
90% Advertising Free!
Issue 06

$2.95

The Tools For Squeezing The Most From Your Commodore Computer

STP: Execute Sequential Files

Exploring Tt\e Error Wedge

Software Numeric Keypad

List Scrolling Routine

Directory Gap Remover

Disk/Extramon 64

Drive Peeker

Quote Killer

•HI-RES Printer Dump

A ttt-RES Graphics Utility

• Two She Sprite Editors

Parameters

Volume 5

Issue 06
Circulation 63,000

inn inn

Start Address Editorial 3

Bits and Pieces . 4 Letters 17
C64 IRQ reset Upgrades and Info: DOS 2.7

80 Column Right-Justify Clearly Inflexible: Screen Clear Routine

C64 Zero Page View Protection Reflection

C64 V2 ROM Colour Memory Fix Unimplemented Inquiry: 6502 Ops

SYScreeching Off Into Oblivion

Disabling RESTORE on c64

Fast Hi-Res Screen Clear From BASIC NeWS BRK 76
In Search of.. .The perfect colour combination New 16-bit Commodores for 1*98*5 "
Put Mental Notes on Disk (or tape)! Note to Product Review Authors

Assembler Program ming Tip Over 41,000 Attend World of

One Line Decimal to Binary Conversion Transactor Disk Offer Update

TheBleeper IBMCOMAL

40 Column Wordpro Dump The Gold Disk
Regain Quick Data Drive For C64 and VIC-20

Warm Start Border Flasher Software Developers Newsletter

Double Width Disk Directory Printout Commodore Now Provides Ameriean
rfid Fa™ nki- <;t!,h,c LAMP: Literature Analysis of Microcomputer Publications
r uml Porthole
Bounce BUd/i ,„„._„ New Income Tax Program For Commodore PLUS/4
Filename Extensions With SHIFTed SPACE INFOQUICK Bulletin Board for the Commodore 64
Easy Screen Print Tne SMART 64 Terminal + 4
Phone Speller The FONT FACTORY

Assembler Programming Tip *2 CAM-64 (Call Accounting Manager)

1541/4040 Write Incompatibility Bug Expandable 300/1200 Baud Modem

Auto Keywords For The VIC, 64, PET/CBM Printer Ribbons

Introducing VERIFIZER 11

The MANAGER Column 13

TransBASIC Installment #2 19

A New Wedge For The Commodore 64 22

Keywizard For The Commodore 64 26

LINKED LISTS Part 2 31

A HI-RES Graphics Utility 37

VIC Parameters 45

BIGPRINT: HI-RES Printer Dump 48

Two Short Sprite Editors 50

List Scrolling Routine 52

STP: Execute Sequential Files 54

Quote Killer 56

Directory Gap Remover 57

Machine Language Print Loader 58

Aligning The 1541 64

Super Cat 66

Software Numeric Keypad 67

Disk/Extramon 64 68

Drive Peeker 71

File Compare 72

The Transactor Volume 5, Issue 06

The Toch/Newt Journal For

Managing Editor

KarlJ. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Lana Humphries

Contributing Writers

Harold Anderson

Don Bell

Daniel Bingamon

Jim Butterfield

Gary Cobb

John Currie

Elizabeth Deal

Domenic DeFrancesco

Brian Dobbs

Bob Drake

Ted Evers

Mike Forani

Jeff Goebel

Gary Gunderson

David A. Hook

Rick Illes

Scott Johnson

Garry Kiziak

Michael Kwun

Scott Maclean

Allen R. Mulvey

Brian Munshaw

Noel Nyman

Lenard Painchaud

Michael Quigley

Howard Rotenberg

Louis F. Sander

K. Murray Smith

Darren J. Spruyt

Aubrey Stanley

Nick Sullivan

Colin Thompson

Mike Todd

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of course

be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the number 1 which has an

angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

insert will not be critical to correct operation of the program. When it is, the required number of spaces

will be shown. For example:

print" flush right" - would be shown as - print" [spacelOJflush right"

Cursor Characters For PET / CBM / VIC / 64

Down - Q

up -in

Right - |1

Left - [lit]

RVS - Q

RVSOff- IS

Insert - Q

Delete - Q

Clear Scrn - Q

Home - 0

STOP - Q

Colour Characters For VIC / 64

Black - Q

White - B

Red - Q

Cyan - [Cyn]

Purple - [Pur]

Green - Q

Blue - B

Orange -

Brown

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt. Blue -

D

1
i

i

Yellow- [Yel] Grey 3 - [Gr3]

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

i
F5-

F6-

F7-

F8-

The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton,

Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second Class

postage paid at Buffalo NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor, 277 Linwood Avenue, Buffalo, NY, 14209, 716-884-0630. ISSN' 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered trade

marks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue, Milton,

Ontario, Canada, L9T 3P7,416 876 4741. From Toronto call 826 1662. Note: Subscriptions are handled at

this address ONLY. Subscriptions sent to our Buffalo address (above) will be forwarded to Milton HQ.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Volume 4, Issues 04, 05, 06

Still Available:Voi. 4: 01, 02, 03. Vol. 5: 01, 02, 03. 04, 05

Quantity Orders:

CompuLit

PO Box 352

Port Coquitlam, BC

V5C4K6

604 438 8854

U.S.A. Distributor:

Capital Distributing

Charlton Building

Derby, CT

06418

(203) 735 3381

(or your local wholesaler)

MtCKOti DIBTRIBUTINO

Micron Distributing

409 Queen Street West

Toronto, Ontario, M5V 2A5

(416)593 9862

Dealer Inquiries ONLY:

1 800 268 9052

Subscription related inquiries

are handled ONLY at Milton HQ

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 5B4

(416)842 1555

(or your local wholesaler)

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per

printed page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro, WordCraft,

Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk or tape.

Manuscripts should be typewritten, double spaced, with special characters or formats clearly marked.

Photos of authors or equipment, and illustrations will be included with articles depending on quality.

Diskettes, tapes and/or photos will be returned on request.

All material accepted becomes the property of The Transactor. All material is copyright by Transactor

Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Please

re-confirm any permissions granted prior to this notice. Solicited material is accepted on an all rights

basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or programs.

Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor Volume 5, Issue 06

Nowhere is the desire to absorb information more prevalent

than in the field of microcomputers. Equal maybe, but not

more. Of course we all like to learn more about our favourite

subject. Just one problem. We live in a mass market society

where things are only available for as long as a marketable

segment of the population shows a need. Information is no

exception. So unless there is a need to continue developing a

subject, the availability of new information will not only reach a

limit, but the need for more will also level off.

The law of "supply and demand" affects all businesses. In the

micro industry, manufacturers are responding every year with

machines that exceed every specification of its predecessor

except price. The information industry barely has a chance to

cover all the angles of the current technology before a new line

comes along that requires more of the spotlight. Fortunately for

us there have not been enough transitions to force discontin

ued coverage of any one model. However, Commodore is

releasing new machines and the story next year will not likely

change. Eventually we just won't have room to deal with

everything. Recognizing this outcome was one reason behind

the theme of this issue and also some slight modifications to

our philosophy.

We realize that the majority of computer users have defined an

objective for their computer and are either working towards

that objective or enjoying the results of having accomplished

that objective. And with kind treatment there is no reason why

the hardware shouldn't endure indefinitely. In fact, that same

computer may never be asked to perform another new duty.

Then, when you least expect it, the day will come when change

commands priority. Depending how far away that day is, the

information that was once so readily available just might be the

most difficult to locate. Even the most weathered experts may

be unable to offer enough detail to help pinpoint a solution.

But with enough of the right tools, any problem under any

circumstances can be eliminated. You've heard the saying, "if

you want it done right, do it yourself". Well that's fine if you

know how to tackle it, which is usually determined by how

much information you can accumulate to provide answers.

Thus the "utility" was born - a program that does no favours

for the user except to make the process of accumulating

information less intimidating.

It was around the same time that the "programming aid"

became a natural development. Once enough information has

been gathered to formulate an idea, the next step is implemen

tation. Programming aids won't provide many answers, but

unlike utilities their intent is to do all the favours the user

expects to make the process of applying all that accumulated

information less intimidating.

The philosophy of The Transactor has always been to dissemi

nate information. With this issue, the information we've cho

sen to disseminate is for the purpose of extracting information

as defined by the individual who requires it. We can't possibly

supply all the answers, even if we knew all the questions. So

the next best alternative is to offer methods to magnify the

questions so the answers might be seen more clearly, and to

offer a little assistance with the task of implementing the

solution. But that's not the most significant benefit.

Learning is a daily process that we all experience, consciously

or otherwise. But there is another learning process that too

many of us ignore even as we're gathering new facts; the

process of learning how to learn. The ability to systematically

obtain knowledge is what separates those with the skill of total

recall from those with the talent for discovering. If you can

pioneer a dilemma to its defeat, you have accomplished more

than the original problem. Whether you realize it or not, you

are acquiring discipline. And with each new accomplishment

you acquire a little more. Eventually your battles with new

objectives will become merely an exercise in accomplishment.

The logical and systematic approach that is so essential in

computer science will proliferate into other unrelated functions

of your day to day existence. The intimidation of a new frontier

will fade faster as you learn to ask why a problem exists and

eliminate the problem reason by reason instead of all at once.

The art of problem solving is one that man has been trying to

perfect since time began. The concept of computers would

never have materialized had there been no struggle with

question. Now that we have the computer we must remember

that it can only solve problems given enough information, and

it's the information we supply that determines how valuable

the solutions become. If new solutions do not require new

technology then your old computer may never become obso

lete.

However, there's nothing as constant as change, I remain,

Karl J.H. Hildon, Managing Editor

The Transactor Volume 5, Issue 06

Bits and Pieces

C64 IRQ reset

You know the problem: you want to disconnect an IRQ-driven

program, but a RESTORE will also reset other things like your screen

and border colours. Here's an easy way to set the IRQ vector back to

its normal entry point of $EA31:

or in assembler:

poke 781,12: sys 64701

ldx#12

jsr $fcbd

80 Column Right-Justify

The ultimate one-liner: when there's a bunch of stuff on the screen of

your 8032, enter this:

fori = 1to8O:?"0" ;:forj = 1to24:? "Q" :nextj,i

(The reverse "Q" is an insert). 8000 Series PET/CBM owners. . . try

starting the line with:

poke 213,159

Quick note: when using the non-relocating load as in: load

"file" ,8,1 you can use any non-zero value instead of 1, so

you can use ,8,8 to make typing it in a little easier.

'@', then you have ROM version 2. With this ROM, the kernal routine

which clears a screen line 'cleverly' fills the corresponding colour

memory with the background colour. Since background equals fore

ground the result is a truly clear screen. Furthermore, if you've ever

run a program for the 64 or typed in a little screen blitz from a

magazine that didn't work, it could be because the author wrote it on a

VI or V3 machine and assumed it would work on any 64.

The solution? If you're willing to forsake the RAM underlying the

kernal ROM for this cause, you can correct the foolish behaviour by

changing just two bytes. First copy the BASIC and Kernal ROM into

the underlying RAM. If you have a Machine Language Monitor with a

'Transfer' command (like Supermon or Micromon), this can be done

with these two operations:

t aOOO bfff aOOO

t eOOO ffff eOOO

This transfers the contents of the 8K BASIC ROM and the 8K Kernal

ROM into RAM. But it gets it from ROM... why does it not try to put it

back in ROM? Because the 64 knows you can't possibly mean that

thanks to a chip called a FPLA (Field Programmable Logic Array). This

redirects data flow to a logical destination that has been preset by the

engineers. And yes, it's fast!

Next switch out the ROM and switch in the RAM by putting a 53

decimal into the bank select register (location 1):

BASIC:

Monitor:

poke1,53

: 0001 35

C64 Zero Page View

On the PETs, a good way to get a look at what's going on in zero page

was to run an interrupt-driven routine which would continously

display the contents of zero page on the screen. Well, on the 64,

there's an easier way:

poke 53272,7 (,23 to get back to normal)

This tells the VIC—II video chip to find screen memory at $0000, giving

you a dynamic view of what's going on there. If you have V2 ROMs,

you'll have to fill colour memory with something other than back

ground colour to see it, or use the ROM change method below.

C64 V2 ROM Colour Memory Fix

If you have a C64, try this: clear the screen, move the cursor down a

line or two, then type:

poke 1024,0

If you see an '@' on the top left of the screen, then you have ROM

versions 1 or 3. Consider yourself lucky; you can freely POKE to

screen memory and see the results of your efforts. If you don't see the

Now, at $E4DA, there is the instruction:

Change this to:

like this:

LDA$D021

LDA $0286

: e4db 86 02

($0286 holds the current cursor colour)

The kernal will be living out of RAM from now on, but POKEing to

the screen will always yield visible characters. Seems like a lot of

work for just poking to the screen, especially when you could have

merely changed the background colour. But there was another

reason for this excercise (of course).

Now that you have all of your 64 operating from RAM, anything

can be changed. The spelling of keywords and error messages

are fun to modify, but more importantly the ROM routines can be

altered. JMP instructions can be re-routed or entire routines can

be substituted. Most common is the "BRK instruction insert" for

examining the state of the machine at any particular point in a

routine. With your favourite dissassembler you simply change the

first instruction beyond the last instruction you want executed to a

BRK ($00). Now when you cause that particular stretch of code to

execute it will stop at the BRK and you can peer around awhile.

The Transactor Volume 5, Issue 06

Logically you should be able to replace the BRK with the instruc

tion you wiped out and continue executing. Some routines will

allow such interruptions but others aren't so tolerant. Most likely

you'll need to replace the BRK and start over (perhaps with a BRK

somewhere else?).

SYScreeching Off Into Oblivion

On any BASIC 4.0 machine, you can easily enter the monitor with

SYS4, right? Well, try it with a quote after the 4 like:

SYS 4"

What happened? We won't spoil it by giving it away - look up the

purpose of location 4 to figure it out.

Disabling RESTORE on c64

If you don't want someone crashing out of your program with the

RUNSTOP/RESTORE sequence, here's an easy way to disable it:

poke 792, 193 (,71 gets back to normal)

The disable POKE pretty much renders the NMl routine impotent, so

RS-232 operations won't work while it's in effect.

Quick Note: 255-x = 256 + not(x)

Fast Hi-Res Screen Clear From BASIC

Last issue's Bit's & Pieces gave a little machine language routine to

quickly clear bit-mapped memory. Since then Nick Sullivan from

TPUG magazine showed us this neat trick to accomplish the same

thing from BASIC. If you create a large array and then CLR it, BASIC

will zero out anything in its path, including hi-res screen memory if it

happens to be in the way. If you have a hi-res screen within the limits

of BASIC variable space, just put this line at the beginning of your

program:

clr: f = fre(O):dim a((-65536*(f<0)): clr

That's it! Within a second, the screen will clear. You can't use this trick

if your screen memory is at $C000, but at the usual spot at $2000, and

with BASIC pointers set up normally, it works like a charm.

In Search of... The perfect colour combination

Put Mental Notes on Disk (or tape)!

Ever compose your thoughts idly on the screen of your computer? Or

draw a neat picture using graphics symbols while idly talking on the

phone? Want to save the screen to disk or tape to bring it in again

later? Enough questions, here's what to do. Last issue's Bits & Pieces

gave a method to save a range of memory. To save the screen (at

$0400 on the C64):

sys57812" filename" ,8:poke193,0:poke194,4:

pokei 74,231 :poke175,7:sys62954

(use ',1,1' for tape)

Of.course, that'll mess up a bit of the screen: that's the catch. To bring

back your screen, just LOAD it any time with:

load "filename ",8,1 or load "filename ",1,1 for tape

With a BASIC 4.0 machine, just use the monitor to save the screen:

sys4

s" filename" ,08,8000,83e7

(,8000,87cf for 80 column machines)

Unfortunately you can't save memory above $8000 to tape. Pardon

me... you can save it to tape, you just can't LOAD it back. Commo

dore never expected anyone to require memory above $8000 to be

saved so they used the high bit of the address for something else. In

the VIC or 64 this anomoly has been dealt with and whatever that bit

does is now seperated into its own byte.

Assembler Programming Tip

Branch instructions like BNE, BEQ, BPL, etc. can be a pain when your

program grows and the branch can't reach the intended destination

any more - the assembler gives a " BRANCH OUT OF RANGE" error.

You can get around this problem by branching to a JMP somewhere,

but for a short easy way to do long branches, consider this:

intended branch : BNE SOMPLC

easy long branch: BEQ * +5: JMP SOMPLC

This leaves the intent of the branch clear, and doesn't force you to

define a meaningless label somewhere.

One Line Decimal to Binary Conversion

Looking for the perfect background/border/character colours for Store the value (0-255) to be converted in 'x', then:

programming on the C64 with a 1701/1702 monitor? Try this:

z$ = "" :forj = 0to7:k = x/2:x = int(k)

poke 53281,0: poke 53280,11 (press Commodore-2) :z$ = mid$(str$(k<>x),2) + z$:nextj:printz$

For the VIC:

poke 36879,9 (press CTRL-8) The Bleeper

Adjusting the bright/contrast controls to look good with this combina- This little noisemaker runs on any PET with CB2 sound:

tion results in an easy-to-look-at screen for hours of programming

without fried retinas. 10 poke59467,16:fora = 1 to255:poke59466,a

:forb= 1to255stepa:poke59464,b:nextb,a

Quick Note: If processing time is critical, you can speed up 20 print chr$(7)

the CPU by turning off the VIC-II video chip in the c64: poke

53265,peek(53265) and 239.

The Transactor Volume 5, Issue 06

40 Column Wordpro Dump

Here's a small program that will print out a Wordpro-format text file to

the screen. It will work with Paperclip, but there will be a few bytes of

garbage printed at the beginning as Paperclip stores extra information

at the start of its files.

10 rem* print a wordpro file to screen

20 rem* 40 column version for 4032/c64

100 input" filename" ;f$

110open1,8,0, "0:" +f$

120b = 1984

130 rem b = 33728 for 4032

150 cc = peek(646): c = 54272: rem* only for 64

160 print "f"
165 rem 25 cursor downs

170get#1,a$,a$

175 rem- main loop-

180 for i = b to b + 39

190 get#1 ,a$: poke i,asc(a$ + chr$(0))

210 poke c + i,cc: rem* only for 64

220 if st then 250

230 next i: print: gotoi 80

240:

250 closei :end

qqqqqqqqqqq

Regain Lenard Painchaud

5 rem* restore pgm after reset or new *

10ad = 49152:fori = 0to21

20 readd:pokead + i,d:nexti

30 data 169,8,141,2,8,32,51,165,24

40 data 165,34,105,2,133,45,165,3b

50 data 105,0,133,46,96

60 print" to execute this program, use:"

70 print" sys";ad;" :clr"

Lenard writes: " It comes in handy when a program crashes and you

can't get your cursor back. Before you can use this program, however,

you need a reset switch. When you turn on your computer, load and

run the regain program. Now, when the computer crashes, press the

reset switch. That doesn't do the trick though. You then have to type

sys 49152. Now you will have your program back. You can change the

memory location where the ML program is stored by changing the

value of AD in line 10."

Note: To reset your computer, you have to momentarily ground pins 3

on the user port - pin 1 is a ground. Connecting a push button across

pins 1 and 3 makes a good reset switch - It can save your program's

life! The above program will also bring back a program after a NEW.

Warm Start Border Flasher Nick Barrowman

St. John's, NFLD.

Nick writes: " This small routine doesn't serve any practical purpose

but it is an example of how you can use the main basic program loop

vector in the C64 (warm start link at $0302). A more practical purpose

is auto-run routines. This routine will change the colour of the screen

border whenever <return> is pressed (from BASIC) or when a break

or restore is performed. Hope you like it!"

10 fora = 49152to49169: readb: pokea, b:c = c + b: nexta

20 ifc<>1779thenprint" checksum error!" :stop

30sys49152

40 print" basic warm start flasher activated"

50 data 169,11,141,2,3,169,192,141,3

60 data 3,96,238,32,208,76,131,164,0

Double Width Disk Directory Printout Brian Dobbs

The following little program will give you a disk directory in two

columns, useful for printing out and putting in the disk sleeve. If

sending the directory to the screen, it will appear as a normal

directory on a 40 column screen, and double width on an 80 column

screen.

100 rem** directory double width **

110 rem** by brian dobbs **

120 rem** timmins, Ontario **

130 k = 4: rem* k = 3 for screen, 4 for printer *

135 r=1: open k,k

140dr = 0: rem* directory drive zero *

150 gosub 220: rem* directory subroutine

160close3

170 input" another (y/n)" ;an$

180ifan$O"y" then end

190 print" insert another disk, press any key"

200geta$:ifa$<>" "then200

210goto130

220 n$ = chr$(O):h = 256:open1,8,0," $" + mid$(str$(dr),2)

230get#1,a$,a$

240 get#1 ,a$,a$,a$,a1 $: if st then 290

250 d = asc(a$ + n$) + asc(a1 $ + n$)*h: print#k,d;

260get#1,a$:ifa$<>" "thenprint#k,a$;:goto260

270 r = r +1:ifr = 2thenr = O:print#k :goto240

280d$ = str$(d):print#k,tab(40);:goto240

290 closei

300 return

C64 Easy Disk Status John Currie, Mississauga Ont.

This tidy little routine sits in the cassette buffer at 828, and will display

the current disk error status when executed. It's very handy, since the

C64 has no built-in disk status function.

100 rem basic loader for disk status

110 a = 828

120 read b:c = c + b:if b = 256then140

130 pokea,b:a = a+1:goto120

140 if c<>8574then print "error in data stateements": end

150 print "'sys 828' returns the current disk status"

160 data 169, 0, 32,189,255,169, 15,162

170 data 8,160, 15, 32,186,255, 32,192

180 data 255,

190 data 141,

200 data 3,

210 data 13,

162,

19,

238,

208,

195,

15,

3,

19,

240,

255,220 data 32,

230 data 170, 200,

240 data 244, 96,

32,198,255,169, 0

32,228,255,172, 19

3,153,127, 3,201

32,204,255,169, 15

160, 0,185,127, 3

32,210,255,224, 13,208

0,256

The Transactor Volume 5, Issue 06

Bounce 8032

Here's another one of those useless little special effects. For some

reason though, this one can hold your attention for hours (well,

minutes maybe). It only runs on 8032's, since it uses the scroll down

feature unique to that machine.

5 sp = 32768:forj = 0to1 stepO:s = 153-128*k:k = 1 -k

10 fori = 1tornd(1)*15:printchr$(s);

:pokesp + rnd(1)*1000,46: nexti.j

Filename Extensions With SHIFTed SPACE

Filename extensions such as ,SEQ, .ASM, .OBJ, etc. are useful to

indicate file types, but some programmers prefer to use a shifted space

instead of a period in the filename. Such a file will be listed in the

directory with the extension OUTSIDE the quotes around the fi

lename. To load the file back in, you can specify the filename without

the extension, or specify the entire filename (including the shifted

space) if greater uniqueness is required. You can also use this method

to make " notes" about a file — the note will show up in the directory

but need not be entered to load the file in.

Easy Screen Print

A powerful and little-used feature of Commodore BASIC is the ability

to use a screen file for INPUT. If you open a screen file and then GET

or INPUT from that file, you will read characters directly from the

screen starting at the cursor position, and advance the cursor to the

next character or INPUT field.

There are all kinds of uses for screen input, but a good application is to

convert screen memory character codes to their CBM ASCII equiva

lents. Such conversions are necessary when printing all text on the

screen to a printer. The following line of code will dump an 8032's

screen to a Commodore printer with an 80 column margin width.

1 open3,3:open4,4:print" §" ;:fori = 1 to80:get#3,a$
:print#4,a$;:next:close3:close4

For 40 column machines or a printer set for column widths greater

than 80, use this version — it prints a carriage return every 40

characters:

1 open3,3:open4,4:printchr$(19);:fori = 1to24

2forj=1to40:get#3,a$:print#4,a$;:nextj:print#4,"

close3:close4

:next i

Phone Speller

Some telephone numbers are most easily remembered by the letters

on the dial. For example, you can get information on 1985 Volks

wagens by calling 1-800-85-VOLKS. Wouldn't it be nice to give your

friends a similarly catchy way to remember your number? The

following program (it works on any machine) gives all letter combina

tions from any phone number (zero and one have no associated

letters, so 0 or 1 appears). There are 2,187 combinations for a 7 digit

number, so be prepared for a long list. And even if there are no

pronounceable words in the list, you can invent acronymns. What

better way to spend an afternoon than to find phrases to fit 2,187

acronyms?

100 rem* phone speller *

110 rem* dec84/cz *

120:

130 openi ,3 :rem 1,4 for printer

140 l$ = " 000111 abcdefghijklmnoprstuvwxy"

150:

160 input" phone number";pn$

170 n = len(pn$)

180 dim p(n), n$(n)

190:

200 for i = 1 to n

210n$(i) = mid$(l$,val(mid$(pn$,i,1))*3 + 1 ,3):p(i) = 1

220 next i

230 rem* n$ holds letter groups for each digit in number *

240:

250 for i = 1 to 3tn

260print#1,i,

270forc = 1 ton:print#1,mid$(n$(c),p(c),1);:nextc

: print#1,chr$(13);

280 carry =1

290 for j = 1 to n

300 p(j) = (p(j) + carry): carry = 0

310 if p(j)>3 then carry = 1 :p(j) = 1

320 next j,i

Assembler Programming Tip *2

If you've ever looked through someone's machine language program

and come across a seemingly useless BIT instruction (eg. BIT $FFA2),

or an inexplicable .BYTE $2C, there is a method to his madness.

The BIT instruction doesn't do any harm to memory or CPU registers,

it just sets the zero, minus, and overflow flags based on the contents of

the given memory location. In some instances, BIT is used almost like

a NOP, but with one major difference: the two operand bytes used to

specify the memory location are part of the instruction, and so are not

executed as instructions if the BIT is executed. If the first byte of the

instruction ($2C) is skipped however, you can execute a 2-byte

instruction. For example, consider the following assembler code:

ENTRY1 .BYTES2C

ENTRY2 LDX#$FF

If a program were to execute the code starting at ENTRY1, the CPU

would see a $2C which is a BIT instruction, and interpret the next two

bytes (the LDX instruction) as the argument for the BIT — in this case,

the CPU would see:

BITSFFA2

If the $2C was skipped over and instructions were executed from

ENTRY2, the CPU sees the bytes $A2, $FF and interprets the LDX

*$FF instruction normally.

Using the above technique allows you to enter a routine with the X

register intact, and later enter the routine one byte past the start and

have the register changed to something else before the routine does its

thing. Of course, any register may be used instead, or any 1 or 2 byte

op code can be executed after the $2C.

The technique is explained here in case you come across it in

someone else's program, since it's a fairly widely used and accepted

6502 programing practice. Generally though, programmers who use

tricks like this enjoy writing obscure code to save a byte or two of

The Transactor Volume 5, Issue 06

memory, and don't care if anyone else can look at the program and

understand it. Many programs, including those printed in the Transac

tor, are designed to be easily read by people, not computers, and

should keep away from such brain-twisting exercises. But giving such

advice to a hacker is about as effective as advising a kid not to step in

puddles on his way home from school.

1541/4040 Write Incompatibility Bug

When the 1541 single disk drive arrived, so did a new buzz word:

"write-compatible". At first it seemed that diskettes were completely

portable between 4040 and 1541 drives. Then reports of some nasty

disk failures started circulating. Here's why.

Every sector on a disk starts with a "synchronizing character", a

Header block, another sync character, and then the data stored in that

sector. "Physically" it looks something like:

4040:

1541:

(.... = sync HHH = Header DDD = Data)

HHHHH DDDDDDDDDDDDDD

HHHHH...DDDDDDDDDDDDDD

Notice how the second sync on a 1541 disk is shorter than on the

4040. Now you take a 4040 disk and write on it with a 1541. It

becomes:

HHHHH...dddddddddddddddddd

But that's OK - the 1541 and the 4040 can still cope. There is still

enough of the sync and the data block is still the same "length".

However, go back to the 4040 and write to the same sector and:

HHHHH...dddDDDDDDDDDDDDDD

Blammo! The data block starts with residue data from the 1541 write

to the second sync character. The data block is now "too long" and the

disk returns Read Error 23: Checksum Error in Data Block

Apparently new 1541 's (as of July 84) have been modified to allow

write compatibility between all 1541 and 4040 diskettes.

Auto Keywords For The VIC, C64, PET, and CBM

Today we have the contender for the 'two liner' of the year contest.

This machine language monster consumes less than the equivalent of

two lines of BASIC. It sits in the cassette buffer and will reconfigure

every (shifted) letter on your keyword to produce a keyword. It's IRQ

driven, but retains the old IRQ to jump through at the end, so if IRQ

driven code is already installed, this program won't bother it. The

code also operates in direct mode only, which most can appreciate if

INPUT statements are used in your program. And, if it comes down to

it, the " \" key on the PET/CBM or the (shifted) pound symbol on the

C64/VIC will reset the original IRQ and kill the routine.

Now, considering that there are only 26 letters on the keyboard, how

are all the keywords accessed? With the VIC and C64 we have 76

keywords in total, and with the PET/CBM models with BASIC 4.0 we

have 91. To battle this problem, a memory location within the routine

can be altered to supply you with every keyword. This location

defines a "window" over the total set of keywords. You can't get access

to all the keywords simultaneously, but you can move the 26 keyword

window over any part of the command set (ie. the part you use most).

Check out any list of keywords for your optimal window.

As shown, the program will give you the first 26 keywords. Since the

first keyword is "END", a shifted-A will print "END". Vary location

683 from 128 to 193 for the PET/CBM, or location 882 from 143 to 193

for the VIC and C64. Lower values will move the window over the

error messages.

Note For PET/CBM Users: Reset IRQ before LOADing from disk, then

sys(634) to start again. The C64 and VIC do not have this bug, but the

PETs sure do. The machine will hang until the STOP key is pressed if

any IRQ driven wonder is present during a LOAD.

10 rem save" 0:keyword pet.bas" ,8

100 rem ** rte/84 - auto keyword for the pet/cbm

110 for j = 634 to 774: read x: poke j,x: ch = ch + x: next

120 if ch<>17758 then print" checksum error": end

130 print" sys(634): rem * * to enable": end

140 data 165, 145, 201, 2,240, 20,165,144

150 data 141, 5, 3,165,145,141, 6, 3

160 data 120,169, 149, 133,144,169, 2,133

170data145, 88, 96,165, 55,201,255,208

180 data 90,165,217,201, 92,240, 87,201

190 data 193, 48, 80,201,219, 16, 76, 56

200 data 233, 193, 170, 169, 27, 32,210,255

210 data 169, 157, 32,210,255, 169, 178, 133

220data 87,169,176,133, 88,160, 0,132

230 data 89,224, 0,240, 21,177, 87, 24

240 data 42, 176, 8, 200, 208, 247, 230, 88

250 data 76,199, 2,200,230, 89,228, 89

260 data 208, 235, 177, 87,133, 90, 36, 90

270 data 48, 11, 32,210,255,200,208,242

280 data 230, 88, 76,220, 2, 56,233,128

290 data 32,210,255,108, 5, 3,173, 5

300data 3,133,144,173, 6, 3,133,145

310 data 108, 5, 3, 0, 0

10 rem save"0:keyword c64.bas",8

100 rem * * rte/84 - auto keyword for the commodore 64

110 for j = 828 to 970: read x: poke j,x: ch = ch + x: next

120 if ch<>17162 then print" checksum error": end

130 print "sys(828): rem ** to enable": end

140 data 173, 21, 3,201, 3,240, 24,173

150data 20, 3,141,201, 3,173, 21, 3

160 data 141, 202, 3,120,169, 92,141, 20

170 data 3,169, 3,141, 21, 3, 88, 96

180 data 165, 58,201,255,208, 85,165,215

190 data 201, 169, 240, 82,201,193, 48, 75

200 data 201, 219, 16, 71, 56,233,193,170

210 data 169, 20, 32,210,255,169,158,133

220 data 87,169,160, 133, 88, 160, 0, 132

230 data 89,224, 0,240, 21,177, 87, 24

240 data 42, 176, 8, 200, 208, 247, 230, 88

250 data 76,137, 3,200,230, 89,228, 89

260 data 208, 235, 177, 87,133, 90, 36, 90

270 data 48, 11, 32,210,255,200,208,242

280 data 230, 88, 76,158, 3, 56,233,128

290 data 32,210,255,108,201, 3,173,201

300 data 3,141, 20, 3,173,202, 3,141

310 data 21, 3, 108,201, 3, 0, 0

VIC users need only make one change. The number 160 in bold

becomes a 192 (Also add 32 to the checksum just for completeness)

The Transactor 8 Volumes, Issue06

Letters

Upgrades and Info: 1) I have seen references to DOS 2.7 for the

4040. How does this differ from other DOS's? In particular, is there any

point in me taking my old 2040 drive which has been upgraded with

ROMs and new 6530 to DOS 2, and burning a set of ROMs (or even

purchasing them, if they exist) to give me an upgraded-again disk

drive? For instance, one of the things that I dislike about my present

DOS 2 is that LOAD" filename" ,8 starts both drives going, and waits

until the wrong drive doesn't find the program before it sends out the

program it did find on the right drive. So the questions are: Is there

really a DOS 2.7 for the 4040? If so, can I upgrade? What's involved:

new ROMs? New 6530? Minor or major board surgery? How can I get

any chips or the code to burn my own?

2) A lot of people locally seem to be getting the B-128 package from

Protecto. I am already getting calls about do I know this or that about

it. I have heard that Commodore, while no longer producing B-l 28's,

has not finished either. Do you have any idea of what may be

available about the B-series machines in other countries, say England

or Germany, or contacts from whom I could find out? I would dearly

like a PRM and schematics; my German and Swedish are fluent

enough so that information in those languages is perfectly fine for me,

and even French would be OK in the absence of anything else.

Charles McCarthy, 1359 W. Idaho Avenue, St. Paul MN 55108

Pretty terrific questions, with some not so terrific answers. First, the

DOS question.

As far as we know, DOS 2.7 is currently available for the 8250 and

8050 disk drives only. The problem with the DOSgoing to the currently

unused or wrong drive first is still a problem. It even seems worse with

the 8250. Instead ofpolitely determining that an empty drive is not in

use, the DOS fires a couple ofBUMPs onto thejob que in (what seems)

a last-ditch effort to avoid the occupied drive. Once all the noise and

vibration dies down, it goes to the correct drive. Once this routine has

been suffered once, the DOS is bright enough to realise there is no disk

inserted, and won't try it again.

One major improvement with DOS 2.7 makes this bearable though -

Relative file length has been extended to the maximum capacity of a

diskette (8050 or 8250). The old limit was 180K. Since 4040 drives only

hold 170K, even if an upgrade kit is available, this improvement

makes a total upgrade somewhat less than worthwhile.

Only one other noticeable difference worth mentioning - An extended

error message is also generated, with one extra digit at the end to

inform you of what drive has been generating the message. This is

alright at times, but is really aggravating when it comes time to use a

program such as Petspeed. Petspeed errs out due to the length of the

error message. The extra length means an error to Petspeed, so the

program always gets upset and resets. No fun. Otherwise, DOS 2.7 is a

pleasure, and might be worth your time ifyou have an 8050 and need

longer REL files.

Next, on to question number two. The B series package has sure

developed a lot of activity in North America, if the volume of mail and

the calls we're getting is any indication. $900 US for the B machine,

8050 drive, 4023 printer, green phosphor monitor, and a few diskettes

to boot, who couldgo wrong. You could literally buy the system for the

drive alone, and have all these extra goodies as a bonus. One

problem. Very little documentation available.

In Canada, Commodore was pretty good to the software developers

before the computer was officially released. Everyone of any impor

tance got a B machine sent to them for software development. Some of

the better packages were converted, but were shelved due to the non-

release of the machine in Canada. Now, with Commodore releasing

their entire stock of the B on Protecto, plus some more extra stock to

make it more attractive, the B is alive again, but only in the USA. We

know the machine to be pretty good, once you get used to the bank

switching and playing about with the stack, etc. But there is really little

available about it. We published Jim Butterfield's B Series ROM maps

back in our reference issue in November 1983, and we are again

publishing the maps in our reference book (The Complete Commo

dore Inner Space Anthology), but that seems to be the extent of high

level info. A few magazine articles have appeared in TORPET, TPUG

magazine, Compute!, and of course, The Transactor, but again, it

doesn 't really add up to a hill ofpaper.

If anyone reading has some special knowledge on the subject, horn

any corner of the globe, please send it in to us. For all the program

mers here in good old Canada, maybe it's time to retrieve a few

wasted dollars by releasing your creations. Let us know, and we'll

pass it on. To start the ball rolling, here's a tip horn Dave Berman, of

Weston, Ontario. Place a (rvs) 'c' within quotes in a REM line in your

BASIC program, and your program will automatically DLOAD and

RUN the first program on disk when listed to the screen - one way to

discourage code peekers. That's the first B bit, your letters will supply

us with more.

Clearly Inflexible: I have written a good program in which I have a

heading that must remain on the top 3 lines of the screen at all times.

This heading is used to print the different functions of the program,

just like a word processor. These functions are written by poking the

letter's screen display codes in the screen memory (from 1024 to 1144)

for the 3 lines.

The problem is that in the program, at some times, I have to clear the

screen without erasing the heading. The only way that I have found is

poking the value of the space character (chr$(32)) in each of the screen

addresses remaining, ie. from 1045 to 2023. However, this is awfully

slow. Is there a way to accelerate that function. I have looked in a few

books to find a way to control the clear screen, but without any

solution.

There are a number of ways that this task can be completed. The first

is to write a simple IRQ controlled routine to constantly refresh the top

three lines from a data location somewhere else in memory. All that

would be required ofyou is to POKE the correct display lines into this

memory address, and the IRQ would transfer the display for you. If a

clear screen is executed, the IRQ would only allow the screen to

remain clear for a maximum of 1/60 of a second. A clean way to cure

the problem.

The Transactor Volume 5, Issue 06

A second method is to write a simple clear screen routine in assem

bler, that starts at the fourth line on the screen. When a clear screen is

required, SYS to the start address of the routine and let it do a partial

clean.

For you, the routines below have been prepared. Each are written in

PAL format, but the op codes are standard MOS syntax, so any mini

assembler would probably work for you.

100 ;** irq driven display routine **

105;

110* = 828 ;start addr can be anywhere convenient

115;

120 irqvec = $0314 ;irq vector in ram

125 screen = 1024 ;start of screen

130;

135 sei

140 Ida irqvec : sta oldirq ;retain old irq vector

145 Ida irqvec +1 : sta oldirq + 1

150 Ida #<start: sta irqvec ;point new irq vector at code

155 Ida #>start: sta irqvec +1

160 cli: rts

165;

170 start = *

175;

180ldx#0

185;

190 loop = *

200;

205 Ida data,x ;get the display data

210 sta screen,x ;store it on the screen

215 inx: cpx #120 ;only allow 3 lines (3 x 40 = 120)

220 bne loop

225 jmp (oldirq)

230;

235 oldirq .wor 0 ;two bytes storage for old irq vector

240;

245 data = * ;store the display lines from here on

250;

255 .end

300 ;** routine to clear all but the top 3 lines of the screen **

305;

310 * = 828 ;start addr can be anywhere convenient

315;

320 screen =1144 ;new screen start address for clear

325;

330 Idx #0: Ida #32 ;(space)

335;

340 loop = * ;loop to clear 3 pages of screen mem

ory past the top 3 lines

345;

350 sta screen,x : sta screen + 256,x : sta screen+512,x

365 inx : bne loop

370;

375 final = *

380;

385 sta screen + 768,x ;final clear of the bottom

390 inx: cpx #112 ;balance of screen to clear

395 bne final

400 rts

405;

410 .end

Protection Reflection: In response to your Transactor issue dealing

with the implementation of various types of protection schemes, one

particular form that 1 have recently heard of was unmentioned. This

has to do with the accessibility of more than the standard 1541 35

track capabilities. I have been told by a few people that the 1541 along

with the C64 is capable of formatting and using more than 35 tracks,

but that Commodore didn't let anyone in on the big secret of how to go

about this.

1 am very curious about this claimed ability and would very much like

to know how this can (or can't) be done. Also, could you possibly tell

me where 1 could find out other little secrets about the 1541 (like the

ones you mention in your Nov. issue) or is the only way to learn these

by experimentation? Ryan Briegal, M.S.U., E. Lansing, MI.

The 1541, along with the 2031 and 4040 drives, are capable ofmoving

their stepper motors in half steps, thus increasing their capacity to 70

tracks, in relation to the normal 35. However, they cannot be expected

to accurately read and write in this manner. At times it would work, at

others it might not. So what at first might seem like a design oversight

is in fact quite intentional. To get higher capacity with reliability, you

need more accurate motors which cost more money.

To date, numerous protection schemes have been designed that make

full use of the half step capability of the drive. A portion of the diskette

is formatted in this rather obtuse manner, either a halfstep out from a

normal diskette, thus writing and reading in a special way, or the

balance of the diskette is half stepped right across, and data is stored

between the normal tracks. As long as the data stored in between is

not required for anything more than a check of protection, and the

program realizes that it may take a few tries to get the info, then the

technique is ok. It's your choice ifyou want to start drive stepping, but

get ready for some pretty heavy duty programming.

For more facts and info, there is a really good book on the subject. The

name is 'Inside Commodore DOS', written by Richard Immers and

Gerald G Neufeld, published by: Datamost, 20660 Nordhoff Street,

Chatsworth, CA, 91311-6152 (818) 709-1202, ISBN 0-88190-366-

3. Forme, this book is to the drive as Raeto Collin West's book is to the

computer: a pure and applied source knowledge.

Unimplemented Inquiry: In the Transactor of January 1985

(pg.22), I was surprised to learn that most 65xx CPUs have operations

that can be executed but are not officially part of the instruction set.

Where would I find more information (definition and machine code)?

Richard Pitre, Montreal, Quebec

For some really good info on the pseudo-ops that MOS won't talk

about, there are two pretty good sources. Raeto Collin West Is 'Pro

gramming The PET/CBM' has an in depth article on the subject on

pages 488 and 489. In his usual thorough style, Mr. West lists the

codes, their functions, and a few paragraphs relating some experi

ences. To further compliment your quest for knowledge, you could try

the October 1983 Issue (Issue 41) of Compute! Magazine, on pages 261

through 264. The article 'Extra Instructions \ written by Joel C. Shep

herd, has been written with a pro-use attitude. However, there are

those that have less than total faith in the extra codes (Jim Butterfield

for one). Further, MOS knows they exist, but neglect to document

them. From a market standpoint it would have been to their advan

tage to include the extra instructions in their command set, but they

didn 't trust them enough to do so. Heed these words ofwarning before

ever considering writing code with the unofficial pseudo-ops in place.

Ifthe people who designed the chips don't trust them, why shouldyou?

The Transactor 10 Volume 5, Issue 06

Introducing "VERIFIZER"

The Transactor's New FoolproofProgram Entry Method

The greatest source of calls and letters we get at the Transactor are

from people who are having difficulty getting a long program from the

magazine to work right. Occasionally it's due to a goof-up on our part,

but other times it's simply because the chances of making a typing

error in a very long program are quite large, and finding that error

(probably more than one) after the entire program has been entered is

quite difficult. This is especially true for machine language programs

in BASIC loader form, where the hundreds of numbers in the DATA

statements can make the most competent reader go cross-eyed.

To save you from endless program de-glitching sessions, we've come

up with two solutions. The first is the best, but it'll cost you: All

programs printed in the magazine are also available on disk, includ

ing those from past issues (see the center insert in this issue for more

details).

The second solution doesn't save you any typing, but it can help you

find errors as soon as you make them. The solution comes in the form

of a short machine language program called "VERIFIZER" — so

named, of course, because it verifies! (OK, so we indulged in a cute

name — no nasty letters from English teachers, please.) VERIFIZER

should be run before typing in any long program from the pages of

The Transactor. From this issue onwards, all long programs will have

two uppercase letters printed before each line. The programs should

be entered normally (i.e. don't enter the letters in front of the line), but

every time you enter a line, VERIFIZER will print two characters at the

top left of the screen. If these letters match those in print, you entered

the line properly.

Besides catching omissions and other blatant errors in each program

line, VERIFIZER will also catch transpositions; probably the most

commonly made error with numbers in PEEK, POKE, or DATA

statements. For example, if you're typing quickly and enter 52381

instead of 53281, VERIFIZER will catch the error and report a code

different from the one printed with the program listing. To make your

life easier though, there are some variances that VERIFIZER will NOT

catch. One is that it ignores spaces — you can put as many spaces as

you want between keywords, or leave them out altogether without

changing the reported code. Spaces are accepted anywhere as long as

they don't split up keywords. Keep in mind, though, that there may be

occasions where the number of spaces is important (eg. in a string

definition), so take notice of messages such as [9 spaces] in a listing -

which means, naturally, enter 9 spaces, not the number 9 followed by

the word 'spaces'. Another thing you can get away with is the

abbreviation of keywords. Since VERIFIZER looks at token values,

you will get the same result if you type 'nE' or 'next'.

How to use VERIFIZER

Listing 1 contains two versions of the VERIFIZER program: one for the

PET, and one for the C64 or VIC. These listings will appear in all issues

from now on. You'll notice that the verifizer listings are themselves

printed in "verifized" format (with the report codes along the left side),

which seems pretty silly, since you won't have verifizer while you're

typing the program in. The codes are there just as a check, so that

once verifizer is up and running you can press RETURN over some

program lines and see if the reported codes match up with those

printed with the listing.

Enter the applicable program and RUN it. If you get the message,

"***** data error *****", re-check the program and keep trying until

all goes well. You should SAVE the program, since you'll want to use it

every time you enter one of our programs. Once you've RUN the

loader, enter NEW, then turn VERIFIZER on with:

SYS 828 to enable the C64/VIC version (turn it off with SYS 831)

or SYS 634 to enable the PET version (turn it off with SYS 637)

Once VERIFIZER is on, every time you press RETURN the two-letter

report code will appear in. the first two screen locations in reverse

field. Note that these letters are in uppercase and will appear as

graphics characters unless you are in upper/lowercase mode (press

shift/Commodore on C64/VIC). If you press RETURN on a screen line

that doesn't contain a BASIC program line (i.e. no line number at the

beginning), the code you'll get is unpredictable — VERIFIZER is only

used to report on BASIC program lines.

With VERIFIZER on, just enter the program from the magazine

normally, checking each report code after you press RETURN on a

line. If the code doesn't match up, you can re-check and correct the

line, then try again. If you wish, you can LIST a range of lines, then

type RETURN over each in succession while checking the report

codes as they appear. If you're in the habit of re-numbering segments

of a program as you type it in, be prepared for unmatched codes, since

VERIFIZER uses the line number as part of its checksum calculation.

Once the program has been properly entered, be sure to turn VERIFI

ZER off with the sys indicated above before you do anything else.

VERIFIZER resides in the cassette buffer, so if you're using a datasette

be aware that tape operations can be dangerous to its health. As far as

compatibility with other utilities goes, VERIFIZER shouldn't cause any

problems since it works through the BASIC warm-start link and

jumps to the original destination of the link after it's finished. When

disabled, it restores the link to its original contents.

How VERIFIZER Verifies

VERIFIZER generates the report code on a checksum principal, but

assigns "weights" to each byte to catch transposition errors. The

weights 1,2,3,4 are assigned to the tokenised BASIC line, and the low

byte of the line number is added in. In other words, a checksum is

obtained by taking the line number low byte, adding 1 times the first

byte in the BASIC line (from the BASIC input buffer at $0200), 2 times

the second, 3 times the third, 4 times the fourth, then 1 times the fifth,

etc. The final checksum is a two byte unsigned integer. The high byte

is discarded, and the low and high nybbles of the low byte are used to

form the two report code characters, which are put directly into screen

memory in the PET version, and PRINTed to the screen with the VIC/

C64 version.

Since only the low byte is used, checksum variances of exact multiples

of 256 will not be detected, but the probability of that occurring as a

legitimate error was judged to be reasonably small. For example, if

you "accidentally" entered the line number 1256 instead of 1000,

there would be no discrepancy in the report codes. However, if you're

that uncoordinated, don't even try to type in programs — get the disk.

The Transactor 11 Volume 5, Issue 06

VERIGEN: VERIFIZER program generator

On the other side of the VERIFIZER story, there is VERIGEN to create a

verifized sequential file from a program. The version we use includes

special control characters in the output file for the typesetter, but the

version shown here (listing 2) just creates a sequential file giving the

program listing with line numbers separated from the verifizer codes

by a single space.

What good is VERIGEN to you? Well, if you have a printer and like

storing program listings as a final backup, you may want to have them

in verifized form should the day ever come when every one of your

disks instantly turns to electro-dust. Or if you have a 64 with a 1541

drive and want to give a program to a PET owner who has an 8050,

you can give him a verifized listing (assuming, of course, that he has a

copy of VERIFIZER).

How to use VERIGEN

VERIGEN runs on a C64 and works with two disk files, "infil" and

"outfil". Before executing Verigen, the program to be verifized must

be in memory, AND a listing of that program must be on disk as a

sequential file named "infil". To create infil, just enter the following

after the input program for Verigen is in memory:

open8,8,8," @0:infil,s,w": cmd8: list

print#8: closei

After "infil" has been set up in this way, just sys49152 to execute

Verigen. It will create "outfil" for you, which will be a sequential disk

file containing the program listing with verifizer codes before the line

numbers. Outfil can be sent to a printer or manipulated like any

sequential text file (i.e. loaded into a word processor).

VERIFIZER will make pretty sure that the program you type in mimics

that in the listing, but it can't guarantee that the listed program is bug-

free. So if VERIFIZER says a program is OK and it still doesn't work,

you can drop us a line without worrying that the problem may be with

your typing.

Listing la: VERIFIZER for C64 and VIC20

KE

JF

LI

BE

DH

GK

FH

KP

AF

IN

EC

EP

OC

MN

MG

DM

CA

NG

OK

AN

GH

JC

EP

MH

BH

10 rem* data loader for "verifizer" *

15 rem vic/64 version

20cs = 0

30 for i = 828 to 958:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>14755 then print"***** data error *****": end

70 rem sys 828

80 end

100:

1000 data 76, 74, 3,165,251,141, 2, 3,165

1010 datg 252, 141, 3, 3, 96,173, 3, 3,201

1020 data 3,240, 17,133,252,173, 2, 3,133

1030 data 251, 169, 99,141, 2, 3,169, 3,141

1040 data 3, 3, 96,173,254, "1,133, 89,162

1050 data 0,160, 0,189, 0, 2,240, 22,201

1060 data 32,240, 15,133, 91,200,152, 41, 3

1070 data 133, 90, 32,183, 3,198, 90, 16,249

1080 data 232, 208,229, 56, 32,240,255,169, 19

1090 data 32,210,255,169, 18, 32,210,255,165

1100 data 89, 41, 15, 24,105, 97, 32,210,255

1110 data 165, 89, 74, 74, 74, 74, 24,105, 97

1120 data 32,210,255,169,146, 32,210,255, 24

1130 data 32,240,255,108,251, 0,165, 91, 24

1140 data 101, 89,133, 89, 96

Cl

CF

LI

HC

DH

GK

OG

JO

AF

IN

ON

IB

CK

EB

HE

Ol

JB

PA

HE

EL

LA

Kl

EB

DM

PI

LN

LI

PE

DH

GK

KH

El

AF

IN

EP

AE

KP

JB

NG

IB

IF

OF

GJ

HB

OA

IG

MD

CJ

Al

KF

AO

MJ

CL

FD

PL

Al

Kl

LO

FO

LA

HE

AF

LM

Listing lb: PET/CBM VERIFIZER (BASIC 2.

10 rem* data loader for " verifizer 4.

15 rem pet version

20 cs

30 for

40 cs

50:

-0

i = 634 to 754:read a:poke i,a

= cs + a:nexti

0" *

0 or 4.0)

60 if cs<>15580 then print "***** data error *****": end

70 rem sys 634

80 end

100:

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

data 76,

data 173,

data 145,

data 144,

data 2,

data 201,

data 254,

data 0,

data 165,

data 198,

data 251,

data 165,

data 141,

data 251,

138,

164,

201,

141,

133,

13,

1,

2,

253,

254,

41,

251,

1,

133,

2, 120, 173,

2,133,145,

2,240, 16,

163, 2,169,

145, 88, 96,

208, 62, 165,

133,251,162,

168,201, 32,

41, 3,133,

16,249,232,

15, 24,105,

74, 74, 74,

128,108,163,

251, 96

163,

88,

141,

165,

85,

167,

0,

240,

254,

152,

193,

74,

2,

Listing 2: VERIGEN

10 rem* data loader

15 rem runs on

20 cs

30 fo

40 cs

50:

= 0

c64

for " verigen" *

i = 49152 to 49410:read a:poke i,a

= cs + a:next i

2,

96,

164,

133,

228,

208,

134,

15,

32,

208,

141,

24,

152,

60 if cs<>36235 then print"***** data error'

70 rem sys 49152

80 end

100:

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

data 169,

data 169,

data 32,

data 169,

data 169,

data 32,

data 165,

data 0,

data 32,

data 2,

data 192,

data 230

1120 data 230,

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

data 133,

data 230,

data 228,

data 230,

data 255,

data 210,

data 105,

data 255,

data 72,

data 2,

data 13,

data 255,

data 195,

data 96,

data 83,

1280 data 70,

1

11

192

2

13

192

43

162

228

230

200

255

255

252

252

192

255

165

255

193

162

32

32

208

169

255

48

44

73

162, 8,160

162,235, 160

255, 32,183

162, 8,160

162,246, 160

255, 32, 183

133,254,165

1, 32,198

255, 177,254

255, 177,254

208, 2,230

177,254, 133

200,208, 2

177,254,170

165,252, 41

198,253, 16

138,208,226

251, 41, 15

165,251, 74

32,210,255

1, 32,198

183,255,201

201,255, 104

227, 76, 75

1, 32,195

96, 138, 24

58, 73, 78

82, 64, 48

76, 44, 83

12

192

255

13

192

255

44

255

208

208

255

251

230

201

3

249

162

24

74

169

255

0

32

192

255

101

70

58

44

32

32

240

32

32

240

133

32

12

8

200

200

255

32

133

200

2

105

74

32

32

208

210

104

169

251

73

79

87

133, 144

120,165

2, 165

144,169

165,217

58, 173

253,189

230, 253

236, 2

229,165

0,128

105,193

24, 101

<****": end

186,255

189,255

1, 96

186,255

189,255

1, 96

255, 160

228, 255

200, 208

76,214

208, 2

208, 2

169, 0

240, 15

253, 32

208, 2

32, 201

193, 32

74, 24

32,210

228, 255

16, 162

255, 201

32, 204

2, 32

133,251

76, 44

85, 84

The Transactor 12 Volumes, Issue06

The MANAGER Column

Letters to the Manager

This issue's application is a HOME BUDGETING PROGRAM. But first,

let me respond to some letters that express common concerns.

VERSIONS: First off, make sure you have version 1.06 of THE

MANAGER. Otherwise, you will be fighting some bugs in the 1.04
version. 1 regret that I cannot help you acquire an updated version

other than suggesting you return to your dealer or bug Commodore.

My regrets to David Huston of Saanichton, B.C. 1 hope this solves
Harry Hirashima's (Ballerica MA) problem.

DISK DRIVES: THE MANAGER was only designed to run on one
1541 disk drive. Hence you cannot hook up 2 disk drives or use a

4040 disk drive. My condolences to Chris Mante of New York and
Keith Adams of Mississauga, Ontario.

MORE INFORMATION ON THE MANAGER: At this time there

are no plans to issue new documentation, a book or a compilation of

previous articles. Unfortunately, I do not have the time to photocopy

individual articles for people. Stay tuned to the Transactor though,

things may change. My apologies to James Bridgewater of San Berna-

dino CA., David Shields of Gainesville Florida, J.F. O'Neil of Miami,

Eva Gray of Galion OH, Lome Cooke of Rose Blanche, Newfoundland.

Editor's Note: Commodore may be planning a re-release of the 64

Manager. A new manual would accompany the package but I have

no official word on the subject. As Don says.. . "Stay tuned".

REPORT GENERATE & ARITHMETIC: Having problems with

Report Generate or Arithmetic? In future articles I will repeat some of

the in-depth instructions I gave on how to use these options but

within the context of new applications.

PRINTING PROBLEMS: I'm afraid I can't help you much with

printer problems. I am only familiar with the 1526 Commodore

printer which I am using. Also, there is no way of speeding up/

compiling the printing part of the program that I am aware of.

SEARCH FUNCTION: The Search Function does not support While

loops. However, there is a way around this problem. If you want to

check many different fields for the same item, simply use the OR

statement to string together a number of different possibilities. You are

not limited to 1 line only. In a previous article I described how a police

department could use the search function on a stolen goods file to pair

up goods recovered with goods stolen. Using the complex search

criteria (F5)-F1= 'OBJECT' OR F2 = 'OBJECT OR F3 = 'OBJECT'.. .it

is possible to look for the object in many different fields. This is for Jim

Rendant of Chicago.

CHANGING SCREENS: How do you get from one screen to the next

in Enter/Edit asks Mrs. N. A. Doninger of Huntington Beach CA. F7

for next screen (page). F8 for previous screen (page).

SCRATCHING A DATA FILE: In the Manipulate Files option there

is a function called 'Scratch a Data File'. This is used to remove

unwanted files from a diskette. The manual is wrong here. The

prompt on your screen is 'ERASE THE MATH, DATA OR INDEX

FILES' not 'ERASE THE MATH, DATA OR BOTH FILES'. Sometimes

you may want to keep the data file itself with its screens, but erase the

math or index files so that you can create new ones. This option

allows you to do that. When entering the name of the file to scratch

enter the normal filename, DO NOT include prefix characters such as

DA., PT. etc. If you enter a filename that is not on the disk, the

program will appear to erase the file anyway. The only verification

Don Bell

Scotland, Ontario

that it has been erased is that it no longer appears on the disk

directory. I had no problem getting this function to work in versions

1.04 and 1.06. If you are having trouble with this function, you can

always 'kill' THE MANAGER (by powering down) and perform file

deletions in BASIC. If you want to erase all the files associated with

your data base file use this command:

open 15,8,15:print#15, "sO:??filename*" :close 15.

The '??.' will accept all 2 letter prefixes to the filename(rf. pt. sc. etc.)

and the * will accept any characters after the filename. THE MAN

AGER makes all filenames 16 characters long by adding blank spaces

to the end of the filename. Thus, in this case, the '*' means that any

number of blank characters following the filename will be acceptable.

1 hope this satisfies Chester Freeman of New Rochelle, N.Y.

REPORTS FOR YOUR WORDPROCESSOR: Outputting Reports

to Disk For Use in a Wordprocessor can be very useful. I had success

outputting a mailing list to disk for use in the 'Paperclip' wordproces

sor. The report was outputted to disk as a sequential file and then that

file was loaded into the wordprocessor as a sequential file. As I do not

have other wordprocessors, I cannot help you much in this regard. It's

the type of thing you have to experiment with yourself. Good luck to

Teri & Denis Hickethier of the Commodore Computer Users Group in

Heidelberg, Germany, Michael Tesch of West Chicago.

FILE SIZE: Some users have expressed dismay at the fact that they

cannot attain the maximum advertised limit of THE MANAGER, i.e.

2000 records. This is only a MAXIMUM! . The problem is not THE

MANAGER, it is the limited capacity of the disk drive and diskette. If

your records are reasonably small - no problem creating a file of 2000

records. However, as your records get larger they eat up more bytes on

the diskette and you cannot have as many records. You may also need

room on the disk for your arithmetic and report files. Report files don't

have to be on the same disk, but it's easier if they are. For example,

using one screen, the maximum record length I could use to create

2000 records was 78 characters. For a 100 character record length I

can only create 1563 records. For a 200 character record length using

2 screens I could only create 780 records. For a 300 character record

length I could only create 518 records. As a rule of thumb, to calculate

the approximate number of records, divide 156,000 by the length of

the record. Remember the '64 is basically a home computer, not a

business machine. If you're trying to do a business application

requiring a lot of records, you might need a more powerful and

expensive computer system. My thanks to Frank Hancock III of

Houston Texas and his church membership application for bringing

this problem to my attention.

Hugh Greenwood of Vancouver, B.C. is using a MANAGER file to keep

track of his slide collection. It has grown so large that he needs 2 files.

He now wants to create a 3rd file which will act as an index for all of

the slides in the other 2 files. He was hoping to use the Rearrange a

File function in the MANIPULATE FILES option to move information

from one file to another. The problem he is having is that he can only

move information to his new file from one of the old files, not both of

them. Also, he does not know of a way to use THE MANAGER to

concatenate 2 small files. Unfortunately, I can't think of a way to solve

his problem either. If anyone out there has a solution to his problem,

please let me know. My only thought is a solution outside of THE

MANAGER program. First, make 2 reports outputting the selected

fields from the 2 slide files to disk as sequential files. Then write a

BASIC program to concatenate the 2 sequential files. Then either use a

wordprocessor or write a BASIC program to read the files, sort and

printout whatever is required. This might be more trouble then re-

entering half the data!

The Transactor 13 Volume 5, Issue 06

A Home Budgeting Application

Ever wonder where all your money goes? Ever discover too late you're

in a cash flow bind that you should have seen coming? Ever want to

make a serious attempt at saving some money for a change? Ever

make some New Year's economic resolutions? Read on McDuff. I've

got just the application for all you penny pinchers, spendaholics,

budgeteers, and money maniacs! Yes, you too can be in control of

your economic fate.. . or at least, predict it!

The purpose of this application is to help you plan your budget a year

at a time and smooth out some of your cash problems. The real value

of this application to you will be determined not so much by the

design of the application itself, but by your using its structure to force

yourself to think about your budget and plan ahead.

Even if you don't want to use this application, you can derive several

benefits from analyzing its construction.

Many applications cry out for a combination of the benefits of a

database and a spreadsheet. One of the best little functions in THE

MANAGER is the ability to do 'what if calculations just like a

spreadsheet. This function is available in the Enter/Edit mode using

the ' = ' key. This application makes extensive use of this feature to

help you decide what you can afford to spend in various budget

categories. This feature combined with the 'accumulate' function

gives you an incredibly powerful budgeting tool. You can peer into

your distant economic future, plan for it and change it when neces

sary.

1 know some of you dread using Report Generate. You'll be glad to

know that this application does not use it. How did 1 get around it?

Reports go directly to the screen using the display positions in

Arithmetic. This is not to say that you cannot go ahead and do your

own reports using Report Generate.

Arithmetic! Boy have 1 got arithmetic for you. This application should

give you some real insight into how to use the Arithmetic option to

create a very powerful application.

I hope this application generates as much enthusiasm in you as it did

in me. After writing my own budget programs over the last few years, 1

was thrilled by being able to let THE MANAGER do most of the work

for me this time. Instead of wasting my time debugging code, I could

instead concentrate on the real meat of the matter - the ideal design

for the application itself.

Screens for Home Budgeting

Use the Create/Revise option to create 6 screens altogether. The first 3

screens are for the current month's data about budget and actual

amounts. The last 3 screens are for year-to-date amounts that will be

computed by the 'accumulate' function.

Don't feel any obligation to use my budget categories. Make up your

own that suit your particular needs. For example, you may decide that

foodout is unnecessary since it is really part of entertainment ex

penses. You might consider a category for bank charges, overdrafts

and interest on credit card accounts. These charges are a waste of

money and should be minimized.

The only thing I do suggest is that you keep the same number of

categories under each section (i.e. 3 for income, 8 for fixed expenses,

and 15 for variable expenses) and you keep the categories and totals

on the same lines of the screens. If you don't follow these 2 rules then

you'll have to modify my Arithmetic file - change the display position

definitions, the output of numeric data to display positions and the

counter for loops. Only more advanced users should take on this

challenge.

Totals and the DIFF'CE column in all screens will be calculated by the

Arithmetic file using display positions.

All budget and actual amount fields are 7 characters long and

numeric, the 2 fields under 'NOTES' are 40 characters long and

always alphanumeric.

Here's how to obtain screen printouts of field lengths and field

numbers for your first 2 screens. Select the Enter/Edit option from the

main menu, then make sure the screen is clear (if not, press Shift

CLR/HOME). To display field lengths, press 'up arrow'. To display

field numbers, press Shift 'up arrow'. Press 'p' to get a printout either

screen. You will need these printouts of field lengths and field

numbers to refer to when doing searches or designing reports.

Screen 1 is used for entering budget and actual amounts for income

and fixed expense categories.

INCOME

PAYCHECK

INTEREST

OTHER

TOTALS

FIXED EXP.

SAVINGS

RENT/MORT.

UTILITIES

PAYMENTS

CLUB FEES

PROP TAXES

INSURANCE

LOANS

TOTALS

t

t

SCREEN 1 OF 6

HOME BUDGET

BUDGET

f

t

t

t

t

t

f

t

t

t

t

t

t

t

t

t

t

f

t

t

t

1

ACTUAL

t

t

t

t

t

t

t

t

t

t

t

NOTES

t

t

t

t

t

t

t

t

t

t

t

t t

DIFF'CE

(line 6)

(line 12)

(line 19)

t

t

Screen 2 is used for entering budgeted and actual variable expenses.

AUTO EXP.

CHAR/CHURCH

CLOTHING

DENTAL/MED'L

EDUCATION

ENTERTAIN.

FOODOUT

GAS

GROCERIES

HOUSE MAINT

PURCHASES

RECREATION

TRANSPORTS

VACATION

OTHER

TOTAL

t

t

SCREEN 2 OF 6

VARIABLE EXPENSES

BUDGET

t

t

t

t

t

f

t

t

t

t

t

t

t

t

t

t

t

t

t

t

f

t

t

t

t

t

t

t

t

t

ACTUAL DIFF'CE

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

NO'

t (line 5)

t

t

t

t

t

f

t

t

t

t

t

t

t

t

(line 20)

t

t

The Transactor 14 Volume 5, Issue 06

Screen 3 gives a summary statement that is calculated in the Arithme

tic file.

INCOME

EXPENSES

FIXED

VARIABLE

NET INCOME

t

t

SCREEN 3 OF 6

NET INCOME

BUDGET ACTUAL

NOTES

DIFF'CE

(line 5)

(line 8)

(line 11)

f

t

Screens 4 to 6 do not require any data to be entered. The note fields

are there in case you wish to enter your observations about your

spending habits to date. They act like report screens, simply display

ing the year-to-date cumulative results of the arithmetic acting on all

the month records in your file.

Screen 4 is used to display year-to-date budget and actual amounts

for income and fixed expense categories. Notice that it is similar to

screen 1 with the exception of the date field and totals. Using the

'accumulate' function in Enter/Edit to execute the Arithmetic file

several times will produce the year-to-date numbers

** YEAR-TO-DATE INCOME/FIXED

BUDGET ACTUAL

INCOME

PAYCHECK

INTEREST

OTHER

FIXED EXP.

SAVINGS

RENT/MORT.

UTILITIES

PAYMENTS

CLUB FEES

PROP TAXES

INSURANCE

LOANS

NOTES

t

t

SCREEN 4 OF 6

EXPENSES **

DIFF'CE

(line 6)

(line 12)

(line 19)

t

t

Screen 5 is to display year-to-date budgeted and actual variable

expenses. Again, this will be the result of using the 'accumulate'

function in Enter/Edit mode.

** YEAR-TO-DATE VARIABLE EXPENSES **

AUTO EXP.

CHAR/CHURCH

CLOTHING

DENTAL/MED'L

EDUCATION

ENTERTAIN.

FOODOUT

GAS

GROCERIES

HOUSE MAINT

PURCHASES

RECREATION

TRANSPORTS

VACATION

OTHER

BUDGET ACTUAL DIFF'CE

(line 5)

(line 19)

NOTES

f

t

SCREEN 5 OF 6

Screen 6 gives a year-to-date summary income statement that is

calculated in the Arithmetic file.

In addition, a statement of budgeted and actual gross savings is

calculated by adding year-to-date net income and year-to-date

savings. Presumably, if your net income at some point is a negative

amount, then you will have to draw on your savings to cover the

deficit. The amount of Gross Savings will show the effect of this. The

purpose of this statement is to see how you are really doing in terms of

saving money. It is also useful for predicting a cash flow bind at some

time in the future. If Gross Savings is a negative amount then you're

going to have to borrow money from somewhere else or run up your

credit cards.

** YEAR-TO-DATE NET INCOME **

INCOME

EXPENSES

FIXED

VARIABLE

NET INCOME

BUDGET ACTUAL DIFF'CE

(line 5)

(line 8)

(line 11)

GROSS SAVINGS (NET INCOME + SAVINGS) (line 17)

NOTES

f

t

SCREEN 6 OF 6

The Transactor 15 Volume 5, Issue 06

Press the back arrow key to store the screens. Remember to alter the

amount fields so thev are numeric.

Defining the Screen Display Positions

For the Arithmetic File

Choose the Arithmetic Option from the main menu in THE MAN

AGER.

First we will define the display positions on all 6 screens. Screen 1 is

the current month's budgeted and actual income and fixed expenses.

We will now define the display positions for

the totals line.

Use the Return key to advance within a line

to advance to the

NO.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Screen 2 is the

penses. We will

next line.

the DIFF'CE column and

. Use the back arrow key

OF DISPLAY POS'N ON SCREEN 1 ? 17

LINE? 6 COLUMN? 31

LINE? 6 COLUMN? 31

LINE? 8 COLUMN? 31

LINE? 9 COLUMN? 11

LINE? 9 COLUMN? 21

LINE? 9 COLUMN? 31

LINE? 12 COLUMN? 31

LINE? 13 COLUMN? 31

LINE? 14 COLUMN? 31

LINE? 6 COLUMN? 31

LINE? 6 COLUMN? 31

LINE? 17 COLUMN? 17

LINE? 18 COLUMN? 31

LINE? 19 COLUMN? 31

LINE? 20 COLUMN? 11

LINE? 20 COLUMN? 21

LINE? 20 COLUMN? 31

current month's budgetec

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

and actual variable ex-

now define the display positions for the DIFF'CE

column and the totals line.

NO

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Screen 3 is the

ment. We will

OF DISPLAY POS'N ON SCREEN 2 ? 18

LINE? 5 COLUMN? 31

LINE? 6 COLUMN? 31

LINE? 7 COLUMN? 31

LINE? 8 COLUMN? 31

LINE? 9 COLUMN? 21

LINE? 10 COLUMN? 31

LINE? 11 COLUMN? 31

LINE? 12 COLUMN? 31

LINE? 13 COLUMN? 31

LINE? 14 COLUMN? 31

LINE? 15 COLUMN? 31

LINE? 16 COLUMN? 31

LINE? 17 COLUMN? 31

LINE? 18 COLUMN? 31

LINE? 19 COLUMN? 31

LINE? 20 COLUMN? 11

LINE? 20 COLUMN? 21

LINE? 20 COLUMN? 31

current month's budgeted

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

and actual income state-

now define the display positions for the DIFF'CE

column and the totals line.

NO

36.

37.

38.

39.

40.

41.

OF DISPLAY POS'N ON SCREEN 3 ? 12

LINE? 5 COLUMN? 11

LINE? 5 COLUMN? 21

LINE? 5 COLUMN? 31

LINE? 8 COLUMN? 11

LINE? 8 COLUMN? 21

LINE? 8 COLUMN? 31

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

42.

43.

44.

45.

46.

47.

Screen 4 is the

LINE? 9

LINE? 9

LINE? 9

LINE? 11

LINE? 11

LINE? 11

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

/ear-to-date budgeted anc

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

actual income and fixed

expenses.. We will now define the display positions for the BUDGET

ACTUAL and DIFF'CE columns.

NO

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

OF DISPLAY

LINE? 6

LINE? 6

LINE? 6

LINE? 7

LINE? 7

LINE? 7

LINE? 8

LINE? 8

LINE? 8

LINE? 12

LINE? 12

LINE? 12

LINE? 13

LINE? 13

LINE? 13

LINE? 14

LINE? 14

LINE? 14

LINE? 15

LINE? 15

LINE? 15

LINE? 16

LINE? 16

LINE? 16

LINE? 17

LINE? 17

LINE? 17

LINE? 18

LINE? 18

LINE? 18

LINE? 19

LINE? 19

LINE? 19

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

Screen 5 is the year-to-date budgeted and

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

actual variable expenses..

We will now define the display positions for the BUDGET ACTUAL

and DIFF'CE columns.

NC

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

9-1.

95.

96.

97.

98.

99.

100

. OF DISPLAY POS'N ON SCREEN 5 ? 45

LINE? 5

LINE? 5

LINE? 5

LINE? 6

LINE? 6

LINE? 6

LINE? 7

LINE? 7

LINE? 7

LINE? 8

LINE? 8

LINE? 8

LINE? 9

LINE? 9

LINE? 9

LINE? 10

LINE? 10

LINE? 10

LINE? 11

LINE? 11

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

The Transactor 16 Volume 5, Issue 06

101. LINE? 11

102. LINE? 12

102. LINE? 12

103. LINE? 12

104. LINE? 13

105. LINE? 13

106. LINE? 13

107. LINE? 14

108. LINE? 14

109. LINE? 14

110. LINE? 15

111. LINE? 15

112. LINE? 15

113. LINE? 16

114. LINE? 16

115. LINE? 16

116. LINE? 17

117. LINE? 17

118. LINE? 17

119. LINE? 18

120. LINE? 18

121. LINE? 18

122. LINE? 19

123. LINE? 19

124. LINE? 19

125. LINE? 19

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 11

COLUMN? 21

COLUMN? 31

Screen 6 is the year-to-date budgeted anc

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

actual income statement.

We will now define the display positions for the BUDGET ACTUAL

DIFF'CE columns and the

displayed on line 19.

TOTALS. The GROSS SAVINGS totals are

NO. OF DISPLAY POS'N ON SCREEN 6 ? 15

126. LINE? 6

127. LINE? 6

128. LINE? 6

129. LINE? 10

130. LINE? 10

131. LINE? 10

132. LINE? 12

133. LINE? 12

134. LINE? 12

135. LINE? 14

136. LINE? 14

137. LINE? 14

138. LINE? 19

139. LINE? 19

140. LINE? 19

Budget Calculations In t

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

COLUMN? 31

COLUMN? 11

COLUMN? 21

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

LENGTH? 9

he Arithmetic File

After entering all the display positions, you

the Arithmetic Editor.

Comments are preceded bj

help you understand how

r a semicolon. 1

the arithmetic

will be in the Edit Mode of

ve included comments to

operates, you may leave

them out if you wish as they are not necessary for the arithmetic to

work. The arithmetic just follows the screens in order, doinc the

required math to get a figure for each display position.

♦ INCOME (SCREEN 1)

N3-N2 to 2D1

N5-N4 to 2D2

N7-N6 to 2D3

N2 + N4+N6toRl

Rl to 2D4

N3 + N5 + N7toR2

R2 to 2D5

R2-R1 to 2D6

;FIXED EXPENSES

CALCULATE D!

;R1=ACT'LINC. TOT

;R2 = BUDGET NC. T(

;DIFF'CE

8toR7 ;R7 IS A FIELD* COUNTER
7 to R10 ;R10 IS DISPLAY POS'N

WHILE R7 < 24 DO

N(R7)-N(R7+l)TO2D(R10)

R7 + 2 TO R7

R10 + 1 TO R10

ENDWHILE

0 TO R3 ;R3 = BUDGET FIXED EXP.

8TOR7

WHILE R7 < 24 DO

N(R7) + R3 TO R3

R7 + 2 TO R7

ENDWHILE

R3TO2D15

0 TO R4 ;R4 = ACTUAL FIXED EXP.
9TOR7

WHILE R7 < 24 DO

N(R7) + R4 TO R4

R7 + 2 TO R7

ENDWHILE

R4TO2D16

R3-R4TO2D17 ;FIXED EXPENSE DIFF'CE

^VARIABLE EXPENSES (SCREEN 2)
26TOR7

18 TO R10

WHILE R7< 56 DO

N(R7)-N(R7+l)TO2D(R10)

R7 + 2 TO R7

R10 + 1 TO R10

ENDWHILE

26 TO R7

0 TO R5 ;R5 = BUDGET VAR. EXP.

WHILE R7 < 56 DO

N(R7) + R5 TO R5

R7 + 2 TO R7

ENDWHILE

R5 TO 2D33

27 TO R7

0 TO R6 ;R6 = ACTUAL VAR. EXP.

WHILE R7 < 57 DO

N(R7) + R6 TO R6

R7 + 2 TO R7

ENDWHILE

R6 TO 2D34

R5-R6 TO 2D35 ;VAR. EXP. DIFF'CE

■NET INCOME FOR CURRENT MONTH RECORD (SCREEN 3)

Rl TO2D36

R2 TO 2D37

R2-R1 TO 2D38

R3 TO 2D39

R4 TO 2D40

R3-R4 TO 2D41

R5 TO 2D42

R6 TO 2D43

R5-R6 TO 2D44

R1-(R3 + R5)TOR8

R8TO2D45

R2-(R4 + R6)TOR9

R9TO2D46

R8-R9 TO 2D47

;** YEAR-TO-DATE**

; IN THE WHILE LOOP BELOW

;ALL YEAR-TO-DATE INCOME, FIXED EXPENSES

;& VARIABLE EXPENSES ARE ACCUMULATED IN

REGISTERS & DISPLAYED ON THE SCREEN

48 TO R10 ;SET DISPLAY POS'N START *

2 TO R7 ;SET START OF FIELD INDEX *

12TOR11 ;SET START REGISTER *

0 TO R99 ;R99 AS TEMP. STORAGE

The Transactor 17 Volume 5, Issue 06

;SET START REGISTER*

WHILE RIO < 126 DO

IF R7 = 24 THEN R7 + 2 TO R7 ;SK1P NOTES

ENDIF

N(R7) + R(R11)TOR(R11)

R(Rll)TO2D(R10)

N(R7 + 1) + R(R11 + 1) TO R(R11+1)

R(Rll + l)TO2D(R10+l)

0 TO R99 ;R99 AS TEMP STORAGE

R(R11 + 1)-R(R(11))TOR99

R99TO2D(R10 + 2)

RIO +3TOR10

R7 + 2 TO R7

Rll + 2TOR11

ENDWHiLE

;INCOME TOTALS YEAR-TO-DATE

R12 + R14 + R16TOR90

R90TO2D126

R13 + R15 + R17TOR91

R91TO2D127

R91-R90TO2D128

;F1XED EXPENSE TOTALS YEAR-TO-DATE

Rl 8 + R20 + R22 + R24 + R26 + R28 + R30 + R32 TO R92

R92TO2D129

R19 + R21 + R13 + R25 + R27 + R29 + R31+R33TOR93

R93TO2D130

R92-R93TO2D131

;VAR1ABLE EXPENSE TOTALS YEAR-TO-DATE

;BUDGET TOTALS

34 TO Rl 1

1 TORI 00

0 TO R94

WH1LER100<16DO

R(R11) + R94TOR94

R100 + 1TOR100

Rll +2TOR11

ENDWHILE

R94TO2D132

;ACTUAL VARIABLE EXPENSE TOTALS

35 TO Rll ;SETSTART REGISTER*

1 TORI 00

0 TO R95

WH1LER100<16DO

R(R11) + R95TOR95

R100 +1TOR100

Rll + 2 TO Rll

ENDWHILE

R95TO2D133

R94-R95TO2D134 ;DIFF'CE

;YEAR-TO-DATE NET INCOME

R90 - (R92 + R94) TO R96 ;BUDGET

R96TO2D135

R91 - (R93 + R95) TO R97 ;ACTUAL

R97TO2D136

R97-R96TO2D137 ;DIFF'CE

R96 + R18TO2D138 ;GROSS SAVINGS

R97 + R19TO2D139

R96 + R18-R97-R19TO2D140

Setting Up Your Budget and Entering Records

The first thing to do is look at a whole year's income and expenses at

once. Go into the Enter/Edit option and enter record 1 as your year

budget. Then use the " what if" feature (the = key) to plan your year

budget. Enter trial amounts then press the back arrow key to let the

arithmetic calculate your net income on screen 3. Remember to use

F7 to advance a screen and F8 to return to the previous screen.

Keep playing with the amounts until you get the savings and net

income amounts you wish to aim for. Be realistic! Overly optimistic

forecasts can lead to family feuds or chronic depression. It is always

better to find you saved more than you expected.

Once you're happy with the figures, screen print the first 3 screens.

This year budget is your guestimate of what your year-to-date

screens will show at the end of the year.

Note: We are only using the screen on record 1 to fiddle with our year

budget. Record 1 will eventually be the first month of our budget.

Now on a piece of paper divide expenses by 12 to get a monthly

amount. This only works of course for common monthly expenses.

Large amounts such as insurance, tax payments etc. will have to

entered in individual months.

Now create 12 records, 1 record for each month of your budget. Do

this simply by entering the date in field 1 of each record. Put the date

in this format, e.g. Jan 1, 1985 would be 850101.

Now use the first 3 screens in record 1 to play with the amounts for

your month budget until you get some reasonable figures. Use the

'what if (' = ' key) to calculate the effect of changing the amounts.

Next make global entries in the budget column of record 1 by using

the Shift 'C' change function. Enter any amounts that are constant

every month or you have calculated 1 /12th of the yearly amount. My

experience has shown that you can only change 10 fields at a time.

Thus, you may have to do this operation more than once. You should

now have entries in the budget column of all 12 months.

The next thing to do is to enter special amounts in the budget column

that you know are due in certain months, e.g. tax or insurance

payments. After doing this every month's budget column should be

complete, i.e. reflect your best estimate of income and expenses for

that month.

You can now use the 'accumulate' function to look at the year-to-date

amounts (screens 4 to 6) for the whole year. You may decide at this

time to revise some of those global entries. If you want the accumulate

to only go as far as a certain month, enter the complex search string

(F5) for the month you want it to stop at, e.g. up to May would be N1 <

850601

Note: You may see outrageous amounts appearing in the year-to-date

display positions on your screen. This is because the accumulator

keeps adding when you go from record to record. The only way to

clear it and get correct amounts is to re-execute the 'accumulate'

function.

One more thing - how to avoid cash flow problems. The reason for

GROSS SAVINGS is to help you figure out ahead of time whether you

will have enough money on hand, i.e. your paycheck and your

savings account, to cover a month's expenses. Doing an 'accumulate'

up to any month will tell you this, i.e. if GROSS SAVINGS is a negative

amount you are in trouble. Then it's time to go back and budget more

for your savings account.

You are now in a position to make entries in the ACTUAL column at

the end of each month. At this point you're on your own. Improvise

methods that suit your perception of what financial information is

necessary in order to make this budget work for you. For example, it

just occurred to me that it might be helpful if initially all ACTUAL

amounts were entered ahead of time (i.e. the same as BUDGET

amounts). Then each month the amounts in the ACTUAL column

would be changed to reflect reality. An accumulate over the year

would immediately show the effect of this month's entries on what

was left of the year budget.

May your budgeting efforts in the new year add rather than subtract

from your enjoyment of life!

DON'T PHONE - WRITE!

If you have questions regarding this application or you would like to

submit your own "terrific" application, please write me a legible,

coherent letter. If you submit an application, send it on disk or at least

send screen dumps of the ENTER/EDIT screen, a hand-drawn report

chart and any math and sample data. I will attempt to answer letters in

this column. Write to: Don Bell, P.O Box 23, Scotland, Ontario,

Canada, N0E 1R0

The Transactor 18 Volume 5, Issue 06

TransBASIC

Installment #2

Nick Sullivan

Scarborough, Ont.

In the first installment of TransBASIC, Nick introduced the concept of his objective: to

create a method for building custom commands and incorporate them into the BASIC

command set. Also in part 1, the TransBASIC Kernel was described. To take advantage of

new TransBASIC command listings, one must first obtain a copy of the TransBASIC

Kernel. The Kernel is only about 500 bytes long, but the source listing of the Kernel is quite

long and can't be printed each time. Volum e 5, Issue 05 (Hardware & Peripherals) contains

the printed listing, however The Transactor Disk for every issue will include this file, plus

files from the current and all previous TransBASIC articles.

The Structure of a TransBASIC Module

The TransBASIC system is basically a long program in assembler

source code with one compulsory and many optional parts. The

compulsory part is called the kernel. The other parts — the optional

ones — are called modules.

The kernel and all the modules are written with the PAL assembler,

which uses the BASIC editor to create source code. At some point the

selected modules must be merged with the kernel, and assembled.

The merge routine is one that was actually written for merging BASIC.

But since PAL source files are structured just like BASIC text, this

merge works quite nicely (thank you again Glen Pearce).

In order for modules to be merged non-destructively with the kernel

and with each other, a unique line range has been assigned to every

subsection of the source code. The execution routine for each module,

for instance, occupies certain lines that are reserved for it alone. Other

lines have been reserved for the kernel, others for statement and

function keywords, others still for equates, for routine addresses, and

for link vector storage.

One of the modules given in this issue is called 'Cursor Position'. It

contains two commands — the statement CURSOR, and the function

CLOC. I'll use 'Cursor Position' in the following discussion to illustrate

the anatomy of a TransBASIC module. This discussion will give you

an idea of how to structure any modules you write on your own.

The first few lines of 'Cursor Position' are BASIC REM statements.

Similar documentary lines, using as much as necessary of the line

range 0 through 24, will be found in every module. The numbering

and format are standardized: in your own modules you should follow

the pattern as closely as you can. Incidentally, this first line range is

the only one in the TransBASIC system that are not uniquely assigned.

This is okay because these lines are intended for reference at the time

the module containing them is merged into memory — it doesn't

matter if the module after that overwrites them.

If the 'Cursor Position' module contained any equates they would

come next. At the moment the only equates in use in TransBASIC are

those defining the reserved zero page work area at locations two

through six, and those defining operating system (Kernal) routines in

the 'ADD' module. That leaves plenty of room for further equates if

you want them: lines 50 through 90 should be safe.

In the next range of lines you would put any statement keywords

you'll be needing in your module (function keywords come a little

later on). The TransBASIC statement keyword list occupies lines 100

through 597; the CURSOR statement is entered at line 101. Note that

the last character in each keyword has its high byte set. In modules

you write yourself use lines 400 through 597 for your keywords.

The following 500 lines are for function keywords; the 'Cursor Posi

tion' function CLOC, for example, occurs on line 600. The organiza

tion is identical to that for statements. The safest part of this area is

again the end, from 900 through 1095.

The address of the execution routine for each keyword is given on the

line whose number is exactly 1000 greater than the one on which the

keyword itself is entered. The numbers here are actually the routine

addresses minus one, owing to the particular method by which the

routines are accessed.

The only other part of a module is the block of execution routines

itself. You will be entirely safe for the foreseeable future if you number

your routines in the upper part of the range the BASIC line editor

accepts — above 50000, say. I number the execution routines by twos

in order to allow a little bit of room for revision without the necessity

of using harder-to-follow multiple statement lines.

If you glance at the listing of the TransBASIC kernel (printed in last

issue) you'll see at once that the lines are not all contiguous, but are

scattered in various blocks throughout the range 25 to 2572. Since you

won't need to make any changes to kernel lines I won't list the details

of the line assignments here. In fact, you can generally ignore the

kernel altogether, even though it does most of the work of linking in

new commands.

TransBASIC offers probably the easiest way to extend BASIC with

your own custom commands. A brief glance at some existing modules

will show you just how little effort is necessary for sculpting a new

one.

A typical TransBASIC command uses lots of ROM routines, particu

larly for expression evaluation. In the next issue we'll look at some of

those routines and how to use them.

The Transactor 19 Volume 5, Issue 06

New Commands

This part of the TransBASIC column is devoted to describing the new

commands that will be added each issue. The descriptions follow a

standard format:

The first line gives the command keyword, the type (statement or

function), and a three digit serial number.

The second line gives the line range allotted to the execution routine

for the command.

The third line gives the module in which the command is included.

The fourth line (and the following lines, if necessary) demonstrate the

command syntax.

The remaining lines describe the command.

CURSOR (Type: Statement Cat #: 004)

Line Range: 2574-2604

Module: CURSOR POSITION

Example: CURSOR 11

Example: CURSOR ROW.COL

Moves the cursor to specified row (0-24) and column (0-39). Column

zero is assumed if no second parameter is present.

CLOC (Type: Function Cat #: 005)

Line Range: 2606-2618

Module: CURSOR POSITION

Example: IF PEEK(CLOC)<>32 GOTO 100

A quasi-variable that returns the actual memory location of the

cursor.

DOKE (Type: Statement Cat *: 007)

Line Range: 2636-2672

Module: DOKE &DEEK

Example: DOKE 788,59953: REM RESET IRQ VECTOR

Pokes a 16-bit value into a pair of memory locations, the lower of

which is specified in the command. The IRQ interrupt is switched out

during the poke so this command may be used, as in the example, to

change the vector safely.

DEEK((Type: Function Cat *: 008)

Line Range: 2674-2696

Module: DOKE & DEEK

Example: PRINT "TOP OF BASIC AT:" DEEK(55)

Returns the 16-bit value of a pair of memory locations, the lower of

which is specified in the command. Standard low-high format is

assumed.

SET (Type: Statement Cat *: 009)

Line Range: 2698-2706

Module: BIT TWIDDLERS

Example: SET ADDR.MASK

An 8-bit value (MASK) is ORed into the address. Bits that are set in

MASK will be switched on at the specified location; other bits will be

unaffected.

CLEAR (Type: Statement Cat #: 010)

Module: BIT TWIDDLERS

Example: CLEAR ADDR.MASK

Bits that are set in the 8-bit value MASK will be cleared at the

specified location; other bits will be unaffected.

FLIP (Type: Statement Cat *: 011)

Line Range: 2720-2728

Module: BIT TWIDDLERS

Example: FLIP ADDR.MASK

Bits that are set in the 8-bit value MASK will be complemented at the

specified location; other bits will be unaffected.

CHECK((Type: Function Cat #: 018)

Line Range: 2834-2882

Module: CHECK & AWAIT

Example: A = CHECK(" AEIOU")

If there is a character in the keyboard buffer, it is tested against each

character of the string argument (here " AEIOU") in turn until either a

match is found or every character has been checked. If there is a

match, the position of the matching character in the string (from 1 to

255) is returned. If there is no match, or if the keyboard buffer was

empty, zero is returned.

AWAIT((Type: Function Cat #: 019)

Line Range: 2838-2886

Module: CHECK & AWAIT

Example: A = AWAIT(" NESWQ "): ON A GOTO 10,20,30,40: END

Identical in operation to CHECK(except that it won't take no for an

answer, but will wait for keyboard input and a successful match: this

function never returns zero.

KEYWORDS (Type: Statement Cat *: 059)

Line Range: 4940-4980

Module: KEYWORDS

Example: KEYWORDS

All active TransBASIC keywords are printed.

MP

FH

Jl

HH

JO

JH

NJ

IN

BE

NH

ME

PH

KD

Bl

FJ

GK

BG

FE

IB

GM

IN

OH

BB

FJ

NH

AM

NO

KE

CE

oc

Gl

DO

KL

FL

IF

CM

JG

LN

0 rem doke & deek (aug 24/84)

rem 1 statement, 1 function

ser#

007

008

1

2

3 :

4 rem keyword characters: 9

5 :

6 rem keyword routine line

7 rem s/doke dok 2636

8 remf/deek(deek 2674

9 :

10 rem u/usfp (2620/006)

11 :

12 rem =

13 :

102 .asc "dokE"

601 .asc "deek" : ,byt$a8;deek + shifted (

1102 .word dok-1

1601 .word deek-1

usfp Idx #0

stx $0d

sta $62

$63

#$90

2620

2622

2624

2626

2628

2630

2632

2634 ;

2636 dok

2638

2640

2642

2644

2646

2648

2650

2652

2654

2656

2658

sty

Idx

sec

jmp

jsr

jsr

jsr

Ida

sta

Ida

sla

jsr

jsr

Ida

Idy

sei

$bc49

$ad8a

$b7f7

$aefd

$14

t3

$15

t4

$ad8a

$b7f7

$14

#0

;routineto convert

;unsigned integer

;in .a (high byte)

;and ,y (low byte)

;to floating point

;infpa#1

;get poke address

;convertto integer

;check for comma

;store address

;as temp vector

;get poke value

;convert to integer

;low byte to poke

;indirect index

;turnoff irq

The Transactor 20 Volume 5, Issue 06

NL

El

LA

PM

CN

KF

GO

DN

AP

CA

Dl

BM

IP

HE

JL

BF

MA

FH

OP

HH

FH

GH

HH

FE

JH

NJ

ID

OF

EN

OH

CN

Al

LD

Cl

OP

JK

BA

MK

EC

MH

IA

GE

DP

NJ

AD

II

EB

KB

NG

KD

CJ

OB

GH

LP

Ml

MJ

IC

FO

FH

DH

HH

FE

JH

NJ

EP

Nl

NH

NP

PH

KD

Bl

Jl

IP

OL

IK

2660 sta (t3),y

2662 Ida $15

2664 iny

2666 sta (t3),y

2668 cli

2670 rts

2672 ;

2674 deek jsr $aef4

2676 jsr $ad8d

2678 jsr $b7f7

2680 Idy #1

2682 Ida ($14),y

2684 pha

2686 dey

2688 Ida ($14),y

2690 tay

2692 pla

2694 jmp usfp

2696 ;

isave low byte

;high byte to poke

;bump index

;save high byte

;irq on again

;get val, test')'

;test for numeric

;conv to integer

indirect index

;get high byte

;decrement index

;get low byte

; convert to fp

0 rem bit twiddlers (sept 4/84) ;

1 :

2 rem 3 statements, 0 functions

3 :

4 rem keyword characters' 12

5 :

6 rem keyword routine

7 rem s/set bse

8 rem s/clear bclr

9 rem s/flip fli

10 :

line ser#

2698 009

2708 010

2720 011

11 rem u/bprep (2730/012)

12 :

13 rem = = = = = = = = = =

14 :

103 .asc " seTcleaRfliP"

1103 .wordbse-1,bclr-1,

2698 bse jsr bprep

2700 ora ($14),y

2702 sta ($14),y

2704 rts

2706 ;

2708 bclr jsr bprep

2710 eor #$ff

2712 and ($14),y

2714 sta ($14),y

2716 rts

2718 ;

2720 fli jsr bprep

2722 eor ($14),y

2724 sta ($14),y

2726 rts

2728 ;

2730 bprep jsr $b7eb

2732 txa

2734 Idy #0

2736 rts

2738 ;

Fli—1

; setup

;set masked bits

;store

;setup

;invert mask

;clear masked bits

;store

;setup

;flip masked bits

;store

;addr to $14/15,

;value to .a

;set index to 0

0 rem check & await (aug 25/84) :

1 :

2 rem 0 statements, 2 functions

3 :

4 rem keyword characters

5 :

6 rem keyword routine

7 rem f/check(check

8 rem f/await(await

9 :

10 rem u/getter (2888/020

11 :

12 rem = = = = = = = = = =

13 :

602 .asc "checkawait"

12

line ser#

2834 018

2838 019

)

1602 .word check-1,await-1

2834 check sec

2836 .byte $24

;setflag 'check'

;ignoreclc

FA

EA

FG

NN

DE

IB

LH

BM

ED

GD

AF

GP

GA

PI

MD

AF

BF

CE

PF

JD

CH

EE

Al

IP

ML

OG

EH

CM

LB

FH

Al

HH
inIU

JH

NJ

IL

MH

OH

BP

DF

JP

HP

EK

PP

KE

PJ

DB

FL

OJ

LA

OH

Al

LH

GE

PA

EL

PL

KE

NK

NG

KO

2838

2840

2842

2844

2846

2848

2850

2852

2854

2856

2858

2860

2862

2864

2866

2868

2870

2872

2874

2876

2878

2880

2882

2884

2886

2888

2890

2892

0 rem

1 :

2 rem

3 :

4 f6fT

5 :

6 rem

7 rem

8 :

10 :

await clc

php

jsr $aef4

jsr $b6a3

sta t3

pip

ror t4

awl jsr getter

bit t4

bmi aw2

tay

beq awl

aw2 Idy #$ff

aw3 iny

cpy t3

beq aw4

cmp ($22),y

bne aw3

beq aw5
QlA/4 hit t<dQVV^ 1) 11 It

bpl awl

Idy #$ff

aw5 iny

jmp $b3a2

getter jsr $a82c

jmp $e124

;clr flag 'await'

;save flag

ievaluate string,

;clrdescr stack

;save str length

;save flag

;minus = 'check'

;test key buffer

;test flag

;skip if 'check'

;try again if

;buffer empty

initialize index

;bump index

;skip if end

;of string

;test for match

;test flag

;loop if 'await'

; return 0

;pos'n in string

;.y tofp in fad

;test stop key

;basic'sgetin

keywords (aug 25/84)

1 statement, 0 functions

Keywora cnaracters

keyword routine

keywords kwrds

116 .asc " keywords

1116

4940

4942

4944

4946

4948

4950

4952

4954

4956

4958

4960

4962

4964

4966

4968

4970

4972

4974

4976

4978

4980

.word kwrds-1

kwrds jsr $aad7

Idy #0

kwr1 Idx #0

kwr2 Ida skw.y

beq kwr4

php

and #$7f

jsr $ab47

iny

inx

pip

bpl kwr2

kwr3 cpx #$0a

beq kwr1

cpx #$14

beq kwr1

jsr $ab3f

inx

bne kwr3

kwr4 jmp $aad7

■ Q
. o

line ser#

4940 059

; print return

;keyword index

;column counter

;get keyword char

;skip at list end

;save status reg

;make lower case

; print character

;bumpkword index

;bump col counter

;loop if not

;end of word

;print spaces to

;padto10or20

;columns

;print return

The Transactor Volume 5, Issue 06

A New Wedge

For The Commodore 64
Add commands by trapping Syntax Errors

Brian Munshaw

Mississauga, Ont.

In an issue dedicated to programming aids and utilities, I thought it

would be fitting to not only offer up some utilities, but to supply a

superior method of adding them right to BASIC. In effect, add com

mands. This is the technique hinted about by Richard and Chris in

previous articles, so in an effort to appease their collective curiosities,

here it is.

Most of you are probably familiar with the 'chrget' wedge. It is

characterized by using a special character, such as '©', '/' or '>',

which precedes all commands. Both 'DOS 5.1' and 'The Manager' use

this technique.

The 'chrget' wedge, however, has its drawbacks. It is what you might

call a brute force method. Basically, the normal character retrieval

done by BASIC is re-routed through a special routine which checks

for a special 'wedging' character(s). Depending on how much check

ing is done, the process can slow down BASIC considerably. Some

estimates indicate the slow down is around fifteen percent. Syntactic

anomalies also develop. The one that comes to mind first is the

problem that arises in the 'if - then' construct. In the following

example the wedge command always executes.

if 1 = 0 then ©command

This might seem absurd as the expression is always false, but unless

this special condition is checked for, it will always execute. As a user

of such a utility, to program around this, you would have to first insert

a colon in front of the wedge command. Similarly, unless quote mode

is checked for, the following will also invoke the wedge command.

print "©command"

The point is, unless a lot of extra checking is done to ensure against

these and other problems, the average wedge takes a considerable

slice of time for each and every character requested from it by BASIC.

Generally, the better the wedge performs syntactically, the slower

BASIC executes.

This isn't to fault the programming expertise of the original developer

of the technique. He or she had few alternatives to this method on the

PET. (which I assume is where the process was developed) However,

the 64 is a different matter. (So is the VIC, but this article addresses

itself to the 64 only! I suppose with very little effort, this technique will

also work on the VIC)

The interpreter and kernal of the 64 makes extensive use of indirect

jumps through vectors in RAM, more so than does the PET. The

important vector in this case is the one at $0300 called 'IERROR' in the

programmers reference guide.

The method I'm proposing will on the surface appear to be the same,

but will exhibit none of the problems of the 'chrget' wedge. This

method also requires a special preceding character for all commands,

but from there on it's entirely different.

Let's consider what would happen if you just included the hypotheti

cal command '©superdooper' to a line of BASIC. The obvious result is

a syntax error when BASIC tries to execute it. But it is a very special

syntax error, in that this specific syntax error occurs at the start of a

statement. How can this be used to advantage? Let's examine in more

detail what is actually happening. First, BASIC was happy right up to

the statement before the ©superdooper command. Part of the execu

tion of that statement included positioning the text pointer (at $7a and

$7b) on the first character or token of the next statement. In this case,

this is the special character '©'. Since this character's ASCII value is

less than 128, BASIC knows it's not a token (all tokens have the high

bit set, hence must be greater than or equal to 128), and gets ready to

execute an implied 'LET' statement, also known as an assignment

statement. Ah, but there's the rub! It can't be an implied 'LET'! Why?

Well the '©' is not a valid character for a variable name. What

happens as a side effect of all this is two stack places are used, the x

register is loaded with $0b signifying a syntax error, and an indirect

'jmp' is done through the 'IERROR' vector at $0300. This routine

causes the appropriate error message to be printed, and execution

halts.

What is of extreme importance is the consistency of these events. If

you change the vector at $0300 to point to a routine that will check for

your new command, and if found, will fix up the stack, scan to the

next statement which allows BASIC to continue by jumping to the

routine to execute the next statement, then you, my friend, have a

new type of wedge, the 'error' wedge.

Most BASICs found today (excluding Commodore variants) have an

'on error goto/gosub' or 'trap' command. This is approximately the

same thing. It is closer to an 'on syntax error sys' though, but this is

exactly what I wanted to accomplish. A way to pass into machine code

to execute the utility. It isn't a brute force method, like the 'chrget'

wedge, hence doesn't slow down BASIC. It only affects processing

when the command is encountered. This technique is certainly more

elegant than having a separate 'sys' for each command, utility or aid

and finally, it is somewhat easier than altering the tokenising and

token dispatching to add commands to basic. Another nice feature

comes from the fact that the kernal doesn't re-initialize the vector at

$0300 with every warm start, therefore you don't have to re-engage it

every time you press a run/stop - restore. This is the case when you

scan for specific keyboard entries, like the function keys which some

schemes do by altering the IRQ vector.

More to showcase this technique than anything else, I've included

those commands which are a subset of a graphics utility I've written,

which pertain to external devices, like the disk drive. These include

utilities to list the directory or a program to the screen, a command to

list a sequential text file to the screen, a command to alter the default

output device, a command to send commands to the disk drive, two

commands to read the disk status and finally a command to disable

the utility.

The syntax for these commands are as follows. Please remember that

the special character, '@' in this instance, must precede each com

mand. Also as a side effect of the way the commands are parsed, each

command will have a short form. The shortest acceptable will be

given with the full name in each case. For those of you who don't like

the preceding '©' character, and would prefer another, then poke

49152 + 10, asc(" character"). The only rule you must keep in mind

when choosing a character is it must cause an automatic syntax error

The Transactor 22 Volume 5, Issue 06

and have a CBM ascii value less then 128. Possible characters do not

include the mathematical operators +,-,*,/■ Even though they may
have an ASCII value less than 128, the editor turns them into tokens,
hence will have an ASCII value greater than 127 in BASIC text.

COMMANDS :

© (Abbreviation: none)

This command will display the disk status of the default drive.

©device, device * (Abbreviation: @de, device #)

This command will allow the user to set a default output device. When

the utility is first loaded and engaged, the default device number will

be set to eight. This will allow users of disk drives set to device eight to

'LOAD', 'SAVE', and 'VERIFY' without specifying a device number. If a

user wishes to change this, then this command can be invoked to do

so. Note, the rest of the commands will use the default device number

when accessing a device, hence if you have two drives on line,

remember you must alter to the appropriate device number to access

the device which isn't set to default.

@dos, string (Abbreviation: @do, string)

This command will send the characters in the string (literal or

variable) to the default device using secondary address fifteen, ie. send

commands to the disk drive.

©dstatus, var$ (Abbreviation: @ds,var$)

This command will store the disk status in var$. Note var$ must be a

string variable and works in either direct or program mode.

©kill (Abbreviation: @k)

This command disengages the utility.

©list, string (Abbreviation: ©II, string)

This command will, depending on the contents of the string literal /

string variable, list either the appropriate directory or program to the

screen. The device being accessed is assumed to be the default

device. The syntax of the string is standard Commodore, eg:

©list, " $"

will list the directory (both if using a dual drive),

©list, $0:*=prg

will list the titles of all program files on drive zero and

©list, " program name "

will list the appropriate program to the screen. To cause the listing to

pause, press and hold the space bar. To allow the listing to continue,

release the space bar.

©print, string (Abbreviation: ©?, string)

This command will print a sequential text file to the screen. The

filename is held in the string, literal or variable. Use the space bar to

pause.

The following is the assembler source listing and a basic program that

will load and engage the utility. Once the loader has been run, you

may wish to save it out with a monitor. If you do so, the code extends

from $C000 to $C2C3. As you will see from the assembler listing,

extensive use is made of kernal and interpreter routines. For those of

you out there just starting to get your feet wet in the machine code

world of the C64, this little program may help you in the set up and

use of such resident routines. I hope you find the method of adding

commands and the utilities useful in your own endeavours.

Listing 1: BASIC loader for the error wedge program.

PJ

LI

DH

DH

GK

KG

DD

AF

IN

JE

IA

CA

MA

GB

AC

KC

ED

IF

Gl

HJ

EK

NP

LG

CB

BH

NM

PN

CH

EE

AP

GC

DK

KE

FN

MB

HE

LE

CP

CA

IF

10

C!

MK

OD

GM

LA

CL

IA

IP

FJ

DK

AJ

PJ

NK

NP

FO

EB

NP

FC

KN

MG

OD

EH

DF

10 rem* data loader for " error wedge" *

20 cs = 0

30 for i = 49152 to 49858:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>86280 then print

" **** error in data statements****": end

70sys49152

80 end

100:

1000 data 76, 52,

1010 data 244, 237,

192, 139,227, 165

1020 data

1030 data

1040 data

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

1110 data 141

1120 data 1

0,

0.

0,

0.

0,

0,

0,

141,

3,141,

0,

3.

245,

0,

0,

0,

0,

0,

0,

0.

64,

0.

0.

o,

0,

0,

0,

173,

1130 data 7,192

1140 data 8,192

1150 data 3,169

1160 data 173, 48

1170 data 173, 49

1180 data 169,127

1190 data 192, 141

1200 data 9,192

1210 data 192, 174,

1220 data 108, 5,

1230 data 32, 158, 173,

1240 data 224, 11,240,

1250 data 192, 32

1260 data 192, 240

1270 data 104,104

1280 data

1290 data

1300 data

1310 data

1320 data

1330 data

1340 data

6,169,

0, 240,

2, 208,

76, 87,

39, 32,

45, 193,

7, 32,

3, 192, 173,

4, 192, 169, 144

3, 169, 192, 141

173, 50, 3,141

173, 51, 3,141

169,119,141, 50

192,141, 51, 3

3,141, 5,192

3,141, 6,192

141, 48, 3,169

49, 3, 96,174

134,186,108, 7

9, 192, 134, 186

32,115, 0

76, 163,182

3,108, 3

0,205, 10

3,108, 3,192

32,170,192, 76

32,115, 0,201

6,201, 58,240

6, 32, 45,193

194,201, 68,208

115, 0, 72, 32

104,201, 69,208

192,

121,

241

1350 data 192,

1360 data 76,

96, 201

0,

201,

183,142, 9

79,208, 3

99, 193,201,

1370 data 3,108,

1380 data 193, 76,

1390 data 208. 40,

1400 data 3,192,

1410 data 4,192,

1420 data 7,192,

1430 data 8,192,

1440 data 5,192,

1450 data 6,192,

1460 data 201, 155,

1470 data 193, 76,

1480 data 208, 6,

1490 data 50,194,

1500 data 192, 32,

1510 data 240, 14,

1520 data 201, 58,

1530 data 0, 76,

3, 192,

116, 194,201

32, 45,193

0,

1,

50,

51.

48,

49,

141

141

141

141

141

141

83, 240

32, 45

75

173

173

173

208,

3

3

3, 173

3, 173

3, 173

3, 96

32, 45

132, 193,201, 153

32, 45,193, 76

162,

121,

201,

240,

11,

0,

44,

6.

3

0

10

48, 193,

1540 data 204, 255, 169, 127,

108,

201,

240,

32, 115

96, 32

76,195

The Transactor 23 Volume 5, Issue 06

Ml

Kl

MF

PJ

FP

Dl

01

DK

AK

Gl

EC

CN

LI

HN

KP

MN

01

BC

ED

HB

HF

IB

NF

MA

HM

EC

LG

LC

JO

Ml

KH

LF

JP

NJ

KE

HK

ON

AK

Cl

GE

NN

MA

HP

IA

DB

MG

BL

DF

PB

FA

MF

EO

HG

PF

LK

JL

PF

CB

OH

EH

NK

NA

MJ

1550 data 255,

1560 data 255,

1570 data 9,

1580 data 192,

1590 data 255,

1600 data 255,

1610 data 32,

1620 data 254,

1630 data 32,

1640 data 247,

1650 data 133,

1660 data 207,

1670 data 0,

1680 data 32,

1690 data 32,

1700 data 133,

1710 data 254,

1720 data 76,

1730 data 253,

1740 data 189,

1750 data 240,

1760 data 208,

1770 data 255,

1780 data 201,

1790 data 255,

1800 data 210,

1810 data 238,

1820 data 41,

1830 data 220,

1840 data 32,

1850 data 201,

1860 data 194,

1870 data 193,

1880 data 240,

1890 data 185,

1900 data 248,

1910 data 158,

1920 data 255,

1930 data 128,

1940 data 133,

1950 data 207,

1960 data 240,

1970 data 32,

1980 data 208,

1990 data 239,

2000 data 9,

2010 data 111,

2020 data 133,

2030 data 210,

2040 data 245,

2050 data 192,

2060 data 32,

2070 data 144,

2080 data 12,

2090 data 208,

2100 data 32,

2110 data 72,

2120 data 176,

2130 data 163,

2140 data 160,

2150 data 73,

2160 data 170,

2170 data 200,

1,

32,

32, 135,

164,253,

192, 32,

255, 162,

173, 9,

169, 111,

135, 192,

170, 160,

168,255,

76, 174,

253, 32,

255, 32,

141, 11,

210,255,

207, 255,

253, 32,

32, 183,

67, 193,

32,145,

160

6

245, 169,

32,225,

239, 240,

240, 180,

255,201,

11, 192,

1, 141,

174, 11,

210,255,

255, 240,

76, 207,

160, 0,

15, 170,

158, 160,

202, 208,

160, 48,

200, 208,

76,210,

253, 32,

255, 170,

3, 76,

210,255,

3, 76,

208, 228,

192, 32,

32, 150,

144, 32,

255, 32,

76, 171,

32,180,

150,255,

168, 32,

192,200,

4,192,

171,255,

32, 115,

133, 73,

182, 104,

2,185,

136, 16,

185, 12,

202, 208,

192, 32,189

169, 127, 174

186,255, 32

127, 76,198

192, 32,177

32, 147,255

134.253, 132

0, 177,253

200, 202, 208

255,169, 0

75,193, 32

207,255, 169

192,169, 13

32, 207, 255

32, 207, 255

207,255, 133

255,240, 3

165.254, 164

179, 32,221

185, 0, 1

210,255,200

32, 32,210

255,240, 52

247, 32,207

48, 20, 32

34, 208, 233

173, 11,192

11,192, 16

192,240, 6

76,207,193

246, 32, 11

193, 76, 67

56,233, 128

169,255,200

48, 2,208

245,200,185

6, 32,210

56, 233

169, 2

193, 32

32,183,255

67, 193,138

32, 225, 255

67, 193,201

240,242, 173

180,255,169

255, 169

165,255

183,255,240

255,173, 9

255, 169, 111

169, 0,133

165.255, 153

32, 183,255

40, 208, 240

136,152, 72

0, 32, 139

132, 74, 32

32, 117, 180

97, 0, 145

248,200, 104

192,145, 98

247, 96

Error Wedge Source Listing

245,

255,

75,

0

32

oc

GN

00

LO
PA

MA

OD

AC

AH

MF

FK

JL

EG
AF

DE

PB

HF

GD

Ol
KM

CK

DK

GE

EL

CB

AK

BD

HB

FK

BP

AB

FK

KB

DB

OC
HD

JN

HH

Nl

OG
BJ

HC

BB

PL

DG

LH

LC

KK

LD

NM
MF

EK

GA

MO

Jl
AA

EN

FE

HF

IC

BC
MD

LM

JK

OE
PN

IN

IH

IP

Ml

CO
AK

FE

KJ

HK

CJ
MJ

NM

GH

AP

KO
EA

IK

MM

FB

CG
CC

OF

ID

MC

BM

LP

HJ

BN

Kl

BD

KJ

HA

PA

KE

FO

AC

IN
PH

IO
FF

EH

IA

NF

MB

DO

AK

KA
EE

IJ
IF

PB

MN

EE

Al

DJ

CM

KE

FN

MK

100

110

120

130
140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640
650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920
■j:io

!-)'!0

950

960

970

980

990

1000

1010

1020

1030

1010

1050

1060

1070

1080

1090
1100

1110

1120

1130

1140

1150

1160

1170

1180
1190

1200

1210

1220

1230

1240

1250
1260

1270

1280

1290

1300

1310

1320

1330

1340

;ys 700

opt oo

•

constants

ist

jrint

llquan
syntax

status

:omma

:olon

BOl
stack

<eytable

interprete

:hrget

:hrgot

eady

scannext

Itexp

ookup

ntflt

3trres

discrd

Bxp

fltasc

• $c000

> $9b

= $99

= $0e

■ $0b

= $90
= p

_ >;,

m 0

= $0100

= $a09e

routines used

= $0073

= $0079

= $a474

= $a906

= $ad9e

= $bO8b

= $b391

= $b475
= $b6a3

- $b7fi

= $bddd

kernal routine

;lose
chkin

shrout

letlfe
open

setnam

readst

chrin

clrchn

stop

talk

ksa

untalk

acptr

Isten
snsa

unlsn

ciout

m $ffc3

= $ffc6
= $ffd2

= Sffba
= $ffcO

= $ffbd
= $ffb7

= Sffcf

m $ffcc
- $ffe1

= $rfb4

= $ff96

= Sffab

= $ffa5
= $ffbi

= $ff93
= Sffae
= SffaB

ram indirect vectors altered

error

load

save

= S0300

= $0330

= $0332

zero page used

varaddr

Nacd

curlin

curdev

temp

= $49

= $61

= $39
= $ba

= $fd

jmp start

general memory storage

srrvector

oadvector

savevector

curdevnum

mychar

quoteflag

tempstr

start

setsave

setload

jetstring

.word 0

.word 0

.word 0

.byte 8

.asc " @"

.byteO

. = . + 40

» •

Ida ierror

sta errvector

Ida ierror ■■■ 1

sta errvector +

Ida #< onerror

sta ierror

Ida #> onerror

sta ierror + 1

Ida Isave

sta savevector

Ida Isave + 1

sta savevector

Ida #< setsavs

sta isave

Ida #> setsave
sta isave + 1

Ida iload

sta loadvector

Ida iload + 1

sta loadvector h

Ida #< setload

sta iload

Ida #> setload

sta iload + 1
rts

» •

Idx curdevnum

stx curdev

jmp (savevector)

Idx curdevnum

stx curdav

jmp (loadvector)

= .

string input and discard

jsr chrget

jsr fltexp

imp discrd

;assembled on pal 64

;program origin

;list token val

;print token val

;error values

; status byte

;ascii of comma

;ascii of colon

;endof line

;bottom 65xx stk

;keyword table

;get next char

;get last char

;to 'ready

;to next statement

:eval gen exp

;variable

;int->flt conv.

;res spc 4 string

;unwanted string

;int exp in x-reg

;flt->ascii conv

;openedfile

;set input

;output to tile

;set logical 1,2

;opentile
;set file name

;get status

;get from device

;clear i/o

;scan stop

;sendtalk

.send sa for talk

;send untalk

;get serial byte

;send listen

;send sa - listen

,sond unlisten

;send serial byte

;errors

;loads
leaves

;addressof var

;flt.pt. ace. #1
;currentline

;current device

;temp storage

;around storage

;old errvector

;old load "

;old save '

;default device*

;err wedge char

; boolean

;space for string

;alter vectors
;in ram to new

;routines.

1 ;savetheold

lvalues.

;re-direct to

;new routines

f 1

1

The Transactor 24 VoIl >06

ML

BA

MN

EC

10
AA

IP

PA

MA

0L

EC

DB

GE

OD

FA

CF

HG

LH

IC

JM

El

DJ

IJ

KH

JC

EJ

IB

HF

ON

NJ

HD

CP

PP

GA

DE

FH

EC

DM

ID
EB

JF
GF

EB

DE

HK

AJ

FM

FD

MJ

Ml

AC

AD

EM

CA

IN

LJ

EB

GP

10

KA

LE

OB

JP

DE

BJ

GE

BK

KF

HJ

BM

H

KB

Ml
NJ
EJ

KK

HB

HJ

OD

GA

EL

LD

BJ

BB

HG

CG

HL

ID

Ml

MK

AE

FO
EF

00
OF

CH

MN

CC

AJ

ID

EK

Cl

oc

OK

MM

JA

CN

KO

DK

OP

OK

JN

MB

JN

AD

AC
EE

BG

IF

ML

FF

LL

GJ

IB

KK

KE

ND

The

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750
1760

1770

1780

1790

1300

1810
1820

1030

1840

1850

1860

1870
1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

Troi

onerror = «

; this is it folks

cpx

beq

jmp

rightype

jsr

(jmp

bsq
jmp

myerror = *

pla

pla

jsr

jmp

flsyntax

rightype

(errvector)

chrgot

mychar

myerror

(errvector)

parse

scannext

; short and sweet ain't it

parse = *

; command parser

jsr

cmp

beq

cmp

beq

bne

show = .

jsr

jmp

nexti = .

cmp

bne

jsr

pha

jsr

pla
cmp

bne

jsr

stx

rts

other!

cmp

bne

jmp

other2 = •

cmp

beq

jmp

dsfunc = .

jsr

jmp

next2 = *

cmp

bne

jsr

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

rts

next3 = •

cmp

bne

jsr

jmp

next4 = *

I print text file

cmp

bne

jsr

jmp

thatsall

Idx

jmp

scan = .

jsr

scanmore = •

cmp

beq

cmp

beq

cmp

beq

jsr

jmp

lsactor

chrget

#eol

show

#colon

show

nexti

scan

showds

#'d"
next2

chrget

scan

#"e"
other!

exp

curdevnum

#'o"

other2

doscomm

#" s"

dsfunc

(errvector)

scan

inputds

#"k"

next3

scan

errvector

ierror

errvector + 1

ierror + 1

savevector

isave

savevector +

isave + 1

loadvector

iload

loadvector +

iload + 1

#list

next4

scan

dolist

#print

thatsall

scan

doprint

#syntax

(errvector)

chrgot

tool
out

#comma

out

#colon

out

chrget

scanmore

;pop unnecessary

istuff

;give back to basic

:a straight character

:by character search

;through basic text

;to identify command.

;not elegant, but

Ifunctional.

icommand start with a

;"d " no = > try another

icommand starts with

I'd"

icheck second char.

:set new default

idevice number.

;try another second

icharacter

;send dos command

llast chance 4 command

istarting with a "d"
linvalid command

linput disk status

Ikill utility

;i.e. restore

IDriginal vectors

1

1

:list program or

idirectory routine

iroutine

;that's all for now

ireal syntax error

;get last character

istrip out extra

Itext. exit on eol

icomma or colon

CL

ND

GM

GE

KN

BL

OO

El

OF

BP

GB

LO

KC

JD

Jl
CG
HG

JB

KL

OG

PL

PO

Ol

JO

CK

EC

MC

OK

JD

Kl

AM

CM

CP

GJ

GA

IN

IB

IN

OC

ID
HL

ME

IK

KO

CH

A!

IB

II

IO

MJ

MA

PH

MD

KD

EB

OE

Dl

BG
FJ

BE

NP

FO
HA

JK

JA

MK

DJ

HC

KF

AL

OG

HI

IB

NO

AA

EA

KK
LA

OL

JF

KL

MN

BA

AP

BF

FE

FF

PI

GL

GC

MJ

ML

PM

BH

JB

CP

IH

EO

HC

AJ

IJ
EK

IF

NA

CM

IB

GN

CK

AL

EP

GO
IA

MP

EJ

JO

GP

KD

BG

PE

HE

CG

CO

GH

OB

FJ

AO

CK

2620 ;

2630 out

2640 ;

2650

2660 |

2670 closeinput
2680 ;

2690

2700

2710

2720 I

2730 openinput

2740 ;

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840 I

2850 doscomm

2860 ;

2870

2880

2890

2900

2910

2920

2930

2940 ;

2950 disklp

2960 I

2970

2980

2990

3000 ;

3010 ;

3020 dolist

3030 ;

3040

3050

3060

3070

3080

3090 ;

3100 dirloop

3110 I

3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300 ;

3310 proutnum

3320 ;

3330

3340

3350

3360

3370

3380 ;

3390 addspace

3400 ;

3410

3420

3430 ;

3440 dirline

3450 ;

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610 i

3620 iskey

3630 I

3640

3650

3660

3670 dontdok

3680 I

3690

3700

3710 I

3720 dokey

3730 I

3740

3750

3760

3770

3780 I

3790 dirend

3800 I

3810

3820 ;

3830 listkey

3840 ;

3850

3860

3870

3880

= ,

rts

= •

jsr

Ida
jmp

= ,

jsr

jsr
Idy

Ida

Idx
jsr

jsr

Idx

jmp

z= *

Ida

jsr

Ida
jsr

jsr

clrchn

#127

close

getstring

setnam

temp

#127

curdevnum

setlfs

open

#127

chkin

curdevnum

listen

#$6f

Isnsa

getstring

iclose an input

;file.

;open input file

igetsecondary

;file# 127 used!

I get device number

Hell it to listen

;$6f • ($0for$60)

llisten secondary

iget command string

stx temp : sty temp + 1

tax:

= i

Ida (

iny :

jmp

= *

Ida

sta

jsr
jsr

jsr

o «

Ida

sta

Ida

jsr

jsr

jsr

jsr

Stl

jsr

sta

jsr

beq

jmp

Ida
Idy
jsr

jsr

Idy

= ,

Ida

beq

jsr

iny

bne

= ■

Ida

jsr

= ,

jsr

beq

cmp

beq

jsr
beq

bmi

jsr

cmp

bne

inc
Ida

and
sta

bpl

= *

Idx

beq

jsr

jmp

cmp

beq

jsr

jmp

imp

= •

Idy
sec

sbc

beq

dy#O

;send command

emp),y: jsr ciout

dex: bne disklp

unlsn

#0

temp

openinput

chrin

chrin

#0

quoteflag

#13
chrout
chrin

chrin

chrin

temp

chrin

temp + 1

readst

. + 5

closeinput

temp + 1

temp

intflt

fltasc

#1

stack,y

addspace

chrout

proutnum

#" "

chrout

stop

dirend

#$ef

dirline

chrin

dirloop

iskey

chrout

#34

dirline

quoteflag

quoteflag

#1

quoteflag

dirline

quoteflag

dokey

chroul

dirline

#255

dontdok

listkey

dirline

iclose file

closeinput

#0

#$80

prkey

25

igive secondary of

izero

iwaste start address

initialise quote

;mode

isend a return to the

;screen

iwaste pointers

iget #< block count

;/linenum

iget #> block count

lend of file"?

;no => get more

lyes ■ > exit

iconvert integer prg.

isize to floating

;point

iconvert float-ascii

iprint out ascii

istring from stack

ipadoutto improve

lappearance

icheck for stop key

lyes = > quit

icheck for spacebar

lyes = > pause list

iget rest of line

;bit7set->token "?
;not token, print it

;was it a quote print

;no => continue

;yes = > quote mode

;i.e. toggle

Iboolean quoteflag

ibranch always

iquotemode "?
;yes = > print token

;no = > shifted char

ireturn to loop

lis it pi
mot in token list

ireturn to loop

Itoken in ace

inormalize token range

;to 0-127

NP

JP

ML

Ml

AN

ML

HK

AK

OJ

DE

CL

Al

AC

DD

ED

FC

FD

JE

LH

EA
AH

AJ

El

NO

PB

FK

MK

DC
AM

LG

JP

Ol

IO
HI

MP

LM

AP

IA

HM

JP

MD

HB

ME

DE

AB

IP

LP

PH

CN

LA

MD

GK

AE

KD

IF

HN
GM

DF

OK

GP

Ml

KA

Fl

Fl
HD

IB

FG

GE

HN

OK

MN

HH

GG

DP

OH

PO
AK

RB

EL

PC
MG

BO
IL

Bl

KK

KP

CM

OA

LF

CC

BL

GD

EK

FL

FL

EH

FG

LH

KC
IK

JG
KJ

FL

OK

GG

ID
BB

JK

LH

NN

EP

FB

IA

DA

HF

Bl

FC

AL

EE

EL

CO

3890

3900

3910 I

3920 sckeytab

3930 I

3940

3950

3960

3970

3980

3990

4000

4010 ;

4020 prkey

4030 I

4040

4050

4060

4070

4080

4090 ;

4100 endprkey

4110 1

4120

4130

4140

4150 |

4160 doprint

4170 ;

4180

4190

4200

4210 ;
4220 listloop

4230 I

4240

4250

4260

4270

4280

4290

4300

4310 ;

4320 Iistdelay

tax

Ida #$ff

_ (

iny

Ida keytable,y

bmi . + 4

bne sckeytab

dex

bne sckeytab

iny

Sa ,

Ida keytable.y

bmi endprkey

jsr chrout

iny

bne prkey

sec

sbc #$80

jmp chrout

Ida #2

sta temp

jsr openinput

= •

jsr chrin
tax

jsr readst

beq . + 5

jmp closeinput

txa

jsr chrout

= ,

4330 ; should we pause " ?"

4340

4350

4360

4370

4380

4390

4400 ;

4410 showds

jsr stop

bne . + 5

jmp closeinput
cmp #$ef

bne listloop

beq Iistdelay

= t

4420 ; show disk status to screen

4430

4440

4450

4460

4470

4480 ;

4490 dsloop

4500 I

4510

4520

4530

4540

4550

4560 |

4570 inputds

4580 I

4590

4600

4610

4620

4630

4640

4650 ;

4660 rdsloop

4670 ;

4680

4690

4700

4710

4720

4730

4740 I

4750 outrds

4760 I

4770

4780 ;

Ida curdevnum

jsr talk

Ida #$6f

jsr tksa

Ida #0 : sta status

jsr acptr

jsr chrout

jsr readst

beq dsloop

jmp untalk

= ,

Ida curdevnum

jsr talk

Ida #$6f

jsr tksa

Ida #0 : sta status

tay

= .

jsr acptr

sta tempstr.y: iny

jsr readst

bne outrds

cpy #40
bne rdsloop

= *

jsr untalk

4790 : store it out

4800 ;

4810

4820

4830

4840

4850

4860

4870

4880

4890

4900 ;

4910 store

4920 I

4930

4940

4950

4960

4970

4980

4990 ;

5000 transfer

5010 :

5020

5030

5040

5050

5060

5070 ;

5080 .end

5090 end

dey:tya:pha:pha

jsr chrget

jsr lookup

sta varaddr

sty varaddr + 1

jsr discrd

pla
jsr strres

Idy #2

Ida flacd ,y

sta (varaddr).y

dey

bpl store

iny

pla: tax

iget to the right

Itoken in the'
itable

Ifound it now

iprint it out

llast character

;of token in table

lhas bit7 set

lunshift last char

iprint and return

lafter chrout

;use secondary

;of two

;open the file

iget character

isave in x reg.
icheck ds

inotdone

;done

leverthing ok

ithen print it

icheck for stop

inope = > more

istop I

;is it spacebar

;no = > go back

lyes => more delay

iget drive number

:talk to me drive

;$6f=($0for$60)

isend secondary

iget serial

iprint it

icheck st

;ok = > do more

ishut up drive

iread disk status

& assign to var

iget device number

Italk to me drive

;$6f = ($0f or $60)
:send secondary

iforce zero

iget serial

isave tempstr

;check st

I no =>extt

llimit length

;to 40 chars.

ishut up drive

isave len twice

ladvance textptr

I lookup var

istore address

iget rid of it

iremember length

;reserve space for str

:3 bytes are

llength & address

;set y to 0
iremember length again

= . ifrom temp to var

Ida tempstr.y

sta (flacd + 1),y

iny: dex
bne transfer

rts

Volume 5, Issue 06

The Commodore 64

Keyboard Part 2:

Aubrey Stanley

Mississauga, Ont.

KEYWIZARD - An Amazing Keyboard Driver

Key Wizard is an alternative to the Kernel Keyboard Driver which I

described in Part 1 (last issue). But it is more than just a driver. Many

other features have been added. It will literally bring joy to your

fingertips!

Part 2 is for everybody. It describes the functions and gives the BASIC

Loader. It is a long program, so typing it in may be a chore. However,

with the new listi ng format in The Transactor you should be safe from

errors.

In Part 3 I will be presenting the source. I intend to build more

functions into this program to suit my own particular needs. I'm sure

many of you will wish to do the same. If you have any good ideas and/

or source for some really useful routines, please submit them to the

TRANSACTOR.

The Key Wizard system gives you true N-KEY ROLLOVER capability.

This means that keys are displayed as they are pressed even if

previous keys have not as yet been released. The 'N' factor can be set

by the user to any value. But remember that the Commodore key

board matrix often generates false values when three or more keys are

pressed together. For this reason it may be desirable to leave this

count at 2, its default setting. Even a 2-KEY ROLLOVER vastly

improves the productivity of keyboard input and allows you to repeat

the two keys pressed; for example, when you wish to scroll the cursor

diagonally across the screen using Cursor Down and Cursor Right

Key Wizard is totally transparent to software that uses the standard

driver for keyboard input. The interface is identical to that of the

standard driver. I have used it with development packages like

'POWER', 'MOREPOWER' and 'PAL' to further enhance the speed and

ease of program development.

In a standard memory configuration using BASIC, Key Wizard needs

only 24 bytes of memory which may be located at any suitable

address. Normally, Key Wizard uses the address range from 53224 to

53247 ($CFE8 to $CFFF). The rest of the program is tucked away in

the normally unused block of RAM behind the BASIC ROM. There

fore, adding functions to this program will not take away from the

useful memory space.

Key Wizard is an invaluable keyboard driver for program develop

ment as it greatly enhances the editing capabilities of the standard

screen editor. Multiple features have been built into the program and

the potential exists to incorporate many more. For complete flexibil

ity, the user is allowed to map his own routine to any key.

For those who would like to rearrange the keyboard, Key Wizard

allows each and every key to be re-configured (except for the Control,

Shift and Commodore Keys). Change one or two keys, or the entire

keyboard for that matter. (Can you say, "Dvorak"?KJH.)

Assigning keys to strings is another capability built into the Key

Wizard system. Map your most used BASIC keywords, commands,

etc, to keys of your choice and have them displayed when the keys are
pressed.

Changing the colour of border, background or text can be done by

hitting a key with Key Wizard. Cycle through the combinations until

you find one that suits you best.

Key Wizard allows you to save your keyboard profile on diskette after

you have mapped the keyboard to your own particular requirements.

More than one profile may be saved, to be loaded in at any future time

when needed.

The BASIC Loader

the Key Wizard system is provided in the form of a BASIC Loader

program called "KEYWIZ-64". This program does the following:

1. Puts the Key Wizard machine-language into memory.

This is the only step that is performed when the program is simply

RUN. As listed, the machine-language program is POKEd into mem

ory from the DATA statements in two separate blocks:

(a) LINES 200 and 201 contain the IRQ Vector Entry Routine, 24 bytes.

Normally this is loaded into location 53224. But since it is totally

relocatable, you may wish to move it to some other location. To do so,

simply assign the new address to the variable T in LINE 52. Also in

LINE 52 is the value of the N-KEY ROLLOVER count, NK. This is

assigned a value of 2. You may change it to any value, but remember

that the Commodore Keyboard hardware can give false values when

more than two keys are pressed simultaneously. For this reason, I

would leave the value at 2.

A word of warning for 'POWER' users. I found that relocating the

program in the Cassette Buffer interferes with POWER'S String Search

facility.

(b) LINE 300 on contains the Key Wizard machine-language pro

gram, 2.5K bytes. This is loaded behind the BASIC ROM, starting at

41216 ($A100).

2. Saves Key Wizard on diskette.

The routine at LINE 70 will save the Key Wizard machine-language

program to disk as a program file (this is done after execution of Key

Wizard's save function as explained later). Saving the program as a file

reduces the loading time the next time KEYWIZ-64 is run, since the

machine-language program need not be POKEd into memory from

DATA statements.

3. Saves your Keyboard Profile on diskette.

After you have rearranged the keyboard, defined strings, etc, you may

save the keyboard profile permanently on diskette using the routine at
LINE 80.

Loading The Program And Keyboard Profile

First, use KEYWIZ-64 to save the Key Wizard machine-language

program on diskette. If you have not not yet done this, refer to the

section on Saving The Program. This will considerably reduce your
loading time in the future.

The Transactor 26
O<

LINE 50 tells KEYW1Z-64 how to go about loading the Key Wizard

system. There are two variables associated with this process. 'TB$' is

assigned the KEYBOARD PROFILE name, and 'PG$' the PROGRAM

Name. Initially TBS = "KERNEL" and PG$ = "KPRG". These default

values tell KEYWIZ-64 that (a) the standard keyboard arrangement as

provided by the KERNEL is to be used (as opposed to a profile from

disk) and (b) to load Key Wizard from the DATA statements in lines 300

onwards rather than from a disk file. This is the set-up used the first

time KEYWIZ-64 is run; after that, the Key Wizard machine-language

program is loaded from a disk file.

If you assign any OTHER name to TBS in LINE 50, then KEYWIZ-64

will load the Keyboard Profile from disk using TBS as the filename.

If you assign any OTHER name to PG$ in LINE 50, then "KEYWIZ-

64" will load the Key Wizard machine language program from disk

using PGS as the filename.

Once you have saved the program on diskette, you should modify the

value of PGS in LINE 50 to the saved name. Then you may delete

Lines 300 onwards as they will no longer be required. You'll need the

routines at the beginning of KEYWIZ-64 to make new keyboard

profiles - eliminating all those unnecesary DATA statements will

considerably reduce the loading time. You should make a Backup

Version of KEYWIZ-64 before you start to modify it.

If you do not have a utility to delete BASIC lines automatically, I would

suggest that you save KEYWIZ-64 after you have entered all lines up

to Line 300. After entering the remaining DATA statements, save

"KEYWIZ-64 W/DATA" as a BACKUP version on another diskette.

Finally, follow the instructions (below) to save the machine language

for Key Wizard as a program file on the diskette that contains your

original, shortened version. From then on use your short version.

Saving The Program And Keyboard Profile

After the loader is RUN once, the Key Wizard machine-language

program can be saved as a PRG file on disk.

The name of the PROGRAM file under which the Key Wizard

machine-language program is saved is assigned to the variable PG$

in LINE 72.1 have used the name "KWIZ". You may change this to any

other name if you like. Then type:

CONTROL and SPACEBAR

Each time you type this command, Key Wizard will copy either the

Program or the Keyboard Profile into the memory area beginning at

49152 ($C000). So be sure that you do not have anything running in

this area when you enter this command. Key Wizard will display an

appropriate message to tell you which operation was performed. So if

you see the message, "SAVE TB", you should then enter the command

again and "SAVE PG" will be displayed the next time. Key Wizard

alternates between the two each time the command is entered. Type:

RUN 70

and the Key Wizard machine-language program will be saved on

diskette.

The name of the KEYBOARD PROFILE under which the tables are

saved is assigned to the variable TB$ in LINE 82.1 have used the name

"KWIZ.TB". You may change this to any other name if you like. Then

enter the above command until you see the message, "SAVE TB".

Type:

RUN 80

and the current keyboard profile will be saved on diskette.

Now save the shortened version of KEYWIZ-64 (LINES up to 250)

with the new assignments for PGS and TBS. Each time this program is

RUN, the Key Wizard program will be loaded from disk directly into

memory.

You may wish to save a variety of Keyboard Profiles to suit different

applications. Remember to use different names in this case and to

assign the desired name to TBS in LINE 50 before running KEYWIZ-

64.

To recap the use of the BASIC KEYWIZ-64 program: the first time you

run the program, it should be used in exactly the same form as it

appears in the listing. When RUN, it will place the Key Wizard

machine-language program and default keyboard profile in memory.

After that, a new version of "KEYWIZ-64" can be created, one without

the DATA statements (lines 300 to end), and with the assignments in

line 50 changed to:

tb$ = " kwiz.tb": pg$ = " kwiz"

(assuming the default filenames)

This new version will be used in the future to load and enable The Key

Wizard system, but first the Key Wizard machine-language program

and keyboard profile must be saved to disk.

The Key Wizard machine-language program is saved to disk with:

CTRL/SPACE, then RUN 70

and the current keyboard profile is saved with:

CTRL/SPACE, then RUN 80.

(The CTRL/SPACE combination acts as a toggle and alternately

commits the program or the profile to memory where it can be read by

the save routines)

Changing The Screen Colours

The Screen Colours may be changed to any of the 16 standard colours

by using the following commands:

CONTROL and HOME for Border

CONTROL and DELETE for Screen

CONTROL and RETURN for Text

Use a particular command repeatedly until the desired colour is

displayed. THESE COMMANDS ONLY WORK IN DIRECT MODE.

Repeat Mode

In repeat mode, all keys are repeated in both Direct and RUN mode.

To toggle repeat mode, use:

CONTROL and SHIFT

Normally repeating keys (Cursor, Spacebar, etc.) are not affected.

Alternative INSERT/DELETE Mode

The alternative Insert puts the BASIC editor into a permanent "insert

mode", where space is automatically opened up in text as characters

are entered. In other words, all characters to the right of the cursor

move forward as you type, until the BASIC line is full (80 characters

long).

The alternative Delete function uses the DELETE key to delete the

character under the cursor. All characters to the right of the deleted

The Transactor 27 Volume 5, Issue 06

position, up to the end of the BASIC Line, are automatically moved left

by one position. To delete to the end of the BASIC Line, just hold down

the DELETE key until all the characters are erased.

This mode is toggled on and off by successive entries of the keys:

CONTROL and COMMODORE

THIS COMMAND MAY BE ENTERED AT ANY TIME, BUT THE

ALTERNATIVE INSERT/DELETE MODE WILL ONLY BE IN EFFECT

DURING DIRECT MODE.

Strings

You may assign a string to a key or "undo" a previously defined string

by entering the command:

CONTROL and CURSOR DOWN

Key Wizard will display the message:

STRING ?

In case you have entered the command in error, type RETURN to

abort. Otherwise enter the key you want to make into a string or to

undo from a previous assignment. All values are permissible -

normal, shifted, Commodore or control. There are some restrictions,

for example you cannot assign a key that has already been assigned to

some other function like a Re-configured Key or a User Routine. The

key you enter will replace the'?' prompt and an' =' sign will be added,

eg.,

STRING ! =

Then enter a string or else type RETURN if you wish to undo a

previously defined string. The string may be up to 32 characters. Use

the RETURN key to terminate the string. If you wish to include a

RETURN within the string, then type a 'SHIFTED RETURN'. This will

cause a new-line on the screen, but will not terminate the string.

UP TO 32 STRINGS MAY BE ASSIGNED. A STRING WILL BE DIS

PLAYED WHEN ITS KEY IS PRESSED, BUT ONLY IN DIRECT MODE.

IN RUN MODE, THE VALUE OF THE ORIGINAL KEY, NOT THE

STRING, WILL BE PASSED TO THE PROGRAM.

Re-Configured Keys

You may re-configure a key or "undo" a previously re-configured key

by entering the command:

CONTROL and CURSOR RIGHT

Key Wizard will display the message:

CONFIG?

Once again, type RETURN to abort. Otherwise enter the key you want

to re-configure. Just like Strings, all values are permissible and

similar restrictions apply. Hit RETURN to undo the key (ie if it was

previously re-configured) or else enter the new character which will

take its place. When you assign a value, use the ORIGINAL Key, not

any other which may have been re-configured to this value. For

example, if you assign "A" to key "Q" and then wish to assign "Q" to

key "J", use the "Q" key for the assignment, even though the "Q" key

has already been given a value of "A" In this way you may rearrange

as many keys as you wish.

RE-CONFIGURED KEYS MAINTAIN THEIR ASSIGNED VALUES IN

BOTH DIRECT AND RUN MODES.

User Routine Keys

You may assign a User Routine to a key or undo a previously assigned

routine by entering the command:

CONTROL and RUN STOP

Key Wizard will display the message:

USER?

Use RETURN to abort, otherwise enter the key you wish to have

assigned or to undo. Hit RETURN to undo an assignment or else enter

the start address of the User Routine in Hexadecimal. A 4 character

address is mandatory. The assigned routine will be automatically

started whenever the key is pressed.

You should bear in mind that the User Routine runs within the IRQ

Interrupt. This facility allows you to develop your own editing, or

other suitable, routines and then plug them into Key Wizard. Return

to Key Wizard by using an "RTS" instruction with register "X"

containing any standard ASCII keyboard code you may wish to have

displayed or actioned. If you do not wish to pass back an ASCII value

then set "X" to the value, $FF.

Background Routine

You may wish to run a background task of your own on every

keyboard (timer) interrupt. To do this, change the SECOND and

THIRD BYTES of the DATA Statement in LINE 200. I have used 35,

234, which is the address of an RTS instruction in the Kernel. By

changing these to the address of your own routine, the JSR instruction

(first byte, 32) will cause your own routine to be called. Remember the

address is entered in the normal convention, low byte then high byte.

Conclusion

This ends Part 2 on the Commodore 64 Keyboard. I really enjoyed

developing the Key Wizard system and hope you enjoy the result. Go

on to Part 3 (next issue) if you have any interest in the design of a

Keyboard Driver or if you wish to add to the routines already built into

Key Wizard. You may find the exercise instructive and useful.

KEYWIZ-64: the BASIC loader/file saver for Key Wizard

IE

HL

DA

BO

CF

KF

Gl

FF

AG

HA

ME

IN

GD

FN

PH

IK

CB

FP

PB

10

10 rem ********************************

14 rem •* an amazing keyboard driver **

16 rem**** for your commodore 64 ****

18rem*** aubreyStanley dec 1984 ***

20 rem ********************************

22 rem **

50 tb$= "kernel ":pg$= "kprg" :rem *tells loader how

to load kwiz*

52 i = 53216:nk = 2:rem *irq address & n-key rollover

count*

54 if tb$ = "kernel" andpg$= "kprg" then 100: rem * use

kernel tables & data lines*

56ifft>1 then 100:rem *program and table files loaded

from disk*

58 if ft =1 then62:rem *program file loaded from disk*

60 ft = 1 :if pg$O"kprg" then pg = 1:load "0:" +pg$,8,1:

rem *load program file*

62 ft = 2:if tb$<>" kernel" then tb = 128:load " 0:"

+ tb$,8,1 :rem *load table file*

64 goto 100

65rem*******************************«

70 rem *save program, type - run 70*

72 pg$= "kwiz":rem *programfile name*

74 ad = 41216:bd = 49152:n = 2400:rem *prog address,

saved from address, byte count*

76 open 2,8,2," @:" + pg$ + " ,p,w"

78 goto 88

The Transactor 28 Volume 5, Issue 06

JF

ID

ME

LO

CC

NK

BO

AE

JO

PD

AK

BK

EF

NF

ML

DN

FC

LE

LL

LP

AF

HF

GH

CG

KM

NE

KG

NP

LD

EO

AB

NG

NE

BD

AF

OK

IC

DN

CG

HE

KH

ME

FN

GE

BA

00

HK

PN

DH

EG

OP

OP

OG

AE

HL

HF

DP

HP

ME

KA

LC

BH

79 rern ************

80 rem *save tables, type - run 80*

82 tb$ = " kwiz.tb" :rem *table file name*

84 ad = 47072:bd = 49152:n = 2080:rem *table address,

saved from address, byte count*

86 open 2,8,2,"®:" +tb$+ ",p,w"

88print#2,chr$(ad-int(ad/256)*256);

90 print#2,chr$(ad/256);

92 for i = 0 to n-1

94 print#2,chr$(peek(bd + i));

96 next i

98 close 2:end

99 rem ********************************

100 ch = 0:for n = 0to23:rem *irq vector code*

102 read a:poke i + n,a:ch = ch +a:next

103 if ch<>1996 then print" error in data" :end

104 if pg = 1 then 112:rem * bypass program pokes if

program loaded from disk*

106 ch = O:for j = 41216 to 43615:rem *kwiz program

code*

108 read a:poke j,a:ch = ch + a.next

109 if ch<>301952 then print" error in data" :end

112 poke41216,tb:rem *tells program whether tables are

loaded from disk*

116 poke 41218,nk:rem *tells program the n-key factor*

118 poke 56334,peek(56334)and254:rem *disable

keyboard (timer) interrupt*

120 poke 788,(i-int(i/256)*256):rem *set up irq vector

address low byte*

122 poke 789,(i/256):rem *set up irq vector high byte*

124 poke 56334,peek(56334)or1 :rem *enable keyboard

(timer) interrupt

126 end:rem *of loading*

128 rem *******************************

200 data32,35,234,165,1,41,254,

133,1,32,39,161,165,1,9,1,133

201 datai ,76,126,234,0,90,32

300 data 0, 0, 2, 0,184, 0,185, 0,186, 0

301 data 187, 254, 253, 251, 247, 239, 223, 191, 127, 255

302data255,255,255,255,255,255,255, 0, 0, 0

303 data 0, 0, 0, 0, 0, 0, 0, 0, 0, 44

304 data 1,161, 48, 62, 32,185,163,169,128,141

140305 data 1, 161, 169, 46,

306 data 144, 2,169, 0,

307 data 142, 2,141, 27,

308 data 161, 141, 38,161,

309 data 141, 28,161,141,

310 data 157, 19,161,202,

311 data 38,161,208, 17,

312 data 0,141, 0,220,

313 data 8,162,254, 32,

314 data 8,141, 31,161,

315 data 169,127,141, 0,

316 data 1, 96,174, 31,

317 data 220,173, 1,220,

318 data 19,161,141, 32,

319 data 174, 31,161,136,

320 data 32, 161, 141, 33,

321 data 161, 45, 33, 161,

322 data 30,161,173, 33,

323 data 161, 76, 7,162,

324 data 176, 199, 173, 141,

325 data 190, 238, 30,161,

326 data 61, 19,161,157,

327 data 10, 10,168,173,

328 data 161, 238, 36,161,

329 data 161,141, 36,161,

330 data 133, 245, 173, 4,

160,

133,

161,

169,

29,

165,

198,

141,

64,

141.

141

30

133

0,

169,

143,

141,

161,

203,

128,

2,

2, 141

141, 37

133,197

161, 169,255, 162,

16,250, 32

173, 30,161

173, 1,220

55, 163, 76

156,

96

189

1

172

45

140

34

93

30,161

41, 3

33,161

161

161

144

10

133

32,

220,

161,

205,

161,

152,

161,

141,

161,

173,

2,

173,

19,

33,

74,

10,

161,

7

110,163, 173

208, 20,169

201,255,208

150,161,169

161, 32,207,162

206, 31,161, 16

11,161,141, 0

220,208,248, 93

32, 161,240,222

32,

32,

161,

19,

173,

162,

250,

168.

246

161,

161,

240,

161,

205,

201,

93,

31,

255,

152,

173,

177,

168,

93,

77

19

15,206

29, 19

161

240

161

10

36

36

161

170

2

3

19

161

142

77

3

245

331 data 172, 36,161,224, 5,176, 76,224, 3,240

PB

NP

PO

JL

EK

ID

IF

LO

KH

BH

PE

JF

EE

PE

EM

EN

GF

PF

LI

GH

IG

JM

AK

OH

ED

HF

HM

IJ

GG

LK

JM

LK

OL

FD

AE

NJ

EF

AB

Jl

FA

OK

AJ

CK

IJ

JJ

BK

LG

OA

LP

GO

GH

JK

HI

EA

NO

II

DL

LO

EN

DM

MO

KO

LO

MO

OD

GL

FM

JJ

KE

FB

332 data 72, 77,

333 data 41, 4,

334 data 11,169,

335 data 185, 161,

336 data 37, 161,

337 data 2, 41,

338 data 48, 8,

339 data 76, 185,

340 data 208, 6,

341 data 2, 136,

342 data 64, 153,

343 data 169, 64,

344 data 161, 152,

345 data 140, 2,

346 data 76,185,

347 data 2, 41,

348 data 48, 2,

349 data 140, 2,

350 data 4,141,

351 data 35,161,

352 data 201, 64,

353 data 44,138,

354 data 12,201,

355 data 17,208,

356 data 173, 36,

357 data 224, 224,

358 data 176, 5,

359 data 161, 10,

360 data 144, 2,

361 data 189, 4,

362 data 161, 96,

363 data 205, 208,

364 data 207, 174,

365 data 133, 206,

366 data 174, 134,

367 data 165, 1,

368 data 165, 1,

369 data 165, 1,

370 data 208, 44,

371 data 202, 16,

372 data 160, 202,

373 data 128, 160,

374 data 157, 192,

375 data 3, 76,

376 data 142, 194,

377 data 160, 232,

378 data 142, 243,

379 data 246, 32,

380 data 136,136,

381 data 169, 185,

382 data 145, 245,

383 data 0,133,

384 data 189,128,

385 data 16,244,

386 data 32,117,

387 data 136,136,

388 data 183, 202,

389 data 245,136,

390 data 167, 79,

391 data 166, 16,

392 data 168, 78,

393 data 165, 78,

394 data 165, 78,

395 data 165, 78,

396 data 165, 78,

397 data 84, 82,

398 data 78, 71,

399 data 82, 32,

400 data 83, 69.

401 data 32, 79

141, 2,

240, 34,

128, 77,

173, 141,

141, 37,

3,201,

173, 24,

161, 173,

169, 64,

48, 10,

28, 161,

172, 27,

73, 1,

169, 4,

161, 173,

3,201,

112, 75,

208, 65,

139, 2,

48, 45,

240, 241,

2, 48,

32, 240,

212, 32,

161, 133,

176, 13,

157, 119,

10, 168,

169, 6,

161, 133,

32, 234,

37, 169,

135, 2,

32, 36,

2, 165,

41, 16,

9, 32,

41, 31,

162, 63,

247,162,

16,247,

202, 16,

160,202,

116, 164,

160,232,

142, 192,

160, 169,

117, 164,

136,202,

133,246,

136, 136,

245,169,

160, 145,

169, 0,

164,189,

202, 16,

16,249,

16,251,

165, 78,

167,

165,

165,

165,

165,

165,

73,

73,

63,157

68, 32

46, 75

43,

78,

78,

78,

78,

0,

78,

71,

141,141, 2,

173,141, 2,

138, 2,141,

2, 41, 1,

161, 76,185,

3,208, 13,

208, 73, 2,

34, 161,240,

133,203,133,

217, 28,161,

76,185,161,

161,173, 36,

141, 27,161,

141.139, 2,

30, 161,240,

3,240, 82,

173.140, 2,

206, 139, 2,

169, 2,141,

174, 35,161,

141, 36,161,

18, 41,127,

8,201, 29,

48, 163, 76,

203, 133, 197,

138, 166, 198,

2,230, 198,

173.141, 2,

170,189, 3,

246,177,245,

255,165,204,

20, 133,205,

177,209,176,

234,177,243,

206, 73,128,

240, 10,160,

208, 8,165,

133, 1, 96,

189, 129,235,

63, 189,194,

162, 63,189,

247, 162, 63,

16,247, 173,

162,228, 142,

142,255,160,

160,232, 142,

0, 133,245,

189, 0,160,

16,244,169,

32,117,164,

136, 136,202,

186, 133,246,

245, 136, 136,

133,245, 169,

192, 160, 145,

244,162, 31,

96,160,255,

162, 63,160,

165,235, 167,

168, 120, 168,

165, 78, 165,

165, 78,165,

165, 78,165,

165, 78, 165,

0, 188, 189,

71, 32, 63,

63,157,

65, 76,

78, 68,

78, 85,

141,142, 2

41, 2,240

138, 2, 76

240, 31, 77

161,173,141

173,145, 2

141, 24,208

29,196,197

197.152, 160

208,248, 169

32, 76,163

161.153, 28

169, 16,141

32, 48, 163

91, 173, 141

44, 138, 2

240

208

5,206

60, 169

35,161,206

189, 28,161

32, 76,163

201, 20,240

240, 4,201

96

2

2

36

8

32,

32,

85,

46,

253,162,

108,143,

236,137,

96, 173,

10,201,

161,133,245

170,172, 36

208, 41,198

164,211, 70

17,230,207

141,135, 2

32, 28,234

0,132,192

192,208, 6

173, 0,161

157, 0,160

235,157, 64

3,236,157

189,120,236

0,161, 16

199,160,232

232, 142,252

193,160,232

169,184,133

145,245, 136

0, 133,245

189, 64, 160

16,244,169

32,117, 164

136, 136,202

187,133,246

245, 136, 136

138, 157,224

169, 0,145

252, 96,252

105, 165, 119

158, 168, 139

78,165, 78

78, 165,

78, 165,

78,165,

190, 191,

157, 67,

83,

32,

85,

76,

79, 78,

76, 76,

78

78

78

83

79

69

85

69

32

TheTr 29 Volume S, Issue 06

MC

OA

HM

JM

KJ

PK

Fl

JN

LC

FK

HB

OH

PB

CJ

MF

ND

GL

HB

LJ

CP

EL

ML

PN

DK

NK

CO

HD

LH

EF

HO

FA

AD

KC

HP

HE

MF

OC

KM

OA

GO

BB

PP

PM

JB

OJ

Nl

MG

KO

GG

KM

EH

BO

GD

NB

HP

KJ

KP

CA

PH

JJ

CO

HP

KK

EG

PB

EB

HJ

NC

EP

PE

402 data 75, 69, 89,

403 data 65, 86, 69,

404 data 32, 84, 66,

405 data 255, 228, 0,

406 data 46, 165, 78,

407 data 32, 52, 165,

408 data 2,169,224,

409 data 141, 195, 164,

410 data 195, 164, 96,

411 data 24,165, 36,

412 data 165, 169, 165,

413 data 131, 141, 143,

414 data 201, 133,245,

415 data 226, 168, 76,

416 data 8,224,227,

417 data 114,169, 32,

418 data 165, 201,226,

419 data 141, 22,165,

420 data 16, 16,169,

421 data 169, 9, 32,

422 data 183, 201,255,

423 data 165, 169,255,

424 data 165, 32,226,

425 data 3, 32, 8,

426 data 143, 2,169,

427 data 58, 163, 162,

428 data 58, 163, 169,

500 data 245, 169, 164,

501 data 76, 98, 166,

502 data 222, 224, 225,

503 data 169, 174, 24,

504 data 165, 32,207,

505 data 200, 238, 22,

506 data 163, 32, 58,

507 data 21, 165, 168,

508 data 19,165, 32,

509 data 32,226,169,

510 data 46, 141, 143,

511 data 141, 76, 58,

512 data 166, 141, 144,

513 data 133, 246, 169,

514 data 224, 254,240,

515 data 76,248, 165,

516 data 32, 114, 169,

517 data 152, 169,173,

518 data 20,165,169,

519 data 224, 255, 208,

520 data 169, 220, 141,

521 data 162, 61, 76,

522 data 227, 144, 3,

523 data 188, 169,224,

524 data 226, 208, 3,

525 data 169, 0,141,

526 data 165, 32, 58,

527 data 143, 2,169,

528 data 245, 169, 164,

529 data 76, 78, 170,

530 data 224, 144, 7,

531 data 224, 13,208,

532 data 32, 133, 169,

533 data 227, 240, 8,

534 data 165, 169, 0,

535 data 20, 165,224,

536 data 58, 163, 169,

537 data 143, 2,169,

538 data 58, 163,224,

539 data 76,248,165,

540 data 32, 188,169,

541 data 76, 81, 166,

542 data 240, 61,144,

32,

32,

157,

184,

165,

65,

80,

95,

8,

0,

76, 58,

41, 31,

185, 132,

32,114,

16,157

141 39.

2, 169,

169,164,

78, 170,

176, 107,

133, 169,

240, 87,

224, 225,

226, 133,

226, 168,

240, 230,

153,224,

169, 174,

170, 32,

166, 141,

63, 32,

255, 133

133,246,

224, 254,

208, 9,

165,224,

168,172,

165, 192,

163, 173,

153,224,

22, 170,

173, 40,

2,169,

163, 169,

2, 169,

9, 32,

68, 176,

224, 13,

32, 133,

22, 165,

226,141,

3, 32,

143, 2,

58, 163,

76, 248,

225, 240,

174, 24,

22, 165,

163, 76,

167, 141,

133,246,

224, 254,

224, 227,

3, 76,

32, 188,

142, 20,

141, 21,

255, 208,

0, 141,

167, 141,

254, 240,

224, 225,

174, 24,

138,201,

7,201,

66, 79,

71, 83,

254, 226,

0, 185,

0, 0,

163, 138,

10, 168,

164, 141,

169, 32,

242, 169,

165, 76,

165, 141,

133,246,

224, 254,

224, 13,

32, 188,

32, 152,

240, 47,

245, 169,

76, 98,

141, 21,

183, 169,

20, 165,

58, 163,

144, 2,

58,163,

169, 6,

240, 41,

32, 114,

13,240,

22, 165,

32, 240,

22, 165,

183, 173,

208, 3,

165,141,

165,141,

145, 141,

210, 133,

226,168,

7,224,

208, 3,

169, 32,

201,226,

22, 165,

8,170,

169, 166,

224, 254,

165, 32,

7, 173,

165,224,

76, 81,

92, 166,

144, 2,

169, 7,

240, 82,

240, 10,

2, 166,

169, 32,

165, 169,

165,141,

3, 32,

41, 165,

144, 2,

249, 224,

144, 9,

165,224,

48, 144,

71, 176,

32

26

0

82, 84, 83

65, 86, 69

157,255, 1

30,224,191

0, 0, 0

224,224, 176

185, 131, 164

196, 164, 108

188, 169,174

78,141, 38

239, 168,169

144, 2,169

169, 9, 32

240, 110, 176

240, 113,

169, 173,

169, 169,

160, 32,136

164, 133,246

166, 185,224

165,142, 20

225.141, 19

224, 255, 208

169, 18,141

162, 61, 76

162,157, 76

32,226, 168

224,227, 176

169, 32,188

26,173, 21

138, 145,245

3, 76, 58

208, 18,173

20, 165,141

32, 36,170

138, 2,169

144, 2,162

143, 2,169

245, 169, 164

76, 78,170

225,144, 3

76, 2,166

188,169, 32

240, 8, 142

174, 20,165

32, 58, 163

141,144, 2

240, 249, 224

114,169, 32

26, 165,201

13,208, 8

166.142, 19

169, 42,141

169,219,133

32,226, 168

176, 18,224

76,248, 165

32, 114, 169

152, 169,224

227,141, 19

22, 165, 174

8,170, 32

169, 131, 141

162, 61

228, 144

32, 114, 169

13,208, 3

65,201, 64

55, 24, 105

76

3

ID

LD

BB

BE

JE

PA

OE

KE

ME

CN

IE

HI

KM

NF

HN

AE

PC

FG

CG

IC

DG

PC

GH

EN

MA

JE

BF

HL

JD

Bl

EA

DH

IA

HB

BC

EN

PN

MJ

LB

OH

IO

DA

NH

DP

BM

HF

OG

IM

GG

BL

NK

HM

NF

PP

EK

DJ

GH

PJ

IO

IA

Kl

Nl

FB

FJ

AJ

CB

GL

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

data 9,

data 4,

data 10,

data 165,

data 192,

data 76,

data 188,

data 25,

data 37,

data 32,

data 224,

data 165,

data 36,

data 44,

data 171,

data 0,

data 230,

data 165,

data 170,

data 165,

data 14,

data 43,

data 172,

data 165,

data 44,

data 140,

data 132,

data 247,

data 237,

data 133,

data 133,

data 169,

data 41,

data 76,

data 108,

data 13,

data 165,

data 34,

data 173,

data 37,

data 144,

data 165,

data 35,

data 141,

data 0,

data 10,

data 165,

data 27,

data 165,

data 165,

data 141,

data 173,

data 96,

data 246,

data 200,

data 25,

data 28,

data 27,

data 20,

data 200,

data 245,

data 96,

data 7,

data 164,

data 5,

data 226,

data 246,

data 141,

data 255,

3,

42.

43.

41, 15,

240, 8,

192, 3,

76, 223,

4, 240,

92,166,

169, 174,

165, 96,

161,240,

58, 163,

128, 144,

162,148,

157, 16,

42, 165,

133,252,

132,253,

252, 230,

48, 10,

208,

141

172

165, 140,

45,165,

140, 32,

165, 136,

134, 2,

245, 145,

192,232,

162,255,

245, 152,

246, 96,

208,251,

165, 173,

27, 169,

38, 165,

170, 32,

198,205,

165,165,

143, 2,

165,169,

2, 162,

198,208,

165, 133,

143, 2,

141, 38,

10, 141,

246, 141,

165, 173,

141, 29,

173, 24,

21, 165,

28, 165,

173, 31,

173, 30,

177,245,

165,200,

165, 133,

165, 168,

165, 145,

173, 22,

169, 164,

169,235,

32, 226,

133,246,

133,245,

168, 96,

169, 7,

40, 165,

1, 255,

41,

2,

9,

13,

76,

238,

192,

176,

167,

3,

76, 248,

24, 165,

36, 157,

11,224,

162, 20,

4, 224,

32, 58,

72, 169,

48, 6,

132,251,

177,251,

254, 228,

169, 0,

32, 64,

165, 162,

165, 136,

33, 208,

136, 16,

208, 96,

16, 2,

152,160,

245, 200,

208, 243,

96, 168,

74, 74,

141, 41,

162,255,

25, 165,

32, 10,

177,245,

58, 163,

137, 2,

246, 141,

141, 36,

77, 141,

255, 142,

244, 173,

246, 172,

173, 37,

161, 76,

30,165,

32, 165,

31, 165,

165, 96,

165, 141,

173, 26,

133,245,

165, 133,

165, 168,

141, 24,

177,245,

245, 173,

173, 19,

245, 200,

165, 145,

133,246,

133,245,

168, 96,

169, 5,

169, 165,

169, 12,

32, 226,

169, 64,

1,255

8,

32,

11,
20,

165,172, 41,

240, 4, 10,

13, 22,165,

21, 165, 141,

58,163. 32,

165, 32,114,

36,157, 16,

16, 18,169,

20,208,

96, 224,

160, 144,

163, 174,

183,160,224,

169, 161, 160,

169,192,133,

145,253,200,

252,208,241,

141, 1,192,

170, 169, 128,

141, 96, 36,

16, 2,160,

96, 36,157,

2,160, 15,

36,157, 16,

160, 15,140,

216, 132,246,

208, 4, 230,

166,246,224,

10, 10, 10,

74, 168,185,

165,160, 0,

96,173, 26,

32,207,168,

169,208,248,

201, 141,208,

200,206, 41,

144,222, 165,

35, 165, 140,

165, 173, 144,

143, 2,169,

38,161, 76,

34,165, 133,

33, 165, 173,

165, 192

10, 10

141, 22

21, 165

58, 163

169, 32

108

45

29

19

20

96

162,

144,

142,

165,

162, 192

0, 162

254, 160

208, 249

44, 42

32, 50

77, 42

157, 16

15, 140

16, 14

140, 45

42,172

44,165

160, 0

246, 208

219,208

10, 10

197, 164

32, 10

165, 141

160, 0

162,255

2, 169

165, 96

245, 141

33, 165

2, 141

169, 141

58, 163

245, 173

36, 165

165,141

0, 169, 173

165,245,141

96,173, 30

141, 28,165

173, 23,165

20, 165, 173

165,141, 22

173, 29,165

245,173, 32

177,245,141

165,200,177

141, 26,165,

29,165,133,

165, 145,245,

173, 21,165,

245, 96,169,

169, 8, 32,

169, 164, 133,

169,242, 133,

32,226, 168,

133,246, 169,

133,245, 169,

168, 96,173,

141,138, 2,

144, 2,169

36,161

31, 165

165, 141

173, 32

141, 19

25, 165

165, 96

133,246

165, 133

23, 165

245, 141

96, 173

246, 173

200, 173

145,245

247, 133

226, 168

246, 169

245, 169

96, 169

7, 32

165, 133

138, 2

96, 1

The Transactor 30 Volume 5, Issue 06

Linked Lists

Part 2

K. Murray Smith

London, Ont.

In Part 1 we examined how linked lists could be used to "sort" the

records in a file into a particular order. It was shown that the

technique of linking avoided the shuffling of elements within the

storage array, allowed all the items to be kept in the same array and

permitted different groups of these items to be sorted on different

fields.

The Rentawreck rental agency now has all of its vehicles linked into

three lists: one for those rented (linked by due date), another for those

available (linked by mileage), and a final list for the vehicles currently

being serviced (also linked by mileage).

We now must write a program which will let the company update its

lists as vehicles are returned, rented, serviced, sold or purchased, and

also display or print any one of the lists in correct order. This program

will be one to be used interactively over and over again, whereas the

previous startup program was only used once to produce the initial

linkages. For ease of use this program will be menu-driven. Figure 1

shows the menu choices.

Loading the Lists

The linked lists generated in Part 1 were stored in a sequential file

along with the size of the arrays being used and the entry points to

each of the linked lists. Program 1 reads these data. Table 1 defines

the variables used.

After reading in the array size (S) which had been used for saving the

file (line 30), the user is then asked if he/she wishes to increase the

array sizes (lines 70-140). This might be required when several new

vehicles are purchased. As an assist, the number of elements cur

rently used is shown (40-50). Following this decision, the stored data

is read in (240-270). If the arrays were increased in size the extra

elements in the licence plate, due date and mileage arrays are now set

to blanks (320-340) as in the Part 1 program and the pointer list

altered to accommodate the new free elements (360-410).

Lines 230 and 260 are needed due to the dynamic nature of BASIC

strings. This provides for very flexible programming as it is not

necessary to tell the computer how many bytes to allocate for each

string variable; rather the allocation is based on the number of bytes

actually used. An unfortunate side effect of this is that when a string

such as " ABC" is saved in a sequential file and then recalled, the

leading blanks are lost. Since the decision was made in Part 1 to use

strings to store mileages, the values read from the file must be

"massaged" to put in leading blanks where necessary. Otherwise the

mileage string "1569" will be greater than the mileage string "14583"!

Lines 230 and 260 make sure "1569" is used as " 1569".

Displaying or Printing a List

To display or print one of the lists in order we simply enter the array

using the pointer to the start of the list and then, using the linkage

array, follow the list through until a zero is found as a pointer to the

next element. Menu selection 0 or 1 will prompt with a second menu

requesting which of the three lists is required.

Updating a List

Whenever a vehicle's status is altered, there are two lists affected. For

example, when a vehicle is sold, pointers in the available portion of

the link array must be altered to exclude this vehicle and pointers for

the free space must be altered to mclude the elements formerly used

by this vehicle. When a rented vehicle is returned, pointers must be

changed in both the rented and available sections of the link array.

Menu selections 2-7 control list updates to log a returned vehicle, to

rent one, to send one for servicing, to remove a vehicle to be sold and

to make available a vehicle that has just been purchased.

The Mechanics of Updating

Adding or removing an element to or from a list are the basic list

updating operations. The classical way of deleting an element is to

locate it in the array and move every element past it one location

closer to the front. Figure 2a shows an alphabetic array from which D

is to be deleted and Figure 2b shows the array after the deletion.

Insertion of the letter H into the array of Figure 2b requires locating

where the H belongs, moving every element past this spot one

location farther back in the array and then inserting the H.

This method for insertion and deletion is not efficient if the operation

occurs anywhere but close to the end of the array, if a multidimen

sional array is involved or if the elements of more than one array must

be moved.

Linked lists show their superiority in the areas of adding and remov

ing items as well. To delete an element, simply alter the pointers to

and from this element and then return this element to the free list

(making it the first one available for future use which will tend to keep

early elements of arrays occupied). To insert a new quantity, it is first

stored in the next free element, the pointer to the first free one is

adjusted, its proper location is found and then the pointers to and from

it are set. This seems like a great deal of work but the implementation

is simple and it avoids shifting many array elements.

Changing an element from one linked list to another does not require

a physical move of the data: one set of pointers is altered to exclude a

specific element in one or more arrays and another set of pointers is

altered to include this element.

To insert or delete an element at the beginning of a list requires that

the variable storing the entry point to that linked list be updated

appropriately. For elements at the end of a list, it must also be

remembered to set the appropriate pointer to zero to indicate the end

of a list.

31

The Updating Program

Program 2 contains the additions to Program 1 to perform the menu

functions. In addition to outputting and updating lists, the menu

provides an additional choice: a check for overdue vehicles in which

all vehicles with a due date prior to the current date are displayed on

the screen (with a printed-list option). In this way all the information

on a possibly stolen vehicle is available quickly.

Table 2 contains a brief description of the new variables introduced in

Program 2.

FL is used as a flag to indicate whether or not any lists have been

altered during the running of the program. The flag is lowered (set to

0) in line 145 and will be raised (set to 1) if there are any changes.

Starting at line 500 the menu is presented (500-620), the selection is

obtained (630) and checked for validity (640-660). Although all the

choices are single digit, INPUT is used rather than GET because of the

brief moment in which the user might detect an erroneous input and

then be able to change it. As the program stands, this is important as it

has not been "idiot-proofed" as would be necessary in a commercial

package. Some of the options will not let you exit them until they have

been successfully completed. Of course you could use the comple

mentary routine to undo the error if this ever happens to you. Keep in

mind as well that the purpose of the program is to illustrate the use of

linked lists, not bullet-proofing!

Control is then transferred to the appropriate subroutine (670-700).

Every return from a subroutine will send the user back to the main

menu (690,710).

The block beginning with line 1000 handles options 0 and 1 for

showing a particular list. A menu is presented (1010-1070) and the

selection (1080) is checked for validity (1090-1110). If the option is not

"3" to return to the main menu (1120), then the entry point to the

appropriate list is established (1130-1150). If the entry point to a list

happens to be a zero (1160), then there are no vehicles in the list. After

opening a channel to the printer if necessary (1180), the information

about the first vehicle in the list is displayed or printed as required

(1190-1200) and a check is made to see if this is the last vehicle in the

list (1210). If not, the variable EN is changed to point to the next item

in the list (1220), this is printed or displayed and so on. An end of

listing message is printed (1240), the printer channel is shut down if

necessary (1250) and the program pauses (1260-1290) before return

ing to the display-print sub-menu.

The line-2000 block handles the return of a rented vehicle. After

checking to see if in fact there are any vehicles rented (2020) and

returning to the main menu if there are not (2030-2070), the returned

vehicle's licence plate number and the new odometer reading are

requested (2080-2150). The odometer reading is then massaged

(2160-2170) as discussed previously and the vehicle is located in the

rental list and removed (2190-2200). Since the subroutine at 11000 is

called from several options in the main menu, the entry point for the

rental list must be specified (2190). A value of 1 for F2 indicates that

some problem occurred in the search subroutine and an immediate

return to the main menu is performed (2210). Note that the value of FL

is not changed until line 2290, that is until the vehicle has been

successfully put into the available list (2250-2270). Having found the

returned vehicle in the rented list, its mileage and due date entries are

adjusted (2220-2230) and the pointer to the beginning of the rental list

is updated (2240) if the first vehicle on the rented list was the one

removed. Putting the returned vehicle in the available list also uses a

call to a general subroutine at line 13000 and the correct list entry

point is needed and this is also updated if necessary after the return

(2250-2280).

The line-3000 block looks after the renting of a vehicle. It is very

similar to the above block and so does not need to be described in

detail. Line 3130 checks to see if there are more or fewer than 5

characters in the requested due date or if the month number is more

than 12 or if the day is more than 31. Again not foolproof, but will trap

quite a few common errors. Note also the different subroutine re

quired to put the vehicle in the rented list (3250).

The blocks at lines 4000 and 5000 move the vehicles between the

available list and the list of vehicles being serviced and are similar to

the previous two blocks.

The line-6000 block controls the selling of a vehicle. In this operation

the vehicle is only removed from a list and not added to another so

there is no second GOSUB. Also the total number of vehicles owned

by the company (or the number of array elements actually in use) is

reduced by one (6180).

The next block makes a new vehicle available by finding the first

available element (7200), storing this vehicle's data in this element of

the plate number and mileage arrays (7220-7230) and then resetting

the pointer to the start of the free space (7210). This vehicle is then

linked into the available list (7240-7260) and the total number of

vehicles is increased by one (7270).

The line-8000 block checks for overdue vehicles. The main part is the

section which traces the path through the list of rented vehicles

(8160-8220).

The final block of coding coming from the main menu begins at line

9000. If the flag FL is still down, then no changes have been made to

any lists and so the program stops at this point (9010). If the flag is

raised (value 1), then the old file called LINKED LISTS is scratched

(9020-9040) and an updated one of the same name is created (9050-

9120). Line 9050 defines a carriage return variable for use in the

PRINT* operation.

Blocks beginning with lines 11000 and 12000 locate a vehicle by plate

number and remove it from that list. Since they differ only in the last

couple of lines, it is possible to combine them if a check is made to see

which finishing part is required and if the calling routines use a

pointer which can be passed to the subroutine to indicate which part

is needed. However, the increased program complexity needed to

save less than a dozen lines is not warranted.

At the beginning of the line-11000 block a flag is set low (11010) and it

will be raised (set to 1) if the vehicle is not found in the list. The entry

point to the appropriate list is copied to K (11020). A check is made to

see if the plate number being looked for is at the beginning of the list

(11030). If not, this subscript is stored for future use (11040) and the

element to be examined is set to the next one in the list (11050). If this

element is not zero (11060), then it is checked for a match. If the

element number is zero, we are at the end of the list with no match

made. A message is printed, the flag F2 is raised and we return to the

calling routine (11070-11120). If a match was found in line 11030,

then a check is made to see if the match occurred for the first element

in the list (11130). If so, this vehicle is removed from the list by setting

the entry point to this list to the next element of the list (11140). If not,

the element in the link array which pointed to this element is set to

skip this element and point to the next one (11160). In either of the

32
Volt

above cases, the location of the match is kept for future use (11170).

As mentioned before, the line-12000 block is almost the same as the

one described above. However, when a vehicle is sold we do not have

to remember where it is in the array. In fact, we want to make that

location available for use if a vehicle is purchased and so we set the

pointer of the removed vehicle to point to the first element of the free

list (12160) and then make the location of the removed vehicle the

new start of the free list (12180).

The blocks at lines 13000 and 14000 locate by mileage and due date

respectively the correct location for an item in a list and then insert the

item in that spot. As discussed previously, these routines also could be

combined into one. As in the above two blocks, the list is searched to

find the correct location for the vehicle whose data are in the elements

numbered N of the arrays (13010-13050 or 14010-14050). This N is

the quantity that had been saved above for future use. If the vehicle

belongs at the end of the list, the pointer of the last element in the list

is set to point to element N (13060 or 14060) and the pointer for

element N is set to zero to indicate the end of the list (13070 or 14070).

If it belongs at the beginning of the list, then the list entry value is set

to N (13100 or 14100) and the pointer for element N is set to what used

to be the first element of the list (13130 or 14130). If the vehicle

belongs somewhere between the endpoints of the list, the pointer of

the previous vehicle is changed to point to this one (13120 or 14120)

and this one's pointer is set to the next vehicle's element number

(13130 or 14130).

Summary

Now that the updating program for Rentawreck is debugged and

working, the sample DATA statements used in the Part 1 program can

be replaced by the actual vehicle data and the array sizes increased to

a sufficiently large value. More arrays for additional fields of informa

tion can also be added now.

If you have had an opportunity to run the final programs from Part 1

and Part 2, you may be disappointed at how long it takes to establish

the initial linked lists and surprised at how rapidly you return to the

main menu after making a change in a list. Remember though that the

initial setup is done only once. (A machine language subroutine for

the actual linking section might appeal to someone out there as well.)

There are several features of linked lists which have not been

addressed in the car rental example. Consider the request for all of the

data about a vehicle whose licence number you are given. It is

awkward to have to go through all three lists looking for this vehicle. If

all the vehicles were linked alphabetically by licence plate, the search

would be faster. The programming cost to implement this? One more

array.

Also note that all of the searches begin at the start of the linked list. In

the case of a search of all vehicles for a particular plate number, why

not just look at the first entry in the plate array? If this is before the

plate we want then go on further following the linkage, but if it is past

the one we want then why not back up through the list? To do this

would require what is known as backward linking of the plate

numbers, a fairly easy task once forward linking is understood.

Possibly by now you have thought of some other applications for

linked lists - that coin or stamp collection you have always meant to

organize, your recipes, that mailing list which seems to take forever to

update and re-sort. You may even have seen that so me of the sections

of the Part 2 program can be easily written in machine code. Once you

have the ability to add items to or remove them from a linked list and

you realize that single characters entered from the keyboard could be

the items in a linked list, then you might be able to write that special

routine you seem to need all the time but can't find in a wordprocessor

within the reach of your budget. . .

Figure 1

LINKED LIST MENU

Display a list 0

Printalist 1

Return a vehicle 2

Rent a vehicle 3

Remove a vehicle for service 4

Make serviced vehicle available 5

Sell a vehicle 6

Add a new vehicle 7

Check for overdue vehicles 8

Quit program 9

Figure 2

2a

2b

2c

A I

A E

A I

5 D

5 G

i G

G

I

H

I

K

I

K M

M _

K M

Table

before deletion of D

after deletion of D

after insertion of H

1

Description of Variables

SF

UL

B$ a string of 6 blanks to provide leading blanks where

necessary in the mileage strings

D$ single letter answer to any yes/no question

LD the array of pointers for the linked lists

NS new array size if needed

PL$,DU$,MI$ arrays for licence plate nums, due dates, mileages

S the size of the arrays stored in the file

SZ the size to which arrays will be dimensioned

SR,SA,SS the element numbers for the start of the lists of vehicles

currently rented, available or being serviced

the first free element in the arrays

the number of elements actually used in arrays in the

file

Table 2

Description of Variables

Cl main menu choice

C2 display-print menu choice

CR$ holds a keyboard entry (expecting a carriage return)

DAS today's date

EN current element number while going through a linked list

a flag to indicate whether changes have been made to any list

a flag to indicate that an abnormal condition caused an exit from

aGOSUB

the current element being examined in a list (similar to EN)

subscript of the last element examined in a list

location of an element to be added to a list

ND$ an input due date

NM$ an input odometer reading

NP$ an input licence plate number

S$ a blank space used for output

SE entry point to a linked list

FL

F2

K

LS

N

The Transactor 33 Volume 5, Issue 06

KG

AJ

MB

El

ME

MD

EG

HB

AL

CA

JP

GA

KL

IL

LI

FJ

NH

NF

OC

IG

BK

JK

EA

HA

HA

KJ

NO

LO

JN

ED

JJ

DC

NC

CC

ND

GP

GG

BG

NM

KJ

FA

CL

DC

EO

PB

NG

JP

OJ

AL

BH

01

HL

BE

GJ

CO

GE

LD

CD

BK

Program 1

10 rem- program 1

20 openi ,8,2," O:linked lists,r"

30 input#1 ,s,ul,sr sa.ss.sf

40 print chr$(147)" the array sizes are" ;s

50 print ul;" elements are currently used."

60 for i = 1 to 1000:next i

70 print" do you wish to increase the array sizes"

80 print "at this time?"

90 print" (type y or n):";

100 get d$

110 if d$ = "" then 100

120 print d$

130 if d$ = "n" then 210

140ifd$O"y" then 90

150 input" new array size" ;ns

160ifns>sthen190

170 print" new size must be greater than" ;s

180 goto 150

190sz=ns

200 goto 220

210sz = s

220 dim pl$(sz),du$(sz),mi$(sz),ld(sz)

230 b$ = " [6 spaces]"

240 for i = 1 to s

250 :input#1 ,pl$(),du$(i),mi$(i),ld(i)

260 mi$(i) = left$(b$,6-len(mi$(i))) + mi$(i)

270 next i

280 closei

290 if ns = Othen 440

300 rem- initialize new array sections

310 for i = s +1 to ns

320:pl$(i)= "[7 spaces]"

330 :du$(i)= "[5spaces]"

340 :mi$(i) = " [6 spaces]"

350 next i

360 rem- link rest of free space

370i=s

380ld(i) = i + 1

390:i = i + 1

400 if i<ns then 380

410ld(ns) = 0

420 rem- make array size change permanent

430 if sz>s then s = sz

440 print" « list loading completed »"

19999 end

Program 2

10 rem- program 2

145 fl = 0

500 rem- main menu

510 print " E HJrentawreck car rental agency"
520 printtab(3);"

530 printtab(3);"

540 printtab(3);"

550 printtab(3);"

560 printtab(3);"

570 printtab(3);"

580 printtab(3);"

590 printtab(3);"

600 printtab(3);"

610 printtab(3);"

m

mm

display a list 0"

print a list . , ■. . .1"

return a vehicle 2"

rent a vehicle 3"

remove a vehicle for service4"

make serviced vehicle available. .5"

sell a vehicle 6"

add a new vehicle 7"

check for overdue vehicles 8"

quit program 9"

CP

NA

PD

OA

AE

FL

FK

DF

HH

HG

MH

HE

EG

PM

GE

AD

PH

CK

DN

MD

IL

CF

ME

PB

HO

LD

KJ

CN

JO

LF

KB

MM

AA

AN

EE

PD

GK

NG

cr

pp

PO

CM

JD

IN

DK

JH

CF

CD

KC

JC

GA

OD

GC

EJ

JP

EG

Ol

HD

BE

CM

JC

DJ

MA

620 printtab(12); "Hyour choice (0-9)";" U)|J ;
630 input d

640ifc1> = 0andcK = 9then670

650 print" «invalid choice: must be O-9»I*IWS1"
660 goto 620

670 if c1>1 then 700

680 gosub 1000

690 goto 500

700 on d -1 gosub 2000,3000,4000,5000,

6000,7000,8000,9000

710 goto 500

1000 rem- display (d =0)oMDrint(c1 = 1)alist

1010 if d =0then print"! |";tab(14);"display menu"
1020 if d = 1 then print"paH!!" ;tab(14);" print menu"
1030 printtab(8); "rarented vehicles 0"

1040 printtab(8); "raavailable vehicles 1 "

1050 printtab(8);"ravehicles being serviced. . .2"

1060 printtab(8); "rareturn to main menu 3"

1070 printtab(12); jflyour choice (0-3)";" j]ffl ;

1080 input c2

1090ifc2> = 0andc2< = 3then 1120

1100 print" «invalid choice: must be 0-3»E
1110 goto 1070

1120ifc2 = 3then return

1130 if c2 = Othen en = sr

1140 if c2 = 1 thenen = sa

1150 if c2 = 2thenen = ss

1160 if en = Othen 1240

1170 s$ = " "

1180 if d =1 then openi,4

1190 if d = 0 then print pl$(en);s$;du$(en);s$;mi$(en)

1200 if d =1 then print#1, pl$(en);s$;du$(en);s$;mi$(en)

1210 if en = Othen 1240

1220en = ld(en)

1230 goto 1190

1240 printtab(11); "EEI<< end of listin9 »
1250 if d =1 then closei

1260 print" HPress <return> to return to menu"
1270 get cr$

1280 if cr$Ochr$(13) then 1270

1290 goto 1000

2000 rem- return a vehicle

2010 printtab(5); "ESJretum a vehicle..."
2020 if sr>0 then 2080

2030 print"Hno vehicles currently rented..."
2040 print"0press<return>to return to main menu"
2050 get cr$

2060 if cr$Ochr$(13) then 2050

2070 return

2080 input" plate number" ;np$

2090 if len(np$) = 7 then 2120

2100 print" **plate must be 7 characters...**"

2110 goto 2080

2120 input "odometer reading" ;nm$

2130 if len(nm$)< = 6 then 2160

2140 print "0**reading too large...999999 max **"
2150 goto 2120

2160 b$= "[6 spaces]"

2170 nm$ = left$(b$,6-len(nm$)) + nm$

2180 rem- locate vehicle in rental list and remove

2190 se = sr

2200 gosub 11000

2210 if f2 = 1 then return

2220mi$(n) = nm$

The Transactor 34 Volume 5, Issue 06

KD

BA

BC

GO

HH

GP

LF

IB

MA

GJ

BO

DM

LI

BG

MD

KB

CB

FB

00

JC

DE

00

KC

PE

FB

EH

NP

HG

AO

MP

CK

KL

MN

PE

NP

PC

MO

AD

PC

NM

LK

DH

JE

GC

CA

KP

BA

GN

EB

AO

ED

NL

IC

OE

BA

Kl

HG

BA

GL

FO

CK

OA

AE

2230 du$(n) = " [5 spaces]"

2240sr = se

2250 rem- put vehicle in available list
2260 se = sa

2270 gosub 13000

2280sa = se

2290 fl = 1

2300 return

3000 rem- rent a vehicle

3010 pnnttab(5);"ggg|rent a vehicle..."
3020 if sa>0 then 3080

3030 print" Hno vehicles currently available..."
3040 print "flpress <return> to return to main menu"
3050 get cr$

3060 if cr$Ochr$(13) then 3050

3070 return

3080 input "plate number ";np$

3090 if len(np$) = 7 then 3120

3100 print" **plate must be 7 characters...**"

3110 goto 3080

3120 input" due date (as mm-dd)" ;nd$

3130 if len(nd$)< = 5andleft$(nd$,2)<= "12"

and riaht$(nd$,2)<= "31" then 3160

3140 print "0**invalid due date**"
3150 goto 3120

3160 rem- locate vehicle in rental list and remove

3170 se = sa

3180 gosub 11000

3190 if f2= 1 then return

3200du$(n)=nd$

3210mi$(n)= " [6 spaces]"

3220sa = se

3230 rem- put vehicle in rented list

3240se = sr

3250 gosub 14000

3260sr = se

3270 fl = 1

3280 return

4000 rem- remove a vehicle for service

4010 printtab(5);"^^send a vehicle for servicing..."
4020 if sa>0 then 4080

4030 print "Hno vehicles currently available..."
4040 print "Hpress<return> to return to main menu"
4050 get cr$

4060 if cr$Ochr$(13) then 4050

4070 return

4080 input "plate number ";np$

4090 if len(np$) = 7 then 4120

4100 print" **plate must be 7 characters...**"

4110 goto 4080

4120 rem- locate vehicle in available list and remove

4130se = sa

4140 gosub 11000

4150 if f2 = 1 then return

4160sa=se

4170 rem- put vehicle in service list

4180se = ss

4190 nm$ = mi$(n)

4200 gosub 13000

4210ss = se

4220 fl = 1

4230 return

5000 rem- make a serviced vehicle available

5010 printtab(5); "Q flretum a serviced vehicle..."

BA

CH

LF

BD

AB

KO

CO

NO

OL

PP

IM

AE

FK

PA

MG

JO

OE

PE

JO

IG

NM

Kl

FF

PD

HK

FM

JN

NE

DC

A

MN

EN

FO

AL

FP

AC

OA

LJ

BA

C

VIC

HJ

EF

O

M

HK

C

DO

D

LA

CP

M

VIL

N

J

O

L

DC

LI

3A

AC

M

B

G

5020 if ss>0 then 5080

5030 print "Hno vehicles being serviced..."
5040 print "flpress <return> to return to main menu"
5050 get cr$

5060 if cr$Ochr$(13) then 5050

5070 return

5080 input" plate number" ;np$

5090 if len(np$) = 7 then 5120

5100 print" **plate must be 7 characters...**"

5110 goto 5080

5120 rem- locate vehicle in available list and remove

5130se = ss

5140 gosub 11000

5150iff2 = 1 then return

5160ss = se

5170 rem- put vehicle in service list

5180se = sa

5190 nm$ = mi$(n)

5200 gosub 13000

5210sa = se

5220 fl = 1

5230 return

6000 rem- to sell a vehicle

6010 printtab(5); "^^sell a vehicle..."
6020 if sa>0 then 6090

6030 print "^available list empty..."
6040 print" vehicle must be here to be sold"

6050 print "0press<return> to return to main menu"
6060 get cr$

6070 if cr$Ochr$(13) then 6060

6080 return

6090 input "plate number" ;np$

6100 if len(np$) = 7 then 6130

6110 print"**plate must be 7 characters...**"

6120 goto 6090

6130 rem- search for vehicle and remove

6140 se = sa

6150 gosub 12000

6160 if f2 = 1 then return

6170 sa = se

6180 ul = ul-1

6190 fl = 1

6200 return

7000 rem- add a new vehicle

7010 printtab(5);" EflSladd a new vehicle..."
7020 if sf>0 then 7090

7030 print "Hurray full - no free space"
7040 print" addition cannot be made"

7050 print" 0press <return> to return to main menu"
7060 get cr$

7070 if cr$Ochr$(13) then 7060

7080 return

7090 input " plate number" ;np$

7100 if len(np$) = 7 then 7130

7110 print" **plate must be 7 characters...**"

7120 goto 7090

7130 input "odometer reading ";nm$

7140 if len(nm$)< = 6 then 7170

7150 print "H**reading too large...999999 max **"
7160 goto 7130

7170 b$= "[6 spaces]"

7180 nm$ = left$(b$,6-len(nm$)) + nm$

7190 rem- add vehicle to available list

7200 n = sf

The Transactor 35 Volume 5, Issue 06

KJ

JK

OJ

KF

LO

KG

LG

JN

GJ

HG

GN

01

KH

LI

IM

KB

KO

OB

CB

CG

JE

01

OC

CL

GO

DB

BE

IN

CA

PN

PJ

MH

IE

FK

FO

LL

KK

EH

BP

PE

EL

OD

DC

DL

LK

OE

P

AE

LG

JG

NE

J

UJ

CA

M

JE

K(

EM

PB

LK

BL

DP

7210 sf = Id(sf)

7220pl$(n) = np$

7230mi$(n) = nm$

7240 se = sa

7250 gosub 13000

7260sa = se

7270 ul = ul + 1

7280 fI = 1

7290 return

8000 rem- check for overdue vehicles

8010 if srOO then 8040

8020 print "flthere are no vehicles currently rented"

8030 return

8040 nrinfEBIwould you like a printed list also?"

8050 print" (type y or n):";

8060 get d$

8070 if d$= "" then 8060

8080 printdS

8090 if d$= "n" then 8110

8100ifd$O"y" then 8050

8110 print" enter today's date as mm-dd <return>"

8120 input "date";da$

8130 if len(da$)< = 5 and left$(da$,2)< ="12"

andrioht$(da$,2)<= "31" then 8160

8140 print "H**invalid due date**"

8150 goto 8120

8160en = sr

8170 if d$ = " y" then openi ,4

8180 if du$(en)> = da$ then 8210

8190 printpl$(en);" ";du$(en);" " ;mi$(en);" is overdue"

8200 if d$ = " y" then print#1 ,pl$(en);" " ;du$(en);

" ";mi$(en);" is overdue"

8210 :en = ld(en)

8220 if en<>0 then 8180

8230 printtab(11); "0« end of listing »"
8240 if d$ = "y" then closei

8250 print"0press<return>to return to main menu"

8260 get cr$

8270 if cr$Ochr$(13) then 8260

8280 return

9000 rem- quit program, saving lists if necessary

9010 if fI = 0 then 19999

9020 openi,8,15

9030 print#1," s0:linked lists"

9040 closei

9050c$ = chr$(13)

9060 openi,8,2, "0:linked lists.seq.w"

9070 print#1 ,s;c$;ul;c$;sr;c$;sa;c$;ss;c$;sf

9080 for i = 1 to s

9090 :print#1 ,pl$(i);c$;du$(i);c$;mi$(i);c$;ld(i)

9100 nexti

9110close1

9120 printtab(10);" lists have been saved"

9130 goto 19999

11000 rem- locate and remove a vehicle

11010f2 = 0

11020k = se

11030 if np$ = plS(k) then 11130

11040 ls = k

11050 k = ld(k)

11060 if kOOthen 11030

11070 print" Hplate not found in list"
11080 print" gjpress <return> to return to main menu"

M

P

Bl

Ml

NC

AP

GC

CH

Al

M

JO

EA

BD

FN

MK

HA

EJ

JJ

LN

BL

DO

JG

EH

HB

IN

CB

KF

DN

PB

KL

JA

PA

BC

CN

OK

AH

LI

II

ED

JM

HL

OM

HM

AD

AH

FN

HP

BN

KL

GJ

JF

DH

AHr\n

MB

DL

PJ

KL

PK

IB

IF

1090 get cr$

11100 if cr$Ochr$(13) then 11090

11110 f2 = 1

11120 return

11130 if kOsethen 11160

11140 se = Id(se)

11150 goto 11170

11160 Id(ls) = ld(k)

11170 n = k

11180 return

12000 rem- locate and remove a sold vehicle

12010f2 = 0

12020k = se

12030 if np$ = pl$(k) then 12130

12040 Is = k

12050 k = ld(k)

12060 if k<>0 then 12030

12070 print" Hplate not found in list"
12080 print" g|press <return> to return to main menu"

12090 get cr$

12100 if cr$Ochr$(13) then 12090

12110f2 = 1

12120 return

12130 if kOsethen 12160

12140 se = ld(se)

12150 goto 12170

12160 ld(ls) = ld(k)

12170 ld(k) = sf

12180 sf = k

12190 return

13000 rem- locate by mileage the proper location in list

for a new element

13010 k = se

13020 if nm$< = mi$(k) then 13090

13030 :ls = k

13040 :k = ld(k)

13050 if kOO then 13020

13060ld(ls) = n

13070ld(n) = 0

13080 return

13090 if kOsethen 13120

13100se = n

13110 goto 13130

13120 ld(ls) = n

13130 ld(n) = k

13140 return

14000 rem- locate by due date the proper location in

list for a new element

14010 k = se

14020 if nd$< = du$(k) then 14090

14030 :ls = k

14040 :k = ld(k)

14050 if k<>0 then 14020

14060ld(ls) = n

14070ld(n)-0

14080 return

14090 if kOsethen 14120

14100se = n

14110 goto 14130

14120 ld(ls) = n

14130 ld(n) = k

14140 return

The Transactor 36 Volume 5, Issue 06

A High Resolution

Graphics Utility For The 64

Gary Kiziak

Burlington, Ont.

ooJ O

There is no question regarding the superb graphic capabilities of the

Commodore 64 - just look at the wealth of fine educational software

and the unbelievable games that are now available. Yet most people

are simply not able to make use of these capabilities when writing

their own programs. Why is this?

Actually, the answer is quite simple. Most people write their programs

in BASIC, and unfortunately there are no commands that allow you

access to these graphic capabilities other than PEEK and POKE. Of

course there are some very good extensions to the language such as

SIMON'S BASIC, the SUPER EXPANDER cartridge, and many more.

These extensions provide additional commands that allow you to

draw straight lines and circles, and to access the other graphics

capabilities in a very simple way. The only drawback to using one of

these extensions will arise if you plan to share any of your programs

with others. For unless they have the same graphics package as you,

they will not be able to make use of your programs.

In this article, I will present a series of commands that will allow you to

access some of the hires graphics capabilities of the 64 in a simple

way. These commands will not be as comprehensive as the above-

mentioned extensions, but they will be certainly more than adequate.

Best of all, you can share it along with any of your own programs that

make use of it.

The commands will allow you to plot points, draw lines and boxes,

and with a little help from BASIC draw circles, ellipses, etc. These

drawings can take place on the normal hires screen or the more

colourful multi-colour screen. You will even be able to print onto the

hires screen, so that all your elaborate creations can be labelled using

the built in character sets or even using custom character sets that you

created.

Some Preliminary Information

The make-up of the normal text screen should be well known, but for

completeness let's go through some of the details.

The text screen is made up of 25 rows, each containing 40 characters.

Each of these 1000 (i.e. 25*40) 'character cells' can display a character

in any of 16 different colours. Within a single character cell however,

only two colours can be displayed - the foreground or character

colour and the background colour. The background colour must be

the same for all 1000 locations, but the foreground colour can change

from one character cell to another.

To help locate particular cells, it is convenient to number the rows

from 0 to 24 and the columns from 0 to 39 as in the figure below.

Jt

I

Itlfi ,L

The text screen is fine for displaying character graphics, especially

considering the 64's ability to place the character definitions in RAM

where you can change the shape of the characters to virtually

anything that you want. However for fine detailed graphics that

involve the drawing of lines, circles, and other mathematical curves,

there is a better solution - the HIRES screen.

The hires screen is made up of 200 rows, each containing 320 dots or

'pixels'. Each of these 64000 (i.e. 200*320) pixels can be turned 'on' or

'off individually, allowing you to create very fine detailed pictures of

enormous complexity.

To help locate specific pixels, it is convenient to number the rows from

0 to 199 and the columns from 0 to 319 as in the figure below.

I've chosen this particular numbering scheme because then we can

think of the screen, in mathematical terms, as a Cartesian system,

with the origin in the lower left hand corner. Any point on the screen

can then be located by its (x,y) or Cartesian coordinates.

ecu. I

■ ■•la J

y

(O,o) The Normal HI-RES Screen

The Transactor 37 Volume 5, Issue 06

For colour purposes, the hires screen is also arranged in a way similar

to the normal text screen; that is, it can be thought of as containing 25

rows and 40 columns of 'character cells'. Each of these character cells

is 8 pixels wide and 8 pixels deep, just like a regular character. Also,

like the normal text screen, a character cell on the hires screen can

contain only two colours. The 'off pixels can be one colour, and the

'on' pixels another - these colours can of course be any of the 16

colours available on the text screen. Unlike the text screen, the

background colour (i.e. the colour of the 'off pixels) can change from

one character cell to another as can the foreground colour.

This limitation of two colours can be overcome at the expense of a loss

in resolution by switching to multi-colour mode. In this mode, 4

colours are possible within each character cell. Each coloured dot or

pixel, however, is twice as wide as in normal hires mode. Thus the

number of pixels across is 160. The vertical resolution is still 200. Also

in this mode, the background colour must be the same for all 1000

character cells.

In multi-colour mode, more colourful pictures can be created, but the

loss in resolution causes lines to be more jagged and curves to be less

smooth. It will be up to you to determine which mode is more suitable

for your application.

Cx,v)

, m)

The Multi-Colour HI-RES Screen

As I mentioned earlier, all the graphic capabilities are available in

BASIC through a series of complex PEEKS and POKES. Aside from the

complexity involved, the time required to execute a command can be

unbearable (eg. 30 seconds to clear the hires screen). Thus to be at all

useful, the commands must be carried out in machine language with

hopefully a simple interface to BASIC.

When this command is executed, the screen is cleared to the back

ground colour and any points that are subsequently plotted or lines

that are drawn (see below) will appear in the colour determined by Cl.

It is also possible to turn on the hires screen without clearing it. The

following line will do this.

100SYSHIRES.0

(i.e. leave off the background and plotting colour)

This would be useful if your program needs to flip between the hires

screen and the text screen and still retain any graphics on the hires

screen. The first time you access hires graphics, you will, of course,

want to clear the screen as well.

If you want the multi-colour screen, use the following line

100 SYS HIRES.1 ,BG,C1 ,C2,C3

where again BG is the background colour and Cl, C2, and C3 are the

three possible plotting colours (Remember, in multi-colour mode,

four colours are possible in each character cell - the background

colour, and three plotting colours). For those interested in technical

details, plotting colour Cl corresponds to points plotted using the

bitpairOl, C2 corresponds to the bitpair 10, and C3 corresponds to the

bitpair 11.

Turning on the multi-colour screen without clearing it is done by

100SYSHIRES.1

The graphics screen can be cleared at any time after the screen has

been enabled by

100SYSCLSCR,BG,C1

and 100SYSCLSCR,BG,C1,C2,C3

2. Setting Plotting Colours

(in hires mode)

(in multi-colour mode)

Listing 1. is a BASIC loader that, when run, will create a PRG file called The background and plotting colours are set when hires mode is first

HIRES on your disk. This is the machine language program that will

contain all the graphic commands. Type this program in carefully,

save it, and run it. The loader program contains a 'check' every 10

lines in an attempt to catch typing errors, but be careful, it is not

foolproof, and a single typing error could make your program bomb.

Listings 2, 3, and 4 are sample BASIC programs that make use of the

commands. Before we look at these, let's go through the actual

commands, their syntax, and the various options available.

turned on. They may, however, be changed later on by the command

200 SYS COLOUR,C1 (in hires mode)

and 200 SYS COLOUR,C1,C2,C3 (in multi-colour mode)

In multi-colour mode, all three plotting colours must be included

even if you only want to change C1.

1. Turning On The Hires Screen

To turn on the hires screen, a line with the following syntax is

required.

100SYSHIRES,0,BG,C1

In this line, BG is a number between 0 and 15 representing the

background colour of the screen (note: 0 = black, 1 = white, etc.) and

Cl is a number representing the plotting colour. Variables or numbers

may be used for either BG or Cl.

3. Selecting A Plotting Colour

When graphics mode is enabled, colour Cl is the default plotting

colour. In multi-colour mode, you may wish to change to colour C2,

or colour C3, or back to colour Cl again. This is done by the command

300 SYS SELPC.C

where C = 1 if you want colour C1

C = 2 if you want colour C2

and C = 3 if you want colour C3

The Transactor 38 Volume 5, Issue 06

If executed when in normal hires mode, this command is ignored
since there is only one plotting colour Cl.

4. Setting The Drawing Mode

Any plotting or drawing in hires mode can be done in any of three

ways.

ERASE mode - In this mode, the points and lines are erased rather

than drawn (i.e. the pixels are turned off)

DRAW mode - In this mode, all points and lines are drawn (i.e. the

pixels are turned on)

FLIP mode - In this mode, the condition of all points and lines are

flipped (i.e. the pixels that are on are turned off and vice-versa)

To set a particular drawing mode, simply include

400SYSDMODE.M

where M = 0 if you want erase mode

M = 1 if you want draw mode

and M = 2 if you want flip mode

5. Plotting A Point

To plot a point at coordinates (X,Y) (Remember: (0,0) is in the lower

left-hand corner of the screen), use

500SYSPLOT,X,Y

The point will be plotted in the current plotting colour (as selected in

3. above) in the current drawing mode (as set by 4. above). If you wish,

you can include up to two additional parameters.

500 SYS PLOT,X,Y,C

will select plotting colour C before plotting the point at (X,Y) and

500SYSPLOT,X,Y,C,M

will select plotting colour C and drawing mode M before plotting at

(XY)

6. Moving The Drawing Cursor

Whenever a point is plotted or a line is drawn, the drawing routines

remembers the coordinates of the last point plotted. This point is

called the drawing cursor, and is used in the DRAW TO command

described below. It is possible to move the drawing cursor to a new

position with coordinates (X,Y) and without plotting or drawing by the

command

600SYSMOVE,X,Y

7. Drawing Lines

This is the most versatile of the commands and offers the most

options.

(i) The DRAW command

700 SYS DRAW.X.Y

will draw a straight line from the current position of the drawing

cursor (i.e. the last point plotted) to the point with coordinates (X,Y). It

will also set the new position of the drawing cursor to (X,Y). The line

will be drawn in the current plotting colour and in the current drawing

mode. As with the PLOT command, the plotting colour and the

drawing mode may be changed before the line is drawn by the

addition of one or two more parameters; that is,

700SYSDRAW,X,Y,C

will draw the line to (X,Y) in plotting colour C, while

700SYSDRAW,X,Y,C,M

will draw the line in plotting colour C and in drawing mode M.

(ii) The DRAW ... TO ... command

700 SYS DRAW.X1 ,Y1 TO X2.Y2

will draw a line from the point (XI ,Y1) to the point (X2.Y2) and set the

drawing cursor to (X2,Y2) (The initial position of the drawing cursor is

ignored). As above, you can have

700 SYS DRAW.X1 ,Y1 TO X2,Y2,C

or 700 SYS DRAW.X1 ,Y1 TO X2,Y2,C,M

You can even have

700 SYS DRAW.X1 ,Y1 ,C,M TO X2.Y2

or 700 SYS DRAW.X1 ,Y1 ,C,M TO X2,Y2,D,N

In the latter case, the C,M will, in fact, be ignored and the line will be

drawn in plotting colour D and in drawing mode N.

(iii) The DRAW ... TO ... TO ... TO ... command

This feature makes this command similar to the HPLOT command on

the APPLE, and allows you to draw a straight line from one point to

another, then from that point to another, and so on. The syntax is ...

700 SYS DRAW.X1 ,Y1 TO X2.Y2 TO X3.Y3 TO X4.Y4

with as many points Xi.Yi as you can fit into a BASIC line. This

command is useful for drawing shapes that can be made up of straight

lines, eg. parallelograms, hexagons, etc. As above you can include

,C,M anywhere after an Xi.Yi but keep in mind that it won't take effect

until the line is drawn to that particular point.

8. Drawing Rectangles

A rectangle may be drawn using the command

800 SYS BOX,X,Y,WIDTH,HEIGHT

where (X,Y) are the coordinates of the top left-hand corner of the

rectangle, and WIDTH and HEIGHT are the width and height of the

rectangle respectively. As usual, you may optionally have

800 SYS BOX,X,Y,WIDTH,HEIGHT,C

or 800 SYS BOX,X,Y,W1DTH,HEIGHT,C,M

The Transactor 39 Volume 5, Issue 06

9. Restoring The Text Screen 11. Changing Character Sets

If you wish to return to normal text mode from graphics mode, you

can do so by

900 SYS TEXT

This will return you to the text screen with exactly the same condi

tions that prevailed prior to entering graphics mode (eg. if you were in

upper/lower case prior to entering graphics mode, you will still be

there when you return to text mode). Used in conjunction with the

command SYS HIRES,0 or SYS HIRES, 1 this can be used for flipping

between the graphics screen and the text screen.

10. Printing To The Graphics Screens

Text or character graphics can be printed to the hires screen using the

PRNT command. For example,

1000 SYS PRNT,C,R,A$

will print whatever is in A$ onto the hires screen, starting in column C

of row R.

Notes: 1. Printing takes place only in the 'character cells'. Therefore R

and C are the row and column numbers as determined by the text

screen, not the Cartesian coordinates on the hires screen (i.e. 0 <= R

< = 24 and 0 < = C < = 39 with (0,0) in the top left-hand corner of the

screen).

2. The string to be printed may be a string variable, a string of

characters between quotes, or even a string expression using M1D$,

LEFTS, or RIGHTS. The string expression may involve concatenation,

for example:

1000 SYS PRNT,5,10,A$+ "DONE"

but don't forget the ' +' sign

1000 SYS PRNT,5,10,A$;" DONE "

will yield an error.

3. The characters to be printed can be anything that you would

normally use in a PRINT statement on the text screen, including

cursor control characters such as cursor left, etc. , RVS ON/OFF,

colour control characters such as CTRL-1 (for white), etc. You can

even use CNTRL-N to switch to lowercase and CHR$(142) to switch to

uppercase. Only CLR and HOME for clearing the screen and homing

the cursor are ignored.

Cursor up and down work properly, but be careful when trying to

cursor up beyond the top line of the screen or down below the bottom

line. Strange things will result, but the program will not crash.

4. The text can be printed in either hires mode or multi-colour mode.

In multi-colour mode, the characters will look a little funny and may

be unreadable depending on the settings for the three plotting col

ours. If you set Cl and C3 to the colour you want the characters to be

and C2 to the background colour, the characters are perfectly read

able. By changing C2 and C3, you can get some interesting effects (see

the sample programs for an illustration). The best solution is to create

your own custom characters using a multi-colour character editor and

use those characters instead (see below).

Text can be printed in upper case/graphics, upper/lower case, and

even a combination of the two (something that can't be done on the

normal text screen without using raster interrupts). It is even possible

to print characters that you created with a character editor and stored

in RAM. To print such characters, simply precede the printing with the

command

1100SYSCHSET.AD

where AD is the address of the RAM character set. Because of the way

character sets work, AD must be a multiple of 2048. Thus

1100SYSCHSET,7*2048

would be required if your character set were stored in memory at

address 14336 (= 7*2048).

Note also that AD = 0 will choose the ROM character set containing

upper case and graphic characters while AD=1 will choose the

upper/lower case characters in ROM.

12. The TRAP Command

When drawing mathematical curves, errors such as 'division by zero',

'illegal quantity', etc. can quickly halt a program. When this happens,

the TRAP command, which is the equivalent of the ONERRGOTO

command on the APPLE, can overcome this. For example,

1200 SYS TRAP, 1500

once executed, will cause control to be transferred to line 1500

whenever an error occurs. The routine at line 1500 could then check

for the type of error and take appropriate action. The important point

is that the program will not stop unless you tell it to.

To check for the type of error, include the following in your error

handling routine.

1500X = PEEK(781)

This will be the error number that would normally be passed on the

BASIC interpreter.

eg. if X = 20 then a division by zero error occurred

if X = 14 then an illegal quantity error occurred

etc.

The TRAP command can be disabled (i.e. the BASIC interpreter

handles all errors) by leaving off the line number in the TRAP

command, ie.

1300 SYS TRAP

Caution: When an error occurs, the stack pointer can be in an

unpredictable position. For this reason, before sending control to the

line of your error handling routine, the stack is cleared. This includes

all information about FOR . .. NEXT loops and RETURN addresses of

subroutines. Thus after handling a specific error, you must not go into

the middle of a FOR . . . NEXT loop or the middle of a subroutine,

even if that is where the error originally occurred.

The Transactor 40 Volume 5, Issue 06

Listing 2 is a short demonstration program that shows how easy it is to

make a pie chart. Notice how the HIRES routines are loaded in line 20,

and the variables, that are the addresses of the various commands, are

initialized in lines 120 through 150.

At this time, there is no command for drawing circles in my routines.

When it is complete, there will be such a command with the following

syntax.

SYS CIRCLE,XC,YC,XR,YR,SA,EA,INC

where XC.YC are the coordinates of the centre of the circle

XR is the radius in the horizontal direction

YR is the radius in the vertical direction

SA is the starting angle in degrees (i.e. the angle with

the horizontal where the plotting will start)

EA is the ending angle in degrees (i.e. the angle

where the plotting will end)

and INC is the increment in degrees

Note: The circle is drawn as a series of straight lines (and so is

really a polygon). INC determines how many sides this polygon

has, and hence how 'smooth' the circle is.

Since the command is not implemented yet, a BASIC equivalent is

given in line 500 of Listing 2. To draw a circle then, it is only

necessary to initialize the variables XC,YC,XR,YR,SA,EA, and INC

and then GOSUB500.

Notice that to get a complete circle, the starting angle and the

ending angle must be 360 degrees apart. Also by making INC

equal to 120 degrees, 60 degrees, and 72 degrees, you can draw

a triangle, hexagon, and pentagon respectively.

Listing 3 is another demo that draws a bar chart, and illustrates

what printing looks like in multi-colour mode. Experiment with

lines 460, 480 and 520 and observe the effects.

Listing 4 is a program that draws the graph of a mathematical

curve. When typing it in, put a REM in front of each TRAP

command. This will allow you to debug the program more easily -

otherwise the TRAP command will trap all your typing errors and it

can become frustrating.

The program draws the sinusoidal curve

y = sin(2*x) + cos(3*x) (line 220)

After the program is debugged, try drawing the curves

or

or

y = 1/sm(x)

y = sin(x)/cos(x)

y = sqr(4-x*x)

Try it with and without the REM statements in front of the TRAP

commands.

This program can be described as a general purpose drawing routine;

that is, it will draw the graph of virtually any function. As such, it is

somewhat slow. The plot can be speeded up by decreasing the

number of plotting points (line 770) but this will also have a negative

effect in that the curve will be more jagged. Special purpose routines,

for drawing graphs that do not have undefined regions and for which

all plotting occurs within the specified range will proceed much

quicker.

One Final Note On Memory Usage

The hires screen is located at $E000 (i.e. u nderneath the kernal ROM).

As such it does not steal any memory from BASIC. The routines

themselves are stored in the $C000 block from $C000 to $C81E.

Colour memory for the hires screen is located at $CC00 and extends to

$CFFF. Since the DOS wedge also uses this area, these routines will

not work with the wedge installed. Similarly, it may not work with

other utilities that use the $C000 block of memory.

Listing 1

BC

HF

LG

BJ

DG

GL

Cl

GO

HI

PL

Jl

BG

PO

AG

JL

10

,IC

MP

CH

ID

Dl

IA

HK

FD

MF

HI

JM

HM

Ml

PH

JN

PO

FG

GH

HD

GG

GO

FN

KJ

NG

BC

MG

DP

BC

JC

EJ

GL

HL

GB

FH

BH

BJ

HK

JJ

NK

JB

EO

100 open 1,8,15,"i0":close1

110 open 1,8,1,"@0:hires"

120 print#1,chr$(0);:print#1,chr$(192);

130 for j = 1 to 2080

140 readx : print#1,chr$(x);

150 chk = chk + x

160 next j

170 if chk<>245727 then print " has an error":

close1:end

180 close 1

190 print " save successful" :end

1000 data 76,194,193, 76,247,195, 76, 98

110,194, 76, 30,194, 76

76,228,196, 76, 11,197

197, 76,169,192, 76,206

199,199, 76, 4,200, 0

0, 0, 0, 0,

0,255,128, 0,

0, 0, 0, 0,

0, 15,240,240,

0, 0, 0,173,

173, 0,221,141,

1010 data 195, 76

1020 data 214, 196

1030 data 76, 67

1040 data 197,

1050 data 0,

1060 data 0,

1070 data 0,

1080 data 0,

1090 data 208,

1100 data 208,

1110 data 173,

76,

0,

0,

0,

1,

0,

27.

24,208,141, 58,192,

0, 0

7,248

0, 0

0, 0

58, 192

57, 192

173, 17

1120 data 208, 141, 59,192,173, 22,208,141

1130 data 60,192, 32,110,192, 96,173, 0

173, 1

141, 0,

173, 2,

3, 141, 42, 193, 169,

192

231

3

3

2

173

173

192,141, 17,208,173,

22,208,169, 0,141,

1140 data 3,201,231,208

1150 data 201, 192, 240, 44

1160 data 234,

1170 data 169,

1180 data 1,

1190 data 173,

1200 data 141,

1210 data 96,

1220 data 208,

1230 data 59,

1240 data 141,

1250 data 96,

1260 data 1

1270 data 104, 96

1280 data 169, 129

1290 data 3, 76

1300 data 76, 192

1310 data 169, 0

1320 data 167, 72

1330 data 32,169

1340 data 3,173

1350 data 41, 193

1360 data 141, 3

1370 data 76,131

1380 data 0,145

7, 173,

173, 0,

3, 141,

3, 169,

3,141,

1,
3,

235,

192,

41,

3,169,193,141, 3

58,192,240, 26,141

57,192,141, 0,221

60, 192

58, 192

3

141

192

141

193

8

3

24

173

72,

141,

169.127.141, 13,220,165

56,192, 41,253,133, 1

72,173, 56,192,133, 1

141, 13,220,104, 96, 16

139.227.142, 13, 3, 44

16,245,169, 0,133, 20

133, 21,162,250,154,169

169,233, 72, 76,163,168

173,234,192,141, 0

192,141, 1, 3,173

2, 3,173, 42,193

169, 0,141, 76,192

164,254,240, 13,160

208,251,230,252

192,

235,

141,

3,

164,

251,200,

1390 data 198, 254, 208, 243, 164, 253, 240, 10

1400 data 136, 240, 5, 145,251,136,208,251

96, 32,

160,204,

160, 3,

0, 133,

1410 data 145, 251

1420 data 132, 251

1430 data 132, 253

1440 data 193,169

1450 data 252, 169

1460 data 254, 169

,201,192,160, 0

132,252, 160,232

132,254, 32, 43

,251, 169,224, 133

64,133,253,169, 31,133

0, 32, 43,193, 76,218

The Transactor 41 Volume 5, Issue 06

KG

PA

GC

CF

IF

ID

BA

LG

Ml

KF

PR

FB

GJ

Gl

EF

LG

Bl

Gl

IK

MA

10

ME

K0

JJ

OD

AK

NO

HH

MN

AF

HD

JC

MM

DD

JF

CD

GJ

HL

DC

AM

NF

01

IH

GC

El

LB

BD

GL

JD

JL

MK

10

EB

EE

CB

DA

HD

JD

EP

AC

DJ

EK

HO

MD

Cl

Bl

AA

CC

OA

BO

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

data 192,

data 247,

data 253,

data 142,

data 192,

data 44,

data 0,

data 176,

data 45,

data 241,

data 240,

data 121,

data 0,

data 221,

data 9,

data 9,

data 16,

data 22,

data 208,

data 141,

data 169,

data 141,

data 192,

data 193,

data 141,

data 192,

data 192,

data 192,

data 33,

data 63,

data 173,

data 193,

data 192,

data 237,

data 252,

data 74,

data 39,

data 44,

data 42,

data 138,

data 24,

data 2,

data 74,

data 44,

data 101,

data 133,

data 201,

data 253,

data 254,

data 165,

data 192,

data 168,

data 80,

data 133,

data 251,

data 10,

data 195,

data 189,

data 97,

data 13,

data 32,

data 12,

data 240,

data 240,

data 32,

data 192,

data 107,

data 149,

data 149,

data 149,

32,

183,

174,

44,

142,

53,

205,

3,

192,

96,

2.

0,

221,

173,

48,

32,

12,

208,

41,

54,

255,

65,

169,

173,

62,

41,

48,

141,

208,

192,

62,

162,

202,

41,

160,

102,

192,

53,

170,

101,

101,

230,

102.

53,

253,

254,

3,

133,

24,

252,

45,

44.

15,

2,

77,

61,

208,

94,

145,

70,

16,

3.

11,

3,

125,

169,

56,

98.

99,
107,

253,

166,

32,

192,

46,

192,

43,

76,

169,

32,

169,

240,

9,

24,

141,

141,

173,

169,

239,

192,

141,

192,

128,

45,

192,

15,

12,

70,

32,

32,

192,

3,

16,

192,

0,

251,

174,

192,

104,

252,

251,

252,

253,

192,

133,

76,

144,

253,

165,

105,

54,

52.

36.

36.

51,

86,

8,

195,

251,

192,

8,

32,

32,

32,

194,

1,

189,

189,

16,

56,

174, 32,

21, 165,

124, 193,

32, 121,

192,169,

16, 4,

192, 138,

72, 178,

0,237,

77,192,

128, 141,

3, 32,

3, 73,

208, 41,

24, 208,

17,208,

22, 208,

3,208,

141, 22,

73, 255,

51,192,

138,173, 32

20, 96, 32

141, 43,192

193,141, 45

63,162, 1

169, 159, 162

237, 44,192

169, 199,205

46, 192, 144

32,121, 193

53,192, 32

30, 194, 173

3,141, 0

7, 9, 8

173, 17,208

44, 53,192

9, 16,141

10, 173

208, 169

22

7

141, 55,192

173,

141,

192,

141,

141,

13,

67,

52,

10,

70,

61,

62,

1

66

192, 76,

121, 193,

121, 193,

76, 75,

189, 43,

247, 96,

72, 74,

132,251,

101,252,

40, 192,

16, 6,

24, 101,

133,252,

133,251,

165,252,

74,102,

48, 16,

253, 169,

249, 194,

234, 24,

169,216,

251, 105,

224,133,

192, 170,

192, 16,

2, 48,

107, 48,

192, 44,

195, 133,

61, 94,

73, 255,

177,253,

145,253,

4, 2,

110, 194,

228, 196,

214, 196,

32, 14,

149, 106,

43, 192,

44, 192,

20, 169,

169, 0,

96, 169,

192, 141,

192, 32,135

10, 10, 10

192,173, 43

192, 44, 53

192,141, 62

75, 193,141

41, 15,141

141, 64,192

193, 32,135

192,157, 39

56,169, 199

74, 74,133

74, 102,251

133.252, 173

45, 55,192

10, 72,138

251, 133,251

104, 41, 7

133.253, 144

74, 102,253

253,133,254

24,169, 0

204,101,254

173, 65,192

169, 0,101

101.254, 133

0,133,251

252,173, 39

96,169, 0

4,112, 20

9, 169,255

1, 96,177

53,192, 48

97,189, 86

195, 133, 97

49,251, 5

45, 66,192

96,128, 64

1,192, 48

32,121, 0

32,121, 0

32,201, 192

195, 76,218

169, 0,149

253, 39,192

253, 40,192

255, 149, 106

245, 98,149

BF

DK

KP

MN

MA

Al

HL

BC

NF

CC

00

DF

EM

NB

GP

EC)

AC

PB

HO

LL

ME

JJ

GE

DB

EJ

OM

JN

MO

NC

GO

HG

DD

MA

LO

KE

LC

AE

NH

NB

JC

FJ

KH

KN

NF

PE

KA

FK

CE

KG

AD

AO

AL

JL

EL

BF

IK

ND

LA

EE

OP

HJ

PI

Nl

GD

LF

RG

KJ

DM

AD

GD

2170 data 98, 169, 0,245, 99,

2180 data 21, 98,208, 4,149,

2190 data 96,165, 99, 74,133,

2200 data 106, 133, 102, 24,169,

2210 data 133, 104, 169, 0,229,

2220 data 96, 24, 165, 102, 101,

2230 data 170, 165, 103, 101, 101,

2240 data 99, 144, 19,208, 4,

2250 data 13,138, 56,229, 98,

2260 data 103, 229, 99,133,103,

2270 data 135, 193, 32,121, 0,

2280 data 164, 208, 16, 32,113,

2290 data 0, 32,138,193, 32,

2300 data 44,208, 13, 32,228,

2310 data 0,201, 44,208, 3,

2320data 32, 43,196, 32,121,

2330 data 240, 220, 96, 32,201,

2340 data 134, 2, 32, 129, 195,

2350 data 129, 195, 165, 98,197,

2360 data 229, 101, 144, 62, 32,

2370 data 107, 16, 10, 32,113,

2380 data 0,229,108,133,108,

2390 data 32, 14,195,230,104,

2400 data 105, 240, 102,238, 39,

2410 data 238, 40,192, 32,209,

2420 data 24,173, 41,192,101,

2430 data 192, 32,125,194, 32,

2440 data 91, 196, 162, 1, 181,

2450 data 149, 100, 148, 98,202,

2460 data 185, 195, 36,107, 16,

2470 data 194, 56,169, 0,229,

2480data 32,125,194, 32, 14,

2490 data 240, 31, 24,173, 41,

2500 data 141, 41,192, 32,209,

2510 data 238, 39, 192,208, 3,

2520 data 32,125,194, 32, 14,

2530 data 196, 36,107, 16, 3,

2540 data 32,113,194, 76,218,

2550 data 193, 41, 3, 73, 3,

2560 data 141, 52, 192, 96, 32,

2570 data 3,240, 27, 44, 53,

2580 data 141, 65, 192, 170, 189,

2590 data 70, 192, 189, 66, 192,

2600 data 189, 7, 197, 141, 51,

2610 data 85, 170,255, 32, 121,

2620 data 10, 10,141, 62,192,

2630 data 48, 9, 13, 61, 192,

2640 data 76, 51, 197, 32, 121,

2650 data 141, 63,192, 32,121,

2660 data 141, 64,192,174, 65,

2670 data 192, 141, 70,192,189,

2680data 66,192, 96, 32,110,

2690 data 193, 162, 3,189, 43,

2700 data 192, 202, 16, 247, 32,

2710 data 11, 32,228,196, 32,

2720 data 3, 32,214,196, 24,

2730 data 109, 47,192,141, 43,

2740 data 192, 109, 48,192,141,

2750 data 41,192,141, 45,192,

2760 data 141, 46,192, 32,156,

2770 data 196, 56,173, 45,192,

2780 data 141, 45,192,173, 46,

2790 data 192, 141, 46,192, 32,

2800 data 43,196, 56,173, 43,

2810 data 192, 141, 43,192,173,

2820 data 48,192, 141, 44,192,

2830 data 24, 173, 45, 192,109,

2840 data 45,192, 173, 46, 192,

2850 data 141, 46,192, 76, 43,

2860 data 133, 251,133,252, 32,

56,

240,

194,

121,

196,

0

32

99

36

149, 99, 96

106, 149, 107

103,165, 98

0,229, 98

99,133, 105

100, 133, 102

133,103,197

228, 98,144

133, 102, 165

96, 32

44,201

32, 115

0,201

32, 121

32,214, 196

0,201, 164

192,162,

162, 2,

100, 165,

185,195,

194, 56,169

32, 125, 194

208, 4,230

192,208, 3

195,144, 9

108,141, 41

14, 195, 76

98, 180, 100

16,245, 32

10, 32, 113

108, 133, 108

195,230, 104

192, 101, 108

195,144, 8

238, 40,192

195, 76,166

32, 14,195

192, 32,121

106, 106, 106

121,193, 41

192, 16, 22

61, 192, 141

141, 66,192

192, 96, 0

10, 10

53, 192

62, 192

41, 15

41, 15

192,189, 61

66, 192,141

194, 32,135

192,157, 47

121, 0,240

121, 0,240

173, 39,192

192,173, 40

44, 192, 173

173, 42,192

193, 32, 43

237, 49,192

192,237, 50

181,193, 32

192,237, 47

44, 192,237

32, 43,196

49, 192, 141

109, 50,192

196,169, 0

241, 183,224

193,

44,

141,

193,

193,

The Transactor 42 Volume 5, Issue 06

HL

KJ

GO

IN

P!

MH

IF

NF

MM

PK

PM

PO

K!

HL

NA

LM

FH

FF

MO

JC

C!

HC

Al

EF

JL

BF

FG

JO

IF

MK

MM

HE

CB

AA

Fl

PM

IM

KA

IB

Gl

NO

MC

MB

KM

BP

CC

KN

PI

DA

GP

EP

NG

ID

Kl

HJ

BO

BJ

CC

KH

GK

IK

KE

AA

ON

BA

LK

AN

IB

CM

GL

2870 data 40,

2880 data 192,

2890 data 240,

2900 data 251,

2910 data 252,

2920 data 101,

2930 data 169,

2940 data 105,

2950 data 4,

2960 data 252,

2970 data 105,

2980 data 158,

2990 data 170,

3000 data 177,

3010 data 198,

3020 data 215,

3030 data 96,

3040 data 63,

3050 data 208,

3060 data 76,

3070 data 219,

3080 data 11,

3090 data 250,

3100 data 169,

3110 data 201,

3120 data 160,

3130 data 205,

3140 data 160,

10,

6,

51,

31,

23,

6,

11,

6,

17,

3150 data

3160 data

3170 data

3180 data

3190 data

3200 data

3210 data

3220 data

3230 data

3240 data 202,

3250 data 208,

3260 data 160,

3270 data 199,

3280 data 198,

3290 data 198,

3300 data 8,

3310 data 252,

3320 data 224,

3330 data 253,

3340 data 2,

3350 data 133,

3360 data 201,

3370 data 32,

3380 data 192,

3390 data 160,

3400 data 251,

3410 data 173,

3420 data 173,

3430 data 13,

3440 data 104,

3450 data 0,

3460 data 5,

3470 data 173,

3480 data 72,

3490 data 253,

3500 data 166,

3510 data 162,

3520 data 162,

3530 data 220,

3540 data 41,

3550 data 4,

3560 data 141,

144, 3,

32,241,

18,224,

105, 40,

202, 208,

251,133,

0, 101,

216, 133,

6,251,

6,251,

224, 133,

173, 32,

160, 0,

34, 32,

133,215,

48, 17,

144, 4,

76, 110,

2, 169,

108, 199,

199, 76,

162, 40,

76, 160,

1, 141,

29, 208,

199, 162,

198,240,

199, 189,

141, 62,

13,

197,

16,

24,

0,

12,

61.

76,

28,

25.

4.

13,

32,216,

208, 11,

208, 250,

8,169,

199,201,

76, 160,

254, 198,

4, 198,

133,251,

165,251,

176, 3,

208, 2,

230, 4,

251, 144,

64,165,

28,199,

240, 2,

7, 32,

136, 16,

61, 192,

64, 192,

62, 192,

168, 104,

133, 6,

38, 6,

71,192,

192, 101,

174, 32,

21,208,

208, 44,

0, 142,

41,254,

251,133,

133, 1,

14,220,

76, 72

183, 142

25, 176

133,251

242, 24

251, 133

252, 133

254, 104

38, 252

38, 252

252, 32

143, 173

232, 202

73,198

138, 72

201, 32

41,223

199, 41

94, 201

201, 14

160,199

32, 71

199,201

75,192

6, 32

3, 44

6,202

221,198

192, 44

192, 141

160,199

30, 31

26,

7,

14,

199,

162,

76, 160

0,141

29, 208

199, 165

253, 165

3, 56

165,252

201, 0

32, 71

230, 254

24, 169

2,230

252, 233

96, 9

9, 128

230,199

249, 32

44, 53

145,253

145, 3

170,

6,

6,

101,

6,133

138, 173

9,165

162,216

71,192

141, 14

1, 96

173, 14

96, 32

178,142, 73

74, 192,138

237, 24,165

144, 2,230

173, 73,192

253,133, 3

252, 24, 72

105,204, 133

6,251, 38

24, 165,252

253,174, 32

32, 166, 182

1

76

208

200

152

144

208

27,

3.

15.

76,

40.

10

48

32

30

22

5

10

76

28

2

96

5

5

5

96

60

72, 165

28,201

2, 41

127,201, 127

32, 144, 125

208, 6, 32

201, 17,208

199,202,208

18,208, 8

76,160,199

71,199, 76

162, 15,221

16,248, 76

10, 10,

53, 192,

62, 192,

5, 28,

1, 21,

1, 2,

8, 9,

201, 14,208

160, 199,201

32, 28,199

199,201, 18

75, 192,

143, 32,

253, 208,

3,208, 2

165,251,233

233, 0,133

165,252,233

199, 96,230

230, 3,208

8, 101,251

252, 165,251

255,144, 3

64,174, 75

32,165,199

177, 5,145

245,199,200

192, 16, 8

63,192

71, 199

5, 169

6, 6

6, 24

5, 173

96, 32

32,247, 183

20,208, 3

142, 72,192

96,173, 14

220, 165, 1

165, 1, 9

220, 9, 1

121, 0,240

173,

32,

133,

38,

38,

133,

6,

JO

LF

CJ

HG

CO

EF

CJ

AC

DL

EB

NJ

IC

MH

IJ

PG

FD

BH

El

GA

EG

OB

LF

EG

LA

KP

DG

JG

KA

BO

PC

LB

DD

HC

GH

CK

LE

CK

AO

MM

KE

PE

OF

Cl

Nl

JA

FC

AM

HC

EL)

AD

AG

CM

CN

GN

FB

LE

EH

GK

LC 3570 data 15, 32,110,192, 32,121,193,141

OC 3580 data 245, 192, 142, 249, 192, 169, 128, 44

_CBj 3590 data 169, 0,141, 76,192, 96, 0, 0

Listing 2

10 pnnt"0":poke53280,5:poke53281,1
20 if peek(49152)<>76 then load " hires" ,8,1

30:

100 rem initialize variables

110:

120 hires= 12*4096:draw = hi + 3:plot = dr + 3

130 move = pi + 3xlscr = mo + 3:dmode = cl + 3

140 selpc = dm + 3:colour = se + 3:box = co + 3

150 text = bo + 3:prnt = te + 3:chset = pr + 3:trap = ch + 3

160:

170 rem begin the show

180:

190syshires,0,1,6

200 xc = 159:yc = 10O:xr = 70:yr = 50:inc = 10

210sa = 45:ea = 75:gosub620

220sa = 75:ea=160:gosub620

230 sa = 160:ea = 240:gosub 620

240 sa = 240:ea = 325:gosub 620

250 syscolour,7

260 xc = 175:sa = -35:ea = 45:gosub 620

270 syscolour,9

280 sys box,6,170,307,165

290 sys box,3,172,313,169

300syschset,1

310 a$ = " r" + chr$(30) + " Rent" :rem rvs + grn

320sysprnt,15,9,a$

330 a$ = chr$(156)+"Food" :rem pur

340sysprnt,13,13,a$

350 a$ = chr$(28) + " Clothes" :rem red

360sysprnt,18,16,a$

370a$ = chr$(158)+ "Travel" +chr$(142) :remyel +

upper/graphics

380sysprnt,24,12,a$

390 a$ = chr$(154) + chr$(176) + " CCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCC " + chr$(174)

400 sys prnt,O,O,a$

410a$ = chr$(221)+ " [9 spaces]HJPIE CHARTS are "
+ chr$(28) + " Easy0[10 spaces]|J|"

420 sys prnt.0,1 ,a$ + chr$(221)

430 a$ = chr$(173)+ "CCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCC" +chr$(189)+ Q
440 sys prnt,0,2,a$

450 get a$:if a$Ochr$(13) then 450

460 end

470:

480 rem draw arc

490:

500 z1 = sa*n/180:z2 = ea*n/180:z3 = inc*rr/180

510 x = xc + xr*cos(z1):y = yc + yr*sin(z1)

520 sys move.x.y

530 for i = z1 toz2stepz3

540 x = xc + xr*cos(i):y = yc + yr*sin(i)

550 sys draw.x.y

560 next

570 sys draw.xc + xr*cos(z2),yc + yr*sin(z2)

580 return

590:

600 rem draw pie

610:

620 gosub 500

630 sysdraw.xc.yc

640 sys draw,xc + xr*cos(z1),yc + yr*sin(z1)

650 return

The Transactor 43 Volume 5, Issue 06

JO

LF

CJ

HG

CO

EF

CJ

AC

DL

EB

NJ

IC

JE

Ml

DJ

PB

JK

NE

GK

BO

AN

FN

KE

BP

JJ

CG

JC

JD

BA

KC

HL

HC

LG

CG

PE

KA

PI

JP

GM

CK

ND

KL

CK

CD

DO

KA

AH

BK

FE

JO

LF

CJ

HG

CO

EF

CJ

AC

DL

EB

IK

IC

HA

EP

DM

Listing 3

10 print"0":poke5328O,5:poke 53281,1
20 if peek(49152)<>76 then load " hires" ,8,1

30 :

100 rem initialize variables

110:

120 hires= 12*4096:draw = hi + 3:plot = dr + 3

130 move = pi +3:clscr = mo + 3:dmode = cl + 3

140 selpc = dm + 3:colour = se + 3:box = co + 3

150 text = bo + 3:prnt = te + 3:chset = pr + 3:trap = ch + 3

160:

170 rem begin the show

180:

190 sys hires, 1,0,1,2,6

200 sys dmode,1 :sys selpc, 1

210 sysdraw,33,168to33,87to 133,87

220 sys draw,33,86 to 133,86

230fork=1 to 5

240 for j = 37 to 133 step 4

250 sys plot,j,84 + 16*k

260 nextj.k

270 for k = 0 to 5

280 y(k) = rnd(1)*80 + 88:c = rnd(1)*8 +1

290 syscolour,1,c,6

300 for i = 0 to 8

310s = 43 + k*16 + i

320 sys draw,s,88 to s,y(k),2

330 next i

340 next k

350 sys move,34,88

360 for k = 0 to 5

370s = 47 + k*16

380sysdraw,s,y(k),3

390 next k

400 sys colour, 1,0,1

410 sysprnt,11,15,"79 80 81 82 83 84"

420 a$ = " 10 8 6 4 2"

430 for i = 1 to len(a$) step 2

440 sys prnt,6,3 + i,mid$(a$,i,2)

450 next

460syscolour,2,0,2

470 sys prnt,14,2, "annual sales"

480syscolour,0,0,6

490 a$= "" : for k = 1 to 21 : a$ = a$ + chr$(164): next

500sysprnt,9,17,a$

510 sysprnt,9,18,"Bbar graphs0"
520 syscolour.5,7,7

530 sys prnt,12,20, "ar e nice"

540 sys prnt,2,22, "i n multi-color mode"

550 get a$:if a$Ochr$(13) then 550

Listing 4

10 print"0" :poke 53280,5:poke 53281,1
20 if peek(49152)<>76 then load "hires",8,1

30:

100 rem initialize variables

110:

120 hires = 12*4096:draw = hi + 3:plot = dr + 3

130 move = pi + 3:clscr = mo + 3:dmode = cl + 3

140 selpc = dm + 3:colour = se + 3:box = co + 3

150 text = bo + 3:prnt = te + 3:chset = pr + 3:trap = ch + 3

160:

170 rem plot the graph

180:

190 x = x + dx:if x>xax then 650

200 sys trap,400 : rem catch any calculation errors

Jl

OP

DB

PF

IH

JP

AJ

GJ

CE

PO

EL

KN

HP

CN

JD

IE

AP

AL

KA

OA

OM

El

MC

IP

AE

PN

CN

MH

ID

EP

BF

Gl

JD

NF

EK

LL

JA

GC

HN

JD

AO

NE

EP

CH

GL

OJ

MB

FK

AD

MO

MP

BE

AG

BN

KN

PP

PO

CO

ML

AE

OP

OL

MA

LA

210 y = sin(2*x) + cos(3*x): rem insert function to be

graphed here

The Transactor 44

220 sys trap,450 : rem now catch any plotting errors

230 xp = (x-xin)*sx : rem x-coordinate for plot

240 yp = (y-yin)*sy : rem y-coordinate for plot

250 on pf goto 360,420

260:

270 rem last point was plotted ok,

280 rem so draw from last point to current point

290:

300 sys draw,xp,yp

310 goto 190

320:

330 rem last point was out of range,

340 rem so draw from boundary to current point

350:

360 sys draw,xp,boundary to xp.yp

370pf = 0:goto190

380:

390 rem last point was not defined,

400 rem so just plot the current point

410:

420 sys plot.xp.yp

430pf = 0:goto190

440:

450 rem something went wrong with the function

460:

470err = peek(781):pf = 2

480 if err = 14 then 190 : rem illegal quantity error

490 if err = 20 then 190 : rem division by zero error

500 if err = 16 then 190 : rem overflow error

510 if err = 11 then sys prnt,3,23," syntax error

in function definition" :goto 660

520 sys prnt,4,23," oops! i forgot about error #"

+ str$(err):goto660

530:

540 rem tried to plot out of range, x-coord. should be o.k.

550 rem therefore, just test the y-coord.

560:

570 err = peek(781):if err<>14 then 520

580 if yp>199 then boundary = 199 : rem point is above

top of screen

590 if yp<0 then boundary = 0 : rem point is below

bottom of screen

600 if pf = 0 then sys draw,xp-dx,boundary

610pf=1:goto190

620:

630 rem end by pressing <return>

640:

650 sys prnt, 13,23," graph completed"

660 get a$:if a$<> chr$(13) then 660

670 end

680:

690 rem begin the show

700:

710xin = -2*n : rem minimum value for x

720 xax= 2*7i : rem maximum value for x

730yin = -3.0 : rem minimum value for y

740yax=3.0 : rem maximum value for y

750 sx= 160/(xax-xin) : rem scale in x direction

760 sy = 200/(yax-yin) : rem scale in y direction

770 dx = (xax-xin)/160 : rem set inc for 160 point plot

780 pf = 2 : rem initialize plotting flag

790 rem pf = 0 ... last point calculated was plotted o.k.

800 rem pf = 1 ... last point calculated was out of range

810 rem pf = 2 . . . last point calculated was undefined

820x = xin-dx : rem initialize x

830 sys hires,1,0,1,0,1

840 sys dmode,1:sys selpc, 1

850 goto 190

Volume 5, Issue 06

VIC Parameters
Chris Zamara, Technical Editor

Program by Paul Higginbottom

C64 Video and Character Memory Allocation

The C64's flexible memory architecture and VIC—II video chip

allow you to set up screen and character memory practically

anywhere you want to, providing the ability to re-define

characters and alter the system memory map to your own

specifications. The problem is, it's not such a simple process —

as usual, there are just enough complications to create confu

sion. This article, the enclosed program ("VICPARMS"), and the

tables below are calculated to ease some of that confusion.

Fundamental Concepts

The VIC-II video chip in the C64 generates a video display

based on data found within the 64K of memory in the com

puter. When in regular text mode (the default after power-up),

there are two kinds of data needed to display characters on the

screen: pointers which indicate which character is to be dis

played in each screen position, and a number of bytes which

serve as shape tables to describe what each character looks

like.

The 1000 bytes which determine which characters are dis

played on the screen are collectively known as screen memory,

video memory, or more technically, the video matrix. The

default location of the video matrix is at 0400 hex ($0400 or

1024 decimal), just below the BASIC text workspace, but that

location can be changed at will.

Every one of the possible 256 values of each video matrix byte

has a character associated with it. The shape of that character is

defined by the contents of 8 bytes within character memory.

Since there are 256 characters it follows that character memory

must occupy 2048 bytes. On the 64, as with all Commodore

machines, there are two character sets available: upper case/

graphics, and upper/lowercase characters (these two sets are

alternately selected with the shift/Commodore keys). Alto

gether then, there are 4096 bytes which define the shape of all

512 characters.

Character memory is normally found in ROM, at location

$D000 (this is the same address range where the I/O is

mapped, but either RAM or the character ROM can be mapped

in instead). Like the video matrix, the start location of character

memory (called the character base) can be changed. Of course,

if you want to see legible characters on the screen, valid

character definitions must exist in memory wherever the char

acter base points. To accomplish that, the contents of the

character ROM starting at $D000 can be copied into RAM

wherever the new character base is. With the character defini

tions in RAM, you can customize the character set to your own

specifications — that is the prime reason for changing the

location of the character base.

Allocating video and character data to different areas of mem

ory means pointing the VIC-II video chip to the start of the

desired memory addresses by changing one of its registers. In

the case of the video matrix, it also involves setting a pointer so

that the kernal (operating system) knows where the screen is

located in memory.

The start address of video or character memory can't just be

anywhere; the video matrix must start on a IK boundary, and

the character base has to start on a 2K boundary. In other

words, there are 64 possible places where screen memory can

go, and 32 possible places where the character base can start.

Table 1 contains a list of all locations where screen memory can

go, and table 2 gives the 32 possible character base locations.

VIC Chip Banks

In practice, selecting the memory areas for the video matrix

and character base is complicated by the fact that the VIC chip

has only 14 address lines and as such can access only 16K of

memory. To allow full access of all 64K of RAM in the 64, the

most significant two address bits from the VIC chip are pro

vided by two I/O lines (port A of CIA2). What that means to the

programmer is that the video matrix and character base must

lie within the same 16K boundary, since the VIC chip can only

access one 16K "bank" at a time.

Note the way the video tables below are organized into four

columns; each column lists the possible memory addresses in

each 16K bank. The default bank is 0, since the video matrix

begins at $0400. How then is it possible to access the character

ROM, which resides at $D000, apparently in bank 3?

Character ROM Images

That feat is accomplished by a little trick in the 64's hardware.

The character ROM appears at $D000 only to the CPU — as far

as the VIC chip is concerned (remember it can only access up to

16K), it fetches its usual character definitions from $1000.

However, the character definitions from $D000 only appear to

The Transactor 45 Volume 5, Issue 06

the VIC chip at $1000 in banks 0 and 2. So if you were to put

character definitions in RAM at $1000 or $5000, the VIC chip

wouldn't see them; it would still see the usual ROM character

table. On the other hand, in banks 1 and 3 the VIC chip can get

its character definitions out of RAM from any address within

the 16K block, including the RAM at $D000 "under" the

character ROM. To put it simply, the VIC chip will recognize

character definitions from RAM starting at any 2K block in

memory except at $1000, $1800, $5000 or $5800. Pointing the

character base at any of these locations will result in displaying

the default ROM characters.

Selecting One of Two Character Sets

As previously mentioned, there are two character sets defined

in the ROM of the 64. The 2K of memory from $D000 to $D7FF

contains the definitions for the upper-case/graphics character

set which appears as the default after a reset or a RESTORE.

The character definitions for the upper/lowercase character set

(which can be selected by simultaneously pressing the SHIFT

and "Commodore" keys) are located in the next 2K of ROM,

from $D800 to $DFFF. To select one character set or the other,

the kernal just flips the least significant bit of the character base

pointer in the VIC chip to select an odd or even 2K boundary.

This is worth noting because it means that the only way to set

up two character sets and switch between them with the shift/

Commodore key combination is to start the character defini

tions on a 4K boundary.

Specifics: How to Change the Pointers

Both the video matrix and character base addresses within a

given bank are defined with VIC register 24, which is at

location $D018 (53272 decimal). The video matrix start loca

tion (one of 16 addresses within the bank) is defined by bits 4-7,

and bits 1-3 give the character base. The least significant bit is

unused. In tables 1 and 2, the bit patterns necessary to select a

given memory address appear in the rightmost column.

The bank select bits are accessed through location $DD00,

which controls port A of CIA1, one of the two 6526 I/O chips.

Bits 0 and 1 of this location control the state of the most

significant bits of the VIC chip address bus. The bits are

inverted so that both bits set to 0 selects bank 3, and both 1

selects bank 0. The state of these bits necessary to select each

bank is given in the top row of tables 1 and 2.

It was mentioned earlier that relocating the video matrix also

involves changing an operating system pointer. This is so that

BASIC will put characters in the right place when PRINTing to

the screen. Location $0288 (648 decimal) contains the page

number of the video matrix in memory — it's normally set to 4,

since the screen is at $0400. As another example, to relocate a

screen to $4000 this byte would have to be changed to $40 (64

decimal).

It's worth mentioning here that there are other important

memory areas to the VIC chip besides screen and character

memory. There is colour memory, which appears at $D800 to

the CPU — it is fixed, and can't be put anywhere else. In fact,

colour memory isn't a part of the 64K memory map at all, but

exists in the form of a lone IK by 4 bit chip on the 64's circuit

board.

Another source of VIC chip display data that is moveable in

memory is the high-resolution screen. This only applies in hi

res mode, where 8000 bytes are required for the screen. That

means that there are two possible places in each bank where a

hi-res screen can be located. As indicated in Table 3, bit 3 of

location $D018 controls whether the hi-res screen comes from

the lower or upper 8K of a given bank.

The Easy Way Out: VICPARMS

If it sounds like a real pain to re-define the character set and

re-allocate video memory, try the program in listing 1. VIC

PARMS was originally written by Paul Higginbottom from

Commodore, and it does the dirty work for you. VICPARMS will

ask you where you want to put screen memory (the video

matrix), and where you want character memory to come from.

You must supply these addresses in hexadecimal. Given this

information, VICPARMS will determine the correct values to

store in the necessary locations, and whether or not the

character set must be transferred from ROM to RAM. Before

going ahead, it will display the steps it's going to take, and ask if

it should proceed. Giving the reply "y" at this point will initiate

the action. If the character set must be transferred, it will take a

few seconds before the process completes.

When using VICPARMS, you have to keep in mind the informa

tion in table 1 and 2. You can only put screen memory or

character memory at one of the locations designated in the

table. Also, if you put screen memory and character memory

close enough together so that they'll overlap, there's going to

be problems. In short, VICPARMS works on a user-beware

philosophy, but it does the job with a minimum amount of

code; it's a programmer's utility, after all.

When VICPARMS transfers character memory to RAM, it copies

the 2K of character definitions which appear in ROM starting at

$D000. This is the character set which defines the upper/case

graphics characters. If you want the alternate upper/lowercase

character set, change the variable 'cset' in line 100 from 0 to 1.

Alternatively, you could change the program so that it copies

both sets at once: change the '2047' in line 450 to '4095'.

Once you've relocated the character set to RAM, you can

redefine the characters by simply POKEing about, with one

exception: if character memory has been moved to $D000 (the

RAM under the character ROM and I/O) and the screen is

somewhere else in bank 3 ($C000 for example), the only way to

change the RAM to redefine the characters is to "map out" the

I/O. The IRQs will have to be disabled when doing this.

But before getting too deeply involved in a discussion about

memory management on the 64 (which could easily fill another

article), let's leave it at that.

The Transactor 46 Volume 5, Issue 06

Table 1: Video Matrix

Bank Select

BankO

xxxxxxl1

0000

0400

0800

ocoo

1000

1400

1800

1C00

2000

2400

2800

2C00

3000

3400

3800

3C00

Bank

Register = $DD00

1 Bank 2

xxxxxxlO xxxxxxOl

Address

4000

4400

4800

4C00

5000

5400

5800

5C00

6000

6400

6800

6C00

7000

7400

7800

7C00

Relative to CPU

8000

8400

8800

8C00

9000

9400

9800

9C00

A000

A400

A800

AC00

B000

B400

B800

BCOO

Bank 3

xxxxxxOO

COOO

C400

C800

CCOO

D000

D400

D800

DCOO

E000

E400

E800

ECOO

F000

F400

F800

FCOO

('x' means 'don't care')

Table 2: Character Base

Bank Select

BankO

xxxxxxl1

0000

0800

1000(1)

1800(2)

2000

2800

3000

3800

Bank

Register = $DD00

1 Bank 2

xxxxxxlO xxxxxxOl

Address R<

4000

4800

5000

5800

6000

6800

7000

7800

8000

8800

9000(1)

9800(2)

A000

A800

B000

B800

Bank 3

xxxxxxOO

COOO

C800

D000

D800

E000

E800

F000

F800

$D018

Contents

OOOOxxxx

OOOlxxxx

OOlOxxxx

OOllxxxx

OlOOxxxx

OlOlxxxx

OllOxxxx

01llxxxx

lOOOxxxx

lOOlxxxx

IOIOxxxx

lOllxxxx

HOOxxxx

HOlxxxx

111Oxxxx

llllxxxx

$D018

Contents

xxxxOOOx

xxxxOOlx

xxxxOlOx

xxxxOllx

xxxxlOOx

xxxxlOlx

xxxxl1 Ox

xxxxl1lx

(1) ROM image from $D000 (upper case/graphics) appears here

(2) ROM image from SD800 (upper/lower case) appears here

Note: Bit 1 of $D018 is toggled by the shift/Commodore keys.

Table 3: Bit Map Memory

Bank Select

BankO Bank

xxxxxxl1

0000

2000

Register = $DD00

1 Bank 2 Bank 3

xxxxxxlO xxxxxxOl

Address Relative to CPU

4000

6000

8000

A000

xxxxxxOO

COOO

E000

$D018

Contents

xxxxOxxx

xxxxlxxx

JF

FL

LA

FJ

AD

BJ

EC

DA

II

GP

PK

IN

HG

GK

II

FO

JG

AK

DO

ID

AD

FP

MD

PE

IL

FF

HO

CB

AF

BJ

LE

PK

DG

00

IC

DA

PI

PJ

FB

AL

Cl

OJ

CO

LF

LF

BM

GA

EC

KO

IG

NH

MH

Jl

Ml

MD

BJ

GF

Listing 1:VICPARMS

10 rem* " vicparms"

11 rem* this program allows you to

12 rem* put your screen memory

13 rem* and character memory

14 rem* in any of the possible locations.

15 rem* it will transfer the character

16 rem* set from rom to ram if necessary

19 rem program by paul higginbottom

20:

100 cset= 1 :rem transfer: 0 = upper/graphics,

1 = upper/lowercase

110 print " (entries in hexadecimal)"

120 a$ = " screen addr" :gosub 540:sc = v

130 a$= " char.addr" :gosub 540:ca = v

140 b = int(sc/16384) :rem screen bank #

150 a = int(ca/16384) :rem char bank #

160 sv = sc-b* 16384 :rem screen address

170 cv = ca-a* 16384 :rem char address

180 if sv = cv goto 510

190 rem error if screen and chars at same place

200 if ((b = 1)or(b = 3)) and (aOb) goto 510

210 rem error if in different no-image banks

220 vie = 13*4096 :rem vie chip address

230 d =13*4096 + 12*256 :remciachip 1

240 c2 = 13*4096 + 13*256 :rem cia chip 2

250 p = int(cv/2048)*2 + int(sv/1024)* 16:if p<0 then 510

260 rem char, screen loc in lo, hi nybble

270 q = int(sc/256):if q<0 then 510

280 rem q is screen memory page for kernal

290 print " poke vie + 24," p

300 print " poke 648," q

310 r = (peek(c2)and252)or(3-b)

320 print " pokecia2, "r

330 if ((b = O)or(b = 2)) and (((pand 14) = 4)or((pand 14 = 6)))

goto 350

340 print " you need to move the character set to:"

: print ca

350 print.input " shall i do this" ;a$

360 if left$(a$,1)O"y" then end

370 poke vic + 24,p

380 poke 648,q

390 pokec2,r

400 if ((b = O)or(b = 2)) and (((pandi 4) = 4)or((pand14 = 6)))

goto 480

410 rem transfer character set if necessary

420 poke d + 14,peek(c1 + 14)and254:rem turn off irq's

430 poke 1,peek(1)and251:rem see chars

440 rom = vie + cset*2048 :rem character rom

450 for i = 0to2047:pokeca + i,peek(rom + i):next

:rem move chars

460 poke 1 ,peek(1)or4:rem see i/o again

470 poked +14,peek(c1 +14)or1: rem enableirq again

480 print chr$(147);

490 end

500 :

510 print "?illegal parameters ":end

520 :

530 rem* input/convert subroutine*

540 print a$;:a$= " ":v = O:input a$

550 if a$ = "" goto 540

560 for i = 1 to len(a$):a = asc(mid$(a$,i))-48

:a = a + 7*(a>9):v = v* 16 + a: next

570 return

The Transactor 47 Volume 5, Issue 06

BIGPRINT
Program by Allen R. Mulvey, Fulton, New York

Presented by Chris Zamara

A True Proportion High-Res Printer Dump Utility

Remember PICPR1NT in the "Protection and Piracy" issue (Vol 5,

issue 03)? Well, this one is better! In the true spirit of program

evolution (of which this magazine is a firm believer), a reader took a

given program, added a dash of brilliance, and came up with a

winner.

To refresh your memory, P1CPRINT allowed you to view a high

resolution picture in memory (at 2000 hex), and print the picture to a

Star Gemini or similar printer, using the 64's function keys. The

picture could be printed in a "wide mode" which stretched

it out across the page; a wierd and perhaps less than useful feature.

Alas, even the "normal mode" printout served to stretch the picture

slightly, since the aspect ratio (pixel width vs. height) of the printer

differs from that of the screen.

The good news: like Brainstorming, wierd concepts of no intrinsic

value can spark thought. (Light bulb suddenly appears in thought

bubble over man's head - Eureka!.) Which brings us back to

BIGPRINT. When a "wide" picture dump is initiated (via the F3 key),

the resulting picture takes up about the width of a standard printer

page, but its height is also increased, so that the overall proportions

match up quite well to those of the screen. Specifically, the big

printout is 50 percent wider than the normal size and twice as high.

Now why didn't I think of that?

BIGPRINT retains the option of printing a "normal" sized picture,

which it does in the same manner as P1CPRINT. Some pictures are

designed to look right on a printer rather than the screen, and look

best printed in normal mode.

After BIGPRINT is installed with SYS 49152, F7 will toggle high-res/

text mode, F3 will print the picture in normal size, and F5 will give the

big print. The stop key can be used to halt a picture in progress at the

end of a line.

The BASIC loader follows. Have fun with it, and keep those brain

storms coming in!

Notes:

1) Change the 76 in line 1030 to 121 to take advantage of the double

speed print mode of the Star Gemini-lOx printer.

2) The 4 in line 1280 is the secondary address for the Cardco interface,

and selects graphics mode with auto-linefeeds. You may have to

use the no-linefeed graphics mode (5), depending on the DIP

switch settings on your printer.

The Transactor 48

CJ

CA

LI

JM

MJ

PF

JC

GE

EM

CD

BH

MD

Jl

AC

Ml

OJ

PG

PK

LJ

FD

BM

HA

IL

NP

LI

LB

FL

f

I
V

-i

*^

/

\

10 rem* data loader

15 rem* for star

cardco

20 cs = 0

\

/

1
.'

v

\
>

, -

for "

V i

V
«-—iS—_

•r £

j

i

't

—..

bigprint"

gemini printer

interface

30 for i = 49152 to 49639:read

:cs = cs + a:next i

40:

50 if cs<>5893 1 thenprint" **

data statements *

60sys49152

70 end

80:

1000 data

1010 data

1020 data

1030 data

1040 data

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

1110 data

1120 data

1130 data

1140 data

1150 data

1160 data

1170 data

76.

0,

32,

27,

64.

64.

64,

64.

59,

141,

197,

0,

234,

169,

197,

6,

7.

0,

46,

0,

16.

76,

1,

64.

0,

64,

141,

21,

201,

141,

173,

1,

201,

208,

192,

141,

192

7

8

192

64

0

64

0

20

3

64

4

4

141

3

16

141

5

and

'i

\
\

\

/

, V

V /

a:poke i,a

** error in

: end

0

100

4

3

0

64

64

0

3

88

208

192

192

4

240

169

45

192

0,

128,

2,

, 27

64,

0,

0,

120,

169,

96,

8,

76,

208,

192,

35,

3,

192,

76,

0

64

1

75

0

64

64

169

192

165

169

49

43

165

201

141

169

143

Volume 5, Issue 06

PO

LM

01

GF

BD

DK

EB

Kl

IC

LA

CB

NM

HB

NA

CF

Fl

BN

CL

FB

BP

DL

EC

DN

CN

DN

EN

LE

JA

EO

NJ

OE

EC

1180 data 192, 201,

1190 data 0,141,

1200 data 192, 76,

1210 data 208, 73,

1220 data 173, 24,

1230 data 24,208,

1240 data 0,141,

1250 data 2, 41,

1260 data 255,141,

1270 data 192, 32,

1280 data 192,162,

1290 data 186, 255,

1300 data 255, 32,

1310 data 192, 32,

1320 data 133, 251,

1330 data 169, 27,

1340 data 51, 32,

1350 data 32,210,

1360 data 42,192,

1370 data 13, 56,

1380 data 133, 251,

1390 data 133, 252,

1400 data 192,172,

1410 data 189, 22,

1420 data 232, 224,

1430 data 40,141,

1440 data 162, 7,

1450 data 26,192,

1460 data 0,160,

1470 data 44,192,

1480 data 230, 252,

1490 data 10,192,

208

76

3

5, 208,

7, 192,

49, 234,

32, 141,

73,

49,

192,

4, 240,

3, 192,

195,255,

4, 160,

169, 0,

192,255,

201,255,

169, 32,

32,210,

210,255,

255, 169,

173, 5,

165,251,

165,252,

162, 0,

7,192,

192, 32,

4, 208,

43, 192,

157, 34,

202, 16,

0, 177,

230,251,

173, 44,

240, 9,

8, 169

76, 143

173, 17

17,208

8, 141

234, 169

173, 141

5, 169

173, 9

173, 9

4, 32

32, 189

174, 9

169, 0

133,252

255, 169

169, 16

25, 141

192,240

233, 64

233, 1

189, 18

208, 3

210,255

237, 169

169, 0

192, 157

247, 162

251, 141

208, 2

192, 57

185, 34

DJ

CE

MC

OA

FO

JG

NL

CG

LP

KO

HJ

GB

MC

EA

IO

AM

GP

GH

LL

DD

GB

HO

MO

NE

OF

BA

CB

LI

AN

CL

JJ

BJ

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

data 192, 29

data 192, 200

data 232, 224

data 7, 192

data 141, 45

data 189, 7

data 160, 7

data 6,192

data 16,185

data 192, 29

data 10,192

data 16,226

data 45,192

data 213,160

data 153

data 162

data 3

data 7

data 255, 32

data 8,208

data 76, 6

data 208, 248

data 255, 165

data 27,208

data 173, 7

data 5,192

data 141, 5

data 42, 192

data 32,210

data 210,255

data 195, 255

data 49, 234

10, 192,

192, 8,

8, 208,

240, 68,

192, 174,

192, 141,

185, 34,

61

26

10, 192,

153, 26,

206,

206,

10,

192,

34,

0,

192,

192,

6,

45,

7, 185,

192, 136,

189, 34,

32,210,

240, 6,

210,255,

231, 76,

193,206,

169, 13,

197,201,

3, 76,

192,240,

73, 1,

192,208,

208,231,

255,169,

173, 9,

32, 204,

153, 34

208, 234

216, 173

169, 7

5, 192

6, 192

192, 174

192,240

174, 45

202, 29

192, 136

192,206

192, 16

'26, 192

16,247

192, 77

255, 172

32,210

232, 224

167, 193

43, 192

32,210

63, 240

218,192

12, 173

41, 1

236, 206

169, 27

64, 32

192, 32

255, 76

"Mickey" by Coy V. Ison

created with 'Picture Perfect', printed with BIGPRINT

The Transactor 49 Volume 5, Issue 06

Two Short Sprite Editors
Chris Zamara, Technical Editor

The good thing about sprite editors is they make it easy to

design your own sprites. The bad thing about sprite editors is if

you don't have one, you have to type one in.

Of course, that's only bad news if the sprite editor program is

very long. And that will serve as introduction to the programs

presented below.

The sprite editors below work in different ways, but they share

the same basic philosophy: why have oodles of code to allow

cursor movement, character printing and deletion, etc. when

the built-in BASIC editor will do all that just fine, thank you?

Sprite Editor Number 1

The first one is the shorter of the two, and a bit boring perhaps,

but it works. The idea behind this one is to have the sprite

definition contained within DATA statements. That way you

can edit all the DATA statements on the screen, press RETURN

over each one, then RUN the program to define and display the

sprite. A bonus of doing it this way is that saving the program

once a sprite is so defined also saves the sprite definition.

Look at listing 1. Where are the data statements? The program

shares a trait with a monster robot in an old Japanese sci-fi

movie: it can "program itself to enlarge" (honest, that's what

the robot did in the movie). Enter the program, then RUN 300.

Lines 1000 to 1020 will be added to the program, and will be

listed for your convenience. Each period between the quotes in

the DATA statements represents one pixel in the sprite. Change

a dot to anything else (I like asterisks) to set the corresponding

sprite pixel. You'll have to press RETURN over each line to

enter it (the program sets auto-repeat on all keys so just start at

line 1000 and hold down the RETURN key to enter all lines).

When you want to see the sprite, RUN the program; the newly

defined sprite will appear at the top left corner of the screen. To

continue editing, LIST1000- or just LIST to display the current

DATA statements. The sprite is defined at sprite page 13 which

is location 832. Thus, the bytes stored from 832 to 895 com

prise the sprite definition, and may be written to a disk file or

otherwise saved in lieu of saving the sprite editor program with

the DATA statements. Sure, it's primitive, but it works, and the

program is only 20 lines long. The main inconvenience is that

you can't see the sprite dynamically change as each point is

changed; you have to RUN the program each time to see the

new sprite, and the re-definition process isn't quick. Enter

Sprite Editor *2.

Sprite Editor Number 2

This one is a bit longer, but much more exciting. The sprite

definition process occurs dynamically, as you plot or erase each

point. It can be fun to use, since the routine is interrupt-driven

and you keep complete control over the machine while you

define the sprite by putting asterisks on the screen. RUN it

(leaving out the opening REMs if you wish), and after a few

seconds, an array of dots will be printed starting at the top left of

the screen. After the dots appear, the computer returns to its

normal state - you are free to enter commands, edit or LIST a

program, whatever. But try changing some of the dots to

asterisks. As asterisks are entered in any of the indicated screen

locations, the sprite is instantly updated and displayed at the

right of the screen. Unlike program one, you shouldn't press

RETURN over each line or you'll get a syntax error - use SHIFT/

RETURN instead. The dots which are printed aren't really

important at all, but they serve as a guide to the boundary of the

sprite definition area (24 characters across by 21 down).

Remember, once the program has been RUN, any change in

the sprite definition field on the screen will affect the sprite. If

you were to LIST the program for example, you'd see the a

funny looking sprite form, and then appear to "scroll" upwards

with the program listing. As the asterisks in the program listing

move across the sprite definition field, the sprite continuously

changes to reflect the new asterisk pattern. Of course, listing is

slowed down considerably, since the interrupts are stealing so

much time.

When you've played around enough to come up with a sprite

you're happy with, you can disable the interrupt-driven sprite

program and print out the 64 bytes defining the sprite by

entering CONT. This command appears below the dots which

are printed out, so you can just move the cursor over the CONT

and press RETURN. After the values have been printed out, the

interrupt routine can be re-enabled with SYS 49152, and

disabled with SYS 49165.

The Transactor 50 Volume 5, Issue 06

Both programs can be embellished to give more features, for

example multi-colour sprite capability. Even if the programs

grow to the point of belying their calling in life (being small), it

doesn't matter. Somehow, it seems easier to write a huge

program than to type someone else's program in.

Listing for Sprite Editor #1

rem* simple sprite designer *

sp = 13 :rem sprite page

s = sp*64:rem sprite position

poke2040,sp

v = 53248:pokev + 21,1 :rem display mob

pokev + 39,1 :pokev,25:pokev+ 1,51

fori = 0to7:e(7-i) = 2ti:next

poke 650,128: rem repeat all keys

:rem convert data to mob

fori = 1 to21 :reada$:forj = 1 to24step8

v = O:fork = 0to7:ifmid$(a$,j + k, 1)<>"."

then v = v + e(k)

next k:poke s,v:s = s +1 :nextj,i

end

:rem add data statements

ifa>20thenlist1000-

print chr$(147)1000 + a" data";

print chr$(34)" "chr$(34)

rem 24 periods

a = a + 1 .-print"a= "a" :goto300"

poke198,3:poke631,19:poke632,13:poke633,13

end

Listing for Sprite Editor #2

KJ

NP

FD

KL

OC

PJ

PJ

LJ

BG

BK

EM

PC

CN

BN

IE

BD

CE

Fl

CN

Dl

EF

100

110

120

130

140

150

160

165

170

180

190

200

210

220

300

310

315

317

320

330

340

OA

OJ

CB

LI

BN

OE

EB

HG

GE

EN

IP

Dl

DJ

HL

Cl

ME

KH

IC

AH

BM

AK

AE

El

OJ

HG

Ol

EG

MH

DD

JG

KN

BP

OF

DE

EH

BF

DE

KO

Bl

EM

NH

BP

AL

CO

oo

CH

EH

CH

LC

DE

100 rem *

110 rem *

120 rem *

130 rem *

140 rem *

150 rem *

160:

» easy sprite editor« *

-use normal editor to draw. *

-use " *" to plot points.

-press return over "cont:

to print sprite values.

aug84 —cz—

*

#

170 fori = 49152to49278:reada:pokei,a:next

210:

220 rem * display sprite #13 (at 832]

230 v= 13*4096

240poke2040,13

250 poke v,30:poke v + 1,100:poke

260 poke \

270:

280 rem *

z + 21,1: pokev + 39,1

print design grid *

290 print chr$(147);:fori = 1 to21

295 nrint" " :next

296 rem 24 periods

300 print" cont:"

*

v+16,1

i

310 sys49152: rem * enable sprite draw

320 end

330 rem * " cont" executes the following

340 sys49165: rem * disable sprite

350 print chr$(147)

360 rem * print sprite values *

370 fori = 832to895:printpeek(i)

380 end

1000 data

1010 data

1020 data

1030 data

1040 data

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

1110 data

1120 data

1130 data

1140 data

1150 data

1160 data

1170 data

1180 data

1190 data

1200 data

1210 data

120,169, 37,141, 20,

169,192,141, 21, 3,

96,120,169, 49,141,

3,169,234,141, 21,

88, 96, 128, 64, 32,

8, 4, 2, 1, 0,

3,169, 0,133,251,

4,133,252,162, 0,

3,141, 35,192, 32,

192,173, 34,192,157,

3, 169, 8, 141, 36,

206, 35,192,208, 10,

3,141, 35,192,169,

141, 36,192,165,251,

109, 36,192,133,251,

2, 230, 252, 232, 224,

208,210, 76, 49,234,

0,141, 34,192,160,

177,251,201, 42,208,

185, 26,192, 13, 34,

141, 34,192,136, 16,

96

jraw

next

3

88

20

3

16

0

169

169

101

64

192

169

24

24

144

64

169

7

9

192

238

The Transactor 51 Volume 5, Issue 06

A List Scrolling

Routine For The C64

Darren James Spruyt

Gravenhurst, Ontario

Dig out program lines from beyond the screen limits !

This program allows you to scroll both forwards and

backwards through a BASIC program on the screen using

the cursor up/down keys. It saves countless typings of

'LIST' and having to press the RUN/STOP key at the

correct time.

The operation is very simple: after you have run the

BASIC loader program (Listing 1), give the enabling 'SYS.'

To scroll backwards through the listing, place the cursor

on the top row of the screen and press cursor up. If the

screen has no numbers along the left hand side, the listing

will start from the very last line of the program. Con

versely if you are at the bottom of the screen (with no line

numbers on the screen) and press cursor down, the listing

will start with the first line in the program.

If line numbers appear on the screen, upwards scrolling

will list the line previous to the number closest to the top

of the screen, and if scrolling down, the line number that

follows the one closest to the bottom of the screen will be

listed.

One note: Be sure to stop a real list before pressing the

cursor down, or else nasty things may happen. That is, if

you typed 'LIST 100-', press the RUN/STOP key before

trying to scroll down the listing.

Listing 1 is the BASIC loader for LIST SCROLLER, while

listing 2 is a disassembly of the program. A few notes: The

vector at ($0300) is the 'ERROR MESSAGE LINK', and all

errors pass through this vector as well as the list routine

when it is finished. This vector is changed so that the

program can regain control after a line has been listed or

when an error occurs during line number fetches.

The programming method used could be denoted 'POST-

INTERRUPT' - that is, when an interrupt occurs, a little

pre-interrupt code is done, then the system interrupt code

is performed (keyboard scan, updating TI$), and finally,

control is returned to the post-interrupt routine before the

interrupt returns. The advantage over a simple pre-

interrupt technique is that the program can check if

certain keys are pressed before the screen editor even

knows they exist.

CC

LI

BF

DH

GK

LJ

Cl

AF

IN

IB

DC

EJ

OE

PC

NH

NP

DJ

BP

LL

HB

ID

JK

CF

AA

LN

AP

BP

CC

CA

GG

MM

HC

AC

GG

KC

KF

HH

DH

GH

OG

DL

KK

OG

GO

AA

Listing 1: BASIC loader for scroll routine

Orem* data loader for "scroller" *

20 cs = 0

30 for i = 51456 to 52049:read a:poke i,a

40cs = cs + a:next i

50:

60ifcsO73817then

print"**** error in data statements ****'

70 remsys 51456

80 end

100:

1000 data 120, 173, 20,

1010 data 201,173, 21,

1020 data 201,169,201,

1030 data 169, 30,141,

1040 data 0,141, 67,

203,1050 data 44, 67

1060 data 126, 234,165,

1070 data 76, 49,234,

67,203, 160,

69,203, 136,

73, 169,201,

8, 72, 72,

3, 141

3, 141

141, 21

20,

203,

16,

3,

88,

3,

1080 data

1090 data

1100 data

1110 data

43

44

3

169

96

76

157, 48, 3

169,255, 141

5, 104, 153

16,249, 160

72,152, 72

72, 76, 49

1120 data 234,164,198, 240, 13,185

1130 data 118, 2,162, 1,221, 60

1140 data 203, 240, 6,202, 16,248

1150 data 76,159,202,165,214,221

1160 data 62,203,240, 3, 76,159

1170 data 202, 142, 77,203, 32,178

1180data202, 32, 25,203, 32,187

1190 data 202,198, 198, 174, 77,203

1200 data 224, 0,208, 3, 76, 4

1210 data 202, 162,255, 232, 224, 25

1220 data 240, 11,181,217, 16,247

1230 data 32,229,202,144,242,176

1240 data 6, 169, 255, 133, 20, 133

1250 data 21, 32, 19,166,164, 95

1260 data 228, 44,208, 7,196, 43

1270 data 208, 3, 76,156,202,202

1280 data 228, 44,176, 5,166, 44

1290 data 164, 43, 136, 134, 64, 132

1300 data 63,160, 0,177, 63,240

1310 data 6,200,208,249, 76,156

1320 data 202, 200, 177, 63,197, 95

1330 data 208, 243,200, 177, 63,197

1340 data 96,208,236,136,152, 24

1350 data 101, 63,133, 95,165, 64

end

The Transactor 52 Volume 5, Issue 06

NF

IL

JM

JL

MK

MJ

BO

DF

CG

IA

DA

MG

FG

Al

NE

IB

LK

IE

GB

FB

KH

FF

DL

JP

LM

AO

KJ

FL

HP

FK

BK

FG

CM

NC

KG

10

BA

HG

EP

CL

GE

DB

OL

EA

JD

BG

Cl

OH

BN

PG

BK

BG

NN

Kl

AJ

KH

NJ

AO

FHl 1 1

LE

LB

KA

IB

1360 data 105,

1370 data 181,

1380 data 32,

1390 data 104,

1400 data 133,

1410 data 162,

1420 data 134,

1430 data 85,

1440 data 11,

1450 data 229,

1460 data 169,

1470 data 72,

1480 data 4,

1490 data 23,

1500 data 16,

1510 data 230,

1520 data 32,

1530 data 9,

1540 data 1,

1550 data 134,

1560 data 48,

1570 data 1,

1580 data 64,

1590 data 132,

1600 data 165,

1610 data 133,

1620 data 166,

1630 data 64,

1640 data 169,

1650 data 202,

1660 data 0,

1670 data 202,

1680 data 128,

1690 data 202,

1700 data 72,

1710 data 169,

1720 data 129,

1730 data 206,

1740 data 214,

1750 data 141,

1760 data 211,

1770 data 214,

1780 data 32,

1790 data 207,

1800 data 205,

1810 data 240,

1820 data 209

1830 data 32

1840 data 30

1850 data 24

1860 data 210

1870 data 121

1880 data 107

1890 data 36

1900 data 0

1910 data 16

1920 data 3

1930 data 96

1Q40 rtatn T

1950 data 3

1960 data 12

1970 data 215

1980 data 0

0,

217,

255,

233,

217,

1,

214,

202,

181,

202,

255,

208,

169,

208,

243,

20,

19,

9,

32,

214,

3,

177,

203,

15,

96,

20,

224,

203,

13,

202,

141,

104,

202,

160,

200,

0,

234,

32,

141,

76,

96,

173,

108,

140,

140,

233,

192,

240

201

101

105

0

169

24

3

247

169

173

1731 / O

96

139

224

0

133,

48,

233,

165,

169,

142,

32,

162,

217,

144,

133,

21,

13,

5,

169,

208,

166,

128,

255,

32,

32,

95,

169,

165,

133,

133,

11,

160,

32,

32,

146,

104,

230,

0,

192,

141,

174,

19,

75,

203,

174,

76,

229,

140

139,

160

39

245

58

209

0

142

174

96

153

169

202

65

fifi

17

227

137

65

96,

5,

162,

217,

39,

146,

240,

25,

16,

244,

20,

224,

208,

232,

255,

2,

165,

133,

233,

240,

210,

240,

0,

95,

64.

21.

240,

1,

210,

47,

2,

104,

198,

185,

6,

67,

135,

234,

203,

169,

75

203

160

2

2

255

240

201

176

133

133

68

68

160

65

117

141

203

?m

145

0

97

65

162,

162,

0,

9,

133,

2,

233,

202,

249,

176,

133,

24,

245,

181,

208,

230,

218,

218,

162,

233,

255,

37,

145,

133,

169,

76,

26,

145,

255,

203,

76,

104,

76,

69,

208,

203,

2,

96,

165,

0,

203,

133,

0,

200,

96

200

38

48

26

122

123

203

203

1

203

141

1

141

141

24

23

0

65

24

23

32

128

213

202

76

48

32

9

21

208

224

217

232

21

48

162

24

104

160

141

95

63

255

215

173

63

32

169

159

76

133

203

247

76

165

165

211

133

134

211

132

132

32

177

201

144

152

165

32

32

56

185

136

0

3

0

-i
i

0

173

24

65

c900sei

C901 Ida $0314

c904sta $c92b

c907lda $0315

c90asta $c92c

c90dlda #$c9

c90f sta $0315

c912lda #$1e

c914sta $0314

C917lda #$00

c919sta $cb43

c91ccli

c91drts

c91ebit $cb43

C921 bpl $C926

c923jmp$ea7e

c926lda $9d

c928 bmi $c92d

c92ajmp $ea31

c92dlda #$ff

c92f sta $cb43

c932ldy #$05

c934 pla

c935sta $cb45,y

c938 dey

c939bpl $c934

c93bldy #$49

c93dlda #$c9

c93f pha

c940 tya

c941 pha

c942 php

c943 pha

c944 pha

c945pha

c946jmp $ea31

c949ldy $C6

c94bbeq$c95a

c94dlda $0276,y

c950ldx #$01

C952cmp$cb3c,x

C955 beq $c95d

c957 dex

C958bpl $c952

c95ajmp $ca9f

c95dlda $d6

c95f cmp$ob3e,x

c962 beq $c967

c964jmp$ca9f

c967stx $cb4d

c96ajsr $cab2

c96djsr $cb19

c970jsr $cabb

c973 dec $c6

c975ldx $cb4d

c978cpx#$00

c97a bne $c97f

c97cjmp $caO4

c97f Idx #$ff

c981 inx

c982cpx #$19

c984 beq $c991

c986lda $d9.x

c988bpl $c981

c98ajsr $cae5

c98dbcc$c981

c98f bcs $C997

c991lda #$ff

0993 sta $14

0995 sta $15

c997jsr $a613

c99aldy $5f

c99ccpx $2c

c99e bne $c9a7

c9aO cpy $2b

c9a2 bne $c9a7

C9a4jmp$ca9c

c9a7 dex

c9a8 cpx $2c

c9aa bcs $c9b1

c9acldx $2c

c9aeldy $2b

c9b0dey

c9b1 stx $40

c9b3sty $3f

c9b5ldy #$00

c9b7lda ($3f),y

c9b9 beq $c9d

c9bbiny

C9bcbne$c9b7

c9bejmp$ca9c

c9d iny

c9c2lda ($3f).y

c9c4 cmp$5f

c9c6 bne $c9bb

Listing 2:

llockout irq's

icopy old irq to

;use in the exit

iroutine

I set new irq vector

iset processing to

;non active mode

; processing active?

I no

iskip out quick

; in immediate mode

i yes

lotherwise exit

.set processing to

ithe active state

; remove six bytes

ifrom the stack,

iput there

;by the

interrupt routine

;set up false irq

;return

ivector and put

lit onto the

istack

; push false status

ipush 3 more

idummy values onto

ithe stack

icont with interrupt

icontrol returns to

ihere when irq done

;get# chars in buf

;empty

; get last char

icheck against

ithe wanted chars

;no matches

icursor row

icheck against row

I needed to execute

ino match here

;up/down flag

;erase cursor

;change($0300)

: save cursor pos

ipurgefrom buf

Itype up/dwn

idown number

I not equal - up

ijmp to cursor down

istartof cursor up

ichecked all lines

.yes

igetlink

lline's linked retry

;try to linenumber

;none present

iskip over

; set for top

imostline

ito be found

ifind line

;lo byte

icompare with Start

;of basic hi

icompare with Start

;of basic lo

;no previous lines

icheck x lower than

istart of basic

mot at all

icorrect if lower

ithat start of basic

;set up indirect

iset to search

;for a zero byte

imeaning end of line

;no match

;try for next

ino more chances

icheck the value

lagainstthe link lo

ino match, retry

C9c8 iny

c9c9 Ida

c9cbcmp

Commented Disassembly

($3f),y

$60

c9cd bne $c9bb

c9cf dey

c9d0 tya

c9d1 clc

c9d2adc$3f

c9d4sta

c9d6lda

$5f

$.«)

c9d8adc#$00

c9da sta

c9dcldx

c9de Ida

c9eO bmi

c9e2 Idx

c9e4 jsr

c9e7Idx

c9e9 jsr

c9ec Ida

c9ee ora

c9fO sta

c9f2 Ida

c9f4 sta

c9f6 Idx

c9f8 stx

c9fb dex

c9fc stx

c9fe jsr

$60

#$18

$d9.x

$c9e7

#$17

$e9ff

#$00

$e968

$d9

#$80

$d9

#$27

$d5

#$01

$0292

$d6

$e9fO

ca01 jmp $ca55

ca04Idx

caO6 dex

ca07 bm

caO9Ida

caObbpl

caOdjsr

#$19

$ca14

$d9,x

$caO6

$cae5

ca10 bcc $caO6

ca12 bcs $ca1d

ca14lda

ca16sta

ca18sta

ca1a phs

ca1 b bne

m
$14

$15

$ca32

ca1dcpx#$18

calf bne$ca25

ca21 Ida #$0d

ca23 bne $ca1a

ca25cpx #$17

ca27 bne $ca2e

ca29 inx

ca2aIda

ca2c bpl

$d9.x

$ca21

ca2elda #$ff

ca30bne$ca1a

ca32 inc $14

ca34 bne $ca38

ca36inc $15

ca38jsr

ca3blda

ca3d bm

ca3f ora

ca41 sta

ca43ldx

ca45 jsr

ca48 Idx

ca4a stx

ca4c jsr

ca4f pla

ca50 bm

ca52jsr

ca55 Idy

ca57Ida

$a613

$da

$ca48

#$80

$da

#$01

$e9«

#$1B

$d6

$e9fO

$ca55

$ffd2

#$01

($5f),y

ca59 beq $c

ca5b sta

ca5elda

ca60 sta

ca62 sty

ca64 Ida

ca66 sta

ca68 Ida

ca6a sta

ca6c Ida

ca6e sta

ca70 sta

$cb40

#$00

($5f),y

$01

SSI

S3!

S60

$40

$14

$15

ca72 jmp $a6d7

ca75 cpx #$0b

ca77 beq $ca93

ca79 Ida

ca7c Idy

ca7e sta

ca80Ida

ca82 jsr

ca85jsr

ca88 jsr

ca8blda

ca8d sta

$cb40

#$01

($3f).y

#$0d

$ffd2

$caca

$cb2f

#$00

$0292

ca90jmp $ca9t

icheck value against

ithe link hi

;to match

imake ($5f)

imatch

;($3f)
iplus

Ithe y register

;offset

icheck bottom line

;for a link

I not linked

; erase second bottom

;elim half lines

iset to scroll down

idoit

;fix the top lines

ilink

lvalue

;fix its length also

iset insert mode

iset cursor to

Ithe home

iposition

;intomain list

isettoscan

iscreen

idone all lines

iget link byte

ilinked, retry

isearch for line*

.not present

lyes skip over

iset for first line

ipush a byte

ljump over code

;was line# on bottom

; no

I put byte onto stack

;wasline# on 24th

;no skip over

;was bottom lineked

lyes.byte on stack

; put byte onto stack

; increase Inum by 1

ifind line number

isecond line (top)

ilinked?

lyes, unlick it

lerasethe

Ithe line

;set cursor to

; bottom

;of screen

; pull a byte

; negative skip over

iprint the return

imain list entry

icheck linkage

;end of lines

isave link byte

ichange link to fool

ithe list routine

;se! list quote fig

; copy ($5f) to

;($3f)

isetline list top

;to a maximum value

linto list routine

imeans error from

leval fxd pnt num

;fix up

Ithelink that was

ichanged earlier

iprint

;a return

iturn off insert mde

linto exit routine

ca93 pla

ca94 pla

ca95 pla

ca96 pla

ca97 jmp $ca80

ca9a inc $c6

ca9cjmp $ca85

ca9f Idy #$00

caal Ida $cb45,y

caa4 pha

caa5 iny

caa6 cpy #$06

caa8 bne $caa1

caaalda #$00

caacsta $cb43

caaf jmp $ea81

cab2ldx $0287

cab5lda $ce

cab7jsr $ea13

caba rts

cabblda $d6

cabdsta $cb4b

cacOlda $d3

cac2 sta $cb4c

cac5lda #$00

cac7sta $d3

cac9 rts

cacaIdx $cb4b

cacdstx $d6

cacf Ida $cb4c

cad2sta $d3

cad4 jsr $e56c

cad7ldy #$00

cad9sty $cf

cadbsty $028c

cade iny

cadf sty $cd

cae1 sty $028b

cae4 rts

cae5 jsr $e9fO

cae8ldy #$ff

caea iny

caeblda ($d1),y

caed cpy #$27

caef beq$cb17

cad cmp#$20

caf3 beq $caea

caf5 cmp#$30

caf7 bcc$cb17

caf9 cmp#$3a

cafb bcs$cb17

cafd tya

cafe clc

caff adc$d1

cb01 sta $7a

cbO3lda $d2

cb05adc#$00

cb07sta $7b

cbO9jsr $0079

cbOcstx $cb44

cbOf jsr $a96b

cb12ldx $cb44

cb15sec

cb16bit $18

cb18rts

cb19ldy #$01

cbiblda $0300,y

cbiesta $cb41,y

cb21 dey

cb22bpl $cb1b

cb24lda #$75

cb26sta $0300

cb29lda #$ca

cb2bsta $0301

cb2e rts

cb2f Ida $cb41

cb32sta $0300

cb35lda $cb42

cb38sta $0301

cb3brts

cb3c

cb3e

cb3f

cb40

cb41

cb42

cb43

cb44

cb45

cb47

cb48

cb49

cb4b

cb4c

cb4d

ipull byte from

;fxd pnt routine

;and from find line

iroutine

linto fix up rtne

ire-instate char

lenter fix up rtne

imain exit rout

ipush all the

isaved data

ibackonto

Ithe stack

iset processing to

inull state

land exit

;erase cursor

iroutine

isave cursor row

isave cursor column

iset column to

;a zero value

irestore cursor row

irestore cursor col

;fix cursor status

;fix

;up all the delay

.counters so

ithat scrolling

iwill occur

imuch faster

isetline

: get char from line

lat end of line

lyes

a space?

i yes

I under ascii '0

i yes

lover ascii '9

lyes

;fix ($7a) to

imatch ($d1)

iplusthe

lindex

lint they

iregister

ichrgot - set flags

isave x - reg

;eval number

irestore x val

icarry set = found

;entry for carry clr

■copy ($0300)

ivector to memory

icontinue

.set new vector

irestore the old

;($0300) vector

I data cursor up/down

icursor down line

icursor up line

ifink byte save

istorageforthe

; ($0300) vector

; processing status

;x-reg temp storage

istack storage

; (six bytes)

icursor row

icursor col value

;up/down flag

The Transactor 53 Volume 5, Issue 06

STP: Execute From A Sequential File
Chris Zamara, Technical Editor

STP stands for "Sequential To Program", as this utility was

originally written to convert a sequential program listing into a

BASIC program. That enables you to LIST a program to disk,

edit it with a word processor, then merge it with a program

currently in memory. And if you felt like it, you could even

write a program from scratch with a word processor, save it as a

sequential file, then use STP to turn it into a normal program.

As often happens with programs, STP turned out to be more

useful than it was intended to be. STP turns a sequential file

into a program by reading a disk file line by line (assuming

carriage returns at the end of each line) and processing that line

as if it were entered from the keyboard. So if the disk file

happens to look like a BASIC program, then that program gets

entered just as if you typed it in yourself. Consider, however, a

file that looks like this:

load "game.ml" ,8,1

new

load"game.bas",8

10 rem

list

run

This file could be created like this:

open 1,8,12," O:test file,s,w"

print#l," load " chr$(34)" game.ml" chr$(34)" ,8,1"

print#l, "new"

print#l," load " chr$(34)" game.bas" chr$(34)" ,8"

print#l," 10 rem"

print#l,"list"

print* 1," run "

close* 1

STP-ing that file would give the same results as typing in those

commands from the keyboard: you'd LOAD some machine

language, NEW, load a BASIC program, REM out line 10, LIST,

then RUN the newly loaded program. STP can automate some

procedures that you currently don't have a program to do. You

could use it to boot up some programming utility packages,

change some parameters, set up some defaults, colour your

screen and border nicely, etc. If you're familiar with the Power

64 utility, you'll notice that STP does the same thing as

Morepower's EXEC function.

STP is only 173 bytes long, and as listed here, it lives at $C000

or 49152 decimal. It may be convenient to assemble a version

to lie at 828 in the cassette buffer (such a version is on the

Transactor disk for this issue). To use it, just call it with a SYS

followed by a comma and the filename of the sequential file to

be STP'd. For example:

sys 49152, "testfile

Any string expression is valid, for example:

10 input "filename" ;f$

20sys49152,f$

30 end

STP can be called from within a program, but will only become

active AFTER the program ends. Pressing the STOP key will

halt STP at the end of the line currently being read in.

For the curious, STP works through the 64's warm start link at

$0302-0303. It routes this vector to the main routine, which

reads in a line, prints it on the screen, puts a cursor-up and

carriage return in the keyboard buffer, then jumps to the

normal warm link entry point. The new line will be entered,

and after it has been processed, control is again passed through

the warm start vector and the process repeats until end-of-file

is reached. At that point, the link vector is restored to its normal

state.

The only other catch is the bit of trickery necessary to prevent

the disk file from being closed after a BASIC line is entered or a

NEW is performed. All open files are normally closed by a

routine that is fortunately vectored through an "abort I/O

vector" at $032C-032D. The vector points to $F32F, and the

first thing that happens there is the accumulator is loaded with

a zero to be stored in the number of open files variable at

$0098. To keep one file open at all times, STP points the abort

I/O vector to its own routine which loads the accumulator with

one, then sneaks by the LDA instruction in the abort I/O

routine, jumping to $F331 instead of $F32F. This effectively

prevents the first file opened from ever closing. STP closes all

open files before it opens the disk file so that the disk file will be

the first open file.

The Transactor 54 Volume 5, Issue 06

AN

LI

PF

DH

GK

OH

PB

AF

IN

AF

AD

AM

PB

IG

AF

GH

CJ

MG

Cl

LI

PI

JJ

CN

EM

EM

MA

EM

PM

CA

HP

MB

AD

NB

KL

FE

HJ

DG

OD

HH

KF

NO

MH

CB

KM

NK

EB

OK

HG

EN

NH

FN

HL

AG

EG

HM

NH

FM

IL

GC

IF

PI

EE

The BASIC Loader Program

10 rem* data loader for " stp" *

20 cs = 0

30 for i = 49152 to 49325:read a:poke i,a

40 cs = cs + a:next i

50 :

60ifcs<>2168 1 thenprint" **** error in data

statments ****"■ end

70 print "to run

80 end

100 :

1000 data 32,

1010 data 32,

1020 data 101,

1030 data 177,

1040 data 72,

1050 data 2,

1060 data 3,

1070 data 94,

1080 data 141,

1090 data 44,

1100 data 3

1110 data 12

1120 data 104

1130 data 32

1140 data 208

1150 data 49

1160 data 32

1170 data 32

1180 data 38

1190 data 169

1200 data 92

1210 data 93

1220 data 47

1230 data 141

1240 data 108

1250 data 198

1260 data 169

1270 data 197

1280 data 141

stp: sys49152,filename"

253,174, 32,158,173

143,173,169,100,160

32,219,182,160, 0

100, 72,200,177,100

200,177,100, 72,173

3,141, 92,192,173

3,141, 93,192,169

141, 2, 3,169,192

3, 3,169, 87,141

3,169,192,141, 45

169,127,162, 8,160

32, 186,255, 104, 168

170,104, 32,189,255

192,255, 32,183,255

28, 96,169, 1, 76

243, 0, 0,162,127

198,255, 32,228,255

210,255,201, 13,240

32,183,255,240,241

127, 32,195,255,173

192,141, 2, 3,173

192,141, 3, 3,169

141, 44, 3,169,243

45, 3, 32,204,255

92,192,169, 2,133

169,145,141,119, 2

13,141,120, 2,165

201, 63,240,203, 76

192, 32,210,255,165

The source code for STP

00 sys700

1010 .opt oo

1020

1030;

1040;"STP"

;pal 64

$c000

1050 ;executes a sequential file

1060;syntax k

1070 ;sys(addr)," filename"

1080;

1090 ;kernal entries:

1100chkin

1110chrout

1120 clall

1130 close

1140clrchn

1150 getin

1160 open

1170 readst

1180 setlfs

1190 setnam

1200 ;

1210 warmlnk

1220 abortio

1230;

= $ffc6

= $ffd2

= $ffe7

= $ffc3

= $ffcc

= $ffe4

= $ffcO

$ffb7

= $ffba

= Sffbd

$0302

$032c

LE

PK

ON

MG

MH

MP

N

LI

AF

BA

CL

DO

Dl

IH

KN

HL

OO

KP

HL

FH

ME

NJ

Kl

BO

AM

IE

HN

JA

ML

EB

FM

Cl

KP

OA

CK

KG

AK

AM

FJ

EN

MG

HI

MG

FL

NN

EN

EP

EC

ND

AN

BP

AL

NE

JA

LO

FA

JK

II

KN

FA

Ol

KN

GL

KC

IA

OD

1240 Istx

1250 ndx

1260 keyd

1270;

$c5 ;last key pressed

$c6 ;# of keys pressed

$277 ; keyboard buffer

1280 ;get filename

1290

1300

1310

1320

1330

1340;

1350

1360

1370

1380;

1390

1400;

1410 ;change

jsr $aefd ;check for comma

jsr $ad9e ;evaluate expression

jsr $ad8f ;check for string

lda#$64:ldy#$65

jsr $b6db ;dean descriptor stack

ldy#0:lda($64),y:pha;length

iny:lda($64),y:pha ;addrlow

iny:lda($64),y:pha ;addrhi

jsr clall ;close any previous files

warm start link

1420 ;and abort i/o vector

1430

1440

1450

1460

1470

1480

1490;

Ida warmlnk : sta oldwarm

Ida warmlnk +1: sta oldwarm +1

lda#<newarm : sta warmlnk

Ida #>newarm : sta warmlnk +1

Ida #<newio : sta abortio

Ida #>newio : sta abortio +1

1500 ;open disk file

1510

1520

1530

1540

1550

1560

1570

1580;

1590 newio

1600

1610;

lda#127:ldx#8:ldy#12

jsr setlfs ;open 127,8,12

pla:tay:pla:tax:pla

jsr setnam

jsr open

jsr readst: bne outO ;disk error

rts

= * ;keep 1 file open

Ida#1:jmp$f331

1620oldwarm .worO

1630;

1640 newarm = *

1650 ;new warm start link points here

1660

1670 nexbyt

1680

1690

1700

1710;

1720outO

1730

1740

1750

1760

1770

1780 out

1790

1800

1810;

1820endlin

1830

1840

1850

1860

1870

1880

1890 .end

ldx#127: jsr chkin

*

jsr getin:jsr chrout

cmp#13: beq endlin

jsr readst: beq nexbyt

Ida #127: jsr close

Ida oldwarm : sta warmlnk

ldaoldwarm + 1: sta warmlnk+1

Ida #$2f: sta abortio

Ida#$f3: sta abortio+ 1

BS *

jsr clrchn

jmp (oldwarm)

= *

Ida #2: sta ndx ;# keys in buffer

Ida #145: sta keyd ;crsr up. . .

Ida #13 : sta keyd + 1 ;& cr in kbuf

Ida Istx ;key pressed

cmp #63: beq outO ;check for stop

jmp out

The Transactor 55 Volume 5, Issue 06

Quote

Killer

Quote killer was born on a bright sunny day as I lounged by the pool

sipping a tall cool drink. Serendipity you say? You would be absolutely

correct if you think serendipity has some relationship to a threat to

your computer's well being.

My girlfriend had expressed interest in learning how to program my

C64 (neat girlfriend, eh!, and no, she is not available). To that end, I

had bought her a book for neophyte programmers into which she had

plunged with enthusiasm. But alas, there she stood trembling with

indignation and threatening to teach my machine how to do the swan

dive.

All she could say was, "Dumb stupid quote mode!"

Thinking quickly while 1 gingerly plied my 64 from her hands, I

promised her I would do something about it.

It is generally accepted that Commodore's on-screen editor is one of

the best in the industry. The only major fault it has is the inability of

the programmer to take the machine out of quote mode (or insert

mode) without pressing the return key; the 64 lacks the handy ESC

key of the 8032 machines. Consequently, you have to hit return and

cursor back to the mistake to correct it. This doesn't present much of a

problem, other than the inconvenience, to those of us who are used to

it but for the novice, it is often a source of ongoing frustration.

The most obvious choice for a key to toggle quote killer was one of the

function keys, and indeed Fl was the key I originally used. 1 immedi

ately ran into problems with this when 1 started to design a program

that made extensive use of the functon keys. At that time I realized

that Commodore, in all its mystery and imagination, had included an

apparently useless key on the keyboard. Tell me, when was the last

time you used the back-arrow key for anything?

During this change of keys I decided to add a few features to quote

killer which would make it much more useful to the advanced

programmer. Quote killer now has the ability to force the machine

into quote mode and to force a single character insert mode without

opening any space in text. As an afterthought 1 also included the

ability to force the repeat of any character on the keyboard when that

particular key is held down. All the keystrokes that you need to know

for the activation of quote killer's modes are included in the BASIC

loader and will be displayed when the program is run.

Gary Gunderson

Richmond, BC.

Quote killer resides at the top of the cassette buffer and is therefore

sensitive to any form of reset or tape operation. The only safe way to

disconnect it is with RUN-STOP/RESTORE. SYS903 will reconnect it.

If for some reason you don't like my choice of the toggle key, you can

alter it by changing the first data element of line 1050 to the keyboard

matrix number of your choice. For example, a 4 in this location will

make Fl the toggle. Remember, changing the BASIC loader in this

way will change the checksum value, so change the checksum

comparison accordingly or get rid of it altogether.

For those of you who are curious, quote killer demonstrates how to go

about changing system vectors to suit your own needs. It is a very

simple but powerful technique. The machine code is less than 100

bytes and should be very easy to follow.

By the way, having a girlfriend that likes to program is not always the

most ideal situation. What do you do when she takes a piece of your

immaculate code, shortens it by one third and makes it run 25 percent
faster? Say "thank you"?

JH\J J 1

HC

GC

EH

MM1 X I 1

FN

DP

LD

OB

ED

DF

KB

10

Fl

AB

LK

KC

PI

PG

OB

LO

BC

KB

ND

JE

FF

CC

CA

JG

KO

GG

BA

NN

NK

2 rem *** quote killer ***

3 rem *** by ***

4 rem ** * gary gunderson ***

10 fori = 903to998:reada:cs = cs + a

20 next i

30 if cs<>11893 then print"** erro

statements!! **": end

40 sys903

50 print" ■

60 print"

70 print"

80 print"

:poke i,a

' in data

:printchr$(147)" quote killer activated.

<- - kills quote mode

- kills insert mode

- kills repeat mode" rprint

90 print" shifted «- -enables quote mode

100 print"

120 print"

130 print"

150 print"

160 print"

170:

1000 data

1010 data

1020 data

1030 data

1040 data

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

1110 data

1120 data

1130 data

commodore *- -one cha

Ctrl «- -enable repeat for

keys": print

r ins r

all

run-stop/restore to deactivate

sys903 to reactivate"

173,144, 2,201, 3,

173,143, 2,141,248,

144, 2,141,249, 3,

167,141,143, 2,169,

144, 2, 88, 96,165,

57,208, 55,173,141,

1,240, 22,201, 2,

201, 4,240, 28,169,

212, 133,216, 133, 199,

2, 76,224, 3,169,

212, 76,224, 3,169,

216, 76,224, 3,169,

138, 2,234,234,234,

133,203,108,248, 3

240,

3,

120,

3,

203,

2,

240,

0,

141,

1,

1,

128,

169,

node

86

173

169

14 1

201

201

25

133

138

133

133

141

64

:print

The Transactor 56 Volume 5, Issue 06

Gap Remover
Richard Evers, Editor

Let's set the scenario. You have just SAVEd a file to diskette and, to set

your mind at ease, performed a directory of the diskette. You view the

entire directory only to discover that your file isn't there. You fall into

great despair. . . a feeling that all your work has been in vain. With a

sudden blast of inspiration, you look through the directory once

again, very carefully this time. Within seconds your pulse is back to

normal, but all is not right. Your file has mysteriously placed itself

smack in the middle of the directory listing, thus falling into a prior

scratched file's 'Black Hole'.

The situation is common, but often not as dramatic. If you have used

your drive for longer than a few days, you already have accepted this

rotten fact of life. Scratched files leave holes that future files trip into.

This leads to disorganized directories, and strange delays when

performing a passive catalog. A problem that now has a cure. Enter

'The Gap Remover'. Fire it up, answer a few important questions, and

within a few minutes your directory will be clean and fresh, all extra

spaces removed and placed at the very bottom. From then on, every

file you SAVE will appear last in the directory.

Without burning up precious magazine space, the concept is as

follows. The directory on your diskette is held on one track, track 18

for the 1541/2031/4040 drives, and track 39 for the 8050/8250

monsters. The first directory block is sector #1, with eight file entries

per sector maximum. The first two bytes of every sector holds the

track and sector of the next directory block. The sectors are spaced 3

apart, to allow for the drive to naturally reach it as it spins around. If

the directory sector being read is the last one used, the track will read

as a zero, and the sector will be $FF. The DOS realizes that there is no

track zero, therefore the end has come. Simple so far.

The program reads in every entry from the directory track, keeping

the link pointers in check as it goes along. If a non-existent file

appears, one in which has been scratched, the file is flagged to the

screen as showing as a gap, and its space is ignored. Every valid

directory entry is kept in an array. When the entire directory has been

read through, the packing process begins. The non-existent files have

already been removed, therefore it is just a simple process of writing

the packed entries back in. Once the process determines that the end

of valid entries has occurred, null entries (32 x $00's) are written to the

directory sector involved to fill in the extra space. When complete,

you may end up having an extra directory sector or two if the packing

required was large, but the directory will be OK. You can now SAVE

files to your heart's content and never have to worry about them

falling into the mysterious Black Holes of the D1R quadrant.

MD -4&-rem save" O:gap fill.bas" ,8

AD -+96 rem rte/84 - gap filler for spaces left in your directory

HD i{$) print" ** directory gap filler - rte/84 **"

CK -43© print" drive type :"

BE \~m input" 1) 1541/2031/4040 or 2) 8050/8250 " ;dt: if dt<l
ordt>2then 130

. T4TJTntrk = 18: if dt = 2 then mtrk = 39: rem assign correct

directory track

NL l£©-input" drive* ";dr: if dr>l then 150

EB 160:

DP fitCHim dir$(223): rem ** max directory entries

DM -iSO-dim tl$(27), sl$(27): rem ** track/sector links

OF QJftrk = rfrtri?: sec = 1: rem directory track and first sector to use

JK $4fi>ctr = 0: Ink = 0: z$ = chr$(0)

U §Tto rp$ = "": for x = 0 to 29: rp$ = rp$ + chr$(0): next: rem

** replacement string

AF 220:

1H tl&l open 15,8,15: open 5,8,5, "#": rem command channel

+ buffer

"24?) print*15," ul:" ;5;dr;trk;sec: rem read dir entry into buffer

250:

EK

OG

AK

CD

BE

cj

FE

GE

BF

GF

1M

FE

IM

GO

CC

II

KH

LH

GH

JO

DM

JE

PK

LE

= 0to255step32//#

t$$ if th^O:get*5,t$,s$: if x then^O: rem get correct links

asc(t$ + z$): sec=asc(s$ + z$): rem link t/s

= 2 to 31: get*5,a$:dir$(ctr) = dir$(ctr) + chr$(asc(a$ + z$))

:nexty ;we

= mid$(dir$(ctr),4,16): if asc(dir$(ctr)) then 320: rem if

not scratched ffa

a$ tab(17)"« gap »": dir$(ctr)= "": goto-S&l

a$: ctr = ctr+l

x

340:

) = chr$(trk):sl$(lnk) =

ffll&if trk then lnk = lnk+l: goto 24ft rem ok- go for more

370: "»°
380 rem ** directory completely loaded in - now time to pack

r.lii mtrk: sec = 1: fin = 0

for x = 0 to Ink: print#15," b-p:" 5;0

24fl0>ts$ = tl$(x) + sl$(x): dd$= "": rem link t/s

%£G for y = 0 to 7: a$ = dir$(fin): if fin = >ctr then a$ = rp$
J#CDdd$ _dd$ + a$: if y<7 then dd$ = dd$ + chr$(0) + chr$(0)

: rem wasted 2 bytes/entry

in = fin +1: next y

Z«lfl0 print#5,ts$;dd$;: print#15," u2:" ;5;dr;trk;sec;: rem fill

buffer then write

= asc(tl$(x)): sec = asc(sl$(x))

xt x: close5: closel5: end

The Transactor 57 Volume 5, Issue 06

Machine Language

Print Loader

Noel Nyman

Portland, Oregon

PRINT. . .NOTPOKE. . .Machine Language Programs

Editor's note: The BASIC loader program accompanying this article is

quite long, but the article contains concepts which can be digested

independently of the program. If you want a copy of the accompany

ing program but don't feel like typing it in, you can find it on the

Transactor disk for this issue.

BASIC programs often use machine language to read disks, sort data,

or accomplish something more quickly and easily than can be done

with BASIC alone. The common ways to use ML with BASIC are:

LOAD the ML from disk or tape from the BASIC program, append the

ML to BASIC, or use READ/DATA/POKE statements.

Each of these has its place. But in this article we'll explore another

method. . .using BASIC PRINT statements to "poke" ML programs.

First, type in the following line exactly as shown. If a letter is

capitalized, hold the SHIFT key when typing it. For commands such

as (com-m) hold the Commodore key and type"m." Press the SPACE

bar when you see (SPACE).

20 ? "(rvs-on)(SPACE)(rvs-off)@(rvs-on)9(rvs-off)

(com-m) [(rvs-on)(com-a)(rvs-off)g(SPACE)(rvs-on)R(com-b)

H(rvs-off)LZ [(Shf-(SPACE))(rvs-on)s(rvs-off)THIS(SPACE)

IS(SPACE)THE(SPACE)ML(SPACE)DATA@"

Now type RUN. You should see thirty-seven characters printed to the

screen. Shifting to lower case mode may help you count them.

Next type this additional line:

10POKE209,88:POKE210,27:POKE211,0:POKE213,40

Type RUN again. This time you should see only the READY prompt.

Type SYS 7000, the screen will clear and the ML message will be

displayed.

We normally think of the PRINT command as "printing" characters on

the screen starting from the current cursor location. Of course, we

know that PRINT just stores a sequence of data into computer

memory. The VIC chip reads that data and creates the screen we see.

This may seem like a trivial distinction at first. But we can use the

sequential storing characteristic of PRINT to "poke" ML programs and

data. All we have to do is move the "cursor" away from screen

memory to the area where we want the ML to reside, then put the ML

data into PRINT statements.

The cursor position is controlled by several memory locations. We'll

be concerned with four of them. Locations 209 and 210 together form

the cursor current line "vector", the address of the beginning of the

line the cursor is on. The vector is stored in usual 6502 format, low

byte first.

Location 211 identifies cursor location on the line by column number.

Location 213 tells the system how long a line is. The usual values for

213 are 39 or 79 for a C-64, and 21, 43, 65, or 87 for a VIC.

These numbers need to be in the proper ranges, or your screen will

look strange. But when we use PRINT to store ML, we can change

them to our advantage. In line #10 above, we re-vectored the cursor

to start at column zero on a "line" beginning at address 7000. We then

told the computer that this line is forty columns long. We could have

used any number up to 255 for line length, so long as it was greater

than the number of bytes we wanted to store.

After you typed RUN, you saw the READY prompt. This shows you

that the cursor will be vectored back to the normal screen memory by

the operating system at the end of each PRINT statement. Actually, we

could use several PRINT statements ending with ';' and the data will

be stored continuously, just as it would be shown continuously on the

screen. If we want to store over 255 bytes of ML, we'll need another

POKE line with new values at locations 209 and 210.

PRINT puts "screen codes" in computer memory, not CHR$ values.

The USER'S GUIDE that came with your machine has a table of screen

codes in an appendix. If you compare them with the CHR$ codes,

you'll notice that there are only 128 screen codes. Also they are often

in the same sequence as the CHR$ codes, but start at different places.

For example, the alphabet is in order. However, CHR$(65) which is

the letter 'A' has a screen code of 1. Therefore, to get a 1 stored in

memory we PRINT an 'A'. To store a 65, we have to PRINT a 'spade'

symbol.

Another problem shows up if we need to store '34'. This is the screen

code for quote marks. If the PRINT command sees quote marks, it will

end string printing and try to cope with the balance of the characters

on the line as variables. A special technique is required to PRINT a

"34" into memory.

Since it's so much work to create the PRINT statements, are there any

advantages over the other methods? There are, especially if you use a

program to create the PRINT statements.

Of the methods mentioned at the start of this article, READ/DATA/

POKE is the most common. For short ML it saves time over LOADing

the ML routine separately. It also avoids having to store the ML as a

separate program on the same disk or tape. It has two disadvantages,

however. It's slow and it takes a big chunk of memory. Memory saving

is most important to VIC owners. But anyone could take advantage of

improved speed.

The Transactor 58 Volumes, Issue 06

Storing ML at the end of a BASIC program is becoming more common.

It requires a few POKEs to convince the system to SAVE the ML along

with BASIC, and even more cleverness if the BASIC program is

changed. It also reduces available variable memory to VIC owners,

since the ML sits in BASIC memory area.

By using PRINT statements to store your ML programs, you can save

BASIC memory and improve program run time over the READ/

DATA/POKE method. PRINT works eight to thirteen times faster than

READ/POKE. The exact memory saving depends on the ML program.

But it usually takes less than half the BASIC memory to store ML in

PRINT statements over DATA statements.

The PRINT lines are a part of BASIC, not an ML appendage. So any

editing done to the BASIC program will not affect them.

Program Operation

To make using this technique easier, we've provided ML "PRINTER"

programs for the VIC and the C-64 that will create the PRINT and

POKE statements in BASIC. We'll look at the C-64 program first.

Listing *1 is a READ/DATA/POKE program to put ML "PRINTER"

into C-64 memory. Type in the program, SAVE it, then RUN it. Then

type SYS 25856.

The screen will prompt you for the beginning and ending locations of

the ML you want to "copy", the number of the first BASIC line to be

created, and the increment for the following BASIC lines. You'll be

given the option of entering the ML locations in hex or decimal. Type

in any locations to test the program, 828 and 1019 (the cassette buffer)

for example. After the READY prompt, type LIST. You'll see the newly

created BASIC, which has been written over the READ/DATA/POKE

program.

You could SAVE these lines to be appended to a BASIC program or

continue entering a BASIC program using them.

To use ML "PRINTER" most effectively, you should have it as a ML

program. (You can use it to make a BASIC PRINT version of itself, but

an ML version is shorter and for a program this size, more efficient.) If

you have a monitor, you can use it to save the program. If not, type the

following exactly as shown:

CLR (RETURN)

POKE43,0:POKE44,101 :POKE45,185 :POKE46,108 (RETURN)

This moves the start and end of BASIC to enclose ML "PRINTER."

Now SAVE the program to tape or disk just as you would any BASIC

program. After the SAVE is complete use SYS 64738 to reset the

computer. You can now LOAD ML "PRINTER" using a ',1' after the

LOAD statement.

This program will work best for you if you use it on relatively short ML

routines. If you go above about 1.5K bytes, it's faster to LOAD ML

routines from disk. For example, using ML "PRINTER" to store DOS

5.1 as a BASIC "PRINT" program requires loading only one program.

But it takes about three seconds longer to PRINT than it does to RUN

the boot program which LOADs the normal ML version from the disk.

If you use ML "PRINTER" to PRINT over IK of ML, 1025 bytes or

more, you'll find that BASIC will work fine. But your keyboard won't.

Apparently when the screen gets longer than 1024 bytes, the operat

ing system is confused and the CIA chips get "lost." If you SYS to the

ML immediately after printing you should have no problems. If not,

follow the last PRINT statement with a BASIC line that contains:

SYS 64931 :PRINT " (shift/clr-home)"

This will put everything right again. The "clear-screen" command is a

good idea in any case to restore the normal line length parameters.

Since you usually need to get the ML in place early in the BASIC

program, you could put the PRINT statements (or a GOSUB to them)

ahead of a "clear-screen" already in the program.

The C-64 program has been located in an area unlikely to have ML

residing in it. The program may give strange results if the interrupt

system has been changed by a previous program, such as the DOS

wedge. It's best to use a full RESTORE, such as SYS 64738, before

loading and using ML "PRINTER." You may need to use the NEW

command after loading ML "PRINTER" to load the ML you want to

"copy."

The VIC version was written for the unexpanded VIC-20, primarily to

"copy" ML in the cassette buffer. Expanded VIC owners will want to

use a variation on the C-64 program, to be discussed later.

There are two READ/DATA/POKE programs for the VIC, because

there isn't enough room in VIC memory to hold all the DATA. A PRINT

statement version will fit in VIC memory easily, however, which

shows how much more compact it is.

Type and SAVE each program. To save on memory, we've left the

screen prompts out of VIC ML "PRINTER." Program *4, VIC SCREEN,

is a BASIC program that will get the various numbers the "PRINTER"

needs. Type in and SAVE this program also.

LOAD and RUN each of the VIC DATA programs in sequence. This

will POKE the ML portion of the "PRINTER" in place. Then type the

following directly to the screen:

POKE55.0 :POKE56,25 (RETURN)

NEW:CLR (RETURN)

This will move the end of BASIC memory below ML "PRINTER" to

protect it. Now LOAD the VIC SCREEN program and RUN it. It will ask

for the same information as the C-64 version, except that the ML

locations must be entered in decimal (base 10). To SAVE VIC ML

"PRINTER" we'll use it to make a PRINT statement version of itself.

Type 6927 and 7678 to answer the prompts for starting and ending ML

locations. Use ten as a starting line for BASIC, and one as the

increment.

When you see the READY prompt, type SYS 6927 and hit RETURN.

Then type LIST. VIC SCREEN has been replaced with POKE and

PRINT statements that will create ML "PRINTER." To make this

version complete, you'll want to append VIC SCREEN to it. To do this,

you move the start of BASIC to the end of the present BASIC program

by typing the following directly:

CLR (RETURN)

POKE43,PEEK(45)-2:POKE46,PEEK(44) (RETURN)

Now LOAD VIC SCREEN. When READY appears, reset the BASIC

pointers by typing:

POKE43,1:POKE44,16 (RETURN)

The Transactor 59 Volume 5, Issue 06

LIST and you'll see VIC SCREEN added onto the POKE/PRINT lines.

Then add the following line:

1150 SYS 6927 (RETURN)

SAVE this completed version of VIC ML "PRINTER."

Both versions of ML "PRINTER" update the BASIC start and end

parameters after the new BASIC lines are created. Since the BASIC

memory location is different for different Commodore computers, the

VIC and C-64 versions use different values. Expanded VICs have

BASIC relocated, so the VIC ML "PRINTER" won't work with them. If

you have an expanded VIC that has memory in the range 25856 to

27500, you can use the C-64 "PRINTER" with a few changes. These

can be made easily with any VIC monitor programs such as VICMON.

The data from $6500 to $6508 are C-64 border and screen color

commands. Change them to SEA for NOP. Change the starting

address information in locations $666B and $6667 to correspond to

your beginning BASIC memory area, PEEK(43) and PEEK(44). Sub

tract one from PEEK(43) and put the result in $6671. Change $$6672

to the PEEK(44) value. Change the data at $676C and $6776 to

correspond to your normal top of BASIC, PEEK(55) and PEEK(56).

The program should then function correctly, although the screen will

still be in C-64 format.

To append the POKE/PRINT statements to another BASIC program,

you can use the following technique with the C-64 or any VIC. LOAD

the program with the lowest line numbers. The lowest line number in

the program to be appended must be higher than the highest line

number of the first program. ML "PRINTER" gives you the option of

selecting line numbers to make this easy. Type:

PRINT PEEK(43),PEEK(44) (press RETURN)

Write down the two numbers that appear on the screen as "x" and "y."

This is the start of BASIC memory in your computer. Type:

PRINT PEEK(45) (RETURN)

This is the lower byte of the address of the end of the BASIC program

you just LOADed. If this number is not zero or one, type:

POKE43,PEEK(45)-2:POKE44,PEEK(46) (RETURN)

If PEEK(45) gave you zero or one, type:

POKE43,PEEK(45) + 254:POKE44,PEEK(46)-1 (RETURN)

These statements move the start of BASIC memory to the end of the

program. Now LOAD the second program as a BASIC program. Then

type:

POKE43,x:POKE44,y (RETURN)

Where "x" and "y" are the two numbers your wrote down earlier. This

moves the start of BASIC back to the beginning of the first program.

LIST will now show the second program appended to the first.

I'd like to thank Barbara Horton for her help in developing the VIC

version of this program.

FL

LI

OF

DH

GK

DC

IJ

AF

IN

LG

OD

FA

ED

FD

AK

Dl

Fl

CH

OL

HI

ID

IG

Ol

EN

LK

DL

LA

CD

CN

LN

AP

DP

LA

GF

AD

IO

PE

ID

PD

AD

MN

BF

GG

GH

LH

Ml

EG

DL

LO

MF

MC

HD

CE

OP

HO

PO

MO

KB

NA

JB

BP

PD

EF

NH

Listing 1: BASIC loader for C64 version

10 rem* data loader for " print ml" *

20cs = 0

30 for i = 25856 to 27832:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>203777 thenprint" **** error in data

statments ****": end

70 rem sys 25856

80 end

100:

1000 data 160, 6,140, 32,208,200

1010 data 140, 33,208,169,213,133

1020 data 139,169,106,133, 140, 32

1030 data 137, 103,169,108, 133, 140

1040data169, 96,133,139,169, 1

1050 data 141, 167, 2, 32,151,103

2, 56,233, 72

8,169, 1,141,254

76, 55,101,141,254

32, 6, It)4, 169, 85

1060 data 173, 192

1070 data 240,

1080 data 2,

1090 data 2,

1100 data 133, 139, 169, 107, 133, 140

1110 data 32,137,103,173,254, 2

1120 data 24, 105, 4, 141, 167, 2

1130 data 201, 5,240, 7,169,114

1140 data 133, 139, 76, 93,101,169

1150 data 101, 133, 139, 169, 108, 133

1160 data 140, 32,151,103,173,254

1170 data 2,201, 1,208, 6, 32

1180data 24, 104, 76,116,101, 32

1190 data 114, 104, 173,171, 2,141

1200 data 252, 2,173,172, 2,141

1210 data 253, 2, 32, 6,104,169

1220 data 110, 133, 139,169, 107, 133

1230 data 140, 32,137,103,173,254

1240 data 2,208, 22,169,114,133

1250 data 139, 169, 108, 133, 140, 169

1260 data 4,141,167, 2, 32,151

1270 data 103, 32,114,104, 76,188

1280 data 101, 169, 101, 133, 139, 169

1290 data 108,133,140, 169, 5,141

1300 data 167, 2, 32,151,103, 32

1310data 24,104,173,171, 2,141

1320 data 250, 2,173,172, 2,141

1330 data 251, 2, 32, 6,104,169

1340 data 133, 133, 139, 169, 107, 133

1350 data 140, 32,137,103,169,101

1360 data 133, 139, 169, 108, 133, 140

1370 data 169, 5,141,167

1380 data 151, 103, 173, 192

1390 data 39, 169

1400 data 32,210,255, 169

1410 data 210, 255, 141, 193

1420 data 210,255, 141, 194

1430 data 210,255, 141

2, 32

2, 208

49,141,192, 2

32

32

32

195,

48,

2,

2,

2, 32

1440 data 210, 255, 141,196, 2,169

1450 data 5,141,168, 2, 32, 24

1460 data 104,173,171,

1470 data 2,173,172,

1480 data 2, 32,

2, 141,248

2,141,249

6, 104, 169, 196

1490 data 133, 139, 169, 107, 133, 140

1500 data 32,137,103,169,101,133

1510 data 139,169,108,133, 140, 32

1520 data 151, 103,173,192, 2,208

1530 data 21,169, 49,141, 192, 2

1540 data 32, 210, 255, 169, 48, 141

The Transactor 60 Volume 5, Issue 06

LK

ME

HF

IF

DB

OF

EH

FH

Nl

FJ

MJ

BL

ML

HK

KO

HO

10

CA

HN

FD

OP

MF

NO

JC

AE

P?

OG

BL

GH

CK

El

Cl

PP

CH

GJ

FJ

CL

PI

PM

AL

NP

MD

ON

DN

JB

LM

KJ

KD

HE

NK

LG

GB

Jl

PN

GF

JA

CH

MF

LA

GL

NJ

LJ

PO

EO

JF

GN

1550 data 193,

1560 data 2,

1570 data 104,

1580 data 2,

1590 data 2,

1600 data 133,

1610 data 169,

1620 data 244,

1630 data 237,

1640 data 253,

1650 data 2,

1660 data 141,

1670 data 141,

1680 data 140,

1690 data 137,

1700 data 239,

1710 data 0,

1720 data 247,

1730 data 21,

1740 data 208,

1750 data 104,

1760 data 2,

1770 data 2,

1780 data 18,

1790 data 2,

1800 data 10,

1810 data 76,

1820 data 133,

1830 data 10,

1840 data 18,

1850 data 64,

1860 data 8,

1870 data 76,

1880 data 105,

1890 data 244,

1900 data 247,

1910 data 250,

1920 data 2,

1930 data 143,

1940 data 236,

1950 data 32,

1960 data 173,

1970 data 11,

1980 data 106,

1990 data 76,

2000 data 2

2010 data 45

2020 data 114

2030 data 50

2040 data 53

2050 data 128

2060 data 1

2070 data 44

2080 data 96

2090 data 7

2100 data 139

2110 data 168

2120 data 169

2130 data 177

2140 data 159

2150 data 169

2160 data 136

2170 data 201

2180 data 208

2190 data 64

2200 data 138

2, 32,210,255,169

141,168, 2, 32, 24

173,171, 2,141,246

173,172, 2,141,247

32, 6,104,169, 8

114,169, 1,133,113

0,141, 0, 8,141

2,141,245, 2,141

2,141,236, 2,173

2, 133,248, 173,252

133,247,173,249, 2

243, 2,173,248, 2

242, 2,169,107,133

169,241,133,139, 32

103, 32,174,105, 32

105, 32, 62,106,169

141,237, 2,168,177

133,254,201, 128,176

173,245, 2,201, 1

32,169,146, 32,232

206, 245, 2, 238, 244

76,222, 102,173,245

201, 1,240, 11,169

32,232,104,238,245

238,244, 2,165,254

74,201, 34,208, 6

79,106, 76, 24,103

254, 10, 10,176, 16

144, 5,165,254, 76

103,165,254, 24,105

76, 18,103, 10,144

165,254, 24,105, 64

18,103,165,254, 24

128, 32,232,104,238

2, 238, 236, 2, 230

208, 2,230,248,173

2, 197,247, 173,251

229,248,176, 6, 32

106, 76, 91,103,173

2,201,255,208, 6

172,106, 76,149,102

244, 2,201, 57,144

32,194,106, 32, 62

169, 0,141,244, 2

169,102,230, 113,208

230,114,165,113, 133

133, 47,133, 49,165

133, 46,133, 48,133

169, 0,133, 51,133

133, 54,133, 55,169

133, 56,133, 52,169

133, 43,169, 8,133

169,147, 32,210,255

160, 0,177,139,240

32,210,255,200, 76

103, 96,169, 0,141

2,169,192, 133, 141

2,133,142,160, 0

139,141,169, 2, 32

255, 32,228,255,172

2,209,139,240, 6

240,233, 76,180,103

20,240, 54,201, 13

15, 168, 165, 197,201

208,250,162, 0,202

208,252,152, 96,172

EN

BO

IP

OF

GA

BE

BA

PC

HL

BG

DH

IF

JD

GG

GF

CG

EF

HE

DJ

PJ

Cl

PJ

HH

AK

JM

JC

NF

JP

PP

HA

IE

GO

NE

MB

KC

BF

JE

KD

ID

HG

CC

NH

NE

FP

OA

HC

Kl

KP

PL

00

II

LL

CM

IH

JH

OE

NE

KC

Al

NE

AE

JC

DP

GG

AK

GO

2210 data 168,

2220 data 205,

2230 data 32,

2240 data 168,

2250 data 240,

2260 data 253,

2270 data 2,

2280 data 32,

2290 data 160,

2300 data 169,

2310 data 145,

2320 data 173,

2330 data 141,

2340 data 141,

2350 data 141,

2360 data 170,

2370 data 171,

2380 data 171,

2390 data 171,

2400 data 171,

2410 data 109,

2420 data 152,

2430 data 2,

2440 data 109,

2450 data 144,

2460 data 170,

2470 data 173,

2480 data 194,

2490 data 193,

2500 data 192,

2510 data 48,

2520 data 104,

2530 data 169,

2540 data 133,

2550 data 141,

2560 data 172,

2570 data 173,

2580 data 222,

2590 data 32,

2600 data 10,

2610 data 170,

2620 data 152,

2630 data 2,

2640 data 104,

2650 data 56,

2660 data 2,

2670 data 129,

2680 data 230,

2690 data 165,

2700 data 167,

2710 data 0,

2720 data 1,

2730 data 3,

2740 data 166,

2750 data 141,

2760 data 169,

2770 data 1,

2780 data 165,

2790 data 105,

2800 data 169,

2810 data 157,

2820 data 247,

2830 data 43,

2840 data 240,

2850 data 1,

2860 data 58,

2, 170,

168, 2,

210,255,

2, 165,

250, 160,

76, 164,

240, 167,

210,255,

15,169,

192, 133,

141, 136,

168, 2,

170, 2,

172, 2,

169, 2,

2,177,

2, 46,

2, 172,

2, 46,

2, 46,

171, 2,

109, 172,

104, 56,

171, 2,

3, 238,

2, 202,

195, 2,

2, 141,

2, 141,

2, 141,

141, 192,

169, 0,

192, 133,

142, 160,

174, 2,

170, 2,

174, 2,

104, 141,

222, 104,

13, 173,

2,201,

141, 172,

172, 170,

152, 141,

233, 48,

233, 7,

113,230,

114, 96,

108, 141,

108, 166,

202, 240,

201, 10,

105, 169,

108,201,

166,108,

48, 141,

24,109,

108, 76,

48, 141,

48, 141,

108,141,

232,169,

24, 105,

3, 76,

24, 109,

240, 6,

173,167, 2

240, 195, 138

145, 141,238

197,201, 64

0, 136,208

103, 172, 168

206,168, 2

76,234, 103

2, 133, 142

141,169, 0

16,251, 96

170,169, 0

141,171, 2

169,192, 133

133, 142, 172

141, 72, 14

172, 2,173

172, 2, 14

172, 2, 14

172, 2, 24

141,171, 2

2,141, 172

233, 48, 24

141,171, 2

172, 2,238

208,190, 96

208, 26,173

195, 2,173

194, 2,173

193, 2,169

2, 76,114

141,170, 2

141,169, 2

0, 177, 141

238,170, 2

177, 141, 168

72,152, 32

173, 2,104

10, 10, 10

2,168, 173

3,240, 13

2,238,170

2, 76,160

171, 2, 96

201, 16,144

96,162, 0

113,208, 2

169, 48, 141

166,108,141

248,232, 169

43, 24,105

240, 3, 76

1, 24,109

58,240, 6

76, 1,105

166,108,169

165,108, 141

1,105, 24

167,108, 96

156,108, 141

158, 108, 166

0, 202, 240

1,201, 10

72, 105, 169

157, 108,201

141, 157, 108

The Transactor 61 Volume 5, Issue 06

NO

CO

JG

PO

AK

GH

Gl

JO

PB

KF

IK

AO

PO

BE

JG

KB

HD

HD

GG

KE

NP

CD

JE

LP

FE

HF

BN

EJ

DN

GJ

PP

MM

GO

IM

GP

GB

BO

AO

B!

KA

DF

AK

HA

NC

JA

DC

AF

KA

UK

FG

OF

KH

IE

EM

Ml

OK

AJ

CP

BF

GG

FB

JP

CJ

GO

FF

NG

2870data 76, 70,105,169, 48,141

2880 data 157, 108, 169, 1, 24,109

2890 data 156, 108, 141, 156, 108, 76

2900 data 70,105, 24,105, 48,141

2910 data 158, 108, 96,165,113,141

2920 data 240, 2,165,114,141,241

2930 data 2, 32,232,104, 32,232

2940 data 104, 96,173,242, 2, 32

2950 data 232, 104, 173,243, 2, 32

2960 data 232, 104, 24,173,246, 2

2970 data 109, 242, 2,141,242, 2

2980 data 173, 247, 2,109,243, 2

2990 data 141, 243, 2, 96, 32,243

3000 data 104, 32, 56,105, 32,125

3010 data 105, 32,142,105,160, 0

3020 data 169,108,133, 140,169, 151

3030 data 133, 139, 177, 139, 240, 7

3040 data 32, 232, 104, 200, 76, 196

3050 data 105, 169, 0, 32,232,104

3060 data 32,216,105, 96,173,240

3070 data 2,133,141,173,241, 2

3080 data 133, 142, 162, 0,165,113

3090 data 129, 141,230, 141, 165, 114

3100 data 129, 141, 96,169, 0,141

3110data245, 2,141,244, 2,141

3120 data 237, 2,169,108,133,140

3130 data 169, 59,133,139, 32,137

3140 data 103, 165, 248, 32, 38, 106

3150 data 32,210,255,165,248, 32

3160 data 54,106, 32,210,255,165

3170 data 247, 32, 38,106, 32,210

3180 data 255, 165,247, 32, 54,106

3190 data 32,210,255, 96, 74, 74

3200 data 74, 74, 24,105, 48,201

3210 data 58, 176, 1, 96, 24, 105

3220 data 7, 96, 10, 10, 10, 10

3230 data 32, 38,106, 96, 32,125

3240 data 105, 32, 142, 105, 169, 153

3250 data 32,232,104,169, 34, 32

3260 data 232, 104, 96, 32, 194,106

3270 data 32, 62,106,165,254, 10

3280 data 144, 15,169, 18, 32,232

3290 data 104, 169, 34, 32,232,104

3300data169, 34, 32,232,104,198

3310 data 113, 208, 2,198,114,160

3320 data 1,169,108,133,140,169

3330 data 133, 133, 139, 177, 139,240

3340 data 10, 32,232,104,200,238

3350data244, 2, 76,121,106,169

3360 data 1,141,237, 2, 76, 24

3370 data 103, 173,237, 2,208, 5

3380 data 169, 34, 32,232,104,169

3390 data 0, 32,232,104, 32,216

3400 data 105, 169, 0, 32,232,104

3410 data 169, 0, 32,232,104, 96

3420 data 173, 237, 2,208, 5,169

3430 data 34, 32,232,104,169, 0

3440 data 141, 236, 2, 32,232,104

3450 data 32,216,105, 96,169, 34

3460 data 32,232,104,169, 59, 32

3470 data 232, 104, 169, 0, 32, 232

3480 data 104, 32,216,105, 96,147

3490 data 32, 32,142, 32, 32, 32

3500 data 32,151, 18, 32, 77, 65

3510 data 67, 72, 73, 78, 69, 32

3520 data 76, 65, 78, 71, 85, 65

JD

IG

GB

PC

OE

JJ

KJ

NM

NH

DO

HN

NM

LM

AA

NO

KP

LM

AC

KP

GE

KD

LF

BE

EF

KE

LH

Fl

Al

KF

DH

Gl

EJ

LK

BH

EL

IL

PM

EN

GA

LM

LP

BM

LN

EM

KP

NC

KD

GB

JD

HH

MD

JG

Kl

PG

PD

AL

KG

Nl

PK

JL

DM

KJ

PJ

OJ

MM

GM

3530 data

3540 data

3550 data

3560 data

3570 data

3580 data

3590 data

3600 data

3610 data

3620 data

3630 data

3640 data

3650 data

3660 data

3670 data

3680 data

3690 data

3700 data

3710 data

3720 data

3730 data

3740 data

3750 data

3760 data

3770 data

3780 data

3790 data

3800 data

3810 data

3820 data

3830 data

3840 data

3850 data

3860 data

3870 data

3880 data

3890 data

3900 data

3910 data

3920 data

3930 data

3940 data

3950 data

3960 data

3970 data

3980 data

3990 data

4000 data

4010 data

4020 data

4030 data

4040 data

4050 data

4060 data

4070 data

4080 data

4090 data

4100 data

4110 data

4120 data

4130 data

4140 data

4150 data

4160 data

4170 data

4180 data

71

73

32,

32,

32,

57.

32,

78,

13,

76,

32,

32.

73,

73.

32,

67,

40,

0,

82.

77,

65,

32,

68,

76.

84,

0.

69,

69,

32,

32,

32,

77,

18,

78,

32,

41,

76,

85,

73,

69,

18,

78.

32.

0.

17,

29.

29,

73,

73,

65,

84,

29,

29,

32,

83,

32,

17,

17,

29,

29,

29.

29,

72,

50,

56,

49,

69,

78,

13,

32,

40,

56,

78,

89,

13,

76,

69,

76,

79,

78,

79,

73,

72,

13,

84.

76,

84,

0,

73,

32,

73,

13,

32,

82,

70,

80,

83,

69,

82,

146,

49,

63.

73,

77,

78,

78,

82,

146,

49,

147,

17,

29.

67,

78,

78,

84,

13,

29,

29,

65,

83,

32,

17,

17,

29,

29,

29,

29,

13,

51,

57,

50,

32,

84,

13,

32,

67,

52,

79,

77,

13,

32,

78.

79.

78,

32,

82,

77,

47,

13.

73.

32,

73.

13,

78.

76.

79,

13,

78.

32.

73,

82,

84,

78.

69.

32,

48,

32.

78.

66,

67,

84,

69.

32,

48,

17,

17,

29.

82,

71,

84.

69.

13,

29.

70,

68.

32.

0.

17.

17,

29,

29.

29,

32,

20,

52,

13,

51.

34.

69,

32,

32,

41,

32.

69.

65,

31.

89,

84,

67.

83,

72,

32.

65,

68,

83,

78,

76,

79.

13,

71,

79,

78,

76,

85,

70,

82,

73,

65,

84,

84,

70,

48,

0,

69,

69,

82,

32,

8-1

70.

41,

17,

17.

29.

69,

32,

32.

77,

29,

29,

82,

68,

32,

19,
17,

29,

29,

29,

29.

0,

12,

53,

20,

52.

80,

82,

32,

32,

32.

66,

76,

78.

87.

79.

69,

65,

13,

69,

68,

76,

41.

84,

71,

79,

78,

69,

32,

67,

63,

73,

77,

79,

83,

78,

84,

13,

85,

79,

48,

13,

32,

82,

69,

13,

85,

79,

63,

17,

17,

29.

65.

80,

83,

69,

29,

29,

79,

82,

32,

17.

17,

29,

29,

29,

29,

4,

48,

54,

18,

53,

82

34

32

18

49

89

32

32

73

85

82

84

32

88

69

32

63

65

32

67

63

78

77

65

32

78

66

82

84

84

69

40

82

82

48

13

78

32

77

40

82

82

32

17

29

29

84

82

84

78

29

29

77

69

32

17

17

29

29

29

29

68

49

55

48

54

The Transactor 62 Volume 5, Issue 06

KK

LI

LL

DH

GK

Jl

AF

IN

IG

HK

MP

PA

NB

KO

KL

HE

EO

CA

PK

FF

IK

Nl

MF

MK

OJ

BN

Gl

PE

BM

DM

BN

HP

BP

BC

HA

LI

MN

DD

NM

CM

KG

LF

LE

MD

GA

DM

IN

DO

Dl

FN

CA

BN

LN

BJ

HL

CB

ON

HP

CE

CN

KJ

4190 data

4200 data

4210 data

4220 data

4230 data

4240 data

4250 data

4260 data

4270 data

4280 data

4290 data

55,

68,

199,

40,

50,

50,

48.

44,

50,

151,

53,

56.

69,

40,

51,

48,

48

58,

48

49,

50,

53,

57,

70,

51,

52,

41,

57,

151,

48,

49.

49,

0,

65.

13.

52,

41,

34,

44,

50,

51,

44,

51.

66.

20.

41,

199,

0,

48.

49.

58.

48.

44.

67

34

199

40

151

54

48

151

58

50

Listing 2: first loader program for VIC-20 version

10 rem* first data loader for " printing ml" *

20 cs = 0

30 for i = 6927 to 7302:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>43462thenprint" **** error in data

statments ****": end

80 end

100:

1000data160, 16,132,114,160, 1,132,113

1010 data 136, 140, 0, 16,140,244, 2,140

1020 data 245, 2,140,237, 2,140,236, 2

2,133,248,173,252, 2

173,249,

1030 data 173, 253,

1040 data 133, 247,

1050 data 173, 248,

1060 data 28, 32,

1070 data 0,141,

1080 data 254, 201,

1090 data 201, 1,

1100 data 28,206,

1110 data 123, 27,

1120 data 11,169,

1130 data 2,238,

1140 data 201, 34,

1150 data 181, 27,

1160 data 10,144,

1170 data 165, 254,

1180 data 10,144,

1190 data 76,175,

1200 data 32, 33,

2,141,243, 2

2,141,242, 2, 32,231

40, 29, 32, 52, 29,169

2, 168, 177,247, 133237,

128,

208,

176, 21,173,245, 2

32,169,146, 32, 33

76

240

245

74

76

16

27

27

64

245, 2,238,244, 2

173,245, 2,201, 1

18, 32, 33, 28,238

244, 2,165,254, 10

208, 6, 76, 69, 29

133,254, 10,

5, 165,254,

24,105, 64,

8,165,254,

27, 165,254,

28, 238, 244,

1210 data 2,230,247,208, 2,230,248,173

1220 data 250, 2,197,247,173,251, 2,229

6, 32,

236, 2,

29, 76,

57, 144,

29, 169,

10, 176,

76, 175,

76, 175,

24,105,

24, 105, 128

2, 238, 236

32

2

32

76

1230 data 248

1240 data 27

1250 data

1260 data

1270 data

1280 data

1290 data 114

1300 data 49

1310 data

1320 data

1330 data

1340 data

1350 data 208

1360 data 235

1370 data 166

1380 data 24

1390 data 60

1400 data 201

1410 data 58

176,

173,

162,

201,

52,

70,

165,

165,

133, 29, 76,248

201,255,208, 6

61, 27,173,244

184,

244,

11, 32,

0, 141,

27,230, 113,208,

113, 133,

114, 133,

50,169,255, 133,

54,133, 55,169,

52,

44.

169, 1,133,

45,133,

46, 133,

51, 133,

29, 133,

43,169,

29

2

2,230

47, 133

48,133

53, 133

56, 133

16,133

96,162, 0,129,113,230,113

2,230,114, 96,169, 48,141

29, 141,236,

248,232, 169,

105, 1,201,

28,169, 1,

240, 6,58,

28,

29, 141,237,

0, 202, 240,

10,240, 3,

24, 109,236,

141,236, 29,

29

43

76

29

76

EH

AN

FO

CA

Nl

1420

1430

1440

1450

data

data

data

1

76

29

data 227

1460 data 169

169, 48,141,236, 29,169

KB

JJ

LI

FM

DH

GK

CJ

AF

IN

CA

CN

BC

ME

CG

IG

AA

CD

NE

IF

JE

DM

Kl

PM

CK

AL

BO

GM

Dl

FL

HN

ND

EP

OB

BO

DH

KH

JP

HF

CB

OC

KD

FE

IF

II

CP

AH

KH

MB

LH

NE

FM

BK

EE

CP

MA

MJ

24,109,235, 29,141,235, 29

58, 28, 24,105, 48,141,237

96,169, 48,141,226, 29,141

29, 141,228, 29, 166,247,232

0,202,240, 43, 24, 105, 1

Listing 3: second loader for VIC version

10 rem* second data loader for " printing ml" *

15 rem* vie version *

20 cs = 0

30 for i = 7303 to 7678:read a:poke i,a

40cs = cs + a:next i

50:

60 if cs<>33737thenprint" **** error in data

statements ****": end

80 end

100:

1000 data 201, 10,240, 3, 76,129, 28,169

1010 data 1, 24,109,227, 29,201, 58,240

1020 data 6,141,227, 29, 76,127, 28,169

141,227, 29,169, 1, 24,109

29,141,226, 29, 76,127, 28

105, 48,141,228, 29, 96,165

1030 data 48

1040 data 226

1050 data 24

1060 data 113, 141,240,

1070 data 2, 32, 33,

1080 data 173, 242, 2,

1090 data 2, 32, 33,

1100 data 109, 242, 2,

1110 data 2,109,243,

1120 data 32, 44, 28,

1130 data 28, 32,199,

1140 data 133, 140, 169,221

1150 data 240, 7

1160 data 28,169

1170 data 29, 96

1180 data 241, 2

1190 data 129, 141

1200 data 96, 169

1210 data 2,141

1220 data 32, 199

1230 data 169, 34

1240 data 29, 32

1250 data 15,169

1260 data 32, 33

2, 165, 114, 141,241

28, 32, 33, 28, 96

32, 33, 28,173,243

28, 24,173,246, 2

141,242, 2,173,247

2,141,243, 2, 96

32,113, 28, 32,182

28,160, 0,169, 29

133, 139, 177, 139

28,200, 76,253

33, 28, 32, 17

32, 33,

0, 32,

173,240, 2,

133, 142, 162,

230, 141, 165,

0, 141,245,

237, 2, 96,

28,169,153,

32, .33, 28,

52, 29,165,254

18, 32, 33, 28

28,169, 34, 32

96,

1270 data 198, 113,208, 2,198,114

1280 data 169, 29, 133, 140, 169, 203

331290 data 177, 139,240,

1300 data 238, 244,

1310 data 141, 237,

1320 data 2,208,

1330 data 169,

1340 data 169,

1350 data 33,

1360 data 169,

1370 data 236,

1380 data 96,

1390 data

1400 data

1410 data

1420 data

1430 data

1440 data

1450 data 151,

1460 data 50,

32,

32,

52,

40,

48,

50,

0,

0,

28,

34,

2,

169,

33,

17,

41.

50,

57,

49,

50,

49,

10, 32,

76, 111,

76, 181,

5, 169, 34,

32, 33, 28,

2.

2,

133,141, 173

0, 165, 113

114, 129, 141

2, 141,244

32,182, 28

32, 33, 28

32, 184

10, 144

169, 34

33, 28

160, 1

133,139

28, 200

169, 1

27, 173,237

32, 33, 28

32, 17, 29

29,

32,

96,

32,

32,

34,

28,

29,

199,

48,

44.

48,

49,

51,

33, 28,169, 0, 32

173,237, 2,208, 5

33, 28,169, 0,141

33, 28, 32, 17, 29

32, 33, 28,169, 59

169, 0, 32, 33, 28

96, 34,199, 40, 51

40, 51, 52, 41,199

41, 34, 0,151, 50

50, 53, 50, 58,151

44, 50, 48, 55, 58

49, 44, 48, 58,151

44, 50, 53, 53, 0

The Transactor 63 Volume 5, Issue 06

Aligning The Commodore

1541 Disk Drive

Bob Drake

Brantford, Ont.

WARNING:

FOLLOWING THE STEPS IN THIS ARTICLE

COULD RESULT IN DAMAGE TO YOUR DISK

DRIVE AND WILL VOID ANY WARRANTY

The warning above is real and should be read carefully. Any

time you open a sealed unit, whether a disk drive or an electric

toaster, you will void any warranty on the unit. You may also

damage the unit. Damage may occur regardless of the instruc

tions you are following. You may injure yourself while attempt

ing repairs. Electrical equipment always carries with it the risk

of shock and electrocution. BUT. . .if you are careful and

patient, you can align your disk drive and save up to $70.

If your disk drive is still under warranty, DON'T FIX IT. Take

the drive back to your dealer for repair or replacement. Doing

anything else is foolish.

The other step to take before opening the case is to make sure

that indeed alignment is needed. In other words, IF IT AIN'T

BROKE, DON'T FIX IT. Be sure the drive is out of alignment

before you start. Use the test demo disk that comes with your

drive and check the alignment using PERFORMANCE TEST. If

that program says the drive is alright, then something else is

wrong. If you can't get PERFORMANCE TEST to load, then try

the single line programs included here. But be sure BEFORE

you start. I have used these instructions to align 11 disk drives

this fall in the school at which I work. Only one would not

align. Later work traced its problems to a bad chip.

1. Read these instructions all the way through one or more

times. Be sure you understand what they say BEFORE you

start.

2. Find a dry, stable place to work. You will need a diskette that

can be erased, the TEST DEMO disk that came with the

drive, a medium Phillips (star head) screwdriver and a sharp

pointed knife (the smaller the better).

3. Unplug the disk drive from the C64 computer and from the

power source (wall plug). Turn the disk drive upside down

and use the screwdriver to remove the four screws from the

bottom of the unit. (You just voided the warranty!)

4. Turn the drive right way up. Don't lose any of the four

screws. Gently lift the top off and set it to one side. Don't sit

or step on it — that plastic shell will break easily.

5. Find the red and black wires leading from the power light

onto the main circuit board you should now be looking at

and unplug it. Note where it came from — you have to put it

back. (Figure 1)

6. The disk drive is held into the bottom half of the case with six

(6) Phillips screws driven into the plastic. Remove them and

set them to one side. (Figure 1)

7. CAREFULLY, not using the circuit board, lift the disk drive

out of the bottom of the case, turn the case over, and insert

one of the metal tabs on the drive into a slot on the plastic

bottom. The drive should stand self supported. (Figure 2)

8. Find the two screws on either side of the stepper motor.

CAREFULLY use the knife to scrape away the green glue

holding those screws down. Don't cut any wires accidentally

or you could be buying a new drive. This is, for me, the

hardest part of the job. When the glue is broken off, use your

screwdriver to undo each screw slightly (no more than 2-3

full turns). Turn the stepper motor fully clockwise. Note — it

only moves about a quarter of an inch at most. (Figure 3)

9. Plug the drive into the computer. Plug the power back into

the drive. KEEP YOUR FINGERS OFF ANY PART THAT

LOOKS LIKE IT COULD CARRY POWER. Turn on the

power.

10. The drive will not be far out of alignment.

Insert your TEST DEMO disk and VALIDATE it using:

open 1,8,15, "vO" : close 1

The Transactor 64 Volume 5, Issue 06

When in alignment, the red light on the front of the drive

should stay on without flickering. Gently move the stepper

motor (about 1/32 inch at a time) until the red light stays on.

You may have to validate the disk several times. Tighten one

screw.

Format a blank disk using:

open 1,8,15," nO:test,tt" : close 1

Watch the light — it should stay on. Expect that 3 or 4 tries may

be needed.

12. When you are sure the drive is aligned, run the PERFORM

ANCE TEST from the TEST DEMO disk to confirm the

alignment. Be sure that tracks 1 and 35 will both read and

write.

13. Unplug the drive.

CAREFULLY, lift the drive, turn the bottom over and place

drive back into the bottom.

Replace the 6 screws holding the drive in the plastic bottom,

replace the red-black wires to the green light, and put the top

back on. Finally, turn the drive over and replace the 4 screws in

the bottom.

14. CONGRATULATIONS! You have just aligned your 1541 disk

drive.

Speed Control

Screws

Bottom Case

Upside Down

Figure 3

Glued Down

Cabled Wire

Don't Cut

Glued Down

The Transactor 65 Volume 5, Issue 06

Super Cat
Richard Evers, Editor

Super Cat is a program written for the sole purpose of providing all

that detailed directory information that we all require, but have such a

hard time locating. Whatever is tucked away on the directory track of

your diskette magically reappears with the use of Super Cat. For an

added bonus, the output can be generated to your screen or attached

printer. Look below for a quick synopsis of available data to be

generated by the program :

Super Cat will display the directory track and sector, and the index

into the sector that the filename resides on. It will also provide you

with the usual data of block count, file name, and file type. Along with

this, the track and sector of the first data block of the file itself is given.

As a final bonus to REL file type users, the program will show the first

side sector track and sector link, plus the record length of each record

within the file. This is the sum and total of data that will become

available to the Super Cat user.

Here's what to expect when generating reports with the program.

39:16:66 63 mlm 64.pal prg trk 50 sec 19

Above is a regular display for a file, excepting REL. The first three

numbers, "39:16:66" refer to the directory track, sector, and index

into the sector that the filename has been located on. The next

number, "63" is the block count consumed by the file on diskette. The

data following is the filename followed closely by the file type. After

that comes the track and sector that the first data block is held on.

That's everything.

39:1:2 727 writer-data 1 rel trk 38 sec 1 ss : trk 38 sec 8 len 254

This display line is from a REL type file entry. Everything is the same

till you get past the track and sector link to the first data block. From

"ss" on, the data printed refers to the first side sector block. In this

example, the first side sector is located on track 38, sector 8, with a file

length of 254 characters.

When the entire directory has been peered through by the program,

the total number of blocks consumed by the programs in the directory

are display, as shown below.

. . . total * blocks used : 2054 . . .

The program has been written to work with all Commodore floppy

drives, and will even allow for a selective evaluation of the directory

by using the pattern matching capabilities of the Commodore DOS.

10

HA

PE

EK

MK

MH

NP

JM

PH

O()

IIP

00

BE

FC

01

GL

CM

KL

Mil

JL

AK

FP

DP

OH

JC

GC

MG

HG

IB

NF

JE

BG

PC

GP

OK

CA

MK

115

HN

FF

FF

HP

KD

10 rem save" @0:super cat.bas" ,8

100 rem ** rte/84 - a super catalog routine that supplies

all file info

110 print" ** super catalog - rte/84 ** "

120 ft$(0) = " del": ft$(1) = " seq": ft$(2) = " prg ":

ft$(3)= "usr":ft$(4)="rel"

130 print" drive type :"

140 input" 1) 1541/2031/4040 or 2) 8050/8250 :" ;ty:

if ty<l orty>2 then 140

150 dtrk = 39: if ty = 1 then dtrk = 18: rem * * directory track

160 input" drive *" ;dr: if dr>l then 160

170 print" selective directory ?"

180 print" 1) seq, 2) prg, 3) usr, 4) rel, 5) all"

190 input si: if sl<l or sl>5 then 190

200 sl$ = " all": if sl<5 then sl$ = ft$(sl)

210 input "3) screen or 4) printer:" ;dv:

ifdv<3ordv>4then210

220 open 15,8,15: open 5,8,5, "*": open l,(dv)

230sec=l:ctr = 0:bu = 0:z$ = chr$(0):sp$= " "

240 print*l 5," ul: "5;dr;dtrk;sec: rem ** block read

250 print* 15, "b-p: "5;0: ctr = O: rem ** position the

buffer pointer

260 get*5,nt$,ns$: rem ** next track/sector links

270 get*5,ft$: ft = asc(ft$ + z$)andl5: if ft>4 then ft = 0

280 ft$ = ft$(ft): rem ** assign file type

290 get*5,t$,s$: rem ** first data trk/sector

300 trk = asc(t$ + z$): skt = asc(s$ + z$)

310 fl$= "": for x= Itol6: get*5,a$: fl$ = fl$ +

chr$(asc(a$ + z$)): next: rem filname

320 get*5,sr$,ss$,rl$: rem ** first trk/sec side sector +

length if rel file

330 sr = asc(sr$ + z$): ss = asc(ss$ + z$): rl = asc(rl$ + z$)

340 get*5,gb$,gb$,gb$,gb$,gb$,gb$: rem ** 6 bytes not used

350 get*5,bl$,bh$: blks = asc(bl$ + z$)+256*asc(bh$ + z$)

360 get*5,gb$,gb$: rem ** two wasted bytes at start of

next record

370 if ft = O then 470

380 dp$ = mid$(str$(dtrk),2)+ ":" +mid$(str$(sec),2)+ ":"

390 dp$ = dp$ + mid$(str$(ctr*32 + 2),2)

400 dp$ = mid$(dp$ + sp$, 1 ,len(dp$) + (10-len(dp$))) +

right$(sp$ + str$(blks),5)+ " "

410 if sl$= "all" then 430: rem ** everything ok

420 if slOft then 460 : rem ** file type incorrect

430 print#l ,dpfl" " ft$" trk" trk" sec" skt;

440 if ft$<>" rel" then print*l: goto 460

450 print*l," ss : trk " sr" sec" ss" len " rl

460 bu = bu + blks: rem * * blocks used in total

470 ctr = ctr +1: if ctr<8 then 270

480 dtrk = asc(nt$ + z$): sec = asc(ns$ + z$)

490 if dtrk then 240

500 print#l,"... total # blocks used :" bu". . ."

510 closel: close5: closel5: end

The Transactor 66 Volume 5, Issue 06

Software Numeric Keypad

For the Commodore 64

Michael Kwun

Okemos, MI

"It's expandable to 48 keys'

The following program was written because of the wealth of

Commodore 64 programs which contain DATA statements. I

often overlook interesting looking programs printed in maga

zines due to the multitude of data statements found within and

my lack of proficiency with the top row on the keyboard (the

numbers). Wouldn't it be nice to have a numeric keypad?

One day while looking over a memory map searching for some

ROM routines, I found the following entries:

EB81 60289 Keyboard 1 - unshifted

EBC2 60354 Keyboard 2 - shifted

Investigating these locations, it turns out that by changing their

values (by transferring the ROM to RAM and switching the

Kernel out), you can change the characters that are accessed by

each key. The following program, "Software Numeric Keypad",

was written using this knowledge.

Type it in with any machine language monitor, and save it. To

use it, just load it and run. After a brief pause, the "READY."

prompt will appear. The keyboard has been redefined, and at

this point the program is no longer required. These are the key

re-definitions:

789 (no change) 789

U1O changes to 456

JKL changes to 123

M,. changes to 00,

To return the keyboard to normal, use RUN-STOP/RESTORE

or POKE 1,55 (the poke is tricky to enter in numeric keypad

mode). To regain access to the numeric keypad, enter POKE

1,53. While in the numeric keypad mode, the U, I, 0, J, K, L

and the period can be accessed by pressing SHIFT. The '<' and

the '>' can be accessed by using the Commodore key. Happy

typing!

Hex dump of the program:

0801

0809

0811

0819

0821

0829

0831

0839

0841

0849

0851

0859

0861

0869

0B

31

A9

91

FC

FC

DO

85

9E

CA

31

33

29

DB

08

00

00

FB

C9

A0

F9

01

EB

DO

30

2D

49

DO

0A

00

85

C8

CO

00

E6

A2

BD

F1

30

2C

4A

4C

00

00

FB

DO

DO

B1

FC

12

5E

60

32

3A

30

DD

9E

A9

A0

F9

F1

FB

DO

BD

08

34

36

40

4D

2E

32

A0

00

E6

A9

91

F5

4C

9D

56

4E

30

4B

5B

30

85

B1

FC

E0

FB

A9

08

DF

39

2B

55

4F

BA

36

FC

FB

A5

85

C8

35

9D

EB

35

50

D6

CE

2C

Now save from $0800 to $0871.

The Transactor 67 Volume 5, Issue 06

Disk/Extramon 64 Mike Forani

Burlington, Ontario

Disk/Extramon 64 is the all-in-one ultra-monitor for the Commodore 64. It has just about

everything you could ask for, and then some. Just one problem though - it's over 7K long!

And 8pages ofDA TA statements not only consumes too much magazine space, but makes

hand entry far too impractical. So why print instructions without the program? Mike uses

standard commands and command syntax which makes the instructions practically

universal for all other monitor utilities. Mike's program may have commands that the

others don % but odds are the others have none that Mike doesn 't include. Two assembled

versions ofDisk/Extramon 64 are available on Transactor Disk #5. - M.Ed.

Embarking on an investigative journey through your 64? Yes? Then

Disk/Extramon 64 is a travel companion you shouldn't be without.

It's the monitor program to end all monitor programs.

A lot of you may be saying, "Why should I bother with this one?".

Agreed, there are several monitor programs around, some for sale,

others for free. Disk/Extramon 64 has features not found in other

monitors which was going to be a strong "selling point" for the

program. However, the program is now public domain so all those

selling points make the fact that it's free even more attractive.

Disk/Extramon 64 has all the common machine language monitor

commands such as Hunt, Assemble and Disassemble, Transfer, plus

Newlocate, Interrogate, Compare, Quick Trace, and Bank Switching

commands especially for the 64. Hex/Decimal conversions are in

there too.

The Disk Monitor portion of the program has everything the budding

young drive programmer needs for experimenting with the inner

workings.

Note: The program has been tested with Commodore equipment

only. I therefore cannot insure that it will work properly with non-

Commodore printers, disk drives, or IEEE interfaces. (There has been

some success with the 4040 dual drive and the Bus-Card II interface.)

The following is a list of the Disk/Extramon 64 commands. Some of

the commands require special attention so please read on.

Affected Memory

This program is located at $ 1000 or at $8000 and uses 8K of memory.

The page 3 vectors; IRQ, BRK, and ICRNCH are changed and the

upper 5 bytes of page 0 are used by the monitor program. A number of

kernal routines are also used and these will affect some zero page

variables. CHRGET is used by the monitor program and this will affect

the page 2 input buffer. On a break instruction before anything can

change, zero page and page two are saved at $9e00 to $9fff with the

$8000 version or at $2eOO to $2fff with the $1000 version of the

monitor program. Therefore you will always be able to see what zero

page or page two locations your program affected. Also on a break

instruction the VIC chip's video and character generator registers are

reset to their defaults as is the I/O port in page 0.

Note: While in the monitor all numeric input must be in hexadecimal

numbers except when doing decimal to hexadecimal conversion.

Monitor Commands

DISPLAY REGISTERS: Display the current processor status.

DISPLAY MEMORY: Display contents of memory in hex.

m adrl adr2 adrl ;beginning address

adr2 ;ending address (optional)

If adr2 is left out then one line of eight bytes will be displayed.

ALTER MEMORY: Alter contents of the 64's memory

.: 1000 00 00 00 00 00 00 00 00 alter memory

ALTER REGISTERS: Alter contents of 64's processor registers.

pc irq sr ac xr yr sp

.; 1000 ea31 bO 00 00 00 ff alter processor status

GO: Begin execution of a machine language program.

gadrl adrl beginning address of execution (optional)

* If the kernal is banked out the processor status is not restored at the

'go' command and the IRQ's are disabled. Also if the address is

omitted or invalid, the 64 will jump to address in the program counter.

LOAD: Load a program into the 64's memory.

1" sdrfilename" ,dn,adrl

sdr ;source drive number (optional)

dn ;device number (08 - Of)

adrl ;load address (optional, defaults to the disk load address)

SAVE: Save a program from 64 to disk.

s " ddrfilename" ,dn,adrl,adr2

ddr ;destination drive * (optional)

dn ;device number (08 - Of)

adrl ;beginning address of save

adr2 ;end address of save (last byte is saved)

EXIT: Exit the monitor to BASIC.

x * All wedges are left intact so the monitor may be reentered.

Extra Monitor Commands

MONITOR: Enter monitor from BASIC.

mon

The Transactor 68 Volume 5, Issue 06

BANK: The kernal and/or basic may be banked out of memory so

that the RAM memory sitting behind it may be modified,

assembled, saved, executed or traced.

bbout bank out the basic ROM to give RAM

bbin bank in the basic ROM

bkout bank out the kernal ROM to give RAM

bkin bank in the kernal ROM

TRANSFER: A portion of memory may be transferred from one

memory location to another.

t adrl adr2 adr3 adrl ;start address

adr2 ;end address

adr3 beginning address of transfer

FILL: Fill a portion of memory with a given value.

f adrl adr2 xx adrl ;start address

adr2 ;end address

xx ;value to fill memory with

HUNT: Hunt for a string of values in a specified portion of memory.

h adrl adr2 'string' adrl ;start address

hadrl adr2 xxxxxx adr2 ;end address for hunt

'string' ;characters to be searched for

xx ;hex values to be searched for

(max. length of string or bytes is 20)

COMPARE: Compare two portions of memory to each other.

c adrl adr2 adr3 adrl ;start address

adr2 ;end address

adr3 ;start address (second block)

* memory locations that do not compare equal will be displayed.

INTERROGATE: Display the screen printable characters along with

the memory locations values.

iadrladr2 adrl ;start address

adr2 ;end address (optional)

QTRACE: Trace a machine language routine and display the proces

sor status after each instruction is executed.

qadrl adrl ;address to begin execution

* Pressing the 'n' key skips the trace

* Pressing the 'm' key speeds it up

* Pressing the space bar halts execution

* No separate interrupt control, unless non maskable, is allowed

during the trace routine and any i/o routines may be affected. The

qtrace works on an interrupting system. Interrupts occur after each

instruction is executed, therefore IRQ control in the program being

traced may crash the system. (CIA *1 - Timer A is used for interrupt

timing.)

ASSEMBLE: Assemble a machine language program in memory.

(this is a simple assembler)

a adrl Ida #$41 adrl beginning address for assembly

* To end assembling a return (blank line) must be entered before

doing any other operations such as altering the assembled code.

DISASSEMBLE: Disassemble hexadecimal memory location values

into mnemonic op-codes with operands.

dadrladr2 adrl ;start address

adr2 ;end address (optional)

* If adr2 is left out then only one op-code and its operand will be

displayed.

ALTER DISASSEMBLY: Change the screen disassembly.

., 1000 20 d2 ff jsr$ffd2

* The hex values are to be changed not the mnemonics.

NEW LOCATER: Relocate a machine language program.

n adrl adr2 offset adr3 adr4 w

adrl ;beginning address of code to be relocated

adr2 ;end address

offset ;value to be added to absolute indexed memory loca

tions

adr3 ;lower address limit of absolute addressed data which is

to be changed

adr4 ;upper limit

w ;relocating a word table - if included

* The code to be relocated must first be transferred, this is a two step

command.

DEC/HEX CONVERSION: Convert a hexadecimal number to a

decimal number or a decimal number

to a hexadecimal number.

*65535 ;decimal to hexadecimal

*$ffff ;hexadecimal to decimal

KILL: The disk/extra monitor wedges are destroyed and normal

basic operations may be done - the monitor may not be

reentered unless you jump to the start of the program, ie.

$1000 or$8000.

k * All the page three vectors used are restored.

COLD: Do a power on reset sequence.

Disk Monitor Commands

DIRECTORY: Do a screen list of the directory.

/ directory of disk

/ " m* ;directory of files starting with the letter 'm'

/"I: ;directory of drive 1

READ: Read a sector from the disk to a disk buffer.

$r dd tt ss bb dd ;drive

tt ;track

ss ;sector

bb ;buffer (optional, default is 01)

WRITE: Write a disk buffer to the disk surface.

$w dd tt ss bb dd ;drive

tt ;track

ss ;sector

bb ;buffer (optional)

GET: Get disk memory to the 64's memory.

$g adrl adr2 adr3 adrl ;start address of get

adr2 ;end address

adr3 ;address to store at in C64

PUT: Put 64's memory to disk memory.

$p adrl adr2 adr3 adrl ;start address of put

adr2 ;end address

adr3 ;address to store at in drive

The Transactor 69 Volume 5, Issue 06

VIEW: View ihe disk drives memory.

$v adrl adr2 adrl ;start address

adr2 ;end address (optional)

ALTER: Alter the disk drives memory.

.$:0300 00 00 00 00 00 00 00 00

DIRECT: Send a direct command to the disk drive.

$> . . . ;any basic 2.0 disk command

* The disk status is displayed after the command is executed.

TRACE: Trace a files track and sector links and display them, (begin

tracing at. . .)

$t dd tt ss bb dd ;drive

tt ;track

ss ;sector

bb ;buffer (optional)

FETCH: Fetch a sector from the disk drive surface to the 64's

memory.

$f adrl dd tt ss bb adrl ;start address in C64

dd ;drive

tt ;track

ss ;sector

bb ;buffer (optional)

DUMP: Dump a block of the 64's memory to the disk surface.

$d adrl dd tt ss bb adrl ;start address in C64

dd ;drive

tt ;track

ss ;sector

bb ;buffer (optional)

CHANGE: Change the device number of the disk drive, (send to drive

or just for program defaults.)

$c do dn* do ;old device number

dn ;new device number

* If the asterisk is included the change is only done in the 64's

memory so that a device 09—Of may be used as a default if hard wired.

ALLOCATE: Allocate a sector as being used in the BAM.

$a dd tt ss dd ;drive

tt ;track

ss ;sector

* To de-allocate sectors use the basic 2.0 command Validate (vO)

EXECUTE: Execute disk memory.

$e adrl adrl ;beginning of execution

BLOCK EXECUTE: Load a sector off the disk surface into a disk

buffer and execute it.

$b dd tt ss bb dd ;drive

tt ;track

ss ;sector

bb ;buffer (optional)

STATUS: Check the disk status.

$s

INTERROGATE: Display screen printable characters while display

ing the memory of the disk drive.

$i adrl adr2 adrl ;start address

adr2 ;end address (optional)

The Transactor

Note 1 After doing any disk memory commands the drive should be

initialized to avoid any unfriendly errors. (S>i0)

Note 2 An automatic scroll up and down is built into the memory

display routines and the disassemble.

Note 3 Pressing the run/stop and restore keys will reset the com

puters page 3 vectors, this will result in the monitor not

working on the scroll routines therefore the monitor must be

exited and reentered at

once more.

Disk/Extramon 64

MONITOR

a adrl

bbin

bbout

bkin

bkout

c adrl adr2 adr3

d adrl [adr2]

f adrl adr2 xx

g [adrl]

h adrl adr2 'string'

h adrl adr2 xx xx xx . . .

i adrl [adr2]

k

1 ' sdnfilename ",dn,[adrl]

m adrl [adr21

mon

n adrl adr2 offset adr3 adr4

P

q [adrl]

r

its starting point to reset the vectors

Quick Reference Chart

COMMANDS

simple assembler

bank basic in

bank basic out

bank kernal in

bank kernal out

compare memory

disassemble memory

fill memory

begin execution of program

search memory for string

search memory for bytes

interrogate memory

kill monitor wedges and exit

load a file from disk

display memory bytes

enter monitor from basic

[w] relocate program code

do a power on reset sequence

quick trace of program code

display processor registers

s "ddr:filename",dn,adrl,adr2 save a file to disk

tadrl adr2adr3

X

* xxxxx

*$ xxxx

transfer memory

exit the monitor to basic

decimal to hex conversion

hex to decimal conversion

DISK MONITOR COMMANDS

$a dd tt ss

$b dd tt ss [bb]

$c do dn

$c do dn*

$dadrl dd tt ss [bb]

$e adrl

$fadrlddttss[bb]

$g adrl adr2 adr3

$i adrl [adr2]

$p adrl adr2 adr3

$r dd tt ss [bb]

$8

$t dd tt ss [bb]

$v adrl [adr2]

$w dd tt ss [bb]

$> 'string'

/

70

allocate a sector in BAM

block execute

change disk device number

change disk default device *

dump memory to disk

execute disk memory

fetch sector from floppy

get disk memory

interrogate disk memory

put memory to disk memory

read a sector to disk buffer

check disk status

trace file link pointers

view disk memory

write a buffer to disk

send disk command

directory

Volume 5, Issue 06

Drive Peeker:

A Quick Peek

Inside Your Drive
Richard T. Evers

Drive tripping has become one of North America's prime

vacation pastimes over the past few years. With disk protection

making its entry in such a big way, plus so many new tricks

being uncovered on a daily basis, dashing about within your

drive unit is the thing to do.

Well, in keeping with new trends, we bring you 'Drive Peeker',

a program guaranteed to trip the light fantastic with you

throughout every private part of your drive. Each and every

hidden recess is no longer so, with Drive Peeker at your side.

Now on to a more serious vein.

To look inside of disk memory and extract the information that

lies within is not a difficult task. All that is required is to inform

the drive of your intentions and proceed along with what you

want to do. Before progressing on to the program, let's first

explain how this can be done.

The very first thing required is to place a call to the drive along

its private channel, then keep the channel open for further

updates of procedures.

open 15,8,15

Once opened up, you have to inform the disk drive the reason

for the call. A command as follows will do the trick

print#15," m-r" chr$(ml)chr$(mh)chr$(numchr)

The " M-R" informs the drive that you would like to read its

memory. CHR$(ML) and CHR$(MH) tells it what portion of

memory you are interested in. CHRS(numchr) is an optional

parameter not discussed by Commodore in past. This will

inform the drive that you would like to read the value of

(numchr) characters at a time, (numchr) represents a number

up to 255 decimal. To get these characters, the GET* 15 com

mand is the used. If required, you can GET# more than one

character at a time, ie. GET#15,a$,b$,c$,d$... etc. The drive

understands this and will return to you the number of charac

ters desired.

With all disk operations using CBM equipment, a zero byte

cannot be retrieved at all. You can write it to disk and it will

actually make it there in one piece. But when you try to read it

back, the drive unit eats it and gives you nothing in return.

Something like a users fee. Well, whenever reading data from

disk, a test should be made to see if the string received is

actually there. If not, assign it with a value of chr$(0), and your

programs will be happier.

Once you have that byte, you can do whatever you please. In the program

below, I have used it for one specific purpose, to show you what is hiding

in your unit. Once the data is received, its ASCII value is OR'd with 64 to

make it nice to work with, then it is added to a string. From there, the

original data byte received is converted to hexadecimal and is printed

out. A maximum of 8 bytes will be displayed per line, then the string of

the CHR$(value or 64) will be printed. This will help you at times when

you know you're peering at a .byte table.

Everj' time a line is dropped, the current location is memory is printed at

the beginning of the new line in hexadecimal. In this way, you always

know where the data is coming from, just in case you want to find it back

later on. As an extra bonus, the program has been written to allow output

to be directed to the screen or printer, as you please. With everything

taken into consideration, the routine isn't bad for the amount of work it's

going to cost you keying it in. And, as usual, you will have learned but

another new programming trick, to add to your already overflowing

collection.

100 rem : save" @0:drive peeker" ,8:verify" 0:drive peeker" ,8

105 rem : ** drive peeker - rte/84 **

110 rem : ** will scout about within your drive & report back to you **

115 print" ** drive peeker **"

120 hx$ = " 0123456789abcdef"

125 input" hex : start, end " ;s$,e$

130 va$ = s$: gosub215 : s = val(va$) :rem convert start to dec

135 va$ = e$: gosub215 : e = val(va$):rem convert end to dec

140 input "s) screen : p) printer " ;sp$

145dv = 3 : if sp$= "p" thendv = 4

150 open 1,(dv)

155 open 15,8,15

160 for pk = s to e step 8 : v$ = ""

165 mh% = pk/256 : ml = pk-mh%*256

170 print#15, "m-r"chr$(ml)chr$(mh%)chr$(8) :rem read in 8 chars

175 flag = 1 : v = mh% : gosub 190 : print#1 ,ht$; : v = ml: gosub 190

:print#1,ht$" ";: flag = 0

180 for x = 0 to 7

185 get#15,a$: v = asc(a$ + chr$(O)): v$ = v$ + chr$(vor64)

190 h°/o = v/16 : lo = v-h%* 16

195ht$ = mid$(hx$,h%+1,1) + mid$(hx$,lo+1,1): if flag then return

200print#1,ht$" ";

205 next x : print#1 ,v$: next pk : closei : close 15 : end

210 rem hex- dec

215ln = len(va$):f = 0

220forx = 0toln-1 : v = asc(mid$(va$,ln-x,1))-48 : y = abs(v>9)

225 f = f + ((v-(y*7))*16Tx): next: va$ = mid$(str$(f),2): return

The Transactor 71 Volume 5, Issue 06

File Compare
Richard Evers

Compare Disk Files In A Flash

A while ago I took it upon myself to convert the PET resident

monitor for the Commodore 64. Considering how many MLM's

are already out there, this was a pretty useless task. Needless to

say, you will never actually see the completed version in the

pages of our magazine. To get back to the story, troubles

occured immediately with my assembled pseudo source. To get

the source, I simply SAVEd the MLM from the PET in memory

to disk, then disassembled it with a disk unassembler program.

After a few mods to this apparent source, it was assembled, just

to check if everything was OK. With a crash and heave my

hopes dissolved. It wasn't quite right. LOAD and SAVE were

OK, so were all but one of the other commands. G, the GO

command, would crash the machine by trampling back into

BASIC with the decimal flag set. It came close to driving me

crazy because the machine would have to be powered down

after every attempt at correcting the error.

If a comparison of code was made between the original MLM in

the PET, and my pseudo assembled code, the trouble could

quickly be found. The incorrect or missing bytes would easily

be pointed out, with the right program. An so, File Compare #1,

a BASIC version, was conceived.

In reality the BASIC program took a very short period of time to

write. How much effort does it take to OPEN two files for a read,

read in each byte in tandom, compare them, then flag to the

screen when something wasn't quite right. Not that complex.

Needless to say, my 5 minutes of tedious labour found the

problem. A byte was mixed up in my disassembly, therefore

the new code would always err out. Once the byte was fixed,

the code was great. A happy ending. And so, the BASIC version

of File Convert became part of my already overflowing archives

of limited use programs.

Enter the utilities issue. A perfect occasion for the rebirth of a

concept long forgotten. With a burst of BAID, and a final lunge

with PAL, File Compare, machine code version, was born. No

longer the boring little BASIC ditti that took forever to finish.

This one goes like a bad odor on a windy day, which means, it

goes like stink. For an encore it will generate its report to your

screen or printer. The best part of this one is the fact that, as

Chris Zamara says, it doesn't do you any favours. It simply does

its job without messing up your computer in the process. A

simple bit of code for a simple task.

The programs listed below are for the sole purpose of creating a

program on diskette with a single BASIC line to SYS to the start

address. Once created, LOAD the new program in and RUN it

as a normal BASIC program. The code has been written to start

at $0401 for the PET/CBM and $0801 for the C64. The code

cannot be relocated without reassembling the source.

Once up and running, the first prompt will ask you for the

device * in which to output the report to, either 3 (screen) or 4

(printer). Answer the question, hit return and wait for the next

question. The next prompt,

" dr#:filename >"

will appear. Type in the name of one of the files in which to

compare then hit return. The prompt will then reappear imme

diately. Reply this time with the name of the second file. The

compare begins.

The display is formatted to first show the index (ie. 0-max) into

the file that the mismatch was found, followed by the byte

value found in the first file, then the byte value from the second

file. Everything is displayed in hex. If no errors are found, the

files will simply be read through without any great excitement.

When complete, it will return to perform a BASIC warm start

back to READY mode. Very simple.

If you specify a file that doesn't exist, the program will under

stand and close everything up, then return to BASIC without

harm. If you find that you have to STOP the program, for

whatever reason at all, press the STOP key, and control of your

computer will be passed back to you, with all files correctly

closed up.

Quick note before the code. ST is checked after the byte is

taken from the second file specified. If you know that one file

will be larger than the other, and don't want to extend beyond

the limit of the smaller one, then specify the larger file first, the

smaller one last. This will save a display full of $0D's from the

small file in comparsion to the larger on. The two files will not

match too well at this point, so you will generate a report of

garbage.

Please remember to SAVE the program(s) below before running

them. Even though it creates another program for you, it won't

hurt to have the generator around in case of an error.

The Transactor 72 Volume 5, Issue 06

File Compare: BASIC 4.0 Version File Compare: Commodore 64 Version

CP

MC

Fl

HF

PI

DE

DH

IP

OB

MC

KB

GC

FF

HH

NE

Bl

NB

JP

OE

JG

ED

FC

MM

OB

FG

DE

JL

HO

PH

MJ

HO

JA

OJ

HA

Dl

IM

BM

KC

FC

AE

AP

BA

KE

HN

HC

GC

HE

PJ

CF

CH

BL

HK

IM

IL

FB

CH

JB

PP

10 rem save" '0:filcomp pet.dat" ,8

100 rem ** rte/84 - data to create

'file compare 4.0' on diskette as prg

110 input" drive #, new program name " ;dr$,fl$

120 open 15,8,15: open 5,8,5,(dr$)+ ":"

+ fl$+ ",p,w"

130 input#15,e,e$,b,c: if e then close 15:

print e,e$,b,c: stop

140 for j = 1025 to 1409 : read x: print#5,chr$(x);:

ch = ch + x: next: close5

150 if ch<>39775 then

print" checksum error": end

160 print" ** program complete **": end

170:

180 data 1, 4, 37, 4, 10, 0, 158, 32

190 data 49, 48, 54, 51, 32, 58, 32, 42

200 data 42, 32, 70, 73, 76, 69, 32, 67

210 data 79, 77, 80, 65, 82, 69, 32, 52

220 data 46, 48, 32, 42, 42, 0, 0, 0

230 data 160, 5,169, 71, 32, 29,187, 32

240 data 207, 255, 56,233, 48,133, 90,201

250 data 3, 48, 244, 233, 5, 176, 240, 169

260 data 13, 32,210,255,169, 0,133,209

270 data 169, 1,133,210,165, 90,133,212

280 data 169, 255, 133, 211, 32, 99,245,169

290 data 0,133, 87,133, 88,162, 5,160

300 data 5,169, 97, 32, 11, 5,162, 6

310 data 160, 5,169, 97, 32, 11, 5,165

320 data 155, 201, 239, 208, 3, 76,246, 4

330 data 162, 5, 32,198,255, 32,207,255

340 data 133, 89, 32,204,255,162, 6, 32

350 data 198, 255, 32,207,255, 72,165,150

360 data 133, 91, 32,204,255,104,197, 89

370 data 240, 78, 72,162, 1, 32,201,255

380 data 169, 36, 32,210,255,165, 88, 32

390 data 49, 5,165, 88, 32, 61, 5,165

400 data 87, 32, 49, 5,165, 87, 32, 61

410 data 5,169, 32, 32,210,255,169, 36

420 data 32,210,255,165, 89, 32, 49, 5

430 data 165, 89, 32, 61, 5,169, 32, 32

440 data 210, 255, 169, 36, 32,210,255,104

450 data 72, 32, 49, 5,104, 32, 61, 5

460 data 169, 13, 32,210,255, 32,204,255

470 data 230, 87,165, 87,208, 2,230, 88

480 data 165, 91,208, 3, 76,110, 4,169

490 data 1, 32,226,242,169, 5, 32,226

500 data 242, 169, 6, 32,226,242, 32,204

510data255, 76,255, 179, 134,210,134,211

520 data 32, 29,187, 32,226,180,162, 0

530 data 189, 0, 2,240, 3,232,208,248

540 data 134, 209, 169, 0,133,218,169, 2

550 data 133, 219, 169, 8,133,212, 32, 99

560 data 245, 96, 74, 74, 74, 74,170,189

570 data 112, 5, 32,210,255, 96, 41, 15

580 data 170, 189, 112, 5, 32,210,255, 96

590 data 51, 41, 32, 83, 67, 82, 69, 69

600 data 78, 32, 79, 82, 32, 52, 41, 32

610 data 80, 82, 73, 78, 84, 69, 82, 32

620 data 58, 0, 68, 82, 35, 58, 70, 73

630 data 76, 69, 78, 65, 77, 69, 32, 62

640 data 0, 48, 49, 50, 51, 52, 53, 54

650 data 55, 56, 57, 65, 66, 67, 68, 69

660 data 70

LC

IH

Fl

HF

PI

CG

CG

IP

OB

ID

BA

GC

OF

CG

NB

Bl

NB

AB

CH

NG

ED

JD

AO

BC

FG

DE

DM

HO

PH

MJ

DP

JB

KK

DB

DJ

IM

BO

KC

FC

ME

MO

NP

PG

NC

HC

HE

LG

NJ

OF

OH

BL

HK

IM

IL

FB

CH

JB

PP

67

67

0, 0

10 rem save" @0:filcomp c64.dat" ,8

100 rem ** rte/84 - data to create

'file compare c64' on diskette as prg

110 input "drive #, new program name " ;dr$,fl$

120open 15,8,15: open 5,8,5,(dr$)+ ":"

+ fl$+ " ,p,w"

130 input#15,e,e$,b,c: if e then close 15:

print e,e$,b,c: stop

140 for j = 2049 to 2433: read x: print#5,chr$(x);:

ch = ch + x: next: close5

150ifch<>38861 then

print" checksum error": end

160 print" ** program complete **": end

170:

180 data 1, 8, 37, 8, 10, 0, 158, 32

190 data 50, 48, 56, 55, 32, 58, 32, 42

200 data 42, 32, 70, 73, 76, 69, 32

210 data 79, 77, 80, 65, 82, 69, 32

220 data 54, 52, 32, 42, 42, 0,

230 data 160, 9,169, 71, 32, 30,171, 32

240 data 207, 255, 56,233, 48,133, 90,201

250 data 3, 48,244,233, 5,176,240,169

260 data 13, 32,210,255,169, 0,133,183

270 data 169, 1,133,184,165, 90,133,186

280 data 169, 255, 133, 185, 32, 74, 243, 169

290 data 0,133, 87,133, 88,162, 5,160

300 data 9,169, 97, 32, 11, 9,162, 6

310 data 160, 9,169, 97, 32, 11, 9,165

320 data 145, 201, 127, 208, 3, 76,246, 8

330 data 162, 5, 32,198,255, 32,207,255

340 data 133, 89, 32,204,255,162, 6, 32

350 data 198, 255, 32, 207, 255, 72, 165, 144

360 data 133, 91, 32,204,255,104,197, 89

370 data 240, 78, 72,162, 1, 32,201,255

380 data 169, 36, 32,210,255,165, 88, 32

390 data 49, 9,165, 88, 32, 61, 9,165

400 data 87, 32, 49, 9,165, 87, 32, 61

410 data 9,169, 32, 32,210,255,169, 36

420 data 32,210,255,165, 89, 32, 49, 9

430 data 165, 89, 32, 61, 9,169, 32, 32

440 data 210, 255, 169, 36, 32,210,255,104

450 data 72, 32, 49, 9,104, 32, 61, 9

460 data 169, 13, 32,210,255, 32,204,255

470 data 230, 87,165, 87,208, 2,230, 88

480 data 165, 91,208, 3, 76,110, 8,169

490 data 1, 32,145,242,169, 5, 32,145

500 data 242, 169, 6, 32,145,242, 32,204

510 data 255, 76, 116, 164, 134, 184, 134, 185

520data 32, 30,171, 32, 96,165,162, 0

530 data 189, 0, 2,240, 3,232,208,248

540 data 134, 183, 169, 0, 133, 187, 169, 2

550 data 133, 188, 169, 8,133,186, 32, 74

560 data 243, 96, 74, 74, 74, 74,170,189

570 data 112, 9, 32,210,255, 96, 41, 15

580 data 170, 189, 112, 9, 32,210,255, 96

590 data 51, 41, 32, 83, 67, 82, 69, 69

600 data 78, 32, 79, 82, 32, 52, 41, 32

610 data 80, 82, 73, 78, 84, 69, 82, 32

620 data 58, 0, 68, 82, 35, 58, 70, 73

630 data 76, 69, 78, 65, 77, 69, 32, 62

640 data 0, 48, 49, 50, 51, 52, 53, 54

650 data 55, 56, 57, 65, 66, 67, 68, 69

660 data 70

The Transactor 73 Volume 5, Issue 06

PLERSE HELP
I DUI1P

flCCIDENTLY

PLEASE DTO NOT TW1GHT.
I HAVE A FULL BUFFER...

THING* "»HRT 00 "CUCK CUCK" IN THE NICHT

LAST CHAMCt ! Print ! HOu

COMPUTER.^

HOUi CO(*\pUT6O.S

SEE

The Transactor 74 Volume 5, Issue 06

SYNTKX IS ON THE WW TO

DR. FLOTSKY'S HOUSE WHO WL BELIEVE
IS IN E

THE PLKMS
FOR HIS NEW

EXPANDER",

. I? SQMEOWt USES

A THt CVWP1HL
CONTROLflqtskYs

/\NJEfctTWe>\JE. ^
FLOTSK^,

(SNKICHEQf

5 NO

CLUE'b HERE.

look sont-

HtTL.VJHERE

.-TO BE CONTINUtDII

^mmmmm^fmm^immmmmmmmmm

It'll Backup a Disk in 6 Nanoseconds!
My Time Warp program is almost done.

I just have to de-bug the re-entry routine.

The Transactor 75 Volume 5, Issue 06

News BRK
New 16-bit Commodores for 1985

Commodore plans to regain its position in the

business market with three new entries for

1985.

The much-rumored IBM compatible based

on the Canadian Hyperion is slated for intro

duction in the spring of 1985.

The first half of 1985 should also see the

release of Commodore's multi-tasking

Z8000-based machine that was first seen in

April 1984 at the Hanover computer fair in

West Germany. This Machine will support

multiple users and run an operating system

based on UNIX Version 7.

Probably the most exciting of the new ma

chines will come from Commodore's acquisi

tion of Amega Corp. of Santa Clara, Calif. The

Amiga-derived Commodore is expected to

be introduced at Chicago's Consumer Elec

tronics Show in June 1985. The machine will

have a 68000 processor, as well as dedicated

processors for animation, graphics, and

sound (including voice synthesis). Graphics

are a strong point, with super high resolution

AND 32 colours from a palette of 3,000.

There's also the C128, a souped up 64 with

128K RAM and 80 column monochrome or

colour display output. A portable machine

was also shown to compete with the other

LCD "lap-tops". For a more detailed report of

the Consumer Electronics show in Las Vegas,

see the February TPUG magazine.

Note to Product Review Authors

The Transactor is getting away from product

reviews and prints product comparisons in

stead. If you have a product review you'd like

to submit, contact TPUG magazine. Nick Sul

livan, a regular contributor to The Transactor

(Author of the TransBASIC series) is now the

editor of TPUG and tells us he'd be happy to

consider software or hardware reviews for

publication.

If you'd like to write a product comparison for

the Transactor, let us know the subject in

advance before submitting the article. An

example of a good product comparison would

be one comparing the popular sketching pro

grams like Flexidraw, Koala Pad, Doodler,

Textsketch, CADpic, etc.

Over 41,000 Attend World of

Commodore II Show in Toronto

The second World of Commodore show at

Toronto's International Centre attracted

41,516 people over its four day run. Commo

dore had a large display at the show, but held

back on the introduction of their new 16-bit

machines, displaying mainly the +4 and 16.

The winner of the draw for the PET 2001 (a

collector's item) at The Transactor booth was

Bill Taylor of Acton, Ontario.

Transactor Disk Offer Update

As of this issue there are 5 Transactor Disks:

Disk 1: All programs from Volume 4

Disk 2: Volume 5, Issues 01-03

Disk 3: Volume 5, Issue 04 (Business & Ed.)

Disk 4: Vol. 5, Issue 05 (Hardware/Periphs.)

Disk 5: Vol. 5, Issue 06 (Aids & Utilities)

Transactor disks are now available on a sub

scription basis through the order form in the

centrespread of the magazine. Disks can be

purchased individually for $7.95 (Cdn.) each;

the extra two dollars that was to be charged

for the first disk has been dropped.

Perhaps a word of explanation is in order

here. The original idea was to charge $9.95

for the first disk you purchased, and we'd

make up a mailer for that disk (and each

subsequent one) which contained your

name, address, paid postage, and a two dollar

off coupon for future disks. As it turned out,

post office regulations nixed the mailer idea,

so we decided to just send disks out on an

individual basis for $7.95, and offer disk sub

scriptions. The subscription is mainly as a

convenience, since our pricing philosophy

dictates a rock-bottom price for single disks,

and the discount for a subscription rather

than individual purchase isn't that great.

To anyone who already sent in $9.95 for their

first disk we'll credit the two dollars toward

future disks or subscriptions.

The Complete Commodore

Inner Space Anthology

We are now taking orders for the long

awaited second edition of the Special Refer

ence Issue. As you can see, the title is some

what different than its predecessor, but then

so is the inside. Of course most of the material

from the first edition is included, with as

much again added. See the back cover ad.

The price? Just $12.95! Originally the price

was projected at around $25 dollars. Two

reasons account for the difference. First, the

disk we intended as part of the package will

now be made available separately (details

next issue). Secondly, we have decided to

publish the book on our own. Previously we

had considered releasing the book to an out

side publisher but by doing it ourselves the

price can brought down substantially.

The Complete Commodore Inner Space An

thology is currently available by mail order

only through The Transactor. The easiest

way to order is with the postage paid reply

card at the center of the magazine. Mark the

card appropriately and don't forget your

postal/zip code. If you're paying by charge

card, please include the expiry date. If you're

sending a cheque, you can tape the postage

paid card to the outside of an envelope.

Please allow 4 weeks for delivery.

Autographed by Jim Butterfield

At this moment we have 50 autographed

copies of Jim Butterfield's book, "Machine

Language for the Commodore 64, and other

Commodore Computers". 49 of them will be

available for $ 17.95 each (no taxes). The 50th

we'd like to keep for ourselves.

To get one, act fast. Remember, this notice is

printed 63,000 times so they won't last long.

You can even use the postage paid reply card

at the center of this issue - just be sure to

specify the book title on the card.

Product News:

IBM COMAL

IBM hasn't officially announced it yet, but the

word is that they will soon offer COMAL for

the PC, XT, AT, and PCjr machines. It will be

completely compatible with the COMAL 2.0

cartridge for the Commodore 64.

The Gold Disk

The gold disk is a monthly magazine for the

C64 in disk format which contains high qual

ity software. Each issue has a feature program

(eg. December's feature was an easy to use

Database), an arcade-style game, a home

finance program with accompanying article,

educational programs, and a crossword puz

zle. There is also a regular graphics column, a

music column, and programming tips. An

assembler, word processor, information man

agement system, and FORTH are planned as

the feature program for future issues.

All programs and articles on the disk are

accessed from a main menu, and the menu

can be easily re-entered without leaving the

gold disk environment.

The Gold disk costs $15.00 (Cdn.) for a single

issue, $70.00 for a 6 month subscription, or

$127.00 for 12 months (plus $1.00 shipping

and handling for each issue). Contact:

The Gold Disk

2179Dunwin Drive, #6

Mississauga, Ont.

Canada L5L 1X3

Quick Data Drive For C64 and VIC-20

The Quick Data drive from Entrepo Inc. of

Sunnyvale, CA is a high-speed replacement

for the C2N datasette unit. It works with tiny

tape cartridges called "microwafers" which

can store from 16K to 128K of data. An

operating system which comes with the drive

called QOS (Quick Operating System) allows

normal BASIC I/O commands (OPEN, SAVE,

LOAD, etc.). Files are stored sequentially on

the wafer, but the drive will search a given

filename, appearing like a 1541 disk drive to

the user. Average access time to locate a file

on a 65K microwafer is 25 seconds. Once

located, data communication rates are

claimed to be 15 times faster than the C2N

datasette (that's faster than a 1541 disk

drive!).

Price for the drive and software on microwa

fer is $129.95. Microwafers cost approxi

mately $5.00 depending on storage capacity.

The Transactor 76 Volume 5, Issue 06

Entrepo

1294 Lawrence Station Road

Sunnyvale, CA

USA 94089

Software Developers Newsletter

The Software Developers Association is a

non-profit association of computer software

developers, and others in related areas, who

have joined together to strengthen software

development in Canada.

The Software Developers Association News

letter is a monthly publication produced and

distributed by the Software Developers Asso

ciation for our members and friends of a

developing Canadian software industry. For

further information, please contact, Bob

Bruce, Chairman, Software Developers Asso

ciation.

Computer Software And Human Develop

ment Conference

The impact of computer software on the fu

ture of business and education will be exam

ined at an international conference

sponsored by the Ontario Software Devel

opers Association in conjunction with the

Third Annual Software Panorama at the

Royal York Hotel in Toronto, May 22-24,

1985.

Senior business, government and academic

representatives from 160 countries are being

invited to attend the Computer Software and

Human Development Conference which will

examine the many dimensions of software

development and its impact on business, ed

ucation, health and agriculture. The Software

Panorama will also provide an opportunity

for software developers to demonstrate and

market their products. The Canadian soft

ware industry is estimated to consist of a

thousand firms with estimated sales at $1

billion. The market is expected to grow to $5

billion by the end of the decade.

The Ontario Software Developers have estab

lished an advisory committee of senior indus

try representatives to make

recommendations on various aspects of the

conference coordination. Focusing on the

School of the Future, Office of the Future,

Hospital of the Future and the Farm of the
Future, the exhibitors and conference are

expected to underline current and future ori

ented developments in software. While the

conference is expected to centre on trends

and developments in the industry, it will also

examine emerging opportunities and the ad

justments required in the quickly changing

industry. Please contact, Reuben Lando, Con

ference Coordinator.

The Software Developers Association

185 BloorSt. East

Suite 500

Toronto, ON

416922-1153

Commodore Now Provides American

Educational Software in Canada.

Commodore is now offering software across

Canada from American Educational Com

puter, Inc., one of the leading educational

software firms in North America.

"AEC's educational publishing experience

has led to the development of the most exten

sive collection of classroom-related pro

grams available, including phonics, word

skills, reading comprehension, vocabulary

skills and world geography," said Richard

Mclntyre, Vice-President - Sales, Commo

dore, Canada.

"Unlike many producers of 'educational' soft

ware who have entered the market following

the softening of the game market, AEC was

founded by experienced educational pub

lishers who saw a genuine need for educa

tional software that directly related to the

classroom experience. All AEC software

products follow standard school curriculum

material rather than a game format and are

designed to help student improve classroom

performance," he said.

Commodore is looking to increased growth

from this type of product, according to Mcln

tyre. Recent research by Future Computing

Inc. shows that while personal computer soft

ware sales will grow at an annual com

pounded rate of 68 percent through 1987,

educational software will grow at a 71 percent

rate during the same period and that the

home educational software portion will be

about 70 percent.

All AEC software is compatible with the Com

modore 64. Initial products include the

EASYREADER series and the MATCH

MAKER series. The programs are teacher-

designed and are grade-level oriented to help

the child all the way through school. By

paralleling the classroom experience, the

software consistently teaches lessons tailored

to the child's needs. All programs progress at

the user's own pace, are easy to use and

require no previous computer experience.

EASYREADER presents phonics and word

analysis skills with high resolution graphics

and full-colour animation and most impor

tantly, correlates with standard school read

ing programs.

MATCHMAKER retains the format system of

the school version which, in the home, al

lows parents to become more active in the

child's learning process, through the interac

tive format.

Donald R. Thompson, AEC Vice-President &

Director of Consumer Products Division,

said, "More important than fun being written

into the program is the fact that satisfaction

and reward come from success. Our line is

programmed so the child achieves a high

level of success. Too many other educational

programs are really just games that do not

relate enough to classroom work."

"AEC programs do contain games, but only

as rewards for learning achievement," said

Thompson. For example, once the student

completes the objective in MATCHMAKER'S

geography program, he or she can play an

exciting game, which helps to encourage and

motivate. The focus is strictly on learning.

"AEC software has an important advantage -

its approach has been student-tested under

actual classroom conditions, so we know it

keeps the child's interest while it teaches," he

said. For more information, please contact:

Richard Mclntyre

Commodore Business Machines, Ltd.

3370 Pharmacy Ave.

Agincourt, On

M1W2K4 416 499-4292

LAMP

LAMP (Literature Analysis of Microcomputer

Publications) has made available for sale the

Annual Cumulative Edition for 1983, mark

ing the first complete year of publication for

this international index. A bi-monthly jour

nal, LAMP presently indexes 130 periodicals

which deal exclusively with the field of mi

crocomputers. This important publication is

the most comprehensive, single source for

information on microcomputers as they re

late to business, education, the arts, social

and physical sciences.

The annual cumulative edition is printed in

two volumes and encompasses thousands of

subject and author entries, thousands of re

views of books and periodicals, hardware and

computer systems, educational courseware

and video games, and information on all

phases of microcomputers.

The 1983 year-end issue is available to non-

subscribers at $69.95. Or subscribe to LAMP

for 1984 at the regular annual rate of $89.95

and take advantage of the special offer of

$39.95 for the 1983 cumulative edition. For a

brochure describing LAMP and further infor

mation on the hard-cover or microfiche edi

tions call toll-free 800 526-9042 or write:

LAMP/Soft Images

Brochure Department

200 Route 17

Mahwah, N.J. 07430

Porthole

Porthole announces the modern computer

magazine published entirely on disk for the

Commodore 64 and V1C-20. The first issue is

scheduled for January 1985 (or maybe De

cember 84) and will be issued six items a

year. Porthole will have all the features you

have come to expect from a complete com-

The Transactor
77

Volume 5, Issue 06

puter magazine. Feature Articles, Games, Re

views, Education, Programming Tutorials,

Letters and, yes, even advertising and new

product announcements. But one thing you

will never have to do again is to key in a

program. Each issue will contain ready to run

programs selected for a wide range of user

interests. These will be programs that you

will want to back up on your own disks - and

Porthole will let you do it.

Porthole is not yet available at your local

news stand. All sales are by mail. The single

issue price is $10.00 postpaid. Send your

orders to:

Porthole

P.O. Box 135

Kerby, OR 97531

WANTED - Programmers, Authors, Contrib

utors, and most of all, Readers!

SPECIAL OFFER - Send a formatted 1541

disk with return postage to Porthole. By swift

return mail Porthole will return the disk

loaded with information on how to contribute

to Porthole. But you already know! It's this

easy. Write a BASIC "program" like this:

0 " my name is jane, porthole sounds

1 " terrific, this isn't the best word

2 " processor but it works! do you

3 " have something better? return by

4 " disk to 555 pal road, lincoln, ne

Don't goof up. Send return postage or Port

hole gets a free disk. Sorry, letters without a

disk must wait on the poop deck for the galley

to empty.

EXTRA SPECIAL OFFER - Send a disk and

$5.00 and ship out in steerage. Enjoy the

view everyone else will see thru the Porthole

window at half the price. This offer may not

be repeated.

Don't miss this adventure in computing. Let's

do it right - throw away those pencils and

paper. Start your drives and enjoy the new

spirit of magnetic publishing! For more de

tails, contact:

Raymond Quiring

Porthole Disk

P.O. Box 135

Kerby, OR 97531

502 592-4594

New Income Tax Program

For Commodore PLUS/4

Taxaid Software, Inc. has released a new

edition of the "TAXAID" income tax prepara

tion program for the Commodore PLUS/4

computer. TAXAID programs have been

available for other Commodore computers

since 1981. The PLUS/4 edition was written

by the experienced tax accountants and is
designed for home use.

TAXAID is easy to use with a detailed manual

that leads the user step by step through the

data entry. The program is menu driven with

advanced editing features that allow the user

to make changes and revisions at any time

during the data entry process. Data files can

be saved and reloaded at any stage of the

program. Calculations are automatic and all

tax tables, including income averaging are

built in. TAXAID will prepare any IRS form

1040. The program features computer gener

ated forms for Schedule A, B, C, G, W, and

Form 2441 as well as a complete listing of

pages 1 & 2 of the 1040 Form.

The results can be directed to the monitor or

the printer. Low cost updates for future tax

years are published every year.

TAXAID is available on disk or tape for the

Commodore PLUS/4 at a cost of $29.95. For

more information, contact:

Taxaid Software, Inc.

606 Second Ave. S.W.

Two Harbors, MN 55616

217 734-5012 218 834-3600

INFOQUICK Bulletin Board

for the Commodore 64

Expandability: Can run on a single disk drive

or as many as 4 dual drives. Up to 16 sub-

boards for messages (including 4 privileged

areas). Files library can be expanded to an

unlimited number of sub-directories

("downloading"). Up to 400 users, 800 mes

sages.

Speed: 100% machine language. Entire pro

gram and all menus are loaded once - no

time consuming "chaining". Full type-ahead.

Menus cut off instantly when commands are

typed. Abbreviated menu option.

Flexibility: Runs on all Commodore and MSD

disk drives. Runs on all the most popular

modems. Can be run so users create their

own fully-validated accounts or with user-

created accounts requiring SYSOP validation

or with all new unvalidated users on a single

"generic" account. Can use standard ASCII or

Commodore ASCII. Messages are automati
cally reformatted for the terminal of the user

reading them. Changeable SYSOP name.

SYSOP-selectable time limits on inactivity
and on the total length of calls. SYSOP-

definable welcome and warning messages.

Uploads or downloads can be temporarily
disabled. Optional remote SYSOP usage -

can be easily enabled and disabled. 300/

1200 baud operation. 70-plus page detailed
manual. File transfers either as straight text

or using the industry-standard XMODEM

protocol with error checking. Read/scan

messages since last call, forwards, reverse, by

sender, by recipient; optional mark during

scan for later read. Find-and-replace text
editor for message entering SYSOP desig

nated "bulletins" shown to each user or to a

subset of the users. Convenient reply-delete

option after reading each message. SYSOP

can change public messages to private, for

ward a copy of a message (optionally editing

it first), re-assign a message to a different

sub-board. Real-time log of logins, logoffs,

and file transfers. Multi-line descriptions of

each file and sub-directory. "Privileged"

messages and files completely invisible. Op

tional transcript to printer. Scan userlist by

users' interests, location. SYSOP/user chat

initiated by either SYSOP or by user.

INFOQUICK - Your once and future BBS.

Suggested retail $139 (U.S.). Ask about SY

SOP referral rebate. Dealer inquiries wel

come.

For more INFO QUICK-Iy call 617 547-0340

or contact these operational INFOQUICK bul

letin boards:

617 823-6140 MASSPET II

203 397-3381 MicroTechnic Solutions

203 481-9974 SAIL Software

The SMART 64 Terminal +4

The SMART 64 Terminal +4 is a greatly

enhanced version of this versatile terminal

communications package for the Commo

dore 64 which is already in home education

and business environments. New features

include VT52/VT100 emulation when appro

priately configured with 80 column hard

ware, XMODEM file protocol for direct-disk

transfers of programs and text, HELP screens

for instant reference, 300/1200 baud full-

speed downloading, direct printing of the

28K memory buffer, and an expanded status

line. Convenience items such as software

alphabetic shift, linefeed toggle, word-wrap

control, time-of-day clock and alarm clock,

key-repeat toggle, screen print, single key

stroke ID and password transmission, color

adjustment, and echo mode provide the user

with a comfortable operating environment. A

built-in disk command processor lets the

user manage disk files directly. The PetAscii/

ASCII translation tables are adjustable by the

user, and can be deactivated by toggle con

trol. Four redefinable function keys are avail

able for storing multi-line tet strings, up to 80

characters each. Text uploads directly from

disk are accommodated in either continuous

or prompted mode. Automatic answerback to

ENQ is provided, as well as a BREAK function

for communicating with mainframes. The
SMART 64 Terminal supports all direct-
connect modems and most RS232 modems,

including Hayes.

A separate version of the product supports

the COMvoice speech synthesizer to provide
the user with a TALKING terminal. The Smart
64 Talking Terminal offers all of the features

of the 40 column mode in the standard pack
age, with the exception of word-wrap con

trol, which is replaced with two new ones

more appropriate to an audio-based product:

toggle voicing and phrasing of words or let-

78
Volume 5, Issue 06

ters. The voicing toggle allows silent, high

speed downloading of extensive tet for play

back offline, or the real-time voicing of data

as it is received by the modem. The phrasing

control can be switched to letters for intelligi

ble reception of unpronounceable letter

groupings such as securities stock-trading

symbols. Users can make back-up copies.

Suggested retail for both versions is $39.95

(U.S.). Availability information from:

Microtechnic Solutions Inc.

P.O. Box 2940

New Haven, CONN 06515

203 389-8383

The FONT FACTORY

VIC-1525/MPS-801

Printing Enhancement System

The FONT FACTORY will read any standard

Commodore 1541 ascii sequential file, auto

matically format, and print out the document

in any font that is selected. With this ability,

the FONT FACTORY will read text files pro

duced by many of the popular Commodore

64 word processors and produce a more pre

sentable and interesting document. The user

has full control over all page formatting, such

as, page length, line width, left margin, top

margin, line spacing, headers, footers, page

numbering, justification, etc.

The FONT FACTORY includes an easy-to-

use Font Generator to create or edit your own

fonts. Fonts may be as large as 9x7 pixels,

and may be printed in normal or double

width formats.

The FONT FACTORY has the ability to mix

up to fifteen different fonts within a single

document. Thirteen embedded commands

are available to give the user the ability to

reformat different areas of text within the

document. Use your word processor in con

junction with the FONT FACTORY to turn

your 64 into a complete typesetting system!

The FONT FACTORY is user friendly and

entirely menu driven. Eight preformatted

fonts are provided including one with True

Lower Case Descenders, when you purchase

the FONT FACTORY. Additional Font Disks

may be purchased separately.

Micro-W Dist. Inc.

1342B Route 23

Butler, NJ 07405

201 838-9027

CAM-64 (Call Accounting Manager)

Phone Call Processing Software

Input Systems, Inc., designers and publishers

of popular business software for Commodore

Microcomputers, announces the release of

their new software for monitoring multi

station phone usage.

CAM-64 was designed for companies with

new telephone systems, or ETN systems. The

program organizes SMDR data output from

the phone system switching computer. CAM-

64 utilizes the famous cost efficient Commo

dore 64 Computer, disk drive and printer.

The CAM-64 System is Menu driven from an

Auto Load Module, plugged into the cartridge

slot of the Commodore 64. It will function on

any phone system which utilizes Station Mes

sage Detail Recording (SMDR), such as Mitel,

AT&T and others.

The system handles up to 2500 phone calls

per disk, using a single Commodore 1541

Disk Drive. It will sort calls into several cate

gories and sub-categories, and will send for

matted printouts to a computer monitor, TV,

or printer. Each format may be selected from

a Menu.

CAM-64 will sort outgoing call information

by:

(1) Stations/Extensions (handles up to 100

stations)

(2) Area Codes

(3) Common Carriers (up to 4, such as Micro-

tel, Sprint, etc.)

For further information, contact:

Input Systems, Inc.

15600 Palmetto Lake Drive

Miami, FL 33157

305 253-8100

Expandable 300/1200 Baud Phone

Modem With Clock/Calendar

ProModem 1200 from Prometheus Products

is a Hayes compatible Bell 212A, 300 and

1200 baud phone modem with built-in

clock/calendar. The unique design provides

the ability to add an optional buffer memory

with up to 64K of storage.

Standard features include Auto-Answer and

Auto-Dial, Programmable Intelligent Dial

ing, Tone and Pulse Dialing, Built-in Speaker

with Volume Control, separate phone and

data jacks to permit switching between voice

and data, and simple yet powerful diagnos

tics. Suggested list price is $495 (U.S.).

The ProModem 1200 can be purchased with

the optional buffer installed or it can be

added later. The buffer card comes with 2K of

battery backed-up CMOS memory to protect

time, date, operating parameter, and other

data stored in memory from loss during

power down. The buffer card lists for $99

(U.S.). Additional memory, in increments of

16K is available up to a maximum of 64K.

Memory in ProModem 1200 is dynamically

allocated between "Directory" and "Buffer".

The user can store telephone numbers, ac

cess codes, and log on messages in each

directory entry. Up to 12 reference characters

can be used to "call up" entries in the direc

tory and initiate unattended dialing.

The buffer is used to store messages in the

modem for transmission at a preset time, per

the internal clock/calendar, to a specified

group of phone numbers from the directory.

In the auto-answer mode, incoming mes

sages are automatically stored and the time

recorded. Operation of ProModem can be

unattended, with or without the host com

puter being operational.

A plug-in twelve character alphanumeric dis

play is available for $99 (U.S.) list price. It

shows operating status, diagnostic messages,

phone numbers, and time/date information.

Delivery of the ProModem 1200 is 2 weeks

from the factory or from stock via Prome

theus' dealers. For additional information

contact:

Robert Christiansen

Prometheus Products, Inc.

45277 Fremont Blvd.

Fremont, CA 94538

415 490-2370

Printer Ribbons for

Commodore 1526/4023 And Others

Aspen Ribbons, Inc., of Lafayette, Colorado,

is pleased to announce the Aspen Ribbons

brand replacement for the Tally/

Mannesmann Spirit 80 (SP80) multistrike rib

bon. One hundred percent compatible to the

ribbon from the original equipment manufac

turer (OEM), its specifications are 1/2" x 100

ft., with multistrike film. Use this ribbon on

the following printers:

• Accord DC80

• Blue Chip Enterprises Ml20/10

• BMC International BX-80

• Cal-Abco Legend 80

• Commodore 1526

• Commodore 4023

• Formula SP80

• ITT Xtra

• Legend 800

• Lein Yig Computer Corp. YL-80FPT

• Mitsubishi Super VCP80

• Multi-Tech Compumate CP800 Type 1

• Okidata 1600 Printer

• Ortrona AT-80

• Suminon 840

• Tally/Mannesmann Spirit 80 (SP80)

• Tally Spirit MT80 Microprinter

• Yocobushi Computer Union CO FP-80

Prices for this ribbon range from $6.00 to

$3.34 (U.S.) depending on the quantity or

dered. Color ribbons are not available at this

time. For more information, please contact:

Aspen Ribbons, Inc.

555 Aspen Ridge Drive

Lafayette, CO 80026

303 666-5750 or 800 525-9966

The Transactor
79

Volume 5, Issue 06

PAYS

$40

per page for articles

We're also looking for

professionally

drawn cartoons!

Send all material to:

The Editor

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

Issue*

Volume 5 Editorial Schedule

Theme Copy Due Printed Release Date

1

2

3

4

5

6

1

2

3

4

5

Graphics and Sound

The Transition to Machine Code

Software Protection & Piracy

Business and Education

Hardware and Peripherals

Programming Aids & Utilities

Febl

Apr 1

Jun 1

Augl

Octl

Dec 1

Mar 19

May 21

Jul23

Sepl7

Novl9

Jan 19

Volume 6 Editorial Schedule

Communications & Networking Feb 1 Mar 21

Languages

Implementing The Sciences

Hardware & Software Interfacing

Real Life Applications

Apr 1

Jun 1

Augl

Octl

May 20

Jull8

Sep21

Novl9

April 1

June 1

August 1

October 1

December 1

February 1/85

April 1/85

June 1

August 1

October 1

December 1

Advertisers and Authors should have material submitted no

later than the 'Copy Due' date to be included

with the respective issue.

COMAL

USERS t

(1) DISK based COMAL version 0.14

• COMAL starter kit—commodore 64™ System Disk, Tutorial

Disk (interactive book), Auto Run Demo Disk, Reference

Card and COMAL FROM A TO Z book.

S29.95 plus $2 handling

(2) professional comal version 2.0

• Full 64K Commodore 64 Cartridge

Twice as Powerful, Twice as Fast

S99.95 plus $2 handling (no manual or disks)

• Deluxe Cartridge Package includes:

comal HANDBOOK 2nd Edition, Graphics and Sound

Book, 2 Demo Disks and the cartridge (sells for over

$200 in Europe). This is what everyone is talking about.
$128.90 plus $3 handling (USA & Canada only)

CAPTAIN COMAL Recommends:

The COMAL STARTER kit is ideal for a home programmer. It

has sprite and graphics control (LOCO compatible). A real
bargain—$29.95 for 3 full disks and a user manual.

Serious programmers want the Deluxe Cartridge Package.
For $128.90 they get the best language on any 8 bit
computer (the support materials are essential due to the

immense power of Professional COMAL).

ORDER NOW:

call TOLL-FREE: 1-800-356-5324 ext 1307 VISA or MasterCard

ORDERS only. Questions and information must call our
info Line: 608-222-4432. All orders prepaid only-no COD
Send check or money order in US Dollars to:

COMAL USERS GROUP, U.S.A., LIMITED
5501 Groveland Ten, Madison, wi 53716

TRADEMARKS: commodore 64 of Commodore Electronics Ltd- Captain COMAL of
comal users Croup, U.S.A., Ltd

I estimated

COMMODORE OWNERS

Join the world's largest, active Commodore

Owners Association.

• Access to thousands of public domain programs

on tape and disk for your Commodore 64, VIC 20

and PET/CBM.

• Monthly Club Magazine

• Annual Convention

Member Bulletin Board

Local Chapter Meetings

Send $1.00 for Program Information Catalogue.

(Free with membership).

Membership

Fees for

12 Months

Canada — $20 Can.

U.S.A. — $20 U.S.

Overseas — $30 U.S.

T.P.U.G. Inc.
Department "M "

1912A Avenue Road, Suite 1

Toronto, Ontario, Canada M5M 4A1

* LET US KNOW WHICH MACHINE YOU USE

Disk

Has Arrived!
simply code V
postage powered ordj

gram from e^h jsue «jd ^
energized, and transp wi)1 seem

base directly ^J^Jyou save typing,
slow compared to the me V ^.^

and the Prof^t t of

lSSH
Only $7.95 Each!
6 Disk Subscription

Just $45.00!

Sp£

The Complete Commodore

Inner Space Anthology

will look like this:

WATCH FOR IT!

January 1985

