

INTRODUCING

7LPAL 64
} \ The fastest and easiest to use

/'^ assembler for the Commodore 64.
Pal 64 enables the user to perform

assembly language programming using the

standard MOS mnemonics. $69.95

.POWER 64

Is an absolutely indispensible aid to

the programmer using Commodore

64 BASIC. Power 64 turbo-charges

resident BASIC with dozens of new super

useful commands like MERGE, UNDO,

TEST and DISK as well as all the old

standbys such as RENUM and SEARCH &

REPLACE. Includes MorePower 64. $69.95

A-^TOOL BOX 64
Js*\ Is the ultimate programmer's utility

Z' package. Includes Pal 64 assembler
and Power 64 BASIC soup-up kit all

together in one fully integrated and

economical package. $129.95

A^SPELLPRO 64
y (Is an easy to use spelling checker
fr^ with a standard dictionary expandable
to 25,000 words. SpellPro 64 quickly

adapts itself to your personal vocabulary

and business jargon allowing you to add and

delete words to/from the dictionary, edit

documents to correct unrecognized words

and output lists of unrecognized words to

printer or screen. SpellPro 64 was designed

to work with the WordPro Series*and
other wordprocessing programs using the

WordPro fik format. $69.95

NOW SHIPPING!!!

For Your Nearest Dealer

Call

(416) 273-6350

^"Commodore 64 and Commodore are trademarks of

Commodore Business Machines Inc.

'Presently marketed by Professional Software Inc.

Specifications subject to change without notice.

A-.WP64
y T^This brand new offering from the
j/'n originators of the WordPro Series*
brings professional wordprocessing to the

Commodore 64 for the first time. Two

years under development, WP64 features

100% proportional printing capability as

well as 40/80 column display, automatic

word wrap, two column printing, alternate

paging for headers & footers, four way

scrolling, extra text area and a brand new

'OOPS' buffer that magically brings back

text deleted in error. All you ever dreamed

of in a wordprocessor program, WP64

sets a new high standard for the software

industry to meet. $69.95

A^MAILPRO 64
KA new generation of data

organizer and list manager, MailPro

64 is the easiest of all to learn and use.

Handles up to 4,000 records on one disk,

prints multiple labels across, does minor

text editing ie: setting up invoices. Best of

all, MailPro 64 resides entirely within

memory so you don't have to constantly

juggle disks like you must with other data

base managers for the Commodore 64.

$69.95

PRO-LINE
■HHIIIISOFTWAF1E

273-6350
55 THE QUEENSWAY EAST, UNIT 8,

MISSISSAUGA, ONTARIO, CANADA, L4Y 4C5

Volume 5

Issue 04
Circulation 54,000

<D

Changes Editorial

News BRK ... 4
Early Renewal Notices

Posl Dated Cheques

Business Reply Cards
New Commodore Peripherals

Commodore Software

EASYCOMM 64

VIDEOTEX 64
JUST IMAGINE an Animated Story

Marvel Comics' Superheros

World Of Commodore II Show

Educational Software: Focus on the Future
Commodore 64 PRG Price Reduction
Tricks & Tips for The Commodore 64
The Graphics Book For The Commodore 64
The Commodore 64 For Scientist & Engineers
The Machine Language Book For The Commodore 64
Advanced Machine Language Book For The 64
OS-9: Operating System For The SuperPET
Software Publisher, Bookstore Chain

Plan Innovative Joint Promotion
Scarborough $4 Million Giveaway

Scarborough Systems Offers Combined Format

Solid Modeling Study

CADPAK-64

Ideas To Use On Your Commodore 64
XREF-64 - BASIC Cross Reference

ASSEMBLER/MONITOR 64

PASCAL-64

DATAMAT-64
TAS-64 - Slock Market Technical Analysis System
GET RICH: STRATEGIES, VOL. I
PHONE CALL - Telecommunications For The 64
ENTECH Extends Music Contest Deadline
SOFTSYNC Wins ARKIE Nomination

ADVENTUREWRITER

A CHRISTMAS ADVENTURE

KAPRI Offers Advanced Graphic Accessory

Parallel Printer Adapter for the IEEE-488 BUS

Bits and Pieces 15
64 Quick Beep

Colour Bar

Dazzler of the Month

Which Way Did He Go?

Aquarius

SHIFTing your WAIT

Interrupt Key-Scanning

File Ripper

File Loader

ASCI1/CBM Conversion

Easy Disk Salvaging

A Magic Number?

Safe VAL Function

Hardware Random Number Generation on the 64

Round-up

Prime Number Generation

Useless Fact:

Useful Fact:

Letters • 22
OP Oops: Re:Worprocessors comparison

WordPro Hints:

Club Plugs:

Program Files To Sequential Files On Disk:

So, You Want Us To Remain High Level:

Business:
The MANAGER Column 24

Subroutine Eliminators 25

Office Automation For The Nineties 26

Dynamic Expression Evaluation 28

Compound Interest And You 31

GETSTRING 32
Sorting On Commodore Computers 34

Phile Master • • 41

Home Budget 46

Education:
Your BASIC Monitor, Part 3 48

Structured Programming In CBM BASIC ... 51

Lincoln College Computer Camp 54

Speller: A Drill Program Using Vectors 56

Helping The Handicapped 59

Nine Easy Pieces 62

Interrupt Driven Code On The C64 66

And:
AUTOSWAP: RUN 2 Programs At Once! ... 69

The Transactor Volume 5, Issue 04

Managing Editor

Karl J. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Advertising Manager

Kelly M. George

416 826 1662

Art Director

John Mostacci

Subscriptions

Mandy Sedgwick

Contributing Writers

Don Bell

Michael Bertrand

Daniel Bingamon

Jim Butterfield

Gary Cobb

Elizabeth Deal

Domenic DeFrancesco

G. Denis

Brian Dobbs

Bob Drake

Mike Forani

Jeff Goebel

Dave Gzik

Phil Honsinger

Garry Kiziak

Scott Maclean

Glen Pearce

Louis F. Sander

George Shirinian

Darren J. Spruyt

Colin Thompson

Mike Todd

Vikash Verma

James Whitewood

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Program Listings In The Transactor

AH programs listed in The Transactor will appear as they would on your screen in Upper/Lower case
mode To clarify two potential character mix-ups, zeroes will appear as '0' and the letter V will of course

°r^ Y' "" L (T) ^ ° "* '°P M °PP°Sed t0 the number ' which

Many programs will contain reverse video characters that represent cursor movements, colours or
function keys. These will also be shown exactly as they would appear on your screen, but they're listed
here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

will beThown FeorexamPle-°rreCt °Perati°n °f ^^^ When " iS'the reqUired nUmber °f s?aces
print" flush right" - would be shown as - print" [space 10]flush right"

Cursor Characters For PET / CBM / VIC / 64

Down - Q

up -n

Right - D

Left - [Lft]

RVS - H

RVS Off - H

Insert

Delete

Clear Scrn -

Home

STOP

B

Black

White

Red

Cyan

Purple

Green

Blue

Colour Characters For VIC / 64

Q
a
Q

- [Cyn]

- [Pur]

D

-B

Orange -

Brown

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt. Blue -

Yellow- [Yel]

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

F5-

F8- Q

The Transactor is published bi-monlhly by Transactor Publishing Inc., 500 Steeles Avenue, Millon
Ontario. L9T 3P7. Canadian Second Class mail registration number 6342. USPS 725-050, Second
Class postage paid at Buffalo. NY. for U.S. subscribers. U.S. Postmasters: send address chances to
The Transactor, 277 Linwood Avenue, Buffalo, NY, 14209, 716-884-0630.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore
Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64) are registered
trademarks of Commodore Inc.

Subscriptions:

Canada $15 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue

Milton. Ontario, Canada, L9T 3P7, 416 876 4741. From Toronto call 826 1662. Note: Subscriptions

are handled at this address ONLY. Subscriptions sent to our Buffalo address (above) will be

forwarded to Milton HQ.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

SOLD OUT: The Best of The Transactor Volumes 1 & 2, and Volume 4, Issues 04 & 05

Still Available: Best of The Transactor Vol. 3. Vol. 4: 01, 02, 03. 06, Vol. 5: 01. 02, 03. 04

CompuLit

PO Box 352

Port Coquitlam, BC

V5C 4K6

604 438 8854

U.S.A. Distributor:

Capital Distributing

Charlton Building

Derby, CT

06418

(203) 735 3381

(or your local wholesaler)

Quantity Orders:

Micron Distributing

409 Queen Street West

Toronto, Ontario. M5V2A5

(416)593 9862

Dealer Inquiries ONLY:

1 800 268 9052

Subscription related inquiries

are handled ONLY at Milton HQ

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 58-1

(416)842 1555

(or your local wholesaler)

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule (see list near the end of this issue). Remuneration is $40 per
printed page. Preferred media is 1541. 2031. 4040. 8050, or 8250 diskettes with WordPro,

WordCraft, Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk

or tape. Manuscripts should be typewritten, double spaced, with special characters or formats clearly

marked. Photos of authors or equipment, and illustrations will be included with articles depending

on quality. Diskettes, tapes and/or photos will be returned on request.

All material accepted becomes the property of The Transactor. All material is copyright by

Transactor Publications Inc. Reproduction in any form without permission is in violation of

applicable laws. Please re-confirm any permissions granted prior to this notice. Solicited material is

accepted on an all rights basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective. The Transactor cannot assume liability for errors in articles or

programs.

The Transactor Volume 5, Issue 04

Chris Zamara is the latest addition to The Transactor crew. Although Chrisjoined us before the release of the last issue, this

will be his first from start to finish. Consulting, programming, and special installations for several Metro schools and

businesses werejust a few ofhis pastimes before. So when Chris asked if he could write the editorial I thought, "he 11 have a

cleaner, fresher opinion of the subject at hand - plus a new outlook on the magazine business." And I was right! - M.Ed.

Changes

"There's nothing as constant as change". That's the way

Karl normally closes his editorials, and it's an appropriate

way to begin this one. Change comes to the magazine once

again, in the form of another editor (me), and in the drop

ping of almost all advertisement. The increase in manpower

means we can cover more ground in the form of technical

information, editorial content, and relevant news. The drop

ping of ads suggests a more impartial viewpoint on new

products, and implies greater integrity than that of maga

zines who fill 90% of their pages with advertising.

With this issue's theme in particular, it is fitting to talk of

change. So much is changing so quickly with microcomput

ers in both business and education. So much, in fact, that it

seems over-ambitious to tackle the topic in a single issue.

Well, were going to try. We obviously can't comprehen

sively cover every aspect of Commodore in the classroom

and the boardroom, but most articles and features are

geared towards that theme.

While IBM seems to have the stronghold on the business

micro market, there are many applications where a Commo

dore machine is more appropriate. An 8032 with an 8250

drive, for example, outperforms an IBM compatible ma

chine hands-down in terms of disk access. With Commo

dore's new 8296, an even greater segment of the business

market will be captured. If you own a small business, or

even if you work for a large corporation, you can probably

put your existing PET, 64, or whatever to work for you.

As usual, the manager column appears in this issue - the

manager is an excellent tool for the kind of file management

so often needed in business computing. There are also

several articles containing business-oriented programs.

The best thing about getting a program in a magazine as

opposed to buying one is that you get a listing, and an

explanation of how it works so that you can modify it to suit

your individual needs - and maybe learn a few program

ming techniques in the process.

The education topic is one with many branches. Computers

as teachers, educational information, and learning about

computers themselves are a few. In various ways, we cover

each of these branches. For example, the bits & pieces

section is geared towards more educational pieces and less

screen dazzlers. Structured programming techniques are

addressed, to coincide with the way programming is taught

in schools.

Computers on the educational front are probably undergo

ing the most dramatic changes right now. Schools are

ordering hundreds of machines for computer labs, and more

and more young people are being exposed to the beasts that

many of us originally played with as a hobby. This is sure to

have a dramatic impact on the future of the micro. In a way,

the educational market goes hand-in-hand with the home

market: students who become "hooked" on computing will

have to get their fix by buying a system of their own. In

many of these cases, that system will be a Commodore 64.

The coverage of these topics is done in the usual manner of

this magazine. Articles reflect the personal opinions of the

writer - be it one of the editors, or an outside contributor.

There are sometimes differences of opinion - just read

"Unveiling the Pirate, Part 1" and "Privacy vs. Protection -

Who Loses?" in the last issue. While the views presented

may seem totally polarized, there are often no simple an

swers regarding unfamiliar new situations brought about by

the microcomputer revolution. It's up to you to decide

where you stand on inflammatory issues - we just provide

the fuel.

Finally, as the world changes, and The Transactor changes

with it, we want to stay close to our readers. Send us letters.

Tell us what you like. More editorial commentary? More

highly technical information and techniques? More bits &

pieces? By knowing what you want (and what you don't), we

can change for the better. Because in the end, it's not the

editors that decide the content of the magazine, and it's

certainly not the advertisers. It's you.

Chris iCamara, Technical Editor

The Transactor Volume 5, Issue 04

News BRK

Transactor News

Early Renewal Notices

When we first began publishing as an independent magazine,

renewing subscriptions was left as the responsibility of the sub

scriber. Except many complained they were missing issues. But

when we started mailing renewal notices we found that even with

2 months notice the complaints were the same. In an effort to

change all this we may have over-compensated. Some subscribers

have been getting renewal notices so early that it appears as

though something may have gone wrong. We apologize for this but

please be assured that you will not be short shipped. If you return

your renewal forms early, an extra 6 magazines are merely tacked

on to your allotment (we've been receiving some odd payments

too, however extras are added appropriately). Our expiry update

program will not cut you off until all magazines are sent. In fact, it

will even send you one extra magazine before it actually de

activates you, and even then your record is not erased, just de

activated.

From now on, renewal notices will be sent just prior to your

second last issue. This way you will get your notice and your

second last issue at about the same time. At this point you have

about 3 months to decide on renewing and still be guaranteed of

not missing any. Your last issue will serve as a reminder. If you

don't renew within a month after receiving this, we can't guaran

tee you won't miss an issue and it will cost you $4.50 to get it.

The reason? We get hundreds of new and renewal subscriptions

every week. But the list must be printed up, sorted by postal/zip

code, about 2 weeks before we actual print the magazines. So if

your subscription order doesn't arrive 3 weeks before press time

(worst case) chances are we'll have to print up the list before

servicing your order. In essence, a magazine becomes a back issue

as soon as the mail list is printed. Although we do have a short

grace period, the post office does not like dealing with magazines

that are submitted to them out of sorted order. This is known as

"residue mail", and if there is too much, it must be posted at full

rate.

"Full" and "rate" are two of the worst four-letter words in the

subscription business. When we send out subscriber copies in

bulk, the cost per piece is high, but acceptable. The cost for

sending out singles is unnacceptable, on average about $1.40 per

piece. Handling must also be considered. The time spent handling

all subscribers at once stays economical, but handling singles

(especially several singles) can be a time consuming task. Actually,

according to calculations, $4.50 just barely covers it.

So please bear with us. Watch your mailing label. Your expiry issue

number is printed on the first line of every label. If for some reason

you don't get a renewal notice you can avoid missed issues by

acting swiftly (remember, you have about a month after your last

issue to make a smooth renewal).

When you do renew, please indicate RENEWAL by checking the

box on the card. We do a search of everything that comes in, but

there is always the possibility of entering you twice. If that happens

you'll get two copies of each issue, instead of one copy for twice as

long. And if that happens, please let us know immediately so it can

be fixed. So far there have only been a couple, and those have

been due to address changes.

By watching your label you can be sure exactly where you stand.

When it is adjusted please check that the appropriate number of

issues has been added, and give us at least 1 issue as a buffer to

make the update in case timing is such that one issue goes out just

before we process your mail.

Post Dated Cheques

One last note on subscriptions. . . please do not send us post dated

cheques without plenty of enclosed warning. After the bank sends

The Transactor Volume S, Issue 04

them back once they won't accept them a second time. A note of

any kind will help us intercept them so they can be stored until the

bank is ready for them.

Business Reply Cards

Recently we've been getting some feedback on our business reply

cards at the center of the magazine.

If you like making payments with a cheque, you can still take

advantage of the free postage. Enclose your cheque in an envelope

and tape it to the back of the business reply card. The Post Office

says this is ok and we don't mind either. Just be sure the

information on the card won't be damaged when the envelope is

removed.

Some subscribers with charge cards have expressed concern over

sending their card numbers through the mail in plain sight. Good

point. But once again, don't hesitate to paste on a backing to cover

it (or use an envelope) just so long as you don't put tape over vital

information. If we rip the ink off, our only chance is to hold it up to

a strong light and read it in the mirror.

And don't forget to include your address (we've actually received a

few without) and especially your postal code.

Commodore News

The MCS 801 Colour Dot Matrix printer looks like an unconfirmed

maybe for any new Commodore product catalogs. Inotherwords,

don't wait for it.

Look for new 1541s with the drive door that has those "lever-

handle" diskette ejectors. No word on write-compatibility with old

1541 diskettes, but we'll keep you posted.

New Commodore Peripherals

DPS 1101 Daisy Wheel Printer: A letter-quality printer ideal for

crisp, professional correspondence. It is compatible with the Com

modore PLUS/4 and features a bi-directional, logic-seeking print

mechanism at 18 cps, 13' maximum width and letter quality

reproduction.

MPS 802 Dot Matrix Printer: Bi-directional impact dot matrix

printer with a 60 characters per second. It is completely compatible

with all Commodore computers and prints numerics, symbols,

and all PET graphics.

MPS 803 Dot Matrix Printer: A low-priced peripheral that adds

versatility to its counterpart, the C-16 computer. It prints alpha

betic, numeric, and all graphic characters with a variety of print

styles and graphics capabilities.

1531 Cassette: A storage device for users of the C-16. It allows for

quick load and access and uses standard audio cassette tapes-

digital tapes are not necessary. (Editor's Note: Tape formats for the

new plus4/16 cassette units have been changed making old tapes

non-transportable to new machines, contrary to previous reports.)

CM 141 Colour Monitor: A high quality, high resolution peripheral

redesigned to cosmetically coordinate with the Commodore

PLUS/4. The CM 141 not only gives a clear, quality picture, but is

also completely compatible with all of CBM's computer equip

ment.

Commodore Software

EASYCOMM 64

EASYCOMM 64 is Commodore's new disk-based terminal emula

tor for the C-64. Commodore has bought marketing rights from

CompuServe for CompuServe's popular V1DTEX Terminal Pro

gram and will sell and distribute this program under the name

EASYCOMM 64.

EASYCOMM 64 allows users to transfer messages and programs

from electronic bulletin boards in CompuServe's large library to

and from their own computer's memory and even directly to/from

disk. It will also support 64 to 64 transfer via a large RAM buffer.

EASYCOMM 64 has been described as one of the most powerful

and easy-to use terminal programs ever developed for home

computer Using CompuServe's 'B' protocol, it offers:

• 100% error detection and correction.

• A complete 30K RAM buffer which can capture data from a host

system for immediate use or for disk storage for later use.

• Printer support, capable of capturing data at 120 char, per

second.

• 10 programmable function keys to give ID or other frequently

used commands.

• Color graphics and cursor positioning.

VIDEOTEX 64

Commodore's new VIDEOTEX 64 package for the C-64 combines

two trends in the microcomputer industry - graphics and telecom

munications. With VIDEOTEX 64, you can create business graph

ics and other pictures in high resolution color and combine them

with text before transmitting them easily over regular phone lines,

using either a VICMODEM or AUTOMODEM, to other VIDEOTEX

64 users.

Featuring single keystroke switching between interactive text and

graphics functions, or between color and monochrome, you can

create 'pages' of information, which can be saved, displayed and

recalled from disk sent and received by modem, edited or printed.

VIDTEOTEX 64 features the latest in communications technology.

Instead of the traditional ASCII protocol, it uses the new NAPLPS

protocol, which has much greater power to create and transmit

graphics. It is simple to use, with just a few menu screens, an users

can get on-line help at an time without it interfering with what

they are doing.

Real Estate brokers, interior designers, graphic artists and advertis

ing executives are just a few of the numerous professionals who

could benefit from the power of VIDEOTEX 64.

JUST IMAGINE an Animated Story

Commodore introduces 'JUST IMAGINE', the newest program in

its educational software line. This innovative program is designed

to help children combine visual and verbal skills to create an

animated story on the C-64.

Volume 5, Issue 04

This program allows you to choose from nine exotic settings (a

jungle, the moon, a barnyard are just a few). Country settings can

be seen in summer or winter, others by day or night. You then pick

from a selection of 50 static characters and objects to put into the

setting (a gorilla, a cowboy, circus bear, taxi cab, a damsel in

distress as many as you like). After that you can choose three

characters who can be made to move around the picture under

control of a joy- stick as you develop a 'plot'. By using the built-in

word processor, you write the story about the world that you have

just created. Then with the touch of a key, you animate the scene

and your story unfolds complete with sound effects. JUST IMAG

INE encourages you to do just that —imagine a story in pictures,

imagine it in words, and bring it all to life.

Other Commodore Software for the C-64 computer include, F1SH-

MET1C, NUMBER BUILDER (elementary education), READING

PROFESSOR, and WINDOW TO THE GALAXIES.

Marvel Comics' Superheros

Marvel Comics' Superhero favourites come alive. Commodore has

entered the spine-tingling world of super hero adventure after

signing with the Marvel Comics Group and Adventure Interna

tional to produce and distribute six software programs featuring

dynamic comic book favorites, including THE HULK and SUPER

MAN. Marvel's new series, called QUESTPROBE is a unique comic

for the C-64, showcasing a different Super hero in every issue.

Unlike any other comic book series, each QUESTPROBE will have

a corresponding computer software program, which continues the

adventures of the Marvel Super Heroes.

The original concepts and creative direction behind Marvel's

QUESTPROBE were developed by Scott Adams, founder of Adven

ture International and a pioneer of text adventure games on

micros.

Marvel plans to distribute between 11 and 13 million of each comic

book that will tie in with the Commodore computer games. The

first game of the series, THE HULK, is scheduled for late August

release. The series will run on the C-64 and the Commodore

PLUS/4 computers.

Events

World Of Commodore II Show

The second annual World Of Commodore Show is rapidly ap

proaching. Last year's show recorded the largest draw for any

show in the history of Toronto's International Centre with over

38,000 total attendance. This year should be no different and

stands a good chance of topping its own record.

Show dates are November 29 & 30, December 1 & 2 (Thurs thru

Sunday). We'll be there too. Transactor Publishing will be at Booth

No. 712. So come on out. . . we'll be happy to meet you!

Educational Software: Focus on the Future

The First Annual Regional Educational Software Infomart will be

held in New York City at the Penta Hotel (the former New York

Statler), November 2-4, 1984. This newsmaking event is long

overdue in a region which has the largest concentration of the

nations most affluent schools in terms of per pupil spending as well

as the largest concentration of owners of personal computers.

The focus of the entire event will be on parents and teachers in the

New York tri-state area. The attendees will be drawn from the

more than 11,000 schools in the metropolitan area as well as the

current home owners of personal computers which number

60,000 in New York City alone. Many of the latter population

purchased their computers for business use and are now ready to

address the many educational applications available but do not

know how to properly evaluate software or even how to buy it. We

will provide that service by creating an atmosphere totally conduc

tive to learning. Friday, November 2, will be set aside strictly for

educators, and Saturday and Sunday, November 3 and 4, will be

oriented to parents.

The seminar programs on all three days will address issues in

educational software development of current and future concern

to the specific audiences of each of the days. Some of the topics to

be covered are:

• The computer as a tool for problem solving or drill and practice.

• When are children ready for computer education.

The impact of computer-aided-education on self-learning. How

will teaching be streamlined according to 1Q and ability - will

students learning at their own speed with desk top computer.

• How is and will software be evaluated?

• The home entertainment center as a learning center.

• The computer as a flexible tool for the entire family.

• Hands-on, how-to workshops for Music, Art, Math, Reading,

Science .. .

The event will emphasize a hands-on demonstration of software

in an environment conducive to learning. "Home Rooms" will be

set up for parents to learn in a parent-friendly space.

Special events will focus on: Computer Graphics and Electronic Art

curated by Art Expo, New York; The Role of Robotics in Education

Future; Special Effects Production Utilizing Computers. For further

information please contact:

Nina T. Kurtis

National Educational Software Informarketing Corp.

225 East 57 Street, 17H

New York, NY

10022 212-688-8904

Books

Commodore 64 PRG Price Reduction

If you've been waiting for the price of the Commodore 64 Program

mers Reference Guide to come down, good news! 2295 Canadian

pennies will now get you one! The 64 PRG is Copp Clarks' second
largest selling book in Canada.

Tricks & Tips for The Commodore 64

Tricks & Tips for the Commodore 64 is a collection of easy-to-use
programming techniques for the world's most widely owned com-

The Transactor

Volume 5, Issue 04

puter. This 250+ page book is the perfect companion volume for

those of who have run up against those nasty programming

problems. Tricks & Tips for the Commodore 64 makes program

ming simpler and more exacting. A partial list of the contents

include:

• Advanced graphics - 3D graphics, defining and modifying the

character set

• Easy Data input - cursor positioning, turning the cursor on and

off, repeat function for all keys, making a mouse out of a joystick.

• Advanced BASIC - Copying BASIC to RAM; GOTO using calcu

lated line numbers; defining a new 1NSTR and STRINGS function

tricks.

• Other Languages - FORTH, Pascal and LOGO

• CP/M on the Commodore 64

• Data Processing - Sequential, relative and direct access files

• POKES and other Routines - Pokes and zero page, sorting

strings, DUMPing variables

Don't let your Commodore 64 sit unused in a corner because it's

too hard to program. If you want to get more from your program

ming sessions with your Commodore 64, then try a few "TRICKS &

TIPS".

Available now, 280 pages, $19.95 US., ISBN* 0-916439-03-8,

from your local dealer or directly from Abacus Software.

Abacus Software

PO Box 7211

Grand Rapids, Michigan

49510 616-241-5510

The Graphics Book For The Commodore 64

The Graphics Book For The Commodore 64 takes you from the

fundamentals of graphics to advanced topics such as computer

aided design. This book is for all of you who want to use the

fantastic graphics capabilities of the '64. Author Axel Plenge delves

into subjects that include:

• creating new character sets

• sprite design and movement

• high resolution and multicolor graphics

• programming for the light pen

• controlling the VIC Chip

• shifting the screen memory

• IRQ handling

• 3D graphics, projection and curves

• animation and moving pictures

The Graphics Book For The Commodore 64 is filled with many

program listings that make learning by example both easy and

straight forward. Here is a book that enables anyone to make his

mark in the fascinating world of computer graphics. An optional

diskette is available so that the reader does not have to key in the

programs from the listing.

An optional diskette containing the program listings from the book

available for $14.95 US. Available now, 250+ pages, $19.95 US.,

ISBN* 0-916439-05-4, from your local dealer or directly from

Abacus.

The Commodore 64 For Scientist & Engineers

The Commodore 64 For Scientists & Engineers is an introduction

to the world of computers for scientific applications. Author Ranier

Severin has tailored a book specifically for the sciences and the '64.

He discusses the different variable types; computational accuracy;

POKEs that are useful in solving scientific problems; various sort

algorithms such as bubble, quick and shell sorts.

Examples have a mathematical orientation and include differential

equations, linear and nonlinear regression, CHI-square distribu

tion, Fourier analysis and synthesis, scalar and vector products,

matrix calculations and much more. Programs cover the fields of

chemistry, physics, biology, astronomy, electronics and much

more.

All software listing illustrate the enormous range of capabilities

which the Commodore 64 has in the sciences and engineering.

Available November 1984, 250+ pages, $19.95 US., ISBN* 0-

916439-09-7, from your local dealer or directly from Abacus.

The Machine Language Book For The Commodore 64

The Machine Language Book For The Commodore 64 is aimed at

the Commodore 64 owner who wants to progress beyond BASIC. If

the reader wants to write programs that run faster, use less

memory or perform functions that are not available in BASIC, then

this book will help him understand machine language.

This is a 200 + page detailed guide to the complete instruction set

of the 6510 processor of the Commodore 64. The book is filled with

examples of machine language routines so that the reader can

learn from working programs. These examples are geared specifi

cally to architecture of the Commodore 64. You'll learn to add your

own keywords to BASIC, access peripheral devices, program high

resolution graphics and more.

Included in these pages are listings of three full length programs.

One is a working assembler so the reader can create his own

machine language programs. The second is a working disas

sembler so the reader can inspect other machine language pro

grams. The third is a 6510 simulator so that the reader can "see"

the operation of the processor.

An optional diskette is available so that the reader does not have to

key in the programs from the listing.

Optional diskette containing the assembler, disassembler and

6510 simulator programs available for $14.95 US. Available now,

215 pages, $14.95 US., ISBN* 0-916439-02-X, from your local

dealer or directly from Abacus.

Advanced Machine Language Book For The 64

Advanced Machine Language Book For The Commodore 64 is

Lothar Englisch's companion to his best selling introductory book

about machine language programming.

He discusses many in depth topics about the machine language

programming on the Commodore 64. You'll learn how to handle

interrupts from the CIA; program the video controller, timer and

Volume 5, Issue 04

real time clock; perform serial and parallel input and output at

machine language speed; extend BASIC with new commands and

functions. Englisch packs this book with dozens of tips and tricks

for the machine language programmer.

If you work with machine language, then you'll want to own this

valuable book. Available now, 200 pages, $14.95 US., ISBN* 0-

916439-06-2, from your local dealer or directly from Abacus.

Software News

OS-9: TPUG Makes A Standard Operating System

Available For The SuperPET

TPUG is currently planning to implement the popular 6809 operat

ing system "OS-9" on the SuperPET. OS-9 greatly expands soft

ware availability and the hardware capabilities of this computer

while at the same time preserving access to the Waterloo lan

guages and programs. The methods of implementation, are for the

most part resolved. A prototype will be available in September.

The cost of OS-9 to club members will be around $150 US., which

will include the cost of a hardware modification that will not affect

the normal operation of the SuperPET. Because every copy re

quires the purchase of a license from Microware Inc., a limited

number of copies will be available through TPUG which is spon

soring the project on a cost recovery basis. To reserve your copy

please mail $68.09 to TPUG. (1912A Avenue Rd., Suite 1, Toronto

Ont., M5M4A1, Canada)

Features of OS-9 include:

1. A true operating system with the features of UNIX and the

simplicity and command style of Commodore BASIC;

2. A multi-tasking and multi-user environment;

3. The ability to redirect and 'fork' input and output to printers or

to other devices;

4. A flexible command interpreter which allows users to define

and create custom commands;

5. File management is structured to permit multi-level directories

similar to what is now available in MS DOS;

6. Directory entries (files) automatically receive a time and date

stamp;

7. File access privileges may be restricted by the owner of a file.

Extensive software is available for OS-9 all of which will run on

SuperPET OS-9.

System Software Provided with OS-9: assembler, editor, command

(shell) library monitor, symbolic debugger

Available Languages (compilers) include: BASIC, Pascal, CIS-

Cobol, 'C, FORTH, 6809 Assemblers... and others.

Available Application Programs: Word processors and spelling

checkers, inventory and accounting applications.

Public Domain: Terminal emulation, utilities etc.

TPUG will participate in the acquisition of public domain software

and assist users in the conversion of commercial software so that it
will operate on Commodore drives.

The Transactor

Portability and Expandability

1. SuperPET OS-9 programs will run on all OS-9/based micro

computers.

2. Programs developed under OS-9 for other computers (such as

the Radio Shack Color Computer) will run on the SuperPET.

3. OS-9 will give users direct access to hardware drivers that could

operate devices such as parallel printers, additional serial ports,

hard drives etc.

4. There will be source code compatibility to versions of OS-9 that

are planned for the Motorola 68000.

Those of us in TPUG who are involved with the installation of OS-

9 are excited about the prospects of new applications with this

operating system. We are certain that it will prolong the utility of

the SuperPET but we do urgently need your support.

Gerry Gold (416) 667 3159 / 225 8760

Avy Moise (416) 667 3954 / 667 9898

Software Publisher, Bookstore Chain

Plan Innovative Joint Promotion

Waldenbooks and Scarborough Systems have announced an inno

vative joint book-software promotion in the bookstore chain's 860

nationwide outlets. Under the promotion, consumers who pur

chase Scarborough's MASTERTYPE, the best-selling educational

software program on the market today, and any book at Walden

books, will be eligible to receive a $10 rebate from Scarborough.

The refund is obtainable by mailing in proofs of purchase of

MASTERTYPE and of the book.

The promotion will run this summer, said Sanford K. Bain, Vice

President, Marketing, who announced the cooperative agreement.

"In developing the promotion, we wanted to encourage the con

sumer to be comfortable buying software in a bookstore environ

ment," commented Bain. "We're very proud of our new

association with Waldenbooks, a chain which as aggressively

devoted itself to serving computer enthusiasts by building a broad

line of computer books and software for the home."

MASTERTYPE, an educational program with an arcade game

format, makes learning typing and keyboard skills both easy and

fun. The program has sold over 200,000 copies, an industry record

in the home educational category. Used in home, schools and

businesses as the first step to computer literacy, MASTERTYPE will

be available at Waldenbooks for the entire Apple family, Atari and

Commodore-64 at $39.95 US.

Scarborough $4 Million Giveaway Will Let

Parents Donate Quality Software To Schools

Responding to an urgent need for quality software in the nation's

schools, Scarborough Systems, publisher of the best-selling educa

tional software program of all time, MASTERTYPE, has announced

it will sponsor a program designed to provide donated software

valued at up to $4 million to public and private schools this fall.

Through an innovative merchandising technique, consumers who

purchase one of Scarborough's seven educational software pro
grams between September 15 and December 15 will become

donors of another Scarborough program of their choice to any
teacher and school they select.

8

"Although a majority of schools across the country have at least

one microcomputer, all our available information tells us schools

are woefully ill-supplied with quality software that teaches young

sters to use the computer for creative learning, not just drill and

practice," said Scarborough President Francis P. Pandolfi.

"Our campaign, which we've called 'Be a Hero and Software a

School,' will encourage parents and other education-concious

adults to help schools by supplying them with innovative creative

software that has been tested in the home market.

Purchasers of any Scarborough educational product will receive a

"donation certificate" entitling them to give a Scarborough product

of their choice to a teacher and school of their choosing. The

certificates will appear in leading educational and consumer publi

cations, be available from computer and software dealers, and also

be attached on products and distributed through the educational

system.

To make the donation, consumers will return the certificate with a

product warranty card and a handling and mailing fee of $3.50 to

Scarborough. The publisher, in turn, will send the designated

software program to the school with a gift card indicating the

donor's name.

The software giveaway program is being supported by Scarbor

ough with an aggressive $1 million trade and consumer advertis

ing and promotional campaign. A special direct amil and

advertising program to schools is also in the plans.

Peter DuPont, Scarborough's Vice President of Sales, indicated

that national chains such as Sears, K-Mart, Target Stores, along

with leading software retail chains, have pledged their support of

the innovative software giveaway.

Additionally, Scarborough has encouraged dealers to visit and

"adopt" schools in their local community and maintain a file to

assist consumers who want to donate software but do not have

access to a teacher's name or the computer brand in the local

school.

Scarborough Systems, a Tarrytown, NY-based publisher which

shipped its first product in October, 1983, is recognized today as

one of the fastest-growing software publishers in the competitive

educational productivity segments of the home market.

In addition to MASTERTYPE, Scarborough programs include PHI

BETA FILER, a list management program for children; RUN FOR

THE MONEY, a business game with a space-age theme; SONG

WRITER, P1CTUREWR1TER, PATTERNMAKER and LASER

SHAPES. Retailing for $39.95 to $49.95 US., all are or soon will be

compatible with the Apple 11 family of computers, Commodore-

64, IBM PC and PCjr and Atari.

Scarborough Systems Offers

Combined Format for ATARI, C-64

RUN FOR THE MONEY, Tom Snyder's popular business strategy

game, and YOUR PERSONAL NET WORTH, a powerful new

personal finance product to manage, track and organize family

money matters, are the first software titles developed by Scarbor

ough Systems with Atari and Commodore-64 formats in one box,

without an increase in price. The new packaging was exhibited at

the CES in June, and will be available to retailers shortly.

The desire to help merchants turn over inventory more frequently

prompted Scarborough to develop the new combined format, said

Peter Dupont, Vice President, Sales at the Tarrytown, NY - bases

software publisher.

"We've had a tremendous response from software dealers every

where," Dupon said. "The need to use limited shelf space more

efficiently is a very real problem in retailing, plaguing both smaller

dealerships and the mass merchandiser." In addition, he said, the

combined format will help Scarborough to better manage its

growing product line.

Scarborough also announced that all future titles the firm develops

for both Atari and the Commodore-64 computers will be packaged

in this manner.

Scarborough continues to be an innovative publisher of home

software, with its packaging that features the use of four-color

photographs, dual purpose plastic boxes and color-coded series

and age bars.

Scarborough Systems, Inc.

Sanford Bain

25 N. Broadway

Tarrytown, New York

10591 914-332-4545

Solid Modeling Study From

The S. Klein Newsletter On Computer Graphics

Reports That System Installations To Double By Year-

End 1985.

Solid modeling is a computer graphics technology used to describe

physical objects completely, inside and outside. And because of

that unique capability, sold modeling "is destined to become a

ubiquitous tool," especially in CAD/CAM, engineering, architec

ture and animation.

So finds a 65-page study just issued by The S. Klein Newsletter On

Computer Graphics of Sudbury, Massachusetts, published by Tech

nology & Business Communications Inc.; also of Sudbury. Entitled

"Solid Modeling In Computer Graphics: Technology; Applications;

Supply Sources", the report documents the emergence of solid

modeling technology as a powerful analytic and descriptive tool.

It points out that the number of commercially-available programs

have increased from seven only two years ago to twenty five

currently. Similarly, the report forecasts that solid modeling sys

tems, totaling forty user sites in 1982, will jump to 350 installations

by the end of this year and to 600 system sites by year-end 1985.

There's good reason for the projected growth. Unlike the other

modeling techniques — wireframe and surface — only solid

models contain complete data on the interior of objects. This

facilitates mass property computations, interference checking,

finite element analysis, numerical control tape preparation, and a

host of other calculations and manipulations. It is why the S. Klein

Newsletter staff that prepared the report anticipate that solid

modeling will eventually become the prevalent way of doing

computerized geometric modeling.

The Transactor
Volume 5, Issue 04

The study describes solid modeling technology in-depth, shows

where it is applicable, and discusses its future. Also covered is the

"surprising role" of the personal computer in solid modeling. The

study also includes a directory of solid modeling supply sources

and comparisons of their products. It contains many illustrations, a

glossary, and a bibliography for further reading.

Report price: $129 prepaid; (outside US., $143). To order, or for

further information, Write - Solid Modeling Study, The S. Klein

Newsletter On Computer Graphics.

Technology & Business Communications, Inc.

730 Boston Post Road, PO Box 89

Sudbury, Massachusetts

01776 617-443-4671

CADPAK-64 - Superb Design Tool

for the Commodore 64 and 1541 Disk Drive

CADPAK-64 is a superb tool for computer aided designs and

drawings. You draw directly on the high resolution screen using a

lightpen.

CADPAK-64 lets you create and edit graphic pictures, drawings,

layouts and renderings - quickly, accurately and artistically. The

output is suitable for reproduction as hardcopy printout or photo

graphs.

CADPAK-64 is very easy to use. The main menu lets you choose

from a complete list simply by selecting an option with the

lightpen. Graphics are drawn on the screen at the exact location

that you point to using the lightpen. Your interaction with the

keyboard is minimal.

CADPAK-64 provides two high resolution graphics screens. You

can draw any combination of LINEs, BOXes, CIRCLES, ELLIPSES;

FILL using solid colors or patterns; freehand DRAW; COPY sec

tions of the screen to other areas; ZOOM in and do detailed design

within a small section of the screen. You can choose point place

ment down to the pixel level by using our AccuPoint cursor

positioning.

CADPAK-64 also has a powerful OBJECT EDITOR that lets you

define the shape of OBJECTS such as furniture, electronic circuitry

or machinery, your definitions can be as intricate as the screen

resolution permits. You can name these OBJECTS, build a library

of them on disk, and recall/display them on the screen at varying

SCALEings or ROTATIONS.

When your designs are complete, you can SAVE/RECALL your

finished pictures to/from the disk. Finally you can reproduce the

results to one of the popular dot matrix printers: Commodore

1525E/MPS-801; Epson MX, RX or FX series; Okidata; or C.Itoh

Prowriter.

CADPAK-64 uses a Commodore 64 with 1541 disk drive and

requires a high quality lightpen. Includes detailed user's manual

and tutorial in 3-ring binder. Price is $49.95 US.

We recommend Madison Computer's McPen available thru us for

$49.95 US. Other high quality lightpens are suitable. Available

from your local dealer or directly from Abacus Software.

Abacus Software

PO Box 7211

Grand Rapids, Michigan

49510 616-241-5510

Ideas To Use On Your Commodore 64

Ideas To Use On Your Commodore 64 presents dozens of helpful

and fun things to do with your '64. It's written for the novice and

reads like a novel, but contains program listings that prove the '64

to be the home computer. Here's some of the themes that are

covered:

• recipe card filer

• automobile expense minder

• electronic calculator

• store window advertising

• strategy games

• computer poetry

• construction cost estimator

• publicity letter generator

• party invitations

All programs in IDEAS TO USE ON YOUR COMMODORE 64 are

ready to key in and use. If you don't know what to do with your'64,

you will after reading khis book.

Optional diskette containing the program listings from the book

available for $14.95 US. Available in November 1984, 200 pages,

$12.95 US., ISBN* 0-916439-07-0, from your local dealer or

directly from Abacus Software.

XREF-64 - BASIC Cross Reference

for the Commodore 64 and 1541 Disk Drive

XREF-64 is an indispensible programmer's aid for authors of

BASIC programs. XREF-64 indexes the usage of all variables, line

numbers, numeric constants and BASIC keywords. You know

immediately which line numbers refer to a given variable name or

which line numbers use certain BASIC commands. XREF-64 is

almost a necessity for debugging your lengthy BASIC programs.

The cross reference is listed in sorted order onto either your screen

or printer. XREF-64 reads your program from diskette and prints

to any Commodore or Ascii printer. It's fast since sorting is

performed at machine language speed.

XREF-64 even lets you cross reference non-Commodore key

words. So if you have ULTRABASIC-64 from ABACUS Software or

VICTREE from Skyles Electric Works, for example, you can cus

tomize XREF-64 for these products and display all references to

these extended BASIC commands.

XREF-64 requires a 1541 disk drive. Printer is optional. Available

on diskette for $17.95 US. from your local dealer or directly from

Abacus Software.

ASSEMBLER/MONITOR 64

Our ASSEMBLER/MONITOR 64 package is for the development of

machine language programs on your Commodore 64. This low-

cost package has high-priced features. The assembler capabilities:

The Transactor 10 Volumi

• fast macro assembler

• conditional assembly capabilities

• full screen editing of source program

• object code assembles to memory, disk or tape

• complete symbol table listing

• source file chaining capabilities

The monitor capabilities has 15 functions including:

• hunt (for characters)

• disassemble code

• transfer blocks of data

• compare blocks of data

• access to other memory banks

• single step execution

• quick trace with breakpoints

• can coexist with the assembler

Both the ASSEMBLER and MONITOR are written in machine code

for speed and efficiency. ASSEMBLER/M 'NITOR-64 is available

on diskette and includes complete user's g jide in 3-ring binder for

$39.95 US., from your local dealer or directly from Abacus Soft

ware.

PASCAL-64 - Full Compiler

for the Commodore 64 and 1541 Disk Drive

PASCAL-64 is a full Pascal compiler and language development

package, in addition to almost all of the elements of the Jensen &

Wirth language, you get special features such as high resolution

graphics, sprites and file management.

PASCAL-64 is so advanced that you can even handle interrupts in

the Pascal language. And for extra special needs, by interfacing to

our new ASSEMBLER/MONITOR package you have direct access

to your Pascal variables.

PASCAL-64 is fast, since it compiles to 6502 machine language.

Your compiled programs can be SAVEd, LOADed and RUN like

BASIC programs, but will run much faster.

Here's the run down on the language.

• standard programming structures: FOR TO/DOWNTO, IF THEN

ELSE, REPEAT UNTIL, WHILE DO, CASE OF, GOTO, EXIT,

WITH DO

• data types: REAL, INTEGER, CHAR, BOOLEAN, SET, RECORD,

ARRAY, PACKED ARRAY, pointer, FILE

• functions: SIN, COS, TAN, ARCTAN, EXP, LN, SOR, SORT, ABS,

TRUNC, NOT, PEEK, ORD, CHR, RND, SUCC, PRED, LENGTH,

VAL

• input/output: READ, READLN, WRITE, WRITELN, GET, REST,

CLOSE, SEEK

• extensions: GRAPHIC, SCREENCLEAR, PLOT, UNPLOT,

SPRITE, POKE, SYS, INTERRUPT, FILLCHAR, NEW

• predefined names: TRUE, FALSE, NIL, ERROR

You can use PASCAL-64 for program development since it has full

file handling capabilities for sequential and relative data manage

ment; multi-dimensional arrays, dynamic storage with the proce

dure NEW and pointer variables, and easy string handling

procedures and functions.

PASCAL-64 is available on diskette with complete manual in 3-

ring binder for $39.95 US., from your local dealer or directly from

Abacus Software.

DATAMAT-64 For Commodore 64 and 1541 Disk Drive

DATAMAT-64 lets you design your data base in free form using the

full screen editor. You can define up to 50 fields per record.

DATAMAT-64 can store up to 2000 records per diskette. When

you're done defining your database, you simply press a function

key to save your data base template.

Reporting capabilities are just as flexible and complete. You can

sort on multiple fields in any desired combination. Then you can

select records for printing in your required format.

DATA-64's menu screens take you from function to function. You

can go from data entry, to data correction, to sorting and reporting

just by following the menus.

Our data base management software doesn't cost more and can

perform better than the more expensive ones. Available on disk

ette with complete manual in 3-ring binder for $39.95 US., from

your local dealer or directly from Abacus Software.

TAS-64 - Stock Marklet Technical Analysis System

for the Commodore 64 and 1541 Disk Drive

TAS-64 is for the serious stock market investor who requires the

intricate charting capabilities that only a computer can provide.

Many sophisticated investors use technical indicators to determine

when to buy and sell securities. TAS-64 can analyze and chart

these indicators to help the investor make his decisions.

Using TAS-64 you can download your indicators from the Dow

Jones New/Retrieval Service. Alternatively, you can manually

enter, edit, review, save and recall these indicators. You can track

high, low, close, volume, bid and ask by date. You can place 300

periods of information for up to 10 different issues on a data

diskette. You can format as many data diskettes as your portfolio

requires.

TAS-64 walks you through the chart building with easy under

stand menus. You can build a variety of chart types on the split

screen: 7 moving averages, 3 oscillators, 1-99% trading bands,

least squares, 5 volume indicators. You can also build comparison

and relative charts for two different issues. Finally you can record

your charts on the printer for more detailed analysis afterwards.

TAS-64 requires a standard Commodore 64 with 1541 disk drive.

For printing your charts, TAS-64 works with the Commodore

1525E; Epson MX, FX and RX series; Gemini series; Okidata; and

C.Itoh Prowriter printers.

The TAS-64 includes the master diskette, a sample data diskette

and an easy to follow 150+ page manual in 3-ring binder. Price is

$84.95 US., available from your local dealer or directly from

Abacus Software.

Arrays, Inc./Continental Software

Announces "GET RICH: STRATEGIES, VOL. I"

Arrays, Inc./Continental Software announces "Get Rich: Strate-

The Transactor 11 Volume 5, Issue 04

gies," the first volume in an exciting new series of personal

financial planning programs. Designed to teach basic money

management skills, "Get Rich: Strategies" also offers a range of

financial solutions tailored to individual needs.

According to Arrays, Inc. Executive Vice President Hank Schein-

berg, '"Get Rich: Strategies' is a potent set of financial 'tools' that

can direct the end-user in accumulating greater wealth or in

planning any number of money-related 'what if situations in-

between. The entire series will be as easy to run as our 'Tax

Advantage' program," Scheinberg concludes, "so that both novice

and professional computer users can benefit from the wealth of

information contained in each volume."

Get Rich: Strategies incorporates three major financial planning

tools, WORKSHEETS enable users to set goals, as well as deter

mine net worth and discretionary income; CALCULATIONS are

provided for solving a variety of problems involving money, time

and interest; and GRAPHS analyze the performance of invest

ments, interest rates and other related matters over a long period

of time. Results may be printed out in a convenient form.

The following worksheets also are included in Get Rich: Strategies

— Saving Goals, Assets, Liabilities, Income, Expenses and Calcula

tions. Following the same format as Continental's successful "The

Tax Advantage," the program "asks" for information in a very

straight-forward, non-intimidating fashion, with the end-user

merely typing in answers.

A "function menu" at the bottom of the screen always reminds

users of the basic methods available to design a financial plan. The

program is set up so that users can move easily and quickly

through different forms, and also offers a helpful tutorial.

Three more volumes in the Get Rich! series of personal financial

programs. The new modules are titled "Get Rich: Real Estate

Planning," "Get Rich: Insurance Planning" and "Get Rich: Retire

ment and Estate Planning."

Volumes II through IV are designed to work in tandem with Get

Rich: Strategies, the first program in the series. While Get Rich:

Strategies gives users a profile of their entire financial picture, the

supplemental volumes are more subject-specific.

Get Rich: Real Estate Planning covers all aspects of investing —

from types of properties to methods of buying. It helps determine,

for example, if it's better to buy or rent a property and what type of

mortgage might be appropriate.

Get Rich: Insurance Planning concentrates on how much and what

types of life insurance to buy, answering a multitude of 'what if

questions on this crucial topic in an non-pressurized way.

Get Rich: Retirement And Estate Planning helps the end-user plan

for later years by acting as an educational tool about such invest

ments as IRA and Keogh and then mapping out a potential worry-

free retirement based on individual needs.

Volumes I to IV in the Get Rich! series for the Commodore 64 are

priced at $49.95 US. Volume I and II will be available in September

of this year, while Volumes III and IV will be available in October.

PHONE CALL - An Innovative, Affordable

Telecommunications Program for The 64

Arrays, Inc./Continental Software introduces "PHONE CALL" an

innovative, affordable telecommunications program for the Com

modore 64 computer. Quick, reliable and easy to use, PHONE

CALL converts the C-64 into a "smart" terminal capable of

performing a variety of transactional operations, such as home

banking, electronic mail, data retrieval, travel planning and many

other uses.

Available for only $49.95 US., suggested retail, PHONE CALL

offers a range of features usually found in programs priced signifi

cantly higher. Extensive help screens and practical, result-

oriented documentation enable fast access to PHONE CALL'S

functions. It also will grow with the user as his or her telecommuni

cations needs become more advanced. PHONE CALL makes it

possible to "speak" to on-line databases, to digitized appliances,

and to other computers — whether micros or mainframes. It is the

only software in its price range that permits uploading and

downloading of machine language programs, including the most

sophisticated programs written for the Commodore 64.

Scheduled availability for PHONE CALL is late summer '84.

Linda Feldman

Arrays, Inc./Continental Software

11223 South Hindry Avenue

Los Angeles, California

90045 213-410-3977

ENTECH Extends Music Contest Deadline

EnTech Software has extended the deadline of the First Annual

Computer Song Writing Contest to December 1, 1984, because

according to EnTech Chairman Ray Soular, "a lot of people who

have just recently become aware of the contest have requested

more time to enter."

EnTech is offering a grand prize of $1,000 plus free studio record

ing time to the best song written on the Commodore 64 with its

Studio 64 program. Entries submitted on disk will be judged by a

panel of ten music industry professionals, which at this time

includes Vince Flemming of Strangeland Music (ASCAP) and Dan

Seitz of Aleph-Baze (BMI).

Soular said that to fill the numerous requests for contest informa

tion, EnTech is printing and sending additional contest entry

blanks to thousands of retailers across the country. Retailers

needing entry blanks can contact:

ENTECH Computer Song Writing Contest

PO Box 185

Sun Valley, CA

91353 818-768-6646.

SOFTSYNC Wins ARKIE Nomination For DANCING FEATS

SOFTSYNC announced that DANCING FEATS, its critically ac

claimed music/entertainment program, has been nominated for

an ARKIE award, Electronic Games Magazine's annual Arcade

Award which salutes excellence in the electronic gaming field.

The Transactor 12 Volume 5, Issue 04

"We are extremely pleased to have DANCING FEATS receive such

an honor," stated Kenneth P. Currier, Vice President of program

ming at the New York based computer software company.

"The program has been enthusiastically reviewed in almost every

major computer magazine, and it is wonderful to cap off its debut

with a commendation such as this," Currier added.

DANCING FEATS turns the computer into a musical instrument

but requires no previous knowledge of music.

"You select a bass, beat, style, tempo, and ending which the

computer transforms into a back-up band," explained Currier.

"Then you use the joystick to compose an improvised melody

which works within the greater musical structure."

DANCING FEATS's hook seems to be that it offers immediate

gratification. "The program lets you play music immediately - and

it splashes brightly colored bar chords across your TV screen to

boot!" An additional feature of the program allows users to digi

tally record their compositions onto disk or tape and play them

back later.

DANCING FEATS for the Commodore 64 has a suggested retail

price of $29.95 US. for the disk version and $24.95 US. for cassette

versions. Additional information is available from SOFTSYNC.

Linda Schupack

SOFTSYNC, Inc.

14 East 34th Street

New York, NY

10016 212-685-2080

Design Your Own Computer Games Without

Computer Knowledge with 'ADVENTUREWRITER'

Codewriter Corporation, has introduced ADVENTUREWRITER, a

games system based on their CodeWriter concept, that allows the

user to design games by programming in plain English.

"ADVENTUREWRITER provides the software owner with some

significant advantages over purchasers of packaged games that are

"locked" in a single format", says Warren Shore, president of

Codewriter Corporation which is based in Niles, Illinois.

"One distinct advantage of ADVENTUREWRITER and all of our

CodeWriter-based products is versatility," says Shore. "Your are

not buying a one-purpose game application. You are getting a

games system that allows you to create a virtually limitless number

of games."

ADVENTUREWRITER also provides another level of entertain

ment — the challenge and sense of accomplishment of designing

your own unique games.

ADVENTUREWRITER was announced in January at the Con

sumer Electronics Show in Las Vegas and Shore reported "an

extremely enthusiastic response — commitments for 20,000

units."

He added that many distributors and merchandisers said ADVEN

TUREWRITER would open up a whole new market for game

enthusiasts who have ideas for games but no programming capa

bilities.

ADVENTUREWRITER games are easily designed. The software

instructs the user how to proceed through a systematic process of

building a format, requiring the operator only to type in appropri

ate responses in simple English.

Throughout the programming process, ADVENTUREWRITER pro

vides "open windows" that allow the operator to build new

concepts into the game. Treasure hunting, jungle escapes, mazes,

hazards, villains and heroes can be designed by the user.

Once the game is set, ADVENTUREWRITER automatically con

verts the English responses into computer language and the game

can be recorded on the user's own diskette.

Since each game created is the user's own design, the "author" can

claim ownership and even copyright the game.

"Introduction of ADVENTUREWRITER's unique concept at a time

when sales of computer adventure games are soaring positions

Codewriter Corporation at the leading edge of a whole new

market," says Shore.

Look for ADVENIjUREWRITER at your local computer store, or for

dealer information contact: Micro Marketing Canada, 169 Ingle-

wood Drive, Toronto.

Budman Math Inc.,

Public Relations and Publicity Consultants,

505 Eglinton Avenue West,

Suite 303,

Toronto, Ontario. M5N 1B1

A CHRISTMAS ADVENTURE

A Very Special Program From BITCARDS INC.

Can be Custom-Programmed For Holiday Gift-Giving

BitCards Inc. proudly announces the release of a unique adventure

program written especially for the upcoming holiday season. Set in

and around Santa Claus' ice-castle at the North Pole, the player

will discover at the outset of the adventure that Santa has mysteri

ously disappeared. With Christmas only hours away, his annual

gift-delivery run is in grave jeopardy! The player's mission is clear:

Explore the many rooms of the castle and its outbuildings, unravel

the mystery of Santa's disappearance, find and free him, and thus

'save' Christmas.

Care has been taken in the scripting and design of the program to

make it appealing to a broad range of micro-users. A Christmas

Adventure is more than a challenging 'puzzle'; it is, above all, a

holiday entertainment filled with fun and surprises: The unex

pected appearance of an errant Pacman, for example, munching

his way across the screen; and the computer's response, "Get out

of here dummy, you're in the wrong game!"

An extensive 'intelligent' HELP utility ensures that players of all

skill levels will be able to proceed through the adventure, so that

they don't miss any of the fun.

The Transactor 13 Volume 5, Issue 04

A Christmas Adventure CAN ALSO BE CUSTOM-

PROGRAMMED!

Anticipating that many people may wish to purchase additional

copies of A Christmas Adventure as holiday gifts, BitCards is

simultaneously releasing an enhanced version of the program,

(ACA. C), designed specifically for this purpose. A utility provided

with this version allows the buyer to customize the program, such

that the recipient will discover several references to himself as he

progresses through the adventure. When the player first activates

Santa's computer, for example, he or she will be called upon by

name to help solve the mystery of Santa's disappearance. And

later, part of a note will be found in the reindeer's stable, praising

the player's skills and character, and providing Santa with his or

her home phone number. Through such personal references, the

player will come to feel that he is an integral part of the adventure

itself.

The customization routine also allows the sender to incorporate a

personal holiday greeting into the culminating sequence of the

adventure. Thus, the programmable version of A Christmas Ad

venture enables the buyer to produce a personalized software gift—

and-greeting-card all-in-one. (BitCards will do the customization

of the program to the customer's specifications if he lacks the

appropriate computer to do it himself.)

$14.95 - Adventure alone (ACA.N)

$16.95 - Adventure + customization routines (ACA.C)

$17.95 - Customized version prepared by vendor

($US. add $2.25 shipping/handling - all versions)

Available on disk for Commodore-64 and for Apple II family and

compatibles (48k RAM required). Apple version has over 20 pages

of superb hi-res graphics including animation and zoom se

quences. C-64 version is mainly text.

BitCards Inc.

30 W. Service Road

Champlain, NY

12919 514-274-1103

Hardware News

KAPRI Offers Advanced Graphic Accessory

SUN VALLEY - Kapri International has acquired a new supplier,

PERSONAL PERIPHERALS, INC., that manufactures SUPER

SKETCH, a sophisticated controller board for the COMMODORE

64. SUPER SKETCH retails for $59.95 US. The uses of SUPER

SKETCH range from simple doodling to computer art, to a variety

of applications in business. Unlike most video games, SUPER

SKETCH utilizes the computer or video game unit as a creative tool

that enhances anything that is drawn or traced. By simply moving

the stylus control, as you would a pencil, SUPER SKETCH repro

duces the movement on the screen. Compared with other video

graphics products, SUPER SKETCH does more than joy sticks,

paddle controllers and mouse controllers, and is less expensive

than other pad products, such as KOALAPAD and CHALKBOARD.

SUPER SKETCH can create a wide variety of business charts, or

graphs, which can be saved on disk or conveniently transferred to

another location via modem. PERSONAL PERIPHERALS is con

stantly producing new software. John Ovanessian, Product Acqui

sitions, stated, "We have been putting more emphasis on graphic

accessories that can be used in education home or business. We

have always been the leader in introducing new products to

dealers."

For more information Dealers can call Kapri International at 1-

800-22-KAPRI outside of California, or (818) 768-7888 within

California, or by writing to 11671 Sheldon Street, suite K, Sun

Valley, CA. 91352.

KAPRI International

Veritta Roberson

11671 Sheldon Street, Bldg. K

Sun Valley, California

91352 818-768-7888

Parallel Printer Adapter for the IEEE-488 BUS

Connecticut microcomputer has announced a new Centronics

printer adapter for the IEEE-488 (GPIB) bus. This device (the

GPAD-C) allows any printer with a Centronics printer interface to

be connected to any computer or controller with an IEEE-488

interface. The computers/controllers include those made by

Hewlett-Packard, Tektronix, Commodore, Osborne and most oth

ers. Compatible printers range from low cost dot matrix types to

high speed letter quality daisy wheel types.

The GPIB address is selected by a five position DIP switch. No

special programming or software is required. The GPAD-C makes

the printer look just like any other GPIB device.

The GPAD-C measures only 3 1/2x5 3/4 inches without cables.

The GPAD-C includes two cables and a power supply. The cables

allow six feet between the printer and the GPIB connection. The

power supply means that power is not needed from the printer or

computer.

The GPAD-C sells for $279.00 US. and is available from stock.

Connecticut microcomputer Inc.

Shirley Fletcher

36 Del Mar Drive,

Brookfield, CT

06804 203-775-4595

Twx: 710-456-0052

GPAD

The Transactor 14 Volume 5, Issue 04

Bits & Pieces

64 Quick Beep

The 64 is highly capable when it comes to sound generation,

but it lacks a simple method of making a single beep, or

ringing a "bell", as in the 40/8032 machines. The following

POKEs will create a pleasant "ding", and can be used to get

your attention after the computer has completed a certain

task.

poke 54273,70: poke 54278,249: poke 54296,15:

poke 54276,17: poke 54276,16

Note: changing the argument in the first POKE varies the

frequency of the ring.

Colour Bar

(Credit for this goes to someone out there with a stylish but

somewhat unreadable signature. . . M.S. Renouf, perhaps?)

"Recently while developing a colour select routine for a

program of mine (colour of background, border, sprites, etc.)

I discovered that certain colours side by side were virtually

impossible to see. So I took a look at the Reference Manual,

and using some sophisticated analysis methods (trial and

error) came up with the best possible general colour map

using all 16 colours strung out in a line side by side. If you

POKE the colours below in consecutive screen positions,

you will get a most readable Colour Bar:

10 data 4,0,8,2,10,9,7,12,6,3,14,1,11,13,5,15

20c = 55295:s = 1023

30 for j = 1 to 16 : read a

40 poke s + j, 160 : poke c + j, a : next

Dazzler of the Month

You were waiting for it, weren't you? Just so we don't

disappoint you, here's a screen dazzler for any BASIC 4.0

machine (4032/8032):

10fori = 47to57 : poke 59521, i: for d = 1 to 100

: nextdj: goto 10

Enter the above program and RUN it without clearing the

screen. I call it "Attack of the Killer Program (in 3-D)".

P.S. It doesn't look like it's very healthy for the video

circuitry, so don't keep it running too long.

Which Way Did He Go?

Here's an effect that owes more to the nature of human

visual perception than it does to the graphics capabilities of

your computer. On any 40 column machine, enter this

program:

10 print" ";:goto 10

(Note that there are 20 asterisks and 21 spaces. The exact

number of asterisks is not important, but there must be 41

characters altogether. You may use your favourite graphics

symbol in place of the asterisks).

Now run it. You probably first see lines of asterisks running

from the bottom of the screen to the top. Try fixing your eyes

onto the centre of one of the bars of asterisks. See them

moving slowly from left to right? You'll probably find the

illusion flipping between vertically and horizontally moving

bars.

The illusion is even more pronounced on 80-column ma

chines. Use this program:

10 print" **»***•*•*•*•••••*•************•*••**•**";

20 print" ";

:goto10

30 rem 40 asterisks, 41 spaces

The 80-column version creates slow-moving bars that are

very difficult to see as moving vertically. A procession of

diagonal bars is seen moving slowly from left to right.

The Transactor 15 Volume 5, Issue 04

Aquarius

While we're doing special effects, here's another dazzler for

80-column machines. It's based on the program by Giovani

Polese in last issue's Bits & Pieces section, but works

especially well on 80-column machines. In upper/

lowercase text mode, enter:

10printchr$(142)

20 print" EDCFRFCDE";:goto20

I won't describe the resulting effect, but it's better than you'd

expect from such a small program. TRY IT!

Quick Note: The more sprites you have displayed on

the screen of the 64, the slower the processor oper

ates due to wait states from the VIC chip.

SHIFTing your WAIT

Here's a handy technique that comes to us from Rico

Mariani of Downsview, Ont. To insert a pause in a program

that can be enabled from the keyboard, use the command:

WAIT 654,1 (C64)orWAIT 152,1 (40/8032), which will wait

until the shift key is pressed. To enable a program halt at

that point, engage the shift/lock key. This is a good way to

synchronize a program with an external process: just disen

gage the shift lock key to continue program execution. This

way you can be certain whether or not the program will halt

at the WAIT statement, simply by knowing the position of

the shift lock key.

Interrupt Key-Scanning

Sometimes it is desirable for some action to be performed

any time a certain key is pressed. A routine may be set up to

run during the interrupts, but the desired routine must be

performed once when the key is depressed, not every

interrupt as long as the key is held down. The following

examples in assembler show an easy way to accomplish

this.

C64 Example

The following assembler program, once initialized with SYS

49152, will change the border colour whenever the Fl key is

pressed.

10 *= $c000 ;start at 49152 decimal

20 keybd=197 ;key pressed

30 ;set up irq vector

40 sei

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

255

230

240

250

260

Ida

sta

Ida

sta

cli

rts

;

#<intrtn

$0314

#>intrtn

$0315

prevkey .byteO

i

intrtn

Ida

cmp

bne

cmp

beq

;

inc

= *

#4

keybd

out

prevkey

out

$d020

;(any desired cc

;

out

Ida

sla

jmp

= *

keybd

prevkey

$ea31

;keyboard code for f1 key

;f1 key pressed?

;no, exit to system irq

;check previous key pressed

;exit if f 1 pressed previously

;increment border colour register

;system irq routine

40/8032 Example

The example program for the CBM will switch between

graphics/lowercase modes when the up-arrow key is

pressed. Use the 64 program above, making the following

changes:

10 *= $7000 ;start at 28672 decimal

20

60

80

150

210

212

214

260

keybd

sta

sta

Ida

Ida

eor

sta

jmp

= 151

$90

$91

#222

$e84c

#2

$e84c

$e455

;key pressed

;irq vector low

;irq vector high

;keyboard code for up-arrow

;i/o register for graphics mode

;flip graphics mode bit

;store back into register

;system irq entry point

Use SYS 28672 to enable this version.

File Ripper

Need to look through some disk file in a real hurry? Actually

File Ripper is far too fast for the eye, but if you want to see

what's at the end of a large file and have no time to waste,

File Ripper will get you there quick! Once at the point you're

interested in, you can use the regular slowscroll or pause

keys (back arrow, :, RVS, CTRL, etc.). The 64 version would

theoretically work on the VIC 20 but it hasn't been tested.

The Transactor 16 Volume 5, Issue 04

1000 remfile ripper 4.0

1010 for j = 634 to 774: read x

1020 poke j,x : ch = ch + x : next

1030 if ch<> 15942 then print" checksum error"

1040sys634

169,209

169

169

169, 5

2,240

end

1050 data 160, 2,

1060 data 226, 180,

1070 data 133, 219,

1080 data 133, 212,

1090 data 189, 0,

1100 data 134, 209,

1110 data 198, 255,

32, 29,187, 32

0,133,218,169, 2

5,133,210,169, 8

133,211,162, 0

3, 232, 208, 248

32, 99,245,166,210, 32

32,207,255, 32,210,255

1120 data 165, 150, 240, 246, 165, 210, 32, 226

1130 data 242, 32,204,255,160, 2,169,238

1140

1150

1160

1170

1180

1190

1200

1210

1220

data

data

data

data

data

data

data

data

data

32,

201,

70,

32,

70,

32,

65,

89,

32,

29,

89,

73,

63,

73,

41,

73,

32,

41,

187,

240,

76,

32,

76,

32,

78,

32,

32,

32,

172,

69,

40,

69,

0,

32,

79,

146,

228,

76,

78,

32,

78,

17,

63,

82,

0

255,

255,

65,

68,

65,

18,

32,

32,

240,

179,

77,

35,

77,

65,

40,

32,

251

147

69

58

69

71

32

78

1000 rem file ripper 64

1010 for j= 828 to 926: read x

1020 poke j,x : ch = ch + x : next

1030 if ch<> 11254 then print" checksum error"

1040sys828

end

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

data

data

data

data

data

data

data

data

160,

96,

133,

133,

189,

134,

198,

165,

data 242,

data

data

data

data

73,

63,

73,

41,

3,

165,

188,

186,

0,

183,

255,

144,

32,

76,

32,

76,

32,

169,

169,

169,

169,

2,

32,

32,

240,

204,

69,

40,

69,

0

131,

0,

5,

5,

240,

74,

207,

246,

255,

78,

32,

78,

32,

133,

133,

133,

3,

243,

255,

165,

76,

65,

68,

65,

30,

187,

184,

185,

232,

166,

32,

184,

116,

77,

35,

77,

171,

169,

169,

162,

208,

184,

210,

32,

164,

69,

58,

69,

32

2

8

0

248

32

255

145

70

32

70

32

Quick Note: to disable character set switching with

the shift/Commodore keys, PRINT CHR$(8);. To re-

enable, PRINT CHR$(9);. An easier way to do it is to

simply key CTRL-H or CTRL-I, respectively.

Thanks to Jeff Goebel for this latter tip.

File Loader

When a number of program files must be loaded in succes

sion, for example sprite or character definitions, machine

code, or high resolution screens, this simple loading tech

nique is a good way to do it:

10A = A + 1

20 ON A GOTO 30,40,50,60,70

30 LOAD "FIRST FILE ",8,1

40 LOAD" SECOND FILE" ,8,1

50 LOAD "THIRD FILE ",8,1

60 LOAD "FOURTH FILE ",8,1

70 final statement - sys, load, goto, etc.

Since BASIC automatically performs a RUN (without clear

ing variables) after a LOAD from program mode, the files are

loaded in succession. Any number of files may be similarly

loaded, but make sure none of them are BASIC program

files, or the loader program will get clobbered. As indicated,

the last statement may be a SYS or other statement to start

the program instead of a LOAD

ASCII/CBM Conversion

If you've ever tried to print to an ASCII printer, or receive

from the RS-232 port on the 64, you're familiar with the

problem: Upper and lower case are reversed. To solve the

problem, use one of the following lines of BASIC to convert a

single character, stored in A$.

ASCII to CBM

a = asc(a$ + ch r$(0)): a$ = ch r$(a + 32 *

(a>96 and a<123)-128*(a>64 and a<91))

CBM to ASCII

a = asc(a$ + ch r$(0)): a$ = ch r$(a + 128*

(a>192 and a<220)-32*(a>64 and a<91))

Another difference between regular ASCII and CBM ASCII

are the control characters. ASCII codes from 0 to 31 are

reserved for special control characters, such as bell, line

feed, carriage return, backspace, etc. There is no direct

correlation between ASCII and CBM control characters, but

the conversion that must frequently be made is substituting

the Commodore's "DELete" character (20) with ASCII's

"backspace" (8). This may be done by adding the line,

if a = 8 then a$ = chr$(20) For ASCII to CBM conversion, or

if a = 20 then a$ = chr$(8) For CBM to ASCII conversion.

a$ = chr$(a+12*((a = 20)-(a = 8))) will convert either

way.

Any or all control characters may be converted from ASCII

by setting up a conversion string which holds the desired

CBM characters, such as cursor controls, tabs, etc. The

position of each character in the string should correspond to

the ASCI code that it replaces. To make the conversion using

a conversion string 32 characters long, the following line

could be added to the conversion program above:

if a<32 then a$ = mid$(c$,a +1,1)

The Transactor 17 Volume 5, Issue 04

This technique may also be used to convert Commodore

control characters into ASCII equivalents. Usually, however,

only the delete/backspace characters need to be switched.

Quick Note: the GET statement can accept more than

one argument, as in:

GET A$,B$,C$,D$, or using GET#

Easy Disk Salvaging

All programmers live in constant fear of losing their irrepla-

cable work due to death of a disk. This leads to paranoic

backing up of important files, a very healthy activity. Occa

sionally, however, even the most paranoid among us hear

the horrifying klik-klik—klik—klack—griiiind—klkklk which

signifies - horror of horrors - a read error!

After you curse yourself for not having made a recent back

up, what can you do? Well, the first thing you should do

before resorting to sector-reading, is to restore the disk

jacket. A common cause of read errors is a disk jacket that's

been squeezed tightly near the edges because of careless

handling or storing. This creates too much friction between

the disk and jacket, slowing the disk to the point where the

drive can't read it. To fix this problem, carefully run the edge

of the disk along the corner of a table to flatten it. Tapping

the edge of the disk on a corner at many points also helps.

This should spread out the jacket enough so that you can

read the disk and make a copy of it onto a fresh one. That's

the happy ending of this story, but there's also a moral: treat

disks gently and don't hold them by the edges or squeeze

them in any way. And that's not a fairy tale.

number you like, and see what happens after the first three

or four iterations. If you can figure out the reason for this

strange numerical omnipresence, your math students await

you!

Safe VAL Function

To permit "idiot proof" entry of numerical values from

within programs, it is best to input a string, and then convert

it to a floating point value with the VAL function. This

technique is still not 100% idiot proof, however. If, for

example, the string "Ie99" is entered, attempting to take its

VAL would result in an overflow error - disaster! The VAL of

the string can only be taken if the result would not exceed

1.7e + 38. The following subroutine will take the VAL of the

string V$ and put the result in V if doing so would not cause

an overflow error. If an error would result, the flag "OVERR"

is set, and V is set to zero.

50000 rem* safe val subroutine

50001 rem* input parameter : V$

50002 rem* output parameters: V, OVERR

50010 overr = 0: II = Ien(v$)

50020 for ii = 1 to II: if mid$(v$,ii, 1)<>" e" then next ii

50025 if ii>ll goto 50065 :rem* no " e" s, ok

50030 : mn = val(mid$(v$,1,ii-1)) :rem* mantissa *

50040 : for jj = ii + 1 to II: if mid$(v$,jj, 1)<>" e" then next jj

50050 : ex = val(mid$(v$,ii + 1 ,jj-ii)) :rem* exponent *

50060 : if ex + log(mn) > 38.53 then overr = 1: v = 0

: return :rem* too high *

50065 rem—• endif —

50070 v = val(v$) :rem* ok *

50080 return

A Magic Number?

Examine the following program:

10 input "enter any number" ;n

20 print n

30n$ = mid$(str$(n),2)

35k = 0

40 for i = 1 to len(n$)

50 : k = k + val(mid$(n$,i,1))*3

60 next i

70n = k

80 goto 20

As you can see, it just accepts any number, and then sums

all of the digits in the number, first multiplying each digit by

three. The result then becomes the new number, and the

process repeats indefinitely, showing the new value, "N",

every iteration. What's so special about it? Try it with any

Quick Note: An elegant way to create an infinite loop

without using GOTO is:

FOR I = 0 TO 1 STEP 0 ... NEXT I

Hardware Random Number Generation on the 64

From BASIC, it's easy to get random numbers (actually,

pseudo-random numbers) using the RND function. If ran

dom numbers are desired in a machine language program,

or if better randomness is desired, the SID chip may be used

to supply them. The amplitude of the output waveform from

voice three may be read from SID register 27, and if voice

three is set up for high frequency noise generation, this

value will be random. If that doesn't make sense to you,

don't worry. Just set up the SID chip with:

POKE 54287,255: POKE 54290,129

The Transactor 18 Volume 5, Issue 04

Any time after that, a random number from zero to 255 may

be read with:

PEEK(54299) from BASIC, or

LDA SD41B in assembler.

Round-up

Here's some fun with floating point round-off errors that

works with either BASIC 2.0 or 4.0. Enter:

75.99999999 (8 nines)

The result, as you'd expect, is just what you entered. Now

try:

75.999999999 (9 nines)

This time the result is 6, which is quite reasonable, since it is

just rounded off. But now go one step further and enter:

75.9999999999 (10 nines)

What? Not so reasonable this time (try it). Before you trash

your computer for being so stupid, don't worry: the floating

point routines are accurate to about 7 decimal places - that's

one part in 10 million!

Quick Note: 1% = 1 is a quick way of taking the inte

ger part of a variable without using the INT function.

Prime Number Generation

I know, 1 know, generating prime numbers probably isn't

high on your list of fun things to do with a computer.

Notwithstanding, you'll probably get a kick out of the follow

ing method and accompanying program. You may learn

something, too - don't forget, this is the education issue.

Math class flashback: a prime number is a number which

can only be evenly divided by 1 and itself. Thus, 11 is a

prime because it has no factors other than 1 and 11, but 9 is

not, since it's factors are 1, 3, and 9.

If you were asked to write a subroutine to determine

whether or not a number is a prime, a reasonable approach

would be to divide by each whole number from 2 up to the

argument, and if none are found to divide evenly. . .

a = d/q: if aOint(a) then. . .

. . .then the number is a prime. You could go one step

further for efficiency and only try numbers up to the square

root of the argument, since factors above that would be

redundant. Now, here's another problem: write a program

which prints all prime numbers from 1 up to a given value.

You might be tempted to pass integers from one up to the

limit to the above subroutine, and print the number if it is a

prime. That will of course work, but there's a better, not-so-

obvious way.

The prime number generation technique used here comes

to us courtesy of Eratosthenes (E-RA-TOS'-THENEEZ), of

Athens, Greece. Around 200 B.C., Eratosthenes had this

great brainstorm for generating primes. The technology of

the time did not include computers, so a long line of small

stones was probably used to do the trick. Actually, it's no

trick - here's how it works (We'll use a computer instead of

the stones. Less work).

1) First we set up an array containing all zeros. The array

must have as many elements as the maximum prime we

want to generate. This array could be represented by a

string of bits since only 0 or 1 is needed in any element.

2) We initialize the process by printing the first prime, which

is 1, and setting the first element in the array accordingly.

3) The array is scanned from the current prime until a zero is

found. The position of the next zero in the array repre

sents the next prime, and it may be printed out. It will be

2 in this case.

4) The array element pointed to by this prime is set to a 1,

and, in this first case, every second element thereafter is

also set. In the next iteration (prime = 3), the third ele

ment and every third thereafter would be set.

5) Steps 3 and 4 are repeated until the next prime is greater

than the maximum prime to be found.

The technique may look strange on initial examination, but

if you think about it a bit, you'll see why it works. By setting

a given element, you're ruling it's position out as a prime,

and thus the multiples of every prime are being ruled out as

primes. This effectively cancels out all numbers which have

factors (other than 1 and the number itself).

Why go through mental gymnastics to generate primes?

Well, this technique spits out primes so fast, you won't be

able to read them as they fly by on the screen. The first few

primes come out slowly, then get faster and faster as they

approach the specified limit. The below program prints all

the primes up to 100 (there are 26 of them) in about 4

seconds. An optimized BASIC program does it in less than

three, much of that time taken just to print the numbers out.

Bits & Pieces presents the following program to generate

primes. Try different numbers for the maximum prime, and

see the effects. Each array element is an integer variable

instead of a single bit. A bit-oriented routine would allow

The Transactor 19 Volume 5, Issue 04

higher primes to be generated since less memory would be

required per prime, but would run slower due to increased

processing.

100

110

120

130

150

160

165

170

180

190

200

210

220

230

235

240

250

260

270

280

285

290

300

310

320

330

335

340

350

351

352

360

370

rem* prime number generation

rem* using " sieve of Eratosthenes'

input" maximum prime" ;max

ti$ = " 000000"

dim sieve°/o(max + 1)

number = 0: rem* prime count *

prime = 1 : rem* first prime is 1 *

sieve(prime) = 1

for mloop = 0 to 1

: print prime

: rem* find next prime *

: for np = 0 to 1

: prime = prime + 1

: np = -(sieve°/o(prime) = O)

: next np: rem* until zero found

: rem* set multiples of prime *

: for set = prime to max step prime

: sieve%(set) = 1

: next set

: number = number + 1

: mloop = -(prime> = max)

next mloop

tme=ti: rem* stop timing *

print: print

print number;" primes generated."

print tme/60;" seconds taken."

The above program was written so that you can easily

understand the process, and modify it if neccessary. If you're

too lazy too type the whole thing in, here's a simplified and

slightly shorter version. Note that what is gained in brevity

is paid for in clarity and versatility.

1 rem* sieve of eratosthenes *

2 input" maximum prime" ;m : dim s°/o(m + 1): p = 1

: for k = 0 to 1 : print p

3 for i = 0 to 1 : p = p + 1 : i = 1 -s°/o(p): next: for s = p to

m step p : s°/o(s) = 1 : next: k = -(p> = m): next

The disadvantage of using the sieve to generate primes is

that the amount of memory available limits the highest

prime that can be produced. On the 64, the above routines

can go as high as about 19000. (Yes, I tried it. The highest

prime was 18979. No, I don't know how long it took). Using

a single bit per element, you should theoretically be able to

get sixteen times that. A simpler modification would be to

change the routine so that it doesn't set the prime locations

after it prints the primes. This would leave the array intact so

that the list could be printed again without re-setting the

elements. (That's the correct approach to take: my sieve

routines are a bit non-standard. Also, traditional sieve

algorithms start with an array of ones and zero out the

factors, but since DIM zeros the array free of charge, doing it

this way means we don't have to initialize every element in

the array).

I hope you found the above piece (or was it a bit?) interest

ing, even if it wasn't of prime importance.

Quick Note: the use of integer instead of floating

point variables results in slower, not faster, execu

tion times

Useless Fact:

A program with a line number zero can be RUN by typing

anything beginning with the letters R-U-N, such as: RUN

NING AWAY, RUN FAST, etc. Also, if you type R-U-N on a

line containing other text, you need not type a colon to

delimit the RUN command. And if your fingers occasionally

go spastic after typing R-U-N, you need not delete that

"sufferin suffix" before hitting Return. If there is no line zero

in the program, such antics are rewarded with an "?UN-

DEF'D STATEMENT ERROR".

Useful Fact:

Yes, some obscure little bugs in BASIC can actually be

"features". When documenting GOSUBs in a program, in

stead of using a REM, as in:

GOSUB 10000: REM* INPUT THE DATE

GOSUB 20000: REM* EXECUTE OTHER ROUTINE

GOSUB 30000: REM* ETCETERA, ETCETERA

You can fit more comments on the line by leaving out the

REM, and following the destination line number with any

character, for example:

GOSUB 10000 'INPUT THE DATE

GOSUB 20000 'EXECUTE OTHER ROUTINE

GOSUB 20000 'ETCETERA, ETCETERA

The apostrophe (') allows remarks beginning with numbers,

and makes an attractive REM substitute. This tidy method of

annotation works with GOTOs, too.

The Transactor 20 Volume 5, Issue 04

S
O

V
/
H
V

I
S
V
A
E

I
M
T
O
T
H
E

C
L
O
S
E
T
?

H
E

I
S

\
N
T
O

E
G
»
Q
.
.
.
,
T
H
E

U
N
B
E
L
I
E
V
A
B
L
E

T
W
S
.

I
S
N
/
C
K
P
I
E
R
P
O
N
T
.

W
H
E
N
H
E

F
\
N
\
S
V
\
E
(
b

A
P
T
R
1
N

J

J
I
D
O
N
'
T

W
H
E
R
E
'
B

E
V
E
R
V
O
N
E

G.0?|
3
O
R
R
V
,
B
U
T

C
H
E
C
K
.
O
U
T

T
>
»
t
>
N
'
T
V
O
U

C
N
L
L
F
O
R

H
E
L
P
?

C
Q
S
T
U
T
^
E
J

V

P
O
P
I
N
T
O

IT
V

I
T
'
S

N
O

P
1
C
M
J
C

C
^
P
E
T
l
i
C
K
E
O

\
^
4
Y
O
U
R

P
P
\
N
T
S
l

Y
E
S
!
B
O

S
U
P
E
R
T
Y
P
E
S

U
S
U
A
L
L
Y
B
E
T

^
T
H
E
-
N
I
C
K

T
H
E
V

O

T
H
E
F
L
O
r
S
K
Y

\
T
H
I
N
K
H
E

S
H
O

N
E
W

\
B
E
U
E
V
E

V
T
'
SF
O
R

H
E
T
O
P
U
N
C
H
N
O
U

O
U
T

V
J
H
K
T

T
H
E
B
O
S
S

\S,
G
.
O
N
M
f
\

B
E
H
f
\
P
P
Y
W
E
G
O
T

T
H
E
D
I
S
K
,
L
E
F
T
Y
/

Letters

OP Oops: Mr. George Shirinian's review of word processing

programs left out a major feature of 'Paperclip'; it won't run on

recently manufactured C-64's. That is, many disks recently sold

don't run on current 6510's, apparently as a result of over-

enthusiastic use of unimplemented opcodes in making past ver

sions of the program 'secure'.

The problem is common enough here in the boondocks; can it be

unknown in Toronto? As a new subscriber to Transactor, I had the

impression you published more facts and less hype than Commo

dore's house magazines or their commercial equivalents. Was 1

mistaken? Michael R. Wilson, Saskatoon, SK

ASO, RLA, LSE, RRA, AXS, LAX, DCM, INS,

ALR, ARR, XAA, OAL, SAX, SKB, SKW

These are operations that can be executed on most 65XX CPUs but

are not officially part of the instruction set. As you said, they sure

can foul up a program, especially when MOS acknowledges their

existence, but also tells you to avoid them for fear of obsolescence

in future chips. Well, I spoke to Batteries Included, and they

informed me that there was never any problem with Paperclip in

the coding department, just the key department. It seems that some

older Commodore 64's were being snuck into Canada via the US,

and they were not working properly with the Paperclip protection

key. With the addition on one capacitor, the problem has com

pletely cleared up. And as such, us folks in TO were never informed

of the problem.

We have tried to become a no hype magazine, and firmly believe

we have accomplished this goal. We are not owned or controlled

by Commodore in any way, and our advertisers list has been

condensed to a precious few. If ever you find a bubbling review,

andyou will find a few, its because the product is pretty terrific and

deserves a few bubbles. We receive quite a few packages in the

mail for review, and a few of these are OK, so we review them. If a

product is terrible, we won't waste precious space extolling its non

existent virtues. Why waste space in the pages of our magazine

with trash, if it could be filled with another enlightening article ?

Our philosophy, and one that we hope you agree with.

WordPro Hints: 1 have been using Wordpro Plus 64 for almost a

year now. In scanning the tables of Editing and Printing Functions

which accompanied Mr. George Shirinian's article on

wordprocessing programs for the Commodore 64 (Vol.5 Issue 1) I

noticed that there were four errors in the tables vis a vis Wordpro.

The first error is understandable since the function is undocu

mented in the Wordpro manual. Neither the manual nor the Table

indicate that one can access the bottom of text being worked with. I

accidently discovered that by pressing the control key (so that the

letter C on the line display is shown in reverse video) and then the

left arrow key (tab key), the cursor will be moved to the bottom of

the text. It would be interesting to find out why the manual does

not cover this.

The second error has to do with the capability to delete word(s).

This can be done by pressing the following sequence of keys:

<controlXd><w><return>

The letter w is pressed as many times as there are words to delete.

The third 'error' may in fact not be an error. The Printing Func

tions table indicates that Bold printing is not an option. According

to the manual, Bold printing (on letter-quality printers) is activated

by pressing the control key and the 8 key. To deactivate, control-9.

I own a Smith-Corona TP-II and have found that this does not

work on the printer (which does boldface using Wordstar). I have

found that the only way to 'bold print' is to force it by defining the

code which my printer will recognize as a backspace, typing the

code commands as many times as there are letters that I want

boldfaced, and retyping the letters. One has to take care, since all

key strokes will be counted as letters, so the margin for that line is

affected. I have also found that although the manual indicates

super and subscripts are supported, it does not work with the

Smith-Corona.

Finally, the Printing Table indicates that enhancement mode is

available. According to the manual, this is how Commodore

printers recognize the underline commands. I own a Commodore

1525—E. The enhancement/underlining command does not work

on it.

I just wanted to clear these points up. I use Wordpro constantly and

find, overall, that it is a fine program. I am constantly amazed at

the fact that Wordpro does its job as well as top of the line,

dedicated wordprocessors.

Patricia Ann Wilkinson, Falls Church, Virginia

Thank you for writing us with some rather keen observations. The

first error you describe is not really an error, but rather a neat way

to use a documented function for an undocumented result. In fact,

the reason "GOTO End Of Text" is not documented is because it is

not implemented. When Control TAB is keyed, WordPro attempts

to fill the first "Variable Data Block" with information retrieved

from the Extra Text area. WordPro begins searching for the first

Block, but ifthere are none the cursor ends up at the end oftext and

gives control back to the user. So ifyou don't use Variable Blocks,

Control TAB will appear to do a , "GOTO End". With Variable

Blocks the results are somewhat different.

Club Plugs: We would like to add our name to your list of

Commodore Users Groups. We are located in Germany, in the

romantic city of Heildelberg. Our membership consists of U.S.

Military and civilian employees of the military who are stationed

here in this area and their dependents. We are just recently

organized, however the response to our call for members has been

gratifying.

Robert H. Jacquot

Sec/Treas.

Commodore Computer Users Group Heildelberg

PO Box, General Delivery

A.P.O. New York, N.Y. 09102

The Transactor 22 Volume 5, Issue 04

Maybe you would be kind enough to mention CLUB64, which

could be best described as a Commodore 64 software user group,

in a future edition of your publication.

As we have not yet fully decided the range of services that we

should offer to our members, we are seeking constructive sugges

tions. It should be mentioned that we have a particular interest in

hearing from users who cannot attend club meetings because they

are living in remote parts, or because they are disabled or even

because they do not have the time.

We have already established a library of high quality public

domain programs, most of which have been checked and de

bugged. At present, ten disks are available and every one of them

includes between ten and fifteen programs which may be copied

and distributed to friends, members or users groups, schools, etc.

We hope to add at least two disks per month and maybe, if we get

enough suitable material, issue a regular newsletter on disk.

All 64 users with disk drives are invited to make use of our library.

For anyone who only wishes to use the library there will be no

membership fee but there will be a charge of 5.00 pounds per disk.

This includes the cost of packaging and postage to any part of the

British Isles (postage to others parts of the World will be extra), and

the overheads involved in obtaining and copying programs.

As we are a non-profit making group, we do not, at present, have

the manpower or resources to enable us to make programs

available on tape. But if the demand is great enough for such a

service, we will try to find a way.

We are interested in obtaining news, information, product details,

programs or any information suitable or inclusion on our proposed

disk newsletter. Would it be possible for software producers to

supply short samples or trailers for inclusion on our disks?

For further information, please write:

Brendan Conroy

c/o Upper Drumcondra Road,

Dublin 9, Ireland.

Program Files To Sequential Files On Disk: I have a Super-

Pet and a copy of Petcom, which is a telecommunications package

(an excellent one). My problem is that the SuperPet works in true

ASCII, and although I can write a routine to convert sequential files

to ASCII, or PETCII as needed, I don't know how to convert

program files. This is obviously a problem in that many programs I

send or receive to users of Pets of C64's will end up a scrambled

mess. I hope that you can be of some help.

Robert Dray, Peterborough, Ontario

In answer to your problem, I am assuming that the programs in

question are in Commodore BASIC completely. Anything other

than this, like embedded machine code, would be a royal pain. To

transform a BASIC program to a sequential file listing, you simply

LIST the program to disk. Try the following :

open 8,8,8,"0:filename,s,w" : cmd8 : list

Then, after all the excitement has died down on the disk drive,

close up the file:

print#8: close8

You will have achieved a proper listing, as it would have appeared

to the screen, in a sequential data file. If you have to transform

machine language programs to sequential, it may be worth con

verting them into a BASIC loader with data statements, then listing

them to disk.

PS. Thanks for the article on Telecommunications. Its terrific, and

we will be running it in our Telecommunications issue a few issues

from now.

So, You Want Us To Remain High Level: . . .The real reason

why I'm writing, however, is in response to something I read in a

magazine. The article was extolling the virtues of your magazine -

how it provides much needed technical information that is very

hard to find elsewhere - when suddenly it mentioned that the

Transactor will be making a shift to the beginning computer user.

Please, please, please, don't do it!!! I had hoped that I had finally

found a magazine that caters to the advanced Commodore user.

I'm so sick of the useless gobbledygook that I get in Compute, Run,

etc.

In the event that the technically-oriented Transactor becomes an

endangered species, please send me information on ordering back

issues.

Scott Burns, Urbana, Illinois

Gobbledygook?! Aaaarggh, NEVER!! We are a high level maga

zine, and will remain so 'till our brains start to decay from too

much activity. In all honesty though, we considered including more

beginner level material to give us a larger target market, but

reversed that decision in favour of a more stable and long term

market.

Low level magazines are easy to come by, and as such, beginners

can easily get more than enough info to help them along the way at

the start. But time will advance, and beginners will progress into

the intermediate and advanced stages of computer understanding.

Exit stage left the regular mag, centre stage, Transactor. We

neglected the fact that the portion of the market we don't service

will be the same slice left unserviced by the beginner mags in only a

short time.

We neglected another aspect too. In order to publish beginner

articles, they must first be prepared. This was boring. So the higher

the level, the happier we became. Now before you start flipping

through and labeling some of our articles as perhaps not so

advanced, remember this: the articles we choose for publication

are meant not only to be typed in, but to provoke further thought. In

each issue we attempt to include articles that provide you with

ideas for making a program in another article better. For example,

you might take Garry Kiziak's machine language sort and swap it

into Phile Master by Bob Drake to make the sort portion of the

program faster. So in the short run you get a program, but in the

long run you get the tools for making more programs more useful

more often. And we think that's more important.

Some people don I understand everything we print, just yet, but

challenge is what makes the world revolve. Nothing feels better

than to grasp a situation that before was without meaning. We run

at a high level because we like it, and we are sure that we are not

alone. Once again, we assure you, we will not decay into another

regular collection of low level dribble.

23

The MANAGER Column
by Richard Evers

For this issue we are going to change our pace a little. As you

know, the past few issues have discussed only C64 Manager

applications, which our mail proves to be pretty popular. Well, the

Manager has been around for some time now, and as much as we

like the new Manager, the old one was more versatile in the

programming department. For this reason, this issues column has

been donated to the workings of the CBM Manager, just for those

many people who feel left out of this column. Next issue you can

expect to here from Don Bell again, and the C64 Manager express

will continue on its merry way. Hope you enjoy this issue.

To start the ball rolling, how about a story relating my experiences

with the Manager for reasons other than data base management.

In the past, I have written a few fairly major business applications

for the CBM 8032. With these, as with most business applications,

relative files were the only way to go for data storage. In one

particular application, the full capacity of two 8250 diskettes for

both the various programs and the data, were used. On these

poorly overworked diskettes were found relative pointer files,

further relative sub-pointer files, and relative data files, with one

reaching the extreme of 14,742 records in length. The trick is, the

software was all written from the ground up, and the design work

was being performed even while the program was being written.

That particular application was helped along quite a bit by some

careful planning with the Manager in the initial record design

stage.

The normal creation process of relative records can be at times

confusing. You decide what information is going to be in each

record, then record it on a sheet of paper. Next, you figure out the

length of the file and exactly how many records you can expect to

use, then you go about creating the records. Later, if updates are

needed, which they always are, that piece of paper has to be found

back, and the update has to begin all over. With the Manager,

these problem were easily bypassed. By entering the Create A File

option I was able to custom create the relative records exactly as

required. Comments and fancy formatting could also be included

to help clarify the matter for later updates, if needed. Once

completed, the file was created to the desired length, with the

Manager placing an astra at the start of each record, and padding

the balance of the record with spaces. A very nice touch.

One problem did get in the way immediately, but it was easily

straightened out. Each record created was within the limit of one

block less 2 bytes, as imposed by the CBM disk system. The trouble

was, my total file length exceeded what the Manager would allow.

Because of the 8050 drive unit and its shortcomings with its

relative file capacity, it just can't handle over 183 K of relative data

storage, my 8250 was held back. The 8250 drive can handle 1.04

meg of relative data, but the Manager didn't know it. It was left up
to me to tell it.

By poking around a bit, an answer was found to this problem. In

filename 'create', line #3070 was changed to allow for as many

records as the disk could handle. Just by looking at the line, you

can see how a cap was put on the system :

3070 rem if mx>182880 then mx= 182880

Same with line *13070 in filename 'fileman'. With this code REM'd

away, I was free to create files as large as required. The next

problem was not as extreme, but still just as important in this

application.

For future update purposes, the screen files were invaluable. They

could be copied from the working disk onto a screen file disk, then

scratched from the working disk. If ever an update was required to

re-create a file, the Manager would only require the screen file for

this purpose. As such, a diskette full of screen files was pretty

useful. This all was fine until my final, largest file was in need of

creation. Then trouble reared its ugly head. Pure, unadulterated

greed took over my being and prompted me to want the room that

the screen file consumed for relative data storage. Actually, it

wasn't greed. The system was in need of every byte possible, and

as such the screen file was in the way.

My monster file had a record length of 69 bytes, and it was left to

me to get as many 69 byte records on disk as possible. For this

reason, the data was given one entire diskette in which to reside.

The balance, relative data records, pointers and the programs

themselves, were all put on the other diskette in drive zero. By

allocating one entire disk for this single file, there was 1.04 meg of

room available. Enter, the problem.

A Manager screen file takes up 26 blocks on disk, which translates

into 6604 bytes of data that could have been used for relative

storage. My task, to get rid of the screen file before it was written to

disk.

Now, considering that the problem was encountered while in the

'create' a file section, file name 'create' was once again loaded in.

Without going into greater depth, the answers were found on two

lines, lines #672 and #3060. Look below, and you will find the

reason for the hold back :

672 \s,fs$," 6500"," 7dff"

3060fb = x + y*256-1 : close 1 : fb = fb-26-1-1

: fb = fb-int(fb/120): mx = fb*254

Line *672 performs the function of saving to disk the screen file, of

which was comprised of data residing between $6500 and $7dff in

memory. This line had to be rem'd out completely.

Line #3060 is responsible for the calculation of the number of free

blocks available on disk for the storage of the relative file. A screen

file is comprised of 26 blocks, therefore the calculation fb = fb-26-

1-1 had to be changed to read : fb = fb—1 — 1

With these bits of code altered accordingly, my pursuit of 'the big

one' could be accomplished, a total file length of 14 742 records!

The Transactor 24
alt

Subroutine Eliminators 64 Jeff Goebel

Georgetown, Ont.

Once again, I pick up where I left off two issues ago and continue to

bring you some more pokes and peeks that do the work of entire

subroutines. This time, with a collection for the Commodore 64

owners. Stick with me, and you'll be scratching old disk routines

and clearing up valuable disk and memory space.

First let me look back to a previous issue for a moment. In volume

4, issue 6, I talked about a powerful poke that took away the

question mark and did not allow you to hit return out of a pet input

statement. (POKE 16,0) Lots of people liked it and wanted to know

how to do it on their Commodore 64.1 looked around and came up

with:

poke 19, 64

For those of you who don't have the original issue, I'll briefly

describe it again. The above poke will somehow stop you from

exiting an input prompt unless you enter something. It is indeed a

handy trick. The format is as follows:

10 poke19,64 : input" Enter Name: ";a$: print: poke19,0

Please note that there must be a "PRINT" following the input, and

you must remember to reset the poke to 0 after you are finished

inputting. Otherwise, you'll never get any line feeds. One other

quick note: The poke has no effect unless you have a text prompt

in your input statement.

Before I continue with more subroutine eliminators, let me first

throw this quick subroutine your way. Although it is contradictory

to do so in an article like this, I feel this is a short enough program

to be included here. It simply prints the contents of your 64 screen

to the printer using only three lines of BASIC. The key is in line 20,

which is the routine to transfer Commodore screen poke codes to

regular ASCII character string values. I'm sure you'll find other

uses for that routine as well.

10 open4,4 : x = 1024 : for s = 1 to 25 : for t = 1 to 40

: a = peek(x): x = x + 1

20 a = a + 128*(a>127): a = a-64*(a<32ora>95)

-32*(a>63anda<96)

30 print#4,chr$(a); : next: next: close4

Now on to the serious subroutine eliminators. How many UN-

NEW programs have you read lately? Be honest now, we all know

the ones. Many of us have one or two we've typed in and they sit

unused on a disk somewhere. Well, here is a short one which will

restore a program to the point where it may be listed (attempting to

edit a program restored by this method will result in a rather

exciting crash)

poke 2050, 1 : sys 42291

It even works if you've typed in SYS64738 and reset the computer.

There is a catch, however: I've used the command before with no

problems, as long as your program isn't huge. Somewhere just

over 8k, you'll start running into screwy problems. If it's a big

program you've just accidentally NEW-ed. then maybe you can

search through all those other disks.

Many other authors have tried to condense the Commodore 64's

music chip into simple easy to use pokes. I've seen one program

that was only 84 characters but it produced one beep. Now it's my

turn! I admit that in the condensing I have lost a lot of musical

control. I don't worry about waveforms or attack, decay etc, but

sometimes all you need is a little tone. If a beep takes 84 charac

ters, I can do a click in only 24 (even less if I abbreviate my POKE

command). If I add a short loop, I can create a pleasant buzz. Enter

line 10 below and run it for a click, then add lines 5 and 15 to hear

a buzz.

5 for t = 1 to 50

10 poke54296,15 : poke54296,0

15 next

Although you can't change the buzzes pitch, you can adjust the

volume (since all I'm doing is turning it on and off anyway). Just

change the 15 to any smaller number.

poke 650,255

This poke allows all your keys to automatically repeat when you

hold them down for a second.

I also have a few pokes left over that could have gone into the my

SPIFFY LISTINGS article which appeared in the last issue. I think

they'll fit in here as well:

poke 774, 0

This vanishes your program listings. The statement numbers still

appear, but the statements don't.

poke 774, 141

This poke simply disables your ability to list at all. By the way;

poke 774,26 resets these to normal.

poke 775, 141

This will reset your computer to a RUN-STOP/RESTORE state

whenever you try to list. It resets with 167. I'm sure these locations

will yield some other interesting effects if you play around with

various values in them.

poke 808, 237

This will disable not only the list, but also the capability to RUN-

STOP/RESTORE your computer. It resets with poke 808,242

poke 818, 32

This will disable the save function of the Commodore 64. It must

be reset with poke 818, 237 before any WRITE operation is

successful.

1 hope that this article has not offended any of the authors of

subroutines I have eliminated here today. If I have, I'm truly sorry,

and hope to offend more of you next issue with still more SUB-

ROUTINE ELIMINATORS.

The Transactor 25 Volume 5, Issue 04

Office Automation

For The Nineties

Major B.L. Olmstead

Victoria, BC

In the early 1950's there were approximately 1,000 computers in

use in North America. By 1976 there were more than 220,000

large computers and three-quarters of a million microcomputers

in use. By 1980 over ten million microcomputers were in use and

their proliferation was growing at a rate of 25% per year. This is

expected to continue throughout the decade.1

With this enormous proliferation of micros and the dramatic

reduction in cost of main frame hardware and their increased

capacity, the sheer momentum of technology will force a revolu

tion in the office of the nineties. Virtually every office manager and

secretary will have an intelligent terminal on their desks. This will

induce a radical change in the information flow and traditional

staffing of positions. Vocal and telephone communications, face-

to-face meetings and many written messages currently processed

will disappear. In their place will be shared data bases, common

electronic mail/messaging systems, and common files. This will

open up new avenues of communications among the individuals

in an organization both internally and externally. In addition, the

individual user will be able to supervise more closely the dis-

emination of their messages.

New pathways of communication will be established and interper

sonal roles will change. Clerical workers will ne displaced and

become an unknown entity as such highly routine work as filing,

mail sorting, mail delivery and voluminous copying tasks are

handled electronically by computer systems that perform these

tasks by the mere push of a button or the command of a voice.

Out of the labour force will come a group of paraprofessionals who

will assume semi-management positions in the office, using com

puter technology to monitor and control a variety of processing

chores currently performed manually. Managers and executives

will use teleconferencing and computer conferencing to replace

time consuming and expensive travel. They will have decision

support systems to handle budget preparation, sophisticated mod

eling tasks, maintenance of their calendar and to give them access

to a variety of internal and external data bases.

The new era of electronic mail/video text services will provide

graphs, charts and photographic images with text messages-.

Documents will be annotated with voice comments and voice

messages will refer to texf. Spread sheets from personal com

puters and information in public and private data bases will

become a transparent part of the information infrastructure. The

integrated message facility (IMF) will provide for a single interface

for controlling all message facilities and the telephone system'. For

example, a window on the user's work station will provide a

complete status for the user on:

A. The telephone (incoming calls, camp-on, queing etc.)

B. Text/graphic and voice messages (electronic in basket)

C. Operator messages

D. Secretarial intercom

Another major accessory in the office of the nineties will be storage

and retrieval facilities for information using optical disc technol

ogy6. It can store both analog and digital data of virtually every

kind we now collect and use, on a single medium. Standard

computer data, voice, music, motion picture and video footage as

well as photographs and all manner of complex graphics (includ

ing color) may be stored on the optical disc. An added plus is that

scanning of such material into a system takes a fraction of the time

required to key it in.

In terms of performance, a 12 inch optical disc can contain a sheet

of standard typewriter paper (54,000 square millimeters) on just .5

millimeter of disc surface and store up to 10-to-the-tenth-power

bits - a number equal to the number of seconds in 317 years6.

The work station to support these users will provide a transparent

interface to all the communications facilities needed. Video text

services will be an asset of growing importance to business along

with voice-mail systems2.

In the nineties there will be an indigenous system for computer

assisted learning embedded in the work station software to teach

the user to operate these complex systems. The value of this

training method is that the user is actively involved, using the tools

he will be using on the job. The user will also be able to proceed at

his own pace, which will reduce the inequities between slow

learners, gifted persons and the handicapped7. In addition to the

embedded primary and adjunct CAI, user-friendly menu-driven

displays with extensive "HELP" features will assist in the learning

process.

For many users, this work station will meet the needs of individ

uals for private personal computation, data storage, graphics, mail,

electronic funds transfers etc. Even now, some businesses and

universities expect their personnel to have personal computers

which can be linked to their main facilities.

In the nineties, flat-panel display technology will allow senior

management to carry portable computers in their brief case and

link to their offices to conduct business as required8. By the end of

the century I would expect to see the automated office staffed by

technicians and the "staff" operating from their residences. The

societal changes which this could bring about are heady indeed. If

you could be employed by a firm in Victoria and live in Hawaii or

The Transactor 26 Volume S, Issue 04

Mexico or anywhere a data link could be established, the impact

on our way of life would be greater than the industrial revolution

produced. When linked up with interactive teletext on home

computers and interactive videodisc entertainment systems, cur

rent living patterns may be completely disrupted1". Whether soci

etal resilience is adequate to withstand such dramatic changes is a

matter for conjecture. Computerization certainly points to a more

reclusive posture for individuals which is contrary to human

nature. Many people feel that nothing, not even the electronic

revolution can substitute for being at the "center of the action" in

the market place. "We communicate on a different level when

we're within a few feet of each other," says J. Craver, recently

retired futures research manager at Monsanto Co'-.

Most of what has been said to this point emphasizes the increased

efficiency and productivity of the knowledge worker9. Given the

future disruption of traditional systems of work and management

which have evolved over the past decades, many problems can be

foreseen.

The first, and probably most important are the "Quality of work

life" and personal health aspects of using the work station. Quality

of Work life (QWL) is considered the "democratization of work"

and is designed to improve productivity13. Major changes in tradi

tional management attitudes and "consultation" will have to take

place to satisfy knowledge workers especially when operating from

remove sites. In addition, many knowledge workers still perceive

there are health problems associated with radiation from work

stations. Although there is no scientific proof of radiation hazards

and workers complaints can always be traced to ergonomic and

environmental deficiencies, the perception must still be dealt

with'4.

A real health problem may be induced psychologically should

these sophisticated systems fail on a massive scale. Power "Black

outs or Brownouts" over large areas or deliberate sabotage could

cause over reactions to the techology such as that resulting from

the Three-Mile Island nuclear plant accident. That accident

caused little real damage but was instrumental in virtually closing

down further development of nuclear energy projects. Will societal

resilience and national economics be able to accept massive

disruptions of interrelated computer systems or their communica

tions facilities without over-reaction against the technology? Only

time will tell!

The question of National Security for information systems also

looms large both from a physical security and a security of

information point of view. Even now, international data flows are

being restricted by some countries using foreign data protection

laws'5. This will cause international businesses to decentralize

which may cut into their productivity, profitability and flexibility. It

could also create concentrations of power for those countries that

can afford this technology and have the expertise to employ it.

Maintenance of these massive interrelated systems will also create

enormous problems unless systems are designed for mainte

nance". Special technology and organizations will have to design

built-in automated diagnostics and corrective mechanisms for

these complex interrelated applications'7.

In conclusion, the optimists believe that the automated office will

result in greater freedom and individuality and a more humane

and personalized society. The productivity increases using

computer-assisted manufacturing techniques and Robotics can

only increase our standard of living, shorten the work week and

increase leisure time to enjoy life.

The pessimists come to the conclusion that computer technology

will dominate our lives as a society and as individuals and sweep

us along in a tide over which we - the harassed and exposed

victims of a depersonalized and dehumanized process that places

greater value on efficiency than on the more noble qualities of life

- shall have little control. They are also convinced that computer

monitoring of individuals through the automation of the office and

home and its concomitant dangers to privacy, is truly an Orwellian

prophesy come true.

I believe that the automated office of the nineties will integrate

itself into society because of its productivity capabilities and its

sheer momentum. Whether you consider it will improve society or

not, I feel that basically it will be the same story as in the past: Your

children will be better off than you are, and their children will be

better off than they are.

References:

(1) Finn, B. "Interfacing People with their Machines" AFIPS Con

ference Proceedings (Vol 52) p.355

(2) Davis, D.B. "US Business Targeted as Major Videotext Market"

Mini-Micro Systems, Sep 1982 p. 145-151

(3) Hasiuke, K., Konishi, K., Asami, T. and A. Kurematsu. "Text

and Facimile Integrated Terminals" National Telecommunica

tions Conference Record 80 (Vol.3) 1977 p.60:5.1 - 60:5.5

(4) Maxemchuk, N.F. and Wilder, H.A. "Experiments in Merging

Text and Stored Speech" National Telecommunications Confer

ence Record 80 (Vol. 1) p. 16:1.1 -16:1.6

(5) Finnigan, Paul "Voice Mail" AFIPS Conference Proceedings

(Vol.52) p.373

(6) Saxton, W.A. and Edwards, M. "The Optical Disc come of Age"

Office Administration and Automation 1983 Vol 44 No. 5 p.74

(7) McKenzie, J., Elton, L, and Lewis, R. "Interactive Computer

Graphics in Teaching" Halstead Press, New York 1978

(8) Weissmann, T. "Battery Powered 16-Bit Briefcase Micro" Ed.

Canadian Data Systems Vol 15 No.6 p.30

(9) Johnson, B., and Taylor, J. "Innovation in Word Processing"

Interum Report to the National Science Foundation Grant *ISI

811079,1982

(10) Martino, J.P., "The Future of Telecommunications" Current,

p.28 June 1979

(11) Smith, A., "All the News that fits in the Data Bank", Saturday

Review p. 18-19

(12) Sanders, H., "Computers in Society" McGraw-Hill Inc. 1981

p.592

(13) Daven Port, J., "Whatever Happened to QWL?", Office Admin

istration and Automation May 1983 p.26-29

(14) McGurrin, H., "Video Display Terminals - A Guide to Man

agers and Supervisors" Occupational Health and Safety Bulle

tin 16-83 July 1983, p.1-7

(15) Turn, R., "Transborder Data Flows - Privacy Protection and

Free Flow of information", Arlington, V.A.: AFIPS Press 1979

(16) Lientz, B.P., and Swanson E.B. "Software Maintenance Man

agement", Reading, Mass,: Addison-Wesley, 1980

(17) Richardson, G.L. and Butler, C.W., "Organizational Issues"

AFIPS Conference Proceedings Vol 52 1983 p. 155

The Transactor 27 Volume 5, Issue 04

Dynamic Expression Evaluation
Chris Zamara

I have been asked several times if there was a way to allow

user-input of an expression, and have a program evaluate

it. For example, an excellent aid for mathematical education

on any level would be a program which would plot a

function, given the function and the domain (range of x

values) over which to plot it. Such a program would be

extremely useful to illustrate given functions and allow

experimentation, without tedious calculation and plotting

on graph paper.

It sounds like a simple program to write, but the problem

comes when the user must enter the function to be evalu

ated. If a string is entered, such as:

"SIN(X) + COS(2*X)"

. . .how can the program evaluate it? One method would be

to halt the program, allow entry of an equation such as

"Y = SIN(X) + COS(2*X)", and then CONTinue the program,

which would use the variable T. The problem with this

approach is that the possibly computer-naive user is sud

denly thrust into the real world, out of the program. One

wrong move on his part (like pressing "home" by mistake),

and the program may die in a very ungraceful manner.

Another technique, probably most used by programmers, is

to just change a function definition before running the

program. For example, entering:

1 DEFFNY(X) = SIN(X) + COS(2*X)

. . .would enter the function definition as line 1 in the

program, allowing evaluation by subsequent calls to the

function, as in "Y = FNY(X)". This technique may be useful

to programmers, but once again, it is too error prone for a

non-programmer, who can't be expected to modify and run

programs in the normal course of usage.

Besides the above specific example, there are many occa

sions when it would be nice to enter an expression instead

of a number, as in the following examples of prompts and

responses.

PROMPT

maximum range?

age in days?

length in kilometres?

speed in km/h?

yearly revenue?

monthly income?

RESPONSE

*pi

1*365

• 1.6

0*0.6

tly*12

rly/12

length of hypotenuse? qr(a*a + b*b)

As you can see, sometimes entering an expression just saves

you from having to whip out your calculator, and sometimes

it lets you use internal program variables which have un

known values.

As is often the case, it seems machine language is the

solution to our dilemma. What is needed is a routine which

accepts a string expression - representing the function to be

evaluated - and returns the result in the form of a floating

point variable. The program to accomplish this, called

"EXPEVAL", appears in BASIC loader form in Listing 1, and

in assembler form in Listing 3. In its present form, it runs on

the 64, but could be easily converted for other machines.

The program is accessed through the USR function in

BASIC, so the USR vector must be set up once before using

it. The BASIC loader program does this automatically with:

"POKE 785,0: POKE 786,192"

After the vector is set, the program is called with the USR

function from BASIC, using a dummy argument (the USR

function can't use a string as a parameter). A comma, then a

string expression, follows the USR command. The string

expression represents the function to be evaluated, and is

usually a simple string variable. A specific usage example

follows.

A = 5: F$= "3*4 + A"

PRINT USR(0),F$

After executing the above statements (assuming the USR

vector has been previously set up), the value 17 will be

The Transactor 28 Volume 5, Issue 04

printed - the result of the expression held in F$. More

complicated expressions may be evaluated, for example:

XP = USR(0),F$ + "SIN(X)+ " + STR$(Y)

However, it's best to stick to using just a string variable

name as the expression to avert the possibility of a "?FOR-

MULA TOO COMPLEX ERROR", which seems to happen

sometimes with more complicated expressions.

A brief explanation of how EXPEVAL works follows. You can

just enter and RUN the program in Listing 1 to use it, so if

you're the type that thinks of a subway ride when you hear

the word "token", don't worry about the next paragraph too

much.

The program makes extensive use of ROM routines to

perform the following operations:

1) Check for a comma

2) Evaluate a string expression

3) Tokenize the resulting string

4) Evaluate tokenized expression, storing result

in FPAcc#l

Using the ROM routines to accomplish these tasks is pretty

straightforward, but the tricky part was tokenizing the line.

The tokenizing routine seems very reluctant to work with

any text that isn't in the input buffer, since all code is

tokenized as it is entered. In order to keep it happy, I had to

save the contents of the input buffer, move in the string to be

tokenized, call the tokenizing routine, and finally, restore

the input buffer (including the CHRGET pointers) to its

original state. Not a very elegant way to do it, but it works. A

good source of information about the ROM routines and

how to use them is the article, "Getting BASIC To Communi

cate With Your Machine Code" By Darren Spruyt in the last

issue, this article is also useful for cross-referencing ROM

routines among PET, VIC, and 64 ROMs, and may be used to

convert EXPEVAL to work on a machine other than the 64.

At any rate, the routine seems to work with no ill side

effects, other than the previously mentioned FORMULA

TOO COMPLEX errors, but it is quite basic and could be

improved upon. A good addition to the program would be

error traps in case a nasty, non-evaluatable function was

passed to it. Without that, the mathematics application

described at the beginning of the article would not be truly

"idiot proof", since a bad function entry would kill the

program. (An all purpose error trap method is on its way to a

future Transactor). The code is fully relocatable, and uses a

temporary storage area of 80 bytes ("BUFSTOR"), which

lives in the cassette buffer. Just remember that the POKEs to

the USR vector must change as the program is moved in

memory.

Listing 2 shows a very simple application of the mathemat

ics function-plotting program, with each plotted point dis

played as an asterisk on the 25 X 40 grid of the screen. Note

that the program uses EXPEVAL for every numerical input,

so expressions are allowed as responses to all prompts. The

y = 0 line runs across the centre of the screen, and the x

vales at either side of the screen are determined by the input

to the "DOMAIN?" prompt. The first prompt asks for the

scale. All function results are multiplied by the scaling factor

to get screen units. As a quick demonstration of the pro

gram, try using a scale of 10, a domain of 0, 2*rc, and the

function SIN(x).

Using EXPEVAL in programs opens up all kinds of new

possibilities, and hopefully the program itself helps to ex

plain the mysterious ROMs a little bit better. The more you

understand the inner workings of the machine, the easier it

is to write useful little utilities, and the sharper your pro

gramming skills become. And that's a fair EVALUATION.

Listing 1:BASIC Loader For EXPEVAL

100 rem* data loader for "EXPEVAL" *

110:

120cs = 0 :rem* checksum

130 os = 49152:rem* object start

135:

140 for rd = O to 1: rem.. data loop ..

150 : read b

155 : if b>0 then poke os, b: os = os +1: cs = cs + b

160 : rd = -(b<0) : rem.. until b<0 ..

170 next rd

180:

190 if cs<>1330 then print" * checksum error *": end

200:

210 poke 785,0: poke 786,192

220 print" ** call EXPEVAL with:"

225 print" ** 'USR(O),string variable'

230:

240 end

1000 data 32,253,174, 32,158,173

1010 data 32,143,173,160, 0,177

1020 data 100, 170, 200, 177, 100, 133

1030 data 251, 200, 177, 100, 133, 252

1040 data 160, 0,185, 0, 2,153

1p50data 60, 3, 177,251, 153, 0

1060 data 2, 200, 192, 80, 208, 240

1070 data 169, 0,157, 0, 2,165

1080 data 122, 72,165,123, 72,169

1090 data 0,133,122,169, 2,133

1100data123, 32,121,165,169, 0

1110 data 133, 122, 169, 2,133,123

1120 data 32,158,173,104,133,123

1130 data 104, 133, 122, 162, 79,189

1140 data 60, 3, 157, 0, 2,202

1150 data 16,247, 96, -1

The Transactor 29 Volume 5, Issue 04

Listing 2:Function Plotting Program

10 rem*************************

20 rem* function plot routine: *

30 rem* this routine uses the *

40 rem* usr function" EXPEVAL" *

50 rem* to plot a user-supplied *

60 rem* function. *

70 rem*************************

80:

100 scrn = 1024 : coir = 55296

105 poke 785,0: poke 786,192

106 rem* set up usr vector *

110 for main = 0 to 1 step 0

115: input" 0scale" ;sc$
skale = usr(0),sc$

input "domain (start x, end x)";d1$,d2$

d1 =usr(0),d1$

d2 = usr(0),d2$

input "function" ;f$

inc = (d2-d1)/40

8 = d1

120

130

140

150

160

170

180

185

190

200

210

220

230

240

245

250

260

265:

270 fork = 0to1 : geta$: k = -(a$<>""): next k

280 next main

for xp = 0to39

y = usr(0),f$

y= 12-int(y*skale + .5)

sp = xp + 40*y

if sp<0 or sp>999 then 245

poke scrn+ sp,42 : poke coir + sp,1

rem.'. endif..

x = x + inc

next xp

Listing 3: The assembler source code for EXPEVAL

110

120

130

140

160

162

"EXPEVAL"

* evaluate expression: *

* syntax is USR(0),stringname *

assembled with PAL

165* = $C000

170

180 chrptr = $7a pointer

190 strptr =$fb ;used to point to string

200 bufstor = 828 ;temp. storage in tape buffer

210;

220 jsr $aefd ;check for comma

230 jsr $ad9e ;evaluate string expression

240 jsr $ad8f ;check for string

250;

260

270

280

290

300

310

nmr

dy

da

tax

iny

Ida

320 sta

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

iny

Ida

sta

;

Idy

= *

#0 ;

($64),y ;

J

($64),y

strptr ;

($64),y

strptr +1

#0

inbuff = *

Ida

sta

Ida

sta

iny

cpy

bne

Ida

sta

;

500 Ida

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

pha

Ida

pha

Ida

sta

Ida

sta

jsr

Ida

sta

Ida

sta

jsr

pla

sta

pla

sta

Idx

$0200,y

bufstor.y

(strptr).y

$0200,y

#80

inbuff

#0

$0200,x

chrptr

chrptr + 1

#0

chrptr

#2

chrptr + 1

$a579

#0

chrptr

#2

chrptr + 1

$ad9e

chrptr +1

chrptr

#79

rebuff = *

Ida

sta

dex

bpl

rts

bufstor, x

$0200,x

rebuff

.end

get string pointers:

string length

string start, low

string start, high

put string into input buffer

and save current contents

mark end of expression

save pointers

.point to

;input buffer

;crunch tokens

;evaluate expression

;restore pointers

;and input buffer

;to original state

The Transactor 30 Volume 5, Issue 04

Compound Interest And You
by Richard Evers

While writing this program, an odd thought popped into my

brain regarding a savings account of mine that has its

interest compounded daily by the bank. In case you are not

sure of what interest compounded daily means, please let

me explain. The current interest rate that the bank pays

during that particular day is divided by 365 then multiplied

with the amount currently held in the account. This interest

is then added to the present savings total, to be com

pounded further the following day. When ever I have my

bank passbook updated, the value given is in a dollar and

cent value, without fractions of a cent. The question is,

where do the fractions go ? Does the bank round everything

off to the nearest cent, then balance up this profit or loss at

the end of the fiscal year ? There is a pretty good chance that

this will balance out almost perfectly, but imagine for a

second that the banks do not think the same way as we do

about our money.

Contemplate the idea that the remaining fractions of cents

were chopped off, instead of rounded off to the nearest cent.

The difference in value for most customers of the bank

would never be noticed, but added together they would

amount to quite a bit of cash. If this money existed, it would

probably be used for mortgages and loans, of which the

interest charged is often double what is given for the same

amount. Just think how quickly these fractions of cents

compounded together then loaned out at ridiculous bank

rates would increase in value. The total amount would be

staggering. I wonder how this amount would be explained

to the auditors if they ever stumbled across it ?

This far fetched hypothesis has been planted in your head

not to prompt you to overthrow the banks, but to keep you

on your toes about your own money. There is so many ways

to use your money to produce or lose money for you, that it

is often hard to comprehend. Just imagine if the government

chopped off the remainder instead of rounding it off when it

came time for your tax return. Massive dollars with no one

noticing that it was missing. More food for thought.

The following program is something that I found to be fairly

handy. It will calculate interest compounded either yearly,

monthly, weekly or daily on a user specified amount at an

interest rate and term also specified by the user. As the

calculations are made, they are printed to the screen, just to

keep you informed during the process. When the task has

been completed, all the specifications that you entered

earlier are displayed, along with the final amount calculated,

the amount of interest earned and the percentage of in

crease that you realised on your investment. A clean and

effective little routine. One note though : Before taking the

results generated by this routine as the gospel truth, please

remember that Commodore microcomputers are not the

most accurate calculators in the world. They are pretty

close, but not perfect.

If further variations are found for this quick collection of bits,

or some answers to my rather obtuse questions are discov

ered, then write in and tell us all about it. Whatever the

story, we hope this program is enjoyed by all who are

interested.

100 rem : save" @0:compound calc" ,8

: verify" 0:compound calc" ,8

105 rem ***

110 rem * richard evers - transactor magazine -1984 *

115 rem * calculates compound interest of values *

120 rem * using specifications given by user. *

125 rem ***

130:

135 print chr$(147)" compound interest calculation"

140 print

145 input" initial value" ;v

150 input "rate of interest" ;p

155 print" interest compounded :"

160 input "(y)ear, (m)onth, (w)eek, (d)ay" ;cr$

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

if cr$

ifcr$

if cr$

if cr$

input

then

vlu =

= y then Ip = 1

= " m" then Ip = 12

= "w" then lp = 52

= "d" then lp = 365

pr = (p/100)

:pr = (p/lp)/100

:pr = (p/lp)/100

pr = (p/lp)/100

" period of investment in years" ;yr: if yr = 0

190

= V

for year = 1 to yr

for compound = 1 to Ip

vlu =

print

next

print

print

print

print

print

print

print

= vlu + (vlu*pr)

"year"year" period

compound.year

" original value

" interest rate

" compounded

'compound" value "vlu

" investment period in years

"final value

"total interest

" percent return

"v

"P
"cr$

"yr

"vlu

" vlu-v

"((vlu-v)/v)*100

270 end

31

GETSTRING For The 64 Dave Gzik

Burlington, Ont.

Often enough you'll write yourself some sort of a program that

requires entering information via the keyboard. Well for some of

you a simple INPUT statement will do. If your like me, building

strings with a GET statement is more appealing.

The reason I use a GET routine is because you maintain full control

over what characters to accept, how many of them, and what type

they are. Lets say you have written a mailing list program that uses

a relative file for its storage. The records have to be the same

length whether each of the fields are different. In the same manner

the field inputs are restricted to length also. If you were using an

INPUT statement, the length cannot be restricted within the input

but can be altered after the input. This is somewhat tedious and

wastes programming space. Therefore to cut down some steps we

can use the GET statement. This will allow us to accept only what

we want making the task a little easier.

The only drawback with the GET routine is speed. In BASIC the get

routine is slow and most people can out type the computer. This is

not the way to have it. The idea is right but we do need the speed.

To achieve speed, we must use machine language.

This is the reason for GETSTRING.

Getstring only allows two types of input: numeric which allows the

keys 0-9 and the decimal point and alphanumerics which allow

the previous plus the character codes in the range of 46 to 90. The

selection of string type can be made from BASIC with a POKE. The

length of the string is also determined with a POKE from BASIC.

Getstring uses the cassette buffer for it's string storage thus allow

ing for a maximum string length of 191 characters. The routine will

only accept the delete key if there is at least 1 character in the

buffer. This routine will not accept any more than the preset length

of characters and can only be terminated by a carriage return.

Getstring sits at location $C000 in the 64 and with its storage in the

cassette buffer does not take up any BASIC programming area.

You can put GETSTRING anywhere you like, but I put it at $C000.

To use this routine requires a little setup prior to calling it. First the

length must be set by POKEing a value between 1 and 191 into

location 253. The type of string must be set by POKEing a value 0

for numerics or a 1 for alphanumerics into location 254. The

position on the screen where the input is to take place is at the

discretion of the user. Once all this is completed a SYS 12*4096

can be executed and the routine will take over.

After the string has been entered we need to get it into a BASIC

variable. This is accomplished by finding the number of characters

entered via a PEEK to the T INDEX Register [PEEK(782)]. With

this number we set up a FOR NEXT loop and PEEK the characters

out of the cassette buffer and build a BASIC variable.

For repeat inputs the above setups must be done for each one.

Below is a sample BASIC program with the loader that uses

GETSTRING. Also for you machine language buffs, included is a

source listing of the routine.

This routine is generic and can be used on any Commodore

Computer with minor cosmetic changes.

If you wish to relocate this routine somewhere else in memory, just

change the poke address and SYS address to whatever address you

may choose. This routine will not accept any other characters

except for the predifined range.

1 rem read data into $c000

5 for x = 0 to 142 : read a : poke 12*4096 + x,

9 rem start of basic program

10 poke 253J^x>ke 254, 1

30 sys 12*4096

35forx = 0topeek(782)-1

36 a$ = a$ + chr$(peek(828 + x))

37 next

40 print "| |";: poke 254, 0 : poke 253, 5
50 sys 12*4096

60 for x = 0 to peek(782)-1

65 b$ = b$ + chr$(peek(828 + x))

70 next

90 print a$; " "; b$

900 end

999 rem m/l loader data

1000 data 169, 60,133,251,169, 3,133,

1010 data 169, 166, 145,251,200, 192, 192,

1020 data 0,177,251, 32,210,255,169,

1030 data 255, 152, 72,169, 0, 32,228,

1040 data 170, 104, 168, 138, 201, 13, 208,

1050 data 240, 235, 208, 76,201, 20,208,

1060 data 240, 225, 136, 32,210,255, 169,'
1070 data 32,210,255,169,157, 32,210,

1080 data 196, 253, 240, 203, 72, 165, 254,

1090 data 58, 133, 250, 208, '
1100 data 24,201, 48,144,

a: next

4, 169,

2, ^
91,

10,

1110 data 10,201, 32,208,172,240, 4,

1120 data 166, 145,251,200, 32, 210, 255^
1130 data 145, 251,169, 32, 32,210,255,'
1140 data 210, 255, 96

252,160, 0

208.249, 160

157, 32,210

255, 240, 251

6,192, 0

22,192, 0

166,145,251

255, 208, 207

208, 6,169

133.250, 104

201, 46,240

197,250, 176

76, 21,192

169, 13, 32

100 ;getstring (may 84)

110;

120 ;dave gzik, burlington ont.

130;

140 ;get routine for use with a basic program.

150 ;this routine uses the cassette buffer for

160 ;transfer of string data to a basic variable.

170 ;maximum length of string,

180;flagged

type of string must be

in basic prior to entry on this routine.

190 ;the maxlength must be in the range of 1 -191 and string type

200 ;can be either alpha or numeric by either 1 or 0 respectively.

210 ;exit out of this routine can only be acheived by a carriage routine.

220;

230;

240 variables and constants

250 caslo

260 cashi

270 maxlen

280 strtyp

290 outchr

300 getchr

310 temp

320 temp2

330;

340

350;

= $fb

= $fc

= $fd

= $fe

= Sffd2

= $ffe4

= $f9

= $fa

= $c000

360 ;setup routine

370;

380

390

400

410

420;

430

440

450;

460 fill

470

480

490

500

510;

Ida #$3c

sta caslo

Ida #$03

sta cashi

Idy #$00

Ida #$a6

sta (caslo),y

iny

cpy #$c0

bne fill

520 ;start of get routine.

530;

540

550;

560 start

570

580

590

600

610;

620 get

630

640

650

660 wait

665

670

680;

690

700

710

720

730;

740

750

760;

770

780

790

800;

Idy #$00

Ida (caslo),y

jsr outchr

Ida #$9d

jsr outchr

tya

pha

Ida #$00

jsr getchr

beq wait

tax

pla

tay

txa

cmp #$0d

bne next

cpy #$00

beq get

bne exit

;setup string area

;in cassette

; buffer

;for data transfer.

;set pointer to zero.

;solid cursor for storing.

;fill

; cassette

; buffer with

;solid cursor.

;set pointer to zero.

;print cursor

;and reset

;print

; position.

;save y

;onto stack.

;geta

;non null

character.

;store chartempory.

; retrieve y

;off the stack.

retrieve character.

; check for <cr>

;yes or no?

;is it valid?

;ie. must have received

;at least one character.

810 next

820

830

840;

850

860

870;

880

890

900;

910

920

930

940;

950

960

970;

980

990;

1000 next2

1010

1020

1030;

1040

1050

1060

1070

1080

1090

1100 alpha

1110

1120

1130 store

1135

1140;

cmp #$14

bne next2

cpy #$00

beq get

dey

jsr outchr

Ida #$a6

sta (caslo),y

jsr outchr

Ida #$9d

jsr outchr

bne get

cpy maxlen

beq get

pha

Ida strtyp

bne alpha

Ida #$3a

sta temp2

bne store

Ida #$5b

sta temp2

pla

1150 ;store character.

1160

1170

1180

1190

1200;

1210chkdec

1220

1230

1240;

1250 space

1260

1270

1280

1290;

1300 skip

1310

1320

1330;

1340putchr

1350

1360

1370

1380

1390;

1400 exit

1410

1420

1430

1440

1450

1460

1470 .end

clc

cmp #$30

bcc chkdec

bcs skip

cmp #$2e

beq putchr

cmp #$20

bne get

beq putchr

cmp temp2

bcs get

sta (caslo),y

iny

jsr outchr

jmp start

sta (caslo),y

Ida #$20

jsr outchr

Ida #$0d

jsr outchr

rts

;check for

;delete key.

; is it

;valid? (y/n).

decrement string pointer.

;print the delete.

;store and

;print

;a new cursor.

;reset print

;position on screen.

;go for another char.

; is it at its

;maximum length?

;save char.

determine what type

;must be

;a0or 1.

;setup for validity range.

;setup will be

;for alhpanumerics.

;get char off stack.

;set carry off.

; is it

;lessthan zero?

;nothen skip.

;is it a

;decimal point?

;is it a

; space

;yes or no?

;is it greater

;than range!

; store the character

;and point to next location.

; print character.

;go for another character.

;store <cr>.

;printa

; space.

;printa

;<cr>.

;and back to basic.

The Transactor 33 Volume 5, Issue 04

Sorting

On The Commodore 64

And The PET/CBM

Garry G. Kiziak

Burlington, Ont.
© 1984 Garry Kiziak

Are you a teacher who is creating your own marks program? Are

you creating your own mailing list program. Are you developing

any type of data base system? If the answer to any of these

questions is yes, then sooner or later you are going to need a sort

routine.

Most people who work on these types of programs will already

have such a routine - usually a Shell sort, a Heap sort, a Quicksort,

or perhaps some variation of one of these. The sort routine will in

all likelyhood be written in BASIC - and there are many good

reasons for doing so.

1. It is usually a simple matter to code the routine, especially when

there are so many listings of these routines in the various

magazines. You don't even have to understand how it works,

simply code it in.

2. It is frequently easy to alter the routine to suit your own needs.

- you may require a routine to sort numbers, perhaps strings,

perhaps both

- you may require them to be sorted in ascending order or

descending order or perhaps both

- you may require singly subscripted or multiple subscripted

arrays

Here is such a BASIC listing. It will sort the string array N$ into

ascending order (i.e. alphabetically). The number of elements to be

sorted is assumed to be stored in the variable NUM. The program is

written as a subroutine so it can be called from anywhere within

your BASIC program by a GOSUB 100. The algorithm used is a

variation of the SHELL sort, a very efficient and popular sort.

100Z = 1 : IFNUM = 1 THEN RETURN

110Z = 3*Z + 1 : IFZ<NUMTHEN110

120Z = (Z-1)/3:IFZ<1 THEN RETURN

130 FOR I = Z+1 TONUM : J = l-Z

140IFN$(J)>N$(J+Z)THENT$ = N$(J):N$(J) = N$(J+Z)

:N$(J+Z) = T$: J = J-Z

150 NEXT: GOTO 120

IFJ>0THEN 140

Figure 1.

Some of the advantages of a BASIC routine have been listed above.

Perhaps the greatest disadvantage is speed. As long as you are

sorting less than one hundred elements of an array, the speed is

tolerable. But when you have to sort several hundred elements,

the speed can become a definite problem - especially when sorting

string arrays.

A very general rule of thumb for many sort algorithms (but not all)

is:

'If it takes a certain amount of time to sort a specified

number of elements in an array, then it will take about four

times as long to sort twice that number of elements.'

So for example, if 100 elements can be sorted in 30 seconds, it will

take about 2 minutes to sort 200 elements, about 8 minutes to sort

400 elements, and so on. Sixteen hundred elements would take a

little over 2 hours. Actually, if you are sorting string arrays, there is

a further complication. All of the swapping of array elements (in

line 140 in the routine above) can force a process called 'garbage

collection'. This by itself can take several minutes each time it is

required. I have heard of sorts that have taken several hours to

complete on a micro like the Commodore 64.

When this begins to happen, the 'happy programmer' becomes

grumpy and looks for an alternative to speed up the process -

perhaps machine language. For comparison purposes, the routine

in this article will sort a hundred elements in the blink of an eye

and it will sort 1600 elements in about 10 to 13 seconds.

As soon as you resort to machine language, you begin to lose some

flexibility (unless of course, you create it yourself, exactly the way

you want it). For example, it becomes difficult to adjust the routine

to meet your needs. Instead, you find yourself adjusting your

program to meet the requirements of the routine. This may not be

too bad if the routine is the least bit versatile. If it is stringent and

inflexible however, it may not be worth the effort.

How versatile should it be? Well,

required:

have seen situations that

1. An integer array to be sorted in either ascending or descending

order.

2. A real array to be sorted in either ascending or descending

order.

3. A string array to be sorted in either ascending or descending

order.

4. A doubly (or even multiply) subscripted array to be sorted in

ascending or descending order. (The array could be real, inte

ger, or string.)

5. One array to be sorted, and whenever elements of that array are

swapped, corresponding elements of another array are also

swapped.

6. One array to be sorted, but the original order was not to be

disturbed. (This usually requires the introduction of a second

array, called an index, which keeps track of the sorted order.)

.. .and in fact many others. Clearly no one routine can include all

these features (Again this reenforces why a BASIC sort is desirable.

The sort routine given in Figure 1. can easily be altered to meet

any of these situations.)

The Transactor 34 Volume 5, Issue 04

To see what features I included in my sort routine and understand

why I chose those features, you have to examine the method that I

frequently use for storing data.

To illustrate, let's consider a Mailing List. Essentially what you

want to do is store certain pieces of information about each person

on that list; things such as: Surname, First Name, Street Address,

City, Province or State, Postal or Zip Code, Telephone Number,

and perhaps the number and names of children, birthdays, wed

ding anniversaries, etc.

In data base management terms, all this information, taken to

gether for an individual, is called a record. Each individual piece of

information (e.g. Surname, City, etc.) is called a field within that

record, and the collection of all the records is called a file. There

are many ways you could store these records in a program that you

create. Likely you will use real arrays, integer arrays, string arrays,

or some combination of all of them.

My personal choice, frequently (though certainly not always), is to

use a singly subscripted string array and to have each element of

that array correspond to a single record of the file. This means that

all the fields within a record will have to be grouped together

somehow and made into a single string of characters. To do this, I

first have to decide on the maximum number of characters within

each field (called the length of the field). Let's use the sample

values in Figure 2. (Note: below is a sample of the data that might

be entered into each field of a record.)

Field Length of Field Sample Data

Surname

First Name

Street Address

City

Province or State

Postal or Zip Code

Telephone Number

U,

12

25

15

15

7

12

Kiziak

Garry

2381 Duncaster Drive

Burlington

Ontario

L7P 3V9

416-335-4837

Figure 2.

Clearly, the number of characters in any given field will not always

equal the length of the field. In that case, I make them equal by

padding the field with blank characters (either on the left or on the

right, depending on what I want to do with that field). All these

fields are then joined together into a single string and put into a

single element of the array. The important point about padding is

that it forces a given field to always start at the same character in all

records. Thus the first three records in a file, stored in the array N$,

might look like this:

Note that Field 2 always starts at character 16, Field 3 starts at

character 28, and so on.

Now that 1 have all my data organized into records, I will want to

arrange them into some logical order; that is, 1 will want to sort

them. For example, it would be logical to sort them in alphabetical

order by Surname (i.e. sort on Field #1). However, it might also be

logical to sort them by City (if for example, 1 want to extract those

individuals who live in Burlington). It might, in some circum

stances, be advantageous to sort them by Telephone Number; in

particular, to be able to pick out those individuals with the same

area code. I am sure you can think of other reasons for being able

to sort on any other field.

For my programs, I would like my sort routine to be able to sort an

array by looking at some specified set of characters - at the first 15

characters in the example above if 1 wanted it sorted by Surname,

at characters 53 through 67 if 1 wanted it sorted by City, at

characters 90 through 101 if I wanted it sorted by Telephone

Number, etc.

Surname

15

First Name

16 27

Address

28 52

City
53 67

Province
68 82

Zip Code
83

Tel#
90 101

It would also be nice to be able to sort it into either ascending order

or descending order depending on the circumstances.

My sort routine will do all of this and more. Before we look at the

other features, let's look at how it is used in a BASIC program. Let's

assume that the routines have already been loaded into memory

(see the sample programs to see how this is done). First, assign the

starting address of the routine to a variable. I like to use SRT, so I

will include the assignment:

SRT =12*4096+ 256

near the beginning of my program. Let's also assume that we have

150 records in our file stored in the array N$ (i.e. N$(1),N$(2),. .

.,N$(150)). To sort the records by Surname, 1 would use the

following command in my program:

SYSSRT,N$,1,150,1,15,A

The first entry after the starting address of the routine, in this case

N$, is the name of the array to be sorted. You can use any name

you wish, but it must be a singly subscripted string array. If the

array does not exist, you will get the error message ?ARRAY

ERROR IN ...

Record

N$< 1)

N* < 2)

N*< 3)

Field *1

Kizi^K

HSDnisJoraeny

Wli 11 ijaris

F i e 1 d #2

Gsrr-y

Kbthen ine

Bill. ; j ,

Field #3

2381 Buncssier Drive a.

241 First Avenue /

1:1.1 RJiidgteiwiay Road ^v
1 ! i j | 1 j 1 \

The Transactor 35 Volume 5, Issue 04

The next two entries (i.e. 1 and 150) are the first and last elements

of the array to be sorted (i.e. we want to sort from N$(l) through to

N$(150)). The next two entries (i.e. 1 and 15) specify which

characters to look at when sorting - in this case characters 1

through 15, or the first field. The last piece of information required

is the letter A to indicate an ascending sort.

If we wanted to sort the records by City, then we would use the

command:

SYSSRT,N$,1,150,53,67,A

and if we wanted to sort by Telephone Number, we would use

SYSSRT,N$,1,150,90,101,A

Here are some other possibilities.

1) SYSSRT,N$,1,150,16,27,D

2) SYSSRT,N$,1,150,63,82,D

3) SYSSRT,N$,60,95,1,15,A

1) will sort the records by first name, but in descending order.

2) will sort by Province or State in descending order.

3) is a little different. It will not sort the entire array. It will sort just

records 60 to 95 (i.e. N$(60) to N$(95)) by Surname in ascending

order. This might be required for example, if earlier in the

program you somehow determined that all the records in

CALIFORNIA were situated between N$(60) and N$(95) inclu

sive and you now just want these records to be sorted by last

name.

This last example illustrates the fact that the entire array does not

have to be sorted. You can sort a part of an array simply by

specifying the first and the last elements in the array that you want

to sort. You can even start at the zeroth element, and you can use

variables for any of these values.

The last example also brings out another point. Suppose you had

the following two commands right after the other in a program.

SYSSRT,N$, 1,150,1,15, A

SYSSRT,N$,1,150,63,82,A

The first command will sort the records into alphabetical order by

Surname, and the second command will then sort them into

alphabetical order by Province or State. In all likelihood there will

be several people who live in the same state (California for

instance). The second command will of course group these records

one after the other. Since the first command ordered them alpha

betically by name, it is natural to expect that all the names in this

group from California will be in alphabetical order. Unfortunately

this is not necessarily true. (A sort routine that allows you to sort on

one field, and then on another and still maintain any order that

was established by the first sort is called a stable sort routine.)

Unfortunately, most of the popular sort routines like the Shell Sort,

the Heap Sort, and the Quicksort are not stable.

For this reason, I have included another feature in my routine that

will allow you to sort on several fields simultaneously. The com

mand:

SYS SRT,N$,1,150,63,82,A,1,15,A

will sort the records first of all in ascending order by Province or

State. Secondly, whenever matches occur in that field, it will sort

those records into ascending order by Surname. You can sort on as

many fields as you like and you can even change from ascending

order in one field to descending order in another. For example

SYSSRT,N$,1,150,63,82,A,1,15,A,90,101,D

will do the same as the above, but when matches occur in both

fields (e.g. all the Smiths in California) it will then sort those

records in descending order by Telephone Number.

The speed of this sort routine is achieved partly (perhaps mostly)

because it is written in machine language, but also because it

avoids that dreaded 'garbage collection'. During the sort, the

strings are not actually swapped like in a BASIC sort. Instead the

pointers showing where these strings are located are swapped and

this does nothing to force a garbage collection.

The Programs

Listing 1

This is the assembly listing of the sort routine that works on the

Commodore 64. It is a translation of the routine given in Figure 1.

Of course the extra features (like ascending or descending sorts,

the ability to sort on many fields, etc.) have been incorporated as

well. For those of you starting to learn assembly language, there is

much to learn from this listing including sixteen bit arithmetic and

passing parameters to a machine language program (as well as the

idea of optional parameters). I hope you find this educational as

well as useful.

Listing 2

This is a program that contains the sort routine in DATA state

ments. If you have a disk, you can run this program and it will

create a PRG file called SORT 64 that you can load in and use from

your own programs (see listings 3 and 4 for examples).

If you are using cassette, these routines will have to remain in

DATA statements. Delete lines 10000 and 10005 and replace them

with the following:

10000 FOR I = 49408 TO 49973 : READ X : POKE I,X : NEXT

:RETURN

These lines (including the data statements) must now be included

in any program that you wish to use with this sort routine.

Listing 3.

Listing 3 is a program that demonstrates the features of the sort

routine. It should give you a number of ideas as to how you can

incorporate these routines in your own programs.

Cassette users will have to replace line 100 with

100 IF PEEK(49500)<>76 THEN GOSUB 10000

and you will also have to include the routine from Listing 2 to the

end of this program.

The Transactor 36 Volume 5, Issue 04

When you run this program you will be presented with a list of

names (last name and first name) together with some mark

assigned to each person in that list. Press the space bar and that list

will be sorted by last name. Look at it carefully and notice that

when the last names are the same, the first names are not

necessarily in order. Press the space bar again and the list is re

sorted, this time according to last name and by first name as well

whenever a match occurs. Press the space bar again and the list is

sorted into descending order according to marks. Look carefully

again and compare the names of those people that have the same

marks. Continue on with the demo and you will see that the sort

routine is in fact quite versatile.

Listing 4.

How fast is it really? The program in Listing 3 sorts the arrays

virtually instantaneously. However, there are only seventeen ele

ments in the array to be sorted, and even a BASIC program would

take only a few seconds to sort them. Mow fast is the machine

language sort when there are a large number of array elements?

Well this program will allow you to test it. As it is presently set up,

it will generate 100 records of 10 random characters each. It will

display each record as it is created. When asked to press the space

bar, do so. The program will then sort the randomly created

records and print them out in sorted order for you to view.

For 100 records it takes only a fraction of a second to complete the

sort. You can test any number of records simply by changing the

value of NUM in line 130. Change it to 2000 to see how long it takes

to sort 2000 records. When you change NUM to a large value, you

will see the effect that a 'garbage collection' has. During the

creation of the records, the records will be produced quite steadily

at first. Then suddenly, the process appears to stop for a while. This

is a 'garbage collection'. With NUM = 2000, it will stop like this

several times, for several minutes each time. During a BASIC sort,

garbage collection like this will occur even more frequently.

By the way, do not use the 64's built-in time clock to time the sort

- use a stop watch instead. The sort routine disables the interrupts

and hence turns off the clock while the sort is in progress.

Listing 5.

This is the same as Listing 2 adapted for BASIC 4.0 PET/CBMs. A

number of changes had to be made, most of them quite simple (e.g.

redefine the variables used in zero page). The only major change

was to adjust for the way strings are stored in BASIC 4.0 (a

backward pointer is stored with any string defined in high memory

- this enables garbage collections in BASIC 4.0 to be practically

instantaneous). With these changes, the routine works perfectly

well on the PET. In fact, it can be combined with some routines

published a couple of years ago (i.e. The BMB String Thing and

Glen Pearce's Keyed Random Access) to form a very powerful

database tool.

The demonstration programs in Listing 3 and 4 will work on the

PET with one minor modification. Namely, replace lines 100 and

110 with the following:

100 IF PEEK(31600)0230THEN LOAD "SORT PET" ,8

110 POKE 53,123 : CLR : SRT = 7*4096 + 11*256

These lines load the PET version of the sort routine into memory

and then lower the top of memory to protect it from destruction.

I hope you find this sort routine both informative and useful. It was

certainly a lot of fun creating it. If you have understood everything

I have said, here are a few questions to think about. Many answers

are possible.

1. Suppose you have an array SN of positive integers (e.g. serial

numbers for a parts list). How could you use this routine to get a

printout of the serial numbers in numerical order?

2. How would you use this routine if you wanted to sort an array

N$, but you also wanted to preserve its original order?

3. Suppose you are a teacher and have an array NA$ of student

names and another array MA of corresponding marks (e.g.

average marks for a test). How would you use this routine to

rank the students according to mark?

Listing 1 PAL Source Code for Commodore 64s

100open4,4

1000 sys 700

1010.optp4

1020 linnum

1030index1

1040 arytab

1050strend

1060varnam

1070 lowtr

1080chrget

1090zp

HOOptrnaO

11101

1120 h

1130num

1140 m

1150 n

1160 a1

1170 last

1180z

1190 i

1200J

1210k

1220ptmaj

1230 ptrnak

1240najlen

1250 naj

1260naklen

1270 nak

1280 fid

1290numfld

1300errprt

1310synerr

1320chkstr

1330 frmevl

1340 chkcom = $aefd

1350combyl = $b7f1

1360 getadr = $b7f7

1370tempz

1380 tptnaO

1390 tl

1400 th

1410 tempm

1420tempn

1430tempa

1440

1450;

1460 ;get parameters

1470;

jsr chkcom

jsr getary

ida lowtr
clc

adc #$07

sta tptnaO

Ida lowtr+1

adc #$00

sta tptnaO +1

chkcom

frmevl

getadr

linnum

sta tl

Ida linnum 4

sta tl + 1

jsr chkcom

frmevl

getadr

linnum

$14

$22

$2f

$31

$45

$5f

$73

$a3

$a3

$a5

$a7

$a9

$ab

Sac

$ad

$ae

$af

$b1

$b3

$b5

$b7

$b9

$bb

$bc

$be

$bf

$fd

$fe

$a447

$afO8

$ad8f

$ad9e

$c000

$c000

$c002

$c004

$0020

$c040

$c060

$c100

;beginning of zero page work area

;pntr to descriptor for na$(0)

starting subscript for sort

lending subscript for sort

;# of elements to be sorted

;starting column for sort

;ending column for sort

;flag for ascend/descend sort

;last column for comparison

;pntr to descriptor for na$(j)

;pntr to descriptor for na$(k)

;iength of na${j)
;pointertona$(j)

;length of na$(k)

;pointer to na$(k)

;current field number

;# of fields to be sorted- 1

check for comma and get a byte

temporary area for zero page

temporary location for ptrnaO

;temporary location for I

temporary location for h

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

jsr

jsr

jsr

Ida

;get starting subscript

jsr

jsr

Ida

sta th ;get ending subscript

The Transactor 37 Volume 5, Issue 04

1690

1700

1710

1720

Ida linnum + 1

sta Hi n

Ida #$00

sta numfld

1730 getmorjsr combyt

1740 tva

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

Idy numfld

sta tempm.y ;get starting column

jsr combyt ;of field

txa

Idy numfld

sta tempn.y ;get ending column

jsr chkcom ;of field

cmp#"a" ;" ascending sort

beq ascend ;on this field?

cmp#"d" ;"descending sort

beq dscend ;on this field?

imo svnerr

1870ascendlda #$01

1880 ,byte$2c

1890dscendlda #$00

1900

1910

1920;

Idy numfld

sta tempa,y

1930 ;any more parameters

1940;

1950'
1960

1970

1980

1990

2000 srt

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130;

jsr chrget

cmp#"," ;if comma present then

bne srt ;get more parameters

inc numfld

bne getmor

sei

Idx #$ie

jsr swapi

sec

Ida h

sbc I

sta num ;calculate number of

Ida h + 1 elements to be sorted

sbc 1 + 1

sta num + 1

inc num

bne xeqsi

inc num +1

2140 ;(ind startinq value for z

2150;

2160xeqs1

2170starta

2180

2190

2200

2210

2220;

2230 ;try ne

2240;

2250

2260

2270;

Idx #$01

Ida zval.x

cmp num

Ida zvah.x

sbc num + 1

bcs begin

xt value

inx

bne starta

2280 ;are we finished yet

2290;

2300

2310

2320

2330

2340

2350

2360;

2370;z = (z

2380;

2390 loop

2400

2410

2420

2430;

2440;i = ZH

2450;

2460 clc

2470

2480

2490

2500

2510

2520

2530;

2540 ;j = i-

2550;

2560 Ioop2

2570

2580

2590

2600

2610

2620

2630;

2640 ;k = j-

2650;

2660 getk

2670

2680

ofton

beglitfox

bne loop

Idx #$1e

jsr swapi

cli

rts

-1)/3

Ida zval.x

sta z

Ida zvah.x

sta z+1

-|

Ida z

adc 1

sta i

Ida z + 1

adc 1 + 1

sta i + 1

sec

Ida i

sbc z

sta j

Ida i + 1

sbc z + 1

sta j + 1

hZ

clc

Ida j

adc z

sta l<

2700

2710

2720

2730;

2740;

2750;

2760

2770

2780

2790;

2800;

2810;

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

Ida j + 1

adc z + 1

sta k +1

;ompare and swap if necessary

jsr compar

bne nexti

jsr swap

sec

Ida j

sbc z

sta j

Ida j + 1

sbc z + 1

sta j + 1

bcc nexti

f j> = I then compare again

Ida j

cmp I

Ida j + 1

sbc 1+1

bcs getk

1-1 + 1

3010 nexti inc i

3020

3030

3040

3050

3060

3070

bne nexti2

inc i + 1

if i>h then begin again

with a new value for z

3080nexti2 Ida h

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

3190

cmpi

Ida h+1

sbc i + 1

bcs Ioop2

bcc begin

compare na$(j) with na$(k)

on exit if a = 1 then no swap is required

if a = 0 then a swap is required

3200 compartxa

3210

3220

pha

Idx #$00

3230 comp2 Ida j,x

3240

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

sta zval

Ida j + 1,x

sta zvalt

asl zval

rol zvah

clc

Ida j,x

adc zval

sta zval

Ida j + 1,x

adc zvah

sta zvah

clc

Ida zval

adc ptrnaO calculate location of

sta ptrnaj.x descriptor for na$(j)

Ida zvah ;and na$(k) and store them

adc ptrnaO +1

sta ptrnaj + 1,x

inx

inx

cpx #$04

bne comp2

Idy #$02

3480 point Ida (ptrnaj).y

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

sta najlen.y ;store actual descriptors

Ida (ptrnak),y

sta naklen.y

dey

bpl point

pla

tax

;now do the comparison

Ida #$ff

sta fid

3610 nxtfld inc fid

3620

3630

3640

3650

Idy fid

cpy numfld

beq cont

bcs which

3660 cont Ida tempm.y

3670

3680

3690

.1700

sta m

Ida tempn.y

sta n

Iria tpmna y

3710

3720

3730

3740

3750

3760

3770

3780

3790

3800

3810

3820 tryn

3830

3840

3850

sta a1

Ida najlen

cmp m

bcc which

sta last

Ida naklen

cmp m

bcc greatr

cmp last

bcs tryn

sta last

Ida n

cmp last

bcs docomp

sta last

3860 docompay m

3870

3880 hereb

3890

3900

3910

3920 less

3930

3940 incry

3950

3960

3970

3980 which

3990

4000

4010 greatr

aey

Ida (naj),y

cmp (nak),y

beq incry

bcs greatr

Ida #$00

beq there2

iny

cpy last

bne hereb

beq nxtfld

Ida najlen

cmp naklen

bcc less

Ida #$01

4020 there2 eor a1

4030 rts

4040;

4050 ;swap descriptors

4060;

4070 swap

4080 swapz

4090

4100

4110

4120

4130

4140

Idy #$02

Ida najlen.y

sta (ptrnak).y

Ida naklen.y

sta (ptrnaj).y

dey

bpl swapz

rts

4150 zval byte 0.1,4,13,40,121,108,69,208,113,84,0

4160 zval 1

4170;

byte 0,0,0,0,0,0,1,4,12,38,115,128

4180 ;find array header

4190;

4200 getar^

4210

4220

4230

4240

4250

jsr frmevl ;get array name in varnam

jsr chkstr

Ida arytab

sta lowtr

Ida arytab+ 1

sta lowtr + 1

4260 nxtnamldy #$00 ;' array name found?

4270

4280

4290

4300

4310

4320

4330

4340

4350

4360

4370

4380

4390 nxtptr

4400

4410

4420

4430

4440

4450

4460

4470

4480

4490

4500

4510

4520

4530

4540

4550

4560

4570

4580

4590;

Ida (lowtr),y

cmp varnam

bne nxtptr ;no

iny ;maybe, check next character

Ida (lowtr),y

cmp varnam +1

bne nxtptr ;no

Idy #$04

Ida (lowtr),y

cmp #$01 ;is it a 1 dimensional array

bne nxtptr ;no! check for more

rts ;yes

Idy #$02 calculate pointer to next

clc ;array name

Ida (lowtr),y

adc lowtr

pha

iny

Ida (lowtr),y

adc lowtr +1

sta lowtr +1

pla

sta lowtr

cmp strend ;" any more array variables?

Ida lowtr +1

sbc strend +1

bcc nxtnam ;yes

Ida #$a5 ;print "arrayerror?"

sta indexi

Ida #$a2

sta index! +1

jmp errprt

4600 ;swap part of zero page

4610;

4620 swapzpldx #$08

4630 swap

4640

4650

4660

4670

4680

4690

4700

47m

Ida zp.x

pha

Ida tempz.x

sta zp.x

pla

sta tempz.x

dex

bpl swapi

rts

The Transactor 38 Volume 5, Issue 04

Listing 2 for Commodore 64s

10000 openi ,8,1," sort 64" :print#1 ,chr$(0);:print#1 ,chr$(193)
10005 for , = 49408 to 49973:read x:print#1 ,chr$(x);:next:close1 :end
10010data 32,253,174, 32,217,194 165 95
10011 data 24,105, 7,141, 0,192,165' 96
10012 data 105, 0,141, 1,192, 32 253174

10013data 32,158,173, 32, 247,'183^ 165,' 20
10014data141, 2,192,165, 21,141, 3 192
10015 data 32,253,174, 32,158,173, 32 247

10016 data 183, 165, 20,141, 4, 192^ 165 21
10017 data 141, 5,192,169, 0,133254' 32
10018data241, 183, 138, 164,254, 153, 32' 192
10019data 32,241,183,138,164,254 153' 64
10020 data 192, 32,253,174,201, 65, 24o' 7
10021 data 201, 68,240, 6, 76, 8175 169

10022data 1, 44,169, 0, 164,'254 153' 96
10023 data 192, 32,115, 0,201, 44,208 4
10024 data 230, 254,208, 203, 12o! 162 3o' 32
10025 data 38,195, 56, 165, 167, 229^ 165' 133
10026 data 169, 165, 168,229, 166, 133, 170^230
10027 data 169, 208, 2,230,170,162 1 189
10028 data 193, 194, 197, 169, 189, 205^ 194' 229
10029 data 170, 176, 3,232,208,241 202 208
10030 data 7,162, 30, 32, 38,195 88' 96
10031 data 189, 193, 194, 133, 175, 189, 205 194

10032 data 133, 176, 24, 165, 175, 101, 165, 133

10033 data 177, 165, 176, 101, 166, 133 178' 56
10034 data 165, 177,229, 175, 133, 179J65' 178
10035 data 229, 176, 133, 180, 24,165 179 101
10036 data 175, 133, 181, 165, 180, 101,' 176, 133
10037 data 182, 32, 12,194,208, 28, 32,177
10038 data 194, 56, 165, 179,229, 175, 133' 179
10039 data 165, 180, 229, 176, 133, 180, 144,' 10
10040 data 165, 179, 197, 165, 165, 180,229,' 166
10041 data 176, 210, 230, 177,208, 2, 23o! 178
10042 data 165, 167, 197, 177, 165, 168, 229^ 178
10043 data 176, 181, 144, 146, 138, 72,162! 0
10044 data 181, 179, 141, 193, 194, 181,' 18o] 141
10045 data 205, 194, 14,193,194, 46.205J94

10046 data 24, 181, 179, 109, 193, 194, 141 [193
10047 data 194, 181, 180, 109,205, 194, 141, 205

10048 data 194, 24, 173, 193, 194, 101, 163^ 149
10049 data 183, 173,205, 194, 101, 164, 149, 184

10050 data 232, 232,224, 4, 208, 202J60! 2
10051 data 177, 183, 153, 187, 0, 177, 185^ 153
10052 data 190, 0,136, 16,243,104,170,169

10053 data 255, 133, 253, 230, 253, 164, 253^ 196
10054 data 254, 240, 2,176, 65,185, 32,192

10055 data 133, 171, 185, 64, 192, 133, 172, 185

10056 data 96, 192, 133, 173, 165,187, 197, 171

10057 data 144, 44, 133, 174,165, 190, 197, 171

10058 data 144, 42,197,174,176, 2,133,174

10059 data 165, 172, 197, 174, 176, 2, 133, 174

10060 data 164, 171, 136, 177, 188, 209, 191, 240

10061 data 6,176, 17,169, 0,240, 15,200

10062 data 196, 174, 208, 239, 240, 181, 165, 187

10063 data 197, 190, 144, 239, 169, 1, 69,173

10064 data 96,160, 2,185,187, 0,145,185

10065 data 185, 190, 0,145,183,136, 16,243

10066data 96, 51, 1, 4, 13, 40,121,108

10067 data 69,208,113, 84, 0, 0, 0, 0

10068 data 0, 0, 0, 1, 4, 12, 38,115

10069 data 128, 32,158,173, 32,143,173,165

10070data 47,133, 95,165, 48,133, 96,160

10071 data 0,177, 95,197, 69,208, 16,200

10072 data 177, 95,197, 70,208, 9,160, 4

10073 data 177, 95,201, 1,208, 1, 96,160

10074 data 2, 24,177, 95,101, 95, 72,200

10075 data 177, 95,101, 96,133, 96,104,133

10076 data 95,197, 49,165, 96,229, 50,144

10077 data 206, 169, 165, 133, 34, 169, 162, 133

10078data 35, 76, 71,164,162, 8,181,163

10079data 72,189, 0,192,149,163,104,157

i 0,19?,POP 1RP41, 96

Listing 3 for Commodore 64s

100 if peek(49500)<>76 then load " sort 64" 8 1
110 srt= 12*4096+ 256

120bl$=" ":n = 17

130dima$(n)

140 for i = 1 to n

150 reada$,b$,c$

160 a$(i) = left$(a$ + bl$, 15) + left$(b$ + bl$ 14)

+ right$(bl$ + c$,3)

170 next i

180 print " £EjJ " tab(15)" BJ unsorted BJ"
190 gosub 380

200 gosub 400

210syssrt,a$,1,n,1,15,a

220 print " |Sg" tab(10)" Bj sorted by last name BJ"
230 gosub 380

240 gosub 400

250 sys srt,a$,1,n, 1,15,a, 16,29,a

260 print "gg|| sorted by last name and first name El
270 gosub 380

280 gosub 400

290syssrt,a$,1,n,30,32,d

300 print "E3"tab(12) "BJ sorted by marks BJ "
310 gosub 380

320 gosub 400

330syssrt,a$,1,n,30,32,d,1,15,a,16,29,a
340 print " gg|" tab(7)" Q sorted by marks and name I
350 gosub 380

360 gosub 400

370 print "H":end

380 print" (last name first name marks BJ"
390 for i = 1 torrprinUab(4);a$(i):next:return
400 print "ESEBBBBBBBBT

" Q press space bar "

410geta$:ifa$<>" " then 410

420 return

1000 data smith, bob, 75

1001 data Jones, bill, 66

1002 data miller, barney, 85

1003 data smith, barb, 88

1004 data smithers, jon, 56

1005 data miller, barbara, 85

1006 data smith, gerry, 75

1007 data Jones, jim, 88

1008 data smiley, robert, 50

1009 data atkinson, william, 99

1010 data baker, don, 64

1011 data carson, johnny, 44

1012 data baker, carol, 100

1013 data atkins, chet, 75

1014 data white, ray, 51

1015 data walker, toby, 51

1016 data walker, willy, 91

Listing 3 for PET/CBMs

Change lines 100 and 110 of the previous listing to:

100 if peek(31600)0230 then load " sort pet" ,8

110 poke 53,123:clr:srt = 7*4096 + 11 *256

The Transactor 39 Volume 5, Issue 04

Listing 4 for Commodore 64s

100 if peek(49500)<>76 then load " sort 64

110 srt= 12*4096 + 256

120dima$(1000),b$(1000)

130 num = 100^^^^^^

14u prini i SiSiBiy^ y

" random words"

150 for i = 1 to num

160 b$ =

170 for j = 1 to 10

180 b$ = b$ + chr$(rnd(1)*26 + 65)

190 next j

200 a$(i) = b$:b$(i) = b$

210 print "BB1 ";tab(10);i;tab(17)b$

ZZU next i

230 print " El Press sPace t0 be9ir
240 get a$:if a$<>" " then 240

250 print "^sorting!"

260 sys srt,b$,1 ,num,1,10,a

270 print "fldone0"
280 for i = 1 to num

290 print tab(5);a$(i);tab(25);b$(i)

nex

Listing 4 for PET/CBMs

■fluff

i sort

,8,1

Change lines 100 and 110 of the previous listing to

100 if peek(31600)0230 then load "

110 poke 53,123:clr:srt = 7*4096 + 11

Listing 5 for PET/CBMs

10000 openi ,8,1," sort pet" :print#1

:print#1,chr$(123);

sort |

*25c

:>et",

,chr$(0);

8

10005 for i = 31488to32085:readx:print#1,chr$(x);:next

:close1:end

10010 data 32,245,190, 32,254,

10011 data 24, 105, 7, 141, 0,

10012 data 105, 0,141, 1,126,

10013 data 32,152,189, 32, 45,

10014data141, 2,126,165, 18,

10015 data 32,245,190, 32,152,

10016 data 201, 165, 17,141, 4,

10017 data 141, 5,126,169, 0,

10018 data 39, 201, 138, 164, 254,

10019 data 32, 39,201,138,164,

10020 data 126, 32,245,190,201,

10021 data 201, 68,240, 6, 76,

10022 data 1, 44,169, 0,164,

10023 data 126, 32,112, 0,201,

10024 data 230, 254, 208, 203, 32,

10025 data 165, 212, 229, 210, 133,

10026 data 229, 211,133, 215, 230,

10027 data 230, 215, 162, 1,189,

124,

126,

32,

201,

141,

189,

126,

133,

153,

254,

65,

0,

254,

44,

67,

214,

214,

230,

165,

165,

245,

165,

3,

32,

165,

254,

32,

153,

240,

191,

153,

208,

125,

165,

208,

124,

92

93

190

17

126

45

18

32

126

64

7

169

96

4

56

213

2

197

10028 data 214, 189, 242, 124, 229, 215, 1

10029 data 232, 208,241,202,208, 5,

10030 data 125, 88,

10031 data 189, 242, 1

10032 data 101, 210, '

10033 data 133, 223,

10034 data 224,

10035 data 165,,

10036 data 101,

10037 data 28,

10038 data 220,

10039 data 225,

10040 data 225,

10041 data 2,

10042 data 213,

10043 data 72,

10044 data 181,

10045 data 46,

10046 data 124,

10047 data 124,

10048 data 101,

10049 data 209,

10050 data 202,

10051 data 177,

10052 data 104,

10053 data 164,

10054 data 185,

10055 data 133,

10056 data 232

10057 data 235

10058 data 2

10059 data 2

10060 data 209

10061 data 240

10062 data 181

10063 data 1

10064 data 0

10065 data 136

10066 data 234

10067 data 230

10068 data 165

10069 data 144

10070 data 200

10071 data 4

10072 data 84

10073 data 1

10074 data 189

10075 data 165

10076 data 197

10077 data 67

10078 data 1

10079 data 92

10080 data 93

10081 data 165

10082 data 76

10083 data 126

10084 data 149

65,;

224,

221,

32,

133,

144,

229,

230,

229,

162,

225,

242,

141,

141,

208,

149,

160,

230,

170,

253,

32,

217,

197,

197

133

133

236

15

165

69

145

16

229

145

236

11

,165

, 13

, 0

, 4

, 32

, 45

, 66

,208

,208

, 101

, 133

, 93

,207

, 72

,208

96, "

24, '

33,:

56,

223,:

01,

33,

172,

224,

10,

211,

223,

223,

0,

141,

124,

230,

242,

149,

229,

2,

153,

169,

196,

126,

185,

216,

216

219

219

240

200

232

218

230

243

43

233

197

164

229

40

0

12

,137

, 133

,208

, 9

, 1

, 92

, 93

,229

, 179

, 181

,202

89,230, 124, *

33,221, 24,'

222, 165, 221, "

65, 222, 229,;

229,221, •

220, '

227,

124,

165,

165,

176,

165,

176,

181,

242,

24,

124,

124,

228,

232,

177,

235,

255,

254,

133,

96,

144,

144,

165,

164,

6

196

197

96

185

165

144

200

42

235

,145

121

, 0

, 38

,189

, 93

, 16

, 160

, 96

, 72

, 104

, 47

, 120

,208

, 16

33,;

32,

56,

225,

224,

210,

212,

181,

224,

124,

181,

181,

24,

173,

232,

228,

0,

133,

240,

216,

126,

44,

42,

217,

216

176

219

235

160

235

233

11

165

165

165

236

108

0

115

165

160

200

4

160

,200

, 133

, 144

162

157

241

33,;

226,

7,

165,

229,

197,

230,

197,

144,

141,

14,

224,

225,

173,

242,

224,

153,

136,

253,

2,

185,

133,

133,

197

197

136

17

208

144

2

0

197

164

231

237

228

96

69

0

128

, 44

, 0

, 177

, 177

, 2

, 177

, 92

,206

, 30

, 0

, 96

76,

32,

3

67

33, 220

65, 220

01,211

220, 133

225,

165,;

124,

224,

221,

210,

222,

222,

148,

230,

230,

109,

109,

230,

124,

4,

232,

16,

230,

176,

64,

218,

219,

219

219

177

169

239

239

185

145

42

232

145

229

145

0

,208

, 0

, 32

,133

, 177

, 92

, 92

, 24

, 92

, 197

, 162

,189

, 126

24

225

208

229

133

165

208

165

138

124

124

230

242

124

101

208

0

243

253

65

126

165

165

176

176

233

0

240

169

232

228

165

165

233

43

236

1

113

0

152

, 92

, 92

, 197

,201

, 177

, 101

, 46

, 128

, 0

, 104

The Transactor 40 Volume 5, Issue 04

Phile Master Robert Drake

Brantford, Ont.

I try to keep up with what's available in software for the C64.

Recently I saw an ad for a simple, easy to use filing system. And

then I saw the price. A little hunting found at least 3 other

advertisements at 3 other prices. The prices bothered me because I

wrote a simple file program with a computer science class a couple

of years ago. That program, called Phono Phile, demonstrated

simple files, arrays, menus, printing, search and sort routines. All

this for free.

Phono Phile has been resurrected, improved, made more powerful

and is free for the typing. Phile Master creates simple files to your

specifications easily. The program is about 7.5K long. There are

only two limitations. Your file must fit into the rest of memory. You

have about 30K for your data. Secondly, no field can exceed 80

characters since all data is handled by INPUT, INPUT*, and

PRINT*.

What can you do with it? You can use it for recipes, to take an

inventory, to create labels for library books. Keep track of your

stamp collection or photos or the membership of your favorite

club. Making a bibliography of magazine articles is easy but for the

typing.

Phile Master is written with only one statement per program line

where possible. The code is fairly 'clean' and easy to read. Every

thing is in BASIC for easy modification. Learn from the program.

Enterprising programmers may want to lift a few subroutines for

use elsewhere. The screen colour rotation (lines 100-124) is one

you might want for other programs. Custom printer routines are

easy to write using the given routine as an example. Most array

handling is done using FOR-NEXT loops. You can cut the program

size considerably by concatenating lines.

Let's get the terminology down. Assume we're putting together a

phone list/address book. For each person (record) we will want the

name (a field), the street address (another field), the city (field),

province (field), area code (field) and phone number (field). So

each record has 6 fields. If we set this up for 150 people (records)

then we have a file. If a program can use several files without your

notice then you have a data base.

Phile Master lets you enter the number of records you want, the

number of fields per record, and whatever you want to describe

the fields.

Let's work through an example and see what happens and what

you can do. Run the program and the first thing to do is to adjust

the screen, border and text colours for your system using the

function keys Fl, F3 and F5. Exit via F7.

You will be asked for a file name. Remember a file is the collection

of records. We don't have a file yet so just press the return key. You

are going to create a file to your definition. Type in a name for the

file. Your disk drive will come on as the program checks for that

name. If you already have a directory entry with that name an

error will be caught by the program. Next enter the MAXIMUM

number of records (people) on whom you will want to keep a

record (say 150). Then enter the number of fields (7). A little

preplanning is helpful here. Lay your application out on paper

first. Changing your mind after this step is going to be VERY

difficult. For each field type in a description. (Try GIVEN NAME,

SURNAME, ADDRESS, CITY, PROVINCE, AREA CODE, and

PHONE.) The disk will whirr and you will probably have to wait a

few seconds while arrays are dimensioned for the file you have

requested. This section of program actually writes 2 files. One is

prefixed with " PM-" and it holds your file description. The other

is a dummy file holding only a terminal record (one that marks the

end of a load or save).

You are now facing one of 2 menus which control the program.

Both run off the function keys. Let's take these one at a time in

some kind of a logical (?) order. Press F1:ADD. You will see the

field description and an INPUT question mark. The quotes will let

you enter colons and commas as part of your entry. Enter a name.

Enter some information under the other fields. Just press return if

you don't want anything entered. When the record is complete the

program comes back and asks " IS THAT INFORMATION COR

RECT? " Just for the heck of it press N for no. See where the cursor

goes? If a field is correct press return; if wrong move the cursor and

correct your errors. When everything is right then answer the

question Y. Enter a half a dozen names and addresses in this way

so you have a sample with which to work. By the way, I originally

had upper and lower case in the program as the only option. I

changed my mind. Use the shift/Commodore key to display lower

case if you want capitals and small letters.

Pressing F2 lets you save your file on disk. Pressing 'A' now lets

you get out of this option. Most of the choices have an exit. If the

error could be fatal to your file or intentions the option is given

immediately. Otherwise it is given eventually. The save function

executes by erasing (scratching) the old file and saving the new

one. There are both good and bad aspects to this. A file can be

cleared (emptied) by doing a save without loading or entering new

information. Disk errors will be reported to you. If all is fine the

disk will whirr and in a few seconds the main menu will reappear.

Press a key and save your file.

F5 lets you load your file. Normally loading your file would be one

of the first things you would do. This load is kind of neat. Each load

adds the disk file to whatever you have in memory. This avoids the

problem of a load destroying records you have painfully entered

from the keyboard. Press F5 to see how it works. Notice you again

have the abort option. Load the file you just saved. See how a

visual load is accomplished. I like to see things happen when the

computer goes away by itself to do something and nothing seems

to be happening.

Press F3 to get to the search routine. All your field descriptions are

given and lettered (in our example) from A to G. Pressing * gets

you back to the menu. Pick one of the letters and you will be asked

what you want to find. This is a "wild card" search. Entering a

single letter like " S" will find ALL entries in that field starting with

The Transactor 41 Volume 5, Issue 04

S. A more restrictive entry (" SMIT") will find all entries beginning

with SMIT (such as SMITH, SMITHE, SM1THERS, and so on). When

the last entry is found the program returns to the menu. 1 found

searching to the last item in a 95 record list required less than 2

seconds.

F4 does the printing. Since this is probably the one section you will

want to customize it is the last routine in the program. That makes

it easy to remove and replace. Press F4 to jump into a simple report

writer. The title is optional. If you don't want one, press return.

Otherwise just type it in. The fields are listed and lettered as with

the search routine. Enter how many you want to print. Then enter

which field (by letter) and the number of columns to allow. The

fields can be printed in any order you want. Watch the number of

columns you're printing. Your printer is assumed to have 80

columns.

Do you want headers? What's a header you ask? They are the field

descriptions printed at the top of the page. If your column widths

are too narrow, you will find your field descriptions are cut back to

that width.

Which record to start at and end at are the next questions. The

records are in the order of the last sort you did on them. (More

about sorting them later.)

The next to last question: Do you really want the printer or do you

want a trial run to the screen? I find a screen dump can save a lot of

paper. Finally you can abort. Pressing return while the program is

printing your report will create a pause until another key is

pressed. The report columns are left justified, the same as you get

with a typewriter. You might want to add a few lines to output

upper and lower case to your printer.

Well, only F6 and F7 are left. Let's take the easy one first. Press F6.

You are now out of the program. 1 always find it annoying to

accidently leave a program and not have a way back in without

losing all my work. That's why you have to shift to exit and why

the cursor is sitting on the command to reenter the program safely

with ALL your information intact. Pressing return now will get you

back to the main menu with no damage at all. If you should exit

the program via RUN/STOP then you can usually get back in with

CONT. If you get a ?CAN'T CONTINUE ERROR then try GOTO

500. Don't OPEN 1,8,15 unless you have closed the disk file down.

Last but not least is F7. Pressing F7 gives you the other menu. This

menu is also operated with the function keys. Press Fl. Quick

press a key, any key! As with the printer routine there is a pause

built in to let you stop and examine the listing. Pressing F2 also lets

you examine the file but one record at a time. The records start at

zero and go to one less than the number stated. Forty six records

go from 0 to 45. Blame this on me. I like to count from zero. You

don't have to shift to use the > and < keys to go back and forth. 'R'

will let you access any record immediately.

F5 sorts on any field. Press this and you get a printer type field list.

Choose your field and it is automatically sorted from least to

greatest or alphabetically. Depending on the size of your file, give

it four or five seconds to get going. You will see the sorted fields

listed on your screen. A word of warning. I cheat a little here and

really don't sort the records but just their pointers. To make the

sort permanent, save the file to disk. The sort isn't the fastest in the

world but it isn't bad.

F7 lets you change a record. You are asked to confirm your choice

or abort. Change the record and notice it uses the same technique

(overlaying the cursor) as Adding Information. This is to minimize

typing on your part.

F6 does exactly what it says it does. F6 deletes records. You must

confirm your choice of record. Both F6 and F7 mess up your sort

since both change the file. F8 returns you to the menu.

If you want to use Phile Master on the PET some changes are

needed. First, delete lines 102-199. After that the main changes

are those to replace the function keys and to handle null inputs

which can be fatal on the PET. Here's a list of the needed changes.

206 print" ^flphile masterj0" : print" enter your file name,
press Hreturn0 if"

208 input "you do not have a file. *[3left]";fi$

210 if fi$= "*" then goto300

304 input "0enter a name for the file *[3left]" ;fi$
306 if fi$ = " •" then goto 304

504 print "ISHphileBsi :add 2:save 3:search 4:print"

506 print "Qmaster05:load 6:juggle 7:uc/lc 8:end"
510k = val(key$)

512 if k<1 or k>8 then goto 508

514 if k = 8 then goto 520

516 on k gosub 600,800,700,2100,900,1000,528

528 rem ****upper case/lower case

530 c = peek(59468)

532 if c = 14 then poke 59468,12

534 if c = 12 then poke 59468,14

536 return

720 poke 623,34 : poke 158,1

1004 print"^Bjuggle01 :list all 2:list one 3:sort"
1006 print "Hrecords04:change 5:delete 6:menu"
1010m = val(key$)

1012 if m = 6 then goto 1422

1014 if m<>2 then goto 1100

1040 if key$ = " >" then k = k +1

1042 if key$ = " <" then k = k-1

1102 if m<>1 then goto 1200

1202 if m<>5 then goto 1300

1302 if m <>4 then goto 1400

1402 if m <>3 then goto 1000

1810 poke 623,34 : poke 158,1

2106 poke 623,34: poke 158,1

Phile Master can also be tape based. This will make the save and

load routines slower but they will work. Make the following

changes.

Delete lines 204, 216, 218, 220, 222,224, 226, 228, 230, 312, 314,

316, 318, 320, 348, 350, 352, 354, 356, 358, 826, 828, 830, 832,

916,918,920,922.

Change and/or add the following lines.

214 open 2,1,0, "pm-" +fi$

310open2JJ,'pm-" +fi$

802 print "E ^record information on tape
804 print "0piace your data tape in the recorder.
805 print" rewind the tape fully and press 'stop'".

814open2,1,1,"pm-" +fi$

815 print" saving file description"

The Transactor 42 Volume 5, Issue 04

816 print#2, n$ cr$ nf$ cr$;

818 for i = 1 tonf

820 print#2, fd$(i) cr$

822 next i

823 close 2

824 open 2,1,1 ,fi$

825 print "saving data";

841 print ".";

904 print "flplace your data tape in the recorder."
914open2,1,0,fi$

Well, that's it. Phile Master gives you a simple yet powerful tool for

your computer. If you come up with some modifications or file

templates that may be useful to others, let me know so we can
share them. Have fun!

(If you don't want to type the program in, send a money order for

$10 to R.D.M.C, 8 Centennial Dr., Brantford, Ont., N3R 5X6, and

I'll send you a disk or tape with Phile Master for both the C64 and
the PET.)

100 rem " phile master.64 - r.drake (c)1983"

102 rem ****adjust screen colour-r.drake 1983

104v(1) = 0:v(2) = 0: v(3)=1

106 poke 53280,v(1) .poke 53281 ,v(2j. poke646,v(3)

adjust screen colours"

110 print" f1:border f3:screen f5:type f7:exit

112 get key$

114 k = asc(key$ + chr$(0))-132

116 if k<1 ork>4then 112

118 if k = 4 then 124

120 v(k) = v(k) + 1 ; if v(k) = 16 then v(k) = 0

122 goto 106

124clr

200 rem ****set up files

202cr$ = chr$(13)

204 open 1,8,15

206 print" Qenter your file name, press flreturn|j| "
208 input" if you do not have a file." ;fi$

210iffi$= "" then goto 300

212 if len(fi$)>13 then fi$ = left$(fi$, 13)

214 open 2,8,10, "0:pm-" +fi$+ ",s,r"

216 input#1,a$,b$

218 if a$= "00" then goto 232

220 print "0disk error:|3" b$
222 close2

224 fi$ = ""

226 for i = 1 to 1000

228 next i

230 goto 206

232 input#2,n$,nf$

234nf=val(nf$)

236 dim fd$(nf)

238 for i = 1 to val(nf$)

240 input#2,fd$(i)

242 next i

244 close 2

246 goto 400

300 rem ****no file - so create one

302 print" ^create a file"
304 input"Henter a name for the file" ;fi$

306 if fi$ = "" then goto 304

308 if len(fi$)>13 then fi$ = left$(fi$, 13)

310open2,8,14,"0:pm-" +fi$+ ",s,w"

312input#1,a$,b$

314 if aS = "00" then 322

316 print "Hfldisk error:@" b$
318close2

320 goto 304

322 print "0er|ter the maximum number of"
324 input"records";n$

326print#2,ncr;

328 input "Hhow many fields per record" ;nf$
330nf = val(nf$)

332 dim fd$(nf)

334 print#2,nfcr;

336 for i = 1 tonf

338 print " description for field" i;

340 input fd$(i)

342 print#2,fd$(i) cr$;

344 next i

346 close 2

348 rem ****create a null file

350open2,8,10, "0:" +fi$+ ",s,w"

352 for i = 1 to nf

354 print#2," eod" cr$;

356 next i

358 close 2

400 rem *»**initialization

402 n = val(n$)

404 dim rec$(n,nf),r%(n),s°/o(2*n),w(nf),f(nf),fw(nf)
406 for i = 0 to n

408 r%(i) = i

410 nexti

412l = len(fd$(1))

414fw(1) = l

416 for j = 2 to nf

418fw(j) = len(fd$(j))

420 if l< fwQ) then I = fwQ)

422 next j

424 bl$ = "

426n = -1 :rem ****current# of entries

500 rem **** menu

502 print "H"
504 print "Bphile
506 print" Qmastei

508 gosub 1500

510k = asc(key$)

512 if k<133 or k>139 then goto 508

514 if k= 139 then goto 520

516 on k-132 gosub 600,700,900,1000,800,2100
518 goto 502

520 close 1

522 print"Hend:pressHreturn0to re-enter"
524 print "| 0open1,8,15: goto 5000"
526 end

600 rem »*** add information

602 n = n + 1

604 print"[ffladd information"
606 gosub 1800

608 if key$^V then goto 614

610 print "B8BB"
612 goto 606

614 print cr$; " do you have further records to add?

616 gosub 1500

618 if key$= "y" thenprint"0" : goto 600
620 return

700 rem **** search

702 print "HBBsearch"
704 print" Hvou may look by:";
706 gosub 1900

708 gosub 1500

710 if key$= "*" then 738

712k = asc(key$)-64

714ifk<1 or k> nf then 708

1 :add f2:save f3:search f4:print"

f5:load f6:end f7:list/sort/change"

The Transactor 43 Volume 5, Issue 04

716 print "B"
718 prompts = fd$(k) + " to find"

720 poke 631,34 : poke 198,1

722 gosub 1600

724 for i = 0 to n

726 if a$Oleft$(rec$(r%(i),k),len(a$))then 736

728 print "0record#"i
730 gosub 1700

732 print " flpress a key to continue."
734 gosub 1500

736 next i

738 return

800 rem **** record information

802 print "B (Jrecord information on disk

804 print "HPlace y°ur data disk in disk drive °
806 print" press a key when you are ready to

808 print "to continue, press 'a' to abort."

810 gosub 1500

812 if key$ = " a" then goto 852

814print#1,"sO:"+fi$

816input#1,a$,b$

818 if a$ = " 00" or a$ = " 01" then goto 824

820 print "HJdisk error:|3" b$
822 stop

824 open 2,8,10," 0:" + fi$ + " ,s,w"

826input#1,a$,b$

828 if a$ = " 00" then goto 834

830 print" fldisk errorJJ" b$
832 stop

834 for j = 0 to n

836fork=1 to nf

838 print#2,chr$(34) rec$(r°/o(j),k) cr$;

840 next k

842 next j

844 for j = 1 to nf

846print#2,"eod" cr$;

848 next j

850 close 2

852 return

900 rem ****read information

902 print "H ^read information
904 print "Qplace your data disk in drive 0."

906 print" press a key to continue, press 'a1 to

908 print "abort."

910 gosub 1500

912 if key$ = " a" then goto 944

914open2,8,10,"0:" +fi$+ ",s,r"

916input#1,a$,b$

918 if a$ = " 00" then goto 924

920 print "Jdisk error-Q" b$
922 stop

924 print "loading";

926 n = n +1

928 for j = 1 to nf

930 input#2,rec$(n,j)

932 nextj

934 print".";

936 if rec$(n, 1) = " eod" then goto 940

938 goto 926

940 n = n-1

942 close 2

944 return

1000 rem **** manipulate/sort

1002 if n = -1 then return

1004 print" Hjuggle Hf1:list all f3:list one f5:sort"
1006 print "Qrecordsflf7:change f6:delete f8:menu'
1008 gosub 1500

1010m = asc(key$)

1012 if m = 140 then goto 1422

Q<0backwards

1014 if m<XI34then goto 1100

1016 nrint"^SHBlist the data file"
1018 print"Hthere are " ;n+ 1;" records."
1020 input" start at record" ;k
1022 if k> = 0 and k< = n then goto 1028

1024 print"BJHJillegal record number, please re-enter"

1026 goto 1020

1030 nrinl"

1032 print

1034 print" record number:" k

1036 gosub 1700

1038 gosub 1500

1040 if key$ = "." thenk = k+1

1042 if key$= "," then k = k-1

1044 if key$ = " r" then goto 1016

1046 if key$ = " m" then goto 1000

1048 goto 1022

1100 rem **** list all items

1102 if m<>133 then goto 1200

1104 for j = 0 to n

1106 prinffl" j"|3" ;
1108 get a$

1110 if a$= "" then goto 1116

1112 get a$

1114 if a$ = "" then goto 1112

1116 for k = 1 tonf

1118 print recS(ro/oQ),k);" ";

1120 next k

1122 print

1124 next

1126 gosub 1500

1128 goto 1000

1200 rem * * * * delete an item

1202 if m<>139 then goto 1300

1204 prompts = " item number to delete"

1206 gosub 1600

1208 if val(a$)<0 or val(a$)>n then goto 1324

1210 print" gdeleteBJ:''
1212 i = val(a$)

1214 gosub 1700

1216 print" confirm: press b tilor I
1218 gosub 1500

1220 if key$ = " n" then goto 1000

1222 if keySO" y" then goto 1216

1224 for j = 1 to nf

1226 rec$(r%(i),j) = rec$(r°/o(n),j)

1228 next j

1230n = n-1

1232 goto 1000

1300 rem «*** change an item

1302 if m <>136 then goto 1400

1304 prompts = "change item number"

1306 gosub 1600

1308 if val(a$)<0 or val(a$)>n then goto 1400

1310i = val(a$)

1312 nrint"i3BBlitem #R " ;i
1314 gosub 1700

1316 print" Qis this the correct item?
1318 print" press y for yes; n for no; a to abort.

1320 gosub 1500

1322 if key$ = " a" then goto 1000

1324 if key$ = " y" then goto 1330

1326 if key$ = " n" then goto 1304

1328 goto 1320

1330 for k = no 80 : print chr$(20); : next k

1332 print"Bflhanging record"
1334 flag = 1

The Transactor 44 Volume 5, Issue 04

1336b = n

1338 n = i

1340 gosub 1800

1342 flag = 0

1344 n = b

1346 goto 1000

1400 rem *♦** sort

1402 if m <^35 then goto 1000

1404 print" B fflsort items"
1406 print "fl sort on:";
1408 gosub 1900

1410 gosub 1500

1412 if key$= "*" then 1422

1414k = asc(key$)-64

1416 if k<1 ork>nfthen 1410

1418 print" wait. . ."

1420 gosub 2000

1422 return

1500 rem * * * * get a key

1502 get key$

1504 if key$ = "" then goto 1502

1506 return

1600 rem **** input string

1602 print promtS;

1604a$= ""

1606 input a$

1608 if a$<>" then goto 1614

1610 print"0"; :rem cursor up
1612 goto 1600

1614 return

1700 rem * * * print fields • * * use commas &

semicolons to get desired effects

1702 for j = 1 to nf

1704 print rec$(r%(i),j)

1706 next j

1708 return

1800 rem **** input various fields

1802 for k= 1 tonf

1804 a$ = ""

1806 print left$(fd$(k) + bl$,l + 2);

1808 if flag =1 then print tab(l +3) rec$(r%(n),k)cr$;tab(l);

1810 poke 631,34 : poke 198,1

1812 input a$

1814 if a$ = "" then a$ = " *"

1816rec$(r%(n),k) = a$

1818 nextk

1820 print" ^0|is that information correct? ";
1822 gosub 1500

1824 if key$ = "y" then 1834

1826 if keySO" n" then 1822

1828for i = 1to30 : print chr$(20); : next

1830 print "Bfl"
1832 goto 1802

1834 return

1900 rem * * * * list fields

1902 for i = 1 tonf

1904 print tab(16)" Q" chr$(i + 64)" Q" fd$(i)
1906 next i

1908 if flag = 1 then goto 1914

1910 print "Hyou may also return to the menu (0*0)."
1912 print" press a letter."

1914 return

2000 rem ****tournament sort

2002 m = 0 : n = n + 1 : x = 0 : b = n-1 : for j = 0 to b

: s%G) = j: nextj w

2004 for j = 0 to n*2-3 step2

2006 b = b + 1 : i1 = s%G): i2 = s%G + 1)

2008 gosub2030

2O1Os°/o(b) = i: nextj

2012 x = x-1 : c = s%(b): if c<0 goto2034

2014 printrec$(c,k), : r°/o(m) = c: m = m + 1

2016s%(c) = x

2018 c% = c/2 : j = c%*2 : c = n + c% : if c>b goto2012

2020 h = s%G): i2 = s%G + 1)

2022 if iKO then i = i2 : goto2028

2024 if i2<0 then i = i1 : goto2028

2026 gosub2030

2028 s%(c) = i: goto2018

2030 i = i1 : if rec$(i2,k)<rec$(i1 ,k) then i = i2

2032 return

2034n = n-1

2036 return

2100 rem ***<jDrinter output

2102 print" ISSBBprinter output
21041$= ""

2106 poke 631,34 : poke 198,1

2108 input" HJenter a title" ;t$
2110 print "the fields are:";

2112 flag = 1

2114 gosub 1900

2116flag = 0

2118 input" HJprint how many fields" ;f
2120for i = 1 tof

2122 input "field letter ";a$

2124f(i) = asc(a$)-64

2126 if f(i)>nf or f(i)<1 then goto 2122

2128print"0" tab(20);
2130 input" # columns";w(i)

2132 next i

2134 input " print headers (y/n)" ;h$

2136 input" start at record # 0[3left]" ;b

2138 print" stop at record* ";n;

2140 input "[5left]";e

2142 if e>n then e = n

2144 input "s)creen or p)rinter";dv$

2146 dv = 4

2148 if dv$= "s" thendv = 3

2150 print" HJprepare the printer.
2152 print "press a key to continue."

2154 print" press 'a' to abort.

2156 gosub 1500

2158 if key$ = " a" then goto 2202

2160 open 3,dv

2162 print#3,left$(bl$,(80-len(t$))/2) t$

2164 print#3

2166ifh$O"y" then goto 2178

2168 for i = 1 tof

2170 print#3,left$(fd$(f(i)) + bl$,w(i));" ";

2172 next i

2174 print#3

2176 for i = 1 to 80 : print#3," = "; : next i

2178 print#3 '

2180 for i = b toe ^
2182 for j = 1 tof

2184 print#3,left$(rec$(r%(i),f(j)) + bl$,wQ));" ";

2186 nextj

2188print*3

2190 get a$

2192 if a$= "" then 2196

2194 gosub 1500

2196 nexti

2198 print#3

2200 close3

2202 return

The Transactor 45 Volume 5, Issue 04

Home Budget Brian Dobbs

Timmins, Ont.

Have you counted the number ofpersonal finance programs

on the market? Can t decide which one to buy? Can'/ decide

if you even need one? Home Budget will let you put both

those decisions on the back burner. Then, once you enter it,

you might find it's all you need. And, unlike the others, you

can add your own custom modifications - a truly economi

cal alternative.

Home Budget was written for the Commodore 64 with disk

and printer. The program allows the user to keep records of

monthly spending within a household, and view spending

trends for any number of monthly bills.

On running the program, the first thing that comes up is the

menu. You can:

1. Write and View data for monthly bills

2. View barchart trends of bills for a 1 year period

3. Receive Printout of all 12 bills for a 1 year period

4. Load and Save data of bills as a file on disk

5. Create initial file.

The first thing to do is create an initial file. Upon choosing

this selection you are asked to fill in 12 bills that are paid on

a monthly basis (mortgage, hydro, telephone, etc.). Then

enter a filename and the program will create a file with the

12 bills and 144 zeros (12 bills for 12 months) You now have

a file to work with and can update it every month as the bills

come in.

At this point you no longer need to create a new file for the

data to be entered. Simply select "Write Monthly Bills" each

time you wish to add data for a new bill.

Once you have some data filled in, you can "View Monthly

Bills". All the data for a particular month as well as the

monthly total spent will be displayed.

A barchart trend of each bill can also be viewed. The chart

will cover a 1 year period. It enables the money conscious

person to view spending trends for each bill. The only

requirement here is that the user supply a maximum scale

for the chart since this can vary from bill to bill.

An added feature of this program is to get hard copy printout

consisting of the 12 bills for the 12 months. This is handy if a

permanent record of yearly spending is required, like at

income tax time.

The user has access to limitless data for trend analysis

simply by creating new initial files.

In this state of uncertain economic times I have become very

conscious of how I spend my hard earned money. Using

Home Budget I can now monitor all my spending to try and

cut down on spending wastefully. Home Budget is a must for

any money conscious household.

10 rem*********************

20 rem* *

30 rem* home budget *

40 rem* by *

50 rem* brian dobbs *

60 rem* *

70 rem* timmins,Ontario *

80 rem* *

90 rem*********************

100 poke53280,12 : poke53281,0 : dima$(13,13)

:goto180

110gosub1230

120open14,8,14, "0:" +nm$+ ",s," :x=1

130y = 2

140 input#14, a$(x,y): y = y+1 : if y>13 then160

150goto140

160 x = x +1 : if x>13 then closei 4 : gotoi 80

170goto130

190 printtab(10)'

200printtab(10)'

210 printtab(10)'

220 printtab(IO)'

230 printtab(10)"

240printtab(10)"

250 printtab(IO)1

budget men

Jrite monthly bills" : print

few monthly bills" : print
archart trend of bills" : print

Irinter trend of bills" : print

ave data to disk" : print

aad data from disk" : print

(reate initial file" : print"03"
260 printtab(12)" select choice ?" : y = 0

270 get an$: if an$ = "" then 270

280forx = 1 to 7 : if an$ = mid$(" wvbpslc" ,x,1) then y = x

290 next: on y goto410,300,500,730,960,110,990 : goto180

The Transactor 46 Volume 5, Issue 04

300print"gg g":input" enter month to view" ;an$

:gosub1020

310 print"0" : printtab(15)an$: print"|33" :y = 2
320 printa$(1 ,y): y = y + 1 : if y>13 then 340

330 goto320

350 printtab(15)a$(x,y): y = y + 1 : if y>13 then 370

360 goto350

370gosub1300

380 print" Bimonthly total" tab(14)q + aa + bb
390 get a$: if a$ = "" then 390

400goto180

410 print "^Q J|" : input" what month to write bills" ;an$
420gosub1020

430 y = 2 : print "0" : printtab(15)an$: print "BBI"
440 printa$(1 ,y): y = y+1 : if y>13 then 460

450 goto440

470 printtab(15): inputa$(x,y)

480y = y+1 : if y>13 then 180

490 goto470

500 input" £] enter name of bill" ;an$
510forp = 2to13

520 if an$ = a$(1 ,p) then y = p

530 next

540 print "E ^vhat is maximum scale for "a$(1,y)

■■•■ii^-'ijEH b

550 print "gf "printtab(20-(len(a$(1 ,y))/2))a$(1 ,y)
560 print "qq " b : z = 0

570 z = z + (b/20): if z = b then 590

580 printint(b-z): goto570

590 r = 1992 : x = 2 : t = 56264 : u = 2

600 for e = r to r-(40*((val(a$(x,y))/(b/20)))) step-40

: pokee,224: next

610 for f = t to t-(40*((val(a$(x,y))/(b/20))))step-40

: pokef.u: next

620r = r + 2:x = x+1:t = t + 2:u = u + 1

630 if u = 3 then u = 1

640 if x= 14 then 660

650 goto600

660 r= 1992 : t = 56264 : poker, 138 : poket,1 : poker+ 2,134

: poket + 2,1 : poker+ 4,141

670 poket + 4,1 : poker+ 6,129 : poket + 6,1 : poker+ 8,141

: poket + 8,1 : poker+ 10,138

680 poket+10,1 : poker+ 12,138 : poket+12,1

: poker+ 14,129 : poket+14,1 : poker+16,147

690 poket +16,1 : poker+18,143 : poket+18,1

: poker + 20,142 : poket + 20,1 : poker + 22,132

700 poket +22,1

710 geta$: if a$ = "" then 710

720goto180

730 open4,4 : print#4,tab(38)" budget 1984" : print#4

:l = 2:m = 7

740 print#4," bill[15spc]";

750 print#4," january[3spc]febuary[3spc]march[5spc]

april[5spc]may[7spc]june"

760 gosub850

7701 = 2 :m = 7

780 gosub890

7901 = 8 : m = 13 : print#4," bill[15spc]";

800 print#4, "july[6spc]august[4spc]september[1spc]

october[3spc]november[2spc]december"

810gosub850

820 I = 8 : m = 13

830 gosub890

840 close4 : restore : goto180

850 for y = 1 to 13 : z = 20-len(a$(1 ,y))

860 print#4,a$(1 ,y)tab(z);

870 for i = I to m : print#4,(a$(i,y))tab(10-len(a$(i,y)));: nexti

:print#4,chr$(10)

880 nexty : print#4 : return

890 print#4," monthly total "tab(6)

900 for x = I to m

910gosub1300

920 c = q + aa + bb : c$ = str$(c)

930 print#4,q + aa + bbtab(9-len(c$)); : nextx

940print#4,chr$(10)

950 return

960gosub1230

970 openi 4,8,14," @0:" + nm$ + " ,s,w"

980 x=1 :qoto1170

990 print" ISgl a total of 12 bills will be enlered.EBBI"
:x=1:y=2

1000 input" name of bill" ;a$(x,y): y = y +1 : if y>13 then 1070

1010goto1000

1020 for w=1 to 12

1030readd$

1040 if an$ = d$ then x = w + 1

1050 next

1060 restore: return

1070print"@" : x = 2
1080 y = 2

1090 a$(x,y) = " 0"

1100 y = y + 1 : if y>13 then 1120

1110goto1090

1120x = x + 1 : if x>13 then 1140

1130 goto 1080

1140gosub1230

1150 openi 4,8,14, "0:" +nm$+ ",s,w"

1160 x= 1 : print "| ^creating initial fileQ
1170y = 2

1180 print#14,a$(x,y): y = y + 1 : if y>13 then 1200

1190 gotoi 180

1200x = x + 1 : if x>13 then 1220

1210goto1170

1220 closei 4 : goto 180

1230 input "^^B|filename^l" ;nm$
1240 print" £ | press 'flf10' to continue"
1250 geta$: if a$ = "" then 1250

1260 if a$ = chr$(133) then return

1270goto1260

1280 data January, february, march,april,may June,July

1290 data august,september,october,november,december

1300 q = (val(a$(x,2))) + (val(a$(x,3))) + (val(a$(x,4)))

+(val(a$(x,5)))

1310 aa = (val(a$(x,6))) + (val(a$(x,7))) + (val(a$(x,8)))

+ (val(a$(x,9)))

1320 bb = (val(a$(x, 10))) + (val(a$(x, 11))) + (val(a$(x, 12)))

+ (val(a$(x,13)))

1330 return

The Transactor 47 Volume 5, Issue 04

Your BASIC Monitor

Part 3: The Assembler

Bob Drake

Brantford, Ont.

Well, here it is, the last installment in our small saga. The

first thing we have to do is swat a couple of bugs. Must be

summer the way those things sneak into the code. The first

one is a counting error in the disassembler. The fix is in line

9440 and goes like this:

9440 m = m +1-1 *(m<5)-2*(m>4 and m<10)

The second bug lies with the calculation of the offset or jump

in the relative instructions. The low byte was not converted

to decimal so that BASIC could handle it. Here's the fly

swatter:

9575 by = peek(m + 1)

9580 if by>128 then by = by-256

I have also enhanced the first installment of the program by

deciphering the status register. The SR holds seven bits that

track the current conditions in the processor. The bits or

flags are:

S - sign (1 means negative)

V - overflow

B - break (1 if a break has been executed

D - decimal mode (1 if on)

I - interrupt disable status (1 means interrupts are dis

abled)

Z - zero status (1 for zero, 0 for non-zero)

C - carry status

The new code displays the SR in hex and on the next line

breaks the hex value into binary and lists the current flag

values. Here's the code - there isn't much involved for the

extra information gained.

2080 print

2081 s$= ""

2082 for z = 1 to 8

2083 b°/o = by/2t(8-z)

2084 by = by-b°/o*2t(8-z)

2085 s$ = s$ + str$(b%)

2086 next

2087 print"flagsflsv bdizc"
2088 print" "s$:rem 5 spaces

2090 next pr

The work is done in lines 2083 - 2085. The first line, with

the aid of Z in the for-next, divides the SR value by powers

of 2 and takes the integer value. Line 2084 finds the

remainder. The bit value (b %) is added to the status string in

2085 and that's that.

Let's get to the assembler. The easy parts are the modifica

tions to the original program so that it knows the assembler

is attached.

220 r$= "xmrpslg*cda"

350 on r gosub 10,1000,2000,3000,4000,4140,5000,

6000,7500,9000,10000

The assembler itself can be a very tricky thing to write

depending on the complexity desired. The assembler pre

sented here does not allow labels or macros. Like the rest of

the program it is meant as a learning tool but one that works

at the same time. Pressing A enters the assembler with a

request'TROM?". Enter your hexadecimal start address. On

the C64, $C000 is a safe place to put your ML code.

Lines 10060 - 10240 make up a very simple editor. A cursor

is printed and the program waits for an entry. Line 10120

handles the delete key, 10130 filters out most possible illegal

characters and 10140 makes it difficult to enter double

spaces. When you finish the entry by pressing return, 10220

and 10230 strip spaces off both ends of the code entered.

Why do all this work? The hardest part to writing the

assembler is figuring out which addressing mode is in use.

Extra spaces make this parsing harder.

If all has gone well, the mnemonic is the first three letters on

the left end ofthe string (MN$). Line 10250 gets this code and

10260 - 10380 go looking through MN$(1) to MN$(4) in the

disassembler data. Since MN$(2) has all those codes using

implied addressing and MN$(3) has all the relative address

ing, etc., the string where the mnemonic is found sets up the

possible the addressing mode in use. I handled the easiest

first.

Lines 10420 - 10470 handle the implied addressing codes.

Note line 10420. The address or operand for the mnemonic

is extracted from the list of op codes by its position. This is

printed in hex, converted to decimal, and poked into place.

A similar procedure is used on all the other op codes. Lines

10480 - 10620 handle the relative addressing mode. And

jumps are deciphered in lines 10630 - 10870. Line 10660

represents one of my favorite tricks which is expressed as

"Why do something the hard way if there is an easy way?". I

know JSR is $20 and decimal 32. Instead of looking up the

values and converting them (which is relatively slow) I just

poke it and print it and charge ahead.

The Transactor 48 Volume 5, Issue 04

Look at lines:

10670a = 8: b = 6

10680gosub 11650

The subroutine at 11650 is a workhorse that takes the

assembler's input address, for example $FFD2, breaks it

into a hi byte (FF), a low byte (D2), converts to decimal and

pokes the values into place the way the 6502 expects them,

backwards! That is, it pokes in the decimal equivalents of

D2 and FF. The A and B values are critical. They locate the

expected positions of those bytes within the code typed in. If

the format expected is not followed, the assembler will give

an error. That is one of the nice things about a BASIC

assembler. If it 'crashes', all you do is type RUN to get it

going again.

Lines 10880 - 11560 handle all the other addressing modes

for the mnemonics found in MN$(1).

As I have implied, the format for entering your code is

important. The format I have followed is standard 6502.

Here is a summary to get you going:

Immediate mode LDA#$23

Zero page LDA $23

Indexed zero pageLDA $23,X

STX $23,Y

Absolute LDA $FFD2

Indexed absolute LDA $FFD2,X

LDA $FFD2,Y

Indexed indirect LDA ($FFD2,X)

Indirect indexed LDA ($FFD2),Y

Accumulator ASL

Implied CLC

Indirect JMP ($FFD2)

Much of the power of commercial assemblers lies with the

ability to use labels as reference points within the program.

This simple assembler does not have that feature. Jumps

and branches must refer to the address at the end of the

jump. Offsets are calculated for you.

Relative BCC $FFD2

Few changes are needed for a VIC. Add line:

10245 print

The lines printing error messages, such as 10370, print a

carriage return first.

10370 printers " *ERROR* UNKNOWN MNEMONIC"

You will also have to go through the code (10430 -) to

remove the spaces used to line up the hex codes on the C64.

But that's all the changes that are needed. Good luck with

your adventures into machine language.

10000 rem basmon assembler

10010 print "rassemble"

10020 print" quit by entering 'end'"

10030 input"from";m$

10040 gosub 7120

10050 o = m :rem origin

10060 print m$" R = "; :rem shift r

10070 mn$= ""

10080 a$ = "" : get a$:rem get the code

10090 if a$ = "" then goto 10080

10100ifa$ = cr$then10190

10110a = asc(a$)

10120 if mn$<>'' and a = 20 then mn$ = left$

(mn$,len(mn$)-1): printa$; : b = a: goto10080

10130 if a<32 or a>91 then goto 10080

10140 if a = 32 and b = 32 then goto 10080

:rem disallow double spaces

10150mn$ = mn$ + a$

10160 print a$"R= ";

10170b = a

10180 goto 10080

10190 print" ";

10200 rem - got the code - now parse it

10210 rem strip spaces from either end

10220 if left$(mn$,1)= " " then mn$ = mid$(mn$,2)

: goto 10220

10230 if right$(mn$,1)= " " then

mn$ = left$(mn$,len(mn$)-1): goto 10220

10240 if mn$ = " end" then print: return

10250 o$ = left$(mn$,3) :rem mnemonic op code

10260fl = 0

10270 for i = 1 to 4

10280l = len(mn$(i))

10290 for j = 1 to I step 3

10300 if o$<>mid$(mn$(i),j,3) then goto 10350

10310 f! = 1 :rem found

10320 po = 0+2)/3 :rem position

10330 s = i :rem which mnemonic string

10340 j = I +1 : rem exit loops nicely

10350 nextj.i

10360 if flOO then 10390

10370 print" *error*unknown mnemonic"

10380 gotoi 0060

10390 if s = 1 then goto 10880

10400 if s = 3 then goto 10480

10410 if s = 4 then goto 10630

10420 if s = 2 then m$ = mid$(op$(22),po*2-1,2)

:rem implied

10430 print " " m$:rem 10 spaces

10440 gosub 7120

10450 pokeo.m

10460 o = o + 1

10470 goto 11530

10480 rem relative addressing

10490 m$ = mid$(op$(23),po*2-1,2)

10500 print" "; :rem 4 spaces

10510 gosub 11570

10520 pokeo.m

10530 m$ = mid$(mn$,5) :rem calculate offset

10540 gosub 7120

10550 by = m-o-2

The Transactor 49 Volume 5, Issue 04

10560 if by>127 or by<-128 then print" *error* too far"

: goto 11530

10570 if by<0 then by = 256 + by

10580 gosub 7000

10590 print by$

10600 poke o+1, by

10610o = o + 2

10620 goto 11530

10630 rem jumps

10640 if o$<>" jsr" then goto 10700

10650 poke o,32

10660 print" 20"; :rem 4 spaces, '20', space

10670a = 8:b = 6

10680gosub11650

10690 goto 11530

10700 rem jmp

10710fl = 0

10720if right$(mn$,1)= ")" thenfl = 1 :rem indirect

10730 poke o,76+ 32*fl

10740 by$ = mid$(mn$,6 + fl,4)

10750 m$ = mid$(by$,3)

10760 o$= " 4c " :rem 4 spaces, '4c', space

10770 if fl = 1 then o$ = " 6c " :rem 2spcs, '6c', 1 spc

10780 print o$;

10790 gosub 11570

10800 poke o+1,m

10810m$ = left$(by$,2)

10820 gosub 11570

10830 poke o +2,m

10840 o = o + 3

10850 fl = 0

10860 print

10870 goto 11530

10880 rem all the rest - parse to find addressing mode

10890 if mid$(mn$,5,1)<>" #" then goto 11000

:rem immediate

10900 mo = 1

10910 print" "; :rem 5 spaces

10920 gosub 11600

10930 if m$ = " * *" then goto 11530

10940 m$ = mid$(mn$,7,2)

10950 gosub 11570

10960 print

10970 poke o + 1,m

10980o = o + 2

10990 goto 11530

11000 if len(mn$)<>3 then goto 11080

11010 mo =10 :rem accumulator

11020 print" "; :rem 10 spaces

11030 gosub 11600

11040 if m$ = " * *" then goto 11530

11050 print

11060o = o+1

11070 goto 11530

11080 if len(mid$(mn$,5))<>3 then 11190

11090 mo = 2 :rem zero page

11100 print" "; :rem 6 spaces

11110 gosub 11600

11120 if m$ = "** "then goto 11530

11130 m$ = mid$(mn$,6)

11140 gosub11570

11150 pokeo + 1,m

The Transactor

11160 print

11170 o = o + 2

11180 goto 11530

11190 if len(mid$(mn$,5))>5 or right$(mn$, 1) = " x" or

right$(mn$,1)= "y" then 11270

11200 mo = 5 :rem absolute

11210 print" "; :rem 4 spaces

11220 gosub 11600

11230 if m$ = " * *" then goto 11530

11240a = 8:b = 6

11250 gosub 11650

11260 goto 11530

11270 rem xy modes

11280 if len(mn$)<>9 then 11390

11290 mo = 3 :remzerox,y

11300 if right$(mn$,1)= "y" then mo = 4

11310 print" "; :rem 4 spaces

11320 gosub 11600

11330m$ = mid$(mn$,6,2)

11340 gosub 11570

11350 poke o+1,m

11360o = o + 2

11370 print

11380 goto 11530

11390 if len(mn$)<>11 then 11470

11400 print" "; :rem 2 spaces

11410 mo = 6 :rem absolute x,y

11420 if right$(mn$, 1) = "y" then mo = 7

11430 gosub 11600

11440a = 8:b = 6

11450 gosub 11650

11460 goto 11530

11470 rem indirect xy are the only ones left

11480 mo = 8

11490 if right$(mn$, 1) = " y" then mo = 9

11500 gosub 11600

11510a = 9: b = 7

11520 gosub 11650

11530 n = o

11540 gosub 7030

11550 m$ = by$

11560 goto 10060

11570 print m$" "; :rem print byte.convert

11580 gosub 7120

11590 return

11600 m$ = mid$(op$(po),mo*2-1,2)

:rem locate op code,convert,print,poke

11610 if m$= "**" then print" *error* illegal mode" : return

11620gosub11570

11630 poke o,m

11640 return

11650m$ = mid$(mn$,a,2) :rem a locates Io byte

:rem poke lo.hi bytes

11660 gosub 11570

11670 poke o+1,m

11680 m$ = mid$(mn$,b,2) :rem b locates hi byte

11690 gosub 11570

11700 poke o +2,m

11710 print

11720o = o + 3

11730 return

50 Volumes kciialU

Structured Programming

in Commodore BASIC
Chris Zamara

Telling GO TO Where TO GO TO

Warning: Careless Use of GOTOs Can Be Hazardous

to Your Program's Health

When computer programming is taught in school today, the

techniques of "structured programming" are usually

stressed. If programmers follow those techniques, they cre

ate programs that are easier to understand, de-bug, modify,

and get working the first place. This article explains how to

use structured programming techniques, even though Com

modore BASIC is not a structured language.

First, a little review of structured programming - the new

and exciting stuff comes later. The basic theory of structured

programming simply states that in any program, only three

types of "structures" are needed: sequence, controlled loop

ing (WHILE. . .ENDWHILE), and branching (IF. . .THEN. .

.ELSE. . .ENDIF). The first of these, sequence, implies a

sequential execution of statements with no transfer of con

trol to any other statements. That, of course, is no problem

in Commodore BASIC (or any language). The WHILE struc

ture gives the ability to execute a group of instructions

WHILE a given condition is true. Another form of WHILE is

the UNTIL structure, which is similar, but the group of

instructions are always executed at least once and repeated

UNTIL the test condition is true (the UNTIL statement

appears at the end of the loop, WHILE at the beginning). The

final structure, IF. . THEN. . .ELSE. . .ENDIF,-allows execu

tion of one of two groups of statements, depending on the

result of the test condition. Examples of WHILE and IF. .

THEN structures will be given later, when we look at how to

use them in Commodore BASIC.

As mentioned before, using nothing but these three struc

tures when writing programs makes for clean, elegant, and

easily readable code. Languages such as COMAL, Pascal,

and Waterloo BASIC have the abovementioned structures,

as well as others, built in. But since Commodore BASIC

makes no provisions for programming this way, many

people just forget all about the structures, and hack their

way through a program, throwing in GOTOs willy-nilly,

until it finally works. While it is true that GOTOs are needed

sometimes to simulate the structures, that's all they should

be used for - no jumping around haphazardly. Why be so

careful with our gentle old friend GOTO? Read on.

The Problem With GOTO

Here's a bit of BASIC contrasted with a structured language.

To wait until a key is pressed on the keyboard, a common

method of coding would be:

100 GET A$: IF A$ = "" GOTO 100

The same code written in COMAL, using a WHILE loop,

might read:

GETA$

WHILE A$= ""

GETA$

ENDWHILE

Or, using UNTIL:

REPEAT

GETA$

UNTIL A$<>""

The Transactor 51 Volume 5, Issue 04

What is wrong with the BASIC version? Well, first of all, the

code is location-specific because of the implied GOTO at the

end of the line. If this code were to be used in another part of

the program, it would have to be changed.

Secondly, GOTOs (or implied GOTOs in THEN clauses) can

be very frustrating when some line rearranging is being

done. In a long program, there is no way of knowing if any

given line is referenced by a GOTO somewhere, except by

looking through the entire program. Thus, changing a

statement's line number, perhaps to make room for some

new lines being inserted, is just asking for trouble. Deleting

a line can also result in premature program death, when

some long-forgotten GOTO tries doing its job and causes a

frightening "?UNDEF'D STATEMENT ERROR". Of course,

according to Murphy's law(s), this bug will only be found

when you are trying to impress people by demonstrating

that your amazing program finally works ("no, wait, this

time for sure!").

Thirdly, a program containing many GOTOs is likely to look

like "spaghetti code", with branches going all over the place.

This kind of code is very difficult to understand, and even

harder to de-bug. This is because, as mentioned earlier, you

never know what was executed before any given line in the

program.

Finally, GOTOs are slow to execute, especially in long

programs, since the BASIC interpreter must scan through

each program line until it finds the target line number. Thus,

our infamous spaghetti code program, besides being difficult

to understand and de-bug, is also inefficient.

A Better Way

Now that I've convinced you never to use another GOTO

again in your life, what's the alternative? Standard PET

BASIC does not contain WHILE or UNTIL statements, and

who wants to load up a new language every time the

machine is turned on? Well, there is one control structure

available in PET BASIC which can help us in a few not very

obvious ways - the old faithful FOR. . .NEXT loop.

How can FOR. . .NEXT replace GOTOs? Consider the above

keyboard get routine. Now look at the slightly strange code

below.

100 FOR I = 0 TO 1 :REM*LOOP*

110:GETA$

120: I = -(A$O""):REM* UNTILA$<>""

130 NEXT I

These statements will wait until a key is pressed, and then

continue, just like the earlier example. Line 100 ensures that

the FOR. . .NEXT loop will terminate as soon as the index,

in this case T, is one or greater. The index is set to zero or

one by the little boolean expression in line 120. The brack

eted expression will be set to -1 if it is true (A$<>"") or 0 if

false (A$ = ""). The result is negated to yield values of 1 or

zero. Thus, as long as A$= "", or no key is pressed, T

equals zero and the FOR. . .NEXT loop keeps repeating. As

soon as a key is pressed, the expression becomes false and

T gets set to one - the NEXT then allows the loop to end.

If you're now calling me a hypocrite after I just complained

about hard-to-read code, note that once you know and

understand this structure (as you hopefully do now), its use

and comprehension in the future will be easy, if not auto

matic.

What are the advantages of using this weird technique? The

main reason is, we don't need a GOTO. The virtue of that

has already been explained. It may seem a disadvantage

that the code to wait for a key using FOR. . .NEXT took four

lines, while the equivalent code using a GOTO only re

quired one, but if you're interested in conserving lines,

consider this:

100 FOR I = 0 TO 1 :GETA$: I = -(A$<>""): NEXT I

: PRINT " KEY ENTERED: " ;A$

A statement is performed after the key is pressed, on the

same line. This could not be done using the GOTO method,

since any statement placed after the GOTO would never be

executed. That's another disadvantage of using GOTOs, by

the way.

Sharp readers will point out that this make-shift WHILE

loop is actually an UNTIL loop, since the code within the

loop is executed at least once, even if the test condition is

false to begin with. True enough, but the UNTIL structure is

well suited to most situations. If a true WHILE loop is

needed, where the condition is checked at the beginning of

the loop, it may be simulated with GOTOs like this:

1500 IF (condition) GOTO 2010 '* WHILE LOOP *

any code within while loop

2000 GOTO 1500

2010REM—ENDWHILE —

A final note regarding FOR.. .NEXT loops: as reported in

this issue's Bits & Pieces section, an infinite loop can be set

up using a STEP 0 clause after the FOR statement, as in:

FOR 1 = 0 TO 1 STEPO.

The Transactor 52 Volume 5, Issue 04

The Exception

Unfortunately, using FOR. . .NEXT loops cannot eliminate

GOTOs altogether. The IF. . THEN. . .ELSE. . .ENDIF struc

ture must be simulated using GOTOs. An example of this

type of structure is:

IFA-1 THEN

.(process to perform when a = 1)

ELSE

.(process to perform when a<>1)

ENDIF

We must use GOTOs, but there is a way to use them so that

the problems discussed earlier will not cause too much

anguish. Examine the following translation:

10IFAO1 THEN 60

20 .

30 .(process to perform when a = 1)

40 .

50 GOTO 100

60 REM — ELSE —

70 .

80 .(process to perform when a<>1)

90 .

100 REM-ENDIF -

By making the target lines for both GOTOs REM statements,

we no longer have to worry about re-arranging lines, since

we know that the only lines which are targeted are the

"ELSE" and "ENDIF" remarks. The only problem is, the

target line numbers are not known at the time the GOTOs

are written, but they can be filled in once the entire structure

is completed. Now that we have WHILE. . .ENDWH1LE and

IF.. .ELSE.. .ENDIF constructs in our programming arse

nal, we can tackle any programming problem.

An Example

Entire programs may be written without using GOTOs, as

shown in the example below. This program counts how

many words per minute you type, starting after the first

character is typed. Pressing RETURN will give the WPM

count and start over, and pressing up-arrow ends the

program.

10 rem* count words per minute - cz 1984

11 rem* this program allows input of a number of

12 rem* words separated by any number of spaces,

13 rem* and followed by a carriage return.

14 rem* it then reports on the number of words,

15 rem* the time taken, and the resulting typing

16 rem* speed in words per minute (neglecting errors).

17 rem* the entire program is written without using

18 rem* gotos, using for. . .next loops to simulate

19 rem* 'until' loops.

100:

110fork = 0to1

115:a0$ = chr$(0)

c = 0

wrds = 0

117

120

121

125

126

130

140

150

160

170

180

190:

192:

:rem* main loop

:rem* previous character

:rem* character count

:rem* word count

for i = 0 to 1

if c = 1 then bt = ti

:rem*" UNTIL" loop

:rem* start timer after first

char.

geta$

if a$ = " " and a0$<>"" then wrds = wrds +1

print "@ j[1left]";a$; : rem* print fake cursor
if a$<>"" then a0$ = a$: c = c +1 : rem * add to

character count

i = -(a$ = chr$(13)ora$= "t") :rem* do until

return or up-arrow

next i

tm = ti-bt: min = tm/60/60 :rem* convert jiffies

to minutes

195 : if c>1 then wrds = wrds+1 :rem* add last word

200 : print wrds" words, "min" minutes"

202 : wpm = int(wrds/min + .5) :rem* calculate words

per minute

204 : print wpm" words per minute."

205 : k = -(a$ = " t") :rem* do until up-arrow key

struck

210 next k

220 end

Note the way the body of the loops are indented to show

how they are nested. This indentation, along with the liberal

use of spaces and tidy comments, makes for a very readable

and maintainable program. Also, since no GOTOs or im

plied GOTOs are utilized, the line numbers are inconse

quential, as long as they are in sequence.

A Final Thought

Using a structured style will make your programs easier to

debug, and much easier to modify. When you must use

GOTOs, use them judiciously, and label all GOTO target

lines with comments. Structured programming in Commo

dore BASIC is possible, so (carefully) GOTO it!

The Transactor 53 Volume 5, Issue 04

Lincoln College

Commodore Campers

Key In on Computers
Robert D. Widmer, Associate Dean, Lincoln College

Lincoln, Illinois

America's first female vice presidential nominee has been

named, but that historic event practically goes by unnoticed.

Newspapers, radios, and televisions appear as alien as "ET."

Participants at Lincoln College's week-long, Commodore

Computer Camp seem oblivious to the world beyond the

college gate. They can count the number of times they left

the college campus on two fingers. Through intense concen

tration they attempt to squeeze in every bit of learning

possible about their passions - their Commodore com

puters.

Some 65 computer enthusiasts from across the country

gathered in Lincoln, Illinois, last July for Lincoln College's

second annual summer camp, the only workshop in the

U.S. offered to adult Commodore computer users.

The participants were experienced computer users seeking

to expand their knowledge for both work and hobby. Work

shop leaders, nationally known Commodore experts, satu

rated the campers with information.

"I hear people saying they are getting such an enormous

amount of information and understanding it at a very

surface level. We'll have to leave and really do some work so

that it soaks in," remarked camper Ellen Payson of San

Antonio, Texas, on the second to last day of the camp.

Payson is a public school teacher who trains other teachers

to use computers.

Workshop topics included maintaining and improving com

puter equipment, introductory and advanced disk handling

techniques, machine language, assembly language pro

gramming and introduction of Commodore 64 sound and

graphics. The campers selected a two and a half hour

morning session and a different afternoon class and stayed

with those classes the entire week.

Instructors included Jim Butterfield, an internationally

known Commodore "expert" and author of numerous

books about Commodore computers; Jim Strasma, a Lincoln

College computer science instructor and editor of Midnite/

Paper; and Dick Immers, known in Commodore circles as

"the disk doctor" because of his expertise with the Commo

dore 1541 disk drive.

Other camp leaders included Jim Tucker, a certified Com

modore technician; Steve Michael, a computer science

The Transactor 54 Volume 5, Issue 04

teacher from Sauk Valley College and Mike Todd, a com

puter hardware and software authority from England.

Camper Mike Spengel from Arlington, Virginia appreciated

the spirit and tenor of the camp's atmosphere.

"This place is run very much the way graduate school

should run because of the relationship between teachers

and students," Spengel said. "I like the small classes and the

'we're in this together type of feeling' rather than the

adversarial relationship of 'if you don't get this we're going

to smear your career' type of attitude. Also, the students are

being treated like adults and in many academic surround

ings you don't find that."

Age and sex barriers found no place at the camp.

Todd Colacino, an eighth grader from Newark, N.Y., basked

in the treatment he received as one of the youngest

campers.

"I thought because there aren't too many kids here that

they'd just pass over me in the classes, but they've given me

time and they listen to my questions," he said.

Todd's father, Ron, noted, "The teacher-student relationship

is fantastic. There is an intellectual exchange going on that

is unbelievable here. There are no barriers anywhere."

Women accounted for more than one-fourth of the partici

pants much to the surprise and the delight of many of the

women.

"I thought there would be only one or two women besides

me. In Phoenix, there is no one 1 can talk to about com

puters on the Commodore level," remarked Becky Boren of

Phoenix, Arizona. "One of the reasons we're so tired (at the

camp) is that we'll talk past midnight and all we'll talk about

is computers."

This mother of six children sets up elementary school

computer labs on a voluntary basis; she also teaches begin

ning programming skills.

"My children are proud of me and my work with computers.

They say nobody's got a mom who is a computer mom,"

Boren noted.

Gail and Tim Perrin, a married couple from Milwaukee,

Wisconsin, both plan to further their educations and careers

by boosting their present computer literacy.

"I came to the camp looking for some background to help

me if 1 go back to get a master's degree in computer

education," said Gail, who operates a group home for

mentally retarded adults.

Tim Perrin, an industrial designer who wants to return to

college for a degree in robotics engineering, said the camp

heightened his knowledge in the proper uses and concepts

related to computers.

Besides the daytime classes, special lectures were con

ducted each night of the camp. Those lectures proved to be

"the icing on the cake," as one camper observed. Topics

ranged from a mini-refresher course on basic computer

programming techniques such as the proper method of

closing files to a session on new hardware and software

"toys." Participants got another opportunity to quiz the

experts and share information and experiences among each

other.

"The evening programs make everything that much more

delightful," said Ellen Payson. "You cannot help but feel a

little confined by the two classes you are enrolled in that

perhaps you are missing some of the other goodies being

covered in other classes. The evening seminar gives you a

little bit of what's been going on in the other classes."

While many of the campers admitted to scratching their

heads while wondering "where is Lincoln, Illinois" when

they signed up for the camp, they found the Lincoln College

campus exactly to their liking. "The college bent over

backwards to meet every request we had," one camper

observed.

Lincoln itself, a community of some 16,000 residents lo

cated in Central Illinois surrounded by Springfield, Decatur,

Bloomington and Peoria, provided a peaceful atmosphere

with few distractions which allowed the campers to focus on

the subject so dear to their hearts.

"The degree of concentration on the subject matter here is

comparable to when a ship goes out to sea and stays there

for three months. The amount of concentration you can put

into your work peaks," Mike Spengel said.

So the swimming and tennis facilities available on campus

went ignored. Most of the "free time" scheduled in each day

found the campers still sitting in front of their computers or

clustered in small groups talking shop.

In fact the only short-coming mentioned universally by the

campers was a need for "six more hours in the day."

The Transactor 55 Volume 5, Issue 04

Speller: A Drill

Program Using Vectors

Robert Drake

Brantford, Ont.

A VECTOR is an ordered n-tuple. This is the formal term

and definition mathematicians and physicists use to de

scribe what the rest of us call lists. Lists are easy things to

work with on paper and just about as easy on your com

puter. To work with a list you first tell the computer that you

are going to use a list. Then you 'load' the list. That is you

will either read data (from data statements or input data

(from the keyboard, tape or disk drives) to fill the list. Once

the list is created, you can do almost anything you like with

it, handling it exactly the way you use ordinary variables.

Usually lists are processed in several ways, including:

* retrieving items from the list

* editing the list to change an item or add items

* searching the list to find an item

* sorting the list alphabetically or numerically

We'll look at only the first two of these here using a simple

application.

My eight year old son has problems with reading and

spelling. He needs practice with both. We found that the

traditional spelling program showed the word for a short

period of time and then asked him to re-type it. This just

tested his memory. No comprehension of the word's mean

ing or definition was required. His spelling skills also

weren't really being tested because he was shown the

correct spelling and then just asked to repeat it. No reading

was required. We sat down together and designed a little

program to help him with both of his problems. The pro

gram works like this.

1. Print a title on the screen

2. Offer some instructions with a menu

3. Create the needed lists

4. Load the lists from data statements

5. Give a definition

6. Ask for a spelling

7. Based on the answer, give hints or congratulate

8. If the answer is right the first time, delete the word from

the list

9. Repeat steps 5 to 9 until all the words are used up or until

he wants to quit.

10. List the words there was trouble with and the number of

attempts that were made with each. Also list the words

that weren't attempted.

11. Go back and offer to repeat the program.

This is my normal way of implementing a program. Detail

what you want to do and then program each step one at a

time. Let's do these one at a time.

The first step is to print a title on the screen. Lines 100-260

actually do more than that. They print a title in lines 110-

130, initialize the program in 130, and present a menu of

choices in 140-240. Lines 130 and 230 use Boolean algebra.

Basically, a value is " false" if it is zero and " true" if it is -1.

So, line 130 says, if Fl is not true then gosub 300. Line 190

sets F2 to false, and line 230 says if F2 is true then goto 110.

Fl and F2 are " flags" to the program. The flags are signals

to the program to do or not do something. We don't want the

program to do the initialization twice, thus the 'if not FT in

line 130. Line 230 is a flag which is set to true if the

instructions are used. If we have gone to the instructions

then on the return we have to clear the screen and reprint

the menu. Lines 250 and 260 exercise the QUIT option. On

the VIC will require some playing with the tabs to make it

look right.

100 rem speller * copyright 1984 * robert drake * free

to copy - not to sell

110 print chr$(14) "BEEEEEI" tab(16) "[[SPELLER "
120 print"0" tab(10) "Bob Drake-February 1984"

130 if not f 1 then gosub 270

140 print tab(14);" fflRJSun the program "
150 print tab(14); 1| I instructions"
160 print tab(14);" Efl0
170 print

180 get a$

190 f2 = 0

200 if a$ =

210 if a$ =

220 if a$ =

tab(12)"Press'R!, T, or'Q'"

then gosub 580

then gosub 400

then goto 250

230 if f2 then goto 110

240 goto 180

250 print "@"
260 end

Let's look at setting up the lists. The program uses 3 lists.

They are called W$ (for words), D$ (definitions), and S%

(score). Lists can be used with strings or words, for real

numbers (including fractions and decimals), and for inte

gers. The creation of the list is done in line 330. DIM

(dimension) tells the computer to set aside space for the lists.

If the list uses less than 10 values or words, then you don't

have to tell the computer about it. It is good programming

practice though to dimension your vectors regardless of

length. Each of the three lists in this program is set at a

maximum of 100 entries. If we try to use more than that, the

computer will complain loudly with a ?BAD SUBSCRIPT

ERROR. The computer will also complain if we try to change

our mind about the number of elements later in the pro

gram. The error is a ?REDIM'D ARRAY ERROR.

The Transactor 56 Volume 5, Issue 04

Loops and lists go hand in hand. If you know the number of

elements or cells in your vector use a FOR - NEXT loop. If,

as in this program you don't know the number of words (or

don't want to count them), then use a regular loop and an

END OF DATA (EOD) value. The EOD here is *,*. The

vector can be loaded with READs and DATA, or INPUTs

from the keyboard, tape or disk drive.

The second loop which sets up S% uses a FOR NEXT

because we know how many items there are. The -1's

indicate that a word has not been attempted.

270 rem set up and load the lists

280 f1 == -1

290 print tab(14);" QlnitializingQ["
300 dim w$(100), d$(100),s%(100)

310 read w$(i),d$(i)

320 if w$(i) = " *" then 350

330i=i+1

340 goto 310

350 for j = 0 to i-1

360s%(j) = -1

370 next j

380 print "0";
390 return

There is nothing difficult about writing simple instructions

for a program. Why then do so many programs leave them

out? If you are entering this program on a VIC, this is the

second spot to look for. Adjust the instructions to fit comfort

ably on your screen.

400 rem instructions

410pnntchr$(14) "EHSPFI I FR"
iHi. This program will give you some "

[practice with your reading and spelling"
[skills. I will give you the meaning of"
la word and you type in the word that"
[matches. Press the 'RETURN' key when"
[you are finished.
[if you make a mistake, I'll give you a
■hint. All the words you get right on

]the first try will be erased."
r'ou can quit by typing 'x' as the word."

JPressthe 'RETURN' key when you have"

■finished reading this.H"

420 print"

430 print1

440 print'

450 print'

460 print'

470 print1

480 print1

490 print'

500 print'

510 print1

520 print1

530 print1

540f2 = -1

550 get a$

560 if a$ = chr$(13) then return

570 goto 550

The actual program isn't very long. The variable k counts

the number of words presented and answered correctly. J

picks a random number between zero and the number of

words. This is where a list shows its real value. If you want to

pick a question randomly, a list makes the job really easy.

Pick a number, any number within the range of the vector.

Then just PRINT or compare or do whatever you like with

that cell. You can get at the cell with W$(J) or D$(J) or S%(J).

If you're looking for something hard, I'm sorry because it

isn't here. Line 610 looks for a period as the first character of

the word selected. I add a period to those words correctly

answered the first time so the program can recognize them

as being removed from the list. Lines 620 and 630 print the

definition on the screen. You might notice the arithmetic in

the TAB in line 630. D is the length of the definition.

Therefore, 40-D is the number of spaces left over. Dividing

by two gives half the number of spaces and centres the

definition. If you are using this program on a VIC, leave this

out. The VIC's lines are too short to play with centering. If

you have an 80 column screen, just change the 40 to 80.

This works with any length of line. Lines 640 - 660 get an

answer and compare it to 'x' and then the right answer. As

with all programs of this type the answer must be an EXACT

match, right down to punctuation and capitals.

580 rem the program

590 k = 0

600j = int(rnd(1)*i)

610 if left$(w$(j),1)= "." then 600

620 d = len(d$(j))

630 print"H" tab((40-d)/2) d$G)
640 input "|yWhat is the word " ;a$

650 if a$ = " x" then goto 800:rem exit early

660 if a$ = w$(j) then goto 750

If the answer doesn't match then first we count it in line 670

(wr - wrong) and we add one to the integer that matches the

word (s%(j)). Line 690 controls the number of tries at a

word. The program is set up for 4 tries. If the word is less

than 4 letters long, there is one less attempt than number of

letters. A three letter word gives two tries. If the word is only

one letter long, then you have only one try.

670 wr = wr + 1

680s%(j) = s%(j) + 1

690 if wr = 4 or wr = len(w$(j))-1 or len(w$(j)) = 1 then 730

780 goto 600

The program gives hints. Each time a try is made which isn't

correct, the program prints the first letter or letters in the

word and dashes to represent the other letters in the word.

Line 710 will fit on one program line if you use ? for PRINT

and leave out the spaces. Otherwise, you may find that you

can't get it all into the 80 characters you are allowed. 700

print " Here's a hint."

710 if wr then print "Q" left$(w$(j),wr);
:for l = wr+1 to len(w$(j)): print"-";: next: print

720 goto 640

If you run out of tries, the word is printed.

730 print " gg|The word is :" w$(j)

740 get a$: if a$ = "" then goto 740

The Transactor 57 Volume 5, Issue 04

If the try is right the first time then the program adds a

period to the beginning of the word and adds increments k

(adds one). S% is changed to zero to show that the word has

been tried and was right ont the first try. The number of

wrongs is reset to zero so that you start fresh on each word.

And, if you have run out of words (k = i), the program skips

to the scoring routine in line 800.

750 if wr = 0 then w$(j) = "." + w$(j):k = k +1 :s°/o(j) = 0

760wr = 0

770 if k = i then goto 800

The first thing done in the scoring routine is to remove the

dots from the beginnings of the words using a FOR-NEXT

on the vector W$. (Remember, I told you that loops are used

a lot with lists.)

790 rem score

800 for j = 0 to i

810 if left$(w$G).1) =
820 next i

thenw$(j) = mid$(w$(j),2)

Set F2 to true so that the menu will print when we go back

there. The loop in lines 840-910 does several things. First, it

looks through S% to see if there were any wrong questions

(values greater than zero). If not, line 920 is executed.

Otherwise, 860 runs and m is set to one. Line 870 prints a

heading - but only if there was a wrong attempt and only if

m=l. Lines 880 - 920 prints out the troublesome word or

words and the number of attempts.

830f2 = -1

840forh = 0toi-1

850 if s°/o(h)< = 0 then goto 930

860 m = m + 1

870 if m = 1 then print" @Here are the words you had
trouble with:"

880 print w$(h);" ";

890 for 1 = 1 to10-len(w$(h))

900 print ".";

910 next I

920 print s°/o(h) + 1

930 next h

940 print ^^

950 if m = 0 then print " ^ QAII correct."

This second loop looks through S% one more time. Every -

1 value in S% indicates a word not tried. As each value is .

checked, it is also reset to -1 so the program can be reused.

On a VIC this will need a little reworking on the screen

display.

960for h = 0 to i-1

97Oifs°/o(h)<>-1 then 1010

980 n = n + 1

990 if n = 1 then print " You didn't try these

words:" chr$(13)

1000 print w$(h),

1O1Os°/o(h) = -1

1020 next h

1030 print chr$(13) Press 'RETURN' to continue.

1040 m = 0

1050 n = 0

1060 get a$

1070 if a$ = chr$(13) then return

1080 goto 1060

The last part of the program is the data. I've given you

several examples of the data we used. There are only two

catches. First put commas, semicolons, colons, and capitals

inside quotes. Second, the last data value MUST be *,*. The

program looks for the two asterisks as the EOD. 2000 rem

data * words - definitions (use quotes to include commas,

semicolons)

2010 rem * also use quotes if you are using capitals

2020 rem * the last data value must be *,*

2030 data fall, "autumn, to trip"

2040 data back, opposite of front

2050 data " I", me

2060 data yes, opposite of no

2070 data good, opposite of bad

2080 data our, belonging to us

2090 data yellow, colour of a lemon

2100 data forget, not remember

2110 data hard, opposite of soft

2120 data hand, has five fingers

2130 data stand, not sitting

2140 data band, they play music

2150 data land, ground

2160 data her, 'his' for a girl

2170 data love, opposite of hate

2180 data yard, play in the back

2190 data milk, we get from cows

2200 data and, also

2210 data get, we — milk from cows

2220 data go, do this with a green light

2230 data " Spot", a dog's name

2240 data new, opposite of old

2250 data*,*

This program was set up to help Cameron with his spelling

and reading. This program has applications in other areas. If

your use requires giving one piece of information and

requesting another then you can use Speller. French to

English translation, history questions (Who sailed in 1492?),

geography, biology, English (What is the plural of 'matrix'?)

can all be used within this program by only changing the

data. I hope it helps you with the concept and application of

lists and a few other programming techniques. Maybe it will

help a few other children with their spelling.

As written it should run without change on most PETs

(replace the PRINT CHR$(14) with POKE 59468, 14), the VIC

20 if you follow the hints given above, omit the centering

routine, and with very little work virtually any other com

puter running Microsoft BASIC. The program can be im

proved. There is no reward procedure for right answers.

Graphics, sound, and colour can be added for more zip and

pizazz.

The Transactor 58 Volume 5, Issue 04

Helping

The Handicapped

Philip J. Honsinger

Kitchener, Ontario

The special educational needs of handicapped children can make

the usage of a computer system only a dream in the child's eyes. If

his/her motor control has been affected by the handicap, then

even the usage of a joystick may not be possible.

In an attempt to solve one such child's problem, 1 have designed

and built a "joystick simulator" box. This device allows the

movements of a joystick to be duplicated through a grouping of

large push button switches on a specialized peripheral box.

Working with the teacher from the school, we identified some

specialized design considerations, such as:

- make sure the box will fit between the arms of a wheelchair

- it should not be predominately left or right handed

- the push buttons used should be quite sturdy, but easy to push

down

- it should have functional & plug-in compatibility with standard

joysticks so that either a joystick or the box can be used with the

same software

- the distance between the switches must be enough to allow small

hands to palm-push a switch without accidentally pushing other

buttons

- keep the design reliably simple and inexpensive.

Now that our requirements have been established, let's move on to

the design. The box is about 21.5 cm. by 28 cm. by 5 cm. (8 1/2"

by 11" by 2"), and has a 2 metre (6 foot) 6-conductor cable out of

the back. The cable ends in a standard joystick plug. The six wires

in the cable are one for ground, one each for up / down / left /

right, and one for the fire button(s).

The 64's reference manuals tell us which wire is connected to

which pin in the joystick plug. The wiring layout is:

Line

Ground

Fire

Up

Down

Left

Right

Pin

8

6

1

2

3

4

First mount the switches in the box, and solder separate wires on

the 64 end of the cable to each of the above pins in the plug. Run

the other end of the cable through a hole in the back of the box (not

the bottom), and tie a knot on the inside to act as a strain relief.

Leave about 15 cm. (6 inches) of cable to work with inside the box.

Strip the ends of the wires and connect them to each lug of a six-

lug terminal strip inside the box.

Now solder a wire from one of the two lugs from each of the

switches to ground. Solder a wire from the other lug of each switch

to the corresponding wire in the cable for the function that the

switch is to perform. This sets up each switch to connect the proper

wire to ground when the switch is pressed. I have arranged the

switches on the top of the box in the following pattern:

lire

left

up

down

fire

right

My prototype box was built out of wood. If it is going to be used a

lot, a metal cabinet may be a good idea.

The switches themselves were obtained from a local electronics

supply company. They have a high impact plastic button that

protrudes about 1.5 cm. (1/2 inch) above the box top. The action

of the switch is firm enough to tell the child by touch that it has

been pressed, but yet is not too difficult to depress. They are

momentary contact, normally open switches (that is, they are ON

only when pressed, and pop back up instantly when released).

The 9-pin plug for the joystick port can be purchased at Radio-

Shack, or a suitable electronics supply store. Ask for D-Sub

Connectors.

! have described the switch layout that I used for my application.

This was set-up to represent the 4 major compass points plus two

fire buttons for symmetrical operation. A direction such as north

east may be accomplished by pushing two buttons at the same

time. Taking this further, we actually have more input flexibility

than a joystick allows. Any (or all) of the switches can be pressed at

the same time, and this could be incorporated into your own

programs, if you need this type of flexibility.

You also do not have to use push-button switches. Using the same

wiring scheme with on/off toggle type switches will produce an

input device that "remembers" your selections. In this case, these

switches stay on until switched off.

This type of an input peripheral has many uses, and can be

adapted through layout choices and switch types to cover many

applications. Try magnetic reed switches (closed by magnets) on

doors or windows as simple security devices. Of course, these

custom applications will require original software to service the

input devices. Projects such as these would make good assign

ments for young programmers.

Getting back to the original reason that the box was built, we have

provided the school system with a new tool for helping handi

capped kids use computer systems. One of the best vehicles for

The Transactor 59 Volume 5, Issue 04

this is simple shoot-em-up games. They will give the student

instant feedback, and keeps the experience lots of fun.

I tested the prototype box with my three year old son. He has an

alphabet game which normally uses a joystick to "shoot down"

letters, and also plays the ABC song at the beginning and end of

each game. It is easy to play, but yet is interesting enough to give

the child a good starting point with the box.

Our handicapped student at the school is in his early teens. He has

Spastic Cerebral Palsy, and is both visually and physically im

paired. He can not control his hand movements enough to accu

rately move a joystick, but his teacher thought he could bang on

buttons with no problem. When he used the box for the first time,

he discovered he actually could use a computer just like the other

kids. He could not make out exactly which letters he was shooting

down, but they were large enough to tell him if he was aiming

properly. This program provides an opportunity for spatial aware

ness practice. Each time he would hit a letter, it would explode and

he would get some sound effects. From what his teacher told me,

he had never been as excited as he was that day. It made all the

work worth-while.

HE CAN ROLL OVER, PLAY DEAD, AND REACH

LEVEL 12 ON ASTROBLASTERS

D

I gave my computer teacher the definition of a GOTO statement

and he flunked me. So I gave him my definition of a GOTO

statement and he kicked me out of school!

ON
STRIKE

GooT>

ftu toeRE oor r

Took tHb U8£frrY

/JJJ. OF YOUR STOCK...

G£T A GRIP oH

YOOR HUMOUR

The Transactor 60 Volume 5, Issue 04

NO(J THAT U&E UNDER
NEU MflNAGTOT HE

INSISTS ON COEPkRING- IT

I
i

i

THE Km

DOING HERE ?

HE'S THE ONLY FER5OAI
WE COCO) RNblb
program oor neu3

Pile 5TStet7.

-o-

46CRCT5 op tmC y^4lvef«.56• come a lot easier

Since X GOT THIS THIN**

SHOW YOO ALL OF MY

FINE FEATURES.

Nine Easy Pieces Carl W. David

Storrs, CT

The Transition to Machine Language issue of The Transac

tor (Vol. 5, Issue 02), by its very appearance, indicates a

desire on the part of Transactor readers to learn and become

expert in machine language programming. This article

presents "nine easy pieces", arranged in sequential order,

which incrementally introduce absolute novices to C64

assembler language programming.

The assembler happens to be French Silk, but the reader

with another assembler should have no difficulty in apply

ing these programs to his/her own dialect. Each program is

as short as I could make it.

Program 1

CHROUT

START

NEXT

EQU

EQU

LDA

JSR

JMP

65490

49152

#'A'

CHROUT

NEXT

This first program is just about the shortest program possible

that actually does something. It is an endless loop going

from JuMPing to NEXT forever, while it sends what is in the

A register, which happens to be the representation of the

letter "A", to a subroutine that prints the "A" on the screen.

That subroutine is called CHROUT and it starts at decimal

location 65490 in ROM. It' function, as the name suggests, is

to OUTput a CHaRacter.

Note: All subroutines used herein are described in the

Commodore 64 Programmers Reference Guide. CHROUT is

described in section B-5, on page 278. The serious machine

language programmer needs this book!

Briefly, however, CHROUT sends the contents of the A

register to the output device which is the screen by default.

The BASIC "PRINT" command uses the CHROUT subrou

tine. Likewise, PRINT defaults to the screen. But if a CMD

command is performed, PRINT will send characters to the

printer, disk, etc. The point is, CHROUT sends the character

no matter where it is going, and no matter where it came

from. (PRINT*, INPUT prompt, etc.). For now though, we'll

just be sending to the default output device; the screen.

To run the program, first assemble it. The first two lines are

label assignment lines. They do not actually produce any

code but rather tell the assembler to equate a specified value

to a label so that we do not have to remember the value

when we need to use it. This also makes it easy to modify the

program since we need only change the assignment line

and not every line of the program where the value may be

used.

The assembler will deposit the numerical values represent

ing the instructions into successive memory locations start

ing with the address specified by the START label.

Essentially, the assembler puts values in memory as if we

were to put them there with successive POKE commands:

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

49152, 169

49153, 65

49154, 32

49155,210

49156,255

49157, 76

49158, 2

49159, 192

The Transactor 62 Volume 5, Issue 04

Then SYS 49152 causes the computer to jump to 49152,

where it finds the LoaD Accumulator instruction, and pro

ceeds. This tiny program is doesn't have any exit so the

computer must be powered off (or reset by some other

means) in order to get out of the loop.

Program 3

Program 2

GETIN

CHROUT

START

NEXT

STOP

EQU 65508

EQU 65490

EQU 49152

LDA #'A"

JSR CHROUT

JSR GETIN

CMP#0

BNE STOP

JMP NEXT

BRK

Only 5 lines have been added, with one change. The first

line equates the label "GETIN" to 65508 which is another

subroutine in ROM that services the keyboard, (see page

283 in the 64 PRG) When GETIN is used, the Accumulator

will contain a character corresponding to the ASCII (CBM

ASCII) value of the key pressed, or zero if no key is being

pressed.

This program, once assembled and SYS'ed to (use SYS

49152 again) will print A's forever, like last time, until you

press any key. The three lines after the call to CHROUT do a

test. After calling GETIN, the CoMPare command compares

the Accumulator with zero. If a key is pressed the Accumula

tor will not contain zero and the Branch on Not Equal

instruction will branch execution down to STOP where a

BRK command will be executed. No need to turn off the

computer to halt anymore.

Otherwise the branch will 'fail' and it JMPs back to NEXT.

Notice NEXT has been moved up one line to the LDA

instruction. Since GETIN alters the contents of the Accumu

lator, the value for 'A' must be re-loaded.

When the BRK instruction is reached, the program will halt.

How it halts will depend if you have a machine language

monitor installed. The BRK vector is an address that tells the

computer where to go if a BRK command is executed. With

no MLM the C64 BRK vector will be pointing at BASIC Warm

Start - the screen will clear and print "READY.". If Super-

mon 64 or other MLM program is loaded the BRK vector will

be altered to point at the MLM. When BRK is executed the

screen will usually show the Register display that prints

upon calling the MLM deliberately.

GETIN

CHROUT

START

NEXT

STOP

EQU 65508

EQU 65490

EQU 49152

JSR GETIN

JSR CHROUT

CMP#13

BEQ STOP

JMP NEXT

BRK

Now, the character typed in (and found by GETIN) is echoed

onto the screen (by CHROUT) until the user presses the

RETURN key, represented by the value 13. BEQ is a Branch

if EQual instruction, which says (after the CoMPare with 13)

"if the character in the Accumulator is a Carriage Return,

then Branch to STOP and execute the BRK. Otherwise, JMP

back to NEXT, GETIN another character from the keyboard,

etc, etc.

The BYT Directive

BYT is an assembler directive or "pseudo-op" that allows the

user to place characters within a program that are not

necessarily instruction codes. Here we'll use BYT to include

a string as part of the program. (Note: Some assemblers use

.BYT or .BYTE, and PAL requires .ASC for inserting charac

ters as a string of letters; .BYT is used to specify values

numerically as in the last line)

Program 4

CHROUT

START

NEXT

STOP

POINT

ENDM

EQU 65490

EQU 49152

LDX #0

LDA POINT.X

JSR CHROUT

CMP#13

BEQ STOP

INX

JMP NEXT

BRK

EQU®

BYT THIS IS A MESSAGE

BYT #13

Here, the computer will write out the message "THIS IS A

MESSAGE", and when it is done it will issue the BRK

instruction. Instead of getting characters from the keyboard,

this program gets them out of an area in memory that is just

above the program. The computer translates the statement:

POINT EQU®

The Transactor 63 Volume 5, Issue 04

so that the label "POINT" equals the current address (@)

with French Silk, other assemblers use *) which is immedi

ately after the address of the BRK instruction. This is where

the BYT directive will deposit the letters of the message

when the program is assembled. The next BYT directive

deposits a Carriage Return immediately after the message

which will indicate the end.

When SYS 49152 is entered, the X register is loaded with

zero. Next the Accumulator is loaded:

LDA POINT, X

. . .will load the character from an address that equals

POINT plus the contents of the X register. Since the X

register starts at zero and continues incrementing in value

(by the INcrement X instruction) this line will successively

load the letters of the message which are printed by

CHROUT.

Each time a character is printed here, it is tested for the

value 13. When the Accumulator loads this value, it too will

be printed as a Carriage Return. If you don't want a Carriage

Return the test must be performed before CHROUT is called.

The only thing wrong now is that BRK instruction. When

the program gets there, the screen is cleared. Change the

BRK to an "RTS". RTS means ReTurn from Subroutine. This

will print "READY." without clearing the screen if you don't

have a machine language monitor.

Program 5

GETIN

CHROUT

START

READ

STOP

EQU 65508

EQU 65490

EQU 49152

JSR GETIN

CMP#0

BEQ READ

JSR CHROUT

CMP#13

BEQ STOP

INX

JMP READ

RTS

Here is a small program that is much like Program 3 with

some minor rearrangements. It will echo what you type on

the screen until you type RETURN. There is absolutely

nothing new here except that the routine waits until a key is

actually pressed before attempting to print it. Program 3

would call CHROUT whether a key was pressed or not. But

because "no key" results in zero, CHROUT would try to

print a CHR$(0) which has no effect on the screen.

Now we'll add to it.

Program 6

PLOT

GETIN

CHROUT

START

READ

STOP

EQU

EQU

EQU

EQU

LDX

LDY

CLC

JSR

JSR

CMP

BEQ

JSR

CMP

BEQ

INX

JMP

RTS

65520

65508

65490

49152

#23

#24

PLOT

GETIN

#0

READ

CHROUT

#13

STOP

READ

Just for fun we've added a call to the subroutine "PLOT" at

location 65520 in ROM (see page 290 of 64 PRG). PLOT will

allow the cursor to be positioned to any row and column on

the screen. This program positions to row 23 (in the X

register) and column 24 (in the Y register). Feel free to

change these to any value. The CLC, CLear Carry, is re

quired by the PLOT routine before calling it.

Program 7

STOP

CHROUT

START

READ

EQU 65505

EQU 65490

EQU 49152

LDX #0

LDY #24

CLC

JSR PLOT

JSR GETIN

CMP#0

BEQ READ

JSR CHROUT

JSR STOP

BNE READ

RTS

This is merely a modification to the last program. Instead of

halting with a Carriage Return the routine will now end

when you press the STOP key. This is done with a call to the

subroutine 'STOP' at 65505 in ROM (see page 301 of 64

PRG). This routine does not actually do anything except set

up a situation that can then be tested. If the STOP button is

not pressed, the BNE command will cause execution to go

The Transactor 64 Volume 5, Issue 04

back to READ the keyboard.

Program 8

STOP

CHROUT

START

READ

EQU 65505

EQU 65490

EQU 49152

LDX #0

LDY #24

CLC

JSR PLOT

JSR GETIN

CMP#0

BEQ READ

CLC

ADC#1

JSR CHROUT

JSR STOP

BNE READ

RTS

This program is a "gibberish generator". After getting a

character, 1 is added to its value with the ADd with Carry

command. When you type A you get B, type B you get C, etc.

Program 9

READST

CLOSE

CLALL

OPEN

STOP

CHKIN

CHRIN

SETNAM

SETLFS

GETIN

CHROUT

START

STEP

READ

The Transactor

EQU 65463

EQU 65475

EQU 65511

EQU 65472

EQU 65505

EQU 65478

EQU 65487

EQU 65469

EQU 65466

EQU 65508

EQU 65490

EQU 49152

LDA COUNT

LDY #>FILE

LDX #<FILE

JSR SETNAM

LDA #3

LDX #8

LDY #3

JSR SETLFS

JSR OPEN

BCS ERROR

LDX #3

JSR CHKIN

JSR CHRIN

JSR CHROUT

JSR READST

AND #64

BEQ READ

L1 JSR STOP

BNE L1

LDA #3

JSR CLOSE

JSR CLALL

RTS

ERROR LDA #'E'

JSR CHROUT

JMP L1

FILE BYT '0:NINTH.SRC,S,R

COUNT BYT #15

This last program isn't so simple. The first part imitates an:

OPEN 3, 8, 3, "0:NINTH.SRC,S,R"

as if it were done in BASIC (see page 289 of 64 PRG). This

requires that we first set up a name for the file, and then set

up a logical number for that named file.

LDY#>FILE

loads the Y register with the high byte part of the address of

FILE, while:

LDX#<FILE

loads the X register with the low byte part of the address of

FILE. "3,8,3" is obvious from the code. READST (see page

292 of 64 PRG) senses if there was any problem with the

OPEN, and raises the carry flag if there was. Branch on

Carry Set tests for this error condition. CHRIN (see page 277

of 64 PRG) imitates a GET#3 as if done by BASIC. After the

last read from disk, READST will return with a value of 64

indicating end of file. CLOSE is a subroutine that acts just

like the BASIC CLOSE, and CLALL CLears ALL the I/O

channels so that everything is back to normal; input from

the keyboard and output to screen.

And that's all there is to that! Experiments based on these

nine easy pieces have shown novices become experts in no

time. Machine Language is no different than any other

language, it just take practice like any other language. Best

of luck on your 10th piece!

Editor's Note:

Carl may not use the assembler you're familiar with, and if

that's the case this will be a good exercise for you. It won't be

always that you read code written in a familiar dialect.

Becoming familiar is another skill you should acquire.

65 Volume 5, Issue 04

Interrupt Driven Code

On The Commodore 64

Bruno Degazio

Toronto, Ont.

This article will demonstrate some of the features of inter

rupt driven programming that make it the versatile and

efficient tool it is in all sorts of real time control applications.

In particular, a set of assembly language routines for the

Commodore 64 will, I hope, lead you to consider some

applications of your own.

The C64 is a pretty good machine from the standpoint of

hardware interrupts since CBM has thoughtfully provided

us with a full box of interesting electronic gadgets inside that

brown plastic case. The CIA chips that handle all input/

output processing in the 64 are very advanced and versatile

devices that are not used to full advantage by many pro

grammers. Specifically, CIA chip *\ is used by the operating

system to set up a real time clock, scan the keyboard for

possible user input, and handle various other "housekeep

ing" duties. This is done on a regular and frequent basis by

means of the timer interrupt facilities on the CIA chip, which

the operating system sets up to clock l/60th second inter

vals. That is, every sixtieth of a second one of the timers in

CIA *\ "calls" an interrupt, which causes the microproces

sor to stop its current task and begin executing the operating

system routines whose start address is stored in $FFFE and

$FFFF at the top of ROM.

Now, if we want a job done on a regular basis without

necessarily requiring a complete self-running program of its

own, we might consider replacing the housekeeping rou

tines with routines of our own. One in particular, that I

thought would drive my friends crazy, would be a routine to

sound a beep with every keystroke on my C64. Since I knew

the operating system scanned the keyboard 60 times per

second, it seemed a little inelegant, to say the least, to set up

my own program loop to check the keyboard and emit a

beep if a key was pressed.

Therefore, I went through the ROM system routines begin

ning with $FFFE. The address contained there is $FF48. An

IRQ causes an indirect jump through $FFFE which effec

tively jumps to $FF48. The routine at $FF48 does some

stack handling and then another indirect jump through

$0314 which contains the address $EA31. When it gets

there, the housekeeping duties begin.

When the various levels of indirection begin to add up it gets

a little confusing so I'll explain that again. The timer inter

rupt (or IRQ) causes the processor to stop what its doing and

begin executing instructions at the address contained in

$FFFE and $FFFF - that action is built into the hardware of

the 6510 microprocessor. All this does little more than cause

a jump to $FF48 because that's the address it found in

$FFFE/F. $FF48 is the main IRQ entry point. After a couple

of preliminary commands, it causes another indirect jump

through $0314. This is no different than the first indirect

jump, except that it's in RAM instead of ROM, and the

address found there is $EA31. The code at $EA31 is where

the actual work starts.

Why all the jumps from ROM to ROM to RAM and back to

ROM? It's for our own convenience really. The first jump

uses $FFFE/F because the microprocessor is built that way.

This is known as a vector. No matter what piece of hardware

it's designed into, the processor will look there and use the

contents as the vector which it will jump to for an IRQ -

$FF48 in the 64. Why $FF48? In most Commodore ma

chines the first few bytes of the IRQ routines are identical.

This "common" part of the IRQ routine has been stored here

in the 64 and it looks like Commodore will try to maintain

$FF48 as the start address of the IRQ routines in future

machines, which is also convenient.

The second jump happens just after $FF48. It jumps through

RAM because unlike ROM, RAM can be changed. When the

64 is turned on, the power up routines load the address

The Transactor 66 Volume ■>, Issue 04

$EA31 into locations $0314 and $0315. Since this address

can be altered to any one we choose, we can have the timer

interrupt drive our own custom routines instead of the ROM

routines. Of course, these routines must be firmly in place

before we change the "RAM vector" or the machine will

most likely crash.

Most of the time we will not want to re-write all the little

machine language routines that handle the ever vital house

keeping chores. So all we need to do is have the processor

jump to those routines (ie. at $EA31) after it has taken care

of our own work. This technique is known as pre-interrupt

coding, for obvious reasons, and can be used for all kinds of

interesting applications.

A few of the little tricks necessary to handle this technique

are illustrated below by means of the keyboard beeper

program. If you have an assembler aor machine language

monitor you can try these out for yourself. Good place to put

the program are in the cassette buffer at $033C and in the

large normally unused area beginning at $C000.

Note: The 4K block of RAM starting at $C000 is a revolu

tionary feature introduced by the 64. Essentially, it is an

"activity free zone". If there is no other program requiring

use of this space (like a cartridge) you can be sure that

nothing else in the machine will touch it. It is yours for

experimenting, storing data, or whatever you desire with

absolutely no side effects.

Notice in the initialization routine titled "PRE", the instruc

tion SEI is executed first. This ensures that an interrupt will

not occur while the program is changing the contents of the

vector. Imagine the potential disaster if an interrupt were to

occur between changing the low and high bytes - only half

of the address would be reliable. The other half has a 1 in

256 chance of being correct, but we can't take that chance.

SEI means SEt Interrupt mask which disables the timer

interrupt. Later we will re-enable it.

After changing the vector, this little routine will then set up

the correct registers in the SID chip to provide a pleasant

beep later when we tell it to (we hope). With the envelope,

frequency, and volume controls adjusted, the routine ends

with a CLI (CLear Interrupt mask) and an RTS. The timer

interrupts are now re-enabled.

The RESTORE routine is very similar to PRE, except in

reverse. It first turns off the SID chip and then replaces the

contents of $0314 and $0315 with their original values.

PRE SEI

LDA #<SERVICE

STA $0314 ;replace low byte of system routine

with low byte of "SERVICE" routine

LDA #>SERVICE

STA $0315 ;replace high byte of system routine

with high byte of "SERVICE"

LDA #$00

STA $D405 ;SID envelope generator for voice 1 -

attack and decay values

LDA #$F8

STA $D406 ;EG1 sustain and release values

STA $D401 ;SID oscillator 1 frequency value

LDA #$0F

STA $D418 ;volume control set to maximum

CLI

RTS

RESTORE SEI

LDA *$00

STA #D418 ;set volume to zero

LDA#$31

STA *0314 ; reset i rq low byte to $ 31

LDA #$EA

STA #0315 ;reset irq high byte to $EA

CLI

RTS

The BEEP routine is fairly straightforward. Location $00C5,

according to the Commodore 64 Programmers Reference

Guide, holds the value of the current key pressed and

contains zero if no key is pressed. This value is used both as

a flag to turn the beep on or off, and as a frequency value to

give each key a unique pitch when pressed.

BEEP LDA

AND

$C5

#$BF

BEQ OFF

STA

LDA

STA

RTS

$D401

#$11

$D404

;accumulator gets contents of $C5 -

the ASCII value of the current key

pressed

;is it an ASCII character or a zero?

;a zero - no key currently pressed

;otherwise store the value in SID's

frequency register

;turn SID gate on

;and return to SERVICE routine

OFF LDA#$10

STA $D404 ;turn SID gate off

RTS ;and return to SERVICE routine

The SERVICE routine is typical of pre-interrupt handlers. If

first saves all the registers in a safe place (on the STACK)

through use of the PHA (PusH Accumulator on the stack)

instruction, and then calls the BEEP subroutine. The inter

nal registers are then restored through use of the PLA (PulL

the top stack item into the Accumulator) instruction so that it

can continue with whatever job it was doing when it was

The Transactor 67 Volume 5, Issue 04

interrupted in the first place. Note that the registers are

restored in the reverse order from the way they were stored.

Also note that all three internal registers are stored and

restored even though the little BEEP routine used only one,

the accumulator. This is purely in the interest of generality

and to allow the routine to be easily adapted to your own

jobs. The final important note is that the pre-interrupt

routine does not end with an RTI (ReTurn from Interrupt)

instruction but transfers control to the normal ROM inter

rupt handler routine at $EA31, which you may trust to

preserve carefully all internal registers before going about its

chores. This routine does eventually end with an RTI,

transferring control back to the processor's main task, a

BASIC program for instance.

;save all processor

; registers on stack

;restore all

;processor registers

;in reverse order

SERVICE PHA

TYA

PHA

TXA

PHA

JSR BEEP

PLA

TAX

PLA

TAY

PLA

JMP $EA31 ;jump to normal IRQ service rou

tines

Thsi routine is fully relocatable except for the placement of

the interrupt vector at locations $0314 and $0315. The bytes

put in these locations by the PRE routine must be the low

and high bytes, respectively, of the start address of the

SERVICE routine. If the program was assembled at address

$C000, the address of the SERVICE routine will be $C046.

However, the assembler will calculate this for you no matter

where it ends up and the program can be invoked from

BASIC with a simple

SYS49152

The program is disabled by RESTORE using:

SYS49183

The BEEPER program though fun and illustrative of the

fascination of "background" programming with interrupts,

is not particularly useful. However, the PRE and RESTORE

routines are quite general and can be used to insert any sort

of processing task you wish. One rather useful application

would be to send data to the printer from a disk file (a

"Spooler" routine) or collect data at a moderate rate from the

User Port.

The task need not be as short and simple as the BEEP

routine either. Even at sixty time per second, the processor

has lots of time between calls to execute other tasks, such as

a BASIC program that might be running. As the pre-

interrupt routine gets longer and longer however, you will

notice the "foreground" task slow down more and more. At

a certain point, the background task will require all the

processor time; just as the interrupt is finished, another

interrupt occurs. This boundary is pretty high though - the

interrupt routine can be a total of about 6000 instructions

before you reach it. So you can see there is really quite a bit

of room to insert your own code.

Editor's Note:

The SERVICE routine that Bruno presents here is much

more complete than it needs to be. Bruno saves the A, X,

and Y register before the JSR to BEEP and restores them

afterward. This is not necessary and will not affect the

general behaviour of your computer.

When an IRQ occurs, these registers are all stored for you by

the code just previous to the indirect JMP through $0314.

They are restored for you in the service routine somewhere

beyond $EA31. When you insert a pre-interrupt routine,

you need not be concerned what values are left in these

registers before transferring execution back to $EA31. They

may contain any values since the housekeeping routines

will not use them in any way. Therefore, the routine called

SERVICE could become:

SERVICE JSR BEEP

JMP $EA31

with no nasty side effects. In fact, the SERVICE routine could

be eliminated by merely changing the routine "PRE" to

swap in the low and high bytes of BEEP instead of SERVICE,

and change the RTS to read JMP $EA31.

Bruno's method may not be all too wasteful though. . . there

is one situation where you might want to push and pull all

the registers before reaching $EA31. Some I/O registers

(like in the 6520/22/26 Interface Adapters and ACIA com

munications chips) are reset upon read. Inotherwords, their

contents are altered just because they have been read, or

"un-loaded". This is a handy feature when speed is of the

essence - MOS Technology has deliberately and carefully

built this in. But if two pre-interrupt routines will require

information from this type of register, it may be wise to store

the registers for future use by upcoming code. This situation

happens rarely at best and usually with communications

programs. So omitting the extra stack handling is a safe

procedure in most cases. - M.Ed.

The Transactor 68 Volume 5, Issue 04

AUTOSWAP:

A Multiprocessing System on the C64
Chris Zamara, Technical Editor

Partition Switching

In the last issue, we printed a program by Daniel Bingamon called

Quadra 64. Quadra 64 allowed program development in one of

four independent memory partitions, and used "wedge" com

mands to switch among partitions. Quadra 64 keeps all BASIC

variables local to each partition, since text and variable pointers

are switched when a new partition is entered.

If you wish to have indpendent partitions, and will always be

switching from one to another in direct mode (not while running a

program), then Quadra 64 will meet your needs. Sometimes,

though, partitioning is not enough. If, for example, you wish to

switch from one program while it is running, enter a new program,

then switch back to the first one and have it continue where it was

interrupted, what is needed is independent environments.

Environment Switching

As far as the operating system in the 64 is concerned, there is more

to life than BASIC text and variable pointers. There are the

pointers for CHRGET, current line being executed, current varia

ble address, expression evaluation, etc. There are flags to indicate

quote mode, direct mode, key repeat, cursor flash, and dozens

more. There are hundreds of bytes containing things like character

colour, cursor position, number of inserts outstanding, number of

files open, and miscellaneous temporary storage used by various

ROM routines. In addition, we can't forget the stack, screen

memory, colour memory, or the input buffer. In other words, lots

of stuff.

What this means is that an environment-switching system must

have independent sets of all of these bytes stored somewhere in

memory. When a switch to an alternate environment is to take

place, the current state of the variables must be stored, and

another environment's variables brought in to take their place.

This is the approach taken by the accompanying program,

"AUTOSWAP".

To be useful, the environment-switching technique should be

controlled by direct keystrokes, and should take place during an

IRQ (hardware Interrupt ReQuest). AUTOSWAP is set up so that

there are two environments, which may be alternately selected by

hitting the F3 key at any time. When the environment switches,

it's like getting up from behind your computer and going to

another one (with less memory). On your new computer, you are

free to do whatever you like, without regard for what was going on

over at computer 1. When you hit the F3 key again to switch back,

your first computer hasn't changed at all, unless you did some

POKEs to hardware registers while in the second environment.

The screen is the same, the cursor is in the same place, programs

continue from where they were interrupted, and of course, no

variables have been clobbered.

With AUTOSWAP, you could enter or load a program while in

environment 1, then run it. While it is running you could switch to

environment 2, load another program and run it. Now, by pressing

the F3 key - swapping environments - you can alternate execu

tion between the two routines. The logical extension of this

poligamous processing is automatic swapping every fraction of a

second, excluding the screen swap. This amounts to multiprocess

ing, something which micros are very infrequently called upon to

do. But it Is possible, and "AUTOSWAP" makes provision for it (it

isn't called auto-swap for nothing). Mutiprocessing is sort of like

feeding steroids to your 64: it'll work twice as hard for the same

money.

Multiprocessing With AUTOSWAP

Multiprocessing is accomplished by pressing the "auto mode" key,

F5. When F5 is struck, automatic environment switching begins to

take place every three interrupts. This amounts to a swap about

every 0.05 seconds, but the value is variable. A swap every

interrupt makes the system very inefficient, since there is too

much overhead: most of the CPU's time is spent just switching

environments. Swapping too infrequently, on the other hand,

makes execution of each program very irregular: run for a while,

stop.. ..run. . ..stop.. . - you get the idea. As with any multi

processing system , there is a trade-off between system overhead

and actual processing. That, in fact, is AUTOSWAP's alias: "An

Unavoidable Trade-Off: System Work And Processing". (It's really

an acronym for: A Useful Technique Of Switching With Alternating

Parameters).

To run two programs at once, first set them up as in the above

example: run one at a time so that either one may be selected with

The Transactor 69 Volume 5, Issue 04

the swap key, F3. Then press F5 to engage multiprocess mode. The

screen won't be swapped back and forth between environments,

but you may look at either environment's screen by pressing the

swap key. You can also work in direct mode in either environment

while in multiprocess mode - this allows you to edit one program

while running another in the background. You may look in on the

running program at any time by selecting its screen with the swap

key, and then switch back. The F5 key acts as a toggle, so pressing

it again turns off multiprocess mode and leaves the system in the

environment currently being viewed.

You can also control AUTOSWAP from within a program, without

having to press the function keys. The location $O2F1, or 753

decimal, is used to simulate the depressing of one of the function

keys. Just poke the key code of the desired function key into this

location, and that key's function will be performed. Specifically, to

simulate F3, the swap key:

POKE 753,5

To toggle multiprocess mode, performed by F5:

POKE 753,6

If you wish, you can simulate Fl, the "save out" key (used in

installation - explained later) with:

POKE 753,4

Here's a table for clarification:

Function Direct mode Program Mode

Save environment 1 Fl POKE 753,4

Switch environments

(switches screens in m/p mode)

F3 POKE 753,5

Toggle multiprocess mode F5 POKE 753,6

The Methodology and the Problems

The principal of operation has already been explained: swap sets

of parameters alternately during interrupts. Accomplishing that

deviously simple-sounding aim is a little bit tricky. Imagine that

the CPU is courting two girlfriends (environments) at the same

time; if either one finds out about the other, there's gonna be

trouble.

First of all, as mentioned previously, there are a lot of variables to

swap. That's not the hard part, since most of them live in a

contigous chunk of memory from 0000 to 0400 (hex). Further

more, the screen resides at 0400, and a second screen is set up at

0800; it's easy to point the operating system and the video chip at

either screen block, so the screen memory needn't be physically

swapped like the other parameters. Besides that, the only other

thing to swap is colour memory, but that's another story and will

be addressed later.

So what's the problem? Well, as many have probably noted, the

stack makes its home in page one, which is included in our zone to

be swapped. You probably know that the stack doesn't like to be

messed with. In fact, terrible things often happen to those ill-fated

souls who inadvertently clobber the stack. The stack holds the

vital return addresses for subroutines and interrupts, as well as

providing a temporary storage area for any code that wants to use

it. Thus, we must include the stack with the parameters to be

switched; each environment would otherwise declare, "this stack

ain't big enough for the two of us", and then proceed to crash in

some strange way. The stack has to be saved and restored along

with the other parameters, and the same holds true for the stack

pointer, which is actually a register internal to the CPU. An extra

bit of code in AUTOSWAP takes care of that.

We've ascertained that strange things happen when unorthodox

stack manipulation is performed, and this situation is no excep

tion. The original version of AUTOSWAP used a general-purpose

memory transfer subroutine to swap memory in and out of pages 0

through 4 (which includes the stack in page 1). The code looked

flawless, but it didn't quite work. Your confused and frustrated

author, scratching his head, had to eventually turn to a program

mer for help when all else failed (thanks, Rico). A few hours of

mutual head-scratching finally revealed the obscure bug. When

the entire stack, including the stack pointer, is replaced, the effect

is somewhat like pulling the rug out from under the system's feet.

This is basically what was happening: The program would call the

subroutine to move new memory into the stack. When the subrou

tine ended, it attempted to return to the calling address with an

RTS instruction, in the usual fashion. RTS would go about its

business, pulling the return address from the stack - which now

had a different return address in it. Since the new stack repre

sented the state of the system at the previous swap, the program

would return to where it was at that time; a crash wouldn't occur,

but things just wouldn't work quite right when switching during

BASIC program execution. It sounds confusing, and it is.

AUTOSWAP had to be modified so that it didn't use a subroutine

for memory transferring.

Explanation of that little oddity will have to serve as apology for

the bizzarre looking code which resulted: it's self-modifying, and

does not follow an easily traceable path of execution. It may be

educational, however, to look at the way it avoids using JSR or RTS

instructions to execute a subroutine.

The section of code which transfers a range of memory acts as a

subroutine, and is passed its paramters (source and destination

start pages) through the A and X registers. Instead of ending with

an RTS, though, it ends with a JMP instruction whose argument is

set up before the "subroutine" is executed. Thus, the calling

sequence involves setting up the return address of the final JMP

instruction, then executing a JMP to the start of the routine. When

the routine is finished, it just jumps back to where it was told. This

simulates what happens with JSR and RTS instructions, only the

stack is not utilized this way. When the transfer subroutine is used

for purposes other than filling in the lower four pages, the calling

routine replaces the JMP instruction with an RTS and uses it like a

normal subroutine, then changes the RTS back to a JMP.

The Transactor 70 Volume 5, Issue 04

Another problem that had to be worked around was the use of

indirect addressing through zero page registers. All of zero page is

written over during the transfer process, so registers in that area

can't be used as pointers. Again, self-modifying code had to be

used to point to source and destination addresses for memory

transferring.

In theory, switching in and out the variables will allow multi

processing. But, as usual, theory and practice do not see eye to eye.

The main problem with multiprocessing using this technique

shows up when it comes to editing in direct mode while also in

multiprocess mode. Some characters typed on the keyboard will

go to the screen you see, but others will go to the other environ

ment, and will only show up when you switch over using the F3

key. Not good. What we need is a local keyboard as well as a local

screen for each environment. In order to do that, a bit of mucking

about with the kernal (operating system) is in order.

Luckily, the C64 has the unusual capability of allowing ROM and

RAM to exist in the same address space, and allowing either to be

selected by software. This capability can be used to change the

operating system in ROM: just copy the existing ROM into the

underlying RAM, select the RAM and disable the ROM, then make

changes to the RAM. With this technique we can change the

operating system depending upon which environment we are in

and which screen we are viewing.

The problem with patching into the ROMs in this way is that the

resulting code may not be compatible with all of the different ROM

releases (there have been three that I know about for the 64 to

date). AUTOSWAP works with the most common ROMs, not the

early ones or the very late ones. I haven't tested it with other ROM

versions, but if the program doesn't work on your machine, use a

machine language monitor to check your ROMs against the ROM

patch in the source listing (listing 2). The code at lines 4470-4540

should appear in the ROM starting at $EB34. You serious hackers

out there should be able to find the equivalent patch locations for

different ROM versions. We'd be glad to print these as a follow up

in a future issue. If you do have different ROMs, you can still use

AUTOSWAP: just delete lines 1730 to 1760 in the source listing, or

make the indicated change in the basic loader program (listing 1).

This will disable the ROM patches; AUTOSWAP will still work, but

typing in direct mode while in multiprocess mode will be problem

atic.

To explain how each environment is given its own keyboard

buffer, first consider all the different combinations of environ

ments and screens:

Environment 1, screen 1

Environment 1, screen 2

Environment 2, screen 1

Environment 2, screen 2

To give a local keyboard to each environment, AUTOSWAP uses

the following logic. If the environment and the screen are the

same, then characters are sent to the keyboard buffer at $0277 as

usual. If, however, the processor is in one environment, and the

screen being viewed is that of the other, then the characters are

sent to the image of the keyboard buffer m the storage area for the

processor's environment. For example, suppose that the CPU is in

environment 1, meaning that all the environment 1 parameters

are occupying pages zero to four. At the same time, the screen

being viewed (and thus the keyboard to be enabled) corresponds

to the second environment. In this case, the interrupt routine,

instead of putting the characters from the keyboard into the

regular keyboard buffer, puts them into the storage area for

environment 2. The next time the swap takes place, the storage

area for environment 2 will be moved into pages 0-4, replacing the

keyboard buffer. Thus, all keystrokes that took place while the

CPU was in the non-visible environment will appear when it

switches back to the visible one. It's pretty tricky, and again, makes

the program a bit difficult to visualize, but this is a non-typical

application, so programming must be done accordingly.

That's roughly how localized keyboards are accomplished, al

though there are a few more details involved which may be seen in

the source code (listing 2). With the keyboard problem taken care

of, it should work fine, right? Unfortunately, there are a few more

problems which have to be solved to make AUTOSWAP useful.

Besides localizing the keyboard buffer, the STOP key must be

handled independently as well. If a program is being worked with

in environment 1 while another one is simultaneously running in

2, pressing STOP should only affect the program in environment 1.

This is taken care of by using the "check STOP key" vector to trap

the stop, and ignore it unless the environment and screen are the

same. A minor problem, easily fixed. It also means, though, that

the new stop key code is being continuously executed; changing

AUTOSWAP after it has been initialized could cause a system

crash. Make sure to disable AUTOSWAP with a RUNSTOP/

RESTORE before doing any playing about with the code (like re

assembling new source).

Another problem that sadly has no easy fix is colour memory.

Ideally, colour memory would be local to each environment just

like screen memory. That would mean that switching environ

ments, changing all the character colours on the screen, and

switching back, would change nothing. Unfortunately, implement

ing such a scheme is a problem because colour memory must

always start at the same address, $D800. The VIC video chip and

the operating system in ROM both assume it to be there. The

ROMs we could change, but the chip's memory addressing we

couldn't - short of performing some major surgery to the circuitry

inside the 64 (put down your soldering iron; we're not going to do

it). So what to do about colour memory?

Well, colour memory is not that important - AUTOSWAP will

usually be used when editing and debugging programs, or for

other primarily text applications where only one character colour

is desired. We can't just ignore colour memory, however, because

whenever the operating system clears a line of text on the screen, it

fills the corresponding line in colour memory with the background

colour. This behaviour varies with different ROM releases: If you

can clear the screen on your machine, then see the effects of

POKEing to screen memory, the problem doesn't exist, and you

The Transactor 71 Volume 5, Issue 04

can get rid of lines 1840 to 1870 in the source code. With most 64s

though, the free-of-charge colour change means that a program

running in environment 2 could interfere with screen 1: whenever

the screen scrolls (which could happen any time a line is printed),

the bottom line is cleared before the new line is printed. Since

screen 1 and screen 2 both share the same colour memory,

characters would seem to magically disappear wherever the colour

memory was set to background colour.

The solution? Well. . . ahem ... I don't have a very good one.

Barring massive ROM rewrites and prodigious memory transfers

every swap, there doesn't seem to be a practical solution that will

give totally local colour memory to each environment. So 1

cheated, and just changed the ROM code that puts the backgound

colour into colour memory. Changing two bytes makes it put in the

current character colour instead. It makes the system workable, as

long as you stick to one character colour. Using a different colour

in each environment can gives unexpected results.

Installing AUTOSWAP in the System

With most programs, installation is simple: just LOAD and RUN.

AUTOSWAP, on the other hand, must set up the second environ

ment so that it has something to switch to. This is accomplished by

having two entry points in the program; the main entry point

intializes AUTOSWAP, and the entry point three bytes later sets up

environment 2. To install AUTOSWAP, load the object code into

memory or run the BASIC loader program in listing 1. Type SYS

49152, and then NEW (make sure the loader program has been

previously saved). This initializes AUTOSWAP itself, but you can't

switch to another environment yet because no image exists in

memory. Now press the Fl key. This is a special key used for

installation only, and simply saves the current environment (con

tents of pages 0-4) out to its image in high memory, without

bringing in a new environment. Now you can set up the new

environment by typing SYS 49155. The screen should clear, and

The system will now be totally operational. You are in environ

ment 2 at this point; enter NEW before you begin programming

here. To recap:

1) RUN loader (listing 1) or LOAD object created from

source in listing 2

2) SYS 49152

3) NEW

4) press Fl (or POKE 753,4)

5) SYS 49155

6) NEW

Installation is now complete: swap environments with F3 or

enable multiprocess mode with F5. Use F3 to change screens

while in multiprocess mode.

Applications

What's AUTOSWAP good for? Well, once more, the old cliche,

"you're only limited by your imagination" applies. But if your

imagination needs a little help, here's a few possible applications.

Two programmers could compete against each'other by program

ming a sprite as a killer robot, using common machine language

subroutines for firing, "radar", etc. Each program would be in

BASIC and live in one of the environments. Multiprocess mode

would be used so that both programs could run simultaneously,

and the sprites could be watched in action on the screen. To

enhance the game, additional BASIC keywords could be supplied,

and a "Robot Control Language" developed. After each robot was

supplied with the logic it needed for seeking and destroying, both

players could just sit back and watch their creations battle it out.

It's something I've always wanted to do, but never had a way to run

2 programs at the same time. Now I do.

Controlling AUTOSWAP from within programs as previously ex

plained opens up all kinds of possibilities. For example, a main

program in environment 1 could call a subroutine in environment

2 by switching environments (with POKE 753,5). The subroutine

would switch back when it was finished by executing the same

POKE to swap again. The advantage of performing subroutines

this way is twofold: first of all, all variables will be local, so any

program could be used as a subroutine without worrying about

conflicts with the main program. Second, the screen would be

local, so that the subroutine could be used to introduce a menu,

help screen, spreadsheet, note-pad, etc., without disturbing the

original screen. Additionally, multiprocess mode may be enabled

or disabled via program control, from either environment (with

POKE 753,6). This feature could be used to execute a background

subroutine; on completion, the subroutine could turn off multi

process mode, and switch back to the main program.

Background processing. You can edit or enter a program while

another one is running in the alternate environment. This may be

useful, for example if you're running a long sort. While you're

waiting for the sort, you want to test out a short program, or look at

some disk files, or something like that. Normally, you'd have to

wait for the sort to finish because you don't want to have to stop it

and start it all over again. If you had the presence of mind to install

AUTOSWAP before running the sort, however, it's easy: hit the

multiprocess key (F5), and then the swap key to view the alternate

environment. Do whatever you want there, and the sort will

continue running while you do. You can later switch back to the

sort screen if you wish, and shut off multiprocessing to bring it

back up to full speed.

And of course, AUTOSWAP can be used for the same reason as

Quadra 64, to develop programs in separate partitions.

AUTOSWAP has only two such partitions, but that is usually all

that is required. Just over 16K is available in each partition. Of

course, there's no reason that AUTOSWAP couldn't be modified to

use any number of environments. The idea remains the same, but

additional logic would have to be coded to select one of N

environments. In fact, AUTOSWAP started out life as a 4-

environment system, but was pared down to 2 when it became too

cumbersome, and would have been too large to print in the

magazine.

The Transactor 72 Volume 5, Issue 04

Limitations

Well, it all sounds wonderful to have a computer split in two, but in

reality there are a few flaws in this theoretical ideal. The colour

memory problem has already been discussed, but there is also the

matter of the I/O pages. The video and sound chip, for example,

are global to both environments. That means if the border colour is

changed in environment 1, it will also change in 2. Likewise, high-

res mode, sound effects, and sprites are all common to both

environments. This can be used to advantage, as with the killer

robot application, but it generally keeps the environments less

isolated from each other than is sometimes desired.

Another problem is the obvious physical limitation of having only

one screen, keyboard, and serial port. If a program is background

processing and requires keyboard input at some point, it will have

to wait until you swap into its environment to supply it. And I don't

even want to think about what happens when two programs try to

access a disk file at the same time. But 1 suppose if what you really

want is two computers, you would be reading the classified ads

instead of this article.

Enhancements

As with many programs 1 present in the magazine, AUTOSWAP is

just a bare bones system. The idea of presenting a program in the

pages of Transactor is to expose techniques, and to supply a

program which may be used as it stands or modified by the reader

for his own needs. As it stands, AUTOSWAP is fairly long to type in

(especially the source), but it could grow a whole lot. Here are a few

possible improvements that a reasonably proficient programmer

could add:

- A priority could be assigned to each environment, so that CPU

time could be distributed unevenly between them. For example,

an unimportant program running in the background (It may just

check the time and act as an alarm clock) could be swapped in

every 100 interrupts, for a period of 2 interrupts.

- More than 2 environments could be supported.

- a keyword or a "wedge" could be added to BASIC which would

simultaneously RUN programs in all environments.

- The number of environments, and the partition size of each

environment could be selected from a start-up menu

- The installation procedure could be simplified

- What about that "Robot Control Language" (RCL)? I'd love to

hear from anyone completing such an application - it would

make a great article!

- An improved colour memory scheme could be implemented

Usage Notes

Using AUTOSWAP becomes quite natural after a while, since it

doesn't change the basic operating characteristics of the machine.

There are however a few points you should keep in mind when

programming in an AUTOSWAP-equipped system.

■ In environment 1, screen memory starts at it's usual address,

$0400 or 1024 decimal. In environment 2, it starts at $0800 or

2048. You can use this fact to communicate between screens, i.e.

you could POKE into screen 2 while looking at screen 1.

■ BASIC starts at $0C00 (3072) in environment 1, and at $4E00

(19968) in environment 2 (it normally starts at $0800). Any pure

BASIC program may be loaded and run normally, but some

programs with built-in machine language expect to load into'

$0800 and will die if loaded and run with AUTOSWAP in place.

- Any programs which use the function keys will have to be used

with care: you may find yourself switching environments or

entering multiprocess mode at an inopportune time.

■ AUTOSWAP is interrupt-driven, and thus will not work with

other interrupt-driven software (unless you link them together

by pointing AUTOSWAP's exit address to the other routine).

■ The 64's operating system is changed to RAM, so it is subject to

clobbering. Be careful if POKEing about from BASIC or monitor.

To bring the normal ROM back into place, just POKE 1,55. This

will prevent multiprocess mode from working properly, but re

initializing AUTOSWAP with SYS 49152 will bring the RAM back

in again.

■ AUTOSWAP uses 2K of memory from $9000 to $97FF to store

the page 0-4 image for each environment. The BASIC partition

in environment 2 ends at $9000 so that this space is not stepped

on. (The very top 2K, from $9800 to $9FFF is free for future

expansion of autoswap to 4 environments.) If you want to run a

package that normally deposits itself in high memory, either

install autoswap first, or protect the top 4K of memory before

loading the high-memory program. To protect $9000 to $9FFF,

enter POKE 56,144, then NEW before loading.

There are two locations in low memory used by AUTOSWAP;

$02F0 (752) and $O2F1 (753). The former is used to store the

stack pointer, and the latter the last key pressed (used for

program control of function keys). Stepping on these locations

could be disastrous. If you need them, change AUTOSWAP to

use some other locations instead (The equates are the first two in

the source listing).

Finally

I hope that the AUTOSWAP application served to show you that

your C64 is capable of more than just simple processing. If you find

it useful, that's great. If you learned something, that's even better.

Because the reason the computer enthusiast pushes his machine

to greater and greater limits is not for the program itself, it is for

fun. Why is it fun? It's not often spoke of, but the motivating force

that keeps us bashing away on a keyboard until the wee hours, can

be said in a word: EDUCATION.

The Transactor 73 Volume 5, Issue 04

Listing 1.

This is the BASIC loader program for AUTOSWAP

when you get it to run without data errors, SAVE

start-up instructions.

: enter it, and

it. See text for

The first bold-face value should be changed to 55 if you have

different ROMs, and the second controls the frequency of swaps -

set to one every three interrupts here. See text for details.

100 rem** autoswap basic loader

110:

120 cs = 0: rem* checksum *

130 for i= 49152 to 49766

140 read a: poke i,a: cs = cs + a

150 next i

**

160 if cs<>84702 then print" data error": stop

170 print "Ok, program is in place

180 print" See article for startup instructions."

190 end

200:

1000 data 76,

1010data 141,

1020 data 0,

1030 data 169,

1040 data 133,

1050 data 169,

1060 data 185,

1070 data 208,

1080 data 88,

1090 data 20,

1100 data 3,

1110 data 141,

1120 data 141,

1130 data 41,

1140 data 41,

1150 data 141,

1160 data 169,

1170 data 43,

1180 data 141,

1190 data 219,

1200 data 228,

1210 data 192,

1220 data 169,

1230 data 184,

1240 data 192,

1250 data 141

1260 data 43

1270 data 0

1280 data 56

1290 data 4

1300 data 237

1310 data 173

1320 data 0

1330 data 192

1340 data 0

1350 data 192

1360 data 169

1370 data 171

1380 data 201

1390 data 240

1400 data 14

1410 data 173

50, 192, 120, 169,

136, 2,169, 0,

78,169, 1,133,

78,133, 44,169,

55, 169, 144, 133,

2,141, 184,192,

192,169, 39,141,

169,147, 32,210,

96,120,169,186,

3,169,192,141,

32, 62,194,169,

40, 3,141, 40,

40, 151, 169, 194,

3,141, 41,147,

151,169, 53,133

1,144,141, 1,

76,141, 52,235,

141, 53,235,169,

54,235,169,134,

228,169, 2,141,

173, 177, 192, 141,

169, 4,141,174,

1, 141, 185, 192,

192,169, 0,141

141,241, 2,169,

0, 12,169, 1

169, 12,133, 44

133, 55,169, 78

88, 96, 0, 0

0, 0, 3, 0

246, 2, 2, 1

241, 2,208, 33

141, 175, 192, 173

201, 64,208, 8

141, 173, 192, 76

173, 173, 192,208

1, 141, 173, 192

192,201, 4,240

5,240, 36,201

38, 173, 178, 192

206, 176,192,208

177, 192, 141, 176

8

141

43

0

56

141

24

255

141

21

87

147

141

141

1

148

169

194

141

220

176

192

141

171

0

133

169

133

0

16

1

169

171

169

236

20

173

75

6

240

9

192

1420 data 76,

1430 data 171,

1440 data 2,

1450 data 193,

1460 data 192,

1470 data 173,

1480 data 240,

1490 data 192,

1500 data 141,

1510 data 201,

1520 data 240,

1530 data 142,

1540 data 234,

1550 data 32,

1560 data 240,

1570 data 46,

1580 data 232,

1590 data 141,

1600 data 234,

1610 data 193,

1620 data 162,

1630 data 193,

1640 data 255,

1650 data 169,

1660 data 0,

1670 data 173,

1680 data 183,

1690 data 46,

1700 data 194,

1710 data 169,

1720 data 192,

1730 data 141,

1740 data 0,

1750 data 2,

1760 data 218,

1770 data 174,

1780 data 193,

1790 data 0,

1800 data 247,

1810 data 193,

1820 data 0,

1830 data 240,

1840 data 192,

1850 data 169,

1860 data 0,

1870 data 194,

1880 data 169,

1890 data 0,

1900 data 141,

1910 data 41,

1920 data 24,

1930 data 0,

1940 data 157,

1950 data 0,

1960 data 141,

1970 data 234,

1980 data 32,

1990 data 224,

2000 data 184,

2010 data 3,

2020 data 201,

34,

192,

76,

76,

73,

184,

221,

165,

197,

1,

72,

240,

193,

199,

45,

194,

142,

184,

193,

169,

148,

174,

192,

96,

160,

175,

192,

194,

169,

76,

141,

236,

76,

154,

193,

192,

140,

153,

238,

202,

173,

23,

169,

144,

141,

169,

32,

141,

183,

15,

208,

236,

119,

76,

174,

193,

199,

32,

192,

108,

127,

193,

169,

49,

34,

255,

192,

169,

197,

148,

240,

76,

2,

162,

193,

174,

142,

54,

192,

169,

193,

160,

240,

186,

141,

148,

192,

142,

232,

1,

141,

235,

193,

199,

76,

140,

160,

220,

0,

218,

208,

185,

169,

16,

141,

183,

2,

141,

182,

192,

13,

96,

137,

2,

66,

192,

162,

193,

199,

205,

180,

96

165,

0,

234,

193,

141,

205,

1,

141,

173,

7,

255,

169,

0,

173,

182,

58,

194,

169,

123,

141,

0,

2,

142,

234,

32,

240,

58,

232,

141,

234,

193,

162,

193,

255,

221,

0,

193,

0,

193,

238,

192,

1,

141,

182,

192,

141,

179,

192,

173,

179,

138,

2,

232,

235,

169,

160,

162,

193,

185,

192,

197,

141,

32,

173,

178,

185,

141,

197,

184,

201,

192,

96,

160,

175,

192,

194,

169,

76,

141,

236,

76,

154,

240,

193,

199,

45,

194,

142,

184,

193,

169,

144,

174,

192,

193,

140,

185,

200,

238,

76,

201,

141,

179,

192,

76,

185,

192,

169,

24,

192,

174,

176,

142,

169

96

160

224

96

192

169

141

241

237

178

192

192

175

144

192

2

186

141

144

192

142

232

2

141

235

193

199

76

2

162

193

174

142

54

192

169

193

160

240

142

174

217

0

208

221

0

1

185

192

169

31

192

169

148

208

141

198

7

198

32

141

160

160

173

208

255

The Transactor 74 Volume 5, Issue 04

Listing 2.

The source sode for AUTOSWAP, written using the PAL 64 assem

bler. It should be compatible with most other assemblers.

1000 sys700 [assembled on pal 64

1010.opt oo

1020 . - ScOOO

1030 sp = $02f0 ;stack pointer

1040prgkey = $0211 ;last key detected

1050keybd = 197 ;key pressed

1060pntrs = $002b ;basic pointers

1070scrnpag = $0288 ;screen page

1080romptch1 = $eb34 ;kbd buffer irq code

1090romptch2 = $e4db ;colour memory

HOOstopvec = $0328 ;check stop key

1110chrcolor = $0286 ;character colour

1120;

1130 e1 start = $0c01 ;env 1 basic start

1140e1end = $4e00 ;env 1 basic end

1150e2start = $4eO1 ;env 2 basic start

1160e2end = $9000 ;env2 basic end

1170 image! = $9000 ;env 1 storage

1180image2 = $9400 ;env 2 storage

1190;

1200 ;main intitialization routine

1210 jmp irqinit

1220;

1230 ;entry point to initialize env 2

1240 sei

1250 Ida #8 ;screen memory page

1260 sta scrnpag ; at $0800 in env 2

1270 ;set up basic partition

1280 Ida #0

1290 sta e2start-1

1300 Ida #<e2start ;basic start low

1310 sta pntrs

1320 Ida #>e2start ;starl high

1330 sta pntrs +1

1340 Ida #<e2end ;endlow

1350 sta pntrs+ 12

1360 Ida #>e2end ;endhigh

1370 sta pntrs+ 13

1380;

1390 Ida #2

1400 sta envno ;environment #2

1410 sta scrno ;screen #2

1420 Ida #$27 ;set video chip

1425 sta $dO18 ;for$0800

1430 Ida #147 ;dear screen

1440 jsr $ffd2 ;chrout routine

1450 cli

1460 rts ;end of setup routine

1470;

1480;

1490 irqinit = .

1500 [initialize autoswap and env 1

1510 sei

1520 redirect irq vector

1530 Ida #<intrtn

1540 sta $0314

1550 Ida #>intrtn

1560 sta $0315

1570;

1580 ;copy rom into underlying ram

1590 jsr romstor ;securerom

1610;

1620 ;change stop vector

1630 Ida #<newstop

1640 sta stopvec

1650 sta imagei + stopvec

1660 sta image2 +stopvec

1670 Ida #>newstop

1680 sta stopvec +1

1690 sta imagei + stopvec +1

1700 sta image2 + stopvec +1

1710;

1720 ;select ram under rom

1730 Ida #$35

1740 sta 1

1750 sta imagei +1

1760 sla image2 + 1

1770 ;stuff in rom patches

1780 Ida #$4c ;jmp instr

1790 sta romptchi

1800 Ida #<patch ; patch address low

1810 sta romptchi+1

1820 Ida #>patch ;patch address high

1830 sta romptchi+2

1840 Ida #<chrcolor;change colour for clear

1850 sta romptch2 ;(not required on all rom

1860 Ida #>chrcolor versions)

1870 sta romptch2 + 1

1880;

1890 initialize variables

1900 Ida swpfreq frequency of swaps

1910 sta intno

1920 Ida #4 ;# of block for transfer rtn

1930 sta blkno

The Transactor 75

1940

1950

1960

1970

1980

1990

2000;

Ida #1

sta scrno

sta envno

Ida #0

sta key

sta prgkey

2010 ;set up basic partition

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120;

2130

2140

2150;

2160;

Ida #0

sta e1 start-1

Ida #<e1 start

sta pntrs

Ida #>e1 start

sta pntrs +1

Ida #<e1end

sta pntrs +12

Ida #>e1end

sta pntrs+ 13

cli

rts

2170 variables follow

2180;

2190 key

2200 prevkey

2210keyflag

2220 blkno

2230 swapflg

2240 intno

2250 swpfreq

2260 autoflg

2270 scrnloc

2280 oldstop

2290 kbud

2300 kbuf2

2310 envno

2320 scrno

2330;

2340;

2350 intrtn

.byteO

.byte 0

.byte 0

.byte 4

.byte 0

.byte 0

.byte 3

.byte 0

.byte $10

word $f6ed

.byte 2

.byte 2

.byte 1

.byte 1

= *

2360 ;interrupt service routine

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470 keydn

2480

2490

Ida prgkey

bne onkey

Ida #0

sta swapflg

Ida key

cmp #64

bne keydn

Ida #0

sta keyflag

jmp autochk

= *

Ida keyflag

bne autochk

2500 ;key pressed

2510

2520

2530

2540 onkey

2550

2560

2570

2580

2590

2600

Ida #1

sta keyflag

Ida key

H .

cmp #4

beq mout

cmp #5

beq switch

cmp #6

beq automode

2610 ;check for auto swap

2620 autochk

2630

2640

2650

2660

2670

2680

2690

2700;

2710 out

2720

2730

2740

2750

2760

2770

2780 switch

2790

2800

2810

= *

Ida autoflg

beq out

dec intno

bne out

Ida swpfreq

sta intno

jmp swap

= ,

Ida keybd

sta key

Ida #0

sta prgkey

jmp $ea31

= .

jsr scrnswap

jmp swap

2820 automode =

2830

2840

2850

2860

2870

Ida autoflg

eor #255

sta autoflg

Ida envno

cmp scrno

;screen 1, environment 1

; previous key pressed

; program control

;basic start low

;start high

;end low

;end high

interrupt count

;swap frequency

;auto swap mode

;screen location

environment 1 or 2

;screen 1 or 2

;program control

;been poked, perform

;last key detected

;64 = no key pressed

;nokey; autoswap"?

;which key pressed' ?

;f1. save out

;f3, swap

;f5, toggle auto mode

multiprocess mode"?

;no, get out

;time to swap"?

;no, get out

;yes, reset counter

;perform env swap

;irq exit

;key pressed

;swap key routine

;switch screen

;switch environment

[multiprocess key rtn

multiprocess flag

;toggle (flip bits)

;leave system in

;..visible environment

Volume 5, Issue 04

2880

2890;

2900 swap

2910

2920

2930

2940

2950

2960 moul

2970

2980

2990

3000

3010

3020

3030 ;

3040;

3050 envoi

beq out ;exit if screen -environmen

m . ;swap environments

Ida #1

sta swapflg

Ida keybd ;keep keystrokes alive

sta imagei +keybd

sta image2 + keybd

Ida envno environment # (1 or 2)

cmp #1 ;in env 1 '?

beq envoi ;yes, switch to 2

cmp #2 ;inenv2"?

beq envo2 ;yes, switch to 1

jmp out ;neither, do nothing

= ,

3060 ;first save out environment 1

3070

3080

3090;

3100

3110

3120;

3130

3140

3150;

3160

3170

3180

3190;

tsx ;save stack pointer

stx sp

Ida #$60 ;rts instruction

sta rtrn ;(or transfer subrtn

Idx #$00 ;source high

Idy #>image1 ;dest high

jsr transfer ;save pages 0-4 out

Ida swapflg ;should env 2 move in" ?

beq nswapi ;no, just f1 key Oressed

3200 ;change roms to put chars in right buffer

3210

3220

3230

3240

3250

3260

3270;

3280

3290

3300;

3310

3320

3330

3340

3350

3360

3370;

3380

3390

3400;

3410

3420 bagn2

3430

3440

3450 nswapi

3460

3470;

3480;

3490 envo2

3500

3510

3520

3530

3540;

3550

3560

3570;

3580

3590

3600

Idx kbufi

stx patch1+2

stx patch3 + 2

inx

inx

stx patch2 + 2

Ida #2

sta envno ;set to env #2

Ida #$4c ;jmp instruction

sta rtrn

Ida #<bagn2 ;return address low

sta rtrn +1

Ida #>bagn2 ;retum address high

sta rtrn+ 2

Idx #>image2 ;source high

Idy #$00 ;dest high

jmp transfer ;moveenv2in

= .

Idx sp restore stack

txs ;..pointer

= ,

jmp out finished

= ,

tsx ;save stack pointer

stx sp

Ida #$60 ;rls

sta rtrn

Idx #$00 ;source high

Idy #>image2 ;dest high

jsr transfer ;saveoutenv2

Ida swapflg

beq nswap2

3610 ;rom changes for key diversion

3620

3630

3640

3650

3660

3670

3680;

3690

3700

3710;

3720

3730

3740

3750

3760

3770

3780;

3790

3800

3810

3820 bagn4

3830

3840

3850 nswap2

3860

3870;

.IRRfl ■

Idx kbu(2

stx patch3 + 2

stx patch1+2

inx

inx

stx patch2 + 2

Ida #1 ;settoenv#i

sta envno

Ida #$4c ;jmp instruction

sta rtrn

Ida #<bagn4 ;return address low

sta rtrn +1

Ida #>bagn4 ;return address high

sta rtrn + 2

Idx #>image1 ;source high

Idy #$00 ;dest high

jmp transfer ;moveenv1in

m ,

Idx sp restore stack

txs ;..pointer

= . ■

jmp out

3890 transfer

3900 ;memory move routine

3910

3920

3930

3940

3950

3960

3970 transbyt

six srcptr + 2 ;source block

sty destptr + 2 ;dest block

Idx blkno ;# of blocks to transfer

Idy #0

sty srcptr +1

sty destptr +1

= *

3980 ;may I be struck down by lightning for

3990 ;doing this, but the next two instructions

4000 ;are (gasp) self-modifying.

4010 ;apologies - it was the only way.

4020 srcptr

4030 destptr

4040

4050

4060

4070

4080

4090

4100 rtrn

4110;

4120;

4130scrnswap

Ida !.-..y

sta U-»,y

my

bne transbyt

inc srcptr + 2

inc destptr + 2

dex

bne transbyt

jmp .-.

= >

4140 ;swap screen pointer

4150

4160

4170

4180

4190

4200

4210

4220

4230

4240

4250

4260

4270;

4280 to2

4290

4300

4310

4320

4330

4340

4350

4360

4370;

4380 switchit

4390

4400

4410

4420

4430

4440;

4450;

4460 patch

4470

4480 patchi

4490

4500

4510patch2

4520

4530 patch3

4540 back

4550;

4560;

4570 romstor

Ida scrno

cmp #1 ;in screen 1"?

beq to2 ;yes, switch to 2

Ida #1 ;no, switch to 1

sta scrno

Ida #$10 ;bit for vie chip

sta scrnloc

Ida #>image1 ;set up rom patches

sta kbufi

Ida #$00

sta kbuf2

jmp switchit

m .

Ida #2 ;set to screen 2

sta scrno

Ida #$20

sta scrnloc

Ida #$00

sta kbufi

Ida #>image2

sta kbuf2

Ida $d018 ;make vie chip look

and #$0f ;..at current screen

ora scrnloc

sta $dO18

rts

= . ;rom patch

txa

Idx !$00c6

cpx $0289

bes back

sta $0277,x

inx

Stx !$00c6

jmp $eb42

= .

4580 ;copy rom into underlying ram

4590

4600

4610

4620

4630;

4640

4650

4660

4670;

4680

4690

4700

4710;

4720

4730;

4740 ;

4750 newstop

Ida #$20 ;move $20 blocks

sta blkno

Ida #$60 jsr

sta rtrn

Idx #$a0 ;source high

Idy #$a0 ;dest high

jsr transfer

Idx #$e0

Idy #$e0

jsr transfer

rts

4760 ;stop vector

4770

4780

4790

4800

4810nostop

4820

4830

4840

Ida envno

cmp scrno

bne nostop ;is screen = env"?

jmp (oldstop) ;yes, normal stop vector

= • ;no, ignore stop

Ida #$ff

cmp #$7f

rts

The Transactor 76 Volumes, Issue 04

MICROCalc for C-64

The Full Screen Calculator

Easier to use than spread sheets

Mastering Your VIC-20

Mastering Your Commodore 64

A Better Way To Learn BASIC

Eight major programs to enjoy

while you are learning

MICROCalc for C-64Mastering Your VIC-20

Mastering Your Commodore 64

The 8 programs, "run-ready" on disk (C-64) or
tape (VIC-20) and explained in the 160-192 page

book, each demonstrate important concepts of
BASIC while providing useful, enjoyable software.
Programs include:

• Player — compose songs from your keyboard,

save, load and edit for perfect music

• MicroCalc — display calculation program that
make even complex operations easy

• Master — a one or two person guessing game
• Clock — character graphics for a digital clock

VIC-20 with tape & book just $19.95

C-64 with disk & book (avail. Sept.) just $19.95

Look for us at the

International Software Show

Toronto, September 20-23

This on-screen calculator comes with diskette and

48-page manual offering a wide variety of useful

screens, and a great way to learn BASIC expressions

if you don't already know them.

• Unlimited calculation length & complexity

• Screens can be linked and saved on disk/cassette

• Build a library of customized screens

• Provide formatted printer output

Diskette & 48-page manual just $29.95

For the Freshest Books, Buy Direct!
• No prehandled books with bent corners

• Books come direct to your door

• No time wasted searching store to store

• 24 hours from order receipt to shipment

• No shipping/handling charges

• No sales tax (except 5% MA res.)

• Check, MO, VISA/MC accepted (prepaid only)

The Computerist Bookcart

P.O. Box 6502, Chelmsford, MA 01824

For faster service, phone: 617/256 - 3649.

PAYS

$40

per page for articles

We're also looking for

professionally

drawn cartoons!

Send all material to:

The Editor

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

Volume 5 Editorial Schedule

Issue*

1

2

3

4

5

6

1

2

3

4

5

Theme

Graphics and Sound

The Transition to Machine Code

Software Protection & Piracy

Business and Education

Hardware and Peripherals

Programming Aids & Utilities

Copy Due

Febl

Apr 1

Jun 1

Aug 1

Octl

Dec 1

Printed

Mar 19

May 21

Jul23

Sepl7

Novl9

Jan 19

Volume 6 Editorial Schedule

Communications & Networking Feb 1 Mar 21

Languages

Implementing The Sciences

Hardware & Software Interfacing

Real Life Applications

Apr 1

Jun 1

Augl

Octl

May 20

Jul 18

Sep21

Novl9

Release Date

April 1

June 1

August 1

October 1

December 1

February 1/85

April 1/85

June 1

August 1

October 1

December 1

Advertisers and Authors should have material submitted no

later than the 'Copy Due' date to be included

with the respective issue.

COMMODORE64*

00 He ONVIIIB
No matter which direction you wish to travel in, experience

the advantage of computer communications with The

SMART 64 Terminal. Discover the program that puts you

on the Right Road to: Public-Access Networks, University

Systems, Private CompanyComputers and Financial Services.

The SMART 64 Terminal designed with Quality-Bred features,

Affordable Pricing. . . And Service.

So why not travel the communications highways the SMART way!

Accessories included:

□ Selective Storage ofReceived

Data.

□ Alarm Timer

□ 40or80Col. Operation*.

□ Auto-Dial.

Suggested

$39.95
Retail

□ Formatted Lines.

□ Review, Rearrange, PrintFiles.

□ Sends/Receives Programs and

Files ofANYSIZE.

O User-Defined Function Keys,

Screen Colors, Printerand

Modem Setting.

□ Screen Print.

□ Disk Wedge Built-in!

□ Adjustable transmit/receive rabies allow custom requirements. These and other features make The SMART64 Terminal

the best choice for grand touring telecommunications.

MICFOTECHIMIC1

■SOLUTIONS^
•Commodore 64 registered trademark

of Commodore Dusiness Machines Inc.

'Supports 80-column cartridge

by Data 20 Corporation

Dealer Availability

Call (203) 389-8383 P.O. DOX2940, New Haven, Ct. 06515

Prices are in US dollars.

What is the
ULTIMATE TEST of

TRIVIAL KNOWLEDGE?
6400 questions.

3 levels of difficulty for 1-8 players.

Count down clock and Sound &. Graphics.
6 different categories.

For the Commodore 64 ®
"The Game designed to Flex the Mind!"

UUIZARD 6400"
^^ Send $37.95 (Can.)*

Pedlar Discount
84 Jarvis Street, Fort Erie, Ontario, L2A 2S6

Terms of Payment: cheque; money order; Master Charge or VISA.

Ontario Residents please add 7% Provincial Sales Tax.
Commodore 64 is a trademark of Commodore Business Machines Inc.

■ Dealer Inquiries Invited

STOCK HELPER"
Commodore 64 and ViC-20

Stock HELPER is a tool to maintain a history of stock

prices and market indicators on diskette, to display

charts, and to calculate moving averages. Stock

HELPER was designed and written by a "weekend

investor" for other weekend investors.

Stock HELPER is available on diskette for:

Commodore 64 $30.00 ($37.00 Canadian)

VIC-20 (16K) $27.00 ($33.25 Canadian)

plus $1.25 shipping ($1.55 Canadian)

The VIC-20 version only charts 26 bi-weekly periods rather than

52 weekly periods.

(M)agreeable software, inc.

5925 Magnolia Lane • Plymouth, MN 55442

(612)559-1108
(M)agreeable and HELPER are trademarks of (M)agreeable software, inc.
Commodore 64 and VIC-20 are trademarks of Commodore Electronics Ltd.

WAT
HANDS-ON WORKSHOPS

Special Weekend Sessions

For Microcomputer Users

Hardware Design and Interfacing

• Get over the fear of handling circuits and

chips.

• Understand what happens inside the micro.

November 23-25, 1984 - Waterloo

Pascal for Microcomputers

• Learn one of the most popular and powerful

languages.

• Structured Programming is emphasized.

November 16-18, 1984 - Waterloo

WATCOM is the developer of language systems

for the C64, SuperPET, IBM PC, ICON and has

been offering computing workshops for over a

decade.

Call Sharon Malleck at

(519) 884-2700 or mail the

coupon for a detailed brochure.

WATCOM Seminars

415 Phillip Street

Waterloo, Ontario

Canada N2L 3X2

Send more information on the following

workshops:

Hardware Design and Interfacing

Pascal for Microcomputers

Name:

Address:

City.Province:

Postal Code:

Telephone: ()

COMMODORE 64™ COMAL

ADDS:

40 Graphics Statements

10 Sprite Statements

"LOGO" TURTLE GRAPHICS

RUN-TIME COMPILER

FAST program execution

auto line numbering

line renumbering

program structures

merging program segments

long variable names

named procedures

parameter passing

local and global variables

random access disk files

stop key disable

End Of File detection

What does this and more? COMAL

What is the cost? Only $19.95

All this and much, much more on disk with many sample

programs. ONLY $19.95. Also available: COMAL HANDBOOK.

$18.95. BEGINNING COMAL. $19.95. STRUCTURED

PROGRAMMING WITH COMAL, $24.95. FOUNDATIONS IN

COMPUTER STUDIES WITH COMAL, $19.95. CAPTAIN COMAL

GETS ORGANIZED, $19.95. COMAL TODAY newsletter, $14.95.

Send check or Money Order in US Dollars plus $2 handling to:

COMAL Users Group, U.S.A., Limited, 5501 Groveland Ter.,

Madison. Wl 537 16 phone: 608-222-4432. COMMODORE 64 is

trademark of Commodore Electronics Ltd. CAPTAIN COMAL is

trademark of COMAL Users Group. U.S.A.. Limited.

COMMODORE OWNERS

Join the world's largest, active Commodore

Owners Association.

Access to thousands of public domain programs

on tape and disk for your Commodore 64, VIC 20

and PET/CBM.

- Monthly Club Magazine

Annual Convention

* Member Bulletin Board

' Local Chapter Meetings

Send $1.00 for Program Information Catalogue.

(Free with membership).

Membership

Fees for

12 Months

Canada — $20 Can.

U.S.A. — $20 U.S.

Overseas — $30 U.S.

T.P.U.G. Inc.

Department "M"

1912A Avenue Road, Suite 1

Toronto, Ontario, Canada M5M 4A1

* LET US KNOW WHICH MACHINE YOU USE

MIDNITE
SOFTWARE GAZETTE

The

PAPER
Five years of service to the PET community.

T

The Independent U.S. magazine for

users of Commodore brand computers.
EDITORS: Jim and Ellen Strasma

Sample Issue free on request, from:

635 MAPLE □ MT. ZION. IL 62549 USA

PRO-LINE
■■IIIIISOFTWARE

A CANADIAN COMPANY

designing,

developing,

manufacturing,

publishing

and

distributing

microcomputer

software

DEALER ENQUIRIES WELCOME

AUTHOR'S SUBMISSIONS INVITED

CALL OR WRITE

(416) 273-6350

PRO-LINE
■■■IIIISOFTWARE

755 THE QUEENSWAY EAST. UNIT 8.

MISSISSAUGA. ONTARIO L4Y <tC5

YOUR COMMODORE 64 AND

THE POWER OF DESIGN A
We know you adore your Commodore 64 but did you know about its

power of design? its musical capabilities? If you want to know all

there is to know about your Commodore 64, including its graphics

and sounds, let Howard W. Sams, a leader in computer publishing,

tell you everything.

Commodore 64 Starter Book

Christopher A. Titus, David G. Larsen, and Jonathan A. Titus j

1984, spiralbound, 382 pages. J
An enjoyable introduction to programming and under- M

standing the Commodore 64 computer. Especially written for a "^
quick learning by first-time computer users, it contains

many programming experiments and practice

questions, covers accessories, and explains how to /
intelligently select packaged programs. M
0-672-22293-0 $25.50

Learn BASIC Programming in 14 Days on

Your Commodore 64.

Gil M. Schechter

1984, spiralbound, 192 pages.

A fun and easy mini programming course

designed especially for beginners 13 years and

older. Consists of 14 understandable lessons

including over 130 programs and examples.

0-672-22279-5 $18.50

Commodore 64: Graphics and Sounds.

Timothy Orr Knight

1984, paper, 128 pages, plus cassette

and disk

Forty-seven programs that reveal

the powerful graphics and sounds

available from the Commodore 64.

0-672-22278-7 Book $12.95 I

0-672-26186-3 Book, cassette

& disk $27.95

/ W

mm*- Mostly BASIC

: Applications for

Your Commodore 64

Books 1 and 2

Howard Berenbon

Book 1 1984, spiralbound,

192 pages

Brings you 38 chapters filled with fun and serious BASIC

programs that help you save money on energy usage, bar-chart

your business sales, dial the telephone, learn a foreign

language, and more. 42 easy-to-use programs in all.

Book 2 — 1984, spiralbound, 264 pages

A second collection of Commodore 64 BASIC programs

which includes dungeons, memory challengers, a student

grader, phone directory, monthly budget, ESP tests, and more.

87 easy-to-use programs in all.

Book 1 0-672-22355-4 $18.50

Book 2 0-672-22356-2 $20.95

■ ■■■■■■■■■■■■■■■■■■■•■■■■■■■■■■■•■■■■■■■■■■■■■■■■■■■■■■■■

To order, fill out this handy coupon and return to:

The Transactor, 500 Steeles Ave.

Milton, Ontario. L9T 3P7 (416) 876-4741

Please send me:

. Commodore 64 Starter Book, $25.50; . . Learn BASIC Programming

in 14 Days on your Commodore 64, $18.50; Commodore 64: Graphics

and Sounds. Book, $12.95; Commodore 64: Graphics and Sounds Book,

Cassette, Disk, $27.95; Mostly BASIC Applications for Your Commodore

64, Book 1, $18.50; Book 2, $20.95. Add 5% for shipping and handling

per order. I enclose Cheque, Money Order (no COD's or cash),

charge VISA, Mastercard.

Expiry Date

Signature

Name

Prov/ State Postal/Zip Code

Prices are subject to change without notice

■■■■■■■■■■■■■■■■■■■■■■■■Illllllllllllllllllllllllllllllll

INTERNATIONAL

NOVEMBER 2 9 & 30,

CENTRE, TORONTO

DECEMBER 1 & 2, 1984

iiiiiiiiiii
iiiiiiiiiiiii

iiiiiiiiiiiiii

■■■■■■■■■■■■■■■■■■■■mi
■■■■iiiiiiiiiiiiiiiiiiii

■

iiiiii

■ ■■■■■ ■■■■■■■■i

hi

The woEd oF
commodore
T

he Company that had the

foresight and imagination

to design and build more

computers for home, business and educa

tion than any other will be presenting

the most farsighted and imaginative show

to date with exhibitors from around

the World.

The 1983 Canadian World ofCommodore

Show was the largest and best attended

show in Commodore International's

II history. Larger than any other

Commodore show in the World

and this year's show will be

even larger.

World of Commodore II is designed

specifically to appeal to the interests

and needs of present and potential

Commodore owners.

Come and explore the World of

Commodore.

world of , _
commodore II

A HUNTER NICHOLS PRESENTATION.

FOR MORE INFORMATION CALL (4l6) 439-4140

