
The Tech/News Journal For Commodore Computers

95% Advertising Free! July 1985: Volume 6, Issue 01. $2.95

More Programming Aids & Utiliti

SAVE® Bug Exposed!

SuperNumbers: Indestructible Variables

Hardware: Cheap Analogue to Digital Converter

DOS File Executor: Exploring The '&' File

Alphabetize Disk Directories and more Disk Tricks

Disk Surface Utility Software Comparison

Commodore + 4: A Collection of Notes

PAL Utilities: Chopper and Labelgun

An R65C02 Assembler:

A Symbolic Assembler for the R65C02

that also works on the Commodore 64

Disk

Has Arrived!
Simply code your co-ordinates onto the

postage powered order form and every pro

gram from each issue will be locked in,

energized, and transported from our star-

base directly to yours! Warp 9 will seem

slow compared to the time you save typing,

and the programs will give your machine

that look and feel of a fresh set of Dilithium

Crystals! Coast through the Neutral Zone

with The Transactor Disk!

Only $7.95 Each!

6 Disk Subscription

Just $45.00!

Volume 6

Issue 01
Circulation 64,000

II Illl

Start Address Editorial 3

Bits and Pieces . 4 Letters 11
VIC/64 Clear Screen Line "i* , ^Tn'i
,. c . . Diskpleased: Slipped Disk:

Move Screen Line SIDioyncrasies: Compu-Ar.isis Unite!:
The Memory Transfer Subroutine DiskMod Notes: Point 11 AWOL:
Cheap Video-Game Dept.

NEW facts INIoiuc HCl? 7fi
C64 Programming Tip i^ieWS DKJV <O
Defaults in INPUT Statements M Mllllon "ComPuters and Children" Program Launch
"„„'" ' , rUJ SIatements The Fourth Annual TPUG Conference.
JbUHUU And Its Relatives The Second Annua| commodore User Computer Fair

Tickertape Survey Shows Commodore in Top Ranks of Industry
Debugging Aid Update Transactor Disk Offer Update

Easy Program UN-NEW After Reset The Complete Commodore Inner Space Anthology

1541 DOS Crash With REL Files N°tic<;'° "Transactors"
,r., j^r.0 ,,, , _. New Software From Commodore
1541 DOS Wedge Tips Magnetic Temp|ates

One-Line Decimal «• Base B 3_d World 64 Graphics Package
Restore Key Fun Enhanced Version of Flexidraw

Screen Save Update "Computer Technology For The Handicapped"

Directory of Online Industry Professionals

"True Piano Feel" Keyboard Released by Commodore

Kobetek Announces Valiant Turtle

BitS Notes on the B Series, +4,and8050 8

The MANAGER Column 13

TransBASIC Installment #3 14

SaVe @ ExpOSed! The Jackel of Bugs has been caught! 20

Disk Tricks FUnwiththei54i 22

J-JlSKDUSterS! Protection making/breaking packages compared Z4

DOS File ExeCUtOr Using the Ampersand file 26

Alphabetize Your Directory sonthesnie 29

C64 AutO Default Eliminate comma eight 32

File PurSUit Sizer/Tracer for disk files 36

SuperNumbers For The 64 indexible variable 37

VARPTR: New BASIC Function pius some new editing functions 40

11 Load all your utilities in one feld swoop AZ

Aid Almost does the typing foryou 43

& KUIl Tame those mysterious machine language programs tD

Extra EPROM Space for PET/CBMs 50

Cheap Analogue to Digital Converter 51

Overview: The Commodore +4 56

The Programmable Kitchen 59

Chopper and Labelgun two pal utilities 60

An R65C02 ASSembler Symbolic assembler for PETs and 64s 66

Note:

Before entering programs, see "Verifizer" on Page 19

The Transactor Volume 6, Issue 01

The Tech/News Journal F

print"

Managing Editor

KarlJ. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Lana Humphries

Contributing Writers

Gary Anderson

Harold Anderson

Don Bell

John Bennett

Daniel Bingamon

Anthony Bryant

Jim Butterfield

Daniel Chernoff

F. Arthur Cochrane

Gary Cobb

Elizabeth Deal

Domenic DeFrancesco

Tony Doty

Bob Drake

Mike Forani

Jeff Goebel

Gary Gunderson

Thomas Henry

David A. Hook

Chris Johnsen

Garry Kiziak

Michael Kwun

Scott Maclean

Stacy Mclnnis

Chris Miller

Brian Munshaw

Michael Quigley

Howard Rotenberg

Louis F. Sander

K. Murray Smith

Darren J. Spruyt

Aubrey Stanley

Nick Sullivan

Charles Whittern

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue. Milton,

Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class

postage paid at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor, 277 Linwood Avenue. Buffalo. NY. 14209, 716-884-0630. ISSN» 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) S40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor. Subscriptions Department, 500 Steeles Avenue Milton

Ontario, Canada. L9T 3P7. 416 876 4741. From Toronto call 826 1662. Note: Subscriptions are handled at

this address ONLY. Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4, Issues 04, 05, 06. Vol 5 Issue 03

Still Available:Vol. 4: 01, 02, 03. Vol. 5: 01, 02, 04. 05

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of course

be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the number 1 which has an

angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

insert will not be critical to correct operation of the program. When it is, the required number of spaces

will be shown. For example:

flush right" - would be shown as - print" [spacel0]flush right"

Cursor Characters For PET / CBM / VIC / 64

Down -

Up -

Left - [Lft]

RVS - Q

RVS Off - IB

Insert - §J

Delete - Q

Clear Scrn - Q

Home - Q

STOP - Q

Colour Characters For VIC / 64

Black - E

White - B

Red - H

Cyan - [Cyn]

Purple - [Pur]

Green - Q

Blue - B

Yellow- [Yel]

Orange -

Brown -

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt.Blue -

Grey 3 - [Gr

Function Keys For VIC / 64

Fl- Q

F2- Q

F3- Q

F4- B

F5-

F6-

F7-

F8-

Quantity Orders:

Mtcaoti IBmiBUTINO

CompuLit

PO Box 352

Port Coquitlam, BC

V5C 4K6

604 438 8854

U.S.A. Distributor:

Micron Distributing

409 Queen Street West

Toronto, Onlario, M5V 2A5

(416) 593 9862

Dealer Inquiries ONLY:

1 800 268 9052

Subscription related inquiries

are handled ONLY at Milton HQ

{Jittnhuting

Capital Distributing

Charlton Building

Derby, CT

06418

(203)735 3381

(or your local wholesaler)

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 5B4

(416)842 1555

(or your local wholesaler)

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is S40 per

printed page Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft,

Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos of authors or equipment, and illustrations will be included with articles depending on quality.

Diskettes, tapes and/or photos will be returned on request.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please

re-conftrm any permissions granted prior to this notice. Solicited material is accepted on an all rights

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.
Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor Volume 6, Issue 01

Since I don't have a lot to say about any one subject, I'm going

to blabber about a two or three.

First off, how do like our new logo? We had been pondering the

idea for some time and felt this issue was the one. New volume,

new look, why not. Last issue is probably the last time you'll

see the familiar trapezoid with the rounded top corners. This

was the shape of the label on the front panel of the original PET

2001 and it has been used to border "The Transactor" since the

very first issue. Many times have I paid tribute to the legacy of

the PET and the border was was just another link to the past.

However, it's time to let go. The RAMs in my 2001 go tired now

after about 20 minutes, but they hold a lot of memories; the

cute little keyboard, disappearing cursors, snow, and the sec

ond cassette unit was state-of-the-art when it arrived. Remem

ber "Karl J."? Back then, when I was ordering all of 850 copies

of the next Transactor, I never thought I'd be changing the logo

for the third time.

June the first marks the third year of Transactor independence.

A lot has happened in those three years. Recently we passed

the 10,000 paid subscribers mark and we're shipping 54,000

mags to the newstand market. The Transactor Disk is now

firmly settled in our routine and, as I'm writing this, The

Complete Commodore Inner Space Anthology is at the book

bindery. My "pack-rat" tendencies were in their most advanced

stages and The Anthology is the sum total of the paper jungle

that had almost assumed control of my computer room.

Some of you might be asking, "What happened to the Network

ing and Communications Issue?" and that would be a good

question. We had so much material for our last issue, Aids and

Utilities, that we thought we would do another one. It seemed a

shame to postpone the articles that wouldn't fit into our page

limit and the communications issue has a complete line-up of

other articles that probably wouldn't allow enough space for

the surplus. We'll be back onto our original schedule with the

next Transactor and I apologize to the authors of material

submitted for Networking and Communications that expected

to see their work this time around. One bonus however. . . this

issue has allowed us just enough extra time to make additional

"stage 1" improvements to the next one. Chris, Richard, and I

are really looking forward to making a Communications ex-

posefhat will re-introduce the telecomputing fad to all, us

included.

Jack Tremiel and Atari are a hot topic these days. The media

seem to enjoy the mileage they get from Jacks flamboyant

attributes. (But really guys, don't you think the Atlantic Accept

ance incident is growing a little stale?) The defection of several

Commodore employees to Atari is the latest publicity cache for

Tramiel. At present I can think of at least nine of Commodore's

key bees that have buzzed off. Of course you know what

happens when the stinger is gone. . . However, Jack deserves a

lot of credit. I mean, let's face it - the shock wave of the personal

computer is over and I doubt Atari, Commodore, or any of the

others can rekindle it. But if anyone can bring Atari back to a

comfortable existence, it's Jack Tremiel.

Atari has some fairly bold gladiators lined up but even the one

and only J.T. will have a tough time matching the sonic boom of

the VIC and 64. No, I believe the market has become mature to

the sensationalism; games are no longer enough for the poten

tial micro buyer. Atari's new machines aren't games oriented

but it's hard to imagine another market ever as big. The ST

series, nicknamed the "Jackintosh" are aimed at, you guessed

it, the Macintosh. Although Apple has enjoyed moderate suc

cess with this entry, Atari may be in for a workout. After all, this

"type" of equipment needs a following to maintain continued

success. The ST's late start means they forfeit the following to

the Mac. The price may turn things around for Atari's ST future,

but Commodore is not likely to soon be dethroned, although

Atari claims they aren't after Commodore's market. Sure.

On the software scene, "Counterfeiting" seems to be the latest

buzz. Hit hardest was probably the Flight Simulator package by

Sub-Logic. It's hard to believe that anyone would go to the

lengths required to duplicate a package as complete and as

detailed as Flight Simulator. Being slightly involved in the

printing business, it soon becomes clear that in order to get a

half decent per piece cost you cannot aim at any less than

10,000 copies. Just how many counterfeits were produced is

not known at this time and I hesitate to release details about

those involved (the RCMP will be announcing arrests in just a

few days from now) but the lost revenue for Sub-Logic must

have been staggering, not to mention the other companies who

have had their packages second generationalized. It's a pity

that those so close to the industry in which we occupy our

selves are not more understanding to the amount of effort that

goes into creating a product to be proud of. It's also a pity that

vague legislation surrounding computer software may well

result in a mere slap on the wrists. In fact, based on what

information I've managed to gather, it looks like several of

those involved may never be implicated.

However, there's nothing as constant as change, I remain,

Kaw J.H. Hildon, Managing Editor

The Transactor
Volume 6, Issue 01

Bits and Pieces

Got an interesting programming tip, short routine, or an unknown

bit of Commodore trivia? Send it in - ifwe use it in the Bits & Pieces

column, we'll credit you in the column and send you a free one-

year's subscription to The Transactor

VIC/64 Clear Screen Line

There's an easy way to clear any line on the screen right from

BASIC:

C-64: POKE 781 ,line:SYS 59903

VIC-20: POKE 781 ,line:SYS 60045

here 'line' is the screen line to be cleared, in the range 0

through 24.

Move Screen Line

There's another general ROM routine that can be easily put to good

use: this one copies 40 bytes from a specified point on the screen to

the current cursor position.

C-64: POKE 780,hi: POKE 172,lo: SYS 59848

Where lo.hi represents the beginning of screen characters to

copy (lo + 256*hi must be in the range 0 to 999).

For the VIC-20, use SYS 59990

While We're Exploring ROM Routines...

The Memory Transfer Subroutine

Often you may wish to move a range of memory, for example to

transfer screen or hi-res memory in or out. BASIC is too slow, but

you don't need to write a general-purpose memory transfer

routine in machine language (although many of you probably

have by now, anyway).

The Kernal itself has to move memory around a lot, for example

when inserting or deleting BASIC program lines, and there is a

memory transfer routine built into ROM in all machines. The

article in this issue "LOAD & RUN" uses the routine to transfer a

machine language program to its proper address.

Before calling the routine, there are three addresses which must be

supplied: source start, source end+1, and destination end+1 (not

start +1). The vital information follows.

PET (2.0)

CBM (4.0)

C-64

VIC-20

src start

$5C

$5C

$5F

$5F

src end +1

$57

$57

$5A

$5A

dest end +1

$55

$55

$58

$58

subrtn entry point

$C2DF

$B357

$A3BF

$C3BF

Cheap Video-Game Dept.

RACER is the concept of John Durko of Toronto, Ont. This has got

to be one the simplest game programs around that is so much fun

to play. The version below is for BASIC 2.0/4.0 PETs (40 or 80

columns) and is only 13 lines long. If that's too long for you, try this

slightly compressed version — you have nothing to lose typing in 4

lines of code!

RACER for 40 or 80 column PETs: (clear screen before running)

HB

FF

KH

MG

1 w = 10:y = 21: t = 20-w/2:x = 21 :n = y:l = 32768 + y*80

:forr=1tol:fori = 1ton:pokes,32

2 printtab(t)" (*" spc(w)" *)" :t = t + c:s = I + x:getx$

: ifpeek(s)O32thensr = r: r = I: goto7

3 pokes, 160:k = peek(151):x = x + (k = 180)-(k = 182)

:c = sgn(c-2*((t<5)-(t + w>40))):next

7 n = rndm* 10:c = int(rnd(1)*3)-1 :nextr

:print"ra*** crash! score = "sr;sr*y*(20-w)

Steer left and right with the 4 and 6 keys (or as indicated with VIC/64/

16/+ 4 versions) to stay within the track as it changes its path. The

variables 'W and V in line 1 control the width of the track and the

screen line that the "car" appears on, respectively. A narrower track

makes for a more challenging game, as does a lower screen line

(greater value of 'Y'), since you have less time to react to changes in

the track.

The "long" version of the program below prompts you for track size

and car position, providing defaults. It can also be modified to work on

the C-64, VIC-20 (joystick or keyboard), 16 or +4. In fact, this

program could be made to work on any machine that runs BASIC; all

you have to know is the location which stores the current key pressed,

and where screen memory lies.

After you crash, your score is given as two values; the first value

indicates the number of "turns" that you survived, and the second is

scaled to take into account the track width and car vertical position.

Possible enhancements? Dynamically change the width of the track;

change the "speed" of the car by changing its line position from

joystick or keyboard controls; put random "obstacles" in the track

which must be avoided; write it in machine code!

One last point: if you have an 8032, you can speed up the track by

setting the top of a window on a line above the car.

Full-featured RACER for PETs:

OE

DH

IB

100rem" RACER -jd/cz

110 print "H** use 4/6 keys for left/riaht **"
120 input "Htrack width (1-20) 10|||";w

The Transactor
Volume 6, Issue 01

EA

BP

EK

NF

IJ

CD

DG

LA

KO

PK

130 input" car position (1 -23) 20|j|" ;cy

140 sc = 32768 + 80*cy:kbd = 151 :lf = 180:rt = 182

: rem** machine-specific **

150 b = 1 :e = 38:tw = w + 4:tl = 20-tw/2:cx = 20:s = sc:n = cy

160 for i = 1 to n:poke s,32:printtab(tl)" (*" spc(w)" *)"

:s = sc + cx

170 if tkb or tl + tw>e then inc = (tl + tw>e)-(tl<b)

180 get z$:if peek(s)O32then220

190 poke s, 160:k = peek(kbd):cx = ex + (k = If)—(k = rt)

200 tl = tl + inc:next:sr = sr +1

210 n = rndm* 10:inc = int(rnd(1)*3)-1 :goto160

220 print"| 3*** you crashed!! ** — score:'
sr;sr*(40-tw)*cy:print"Elrur

C64 mods:

140sc=1024 + 40*cy:kbd = 56320:lf=123:rt=119

: rem for joystick

or140sc = 1024 + 40*cy:kbd = 197:lf = 51:rt = 0

: rem keyboard; home/del keys

165 pokes+ 54272,1: rem colour memory (white "car")

VIC-20 mods:

140sc = 7680 + 22*cy:kbd=37151:lf=122:rt=118

: rem joystick up/down

or 140 sc = 7680 + 22*cy:kbd = 197:lf = 62:rt = 7

: rem home/del keys

150 b = 1 :e = 20:tw =w + 4:tl = 11 -tw/2:cx = 11 :s = sc:n = cy

165 poke s + 30720,0: rem black car

16/+ 4 mods:

140sc = 3072 + 40*cy:kbd = 198:lf = 48:rt = 51

: rem* crsr left/right keys

NEW facts

Many programs, after loading some machine code and changing

BASIC pointers to protect the top of memory, contain the following

line of code:

NEW : CLR

This is dumb for two reasons:

1) The NEW command does a CLR automatically, free of charge. In

fact, the CLR routine comes directly after the NEW routine in ROM,

and NEW just falls through into CLR.

2) Any statement appearing after a NEW, even on the same line,

even in direct mode, WILL NOT BE EXECUTED. Thus, NEW:CLR,

NEW:PRINT, and NEW:SYS64738 all do the same thing: a NEW.

So even though using the command NEW:CLR doesn't do any

harm to your programs, it sure doesn't do any good. Leave off the

CLR and let's put an end to this custom before it's carried on to

future generations.

C64 Programming Tip

It is often desirable to be able to halt a machine language program

by pressing a key. The usual approach is to use the "check stop

key" routine at $FFE1 and check the Z flag to see if the STOP key

was pressed. This approach will not work, however, with pro

grams that disable IRQs, since the keyboard isn't being scanned.

Another possibility is to actually scan the keyboard for a specific

key by storing the keyboard row number (inverted) in location

$DC00, and checking location $DC01 for the value of the desired

key. The problem with this approach is that the key must be down

when the scan takes place for it to register. To make sure that the

key is detected, it would have to be scanned frequently and

possibly in several places throughout the program. That can be

time-consuming, and using the keyboard in this way also inter

feres with operation of the joysticks.

A good solution involves using the RESTORE key and NMI vector.

Point the NMI vector to a routine which sets a flag (stores a nonzero

value in some memory location), then jumps to the normal

destination of the NMI vector. Whenever the RESTORE key is

struck, it generates an NMI and this flag will be set. The machine

language program can check the flag and exit if it is set. That way,

no matter what the program is doing when the RESTORE key is

hit, it will eventually find out about it when it gets around to

checking the flag. When the flag is found to be set, it should be

cleared (set to zero) before exiting to prepare for future runs.

Defaults in INPUT Statements

When using INPUT statements it's nice to provide the user with a

reasonable default so that he/she can just press return in most

cases. Here is a good way to do it:

10 input" Drive number ";dr

After the prompt message comes three spaces, the default, fol

lowed by three cursor-lefts. If the default is more than one

character long, increase the number of spaces and cursor-lefts

accordingly.

An added bonus of this technique is that you can reject invalid

entries in a very nice way. For example:

20 if dr<0 or dr>1 then print "0" ;:goto10

This will simply ignore any input other than 0 or 1, without any

drama.

350800 And Its Relatives Elizabeth Deal, Malvern PA

The "350800 poison number" mentioned in the BITS and PIECES

of the Vol 5, Issue 5 Transactor is indeed a member of a class of

neat numbers with high byte 137 (in fixed point format). This is

due to a little bug in the PET, VIC and the C64 computers, as well

as the APPLE. The bug does NOT exist in the RADIO SHACK

computers, nor in the Commodore's B—128, Plus 4 and C—16.

Tracking the story down can be fun, and shows that the culprit is

an intended error-exit from the routine that converts numeric

characters in the BASIC text to a fixed point number. This routine

is used for many things, one of them being BASIC line number

entry. If you follow the PET code (below), beginning where it says

'START HERE', you'll see that when a number's high byte exceeds

hex $19 (25 decimal) the intent is to abort. But... the PET code

jumps into the middle of the ON routine. Now when, and only

when, your entered number has a high byte of 137 (hex $89) we

fall into the trap. We pull an item off the stack and crash on trying

to execute the code. By now, the action-address has been man

gled. In the upgrade PET, we end up in zero page, $C8 being the

remaining byte on the stack. Good fun.

You can look up the details in the Butterfield's maps - the 'perform

ON' routine can be your starting point for disassembly. After ON

comes the 'get fixed point number' routine which contains the

multiply-by-10 code which is pretty long, and not reproduced

here. The story ends with the call to the CHRGET routine and the

loopback. Here are two disassemblies, one from the Upgrade PET

(problems) and one from the B-128 machine (all fixed).

The Transactor Volume 6, Issue 01

;perform ON

c853

c856

c857

C859

c85b

c85d

c85f

c861

c863

c864

c867

c86a

c86d

c86f

c871

c872

20

48

c9

fO

c9

dO

c6

dO

68

4c

20

20

c9

fO

68

60

78

8d

04

39

91

62

04

02

70

73

2c

ee

d6

c7

00

c8

jsr

pha

cmp

beq

cmp

bne

dec

bne

pla

jmp

jsr

jsr

cmp

beq

pla

its

$d678

#$8d

$c85f

#$89

$c7fO

$62

$C867

$c702

$0070

$c873

#$2c

$c85f

;gosub token?

;goto?. . .a trap into which we

fall

;<— herein lies the stack

problem.

;dispatch command/rts

;—>START HERE - get fixed point number

c873

c875

c877

a2

86

86

;big loop-

c879

c87b

c87d

c87f

c881

C883

c885

c887

bO

e9

85

a5

85

c9

bO

a5

;. . . etc-

c8a7

c8aa

20

4c

00

11

12

do

f7

2f

03

12

If

19

d4

11

Idx

stx

stx

#$00

$11

$12

while characters are numeric

multiply

70

79

Here we have

00

c8

the

identical code is in t

vol.5, issue

Entering a

to SYNTAX

fivI1X.

5. I

bcs

sbc

sta

Ida

sta

cmp

bcs

Ida

by 10

jsr

jmp

same

$c872

#$2f

$03

$12

$1f

#$19

$c85b

$11

routine

$0070

$c879

thinking,

;all done- exit

;is the number over 63999?

;yup.. .get out (into the trap!) **

;chrget - from basic text

;and loop back

but this time in the B-128. An

he Plus 4 machine, see Butterfield's Plus 4 map in

t's clear as daylight

BASIC line: 350800 prin

ERROR

;perform ON

f8d2b

f8d2e

f8d2f

f8d31

f8d33

f8d35

f8d37

f8d3a

f8d3c

f8d3e

f8d3f

f8d42

f8d45

f8d48

f8d4a

f8d4c

f8d4d

20

48

c9

fO

C9

fO

4c

c6

dO

68

4c

20

20

C9

fO

68

60

d6

8d

07

89

03

4v

75

04

aa

26

4e

2c

ee

IsTARTHERE
f8d4e

f8d50

f8d52

a2

86

86

00

1b

1c

The Transactor

b4

97

87

ba

8d

If you

jsr

pha

cmp

beq

cmp

beq

jmp

dec

bne

pla

jmp

jsr

jsr

cmp

beq

pla

rts

- get fixec

Idx

stx

stx

that the problem has been fixed.

" what's the point?" just blows off

follow this disassembly, you'll see the little

$b4d6

#$8d

$8d3a

#$89

$8d3a

$974f

$75

$8d42

$87aa

$ba26

$8d4e

#$2c

$8d3a

;gosub?

;goto?

;nope.. .go to Syntax Error

;yes

i point number

#$00

$1b

$1c

6

;big loop - while characters are numbers

f8d54 bO f7 bcs $8d4d ;normal exit, not a number

f8d56 e9 2f sbc #$2f

f8d58 85 0c sta $0c

f8d5a a5 1c Ida $1c

f8d5c 85 22 sta $22

f8d5e c9 19 cmp #$19 ;over 63999?

f8d60 bO d5 bcs $8d37 ;yes, jump out to Syntax Error

f8d62 a5 1b Ida $1b

;. . . etc multiply by 10

f8d82 20 26 ba jsr $ba26 ;chrget-next character

f8d85 4c 54 8d jmp $8d54 ;loop back

Tickertape Dave Smart, Russell, Ont.

Here's a good little ticker-tape routine — it can be used on any

machine, but the 64 version has 'tick-tick' sound efects. The nice

thing about this routine is that it can handle strings up to 255

characters long.

Usage notes: just put the string to be scrolled in Q$, and GOSUB 100;

you can vary the speed by changing the '65' in line 160; line 105 must

be changed for 80 or 22 column screens; the string Q$ is left altered by

the routine.

100 rem tickertape subroutine-dave smart

105 In = 40: rem # of columns in screen

110 for I = 1 to In: q$ = " " + q$: next

120 for I = 1 to In: q$ = q$ + " ": next

130 for I = 1 tolen(q$)-ln + 1

150 print mid$(q$,l,ln)"PI":
160fort = 1 to65:nextt,l

170 return

Add the following lines for sound effects on the C-64:

106 poke 54273,70:poke 54278,249: poke54276,17

:poke54276,16

140 poke 54296,15:poke 54296,0

Debugging Aid Update R.C. Marcus, Agincourt, Ont.

Mr. Marcus writes,

"In the latest issue of Bits & Piecesm issue 5 vol. 05, was included a

handy 'Built-in debugging aid" for BASIC 4.0 machines.'

I would like to add more information along this line. This is a BASIC

routine and is in BASIC ROM of the VIC, 64 and by your listing of the

16/+ 4 memory map, page 25 of the same issue, it resides there as

well.

It is referred to as Print 'IN' routine and resides in the following

locations: VIC, 56770; 64, 48578; 16/+ 4, $A453.

A SYS to the appropriate location will provide this handy feature."

Easy Program UN-NEW After Reset

Last issue's Bits & Pieces presented "REGAIN" to restore your BASIC

program after a system reset or a new. If you crash and reset, but don't

have REGAIN in memory, you can use this method, sent in by Alan

Clooney of Cranbourne, Australia:

poke 2050,1 :sys 42291 :poke 46,peek(35)

:poke45,peek(781) + 2: clr

If this gives an error message then

poke 45,peek(781)-254:poke 46,peek(46) +1: clr

Volume 6, Issue 01

1541 DOS Crash With REL Files John Menke, Mt Vernon IL

"Failure to properly close a relative file crashes the 1541 's DOS.

Subsequent disk operations will give unpredictable results, probably

damaging other files, the directory, and BAM. Use of the initialize

command T only apparently and deceptively sets things right. The

DOS will not work correctly after the initialize in this case. It must be

reset with 'UJ' or 'U:' or by turning the drive off momentarily."

1541 DOS Wedge Tips John Menke

"Most of the 1541 wedge commands work in program mode with a

minor syntax change; whatever follows @, >, /, t or •*- must be in

quotation marks. There appears to be a problem only with the %

command when used in this way. These commands must be on their

own on a separate program line; in some cases they'll work as the last

statement on a line. Variables are not recognized as file names by the

wedge commands. The following program lines illustrate the three

most useful applications which 1 have found for these commands:

10@"$"

20 <

301" program name"

Line 10 lists the directory, and as usual the space bar stops/continues

the listing on the screen. Line 20 reads the disk error status and prints

it to the screen. Line 30 is useful in loaders, or in chaining programs."

One-Line Decimal ^ Base B A Hooyer, He Soest Holland

To convert from decimal value 'D' to base 'B' with output length 'L':

8n$= " ":fori=1tol:h = d:d = int(h/b):h = h-d*b

:n$ = chr$(h + 48-7*(h>9)) + n$:next:return

Result in 'N$'. To convert 'N$' from base 'B' to decimal, output in 'D':

9 d = O:fori = 1 tolen(n$):h = asc(mid$(n$,i))-48

:d = d*b + h + 7*(h>9):next:return

Examples:

From decimal to hex: d = 4096:b = 16:l = 4:gosub8:print n$

From binary to decimal: n$= " 1000101 " :b = 2:gosub 9:print d

Restore Key Fun Scott MacLean, Georgetown, Ontario

Most programmers know that

poke 808, 205

will disable RUN STOP/RESTORE, but it has other minor side effects,

such as disabling the LIST function etc. The RESTORE key is tied

directly into the 6510 NMI (Non-Maskable Interrupt) line. When you

press it, it jumps through a vector at 792-793 to wherever it goes, does

its stuff, and has its fun. It is possible to replace the vector with say,

49152:

poke 792, 0: poke 793, 192

Ha, now when we press RESTORE, it jumps to location 49152, and

starts doing things. Let's put an RTI (Return from Interrupt) instruction

there with:

poke 49152, 64

Now press RESTORE! Neat! Wow! When you press it, nothing hap

pens! Try RUN STOP/RESTORE. Still nothing. Try this:

poke 49152, 32: poke 49155, 64: poke 792, 0: poke 793, 192

X = 226:Y = 252

poke 49153,X: poke 49154,Y

Press RESTORE. Or this:

= 234:Y = 232 Or: X = 34:Y = 228

Quick Note: The 8250 Dual Drive records files in sectors

spread 5 apart as opposed to 3 apart in the 4040, 8050, and

1541.

Screen Save Update R.C. Marcus, Agincourt, Ont.

The handy method to save the screen which appeared in the recent

issue under Bits and Pieces, titled "Put Mental Notes on Disk (or

tape)!", can be indeed a useful tool. It can be used as well on the VIC

with the appropriate changes to the Kernel SYS's.

Unfortunately, with the limited screen of the VIC this direct mode

entry takes up three to four lines, depending on the length of the

filename; plus another for the "SAVING ..." message, so in all, a

possible five lines are taken or 110 character positions. As the screen

has only 506, this is a fair amount of space just for the saving

instructions.

The attached short program is for the VIC with any memory

configuration. It provides screen save with a single command; SYS

828. The program saves up to the second last line of the screen, so

by placing the SYS command on the second last line, as instructed

by the BASIC loader program, it does not scroll the screen or appear

when the screen is recalled. This gives 462 screen positions for

message characters.

This program places a machine language program in the tape buffer,

so it can only be used in disk-based systems. The filename is built

into the routine as "scr(shifted space)ml" and appears in the disk

directory as "scr"ml; the ml is the reminder I use to indicate that

the load command must include the " ,1" to indicate a relocating

load.

To recall a saved screen, LOAD it in with: LOAD " scr" ,8,1. Putting

the LOAD on line 18 will cause the "READY." to appear near the

bottom of the screen and not mess up the message.

The routine does the save without the SAVING message to conserve

screen space, but will print error messages if they arise. It also saves

with the replace option, so be sure to rename your old screen file if

you don't want it wiped out by the next one you save.

100 rem basic loader for screen save

110 for p = 828 to 879 : read a : poke p,a : cs = cs + a : next

120 if cs<>6685then print "error!..indata"spc(14)

statements.

130 print" (sys828'.

"save screen.

140 data 169, 64,

150 data 8,160,

160 data 162, 103,

170 data 0,133,

180 data 164, 252,

190 data 216, 255,

200 data 82,160,

end

..on the 2nd' spc(11) "last line to" spc(10)

32,

1,

160,

251,

200,

96,

77,

144,

32,

3,

173,

162,

64,

76

255, 169, 0, 162

186,255,169, 9

32, 189,255, 169

136, 2,133,252

205,169,251, 32

48, 58, 83, 67

The Transactor Volume 6, Issue 01

Auxiliary Bits
(for the +4/C16, B Series, 1541, and 8050)

Elizabeth Deal

Malvern, PA

+4andC16Bits

These computers are miracles. What follows are some notes 1 have

which may well be unintelligible to the beginners, but can be of

use to someone familiar with other Commodore machines. The

User's manual is rather complete, so these are just additional

comments:

Character strings are handled differently than in previous ma

chines: there is no such thing as pointers into a program. All

strings declared inside a program are copied to RAM (usually

hidden under ROM). There are no garbage collection delays.

Additionally, new functions can be done with the strings:

1. The first one is assignment statement with MID$ on the left. Yup,

you're seeing it correctly. It's now OK to code:

MID$(a$,4,2)= "de"

This will change whatever was in positions 4 and 5 to be "de".

Can you see why strings can't live inside a program? Would be a

programming nightmare if they did.

2. INSTR function returns a position of one string within another,

so

INSTR$("xyz","y")

returns 2. You can also specify a starting position for the search.

The old code

forj = 1tolen(a$):ifx$ = mid$(a$,j,1)thennextj

is no longer needed, and the INSTR function is instantaneous!

Hurray to Commodore.

Tape is incompatible with other CBM machines. The connector is

different, but that's the small part. The timing is different. It seems

that the writing goes at about half the speed of the previous units.

The code to accomplish tape writing and reading is enormous.

Reading is particularly difficult because the TED chip functions

differently: there is no such thing as detecting a negative transition

- all transitions have to and are being detected in software. The

screen is turned off to permit 1.7 mhz operation. Still, it is a slow

process.

Tape errors are funny. If you happen to position a tape to the very

tippy-end of a program you don't want to load, the computer

reports BREAK error (*30) and does not go on to look for the

program you do want. Using error trapping (TRAP statement exists

in the language!) is the way to go in program mode.

Generally, error numbers when used with tape are wrong. You

may get a DEVICE NOT PRESENT ERROR, when you think it

should be a FILE NOT FOUND ERROR. You invariably get BREAK

ERROR when the end-of-tape header has been read in. This

would be only a cosmetic nuisance, were it not for the fact that a

STOP-key also causes a BREAK error. It's hard to tell one from

another

There is lots of RAM in the machine, and one tends to play a lot of

hide-and-seek games in finding things. Some clues:

1. Page 4 contains various indirect routines that permit taking

bytes from ROM or RAM. These routines are used by BASIC.

2. In page 7, specifically at $7d7 is an equivalent routine for use by

the machine code monitor.

3. BASIC PEEK returns a byte from RAM. Machine Language

Monitor returns a byte from ROM. MLM normally saves only

RAM, you can't save ROM. BASIC SAVE normally saves RAM.

LOAD loads bytes into RAM, as you'd expect. Sometimes you

may wish to change the defaults. It can be done:

(a) To PEEK ROM from BASIC: modify a routine in page 4 (at

$0494) to ignore the store instruction:

pokei 176,44: now peek ROM : pokei 176,141

This is fairly safe, so long as you DO NOT WORK ANY STRINGS

BETWEEN THE TWO POKE1176 INSTRUCTIONS. This, for in

stance, is the only way you can get at the character generator ROM

from BASIC, as far as I can tell.

(b) To peek/save ROM from the MLM, set bit 7 in the byte at $7f8.

Incidentally, the monitor has a nice feature - ">7f8 80" is all

you need to type in, the ">" sets bytes and displays just one line

of memory.

The MONITOR is nice, it's almost like SUPERMON. But there is a

serious bug - they chopped the TRANSFER command: T with

overlapping addresses does not work in one direction - when the

destination is higher in memory than the source. The bytes just

write one over another and you lose all your work. A cure: first

Transfer to another, non-overlapping area, then do a second

transfer to where you wanted to go in the first place.

Colour memory, as in the C64, contains the colour codes for the

1000 screen bytes. One difference, bit 7 is the flashing bit. Funny

things happen when you load the C64 colour map into, what's now

called, screen attributes map in the Plus 4. You get flashing for

nothing.

The Transactor Volume 6, Issue 01

To change the colour attributes from the C64 POKEs into the

COLOR statements, you'll need to add one to each value, as the

Plus 4 colour numbers are from 1 to 16. POKE values are still 0-15,

but there is little reason to use them.

The keyboard is a delight. Perhaps a bit too soft, but easy to use.

The ESC sequences are a joy to use. There is even a pause-all-

output key: two keys actually - CTL-S, with any other key

restarting the output. There is only one problem: if you use CTL-S

during a program run, and use a subsequent GET statement, the S

will appear to the GET statement as a real input -1 think it's a bug -

the keyboard buffer isn't cleared, so you'll have to do it yourself.

Programmable function keys are useful. Unlike in the B machine,

most of them have a carriage return at the end. I don't like this

feature, but it can be easily changed. Unfortunately, the keys are

active inside a running program. Watch out here: if you use GET,

and the user pushes the DIRECTORY key, all the letters in

'DIRECTORY' including the carriage return will be delivered to the

GET! If you don't want it to happen, there is a way to disable the

function keys: either set them all to null (" ") inside a program and

redefine at the end, or POKE their lengths to zero.

The default colours and luminances for the sixteen colour keys are

in RAM. They are in a table in page 1 at $113. You can change

them as you wish. Machine code people who love to POKE the

stack (auto-run programs!) will have to stay away from this area.

Some of the structured BASIC statements are splendid. For in

stance, the DO WHILE construct permits you to code a loop that

will never execute (FOR-NEXT loops always run at least once,

unless you test and skip around). The interpreter seems to be

looking ahead, almost like a compiler: it skips the loop and all the

loops inside it. EXIT permits leaving a loop early. LOOP UNTIL

tests a condition at the end of a loop. What more can we ask?

The character table is half the size of that in the C64. Reverse

characters aren't in ROM, they are software-generated. You may

have to take this into account if you convert programs from the

C64 to the + 4/C16 machines. Pointing the character base address

is simple. It does require POKEs, a rare event in this machine:

using the BASIC method (above) or the monitor transfer com

mand, move the characters to any RAM. Then tell the TED chip

about the move: tell location $ffl3 the page number of the start of

your character definitions, then clear bit 2 at location $ffl2. That's

all there is to it. Much simpler than in the C64. Incidentally, it is

perfectly all right to speak in semi-hex to the BASIC interpreter,

hence

POKEDEC("FF12"), DEC("71 ")

will tell the chip the character base is at $7000. What's that 1 doing

in $71? No connection, nothing. Nothing is a one. I don't know

why.

When you play with non-ROM character set, a nasty thing can

happen: an exit from the monitor or any error in BASIC resets

things only half way back to normal. So the screen becomes a

mess. Several solutions: TRAP all errors in BASIC. Do not leave the

monitor (guarantees learning machine code by the total immer

sion method). Hold STOP and push the little reset button. Define a

function key to (blindly) type the reverse maneuver to set the

character base to the default again. Enjoy the crazy screen sight

and push some keys while you do so - it's actually an interesting

display.

It is possible to move the screen memory anyplace in RAM. The

TED chip needs to be told of the move, of course. $FF14 register is

the place to use. However, I know of no way to print on the screen

when it's not in the standard location. You can POKE it, you can

flip it, you can do all sorts of things with the relocated screen, but

no printing. The print command ($FFD2) delivers bytes to the

default location and only there. It should be possible, if you must

print on a relocated screen, to reroute output to your own routine

(page 3 vectors) but I doubt that it's worth the trouble.

The GRAPHIC split screen always splits five lines from the bottom.

The bottom five lines are in the text mode, the top is bit-mapped.

The constant which controls the split raster line is coded in ROM,

hence a bit rough to change. However, there is a link in the

interrupt-service code which does permit you to modify the place

of the split screen, if you must do it.

Disabling the STOP key is a favourite pastime of many people. It's

quite easy on the Plus 4 computer - use a TRAP statement and trap

error *30 to resume execution. I know, however, of one situation

where the STOP cannot be TRAPped. That is in I/O. Tape LOAD

illustrates it quite well, as things are slow: the STOP can be

TRAPped after the message "LOADING" would appear, not before.

While the computer is searching for a header, it uses another way

to test the STOP. It looks directly at the keyboard register in the

TED chip, and it never tells BASIC about it. The same is probably

true with the serial disk, but it is a bit harder to catch, as things

happen faster. A moral: to disable a STOP during I/O use a little

machine code, especially if your program uses tape. The whole

exercise is almost pointless anyway, as the little reset button lets

anyone in. I like that.

B-128, 1541, and 8050 Bits

I wish Commodore would reconsider their decision to drop the B-

machines. B-128 is a terrific machine. Sure it's hard to program,

but it's fun. It has superb BASIC, superb keyboard, 2mhz clock, it's

fast and pleasant to use!

There are an assortment of curiosities about the machine itself and

some disk drives:

Happy news: On the B128 the files close themselves! When an

error condition causes a disk file to remain open, editing a program

line makes the disk whirr a bit and a file gets closed. It's incom

plete, but it's not a * file anymore. Clever and useful - if you keep

the drive door down, of course.

There is a RESTORE <line number> command in BASIC, just as in

+ 4.

BLOAD " file name" drive,unit,bank,address loads program files

and does not cause BASIC to run from the beginning. A splendid

feature.

The Transactor
Volume 6, Issue 01

BASIC programs which have machine code tacked on to the end

are difficult to manage. They can be run, but don't try to SAVE'em

without first fixing the pointers up. LOADing such programs

causes the end-of-program pointer to be set to the byte following

the three zeros (ouch!). Editing a line (or just pushing a RETURN

over a line) on the screen does the same thing.

There appears to be a bug in the screen editor which can unre-

verse reversed characters such as home, cursor directions, etc. in

quotes. This only happens if you insert characters ANYWHERE on

a line containing the control characters and only when you use the

INST key. If you use ESC-A/C to enter/cancel the insert mode,

then the line is not ruined. Something is wrong in the setting of the

insert-flag but you can prevent trouble by pushing RETURN twice

over such lines if you have used the INST key. Say it again Sam. ..

There is an "initialize the drive" command in BASIC-128. It is

DCLEAR Dl (for drive #1). I don't know why, but I keep thinking it

can NEW the disk. Funny name.

The DOS built into the 8050-drives that come in the Protecto

package is a fairly advanced version number 2.7 as you can see in

the sign-on message.

There has been a change in the way character string functions

work. While ASC of a null byte still returns ILLEGAL QUANTITY

instead of a zero (as in the PLUS 4), ASC of characters outside the

string aren't ignored anymore: ASC(MID$(" ABC" ,4)) is now ILLE

GAL.

Machine Language monitor is a bit rough to use. Some pointers:

1. You can enter the MONITOR by a call, bankl 5:sysl 4*4096 does

it. You will never exit the monitor, even pressing the reset

button doesn't work. This can be useful if you are messing with

page zero and rather not exit to BASIC. The exit address is in

$fO3f8/9. It can be changed.

2. Normal entry is via a break; bankl5;poke6,0:sys6 does the job.

Exit is nasty, it clears the screen, among other things. Once

again, you can change the reset vector to a better setup.

3. Probably the most annoying feature of the resident monitor is

that all error commands default to loading and running ma

chine language programs. A pest.

4. The G (go) command is dangerous: do not try to Go to another

bank, the crashes are unreal.

5. Do not use the Z-command. It tries to work a co-processor,

whatever that is, which isn't there. Consequently we crash.

6. There is a nice little monitor, called EXTRAMON, on the TPUG

disk. It has a fairly clean exit to BASIC, as it does not clear the

screen. However, do not use the B-exit if you have run a Go

command. Most likely you will crash.

7. Crashing has a new twist. Much of the time you don't really

crash. The cursor comes back, and things may appear normal.

But a closer look reveals, for instance, that your BASIC text is

mangled up, the transfer sequences may have funny bytes put

in them, and so on. So - like in the old days, shut off, and start

from scratch - even when you see the cursor.

If you store a byte in RAM that isn't there and try to read it back, do

something between the two operations. A little bit of time (Jim

Butterfield says 14 microseconds) are needed for the address to

vanish and a real byte to come through. Otherwise the read

operation gives a false result. I've been putting three NOP instruc

tions, that's 12 cycles. That may be cutting it too close.

If you have a mismatch-type of error in READing DATA items, the

B-machine reports an error about the DATA line itself, rather than

the READ statement.

I suspect that there has been an undocumented change in the way

IEEE devices function since the 4040. Things that are plugged in

but not turned on cause a bus crash. For instance, a printer that is

connected but not on will cause a crash if you try to LOAD or SAVE.

Incidentally, the same is true in the Plus 4 machine - two 1541 disk

drives, one not turned on, will also crash the system. Can anyone

explain this?

Another change is that a 1541 and an 8050 drive must have the

complete error message read off the drive. You can no longer look

at the first value (first byte of the error message) and quit if it's good.

The whole thing has to be read in to that last carriage return.

Failure to do so causes strange problems which are hard to debug.

In the case of relative files, the light continues to flash on the 1541,

but not so on the 8050. Non-relative files and/or the 8050 give no

clue. So read the whole message. Again, this change hasn't been

documented by CBM, as far as I know, but I've seen the trouble

ever since the 1541 was born, and now get the same behaviour in

the 8050. Life sure was simpler with my old PET and 4040!

The MPS 8050 drive with DOS 2.7 has a bug: if you try to copy a file

from one drive to another, and the file already exists on the

destination drive, the disk crashes. BASIC COPY command and

the monitor's wedge crash in this way. The only way out is to reset

the disk (on/off switch) and then button-reset the computer. The

fault doesn't seem to be in the B-machine, since it behaves

correctly with the 4040 drive (FILE EXISTS DOS-error). My Up

grade PET also has trouble with the 8050, yet none with the 4040.

Do not trust the writeup of the KERNAL routines in the various

guides to the B-computer. Some routines are described correctly,

others are copies of the C64 guide and may not function the same.

For instance, to read the ST, a major task on the B, you must set the

carry bit. If you don't, you'll be setting ST to a value in the A-

register. Not a very nice thing to do, when you're reading a file.. .

Due to the zero-page pointers, programs saved from the B 128 do

not LIST very well on any other Commodore computer. If you need

compatibility, put BASIC higher in memory. PET-type of a setup

seems to be the best thing - BASIC at 1025 ($401 in bank 1). The

pointer to start of BASIC is in bank 15 at $2c/2d.

Keyword token numbers have been shifting recently. You cannot

count on the PRINT USING token, for instance, to be the same in

the B machine as on the Plus 4. The standard command (PET

vocabulary) numbers are the same, but there is no pattern with the

expanded commands. A bit nasty for a program such as LISTER.

The Transactor 10 Volume 6, Issue 01

Letters

We appreciate feedback from our readers, and we read each and

every one we receive. However, due to the volume of incoming mail it

is sometimes impossible to reply personally, especially to technical

questions and inquiries. Further, many inquiries have similar nature.

Those questions which we feel would be of general interest will be

included in the letters section. Also, we make every attempt to keep

one step ahead of potential questions - keep a regular eye on our

News BRK section for these and other important announcements.

Bbits: Two additional little pieces of information about the B-128

that's being closed out through Protecto.

1. The cassette read line is connected to the 6526 CIA at bit 4, $DC0D

(56333), similarly to the the '64. The bit is set on a negative

transition, and cleared by reading SDCOD. Whether it triggers an

IRQ or not depends on how the interrupts are enabled.

This wee bit of info is neither in Transactor V4/5 (p.49) nor in

Butterfield's Machine Language book.

2. The video chip in my B-128 is a 6845, not a 6545. The 6845 lacks

the auto-increment register of the 6545, but permits interlaced

scan as an option which the 6545 does not. So I tried it:

POKE 55296,8: POKE 55297,2

This puts the display into interlace mode, with each line being

duplicated a little bit lower on the odd scans. The idea is to fill in

between the lines so that a solid block looks solid rather than striped,

and a vertical line looks like a solid line rather than dotted. Well, it

works, except that on the monitor I'm using (a cheap BMC), there is a

lot of jitter. I believe that most monitors don't like interlace, and 1

remember that the Ultraterm display card for the Apple (made by

Videx) has the same problem; there are just a few monitors that are

satisfactory with an interlaced display. But at least it's something to

try, and to decide for oneself which mode is preferable.

Charles A. McCarthy St. Paul MN

Diskpleased: With surprise and disappointment I read volume 5,

issue 5's news of the advent of the Transactor Disk.

Some other magazines offer their programs on magnetic media, but

they are directed in large part or almost in whole toward non-

programmers, such as Gazette, Run, and Ahoy!.

Your publication, however, promised only one issue earlier to remain

high level. The idea is not just to get and run programs but to read the

articles and TYPE in the listings in order to learn programming

techniques and tricks. Distributing the completed product defeats the

purpose: instant foods have a rightful place in grocery stores and in

kitchens but not in schools of haute cuisine.

You have seriously undermined your position. I'll continue subscrib

ing to Transactor in print, but no thank you for the magnetic version.

David W. Tamkin Chicago, Illinois

The choice is yours.

SIDioyncrasies: If you have a place for a HELP section or Questions

I would be interested in some information on the audio input for the

C64. Specifically; *1: What kind of signal is the port expecting; low

like a mike or guitar or an amplified signal like that of a home stereo?

#2: From what I read the only mention of the ability to merge is with

the synthesizer sound and to run it through the envelope generator. If

the envelope generator can modify the sound under computer soft

ware then is there somewhere to read the audio in 'in memory? Bet

there is, huh? Rick Cronee, Jackson, TN

The letters section is as good a place as any for help, so here goes:

1) The SID chip audio input will accept a signal of around 200

millivolts peak to peak. This is typically the kind of levelyou 'd get from

an audio component's signal output, for example from the TAPE OUT

jack ofa stereo receiver. A guitar should work fine, but an unamplified

microphone's signal would probably be too weak to compete with the

backround noise and output from the SID chip itself.

2) The external input can be put through any of the three program

mable filters (low pass, band pass or high pass), which are controlled

from addresses SD415 to SD417. The only instantaneous audio

signals that can be read are the signal level and amplitude envelope of

SID voice 3. These values could theoretically be used as filter or

volume values to modulate the external input, but unfortunately

there's no way to read the external input itself. You might, however, try

to interface your audio source to one of the paddle ports and read the

paddle register.

DiskMod Notes: Recently we have received quite a few letters stating

that Jim Butterfield's BASIC DiskMod isn't too friendly with the C64/

1541 combo. Inaccurate and partial readings from sectors plus really

poor screen editing are the two major complaints. Well, by going

through the code, and using it as per Karl's article, everything but line

140 is OK. This particular version was designed to be machine

portable with but one minor dependency: the screen memory location.

32768, which is for the PET, should be changed to the correct start

address ofyour machine.

By reading through the complaints, a simple cure has been found for

the problems described. When up and running, the program will ask

you for the drive number of the drive in question. Answer it with an 's'

for single drives (1541/2031), or 0/1 for the IEEE dual drives. This is

very important due to the way Jim reads and modifies disk data. He

accesses disk RAM direct, therefore he requires the correct RAM buffer

start addess to do it properly. You will notice in the code that he

assigns the string variable BS a value of CHR$(17) as default, but

changes it to CHR$(3) if the answer to the drive type is 's'. This is the

high byte of the start address, translated into SHOO for the dual drives

and $0300 for the single units. Without a correct answer at this point,

you will find odd things happening in the read/write department.

Perhaps a print statement should be incorporated into the program to

state this fact. We leave this to you.

One final note. When the first half of the data has been displayed on

the screen with the 40 column machines, you will notice a prompt of

'swap' suddenly appearing. Ifyou want to see the balance of the data

from that particular sector, press 's' to swap over to the second half of

the sector. Simple, but another point a few ofyou didn 't quite pick up

on.

The Transactor 11 Volume 6, Issue 01

Lock Spurs: A letter has arrived regarding Jim Butterfield's 'Lock

Disk 64'program. The complaint was that it didn't work at all. We

checked it out, and everything is fine. But, to use the program, you

have to remember that Lock Disk for the 64 works in a rather odd

manner. Once fired up it will ask you the name of the program to

convert, then the name of the converted program. Given the correct

responses, the new locked program is written to disk. After, if the

locked program is loaded into the computer without " ,8,1", it willjust

load, but the list will be a new load statement. Run it and the program

will be booted correctly from disk. If loaded via ",8,1", it will

automatically run once the load is complete. Another neat trick written

into the code is a vector change to stop your program from ever

ending. Ifeveryour computergoes back to 'ready' mode, for whatever

reason it might have, it will automatically re-run the program once

again. Your problem was that your new locked program would

constantly flash the intro message on the screen once loaded. Sounds

like either an end statement in your code, or a syntax error encoun

tered. Check your code and try again. It should work.

Slipped Disk: I just finished reading your latest issue (Vol. 5, issue

05) and 1 found Michael Quigley's article on the 1541 informative,

especially after my unhappy experiences this past weekend.

What with Xmas presents and after-Xmas sales, I found myself with

quite a few programs so I spent quite a bit of time on Sunday making

backups for my own use. Eventually, as I was copying one of my disks,

my 1541 went bonkers. At least the flickering red light reminded me

of Christmas. A call to the Commodore service centre in Pennsylvania

revealed that they would repair/replace the unit, which would no

longer read files, for $85.00 (prepaid, of course). So, 1 went home at

noon for lunch, found a box and prepared to part with my money and

drive. I had not intended to ship it with the cardboard shipping piece

in the drive, but 1 decided to do so. As 1 inserted it into the drive, I felt

something move at the back of the machine. Since hope springs

eternal and since I really wasn't looking forward to three more weeks

of down time, 1 re-connected it and VO1LA! It was working properly.

Exactly what happened or why I don't know, but that little piece of

cardboard saved me a lot of money and unhappiness.

John D. Baird, Norwalk, OH

Apparently fate was smiling in your direction that day. In general

though, it never hurts to have a hardware PEEK. Sometimes pushing

an IC firmly back in its socket is just enough to cheat fate and render a

problem harmless. Besides, after 3 months you no longer need to be

concerned about voiding the warranty. But even prior to the three

month grace period, ifyour disk spends three weeks at the shop, that's

three weeks when a real problem could arise which might otherwise

occur three weeks after your warranty expires. I'm not sure if Commo

dore extends the warranty period if warranty service is performed, but

who needs to be without their equipment when the problem is but a

lamb in wolf's clothing. This and other self-service tips will be appear

ing in a future Transactor.

Compu-Artists Unite!: Hi! 1 am an artist working in the new

medium of computer graphics and 1 have noticed something very

interesting about computer-generated art that I want to tell you about.

1 noticed that there are a lot of programs, drawing pads, printers, and

so forth for the creation of computer art. Computer graphics is now an

easy thing to get into, unlike 2 years ago when I first got started.

What is frustrating is that there are very few opportunities for com

puter artists to display their work. Most art magazines ignore com

puter art and fewer galleries have showings of it.

I think what needs to be done is for us to organize ourselves into a

group, for the purpose of educating the public about what computer

art can represent and bring pressure on art competitions to open

categories for computer graphics. Also, galleries aren't going to pay

attention to computer art until a group comes along and starts beating

at the door.

So could you do me a favour and please print my name and address so

I can get into contact with others working in this medium? Thank you.

George Bailey, 6474 Highway 11, Deleon Springs, FL, 32028

Perhaps you should contact Wayne Schmidt at 41 East 1st Street, Apt.

2W, New York, NY, 10003. Wayne has done several pieces for Ahoy!

magazines and I'm sure there are several more that haven't yet been

seen. I'm also sure Wayne would love to hear from you.

Point 11 AWOL: In Volume 5, Issue 06 (Programming Aids and

Utilities), there is an article on aligning the 1541 disk drive. Point #11

is missing and nothing is said about tightening the second screw.

If there is something left out, I would appreciate knowing about it as

we intend to do this from time to time.

Harvey B. Herman, Professor and Head, University of North Carolina

You're right, point number 11 got left out and should have stated the

next logical step in the re-assembly process, tightening the remaining

stepper motor screw.

Transbloopers

Dynamic Expression Evaluator: Volume 5, Issue 04

The DATA statements are fine, but there's a glitch in the BASIC

loader portion. In line 155, "IF B60 ..." should read "IF

B6=0 . . .", and the checksum in line 190 should be 10928

instead of 1330. We didn't catch this error until now because it

seems the majority of you found it and corrected it yourself.

List Scroller: Volume 5, Issue 06, page 52

The first line of the BASIC Loader program should be line 10,

not 0. This won't effect the operation in any way, but the

"Verifizer" code will show as incorrect for the first line unless

you make it a 10.

STP: Volume 5, Issue 06, page 55

The article stated that a version of STP that resides in the

cassette buffer would appear on the Transactor disk for Vol

ume 5 Issue 06, but alas, that version never made it to the disk.

We'll try to squeeze it onto the next one. Also, the first line of

the source listing should be line 1000, not 00.

Aligning the 1541: Volume 5, Issue 06, page 65

Point number 11 was left out; it should have said to tighten the

remaining stepper motor screw. (See the Letters section.)

TransBASIC: Volume 5, Issue 06, page 20

The command 'CURSOR' and the function 'CLOC were men

tioned, but omitted from the program listings. They can be

found in this issue's TransBASIC column.

The Transactor Volume 6, Issue 01

The MANAGER Column Don Bell

Scotland, Ont.

Letters to The Manager

Transferring or Archiving Records

from One Disk to Another

Carrol W. Dauenhauer (Gretna, Lousisiana) wants to know if

you can transfer records from one file to another and continue

to dump records to that file from the orginal file.

If your original data file is getting almost full, you may want to

store or 'archive' some records on another disk e.g. orders that

have been completed or filled. Bear in mind that once sepa

rated from the orginal file, these records can only be manipu

lated and accessed through their own separate file. Also, as far

as I know, you can only copy records one group at a time, i.e.

you cannot keep dumping records, a few at a time to 1 archive

file. Rather, the pattern will be to create several archive files

each according to some criteria you set, disk 90% full, end of

time period or say, reached a certain quota.

You can copy 'active' records from one file

to a new file on another disk.

The best trick here is to set aside the first field in your record as

a 'flag' for indicating whether a record is to be transferred or

not. I would just make it a 1 character alphanumeric field in

which you would place an 'a' for an active record and a't' if you

want it to be transferred.

(1) Choose the MANIPULATE FILES option then select 'Copy a

Data File'. COPY ACTIVE RECORDS OR ENTIRE FILE?

Choose 'A' (for active). This will copy all 'active' records not

flagged as deleted, i.e. any record that has a blank or't' in

the first field, but not a '&'.

You now have a second file that has both active records and

records to be transferred, but not 'inactive' or deleted records.

(2) Now you can delete the 'transferred' records in the original

file as you now have a backup or archive copy of them. Do

this by using the 'Global Change' function on field 1,

changing 't' to '&'. This frees up space for more 'active'

records in your original file.

(3) In order to purge your new archive file of 'active' records,

you can also use the 'Global Change' function on field 1,

only this time changing 'a' to '&'.

If you are conscious of saving disk space, you may want to

go one step further and create a third file. You could make a

copy of only the 'active' records in this file. This will leave

you with a file containing only records that are completed or

orders that have been filled with no blank records. You may

then erase file two, the intermediate file.

All of this is useful for creating single 'archive' files in one

shot. The problem is that you cannot keep dumping more

records to this archive file. You will just keep making a

bunch of little archive files every time you want more disk

space. Within 'THE MANAGER' itself, there is no way of

appending records from another file or concatenating files.

If someone out there wants a good challenge, there's one to

work on!

The Transactor 13 Volume 6, Issue 01

TransBASlC

Installment #3

Nick Sullivan

Scarborough, Ont.

To this point, Nick has introduced the concept of TransBASlC (a method for building custom

commands to be incorporated into BASIC) and the structure of a TransBASlC module was

discussed in part 2. To take advantage of new TransBASlC command listings, one must first

obtain a copy of the TransBASlC Kernel. The Kernel is only about 500 bytes long, but the source

listing of the Kernel is quite long and can't be printed each time. Volume 5, Issue 05 (Hardware &

Peripherals) contains the printed listing, however The Transactor Disk for every issue will include

this file, plus files from the current and all previous TransBASlC articles.

Note: The CURSOR command and the CLOC function were described in part 2, but the source

listings were omitted. They will be included here.

A TransBASlC ROMp

The routines listed here are useful in composing TransBASlC

statements and functions; some are indispensable and are used

time and again. Many other routines and bits of routines may be

found in the BASIC and Kernal ROMs. Aids in discovering them

include: Jim Butterfield's memory maps, Sheldon Leemon's "Map

ping the Commodore 64" (COMPUTE! Books, 1984), a machine

language monitor (like Supermon), and lots of time to browse.

CHRGET AND CHRGOT

These two routines are the means by which BASIC fetches bytes

from the input stream, which can be either program text or a direct

mode command line. A pointer at $7A/7B generally points to the

byte most recently fetched. The byte is returned in the accumula

tor; .X and .Y are not affected. The carry flag will be returned set if

and only if the byte is not an ASCII numeral. The zero flag will be

returned set if and only if the byte is a statement terminator (0 or

$3A, the colon).

CHRGET ($73) is visited en route to the execution routine for

BASIC and TransBASlC statements; therefore such routines begin

with the accumulator holding the first byte following the statement

token. The same byte can subsequently be re-obtained, and the

flags reset, by calling CHRGOT ($79). The above also applies to

function execution routines in TransBASlC, but not in BASIC itself,

which handles function calls in a slightly different manner.

TYPE AND SYNTAX CHECKING

The first two routines affect the status register only:

44429 $AD8D Ensure that last expression evaluated was of nu

meric type; or show a TYPE MISMATCH ERROR.

44431 $AD8F Ensure that last expression evaluated was of

string type.

The next routines test the current byte in the input stream against

a specified value. If the test fails a SYNTAX ERROR is shown. The

routines exit via CHRGET, putting the next byte from the input

stream in the accumulator.

44791 $AEF7 Test for right parenthesis.

44794 $AEFA Test for left parenthesis.

44797 $AEFD Test for comma.

44799 $AEFF Test for character in .A

EXPRESSION EVALUATION

Most of these routines expect the CHRGET pointer to be already

pointing to the first byte of the expression to be evaluated. Only

one, at $B79B, begins with a call to CHRGET to get the first byte of

the expression on its own. After these routines the CHRGET

pointer points to the first byte beyond the evaluated expression.

44446 $AD9E The workhorse of the evaluation routines. It de

cides whether the expression is of string or nu

meric type, then evaluates it and sets the

expression-type flags in SOD and $0E appropri

ately. If the expression is of string type, a pointer is

left at $64/$65 to the descriptor of the resultant

string. If the expression is of numeric type the

result is left in Floating Point Accumulator #1.

44426 $AD8A This routine calls $AD9E to evaluate the expres

sion, then calls $AD8D to make sure that it was of

numeric type.

44785 $AEF1 Check for opening parenthesis, evaluate the en

closed expression with $AD9E, then check for

closing parenthesis.

44788 $AEF4 Same as $AEF1 but without the check for opening

parenthesis. This can be used when the opening

parenthesis is part of a function keyword.

47003 $B79B This routine calls CHRGET to get the first byte of a

numeric expression between 0 and 255. The

result is left in .X. An ILLEGAL QUANTITY ER

ROR is shown if the expression evaluates to an

out of range result.

47006 $B79E The above routine should be entered here if

CHRGET has already been called.

47083 $B7EB Get two parameters of the type used by the POKE

statement. The first, an unsigned integer, is left in

$14/15. The second is an integer between 0 and

255; it is left in .X. The parameters must be

separated by a comma.

The Transactor Volume 6, Issue 01

NUMERIC CONVERSION ERROR MESSAGES

47009 $B7A1 Convert the number in FPA #1 to an integer in .X.

45482 $B1 AA Convert the number in FPA #1 to a signed integer

in .A (high byte) and .Y (low byte).

45969 $B391 Convert the signed integer in .A (high byte) and .Y

(low byte) to a floating point number in FPA #1.

47095 $B7F7 Convert the number in FPA #1 to an unsigned

integer in .Y (low byte) and .A (high byte), and in

$14/15.

45986 $B3A2 Convert the number in .Y to a floating point

number in FPA#1.

Jumping to any of the following routines will print the appropriate

message, clear the stack, and restore direct mode. There are many

others besides those given here. They may be easily found if

needed. The same thing may be accomplished at the expense of

two extra bytes by loading .X with the error message number and

jumping through the BASIC error routine vector at $0300.

42037 $A435:

42353 $A571:

44808 $AF08:

45640 $B248:

OUT OF MEMORY ERROR

STRING TOO LONG ERROR

SYNTAX ERROR

ILLEGAL QUANTITY ERROR

STRING HANDLING

These routines can be used in various ways to develop statements

and functions for manipulating strings.

46324 $B4F4 The bottom-of-string-memory pointer at $33/34

is moved down by the number of bytes specified

by .A. A garbage collection is done if necessary.

The new pointer value is also put into $35/36,

and is returned in .X (low) and .Y (high). The

original contents of .A is retained there.

46205 $B47D This routine calls the above one at $B4F4, but also

saves the address of the reserved space at $62/63,

and the number of reserved bytes at $61.

46282 $B4CA This routine converts the data left in $61/62/63

by the previous routine into a descriptor on the

temporary descriptor stack. It leaves a pointer to

the descriptor in $64/65.

46755 $B6A3 This routine checks that the most recent expres

sion was of string type. Then it uses the pointer in

$64/65 to create a pointer to the string data in

$22/23. The length of the string is left in .A. The

address in $22/23 is also contained in .X/.Y after

the call.

46758 $B6A6 This is like $B6A3, but without the check for

string type.

TWO USEFUL TESTS

43052 $A82C Check STOP key, and execute STOP statement if

it has been pressed.

45990 $B3A6 Show ILLEGAL DIRECT error if in direct mode.

Next issue, we'll try using some of these routines to create an

actual TransBASIC command.

New Commands

This part of the TransBASIC column is devoted to describing the

new commands that will be added each issue. The descriptions

follow a standard format:

The first line gives the command keyword, the type (statement or

function), and a three digit serial number.

The second line gives the line range allotted to the execution

routine for the command.

The third line gives the module in which the command is in

cluded.

PRINTING CHARACTERS AND STRINGS

43847 $AB47 Print the character in .A to the current output

device. This routine just calls the usual Kernal

output routine ($FFD2) but includes i/o error-

checking.

43735 $AAD7 Print a carriage return and, if the current output

device is not the screen, a line feed as well.

43839 $AB3F Print a space.

43842 $AB42 Print a cursor right.

43845 $AB45 Print a question mark.

43806 $AB1E Print the string whose address is contained in .A

(low byte) and .Y (high byte). The string must end

in zero.

43809 $AB21 Set up a string using the routine at $B6A6 (see

page 5), then print it.

43812 $AB24 The same, assuming the call to $B6A6 already to

have been made.

The fourth line (and the following lines, if necessary) demonstrate

the command syntax.

The remaining lines describe the command.

CURSOR (Type: Statement Cat #: 004)

Line Range: 2574-2604

Module: CURSOR POSITION

Example: CURSOR 11

Example: CURSOR ROW.COL

Moves the cursor to specified row (0-24) and column (0-39).

Column zero is assumed if no second parameter is present.

CLOC (Type: Function Cat#: 005)

Line Range: 2606-2618

Module: CURSOR POSITION

Example: IF PEEK(CLOC)<>32 GOTO 100

A quasi-variable that returns the actual memory location of the

cursor.

The Transactor 15 Volume 6, Issue 01

COLSPR (Type: Statement Cat *: 031)

Line Range- 3530-3548

Module: SET SPRITES

Example: COLSPR 1,0: REM MAKE SPRITE *1 BLACK

The specified sprite (0 to 7) is set to the specified colour (0 to 255).

SSPR (Type: Statement Cat #: 032)

Line Range: 3550-3558

In Module(s): SET SPRITES

Example: SSPR 4

The specified sprite is switched on.

CSPR (Type: Statement Cat *: 033)

Line Range: 3560-3572
I \X A 1 n(r^\ CUT CDDTTTC
In Module(s): Sh 1 SPKI1 hb

Example: CSPR 1

The specified sprite is switched off.

XSPR (Type: Statement Cat *: 034)

Line Range: 3574-3626

In Module(s): SET SPRITES

Example: XSPR 1,312

The specified sprite is positioned at the specified horizontal loca

tion (0 to 511).

YSPR (Type: Statement Cat #: 035)

Line Range: 3628-3654

In Module(s): SET SPRITES

Example: YSPR 5,59

The specified sprite is positioned at the specified vertical location

(0 to 255).

XYSPR (Type: Statement Cat *: 036)

Line Range: 3656-3662

In Module(s): SET SPRITES

Example: XYSPR 0.H + 1.V-1

The specified sprite is positioned at the specified co-ordinates.

WITHIN((Type: Function Cat *: 040)

Line Range: 3698-3784

In Module(s): WITHIN

Example: IF WITHIN(13;A,16) THEN PRINT "CLOSE ENOUGH!"

WITHIN(takes three numeric arguments. If the second argument

is greater than the first, and the third greater than the second, it

returns 'true' (-1); otherwise it returns 'false' (0). The comma used

as a separator is equivalent to 'less than'; the semicolon is equiva

lent to 'less than or equal to'.

XLOC((Type: Function Cat #: 041)

Line Range: 3786-3810

In Module(s): READ SPRITES

Example: XSPR 3,XLOC(1)

Returns the horizontal position (0-511) of the specified sprite (0-

7).

YLOC((Type: Function Cat *: 042)

Line Range: 3812-3828

In Module(s): READ SPRITES

Example: IF YLOC(6)>190 GOTO 200

Returns the vertical position (0-255) of the specified sprite.

IL

FH

Jl

HH

BE

JH

NJ

GD

LP
MU
IN M

ME

PH

kTIr\L/

Bl

DC

El

Gl

MP

BE

MG

NL

IM

CJ

EM

CP

EN

LO

PB

NN

AH

GD

BD

BP

JK

BP

NA

BM

KN

DD

CK

KH

ON

MM

FO

CO

GJ

AL

KK

FM

DN

PB

JG

FA

FO

AM

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

Q ■

Prograrr

cursor position (sept

1

4/84) :

1 statement, 1 function

keyword characters:

keyword routine

s/cursor csr

f/cloc csrloc

10 rem u/usfp (2620/006)

11 :

1 O ror

13:

101 .asc "cursoR"

600 .asc "cloC"

1101

1600

2574

2576

2578

2580

2582

2583

2584

2585

2586

2587

2588

2589

2590

2592

2594

2596

2598

2599

2600

2602

2603

2604

2606

2608

2610

2612

2614

2616

2618

2620

2622

2624

2626

2628

2630

2632

2634

.word csr-1

.word csrloc-1

csr jsr $b79e

cpx #$19

bcs cs2

txa

pha

Idy #0

jsr $79

beq cs1

cmp #","

bne cs3

jsr $b79b

cpx #$28

bcs cs2

txa

tay

cs1 pla

tax

clc

jmp $fffO

cs2 jmp $b248

cs3 jmp $afO8

I

csrloc Ida $d1

clc

adc $d3

tay

Ida $d2

adc #0

usfp Idx #0

stx $0d

sta $62

sty $63

Idx #$90

sec

jmp $bc49

;

10

line ser#

2574 004

2606 005

;get first parameter

;must be under 25

;save on stack

;assume column 0

; branch if no

; second parameter

;hasto be comma

;get parameter

;must be under 40

;move it to .y

; recover row param

;jump to kernal

; plot routine

;illegal quantity

;syntax error

;$d1 and$d2

; contain the

; start of row

; location. $d3

; contains the

; column.

;convert .a (high)

; and ,y (low)

; from unsigned

; integer to

; floating point

; number in

; fac #1

The Transactor 16 Volume 6, Issue 01

LG

FH

PH

HH

AF

JH

NJ

CB

HE

MC

HG

PG

OK

Bl

IP

HM

ON

Fl

AP

HI

PE

JG

EH

ML

BF

Al

IN

FN

NA

AO

Kl

BD

GM

CF

OK

HN

KO

GP

MF

IJ

BO

KP

BF

NL

ON

KG

AN

GK

JN

JB

Kl

NA

HB

FD

KM

IB

BA

CM

IK

NC

MP

AG

Dl

0 rem

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8 rem

9 rem

set sprites

Program!

(aug 25/84)

2

6 statements, 0 functions

keyword characters: 27

keyword

s/colspr

s/sspr

s/cspr

10 rem s/xspr

11 rem s/yspr

12 rem s/xyspr

13:

14 rem u/chkspr

15 rem u/raschk

16 rem d/powers

17:

1 ft ror
I O I cl 11 - -

19:

108 .i

109.;

1108

1109

3530

3532

3534

3536

3538

3540

3542

3544

3546

3548

3550

3552

3554

3556

3558

3560

3562

3564

3566

3568

3570

3572

3574

3576

3578

3580

3582

3584

3586

3588

3590

3592

3594

3596

3598

3600

3602

3604

3606

routine

colsp

ssp

csp

xsp

ysp

xysp

(3664/037)

(3676/038)

(3694/039)

jsc "colspRsspRcspR

jsc " xspRyspRxyspR"

line ser#

3530 031

3550 032

3560 033

3574 034

3628 035

3656 036

.word colsp-1 ,ssp-1 ,csp-1

.word xsp-1 ,ysp-1 ,xysp-1

colsp jsr

txa

pha

jsr

pla

tay

txa

sta

rts

ssp jsr

Ida

ora

bne

csp jsr

Ida

eor

and

csp1 sta

rts

xsp jsr

stx

jsr

jsr

jsr

Ida

cmr.

bcs

Idx

ror

Ida

bcc

ora

bcs

xs1 eor

and

xs2 tay

chs1

$b7f1

$dO27,y

chs1

powers,x

$dO15

csp1

chs1

powers,x

#$ff

$dO15

$dO15

chs1

t3

$aefd

$ad8a

$b7f7

$15

)#2

xs3

t3

powers, x

xs1

$d010V|^ \^A \J 1 \J

xs2

#$ff

$d010

;save msb

;get sprite number

;save it

;check comma and

; get colour

;sprite# is index

;poke colour

;get sprite number

;setthe bit

;or sprite enable

; rgstr, turn on

;get sprite number

;setthe bit

;mask it out

;and sprite enable

; rgstr, turn off

;get sprite number

;save it

;get comma

;getx position

;convto integer

;get high byte

;branch if

; too high

;get sprite number

;putmsb in carry

;set the bit

;branch on 0 msb

;or msb register

;skip

;maskthe bit

;clear the bit

IP

KO

JK

Al

KE

GO

CJ

CB

GA

AK

IA

KD

LN

OE

LA

HE

HA

AA

JM

HN

KG

EN

AD

ML

OF

OA

Al

EM

JO

CB

LB

Gl

EE

AN

HI

IG

BK

AF

NH

ON

FN

GF

CO

FJ

GO

AE

FH

EC

HH

HO

JH

NJ

GK

MH

Dl

HI

PH

KD

Bl

KA

GC

BE

3608

3610

3612

3614

3616

3618

3620

3622

3624

3626

3628

3630

3632

3634

3636

3638

3640

3642

3644

3646

3648

3650

3652

3654

3656

3658

3660

3662

txa

asl

tax

Ida $14

jsr raschk

sty $d010

sta $d000,x

rts

xs3 jmp $b248

j

ysp jsr chs1

ys1 txa

asl

pha

jsr $b7f1

txa

tay

pla

tax

tya

jcr rpisrhkJOI I GOvl \\\

sta $d001 ,x

rts

I

xysp jsr xsp

Idx t3

bpl ys1

;

3664 chksprjsr $73

3666

3668

3670

3672

3674

3676

3678

3680

3682

3684

3686

3688

3690

3692

3694

3696

0 rerr

1 :

2 rem

3:

4 rem

5:

6 rem

7 rem

8:

9 rem

chs1 jsr $b79e

cpx #8

bcs xs3

rts

J

raschk pha

ras1 Ida $dO12

sbc $d001,x

bcc ras2

cmp #$2b

bcc ras1

ras2 pla

rts

;

powers .byte 1,2,4,8,

'

;sprite number

;double it

;use as index

;getxlow byte

;wait for raster

;write msb

;write low byte

;illegal quantity

;get sprite number

;doubleit

;set it aside

;comma, y-position

;move it to ,y

;get2*(sprite#)

;useas index

;y-position

•wait for raster

;write position

;write x-position

;get sprite number

;write y-position

;bump chrget ptr

;get sprite number

;must be under 8

;store accumulator

;read raster line

;subtractsprite-y

;wait till

; clear of sprite

16,32,64,128

Program 3

within (aug 25/84)

0 statements, 1 function

keyword characters:

keyword routine

f/within(within

u/pshfp1 (3270/063)

10 rem u/pul57 (3308/064)

11 :

1 0 rpm -_
I C I d

13:

7

line ser#

3698 028

607 .asc "within" :.byte$a8

1607

3270

.word within-1

pshfpilda #3 ;fac#1 to stack

The Transactor 17 Volume 6, Issue 01

JG

FC

HJ

GF

OJ

Nl

GN

Jl

IM

GL
DP*
ru

GN

GM

IB

BH

CG

EN

AG

KG

OH

IH

AM

KP

OG

PL

BL

DA

HN

GH

IL

IK

El

OP

OB

JM

BJ

EC

HN

JJ

AB

IJ

OM

NC

EA

OC

ML

NN

FF

BL

JM

MO

DL

KL

EP

HO

LL

KJ

DK

HD

IA

LP

OA

CC

JA

JJ

3272

3274

3276

3278

3280

3282

3284

3286 phf1

3288

3290
o ooo
3292

3294

3296 phf2

3298

3300

3302

3304

3306 ;

3308 pul57

3310

3312

3314

3316

3318 pl57

3320

3322

3324

3326

3328;

3698 within

3700

3702

3704

3706

3708

3710

3712

3714

3716. byte

3718 wth1

jsr

pla

sta

pla

sta

jsr

Idx

Ida

pha

inx

cpx

bne

Ida

pha

Ida

pha

rts

pla

sta

pla

sta

Idx

pla

sta

dex

bpl

bmi

jsr

jsr

php

isrj

bcc

pip

pha

bcc

Ida

52c

Ida

3720 jsr

3722 pla

3724 jmp

3726;

3728 comtstjsr

3730 jsr

3732 pha

3734 jsr

3736

3738

3740

3742

3744

3746

3748

3750 .byte

3752 ct1

3754

3756

3758

3760

3762
O ~7C A
3764

3766

3768

The Transactor

isr

pla

cmp

beq

cmp

bne

cic

E24

sec

ror

jsr

Ida

Idy

jsr

bmi

bit

bpl

$a3fb

$71

$72

$bbca

#0

$57,x

#5

phf1

$72

$71

$71

$72

#4

$57,x

pl57

phf2

$ad8a

comtst

comtst

wth1

wth1

#$ff

#0

$bc3c

$aef7

pshfpi

$79

$73

$ad8a

#","

Ct1

#";"

ct4

t3

pul57

#$57

#0

$bc5b

Cto

t3

ct2

;check stack room

;save return addr

;fac#1 to $57-$5b

;clear index

;copy area

; to stack

;restore return

; address

;$57. . . from stack

;save return address

initialize index

;copy to area

; starting at $57

;restore return address

;read num expr

;sec if val2 within

; bounds, and save

; ditto

;'false' on clear

; recover flag

;dec stack ptr

;'false' on clear

;-1 = 'true'

;'bit' to hide Ida

;0 = 'false'

;convert sign to fp

;inc stack ptr

;skip close bracket

;fac#1 to stack

;reread separator

; and save it

;bump chrget pointer

;read num expr

;check separator

;comma (<) is ok

;semicolon (< =) is ok

;anything else is wrong

;clear for semicolon

;'bit' to hide sec

;set for comma

;saveflag as high bit

;stack to $57 area

;compare area with fac

;val1>val2, false

;comma if n flag set

; valK = val2, true

Fl

FD

PF

MK

Kl

AL

FN

OD

BO
r— 1 i

FH

DH
1 i | 1

HH

BE
11 i

JH

NJ

IL

DK
M U
NH

EP

JN
A 1
Al

LC

MO
ni
Ul

OD

rl

JA

AF

GA

JO

CB

LB

Gl

EE
A M
AN

FJ

ML

HA

FC

LH

DG

DK

AO

OF

OP

PL

OK

JJ
IP

IN

BC

PD

pi
1 \)

NA

PL

MA

KG

18

3770

3772

3774

3776

3778

3780

3782

3784

0 rerr

1 :

2 rerr
o

3 :

4 rerr

5 :

6 rerr

7 rerr

8 rerr
n ■

tax

beq ct3

ct2 sec

rts

ct3 cic

rts

ct4 jmp $afO8

;

Program

;val1 =val2, false

;return true

;return false

;syntax error

4

l read sprites (aug 25/84)

i 0 statements, 2 functions

keyword characters: 1

keyword routine

f/xloc(xloc

f/yloc(yloc

y.

10 rem u/chkspr (3664/037)

11 rem d/powers (3694/039)

0

line ser#

3786 041

3812 042

M .

13 rem this module also contains one

14 rem line from set sprites — 3624
a n .

1 0 .

16 rem = = = - = = = = - = -- = -- = =
-) -7 .

\ 1 .

608.,

Ji

1608

3624

3664

3666

3668

3670

3672

3694

3786

3788

3790

3792

3794

3796

3798

3800

3802

3804

3806

3808

3810JU 1 U

3812

3814

3816

3818

3820

3822

3824

3826

3828

asc "xloc" : .byte$a8

j8 = shifted (

.word xloc-1,yloc-1

xs3 jmp $b248

chksprjsr $73

chsl jsr $b79e

cpx #8

bcs xs3

rts

==============

.asc "yloc" : .byte$a8

;illegal quantity

;bump chrget ptr

;get sprite number

;must be under 8

powers.byte 1,2,4,8,16,32,64,128

xloc jsr chsl

jsr $aef7

txa

asl

tay

Ida $d000,y

tay

Ida powers,x

and $d010

beq xl1

Ida #1

xh jmp $b391

yloc jsr chsl

jsr $aef7

txa

< IOI

tay

Ida $d001,y

tay

jmp $b3a2

;

;get sprite number

;skip bracket

;double sprite #

;useas index

;get x low byte

;get msb

;zero, msb clear

;non-zero, mbs set

;.a/.y tofac#1

;get sprite number

;skip bracket

;double sprite*

;gety position

;.ytofac#1

Volume 6, Issue 01

Using "VERIFIZER"

The Transactor's FoolproofProgram Entry Method

VERIFIZER should be run before typing in any long program from

the pages of The Transactor. It will let you check your work line by

line as you enter the program, and catch frustrating typing errors.

The VERIFIZER concept works by displaying a two-letter code for

each program line which you can check against the corresponding

code in the program listing.

There are two versions of VERIFIZER on this page; one is for the

PET, the other for the VIC or 64. Enter the applicable program and

RUN it. If you get the message, "***** data error *****", re-check

the program and keep trying until all goes well. You should SAVE

the program, since you'll want to use it every time you enter one of

our programs. Once you've RUN the loader, enter NEW, then turn

VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)

or SYS 634 to enable the PET version (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN on a

program line a two-letter report code will appear on the top left of

the screen in reverse field. Note that these letters are in uppercase

and will appear as graphics characters unless you are in upper/

lowercase mode (press shift/Commodore on C64/VIC).

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up with the letters printed in the box

beside the listing, you can re-check and correct the line, then try

again. If you wish, you can LIST a range of lines, then type

RETURN over each in succession while checking the report codes

as they appear. Once the program has been properly entered, be

sure to turn VERIFIZER off with the SYS indicated above before

you do anything else.

VERIFIZER will catch transposition errors (eg. POKE 52381,0

instead of POKE 53281,0), but ignores spaces, so you may add or

omit spaces from the listed program at will (providing you don't

split up keywords!). Standard keyword abbreviations (like nE

instead of next) will not affect the VERIFIZER report code.

Technical info: VERIFIZER resides in the cassette buffer, so if

you're using a datasette be aware that tape operations can be

dangerous to its health. As far as compatibility with other utilities

goes, VERIFIZER shouldn't cause any problems since it works

through the BASIC warm-start link and jumps to the original

destination of the link after it's finished. When disabled, it restores

the link to its original contents.

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

Listing 1 a: VERIFIZER for C64 and VIC-20

10 rem* data loader for " verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:pokei,a

40cs = cs + a:next i

50:

60 if cs<>14755 then print" ***** data error *****": end

70 rem sys 828

80 end

100:

1000 data

Listing 1 b: PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

76, 74,

1010 data 252, 141,

1020 data 3,240,

1030 data 251, 169,

1040 data 3, 3,

1050 data 0,160,'

1060 data 32,240,

1070 data 133, 90,

1080 data 232, 208, 229, 56

1090 data 32,210,255, 169

1100 data 89, 41, 15, 24

1110 data 165, 89, 74, 74

1120 data 32,210,255, 169

1130 data 32,240,255,108,251,

1140 data 101, 89,133, 89, 96

3,165,251,141, 2, 3,165

3, 3, 96,173, 3, 3,201

133,252,173, 2, 3,133

3,169, 3,141

1,133, 89,162

0, 2,240, 22,201

91,200, 152, 41, 3

3,198, 90, 16,249

32,240,255,169, 19

18, 32,210,255,165

105, 97, 32,210,255

74, 74, 24,105, 97

146, 32,210,255, 24

0,165, 91, 24

17

99,141, 2,

96, 173,254,

0, 189,

15, 133,

32, 183,

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

Ol

JB

PA

HE

EL

LA

Kl

EB

DM

10 rem* data loader for "verifizer 4.0" *

15 rem pet version

20 cs = 0

30 for i = 634 to 754:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>15580 then print"***** data error

70 rem sys 634

80 end

100:

1000 data

■■":end

138,

164,

76

1010 data 173

1020 data 145, 201, 2

1030 data 144, 141, 163

1040 data 2,133,145

1050 data 201,

1060 data 254,

1070 data 0,

1080 data 165, 253,

1090 data 198, 254,

1100 data 251, 41,

1110 data 165, 251,

2,120,173,163, 2

2,133,145, 88, 96

2,240, 16,141,164

2, 169, 165, 133

8, 96, 85,228

165, 167,208

162, 0,134

32,240, 15

41, 3,133,254, 32

16,249,232,152,208

15, 24,105

74, 74, 74

13,208, 62

1,133,251

2, 168,201

1120 data 141, 1,128,108,163

1130 data 251, 133, 251, 96

193, 141

74, 24

2, 152

133,

120,

2,

144,

165,

58,

,253,

,230,

,236,

,229,

0,

,105,

, 24,

144

165

165

169

217

173

189

253

2

165

128

193

101

The Transactor 19 Volume 6, Issue 01

SAVE with Replace

Exposed!!

Charles H. Whittern

Hudson, MI

«5

Or, SAVE @ Your Own Risk!

For years there has been unresolved controversy over the reliabil

ity of the Commodore "SAVE with Replace" (SAVE@) command.

Warnings against its use have often appeared in print. Rumours

first arose during the early days of the 4040 disk drive, and have

continued with the 1541 drive. I became involved, not long after I

got my 64, when one of my SpeedScript files was corrupted while I

was using "SAVE with Replace". To be safe, 1 began using

SCRATCH before each SAVE. Although this required extra time

and effort, I felt much more secure.

A few months ago I became aware that two long-standing prizes

were being offered to anyone who could show that SAVE @ was

unreliable. One was a three-year old offer of a case of beer from

Harry Broomhall of England. The other was a bottle of champagne

from the Transactor magazine.

About the same time, I read a magazine column which emphati

cally proclaimed the soundness of "SAVE with Replace", and

invoked the names of several well-known Commodore experts in

its support. Since I had only experienced trouble once with

"SAVE®", 1 decided to try using it again. I was putting together a

disk of small to medium sized programs for our local computer

club. Many of them needed some touching up, so I began my work,

merrily using the convenient "SAVE@". Late in the afternoon I

reLOADed one of these programs, but much to my surprise it

wasn't there! It had been replaced by another program. On the

directory everything looked fine. The program name and block

count were O.K., but the program was gone!

I became somewhat miffed with the 'experts' opinions, and deter

mined to unmask this program thief. The result is "SAVE®

EXPOSED!!!". I have tested it on three different 64s, with four

different 1541s (including the new lever-operated model) and on

my SX-64 portable. It has demonstrated the improper replacement

of disk files on every system so far.

In order to meet the objections of the experts, before using

"SAVE®", one must be sure there is space on the disk for the

program to be SAVEd, that no improperly closed files have been

SCRATCHed, and that the drive number has been specified as in

SAVE" @0:PROGRAM NAME" ,8. My test disks all had over 300

blocks free. No improperly closed files had been SCRATCHed, and

the correct syntax was used.

"SAVE® EXPOSED!!!" selects randomly from five of the programs

on the disk whose names have been placed in its data statements.

Then using the 'Dynamic Keyboard Technique', it LOADs the

selected program and immediately SAVEs it with replace. Another

program is then LOADed and SAVEd with replace. The cycle

continues until stopped by the operator. Sometimes a faulty

replace occurs in just one cycle. Often it takes longer. The LOAD-

ing and SAVEing® shows on the screen as the program RUNs. On

paper, I make tally marks by each name as it comes on the screen

for LOADing and SAVEing®. When each name has occurred at

least five times I stop the program and examine the disk directory.

Usually two or three of the programs will have been improperly

replaced and one or two will have been lost.

The Transactor 20 Volume 6, Issue 01

Some Observations:

1. The block count is not always changed, but usually changes

when the replacement file is larger, and often even when it is

smaller. "SAVE@" is especially deceptive when the block count

is not changed since there is no evidence of trouble on the disk

directory. You are left to be rudely awakened later when you try

to LOAD the victimized program.

2. A replacement program which has been linked to the wrong

name is usually one which had been recently LOADed.

3. If "SAVE® EXPOSED!!!" RUNs for a long time, more of the

programs are replaced by the same one.

4. Disks which have not had any SCRATCHing done on them seem

to be more immune to this bug.

5. Only programs that have been LOADed and SAVEd@ during

the same session seem to be endangered.

6. Sometimes a program is mixed with parts of another rather than

being completely replaced.

The debate is over. There is no longer any doubt about "SAVE®".

It is unreliable. I suggest to the experts that they look again at

"SAVE®" and some of the other related DOS routines for the bug

that is causing trouble with the links used by "SAVE®". Good

Hunting...

To Use "SAVE® EXPOSED!!!" yourself, find or make up a test disk

about half full of small to medium length programs, then do some

SCRATCHing and SAVEing on it. Now type in "SAVE® EX

POSED!!!" and SAVE a copy of it to another disk for safekeeping.

Then LIST the program and change the DATA in line 240 to the

names of any five programs on your test disk. Next, SAVE your

version of "SAVE® EXPOSED!!!" to your test disk. If you want to

keep an uncorrupted backup copy of this test disk for study or

comparison, make it now before RUNning "SAVE® EXPOSED!!!".

SAVE @ EXPOSED!!!

HA

MB

ON

KO

HJ

IL

JD

NH

KA

NN

OJ

GO

IG

00

JE

100rem "save® exposed!!!"

110 rem by c.h.whittern.box 215,hudson,mich 49247

120 cs$ = chr$(147): qt$ = chr$(34)

130 d3$ = chr$(17) + chr$(17) + chr$(17)

:d4$ = d3$ + chr$(17)

140 for i = 1 to 5: read a$(i): next

150i = int(rnd(0)*5) + 1

160 print cs$" load" qt$;a$(i);qt$" ,8"

170 print d4$" save" qt$" @0:" a$(i);qt$" ,8"

180j = int(rnd(0)*5) + 1: if i = j then 180

190 print d3$" load" qt$;a$(j);qt$" ,8"

200 print d4$" save" qt$" @0:" a$(j);qt$" ,8"

210 print d3$" load" qt$" save® exposed!!!" qt$" ,8

220 poke 631,19: for i = 1 to 5: poke 631 +i,13: next

230 poke 637,82: poke 638,117: poke 639,13

: poke 198,9: end

240 data recover ram,check disk drive,quadra,

performance test,disk log

Get a scratch pad and write down the names of the programs

you placed into the data statements, along with their block

counts. LOAD and RUN "save® exposed". Each time a

program is LOADed and SAVEd with replace, make a tally by

its name. When each of the five programs has been LOADed

and SAVEd with replace at least five times, stop the computer

with the RUN-STOP key while it is LOADing a program.

LOAD and LIST the directory. Check the block counts first. If

they are wrong, you can be sure the program has been

replaced by another. Then LOAD and LIST each of the five

programs to discover exactly what mischief has been done!

Editors Note:

Although many will scoff at the statements made above, they have

been tested and found to be true, at least on the 1541 and dual

4040 drives. We didn't have a 2031 but it's hard to exclude it, being

so closely related. Oddly enough it didn't upset the 8050 or 8250 at

all. The original DOS source listings for the 8050 have comments

that lead one to believe that the engineers did indeed look for a

problem with SAVE @, but apparently nothing was changed.

For our test purposes, 10 files were SAVEd to diskette, labelled PRG

*\ through PRG *\ 0. Initially, each had a file size of 11 blocks, and

each was written to be easily identified. The program "SAVE®

EXPOSED!!!" was then modified to include the 10 filenames, and

this was SAVEd to diskette. From here, the program was fired up

and allowed to RUN for about ten minutes.

After ten minutes, BASIC AID was LOADed in, and with it each file

was FLISTed (LISTed directly from disk) to the screen. One file,

PRG #2, was found to be posing as PRG #4. By FLISTing PRG #4, it

was found to be OK. Although PRG #2 still had the same filename,

it was now a true clone with no further semblance of its original

identity.

Though this was a form of proof, we decided it was time to get

really mean. Without belabouring the point, some of the files were

increased in size, then SAVEd @ back to disk. This insured that a

good assortment of block counts were showing in the directory,

and the sector distribution of the files would be good and mixed

up.

After 30 minutes of operation, the program was stopped and the

results were tabulated. YECHH! Of the 10 files, 5 were corrupted

badly. PRG #1 became PRG #4. PRG *2 became PRG #7. PRG *4

became PRG *5. PRG *7 became PRG *9. And PRG #9 became

PRG *1. Of these, only PRG *4 had its directory links mixed up

with another, PRG #5. The others, though still posing under the

same file, were true clones. It seems we have a problem.

At this time, one bottle of champagne should be winging its way to

a certain mail box in Hudson, Michigan. We'll be informing Mr.

Broomhall about this development, but wether his criteria have

been met is not known. Our criteria was simply to prove a problem

exists and that has obviously been shown. Although the program

offered here demonstrates this quite clearly, the sequence of

events leading up to its often unexpected occurence in day to day

activity is still a mystery. And why does SAVE with replace seem to

work on most occasions? A look through DOS ROM has shown

that SAVE with replace is merely performing a SCRATCH after a

SAVE followed by some very simple directory updates. Neverthe

less, there is no longer any doubt about the potential danger which

means there must be something going unnoticed. We'll be taking

another very careful examination of the code but we don't under

estimate this bug, probably the most elusive of them all. Perhaps

those others who so adamantly claim the bug is a myth might care

to join in our search for the answer to the next logical question:

Why? (and that includes you, Commodore).

The Transactor 21 Volume 6, Issue 01

Disk Tricks Scott MacLean

Georgetown, ONT

The 1541 disk drive, contrary to popular belief, is a very

intelligent disk drive. It can be told to go off and do something

on its own, and it will whirr happily away to itself, without any

intervention from the computer. This is contrary to an APPLE

disk drive, where the computer is tied up when the disk is in

use. This is because the 1541 is actually a computer, almost as

smart as your 64! It has a 6502 CPU in it, I/O chips, ROM, and

RAM, not to mention interfacing circuitry for the motors and

read/write head. There is a way to directly write and read to

and from the 1541's memory. This can be useful in controlling

the disk drive without intervention from the 1541 "s parser,

which is sort of like a syntax error checker. The way a user

accesses this memory is through 2 commands: Memory Write

(abbreviated M-W) and Memory Read (abbreviated M-R). The

syntax for these commands is as below:

print#15,"m-w";chr$(memlo);chr$(memhi);chr$(len);chr$(data);chr$(data)

memlo, memhi: location in the disk drive memory to do the

write, in lo-hi byte format

len: number of bytes in data

data: series of bytes to be loaded in starting at

memlo,memhi.

print*15," m-r" ;chr$(memlo);chr$(memhi);chr$(len)

You may send as many as 34 bytes of data at a time to the disk

drive's memory. Only one byte may be received from the

memory at a time. The memory location we will be concerned

with today is $1COO, or 7168 decimal. This location is one of

the main control locations in the 1541. Its layout is as follows:

Bit Value Use For $1COO

7

6

5

4

3

2

1

0

128

64

32

16

8

4

2

1

* See below

Density: high bit

Density: low bit

* See below

Red drive light

Drive motor control

Stepper motor: high bit

Stepper motor: low bit

* Bits marked with a * won't be described here.

6-5. Record/playback density:

The tracks on a diskette are concentric, thereby making the

inner tracks smaller than the outer tracks. To tell the disk drive,

this location is adjusted when a track and sector is selected. It is

adjusted as follows:

Track

1-17

18-24

25-30

31-35

5

1

1

0

0

6

1

0

1

0

3. Red drive light:

This bit controls whether the red light on the front of your drive

is on or off. You can M-W this to turn on, but the 1541 's

interrupts will turn it back off, producing only a brief flicker.

The Transactor 22 Volume 6, Issue 01

2. Drive motor control:

This bit turns the drive motor on and off. This location is not

touched by the drive's interrupts, so you are free to turn it on

and off at will. In order to move the head, a safety interlock

ensures that the drive motor is enabled before, or else the head

movement instruction is ignored.

1-0. Stepper motor control:

The stepper motor is the motor which moves the head back

and forth across the disk. It will remain inactive unless the

drive motor is enabled (see bit 2). The stepper motor consists of

4 internal coils, and a magnet mounted on a shaft. When the

coils are sequenced on and off around in a circle, it drags the

magnet arm around, which produces a very high accuracy

movement. The movement is much too accurate to be used by

the drive, so two movements is considered one track on the

disk. Half tracking is achieved by moving only one movement,

and writing in between tracks where most copiers don't look.

Commodore could have doubled the 1541 *s capacity with this

feature. . .but wait!! Before you rush off to double all your disks

capacity, listen: The read write head is too wide. If you write to

track 4.5, you will destroy track 4 and track 5. Similarly, if you

write to track 7, you would destroy track 6.5 and 7.5. This

motor is useful for other tricks, however. Try typing in the

following program before proceeding furthur.

10open 1,8,15

20x = 0

30 if peek(197) = 7 then x = x-1

40 if peek(197) = 2 then x = x +1

50ifx = 4thenx = 0

60 if x = -1 then x = 3

70 print#1," m-w" ;chr$(0)chr$(28)chr$(1)chr$(4 + 96 + x)

80 goto 30

You may find it helpful to remove your drive cover before

running this program, in case you make a mistake, in fact, I

would recommend removing it so that you may get a better

idea of what is going on (Editor's Note: This will void your

warranty!). This is done by removing the 4 screws in the

bottom of the drive, carefully flipping the drive over, and

removing the cover. Then run the program. Press and hold

down the CRSR UP/DOWN key for about a second and watch

the read write head. Press and hold down the CRSR LEFT/

RIGHT key for about a second and watch. Try holding the UP/

DOWN key until the head clicks. This is what happens when

you initialize a disk. Hold down the LEFT/RIGHT key until the

head clicks. Release it IMMEDIATELY!! This is track 37. Return

the head to about center with the UP/DOWN key. If the head

won't move, give it a gentle push with your finger.

You may have a disk that you borrowed from your friend that

doesn't "agree" with your 1541. If the red light flashes rapidly

while it loads, try the following program:

10 open 1,8,15

20 input" <i>n or <o>ut of alignment" ;io$

30 print#1," i";" m-r" chr$(0)chr$(28): get#1 ,a$

:a = asc(a$ + chr$(0))

40 v = (aand254): if io$ = " o" then v = (aor1)

50 print#1," m-w" ;chr$(0)chr$(28)chr$(1)chr$(v)

60 closei: end

This program moves your head up 1 /2 track and ends, or if you

select <I>n alignment, it resets the head to normal.

If at any time you find you have trouble reading, writing, or

accessing your drive, one of the following should have an

effect:

load "#",8

open 1,8,15, "iO": closei

Or use the program above and select <I>n alignment.

The 1541 disk drive is full of goodies and tricks, only one of

which we have tapped here. One note is the fact that if you

move the head manually as we have here, the 1541 's DOS

(Disk Operating System) is unaware that you did so, and will

assume that it is still where it started out. If it is at track 3, and

you manually move it to track 30, then try to LOAD" $" ,8, it

will try to move to track 18, and the head will jam, requiring

you to open the disk up and reset the head. The safest way to

exit is to execute the following line several times:

open 1,8,15, "iO": closei

Editor's Note

Now that DOS Memory maps have been published for the

4040, 1541, and 8050 (inside The Complete Commodore Inner

Space Anthology, see back cover) it will be somewhat easier for

us to examine other "disk tricks". Watch for more articles like

this one in future Transactors.

The Transactor 23 Volume 6, Issue 01

DiskBusters! Michael Quigley

Vancouver, BC

Reviews ofsome current disk copying packages

Although The Transactor does not agree with the idea of "copy

protection unlockers", we can not ignore their existence either. Had

Michael chosen to review a single package we would not have

accepted it, however the comparison that follows is in the true

Transactor tradition and we hope that any readers who might take

offense to the undue publicity will also consider the fact that the

information here will help the decided avoid yet another less than

satisfactory package. -M.Ed.

One of the biggest rackets facing Commodore 64 owners is an ever-

increasing number of "disk copy" programs. Every month's issue of

major magazines features large ads for utilities with claims like "Backs

up virtually all existing disks for Commodore 64 including Copy

Protected Software", "The ultimate bit by bit disk duplicator", "No

better disk copier at any price", and "Fastest and most advanced

copier you can buy."

In reality, these programs are part of a vicious circle highly reminis

cent of Biblical "begats". As soon as one method of breaking copy

protection is introduced, a new protection system is quickly devel

oped by the software houses, which brings another generation of

pirate programs, and on and on. The last year has seen, in many

commercial programs, the demise of the familiar errors which cause

the 1541 to perform its unpleasant knock-knock noise as a method of

disk protection. In their place have come half-tracking (moving the

read head to a space between the extant 35 tracks), writing beyond

track 35 (up to track 44), varying the number of sectors in a manner

inconsistent with normal DOS functions, and the use of fast-load

techniques.

Many of the pirate pack programs try to justify their existence by

claiming that a person has a right to back up their software, which 1

agree with. A person should also be able to modify their software to

their own purposes, especially if it doesn't meet their expectations.

However, some of these breaking packages are less than subtle about

their real intentions. One of them, The Software Protection Hand

book, was originally to be called "The Software Pirate's Handbook II".

The Authors try to justify this name by saying that the word "pirate" in

the title was "intended as a light-hearted reference to any copying

process, and to inspire a certain tendency [sic] of humankind; the

attraction to things mysterious or secret."

What follows are reviews of a representative sample of disk-buster

type programs. Not surprisingly, several other companies which I

contacted refused to send me their products.

DI-SECTOR

Starpoint Software, Star Route, Gazelle, CA 96034. $39.95

Di-Sector is a slickly designed program which is relatively easy to use.

It comes in the form of a master disk from which you are allowed to

make three copies. Each of these is encoded with your name and

serial number.

It features a 3-minute copy program, a quick format (around 16

seconds), a public domain-style disk doctor and a machine language

monitor with typical commands which additionally allows you to

transfer code to and from the 1541 's memory.

Di-Sector also contains a bit copier, a file copier (which will read the

file names from "invisible" directories) and an error maker/checker.

There is a Sector Editor, sort of like a Disk Doctor, which I found

confusing because some characters in the sector did not appear on the

screen. An "Arts Backup" creates unprotect backups of Electronic Arts

disks.

About the only negative feature of Di-Sector is that you're not allowed

to return to the main menu from half of the program's six sub

sections or exit the program without turning off the computer. The

company's ads are also in error when they claim that "None of our

copy routines ever make [sic] the drive head 'kick'." Formatting a disk

not only kicks the head, but does so several times faster than normal.

Most parts of the program load in very quickly using special DOS

techniques, and devices like printers should not be connected to the

serial port. (Try disconnecting your printer after booting De-Sector for

some unusual and very harmful noises.)

The manual with Di-Sector is not bad, though there are names

referring to various parts of the program which do not tally with the

names in the main menu.

Di-Sector will not copy itself, nor will it copy recent programs which

contain methods of protection other than errors. As such, its uses may

be somewhat limited to legitimate purposes like copying and perform

ing various housekeeping tasks on your own disks, which it does

extremely well.

MASTER COPY

Digital Wizardry, 3662A South 15th Street, Milwaukee, WI

53221. $19.95

This is a home-grown kind of production which claims to be "the

most effective, yet still the most inexpensive copy utility. . .for. . .the

64." This claim is debatable, since virtually everything available in it

is available in a public domain equivalent.

The program is divided into 7 sections. One of these is a Disk Doctor

which allows you to copy a block from one disk to another. It also

allows you to scan back and forth within tracks — that is, it will jump

from sector 1 to 2 to 3 and so on. Another section catalogs a disk,

which just means reading the directory. And another copies a disk

with a variant on the familiar 4-minute backup program, complete

with head knocks at uncalled-for locations. If you want to format a

disk, this can be done in 21 seconds. Errors 20, 21, 22, 23, 27, 29 can

be located and created.

The Transactor 24 Volume 6, Issue 01

Probably the least satisfactory part of the program is the one which

copies sequential and program files. After you insert the disk you want

to copy from, a prompt — "OUTPUT *" — appears on screen. There is

nothing to tell you, without looking in the manual, that you are

supposed to input either D for Disk or T for Tape (the latter an unusual

touch) at this point. You can copy a total of about 110 blocks or 27K at

a time (some public domain programs allow up to 51K), and once you

have copied certain files, you have to scan through those file names in

the directory on your subsequent passes through it before copying

new ones. You cannot exit from this part of the program to the main

menu.

Virtually all these utilities are available for nothing from user group

libraries. About the only thing 1 found interesting about Master Copy

was its method of protection which involved numerous errors and

"secret passwords". As you might have guessed, you can't copy the

disk with itself.

PROGRAM PROTECTION MANUAL FOR THE C-64

C.S.M. Software, P.O. Box 563, Crown Point, IN 46307.

$29.95 plus $2 shipping.

I like this book, because it seems, unlike most computer literature, to

be written by an intelligent person. This is not to say that it's free of

grammatical errors or published in a slick format. It outlines methods

of defeating various methods of protection and also tackles the ever-

changing area of software law (U.S. variety, of course).

The book is written in a clear, concise and easy-to-follow manner. I

had little trouble employing some of its methods to change several

older commercial programs so their errors would not be detected.

The book comes with a disk of "public domain" software, including

the Disk Doctor written by Canadian Don Lekei. The book's author,

one T.N. Simstad, gets himself so entangled in various statements of

liability that he describes this disk as "copyrighted". The disk, by the

way, contains various features such as an invisible directory and other

little challenges, all of which can be explored with methods described

in the book.

Among these public domain programs are an early version of the 4-

minute copy program (that sure gets around, does't it?) and another to

determine if there are any errors on disks, both of which cause the

1541 to do its knock-knock routine, a major cause of drive failure. Is it

no coincidence that C.S.M. Software also sells a 1541 disk alignment

program for $39.95?

C.S.M. also sells expansion boards to aid in cracking cartridges and

publishes a monthly Program Protection Newsletter for $35.00 a year,

which details in each issue how to break 4 or 5 programs.

Unfortunately, the kind of approach exemplified by this company is

all too susceptible to the "vicious circle". Much of its information is

already obsolete, though it may be of interest to people planning to

protect their own programs. Or perhaps it will just discourage them

from even bothering to write any.

SUPER CLONE, also known as THE CLONE MACHINE

Micro-W Distributing Inc., P.O. Box 113,

Pompton Plains, N.J. 07444. $49.95

This program, issued in a revised version in September 1984, was one

of the earliest copy utilities. It consists of three major sections.

One of these is a further variant on the 4-minute backup without the

head-knocking at the beginning of a transfer. Another is something

called Tough Nuts Utility, which allows you to break complicated new

methods of protection like those varying the number of sectors per

track in a manner inconsistent with DOS. In order to find out about

Tough Nuts, however, you have to subscribe to a newsletter from

Micro-W devoted to these methods, at an additional cost.

The major part of the program consists of Super Clone and the original

Clone Machine, the latter being a slower version of the former. Super

Clone does have one good feature - a bit copier which, like most,

takes an eternity, but it copies most normally-created disks, warts

(errors) and all.

Parts of the program leave a lot be be desired. The file copier, for

example, lets you choose several files and then proceeds to copy them

- one at a time! Although the program is supposed to be "self-

documenting," there are sections which utilize the function keys for

various purposes. There are no prompts for these on screen - you

have to look them up in the manual.

The manual itself is not bad, but suffers from a certain kind of

disorganization caused by the complexity of the programs them

selves. The back of the manual contains several pages devoted to

errors which may occur!

The Software Protection Handbook

PSIDAC, 7326 N. Atlantic, Portland, Oregon 97217. $19.95

disk of programs $16.95, or both for $29.95

According to its ads, this book will help you "blow the locks off

protected software!". At the same time, it claims it "does not condone

piracy." Sure, sure. . . On its second last page is an ad for "Software

Pirates' T-shirt White Skull and Crossbones on jet-black Shirt."

Co-authored by David Thorn and Vic Numbers (yes, that's correct),

the book, for the most part, lives up to the first claim above. Methods

on how to break into disk, tape and cartridge programs are all

covered. The last two can be done with the help of hardware which

PSIDAC will be glad to sell you at additional cost. There are numerous

programs listed throughout the book for examining disks, checking

for and creating errors, duplicating disks and individual files, creating

auto-boots, and so forth. All these programs can be purchased on disk

from PSIDAC, again for more money. (I was not supplied with the

disk).

Probably the most interesting part of the book is its first chapter,

which examines the legal aspects of copying software, and in doing so,

gives new dimensions to the phrase "rambling discourse." It does

have a few points which I agree with, such as the fact that most

software is grossly overpriced. However, what is one to think of

opinions like this when placed in the context of fuzzy thinking like the

following passage: "Copying for sale, distribution or other non-

personal uses is Piracy. . . . Loaning your original to another person

for temporary use is not piracy... . However, copying an original you

do not own is unethical."

The book gives the appearance of being well-made with a plastic

spiral-type binding and glossy cover. The typography inside leaves a

great deal to be desired, however, using an IBM style of typewriter and

listings from what seems to be a Commodore printer. The book is full

of unbearable illiteracies on practically every page, ranging from

three-letter words like "its" on up.

The Transactor Volume 6, Issue 01

DOS File Executor
Program and concept by Chris Johnsen, Clearbrook, BC

Execute Machine Language programs inside your 1541

Automatic Disk Drive Load and Execute

There's a useful feature hidden in the 1541 's ROM that Com

modore never told anyone about. Now that more disk drive

mysteries are being revealed with books like "Inside Commo

dore DOS" from Datamost Inc., and Transactor's "Complete

Commodore Inner Space Anthology", we're learning how to

get the most out of the drive's undocumented features.

What we're talking about here is the automatic load and

execute feature, accessed by simply sending the filename of a

specially formatted USR file to the drive's command channel.

The filename must be prefixed with the characters "&:" (amper

sand, colon), both in the disk directory and the command sent

to the drive. On receiving the magic word, the drive will load

the machine code contained in the file into the specified RAM

address and execute it. This feature (UTLODR — residing at

$E7FF to $E852 in the ROM) was probably put there for drive

ROM development purposes, to quickly boot up a new DOS

version. In this article it will be referred to as the "DOS exec"

routine, and the files it uses as "DOS exec files". The DOS exec

capability apparently exists on 8050/8250 and new 2031

drives as well as the 1541.

This article explains the format of DOS exec files, and presents

the program in Listing 1, "DOS exec filer" for the C64, which

creates a DOS exec file from a machine code object file. We'll

also be using the DOS exec technique to implement two short

drive-executable routines: (1) to change the disk drive's device

number to 9, and (2) to disable the horrid head-knock which

occurs while LOADing some commercial protected software.

These routines may be created from object form by "DOS exec

filer", or created directly from the short BASIC programs in

Listings 4 and 5.

Since the 1541 contains a 6500-family CPU and the DOS

allows for execution of user routines, the drive can be pro

grammed using 6502 machine code. The traditional way to

execute routines within the drive is to use the memory-write

(M-W) and memory-execute (M-E) commands or the block-

execute (B-E) command, all of which are documented in the

drive manual. Programming the drive using these commands

usually requires a program to be run on the host computer,

which means loading the program and disturbing any current

program in memory. With the block-execute command, you

have to know exactly which track and sector on the disk

contains the machine code to be executed — not very conven

ient. Using the DOS exec method only involves sending a

single command to the disk drive, which then gets all its

instructions from a special DOS exec file on disk.

When writing programs to be executed by the disk drive, there

are a few things to keep in mind. The main constraints are the

lack of RAM available and the volatility of that RAM. Fortu

nately, we can still use some pretty useful routines, since

simply changing the contents of certain RAM locations can go a

long way towards customizing the behaviour of the DOS.

Listing 2 shows the machine language routine which changes

the drive's device number to 9, and Listing 3 is the anti-knock

remedy. These tiny weapons need only be executed once to

have their intended effect, and are perfect candidates for DOS

exec files.

The Transactor 26 Volume 6, Issue 01

Remember, once a DOS exec file is on disk, you just have to

send the name of that file to the drive command channel, and it

gets loaded into drive memory and executed. As an example, if

you create the "&:dev 9" file using the program in Listing 4,

you'll be able to change your drive's device number just by

entering:

open 15,8,15: print#15, "&:dev 9"

or simply "@&:dev9" using the DOS wedge

You won't have to remember any special numbers or com

mands, and you won't have to LOAD anything into your

computer to disturb it. After realizing the tremendous power of

this capability you'll probably want to create your own DOS

exec files. "DOS exec filer" in Listing 1 (explained later) will

create DOS exec files for you, but an explanation of such a file's

format follows to appease your curiosity.

First of all, a DOS exec file is a USR file. All that means is that

the format is user-defined and the file appears in the directory

with USR next to it instead of SEQ or PRG.

Assuming that you know about tracks and sectors, let's get

right into the format of a DOS exec file sector; a diagram

appears below for clarification. The first two bytes, 0 and 1, are

set automatically by DOS and point to the next track and sector

(if any) as usual. After that we're on our own. Bytes 2 and 3

must be set to the address in disk RAM — in low, high format —

where the user machine language routine will load and exe

cute. Byte 4 contains the length of the machine language

program on the current sector. The machine language program

follows in the subsequent bytes on the sector, not going further

than byte 254. After the ML program, there is a checksum byte,

which would occupy byte 255 if the ML program filled the

sector. The checksum byte must be supplied by the user, and

represents the sum of bytes 2 through the end of the program

on the sector. The low and high bytes of this sum are added to

yield the checksum byte. This diagram should clarify the

format.

When OPENing the DOS exec file to initially create it, you have

to use the drive number in the filename to ensure that the

ampersand and colon get included. A valid DOS exec file OPEN

would be:

open 8,8,12, "0:&:filename,u,w"

As you can see, creating a DOS exec file involves quite a few

steps: writing the load/execute address, the program length,

copying the program itself, and calculating and writing the

checksum at the end. And if the program is longer than 250

bytes, all this must be done for each subsequent sector.

You can save yourself all this work by using the BASIC program

in Listing 1, "DOS exec filer". With DOS exec filer, just write the

machine language program for the drive to execute and put the

object file on disk (the origin address is unimportant). DOS exec

filer will ask the filename of the program and the start address

in drive memory (after printing a table of available addresses),

and create a DOS-executable USR file for you with a filename

that you specify. Simple. After that, whenever you have the

exec file in the drive, you've got instant access to your favorite

drive utility.

The examples used here, "&:dev 9" and "&:anti-knock", are a

good start to your disk drive exec file collection. Dev 9 comes in

handy when you wish to access two disk drives, and anti

knock can keep the poor 1541 's head from rattling itself out of

alignment by hitting read errors. If you want either of these

files, you can create them without typing in DOS exec filer —

just use Listings 3 or 4 to create them directly.

Now that this obscure disk drive feature has been publicized,

we hope to generate a flurry of activity out there in hackerland.

If anyone comes up with a good DOS exec file for the 1541,

8050, 8250 or new 2031, send it in for the bits & pieces column.

Maybe we can work the drive as hard as the computer for a

change!

0 1 2 3 4 5 end+ 1

Track, Sector

Links

Low, High

Address

Length machine language routine checksum

KG

ML

MF

GK

NB

FK

NK

GJ

HE

CJ

Listing 1: DOS exec filer for the C64

10 rem * 1541 dos execute filer:

- print#15, "&:dos utility"

20:

30 rem ***** set up screen *****

40 gosub5010:printgr$:poke53280,11 :poke53281,0

:gosub2020

50:

60 rem ***** m.l. program read *****

70open15,8,15:input#15,er$,em$,et$,es$

:print#15," u;" :printd$

80 input" name of program file_

90 ifpS = " "thenprintuuu$:goto80

100 iflen(p$)>16thenprint" not more than 16

characters" :printuuuu:goto80

110 pn$ = a$ + p$ + b$

KA

DH

MD

Jl

JN

IB

CF

JD

EF

EA

JC

PD

120 print#15," iO:" :open1,8,3,pn$:close1 :printu$;

:gosub3010:open1,8,3,pn$

130 get#1 ,ip$:ip$ = ip$ + z$:lo = asc(ip$):get#1 ,ip$

:ip$ = ip$ + z$:hi = asc(ip$)

140 printd$" finding length of m.l. routine"

150ra = hi*256 + lo

160 printdS" computer ram address " ;ra

170 printd$" reading byte* "

180 nu = nu +1 :get#1 ,ip$:printtab(16)u$;nu:

en = st and64:re = st and2

190 ifenthen210

200ifnotrethen180

210close1:gosub3010

220 printuS" " qpq$" file contains";

nu;l$;" bytes ";d$

230 printdd" press shift to continue ":wait653,1

:gosub2020

The Transactor 27 Volume 6, Issue 01

EG

CC

ML

PO

OK

DO

DP

HK

GD

Jl

El

EJ

NK

IB

OL

LE

ED

Nl

ME

BF

BJ

OM

HP

BA

GP

HB

AA

AC

OB

BM

LC

DK

OP

FP

KJ

KO

JL

MD

GN

DM

KO

AA

GC

CC

El

HB

AA

LK

EH

OB

Al

DJ

LB

IE

KO

AA

BC

Fl

CH

CM

OE

240:

250 rem**** write usr execute file ****

260 print:input" name of execute file |_
270 ife$= " "thenprintu$uu:goto260

280 iflen(e$)>14thenprint" not more than 14

characters" :printuuuu:goto260

290 en$ = a$ + m$ + e$ + ur$:open1,8,3,en$:close1

:w = 9:gosub3010

300 ifer$ = "OO"thenprint" sorry that file

exists" :printuuuu:w = 0:goto260

310 ifer$<>" 62" thengosub3040

320 print" dos ram address (768 - 2048)

330 printd$" buffer 0 - 768 $0300"

340 print" buffer 1 - 1024 $0400"

350 print" buffer 2 -1280 $0500"

360 print" buffer 3 -1536 $0600"

370 print" bam buffer - 1792 $0700" d$

380 input" decimal address of exec file Q j|";dm$
390 ifval(dm$)<768thenprintd$d$" not lower

than 768 ";printuuuuu$:goto380

400 ifval(dm$)>2048thenprintd$d$" not higher

than 2048" :printuuuuu$:goto380

405 en$ = a$ + an$ + e$ + c$

410open1,8,3,pn$

420open2,8,4,en$

430 dm = val(dm$):hi = int(dm/256):lo = dm-hi*256

440 bl = int(nu/250):ef = nu-250*bl

450 get#1 ,ip$:get#1 ,ip$:printdd" writing

byte# ":ifbl = 0then510

460 fort = 1 tobl

470print#2,chr$(lo);:ip = lo:gosub1020:print#2,chr$(hi);

:ip = hi:gosub1020

480print#2,chr$(250);:ip = 250:gosub1020

490 forz = 1 to250:gosub4010:nextz

500print#2,chr$(ck);:ck = 0:nextt

510 print#2,chr$(lo); :ip = Io:gosub1020:print#2,chr$(hi);

:ip = hi:gosub1020

520print#2,chr$(ef);:ip = ef:gosub1020

530 forz =1toef:gosub4010:nextz:print#2,chr$(ck);

540 closei :close2:gosub3010

550gosub5070:printgr$:gosub3010

560 printdd" usr file complete"

570 print:input" compile another file Q Q" ;v$
580ifleft$(v$,1)= "y"thenclose15:run

590ifleft$(v$,1) = "n"thenprint#15, "u; ":close15

:printcl$:end

600 printuuu$:goto570

610:

620— subroutines:

630:

1000 rem ***** checksum of block *****

1020 ck = ck + ip:ifck>255thenck = ck-255

1030 return

1040:

2000 rem ***** title *****

2020 printcldd$" 1541 dos execute filer"

2030 print"

2040 printdn$" print#15," q$" &:dos exec" q$

2050 return

2060:

3000 rem *** check error channel ***

3010 input#15,er$,em$,et$,es$

3020 ifer$ = " 00" thenreturn

3030 ifw = 9thenreturn

3040 print#15," iO:"

3050 printd$" error " er$" " em$" t " et$" s " es$

3060 printddd$:close15:end

3070:

4000 rem**** read byte/write byte ****

4010 get#1 ,ip$:ip = asc(ip$ + z$):gosub1020

GO

CD

IK

JG

HP

DG

CH

EF

FF

AO

Fl

EP

4020

4030

5000

5010

5015

5020

5030

5040

5050

5060

5070

5080

by = by+1:printtab(16)u$;by:print#2,chr$(ip);:return

rem **** declarations ****

u$ = chr$(145):l$ = chr$(157):q$ = chr$(34)

cl$ = chr$(147):d$ = chr$(17):gr$ = chr$(30)

z$ = chr$(0):p$= "":pn$= " ":e$= "":en$= ""

:ip$= " ":dm$= " ":rn$= "":er$= "":em$= ""

et$ = "" :es$ = "" :a$ = " 0:" :an$ = " &:"

b$= ",p,r":c$= ",u,w":r$= "rO:":eq$= " = "

pq$= "pR15, ":ur$= ",u,r":m$= "??"

ck = 0:nu = 0:ra = 0:hi = 0:lo = 0:bl = 0:w = 0:ef = 0

:ip = 0:z = 0:t = 0:by = 0:dm = 0

return

u$ = chr$(145):cl$ = chr$(147):d$ = chr$(17)

:gr$ = chr$(30)

return

Listing 2: Assembler code for " dev 9 " 1541 disk drive program

;**** DEVICE 9***

LDA #$29 ;device number $09 plus $20

STA $77 ;LSNADR-listener address

LDA #$49 ;device number $09 plus $40

STA $78 ;TLKADR - talker address

RTS ;end.

Listing 3: Anti-knock 1541 program to stop head knocks

;*** ANTI-KNOCK***

LDA #$C5 ;set bits 0, 2, 6, and 7

STA $6A ;REVCNT-error recovery count

RTS ;end.

Listing 4: BASIC program to create " &:dev 9" DOS exec file

GK

01

LD

MJ

FP

JA

OM

IE

10 rem device 9 dos exec file-run this,

20 rem then to set drive to device 9:

30 rem openi ,8,15:print#1," &:dev 9"

40:

50 open 8,8,12, "0:&:dev 9,u,w"

60 fori = 1to13:reada:print#8,chr$(a);:next:close 8

90:

100 data 0, 3, 9, 169, 41, 133, 119, 169, 73, 133,

120,96,45

Listing 5: Used to create " &:anti-knock" file

MH

NN

Kl

MJ

Cl

LG

OM

PM

10 rem anti-knock exec file -run this,

20 rem then to disable head knock:

30 rem open1,8,15:print#1, "&:anti-knock"

40:

50 open 8,8,12," 0:&:anti-knock,u,w"

60 fori = 1to9:reada:print#8,chr$(a);:next:close i

90:

100 data 0, 3, 5, 169, 197, 133, 106,96, 199

The Transactor 28 Volume 6, Issue 01

Alphabetize Your

Disk Directory

Stacy Mclnnis

Upland, CA

Here is a useful utility for your software tool box. Eventually

your disk will become filled and it will seem like a good idea to

remove some of your no longer needed files. At other times you

can not remember the name of a file but you are sure you

would recognize the name if you saw it. Possibly you would like

the entries in your disk directory to correspond to those in your

file cabinet. When any of these times come you may feel your

task would be a lot easier if your directory list were in alphabeti

cal order. Alpha is a program for the Commodore 64 and Plus/

4 that will alphabetize the directory list in memory.

To use Alpha. . .

Type in the BASIC program "Alpha" and RUN it. The BASIC

program POKES the machine language program Alpha into

memory starting at location 30000 and ending at location

30263. Alpha also uses locations 29520 to 29994 for temporary

storage.

Now that you have Alpha in place, load your directory as you

normally would:

LOAD $,8

To perform the alphabetization, type:

SYS 30000

A somewhat typical directory of 20 entries will alphabetize

instantaneously. A directory of 144 entries and many similar

names takes about 15 seconds. When you see READY on the

screen with the blinking cursor your alphabetization is com

plete. Now LIST your directory and you will find that all the

entries are in alphabetical order.

How Alphabetization Is Performed

When your directory is loaded it is stored in memory in a set

format at the start of BASIC text. The start of BASIC text is not

the same for the Plus/4 and the 64. However.the address of the

start of BASIC text for both machines is stored in locations 43

and 44. Alpha looks at the file name within each directory

entry. If any two consecutive file names are not in alphabetical

order, their directory entries are exchanged. Alpha repeats this

exchange operation until all entries are alphabetized. The

alphabetizing is performed on the directory list as it appears in

memory. Alpha in no way alters the directory as it appears on

the disk or the order of the files on the disk.

Listing 1: BASIC loader for the alphabetize program

AN

LI

KA

DH

GK

Al

AF

IN

EE

MC

IA

NH

LI

BE

BJ

LF

JD

JG

OJ

BG

CC

PE

HE

AH

OJ

FA

BE

LB

HH

JP

FC

Cl

PI

HH

HA

GC

PM

EB

AO

ND

FD

10 rem* data loader for "Alpha" *

20cs = 0

30 for i = 30000 to 30262:read a.-poke i,a

40 cs = cs + a:next i

50:

60 if cs<>29860 then print"***** data error

*****": end

70 print" sys 30000

80 end

100:

1000 data 160, 3,

1010 data 136, 16,

1020 data 177, 43,

1030 data 177, 43,

1040 data 4,177,

1050 data 192, 8,

1060 data 115, 152,

1070 data 232, 24,

1080 data 157, 8,

1090 data 4,157,

1100 data 84, 115,

1110 data 0,141,

1120 data 115, 172,

1130 data 189, 8,

1140 data 189, 153,

1150 data 189, 9,

1160 data 189, 154,

1170 data 3,209,

1180 data 238, 117,

1190 data 195, 238,

1200 data 15,208,

1210 data 115, 202,

1220 data 140, 117,

1230 data 3, 0,

1240 data 115, 189,

1250 data 157, 87,

1260 data 8,116,

1270 data 4,189,

1280 data 116, 133,

1290 data 232, 115,

1300 data 31, 177,

1310 data 208, 247,

1320 data 5,136,

to sort directory"

185, 3,

247, 160,

133, 3,

133, 4,

3,201,

240, 35,

157

165

87,

3,

116, 165,

153, 116,

201, 2,

85, 115,

86, 115,

116, 125,

116, 105,

116, 125,

116, 105,

5, 240,

206, 85,

86, 115,

190,238,

236, 85,

160, 3,

136, 16,

87, 115,

115, 152,

133, 3,

9, 116,

6, 160,

136, 192,

5, 145,

160, 31,

192, 1,

0, 153,

0, 140,

141, 8,

141, 153,

34, 240,

208, 243,

115,238,

105, 32,

4, 105,

76, 79,

176, 1,

169, 1,

174, 85,

87, 115,

0, 133,

88, 115,

0, 133,

12, 144,

115, 48,

172, 86,

85, 115,

115,240,

185, 80,

247, 96,

168, 189,

157, 88,

189, 153,

133, 5,

31, 177,

1,208,

3, 136,

185,232,

208, 246,

86

24

3

24

5

80, 115

84, 115

116,200

116, 160

7,200

174, 84

84, 115

133, 3

0, 133

117, 173

96, 169

141

115

133

4

133

6, 177

20, 32

192, 16

115, 192

174, 84

3, 76

115, 153

174, 85

88, 115

115, 189

116, 133

189, 154

3, 153

246, 160

192, 1

115, 145

96

The Transactor 29 Volume 6, Issue 01

FK

HO

JL

PN

BA

PL

KE

LG

HE

PM

01

JO

HI

JG

MF

GP

GH

GP
Of
vjar

BB

KG

JG

JE

Bl

BG

II

IC

JN

MD

PC

DP

DB

IH

OG

AL

EC

KB

PB

PD

KA

IK

IG

KF

MK

KG

GB

DM

DE

EO

LI

IP

JE

EB

CH

HG

Cl

LH

GF

JM

BD

NL

NK1 N 1 \

Listing 2: The PAL source code

100 sys700 assembled on"PAL 64"

110 .optn

120 ;alpha by Stacy mcinnis

130 ;alpha produces an alphabetized image of

140 ;the disk directory that was loaded into

150 ;the computer, alpha in no way alters

160 ;the disk directory that is stored

170 ;on disk.

■i on ■
I OU ,

190 ;to use alpha:

200 ; 1. load the alpha program

210 ; load "alpha",8,1

220 ; 2. load the disk directory

230 ; load "$",8

240 ; 3. sys to alpha to alphabetize

250 ; sys 30000

260 ; 4. now list or print your directory

270 ; as you normally would

290 ;data definitions

pnn •ouu ,

310 adz1 = $03 ;zero page locations

320 adz2 = $04 ;for indirect addressing

330 adz3 = $05 ;zero page locations

340 adz4 = $06 ;for indirect addressing

350 dirl = $2b ;low byte of address of

360 beginning of directory list

370 dirh = $2c ;high byte of address of

380 beginning of directory list

390 * = $7350 ;decimal 29520

400 zsav .bytO ;save contents of

410 .bytO ;zero page locations that are

420 .bytO ;used in indirect addressing.

430 .bytO ;these are restored at

440 program completion

450 tolent .bytO ;countof file names

460 ;in directory

470 dirent .bytO ;entry in directory entry

480 ;address list being considered

490 testch .bytO pointer to character

500 ;in name being considered

510 offset = * filename offset from

520 beginning of directory entry

530 * = * + 145

540 savnam = * ;area to save the directory

550 * = *+32 ;entry in while it is

560 ;being exchanged

570 adentl = * ;low byte of address of

580 * = * + 145 directory entry

590 adenth = * ; high byte of address of

600 * = * + 145 ;directory entry

fiio ■

620 ;entry for alphabetizing

630 ; sys 30000

P.AC\ ■U4U ,

650 * = $7530

fifiO ■uuu ,

670 ;save locations 3,4,5,6. restore

680 ;these locations at completion of

690 program, these are used for

700 ;indirect addressing.

710 ■

BC

IM

Ol

JK

NO

JO

KB

IB

PD

AE

GD

EH

ME

KF

DE

JH

DB

FN

LA

OO

IH11 I

CL

HD

OA

LD

CH

FG

PI

JN

GL

MO

FD

BC

BN

Dl

HP

AA

AM

BD

NB

BK

AP

LH

LF

NM

AB

AN

KM

FD

LN

BD

FL

PC

BC

CC

LJ

LI

DE

HM

GH

LL

MM

LC

JN

720

730 I

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

QQQ

930

940

950

960

970

980

990

1000

1010

1020

1030

Idy #3

sav Ida adz1 ,y

sta zsav.y

dey

bpl Isav

save contents of

of 3,4,5,6 in zsav

loop until all saved

fill array adentl with the low byte

of the address of the entry in

in the directory.

fill array adenth with the high byte

of the address of the entry in

the directory.

set tolent to the total number of

entries in the directory

Idy #0

sty tolent

Ida (dirl),y

sta adz1

sta adentl

inv

Ida (dirl),y

sta adz2

sta adenth

c Idy #4

Ic Ida (adz1),y

cmp#$22

beq setpt

iny

cpy #8

beq outlpc

bne He

1040setpt Idx tolent

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

tya

sta offset, x

inc tolent

inx

clc

Ida adz1

adc #$20

sta adz1

sta adentl,x

Ida adz2

adc #0

sta adz2

initialize the count of the

number of directory entries

low byte of the beginning

of the first directory entry

save entry address

high byte of the beginning

of the first directory entry

save entry address

scan for " that begins

the filename

$22 is a "

branch if have a $22

search on for a $22

if not in 8 are finished

is not a filename

entry in table

save offset to name

count entries

;entry index

;increment pointer to names

;in directory

.distance between names

;save entry address

sta adenth,x;save entry address

jmp Ic

1190outlpc Ida tolent

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

cmp#2

bes 11

rts

;loop until all addresses stored

;there must be at

;least two entries in order

;to alphabetize

;if not return

compare each entry with the entry

following it.

if the entries are in alphabetical

order go on to test next entry.

if the entries are not in

order exchange them

alphabetical

in the directory

list and restart alphabetizing

with the preceeding entry

begin loop with first character

1340;first directory entry

1350

The Transactor 30 Volume 6, Issue 01

E!

GK

HP

IA

LA

OC

HG

JC

GG

MF

HE

KB

LJ

IE

PE

GA

NN

JO

BO

CE

IK

CK

ON

PH

KP

HC

BK

LA

OB

JC

HA

CA

PH

NK

PJ

EP

EJ

ND

LC

BJ

NF

PJ

AM

GD

EL

JN

KN

BO

GK

JF

PP

NP

HK

JB

MC

NF

PH

IC

LH

IA

FH

Bt

IK

GD

136011 Ida #0 ;point to first

1370 sta dirent ;entrytotest

1380;

1390;begin loop with first character

1400;

141012 Ida #1 ;point to first character

1420 sta testch ;to alphabetize by
■\Arin-

1440;begin loop with character and

1450;directory entry incrementing

1460;

147013 Idy testch ;index for character

1480 Idx dirent ;point to address of name

1490 clc

1500 Ida adentl.x ;add offset to

1510 adc offset.x beginning of entry

1520 sta adz1 ;to point to

1530 Ida adenth,x;file name

1540 adc #0

1550 sta adz2 ;file name

1560 clc ;add offset to beginning of

1570 Ida adentl + 1,x ;entry to point to

1580 adc offset+1,x filename

1590 sta adz3

1600 Ida adenth + 1,x

1610 adc #0

1620 sta adz4

1630 Ida (adz1),y ;characters to

1640 cmp (adz3),y ;compare

1650 beq nomov ;same character

1660 bcc next ;branch if already in order

1670 jsr change ;else go interchange

1680 dec dirent ;pointto preceeding

1690;totest if must also

1700;exchange preceeding pair

1710 bmi 11 ;if minus start at beginning

1720 bpl 12 ;start with preceeding

1730nomov inc testch ;preceeding characters ok

1740 Idy testch ;now compare next character

1750 cpy #15 ;only 16 characters in

1760 bne 13 ;name(0-15)

1770next inc dirent ;point to next entry

1780 Idx tolent ;to alphabetize

1790 dex ;tolent begins count at 1

1800 cpx dirent

1810 beq endlis ;out if all finished

1820 jmp 12 ;go to compare with next entry

1830endlis Idy #3 ;restore saved zero

1840lres Ida zsav.y ;page contents

1850 sta adz1,y

1860 dey

1870 bpl Ires

1880 rts alphabetization is complete

1890;have reached the end of

1900;list so return to basic

1920;enternal routine to exchange

1930;two directory names

1940;

1950change Idx dirent ;entry to lower

offset.x ;exchange offsets

HI

EA

MD

Jl

IP

HE

PO

PF

KN

HH

EJ

Cl

DB

PB

HB

FM

BD

OF

HP

AM

DF

BA

Kl

BD

EF

LL

PI

ND

HM

ON

IN

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

tya

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Idy

2110;exchange

2120lpsav

2130

2140

2150

2160

2170

2180lpmv1

2190

2200

2210

2220

2230

2240lpmv2

2250

2260

2270

2280

2290

2300.end

Ida

sta

dey

cpy

bne

Idy

Ida

sta

dey

cpy

bne

Idy

Ida

sta

dey

cpy

bne

rts

offset + 1,x

adentl.x ;move entry address

adz1 ;to zero page

adenth.x

adz2

adentl + fcRtry to raise

adz3

adenth + 1,x

adz4

#31 ;index for character

(adz1),y ;get first name

savnam.yand save

#1

Ipsav

#31

(adz3),y ;move 2nd name

(adz1),y ;to first name position

#1

Ipmvi

#31 ;moved saved name to

savnam,j£nd name position

(adz3),y

#1

Ipmv2

1960

1970

1980

1990

Ida

tay

Ida

sta

offset+1,x

offset.x

The Transactor 31 Volume 6, Issue 01

Auto Default

For The Commodore 64

Tony Doty

Sandy, UT

With its declining prices and more sophisticated software,

many one-time VIC-20 owners are changing to the Commo

dore 64. Sprites and 64k of RAM make the 64 one of the most

popular personal computers on today's market. The 40 column

screen adds to the professionalism of this work-horse. How

ever, one is left with the opinion that Commodore overlooked

two very important items during the transition between the

machines. These are the default screen colours and the choice

of the cassette as the primary program storage device.

The most notorious transition between the VIC-20 and the

Commodore 64 is the new screen colours for the 64. The light

blue characters on dark blue background scheme that Commo

dore chose for the 64 lacks the needed contrast between the

background and characters for long hours of programming. In

fact, with the introduction of Commodore's portable 64, the SX-

64, and its five-inch colour monitor, the staff at Commodore

must have recognized this problem. The default of the SX-64

video screen (blue characters on a white background), dramati

cally improved the video images displayed on the five inch

colour monitor. The biggest disappointment with the changes

to the SX-64 ROM was the fact that after all the time and

expense Commodore went through to engineer the changes,

the SX-64 reflects only a partial upgrade of the ROM over its

predecessor. A new power up message and screen colours were

included, but the default to the disk drive was not implemented

(even though there is no provision for a cassette unit on the SX-

64), though these changes could have been easily added.

After working with the VIC-20 and the Commodore 64, one

starts to believe that Commodore used virtually the same

operating system for both machines. The most immediate draw

back of this decision is apparent in the choice of LOAD and

SAVE default devices. Using the cassette as the default device

was understandable with the VIC-20. The software writers

seemed to target their wares toward the 3.5k unexpanded

version of the VIC with a cassette. With the 3.5k of user

memory, the LOAD time for programs was not a critical factor

when compared to the cost of the disk drive. With the place

ment of the 64 in a market where more and more of its primary

software is offered on floppy disk format, it seems only fitting

that the LOAD and SAVE device defaults to the disk drive.

Making The Changes

I was quite dismayed with these two aspects of the Commodore

64. It wasn't long before investigation of the machine's internal

code was my top priority. A method of setting things right had

to be found. The areas I wanted to change were (1) The screen

colours that the 64 powered up with (to dark blue characters on

a white background), and (2) Set the I/O default device to 8.

The programs provided in this article are the result of the tests

required to ensure that the change would execute without

problems on the computer.

Hardware or Software

For those who, like myself, feel that these changes should be

made a permanent part of the operating system, I submit a list

of the memory locations that were changed for the final

hardware EPROM version.

Address Old New Effect

$E1 DA $01 $08 Set Default Device To Disk Drive

$E535 $0D $06 Set Character Colour To Dark Blue

$ECDA $06 $01 Set Background Colour To White

Also changed was the 'LOAD/RUN' message displayed when

the shifted RUN/STOP is pressed. The finished version will

LOAD" * " and RUN the first program on disk when the shifted

RUN/STOP key is pressed. Also included in the changes was

the addition of my name in the power up message denoting my

ownership of the system. Several other recommended changes

have been published in various articles which could also be

implemented. The 8k by 8 Bit device used for the hardware

version listed here is the MCM 68764 C. The MCM 68764 C was

purchased from a local Hamilton Avnet distributor for under

$20.00. The new EPROM will replace the chip #901227-02 in

the 64.(Editors Note: The chip specified is available in Canada

for $34.50 as priced through Future Electronics - try the C2764-

30 28 pin chip ($13.50 Cdn.) with a 28 to 24 pin adapter socket

if you can find one)

The Transactor 32 Volume 6, Issue 01

A hardware change!! For many owners the thought of opening

their computer and changing the chips is a horrifying ordeal to

reckon with. Others may lack the needed equipment or knowl

edge to make the hardware changes. Thus, the purpose of the

software program "Auto-Default". When loaded, the program

will execute, change the default screen colours and device #,

then reset the machine. The changes will remain a part of the

operating system until a hardware reset is activated.

The Auto-Default Program

The Auto-Default program was derived from the desire to make

the operating system of the Commodore 64 interface better

with outside peripheral devices. Once the program is in place

in memory, the user will find that the LOAD and SAVE

commands are geared toward the disk drive. The 64 will now

default to the disk drive when a device is not specified. To

LOAD the directory, a LOAD"$" with a (return) is all that will be

needed. To SAVE a program, type SAVE"name" then (return).

The use of the cassette unit will still be supported by the Auto-

Default program, although the user will now have to use a

device number of one for tape LOADs and SAVEs. In addition

to the LOAD and SAVE changes, the new screen colours and

white background with blue characters should enhance the

video images. Different colours or default device number can

be altered by changing the values listed in the program.

BASIC vs. Machine Language

The Auto-Default program reflects the advantages of learning

and using machine language routines to speed up the execu

tion of programs. If written in BASIC, the two major FOR/NEXT

loops used to move the 16864 bytes of ROM into RAM would

have exceeded 1 minute and 20 seconds to execute. The

excessive amount of time to execute such a utility program

would have overshadowed its usefulness, making it impractical

to use each time the computer was turned on. Compare this

with the time of 10 seconds it will take to LOAD and execute

the machine language version of Auto-Default. The advantages

are overwhelming. For those who are new to machine lan

guage programming, it is advisable to type in the Auto-Default

program from its BASIC listing to help you better understand

the logic of this program in respect to the machine language

source listing provided.

Designing The Program

When writing a program such as this, there are several ques

tions the programmer must ask. First, where in memory would

the program best fit and interfere the least? The answer this

time was found in the memory from $0200-$025B. The 88

bytes of RAM located here are called the 'system input buffer'.

No conflicts with the operating system were encountered here.

The second question, how to make the program as user

friendly as possible. What does user friendly mean? To most,

the term is one of many sales pitches given each time they want

to know if a piece of software or hardware is difficult to operate.

To the Auto-Default program, user friendly means no SYS calls

to remember, no RUN to type, and no instruction book to

memorize. To accomplish all of the above criteria, the program

must be able to take control of the system, make the necessary

changes, and return the control of the system to normal

operation without the need of excessive user intervention. This

was managed in the Auto-Default program with the help of the

'auto start' method of executing the program.

Using The Auto Start

What comes to mind when an auto start program is referred to?

For most, their thoughts render a cartridge that is plugged into

the back of the computer that holds a favourite game or utility

program. This method of starting programs using a ROM

cartridge is very effective, but due to the cost of EPROM

burners, printed circuit boards, and EPROMS, this method is

out of reach of most home computer enthusiasts.

However, there is a second method of creating an 'auto-start'

program, using only software and altering the return address of

the LOAD routine. To understand the principles of the 'auto

start', first we must examine the LOAD statement, and its

machine language routines. When the statement

LOAD"AUTODEFAULT",8,1

is entered, the operating system must interpret the statement,

set the parameters, and execute the routine associated with the

BASIC statement (if the statement is entered with the correct

syntax). An address to the machine language routine which is

the starting point of the BASIC LOAD statement is loaded from

a table of BASIC commands at SAOOC. To access the LOAD

routines at $E168, a JSR (Jump Save Return or more commonly

called Jump to SubRoutine) will be used to call the machine

language routine. The JSR will take the contents of the program

counter, add 2 to the count, and store the sum of the addition

on the 'stack' for later use. The following two bytes after the JSR

are loaded into the program counter, and program execution

continues at this new address. At the completion of the LOAD,

an RTS (ReTurn from Subroutine) will be encountered. This

instructs the processor to pull the first two bytes off the stack,

(remember that JSR stored them), and return to that address.

Next, the program counter is adjusted to reflect the next byte of

the program by adding 1 to the return address. The 6510 uses

this address to continue processing the program.

With that information, it's time to make an auto run routine.

The program will be loaded; LOAD"AUTO-DEFAULT",8,1 (re

turn). The return address will be stored by the JSR onto the

stack. The program will start loading at $0101, and as such will

The Transactor 33 Volume 6, Issue 01

overwrite the stack. At the end of the LOAD routine, the RTS

will pull the next two bytes off the stack, now set at $02, add 1

to the address, then load the sum into the program counter.

The program will resume processing at the address $0203,

which marks the beginning of the Auto-Default program in

memory.

The 6510 Processor

The heart of the Auto-Default program centers around the

copying of the BASIC ROMs into RAM which is located under

their resident addresses. RAM under ROM, how can this be?

Due to the design of the 6510 processor (and its onboard 8 Bit

I/O port), more than the standard 65535 bytes of memory can

be accessed by the processor. By switching blocks of memory

in and out, the 64 can control the 64k RAM plus 20k of ROM

used in its operating system. The onboard I/O port of the 6510

is controlled by the eight bits of memory in location $01. Bits

0,1,2 control the internal memory and determine if RAM or

ROM will appear in a given location. Bits 3,4,5 are assigned the

task of controlling the cassette unit. Bit 3 controls the cassette

write line, bit 4 the cassette sense switch (senses if the play key

is pressed), and bit 5 the cassette motor control line. At this

time the bits 6 and 7 are not used by the operating system,

leaving them vacant for future use. The chart in Figure *\ will

illustrate the changes that occur in the 64's memory when the

I/O port is reconfigured by the first three bits of location $01.

Figure 1: C64 Location $01, Bits 0-2

Bit Status Comments

0 Set 1 ROM Memory $A000-$BFFF (BASIC ROM)

0 Clear 0 RAM Memory $A000-$BFFF

1 Set 1 ROM Memory $E000-$FFFF (Kernal ROM)

1 Clear 0 RAM Memory $A000-BFFF

RAM Mem $E000-$FFFF (No Operating System)

2 Set 1 I/O Devices Appear in Processor Area

2 Clear 0 Character ROM Appears in Processor Area

Problems, Problems, Problems

Two unexpected problems were encountered in the testing of

the software. Both were overcome, but I feel they are worth

mentioning. Much to my amazement, the first time the pro

gram was powered up, the BASIC bytes had increased from

38911 to well over 51000. This was due to the routine that sets

the top of BASIC memory finding RAM at the address of $A000,

instead of the usual ROM. To correct the amount of memory

that BASIC can use, the machine code at $FD88-$FD8B was

changed to LDX #$A0 and LDY #$00 to force the top of the

BASIC memory to $A000. This change was necessary to keep

BASIC from storing its variables in the RAM above $A000 and

overwriting the modified BASIC operating system now in RAM.

In past, the only method used to change the screen colours and

device default was to POKE in the new values into the corres

ponding memory locations, only to run the risk of losing

everything due to a RUN/STOP RESTORE. The correction of

this problem was the factor that made this utility program truly

useful. When the reset routine is called at location $FCE2, a

second subroutine is called to set the I/O default values for the

6510 I/O port. This routine sets the system to read the ROM

that is located in the memory of $A000-$BFFF and also $E000-

$FFFF. By changing the contents of $FDD6 to $E5 (11100101

binary), the system, upon a reset call, will use the new memory

that has been switched in (refer to the chart in Figure #1 for

further explanation), $A000-BFFF and $E000-$FFFF as the

operating system, keeping our defaults intact!

Understanding The Program

The program file writer does just what the name implies. It

writes a program file to the diskette which the 64 can directly

LOAD and execute. What denotes a program file? When the

DOS (Disk Operating System) is instructed to write a program

file, by the statement OPEN 5,8,5,"NAME,P,W" or OPEN

5,8,1,"NAME", the first two bytes that are sent to the disk drive

will be the address, in low byte/high byte order, of the starting

point in the 64's memory the program will be located. Lines

120 and 130 OPEN the file and send this address to the disk.

Next, line 140 sends the disk 258 $02's that, when loaded by

the program file, will overwrite the stack insuring the return

address of $0203 at the end of LOAD. This will be the start

address of the Auto-Default program. Line 150 READs the data

statements and sends the program data to the disk. This is the

actual program that will be located at $0203. Line 80 closes the

program file.

Using The Program

After typing in the program file writer, save it on a separate

disk. To make a working copy of the program, LOAD"PRO-

GRAM FILE",8. Next, insert a new, formatted disk and type

RUN (return). The program will be written out to disk and

executed. Save the Program File Writer to disk to make addi

tional copies of the Auto-Default program. To LOAD the pro

gram type

LOAD" AUTO-DEFAULT" ,8,1

Clearly, the best way to make these changes is to replace the

operating system ROM with a custom burned EPROM. How

ever, if making hardware changes doesn't appeal to your

interest, the program provided in this article can still be of

significant help. At last, there is a way to select the screen

colours that work best with your equipment and have them

stay even after pressing RUN/STOP RESTORE. Even nicer is

not having to specify the disk drive for LOADs and SAVEs. Who

The Transactor 34 Volume 6, Issue 01

knows, maybe you will like it enough to take the time to learn

about making your own custom EPROMs.

I hope that this program will be of some use to you. The screen

colours and default device are of my preference. With a little

study, the program should be easily modified to fit each

programmer's needs.

PAL Source for Auto-Default

DN

CO

JC

KO

AA

OM

DA

OB

MM

OA

NM

HA

NO

CL

ML

JM

LH

JH

NK

FE

KD

MC

PP

LC

DP

HP

FP

NL

CA

DA

NF

BE

LF

EH

PH

NG

LJ

ML

AA

JG

FE

HG

FK

HH

ON

100 rem ** auto-default basic listing •*

110:

120 rem move basic rom into ram memory

130 for a = 40960 to 49151: poke a, peek(a): next a

140:

150 rem move kernal rom into ram memory

160 for a = 57344 to 65535: poke a,peek(a): next a

170:

180 poke 57818,8: rem change i/o default to disk drive

190 poke 58677,6: rem change cursor to dark blue

200 poke 60634,1: rem change background color to white

210 poke 64982,229: rem change i/o reset table

240 poke 64904,162: rem force the top of basic memory

to $a000

250 poke 64905,0

260 poke 64906,160

270 poke 64907,160

280 poke 1,53: rem switch in ram memory at $a000

290 sys64738: rem system reset call

100 rem ** writes 'auto-default' auto-run code to diskette

110 rem ** written by tony doty

120 gosub 170: open 5,8,5, "auto-default,p,w"

130print#5,chr$(0);:print#5,chr$(1);

140 for I = 0 to 258: print#5,chr$(2);: next I

150 for I = 0 to 89: read a: print#5,chr$(a);: print a;: next I

160 close 5: load" auto-default ",8,1

170 open 15,8,15," sO:auto-default": closei 5: return

180 data 169, 160, 133, 254, 169, 224, 133, 252

190 data 169, 0, 133, 251, 133, 253, 168, 177

200 data 253, 145, 253, 177, 251, 145, 251, 200

210 data 208, 245, 230, 254, 230, 252, 165, 252

220 data 208, 237, 169

rem ** default device nunber

218,225, 169

rem ** default cursor color

53,229, 169

default bordor color

230 data 8

240 data 141

250 data 6

260 data 141

270 data 14: rem

280 data 141, 217

290 data 236, 169

300 data 1: rem ** default background color

310 data 141, 218, 236, 169, 53

320 data 133, 1, 169, 229, 141, 214, 253, 169

330 data 162, 141, 136, 253, 169, 0, 141, 137

340 data 253, 169, 160, 141, 138,253, 169, 160

350 data 141, 139,253, 76,226,252, 0, 0

360 data 0, 0

IK

CO

AJ

NB

DK

LA

GB

CH

MJ

FH

JE

Al

LC

LM

IB

PK

KH

CD

KC

IJ

OA

IE

GL

MF

KH

FK

NC

DH

HO

Cl

FF

KJ

KB

NL

FA

KM

IJ

Fl

AM

FH

FC

PB

JA

NJ

CJ

FP

FA

Dl

GK

FD

BL

PL

LK

JP

EP

CA

MP

Cl

FM

NJ

HP

MB

DB

AD

IC

GO

OG

ON

100

110I 1 \J

120

130

140

150

160

170

180

190

rem **

open 4,

auto

8,1,

sys(700)

.opt o4

#

;

hitemp

lotemp

savdef

200 chrcol

210

220

230

240

250

260

270

280

290

300

310

320

bkgrnd

ioport

bdrcol

iovect

reset

=

=

=

—

=

=

=

=

; ♦* stack to

.byt$02

.byt$02

330 start

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

nxtpag

end

default 64 t}y tony m. doty sandy, Utah **

' @0:auto default.obj"

$0100

$fb

$fd

$e1da

$e535

$ecda

$01

$ecd9

$fdd6

$fce2

;the stack for auto-run

be filled with $02's for start at $0202

, $02, $02

0

=

Ida

sla

Ida

sta

Ida

sta

sta

tay

=

Ida

sta

Ida

sla

ny

bne

inc

inc

Ida

bne

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jmp

I, $02

#$a0

lotemp +'

#$e0

hitemp+ 1

#0

hitemp

lotemp

♦

(lotemp),y

(lotemp),y

(hitemp),y

(hitemp),y

nxtpag

lotemp+ 1

hitemp +1

hitemp+ 1

nxtpag

#8

savdef

#6

chrcol

#$0e

bdrcol

#1

bkgrnd

#$35

ioport

#$e5

$fdd6

#$a2

$fd88

#0

$fd89

#$a0

$fd8a

#$a0

$fd8b

reset

;start the code at address $020

;get addr for basic routines

;and store the hi byte in ptr

;get the addr for the operating

;system and store it

; get low order byte

;for both and store

;them in the temp pointer

;clear a counter for the move

;read the data from

;rom and then write it to

;ram for both the high and

;low rom chips

;set default i/o to 8

;character colour blue

;border light blue

background white

;select configuration of

;6510'spia

pia value for reset routine

force top of basic memory

to $a000

The Transactor 35 Volume 6, Issue 01

File Pursuit
Richard Evers, Editor

A File Trace and Size Utility For All Drives

A simple routine to perform a useful task. File Pursuit will allow

you to perform a trace of any file held on diskette, excepting

Relative files and files that have disk protection tricks standing

in their way. As an added bonus, you will also get the directory

track, sector, and index into the sector the file was found on,

the index into the last sector consumed, and the total number

of bytes occupied by the file. The byte count also includes the

first two bytes found in the file, which could be the start address

if the file type is PRG. To make everything fall together, output

can also be directed either to the screen or printer.

The concept is simple. Once the file chosen has been found on

diskette, the directory sector and index into the sector is found

by looking at location DL + (256*DH) for the sector, and

DL + DI + (256*DH) for the index. The table below will show

you the values for each variable depending on the drive type.

Drive Buffer DT DL DH Dl HY DL + 256*DH DL + DI + 256*DH

1541 $0300 18 144 2 4 3 $0290 656 $0294 660

2031 $0300 18 144 2 4 3 $0290 656 $0294 660

4040 $1100 18 96 67 4 17 $4360 17248 $4364 17252

8050 $1100 39 96 67 8 17 $4380 17248 $4368 17256

8250 $1100 39 96 67 8 17 $4360 17248 $4368 17256

As can be deduced from the above, the 1541 and 2031 appear

identical, as do the 8050 and 8250, as far we are concerned

today. Now, for a greater shot at understanding, let's break

down the variables.

DT = The directory track

DL/DH = Lo/Hi address in drive RAM where the directory

sector of the file opened can be found.

DI = The index from DL + 256*DH that the index into

the directory sector can be found.

HY = High byte of the RAM buffer in use for this program.

Without going into a lot of unecessary detail, once the directory

sector and index into the sector is determined, reading that

location tells us the first data block in use. From there, the first

two bytes are read from each data block to determine if more

sectors are in use. If the track is greater than zero, then the

answer is yes, and the pursuit continues. If not, then the last

block has been reached, and the sector indicator points to the

last byte of the file in the block. Once this has been determined,

the total number of all bytes read are displayed, and the

program terminates. And, due to the method of finding the

information within the drive, the trace is fast. Not bad for a few

minutes keying in time. The great pursuit, a Transactor spe

cialty.

AJ

FB

MO

HE

PN

KA

HH

PN

PN

JF

MD

LM

KB

CH

KM

OG

PD

MM

JH

GJ

BN

KK

CG

EG

FN

FH

OK

KF

AP

DL

EN

OA

CK

10

AF

IB

FF

LP

LL

PO

GD

CH

KG

GJ

IF

OL

CO

100 rem save" @O:file pursuit" ,8

110 rem * * rte/84 - file trace + file size (includes

first 2 bytes) **

120:

130 print " ** file pursuit: trace and size **"

140z$ = chr$(0):ttl = 0

150:

160 input" (s) screen or (p) printer " ;sp$: dv = 0

170 if sp$= "s" thendv = 3

180 if sp$= "p" thendv = 4

190 if dv = 0 then 160

200:

210 print "(1) 1541/2031; (2) 4040; (3) 8050/8250 "

220 input dt$: if dt$<" 1" or dt$>" 3" then 220

230 dt = 39: dl = 96: dh = 67: di = 8: hy = 17: if dt$ = " 2"

then dt= 18: di = 4

240 if dt$ = " 1 " then dt = 18: dl = 144: dh = 2

:di = 4:hy = 3

250:

260 input" dr#,filename" ;d$,f$

270 open 15,8,15

280 open 8,8,8,(d$) + ":" + (f$): get#8,a$: if st

then print" not found": stop

290:

300 open 1 ,(dv): rem open screen/printer channel

310:

320 rem ** file exists - get sector + index into dir trk **

330 print#15," m-r" chr$(dl)chr$(dh)chr$(1)

340 get#15,s$: sec = asc(s$ + z$)

350 print#15," m-r" chr$(dl + di)chr$(dh)chr$(1)

360get#15,i$: ind = asc(i$ + z$)

370 close 8

380:

390 print#1, "filename: "f$" ondr#"d$

400 print#1," found: dir track" dt" sector" sec" index" ind

410:

420 open 8,8,8, "#0"

430 print#15," u1" ;8;val(d$);dt;sec: rem read in block

440 print#15," m-r" chr$(ind + 1)chr$(hy)chr$(2)

: rem get track, sector links

450get#15,tr$,sc$: trk = asc(tr$ + z$): skt = asc(sc$ + z$)

460 if trk then 520: rem track = 0 if last block

470 print#1," index into last sector = " skt

480 ttl = ttl + skt

490 print#1," total file size = " ttl—255" bytes

500 closei: close8: closei 5: end

510:

520 print#1," link : track" trk" sector" skt

530 print#15," u1" ;8;val(d$);trk;skt

540 print#15," m-r" chr$(0)chr$(hy)chr$(2)

550 ttl = ttl + 254:rem * * add up file size

560 goto 450

The Transactor 36 Volume 6, Issue 01

Supernumbers

For The Commodore 64

John R. Bennett

Ann Arbor, MI

Finally — Indestructible Variables!

When I got my Commodore 64, I was amazed at its power and

versatility. However, 1 had one minor gripe - editing a single line of a

program causes all the variables to be cleared. 1 knew why this

happens; variables are stored at the end of the program and when the

program changes size, this location moves. To keep its memory

pointers internally consistent, BASIC clears all variables whenever a

program line is entered.

However, not all microcomputers do this. In particular, the Sharp PC-

1500 stores variables at the top of memory in reverse order. In

addition, it has permanent memory locations for the 26 single letter

variables. Thus, you can run a fairly long program to calculate

something, and then modify the display stage to present the answer in

different ways without clearing the variables (as long as you restart the

program with a GOTO statement rather than a RUN).

The permanent storage locations for the single letter variables has a

nice side effect - programs run faster because the BASIC interpreter

does not have to search through the variables looking for the one you

want. One day, while 1 was killing time by disassembling BASIC, it

occurred to me that Commodore had left enough holes (indirect jumps

through RAM addresses) to allow me to remedy this problem. The

resulting patch to BASIC, which 1 call 'SUPERNUMBERS' has all the

advantages of the reverse, top of memory storage. In addition, be

cause they are a new class of variables which are not touched by a

normal CLR, Supernumbers are invulnerable to almost all modes of

program failure. They survive RUNSTOP/RESTORE, LOADing pro

grams, and even hitting a reset button. Only a power outage, a

runaway program which pokes the memory locations where they are

hidden, or Kryptonite can destroy them. Supernumbers also provide

an excellent vehicle for passing floating point variables between

machine language and a BASIC program.

To understand how Supernumbers are created you have to study the

way BASIC handles the simple replacement statement:

X = Y

The BASIC interpreter examines the statement from left to right one

character at a time. When it encounters the X, it stores it and then

looks for the next character. Since the next character is an equal sign,

it knows that it needs to evaluate an expression for a real number and

store the number in the location reserved for X. At this point the

interpreter calls a routine which finds the address of the variable and

stores a pointer to it in $49-$4A. It then calls a routine we can call

'formula evaluator', whose job it is to evaluate the right hand side of

the equation and return a number. Thus, to define a new variable type

one is required to modify two portions of BASIC, the part which finds

the address of a variable and the part which computes the value of a

numeric expression.

To make Supernumbers instantly recognizable to BASIC, they are

prefaced with the £ character (The English Pound symbol, between

the minus and CLR/HOME keys). Although you could make any

number and type of Supernumbers, I chose to make them real and to

have only 26 corresponding to the 26 single letter variables A-Z.

When Supernumbers are used, the above assignment is done slightly

differently. First of all, the assignment would appear as:

When BASIC parses this statement, The first character it finds is the £

on the left hand side. It immediately signals the dreaded 'SYNTAX

ERROR'. However, before anything nasty happens, the Supernumber

The Transactor 37 Volume 6, Issue 01

wedge in the normal error routine checks to see if a £ caused the

error. If it did, it checks the code up to the equal sign to see if it can

handle it. If so, it puts the address of £X in the pointer $49-$4A, and

returns to the BASIC interpreter at the proper place. It may seem like

extra work to let a syntax error happen and then cancel it, but in fact it

is much simpler and faster to do this than to put a wedge into the

CHRGET routine like many methods do. The code in the CHRGET

wedge is executed every time BASIC looks for another character, but

the error wedge code is only executed when the wedge character is

found. {Editor's note: See "A New Wedge For The Commodore 64" by

Brian Munshaw in the last issue - Vol 5 issue 06). The Supernumber

routine more than makes up for the small extra work by finding the

address of £X very quickly. BASIC would have to look through the

whole table of variables until it found the right one. In large programs

this process can use up considerable time.

The occurence of a Supernumber on the right hand side of the

equation is easier to handle because Commodore had the wisdom to

put an indirect jump through RAM at a convenient spot. The Commo

dore 64 Programmer's Reference Guide calls the vector IEVAL; it is

stored at $030A-$030B. This vector is used in the BASIC interpreter at

$AE83, where it executes the instruction:

JMP($030A)

At power-up the KERNAL puts the address of the next statement,

$AE86, in this vector. The Supernumber routine writes its address

there instead and looks for the use of the £ character. If a Supernum

ber is required, it calls another BASIC routine to move it to the floating

point accumulator before returning control to the BASIC ROM.

The entire program and memory space for these 26 Supernumbers is

less than 300 bytes. When assembled at $C000, a 'cold' start of

Supernumbers, which sets them to zero, is invoked by the command:

SYS49152

A 'warm' start, which keeps the old values, is invoked with:

SYS49155

You can use Supernumbers anywhere you can use a standard floating

point number, except as the counter in a FOR-NEXT loop. The

execution speed gained by using them depends on the program. In

some simple tests, I found a 30% increase in speed. Programs with a

lot of variables may benefit more; those programs with a lot of string

manipulation or I/O will benefit less. The biggest advantages of

Supernumbers, however, are their invulnerability and their fixed

memory locations. They can be easily passed to new or modified

BASIC programs and can easily be accessed by machine language

programs.

Editor's Note: "Supernumbers " is a great little utility; handy, fast, and

short. The only drawback is that there's no such thing as Supernumber

arrays. It would be nice, for example, to PRINT £A(I). No problem.

You can index supernumbers and transfer them to normal arrays with

a BASIC program. The short program in listing 3 uses a "dynamic

keyboard" technique to transfer the 26 Supernumbers £a to £z into

the array a(l) to a(26). It then prints the array out as a visual check.

Listing 1: Supernumbers BASIC loader

Bl

LI

KG

DH

GK

HH

AH

AF

IN

CO

GC

HA

ID

MH

MO

NH

LB

OK

NJ

AM

DH

DL

MF

EP

BB

MM

GP

OB

GL

FB

MP

NM

FA

PM

PI

DP

DP

LB

II

BP

HD

AJ

NH

DG

GH

PJ

10 rem* data loader for "supernumbers" *

20cs = 0

30 for i = 49152 to 49447:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>36424 then print" ***** data error *

70 print" sys 49152 for cold start"

80 end

100:

1000 data 32, 102, 192, 169, 61,141, 10,

1010 data 169, 192, 141, 11, 3,169, 24,

1020 data 0, 3,169,192,141, 1, 3,

1030 data 224, 11,208, 4,201, 92,240,

1040 data 76,139,227, 32,115, 0, 32,

1050 data 177, 233, 65, 10,170, 32,115,

1060 data 189, 113, 192, 188, 114, 192, 162,

1070 data 134, 13,134, 14, 96,169, 0,

1080 data 13, 32,115, 0,176, 3, 76,

1090 data 188, 201, 92,240, 3, 76,146,

1100 data 32,115, 0, 32, 19,177,233,

1110data 10,170, 32,115, 0,189,113,

1120 data 188, 114, 192, 76, 162, 187, 162,

1130 data 169, 0, 157, 164, 192, 202, 208,

1140 data 96, 165, 192, 170, 192, 175, 192,

1150 data 192, 185, 192, 190, 192, 195, 192,

1160 data 192, 205, 192,210, 192,215, 192,

1170 data 192, 225, 192, 230, 192, 235, 192,

1180 data 192, 245, 192, 250, 192, 255, 192,

1190 data 193, 9,193, 14,193, 19,193,

1200 data 193, 29,193, 34,193,157,167,

1210 data 165, 2,197, 2,240,193,169,

1220 data 141,253, 3,133, 2,162, 6,

2,164, 2,192, 0,

0,208,242,134, 2,

134,212, 3,166,245,

16,149,119, 2,224,

166,212, 3,224, 1,

52, 3,133,198, 68,

68,192,193,134, 54,

65, 6,208, 4,193,

:***": end

1230 data 189, 174,

1240 data 1,193,

1250 data 52, 3,

1260 data 16, 65,

1270 data 245, 3,

1280 data 214, 165,

1290 data 226,

1300 data 197,

3,

3,

111,1310 data 35, 80, 177, 17, 149, 20

1320 data 54, 3,161,226,133, 21, 3,

1330 data 165, 197, 193, 3,208, 19,134,

1340 data 3,238,164, 2,181,194, 2,

1350 data 210, 215, 192, 192, 6, 208, 245,

1360 data 7, 68, 51,193,193, 5,208,

3

141

96

3

19

0

0

133

243

174

65

192

130

250

180

200

220

240

4

24

2

0

202

254

134

3

134

208

49

165

208

227

80

54

0

208

0

One more thing: There appears to be more than 26 Supernun

available; £* and££, among others. How many can you find?

Listing 3: Transfer Supernumbers to regular BASIC array, A()

100 rem supernumber arrays

110 rem this program puts " supernumbers"

120 rem £a-£z into the array a(1)-a(26)

130: ^^

140 dim a(26):print"EBH"
150fori = 1to26

160 poke 631,13: poke 198,1

170 l$ = chr$(64 + i)

180 i$ = right$(" " + mid$(str$(i),2),2)

190 print" 0a(" i$") = £" l$": contPBi";:end
200 next: rem now print out array

210fori = 1to26:printa(i),:next

The Transactor 38 Volume 6, Issue 01

OH

KL

CJ

PB

GK

NA

ML

BG

AN

KC

EO

FP

IP

NP

MA

HE

AC

CH

HC

OD

FK

KO

MF

Fl

IA

KH

PN

EK

LE

CK

MP

LL

LH

00

EN

DB

PO

IK

IK

GA

LI

KB

IB

OC

PC

CE

Nl

GF

ON

ML

KK

JK

DP

Dl

DA

OH

GC

KL

EM

GA

AH

CO

Listing 2: Supernumbers PAL source

10 :

20 open2,8,2,"(t

30 :

40 rem activate

50 :

60 sys700

70 ;

80 .opt o2

90 ;

£>0:supemumber.obj,p,w"

pal

100 ; supernumbers for the commodore 64

110;

120; by John r.

130;

140; no rights t

150;

160 chrget

170;

180 valtyp

190 intflg

200;

210 ierror

220 ieval

230;

240olderr

250 oldeval =

260;

bennett

eserved

$0073 ;get next byte

$0d ;data type (0 = number)

$0e ;data type (0 = floating point)

$0300 ;the vectors to

$030a ;be modified

$e38b ;the old values

$ae86 ;in the vectors

270 ; routine which returns with carry

280 ; set if accumulator is a letter

290 ckalph =

300;

$b113

310; routine to load floating point

320; accumulator

330 ; to by (a,y)

340 memtoi =

350;

with number pointed

$bba2

360 ; routine which changes ascii to

370; floating poin

380; by oldeval

390 ascflt

400;

410*

420;

430 cold

440;

450 jsr

460;

470 warm =

480;

490 Ida

500 sta

510 Ida

520 sta

530 Ida

540 sta

550 Ida

560 sta

570 rts

580;

590;

600 newerr cpx

610 bne

620;

- normally called

$bcf3

$c000

* ; cold start

clrram ; set ram to zero

* ; warm start

#<neweval ; replace vectors

ieval

#>neweval

ieval +1

#<newerr

ierror

#>newerr

ierror +1

#11 ;only forgive

realerr ;syntax errors

PO

El

AA

CA

EB

CG

DF

CD

IN

OK

FK

CF

AF

FC

JE

FF

JF

MA

AK

OK

MJ

KG

MJ

CN

CK

GO

OK

MN

EA

Jl

IB

NP

HF

CN

IK

PJ

EE

OF

AE

JB

FP

Gl

LP

DO

CO

PO

AK

ID

MM

MO

AO

JB

ML

KN

IP

GB

IN

CH

AD

KD

ME

OE

OL

630

640

650;

660 realerr

670;

680 found

690

700;

710

720

730

740

750

760

770

780

790

800

810;

cmp#"£"

beq found

jmp olderr

jsr chrget

jsr ckalph

sbc #"a"

asl

tax

jsr chrget

Ida numtab,x

Idy numtab+1

Idx #0

stx valtyp

stx intflg

rts

820neweval Ida #0

830

840

850

860;

870

880;

890 nodigit

900

910;

920

930;

940found1

950

960

970

980

990

1000;

1010

1020

1030

1040;

1050clrrarr

1060

1070 more>

1080

1090

1100

1110;

sta valtyp

jsr chrget

bcs nodigit

jmp ascflt

cmp#",£"

beq foundi

;make sure a '£'

;caused it

;not supernumber

;find out which

; letter is next

;compute position

;in address table

;pointto next byte

;get address in

,x ;(a,y) registers

;real number

;not supernumber

jmp oldeval+ 12 ;notsupernumber

jsr chrget

jsr ckalph

sbc #" a"

asl

tax

jsr chrget

Ida numtab.x

Idy numtab +

jmp memtoi

Idx #130

Ida #0

sta ram-1,x

dex

bne morex

rts

;find out which

; letter is next

;compute position

;in address table

;point to next

;put supernumber

1,x ;into floating

;point acc.#1

;set all super-

lumbers to zero

1120 ; address table for supernumbers

1130;

1140 numtab .word ram,ram + 5,ram + 10

1150 .word

1160 .word

1170 .word

1180 .word

1190 .word

1200 .word

1210 .word

1220;

1230 ram*

1240;

1250 .end

ram+ 15,ram+ 20

ram+35,ram + 40

ram + 55,ram + 60

ram + 75,ram + 80

ram+ 25, ram+ 30

ram + 45,ram + 50

ram + 65,ram + 70

ram + 85,ram + 90

ram + 95,ram +100,ram +105

ram + 110,ram + 1

ram +125

= * + 130

15,ram + 120

The Transactor 39 Volume 6, Issue 01

VARPTR: Creation of

a new BASIC Function

Anthony Bryant

Winnipeg, MAN.

The VARPTR function, which returns the address of a given

variable in memory, is standard in many BASICs but not, alas,

Commodore BASIC. There are times, such as when executing a

short machine language routine stored within a string, when it

is desirable to know where the darned thing is in memory.!

Just change the USR vector (at 785-786 on the C64, 1-2 on

others) to point to this little routine:

LDA$48 ;($45forPET)

LDY$47 ;($44forPET)

JMP $B391 ;C64 fix-float conversion

; ($D391 for VIC-20,

$C4BC for BASIC 4.0,

$D26Dfor2.0)

then, either in direct or program mode, USR(variable) will give

the address of the variable, whether integer, real, or string.

Note that with a string variable it points to the first byte of the

string descriptor, and with real or integer variables it points to

the data (not the name).

Thus, if you use a statement like

V = USR(ML$)

then

PRINT PEEK(V)

will show the length of ML$, and

PRINT PEEK(V +1) + 256*PEEK(V)

will give the starting address of the string itself. Using this

technique, you could put a short (less than 256 bytes) machine

language program into the variable MLS, then SYS to the

string's start address to execute the program. A clean solution,

precluding the need to protect memory for a temporary pro

gram.

Here's a bit of BASIC to put the VARPTR program (for the C-64)

in the cassette buffer and set up the USR vector accordingly.

5 rem varptr: " USR(var)"

10 fori = 828to834:read a:pokei, a:next

20 poke 785, 60: poke 786, 3

30 data 165, 72, 164, 71, 76, 145, 179

Editor's Note: This has to get the award for "Best 7-Byte

Program "!

Extra C64 Editing Commands

Using the Function Keys

While programming, and particularly when doing disk opera

tions using filenames from a directory on the screen, it is handy

to be able to clear the screen of a small portion - say one or two

lines below the cursor or everything below the cursor, to allow

room for disk messages.

With the installation of the following pre-interrupt routine, the

function keys become:

Fl - cursor to lower left corner

F3 - clear one line below cursor line

F5 - clear five lines below cursor line

F7 - clear to bottom from below cursor line

The routine which follows (printed in both assemble source

and BASIC loader formats) is relocateable anywhere, taking up

only 75 bytes. In addition it can be used with the screen in any

bank position as it uses the C-64's clear screen line routine in

ROM (which according to Mr. Butterfield hasn't changed with

the ROM updates - one lives in hope!).

The Transactor 40 Volume 6, Issue 01

There are some personal preference changes which can be

made to the routine:

1) If you want F5 to clear other than five lines then

number of INX instructions.

2) As it stands, F5 won't clear five lines unless there

modify the

at least five

lines remaining to the bottom of the screen. Change the BCS

EXIT instruction to BCS BOT and it will clear five lines or

less, until the bottom of the screen is reached.

Al

LI

BG

DH

GK

JA

DD

AF

IN

KB

JD

MN

JA

II

NA

FC

NA

KE

10

10 rem* data loader for "screen edit" *

20cs = 0

30fori = 49152to49226:reada:pokei,a

40 cs = cs + a:next i

50:

60 if cs<>9168 then print" ***** data error **

70 sys49152

80 end

100:

1000 data 120, 169, 13,141, 20, 3,169,

1010 data 141, 21, 3, 88, 96,166,214,

1020 data 2,165,197, 41,127,201, 4,

1030 data 4,162, 24,208, 38,201, 5,

1040 data 3,232,208, 17,201, 3,208,

1050 data 162, 24,208, 17,201, 6,208,

1060 data 232, 232, 232, 232, 232, 224, 25,

1070 data 8, 32,255,233,202,228, 2,

1080 data 244, 166, 2,160, 0, 32, 12,

1090 data 76, 49,234

The Transactor

***":end

192

134

208

208

4

24

176

208

229

41

LN

GN

JG

MK

PF

KO

IB

KK

ED

HF

HL

GE

HM

CK

OH

GO

KH

OC

KC

AH

NN

NA

KF

IH

EP

GG
DA
DA

FH

CL

LB

EC

PD

HK

AO

Dl

JP

PC

FH

HO

HD

KK

OJ

EO

OO

IP

LH

DE

DP

JB

FA

PJ

BM

PL

10

OB

GB

JA

AG

01

LN

IJ

100sys700

110 .opt oo

120*

130 ;screer

140;"F1"

150 ; " F3"

160; " F5"

170 ; " F7"

180 setup

190

200

210

220

230

240

250

260;

270 newirq

280

290

300

310

320

330

340

350
QCfl fO
ODU To

370

380'
390

400

410 f7

420

430

440 bot

450

460

470 f5

480

490

500

510

520

530

540

550 doit

560

570

580

590

600 ckit

610

620

630 exit

640

650 move

660

670

680 oldirq

690

700 .end

;tostart "PAL" assembler

= $c000

editing routines:

- cursor to lower left corner

- clear one line

- clear five lines

- clear to bottom

=

sei

Ida

sta

Ida

sta

cli

rts

=

Idx

stx

Ida

and

*

#<newirq

$0314 ;irq vector

#>newirq

$0315

*

$d6

$02

$c5

#$7f

cmp#4

bne

Idx

bne

cmp

bne

inx

bne

=

f3

#$18

move

#5

f7

doit

#

cmp #3

bne

=

Idx

bne

=

cmp

bne

inx

inx

inx

MX

inx

=

cpx

bcs

jsr

dex

=

cpx

bne

=

Idx

=

Idy

jsr

=

jmp

f5

#

#$18

ckit

#

#6

oldirq

#

#$19

exit

$e9ff

$02

doit

*

$02

*

#0

$e50c

*

$ea31

;save current cursor line

;test current key pressed

;testfor key "F1"

;bottom screen line

;branch always to move cursor rtn

;key "F3"

;point to line below cursor line

;clear line routine

;key "F7"

;clear from bottom to cursor

;branch always

;key "F5"

;point to five lines

;below cursor line

;check max screen line limit

;clear screen line routine

;reached cursor line"?

;no

;restore cursor line position

;left column position

;pos'n cursor, fix line/color mem

Volume 6, Issue 01

Bootmaker II

The program listed here is a special type

of program. When you RUN it, it writes a

BASIC program to your specifications. It

allows people with no programming expe

rience to design and create personalized

"BOOT" programs in seconds, simply by

answering a few simple questions.

A "BOOT" is a program that automatically

loads another program. Its main purpose

is to eliminate memory work. Not com

puter memory, but your memory. Some

programs, like many machine language

routines, need to be loaded using ",8,1"

instead of the normal LOAD"NAME",8. If

you have a lot of these programs on as

sorted disks all over, it sometimes be

comes hard to remember which need the

",1" and which ones don't. Additionally,

many programs require specific SYS com

mands to activate them. Since there are

many locations in memory where a ma

chine language program can sit, there are

many different SYS commands to remem

ber.

Simply running Bootmaker II will show

you basically how it works — It asks the

appropriate questions. When entering the

program, note that many of the state

ments require that they be typed in EX

ACTLY as they appear.

EC

Fl

HP

HI

Nl

Jl

Kl

PG

EB

AG

MD

CK

GO

FP

PN

JF

OD

KE

OH

JP

BK

EM

IL

OA

IL

PL

AO

IP

LC

HN

HM

ON

HH

MN

DK

EH

GC

OB

KN

OH

CD

BA

AK

OE

BL

GH

GJ

IM

Jeff Goebel

Georgetown, Ont.

0 rem" bootmaker ii - magazine version

1 rem"

2 rem" transactor magazine

3 rem"

4 rem" written by Jeff goebel 1984

5 rem"

6 rem"

10poke53280,0:poke53281,0:printchr$(147)chr$(14)

110 print" Input name of program to boot" :inputc$

150 input" Screen colour of boot (1-16)" ;a$:b = val(a$)

170 input" Border colour of boot (1-16)" ;a$:a = val(a$)

175 input" Cursor colour of boot (1-16)" ;a$:c = val(a$)

180 print" Screen message #1 while loading":inputs1$

190 print "Screen message #2 while loading" :inputs2$

210 input" Activate command (sys or run)" ;ac$

220 print" Save @:"c$" ?"

230 geta$:ifa$ = "" then230

240 ifa$ = "n "then 1000

245 b$ = c$:print" Boot name: ";b$:c$ = b$+ ".1 " :print" It loads: " ;c$

246 print "ok?"

247 geta$:ifa$<>" y" anda$<>" n" then247

248 ifa$ = " n" theninput" Input name to load" ;c$

250open15,8,15

260 print#15," cO:" + c$ + " = " + b$ + ""

270print#15,"s0:" +b$+ ""

280close15

290open15,8,15

300 input#15,a$,a1$,a2$,a3$

310 printa$;" "a1$;" " ;a3$;" " ;a4$:goto 1007

1000 ifa$= " n"theninput" name of boot program" ;b$

1001 print" Boot: " ;b$:print" Loads: "c$:print"OK?"

1002 geta$:ifa$<>" y" anda$<>" n" theni 002

1003 ifa$= "n"thenrun

1007 printchr$(147);" Creating boot program. BOOTMAKER II"

1008 print" Transactor Magazine 1985 Jeff Goebel"

1010 print"EZBBBliO rem boot by bootmaker ii"
1015 print" 20 rem transactor magazine"

1020 print "30 rem Jeff goebel - 1984

1030 print" 40 poke53280," a" :poke53281," b":?" chr$(34)"^Q";
chr$(34);" :poke646," ;c

1040 print" 50 ?" chr$(34);s1 $

1050 print" 55 ?" chr$(34);s2$;chr$(34);" :poke646," b"

1060 print" 60 ?" chr$(34)"flload" chr$(34)" chr$(34)" chr$(34);
c$;chr$(34)"chr$(34)";

1061 printchr$(34);" ,8,1 "chr$(34)

1070 print" 70 ?" chr$(34);" EfiEBI" ;ac$
1080 print"80 poke198,2:poke631,13:poke632,13

1090 print" 90 ?" chr$(34);" El" ;chr$(34);" mew"
1100 print" @save" chr$(34);" @0:" b$;chr$(34);" ,8"
12OOpoke198,1O:fort = 631to641:poket,13:next:print"0":new

The Transactor 42 Volume 6, Issue 01

Datapoke Aid Daniel P. Chernoff

Portland, OR

The Easy Way to Enter BASIC Loader Programs

If you're a hunt-and-peck typist like myself you'll appreciate

this handy utility to facilitate the typing in of machine language

BASIC loader programs.

As you know, these programs consist of a series of DATA

statements which, when the program is run, are POKEd into

memory locations to create a machine language program that

can then be accessed with a SYS command. Usually a check

sum is provided to check the total of the numerical data entered

as a method of spotting an entry error.

Datapoke Aid is a BASIC program using Dynamic Keyboard, a

program line eraser to remove it after it has done its job, a

numeric keyboard and error-trapping routines to create in a

fast manner the lines of DATA statements for the loader pro

gram.

The program resides at lines 59999 and above to ensure that it

doesn't interfere with the program lines to be entered. When

first run the program prompts for the following inputs:

(1) Right or Left-hand keypad (Being a rightie 1 assume, but

don't know, that a pad on the left side of the keyboard

would be a convenience for our sinister friends);

(2) The starting program line for the data statements to begin at;

(3) The number of data statements per program line (usually an

even number in the range 6-20); and the

(4) Checksum, if any (This does not check each data statement

line but only the grand total - most long loader programs

provide one).

Once this information is entered it need not be entered again,

even if the typing in of the program is interrupted. In fact,

because each data statement line entered becomes a program

line, no work is lost if the program breaks or is otherwise

halted. (Even in the unlikely event of a crash (keyboard freeze-

up) a reset, if you have that facility, and an UNNEW program

will restore all your work. The program can be saved as a

BASIC program at any point following the entry of a line and

then reloaded at a later time to continue the entering of

subsequent data statement lines.

The key to the program is an error-trapping routine that, in

conjunction with the numeric keypad, allows only numerics to

be entered and only numbers between 0 and 255. After each

number is inputted from the keyboard a comma is inserted by

pressing the spacebar as the program checks to see that the

number lies in the prescribed range. (The 'DEL' key permits

corrections to be made beforehand.) A valid number yields a

'right' ding tone and the program proceeds to the next data

item, whereas an invalid number entry provokes a 'wrong'

buzzer and blanks the item for re-entry.

After each line of data statements is entered the program then

jumps to the Dynamic Keyboard routine at 60230-60240

which enters the line into the program, updates the running

sum of the data items and resets for entry of the next line. The

program entry may be halted at the end of the data entry or at

any intermediate point (at the end of a data statement line) by

pressing the Fl function key.

If entry is not completed when halted then the entire program,

consisting of the lines entered thus far and the Datapoke Aid

utility, can be saved to disk. Conversely, when all entry is

finished then, in response to the prompt, the utility can be

deleted by the routine at 59999 (A useful little 'Electric Eraser'

you can find use for elsewhere, it essentially tells the computer

that the top of BASIC memory is below the portion at lines

59999 onwards where this utility program resides.) However,

before deleting the utility, the program forces you to save the

file, just in case.

After the utility has been deleted, the remaining BASIC loader

program can be edited or augmented as any program. If the

checksum is wrong after your entry (quite likely, and the

buzzer will tell you so), the program can be proofread against

the original and errors corrected.

Note that once the program is run, it modifies itself by adding

lines 60020 and 60030 to intialize important variables and skip

the initial start-up questions. To re-run the program for a 'cold

start', change these lines back to the way they appear in the

listing.

I find the real value of this program, for a non-typist, is the

ability it provides to enter the program lines completely with

one hand while the other traces along the program listing being

copied, and without the necessity of either looking at the

monitor screen to verify where you are or moving your hand

from a single position poised above the keypad.

The Transactor 43 Volume 6, Issue 01

GE

DH

EF

II

PP

CM

GG

10

cc

GJ

Jl

HO

MH

ND

EE

OP

GE

FL

Jl

HD

FJ

GB

NA

MM

OJ

NN

DO

MG

KN

AG

PP

NP

AN

AA

AB

JL

LB

GN

EA

CP

PN

LJ

CN

LK

DN

AA

IP

NP

CL

ML

CD

KC

IE

DJ

Cl

HG

JM

59999

60000

60002

60004

60005

60006

60008

60020

60030

60040

60050

60060

60070

60080

60090

60100

60110

60120

60130

60140

60150

60160

60170

60180

60190

60200

60210

60220

60222

60225

60227

60230

60240

60250

60260

60270

60280

60290

60300

60310

60320

60330

60340

60350

60360

60370

60380

60390

60400

60410

60420

60430

60440

60450

60460

60465

60470

a = peek(61) + 256*peek(62) + 3:poke786,int(a/256):poke785,a-256*peek(786)

rem:" DATAPOKE AID 10/24/84 (c)1984 Daniel P. Chernoff

ifer = 0then60020

printchr$(31)" sA" chr$(34)" @0:" fchr(34)" ,8

print" EBBBIvE" chr$(34)f$chr$(34)" ,8e
poke198,4:poke631,19:form = 1to3:poke631 +m,13:next

iferthenpokea-2,0:pokea-1,0:poke45,peek(785):poke46,peek(786):clr:run

poke 2,0

poke53280,6:poke53281,6:printchr$(14)

m" tab(14T DataPoke Aid" :printtab(14)"

Left Q I |flor right Q rpjhand keypad: r|j|" ;:inputk$:print"Q
tarting line of data:" ;:inputb^print"0" tab(22)"

program line increments: 10|||" ;:inputin:print | |"tab(24)"
;No. of data items per line: 8|y ' ;:inputd:print"|g^tab(27)"

1 ;:inputck:print" 0" tab(18T " :goto607108V

|F1-end [data sum = "cs"||]checksum is"ck"0" ;:return

I"chr$(14):poke53281,6:poke53280,6:gosub60320

[40 spaces]" ;:next

a(k):c$ = " ":k = k+ 1

gosub60225:next

;:goto60170

(Checksum (if an*

poke214,21 :print:print"f
c = b + (in*peek(2)):print'

dima(30):k=1

print" s" ;:forj = 1to7:print

gosub60110

I = l + 1:gosub60750:print"§ |"c"data " ;:fori = 0tod-1
gosub60480:ifa$ = "" then60170

ifa$ = chr$(20)andc$<>" " thenc$ = left$(c$,len(c$)-1):print'

ifa$= "EJ"then60530
gosub60790

ifa$ = chr$(13)thena(k) = val(c$):cs = <

ifa$ = chr$(13)thenifi<d-1 thenprint",

goto60230

s = 54272:pokes + 24,15: pokes + 1,110

pokes + 5,9:pokes + 6,9:pokes + 4,17:pokes + 4,16:return

ifa$ = chr$(13)thenpoke2,peek(2) +1 :print:printchr$(31)" 60020cs = " cs:print" rU

ifa$ = chr$(13)thenpoke198,4:poke631,19:form = 0to3:poke632 + m,13:next:end

ifasc(a$)<45orasc(a$)>57thengosub60440:a$= "" :goto60170

printa$;:c$ = c$ + a$:a(k) = val(c$)

ifa(k)>256thengosub60440:print" ^Error! - reenterj
goto60170

forj = 1to300:next:ifa(k)>1000thenl$ =

c$= " ":l$= "" :a(k) = 0:i = i-1 :return

poke214,6:print:printspc(16)'

ifk$ = " I" then60390

printspc(14)'

printspc(14)'

printspc(10)'

printspc(14)'

return

printspc(14)'

printspc(14)'

printspc(10)'

printspc(14)'

:gosub60290:next

|Keypad" :printspc(16)"

|o_EJ":printspc(11)" 7
jprintspc(11)" 4

[B-E":printspc(11)"0
printspc(15)", [comma]

7t|jr':printspc(11)"

gg|";printspc(11)" 4

cul Dvly":PrintsPc(11)1
printspc(15)", [comma]

0

elj| nr

dy A
zfiT Qx
^space ba

return

rem: 'wrong buzzer'

poke54296,15:poke54273,5

poke54277,0:poke54278,240:poke54276,33:fort=1to500:next

poke54276,32:goto60470

fort = 54272to54296:poket,0:next:return

The Transactor 44 Volume 6, Issue 01

FG

00

BL

AG

El

BN

IP

JH

HA

LF

EA

0J

ID

Gl

PK

NB

MP

CL

LA

CC

GG

OK

HJ

MB

CF

HP

IJ

PH

NN

FO

DB

DA

10

HK

DH

PH

DN

IG

EE

Gl

LK

KO

CG

60480

60490

60500

60510

60520

60530

60540

60550

60560

60570

60580

60590

60600

60610

60620

60630

60640

60650

60655

60660

60670

60680

60690

60700

60710

60720

60725

60725

60730

60740

60750

60760

60770

60780

60790

60800

60810

60820

60830

60840

60850

60860

60870

rem:flashes char cursor to screen awaiting a get. change char as desired

print" |H";
poke204,0:geta$:ifa$= " "then60500

poke204,1:print" |[|";
return

ifcsOckthenprint"| |" :gosub60440:gosub60110:print"| |" tab(8)"flError in data statements^
f1$= "testfile

print " Q | Do you wish to erase the Datapoke
print" program lines (64000-) prior to

print" saving the data statements you have": print" just entered? yfl "i
gosub60500:q$ = a$

. IjNoJQ." :gosub60750:gosub60620:goto60650

thener= 1 :print:gosub60620:goto59999

|" ;:print:printspc(18);

:goto60620

ifq$ = " n" thenprint:printtab(15)"

ifq$ = " y" orq$ = chr$(13)orq$ =

print "B H":goto60570
print "g I Enter filename: "f1$"

inputf$:iff$= "" thenprint "|S
return

printchr$(31)" @60540f 1 $ = " chr$(34)f$
print" ro|60025pO2," (c-b)/in:print" f$ = " chr$(34)f$
print"BBjgO60670" :poke198,7:poke631,19:form = 1 to6:poke631 + m, 13:next:end
print "g|gg|":f$= " @0:" +f$:savef$,8
print:print:verifyf$,8

ifst<>64thenprint"H Resave yfH" ;:inputr$:ifr$= "y"then60670
end

rem put variables in line 1 and return to 120

printchr$(31)" 060030b = "b":in= " in" :d = "d":ck= "ck":k$= "chr$(34)kchr(34);

print ":gO60120 ":print"rU

print "gO60120 ":print"rU

gosub60320

poke198,3:poke631,19:poke632,13:poke633,13:end

rem: 'right ding'

tn = 54273:poketn + 23,15:poketn,40

poketn + 4,9:poketn + 5,0:poketn + 3,17:fort = 1 to500: next:poketn + 3,16

poketn,0:poketn + 3,0:poketn + 4,0:poketn + 5,0:poketn + 23,0:return

ifk$ = " I" then60810

kp = -(a$ = " m")-2*(a$ = ",")-3*(a$ = ".")-4*(a$ = " j")-5*(a$ = " k")-6*(a$ = " I"):goto60820

kp = -(a$ = " x")-2*(a$ = " c")-3*(a$ = " v")-4*(a$ = " d")-5*(a$ = " f")-6*(a$ = " g"):goto60840

kp = kp-7*(a$ = " u")-8*(a$ = " i")-9*(a$ = " o"):ifa$ = " n" ora$ = " h " thena$ = " 0"

goto60850

kp = kp-7*(a$= "e")-8*(a$= "r")-9*(a$= "t"):ifa$= "z"ora$= "s"thena$= "0"

ifa$ = chr$(32)thena$ = chr$(13)

ifkp>0thena$ = chr$(48 + kp)

kp = O:return

The Transactor 45 Volume 6, Issue 01

Load & Run Thomas Henry

Mankato, MN

Start Up Machine Language Programs Just Like BASIC!

Recently I wrote a program for the CBM-8032 in pure machine

language. In order to run the program I had to first load it and

then type SYS25978. Needless to say, this ghastly number is

hardly my favorite, and as a consequence, every time I wanted

to run the program I had to look back to my notes to find the

proper SYS address. And things get even worse on the VIC-20

or Commodore 64. Consider that you not only have to recall

the proper SYS address, but you must also remember to load

the program with a L0AD"filename",8,l. Surely there must be

an easier way to get machine language programs up and

running on a computer without all the hassles of special load

instructions and forgettable SYS addresses!

Introducing The "LOAD & RUN" Utility

Good news; there IS a better way! Described in this article is a

utility, called "LOAD & RUN", which you can apply to any

programs of your own. This utility transforms a machine

language program into a form which can be LOADed and RUN

just like a BASIC program. No special load instructions are

needed, and there's no need to concern yourself with the SYS

address. If you deal with machine language as much as I do, I'm

sure you will find this to be a real timesaver as well as

brainsaver. Best of all, "LOAD & RUN" can be made to work on

any model of PET/CBM, the VIC-20 or the Commodore 64 and

any machine language programs you have can be easily retro

fitted to include this new feature.

Let's get a general idea of the problem and how to solve it.

Usually large machine language programs sit high up in mem

ory far away from the start of BASIC. Somehow we have to load

the program like BASIC and then transfer it up to its proper

place. Finally some sort of automatic SYS should occur which

will start execution of the code. Hence, we will transform the

code so that it sits low in memory (where it can be loaded like

BASIC), and include a small machine program which transfers

the code back up to where it belongs and then executes it.

How "LOAD & RUN" Works

The assembler listing shows the program which will accom

plish all of these tasks. The listing looks complex, but this is

because many comments have been included. (Skilled ma

chine language practitioners will find everything they need to

know in the listing alone and may skip ahead, but beginners

should keep reading here for more details.) Actually the code is

a mere 42 bytes long! Since the program is so short and yet

useful, machine language tyros will find this to be a great

learning experience as well.

Let's get an overview of the program, leaving the listing to

supply the details. In lines 00015 through 00040 you will find

the equates for the various types of Commodore computers.

Simply pick the set of equates which apply to your machine.

(For the purpose of example, the code was assembled using the

PET/CBM 4.0 ROM equates). Note that the actual program

starts at address $0401 which is where a BASIC line would start

in memory. What we do is create the BASIC line:

10SYS1037

To effect this we need a pair of link bytes, a pair of bytes for the

line number, the token byte for SYS, then the ASCII representa

tion for "1037", followed by three zero bytes. When this BASIC

line is run, a SYS1037 occurs, which transfers control to

address 1037 ($040D in hexadecimal). $040D is the address of

the machine language module entitled "INIT" (line numbers

00061 through 00074 in the assembler listing). By the way, the

number 1037 will work for VIC-20's with the 3K expander

added but will have to be changed to 4109 for the stock VIC-20

and 4621 for VIC's with 8K or more of extra memory. Use the

number 2061 for the Commodore 64. These numbers differ, of

course, since each of the three machines has a different address

for the start of BASIC.

The module entitled "INIT" contains all of the code needed to

transfer a program up to its proper place. Essentially you set a

The Transactor 46 Volume 6, Issue 01

pointer to the start of the code to be moved, another to the end

address plus one, and still another to the end address plus one

of the code's final resting place. Next you call a subroutine from

your computer's ROM which does the actual moving of the

bytes. Finally you jump to the start of the program once it is in

place.

With all of these details, let's not lose sight of the original

problem. Notice how we have a BASIC line followed by the

"INIT" module, which is itself followed by the program to be

moved. That is, all of the code is now contiguous and at the

start of BASIC. Thus it is possible to load the entire lot as a

single BASIC program (no LOAD" filename" ,8,1 is needed). If

this still seems unclear to you, refer to the assembler listing

which is heavily annotated and provides many details.

Using "LOAD & RUN" in your own programs

Well, enough theory; let's see how to actually use this little

marvel! Here's a checklist of what's needed to retrofit a pro

gram:

(1) Obviously we need a machine language program to change.

This can be a game, utility, word processor or whatever

program you wish to work over. It can be a commercial

program or one that you have entered yourself.

(2) Next you will need some sort of extended machine lan

guage monitor. If you own a PET/CBM, any of the public

domain monitors like Supermon or Micromon will do the

trick. (Versions of Supermon for all machines can be found

on any Transactor disk.) VIC-20 users also have access to

these two monitors as well as commercial equivalents like

VICMON or HESMON. Commodore 64 users can use the

public domain Supermon or the commercial HESMON

package. Whatever monitor you use, it makes no differ

ence, as long as you have access to the "A", "M" and "T"

commands (assemble, memory dump and transfer, respec

tively).

To modify your machine language program so that you can

LOAD and RUN it like BASIC, simply follow these steps. For the

sake of discussion, it is assumed that you will be doing this on a

PET/CBM with 4.0 ROM's. The steps are similar for other

Commodore computers and any variations in the procedure

will be mentioned later on.

(1) First off, load in the extended machine language monitor of

your choice. You may use a cartridge, tape or disk-based

system, as long as it supports the "A", "M" and "T" com

mands.

(2) Now assemble the code of "LOAD & RUN" using the "A"

and "M" commands of your monitor. Start at address

$0401 and continue through to address $042A. At this

point you still won't know the addresses of "MLE" or

"NEWADD", (in the instructions at line numbers 00065,

00067, 00069 and 00071) so just put in dummy bytes for

the moment. Likewise, the address of "RUN" in line num

ber 00074 is"still unknown, so again just put in two bytes to

hold the place. We will come back and change these

instructions in a later step.

(3) Load in the machine language program to be changed.

(Make sure that it doesn't overwrite your monitor!) Make a

note of its start address and end address. The end address

plus one is "NEWADD", so go back to line numbers 00069

and 00071 and replace the dummy bytes with the true

address. Likewise the start address of your program be

comes the address of "RUN", so go back and replace the

two dummy bytes with the true numbers. (See step (2),

above).

(4) Now using the "T" command, transfer the entire program

which you loaded in step (3) so that its first byte falls at

address $042B. (This is the first free byte following "LOAD

& RUN".) Note the address of the last byte of the transferred

code and add one to it. Using this number, go back to

"MLE" in line numbers 00065 and 00067 and change the

dummy bytes accordingly. (See step (2)).

(5) We're almost done! Now that we know the true address of

"MLE", stick that number into locations ($2A), ($2C) and

($2E). Remember, in 6502 machine language, the low order

byte comes first, followed by the high order. So, for exam

ple, if "MLE" is $3120, you would put the $20 in $2A, $2C

and $2E, and the $31 in locations $2B, $2D and $2F.

(6) Now leave the monitor with the "X" command, thus

returning to BASIC. Save the program, using an ordinary

SAVE to either tape or disk. Since we set the pointers in

step (5) to point after all of the machine code, everything

will automatically be saved, ready to just LOAD and RUN.

Simple, isn't it!

And that's all there is to it. While the instructions may have

seemed long-winded, in actuality the process is quite simple. I

have modified all of my machine language programs to the

"LOAD & RUN" format now, and it has never taken more than

two minutes at most to complete the conversion.

A Few Words To VIC-20 And C-64 Users

VIC-20 and Commodore 64 users can apply this same process

with just a few modifications. First, be sure to use the proper set

of equates for your machine. Next, the locations mentioned in

step are ($2D), ($2F) and ($31) for both the VIC-20 and

Commodore 64. Finally, recall that C-64 users will start their

assembly at $0801 and VIC-20 people at $0401, $1001 or

$1201 depending on the amount of extra RAM added to the

The Transactor 47 Volume 6, Issue 01

system. And don't forget to change the ASCII code in line

number 00052, as mentioned above.

Since the VIC-20 has so many different memory configura

tions, be sure to use the correct addresses for the correct

amount of memory. Clearly, a "LOAD & RUN" program de

signed for a stock machine won't work on an 8K machine, etc.

If you need a more high powered system which does take into

account any extra memory add-ons, check out Jim Butter-

field's excellent utility, "Machine Language Auto-Location",

(COMMODORE MAGAZINE, June/July 1982, pp. 82-84) and

also see my letter to the editor on the same subject (COMMO

DORE MAGAZINE, March 1983, p. 23).

The LOAD & RUN Generator Program

This is for disk drive users. If you have a few programs you wish

to convert and don't want to repeat the above steps over again

for each one, or if you're having trouble with the conversion

process, try the BASIC program in Listing 2. It will ask for the

filename of the program you wish to convert to a "LOAD &

RUN" program, the length of the program, and the SYS ad

dress. With that, it will generate a program on disk, using the

same filename with the characters "LR." appended to the

beginning.

If you're not sure of the length of the program you wish to

convert, it usually won't hurt to err on the high side. To get an

idea of the program's length, look at the number of blocks it

occupies in the disk directory and multiply the block count by

254. That should be sufficient in most cases, except where the

program lies immediately beneath a sensitive area of memory

that must not be destroyed by the LOAD and RUN.

The version of the LOAD and RUN generator listed is for the

C64. Make the indicated changes for PETs or VIC-20s.

Final Thoughts: Why Use "LOAD & RUN"?

As mentioned, it only takes a minute or two to convert any

machine language program to a "LOAD & RUN" format, but

some people may still consider this to be a needless hassle. So

why do it? Well, if you're like me and have lots of machine

language programs kicking around, you will definitely appreci

ate not having to remember a myriad different SYS addresses.

And the ability to load a program on a VIC-20 or C-64 just like

BASIC really simplifies things too.

But perhaps the best advantage is that beginners using your

programs won't have to learn any new commands to get a

program up and running. If you have children who use the

computer they will appreciate this and in general, newcomers

to the computer keyboard will teel far less threatened using

machine language programs if they can LOAD and RUN them

just like BASIC.

Listing 1: Assembler Code for the "LOAD & RUN" conversion

(Add line numbers if using the PAL assembler.)

'load & run' *

a machine language boot-up aid *

*

for the pet/cbm, vic-20 and c-64 *

thomas henry

249 norton street

mankato, mn 56001

*

*

* *

*** equates for pet/cbm with 2.0 or 4.0 roms

newend

oldend

oldsta

basic

move

= $55

= $57

= $5c

= $0400

= $b357

;newend address +1.

;old end address + 1.

;old start address.

;start of basic.

;block move routine — 4.0,

;change to $c2df for 2.0 roms.

*** equates for vic-20 ***

newend =

oldend =

oldsta

basic

move =

$58

$5a

$5f

$1000

$c3bf

; new end address+1.

;old end address+ 1.

;old start address.

;start of basic, stock vie

: block move routine.

*** equates for the commodore 64 *<

newend =

oldend =

oldsta =

basic =

move

$58

$5a

$5f

$0800

$a3bf

; new end address+ 1

;old end address+ 1.

;old start address.

;start of basic.

: block move routine.

this next block of code creates

the basic program- 10 sys1037

* = basic +1

word link

word 10

byte $9e

byte'1037'

;forward link byte.

;line number ten.

;token for 'sys'.

;address of 'init' in ascii.

(.asc '1037' for PAL assembler)

.byte $00 ;end of line byte.

The Transactor 48 Volume 6, Issue 01

link .word $0000 ;end of program mark. Listing 2: BASIC program to create "LOAD & RUN" program on

disk

C64 Version; see below for VIC/PET modifications

;now comes the routine to move the machine

language program into its proper place.

init Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jsr

jmp

#<mls

oldsta

#>mls

oldsta+ 1

#<mle

oldend

#>mle

oldend +1

#<newadd

newend

#>newadd

newend +1

move

run

;set pointer to start

;of code to be moved.

;set pointer to end +1

;of code to be moved.

;set pointer to end +1

;of new address for code.

;go move code into place.

;go run code.

;here follows the block of code which is

;to be moved into position, this is the

;portion you supply for your own application.

m|s = * ;'mls'is the address of the

;start of code which is to be

;moved into place.

;'mle' is the address of the

; (block of code goes in here)

mle = *

;next byte beyond the end of

;the code.

newadd = $8000

;'newadd' is the address of the next byte

;beyond the last byte of the code, after

;it has been moved into its final position.

;$8000 is used here merely as an example.

run newadd-mle + mls

;'run' is the start address of the

;code after it has been moved into its

;proper place, (usually in high ram).

.end

EE

IB

NE

M

KA

OH

GC

FN

EE

CD

MB

BO

PO

NM

EN

PL

HM

FC

PG

CE

GM

OP

Dl

OL

HF

KN

Fl

Fl

BE

AP

LC

FB

GE

LG

HN

DE

PC

100 rem load&run file creator

110 dim s°/o(7)

120 input "filename " ;f$

130 input "program length" ;pl

140 input" sys address " ;sy

150open1,8,12,f$+ ",p,r"

160 get#1 ,a$,b$: rem start address

170 s1 = asc(a$ + chr$(0)):s2 = asc(b$ + chr$(0))

:sa = s1 +256*s2

180bs = 2048: ptrs = 43

190:

200 mls = bs + 43 :rem source start

210 me = pi + mis + 1 :rem source end

220 na = sa + pi + 1 : rem destination end

230 s°/o(O) = mis and 255

240s%(1) = mls/256

250 s°/o(2) = me and 255

260 s°/o(3) = me/256

270 nl% = na/256

280 s°/o(4) = na-256*nl%

290 s%(5) = nl%

300sy% = sy/256

31Os°/o(6) = sy-256*sy%

320 s%(7) = sy%

330:

340 data 11, 8, 10, 0, 158, 50, 48, 54, 49, 0

350 data 0, 0,169, -1,133,95,169,-1

355 data 133, 96, 169, -1, 133,90, 169,-1

360 data 133, 91, 169, -1, 133,88, 169,-1

370 data 133, 89, 32,191,163,76, -1,-1

380:

390open2,8,11,"@0:lr." +f$+ ",p,w"

400c = 0:bs = bs + 1

410 print#2,chr$(bs and 255)chr$(bs/256);

420 tori = 1 to42:read a:ifa = -1 thena = s°/o(c):c =

430print#2,chr$(a);:next

440 fori = 0to1 :get#1 ,a$:s = st:print#2,left$(a$

+ chr$(0),1);:i = s:next

450 closei: close2: end

c +1

Changes to make for PET/CBM BASIC 2.0/4.0 version:

180bs = 1024: ptrs = 40

340 data 11, 4, 10, 0,158,49,48,52,55,0

350 data 0, 0,169,-1,133,92,169,-1

355 data 133, 93, 169,-1, 133,87,169,-1

360 data 133, 88, 169,-1, 133,85, 169,-1

370 data 133, 86, 32,87,179,76,- 1,-1

(replace 87, 179 with 223, 194 for BASIC 2.0)

Changes to make for VIC-20 (standard configuration)

180bs = 4096:ptrs = 43

340 data 11, 8,10,0,158,52,49,48,57,0

370 data 133, 89, 32, 191, 195, 76, -1, -1

The Transactor 49 Volume 6, Issue 01

Extra EPROM

Space for PETs

F. Arthur Cochrane

Jackson, SC

The average PET user probably has some type on ROM or

EPROM plugged into the extra sockets inside his PET. This

firmware can be commercially bought or programmed by the

user. On PETs with 12 inch screens there are only two empty

sockets at US11 and US12. When these are full the user can get

a multiple socket ROM switcher such as a Socket-Me-Two or

Spacemaker II.

On these machines if the user needs some ROM space in

addition to the two sockets there is 1 3/4 K space for machine

language programming. This extra memory is at addresses

$E900 to $EFFF which is not currently used by the PET. The

easiest way to use this ROM space is to remove the 2K BASIC

ROM at UD7 (the only BASIC ROM on a socket) and replace it

with a 4K EPROM (such as a 2532). The 2K BASIC ROM's

contents will have to be transferred to the lower 2K of the 4K

EPROM and then any machine code the user may wish can be

put into the upper 1 3/4 K of the EPROM. The EPROM can then

be plugged into the UD7 socket. When the PET addresses the 1/

0 chips in locations $E800-$E8FF the EPROM will not be

enabled because Commodore added logic on the newest PETs

to not enable the UD7 socket for this address range. The PET

thus has the following pattern for the address space $E000 to

$EFFF:

$E000 to $E7FF UD7 socket (BASIC ROM)

$E800 to $E8FF I/O chips (6520s, 6522, and 6545)

$E900 to $EFFF UD7 socket (user defined)

This modification will not work however if an expansion is

made to the PET that uses the NO ROM pin on the expansion

port (pin J4-20) to disable the BASIC ROMs. NO ROM is

connected to pin 21 on all the ROM sockets and is normally

pulled to plus five volts. Pin 21 on ROMs is a high enable chip

select so when NO ROM is pulled to ground (zero volts) the

ROM is disabled. However on EPROMs, pin 21 is for program

ming voltage and for normal operation it must be held at plus

five volts. Also note that EPROMs plugged in the two empty

sockets (UD11 and UD12) of the PET will be affected in the

same way if the NO ROM pin is pulled to ground. The Super-

PET probably uses NO ROM to disable BASIC and enable the

6809's operating system.

Small screen PET users will not be able to use this technique on

their PETs because if an EPROM were to be plugged in at the

$E000 address range it would be enabled in the $E800 to

$E8FF address range at the same time as the I/O chips. The

enabling of the EPROM and I/O chips at the same time would

cause false data to be read or written to the I/O chips. Also small

screen PETs do not have the NO ROM pin on their expansion

port so pin 21 on all the ROM sockets is always held at plus five

volts.

I hope PET users can use this information to expand their PETs

to fill their needs for firmware program storage

I have modified the 2K extended monitor Extramon to fit into

the $E900 to $EFFF address space of the 8032 and Fat 40.

Extramon had to be reduced slightly to fit into 1 3/4 K and the

following compromises were made. The Fill command was

removed, the Hunt with don't care and Hunt for an ASCII string

was removed (Hunt for ASCII characters with the HEX equiva

lent), the T key (finish execution of a JSR command) was

removed from the Walk command, and the repeat key function

was removed (this is now normal for cursor keys on the 8032

and Fat 40). All other commands remained the same. This E-

ROM.MON source code for the MAE assembler is available.

50
Volume 6, Issue 01

A Really Cheap

Multi-Channel Analogue

Input for Micro Computers

Harold Anderson

Oakville, Ont.

Here is a really cheap way to equip your micro computer to read and

monitor voltages. I have been using this circuit for several years to

make my PET operate as a versatile six channel strip chart recorder

(in conjunction with a printer of course).

The only major component of the circuit is a Motorola MC14447

integrated circuit which costs about $4.00 in single quantities. This

device has six input channels, effectively infinite input impedance

and a typical potential accuracy of 0.05%.

This IC can be interfaced easily to virtually any microcomputer which

has a parallel port; even a parallel printer port would do. This article

gives the software to run them from the Parallel Users Port of a

Commodore PET.

The A to D converter shown in the accompanying circuit diagram is

able to measure voltages in the range of 0 to 2.5 volts with an accuracy

of 0.5 millivolts. Since the input impedance is effectively infinite,

higher voltages can be measured easily by first putting them through a

simple voltage divider made from two resistors.

How the MC14447 Should Be Used

The MC14447 is a somewhat unconventional A to D converter in that

it depends on the intelligence of the computer to compensate for its

own shortcomings. Without a computer capable of simple arithmetic

it would be almost useless. The chip really has 8 input channels, but

two of these are permanently dedicated to two reference levels. As

shown in figure 1, the first reference level is zero volts and is

internally connected to channel zero. The second reference level is

2.5 volts (or something close to that, provided that it is stable.) and is

normally connected to channel 7. That leaves 6 channels for measur

ing unknown voltages. When the chip is used, the computer measures

all eight channels in quick succession. The answer or count, which

the computer gets for each channel, is linearly related to the voltage

on each channel. This linear relationship can be expressed by the

following formula:

CT(n) = Z + S X V(n)

where:

n = the channel number

CT(n) = the answer or count that the computer got for channel n

V(n) = the voltage on channel n

Z = the zero offset (a constant)

S = the slope of the linear relationship (a constant)

Immediately after the the 8 channels have been measured, CT(0),

V(0), CT(7) and V(7) are all known. (Remember V(0) = 0 and V(7) = the

reference voltage). This allows us to solve the two equations in two

unknowns to find the value of the constants Z and S. Once Z and S

have been calculated, the other six voltages can be found from the

values of CT(n). This mathematical procedure sounds more compli

cated than it is, as the following solution to the problem shows.

Z = CT(0)

S = [CT(7)-CT(0)]/[V(7)-V(0)]

V(n) = [CT(n)-Z]/S

As you will see from lines 900, 920 and 940 of the BASIC listing

accompanying this article, the value of all of the 6 unknown voltages

can be found from a BASIC program containing less than 80 charac

ters.

S and Z should be recalculated each time the device is used since they

vary slowly as the temperature of the chip changes. S and Z also are

dependent on the particular chip used and the values of the resistors

and capacitors used. When the computer recalculates the value of S

and Z each time, and then uses the new values to find the voltages, it

is in effect compensating for the changes in S and Z. Since changes in

S and Z are compensated for, it allows us to use very imprecise

components in the circuit. The only things in the circuit which need

be precise are the reference voltage and the linearity of the relation

ship between CT(n) and V(n). Motorola guarantees the non-linearity

to be .2% of full scale maximum and .05% typical.

How The MC14447 Works

A functional block diagram of the MC14447 is shown in figure 1. The

MC14447 chip is somewhat of a cross between a sample and hold

network and a conventional dual slope A to D converter (Dual slope

converters are used in most digital voltmeters). It is controlled by 4

digital input lines. Three of these lines are used to select the channel

being measured (A0, Al and A2). The other line, called the ramp start

or ramp/sample line, sets the chip in either sampling or in timing

mode.

When in use, the computer first selects the channel to be measured

using the three channel address lines. The computer then sets the

ramp/sample line low, connecting the selected input channel to the

ramp capacitor. An offset built into the internal buffer amplifier causes

the ramp capacitor to be charged to a voltage slightly higher than the

actual input voltage. (The time required to charge the capacitor

depends on the size of the ramping capacitor; I used 6.4 ms. The

length of time is not critical provided that it is long enough.) Once the

ramping capacitor is charged, the computer sets the ramp start line

high, breaking the connection between the input voltage and the

ramping capacitor. An internal current source causes the capacitor to

discharge in a very linear fashion. The higher the initial voltage on the

ramping capacitor, the longer it takes to discharge.

The voltage level on this capacitor is monitored by a comparitor.

When the capacitor is discharged to about 0.27 volts the output of the

The Transactor 51 Volume 6, Issue 01

comparitor swings low. The computer monitors the output of the

comparitor and times the period between the start of the ramp (ramp/

sample line set high) and the end of the ramp (comparitor output goes

low). The length of this period is the computers initial measure of the

voltage on the input channel and is, in fact, the CT(n) referred to in the

previous section.

To abbreviate, the sequence to time one channel would be as follows:

1. Select input channel by setting the levels on the channel select lines

AO, Al and A2.

2. Transfer the voltage on the selected channel to the ramping

capacitor by setting the ramp/sample line low.

3. Disconnect the capacitor from the input voltage by setting the

ramp/sample line high.

4. Time the discharge of the capacitor by measuring the time until the

comparitor output line goes low.

Supporting Software

The software which I wrote to operate this chip was written partly in

BASIC, and partly in 6502 machine language. 1 have included the

listings for both parts in this article.

The method of timing the ramp, as mentioned in the previous section

is a matter of user preference. The method which I used on the PET

was probably the simplest and best for most applications.

I wrote a short machine language program to time the ramp. The

program runs in a tight loop during the timing operation. During this

part of the program the X and Y registers are treated as a 16 bit

counter. Each time the program goes through the loop it uses up 15

microseconds, increments the 16 bit binary counter, and checks the

value of the comparitor output. When the comparitor output goes low,

the 16 bit counter contains a binary number proportional to the length

of time taken for the ramp capacitor to discharge.

Since 1 had to write a machine language program anyway, I also wrote

sections to select the eight input channels in sequence and park the

resulting counts in RAM for use by the BASIC part of the software. The

machine language part also initialized the parallel port so that bit 7

was an input (connected to the comparitor output) and the other bits

were outputs, (bits 0, 1 and 2 control channel selection and bit 4

controls the ramp start). This part of the program would have to be

rewritten to match the configuration of the type of computer which

you are using. The PET parallel user port happens to be a 6522 VIA

mapped at addresses $E840 to $E84F.

The BASIC part of the software retrieves the counts from the count

table starting at $0340 (put there by the machine language portion of

the program) and converts these counts to voltages. The BASIC

program then prints the voltages and time on the screen. Lines 480 to

510 calculate the time lost to the PET clock as discussed later. At line

570 the program waits for the operator to hit a key before repeating

the program.

Speed

This program times the ramp in 15 microsecond increments, 15

microseconds being the time to get through the timing loop once. In

order to measure voltages with a resolution of one part om 5000, you

must have a count of 5000 for a the highest input voltage(about 2.5

volts. If each count consumes 15 microseconds then the time for 5000

counts is .075 seconds. Lower input voltages give correspondingly

shorter counts. If the average voltage on the input channels is half of

the maximum of 2.5 volts then the average count time will be about

.0375 seconds and the total time to time all 8 channels will be 8 X

.0375, or .3 seconds.

The counts obtained by the machine language program are most

easily converted to voltage by using a higher level language, such as

BASIC, Pascal, Fortran etc. In my case I used BASIC. It takes the BASIC

interpreter in the Commodore PET about .4 seconds to convert the 8

counts to voltages.

Thus the total time to obtain the voltage on all of the channels is about

.7 seconds. This is not exactly blistering speed, but it is plenty fast

enough to keep up with most laboratory experiments and industrial

data logging applications. It will take longer to print the the voltages

than it does to measure them.

Much greater speed but poorer resolution can be obtained by reducing

the size of the ramping capacitor. This allows the ramping capacitor to

charge and discharge faster.

If some of the channels are not used, time can be saved by not

performing the counts and converting the counts to voltages only on

the channels that are used.

Notes and Suggestions

RE: "Soft" Real Time Clocks

You will notice from the machine language listing included in this

article, that the interrupt is disabled during the machine language part

of program. This is done to ensure that the processor will not be pulled

off the timing function by an interrupt signal while it is timing the

discharge ramp. On the PET, a time-keeping routine or "software

clock" is driven by the interrupt signal. Disabling the interrupt signal

effectively stalls the clock during the timing operation. In order to

correct the clock for the time lost during the timing operation, I wrote

the BASIC program to keep a running total of the time lost during the

machine language part of the program. (Each single count takes 15

microseconds and each sample time is 6.4 milliseconds.) This total

ized correction is added to the apparent time to get the real time.

RE: Negative Voltages

This chip is basically designed to measure positive voltage only. You

will in practice get meaningfull answers for slightly negative voltages.

Just how far negative you can go depends on the particular IC you

have, but most will measure -.05 volts. If the input voltage gets more

negative than that you will have trouble with the power supply

current (as mentioned later) and the ramping capacitor voltage never

getting high enough to switch the comparitor.

RE: Over Voltages

The MC14447 is a CMOS IC and like all CMOS ICs it objects strongly to

having its inputs driven appreciably above the voltage of the positive

power supply or below the voltage of the negative power supply. Over

and under voltages activate parasitic transistors within the chip

causing high power supply currents and some-times logic mistakes. If

you expect to have over or under voltages we suggest that you put a

The Transactor 52 Volume 6, Issue 01

100k resistor in series with the input of each channel (as has been

done in the accompanying circuit diagram).

RE: Power Supply "Hash"

If you decide to build one of these A to D converters using the + 5 volt

power supply from your computer be sure that you filter all of the

"hash" out before applying it to the positive power supply pin of the

MC14447. Transient spikes will cause problems with the comparitor

and buffer amplifier inside the chip, leading to serious inaccuracies.

RE: References

incorporate the measuring program as a subroutine in a larger

program.

1 have located the machine language portion at $6000 and poked the

appropriate locations in the PET operating system to prevent the Basic

interpreter from overwriting the machine code. Similar things would

have to be done on other types of computers.

If you plan to use this converter regularly you might consider putting

the machine language portion of the program into an EPROM.

RE: The Circuit Accompanying This Article

In the circuit diagram accompanying this article a 78L05 voltage The circuit diagram (figure 2) accompanying this article is more

regulator is used for both a power supply and the reference supply.

These regulators are quite stable enough for most applications. If you

are fanatical about stability, use an LM136 (a 2.5V precision reference)

in place of R3.

RE: Input Variations

The voltage which this device actually measures is the voltage on the

input at the instant the ramp start line goes high. If the voltage that

you are measuring is noisy or has ripple on it and you wish to measure

the DC component only, you should put a resistor and capacitor filter

on the input to filter out the AC component. This is what I did in the

circuit shown as figure 2. The resistor can be the same one that you

may want to use to prevent overvoltage inputs.

RE: Common Ground

Notice that this circuit has a common ground with the computer. As a

result one side of all the voltages which you measure will also be

connected to the common of the computer. It is probable that sooner

or later you will make a connection mistake and wire the common of

the A to D converter to some voltage signal with enough current

capacity to destroy the printed circuits in your computer. To prevent

this I have fused the ground link. Now the fuse will melt instead of the

ground tracks on your computer circuits. I would suggest a 1/2 amp

fast blow fuse.

If this common ground is an intolerable situation, 1 would suggest that

you put opto isolators in the 5 signal lines that run between the

MC14447 and the computer. This will allow you to "float" the A to D

converter. Since none of these are high speed signals, the sluggish

ness of the opto isolators will not be a problem.

Opto isolation opens up other improvement possibilities. First you

can run the MC14447 with a 15 volt power supply. This allows an

input range of 0 to 12 volts. A further extension allows the measure

ment of both positive and negative voltages. Use a 15 volt power

supply and a 6 volt reference for the MC14447. If the reference input

to the MC14447 is called common, the negative power supply pin will

be at -6 volts. The MC14447 can now except inputs running from -6

volts to +6 volts. Use exactly the same software as I have shown

except use the channel 7 input for the zero reference and channel 0

for the reference voltage input. In this case the reference is -6 volts.

RE: The Program Accompanying This Article

The program accompanying this article merely measures the voltage

on all channels and then prints the results and time on the screen. In

practical applications you would probably wish to have the computer

do something useful with the voltages. In this case you would

sophisticated than really necessary. You could eliminate the pilot

light, fuse, and input filters. You could also use a 9V radio battery to

supply the voltage regulator instead of the transformer driven power

supply. If you are planning to use the circuit as a real tool, however, I

would suggest that you include all of these features. The circuit as

drawn is easy to use and relatively fool-proof.

RE: Commodore 64

If you are going to use one of these on a Commodore 64 don't forget

that the video chip is constantly interrupting the 6510 processor in

some modes of operation. This will lead to timing inaccuracies unless

corrective steps are taken, (you can turn off the video chip by clearing

bit 4 of location 53265. -T.Ed)

I invite anyone to write me regarding this or other electronic projects

Harold Anderson Electronics Ltd.,

2261 Bethnal Green Road,

Oakville, Ont.,

L6J 5J8.

Phone (416) 844-0632

Analogue to Digital Circuit Programs

IB

KD

CO

LL

BM

FN

IG

FK

NB

BF

FD

GE

NG

NB

OP

KE

IH

NL

PK

BF

AK

NO

100 goto 270

110 program name = analogue 12

120 analogue input demonstration for commodore

pet computers

130 use motorola md 4447 chip

140 complete sample and correction time for all

8 channels = .7 sec

150 routine uses basic and machine code

160 machine code does timing, etc.

170 basic does conversion of counts to voltages

180 on commodore pet ti = time since power-up

multiplied by 60

190 ti is used as a clock

200 written by:

210:

220 " Harold Anderson Electronics Ltd.

230 "2261 Bethnal Green Rd.,

240 " Oakville, Ontario, Canada,

250 " L6J-5J8, (416) 844-0632

260:

270 gosub 600: rem poke machine code into ram

280 poke 53,96: rem top of ram pointer for basic set to

$6000 to protect

290 tc = -ti/60: rem correction for time at program start

300 vr = 2.529: rem vr = reference voltage

310 dim v(8),ct(8),c(8): rem v(x) = volts ct(x) = count,

c.(y) = count-7ero offset

The Transactor 53 Volume 6, Issue 01

EF

OL

KH

LD

MN

GM

IB

KP

CM

KF

CH

NH

MC

CP

PH

KE

EE

GP

ND

JA

MH

DG

PN

KJ

OH

GO

DP

CM

OJ

GN

IH

LI

HF

PJ

CB

HG

JM

IK

MA

IH

FF

GF

CM

FD

LE

IP

LH

IF

MB

AH

JP

OK

OG

JD

PA

BA

GN

AH

10

320 pi = 3*256+ 4* 16: ph = pl + 1: rem pi = start

address of count table

330:

340 rem = = go to machine language for counts = =

350 sys 6*4096: rem routine to time ramp for all

eight voltage channels

360:

370 rem = = transfer counts to basic variable ct(x) = =

380 for x = 0 to 7: ct(x) = 256*peek(ph + 2*x)

+ peek(pl + 2*x): next x: rem get counts

390:

400 rem = = convert counts to voltages = =

410z = ct(0):forx = 0to7: c(x) = ct(x)-z: nextx

: rem remove zero offset

420 s = c(7)/vr: rem slope

430 for x = 0 to 7: v(x) = c(x)/s: next x

440:

450 rem = = print voltages = =

460 for x = 0 to 7: print" #" ;x;" " ;v(x);" volts" : next x

470:

480 rem = = calculate time lost while interrupt

mask set = =

490 for x = 0 to 7: tl = tl + ,0064 + ct(x)*15e-6: nextx

: rem running ttl of time lost

500 rem .0064 = time to sample

510 rem ct(x)*15e-6 = time to time ramp

520:

530 rem = = print time = =

540 t = ti/60 + tl-tc: print "time in seconds = ";t

550:

560 rem = = get signal for new sample = =

570 get c$: if c$ = "" then 570: rem hit any key

580 goto 350

590:

600 for j = 24576 to 24668: read x: poke j,x: next: return

610:

620 data 120, 169, 0, 133,188, 169,127, 141

630 data 67,232,173, 79,232, 41,240, 5

640 data 188, 141, 79,232,173, 79,232, 41

650 data 239, 141, 79,232,160, 0,162, 5

660 data 136, 208, 253, 202,208, 250, 9, 16

670 data 141, 79,232,169, 0,170,168,169

680 data 128, 234, 234, 45, 79,232,240, 7

690 data 232, 208, 246, 200, 208, 245, 0, 134

700 data 186, 132, 187, 165, 188, 24, 10,170

710 data 165, 186, 157, 64, 3,165,187,232

720 data 157, 64, 3,230,188,165,188,201

730 data 8,208,175, 88, 96

100 ;program to operate mc14447 a/d converter

110 ;interfaced to commodore pet

120 ;(6502 machine language)

130;

140;— assign labels —

150 *= $ba

160 count* = * temporary count storage, 2 bytes

170 * = $bc

180 chan* = * ;channel counter, 1 byte

190* = $0340

200 park * = * ;count storage, 16 bytes

210* = $e84f

220 op * * ;input - output port

230 • = $e843

240 ddr * = * ;data direction reg for port

250;

260 • = $6000

GJ

AA

FE

OP

IC

EL

KN

ML

FK

EN

PG

PF

NJ

KA

Dl

FA

DE

IO

FF

BF

BE

HJ

II

Jl

NF

IA

Kl

MM

FP

IM

BP

FK

AN

EO

BO

IE

FF

AG

AH

KN

JC

LK

LA

IJ

MD

LH

FK

GE

AF

DD

CA

Cl

DN

GF

MM

Nl

KB

JD

IM

ID

270 ;— entry point from basic —

280 enter sei ;block interference in timing

290 Ida #$00

300 sta chan ;set channel counter to 0

310 ;— program parallel port —

320 ;bits 0 to 6 output, bit 7 input

330 Ida #$7f

340 sta ddr

350 ;— restart point for channel measurements —

360 measurelda op ;set channel address bits

370 and #$f0

380 ora chan

390 sta op ;output port

400 ;— sample output —

410 load Ida op

420 and #%11101111 ;set ramp start low

430 sta op

440 Idy #$00 ;6.4ms delay

450 Idx #$05

460 loopi dey ;start of loops

470 bne loopi ;end 5 microsec loop

480 dex

490 bne loopi ;end 1280 microsec loop

500 ora #%00010000

510 sta op ;set ramp start high

520 ;— time ramp —

530 Ida #$00 ;setx& y to zero

540 tax ;x & y used as 16 bit counter

550 tay

560 Ida #%10000000

570 ;15 microsecond counting loop

580 Hoop nop :two nop compensate for dif in

590 nop ;in carry and no carry times

600 sloop and op ;check comparitor output

610 beq storec

620 inx

630 bne Hoop

640 iny

650 bne sloop

660 brk ;trouble, count too big

670 ;— store count —

680 storec stx count

690 sty count+1

700 store Ida chan ;setx = twice channel

710 clc

720 asl

730 tax

740 Ida count ;get low byte

750 sta park.x ;park low byte

760 Ida count+1 ;get high byte

770 inx ;park high byte

780 sta park.x

790 inc chan ;select a new input channel

800 Ida chan

810 cmp#$08 ;check if all channels done

820 bne measure ;do next channel

830 cli ;clear interrupt mask

840 rts ;exit to basic

850;

860 .end

The Transactor 54 Volume 6, Issue 01

FLJIMCT I OIMAL BLOCK DIAGRAM Of= MC1

MULTICHANNEL #=» TO D CONVERTER

2.5 Volt

Reference

Input

~|

Unknown Voltages

to be Measured

Zero Volt

Reference

Channel Select

Lines

Ramp/Sample

Control Line

Comparator Output

Line to Computer

Figure 1

External Ramping

Capacitor

1 of 8 Analogue

Selector Gate

Buffer Amplifier

With Gain of one

and buiIt in

0.4 Volt Offset

Constant Current

Source to Discharge

Ramping Capacitor

Comparitor With .27 Volt

Offset, Used to Detect

End of Discharge Ramp

Figure 1.

input filters

one for each

channel, al1

identical

R3

100K 1
.1 "*nr 13

i nput common

ground link

fuse, 1/2 A

fast blow

channel 1

channel 2

channel 3

channel 4

channel 5

channel 6

input channel

select lines

analogue

inputs

ramp start

comparitor

output

<+5V> VDD

reference

current

(channel 7 t reference

input) voltage

MC 1 -

(integrated circuit)

(0V> VSS

Rl

6 130K
R2

1.0K

8 *2.5 volts

.47 uf'

' mylar

R3

l.OKj

HAROLD ANDERSON ELECTRONICS LTD.

2261 Bethnal Green Rd.,

Oakville, Ontario, Canada

(416) 844-0632

common or ground

out in

7BL0S

regulator

COMPUTER

(Commodore PET)

parallel user port

DO (output)

Dl (output)

D2 (output)

D4 (output)

D7 (input)

ground

115V 60 Hz

Dl
transformer

supply

1N4004 6V secondary

C3

;330 uf

10 V

Figure 2.

The Transactor 55 Volume 6, Issue 01

The Plus 4 - A Quick Overview
Richard Evers, Editor

The Plus 4, a very peculiar creation. For many the very thought

of it conjures up images of strange, slimy things oozing out from

under rocks. For others, myself included, it's just right, a

product of thought and creativity that does not deserve a rapid

death as some have forecasted. By reading through many of the

articles written about the new system, a few reasonable com

plaints do surface. But on the whole, capital punishment is not

the answer.

Valid Complaints:

The Plus 4's built in user software isn't too terrific. The word

processor is barely that, the data base defiles the name, and the

spreadsheet has little spread. If you were to buy the computer

for the sole purpose of relying on this software, then you may

have bought a very attractive paperweight. But if you bought

the computer because it is a computer, then the software, if

ever used, would be a handy bonus. The wordprocessor is good

for quick little notes and simple documents, the data base is

good for fairly basic to intermediate file keeping activities, and

the spread sheet would stand the test of home and school use.

Each package is well written, taking into consideration the

limitation of trying to make them all work within the confines

of each other. Running two packages in tandem is possible with

this system, a trick yet to be performed by many other packages

for the Commodore machines. As a final note on this 'com

plaint', think of the software as an almost free bonus, and

accept its limitations. The computer more than makes up for

the shortcomings of the software.

The cassette port is not compatible with any other Commodore

cassette unit, and the cassette unit that does work with it is

SLOWER than the others. Although hard to believe, it's true.

Commodore cassette drives have always been slow, but it's just

possible the new drives have been made slower for greater

accuracy. Regardless, the new system requires a whole new

breed of cassette tapes. To offset the bad taste this leaves, a

good note: the 1541 serial drive works fine with the unit.

The joystick ports are not compatible with any other joystick in

the galaxy, which is a pretty rude turn of events. With luck,

somebody will invent an adapter for the machine to allow the

use of normal joysticks, thus not forcing you to buy the new

ones. If the Commodore joysticks available for the Plus 4 are as

good as the ones they have released for the Vic/C64, we had all

better hope that an adapter is invented soon.

And Now, The Good Points :

In short, 64k RAM with over 60k available for BASIC program

ming. A super improved BASIC command set that makes

graphics, sound, string manipulation, and disk access more

pleasant. The sound is not as good as the 64's, but can be

programmed by the novice from within BASIC. Graphics capa

bilities are as good as the 64's, and can also be easily controlled

from within BASIC. The MID$ function has also been improved

to allow replacement of specific sections of a string, without

major string manipulation. The following is now totally accept

able:

mid$(a$,5,7)= "Amazing"

Terrific. And considering that the Plus 4 doesn't have slow

garbage collection to worry about, string work is just fine.

The units have a built in machine language monitor, Tedmon

to be exact, and it's pretty good. You can assemble code in

RAM, disassemble RAM or ROM, display and modify memory

at will, walk routines as they would normally execute, transfer

code from one section of memory to another, fill memory with

the value of your choice, jump to sections of code, and quite

simply, do pretty much of everything that the public domain

machine monitors do so well. There is a trick with this one

though. The transfer command isn't bright enough not to step

on itself during a transfer of code back into the initial transfer

area. If a slight move of code is desired that would normally

step all over itself, transfer the code to a safe area elsewhere in

RAM, then transfer it into the correct area for you. A little bit

more work, but worth it for the results. Forgiving this one

oversight, the monitor is really good, and a welcome addition

after using the Vic and 64 without.

The extra disk commands are actually just a sub-set of the

original BASIC 4.0 command set. BACKUP, COLLECT, COPY,

DIRECTORY, DLOAD, DSAVE, HEADER, RENAME, and

SCRATCH is the sub-set in whole. BASIC 4.0 had quite a few

more, of which I only miss one, RECORD*. Relative files are

supported by the 1541 drive unit, and relative file handling is

possible with BASIC 2.0 commands, albeit somewhat cumber

some. Of all the BASIC 4.0 commands they had to choose from,

I think RECORD* should have been included. To get even for

this horrible trick, let's look at the commands given :

The Transactor 56 Volume 6, Issue 01

BACKUP The stupid command of the century for single

drive units. BACKUP will duplicate a diskette from one drive to

the next in dual drive units, ie. 4040, 8050, and 8250. Without

an IEEE card, how can this command ever be used by the Plus

4 user? Could have left this one out and kept my RECORD*.

COLLECT To collect a diskette is to validate its BAM with the

directory, of which BASIC 2.0 can perform via OPEN 15,8,15,

" V" admirably. It's a nice command to have around, but not

overly important for normal programming activities. RE

CORD* would have fit nicely in its spot in ROM.

COPY Another dumb command for the single drive units.

How often do you want to copy a file under a different file name

on the same diskette. It's often a life saver with the dual IEEE

units, but a close to useless bit of code for single drive users.

Guess what, RECORD* would have fit perfectly in the ROM

occupied by COPY.

DIRECTORY A useful command that should never have

disappeared from the VIC and 64's command set. It allows you

to perform a passive directory of your diskette to your screen,

without harming RAM in the least. Nice to see it back again.

DIRECTORY in the plus four is better than the old CATALOG,

however; it lets you display disk files selectively, using the

usual pattern-matching and wildcard characters. For example,

to display all files on drive 0 starting with the letter s, you could

enter:

DIRECTORY D1,"s*"

DLOAD A handy command to load programs from disk with

a default of unit number 8, drive #0. It's a little bit less tedious to

load from disk with this one, but life could exist without it.

DSAVE As with DLOAD, DSAVE will allow you to SAVE

programs to disk with a default of unit number 8, drive *0.

Saves a bit of time and is more pleasant to use.

HEADER A command that never should be used if you don't

like to waste computer time. HEADER will NEW a diskette as

the command OPEN 15,8,15," N0:DISKNAME,ID" does, but

with one surprise. Once under way, it waits for the error status

to arrive before giving you back control of your computer.

Though a 1541 HEADER may only take a few minutes, it's time

wasted that could have been put to better use. As before, I'll

continue using the error channel, thank you.

RENAME It allows you to change the name of a file on

diskette, as does the BASIC 2.0 command OPEN 15,8,15,

"R0:NEWNAME = OLDNAME". RENAME saves time in the

key bashing department, and is easier to remember as far as

syntax goes. It's a pleasure to see this command back again.

SCRATCH The BASIC 2.0 command OPEN 15,8,15,

" S0:FILENAME" does the same thing, but gives you, the user,

greater credibility. As with the HEADER command, SCRATCH

asks you if "you are sure" before acting. Kind of like an

overprotective parent looking out for little Yimmie. Though

Yimmie knows what he's doing, he can't be trusted without a

double check. As an extra insult, SCRATCH waits for the error

status to return before giving you your computer back. For me,

RECORD* would fit better in the Plus 4 than this one.

Final note about the special disk command set. Their token

values are not the same as their BASIC 4.0 counterparts. A

minor point, but still worth mentioning.

More Plus's:

As with the B Machine of Protecto fame, the PLUS 4 has a built

in reset button on the side. With it you can break out of

programs directly into the machine language monitor, even if

your code is stuck in an endless loop. Nice to have when

debugging code, or trying to look at the code of others. The best

thing about the reset is that if you hold down the STOP key

while resetting, you'll be able to get back to BASIC with the

current program in memory intact - the important BASIC text

pointers are not disturbed. An addition that will prove its worth

to you many times over.

As briefly mentioned above, available memory is an almost

pleasant surprise. Of the 64k system, there is 32k of ROM, and

60671 bytes available for BASIC programming. The top of

memory pointer is set to $FD00, of which the system uses the

balance for internal stuff. Unlike the 64, swapping out of the

system ROMs cannot be done. The RAM under ROM is auto

matically accessed by BASIC, as is the ROM above the RAM

when working in machine code. Some special tricks are per

formed by CHRGET and the rest of the operating system to only

see the RAM under the ROM when working in BASIC. It's

rather weird when peering through the code, but it works. My

only major complaint is not being able to swap out the ROM for

RAM. Sure is nice with the 64 to replace the existing ROM

routines with custom ones. Other than this slight snarl, the

extra available BASIC RAM is nice.

To return to the extra BASIC command set, let's quickly look at

the extra commands available.

In the utilities area, we now have AUTO, DELETE, HELP,

MONITOR, RENUMBER, TROFF, and TRON to help us out.

AUTO automatically prints line numbers on the screen for you

while programming. DELETE allows you to delete sections of

BASIC code from memory. HELP is used whenever your BASIC

program crashes. It will display the last line executed, and the

possible condition on that line responsible for the crash. Once

displayed, the line is flashed on and off on the screen, just to

catch your attention. Incidentally, there's no magic ROM rou

tine just to flash the line - characters can be printed in flashing

mode as easily as reverse mode (there are FLASH ON and

FLASH OFF keys). MONITOR will bring you into the machine

language monitor, Tedmon. RENUMBER will allow you to

change the numbering of the lines of your BASIC program as

you desire. You can even RENUMBER from a specific line * up

in the increment of your choosing. TROFF and TRON turn a

BASIC trace facility OFF and ON as you choose. All taken

together, almost as good as Basic Aid, without some of the

advanced commands.

57
Volume 6, Issue 01

In the graphics department, we now have the following extra

commands. BOX, CHAR, CIRCLE, COLOR, DRAW, GRAPHIC,

GSHAPE, LOCATE, PAINT, RCLR, RDOT, RGR, RLU, SCALE,

SCNCLR, and SSHAPE. The explanations would require more

than a little room, so have faith that they're alright. Most of the

commands have a vast amount of possible parameters, of

which most can be left off with defaults of logical choices. In

simple terms, graphics programming in BASIC is a pleasure.

In the sound section, there are only two commands. SOUND

and VOL. SOUND allows you to set the frequency, duration,

and voice to be accessed, and the VOL command sets the

volume of the voice specified. Though not as powerful as the

SID sound with the 64, it sure is a heck of a lot easier.

Finally, more extra commands do exist, but their sole purpose

in life is to make programming more pleasurable. They are

DEC, DO, ELSE, ERR$, EXIT, HEX$, INSTR, JOY, KEY, LOOP,

MID$, RESUME, TRAP, UNTIL, USING, WHILE, and GET KEY.

The following is a very brief rundown of their powers.

Error trapping is possible within program mode through the

use of the TRAP command. The format is TRAP line*. If any

error occurs within program mode, even the depression of the

(stop) key, the line* specified by the TRAP statement will be

executed, to allow you to interrogate the error condition en

countered. For this two variables are used, ER and EL. ER

returns the error condition #, and EL returns the line # that the

error was encountered in. For a bonus, a description of the

error generated can be found in the string variable ERR$. To

continue execution of the program after the error, the RESUME

statement is used.

A new method of looping has come about, or new in the world

of Commodore at least. It's the DO/WHILE series of commands

that will excite all who use them. There are 4 possible formats:

DO routine LOOP UNTIL condition; DO routine LOOP WHILE

condition; DO UNTIL condition LOOP; DO WHILE condition

LOOP. For an extra twist, the EXIT statement can also be used.

The 'condition' tested for can EXIT outside of the loop, thereby

allowing you a method out without leaving the stack in a messy

state. In general terms, the DO/WHILE loop makes the GOTO

statement slightly obsolete.

DEC and HEX$ could also fit in the utilities department,

because they allow instant conversion of Hexadecimal to Deci

mal notation, or vice-versa. They work much like ASC and

CHR$; they require the same argument 'types' and can be

placed anywhere in expression evaluation statements of simi
lar gender.

The ELSE statement is an omen for all who have ever wasted

tons of code testing for a certain condition, then jumping all

over the place to avoid bumping into code. The format is: IF

condition THEN action :ELSE action . A guaranteed life saver in

the massive code department.

INSTR is an incredibly useful command. It allows you to search

for the first occurence of a string within a string, with an

optional start location. When complete, it returns the start

location that the string was found at. For anyone doing file

manipulation operations, it will prove invaluable.

The USING keyword is used via PRINT USING "string expres

sions" ;list of expressions; , where specially formatted output

can be generated at will. Printing specific portions of the

strings, or printing numeric variables in correct decimal nota

tion, with $ preceding the value, with correct signing of the

values, or with signing if negation present, or automatic right

justification of the value padded with spaces, is all possible.

Special programming assignments dealing in these aspects of

life will surely benefit for the PRINT USING statement.

JOY is a command used to return the current x,y position of the

joystick on the screen. A handy item to have around when

BASIC games are being written.

GET KEY is actually two separate keywords, GET and KEY. The

interpreter finds the GET token, jumps to the appropriate code,

of which the GET code makes a further check to see if the token

value for KEY follows it. If so, the GET KEY code is branched to.

GET KEY is used to wait for the depression of a key on the

keyboard. Once pressed, it returns with the correct string value

in the assigned string. Identical in concept to:

10geta$: ifa$= "" then 10.

The KEY command also has a more useful feature: it lets you

define the function keys and display the current definitions.

The default definitions are often-used BASIC statements like

LIST, RUN, DIRECTORY, DLOAD, and HELP.

Before wrapping things up, one more fine feature should be

mentioned. Super screen editing tricks can be performed by

using the ESC key along with a few other choice keys. Setting

windows on the screen, deleting and inserting lines, auto

insertion of characters, deleting from the cursor to the start of a

line or to the end of the line, and scrolling the screen up or

down, are just a few of the features available. In many ways it's

better than my 8032 for screen editing. Too bad it's doesn't

have an 80 column display mode.

My final analysis of the machine is, if you're willing to live with

the bad points, which time may cure with adapters, then a

terrific programming machine is waiting for you. One major

point may stand in its way of success, though. The price. The

64 is quite a bit cheaper now than it was a few years ago at

conception. This factor makes the Plus 4 hard to market.

People would rather buy the lower priced, high powered 64

than take a chance with the new, equally powerful but higher

priced new kid on the block. If Commodore was to announce a

price reduction for the Plus 4, salvation may be within reach.

Otherwise it may be just another really good Commodore
machine that died an early death.

Volu

The Programmable Kitchen

Where is there more computing power: The bridge of the

Enterprise or your kitchen? What's smarter, Spock's scanner or

your dishwasher? Dumb questions, both, but the point is, what

was major-league computing power yesterday is standard

household appliance-type power today.

Microwave ovens, Stereo components, automobiles, washing

machines, and games and toys will never be the same, with

microprocessors running rampant in our homes and drive

ways. The benefits to the average consumer are obvious: more

features, lower cost (sometimes), and greater ease of operation

(well, usually not, but that's the idea). So the average lay person

gains from the CPU invasion, except maybe the fellow who

wishes the nagging voice in his dashboard would leave him

alone, but what about us programmers?

More accurately, what about us hackers, those of us who teach

computers stunts for their own sake, to whom the act of

programming is more important than the end result? We've

been excited by each new generation of computers, each more

powerful than the last. It's easy to understand lusting after new,

more powerful machines; for some, it's the latest Porsche or

Ferrarri. When it comes to computing, it might be the next

Commodore. But a household appliance? What could be more

boring than a washing machine or refrigerator? Do you show

your new fridgidaire to your friends, saying things like, "Yeah,

it's got a 48-cube capacity, but I'm only running with 24 now,

and that's plenty. It'll chill a beer in 3.2 microyears, an' ... "?

No, most of us who haven't toasted too many neurons staying

up late tracking down and dissecting bugs, don't. But that could

change. What manufacturers of these compu-pliances should

do is put in a back door for hackers to use at their own risk. Just

a little serial port behind a panel somewhere and a little change

in the device's firmware could do wonders to change our

outlook on even the most mundane items of necessity. A bit of

free RAM (preferably non-volatile), a memory write and mem

ory execute command, a few memory maps thrown into the

manual, and the door is open to the enterprising programmer.

Bored with your computer? Why not teach your Compact Disk

unit to play backwards?

Think of the possibilities: The microwave beeps a few bars of

"Hungry Like The Wolf" when the left-overs are reheated. Your

VCR forward-scans for 3 minutes whenever you simultane

ously press the forward and reverse keys - the "commercial"

function. Your car gains 20 horsepower, perhaps at the expense

of fuel economy (maybe a bit of pollution control, too). And that

nagging voice under the dashboard could be made to change

its tune: "Shut the door, stupid!".

While you're educating your electronic servants to the ways of

the world, why not take the next step and set up a communica

tions network? A bit of cable strung about between devices

(LOTS of cable if you want to include your car) would allow an

efficient household organization system. Picture this: The oven

sends the FRFC (Food Ready For Consumption) signal to the

coffee machine, which starts preparing the after-dinner coffee.

The coffee machine sends a DRTBW (Dishes Ready To Be

Washed) to the dishwasher when the coffee's finished, which

starts sudsing up for its performance. Now the stereo receives a

PDMM (Post-Dinner Mood Music) to complete the perfect

evening. Inviting your date over for dinner will never be the

same.

All your smart devices could be custom-programmed to reflect

your needs and specifications, not those of some engineer in

Japan. And as more and more devices incorporate micropro

cessors, your environment will become more sensitive to your

needs. Someday even your toaster could concern itself with

you state of mind that morning before deciding on a darkness

level. Maybe someone could teach an electric razor about how

to handle acne territory. There's really no limit to the com

puter's infiltration of electricland.

So take action now: write the manufacturers and urge swift

action on this matter. Programming power to the people! Make

the products conform to our needs, not us to theirs! I want the

fabric softener added later in the wash cycle - what're you

gonna do about it? Such inducements may bring results with

time, and we'll all have more control over our environments,

and ultimately, our lives.

Meanwhile, back on the Enterprise . . . "Captain, the bridge

won't respond; due to a computer malfunction, we've been

locked out. The enterpise will explode in a fiery storm of death

in exactly 17.2 seconds." -CZ

The Transactor 59 Volume 6, Issue 01

Chopper and Labelgun

for the Commodore 64

Chris Miller

Kitchener, ONT

A multiple statement line splitter and a label re-definition utility for PAL source programs

I very much doubt if there exists anywhere on Earth, assembly

language source written in a style more horrible, more unreadable,

more totally incomprehensible than some of my very own.

Sure, it has to be bad to be the worst. Real bad. But, imagine if you

can, thousands upon thousands of lines of code, wherein a single

helpful comment would die of sheer loneliness. Well, that is just the

beginning. Now picture, if you will, in this barren place, a multitude of

meaningless labels, a veritable menagerie of mindless symbols,

scores of infinitesimal, idiotic identifiers, for whom the sole purpose of

existence is to allow the assembler to assemble. What ever was I

thinking!

1 use the PAL assembler by Brad Templeton. One really keen feature

of PAL (which 1 dearly love) is its willingness to let you link all sorts of

statements together on a single line using colons. Neat-O! You can

write a small subroutine on one line and still have room to start the

next one, even attach another (teensy) label. Though seriously Brad, it

might have been less cruel to leave this feature out. It's so easy to get

carried away.. . or maybe I'm the only colon addict out here. Anyway,

the only cure is total abstention. Now I wouldn't use a colon even if I

had to pop the stack a billion times in a row. I've stopped cold turkey.

The first thing I noticed after kicking the colon habit was that my

screen looked funny. The right hand side was bare, empty, utterly

devoid of data. Lengthening the labels helped a little, but the right side

still felt vacant.

Then it came to me! Why not put useful comments and markers over

there so that when I went, say, to look for the READKEY routine

someday, it wouldn't take the usual half a fortnight.

In so doing I discovered a number of situations in which my com

ments, although accurately depicting the code, still didn't make any

sense. The cure for these redundant, extraneous, often irrelevant

annotations was, quite simply, to remove the offending line, code and

all. Amazingly, my programs get along fine without them.

If you are presently asking yourself why you would ever want to type

in a piece of code written by a lunatic such as myself. .. relax, I told

you I'm almost cured. You may not understand my source perfectly,

but it shouldn't drive you insane either. And it really works well.

So suppose you do decide to take an old colon-laden program and

repair it; you know, lots of white space, code on the left, comments on

the right, meaningful labels and so on: A lengthy piece could carry

you clean into your next crisis.

Wouldn't it be much less work to copy my Chopper program? Then

cure all your impacted code in an instant forevermore. Chopper is

intelligent enough not to split a line where a colon occurs between

quotation marks. Extra colons will be ignored.

Chopper is memory based. BASIC must be able to hold both the

original and the de-colonized version of your source. This gives you

16K for the original, more for the new version. Pointers are set to the

new one. After SYSteming through Chopper, simply list, sprinkle with

wonderful, descriptive comments, and save your new program.

Labelgun

Easier said than done, I know. Bad style is hard to use and harder

understood. Now all those lousy little labels catch up with you. Like, if

I had only called it INPUTKEY instead of IK how much more sense its

thirty some odd appearances would have lent my source. And take all

those silly subroutines that have been modified and modified until

only the name remains the same. What to do with those zillions of

nonsensical, even downright misleading names?

I have fond memories of one particularly absorbing evening spent

tracking down and changing all the occurences of an unusually

popular little routine called "FM" whose job, it turned out, was to tell

sprites whether to appear in Hi-resolution or Multi-colour mode. FM

= FINDMODE. Well, it made sense at the time. Out of great misery

springs great art, or so they say. Thus came Labelgun to be; to forgive

the sin of sloppy symbol selection. If you take the trouble now to copy

it you will forever be able to kill those lunkhead labels dead, instantly

and automatically replacing them with descriptive, well thought-out

ones.

Labelgun sets up as a Chrget wedge. That is, it adds a command to

BASIC by creating a detour through itself in BASIC'S search for

commands routine.

The Transactor 60 Volume 6, Issue 01

The code is less than 700 bytes long and sits at $C000 hex or 49152.

After loading you only need call it once via SYS 49152. This will set

and save some essential pointers, but leads one down the path of

despair (crash) if repeated with the wedge already in effect. Entering

an X will turn off the wedge and restore the pointers.

With Labelgun active, the command: C.CM.COLORMEM will, instead

of a syntax error, cause every occurence of the use of CM as a symbol

to be changed to COLORMEM throughout any BASIC (PAL) source

listing. The number of changes made is printed out upon completion.

Labelgun will not miss any occurences of a symbol, and only very

rarely attack the wrong string (your comments). Any global changes

such as Labelgun performs are frought with a small amount of risk.

You will not, as a rule, want to generate an already existing label

which would at best lead to redefinition errors, and at worst, program

malfunction. To check the uniqueness of a label I try converting it to

itself. " 0 alterations made. . ." tells me it is safe to use.

Labelgun is not opposed to changing numbers into labels. For exam

ple, the command C,$FFD2,PRINT is valid and useful. It is considered

good style to make abundant use of constants. Any value used more

than once should probably be assigned to a constant at the start of

your program. This will make your source much easier to modify and

to understand. With a command like C,53281,BKGCOLOR the con

version is painless indeed.

Labelgun can also be used to rename variables in a BASICprogram —

// doesn 't mess up your REMs, either! -T.Ed

Far more programming effort goes into modifying the old than writing

the new. Some giant software packages have had meager beginnings.

So if it's worth disk space, it's worth being made comprehensible and

reworkable.

Labelgun and Chopper have easily saved me the time it took to write

them. I use my own two-pass, label generating disassembler which

dumps source into BASIC program space to be listed. With labelgun I

then begin putting meaningful names to values and generated labels. I

can't imagine an easier way of converting raw code to readable,

usable source.

With Labelgun and Chopper in your utility arsenal you will be able to

write PAL or similar source using lots of colons and single character

labels. With everything fresh in your mind it may not matter, and be

faster. When you are finished and have everything working the way

you want you can easily render it understandable for future refer

ences.

Listing 1: BASIC loader for chopper

PI

LI

EC

DH

GK

FG

JG

AF

IN

GF

KA

OA

DA

10 rem* data loader for "chopper" *

20cs = 0

30 for i = 51200 to 51426:read a:poke i,a

40 cs = cs + a:next i

50:

60 if cs<>30292 then print"***** data error *****

70 rem sys 51200

80 end

100:

1000 data 165, 43,133,251,

1010 data 133, 252,

1020 data 44, 169,

1030 data 3,169, 0,141,

: end

133,253,165, 44

24,105, 64,133,254,133

3,141,134, 3,141,135

136, 3,141,133

EE

KF

LK

BD

El

JG

CC

LE

IE

CN

BE

Bl

HK

JM

LH

NK

MK

OL

DL

CF

NN

CL

NN

MO

IJ

BP

LI

KF

DH

GK

JH

El

AF

IN

NA

BH

PG

Bl

CM

KH

EG

DB

PD

MN

LD

BA

JE

LN

BA

KG

CK

GM

MO

ML

JG

GD

BB

GL

JJ

AJ

1040 data 3,

1050 data 255,

1060 data 10,

1070 data 253,

1080 data 238,

1090 data 34,

1100 data 1,

1110 data 5,

1120 data 3,

1130 data 177,

1140 data 0,

1150 data 252,

1160 data 172,

1170 data 0,

1180 data 101,

1190 data 254,

1200 data 132,

1210 data 133,

1220 data 133,

1230 data 135,

1240 data 169,

1250 data 169,

1260 data 145,

1270 data 253,

1280 data 76,

160, 3,

145,253,

145,253,

172, 134,

134, 3,

208, 10,

141, 136,

174, 136,

145,253,

251,208,

177,251,

134,251,

135, 3,

145,253,

253, 144,

169, 1,

3, 24,

3, 141,

3, 200,

3, 78,

1, 168,

0, 145,

253, 200,

144, 1,

51, 165

145, 253;

230, 254:

200, 141,

3, 200,

177,251,

72, 173,

3, 104,

3, 240,

76, 57,

3, 76,

170,200,

160, 3,

192, 4,

200, 152,

1, 232,

168, 145,

105, 10,

132, 3,

145,253,

136, 3,

145,253,

253, 200,

152, 166,

232, 133,

198,254, 160

169

145

3

201

73

160, 1

132, 3

238, 135

240, 31

136, 3

201, 58,208

31, 172, 135

200, 200, 200

192,200,160

177,251, 133

140.134, 3

240, 46, 169

166,254, 24

133,253, 134

253,200,173

144, 3,238

145,253, 173

169, 3,141

76, 57,200

172.135, 3

145,253,200

254, 24,101

45, 134, 46

Listing 2: Labelgun loader

10 rem* data loader for " labelgun" *

20 cs = 0

30 for i = 49152 to 49831 :read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>83704 then print" ***** data error *****": end

70 rem sys 49152

80 end

100:

1000 data 173, 8, 3,141,232, 3,173, 9

1010data 3,141,233, 3,169, 23,141, 8

1020 data 3,169,192,141, 9, 3, 96,165

1030 data 58, 201, 255, 208, 108, 165, 43, 133

1040 data 251, 165, 44,133,252,160, 1,177

1050 data 122, 201, 88,208, 3, 76,122,192

1060 data 201, 67,208, 85,169, 0,141, 69

1070 data 3, 32,115, 0, 32,115, 0,240

1080 data 81,201, 44,208, 71, 32,115, 0

1090 data 240, 72,162, 0,157, 72, 3, 32

1100 data 115, 0,240, 62,201, 44,240, 7

1110 data 232, 224, 40,208,239,240, 45, 32

1120 data 115, 0,240, 46,232,142, 65, 3

1130data162, 0,157,112, 3, 32,115, 0

1140 data 240, 63,232,224, 40,208,243, 76

1150 data 140, 192, 32,115, 0,173,232, 3

1160 data 141, 8, 3,173,233, 3,141, 9

1170 data 3,108,232, 3, 32,152,192, 76

1180data 29,193, 32,152,192, 76, 34,193

1190 data 162, 0,189, 72,194, 32,210,255

1200 data 232, 224, 46, 208, 245, 96, 162, 22

1210 data 221, 145, 194, 240, 3,202, 16,248

1220 data 96,232,142, 64, 3,160, 4,162

1230 data 0,177,251,240, 78,200,221, 72

1240 data 3,208,244,232,224, 1,208, 18

1250 data 192, 5,208, 5,142, 68, 3,240

The Transactor
61

Volume 6, Issue 01

CM

HE

GK

NA

Cl

KF

DB

HM

DH

Ud

BG

BH

BE

Kl

NJ

HL

FM

JO

PG

CJ

OA

CE

FC

Fl

HG

BK

LE

DA

Cl

JG

CF

IL

ID

BG

DN

Kl

MH

BF

CM

AL

GM

BF

HO

BH

HB

GN

AN

KD

DE

LI

PH

MG

AF

DJ

01

OK

Dl

PK

PI

1260 data 9, 136, 136,177,251,200,

co n nna cc rt ona
I C. 1 U (JcUd UU, O, £.UU, \J\J, i_», t-WW,

1280 data 251, 32,166,192,208,209,

1290 data

1300 data

1310 data

1320 data

1330 data

3, 32,166,192,208,201,

3,152, 56,237, 65, 3,

3, 166, 252, 152, 24, 101,

1,232,142,235, 3,141,

76,101,193,160, 0,177,

1340 data 200, 177, 251, 133, 252, 134,

1350 data 251, 208, 154,240, 5, 32,

1360 data 208, 251, 165, 122, 208, 2,

1370 data

1380 data

1390 data

1400 data

198,122,169, 13, 32,210,

0, 56,173, 69, 3,201,

7,169, 49, 32,210,255,

168, 56,233, 10,144, 3,

1410 data zi

1420 data

1430 data

1440 data

1450 data

1460 data

1470 data

1480 data

1490 data

1500 data

1510 data

1520 data

1530 data

1540 data

1550 data

1560 data

1570 data

1580 data

1590 data

1600 data

1610 data

1620 data

1630 data

1640 data

1650 data

1660 data

1670 data

1680 data

9, 48, 32,210,255,162,

118,194, 32,210,255,232,

208,245,108,232, 3,173,

56,237, 64, 3,240, 19,

141, 67, 3, 76,252,193,

24,105, 1,141, 67, 3,

193, 32,135,193, 76,183,

66, 3,162, 0,189,112,

251,232,200,236, 64, 3,

96,166, 45,142,184,193,

142,185,193,173, 67, 3,

45,144, 2,230, 46,133

187,193,165, 46,141,188

255,255, 141,255,255,206

173, 184, 193,201,255,208

185, 193,206, 187, 193, 173

201,255,208, 3,206,188

185,193,205,235, 3,208

184,193,205,234, 3,176

135,193,152, 72,165,251

133, 34,132, 35, 32, 59

168, 76,183,192,174,235

23,194,173,234, 3,141

56,237, 67, 3,176, 1

25,194,142, 26,194,173

141,255,255,238, 22,194

238, 23, 194,238, 25, 194

1690 data 238, 26, 194, 173, 26, 194

1700 data

1710 data

1720 data

1730 data

1740 data

1750 data

1760 data

1770 data

1780 data

1790 data

1800 data

1810 data

1820 data

1830 data

1840 data

The Transactor

208,227,173, 25,194,197

220,165, 45, 56,237, 67

2,198, 46,133, 45, 76

84, 79, 32, 18, 67, 72

71, 69, 32, 83, 84, 82

71,146, 32, 58, 13, 67

79, 76, 68, 83, 84, 82

71, 62, 44, 60, 78, 69

84, 82, 73, 78, 71, 62,

76, 84, 69, 82, 65, 84,

78, 83, 32, 77, 65, 68,

84, 79, 32, 83, 79, 85,

69, 35, 44, 59, 58, 41,

45, 42, 43, 60, 62, 61,

171, 172, 173, 177, 178, 179,

200, 141

?1R 177LIU, Iff

173, 68

238, 69

141, 66
nrj ~\ A A

d.o\, 144

234, 3

251, 170

251,177

11 ^ ni i j, \j

198,123

255, 162

100, 144

233, 100

232, 208

255, 152

0, 189

224, 27

65, 3

144, 6

73, 255

76, 153

192, 172

3, 145

208, 244

166, 46

24, 101

45, 141

193,173

184, 193

3,206

187, 193

193, 173

216, 173

208, 32

164,252

165, 104

3, 142

22, 194

202, 141

255, 255

208, 3

208, 3

197, 46

45, 144

3, 176

231, 193

65, 78

73, 78

44, 60

73, 78

87, 83

32, 65

73, 79

69, 32

82, 67

40, 47

32, 170

0, 1

Ml

EJ

Gl

JC
DPbr

K!

KU

CK

OB
MRMb

GD

FP

BH

LK

BH

PI
□ I
DL

LM

DH
f~*lol

LI

GA

PF

KO

CP

PD

El

HO

IC

CG
UP

MU

AJ

GH

PD

JE

FJ

DM

KH

JE

NK

KJ

Ml

LP

FJ

EE

MK

DO

FK

IG

EC

LH

10

AC

JF

CO

CN

DB

JA

KM

FL

FO

HA

LP

DJ

OO

JA

FE

EE

NH

HB

MH

IK

KL

EM

KD

62

Listing J !: " Chopper"

10rem chopper chris miller (1984)

20 sys700 ;pal 64 assembler

30 .opt oo

40* = $c800

60 sob

70 sov

80 oldprg

90 newprg
A f\f\ i j. j. j.-i_ j, j, a
1UU 1 *******

110 rechain

120;***♦♦*

130 line

140 oldindx

150 newindx

= 43

— 4o

- 251

- 253

= $a533

PAL source

;*links lines*

variable addresses ♦♦*****

= 900

= 902

903

160 quotflag = 904

I 1U , ***** (_

180 spread

190 step
nnn i j. j. j, r-\/-\/-^

\Jl IOLCII IL

= $40

= 10

ZUU , * * *DGy ii ii mi an i.

210 initialize

220

230

240

250

260

270

280

290

300

ol U

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

Ida

sta

sta

Ida

sta

clc

adc

sta

sta
IHolefa

sta

sta

Ida

sta

sta

Idy

sta

dec

Idy

sta

inc

Idy

Ida

sta

ny

sta

sta

sob

oldprg

newprg

sob+1

oldprg +1

#spread

newprg+1

sob+ 1
#q
fto

oldindx

newindx

#0

quotflag

line +1

#3

(newprg),y

newprg+ 1

#$ff

(newprg),y

newprg +1

#1

#step

(newprg),y

line

(newprg),y

;*program seperation*

;*line# increment*

;*setold pointer to sob*

;*newto sob + spread*

;*initialize indexes*

;*and quote flag*

;*hi byte of line#*

;*in place now*

;* basic start zero*

;♦phoney first link*

;*lobyte of line#*

;*in place*

490 ;*begin primary loop to find colons*

SOD fnHpnlnn — ■*■\J\J\J II I^JOLJUJ

510

520

530

540

550

560

570 quote

580

590

600

610

Idy

ny

inc

inc

Ida

oldindx

newindx

oldindx

(oldprg),y

beq eoln

emp #34

bne

pha

Ida

eor

colonchk

quotflag

#1

620 sta quotflag

630 pla

640 colonchk cmp#":"

650

660

670

680 next

690

700

bne

Idx

beq

Idy

sta

imp

next

quotflag

maknulin

newindx

(newprg),y

fndcolon

710 ;*♦*** end of old program line *

720 eoln

730

740

750

=

iny

iny

Ida

*

(oldprg),y

Hook at next char*

;*if zero, newline^

;*quotation mark^

;*if not check for colon*

;*if on-off .if off-on*

;*get back current char*

;*not colon, keep going*

;*see if between quotes

;*if not, new line*

+

; *y = oldindx*

;*seenexthilink*

Volume6, Issued

NL

FG

CA

HC

LO

KA

BK

JH

LH

JO

PA

FK

LC

IM

EM

10

Dl

EG

HM

MG

EO

AE

IF

JO

EM

OJ

OF

DP

PN

EF

EA

KL

OK

BB

LC

GM

LE

FD

EM

OF

DF

MP

AH

CN

El

FB

NJ

NM

FM

BL

JD

LG

AL

FN

EP

JO

IA

NP

PJ

NP

BE

AN

CB

PF

EF

LO

KF

MJ

760

770

780 ccc

790

800

810

820

830

840

850

bne ccc

jmp finished

Idy #0

Ida (oldprg),y

tax

iny

Ida (oldprg),y

sta oldprg +1

stx oldprg

Idy #3

860 ;***** end of new program line

870 maknulin

880

890

900

910

920

930

940

950

960

970

980

990

1000

1010 eeee

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120aaa

1130

1140

1150

1160

1170 pass

1180

1190

1200

1210

1230 finished

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410ddd

1420

1430

= *

sty oldindx

Idy newindx

cpy #4

beq pass

Ida #0

sta (newprg),y

iny

tya

Idx newprg + 1

clc

adc newprg

bcc eeee

inx

sta newprg

stx newprg +1

Ida #1

tay

sta (newprg),y

iny

Ida line

clc

adc #step

bcc aaa

inc line +1

sta line

sta (newprg),y

Ida line +1

iny

sta (newprg),y

= *

Ida #3

sta newindx

Isr quotflag

jmp fndcolon

= *

Ida #1

tay

sta (newprg),y

Idy newindx

Ida #0

sta (newprg).y

iny

sta (newprg),y

iny

sta (newprg),y

iny

tya

Idx newprg + 1

clc

adc newprg

bcc ddd

inx

sta sov

stx sov +1

jmp rechain

;*end of source test*

;*set pntrs to link*

;*pntrs now reset*

;***initializes oldindx

* ** *

;*test for extra colons

;*if so ignore*

;*end of line zero*

;*distanceto new line

;*pointto next line*

;*phoney link*

;*make new linenum

;*initialize new index

;*initialize quote flag*

;*get ready to exit*

;*phoney last link*

;*index end of line*

;*final three zeros*

;*byte past last zero*

;*form new sov pntr*

;*link program lines*

El

DK

Gl

JB

FN

Listing 4: " Labelgun " PAL source

10 rem label gun!!! by chris miller (1984)

20sys700;pal64

30 .opt oo

40 * = $c000

50 ;»**** numerical constants *******

MH

IM

GH

IJ

IA

HJ

GH

GB

GN

IE

FJ

NE

OP

IC

NJ

AO

MC

IL

AB

PL

AK

FM

EE

JO

LB

OL

JK

MN

PH

CL

AF

JB

AG

PO

MH

PN

BE

AA

PF

BJ

MN

AH

IN

AJ

BE

EM

CA

DB

PH

LK

PP

EL

PC

LP

EF

Ml

CB

GJ

LB

MK

DA

FO

PH

GK

ON

KL

31

MD

AM

HG

DJ

HA

KE

ID

OE

GA

OA

60 maxlen = 40

70;****** subroutine + addresses
80 chrget

90 print

100 rechain

= $73

= $ffd2

= $a53b

1 1 \J | ■ T T T || f\^i

120 strtlink

130 sob

140 sov

150 textptr

160 link

170chrptr

180 chrvec

190labelend

= $22

= 43

= 45

= $7a

= 251

= 776

= 1000

= 1002

210oldstrng

220 newstrng

230 newsize

240 oldsize

250 indexlbl

260 howfar

270 preceeds

280 howmany

290 ;***** flac

300 modeflag

310 *** qpf rh

= 840

= 880

= 832

= 833

= 834

= 835

= 836

= 837

= 58

320 Ida chrptr

330

340

350

360

370

380

390

400

410 getinput

sta chrvec

Ida chrptr+1

sta chrvec+1

Ida #<getinput

sta chrptr

Ida #>getinput

sta chrptr+ 1

rts

♦

420 ; •*** see if in immediate mode

430

440

450

460

470

480

490

500

510

520

530

540

550 checkc

560

Ida modeflag ;*tes

cmp #255

bne stopchek

Ida sob

sta link

Ida sob+1

sta link +1

Idy #1

Ida (textptr).y

cmp#"x"

bne checkc

jmp diswedge

cmp#"c"

bne stopchek

570 ;***** check the target string * *

580

590

600

610

620

630

640

650

660

670

680 readold

690

700

710

720

730

740

750

760

770

780 readnew

790

800

810

820

Ida #0

sta howmany

jsr chrget

jsr chrget

beq eolerror

cmp#","

bne error

jsr chrget

beq eolerror

Idx #0

= *

sta oldstrng.x

jsr chrget

beq eolerror

cmp #","

beq readnew

inx

cpx #maxlen

bne readold

beq error

= *

jsr chrget

beq eolerror

inx

stx oldsize

*** *

;*start of source*

;*end of source*

;*holds chrget vector

;*end of label ptr*

;*changes made*

** *

it mode (program/imrr

•start of basic ptr*

see first char

is it an x

• if so dismantle wedg

•collect the c*

get next char

eoln sets z flag

we want a comma

• noeoln yet please*

♦collect old label*

*no end of line please

♦seperates old/new*

•string too long*

•collect new label*

no eoln

save length

The Transactor 63 Volume 6, Issue 01

=1

M

EH

OG

CE

0

Gl

ON

D

NL

CP

AA

NF

GN
nn
j\j

OH

EL

DE

CN

JP

IG

AG

ME

EG

Jl

GG
i<n
r\i—'

AB

EM

MD

01

Mh

KG

FK

FM

MG

PD

Nh

BH

NN

CL

EM

JL

IM

DC

KK

NF

JC

FG

NC

FM

MB

CM

LI

GD

EL

JJ

FL

II

LH

DE

PN

FG

EH

OJ

IK

NA

MC

NL

CA

KG

JJ

JE

KO

KF

HG

DP

30

40 aaaa

50

60

870

880

890

900

Idx #0

sta newstrng.x

jsr chrget

beq findstr ;*valideoln*

inx

cpx #maxlen

bne aaaa

jmp error

910 ; * * *»* restore the wedge pointer* * * * *

920 diswedge = *

930 jsr chrget ;*eatupthex*

940

950

960

Q7n

980 stopchek

990

1000 ;•*•**• i

1010 error

1020

1030

1040eolerror

1050

1060

1070 ;••*•••

1080 howtodo

1090

1100 aaa

1110

1120

1130

1140

1150

Ida chrvec

sta chrptr

Ida chrvec+ 1

qta chrDtr +1

jmp (chrvec)

= *

jsr howtodo ;* message*

jmp eatline

jsr howtodo

jmp inputend

* ;*prints error message*

Idx #0 ;

Ida errmsg,x

jsr print

inx

cpx #errmsgx-errmsg

bne aaa

rts

1170 cheokops = *

1180

1190keepon

1200

1210

1220

1230 leave

Idx #expressx-express-1

cmp express,x

beq leave

dex

bpl keepon

rts

1240 ;*♦*•• find the target string ♦ * *

1250 findstr

1260

1270

1280nextline

1290

1300 newtest

1310

1320 getchar

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1 440 7777

1450

1460

1470

1480

1490

1500 testnext

1510

= ♦

inx

stx newsize ;• length of new label*

= *

Idy #4

= *

Idx #0

Ida (link),y

beq nextlink ;*eoltest*

iny

cmpoldstrng.x ;• is it the target*

bne newtest

inx

cpx #1 ;*is it first char*

bne testnext

opy #5 ;*does label start line*

bne zzzz

stx preceeds ;'disable pre-check*

beq testnext ;»must brnanch*

dey

dey

Ida (link),y

iny

iny

sta preceeds ;*preceeding char*

cpx oldsize;

bne getchar

1530

1540

1550

1560 prior

1570

1580

Ida (link),y ;*char after label*

jsr checkops ;*check for delimiters*

bne newtest

Ida preceeds ;*char before*

jsr checkops ;*for valid delimiters*

bne newtest

1590 ;***♦» found an occuranoe •*•••**•*

K

N

LG

PN

LK

L

AE

ND

GA

O

JL

Kl

AF

LF

BH

DB

DP

FD

GD

JM

IO

BB

CM

LE

EA

AN

AG

JJ

KC

MP

EN

IP

JG

PM

MB

OP

CO

BK

DJ

ED

HB

LF

DA

H

AD

MO

KH

DG

AN

LK

BM

ME

EC

DL

MM

HC

ON

BD

NE

MP

PN

DH

KB

CJ

CM

AD

KK

GC

M

FC

NH

OE

JD

LD

JN

CM

CM

600 found

610

620

630

640

650

660

670

680

1690

1700

1710

1720jjj

1730

1740

= •

inc howmany

tya ;*points end of label*

sec

sbc oldsize

sta indexlbl ;*save label start*

Idx link +1

tya

clc

adc link

bcc jjj

inx

stx labelend +1

sta labelend

jmp changstr ;*change the string*

1750 ;•**• ready to look at next line **

1760 nextlink = • ;.link pntr = next link*

1770 Idy #0

1780 Ida (link),y ;*lobyte of link*

1790 tax

1800

1810

1820

1830

1840

1850

1860

1870 ;•**•*

1880 eatline

1890qqq

iny

Ida (link),y ;*hibyte*

sta link +1

stx link ;*new link in pointer*

Ida (link),y ;*testfor eof*

bne nextline ;*go do next line*

beq inputend

= * ; *geteoln*

jsr chrget

1900 bne qqq

1920 inputend = * ;*haveeoln*

1930

1940

1950

1960zzz

1970 ;*••**

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080 num

2090

2100

2110

2120

2130

2140 calc

2150

2160

2170

2180

2190

2200

Ida textptr ;*let basic find it*

bne zzz ;*by backing up textptr*

dec textptr+ 1

dec textptr

print number of changes •••

Ida #13 ;*carriage return*

jsr print

Idx #0

sec

Ida howmany ;*number of changes*

cmp #100 ;* works for n<200*

boo num

Ida #" 1"

jsr print

sbc #100

tay

sec

sbc #10

bcc calc

inx

bne num

txa

ora #$30 ;•*•* asci rep val *******

jsr print

tya

ora #$30

jsr print

Idx #0

2210changnum Ida changes,x

2220

2230

2240

2250

2260

2270;***.*

jsr print

inx

cpx #changesx-changes

bne changnum

jmp (ohrvec)

2280changstr ;*compare lengths*

2290

2300

2310

2320

2330

2340

2350

2360 III

Ida oldsize

sec

sbc newsize

beq replace

bcc III

sta howfar ;*to move memory down*

jmp lessmem

eor #255 ;*get twos compliment*

The Transactor 64 Volume 6, Issue 01

IL

LC

HP

KK

FJ

MN

ND

MP
CM

HO

HL

HP

KM

CM

KK

IL

II

El

CO

DD

KP

LC

CA

IL

IB

NB

ML

NJ

NL

IL

KO

DO
r*\bL

IP

IG

OL

HK

GM

IA

KM

GK

DC

AG

NB

MP

OM

HD

KM

El

El

Al

AO

JL

EL

LD

HC

JC

IP

CO

IF

FH

LO

FA

AE

BJ

AE

HJ

Nl

JM

AB

KA

AC

DJ

MH

PJ

HO

CG

2370

2380

2390

2400

clc

adc #1

sta howfar

imp moremem

2410 ;**** replace old string *******

2420 replace

2430

2440

2460 putlabe

2470

2480

2490 yyy

2500

2510

2520

2530

2540

2550

2560; *****

*

jsr putlabel

jmp newtest

= ,

Idy indexlbl

Idx #0

Ida newstrng.x

sta (link),y

inx

iny

cpx newsize

bne yyy

rts

;*to move memory up*

»*

;*index start of string*

oush memory up by howfar***

2570 moremem

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670 www

2680

ocnn
^oyu

2700

Idx sov

stx takefrom +1

Idx sov+1

stx takefrom + 2

Ida howfar

clc

adc sov

bcc www

inc sov+1

sta sov

sta putitat +1
I /"J ^ C*^^\ / I "1
lud bOV + 1

sta putitat+ 2

2710 ;**** start pushing memory up

2720 takefrom Ida Sffff

2730 putitat

2740

2750

2760

2770

2780

2790 uuuu

2800

2810

2820

2830

2840 tttt

2850

2860

2870

2880

2890

2900 ;*****.

2910 relink

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030;*****

sta Sffff

dec takefrom +1

Ida takefrom +1

cmp#$ff

bne uuuu

dec takefrom+ 2

dec putitat+1

Ida putitat +1

cmp #$ff

bne tttt

dec putitat+ 2

Ida takefrom + 2

cmp labelend+ 1

bne takefrom

Ida takefrom +1

cmp labelend

bcs takefrom

= *

jsr putlabel

tya

pha

Ida link

Idy link +1

sta strtlink

sty strtlink+ 1

jsr rechain

pla

tay

jmp newtest

3040 lessmem

3050

3060

3070

3080

3090

3100

3110

3120

3130 ppp

Idx labelend+ 1

stx movefrom + 2

Ida labelend

sta movefrom +1

sec

sbc howfar

bcs ppp

dex

sta moveto +1

;*self made address*

;*get howfar in a*

;*sov now reset up*

* ***

;*self modifying*

;*move takefrom ptr down*

;*see if done*

;*startatend of label*

;*self made address*

FN

FB

DF

MF

GA

MM

CC

AJ

AP

FL

CK

BA

KE

KL

AH

PD

EN

PG

IF

JG

LD

AA

PI

HO

ID

HC

LG

AA

GF

JM

IO

DJ

BN

Al

IE

BG

KG

DG

MG

NH

Fl

Ml

HJ

CL

OL

HM

CH

DK

GP

FP

EB

LE

CF

JF

OB

OL

HH

3140 stx moveto + 2

3150 ;**** start pulling memory down ***

3160 movefrom

3170moveto

3180

3190

3200

3210 nnn
qpOf)

3230

3240 ooo

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350 mmm

3360

3370;******pr

3380 errmsg

Ida Sffff ;*selfmod*

sta Sffff

inc movefrom + 1 ;*point moveto next byte*

bne nnn

inc movefrom + 2

inc moveto + 1

hnp nnn

inc moveto + 2

Ida moveto + 2

cmp sov+1 ;*see if sov reached*

bne movefrom

Ida moveto+1

cmp sov

bcc movefrom

Ida sov ;'correct sov pointer*

sec

sbc howfar

bcs mmm

dec sov +1

sta sov ;*sov now lowered*

jmp relink ;*adjust links*

3390 .asc "to —hange string :"

3400. byte 13; carriage return*

3410 .asc "c,<oldstring>,<newstring>

3420 errmsgx

3430 changes

= *

3440 .asc " alterations made to source"

3450 changesx

3470 express

3480 .asc "#";

3490 .asc ","

3500 .asc ";"

3510.asc ":"

3520 .asc ")"

3530 .asc "("

3540 .asc "/"

3550 .asc " -"

3560 .asc " *"

3570 .asc " + "

3580 .asc "<"

3590 .asc ">"

3600 .asc " = "

3610.asc " "

3620 .byte Saa

3630 .byte Sab

3640 .byte Sac

3650 .byte Sad

3660 .byte Sb1

3670 .byte Sb2

3680 .byte Sb3

\/o11^i ^Hd\imiTCire^^^vkwxvix
VdllU UcllllllLclo**********

asci values

;" + " *as basic tokens*
. Tt "

', *

;" /"

;" >"
. " "

;" <"

3690 .byte 0; end of line

3700 .byte 1 ; begin of line

3710 expressx *

The Transactor 65 Volume 6, Issue 01

An R65C02 Assembler Gary L. Anderson

Cedar Rapids, IA

. . .a pin for pin direct plug-in replacement for the NMOS 6502

Introduction

Many thanks to Eric Brandon for his fine article in the June 1981 issue

of COMPUTE! entitled "Assembler in Basic for the PET". Some of the

reasons he presented at that time for writing the program fit my

situation quite well. 1 didn't want to spend $200 for an assembler and

because 1 was new to machine language 1 wanted something simple I

could dabble with but would still calculate branches and jumps.

Based on the knowledge gained from the article, I wrote the following

assembler and as time went by I found one thing or another to add,

change, or upgrade. The assembler was written in BASIC and com

piled using PET SPEED (you can get the compiled version from the

Transactor disk for this issue), and its main feature is the inclusion of

the new op codes for the recently announced CMOS version of the

6502 microprocessor. Other improvements include adding cassette

file and disk file storage of source code, linker disk file capability, full

commenting capability of source files and linker files, find symbol

command, "BYT" mnemonic, and finally "<" and ">" operand

specifiers for labels and equates.

What is an R65C02?

It is a pin for pin direct plug-in replacement for the NMOS 6502 with

its manufacturing process being CMOS (Complementary Metal Oxide

Semiconductor). As a matter of fact 1 wrote this article on my 4032 PET

with an R65C02 plugged in to replace the NMOS version. Its power

consumption is advertised at being only four mA per MHZ with up to

four MHZ versions specified on Rockwell's data sheet. This is obvi

ously not much of a concern in the PET with an ample power supply

and a clock of one MHZ but holds interesting possibilities for battery

operated high-speed portable computers.

The most important improvement of this CMOS version is the ex

panded op code set with all of the existing op codes of the NMOS

version to result in a powerful instruction set. The new op codes fall

into two categories: new instructions, and added addressing modes of

old instructions. Figure 1 shows all of the new op codes in alphabetical

order of their mnemonic. There are 45 op codes covering 12 new

instructions and 14 op codes covering new addressing modes of 11 old

instructions for a total of 59 new op codes.

Another improvement is the determination of undefined op codes.

They are now all no ops but beware, some are two byte and some

three byte no ops of various machine cycle lengths. If one specifies

only one byte of a two byte no op or two bytes of a three byte no op a

crash will result. One byte no ops are at X3 and XB, two byte no ops at

02, 22,42, 62,82, C2, E2, 44, 54, D4, and F4, and three byte no ops at

5C, DC, and FC. The multiple byte no ops from my experimentation

need not be all the same byte, it appears that the "filler bytes" after the

first byte can be anything.

Other improvements are covered in my second reference and include

incrementing the page address for the indirect JMP when the two

operand bytes fall on either side of a page boundary, eliminating a

read cycle of an invalid address and instead reading the last instruc

tion byte during indexed addressing across a page boundary, chang

ing Read/Modify/Write instructions from one read and two write

cycles to two read and one write cycle and changing the decimal flag

from indeterminate after reset to initialized to binary mode after reset

and interrupts. Also in the NMOS version the N,V and Z flags were

invalid after a decimal operation; they are valid in the CMOS version.

Finally, if an interrupt occurs after the fetch of a BRK instruction the

NMOS version will igrore the BRK vector and load the interrupt

vector. The CMOS version will execute the BRK, then execute the

interrupt.

The New Instructions

BBR(0-7) and BBS(0-7) will branch on bit reset and branch on bit

set respectively. These are three byte instructions. The addressing

mode is defined as zero page because the particular bit being analyzed

resides in the zero page location defined by the second byte. The third

byte is the branch byte. The fourth character in the mnemonic

identifies the bit that will be analyzed.

BRA will branch always. No more does one have to use a three byte

JMP to hop around a few bytes of code. If the destination is within 255

bytes then use BRA and save a byte because it only takes two bytes.

PHX, PHY, PLX, PLY will let a programmer push or pull X and Y

registers to or from the stack directly. Transferring to or from the

accumulator is no longer necessary when saving and restoring these

two registers.

RMB(0-7) and SMB(0-7) will reset memory bit and set memory bit

respectively. These are two byte instructions. The addressing mode is

defined as zeropage because the particluar bit being changed resides

in the zero page location defined in the second byte. The fourth

character in the mnemonic identifies the bit that will be changed.

These two instructions combined with BBR(0-7) and BBS(0-7) pro

vide for very easy bit manipulation and conditional branching on bit

logic states.

STZ will store zero to any location. No longer does one have to load

the accumulator with *$00 then store the accumulator not to mention

the possibility of having to save away the original contents of the

accumulator and restoring it. Four addressing modes are provided,

absolute, zero page, absolute,X and zero page.X.

The Transactor 66 Volume 6, Issue 01

TRB and TSB are called test and set bits and test and reset bits

respectively. With these instructions one can reset or set any one or all

bits of any location. Before executing these instructions the accumula

tor must be loaded with a byte representing the bits to be reset or set.

Example: reset the high order nybble of location $1234.

LDA *$F0

TRB $1234

Both absolute and zero page addressing modes are provided.

New Addressing Modes Of Existing Instructions

As can be seen in Figure 1 of the 14 new op codes covering existing

instructions eight are indirect addressing, those being ADC, AND,

CMP, EOR, LDA, ORA, SBC, and STA. JMP has been given a new

addressing mode being (Indirect,X). BIT has three new ones, Immedi

ate, Zero Page.X and Absolute,X. Last but surely not least is accumula

tor addressing for DEC and INC. Many times have I wanted to

decrement or increment the accumulator and now I can.

About The Program

The program listing shown takes 10,031 bytes* exactly. This is a two

pass assembler, the first pass to generate a symbol table and the

second pass to generate the object code. The two POKEs in line one

set the top of memory and top of strings to reserve the upper 4,096

bytes of ram ($7000 to $7FFF) for object code assuming 32K of RAM

total. The first line of an assembly would then be:

* = $7000 ; sys28672.

For a 16k PET change the two POKEs to whatever is convenient. For

1,024 bytes of reserved RAM, POKE in a value of 60 instead of 112 that

is shown. The first line of an assembly would then become:

* = $3c00;sysl5360

Also reducing the values of 'MEM' and 'M2' might be necessary.

'MEM' sets the total number of lines permitted per source module and

'M2' the total number of equates and labels that can be stored in the

symbol table. The compiled version mentioned earlier will not fit into

a 16K PET since it takes just over 21K bytes of memory.

For large assemblies containing lots of comments that would normally

eat up tons of RAM, linker disk file capability has been added. Instead

of writing one large source file one can break it up into smaller

"modules" that reside on disk. The linker file then brings in each

module one at a time, first to generate a symbol table, and again to

generate the object code. Standard BASIC 2.0 disk commands are

used, so the program will run on the C64 as well as BASIC 4.0

machines. No provision for a linked assembly was made for the

cassette. For those wanting to modify the program a detailed break

down on program structure is given in Figure 2.

Program Operation

MENU Upon running the program the menu appears and the mode

of operation automatically defaults to "source" which appears in

reverse video. Source mode, and the alternate Linker mode can be

toggled by hitting return without making a selection from the menu.

To make a selection type in the letter shown in reverse video of the

operation wanted. If an illegal selection is made a new menu is

displayed.

INPUT When entering this operation the program will ask for a

starting line number; enter it and hit return. If starting a new machine

language program or module always start with line number one.

Although line number zero technically does exist do not use it

because it is used by the program to keep track of the number of total

lines used when writing or reading source or linker files to cassette or

disk.

The line number will be displayed at the beginning of a new line and a

non-blinking cursor will be displayed. If a line is to be comments only

then hit a semicolon immediately after the line number. The semico

lon tells the program to begin a comment field and can only be used at

the beginning of a comment field. A full line of comments in source

mode is 71 characters long and in linker mode is 73 characters long. If

an error is made and it is caught before spacing to the next word or

field then use the delete key to back up otherwise hit return to start a

new line and type "FIX" and return. This will let the previous line be

re-entered. To get back to the menu from INPUT just type "EXIT" on a

new a line and hit return.

When inputting a linker file, if the first character in a line is not a

semicolon then a 16 character file name field is enabled and should

contain the exact file name of a file already on disk or one that will be

on disk. If the file name is less than 16 characters and some comment

ing is necessary, just hit a semicolon and the program will automati

cally tab out to the comment field and display the semicolon and a

non-blinking cursor. The comment field after the file name field is 56

characters long.

When inputting a source file, if the first character in a line is not a

semicolon then a six character symbol field is enabled for labels or

equates. The first character of a label must fall in the alphabet from A

to Z. If the symbol is less than six characters then hit the space bar

once to automatically tab to the four character mnemonic field. If no

symbol is to be entered on a particular line then immediately hit the

space bar once to automatically tab to the mnemonic field.

As just mentioned the mnemonic field is four characters long to hold

the new mnemonics of the R65C02. There are two nonmnemonic

operators that can be used in this field, an equals " = " sign for equates

and "BYT" for entering data. Use immediate addressing mode when

using BYT. If the entry in the mnemonic field is less than four

characters then hit the space bar once to automatically tab to the

operand field. If no operand or comments are to be entered on a

particular line then instead of spacing to the operand field just hit

return to terminate the line.

The operand field is a total of 13 characters in length. Again, if

specifying a label or equate, the first character must be in the range

from A to Z. If it is a number then the program will take that number

as the value of the operand and not look it up in the symbol table. The

operand specifiers include "#" for immediate addressing, "$" for

hexadecimal, and "%" for binary. The specifiers " + ", ">", and "<"

can only be used in combination with labels and equates and are used

as follows: " + " to increment the value of the operand, ">" to specify

the hi byte of the address containing the operand, and "<" to specify

the lo byte of the address containing the operand. These latter three

specifiers can not be used in combination with one another on the

same line. One can however use as many " + " specifiers on the same

line after an operand within the field.

The Transactor 67 Volume 6, Issue 01

If comments are to be added after the operand field and the operand

field has not been exited by using all 13 characters then hit the

semicolon and the program will automatically tab to the comment

field and display a semicolon followed by the non-blinking cursor. If

the cursor is in the mnemonic field hit a space to enter the operand

field then a semicolon to enter the comment field. To terminate the

line just hit return. The comment field after the operand field is 31

characters long.

DELETE The program will ask for "FROMTO" line numbers. When

deleting just one line enter that line number for both from and to.

Delete operates the same for both source and linker modes.

INSERT To add blank lines in the middle of existing source or linker

files use the insert command. A prompt will ask for the first line and

number of lines. The first line is the line that is to be "pushed down".

Example: to insert three blank lines between lines 7 and 8 answer the

prompt with 8,3 and return. Keep in mind that if the array, be it source

or linker, is completely full then in the above example three lines will

be "thrown off" the end of the array. To enter information in these

three blank lines just go back to INPUT.

LIST To list lines to the screen make this selection and answer the

prompt asking for "FROMTO" line numbers. If you specify the end

line as higher than the last line, the LIST routine will continue

showing empty lines - hit any key to terminate the LISTing. No

provision was made to list source code to the printer. Listing to the

printer can be done during assembly.

WRITE FILE To save a source or linker file to tape or disk enter a

"W" from the menu and answer the prompts. The program will ask

first if the media is tape or disk. Secondly it will ask for a name for the

file and in the case of disk will also ask for a drive number. When all

the prompts are answered the program then begins from the end of

the array and looks for a line with any information in it to determine

the size of the array. When it finds an element in the array that is not a

null string it places that number into element zero and then saves the

elements from zero to the last line in a sequential format. When

writing a file to disk the disk status and file name is displayed on the

screen before returning to the menu.

READ FILE Being the sister command to WRITE FILE, READ FILE is

similar with minor difference. A prompt will ask for the type of media

and when reading in a file from tape no file name is asked for. When

the length of the file is determined by reading element zero off the

tape each line of code is displayed on the screen. Waiting for a large

array to come in from tape is rather boring and watching it lumber in

helps break the monotony.

When reading in a file from disk, a prompt will ask for the file name

and drive number. The program then reads in element zero, deter

mines the length, and reads in the rest of the array. When reading in a

file from disk, the disk status and file name is displayed on the screen

before returning to the menu.

After a file is read in all elements of the array after the last line number

are set to a null string. A previous file could have been longer than the

one just read in and if making minor edits and re-saving or assem

bling those extra lines would cause unwanted results.

ASSEMBLE The first prompt to be answered asks if the listing

destination is the screen or printer. When assembling source code for

the first time 1 always dump to the screen because of the possibility of

errors. When in source file mode no more prompts are asked for.

When assembling a single source file the code must already reside in

RAM by either INPUT or READ FILE. When assembling in linker file

mode a prompt will ask for the name of the linker file and drive

number. No files are needed in RAM, they must all reside on the same

disk including the linker file. The disk status and file name are

displayed on the screen for each file fetch.

There are a number of error messages that will inform the operator of

the reason of an aborted assembly. I was amazed to discover how easy

it is to use an equate name or label twice in a large linked assembly so

I included some checking and a response of "DUPLICATE SYMBOL

ERROR" if it happens again. Other error messages include "UNDE

FINED SYMBOL ERROR", "ILLEGAL MNEMONIC", "ILLEGAL AD

DRESSING MODE", and "TOO LONG CONDITIONAL BRANCH". If

an error occurs during an assembly the program will stop, display the

error, and go back to the menu. The source file with the problem is left

in ram so just go back to the source file input mode and make the

fixes. Do not forget to save the fixed file to disk in the case of a linked

assembly.

FIND SYMBOL If an assembly stops with a "DUPLICATE SYMBOL

ERROR" or if the necessity arises to find out if a particular equate or

label name has already been used, then use the find label command.

A prompt will ask for the symbol name and if in linker mode, will also

ask for the linker file and drive number. When finding a symbol in

linker mode, the screen will display the source file name with the line

number and line of code for every match found. When in source mode

then just the line number and line of code will be displayed for each

match found in RAM.

QUIT When done hit "Q" from the menu and the BASIC version will

respond with "GET BACK IN WITH GOTO650". The compiled version

omits this message because there is no line 650 to go to. When using

"GOTO 650" to get back in the BASIC version existing variables and

source code will be preserved from the previous RUN.

Examples

Eric Brandon included a machine language test program in his article

that wrote every character to every location on the screen and is

duplicated here in Figure 3A. Compare the original version, in this

case assembled at $7000, with a slightly improved version that takes

advantage of some new op codes with full comments in Figure 3B.

This new version will only run with an R65C02 plugged into the PET.

Memory consumption of the new routine's object code has been cut

by approximately one third, mostly because of being able to branch

on bit status instead of comparing bytes and being able to increment

the accumulator instead of a memory location. I have shown in the

comments the total length of the field widths. A full length comment

line can accept 71 characters and comments after the operand field

can hold 31 characters.

An example of a linker file is shown in Figure 4. Note that the same

commenting capability is available when writing a linker file. A full

length comment line can accept 73 characters and comments after the

file name can hold 56 characters. Every source file specified in a linker

file must reside on the same disk as the linker file. The total number of

lines a linker file can hold is 64 which should be plenty, however if

this quantity needs to be changed then adjust the variable 'LK' in line

one.

The Transactor 68 Volume 6, Issue 01

Final Odds and Ends

1 found that when compiling the assembler with PET SPEED, the

NMOS 6502 must be reinstalled in the PET. Apparently the designers

of PET SPEED used an undefined op-code that only the NMOS

version can decode properly or used the problem in the indirect JMP

to effectively encrypt their compiler, at any rate during the compila

tion PET SPEED goes off into never never land with the CMOS 6502 in

place. However, an already compiled program works just fine with an

R65C02 plugged in. (The compiled version is included on Transactor

Disk #6)

GTE's G65SC02 does not have the bit manipulation instructions nor

the branch on bit instructions so don't try to use those instructions on

GTE's chip.

References:

1. Eric Brandon, "Assembler in BASIC for the PET", COMPUTE!, June

1981.

2. Rockwell International Corporation, Semiconductor Products Divi

sion, "R65C02", 1984 DATA BOOK.

Gary L. Anderson

1528 34th St. S.E.

Cedar Rapids, IOWA

52403

Editors Note (and *)

The program may no longer be 10,031 bytes long. Gary's original used

BASIC 4.0 disk commands but they've since been changed to their

equivalent BASIC 2.0 counterparts. Also, additional tests for ST and

disk status were inserted following OPEN commands, etc., to counter

the automatic test performed by DOPEN. The reasons? Although you

can't plug an R65C02 into a Commodore 64, the assembler will still

work, as long as you don't try to use any of the extra op-codes (unless

you intend to transport them to an R65C02 machine).

The first two POKEs will naturally have to be changed. Add 3 to both

addresses to assemble programs at $7000. However, the 64 has 8

more K of memory above $8000. You can move the pointer up some,

or if you're planning to assemble programs in RAM at $C000, you can

omit these two POKEs altogether.

Gary has structured his storage files with a somewhat familiar format.

A quick look with Superscript shows that Gary's files are so close to

the CBM Assembler format that it's hard to imagine them being

incompatible. Source lines are written to the file without line num

bers. Shifted spaces are used to separate fields and extra shifted spaces

indicate blank fields. The only difference that will need attention is

the very first line which indicates the total number of lines in the file.

If this is deleted, the source files from Gary's assembler should be

totally compatible with the Commodore Assembler. PAL users will

find a CBM to PAL conversion program included with the PAL

package. Both of these assemblers are written in machine language

making them somewhat faster. Should you become more akin to

machine code and decide to get either of these assemblers, your

existing source files will only need a little work to be transportable.

Note: The listings shown have been generated by the Assemble

option of Gary's assembler. The first lines output are the label equates

that were defined within the source code. To enter these programs,

start with line 1 and continue from there, omitting the assembled

address and hex values. Remember, the SPACE bar moves the cursor

to the next field and each field must contain the proper type of data (ie.

labels in the 1st field, mnemonics in the 2nd field, operands in the 3rd

field, comments in the 4th field, etc.)

Figure 2. Program Structure Breakdown.

Lines

10-20

30-120

130-150

160-360

370-380

390

400-410

420

430-570

580-600

610

620-640

650-740

750-780

790-850

860-920

930-1070

1080-1230

1240-1410

1420-1620

1630-1820

1830-1990

2000-2580

2590-2750

2760-2940

2950-3080

Function

Initialization

Separate lables, op codes, and operands

Separate source file name from comments

Determine the value of the operand

Find the length of the source array

Clean out the remainder of the source array

Find the length of the linker array

Clean out the remainder of the linker array

Data statements for op codes

Convert hex to decimal

Convert binary to decimal

Convert decimal to hex

Print menu prompt, get command

Input lines executive

Delete lines

Insert lines

List to screen

Write file to tape or disk

Read file from tape or disk

Assemble executive

Find symbol

First pass, create symbol table

Second pass, assemble source code

Input source file

Input linker file

Input from keyboard subroutine

The Tr
69 Volume 6, Issue 01

Figure 1

absolu = i

"he new op codes in order of their mnemonic. In comment field (1) denotes

lew instruction and (2) denotes new addressing mode of old instruction.

51111 immedi

offset = $7000
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

= $0022 ind =

new op codes on the r65cO2

7000

7002

7004

7007

700a

700d

7010

7013

7016

7019

701c

701 f

7022

7025

7028

702b

702e

7031

7034

7036

7038

703b

703d

703f

7040

7042

7043

7046

7048

704a

704b

704c

704d

704e

7050

7052

7054

7056

7058

705a

705c

705e

7060

7062

7064

7066

7068

706a

706c

706e

7070

7072

7075

7078

707a

707c

707f

7081

7084

#

absolu

immedi

ind

zeropg

72 33 offset

32 33

Of 44 f9

1f 44 f6

2f 44 f3

3f 44 fO

4f 44 ed

5f 44 ea

6f 44 e7

7f 44 e4

8f 44 e1

9f 44 de

af 44 db

bf 44 d8

cf 44 d5

df 44 d2

ef 44 cf

ff 44 cc

89 22

34 44

3c 11 11

80 c3

d233

3a

52 33

1a

7c 33 00

b233

1233

da

5a

fa

7a

07 44

17 44

27 44

37 44

47 44

57 44

67 44

77 44

f2 33

87 44

97 44

a7 44

b744

C7 44

d7 44

e7 44

f7 44

92 33

9c 11 11

9e 1111

64 44

74 44

1c11 11

14 44

0c 11 11

04 44

=

=

=

=

=

adc

and

bbrO

bbr1

bbr2

bbr3

bbr4

bbr5

bbr6

bbr7

bbsO

bbs1

bbs2

bbs3

bbs4

bbs5

bbs6

bbs7

bit

bit

bit

bra

cmp

dec

eor

inc

imp

Ida

ora

phx

phy

plx

ply

$7000

$1111

$22

$33

$44

(ind)

(ind)

zeropg,offset

zeropg, offset

zeropg, offset

zeropg,offset

zeropg, offset

zeropg,offset

zeropg,offset

zeropg, offset

zeropg,offset

zeropg,offset

zeropg, offset

zeropg,offset

zeropg,offset

zeropg, offset

zeropg,offset

zeropg, offset

#immedi

zeropg,x

absolu,x

offset

(ind)

a

(md)

a

(ind.x)

(ind)

(ind)

rmbO zeropg

rmb 1 zeropg

rmb2 zeropg

rmb3 zeropg

rmb4 zeropg

rmb5 zeropg

rmb6 zeropg

rmb7 zeropg

sbc (ind)

smbO zeropg

smb1 zeropg

smb2 zeropg

smb3 zeropg

smb4 zeropg

smb5 zeropg

smb6 zeropg

smb7 zeropg

sta

stz

stz

stz

stz

trb

trb

tsb

tsb

(ind)

absolu

absolu,x

zeropg

zeropg,x

absolu

zeropg

absolu

zeropg

$0033 zeropg = $0044

;(2)

;(2)
; (1) branch on bitO reset

; (1) branch on bit 1 reset

; (1) branch on bit 2 reset

; (1) branch on bit 3 reset

; (1) branch on bit 4 reset

; (1) branch on bit 5 reset

; (1) branch on bit 6 reset

; (1) branch on bit 7 reset

; (1) branch on bit 0 set

; (1) branch on bit 1 set

; (1) branch on bit 2 set

; (1) branch on bit 3 set

; (1) branch on bit 4 set

; (1) branch on bit 5 set

; (1) branch on bit 6 set

; (1) branch on bit 7 set

;(2)

;(2)

;(2)
■ (1) branch always

;(2)

;(2)

;(2)
;(2)

;(2)
;(2)

;(2)
; (1) push x onto stack

; (1) push y onto stack

; (1) pull xfrom stack

; (1) pull y from stack

; (1) reset memory bit 0

; (1) reset memory bit 1

; (1) reset memory bit 2

; (1) reset memory bit 3

; (1) reset memory bit 4

; (1) reset memory bit 5

; (1) reset memory bit 6

; (1) reset memory bit 7

;(2)
; (1) set memory bit 0

; (1) set memory bit 1

; (1) set memory bit 2

; (1) set memory bit 3

; (1) set memory bit 4

; (1) set memory bit 5

; (1) set memory bit 6

; (1) set memory bit 7

;(2)
; (1) store zero

; (1) store zero

; (1) store zero

; (1) store zero

; (1) test and reset bits

; (1) test and reset bits

; (1) test and set bits

; (1) test and set bits

The Transactor 70 Volume 6, Issue 01

Figure 3A. The

char = $7040

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

7000

7002

7003

7006

7008

700a

700c

700f

7011

7012

7014

7016

7018

701a

701c

701 f

7021

Figure 3E

a9 00

a8

8d40

85 b5

a9 80

85 b6

old NMOS version of writing every character to the screen.

scrn = $00b5

* =

char

scrn =

Ida #$00

tay

70 sta

sta

again Ida

sta

ad 40 70 Ida

91 b5

c8

dOfb

e6b6

a6b6

eO84

d0f3

ee40

d0e7

60

.. The

scrn = $0020

1

2

3

4

5

6

7
O
o

9

10
-1 -1

I I

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

loop sta

iny

bne

inc

Idx

cpx

bne

70 inc

bne

rts

$7000

$7040

$b5

char

scrn

#$80

scrn +

char

(scrn),y

loop

scrn +

scrn +

#$84

loop

char

again

again = $7008 loop = $700f

R65C02 version with full comments.

again = $7007 loop = $7009

; 12345678901234567890123456789012345678901234567890123456789012345678901

■ #

; * new r65cO2 version

; * this

; * this

is a demo of the speed of machine language graphics.

subroutine fills the screen with every possible character.

; * $7000 =
• *

7000

7002

7003

7005

7007

7009

700b

700c

700e

7010

7013

7014

7016

Figure 4.

1

O
c.

3

4

5

6
7

8

9

10

11

a9 00

a8

64 b5

a2 80

86 b6

91 b5

c8

dOfb

e6b6

28672

* =

scrn =

Ida

tay

stz

Idx

again stx

loop sta

iny

bne

inc

2f b6f6

1a

dOfl

60

inc

bne

rts

$7000

$20

#0

scrn

#$80

scrn +

(scrn),y

loop

scrn +

;1234567890123456789012345678901

; temporary loc of scrn data

; clear accumulator

; clear y

; clear lo byte of screen address

; hi byte of screen address

; reset hi byte of screen address

; write char to screen location

; point to next screen location

; are 256 done? if not branch

; yes, point to next 256

scrn + Joop ; have 1024 locatns been filled?

a

again

Linker file example. Lines 1 and

Line 1 also shows the maximum

; yes, next character

; have all chars been written?

; yes back to basic

1 show the maximum length of the commenting capability.

length of the file name.

;1234567890123456789012345678901234567890123456789012345678901234567890123

" *

; * this is an example of a linker file, each file name must be on the

; * same disk as the linker file.

■ *

file one

file two

file three

; first file to be

; second file

; third file

Dulled in

1234567890123456 ; 12345678901234567890123456789012345678901234567890123456

The Transactor 71 Volume 6, Issue 01

LD

FB

EO

EE

CC

PM

HF

GM

DF

MP

HB

IJ

Dl_

ME

MA

HJ

FP

DE

KA

EB

PK

NA

NL

PF

IL

LK

DL

GN

BC

OE

HB

EA

NK

LA

00

HC

LP

KO

IC

CK

IA

EF

PC

DO

EA

LI

The R65C02 Assembler

10 poke53,112:poke49,112:mem = 500

:m2 = 300:lk = 64:m$= "s":open15,8,15

20 print "H" :dima$(mem),s$(m2),v(m2),l(3),l$(lk)
:h$ = *0123456789abcdef" :goto650

30 input#15,e,e$,e1 ,e2:e$ = str$(e) + ", " + e$ + ","

+ str$(e1)+ "," +str$(e2)

40 return

50 1(1) = 0:1(2) = 0:1(3) = 0:1 = 0

60forq = 1tolen(a$(t)):ifmid$(a$(t),q,1) = chr$(160)
thenl = l + 1:l(l) = q

70 ifl<3thennextq

80lb$ = left$(a$(t),l(1)-1)

90 if I (2) = 0thenoc$ = right$(a$(t),q-l(1)-1):op$ = "": return

100oc$ = mid$(a$(t),l(1) + 1,l(2)-l(1)-1)

110 ifl(3) = 0thenop$ = right$(a$(t),q-l(2)-1):return

120 op$ = mid$(a$(t),l(2) +1 ,l(3)-l(2)-1):return

130 nm$ = "" :cm$ = "" :forq = 1 tolen(l$(j))

:z$ = mid$(l$(j),q,1)
140 ifz$ = ";" thennm$ = left$(l$(j),q-2)

:cm$ = right$(l$(j),len(l$(j))-q +1): return

150 nextq:nm$ = l$(j):return

160ad = 0:lo = 0:hi = 0

170q$ = left$(o1$,1):q1 =asc(q$)

180if(q1>47andqK58)or(q1>64andqK91)

orq$ = " $" orq$ = " %" then200

190 o1 $ = right$(o1 $,len(o1 $)-1):goto170

200 q$ = right$(o1 $,1):q1 = asc(q$)

210 if(q 1 >47andq 1 <58)or(q 1 >64andq 1 <91)

orq$ = " + " orq$ = " <" orq$ = " >" then230

220 o1 $ = Ieft$(o1 $,len(o1 $)-1):goto200

230 ifright$(o1 $,2) = chr$(108) + " x"

thenoi $ = Ieft$(o1 $,len(o1 $)-2):goto250

240 ifright$(o1 $,2) = chr$(108) + " y"

thenoi $ = Ieft$(o1 $,len(o1 $)-2)

250 ifright$(o1 $,1) = ")" thenoi $ = Ieft$(o1 $,len(o1 $)-1)

260 ifleft$(o1 $, 1) = " $" thenn$ = right$(o1 $,len(o1 $)-1)

:gosub580: nu = v: return

270 ifleft$(o1 $,1) = " %" thenn$ = right$(o1 $,len(o1 $)-1)

:gosub610:nu = v:return

280 ifasc(left$(o1 $, 1))<58thennu = val(o1 $):return

290ifright$(o1$,1)= " + "theno1$ = left$(o1$,len(o1$)-1)

:ad = ad + 1:goto290

300 ifright$(o1 $, 1) = " <" thenoi $ = Ieft$(o1 $,len(o1 $)-1)

:lo=1:goto320

310 ifright$(o1 $,1) = " >" thenoi $ = Ieft$(o1 $,len(o1 $)-1)

:hi = 1

320 forw = 1 tom2:ifs$(w) = o1 Sthennu = v(w):w = 999

330 nextw:ifw = m2 + 1thenprint"(undefined symbol
error" :goto650

340 iflothenn = nu:gosub620:n$ = right$(r$,2)

:gosub580:nu = v:return

350 ifhithenn = nu:gosub620:n$ = left$(r$,2)

:gosub580:nu = v:return

360 nu = nu + ad:return

370 forll = memtoi step-1 :ifa$(ll)<>" "

thena$(0) = str$(ll):ll = 1

380 nextll:return

390 fori = val(a$(0)) +1 tomem:a$(i) = "" :nexti:return

400 forll = Iktoi step-1 :ifl$(ll)<>" " thenl$(0) = str$(ll):ll = 1

410 nextll:return

420 fori = val(l$(0)) +1 tolk:l$(i) = "" :nexti:return

430 dataadcn6ds65i69k7dl79p61 o71 q75m72,andn2

ds25i29k3dl39p21 o31 q35m32

440 dataaslh0an0es06k1eq16,bbr00f11 f22f33f44f55f66

f77f

450 databbsO8f19f2af3bf4cf5df6ef7ff,bccj90,bcsjb0,

beqjfO, bitn2cs24i89k3cq34

460 databmij30,bnejdO,bplji 0,braj80,brkgOO,bvcj50,

bvsj70,clcg18,cldgd8,clig58

DF

OA

NF

CN

LG

EG

DD

FE

OM

IO

PA

OB

JM

Kl

GM

NH

FM

GM

PF

MC

Ml

FO

Al

PB

FG

IG

FG

GB

FC

MD

FF

JH

AD

IE

Ml

Kl

GC

PL

CO

FJ

ND

LM

GL

DC

DK

DG

HB

MA

KD

KG

HE

470 dataclvgb8,cmpncdsc5ic9kddld9pc1 od1 qd5md2,

cpxnecse4ieO,cpynccsc4icO

480 datadecncesc6kdeqd6h3a,dexgca,deyg88,

eorn4ds45i49k5dl59p41 o51 q55m52

490 dataincneese6kfeqf6h1a,inxge8,inygc8,

jmpn4cm6cp7c,jsrn20

500 dataldanadsa5ia9kbdlb9pa1 ob1 qb5mb2,

ldxnaesa6ia2lberb6,ldynacsa4ia0kbcqb4

510 datalsrh.4an4es46k5eq56, nopgea,

oran0ds05i09k1 dl19pO1 o11 q15m12,phag48,phpgO8

520dataphxgda,phyg5a,plag68,plpg28,plxgfa,

plyg7a,rmb007117227337447557667777

530datarolh2an2es26k3eq36,rorh6an6es66k7eq76,
rtig40,rtsg60

540 datasbcnedse5ie9kfdlf9pe1 of1 qf5mf2,secg38,

sedgf8,seig78

550 datasmbO871972a73b74c75d76e77f7,

Stan8ds85k9dl99p81 o91 q95m92

560datastxn8es86r96,styn8cs84q94,stzn9cs64q74k9e,
taxgaa,tayga8,trbn1cs14

570datatsbn0cs04,tsxgba,txag8a,txsg9a,tyag98

580 v = 0:iflen(n$)<4thenn$ = left$(" 0000" ,4-len(n$)) + n$

590forr2 = 1to4:d$ = mid$(n$,r2,1):tv = asc(d$)-48
:iftv>9thentv = tv-7

600v = tv*16t(4-r2) + v:nextr2:return

610 v = O:forz = Ien(n$)to1 step-1

:v = v + val(mid$(n$,z, 1))*2t(len(n$)-z):nextz:return

620 fd = int(n/4096):n = (n/4096-fd)*4096

:sd = int(n/256):n = (n/256-sd)*256

630 td = int(n/16):n = int((n/16-td)* 16)

:r$ = mid$(h$,fd + 1,1) + mid$(h$,sd + 1,1)

640 r$ = r$ + mid$(h$,td + 1,1) + mid$(h£,n +1,1):return

650 ifm$ = " s" thenprint" Hsource file
660 ifm$ = " I" thenprint "Blinker file

670 print" [3 spacesiBrlpead orT
680 print "HiHnput ydHelete
690 print "Ja0ssembley|q0uitJ0

command? ";

700getc$:ifc$= "nthen700

710ifc$ = chr$M3)andm$= "s"thenm$= "I"

E 3":goto650
)andm$ = " I" thenm$ = " s"

E 3:goto650
730 printc$

740 ifc$ = " q" thenprint" qget back in with

n0

Irite file"

.ei t Q|§§st"
ind symbol

720 ifc$ =

750ifc$<>"i"then790

760 input "Hline" ;ln
770 ifm$ = ' s" andln>0andln< = memthen2590

780 ifm$ = " I" andln>0andln< = lkthen2760

790ifc$O"d"then860

800 input "Klines - from,to" ;fl,ll
810ifm$ = ~then840
820 fort = fltoll:a$(t)= "":nextt

830 fort = lltomem-1 :a$(t-ll + fl) = a$(t +1)

:a$(t+1)= "":nextt:goto650

840 fort = fltoll:l$(t)= "":nextt

850 fort = lltolk-1 :l$(t-ll + fl) = l$(t + 1)

:l$(t+1)= "" :nextt:goto650

860ifc$O"n"then930

870 input"Hlines - first,number" ;fl,ll
880ifm$ = ~'then910
890 fort = mem-lltoflstep-1 :a$(t + II) = a$(t):nextt

900 fort = fltof I +11-1 :a$(t) = "" :nextt:goto650

910 fort = lk-lltoflstep-1 :l$(t + II) = l$(t):nextt

920 fort = fltofl +11-1 :l$(t)= "" :nextt:goto650

930ifc$O"l"then1080

940 input"Bllines- from,to" ;fl,ll:print"^
950 ifm$= V them 030

960 fort = fltoll:getc$:ifc$<>" "thent = ll:goto1020

970iflen(a$(t)) = 0thenprintt:forel = 1to250:next:goto1020

The Transactor 72 Volume 6, Issue 01

MP

AE

NH

EC

ID

Dl

GG

GC

MN

ME

NN

EG

LG

CL

PG

JP

JH

MK

IJ

EK

JP

MC

IF

EC

FJ

ID

PG

JC

PB

IF

NJ

DJ

KP

MD

GG

DE

ME

CP

NK

ON

JD

EN

KJ

FN

10

FO

CP

DP

NJ

GH

CH

NJ

BP

PD

CB

PD

DF

NO

980 ifleft$(a$(t),1)= "; "thenprintttab(6)a$(t):goto1020

990gosub50:printttab(6)lb$tab(13)oc$tab(18)op$;

1000 ifl(3)>0thenprinttab(32)right$(a$(t),len(a$(t)H(3))

:goto1020

1010 print

1020nextt:goto650

1030 forj = fltoll:getc$:ifc$<>" " thenj = Il:goto1070

1040 iflen(l$(j)) = Othenprintj:forel = 1 to250:next:goto1070

1050 ifleft$(l$(j), 1) = ";" thenprintjtab(4)l$(j):goto1070

1060 gosubi 30:printjtab(4)nm$tab(21)cm$

1070nextj:goto650

1080 ifc$<>" w" then 1240

1090 print" 0to Ht0ape or HdEflsk? ";
1100 getc$:ifc$ = Tieni 100
1110 printc$:ifc$<>" t" theni 160

1120 input" name of file" ;n$:open2,1,1 ,(n$)

1130 ifm$= " I "theni 150

1140gosub370:fori = 0toval(a$(0)):print#2,a$(i):nexti

:close2:goto650

1150gosub400:fori = 0toval(l$(0)):print#2,l$(i):nexti

:close2:goto650

1160ifc$O"d"then650

1170 input "0name of file,drive#" ;n$,d
:open2,8,8,mid$(str$(d),2)+ ":" +n$+ ",s,w"

1180 gosub30:ifethenprinte$" " n$:close2:goto650

1190 ifm$ = "I"theni220

1200 gosub370:fori = 0toval(a$(0)):print#2,a$(i):gosub30

:ife<20ore = 50thennexti

1210gosub30:printe$" " n$:close2:goto650

1220gosub400:fori = 0toval(l$(0)):print#2,l$(i):gosub30

: ife<20ore = 50thennexti

1230gosub30:printe$" " n$:close2:goto650

1240 ifc$O"r"then 1420

1250 print" flfrom QtQape or fldQisk? ";
1260getc$:ifc$= "Theni 260

1270 printc$:ifc$O"t"then1340

1280 open2,1,0

1290ifm$= "I "theni320

1300 input#2,a$(0):fori = 1toval(a$(0)):input#2,a$(i)

:printi;a$(i)

1310 nexti:close2:gosub390:goto650

1320input#2,l$(0):fori = 1toval(l$(0)):input#2,l$(i):printi;l$(i)

1330 nexti:close2:gosub420:goto650

1340ifc$O"d"then650

1350 input"0name of file,drive#" ;n$,d
:open2,8,8,mid$(str$(d),2)+ ":" +n$

1360 gosub30:ifethenprinte$" " n$:close2:goto650

1370ifm$= "I "theni400

1380input#2,a$(0):fori = 1toval(a$(0)):input#2,a$(i)

:gosub30:ife<20thennexti

1390gosub30:printe$" " n$:close2:gosub390:goto650

1400 input#2,l$(0):fori = 1 toval(l$(0)):input#2,l$(i):gosub30

:ife<20thennexti

1410gosub30:printe$" "n$:close2:gosub420:goto650

1420 ifc$<>" a" theni 630

1430 print" @to fls0creen or Hp0rinter? " ■
1440 getdv$:ifdv$ = theni 440

1450 printdv$:ifdv$= "s"thendv = 3:goto1480

1460 ifdv$ = " p" thendv = 4:goto1480

1470 goto650

1480 closei :open1 ,dv:sb = 1 :ifm$ = " I" theni 500

1490 gosub370:gosub1830:ln = 1 :pc = og:gosub2000

:close1xioto650

1500 input" 0name of linker file,drive#" ;l$,d
:open2,8,8,mid$(str$(d),2)+ ":" +l$

1510gosub30:ifethenprinte$" "I$:close2:goto650

1520input#2,l$(0):fori = 1toval(l$(0)):input#2,l$(i):gosub30

:ife<20thennexti

1530 gosub30:print"Q" e$" " I$:close2:gosub420
1540 forpa = 1 to2:forj = 1 toval(l$(0))

1550 ifleft$(l$G), 1) = ";" thengotoi 620

AF

10

BA

JD

Bi

FH

LI

GH

Dl

IB

LI

LJ

JO

ML

HG

FJ

AP

II

BK

NO

OP

JC

01

EH

HL

BL

KC

MF

AC

AO

KP

AP

GF

BE

PO

KA

BG

HP

FG

GG

FP

FA

BG

NH

GF

CE

EC

KE

FC

LG

DO

KC

1560gosub130:open2,8,8,mid$(str$(d),2)+ ":" +nm$

1570 gosub30:ifethenprinte$" " nm$:close2:goto650

1580 input#2,a$(0):fori = 1toval(a$(0)):input#2,a$(i)

:gosub30:ife<20thennexti

1590 gosub30:printe$" " nm$:close2:gosub390

1600 ifpa = 1 thengosubi 830

1610 ifpa = 2thengosub2000

1620 nextj:ln = 1:pc = og:nextpa:close1:goto650

1630 ifc$<>" f" then650

1640 input "Hsymbol" ;la$
1650 ifm$=T'theni670

1660 gosub370:gosub1770:goto650

1670 input"0name of linker file,drive*" ;l$,d
:open2,8,8,mid$(str$(d),2)+ ":" +l$

1680 gosub30:ifethenprinte$" " I$:close2:goto650

1690input#2,l$(0):fori = 1toval(l$(0)):input#2,l$(i):gosub30

:ife<20thennexti

1700 gosub30:print"Q" e$" " I$:close2:gosub420
:forj = 1toval(l$(0))

1710 ifleft$(l$(j), 1) = ";" thengotoi 760

1720 gosubi 30:open2,8,8,mid$(str$(d),2) + ":" + nm$

1730 gosub30:ifethenprinte$" " nm$:close2:goto650

1740 input#2,a$(0):fori = 1toval(a$(0)):input#2,a$(i)

:gosub30:ife<20thennexti

1750gosub30:printe$" "nm$:close2:gosub390

:gosub1770

1760nextj:goto650

1770 fort = 1toval(a$(0)):ifleft$(a$(t),1)= " "

orleft$(a$(t),1) = "; "theni790

1780 gosub50:ifla$ = Ib$then1800

1790 nextt: return

1800 printttab(6)lb$tab(13)oc$tab(18)op$;

1810 ifl(3)>0thenprinttab(32)right$(a$(t),len(a$(t))-l(3));

1820 print:goto1790

1830 fort = 1 toval(a$(0)):ifleft$(a$(t), 1) = ";" theni 950

1840 gosub50:iflb$ = "" theni 890

1850ifoc$<>" = "theni 880

1860 o1 $ = op$:gosub160:iflb$ = " *" thenpc = nu

:og = nu:goto1950

1870 s$(sb) = lb$:v(sb) = nu:n = nu:gosub620

:gosub1970:goto1950

1880 s$(sb) = lb$:v(sb) = pc:n = pc:gosub620:gosub1970

1890 ifop$ = "" orop$ = " a" oroc$ = " byt"

thenpc = pc +1 :goto1950

1900ifright$(op$,1)= "<"ornght$(op$,1)= ">"

thenpc = pc + 2:goto1950

1910 rfleft$(oc$, 1) = "j"orleft$(oc$,2)= "bb"

thenpc = pc + 3:goto1950

1920 ifleft$(oc$, 1) = " b" andoc$<>" bit"

andoc$<>" brk" thenpc = pc + 2:goto1950

1930 o1 $ = op$:gosub160:ifnu<256thenpc = pc + 2

:goto1950

1940 pc = pc + 3

1950 nextt:print#1 :return

1960 print#1 ,lb$spc(6-len(lb$))" = $"r$spc(6);

:gosub1970:sb = sb+1

1970print#1,lb$spc(6-len(lb$))" = $"r$spc(6);

1980 forq = Otosb-1 :ifs$(q) = s$(sb)thenprint" ^duplicate
symbol error" :goto650

1990 nextq:sb = sb+1:return

2000 er = O:fort = 1 toval(a$(0))

2010 ifleft$(a$(t), 1) = ";" thenprint#1,

Inspc(5-len(str$(ln)))a$(t);:goto2580

2020 gosub50:ifoc$= " = "thenmv$= " [2 spaces]"

:pc$ = " [4 spaces]" :il = 0:goto2530

2030 ifop$ = "" thenam$ = " g" :il = 1 :goto2460

2040 ifop$ = " a" thenam$ = " h" :il = 1 :goto2460

2050 ifoc$ = " byt" thenoi $ = op$:gosub160:il = 1

:mv$ = right$(n$,2):goto2510

2060 ifleft$(oc$,2) = " bb" then2320

2070 if mid$(oc$,2,2) = " mb" then2400

The Transactor 73 Volume 6, Issue 01

IH

FK

PM

EE

OK

NE

EL

CA

IC

NP

NB

MN

LO

HM

NA

KG

EO

NF

KG

DD

CE

CB

MG

AN

NJ

ID

KM

FC

DA

HP

NP

DG

OD

CK

LH

CG

IA

CN

IL

CH

GK

OG

ON

KK

CG

PE

NA

10

IK

JA

KB

ID

IC

2080 x = 0:y = 0:i = 0:m = 0:z = 0

2090forq = 1tolen(op$):q$ = mid$(op$,q,1):ifq$= ")"

theni = 1:goto2110

2100ifq$= "#"thenm = 1

2110 nextq:forq = 1 tolen(op$)-1 :q$ = mid$(op$,q,2)

2120 ifq$ = chr$(108)+ "y"theny= 1 :goto2140

2130 ifq$ = chr$(108) + " x" thenx = 1

2140 nextq:o1 $ = op$:gosub160

2150 ifleft$(oc$, 1) = " j" then2180

2160 ifleft$(oc$, 1) = " b" andoc$<>" brk"

andoc$<>" bit" then2430

2170ifnu<256then2240

2180 ifiandxthenam$ = " p" :goto2230

2190 ifxthenamS = " k" :goto2230

2200 ifythenamS = " I" :goto2230

2210 ifithenamS = " m" :goto2230

2220 am$ = " n"

2230 so = int(nu/256):fo = (nu/256-so)*256:il = 3:goto2460

2240 ifmthenamS = " i" :goto2310

2250 ifiandythenam$ = " o" :goto2310

2260 ifiandxthenamS = " p" :goto2310

2270 ifxthenamS = " q" :goto2310

2280 ifythenamS = " r" :goto2310

2290 ifithenamS = " m" :goto2310

2300 am$ = " s"

2310 fo = nu:il = 2:goto2460

2320am$ = right$(oc$,1):o1$= " ":o2$= "":il = 3

2330forq = 1tolen(op$)

2340 ifmid$(op$,q, 1) = chr$(108)theno1 $ = left$(op$,q-1)

:o2$ = right$(op$,len(op$)-q)

2350 nextq

2360 gosub160:ifnu>255thenprint"y'illegal addressing
mode" :goto650

2370 fo = nu:o1 $ = o2$:gosub160:ifnu>pc + 2

thenso = nu-pc-3:ifso>127thener = 1

2380 ifnu<pc + 2thenso = 253 + nu-pc:ifso<128thener = 1

2390 goto2450

2400 am$ = right$(oc$, 1):il = 2:o1 $ = op$:gosub160

2410 ifnu>255thenprint"y"illegal addressing mode"
:goto650

2420fo = nu:goto2460

2430 am$ = " j" :il = 2:ifnu>pc +1 thenfo = nu-pc-2

:iffo>127thener=1

2440 ifnu<pc + 1 thenfo = 254 + nu-pc:iffo<128thener = 1

2450 ifer = 1 thenprint "Qtoo long conditional branch"
:goto650

2460 restore:forw = 1 to68:readi$:ifleft$(i$,3) = left$(oc$,3)

thenw = 70

2470 nextw:ifw = 69thenprint"Pillegal mnemonic"
:goto650

2480 forw = 4tolen(i$)step3: ifmid$(i$,w, 1) = am$

thenlw = w:w = 32

2490 nextw:ifw<32thenprint"y'illegal addressing mode"
:goto650

2500 mv$ = mid$(i$,lw +1,2):n$ = mv$:gosub580

2510 pokepc,v:ifil>1thenpokepc + 1,fo:ifil>2

thenpokepc + 2,so

2520n = pc:gosub620:pc$ = r$:pc = pc + il:n = fo

:gosub620:fo$ = r$:n = so:gosub620:so$ = r$

2530 ifil<3thenso$ = " [2 spaces]" :ifil<2

thenfoS = " [2 spaces]"

2540print#1,lnspc(5-len(str$(ln)))pc$" "mv$" "

right$(fo$,2)" ";

2550 print#1 ,right$(so$,2)" " lb$spc(7-len(lb$))oc$;

2560print#1,spc(5-len(oc$))op$;:ifl(3) = 0then2580

2570 print#1 ,spc(14-len(op$))right$(a$(t),len(a$(t))-l(3));

2580 print#1 :ln = In + 1 :nextt:return

2590 println;:tb = 6:x = 0:lt = 6:gosub2950

:ifi$= "exit"then650

2600 ifi$= "fix"thenln = ln-1

:printchr$(-13*(asc(g$)<>13));:goto2590

BF

IJ

PO

KH

EH

LA

PB

ME

JJ

GH

KJ

LE

GH

EN

DN

GK

MM

CD

KF

PK

FM

IA

CM

HN

FO

BO

El

OF

KP

IF

KK

ED

IM

GJ

EL

Ol

HP

JJ

Fl

BO

MJ

BP

IP

HM

BD

BF

IO

DP

2610 ifi$ = "" andg$ = ";" thena$(ln) = ";"

:print" [1 crsr left]" g$;:tb = 8:x = 0:lt = 71 :goto2710

2620a$(ln) = i$:ifg$ = chr$(13)then2740

2630 tb = 13:x = 0:lt = 4:gosub2950:a$(ln) = a$(ln)

+ chr$(160) + i$:ifg$ = chr$(13)then2740

2640tb=18:x = 0:lt=13:gosub2950:ifi$= ""

andgS = chr$(13)then2740

2650 a$(ln) = a$(ln) + chr$(160) + i$:ifg$ = chr$(13)

then2740

2660 ifg$ = ";" thenprint" [1 crsr left] " tab(32)"; ";

:a$(ln) = a$(ln) + chr$(160) + g$:goto2700

2670 tb = 32:x = 0:lt = 1 :gosub2950:ifi$ = ""

andgS = chr$(13)then2740

2680 ifi$= ""andg$= "; "thenprint" [1 crsr left]; ";

:a$(ln) = a$(ln) + chr$(160) + g$:lt = 32:goto2710

2690 goto2730

2700tb = 34:x=1:lt = 32

2710 gosub2950:ifi$ = "" andgS = chr$(13)then2740

2720 a$(ln) = a$(ln) + chr$(160) + i$:ifg$Ochr$(13)

andx<>ltthen2710

2730 ifg$Ochr$(13)thenprint

2740 In = In +1 :ifln>memthen650

2750 goto2590

2760 println;:tb = 4:x = 0:lt = 16:gosub2950

:ifi$= "exit"then650

2770ifi$= "fix" thenln = ln-1

:printchr$(-13*(asc(g$)<>13));:goto2760

2780 ifi$ = "" andg$ = ";" thenl$(ln) = ";"

:print" [1 crsr left]" g$;:tb = 6:x = 0:lt = 73:goto2900

2790 l$(ln) = i$:ifg$ = chr$(13)then2930

2800 ifg$ = ";" thenprinttab(21)g$;:tb = 23:x = 0

:lt = 56:goto2890

2810ifx = ltthen2860

2820 gosub2950:ifi$ = "" andgS = chr$(13)then2930

2830 l$(ln) = l$(ln) + " " + i$:ifg$ = chr$(13)then2930

2840 ifg$ = ";" thenprinttab(21)g$;:tb = 23:x = 0

:lt = 56:goto2890

2850 ifx<>ltthen2820

2860 tb = 21 :x = 0:lt = 1 :gosub2950:ifi$ = ""

andg$ = chr$(13)then2930

2870 ifi$ = "" andgS = ";" thenprint" [1 crsr left]" g$" ";

:lt = 57:goto2890

2880 goto2920

2890l$(ln) = l$(ln)+" ;"

2900 gosub2950:ifi$ = "" andgS = chr$(13)then2930

2910 l$(ln) = l$(ln) + " " + i$:ifg$Ochr$(13)

andx<>ltthen2900

2920 ifg$Ochr$(13)thenprint

2930 In = In + 1 :ifln>lkthen650

2940 goto2760

2950 i$= " ''xirinttab(tb);

2960 print "B El1 crsr left]":
2970 getg$:ifg$^ "" then2970
2980ifg$>"z"org$<" "

andg$<>chr$(13)andg$Ochr$(20)then2970

2990 x = x + 1 :ifg$ = chr$(13)org$ = chr$(20)then3040

3000 ifg$ = " "org$= "; "thenprint" ";:return

3010 ifg$ = "," thengS = chr$(108)

3020 printgS;:i$ = i$ + g$:ifx = Itthenreturn

3030 goto2960

3040 ifg$Ochr$(20)thenprint" " :return

3050 iflen(i$)<2then3070

3060 print" [2 crsr left] ";:x = x-2

:i$ = left$(i$,len(i$)-1):goto2960

3070 iflen(iS) = Othenx = x-1 :goto2960

3080 print" [2 crsr left] ";:x = x-2:i$ = "":goto2960

The Transactor 74 Volume 6, Issue 01

cnPTRiN syntr
QKFW. FOR THOSE llftT TUNING \N...Uf>' ^J
TO RttOMER THE STQlE^Lai^t^/BWETlN \NVWb kRKbP, \T
t i\Ktu won Kin by

HIM TO BE IRTE • ?LffVSKV VJAS

COURTESV {M

OU SEE ,m bOKV \bTO bEE.VOHPa

HOW I f\NICEG>UY/
TOHr\K£ IN THE F.NPS OF KEY

CITIZENS. POLITiClr\US,TOR f|
.1PLNsITOT»TH»SE«

H«JIN& CERTfWW"DOCTORS Do ' T \

TOPS VJILL BEVJE_L PhH>

NOW... ONTO y/M

TOThL MlHD COMTRfX

, C0NTPOU_\NG,TH0SE\N

VAEPOVJER

IT VJl U BE. h

At this point in time John really appreciates the fact he bought

the "Big Boss" joystick with the heavy duty extension cord

"The fool. . . Obviously his problem is on line 1040. . .

He's misplaced a Y coordinate with a control function."

The Transactor 75 Volume 6, Issue 01

News BRK
$4 Million "Computers and Children"

Program Launch

"Computers and Children", a new $4 million

Ontario government program ensuring that

the children of this province will have equal

and adequate access to computers and re

lated information technologies, was launched

today by the Honourable Susan Fish, Minis

ter of Citizenship and Culture and the Hon

ourable Larry Grossman, Treasurer.

The first 15 of an eventual 230 community

computer centres were opened by Ms. Fish

and Mr. Grossman at Toronto's Central

Neighbourhood House. Connected with To

ronto by an audio teleconference, the centres

participating in today's ceremonies were:

London, West Bay (Manitoulin Island), Corn

wall Island, Sudbury, Chatham, Peterbor

ough, and two in Chapleau. Six other centres

in Metropolitan Toronto were opened imme

diately following today's launch.

Approximately 4,000 microcomputers will be

placed in communities across the province,

under the new program funded by BILD

(Board of Industrial Leadership and Develop

ment) and administered through the Minis

try. Community organizations such as

libraries, museums, art galleries, and native,

multicultural and service groups will house

the computer centres.

"The primary objective is to provide com

puters and computer learning to children,

regardless of their ethnic or socio-economic

background, to ensure that no child is de

prived of future employment prospects be

cause of a lack of computer knowledge," Mr.

Grossman said.

Up to 15 microcomputers, colour monitors

and software packages will be placed in each

centre using hardware from Apple, IBM,

Commodore, Acorn and Atari. At least two

hours of free time to students from kindergar

ten to grade eight, outside their regular

school hours, will be provided with remain

ing time being available to the entire commu

nity at a minimal user fee.

"The key to success of Computers and Chil

dren is partnership," Ms. Fish said. Ministry-

trained co-ordinators will work with

volunteer assistants to ensure that the pro

gram meets the unique needs of each com

munity, and private sector fund-raising will

occur to finance each centre's ongoing opera

tions. The result of these partnerships will be

entirely self-sufficient centres integrally in

volved in the development of their communi

ties.

"Computers and Children" will certainly help

young people prepare for future employ

ment, but it will also provide incentives for

Late Note

Don't forget the Computer Fair (May 9th through the 12th) at Toronto's brand new Metro

Convention Centre at the foot of the CN Tower. This is the first major computer show for the

downtown area and it should prove very entertaining. The Transactor will be at booth 1720.

Canadian software and hardware develop

ment improved language instruction for new

comers; the opportunity for parents to learn

this new technology with their children; and

for seniors to volunteer to help familiarize

young people, as well as themselves, with the

world of microcomputer," added Ms. Fish.

This program will complement initiatives ex

isting in our schools, The new facilities will

be located primarily to reach less advantaged

young people who would not otherwise have

access to this equipment outside the aca

demic setting. In addition, adults and small

businesses may have access to the machines.

In December of this year, another eight cen

tres are planned to open: Red Rock, Camp-

belville, Etobicoke, Burlington, Deseronto,

Windsor, and two in Ottawa, Another 11 are

scheduled to open early in the new year:

Trenton, North Bay, Hamilton, Foleyet, Sud

bury, Brantford, Winchester, St. Catharines,

Fort Frances, Schumacher (Timmins), and

Toronto.

Stanford University (Children's Learning Lab)

in California, Edinburgh University (Chil

dren's Education Unit) in Scotland, and the

Massachusetts Institute of Technology) Learn

ing Lab for Children) (MIT) have all expressed

interest and enthusiasm for Ontario's plan to

open up computers to the community on

such a large scale. Initiated by the Treasurer

in his 1984 Budget, it is the first time a project

like this has been undertaken.

Ministry of Citizenship and Culture

Program contact: Dorothy Netherwood

Computers and Children

454 University Avenue

Toronto, Ont. M5G1R6 416 963-3304

Events

The Fourth Annual TPUG Conference.

TPUG, The Toronto PET User's Group (and

also the world's largest Commodore users

group) is holding another "year end" confer

ence that will no doubt be every bit as enter

taining as their last three.

Dates: Sat. May 25 & Sun. May 26, 1985

9:30 a.m. to 5:00 p.m. (both days)

Location: 252 Bloor St. W.

(at St. George subway),

Second Floor, Toronto, Ontario

Activities:

Full two-day program of speakers covering

topics for beginners and experts.

Club library (5000 + programs) at special con

ference price of $4.00 per disk.

Exhibitors of hardware, software, accesso

ries, "Answer Room" - free 10 minute con

sultation.

Trader's corner for used equipment.

Cost: Pre-registration (before April 15 and

including one year's Associate mem

bership) $45.00. For more information,

contact:

Doris Bradley

TPUG Business Office

1212A Avenue Road

Toronto, Ont. M5M 4A1

416 782 9252

The Second Annual Commodore User

Computer Fair

MARCA, The Mid-Atlantic Commodore Asso

ciation, is planning their second exhibition to

be held at the new Sheraton Convention

Centre in Valley Forge, PA. The new centre,

which is still under construction, will open

this spring as the "largest privately owned

convention centre in the U.S.A." Over 30,000

square feet of exhibit space has been re

served for the show.

Dates: July 26, 27, and 28, 1985.

A complete line-up of speakers and seminars

is already organized with the schedule so far

standing at about 12 different lectures every

hour. For more Information:

Joel A Casar

Exhibits Chairman

2015 Garrick Drive

Pittsburgh, PA 15235

412 371 2882

Survey Shows Commodore in

Top Ranks of Electronics Industry

Commodore International Ltd. continues to

maintain its stronghold in the microcomput

ing and consumer electronics market, ac

cording to a report published recently by

Electronic Business Magazine, Boston.

Of the top 200 companies in the field of

electronics over the past five years, Commo

dore International was ranked in first or sec

ond position in all four major financial

catagories researched.

Commodore ranks at the top in 5-year net

income growth rate (91.8% per year average)

and in return on investment (30.7%) and

second in 5-year revenue growth rate (68.5 %

per year average) and in return in equity

(46.1%).

For further information, contact Allan Rey

nolds at 416 922-5556

The Transactor 76 Volume 6, Issue 01

5-YEAR REVENUE GROWTH RATE

Percent

Top 10 per year Rank

Tandem 76.7% 84

Commodore International ;.. 68.5% 73
ROLM 58.5% 78

Cray 58.1%... 149

CPT 54.7%... 135

Paradyne 51.8%... 129

Wang Laboratories 50.7% 29
Computervision 47.6% 89

SCI Systems 47.4%... 102
Docutel/Olivetti 45.6%... 132

Bottom S

ITT -1.5% 4

Cincinnati Milacron -2.5%... 171
LTV -2.7%... 189

AMF -5.9%... 144

Gould - 6.7% 39

5-YEAR NET INCOME GROWTH RATE

Top 10

Commodore International

Tandem

Computervision

Cray Research

ROLM

Wang Laboratories

CPT

Computer Consoles

Watkins Johnson

SCI Systems

Bottom 5

Bally

AT&T Technologies

Scientific-Atlanta
AMF

Management Assistance.

Percent

per year

... 91.8% ..

... 70.3% ..

... 63.9%..

... 58.6%..

... 58.0% ..

... 57.7%..

... 54.7%..

...53.1%..

... 52.2%..

... 47.8%..

. -30.4%..

. -32.4%..

. -40.7%..

. -40.9%..

. -69.3%..

Rank

73

..84

..89

.149

..78

..29

.135

.199

.139

.102

.120

...2

..94

. 144

..92

RETURN ON INVESTMENT

Top 10

Commodore
Dysan

Aydin

Micom Systems

SmithKline Beckman ...
E-Systems

Tandy

IBM

EG&G

Diebold

Bottom 5

Centronics

Docutel/Olivetti

Texas Instruments

Warner Communications.
Kratos

RETURN ON EQUITY

Percent Rank Top 10 Percent Rank

... 30.7% 73 Transitron Electronics 64.1%... 186

... 23.4%... 130 Commodore International 46.1% 73

... 23.3%... 159 Lockheed 31.0%.... 53

... 22.7%... 190 Dysan 27.2%... 130

... 22.1% 72 Aydin 25.4%... 159

... 21.9% 65 Ford Motor 25.1% 30

... 21.8% 22 Tandy 24.8% 22

... 20.6% 1 SmithKline Beckman 23.6%.... 72

... 20.2%... 118 IBM 23.6% 1

... 19.6%... 115 Technicom International 23.5%... 169

Bottom 5

.. -8.9%... 152 Centronics -12.7%... 152

. -10.8%... 132 Docutel/Olivetti -20.1%... 132

. -10.2% 10 Savin -18.2%... 117

. -26.5% 45 LTV -20.5%... 189

. -32.3%... 182 Warner Communications -43.5% 45

dictates a rock-bottom price for single disks, Once again, we are now taking orders for the

and the discount for a subscription rather long awaited second edition of the Special

than individual purchase isn't that great. Reference Issue. As you can see, the title is

somewhat different than its predecessor, but

To anyone who already sent in $9.95 for their then so is the inside. Of course most of the

first disk we'll credit the two dollars toward material from the first edition is included,

future disks or subscriptions. with twice as much again added.

Transactor News

Transactor Disk Offer Update

As of this issue there are 6 Transactor Disks:

Disk 1: All programs from Volume 4

Disk 2: Volume 5, Issues 01-03

Disk 3: Volume 5, Issue 04 (Business & Ed.)

Disk 4: Vol. 5, Issue 05 (Hardware/Periphs.)

Disk 5: Vol. 5, Issue 06 (Aids & Utilities)

Disk 6: Vol. 6, Issue 01 (More Aids & Utilities)

Transactor disks are now available on a sub

scription basis through the order form in the

centrespread of the magazine. Disks can be

purchased individually for $7.95 (Cdn.) each;

the extra two dollars that was to be charged

for the first disk has been dropped.

Perhaps a word of explanation is in order

here. The original idea was to charge $9.95

for the first disk you purchased, and we'd

make up a mailer for that disk (and each

subsequent one) which contained your

name, address, paid postage, and a two dollar

off coupon for future disks. As it turned out,

post office regulations nixed the mailer idea,

so we decided to just send disks out on an

individual basis for $7.95, and offer disk sub

scriptions. The subscription is mainly as a

convenience, since our pricing philosophy

The Complete Commodore

Inner Space Anthology

In the last issue we announced that orders

were being accepted for The Complete Com

modore Inner Space Anthology. Then we

referred to the back cover ad which pro

ceeded to say, "Watch For It, January 1985".

Due to a slight mix-up, this ad was not the

one we intended for the back cover spot. In

fact, as most of you probably noticed, it was

the exact same ad as the previous issue pub

lished in December 1984. The back cover ad

of this issue is the one that should have

appeared and we apologize for any confusion

or inconvenience this may have caused.

Also, the price announced last issue has been

changed to $14.95. An oversight in costing is

the reason for the slight increase but we fully

intend to honour any orders we've already

received at the former price.

The price? Just $14.95! Originally the price

was projected at around $25 dollars. Two

reasons account for the difference. First, the

disk we intended as part of the package will

now be made available separately (details

next issue). Secondly, we have decided to

publish the book on our own. Previously we

had considered releasing the book to an out

side publisher but by doing it ourselves the

price can brought down substantially.

The Complete Commodore Inner Space An

thology is currently available by mail order

only through The Transactor. (Eventually

they will be appearing in the major book

chains, but at a slightly higher price) The

easiest way to order is with the postage paid

reply card at the center of the magazine. Mark

the card appropriately and don't forget your

postal/zip code. If you're paying by charge

card, please include the expiry date. If you're

sending a cheque, you can tape the postage

paid card to the outside of an envelope.

Please allow 4 weeks for delivery.

The Transactor 77 Volume 6, Issue 01

Notice to "Transactors"

Planning to write an article to submit for

publication? Great! However, we get a lot of

articles from authors around the world and

although 90% of them are superb, we only

regret that we can't publish them all.

One of our main criteria for choosing an

article is the amount of time it will take us to

prepare the material. If a diskette is included

with your article in some kind of text file, the

preparation time is reduced by easily 95%.

Most authors are using a wordprocessor to

write their material and most articles are

submitted along with a disk, but those that

aren't get pushed to the bottom of the pile.

With the price of a disk hovering at about $4

each, it shouldn't be too hard to justify the

expense, considering we pay $40 per printed

page. And the investment just might secure

your article a spot in the magazine.

Summed up, if you are sending us an article

you have written on a wordprocessor, please

include a disk with the text files. Any file

types are acceptable since even if we don't

have the particular software you have, it

usually isn't too hard to convert them for our

use. Drive type isn't a problem for us either -

we have them all. Naturally you should also

include any programs that accompany your

text.

Software

New Software From Commodore

Commodore Business Machines Limited is

please to announce 14 new software titles for

the Commodore 64. These educational pro

grams are designed for children from pre

school to junior high.

CH1LDSPLAY is a series of educational games

specifically designed for the preschooler. The

first package, Letters, Shapes & Numbers in

troduces a child to the alphabet, different

shapes and the number system. Interaction

between the child, the screen and the key

board reinforces the fundamental concepts of

learning. The second package in the Childs-

play series is Match'em, Copy Cat. Match'em

is a game where the child is challenged to

recognize the difference between two objects

on the screen. The computer will keep track

of the score and display it after the child has

completed a round. Copy Cat is a computer

ized version of 'follow the leader'. This pro

gram will display a series of shapes on the

screen which the child must duplicate - a fun

way to develop memory recall skills. Childs-

play would also benefit any child with learn

ing disabilities. Childsplay is designed to give

preschoolers the head start they deserve.

EDUKAT Junior Math Series is comprised of 8

different math topics designed for children 8

to 1. The topics covered are:

Addition

Subtraction

Division

Multiplication

Geometry

Graphing

Decimals part 1

Decimals part 2

The EDUKAT Series was created by profes

sional educators to allow students to be tu

tored at the touch of a button. Each program

gives the student step by step instructions on

how to solve problems in each particular

topic. The program will then give the student

a lesson on what they have just learned. If the

student runs into any difficulty help is availa

ble in the form of hints. After the student has

completed a lesson, a report card can be

generated which will outline the students

strong areas and the areas where they en

countered problems.

COMPUQUIZ is a trivia game for kids of all

ages. The series consists of 4 different pack

ages. These are:

• Sports

• Science

• History

• General Interest

Each category comes on its own separate disk

with 1,000 different questions. In COMPU

QUIZ you match wits against your opponent.

A question is flashed on the screen with 4

possible answers. Use either a joystick or the

keyboard to be the first to answer correctly

and the prize is yours. Answer 9 questions

and you win the game. For more information,

contact:

Customer Service

Commodore Business Machines, Ltd.

7261 Victoria Park Avenue

Markham, Ont. L3R2M7

Magnetic Templates

Database and spreadsheet programs have a

great potential for becoming the workhorses

of home and small business computing. With

proper application templates, there is no end

to the type of projects they can tackle. They

are also written by people who would be

unwilling or unable to write the same pro

gram "from scratch" in Basic or any other

language. In addition, as anyone who has a

shelf-load of specific programs will tell you,

not having to learn a new set of keystrokes

and set-up procedures for each application

greatly simplifies its use. Once you learn the

ins and outs of the database or spreadsheet

program, you already know how to run, mod

ify and print the new application. Running

several different types of applications will go

much smoother if you can focus on the infor

mation you are working with, and not how to

run The Program.

We believe there is a lot of potential for both

general and specific application templates for

these master programs. Also, the tie-in to the

"shareware" concept and the automatic roy

alties to authors makes the project just too

tantalizing NOT to try!

This is initially an experiment, the success of

which hinges on a rather optimistic percep

tion of human nature. First, there must be

enough spreadsheet and database users out

there who can develop high quality applica

tions, who can explain their use and modifi

cation clearly to others, and who are willing

to put the product of their labour out in the

marketplace. Second, there must be a suffi

ciently large group of users who will be will

ing to make a non-mandatory payment to

the authors and to the distribution organiza

tion that made the whole thing possible.

If this project is successful, it will be one of

those business situations in which everyone

WINS. We will be rewarded for our concept

and organization, authors will be rewarded

with royalty checks, and users will be re

warded by only paying for the software they

actually USE.

Interested? If so, do two things:

1. Send a U.S. stamped, self-addressed #10

envelope. In a few months you will either

receive a catalog of available templates, or

a full progress report on the evolution of

the project.

2. Make a list consisting of two categories:

Templates you would like to see, and Tem

plates that you could develop (note the

program they would run on).

If you express interest in developing tem

plates that we feel are appropriate for this first

catalog, we will send you a copy of "guide

lines for submission" with information on

format and documentation.

For now the project is limited to the Commo

dore 64 computer with disk drive. This is the

machine that Steward Brand calls the "BIC

lighter" of computers. 1 call them both

TOOLS. They are both igniters of potential

energy. What we have after is the warmth of

the fire not the prestige of the tool. Both the

BIC and the C-64 are capable of lighting

some pretty big fires. For further details, con

tact:

Cooperative Design

P.O. Box 138 500 Aurora Ave. N. *201

Langley, WA 98260 Seattle, WA 98109

206 2212373 206 682 8663

Graph-Tech Software Co. Releases

3-D World 64

Graph-Tech Software Co. of new York has

just released 3-D WORLD 64, a new wire

frame graphics package for the C-64, which

The Transactor 78 Volume 6, Issue 01

allows the creation of complex 3-

dimensional objects, which can then be

viewed on screen and/or plotted as line-art

to the Commodore 1520 Plotter/printer. Ob

jects are defined by entering points in a 3-

dimensional space utilizing the cartesian

coordinate system, and then line segments,

also entered by the user, are drawn connect

ing those points.

Objects created using 3-D WORLD can be

manipulated on screen as well as on paper.

This program allows the ROTATION of any

image in 3-dimensions on all three axes, a

well as SCALING and TRANSFORMATION.

3-D WORLD 64 is totally menu-driven, and

requires no additional hardware or software

to generate the high-resolution screens or to

handle the plotter routines. The program is

100% compiled code, and is set up in inte

grated program modules; in addition, "object

definition files" can be created outside of 3-D

WORLD 64 (ie. in BASIC), and as long as they

are formatted to disk in the same structure as

explained in the accompanying 50 page man

ual, they can be used and manipulated within

3-D WORLD 64.

Sample objects such as the ones pictured

here are included on the program diskette.

Suggested retail price is $39.95 U.S. Address

all inquiries to:

Graph-Tech Software Co.

1315 Third Avenue, No. 4C

New York, NY 10021

Enhanced Version of Flexidraw

Available From Inkwell Systems

San Diego-based Inkwell Systems releases

Flexidraw 4.0, a major update of its successful

light-pen graphics package for the C-64. En

hancements to the program include in

creased drawing capabilities, an expandable

work area, custom fonts, more than 500 pat

tern fills and an oops feature for "fill-spills."

The update allows picture editing in the col

our program and has improved telecommu

nications capability. A wider variety of

printers and interfaces are now compatible

with the update. This Flexidraw program was

exhibited at World of Commodore II.

The new program includes arcs and ellipses

as well as three line width choices increasing

drawing versatility. Moreover, the addition of

two-dimensional 90° rotation and flip capa

bility expand figure manipulation potential.

Using a split-screen feature, larger drawings

are now possible by creating an expandable

work area. These drawings can then be

printed two screens at a time by linking them

horizontally or vertically.

Graphic design capability includes 6 custom

fonts, each available in regular or expanded

size, and one large letter font in an ornate,

Old English style. The 7 choices compliment

the standard Commodore character set.

With over 500 pattern fills, Flexidraw pro

vides the user with a larger choice of patterns

to add texture and dimension to projects.

The colour program includes a zoom function

for one-pixel editing, an improvement which

allows original designs to be altered and then

saved to disk. These coloured pictures can

now be printed on several of the new color

printers currently available.

Improved telecommunications capability fa

cilitates quicker transmission of design work

for adjustments and approval.

Inkwell Systems

P.O. Box 85152, MB290

San Diego, CA 92138

Books

Closing The Gap announces publica

tion of "Computer Technology For The

Handicapped"

Henderson, Minnesota — Closing The Gap

(CTG), internationally recognized resource

authority on microcomputer applications for

special needs populations, announces the

publication of "COMPUTER TECHNOLOGY

FOR THE HANDICAPPED," the selected pro

ceedings from the 1984 CTG Conference held

September 13-16 in Minneapolis, MN.

"Computer Technology For The Handi

capped" is a treasury of state-of-the-art mi

crocomputer applications written for special

education and rehabilitation professionals as

well as handicapped individuals, their fami

lies and associates. This 260 page book de

tails 45 of the more than 80 presentations

The Transactor 79 Volume 6, Issue 01

made at the CTG Annual Conference and

focuses on how computer technology can

help the handicapped or disabled person -

not tomorrow, not next year, but today. Top

ics include microcomputer applications in all

disability areas - hearing and speech im

paired, blind and vision impaired, physically

and mentally handicapped - as well as com

plete contact information on all presenters, a

listing of nearly 60 hardware and software

producers who exhibited at the conference,

and an introduction by Dolores Hagen, co-

founder of CLOSING THE GAP and author of

the acclaimed "Microcomputer Resource

Book for Special Education."

"Computer Technology For The Handi

capped" provides information that is crucial

for the delivery of technology to the disabled

population. Written by experts in their re

spective fields from around the world, "Com

puter Technology For The Handicapped" has

been edited into an easy-to-understand for

mat that allows everyone access to informa

tion which can enable handicapped and

disabled persons to meet their everyday

needs of education, communication, voca

tion, recreation and independent living.

"Computer Technology For The Handi

capped" retails for $17.95. For further infor

mation, please contact:

Budd Hagen

Closing The Gap

P.O. Box 68

Henderson, MN 56044

612 248 3294

Directory of Online Industry Profes

sionals - The Who, What, When,

Where, and How

A unique resource for online industry profes

sionals and subsidiary markets is available in

the just-released Marquis Who's Who Direc

tory Of Online Professionals, containing

more than 6,000 professional profiles repre

senting every part of the field, from users to

vendors of online products and services.

"We believe the industry has reached a level

of growth," states editor-in-chief Nancy

Gorham "that makes such a reference book

vital". Advancing, by conservative estimates,

at an annual growth rate of more than 23%,

the online industry is eyeing a gross value by

year-end of $2 billion. The Directory is de

signed to be the primary communication tool

for the entire industry.

"We have culled essential facts from the pro

fessionals included, for example, online ex

pertise, current monthly online usage,

equipment used, database subject expertise,

databases and systems used, professional af

filiation and function, articles and books, and

of course, other career and training informa

tion, plus address and phone number(s)

when available. 1 believe there is no better

resource for the exchange of ideas and com

munication in the industry. We have the

who, what, when, where and how of the

industry wrapped up in this volume."

Multiple indexes enable users of the Direc

tory to locate individuals by subject expertise,

online function, or geographic area.

"The information presented," notes Gorham,

"has given us a rare picture of the nature of

the industry and the people in it."

The Directory pulls together for the first time

the growing online field. While the industry is

a developing one, it is already internationally

important. Forty-seven countries are repre

sented in the Directory; over 20% of the

professionals listed are non-U.S., including

11 % from European countries."

Regarding functional skills represented in the

Directory:

• 54% are intermediary searchers

• 23% are information managers

• 10% producers of database products &

services

• 8% are end users.

The database subject expertise of these on

line professionals reveals that:

• 30% cover business areas

• 25% have expertise in medicine

• 12% have expertise in current affairs

• 9% have expertise in energy.

The Directory of Online Professionals is a

hardbound volume containing 829 pages.

The cost is $85.00.

A computerized version of the Directory,

known as the Marquis PRO-Files Database,

will be available on DIALOG in 1985 through

the Marquis Data Products Department. For

further information, please contact:

Morris Wattenberg

Marquis Who's Who, Inc.

200 East Ohio Street

Chicago, Illinois 60611

312 787 2008

Hardware

"True Piano Feel" Keyboard Released

by Commodore

Commodore Business Machines, Ltd. has in

troduced the Music Mate keyboard for the

C64 to provide realistic instrument reproduc

tion.

Covering 2 1/2 octaves, the keyboard fea

tures the ability to play three notes simultane

ously; record and playback capabilities;

adaptability to joystick port; and eight instru

ments preset - plus the option to define your

own.

The Music Mate Keyboard is featured at an

attractive suggested retail price of $149.95

and is packaged with the initial disk-based

software which normally retails for $39.95.

Additional program disks are available for

the keyboard, including: Song Builder, featur

ing additional speed control, recording and

overdubbing qualities; Song Editor, which

will display and edit songs written with the

Song Builder; Song Printer; and Sound Maker

- a full colour graphic display panel allowing

the user to personally program the shape,

volume and tone of desired sounds.

Richard G. Mclntyre

Vice President, Sales

Commodore Business Machines, Ltd.

3370 Pharmacy Avenue

Agincourt, Ont. M1W2K4

416 499 4292

Kobetek Announces Valiant Turtle

Kobetek is pleased to announce the availabil

ity of the VALIANT TURTLE. Unlike earlier

turtles, this incredibly versatile robot is re

mote controlled by an infra-red transmitter

and the software allows it to execute all

LOGO commands. Children love its looks

and teachers appreciate its impressive array

of capabilities: the turtle's two independent

stepper motors make it the most accurate on

the market; it is powered by ten nickel-

cadmium rechargeable batteries - simply

plug the power adaptor (included) into a

socket on the turtle; two illuminated eyes

serve as power indicators - they go out before

any other functions fail; it carries a pen which

can be raised or lowered to trace its move

ments. The turtle moves in units of 1 cm but

can be programmed to move in units of 1

mm, 1 inch or 1 meter and it can draw

smooth circles and arcs. The Valiant Turtle

comes as a complete package: turtle, batteries

infra-red transmitter, power adaptor, pen,

manuals and software.

The Valiant Turtle interfaces with most popu

lar microcomputers including: C-64, Apple,

BBC, DEC Rainbow, IBM and Spectrum. At

present, only the C-64 and BBC versions are

available, but the others will follow in the first

quarter of 1985. A French language version

of the software is available. LOGO workbooks

can be obtained at an additional cost. The

Valiant Turtle is manufactured in England by

Valiant Designs Limited. For further informa

tion, please contact:

Kobetek Systems Limited

1113 Commercial Street

New Minas, N.S. B4N 3E6

902 678 9800

The Transactor 80 Volu 6,1s '01

The Transactor presents,

The Complete Commodore

Inner Space Anthology

Only $14.95

Postage Paid Order Form at Center Page

See News BRK (page 77) For Details

