

A^PAL 64
y (The fastest and easiest to use
///^^ assembler for the Commodore 64.
Pal 64 enables the user to perform

assembly language programming using the

standard MOS mnemonics. 569.95

y j

64

Is an absolutely indispensible aid to

the programmer using Commodore

64 BASIC. Power 64 turbo-charges

resident BASIC with dozens of new super

useful commands like MERGE, UNDO,

TEST and DISK as well as all the old

standbys such as RENUM and SEARCH &

REPLACE. Includes MorePower 64. S69.95

rTOOL BOX 64

Is the ultimate programmer's utility

package. Includes Pal 64 assembler

and Power 64 BASIC soup-up kit all

together in one fully integrated and

economical package. $129.95

A-^SPELLPRO 64
KIs an easy to use spelling checker

with a standard dictionary expandable

to 25,000 words. SpellPro 64 quickly

adapts itself to your personal vocabulary

and business jargon allowing you to add and

delete words to/from the dictionary, edit

documents to correct unrecognized words

and output lists of unrecognized words to

printer or screen. SpellPro 64 was designed

to work with the WordPro Series'and
other wordprocessing programs using the

WordPro file format. $69.95

NOW SHIPPING!!!

For Your Nearest Dealer

Call

(416) 273-6350

tCommodore 64 and Commodore are trademarks of

Commodore Business Machines Inc.

* Presently marketed by Professional Software Inc.

Specifications subject to change without notice...

AWP64

y \ This brand new offering from the

///"N originators of the WordPro Series*
brings professional wordprocessing to the

Commodore 64 for the first time. Two

years under development, WP64 features

100% proportional printing capability as

well as 40/80 column display, automatic

word wrap, two column printing, alternate

paging for headers & footers, four way

scrolling, extra text area and a brand new

'OOPS' buffer that magically brings back

text deleted in error. All you ever dreamed

of in a wordprocessor program, WP64

sets a new high standard for the software

industry to meet. $69.95

A^MAILPRO 64

KA new generation of data

organizer and list manager, MailPro

64 is the easiest of all to learn and use.

Handles up to 4,000 records on one disk,

prints multiple labels across, does minor

text editing ie: setting up invoices. Best of

all, MailPro 64 resides entirely within

memory so you don't have to constantly

juggle disks like you must with other data

base managers for the Commodore 64.

$69.95

PRO-LINE
■■■■IIIISOFTWARE

273-6350
'55 THE QUEENSWAY EAST, UNIT 8,
MISSISSAUGA, ONTARIO. CANADA, L4Y 4C5

Volume 5

Issue 05
Circulation 62,000

Transcriptions Editorial

News BRK ... 4
The Diskette Transactor

The Complete Commodore

Inner Space Anthology

Memorex Catalog

Helko Systems Furniture

Network Communications Show

EDG Electronics Announces Availability

of CompuServe Software in Canada.

Frantek Software distributors

for Scarborough Systems.

Commodore 64 Enhancements

Commodore to Distribute New Handic

Software & Networking Devices

New Recreational Software for the +4 and C16

COMAL: Program For The Future - Today!

TPUG Offers COMAL Primer and Manual

EnTech Introduces Enhanced Studio 64

Melcher Software Announces Two Music

Tutor Programs

Two Presidential Election Programs

RECORD BOOK: Data Storage and Retrieval

How To Make Good Investments

Investment and Statistical Software Package

MICROSHARE 64 networking system

Operant Interface

Electronic Components Computer Patch Cord

Omnitronix Announces RS232 Interface

for the VIC-20, C64, and SX64 Portable.

RS-232 16 Channel Analog Input Module

Bits and Pieces 11
Built-in debugging aid

Easy Disk Directory Pattern matching

Poison Line Number

Closing "Forgotten" Files

SAVE-ing a Range of Memory From BASIC

WAIT A SECOND!

Checking for SHIFT, CTRL, and Commodore keys

Changing Screen Character Colours

Death by Garbage

Drowning in Garbage!

Single Disk Copy Program

BASIC 4.0 String Bug

Intercepting C64 System Error Messages

C64 RESTORE key checking

A Questionable Prompt

Fast BASIC HI-RES Point Plot

Fast HI-RES Screen Clear

Decimal to Hex conversion Table

Large Characters on VIC or 64

Letters 17
Doctor Destructo: Reset Protector

Coin Side One

Coin Side Two:

Transbloopers 19

The Commodore DOS: Two Book Reviews . 20

Machine Language For The Commodore 64 21

Commodore 16 / +4 Memory Maps 23

The MANAGER Column 26

Subroutine Eliminators 28

Introducing TransBASIC 30

Hardware Corner 36

Commodore 64 Keyboard Kernel Routines . 39

Fixing Commodore Keyboards 44

Life With The 1541 45

Learning The Language of DOS 46

Inside The Commodore 64 52

All About Printers 57

Evolution Of The CPU 62

EPROM Cartridge For The VIC 20 64

Computer Slide Projector Control 67

VIC 20 Audio/Video Cable Adapter 70

LINKED LISTS Part 1 72

Computing Desk 77

Rethinking DATAfication 78

The Transactor Volume 5, Issue 04

The Toih/Nuws Jo

print"

Managing Editor

KarlJ. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Art Director

John Mostacci

Administration & Subscriptions

Lana Humphries

Contributing Writers

Harold Anderson

Don Bell

Daniel Bingamon

Jim Butterfield

Gary Cobb

Elizabeth Deal

Domenic DeFrancesco

G. Denis

Brian Dobbs

Bob Drake

Ted Evers

Mike Forani

Jeff Goebel

Dave Gzik

Thomas Henry

David A. Hook

Phil Honsinger

Rick Hies

Scott Johnson

Garry Kiziak

Scott Maclean

Glen Pearce

Michael Quigley

Howard Rotenberg

Louis F. Sander

George Shirinian

K. Murray Smith

Darren J. Spruyt

Aubrey Stanley

Nick Sullivan

Colin Thompson

Mike Todd

James Whitewood

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton,

Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second

Class postage paid at Buffalo NY, for U.S. subscribers. U.S. Postmasters: send address changes to

The Transactor, 277 Linwood Avenue, Buffalo, NY, 14209, 716-884-0630. ISSN* 0827-2530.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET. CBM, VIC, 64) are registered

trademarks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue,

Milton, Onlario. Canada. L9T3P7, 416 876 4741. From Toronto call 826 1662. Note: Subscriptions

are handled at this address ONLY. Subscriptions sent to our Buffalo address (above) will be

forwarded to Milton HQ.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

SOLD OUT: The Best of The Transactor Volumes 1 & 2, and Volume 4, Issues 04 & 05

Still Available: Best of The Transactor Vol. 3, Vol. 4: 01, 02, 03, 06, Vol. 5: 01, 02. 03, 04

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of course

be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the number 1 which has an

angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

insert will not be critical to correct operation of the program. When it is, the required number of spaces

will be shown. For example:

flush right" - would be shown as - print" [space 10]flush right"

Cursor Characters For PET / CBM / VIC / 64

Down -

Left

RVS -

RVS Off -

- [Lft]

Insert - gj

Delete - Q

Clear Scrn - Q

Home - Q

STOP - H

Colour Characters For VIC / 64

Black - Q

White - Q

Red - Q

Cyan - [Cyn]

Purple - [Pur]

Green - Q

Blue - B

Yellow- [Yel]

Orange -

Brown

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt. Blue -

Grey 3 - [Gr3]

Function Keys For VIC / 64

Fl- C

F2- Q

F3- Q

F4- n

F5-

F6-

F7-

F8-

CompuLit

PO Box 352

Port Coquitlam, BC

V5C 4K6

604 438 8854

U.S.A. Distributor:

C i

Quantity Orders:

Micron Distributing

409 Queen Street West

Toronto, Ontario, M5V 2A5

(416)593 9862

Dealer Inquiries ONLY:

1 800 268 9052

Subscription related inquiries

are handled ONLY at Milton HQ

dulributuig

Capital Distributing

Charlton Building

Derby, CT

06418

(203) 735 3381

(or your local wholesaler)

Master Media

261 Wyecrolt Road

Oakville, Ontario

L6J 5B4

(416)842 1555

(or your local wholesaler)

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per

printed page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro.

WordCraft, Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk

or tape. Manuscripts should be typewritten, double spaced, with special characters or formats clearly

marked. Photos of authors or equipment, and illustrations will be included with articles depending
on quality. Diskettes, tapes and/or photos will be returned on request.

All material accepted becomes the property of The Transactor. Al! material is copyright by

Transactor Publications Inc. Reproduction in any form without permission is in violation of

applicable laws. Please re-confirm any permissions granted prior to this notice. Solicited material is

accepted on an all rights basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or

programs. Programs listed in The Transactor are public domain; free to copy, not to sell.

The Transactor Volume 5, Issue 04

We're So Misunderstood!

A couple of issues back we published a "mock ad" type cartoon

describing the "Comedian 264". Since then we've heard reports

ranging from tickled to mild shock. Well, we at The Transactor

would like to set the record straight. Before anyone else is even the

least bit influenced by what was merely intended to be a little 'Don

Rickles' style humor, here's how we see the picture to this point in

the life of the new Commodore +4.

To start, it's only natural that Commodore will dub the newest

machine their "latest and greatest". They have to do that. It's

called, "staying in business". But now it seems that many Commo

dore 64 owners are showing what you might call "technology

territorial" behaviour patterns. The 64 has features not found in

the +4. So to maintain a technologically superior feeling towards

their investment, some 64 owners will naturally see a new ma

chines weaknesses over its strengths. Besides, the "new kid on the

block" is bound to take a little ribbing, but that stage is pretty well

over.

The 64 and the +4 have many similarities. But the advanced

features unique to each machine will have the most influence over

a decision between the two. That is, if money is no object. The +4

will cost more than the 64 which is more than the C16, the 16K

version of the +4 in a C64 casing.

The 64 will remain the superior entertainment machine. The

animated graphics capabilities will ensure that. The +4 has a

SOUND command, but music applications of any sophisticated

nature will still be superior with the SID chip. And Commodore is

not about to give their star player its walking papers.

The +4 wins in the "productivity" department, the main promo

tional base for the machine. However, if that was your main reason

for owning a 64, remember, a good investment is one that does the

job it was intended to. There will always be another new computer,

but you can't wait forever. If you know you need one, it's a

question of how long you can go without. You must determine how

valuable a computer will be for the task at hand, then subtract that

value over the period of time you spend waiting. Many Commo

dore 64 owners using "productivity" software will probably agree

that waiting would have been a mistake. In fact, it's a good

possibility that those machines have not only paid for themselves,

but also a brand new +4 system. \

The 16 has been dubbed "The Learning Machine" and will no

doubt be a serious contender in the battle for the educational

market. School budgets should have little trouble with 99 bucks

U.S.

VIC 20 prices are pretty well rock-bottom with reports as low as

$49 in Florida. Apparently Commodore still has inventory, but the

VIC 20 stamp has probably seen the production line for the last

time.

That's our account of the situation. Now the machine itself.

Quite simply, the Commodore 16 and + 4 generation of computers / /

are nothing less than fabulous! In fact, from the aspect of program- Karl 3.H. Hildon, Managing Editor

mability, it's the best Commodore machine yet. And, as usual,

dollar for dollar the other manufacturers don't even come close.

Sure it doesn't have a SID chip, but the SOUND command provides

enough audio for the average program. It doesn't have sprites, but

you don't use sprites to display business reports and analytical

data.

New features like luminance control and flashing attributes are

included; the MLM now has Assemble, Disassemble, the invalu

able Hunt command, and more; Decimal and Hex converter

programs are no longer necessary; the Editor is the best anywhere

with features like Renumber, Delete, Help, Trace, Find, and

Change; the new BASIC has all the structured commands you'll

need; and with 60K of RAM available for BASIC means there will

be no excuse for software that is anything less than exquisite!

Even the new microprocessor technology of the 7501 makes it the

leader in sophisticated architecture advancements. Multiple mem

ory "layers" (see the Memory Map in this issue) allow for piles of

ROM that effectively requires no address space - a concept that's

not only clever, but truly intelligent!

The +4 might be the latest, but that doesn't make the 64 obsolete.

For the application minded, either machine will be the right choice

depending on the needs of the buyer, which is how a computer

purchase should be made. For the hobbyist, personal preference

will probably be the deciding factor. The introduction of the +4

fills a gap; we'll have the choice of an entertainment machine with

business potential, or an applications machine with entertainment

potential. In short, we now have the choice of paying only for the

features we need most for the task at hand (which, by the way, is

one reason some of the other machines are so expensive.)

There's one other trait that becomes more and more apparent with

each new machine from Commodore. Vertical Integration. While

other manufacturers are designing computers around the IC's,

Commodore is developing new IC's to suit their computers. It

seems right now there's no limit to how far chip technology can

advance. As the IC gains more power, there will be less and less

supporting hardware required on the same PC board which can

only result in better, cheaper, and more reliable equipment.

Commodore is well aware of their attributes and without a doubt

they'll take full advantage of them in the years ahead.

Delivery of the new machines has just begun so it shouldn't be

long before you see more and more material becoming available,

and The Transactor will be no exception. Actually, we can hardly

wait to get started! Now, if we could only get one...

There's nothing as constant as change, I remain,

The Transactor Volume 5, Issue 04

News BRK

Transactor News

The Diskette Transactor

Starting with this issue, the programs published in each Transactor

will be available on disk! Recent price reductions of floppy disks

and the advent of quality high-speed disk duplicating outfits have

made possible a service that was once unfeasible, impractical, and

too expensive.

Each disk release will contain a standard set of utility programs

followed by the programs in the corresponding issue, plus any

programs that may be useful or relevant to the theme of that issue,

or perhaps some light entertainment. The diskettes also make it

possible for us to present other potentially invaluable programs

that might never have been obtained because they were too long

to enter by hand.

No copylock protection will be added to the diskettes and faulty

copies will be replaced free of charge.

Authors take note - depending on the success of this service, a

royalty will be paid each time your program is responsible for the

order.

The Price? Just $9.95 Canadian for your first disk! With every disk

shipped, a personalized "money off" coupon will be included good

for $2 OFF the purchase of any Diskette Transactor - that's just

$7.95 CDN or $5.95 U.S! Return the coupon and we'll send you the

disk for any issue you choose (> = Vol 5, Issue 5) and the same

coupon for another $2 discount (until it gets worn out of course). If

you decide you don't want the diskette for a certain issue, keep the

coupon until the next issue. This way you have the choice of

ordering them issue-by-issue, only at subscription prices.

The first Diskette Transactor will coincide with Volume 5, Issue 05,

(this issue) and will be available by December 15. All future

diskettes will be ready the same day the magazine is released (see

Editorial Schedule). To order, send $9.95 Cdn (Ontario residents

please add 1% sales tax) or $7.50 U.S. or your Visa/Master Card

number (include Expiry Date) to:

The Diskette Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

Diskettes are 4040/1541 or compatible (ie. MSD) format. With

enough response we'll offer 8050 compatible disks too.

We also plan to pack as many programs as we can from past

Transactors onto a set of 2 or more diskettes. But until we know

how many disks will be filled up, a price cannot be determined.

See News BRK next issue for details.

The Complete Commodore

Inner Space Anthology

That's the name we've settled on for the much awaited second

edition of Transactor Reference Issue. Inquiries for the book have

been coming in from around the world, with some reports of

people leaving full deposits with retailers.

At this point, the "Transcyclopedia" (as it's affectionately known) is

well over 100 pages of strictly reference material. Whole subjects of

information have been summarized and presented in a tidy,

compact format that's been designed with the computer enthusiast

in mind. Several pages contain as much as 20,000 characters each!

Sections include Music, Color and Graphics, Math & Conversion

Formulae, High Level and Machine Language summaries, Hard

ware and Electronics, User Groups, Communications, Memory

Maps for all machines including the B Series, +4/16, COMAL, and

the 8050, 4040, and 1541 diskdrives, Control Command summar

ies for all the most popular software, plus a mountain of general

type info that usually can't be found all in one place. With any

luck, we may also get permission to reprint VIC 20 and Commo

dore 64 schematics.

The price should be available by the time you read this or

December 1, '84, whichever comes first. That's about the same

date we expect to have the first copy off the press.

General News

Memorex Catalog

Memorex Canada, a complete supplier to the computer and word

processing industry specializing in peripherals and accessories, is

pleased to announce immediate availability of their new Computer

Media and Communications catalogue.

The Transactor Volume 5, Issue 04

In response to an increasing demand from their customer base,

Memorex has produced a 24 page catalogue outlining the com

plete range of products available from Memorex. These include

computer tape, disc packs, flexible discs, screens, controllers, and

printers, as well as, a large selection of storage and ergonomic

accessories for both computer and word processing environments.

Products may now be ordered via toll free phone lines across

Canada at 1-800-268-9886.

Helko Systems Furniture

Helko is proud to announce the design and development of it's

newest ergonomic workstation - the Micro Desk.

The Micro Desk provides the operator with a complete terminal

support system and adequate working surface. The keyboard is

fully adjustable in terms of height, tilt, depth and swivel. All

variations to the keyboard location are easily accomplished from a

seated position.

A pull out shelf provides the operator with additional workspace. It

slides back under the unit when it is not required. A utility shelf

underneath the unit and provides easily accessible storage for

diskettes, operator manuals, paper etc.

The surfaces are constructed with 'melamine' - finished, three

layer, two density, 451b. PSI resistant particle board. All surfaces

are wear, scratch and impact resistant. Feet are 16 gauge steel

painted with brown two component apoxy for durability and a

smooth finish. Adjustable glides permit fine levelling to compen

sate for uneven floors and minimize vibration.

Colors available are light oak, walnut and putty. For further

information, please contact:

Gillian Oxley, Public Relations Director

Helko Systems Furniture Inc.

PO Box 712

Cornwall, Ontario

K6H5T5 613 938-0494.

\

Events

Network Communications Show

The Communication Networks Conference & Exposition is being

held January 28-31, 1985 at the Washington Convention Ctr.,

Washington, DC. Expo space rate will be $19.50/sq. ft.

The trade show will be featuring voice and data telecommunica

tions, electronic mail, data processing, data communications and

networking with a personal computer. For further information,

contact:

Louise Myerow, Registration Manager

CW/Conference Management Group

375 Cochituate Road, Box 880

Framingham, MA 01701

617 879-0700 or 800 225-4698

Software News

EDG Electronics Announces Availability of CompuServe

Software in Canada.

EDG Electronics is pleased to announce that it is now exclusive

distributor in Canada for the products of CompuServe Information

Services, of Columbus Ohio.

CompuServe is an easy-to-use videotex service designed for

personal computer users and managed by the communications

professionals who provide business information to over one fourth

of the FORTUNE 500 companies.

Subscribers to the Consumer Information Service receive a wealth

of useful, profitable and interesting information like national news

wires, electronic banking, and shop at home services, and sophis

ticated financial data. There is also a communications network for

electronic mail, a bulletin board for selling, swapping, and per

sonal notices, and a multi-channel CB simulator.

Subscribers to the Executive Information Service receive serious,

up-to-the minute business information including high-lighting

investment information, communications, news and travel. The

Executive Information Service also provides access to the Con

sumer Information Service. It provides InfoPlex electronic mail

system, Ticker Retrieval for easy access of all information available

on any company specified, true 20 minute delayed stock quota

tions, MicroQuote II, detailed demographic data, Executive News

Service, plus more services to be announced.

CompuServe Vidtex Software provides terminal emulation for

popular personal computers including Apple and Commodore.

CompuServe with Vidtex offers options like colour graphics, auto

matic logon, full printer support, RAM buffer, user-defined func

tion keys, cursor positioning and more.

Subscribers to either the Consumer Information Service or the

Executive Information Service receive a subscription to Online

Today, CompuServe's monthly magazine on videotext and infor

mation systems.

EDG Electronic Distributors is making CompuServe products avail

able through a nation-wide network of computer stores. Potential

The Transactor Volume 5, Issue 04

dealers, distributors and end users are invited to contact Ian

Manson, Sales Manager, EDG Electronics for more information.

Electronic Distributors Inc.

3950 Chesswood Drive

Downsview, Ontario

M3J2W6 416 636 9404

Frantek Software distributors for Scarborough Systems.

Frantek Software Distributors, Inc.; 1685 Russell Road; Ottawa;

Ontario, has been named a distributor of home software in the

educational and productivity areas by Scarborough Systems, Inc.,

Tarrytown, N.Y.

Frantek Software will distribute Scarborough's entire product line,

including MASTERTYPE, the best-selling educational software

program of all time; PHI BETA FILER, a list management program

for children; RUN FOR THE MONEY, a business game with a

space-age theme; YOUR PERSONAL NET WORTH, a home finan

cial management program; SONGWRITER and PATTERNMAKER.

Please contact:

Sanford Bain

Scarborough Systems, Inc.

914 332-4545

Commodore News

Commodore 64 Enhancements

Late reports have it that a C128 is lined up in the Commodore

queue. The C128 is, alledgedly, a Commodore 64 with 128K of

RAM with the option of an 80 column black and white display.

That's everything for now though - watch News BRK for details on

price, availability, plus any other features that haven't been men

tioned yet.

Commodore to Distribute New Handic

Software & Networking Devices

Commodore Business Machines Limited, has announced a distri

bution agreement with Handic Software of Pennsuken, N.J.

whereby Commodore will be exclusive distributor for Handic

products in Canada.

Several new Handic cartridge software packages are now available

for the Commodore 64.

Calc Result is a three-dimensional spreadsheet that can translate

numbers into charts at the press of a button, and Word Result is a

full-featured word processor that integrates with Calc Result.

Forth 64 is a powerful operating system with a programming

language that is suitable for nearly every imaginable application in

business as well as in process control environments. Stat 64

simplifies work with statistics and graphic displays. It adds 19

commands to the BASIC language, such as horizontal or vertical

bar charts, plotting with 3871 points, screen dump and statistical

commands for calculations of mean value, standard deviation,

variance and more.

Graf 64 turns solutions of equations into graphical analysis. Users

can define functions and plot the graph in high resolution with an

X-axis range, and there is a special routine for computing the

integral of a function within a range specified by the user.

Tool 64 is a powerful programming and debugging aid which

includes numerous new commands, making it possible to write

bigger and more advanced programs using much less code. Tool

64 has advanced input routines and excellent possibilities to

handle numbers and to make graphics such as bar- and pie-

charts.

The CBM-64 Relay Cartridge will allow C-64 owners to control

burglar alarms, garage doors, door locks, electric radiators, lamps,

transmitters, remote controls, valves, pumps, telephones, accumu

lators, irrigation systems, electric tools, stop watches, ventilators,

air conditioners, humidifiers, miniature railroads and many other

devices with their Commodore 64s.

Bridge 64 is a bridge game with numerous levels, from novice to

advanced. Bridge 64 offers a helping partner or a skilled opponent

with thousands of different bids and excellent graphics.

Commodore is also now distributing low-cost networking devices

for its C-64, VIC-20 and PET/CBM models.

VIC-SWITCH allows up to eight Commodore 64s or VIC-20s to

sequentially share one disk drive or printer. VIC-SWITCH was

developed especially for educational use but has proven successful

in every application where more than one VIC-20 OR C64 needs

access to the same disk or the same printer.

PET-SWITCH allows up to 15 Commodore PET 4000 and/or CBM

8000 series micros to be connected to the same disk drive and

printer. In a PET-SWITCH system, there is distributed data power,

where data from the central disk drive, works with it and then

saves the resulting data back to the disk.

PET-SWITCH is very useful in schools, offices, service bureaus

and other applications where several people need continuous

access to particular data. With PET-SWITCH this is achieved,

while system costs can be cut considerably.

For further information:

Robert L'Esperance

National Software Manager

Commodore Business Machines Limited

7261 Victoria Park Avenue

Markham, Ontario.

L3R2M7 416 475-5111

New Recreational Software for the +4 and C16

JACK ATTACK - is a charming video strategy game. Make Jack

jump on the monsters before they jump on him, or drop blocks on

their heads. Race against time for the platform and round bonuses.

64 different screens for long-lasting fun! Nominated as Best Game

of 1984 by Electronic Games Magazine. PLUS/4, Cl 6 Cartridge.

PIRATE ADVENTURE is a challenging text adventure. Find your

way from a London apartment to Pirate Island, then take the pirate

ship to Treasure Island. Be sure to listen to the parrot — one smart

bird! PLUS/4, Cl 6 Cartridge.

The Transactor Volume 5, Issue 04

ATOMIC MISSION is a devious text adventure. You are locked

inside a nuclear reactor which has been programmed by a mad

scientist to explode. Your mission is to fool the security system and

deactivate the bomb! PLUS/4, Cl6 Cartridge.

STRANGE ODYSSEY is a science fiction text adventure. Discover

the secret to the machines in a space ship, and find the treasures

hidden on the different worlds! PLUS/4, Cl 6 Cartridge.

SCRIPT/PLUS is an advanced, full-featured, professional word

processor complete with on-line help screens. It's features include

wordwrap, full screen editing, global and local search and replace,

automatic centering, justification and right alignment, and decimal

alignment. There are automatic mail merge with selective search

criteria, and file linking for easy document handling. One of the

more advanced features is the capability for row and column

arithmetic and column move, to simulate a spreadsheet or calcula

tor within your document. SCRIPT/PLUS also contains an informa

tive status line to help make your word processor easy to use.

PLUS/4, Cl6 Cartridge.

FINANCIAL ADVISOR is a financial program designed for the high

school/college finance student for the loan officer at the bank.

FINANCIAL ADVISOR calculates the high cost and benefits of five

common financial strategies: Periodic Deposit Accounts, Periodic

Withdrawal Accounts, Installment Loans, Stocks and Bonds. Each

financial strategy is broken down into pieces so you can change

every facet of the loan or investment calculation. Both compound

ing and transaction periods can be changed quickly and easily. In

addition, a special calculator mode lets you interrupt a problem to

perform calculations, without disturbing your current work. There

are 100 "memories" in which intermediate results may be saved.

All calculations may be printed. PLUS/4 Cartridge.

LOGO is the computer language for everyone. It's simple enough

for preschoolers and sophisticated enough to challenge college

students. Special features of Logo includes Turtle Graphics which

allows the user to draw pictures, Splitscreen which allows the user

to watch their picture form as they are developing their program,

Fullscreen which allows the user to see only their picture, and Edit

for easy program corrections. The programmer can use either

simple Logo commands or more complex procedure to create

programs. Logo also uses the high and low resolution graphics, the

128 colors, and music capabilities of the Commodore PLUS/4

computer. The step by step manual makes learning Logo easy.

PLUS/4 Cartridge and utility disk.

PLUS/4 TUTORIAL and C16 TUTORIAL is available as an intro

duction the the machines. In a friendly format, it teaches the

keyboard and lets the user practice using the various keys. The

tutorial has a step by step approach: various sections cover cursor

control keys, alphabetic keys, graphic keys, colors and reverse

keys, control keys such as escape and function keys, etc. The

capabilities such as graphics, color, sound, flashing and window

are used to make the tutor interesting and educationally effective.

PLUS/4, Cl6 Cartridge.

COMAL: Program For The Future - Today!

Your computer is only as good as the programs it runs. Unleash the

power built into your Commodore 64. Take control with COMAL,

one of the fastest growing programming languages in the world.

COMAL is expertly designed and shines after a full 10 years of

refinement. With COMAL you get only the best. The best of

PASCAL; structures. The best of LOGO; turtle graphics. The best of

MODULA 2; modules. The best of ADA; packages. And even with

all the power and flexibility, it retains the best part of BASIC; ease

of use. But best of all, it's fast and affordable.

While professional programmers marvel over the COMAL 2.0

Cartridge, most Commodore 64 users can benefit from COMAL

0.14 which already is part of most Commodore User Group Disk

libraries. COMAL is here to stay as evidenced by the multitudes of

programs and books available. There already are over 15 disks full

of ready to run COMAL programs and 6 different COMAL books.

By Christmas there should be another 10 disks of programs and 7

more books. There even is a newsletter, COMAL TODAY, devoted

solely to COMAL, already 56 pages in its fourth issue.

However, the best news of all is that the COMAL 2.0 cartridge is

already into mass production by Commodore in Europe and that

the COMAL Users Group will be distributing it in the United States.

This cartridge is the same size as a Commodore 8K game cartridge,

yet inside is a complete 64k COMAL system in ROM. There is even

an empty socket for an optional 8K, 16K, or 32K EPROM. The

COMAL cartridge contains everything from the disk loaded

COMAL 0.14 plus much more. In additional to all the fun of

COMAL, the cartridge provides a professional language, with

TRACE, ERROR HANDLERS, EXTERNAL PROCEDURES, BATCH

COMMAND FILES, and 3 different screen dumps - all built in. No

wonder Commodore can't keep up with the demand for the

COMAL 2.0 Cartridge in Europe.

So now the choice is not whether to use COMAL or not, but which

version? Get started with disk loaded COMAL 0.14 with the $19.95

Enhanced COMAL Pak, including 2 disks and a reference card, or

the $29.95 COMAL Starter Kit which adds a book and third disk

inside a nice case. But if only the best is good enough for you, then

you will want the $99.95 COMAL 2.0 Cartridge package, including

2 books, 2 disks, and the cartridge in a custom molded case. If you

can't make up your mind, send a Self Addressed Stamped Enve

lope for a FREE COMAL INFO PAK.

VISA and MasterCard orders can call toll-free 1-800 356-5324

extension 1307. Everything is available from the official source:

COMAL Users Group, U.S.A., Limited

5501 Groveland Terrace

Madison, WI

53716 608 222-4432

TPUG Offers COMAL Primer and Manual

TPUG (the world's largest Commodore users group) is pleased to

announce the publication of a new COMAL programming manual,

written by one of the language's creators, Borge Christensen.

COMAL is a high-level language with all the elements that make

BASIC simple for the beginner but with additional features that

make it easy to write well-structured programs.

The book contains over fifty pages of text and examples. It is

ideally suited as a language tutorial as well as a desk-top reference

manual for programmers. The cost is 3.95. For information on

The Transactor
Volume 5, Issue 04

this and more TPUG software, write to:

TPUG Inc.

1912A Avenue Road,

Suite #1

Toronto, Ontario. M5M 4A1

EnTech Introduces Enhanced Studio 64

Since its introduction in May, 1983, EnTech Software's Studio 64

has received critical acclaim and blossoming sales. Now, EnTech

has given its most popular program for the Commodore 64 a major

redesigning which will make it even easier and more flexible to

use.

Studio 64 creates music as it is played on the Commodore 64

keyboard, and it is the only program that allows each note to have

a different waveform sound. It can create songs up to eight minutes

long which can be saved to disk or added to another program.

Studio 64 now features notes in high resolution graphics and truer

musical notation, including tied notes, sharps and flats. Control

key functions make it easier to change voices and clefs, play back

music and adjust sounds and filters. The new version also has

twelve sample songs including "Billie Jean" and "Sweet Dreams".

With its many improvements, Studio 64 is still compatible with

Add Mus'In, which adds music to any other program. The new

Studio 64 will also play music created with the older version, and

music created with either version will be accepted for EnTech's

First Annual Computer Song Writing Contest.

Studio 64's major revisions were made by Ray Soular, a musician

and record producer as well as EnTech's chairman. "This version

was designed by the public rather than programmers," Soular said.

"We've taken into consideration every possible suggestion to

create the ultimate music synthesizer."

The new Studio 64 will retail at the same price as the original,

$39.95. While the new version is available only on disk, the

original version is still available on cassette. Current Studio 64

owners can upgrade to the new version by sending $10 and their

old disk to:

Add $3.00 to total order for postage and handling. MELCHER

SOFTWARE welcome inquiries about these programs. Contact:

Melvin Billik

MELCHER SOFTWARE

PO Box 213

Midland, MI

48640 517 631-7607.

MicroEd Offers Two Presidential Election Programs

MicroEd Incorporated, publishers of more than one thousand

educational programs, is currently making a special marketing

effort on behalf of two presidential election programs for the

Commodore 64: HAT IN THE RING and THE AMERICAN PRESI

DENCY.

Hat in the Ring is a two-player (or two-team) exercise designed to

acquaint students with some of the political considerations in

volved in running a presidential candidate - one for the Republi

cans, the other for the Democrats. Throughout the exercise, each

candidate works the the factors of media exposure, personal

campaigning, domestic issues, and international issues in order to

make decisions that will result in a successful campaign. Suggested

retail price for the program is $9.95.

The American Presidency is a set of four programs designed to

present general information about, and a historical review of, the

office and those who have held it. Included is a treatment of THE

OFFICE, THE DUTIES, THE PRESIDENT 81788-1888), and THE

PRESIDENTS 81892-1980). A one- or two-player (or team) game

is attached to each of the instructional lessons. The suggested retail

price for the 4-program set is #34.95.

Persons desiring further information may call George Esbensen at

toll free 1-800-MicroEd.

MicroEd, Inc.

PO Box 444005

Eden Prairie, Minnesota

55344 612 944 8750

EnTech Software

PO Box 185

Sun Valley, CA

91353 818 768-6646.

Melcher Software Announces Two Music Tutor Programs

The PIANO TUTOR and the VIOLIN TUTOR both enhance note

reading ability and sound identification. The computer depicts

note placement on the scale (treble and bass clef for the piano),

sounds the note, and asks for the note identification. The student's

score is computed for speed and accuracy. Colorful graphics and

stimulating sound make these programs dynamic tools for today's

ambitious music student.

The cost of the above programs is $29.95 for RECIPES SUPREME

and $19.95 for either the PIANO TUTOR or the VIOLIN TUTOR. If

purchased together, both music programs are available for $34.95.

RECORD BOOK: Data Storage and Retrieval

System for ALL Commodore computers

Many computer owners ask "What can my computer do for me?

Record Book provides an answer.

Record Book allows you to store any categorized information on

disk. It is ideal for keeping phone numbers, mailing lists, home

inventory, and even some business records (like outstanding

debts, supplier lists, inventory). Once information is put into a file,

it can be searched through, changed, added to, deleted, or sorted.

All of these functions are at the touch of a few keys. Record Book

also supports printing of all or selected parts of a file to any

properly interfaced printer.

Record Book requires only 16K RAM, 40 (or 80) columns and, of

course, a disk drive. A VIC-20 can fill this bill, if it is expanded with

1 IK RAM and a 40-column adapter.

The Transactor
Volume 5, Issue 04

Record Book comes with a detailed manual which describes all

Record Book functions and even takes you on a 'live guided tour'

through some of the most-used features. Record Book is com

pletely menu-driven, which means that the novice user cannot get

lost or forget a command, but demanding users will find its many

functions advanced and convenient. If you have data, record Book

will handle it.

Record Book costs $25.00, but it does what far more expensive

databases do.

The author runs a bulletin board (accessible only by 300 baud

modem) at 416 239-5993. He can be reached there as well as at the

above address.

Madill and Welsh Computing

7 Strath Humber Court

Islington. Ontario M9A 4C8

How To Make Good Investments

Computer aided instruction for the Commodore 64, geared to

teach you the fundamentals of stock market and real estate

investment analysis, is the first course in a series of courses on

investment and financial analysis developed by experienced pro

fessionals from the top business schools.

The courses are designed to cover the same material as is covered

in the best business schools with some practical street techniques.

The investment techniques in the initial course were selected for

their ease of use and understanding. Programs and examples

using those programs are provided as learning aids and for subse

quent investment analysis.

Course I: HOW TO MAKE GOOD INVESTMENTS" comes com

plete with a 100 page text and programs on disk for $54.95. This

course and additional courses may be tax deductible. (Commodore

64 is a registered trademark of Commodore Electronics Ltd.) Send

$54.95 check or money order to:

Course 1

The Wizards

PO Box 7118

The Woodlands, TX

77387

Investment and Statistical Software Package

Commodore Users can now gain access to the leading investment

and statistical software used by IBM and other computers.

Programmed Press announces that its Investment and Statistical

Software Package, containing 50 programs for Statistical Forecast

ing, Stocks, Bonds, Options, Futures and Foreign Exchange, is

"ready-to-run" on the C-64.

The 220 page Computer-Assisted Investment Handbook by Dr.

Albert Bookbinder lists, explains and gives sample RUN illustra

tions for all fifty BASIC programs for profitable planning and

forecasting.

This software supports Commodore, Apple, Radio Shack, and IBM

personal computers, as well as other machines using MS-DOS.

Commodore 64 requires only one disk drive. The price is $100 for

the "ready-to-run" Investment and Statistical Software and only

$19.95 for the Handbook that lists all 50 programs. VISA and

MasterCards are accepted.

Programmed Press

2301 Baylis Ave.,

Elmont, NY

11003 516 775-0933

Hardware News

MICROSHARE 64 networking system

The Microshare 64 is a networking system that allows up to 8 C64s

to be connected to a common IEEE or serial bus. The system can

be configured for 8 computers and an IEEE bus, or 7 computers

with both IEEE and serial. Users are given access to the bus on a

"first come, first served" queuing basis, the next user being

selected when the bus remains idle for a chosen period of time. A

14K print buffer is built in to free up the network when a user

sends output to the printer. A unique capability of the Microshare

64 is it's "group load" feature (a.k.a. "megaload"), which allows

any or all of the computers in the network to simultaneously

LOAD the same program from disk. Some other features include:

Individual disk error status reports for each user, individually

controllable channel switching delay, built in diagnostic routines,

and sturdy all-steel construction.

The price for the basic unit (computer-connection cables included)

is $995.00 (Canadian + FST). Available from:

Comspec Communications Inc.

153 BridgelandAve., Unit 5

Toronto, Ontario

M6A2Y6 416 787-0617

Operant Interface

Psychronix has released the Model 35 Interface for Psychologists

who want to record up to 3 separate switch closures, and turn on 4

lamps and a feeder in a single 2BVDC operant chamber.

This interface uses the parallel port on the VIC-20, C-64, or PET/

CBM computer. Because it is programmable entirely in BASIC

(machine language programming is not necessary) students can be

quickly taught to use this interface. Data can be recorded in real

time using the computer's internal clock.

The Model 35 Interface has been in use for over a year in a

research laboratory with remarkable success. All chips are sock

eted for easy replacement. Retail price of the interface is $130.00

Psychronix

Box 422

Logan, UT 84321

The Transactor
Volume 5, Issue 04

Electronic Components Announces

New Computer Patch Cord (CPC-1000)

Just developed and patented, a new product allows the owner of a

Commodore 64 or VIC-20 personal computer, to use an ordinary

cassette recorder with their computer. The Computer Patch Cord

(CPC-1000) is compatible with everything from the Emerson 4940

Ghetto Blaster to the Sony Walkman 11.

The advantage of the CPC-1000 is that it costs a fraction of what a

Commodore Datasette would cost. The average price of the Com

modore Datasette is $79.95, the price of the Computer Patch Cord

is only $29.95. For further information please contact:

Brian G. Wilcox, Vice President

Electronic Components

P.O.Box 173

Elma, N.Y. 14059

Omnitronix Announces RS232 Interface for

the VIC-20, C64, and SX64 Portable.

The RS232 Interface has been specially designed to alloweasy use

of any type of RS232 equipment, including serial printers and

modems. The Deluxe RS232 Interface plugs into the USER I/O

port of the computer. Included as part of the unit is a three foot

cable terminating in a male or female DB25 connector. The Deluxe

RS232 Interface can also be supplied with a PC Board mounting

Female DB25, allowing it to completely substitute for the 1011 A.

Three switches in the case cover allow you to set the unit for DTE/

DCE, invert pins 20 and 5, and select the BUSY line polarity.

The RS232 Interface supports virtually all RS232 signals including

Ring Detect. It can operate at up to 2400 baud. Supplied in the

manual is a Type-In BASIC terminal program and a very complete

tutorial on using the RS232 port.

RS-232 16 Channel Analog Input Module

Connecticut microcomputer announces a new 16 channel analog

input module which is a self contained RS-232 bus compatible

device. The USSter D16R works with any computer that has an

RS-232 interface (either built-in or added on) including computers

manufactured by APPLE, IBM, Commodore, Osborne, Hewlett-

Packard, and Tektronix. The D16R is the eleventh product in the

BUSSter series of I/O modules.

The BUSSter D16R Analog Input Module accepts commands from

any host computer through its RS-232, to read data or activate the

timer and buffer. The data is converted to 8 bits (0.25 %fand the

conversion time is less than 100 microseconds. The built-in timer

operates from .01 seconds to 48 hours. The built-in buffer allows

data acquisition while the host computer is busy with other tasks.

A BUSSter module economically increases a computer's interfac

ing capability while reducing its workload.

The BUSSter D16R Analog Input Module is easily programmed

through BASIC commands from the controlling computer.

The BUSSter Dl 6R sells for $495.00 in standard version, including

case and power supply, and is available from stock.

Shirley Fletcher

Connecticut microcomputer

36 Del Mar Drive

Brookfield, CT

06804 203 775 4595

The unit has an unconditional 1 year guarantee, and a 30 day

return if not satisfied. Suggested retail is $39.95. It is available from

your local dealers or call Omintronix. Please add $1.60 shipping.

Omnitronix Incorporated

PO Box 43

Mercer Island, WA

98040 206 236 2983

The Transactor 10 Volume 5, Iss >04

Bits & Pieces

Before we jump into this issue's blitz of random thoughts, is there a

difference between a bit and a piece? Well, how about this: bits are

little facts, curiosities, 1 or 2 line programs, POKEs, or SYSes; in

other words, quickies. Pieces are presentations of longer programs

and contain a paragraph or more of text; sort of like mini-articles.

Actually, pieces are often just articles that we couldn't find a home

for anywhere else in the magazine. So if you sometimes find

yourself skipping over Bits & Pieces to get to the "meat" of the

issue, turn back later for dessert!

The Bits Blitz

Built-in debugging aid

Here's an idiosyncrasy that can be put to good use. On a BASIC 4.0

machine (40/8032), performing SYS 53027 from within a pro

gram prints the message " in ", followed by the line number in

which the SYS is located. The program then continues normal

execution. This is an easy way to trace a recalcitrant program: just

insert this SYS at various points in the code, and the messages will

show what parts of the program are being executed. In a way, it's

more handy than a regular TRACE function, since it only traces the

parts of the program you're concerned with. A couple of notes

about it: No carriage return is printed after the message, and if you

execute it from direct mode, a strange line number is printed out

(well, what do you expect?). If it wasn't such a well-kept secret, it

would look as though the subroutine was purposely designed as a

debugging aid.

Easy Disk Directory Pattern matching

If you want to load a selective directory from a 1541 single disk

drive, or from drive 0 of a dual unit, you needn't use the complete

syntax:

The command,

LOAD"$0:pattern",8

LOAD"$pattern",8

. . .will do the same thing. For example, to see a directory of all

programs on drive 0 starting with a " P", just enter:

LOAD"$P*",8

This leads to any easy way to load just the disk header and number

of blocks free:
I O A Pi " <C <C " Q

Poison Line Number

Sometimes a computer can get annoyed for the smallest reasons.

Enter the following number on your computer (it works with

4032/8032 and 64):

350800

There's actually a whole range of numbers in the same neighbor

hood that produce the same effect. Try entering it more than once.

Why does it happen? Who knows, maybe it's just an unlucky

number.

Closing "Forgotten" Files

Editing with Commodore machines is wonderful compared to

others, but it can be annoying when all variables are lost whenever

a line number is entered, with or without text. Besides clearing

variables, though, the machine forgets about all open files. Sup

pose you OPEN a sequential file to disk and write to it. You MUST

close the file afterwards, but if you did any line editing, deliberately

or not, the system will think there are no open files, and won't let

you close it. Now, you know perfectly well that the file is indeed

open, since the light on the disk drive is on.

In such a situation, here are two ways to close the file:

1) The disk drive will automatically close all files when the

command channel is closed. To use this feature, just enter:

OPEN1,8,15:CLOSE1.

ALL open files will then be closed, courtesy of the disk drive.

2) You can change the number of files open in the operating

system. This method allows you to close the first file opened, or the

first N files opened, rather than all open files like method 1. The

change is done with a single POKE:

POKE 152,1 on VIC/64

or POKE 174,1 on PET

You can then CLOSE the file as usual. If you wish to re-activate

more than one old file, change the value of the POKE accordingly.

SAVE-ing a Range of Memory From BASIC

On a 4032 or 8032, you can always save a range of memory from

the monitor, for example:

The Transactor 11 Volume 5/ Issue 04

S "O:filename",08,8000,8400

. . .would save screen memory out to disk. With the C64, such a

feature would be even more desirable, so that the picture currently

in the high resolution screen could be SAVEd. The 64 doesn't have

a built-in monitor like the 4.0 PETs do, but you can SAVE a range

of memory by entering a single line from direct mode! Here it is:

sys57812 "filename' ,8:poke193,slo:poke194,shi

:poke174,elo:poke175,ehi:sys62954

The variables SLO and SHI are the low and high order of the start

address, respectively, and variables ELO and EHl are the low and

high end address. (SLO = start AND 255, SHI = start/256,

ELO = end AND 255, EHI = end/256)

For example, to save the high resolution screen from 8192 ($2000)

to 16192 ($3F40) using the filename "screen" on drive zero, the

line would look like this:

sys57812" 0:screen" ,8:poke193,0:poke194,32

:poke174,64:poke175,63:sys62954

The file can then be LOADed as usual, with:

LOAD "filename ",8,1.

Cassette can be used instead of disk if you change the ",8" to ",1"

when saving and loading. Remember, if you're loading the file

back in from within a program, you have to make sure it only gets

loaded on the first RUN. For example, the first line of the program

could be:

10 if f = 0 then f = 1 :load" filename" ,8,1

WAIT A SECOND!

This next BIT is from Jeff Goebel, who writes:

Jeff Goebel

"If you are ever using cassette files on a 64, it is a good idea to first

make sure the PLAY button has been shut off. 1 always include a

line:

" PRESS STOP ON CASSETTE PLEASE "

.. .and a WAIT 1,16 at the beginning of any of my cassette loaded

programs. This will STOP the computer until the STOP button on

the tape player is pressed. That way, when 1 later try to read from a

file, the PRESS PLAY prompt will again be displayed, and the user

has the option to change tapes or whatever, before pressing PLAY.

Actually, I can spiff up the standard PRESS PLAY prompt to be

almost anything 1 want by using my own routine. If I include a

PRINT statement like;

" PRESS PLAY ON TAPE CASSETTE UNIT"

.. .followed by a WAIT 1,16,16, the computer will stop and wait till

the play is pressed. I then have time to

PRINT "THANK YOU"

or "SEARCHING FOR DATA"

.. .before I open the file. Since the play key is already depressed,

the computer's own prompt will not appear, and the data will load

as normal.

"Actually, the WAITs are universal; WAIT 1,16 will stop until ALL

keys are up on the tape unit and WAIT 1,16,16 will stop and wait

until ANY key is pressed on the unit. It doesn't have to be the PLAY

key specifically."

Checking for SHIFT, CTRL, and Commodore keys

PEEK(653) will yield the state of these three keys; bit 0 for SHIFT, 1

for the "Commodore Key", 2 for CTRL. Study the following exam

ple.

10 rem* control key demo *

20 print chr$(8): rem* lock case *

30:

40 for i = 0 to 1 step 0

50 ck = peek(653)

60 if ck = 0 then print" - none -";

70 if ck and 1 then printtab(1)"SHIFT";

80 if ck and 2 then printtab(8)" Commodore";

90 if ck and 4 then printtab(20)" CTRL";

100 print

110 next i

As you can see, the state of any or all keys may be examined with a

single POKE, and an AND to see which key(s), if any, are being

held down. (Holding down the CTRL key also slows the speed of

scrolling).

Changing Screen Character Colours

A quick way to change the colour of ALL characters on the C64

screen:

10 c = 1: b = 53281: rem* c is colour, b is border color reg *

20 s = peek(b):poke b,c:poke 648,160

:printchr$(147):poke648,4:pokeb,s

The above works on 64s with ROM version V2, which sets colour

memory to background colour when the screen is cleared. If you

have other ROM versions (that set colour memory to character

colour), use this line 20:

20 poke 646,c:poke 648,160:print chr$(147):poke 648,4

The first version won't change the current character colour, it'll

just change the colour of all characters on the screen.

It works by telling the operating system that the screen is way up in

ROM, so that clearing the screen serves only to set colour memory.

The screen page pointer is then set up to its normal default value, 4

(screen at $0400).

Pieces

Death by Garbage

Delays caused by garbage collection (discarding of unwanted

strings by the system) are often a minor annoyance, but sometimes

uncollected garbage can be the cause of unexpected crashes!

Suppose we wanted to write a program to store data from a

The Transactor 12 Volume 5, Issue 04

sequential file into memory, either to be examined there by a

program, or to be written to a new file. The following harmless-

looking program should do the trick, right?

10 rem* read bytes into memory from seq file *

20 open 8,8,1," O:lots of data.s.r"

30 bm = 4096: rem* start of memory for storage *

40c = 0 : rem* counter *

50 rem— loop —

60 get#8,a$: poke bm + c,asc(a$ + chr$(O))

70c = c+1

80 if st = O and bm<24576 goto 50

90 rem— endloop —

100 close 8

110 end

Bytes are read from the sequential file and POKEd into successive

memory locations. The program ends when end-of-file occurs, or

memory location 24576 ($6000 in hexadecimal) is reached. When

run on a 4032 or 8032, the above program seems to work fine -

unless the file is more than about 5000 bytes long. On a long file,

the machine will suddenly break into the machine language

monitor, or simply halt. Inspection of the data after the crash

reveals that it has been totally corrupted. What happened?

It may be obvious to some of you who fully understand the nature

of strings in Commodore BASIC, but it may be a surprise to the

uninitiated. It occurs because the data being POKEd into memory

steps on string storage space. One would think that the 8k of

memory between $6000 and $8000 would be more than enough to

store the strings; there's just A$, right? Well, the string storage

space grows each time a new A$ is read, because a new string is

created in memory. Each time a new string is created, the bottom-

of-strings pointer decreases (this pointer is at 48-49 in BASIC4,

51-52 in VIC/64). The garbage left over from previous strings

won't be collected until this pointer decreases until it equals the

top of arrays pointer - in other words, when there's no more free

memory. Unfortunately, we want to use the memory between the

top of BASIC and variables, and the bottom of strings.

What we really want in the case of the above program is garbage

collection after every new byte is read in. That will keep RAM free

and safe, since the strings will never grow more than a few bytes

(one byte will be required to store A$, and another to store the

result of A$ + CHR$(0)). The best way to force a garbage collect is

by invoking the FRE function. In the above program, we could

insert the statement:

75F = FRE(0)

This doesn't slow down the program noticeably, since there are

only two bytes of garbage to discard each time. In fact, in any

program which reads in many bytes of data from disk, or redefines

string variables often with GETs or string expressions, it's a good

idea to use the FRE function in every iteration of the loop. If the

strings are allowed to pile up until a garbage collect is automati

cally invoked, there could be a long wait in store, especially in

BASIC 2.0 machines. A program user may think the machine has

crashed during a long garbage collect, and become quite hostile as

he turns off the power after waiting ten minutes.

So be careful when POKEing into "free" memory, and use the FRE

function liberally in string-intensive programs. As a more drastic

measure, CLR will also do the trick, but of course it must be used

with care within programs. There's another lesson here: even if a

program works fine when tested with relatively small amounts of

data, it may die when worked harder or for longer periods of time.

By coincidence, if I'm testing a commercial program and it crashes

on me, the first word that usually springs to mind, is "GARBAGE".

Drowning in Garbage! Elizabeth Deal

Liz writes, "We all know about the elegant screen dazzlers. The

other end of the computing stick is:"

100 rem drowning in c64 garbage!

110 rem by elizabeth deal

120:

130 rem* set top of basic to $4000 *

140 poke55,0:poke56,64:clr:vi = 53248

150:

160 rem* hires screen at $2000 *

170 poke vi + 17,peek(vi +17)or32

180 poke vi + 22,peek(vi + 22)or16

190 poke vi + 24,peek(vi + 24)or8

200:

210 rem* define a string 200 times

220 ta = 56324: for j = 1 to 200

230 v$ = chr$(peek(ta)) + v$: next j

240 get i$:if i$ = "" then clr: goto220

250:

260 rem* exit and restore screen *

270 vi = 53248

280 poke vi + 17,peek(vi +17)and223

290 poke vi + 22,peek(vi + 22)and239

300 poke vi + 24,peek(vi + 24)and247

Editor's note:

The wild patterns displayed on the screen are as a result of

"garbage" - the string V$ is repeatedly redefined, filling memory,

which happens to be video RAM. Far out. - T.Ed.

Single Disk Copy Program Rick Hies, Milton Ontario

The program that follows allows you to make copies of programs,

or SEQ files on 2031/1540/1541 disk drives. Files can be of any

kind: BASIC, machine language, or sequential. The only limit is

the length of the file to be copied, which depends on how much

memory your machine has. As it stands, it will work on upgrade

and 4.0 BASIC; if you have a VIC 20 or Commodore 64, change

these lines:

110 poke 828,peek(55): poke 829,peek(56): ds = 0

120 poke 55,peek(45): poke56,peek(46) +1: clr

1301 = peek(55) + 256 * peek(46): s = t

300 closei: poke 55,peek(828): poke 56,peek(829):clr

The program follows:

100 rem* single disk copy: by rick illes

110 poke 828,peek(52): poke 829,peek(53)

120 poke 52,peek(42): poke 53,peek(43) +1: clr

1301 = peek(52) + 256*peek(53): s = t

140 input"filename";a$

13

150 input" Prg or Seq (P/S)" ;t$

160open 1,8,8,a$+ "," +t$: ifdsgoto300

170 print "ok. . ."

180 rem* read the file in *

190 get#1 ,b$: poke s,asc(b$ + chr$(.)):s = s + 1

:if st = . goto190

200 if ds goto 300: rem* disk error (basic 4) *

210 closei: print" 0|insert copy disk into drive #0"
220 print" then press <space>"

230 get b$: if b$ = "" goto 230

240 get b$: if b$<>" " goto 240

250 open 1,8,8,a$ + "," +1$ + " ,w": if ds goto 300

260 print "ok. .

270 rem* write the file out *

280 for i = tto 8-1: print#1,chr$(peek(i));: next i

290 if ds = 0 then closei: print" fldone!"
300 print ds$: close 1: poke 52,peek(828):poke 53,peek(829)

Editor's note:

Notice the 'IF57"=.' and 'CHR$(.)' in line 190? This is perfectly

acceptable for the value zero. Faster too.

Also note the way that Rick protected memory before storing the

bytes from the disk file. He first saves the current top of memory,

then sets it to 256 bytes above the top of the BASICprogram; that's

plenty ofspace for variables in this case. After the program finishes,

it restores the top ofmemory pointer to their original state. This is a

good technique, and it avoids the possibility of "death by garbage",

as explained in the piece of the same name. The only thing to

watch out for though, is if you want to use the above routine as a

subroutine in a larger program: The variables and arrays in that

case may need more than the 256 bytes provided above the

program. To allocate more variable space, just change the "+ 1"in

line 120 to give more than one 256 byte block. -T. Ed

BASIC 4.0 String Bug

Here's a bug, reported by Commodore:

"The bug is a failure to detect 'Out of Memory' error. This can

cause corruption of string data or programs if space is running

short.

"The bug only occurs in BAS1C4 and when there are less than 768

bytes (or 3 times the longest string) free after all variables and

arrays have been assigned to a program.

"An example of the bug on a 32k PET:

10DIMA(6330)

20 BUGS = BUGS +" W" + ".": PRINT BUGS: GOTO20

"The above program will concatenate a string of alternating char

acters 'W.W.W.W.W. The 'Out of memory' terminating is correct

but the string is corrupted after only a few passes.

Solution.

"The easiest solution is to trap the 'Out of memory1 error from

BASIC.

IF FRE(0)<768 THEN PRINT" OUT OF MEMORY ERROR": STOP.

Another solution is preventative medicine: Don't concatenate

more than two strings at the same time. Doing the concatenation

in two steps, ie:

BUGS = BUGS + " W": BUGS = BUGS + "."

. . .will circumvent the problem.

Intercepting C64 System Error Messages - Elizabeth Deal

By changing the "Error message link" at $0300-$0301 to point to

your own routine, you can change the behaviour of the operating

system when it prints messages, including "READY.". Your code

should jump to the normal error handling routine after it's finished

(normally $E38B). The type of error is indicated by the X register;

the value $80 (128 decimal) indicates no error, and causes

"READY." to be printed.

With that brief explanation, I'll present a few useful applications

that were sent in by Elizabeth Deal from Malvern, PA.

(1) If you're tired of seeing 7SYNTAX ERROR you can get rid of the

insults: using SUPERMON (or a similar machine language moni

tor), change the vector at $0300-0301 to point to your code:

YOURCODE LDX #$80 ;code for no error

JMP (SAVEDVEC) ;back to operating system

SAVEDVEC . . . ;here goes whatever was previ

ously at $0300/0301 (normally

$8b, $e3)

This will suppress all error messages, but still print READY.

(2) A slightly more useful thing might be to print all messages at the

top of the screen (second line, actually) to prevent scrolling:

YOURCODE TXA

BMI OUT

LDA#$13

JSR $FFD2

;x holds error #

;no error

;ascii code for " home'

;print it

OUT JMP (SAVEDVEC) remainder of error handling

SAVEDVEC ... as above

(3) Selective handling of errors can be useful. In graphic situations

it is particularly annoying to get a 7FILE NOT FOUND ERROR (*4)

as well as a flashing disk light. The light is enough, let's get rid of

the error message:

YOURCODE CPX *4 ;code for ?file. . . error

BNE OUT ;continue if other error

LDX #$80 ;fake no error

OUT JMP (SAVEDVEC)

SAVEDVEC ... as above

(4) you can suppress printing "READY." to avoid messing up the

screen. We won't need to save the existing vector here.

YOURCODE TXA

OUT

BMI OUT ;no error

JMP $A43A ;normal error with "READY.1

JMP $A47B ;skip printing " READY."

| TheTronsoctor

A combination of points 3 and 4 could be useful, and the latter

point could be modified so that "READY." is only suppressed in

certain circumstances.

There is one drawback to suppressing "READY.": any action that

doesn't send a final linefeed, such as LIST, will finish with the

cursor one line too high. Small price to pay!

(5) This is just a scratch of the surface. The C64 is a programmer's

delight, but it can be a nightmare if the housekeeping isn't good.

Intercepting the error routine to clean up house (switch out of

high-resolution mode, bring back BASIC, restore normal pointers,

kill the sprites and so on) permits nightmare-avoidance. Other

uses are possible, though 1 haven't tried them - for instance, how

would you like to POKE (address),-40 ? It's a pain to figure out the

two's complement value of -40 to feed to some machine language

program; using the error vector might help in that one.

Note to Liz: Your hunch was right - we do like this sort of thing.

C64 RESTORE key checking

In last issue's Bits & Pieces, there was a little interrupt-driven

machine language program which performed a subroutine when

ever a given key was pressed. Well, if you want to use the

RESTORE key on the 64, there's an easier way, and it's better: you

don't have to change the IRQ vector, so it will work even with IRQ-

driven programs.

The RESTORE key is unlike any other key on the keyboard. There

is no memory location which can be read to indicate whether or

not RESTORE is depressed. Rather, the RESTORE key is con

nected directly to hardware circuitry which generates an NMI

whenever the key is struck sharply (a slow, gentle push won't do

the trick).

An NMI, or Non-Maskable Interrupt, is a lot like an IRQ (Interrupt

ReQuest), except that it can't be disabled by software. When an

NMI occurs, the 64 jumps to the location pointed to by the vector at

$0318 and $0319 (792 and 793 decimal) - this vector normally

points to $FE47. On the 64, NMIs are used for two purposes: The

RESTORE key (to warm-start if the RUNSTOP key is also held

down), and for the RS-232 software (an NMI is generated when a

character is received on the RS-232 port). The RS-232 routines

don't affect detection of the RESTORE key, though. By changing

the vector at $0318/9, we can point to our own routine. If this

routine transfers control to the usual NMI routine at $FE47 after it's

finished, then the interrupt will finish normally and execution will

continue from the point where the interrupt occurred.

Detecting the key is incredibly simple. First the NMI vector must

be changed to point at our routine. Suppose the routine lives in the

cassette buffer, at $033C. The vector could be set up from BASIC

like this:

POKE 792,60: rem* set nmi low byte to $3c *

POKE 793,3 : rem* ... high byte to $03 *

The code at $033C would perform some action, say, set up certain

border and background colours, then JMP to $FE47:

033C:A9 00 LDA*0 ;black

033E:8D21 DO STA $D021 ;background

0341: A9 0B LDA#11 ;dark grey

0343: 8D20 DO STA $D020;border

0346: 4C 47 FE JMP $FE47 ;normal nmi entry

That's all there is to it. Now, whenever the RESTORE key is struck,

the colours will be set up. The normal operation of RESTORE is not

hindered, since the normal NMI-handler routine at $FE47 will

perform a warm start if the RUNSTOP key is depressed.

A Questionable Prompt

Ok, we all know that BASIC'S INPUT statement does us favours

and displays a question mark as a prompt, free of charge. Well,

sometimes the question mark is totally out of place, since the

prompt message isn't a question at all, like: PLEASE ENTER YOUR

NAME? -looks a bit silly, doesn't it? To kill the question mark on

any machine, without using POKEs or anything machine-specific,

open a file to the keyboard (device number 0) as follows:

100 open 1,0: rem* open file to keyboard *

110 print" Please enter your name: ";: input#1 ,name$

120 close 1

Besides killing the question mark, using INPUT in this way does

not send a carriage return after entry, so that a message could be

printed on the same line as the prompt. Furthermore, you can

reject null entry elegantly by adding the line:

115 if a$= "" then 110

This makes the prompt seem to ignore a carriage return without

text.

While on the subject of opening keyboard files, it should be noted

that the real advantage lies in full-screen editing capability. In

stead of entering a string in response to the prompt, you can

simply move the cursor to any screen line and press RETURN,

reading the contents of that line into the INPUT variable. A good

application would be user-entry of multiple fields, such as name,

address, etc. The user could cursor around to his heart's content,

editing the fields to his satisfaction before pressing RETURN over

correct fields. The program would read the fields one at a time, and

could exit the INPUT loop when a special end string is received, for

example, "EXIT".

Fast BASIC HI-RES Point Plot

Here's a short BASIC subroutine which will plot a point on a bit

mapped screen. The variable 'B' must be set to point to the

beginning of bit mapped screen memory (normally 8192), and the

array 'E(' must be initialized with:

FOR I = 0 TO 7:E(I) = 2t(7-l):NEXT I

1000 rem* plot a point*

10101 = b + (yand248)*40 + (yand7) + (xand504)

1020 poke l,peek(l)or e(xand7)

1030 return

The Transactor 15 Volume 5, Issue 04

Fast HI-RES Screen Clear

Clearing the bit mapped screen with POKEs from BASIC can be

maddeningly slow. Here's a machine language program to zero

8192 bytes anywhere in memory. 1'ts 16 bytes long and fully

relocatable. The following BASIC program puts the machine lan

guage into memory and executes it, clearing the bit mapped screen

at 8192 ($2000 in hexadecimal).

10 rem* clear hi-res screen *

20 data 162, 32,160, 0,152,145,251,200,

208, 251, 230, 252, 202, 208, 246, 96

30 rem* load ml prog into memory *

30 fori - 0to15:read a:poke828 + i,a:next

35:

40 poke251,0: poke252,32: rem* start address *

50 sys828: rem* execute clear routine *

Decimal to Hex conversion Table Brian Dobbs

Before you breath a dec-to-hex-programs-have-been-done-to-

death sigh, please note: this one produces a neat looking table on a

printer, for future reference. Even ifyou already have such a table,

running this program will save you a run to your nearest photo

copy machine if you need extra copies. As the program stands, it

goes from zero to 255, but the top limit can be changed in line 130.

100 rem decimal to hex conversion table

110 rem by brian dobbs-timmins, Ontario

120:

130 max = 255:rem* highest value in table

140open4,4,1:x = 0:y = 1:k$= " "

150 print#4,spc(25)" decimal to hex conversion table"

160:

170 rem— main printing loop —

180 d = x:gosub280: rem* convert to hex *

190 if x>9 then k$ = " —"

200 if x>99 then k$ = " -"

210print#4,tab(5);x;k$;h$;

220 x = x+1:y = y+1:ify = 6 then y = 1 :print#4

230 if x< = maxgoto180

240 print#4:close4:end

250 rem— end loop —

260:

270 rem *convert dec to hex subroutine*

280 h$ = "" :d = d/4096:fori = 1 to4:d% = d:h$ = h$ +

chr$(48 + d%-(d°/o>9)*7):d = 16*(d-d%):next

290 return

Large Characters on VIC or 64

The ROM character generator is accessible to BASIC on the VIC

and 64. By PEEKing into the character generator ROM, you can

duplicate the shape of all 512 characters in magnified form (8 times

larger). The following program asks for the desired character set,

and the character to be printed. It uses the subroutine starting at

line 330 to print a large image of the character, using asterisks as

pixels. The available character sets are:

The Transactor

Char Set Description

0 upper case/graphics

1 upper/lower case

2 reverse upper/graphics

3 reverse upper/lower

For the VIC version, change line 160 as indicated and delete lines

350,370, and 440 to end. The 64 version needs extra code because

its character ROM is hidden under I/O, and it must be expressly

switched in and out. Unfortunately, switching out the I/O will

crash the machine unless the interrupts are disabled, so that must

be done as well. Subroutines handle the ROM switching.

100 rem**********************

110 rem* print large characters *

120 rem* transactor magazine *

130 rem* written sep'84 -cz *

140 rem**********************

150:

160 crom = 13*4096: rem 8*4096 for vie

170 for i = 0to7:e(i) = 2t(7-i):next i

180:

190 print chr$(147)

200 for loop = 0 to 1 step 0

210 : input "character set (0-3)" ;set

220 : input" character" ;c$

230 : print chr$(147)c$

240: cp = peek(peek(648)*256)*8

245 : rem 1 st screen loc gives char #

250 :rom = crom + set* 1024 + cp

260 : print

270 : gosub 330: rem* print image *

280 : print

290 next loop

300:

310:

320 -subroutines:

330 rem* translate rom image *

340 for i=0 to 7

350 gosub 460 '* char rom in

360 line = peek(rom + i)

370 gosub 540 '* i/o in

380 for j = 0 to 7

390 disp = 1 :if line and e(j) then disp = 2

400 rem* space for 0, '*' for 1 *

410 printmid$(" *",disp,1);

420 nextj:print:next i

430 return

450:

460 rem* switch char rom in *

470 poke 56334,peek(56334)and 254

480 rem* turn interrupts off *

490 poke1,peek(1)and 251

500 rem* enable character set rom *

510 return

530:

540 rem* re-enable i/o *

550 poke 1,peek(1)or4

560 rem* turn interrupts on *

570 poke 56334,peek(56334)or 1

580 rem* switch in i/o *

590 return

16 Volume 5, Issue 04

Letters

Doctor Destructo: I was very pleased with the depth of coverage

of software protection in your most recent Transactor on the

subject. I'd like to share the following philosophy and machine

language routine with you. If you wish you may pass this along

through the pages of your magazine.

Quite a number of protection schemes you mentioned used vec

tors that are, when not used in the specific execution, set to point at

system reset ($FCE2 - 64738) in the Commodore 64, which is the

computer I own. Some time ago I wrote an educational program

composed of 5 program files on disk. The problem of protecting

code with a reset is that BASIC or machine language program is not

destroyed. A BASIC program can be recovered with an "UNNE-

W'utility and machine language can be hunted down and copied,

the BASIC program being the simplest. I therefore wrote the

enclosed code to cover the tracks of my program with binary snow

in the event that a reset is performed on it.

I have over 5K of sprites in the program under the BASIC ROM

where the VIC 11 chip can see them but I wanted to destroy those

images as well in my reset protection. So I wanted to wipe memory

from $0800 to $D000 with $00 bytes and then for the extra

milliseconds it takes I copied the I/O and Kernal ROMs to RAM

from $D000 to $FFFF. The reason for this is because I think it is

possible for a ferret program to be placed in the M.L. buffer or

under a ROM chip than can do something devious. The code

enclosed emulates a cartridge and is loaded in at $8000 to $8058 so

that when a reset is called the start-up codes are checked by ROM

routines and then control is transferred over to my program. The

program moves itself out of the way into the cassette buffer to

avoid being overwritten and therefore bombed, and then zero's

out memory from $0800 to $D000. It then copies the ROMs into

their underlying RAM from $D000 to $FFFF. If I had continued to

fill memory up to $FFFF with zero bytes then the screen would go

black for a moment and 1 didn't want to give hackers any clues at

all so I used the ROM to RAM method. The program then calls the

hardware reset sequence.

This is all well and good as far as I've taken it. For specific

applications such as mine though the code may have to be located

elsewhere with the emulation portion (the first 8 bytes) placed

before execution. Also there is no stopping someone LOADing a

program (the ferret referred to earlier) that sits in an undisturbed

area which could wait an appropriate time and then un-lock the

program. However, with a small amount of ingenuity, this code

could be LOADed by an auto-run boot then be called upon to wipe

memory clean before loading in the protection program again and

then the program that requires protection. I hope you understand

my logic on this.

I chose to transfer the memory wipe out code to the cassette buffer

because the reset that is called as the last instruction renews the

buffer with zero bytes, so there is little if any evidence of what a

hacker is up against when he uses a reset button to break into a

program. I hope you enjoy this concept as I certainly did while

writing this code.

Chris Jones

Clearbrook, B.C.

;

i

loop

;

dropout

;

snobeg

;

snojob

;

romram

.end

* * Reset Protector * *

$8000

.byt $09, $80,

.byt $60, $c3,

.byt $cd, $38,

eld

Idy

sty

Idx

stx

Idy

sty

Idx

stx

Idy

=

Ida

sta

cpy

beq

iny

bne

=

jmp

;

Idy

Idx

stx

=

Ida

=

sta

iny

bne

inc

Ida

emp

bne

Idy

sty

Idx

stx

=

Ida

sta

iny

bne

inc

Ida

bne

jmp

#$2a

$fb

#$80

$fc

#$3c

$fd

#$03

$fe

#$00

*

($fb),y

($fd),y

#$2f

dropout

loop

*.

$033c

#$00

#$08

$fc

*

#$00

($fb),y

snojob

$fc

$fo

#$d0

snobeg

#$00

$fb

#$d0

$fc

*

($fb),y

($fb),y

romram

$fc

$fc

romram

$fce2

$30 ;low byte / high byte start

$c2 ;code that will emulate

$30 ;cartridge rom module

;set load from address

;hi/lo in zero page

;for indirect set load

;to address in zero page

;set counter

;get a byte

;putabyte

;lastone

;if so, dropout

;loop back

;to new location

;set zero page for

;binary snow job

;and do it

;loop back

;set compare

;to end address

;loop back

;set up for rom

;to ram transfer

;get a byte

;copy it

;loop back

;bump address

;set compare

;loop back

;do a system reset

The Transactor 17 Volume 5, Issue 04

Thanks for the enlightening mixture of thoughts and code. You're

right, as most already know, that a regular system reset will clear

any previous alterations to operating system RAM, but leave BASIC

or user RAM intact. With your code in place, little does the crafty

pirate know that troubles are to soon appear on the horizon. Just in

case a few of you don't need that much protection, below will be

found a bit of deadly code that will leave in its wake little more

than binary rubble. It's self modifying, a severe no no, but it

purpose is to kill code, not win any prizes. Place it where ever you

feel it will inflict the most damage, then point a few vectors at it. It's

crude but effective.

* = $0828 ;or wherever you please

sei ;make sure nothing will interrupt us

Idx #0

death = *

sta end.x ;what ever is in the accum is ok

inx

bne death ;destructo mode !!

inc death+ 2 ;increment the high storage byte

jmp death ;then jump into the pit once again

.end = *

Coin Side One: Your November editorial, "Piracy: A Fact of

Life?" was refreshingly accurate. Every other magazine 1 have seen

caters to the advertisers by taking a strong editorial stand against

"piracy" so-called. Yours is the only objective opinion I have read

in eight years of computing.

I am the author of "The Code Book", (Loompanics Press, 1979,

1983). My publisher takes the same view you do. He sells copies of

my book retail. He keeps the price low enough to discourage

photocopying; he also realises that if Person A wants to give

Person B a photocopy of the book, there is nothing he can do about

it. More importantly, very few buyers would be willing to do this.

The market place puts a limit on software piracy. In days gone by

pirates harried ocean trade. Piracy was profitable because Mercan

tilist tariffs and duties artificially raised the price of imports.

Smugglers circumvented these restraints on trade. The (nominal)

free trade of the 1700's and 1800's eliminated piracy.

Software piracy is profitable because of "Software Mercantilism".

Computers copy data as part of their integral function. Those who

attempt to limit the right to are trying to evade the facts of reality.

In fact, software companies encourage piracy by placing high price

tags on mundane programs. If a commercial package costs $400

and you value your time at $10 per hour, then spending 40 hours

overcoming protection schemes is profitable. On the other hand, if

the commercial package sells for $150, you have to get the job

done in 15 hours to break even. Having spent 15 (or 40) hours at

work, who will GIVE AWAY a copy of a pirated program ??

My publisher further discourages copyright infringement by bind

ing the book and putting an attractive cover on it. Documentation

is the software equivalent of this. I have tried to use copies of

professional software; without the manual, it's easier to write a

BASIC routine of my own to do the job then to decipher the syntax

of hit-or-miss.

Software piracy will be defeated when the software market enjoys

a free trade climate. VisiCalc is worth about $30; Lotus 1-2-3 is

worth about $100; WordStar is a $25 value. That's the bottom line

on piracy. Michael E. Marotta

Lansing, MI

Thank you for your comments. And we quite agree - No single force

will stop the constant whir of the photocopying machine, nor the

duplication ofa record album onto a cassette tape. The same holds

true for the computer programmer that has a special knack for

breaking protection code. The hard line attitudes ofsome compan

ies regarding copyright infringement, and the ever present threat of

legal action, will not determine the true power of copyright. It Is the

public that will.

Coin Side Two: I received my copy of Volume 5, Issue 03

yesterday and read the letter on page 15 re: Copyright Rights. I

found myself frustrated and dismayed that The Transactor could

respond this way to such an important issue.

The editorial response missed the point completely. It was hypo

critical, without any sense of reasonableness and not well re

searched.

The Transactor suggests that universal (should be read as "free")

access to software should be expected, yet devoted this entire issue

to concern over piracy and copy protection; thus implying that

programs have some value that should be protected. In addition, I

refer to page 2 and The Transactor's copyright policy and suggest

that you compare it to that of COMPUTE! magazine.

The original letter ends with an extreme situation that is totally

unreasonable. If The Transactor is to remain sympathetic to this

"cause", then I would be very interested in what your real life

reaction would be to TPUG maintaining one subscription for The

Transactor and sending photocopies to about 20,000 members, all

in the name of furthering access to educational material. Perhaps

COMPUTE! would end up running an article similar to yours on

page 7 of this issue which announces the demise of COM

MANDER.

I admit that the above situation would be extreme, but is as

reasonable as saying that I can't let my four year old daughter use

the educational programs that appear in COMPUTEi's various

publications because it is illegal (my subscription, not my daugh

ters). On the other hand, reasonableness does not allow me to

provide copies to all my neighbors.

It is not unreasonable to request that teachers contact publishers

for permission before attempting to use the material for educa

tional purposes, especially from sources outside of the conven

tional educational materials. I am certain that requests of this

nature would generate positive responses as quickly from COM

PUTE! publications as from the Transactor.

Piracy is nothing more than making unauthorized copies of mate

rial and distributing them for personal gain, monetary or other

wise. Aside from possible scales of volume, what is the difference

between the Apple lawsuits (copyright infringement) and unre

stricted copying of program listings published under copyright in

magazines. The Transactor published an opinion, in this issue,

which flies in the face of unrestricted copying for "educational"

purposes.

The Transactor 18 Volume 5, Issue 04

Also, I am disappointed that The Transactor would make such

comments about a direct competitor, especially unprovoked as it

is, and not fully researched. The author of the letter did not explain

the context in which copyright became a subject for editorial

consideration and comment in COMPUTERS publications and The

Transactor does not appear to have researched it beyond the May

1984 issue.

It goes beyond the use of the printed programs to the wholesale

copying of diskettes available from a program entry subscription

offered by COMPUTERS Gazette. Opinions were requested about a

club maintaining one diskette subscription and then providing

copies to all club members. The editors were opposed to applying

copy protection techniques to these diskettes, but were concerned

about protection of the authors' royalty rights. They ultimately

decided in favour of the subscribers, at least on an interim basis.

Attitudes, as expressed by the author of your letter wanting

programs (and possibly services) without charge, will surely aid in

changing COMPUTE!'s faith in the sense of fairness of the general

public. 1 expect that sooner or later, some copy protection is going

to be introduced because of such misguided opinions.

Personally, I am against copy protection of software because it

compromises the purchasers ability to freely use his property.

However, 1 also believe in the rights of the authors and that they

should be protected to the extent required. It is the general public

that will determine the extent to which copy protection will be

required. I am in favour of educating the users of software, but only

as far as it is fair to all other parties involved.

1 currently subscribe to eight computer magazines including The

Transactor and both COMPUTE! publications covering Commo

dore products. I can attest to the fact that your letter writer is going

to lose out as far as gaining knowledge is concerned because 1 find

very little duplication in these magazines with respect to technical

matters. It is a shame that it is going to result from such narrow-

mindedness.

Aside from this slip in editorial comment and attitude, 1 find The

Transactor to be very interesting and informative, and I eagerly

anticipate its arrival well in advance. James Van Eden

Riverview, N.B.

Your comments have been most influential and well taken. Con

structive criticism is as valuable to us as compliments and we invite

anyone to send in their beefs.

Without trying to just get the last word in, we would just like to

point out that software protection is just another aspect of comput

ing, hence the theme of Volume 5, Issue 03.

As far as COMPUTE!"s policies go, perhaps we did "fly off the

handle"prematurely. However, we fully intend to continue stating

the facts as we see them as well as reader submissions, no matter

how opinionated. The text that originally incited this controversy

could have been more carefully worded or the letter from Mr.

James would never have been written.

Lastly, it s only natural to copy unprotected disks. If that's how you

want to sell the software then the only logical approach is to make

the disk so cheap that it becomes uneconomical for the majority

(emphasis on majority) to even leave the house to obtain a copy.

Even a couple of dollars can make the difference at this point. Like

COMPUTE and Ahoy, we too will be offering a diskette service. We

fully expect unauthorized copies will be made. But we also expect

our price will sell enough of them to make it worth our while.

Protected diskettes have only one more safeguard - you must first

find someone with a broken copy before you can obtain one. Most

don't have such connections, but as long as the price might be

considered high enough to warrant some sleuthing, unrestricted

copying will continue to be a problem.

Transbloopers

Vol. 5, issue 4

"Dynamic Expression Evaluation"

1)A last-minute typesetting goof-up ended up mutilating

the table on page 28 beyond recognition. The table should

have looked like this:

PROMPT

maximum range?

age in days?

distance in kilometres?

speed in mph?

yearly revenue?

monthly income?

length of hypotenuse?

RESPONSE

2*71

28*365

120*1.6

90*0.6

mtly*12

yrly/12

sqr(a*a + b*b)

2) In the same article, reference was made to Darren

Spruyt's article "in the last issue". This article ("Getting

BASIC to Communicate with Your Machine Code") actually

appeared in the previous issue: Vol. 5, issue 2 ("The Transi

tion To Machine Language" was the theme).

3) Bits & Pieces: "SHIFTing your WAIT"

A method was given for waiting until the shift key was

pressed, but the given application called for halting if the

shift key was pressed (just the opposite). The correct state

ments are:

WAIT 654,1,1 (C64)

WAIT 152,1,1 (40/8032)

The above will cause a halt in a program IF the shift lock key

is engaged.

Vol. 5, issue 3

"Picprint"

4)The article made several mentions of using the Fl key to

switch between text and high-resolution video modes. The

key to use is actually the F7 key, as stated in the source code

of the program.

5) Also in the Picprint program, the printer codes used for

dual-density graphics are 27 and 121 (ESC y). These codes

enable dual-density graphics at double speed on the Star

Gemini-1 OX printer. The more common codes for regular

dual-density graphics are 27 and 76 (ESC L).

The Transactor 19 Volu

The Commodore DOS: A Review Of Two Books
by David A. Hook

Barrie, Ontario

Title

Authors

Editors

Publisher

Cost

Audience

The Anatomy of the 1541 Disk Drive

Lothar Englisch & Norbert Szczepanowksi

Greg Dykema and Arnie Lee

Abacus Software

PO Box 7211

Grand Rapids, Ml 49510

1984, 323 pages

$19.95 (U.S.)

advanced, machine language

Title

Authors

Publisher

Cost

Audience

Both these books are recent publications, and deal with the

internal disk operating system (DOS) of the Commodore 1541 disk

drive. The subject is the same, but the content differs substantially,

so it seems appropriate that they be reviewed together.

The Anatomy book appears to have been of German origin and is

also copyrighted by Data Becker GmbH in Dusseldorf. Like the

earlier Anatomy of the Commodore64 it has been translated and

published by Abacus. The book has not been typeset, but has been

prepared on a letter-quality printer. Of its total content, 151 pages

present a disassembly of the 16K ROM inside the drive. This

includes the 901229-03 ROM, the "original" disk ROM. The

disassembly is nicely laid out, with asterisks and spaces setting off

the blocks of code. The book cover indicates that the listing is

"fully commented", and this is true of 80% of the disassembly. A

large block of code is devoid of comments. The comments are

helpful, but do not really fully explain the activity.

The Inside book appears to be an outgrowth of earlier work on the

Commodore dual drives. I understand that one of the authors,

Dick Immers, did his Ph.D. thesis on the subject. Like the other, a

large proportion of the book deals with the 16K of ROM. Here we

have 205 pages describing the ROM. However, we are not given

the actual code, but instead are told what purpose each subroutine

fulfills. Reference is made to RAM locations and their purpose,

thereby giving a much better sense of what is happening. This part

of the book is not typeset, which (to me) means there won't be any

typos that the printer introduced. Also, the authors suggest sym

bolic labels for the various routines, a handy touch. The documen

tation is also that of the earlier ROM, but the text identifies the few

changes made for the 901229-05 ROM.

To many, the above content would be the reason to buy the books.

We should examine what other topics are covered in each:

Anatomy gives a review of the disk commands, to supplement

the information in the (terrible) Commodore manual. To develop

familiarity with sequential files, a BASIC mail list program is

developed and explained. The concepts of relative access are

explained and a BASIC home accounting program serves to apply

the techniques. Chapter 2 documents the syntax and purpose of

the direct-access commands. Brief example programs demon

strate their use. The technical information in Chapter 3 shows a

block diagram of memory allocation and gives the purpose of the

low memory "variable" locations. A brief picture of how the data is

organized on the disk surface gives hexadecimal dumps of several

"types" of disk sectors. Chapter 4 gives quite a number of helpful

utilities for dealing with the disk drive. Many are in machine

language, and the assembler source code is supplied. The most

sophisticated of these is a "diskmonitor" which allows you to read,

display, edit and write a sector directly.

Inside gives a thorough description of the principal DOS corn-

Inside Commodore DOS

Richard Immers & Gerald Neufeld

Datamost Inc.

20660 Nordhoff Street

Chatsworth, CA 91311-6152

1984, 508 pages

$19.95 (U.S.)

advanced, machine language

mands. Chapters 3 and 4 detail the organization of the data on the

disk. More than 40 pages are devoted to presenting diagrams of the

data on the sectors where BAM, directory, program and all types of

file entries are recorded. Chapter 5 introduces the direct-access

commands. The example programs are extensive, and fully ex

plained. Some could qualify as full-fledged utility programs in

their own right. Chapter 6 is really meaty—how the floppy disk

controller actually executes a DOS command. This is a preface to

Chapter 7, where we learn the encoding scheme for the data

written on the disk. The authors present thirteen programs that

permit you to duplicate DOS-protected diskettes. Error-writing

schemes are given for all the known methods of copy-protection.

The assembler source code for the ML portions is given. These

programs really show you how the disk works. Chapter 8 has very

welcome advice on recovery from trouble. A number of utility

programs is supplied. A comprehensive overview of the 1541 DOS

is given in Chapter 9. The major routines of both the Floppy Disk

Controller and the Interface Processor are identified, and how to

use them. Details of the timing of the read and write cycles are

explained. The chapter concludes with a discussion of DOS bugs,

both real and imagined, and some opinions on the "write-

incompatibility" of the 1541 and the 4040 type drives.

I really liked the Anatomy's discussion of relative and sequential

files. The example programs are quite useful and instruct quite

well. Abacus uncovered an "M" mode for reading an unclosed file,

and also found a way to "scratch-protect" files. These have been

deep, dark secrets unknown to almost all users. The lack of more

detailed analysis of the ROMs is a comparative shortcoming.

(However, for a long time, no one had documented as much as

they had.)

The Inside book is a remarkable piece of scholarship. It ranks

right alongside Raeto West's Programming the PET/CBM in its

comprehensive treatment of the topic. I find that the description of

the ROMs is more useful than the actual code, particularly given

the quality of the information. The book is highly controversial in

its treatment of backing-up of copy-protected disks. One expert

suggests that the level of copy-protection used with Commodore

format disks is pretty unsophisticated at present anyway. After

stating that I'd never buy software that 1 couldn't back-up, I have a

scad of such disks now. In my view, it's not improper to want a

copy on-hand, rather than waiting weeks for that replacement to

arrive from the manufacturer. The 46 utility programs are a real

boon. The wealth of information in this book makes it very easy to

recommend to the advanced user. The book is well-written, and

treats each topic thoroughly. Moreover, the language is plain

English and quite readable.

1 have purchased both books. The Anatomy of the 1541

predates the other, but I do not regret having invested in it. Both

books are recommended to you, but if you choose to buy only one,

then Inside Commodore DOS should be the choice.

The Tr
20 Volume 5, Issue 04

Machine Language For The Commodore 64

And Other Commodore Computers:

A Review
by David A. Hook

Barrie, Ontario

Author : Jim Butterfield

Publisher : Brady Communications Co., Inc.

A Prentice-Hall Publishing Co.

BOWIE, MD 20715, U.S. A.

1984, 326 pages

Price : $12.95 US ($17.95 Canadian)

Audience : Beginner, machine language programming

Beginners who wish to venture into the world of 6502 (6510)

machine language have many more choices nowadays. We vet

erans of PETdom have waded through some pretty muddy waters

to learn some of the tricks. There is a swarm of books on the

subject today, but it's hard to find a single one that admits that the

microprocessor does not operate in a void. The chip lives inside a

real computer, and that means the environment must be consid

ered when you are talking about a real machine language pro

gram. An earlier text is the Levanthal book (1). The examples there

caused the PET to run away and hide—the programs had been

placed in a very sensitive area of memory!

There is another major factor. A television game show called

Jeopardy (revived after eight years), provides the "answer", while

asking contestants to provide the "question". Let's play:

The Answer: Jim Butterfield

The Question: What is missing from all other books on machine

language programming?

Mr. Butterfield is recognized as the world's foremost authority on

Commodore computers. Few people have not been touched by his

work as a writer, and as Associate Editor of COMPUTE! since its

inception. We in the Toronto area have been particularly blessed,

since we have seen Jim perform as a teacher. His talent is

impressive—he has a knack of explaining the most difficult con

cepts in a simple and entertaining way. The book is written in this

light conversational style.

The microprocessor in the Commodore 64 is the 6510, which has

the same set of instructions as the MOSTechnology6502. Jim

Butterfield co-authored a book of machine language programs for

the 6502 (2) way back in 1978.

The combination of Jim's writing skill and his practical approach

to the topic are unbeatable. The best expression of the theme of the

book is that stated by the author in the Preface. Programmers learn

by doing, so give lots of examples and projects for them to do. To

Machine* language

• Jim Butterlk'kl «

enter and use the examples, you must have some tools that are

machine-specific. Although these have almost nothing to do with

the machine language, you are helpless without them. So Jim

provides the tools and tells you how to use them. Also, you must

understand the architecture of the computer—your programs have

to fit somewhere in memory and you need to know how to perform

input and output operations.

He has stuck to those principles throughout the book, and there is

an excellent reason for this. More than five years ago, Jim started a

course in machine language for beginners. Over that period it has

been refined, and now exists as a two-day intensive program. Jim

has taken his show on the road, and thousands of people have

participated in his seminars—all over the world. With that back

ground, it's easy to understand why the book is well-organized

and unified in theme.

The book is divided into eight lessons with a reference section that

represents more than half the total pages. We'll discuss that part

later.

Chapter 1 discusses the first concepts. We meet the microproces

sor, the address and data busses, cover binary and hexadecimal

notation, and the internal registers. On the practical side, we learn

about a machine language monitor (MLM). The MLMs for Commo

dore have a common set of commands, so these are explained.

The Transactor 21 Volume 5, Issue 04

The monitor is described here because we have a real example to

enter and execute. Each chapter concludes with a review and the

problem projects.

Chapter 2 is titled Controlling Output. We must rely on some built-

in subroutines if we expect to get any output. These are "kernal"

routines, and it's explained how we use CHROUT. Up till now, we

did "hand assembly" of the ML program. Now we see the

assembler/disassembler functions of the "extended" monitors.

Jim emphasizes that we could have done this from the start, but

maybe we can appreciate what is really going on, by doing it the

hard way first. The magical SYS instruction allows us to link ML

with BASIC—it's not so mysterious after all.

Chapter 3 deals with the flags in the status register, logical opera

tions and the kernal input (GET1N) and stop-key test routine. Jim

insists that these flags have been given names that are confusing

and only half-right. So, he suggests new names for them—the

"Zero" flag should be called the "Equals" flag. Again, misconcep

tions are headed off before they can be entrenched. The interpreta

tions of "signed numbers" and "overflow" are made clear.

Chapter 4 involves numbers and arithmetic. Numbers larger than

one byte are described and then how to work with them with add,

subtract, multiply and divide. This is done lightly, and the depth

won't scare the beginner away. No attempt is made to explain

floating-point arithmetic, as Jim balances the flavour of the subject

against the potential confusion. Using subroutines for modular

programming is described.

We are now half way through the book, and there has not been any

attempt to classify the instructions into address modes. Other

authors tend to throw all 56 instructions and their 13 modes at you

right away. Since you haven't got a clue what they're all about, you

might give up. Now the address modes mean something, so

Chapter5 becomes the right time to discuss them. As usual, the

descriptions are very clear. But the illustrations are much less

useful than they should be. Jim gives concrete numeric examples

in the text part, but the diagrams just show arrows, with no values.

This is much below the high standards elsewhere in the book. I

also feel that the "bug" in the 6502/6510 should have been

mentioned: the indirect jump instruction will fail if the indirect

address sits just below a page boundary.

Chapter 6 covers the problem of where to place your ML program.

This material alone justifies buying the book. No other ML book

gives you such an insight into the computer's organization. The

native BASIC interpreter forces you to know all the implications

that can affect the coexistence with ML. How BASIC stores its

programs and variables, and manipulates its pointers is very

important. Passing values between BASIC and ML is included.

In Chapter 7, we learn about the stack, the USR function and two

advanced techniques: the interrupt and the wedge. What the

interface adapter chips do is also included. If you want to add

commands to BASIC, your ML program must "wedge" itself into

the operating system. The CHRGET subroutine of the machine is

used to fetch the next character from BASIC. It is explained in

detail. Then an example program demonstrates how to infiltrate

BASIC.

In the final chapter, another "difficult" topic is covered. We can do

input from the keyboard and output to the screen. Other input/

output devices are part of the system—how do we connect these?

Jim describes three more ROM routines that make the job a snap.

The treatment of tape, disk and printer is entirely consistent with

the default devices (screen and keyboard)—so we merely apply

what has already been learned. Lots of unnecessary hair-pulling

and sleepless nights will be prevented. A few brief hints on

debugging are given. Using the mini-assembler has been an

important aspect of the training, so he wraps up by describing

what a symbolic assembler can do. Again, now that we know how

things really work, it's OK to use a more advanced tool.

Because the appendices are huge (170 pages), only a list is given

here. Microprocessor instruction set, machine characteristics of all

Commodore generations, memory maps of "low" memory includ

ing zero-page availability and associated chip functional maps (all

PET versions, VIC, Commodore64, Plus/4 & BSeries), ROM detail

maps for the C64, a superchart of Commodore and ASCII codes,

exercise answers for VIC and PET users, BASIC loader for Super-

mon64, and complete manufacturer's references to the interface

chips (6520, 6522, 6525, 6526, 6545, 6560, 6566 & 6581).

The final appendix refers to a disk with a variety of utilities and

demo programs. Jim says that it will be available shortly, as an

optional purchase. There is brief documentation for the programs

on the disk.

Well, now for the hard part: who should buy this book? Jim states

quite clearly that it is a book for the beginner in machine language

programming. I submit that no other book I've seen does this job

properly. So, if you wish to venture into ML, this is the one. The

teaching of a ML course calls for a textbook—you could hardly do

better.

People who are familiar with the fundamentals can still gain

insight from it. There are a few projects there that are worthwhile

exercises for the intermediate programmer. You will not find the

key info, regarding the architecture of Commodore equipment, so

clearly expressed elsewhere. And the appendices are a gold mine

of reference data.

Now for the hot shot programmer, who really has a grasp of the

content and the computer. Maybe that reference info is all you'll

find, but it might be real handy to have alongside your machine.

And how many of you experts field a constant stream of questions

on ML? With this on your bookshelf, you could readily recommend

it to those beginners who are hounding you.

Don't wait for the second printing. Get a copy (or two) right away.

References:

1. 6502 Assembly Language Programming by Lance A.

Levanthal, OSBORNE/McGraw-Hill, Inc. (1979).

2. The First Book of KIM by Jim Butterfield, Stan Ockers and

Eric Rehnke, Hayden (1978).

The Transactor Volume 5, Issue 04

Commdore 16/Plus-4

Memory Maps

Jim Butterfield

Toronto, Ont.

I'm happy to see that Commodore have (I think for the first time)

made an early publication of "official" RAM memory maps for their

new machines. You can find them in the November/December

1984 issues of "Commodore Microcomputers" magazine, and they

include something quite valuable: Commodore's internal "labels"

by which they identify the locations. With these labels, an assem

bly language programmer can now use standard identifiers in

writing a program - I'll certainly try to do so.

I've been picking apart the logic of the machines, and I'd like to

offer my maps, too. They are similar in wording to previous maps

I've published.

A few things that are noticeable about the new machines. They

have a new architecture which calls for you to read the map more

carefully.

Commodore Plus/4 Series

□

(not drawn to scale)

Diagram courtesy of Copp Clark Publishing

Since RAM lies partly beneath the ROM or ROMs above, we must

understand that an address might refer to any of several "levels".

For example: PRINTPEEK(32768) will give you a value from RAM

at that location; but if you switch to the monitor and display the

contents of hex 8000, you'll see the ROM and get quite a different

value. For most applications (and for memory locations below

32768), you won't need to worry about all this. But when you get

into the advanced stuff, you'll need to know how to work all the

picky details.

A Few Differences

Inner space engineers will notice that much of zero page looks

very much like that of the Commodore 64. The first big surprise is

probably the CHRGET routine: it's missing from zero page. It turns

out that CHRGET (which has relocated to page 4) needs to be used

in a more complex way, since the calling routines must specify if

they are looking for information from ROM or RAM.

And wonder of wonders: There's a whole block of spare memory

in zero page, from at least $D8 to $E8. It's enough to disorient a

programmer.

Extra space is put to a variety of uses. Page 1 is still mostly the

system stack (see the note about the Basic stack, below). Page 2 is

input areas as before, with space for working the new DOS

commands. Page 3 contains links and vectors similar to those on

the 64; watch these closely, since the absence of an NMI shortens

up the table by one address.

Page 4 contains some communications buffering, and some re

placements for the missing CHRGET routine. There's also a work

area for PRINT USING and other activities. The current definitions

of the programmable function keys take up much of page 5, and

page 6 seems to be largely reserved for system expansion, such as

speech synthesis.

There's a new stack mostly in page 7, the Basic stack, which holds

loop and subroutine type information. FOR/NEXT, GOSUB/

RETURN, and DO/LOOP with its WHILE and UNTIL provisions. It

lets you write somewhat more complex programs, and leaves the

machine stack less cluttered.

The screen is now accompanied by a sucessor to the "color

nybble" table; it's called the "attribute" table. It's like the color

nybbles, but contains extra information: not just color, but hue as

well, and also a "flash" bit. It's in main memory now, residing at

hex 0800 (decimal 2048), with the screen following it at hex 0C00

(decimal 3072). The extra space means that Basic starts higher

than before, at hex 1000 or decimal 4096.

The ROM system is quite massive. At 32K, a map ends up lengthy

even if it's abridged. A few surprises include: a built-in machine

language monitor; graphics, error trapping and disk commands

built into Basic; and a clever means of internally cataloging all the

ROMs that happen to be fitted and making them available as

desired.

The same old Kernal routines are still there and do the same job,

but there's new stuff, including an "unofficial Jump Table" to

handle some clever bank switching tasks.

It looks like a lot of fun. Good hunting

The Transactor 23 Volume 5, Issue 04

Commodore 16 / Plus 4 RAM Memory Map
(Preliminary: September 25/84. Note that the previously available locations for VIC/C64, SOOFC to $00FF, are now used and are not available.

Hex

0000

0001

0002

0003-0006

0007

0008

0009

000A

000B

oooc

000D

OOOE

000F

0010

0011

0012

0013

0014-0015

0016

0017-0018

0019-0021

0022-0025

0026-002A

002B-002C

002D-002E

002F-0030

0031-0032

0033-0034

0035-0036

0037-0038

0039-003A

003B-003C

003D-003E

003F-0040

0041-0042

0043-0044

0045-0046

0047-0048

0049-004A

004B-004C

004D

004E-0053

0054-0056

0057-0060

0061

0062-0065

0066

0067

0068

0069-006E

006F

0070

0071-0072

0073-0074

0075

0076-0079

007C-007D

007E-008F

0090

00!) 1

0094

0095

0096

0097

0098

0099

009A

009B-009C

009D-009E

009F-00A0

00A1-00A2

00A3-00A5

00A6

00A7

00A8

00A9

00AA

OOAB

00AC

00AD

OOAE

00AF-00B0

O0B1

OOB2-OOB3

OOB3-OOB4

Decimal

0

1

2

3-6

7

8

9

10

11

12

13

14

15

16

17

18

19

20-21

22

23-24

25-33

34-37

38-42

43-44

45-46

47-48

49-50

51-52

53-54

55-56

57-58

59-60

61-62

63-64

65-66

67-68

69-70

71-72

73-74

75-76

77

78-83

84-86

87-96

97

98-101

102

103

104

105-110

111

112

113-114

115-116

117

118-123

124-125

126-143

144

145

148

149

150

151

152

153

154

155-156

157-158

159-160

160-161

163-165

166

167

168

169

170

171

172

173

174

175-176

177

178-179

180-181

Descriplion

Chip directional register 00B6-00B7 182-183

Chip I/O; serial bus/cassette 00B8-00B9 184-185

Loop type match 00BA-00BB 186-187

Renumber parameters 00BC-00C1 188-193

Search character 00C2 194

Scan-quotes flag 00C3 195

TAB column save OOC4-0OC5 196-197

0 = LOAD, 1=VERIFY 00C6 198

Input buffer pointer/* of subscripts 00C7 199

Default DIM flag 00C8-0OC9 200-201

Type: FF=string;OO=numeric OOCA 202

Type:80=integer;00 = floatingpoint OOCB 203

DATA scan/LIST quole/memory flag OOCC 204

Subscript/FNx flag OOCD 205

0=.|NPUT;$40 = GET;$98=READ OOCE 206

ATN sign/Comparison evaluation flag OOCF 207

Current I/O prompt flag 00D0-00D7 208-215

Integer value 00D8-00E8 216-232

Pointer: temporary string slack 00E9 233

Last temporary string vector O0EA-0OEB 234-235

Stack for temporary strings OOEC-OOEE 236-238

Utility pointer area OOEF 239

Product area for multiplication 00F0 240

Pointer: Start-of-BASIC 00F1-F4 241-244

Pointer: Start-of-variables 00F5 245

Pointer: Start-of-arrays 0OF6 246

Pointer: End-of-arrays 00F7-00F8 247-248

Pointer: String-storage (moving down) 00F9 249

Utility siring pointer OOFA 250

Pointer: Limit-of-Memory OOFB 251

Current BASIC line number 0100-OIFF 256-511

Textpointer: BASIC work point 0200-0258 512-600

Pointer: BASIC stack for CONT O259-O25A 601-602

Current DATA line number 025B-025C 603-604

Current DATA address 025D-02AC 605-684

Input vector 02AD-02B0 685-688

Current variable name 02B1-02B4 689-692

Current variable address O2B5-O2CB 693-715

Variable pointer for FOR/NEXT 02CC-02E8 716-744

Y-save; op-save; BASIC pointer save 02E9 745

Comparison symbol accumulator 02EA 746

Misc. work area, pointers, and so on 02EB 747

Jump vector for functions 02EC-02EE 748-750

Miscellaneous numeric work area 02EF 751

Accum'l: exponent 02F0 752

Accum'l: mantissa 02F1 753

Accum*l:sign 02F2-02F3 754-755

Series evaluation constant pointer 02F4-02F5 756-757

Accum'l hi-order (overflow) 02F6-02FD 758-765

Accum'2: exponent, and so on O2FE-O2FF 766-767

Sign comparison, Acc'l versus "2 0300-0301 768-769

Accum'l lo-order (rounding) 0302-0303 770-771

Cassette buffer len/Series pointer 0304-0305 772-773

Auto line number increment 0306-0307 774-775

Graphics flag 0308-0309 776-777

Misc work values 030A-030B 778-779

BASIC pseudo-stack pointer 030C-030D 780-781

Misc work values 030E-030F 782-783

Status word ST 0310-0311 784-785

Keyswitch IA: STOP and RVS flags 0312-0313 786-787

Serial output: deferred character flag 0314-0315 788-789

Serial deferred character 0316-0317 790-791

Register save 0318-0319 792-793

How many open files 031A-031B 794-795

Input device, normally 0 O31C-O31D 796-797

Output CMD device, normally 3 O31E-O31F 798-799

Direct = $80/RUN = 0 output control 0320-0321 800-801

Pointer: tape buffer, scrolling 0322-0323 802-803

End of program pointer 0324-0325 804-805

Work area 0326-0327 806-807

Monitor working vector 0328-0329 808-809

Jiffy Clock HML 032A-032B 810-811

Serial bit count/EOI flag 032C-032D 812-813

Tape shift byte 032E-032F 814-815'

Serial cycle count 0330-0331 816-817

Temporary color vector 0332-03F2 818-1010

Countdown,tape write/bit count 03F3-03F6 1011-1014

Number of characters in file name 03F7-0436 1015-1078

Current logical file 0437-0472 1079-1138

Current secondary address 0473 1139

Current device 0479 1145
Pointer to file name 0494 1172

Tape error count 04A5 1189

I/O start address 04B0 1200

Load address pointer 04BB 1211

Pointer: start of tape buffer

Misc. pointer

Cassette I/O work pointer

Work pointers

Screen reverse flag

End-of-line for input pointer

Input cursor log (row, column)

Which key: 64 if no key

Input from screen/from keyboard

Pointer to screen line

Position of cursor on above line

0 — direct cursor; else programmed

Current screen line length

Row where cursor lives

Last I/O character

Number of INSERTS outstanding

Unused; reserved for speech

Unused

Work value

Color line pointer

Screen work values

Number of characters in keyboard buffer

Screen freeze flag

Monitor work values

Cassette checksum

Monitor work value

Cassette work values

DMA control mask

Work byte

Current ROM bank

Processor stack area

BASIC input buffer

Previous Basic line number

Pointer: Basic statement for CONT

DOS command work area

Graphics cursor, X and Y

Graphics working cursor

Graphics work area

Print-using, graphics work area

Temp screen row number

String length

255 = Trace on

Directory work area

Graphics work area

Number of graphics parameters

Parameter relative (1) or absolute (0)

Float-fixed vector

Fixed-float vector

Unused

Reserved for cartridge vector

Error message link [8686]

BASIC warm start link [8712]

Crunch BASIC tokens link [8956]

Print tokens link [8B6E]

Start new BASIC code link [8BD6]

Get arithmetic element link [9417]

Crunch hook vector

List hook vector

Execute hook vector

Interrupt link

IRQ vector

Break interrupt vector

OPEN vector

CLOSE vector

Set-input vector

Set-output vector

Restore I/O vector

Input vector

Output vector

Test-STOP vector

GET vector

Abort I/O vector

USR vector

LOAD vector

SAVE vector

Cassette buffer

Tape write/read counters

RS232 input buffer

Tape error log

CHRGET subroutine

CHRGOT subroutine

Subroutine (self banking)

Subroutine (bank via $3B)

Subroutine (bank via $22)

Subroutine (bank via S24)

[896A]

(CE42)

(CE0E)

(F44C)

(EF53)

(EE5D)

(ED18)

(ED60)

(EF0C)

(EBE8)

(EC4B)

(F265)

(EBD9)

(EF08)

(F44C)

(F04A)

(F1A4)

O4C6

04D1

04 DC

04E7-04EA

04EB-04EE

04EF-04F6

04F7

04F8-04FB

O4FC-O4FF

0500-0502

0503-0508

0509-0512

0513-051C

051D-0526

0527-0530

0531-0532

0533-0534

0535-0536

0537-0538

0539

053A

053B

053C

053D

053E

053F

0540

0541-0542

0543

0544

0545-0546

0547

0548

O549-O54A

054B-0551

0552-0557

0558-055C

055D

055E

055F-05E6

05E7-05EB

05EC-05EF

05F0-05F1

05F2-05F4

05F5-06EB

06EC-07AF

07B0-07CC

07CD-07D0

07D1

07 D2

07D3

07D4-07D8

07D9-07E4

07E5

07E6

O7E7

07E8

07E9

07EA

07EB

1222

1233

1244

1255-1258

1259-1262

1263-1270

1271

1272-1275

1276-1279

1280-1282

1283-1288

Subroutine (bank via $6F)

Subroutine (bank via $5F)

Subroutine (bank via $64)

PU characters(,.$)

String work area

TRAP and error flags

Stack pointer for error trap

DO loop work area

Sound work area

USR program jump

RND seed value

1289-1298 Logical file table

1299-1308

1309-1318

1319-1328

1329-1330

1331-1332

Device number table

Secondary address table

Keyboard buffer

Start of BASIC memory

Top of BASIC memory

1333-1334 Timeout/end flags, not used much

1335-1336 Tape buffer counts, not used much

1337 Tape buffer pointer

1338 Tape file type

1339 Character (color) attribute

1340 Flash flag

1341 Unused

1342 Screen page (unused)

1343 Keyboard buffer size

1344 Key repeat: 128 = all, 64 = none

1345-1346 Key repeat counters

1347 Key shift flag

1348 Key font interlock flag

1349-1350 Key input vector (DB7A)

1351 Text/Graphics mode lockout flag

1352 Scroll enable flag

1353-1354 Screen work values

1355-1372 MLM work locations

1362-1367 MLM registers (PC/SR/A/X/Y)

1368-1372 MLM work locations

1373 FN key pending count

1374 FN key pointer

1375-1510 Key definition area

1511-1515 DMA work locations

1516-1519 ROM ID (PAT) table

1520 Long Jump vector

1522-1524 Long Jump registers

1524-1791 Reserved RAM for extra ROMs

1792-1967 BASIC pseudo-slack

1968-1996 Tape working values

1997-2000 RS232 working values

2001 RS232 in pointer

2002 RS232 read pointer

2003 RS232 input counter

2004-2008 RS232 work values

2009-2020 Character load program

2021 Current screen bottom margin

2022 Current screen top margin

Current screen left margin

2024 Current screen right margin

2025 0=Scrolling enablled

2026 255 = Auto Insert enabled

2027 Previous character printed

07EC-07ED 2028-2029 Current (color) attribute

07EE-07F1

07F2

07FS

07F4

07 F5

07F6

07F7

07F8

07F9

07FA

07FB

07FC

0800-0BE7

0C00-0FE7

1000-FFFF

2000-FFFF

2030-2033 Screen line wrap table

2034 SYS A-reg save

2035 SYS X-reg save

2036 SYS Y-reg save

2037 SYS status reg save

2038 New key detect

2039 Lockout Ctrl-S

2040 Monitor read: ROM or RAM

2041 Color decode switch

2042 Split screen bit mask

2043 Split screen video base

2044 Tape motor interlock

2048-3047 Color memory

3072-4071 Screen memory

4096-65535 BASIC RAM memory (normal)

8192-65535 BASIC RAM memory (hi-res)

8000-FFFF 32768-65535 ROM; BASIC

D000-D7FF 53248-55295 Character sets in ROM

FD00-FD0F 64768-64783 ACIA communications chip

FD10-FD1F 64784-64799 Parallel port/6529

FDD0-FDDF 64976-64991 ROM bank select (write only)

FEOO-FEFF 65024-65279 DMA disk interface

FF00-FF1F 65280-65311 TED I/O control chip

FF3E-FF3F 65342-65343 ROM/RAM select (write only)

Volume 5, Issue 04

Commodore 16 / Plus 4 ROM Memory Map

8000 C-16 ROM start

8003 Warm start

8019 Basic setup

802A Fix/float vectors

802E Intialize Basic

80BC CHRGET pointers

80C2 Print Basic start msg

8105 Page 3 vectors

8123 CHRGET copy

818E Keywords

8383 Action vectors

8415 Function vectors

8453 Dfunct vectors

8471 Messages

866F Print'READY.'

8683 Error routine

870F Ready for Basic

872E Handle new line

8818 Rechain lines

885A Receive input line

8871 Scan Basic-stack

8905 Expand Basic-stack

8953 Crunch tokens

8A3D Find Basic line

8A79 Perform [NEW]

8A93 Run

8A98 Perform [CLR]

8AED PUDEF characters

8AF1 Back up text pointer

8AFF Perform [LIST]

8BBC Perform [RUN]

8C9A Perform [RESTORE]

8CD8 Perform [STOP]

8CDA Perform [END]

8D03 Perform [CONT]

8D2C Perform [GOSUB]

8D4D Perform [GOTO]

8D83 Perform [RETURN]

8DB0 Perform [DATA]

8DBE Scan for next statement

8DC1 Scan for next line

8DE1 Perform [IF]

8E0B Perform [REM/ELSE]

8E1B Perform [ON]

8E3E Get fixed point number

8E7C Perform [LET]

8FE0 Perform [PRINT*]

8FE6 Perform [CMD]

9000 Perform [PRINT]

9088 Print from (y.a)

90A6 Print format char

90B8 Perform [GET]

90EE Perform [INPUT*]

9108 Perform [INPUT]

9142 Prompt and input

914F Perform [READ]

9294 Perform [NEXT]

9314 Check type match

932C Evaluate expression

9471 Fixed-float conversion

9485 Eval within parens

94AD Search for variable

95F8 Evaluate <OR>

95FB Evaluate <AND>

9628 Evaluate <COMPARE>

969B Perform [DIM]

96A5 Locate variable

973A Check alphabetic

9744 Create variable

985B Array pointer subroutine

9871 Float-fixed conversion

989B Set up array

9A2F Compute array size

9A62 Evaluate <FRE>

9A76 Fixed-float

9A7D Evaluate <POS>

9A86 Check direct

9A9D Perform [DEF]

9ACB Check FN syntax

9ADE Perform [FN]

9B54 Set up string descriptor

9B66 Evaluate <STR$>

9B70 Calculate string vector

9B74 Set up string

9BDA Concatenate

9C1B Build string into memory

9C4B Discard unwanted string

9C52 Make room for string

9CAA Clean descriptor stack

9CBB Evaluate <CHR$>

9CCF Evaluate <LEFT$>

9D03 Evaluate <RIGHT$>

9D15 Evaluate <MID$>

9D46 Pull string params

9D61 Evaluate <LEN>

9D67 Exit string mode

9D7O Evaluate <ASC>

9D81 Input byte parameter

9D93 Evaluate <VAL>

9DD2 Get params for POKE/WAIT

9DDE Get params for SOUND

9DE4 Convert to fixed point

9DFA Evaluate <PEEK>

9E12 Perform [POKE]

9E1B Evaluate <DEC>

9E6A Perform [WAIT]

9E87 Evaluate <subtract>

9E9E Evaluate <add>

9F7B Complement FAC*1

9FB7 Multiply by zero byte

A01E Evaluate <LOG>

A07B Evaluate <multiply>

A0A9 Multiply a bit

A0DC Memory to FAC*2

A107 Memory to FAC*2

A137 Adjust FACl/*2

A154 Under/overflow

A162 Multiply by ten

A183 Divide by ten

A197 Evaluate <divide>

A21F Memory to FAC'l

A24C FAC*1 to memory

A281 FAC*2toFAC*l

A291 FAC*1 to FAC*2

A2A0 Round FAC*1

A2B0 Get sign

A2BE Evaluate <SGN>

A2CE Fixed-float

A2DD Evaluate <ABS>

A2E0 Compare FAC*1 to memory

A327 Float-fixed

A358 Evaluate <INT>

A37F String to FAC*1

A453 Print'IN..'

A45A Print number

A46F Float to ASCII

A5E4 Evaluate <SQR>

A5EE Evaluate <power>

A627 Evaluate <negative>

A660 Evaluate <EXP>

A6B3 Series evaluation 1

A6C9 Series evaluation 2

A707 Evaluate <RND>

A760 Save Basic-stack

A769 Restore Basic-stack

A772 Trim Basic-stack

A77D Kernal calls

A7B5 Perform [SYS]

A7CF SYS return

A7DE Perform [SAVE]

A7F0 Perform [VERIFY]

A7F3 Perform [LOAD]

A84D Perform [OPEN]

A85A Perform [CLOSE]

A86B Params for LOAD/SAVE

A89D Check default parameters

A8A5 Check comma

A8A8 Params for OPEN/CLOSE

A906 Allocate string space

A954 Garbage collection

AA57 Calculate end of string

AA70 Evaluate <COS>

AA77 Evaluate <SIN>

AAC0 Evaluate <TAN>

AB1A Evaluate <ATN>

AB8F Perform [RENUMBER]

ADCA Perform [FOR]

AE5A Perform [DELETE]

AEF7 Print using

B42B Perform [TRAP]

B440 Perform [RESUME]

B4BE Evaluate <ERR$>

B507 Evaluate <HEX$>

B544 Perform [PUDEF]

B557 Perform [DO]

B5AC Perform [EXIT]

B603 Perform [LOOP]

B652 Perform [TRON]

B655 Perform [TROFF]

B6CD Perform [AUTO]

B6E8 Perform [HELP]

B729 Perform [KEY]

B849 Perform [SOUND]

B8BD Perform [VOL]

B8D1 Perform [PAINT]

B9D4 Perform [CHAR]

BAE2 Perform [BOX]

BD35 Perform [GSHAPE]

BE29 Perform [SSHAPE]

BF79 Evaluate <RGR>

BF85 Evaluate <RCLR>

BF87 Evaluate <RLUM>

BFC1 Evaluate <JOY>

BFFD Evaluate <RDOT>

C01E Perform [CIRCLE]

C37B Set graphics cursor

C3F7 Parse graphics command

C48F Get graphics parameter

C4D9 Perform [DRAW]

C50F Perform [LOCATE]

C51A Perform [COLOR]

C567 Perform [SCNCLR]

C5B8 Perform [SCALE]

C5C3 Perform [GRAPHIC]

C7BF Confirm graphics

C8BC Perform [DIRECTORY]

C941 Perform [DSAVE]

C951 Perform [DLOAD]

C968 Perform [HEADER]

C99C Perform [SCRATCH]

C9CC Perform [COLLECT]

C9DA Perform [COPY]

C9F4 Perform [RENAME]

CA00 Perform [BACKUP]

CB1F Parse DOS command

CE00 Interrupt entry

CE0E IRQ sequence

CE60 Do screen split

CEF0 Kernal - UDTIM

CF26 Kernal-RDTIM

CF2D Kernal - SETTIM

CF8A Get color mode

CF96 Fetch memory

CFBF Handle tape motor

D000 Graphic character set

D400 Text character set

D802 Screen addresses

D834 Kernal - SCREEN

D839 Kernal-PLOT

D888 ESC-n normal screen

D8A1 Setup screen line

D9BA Quote test

D9C7 Screen output wrap

D9D9 Setup screen print

DB11 Kernal - SCNKEY

DC41 Function keys

DC49 Output to screen

DC9B ESC-O; key escape

DE06 Decode escapes

DEI A ESC vectors

DE48 ESC-R; reduce screen

DE5E ESC-T; top window

DE60 ESC-B; bottom window

DE8B ESC-I; insert line

DEA0 ESC-D; delete line

DECB ESC-Q; erase to end

DEE1 ESC-P; erase fm start

DEF6 ESC-V; scroll up

DF04 ESC-W; scroll down

DF1D ESC-L; scroll enable

DF20 ESC-M; scroll disable

DF26 ESC-C; cancel insert

DF29 ESC-A; auto insert

DF39 Check screen line wrap

DF46 Break screen wrap

DF59 Make screen wrap

DF66 Calculate screen wrap mask

DF82 ESC-J; start-line

DF95 ESC-K; end-line

E01E Keyboard sets

E153 Send Talk'

E156 Send 'Listen1

E181 Send to serial bus

E1E9 Serial timeouts

E1F7 Send listen SA

E1FC SlearATN

E203 Send talk SA

E20C Wait for clock

E21D Send serial deferred

E22F Send'Untalk'

E2B8 Serial clock on

E2BF Serial clock off

E2C6 Serial output'1'

E2CD Serial output'0'

E2D4 Get serial & clock

E2DC Delay 1 ms

E319 Print'Press play & rec'

E31B Print'Press play'

E38D Start tape

E3B0 Kill motor

E3B7 Clear tape buffer

E3C3 Setup tape buffer

E413 Send tape cycle

E447 Send tape 'long'

E452 Send tape 'short'

E45D Send tape 'medium'

E468 Send tape'0'bit

E474 Send tape'1'bit

E48C Send tape byte

E535 Initiate tape write

E56C Write tape header

E68E Bit masks

E9CC Find any tape header

EA21 Find specific header

EA5B RS-232 out (IRQ)

EA95 RS-232 in (IRQ)

EBD9 Kernal - GETIN

EBE8 Kernal-CHRIN

EC0E Get from tape

EC14 Get from RS-232

EC1C Get from serial

EC4B Kernal - CHROUT

EC63 Send to tape

EC84 Send to RS-232

EC8B Kernal-ACPTR

ECDF Kernal - CIOUT

ED18 Kernal-CHKIN

ED60 Kernal - CHKOUT

EDFA Kernal-TALK

EE1A Kernal-TKSA

EE2C Kernal - LISTEN

EE4D Kernal - SECOND

EE5D Kernal-CLOSE

EF08 Kernal - CLALL

EF0C Kernal - CLRCHN

EF23 Kernal - UNLSN

EF3B Kernal-UNTLK

EF53 Kernal-OPEN

F005 Send SA

F043 Kernal - LOAD

F064 Load from serial

F0F0 Load from tape

F172 Print filename

F194 Kernal-SAVE

F1A4 .Savelink •

F1B5 Save to serial

F228 Print'SAVING'

F234 Save to tape

F265 Kernal-STOP

F2A4 System reset

F2CE Transfer page 3 vectors

F2EB Vectors page 3

F352 Identify 16K/32K/64K RAV

F3D2 Key lengths

F3DA Key definitions

F40C Kernal - SETNAM

F413 Kernal - SETLFS

F41A Kernal - SETMSG

F41C Kernal - READST

F41E Change ST

F423 Kernal - SETTMO

F427 Kernal-MEMTOP

F42F Set MEMTOP

F436 Kernal - MEMBOT-

F445 Perform [MONITOR]

F44C BRK/USR entry

F478 Perform [.R]

F4D7 Perform [.M]

F50A Perform [change reg]

F529 Perform [>]
F54B Perform [.G]

F570 Monitor commands

F580 Monitor vectors

F5CE Perform [.C]

F5D1 Perform [.T]

F60E Perform [.H]

F66E Perform [.S/.L/.V]

F70A Perform [.F]

F724 Perform [.D]

F83D Op code mode

F881 Machine language codes

F89B Mnemonics

F91F Perform [.A]

FB72 Decrement $Fl/2

FB86 Decrement $9F/A0

FB94 Increment $Al/2

FBB7 Save registers

FBC1 Recall registers

FC19 Kernal - IOBASE-

FC59 'Phoenix'routine

FC7F Long Fetch routine

FC89 Long Jump routine

FCB3 IRQ entry

FCB8 Long IRQ routine

FCF1 'SRT' kernal entry

FCF4 'Phoenix' entry

FCF7 Long Fetch entry

FCFA Long Jump entry

FCFD Long IRQ entry

FF90 Jump table

FFFC System vectors

The Transactor 25 Volume 5, Issue 04

The MflNflGER Column Don Bell

Scotland, Ontario

Letters to The Manager

Joseph J. Maus of Water Mill New York has been working on

a 39 week moving average and having trouble with the

report generate part of it. I'm not quite sure what the

application is - but it sounds like a spreadsheet might be a

better way out. If anybody out there has a solution, please let

me know.

There are as always a feast of letters decrying the manual,

particularly the REPORT GENERATE and the ARITHMETIC

options. All I can say is try to get a hold of the articles I wrote

on these options and read the column for further pointers.

Richard E.C. Holm of Oakville, Ontario does his Christmas

cards with THE MANAGER. He doesn't like the tacky look of

mailing labels (I don't either). Thus, he prefers to print each

name/address directly on an envelope. The problem is that

REPORT GENERATE will not pause during a printed report

so that he can insert a new envelope. A solution to this

problem is presented below.

Help For Mail Lists

I have had a question on how to get a mailing list report to

print only one name/address at a time. This would allow for

non-form feed printers; also, it's sometimes difficult to get

the labels to print exactly at the right position.

Unfortunately, THE MANAGER REPORT GENERATE has

no sophisticated 'print pause' feature. A way around this

problem is to output the report to disk as a sequential file.

Then use a wordprocessor that can read sequential files

created by other programs. Once you have the data availa

ble to a word processor, it is it is usually no trouble to specify

a pause at the end of each page, or in this case, a name/

address label.

The only other way around this problem within THE MAN

AGER program itself that I know of is to simply run a

separate report for each mailing label. You need a field that

gives a unique number for each record (you may want to use

a field for record numbers). Then you can run the report

specifying only 1 particular record. When you want the next

label, run the report again only change the search criteria to

the number of the next record you want printed. This is very

tedious work!

The Easy Way of Revising a File -

Changing Prompts

In a previous article I discussed revising a file using the

REARRANGE function in the MANIPULATE FILES option.

Frankly, I've had mixed success with this operation. I would

try to avoid making substantial revisions to your file. If you

think it may need revisions, create only a small file and

enter only a few records. Thus, if you decide to revise your

file and start from scratch again, you won't have wasted

much time in data entry.

Hindsight is wonderful if you can still prevent it from being

"too late" to act on. One way to revise your file without

really revising it is to simply change the prompt for one of

the fields you're not using very often. If you overdesigned

your file (as most of us do) you probably have 1 or 2 fields

that are expendable or at worst a luxury. If you feel that the

new piece of information is more important than one of your

present fields, then it seems like a fair trade. The important

point is that the field type be the same (i.e. numeric or

alphanumeric) and the length of the field be long enough to

accommodate the new information. You can then revise the

screen in the CREATE/REVISE option. Just watch out for

that deadly prompt:

FILE HAS BEEN ALTERED. NEW FILE(Y/N)?

A Y ANSWER TO THIS QUESTION WILL DESTROY YOUR

EXISTING FILE.

Speeding Up Data Entry -

Change the First Field Entered

When you want to update a file, you'll often find that the

only field you wish to change is near or at the bottom of the

The Transactor
26

Volume 5, Issue 04

screen. To make an entry in that field you will have to skip

down through a number of fields tp get there. What a pain!

The '64 MANAGER has a neat way around this problem.

You may have noticed on the bottom of the ENTER/EDIT

screen an 'F as one of the menu choices. The 'F stands for

first field, i.e. the first field the cursor goes to when you are in

the ENTER/EDIT mode. Normally, the cursor is placed in

field 1 first. However, the cursor can start in any field you

wish, even the last one. To select the 'F function:

(1) Clear the ENTER/EDIT screen (Shift CLR/HOME);

(2) Press 'F;

(3) Enter the field number you wish the cursor to start at;

(4) Press <RETURN>.

Now when you change a record, enter a new record,

perform a search or accumulate, the cursor will begin in the

field you have chosen as your 'first field'. After making an

entry in this field, the cursor will jump (down or across) to

the following field. Unfortunately, there is no way of chang

ing the order of entry of the following fields. Thus, you can

only make a jump on the first field entry. This feature is

particularly handy if you are only making one change to

several records. If you had just revised one of the field

prompts in your file as I described above, then this would be

a very useful tool.

For the Fastest Record Lookup in the West -

Use an Indexed Search

When I first started using the '64 MANAGER I was very

impressed with how fast it could search through a big pile of

records and quickly find the one I wanted. Of course, 'fast'

was relative to my fumbling through an address book or pile

of papers. If you thought that was 'fast', wait till you try an

indexed search - "swoosh" it's on the screen almost imme

diately!

Why is an indexed search so much faster? It's much faster to

read from memory than it is to read from disk.

In a normal 'search', the computer immediately starts read

ing the disk, sequentially looking at every record to see if it

fits the search criteria. When it finds the right record it

brings a copy of it into memory and displays it on the screen.

A lot of time is wasted reading the disk while looking for the

right record.

If you know which field is the field you are most likely to

conduct a search on, then you can define it as your 'key

field' and create an index for this field. (Common key fields

are surname, part#, invoice* and date.) An index is a list or

table in the computer's memory. This index in memory

contains the key field for every record. With an 'index

search' the computer scans the key field in memory first,

quickly finding the required record and its exact location on

disk. Then the computer zaps out to the disk, gets the

required record and displays it on the screen. It only reads

from the disk for a very short period of time when getting the

record. Unlike the 'normal search', no time is waste looking

for the record on disk.

To create an 'index' on any field for fast lookups:

(1) Make sure you are in ENTER/EDIT option;

(2) Clear your screen - Shift CLR/HOME;

(3) Press Shift I;

(4) Enter the field number you wish to create an index on;

(5) Press <RETURN>.

To perform an 'index search':

(1) Press I;

(2) Enter the word, name, number, etc. you are looking for

in the key field (the cursor should already be there);

(3) Press 'backarrow' key.

The index is in ascending 'alpha' order. You can view the

previous or next entry in the table by pressing ' +' or'-'.

There is no reason why you have to maintain the same

index file all the time. It can be changed to suit your

particular lookup needs. You can only have one index field

at any one time. But if you are doing a lot of searching on a

particular field, it will probably save you time to create a

new index, perform your searches, and re-create the pre

vious index for the 'key field'.

DON'T PHONE WRITE!

If you have questions about the '64 MANAGER, or would

like to submit your own application, please write me a

legible, coherent letter. If you submit an application be sure

to send screen dumps of ENTER/EDIT screens, reports,

math, and sample data. Write to:

Don Bell,

PO Box 23

Scotland, Ontario

N0E1R0

I will answer letters either directly or through this column.

Subscription enquiries should be addressed to The Transac

tor, 500 Steeles Ave., Milton, Ontario. Canada, L9T 3P7.

The Transactor 27 Volume 5, Issue 04

Subroutine Eliminators Jeff Goebel

Georgetown, Ont.

As always, I have brought forth a few goodies that do the work of

entire subroutines. This month, most of the article is dedicated to

one powerful poke that opens up a world of new unexplored

subroutine eliminators.

Before starting off, I must apologize to any people who trusted last

issue's UN-NEW poke for the 64. (poke2050,l:sys42291) It does

indeed bring back your listing after a NEW or sys64738 but

unfortunately, it does not clear up all your pointers. It you attempt

to re-edit lines or enter new lines. . .WHAMMO! A bizarre crash

the likes of which almost deserves a spot in BITS & PIECES. It does

however allow you to LIST the program fine, so you could LIST it to

disk and create a sequential file which could later be converted

back into a program. Anyway, I have since discovered that the

POKE works well with machine language routines (which start

with a BASIC SYS command) but not well with pure BASIC. Sorry

about that. I hope nobody erased a month's work testing it!

Before the main attraction, I should explain the POKE I left you

with in the "Spiffy Listings" article in Volume 5, Issue 3. The POKE

caused line numbers to vanish from program listings, but I didn't

explain what it was good for. Well, the idea is, it's any easy way to

create a nice neat sequential file. The file can then be sent over a

modem, used from within a program, printed out (on a printer), or

loaded into many common word processors. To create the file,

start off by entering a line number followed by a quote and your

text. The format will resemble a program, but you won't actually

be using any commands as such. It should end up looking

something like the example below:

10 " Hello there people. I am a short

20 " piece of text. In a moment, I

30 "will become a sequential file.

When you have finished typing in your entire file, enter:

POKE 22,35 for VIC/64

or: POKE 19,32 for CBM BASIC 2.0/4.0

If you LIST your program now, you'll see that the line numbers

have temporarily vanished. It is now a simple matter to open up a

file to the disk or printer and LIST your program to it. To dump to

disk, enter OPEN 1,8,1," FILENAME.S.W" :CMD1 :LIST (RETURN),

then PRINT*1:CLOSE1 To print it, OPEN4,4:CMD4:LIST (RE

TURN), then PRINT#4:CLOSE4 when the listing has finished.

The trick is even better if you have a BASIC AID type utility (like

POWER) in memory. Using the extra features combined with an

extension like that makes this POKE quite a nice word processor,

complete with scrolling up and down, search and replace, auto line

numbering and renumbering and extra text space. Not bad for one

poke. It leaves the realm of subroutine elimination and enters the

area of complete program elimination.

The rest of this article describes one all-powerful POKE I've never

seen documented. There have been many articles written about

self modifying programs using the dynamic keyboard. Here, I'd

like to present a SELF MODIFYING POKE. Basic commands are

stored in memory as tokens. Each command has a corresponding

value. If we were to search through our BASIC memory with a

machine language monitor, we would see all the BASIC tokens

stored along with our regular text. Since BASIC is stored in RAM,

we can POKE to it. It logically follows that our BASIC tokens can

easily be changed by poking a new value over top of the old value.

Enter and RUN the example below.

10rem 64738

20 poke 2053, 158: rem* change first token to " SYS" *

(For machines other than VIC 20 or C64, use the value 1029

instead of 2053 in the above and all subsequent examples. Use

3077 for the +4/C16)

When the program is RUN, the poke in line 20 will place the token

value 158 over whatever was there before. It will change line 10

from a harmless REM, to a machine resetting SYS command. That

is because 2053 is the first location of our BASIC program, and the

value 158 is the BASIC token value of the SYS command. If you

now list the program, line 10 will read: 10 sys 64738. The next time

this example is run, the computer will reset. You may feel this is

quite useless, and I would tend to agree. However, it demonstrates

the concept well. In the following examples, we poke some of the

other BASIC commands into our first line of BASIC; some of them

have more useful applications.

10 if x = 0 then x= 1 : load "machine language" ,8,1

20 poke 2053, 143 : rem* change first token to " REM " *

With this poke, the program will load a subroutine only the first

time. The next time it is run, line 10 will have been changed to a

REM statement and therefore the statement will be ignored. This is

much easier than waiting for your subroutines to re-load every

time you run a program.

10 rem4,4 : cmd4

20 poke 2053, 159 : rem* change 1 st token to " OPEN" *

When the above example is run the first time, all will function

The Transactor 28 Volume 5, Issue 04

normally. When it is run a second time, all output will be transfer

red to the printer instead of the screen. The rem will now be an

OPEN command.

10 rem 1000

20 poke 2053,137 : rem* change 1 st token to " GOTO" *

This application - perhaps one of the most handy - will change

your program so that when it runs the second time, it is capable of

bypassing all the opening routines and jumping directly to the

main program. The value 137 changes the REM to a GOTO. Most

of us know how dull it is to sit through a graphic opening twenty

times. Substitute the 1000 value in line 10 for the statement that

your main program starts with.

10 poke 53280, 0 : poke 53281,0: poke 2053, 143

In most of the programs 1 write, 1 change the screen and border

colours to be black, but 1 give the user the opportunity to re-set the

screen to what ever combination is their favorite. When line 10 is

re-run, it will not re-poke the screen black. The POKE will have

been changed to a REM.

10rem10, 0,70, 87,76, 67, 10

20 poke 2053, 131 : rem* change 1st token to "DATA" *

The above example changes the REM in line 10 to a DATA

statement so when the program is run the second time, a new

series of values will be READ.

TOKEN LOOKUP TABLE

(most common Basic commands are included - for a complete list,

see The Reference Transactor Vol. 4 Issue 5)

10rema=1000:b=1000

20 poke 2053,136: rem* change 1 st token to LET"

The above example will change the rem in line 10 to be the LET

command. Normally the LET command is rather useless, and you

may have never used it before, but here, it allows the variables in

line 10 to be active on the second run only. This produce different

results each time the program is run.

These are a very few examples of the power of this poke. Refer to

the TOKEN CHART at the end of this article and experiment on

your own. However, there is also another way to use this same

concept. We can poke values in that are NOT tokenized keywords.

By doing this, we are able to change other aspects of our Basic

statement. Enter the example below.

10a=1000

20 poke 2053, 66: rem* start 1 st line with " b" *

Here, we are pokeing the value of the character " b" to location 1.

This will change 10 to read b = 1000. Since there are no tokenized

keywords here, it is easy to calculate the position of our change.

Location 2053 is the first character; location 2054 is the second;

2055 the third and so on. If we know this, we can change b = 1000

to b = 2000 or b = 2001 simply by poking the values for 2 or 1 in the

correct positions.

To someone with enough imagination and logic, these concepts

open up a new world. It now becomes fairly simple to create a

BASIC program that has the power to delete spaces from within a

program, or change ALL REMs to POKES, or change all occurences

of one character to another, similar to a word processor's search

and replace function.

abs

and

asc

chr$(

close

clr

cmd

cont

data

deffn

dim

end

for

next

step

to

get

goto

if

input

int

left$

len

182

175

198

199

160

156

157

154

131

150,165

134

128

129

130

169

164

161

137

139

133

181

200

195

let

list

load

mid$

new

on

open

peek

poke

print

read

rem

rights

run

save

stop

sys

val

wait

verify

136

155

147

202

162

145

159

194

151

153

135

143

201

138

148

144

158

197

146

149

Editor's note: While Jeff's technique of having a program dynami

cally modify itself as it runs is clever and thought-provoking,

extensive use of it should probably be avoided, especially in

programs of any complexity. Self-modifying code means that the

instructions contained in a program at any given point depend on

what parts of that program were executed before you look at it.

What a debugging nightmare! Used in moderation, as in Jeff's

examples, the technique can be quite handy. Note that the above

examples only change a single token (the first one in the program,

at 2053), and the change is only made at one point in the program,

always on the second line. Adhering to this practice, and docu

menting the effect of the change with a REM statement on the

second line should avoid creating uncontrollable, chameleonic

monster-code.

Furthermore, the technique shown changes the original token to a

new token, but never replaces the original. To alternate between

two token, say LET and REM, change the second line to:

10rema = 1000:b=1000

20 poke 2053, 279-peek(2053)

The number 279 is the sum of the token values for REM and LET.

One the first RUN, the token in line 10 is changed to LET, so that

one the second RUN the variables A and B will be set. For the third

RUN, line 10 will again start with REM. To alternate between any

two tokens, you must start out with one or the other (since the

POKE is dependent of the previous value) and replace the number

279 in line 20 with the sum of the two token values (original plus

alternate). -T. Ed.

The Transactor 29 Volume 5, Issue 04

Introducing TransBASIC Nick Sullivan

Scarborough, Ontario

trans-, pref. 1. Across, beyond, on or to the

other side, through, into a different state or

place. 2. Of, or pertaining to, The Transactor.

The version of BASIC built into the Commodore 64 has come in for

a lot of criticism, and it isn't hard to see why. Most 64 owners use a

disk drive, yet BASIC does not support the disk commands pro

vided with some other Commodore computers. Most of us were

drawn to the machine in large part by its powerful graphics and

sound capabilities, yet commands to take advantage of them are

not included. Like a treasure chest without a key the 64 demands

in exchange for its secrets a lot more work than we ever expected.

There are remedies.

One is to get along, grumbling, with the BASIC they gave us, using

PRINT* to send commands to the disk, PEEKing and POKEing the

hundred or so memory locations that are relevant to sound and

graphics programming. The cost? Style, size and speed — speed

above all. Many graphics and sound applications would be under

mined entirely if they had to depend on the tools BASIC provides.

Another remedy is to use machine language subroutines. The

advantages of machine language are many — conciseness, blister

ing speed, unparalleled control over the computer. Not only that,

but once you know how, writing machine language is fun. Alas, a

lot of people do not know how, and lack the time and inclination to

learn. And even if you can write machine language, or have other

access to the utilities you need, the interface with BASIC is rarely

elegant and often problematical.

The third choice is to acquire an enhancements package —

Simon's BASIC, for example, which boasts an enormous set of

additional commands (more than 100) in several categories. That's

dandy, but again there are drawbacks, lack of portability being

probably the most serious. That kind of package also tends to be

inflexible: if you want only half a dozen of those 100 commands,

tough. You can't just pick the ones you want and use the remaining

memory for something else — it's all or nothing. And if by chance

you want a command the package does not include, that too is

your misfortune.

That's the story so far. Now read on.

Starting with this issue The Transactor is offering another ap

proach to expanding Commodore 64 BASIC, one designed to avoid

the problems outlined above. The new approach is called Trans

BASIC. It, too, will offer a large number of commands — eight in

this first instalment; in the long run perhaps 500 or more. The

commands will include both statements and functions, and they

will look and feel just like the BASIC commands we're used to.

Unlike other packages however, TransBASIC will leave it up to you

which extra commands you add from those currently available.

This means that you won't be wasting memory on unused com

mands, and that in many instances your customized package will

be easily transportable via DATA statements.

Is there a catch? Well, yes.

TransBASIC is written in assembly language source code, specifi

cally that of Pro Line Software's PAL assembler, by Brad Temple-

ton. Unless you have access to a copy of PAL, or some other

assembler that parasitizes the BASIC editor, TransBASIC is not for

you.

Obviously, dependence on PAL is a severe restriction. On the

other hand, PAL has a well-earned reputation for its small size,

ease of use, and truly exceptional speed, so I don't mind suggesting

that if you have any interest at all in working with machine

language, you probably should own PAL anyway.

How TransBASIC works

If you aren't much interested in the nuts and bolts of TransBASIC, I

invite you to skip this section or return to it later. You can use

TransBASIC perfectly well without knowing the technical details

given here.

TransBASIC is built around a kernel of less than 500 bytes, which

is mostly devoted to four fundamental routines. These routines are

entered through the link vectors provided by BASIC at hex ad

dresses $0304 through $030B.

Crunch Tokens: The first of the four routines is responsible

for tokenizing the new commands. The fact that TransBASIC

tokenizes each input line before BASIC itself does has some

interesting consequences.

One is that TransBASIC can't make use of BASIC-style pro

gram tokens (hex values $80 through $FF), since BASIC'S

tokenizer throws out any character in this range. TransBASIC

therefore uses a two byte token. The first byte is the normally

unused left-arrow character (ASCII $5F), and the second byte,

which identifies the keyword, is a character in the ASCII range

$40 through $7F. The only troublesome character in that

range is $5E, the up-arrow, used by BASIC as the exponentia

tion operator and therefore not available for use as a token.

The four kernel routines take an extra step to deal with this

character.

Doing the TransBASlC tokenization first also means that it is

possible for TransBASlC keywords to include BASIC keywords

within them, but not the other way around. SORT, for in

stance, would be a legitimate TransBASlC keyword, even

though it contains the BASIC keyword OR, because the 'OR'

would be subsumed into a TransBASlC token before BASIC

had a chance to see it. STORE, however, would not be a good

TransBASlC keyword because it would disable BASIC'S RE

STORE command: RESTORE would become RE plus a Trans

BASlC token. A side effect is that if you are used to

abbreviating BASIC keywords (e.g. pE for PEEK) you may find

that TransBASlC has intruded to the extent of commandeering

some abbreviations to keywords of its own (e.g. eX for EXP

becomes eX for EXIT).

Expand Token: The second routine in the TransBASlC

kernel takes care of expanding the tokens back into keywords

for LIST. Fascinating fact: the BASIC keyword list contains

exactly 255 characters plus a zero byte. This is maximum

capacity — the list is scanned using indirect indexed address

ing, in which the index is a one-byte value. The same

restriction applies to TransBASIC's own keyword list; there

fore in implementing a large TransBASlC application, with

many keywords, the total number of keyword characters has

to be considered.

Execute Statement: The third kernel routine is responsible

for executing TransBASlC statements. (In this context, the

word 'statement' refers to those commands that, like PRINT,

POKE, LOAD, etc, may be used as verbs in a BASIC instruc

tion.) This routine is fairly straightforward. One complication,

though, is that the IF statement in BASIC does not employ the

execute link-vector when executing the clause that follows

THEN; instead it jumps across the vector directly into the

BASIC ROM. Naturally, the ROM knows nothing about Trans

BASlC keywords and tends to identify them as SYNTAX

ERRORS. To get around this difficulty the IF statement is

redefined in the TransBASlC kernel (and as a bonus allows an

often-handy ELSE clause).

Evaluate Expression Element: The fourth kernel routine

takes care of TransBASlC functions ('functions' are commands

that, like PEEK and ABS, are used within BASIC expressions,

and return a value). TransBASlC permits a variety of function

types.

Apart from these four crucial routines, the kernel contains a short

initialization section, the IF and ELSE statements described above,

and an EXIT statement, which disables TransBASlC and restores

the old values of the four link vectors.

a selection of new commands to Commodore 64 BASIC, resulting

in a TransBASlC dialect tailored to a particular application. The

source code for the dialect is generated in two stages. First, the

TransBASlC kernel (Program 1 following this article) is loaded from

disk into BASIC memory space with the command:

LOAD "TB/KERNEL",8

Second, modules containing routines for added commands are

merged with the kernel, and line 95 of the combined program is

updated (as described later) to reflect the total number of added

statements and functions in the dialect. The merging of modules

with the kernel is most easily done using the TransBASlC ADD

statement, which you will have available to you after typing in the

programs that accompany this article.

If you want to avoid the hassle of typing in the programs, of course,

they can also be found on The Transactor's program disk for this

issue. In that case you can skip from here directly to the next

section, Using TransBASlC.

PAL comments (beginning with a semi-colon) should be omitted

when you type in the programs in order to conserve disk and

memory space. The BASIC REM statements at the beginning of the

source files should be left in, however, as they contain documenta

tion that you will use on a continuing basis. Another point to note

is that the line numbers of the source programs are notably

discontinuous. It is very important that you follow the numbering

exactly when you type the programs in.

Our main task here is to set up the TransBASlC system for future

use (though we'll also be getting a decent handful of new com

mands). This means typing in three files that you'll be using again

and again: 'TRANSBASIC, 'TB/KERNEL', and 'TB/ADD.OBJ'. The

first of these, 'TRANSBASIC, appears following this article as

Program 4. It should be typed in as given, including the peculiar

looking line 110, which is actually the token for the TransBASlC

EXIT statement. How you type in the other two programs depends

on whether you have handy a merge routine, like the one in Brad

Templeton's POWER/MOREPOWER package, or the one by Glen

Pearce that appeared in The Transactor last year (and on which the

TransBASlC ADD statement is based). If you do have a merge

routine, follow the instructions in Box 1. If you don't, follow the

instructions in Box 2. Either way, when you're done you'll have in

your disk directory the following new files:

4

23

15

10

TB/ADD.OBJ

"TB/ADD.SRC

"TB/KERNEL"

"ADD"

PRG

PRG

PRG

PRG

All that remains is to type in the 'SCREEN THINGS' module, which

is given as Program 3. You are now in a position to create your own

TransBASlC dialect.

Typing in the programs

The TransBASlC system, as we have seen, consists of a number of

files written in PAL source code. The system makes it simple to add

The Transactor 31 Volume 5, Issue 04

Boxl

Follow the instructions in this box if you have a merge

routine available. The steps to be followed are:

1. Type in and save TRANSBAS1C (Program 4) if you have

not already done so.

2. Type in and save 'TB/KERNEL' (Program 1).

3. Type in and save the module 'ADD' (Program 2).

4. Merge TB/KERNEL' with 'ADD' and alter line 95 of the

combined result to read as follows:

95 XTRA .BYTE 3,0 ; STMTS.FNCS

Now save the combined program as 'TB/ADD.SRC.

5. Assemble TB/ADD.SRC with PAL, and save the

object code as TB/ADD.OBJ'. This is the object file

for the TransBASIC mini-dialect that enables the

ADD command.

Using TransBASIC

This is the easy part. The first step is to load and run the program

'TransBASIC (program 4). Now select the modules you need from

those you have on disk (at present, of course, there are only two).

Then, for each module, follow these steps:

1) Use the ADD statement to merge the module into memory, for

example:

ADD "SCREEN THINGS"

(The only other alternative — until next issue — is: ADD " ADD").

2) List line 2 of your program. This line number is common to all

modules. It will read something like:

REM 5 STATEMENTS, 0 FUNCTIONS

3) List line 95. This kernel line records the number of statements

and functions in the TransBASIC that you are creating. When

you first load in the kernel, line 95 reads:

95 XTRA.BYTE 2,0 ; STMTS.FNCS

(this is one line where I make an exception and retain the

comment), indicating that the kernel contains two statements

(ELSE and EXIT) and no functions. You are responsible for updat

ing the two numbers appropriately as you add modules. After

adding SCREEN THINGS, for instance, the first number in line 95

would be increased by five, the second would be left unchanged.

When you have finished adding modules, it would probably be a

good idea to save the completed source file, at least temporarily.

Then load PAL, if you haven't previously, and run your program.

Box 2

Follow the instructions in this box if you don't have a merge

routine. The steps to be followed are:

1. Type in and save TRANSBASIC (Program 4) if you have

not already done so.

2. Type in and save TB/KERNEL' (Program 1).

3. Without NEWing after step 2, type in the module 'ADD'

(Program 3). Change line 95 of the combined result to

read as follows:

95 XTRA.BYTE 3,0 ; STMTS.FNCS

Now save the combined program as 'TB/ADD.SRC

5. Assemble 'TB/ADD.SRC with PAL, and save the object

code as TB/ADD.OBJ'. This is the object file for the

TransBASIC mini-dialect that enables the ADD com

mand.

6. Delete from TB/ADD.SRC all the lines belonging to 'TB/

KERNEL'. Save the result of this operation as 'ADD'.

Normally the object code is origined to that popular niche at

$C000, between BASIC and the I/O registers, but you can select

another starting point if you wish (see line 31 of the source code).

Save the object code directly, perhaps with Supermon, or convert it

into DATA statements that can be loaded in with whatever pro

gram or programs you intend shall make use of the added com

mands. For the latter purpose I always use the Datafier, which you

can find elsewhere in this issue, since it packs the DATA state

ments more compactly and unpacks them more promptly than is

otherwise possible.

With that, the work is done. To activate the new commands type

SYS 49152. Presto! — you have just extended BASIC to your own

specifications, and now it's ready for use. Not only that but

tomorrow you can do it again, with a different set of added

commands, and again the day after that, to suit your momentary

needs (at least, you will be able to when your collection of modules

has grown a bit).

This kind of flexibility could have interesting consequences. Con

sider a set of TransBASIC modules encompassing many hundreds

of commands. Is it likely that with that size of keyword vocabulary

our notion of BASIC, and of programming languages in general,

will remain unchanged? When we are able so readily to modify the

language itself to an application, how much time proportionately

will be spent on the actual coding, and how much on carefully

considering which commands to enable?

More on those questions another time. Mundane matters demand

our attention.

For one thing, a word of warning.

As I mentioned above, TransBASIC hijacks four important BASIC

vectors and reroutes them through its own program space. Be-

The Transactor 32 Volume 5, Issue 04

ware, therefore, of overwriting your TransBASIC dialect with

another program, or even with another TransBASIC dialect, as the

vectors will be scrambled, and your computer will crash most

agonizingly while you look helplessly on. The moral: always use

the TransBASIC EXIT command to restore the old vectors before

you do anything new with the memory where TransBASIC is

roosting.

And now a look into the future.

From now on, new TransBASIC modules, each adding one or more

commands to your collection, will be a regular feature in The

Transactor. Some modules will deal with sprites, some with the

SID chip. Some will offer sophisticated string handling commands

that might be wanted, for example, in programming adventure

games. Some modules may offer commands not available in any

computer language yet existing, and not yet thought of by anyone

except — you.

You see, I don't want to write all these new commands myself. Part

of what TransBASIC is all about is that it offers a means whereby

almost anyone can make a contribution to the growth of BASIC,

our common tongue, and the rest of us can benefit. Many readers, I

am sure, already have the expertise to write a new command;

others will require only a little information to get them started (and

will find it in the next issue). But even those whose machine

language programming skills are rudimentary can contribute to

the extent of sending in their ideas for commands they would like

to see, even if they can't provide the code.

Next issue we'll look at some routines in the BASIC ROM that are

helpful or necessary for writing TransBASIC commands, examine

a map of TransBASIC line range allocations, respond to questions

real or imagined, and whatever else fits. See you then.

New Commands

This part of the TransBASIC column is devoted to describing the

new commands that will be added each issue. The descriptions

follow a standard format:

The first line gives the command keyword, the type (statement or

function), and a three digit serial number.

The second line gives the line range allotted to the execution

routine for the command.

The third line gives the module in which the command is in

cluded.

The fourth line (and the following lines, if necessary) demonstrate

the command syntax.

The remaining lines describe the command.

IF (Type: Statement Cat *: 000)

Line Range: 2474-2512

Module: TB/KERNEL

Example: IF A = 3 THEN PRINT B

The IF statement is redefined to accept TransBASIC statements in

the THEN-clause. Also, an ELSE has been added(OOl).

ELSE (Type: Statement Cat *: 001)

Line Range: 2514-2540

Module: TB/KERNEL

Example: IF A = 3 THEN PRINT B: ELSE PRINT A

When the test-expression of an IF statement fails, the remainder of

the line is scanned for a statement beginning with ELSE. If one is

found, the statements following are executed. The first ELSE after

the failed expression is the one used — ELSEs are not matched

against iFs. Except after a failed IF statement, ELSE is referred to

REM and has no effect.

EXIT (Type: Statement Cat *: 002)

Line Range: 2542-2558

Module: TB/KERNEL

Example: EXIT

Deactivates TransBASIC. TransBASIC may be reactivated with SYS

49152.

GROUND (Type: Statement Cat *: 013)

Line Range: 2740-2746

Module: SCREEN THINGS

Example: GROUND 2: REM RED BACKGROUND

The background colour is set to the specified colour.

FRAME (Type: Statement Cat *: 014)

Line Range: 2748-2754

Module: SCREEN THINGS

Example: FRAME 4: REM PURPLE BORDER

The border colour is set to the specified colour.

TEXT (Type: Statement Cat *: 015)

Line Range: 2756-2766

Module: SCREEN THINGS

Example: TEXT 1: REM WHITE PRINT

The screen print colour is set.

CRAM (Type: Statement Cat*: 016)

Line Range: 2768-2788

Module: SCREEN THINGS

Example: CRAM 0

Colour memory is filled with the specified value.

CLS (Type: Statement Cat *: 017)

Line Range: 2790-2832

Module: SCREEN THINGS

Example: CLS : REM CLEAR SCREEN, HOME CURSOR

Example: CLS 13 : REM CLEAR SCREEN, LINE 13 TO BOTTOM

Example: CLS 4,7: REM CLEAR LINES 4 THROUGH 7

In the second and third forms of the command the cursor position

is not affected. All three forms clear colour memory to background

colour in the range corresponding to the lines cleared on the

screen.

ADD (Type: Statement Cat *: 055)

Line Range: 4474-4804

In Module(s): ADD

Example: ADD " VOCAB MANAGER"

Example: ADD "WITHIN" ,9

The named file is merged with the program in memory. If no

device number is given the default is eight. The file number and

secondary address used is $63 (99). The routine used is based on a

program by Glen Pearce in The Transactor, volume 5, issue 2.

33

Program 1

0 rem transbasic kernel (setp 27/84) :

1 :

2 rem 2 statements. 0 functions

3 :

4 rem keyword characters: 8

5 :

6 rem keyword routine

7 rem s/else elsrtn

8 rem s/exit ext

9 :

line ser #

2514 001

2542 002

10 rem utility: cifchr (2560/003)

11 :

12 rem kernel also includes modified

13 rem 'if statement (ifrtn/2474/000)

14 :

25 if peek(773)<192 goto 29: rem lest if

transbasic already enabled

26 :

27 «-a: rem 'exit' statement token

28 :

29 sys 700

30 .opt oo

31 . = $c000

32 ;

33 t2 =2

34 t3 =3

35 t4 =4

36 15 =5

37 t6 =6

38 ;

91 ;

92 jmp start

93 jmp ext

94 ;

95 xtra .byte 2,0

96 ;

97 .byteO

98 ;

99 skw m ,

100 asc 'elsEexiT

598 ;

599 fkw = .

1096 ;

1097 .byte

1098 ;

1099 cmds = .

itransbasic takes over the

lunused location at 2. and

;the numeric conversion

;vectors at 3 and 5 for its

;zero page workspace

lemergency exit sys 49155

istmts.funcs

;statement keyword list

function keyword list

0;keyword list terminator

istatement vectors

1100 .word$a93a,ext-1

1598 ;

1599 fncs - .

2099 ;

2100 start Idx #7

2102 stti Ida $304,x

2104 sta tvecx

2106 Ida nuvecs.x

2108 sta $304,x

2110 dex

2112 bpl stti

2114 Ida xtra

2116 clc

2118 adc xtra+1

2120 sta xtra + 2

2122 Ida #$60

2124 sta start

2126 rts

2128 ;

2130 tvec ,word$a57c

2132 Ivec word$a71a

2134 evec ,word$a7e4

2136 fvec word$ae86

2138 ;

function vectors

;swap out old

ibasic vectors.

iswap in new ones

;calculate total

;new keywords

;disable this

;routine with rts

istorage for

;old vectors

2140 nuvecs.word tok.hs.exe,fun ;new vectors

2142 ;

2144 tok Idx #0

2146 Idy #0

2148 tk1 Ida $200,x

2150 cmp #$22

2152 beq tk9

2154 jsr cifchr

2156 bcc tk4

2158 sty $71

2160 stx t3

2162 Idy #0

2164 sty $0b

2166 dey

2168 dex

2170 tk2 iny

2172 inx

2174 tk3 Ida $200.x

2176 sec

2178 sbc skw.y

2180 beq tk2

2182 cmp #$80

2184 bne tk5

2186 Ida #$5f

2188 Idy $71

2190 sta $200.y

The Transactor

itokenize

; fetch a byte

;check for open quote

;check for alphabetic

;skip if not

;save .x and .y

;set up counter

;set up indices

;fetch untokenized byte

icompare with keyword list

:go back for another byte

;check for match except high bit

;try next keyword

;first byte of token,

;the left arrow

2192

2194

2196

2198 tk4

2200

2202

2204

2206

2208

2210 ;

2212 tk5

2214 tk6

2216

2218

2220

2222 tk7

2224

2226

2228

2230

2232

2234

2236

2238 :

2240 tk8

2242

2244

2246

2248 tk9

2250

2252

2254

2256 ;

2258 lis

2260

2252

2264

2266

2268

2270

2272

2274 11

2276

2278

2280

2282 12

2284

2286 ;

2288 13

2290

2292

2294

2296 14

2298

2300

2302

2304

2306

2308

2310 ;

2312 15

2314

2316

2318

2320

2322

2324

2326

2328 16

2330 ;

2332 exc

2334 ex1

2336

2338

2340

2342

2344

2346

2348 '

2350 ex2

2352

2354

2356

2358

2360 ex3

2362

2364

2366

2368

2370

2372

2374

2376

2378 ;

2380 ex5

2382

2384

2386 ex6

iny

Ida $0b

adc #$3f

inx

sta $200 ,y

iny

Ida $200,y

bne tk1

jmp (tvec)

Idx t3

inc $0b

Ida $0b

cmp #$1e

beq tk6

iny

Ida skw-1.y

bpl tk7

Ida skw.y

bne tk3

Idy $71

Ida $200,x

bpl Ik4

Ida $200.x

beq tk4

cmp #$22

beq tk4

sta $200,y

iny

inx

bne tk8

cmp #$5f

bne 12

iny

Ida ($5f).y

sbc #$40

cmp #$1e

bcc 11

sbc #1

cmp xtra+ 2

bcc 13

dey

Ida ($5f),y

tax

jmp (Ivec)

sty t3

Idy #0

tax

beq 15

Ida skw.y

php

iny

pip
bpl 14

dex

bne 14

Ida skw.y

php

and #$7f

jsr $ab47

iny

pip

bpl 15

Idy t3

jmp $a700

jsr $73

cmp #$8b

beq ex8

cmp #$5f

bne ex5

jsr $73

jsr ex2

jmp $a7ae

sec

sbc #$40

cmp #$1e

bcc ex3

sbc #1

isecond byte of token

;loop unless line exhausted

irejoin basic

;find next keyword

;skip past exponentiate token

;no matching keyword.

:give up attempt to

itokenize

iscan for end of

;line or end of

iquotes without

;tokenizing

;list — expand tokens

;skip if not left-arrow

;get next byte,

iconvert to token

inumber

icheck if in bounds

;go scan keyword list

;rejom basic

icountdown in ,x

:whi!e scanning

; keyword list

;last keyword

icharacter has bit

;7set

iprint keyword

;using basic's

;character-print

:routineat$ab47

.rejoin basic

lexecute statement

;'if — handle at ifrtn

;the left arrow

iskip to rejoin basic

;get next byte

;execute

;set up next statement

iconvert token to

;keyword number

cmp xtra ;check if in bounds

bcs ex7 ;syntax error

asl

tay

Ida cmds +1 ,y ;fetch vector

pha ;address from table

Ida cmds.y

pha jump through chrget

jmp $73 ;to statement routine

Ida $7a

bne ex6

dec $7b

dec $7a

;decrementchrget

ipomter

34

2388

2390

2392

2394

2396

2398

2400

2402

2404

2406

2408

2410

2412

2414

2416

2418

2420

2422

2424

2426

2428

2430

2432

2434

2436

2438

2440

2442

2444

2446

2448

2450

2452

2454

2456

2458

2460

2462

2464

2466

2468

2470

2472

2474

2476

2478

2480

2482

2484

2486

2488

2490

2492

2494

2496

2498

2500

2502

2512

2514

2516

2518

2520

2522

2524

2526

2528

2530

2532

2534

2536

2538

2540

2542

2544

2546

2548

2550

2552

2554

2556

2558

2560

2562

2564

2566

2568

2570

2572

5222

5224

ex7

ex8

ex9

fun

fu1

fu2

fu3

ifrtn

if 1

if2

elsrtn

els1

ext

exll

cifchr

jmp (evec)

jmp $afO8

jsr ex9

jmp $a7ae

Ida #>ifrtn-1

pha

Ida #<ifrtn-1

pha

jmp $73

jsr $73

cmp #$5f

beq fu2

Ida $7a

bne fu1

dec $7b

dec $7a

jmp (fvec)

Ida #0

sta $0d

jsr $73

sec

sbc #$40

cmp #$1e

bcc fu3

sbc #1

sec

sbc xtra

bcc ex7

cmp xtra + 1

bcs ex7

asl

tay

Ida fncs + 1 ,y

pha

Ida fncs.y

pha

jmp $73

jsr $ad9e

jsr $79

cmp #$89

beq if 1

Ida #$a7

jsr $aeff

jsr $79

Idx $61

beq elsrtn

bcs if2

jmp $a8aO

pla

pla

jsr $79

jmp ex1

jsr $a8f8

jsr $79

cmp#0

bne els1

rts

jsr $73

cmp #$5f

bne elsrtn

jsr $73

cmp #$40

bne elsrtn

jsr $73

jmp i!2

Idx #7

Ida tvec.x

sta $304,x

dex

bpl ext1

Ida #$a2

sta start

jmp pdown

cmp #$5b

bcc cid

clc

bcc cic2

cid cmp #$41

cic2 rts

pdown rts

;rejoin basic

.syntax error

;execute 'if

;set up next statement

;jump to

;'if execution

;routine

;evaluate function

;left arrow

evaluate transbasic funlion

; decrement enrget

;pointer.

;rejoin basic

:clear data type register

;fetch keyword i.d. byte

iconvert to keyword number

icheck if in range

isyntax error

isyntax error

;fetch function

ivector from table

;jump to function

;routine through chrget

levaluate test expression

;must be followed by

:goto ($89)

;orthen($a7)

;clear carry on numeric

;check if test failed

;yes —skip to else

;goto

lexecute statement

latter 'then'

;skip statement

;rts if end

;of line

icheck for else

itoken

;execute

;exit routine

irestore old

ivectors

irestore Idx code to

lenable start routine

;do powdown command if present

ireturn carry set

lif accumulator

icontains

;alphabetic

;for users of 'power'

Volume 5, Issue 04

Program 2

0 rem add (sept 27/84) :

1 :

2 rem 1 statement, 0 functions

3 :

4 rem keyword characters: 3

5 :

6 rem keyword routine line ser #

7 rem add xadd 4474055

8 :

9 rem e/iortns (39/056)

10 :

11 rem = = = = = = = = = = = = = = = = = =

12 :

39 setlfs = $ffba ;i/o routine

40 setnam = $ffbd addresses in

41 open = $e1c1 ;kernal rom

42 chkin = $e11e

43 close = $e1cc

44 drchn = Sffcc

45 getin = $e124

46 ;

114 .asc'adD'

1114 .word xadd-1

4474 xadd jsr $ad9e ;get filename

4476 jsr $b6a3

4478 sta 13 ;save length

4480 txa

4482 pha

4484 tya

4486 pha

4488 Ida 13

4490 jsr $b47d ;reserve space

4492 tax

4494 bne xa1

4496 jmp $afO8 mull string syntax error

4498 xa1 clc ;add,p to filename

4500 adc #2

4502 sta t3

4504 jsr $b47d

4506 tay

4508 pla

4510 sta $23

4512 pla

4514 sta $22

4516 dey

4518 Ida #"p'

4520 sta ($62),y

4522 dey

4524 Ida #"."

4526 sta ($62) .y

4528 xa2 dey

4530 bmi xa3

4532 Ida ($22),y

4534 sta ($62) ,y

4536 bne xa2

4538 xa3 Ida t3 ;set up for setnam

4540 Idx $62

4542 Idy $63

4544 jsr setnam

4546 jsr $79 :checkfor

4548 beq xa4 ;deyice number

4550 jsr $aefd

4552 jsr $b79e

4554 .byte $2c

4556 xa4 Idx #8 ;default device 8

4558 Ida #$63 ;file number and

4560 tay secondary addr 99

4562 jsr setlfs

4564 jsr open

4566 Idx #$63

4568 jsr chkin ;open channel

4570 jsr dskget :skip load address

4572 jsr dskget

4574 xa5 jsr dskget ;line link low

4578 jsr dskget :end on zero high byte

4580 bne xa7

4582 jsr clsclr ;wrap up i/o

4584 jsr $a659 ;resetchrgetptr, clr

4586 jmp $e386 ;'ready.'

4590 xa7 jsr dskget :save line number

4592 sta $14

4594 jsr dskget

4596 sla $15

4598 Idy #0

4600 xa8 jsr dskget ;move rest of

4602 sta $200,y ;line to input

4604 beq xa9 ibuffer

4606 iny

4608 bne xa8

4610 xa9 tya ;save line size

4612 clc

4614 adc #5

4616 sta $0b

4618 jsr $a613 isearch for line #

4620 bec xa13 :skip if not found

4622 Idy #1

4624 Ida ($5f),y ;deleteline

4626 sta $23

4628 Ida $2d

4630 Sta $22

4632 Ida $60

4634 sta $25

4636 Ida $5f

4638 dey

4640 sbc ($5f),y

4642 dc

4644 adc $2d

4646 sta $2d

4648 sta $24

4650 Ida $2e

4652 adc #$ff

4654 sta $2e

4656 sbc $60

4658 tax

4660 sec

4662 xa10 bec xa5 :link

4664 Ida $51

4666 Sbc $2d

4668 tay

4670 bes xa11

4672 inx

4674 dec $25

4676 xa11 dc

4678 adc $22

4680 bec xa12

4682 dec $23

4684 do

4686 xa12 Ida ($22),y

4688 sta ($24),y

4690 iny

4692 bne xa12

4694 inc $23

4696 inc $25

4698 dex

4700 bne xa12

4702 xa13 jsr $a663 :clr

4704 isr $a533 ;re-link

4706 clc

4708 Ida $2d

4710 sta $5a

4712 adc $0b

4714 sta $58

4716 Idy $2e

4718 sty $5b

4720 bec xa14

4722 my

4724 xa14 sty $59 ;make space for

4726 jsr $a3b8 ;newline

4728 Ida $14

4730 Idy $15

4732 sta $1fe

4734 sty $1fl

4736 Ida $31

4738 Idy $32

4740 sta $2d

4742 sty $2e

4744 Idy $0b

4746 dey

4748 xa15 Ida $01fc,y ;moveline

4750 sta ($5f),y ;into program

4752 dey

4754 bpl xa15

4756 jsr Sa663 ;clr

4758 jsr $a533 ;re-link

4760 clc

4762 bec xa10 ;do another

4764 ;

4766 dskget jsr getin ;get byte

4768 pha

4770 Ida $90 icheck status

4772 and #$bf

4774 bne dkg1

4776 pla :returnifok

4778 rts

4780 dkg1 jsr clsclr ;wrapupi/o

4782 Idx #$1d ;'merge error1

4784 Ida #<mrgerr

4786 sta $22

4788 Ida #>mrgerr

4790 jmp $a445

4792 ;

4794 mrgerr .asc "mergE"

4796 ;

4798 clsclr Ida #$63 ;close file

4800 jsr close ;clear channels

4802 jmp clrehn

4804 ;

Program 3

0 rem screen things (aug 25/84)

1 :

2 rem 5 statements. 0 functions

3 :

4 rem keyword characters: 22

5 :

6 rem keyword routine line ser #

7 rems/ground grd 2740 013

8 rems/frame fram 2748 014

9 rem s/text tex 2756 015

10 rems/cram cfill 2768 016

11 rems/cls clea 2790 017

12 :

13 rem = = = = = = = = = = = = = = = = = =

14 :

104 asc ' grounDframEtexT"

105 .asc " craMcIS"

1104 .word grd-1,fram-1.tex-1

1105 .word cfill-1.clea-1

2740 grd jsr $b79e ;get byte in ,x

2742 stx $dO21 ;put in background

2744 rts ;colour register

2746 :

2748 fram jsr $b79e ;get byte in .x

2750 stx $dO2O put in border

2752 rts ;colour register

2754 ;

2756 tex jsr $b79e igetbytein.x

2758 txa

2760 and #$0f put low byte in

2762 sta $286 ;text coir register

2764 rts

2766 ;

2768 efill jsr $b79e ;get byte in .x

2770 txa

2772 Idy #0

2774 cf1 sta $d800,y ;fill colour

2776 sta $d900,y :memory

2778 sta $da00.y

2780 sta $dbOO,y

2782 iny

2784 bne cf1

2786 rts

2788 ;

2790 clea bne del ;if no parameters

2792 imp $e544 just dr screen

2794 del jsr $b79e ;get a byte

2796 stx $14 ;check range

2798 cpx #$19

2800 bes cle5

2802 jsr $79 ;branch if no

2804 beq de3 ;2nd parameter

2806 jsr $aefd ;check for comma

2808 jsr $b79e :get 2nd parameter

2810 cle2 cpx $14 ;exititless

2812 bee cle4 ;than first one

2814 cpx #$19 ;check range

2816 bes cle5

2818 byte$2c

2820 de3 Idx #$18 ;default 2nd param

2822 jsr $e9ff ;clearaline

2824 dex

2826 bpl cle2

2828 cle4 jmp $e56c restore cursor

2830 de5 jmp $b248 ;illegal quantity

2832 ;

Program 4

100 if peek(773)<192 goto 120

110 "-a : rem exit

120 if a = 1 goto 140

130 a=1: load "tb/add.obj" ,8,1

140 sys 49152 : rem enable tb/add

150a$ = chr$(34)+ "tb/kernel" +chr$(34)

160 print "Q Jflload " a$ ",80"
170 poke 198,1

180 poke 631,13

The Transactor 35 Volume 5, Issue 04

Hardware Corner Domenic DeFrancesco

Input and the Keyboard Matrix

In the previous Hardware Corner we covered output on the

parallel port and connected 8 LEDs as an example. This article is a

tutorial and no construction project will be presented. We will

cover input from the parallel port and look into reading the

computer's built-in keyboard by software.

Simple input: Reading Switches

Connecting a small number of switches (up to 8) is a fairly simple

process. Each switch must be connected between an I/O line and

ground. The switches used may be pushbuttons (as in the case of a

keyboard), toggle switches, relay contacts, or any open/close

circuit element. Actually connecting the switches to the I/O lines

can be complicated by a few considerations:

A 'pull-up' resistor is sometimes required depending on the

internal workings of the I/O chip being employed. The 8 periph

eral I/O lines on the user port of all Commodore computers have

this pull-up resistor built into the chip, and therefore, it is not

required in our application. Pull-up resistors vary in value from Ik

to 10k ohms.

A 'series damping' resistor, used to reduce transient voltages, is

optional, but recommended when the switch is far from the

computer, or when long-term reliabilty is important. Typical

values for series damping resistors are between 27 ohms and 100

ohms. See figure 1 for a schematic showing the different resistor

arrangements.

To read the state of the switches, simply set the data direction

register (ddr) to input (zero), and PEEK the data register (dr). You

may want to refresh your memory of the operation of the ddr and

dr by referring to the first Hardware Corner in Vol. 5, Issue 01, or

the second in Issue 03. The following BASIC subroutine, given a bit

number 'BN' from zero through seven, will assign variable 'D' with

a 1 or 0 depending on whether the specified switch is open or

closed, respectively.

1000 rem** read switch bn (0-7) **

1010 d = peek(dr) and 2tbn

1020 rem read bit'bn'of data reg.

1030d = -(d>0)

1040 rem make d either 1 or 0

1050 return

Here's an example of a program which uses the above subroutine,

and reports on the state of eight switches, each connected to an 1/

O line on the parallel port.

10 rem** read 8 switches on user port

20 rem* choose appropriate line below

30 ddr = 59459: dr = 59471: rem pet/cbm

40 ddr = 37138: dr = 37136: rem vie

50 ddr = 56579: dr = 56577: rem c64

60:

70 poke ddr.O: rem all lines inputs

80 for bn = 0 to 7: rem all 7 switches

90 gosub 1000 : rem read switch #bn

100 print "switch "bn;

110 if d = 1 then print": off (open)"

120 if d = 0 then print": on (closed)"

130 next bn

140 end

The Keyboard Matrix

The method outlined above is good for connecting a small number

of switches, but can become very expensive if many switches (like

a keyboard), need to be connected, since several I/O chips will be

required (along with the necessary extra space on the circuit

board).

The alternative method is to connect the switches in a matrix

arrangement. Figure 2 shows 16 pushbutton switches connected

to the user port while using only 8 lines. With the addition of one

more line (shown in dashes), 20 pushbuttons can be connected.

This set-up uses far fewer I/O lines, requiring less chips, circuitry,

and connections. The two possible disadvantages are: 1) more

software is required to read the state of the pushbutton, and 2) the

software may not be able to determine which pushbuttons are

closed if 3 or more keys are pressed.

Reading the 16 keys in figure 2 is a little bit more complicated than

reading the direct-connected switches as above. The general idea

behind "scanning" a matrix is that there are two sets of lines: The

row select lines, and the keyboard column input lines. The row

select lines are outputs, and determine which row of keys will be

read on the input lines. The input lines are, obviously, set as

inputs, and are used to determine which key in the desired row is

depressed.

The scanning program generally uses two nested loops: the main,

outside loop iterates once for each row in the matrix, and the inner

loop is performed as many times as there are keys in a row.

As you can see in figure 2, PB4-PB7 are used as the row select

lines, and PBO to PB3 are the column input lines. The data

36

direction register must be set up accordingly: 11110000 (binary).

The scanning program must select each row in turn by bringing

the appropriate row select line LOW, and then testing each column

input line to see if it has gone LOW. If it has, the corresponding key

was pressed. So, we could start by making PB4 low and PB5-PB7

high. A zero bit in the input lines will indicate a pressed switch,

and the bit's position will indicate which one. But a program is

worth a thousand words, so before this gets confusing, I'll let you

see for yourself how it's done.

The program listed below scans the keyboard matrix shown in

Figure 2, and assigns the number of a key pressed (from 0 to 15) to

the variable 'D'. Depending on which machine the keyboard is

connected to, you must set up the variables 'DR' and 'DDR'

accordingly.

100 rem* read 4 by 4 keyboard matrix *

110 poke ddr,240: rem* data direction

120 d = 15 : rem * key pressed

130for row = 0to3

140 poke dr,16*(15-2trow) + 15

150 keys = peek(dr) and 15

160 if keys=15goto200

170 for col = 0 to 3

180 if(keys and 2tcol) = 0 then

d = col + 4* row

190 next col

200 rem— endif —

210 next row

220 end

The Commodore 64's Keyboard

All the Commodore computers use a matrix arrangement for their

keyboards. On the C64, the keyboard row is selected with the

register at 56320, and the keyboard input lines are read from

location 56321. Note that these ports are the same ones used for

the joysticks, which explains why you can't properly type on the

keyboard while playing around with the joystick.

The 64's keyboard is arranged as an 8 by 8 matrix, giving a total of

64 keys. To select a keyboard row, the corresponding bit in the row

select register must be set to zero. The state of that keyboard row

can then be read from location 56321. The keys corresponding to

the given rows and columns are shown in the following table. The

row number appears in the leftmost column, followed by the value

that would be stored in the select register 56320 (255-2t(row

number)).

able to scan the keyboard yourself instead of relying on the built-

in routine. For example, you may wish to check for only a specific
key, or check the current key pressed without affecting the key

board buffer. Also, a custom keyboard-scanning routine will allow

you to detect two keys which are simultaneously depressed; a

capability that is often desired in games.

To show how easy it is to scan the matrix, the scanning program is

presented in BASIC. When scanning the keyboard, either from

machine language or BASIC, it is necessary to disable the IRQs to
prevent the system's keyboard scanning routine from interfering.

This is done in BASIC by disabling the timer which generates the
interrupts. The scanning program below will scan the keyboard

and return a code (the same as from PEEK(197)) for the key
pressed in the array variable K(0). If two keys are pressed, another
value will be stored in K(l). The number of keys pressed, 0,1 or 2,

will be stored in the variable 'C. The keyboard scan is done by the

subroutine starting at line 1000.

100 rem* scan c64 keyboard

110 rem*

120 sel = 56320:rem* kbd row select reg

130 inp = 56321 :rem* kbd input register

140 for i = 0to7: e(i) = 2ti: next i

150 rem* e() is exponent array (2tx)

170:

180 print" # keys"," 1 st key"," 2nd key"

181 :

190 for loop = 0 to 1 step 0

200 gosub370: rem* read keyboard

210 print o, k(0), k(1)

220 next loop

230 end

250:

260 rem*

ROW

0 (254)

1 (253)

2(251)

3 (247)

4 (239)

5 (223)

6(191)

7(127)

Column (bit in location 56321)

DEL rtrn F7 Fl F3

W

R

Y

I

P

4 Z S

6 C F

8 B H

0 M K

; HOME r.shf

CTRL 2 SPACE O

F5

E

T

U

0

t /

Q STOP

dn

I. shft

X

V

N

Notes:

1) The shift lock key is connected with the left shift key.

2) The RESTORE key is not part of the keyboard matrix, but is directly

wired to generate an NMI (Non Maskable Interrupt) when struck.

Scanning the built-in keyboard is no more difficult than scanning

our custom-made 16 key example. It might be sometimes desir-

270 rem* keyboard scan subroutine *

280 rem* set up e() before calling. *

290 rem* input variables: *

300 rem* " SEL": row select register *

310 rem* " INP": keyboard input reg *

320 rem* output variables: *

330 rem* " C ":# of keys down (0-2) *

340 rem* " K(0)": 1 st key down or 64 *

350 rem* "K(1)": 2nd key down or 64 *

360 rem******************************

370 rem- this is the entry point -

380:

390 poke 56334,peek(56334)and254

400 rem* turn interrupts off

410:

420 c = 0: rem * # keys pressed (0-2)

430 k(0) = 64: k(1) = 64:rem* 64 = no key

440 poke sel,0

450 rem* test for no keys pressed

460 if peek(inp) = 255 then return

470:

480 for row = 0 to 7

490 poke sel,255-e(row)

500 keys = peek(inp):if keys = 255goto550

510forcol = 0to7

520 if(keys and e(col)) = 0 and c<2 then

k(c) = row*8 + col: c = c +1

530:

540 next col

550 next row: rem—endif—

560:

570 poke56334,peek(56334)or1

580 rem* turn interrupts back on

590 return

The Transactor 37 Volume 5, Issue 04

The C64's I/O ports The PET/CBM keyboard matrix

The scanning procedure is pretty straightforward, but you may

have noticed something a little wierd. Location 56320 is used as an

output, since we POKE it with a value to select a keyboard row. But

we can also PEEK the very same location, and it will give the

current status of the joystick plugged into port #2. All this without

ever touching a data-direction register. What's going on here?

Well, the magic is due to the way the 6526 I/O chip works. If a line

is set as an output (through the data direction register) and is set

high via the data register, you would expect a PEEK of the location

to show that line as being high, no matter what. That's not

necessarily the case with the 6526: when the port is read with a

PEEK, the value obtained is not the contents of the I/O register, it

is the actual state of the I/O pins. Thus, if a line is being pulled low

(in the case of the C64, by the joystick), even if it is an output and

set high it will read as a zero. This is how a line can be used for

input or output without changing the data direction register.

Port A of the 6526 has what's known as "passive pull-up" I/O

lines. Such lines have an internal pull-up resistor, which pulls the

line high when set as an input or when set as an output and high. A

passive pull-up line can be pulled low externally without damag

ing the I/O chip, even if it's supposed to be an output. That's why

it's not as awful as it sounds to use the joystick to force output lines

low.

While we're on the subject of I/O line pull-up, there are also those

of the "active pull-up" variety (as you might have guessed). An

active pull-up line is pulled high by an active circuit element like a

transistor when it's set as an output and high. Active pull-up lines

can't be pulled low externally like passive pull-up lines can. Not

unless you want to blow your I/O chip! Some chips have I/O lines

with both active and passive pull-ups. These lines give the best of

both worlds, since they can sink a lot of current when in the high

state as outputs, and they will "float" high when set as inputs.

The keyboard matrix on PET/CBM machines has 10 rows by 8

columns, and works in basically the same way as the 64's. The

main difference is that the row select register uses a decoder chip

to save I/O lines. The decoder will bring a given line low, given the

binary value of that line on it's inputs. For us software folks on the

outside of the machine, that means that we just store a number

from 0 to 9 in the row select register to select one of ten lines. We

don't have to calculate the proper value to affect a certain line.

Specifically, the row select register on PETs is found in the lower 4

bits of location 59408, and the column inputs are read from

location 59410. The scanning process for this keyboard is identical

to that for the 64's except for the POKE which selects the row. The

advantage to the PET's layout is that it uses fewer I/O lines. The

advantage to the 64's scheme is that a quick check can be made to

see if ANY key is pressed, without checking each row in turn

(storing a zero in the row select register allows you to read the state

of ALL keys at once). So the PET's keyboard takes longer to scan

when no keys are being pressed.

Wrapping up

The topic of input in general could cover many more pages, but the

above was just a collection of a few simple and advanced concepts.

Input to the computer is not usually discussed on the lowest

hardware level, but serious computerists should know what's

going on in there. Reading devices such as the keyboard directly

with your own software gives you just a little bit more control over

your machine. Power! The next Hardware Corner (which will

hopefully appear in the NEXT issue this time) will present a couple

of construction projects: An RS-232 interface, and direct connec

tion of a parallel printer to the user port.

+ 5V + 5V

PBO

Pull-up resistor

PB1 •

Pull-up and series damping resistor

PB2«- •^

No resistors; pull-up resistor inside chip

47Q

PB3» WW ■•**-•

Series damping resistor only

Figure 1:

Pull-up and series damping resistor connections

Row

Outputs

PB4

PB5

PB6

PB7

12

\

13

\

10

14

\

1

11

15

\

r

Column

Inputs: pbo pbi PB2 PB3

Figure 2: A 4 by 4 keyboard matrix.

Note how one additional I/O line allows 4 more keys.

fheTr
38 Volume 5, Issue 04

The Commodore 64

Keyboard Part 1:

The KERNEL Routines

Aubrey Stanley

Mississauga, Ontario

Its amazing how something as ordinary as a keyboard can turn you

off what must be the greatest PC for its price on the market today. I

work in software development, which means that 1 use the key

board a lot. I'm used to keyboards that respond to keys as they are

entered, no matter how many previous keys are pressed. This is

known as n-KEY ROLLOVER in computer jargon. I found the

one-key-at-a-time approach very frustrating. To compound the

situation, my five-year-old daughter, Charmaine, whom I was

teaching to type, decided to end her relationship with the Commo

dore because "it couldn't spell".

While investigating her problems 1 soon discovered that all her

complaints originated in this one-key-at-a-time methodology

that Commodore uses to drive the 64 keyboard. It was truly a

lesson to see her refuse to accept a situation which I, as a

conditioned adult, had become resigned to. Yes, the computer

cannot spell! If two keys are down at the same time, chances are

even that the second key pressed will not display until the first key

is released. This can slow an average typist down by 50% or more.

In the case where the second key does display, if the second key is

released before the first key, then the first key will be displayed

again. And if, perchance, there are three keys down simultane

ously (you're a super typist or a child), then it's likely that the third

key will display incorrectly - try 'GHJ' for instance.

I decided I had to do something to restore my child's faith in

computers. The PROGRAMMERS REFERENCE GUIDE had pre

cious little to say on the keyboard. Even the good old TRANSAC

TOR mags were decidedly mute on the subject. So armed with a

newly purchased Monitor, I took a plunge into the murky waters of

the Kernel ROM. My investigations form the basis of this first

article on the Commodore 64 keyboard. Illustrated here is the

software interface, the associated Kernel routines and some inter

esting facts that have been left out of official Commodore publica

tions. The second article will build upon this knowledge by

developing an alternative software driver with n-Key Rollover

capability and the ability to easily redefine the standard arrange

ment of the keyboard. Article three will demonstrate further

routines that run as extensions of this keyboard driver and en

hance the capabilities of the standard Screen Editor. You will be

able to define any key to generate an 'instant keyword' of your

choice - e.g. type shifted 'G' and get 'GOSUB'. Or erase to the end-

of-line. Or even link in your own routine to perform an editing

task you sorely miss in the standard editor.

How Keys Are Read

Imagine each key as a switch which turns an individual bit in

memory to '0' when pressed. If the key is released, the memory bit

reverts to T. Now since there are 64 keys (RESTORE excepted),

the keyboard may be thought of as occupying 64 bits, or 8 bytes, of

memory, each bit of which represents a particular key. It's the

physical position of the key that I am talking about, not the symbol

etched on it. It's important to understand this. Any one byte of this

pseudo memory is available to the software at location $DC01.

Which byte the software reads is decided by writing a bit pattern to

location $DC00 before performing the read*. The bit pattern

consists of seven T bits and one '0' bit. Just where the '0' is

positioned will determine the set of eight keys that will be read

from $DC01. Table 1 illustrates this process using the designations

of the standard keyboard. But again, remember that the letter on

the key is only the symbol, its the physical position of the key that

determines which particular bit is set or reset in $DC01.

* Editor's Note: SDC00 and SDC01 are hardware registers in one of

the I/O chips, and control the I/O ports to which the keyboard

switches are connected. See 'Hardware Corner' in this issue for

more on this.

Table 1: Keyboard Switch Matrix

ROW

$FE

$FD

$FB

$F7

$EF

$DF

$BF

$7F

7

dn

l.shft

X

V

N

/

STOP

6

F5

K

T

U

0

ffl
t

Q

Column (bit in location 56321)

5

F3

S

F

H

K

=

O

4

Fl

Z

C

B

M

r.shf

SPACE

3

F7

4

6

8

0

_

HOME

2

2

rt

A

D

G

J

L

CTRL

1

rtrn

W

R

Y

I

P

,

-

0

DEL

3

5

7

9

+

\
1

Index Of A Key

The Kernel determines the index of a key by effectively adding its

column position to its row position multiplied by 8. Thus the key

'B' will have an index of 4+ (3*8) = 28 or $1C. The index is used to

access a table from which is fetched the ASCII or CHR$ value of the

key. For the 'B' key this would normally be 66 or $42. Certain keys

are given special CHR$ values in the table. These are '1' for a Shift

Key, '2' for the Commodore Key and '4' for the Control Key.

REPLACING THE KERNEL'S DECODE TABLES IS

ONE WAY OF RE-CONFIGURING THE KEYBOARD.

Interrupt Entry

The Kernel, when it initializes the system, sets up one of the timers

to interrupt at l/60th second intervals. Each time this interrupt

occurs, the hardware automatically saves the Program Counter of

the current task together with the status register, and jumps to the

vector stored in $FFFE-$FFFF. This vector points to $FF48 where

the Kernel saves the registers and then does an indirect jump

through location $314—$315. This vector points to $EA31, the

beginning of the routines that increment the real time clock, flash

the cursor, handle the tape motor and finally, scan the keyboard.

The Transactor 39 Volume 5, Issue 04

It's the keyboard scanning routine that we're concerned with here.

A detailed explanation of this routine follows.

KERNEL Keyboard Variables

The Kernel uses low memory to store its variables. The use of each

of these variables will become clear in the descriptions which

follow.

;lndex of Last Key Pressed

;Number of Characters in Keyboard Buffer

;lndex of Current Key Pressed

;Keyboard Decode Table Pointer

; Keyboard Buffer Start

;Max. Characters Allowed in Keyboard Buffer

;Flag to Enable/Disable Repeats

;Repeat Speed Count

;Delay to Repeat New Key Press

;Current State of Shift, C= & Control Keys

;Last State of Shift, C= and Control Keys

;Vector for Keyboard Table Setup

;Flag to Enable/Disable Character Set Switch

;Vector for Hardware IRQ Interrupt

Keyboard Driver Entry

The KEYBOARD BUFFER Routine

LSTX

NDX

SFDX

KEYTAB

KEYD

XMAX

RPTFLG

KOUNT

DELAY

SHFLAG

LSTSHF

KEYLOG

MODE

CINV

= $C5

= $C6

= $CB

= $F5

= $277

= $289

= $28A

= $28B

= $28C

= $28D

= $28E

= $28F

= $291

= $314

(ENTRY J

±
#0-SHFLAG

#$40-SFDX

#O-$DC00

$DC01-.X

The Keyboard routines are entered at $EA87 via a subroutine call

from location $EA7B. This is unfortunate, because the lack of a

vector here means that anyone wishing to replace the standard

driver must take over the entire interrupt routine, performing all

the other housekeeping tasks as well.

First SHFLAG is cleared to 0. SHFLAG holds the run-time state of

the Shift, Commodore and Control keys. A value of $40 is then

written to SFDX. SFDX holds the current index of the key found to

be pressed during the scanning operation. $40 (decimal 64) is the

index when no keys are pressed. Next a value of $00 is written to

location $DC00. Location $DC01 is then read. If this produces an

$FF result, then it means that no keys are pressed. Any other value

signifies that at least one key is pressed. If no keys are pressed, the

driver enters the KEYBOARD BUFFER routine, otherwise the

SCANNING routine is entered.

$00 IS A SPECIAL BIT PATTERN WRITTEN TO

LOCATION $DC00 TO DETERMINE IF ANY

(IT DOESN'T MATTER WHICH) KEYS ARE PRESSED.

C KEYBOARD A
BUFFER J

SFDX-LSTX

SHFLAG^LSTSHF

.X-.A

NDX^.X

YES

A^KEYD.X

.X+1-.X

.X-NDX

f Return \

This routine is entered at $EB26. Here LSTSHF and LSTX are

updated to reflect the new state of the keyboard. LSTSHF stores the

states of the Shift, Commodore and Control keys (in bits 0, 1 and 2

respectively) from the last activation of the interrupt routine. If the

bit is '0' then this means that the corresponding key is NOT

pressed. LSTX holds the index of the key-press (excluding the

Shift, Commodore and Control keys) from the last activation of the

interrupt routine. Remember again that the index gives the physi

cal position of the key. (according to its position in Table 1)

SHFLAG is copied to LSTSHF and SFDX to LSTX. At this point

register 'X' will hold the CHR$ value (taking into account the state

of the Shift, Commodore and Control keys) of the key that was

found to be pressed during the SCANNING routine. If no key was

pressed then 'X' will contain the value $FF. Nothing is put into the

keyboard buffer if the value of 'X' is $FF or if NDX has reached

XMAX, the latter condition indicating that the keyboard buffer is

full. Otherwise the CHR$ value is inserted into KEYD, the key

board buffer, at the location offset by NDX, and NDX is incre

mented. Finally, the KEYBOARD BUFFER routine exits to the

RETURN routine.

'LSTSHF' AND 'LSTX' MAY BE EXAMINED TO SEE

JUST WHICH KEYS ARE CURRENTLY PRESSED.

'KEYD' IS THE QUEUE THAT THE KERNEL USES

TO FEED KEYS TO BASIC AND OTHER PROGRAMS.

The Transactor 40 Volume 5, Issue 04

The RETURN Routine

RETURN

#$7F-*$DC00

End

The RETURN routine is entered at $EB42. It writes $7F to location

$DC00 and then does a Return From Subroutine which ends the

Keyboard servicing portion of the interrupt routine. Return is to

location $EA7E where the Kernel reads the CIA Interrupt Control

Register (from $DC0D), restores the CPU registers and exits the

interrupt with an RTI instruction.

The bit pattern of $7F written to location $DC00 allows BASIC or

any other program to read directly (from $DC01), the set of eight

keys which includes the CONTROL and STOP keys.

IT IS WORTH MENTIONING HERE THAT THE

SCREEN SCROLLING ROUTINE RESETS $DCOO to $7F.

The SCANNING Routine

The SCANNING routine is entered at $EA9A. First KEYTAB is set

up to point to the Decode Table at $EB81. This table gives the

CHR$ values for normal (unshifted) keys. The keys are scanned in

sequence beginning at index = '0' and ending at index = '63'

($3F). This is achieved in eight activations of an outer loop, each of

which writes the appropriate bit pattern to location $DC00 and

then enters an inner loop where the corresponding set of eight

keys are read from location $DC01 and examined one by one.

In the inner loop, if the value of the key bit = '0' (i.e. the key is

pressed), then its index is used to fetch the CHR$ value from the

decode table whose pointer had been set up in KEYTAB. If the

CHR$ value is' 1', '2' or '4' (Shift, Commodore or Control), then this

value is OR'd into SHFLAG which maintains the values of these

keys. Otherwise the index is itself written to SFDX, overwriting

any previous index that may have been stored there during the

scanning process. THIS FACTOR EXPLAINS THE ONE-KEY-AT-

A-TIME FEATURE OF THE COMMODORE KEYBOARD AND IS

THE ROOT CAUSE OF ALL THE ANOMOLIES. After the scan is

completed, SFDX will contain the index of the pressed key with the

highest index, while SHFLAG will hold the states of the Shift,

Commodore and Control keys in the least three significant bits.

Now comes the part that some readers may not be aware of. After

the scan is completed, a jump is made to the vector contained in

KEYLOG. Normally KEYLOG contains $EB48 which is the start of

the keyboard DECODER routine.

'SFDX' AND 'SHFLAG' ARE PASSED TO THE ROU

TINE WHOSE ADDRESS IS CONTAINED IN 'KEY-

LOG'. THIS MAKES IT EASY TO RECONFIGURE THE

KEYBOARD SHOULD YOU WISH TO DO SO, OR

EVEN TO INTERCEPT AND ACT ON ANY PARTICU

LAR KEY, PROVIDED YOU OBEY THE RULES.

Change the vector to point to your own routine. When your

routine has completed, jump back to the Kernel at the appropriate

point which will depend on exactly what your routine is doing.

Your routine must stay invisible to the Kernel, i.e. you must

preserve the interface. The detailed flowcharts, the DECODER

routine described below and a disassembled listing of the Kernel

Keyboard routines should provide you with all the information

you need. As an example, I have included a Program in this article

to show how you may get a click out of each key pressed.

C SCANNING J

.A-STACK

$DC01-.A

s' >v YES (key not pressed)

.A-STACK

(KEYTAB).Y -.A

<^ .A<#5? ^>

\ .A-#3? ^>

.A OR SHFLAG

-SHFL

STACK-».A

.Y + 1 -,Y

W

NO
w,

W

YES (stop key)

.Y-*S.FDX

NO (all done)

.Y<

.X-1 -.X STACK-.A

JUMP (KEYTAB)

NO (next key)

(Decoder J

YES (next set) SET CARRY

STACK-.A

ROTATE .A LEFT

.A-SDCOO

The Transactor 41 Volume 5, Issue 04

The DECODER Routine

f DECODER J

SHFLAG^.A

SHIFT .A LEFT

$D018EOR#2^$D0A8

SFDX -.Y

(KEYTAB).Y-.A

.A-*.X

$EB79,X -KEYTAB

$EB7A,X~KEYTAB+1

f Repeats J

This routine is entered at $EB48. SHFLAG and SFDX are used to

compute a value in 'X' which in turn is used to fetch a table pointer

from the table of addresses starting at location $EB79. The pointer

is stored in KEYTAB and will point to one of four tables depending

on the value of SHFLAG. The index in SFDX is then used to fetch

the actual CHR$ value of the pressed key from the table pointed at

by KEYTAB.

The four tables used are:

1. NORMAL location $EB81

2. SHIFT location $EBC2

3. COMMODORE location $EC03

4. CONTROL location $EC78

Each table is 65 bytes in length. The last byte is always = $FF, just

in case no keys were found to be pressed (apart from those in

SHFLAG). In this case SFDX will still contain its initial value of $40.

$FF is also stored in all locations where no action is expected from

a key. For example the CHR$ value for '*' in the CONTROL table is

$FF. This is why you get no action when you press Control-*.

Also performed in this routine is the switch of character sets if

SHFLAG is found to contain the value '$03' (i.e. Shift and Commo

dore pressed together). In this case, LSTSHF is examined to see if it

also contains '$03'. As LSTSHF holds the value of SHFLAG from

the previous activation of the interrupt routine, this will mean that

the switch has already been made. No further action is taken and a

jump is made directly to the RETURN routine. If LSTSHF is not the

same as SHFLAG, then the variable, MODE, is examined. If the

most significant bit is set here, then the character set is switched -

lower to upper case or vice versa. This is done by XOR'ing location

$D018 with the value $02.

The CHR$ value fetched from the appropriate decode table is

stored in register 'X'. A jump is then made to the REPEATS routine.

$FF IN THE DECODE TABLE SIGNIFIES A NULL-KEY

WHICH MUST NOT BE INSERTED INTO THE KEYBOARD

BUFFER.

MODE' CAN BE MODIFIED TO DISABLE OR ENABLE

THE SWITCHING OF CHARACTER SETS.

The Transactor 42 Volume 5, Issue 04

The REPEATS Routine

f repeats)

For a new key-press, a jump is made to the KEYBOARD BUFFER

routine. Otherwise RPTFLG is examined. If the most significant bit

(bit 7') is set, then all keys will be repeated. If not, then if bit '6' is

set, all repeats are disabled and a jump is made to the RETURN

routine. For all other values of RPTFLG, only the normally repeat

ing keys are repeated, i.e. SPACE, INST/DEL etc.

A key is repeated only when both DELAY and KOUNT have been

decremented to zero. DELAY is always set to $10 when a key is

initially pressed. It is decremented once per interrupt activation

until it has reached zero. Then the same process is repeated for

KOUNT. When KOUNT has reached zero, then it is time to repeat

the key. KOUNT is reinitialized to a value of 4 and a jump is made

to the KEYBOARD BUFFER routine if there are no keys currently

in the keyboard buffer, i.e. if NDX = '0'. For all other cases, the

REPEATS routine jumps directly to the RETURN routine.

RPTFLG MAY BE MODIFIED TO TURN

ON OR OFF THE REPEAT PROCESS.

Get A Click Out Of Your Keyboard:

This is an example of a way to plug your own routine into the

interrupt code. The routine runs in the cassette buffer and is

initialized by doing a SYS to location 828 ($033C).

Basic Loader:

10 rem get a click out of the keyboard

15 rem this is done by changing the table setup vector

20 rem - keylog - at location 655 ($28f) to enter the click

30 rem routine situated in the cassette buffer, if a new

40 rem key press is detected, we prod sid to click his heels.

60 for i = 828 to 865 : read a : poke i,a : next

70 sys 828

100 data 120

110 data 2

115 data 40

This routine is entered at location SEAEO. SFDX is compared with

LSTX. LSTX holds the value of SFDX from the previous activation

of the interrupt routine. Therefore if SFDX is different to LSTX, it

will mean that this is a new key-press. In this case, a value of $10

is written to DELAY. DELAY is a count of the number of activations

of the interrupt driver before which a new key-press may be

repeated. This accounts for the noticeable delay before which a

key starts to repeat. If there was no delay it would be impossible to

use the keyboard.

125 data

169,

88,

169,

0, 141,

73,141,

96, 165,

15, 141,

24,212,

143, 2,169, 3,141,144

203,197,197,240, 15,162

24,212,202,208,253,169

76, 72,235, 0, -1

Assembler Code:
- $33C

sei

Ida #<click

sta $28f

Ida #>click

sta $290

cli

rts

click Ida $cb

cmp $c5

beq clend

Idx #40

Ida #15

sta 54296

cloop dex

bne cloop

Ida #0

sta 54296

clend jmp $eb48

Conclusion

;Cassette Buffer

;Disable Interrupts

;Change KEYLOG

; to point to

; the

; Click routine

;Enable interrupts

;Returnto Basic

;Don't click

; if SFDX

; equals LSTX

;Click Counter

;ThanksJEFFGOEBEL

; for the Click Poke

;Timeout

; on click count

;Turn Click

; off

;Return to interrupt

This completes the description of the Kernel Keyboard Driver. I

hope it has proved instructive and provided enough information

for those of you who wish to manipulate the driver to suit your own

particular needs. In Part 2, we will develop our own driver, based

on key-changes rather than key-presses. This will truly be versa

tile enough to suite anybody's needs, while still preserving the

standard interface to BASIC and other applications that currently

use the Kernel Driver for their keyboard handling.

The Transactor 43 Volume 5, Issue 04

Fixing

Commodore Keyboards

Harold Anderson

Oakville, Ont.

Repair your failing keyboard yourself

Most people who have an aging PET have by now encountered

problems with the keyboard. The problems usually start with

double or triple letters being generated every time a key is hit.

Eventually the situation deteriorates to the point where the key

does not generate a response at all. The keys that go first are

usually those most commonly used, such as the shift, space, and

return keys. If you have kids playing games on your computer, the

keys used in the game will soon give trouble. The letter 'A' seems

to go very quickly, since it is the "gun" in a lot of games.

Let me explain what is happening here. The keyboard of virtually

any computer is really a collection of switches, one for each key.

On the PET and Commodore 64, the computer looks at these

switches 60 times a second to see if they are closed. As soon as the

computer sees that a switch is closed, it prints a letter. The letter

will not be printed again unless the switch is opened and reclosed.

(Exceptions are the space and cursor-control keys, which have an

auto-repeat feature.)

If the connection made by the keyswitch is intermittent, the

computer will think that it has been opened and closed several

times even though you have only pushed it once.

There are several different types of switches used in computer

keyboards. The type that Commodore uses are made with electri

cally conducting rubber. Figure one shoes part of a disassembled

PET keyboard. The bottom of the picture shows the contact board

which has been removed from the underside of the keyboard

assembly. You will notice that it is covered with patterns that look

like interlocking fingers. These fingers are made of gold-plated

copper and form the two poles of the switch. The top of the picture

shows a collection of white circles with black dots at the center.

The white circles are the bottom ends of the key plungers and the

black dots are conducting rubber pads. When the keyboard is

assembled, the contact board is turned over and screwed to the

underside of the keyboard assembly so that the rubber pads sit

about 1/8 of an inch away from the gold-plated fingers. When a

key is pressed, the conducting rubber pad moves down to touch

the gold fingers and short-circuits them together, thus closing the

switch.

The keyboard on a Commodore 64 works on the same principle

except that two gold-plated "contacts" about 1/4 of an inch apart

are used instead of interlocking fingers. The piece of rubber which

short circuits the gold contacts is shaped a bit like a dog bone and

the ends of the bone press on the contacts when the key is pressed.

This modified design has been used because it allows conductors

to other key switches on the contact board to run between the two

contacts. This simplifies the fabrication of the contact board.

When the keyboard starts to give trouble, two things are happen

ing. The first is that the rubber pad and the gold-plated surfaces

are getting covered with dust which insulates the surfaces. The

other problem is that after long use, the surface of the rubber itself

seems to lose its ability to conduct electricity. Both of these

problems are easy to fix once the keyboard is opened up.

Before you can service the keyboard, you have to get at it. Start by

unplugging the computer. On PETs the whole top of the computer

can be swung up. The screws that hold the top down are at each

end of the keyboard under the lip of the white upper cover for the

computer. On the Commodore 64 there are three screws along the

underside of the front edge of the computer. In both cases the front

of the computer can be lifted up when these screws are removed.

On the Commodore 64 it will be necessary to unplug the wires to

the red pilot light as soon as the cover is lifted. The plug is just

below the flap on the metalized cardboard shield that covers the

main circuit board. Notice which way around this plug goes so that

The Transactor 44 Volume 5, Issue 04

you can put it back properly.

When you look at the bottom of the keyboard you will see that the

contact board is held to the bottom by about 20 tiny screws. Before

taking the screws out, you will have to remove the two wires that

go to the shift lock switch (right below the shift lock key). You will

need a soldering iron to do this. If a soldering iron is a hard item to

come by, I would suggest that you extend the wires on the switch

so that in future the contact board can be removed without

unsoldering the wires.

With the bottom of the keyboard off, you can clean off the

offending components. The pads and gold surfaces can usually be

cleaned by brushing them with a clean, dry paintbrush. If you

smoke a lot, you may have a film of tar over the surfaces. I would

suggest that you remove it with methal alcohol on a clean rag.

If the keyboard still gives trouble, the surface of the rubber pad can

be renewed by using VERY fine sandpaper on them. (400 grit

sandpaper of the type used for wet sanding in body shops seems to

work well.) Sand them just enough to make the surface of the

rubber dull. In order to sand them you will find it easier to pop the

pads out, as shown in figure 2, and stick them over the square,

unsharpened end of a pencil. It would be fairly tedious to do this to

all of the keys so I suggest that you do it only to the keys giving

trouble. If you can't get the sandpaper, swap the pads on the ends

of the key plungers so that the troublesome pads are on seldom-

used keys like Z and X. The pads can also be purchased as a spare

part for about a dollar each.

Although this sounds complicated, a keyboard can be repaired in

about 1/2 an hour, which definitely beats living with one that

gives trouble.

Life With the 1541 Michael Quigley

Vancouver, B.C.

Do you hate your 1541 disk drive with a passion? I mean - do you

leave it sitting in the front seat of your car with the windows open,

the doors unlocked and a large sign attached reading "STEAL

ME"? If so, welcome to the club. I'M sure if Benjamin Franklin

were alive today, he'd revise one of his most famous quotes to

read: "In this world, nothing is certain but death and taxes. . . and

the 1541 developing problems."

Probably the biggest problem of the 1541 is "going out of align

ment". What this means is that the read/write head is unable to

correctly find information on the disk. A major indication of

trouble is the red LED on the front of the drive flickering when

attempting to read disks, particularly those not formatted on your

own drive, or disks which you made several months ago.

The cause of all this is relatively simple. The drive contains a

stepper motor which advances the head from one track to the next;

no easy task, since the tracks are a fraction of an inch apart. The

stepper motor shaft goes up through a pulley which is connected to

a metal band, which in turn is attached to the read/write head.

Whenever a new disk is formatted or - worse yet, an error is

detected on a "copy protected" disk - the pulley knocks up against

a head stop which is at the hypothetical track zero. This is the

source of the rattling noise which occurs when a disk is "NEWed".

After X number of knocks against the head stop, the shaft in the

middle of the pulley begins to slip ever so slightly, since the two are

not permanently attached to each other. The result is that the

read/write head slips out of position as well. There is a theory that

the heat produced by the drive (which is considerable) may also

contribute to this misalignment.

The cures for this malady - aside from using the drive as a speed

bump in the alley behind your house - are varied. An alignment

disk and oscilloscope are necessary for precision. In some cases,

moving the stepper motor slightly after loosening the screws

which hold it to the bottom of the drive may be sufficient. In more

extreme cases, a notch has to be carved in the top of the stepper

motor shaft to serve as a screw-like slot where the pulley is

manually moved back to its correct location.

Other solutions of a permanent nature (after aligning the disk, of

course) include using Krazy Glue or some such epoxy substance to

hold the pulley to the shaft. This may be done in combination with

drilling a hole through the pulley to the central shaft and inserting

a pin. (Such a precision job must be done with care, because pieces

of metal can find their way down to the inside of the stepper motor,

rendering it totally useless.) It should be pointed out that any of

these actions will void your warranty, if it's still in effect.

Editor's note: While the 1541 does have the bug of occasionally

going a bit out of alignment, on the whole it has features that can if

be found on much more expensive drives. It's not the fastest thing

in the world, but it's extensive ROM code makes it fairly "smart",

and gives it lots of features and flexibility. It's ironic, perhaps, to

state this after the above article, but the 1541 drive may be one of

the best deals for the money in the microcomputing market. -T.

Ed.

The Transactor 45 Volume 5, Issue 04

Learning The Language Of DOS
Richard T. Evers, Editor

In this world there are many great mysteries, one of which is the

Commodore Disk Operating System (DOS). A disk drive is for most

a magical container in which diskettes are inserted to store vast

quantities of data, and retrieve the same with unerring accuracy.

There are but a few beings worldwide who fully understand the

teachings of DOS, but alas, few have the power of written com

munications at their access. Today, we will embark on a journey

into the deep recesses of DOS, to gradually bring about an

understanding of how it works, and why it is superior to others.

Commodore DOS does not require 'booting up' before access to

the drive can begin. Unlike other manufacturers' computer sys

tems, Commodore DOS is held in ROM, and is always with us.

Once powered up, DOS comes alive, and with it numerous

avenues of disk drive power are exposed. Within the drive,

knowledge is found. Commodore had the mental fortitude to

incorporate 'intelligence' into their drives, therefore they come

complete with microprocessor(s), various IC's, a fair quantity of

RAM, and a large chunk of ROM.

Before delving into the inner commands required to help you

communicate with DOS, let's get into a bit of theory.

A Bit Of Theory

All DOS communications occur through the Command channel;

channel 15. To recap, the incantation required to incite channel 15

is:

OPENLF,UA,15

where LF represents the logical file address (1-127), UA represents

the unit address of the drive, usually 8, and finally, 15 is the

secondary address, which is mandatory.

Once this communications line has been set up, full duplex

communications can begin. In the sub-sections soon to follow, all

the special disk commands will be covered correctly, so you can

learn to speak DOS, therefore bringing you closer to your DOS. Till

then, more theory is required.

More Theory

Once the 15th channel has been OPENed, communications can

begin, as I have stated in the preceding paragraph. Among DOS

sleuths, the Command channel is often referred as the Command

Buffer, CMDBUF. For the 1541 and 2031LP, this is held at $0200-

$0229 in RAM. The 4040, 8050, and 8250 have it tucked away at

$4300-$433A. The command buffer to the DOS is like the input

buffer to your computer. Everything of importance goes through

this area, is deciphered, then acted upon. All commands, filena

mes, and special characters, or simply, whatever it takes to make

the DOS stand up and listen.

Whenever an error has occurred with the drive, it again is con

trolled through the 15th channel. This error can be read from the

drive via INPUT* or GET* statements, but it can also be PEEKed,

via a disk equivalent, from RAM. The error buffer in the 1541/

2031LP is at $02D6-$02F8, and can be found at locations $43DC-

$43FF for the 4040/8050/8250 dual units.

Once the DOS receives your command input, it breaks it down

into simple terms that can be readily acted upon. If you wanted to

do a READ from disk, all the necessary RAM locations would be set

up first by the Interface Processor (IP), then the value of $80 would

be put in the JOB QUE. From this point the system would wait for

the Floppy Disk Controller (FDC) to come along and discover the

job waiting on the JOB QUE. Once discovered, the FDC would kick

in and do a READ. In this way, whatever you tell your drive to do

can be handled quickly and smoothly with co-operation within.

The JOB QUE, as described above, is the special spot within the

drive that informs the FDC what to do. In past, Commodore put a

couple of microprocessors in their drive units, namely the 4040,

8050, and 8250, for the purpose of handling different functions.

The first processor, the Interface Processor (IP), is responsible for

accepting commands via the 15th channel, and deciphering what

they actually mean. From here, the IP sets up all the necessary

conditions for the Floppy Disk Controller (FDC), and stores the

appropriate job code on the JOB QUE. Every 10 ms. the JOB QUE

is scanned by the FDC, just to see if any action is required. If not,

the FDC goes back through its rounds doing any housekeeping

chores required. In Commodore lingo, this is referred to as going

into the IDLE loop, waiting for something to do.

If a job is encountered on the JOB QUE, the FDC takes it and acts

upon it. Once the job has been completed, correctly or incorrectly,

the FDC finds the appropriate error code to describe the action

performed, and stores that over top of the original job code in the

JOB QUE. In this way the FDC can let the IP know that the job has

been completed, or has run into a few snags along the way. From

here, the IP takes the error code and stores the corresponding

description in the error buffer. A clean and neat solution.

The Transactor 46 Volumes, Issue04

As stated initially, Commodore at one time put a few microproces

sors in their drive units. The 4040 has one 6502 and one 6504.

Both the 8050 and 8250 have twin 6502's. But then came the days

of the 1541 and 2031 LP, and the microprocessor count went down

to one, a single 6502. Commodore found that with the correct

coding, one severely overworked processor could do the job of

two. A question remains for most: Why overwork and therefore

slow down the system with one processor, when two has been

proven in past? There is Commodore logic working here.

In order to bring the price of the units down to a reasonable level,

Commodore got smart. The larger drives were, and still are, very

expensive, if you can find them. The newer drives were made to be

affordable. Specifically, the 1541 was made to be affordable. No

longer does it host the expensive, but reliable, IEEE port. It's been

replaced by the Serial Port. Though this does slow down access to

the drive considerably, (63 seconds to LOAD a 100 block program

from a 1541 into a C64 vs. 16 seconds for the same from an 8250

into an 8032), it does help keep the price low.

Another method used to drop the price tag was to decrease the

quality of the stepper motor and stop mechanism. For this reason,

you will find that the 1541s and 2031s require service more often

due to the stop mechanism knocking the alignment out. Ever hear

that familiar GRIND GLICK coming from your 1541, and wondered

what was happening? It's the drive trying to compensate for a bad

diskette or a stepper motor that is slightly out of whack by

throwing a BUMP command on the JOB QUE and telling the FDC

to BUMP the head against the back stop. This is how DOS deals

with the possibility that the head carriage has jumped out of the

groove in the head positioning mechanism. The stepper motor

swings into action thus slam-dancing itself up against the stop

mechanism numerous times, creating the horrible noise. When

ever this noise occurs, there is a chance that your drive is not so

gently being thrown out of whack. Remember that the next time

you consider a disk protected package. Due to the inherent READ

errors to be encountered on the diskette surface, the BUMP

command will be used alot. That disk protected package you just

bought could cost you in the long run at the repair shop.

For those of you who are interested, the JOB QUE is located at

$1003-$100F for the 4040/8050/8250 drive units, and $0000-

$0005 for the 1541/2031LP. Below is a chart describing the

appropriate job number and its relative description. Please exer

cise caution before using the JOB QUE though. RAM pointers

necessary for the correct execution of your wishes should be set up

CORRECTLY before placing any job number on the JOB QUE.

When using the JOB QUE, you are literally bypassing the drive's

built in protective mechanisms. Therefore, one wrong move and

you may find yourself trying to pry the head away from the inside

of the drive casing.

FDC Error Number Returned On The Job Que

Code Operation

$80

$90

$A0

$B0

$C0

FDC READ

FDC WRITE

FDC VERIFY

FDC SEEK

FDC BUMP

$D0 FDCJUMP

$E0 FDC EXECUTE

FDC Job Codes

Description

- read data from diskette

- write data to diskette

- verify written data

- look for a specific sector

- bump the head for correction

- jump to a machine language routine

- execute a machine language routine

Code

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

Error

OK

READ ERROR

READ ERROR

READ ERROR

READ ERROR

READ ERROR

WRITE ERROR

WRITE PROTECT ON

READ ERROR

READ ERROR

READ ERROR

Description

- can't find block header

- no sync character

- data block not present

- checksum error in data block

- byte decoding error

- write/verify error

- write with write protect on

- checksum error in header block

- data extends into next block

- disk ID mismatch

With that chart complete, it's time to move on, deeper into the

commands that will allow you to communicate with your DOS.

The information just covered is rather high level. Therefore, the

following commands should be mastered before considering work

ing directly with the FDC.

Conventions

A few short forms will be used when describing access to the DOS.

These short forms are really descriptions for numeric values

necessary for the correct execution of the command by DOS :

AH

AL

CH

DR

LF

NC

P

SA

S

T

UA

= memory address high byte 0-255

= memory address low byte 0-255

= channel - used in lieu of LF to prevent confusion later

= drive number

= logical file number

= number of characters

= desired position within buffer

= file secondary address number

= sector

= track

= drive unit address

Oorl

1-127

1-255

0-255

2-14, 15 = Cmd Chan

0-max

1-max

Usually 8

It will also be assumed, as stated earlier, that the command

channel is OPEN before attempting to send commands over the

bus.

B-A: Block-Allocate

On your diskette lies an important block of data. This is the Block

Availability Map, or simply stated, the BAM. The BAM is responsi

ble for managing the whereabouts of all your files, and making

sure that you do not write over the same block of information

twice. The BAM is a bit map of each and every track and sector on

your diskette and, with the proper amount of knowledge, allows

for a complete breakdown of how the diskette has been allocated.

Time for an explanation.

On a portion of track 18, sector 0 for the 1541, 2031, and 4040

drives, lies the BAM. Due to the limited capacity of these drives,

the BAM is small. The 8050 has a BAM that consumes 2 complete

blocks, track 38 sectors 0 and 3, where the 8250 has a BAM of 4

block length, track 38 sectors 0, 3, 6, and 9. For each, the concept

of BAM is similar.

The 1541/2031 /4040 drives use 4 bytes per track in the BAM. The

larger drives have five bytes. The first byte of each carries the

The Transactor 47 Volume 5, Issue 04

current count of blocks free on that track. The next 3 or 4 bytes

carry a bit map of the track. Take for example the following 4 bytes

of data:

15FFFF1F

This has been taken from the BAM of a freshly NEWed 1541

diskette. Please remember that these figures are in hexadecimal.

The 15 represents the number of blocks free on that track, which is

on track 1 in this case. Hexadecimal 15 = 21 decimal, therefore

there are 21 blocks free on this track. The next 3 bytes (4 bytes if

taken from an 8050 or 8250 diskette) represent a bit map of the

allocation state of the sectors on this track. To figure this out, you

have to think of everything in binary.

FF = 11111111 : FF = 11111111 : 1F = 00011111

Now, since Commodore has always adapted a low byte/high byte

strategy on everything they do, the BAM is laid out the same way.

Therefore,

FF FF 1 F

should really be read as

1FFFFF

or in binary,

000111111111111111111111

A bit ON (1) represents a free sector, a bit OFF (0) represents

one that has been allocated. In this case, there are a maximum

of 21 sectors available on track 1 of a 1541/2031/4040 diskette

therefore, the last 3 bits have to show as allocated. They don't

exist and can never be written to.

The reason the larger drives have a four byte bit map instead of

three is because they are double density, double tracking

drives, and allow for a greater number of tracks per diskette,

and a greater number of sectors per track. The maximum

number of sectors per track for these drives is 29, therefore it

cannot be represented with only three bytes (24 bits). Four

bytes equal 32 bits, which is just perfect for the larger drives. To

better understand the physical sector per track distribution on

the various diskette surfaces, check the chart below:

Track #

01-17

18-24

25-30

31-35

No.

1541

21

19

18

17

of Sectors

2031

21

19

18

17

4040

21

19

18

17

Track #

1- 39

40- 53

54- 64

65- 77

78-116

117-130

131-141

142-154

No. of Sectors

8050

29

27

25

23

na

na

na

na

8250

29

27

25

23

29

27

25

23

With that explained, we can get back on track and explain the

Block-Allocate command.

As the name implies, you can tell the DOS to allocate a specific

block whenever you choose. The format is:

. . .then:

print#LF, "b-a:"DR;T;S

close LF

This will automatically update the BAM, but will also CLOSE

every other file currently OPEN due to the closing of the

command channel.

With some drives, ie. 1541, 2031LP, and a few of the older

ones, Block-Allocate does not work correctly. It really is best if

you read the BAM into RAM (disk or computer), update it

manually, then Block-Write it back again. This will save many

problems, and also allow you to do so without closing down the

15th channel. More on Block-Write later.

B-F: Block-Free

For every action there is an equal and opposite re-action just

waiting for its chance. Block-Free is like Block-Allocate in re

verse. It has the same format, but will de-allocate any block you

choose, provided the block was allocated before. As before, this

command has been found to be terminally ill in a few of the drives,

as mentioned above, and cannot be trusted. Block-Read the BAM

into disk RAM, modify it there or move it into the computers

memory for modification, then Block-Write it back in again.

Before doing so, though, please read all about Block-Read and

Block-Write. They too are terminally ill, therefore their equivalent

counterparts are best used. More on that now.

B-R or Ul: Block-Read

You already know that Block-Read and Block-Write are very

unreliable. Instead, the Ul and U2 commands should always be

substituted.

U1, along with the rest of the User family, are terrific to work with,

and will not give you problems. Ul will read a specific block of

your choosing from the disk surface into disk RAM. If set up

correctly first, you can even make sure that it is read into the RAM

of your choosing.

Once the data has been moved into RAM, you can set the Buffer-

Pointer to point at the spot in the buffer you want to start reading

from, then begin the retrieve process. The default on the Buffer-

Pointer is to start you at the beginning of the block.

A technique many employ when reading, updating, and writing

data directly to disk, is to update disk RAM, instead of bringing it

into computer RAM for update. It is faster, and less prone to error.

It is also easier to update a single character of data this way than

any other.

To help you out in this department, 1 have prepared a chart of all

the RAM buffers within the drive units, so you know which buffer

OPENed corresponds to which address in RAM (top of next page).

From the chart, you can now deduce that the command:

open CH.UA.SA, "#0"

. . .would allow you to read data directly into either $()300-$03FF

with the single drives, or $1100-S1 IFF with the dual units.

Assigning an actual number after the '#' in the statement allows

you to pick and choose exactly which buffer you want. A nice

option. Please note the use of CH (channel) instead of LF (logical

file) in this example. They are the same, but will help avoid

confusion later.

The Transactor 48 Volume 5, Issue 04

1541/2031LP RAM Buffer Layout

$0300-$03FF: Buffer *0

$0400-$04FF: Buffer *1

$0500-$05FF : Buffer *2

$0600-$06FF: Buffer *3

4040/8050/8250 RAM Buffer Layout

$1100-

$1200-

$1300-

$2000-

$2100-

$2200-

$2300-

$3000-

$3100-

$3200-

$3300-

$4000-

$11FF:

$12FF:

$13FF:

$20FF:

$2 IFF:

$22FF:

■S23FF:

$30FF:

$31 FF

$32FF:

$33FF:

$40FF:

Buffer #0

Buffer *1

Buffer *2

Buffer *3

Buffer *4

Buffer *5

Buffer #6

Buffer *7

Buffer *8

Buffer *9

Buffer *10

Buffer #11

The format of Block Read, User style, is:

print#15, "u1:";CH;DR;T;S

When this command is executed, the track and sector from the

drive number specified will be read into buffer *0. From here, you

are free to do as you please.

B-W or U2 : Block-Write

B-W is even more untrustworthy than B-R in the 1541, 2031LP

and 4040 DOS, and the U2 command is the easiest way to

circumvent problems. Do everyone a favour and forget that Block-

Write (b-w) exists, and stick with the proven contender. Your

programs will be happier.

As with Block-Read, Block-Write is the flip side of the coin. Set up

in exactly the same format as it's brother Ul, U2 will write to

diskette the contents of the buffer that you specify. You can print to

that buffer, then write it with U2, or you can manually whiz about

within the RAM with the Memory commands leading the way.

Your choice. The format is:

print#15, "u2:";CH;DR;T;S

Buffer-Pointer:

This one's not diseased. Buffer-Pointer allows you to point exactly

where you want to start reading from, or writing to, within a

specific buffer of RAM. The default of this one is set by DOS, and is

at the start of the buffer. You can choose wherever you want

though, from location 1, the start, to location 255, the end. A

terrific animal to have if you know what will be located in the

buffer prior to reading it in. The format is:

print#15,"b-p:"CH;P

B-E: Biock-Execute

A command that has found limited use to date, but should be

covered for this issue, at least on a cursory level.

Block-Execute will allow you to pick a specific track and sector

from disk, down load it from diskette into disk RAM, then execute

it where it sits. The reason for its limited appeal is because until

lately, little has ever been publicly released about the DOS so not

too many inner-disk programs have been written. Commodore, for

whatever obtuse reason they have, has never really told anyone

about the inner workings of their drives. Sure, everyone can find

info on the diskette layouts, and can also find a list of commands,

but as far as ROM routines go, forget it. For anyone who is

interested, we will be releasing our Reference Book soon, and held

within its many pages will be RAM/ROM maps for most of the

drive units. The 1541 Zero Page RAM Map at the end of this article

is just a sample of what you'll find.

The format for Block-Execute is:

print#LF, "b-e: ";CH;DR;T;S

The Memory Commands

The true spirit of disk programming comes into play when dealing

with the memory commands. With these commands, you have at

your access total control of your drive. At your slightest whim, you

can decide the fate of your drive, be it to destroy itself trying to

follow your wishes senselessly, or to execute a well researched

string of commands that will bring about fabulous results. Careful

use of the Memory commands can unleash the true power of the

DOS.

M-R: Memory-Read

Similar to the PEEK command in BASIC, Memory-Read will allow

you to read data from anywhere within the drive. You specify the

address to read from, and the drive gets the info for you. Terrific.

The format is:

print#15," m-r" chr$(AL)chr$(AH)chr$(NC);

then... get#15,a$

The NC, number of characters, is an optional parameter, and does

not have to be used. If it is, you can specify exactly how many

characters you would like to read instead of a separate M-R for

each single byte.

Memory-Read can be used as a substitute for Block-Read if you

know the address of the buffer that contains the desired data. You

can specify exactly where you would like to read data from and

start reading. It's like a manually executed Buffer-Pointer. Then a

GET* through channel 15 will retrieve the data.

One final use for Memory-Read is to discover what makes your

disk unit tick. To write a routine to read through disk memory and

return the results to the screen takes little effort, as demonstrated

below :

10 hx$ = " 0123456789abcdef" :z$ = chr$(0):flag = 0

15open 15,8,15

20 input "start, end";s,e

25 for Ip = stoestep8

30 ah°/o = lp/256 : al = lp-ah%*256

35 flag = 1 : va = ah% : gosub55 : print ht$;: va = al

: gosub55 : printhtS" ";: flag = 0

The Transactor 49 Volume 5, Issue 04

40 print#15," m-r" chr$(al)chr$(ah°/o)chr$(8)

45 for in - 0 to 7

50 get#15,a$: va = asc(a$ + z$): v$ = v$ + chr$(va or 64)

55 h% = va/16 :1 = va-h%* 16

60 ht$ = mid$(hx$,h°/o +1,1) + mid$(hx$,l + 1,1)

: if flag then return

65 print ht$" ";

70 next in

75 print v$: v$ = ""

80 next I p

85 goto 20

A clean and neat method to scoot about within your drive and

discover all that lies in wait for you. Of course, the routine above

can be made more useful. For a larger version of the same, check

the article 'Drive Peeker' in this issue. It's a little more versatile for

the user.

M-W: Memory-Write

The hero of the memory commands, and one in which the serious

disk programmer will use far more than anything else. This single

command allows you to place your own thoughts anywhere you

please in the drive, RAM permitting, for the purpose of future

execution, or for the simple purpose of changing the drives

characteristics. In order to manually bypass the normal operating

system of the drive, and tell the FDC to spring to life, Memory-

Write is the command of choice.

As stated above, many characteristics of your drive can be altered

by a few well placed writes - the unit address can be altered, the

JOB QUE can be loaded, and with the proper amount of research,

most of the drive formatting characteristics can be modified for an

originally designed diskette. The designer diskette, a novel idea for

the illustrious programmer. If this tickles your fancy, wait for our

Reference Book. It will be worth the wait.

The format of Memory-Write is:

print#15," m-w" chr$(AL)chr$(AH)chr$(NC);chr$(data)

M-E: Memory-Execute

As a final compliment to Memory-Write, Memory-Execute will

execute whatever code you want within the drive. Point it your

own code and watch it turn your thoughts into realities. Point at

Commodores code, and see if they will work for you. Whatever

you care to do, it's available and willing to go.

Some people argue that there is no 'safe' room inside of a drive.

This is true, if you're not in control of your drive. When placing

code in disk RAM, pick a buffer that would be the last one used, ie.

the highest buffer number. For everyone out there with the single

drives, this may be a tall order. There are only a few buffers, and it

will be hard to make sure your code doesn't get stepped on.

Remember to allow as few files open at the same time as possible,

and your code may be safe. Otherwise, there are a few spots held

deep within RAM that could be used as a temporary hiding place,

providing your code is small.

These locations are all available for use, as long as you're not using

RELative files with your particular application. There are quite a

few single byte areas, and again, quite a few blocks of RAM tucked

away, but unless the exact situation is known that it will be used

with, it might be best to leave them alone.

Single

00B5-00BA

00BB-00C0

00C1-00C6

00C7-00CC

00CD-00D2

0104-0IFF

Dual Label

0059-0060 RECL

0061-0068 RECH

0069-0070 NR

0071-0078 RS

0079-0080 SS

0100-0IFF

Description

Low Rec# To Find Rel File

High Rec# To Find Rel File

Next Relative Record Table

Relative Record Size Table

Side Sector Table

The Stack (use cautiously)

To get back on track, the format of Memory-Execute is:

print#15," m-e" chr$(AL)chr$(AH)

The User Commands

The User series of commands fall into three categories. The first,

Ul and U2, come under the heading of diskette access. The second

category, drive housekeeping, encompasses the U0, U9, and U:

commands. They take care of internal drive stuff that keep the

drive content. The third and final category is drive access com

mands, U2-U8, which go hand in hand with the Memory com

mands discussed earlier. Take a look below for a table of all the

User commands.

Function

Reset of USR Jump Vector In Disk RAM

Block-Read Replacement

Block-Write Replacement

Jump To $1300(dual) or $0500(single)

Jump To $1303(dual) or $0503(single)

Jump To $1306(dual) or $05O6(single)

Jump To $1309(dual) or $0509(single)

Jump To $130C(dual) or $050C(single)

Jump To $130F(dual) or $050F(single)

Jump To NMI: $10F0(dual) or $FF01(single)

Power Up Vector (system reset)

There are bugs in most of these commands in the 1541/2031LP

drives. The alternate syntax of each User command can give

unexpected results - avoid them like the plague. Use U0-U: for

your work, and you should run into few difficulties. And now, a

quick explanation for each command.

U0 is a command that has been poorly documented by Commo

dore in past. They have prepared charts on the User commands,

always forgetting to included this one on it. One single sentence

was donated once in an old disk manual. If

print#LF," uO"

.. .is executed, the USER JUMP vector in disk zero page will be

reset to normal. Not a terribly useful feature, but one that will come

in handy if you change the vector for something and need a quick

way to return it back to normal.

Ul and U2, as mentioned previously, are replacements for Block-

Read and Block-Write.

U3 through U8 are commands implemented to allow for a struc

tured method of disk access adaptable for all machines. To use

Standard

Syntax

UO

Ul

U2

U3

U4

U5

U6

U7

U8

U9

U:

Alternate

Syntax

UA

UB

uc

UD

UE

UF

UG

UH

Ul

UJ

The Transactor 50 Volume 5, Issue 04

these commands, you have to set up the RAM jump vectors first.

Each vector is three bytes apart, therefore, you are expected to

write in a JMP ($4C), then the lo/hi address of the code you intend

to execute. Thereafter, you will be able to access your routine by a

single execution of the User command. A fairly handy system that

has seen little use in the past. The format for execution is:

print#LF," uX"

. . .where X is the number of your choosing.

U9 is odd, but possibly useful. It jumps to the NM1 vector, which in

turn is like a system reset, without the flashing LEDs (power on

diagnostics). The format is the same as before, X = 9.

U: (U- colon) is a "power-on" system reset - handy for reseting the

drive without physically powering down. If you want to make

special internal code disappear, U: is the answer. If you have

messed up badly inside of the unit, U: again. Sometimes, as 1 have

found a few times in the past, you can mess up RAM so bad inside

of your drive that even a system reset won't work. Then the switch

at the back is the only alternative. Hopefully, U: will be sufficient

for your needs.

That's All

And so ends this rather long but possibly informative article on the

inner world of DOS. With a little belligerence and practice you can

perform tricks inside DOS that will never be implemented as a

BASIC command. It is for this reason that 1 suggest you don't

include these tricks in "transportable" software. Future Commo

dore Disk Operating Systems may not recognize old tricks, how

ever tried and true.

There is still quite a bit to be learned about DOS, for it is a very

complex system. We at The Transactor are learning new facts

almost daily, even though the 4040 has been with us now for well

over 3 years. As we learn more, you will too. So, until we meet

again.. .

1541 RAM Memory Map with Zero Page Contents at Power Up
references to Drive 1 are mostly unused locations

Hex LocMton

00-05 00

01

02

03

04

05

06-11 06

07

08

OS

0A

0B

OC

OD

OF.

OF

10

II

12-15 12

13

14

15

I6-1A 16

17

18

19

IA

IB IB

1C-1D 1C

1E-IF IE

IF

20 20

21 21

22-23 22

23

24-JD 24

25

2fi

27

28
29

2A

2B

2C

2D

2E-2F 2E

30-31 30

31

32-33 32

33

3

i

;t

i

■

■',

i

'

i

1

■i

i

■i

34

35

36

37

38

3!)

3A

3D

3C

3D

3F.

3F

40

41

42

4t

45

46 46

47 47

48 48

49 49

4A 4A

4B 4B

4C 4C

4D 4D

4E <E

4F 4F

SO 50

51 51

53

54

Con. en,

00

00

00

00

on

00

00

00

oo

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

00

00

00

IX)

on

00

00

00

00

00

I*

00

00

00

00

00

00

00

oo

00

00

on

00

00

FF

00

00

00

00

on

00

00

00

07

00

39

00

00

00

00

00

00

00

FF

00

00

CBM L-.N-

was

HDRS

DSKID

HEADER

ACTJOB

wpsw

LWPT

DRVST

DRVTRK

STAB

SAVPNT

BIJrTNT

HDRPNT

GCRPNT

GCRERR

BYTCNT

BITCNT

RID

HBID

CHKSUM

HINIB

BYTE

DRIVE

CDRIVE

JOBN

TRACC

NXTJOB

NXTRK

SF.rTR

WORK

JOB

CTRACK

DBID

ACLTTM

SAVSP

STEPS

TMP

CSECT

NEXT5

NXTBF

NXTPNT

GCRFl.G

FTNUM

Function

JohQue Bullet *0

Buffer •]

Buffer »2

Buller '3

Buffer '4

BuHer *5

Job Headers: Chiller

Buirrr

Buffer

Buffer

Buffer

Buffer

Buller

Buffer

Buffer

Buffer

Suffer

Buller

MdxlerCopyOtDis

•0-Low

•0

• |

•2

•2

*3

"3

*A

M

•5

•5

High

Uiw

High

High

Low

High

Low

High

H:sh

ID: Drive 0

Drive 0

Not Uwd - Drive 1

Not Used - Drive 1

Image Of last Header: ID Bvle 1

ID Byle 2

Track

Sector

Checksum

Controllers Aclive Job

Write Protect Change Flag. Drive 0

Last State Of WP Switch; Drive 0

Drivel

Drives Current Status; Drive 0

Speed Timing Flag

Drive Track Number: Drive 0

Drivel

Storage TaWe For GCR Conversion

Temporary Save Poinler Location

Aclive Bufler Poinler

Header Pointer; Track

Seel or

GCR Pointer

Indicates GCR Decode Error

Byte Counter For GCR/Binary Conv

Data Block ID

Header Block ID

Checksum

■ not used directly

• not usi-d direiilv

Drive Number

Currenl Aclive Drive Number

Currenl Job Number

Track - Internal Storage Location

Next Job

Next Track

Sector Per Trick Fur Formatting

Working Storage Location

Job Type

■ not used directly

Data Block ID

Accel Time Delay

Save Stack Pointer

Sleps To Desired Track

Temporary Storage Locution

Currenl Sector

Next Seclor

Pointer To Nexl GCR Snutce Buller

Ptr To Next Byle Lmailon In Buffer

GCR/Binary Rag In Aclive Buffet

Currem Format Track

55

56-5D 56

57

58

59

5A

SB

5C

5D

5E 5E

SF 5F

60 fiO

61 6)

62-63 fil

63

64 CI

65-66 fiS

66

67 67

68 68

69 69

6A 6A

6B--6C 6B

6C

fil^-fiE 6D

6E

6F-74 6F

70

71

72

73

74

75-76 75

76

77 77

78 78

79 79

7A 7A

7B 7B

7C 7C

7D 7D

7E 7E

7F 7F

B0 B0

81 81

82 82

83 83

84 84

85 85

86 86

87 87

88 S3

89 «9

8A 8A

8B-8E SB

BC

8D

8E

8F-93 HF

90

91

92

93

94-95 94

95

96 96

97 97

98 98

99-A6 99

9A

ffl

9C

9D

9E

9F

AO

Al

A2

A3

A4

A5

A6

A7-AD A7

A«

AA

AB

00

00

00

00

00

00

00

00

00

04

04

on

00

05

FA

C8

22

EB

00

00

0A

OS

EA

FF

00

00

6F

00

00

FF

00

00

00

01

18

to

00

00

00

00

oo

00

00

00

00

04

OF

6F

3F

00

00

00

00

00

00

00

00

00

00

00

00

00

00

04

02

00

00

00

00

03

00

04

00

05

00

06

00

07

00

02

D6

02

FF

FF

FF

05

GTAB

AS

AF

ACLSTP

RSTEPS

NXTST

MINSTP

VNMi

NMIFLG

AUTOFG

SECINC

REVCNT

USRJMP

BMPNT

TEMP: TO

Tl

T2

T3

T4

IP

LSNADR

TLKADR

L5NACT

TLKACT

ADRSED

ATNPND

ATNMOD

PRCTRK

DRVNUM

TRACK

SECTOR

IJNDX

SA

OKGSA

DATA

no

Rl

R2

R3

R4

RESULT

ACCUM

DIRBUF

ICMD

MVPA

CONT

BUFTAB

BUFO

GCR Table: GCrVBinary Work Area

Number Oi Steps To Accel Wiih Head

Acceleration Factor

Stepj To Go Before Comr>kt-

Number Of Run Steps

Pointer To Stepping Rln - 1FA05

Minimum Steps Required To Accel

Indirect For NM1-JEB22

NMIlnProgresiFlag

Auto Drive Initialization Rag

Seclor Increment Foi Sequential

Error Recovery Count

User Jump Table Pointer - IFFEA

Bit Map Poinler

Temporary Work Space

Indirect Pointer Variable

Listen Address. Device * * 120

Talker Address: Device ■ + 140

Active Listener Hag

Active Talker Flag

Addressed Flag

Attention Pending Flag

In ATN Mode

Lui Program Accessed

Currenl Drive Number

Currenl Track

Current Sector

Logical Index

Current Secondary Andrew

Original Secondary Addrew

Temporary Data Byte

Temp Work Area

Temp Work Area

Temp Work Area

Temp Work Area

Temp Work Area

Result Of Multiply/ Divide Rins

Remainder OI Multiply/Divide Rlns

Poinler To Directory Buffer

IEEE Command In: Not Used

MY PA Flag. Not Used

Serial Bit Counter

Buffer Byte Pirs. Buffer '0 law

r Buffer '0 High

Buffer'! Low

: Buffer *0 High

: Buffer '2 Low

! Buffer '0 High

; Buffer #3 Low

i Buffer *0 High

: Buffer '4 law

: Buffer '0 High

:CMD Buffer Low

High

: Error Bufl Low

High

Inactive Flap For Buffers

AC-

AD

AE-B4 AE

AF

B0

Bl

B2

B3

04

B5 B5

B5-BA B5

w

B7

BS
R9

BA

SB OB

BB-C0 BB

BC

RD

BE

BF

Cli

C1-C6 CI

C2

ca

C4

C5

C6

C7-CC a

C8

C9

CA

CB

CC

CD-D2 CD

CE

CF

DO

Dl

D2

D3 D3

D4 W

DS DS

D6 Dfi

D7 D7

D8-DC DB

DA

UB

DC

DD-EI DD

DE

DF

E0

El

E2-F.6 E2

E3

E4

F.5

Bfl
E7-F.B E7

Eft

E9

FA

F.P

F.C-F1 EC

ED

EE

EF

Ft)

Fl

F2-F7 F2

F3

F4

F5

FG

F7

FB FR

F9 K9

FA-FE FA

FB

FC

Fn

FE

FF-100 FF

100

06

FF

FF

FF

FF

FF

FF

FF

FF

00

<>o

00

no

00

00

00

00

00

00

oo

on

m)
00

00

DO

00

00

00

00

00

00

00

00

00

00

FF

FF

FF

FF

FF

FF

00

no

(H)

00

00

00

00

00

00

on

00

00

no

00

00

00

00

00

on

on

DO

on

00

00

on

00

00

on

00

0(1

no

00

00

no

no

ni

RA

80

00

00

01

02

03

06

00

B8

BUF1

NBKL

RBCL

NBKH

RECH

NR

RS

ss

F1PTR

RF.CPTR

S5NLIM

SSIND

RELPTR

ENTSEC

F.NTlNn

FILDRV

PATTYP

FILTYP

CHNRDY

ROIFU)

JOBNUM

1.RUTBI

NODRV

Active Flags For Buffers

NttmbrrOf Blocks Low

Low Record ' To Find Relative Filf

Number OI Blocks High

High Record ' To Find Relative Hie

Next Record Table

Relative Record Sire Table

Side Sectof Table

FileSleaml Pointer

l*t Byte Wanted From Relative Record

Side Seclor Numbet Of Relative File

Index Into Side Sector

PlrTo 1st Byte Wanird In Rel File

Sector Of Directory Entries

Index Of Directory Entries

Default Flag, Drive Number

Patiern. Replace. Oovd-Flogi. Type

Channel File Type

Channel Status

Temporary EO1

Current Job Number

Least Recently Used Buffer Table

No Drive Flag: Drive 0

Drive 1 Nat IM

The Transactor 51 Volume 5, Issue 04

Inside the Commodore 64
Chris Zamara, Technical Editor

What makes it tick?

Most of what you learn about your computer involves software

techniques of some kind. This article is for hardware fans, experi

menters, or the merely curious; since this is the "Hardware and

Peripherals" issue, it's only fair that we give you some insight into

life inside the plastic case.

The diagram on your right is a layout of the C64's circuit board;

this is what you'd see if you opened up the top of the case. There

are slight differences among machines, since Commodore occa

sionally changes the board design to make production more

efficient, but overall they should all be pretty similar to this

diagram.

Each major section of the board (and a few not-so-major sections)

are labelled in the diagram, and described below. Besides descrip

tions of the parts, there are also usage tips and a bit of little-known

trivia thrown in here and there. This is by no means an exhaustive

description of the 64's circuitry - that could take up the entire

magazine. But when you read the specs for some exotic new sports

car, do you really care what the spark plug gap setting is?

The sections are divided into four main categories: CPU and

Memory, I/O, Video, and Power. Let the tour begin.

CPU, Memory, and Control

1) The 6510 CPU

The 6510 CPU (Central Processing Unit, a.k.a Microprocessor) has

to get the award for the single most important chip on the board,

since it is responsible for executing all program instructions. The

other chips are just slaves to the master CPU, which controls them

at the will of the software, either from the ROM (operating system)

or RAM (user). The basic capabilities of the CPU are memory load

and store commands, arithmetic and bit-manipulation functions,

and two kinds of interrupts. Additionally, the chip has an I/O port

built in (accessed with locations 0 and 1) which controls memory

bank selection and the cassette unit.

2) The PAL Chip

The PAL or PLA (Programmable Logic Array) is one of the great

mysteries of the 64, since it is a custom device unique to this

computer - much like a ROM. The PAL chip replaces many

discrete gates, multiplexers, etc. and is used to supply the logic

required to manage the 64's complex memory architecture. Con

sider the fact that either RAM, ROM, or I/O may exist in the same

address space depending on the whims of the VIC—II video chip,

the memory refreshing circuitry, the cartridge on the expansion

port, and the programmer himself. All the required logic to handle

every possible combination of events lives in the PAL chip, which

works like a ROM in that it can be custom-programmed for a given

application. PALs, though, are faster than ROMs, and can be used

for hardware applications such as these (they're smaller, too).

Incidentally, PALs are also more difficult to duplicate or copy than

ROMs, and the PAL in the 64 is one factor which makes it difficult

to create 64 "clones" - a problem which plagued the Apple II.

3) 8K BASIC ROM

This is the ROM which occupies adresses $A000 to $BFFF (hex). It

contains most of the BASIC interpreter; specifically, those parts

which are common to all machines. No machine-specific code is

in this ROM, so that it can (theoretically) be used unchanged in

future Commodore machines, or can survive hardware additions,

such as IEEE or 80-column cards.

4) 8K Kernal ROM

The Kernal ROM resides in locations $E000 to $FFFF, and

contains - you guessed it - all the machine-specific code. Any

routines which deal directly with the video, sound, or I/O chips

are found in this ROM. LOAD, SAVE, and VERIFY functions from

BASIC are also here. Also, probably due to lack of space in the

BASIC ROM, the SYS, COS, SIN, and TAN routines are here. Much

of the space is taken up by screen, keyboard, RS-232, and serial

port handling routines.

5) 4K Character Generator ROM

This ROM is used by the VIC—II video chip to supply the matrix

data required to form all 512 characters: upper and lowercase

letters, graphics symbols, and all of the above in reverse-field. The

information describing the shape of each displayable character

occupies 8 bytes in the character generator ROM. The address

space occupied by the ROM is the same as that of the I/O: SDOOO to

$DFFF. The chip can be read by a user program, by clearing bit 2

in location 1 to "switch out" the I/O. When doing this, care must

be taken to stop accessing the usual I/O locations; the normal IRQ

handler must be disabled.

6) 64K Dynamic RAM Chips

This is the 64K of RAM from which the 64 gets it's name. Each chip

stores 64K bits, so eight chips are required to provide complete

bytes of data. An interesting usage characteristic of these RAM

chips is the way that 64K of memory is addressed. Rather than

providing 16 pins on each chip and connecting all 16 address lines

directly (all 16 lines are required to access 64K), there are just 8

address lines, and two select lines. The low and high 8 address bits

are placed on the chip's address lines alternately, and the select

lines are used to tell the chip which are which.

The RAM is dynamic, meaning that it only stores it's information

temporarily and must be continually "refreshed" so that it doesn't

forget. The refreshing is done automatically by the VIC—II video

chip, about every 2 milliseconds.

The Transactor 52 Volume 5, Issue 04

Pull-up Resistors (CIA) U2J

Serial Port Buffer (i?)

Reset &NMI Generator he)

64KRAM ((T

RAM Multiplexer

Programmable /T*

Logic Array *

Analog Input

Multiplexer

6581 SID Chip (9

6567 VIC-II Video Chip V2CJ.

Shielded Video Section (21

7812 Voltage Regulator (28}

Colour Intensity

Adjustment

Clock Frequency

Adjustment

Voltage Step-up

Circuitry

7805 Voltage Regulator (29J

LED Connector (30)

Commodore 64 Circuit Board Layout

15) Keyboard Connector

6526 CIA 1

Serial Port

Pull-up Resistors

6526 CIA 2

3) BASIC ROM

Kernal ROM

Character

Generator ROM

7) Colour Memory

6510 CPU

(24) RF Modulator

(17) Cassette Motor Control

Expansion Port

Connector

Fuse

Joystick/Paddle

Connectors

(25) Power Connector

The Transactor 53 Volume 5, Issue 04

7) IK Colour Memory Nybbles

Colour memory is stored in this IK by 4 bit chip, which resides

from $D800 to $DBFF. That gives 1024 bytes whose lowest four

bits (nybble) can be modified. Since the VIC chip supports 16

colours, only four bits are required to represent all possible

colours. Each of the 1000 characters on the screen (25 rows by 40

columns) is represented by a nybble in the colour memory chip.

The 24 nybbles left over are wasted - don't forget about them if

you want to hide a password or something somewhere in memory

(sorry if I blew anyone's security scheme).

8) Multiplexers for RAM

The multiplexers are required because of the way the 64K RAM

chips are addressed: see item 6 above. These chips translate 16

data lines into 8 data lines and two select lines.

I/O

9) The 6581 SID Sound Interface Device

One of the big, important chips in the system, the SID is the

highly-acclaimed "synthesizer chip". I won't get into all of this

chip's details; that's the topic of quite a few articles. A brief

summary of its sound generation capabilities: three voices, pro

grammable waveform, frequency, attack/decay/sustain/release,

pulse-width, high-pass band-pass and low-pass filters, and mas

ter volume (quite a mouthful!).

But the SID does more than just sound generation. It also contains

two analog to digital converters, which are used for the game

paddles. There is a register which indicates the current output of

voice 3, and can be used to generate random numbers. And there

is an external audio input, which is mixed with the output of the

chip and can be controlled with the built in filters. The SID's

registers are accessed from locations $D400 to $D41C.

10) 6526 CIA1 Complex Interface Adapter

The 6526 CIA (no relation to the agency of the same name) is an 1/

O chip containing lots of goodies. It's got 16 I/O lines, two linkable

timers, a 24-hour time of day clock with programmable alarm, and

an 8 bit shift register for serial I/O. Now, unfortunately, not all of

these goodies are effectively used by the Kernal. For example, the

"IT reserved variable is kept in time (not very well) by software,

and the time of day clock in the 6526 isn't even used. The serial

and RS-232 routines don't use the shift register, which would

allow faster data transfer rates. But much of this CIA is used by the

system, in the following ways.

CIA1 is accessed from locations $DC00 to $DC0F in memory. The

I/O lines are used for the dual functions of keyboard and joystick

reading. Port A, at $DC00, is used as the keyboard matrix row

select, and reads joystick 2 or the paddle fire buttons. Bits 6 and 7

of this port are also used to select which analog inputs (paddle set)

are read from the SID chip. Port B at $DC01 reads the keyboard

matrix column and joystick 1.

The two timers in this chip are used together as a single 16-bit

timer. When the timer counts down to its programmed value (set

to 1/60 of a second by the operating system), it generates an IRQ

(Interrupt ReQuest). The countdown value for the timers can be

changed simply by storing new values in the timer locations at

$DC04 and $DC05 (low, high). POKEing about here will change

the frequency at which the IRQs occur, and can produce some

interesting results. Also, the timer can be turned off by clearing bit

0 at $DC0E; an easy way to disable the interrupts - just reset the bit

to re-enable.

A readily available source of information on the 6526 itself (not

necessarily on the way it is implemented in the 64) is the Commo

dore 64 Programmer's reference manual. You can also find specs

in the Appendices on the 6510 (CPU), 6567 (VIC-1I), and 6581

(SID).

11)6526CIA2

The second 6526 is used primarily for RS-232 and serial commun

ications, and to bank-select the VIC chip. It's registers lie at $DD00

in the C64 memory map.

Bits 2 through 7 of port A are used for various serial and RS-232 1/

O lines (reference: Transactor Vol. 4 Issue 5, pg. 47). The first two

bits on this port select which 16K bank the VIC-U video chip

addresses. These lines are normally both high, selecting the lowest

bank to allow screen memory to reside at $0400. The I/O lines of

port B are used as various RS-232 control lines.

The timers in this chip are used by the RS-232 routines and

generate an NMI (Non Maskable Interrupt) when they count down.

If you're not using RS-232, you can use the timers to generate

NMIs for your own routines. This is handy when you need two

levels of interrupts, since an NMI overrides an IRQ.

12) R28-R30 and RP3, Pull-up Resistors

R28, R29, and R30 are used to "pull up" some lines on the 6526

which have no internal pull-up resistors (all but the parallel port

lines). The resistor pack RP3 is used for the serial port. Pull-up

resistors on communications lines reduce noise, but also draw

current. That leads to the next component, the serial port buffer.

13) Serial Port Buffer

This buffer chip gives the serial lines more drive current.

14) Analog Input Multiplexer

When game paddles are used, they plug into the joystick ports, a

set of two into each port. In the SID chip, there are two registers (at

54297 and 54298) from which the values of analog inputs 'x' and

y can be read. Since there are four paddles and only two analog

inputs, one or the other must be selected, or "multiplexed" into

one. That is the function of this chip. It has two analog inputs and

four outputs. One of the two input sets are routed to the outputs,

depending on the state of two digital input lines. These select lines

are connected to bits 6 and 7 of port A of CIA1 (see 10 above).

Before a given paddle set can be read, these bits must be set

accordingly:

CIA1, Port A Paddle set read from

Bit 6 Bit 7 SID Analog inputs

None

Joystick port 2

Joystick port 1

Both

The Transactor 54 Volume 5, Issue 04

The reference manual advises giving the lines about half a milli

second to settle after selecting a paddle set before reading the

analog value. Instead of four paddles, two analog joysticks may be

connected and read in the same way.

15) Keyboard Connector

This connector allows the keyboard to be easily unplugged from

the PC board and connects the keyboard matrix to the I/O lines in

CIA1. It also contains the line from the "RESTORE" key, which is

not part of the keyboard matrix.

16) Reset and NMI (Restore Key) Generator

This IC is responsible for generating the reset pulse to the CPU

when the computer's power is first turned on.

It's other function is to generate an NMI (Non Maskable Interrupt)

when the RESTORE key on the keyboard is struck. 1 say struck,

and not pressed, because there's an ingenious bit of hardware here

to prevent accidental system restores. The effect may vary slightly

from machine to machine, but try this: hold down the STOP key as

you would before RESTOREing, and then press down on the

RESTORE key, ever so slowly and gently. Even when the key is

totally depressed, a RESTORE won't occur. This is possible be

cause of the way that the keys on the keyboard "close". Rather

than make an abrupt closure at some point of depression, they

gradually become more and more conductive as they are pressed

down, until the resistance is low enough to bring the 6526's input

lines low. That makes it possible for a hardware circuit to only

function when the key is pressed down relativley quickly; a

capacitor takes care of that.

17) Cassette Motor Control Transistor

This transistor is controlled by bit 5 of the 6510's I/O port

(accessed from location 1), and supplies the current required to run

the motor in the external cassette unit. The output of this transistor

is 6 Volts, and it goes to pin 3 on the cassette port. You can use this

to power other devices if you wish, for example a 6 Volt relay.

Using a relay in this way would let you do wierd and wonderful

things like controlling the lights in your house with software.

18) Expansion Port Connector

This is where the plug-in ROM cartridges go. CPU control lines

including the address and data bus come out onto the expansion

port. Also available on the port are: The 5 Volt supply, IRQ and

NMI interrupt lines, the 8.18 MHz video clock, and the 6510

RESET line. The GAME and EXROM inputs are used by ROM

cartridges to switch the ROM into the memory map in place of the

usual RAM.

19) Joystick/Paddle Connectors

The joystick connectors are designed to be used with joysticks or

paddles, but since they have five I/O lines, two analog inputs, and

power available on them, they could be used for other appplica-

tions as well. An analog joystick, for example, could be connected

to the analog inputs. By using both joystick ports, you would have

ten I/O lines available, to which you could connect a keyboard

matrix for an external numeric keypad.

Video

2O)VIC-1I Video Chip

Here's another one of the heavyweight chips that made the 64

famous. Unlike the 6510 and SID, the VIC—II stays out of the

limelight by hiding under a large metal lid. The VIC—II (successor

to the chip used in the VIC-20) handles all the processing when it

comes to the screen. It supports text and bit-mapped screen

modes, in normal or multi-colour. The VIC-II is also responsible

for generating the "sprites" (or MOBs - Movable Object Blocks),

and can be programmed to generate an interrupt when a sprite

"collides" with text, or with another sprite.

The VIC-II accesses memory directly, and screen memory can be

set up anywhere, within a 16k boundary. Since the VIC-II can only

address up to 16k of memory at a time, the upper two bits of the

address are formed by bits 0 and 1 of port A in CIA2 (see 11 above).

The VIC-II's various control registers are accessed from $D000 to

$D02E in memory. Most of these are used to control the 8 sprites,

but there are a few assigned to more esoteric functions. The

registers at $D013 and $D014 give the current (x,y) screen location

of the light pen, if one is connected. The raster register (at $D012)

allows you to select any screen line, and have the VIC-II chip

generate an interrupt when the raster beam reaches that line. The

source of an interrupt can be examined from register $D019(there

are four sources), and any of these sources can be masked via

location $D020. The four interrupt sources are: The raster com

pare register, a sprite collision, the timer in CIA1, and the light pen

input.

21) Shielded Video Section

This section appears as a big metal shield which dominates the

right side of the PC board. The metal shield is there to prevent the

high frequencies which are present from interfering with radio or

television reception. The shield also serves as a heat sink for the

VIC-II chip, so you shouldn't run the computer with the shield

removed.

Under the lid, the circuitry is divided into two parts. On the left is

the VIC-II video chip and a few support components. On the right

half is the clock circuitry for the system (1.02 MHz), and for the

video (8.18 MHz).

The clock circuitry provides the basic time units, or cycles, on

which everything operates. The main system clock of 1.02 MHz

keeps the CPU, memory, and other devices synchronized. The

length of time taken for the CPU to execute an instruction is

measured in clock cycles, since the CPU can do one simple

operation (such as a memory read or write) every cycle.

The video clock is 8.18 MHz, the rate at which the indivual picture

dots in the video signal are shifted out. It is interesting to note that

4.5 MHz is the highest frequency at which a television can resolve

a single dot, which is why two dots must be placed side by side

before they become visible. That's why the character set in the 64

is different from the PET's: the 64 must always have two dots side

by side, while the PET's higher resolution video monitor can

resolve a single dot. (40 column PETs use an 8 MHz video clock,

and 80 column machines use 16 MHz.)

The Transactor 55 Volume 5, Issue 04

22) Colour Intensity Control

This small potentiometer is located in the video section (under the

lid) and controls the colour saturation on the screen. In other

words, turning the control down makes the picture look more like

black and white.

23) Clock Frequency Adjustment

This adjustment fine-tunes the main system clock frequency. But

before you try to turn it to maximum to soup up your 64, stop: it

only changes the frequency very slightly, and it makes a most

profound influence on the screen colours, since it affects the video

clock as well. In fact, it's intended purpose is as a tint control, so

that the colour clock can be adjusted to make green look green,

blue look blue, etc. This is usually set properly before the 64 leaves

the factory, so I would advise against playing with it, unless you

don't mind the characters in your favorite video game sporting

green faces!

24) RF Modulator

The RF (Radio Frequency) modulator's purpose in life is to mix the

video signal from the VIC—II chip with a high-frequency carrier so

that it can be sent to a television. In some computers, like the V1C-

20, the RF modulator is external to the computer. Commodore got

it right this time and hid it in the machine where it belongs. The RF

modulator is actually a collection of components, like little coils

and such. The whole mess is shielded under the metal lid you see

to protect the world from spurious RF transmissions.

Power

25) Power Supply Connector

This connector goes to the external power supply. Two power

inputs from the supply are fed to the pins of this connector: a 5 Volt

DC regulated supply, and a 9 Volt AC supply.

The 5 Volt supply is used to power all the digital ICs on the board

except the VIC—II video chip. The 9 Volt AC supply is converted to

12 and 5 Volt DC regulated voltages and used to power the VIC—II

chip and clock circuitry (the VIC—II chip requires both 5 and 12

Volt power inputs).

The 9 Volt AC supply has another interesting use: it is the source of

the 60 Hz signal used by the time-of-day (TOD) clock in the 6526

CIAs. The 9 Volts AC is fed to a NAND gate inside U27, where it is

converted to a 5 Volt square wave. This digital signal goes to the

TOD pin on each 6526, where it serves to keeps time for the TOD

clock.

Some related trivia: on the SX-64, a switching power supply

system is used, and there's no 9 Volt AC supply available. To

provide a 60 Hz signal for the TOD clocks, an additional oscillator

circuit, including another crystal, exists on the board.

26) Fuse

The fuse is for the 9 Volt AC line only, which means that you won't

blow it by shorting out the 5 Volts available on the user port -

you'll just shut down the regulator in the power supply temporar

ily. If you short out the 9 Volt supply on the user port, however, the

fuse will blow. The power indicator LED DOES NOT GO OUT

when the fuse blows, since it indicates power on the main 5 VDC

line. So if your computer dies, suspect the fuse even if the LED is

still on.

27) Voltage Step-Up Circuitry

These components are necessary for the process of converting the

9 Volts AC from the power supply into 12 Volts DC for the VIC-II

chip. A few diodes and capacitors create a voltage doubler circuit,

rectifier, and filter; this converts the 9 Volt AC supply into the 16

Volts filtered DC which is fed to the 7812 voltage regulator.

28) 7812 12 Volt Regulator

After the 9 Volts AC is converted to 16 Volts DC, it is fed to this

voltage regulator, which gives a regulated 12 Volt output. The 12

Volts is required for the video circuitry, and connects to the VIC-

ll's 12 volt input.

29) 7805 5 Volt Regulator

The 9 Volt supply is rectified and filtered, then fed to this IC which

produces a 5 volt regulated output. The resulting 5 Volt supply

feeds the VIC-II video chip and the clock circuitry under the steel

shield.

The 7805 should have a heat sink mounted on it, but some of the

earliest 64s came without one. The result was that these machines

had problems coping with warm temperatures, and the 7805

would sometimes overheat and shut itself off. No damage to the

computer, but imagine the computer dying after you've just typed

in a 2000 line program! Apparently, Commodore realized that it

wasn't worth saving the 2 cents or whatever a heat sink costs, and

all 64s now have it. If your 64 has overheating problems, see if it

has the heat sink. If not, you can put one on yourself. Alternatively,

the 7805 can be coated with heat-sink compund and pushed up

against the steel RF shield to help sink the heat.

30) Power Indicator LED Connector

This connector attaches to the long pair of wires which lead to the

power indicator LED. The wire must be unplugged from the

connector when removing the upper half of the case.

As mentioned before, the LED does not go out when the fuse

blows. It's purpose is to indicate that the regulated 5 Volts from the

power supply is alive, since this supply would automatically shut

down if overloaded.

Where's the Plugs?

Considering the complexity of the main chips in the 64 and the

computer's relatively low cost, there's a surprising amount of stuff

in there! Of course, there are many components and circuits not

mentioned above, but they are not important enough to go into

detail about. Unless, of course, you wish to modify or service the

machine yourself; for if you end up buying that sports car, you

probably will want to know the spark plug gap size.

Thanks goes to "Hardware Corner"Author Domenic DeFrancesco

for the technical information which made this article possible, and

to Commodore for the circuit board layout diagram.

The Transactor 56 Volume 5, Issue 04

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

All About Printers:

What you should know before buying
Chris Zamara, Technical Editor

"Choosing the 'best' printer is like choosing the 'best'car or 'best'pet. . ."

A printer is one of those peripherals that people either have,

or wish that they did. For any kind of serious use, you

usually need some kind of permanent printed record of

your program's output. Even just for program development,

it's a lot more productive to sit down with a listing and a

pencil than to stare at 25 lines of code at a time on the

screen.

But 1 don't have to convince you how useful a printer is. The

problem is, what kind of printer best suits a Commodore

owner's needs? Choosing the "best" printer is like choosing

the "best" car or "best" pet: it depends on your needs,

expectations, budget, and dozens of other personal factors.

The best decision is the result of careful compromise, and

can only come from knowledge on the subject. That is the

purpose of this article: to arm you with information as you

enter the ever-growing world of microcomputer printers.

Interfacing and Compatibility

Before going into printers in general, this section must be

presented; a general article on printers is no good to a

Commodore owner unless he first knows about compatibil

ity with Commodore equipment.

There is some confusion in buying a printer for a Commo

dore 64 or VIC. You can get a printer which goes on the

serial port (like the Commodore printers), an RS-232

printer, Centronics-type parallel printer (which can be di

rectly connected and used with special software), or an IEEE

parallel printer with an interface card. Out of all these

schemes, only a Commodore printer is directly compatible,

since it will connect without an interface, print all special

graphics symbols, and produce program listings which look

just as they would on the screen. That doesn't mean that a

Commodore printer is the only way to go, however. There

are a great variety of printers out there that will work very

well with a Commodore system. But be careful about your

choice of printer and interface, or you may wind up with a

printer that you won't be able to use for program listings, or

one that will give you lowercase when you want upper, and

vice-versa.

An interface lets you connect printers using communication

protocols other than those used by Commodore. The most

common protocols used with microcomputer printers are

outlined below.

IEEE-488

(Usually called "IEEE", pronounced "eye triple ee"). Con

nects directly to PET, or can be used on C64 or VIC with

appropriate interface card. Hence referred to as "IEEE".

Centronics-type parallel

The most commonly used protocol among parallel printers:

can be used on 64 or VIC with an interface (eg. cardco), or

plugged directly into the user port on any machine and used

with special software. Can be used on PET's IEEE bus with

an interface which may also convert from CBM ASCII to real

ASCII. Referred to as just "parallel" from now on.

C64 serial

Used on Commodore printers: plugs into serial port on C64

or VIC, and can be connected along with disk drives and

other peripherals.

RS-232

RS-232 is the standard serial protocol, used by many

printers. An RS-232 printer will plug into a C64 or VIC with

Commodore's RS-232 interface (this interface may not be

necessary with some printers, just a cable with appropriate

connectors). C64 and VIC have built-in software to commu

nicate with RS-232 devices - just open a file to device

number 2. An RS-232 printer can also be used on PET's

IEEE bus, with an appropriate interface.

Here is the danger when buying a non-Commodore printer:

some of the Commodore control characters will be misinter

preted. For example, the "home" character is 19 in CBM

ASCII, but to many printers, a 19 selects "offline" mode.

That means that one of your everyday garden-variety

programs could halt the printer while being listed, the

culprit being a 'PRINT "fl1" command embedded some
where in the program.

Fortunately, there are some very smart interfaces that get

around the problem quite elegantly. For example, the

CARD? interface from cardco inc. allows you to connect a

C64 or VIC to a parallel printer through the serial port (the

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

The Transactor 57 Volume 5, Issue 04

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

same port the disk drive is connected to). The interface

knows all about the Commodore control characters, and

has a special "listing mode" to deal with them. In listing

mode, a home character appears on the printer as "{HM}", a

screen clear as "{SC}"; all control symbols including cursor

controls and colour commands are coded similarly. You still

won't be able to see the special Commodore graphics

symbols as they appear on the screen with anything but a

Commodore printer. That may be a factor If you're running

a lot of graphic-oriented software.

Of course, there is also the compatibility problem with

Commodore ASCII and real ASCII: codes for upper and

lower case are switched. The interface handles that problem

as well, and usually can be selected between PET and real

ASCII by means of switches, or by software commands. So

don't balk at buying a non-Commodore printer, just make

sure that you can get an appropriate interface for the printer

you buy, and include the cost of the interface when compar

ing prices.

An RS-232 printer can be plugged into the RS-232 port with

only a simple interface, and it will work, at least from a

hardware standpoint. But the compatibility problems out

lined above will persist, and may require you to write

custom software to get proper listings or convert to real

ASCII.

Connecting a parallel printer directly to the user port (same

connector as the RS-232 port) will certainly need special

software, which is readily available. But word processors

and other commercial packages probably won't work with

the printer at all; you save the cost of an interface, but you'll

mostly be able to use the printer only with your own

programs.

An IEEE printer is the best choice for use with any PET-

series machine, since it will directly plug in, with the aid of

an IEEE cable. Some printers, such as the Epson MX80, can

be ordered with optional IEEE input instead of its usual

parallel interface. If you have an IEEE card on you C64, you

can also use an IEEE printer.

Now, all this talk about incompatibility with commodore

control characters won't concern you if you plan on using

the printer only with commercial software packages. Most

wordprocessors, file-managers, etc. know how to handle

different printers, and there are programs available which

will let you LIST to a non-Commodore printer. But this

brings up another important point: Make sure that any

software you buy will work with your particular printer/

interface combination! You might walk out of a computer

store with an expensive printer and wordprocessor, only to

find that you can't get proper printouts. If you're not sure

what's compatible with what, you're best off buying from

somewhere that has competent salespeople, even if their

prices are higher than the local department store.

Of course, there's no "best" setup as far as interfacing goes.

The type of communication protocol used on a printer

should only influence your purchasing decision if it's going

to present a problem as far as interfacing goes, or if the cost

of the required interface is prohibitive.

Print Technologies

There are quite a few print technologies in use today. The

ones most used for microcomputers are:

Daisy wheel

Dot matrix (impact)

Ink-jet

Thermal

Thermal Transfer

laser

Most home-oriented printers are of the daisy wheel or dot-

matrix variety, but there have been great advances in the

field of ink-jet, thermal transfer, and laser printers. The

merits and faults of the different categories will be given

later, but here's just a brief explanation of how each

basically works:

Daisy Wheel

The printer gets its name because the characters are at the

ends of the spokes of a wheel. The wheel spins until the

desired character is in front of a print hammer, where it is

struck to impress the ribbon on the paper. The print quality

of the characters is usually comparable to that of a type

writer, and different wheels can be used to provide different

typefaces.

Dot Matrix

A dot-matrix printer forms its characters from dots. Each

dot is produced by a little print hammer striking the ribbon

in front of the paper. The appropriate hammers in a row of 7

to 9, arranged vertically, strike the ribbon simultaneously

before the print head moves the hammers to the next

position.

Matrix printers are generally faster and less expensive than

Daisy Wheels, and can often do graphics as well.

Ink-jet

Ink-jet printers are only recently being used with micro

computers. Hewlett-Packard recently introduced theThink-

Jet, a low cost Ink jet printer using disposable ink cartridges.

And radio shack makes an ink-jet colour printer for the

TRS-80 colour computer. Ink jet printers work by spraying

ink directly on to the paper through tiny holes, and have the

potential of combining high print speed with good print

quality.

Thermal

Thermal printers have been around for a long time, but

aren't very popular because they require costly thermal

The Transactor 58 Volume 5, Issue 04

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

paper. Thermal printers form characters in the same way as

matrix printers, but use little heating elements instead of

print hammers to burn marks into the heat-sensitive paper.

Thermal Transfer

This is a new technology, and works on a thermal principal,

but with regular paper. The printhead heats up the ink in

the special ribbon, and boils it out onto the paper. Thermal

transfer printers can be fast, give good quality, and print in

colour.

Laser

Well, laser printers can't be considered for home use be

cause the cost is still too high, but they're mentioned here

for completeness. A laser printer is like a photocopy ma

chine, but it uses a laser to etch the image to be printed onto

a photosensitive drum. Laser printers are very fast (think of

how long it takes a photocopier to turn out a page) and are

used on mainframe systems as the primary high-speed

printer. These large laser printers cost literally millions of

dollars, and spew out printed paper as fast as 12 inches per

second. Small laser printers for micro use are available for

between five to ten thousand dollars, and are excellent for

office use.

O ! Cost

Obviously, since you don't want to spend all your beer

money for the next 18 1/2 years on a printer, the cost

criterion is vitally important. I'm keeping away from quot

ing actual prices, since they're changing all the time, and

there are such differences between Canadian and American

prices. Depending on how many features and how much

speed you need, you can spend anywhere from a couple of

hundred to several thousand dollars. Generally, dot matrix

printers are cheaper than daisy wheel, and small thermal

printers are often the cheapest.

Letter Quality

Letter quality is usually the main reason that people choose

a daisy wheel printer over a dot-matrix one that is faster,

quieter, and cheaper. But don't think that you must have a

daisy wheel printer simply because you want to print

correspondence. Most modern matrix printers give very

readable copy, and many have a "correspondence quality"

mode which gives better quality by printing more dots, at

the expense of speed.

Ink-jet and thermal transfer printers use matrix-formed

characters, but give better quality characters than impact

dot-matrix printers, since the dots blend together more.

A matrix printer can be used to print letters, but for business

use or important documents like job resumes, even good

matrix may not be good enough. Even so, if these applica

tions are the exception, rather than the rule to your printing

needs, you might want to get a dot-matrix printer anyway

and make friends with someone who has a daisy wheel.

And if a very short letter has to look just right, you can

always print it on dot matrix, then do something totally

strange like use a TYPEWRITER to get your final copy.

How do you choose between a daisy wheel printer and a

matrix printer for the same price, but 10 times faster? Well,

what do you want your printer for? Here's two scenarios.

George is a hard-core hacker. He uses his computer for

programming and playing with, as a hobby. He needs a

printer for program listings, and to print documentation for

programs that he writes or utilities that he uses. He also has

a modem and accesses bulletin board systems, and he

wants hardcopy of some of the information he gets from

them. He Makes intensive use of the graphics capabilities of

his computer, and would like to print graphs and pictures

on his printer.

Jeff has a small business, and wants to use his computer to

print invoices, mailing labels, and letters to suppliers and

customers. All of his output is textual, and he wants to give a

professional impression. He doesn't do much of his own

programming, but uses commercially available business

packages.

Clearly, George should get a matrix printer of some type

(which includes dot-matrix, thermal, and thermal transfer),

and Jeff needs letter quality: he'll probably be best off with a

daisy wheel. Most of us are somewhere between George and

Jeff, and it's just a matter of setting priorities.

Speed

Expect speeds of 80 to 160 characters per second (cps) from

dot-matrix printers. The cheapest (and slowest) daisy wheel

printers fly along at 12 cps (sarcasm intended), and the

fastest about 22. Hewlett Packard's ink-jet printer is fairly

fast: 150 cps. Thermal printers are usually somewhere

between dot matrix and daisy wheels in terms of speed.

To give you an idea of what these speeds mean, a full page

can be printed in under a minute at 120 cps. If you're

constantly printing many invoices or long program listings,

speed will be an important consideration. For the occa

sional single-paged letter, you might not care if you have to

wait 10 minutes instead of 1, and you can have good print

quality at low cost.

You should be aware that the CPS rating of a printer is by no

means an average speed. It is a best-case measurement,

taken at the fastest printhead speed. If you were to calculate

the time a printer should take to print a page based on the

numbers of characters on the page and the speed of the

printer, the result you'd get would probably be less than half

the time that the printer would actually take. There are

other factors affecting speed besides the CPS rating, such as

bidirectional printing, explained later.

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

The Transactor 59 Volume 5, Issue 04

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Physical Capabilities

Feed type

Friction feed printers allow you to use single sheets of

ordinary paper, just as in a typewriter. Tractor feed uses pins

to guide the paper, and requires the use of fanfold printer

paper with holes in the side. Tractor feed is better for long

printouts, since the forms are continuous and do not require

reloading after every page. Also, tractor feed keeps the

paper perfectly straight. Friction feed has the advantage of

allowing you to use fancy paper like letterheads, or to print

on anything: labels, cheques, envelopes, etc. Many printers

give the choice of friction or tractor feed, or have tractor feed

as an option. It's best to have both.

Characters per line

Most printers will accept standard size 8 1/2 by 11 paper,

which is 9 1 /2 inches wide including the sides for the tractor

pins. Some Larger printers accept wider paper, for example

13 or even 17 inches. The number of characters you can

print across a page is an important consideration, especially

for work with charts, tables, and spreadsheets. Most printers

will fit 80 characters across on a line, which is fine for letters

and such, but some printers offer up to 232 characters per

line (cpl). There are inexpensive printers which fit only 32

or 40 cpl, and aren't really good for anything other than

programming uses (listings, variable dumps, etc).

Pitch

The pitch is the number of characters per inch. A common

pitch for printers is 10 cpi, and different pitches may be

selectable by software. Check the pitch capabilities on a

printer to see if there is an acceptable range. Daisy wheel

printers may have pitches ranging from 10 to 15 cpi, and

matrix printers from 6 to 17 cpi. Thermal and inexpensive

daisy or dot-matrix printers may have a fixed pitch. It's nice

to be able to change pitches within a document for empha

sis of certain passages.

Noise Level

Some daisy wheel printers sound like a machine gun, and

that means you may not be able to use it at 3:00 AM, just

when you really need it. Thermal an ink-jet printers are the

quietest, being virtually silent. Matrix printers can be rea

sonably quiet, but some can stand your hairs on end,

sounding like a 200 horsepower dentist's drill. When hear

ing a printer demonstrated in a store, ask yourself if the

same noise level will be acceptable in it's intended environ

ment.

Durability/portability

For home use, you may not need an indestructible printer,

but if it's going to find use in an office or classroom, you

need something big, heavy and intimidating so that people

won't destroy it. It might be worth spending more for

something with a bit of extra armour-plating. Alternatively,

if you're going to be moving it around a lot, you might want

something portable, or at least briefcase-able. Some

printers will operate from batteries, so that you can use

them with a portable computer.

Print Features

bidirectional/logic seeking

Bidirectional means that the printhead prints a line in both

directions - from left to right, and on its return path towards

the first column. This speeds things up considerably.

Logic-seeking is another time-saver. Logic seeking means

that the printhead only moves to where text is to printed -

not necessarily the beginning of the line, and it stops where

the text ends at the end of the line. When considering the

speed of a printer, take into account whether it's bidirec

tional and/or logic-seeking (every person with a logic-

seeking head should do so).

buffer

Some printers have a built in "buffer" to store text temporar

ily before it's printed, freeing up the computer for the

lengthy print process. With a large enough buffer, you could

send a document to the printer and regain control of your

computer almost immediately, while the buffer's contents

are printed. Printers come with buffer sizes varying from 80

characters (one line) to up to 8K, and sometimes a larger

buffer is available as an option.

true descenders

This doesn't apply to daisy wheel printers, and all but some

of the cheapest matrix printers have true descenders today.

Descenders are the bottom part of some lowercase letters,

like the tail in "y". True descenders should extend below the

bottom of the line, or else the letter looks quite silly. Most

modern matrix printers have solved the problem by using

more print hammers, but check a print sample before you

buy to make sure those little tails hang down nice and low.

typefaces

With matrix printers, the available typefaces is an important

but often overlooked feature. You'll probably want italics,

and some special graphics symbols that you can use for

drawing boxes, different thicknesses of vertical and hori

zontal lines, solid blocks, etc. Some printers also have all

kinds of greek symbols (pi, omega, mu, etc.) which are

useful in mathematical or electronically-oriented docu

ments. Daisy wheel printers have the capability of changing

an entire typeface simply by changing the daisy wheel itself.

Some daisy wheels have more characters than others -

giving you a greater selection without changing wheels.

_L

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

The Transactor 60 Volume 5, Issue 04

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

With any printer other than a daisy wheel, the available

typefaces are a function of the software (firmware, actually)

inside the printer. Again, see a print sample of all available

j characters and see if the printer has what you want.

User-definable characters

To extend the available typefaces to suit your own needs,

some printers of the matrix variety allow user-definable

typefaces. That means that you can design a character set,

much as you can in your C64, and use that custom set for

future printing. You could use this feature to define Commo

dore graphics symbols in a non-Commodore printer.

graphics

If you're getting a matrix printer of any type, you might as

well have one that can do high resolution graphics print

outs. You can then use your printer as a plotter for drawing

charts, graphs, or function plots. You can also use a graphics

program of some sort to compose posters, which can be

printed out and used for advertising or presentations. Of

course, it's also neat to have just for fun, and to impress your

friends and neighbours.

Printers may have more than one graphics mode, offering

varying resolution (more dots across).

colour

Another nifty and wonderful feature, found on a few impact

dot-matrix, thermal transfer, and ink-jet printers. Charac

ters may be printed in one of a few colours (with impact dot-

matrix, made possible by a multi-colour ribbon as on a

typewriter). Combined with graphics, the printer becomes a

proficient picture drawing tool - which may or may not be

what you want it for.

proportional spacing

This deserves its own catagory, because on a daisy wheel

printer this feature will allow you to produce documents of

typeset quality (like you're reading here). Proportional spac

ing acknowledges the fact that characters have different

widths, and moves the printhead accordingly. If you want to

use a printer to produce perfect looking documents, worthy

of appearing in print, consider proportional spacing.

"correspondence quality" print mode

This applies to matrix printers, and gives more fully formed

characters by using more dots. Selecting this mode slows

down print speed considerably (and eats ribbons faster), but

can be used to print the final copy of important documents,

while using the regular fast print mode for rough drafts. A

good feature to have if you want to use your matrix printer

for correspondence. It's known as "enhanced mode" on

some printers.

other features

There are many things that a printer can do for you, and you

should know what you need and what the printer can do

before you buy. A few of these features are: Superscripts and

subscripts, boldface, underlining (proper underlining un

derlines spaces as well as letters), tab stops, and formatting.

Commodore printers have exceptionally good formatting

capabilities, which makes it easy to print column of figures

neatly. Every printer has its own list of unique features, and

you'll have to see the printer manual to discover them all.

Operating Cost and Maintenance

With impact type printers, the operating costs (besides

electricity of course) come from the continuous use of paper

and ribbons. Ribbons come in two flavours: the cartridge

type, and the open type. Cartridge ribbons are very easy to

replace: just snap the old one out and the new one in. They

are also much more expensive than the open typewriter

style ribbon. Check the ribbon type when buying; it's a case

of preference - personally, I'd rather get my hands dirty

once in a while and save the money (about $2.00 for an

open typewriter ribbon vs. $16.00 for a cartridge).

Ink-jet printers use replaceable ink cartridges, and are fairly

inexpensive to operate. For example, Radio Shack's CGP-

220 uses a three colour cartridge which is good for a claimed

3 to 4 million characters. Cost of replacement cartridges is

about $13.00 here in Canada. Incidentally, this printer has a

parallel interface and could probably be used on a Commo

dore system (cost is around $900 Canadian).

Cost of paper is the same for all except thermal printers,

which use more expensive heat-sensitive paper. You'll

need a box of paper for your printer - here's a little aside:

When you buy paper for a tractor-feed printer, you have to

get 91/2 by 11 if you want the sheets to be the standard 8 1 /

2 by 11 size after the perforated tractor feed edges are

removed.

Good Luck

Now that you know a bit about printers, don't get too smug;

the information is changing all the time. New features,

capabilities, and lower prices are changing printer technol

ogy (for the better) to the point where it's hard to keep up.

But armed with the information covered here, and maybe

some that I've left out, you won't feel lost in the world of the

printer - which may be the most important peripheral in

your system.

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

The Transactor 61 Volumes, Issue04

Evolution Of The CPU

And Revolutionary

Memory Advancements

Howard Rotenberg

Toronto, Ont.

Evolution of The CPU

This should take some of you older folks back to memory lane (no pun

intended) and give the younger ones a bit of history. The instruction

sets of all the early computers contained fixed point arithmetic instruc

tions, boolean and shift instructions. There was also a few primitive

instructions for controlling the instruction sequence. Then came the

second generation computers. These had much larger instructions sets

and a lot more flexibility and power. Basically these computers fell into

two categories: business and scientific computers.

The business data processing computers were typically character

oriented and had an enormous capability for manipulating variable

length data. These operations were usually character replacements or

comparisons for sorting, merging or fixed-point arithmetic. The arith

metic was generally slow on this type of computer since it was usually

done serially by character, and often done decimally rather than in

binary.

The other computer 1 spoke about was the scientific computer. Al

though it had extensive floating-point arithmetic capability, it operated

on data of fixed precision. It, unlike the business computer, had very

little capability for dealing with variable length strings and did not have

decimal arithmetic, although it could be performed through program

ming at a high cost of computing time.

Toward the end of the second generation, the distinction between

business and scientific computing started to fade. Large scientific users

performed computations involving sorting, merging and character

manipulation of variable length data that was previously classed as

business functions. While this was going on, many business applica

tions started to make use of sophisticated forecasting and inventory

control programs which relied on operations of scientific computing.

The beginning of the 60's saw a new breed of computer. The manufac

turers started to combine both kinds of functions into one computer.

A major obstacle in the way of having a single general purpose

computer for both business and science was the cost. As a number of

instructions in a computer grew, so did the cost of its control unit which

in turn affected the cost of the machine to the user. By the time the

middle sixties came about, new technologies and new design tech

niques brought hardware cost down dramatically. It was now possible

to construct a general purpose computer to satisfy all users.

As computers moved into the third generation, instructions were now

designed for a large variety of functions. The number of elementary

instructions increased from a few dozen in the early computers to over

a hundred, and in a few instances to over two hundred. Arithmetic

instructions only accounted for a small portion of these repertoires. The

newer functions included instructions for subroutine entry and exit,

environment changing, stasis recording, and memory protection. Even

the least expensive mini computer of the early seventies can perform

upwards of one hundred different elementary instructions.

By this time the computer designers recognized the need for modular

ity in the physical construction of computers. It was only natural that

the basic building blocks they used were nand/nor logic gates and flip/

flops. At that time these were fabricated from discreet resisters, capaci

tors, and vacuum tubes. Second generation computers used transistors

in place of vacuum tubes. There was some simplifications in the

structure of the logic gates but basically the designs were similar to

those used previously. Registers were relatively expensive during this

time so that multiple registers were found mainly in high speed

computers whose users were willing to pay a premium for speed.

During the early sixties several developments in device technology

lead to revolution changes in the logic devices available. These

changes also lead to dramatic decreases in the cost per logic function.

The logic devices by this time were fabricated on flat films deposited on

a silicon substrate. This new silicon chip contained several active

transistors, yet the cost of chip fabrication was approximately equal to

the cost of fabricating a single transistor using previous techniques.

This new technology had a major impact on computer design and then

on computer architecture. The costs of batch fabricated devices could

be held low if many copies of the chips were made. For the portions of a

computer such as memories, arithmetic units, and registers, this new

technology fit well and adaptation was relatively simple. But for the

unstructured logic of the control unit, there were significant problems.

From this we can see that the new technology invalidated the former

design criteria of minimizing the number of logic gates in a design and

replaced it with the need to maximize the repetative use of a functional

chip, or to minimize the number of interconnections between func

tional partitions of the control unit. (Boy that was a mouthful). This now

provided a partial impetus for implementing the control portion of a

computer with memory rather than discreet logic to achieve regularity

of structure. This in turn contributed to the rise of microprogramming

in the middle and late sixties.

Evolution of Memory

Along with the evolutionary changes in the central processing unit,

great advances were also made in memory architecture. The latest and

most revolutionary advancement in memory 1 will discuss towards the

end of this article. There are three types of memories that had come

into popular use as a primary memory of a computer. In the fifties, the

primary memories were mainly rotating drums. The late fifties saw the

introduction of second generation of computers with magnetic core

memories. These computers were substantially faster than their prede

cessors because of the new random access capability.

That is, any item can be fetched from memory in a fixed time span that

is independent of the previous memory reference. Magnetic drums had

what we could call an inherent rotational latency. What I mean by this

is that if the item to be accessed was not under the read head of a drum

at the precise time the access request was issued, then the request

could not be granted until the item eventually reached the read head.

During this time the computer remained idle until the access occurred.

The third and most popular memory that was introduced was the

integrated circuit memory. Like the magnetic core memories, the

integrated memories are random access. They were much faster

however and with the new techniques available for the making of these

The Transactor 62 Volume 5, Issue 04

chips, even cheaper. Integrated circuits are the most popular type of

memory used these days and pretty well the only kind found in todays

micros.

The organization of primary memory today is essentially just as the

early designers envisioned it to be. Items have unique physical ad

dresses, and accesses are made by address. The advances that were

made in memory architecture fell primarily in two related areas:

1) Memory hierarchies consisting of high speed first level storage

together with much larger and slower second level and possibly,

third level storage, appear to the program as a single large memory

whose speed is nearly equal to first level storage, (wow that was

another mouthful). We would tend to see that frequently used items

tend to reside in the fastest memory of the hierarchy and automati

cally drift to the slower parts of the hierarchy when frequency of use

diminishes.

The second I feel is a more important advancement.

2) Several independent programs can run in the same computer system

simultaneously, each using a completely separate set of memory

locations. Memory address translation facilities simplify the problem

of allocating memory to the individual programs, and guarantee that

one program cannot interfere with another program. In some in

stances, specified data or program segments are permitted to be

shared by two or more programs.

1 will not go into any more detail about these topics other than to

mention that the first of the two is called virtual memory or cache

memory. The second describes a situation known as multiprogram

ming and address translation facilities are essential for its support.

A Glimpse of The Future

There is a man who is presently a senior research officer in the

Electrical Engineering Division of the National Research Council in

Ottawa that has come up with an astounding discovery. His name is

Alex Szabo and he unbelievably has found a way to pack more

information into a computer memory than a human brain could hold

in the same amount of space.

As 1 have mentioned earlier, for years data has been stored on discs,

tape and more recently bubble memory. Now this man has added the

concept of the crystal memory. The potential of this discovery is

overwhelming. His idea was originally conceived in the early 70's.

To briefly remind all how data is stored, it is essentially one of two kinds

of signals or states. This is on or off, whether the data is on tape, disk or

in other types of memory. For instance, eight bits may be stored in a

certain sequence to represent a particular character. Szabo's idea is

quite different in that it takes a crystaline material which light normally

can't get through, and makes it transparent to certain colours of light in

specific spots.

The first material he used was a ruby, since while a ruby could hold

back most light but not a thin laser beam. There are a lot of other

crystals in this category also that are even better. He had found out that

you could pass a thin laser beam through a thin slab of material and

penetrate it. The penetration would leave a tiny tube like section

transparent exactly the size of the laser beam. This tube was now clear

while the rest of the crystal was still impenetrable to light. These beams

can be focused down to a thickness of less than a 10,000 of a

centimetre. This is the key to this fantastic capability: This man found

out that the tiny track that had been left transparent would only pass

the same colour of light as the colour of the original laser beam that

penetrated it. If the laser was green and you passed a green light over

the crystal, you would only see one dot of green light actually passing

through. If you passed a red laser beam through the crystal the same

effect would be evident. The last thing that Szabo found out was that if

you passed both a red and green laser beam through the same spot, it

would be transparent to red and green both but still block all other

colours. The next amazing thing that should be mentioned here is that,

theoretically, lasers could distinguish between 10 million shades. They

can be tuned very precisely to these shades of colour also.

The Next Step

Szabo reasoned that he could arrange a pattern of spots on a slab of

crystal and shine red laser beams on some of those spots but not on

others. He could then arrange tiny light sensors in an identical pattern

on another surface underneath. Now if he shone a flood light of the

same red colour on top of the crystal the light would get through only

the spots that had been penetrated earlier. This would activate the light

sensors beneath those spots but leave all the other sensors dark and

inert. This arrangement could be used as a memory cell. A computer

could get digital on signals from the sensors which got light, and off

signals from the one that stayed dark.

This was a very impressive idea for data storage, because laser beams

can be made so thin that could be directed at a hundred million

different spots, without overlapping, on a slab of crystal only one

centimetre square. This would be about the size of a human fingernail.

His idea went far beyond this. If you penetrated a crystal by red laser

beams in one array of spots, that would store data which could then be

read back by simply shinning a red light on the slab at a later time. If

the same crystal was then penetrated by green laser beams in another

arrangement of spots, it would store a separate hundred million bits of

data, which could be read back later by shinning a green light on it. In

all practicality probably only one thousand shades of lasers would be

used because today's equipment can tell that many apart very quickly.

This would mean that a fingernail size slab of crystal could be used to

store up to one million bits of data in each of one thousand different

laser colours. We are now talking about the storage of one hundred

billion bits of data in a fingernail space.

With this principal in mind, in a crystal the size of a hi-fi music album,

it would be possible, theoretically to store as many bits of data as there

are neurons in the average adult human brain. From this we can start

to see the enormous capabilities that could come from this revolution

ary type of memory. There are some problems to cope with here, aside

from figuring how to fit a hundred million light sensors into a square

the size of a fingernail. To use any crystal material this way, it is

absolutely necessary to keep it extremely cold. To be a little more

precise, the temperature of liquid helium, 269 degrees below zero

celsius is good. The hottest allowable temperature would be approxi

mately 253 below.

The reason for these low temperatures is to slow the motion of the

molecules in the crystal almost to zero-to keep them frozen stiff. If the

molecules were to move as much as they do at higher temperatures,

the material would lose its colour stability and the laser holes could no

longer control the precise shades they were made for. To keep such a

frigid level high power cooling systems would be needed. Unfortu

nately, at this time that would mean crystal memories would be

practical only for big computers that stay in one place. We wouldn't see

them for desk top or portable models for a long time.

Conclusion

I hope that this article has given some insight into the architecture and

functionality of the CPU and new advancements that are being made in

memory. It reminds me of the show you may be familiar with: WHAT

WILL THEY THINK OF NEXT.

The Transactor
63

Modifying the VIC-20

3K RAM Pack

For Use With EPROMs

Thomas Henry

Mankato, MN

An easy way to add EPROMs to your VIC!

If you ever open up your 3K RAM Pack for the VIC-20, you'll be in

for a pleasant surprise. Besides the 3K of RAM chips, you will find

room on the circuit board for two 24 pin EPROM's! In some cases

all you will have to do to use these slots is throw in a couple of

integrated circuit sockets and away you go! This article explores

the workings of the 3K cartridge and shows several ways to employ

the extra EPROM space.

All you'll need, besides the 3K RAM pack, is:

two 24 pin IC sockets,

two .01 mfd. disk capacitors,

and a 74LS00 quad NAND gate

(This should cost you less than a cheap lunch at the local greasy

spoon.)

But first, a warning. Any time you start fiddling with the hardware

of your computer you expose yourself to several dangers. First,

you will void any warranty that came with your system. This may

or may not bother you, depending on your outlook towards

warranties. More importantly, the object of performing any hard

ware modification is to improve the system, but if you aren't

careful, you may end up destroying some valuable equipment!

The general rule, then, is if you don't understand what you are

doing, don't do it! Hire someone more skilled in electronics to

perform the needed changes.

Having possibly scared you, let it quickly be noted that the

modifications to the 3K RAM Pack described in this article are

actually quite easy to perform and as long as good shop practices

are utilized, you should encounter no trouble. Any outstanding

tricky points will be mentioned along the way.

With all of the caveats behind us now, let's examine the cartridge

and see what can be done with it. Your first move should be to

open up the cartridge and spend some time simply looking at it.

There is one screw which holds the cartridge together, and this is

found in the middle of the back. Remove this screw. Next insert

the blade of a small screwdriver into one of the two slots found

along the back edge. Carefully push the interlocking tab out of the

way and pull the back up slightly. Now repeat with the other slot. If

all has gone well, the back of the 3K cartridge can now be lifted off.

Holding the circuit board thus removed, with the edge connector

fingers downward, look for the six RAM chips off to the left. Now

look for the two empty EPROM locations on the right side. Finally,

locate the eight circular "select pads" between the RAM and

EPROM area and towards the bottom of the board. Figure One

shows how the select pads should appear in a stock 3K cartridge.

What are these pads? Simply put, the select pads allow you to

change the decoding of the EPROM chips and furthermore make

the use of three different types of chips possible. Each select pad is

composed of two semi-circular regions. Some of these pairs (the

ones labelled 1, 5, 11 and 12) have a printed circuit board trace

connecting the two halves. The other ones are electrically distinct.

By cutting the traces or bridging the distinct pairs with solder, it is

possible to configure the EPROM decoding for a variety of uses.

Let's get more specific.

Select pads 5 and 2 govern how the upper righthand EPROM chip

is to be decoded. Since the printed circuit board comes with select

pad 5 bridged and select pad 2 broken, the chip will be decoded by

Block 5, or in other words by any address between $A000 and

$BFFF. By breaking select pad 5 (cut the trace with a razor knife)

and making select pad 2 (bridge the two semi-circles with a dot of

solder) you can change the decoding so that the chip is now

addressed by Block 2 ($4000 to $5FFF). Note that only one of the

two pads (5 or 2) should be bridged at a time.

In a similar manner, select pads 1 and 3 govern how the EPROM in

the lower righthand side of the board will be addressed. If pad 1 is

bridged, then the chip will be addressed by Block 1 ($2000 to

$3FFF); if pad 3 is bridged, then Block 3 does the trick ($6000 to

$7FFF). Thus by making or breaking select pads 1, 2, 3 or 5 it is

possible to locate EPROM in any area between $2000 to $7FFF and

$A000 to $BFFF. That's quite a bit of versatility! (Incidentally,

addresses $8000 to $9FFF are reserved by the VIC-20 for character

sets and I/O).

But there's more to come! Look again at your exposed circuit board

or Figure One and you will see four more pads that haven't been

mentioned yet. Two of the pads are associated with the number 11

and two with the number 12. Call these 11-upper, 11-lower, 12-

upper and 12-lower. By making or breaking various combinations

of these select pads it is possible to set the 3K RAM pack up to use

any one of three types of EPROM. These are the 2716 (2K), the

2532 (4K) and the 2564 (8K).

Figure Two shows the combinations of pads needed to accomodate

each of the three types of EPROM useable with this cartridge. One

important point to notice is that the 2732 (also a 4K EPROM) may

not be used with this setup. The pinout is just sufficiently different

The Transactor 64 Volume 5, Issue 04

from the 2532 to cause problems. So, always stick with the 2532

and you won't go wrong.

Perhaps you have the uneasy feeling that you haven't been told

the whole story yet, and you're right, if you stop to think about it,

since the chips are decoded using the various block select lines of

the V1C-20, only whole chunks can be selected at once. In the case

of the 2564 EPROM, this is what you would want since it is desired

that any one of the 8K addresses be selected. But in the case of a 2K

or 4K chip you would clearly be wasting a lot of space. To put it

another way, suppose you are using a 4K EPROM located in the

Block 5 region ($A000 to $BFFF). All of the addresses from $B000

to SBFFF can't be used since there is no memory there to be

accessed. How wasteful!

Since 4K EPROMs are by far the most common type to be found,

let's delve more deeply into how to make the best use of this type

of chip. In general, the region between $A000 to SBFFF should be

devoted to EPROM. Wouldn't it be nice, then, if we could set up the

two empty chip slots in the 3K RAM Pack so that a pair of 4K chips

could occupy this entire region? In this way, no addressing space is

wasted. Let's see how to do it.

Clearly we will need to add a little extra decoding circuitry since

the block select lines decode 8K chunks at a time. (The block select

lines are derived from A13, A14 and A15, the highest three

address lines). To narrow this down to 4K chunks we will need to

combine the BLK5 line (Block 5) with A12 (address line 12) in

some fashion. Figure Four shows a circuit which will do the trick.

We will look at the circuit in greater detail in just a moment, but for

now notice how A12 and BLK5 are input to the decoder and chip

selects for $A000 through $AFFF and SB000 through SBFFF are

output.

Getting Started

Refer to Figure Three now which shows how to modify the select

pads to accept this additional decoding. You will need to break all

of the pads, except for 11-upper, and then make 12-upper. A12

can be picked up from the plate trhough hole next to select pad

12-lower. Finally, the BLK5 line can be picked up from the

leftmost half of select pad 5. The chip select line for the EPROM

addressed to SA000 through SAFFF can be picked up from the

plate through hole next to select pad 3. This decodes the lower

rightmost EPROM to this region. Not shown in Figure Three is the

chip select line for the SB000 EPROM. This can be picked at the

plate through hole located next to the positive lead of the electro

lytic capacitor in the 3K cartridge. The upper righthand EPROM

corresponds to the SB000 region then.

This takes care of the theoretical aspects now. We know where to

find A12, BLK5, and the two chip select lines (which run to pin 20

of their respective chips). Let's see how to actually make the

changes needed to get two 4K EPROM's up and running.

If you haven't already done so, remove the circuit board from the

3K cartridge at this time. Remove the single screw holding the

back on. Then insert a small screwdriver into the interlock slots

and release each corner to separate the casing.

You will want to start out by cleaning up the IC socket holes as

needed. Unfortunately, Commodore fills in the unused circuit

board holes with solder; you'll have to clean them all out again.

But the task isn't as bad as it seems at first. Using a small soldering

iron and a solder sipper, start by cleaning out the holes in the two

EPROM areas. Do not apply too much heat to these, since the

traces are relatively fragile and may lift up from the board. If you

can't get the solder to come out on the first try, move on to another

pad and let the first one cool off a bit. Then come back to the first

one and try again. If the hole seems too "dry", add a little extra

solder, then try sipping the whole amount out again. However you

do it, be patient and careful and watch the heat of your iron! This

process takes about ten minutes if all goes well.

Next, right above the pin 1 end of each EPROM area are two holes

for decoupling capacitors. Clean these out. Later on we will install

two .01 mfd. disk capacitors to decouple the EPROM's from the rest

of the circuitry.

Sip out the plate through holes needed for the A12, chip select

SA000 and chip select SB000 lines. Finally, put a drop of solder on

the 12-upper select pad to make the connection, and break the

pads at 1, 5 and 12. Use a razor knife to break the connections, but

be very careful not to cut any other traces on the board, or worse,

your hands! See Figure Five.

We are now ready to start building. Start off by installing the two 24

pin EPROM sockets, watching most assiduously for cold solder

joints or bridges. By the way, be sure to use low profile sockets so

you will be able to get the cover back on the cartridge when you're

done!

Next install the two .01 mfd. disk capacitors (as mentioned above).

These capacitors are. strung across the +5V supply line and

ground and help keep switching noise from being passed through

the rest of the system. Figure Six shows one of these new capaci

tors in place.

The 74LS00 is installed in a slightly exotic fashion, due to the close

quarters on the circuit board. It is actually mounted upside down!

Using some 5 minute epoxy cement, glue the chip upside down

between the two EPROM sockets. Orient the IC so that pin 1 points

towards the center of the circuit board. This is a strange way to do

things, but really it's hard to suggest a more practical alternative.

Finishing Up

After the epoxy cement has hardened, you may complete the final

wiring. No explicit point-to-point instructions are given here. This

is for two reasons. First, each experimenter will have his own

techniques and methods for wiring up the chip. Secondly, and

perhaps more importantly, if you don't have the confidence to do

the wiring without detailed step-by-step instructions, then you

shouldn't even contemplate this project! As mentioned above,

these modifications are fairly straightforward, but the work is fairly

detailed and should only be attempted by experimenters with

some experience in electronics. There's too much at stake to have

a slip of the soldering iron ruin everything!

Procedure Tips

Even though explicit instructions won't be given, here are a few

tips to guide you along. Use bare bus wire and 22 guage insulated

wire to accomplish the various connections. You can pick up

ground for the 74LS00 (pin 7) off of the heavy PC board trace

located at the far right side of the EPROM sockets. The + 5V line is

just as easily tapped off of a disk capacitor lead right next to pin 14

of the 74LS00. Using Figures Three and Four, complete the wiring

of the decoding circuitry.

The decoding circuitry in Figure Four is simple to figure out if you

draw up a truth table. Intuitively you can see that the BLK5 line is

needed to turn on either the $A000 or the $B000 chip, and it is the

A12 line that determines which of the two chips are to be selected.

Note that the outputs are active low.

Remember, there's no rush, so take your time and see that the final

wiring gets done correctly. After half an hour's work you should be

done and ready to stick the circuit board back in its case.

The New Final Product

What have we accomplished? Well, using the 3K RAM Pack, which

we already had, and a handful of inexpensive electronic parts, we

have set up the cartridge to accept two 4K EPROM's, one decoded

to the $A000 region and one to the $B000 region. This is almost

like getting something for free, if you stop and think about it; we

get some extra memory without even having to get our hands dirty

making a circuit board!

Now that you have this memory area available, what are some

good uses for it? Well, 1 used my cartridge to implement a FORTH

package on the VIC-20. Other good uses would be to burn an

EPROM version of MICROMON for the VIC or any other utilities

that you need frequently. Having programs like these available in

EPROM is really neat; they're always there and ready to go! No

more long tape loads for 4K and 8K utilities!

We've seen in this article, then, how to squeeze the most out of a

3K RAM Pack. As mentioned, by understanding and using the

select pads, it is possible to handle three different types of EPROMs

and locate them in a variety of different memory locations. Fur

thermore, with the addition of a few extra components, we saw

how to set up the EPROM decoding to accomodate two 4K units

with no wasted addresses. Who would have thought that the 3K

RAM Pack was capable of so much!

Jumper

11-upper

11-lower

12-upper

12-lower

2716

break

make

make

break

2532

make

break

make

break

2564

make

break

break

make

Figure One: Selection Pads in a Stock 3K RAM Pack

Figure Two: Selection Scheme for

Three Types of EPROMS

fj)

pi ate through hole

this, half only

chip select

*AOOO

A12 >

BLKS

each NAND gate - 1/4 74LSOO

chip select

• BOOO

chip select

•AOOO

Figure Four: Decoding Circuitry For Two 4K EPROMS

Figure Three: Modified Selection Pads

Figure Five: Breaking Connections
Figure Six: A New Capacitor

The Transactor
66

Volume 5, Issue 04

Computer Slide

Projector Control

The following application is one which will interest many. Al
though the title denotes a specific interface for a slide projector
namely the Kodak Ektagraphic, it can be adapted to control any
120 VAC application that you deem necessary. It is also possible to
allow for control of up to 8 totally isolated channels, through
program control. Each of these channels can perform whatever

duties you assign to them, without requiring assistance in any
shape or form from the other channels. As promised, an interface
that will interest most.

In brief, the standard interface will allow for forward and reverse
motion of a Kodak Ektagraphic Slide Projector under program
control via the user port of the computer. In order to help you
visualize how this can be achieved, a quick explanation of the port
is in order.

The User Port

The ports PA0-PA7 (PET/CBM) or PB0-PB7 (VIC/C64) are pro
grammable input/output lines, driven by POKEs, and read with

PEEKs. When programmed as outputs through the Data Direction
Register, each line is capable of driving a single TTL input, with
approximate current drain of 1.5 ma. When programmed as

inputs, each line acts as a single TTL load, with the same current
drain expected.

When programmed as outputs through the Data Direction Regis
ter, the Output Register will allow for a graduation of voltage levels

on the port due to the status of the corresponding bit. If the port is

set to 0, the voltage level can be expected to be .5 volt or less. If the

bit is turned on, bit= 1, then the voltage level will be 2.4 volt or

greater. In this way, the port can control virtually any device
desired, through the correct interface.

To best understand programmed access to the port, 1 highly

recommend referring back to the Hardware Corner of Volume 5,

Issue 1, in the Transactor. The authors cover the subject exten

sively, and it would be redundant for me to even attempt to cover it
once again.

Boolean Logic

Certain techniques are used within the demonstration program

shown below that do not fall within the heading of common

knowledge. Boolean logic is used within, and will confuse many at

first glance. To help alleviate some of this confusion, a quick

boolean tour is required.

In order to turn on or off specific bits on the ports without

disturbing its current status, boolean logic is best used. You could

device a vast formula to calculate the port status with or without

your bit, but there is no need. Commodore has incorporated

Boolean operators into their version of BASIC, thereby relieving

you of the agony.

The operators are AND, OR, and NOT. A quick explanation will be

found for each below :

Ted Evers

Richmond Hill, Ont.

AND

Result includes only that information which is included in both
sets.

Set A-00110101 = Decimal 53

Set B-11100001 = Decimal 225
Result 00100001 = Decimal 32

Therefore, 53 AND 225 = 32

To find the status of a single bit, (bit 3), mask off other information
by ANDing with the decimal value for that bit:

PRINTPEEK(59471)AND8

.. .will return 8 if bit is high (on), or 0 if the bit if low (off).

OR

Combines a set so that the result includes all bits " on " which were
" on " in either set.

Set A-00110101 = Decimal 53

Set B-11100001 = Decimal 225

Result 11110101 = Decimal 245

Therefore, 53 or 225 = 245

To set a bit in a byte, the operator OR should be used:

POKE 59471 ,(PEEK(59471) OR N)

.. .where n represents a number in the range of 0-255, will set the
bit, or bits, of your choosing.

NOT

Inverts all information within a set.

A-00110101 = Decimal 53

NOT A-11001010 = Decimal 202

Therefore, not 53 = 202 (202 = 255-53)

To clear a specific bit within a byte, AND and NOT are used in

tandem:

POKE 59471 ,(PEEK(59471) AND NOT N)

.. .where n represents a number in the range of 0-255, will clear

(turn off) the bit(s) of your choosing.

When executed directly from BASIC, the NOT command will

produce strange results, if taken at face value. From BASIC, NOT

53 = -54, according to Commodore logic. In reality, NOT 53 =

202, (202 = 255-53). The value of -54 is 256+ (-54) which equals

202, the correct result. It appears that the sign bit is flagged, acting

The Transactor 67 Volume 5, Issue 04

like carry turning on bit 8 (256 value). Therefore, add them

together and you get the correct result.

The Program

With the port explained, and boolean logic crystal clear for all, the
program, circuit diagram, board design and layout are best shown.
Once this has been done, 1 will explain how the circuit can easily

be adapted for any application.

100 rem ** ted evers - m.s.s.b. toronto : update sept/84
105 rem ** for use with pet/cbm/c64/vic20

110 print chr$(147)

115cd$ = chr$(17) + chr$(17) + chr$(17)

+ chr$(17) + chr$(17): rem - cursor down

120 cr$ = chr$(29) + chr$(29) + chr$(29)
+ chr$(29) + chr$(29): rem - cursor right

122 rem m = data direction reg a, n = output reg a

125 m = 59459:n = 59471 :rem ** pet/cbm

130 rem • m = 56579:n = 56577:rem ** c-64
135rem:m = 37138:n = 37136:rem**vic20

140 poke m,3:poke n,3 :rem set ports 0 + 1 as outputs and

high .,
145 print mid$(cd$,3)mid$(cr$,4)" slide projector control

150 print mid$(cd$,4)mid$(cr$,4)" demo program |
155 print mid$(cd$,1)mid$(cr$,1)"(f) advances magazine

160 print mid$(cd$,4)mid$(cr$,1)"(r) reverses magazine

165geta$:ifa$="" then 165

170 if a$ = " f" then gosub 195

175 if a$ = " r" then gosub 245

180 goto 165

185:

190 rem ** advance magazine **
195 x = peek(n):rem-retain current value

200 x = x and not 1 :rem - turn off bit 0

205 poke n,x :rem - poke it back in

210 k = ti

215 if ti<k + 20 then 215 :rem - wait loop

220 x = x or 1 :rem - turn on bit 0

225 poke n,x

230 return

235:

240 rem ** reverse magazine •*

245x = peek(n):rem - retain current value

250x = xand not 2 :rem - turn off bit 1

255 poke n,x :rem - poke it back in

260 k = ti

265 if ti<k + 20 then 265 :rem - wait loop

270x = xor 2 :rem -turn on bit 1

275 poke n,x

280 return

Notes

With the Commodore 64, +5 volts is available through the user

port The PET/CBM was not as well designed. You will be required
to tap onto the cassette port to find the power required. The
pinouts of all the ports will be required for the correct installation
of this interface, and can be found in the Transactor Referance

Issue, The Programmers Reference Guide for the C64, and many

other'books. This I leave for you to locate.

To further increase the power handling capability of the interface

a suitable TRIAC should be used in place of the existing RCA

T3202BTR1AC.

Future Variations

With a few simple changes to this interface, control can be
exercised over 8 separate channels, using all 8 user ports lines. For
every extra 2 channels required, add an extra circuit board. Each
board will allow for control over two ports, therefore, add up to 3
more boards. A simple method to achieve greater results.

To control loads other than one specific slide projector, you will
find little effort expended on your part. A diagram (next page) has
been prepared to better demonstrate the method.

As can be seen from the diagram, little has been changed. The
jumper between the YELLOW line in and the opposite side of the

board has been removed, and two separate LOADs have been
brought into play. In the diagram it has been shown that 2 sources

of AC are required. This doesn't have to be if you bridge the AC
lines together. In this way, a single AC line in could control up to
eight channels, if you so devised. The choice is yours to make.

398

pne o—

GND

O RED

O VELLOW

O WHITE

O VELLOW

GND

Socket Preh# 71202-038

Plug Preh# 71418-030

fldd This Plug To "Kodak Remote Control" For Patch Cord To Projector

Schematic Diagram

The Transactor 68 Volume 5, Issue 04

m.s.8«b,

AV-83O1

n ,, Printed Circuit Board Design
uouble size as shown. The board physically measures in at 3 inches in length by 1.75 inches in width.

T2302B

"-r*«=- X

Wh i

F=>l=l©i

F=-l=)

• GMD

Component Layout Diagram

T2302B

LORD

LORD

^/-•^•-J 4700, eh

T" / ■■

Connection of loads and AC lines

The Transactor 69 Volume 5, Issue 04

Audio/Video

Cable Adapter

For The VIC 20

Arthur S. Barlaan

Chicago, IL

to 40/80 column

to Audio/Video

connector of

VIC 20

5-pin DIN plug/
with cable

to audio

system

Dual RCA

phono jacks

to TV monitor 5-pin DIN socket

connect cable coming from

RF modulator box here

Figure 1

The VIC 20 was originally designed to be connected to a block and

white or color television set displaying 22 characters per line. This

can be a major limitation to serious users who intend to use their

VICs to do wordprocessing or spreadsheets on a 40 or 80 column

display. A solution to this problem is to get a 40/80 column

adapter such as the one supplied by Data 20. The next thing to

consider is the television monitor. With a 40 column display, the

regular b&w or color TV set will give a satisfactory display,

however, if you are going to use the 80 column display you will

need a special TV monitor available in either amber, green, or

color from a wide variety of suppliers.

The TV monitor will differ from the regular TV set in the way it is

connected to the computer. The signal going to the TV monitor

does not need to pass through the RF modulator box (black box

with channel 2 or 3 selector switch). You will need a special cable

to connect the TV monitor to your VIC 20 or C64. You can

construct your own inexpensive cable assembly with the option of

retaining the connection to your regular TV set. Figure 1 shows the

pin numbering of the Audio/Video connector at the back of the

VIC 20 and table 1 shows the purpose of each pin. This connector

requires a standard male 5-pin DIN connector (Radio Shack *42-

2151 DIN patch cord). The standard connector used by most TV

monitors is an RCA jack which will require an RCA plug cable

(RS*42-309 audio cable set). Following the circuit diagram in

Figure 2 you will have an audio/video adapter which will have 3

connections:

1. 5-pin male DIN plug with cable to be connected to the back of

theVIC20(RS*42-2151)

2. 5-pin female DIN jack (RS#274-005 5-pin chassis socket) to be

connected to the RF modulator cable for regular TV connection

3. 2 RCA jacks (RS#274-332 dual phono jack), one for video output

to be connected to the video-in jack of the TV monitor and

another for audio output to be connected to the audio-in of a

standard stereo set. Both jacks will be connected to the TV

monitor and/or stereo set using an RCA plug audio cable set

(RS*42-2309)

The two capacitors (Cl and C2) in figure 2 are used to protect the

devices connected to the computer. Cl is a coupling capacitor

which allows only video signals to pass and prevents any DC

(direct current) voltages from passing which can do damage to the

TV monitor. C2 is a bypass capacitor which eliminates any high

frequency signals, such as noise generated by hair dryers or

vacuum cleaners, from interfering with the audio system.

With this adapter and a 40/80 column adapter you can use your

VIC 20 to display 22, 40, or 80 columns on either your regular TV

set or special TV monitor. The next thing you may get tired of

doing is switching from 22 to 40/80 columns which requires that

the 5-pin DIN plug coming from the box you just assembled be

connected either at the back of the VIC 20 for 22 columns or at the

back of the 40/80 column cartridge for 40 or 80 columns. This can

easily be simplified by adding a DPDT (double pole, double throw)

The Transactor 70 Volume 5, Issue 04

switch and another 5-pin DIN plug to the cable adapter circuit.

Figure 3 shows how the DPDT switch and the additional cable

should be connected. The entire assembly can be housed in a

small aluminum box (3 l/4x 2 l/8x 1 1/8) or using RS#270-230

experimenter box.

A simple procedure must be followed to be able to switch from 22

to 40/80 columns display or vice-versa without losing whatever is

already in memory. You may find this need for switching when

editing BASIC programs. You may find it more convenient to edit

using 22 column mode since the maximum line length under this

mode is 88 characters while it is only 40 or 80 characters under 40

or 80 column mode.

I will assume you are using a 3 (or more) slot expander together

with the 40/80 column cartridge positioned in slot 1 correspond

ing to DIP switch *1. With the proper cables connected and the

mode switch of your audio/video adapter box positioned to 22

columns and DIP switch *\ of the expander board on OFF position

(disabling the 40/80 column cartridge), you will see on your

monitor a 22 column display (large characters). Load any program

you want to test just to see that you wonf lose this program when

you switch to 40/80 column mode. To switch to 40/80 column

mode follow this procedure carefully in the right sequence:

Step 1. Switch DIP *1 of expander board to ON (establishes the

connection of the 40/80 column cartridge to the expan

sion port).

Step 2. Type SYS40969 (for DATA 20 cartridge), or whatever your

40/80 column cartridge manual tells you to enable 40

column display or SYS40972 (DATA 20 cartridge) for 80

column display. The cursor will disappear at this point.

Don't panic.

Step 3. Switch the display mode switch of your audio/video

adapter to 40/80 column position. At this point the

'READY' message will appear on the screen in either 40 or

80 column display depending on the choice you made.

Step 4. Now list the program you loaded and it will still be in

memory ready to run.

To transfer back to 22 columns all you have to do is switch the DIP

#1 to OFF position (disabling the 40/80 column cartridge) then

turn the mode switch of your adapter to 22 columns. A big

'READY' message will be displayed at the top of your screen

indicating that you are now in 22 column mode. Again, whatever

is in memory will be retained. There may be times that you will

lose what is in memory, but this can be caused by too much jarring

when switching the DIP switch of the expander board. So be extra

careful when pushing the DIP switches.

Commodore 64 Users: This project can easily be adapted to the

Commodore 64 by just connecting the proper pin numbers of the

audio/video connector of the 64. Now you have a choice - 22, 40,

or 80 - in just a flip of 2 switches. Happy switching!

To 40/80 Column Cartridge

To RF llodulator (black box)

5-pin Dlfl jack

+ 1/ - ^n RCA output jack

l\ V^ Vuic-o Out
lOuf 16V

RCA output jack

Audio Out

Figure 2: Audio/Video Cable Adapter
Figure 3: Audio/Video Adapter for

22 or 40/80 Column Display

The Transactor
71

LINKED LISTS

Parti

K. Murray Smith

London, Ont.

Sort without Sorting. . .

Linked lists provide a powerful alternative to sorting when large

quantities of data must be organized. The following example

illustrates some of the features of linked lists. Additional features

and some simple possibilities for their use will be found in the

summary of Part 2.

The Rentawreck car rental agency is computerizing its operation.

In the initial setup it was decided to group the vehicles owned by

the company into three lists: those currently rented, those availa

ble for rent and those being serviced. Following this, it would be

necessary to be able to move vehicles between these lists. For

example, when a rented vehicle is returned, it is removed from the

rented list and added to the available list (or maybe to the list of

those being serviced). When new vehicles are purchased, they

must be made available for rental. Also, vehicles that have passed

their useful lifetimes should be removed from circulation as they

are returned.

It was also a requirement that vehicles on the available list be

ranked as to mileage, the vehicle with lowest mileage being the

first available, and those on the rented list be ranked by date-to-

be-returned.

The Data

The vehicle information is given in a datafile. To refresh your

memory, a datafile consists of one or more records. In our case a

record contains all the information about one vehicle. The record

is made up of one or more fields. Referring to the vehicle record,

each datum such as licence plate number is a field.

The datafile is large - the number of vehicles exceeds 500 (al

though it will be much smaller for our purposes now) and for each

is an entry (record) containing plate number, mileage, type of

vehicle, engine size, colour, type of transmission, date of last

servicing and so on to an estimated 12 fields.

Statement of the Problem

This is easy: write the series of programs necessary to take the

company through the automation (so to speak!) of its operation.

Solution to the Problem

This is not as easy. The first step, as any starting problem-solver

knows, is to divide the problem into smaller tasks and handle

these separately. For us, the tasks become establishing the initial

lists of vehicles and providing the means of updating these lists.

Since the lists must exist before they can be manipulated, let us

concentrate on this (but keep in mind the requirements of the

second task).

Data Storage

Since the results of our initialization program will be required in

the second half of the solution, these will be stored on disk (or

tape).

Within the program data storage will be in arrays. One might think

of using two-dimensional arrays, each row being for a vehicle and

each column for one of the dozen fields. However, this is rapidly

discarded as we note that it is possible to require the vehicles in a

list to be sorted on more than one field (for example, the available

list is sorted on mileage but also on vehicle type for the customer

who needs a station wagon regardless of its mileage). For each field

sorted, an entire array must exist! Unless your minimum memory

size is a few hundred kilobytes, this could cause problems.

It is desirable to try to confine our storage to one set of the data. But

how can we possibly sort on two or more fields without scrambling

the data in the array? The answer is simple - by forgetting

traditional sorting techniques.

One of the most common of these involves comparing consecutive

elements of an array and switching them if the order is not correct.

For example, consider the alphabetic sorting of the array shown in

the top line of Figure 1.

Figure 1

Array Entries

1

C

C

c

A

A

A

A

Element

2

F

F

A

C

C

c

B

3

H

A

E

E

D

B

C

4

A

E

F

i)

B

D

D

Number

5

t:

G

D

B

E

E

E

6

G

D

B

F

F

F

F

7

D

B

G

G

G

G

G

8

B

H

H

H

H

H

H

ABCDEFGH

Comparing elements 1 and 2, we find they are in order.

Comparing elements 2 and 3, we find they are in order.

Comparing elements 3 and 4, we find they must be switched.

This continues until elements 7 and 8 are compared. After this the
array looks like the second line of Figure 1. Note that the "largest"
value, H, has been placed in its correct spot.

Starting again at elements 1 and 2, the comparisons and switch

ings are made once more but only up to elements 6 and 7 this time.

Now the array looks like the third row. The remaining rows of
Figure 1 show the rest of the sorting passes through the array. The

underlined elements indicate those that are properly sorted and do

not have to be considered on the next pass. Note also that the last
two lines are the same. This situation might occur at any time in a

sorting and so a check is usually made to see if any switches have

been made in a given pass. If not, then the sort is finished.

In our problem this method of sorting would involve the move
ment of large numbers of elements within the array. Of course you

could save many operations by using a one-dimensional array,
each element of which is a string containing all the information on

one vehicle. However, for our comparisons we are now required to

use the MID$ function to compare the correct fields! The number

of operations in total then is not significantly reduced, if at all.

Sorting Without Sorting

The problems of sorting on many fields can be solved using linked

lists. An example of a linked list is shown in Figure 2. The linkages

between array elements are indicated by arrows. The arrows point

to the next element in the list, and by following the arrows into and

out of each element it is possible to go along the list from beginning

to end. (Of course in a large list it would be nice to have a pointer to
the start of the list!)

Figure 2

Figure 3

C

t
H R

r-

Rather than arrows, a second one-dimensional array of the same

length can be used to hold the pointers to the next elements as

shown in Figure 3. Note that the quantity STARTER is used to

indicate where in LETTERS the list begins. In this case it is the

fourth element. Then looking at the fourth element of the LINK

array we find an eight. This says the next letter in the list is the

eighth element of LETTERS (which is B). Then going for the eighth

element of LINK, it is a one, giving C as the next letter in the list

and so on. Since H is the last letter in the list, its corresponding

element of LINK must indicate somehow that the list is done and a

zero is used (arbitrarily) for this purpose.

1

c

7

Element

2 3 4

F

6

H

0

A

8

Numbers

5 6 7

E

2

G

3

D

5

8

B

1

ARRAY

LETTERS

LINK

STARTER

Regardless of the number of fields in each record, only one LINK

array is needed. This array is valid only for the specific field we

linked. If we wish a file organized on more than one field, we will

need one array of pointers for each field to be linked. (A file

containing four fields per record and sorted on all fields would

require four arrays for the file and then four for the pointers

whereas traditional sorts might require up to four arrays for the file
plus 16 more, one group of four for each field sorted.)

The Mechanics

Let's now look at the mechanics of setting up the linked list. Table

1 shows some of Rentawreck's currently rented vehicles (only two
fields are shown).

Table 1: The Rented Vehicles

Plate

Number

TER 686

LAS 241

JDL413

VAX 750

SJS017

SPY 007

Due Date

(Month-Day)

12-07

12-18

12-11

12-27

12-03

12-11

Assume that there is a possibility of a maximum of 50 vehicles.

This provides a limit on our array sizes right now. Program 1 reads

the data and links the file based on due date and Table 2 describes

the variables used.

Program Description

The following is a line-by-line description of Program 1.

30,40: dimension the arrays to be used. Only line 30 need

be changed to affect the array sizes throughout the

program.

60-90: by filling the arrays with these strings, the arrays

can be printed beside each other in columns.

110-160: input the plate numbers and due dates for the

vehicles currently rented, keeping a count of how

many in NR. Stop reading data when a 'dummy'

record is read (line 140).

180-200: copy into a work array the portion of the due date

array to be linked. This is necessary as the subrou

tine which sets up the links destroys the array upon

which it works.

210,220: define the highest and lowest elements in the work

array to be used in the linking.

The Transactor 73 Volume S, Issue 04

230: perform the linking.

240: save the entry point to the linked list of rented

vehicles.

8000: the Hoop ensures that we go through the portion of

the working array we are using once for each

element.

8010,8020: since we are linking values from smallest to largest,

here we assume that the smallest value is in the first

element of the portion of the array we are using.

SM$ and SB store this "smallest value so far" and its

subscript.

8030-8080: go through the remainder of this portion of the

work array and see if there is a smaller value - if so,

put this value in SMS and the subscript into SB.

8090-8120: check if this is the first pass through this section of

the work array - if so, then we have the entry point

to this linked list (SE). This subscript must also be

saved (in J) because this element of the link array

(LD) must contain the pointer to the next smallest

value.

8140-8150: on any other pass through the work array, put the

subscript of the current smallest value into the

correct position of the pointer array (as given by J)

and update the value of J.

8160: replace the current smallest value by '[' which has

an ASCII value higher than any digit or uppercase

letter. This ensures that this element will not be

chosen again as a next-smallest value.

8180-8190: if we have now linked all of the values in the work

array, set the last pointer to a zero to indicate the

end of the list.

Table 2: Description of Variables

DU$ the array containing the due dates of the rented vehicles

I,J,K loop controllers (see program description)

LD the link array - contains the pointers

NR the number of rented vehicles

PL$ the array containing licence plate numbers

S the size (dimension) of all arrays

SB the subscript of the smallest element found in the work

array so far

SE where to enter this particular linked list

SM the starting element number for a list to be linked

SM$ the smallest value found in the work array up to this point

SR the pointer to the starting element for the linked list of

rented vehicles

UL the highest element number for a list to be linked

WO$ a work array, starting as a copy of the list to be linked

Program Output

Since the job of organizing Rentawreck's files has just begun, the

program contains no output section. The arrays can be examined

by typing in immediate mode:

PRINT SR

A$='7"

FORI = 1TOUL:?PL$(I)A$DU$(I)A$LD(I):NEXTI

(For output to printer, precede the above instructions with

OPEN4,4:CMD4 and follow them with PRINT#4:CLOSE4)

You should see:

5

TER 686

LAS 241

JDL413

VAX 750

SJS017

SPY 007

12-07 3

12-18 4

12-11 6

12-27 0

12-03 1

12-112

The "sorted" listing of due dates begins with element 5, the fifth

pointer shows the next due date in element 1, the first pointer

shows the next due date in element 3 and so on. The second last

due date is element 2 and element 2 of the link array is 4. The

fourth element of the link array is 0, indicating the end of the list

(those memory scavengers out there who like to use the zero

elements of arrays might use -1 to indicate the end!)

The Other Lists

Part of out initial task is done. We have yet to establish linked lists

for those vehicles which are available for rental (linked by mileage)

and for those being serviced (linked by mileage also). Where

should we store these data? We could use another set of arrays for

each of these situations. We would then have three separate

pointer arrays. The result would be well-organized data, each

category having its own linkage array.

At this point it would be wise to remember that we earlier said that

although we were working to solve the first half of the problem, we

should also keep in mind the requirements of the second part. One

of these is that we are able to transfer vehicles between lists as

rented ones are returned, serviced ones are made available and so

on. With separate lists, elements will have to be copied from one

set of arrays to another. This also implies that each set of arrays

must be dimensioned sufficiently large to hold nearly all (if not all)

of the vehicles at once. Suddenly memory usage is increasing

again, a situation we wished to avoid. In addition, what do we do

with the newly-vacated array elements? How do we keep track of

them to use them again later?

The best place to store the other vehicles is in the same array as

those currently rented. The advantage here is that all of the

vehicles owned by the company are together in the same place.

Not only that but the pointers for all three lists can also be kept in

the same array, each list having its own entry value and terminat

ing with a zero element.

Figure 4 shows a LINK array containing pointers for the three

linked lists previously described. Also linked into a list are the

unused (or free) elements of the array. These are useful for storing

data of eventual purchases. It is important to realize that the lists of

rented and available vehicles were sorted on different fields,

namely due date for the rented and mileage for the available. This

is a very powerful feature of linked lists.

The Transactor
74

Figure 4

ELEMENT

NUMBER

LINK

ARRAY

STARTING

ELEMENTS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

3

4

6

0

1

2

9

11

10

0

13

7

12

15

0

14

18

19

20 "

0 .

» Rented

m

* Available

Being

/ Serviced

J

Free

5

8

16

17

Program 2 contains additions to Program 1 to read the data for the

available vehicles and those being serviced, to link both of these

by mileage, and finally to link the free space together. Linking the

free space provides for good memory management. As vehicles

are sold, the array space occupied by these can be reused by new

vehicles purchased.

Lines 1020 and 1060 require an explanation. The mileages are

stored as strings for two reasons. One is the desire to have these

numbers displayed or printed right-justified in a column, that is,

lined up along the right ends of the numbers. The second is being

able to use the same routine for linking all of the lists. Since the

maximum mileage is 999999, line 1060 is used with line 1020 to

put leading blanks in mileages having fewer than six digits.

Otherwise '11' would sort as being greater than '100000'!

Table 3: Description of Additional Variables

B$ a string of six blanks to provide leading blanks where

necessary in the mileage strings

MI$ the array containing the mileages (in kilometres) of the

vehicles

NA,NS the numbers of available vehicles and vehicles being

serviced, respectively

SA,SS,SF the pointers to the starting elements of the linked lists of

the available vehicles, those being serviced and the free

elements respectively.

To see the first three linked lists and the start of the linked free list,

type in immediate mode again:

PRINT SR;SA;SS;SF

A$=7"

FORI = 1TO20:?PL$(l)A$DU$(l)A$MI$(l)A$LD(l):NEXTI

You can then start at the element given by SD, SA, SS or SF to enter

the appropriate list and then follow it through to the end (as

indicated by a zero pointer). If you wish to see how the free list

ends, then replace the

'1 TO 20' by '21 TO 50'

(The output is best seen on a printer using FORI= 1TO50 with the

opening and closing statements given previously.)

Saving the Lists

In order to be able to update the lists in Part 2 of this article, we

need to save these lists on tape or disk. Program 3 contains the

necessary additions to the current program to save the data in a

sequential file on disk.

Summary

Thus far we have accomplished all of the requirements for the

initial setup of Rentawreck's files. We have also attempted to be

conservative with respect to memory and have given some consid

eration to being able to easily manipulate the lists, something that

we must be able to do in Part 2.

• Program 1 and Program 2 on NEXT page

Program 3

10rem- program 3

4000 rem- output linked lists to disk

4010 print" do you wish to save the linked"

4020 print" lists at this time?"

4030 print" (type y or n):";

4040 get d$

4050 if d$ = "" then 4040

4060 print d$

4070 if d$ = " n" then 7999

4080 if d$<>" y" then 4030

4090c$ = chr$(13)

4100 openi ,8,2," 0:linked lists,seq.w"

4110 print#1 ,s;c$;ul;c$;sr;c$;sa;c$;ss;c$;sf

4120 for i = 1 tos

4130 :print#1 ,pl$(i);c$;du$(i);c$;mi$(i);c$;ld(i)

4140 next i

4150close1

4160 print tab(10); "lists have been saved"

The Transactor 75 Volume 5, Issue 04

Program 1
Program 2

10 rem- program 1

20 rem- set up arrays, variables

30s = 50

40 dim pl$(s),du$(s),wo$(s),ld(s)

50 rem- initialize arrays

60 for i = 1 to s

70 :pl$(i)= " " :rem 7 spaces

80 :du$(i)= " " :rem 5 spaces

90 next i

100 rem- input arrays

110 nr = 0

120 for i = 1 to s

130:readpl$(i),du$(i)

140 :if pl$(i) = " dum num" then 170

150 :nr = nr+1

160 next i

170 rem- read due dates into work array

180 for i = 1 to nr

190:wo$(i) = du$(i)

200 next i

210 ul = nr

220 sm = 1

230 gosub 8000

240sr = se

7999 end

8000 i = sm

8010 :sm$ = wo$(sm)

8020 :sb = sm

8030 :k = sm + 1

8040 :if sm$< = wo$(k) then 8070

8050::sm$ = wo$(k)

8060::sb=k

8070::k = k+1

8080 :ifk< = ul then 8040

8090 :if iOsm then 8140

8100 :rem- establish entry point to the link array

8110:se = sb

8120:j = se

8130:goto8160

8140:ld(j) = sb

8150:j = sb

8160:wo$(sb)= "["

8170:i = i + 1

8180 if i< = ul then 8010

8190 ld(j) = O

8200 return

10000 data ter 686,12-07,las 241,12-18

10001 data jdl 413,12-11 ,vax 750,12-27

10002 data sjs 017,12-03,spy 007,12-11

10003 data dum num,99-99

10 rem- program 2

40 dim pl$(s),du$(s),wo$(s),mi$(s),ld(s)

85 :mi$(i) = " " :rem 6 spaces

140 :if pl$(i) = " dum num" then 165

150 :nr = nr + 1

165 rem- blank out the dummy data

166pl$(i)= " " :rem 7 spaces

167 du$(i) = " " :rem 5 spaces

1000 rem- for available vehicles

1010na = 0

1020 b$= " " :rem 6 spaces

1030 for j = nr +1 tos

1040:readpl$(i),mi$(i)

1050 :if pl$(i) = " dum num" then 1090

1060 :mi$(i) = left$(b$,6-len(mi$(i))) + mi$(i)

1070 :na = na + 1

1080 next i

1090 rem- blank out the dummy data

1100pl$(i)= " " :rem 7 spaces

1110 mi$(i) = " " :rem 6 spaces

1120 rem- set up lower and upper limits on this part of array

1130sm = nr + 1

1140 ul = nr + na

1150 rem- read mileage into working array

1160 for i = sm to ul

1170:wo$(i) = mi$(i)

1180 nexti

1190 gosub 8000

1200 sa = se

2000 rem- for vehicles being serviced

2010ns = 0

2020 b$ = " " :rem 6 spaces

2030for i = nr + na + 1 tos

2040 :read pl$(i),mi$(i)

2050 :if pl$(i)= " dum num" then 2090

2060 :mi$(i) = left$(b$,6-len(mi$(i))) + mi$(i)

2070 :ns = ns+1

2080 next i

2090 rem- blank out the dummy data

2100pl$(i)=" ": rem 7 spaces

2110 mi$(i) = " ":rem6spaces

2120 rem- set lower and upper limits

2130sm = nr + na+1

2140 ul = nr+na + ns

2150 rem- read mileage into work array

2160 for i = sm to ul

2170:wo$(i) = mi$(i)

2180 nexti

2190 gosub 8000

2200 ss = se

3000 rem- link free space

3010i = ul + 1

3020 sf = i

3030 if i = s then 3070

3040ld(i) = i + 1

3050:i = i + 1

3060 if i< = 49 then 3040

3070ld(s) = 0

10004 data los 190,101760,njz 242,1569

10005 data kfd 822,137564,tnh 487,200147

10006 datazom 434,6572,earn 876,87624

10007 data upx 814,16583,dum num,-1

10008 data ere 098,60105,trk 633,120354

10009 data gbd 484,32900,dum num,-1

The Transactor 76 Volume 5, Issue 04

Computing Desk Scott Johnson

Traverse City, MI

38

-11-

■■ .■ ■ ■■:■. ■ ■.■■■■■-. -■
■ ■ ■ ■:.

13

28

■ ::;. "■■'"■

v ... '.. .

1

!

[

j... _

■■(:. : :■; •,

■:■ ■■ . ■:

. . ■ '...-. :.■

■

~ — —

j

■

'::■:::•:■::■ ■ ..,-'■ '"■" ■■ . .■■-: -;," ■

3
j_

21 —

For many of us, the purchase of our first computer was the

culmination of months, or perhaps years, of longing and dream

ing. We hurried home from the store with our dream tucked under

our arm, safely packed away in cardboard and styrofoam. With

great anticipation we finally removed our dream realized from its

plastic cocoon, only to be faced with another major decision;

where are we going to put it? On the kitchen table? The living room

floor? On that rickety old card table? I'm afraid that too many home

computers have either ended up gathering dust tucked away

behind the family TV, or stashed in the top of a closet along with

other dreams that we didn't have a convenient place for.

Well, rescue that Commodore from the dark corner it's hiding in

because here's a handy little computer desk that almost anyone

can build from less than one sheet of 3/4 plywood. This simple

desk will easily hold your computer, monitor, disk drive, cassette

deck, printer, and maybe even have some room left for your back

issues of The Transactor.

The desk is constructed from just 8 pieces of plywood;

(5)3/4x11x38

(1)3/4x23x38

(2)3/4x3x21

All of the joints may be just carefully glued and nailed together, or

if you have access to the proper equipment, you might try dadoing

the sides before attaching the three horizontal shelves.

Good luck, we hope that your computer will bring you many more

hours of computing enjoyment now that you, and it, have a simple

and convenient desk at which to work, play, and dream.

The Transactor 77 Volume 5, Issue 04

Rethinking

DATAfication

Every now and then we are faced with the necessity of converting

memory into DATA statements, whether it's sprite descriptions,

machine language, character sets, or something else. Most of us

have written or otherwise obtained programs to do this fiddly job

for us.

Even so, it's hard to be thrilled about the result. DATA statements

take up a lot of memory relative to the data they actually embody,

and the process of poking the data back into memory is a slow one.

The compensating advantage, of course, is that data keeps com

pany with a BASIC program more comfortably in this form than in

any other.

It would be nice, wouldn't it, to preserve that advantage while

minimizing the drawbacks? It was with that thought that I wrote

the DATAfier.

The DATAfier also creates DATA statements, and links them into

memory in the usual way with the dynamic keyboard technique.

But instead of being encoded as decimal numbers separated by

commas, in this case each byte of data is represented by two

letters, and the pairs of letters are concatenated without commas

into strings up to 74 characters in length.

Consider how that saves memory. One byte of data encoded

decimally requires, on average, more than two and a half bytes of

memory, plus another byte for the comma. Encoding that same

byte as a pair of letters results in a saving of nearly 50 per cent.

Along with the DATA statements, the DATAfier also provides a

short machine language routine to poke the encoded data into

memory. To get an idea of its speed I once encoded the entire C64

BASIC ROM, all 8192 bytes of it, a process that took several

minutes to complete. The DATAfier poked it all back in less than

four seconds. Try that with decimally encoded DATA some time

and see how you do.

Using The DATAfier

Type RUN, and RETURN.

The program will prompt you with: " D/DISK M/MEMORY? "

Reply with D if the program you are intending to datafy is on disk

(drive 0 only). You will be asked to enter the filename, then the

Datafier will do the rest.

If the program is in memory, type M. The Datafier will prompt you

with:

"START, END? "

Enter the start and end addresses in hexadecimal, just as you

would with the Machine Language Monitor, but separate the

numbers with a comma. Remember that the end address you give

should be one byte beyond the area you want DATAfied. Press
RETURN.

Now the DATAfier goes to work, and won't stop till it's done. You'll

see things happening on the screen — that's the dynamic key

board technique in action.

Nick Sullivan

Scarborough, Ont.

When finished, the first 37 lines (0-36) are erased by the subrou

tine at line 31. Deleting lines can be accomplished using a

variation of the same technique used to enter lines. However, the

technique used in this subroutine eliminates the trouble of delet

ing each line individually. First it tracks the line link pointers for

37 lines. Then it adjusts the link pointer of the first line so that it

points to the link pointer of line 8997. By simply erasing line 0,

BASIC will remove all the bytes up to the end of line 36. Just before

this is done, line 36 adjusts the high byte of the End-of BASIC

pointer as the editor does not account for a move across more than

one page boundary.

The result will be a subroutine beginning at line number 9000.

You can merge the subroutine into any program that requires the

data (one way to do the merge is with the TransBASIC ADD

command — see elsewhere in this issue). The instruction GOSUB

9000 will do the work of reading the DATA statements and poking

them into memory. Naturally, if you have any other DATA state

ments preceding line 9000 in your program they must already

have been read at the time the GOSUB 9000 instruction is given.

The method of encoding the data as a pair of alphabetic characters

is extremely simple: each character represents one nybble of the

hexadecimal data byte. The letter 'A' represents 0; each subse

quent letter represents a subsequent hexadecimal digit. 'AA',

therefore, encodes a zero byte; 'DM' would be equivalent to

3*16+12 — $3C, or 60. The highest letter used is P, which

represents the hexadecimal digit F.

The only disadvantage of DATAfied DATA is that it is even harder

to read than its decimal counterpart. However, the DATAfier wasn't

designed for publishing programs for hand entry. It's main pur

pose is for including your machine language subroutines as part of

your BASIC text. Using any type of loader will make your hybrid

programs more transportable, but DATAfied DATA is a viable

alternative for programs that will almost never be 'transported' by

hand.

Editor's Note

Between the time the TransBASIC article was prepared and this

one, Nick has become the new Editor for TPUG Magazine.

One last note about the program.. . you 'II notice several spaces in

the middle of line 15. The reason? Line 15 prints variable defini

tions at the bottom ofeach screen during the DA TAfication process.

This will always take two lines. When BASICprints a variable, the

first character output is a 'Cursor Right'. // that cursor right charac

ter is the one responsible for moving onto the second line, the

screen line wrap table will not be updated so that the two lines are

treated as one line that has 'wrapped around'. When the Carriage

Return is dropped onto this string, the GOTO command will not be

executed unless a second Carriage Return is sent. To avoid this, it is

necessary to have the second line entered as the result of Spaces.

Depending on the column width ofyour particular machine, these
spaces will need to be inserted to ensure the two lines become one.

An article on the screen wrap table will be appearing in a not too
distant Transactor. M.Ed.

78
Volume 5, Issue 04

Converting The Datafier

For Other Commodore Machines

As shown, the Datafier will work on the Commo

dore 64 only. To use it with other machines
changes must be made.

Line 7 contains the instruction G = 35, which sets

the number of memory bytes to be encoded on

each DATA line. This depends on the screen size,

and for other machines should be set as follows:

V1C-20 G=39

40-Column PETs G = 34

80-Column PETs G = 34

For the VIC-20 make the following changes in
line 7:

K = D + 8 becomes K = D + 3

POKE 198,10 becomes POKE 198,5

Again for the VIC-20, change P + 9 in line 8 to
P + 4.

Other changes in the first part of the program

(before line 9000) affect BASIC 2.0 and BASIC 4.0

machines only, not the VIC-20. The changes are:

Lines 7, 23, 24: Change 198 to 158

Lines 8, 23, 24: Change 631 to 623

Line 15: Change 152 to 174

Line 24: Change 632 to 624

Line 30: Change W = 43 to W = 40

The remaining changes affect ROM references in

the machine language encoded as DATA state

ments beginning at line 9012. The replacement

DATA lines are as follows:

VIC-20:

9007 data 32,253,206, 32,158,205

9008 data 32,163,214,133, 34,162

9017 data 104, 104, 96, 76, 8,207

The DATAfier

gosub25 : goto 5

0 input "0d/disk m/memory";dm$
1 if dm$<>" d" and dm$<>" m" then end

2 d = 9020 : dm = 1 : if dm$ = " d" then dm = 2

3 input " qstart, end (hex)" ;a$,b$

4 gosub 16 : a = u : a$ = b$: gosub 16 : b = u

5 poke 252,a/256 : poke 251 ,a-256*peek(252)

6 if b< = a then print "range error" : end

7g = 35:k = d + 8: poke 198,10: print "EH"

8forp = 631 top + 9:pokep,13:next:c = a:fori = dtok:ifc = borsgoto13
9 print i;chr$(157);" data";: for j = 1 to g

10 m = peek(c): if dm = 2 then get#2,m$: m = asc(m$ + chr$(0)): s = st

11 z = m-16*(int(m/16)): printchr$(65 + m/16) + chr$(65 + z);

12c = c+1 :y = -i*(c = bors>0):ifc<bands = Othennext'
13 print: nexti: ifythen i = y

14t = 7: ifc = borsthent=19

15print"a= "c":b= "b":d= "i" [add spaces] :s= "s":dm= "dm"

:poke152,2:goto"t"0":end
16 u = 0 : a$ = right$(" 0000" + a$,4)

17 for i = 1 to 4 : v = asc(mid$(a$,i,1))

18 v = v-48 + 7*(v>64): u = u + v* 16t(4-i): next: return

19 d$ = str$(d-9020): q$ = chr$(34): close 2 : close 1

20 a$ = " 9002 poke 251," + str$(peek(251)): b$ = " 9003 poke 252 "
+ str$(peek(252)) ^^

21 c$= "9004 for i = 0 to" +d$+ " :reada$" : print E&ffil a$: print b$
: print c$

22 print " u = 0 : goto 24

23 for i = 63Uoi+ 3 : poke 1,13: next: poke 198,4 : end

24 print "| Qo" : poke 631,13 : poke 632,147 : poke 198,2
: gosub 30 : print "@" : end

25 input "^filename" ;fl$: if fl$= "" then end
26 open 1,8,15 : open 2,8,2,fl$+ ",p,r"

27 input#1 ,de,de$,df,df: if de>19 goto 29

28 get#2,a$,b$: z$ = chr$(0): a = asc(a$ + z$) + 256*asc(b$ + z$): b = 65536
: return

29 print "fldisk error: ■■ ^e§ . en(j

30 w = 43 : x = w

31 for i = 1 to 37

32 w=peek(w) + 256*peek(w + 1): if i = 1 theny = w

33 next

34 pokey.peek(w)

35 poke y +1, peek(w +1)

36 poke x + 3,peek(x + 3)-int((w-y^256):return

8997:

BASIC 2.0:

9007 data 32,248,205,

9008 data 32, 125,213,

9014 data 240, 16,177,

9017 data 104,104, 96,

BASIC 4.0:

9007 data 32,245,190,

9008 data 32,181,199,

9014 data 240, 16,177,

9017 data 104,104, 96,

32,

133,

31,

76,

32,

133,

31,

76,

159,

34,

201,

3,

152,

34,

201,

0,

204

162

81

206

189

162

81

191

8998

8999

9000

9001

end

for i =

read

= 319 to 384

a : poke i,a : next

9005 sys 319,a$: next: return

9006

9007

9008

9009

9010

9011

9012

9013

9014

data

data

data

data

data

data

data

32,253, 174,

32, 163,182,

0, 160,255,

10, 10, 10,

32,102, 1,

251,230,251,

252, 208, 232,

data 240, 16,177,

9015 data

9016

9017

9018

176, 13,201,

data 233, 1, 41,

data 104,104, 96,

32,158,

133, 36,

32,102,

10,133,

5, 37,

208, 236,

200,196,

34,201,

65, 144,

15, 16,

76, 8,

173

162

1

37

129

230

36

81

9

2

175

The Transactor 79 Volume 5, Issue 04

I'LL

THE.

THNNKVOU

YOU 3US1

BOU&HT

TROUBLETHE FLQTSKV

D\5K. IN

VOUR

VJHKT K G.REKTI'LL 3UST KSKfAX

BI& 3.0
ON DR.fU3TSW

HIS DISK

UKTER, H^i THE

IFVUERt'SONE

THIN& V HKTE.,

IT'5 SMNKT

MOUTH

V1LLNN5)

DROPPED VOUR
LEFT.'

l^ MUULTHE

SITURVIQM O\)ER,

ONETH\NG BE
COMES CLEW..

DR F L0T5KY 15 f\ LEHDER IN THE ?\ELO

n TECHNOLOGY. HE RECENTLY PER

fECTED FK CHIP THRT EF\N BE RTTRCHEDTO

THt5V\UU_. IT\\m T\JQ PCfi5\BLELGE^. IT
CPvN BE LBtD P5 R niND CONTROL t»E\l\CE,

OR PS SntNTHMa BN

% to ER THPN

DF U

UKE SUPER'HtRO

G.E7VTHKT COM

PUTER BNCK FOR

THRT CHEPvP

SHOT! BUT \ RLSO

BU.fLOTSV-N.

Hey
UHIEN5 THE LAST
TIME THIS

THING WAS

FED SOME
INFO??

Computer win& service

The Transactor 80 Volume 5, Issue 04

did you first realize
toor fear of modern
Technology ?

35. Car

MOTHER Told ME

HERE WOUU) BE "DflYS

LIKE THIS...

The Transactor 81 Volume 5, Issue 04

MICROCalc for C-64

The Full Screen Calculator

Easier to use than spread sheets

Mastering Your VIC-20

Mastering Your Commodore 64

A Better Way To Learn BASIC

Eight major programs to enjoy

while you are learning

Mastering Your VIC-20

Mastering Your Commodore 64

The 8 programs, "run-ready" on disk (C-64) or
tape (VIC-20) and explained in the 160-192 page
book, each demonstrate important concepts of
BASIC while providing useful, enjoyable software.
Programs include:

• Player — compose songs from your keyboard,
save, load and edit for perfect music

• MicroCalc — display calculation program that
make even complex operations easy

• Master — a one or two person guessing game
• Clock — character graphics for a digital clock
VIC-20 with tape & book just $19.95

C-64 with disk & book (avail. Sept.) just $19.95

Look for us at the

International Software Show
Toronto, September 20-23

MICROCalc for C-64

This on-screen calculator comes with diskette and
48-page manual offering a wide variety of useful
screens, and a great way to learn BASIC expressions
if you don't already know them.

• Unlimited calculation length & complexity
• Screens can be linked and saved on disk/cassette
• Build a library of customized screens

• Provide formatted printer output

Diskette & 48-page manual just $29.95

For the Freshest Books, Buy Direct!
• No prehandled books with bent corners
• Books come direct to your door

• No time wasted searching store to store
• 24 hours from order receipt to shipment
• No shipping/handling charges
• No sales tax (except 5% MA res.)

• Check, MO, VISA/MC accepted (prepaid only)

The Computerist Bookcart
P.O. Box 6502, Chelmsford, MA 01824

For faster service, phone: 617/256 - 3649.

COMMODORE OWNERS

Join the world's largest, active Commodore

Owners Association.
WAT

Access to thousands of public domain programs

on tape and disk for your Commodore 64, VIC 20

and PET/CBM.

• Monthly Club Magazine

• Annual Convention

Member Bulletin Board

• Local Chapter Meetings

Send $1.00 for Program Information Catalogue.

(Free with membership).

Membership

Fees for

12 Months

Canada — $20 Can.

U.S.A. — $20 U.S.

Overseas — $30 U.S.

T.P.U.G. Inc.

Department "M"

1912A Avenue Road, Suite 1

Toronto, Ontario, Canada M5M 4A1

* LET US KNOW WHICH MACHINE YOU USE *

000
CHOOSE COMAL

USERS|

(1) disk based comal version 0.14

• COMAL STARTER kit—Commodore 64-" System Disk, Tutorial

Disk (interactive book), Auto Run Demo Disk, Reference

card and comal from a to z book.

S29.95 plus S2 handling

(2) professional comal version 2.0

• Full 64K Commodore 64 Cartridge

Twice as Powerful, Twice as Fast

S99.95 plus S2 handling (no manual or disks)

• Deluxe Cartridge Package includes:

comal handbook 2nd Edition, Graphics and Sound

Book, 2 Demo Disks and the cartridge (sells for over

S200 in Europe). This is what everyone is talking about.

S128.90 plus S3 handling (USA & Canada only)

CAPTAIN comal Recommends:

The COMAL STARTER KIT is ideal for a home programmer. It

has sprite and graphics control (LOGO compatible). A real

bargain—S29.95 for 3 full disks and a user manual.

Serious programmers want the Deluxe Cartridge Package.

For S128.90 they get the best language on any 8 bit

computer (the support materials are essential due to the

immense power of Professional COMAL).

ORDER NOW:

Call TOLL-FREE: 1-800-356-5324 ext 1307 VISA or MasterCard

ORDERS ONLY. Questions and information must call our

Info Line: 608-222-4432. All orders prepaid only—no C.O.D.

Send check or money order in US Dollars to:

COMAL USERS CROUP, U.S.A., LIMITED

5501 Groveland Ten, Madison, Wl 53716

TRADEMARKS: commodore 64 of commodore Electronics Ltd; Captain comal of

COMAL Users Croup, U.S.A., Ltd

1 estimated i

Products for the Commodore 64

Waterloo Structured BASIC

Already widely used on the Commodore PET,

the package augments the standard BASIC with:

• Structured Programming Statements :

programs can be written with proper style.

• Procedures : eliminate the use of GOSUB;

instead CALL named procedures

• Additional Commands : increased ease of use

with AUTO, DELETE and RENUMBER

commands

Each package contains:

• cartridge containing software

• comprehensive textbook containing both a

primer and a reference manual

Price: $99.00; $79.00 for additional packages in

same order

WATCOM Pascal

This interpreter supports the full ANSI standard

Pascal (with one omission) and features:

• integrated full-screen editor

• interactive debugger

• support for printer, disk and cassette

• graphics library

• peek and poke functions

Each package contains

• cartridge and disk containing the software

• comprehensive textbook containing both a

primer and a reference manual

Price: $149.00; $99.00 for additional packages in

same order

Ordering Information

Order forms and/or additional information may

be obtained from:

WATCOM Products,

415 Phillip Street,

Waterloo, Ontario

Canada, N2L 3X2

(519) 886-3700

Telex: 06-955458

Additional textbooks are also available. Seminars

on Pascal and BASIC are offered regularly.

Th« Tech/Nowj Jou

PAYS

$40

per page for articles

We're also looking for

professionally

drawn cartoons!

Send all material to:

The Editor

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

Issue*

Volume 5 Editorial Schedule

Theme Copy Due Printed Release Date

1

2

3

4

5

6

1

2

3

4

5

Graphics and Sound

The Transition to Machine Code

Software Protection & Piracy

Business and Education

Hardware and Peripherals

Programming Aids & Utilities

Febl

Apr 1

Jun 1

Augl

Octl

Dec 1

Mar 19

May 21

Jul23

Sepl7

Novl9

Jan 19

Volume 6 Editorial Schedule

Communications & Networking Feb 1 Mar 21

Languages

Implementing The Sciences

Hardware & Software Interfacing

Real Life Applications

Apr 1

Jun 1

Augl

Octl

May 20

Jul 18

Sep21

Novl9

April 1

June 1

August 1

October 1

December 1

February 1/85

April 1/85

June 1

August 1

October 1

December 1

Advertisers and Authors should have material submitted no

later than the 'Copy Due' date to be included

with the respective issue.

THE WAIT

IS OVER

The commodore 64™ COMAL 2.0 Cartridge

is being produced for nov 84 delivery.

• Full 64K ROM Cartridge—30K Free User Memory

• Empty socket for user EPROM (8K, 16K or 32K)

• LOCO1 compatible turtle graphics (with abbreviations)

• Easy Sprite animation—Load, Save, Link Shapes

• Interrupt driven Music—Full control of SID

• user definable fonts—Load, Save, Link Fonts

• Three different screen dumps in:

Hi-Res Graphics, Multi-color Graphics, Text

• Error Handler, External Procedures, Trace Commands

• Protected input, Batch Command File Capability

• Easily definable Function Keys

(i.e., F7 will RUN any program from a directory)

• Built in LINK command for Machine Code Routines

• HEX and binary accepted—ASCII conversion built in

All prepaid advance orders receive free:

• comal handbook, Second Edition (includes Cartridge)

• Introduction to 2.0 Built in Packages Book

(Graphics, Turtle, Sprites, Sound, Font, . . .)

• TWO different demo disks (1541 format)

• white custom molded case for disks and book

ALL FOR ONLY $99.95

(A $175 value—nearly half price)

Due to high demand orders will be filled on first come basis.

Send check or Money Order in US Dollars plus S3 handling to:

COMAL USERS CROUP, U.S.A., LIMITED
5501 Groveland Ten, Madison, wi 53716

phone: (608) 222-4432

visa and mc prepaid orders may call toll free: 1-800-356-5324

extension 1307

commodore 64 is a trademark of Commodore Electronics Ltd

MIDNITE
SOFTWARE GAZETTE

The

PAPER
Five years of eervlce to the PET community.

The Independent U.S. magazine for

users of Commodore brand computers.
EDITORS: Jim and Ellen Strasma

Sample Issue free on request, from:

635 MAPLE □ MT. ZION. IL 62549 USA

Back Issues

ISSUE # 1—JAN. '84 $4.00

The 64 v. the Peanut! The com

puter as communications device!

Protecto's Bill Badger inter

viewed! And ready to enter: the

Multi Draw 64 graphics system!

The Interrupt Music Maker/

Editor! A Peek at Memory! Pro

gramming Sequential Files!

Don't punch another key

without a complete collection

of Ahoy! and the program

ming strategies and product

analyses each issue provides.

Order while supplies last!

E! -•.. - .—§3

Y<h:ii
A ■ * M & £_■ M » .■ ■ * ° L

I
I

i

I

It I

ISSUE #2—FEB. '84 $4.00

Illustrated tour of the 1541 disk

drive! Synapse's Ihor Wolosenko

interviewed! Users groups! Arti

ficial intelligence! And ready to

enter: Music Maker Part II!

Night Attack! Programming Rel

ative Files! Screen Manipulation

on the Commodore 64!

T(o\im<hmhsi.
»l NIKS

<\\VM

KKAItTIIIS?
iknoi:

PRESS

THESEKKW&
TtRXTIIKRKiK

ISSUE #3—MAR. '84 $4.00

Anatomy of the 64! Printer In

terfacing for the 64 and VIC!

Educational software: first of a

series! Commodares! And

ready to enter: Space Lanes!

Random Files on the 64! Easy

Access Address Book! Dynamic

Power for your 64!

ISSUE #4-APR.'84 $4.00

Petspeed and Easy Script

tutorials! Printer interfacing and

educational software guide con

tinued! Lower case descenders

on your 1525! Laserdisc! The

Dallas Quest Adventure Game!

And ready to enter: Apple Pie!

Lunar Lander! Name that Star!

ISSUE #5—MAY'84 $4.00

The Future of Commodore! In

side BASIC program storage!

C-64 Spreadsheets! Memory

Management on the VIC and 64!

Educational Software Guide

continues! And ready to enter:

Math Master! Air Assault! Bio-

rhythms! VIC 20 Calculator!

Send coupon or facsimile to:

Ahoy! Back Issues, Ion International Inc., 45 West 34th Street—Suite 407, New York, NY 10001

Please Send Me The Following:

Copies of issue number

Copies of issue number

Copies of issue number

NAME

ADDRESS

Enclosed Please Find My Check or

Money Order for $

(Outside the USA please

add $1.00 for every copy)

CITY_

STATE.

ZIP CODE.

I
I
I
I
I
I

The Complete Commodore

Inner Space Anthology

will look like this:

WATCH FOR IT!

January 1985

