taken to ship the item to the remote computer handling that

office. This is done via a suitable communication link. When

the item arrives at the remote computer, it is stored in the

Distribution database from where it will be processed by the

Distribution program in exactly the same manner as described

above, except that because it has arrived from another com

puter, only local processing will be done, i.e. no further remote

shipping will take place.

The Distribution program also services status records. These

are automatically generated and written to the Distribution

database whenever certain specified events occur. For exam

ple, delivery confirmation has been requested and an In Note

has just been written to the receiver's In Log. Or the receiver

has seen an In note for the first time. Or a reply has been posted

to a particular received item. When the status record reaches

the sender's end, the serial number will be used to locate the

sender's Out Note and the status will be updated.

In this manner, an Electronic Mail system may be built up with

one or more computers as necessary, in order to meet the

requirements of any organization, large or small

As Electronic Mail systems begin to proliferate, we should bear

in mind that the media is not the message. In other words, the

media should not be allowed to adversely affect the way in

which we communicate. If it is to serve the office well, Elec

tronic Mail should give us more time and greater freedom to

communicate more effectively with our fellow human beings.

The Transactor 29 Volume 6, Issue 02

Computer Networking Systems
Richard Evers, Editor

A Look at 3 Popular Multi-User Networks

In a multi-computer environment such as a classroom or lab,

the ability to share disk drives and other devices among

computers can save money and give a means of inter-computer

communication. There are several systems giving that ability

on the market today, each one approaching the same problem

in different ways. These systems are not true LANs (Local Area

Networks), but are often referred to as "multi-user networks" or

"queuing systems". In this article, we will call them networks

for the sake of simplicity.

In most educational institutions that use Commodore com

puters within their course structure, computer networking

systems are, or could be, a very worthwhile investment.

Through the use of a good networking system, a great cost

savings on hardware such as printers and disk drives can be

attained, as can a better control over the usage of the equip

ment by the students. As a final financial bonus, disk protected

software can often be utilized by an entire classroom through

the use of one disk drive. Higher education at a lower cost per

student. A controllers dream.

A network, in very simple terms, is a method of connecting a

number of computers together to allow for shared access of

peripheral devices. The network is responsible for allowing

each user access to the peripherals, usually one at a time. (An

ideal network would allow simultaneous access by timeshar

ing, but no such system seems to exist for Commodore equip

ment.) All users waiting for time are placed on a 'waiting list'

(job queue) until time becomes available. The job queue should

be accessed on a first in, first out basis.

Some networks give bonuses to users of the system. Extra

commands in BASIC, special password schemes, and file pro

tection tricks, just to list a few. A bonus is a nice present, if you

need one. Some people may choose to get the extras, and love

everything about them. Others may just want simplicity, and

therefore go without the extras. One point to note about a

networking bonus. In order to supply the extra favours, modifi

cations often have to be made to the computer. Simplicity

verses favours. A big decision.

Below will be found the names of the main manufacturers of

networking systems in the Toronto area. The descriptions of

the networking systems following the names is purely based on

manufacturers claims through their literature and manuals.

Though this may seem like a very odd way in which to supply

you with information, we felt that it was the best. Of the three

systems described, each have their good and not so good

points, depending on whom you speak to. Everybody has their

own likes and dislikes regarding all facets of human existence.

A review of each networking system by one person would

probably give the reader an inaccurate view. Numerous re

views of each system would serve little purpose but to waste an

entire issue. Needless to say, the best judge will be you. Read

through each description and look for the good and bad points.

The systems have all been tested extensively in the classroom

for years, so actual flaws should not exist. The only not-so-hot

points will come from your ideas on what a network should do.

1) The Arbiter by Batteries Included

2) The Microshare by Comspec Communications Inc.

3) The Mupet II by BMB Compuscience Canada Ltd.

Another popular network is the Multi-Link from Richvale

Telecommunications. We requested information on this system

from Richvale, but since we didn't receive it before our dead

line, The Multi-Link was not included in this article.

The Arbiter

Manufacturer: Batteries Included

30 Mural Street

Richmond Hill, Ontario

L4B1B5

(416)881-9941

Applications : Pet and CBM

The Arbiter system is one which performs special favours for

the users. The price for these favours comes in the form of a

new Arbiter E ROM for each computer in the network. Each

new Arbiter E ROM comes with an ID number which is

contained within the ROM itself, and printed on the top of the

chip. Since there are a maximum of 32 computers allowed in

the network, the numbers range from 0-31. Although this may

seem odd to you, there is logic in assigning numbers. The

Arbiter system requires one computer in the network to act as

the Controller. The Controller gets a special device installed in

it called a Master Control Unit, which is the control mechanism

of who gets what device when. Every computer in the chain

has its User port and IEEE port tied up by the Arbiter system,

with each computer being connected together in series through

4.5 foot ribbon cables. Through a bit of bit manipulation at the

User port, the computer with the Master Control Unit attached

detects any activity on the bus, and determines which com

puter, 0-31, originated it. In this way the path to single user

access to the peripheral devices for the time required is cleared.

The Transactor 30 Volume 6, Issue 02

The system comes complete with Arbiter ROMs, Bus-Boards

with 4.5 foot ribbon cables, and one Master Control Unit. The

Master Control Unit also requires a bit of installation work

before it is operational. There is a connector hooked up to the

Master Control Unit that is to be passed through the IEEE port

opening and connected to J—11 on the expansion port. To hook

up any IEEE peripheral device to the system, little trouble will

be encountered. Each Bus-Board in the system has the capac

ity to accept up to 2 Pet to IEEE cables, Pet side connecting to

the Bus-Board. "Any reasonable number" of IEEE devices can

be attached to the system, as stated in the owners manual

supplied. By talking to Paul McCourt of Batteries, I was able to

ascertain that 'reasonable' meant as many IEEE devices as the

Pet normally can handle, ie. 12 devices (device numbers 4

through 15).

All Basic commands remain the same excepting those working

with the extra peripheral devices. In direct mode, the bus will

be released immediately after access to the device has ceased.

In program mode, a 2 second delay has been implemented in

releasing the bus.

As mentioned in the beginning, extra favours, ie. commands,

have been written into the system for the user. They are as

follows:

Extra Basic Commands

LISTC : lists Basic program in memory to attached printer

LISTP : prints user-defined heading line then lists Basic pro

gram in memory to printer (will also translate cursor

control characters into mnemonic representations)

@S"filename",YYY,d#N : saves prg "filename" to drive #N with

user code YYY

* once @S started, 5 character password asked for to assign to

protected program

@L"filename",YYY,d#N : loads prg "filename" from drive #N,

user code YYY

* once @L complete, 5 character password asked for before

access can be had

@G : grab the bus and do not allow any other access to it

@R : release the bus to normal user access

A few points to ponder regarding the Arbiter. The new E-ROM

taps into CHRGET to extend the BASIC command set and allow

queuing up for bus activity. Although this does work, it may

also slow down Basic execution a tad and play havoc with the

use of CHRGET-powered Basic utility programs. The manual

states that the Arbiter works just fine with Waterloo Basic, but

also notes that if Waterloo Basic is deactivated via

sys(9*4096 + 3), the Arbiter will also become disabled. Re-

enabling the Arbiter is the only cure. Problem number two is

rather minor. The scanning of the keys has been messed up a

bit, so when pressing (Shift) (Run/Stop) to dL"* / Run from

disk, release the (Run/Stop) before the (Shift) key, else a break

will occur. Not too heart breaking, but an oddity to remember.

One other point to consider with the arbiter is the fact that it

uses the user port. This may be a problem in an electronics lab

or such where external circuitry is to be connected to the PETs.

When you buy the system, a utility diskette is also included for

the teachers. On this diskette will be found "Load and Run",

"One Shot", and "Two Shot". The purpose of each is as follows

Load and Run - allows viewing and marking of student pro

grams without using the assigned password

One Shot - de-protects password scheme if protected

once

Two Shot - de-protects password scheme is protected

twice by mistake

That's everything that could be deduced through their litera

ture and manual. Although I have not given you a blow by

blow users description of the system, you do have a knowledge

of what it is supposed to do, and can now place it beside the

following systems for comparison.

The Microshare

Manufacturer: Comspec Communications Inc.

153 Bridgeland Avenue, Unit #5

Toronto, Ontario

M6A 2Y6

(416)787-0617

The IEEE Microshare

Applications : Pet, CBM, 8296, B Machine

The Microshare does not change the computer's operating

system in any way. It simply provides a transparent networking

system for any IEEE computers on line. Transparent in this

sense means that the computer has not been altered in the

least, hardware or software, therefore any software package in

any language will work as with a normal computer. You can

have a maximum set-up of 16 IEEE computers Microshared at

any time, with a maximum distance from the Microshare by

any one computer of 100 feet. This is a unique feature. The

computers are not linked to each other in series. They are

connected directly to the Microshare via separate ribbon ca

bles. The ribbon cables connect directly to the computer

through the IEEE interface on the back, just as the standard Pet

to IEEE cable does.

Another special bonus with the Microshare is the 'first come,

first served' basis in which access to the bus is given. A job

queue is present that is constantly refreshed due to any request

for activity on the bus. Even while a computer is using the bus,

polling of the computers is still active, thus giving a true

networking environment. To also supply assistance to the

system supervisor, the Microshare has a series of LEDs across

the front panel to show which computer is accessing the

peripherals at any time. By watching this display, a constant

reminder will be in place as to the top users of the peripherals

in the class or office.

The Transactor 31 Volume 6, lime 02

On Microshare power up, a series of diagnostic routines are

performed to check the system out. If any trouble is encoun

tered, the LEDs across the front will display the error condition.

Once the system has passed the test, immediate access to the

peripherals can begin. The peripherals are hooked up to the

Microshare through two edge-card connectors using Pet to

IEEE cables. On the left side, up to two devices may be hooked

up that have the ability to talk and listen. This will allow up to

two disk drives, or one drive with any other IEEE device. On

the right side is another edge card connector, of which up to 5

listen only devices can be connected. Listen only means

devices that can accept commands but not reply back, like a

printer.

According to the manual and literature supplied, the system in

uncrashable. Even if a user crashes his or her computer, taking

a peripheral along for the ride, the system will recover after 16

seconds if the peripheral is down, or 2 seconds if the computer

is down but the peripherals are still alive. It depends on the

crash encountered. Whatever happens, life will continue for

the balance of the users. The defaults of 16 seconds and 2

seconds can be changed through the use of DIP switches

located on the bottom of the unit. The 16 second bus active

with computer activity delay can be sped up to 8 seconds, and

the 2 second user non-access delay can be sped up to 1 second.

With the system being as simple to use as it is, no other

information is required. No special tricks, therefore no special

procedures. Now, on to the serial version.

The Serial Microshare

Applications: Vic 20, C-64, Plus 4, C-16, and C-128

If you were to read the description above, most of it would

apply. The exceptions are as follows.

This system allows networking of Commodore computers

through their serial port, serial as it applies to the 1541 drive. In

this way, networking the C-64, Plus 4, C-16, and C-128 can be

achieved without additional hardware. There is a maximum of

8 serial computers on the network at any time. The system is

still transparent, no hardware or software modifications to the

computers, but a few special favours are supplied. The favours:

a built in 14K print buffer with software selectable device

number and de-spooling feature; individual disk error status

reports for each user; individually controllable channel switch

ing delay; and a 'group load' option which allows any number

of users to simultaneously load a program. Pretty impressive

for a transparent system.

The system has been designed a little differently than its IEEE

brother. It allows either 7 users or 8 users, a user-selectable

option. The advantage of the 7 channel set-up is that it

supports both serial and IEEE parallel activity, using the 8th

unused port as the serial output port. The eight channel set-up

only allows for IEEE activity.

The IEEE output port can support up to ten IEEE devices daisy-

chained together at any time, with the serial port being capable

of handling up to 5 serial devices daisy-chained together. The

system allows talk and listen devices all around, therefore

whatever peripheral devices you have at your access can

always find a home. One special point to mention here. The

system allows the user to specify which device number is to

receive its printed output via the print buffer. A pretty sharp

trick to change device numbers while using a print buffer.

The diagnostics are about the same as with the IEEE Mi

croshare, but have a built-in Beeper to let you know when all is

Ok. The beeper is also used for a particularly useful trick. If a

user encounters a disk error while using a drive unit, the

Microshare beeps to inform of the trouble. Here's another

useful favour performed. Disk activity always updates the error

status of the drive. Normally this status will be altered as new

users access the drive. The Microshare handles this in an

interesting way. Each user can read his or her disk error status

via OPEN 1,8,15: INPUT*l,a,b$,c,d. .. and be assured that it is

correct, even if new disk activity has been performed by

another user. The reason for this is because the Microshare

retains each user's disk status within Microshare RAM.

Most of the special tricks performed by the system are insti

gated by talking to device number 15, the Microshare. The

statement OPEN 1,15,8," filename" will inform the Microshare

that a group load of the program " filename" is about to take

place. From here, each user who wants to load the program

should type in and execute LOAD"* ",15. Once the first

computer who issued the group load command actually starts

the load, the group load begins, and all computers in the

network LOAD the desired program simultaneously. Another

smart feature incorporated is the de-spooling option. By either

transmitting the request to device #15, or pressing the de

spooling button on the Microshare, the current user's printer

output can be terminated prematurely, without harm to any

other data in the buffer. The other favours supplied have

equally interesting effects, and most can be instigated with just

a little conversation with device number 15.

This article could go on much further extolling the manufactur

ers claims to virtue, but not today. It's time to move on to the

final competitor in this networking free for all.

The Mupet II

Manufacturer: BMB Compuscience Canada Ltd.

500 Steeles Avenue

Milton, Ontario

L9T 3P7

(416)876-4741

Applications : Pet, CBM, 8296, B Machine, and Commodore 64

The original Mupet has been around for quite some time, with

the Mupet II being an expanded version of the same. Part of this

expansion is a Commodore 64 Mupet module to allow for a

networked system of IEEE computers and C64s together. The

The Transactor 32 Volume 6, Issue 02

system is transparent, meaning it doesn't change the com

puters' personality in any way, but it does perform a few

favours for the user as a bonus. The IEEE Mupet module

connects directly to the Pets, CBMs, and other IEEE computers

through the IEEE port on the back. The C64 Mupet module

connects through the cartridge port of the C64, and has a

jumper that is to be connected to a chip within the C64 for

software transparency. Each computer in the system has a

Mupet module and a length of ribbon cable to daisy chain itself

to the next computer in line. There is a maximum of 16

computers in the networking chain at any time.

The system has a few special components. One Mupet module

for each computer in line, ribbon cable sufficient to network

the system together, a power supply, a terminator to mark the

last Mupet module used, and one Mupet II Controller. Recom

mendations are that not more than 100 feet is spanned be

tween the Mupet II Controller and the furthest computer in the

network. According to their literature, 200 feet can be attained

under the absolute best of conditions.

The output from the Mupet II Controller is an IEEE port, a

parallel port, and an RS-232C port. The recommendations by

the manufacturer are to not connect more than 8 IEEE devices

to the IEEE port. No maximum was stated regarding the RS-

232C port or access to the parallel port. One very novel point to

mention regarding the output ports: the ability exists to re

direct output to any device chosen. This means that the Mupet

II Controller can re-route output generated by software pack

ages to device numbers of your choosing, without the software

realising it. Another neat trick is the ability of the system to

translate the printed output either to Pet Ascii or True Ascii,

depending on how you set it up.

The RS-232C serial port is a handy creature to have around if

you are debating telecommunications work. It has a default

setting of 1200 baud, with 1 stop bit, a 7 bit word, and no parity.

Quite simply, high-speed telecommunications at a glance with

correct parameter set-up of the Mupet II Controller. It appears

that this system was designed with excellent telecommunica

tions facilities in mind. Perhaps this is due to BMB's involve

ment in the design of the SuperPET, which Commodore later

bought the rights to.

As with all networking systems described so far, a polling

process is carried out that checks for activity on the bus, and

queues up for single user access of the peripherals. A pretty

useful favour this system performs is a print spooling routine

that will list a Basic program from disk directly to the printer, or

print a sequential file as it appears on diskette. The spooling

procedure is unique in that it will un-tokenize the Basic

program as it prints, and that the spooling process in general

does not interfere with the Mupet's polling of the bus feature. In

operation, one line is printed out, a poll is taken of all com

puters, then the next line is printed. If access to the bus is

requested, the spooling is stopped till activity is no longer

required, then the spooling is continued.

The Mupet II Controller has a built-in diagnostic routine that

shows, through the use of a series of LEDs, if any errors were

encountered on system power-up. The manual has a section

which deals with trouble-shooting if so required. On power up,

the system checks to see if a diskette is in drive 0. There does

not have to be, but if so then one file, "MUPET II.SETUP", is

checked for. If you do not want to use the Mupet II Controller's

system defaults, then this custom file should be used. When

ever you re-set up your own parameters, it's best if you also

write it to disk for future use. One other file that should be on

disk if you intend to spool Basic programs to a printer is called

"KEYWORD". As the name implies, it contains a list of Basic

keywords and their token values. With Commodore's ever-

present habit of changing token values for keywords, and

inventing new and improved keywords, there should be a few

versions of this file around. The system comes with a keyword

file on disk when you buy it.

Special commands for special favours are sent to device #15,

the Mupet II Controller. To spool a file from disk, as mentioned

prior, the technique is simple: OPEN 1,15,4," name": CLOSE 1

. To set up the Controller to non-default parameters, a string is

created of the parameter settings in a special pre-defined order,

then they are sent as OPEN 15,15,15,A$: CLOSE 15 ... where

A$ holds the parameter data. In order to set up the Controller

correctly, a thorough knowledge of their manual must be

attained. It's too complex to cover here, so this is where talking

to the Controller ends.

Final Note

The systems described above, although developed and manu

factured in Canada, are presently being sold throughout the

world. Although I have tried my best to keep to the facts with

each manufacturers system, it was difficult not to interject with

personel observations once in a while. The run down of each

system though, was based on literature and manuals supplied,

therefore the systems should operate as stated. If you feel that

networking is the answer to your long-awaited dreams, my

suggestion is to drop each company a letter asking for a little

more information and prices. Although the information may be

redundant, pricing is always valuable, and could be used to

help you convince the powers above that networking is a cost

effective method to battle decreasing budgets. Hope you win.

The Transactor 33 Volume 6, Issue 02

Helping to Communicate -

The TDD Network

Jim Grubbs

Springfield, Illinois

Dr. Robert Weitbrecht (1921-1983) saw the potential for using radio

teletype techniques to allow the hearing impaired to communicate. . .

The Commodore VIC-20 and C-64 are responsible for many

people being introduced to the fun and excitement of personal

computing. Most of you are familiar with COMPUSERVE, the

SOURCE and other data bases that can be accessed using an

inexpensive modem. There are many bulletin boards, both for

special interest groups and general discussions. One area of

telecomputing seems to have been overlooked by many of us.

It is in this area that your VIC or 64 can perform a very useful

service. I am talking about the TDD network, or Telecommuni

cations Device for the Deaf.

In the 1960s, an active amateur radio operator, Doctor Robert

Weitbrecht, whose amateur radio call sign was W6NRM saw

the potential for using amateur radio teletype techniques (ab

breviated RTTY) along with surplus teletypewriter machines to

allow hearing impaired individuals to communicate by tele

phone. Weitbrecht, although deaf himself, became interested

in amateur radio as a teenager. In 1948 he was quite taken by

an article he had read about radio teletype and set out to

assemble a functioning station. Ultimately he became a pioneer

of this mode of transmission, communicating internationally

with friends in Japan, the Phillipines, Australia and several

South American countries.

It was in 1963 that Doctor Weitbrecht's proposal for a TDD

system became known to several individuals in the deaf com

munity. With their encouragement and support, he refined the

acoustic modem and developed an audio frequency shift key

ing technique specifically designed to overcome problems

involved in telephone data transmission.

By mid 1964 Weitbrecht caught the attention of educators and

successfully demonstrated a functioning teletypewriter system

for the deaf. Finally, in 1968, AT&T agreed to release surplus

machines for the project. Weitbrecht had by now perfected the

modem that to this day carries his name. In recognition of the

unique nature of his system he was awarded several patents.

Few of us knew in the sixties that the eighties would bring us

such low cost and versatile machines as the Commodore 64

and VIC-20. I'm sure that if Doctor Weitbrecht were alive

today, he would be a proponent of telecomputing. In mid 1983,

however, he was hit by an automobile and rendered comatose.

He died on May 30, 1983 at the age of 63.

The TDD system developed by Weitbrecht will live for a long

time to come. Although your computer does not speak the TDD

language, it is a quick learner and can with the help of some

simple software be made to converse in this universal lan

guage. Some additional hardware will be necessary, but if you

are moderately adept at reading a simple schematic diagram

and have used a soldering iron, the hardware should present

no problem.

The Parameters of TDD

The TDD code is based on standard Baudot signaling employed

in early teletype machines and still in use by amateurs and

developing nations around the world. In structure it consists of

only five bits compared to the usual eight bits found in ASCII

code. The major difference is that with only five bits to work

with, only 32 distinct combinations can be created. This barely

gives us enough to cover the alphabet. By employing a little

trick and designating one of our 32 codes as a "shift" character

we can almost double the number of characters. This gives us

just enought room for all 26 letters, the ten cardinal numbers

and some select punctuation marks.

The Commodore RS-232 port, the place where your regular

modem normally connects, is very versatile. By properly ad

dressing this port through software we can exercise precise

control of many of the factors involved in data communica

tions. The only thing not built into our Commodore machines

is the Baudot code. Your computer speaks ASCII only. A little

bit of BASIC to the rescue and we can fool our machines into

The Transactor 34 Volume 6, Issue 02

translating from ASCII to Baudot and back again.

Another problem presents itself in that the speed used for the

TDD network and amateur radio communications is the "non-

standard" 45.45 baud (so called sixty words-per-minute) and

is not implemented on the VIC and 64. Although it takes a few

POKEs and some calculations, it is possible to implement

virtually any speed with your machine.

Unlike normal computer communications which are most

frequently done in a full duplex mode, the TDD system re

quires that half-duplex be used. Full duplex implies that both

parties may both send and receive at the same time. This has

some hardware implications as well, which I'll discuss in part

two. Half-duplex transmissions allow only one party to send

while the other receives. Our software includes the capability

to switch from transmit to receive and back at the touch of the

Fl function key. Much of the protocol used in the TDD network

originated with amateur radio operators. One abbreviation in

wide use is GA, the old telegrapher's abbreviation for go ahead.

It is customary when you are finished typing and want the

other party to respond to send GA and then wait for the

response. The software included both sends the GA and toggles

the program back to receive for you with the touch of the Fl

key.

The program also provides for sending some pre-programmed

messages of your choosing by simply pressing the other special

function keys (F3, F5, F7) while you are in transmit mode.

Substitute your own messages in line 360, 370 and 380.

It is possible to use commercially available software sold for use

on the amateur bands, although it will not specifically be

designed for use in a TDD system. The hardware is quite a

different story.

When Doctor Weitbrecht was developing the TDD system, the

Bell System was reluctant to release information to him on how

they accomplished data transmission using audio tones. Left to

his own imagination and talents, Weitbrecht carefully devel

oped his transmission system using tones most suited to the

telephone technology of the time. His system calls for two

tones, one at 1400 hertz and another at 1800 hertz. Standard

modem tones consists of two pairs of tones, 1270 and 1070

hertz, and 2225 and 2025 hertz. As you can see TDD tones fall

just about in the middle of the voice frequency band that a

regular telephone circuit normally carries. The Weitbrecht

modem using these tones does a fine job. The problem is that

until recently it was very difficult if not impossible to find a

modem designed to interface to personal computers. At least

one is now available, but it costs approximately $150. Another

model provides both the Weitbrecht TDD system and standard

data tones. This one retails for about $300. One wonders why a

person would spend this kind of money for a modem only,

when small portable TDDs are available in the same price

range.

Fortunately, some simple construction will give us what we

need in the way of a modulator and demodulator. One more

trick with a relatively inexpensive telephone amplifier availa

ble from your favorite corner electronics store, and you are

connected to the telephone line and ready to communicate

with others in the TDD network.

In later years Doctor Weitbrecht was criticized for staying with

what some consider an antiquated system. Why not convert

everyone to ASCII? Weitbrecht's thinking was that there were

loads of surplus Baudot machines available for minimal costs.

ASCII machines were and still are very expensive. The present

situation is that neither the deaf community nor supporters of

the TDD system, such as the Bell System who provide directory

assistance and other operator services via TDD, have any

desire to make sweeping changes. Certainly there are many

deaf persons who have an interest in telecomputing and have

already discovered that they can do TDD type things using

ASCII communications. There is at least one national bulletin

board for the handicapped. "HEX" is the "Handicapped Ex

change" and operates in standard computer bulletin board

fashion at 300 baud.

The telephone number is 301 593-7033.

HEX is run by a group called AMRAD, the Amateur Radio

Research and Development Corporation based in the Washing

ton, DC area. Yet another amateur, Dick Barth, (W3HWN) is the

system operator. If you are a COMPUSERVE subscriber, the

Clark School for the Deaf provides an online system to support

deaf persons. Type go SCD at any COMPUSERVE prompt to

access this service. My thanks to Dave Manning of CSD for his

help in researching my material on TDD.

Telecommunications for the Deaf, Incorporated, is a non profit

organization established in 1968 to provide a nationwide direc

tory of TDD services and users and to assist with the distribu

tion of donated surplus machines. My thanks to Doctor H.

Latham Breunig, co-founder of TDD and TDI's original chief

executive officer, and a very special thanks to Barry Strassler,

currently executive director of TDI for their personal insights

into Doctor Weitbrecht. More information on TDI is available

from; Telecommunications for the Deaf, Inc., 814 Thayer Ave

nue, Silver Spring, Maryland 20910.

Take some time and enter the TDD program I have included

with this article. Note the minor changes indicated in lines 110

& 130 for the C-64. Next time, details on building a modem for

TDD communications and getting all of this connected to the

phone line, along with what kinds of services are available for

deaf persons on the TDD network.

Editors Note: Good news - Part 2 of Jims' article has been

printed following the program on the next page.

The Transactor 35 Volume 6, Issue 02

BC

OG

IL

FJ

CP

0!

NK

GG

CB

PH

HB

KE

ED

OD

GH

PG

AH

CG

JH

OL

Jl

FB

KO

00

HA

FN

HE

CP

IC

LI

GP

CO

OD

EH

JH

IH

Kl

EF

DK

JL

LL

NJ

MO

DG

BC

JK

FJ

BO

KA

The TDD Communications Program

100 close 2:open 2,2,0,chr$(96 + 1) + chr$(O)

110 rem c-64 only:poke 53280,0:poke 53281,0

120 print " BMtdd term 60 wpm baudot"

:print "Hrx|3 ";
130 poke 665,236:poke 666,87:d = 37136

: rem if c-64 then d = 56577

140 Is = -1

150lf$ = chr$(10)

160cr$ = chr$(13)

1701$= "e" +lf$+ "asiu" +cr$

+ "drjnfcktzlwhypqobg*mxv*"

180 f$ = " 3" + lf$ + " - '87" + cr$ +

"$4',!:(5')2#6019?&*./;*"

190 11$= "cyniamztfkor\lxvwjepgts]uq"

200 f 1 $ = " mdtidzqorddlc\]vwsajpugfxntdddyd"

210 get#2,c$:if c$ = "" then 270

220 c = asc(c$):if c<1 or c>31 then 210

230 if Is then c$ = mid$(l$,c, 1)

240 if not Is then c$ = mid$(f$,c, 1)

250 if c$<>" *" then print c$;:goto 270

260ls = (c = 31)

270geta$:ifa$= "" then 210

280ifa$= "Q" then poke d,96:goto 300

290 goto 210

300 print "QtxQ ":
310 get x$:if x$= "" then 310

320 if x$ = chr$(34) then x$ = chr$(39)

330ifx$= "0"thenprint" ga " ;:print#2,"dzcd";

: goto 350

340 goto 360

350 print "Pr>
360 if x$ =

:goto 520

370 if x$ = " Ci'
Springfield

380ifx$="H|1

;:gosub680:poked,100:goto210

then ml $ = " ryryryryryryryryryryry

then ml $ = " listing for j smith

pse " :goto 520

then ml $ = " thank you and good

evening " :goto 520

390 print x$;

400 if x$ = cr$ then print#2," h" ;:goto 310

410 if x$ = lf$ then print#2," b" ;:goto 310

420 if x$ = chr$(32) then print#2," d" ;:goto 310

430 x = asc(x$)

440 if x<33 then goto 310

450 if x<65 then x = x-32:goto 470

460 goto 480

470 x$ = chr$(91) + mid$(f 1 $,x,1):print#2,x$ + chr$(95);

:goto310

480 if x>95 then goto 310

490 x = x-64:x$ = mid$(H $,x, 1)

500 print#2,x$;

510 goto 310

520fors = 1 tolen(m1$)

530x$ = mid$(m1$,s,1)

540 print x$;

550 if x$ = cr$ then print#2," h" ;:goto 660

560 if x$ = lf$ then print#2," b" ;:goto 6130

570 if x$ = chr$(32) then print#2," d" ;:goto 660

580 x = asc(x$)

IE

BB

CB

LP

IO

PE

BF

BJ

ND

OO

KM

MP

GD

HN

590

600

610

620

630

640

650

660

670

680

710

720

730

740

ifx<33thenprint#2, d

if x<65 then x = x-32:goto 620

goto 630

x$ = chr$(91) + mid$(f 1 $,x, 1):print#2,x$ + chr$(95)

:goto 660

if x>95 then print#2," d";

x = x-64:x$ = mid$(M$,x,1)

print#2,x$;

nexts

goto 310

for x = 1 to1300:next:return

rem jim grubbs

rem po box 3042

rem Springfield

rem ill 62708

Part Two: The Hardware

In part one, we discussed the origin of the TDD system and how

to make the Commodore VIC-20 and C-64 converse in this

new language. Hopefully, you have entered the TDD communi

cations software and have it working error free. This time I'll

show you how to build the special Weitbrecht modem and get it

hooked up to the phone line.

There are three areas that need to be explored; Receiving

incoming TDD signals, transmitting your own TDD messages,

and hooking up your computer to the phone line. Finally, we

will take a quick look at TDD operating procedures with a brief

overview of what's available on the TDD network.

TDD Reception

Just like the data communications systems you are familiar

with that use ASCII transmission, the TDD system uses audio

frequency shift keying. In simple terms, the output of your

computer has two states, on and off. In data communications

we translate binary codes into a rapidly changing on and off, or

high and low signals, with each character being sent in a very

precise time period. When using ASCII transmission, the idle or

off state is referred to as the mark signal. When you send

nothing, the mark signal will be present. As the computer starts

sending information, this signal changes rapidly between the

mark tone and a space tone. The untrained ear may not hear

the difference between 300 baud ASCII and our 45 baud

(approximately) TDD code.

In normal data communications it is possible to have a real

"two-way" talking path. This is called full duplex and is made

possible through the use of two distinct sets of mark and space

tones. One set is used by the originating station, the other by

the answering station. That's what the switch on the VIC

Modem does when you change it from answer to originate.

With the TDD system, only one set of tones is used. They lie

approximately midway between normal data tones. This was

done to make the best use of the voice band frequency

response of the telephone lines. It does impose one restriction.

With both stations using the same set of tones, interference

The Transactor 36 Volume 6, Issue 02

results if both stations try to transmit at the same time. It is

therefore necessary to drop your transmitting tones when you

are receiving and to turn them back on when you want to

transmit.

Since TDD tones are different than regular data tones, you can

not use a regular modem to receive a TDD signal. A relatively

simple circuit however will work for most TDD applications. It

uses two inexpensive and readily available integrated circuits.

At the heart of the receive circuit is a 456 phase lock loop. This

device can detect the presence or absence of a particular tone.

With it, we can detect the absence or presence of the space tone

and send it through the RS-232 port to our computer for

decoding. The only problem with this method of detection is

that it is not immune to noise. Some long distance circuits may

not provide a "clean" enough signal to make the decoder work

reliably. The schematic for the receive decoder is included in

figure one along with a complete parts list. Additionally, a

printed circuit board along with some of the harder to find

components is available directly from John Duke, 1441 Pleas

ant Drive, Dallas, Texas 75217. John may also be able to

provide complete kits and assembled units. Contact him di

rectly for additional information.

Connection of the receive unit is made to the computer through

the user port. A 24 pin edge connector will be necessary to

accomplish this. A source for this connector is included in the

parts list. If you are not familiar with the layout of the pins on

the user port connector, consult the users manual or the

programmer's reference guide for details. Layout of the circuit

is not critical. With a TDD signal fed to the unit, R3 should be

adjusted until the LED indicator flickers in step with the signal,

and with the TDD terminal software loaded, the computer

prints the incoming signal. There are several ways to obtain a

test signal. I'll discuss that in the final hook up section.

TDD Transmission

As simple as TDD receive was, transmission is equally as

simple! A single integrated circuit will do the job. Figure two

shows the schematic of the TDD modulator. An Exar Corpora

tion XR-2206 function generator chip is used. At this writing,

the XR-2206 is just being made available through Radio Shack

stores. Another reliable source is included in the parts list.

Once again, construction and layout are not critical. I built

mine on a perf board. The mark and space frequencies are set

using R7 and R8. It is recommended that you use a frequency

counter for these adjustments. The modulator also connects to

the user port. Although the XR-2206 should work when

powered off of a 5 volt supply, I found operation at that voltage

a bit unstable. You must also take into account that the power

supply in the VIC can only supply a very limited amount of

power. Therefore, I recommend using an external power

source for the XR-2206. In my system, a standard 9 volt

transistor battery does a nice job. For testing, you can connect a

small earphone across the output. You should hear,a tone. With

the modulator hooked up to the computer and the TDD

terminal software loaded, place the computer into the transmit

mode by pressing the Fl special function key. As you type on

the keyboard you should hear the tone shift repidly back and

forth. Pressing the Fl key again sends the "GA" or go ahead

prompt and returns the terminal to the receive mode.

Remember that the transmit tones must be removed from the

phone line when you are receiving. The software provides a

toggle signal on pin E of the user port. Feeding this signal to a

simple one transistor keying circuit and connecting the circuits

as shown will turn the tones on and off as you switch between

transmit and receive. Make sure that you have used the proper

value for "D" as indicated in line 130 of the TDD software listed

in Part One.

TDD Meets The Telephone

It is necessary to get all of this hooked up to the phone line, and

do it in such a manner that it will not interfere with normal use

of the telephone line. This can be done with an inexpensive

telephone amplifier, such as the Radio Shack #43-278. All of

the actual interfacing to the phone line has been accomplished

for you. By disconnecting the leads going to the speaker of the

amplifier and connecting them to a simple interface (figure

three), you can connect the receive demodulator. A similar

connection between the modulator and the microphone con

nections on the amplifier will take care of the transmit side of

the circuit.

I suggest trying each part of the circuit separately. For final

adjustment and testing you will need a TDD signal to test the

receive converter, and someone with a TDD machine to make

sure that your transmitted signal is OK. In the early stages of

development I used the automatic message that our local

telephone company puts on the line after normal business

hours on their TDD assistance line. I recorded it on cassette

tape and then played the tape back into the receive converter

while I adjusted it.

If you are able to adjust your transmit frequencies with a

counter, you can record your own test tape, then use it to adjust

your receive decoder. If all else fails, send me a blank cassette

tape along with a mailer with sufficient postage and I'll make

you a TDD test tape.

Other than adjusting the frequencies of the transmit modulator

and setting the level on the modulator, there is nothing else to

do. You just have to checkout the transmit portion "on line"

with another TDD operator. If it doesn't appear to be working at

all, but you are getting the proper tones out to the line, you

have probably reversed the two tones when you adjusted R7

and R8. Simply retune them and you should be in business.

You connect the amplifier in a normal fashion to the phone

line. Just follow the instructions that come with the amplifier

for connection to the line, and the dialing instructions. Adjust

ing the telephone amplifier interface should be straight for

ward. Set the volume on the unit so the received signals will

consistently print. The microphone input to the amplifier is

made for a very low level signal, so set the sensitivity control on

the amplifier to low, and adjust the volume on the transmit

The Transactor 37 Volume 6, Issue 02

modulator (R6) for a very low level—and I do mean low. That's

the only problem I experienced in designing this unit. I mistak

enly kept increasing the transmit level when it didn't seem to

be working properly. My thanks to Rick Myers and Mike Apsey

of Journal/20 for the basic demodulator circuit (originally

designed for morse code demodulation), and John Spaulding of

the HEX organization for the idea of using a telephone amplifier

as a connection device for the phone line.

Using The TDD

Once you have the system operational, you will be able to

communicate with anyone equipped with another TDD unit.

Through a cooperative effort, the telephone companies provide

a toll free directory assistance line for deaf TDD users. You

reach the TDD operator at 800 855-1155. This same number

will allow you to place operator assisted TDD calls so that you

may make credit card calls, person to person calls, or other

calls needing operator assistance. When the operator comes on

the line, your screen should print "OPR MAY I HELP U Q GA",

which says, "this is the operator, may 1 help you, (Q for

question), GA (for go ahead)." At this point you go into the

transmit portion and give the operator your request. Remem

ber to always use area codes, the TDD operator won't know

which one unless you include it. The phone company also

provides a service number for you to use in reporting trouble

with your telephone line, or for ordering additonal services via

TDD. Check the front of your phone book for this number.

There are many other services available via TDD. Many gov

ernment agencies, including Federal, State, and local offices

have TDD machines. Particularly in metropolitan areas, such

things as AAA Motor Club and other large companies have

TDD, or as they are sometimes called TTY (teletype) numbers.

Check your local phone book.

The Commodore VIC-20 and C-64 are extremely versatile

machines. Their low cost makes them very attractive and

affordable to a wide range of individuals. The avenues of

communication that they open up for handicapped individuals

is phenomenal. With our TDD program and this simple inter

face, deaf individuals can have the advantages of a TDD device

and a home computer all rolled into one. Anyone interested in

a talking modem program for the visually impaired?

Author correspondence to:

Jim Grubbs

P.O. Box 3042

Springfield, IL

62708 217 753-1995

Parts List for Figure One - TDD Receive Decoder (Note: All resistors are 1/4 watt)

Cl - .47 y& tantalum capacitor

C2-.001 fif capacitor

C3 - .47 ixi tantalum capacitor

C4 - .1 jxi tantalum capacitor

C5 - .01 /^f capacitor

C6 - .1 yA tantalum capacitor

Ql - 2N2222 NPN transistor

Dl -1N4148 Diode

IC1 - 567 PLL Integrated Circuit

IC2 - 74LS00 Integrated Circuit

RL1 - 5v DC relay (Radio Shack 275-243 ok)

+5V

Rl - 100K resistor

R2 - 390 ohm resistor

R3-1 OK resistor

R4 - 10K 10 turn variable resistor

R5 - 2.2K resistor

R6 - 470 ohm resistor

R7 - 1K resistor

R8-4.7K resistor

To ?ltJ +
on Ic3

Figure One

The Transactor 38 Volume 6, Issue 02

OH RJ-1.

R3

/A/PUT

T3

8

Figure Two

Parts List for Figure Two - TDD Modulator

R1.R2-5.IK resistor

R3 - 220 ohm resistor

R4, R5 - 7.5K resistor

R6 - 50K single turn trim pot

R7, R8-5K 10 turn trim pots

Cl - 10 \xi 25v tantalum capacitor

C2 - 0.047 yd Mylar capacitor

C3 - 0.1 pi 50v disc capacitor

C4 - 1 /if 25v tantalum capacitor

IC3 - XR-2206 Exar integrated circuit

12/24 pin user port connector: Sullins 06SUL1224E5 available from: Priority One

Electronics, 9161 Deering Avenue, Chatsworth, CA 91311. XR2206 and most other

parts available from: JAMECO Electronics, 1355 Shorewy Road, Belmot, CA 94002

3||
TA

Rl-

IC3

r

C

"* OA)
O//S,

Rl - 1 OK resistor

R2- IK resistor

Figure Three

Parts List for Figure Three Telephone Interface

Tl, T2, T3 - IK to 8 ohm audio transformer Radio Shack *273-1381

1 Inexpensive telephone amplifier such as the Radio Shack #43-278

The Transactor 39 Volume 6, Issue 02

Easy Intercomputer

Connection

Simon Fodale

Montreal, Quebec

A simple 3-wire RS-232 interface

This article describes how to connect together two COMMO

DORE 64s, VIC 20s , + 4s or any combination of two of them.

Implementing this connection requires only a user-built cable

and some BASIC programming; with the cable in place, any

kind of data communication between the machines can take

place.

Today the price of a Commodore 64 or VIC 20 is very affordable

and many owners of one machine are tempted to buy a second

one. If you are attracted by this possibility or you already took

advantage of it, I am sure that one of the most interesting

projects you would like to accomplish is to connect the two

machines together and run somehow in a dual processor

environment.

There are actually several ways to connect two micros. The

fastest and more versatile would be to use the cartridge expan

sion port; this would require an interface cable and a program

or subroutine to handle the protocol. This protocol naturally

should be designed around the signals available on the port

and would be almost impossible to write in BASIC because of

the speed needed to handle these signals.

Another connection could be made through the user port. This

would not be as powerful as the first one and would need an

interface cable and a protocol handler. This program or subrou

tine could be written in BASIC, but the speed would suffer a lot.

Several examples of this connection can be found in computer

magazines, and are almost all based on the concept of parallel

data transfer.

The third way of connecting two machines is using a serial

connection, known also as RS-232. This line discipline is an

industry standard and can be used with various protocols. On

the Commodore 64, VIC 20 and +4, RS-232 protocol is built

into the Kernel and can be used with an adapter via the user

port. Why do we need an adapter? The answer is that to save on

cost for an option not always used, Commodore decided not to

use true RS-232 signal levels, providing instead an optional

extension on the user port. This means tnat in theory we

cannot use the RS-232 line discipline without extra hardware,

but actually that hardware is needed only to translate the TTL

signals generated by the motherboard into the RS-232 signals

accepted by some serial equipment. The cable described in this

article does not need any translation, because we use all signals

at their TTL level, allowing connection of the Commodore

machines using this feature. In addition, it uses the simpler '3

LINE' handshaking, requiring only Ground, Received Data and

Transmitted Data lines.

To build the cable, you need to get two connectors compatible

with the user port. I got mine at a local electronics store and I

am sure that, being a pretty standard product, they are availa

ble everywhere. Another thing you need is any three-wire

cable. I used a flat cable just because it happened to be in my

junk drawer; a handy telephone cable will do a fine job too.

Referring to figure 1 you can make the few connections needed.

While the connections are not many, if you are not familiar

with a soldering iron and small projects, I suggest you rely on a

friend to avoid a possible waste of time and money. Here is a

brief description of the cable functions; for complete informa

tion, page 355 of the C-64 Programmer's Reference Guide

gives all the user-port pin-outs with the names of RS-232

signal lines. If you hold the connector with the protruding pins

facing you, place the side with the letter 'A' on the left top. If the

connector does not have letters and numbers, just assume that

the leftmost top pin is 'A'. As you can observe from the

connector or from the User's Guide page 143, not all letters are

used; the exact lettering isABCDEFHJKLMN.

Connect pins A and N with a wire bridge; those are both ground

and their connection is a good practice. Make another bridge

between pin B and C; they handle both the Received Data

signal, but pin B is internally connected to a detection circuit,

able to generate an interrupt when a character is coming from

the line. Do the same bridges to the other connector and now

you can link the two by the three-wire cable. If the wires are

different colours there is no problem, else better make sure

with a tester or some other means which wire is which on each

end.

Connect first the ground, pin A or N, to both sides; then

connect pin M on one side to pins B and C on the other side;

The Transactor 40 Volume 6, Issue 02

this is the Transmitted Data connected to the Received Data.

Do the same connection for the other wire in the reverse

direction. Now both connectors should look the same, with

pins A, B, C, M, and N soldered somewhere. To complete a

durable connection, the connectors should be put in a head-

shell of some type which covers the soldered connections.

1 chose to make my own headshell from a piece of plastic of 1"

by 3" by 1/4" (25mm by 75mm by 5mm). In figure 2 there is a

sample of this home-made assembly, first I filed down one

edge on both sides to fit between the top and bottom rows of

connector pins. Then I drilled two holes, corresponding to

those on the connector, to fit the holding screws. Next, with the

width of the cable to be used in mind, I drilled a hole about 1 /

2" or 15mm deep into the edge opposite the connector pins.

Last, with a very large drill tip and a gouge, 1 carefully opened a

hollow into the 15mm cable hole, through which the cable will

be brought to the surface of the headshell. The cable can be

inserted into the hole with the wires coming out from the

hollow and connected to the pins. A couple of pieces of

insulating tape on each side of the headshell to cover the pins

should finish the job. Do not forget to pass the wire through the

hole before making the connections if you choose to make this

housing.

It is very important to mark the connector with a label indica

ting the side that must be up; inserting the cable in the wrong

position will mean connecting to +5V and +9V power

sources. It is easy determine the inserting position looking at

the finished connector; the side with no soldered pins is the

top.

With one end of this cable plugged into the port on each of the

two machines, it is now possible to transfer any kind of data

directly from BASIC. The built-in RS-232 routines allow com

munication by simply OPENing a file to device number 2 and

using GET* or PRINT* to receive or send. Using a data word

length of 8 will allow you to transfer not only alphanumeric but

the full Commodore character set (graphics, tokens, etc,) mak

ing it possible to transfer BASIC or machine language pro

grams, graphics, portions of memory, etc.

To test the cable you can use your favorite terminal emulator

program on both computers, or if you're using C64s or VICs,

you can use this simple one:

10open2,2,2,chr$(8)

15 rem above sets: 1200 baud, 8 bit, no parity

20 get#2,a$: get b$: print a$;b$;

30 if b$<>"" then print#2,b$;

40 goto 20

With the above set-up, you can communicate between com

puters simply by typing on either keyboard.

As a practical use of this communication channel, you could set

up a distributed processing system. For example, in a database

system, one computer could accept input from the user while

the other maintained the database on disk. That way, a record

could be sorted and stored on one computer while the user is

entering the next record or typing in a query on the other. This

would result in major time savings in most circumstances.

Editor's Note: another good application of the RS-232 cable is

to run a terminal program on one computer and REMOTE 64,

from elsewhere in this issue, on the other. See the article on

REMOTE 64 for details. - CZ

_n
ground

receive/transMit

transMit/receive

figure 1

Connectors are 24 position .156 x .200 edge connectors

Use any 3-wire cable such as telephone cable

sc r-ews

NHL KJHFEDCBft

• 1

v •

notch on
both si des

' holes

Piece of plastic

x X x 3

figure 2

The Transactor 41 Volume 6, Issue 02

Modems and REMOTE 64
Chris Zamara, Technical Editor

LOAD, LIST, SAVE, even edit programs. . . all from remote control!

The Modem

There are two things that can expand your computer limitlessly. One

is software. The other is a modem. Both of these things have unlim

ited potential, since they take the computer and transform it into...

well, anything you like. Just as a stereo system's enjoyment comes not

from what the system itself does, but from the music that is played on

it, a computer that "plays" a piece of software becomes just a medium

for the programmer or artist to use. Similarly, a computer with a

modem, acting as a terminal, is just a medium through which the user

accesses his favorite network or BBS (bulletin board system). Net

works themselves have unlimited potential for communications,

information, business transactions; a whole new way for people to

work, learn, interact, and communicate.

his would be a good place to talk about networks, BBSs, what they are,

how to use them, and how they're changing man's work habits and

communication patterns. But to get to the topic at hand, let's get on to

a neat modem application that might even be useful to some of you.

Remote 64

The machine-language program presented here is called "REMOTE

64", and as its name implies, it allows you to use your 64 (equipped

with an RS-232 modem) from a terminal somewhere else in the

world. This is the idea: you call your home from a terminal, which

could be another 64 running a terminal emulator. Your modem at

home answers the phone - now you're in complete control of your 64.

Whatever you type on the terminal appears on the screen of the 64

(specifically, it enters the 64's keyboard buffer). Whatever the 64

prints on its screen gets sent to the terminal. This means that you can

do anything from the terminal that you could do on the 64, including

LOADing programs, editing, running them and seeing the results,

even playing some games. Of course, you won't be able to see

anything that is POKEd directly into screen memory, or any hardware

stuff like that. But many games, such as adventure games, only print

characters to the screen normally, and can be used from remote.

Technically, anything printed through the CHROUT routine at $FFD2

will be sent to the modem. Incidentally, the 64 can also be used locally

while REMOTE is installed; it receives input from its keyboard AND

the RS-232 port (modem), and prints to its screen AND the RS-232

port.

The remote terminal can also BREAK a program or listing in progress

by sending a CTRL-C (ASCII value 3). A CTRL-C can be sent from

most terminal programs by holding the CTRL key and striking "C", or

by simply pressing the STOP key. After sending the STOP, be

prepared to receive up to 256 characters before seeing the 64 stop,

since there is a 256 byte RS-232 transmit buffer in the 64.

Applications

Using REMOTE, you could call your 64 from work and check the disk

in the drive for certain files. You could load in a program and LIST it to

view a programming technique you need to know. Or you could load

a BASIC program and make a change as a result of a spontaneous

brainstorm which you'd surely forget by the time you got home.

REMOTE also acts as a primitive BBS (but only for careful users: you

don't want someone to reset the machine from the remote terminal).

You could call the REMOTE-equipped 64 and put some REMs in a

program for the next user to read, or write ad SAVE a program for him

to see. By typing LIST, you can see a program that may have been left

by someone else calling in. A person at the 64 end can communicate

with anyone calling in, or he can call out to someone with a terminal.

The person at the terminal end can just type messages, using SHIFT/

RETURN to start a new line, to avoid causing a syntax error - these

messages will be seen on the 64 as they are typed, character by

character. The person at the 64 end can just type ?" and then the

message he wishes to send, followed by RETURN - these messages

will be sent out to the modem after RETURN is pressed. The advan

tage to communicating this way as opposed to a normal terminal

program is that programming ideas can be transmitted: the terminal

user can enter programs and RUN them to show the 64 user his idea.

Since REMOTE installs itself unobtrusively in the system (it lives at

$C000 and works through the output and IRQ vectors), BASIC and

even machine language can still be run with it in place. BBS operators

might want to put an option in the BBS program, "Escape to system".

This option would be restricted only to certain users, in fact probably

only to the SYSOP (SYStem OPerator) himself. Choosing the option

would exit from the BBS and install REMOTE. Suppose you're the

SYSOP. The "ESCAPE" option would allow you to modify the BBS

program, scratch certain files, validate the disk, etc., while you're

away, perhaps on vacation (well, a working vacation, anyway). If the

error vector in the 64 (location $0300-$0301) was changed so that an

error would initialize REMOTE before continuing with the error

process, then you could repair the BBS and re-run it if it dies for any

reason. (They do crash sometimes - it seems that some "pirates" have

figured out ways to confuse certain BBS programs.) Of course there's

no way to change disks from remote, so you'll have to come back from

vacation sometime. (Maybe some day in the future we'll publish an

article on a do-it-yourself robot. Then you could make the 64 say

"insert disk x", and he'd do it. Of course, he'd also have to understand

"get me a beer" or maybe even "write me a program").

The one drawback that REMOTE has is that it won't allow any disk

operations while it's active other than LOAD and SAVE. Due to the

critical timing involved in both RS-232 and serial communications,

there's just no way to have them both going on at the same time. Well,

no easy way, anyway - any ideas out there? If you do need to do some

kind of disk access while remote is running, you can temporarily

disable part of remote by fixing up the IRQ vector:

POKE 781,12 :SYS 64701

After the disk operation, you can re-enable remote with SYS 49152.

Usage and Notes

After you put remote into memory by running the basic loader in

listing 1, initialize it with SYS 49152. At this point, any characters

received over the RS-232 port (probably your modem) will appear on

the 64's screen as if typed in from the keyboard. All output will go to

the RS-232 port.

The Transactor 42 Volume 6, Issue 02

Remote is set up to communicate at 300 baud with no parity; the RS-

232 parameter used are the values 6 and 16. These are the numbers

supplied when remote opens the RS-232 file, using a logical file

number of 100. In other words, when remote opens the RS-232 file, it

performs the equivalent of:

OPEN 100,2,2,chr$(6) + chr$(16)

You may change these parameters by altering the fourth and fifth

bytes in the BASIC loader (listing 1).

To test out remote, connect two 64s via modem or user port connec

tion, and use the following simple terminal program on the remote 64

- that's the 64 not running the remote program.

10 open 1,2,2,chr$(6) + chr$(16)

20geta$:get#1,b$

30 if a$<>" "then print#1,a$;: print a$;

40 if b$<>" "then print b$;

50 goto 20

While running this program, you will be able to control the other 64

by "remote control". To simulate the STOP key, just hold down CTRL

while pressing C.

How it works

Initializing REMOTE with SYS 49152 opens an RS-232 file (file #2,

control and command bytes 6 and 16 respectively), and changes the

output vector at $0326/7 and the IRQ vector at $0314/5. It also

changes the load and save links at $0330-0333, the abort i/o vector at

$S032C/D, and the test-STOP vector at $0328/9. (For more on

vectors see the article in this issue).

The new IRQ routine gets a character from the RS-232 file. If it's not a

null, it puts it in the keyboard buffer at $0277 and increments the

pointer at $00C6 (198 decimal). It then jumps to the system IRQ

routine at $EA31, which scans the keyboard.

The new output routine sends the output character to the screen AND

to the RS-232 file, then returns back to the calling routine.

The "abort i/o" vector is trapped to keep the RS232 file open when a

program line is entered or BASIC wishes to close all files for any

reason.

The load and save link vectors are used to restore the IRQ and output

vectors during LOADs and SAVEs and restore them after the load or

save is complete. This is necessary to prevent death of the disk I/O

routines due to timing delays introduced by the new vector-driven

code.

So if you have a modem and are exploring the limitless world of

telecommunications, you now have the option of computing by

remote-control.

Listing 1: BASIC loader for REMOTE.

Just RUN this, then SYS 49152 to activate REMOTE 64

HJ

LI

PF

DH

JH

El

AF

10 rem* data loader for " remote" *

20 cs = 0

30 for i =49152 to 49434:read a:poke i,a

40 cs = cs + a:next i

60 if cs<>33357 then print" ***** data error ••***": end

70 rem sys 49152

80 end

Dl

DH

Bl

MO

BE

DJ

PL

BH

OG

OC

FF

CO

Al

Cl

GB

MD

LA

NL

FG

MG

FD

MP

KB

NL

OD

PG

HC

GP

MD

JD

GD

JL

NP

MG

HG

LO

FD

GN

JG

KL

CA

LL

IC

IL

JC

OK

BB

FA

IP

PO

AH

AG

EG

Ol

MH

FC

OD

OC

KN

NO

Dl

ME

MP

FC

KB

OC

OC

HO
KJ

1000 data 76,

1010 data 193,

1020 data 32,

1030 data 3,

1040 data 141,

1050 data 169,

1060 data 51,

1070 data 193,

1080 data 38,

1090 data 113,

1100 data 3,

1110 data 152,

1120 data 100,

1130 data 241,

1140 data 96,

1150 data 255,

1160 data 8,

1170 data 192,

1180 data 157,

1190 data 198,

1200 data 192,

1210 data 162,

1220 data 192,

1230 data 0,

1240 data 169,

1250 data 8,

1260 data 192,

1270 data 72,

1280 data 28,

1290 data 141,

1300 data 3,

1310 data 56,

1320 data 170,

1330 data 138,

1340 data 168,

1350 data 76,

5, 192,

56, 32,

157, 192,

169, 192,

48, 3,

209, 141,

3,169,

141, 45,

3, 169,

141, 20,

88, 96,

72, 165,

32,201,

104, 168,

162,100,

201, 0,

169, 127,

162, 0,

119, 2,

255, 108,

169, 2,

2, 160,

255, 162,

173, 184,

0,141,

72,138,

8, 72,

173, 27,

193,141,

38, 3,

189, 55,

193, 141,

104, 40,

72,152,

104, 170,

49, 243

6, 16,162,

141,255, 32,

120,169,185,

141, 41, 3,

169, 192, 141,

50, 3, 169,

22,141, 44,

3, 120, 169,

192,141, 39,

3, 169, 192,

120,133,251,

251, 32, 22,

255,165,251,

104, 170, 165,

32,198,255,

240, 24,201,

141, 184, 192,

142, 184, 192,

230,198, 162,

27,193, 162,

32,189,255,

2, 32,186,

100, 32,201,

192,240, 7,

184,192,108,

72, 162, 0,

138, 72,162,

193,141, 20,

21, 3,173,

173, 46,193,

193,141, 4,

5, 193, 104,

32, 0, 0,

72, 32, 60,

104, 40, 96,

27, 160

231,255

141, 40

169,200

49, 3

192,141

3,169

83, 141

3, 169

141, 21

138, 72

231, 162

32, 202

251, 88

32, 228

3,208

76, 149

166,198

0, 32

3,160

169, 100

255, 32

255, 96

133, 145

47, 193

76,215

2,152

3,173

45, 193

141, 39

193,189

168, 104

8, 72

192,104

169, 1

100

110

120

130

140

150

160

170

180

200

210

220

230

240

250

260

270

280

290

300

320

330

340

350

370

380

390

400

420

430

440

450

460

Listing 2: The PAL Source code for REMOTE 64

sys700

.opt oo

$c000

jmp setup

;kernal entries:

chkin

chkout

clall

getin

open

setlfs

setnam

vector

$ffc6

$ffc9

- $ffe7

= $ffe4

- SffcO

- $ffba

= $ffbd

= $ff8d

scrnout = $e716

normout = $f1ca

asave = $fb

bufptr = $c6

outvec = $0326

stopvec = $0328

loadvec = $0330

savevec = $0332

ioabort = $032c

filenum = 100

f'n .byte 6,16

setup = *

;save old vectors

Idx #<vecsave

;chrout for screen

;chrout vector

;temp storage for a

;# chrs in kbd buffr

;output vector

;check stop vector

;load vector

;save vector

;rs232file#

;rs232 ctrl/command

The Transactor 43 Volume 6, Issue 02

EK

BG

KE

KG

AP

DC

GK

NN

MN

JH

JC

Jl

JE

AA

LB

BM

IG

BN

II

MD

IF

BA

FK

BB

FM

IH

CJ

AG

AN

AH

GK

EL

HI

JN

GD

OE

AG

MN

MM

PO

IP

GC

01

CC

BA

GG

DP

CF

OF

BA

OA

HN

BJ

DG

GO

PP

MO

KJ

PD

CE

GN

KN

GJ

OJ

IA

FO

MO

HG

EK

PL

GD

PJ

FM

ED

GK

PD

PH

BC

470

480

490

500

510

550

560

580

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

831

832

840

850

860

870

880

890

900

920

930

940

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

Idy

sec

jsr

jsr

jsr

sei

#>vecsave

vector

clall ;close all files

rsopen ;open rs232 file

;change stop vector

Ida

sta

Ida

sta

#<newstop

stopvec

#>newstop

stopvec +1

;change load vector

Ida

sta

Ida

sta

;

#<newload

loadvec

#>newload

loadvec +1

;change save vector

Ida

sta

Ida

sta

#<newsave

savevec

#>newsave

savevec +1

;change " abort i/o" vector

Ida

sta

Ida

sta

;

aftersav =

sei

#<newio

ioabort

#>newio

ioabort+1

;change output vector

Ida

Ida

;

#<newout: sta outvec

#>newout: sta outvec +1

;change irq vector

Ida

Ida

cli

rts

;

newout =

#<intrtn: sta $0314

#>intrtn: sta $0315

*

;this is the new output routine

;which sends to rs232 and screen

;the vector at $0326 points here

sta asave

txa: pha: tya: pha ;save x & yl!

Ida

jsr

Idx

jsr

Ida

jsr

asave

scrnout ;screen

#filenum

chkout

asave

normout ;rs232

pla: tay: pla: tax

Ida

rts

intrtn

; puts char frorr

asave ;restore a

*

l rs232 into

; keyboard buffer

Idx

jsr
jsr

cmp

beq

cmp

bne

Ida

sta

jmp

nobrk

Idx

stx

The Transactor

#filenum

chkin ;connect rs232 channel

getin ;get character

#0 ;null

out ;ignore nulls

#3 ;ctrl-c (break)

nobrk

#$7f ;indicate break

brkflg ;..to newstopttn

out

*

#0 ;clear stop

brkflg ;..flag

DO

FM

MC

DD

JK

CM

HD

KN

EC)

LJ

FA

BF

FP

GF

LI

BK

JA

HB

MJ

JE

PC

GB

GO

JE

El

Al

Gl

NE

JG

PA

FD

DL

BD

JD

10

CP

HP

LE

MK

GL

OD

BF

CE

KE

CP

II

EH

AO

NN

MK

AL

FK

CM

FM

OB

CO

LI

PI

CK

EB

EB

IM

DJ

PM

JK

CP

JJ

HK

NL

KB

IP

Ml

Fl

PA

LC

KK

HC

44

1310

1320

1330

1340 out

1350

1360

1370

1380;

1390;

1400 rsopen

Idx

sta

inc
=

Idx

jsr

jmp

=

bufptr ;# chars in buffer

$0277,x ;keyboard buffer

bufptr ;point to next char
*

#0 ; switch back to

chkin ;.. keyboard

(vecsave) ;system irq routine

1410;open rs232 file

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540 brkflg

1550;

1560 newstop

Idx

Idy

Ida

jsr

Ida

Idx

Idy

jsr

jsr

Idx

jsr

rts

#<fn ;point to

#>fn ;. . .filename

#2 filename length

setnam ;set filename

#filenum

#2

#2

setlfs

open ;openfile#,2,2,fn

#filenum

chkout ;connect channel

.byteO

= ♦

1570 ;check stop key routine

1580

1590

1600

1610

1620

1630 nostop

1640

1650;

1660;

1670 newload

Ida

beq

sta

Ida

sta

=

jmp

=

brkflg

nostop

$91

#0

brkflg

♦

(vecsave + 20)

1680 ;load vector points here

1690 ;must disable stuff before load

1700

1710

1730

1740;

1750 newsave

1760

1770

1790;

1800 Id

1830

1840

1850;

1860

1870

1880

1890

1900;

1910

1920

1930

1940

1950;

1970

1980

1990

2000

2010

2020 Idsv

2030

2040

2050

2060

2070;

2080 newio

2085

2090

2100;

2110vecsave

php

Idx

jmp

=

php

Idx

=

tya

pha

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

pha: txa: pha

#0 ;0 = load

Id

*

pha: txa: pha

#2 ;2 = save

+

vecsave

$0314 ;irq vector

vecsave +1

$0315

vecsave +18

outvec ; output vector

vecsave +19

outvec +1

vecsave + 28,l»ad/save adr lo

ldsv+1

vecsave + 29;t»ad/save adr hi

Idsv+ 2

pla:tay:pla:tax:pla:plp

jsr

php

jsr

•-• ;load or save routine

pha:txa:pha:tya:pha

aftersav

pla:tay:pla:tax:pla:plp

rts

=

Ida

jmp

* = *

*

#1 ;always keep 1 file open

$f331

+ 26

Volume 6, Issue 02

Riding The

RS-232 Bus Lines

Tony Valeri

Hamilton, Ontario

In the beginning, Commodore introduced the Vic-20 along

with the philosophy that computers should be affordable. In

the design of the Vic (and later the C-64) Commodore decided

not to include a full parallel IEEE-488 bus, but to implement a

lower cost serial version. This advented the new line of inex

pensive, easy to use(?), and reliable(?!?) peripherals, such as the

1541 and the 1525. Also included in the new design was an

implementation of a semi-standard RS-232 interface (standard

except for the fact that the voltages were wrong and the

standard connector was non-existent). Before this it was a rare

PET that enjoyed the luxury of telecommunications, being that

IEEE modems were prohibitively expensive. With the introduc

tion of the Vic to general consumers, a modem was only a

partial paycheque away (as soon as somebody started produc

ing them - modems, not paycheques).

One of Commodore's major strengths in the market place is

that the availability of every item used in the manufacture of

their products is virtually guaranteed. This may mean that they

own the chip manufacturing company (MOS technology), or

just that they have a binding contract with suppliers. So, when

an RS-232 port was being designed into the Vic-20, a dilemma

cropped up. It seems that at this time UARTs (Universal

Asynchronous Receiver Transmitter) were in short supply and,

rather that risk production delays waiting for more to arrive,

they decided to fake it by re-writing the operating system to

perform the UART's duties. This has lead to a few minor

programming problems that I'll cover a little later on. But for

now let's dig into the meat and potatoes of the RS-232 bus line.

Opening an RS-232 channel.

Openlf,2,sa,CHR$(a)CHR$(b)CHR$(c)CHR$(d)

If - Logical file number. This number must be in the range of

0-255 and is the operating systems way of distinguishing

between files.

sa -Secondary address. The same restrictions apply as in the

above but in this case it's not really used for anything (but

put it in anyway).

a- Control Register, (see fig 1.1) This number controls the

number of stop bits, word length, and the parity of the RS-

232 channel.

b - Command Register, (see fig 1.2) This number controls the

parity, duplex, and the handshaking of the RS-232 chan

nel, and is optional.

c/d - These numbers are needed only if the leftmost four bits of

the control register are zero (signifying a user designated

baud rate), (see fig 1.3)

Using fig's 1.1,1.2, and if necessary 1.3, compute the values

in binary, convert to decimal and then insert into the appropri

ate CHR$ statement.

The Transactor 45 Volume 6, Issue 02

This open command allows the user to decide the exact

manner and speed in which the data transfer is to take place. If

you wish to open an RS-232 channel from machine language,

just follow the normal open procedure for a file from m/1 and

set the filename routine to point at the one to four characters

that are to be used for control purposes.

When an RS-232 file has been opened, the operating system

immediately allocates two 256 byte buffers for storage of

incoming and outgoing data. These buffers are placed adjacent

to the top of basic memory, overwriting any previous data.

When used from within a basic program the open statement for

the RS-232 file should occur before the defining of any varia

bles or arrays. This will avoid the problem of having the buffers

overwrite the variable storage area and thus bombing the

program. Machine language programmers are also cautioned

to keep a careful watch over the locations of these buffers.

Always put the RS-232 buffers in a location that will NOT be

used for anything else.

There are two main two-byte pointers in zero page that

determine the location of the RS-232 buffers after the initial

open statement.

$F7-$F8 Pointer to location of RS-232 receive buffer.

$F9-$FA Pointer to location of RS-232 send buffer.

Once an RS-232 file has been opened and the buffers have

been created, the two buffers may be moved around at will.

Moving either buffer becomes a simple matter of changing the

value stored in the pointers to whatever your little heart (or

picky program) desires. Another word of caution; when moving

a buffer, any data in the old buffer will become information

non-gratis (or as Orwell would say it becomes an Undata. ie

Pfffsstt BANG! gone bye bye). So either make sure that the

buffer is empty prior to a move, move the data to the new buffer

yourself, or kiss it goodbye.

There are also four single byte pointers which control position

ing within the two buffers. These pointers determine which

location a data byte is to be written to and which location a data

byte is to be taken from.

Input Buffer

$029B Where to store the next character from the RS-232

channel

$029C Where in buffer to get next character (for GET#, and

INPUT#)

Output Buffer

$029D Where in buffer to get next char to send to RS-232.

$029E Where in buffer to put next character (from PRINT*)

Say, for example, that we have a C-64 and modem and are

running a simple terminal program. When the operating sys

tem senses a character is about to come in over the RS-232 port

(kinda like ESP) it looks at the pointer in $029B, takes that

value, adds it to the pointer at $F7, and comes up with a

memory location in which to store that character. The same

thing happens when a character is being sent from the program

(or keyboard) to the modem, and when reading characters from

the buffer. Each pointer keeps track of the next available

memory location in their respective buffers. When the two

pointers for a particular buffer are equal that signifies either

that a) the buffer is completely empty, or b) that the buffer was

completely filled and the one pointer overtook the other. In

effect wiping out whatever was still there (it IS still there but it's

not easy for a program to take that kind of situation into

account).

Most modems allow features such as automatic dialing and

automatic answering capabilities. These are implemented us

ing three of the lines of the RS-232 connector (a nice way of

saying 'user port'). These three lines are The Ring Indicator

line, The Carrier Detect line, and the Phone Hook Line.

On the C-64, RS-232 operations are controlled through the

CIA2 chip at location $DD00. The data register can be found at

location $DD01 (56577). This register is where the status of an

I/O line can be read or changed, according the the information

present in the data direction register ($DD03-56579). The Data

register and the Data Direction register each contain eight bits.

The purpose of each bit in the Dr is to reflect or change the

status of an individual I/O line (as in the user port). Each bit in

the DDr corresponds to a bit in the Dr, and is present for the

sole purpose of determining whether the Dr will read the status

of an I/O line or will change the status of that line.

When a particular bit in the Data Direction Reg is set to a '1',

then the corresponding bit in the Data Reg is set to WRITE data

to an I/O line. When the same bit in the Direction Reg is set to a

'0', then the corresponding bit in the Data Reg is changed so as

to reflect the current status of that particular I/O line (1 = write,

0 = read. "NOT I/O" is a helpful reminder)

Ring Detection

The fourth bit of the Data Reg (PB3-loc $DD01) is the ring

indicator. When a ring is detected this bit changes from a zero

to a one. For Example.. .

10 poke 56579,38: rem 00100110

20 if peek (56577) and 8 = 0 then 20

30 rem body of program

10—Initial I/O lines for standard operation.

20-Loop until ring is detected

30-Upon ring detection execute program

The Transactor 46 Volume 6, Issue 02

Answering the Phone/Carrier Detection Touch Tone Dialing

00 poke 56579,38: rem 00100110

20 if peek(56577) and 8 = 0 then 20

30 poke 56577,peek(56577) or 32

40 ti = 0: rem set timer to zero

50 if peek(56577) and 16 = 1 then 100

60 if ti<1000 then 50

70 poke 56577,peek(56577) and 32

80 goto 10

100 rem main program

10-Initialize I/O lines

20-Wait for ring

30-When ring detected make connection (pick up phone)

40-Clear timer

50-Check for a carrier

60-Has time run out?

70-YES! hang up.

100-carrier found, enter main program

Auto Dialing

Virtually all modems designed for the 64 use the PULSE

method of dialing. Dialing a particular number is accomplished

by opening and closing a switch a specific number of times and

with a timed delay. Tone dialing is different in as much as the

actual dialing is accomplished through the sending of tones

across the line instead of opening and closing a switch

In pulse dialing the pulse consists of an ON period (making the

connection) and an OFF period (breaking the connection)).

Each pulse is exactly 100 milliseconds long (1 /10 sec) and has a

make/break (on/off) ratio of 60/40. In a single pulse connec

tion is made for 60 milliseconds then the connection is broken

for 40 milliseconds. When a digit has been dialed (each digit is

made up of the proper number of pulses 1 = 1 pulse,2 =

2pulses etc...0= 10 pulses) there is a pause of approximately

700 ms (7/10 sec) (actually it can vary from between 1 /2 sec to

over 1 sec, and most exchanges will allow up to 10 seconds)

until the next digit is sent.

To dial the area code (312), the hook bit in the Dr would be

controlled as shown in the diagram below. (1 = make contact,

0 = break contact)

The new 1660 modem from Commodore has an Audio In jack

which allows touch tone dialing (through program control).

This could also be accomplished with a 1650 (or compatible

type) modem. All that would be needed would be a patch

between the hook relay (inside the modem) and the user port

connector. Then you just wire up a connector to the audio

output from your 64 and away you go (if this doesn't make

COMPLETE sense to you then talk it over with someone

familiar with both Ma Bell and electronics. If you make a

mistake you could be liable for any damage to the phone lines).

When touch tone dialing each DIGIT must last for a minimum

of 100 ms (1/10 sec). The tone for each digit is a combination of

two separate and distinct tones. This allows the representation

of 12 digits with only 7 different tones.

697 hz

770 hz

852 hz

941 hz

1209 hz

1

4

7

1336 hz

2

5

8

0

1477 hz

3

6

9
#

Thus the digit 1 consists of two tones; one at 697hz and another

at 1209hz

and so on and so forth.. . ad nauseum..

Thanks to the SID chip, playing these tones is a simple matter

of setting up the right frequencies. There should be two voices

used. One for the row tones and one for the column tones.

Some of the autodial modems currently on the market have a

problem in distinguishing between a busy signal and a carrier.

This can be quite frustrating, especially if your software won't

take this problem into account. Don't despair, remember the

saying "If you want something done right, do it yourself". The

problem arises from the modem manufactures attempt to make

his product more sensitive (or to cut his production costs) and

allow for bad phone lines, poor carrier quality, etc.. . The

easiest way to get around this is to understand the way that Ma

Bell organises HER operation and then design your program to

work with the system (instead of against).

1111111111111111100000011110000001111000000111111111111111100000011111111111111111100000011110000001111

(3 sec - wait for

dial tone)

60ms 40ms 60ms 40ms 60ms 40ms

digit '3'

700 ms 60ms 40ms 700 ms

(pause) — T — (pause)

60ms 40ms 60ms 40ms

digit '2'

equals 4.91 sec

Any method of pulse dialing MUST conform to this standard in order to be acceptable to North American telephone exchanges.

The Transactor 47 Volume 6, Issue 02

The quickest fix is to wait for 3 seconds of UN-interrupted

carrier. Both the ring and the busy signal are intermittent (ie.

on..off..on..off..etc.). For those of you who are interested in the

possibilities of completely computerized telecommunication

('Pushing The Envelope' as another high tech field says) you

might want to chew over these items.

Dial Tone 350 + 440 hz continuous

Busy Signal 480 + 620 hz 0.5 sec on 0.5 sec off

Receiver Off Hook 1400 + 2060 + 2450 + 2600 hz 0.1 sec

on 0.1 sec off

No Such Number between 200 to 400 hz continuous tone

The above info 'could' lead you to the development of a super-

computerized answering system. Somebody calls while you are

out, the computer answers (via voice synthesis) and stores their

message (tape, or digitized voice). The computer then tries to

phone you (from a list of numbers). It would then ask whoever

answers to press the '1' or '0' button according to whether you

are there or not. If you are there ('1') then you would press the

'2' button (touch tone systems only). At which point the

computer would play the appropriate message, and if you

weren't there the computer would just keep trying.

(It was just a thought. I'd be willing to bet that some of you

reading this will come up with some applications that are

REALLY mind bending)

Compiling RS-232 programs

BASIC terminal programs can usually handle 300 baud with

little or no difficulty (as long as there are not too many

operations between characters). But when attempting to com

municate at 1200 baud or greater your choices become fewer

and fewer. When speed becomes vital you will either write a

VERY short basic program, write it in a faster language (forth,

assembler, etc.), or compile the basic program. Compiling has

become one of my favourites in cases where you need extra

speed but not as much as you'd get from assembler. And unless

you really need a terminal program running at 9600 baud,

compiled BASIC should work nicely (and it's a lot easier to

write).

Traditionally, compiling a BASIC program has a few pitfalls

such as the fact that things like timing loops have to be worked

out on a trial and error basis.

After trying to use Petspeed to compile a simple terminal

program I was faced with a problem. It wouldn't work. It finally

dawned on me that the compiled program set aside memory for

variable storage as soon as it was executed. Then when the RS-

232 buffers were opened they wrote all over the variable

storage area.

I now realize that there are probably quite a few ways to

overcome this problem but I'll leave them as an exercise and

explain the first method I used.

When 1 found that I couldn't open an RS-232 channel from

BASIC (after compiling) my first thought was to try a machine

language routine. A few minutes later I changed one line in my

BASIC program.

100open2,2,2,chr$(6)

became 100 open 2,8,15:sys12*4096)

If I couldn't open an RS-232 channel then I'd open a disk

channel and change it with a ml routine. The machine lan

guage routine was quite simple. It closed file number two then

reopened it as an RS-232 file. But before it returned to the main

program it moved the buffers to $CE00 and $CF00, out of

harms way. Then it returned to the main program. The whole

thing worked like a charm.

The other methods (which I haven't tried) are changing the

locations of the buffers with a few pokes immediately after

opening the RS-232 file or lowering the top of memory before

running the program then temporarily moving it back up just

before you open the RS-22 file.

Using RS-232 and the Serial Bus

When an RS-232 file is active, an interrupt is generated each

time a character is about to appear over the RS-232 bus line.

This type of interrupt is called NMI (Non Maskable Interrupt)

and it takes precedence over any other kind of interrupt or

activity. In other words, if you happen to be using either the

disk drive, cassette, or printer, and a character comes in over

the RS-232 bus then odds are that part of your operation

(reading, writing, or printing) will be corrupted. Under normal

circumstances this is not much of a problem, but in certain

applications (such as a bbs program) the affect could be disas

trous. If you feel that this accurately describes a problem that's

been plaguing you then remember the following hints. Before

using the disk drive, printer or cassette remember to close the

RS-232 channel. If you don't want to lose anything that's been

stored in the buffers you should save the various pointers

before closing, and replace them when re-opening the RS-232

channel. This way the only information you lose is whatever

tries to come in while you are printing, reading, or writing,

instead of everything in both buffers.

With any luck you've found 'something' of interest to you in

this article. If you have any questions or comments please feel

free to drop me a note.

Tony Valeri

40 Barnesdale Avenue North

Hamilton, Ontario

L8L 6R8

The Transactor 48 Volume 6, Issue 02

CHR$(D

Figure 1.1

Control Register

6 5 3 2 1) + CHR$(

Figure 1.2

Command Register

Baud

User

see Fig 1.3

50

75

110

1345

300

60(1

1200

2400

2400

3600*

4800*

7200'

9600*

19200'

* VIC/64: not implemented

RCVR Clock

VIC/64

X Not Used

5 4 3

VIC/64

Handshake

3 Line

XLine

VIC/64

XXX Not Used

Duplex

Full

Half

Parity

Disabled

Odd

Even

Mark

Space

Word

Length

0

0

1

1

0

1

0

1

8 Bits

7 Bits

6 Bits

5 Bits

Stop Bits

1 Stop Bit

2 Stop Bits

Figure 1.3

If, when OPENing an RS232 channel, the optional User Baud Rate

is selected, an additional 2 CHR$ values must be specified after the

Control Register CHR$ and the Command Register CHR$. ie.

OPEN LF, 2, SA, CHR$(Control Reg) CHR$(Command Reg) CHR$(X) CHR$(Y)

X = (Z / Baud Rate/2 - 100) - (Y * 256)

Y = INT((Z / Baud Rate/2 - 100) / 256)

Z = 1.02273 x 106 (North America)

= 0.98525 x 106(U.K./Europe)

7 6 5 4 3 2 1 0

Data Register (Dr)

location 56577

PB0 - Received Data (IN)

PB1 - Request To Send (OUT)

PB2 - Data Terminal Ready (OUT)

PB3- Ring Indicator (IN)

PB4 - Received Line Signal (Carrier Detect) (IN)

PBS - Phone Hook Relay (1 = ON / 0 = OFF) (OUT)

PB6 - Clear To Send (IN)

PB7-Data Set Ready (IN)

Data Direction Register (DDr)

location 56579

location 56579

1 = Data Out

0 = Data In

7

0

6

0

5

1

4

0

3

0

2

1

1

1

0

0

The Transactor 49 Volume 6, Issue 02

C64 BBS Link Bob Hayes

Winnipeg, Manitoba

How many times have you misplaced important information regard

ing your favourite Bulletin Board System?

It's not unlikely that you will forget your password, handle or even the

phone number of the BBS, especially if you have not logged on for a

while. Writing the vital information on paper sometimes helps, but

where does that paper go when you need it?!

1 decided to create a program that would keep track of this important

information and print a list whenever 1 needed one. The info 1 decided

on was quite simple:

1) Name of the system

2) Phone number

3) Your Name or Handle

4) Password

The list could also be used by a SYSOP to store the Names and Phone

numbers of users of the BBS. I suppose that using a database for this

purpose seems a good idea, but a database can be cumbersome,

particularly when it comes to printing out the list.

The program as shown in Listing 1 uses the excellent sorting routine

found in the January '85 issue of The TRANSACTOR (Volume 5, Issue

04, pg.34) so if you haven't typed it in, I suggest you do so. (In that

case, the Transactor Disk *7 for this issue will have Gary Kiziak 's sort

included - M.Ed.) If you don't need an alphabetically sorted list, you

can do without the sort routine; just replace lines 840 to 880 in listing

1 with the new lines in listing 2, and delete lines 890 to 910.

I tried to keep fussy programmers happy by using chr$() for the

various colour and control characters. If you do not like the idea of

having a nicely formatted, colour program then leave out what you

don't need in lines 205 to 215.

When your program is ready, make sure the sort routine is loaded in

(if required), then RUN it. The first option of the four-choice menu,

"create file", is what you will need to do first. By typing in a number in

response to the prompt 'APPROX SIZE:' you will have the program

create the relative file in which your data will be stored. Enter the

MAXIMUM number of records you think you'll ever need, not the

number of records you have now!

You can now choose 2> ENTER DATA. The MAXIMUM number of

characters for each field will be displayed and you will be prompted

for four replies. By typing 'q' at the end to the question SURE?, you will

escape back to the menu.

When modifying an entry, the RECORD * must be knpwn, so printing

out a list before editing is advised (The record numbers are listed

before the entry on the printer). You will then be sent back to the

ENTER DATA screen. By typing an '♦' (asterisk) to a prompt, you will

leave the data in that field unchanged. Entering anything other than

the asterisk will change the data. Deleting a record must be done in

this option by typing an '@' ('at' symbol) for all prompts. The printer

section will check for the @ and omit that record when it comes time

for it to be printed.

The printing routine asks for printer type and case before it goes to

work. If you are using the program in listing 1, all data will be read into

memory from the drive and then sorted/printed. (The name of the

BBS should be in lowercase for sorting purposes.) If you have made

the listing 2 modifications, data will not be sorted. Hitting a key while

the printer is going will halt the printout. This is so that you can pause

the printer to make adjustments at the end of a page, if necessary.

If at any time you need to break out of the program, then be sure to

type CLOSE2:CLOSE15. If you break out of the printer routine, then

also type PRINT*4:CLOSE4.

Listing 1

NP

NP

GM

MG

FD

HG

LJ

HH

GE

MP

KE

LK

EJ

NA

JC

LO

LE

1 rem c64 bbs link

2 rem a simple database for your bbs numbers

3 rem the program " sort64" must be in memory at $c100

4:

5 dim n$(500):goto200

6 save" @0:64 bbs link" ,8:verify" 64 bbs link" ,8:stop

10 hi = int(n/256):lo = n-hi*256:return

20 n = rc:gosub10:print#15," p" chr$(2 + 96)

chr$(lo)chr$(hi)chr$(ps)

25 return

30 input#15,a,z$,c,d:print:printwt$;a;yl$;" " ;z$;

gy$;c;" ";d:return

40 print:printtab(11)gy$" insert master disk"

41 geta$:ifa$= " "goto41

42 return

50poke53265,peek(53265)and239:return

60poke53265,peek(53265)or16:return

200 open15,8,15:printchr$(14)

205 cl$ = chr$(147):wt$ = chr$(5):gy$ = chr$(155)

:cy$ = chr$(159):cu$ = chr$(145)

210 rt$ = chr$(13):yl$ = chr$(158)

215 poke53281,0:poke53280,6

220 printcl$:printtab(14)gy$" 64 bbs link"

:fora = 1 to40:printylS" -" ;:next:print

225 printtab(16)wt$;cu$;" bob hayes"

:fora= 1to40: print" -" ;:next: print

The Transactor 50 Volume 6, Issue 02

LE

IL

JJ

KN

KC

OC

NB

FF

LL

DL

MC

MB

AL

CH

GP

LI

OD

KN

OA

GP

CE

MD

ED

KH

MC

HP

ON

OB

LE

PO

AE

Bl

KG

EL

CP

NP

GA

CP

EK

DF

IN

NE

DN

AJ

LF

NE

DB

BM

230 x = 7

240 printtab(x)wt$" 1 > " gy$

250 printtab(x)wt$" 2> " gy$

260 printtab(x)wt$" 3> " gy$'

280 printtab(x)wt$" 4> " gy$'

create file"

enter new record"

modify existing record'

print list" wt$

290 print:printtab(x);:poke19,64:input" select:" ;s$

:print:poke19,0

300 s = val(s$):ifs>5ors<1goto290

310 on s goto 320,400,600,700

320 printcl$;cr$;:poke19,64:input"approxsize: ";sz

:print:poke19,0

325 gosub40

330 open2,8,2," 0:data,l," + chr$(77)

335 re = sz:ps = 1 :gosub20

336 print#2," last" ;rt$:close2

340 open2,8,2," @0:point,p,w" :x = 1 :print#2,x;rt$:close2

350 run

400 printcl$:gosub30

405 print:printwt$"name/bbs = 20 chars"

: print" phone # = 12 chars"

410 print "handle/name = 20 chars"

:print" password = 20 chars"

420 print:poke19,64:printcy$" name/bbs: "wt$;

:input x$:print:poke19,0:rem white

425 ifx$<>" *" thenb$ = x$

430 poke19,64:printcy$" phone # :" wt$;:input x$

:print:poke19,0:rem cyan/white

435 ifx$<>" *" thenp$ = x$

440 poke19,64:printcy$" handle : "wt$;:inputx$

:print:poke19,0

445 ifx$<>" *" thenh$ = x$

450 pokei9,64:printcy$" password:" wt$;:input x$

:print::poke19,0

452 ifx$<>" *" thenc$ = x$

455 print:print:input" sure (y/n/q)" ;a$:ifa$ = " q" thenrun

460 ifa$ = " n" goto400

465 ifqq = Othenqq = 1 :gosub40

466 gosub50

470 open2,8,2," point" :input#2,k:close2

480 if r<>0 then k = r

485 open2,8,2," data"

490 re = k

500 ps= 1:gosub20:print#2,left$(b$,20);rt$

510ps = 22:gosub20:print#2,left$(p$,12);rt$

520 ps = 35:gosub20:print#2,left$(h$,20);rt$

530 ps = 56:gosub20:print#2,left$(c$,20);rt$

540 close2

550 if r <> 0 then gosub60:run

560 k = k +1 :open2,8,2," @0:point,p,w" :print#2,k;rt$

:close2:gosub60

570 goto400

600 printcl$;yl$" entering a * will leave data same" :print

605 ch = O:printwt$;:input" input the entry # for

changes ";ch

610ifch = 0thenrun

620 r = ch:rc = ch:qa = 1 :open2,8,2," data" :gosub820

:close2:goto400

700 printcl$" enter printer type:":print

710 printgy$" a) 1525/mps 801, b) 1526/mps 802"

720 print:input" type" ;a$:ifa$<>" a" anda$<>" b"

goto700

OP

JO

Kl

MJ

LE

MF

DB

GE

OD

KC

CL

EO

AK

NL

MG

AG

KF

JE

GG

Dl

GJ

MG

ID

LH

MH

KL

Jl

KM

Jl

CF

CD

MG

MD

JH

FH

Ol

AC

IB

rem 2 spaces

";:rem 15 spaces

" ;rt$

725 printcl$;wt$:input" <u>pper/<l>owercase" ;c$

:ifc$<>" u" andc$<>" I" goto725

730 ifa$ = " a" andc$ = " I" then open4,4

:print#4,chr$(17):goto750

732 ifa$ = " b" andc$ = " I" thenopen4,4,7

:print#4,chr$(17):goto750

734 open4,4

750 print#4," name/bbs

:rem 3 spaces/14 spaces

760 print#4," phone number

770 print#4," handle

780 print#4," password

:rem 12 spaces

782 fora = 1 to80:print#4," -" ;:next

785 open2,8,2," point" :input#2,k:close2

790 open2,8,2," data"

800 fora =1tok-1

810rc = a

820 ps = 1 :gosub20:input#2,b$

825 ps = 22:gosub20:input#2,p$

830 ps = 35:gosub20:input#2,h$

835 ps = 56:gosub20:input#2,c$

836 ifqa = 1 thenqa = 0:return

840 rem

845 iflen(b$)<20thenb$ = b$ +

850 iflen(p$)<12thenp$ = p$ +

855 iflen(h$)<20thenh$ = h$ +

860 iflen(c$)<20thenc$ = c$ +

861 rem

862 rem

863 ifa<10thenn$(a) = str$(a) +

+ " " + h$ + "

865 n$(a) = str$(a) + "

+" " +c$

870 next:close2

875 rem

880 srt=12*4096 + 256

890 sys(srt),n$,1 ,k-1,4,23,a

900 fora =1tok-1:ifmid$(n$(a),5,1)= "@"goto902

901 print#4,n$(a)

902 geta$:ifa$ = "" goto906

904 geta$:ifa$ = "" goto904

906 next

910 print#4:close4:run

920 rem *** delete lines 890- for listing 2 *♦*

Listing 2: Lines to add for non-sort version

1 :goto845

" :goto850

" :goto855

' :goto860

+ b$ +

+ c$:goto870

" +b$+ ".." +p$ +

p$

+h$

LH

BF

JM

OG

NH

NB

ME

BF

PH

Ml

FO

BB

840

845

850

855

860

861

862

863

865

870

875

880

| print#4,a;

i iflen(b$)O22thenb$ = b$ +

i iflen(p$)<>13thenp$ = p$ +

iiflen(h$)<21thenh$ = h$+ "

i iflen(c$)O20thenc$ = c$ + "

ifleft$(b$,1)= "@"goto875

!geta$:ifa$= ""goto870

:geta$:ifa$= " "goto862

. rem

i print#4,b$;p$;h$;c$

i next:print#4:close4:close2

igoto215

":goto845

" :goto855

:goto855

":goto860

The Transactor 51 Volume 6, Issue 02

Tele-Tone 64:

A Synthetic Model Telephone
Richard Evers, Editor

Recently, the Commodore 64 has been making big headlines in

most of the major newspapers worldwide. The Commodore 64

verses Bell Telephone. Due to a mixture of over enthusiastic

programmers, and the high quality sound reproduction of the

SID chip, synthetic telephone systems are appearing every

where. These systems not only reproduce the standard touch

tone dialing system, but also incorporate methods to bypassing

Ma Bell, allowing entry into some pretty tender areas. Without

pushing the point too far, Bell isn't too happy. People are being

arrested, equipment and supplies are being seized, and the

courts are starting to get pretty busy trying to sort this mess out.

Due to a very archaic law on the books in Canada, it appears

that anyone caught with a "phone freak" type program in their

possession can be arrested. You don't have to use it, don't even

have to know you have it. It just has to be there. A pretty sad

state of affairs when a vast corporation has unlimited power. In

most cases, the police won't break your door down and start

ripping through your possessions immediately. They have to

be tipped off about any supposed illegal telephone activities

before starting action. Can you say 'phone tap'. You know,

those equally illegal things that governments are always doing,

without getting caught. Can you imagine how simple it would

be to tap a telephone line that you own and control. The

shadow of Big Brother looms on the horizon.

To get back on line, this article is not about phone freaking. It's

about telephone conventions and how to synthetically repro

duce them using your SID chip. The sounds we will reproduce

today are the ones that Bell won't arrest you for, we hope. They

are the simple ones, like touch tone dialing, the ringing of the

bell, a busy signal, plus a few others. All tricks learned thanks

to a few commercially available books, of which the Radio

Amateurs Handbook was the primary source.

To start, your telephone normally has two states of operation,

the Idle state, phone on the hook, and the Busy state, phone off

the hook. The only exception to this rule is when pulse type

dialing systems are used. The pulse type system works in a

rather simple manner. It simply pulses the line back and forth

between the Idle and Busy states. These pulses occur at a rate of

10 pulses per second, with a tolerance of plus or minus 10%.

Every digit dialed, 1-9, produces its own value in pulses during

the cycle. The exception to this is the digit 0. It pulses 10 times.

There is a minimum time between digits of 600 milliseconds, to

allow the telephone system time to calculate the digit dialed.

The shape of the pulse is a square wave of which the wave is in

an Open state between 58% to 64% of the time. Enough said

about pulse type dialing systems.

Dial tone systems are quite a bit more logical. For all digits

dialed out, two frequencies are used, a high and a low. This

helps the telephone system better differentiate between digits,

and also cuts down inaccuracies due to noise on the line. The

frequencies are as follows.

Frequencies Measured In Hz.

High Tone

Low 1209 1336 1477 1633

697 1 2 3 Fo

770 4 5 6 F

852 7 8 9 1

941 * 0 # P

As the chart shows, the digit T can be reproduced using two

frequencies, 697 and 1209 Hz. To the extreme right on the

chart you will notice a column with a high frequency of 1633

Hz., represented by Fo, F, I, and P. They were not explained in

The Transactor 52 Volume 6, Issue 02

the books, but were shown all the same. These freqencies do

not deviate from the normal pattern of the rest, they just have a

high frequency different than the others. Without proof, I will

not venture a guess as to the reason for this extra range of

digits.

The frequencies listed above can have a maximum frequency

deviation of plus or minus 1.5%, a pretty small margin for

error. The minimum duration of ON time for the two frequency

tones is 50 milliseconds, with a minimum time between digits

of 45 milliseconds. There are a few other parameters to follow,

but they really have no valence on this article. The program

below does not have to worry about the rise time to get up to

the correct amplitude of the frequency, or a few other equally

useless details that would probably bother a less versatile

system.

To generate a few more interesting tones, the frequencies listed

below are used.

350 and 440 Hz. Dial Tone

440 and 480 Hz. Audible Ringing: 2 seconds on, 4 seconds off.

480 and 620 Hz. Line Busy: Interrupted 60 times per minute

480 and 620 Hz. Re-Order (all trunks busy): Interrupted 120

times per minute

As can be quickly deduced, these tones will never really come

in handy to the average user. The dial tones shown above, as

used in the program listed below, are the useful ones. With a

few easy mods to the 'tele-tone 64' program, your standard

modem could be quickly transformed into a pseudo auto dial

unit. Through the use of a soldering iron, a bit of wire, and an

old acoustic coupler speaker, the output from the SID could be

sent directly to the microphone of an extra telephone on your

telecommunications circuit. Not a bad trick to perform with a

few old parts floating around your computer room.

To quickly finish up, the program 'Tele-Tone 64', as listed

below, performs quite a few tricks that won't upset Ma Bell. It

will generate all the standard tones that your phone does, plus

a few extras. The extra frequencies Fo, F, I, and P are repre

sented in the program by pressing the keys a, b, c, and d. They

seemed to be a logical extension of the 0-9 set. For the Busy

Signal, Re-Order Signal, and Audible Ringing, a timing loop

was needed, therefore TI$ was used. To keep the program

simple, TI$ was set to zero before each timed loop, and TI was

checked to see when the correct duration had elapsed. If you

need to use this program in an application that requires the

correct setting of TI$, consider the TOD clock. Though more of

a pain than TI$ to figure out, it's more accurate, powerful, and

generally more satisfying.

One final point to ponder while using 'Tele-Tone 64'. The

setting of the volume control is critical. Set the volume on your

monitor, amplifier, or whatever, to a comfortable listening

level. Too loud or too soft will result in no response from your

Bell unit. Placing the microphone of the telephone approxi

mately one half inch away from the speaker, then keying in the

digits seems to work most of the time. Although this is a pretty

vague way in which to work, it's the best we can do considering

the limitations of communication through a magazine. Our

only advice is for you to play around with the volume setting

and placement of the telephone handset until it gives the

desired results.

Tele-Tone 64

EJ

DJ

CO

10

CH

BP

NM

BE

FF

BH

LE

PF

LH

HG

LH

HJ

HG

HI

MJ

HD

Kl

Al

EJ

LK

AF

HD

DJ

HL

PL

JG

AM

HI

BM

IJ

IL

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

rem save" @0:tele-tone 64" ,8

rem ** rte/85 - synthetic touch tone sounds

viathe64'ssid chip

key = 203: num = 198: rem ** which key

/ # chars in keybuf

zp$ = " 000000": rem * * for timed loop later

dim pd$(2

pd$(0,0) =

pd$(1,0) =

pd$(2,0) =

pd$(0,1) =

pd$(1,1) =

pd$(2,1) =

pd$(0,2) =

pd$(1,2) =

pd$(2,2) =

pd$(0,3) =

pd$(1,3) =

pd$(2,3) =

,3)

"697"+

"697" +

"697

"770

"770

"770

"852

"852

"852

"941

"941 " +

"941" +

"1209'

"13361

"14771

"1209'

"1336'

"1477'

"12091

"1336"

"1477'

"12091

"1336'

"1477'

rem 1

rem 2

rem 3

rem 4

rem 5

rem 6

rem 7

rem 8

rem 9

rem #

rem 0

rem *

xt$(O)= "697" + "1633"

xt$(1)= "770" + "1633"

xt$(2)="852" + "1633"

xt$(3)= "941 " + "1633"

rem fo - extra

rem f - extra

rem i - extra

rem p - extra

dt$ = " 350" + " 440": rem dial tone

rg$ = " 440" + " 480": rem audible ringing:

2 seconds on, 4 seconds off

lb$ = " 480" + " 620": rem line busy:

interrupted at 60 int/minute

ro$ = " 480" + " 620": rem re-order:

interrupted at 120 int/minute

sd = 54272: rem start address of sid chip

fc = 16.40426: rem frequency multiplying

constant

pt = 64: rem voice type: pulse

for i = 0 to 24: poke sd + i,0: next: rem initialise

sid chip

poke sd +2,0: poke sd +3,8: rem 50/50 square

wave voice #1

The Transactor 53 Volume 6, Issue 02

IN

AG

NA

DK

10

Ml

FK

BE

MJ

EG

MN

E0

EM

GH

HE

GE

HN

PE

BO

NM

LE

AL

DC

KP

BA

BC

DC

Nl

JO

NK

LC

HJ

FF

MC

CD

PK

DP

MG

JE

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

poke sd + 9,0: poke sd +10,8: rem 50/50

square wave voice #2

poke sd + 5,0: rem attack = 0: decay = 0

voice #1

poke sd + 6,240: rem sustain = infinite,

release = immediate

poke sd +12,0: rem attack = 0: decay = 0

voice #2

poke sd + 13,240: rem sustain = infinite,

release = immediate

pokesd + 24,15: rem set volume to max

print chr$(147)chr$(14)" ** Touch Tone 64 **"

print " Press 0-9 Normal Dial Tones"

print " Press#, * Special For Business"

print " Press a-d Extra Tones Fo, F, I, P"

print " Press (B) Line Busy"

print " Press (D) Dial Tone"

print " Press (O) Re-Order"

print " Press (R) Audible Ringing"

print " Press (Shift) (CIr/Home) For Clear"

get p$: if p$= "" then 360: rem get request

sid$= "": spec = 0: rem initsid string + set

condition flag

if p$<" 0" or p$>" 9" then 395: rem leave

room for numeric check

p = val(p$): if p = 0 then sid$ = pd$(1,3)

: goto 450

p = p-1: x°/o = p/3: y = p-3*x%

: sid$ = pd$(y,x%)

if p$ = " #" then sid$ = pd$(0,3)

if p$ = " *" then sid$ = pd$(2,3)

if p$ = >" a" and p$< = " d" then

sid$ = xt$(asc(p$)-65)

if p$ = " B" then sid$ = lb$: spec = 1: rem busy

if p$ = " D" then sid$ = dt$: rem dial tone

if p$ = " O" then sid$ = ro$: spec = 2

: rem re-order

if p$ = " R" then sid$ = rg$: spec = 3

: rem ringing

if p$ = chr$(147) then 310: rem clear the display

if len(sid$) = 0 then poke num.O: goto 360

: rem wrong key, try again

rem ** time to start touch toning **

print p$;

lf = val(mid$(sid$,1,3))*fc

: hf = val(mid$(sid$,4))*fc: rem set freq/voice

pokesd + 4,pt: pokesd + 11,pt: rem gate voice

#1 and #2 off

hi% = If/256: lo = lf-hi%*256: rem calc lo/hi

freq voice #1

AJ

OD

ML

LF

GL

DG

Cl

NG

LC

NO

GH

Bl

MD

KN

MN

FJ

IM

BP

FO

JK

JJ

DN

OE

KL

CM

HF

GA

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

poke sd.lo: poke sd +1 ,hi%: rem set up freq

voice #1

hi% = hf/256: lo = hf-hi°/o*256: rem calc lo/hi

freq voice #2

poke sd + 7,lo: poke sd + 8,hi°/o: rem set up

freq voice #2

pokesd + 4,pt + 1: pokesd + 11,pt+1

: rem gate voice #1 and #2 on

ct = 0: ti$ = zp$: rem set for timed loop if needed

if spec = 0 then 570: rem nothing special to do

if spec<3 then 530: rem #3 = audibie ringing

if ct = 0 and ti = >120 then gosub 595

: rem flip ct, re-set ti$, gate off

if ct and ti = >240 then gosub 600

: rem flip ct, re-set ti$, gate on

if spec<>2 then 550: rem #2 = re-order signal

if ct = 0 and ti = >15 then gosub 595

if ct and ti = >15 then gosub 600

if spec>1 then 570: rem #1 = busy signal

if ct = 0 and ti = >30 then gosub 595

if ct and ti = >30 then gosub 600

wch = peek(key): if wch<>64 then 500

: rem wait till no key pressed

pokesd + 4,pt: pokesd + 11,pt: rem gate both

voices off

poke sd,0: poke sd +1,0: poke sd + 7,0

: poke sd + 8,0: rem set freq's low

goto 360: rem go for next key press

ti$ = zp$: ct = not ct: poke sd + 4, pt

: poke sd + 11,pt: return: rem gate off

ti$ = zp$: ct = not ct: poke sd + 4,pt+1

: poke sd + 11,pt +1: return: rem gate on

The Transactor 54 Volume 6, Issue 02

Fun with the 1541 Tony Valeri

Hamilton, Ontario

The Commodore 64 is one of the best selling

micro-computers on the market today, and

since the publication of the C-64 reference

manual it can also be considered to be one of

the best in the area of documentation.

The companion accessory to the 64 is the 1541

disk drive. Unfortunately, unlike it's compan

ion, documentation has been both scarce and

somewhat spotty. While there have been nu

merous articles concerning the 1541, few have

gone beyond information available as far back

as 1980. Commodore itself has been strangely

silent concerning the inner workings of all of

their disk drives, not just the 1541.

In this article I'll explain the use of some of the

operating system routines, and how to recover

from certain disk errors without losing the pro

gram or data effected.

Our first step will be an overview of the actual operation of the

disk drive itself and the ways in which we can manipulate it.

Typically the owner of a C-64 system actually has TWO

computers. This is not to say that they also own another brand

of computer but that the 1541 is actually a full-fledged stand

alone computer all by itself. The 1541 uses a 6502 microproces

sor, has two kilo-bytes of Random Access Memory (RAM),

sixteen kilo-bytes of Read Only Memory (ROM - This is where

the instructions needed for the operation of the drive are

stored), and two Input/Output chips (I/O - used to control the

drive motor, R/W head, and send info back and forth). This

arrangement frees up a large portion of the C-64's memory

since the instructions used to store/retrieve data are built into

the disk drive and do not have to be loaded and executed by

the computer. All the 64 has to do is remember a handfull of

commands and the drive takes care of the rest.

If you are one of the fortunate few who have been able to

understand and digest the information in the 1541 's manual,

then you can skip ahead to the section on 'Recovering From

Disk Errors'. Right now I'll try and cover some of the com

mands and techniques that we'll need in order to have the disk

drive do something other than just loading and saving.

There are two ways of sending data to the disk drive. The first

way is used to write information onto the diskette itself (pro

grams, files, etc.). After an open command 'PRINT* a' is used

to write information to a file and both 'INPUT* a' and 'GET* a'

can be used to retrieve the data from the diskette, 'a' is the file

number which can range from 1-255. A file number greater

than 127 will cause a linefeed to be transmitted after every

carriage return via PRINT*. An appropriate open command is

required before a file command is executed for the first time (by

The Transactor 55 Volume 6, Issue 02

■file command' I am referring to PRINT*, INPUT*, and GET*).

The open command used for file access follows the following

format.

OPEN a,b,c, "d:name,e,f"

Where:

(a) Represents the file number. This number is used by the file

access commands (see above) and is used to determine

which file is being accessed.

(b) Represents the device number. This is usually an eight (the

factory set drive number) but could range from eight

through eleven. You can have as many as 4 disk drives

hooked up to your computer at the same time and each

would have it's own drive number.

(c) Represents a value known as the secondary address. This

number is used to signal a device to perform a certain

function. Commodore printers use this to change print

modes etc.. For file access, two through fourteen are com

monly used. Zero and one are reserved by the computer for

program load and save operations and fifteen is used to talk

directly to the disk drives computer (we'll get to that in a

minute).

(d) Represents the drive number, which can be either a zero or

a one. This feature is provided for the users of dual drives.

Since a dual drive has only one device number there has to

be a way of determining which drive is to be used at a

certain time. This is it.

This number, along with the colon, can be omitted if you are

using a 1541. If an '@' precedes the colon, and the .file is being

opened for a write operation (see below), then the new data will

be written over the old file, completely destroying the old

information.

(name) is just the name of your file (see, not everything is hard

to understand)

(e) This is a letter representing the type of file that you wish to

work with. This can be either an 'S', 'P', or 'U'. These letters

stand for 'Sequential', 'Program', and 'USER. We'll go

through a few examples in just a second. Relative files

require a more complex format to access, and such, this

article will not be going into depth on the subject.

(f) This determines the kind of operation that will be performed

on the file to be opened. An 'R' means that we want to Read

data from this file. A 'W indicates that we want to Write data

to this file. And finally, an 'A' means that we want to write

information onto the end of the file without destroying any

information already written there.

O.K. now for some examples.

1)open 1,8,2, "testfile,s,w"

2) open 3,9,3," 1 phone numbers,s,r"

3) open 2,8,2," tax data,s,a"

4) open 1,8,9," star trek.p.r"

5) open 7,8,2," @:masterpiece,p,w"

1) This opens a file on disk device eight, as file number one.

The file is named " testfile", it is a sequential file and is

going to be written to.

2) This opens a sequential file on disk device number nine, as

file number three and using drive number one. The file to be

read is named " phone numbers".

3) This opens a sequential file on disk device number eight as

file number two. Any data sent to this file, named " tax data"

, will be added to the end of the file.

4) This opens a program file for reading as file number one on

device number eight.

5) This erases the old program named " masterpiece" and

opens a new program file, as file number seven, for writing

with the same name on device eight.

Note: If you try to open a new file with the same file number as

a file that is currently open, the computer will respond with an

error message. Each file must have a unique number. This is

the only way that the computer knows where to send a certain

piece of data.

The next type of open command is used to communicate

directly with the computer inside of the disk drive. The format

looks like this:

open a,b,15

(a) and (b) are the same as before.

The secondary address of fifteen signals the disk drive's com

puter and informs it that you want to give it a direct command.

Now we can start examining some of the more simple disk

commands and work our way slowly to the more advanced

stuff.

When you buy a brand new diskette it has to be properly

prepared before you can store any data on it. (for the following

command and for all of the others we'll assume that you have

entered the command "open 15,8,15". This will open the

command channel prior to sending any command. After the

command type in "close 15" to let the disk drive know that

you have finished talking.)

Preparing a new disk is called FORMATTING. This fills the disk

with information that the drive needs to know in order to read/

write it's own data and is similar to the cutting of grooves in a

phonograph record.

To format a disk you can issue the following command:

The Transactor 56 Volume 6, Issue 02

print#15," n:diskname,id"

Disk name is (you guessed it!) the name that will appear on

your disk whenever you ask for a catalog of the disks contents.

" id" this is a unique two character (can be both letters and

numbers) code that is used by the disk drive to identify that

particular disk. If you use two disks with the same id your drive

could possibly become confused and store information in a

place that could cause you a great deal of anguish.

After you've just saved the fifteenth version of that great

program you're working on, you realize that your rapidly

running out of space on your diskette. You reach for another

diskette to work with and find that it is full also. Since Murphy

is the patron saint of all programmers and hackers, it just

happens that it's either too late to run to the nearest computer

store to buy another box of disks, or you've just spent your last

couple of dollars on some neat gadget, or the nearest computer

store is seventy miles away, or all of the above. So what do you

do now? No, you don't field test your 1541 as a wheel block for

your car (besides it the wrong shape. Try a Timex/Sinclair.

Their wedge shaped 'computer' could keep a car from rolling

down even the steepest of hills). All you have to do is erase

some of those old files that have outlived their usefulness.

How? you may ask (and I knew you would). Easy.

print#15," s:program name"

This kills the file called " program name" from your disk and

allows you access to the more room on the disk.

(Oh yea, the " n" stands for " new" and the " s" stands for

scratch")

These two commands give you an idea of the structure used in

talking to the disk drive. As we go along I'll be introducing

others which I will then explain (I promise).

Recovering From Disk Errors

Whenever you write to a diskette, the disk drive automatically

reads back each part, and if the two don't match exactly then it

tries to write it again (up to five times). If the drive still can't

write the data to the disk the drive then signals an error

condition by flashing a red light located at the front of the disk

drive.

Errors can also occur at other times, like when you are trying to

read back a piece of data. After you have successfully written to

a disk a number of things can then happen. Part of the disk may

have gone bad for various reasons such as dirt, dust, cigarette

smoke, heat, or stray magnetic fields (DON'T store diskettes

near a telephone. The bell operates using an electro-magnet.

One phone call from a well meaning friend could sabotage your

whole library). When this happens the value of one or more

bytes have been either changed or corrupted. Most errors are

detected through a method known as 'checksumming'. The

way that this works is that all of the bytes in a certain section

are added together and the resulting number is then chopped

up, leaving the sixteen rightmost binary digits. This leaves a

value between 0 and 255 which is then stored on the disk along

with the data. When the data is read back into the disk drive, a

new checksum is calculated and is then matched to the one

originally stored on the disk. If the two checksums don't match

then the disk drive tries again (five times). If they still don't

match the drive stops whatever it's doing, sulks, and flashes

that stupid light again. In computer jargon this is what's known

as a boo-boo (an error condition). The most common boo-boo

is an error number 23. This stands for a 'checsum error in data',

which means that somewhere in the actual data written to the

disk one or more of the bytes have gone belly up. The

checksum calculated for the data block and stored on the disk

does not match the checksum calculated at the time the

information was read into the disk drive.

A few months back I was doing some thinking about what the

various error messages actually mean. I realized that with an

error 23 the data had to be read into the disk drive before a

checksum could be calculated. The data was there, but because

the disk drive had decided that the information was not 100%

pure and unsullied it could not be read by the computer. Well if

the drive can read the information why can't we? The answer is

that we can but it has to be done in a manner that is both

sneaky and underhanded.

This is where we get to some of the more interesting disk

commands. The first one is known as the 'Block-Read' com

mand. This command tells the disk drive to read a specific

sector on a certain track into memory which can then be

accessed and manipulated by the computer. In order to do this

we must tell the disk drive to reserve a part of memory for our

exclusive use. This is done by opening a drive 'buffer'. After

opening the command channel (OPEN 15,8,15 - remember?)

you them open the buffer like so:

OPEN 2,8,2, "#"

The file number is used later on by the actual disk commands

and the number sign tells the disk drive to look for the first

available buffer and to reserve it for our exclusive use as file

number two.

Try this little program.

10 open 2,8,2, "#"

20 open 15,8,15

30print#15,"u1:"2;0;18;1

40 get#2,a$: if a$ = "" then a$ = chr$(0)

50 print a$;

60ifst = 0then40

70 close 2: close 15

Now I'll see if I can explain it.

Line 10 - opens a channel and reserves a buffer.

Line 20 - opens the command channel (Tell the disk drive to

wait for a command)

The Transactor 57 Volume 6, Issue 02

Line 30 - 'u1' is a substitute for the Block-Read command.

The general format for the command is

PRINT#15,"u1:"a;b;t;s

Where:

(a) corresponds to the file number used in the buffer open

command (line 10)

(b) corresponds to the drive number (always a zero on the 1541)

(t) stands for the track number to be read

(s) stands for the sector number to be read

Line 40 - Read a byte of data from the buffer. If we don't get a

byte back then we let a$ equal the character equiva

lent of a zero. This has to be done since the C-64 will

not recognize an ASCII value of zero in data transmis

sions. The zero is used as a signal between different

devices and thus is not useable when reading data

(writing is a different matter though).

Line 50 - Print the character to the screen. This includes cursor

codes and certain character codes that won't print

properly to the screen.

Line 60 - ST is the status variable. This tells us the status of the

last operation performed. If it is not a zero then either

an error has occurred or we have reached the end of

the data block (256 bytes)

Line 70 - Close file number 2 and file number 15.

This program will read the first block of your diskette's direc

tory into the disk drive's memory, where it will then be read

byte by byte into the computer and be displayed onto the

screen. Since quite a few of the possible values will not print to

the screen properly you might want to change line 50 to 'print

asc(a);a$' or just 'print asc(a$);'. This will print the character

number and the character, and just the character number

respectively. You can change the values for T and S to anything

that you wish (T goes from 1 to 35 and S ranges from 0-20 to 0-

16 depending on the track number). This would let you exam

ine the whole disk a block at a time.

The Block-Write command " u2 " is almost identical to the

Block-Read command except that you are writing information

to the disk instead of reading it. This program will write 256 a's

to a block located at track one and sector one. You can use the

first program to examine this block before and after it has been

written. All you have to do is change the track and sector values

in the first program to match this one (namely one and one

respectively).

10 open 2,8,2, "#"

20 open 15,8,15

30 for i = 1 to 256

40 print#2," a";

50 next i

60print#15,"u2:"2;0;1;1

70 close 2: close 15

Line 10 - open a buffer

Line 20 - open the command channel

Line 30 to Line 50 - Send 256 A's to the buffer that we've

opened

Line 60 - Write the buffer to the disk

Line 70 - close all files

Now that we've covered the necessary background informa

tion, we can proceed to try and eliminate some errors.

I call this program 'error 23 fix', and what it does is read a block

that contains an error 23 and then re-write that block back to

the disk (but without the error)

10 input " what track is the error on " ;t

20 input " what sector is the error on " ;s

30 open 2,8,2, "#"

40 open 15,8,15

50print#15,"u1:"2;0;t;s

60print#15,"u2:"2;0;t;s

70input#15,a,s$,d,f

80 print " status — " ;a;" " ;s$;" " ;d;" " ;f

90ifa = 0then200

100 print " it didn't work-could be a damaged disk"

110 print " try again?"

120 get x$: if x$ = "" then 120

130 if x$ = "n" then 200

140 goto 50

200 printprint "done!!"

210 close 2: close 15

There is only one warning that I should tell you about before

you use this program. If the error occurred due to the fact that a

byte of data was corrupted instead of the checksum byte then

when the block is re-written that bad byte will also be re

written. After using this program to recover your own program

or file it would be smart to copy it over to a new disk. Next you

should examine your program or file carefully to find the bad

byte of information. In a program this could turn up as a print

statement with a weird character or as a transformed command

(such as a 'for' statement becoming a 'gosub' statement. To

copy a file to another spot on the same disk use the command

'print#15, "c:newname = oldname" ' where oldname is the

current name of the file and newname is the newname of the

file.

This next program is of specific interest to the hacker commu

nity in general. Track 18, sector 0 of a disk contain certain

information that is vital to the proper operation of the disk. This

block is the first block of the directory and also contains a map

telling the drive which blocks have been used and which are

still available. It also contains the name of the disk and the type

of disk drive that was used to format the disk. This last piece of

information is of specific interest to us at the moment. If this

byte is changed to a value other than what it is supposed to be

then the next time the disk drive reads that disk a number of

things happen. 1) the disk becomes unwriteable. 2) the disk

becomes impossible to back up (using a dual drive).

The Transactor 58 Volume 6, Issue 02

This means that the information on the disk cannot be changed

or altered (barring an act of God such as little sisters). Occasion

ally a piece of software has this little gem added to it's various

other protection schemes to keep people from altering codes

contained on the disk. Another nasty trick has turned up in

high school computer classes. Some smart alek changes the

DOS version of all his friends(?) disks. Now that poor person

can't write to his disks unless he re-formats them, and if he

does then he loses all the data on that particular disk. Nasty.

Now it should be possible to change the DOS version number

back to what it originally was. The only problem is that normal

methods of reading/writing have to go through various error

detection routines, all designed to make life easier for a pro

grammer but a real pain until you learn about ways to get

around them.

The way that we can do this is to get directly inside of the drive

(figuratively speaking) and force it into doing what we want by

giving it some false information (usually impossible using

normal methods).

Here's the program that will Re-write track 18, sector 0 and

eliminate the error caused by a wrong DOS version number.

10open 15,8,15

20 print#15," uj": rem disk drive reset command

30 open 2,8,2," #0": rem reserve buffer number zero

40print#15,"u1:"2;0;18;0

50 print#15, "m-w"chr$(2)chr$(3)chr$(1)chr$(42)

: rem write a $2a to buffer pos 3

60 print#15," m-w" chr$(6)chr$(0)chr$(2)chr$(18)chr$(0)

: rem set trk/sector #'s

70 print#15," m-w" chr$(0)chr$(0)chr$(1)chr$(144)

: rem re-write the block

80 print*15," uj": rem clean and reset memory

90 close 2: close15

After running this program your disk should again be writeable

in a normal fashion. In this program we've used the Memory-

Write command. This command allows us to write a single byte

or number of bytes anywhere in the disk drives memory. In

actual practice we can only write to either the 2k of RAM (which

extends from $0000 to $0800) or to the registers in the I/O

chips (from $1800 to $180F and from $lC00 to $1COF). The

companion command to Memory-Write is the Memory-Read

command (M-R). This command allows us to read any memory

location in the disk drive, including the 16k of ROM located

from $C000 to $FFFF.

Memory-Write:

print#15, "m-w"chr$(a)chr$(b)chr$(c)chr$(d)chr$(d)chr$(d). . .

(a) Low byte of address to be written to

(b) High byte of address to be written to

(c) Number of bytes to write

(d) Actual Values to be written

Memory-Read:

10 print#15," m-r" chr$(a)chr$(b)

20 get#15,z$: if z$ = "" then z$ = chr$(0)

30 z = asc(z$)

(a) Low byte of address to be read

(b) High byte of address to be read

(z$) This will contain a character equal to the value contained at

that memory location

(z) This will contain the actual value stored at that memory

location

This little program will blink the little light on the front of the

disk drive.

10 open 15,8,15

20 print#15," m-r" chr$(0)chr$(28)

30 get#15,a$: if a$ = "" then a$ = chr$(0)

40 a = asc(a$)

50 light = (a or 8)

60 nolight = (light and 247): rem (255-8)

70 for i = 1 to 500: rem number of flashes

80 gosub 1000: rem see if key is pressed

90 gosub 2000: rem turn light on

100 for j = 1 to 40: rem delay

110 gosub 1000: nextj

120 gosub 3000: rem turn light off

130 for j = 1 to 40

140 gosub 1000: nextj

150 next i

160 goto 9999

1000 get b$

1010 if b$<>"

1020 return

2000print#15,

2010 return

3000print#15,

3010 return

9999 close 15

then 9999

m-w" chr$(0)chr$(28)chr$(1)chr$(light)

m-w" chr$(0)chr$(28)chr$(1)chr$(nolight)

Well, I guess we've covered quite a bit of material that might

prove useful or at least help light the spark of creativity among

a few of you.

The Transactor 59 Volume 6, Issue 02

Simulating a Dual Drive

With Two 154l's

Gerald Neufeld

Brandon, Manitoba
Copyright March 1985

Would you like a dual drive for your Commodore 64 or VIC-20 but

can't afford an MSD drive or an IEEE interface and a used 4040 drive?

In most situations you don't really need a dual drive — you can get

away with two 154l's, one as device *8 and one as device *9.

However, some commercial programs such as Easy Script and Oracle

require a dual drive (device #8 with drive #0 and drive *1) to perform

certain operations. This article describes how to use two 1541 drives

to simulate a dual drive.

Possible Solutions

The most obvious solution to our problem would be to convert one of

the 1541's so that it becomes drive *1, device #8. Unfortunately, you

can't change a 154l's drive number as easily as you can its device

number. The only way to do this would be to rewrite and replace the

1541'sROM.

Since we can't change a 1541's drive number, how do we simulate

drive #1? The trick is to leave the drive alone and modify the

commands issued by the computer. Although this may sound difficult,

it turns out to be quite simple. The only common commands that

specify a drive are LOAD, SAVE, and OPEN. If we can intercept these

commands and redirect those that refer to drive #1, the PRINT*,

INPUT*, GET*, and CLOSE commands will all work properly.

A Solution That Works

Our simulation uses to standard 1541 drives. One of the drives will

not be modified and will remain as device *8, drive *0. The device

number of the other drive must be changed so that it becomes device

#9, drive *0. This may be done temporarily (see below) or perma

nently (see your 1541 Users Manual). Once the drives have been set

up, the short machine language routine given below is loaded into the

computer's cassette buffer and activated. This routine intercepts and

checks all LOAD, SAVE, and OPEN commands. If the file name

indicates that the command refers to drive *1 on device *8, the file

name and device number are changed to redirect the command to

drive *0 of device *9. As a result, the BASIC or machine language

program thinks it is accessing drive *1 of device *8, but in actual fact it

is accessing drive *0 of device *9.

Commands That Work

Most of the commonly used disk commands will be intercepted and

modified by the machine language routine. The table below lists some

of the commands that have been tested and found to work correctly.

Original Command

LOAD "$1",8

LOAD " 1 :TEST PRG" ,8

SAVE " 1 :TEST PRG" ,8

SAVE "@1 TEST PRG",8

OPEN 1,8,5, "1:FILE,S,W"

OPEN 1,8,5, "@1:FILE,S,W

OPEN 1,8,5, "1:FILE,S,R"

Modified Command

LOAD " $0" ,9

LOAD "0:TESTPRG",9

SAVE "0:TESTPRG",9

SAVE " @0:TEST PRG" ,9

OPEN 1,9,5, "0:FILE,S,W"

OPEN 1,9,5, "@0:FILE,S,W

OPEN 1,9,5, "0:FILE,S,R"

Disk commands such as these will always be intercepted and modi

fied properly when they are part of a BASIC program. Commands

issued from a machine language program will be handled correctly

provided the normal KERNAL entry points are used for LOAD, SAVE,

and OPEN functions.

Note that an OPEN statement set the device number for all subse

quent accesses of the file. As a result, PRINT*, INPUT*, GET*, and

CLOSE commands that refer to that file will be redirected to the

appropriate drive.

Limitations

1. Disk file names must not contain a " 1" as either of the first two

characters in the name. A " 1" in either of these positions will

cause the command to be redirected to device *9.

2. Since this is just a "simulated" double drive, special dual-drive

commands such as DUPLICATE a diskette and COPY from one

drive to another will not work. In addition, direct-access com

mands that reference drive *1 (such as " U1:5 1 18 0") will not be

redirected to the appropriate drive.

3. Since the machine language routine resides in the cassette buffer,

you may not use your cassette tape recorder while using this

routine. If you need to use the cassette buffer for other purposes,

you will have to assemble the source code to reside elsewhere in

RAM (such as $C000 in the C-64).

Instructions

If one of your drives has been permanently modified to be device #9,

skip steps 1 to 3. Simply turn on your system and proceed to step 4.

1. Turn on your Commodore 64 (or VIC-20) and the 1541 that is to be

changed to device *9. This is the one that will appear to be device

*8, drive *1

2. Enter and RUN the following program to convert the 1541 to be

device *9.

10OPEN 15,8,15

20 PRINT#15," M-W" CHR$(119)CHR$(0)CHR$(2)

CHR$(9 + 32)CHR$(9 + 64)

30 CLOSE 15

3. Turn on the 1541 that will remain as device *8, drive *0.

4. Load and RUN the BASIC loader program given below.

5. The simulated dual drive is now in operation.

6. The routine may be toggled off and on with SYS 828.

The Transactor 60 Volume 6, Issue 02

KG

BL

GK

GP

JH

LP

IN

OB

NE

CK

GI

GE

MB

KN

KB

CO

KD

HP

EA

LE

NG

CF

AG

GJ

IM

PP

EE

KJ

EO

GP

CB

100 rem using device *9 drive #0 to

llOrem simulate device #8, drive #1

120 rem copyright: g. neufeld, 1984

130:

140k = 828:sum = 0

150 read x:ifx<0 goto 180

160 poke k,x:sum = sum + x:k = k + 1 :goto 150

170:

180 if suraOl 3992 then print" bad data" :stop

190sys828

200 print" routine activated"

210:

220 data 160, 1, 185, 48, 3, 72, 185

230 data 123, 3, 153, 48, 3, 104, 153

240 data 123, 3, 185, 50, 3, 72,185

250 data 132, 3, 153, 50, 3, 104, 153

260 data 132, 3, 185, 26, 3, 72, 185

270 data 112, 3,153, 26, 3, 104, 153

280 data 112, 3, 136, 16,211, 96, 32

290 data 137, 3, 32,108, 3, 76,180

300 data 3, 32, 137, 3, 169, 0, 32

310 data 117, 3, 76, 180, 3, 32, 137

320 data 3, 32, 128, 3, 76,180, 3

330 data 160, 255, 132, 251, 165, 186, 201

340 data 8,208, 32,200,177,187,201

350 data 49,240, 7,200,177,187,201

360 data 49,208, 18,169, 48,145,187

370 data 169, 9,133,186,132,251, 165

380 data 187, 133, 252, 165, 188, 133, 253

390 data 96, 164,251, 48, 4, 169, 49

400 data 145, 252, 96,-99

Machine Language Source

For those of you interested in how the routine works, here is the PAL

TM assembler output listing. The routine is surprisingly short and

simple;. However, it does illustrate how you can intercept commands

without having to wedge into the 64's CHARGET routine. Note that

the BOOT routine puts the actual C-64 or VIC-20 LOAD, SAVE, and

OPEN addresses into the JSR commands in lines 490, 540, and 580.

Infinite recursion does not occur!

DL

OB

00

KH

GM

HC

GB

KD

KC

HP

OD

AE

CF

OG

HK

GH

OP

AD

AK

KF

CB

100 gerald neufeld, december, 1984

110; using two 1541 's to simulate a dual drive

120;

130 ; routine to redirect load, save, and open

140 ; commands referring to drive #1, device #8

150 ; to drive #0, device #9

160;

170 ; uses cassette buffer of c-64 or vic-20

180;

190 * = $033c

200;

210.optp,o1

220;

230 boot Idy #$01

240 booti Ida $0330,y

250 pha

260 Ida load + 6,y

270 sta $0330,y

280 pla

290 sta load+6,y

300 Ida $0332,y

CL

FD

OG

MN

BJ

FF

OO

MH

BL

IB

IN

PF

AK

EK

ID

OA

ME

BG

OF

OO

EH

BH

FD

El

AC

GK

FK

NK

IE

OM

GB

EE

MO

GC

BG

DH

EB

II

EO

BD

BA

AL

MA

JF

IB

OG

IH

MH

AF

BD

JG

KA

NF

BC

EH

CN

LE

GO

01

FP

JP

IB

IB

GC

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450;

pha

Ida

sta

pla

sta

Ida

pha

Ida

sta

pla

sta

dey

bpl

rts

save + 4,y

$0332,y

save + 4,y

$031 a,y

open + 4,y

$031 a,y

open + 4,y

booti

460; modified routines

470;

480 open

490

500

510;

520 load

530

540

550

560;

570 save

580

590

600;

610 fix

620

630;

640

650

660

670;

680

690

700

710

720

730

740

750

760;

770 fix1

780

790

800

810

820

830

840

850

860;

870 fix2

880;

890 unfix

900

910

920

930;

940 unfixi

jsr

jsr

jmp

jsr

Ida

jsr

jmp

jsr

jsr

jmp

Idy

sty

Ida

cmp

bne

iny

Ida

cmp

beq

iny

Ida

cmp

bne

Ida

sta

Ida

sta

sty

Ida

sta

Ida

sta

rts

Idy

bmi

Ida

sta

rts

fix

open

unfix

fix

#$00

load

unfix

fix

save

unfix

#$ff

$fb ; change flag

$ba ; device number

#$08 ; is it device #8

fix2 ; not for us

($bb),y

#$31

fix1

($bb),y

#$31

fix2

#$30 ; set drive* to 0

($bb),y

#$09 ; set device# to 9

$ba

$fb ; save pointers

$bb

$fc

$bc

$fd

$fb

unfixi ; no change was made

#$31 ; undo change

($fc),y

The Transactor 61 Volume 6, Issue 02

In Defense of The Frontal Assault
Chris Zamara, Technical Editor

The frontal assault: crude, messy, inelegant, but usually an

effective method of attack — the stuff of which legends and

heros are made. Attacking a problem can be thought of as a

battle, planning our strategies and calculating maneuvers.

When the problem is computer-oriented, we write a program.

But apply the frontal assault to programming, and you're likely

to get bad press, not a hero's welcome. Attack a program

directly on the machine, and you're also fighting a battle

against conventional wisdom.

When a hacker writes a program, he typically takes the frontal

assault approach, turning on the computer before he even

knows what he's going to write. As he enters code, ideas take

shape, and he builds on these ideas while testing, sparking new

concepts and more efficient solutions all the time. Dynamic

and creative, this is true art: a pure flow of ideas from the mind

to the medium, with no pollution from physical limitations.

The hacker described above could be any one of you. The

hacker described above is also condemned as a "bad program

mer" by instructors and experts of computer programming. As

taught in schools, programming is a strict science in which

there is no room for personal creativity. What you will hear

from the wise programmers of our age is that you should have

your program 100% planned and coded before you turn on the

machine. Wear out pencils rather than use electricity. Don't

test things on the machine, look them up in manuals. The

frontal assault is reserved for the undisciplined masses or the

lunatic fringe of hard-core hackers. Either way, good program

mers don't do it.

Now, the main thrust of current programming techniques

makes sense: programs should be modular, structured, easy to

understand, flexible, and should break a problem down into

successively smaller, simple problems. No one can deny that

following those guidelines results in "better" programs, ones

which will have a long and useful life. But the frontal assault

technique doesn't preclude structured programming or top-

down coding. It just means that sections of code are developed

on the machine instead of on paper. The interactive, personal

programming environment is perhaps the greatest benefit that

microcomputers have given to the programming industry, and

the educators and industry are reluctant to take advantage. Oh,

sure, interaction is highly touted for users; heck, they even get

pretty pictures and moveable "mice" to entertain them. But

programmers? It seems that they are not included in the

interactive-age picture. Interactive programming is somehow

mixed up with non-structured programming techniques, and

thus labelled as bad.

When I studied computer science at Ryerson Polytechnic Insti

tute in Toronto, desk-debugging — working through a pro

gram on paper before running it — was encouraged. It made

sense, too, because each program line was punched onto a card

using ancient, temperamental keypunch machines. The stack

of cards representing your program was run through equally

ancient card readers, and if you were lucky, you'd get your

output about an hour later, make that four hours when it was

busy. No one ever saw the computer or even knew where it

was or who made it. The point is, you wanted to be pretty darn

sure that your program worked before waiting another hour for

the output. For a programmer to debug in such an environ

ment is like an artist having to wait until each brushstroke dries

before painting the next. I wonder if Mona Lisa would have

such a mysterious smile if that were the case.

Fortunately, programming environments such as the above

have been pretty much eliminated by now, replaced with

terminals allowing much more interaction. Unfortunately, the

prescribed programming techniques haven't changed accord

ingly, and the old plan-in-pencil school of thought has been

dragged into the microcomputer scene. We Commodore users

have it very good, since the standard editor and interpreter

lend themselves so well to frontal-assault, type-while-you-

think programming. With software packages for the Commo

dore 64 like the new COMAL cartridge, the interactive

environment works so well that you can build good, structured,

readable, maintainable programs directly on the computer.

The natural urge with such a system is to build program

modules one at a time, testing each as you go along, without

spending three days grinding pencils and "playing computer"

by walking through your untested code. To suppress that urge

in the name of proper programming form is about as counter

productive as using masking tape to "correct" the behaviour of

a left-handed child.

Perhaps I am confusing the issue here by mixing up program

ming as a recreational hobby, and programming as a business-

serious profession. Perhaps, but I don't think so. Look at the

brains behind any commercially successful piece of software

and you'll probably find a frontal-assaulter. And that's good

news, because it supports the premise that programming is as

much of an art as it is a science, and as such, the excellence of a

work will depend on the creativity of its author. If that's true,

the last perpetrators of the frontal assault can proudly ignore

the derision of their contemporaries, and continue their craft

with conviction. And once the current fervor dies down, maybe

some day, they'll get a hero's welcome after all.

The Transactor 62 Volume 6, Issue 02

Flexible Vector Management
Chris Zamara, Technical Editor

Warning: This article contains advanced machine-language programming concepts!

A vector is simply the address of an important Kernel routine

stored as two bytes in memory. Its purpose is to give the user

more control of the computer's operating system. Important

routines in the operating system (the Kernel) are not entered

directly, but their addresses are stored in RAM locations, and

the Kernel jumps to the destination of this RAM vector. This

allows the user to intercept the flow of control by changing the

vector, and sneak in some operation before the Kernel routine

is executed, or skip the normal routine altogether. This capabil

ity allows for great flexibility, since you can use the main parts

of the Kernel and just add or substitute the code that you need.

Your own programs can be "linked" or "connected" directly to

the system so that they don't need an explicit SYS command to

execute. However, to properly use vectors so that your pro

grams are themselves flexible and don't mess up the system,

there are some special programming techniques you should

use.

Examples of Vectors

Routing your routines through vectors allows you to do things

like define function keys, add BASIC commands, trap errors,

disable the STOP or RESTORE keys, use standard I/O com

mands with custom I/O routines for non-Commodore periph

erals, or execute any machine language program 60 times a

second. Here's some examples of vectors in the 64 and what

you can use them for.

The IRQ vector (at $0314-$0315 on the VIC/64/16/ + 4) is the

most popular. This vector points to the Kernel routine which

scans the keyboard and updates the keyboard buffer, and

updates the clock for the BASIC Time function. An IRQ is a

hardware interrupt (Interrupt ReQuest), and is triggered by a

timer 60 times a second. You can intercept the IRQ vector

whenever you want some operation to be performed repeat

edly, for example constantly displaying something on the

screen. On PETs, performing some action when a certain key is

pressed requires use of the IRQ vector.

The output vector points to the standard output routine at

$FFD2. By intercepting the output vector (at $0326-$0327 on

the VIC and 64), you can force the computer to send everything

it prints to the screen somewhere else as well, like the RS-232

port or a disk file.

The warm start vector on the 64 at $0302-$0303 is used after a

RESTORE, after a command is executed in direct mode (or you

press RETURN), or after a BASIC program ends. A few possible

applications of intercepting this vector: You can fix up anything

that may have been reset by a RESTORE (like border and

background colours), execute a program automatically after a

LOAD, or re-open a file that may have been closed by entering

a BASIC program line.

All Commodore machines use vectors; here's a few useful ones:

used when

any error occurs (error * in .A)

USR(x) function is called

RESTORE is struck or rs-232 input

STOP key pressed

D after BASIC line entered or CLR

used by LOAD command

used by SAVE command

Set-Up Programs:

Connecting the Vector-Driven Routine

A vector holds the address of the destination routine in low,

high order format. As an example, let's say you wanted to point

the IRQ vector to a routine at $C000. In this case, you'd put $00

in the first byte of the IRQ vector and $C0 in the second byte. In

assembler, you could code:

Location

64/20

0300

0311

0318

0326

032C

0330

0332

+ 4/16

0300

032C

n/a

0326

032A

032E

0330

Vector

error

USR

NMI

stop

abort 1/

load

save

;vector set-up routine

IRQVEC - $0314

LDA #$00

STA IRQVEC

LDA #$C0

STA IRQVEC+ 1

RTS

;irq vector in VIC/64/16/+ 4

;dest address low

;irq vector low

;dest address high

;irq vector high

;end of set-up program

TheTr 63 Volume 6, Issue 02

The above code is the simplest way to change a vector, but in the case of the

IRQ, there are two more instructions required. An SEI instruction must

appear before changing the vector to disable any interrupt from occurring

during the time the low byte has been changed and the high byte hasn't.

After both have been changed Oust before the RTS), the IRQs can be

enabled again with CLI.

Now, if you wish to intercept the IRQ vector and then continue with the

usual routine, the program at $C000 will have to jump to the original

destination of the vector once it's finished. The easy way to do this (but not

always the best way) is to just look at the IRQ vector in memory and find out

where it points normally, which happens to be $EA31 in the 64. The code

at $C000 could perform whatever routine you wish and then jump to

$EA31 like this:

* = $C000 ;origin at $c000

JSR YOURRTN perform your routine,

JMP $EA31 ;then jump to the normal IRQ destination

The above approach will work, but you may wish to put the IRQ routine

right after the set-up code, and not care exactly where it lies on memory.

You can let the assembler take care of finding the address of the routine.

The following listing is the set-up and IRQ routines together. To make this

exercise useful, a subroutine for the C64 which is executed by the IRQ

routine is also listed. All it does is display a message on the top line of the

screen, which will be permanent and un-erasable since it's put there 60

times a second.

; irq set-up routine (PAL assembler compatible)

IRQVEC = $0314

SEI

LDA

STA

LDA

STA

CLI

RTS

NEWIRQ =

JSR

JMP

#<NEWIRQ

IRQVEC

#>NEWIRQ

IRQVEC+ 1

*

DISPLIN

$EA31

; irq vector-driven routine follow!

; (displays a message on the top

DISPLIN =

LDX

SFIL

LDA

STA

DEX

BPL

RTS

#39

*

MESSAGE.X

$0400,X

SFIL

;disable interrupts

;low byte of destination address

;irq vector low

;high byte of destination address

;irq vector high

;enable interrupts

;back to calling program or basic

;new irq destination

;perform display subroutine

;normal irq destination

screen line)

;40 characters

;next character from message

;store in next screen memory byt

;do all 40

;byte#0 is last one

So far, we've successfully trapped the IRQ vector to

execute our routine, and it works, under normal

conditions. For short vector-driven routines, the

above set-up technique is usually used. But what if

another interrupt-driven routine was already exe

cuting? Our program would disconnect it. Con

versely, if you were to execute another similar IRQ

setup routine while the above program was run

ning, it would take complete control. Another

problem is that the above program relies on the fact

that the normal IRQ entry point is at $EA31; on a

different ROM version it may not work. You may

wish to write a program which will work on the VIC

or the 64, which have their IRQ vectors in the same

place, but contain different addresses. And as a

final problem, there's no way to turn off our little

screen display ditty once it's going, short of a

RESTORE sequence - which is always a bit drastic,

messing up your screen colours and all.

The first two problems can be solved with one

modification. The trick is to make the program

jump to the original destination of the vector in

stead of some fixed address like $EA31. In other

words, store the existing vector somewhere,

change the original vector to point to the user

routine as usual, then have the routine jump to the

stored address when it's finished. Managing

vector-driven routines that way means that what

ever routine was being executed through the vec

tor when your program starts up will continue to be

executed. This allows linking more than one pro

gram through a single vector, chaining them by

jumping from one to the next until the final Kernel

routine gets executed. (This may not always be

desirable, for example if the new user routine

overwrites the old one in memory, but in that case

the vector must simply be restored to normal

before the new vector set-up routine is executed.)

The code to accomplish this flexible vector chain

ing system is quite simple. The first thing the

program should do is save the old vector's con

tents. Using the above program example, you

would place the following code at the start of the

program:

LDA IRQVEC

STA OLDIRQ

LDA IRQVEC+ 1

STA OLDIRQ+ 1

;existing vector, low byte

; store

;high byte

MESSAGE .ASC" *** UNERASABLE STATUS LINE ***

; pad message string to 40 characters

.END

(OLDIRQ and OLDIRQ + 1 can be any two bytes in

the same page)

The Transactor 64 Volt 6,1s

Then, when the user routine finishes, instead of jumping to a

fixed address, it does an indirect jump like this:

JMP (OLDIRQ) ;jump to original vector destination

That takes care of the linking problem, but introduces a new

one: what happens if you execute the set-up routine a second

time, i.e. while the vector has already been changed? Bad

things happen. Like a system crash. If you think about it, you'll

see that executing such a vector set-up routine twice causes a

crash because the second time it's executed, the vector is

already pointing to the user routine - and that's where the user

routine jumps when it's finished. In other words, the routine

ends up executing itself over and over again indefinitely. A

good, flexible, vector set-up routine has to assume that some

where along the way, someone is going to be stupid enough to

execute it while the vector has already been linked. To do that,

it has to make sure that the existing vector doesn't point to the

user routine. If it does, it should give some kind of warning

("program X already activated"), or just do nothing. The initial

code code could look like this:

LDA IRQVEC

CMP #<DISPLIN

BNE ADDROK

LDA IRQVEC+ 1

CMP #>DISPLIN

BEQ RERUN

;check existing vector, low byte

;. . .against user rtn addr low

;if different, continue as usual

;if equal, check high byte too

;if high byte also equal, re-run

error

ADDROK = *

;address ok, now save old vector as before

LDA IRQVEC ;existing vector, low byte

STA OLDIRQ ;store

LDA IRQVEC+ 1 ;high byte

STA OLDIRQ+ 1

; vector can now be changed to point to user routine

SEI

LDA

STA

LDA

STA

CLI

RTS

#<NEWIRQ

IRQVEC

#>NEWIRQ

IRQVEC+ 1

;disable interrupts

;low byte of destination addr

;irq vector low

;high byte of destination addr

;irq vector high

;enable interrupts

; back to calling program or basic

ERROR = *

;the error routine may print an error message,

;or simply exit without doing anything.

RTS

It may seem like more work than necessary to put in all that

code to check for re-runs, but if you do, you'll be able to create

an expandable vector-driven system. Any number of different

vector-driven routines can be "hooked up" to run through the

desired vector by simply running the appropriate set-up pro

gram. But now we get to the next problem: how to "unhook"

them.

It's important that a vector set-up routine can disconnect the

routine as well. That's a simple task: just store the saved

original vector (OLDVEC) back into the actual vector. In other

words:

LDA OLDVEC

STA IRQVEC

LDA OLDVEC+ 1

STA IRQVEC+ 1

A good place to put the disconnect code is right at the begin

ning of the set-up routine, with a JMP just before it to skip to

the usual entry point. Then to connect the user routine through

the vector, just SYS to the usual start address, and to disconnect

it, SYS to the address plus 3. The code becomes:

JMP SETUP ;set up the vector normally

;vector disconnect code follows

LDA OLDVEC ;get stored vector low

STA IRQVEC ;put back in actual vector low

LDA OLDVEC+ 1 ;stored vector high

STA IRQVEC+ 1 ;put into actual vector high

SETUP =

;the rest of the setup code is as above.

Sharp readers may have noticed a potential problem here:

what if you tried disconnecting a routine that hadn't been

connected yet? Well, whatever was contained in OLDVEC

would be stored in the vector, which could again be bad news.

If our multiple-vector-driven system is to be as flexible as

possible, the exit feature should also check the vector address

against the address of the vector-driven user routine. We can

easily do that by incorporating the section of code which

compares the addresses into a subroutine, and calling the

subroutine from both the vector connect and disconnect por

tions. Here's the subroutine, which simply compares the vector

address with the routine's address and exits with the Z flag

clear if they're equal:

DDCHECK = *

LDA IRQVEC

CMP #<DISPLIN

BNE COUT

LDA IRQVEC+ 1

CMP #>DISPLIN

COUT

RTS

The Tr
65

Volume 6, Issue 02

Now the connect and disconnect code looks like this:

JMP CONNECT

disconnect code follows

JSR ADDCHECK ;see if vector already set up (connected)

BNE DERR ;hasn't been set up, can't disconnect

SEI ;ok, set vector back to previous state

LDA OLDIRQ ;..low

STA IRQVEC

LDA OLDIRQ+ 1 ;..high

STA IRQVEC+ 1

CLI

RTS ; vector now set back to pre-connect address

CONNECT =

JSR ADDCHECK ;see if already set up

BEQ CERR ;already connected, error

LDA IRQVEC ;ok, save old vector address

STA OLDIRQ ;..low

LDA IRQVEC+ 1 ;..high

STA OLDIRQ+ 1

SEI ;now change actual vector (connect)

LDA #<DISPLIN ;routine address low

STA IRQVEC ;vector low

LDA #>DISPLIN ;routine address high

STA IRQVEC +1 ;vector high

CLI

RTS ;successfully connected

DERR = * ;disconnect error entry

" routine not connected yet" message or do nothing

RTS

CERR = * ;connect error CONNECT

" routine already connected" msg or nothing

RTS

All that code is a lot of overhead, and is

probably not worth using on a little program

like DISPLIN in the example. But if you have

several utilities that you wish to be able to

install and remove at will, you may want to

use it. It's still not a completely flexible

vector-management system, though; you

can only disconnect programs in the reverse

order that they were connected, starting with

the last one. For example, suppose you had CONFLAG

LDA CONFLAG

BNE CERR

LDA #255

STA CONFLAG

LDA IRQVEC

STA OLDIRQ

LDA IRQVEC+ 1

STA OLDIRQ+ 1

SEI

LDA #<DISPLIN

STA IRQVEC

LDA #>DISPLIN

STA IRQVEC+ 1

CLI

RTS

.BYTEO

connected four programs. That means

that instead of the Kernal going directly

to its usual program through the de

fault vector contents, it first jumps to

the start of program 1, which ends by

jumping to program 2, etc. until pro

gram 4 finishes and jumps to the

Kernal where the vector normally

points. Once all four programs are con

nected in this way, you'd have to dis

connect them in the order 4, 3, 2, then

1. It works a bit like a Last-in-first-out

stack, where each newly-installed pro

gram goes on top, and only the top

program can be disconnected from the

chain.

The main problem with this stack-

oriented vector management system is

the problems that result when you try

to connect or disconnect a program

that isn't at the top of the stack, i.e. the

last one connected. To avoid a crash in

either of these instances, one further

refinement can be added to the con

nect and disconnect portions: use a

"connect flag" to indicate whether the

routine is connected or not. Coupled

with the address check, we now have a

foolproof system. Attempting to con

nect an unconnected program will give

an error, as will attempting to discon

nect a program that isn't at the top of

our "stack".

With the connect flag logic in place, the

connect routine looks like this:

;see if already set up

;already connected, error

;set connect flag

;ok, save old vector address

;..low

;..high

;now change actual vector (connect)

;routine address low

;vector low

; routine address high

;vector high

;successfully connected

;connect flag starts off at zero

66
Volume 6, Issue 02

The disconnect routine must still compare the vector-driven routine's address

with the vector in case the routine is active, but not at the top of the "stack". It

now looks like this:

JSR

BNE

LDA

BEQ

LDA

STA

SEI

LDA

STA

LDA

STA

CLI

RTS

ADDCHECK

DERR

CONFLAG

EXIT

#0

CONFLAG

OLDIRQ

IRQVEC

OLDIRQ+ 1

IRQVEC+ 1

ivector pointing to routine" ?

;no, can't disconnect

;make sure previously connected

;no, already disconnected

;clear connect flag

;..before disconnecting

;ok, set vector back to previous state

;..low

;..high

:vector now set back to ore-connect

More Housekeeping

In the above IRQ driven example, we took advantage of the fact

that the Kernal saves and restores the A,X,Y and processor

status registers, so the program didn't have to bother. In

general, when intercepting most vectors these registers must

be saved at the beginning of the routine and restored at the

end. You can use the stacking sequence:

PHP: PHA: TAX: PHA: TAY: PHA

To save them, and

PLA: TAY: PLA: TAX: PLA: PLP

To restore.

The rule for an interrupt-driven routine is the same as when

working with the stack: "Please leave these premises as clean

as you found them." That's called good housekeeping, and it's

essential when intercepting the Kernel.

If you want to skip the normal kernel routine altogether after

your vector code completes, an easy way to do this is by

pointing the final JMP in your vector program to the end of the

normal kernel routine, right to the RTS or RTI instruction. In

some cases, you may have to fix up the stack to a certain state

when doing this, but that will of course depend upon the

Kernel routine concerned.

The VECTOR Kernal Routine

On the VIC and 64, there is a special Kernal routine for vector

management. It's called (appropriately) VECTOR, and is at

$FF8D. This routine will perform one of two functions:

1) copy the system RAM vectors from $0314 to

$032E into a user-specified memory area, or

2) copy vectors from a user-specified area into

the system RAM vectors.

Calling VECTOR with the carry flag set (SEC:

JSR VECTOR) causes the vectors to be copied

to the address specified by the X and Y regis

ters (X = address low, Y = address high), and

calling it with carry clear (CLC: JSR VECTOR)

writes from memory to the vectors. 26 bytes

are affected by the VECTOR routine.

Using VECTOR gives you an easy way to save

the original contents of the system vectors.

This is especially handy if your program is

Iress going to be changing several vectors; first

read the vectors, then use the VECTORS

routine to put them somewhere in memory.

Commodore recommends that you then

change the copy of the vectors in memory to

what you desire and copy them back to actually change the

system vectors. If that was all VECTORS was good for, I

wouldn't even mention it here, but it has a higher purpose in

life.

Let's say you are setting up a major system which will change

many vectors, and you want to be able to connect and discon

nect them as in the above example. To save the old vectors'

contents, call VECTOR and save them in some area of memory

called, say, " OLDVECS". Your new IRQ routine would end

with a JMP (OLDVECS), since the old IRQ vector is stored at

that address. Going through the vectors in order, the " BRK"

routine would end with a JMP (OLDVECS + 2), the NMI routine

with a JMP (OLDVECS + 4), etc., up to the warm-start routine

(vectored through $032E) which would end with a JMP (OLD

VECS+26). When you want to disconnect the entire system,

just call VECTOR with the carry flag clear to copy the old

vectors back into place again. The whole messy process be

comes simple and elegant.

Conclusion

Most of the more difficult programming challenges that involve

changing the behaviour of the computer in some way can be

accomplished by using vectors. Whether you use the above

vector management system or not, you should keep your

program flexible so that it can be expanded, and removable so

that it can be turned off if desired. Most important, it should

"clean up" after itself to avoid any ill side effects on the system.

The more vector-driven programs you write, the more you'll

find that nothing's impossible when it comes to programming

your Commodore.

The Transactor 67 Volume 6, Issue 02

SAVE @ Exposed: The Debate Continues

SAVE® Composed

I have run two tests using the SAVE® EXPOSED!!! program.

The first test was with the program as written, using a disk

about 25% full. The program ran for one hour and was then

stopped. An examination of the files indicated that nothing was

disturbed.

Test two involved a disk with 94 free blocks and was run with

10 filenames as you indicated in the article. This was allowed to

run for 1.5 hours. Again, there were no files disturbed.

I am using the newer 1541 disk drive with the lever that closes

over the disk slot. The drive serial number is AJ1032352. Could

there be something different in the ROMs of the new drives?

One final note: I made sure that the program names in the data

statements normally loaded with the LOAD" name" ,8 com

mand and not the LOAD "name" ,8,1 command. This could

cause problems, could it not?

Ray E. Striker, Lincoln, Nebraska

A program that normally loads to BASIC text space (start

address = $0800) can be loaded either way. In fact, a rule of

thumb around the Transactor bullpen is "ifin doubt use comma

one". This way programs will always load at the start address

specified by the file. If the address is $0800 it will load there; if it

isn 't 0800, chances are it wasn 't supposed to load there any

way.

SAVE® Exhausted!!

One can hardly ignore a development as important as the

demonstration of the save-with-replace bug. You have certainly

stirred the pot. While I cannot comment on Mr. Whittern's

1541 version of the program, I have tried to duplicate the

Transactor results on my 4040. The program, as presented, did

no damage to my two test disks. One was a fairly new disk

which had only the test programs saved on it. The other disk

was a controlled mess: barely enough room to replace a file

with, and the available sectors were split into several areas;

furthermore, some of the available sectors fell on a "zone"

boundary (the place where the sector count changes from one

number to another). What more can I do short of having

asterisk files?

Various versions of the program, including one using BSAVE

and BLOAD on the B-128 machine (much easier to work with),

also failed to damage the disk in several hours of trying. Not

only were the test files intact, but all the original files that were

on the floppy compared correctly, byte for byte, with its dupli

cate made prior to the tests.

While, by definition, I CANNOT PROVE NON-EXISTENCE of a

bug, I am unable to duplicate your results based on the scant

data presented in the editor's notes. The burden to prove the

bug is with the Transactor. We need more information, the

most important being the history of the floppy you used, the

exact files that were used, and the exact order of doing things.

Unless we can duplicate your results, the bug remains a

mystery.

Liz Deal, Malvern, PA.

SCRATCH & SAVE Exposed!!

I have just finished reading "Save With Replace Exposed!!" in

your latest issue. Of course I had to try it immediately. 1 got

pretty much the same results as described in the text.

Then, out of curiosity, 1 decided to try the alternative (using

scratch and save instead of save @). 1 changed lines 170 and

200 to read:

170 print d4$" open 1,8,15," qt$" sO:" a$(i)qt$" closei

:save"qt$"0:"a$(i)qt$",8"

Do the same for line 200, changing a$(i) to a$(j).

Guess what! Results are the same. Where do we go from here?

Can you get your champagne back?

Sheldon C. Wotring, Palmerton, PA

Seems the SA VE@ situation is certainly not over. The responses

above are typical ofseveral that we have received, written and

verbal. Although evidence subtantiating the existence of a bug

has been tested true, it now seems we may be hunting the

wrong bug. Could the problem be unit dependent? If so, a

mechancal discrepancy would have to be the culprit as units

are electronically identical, aren't they? The only controlled

experiment to test this theory would be to have enough disk

drives together running the same test under the same condi

tions. Hopefully there would be enough machines so that

several would show the problem occurring and several would

not. Once they're seperated they could be mechanically com

pared. However this could be a lot of work that, theoretically,

might prove nothing. If things like motor speed and head

positioning are identical, what then? And who, besides Com

modore (hint hint), has enough units to conduct such a test.

Until then we'll be sleuthing away and we'll no doubt have

more in issues to come. - M.Ed.

The Transactor 68 Volume 6, Issue 02

News BRK

Transactor News

Delivery Information

Because subscriptions, disks, books, etc.

are sent out in batches, it is possible that

you won't get your order for six to eight

weeks. Disk orders are handled by an

outside supplier, so your disks won't neces

sarily come at the same time as your maga

zine — you should get both within a few

weeks of each other. The same goes for any

items ordered (eg. magazine and disk sub

scriptions, back issues and disks, and the

Complete Commodore Inner Space Anthol

ogy) — you may not receive them in one

shipment. We apologize for any confusion

this may have caused.

Submitting NEWS BRK

Press Releases

If you have a press release which you

would like to submit for the NEWS BRK

column, make sure that the computer or

device for which the product is intended is

prominently noted. We receive hundreds

of press releases for each issue, and ones

whose intended readership is not clear

must unfortunately go straight to the trash

bin. It should also be mentioned here that

we only print product releases which are in

some way Applicable to Commodore

equipment.

Transactor on Microfiche

We are looking into the possibility of put

ting Transactor issues on microfiche. If

there is enough interest, we will go ahead,

so let us know if you think it's a good idea.

Inner Space Anthology Discounts

The Complete Commodore Inner Space

Anthology is now just over 3 months old

and closing in on a second printing. Book

stores reluctant to take 3 or 4 copies are

submitting second orders of 12 or 20, often

just days after their first shipment! If your

local book retailer could stand an extra sale

or two, the CCISA can be ordered from

wherever they usually get computer books

and magazines. For orders of 64 (32 per

carton) or more, they can be ordered di

rectly from us at the following discounts:

64-250-44% OFF

250 up -50% OFF

Suggested retail price is $16.95. Prepay

ment is required on the initial order, with

terms extended accordingly after that, no

returns. For orders substantially higher,

contact us in Milton.

Dry Mail

In the last issue's article "Save @ Exposed",

we promised author Charles Whittern of

Hudson, MI, a bottle of champagne for

meeting our requirements of proving the

existence of the obscure disk drive bug.

Unfortunately, in the state of Michigan, it is

not legal to send alcohol by mail. Even

through a local delivery service we found

the request could not be met. It seems the

state cannot be sure the sender and/or the

receiver is of age. So instead we sent a card

and a cheque, and unfortunately the

Champagne offer no longer stands.

Computer News

C-64 Users Group Of Canada

Montreal— Commodore 64 computer users

can now take advantage of a wide range of

unique services offered by the C-64 Users

Group Of Canada, established February 1,

1985, in Montreal, Quebec. Services in

clude no-frills software offered monthly for

$4.95. Every month, the club will offer

diskettes filled with software from the

COMAL Users Group USA Ltd, Educational

software from Commodore Canada, and a

collection of the highest quality public do

main (non-commercial) software.

For a yearly membership fee, members will

receive a monthly club bulletin. An elec

tronic bulletin board service is accessible to

those members with modems. Benefits of

becoming a member also include discounts

at local retailers and computer repair cen-

The Transactor 69 Volume 6, Issue 02

ters. The club also offers a hotline for com

puter questions, and many other useful

services to Commodore 64 computer users.

And The Winner Is. . .

While many people dream of writing a hit

song, one musician has made his dream

come true in an unusual way. He won the

first annual Computer Song Writing Con

test. His song, "Melting pot", was chosen

by a panel of music industry judges as the

best in composition, melody, and use of

sound. This talented musician received En-

Tech's grand prize of $1,000 and free re

cording time at a Hollywood studio.

As part of the awards presentation, Bones

jammed with EnTech's new keyboard ver

sion of Studio 64. As a synthesizer player,

he commented that "the keyboard version

is a lot less limiting than typing on the

computer". He also remarked that "I was

surprised that I can create the same quality

of music on Studio 64 as 1 could on a

synthesizer. The versatility is there." En-

Tech included as part of Bones' prize a

keyboard and a copy of the advanced ver

sion of Studio 64.

Bones plans to use his winnings to pur

chase new musical equipment, which he

will use for his studio recording session.

EnTech will distribute copies of his song to

radio and television stations throughout

the country. He called EnTech's Studio 64,

"A great new advance in the music world"

and hopes his contest victory would "allow

the public to hear my songs".

This contest was sponsored by EnTech to

promote computer music as an art form.

EnTech's Public Relations Representative

Matthew Stern announced that plans are

underway for a second contest in 1985.

People interested in entering should con

tact:

EnTech Software,

P.O. Box 185,

Sun Valley, CA

91604 818 768-6646

C Experts Gather For Fall Seminar

Many of the world's most prominent C

language experts will speak and conduct

workshops at a technical seminar in Cam

bridge, Mass, this fall.

The publishers of COMPUTER LAN

GUAGE, a leading monthly programmer's

magazine, will sponsor this technical

event from September 16-18. The seminar

will be held at the Sheraton-Commander

Hotel in Cambridge, Mass., and will cover a

wide variety of practical subjects on pro

gramming in C.

"Never before has so many key leaders in

the C programming community gathered

for one event." said publisher Carl Landau.

"The focus of the speaker and workshop

sessions will be on the latest practical strat

egies and techniques used in C program

ming today."

The C programming language has enjoyed

rapid acceptance in the industry as a pow

erful systems and applications develop

ment language for a variety of machine

environments in mini- and microcomput

ers. Industry analysts predict that C will

continue to grow in popularity because of

its strengths in portability and extensibility.

C has also just become "standardized" by a

special committee of the American Na

tional Standards Institute (ANSI). The chair

man of this committee, Jim Brodie, and his

four subchairmen will be speaking at the

seminar on the state of the C language

today.

Among the list of speakers confirmed for

the event are: Jim Brodie, ANSI C Stand

ards committee chairman; P.J. Plauger, co

author of Elements of Programming Style

and ANSI C secretary; Leor Zolman, com

piler writer and public domain C expert;

Heinz Lycklama, chairman of the /usr/

group UNIX Standards group; Robert Ward,

coordinator of The C User's Group; Tom

Plum, author of Learning to Program in C;

and Larry Rosier, ANSI language sub

chairman.

In addition to the topics these speakers will

address, the seminar will also feature pro

gramming workshops on a variety of sub

jects including "Porting C Across Operating

Systems", "Using C Libraries", and "Struc

tured Debugging Techniques."

The attendance fee for the seminar is $695.

Early bird registration is being offered at

the reduced rate of $595. The deadline for

early registration is June 30, 1985.

COMPUTER LANGUAGE is the first and

only magazine dedicated to programming

languages and software design. It is written

for advanced programmers and engineers

who write their own software. The monthly

publication has a paid circulation of over

30,000 copies around the world.

For more information about the seminar,

write to:

Beatrice Blatteis or Cal Landau,

CL Publications,

131 Townsend Street,

San Francisco, CA

94107 415 957-9353

International Communications

and Computer Exhibition

Tracon Exhibitions is pleased to announce

that planning is well underway for the

INTERNATIONAL COMMUNICATIONS

AND COMPUTER EXHIBITION. This pres

tigious exhibition will be taking place dur

ing EXPO '86, Vancouver's world fair on

transportation and communications. The

dates of the exhibition, September 9-11,

1986, ensure it to be a featured event of

Communications week, one of fourteen

specialized periods of EXPO '86.

Of special interest to potential exhibitors in

EXPO '86's official endorsement of the IN

TERNATIONAL COMMUNICATIONS AND

COMPUTER EXHIBITION. Tracon Exhibi

tions, a Vancouver based producer of major

trade an consumer exhibitions, has been

recognized by EXPO '86 officials as having

the expertise and imagination to put on a

show of this stature.

The endorsement by EXPO '86 entitles

Tracon Exhibitions to use the fair's logo on

all promotional material pertaining to the

exhibition and more importantly, to benefit

from EXPO '86's international high profile.

It is expected that visitors with particular

interest in communications and computers

will visit EXPO during Communications

Week and thus attend the exhibition as

well.

The dual theme of the exhibition acknowl

edges the ever increasing relationship be

tween the once separate technologies of

communications and computers. Writers

and social commentators everywhere are

hailing the marriage of these two technolo

gies as being one of the most profound

developments of this century. New shifts in

the corporate strategies of major manufac

turers reinforce the relevance of this

theme. No doubt major shake-ups will

continue to occur between now and the

exhibition in 1986. Because of these devel

opments, the exhibition's audience can be

assured of many exciting displays of the

latest communications and computer tech

nology.

The Transactor 70 Volume 6, Issue 02

The stature of the exhibition, its timeliness,

and its location in B.C. Place Stadium, just

steps away from the site of EXPO '86, pro

vides worldwide manufacturers and dis

tributors of communications and computer

products a unique opportunity to unveil

new wares to a well qualified international

audience. Tracon Exhibitions is planning

an extensive advertising and promotion

campaign to ensure that both buyers and

users of communications attend the show.

Government agencies and trade associa

tions from around the world are currently

being contacted to obtain their support and

endorsement of the show. Plans are to offer

educational show features, displays and

seminars in cooperation with these groups.

It is especially fitting that Canada be the

location of this special event. As a world

leader in satellite technology, videotex,

telecommunications and mobile communi

cations, Canadian companies can proudly

display their products in an international

arena. In addition, Western Canada's prox

imity to an increasing trade with Pacific

Rim countries will no doubt signal active

participation by leading edge companies

from that region.

For more information contact:

International Communications and

Computer Exhibition,

#202 - 535 West 10th Avenue,

Vancouver, B.C.

V5Z1K9 604 874-5233

General

New Markers Write Safely

On Diskettes

Two new types of markers designed specifi

cally for use on computer software have

been introduced by Sanford Corporation.

The growing need for these markers is

evident in the widespread use of disks and

diskettes. Nearly 1 billion floppy disks will

be sold in 1985. It is expected that this

figure will more than double to 2.1 billion

by 1987.

One of the new markers called Disktribe

can be used directly on computer software

disk sleeves for safe identification and ref

erence.

The ink is quick-drying and permanent.

Tests verify that the markings do not affect

information on the disk itself.

Availability of two distinct Disktribe col

ours - one silver and one gold - enables

users to colour-code disk markings to iden

tify different kinds of data.

Sanford Corp. is a 128-year-old producer

of pens, markers, rubber stamps and adhe-

sives. Its headquarters are Bellwood, IL.

For more information contact:

The Philip Lesly Co.

130 East Randolph St.

Chicago, IL

60601 312 565-1900

Software News

Paperback Writer

What you see is what you get! That's the

promise of an easy-to-learn, inexpensive

word processor released this spring by Dig

ital Solutions Inc. of Toronto.

With Paperback Writer 64, no longer will

you have to guess what a page will look like

when printed. Set margins and paragraph

indents, decide whether to justify or center

text, — and see it on the screen. Set page

lengths and numbers — and see exactly

where new pages begin. Use boldface,

italics and underlining — and watch the

text change in front of your eyes. No fancy

codes to memorize that clutter up the

screen; no words broken up at the end of a

line.

Neither do you need a bulky, complicated

manual typical of software "documenta

tion". Pressing one key gives you in-depth

help on the screen, first from memory, and,

for more detail, from the program disk. For

sophisticated features, an easy-to-read

Reference Guide explains everything.

Paperback Writer 64 lets you work in 80

columns — with no additional hardware —

instead of the Commodore 64's standard 40

columns. A spelling checker is also in

cluded.

In addition to standard word processing

features such as search-and-replace, Pa

perback Writer 64 lets you edit sequential

files. Also, files from most other popular

word processors can be directly loaded,

appearing properly formatted on the

screen.

Digital Solutions says Paperback Writer 64,

programmed by David Foster, will be

adapted for the new Commodore 128 for

release in June. The company is also work

ing on database, spreadsheet and com

munications programs to complete a

sophisticated business package. Its philoso

phy is to produce high-quality software

that's easy to use and costs under $50.

The suggested price for Paperback Writer

64 is $39.95 U.S. Contact your local dealer

in June for a demonstration. Or write:

Digital Solutions Inc.

P.O. Box 345, Station 'A'

Willowdale, Ontario

Canada M2N 5S9

Sixth Sense

Microtechnic Solutions, Inc. announces

SIXTH SENSE, the Thinking Terminal for

the Commodore 64. SIXTH SENSE sets

new standards for home modem software,

allowing users total control of terminal

actions, even when they're not home! The

software can originate calls to, or answer

calls from, remote computers, gathering

and dispensing information automatically

based on user instruction. SIXTH SENSE

uses a macro language that allows it to

make decisions and perform actions based

on user-programmed parameters such as

time of day, an internal counter, and exter

nal events - all preset by user-defined

macros or with one of the Macro Templates

included.

Other significant features include: a 700

line virtual screen with bi-directional

scrolling, a standard screen for use with the

The Transactor 71 Volume 6, Issue 02

built-in screen editor, split-screen line in

put, flexible data routing between devices -

including simultaneous downloading to

screen, printer and disk at 1200 baud, inde

pendently controlled transmit and receive

translation, and error-free file tranfers with

XMODEM and CompuServe B protocols.

SIXTH SENSE contains over 150 functions

available to the user.

The internal sophistication of SIXTH

SENSE makes it easy to operate while pro

viding the user with greater control and

better performance than other modem pro

grams. SIXTH SENSE is supplied on disk

with a comprehensive user guide, and you

can back-up the program. Suggested retail

is $89.95. A 20% discount is offered to

registered owners of Smart 64 Terminal.

Available from:

Microtechnic Solutions, Inc.,

P.O. Box 2940,

New Haven, CT

06515 203 389-8383

'C POWER' For The 64

Pro-Line Software Ltd. is pleased and ex

cited to announce the release of their latest

new software product in the Utilities/

Languages field. C POWER is a fully imple

mented Kernihan and Ritchie version of

the "C" language for the command inter

preter, EDITOR, SYNTAX CHECKING EDI

TOR, COMPILER, LINKER, MATH

LIBRARY, STANDARD LIBRARY and SYS

TEM LIBRARY. C POWER compiles di

rectly to native 6510 machine code, and

does not require the extra overhead of

some C compilers that compile to "P" code

or use some other intermediate step. C

POWER is a serious cookie.

Documentation for C POWER includes a

User's Guide, Library Description, Library

Listing and Cross-Index, and the 531 page

C PRIMER PLUS "User Friendly Guide to

the C Programming Language" by Mitchell

Waite, Stephen Prata and Donald Martin.

C POWER joins PAL 64, POWER 64 and

TOOLBOX 64 in Pro-Line Software's best

selling line of Utility and Language soft

ware programs for the Commodore 64.

Pro-Line Software is probably best known

for their long running best-seller, the

WordPro Series of word processing soft

ware programs for Commodore computers

written by young Canadian Steve Punter.

The WordPro Series was first marketed in

1978, and has since surpassed the 1.6-

million-in-use mark despite being the

most copied and closely emulated software

product since Visicalc. The latest word

processing technology for the Commodore

64 is embodied in the all new WordPro 64,

which is now reported to be selling 6 to 1

over all comers.

For further information, please contact:

Pro-Line Software Ltd.,

755 The Queensway East,

Unit 8,

Mississauga, ONT.

L4Y4C5 416 273-6350

Editor's Note: In our "Languages" issue, we

will be reviewing this package from a users

stand point. To further enlighten our read

ing audience, the finer points of program

ming in C will also be discussed at length.

Hope you can wait.

PROMAL - New Structured

Programming Language

PROMAL (PROgrammer's Micro Applica

tion Language), a new high-level struc

tured programming language (similar to

"C" and "Pascal") is now available for the

Commodore 64.

PROMAL includes a one-pass compiler, a

full screen editor, a command executive

and a library of pre-defined utility subrou

tines.

PROMAL was designed for programmers at

all levels of expertise. It has a fast compiler

and a highly efficient run-time environ

ment that permits applications to be writ

ten in a high-level language which prior to

PROMAL had to be written in assembler for

performance reasons. The Executive (oper

ating system) provides file, memory and

program management, and I/O redirec

tion. A full-screen, cursor driven Editor

permits rapid source program entry and

editing. The Library of machine language

subroutines supports the run-time envi

ronment with optimized routines for file 1/

O, string handling, formatted output,

cursor control, and data conversion. PRO

MAL comes with a comprehensive 210

page reference manual.

Benchmark results which show that the

Commodore 64 version of PROMAL is from

70% to 2000% faster than BASIC, COMAL,

FORTH, and PASCAL are available upon

request from SMA.

PROMAL is available direct from SMA at

$49.95 retail. The Developer's Version,

which includes an unlimited run-time dis

tribution license, is $99.95. Both come with

a money-back guarantee.

For further information, please contact:

Jennifer L. Conn, Vice President,

Systems Management Associates,

3700 Computer Drive,

Raleigh, NC

27609 919 787-7703

Freedom Assembler/Monitor

The Freedom Assembler/Monitor is an

easy to use, fast and powerful, cartridge

based symbolic assembler for 6502/6510

and 65C02 based systems. It is activated

only when you need it. It can remain

plugged into your computer and inactive

(blanked out on the C-64) until you SYS it

to attention.

If you are tired of loading and unloading

numerous files just to get your machine

code operable, this is the assembler for

you. A simple SYS command and you can

assemble, disassemble, walk through, and

execute your assembly code in a flash.

The Freedom Assembler uses the resident

editor so source code can be loaded, edited,

listed or saved quickly and easily, at any

time.

Also included in the Assembler are these

features:

Written 100% in Assembly Language for

very fast assemblies.

• Cross-assembles 3 other related instruc

tion sets including CMOS 65C02 (disas

sembly and walk simulation included).

Excellent for industrial applications.

• Full assembly listing printout capability

including an alphabetical cross-

reference list.

• 9 types of assembly error messages.

• Save command for machine code.

• Disassembler that displays opcodes, op

erands, and raw hex code.

The powerful built in Monitor program al

lows you to walk through and debug your

code.

The Monitor comes with these commands:

Disassemble

Transfer memory

Compare memory

Fill memory

Walk machine code

Set/clear breakpoint

Register display/edit

Quicktrace

The Transactor 72 Volume 6, Issue 02

Checksum memory Go-execute code

Memory display/edit Save machine code

Renumber source file

Hunt for hex or ASCII

Bank out RAM (C-64 only)

Bank in RAM (C-64 only)

Change instruction set mode

List cross-reference info.

Print cross-reference list

Kill assembler (return to normal operation.)

The Freedom Assembler/Monitor is availa

ble for either the VIC-20 or C-64. Both the

assembler and monitor are contained in

the same cartridge for ease of use and

execution. The FREEDOM ASSEMBLER/

MONITOR and a 60 page instruction man

ual with sample program are available for

$39.95 (U.S. funds. Shipping is included in

price.) Order directly from:

Hughes Associates Software,

45341 Harmony Lane,

Belleville, MI 48111

Sight & Sound Expands

Floppies To Flippies

Sight & Sound Music Software, Inc., New

Berlin, Wisconsin, is turning two of its

popular floppy disk programs into flippies!

All the existing features of Kawasaki

Rhythm Rocker and the Incredible Musical

Keyboard have, in each case, been con

densed to one side of the disk and sensa

tional new bonus programs have been

added to the other side at no extra cost to

the user.

Kawasaki Rhythm Rocker now incorpo

rates a number of additional features which

were most frequently requested by users. A

new notation system is included that en

ables everything the user plays to be

shown on the screen. Also, to further en

hance the ability to create, the bonus pro

gram can record and overdub up to 750

notes. To complete the package, the new

program also includes a score printer

which enables the user to print out his or

her original composition.

Other new functions include the ability to

change voices while playing, transpose to

any of 12 keys and use a multitude of

specially created effects. And for those us

ers who aren't perfect, there's even an

auto-correct feature. Any notation played

out of time will be corrected to the exact

beats, visually, on screen.

The new double-sided Rhythm Rocker,

containing both original and bonus pro

grams, will retail for $34.95 (the price for

just the original, alone). Or, owners of the

original Rhythm Rocker can upgrade to the

complete new program for just $15.00.

The Incredible Musical Keyboard bonus

program now allows for recording songs

using up to three voices. A new notation

and graphics program has been added and

actually displays the notes on the musical

staff. There are now five background ac

companiments to choose from ranging

from reggae to samba, and the user can

change these accompaniments both while

playing and recording.

The Incredible Musical Keyboard bonus

program also allows the user to select from

over 20 instrument sounds which can be

played in any of six octaves. The instru

ment sounds, as well as the octaves, can be

changed at any time while playing or re

cording.

The new Incredible Musical Keyboard

package, including the new double-sided

program, documentation, keyboard over

lay and two music books, will retail for

$39.95. Owners of the original program

may upgrade to the new one for just $7.00.

These new super flippy programs will be

available early in May; the price will re

main the same as the previous single-sided

programs. And for those who own the origi

nals and want to upgrade, simply send

proof of ownership and a cheque or money

order made out to Sight & Sound Music

Software, Inc., P.O. Box 27, Department

R2D2, New Berlin, Wisconsin 53151. Own

ership of the original may be proven by

either returning the disk or cutting out the

UPC and ISBN product numbers from the

packaging. Please allow two to four weeks

for delivery.

Keyboard Chord/Scale Master

Valhala Software of Fernadale, Michigan

introduces the Keyboard Chord/Scale Mas

ter, "the contemporary approach to learn

ing" through educational music software.

Development of this approach has taken

considerable time to research and evaluate

prior to this release.

The Keyboard Chord/Scale Master is de

signed to enhance the user's keyboard abil

ities through sight and sound

reinforcements of CHORD and SCALE DIS

PLAY MODES, CHORD and SCALE RE

VIEW MODES, and a COMPARE MODE.

Each mode allows the user to choose up to

twelve key signatures for reviewing.

CHORD DISPLAY and SCALE DISPLAY

MODES allows the student/users to view

and sound the most commonly used

chords and scales. The keyboard's creativ

ity can be enhanced by learning chords,

inversions, and scales from these modes.

Both the CHORD REVIEW and SCALE RE

VIEW MODES have three different ap

proaches to learning:

1. DRILL MODE functions by having the

computer randomly select any number

of chords and/or key signatures to study

which were previously chosen by the

users.

2. QUIZ MODE functions are the same as

the DRILL MODE, with one exception, it

displays at the bottom of the screen a

continuous changing percentile as deter

mined by the number of correct an

swers.

3. COMPETE MODE is a competitive game

of challenge for the classroom or home.

This approach displays team or individ

ual cumulative scores throughout the

game.

A COMPARE MODE which displays two

keyboards is another feature. This mode

allows the user to compare one chord with

another in the same or different key signa

tures. The COMPARE MODE again compli

ments Valhala's approach to learning the

keyboard through sight and sound rein

forcements.

If,il,I,MH3

IS.113 5! HI II

The Keyboard Chord/Scale Master, in disk

ette form is adaptable for colour or mono

chrome displays and is available for the

Commodore 64. The screen displays are

crisp and exacting with 3-Dimensional

keyboard effects. Coloured indicators show

the chord and scale positions on the key

board; computer audio sounds support the

chord or scale being displayed.

This program, written in machine language

is Valhala's first Contemporary Educational

Software release. Next to follow in the near

The Transactor 73 Volume 6, Issue 02

future will be the Guitar Chord/Scale Mas

ter, another prestigious program written for

learning with fun for the users being kept

in mind. Valhala is proud to be a part of the

software industry working toward the revo

lution of music learning through the aid of

the computer.

Whether you are learning the piano, organ,

or the latest electronic synthesizer, be

among the first adventurous enough to

challenge our new approach to learning.

The Keyboard Chord/Scale Master is

priced at only $39.95; include $1.50 for

postage and handling charges. Michigan

Residents include 4% sales tax.

For further information, please contact:

Valhala Software,

205 East Hazelhurst,

Ferndale, MI

48220

Light Pen Reading Series

from MicroEd

MicroEd Incorporated, a Minneapolis-

based publisher of educational software,

has begun marketing a light pen/

microcomputer series of 80 program sets

designed to provide students with begin

ning word attack skills that are normally

taught in kindergarten through third grade.

Entitled Point & Read, the series is also

expected to become popular with educa

tors working in the field of special educa

tion. Using a light pen as a response device

for individuals with learning disabilities of

one kind or another.

Initially available for the Commodore 64,

the series can be purchased in four pack

ages having a combined total of fourteen

disks. The suggested retail prices for these

packages are $74.95 for Package One (3

disks), $74.95 for Package Two (3 disks),

$99.95 for Package Three (4 disks), and

$99.95 for Package Four (4 disks).

Of particular interest to students are the

eight hundred full-screen computer-

drawn pictures used to illustrate the vari

ous problem sentences within the series.

Persons desiring more information may

call toll free 1-800-MicroEd, or contact:

George Esbensen,

National Sales Coordinator,

MicroEd Incorporated,

P.O. Box 444005,

Eden Prairie, MI

55344

Hardware News

C64 & APPLE 11+ Compatibility

Mimic Systems Inc. of Victoria, BC has a

line of products which give a Commodore

64 Apple 11+ compatability.

The "Spartan" gives 100% Apple 11+ soft

ware and hardware compatability, allowing

use of Apple or C-64 peripherals and gen

erating both C-64 and Apple 11+ video

outputs. Eight Apple 11+ slots and four

Commodore 64 slots are provided on the

Spartan, along with an extra 8-bit parallel

I/O port. Suggested retail for the Spartan is

$599.00 (US)

The "BUSS Card" supplies ten standard

Apple 11+ peripheral slots and four

software-selectable Commodore 64 car

tridge slots, along with an extra 8-bit paral

lel port. The BUSS Card also contains an

Apple 11+ switching power supply. The

BUSS card retails for $299.00 US.

The "CPU Card" contains 64 K bytes of

RAM, a 6502A, and all standard Apple II +

game, cassette and keyboard I/O ports.

The Bus card can be upgraded to a 65816

16-bit processor. Suggested list is $199.00

US.

The "DOS Card" allows a Commodore

1541 disk drive to read and write all stand

ard Apple 11+ disks. Either Commodore or

Apple 11+ format may be selected by soft

ware. The BUSS Card accepts all standard

Apple 11+ disk interface cards. Retail is

$199.00 US.

Mimic Systems Inc.

1112 Fort Street, 6th Floor

Victoria, B.C.

V8V4V2 1-800-663 8527

Master Software Releases

Reset Master

Master Software of Randallstown, Mary

land, has introduced Reset Master, a sys

tem reset switch for the Commodore

VIC-20 and Commodore C-64 computers.

Reset Master will reset your computer with

out shutting off the power, and will restore

control of the computer to the operator in

case of computer lock-up. Four RENEW

programs are included to restore the BASIC

program that was in memory before using

Reset Master.

Reset Master simply plugs into any serial

port on your computer system, and there

fore is installed without opening the com

puter case and without any soldering.

Rather than just shorting the computer's

reset signal line to ground, Reset Master

contains electronic circuitry to protect your

computer.

Other important features of Reset Master

include a two-foot cord, which acts as an

extension cord on your serial bus, and two

female serial ports, enabling the use of two

printers. Suggested Retail $24.95 postpaid.

Master Software,

6 Hillery Court,

Randallstown, MD

21133

ABL-64 (Automatic Boot-Loader

Cartridge for the 64)

Computer Bulletin Boards, Security Sys

tems, or other "Constant Use" applications

for the Commodore 64 computer will find

immediate and handy use for this package.

ABL-64 will re-boot and run an essential

program after a power failure, even if the

computer is left unattended.

ABL-64 is inserted into the Commodore 64

expansion (cartridge) port, and forces the

Commodore 64 to re-LOAD and RUN after

a power failure.

When ABL-64 is installed and there is a

power failure, ABL-64 is activated the in-

The Transactor 74 Volume 6, Issue 02

stant power is restored. There is a timer

aboard which counts up to 15 seconds.

During that time, if an operator is present,

he may invoke manual control over the

program through the keyboard. With no

operator present, after 15 seconds, ABL-64

BOOTS and runs a pre-selected program

from the disk. It can pick up where it left off

before the power failure.

The package includes cartridge, instruction

manual, and listings of two usable utility

programs. The suggested list price is

$39.95.

This is a very inexpensive alternative to

battery power backup systems. Available

for immediate delivery.

For further information, contact:

Jack Weaver, President,

Input Systems, Inc.,

15600 Palmetto Lake Drive,

Miami, FL

33157 305 252-1550

Studio 64 Gets New Keyboard

One of the road blocks in creating music on

the Commodore 64 has been its keyboard,

since it is designed for typing, not playing.

This has made playing the Commodore 64

like a musical instrument in real time a

cumbersome task. However, EnTech Soft

ware and Sequential Circuits have teamed

up to form what will be the next generation

of home computer music.

EnTech Software has made its Studio 64

music synthesizer program compatible

with the Sequential Circuits keyboard. This

keyboard has thirty-two full sized piano

keys and plugs into the Commodore 64's

joystick port. According to musician and

EnTech chairman Ray Soular, "The key

board has the same feel and playability of a

professional synthesizer."

With the keyboard, Studio 64 turns into a

three track recording studio. Music for each

of the three voices is played live and re

corded in true musical notation. As a per

son plays one voice, the other voices are

played back at the same time. A built in

metronome uses a click track and changing

border colours to help keep the musician

on beat, and the tempo can be adjusted to

any of nine settings. An auto correct func

tion rounds off notes to the nearest six

teenth note, so even novice keyboard

players play with precision.

After it is played, the music can be edited in

true musical notation, including tied notes

and sharps and flats. Blocks of music can

have their octaves and waveforms changed

without reentering notes. Full editing fea

tures allow people to duplicate or move

sections of music, and enter and delete

notes individually. Studio 64 has also

added ring modulation and sync to create a

variety of sound effects.

The keyboard also gives Studio 64 addi

tional educational value. Studio 64 is al

ready being used in schools for teaching

music composition, sight reading, and vo

cal and keyboard training.

Studio 64 still uses the Commodore 64

keyboard to enter notes or play in real

time. The new metronome, block changing

of octaves and waveform sounds, and ring

and sync sounds are available in both ver

sions.

Soular described the Sequential Circuits

keyboard version of Studio 64 as a great

advance for computer music. "When I orig

inally designed this program, this was ex

actly the type of music system I had

invisioned. The keyboard makes the Com

modore 64 a true musical instrument and

permits a degree of creativity that hasn't

been possible before. With Studio 64, peo

ple can create performance quality music."

Both the Commodore keyboard and the

Sequential Circuits keyboard versions are

available on the same disk for $39.95. Cur

rent Studio 64 users who want the updated

version can send $10 and their old disk to

Entech (see earlier item).

Black Box Modem 12OO's at Half Price

In a modem haze? Black box has made the

buy decision easier by offering its new

Modem 1200's at half their catalog-listed

prices — less than $300/unit. Only $279

for the auto-dial Modem 1200 and $249 for

the manual-dial version.

The auto-dial Modem 1200 is easy to use

with a "dumb" terminal or PC running a

sophisticated communication software pro

gram. You can access a broad range of

built-in HELP commands and menus in

the terminal Command mode. Auto-dial

1200 has built-in, non-volatile memory

that stores up to 20 telephone numbers of

up to 55 characters each. You can mix tone

and pulse dialing with one number, perfect

for use with long-distance services like

SPRINT and MCI. You can even assign

easy-to-remember names like LAB and

OFFICE to every stored number.

Unlike many other units, Auto-dial 1200

does not require sophisticated command

sequences. Most commands are single-key

driven.

The Manual-dial Modem 1200 is an eco

nomical alternative for users who do not

need auto-dial capacity, especially in appli

cations where the modem's primary use is

for answering incoming data calls.

Both Black Box modems are Bell 103/

212A compatible, and at these low prices

are exceptional values. For more informa

tion contact:

Modem 1200

Black Box Corp.

Box 12800

Pittsburgh, PA

15241 412 746-5500

(Looks like the price of 1200 baud modems

is finally starting to come down. - M.Ed)

The Transactor 75 Volume 6, Issue 02

Compu-toons

WARNING: Staring at your computer screen for long periods

of time may cause nightmarish hallucinations.

Have you noticed we haven't had any computer

malfunctions since the Commodore 64 was installed?

ONE MY IN Bffitt BlBUCflL HISTORY

'What's this Bob? Another one of your silly jokes - 'Give me a

banana or I'll peel your face off' - very funny Bob.

The evil serpent leads Adam to the forbidden Apple

The Transactor 76 Volume 6, Issue 02

CAP
EM ViE VrXST LEFT OUR HERO,

HE WfVb BEIM& FED TO ft i
COMPUTER. VJHKTl^

? SHEER
TORTURE..

EMD ftESUlJT? NOT
PRE.TTV Slf,HT....

NOT. BUT THIS ft

\ti\VK\ Tttt G»QOD

THP*XKS> ft

HE

CF\ViRE\JRTTO

Av/OTATAU>
S&NKTOR &WB

GOING. VaJELL
THE PRIME rf

Minister \SHtxT!)

F/WAU-Y SOMEONE- WAS W 1/ IF

HEARD OUR CAIESt HBU-O! >» H\S> C>O9.TPiEiE
]| PHMO VJEDOTHEShME

KEPUSED TO GO ON V^ITH —4. "TO tt\S MNN COMPU-
FLOTSKV'5

6ACK INTO

AK/D / CAM'T

The Transactor 77 Volume 6, Issue 02

Tho T«ch/N«wt Journal For Commodoro Coi

PAYS

$40

per page for articles

We're also looking for

professionally

drawn cartoons!

Send all material to:

The Editor

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

Issue*

Volume 6 Editorial Schedule

Theme Copy Due Printed Release Date

1

2

3

4

5

6

1

2

3

4

5

6

More Aids & Utilities

Communications & Networking

Languages

Implementing The Sciences

Hardware & Software Interfacing

Real Life Applications

Febl

Apr 1

Jun 1

Augl

Octl

Decl

Mar 22

May 24

Jul26

Sep20

Nov22

Jan 24

Volume 7 Editorial Schedule

ROM Routines / Kernel Routines Feb 1 Mar 21

Games From The Inside Out

Programming The Chips

Gadgets and Gizmos

Simulations and Modelling

Programming Techniques

Apr 1

Jun 1

Augl

Octl

Decl

May 23

Jul25

Sep26

Nov21

Jan 23

April 1/85

June 1

August 1

October 1

December 1

February 1/86

April 1

June 1

August 1

October 1

December 1

February 1/87

Advertisers and Authors should have material submitted no

later than the 'Copy Due' date to be included

with the respective issue.

COMAL

REFERENCE GUIDE
Sixty-four pages outlining all the C64 COMAL

keywords, with sections on the language's superb

String Handling, Procedures and Parameters,

Expressions and Standard Functions. $9.95

COMAL
Reference Guide

by Dorge R. Christensen

With o forewcxd by*n

Send cheque or money order to:

TPUG Inc., Dept. A., 1912 Avenue Rd., Ste. 1,

Toronto, Canada M5M 4A1

JOIN TPUG
The largest Commodore Users Group

Benefit from:

Access to library of public domain software

for C-64, VIC 20 and PET/CBM

Magazine (10 per year) with advice from

Jim Butterfield

Brad Bjomdahl

Liz Deal

TPUG yearly memberships:

Regular member(attends meetings)

Student member (full-time, attends meetings)

Associate (Canada)

Associate (U.S.A.)

Associate (Overseas — sea mail)

Associate (Overseas — airmail)

— $35.00 Cdn.

—$25.00 Cdn.

-$25.00 Cdn.

-$25.00 U.S.

—$30.00 Cdn.

-$35.00 U.S.

-$45.00 U.S.

FOR FURTHER INFORMATION:

Send $1.00 for an information catalogue

(tell us which machine you use!)

To: TPUG INC.

DEPT A

1912A AVENUE RD., SUITE 1

TORONTO, ONTARIO

CANADA M5M 4A1

PRO-LINE
MiillllSOFTWARE

A CANADIAN COMPANY

designing,

developing,

manufacturing,

publishing

and

distributing

microcomputer

software

DEALER ENQUIRIES WELCOME
AUTHOR'S SUBMISSIONS INVITED

CALL OR WRITE

(416) 273-6350

PRO-LINE
■HIIIIISOFTWARE

755 THE QUEENSWAY EAST, UNIT 8.

MISSISSAUGA. ONTARIO L4Y 4C5

Ask Someone Who Knows

If you enjoy Jim Strasma's many books, and his

articles in this and other magazines, you'll be glad

he also edits his own highly-acclaimed computer

magazine, now in its sixth year of continuous

publication. Written just for owners of Com

modore's many computers, each Midnite Software

Gazette contains hundreds of brief, honest

reviews.

Midnite also features timely Commodore1

news, hints and articles, all organized for instant

reference, and never a wasted word. Whether you

are just beginning or a long-time hobbyist, each

issue will help you and your computer to work

together effectively.

A six issue annual subscription is $23. To

subscribe, or request a sample issue, just write:

MIDNITE SOFTWARE GAZETTE

P.O. Box 1747

Champaign, IL 61820

You'll be glad you did!

COMAL INFO
if you have COMAL—

we have information.

BOOKS:
COMAL From A TO Z, S6.95

COMAL workbook, $6.95

Commodore 64 Graphics With COMAL, S14.95
COMAL Handbook, $18.95

Beginning COMAL, $22.95
Structured Programming with COMAL, $26.95
Foundations With COMAL, $19.95
Cartridge Graphics and Sound, $9.95

Captain COMAL Gets Organized, $19.95
Graphics Primer, $19.95

COMAL 2.0 Packages, $19.95
Library of Functions and Procedures, $19.95

OTHER:
COMAL TODAY subscription, 6 issues, $14.95
COMAL 0.14, Cheatsheet Keyboard Overlay, $3.95

COMAL Starter Kit (3 disks, 1 book), $29.95
19 Different COMAL Disks only $94.05

Deluxe COMAL Cartridge Package, $128.95
(includes 2 books, 2 disks, and cartridge)

ORDER NOW:
Call TOLL-FREE: 1-800-356-5324 ext 1307 VISA or MasterCard

orders ONLY Questions and information must call our

info Line: 608-222-4432. All orders prepaid only—no COD.

Add $2 per book shipping. Send a SASE for free Info

Package or send check or money order in US Dollars to:

COMAL USERS CROUP, U.S.A., LIMITED
5501 Groveland Ten, Madison, wi 53716

TRADEMARKS: Commodore 64 of Commodore Electronics Ltd.:

Captain COMAL of COMAL users Croup, U.S.A., Ltd.

C64

PROVINCIAL
PAYROLL

A complete Canadian Payroll System for Small

Business.

• 50 Employees per disk (1541) •

Calculate and Print Journals • Print

Cheques • Calculate submissions

summary for Revenue Canada •

Accumulates data and prints T-4s • Also

available for 4032 and 8032 Commodore

Computers.

Available from your Commodore Dealer.

Distributed by:

ICROCOMPUTER

SOLUTIONS

1262 DON MILLS RD. STE. 4

DON MILLS, ONTARIO M3B 2W7

TEL: (416)447-4811

You're invited to the

biggest party at

Valley Forge since

George brought

the boys!

M.A.R.C.A

The biggest Commodore User Fair in the US.

July 26, 27, 28
Valley Forge Convention Center, Valley Forge PA

• Speakers! • Seminars! • Hanging out!

• Fun! • Vendors! • Great Buys!

• Social Events! • Fun!

Areas Tours available.

Meet the names you've only read about. Jim Butterfield.

Dick Immers. Len Lindsey. Many, many more! Ask the ques

tions you need answers to. Have 21h days of non-stop

Commodore fun! Bring the whole family. Lots to do. See.

And buy. Bargains galore!

Pre-registration by July 1: 2V2 days $25

For pre-registration information: M.A.R.C.A., P.O. Box

1902, Martinsburg, West VA 25401.

DON'T MISS THE PARTY!

The Transactor presents,

The Complete Commodore

Inner Space Anthology

Only $14.95

Postage Paid Order Form at Center Page

