
Commodore 64: Quadra 64 - Write 4 Programs At Oncel

Transactor
I* The Tech/News Journal For Commodore Computers Vol. 5

Issue 03

$2.95

re Protection

Piracy
Butterfield: Comparing BASIC Programs

Pajswor$ Protection Techniques

Forces RUN on LOAD

•" Scramming A BASIC Program

Recover Lost Data

era! Aspects of Piracy

INTRODUCING

A^PAL 64
y f The fastest and easiest to use
^h assembler for the Commodore 64.
Pal 64 enables the user to perform

assembly language programming using the

standard MOS mnemonics. $69.95

/LPOWER 64
2sJ[Is an absolutely indispensible aid to

^h the programmer using Commodore
64 BASIC. Power 64 turbo-charges

resident BASIC with dozens of new super

useful commands like MERGE, UNDO,

TEST and DISK as well as all the old

standbys such as RENUM and SEARCH &

REPLACE. Includes MorePower 64. $69.95

/TOOL BOX 64

Is the ultimate programmer's utility

package. Includes Pal 64 assembler

and Power 64 BASIC soup-up kit all

together in one fully integrated and

economical package. $129.95

/LrSPELLPRO 64
y \ Is an easy to use spelling checker

/S^\ with a standard dictionary expandable
to 25,000 words. SpellPro 64 quickly

adapts itself to your personal vocabulary

and business jargon allowing you to add and

delete words to/from the dictionary, edit

documents to correct unrecognized words

and output lists of unrecognized words to

printer or screen. SpellPro 64 was designed

to work with the WordPro Series*and
other wordprocessing programs using the

WordPro file format. $69.95

NOW SHIPPING!!!

For Your Nearest Dealer

Call

(416) 273-6350

tCommodore 64 and Commodore are trademarks of

Commodore Business Machines Inc.

* Presently marketed by Professional Software Inc.

Specifications subject to change without notice...

y ?^This brand new offering from the
f/^ originators of the WordPro Series*
brings professional wordprocessing to the

Commodore 64 for the first time. Two

years under development, WP64 features

100% proportional printing capability as

well as 40/80 column display, automatic

word wrap, two column printing, alternate

paging for headers & footers, four way

scrolling, extra text area and a brand new

'OOPS' buffer that magically brings back

text deleted in error. All you ever dreamed

of in a wordprocessor program, WP64

sets a new high standard for the software

industry to meet. $69.95

A^MAILPRO 64

7 \ A new generation of data

/^^ organizer and list manager, MailPro
64 is the easiest of all to learn and use.

Handles up to 4,000 records on one disk,

prints multiple labels across, does minor

text editing ie: setting up invoices. Best of

all, MailPro 64 resides entirely within

memory so you don't have to constantly

juggle disks like you must with other data

base managers for the Commodore 64.

$69.95

PRO-LINE
IOFTWARE

mwmi ffi& «

(416)273-6350
755 THE QUEENSWAY EAST, UNIT 8,

MISSISSAUGA, ONTARIO, CANADA, L4Y 4C5

Volume 5

Issue 03
Circulation 49,000

Piracy: A Fact of Life?

News BRK ... 4
95% Ad Free!

Cover Date

Expiry and Subscription Number
Micron Distributing
Reference Transactor Update
Jack Tramiel Buys Atari

Commodore Supports Canadian Organizations
New ROMs For Commodore 64, 1541 Disk
Commodore Introduces The 8296
Commodore 264 Now Called The + 4.

16K Version Also Released
The Canadian Computer Museum Institute
Copylock Protection For Software Duplication
MicroEd Home Library Donations

Toronto International Software Show

World Of Commodore II
INFO 64

Commander Magazine Stops Publishing
Compuier Book Centres Rack Up Profits

The Commodore Diary 1985, by Jim Butterfield
Commodore Magazine Index

MAILBOX 64

Graphics Terminal Emulator For The 64

PRINT-MASTER For The Commodore 64
Antenna Reducer

EnTech Offers Software Demo Disks

EnTech Revolutionizes Talking Software

EnTech Introduces Data Protection Plan
Computer Aided Design for the C-64

New Weather Sensing Package

Educational Administrative System

NET WORTH

TOTLMONEYMINDER For The C64
WATCOM Pascal for the Commodore 64
Waterloo Structured BASIC For The C64
SELECT-A-RAM - 64K for the Commodore VIC 20

Asynchronous RS-232 Baud Rate&

Parity Matching A-B Switch

Voice Master

Editorial

Letters
Copywrites Rights

Take That Tape Worms!

WordPro Quips

Joy Cursed

Bits and Pieces
Line Doo Daa

Colourtest

Bytefinder

UN-DIMension

ERROROUTER

Line Hider

Ghost Liner

List Decorator

Sinhibitors

List Terminator

Save Terminator

STOP Key

Keyboard Killer

Etch A Sketch.

C64 Default Screen Colours

Tape Saving Notes

RESTORE X

. 3

15

17

TransBloopers 21

Two Reviews: PAL 64 / POWER 64 22

The MANAGER Column 24

Hardware Corner 27

Quadra 64: Memory Partitioning 32

Your BASIC Monitor, Part 2 34

PicPrint: Hi-Resolution Printout 36

Comparing BASIC Programs 38

Unveiling The Pirate

Parti: Current Methods 40

Part2: Programming Sleight Of Hand . 44

Part3: The Legal Issue 51

Piracy VS. Protection: Who Loses? 53

Spiffy Listings 54

Collecting: Another View 56

Scrambling A BASIC Program 57

Two Password Protection Tools 60

Disk Defender 64

LockDisk 66

Drive Protect 68

DiskMod: Disk Drive Utility 91

The Transactor Volume 5, Issue 03

The Tftth/News .

Managing Editor

KarlJ. H. Hildon

Editor

Richard Evers

Technical Editor

Chris Zamara

Advertising Manager

Kelly M. George

416 826 1662

Art Director

John Mostacci

Subscriptions

Mandy Sedgwick

Contributing Writers

Don Bell

Michael Bertrand

Daniel Bingamon

Jim Butterfield

Gary Cobb

Elizabeth Deal

Domenic Defrancisco

G. Denis

Bob Drake

Mike Forani

Jeff Goebel

Dave Gzik

Phil Honsinger

Garry Kiziak

Scott Maclean

Mike Panning

Howy Parkins

Glen Pearce

Louis F. Sander

George Shirinian

Darren J. Spruyt

Colin Thompson

Mike Todd

Vikash Verma

James Whitewood

Chris Zamara

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of course

be in lower case. Secondly, the lower case L ('1') has a flat top as opposed to the number 1 which has an

angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

insert will not be critical to correct operation of the program. When it is, the required number of spaces

will be shown. For example:

print" flush right" - would be shown as - print" [spacelOJflush right"

Cursor Characters For PET / CBM / VIC / 64

Down - Q

up -D

Right - fl

Left - [lit]

RVS - Q

RVS Off - E

Insert - ||

Delete - Q

Clear Scrn - Q

Home - Q

STOP - H

Colour Characters For VIC / 64

Black - Q

White - Q

Red - Q

Cyan - [Cyn]

Purple - [Pur]

Green - Q

Blue - Q

Yellow- [Yel]

Orange -

Brown -

Lt. Red -

Grey 1 -

Grey 2 -

Lt. Green -

Lt. Blue -

Grey 3 - [Gr3]

Function Keys For VIC / 64

Fl- 0

F2- Q

F3- Q

F4- B

F5-

F6-

F7-

F8-

The Transactor is published bi-monthly by Transactor Publishing Inc., 500 Steeles Avenue, Milton,

Ontario, L9T 3P7. Canadian Second Class mail registration number 6342. Second Class postage

pending at Buffalo, NY, for U.S. subscribers. U.S. Postmasters: send address changes to The

Transactor, 277 Linwood Avenue. Buffalo. NY, 14209,716-884-0630.

The Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore

Incorporated. Commodore and Commodore product names (PET, CBM, VIC, 64} are registered

trademarks of Commodore Inc.

Subscriptions:

Canada $i 5 Cdn. U.S.A. $ 15 US. All other $21 US.
Air Mail {Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: The Transactor, Subscriptions Department, 500 Steeles Avenue.

Milton, Ontario. Canada, L9T3P7, 416 876 4741. From Toronto call 826 1662. Note: Subscriptions

are handled at this address ONLY. Subscriptions sent to our Buffalo address (above) will be

forwarded to Milton HQ.

Back Issues: $4.50 each. Order all back issues from Milton HQ.

SOLD OUT: The Best of The Transactor Volumes 1. 2 & 3, and Volume 4. Issues 4. 5, & 6 are no

longer available.

CompuLit

PO Box 352

Port Coquitlam, BC

V5C 4K6

604 464 1221

U.S.A. Distributor:

Capital Distributing

Charlton Building

Derby, CT

06418

(203) 735 3381

Quantity Orders:

Micron Distributing

409 Queen Street West

Toronto. Ontario, M5V2A5

(416)593 9862

Dealer Inquiries ONLY:

1 800 268 9052

Subscription related inquiries

are handled ONLY at Milton HQ

Master Media

261 Wyecroft Road

Oakville, Ontario

L6J 5B4

(416)842 1555

Editorial contributions are always welcome. Writers are encouraged to prepare material according to

themes as shown in Editorial Schedule {see list near the end of this issue). Remuneration is SAO per

printed page. Preferred media is 1541, 2031, 4040, 8050, or 8250 diskettes with WordPro,

WordCraft, Superscript, or SEQ text files. Program listings over 20 lines should be provided on disk

or tape. Manuscripts should be typewritten, double spaced, with special characters or formats clearly

marked. Photos of authors or equipment, and illustrations will be included with articles depending

on quality. Diskettes, tapes and/or photos will be returned on request.

All material accepted becomes the property of The Transactor. All material is copyright by
Transactor Publications Inc. Reproduction in any form without permission is in violation of

applicable laws. Please re-confirm any permissions granted prior to this notice. Solicited material Is
accepted on an all rights basis only. Write to the Milton address for a writers package.

The opinions expressed in contributed articles are not necessarily those of The Transactor. Although

accuracy is a major objective, The Transactor cannot assume liability for errors in articles or
programs.

The Transactor Volume 5, Issue 03

Piracy: A Fact Of Life?

Piracy. It exists in just about any industry you can think of, in one

form or another. In some circles it's far more rampant than we

realize, mainly because it's been there for so long that we no

longer notice.

Did you know airline employees and there immediate families can

fly anywhere in the world at little or no charge? Same with most

railways and bus companies. Add all these up and you wonder just

how much of your "full-fare" ticket goes to subsidizing free rides.

Nobody is stealing because nobody really loses anything. The

president collects the same salary. And the average rider gladly

pays the price because it's cheaper or faster than going by car.

Fundamentally, it's the privilege of getting something for nothing

for those closest to the operation.

Other industries too. Brewery employees get free beer. Park

employees get free admission. Hotel workers stay rent free at any

hotel in the chain. Bank employees get loans or mortgages much

easier at less interest than most. A member of a policemans family

rarely pays for a parking ticket or most other misdemeanors. How

'bout politicians? Talk about "easy street"; they don't even pay

income tax!

The list goes on and on. But where does software fit in. Just who is

getting programs for nothing that others pay for. Manufacturer

employees will get the same privileges as those closest to any other

industry. It's only natural. And the vendors for these items make

special concessions too; they call it "on consignment" or "on loan

for testing purposes". But most authors don't complain about

these, even though every member of every family associated with

the software business will get at least one free ride.

The real problem, in the eyes of the writers, lies beyond the

immediate industry individuals. A package goes on the market,

sells for a while, and eventually lands in the hands of a hacker; the

computer hobbyist who sees protection against copying as chal

lenging their abilities. More often than not they win. The program

becomes a "collectors" item, not because it's hard to get but

because they won't have to pay for it.

So how many "free rides" does the collector represent? Even if

every member of the Toronto PET Users Group were to get a copy

we're only up to 20,000. Commodore sold over 2,000,000 VICs!-

And C64 sales will easily pass that by the end of 1984, if they

haven't already! Hobbyists represent only 10% of the market. The

other 90 % will never come in contact with the unprotected copy of

software they need. Sure, there will be some, but not all 100% of

the hobbyists will bag your programs either.

Piracy hit the games market worst, especially among students. As

soon as one student got a copy, the whole school wasn't far behind.

But the games market has almost totally crashed. You can't blame

that on piracy. Fads will always come and go, and computer games

were no exception.

Business software is where the money lies. If your idea has a

market, pursue it. Those few copies that reach the collector "au

gratis" just aren't worth complaining about. Spend your time

finding new sales and quit wasting time battling pirates that

wouldn't have bought your program anyways. Don't waste money

either. Advertising business packages in technical computer maga

zines is like advertising frozen food to a connoisseur. Some will

buy it but most will make their own. Market your programs in their

market, not in their venue.

Software is no longer a "get rich quick" business. It used to be but

not any more. A good programmer spends no more time on a new

package than a good novelist spends on a fresh story, some books

take years to complete. So if you price your software beyond its

value, naturally it will become a candidate for a pirates thrill.

Publishers are one answer. Many book publishers are now adding

software to their line. But just like books, some software isn't worth

publishing, if you have a finely polished product, consider present

ing it to a publisher. Most will guarantee a minimum royalty that is

usually more than fair.

Don't let greed cloud your expectations. I admit, writing software

requires talent and skill, but no more than some other occupations

that pay considerably less. In this business, Return on Investment

is a time versus profit ratio. Break it down to the hour and

compare.

1 don't condone piracy. Never have, never will. But there's no

point wasting energy that could be put to more productive results.

There's nothing as constant as change. . . until next issue, I

remain,

Karffl.H. Hildon

Managing Editor, The Transactor

Post Script: 1 would have announced Chris Zamara as our new

Technical Editor, but there wasn't enough space.

The Transactor Volume 5, Issue 03

News BRK

Transactor News

95% Ad Free!

You may have noticed our somewhat less than subtle

message on the cover - perhaps an explanation is in order.

Back when The Transactor began publishing, we antici

pated an initial circulation of about 5,000. Our advertising

rates were designed accordingly. When we hit 15,000 print

run, the rates were doubled but are costs were up by 3 times.

Now our print run is almost 50,000 and our costs have

outgrown what we can feasibly charge for ad space. Al

though we appreciate the support our advertisers have

extended us, to save money on our printing bill we've

decided to reduce our available ad space to the cover and 1

or 2 pages inside the magazine.

Each person we've told of this policy asks, "How will you

survive without that revenue". Well, to be quite honest,

several of our advertisers have outstanding bills going back

6 months. Others have gone out of business, which makes it

tough to collect anything. Our counter is, however, that

without advertising we have a more desirable product

which means we stand to sell more copies.

Some say that advertising is partly why they buy magazines,

to see what's available out there. Most of what we were

advertising is mentioned at least once here in News BRK,

except for the stuff we feel isn't worthy of space. Besides, we

didn't have that many advertisers - for a broader picture you

might consider COMPUTE or BYTE or RUN. They have

50% ads or better, and they'll advertise just about any

thing. . . which leads to the next point.

We believe our readers are advancing to a stage of comput

ing beyond playing games and/or buying packaged soft

ware that bears little resemblance to the package itself. We

think most of our readers can write software that outclasses

90% of the stuff for sale. So anything less than fabulous will

not appeal to Transactor readers.

Eventually we may re-introduce advertising, but at our

discretion. Ads for products that don't meet the standards of

our readers will not be accepted. In the meantime, we will

print a couple of ads that contain information we feel is

important enough to merit space. . . and we'll probably not

charge for these. If this policy changes, our criteria will be so

tough to meet that 5 pages should be more than enough to

accommodate every ad.

Further, a smart advertiser should not contract for space in

any magazine without seeing an audited circulation report.

This information can be obtained through ABC, the Audit

Bureau of Circulations. Presently we are not listed with

ABC, but if we do start accepting ads again, we will be.

And finally, the magazine industry is not unlike any other.

Competition is fierce. But entering the Indy 500 with a Rolls

Royce is pointless. Instead we intend to open a league where

polish, finesse, and attention to detail are more important.

Does anyone care to join us?

Cover Date

Did anyone notice the date on the cover? Don't be alarmed -

the Issue number will tell you whether you've missed any

copies or not. The date is there only because second class

mail regulations require it. The reason it's so far in advance

is to give The Transactor a better shelf life at the newstand.

Subscribers should get this issue early in August. But, in

some places, this issue won't be on the newstand until the

second week of September. No kidding. Since The Transac

tor is bi-monthly, a cover date less than November would

mean retailers begin returning this issue before the end of

October. Ideally, no cover date would give us better expo

sure time. But since that's not an option. . .

The Transactor Volume 5, Issue 03

Expiry and Subscription Number

From now on, your subscription number and the issue with

which your subscription expires will appear at the top of

your mailing label. The most convenient way to renew your

subscription is with the postage paid reply cards at the

center of each issue. To speed the process at our end, please

indicate that you are indeed a renewing subscriber and

include your subscription number. Then add your name,

address (don't forget your postal/zip code) and a charge card

number (& exp. date) and drop it in the mail. If you can't use

the card in your copy, perhaps you know someone who can.

If there is any disagreement with the Expiry Issue on your

most recent label, please let us know ASAP so we can clear

things up.

Micron Distributing

Access Computer Services is no longer distributing The

Transactor. Retailers with standing orders from Access

should contact Micron or us at Transactor HQ (see page 2).

Micron specializes in computer magazines servicing most of

the titles currently available. They also carry a huge selec

tion of computer books, software, hardware, and accesso

ries. In fact, about the only thing Micron doesn't have, you

don't want anyways. Give them a call.

Reference Transactor Update

The Complete Commodore Encyclopedia, another name

we're toying with, is well on its way. We'll probably decide

which name we'll use at the last minute (or maybe a third?).

Order information is still not available so don't send any

money just yet. Although it won't be included as part of a

subscription, a special price to subscribers is under consid

eration. Regular price will be anywhere from 12 to 25 dollars

depending on final size (in pages) and whether we include

the utilities diskette or not.

Commodore News

Jack Tramiel Buys Atari

Jack Tramiel, founder and former vice chairman of Commo

dore International bought Atari from Warner Communica

tions on a promissory note for a reported 240 million

dollars. Tramiel left Commodore last January for reasons

ranging from lack of self confidence to major differences

with other Board members. It would seem the former is

rather unlikely in the light of this report.

Atari has been crippled by losses over the last 2 years, but

with Jack behind the wheel, you should see new life before

long. Plans were announced to inject over 70 million to

wards rebuilding the companies' foundation.

Commodore may well be feeling they shouldn't have let

Jack slip away. Already 4 of Commodores' development

staff have defected to Atari, no doubt due to Tramiel dy

namics. Commodore has already filed suit against Tramiel

and Atari for stealing trade secrets, a battle that could

probably get great TV ratings. Ramifications may severely

hinder new Atari plans. Temporary injunctions were al

ready issued at the time of this writing. If permanent injunc

tions are brought down pending trial, and Atari wins,

Commodore may find themselves staring down the busi

ness end of a double barreled countersuit for lost production

time. This could be the computer industry legal mess of the

century.

Commodore Supports Canadian

Organizations With Promotion Proceeds

TORONTO — Commodore Business Machines Limited re

cently presented the Canadian Amateur Hockey Association

and the Canadian Association for the Mentally Retarded

with funds raised through a Commodore-sponsored promo

tion held in conjunction with the Canadian Motion Picture

Distributors Association.

Over $35,000 was raised by the sale of The Commodore

1984 Movie Poster Calendar and was divided between the

two organizations. Richard G. Mclntyre, Commodore's Na

tional Sales Manager, presented cheques to Jim Gates,

CAHA Director and Barry Wymant, nine of the Scitron-

-sponsored Commodore team and to Jacques Pelletier,

CAMR Acting Executive Vice President and Jeff Oswin of the

CAMR Toronto staff.

Commodore also supports the CAHA through its national

Custom Team Uniform program which annually supplies

sweaters and stockings to 500 CAHA teams across Canada.

For more information, contact:

Mr. Richard Browne

Commodore Business Machines Limited

3370 Pharmacy Avenue

Agincourt, ON M1W2K4

416 499-4292

New ROMs For Commodore 64, 1541 Disk

Commodore has released new upgrade ROMs for The 64

and 1541. Reasons for the new 64 ROM are unclear at this

time, but reports have come in that it has problems reading

cassette tape. This is not definite, so if your machine goes in

for service, check this out as soon as you get it back. As you

know, Commodore, like other electronics firms, simply

replace the entire PC board for a better turn-around time.

Your board is fixed and one day it too becomes a replace

ment.

The 1541 ROM was designed to make all 4040 and 1541

diskettes read AND write compatible. 1541 and 4040 were

always read compatible, but interchangeable writing was ill

advised. The only problem here is that now old 1541 s won't

be compatible with new 1541s. Chances are they've already

been recalled. More next issue.

By the way, remember the problem with SAVE and Replace?

Back in the early days of Commodore disk drives, SAVE with

Replace was blamed for some of the most mysterious disk

ette failures. So far nobody has been able to deliberately re

create the problem. In fact, there has been no evidence to

The Transactor Volume 5, Issue 03

suggest there ever was a problem. DOS source code has

been checked thoroughly, but no changes have ever been

made in this area. If you can supply a program or procedure

to demonstrate how SAVE with Replace can ruin a disk,

there are already 2 rewards up for grabs; a case of beer from

Harry Broomhall in England (one of the leading authorities

on disk drives) and a bottle of champaign from Transactor

Publishing Inc. Good Luck!

Commodore Introduces The 8296

The new 8296 has 128K RAM (96K plus 32K or use of the

User Port, but not both simultaneously), 18K ROM, detach

able keyboard, tilt/swivel 80x25 screen, and an 8050 disk

unit (1.05 MBytes) that may or may not be built-in. The

computer is being packaged in B Series casings, (why not,

that was about the only good thing going for that machine)

The package comes with software: PaperClip (with over 900

lines for text), CalcResult, and The Consultant database.

Communications and system utilities are included too, but

otherwise it will be virtually 100% compatible with any

software for the 8032/96. No word on price. Contact your

dealer or:

Mr. Richard Mclntyre

Commodore Business Machines Limited

3370 Pharmacy Avenue

Agincourt, ON M1W2K4

416 499-4292

Commodore 264 Now Called The + 4,

16K Version Also Released

Remember the TED? Changed to the 264? Now it's called the

+ 4. Same machine in all cases - same old Commodore too.

Seems product name changes at Commodore would be an

entire department by now.

Although Commodore has lots of VIC 20s warehoused,

production of the classic colour pioneer has all but come to

an end making way for the Commodore 16. The 16 is

basically a 16K version of the +4 (64K) packed in a black

VIC/64 shaped casing. Dubbed, "The Learning Machine",

it's being aimed at the uninitiated computer user.

Like the +4, most of the I/O ports have been altered to

different connectors making old peripherals incompatible.

However, old tapes and diskettes should be readable from

the new peripherals.

The best part is the price: $99 US for the machine itself, plus

peripherals. Not bad considering all the features. 16 colours

with brilliance and flashing attributes, extended BASIC,

extended Monitor commands, graphics commands, editing

commands, and the sound is still pretty good even without

the SID chip.

Compared to earlier technology, the 16 and +4 will make

learning much more enjoyable as awareness for odd system

configurations will be virtually eliminated. For more, con

tact your dealer or Commodore. Available Fall '84.

General News

The Canadian Computer Museum Institute

The new Computer Museum will provide Toronto with an

enhanced international high-tech profile, important for the

development of an advanced-technology industrial base.

The museum will be a place where people may turn to gain

some computer literacy, and thus, an important educational

resource for the region. The museum will add to Toronto's

tourism industry. The museum will be a significant architec

tural development for Toronto.

Impact on the computer industry. The museum will provide

a showcase for Canadian accomplishments in computers

and a place where industry can highlight the evolution of

ideas and advances which have led society into the com

puter age. The museum will cover the use and impact of

computers in many facets of business, the arts and society.

For more information, contact:

The Canadian Computer Museum Institute

212 King Street W. Suite 400

Toronto, ON M5H1K5

416 593-5777

Copylock Protection For Software Duplication

An improved version of COPYLOCK (TM) protection tech

nology is now available from Magtech. This new protection

has totally defeated the two most formidable protection-

-breaking programs available today, COPY II PC and COPY-

WRITE.

Using the standard COPYLOCK protection, each software

program is duplicated using a Metered Program Disc. These

discs allow a finite number of duplicated copies to be

produced during a duplication run. The standard COPY-

LOCK protection is currently available for the IBM PC. Dos

1.1 and 2.0 operating systems, although more versions are

expected in the future.

Custom software protection is currently available for certain

Commodore, Apple, IBM, and Atari systems. This type of

protection can not be broken by protection-breaking pro

grams and offers a unique protection method for software.

The duplication is done under clean conditions and each

production run is heavily quality controlled for trouble free

software performance.

Magtech is one of Canada's largest software duplication

houses and offers bulk duplicating as well as packaging

services. For further information please call or write:

Magtech Inc.

87 Telson Road

Markham, ON L3R 1E4

416 474-0170

The Transactor Volume 5, Issue 03

MicroEd Home Library Donations

Pass Half Million Dollar Mark

During the past three months, MicroEd, Incorporated, a

Minneapolis-based publisher of educational software, has

donated more than a half million dollars worth of its instruc

tional programs to school systems interested in establishing

free software lending libraries for the families they serve,

according to MicroEd President Thorwald Esbensen.

"A persistent problem for educators and parent," observes

Esbensen, "has been the development of effective commun

ication channels between home and school. Confronted

now with the growth of the home computer market, it

behooves boards of education and their administrators to

respond vigorously to the challenge of helping families

make informed decisions with respect to the proper use of

educational software that can effectively supplement the

academic goals of their local school systems."

To encourage the development of an orderly and compre

hensive plan for dealing with this problem, MicroEd has

been donating up to ten thousand dollars worth of its

educational programs to any elementary school library

system that can meet designated standards for strengthen

ing home/school cooperation in the area of computer-as

sisted instruction.

To date, more than fifty school systems across the county

have qualified for a MicroEd grant, with further approvals

pending.

No cutoff time has yet been established for grant proposals

to be submitted to MicroEd. "We hope to be able to do this

on a continuing basis," sys Esbensen. "We think it's an idea

that makes it possible for everybody to be a winner in a

worthy cause. The only limitation will be the extent to

which we eventually find ourselves hard pressed to handle

the production load. We'll just have to see how things work

out in that regard."

Inquiries may be addressed to:

MicroEd Home Library Grant Project

PO Box 444005

Eden Prairie, MN 55344

612 944-8750

Events

Toronto International Software Show

Offers Great Opportunity For "Computerphiles"

Toronto. . . The first Toronto International Software Show

has been announced by the producers of Computer Fair.

Hunter Nichols Inc. recently impressed the industry with its

enormous success at Computer Fair '84. The Toronto Inter

national Software Show is a natural progression and an

answer to the problem of keeping up to date with the latest

software products as they become available in the market.

In addition to hundreds of exhibits that will appeal to all

computer users for home and business, there will be a

seminar program running in conjunction with the Show.

In keeping with the high standard of previous Hunter

Nichols shows and seminars, the Toronto International

Software Show program is expected to give excellent insight

into growing areas such as hardware compatibility, user

interfaces and future trends.

Toronto International Software Show, International Centre,

6900 Airport Road (at Derry Rd.), Mississauga, Ontario.

Show Hours and Dates: Starts Thursday, September 20,

1984, until Sunday. Thursday and Friday, 10 am to 9 pm,

Saturday and Sunday, 10 to 6.

Admission: Adults $6.00: Seniors/Students $5.00. Special

rates for groups available from Show Management in ad

vance. For more information:

Hunter Nichols Inc.

721 Progress Avenue

Scarborough, ON M1H2W7

416 439-4140

World Of Commodore II

The second annual World Of Commodore Show is sched

uled for November 29 thru December 2, 1984, at Toronto's

International Centre. Unlike last year, this year's show will

not be shared by the Home Entertainment Show.

Based on the success of last year's show, this one should be

one of the world's best. So far, Britain's famed "Pet Show"

has held top honours since it began. But only because it had

no competition. Not any more.

Floor space is $11.50/Sq Ft. For more inforamtion, contact

Hunter Nichols above.

Books And Magazines

INFO 64

A new Commodore information magazine has emerged for

users of the 64. INFO 64 is published quarterly out of

Auburn, WA. Almost all of the magazine is printed with a dot

matrix printer, but use of reverse type, border lines, shading

for 3D effects, and hi-res printer dumps give it a rather smart

appearance. For more, contact:

INFO 64

PO Box 958

Auburn, WA 98071

206 833-6502

Commander Magazine Stops Publishing

Commander Magazine, a Commodore information monthly

out of Tacoma, WA, has ceased publication. The company

that owned Commander was recently acquired by Zif Davis,

The Transactor Volume 5, Issue 03

the publisher responsible for Creative Computing among

others. Zif Davis is substituting copies of Creative to fulfill

subscription obligations at Commander.

Computer Book Centres Rack Up Profits

There's no denying it. Personal computing has taken the

nation by storm! And it's a storm that's not about to abate.

For you, the retailer, this means a thunderous market.

Typical computer owners invest as much in computer-rela

ted books and book-software as in hardware.

Copp Clark Pitman Computer Book Centres come in all

shapes and sizes. We have one just right for your retail

business. Our spinner rack can hold up to 100 books — 20

different titles on four individually moving tiers. The books

are easily accessible to your customers in a minimum

amount of valuable floor space.

We can start you with a selection of titles from Howard W.

Sams, Pitman, and Wadsworth Electronic Publishing tai

lored to your customers needs and guaranteed to keep them

coming back for more.

Our Pitman Programming Pocket Guides have already sold

over 250,000 copies internationally. The displayer is yours

free with your purchase of a preselected group of Pitman

Pocket Guides. For more information contact Copp Clark

Pitman or your local book and software wholesaler.

Copp Clark Pitman Ltd.

495 Wellington St. West

Toronto, ON M5V1E9

416 593-9911

dore magazine index, PcDex provides fast, easy access to

the often overwhelming amount of microcomputer maga

zine literature. Designed as six separate indexes—subject,

title, program listings, software reviews, hardware reviews,

and tables of contents—PcDex allows the serious home,

business, or educational user to quickly locate specific items

of interest, including articles, columns, letters, programs,

and reviews. Special features include cross-referencing,

program descriptions, updates and revisions, specific ma

chine requirements, and suggestions for locating back is

sues.

PcDex indexes the 12 most popular Commodore and related

general microcomputer magazines published between Jan

uary 1982 and April 1984, with yearly updates planned to

include fhe current three years. PcDex is intended both as a

reference companion to a user's own magazine collection

and as a reference to a broader base of magazine literature.

PcDex Quarterly follows the same format, but will be pub

lished four times a year with an annual compilation and will

include any relevant new publications which may appear.

PcDex Quarterly is available through subscription only for

those who want to be up-to-date on current Commodore

related publications.

PcDex is available at bookstores or directly from Altacom for

$14.95; PcDex Quarterly is $17.95 for a one year subscrip

tion. Direct inquiries to:

Altacom, Inc.,

P.O. Box 19070

Alexandrea, VA 22314

703 683 1442.

The Commodore Diary 1985, by Jim Butterfield

A computer reference date book, from Copp Clark Pitman.

This handy pocket-sized diary features a whole week per

page spread in a clear, uncluttered format.

A convenient listing of all major computer shows across

North America and Europe appears in the front matter of the

diary.

Extensive reference material for the C64, V1C20, Pet/CBM

Series, B-Series, the Commodore 264 and 364, written by

Jim Butterfield is featured-memory layouts, screen codes,

useful short programs, machine language instructional set,

Kernal subroutines, and much more!

Special Feature: The Commodore Diary cover can easily be

customized to suit your business and/or promotional needs.

For further information please feel free to contact: Gus

Creces at Copp Clark Pitman Ltd. (see above)

Commodore Magazine Index

Altacom, Inc. is introducing PcDex and PcDex Quarterly,

microcomputer magazine resource guides to Commodore

64, VIC-20, and PET/CBM. The only exclusively Commo-

Software News

MAILBOX 64

MAILBOX 64 - A revolutionary new Amateur Radio Tele

type "Bulletin Board System" operating at 110 Baud ASCII

for the Commodore 64 computer. MAILBOX 64 incorporates

many of the features found in much more expensive sys

tems and in some areas exceeds those systems. The pro

gram is written in BASIC and can be readily tailored by the

average user. MAILBOX is an ideal choice for the budget

conscious individual or club.

Provides 20 different user commands including:

OPEN - opens the buffer to store text.

CLOSE - closes the message buffer.

SAVE - save the message buffer to the Sysop disk.

MSG - transmits the contents of the message buffer.

PRINT - prints the contents of the message buffer to the

Sysop printer.

INFO - transmits the SYSTEM file.

BEACON - transmits the CQ beacon call.

LOG - logs the user's call to the System disk.

GRAPHICS - activates the graphics mode.

In addition to the user commands, there are 31 Sysop

commands allowing for complete control and versatility for

The Transactor Volume 5, Issue 03

the System Operator.

MAILBOX 64 includes a low-resolution Graphics Mode

which allows the transmitting of Commodore graphics and

colour to users with a Commodore 64 computer.

MAILBOX 64 interfaces via the User I/O Port of the Commo

dore 64 and is compatible with most popular Terminal Unit

(TU) interfaces including the Kantronics and AEA. Requires

the Commodore 64 computer, Disk Drive, a Printer at

device #4, TU and your radio transceiver.

Available from RAK Electronics on disk for $49.95 plus

$2.00 shipping and handling. Catalog order number is

RM837.

RAK Electronics

Microcomputer Software

P.O. Box 1585

Orange Park, FL 32067

904 264-6777

Graphics Terminal Emulator For The 64

The standard method for transmitting data to graphics

terminals is extremely clever and simple, but a Basic pro

gram for this on the Commodore 64 is too slow to keep up

with a 300 baud rate. This is true even if the program uses

machine language graphics subroutines. Because it is writ

ten totally in machine language, GRAPH-TERM 64 not only

can display high-resolution graphs as they are transmitted

but can download the plot files and replay them up to 20

times faster. It can also produce hard copies of the plots on

the Commodore 1520 plotter.

GRAPH-TERM 64 is a terminal program which prints text

and high resolution plots generated by a mainframe com

puter. It is thus of particular interest to scientists and

engineers who use standard graphics programs which gen

erate plot files in Tektronix format. While displaying the

incoming data, the program also stores it in memory for

subsequent transfer to disk or tape or to the Commodore

1520 Plotter. During a terminal session or afterwards, the

information can be reviewed at high speed, slow motion or

stop action. The high resolution screen of the Commodore

64 is limited to 320 x 200 pixels but on the plotter the

resolution is 630 x 480. This is not much less than that of

Tektronix 4010, 1024x780.

The most important program is SAVE/LOAD which stores

and retrieves data downloaded into memory. For those who

wish to generate their own plots, the program TEK-ENCO-

DER shows how to encode plots in Tektronix format. Pro

gram TEKPLOTTER is a Basic program which produces

hard copies of downloaded plots on the Commodore 1520

Plotter in the same way as the machine language menu

option of GRAPH-TERM 64. It is included for those who are

curious about how the programs work or who may want to

extend them.

The subroutines include the usual primitive graphics rou

tines for drawing lines and setting pixels and for shifting to

high resolution mode and back. In addition there are rou

tines for drawing simple hidden surface 3-D figures and

general "ellipses" of arbitrary shape, orientation, position

and number of sides. A novel aspect of these subroutines is

that they correct for the fact that the pixels on the Commo

dore 64 are not square. The screen is assumed to be 780 x

1024 pixels, the same as a Tektronix 4010 graphics termi

nal. The program "GEOMETRY FUN" illustrates the use of

these routines.

In summary, the machine language program and the Basic

programs which use its subroutines allow you to:

1. View Tektronix format plots generated by a mainframe

computer.

2. Download text or plot files.

3. Generate plot files on the Commodore 64.

4. Preview plots on the high resolution screen, then:

5. Create hard copies of the plots on the Commodore 1520

Plotter.

The price is $49.95 + $4.00 shipping and handling (U.S.

funds). Foreign orders other than Canada add 20 %. Visa and

Master Card accepted. Please include expiration date and

correct number. Dealer inquiries invited.

Bennett Software Company

3465 Yellowstone

Ann Arbor, MI 48105

313 665-4156

PRINT-MASTER For The Commodore 64

No programmer should be without PRINT-MASTER, the

ultimate printer enhancement cartridge for the Commodore

64. It unites your computer and your Epson compatible

printer as if they were made for each other. PRINT-MASTER

can do hi-res mode or character mode screen dumps to the

printer with a single keystroke. It allows printing of exact

replicas of the full Commodore 64 character set, including

graphics and control characters, at full printer speed. It can

also printer user defined character sets.

PRINT-MASTER adds twelve BASIC commands that allow

easy selection of most printer features such as emphasized,

subscript, lines per inch, and skip over perf, from the

keyboard or from a BASIC program. The BASIC OPEN

command is enhanced to provide 12 new printing options.

In addition, PRINT-MASTER provides a complete set of disk

support commands (similar to DOS 5.1), to load and save

programs, display the directory, send commands to the disk,

and read the error channel.

For BASIC listings, PRINT-MASTER can expand control

characters into mnemonics such as (HOME) and (BLU). It

can format listings by printing each BASIC statement on a

separate line, indenting FOR loops, and assuring that BASIC

keywords and mnemonics are not broken at the end of a

line. Full left and right margin control is included. With the

special UNNEW command, you can recover a BASIC pro

gram in memory after a NEW command or system reset.

PRINT-MASTER works only with Epson compatible printers

connected to the Commodore 64 by a serial-bus-to-arallel

The Transactor VoIume S, Issue 03

printer interface. A version is also available with a built-in

output port and cable for direct connection to the parallel

port of the printer. PRINT-MASTER is a versatile tool that

provides easy user control of the power of these dot matrix

printers.

Price: $39.95. For more information:

IPS

10570 SW Walker Rd.

Beaverton, OR 97005

Antenna Reducer

64" will be introduced at the Summer Consumer Electronics

Show in Chicago, booth 6904. EnTech will also be produc

ing a new line of talking educational programs.

According to EnTech's Chairman of the Board, Ray Soular,

"Our innovation makes the computer more human. By

talking in a human voice, the home computer will be able to

teach foreign languages, help with spelling, tell stories, and

do many things it couldn't do before."

To educate dealers about this new generation of talking

software, EnTech is distributing a talking demonstration

disk. Interested dealers can contact:

A unique Amateur Radio antenna design program for the

Commodore 64 computer. Allows the user to design a

reduced size antenna in the frequency range of .5 to 15

MHZ. After inputting the desired frequency, the user can

select an antenna design of 30, 40, 50, 60, 70, 80, 90 or

100% of full size. The user then selects the loading coil

diameter of 1.5, 2, 2.5 or 3 inches using 4, 6, 8 or 10 turns

per inch. The program then calculates the antenna mea

surements and graphically displays the antenna design.

Requires the Commodore 64 computer with Tape Datasette

or Disk Drive. Available on Tape for $7.95 or Disk for $10.95

plus $2.00 shipping and handling. Catalog order number is

WC836.

RAK Electronics

PO Box 1585

Orange Park, FL 32067

904 264-6777

EnTech Offers Software Demo Disks

Too often people spend forty or fifty on software only to be

disappointed. To help take the guesswork out of buying

software, EnTech has created the "Knock Your Socks Off For

5 Bucks" promotion.

In this deal, EnTech will send you a demo disk of any of the

programs for 5 dollars. They come with a coupon for 5

dollars off the actual program. So even if you don't like the

demo, you still keep the disk which might have cost you 5

dollars anyways.

The demos are available from EnTech dealers or directly

from EnTech Software.

EnTech Revolutionizes Talking Software

EnTech Software of Studio City, California has introduced

software that talks in a real human voice. For the first time,

the Commodore 64 will be able to reproduce the intona

tions, the accents, and the character of real speech. En-

Tech's development is certain to revolutionize the software

industry.

EnTech will be using this new speech process to enhance all

of its current software programs. Talking versions of its

popular "Space Math 64" educational game, music program

"Studio 64", and business program "Management System

EnTech Software

P.O. Box 185

Sun Valley, CA 91353

818 768-6646

EnTech Introduces Data Protection Plan

EnTech Software has announced its new Data Protection

Plan, the first comprehensive system for the protection and

repair of customers' valuable data.

EnTech's "Management System 64" business program for

the Commodore 64 now includes three new disk mainte

nance features as well as a data service warranty. The first is

a disk backup program that repairs damaged sectors as it

copies the data disk. If a single record is damaged, a second

data repair program examines each individual record and

corrects it. If the disk is totally damaged, a third feature

completely reconstructs the disk, by first re-formating it and

creating new files. Then it examines the damaged data and

transfers it to the new files record by record. It will also

inform the user of any incorrect records it finds and allow

them to be repaired.

In addition to these new program features, EnTech has

added a data service warranty. For a small fee, EnTech will

repair any damaged data disk, or the disk will be returned

with the money. This service is for all users who have sent

in their EnTech warranty card.

People are already benefitting from this new warranty plan.

Tom Lindgren of Kapri International, a company that uses

"Management System 64", said, "These new features have

already gotten us out a tough scrape. We used them to repair

a disk damaged by a power failure."

EnTech plans to extend its data protection policy to all of its

programs, including "Data Base 64", "Finance Calc 64",

"Studio 64", "Recipe Keeper", and "Checkbook System".

EnTech president Rick Bates said, "A business computer

system is worthless if your data is accidentally destroyed. A

complete business program should allow people to make

mistakes."

Computer Aided Design for the C-64

Kiwisoft Programs has created CADPIC for the C-64, com

bining two programs PAINTPIC and PRINTAPIC to give a

The Transactor 10 Volume 5, Issue 03

total package for true picture design. Cartoons, tapestry,

hooked rugs, furniture design, game backgrounds, coloring

books, advertisements, and original paintings are some of

the uses for CADPIC.

PAINTPIC has full 16 color painting on a 160 x 200 dot

screen. Over 65,000 Multicolor brushes and complex wall

paper patterns are supported. Many automatic tilted shapes

may be drawn and filled. Block operations include save,

copy, double, halve, 90o rotate, and mirror. Drawing and

painting are done at the keyboard or with joystick.

PR1NTAPIC provides a true proportion, five gray-scale,

dot-graphic printout of PAINTPIC pictures on most printers.

Character printers are also supported. Additional features

include black and white plotter style print, color separation

pictures, MICRONEYE photo conversion, "paint by num

bers" outline prints, and hooked rug and tapestry design.

PRINTAPIC includes the full color "Venus" by Velazquez.

No special hardware is required, although an MPS-801

graphics printer and the MICRONEYE are recommended.

CADPIC sells on diskette for $79.95. PAINTPIC comes sepa

rately on disk for $39.95; PRINTAPIC for $44.95. The MI

CRONEYE camera is from Micron Technology, Boise, Idaho,

for $295. Contact:

Kiwisoft Programs,

18003-LSkypark South,

Irvine, CA 92714

714261-5114

New Weather Sensing Package

Designed for use with Commodore 64 and Vic 20 Com

puters, the new HAWS 8 Home Automatic Weather Station)

from Vaisala combines a professional quality weather sensor

with a creative software package that teaches, forecasts, and

graphically displays weather. More than a toy or game,

HAWS utilizes the same weather sensor used by weather

services in 60 countries worldwide. In addition, HAWS

represents the first personal computer application utilizing

an external sensing device, allowing the user to interact and

analyze input which is not contained in his computer or the

software itself.

HAWS allows the user to monitor weather conditions inside

or outside the home, as well as allowing the user to interact

with the software program to help predict and cope with

changing weather conditions. HAWS even allows the user to

rate his/her forecasting performance against the local

weatherman's predictions.

HAWS is an excellent educational tool for teaching meteo

rology concepts and for learning about weather, either in the

home or in the classroom. In addition, HAWS can also be

used to monitor and control indoor living space, green

houses, and office environments, etc.

The HAWS package is riced at $199.95 and includes sensor,

choice of cassette tape or floppy disk program, 15-foot cable

with connector for the computer, and complete user man

ual. For more information including dealer inquiries, write

or call:

Vaisala Inc.

2 Tower Office Park

Woburn, MA 01801

617 933-4500

Educational Administrative System

Distributed exclusively by Aurora Software Inc., the EAS -

Educational Administrative System is a flexible administra

tive tool developed by experienced educators for use in

schools. The three modules that make up the system - Data

Base, Attendance and Timetabling - are currently available,

with additional modules, including Marks Reporting and

Report Card, to follow. Easy-to-use documentation accom

panies the package in a sturdy manual format. Ongoing

The Transactor 11 Volume 5, Issue 03

updates for the manual will be provided as they become

available.

The EAS has been successfully tested in schools of up to

2,500 students. In addition, plans for further testing the

system are underway in Northern Ontario.

The Educational Administrative System utilizes the CBM

8032 (either the 8050 or 8250 drive format), with a high

speed dot matrix printer. Is is anticipated that this system

will also become available for other micros, including the

government's Ontario Approved Microcomputer (ICON).

The Data Base, Attendance and Timetabling modules for

the Educational Administrative System are now available at

$250.00 each. All orders must be pre-paid. Ontario resi

dents add 1% P.S.T. Contact:

Aurora Software Inc.,

PO Box 1394,

Haileybury, ON POJ 1K0

705 672-5517

NET WORTH

NET WORTH is a fast, powerful, versatile and easy to use

program to manage, track and organize every aspect of a

family's financial affairs. With NET WORTH, the home

computerist can:

• Set up a budget - with as many as 350 categories - then

compare actual income and expenses to that budget.

• Keep a record of every banking and credit card transaction

and reconcile statements instantly. NET WORTH can

handle up to ten bank accounts, and it prints checks too.

• Maintain an up-to-date record of personal "net worth" - a

balance sheet of assets and liabilities.

• Record every tax deductible expenditure, for instant recall

at tax time.

• Make money work harder by analyzing interest rates on

savings plans and loans.

• Document household valuables, collectibles and impor

tant papers for insurance and other purposes, and record

their locations as well.

• Display or print financial reports.

• Record stocks, bonds and other investment transactions.

NET WORTH is an easy way to make sense of the family's

finances. Documentation is written in clear, simple lan

guage, without technical accounting terms. Special help

functions are available on-screen at all times.

NET WORTH is a value-filled addition to the home software

library. To dramatize its relevance, a Susan B. Anthony

silver dollar and an excerpted edition of Sylvia Porter's

"New Money Book For The 80s" are included in each

package.

NET WORTH is available for the Commodore 64 at $79.95.

Contact:

Scarborough Systems, Inc.

25 North Broadway

Tarrytown, NY 10591

212 986-1556

TOTL.MONEYMINDER For The C64

TOTL Software Inc., manufacturers of practical small busi

ness and home productivity software for the Commodore

64, have announced the scheduled release of their eighth

software product for the Commodore 64. TOTL.MONEY

MINDER is a complete home accounting system designed to

complement other software already available from TOTL. It

will be shipped to distributors and dealers on May 15, 1984,

and will carry a suggested retail price of $39.95, consistent

with the other low-cost programs available from TOTL.

TOTL.MONEYMINDER is a disk-oriented set of programs,

compatible with most column expansion hardware, with

advanced features to simplify use and increase flexibility,

such as a configuration file for one-time setup for screen

colors, column width, and any printer-interface combina

tion. TOTL.MONEYMINDER will allow up to 110 user-de

fined accounts (for expenses, checking, income, charge

accounts, etc.), with double entry transactions that can be

spread across multiple expense accounts. TOTL.MONEY

MINDER provides a monthly reminder of all bills due, and a

powerful monthly budgeting capability. The system will

record up to 8400 transactions per year, and includes capa

bilities to report net worth and both printed and graphic

display of actual versus budgeted expenses, with reports on

the status of each account.

Other important features include a built in database for long

term assets and liability records, with investment return and

amortization tools. Full checkbook balancing and state

ments are provided for, and a label file is easily generated to

allow printing of address labels with TOTL.LABEL, and

interaction with TOTL.TEXT and TOTL.INFOMASTER for

even more versatility.

At year end a report is generated which shows all income

and expenses, groups expenses into deductible and non-de

ductible, and groups deductible expenses into their deduc

tion categories.

More information can be obtained by contacting:

Charles Palmer-McCarty

President, TOTL Software Inc.

1555 Third Ave.

Walnut Creek, CA 94596

415 943-877

WATCOM Pascal for the Commodore 64

Pascal is a widely respected language, particularly for teach

ing computer science because it encourages students to

write readable, structured programs and to think about

programming in a logical way.

WATCOM Pascal for the Commodore 64 is a full function

The Transactor 12 Volume 5, Issue 03

Pascal* conforming to both AN1S and ISO-draft standards

and extended to support Commodore 64 features such as

sprites, sound synthesizer and colour and bit-map graphics.

WATCOM Pascal is already available on a number of micros

and mainframes including IBM VM/SP CMS, IBM PC/

DOS, DEC VAX/VMS, the Commodore SuperPet and the

CEMCORP ICON.

• The one omission from the standard is that you cannot

pass a procedure as a parameter.

• WATCOM Pascal is unique as an interactive interpreter.

An interpreter is an extremely efficient tool in both pro

gram development and teaching because it gives the user

immediate feedback and execution rather than waiting

through the usual compile/link/execute steps.

• WATCOM string extensions to Pascal provide the ability to

handle variable-length strings and improve normal string

manipulation facilities.

• Extra input/output features have been included. Relative

access files and extensions to the reset and rewrite com

mands allow system file names to be used.

• Built-in procedures and functions permit machine level

interface including PEEK to examine memory, POKE to st

into memory , SYSFUNC and SYSPROC to call machine

language routines and ADDRESS to obtain a variable's

machine address.

• The CASE statement has been extended with the ELSE

clause to allow for cases which are not defined.

• WATCOM Pascal contains a function to generate random

numbers; a feature not normally part of the language

implementation.

• An interactive debugger provides immediate execution of

Pascal statements, execution of a Pascal program one

statement at a time and invocations of the debugger from

any point in a running program.

• WATCOM Pascal has also provided a bit-mapped graphics

capability, a significant expansion of the normal graphics

modes available on the Commodore 64.

• SYSFUNC or SYSPROC commands can have parameters

which are passed to the called program. In the case of

SYSFUNC the machine-language routine may also return

to the integer value.

• Function keys can be used to provide many useful editing

operations including insertion, deletion, splitting and join

ing of entire lines.

WATCOM Pascal for the Commodore 64 is documented in

one book which explains both the language and the editor.

This book is designed to be either a self-teaching tool or a

textbook for a course and could be used at the introductory

level in high school or university.

The book includes a language primer with step-by-step

examples, an advanced section on Pascal suitable for a

second level course, a complete editor reference manual

and finally the full syntax and semantics of the language.

WATCOM Pascal for the Commodore 64 is packaged as three

separate components. A diskette containing the WATCOM

Pascal interpreter, a cartridge containing the WATCOM Edi

tor in 16K of ROM, and the textbook.

Waterloo Structured BASIC For The C64

Waterloo Structured BASIC extends the normal BASIC sys

tem on Commodore-64 machines to include Structured

Programming statements. These extensions are necessary

in order to teach proper programming methodology using

the BASIC language. The Commodore-64 version is similar

to the implementation used since 1980 with the Commo

dore PET.

There are several academic benefits to be derived from the

Waterloo Structured BASIC system. Most notably, programs

written with the system are more readable. This means:

• Programs are easier to write, debug and maintain

• The BASIC language is easier to teach and to learn

• Students learn important principles which can be applied

with other programming languages.

Students learn proper programming discipline and style.

They write Structured Programs, not the old-style "spa

ghetti code".

Structured Statements

Waterloo Structured BASIC extends the normal BASIC with

new statements to control loops and selection with IF

statements.

Procedures

It is important to be able to modularize a program in a

meaningful way. This is accomplished in Waterloo Struc

tured BASIC with procedures. A procedure is a group of

BASIC statements which are given a meaningful name:

PROC name

. .. BASIC statements

ENDPROC

The procedure can be invoked from anywhere in the pro

gram using a CALL statement (ie. CALL name)

Several commands are added for program development:

AUTO - automatically generates line numbers as

program text is added to a program.

DELETE - used to remove a range of lines from a

program.

RENUMBER - renumbers the lines in a program including

all references.

Waterloo Structured BASIC for the Commodore 64 is docu

mented in one book which is designed to be either a

self-teaching tool or a textbook for a course. The book is a

tutorial and reference manual which assists the student in

learning the modern concepts of Structured Programming

and top-down design. Additional copies of the text may be

purchased from WATCOM Publications (see below).

Waterloo Structured BASIC for the Commodore 64 has two

separate components; A cartridge containing Waterloo

Structured BASIC in 4k of ROM, and a book containing

tutorial and reference material for Waterloo Structured BA

SIC. For additional texts or information, contact:

The Transactor 13 Volume 5, Issue 03

WATCOM Products Inc.

415 Phillip Street

Waterloo, ON N2L 3X2

519 886-3700

Telex 06-955458

Hardware News

SELECT-A-RAM - 64K for the Commodore VIC 20

Advanced Processor Systems introduces the SELEC

T-A-RAM, a 64K memory expansion cartridge for the Com

modore VIC 20. The SELECT-A-RAM provides two

expansion slots for program and game cartridges or addi

tional memory expansion up to 192K. Decoding circuitry in

the SELECT-A-RAM allows switching RAM and ROM in 8K

blocks by inputs generated from the keyboard or by soft

ware command.

The SELECT-A-RAM plugs directly into the memory expan

sion slot on the VIC 20 and is powered by the VIC 20 supply.

Other features include write protection, reset switch and

optional external power.

The use of high density dynamic RAMS with transparent

refresh makes the SELECT-A-RAM the lowest cost per bit

memory expansion product on the market today for the

Commodore VIC 20.

The SELECT-A-RAM is covered by a one year warranty and

a 15 day money back guarantee. The SELECT-A-RAM is

priced at $169.00 in single unit quantities.

Paul G. Jones, Public Relations Director

Advanced Processor Systems

PO Box 43006

Austin, TX 78745-0001

512 441-3202

Asynchronous RS-232 Baud Rate &

Parity Matching A-B Switch

Connecticut microcomputer announces AyBy, an RS-232

A-B switch with baud rate and parity matching capability.

Designed for both office and laboratory use, AyBy enables a

user of a 9600 baud terminal to instantly switch from a 9600

baud connection to a 1200 or 300 baud connection. The

connection parities may be different.

AyBy is equipped with three female DB-25S connectors:

one for the 9600 baud terminal; and one for a 1200 or 300

baud connection, such as a modem. Parities for the 9600

baud and 1200/300 baud connections may be indepen

dently set.

With a terminal set at 9600 baud, to change the connection

from 9600 to 1200 or 300 requires merely moving a slide

switch. An LED indicates the port and speed in use.

AyBy, in a tan and white high impact plastic case, sells for

$300. Contact:

Connecticut microcomputer Inc.

36 Del Mar Drive,

Brookfield, CT 06804

203 775-4595

Twx: 710:456-0052

Voice Master

Speech with high intelligibility and naturalness can be

recorded for computer response using the Covox Voice

Master. Requiring only about 400 bytes for the average

word, up to 64 numbered words or phrases or other sounds

can reside in memory for instant recall using simple BASIC

commands. Complete vocabularies can be stored on disk or

tape to extend the number of available words without limit.

Voice Master makes it possible to devise practical applica

tions for talking computers - from robot advisories to cockpit

announcements to video games - at far less cost than ever

before.

Based on zero crossings and amplitude information, the

unique technique gives good results at bit rates under 7000

per second (user selectable). For some computers, the Voice

Master device itself is needed only for recording; user

created software then functions without the added hard

ware. Software which extends Voice Master capabilities to

word recognition is also scheduled for release. Available for

the C64 at $89.95 US. Contact:

Covox, Inc.

675 Conger Street

Eugene, OR 97402

503 342-1271

Tlx: 706017

The Transactor 14 Volume 5, Issue 03

Letters

Copywrites Rights: This letter is a request for a renewal

of my faith in you. Over the past few years I have witnessed

the Transactor bloom from a small Commodore newsletter

to a handsome bi-monthly journal. What I ask of you is to

give me your views on the status of programs published in

your magazine.

The reason why I have written to you is because of a very

recent issue of Compute magazine, May 1984, in which they

state that only one person per purchased issue can use the

programs contained within the pages of their magazine. On

pages 13 and 14, a letter was printed from Gary Lee Crowell.

In this letter, Mr. Crowell asked for Compute's views on the

use of Compute's programs by users groups and libraries

who have a subscription to their magazine. Computes an

swer was a quick and simple no. "You can only use the

programs in an issue of Compute if you own a copy of that

issue".

In my opinion, this stand is one of which makes them look

pretty shallow, and also one that would be next to impos

sible to uphold. All this law of theirs proves is that they no

longer care about the education of the general consensus,

only the lining of their pockets by the increase in sales. I

really wonder how many schools, users groups and libraries

would keep their subscriptions if they realised how self

serving Compute's policies are. How many teachers would

use Compute's articles and programs to help teach their

students if they realised that they were breaking the law to

do so ?

Jim Butterfield has always been known to help promote

greater education by his articles, lectures and programs. He

has been seen on television, can be obtained on video tape,

and can be read in numerous magazines. User group li

braries throughout the world are filled with large quantities

of Jim Butterfield's programs, released into public domain

by Jim Butterfield himself. Now, considering that Mr. Butter-

field is the Associate Editor Of Compute Magazine, why has

Compute allowed Mr. Butterfield to release his programs

into public domain after they have been printed in the

sacred pages of their once great rag?

As far as I can tell, they would never dare cross Mr.

Butterfield, for they would risk losing his contributions, and

thus large volumes of sales. In the circle of Commodore

users worldwide, Compute' is usually bought because of Mr.

Butterfields articles, not because of their 50% volume of

advertisements, nor their pages and pages of articles on

computers other than Commodore, or even the small con

tent of articles on Commodore computers. It is usually

because of Mr. Butterfield and his words of wisdom. Begin

ners, intermediate and advanced programmers alike have

always gained from Mr. Butterfields knowledge, as I have,

until now. Compute has lost my support in their magazine,

and with it I have lost future knowledge gained through the

pages of Compute. But, as far as I can tell, Transactor,

Commodore Magazine and a couple of others have supplied

me with plenty of knowledge in the past, and it is quite

evident that they will continue to do so in the future. Your

magazine alone has been advancing so quickly over the past

short while that it will more than make up for the space left

by Compute.

Thank you for allowing me to take up room in the pages of

your magazine. I know that your views are favourable on

the status of the programs you print, but please confirm it for

me. 1 would like my children to learn from the best sources

available, but not if they have to break the law in order to do

so. I hope that more people will think of this before they buy

their next copy of Compute. Does their policy mean that if

the father buys the magazine, the children are in default of

the law if they use the programs contained within? A very

stupid question, one which is only surpassed by a stupid

policy.

Edward C. James - Los Angeles California

When I read your letter I couldn 't believe Compute would

actually have the audacity to print such bilgewater. I found a

copy of the May issue, and sure enough. Incredible. You 're

right though, I can't imagine how they would enforce that

policy. Consider the writer. Does this mean he cannot pass

out copies of his own program?And ifhe does, what then. Is

Compute going to sue him? Or anybody else for that matter.

If it weren 't laughed out of court, the settlement wouldn 't

even cover lunch at the cafeteria. As for Jim's stuff, he holds

a personal copyright on everything he releases for publica

tion. Since he carries a little more clout than other writers, he

can get away with it and still see his articles published.

Anyone else who tries it may never see their article again. As

for our stuff, rest assured that any copies of programs you

enter are passed around with our blessing. In fact, 99% of all

our articles are available for reprint in any other publication,

provided the author is paid for it. Contact us anytime. We 11

even be flattered that you express the desire to do so.

Take That Tape Worms! In response to R.D. Anderson's

letter in Volume 5, Issue 01,1 am quite sure that his difficulty

is that a phase inversion is required between the originate

and duplicate tapes. I had precisely the same problems and

would have said the identical things about what I observed!

The Transactor 15 Volume 5, Issue 03

Enclosed is a connection diagram that works well for me

which is used for duplicating tapes for the San Luis Obispo

Commodore Group. The transistor is any handy NPN type; a

2N2222 works fine. The "interface" was made from scrap
PC board.

Cliff Buttschardt, Morro Bay, CA

470 Ohms

GND S A +5V

To Cassette Port

Originate Tape

Recorder Side

Duplicate Tape

Recorder Side

You might have noticed there is one pin missing from Cliff's

interface. Pin 6 is the Cassette Button Sense line. It's used so

the computer can detect if any buttons are depressed on the

cassette unit. Since this won't be required for the intended

operation, it's been left unsewiced.

WordPro Quips: I Have two Commodore 8032 with 8050

disk drives and I use WordPro IV. I also have a telephone

modem. Would your newsletter answer the following ques

tions:

James L. Robinson, Jr., Tucson, AZ

1. Is there a way to exit from WordPro to BASIC without

having to power down?

Yes. Control, Shifted 'Q\

2.1 am thinking about increasing the capacity of my 8032 by

adding a 64K board. Will this affect the operations of

WordPro? Will I be able to use the additional 64K for text

space?

Adding 64K to your 8032 will not affect the operation of

WordPro in any way, including the addition of extra text

space. WordPro does not check to see if the extra 64K board

is there so it will never even attempt to use it. There was a

version that did use the extra memory. Instead of 2 text

areas it had 5 but I don't know if it was ever released.

Perhaps contact Pro-Line (see ad).

3.1 may want to upgrade to WordPro IV Plus. Will 1 be able

to use the files that have formats preceded by a checkmark

rather than an @?

Confusing question. As far as I know, all later versions of

WordPro use the checkmark to precede commands. Per

haps you saw some documentation that shows the @ sign.

This is probably because the printer that created it wasn 't

capable of printing a checkmark. Your files should all be

completely compatible.

4. Do you know of any other programs that work in conjunc
tion with WordPro?

MailPro was written by the same author as WordPro and

was designed to accept WordPro files for input. WordPro can

produce output files that are acceptable by any other pro

gram that can input from a disk file. Telecommunication

programs that can send text from disk are a good example.

5. I use both the NEC 5530 and a Mannesman Tally 8024
(also a 4032 Dot Matrix). The formatting for the NEC does

not work the same as on the Mannesman Tally. Underlining

in particular. Do you have any special instructions for the
Mannesman Tally?

First of all, I'm not sure the Mannesman Tally will do

underlining, but I could be wrong. The problem is, printer

manufacturers are only beginning to get together on code

values for printer feature controls. So what invokes one

function on one printer may invoke something entirely

different on the other. Late versions of WordPro allow you to

define special characters in a command line. Perhaps with

this you might be able to send control characters to the

Mannesman that will make it behave. You II require your

Mannesman manual and some experimentation. M.Ed.

Joy Cursed: We've received recently a couple of letters

concerning "JoyCursor", a program published in the last

issue of The T One claimed that the program returned an

ILLEGAL QUANTITYERROR in line 170. Line 170 is the line

that POKEs the values into memory. An illegal quantity

could only occur in one of two places: the address or the

value to be POKEd. If the address goes, for some reason,

negative, or if it goes above 65535, an illegal quantity results.

If the value to be POKEd goes negative or above 255, same

thing. Check to make sure you have commas separating all

the numbers in your DATA statements. If one is missing,

you'll have problems. If it's missing between, say, a 1 and a

17, BASIC will READ a'117' and the loader will run out of

data before reaching the end. If the comma is missing

between, say, a 34 and 212, BASIC will try to POKE the

location with 34212. No way. This is a potential hazard for

any program containing DA TA statements. If you run into

problems at the line containing the POKE, check your

commas for one missing.

Also, make sure your joystick is plugged into the specified

port. Even with no program in the machine, the joystick will

cause sporadic activity on your screen. Try it! The reason?

The chip that handles the joystick ports is the same one that

services the keyboard. When signals are sent in through the

port, the 64 thinks they are coming from the keyboard.

Therefore a program is required to help the 64 determine the

source ofthe activity. Such a program will check the high bit

of the port register. If it's zero it's because a joystick is

grounding that pin. Perhaps a complete article explaining

this technique is in order.

Now with the Joycursor program in place, try it again. Ifyou

get the same wierdness, try the other port. M.Ed.

The Transactor 16 Volume 5, Issue 03

Bits and Pieces

Line Doo Daa

Our first screen blitz was submitted by Giovani Polese of Downs-

view, Ontario. The program shown is somewhat longer than it has

to be - try PR1NTA$ after running it once. We changed it to make it

enterable from all keyboards (business keyboards don't have some

of the graphic characters available). Try changing the i 5' in line 30

to 14, 13, 12, etc., for different effects.

30 for j = 1 to 15 : read a

40 a$ = a$ + chr$(a): next

60 print a$; : goto 60

70 data 164, 210, 198, 192, 195,196, 197, 163

80 data 197, 196, 195, 192, 198,210, 164

Colourtest

Colourtest is a simple little program that merely draws boxes in all

the colours available so that you can adjust your TV/monitor for

the best possible contrast. Like the program above, it too is much

longer than it needs to be. For example, lines 115, 120 and 125 can

be replaced by C$= all the colour control characters except black,

which is the background colour used for the test. This will also

save you from entering the DATA statements. Lines 135 and 140

can be replaced by B$ = 1 cursor down and 5 cursor lefts.

100 print" @" : rem clear screen
110 poke 13*4096 + 33,0

115 for i = 1 to 15

120 read a : c$ = c$ + chr$(a)

125 next

130s$=" ": rem 5 spaces

135b$ = chr$(157)

140b$= "H" +b$ + b$ + b$ + b$ + b$
145 for i = 1 to 15

150 print mid$(c$,i,1);

155 print "|3";: rem home
160 for j = 1 to i:print:next

170 printspc(i*2)" Q" sbsbsbs$
175 for j = 1 to300:next

180 next i

200data 5; 28,159,156, 30, 31

210data158, 129, 149, 150, 151, 152

220 data 153, 154, 155

Would You Buy A Used Car

From This Man?

Bytefinder

Have you ever needed to know what byte values are NOT present

in a program or file you may be working on? The situation arises

when you need a value to act as a terminator. If this same value

exists elsewhere, the file will be terminated prematurely. The

following program will show which values are not present in the

4K ROM block between $F000 and $FFFF. Quite simply, the

program counts the occurence of byte values (line 120) by incre

menting the approriate array element of U(. Naturally, all the

values will lie between 0 and 255, hence DIM U(255). The elemnts

of U(that remain zero indicate values that were not encountered

(line 210).

100dimu(255)

110 for j = 15*4096 to 65535

120 x = peek(j): u(x) = u(x) +1

130 next j

200 for j = 0 to 255

210 if u(j) = O then print j;

220 next j

This could be easily altered for any area of memory, or for any disk

file by changing:

110open8,8,8, "somefile."

120get#8, a$: sx = st

125 x = asc(a$ + chr$(0)): u(x) = u(x) +1

130 if sx = 0then nextj

140 close 8

Quick Mote: Remember, a COLLECT DO or OPEN

1,8,15, "V0" never hurts, especially after you see something

strange happen. You know what to change for drive 1.

The Transactor 17 Volume 5, Issue 03

UN-DIMension

As you know, any attempt to DIMension an array that is already in

use will result in the REDIM'D ARRAY ERROR. In fact, the only

way to DIM an array by the same name twice is to issue a CLR

which destroys all your other variables.

In most cases you shouldn't have to define an array more than

once. But sometimes a program may lack memory for a particular

operation because some array that isn't required is occupying

valuable space. The program would be required to determine if

array definitions could be erased without losing valuable informa

tion. Then, using the following techniques, some or all of the

arrays could be eliminated. After performing the sort, etc., the

arrays can be re-defined, ready for further use.

In another case, you may have an array that is too small. When

your program detects this, invoke UN-DIM and re-DIM the array

(by the same variable name) at the new larger size.

This method can not quite be called 'dynamic dimensioning'. First,

you must actually eliminate the array before it can be re-defined.

Any important data contained in the target array must be re-estab

lished after it is re-DIMed. Secondly, you cannot eliminate an

array without affecting other arrays defined at a later time. In-

otherwords, the last array defined will be the first one erased, and

so on. Therefore, it is best to DIM the arrays first that will be

considered permanent and DIM the "variable" arrays last.

Function A(Q) (line 100) measures the "distance" in bytes from the

Start of Arrays Pointer to the End of Arrays Pointer. When new

simple variables are defined, both these pointers change as the

arrays get pushed higher in memory. But the size of the arrays

hasn't changed. So to erase an array, you simply back up the End

of Arrays Pointer by the same distance (line 140). BASIC only looks

up to the End Pointer for existing arrays, so if it isn't found DIM is

allowed.

The next program is an "untaxed" and less commented version of

the program after it.

VIC 20 / Commodore 64 Version (For BASIC 2.0/4.0 subtract 3

from all PEEK/POKE address in the first 5 lines.)

100deffna(q) = (peek(50)-peek(48))*256

+ peek(49)-peek(47)

110 def fn hi(q) = peek(48) + int(q/256)

120 def fn lo(q) = peek(47) + (q and 255)

130 goto 160

140 poke 50, tn hi(x): poke 49, fn lo(x): return

150 rem * * * start of program * * *

160 dim a(10), c(15), b(15): a(3) = fna(O)

170dimj(20), i(20) :a(5) = fna(0)

180 x = a(3): gosub 140 : rem clr j(& i(

190 dim j(100),i(100) : a(5) = fna(0): rem re-dim

200 dim ad(250)

210 x = a(5): gosub 140 : rem clr array ad(

220 x = a(3): gosub 140 : rem clr j(& i(arrays

230 x = 0 : gosub 140 : rem clr all arrays

BASIC 2.0/4.0 Version (For VIC/64, add 3 to all PEEK/POKE

addresses in first 6 lines.)

100deffna(q) = (peek(47)-peek(45))*256

+ peek(46)-peek(44)

110 def fn hi(q) = peek(45) + int(q/256)

120deffnlo(q) = peek(44) + (q and 255)

130 goto 180

140 rem — clr array subroutine —

150 poke 47, fn hi(x): poke 46, fn lo(x)

160 return

170 rem * * * start of program * * *

180 dim a(10), b(15), c(15): a(3) = fna(O)

190 rem a(3) = bytes used by first 3 arrays, a(, b(& c(

200 p = 3.14159: i% = 10 : etc$ = "and so on"

210 rem arrays move up as simple variables are defined

220 rem however, a(3) remains the same

230 dim j(20),i(20) : a(5) = fna(O)

240 rem new arrays, a(5) = bytes used by all 5

250 r$ = chr$(13): q$ = chr$(34)

260 rem and perhaps some new variables

270 x = a(3): gosub 150

280 rem clr arrays j(& i(, leaving a(, b(& c(intact

290 dim j(100),i(100) : a(5) = fna(O)

300 rem re dim j(& i(

310dimad(250)

320 x = a(5): gosub 150 : rem clr last array

330 x = a(3): gosub 150 : rem clr j(& i(arrays

340 x = 0 : gosub 150 : rem clr all arrays

ERROROUTER Scott MacLean, Toronto

Many people have written programs that they do not want to have

other people crash out of either by accedent or on purpose. The

short program presented here traps all errors and re-runs the

program if an error occurs. The program is written in BASIC, with a

machine language routine loaded with data statements. It will

work on the VIC or 64. Run the program and it will ask; " Install

where?". Enter an address of safe RAM in your computer (see

below). When you press RETURN it will enter the machine lan

guage section and activate it.

Safe places to install

C64 49152 or 828

VIC(5K) 7168 or 828

VIC(+8K) 16354 or 828

VIC(+ 3K) 7168 or 828

Location 828 is the tape buffer. Use it only if you are not doing any

tape operations, otherwise the computer will crash when you get

an error. To use this routine in your own programs, enter the data

statements and read them into free RAM. Then poke locations 768

and 769 with the LO/HI address of the place you put the program

in. It will then be activated.

How it works

Locations 768 and 769 are the locations which tell the computer

where to go if it encounters any kind of error. By POKEing these

locations with our own numbers, we can tell the computer to

execute our own program instead of it's regular error routine. This

18 Volume 5, Issue 03

program POKEs the numbers representing RUN and a chr$(13)

(return) into the keyboard buffer. Then it jumps to the normal error

routine. The computer then displays the error and checks the

buffer. It sees some characters there and assumes the user typed

them, so it displays and executes them, thereby re-RUNning the

program in memory.

This program could be used for just about any program you write,

it makes it virtually crashproof. I use it on my bulletin board, so if

someone manages to crash it, it simply restarts itself, hanging up

on the user in the process. I'm sure you'll find many other uses.

5 I = peek(768): h = peek(769)

10 data 169, 82, 141, 119,2

15 data 169, 85, 141, 120,2

20 data 169, 78, 141, 121,2

25 data 169, 13, 141, 122,2

30 data 169, 4,133,198,76,256

35printchr$(147);

40 input "install where" ;x : y = x

50 read a

55 if a = 256 then 75

60 ck = ck + a

70 poke x,a : x = x + 1 : goto50

75 pokex, I: pokex+ 1, h

80 if ck<>2568 then print " data error" : end

90 hi = int(y/256): lo = y-(hi*256)

100 print " installed at"y

110 poke 768, lo : poke 769, hi: new

Line Hider

Line Hider does just that - hide lines of code that you don't want

shown without affecting their operation in the program. However,

if you use Line Hider to hide a line that is the target of a GOTO or

GOSUB, you'll get an UNDEF'D STATEMENT ERROR. Use the

next utility for these.

There's just one trick to using it - you must supply the input with

the number of the line that comes BEFORE the one you wish to

hide. It wouldn't be hard to modify this to hide an entire program!

100 rem save" @0:line hider" ,8:verify"0:line hider" ,8

105 rem * hide a line within your basic program

110 rem * basic 4.0 : sb = 1025

115 rem * c64 only : sb = 2049 (default)

120 rem * vie only : sb = 4097 (default)

125:

63989 sb = 1025 : rem ** set-up for basic 4.0

63990 input" line # of preceding line " ;pl

63991 for lp=1 to (2t16)-1

63992 num = peek(sb + 2) + peek(sb + 3)*256 : rem * line #

63993 nxt = peek(sb) + peek(sb +1)*256

63994 if num < pi then sb = nxt: next Ip : end: rem * still below

the line

63995 if num > pi then print" line not found" : end

63996 sh = peek(sb) + peek(sb+ 1)*256 : rem * position of

line to hide

63997 nl = peek(sh): nh = peek(sh + 1) :rem ptrs to next line

63998 pokesb.nl: pokesb+1,nh :rem bypass the line to hide

63999 poke sh + 2,0 : poke sh + 3,0 :rem and change line #

to zero

Ghost Liner

Ghost Liner does just what Line Hider does, except the line

number will be displayed with nothing beyond it. Ghost Liner

searches for lines that start with 5 colons. It substitutes the first

colon with a zero. When the LIST routine sees this zero, it assumes

end of line and goes on to list the next line. RUN is not affected.

100 remark * ghost liner - rte

110 remark * cloaks all lines starting

120 remark * with ::::: (5 colons)

130 remark * basic 4.0 : vl = 42 : vh = 43 : sb = 1025

140 remark * c64 & vie : vl = 45 : vh = 46

150 remark * c64 only : sb = 2049 (default)

160 remark * vie only : sb = 4097 (default)

170:

180 : vl = 42:vh = 43:sb = 1025 : rem * basic 4.0 set-up

190loc = peek(vl) + 256*peek(vh)

200 printchr$(147)loc,": maximum"

210 print,": current"

220 if peek(sb)<>58 then 250

230 ct = sb : for Ip = 0 to 0 : ct = ct + 1 : Ip = (peek(ct) = 58): next

240 if ct > sb + 4 then poke sb, 0 : sb = sb + 4

250 sb = sb + 1 : print chr$(19)chr$(17)sb : if sb<loc then 220

260 end

List Decorator

With all the screen function characters available for changing

colour and cursor position, why not make use of them while

LISTing as well as when you RUN. List Decorator will take dull,

unoticeable remarks and make them bright and easy to spot. The

list below shows what value to use for the possibilities. You need

not stop at one though - after running it once on itself (see line 160

& 170), LIST the program and insert new @ signs in the same

place. Now RUN again. List Decoarator will replace all occurences

of "REM @" with RB.

rb = 5 for white line (c64 & vie)

rb = 7 for ring the bell

rb = 13 for carriage return

rb = 14 for upper/lower case

rb = 15 to set the top left corner (cbm only)

rb = 17 for cursor down

rb = 18 for reversed program rem lines

rb = 19 for cursor home

rb = 20 for delete char

rb = 21 for delete a line (cbm only)

rb = 25 for scroll down (cbm only)

rb = 28 for red line (c64 & vie)

rb = 29 for cursor right

rb = 30 for green line (c64 & vie)

rb = 31 for blue line (c64 & vie)

100 rem * list decorator - rte

110 rem * Ib = 42 : hb = 43 : sb = 1025 :rem * for basic 4.0

120 rem * Ib = 45 : hb = 46 :rem * for c64 & vie

130 rem * sb = 2049 :rem * for c64 (default)

140 rem * sb = 4096 :rem * for vie (default)

150:

160 rem @ this is how your remark should look when entered

The Transactor 19 Volume 5, Issue 03

170 rem @ every occurence is substituted

180:

63995 Ib = 42 : hb = 43 : sb = 1025 : rem basic 4.0 setup

63996 input" replacement byte for @ " ;rb

63997 mx = peek(lb) + peek(hb)*256 : for a = sb to mx

: b = peek(a): if b<>143 then285

63998 if peek(a + 1) = 32 and peek(a + 2) = 64 then

poke(a + 2),rb

63999 next: end

Sinhibitors

This next collection of handy POKEs was submitted by Adam

Foster of Kingston, Ontario.

Many software companies go through a great deal of trouble to stop

program pirates from stealing their software. But no matter how

much protection you have on a program, if the pirate really wants

to get in, he will.

On the VIC 20 and Commodore 64 there are several easy POKEs to

stop the common thief. 1 stress the word "common" since any

experienced pirate will get by these easily.

List Terminator

This feature will prevent others from viewing your program. On

both the VIC and the 64 add a line to:

POKE 775, 200

To re-enable LIST, POKE 775 with 167 on the 64 and 199 on the

VIC. Unfortunately, it only works if the program has been RUN

before they try and LIST it. (see LockDisk later on - M.Ed)

Save Terminator

The 64 version of this stops the saving of your program by

disabling the RUN STOP/RESTORE keys. To do this:

POKE 808, 225: POKE 818, 32

To return to normal POKE both locations to 237. On the VIC, this

killer is enabled by:

POKE 802,0: POKE 803, 0 : POKE 818, 165

and is disabled with:

POKE 802, 243 : POKE 803, 0 : POKE 818, 133

STOP Key

To disable the STOP key, add:

POKE 808, 225

to your program. POKE 808, 237 turns the STOP key on again.

This works on both computers.

turns the keyboard off, and POKE 649, 10 turns it back on for both

the VIC and 64.

Etch. A Sketch.

Keyboard Killer

POKE 649, 0

Not the quickest hi-res graphic aid, but it demonstrates clearly

some fundamentals. Like setting up the hi-res screen, testing

boundaries and adjusting for max/min, calculating hi-res position

to the bit, testing for the fire button, and determining joystick

direction. It wouldn't be tough to make this machine language.

Written by Dave Gzik, Commodore Canada.

ETCHASKETCH

Here is a neat little program that converts your C64 into an

etcha-sketch type tablet. To use this just load the program and run

it. You'll need to have a joystick plugged into port 2.

Drawing is accomplished by moving the joystick in the direction

you want and this program will draw in eight directions. If you

want to lift the drawing pen just hold down the FIRE button and

move where you want to go.

This is a very simple BASIC program, there is no cursor to indicate

the location of the pen, so you'll be guessing when you lift it off the

drawing area.

You can expand on this if you wish but it is rather slow in BASIC.

Give it a try it's not that long or tedious.

5 rem etchasketch by dave gzik (cbm Canada)

10 base = 2*4096 : poke 53272, peek(53272)or8

20 poke 53265, peek(53265) or 32

30 for i = base to base + 7999 : poke i, 0 : next

40 for i = 1024 to 2023 : poke i, 3 : next

50 x = 160 : y = 100 : rem start off point

75 if y<0 then y = 199

76ify>199theny = 0

77 if x<0 then x = 319

78 if x>319thenx = 0

80 row = int(y/8): char = int(x/8): line = y and 7

90 bit = 7-(xand7): byte = base + row*320 + char*8 + line

95iffr+jv=111 then 110

100 poke byte, peek(byte) or 2tbit

110 jv = 15-(peek(56320) and 15)

111 fr = peek(56320)

120 if jv = 1 theny = y-1 : goto75

140 if jv = 2 then y = y + 1 : goto75

150 if jv = 4 then x = x-1 : goto75

160 if jv = 5 then x = x-1 : y = y-1:goto75

170 if jv = 6 then x = x-1 : y = y+ 1:goto75

180 if jv = 8 then x = x + 1 : goto75

190 if jv = 9 then x = x + 1 : y = y-1:goto75

200 if jv = 10 then x = x + 1 :y = y+1 : goto 75

210 goto 75

Editor's Note: Notice how Dave tests the fire button in line 95.

This works no matter what direction the joystick is being held.

Why? Because the joystick ports are inverted logic. This means

when nothing is happening on the joystick (except for the fact that

it's plugged in) the joystick register will contain a value of 127 (bits

0-6 on, 7 off which flags port 2). Line 110 un-inverts the value by

first looking at only the first 4 bits, and subtracting that from 15 to

The Transactor 20 Volume 5, Issue 03

get direction values that make a lot more sense. As JV goes up FR

goes down so FR + JV remains constant, whether the fire is down

or not. But when the fire button IS down, that constant is 111.

C64 Default Screen Colours

This next item comes to us from R.D. Young ofJames Park, New

Brunswick.

If your black and white TV has the blues, or at least if it doesn't like

the blue default screen colours that appear on power-up, you can

easily POKE in new colours. Then frequently and just as easily,

you can watch your new colours disappear with each RUN-STOP/

RESTORE key sequence and you must set them all over again. You

may even have a favourite colour combination with your colour

monitor. . . same problem.

Try the following little program. It loads a machine language

program into any desired memory area, changes the "BASIC

Warm Start Vector" to point there, and will keep your screen set to

your own default colour combination.

The starting location for the machine language program is first

selected. My default is decimal 900, the middle of the cassette

buffer. Another usually safe place is between 49152 and 53232.

10 rem set default colours on run-stop/restore

20 rem by r.d. young

30 input " start location 900[left 5]" ;ad

40 for i = ad to ad + 15 : read x : poke i, x : next

50 hi = int(ad/256): lo = ad and 255

60 input "screen colour (0-15) 6 [left 3]" ;c

70 poke ad +1, c

80 input "cursor colour (0-15) 13 [left 4]" ;c

90 poke ad+ 9, c

100 poke 770, lo : poke 771, hi

110 sys 65126

500 data 169, 6,141, 32,208,141

510 data 33,208,169, 13,141,134

520 data 2, 76, 131, 164

The defaults in the program are set to blue screen with light green

text. Refer to any colour table (pg 159 in 64 User Guide) for colour

codes that represent each colour choice. Both the screen and

border are set to the same colour (my choice) but a little extra

machine language could change all that. Happy RESTOREing!

Tape Saving Notes

Saving to tape from BASIC merely writes to tape everything that

lies between the Start and End of BASIC Pointers. Saving to tape

from the Machine Language Monitor allows one to save any area of

memory because the user supplies the start and end address. The

format is:

sys 4 ;enter monitor on BASIC 4.0 machines

.s "some name",0.1,6000,7000

. . .which saves all memory from hex 6000 to 7000 on cassette *\

using the name " some name". But the MLM Save always had one

drawback. It would not save any memory above hex 7FFF. The

problem lies in the tape write routines that Commodore designed

years ago with the PET 2001. Commodore assumed back then that

tape would never be written with data above 7FFF. So they used

the high bit of the high byte of the address to signal end of write.

When the current write address matched the end address (ie. End

of BASIC Pointer), this bit would be set. The last byte would be

output and, in a later part of the tape output routines, this bit would

be detected and writing tape would be terminated. However, if the

current write address goes above 7FFF, this bit is set naturally, but

of course the tape close routine would have no way of differentiat

ing and tape write would terminate.

Without telling anybody, it seems Commodore has lifted that

restriction from the tape routines in the VIC 20 and Commodore

64. Although you must install your own MLM program (ie. Super-

mon, VICMON Cartridge, etc.) the following command will behave

perfectly:

.s "some name",01,cOOO.dOOO

. . .will save to tape everything from $C000 to $CFFF. Remember,

you must specify the last address desired, plus 1.

RESTORE X

This short machine language loader was submitted by Garry

Kiziak of Burlington, Ontario. It allows you to RESTORE the DATA

pointer to any DATA line as opposed to the first DATA line. And

with just one single SYS. Written for the 64 or VIC 20.

10 restr = 828:for k = restr to restr + 31:read j:poke k,j:next k

20 data 32,253,174,32,158,173,32,247,

183,32,19,166,176,5,162,17

30 data 76,55,164,165,95,233,1,133,65,

165,96,233,0,133,66,96

100 for i = 1 to 20

110x = 100*(int(rnd(1)*5) + 2)

120 sys restr, x

130 read a$: print a$

140 next

150 end

200 data i'm at line 200

300 data i'm at line 300

400 data i'm at line 400

500 data i'm at line 500

600 data i'm at line 600

Voice For Commodore Computers: Vol. 5, Issue 01, Pg 71,

Under sub-heading "Commodore 64 Notes", add line:

153 poke ra, peek(ra) and 251 :rem set pa2 low

Merging BASIC Programs: Vol. 5, Issue 02, Pg 54, Both

programs will work as shown, but the checksum for the 64 version

is wrong. Change '51230' in line 140 to 49379. Thanks to Nick

Fournier for pointing that out.

And yes, that was Jim. B., '69

The Tronsactor 21 Volume 5, Issue 03

Two Reviews:

PAL 64 and POWER 64
by Chris Zamara, Technical Editor

PAL 64

PAL 64 is an assembler for the 64 (PAL stands for Personal

Assembly Language), written by Brad Templeton and distributed

by Pro-Line software. Brad Templeton wrote PAL as a develop

ment tool to write POWER (also reviewed in this issue), and

POWER and PAL work very well together. Like POWER, PAL was

originally written for a PET years ago, so it is thoroughly debugged

and tested by now. The 64 version is pretty much the same as the

old PET version. On the PAL 64 disk there are some other utilities

as well, including Jim Butterfield's SUPERMON 64, RPAL for

creating relocatable object code, and a PAL unassembles which

converts object code to PAL compatible source code.

PAL is in some ways a conventional assembler, but very different

in others. First of all, it conforms pretty well to the MOS standard in

all but a few of the more esoteric conventions. What makes PAL

unique, however, is how easy it is to use. Once PAL is installed, an

assembler program is entered just as a BASIC program: using line

numbers and the built-in editor (using POWER as well, if you have

it). To assemble the program, just type RUN. That's it. A SYS

command at the beginning of the program directs control to PAL,

which does all the rest, interpreting the program as assembler code

until it reaches the end or the END pseudo-op (which may be

followed by BASIC code).

Most assemblers have their own editor, which produces a source

file, which must then be assembled and link-edited to produce an

object file. PAL is very easy to use, since the source program is

entered using the familiar BASIC editor. Furthermore, you still

have BASIC available if you wish to use it. You may even mix

BASIC and assembler in the same program and create a hybrid

module, using PAL's powerful BAS pseudo-op.

The other good thing about PAL is that it's fast. If the "print" option

is turned off (no display of assembly output), even the longest

programs assemble in a few seconds, providing there is no disk

access. BASIC code may be executed after the PAL source has

assembled, so assembling and re-running a major program is as

simple as typing RUN. PAL's ease of use is its strong point.

PAL has some features found in full-featured assemblers which

allow large source files to be created out of a number of smaller

modules. The FIL pseudo-op brings the next module into memory

for assembling. After the next module is assembled, control is not

restored to the original source, so the FIL must appear at the end of

a module. There are also pseudo-ops which save or load a symbol

table to or from disk. This is a good way to communicate between

modules.

A unique PAL feature worthy of explanation is the BAS pseudo-op.

As mentioned above, use of this command in a source program

allows intermixing of machine language and BASIC code (called

"hybrid" programs). Assembler labels become available to the

BASIC sections of code and can be accessed by a SYS command,

for example: SYS "PLOT" could execute a machine language

program labelled "PLOT" in the assembler code. When the hybrid

program is RUN, the resulting object code will contain a mixture of

BASIC and machine language in a single program which may be

RUN directly from BASIC. This set-up works especially well when

using POWER, since POWER allows you to switch back and forth

between the source and object programs (the object program will

only display the BASIC sections of code). Without POWER, the

object module must be written to disk and loaded in separately to

test it, which is a bit awkward. In this case, it's probably easier to

just use separate machine language and BASIC programs, at least

during development. Using POWER and PAL together (as the PAL

manual recommends) makes for a potent programming environ

ment for hybrid systems.

Another PAL advantage is that it is only 4K of code, and is fully

relocatable. This means it can be burned into a 4K EPROM and

plugged into the expansion port. Of course, living in only 4K also

means that PAL does not have all of the features of a big, expensive

assembler. No macros, link-editor, callable object modules, or

label import/export capability in this package. PAL seems well

suited to the 64's character: the Volkswagen rabbit of computers -

not quite a BMW, but a good, mid-priced performer.

When using PAL to develop a large program containing smaller

modules, the main problem is its lack of a link-editor. A module

can't be separately assembled, since PAL must know its start

address, which is dependant on all the preceding modules. PAL

gets full marks for being easy to use, but using it for a such an

application can be a bit clumsy, although there are ways to work

around the problem.

Considering the speed (actually, the lack thereof) of the 1541 disk

drive, a fully disk-based assembler could be frustratingly slow.

Since PAL is not disk-based, by necessity it loses some features of

a bigger assembler. To make up for it, PAL seems intended for

convenience, and to allow a newcomer to jump right into assembly

language without feeling intimidated. In that end it succeeds

admirably, while also being thoroughly useable for serious pro

gramming. I would even go so far, in PAL's case, to use an

over-worked cliche and call it "user friendly".

After reading the manual that came with POWER, 1 was disap

pointed with the PAL documentation. It is written by Brad Temple

ton, who appears to be much better at programming than he is at

writing manuals. In all fairness, the manual does explain all of

PAL's features and is not difficult to understand, but the organiza

tion is less than ideal, and the explanations get a bit muddled at

times. Of course, this is in contrast with the POWER manual,

which was exceptional. The PAL manual is still better than many.

In conclusion, PAL is an excellent choice for an assembler on the

64. It's very handy when you just want to whip up a little assembler

The Transactor 22 Volume 5, Issue 03

program and execute it without going through a lot of trouble. PAL

can be used for serious system development, but just don't expect

macros, a link editor, etc. For the 64, PAL is probably the best

assembler available, and its ease of use is a bonus for beginners to

assembly language.

POWER 64

Pro-Line's POWER 64 is the 64 version of Brad Templeteon's

POWER, a software tool that programmers have been happily

using for years now. Developed originally for the PET series of

computers, POWER adds features to the editor and BASIC inter

preter which increase programming productivity enormously. Un

like some other programmers' aid packages which just tack a batch

of extra commands onto the BASIC interpreter, POWER is a well

thought out, comprehensive system, which is very easy to use.

Those who have used POWER on PETs already know what it can

do, and probably would not attempt to write a program of any

magnitude without it. As Jim Butterfield writes, one quickly

becomes "addicted" to the use of POWER. POWER 64 is not

significantly different from the original POWER available on the

PET series, but the POWER 64 disk also contains a useful program

called "MOREPOWER", which adds some handy features and

disk-accessing commands to the basic POWER package.

Besides adding commands, POWER adds two main features to the

BASIC program editor: program scrolling, and "instant action"

keys. The scrolling feature allows you to list a BASIC program

forward or backward by moving the cursor down or up when it is

at the bottom or top of the screen. This eliminates clumsy LIST

commands, which invariably reveal a range of program lines

which end just before the line you are really interested in. With

POWER in place, just cursor down to reveal the next line.

The "instant phrase" feature allows you to assign one or more

characters of text to any character on the keyboard, including

SHIFTed keys or keys held down in conjunction with the CTRL or

Commodore-symbol keys. The text assigned to that key will be

printed out at the cursor position as soon as the key is struck. Any

number of keys may be defined, and the definition is done by

special REM statements within the program currently in memory.

This means that different key definitions may exist for each

program, and key definitions may be LOADed from tape or disk.

Furthermore, many keys are pre-defined with BASIC keywords

such as FOR, NEXT, PRINT*, etc. The instant keyword feature can

be disabled if desired, as can the user-defined instant phrase keys.

A key may also point to a BASIC subroutine which will be executed

when the key is pressed. This is a very handy feature, giving the

programmer any number of special functions at his fingertips.

There are some command-driven features thrown in to complete

the programming environment, including TRACE (an exception

ally good one), a WHY command to point to the source of a

program-killing error, and PTR, which restores BASIC pointers

destroyed by LOADing a machine language program. There is also

the standard fare: AUTO, DEL, DUMP, RENUM, and find/

substitute commands. The line renumbering command, RENUM,

is particularly useful - it allows you to renumber portions of your

program as well as the entire thing. The find command (indicated

by a slash) permits "wildcard" matching for characters or groups of

characters. There are 15 commands in all, and MOREPOWER

adds another 13. To his credit, Brad Templeton seems to have used

a degree of restraint when adding commands. The necessary

things are there, but one is not overwhelmed by hundreds of

commands which would get little use. Instead, POWER makes it

easy for the user to add his own commands and create a program

like MOREPOWER which can run under the POWER environ

ment. I think this is a good approach, since it makes the utility

much more flexible and less cumbersome.

The commands added by MOREPOWER are just as important as

the regular POWER commands if you are using a disk drive. With

MOREPOWER installed, you may: LIST a program on disk with

out loading it into memory, LOAD and RUN a program from disk

in one step, MERGE a program from disk with the one currently

in memory, display a TEXT (ASCII sequential) file from disk,

display the disk ERRor status, send commands to the DISK

command channel, and change the default DEVICE number for

LOADing. There are a few other convenient, albeit more mundane

commands such as HEX, which performs hex/decimal conver

sions, and KEY, which, as previously mentioned, allows you to

define an instant action phrase independently of the program in

memory.

The manual, which comes with the system disk in the usual

PRO-LINE mini-binder, is written by Jim Butterfield. His witty

writing style makes the manual a joy to read, and he does an

excellent job of explaining POWER and how to use it. It is written

from the point of view of an objective user of the package, pointing

out all of POWER'S strengths and weaknesses (don't worry, the

weakness:strength ratio is very small). Besides a casual and in

formative chat about POWER, Butterfield gives a formal descrip

tion of all POWER commands in a separate section. Examples, and

short learning and practice exercises are also provided. I wish all

manuals were written this way.

Looking at the package overall, it seems that POWER gains its

usefulness by allowing the programmer to define his own func

tions, and doesn't box him in with a long list of added commands.

The main drawback that I find with the instant-action key system

is that you must tack unsightly REM statements to the beginning of

a program in order to define the keys (these REMs may, of course,

be removed when development has ceased on the program, but

we all know that never happens). Also, those definitions only

prevail while the current program is in memory. This could be

seen as an advantage in that each program can have unique key

definitions, but too many times I have LOADed a little utility of

some sort and subsequently found myself lost in the wilderness of

an unPOWERed keyboard. MOREPOWER allows keys to be de

fined independently of a BASIC program, but provides no facility

for SAVEing the key definitions to disk.

In conclusion, 1 have the following advice for you: If you do a lot of

programming on your 64 in BASIC (or in assembler using PAL),

and you wish to increase your productivity, buy POWER 64. Once

you get used to it, you will turn out programs much faster,

especially large systems involving many subprograms on disk

(using MOREPOWER). In addition, using POWER will not take

away any fun out of programming, since it adds as little or as much

power as you require. If you write programs for profit as well as

fun, the list price of approximately $70.00 will be easily repaid in

increased productivity. The manual speaks wisely when it says,

"Every time you power up [your system], remember to POWER

up by loading from your POWER 64 disk".

The Transactor 23 Volume 5, Issue 03

The MflNflGER Column Don Bell

Brantford, Ontario

Creating A New File Or Revising An Old One?

Rather than jumping into a new application in this article, I

would like to respond to a problem many users have

mentioned in their letters.

When you first design a new application it is often difficult to

imagine all the reports or searches you may want. At some

time or other you will discover ways of improving on your

record entry screen or file design. You may want to adjust

layout of prompts and fields on the screen, add new fields, or

extend the length of existing fields.

Some minor modifications can be made by revising the old

file. More substantial modifications require creating a new

file.

IT IS ALWAYS WISE TO ONLY ENTER A FEW RECORDS

(say 10) WHEN YOU ARE FIRST DESIGNING YOUR FILE

AND ONLY MAKE A SMALL FILE. Then you can experi

ment with the file design without worrying about blowing

away a whole bunch of records that you invested a lot time

entering. Also, you will not use up a lot of valuable space on

your diskette since you are rewriting an old file instead of

writing a new one each time you make a change in the file

design.

I will now attempt to explain how you can revise your file

design without fear of destroying all those records that you

so painstakingly created.

WARNING! Revising your file can be a dangerous business.

Before attempting to revise your file ALWAYS make a

backup copy of your diskette on a new, unused diskette,

using the BACKUP option in the main menu.

Revising An Old File

The word "REVISE" in the CREATE/REVISE option is

slightly misleading. Using REVISE in the CREATE/REVISE

option, you can ONLY perform minor modifications to your

screen format and file design i.e. move the text prompts

around or change the field types (numeric or alphanumeric).

Any major alterations in your file design will result in your

writing a new file and destroying all the records in your old

file.

If you wish to revise your file or screen layout, begin by

choosing the CREATE/REVISE option from the main menu.

IF YOU DO NOT WANT TO CHANGE THE NUMBER, SIZE

OR SEQUENCE OF FIELDS IN YOUR FILE, press 'R' (for

revise) and RETURN for the following screen prompt:

CREATE A NEW FILE/REVISE AN OLD ONE? R

Make minor modifications to the screen, making sure all

fields longer than 1 character are enclosed in 'up arrows'.

Press 'back arrow'.

Answer the next screen prompts as follows, pressing RE

TURN after each entry.

ARE YOU SURE(Y/N) Y

ANOTHER SCREEN (Y/N)? N

If indeed you have NOT ALTERED the file, the next screen

prompt will be:

DO YOU WISH TO ALTER FIELD TYPES?

At this point it is usually a good idea to answer Y, then

press RETURN. You can now cursor down through fields

and check to see if all your field types are correct. Fields

requiring only number entries are numeric (e.g. fields for

dates or $ amounts). Remember, phone numbers with a

space separator are alphanumeric, as a space character is

considered alphanumeric. When you are finished checking

all the field types press 'back arrow'.

If you HAVE ALTERED the file, the program knows you have

altered the file, and confirms this with the following mes

sage:

FILE HAS BEEN ALTERED. NEW FILE(Y/N)?

This last prompt is extremely important. In addition to

telling you that you have altered the file, the program is

asking you if you want to create a new file. If you have only

created a few records and don't mind destroying them then

answer 'Y*. The program will then rewrite over the old file

blanking all the records.

If you don't want to destroy the records in your old file, then

answer 'N'. If you answer 'N', then the revise procedure will

be aborted here. You now know that you cannot use the

The Transactor 24 Volume 5, Issue 03

'REVISE' part of the CREATE/REVISE option to make the

changes you want to your file. Press 'F2' to abort this

operation or return to the beginning of the CREATE/REVISE

option.

Creating A New File Using Your Old File And Old

Records

If you want to change the number, size or sequence of fields

in the file, you will have to create a new file. Don't worry,

you don't have to start from scratch. You can use your old

screen to create a new screen and transfer records from your

old file to the new file.

Enter the CREATE/REVISE option from the main menu.

Enter a new filename (i.e. different than your old file name).

Answer the next screen prompts as follows, pressing RE

TURN after each entry.

CREATE USING AN EXISTING SCREEN (Y/N)? Y

ENTER FILENAME? XMASLIST (or whatever name you

used for the original file)

You now have the option of changing the border, back

ground and cursor colours.

Your original screen will appear with all the field indicators.

Make the necessary changes to the screen and then press

'back arrow'. '

Answer the next screen prompts as follows, pressing RE

TURN after each entry.

ARE YOU SURE (Y/N) Y

ANOTHER SCREEN (Y/N) N

At this point you must decide if there will be enough space

on the same diskette for both the old and new files. If either

of your files is over 100 records, then it's probably a good

idea to put a new formatted diskette in the drive. In any

case, it's always a better idea to start a new application on a

new diskette.

Answer the next screen prompt as follows, pressing RE

TURN after the entry.

IS THE FILE DISKETTE IN THE DRIVE? Y

The disk drive will then check to see how much free space is

available on the diskette and tell you the maximum number

of records you will be able to create in your file. You can

then either accept the maximum number or choose to

create fewer records. It is best not to choose the maximum

number, as you want to save some disk space for your report

files. Also, you don't have to make the new file the same size

as the old file. The file should at least be large enough to

transfer the old records over to the new file.

Copying Records From Your Old File to the New File

Now to copy records from your old file to your new file. First,

you will need printouts of the field numbers for both of your

files. These will aid in your equating similar fields in your

source file and destination file. Begin by entering the MA

NIPULATE FILES option from the main menu. Then choose

the RE-ARRANGE A FILE function in the MANIPULATE

FILES menu.

Now there's a small stumbling block at this point in the

program which you may or may not have found confusing if

your source and destination files are on different diskettes.

At the top of the screen you are prompted to ENTER

DESTINATION FILE NAME and at the bottom of the screen

you are prompted to PLACE THE DESTINATION DISK IN

THE DRIVE. Perform the command at the bottom of the

screen first i.e. before entering the filename you must first

place the destination diskette in the drive. The same applies

to the next 2 screen commands - ENTER SOURCE FILE

NAME and PLACE THE SOURCE DISK IN THE DRIVE.

Place the source disk in the drive and then enter the file

name. Refer to page 39 in the manual on Rearranging A File.

You will then equate fields in your new file with fields in

your old file. IF YOU DO NOT WISH TO COPY INFORMA

TION INTO A FIELD, ENTER 'O'and press RETURN. (1

suggest you correct the documentation on page 39 which

wrongly states: "If you do not wish to transfer any data to

this field, simply cursor off the line to the next field.)

When you have finished defining which source fields relate

to which destination fields, press 'back arrow'.

At this point, arm yourself with the patience of Job. Waiting

during the data transfer process may make you feel like an

electronic Methuselah. You will have to wait long intervals

while the program is either reading the old file, writing the

new file, or doing a mysterious garbage collection without

telling you. DO NOT TRY TO SHORT CIRCUIT THE DATA

TRANSFER PROCESS AS YOU MAY DAMAGE YOUR FILE.

DON'T PHONE - WRITE!

If you have questions regarding this application or you

would like to suggest ideas for future columns, please write

me a legible, coherent letter, including sample data and

screen dumps. I will attempt to answer letters in this

column. Write to: Don Bell, BMB Compuscience Canada

Ltd., 500 Steeles Ave., Milton, Ontario, Canada, L9T 3P7.

Social Insurance Number Checker

by James Whitewood, Milton, Ontario

In Canada, and several other countries, everyone, every

where, that is eligible for work, is assigned a Social Insur

ance Number or SIN. Canadian SINs can be verified with a

The Transactor 25 Volume 5, Issue 03

simple formula that can be implemented with the Manager '64

Math function.

SIN checking works this way. Using the SIN: 447 188 350

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

447188350 The last digit (0) is the check digit

4 + 7 + 8 + 3 = 22 Take the 1 st, 3rd, 5th and 7th digits and

sum them.

4 18 5 Take the 2nd, 4th, 6th and 8th digits

x 2 and double them

8 3 7 0

8 + 3 + 7 + 0 = 18 Sum the digits from Step 3.

22 + 18 =40 Sum the results of Step 1 and Step 2.

50-40 =10 Subtract the Step 5 result from the next

highest multiple of ten. If the difference

is 10, the result becomes zero.

If the SIN is valid, the check digit and the number determined at

the end of Step 6 will be the same.

Once more using 460 050 461

Stepl. 460050461

Step2. 4 + 0 + 5 + 4 = 13

Step 3. 6 0 0 6

x2

12 0 1 2

Step 4. 1+2 + 0+1+2 = 6

Step 5. 6+13 =19

Step 6. 20-19 = 1

Again, the check digit matches and we have a valid SIN.

Using Manager Math we would code:

1 TO R90

(Nl + 1)/ 10I8TOR91

WHILE R90< 10 DO

R91-.5TO0R(R90)

(R91-R(R90))*10TOR91

R90 + 1 TO R90

ENDWHILE

;field one is the sin field

;first we split the

;sin into

;individual digits

R2*2000 + R4*200 + R6*20 + R8*2 TO R92 ;double 2nd, 4th, 6th and 8th, and sum them

11 TO R90

(R92+1)/ 10I4TOR91

WHILE R90< 16 DO

R91-.5 TO 0 R(R90)

(R91-R(R90))* 10TOR91

R90+1TOR90

ENDWHILE

;split sum into

individual digits

R1+R3 + R5 + R7 + R11+R12 + R13 + R14 + R15TOR93

R3/10-.5TO0R94

(R94+1)* 10-R93TOR95

IFR95=10THEN0TOR95 ENDIF

IFR95 = R9THEN

'VALID SI NUMBER' TO Dl

ELSE

'INVALID SI NUMBER1 TO Dl

ENDIF

Dl is a display position that must be set up in advance. It

;determine the difference

;between the sum and

;the next highest multiple of 10

;if the difference is ten

;set difference to zero

;if result is equal to check digit

;print 'valid' at dl

;or else

;print 'invalid' at dl

would then be up to the operator to spot the message and

change the SIN if necessary.

The Transactor 26 Volume 5, Issue 03

Hardware Corner Domenic DeFrancesco

Chris Zamara

Downsview, Ont.

In the last Hardware-Corner, we explained what the user port on

your PET or 64 is, and gave a brief example of how to use it from

BASIC. In this article we will actually connect a simple circuit to

the port - a row of 8 LED's (Light Emitting Diodes). Once this

circuit is built, you will be able to program to your heart's content,

controlling the LEDs in a variety of ways, while learning the

fundamentals of digital binary devices.

A Few Notes of Warning

You must remember that assembling these circuits is not like

programming. A mistake in a program might mean at worst

resetting the computer, but a mistake in assembling hardware

could mean an expensive service bill. If you follow the few simple

rules outlined below you should have no problem.

1) Always double check your circuit, (especially the power connec

tions to the ICs), before applying the power. I know that sometimes

you're so anxious to see if the circuit works that you don't want to

bother checking it, but remember a mistake could be fatal to your

computer AND pocket book.

2) Never apply more than five volts to the circuit. The ICs in the

computer and the ICs that we will be using in our projects can only

tolerate a voltage between 0 and 5 volts on their input pins. Any

voltage outside this range will permanently damage your elec

tronic components. C64 and VIC 20 users should be aware of the

12 volts AC pins on the User Port. Accidently connecting one of

these pins to an IC will surely damage your circuit.

3) Never connect two output pins together. If two output pins are

connected together for a long time, excessive currents will flow in

the IC and cause damage. Connecting an output to GND or +5

volts will also cause damage.

4) Always turn your computer off when connecting a circuit. If you

forget to do this once, and plug a circuit into a live computer, odds

are that nothing will happen. However, the risk is there, and if you

do it often, one of these times you'll fry something.

If you turn on your computer and it does not power up within the

normal amount of time, immediately turn off your computer and

check your circuit.

The LED Circuit: Theory Of Operation

Our goal is to connect 8 LEDs to the 8 data lines of the parallel port.

The lines from the computer, however, can supply only 1.6

milliamps, which is not enough current to directly drive LEDs. To

control the LEDs from the computer, we must use a "buffer" IC

between the parallel port lines and the LEDs. The chip we are

using, the 74LS240, actually contains 8 inverting buffers, and each

buffer's output is capable of supplying up to 24 milliamps. Buffers

are available in inverting and noninverting configurations, and an

inverting buffer is so called because its output is the inverse of its

input. This means that a logic level 0 (zero volts) applied to the

input will result in a logic level 1 (+ 5 volts) on the output, and vice

versa. These outputs drive the LEDs, which are connected in series

with current limiting resistors. The resistors prevent damage to the

LEDs by limiting current to a safe level of about 8 milliamps. The

output of each buffer is connected to the cathode (negative side) of

each LED. (The cathode is the shorter of the two ends of the LED)

Thus, when a high voltage (logic level one) is present at the buffer

input, the resultant low voltage on the output of the buffer will turn

the LED on. See the schematic diagram in figure 2 to see how the

connections are made.

What You Will Need

The only parts you will need for the circuit are listed below. We

suggest using a "breadboard" for mounting the components, so

that you can easily modify the circuit, or take it apart and re-use

the parts for future projects.

Parts Required

Quantity Description

1 74LS240 Octal inverting buffer

8 Light Emiting Diodes

8 150 ohm resistors, 1/4 watt

It is also recommend that a cable be made up with an edge card

connector on one end, (to plug into the computer), and a 24 pin dip

connector on the other end, (to plug into the breadboard). You

should be able to find the above parts at any electronics supply

house.

The User Port to Breadboard cable

For this project and the ones that follow, we will be using the same

type of cable to connect the user port and the circuit. This cable

will have an edge-card connector on one end, to plug into the user

port, and a "24 pin DIP header" which plugs into the breadboard.

The cable can be easily unplugged from the board for use in other

projects, and can be used to connect virtually any circuit to the

user port. To make the cable, you need the following items:

The Transactor 27 Volume 5, Issue 03

about 1 foot of 24 conductor ribbon cable

24 pin 0.156-inch spacing edge-card connector, with headshell

24 pin DIP header

To make the cable, first separate the individual wires on one end

so that there is about 5 cm. of free wire. Strip the ends of the wires,

and tin the bare ends with solder. Solder the wires to the edge

connector, following the connection diagram in figure 3. It is a

good idea to put a headshell over the connector, to maintain the

integrity of the solder joints. The 24 pin DIP header goes on the

other end of the cable, as in the diagram. Use pressure from a vice

to securely clamp the two pieces of the header together, sandwich

ing the ribbon cable between them.

Beginning Construction

Once you have all the parts you need, plug the cable header

connector, the 1C, the LEDs, and the resistors into the breadboard

as in figure 1. Now connect the wires, following figure 1 and the

schematic diagram in figure 2. Photo 1 shows the completed

circuit, including the cable. To make the connections, *22 gauge

solid wire is recommended (this is the normal telephone-type

wire, which is available everywhere in abundant supply). Connect

ing the circuit for use on the PET/CBM is a bit more complicated,

since + 5 volts is not available on the user port. You can obtain + 5

volts from pin 'B' or pin '2' on the cassette port, using a 0.156 inch,

6 contact connector.

Plugging it in

Once the circuit is built and the cable is wired and plugged in, you

are ready to plug in to the user port. With the computer off, plug

the large flat connector into the user port, making sure that the

correct side is facing up. Turn on the computer. All the LEDs

should go on, and the computer should power up normally. If the

computer does not power up within the normal amount of time,

immediately turn it off and re-check the wiring of the LED circuit.

If everything goes OK so far, you can test out the circuit. First,

recall some of the theory about the parallel port from the last

article. The parallel port has two memory locations associated with

it, the data direction register, and the data register. These locations

are as follows:

Data Direction: DDR =

Data Register : DR =

PET/CBM VIC C64

59459 37138 56579

59471 37136 56577

The data direction register controls which of the lines on the

parallel port are inputs and which are outputs, and the data

register allows you to control the state of the outputs, and read the

state of the inputs. That's how it works, in a nutshell - for

examples, refer to last article.

With this information under our belt, we should be able to test the

circuit: for starters, make all of the LEDs go off. When controlling

the LEDs in any way via software, all of the lines on the parallel

port must be set as outputs. We do this by setting all bits in the data

direction register to ones. In BASIC,

POKE DDR, 255

. . .will accomplish this, assuming the variable 'DDR' has been set

to the appropriate value from the table above.

As soon as the data direction register is set to make all the lines

outputs, all of the LEDs should go off. This is because when you

turn on the computer, the I/O chip resets with zeroes in all of its

registers. This makes all lines low, turning all the LEDs off. If they

do in fact turn off, the circuit is probably working properly.

Controlling the LEDs

Once the data direction register is set as above, you can control the

LEDs in any of the 256 possible off/on combinations. Set the

variable "DR" as indicated in the table, then try this:

POKE DR, 1

What happens? LED #0 should turn on. Now try:

POKE DR, 2

. . .and LED#1 should turn on. Now guess what will happen if you

POKE DR,3. Enter the POKE and see what happens. If you were

right, congratulations. You understand the binary number system.

If you expected LED #2 to turn on, here's what is happening. Recall

the binary number theory from the last installment of this article:

Each bit in the data register controls the corresponding LED on the

breadboard, i.e if bit 0 is one, LED 0 is on. Bit 1 controls LED 1 in a

like manner, etc. Thus, to turn on LED #2, bit *2 must be set to

one. To set any given bit to a one, that bit's value must be added to

the number being stored in the data register. The value of each bit

can be determined by the following equation:

bit value = 2 t (bit number)

Using the above equation, we could set bit #2 to a one (turning on

LED #2), with:

POKE DR, 2t2

If we wanted to turn on LEDs 0, 3, and 4, for example, we could

add all the bit values as follows:

POKE DR, 2tO + 213 + 2t4

Using this simple equation, you can easily control the LEDs from

BASIC. We have concocted three short programs (listings 1-3) to

create some interesting effects. Try typing the programs in, and

look at the code to see how they do what they do. Once you get the

idea, try some of your own programs. Becoming comfortable with

bit control in this manner is an important first step in understand

ing the nature of binary devices, and the knowledge will help

when controlling any other devices you might want to connect to

the parallel port. Meanwhile, you may be able to actually find

some practical applications for the LED circuit, for example using

the LEDs as status indicators when de-bugging a complicated

program.

In the next issue, we'll use the parallel port to read pushbutton

switches, and take a look at how to read a keyboard matrix.

The Transactor 28 Volume 5, Issue 03

Listing 1

A demonstration program for the LED circuit, with it's 'quick and

dirty' two line equivalent below. Note the exponential formulas in

lines 210-230 and see how they correspond to the patterns on the

LEDs.

100 rem" Dom's idea and Chris's code **

110 rem" for hardware corner LED cct **

115:

120 ddr = 56579: rem* data direction reg.

130 dr =56577: rem* data register

140 rem* (above values are for c64) *

150:

160 poke ddr,255:rem set to all outputs

170:

180 for loop = 0 to 1 stepO

190 :fori = 1 to 4

200: for j = 0 to 7

210: if i = 1 or i = 3 then p = 2tj + 2t(7-j)

220: if i = 2 then p = 2t(7-j)

230: if i = 4 then p = 2tj

240: pokedr.p

250 next j,i,loop

1 poke56579,255:fork = 0to1 e30:fori = 1 to4

:forj = 0to7:l=2t(7-j):r = 2tj

2 poke56577,-(i = 2)*l-(i = 4)*r-(i = 1 on = 3)*(l + r):nextj,i,k

Listing 2: Knight Rider

The program uses DATA statements to supply a sequence of bit-

pattern information. The data could have been calculated by the

program, but in this case using DATA statements proved to be a

more practical approach.

100 rem "Knight Rider" **

110 rem " for H ,C.#2 LED board * *

120:

130 ddr = 56579: rem* data direction reg.

140 dr =56577: rem* data register

150 rem* above values for c64 *

160:

170dimd(14)

180 for i = 0 to 14: read d(i): next i

190:

200 speed = 60: rem* lower value = faster *

210:

220for loop = 0to 1 stepO

230 :for i = 0 to 14

240 : pokedr.d(i)

250 : for delay = 1 to speed: next delay

260 next i.loop

270:

280:

290 data 1,3,12,24,48,96,192,128

300 data 192,96,48,24,12, 6, 3, 1

1 poke56579,255:fon = 0to14:reada:poke56577,a

:ford = 1to60:nextd,i:restore:goto1

2 datai,3,12,24,48,96,192,128,192,96,48,24,12,6,3,1

Listing 3: Roulette Wheel

This program, followed by it's short version, simulate the spinning

of a roulette wheel. Pressing SPACE starts the "spin" and eventu

ally one LED will remain lit. The code was written avoiding the use

of GOTOs so that it may be placed anywhere within a larger

program. The COS function in line 350 is used because it seems to

approximate the rate at which a roulette wheel slows down. This is

purely empirical construction and does not follow any real physi

cal or mathematical laws for a spinning roulette wheel.

100 rem* roullete wheel program for **

110 rem* led circuit **

120 rem *" (written without using GOTOs)

130:

140 ddr = 56579: rem* data direction reg.

150 dr =56577: rem* data register

160 rem" (above values are for C64:

170 rem" see text for PET/VIC values)

180:

190 poke ddr,255: rem* 255 = all outputs

200:

210dime(7)

220 rem* array e() holds bit values *

230 for i = 0to7:e(i) = 2t(7-i): next i

240:

250 print "@press SPACE bar to 'spin'."
255:

260 for k = 0 to 1 step 0: rem* loop *

270fori = 0to1:geta$:i = -(a$= " "):nexti

280n = int(rnd(1)*70): print n;

290:

300 rem* start off at next unlit led *

310led = ledand7

320:

325 rem* main 'spin' loop *

330 for i = 0 to 1

340 : poke dr,e(led and 7)

350 : inc = (cos(led/n*n) + 1)/2

360 : led = led-fine

370 : i = -(led> = n or mc<0.04)

380 next i

390:

400 print "flspin ended
410 next k

1 poke56579,255:fori = Oto7:e(i) = 2t(7-i):next:fork = 0to1 e30

2 fori = 0to1 :geta$:i = -(a$ = " "):next

:n = int(rnd(1)*70):printn:l = Iand7

3 fori = 0to1 :poke56577,e(land7):a = (cos(l/n*7i) +1)/2

:l = I + a:i = -(l>nora<.04):nexti,k

The Transactor 29 Volume 5, Issue 03

Photo by Ron Ing

.; |:.;.j.:. I ::!

■them

u.

Figure 1

The Transactor 30 Volume 5, Issue 03

Port

u

s

e

R

p

0

R

T

2..C-L

Figure 2

D

£

I

U

3

U

►J

see te>

r 1

r S

&

8

„

'3

IS

17

ID

15V

ICl

-a

ID

p

I If

i8

16

IV

/I

?

7 *!

M

WVAAAf-—h

-AA/W '

ISOJl

-WWi -

u\ST

PET

tft\ C3l FLA(,

30X0 CMTI

?B3 PB3

PfiM

PBC

PB5

oeer

"!*«

RIBBON CABLE

1

a

^

c

3

D

^1

e

5

I

&

VI

7

3

8

u

10

Pft

II

M

\Z

I

23,

2

VI

3

21

4

2o

S

11

t,

l«

7

n

8

■)

\S

10

i<t

M

\3

Figure 3

The Transactor 31 Volume 5, Issue 03

QUADRA 64 Daniel Bingamon

Batavia, OH

Edit 4 Programs On Your Commodore 64 Simultaneously

With This Fabulous Memory Partitioning Utility

Memory gets bigger and bigger but people still write small programs.

Occasionally you might be working on a program when something

comes up. Then you have to save what you're doing and load another

program up. If your programs are relatively small, Quadra 64 will let

you load both of them into separate areas. It's also handy for testing

small subroutines.

This idea was once used on the PET computer with a program called

Quadra-Pet which divided memory into four 8K segments. Quadra 64

divides the Commodore 64's memory into three almost 8K segments (3

bytes short of 8K) and one 14K segment (partition no. 3)

Each partition has its own set of variables, 100% localized. No part of

either program will interfere with the other, unless you do it deliber

ately.

This version of this program has a wedge added. Those of you who

don't know what a wedge is, it is a process of adding extra commands to

the computers language interpreter. The extra commands are provided

below:

Command Description

£ Print current partition number

and re-enable pause keys after

using RUN/STOP RESTORE

Select Area 0, etc.

Areas 0-2 are 8K in length.

Area 3 is 14K.

£0

£1

£2

£3

Also:

Pressing the Control and Commodore keys will cause the computer to

pause. This will let you halt LISTings, or pause during execution of a

program. Try this as a direct command:

for j=l to 10000 : print);' next

Press Control/Commodore and notice how execution halts even with

out scrolling.

Pressing Control and Shift will re-enable program from pause.

Pressing STOP key while in quotes will allow computer to leave quote

mode when cursor movements are used.

IMPORTANT

After saving & running the program, the correct way to start up Quadra

64 is to type:

SYS 49152

Then type 'NEW to clear memory. To use each partition for the FIRST

time you should always type 'NEW or use the Initialize program to do

that for you.

The best way for a program to call another program in a different

partition is to print the wedge command and the needed 'RUN' or

'GOTO' statement on the screen and POKE carriage returns into the

keyboard buffer to execute those commands, (a good example is the

initialize program.)

Remember to SAVE what you type before running, one mistake can

cause a terrible crash and you will have to retype everything. The

program will notify you if there is an error in your DATA statements.

Two or more programs can obviously be stored in memory at the same

time. It may be possible to have two BASIC programs running at the

same time using the keyboard interrupt. One would have to switch

program pointers and take snapshots at zero-page and develop a

program to link in the background program to run. I once wrote a

hi-res graphics program to draw with a joystick while BASIC was

running something else using the keyboard interrupt. Foreground and

Background ARE possible on the 64, is it worth the attempt?

Special thanks to Jim Butterfield for the memory maps that made this

possible.

Editor's Note:

Since Daniel sent us this program, it's become the first thing I load to

start work, especially when I'm collecting articles together for the next

magazine. I load the drive 0 directory into area 0, the drive 1 directory

into area 1 (naturally), and any programs usually go into area 3, the big

one - and I still have area 2 for any extra stuff I may need later. It's

perfect!

Initialize Program

After running the Quadra 64 loader, you'll need to type NEW in every

area, or just run this program - it will do it for you.

5cd$ = chr$(17)

10printchr$(147)cd$cdcd"jC1 "cdcd:print" new"

20 printcdcd"£2 " cdcd:print" new"

30 printcdcd" £3 " cdcd:print" new"

35 printcdcd" £0" chr$(19)

40poke198,7:fori = 631to637:pokei,13:next

Quadra 64 Loader

1000 printchr$(147):print" quadra 64 w/wedge"

1010 print:print" commands:"

1020 print:print" £ display partition number."

1030 print" £0-3 select partition number"

1040 print:print" run the initialize program to clean"

1045 print" memory partitions."

1046 print:print" now loading wedge. . .."

1047 rt$ = chr$(145):for j = 1 to20:rt$ = rt$ + chr$(29):next

1050fori = 49152to49694

The Transactor 32 Volumes, Issue03

1060 reada:pokei,a:ck = ck + a:printrt$;i

1070next:print

1080 if ck = 58348thenpnnt" no errors. sys49152 to

1090 print "there is a error

1100 print" not attempt to

in your data, do"

un this before"

1110 print" correcting errors."

start.": end

1120 poke 49152,96:rem poke in rts to prevent accidental running

1130 stop

1140 data 169,

1150 data 3,

1160 data 140,

1170 data 140,

1180 data 169

1190 data 0,

1200 data 30,

1210 data 1931 i— 1 V/ \J*J I ^' i *** ^^ t

1220 data 82,

1230 data 58,

1240 data 66,

1250 data 70,

1260 data 82,

1270 data 13

1280 data 240,

1290 data 76,

1300 data 72

1310 data 0,

1320 data 0,

1330 data 41,

1340 data 14,

1350 data 201,

1360 data 76,

1370 data 1

1380 data 40

1390 data 1

1400 data 72

1410 data 1

1420 data 104

1430 data 1

1440 data 160

1450 data 201

1460 data 169

1470 data 169

1480 data 160

1490 data 169

1500 data 20

1510 data 205

1520 data 208

1530 data 201

1540 data 2

1550 data 0

1560 data 208

1570 data 251

1580 data 208

1590 data 135

1600 data 232

1610 data 169

1620 data 192

1630 data 224

1640 data 0

1650 data 162

1660 data 15

1670 data 133

1680 data 0

1690 data 1

1700 data 232

1710 data 207

1720 data 192

1730 data 76

1740 data 248

192,

169,

20,

0,

n

141,

171,

234

65,

32,

73,

79,

65,

n

16,

116,

32

208,

76,

207,

201

51

151

8

0

40

0

72

0

104

0

75

228

8

133

193

3

189

4

6

201

189

246

168

6

192

224

0

162

15

133

0

208

251

173

240

224

192

76

248

193

160,

193,

3,

40,

133

159,

169,

32,

68.

78.

82,

78,

n

201,

164,

229

10,

23,

141,

49,

240,

193,

1

40

1

72

1

104

1

160

908

141

133

54

160

88

76

169

,208

, 5

,207

, 165

, 145

,169

, 162

, 15

, 133

, 0

,208

, 251

, 189

,246

, 168

, 159

, 20

, 15

, 76

,248

, 193

, 0

121, 141,

160, 82,

88, 160,

140, 0,

53, 169,

192, 169,

0, 141,

96 147,

54, 52,

65, 78,

71, 65,

32, 84,

83, 65,

0, 32,

58, 240,

0, 0,

193, 104,

76, 59,

193,201,

159, 192,

240, 13,

11,208,

76,177,

8, 1,

0, 40,

40, 1,

0, 72

72, 1

0, 104

104, 1

0, 160

29, 169

8, 3

44, 169

76, 135

82, 120

174, 159

135, 192

0, 133

10, 32

208, 246

192, 149

44, 133

251, 173

1,141

0, 189

208, 246

251, 168

189,243

246, 165

, 168, 145

, 5,193

,165, 44

, 145,251

, 192,201

,201, 2

, 208, 234

,248, 193

, 193, 181

181, 43

9, 3,

120, 141,

0, 140,

72, 140,

28, 133,

67, 160,

30, 194,

81, 85,

13, 13,

73, 69,

77, 79,

72, 69,

67, 84,

115, 0,

245, 76,

0, 0,

3? 115,

193, 3,

52, 176,

104,201,

201, 50,

217, 76,

193, 76,

8 0,

0, 40,

40, 0

0, 72

72, 0

0, 104

104, 0

0, 160

167 141

169, 1

0, 133

192, 76

141, 21

192, 169

165, 197

212, 173

159,255

76, 49

43, 232

252, 169

30, 194

30, 194

225, 192

165, 44

145,251

192, 149

44, 133

251, 76

149, 43

133,252

76, 135

0, 240

240, 24

96, 181

181, 43

43, 157

157, 5

40,

21,

0,

0,

54,

192,

32,

65,

66.

76,

78,

32,

79,

201,

231,

0,

0,

0,

242,

48,

240,

112

203

40

0

72

0

104

0

160

0

9

133

53

8

3

0

201

141

173

234

224

0

201

96

149

133

76

43

252

135

232

169

192

16

208

43

157

243

193

8

3

8

104

169

32

112

68

89

32

13

84

82

92

167

0

201

0

72

240

12

193

193

0

0

0

0

0

0

0

0

3

43

169

175

140

32

63

2

141

162

, 15

, 133

, 0

, 76

, 43

,252

, 135

,232

,169

, 192

,224

, 0

,162

,201

, 30

, 157

,225

, 192

, 76

; 1

chrget

chrgot

plr

intger

temp

eval

print

dispch

intrpl

basic

tmpadd

1st

snd

trd

fth

Imt

mil

msg

wedge

exit 1a

exit

tapspc

parse

-~ -:

partit

erroc

contin

one

two

three

tour

bnk1

bnk2

bnk3

bnk4

errchk

3bel definitions

- $c000

= $73

= $7a

= S14

- Sfb

Sad9e

= Sb7f7

- Sable

= $0314

= $002b

= $14

■ $0800

= $2800

= $4800

$6800

= $a000

nitialization

da #>wedge ;infl wedge

dy #<wedge

sta dispch +1

sty dispch

Ida #>inlprg .enable mterupt

Idy #<intprg

sei

sta inlrpt +1

sly mtrpt

cli

Idy #00 .zero lirsl byte

sly 1st ;of partitions

sty snd

sly trd

Ida #00

sla memsiz

Ida #28

sta memsiz +1

Ida #0 .startup in

sta parlit .partition 0.

Ida #<msg .print title

Idy #>msg

jsr print

Ida #00

sta onetim

jsr pr 1

nop

nop

rts

byte $93,'quadra 64',$0d

byleSOd.'by daniel bmgamon"

byte SOd.'for ihe transactor'

.byte$0d,$00.$00.$00

jsr chrgei

cmp #jC ;if pound sign

beq parse ;process wedge,

cmp #'.

beq wedge

jmp Sa7e7

imp $a474

byte $00.S00.$00.$00.$00.$00

process wedge command

pha

jsr savmem ;slorecld pan daia

pla

jsr chrgei

cmp #00

bne conlin

jmp mtchk

u. 4 ff-r\r\ rAn jfiA

.byte $00.500,SOU

imp errchk

cmp #4

bcs irqinl

pha

and #$cf

sta partil

pla ;jump lo individual

cmp #'0 .partition routines

beq one

beq two

cmp #'2

beq three

cmp #'3

bne irqinl

jmp pf1

imp pf2

jmp pr3

imp pr4

partition select table

error

intchk

intprg

skp

cloop

skp2

pM

no

nrp■ Ad

[pa

pr3

Ip3

pr4

!:,•■

sta memsiz +1

jmp exit

imp $a(08 .syntax error

Ida #>intprg

Idy iKintprg

sei

sta intrpt +1

Cli

Idx paftil ;prinl part. no.

Ida #00
js' Sbdcd ;pnnl integer roulme

jmp exit

Ida $c5

cmp #63

bne skp .escape quote mode

Ida #0 ;whenstop key

sla Sd4 .depressed

Ida $028d ;enabfe freezing

cmp #06 ;with clrl & comm

bne skp2 ;keys.

jsr $ff9f ;ctrl& shift to

loa SOttJd .resume operaiiuii.

cmp #05

jmp Sea31

lax #00 ^partition 1

Ida bnk1 .x

sia

cpx #$oi

bne Ipt

Ida basic +1

sia $lc

Ida #00

sta Sfb

lay

sta (temp).y

Ida onelim

cmp #00

Ida #01

sia onelim

Ms

jmp exil

Idx #00 ipaMitton 2

Ida bnk2.x

sta basic.x

inx

cpx #$0f

bne Ip2

Ida basic +1

sta $lc

Ida #00

sia Sfb

lay

sta {temp),y

jmp exit

Idx #00 ;paftition3.

Ida bnk3,x

sia basic.x

inx

cpx #$0i

bne 1p3

Ida basic +1

sta Sic

Ida #00

sta Sfb

tay

sta (lemp).y

jmp exil

Idx #00 ;parlttion 4

sta basic, x

inx

cpx #$0f

bne Ip4

sla $fc

Ida #00

sta Sfb

tay

jmp exil

savmemldx #00 .save old pointers

savlp2 Ida partit

cmp #00

beq smi

cmp #01

beq sm2

cmp #02

beq sm3

bne sm4

savlpi inx

smi

CpX fffcUl

bne savlp2

rts

Ida basic.x ;!oad pointer Irom

sta bnk 1.x ;each partition.

jmp savlpi

word $0801 ,$0801 .$0801 S2800.$2800.$2800,S2800,$2800,$0000

word $2801 ,$2801 ,$2801 ,$4800,$4800.$4800,$4800,$4800.$0000

word $4801 ,$4801 ,$4801 ,$6800,$6800.S6800,$6800.$6800.$0000

word $6801 ,$6801 .$6801 ,$a000.$a000.$a000.$a000.$a000.$0000

cmp #'k

bne error

Ida #Sa7

sta dispch +1

sta dispch

Ida #$01

sta basic

Ida #$08

sta basic + 1

Ida #500

sta memsiz

sm2

sm4

Ida basic, x

sta bnk2,x

jmp savlpi

sta bnk3.x

jmp savlpi

Ida basic.x

sta bnk4.x

imn cav/lni

onetim byte $00 ;firsl lime indicator

end

The Transactor 33 Volume 5, Issue 03

Your BASIC Monitor

Part 2: The Disassembler
Bob Drake

Brantford, Ont.

A dissassembler is a fairly simple program. It uses mainly

brute force to do its job. A location is peeked. The value

there determines an entry in a table of values. The table

entry is the mnemonic (new-mon-ick) code for the opera

tion. Mnemonics are the abbreviations for machine lan

guage operations. They are also called op codes or operation

codes.

The second part of the chore is to determine how many

more bytes are required by the mnemonic. Implied opera

tions such as BRK need no more. Immediate, zero page and

relative operations need one more byte. Absolute opera

tions need two more bytes.

The third part of the operation is to write the whole thing

down in an acceptable form. Using 6502 standards for

assemblers this means including a * sign for immediate

mode, $ on hex addresses, brackets and ,X or ,Y on the

various indexed modes. Again this is primarily a brute force

job.

Before adding the disassembler to your monitor, you had

better fix a bug which crept into part 1.

7510 print

7520 input" number' ;n$

That's it.

The added code for the disassembler is listed here. Line 125

initializes all the data at lines 8000 and on. This is without a

doubt the worst part of creating a disassembler or assem

bler. The data are listed for all the accepted 6502 op codes. I

have mixed methods on the data. Those codes with many

addressing methods are listed in OP$(1) to OP$(21) and the

mnemonics are in one string MN$(1). OP$(22) has all the

codes using implied addressing, OP$(23) has all the

branches with relative addressing and OP$(24) has the

jumps. If an unknown value is located, three question marks

are printed. The simplest table would have had 255 entries.

Peeking at a memory value would have located the mne

monic. But there is an assembler coming in part 3. And we

needed to know the addressing mode. So, the program

trades a slight clumsiness for an easier solution.

The only tricky part is the calculations required for the

branches. The branch or conditional GOTO's (BCC, BMI,

BPL etc.) all use a second byte to create a jump forward or

backward. The jump is calculated from the beginning of the

NEXT instruction. If the second byte is 128 ($80) or less, the

jump is forward that amount. So, just add that value to the

location of the next instruction to get the destination. If the

second byte is bigger than 128 ($80) then the jump is

BACKWARDS by an amount of 255 minus the value. This is

accomplished in lines 9580-9590.

A couple of quick notes. Since the number of needed bytes

isn't known until the first byte is decoded, the program

automatically takes in the maximum of three bytes each

time. An address is then constructed as:

ADDR$= "$" +HI$ + LO$

This saves considerable work in printing the disassembled

code. As well, the low or second byte is readily available for

the instructions requiring it alone.

We'll add the assembler next time!

125gosub8000

220 r$= "xmrpslg*cd"

350 on r gosub 0,1000,2000,3000,4000,4140,

5000,6000,7500,9000

8000 rem data for assembler/disassembler

8010 rem imm/zer/zer-x/zer-y/abs/abs-x/

[10 spaces]abs-y/ind x/ind y/acc

8020 dim mn$(4),op$(24)

8030 mn$(1)= "adcandaslbitcmpcpxcpydeceorincld

aldxldylsrorarolrorsbcstastxsty

The Transactor 34 Volume 5, Issue 03

8040 op$(1) = " 696575**6d7d796171 ** "

8050 op$(2) = " 292535**2d3d392131 ** "

8060op$(3)= " **0616**0e1e******0a"

8070 op$(4)= " **242c************** "

8080 op$(5) = " c9c5d5**cdddd9dd1 **"

8090 op$(6)= Me0e4****ec**********"

8100 op$(7)= "c0c4****cc**********"

8110 op$(8) = " **C6d6**cede********"

8120 op$(9) = " 494555**4d5d594151 **"

8130op$(10)= "**e6f6**eefe* *******"

8140op$(11)= "a9a5b5**adbdb9a1b1**"

8150op$(12) = "a2a6**b6ae**be******"

8160op$(13)= "a0a4b4**acbc********"

8170 op$(14) = " **4656**4e5e******4a"

8180 op$(15) = " 090515**0d1 d190111 **"

8190 op$(16)= " **2636**2e3e******2a"

8200op$(17)= "**6676**6e7e******6a"

8210op$(18)= "e9e5f5**edfdf9e1f1**"

8220 op$(19)= " **8595**8d9d998191 ** "

8230 op$(20) = " **86**968e**********"

8240 op$(21) = " **8494**8c********** "

8250 rem implied

8260 mn$(2)= " brkclccldcliclvdexdeyinxinynop

phaplaphpplprtirtssecsedseitaxtxatay"

8270 mn$(2) = mn$(2) + " tyatsxtxs"

8280 op$(22) = " 0018d858b8ca88e8c8ea486808284060

38f878aa8aa898ba9a"

8290 rem relative

8300 mn$(3) = " bccbcsbeqbnebmibplbvsbvc"

8310op$(23)= "90b0f0d030107050"

8320 rem jumps

8330mn$(4)= "jmpjmpjsr"

8340 op$(24) = " 4c6c20"

8350 return

9000 rem disassembler

9010 print" ^disassemble memory"
9020 print" hold QshiftQ to pause: HreturnQ to stop"
9021 rem vic*replace line 9020 with lines 9022

9022 print" hold ||shift(j| to pause Hreturn0 to stop"
9030 gosub 4280

9040 if t< = f then t = f

9050 if f<0 or t<0 or f>65535 or t>65535 then 1260

9060 for m = f to t

9070 n = m

9080 gosub 7030:rem convert to hex

9090 for pr=1 top

9100 print#pr, by$":";

9110 nextpr

9120 t$= ""

9130 by = peek(m + 2):gosub7000:hi$ = by$

9140 by = peek(m + 1):gosub7000.io$ = by$

9150addr$= " $" +hi$ + lo$

9160 by = peek(m):gosub7000

9170 for i = 1 to 24

9180 for j = 1 to len(op$(i)) step 2

9190 if by$Omid$(op$(i),j,2) then 9250

9200 c = i :rem which code

9210 f1 =1

9220 po = (j + 1)/2:rem position

9230 i = 24 :rem exit the for-next nicely

9240 j = len(op$(i))

9250 next j,i

9260 if fK>0 then 9300

9270 mn$ = "???"

9280 t$ = by$ + "

9290 goto 9630

9300 rem found value and position of op code

9310 f1 =0

9320 mn = c-20:pp = po:if c<22 then mn = 1:pp = c

9330 mn$ = mid$(mn$(mn),(pp-1)*3 +1,3)

9340ifc>21 then 9490

9350 if po = 1 then mn$ = mn$ + " #$" + lo$

9360 if po = 2 then mn$ = mn$ + " $" + lo$

9370 if po = 3 then mn$ = mn$ + " $" + lo$ + " ,x"

9380 if po = 4 then mn$ = mn$ + " $" lo$ + " ,y"

9390 if po = 5 then mn$ = mn$ + addr$

9400 if po = 6 then mn$ = mn$ + addr$ + " ,x"

9410 if po = 7 then mn$ = mn$ + addr$ + " ,y"

9420 if po = 8 then mn$ = mn$ + " (" + addr$ + " ,x)"

9430 if po = 9 then mn$ = mn$ + " (" + addr$ + " ,y)"

9440 if m<>10 then m = m +1 -1 *(m>4)

9450t$ = by$+" "+lo$+" "+hi$+" "

9460 if po<5 then t$ = by$ + " " + lo$ + " "

9470 if po = 10 then t$ = by$ + "

9480 goto 9630

9490 if c<>24 then 9550

9500 m = m + 2

9510t$ = by$+" "+lo$+" "+hi$+" "

9520 if po = 2then mn$ = mn$ + " (" + addr$ + ")"

9530 if po = 1 or po = 3 then mn$ = mn$ + addr$

9540 goto 9630

9550 if c = 22 then t$ = by$ + " " :goto 9630

9560 rem jumps

95701$ = by$ + " " + lo$ + " "

9580 if by>128 then by = by-255

9590 n = m + by + 2

9600 gosub 7030

9610 mn$ = mn$ + " $" + by$

9620 m = m + 1

9630 for pr = 1 to p

9640 print#pr,t$ " " mn$:rem vic*print#pr,t$

:print#pr," " mn$:rem 5 spaces

9650 next pr

9660 if peek(653) then 9660:rem look for shift key

9670 get a$: if a$ = cr$ then 9690:rem look for return key

9680 next m

9690 return

The Transactor 35 Volume 5, Issue 03

Picprint:

A High-Resolution Screen Dump Utility
by Chris Zamara, Technical Editor

■B4:

m
L, ••• sJ

■-. .4

!

1

i
1

11

■:■

I

1
1
N

§wpk
■;: :■: :■::

«:«•••
:X :•: x:

A-;':-: :■:.

Ste

rn

■■■■-.

|

. . .

:::

Hi

•?:■;■::':

p

;•: :•: :■:
:■:;:■: x

y=!
S3;:

■<1; if:

:•:':!:
:■: :■: :-:

m

m

m |fe^;;x:..j:::::j

:'.''.•

::■:.*

i!;
-.-:■ -

s

i

iI
Photo 1

The Commodore 64's high resolution mode allows for some real

eye-catching displays. High resolution pictures are available on

disk, many which have been digitized from actual photographs.

An example is the well-known photograph of "Karen" used to

advertise Epson printers. Photo 1 shows Karen produced using

Picprint and a Star Gemini-lOX printer.

Picprint is an interrupt-driven program which allows viewing of

bit map or normal video mode, and dumping the bit map screen in

one of four formats: normal, normal reversed, wide, and wide

reversed (reverse mode is necessary because some pictures are

stored that way). The wide dump prints the picture so that it takes

up the width of the page, and horizontally stretches it in the

process. The function keys are used to select the above functions

as follows:

Fl: toggle text/bit map video mode

F3: normal hi-res dump

F5: wide hi-res dump

CTRL: when used in conjunction with F3 or F5, reverses the

printed image (switches black to white and vice

The version of Picprint as seen in Listing 2 is written specifically for

the Gemini-lOX printer, but should work unmodified with many

other popular dot-matrix makes which have a high resolution

graphics mode. The printer setup codes in lines 320-340 may have

to be changed for printers requiring different control characters to

enable graphics mode. If dual density mode is not available on

your printer, just use the codes for normal mode. This will only

affect "wide" picture dumps.

The control sequence necessary to change the linefeed size may

also be different on other printers. The program sends this se

quence in lines 1370-1420, which may be changed accordingly

(change the arguments in the "Ida *" instructions.). This listing

sends data to the printer via a Cardco interface, which must be set

to "graphics mode" so that it does not interpret any of the bit-map

data as C64 graphics or control characters. This is done by

selecting the secondary address as in line 1280, which may be set

to zero (change to ldy #0) if not using a similar interface.

Once Picprint is initialized, the high resolution picture currently

residing at location $2000 (hex) may be viewed at any time by

pressing Fl. Colour memory for the picture is supplied from text

video memory, so the screen must be cleared (or filled with any

one character) to get a clear view of the hi-res screen. Pressing Fl

again returns to normal text mode. This switch may even be made

while a picture is being loaded from disk, to see the screen

gradually fill up with picture data. At any time, the current picture

can be dumped using the function keys as outlined above.

A Couple of Usage Notes:

- To dump a picture residing in an area of memory other than

$2000, change the definition in line 450. (The screen viewed

using Fl will still be the one at $2000.).

- For some reason, Picprint will not dump to printer if POWER 64

is active in the system (it dumps to screen instead). Before a

dump, POWER must be turned OFF, and may be re-activated

with SYS 704 later.

Picprint lives at $c000, so you can keep it there safely, and enter

SYS 49152 whenever you get the urge. This links Picprint with the

system IRQ, and RESTORE will disable it again. For an easy way to

enter and initialize Picprint, use the BASIC loader in Listing 1. Now

you've got a perfect match: your computer and printer can make

beautiful pictures together.

The Transactor 36 Volume 5, Issue 03

4,

3,

0,

0,

2,

27,

0,

24,

1,

75.

0.

0,

20.

3.

4,

141,

Listing 1: BASIC Loader

1000 rem picprint loader

1010 for j = 49152 to 49498 : read x

1020 poke j,x : ch = ch + x : next

1030 if ch<> 41532 then print "data error" :

1040 sys 49152 : print " PICPRINT Enabled'

1050 data 76, 34, 192, 0, 1, 1

1060 data 100, 128, 64, 32, 16, 8

1070 data

1080 data

1090 data

1100 data

1110 data 47, 141,

1120 data 141, 21,

1130 data 197, 201,

1140 data 0,141,

1150 data 234, 173,

1160 data 169, 1,

1170 data 197, 201,

1180 data 6,208,

1190 data

1200 data

1210 data

1220 data

1230 data

1240 data 208,

1250 data 76,

1260 data 3,

1270 data 4,

1280 data 3,192,173,

1290 data 195, 255, 173,

1300 data 4,160, 4,

1310 data 169, 0, 32,

1320 data 192, 255, 174,

1330 data 201, 255, 169,

1340 data 169, 32,133,252,169, 27

1350 data 32,210,255,169, 51, 32

1360 data 210, 255, 169, 16, 32,210

1370 data 255, 169, 25,141, 31,192

1380 data 162, 0,189, 15,192,172

1390 data 5,192,208, 3,189, 19

1400 data 192, 32,210,255,232,224

4,208,237,169, 40,141

32,192,169, 0,162, 7

23,192,202, 16,250

0,160, 0,177,251

33, 192,230,251,

33,

9,

Listing 2: Source Code

end

27, 121, 192

64, 1, 0

0, 0, 0

0, 120, 169

3, 169, 192

88, 96,165

64,208, 8,169

4,192, 76, 49

192,208, 35

4,192,165

3,240, 27,201

8,169, 1,141

76, 123, 192,201

8,169, 0,141

76,123,192, 76

49,234,173, 17,208

32,141, 17,208,173

141, 24

169, 0

141, 2

169,255

6, 192

6, 192

32, 186,255

189,255, 32

6,192, 32

0, 133,251

5,192,

5, 208,

5, 192,

73,

49, 234,

192, 173,

, 240, 5,

73

24

208

141

41

141

32

162

1410 data

1420 data

1430 data 157

1440 data 162

1450 data 141

1460 data 2,230,252,173,

1470 data 57, 7, 192,240,

1480 data 23,

1490 data 23,

208

192

185

192, 29, 7, 192, 153

192,200,192, 8,208

1500 data 234, 232, 224, 8,208,216

1510 data 162, 0,189, 23,192, 77

1520 data 3,192, 32,210,255,172

1530 data 5,192,240, 6, 32,210

1540 data 255, 32,210,255,232,224

1550 data 8,208,231,206, 32,192

1560 data 208, 172, 169, 13, 32,210

1570 data 255, 165, 197, 201, 63,240

1580 data 5,206, 31,192,208,130

1590 data 169, 27, 32,210,255,169

1600 data 64, 32,210,255,173, 6

1610 data 192, 32,195,255, 32,204

1620 data 255, 76, 49,234

50 sys700

100 ; "PICPRINT"

110 ;hi-res dump utility

120 ;use function keys f3.(5 and 17

130 ;f7-toggle hi-res mode

140 ;f3 -dump picture

150 ;f5-dump wide picture

160 ;ctrl -reverse dumped picture

170 ;

180 ;assembled on pal 64

190 : n.
200 ;chriszamara-|uly 10/84 --

210 ;

220 .opt oo

230 *=$c000

240 jmp init ibypass variables below

250 ;

260 eorflag byteO

270 keyflag byteO

280 bigflag .byteO

290 filenum .byte 100 ;file number used

300 exp .byte 128,64,32,16,8,4,2,1

310 ;

320 dualres .byte 27,121.192,3

330 ;conlrol characters for printer

340 ;dual density graphics mode

350 ;

360 normres .byte 27,75,64,1

370 ;normal density graphics mode

380 Rvalues may vary among printers)

390 ;

400 bits * = *+8
410 rowcnt * = * + 1
420 eolent * = * + 1

430 cbyte * = * + 1
440 ;

450 screen =$2000 ;hires screen memory

460 scrnptr = $lb ;zero page pointer

470 keybd =197 ;current key pressed

480 ctrlflg =653 ;ctrl/shift flag

490 normirq =$ea31 ;normal irq entry

500 ;

510 ;kernal routines used:

520 chkout =$ffc9

530 chrout =$ffd2

540 close =$ffc3

550 clrchn =$ffcc

560 open = SffcO

570 setlfs =$ffba

575 setnam = $ffbd

580 ;

590 ;

600 ;

610 init = *

620 ;redirect interrupt vector

630 sei

640 Ida #<keychk

650 sta $0314

660 Ida #>keychk

670 sta $0315

660 cli

690 rts

700 ;

710 ;

720 keychk = *

730 ;get function key presses

740 Ida keybd ;look for key pressed

750 cmp #64 ;64isnokey

760 bne keydn

770 Ida #0

780 sta keyflag

790 jmp normirq

800 keydn = *

810 Ida keyflag

820 bne out

630 Ida #1

840 sta keyflag

850 Ida keybd

860 cmp #3 ;f7, switch video mode

870 beq flip

880 cmp #6 ;f5, dump wide picture

890 bne f3chk

900 Ida #1

910 sta bigflag

920 jmp dump

930 f3chk = *

940 cmp #5 ;f3, dump normal picture

950 bne ou!

960 Ida #0

970 sta bigflag

980 jmp dump

990 out = *

1000 jmp normirq

1010 ;

1020 ;

1030 flip = *

1040 ;toggle bit map graphics mode

1050 Ida $dO11

1060 eor #$20

1070 sta $dO11 ;bit map mode

1080 Ida $dO18

1090 eor #$08

1100 sta $dO18 icharacter base

1110 jmp normirq

1120 ;

1130 ;

1140 dump = *
1150 ;dump hi-res screen to printer

1160 ida 00

1170 sta eorflag reverses when 255

1180 Ida ctrlflg ;ctrl/shift flag

1190 and #4 ;check for ctrl key

1200 aeq norevrs

1210 Ida #255

1220 sta eorflag

1230 norevrs = *

1240 Ida filenum

1250 jsr close

1260 Ida filenum

1270 Idx #4

1280 Idy #4

1290 jsr setlfs

1291 Ida HO

1292 jsr setnam

1300 jsr open

1310 Idx filenum

1320 Jsr chkout

1330 Ida #<screen

1340 sta scrnptr

1350 Ida #>screen

1360 sta scrnptr +■ 1

1370 Ida #27

1380 jsr chrout

1390 Ida #51

1400 jsr chrout

1410 Ida #16

1420 sr chrout

1430 Ida #25

1440 sta rowcnt

1450 row = *

1460 Idx #0

1470 prtmode = *
1480 Ida dualres.*

1490 Idy bigflag

1500 bne big

1510 Ida normres,x

1520 big - *
1530 sr chrout

1540 nx

1550 cpx #4

1560 bne prlmode

1570 Ida #40

1580 sta eolent

1590 ;

1600 column = *

1610

1620

da #0

dx H7

1630 bitsclr = *

1640 sta bits.x

1650 dex

1660 bpl bitsclr

1670 dx HO

1680 ;

1690 cellsum = *

1700 Idy #0

1710 da (scrnptr),y

1720 sta cbyte

1730 nc scrnptr

1740 bne dobits

1750 nc scrnptr+1

1760 ;

1770 dobits = *

ireverse if Ctrl

;close file

;sa = 4 for cardco i/f

;open filenum.4,4

;no filename

;(like cmd)

;set up screen memory

; pointers

iprinter control-esc

isend to printer

;set linefeed to

;16/144 inches

;25 rows

;40 columns

.clear out cell

istorage area

istore byte from cell

;point to next byte

1780 ;add all bits in cbyle

1790 Ida cbyte

1800 and exp.y

1810 beq notset

1820 Ida bits.y

1830 ora exp.x

1840 sta bits.y

1850 nolset = *

1860 ny

1870 cpy #8

1880 bne dobits

1890 ;

1900 nx

1910 cpx #8

1920 bne cellsum

1930 dx HO

1940 ;

1950 sendbits = *
1960 ;senda!l8bytes

1970 Ida bits,x

1980 eor eorflag

1990

2000

sr chrout

dy bigflag

2010 beq justone

2020 sr chrout

2030 jsr chrout

2040 ustone = *

2050 nx

2060 cpx #8

2070 bne sendbits

2080 ;

2090 dec eolent

2100 bne column

2110 ;

2120 da #13

2130 jsr chrout

2140 Ida keybd

2150 cmp #63

2160 beq abort

2170 dec rowcnt

2180 bne row

2190 ;

2200 abort = *

2210 da #27

2220 jsr chrout

2230 Ida #64

2240 jsr chrout

2250 Ida filenum

2260 jsr close

2270 jsr clrchn

2280 jmp normirq

2290 end

icheck next bit

;if set. add to

;'bits" array

;B bits

;next byte

;naxt cell

in cell

;print bit image

llwomore limes for

;big picture

inext byte in ceil

;next column

;nextline

;check keyboard

;for stop key

;abort if pressed

;do next row

idump completed

[Initialize printer

;with "ESC@"

;(optional)

;close file

;cleari/o channels

The Transactor 37 Volume 5, Issue 03

Comparing Two

Basic Programs

Jim Butterfield

Toronto, Ont.

I often have several versions of the same program. Some

times, I can't decide which of two versions of a program -

say, DUMMY versus DUMMY5 - is the current version. It's

an awkward job to list them both and look through the code

trying to find the points of difference. Thus, I've often used

program BASIC COMPARE which will draw my attention to

the parts which don't match.

BASIC COMPARE uses disk: it checks the two programs as

they lie on disk. It depends on the fact that the line numbers

will still correspond between the two programs. So if you've

performed a program renumber between versions, this

program won't help.

Style

This program has an odd attribute: it seems not to use

numbers. Let me explain a little further. Some of us are used

to file formats such as OPEN 1,8,2,. . . or PRINT#1, but in

this case the numbers are almost always missing. Instead,

there's a variable. In other words, you might see

OPEN J,8,J+1. . . If J has a value of 1, the statement

becomes the equivalent of OPEN 1,8,2. . ., or if J is two, the

statement performs the same as OPEN 2,8,3.

Why all this? Is it just to be obscure? No: there's a lot of

"fiddly" work to be performed on the program files, and it's

much easier to deal with the general file J rather than the

The Transactor 38 Volume 5, Issue 03

specific files 1 and 2. Any time you write GET#1, you know

that sooner or later you'll have to write an equivalent

GET*2; it seems a lot of work.

Variables Jl and J2 have a special function: they set up a

loop. When we handle files, we might want both of them, or

a particular one. For example: when we have found that the

two files don't match, and want to go to the next line, we

may need to do any of the following:

- If the files had similar line numbers but the lines didn't

match, we want to advance both files to the next program

line;

- If file 1 had a line number that was smaller than file 2, we

want to advance file 1 only to the next program line;

- If file 2 had a line number that was smaller than file 1, we

want to advance file 2 only to the next program line.

Now: we set Jl and J2 to the appropriate "start" and "end"

file numbers. To do both files, we have Jl = 1 and J2 = 2, and

when we execute FOR J = J1 TO J2, we go from file 1 to file 2

inclusive. When we want to use only one file, we set Jl and

J2 to the same value; for file one, Jl and J2 would both have

a value of 1, so that FOR J=J1 TO J2 will exercise the one

file only.

Array L is there to prevent us from reading a file if we don't

want to read it. At end-of-file, we set L() to 9 and won't read

that file any more. And when we're reading through lines of

code, LO gets set to 1 when we see the end of the line.

All this makes the program somewhat hard reading, but try

your hand at working it out: you may find it worthwhile.

And if reading complex code isn't your cup of tea, you may

still use the program to compare Basic programs.

Running the Program

This program will run on any Commodore machine that is

fitted with disk. Basic programs are not fast, but they do tend

to be universal.

The program isn't too chatty, and isn't super fast, but it does

the job. It will ask PROGRAM NAME? - answer with the

name of one of the Basic programs you wish to compare. It

will ask the question again: give it the other program name.

Now the program will clunk away, looking at the two files. If

it finds a line in one program that doesn't exist in the other,

it will give the name of the program containing the line, and

the line number. If it finds a line which exists in both

programs, but contains different coding, it will print "♦DIF

FERENCE*" with the line number.

When it's finished, it stops. If you like, you can add error

counts, output to printer, or whatever seems like fun.

PROGRAM: BASIC COMPARE

100 open 15,8,15

110z$ = chr$(0)

Open the two program files:

120 for j = 1 to 2

130 input "program name" ;n$(j)

140 openj,8,j + 1,n$(j)+ " ,p,r" :get#j,a$,a$

150 input#15,e,e$,e1 ,e2:if e then print e$:end

160 next j

170 n$(3) = " * difference *"

180J1 =1:j2=2

Get the next line from each file:

200 for j =j1 to j2

210 if l(j)>0 goto 270

220 get#j,a$,b$

230 ifa$ + b$= "" then I(j) = 9:n(j) = 1e9:goto 270

240 get#j,a$,b$

250 n(j) = asc(a$ + z$) + 256*asc(b$ + z$):n(3) = n(j)

260 if st<>0 then I(j) = 9

270 next j

If both files are finished, quit:

280 if 1(1)>1 and l(2)>1 goto 450

Compare the two files:

290j0 = 0:j1=1:j2 = 2

300ifn(1)<n(2)thenj2 = 1

310 if n(2)<n(1) then J1 =2

315 if jl =j2 then jO = j1

If line numbers match, compare lines:

320 for j = j1 to J2

330 if l(j) = Othenget#j,a$(j)

340 if a$(j) = "" then l(j) = 1

350 next j

360 if a$(j1)<>a$G2) then JO = 3

370if I(j1)<1 orl(j2)<1 goto 320

Advise of any errors:

400 if j0>0 then print n$(jO);" line" ;n(jO)

410 for j = j1 toj2

420 l©-l(jM

430 next j

440 goto 200

Close the files and quit:

450 for j = 1 to 2

460 close j

470 next i

The Transactor 39 Volume 5, Issue 03

Unveiling The Pirate

Part 1: Current Methods
Richard T. Eve'rs, Editor

In this article I will be releasing information that is known by

few, of which those in the know hold to be a very deep and

dark secret. In my opinion this has been going on for a little

too long. Software piracy has run wild for quite a few years

now, and it is about time for a little information to leak out

about what is happening, how it is happening and how to

impede its cancerous spread just a slight bit.

Though I do not profess to know great scads of information

about every form of protection and deprotection known to

mankind, I have collected enough to put together a fairly

thorough presentation. This article is but the first in a trilogy

on this subject. The balance can be found in this issue, and

are guaranteed to please even the knowledgeable reader. As

I have just stated, this trilogy is for the sole purpose of

enlightening programmers about the reality of piracy and

how to prevent your creations from becoming just another

notch on a pirates belt. This is not a diabolical scheme to

hatch new flocks of hackers, even if it appears so at times.

Program protection is incorporated by people who want to

protect their creations from copyright infringement. Pro

gram deprotection is an occupation taken on by those who

find that normal programming is often very dull. Piracy adds

a bit of spice to an otherwise terrific occupation. This spice of

life costs software manufacturers millions of dollars every

year in lost revenue, and it usually does not put a cent in the

average pirates pocket. I stress the point that this is usually

done for the thrill, not monetary gain, because this fact

alone makes the prosecution of pirates in court very diffi

cult. The courts are usually good for offenses that can be

easily proven, which is rarely the case with software theft.

For more information on the legal aspects, flip to part 3.

There are five methods commonly used to protect software

from illegal distribution, which are as follows :

1 - Diskette protection

2 - Dongle Protection

3 - ROM Protection

4 - Program In ROM Pack

5 - No Protection

Diskette Protection

This form of protection is one which I favour the least. This

technique, though cheap to incorporate and often one that

will work, is pretty bad news for the average user. Once a

user has purchased the protected diskette, they have one or

two copies to work/with. As most people can confirm,

accidents do happen. If your disk drive packs up, your dog

eats your diskette, or even if you happen to mess up the

diskette yourself, you are in trouble. Some manufacturers

give you two diskettes. Very nice. They also give you a card

that entitles you to get another disk, at a nominal charge, if

you return your fouled up diskette to them. The trouble with

this is the software manufacturer lives in some distant city,

leaving you with only one method of transporting the

diskette short of an expensive courier - the mail. And in all

probability, the manufacturer won't spare the expense on

the former. So if the postal service is as careful with your

mail as it usually is with mine, then expecting a new diskette

back in workable condition is more of a fantasy than

anything else. Even if the diskette does not look physically

damaged, you will often find it riddled with new and

improved read errors. Just terrific. It seems that troubles

accumulate faster than you can get rid of them.

Diskette protection has other disadvantages. First, it really

makes your disk drive work for its money. The read errors

and strange formatting tricks cause your drive to virtually

have a stroke every time a protected disk is read in. This

protection also takes up to three times longer to load in than

normal, being especially noticeable with the 1541 drive. For

an encore, disk protection is often written for a specific

drive, excluding all others. For those of you with a dual

drive setup with your 64, you may often be out of luck trying

to LOAD in a protected disk. When faced with more than

one drive, or with a RAM/ROM or interface combination

that the program can't figure out, the software purposely

bombs out. A rotten trick to play on someone who has

invested in your program.

Pirates seem to enjoy disk protection though. The challenge

alone makes your program an easy candidate for the next

"unprotection". Between the bit copiers available on the

market, and rewriting the software to stop checking for all

the errors on disk, there is a great quantity of bootleg

software available that was originaly disk protected. Not

only that, but these deprotected wonders are often better

The Transactor 40 Volume 5, Issue 03

than the originals. They LOAD in faster, and save you disk

space by allowing more than one program per diskette.

These two factors alone have the average user avoiding

software that is protected this way.

Some time ago I was shown a method to break a few of the

simple disk protected programs available. The trick to this is

to first backup a copy of the protected disk on a 4040 drive,

or any dual drive with swing down doors, then start the

backup a second time but with a twist. Open and close the

drive door about ten times, or until the backup procedure

ends. Then remove the diskette from the drive. A read error

has been created on the new copy that will closely resemble

what is found on the original. If the software manufacturer

has relied entirely on this single read error for protection,

then the game has been lost within a five minute period.

Even if their method of protection was a little more extreme,

a good hacker will end up winning. For all of these reasons, I

do not recommend disk protection at all.

Dongle Protection

This form of protection is my personal favourite. You have at

least a fighting chance against the pirate with this one, with

the victor often the manufacturer. In case you are unsure of

what dongle protection is, let me explain. A dongle is a rude

name for a hardware apparatus that is plugged into your

computer. On the PET/CBM series, a dongle can be located

on the user port, or on either of the two cassette ports. On

the Commodore 64 and Vic 20, you can locate them on the

user port, game cartridge port, joystick ports and cassette

port. Quite a few options. Now for the explanation of what

they do. Inside the dongle can be found anything from one

piece of wire to a complete assortment of electronic compo

nents. With the proper combination, and the proper loca

tion, a program can check to make sure that the dongle is in

place. For an added thrill, use the results generated by the

dongle in the calculations and operation of the program

itself. Anything from timers or pulse multipliers to fre

quency generators or filters can be included. Therefore,

even if the hacker can manage to stop the program from

checking for the dongle, the program may never work

properly again.

There are ways around dongle protection though. The

simplest method is to break into the dongle and find out

what's inside. If this can be achieved the hacker has a 50/50

chance of reproducing it.

If the dongle is filled with some form of material to stop

breakage, the hacker may assume that the covering has

been placed there simply to disguise virtually transparent

protection. Not transparent in the sense that there is none,

but transparent in that it can be quickly reproduced by those

in the know, if so inclined. Some dongles are merely a

jumper between two pins. Protection like this lasts about as

long as one cup of coffee. A little more thought an a dongle

can send a hacker to a caffeine rehabilitation center. It's up

to you to decide how clever to make it.

At this point the hacker has a few options. Crack off or

dissolve the material encasing the components, or X-Ray the

entire key to see what's inside. If the identication hasn't

been removed from the components, and the wiring isn't

purposely misleading, then the X Ray technique will proba

bly work. It's amazing how a friendship with a dentist can be

beneficial to a pirate.

To stop the hacker from gaining any ground by chipping

away at the covering material on your dongle, place a few

very important thin wires throughout the material itself.

Once the chipping begins, these wires will be cut by the

illustrious chipper, thus making the dongle useless. If

enough wires are used, the key will become useless to the

hacker by the time they reach any important components.

In a proper casing, a dongle will be destroyed before it

reveals itself.

Dissolving the material that covers your components is one

method that can prove effective if care is not taken to

disguise the operation of the circuitry or the identification of

the components. There is one sure method to discourage

the hacker from this technique. Use a material that is

impervious to most solvents. Most software manufacturers

use whatever plastic material they can find, like epoxy resin.

There are many commercially available chemicals that can

dissolve epoxy in relatively no time at all. And it's a shame

to allow a hacker to win so easily.

There is one substance I use that is impervious to solvents,

or heat for that matter. It is called methyl methacrylate, or

quite simply, denture material. This can be purchased in

many forms, with the easiest and least expensive being Tray

Material. Tray Material is true denture acrylic, but manufac

tured for a vastly different purpose. Though the dental

profession frowns on sales outside of its little community, try

a few of the smaller dental supply companies, or smaller

dental manufacturers. These companies will often deviate

from normal procedures, with the correct amount of prod

ding. And your dongle producing department will feel much

more confident. Expect to pay about $8.00 per pound up for

the material.

The reason why dongle protection is a favourite with me is

because it's terrific for the user. The installation of the

dongle is often very easy, and there is no limit to the number

of copies that can be made of the program disk. There is also

that security blanket knowing that the pirate has to actually

get into your code and figure it out how to stop the check for

the dongle to break your beast. If care was taken in the

design of the program, and if thought was given to use the

results generated by the dongle in the actual operation of the

program, then the hacker may be in for an indefinite

amount of work.

For a final analysis on this one I recommend it whole

heartedly. The cost is higher for the manufacturer in relation

to disk protection, but the end result is better business. A

replacement key can be shipped through the mail, without

The Transactor 41 Volume 5, Issue 03

damage in most cases. There will be no undue wear on the

users drive through use of your software, and you can

expect less pilferage with a dongle protected program. Pretty

good all around, but still not impervious to a determined

hacker. However, most, if not all, will throw in the towel

after buying their third or fourth package in their attempts to

unprotect your program.

ROM Protection

ROM protection is a form of protection that is disliked by

many. A technique that applies more to the PET/CBM user

than any of the others, this type of setup uses a single ROM

placed in either the $9000 or $A000 socket in the computer.

The ROM will have anywhere from 2 to 4K of code burnt

into it to help stop illegal usage. The installation of this ROM

by a user is the pitfall here. Broken pins and improper

installation are too often the end result for the inexperi

enced. It is also a simple challenge for most pirates, and can

be financially prohibitive. The initial cost to produce a ROM

far outweighs the effectiveness in most cases.

The most common method programmers use to bypass

ROM protection is to have a soft ROM built into their

computer. A soft ROM is a device made from RAM that can

appear to be ROM in the eyes of the software. ROM contents

can be saved to disk and then loaded into the soft ROM, thus

fooling the program into believing the ROM is actually there.

Soft ROMs are available from many sources, and can be

installed in little time. Their average cost is about $150.00,

and can be used for the $9000 socket, $A000 socket, or

both. Your choice. This method of piracy is not one that

software manufacturers worry about though. They worry

about the hacker that actually rewrites their program to

work without the ROM.

This method of deprotection was more common a few years

ago than it is now. All the truly fine programs that were ROM

protected have already been broken. The method used to

break the program is usually to relocate the contents of the

ROM somewhere else in RAM, then rewriting the program

to access it in the new spot. The user may lose a bit of

memory, but the programs will still work.

Another method used was to rewrite the program to not

check for the ROM at all. Some programmers, when design

ing ROM protection, never actually put much thought into

how they were going to protect it until it was too late. The

routines in ROM were not used for anything, therefore the

programs were usually very simple to break. Many other

ROM protected programs available have been been well

designed in the protection department, with vital code

actually placed within, but still to no avail. The pirate knows

where the protection is, and can often see the access points

with a simple disassembly. The balance of breakage occurs

with a little time and effort. But it can usually be accom

plished. Pretty rotten, but possible.

The final method that the hacker would take to break a ROM

protected program is to physically copy the ROM itself. ROM

burners are available from numerous sources, with average

cost riding around $ 100.00. What these burners allow you to

do is mass produce most ROMs with EPROMs, as long as

you have an original copy of the ROM on disk. For the price

of a ROM burner, and the price of the EPROMs, about

$15.00 each, the pirates can do whatever they like. Some

pirates have been known to photo copy manuals, burn new

ROMs and sell the pirated packages for reduced prices,

which is a very sleazy way to steal a dollar.

When all has been taken into consideration, ROM protec

tion is not the best way to protect your program. Not only is

it a pain for the average user, especially if a few ROM

protected packages are used, but it's an easy mark for most

pirates. If at all possible, stay away from this one.

Program Located In RON Pack

This is the protection most encountered today in the games

that Commodore releases. This technique is one that is

pretty good, and very nice for the user. A simple plug in of

the ROM pack into the game socket, and your program

comes alive. Very nice, but hardly impervious to the inven

tive hacker.

There is one device designed and used by pirates that is

constantly in use destroying ROM Pack protected games.

After the computer and cartridge combine to allow the

program to begin, a press of two buttons concurrently will

bring this poor game to its knees. This high tech black box

has effectively stopped the program in its tracks without

destroying the colour table, zero page or any of the other

equally important areas in RAM. With this step taken, a

simple SAVE to disk and a bit of work later will produce

another broken game to add to an already overflowing

collection of pirated programs. What a rotten trick, to design

a electronic pirate. Write a bit of code, toss in a bit of

hardware, and presto, instant hacker. The human element

has finally been taken out of the piracy game.

Another method used to break ROM pack protection is so

simple that most do not think to use it. Reproduce the ROM

and make your own pack. The trouble that pirates find with

this is the cost of the ROM pack. When mass produced, the

cost for raw materials is very low. When bought by the

average hacker, the price is very high. And the cost of the

ROM pack has to be shelled out each and every time a copy

is to be made. Too high for most pirates, which is exactly

what the industry hopes for. A hacker is usually too cheap to

spend the money on the programs themselves, when they

know that most of the their software came for the price of a

diskette, if they bought the diskette at all.

Making cartridges can get pretty involved too. Some use

several PC boards laminated together with enough intercon

nections to make X-Rays of the unit so confusing that they're

useless. And like a good dongle, any attempt to dismantle

the boards usually ends up destroying them.

The Transactor 42 Volume 5, Issue 03

In my opinion, this form of protection rates just below the

dongle. Your program will be quite safe, but a little more

costly to produce. You be the judge, for you alone know

what market your program is geared towards. If the market

is huge, there is a pretty good chance that your profits will

still be huge, even with breakage.

No Protection At All

The last form of protection for this article is zero protection

in the major sense of the word. I know that most people

don't agree too much with that one, but it could be viable.

All it would take would be some careful prior planning.

By prior planning I mean that you should write your pro

gram with a really fine manual in mind. Games players

usually don't need the manual, but business and application

software can be worthless without it. Your manual can be

printed so it's tough to photo copy, and photocopied books

stand up better as evidence in court. Besides, pfiotocopying

is too expensive for chintz hackers. The software might be

fabulous, but supplying a manual with every copy they wish

to hand out will have pirates moving on to less documented

packages.

Other protection might be considered like a dealer/user

contract, to be signed by the user, and a serial number

placed on each diskette, in a spot few would ever think to

look. Make it clear with a message in your program that

without the contract the user is in violation of the law.

Forged contracts are even more frightening to a reputable

business than a copied manual. Produce a truly fine overall

package and most would rather own one legally than accept

a duplicate.

Serial numbers will help too. Write the serial number in the

manual in a few locations, so that it will reproduce if photo

copied. Remember that most people don't look through the

entire manual before photocopying it. Copyright law does

apply to manuals, so guard yourself well. The combination

of dealer-user agreement and manual will stand up in court

if necessary. The serial number written on to the diskette is

also a great help. Don't inform anyone that the serial

number is on the diskette, just keep a log of it somewhere,

like in your records, and on the contract that the user signs.

If you ever find that copies of your program are circulating, a

quick check onto the disk surface will determine where the

diskette originated. With that determined, legal action is

your next step.

A word on the placement of the serial number. Write the

number in a spot on the surface of the diskette that is sure

not to be disturbed by any disk activity. For all of the disk

types numerous hiding places do exist, you just have to

locate them. For an encore, encrypt the serial number in

such a way that if it was found, it could not be easy

deciphered. The low/high ASCII value is fine, but the low/

high number EOR'd with a number known only to your

company, would be just right. Have your program check for

the number, just to make sure it is there. If the number isn't,

fry the disk itself. Then put the computer into a death loop,

just to even the score a little for them trying to steal your

creation. When your rights are at stake, protect yourself to

the hilt.

Another point to ponder with this technique is to store the

serial number on disk along with a constant used for

calculations within your program. Numerous programs on

the market use their protection as part of the calculation

process, for setting up the screen dimensions, some mathe

matical calculations, and for a variety of other reasons. Why

not do the same thing. Instead of frying their diskette, let

them continue using the program. If the serial number isn't

there, the constant will be absent from their calculations.

Just imagine how much money it would cost a company to

use a pirated accounting package protected in this manner.

They might not realise that anything was wrong until year

end. Then suddenly they would have an entire fleet of

auditors ripping through their records to find out how they

made/lost all that money during the year. For the few

hundred dollars the company saved on the program, they

lost it a hundred times over in man hours to correct the

mistakes. A pretty good way to get even with a cheap firm. If

the firm has the nerve to complain, ask them for the

diskettes, manual and user contract from the point of pur

chase. Try not to react too quickly, and the unsuspecting

firm may lead you to the source. Then bring the curtains

down on both of them. A lawyer is the next step, and you

have a pretty good shot at winning too.

And Finally, The End

Other methods exist to protect and deprotect programs, but

these are really just further extensions to those already

covered. As mentioned at the beginning, this article is one of

three that has been prepared for the occasion. As you have

discovered, this one deals with the methods used to copy

protect your programs. Part two I enjoyed writing most;

Programming Sleight of Hands, an article that will take you

through some practical methods to protect your programs,

and how these methods are often superceded. The final

article is about the legal aspects of piracy, a product of some

quite extensive research.

Whatever your choice of reading, I hope that you have

enjoyed this issue. Your views on this subject, and on

everything that we have printed in this issue, are welcome.

We will be able to refine our magazine into the jewel we

know her to be capable of becoming, with just a little help

from you. Express your views on paper, disk or cassette

tape, and send them in to us. By piecing together what our

readers like and dislike about our publication, we can

produce the highest quality magazine found anywhere.

May you find that all of your bugs have four wheels and an

engine in the rear. RTE

The Transactor 43 Volume5, Issue 03

Unveiling The Pirate Part 2:

Programming Sleight Of Hand

One of the most exciting things a programmer can master is the art

of making your computer do weird things. Our Bits and Pieces

section is one example of where grown men and women search

out and publish new and improved ways to make your computer

beg for mercy. The same is true with most programmers who get in

the mood for some really hot protection. It is all just an extension of

the same idea, to make your computer perform tricks that are not

normally part of its act. This article has been written to show you

some new and improved ways to add confusion and pain to the

lives of pirates everywhere. Though not a glossary on every

method that can be achieved, it should suffice to whet your

appetite and start you on the trek to find some more. Protection

can be addicting.

A Quick Word On Compiling

Though not a subject that excites many in the programming

community, 1 felt it best to discuss compiling for a few minutes, just

to let you know that it is still around and is prone to breakage if

attacked by the serious pirate.

Compiling a BASIC program is usually a reliable way to discourage

most hackers. Once the infamous words of COMPILED BYare

discovered, most hackers turn away. Again, there are exceptions

to this rule. Available through the bootleg community right now

are a few decompilers for the most widely used compilers. There is

one that I am quite familiar with that can decompile a compiled

program back into its original state as it was before compiling ever

took place, if your only method of hiding protection was compil

ing, then forget it. This one will bare to the world whatever tricks

you were performing. A pretty low life trick, but it is extremely

effective.

If the chances are that your program will not be too badly exposed

if decompiled, then compile to your hearts content. Just remember

that there are a number of hackers out there right now with their

decompilers, revving up their disk drives in anticipation. Make

sure that your code is a little more tricky in the method used to

check for protection. In this way they may have to work a little

harder to achieve the same end result, if it can be done.

POKES, Line Tricks And DOS Tricks

As Mary Poppins once stated so elegantly, "these are a few of my

favourite things." In this I support her convictions all the way. Give

me a memory map and a computer, then stand back. It can be

quite a challenge to set my devious little mind to work on new and

improved methods to supercede the evil wishes of that master of

deceit, the pirate. Aar de aar Billy, have you broken that package

yet?

Below will be found all sorts of tricks that have either been well

concealed in the past, or never thought of before. Combining

several techniques is your best defense. However your protection

must share space with your program. Too much protection and

your program may run out of memory. It's up to you.

Auto Check For Protection: CHRGET

For anyone wishing to have their program automatically check for

protection, CHRGET is often found to be rather handy. Located at

$70-$87 with the PET/CBM and $73-$8A on the C64/VIC, a slight

change within will allow you to reroute the CHRGET flow to where

ever your protection desires. For the PET/CBM, locations $79-$7B

can be modified quite effectively to include a JUMP followed by a

16 bit address. The same applies for locations $7C-$7E on the C64

and VIC. If you reproduce everything from these locations down to

the end of CHRGET, and master the basic concepts of how

CHRGET works, then you are sure to be able to CHRGETize your

protection with few snags.

There is one very large disadvantage in using CHRGET for execut

ing vast amounts of code though. BASIC execution will be slowed

down relative to the amount of extra code CHRGET is expected to

execute in its quest for protection. Keep your protection code

compact and your program won't suffer too badly in performance.

Locations To POKE About With

The table on the following page is not a chart of yet undiscovered

orifices to prod about in, but a compendium of locations in RAM

that can really turn a computer on. Proceed below and open up a

vast new world of tricks you can play on your yet unsuspecting

computer.

#01 USR Function Jump

As has been explained by so many people in the past, the USR

function in BASIC can be used quite effectively to access machine

code from BASIC. By altering the jump address to where ever you

like, indirect methods of accessing protection or plain and simple

code can be found. A SYS to this address will also produce some

fine results, if you are so inclined. Whatever your requirements,

this vector can be handy at times.

The Transactor 44 Volume 5, Issue 03

40 Col PET

$0000-$0002

$0090-$0091

$0092-$0093

$0094-$0095

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

$0028-$0029

$0034-$0035

$009E

N/A

N/A

$03FA-$03FB

80 Col CBM

$0000-$0002

$0090-$0091

$0092-$0093

$0094-$0095

N/A

N/A

$00E9-$00EA

$00EB-$00EC

N/A

N/A

N/A

N/A

$0028-$0029

$0034-$0035

$009E

$00E3

N/A

$03FA-$03FB

C64

$0310-$0312

$0314-$0315

$0316-$0317

$0318-$0319

$031A-$031B

$031C-$031D

$0324-$0325

$0326-$0327

$0328-$0329

$032A-$032B

$0330-$0331

$0332-$0333

$002B-$002C

$0055-$0056

$00C6

$0289

$0300-$0301

N/A

VIC 20

$0000-$0002

$0314-$0315

$0316-$0317

$0318-$0318

$031A-$031B

$031C-$031D

$0324-$0325

$0326-$0327

$0328-$0329

$032A-$032B

$0330-$0331

$0332-$0333

$002B-$002C

$0055-$0056

$00C6

$0289

$0300-$0301

N/A

Description

(01) USR Function Jump

(02) Hardware Interrupt Vector

(03) Break Interrupt Vector

(04) NM1 Interrupt Vector

(05) OPEN Vector

(06) CLOSE Vector

(07) INPUT Vector

(08) OUTPUT Vector

(09) Test STOP Vector

(10) GET Vector

(11) LOAD Link

(12) SAVE Link

(13) Pointer : Start Of BASIC

(14) Pointer : Top Of Memory

(15)* Chars in Keyboard Buff

(16) Max Size of Keyboard Buffer

(17) Error Message Link

(18) Monitor Extension Vector

#02 Hardware Interrupt Vector

Another name for this vector is the IRQ Vector, one that 1 am sure

you have seen mentioned in our Bits and Pieces section. This

vector can be changed to point to whatever code you want

executed repeatedly, like a check for protection. One point to

remember before performing any major operations with this vec

tor, though. The more pre-interrupt code you have, the slower will

be the execution of normal code. An important trade off to

consider.

Another point to remember is to save the processor status and all

registers that are corrupted on the stack before any operations.

Then restore the values before transferring control back to the

system.

For 4.0 BASIC people, you have probably noticed that you cannot

use the disk drive for very much if the IRQ procedure has been

changed. Try the following trick and I am sure you will be pleased.

Point the BRK interrupt vector at your code, then point the IRQ

vector at $E454. This location is a zero byte, or a BRK instruction.

With every IRQ, the machine will break, then shoot over to your

code. Clean, simple and a pretty neat trick to know. And all SAVEs

and LOADs from disk will go off without a flaw.

One final word on the IRQ. If all else doesn't interest you then

point the normal IRQ vector 3 bytes forward to disable the STOP

key. Pretty boring, but what the heck, it works.

#O3 Break Interrupt Vector

As mentioned above, the BRK vector can help you out with your

IRQ driven wonder. But it also can be used for a few other things.

Often, when trying to break programs, break points are desired at

specific spots to check how certain activities are going. For this, a

BRK instruction will be placed in the machine code for the

program to BRK into the machine language monitor when encoun

tered, or back into BASIC mode with the C64 and VIC unless a

monitor is in operation. At other times, even when the program

has been protected to the hilt, it can be made to crash. The first

thing that a 4.0 hacker will usually do is break into the machine

language monitor to look at the code, or save everything for later

viewing. Point the BRK interrupt vector at reset:

$FD16(L/H = 22/253) for 4.0 BASIC

$FCE2 (L/H = 226/252) for the C64 & VIC

Every time a BRK is encountered, the computer will reset to a cold

start. Dirty pool, but why make life for a hacker easy.

#04 NMI Interrupt Vector

Hooked up to my 8032 is a little device called the break box. Jim

Butterfield and a few others have been talking of this little wonder

for years. With the break box you can stop a program in its path

and go to READY mode. Or you have one more option, at least

with my particular model. You can break directly into the 4.0

monitor, without disturbing the program in the least. Well, for the

first action of breaking into READY mode, there is a cure. Point the

NMI vector at reset (see above). When an attempt is made to break

to READY mode, you will be met with a cold start of the computer.

A pretty simple way to deter a few hackers.

#O5 OPEN Vector

This vector is only accessible by those with either the C64 or Vic

20, which is a real shame for all the 4.0 users reading. Commodore

really had their heads screwed on straight the day they introduced

neat vectors like this. To confuse the heck out of pirates every

where, change the meaning of OPEN within your program. Point it

at anything that you feel like, and watch the confusion grow.

Imagine LOADing in a program with a simple:

OPEN 5,8,5," program name"

The Transactor 45 Volume 5, Issue 03

■
r

Flip the LOAD/VERIFY flag and try it. It seems to work. If all else

does not appeal to you, point the OPEN vector at reset when not in

use. Might never be used, but why not. Some hacker may use a

technique involving the-OPEN statement, of which a cold start

would come as a surprise.

#06 CLOSE Vector

As with the OPEN vector, the CLOSE vector is also limited to those

with either the C64 or VIC. The same techniques apply with this

vector as was with the OPEN vector, so cloud the issue a little when

using this one and point it to everything but what it really is. As 1

have said before, if all else fails, point at reset while not in use.

#07 INPUT Vector

This is a favourite of mine. Place the following auto run code

somewhere in memory, and point the input vector at it once in

program mode. As long as you do not use an INPUT statement

anywhere in your program, this bit of code will not be executed

until you have gone back to READY mode. Once that happens, the

code is executed and your program will be re-run all over again.

Terrific if someone is trying to crash your program, or you don't

want anyone to see your program crash. Keep this code in mind

when thinking about re-routing some of the other vectors too. Just

imagine the confusion level if every move the pirate makes causes

the program to re-run.

Another use for this vector is to point it at reset, as I have belabored

with every vector so far. The moment your computer goes back

into READY mode, the machine will execute a cold start. It's mean,

but it works.

♦ Auto Re-Run Code For 4.0 BASIC, C64 and VIC 20 *

lobas

loval

lobas

loval

hibas

hival

hibas

hival

hival

lovar

lovar

hivar

hivar

loend

loend

hiend

hiend

clr

clr

clr

fix

fix

fix

cont

cont

$01

$2b

$01

$29

$04

$2c

$08

$10

$2a

$2d

$2b

$2e

$c9

$ae

$ca

$af

$b5e9

$a659

$c659

$b4b6

$a533

$c533

$b74a

$a857

;4.0 basic- low

;4.0 basic- low

;c64 & vie

;c64 & vie (defau

;4.0 basic - high

;4.0 basic- high

;c64 & vie

;c64 (default)

;vic (default)

;4.0 basic - low

;c64 & vie

;4.0 basic- high

;c64 & vie

;4.0 basic- low

;c64 & vie

;4.0 basic - high

;c64 & vie

;4.0 basic- reset

;c64

byte start of basic

byte value of start of basic

It)

byte start of basic

byte value of start of basic

byte start of variable

byte start of variable

byte end of program

byte end of program

basic and perform 'clr'

;4.0 basic- fix chaining

;c64

:vic

;4.0 basic - perform 'cont'

;c64

cont = $c857 ;vic

;*** auto re-run with reset of start of basic***

Ida *loval ;reset start of basic to normal

sta lobas

Ida *hival

sta hibas

Ida loend ;reset end of program/start of variables

sta lovar

Ida hiend

sta hivar

jsr clr ;reset basic and do 'clr'

jsr fix ;fix chaining

jmpcont ;perform 'cont'

#08 OUTPUT Vector

The OUTPUT vector is another versatile vector that can be used for

all sorts of functions. For every key that is pressed on the key

board, the OUTPUT vector is used. For many of your disk opera

tions, the OUTPUT vector is also used. Point this vector at the code

of your choice, make sure that the code is not too verbose, save

and retrieve all corrupted registers on the stack, and an alternative

to CHRGET protection has been found. Those of you with PETs are

excluded from this one though. It seems Commodore wasn't that

bright when the PET evolved, but adapted later for all the others.

For all around use, this one is a pleasure to use. Few people know

of its existence, so why not use this factor to your advantage.

#09 Test STOP Vector

Again, another point scored for C64 & VIC users. One more vector

that the PET/CBM owners drool to have. This vector allows you to

disable the STOP key:

POKE 808,239

. . .disable the RUN/STOP-RESTORE combo:

POKE 808,225

. . .or whatever you can find to disable when rummaging about

through the code. Again, as 1 have mentioned earlier, develop

some really interesting code for your protection, then point a

vector at it. This one is as good as you will probably find, so

consider it when looking for a new and improved vector to take

advantage of.

#10 GET Vector

Another vector you C64 and VIC owners have over the rest of the

world, and a pretty good little beast to have on your side. As you

probably know, GET is a BASIC keyword, associated with a

command to GET characters from some device or another, usually

the keyboard. Point this vector at some ingenious protection code,

and watch as the code is executed every time you attempt to GET

anything within your program. A sneaky and underhanded way to

bring a pirate to his knees, but who really cares. Its your program,

The Transactor 46 Volume 5, Issue 03

so why not try to keep it that way.

#11 LOAD Link

Add this one to the C64/VIC resume, for the PET/CBM owners

have been left in the cold once again. Without flogging a dead

horse any more than necessary, change this link address to point

elsewhere and you may be able to confuse many who peek into the

lower recesses of your code. Use your imagination and you will be

surprised as to the number of tricks that can be performed with just

a few vectors and a couple of knowledgable protection routines.

#12 SAVE Link

Take a peek up above and read again, this time remembering that

we are discussing a different vector. PET/CBM owners have once

again been given the dirty end of the stick, with the C64 & VIC

people coming out with another winner on their side. Use imagina

tion and plenty of raw, brute spunk, and watch as the hackers fall

aside to the power of your code. Science fiction writing has always

been a secret ambition of mine.

#13 POINTER: Start Of BASIC

Executing BASIC at a different location other than normal is an

interesting way to confuse a moronic pirate. LOAD in your normal

program, change the Start of BASIC, then chain in the next section

of code. Execution will be immediate, and confusion will suddenly

run rampant. In this way, you could have numerous programs in

memory at the same time, all stacked above each other with each

performing a specific function. If broken, only one section would

easily be viewed. A technique that is rather unorthodox, but

logical considering the circumstances.

#14 POINTER: Top Of Memory

As most already know, lowering the top of BASIC memory will give

you a place to store additional code where it can't be disturbed.

Alter these pointers to anywhere you like, and you can mix a good

proportion of BASIC and machine code together in harmony.

#15 Number Of Characters In Keyboard Buffer

For some auto boot routines, this one is terrific. A few issues back I

wrote an article about using the keyboard buffer and this location

for an easy boot technique. The technique is very fast and simple

and a pleasure to see in action. Once the program knows what is to

be done, print the actions required on the screen in calculated

positions. Poke carriage return characters (CHR$(13)) into the

keyboard buffer to coincide with the screen contents, then poke

the number of characters presently in the keyboard buffer into this

location. The next step is to END the program. The keyboard

buffer will take over from there to do what ever you have re

quested. A nice sleight of hand.

#16 Maximum Size Of Keyboard Buffer

This location is one which can come in very handy. Normally set

to allow 10 characters into the buffer at a maximum, you can alter

this for any value up to 255. Alter this location to any value you

care before executing routines that require an input from the

keyboard, then down to 0 once the routine has received all that it

wants. If the program ever crashes for whatever reason, what good

would it do anyone? The keyboard has been effectively turned off,

thus stopping the code snoop in his tracks. Sneaky and very

reassuring to use.

#17 Error Message Link

A programmer that I know, Brian Munshaw, developed an inge

nious method of using this link to his advantage on the Commo

dore 64. He has designed a fabulous graphics package, but did not

want to use CHRGET to check for his special keywords. Using

CHRGET wedges quite often slows down BASIC execution a little

bit too much when heavy checking is required. Brian designed a

little bit of code that is pointed to by the error message link.

Normal keywords will not generate an error, but pretty much

everything else will. This code checks the error generated to see if

it was in the range of one of the new keywords, or just an ordinary

error by some spastic programmer. If the error was the new

keywords fault, then the code will branch to the routine to handle

it. For normal errors it will jump to the normal error processing

routine. Pretty terrific, and also a great way to design packages that

will confuse many people. Design your own language for your

program, and incorporate some protection techniques into the

language. The work required to fix your program up would be

more than most hackers would want to allocate.

#18 Monitor Extension Vector

This vector is used only on 4.0 BASIC machines by utilities that

extend the machine language monitor with extra commands.

Change this one to reset, $FD16, and even if you have missed a

few of the pirates spies, the moment they try to disassemble your

code, or what ever else they have planned with their extended

monitor, the computer will jump to a cold start. For two pokes, not

bad.

There are many more POKEs that are as yet still in hiding, and will

remain so for the balance of this issue. By stretching this article on

too long in this area, many other points would have to be skipped.

In future issues we will be printing new and improved POKEs to

add to this collection.

And now, DOS tricks and other shenanigans to further inflame the

boils of irate pirates worldwide.

Playing Tricks With DOS

The disk drive should be classified both as a tool and a toy, at least

for me. These versatile little containers of brilliance can liven up

even the dullest of days, and make the average program sing with

delight. Not only can you tell the drive to make some pretty obtuse

maneuvers, but you can also tell the disk that it enjoys what is

happening. In this way, you can let fly with a few smoke bombs

even the most astute hacker can't see through. This is war, so let

them have it with all you got!

Keep in mind that multiple stacking of disk protection tricks can be

of great benefit in the final outcome of this war.

The Transactor 47 Volume 5, Issue 03

Change Block Count Of Files

You can physically change the block count of files on disk, and

confuse the heck out of people who copy your files. They will

never be completely sure if they got the right file, or the complete

file. There will also be the chance that they would never look at a

small file when they are trying to locate the main program. To

change the block count, look in the directory track of the disk.

Held in low/high byte fashion, they are the last two bytes in the

files directory entry. Anything from 0 to 65535 is acceptable.

If an easier route is desired to change the block count, take a peek

through this issue and you are bound to trip over a program I wrote

to change the block count of files, scratch protect files, and

back-up protect your diskettes. Another utility, DiskMod, will help

you do the same thing, but it's as little less automatic.

Re-Direct Track & Sector Pointers

Of Files Back Unto Thine Self

For a bit of fun with your disk, foul up a couple of files in this way.

Files are held on disk with the first two bytes of each block as the

pointer to the next block of data. By changing this pointer to point

back to one of the blocks prior, copying files could be somewhat

tedious at best. A COPY command would go forever.

From program mode you could do a few things to compensate.

Read a specific section of the file in one byte at a time, then close

up the file. Or you can write to the disk to reset the pointers

correctly, LOAD in the program, then reset the pointers back in

your strange fashion. A hackers nightmare is born.

LOAD And SAVE Programs In A Novel Way

When preparing this article I was indecisive whether to let you

know this little gem of protection. The number of people who

know of it is a mystery to me, but I do know it to be a carefully

guarded among those who hold the secret. The purpose of our

magazine is to educate, so lets peek into this one and become

educated.

Program files can be saved to disk as SEQ or USR files, with the

right technique. These same files can then be LOADed back into

memory and re-executed as PRG files.

To SAVE a program file as a sequential file try this :

save"O:filename,s" ,8

To LOAD the same program back in as a program file:

load"0:filename,s",8

The file will appear on the directory as SEQ, but it will really be

PRG. To SAVE and LOAD USR files, substitute a 'u' instead of the's'

in the above examples.

Make Disk Non BACKUPable

As stated earlier, there is a program to be found in this issue that

will perform this trick with your diskettes. It will allow you to

protect your disk from regular duplication. Not only this, but you

cannot SCRATCH files, SAVE to the disk or RENAME any files for

all time thereafter. The only trouble is that COPYing is still

allowed, but we're working on it.

On the disk surface, there are markers called DOS Version Identifi

ers. These little beasts tell the drive what version of DOS the

diskette was formatted on. By altering these bytes, the drive will be

fooled into believing that the disk is wrong for it. For a 1541 /2021 /

4040 diskette, the identifier is a 65 decimal, or $41. It is located on

track 18, sector 0 as the third byte from the start. Change this to

what ever you like, and your disk will become an alien.

On the 8050/8250 drives, the DOS Version Identifier is located on

track 38, with both drives using sectors 0 and 3, and the 8250 also

using sectors 6 and 9. The normal byte value is 67 decimal, or $43,

and is also the third byte from the start. Change this animal to

whatever you like, and watch the hackers sweat just a little more.

Now I am going to pop the bubble that was just created. While

pouring over some maps that I have been preparing on the disk

drives, I came up with a technique to backup a backup protected

disk. All that you do is tell the drive that it really is as strange as the

disk says it is. Then you can write to the disk, SCRATCH, SAVE and

BACKUP. Performed from within program mode, you could con

trol just what activity is taken with your disks. The code is as

follows.

10 id = ascii value of new DOS identifier

20 open 15,8,15

30 print#15," m-w" chr$(159)chr$(16)chr$(1)chr$(id);

40 close 15

This code works for 4040, 8050 and 8250 drives. For the others,

excuse me but I haven't come up with the code yet. Maybe in a

future issue.

Change File Type On Disk

This technique, though not one that should be encouraged by

anyone but a person bent on the destruction of all hackers, is

pretty inventive to say the least. Confusing the heck out of a hacker

is exactly what the following will do. Below 1 have prepared a chart

with disk massaging tricks.

HEX Description

$00 Unclosed DEL File (*)

$01 Unclosed SEQ File (*)

$02 Unclosed PRG File (*)

$03 Unclosed USR File (*)

$04 Unclosed REL File (*)

$80 Closed DEL File

$81 Closed SEQ File

$82 Closed PRG File

$83 Closed USR File

$84 Closed REL File

$88 Closed DEL File - fouled up file type description -

copys as DEL

$89 Closed SEQ File - fouled up file type description -

copys as SEQ

The Transactor 48 Volume 5, Issue 03

$8a Closed PRG File - fouled up file type description -

copys as PRG

$8b Closed USR File - fouled up file type description -

copys as USR

$8c Closed REL File - fouled up file type description - won't

copy

$cO Scratch Protected & Closed DEL File

$cl Scratch Protected & Closed SEQ File

$c2 Scratch Protected & Closed PRG File

$c3 Scratch Protected & Closed USR File

$c4 Scratch Protected & Closed REL File

Bit Representations :

bit 0 off = DEL file, on = SEQ file

bitsO&l bit 0 off and bit 1 on = PRG file

bitsO&l bit 0 on and bit 1 on = USR file

bits 0, 1 & 2 bit 0 off, bit 1 off and bit 2 on = REL file

bits 3-5 not normally used

bit 6 off = normal file / on = scratch protected file

bit 7 off = open file / on = closed file

As the charts above show, there is quite a bit to be learned about

the diskette itself. For years people have been wanting to scratch

protect their files, with the best example being teachers in schools

with hundreds of students bent on file destruction. Commodore,

with their typical streak of brilliance, have never bothered to tell

anyone much of anything at all. Well, files can be scratch protected

on every version of DOS so far. The trick is to set bit six of the file

type indicator on the directory entry of the file. Once set, a '<' will

appear to the right of the file type, and the file cannot be scratched.

Everything else is still allowed though. Don't you think that the

time has come for Commodore to start letting us in on the

workings of their drive units? They have never used this feature for

anything whatsoever, but they knew it was there all along. Why

couldn't they let a few people in on their secret, and maybe benefit

a whole lot of people in the process? I leave you to fill in the answer

to this one.

The file type values of $89 to $8b are of special interest to me. You

could save a PRG file to disk, then change the file type description

on disk to anything from $89 to $8b. These files will not LOAD in

normally, but they will COPY correctly. From program mode you

could COPY the file on disk first to something like a USR file,

LOAD the USR file in as PRG, then SCRATCH the recently copied

file. It is a lot of work, but it would prove to be good armor against

the ever illustrious hacker.

Change Header And Filename

To Foul Up Directory

Filenames and headers are often not thought of to foul up the

hacker. Most users of software never have to do a directory of the

disk anyway, so why not throw a few curve balls in the directory

department.

By curve ball 1 mean a few pseudo control characters. Try the

following header manipulation and 1 am sure you will quickly

understand what 1 am getting at.

Format A Disk, With A Twist

10 fu$ = chr$(141) + chr$(19) + chr$(19) + chr$(147)

+ chr$(15) + chr$(143)

20 open 15,8,15, "nO:" + "" +fu$+ ""

30 close 15

For those of you with the CBM machines, you will benefit most

from this demonstration. Not only will this header, once viewed

through a catalog, clear the screen, it will also set two windows at

the top left hand corner of the screen. In this way, once a catalog is

performed, the keyboard will appear useless. To remedy the

situation, touch the HOME key twice in a row. This will clear the

windows and bring your computer back to life.

The reason for the fouled up header is the first character in string

FU$, CHR$(141). On the keyboard you can reproduce this one as a

capital reversed M. It is the illustrious carriage return, and allows

you into a whole new world of program foul ups. If you were to

look at Jim Butterfields Super Chart, numerous interesting charac

ter combinations can be thought up that will allow you to foul

thine hacker. Use your own special combinations of these charac

ters, preceded always by CHR$(141) to royally mess up filenames

on disk, REM statements in BASIC programs,jand variables within

BASIC programs. You can also change the colour of program

listings with the right combo of characters. For more information

on this marvelous technique, read Jeff Goebels column this issue.

Jeff discusses methods to further protect your programs with

control characters.

Ye Olde Standbye

One final trick to perform with file names is the old stand by. Look

below for a directory entry that can be yours with the right

combination of key presses.

67 ": filename prg

To get this result, you have to SAVE the program in a little bit

different manner. Type in:

SAVE"0: : filename",8

. . .but press the (shift) key with the space bar between the two

colons. This shifted space will fool the disk into believing that the

filename is finished, and that it should write the balance outside of

quotes. This is due to the fact that filenames are stored on disk

padded with shifted spaces, chr$(l 60)'s. In case you do not already

know, 67 is an imaginary block count. Your block count will be

what ever size your program takes up on disk.

And A Way And A Way And A Fife And Drum

A rather hasty departure from the DOS you might feel, but quite a

bit has just been covered for your protection needs. It is now your

job to figure out how best to use the information 1 have supplied to

create your own disk protected land mines.

The Transactor 49 Volume 5, Issue 03

Auto RUN Programs

Most programs that you find that are auto run are just too simple to

break. My favourite method to do this is to reset the start of BASIC

to the stack before LOADing in the program. For 4.0 BASIC people

try poke 41,1. Once you have LOADed most auto runners, the

program will crash with SYNTAX ERROR? displayed prominently

on the screen. Now poke 41,4 and you can list the program. At this

point some of these programs are rather touchy to play with. Type

in 63999 then press (return). You have effectively deleted line

63999, which most likely doesn't exist anyway. This will also allow

you to do whatever you like with the program from there on in.

This method is just too easy for what otherwise would be a pretty

good technique. Auto boot programs should automatically reset

the start of BASIC before executing the auto run code. Jim Butter-

fields 'Lock Disk', Richard Mansfields 'Bootfixer', and a host of

others allow you to make your programs auto run, but they do not

reset the start of BASIC. Quite a while ago I modified Richard

Mansfields Bootfixer to do this, and today I bring these mods to

you. You can find this program in Compute! Magazine of October

1982, Issue 29 on pages 170 & 172. The program is good, but not

perfect. First, this program works only with 1541, 2031 and 4040

drives. The reason is simple. On line 100 the variable T=18. To

convert to 8050/8250 change this variable to T = 38. Next, to

produce a better auto run code that is more difficult to break, enter

the following lines.

475 data 169, 1, 133,40, 169,4, 133,41

510 for pb = 105 to 129 : read by : print#15," b-p:2" ;pb

Once your programs have been modified with the new Bootfixer,

they will be impervious to most attacks. But do not be mislead.

There are plenty of other techniques that, while they are not as

simple, will break auto run code. Reset all your vectors to com

puter reset on the execution of your program, and lay a few more

traps to confuse the hacker, and you may produce your own

version of a hacker cracker. Try tucking valuable code below

BASIC, use this code often within program mode, and the hacker

will be more prone to leave your program auto run. One final point

to remember before releasing your bullet proof wonder. Fire up

your favourite wordprocessor and load in your program as a text

file. Now look closely at the garbage on the screen. Can you gain

any knowledge from this display that would help you break your

own code? If your answer is no, pat yourself on the back. If not, foul

up the program a little more and try again. Who knows, maybe

some hacker will respect your efforts so much that your code will

be left alone.

Use Some Of The Other Programs In This Issue

Even if 100,000 people read this article, rest assured that this figure

represents only a small fraction of the total number of Commodore

users world wide. Not only that, but you also now know that it is

easier to protect than de-protect a program, given the right

attitude. Protection can be fun, and with plenty of imagination and

raw courage, you might tame the savage hacker. Take the extra

measure of legal contracts, serial numbers and fine quality man

uals, and you might win in this technological war. And take one

final step, as explained below.

We have published quite a few articles and programs this issue to

protect your creations, so read them with a notebook at hand. Jot

down everything that interests you, and cross reference your notes

to the pages of our magazine. Take some time with the protection

of your program and flowchart it out carefully. Remember that

hackers often deserve their title. With careful thought and imagi

nation you might be able to outsmart even the craftiest pirate. The

hacker will try every trick that can be thought of to destroy your

work. Figure out how you would break your own program, then

further strengthen your defenses. But try to keep in mind that the

extra time is worth the extra revenue. If your program is poor to

begin with, all the protection in the world will not make it any

better. What ever you decide to do, be imaginative about it and

change your methods of attack from update to update. Just have to

keep those hackers on their toes.

Many of you will notice that quite a few tricks remain unsaid in this

article. The reason for this is simple. Not everybody is as interested

as you are in protection, so why fill an entire issue with one specific

train of thought. In future issues I intend to cover this subject

further, so write to us and give us your thoughts on the matter. We

may have gained a few enemies, but hopefully we have also found

many new friends. The purpose of this article was not to harvest a

new crop of hackers world wide, but to educate and warn program

mers about the extent of piracy today, and how to combat it. 1 hope

that you feel this has been accomplished.

A Final Few Swings At The Insidious Pirate

No matter how much the pirates try to justify their actions, one fact

remains. They are thieves, and are stealing from the pockets of

their fellow programmers. A theft in any other form would consti

tute a crime, one punishable by law. This method of theft is over

the heads of our best legal minds, so how much legal protection

can we expect. The best legal protection in the world will not help

in the case of a crime that cannot be proven. Our only true hope is

to somehow unite the programmers and hackers into one, thus

eliminating the destructive element.

It would not be a surprise if one day we find few new programs

coming onto the Commodore scene. Why bother spending mega

hours of time and energy in the creation of a truly fine piece of

work, only to have your just rewards stolen by an over zealous

thrill seeker. Hackers, please take my advice. Write a program that

you know will sell, protect the heck out of it and market it. If your

hacker friends do not get to it first you may be able to walk away

with enough profit to buy yourself a much greater thrill. Buy a

Porche and drive yourself into a frenzy. Buy an island and become

a recluse. Buy a distillery and become permanently intoxicated.

Just buy something that will give you a greater rush than what is

experienced by staying up all night staring at your computer

screen, bashing away at little tiny keys, and making zero profit for

yourself and the company that you ripped off. The acceptance of

yourself by your other high tech pirates is nice, but imagine how

nice it could be skiing in Switzerland, surfing in California, moun

tain climbing in British Columbia, racing in Monte Carlo or doing

whatever else you find to tickle your fancy. Drop the underground

software network and stop stealing from your friends.

The Transactor 50 Volume 5, Issue 03

Unveiling The Pirate

Part 3: The Legal Issue

"To quote me the authority of precedents leaves me quite un

moved. All human progress has been made by ignoring prece

dents. If mankind had continued to be the slave of precedent we

should still be living in caves and subsisting on shellfish and

berries." - Viscount Philip Snowden

It is always pleasant to begin an article with some brilliant quota

tion, just to get the mind moving a little quicker. With a slight

update to these words of wisdom, it would read as such. Why do

we have to rely on laws designed in days gone past before the

advent of modern technology will protect us from infringement of

our rights as creators of programming marvels. Virtually every law

that has ever been updated can be traced back to the comparison

of some antiquated precedent that is somehow misconstrued to

apply today. In legal cases where the situation is always the same

and always has been, why the heck not. But we are living in a new

age, with technology advancing at a rate never before anticipated.

Just think back a few years and compare how quickly everything is

advancing today. For this reason it would be nice to find out why

the legal system is stuck in the middle ages flogging the same

precedents over and over again till nobody really knows how they

apply. 1 applaud Steve Wosniak and his group at Apple for their

legal attack on the invasion of the clone people. His group took an

antiquated legal system and challenged it to become better.

Though the existing laws in most countries are still so relaxed that

these crimes can take place, the group at Apple made the legal

community stand up and take notice.

The CLONE

With Apple, their problem was with corporations copying their

computer, software, manuals, cases, literature and whatever else

they could get their sleazy hands on. The companies responsible

for these miscarriages of justice were located primarily in Taiwan

and Hong Kong, with a little bit of activity in Switzerland and the

USA. The way that it appears to have happened is that numerous

corporations were set up to clone the Apple Computer complete.

Those who have ever started a corporation know that sharehold

ers of a corporation are only responsible for as much money as

they have invested in the corporation. The clone corporations

made very high profits with the sale of the clones, then declared

dividends quarterly to drain all of the money out as quickly as

possible. If legal trouble starts brewing up over the clones, dissolv

ing the corporation and starting another was usually the answer.

Always one step ahead of the law, these clone people got very rich,

and Apple lost out in numerous sales.

If the Apple subject interests you as it did me, then try to get hold of

two fabulous books that cover this area extensively. They are

available from the publisher direct, but may not be from book

stores.

Software Protection and Marketing

Computer Programs and Data Bases;

Video Games and Motion Pictures

Volumes One and Two

by Morton David Goldberg - Chairman

Practicing Law Institute

New York City

Course Handbook Series * 159 and * 160 - 1983

Copyrights And How They Apply To You

Protection under the law for infringements of the rights of software

manufacturers is a hopelessly messed up series of mistakes, all tied

together in the law books of today. Copyright protection of com

puter software does apply to a limited degree in the United States,

but does not apply in the least in Canada. Elsewhere in the world,

many countries are on par with Canada. It seems that the United

States is the worlds battle grounds for legal mistakes, with the rest

of the world following suit well after all the excitement has died

down.

In the United States software is and is not protected by Copyright

law for the same reasons. While peering through numerous law

books, 1 have discovered great quantities of hypocritical legal turns

of events than should have never occured. For example, lets look

at the legal issue of copyright law and how it applies to software.

"(C) COPYRIGHT" - Is It Applicable?

One argument against copyright protection of software is that

copyright protection is afforded to matters that relate directly with

The Transactor 51 Volume 5, Issue 03

human beings. Books, magazines, art and music are just a few of

the areas covered by copyright law. With this argument it has been

stated that the design and flowcharting work that goes into soft

ware development is protected under copyright law. So is the

actual source listing of the program. But the moment the program

is actually entered into the computer and is activated, it no longer

falls under the protective blanket of copyright. This view states

that the program no longer relates to human beings, only to the

computers for the sole purpose of telling the computer what to do,

and recording what responses the computer came back with. The

fact that the user related directly with the computer has no bearing

on this argument. The computer has become the middle man and

therefore excludes the software from copyright protection.

The second argument, this time finding that copyright does apply

to computer software, was used with this same example. It was

stated that computer software is protected by copyright law be

cause it does relate to human beings right across the line. Com

puters were designed by human beings, and so are computer

programs. Binary O's and l's mean absolutely nothing to the

computer, only to the programmer. The computer relates directly

with changes in voltage and current flows throughout it circuitry. It

does not care about binary coding in the least. A programmer

could, if persuaded to do so, decipher exactly what a computer

program does, once it has been entered into the computer. What

ever language the code is written in, it can be painfully figured out

by peering through this apparent machine code. Therefore, this

argument states that copyright law does apply to computer soft

ware, with all prior arguments being invalid. The courts liked both

explanations, therefore no real answer has been arrived at.

Many more instances of copyright law and software battles rage

throughout the legal books of today. As it stands, governments

worldwide have stated explicitly that they would look into the

matter and come to some form of conclusion as soon as possible.

The USA have changed their copyright laws a few times, but still to

little avail. In Canada we have the white paper, another series of

bleeps and blunders to further occupy the courts for many years to

come. The legislature has promised new rules are coming, but

making them so they won't go obsolete with the technology is the

hard part.

Whatever the story, expecting the law to do all the work for you is

foolish at this point in time. A bit of thought and careful planning

will help you produce a product that may provide a good legal

defense if so inclined. Let's now advance into this subject a little

deeper.

Legal Avenues To Take

As is obvious, written information can be protected under copy

right law. A manual for your program fits into this category. The

source listing, flowcharting and all else that has been written down

also fits neatly into this little cubical of legal mindset, but doesn't

really help the matter at all. Rely on the manual.

The sacred statement "(C) Copyright 1984 Company Name", is a

mandatory requirement if copyright protection is desired. This

entire statement ensures that the copyright protection that you

have opted for applies in most of the countries in the world.

Whether or not a complete circle is required around the letter I do

not know, but 1 feel that it should not matter. If the courts go to this

extreme to prove something ineligible for protection, then there is

something wrong with the courts. Make sure your program dis

plays a copyright notice on the screen at least once during the

execution, and write this statement into your manual at least once,

just to make sure that everyone knows your intentions.

Create your program in such a way that it requires at least some

intelligence to operate it. Write a manual that will illuminate the

way for all who attempt to use you creation. Design the manual

well, making sure to place a specific serial number in a few key

places throughout. Design a legally binding contract between your

company and the end user, making sure to state the serial number

somewhere prominent on the form. Make sure to write this serial

number someplace on diskette where little attention will be gener

ated because of it, and you may have started on your way to partial

legal protection. If photocopies of your manual start to appear, and

the serial numbers have not been removed, then copyright in

fringement can most likely be proven in court.

If copies of your program start to appear in a broken state, it may

be difficult but not impossible to push the matter in court. The

serial number combined with the signed legal contract may be a

ticket to recompensation. But often this will not be the case, as I

will explain below.

A high percentage of programs are broken mainly for the thrill of

breaking them. Once broken, they are quickly spread around from

friend to friend, often over the telephone lines, to further weaken

your chances for compensation for this crime. Many of the offenses

take place in private individuals homes, with the end result being

given away to others who share the same sentiments. Once these

pirated versions have been passed over the telephone lines, little

to nothing can be done to stop its spread. And proving the crime in

court is next to impossible, for the offense was probably not

witnessed by anyone who will admit to it in court. Checkmate, the

pirate wins.

As has been witnessed with the prosecution of video tapes pirates,

other legal avenues do exist for protection that are just waiting to

be tried in the courts. Though I do not profess to know how this

would apply, I have been told that fraud can be proven in this

matter, with a jail term and fine applied to any found guilty. This

sounds pretty good to me, for it could be applied to anyone caught

distributing illegal material, even if the person distributing the

material is not the pirate, just someone who managed a copy and

wanted to give another copy away to a friend. Talk about a quick

way to put a curb in the spread of illegal software.

Legal protection is a single avenue of protection that does not

appear to work in a vast majority of cases. Software piracy, unless

blatantly obvious as the Apple cases were, is difficult to prove at

best, and even more difficult to find laws that will stick. If this fraud

situation can be tried and proven in court, then we might finally

have some ammunition to work with. But until then, the legal

system is not a viable method for software protection in the least.

My final recommendation in this rather volatile situation is to

protect the living heck out of your program every which way that

you can, and follow the courts as closely as possible. With luck and

Providence prevailing, the eternal light may shine down upon the

courts and appoint a few computer whiz kid judges. With a

computer freak holding the gavel we may finally advance into the

computer age as we should have all along.

The Transactor 52 Volume 5, Issue 03

Piracy vs. Protection: Who Loses?
by Chris Zamara, Technical Editor

"/ have read warnings on software packages that state damage

to your disk drive may occur ifyou attempt to make a copy of the

program ".

A lot of talk is going on about the problem of software

"piracy", but a new problem in the computer field is emerg

ing as a result: software protection. Software producers,

worried about slipping profits due to unauthorized program

copying, are creating major problems for the consumer.

Welcome to the age of the ultra-delicate program: change

the system configuration slightly, and it blows up. Plug in a

different disk drive - even update the ROMs in your current

one, and it refuses to boot (you vill use zee drive zat vee

specify or you vill suffer!). Got a handy interface card of

some type on your system? Forget it! The program may not

like it.

And the way in which programs express their dislike for the

environment in which they are living can be frightening.

Some will run for a period of time, and then crash at an

inopportune (due to Murphy, the worst) time. I have read

warnings on software packages that state damage to your

disk drive may occur if you attempt to make a copy of the

program. I would be very reluctant to buy software from any

company making such a claim, even if it isn't true. We are

now faced with the situation of the program vs. the user: the

software is sitting in the computer, eyeing the user's actions

suspiciously. If he should make a wrong move - one which

the program, in its infinite wisdom, judges to be an en

croachment on its legal space - wham! Reset system, wipe

out disk, cook drive, whatever.

The sad result of all of these precautions is that the people

who are hurt most are not the computer "pirates", but the

paying software consumer. The so-called "pirate", usually

no more harmful than a computer enthusiast, is not fazed by

such skillful protection schemes. Some pirates "break", or

de-protect programs for the fun of it - the harder it is to

break, the greater the challenge, and the more fun they

have. Other illegal users of these broken programs collect

huge libraries of such software just for the sake of collecting

it. They would never buy any of the stuff even if they

couldn't break the protection. The majority of software users

are the computer-naive user: the person who wants a

certain program - along with the manual, package, and

warranty - and is willing to pay for it. This is the kind of

person who knows the least about what program will work

with which system configuration and why, and the person

most likely to get hurt by a picky and suspicious program.

He merely wants to pay a fair price for a program that will do

the job. Which brings the next topic to mind: a fair price.

Software companies must obviously make profits on the

programs that they sell. But spending many man-hours

developing elaborate protection schemes is a waste of time,

and obviously raises development costs, ergo, selling price.

If that time was spent on the program itself, perhaps the

resulting product would be good enough to generate tidy

profits from the abovementioned average software con

sumer. People would be more willing to buy programs

which weren't protected to death, and which sold for a

reasonable price. Sure, there would be unauthorized copies

floating around - probably in the hands of people who

wouldn't have bought the program anyway. In the music

business, records sell millions (for a reasonable price) even

though a tape is so easy to make. Software companies and

programmers want to charge huge amounts of money for

programs which they claim took years to develop. This

usually says more about their lack of programming skill and

efficiency than it does about the sophistication of the pro

gram.

True, some special purpose packages must sell for a rela

tively high sum because of the limited market appeal they

have. And there is nothing wrong with copy protection per

se, providing it has no adverse affects on the ruggedness of

the program (a tall order). But until the software producers

address the needs of the average software consumer, they

will face declining sales due to people who refuse to buy

fragile, limited, and hazardous products. And refuse they

should.

The Transactor 53 Volume 5, Issue 03

Spiffy Listings! Jeff Goebel

Georgetown, Ont.

Most of us have written a BASIC program, or at least typed one in

from a magazine. When we are finished we have a mess. If you've

ever tried to de-bug someone elses BASIC program, you'll know

how hard it is to find anything in a program listing.

Other languages allow you to indent and format listings neatly.

Commodore does not. However, it doesn't have to be this way; we

can CHEAT with our listings. We can emphasize important points

and hide secret sections while generally tidying up the way our

LIST looks. In this article I discuss ways to make your listings

neater, more colourful, and easier to de-bug. I also describe a few

ways to make your listing impossible to list or correct. There are

versions for all Commodore computers. All this, and you'll never

have to enter the machine language monitor.

First let's start with the easy ones. . . wouldn't it be nice to be able

to INDENT certain routines. In more structured languages, all

nested loops are pushed right by a few spaces so anyone looking at

the listings at a glance can quickly see what is going on. It is

possible to do this in Commodore BASIC too. You just have to

know how.

TYPE: 10 print "hi

Now LIST. What happened? All those leading spaces are ignored.

Now try this:

TYPE: 10 X print "hi

When you list it this time, the shifted X will have vanished and the

spaces will not. Don't ask me why or how it works; just be thankful

that it does. If we place ANY shifted character in our line, it will be

ignored, but the trailing spaces will remain, making it possible for

us to indent all we want. Another use for the above system;

TYPE: 10 X X

Again, press SHIFT then X. This time, when we list we see nothing

but the statement number. This has little use but it looks nice.

Besides, this one will confuse the hell out of people who don't

know what you've done. They'll be looking all over to see where

you've hidden line 10.

The REM statement of Commodore BASIC is ironically one of the

most versatile commands of the language. Oh sure, it doesn't

actually DO anything, but we can use it to create some pretty

bizarre effects. First of all, we'll start with the simple ones. Have

you ever tried including SHIFTED letters in a REM statement? It

doesn't work quite the way we expect. For some reason, CAPITAL

letters are converted to BASIC text commands when we re-list.

This has something to do with the way BASIC is tokenized.

Anyway, we don't have to know WHY it does this, all we want to

know is how we can use it to our advantage. Try this:

10 rem QWERTYUIOPZXCVBNMASDFGHJKL (Vic & 64)

10 rem QWERTYUIOPLKJHGFDSAZXCVBNM + (Pet series)

Don't be startled when you list it. You'll see a screen full of BASIC

commands and you'll be greeted by a ?SYNTAX ERROR. If this is

the first line of your program, the computer will stop here. It won't

even list to the printer. The key is the last character! On the 64 or

Vic, it's a capital L and on the Pets it's a graphic symbol (the cross).

All of the other letters are un-tokenized when listed but those two

characters have no command equivalents so the computer regards

them as an error. Naturally, this doesn't stop people from typing

LIST 20- but it may confuse a few. If we want a regular REM

statement to include upper case letters or graphic symbols, without

causing the effect above, all we need is an opening quotation

mark. This allows us to have BOLD STANDOUT REMS that can

easily be seen while listing. Therefore, REMs like:

10 rem "(c) 1984 Jeff Goebel" are acceptable.

We can also take this unusual feature one step further. With the

right format, we can actually make our listings EXECUTE certain

functions when listed. Imagine the possibilities opened up when

we can write programs that RUN when we LIST them. Of course

it's not quite that glamorous. I can't tell you how to get your lists to

do trig functions or elaborate mortgage calculations but we can get

it to do some pretty nice screen displays. Let's stop promising and

start with the examples. The format is exact so I'll describe it as I

go-

TYPE: 10 rem " (RETURN)

1) Cursor up to the spot just after the first quote and type RVS ON

(CTRL + 9 on Vic & 64).

2) Now type a SHIFTED 'M' - it should appear in reverse field. This

is the key character that makes it all possible.

3) Then type RVS OFF, a quote and the delete key. This puts you

back into 'quote mode'. We can now follow this |J| with any
sequence of cursor controls or control characters we want, and

when the program is listed they will not only function correctly,

but they will not be visible.

4) Let's try a CLEAR SCREEN first. Type the CLR key. A reverse

capital S should appear. Now hit return and LIST. BINGO! Your

screen clears!

5) Now re-type the line but follow the 'CLR' with a few down

cursors and a RVS ON. This time the reverse lower case 'r' will

The Transactor 54 Volume 5, Issue 03

appear. That's ok. We want it to. Now enter a title like; Jeff's

Listing! End off with a few more down cursors and hit return.

When we list, ■ we will see the phrase come up centre screen,

nicely emphasized in reverse, and the rest of the listing (if there

was any) will follow a few lines down.

You are probably beginning to think of many other ways this can

be used. Remember, ALL the cursor controls AND control charac

ters can be used. I generally use it to force my listings into lower

case (follow the 'M' with a small 'n' to flip to lower case and a

shifted 'N' to force upper case) and then 1 'lock' the mode by

following it with a control 'h' so that people can't flip it back to

upper case with the Commodore key. Then 1 centre a title and

underline it with a graphic character using just the right combina

tion of cursor movements.

There are some REALLY neat things you can do on the 8032/

Superpet computers. One these systems, there are extra control

codes for setting windows, deleting to end of line, scrolling up and

down and even ringing the bell. All of these can be incorporated

into the listing. If we set up a nice graphic title page and then set a

top left window just below it, all of the program will list UNDER the

window. You can keep your name on the screen during the entire

list and then re-set the window in the last statement. (Editor's

Note: I use the first line of my program to store 'DSAVE" @:PROG

NAME"' and use Jeff's technique to make it stay on the top line.

When 1 want to make a disk update, I simply hit HOME twice and

Return. Sure saves a lot of typing.)

Since these computers do not have an actual control key, you will

have to follow a slightly different procedure.

TYPE: 10 rem " and hit return as described above.

Then cursor up and type RVS, then the shifted 'M'. Now type an 'o'

to set the top left or a shifted '0' to set the bottom right window. A

'g' will ding the bell. Two small 's'es will reset the windows. Here is

an interesting example:

10 rem |ready.

It may take you a few try's to figure out the easiest procedure to get

this but after the first time, it becomes simple. If you list this

program now, you will see only the '10 rem' and nothing else but

when you try to move your cursor, it will appear that your

computer has crashed. In effect, all that has taken place is that you

have set a window 1 character by 1 character around your cursor.

To reset to normal, type the HOME key twice. If this is the first line

in your program, the rest of the lines will still list, but nobody will

be able to see them because they will be listing only on a 1 x 1

screen. They will still list to the printer and if you want to see them,

all you have to do is type: LIST 20-. However, there's no reason

why you can't put more of these through your program.

One of the most useful ways to make this work is for colour

changes. Since the colours are simply control functions on the 64

or VIC (colours are not available on the Pet series), it is a simple

matter of inserting the correct keystrokes after the 'M'. If we want

to force a blue listing, simply follow the 'M' with a 'control 7'. This

way, we can have all of our subroutines list in different colours

which make them really easy to spot. Keep in mind that a blue

listing on a blue background is invisible and some other colour

combinations are virtually impossible to read, (ie: red on blue)

Stick to one or two 'safe' colours and keep alternating.

If we are imaginative, the rems can be used to do some even more

incredible things. If we plan our listings, we can use rem state

ments to help misrepresent portions of our program. For example,

new any programs in memory and enter line 10 as syslO24. We

can now use a rem in line 20 to make it LOOK like sys2024 if we

want. Enter this as line 20:

20 rem" (and hit return)

Now cursor up beside the quotes and type RVS on. Now type the

following exactly. All characters should appear in reverse print:

MQQ]]]2q

On the Pet series, add an additional']'. If all went right, your listing

should appear normal except that line 10 now reads sys2024. It

will still actually BE syslO24 and listing line 10 by itself will prove

this, but go beyond 10 and it will LOOK like sys2024.

Using a similar method, we are able to create totally MOCK

statements, or hide portions of statements from view. One of the

cursor controls not yet touched on is the DELETE key. It too can be

incorporated into our statements. With it, we can change lines

totally or vanish any trace of them. Try:

10 print "hi" :rem" and hit return.

As usual, cursor up to the last quote and hit the RVS key. Now type

18 small 't's (19 for pets). Now type RVS OFF and add a MOCK

statement like:

20 for t= 1 to 1000 : new: next

When you list this, you'll see just the mock BUT when you run it,

the REAL line will be executed. You may notice a FLASH of the

statement being printed and then deleted but this goes un-noticed

if the technique is used in the middle of a program listing.

Remember also; YOU know it's there and are looking for it. Others

will be somewhat more unsuspecting

I'll leave you to think of NEAT ways to combine these tricks to

create either nice neat listings that everybody can read very easily,

or tricky nasty listings that are virtually impossible to list. I'm sure

there are probably as many other methods as I have described

here, and maybe this article will prompt some computer WHIZ

KIDS to say; " I can do that!" and submit an article with their 'list

spiffers'.

A few quick pokes to play with:

PET: POKE 19,32

C64: POKE 22,35

This vanishes all the statement numbers in a listing without

effecting the run. It works with printers too. To reset it, deliberately

cause some ?SYNTAX ERROR from the keyboard.

The Transactor 55 Volume 5, Issue 03

Collecting: Another View

When logging on to a BBS recently, 1 read a message from a

depressed 64 owner who had a few bootleg programs but

wanted more. He asked; "Why is it nobody will GIVE me

programs? They always want to TRADE!" This got me

thinking. Why is it nobody wants to GIVE software away?

This thought inspired this article. A look into the "SOFT

WARE COLLECTOR". This article is a comparison between

the average BOOTLEGGER to the average STAMP COLLEC

TOR.

Stamp collections hold no useful value to the collector. The

stamps may have a financial value but basically, there is no

USE for them. They are collected simply as "A COLLEC

TOR'S ITEM". There is a certain amount of prestige in

having something others do not.

It may be surprising to realize but most software collectors

do not USE the programs they have. They may play a game

now or then, or use the word processor, but often the bulk of

the collection is for the same purpose. It gives satisfaction to

know they have something that others don't, or that others

have had to pay for. This is why you'll find some software

collections number in the hundreds: they keep EVERY

THING!

When a stamp collector has a "million dollar stamp" and he

trades it, he expects a similarly valued stamp in return. The

person who trades for that stamp knows he is getting a

"million dollar stamp". It will always be a million dollar

stamp, and in five years when he trades it, he'll expect to get

a million dollars or more for it. Stamps seldom go DOWN in

value.

On the other hand, when the bootlegger has a "HOT

PROGRAM"; perhaps a program that's not yet on the mar

ket, when he trades it, he still retains a copy so the "market

value" goes down one notch. He too, expects something of

comparable value in return. This is where the problem lies.

In the bootleg there is a specific circuit. Simply put, there are

people who know people who know people who know the

bootleggers. The closer you are to the actual pirates, the

newer and more valuable your programs will be. Unfortu

nately, the people at the end of the chain seldom have

anything new that the others don't. For the "bottom

rungers" it becomes a catch 22 situation. They are unable to

trade for new programs because they don't have anything

new to trade with.

In the bootleg world, items hold prestige only so long. The

value of a program is determined by the speed of distribu

tion. After a month or two, you'll find EVERYBODY has it; so

it's worthless. Seldom worthless enough to throw it out, but

it goes on a disk somewhere, or it becomes a "giveaway" to

cousins or friends who just bought a 64. (Irrelevant note:

American Express has recently released THE PLATINUM

CARD because everybody has the gold card now so it's no

longer a status symbol.)

This forms another group of collectors. They are the friends

of collectors whose collection is typically three months

behind everyone elses. This is where our friend who logged

on the BBS lies. He goes to school and is trading for other

three month old programs. He's aggravated because he

knows there are better things available but he can't get

them, until three months from now. The guys at the top

laugh at him. I don't think any cases of suicide have been

reported yet, but it is certainly a frustrating situation to be in.

Editor's Note:

The preceding was submitted anonymously. Although we

don't normally publish articles from phantom writers, we

felt the information contained would give some insight into

the situation we've based this issue on.

Pirates know better than anybody the ramifications of dis

tributing pirated software: fundamentally it boils down to

lost profits. The challenge of piracy is not going to "go

away". But few pirates see any challenge in distributing to

the most number of people. A 'clique' is developing that

may even help limit the problem. Perhaps if pirates were to

unionize, only a pirate would be able to get a copy of an

unprotected program. And since there are only a small

number of hackers with enough smarts to crack some of the

elaborate protection schemes that some programs host, the

overall distribution of broken software would drop consider

ably.

A fantasy? Probably. But if pirates want to continue unpro-

tecting software, they'll need supply for their twisted habit. If

software companies stand to lose their shirts by developing

new software, it won't be long before development slows to

a standstill. You pirates can help change this bleak outlook

for the authors by exercising just a little self control.

The Transactor 56 Volume 5, Issue 03

Scrambling A

BASIC Program

Michael Bertrand

Madison, WI

Michael's is one of a couple of techniques presented in this

issue for encrypting a BASIC program file.

These scramble programs codify a given BASIC program

into a meaningless sequence of bytes. If the original pro

gram is scratched, the codified version is completely secure

from unauthorized use. Recovering the original program

requires another application of the scramble program, using

the same multi-digit seed used to create the scrambled

version. Every single byte of the original program is

changed in creating the scrambled "program", but in such a

way that the procedure can be reversed to recover the

original program. The subject programs are read from and

written to disk.

There are three different scramble programs:

1) " scramble.bas" — a BASIC version which runs on PET/

CBMs and the Commodore 64

2) " scramble.ml" — a machine language version for PET/

CBMs

3) " scramble64.ml" — a machine language version for the

Commodore 64

The same scramble program must be used in coding and

uncoding, since slightly different algorithms are used in the

BASIC and machine language versions. The machine lan

guage program runs about 12 times faster than BASIC on my

CBM/4040 system (about 5 seconds per kilobyte compared

to 1 minute per kilobyte). Arithmetic in the machine lan

guage versions depends heavily on floating point accumula

tor ROM routines. Machine language aficionados are invited

to disassemble the code, but in what follows I will be

discussing the BASIC version " scramble.bas"

Formally speaking, a BASIC program is a finite sequence of

bytes, or whole numbers between 0 and 255. In the Commo

dore DOS, the last 3 bytes are 0, and the first 2 bytes of a

program on disk contain the starting load address in low

byte- high byte order.

For example, consider the BASIC program:

10 print" hello

On disk, this program appears as the (decimal) sequence:

1 4 13 4 10 0 153 34 72 69 76 76 79 0 0 0

The first 2 bytes indicate the PET/CBM starting load address

of $401 = 1025 decimal. For the Commodore 64, the first 4

would be an 8, indicating a starting load address of

$801 =2049 decimal.

A pseudo-random sequence is a repeatable number se

quence whose elements are evenly distributed, as deter

mined by statistical tests, among all possible values. The

byte-generating pseudo-random sequence used in lines

300-310 of the "scramble.bas" program is z(0),z(l),z(2)

where:

s(0)= user determined seed value between 0 and 1

s(i + l)= frac(197*s(i)), for i> = 0

z(i)= int(256*s(i)), for i> = 0

frac(x) is a function found on most programmable calcula

tors, though not in BASIC. The definition is as follows:

The Transactor 57 Volume 5, Issue 03

frac(x)= the fractional part of x

= x-int(x)

The subscript notation — s(0), z(0), s(l), etc. — is used here

for facility of exposition. There are no arrays in the

" scramble.bas" program, since these values needn't be

saved.

Let's assume, for example, an initial seed value of

s(0) =. 14159265. Applying the formula yields:

z(0) = int(256*s(0)) = int(256*. 14159265) = 36

s(l) = frac(197*s(0)) = frac(197*. 14159265) = . 8937521

z(l) = int(256*s(l)) = int(256*.8937521) = 228

s(2) = frac(197*s(l)) = frac(197*.8937521)=.069164

z(2)=int(256*s(2))=int(256*.069164)=17

. . .and so on

The point of " scramble.bas" is to scramble the bytes of the

original program by offsetting each byte of the program with

the corresponding element of the pseudo-random se

quence. The scrambled "program" is written to disk and is

completely unintelligible. Since the entire scrambling proce

dure is reversible (using the same seed!), the original pro

gram can be recovered whenever necessary.

The following example illustrates the application of

" scramble.bas" to the program:

10 print" hello

using the seed s(0) = .14159265.

The first line below is the program, the second line the

pseudo-random sequence, and the third line the scrambled

"program": that is, the sum of the first 2 lines (modulo 256).

1) 1 4 13 4 10 0 153 34 72 69 76 76 79 0 0 0

2) 36 228 17 159 209 244 8 86 134 96 152

3) 1 4 49 232 27 159 106 22 155 210 172 231 0 0 0

Notice that the first 2 and last 3 bytes are left unchanged.

Also, the addition is " modulo 256": that is, if the ordinary

sum exceeds 256, then 256 is subtracted to keep the result

in the range 0-255.

If the name of the program in line 1 is "hello", then the

scrambled program is " hello.s". By applying " scramble

.bas" to "hello.s", using the same seed s(0)=. 14159265,

and choosing the unscramble option, the original program

is reproduced under the name " hello.s.s"

20 rem * scramble.bas prg — codifies input program

25 rem * p$ on the basis of seed s. the codified pro-

30 rem * gram is written to disk, and has the same

35 rem * name as the original, with ",s" appended.

40 rem * the scrambled program is unintelligible.

45 rem * the 'unscramble' option will re-create the

50 rem * original program if the same seed is used.

55 rem * 'scramble.bas' runs on pet/cbm or c-64.

60 rem * + + + + by michael bertrand + + + +

65 rem *

75:

100 input" @seed between 0 and 1 " ;s : print
110 input" program to be scrambled/unscrambled" ;p$

: print

120 open 5,8,5, "0:" +p$+ ",p,r"

: open 6,8,6," 0:" + p$ + " .s,p,w"

130 input "scramble or unscramble (s/u)" ;g$

136 if g$<>" s" and g$<>" u" then print: gotoi 30

140 sg = 1 : if g$ = " u" then sg = -1

154:

156 rem ** line 160 copies the first 2 bytes, con-

158 rem ** taining the load address, to the new file

160 get#5,z$: gosub200 : print#6,chr$(z);: get#5,z$

: gosub200 : print#6,chr$(z);

164:

166 rem ** the next 2 lines contain the main loop

170 get#5,z$: gosub200 : if z = 0 then 400

180 gosub300 : print#6,chr$(z);: goto170

184:

196 rem ** subroutine 200 recovers a byte's ascii value

200 if z$ = "" then z = 0 : return

210z = asc(z$) : return

214:

296 rem ** subroutine 300 offsets the current byte

298 rem ** and generates the next offset value

300z = z + 256 + sgn(sg)*int(256*s)

:z = z-int(z/256)*256

310 s = 197*s : s = s-int(s) : return

314:

392 rem line 400 is gone to when a 0 byte is encoun-

394 rem tered. three contiguous 0's end the codifying

396 rem process — one or two 0's are offset like

398 rem other bytes, and the main loop is returned to.

400gosub300 :z1 =z

410 get#5,z$: gosub200 : if z then gosub300 : goto460

420gosub300 :z2 = z

430 get#5,z$: gosub200 : if z then gosub300 : goto470

440 print#6,chr$(0)chr$(0)chr$(0);: close5 : close6 : end

460 print#6,chr$(z1)chr$(z); : goto170

470 print#6,chr$(z1)chr$(z2)chr$(z); : goto170

The Transactor 58 Volume 5, Issue 03

20 rem * scramble.ml program — machine language ver-

25 rem * sion for pet/cbm that runs about 12 times

30 rem * faster than the basic program, the algorithm

35 rem * generating the pseudo-random sequence is

40 rem * similar to the basic version, relying heavily

45 rem * on the floating point accumulators, m/l pro-

50 rem * gram resides at $033c-$03e4 (828-996 dec).

60 rem * + + + + by michael bertrand + + + +

70:

100 input" Qinput seed between 0 and 1 " ;s : print
110 input" program to be scrambled/unscrambled" ;p$

: print

120 open5,8,5," 0:" + p$ + " ,p,r"

: open6,8,6," 0:" + p$ + " .s,p,w"

130 input" scramble or unscramble (s/u)" ;g$

140 if g$<>" s" and g$<>" u" then print: gotoi 30

160 get#5,z$: gosub280 : print#6,chr$(z);

: get#5,z$: gosub280 : print#6,chr$(z);

170 for i = 828 to 996 : readx : pokei,x : nexti

: m = 856 : gosub200

180 if g$ = " u" then poke868,56 : poke869,237

: rem ** replace adc with sbc in m/l **

190 sys905 : close5 : close6 : end

192:

194 rem ** subroutine 200-230 puts real number s,

196 rem ** in floating point format, into memory

198 rem ** locations [m,m +1 ,m + 2,m + 3,m + 4]

200 e = int(log(s)/log(2)): p(0) = 129 + e

210 p = (s/2te-1)*128 : p(1) = mt(p): r = p-p(1)

220 for i = 2 to 4 : p = r*256 : p(i) = mt(p): r = p-p(i): nexti

230 for i = 0 to 4 : pokem + i,p(i): nexti: return

232:

280 if z$ = "" thenz = 0: return

290 z = asc(z$): return

300 data 162, 5, 32,198,255, 32,228,

255, 72, 32,204,255,104, 96

302 data 72,162, 6, 32,201,255,104,

32, 204,

304 data

306 data

32,210,255,

0, 0, 0,

0, 0, 0,

90, 3, 72,

0,

0,

169,

96

69.

32,216,204, 169,

308 data 32, 94,203, 32,

312 data 160

32

314 data 3

206,

3,

60,

32,

32, 100,

316 data 60, 3,208

173, 99, 3

318 data 33, 169, 0

0, 32, 74

320 data 74, 3,

32, 74,

322 data 32, 74,

173, 98,

324 data 99, 3, 32,

100, 3, 32,

32, 137,201

32, 10,205

3, 240,

74, 3,

3, 141,

27,

32,

32,

3,

72,

104,

76,

32,

74,

74,

255,

0, 136,

0, 24.109

88, 160,

93, 160,

66, 205,

162,

104,

32,

137,

3,

100,

3,

3,

0,

96,

3,

3,

3,

9,

76,

98.

32,

60.

74,

169,

173,

32,

137,

74,

3,

3,

100,

3,

3,

104,

3,

3

82,

88

96,

100

3,

32

3,

208

169,

32

3,

3

72,

173

32,

20 rem * scramble64.ml — machine

25 rem * language version for c-64,

30 rem * identical to code in scram-

35 rem * ble.ml, except for locations

40 rem * of some rom routines, m/l

45 rem * resides at $c33c to $c3e4

50 rem * (49980 to 50148 dec).

55 rem * + + by michael bertrand + +

70:

100 input" @input seed between 0 and 1 " ;s: print
110 input" program to be scrambled or unscrambled" ;p!

: print

120open5,8,5, "0:" +p$+ ",p,r"

: open6,8,6," 0:" + p$ + " .s,p,w"

130 input" scramble or unscramble (s/u)" ;g$

140 if g$<>" s" and g$<>" u " then print: gotoi 30

160 get#5,z$: gosub280 : print#6,chr$(z);

: get#5,z$: gosub280 : print#6,chr$(z);

170 for i = 49980 to 50148 : readx : pokei,x : nexti

: m = 50008 : gosub200

180 if g$= "u" then poke50020,56:poke50021,237

: rem * replace adc with sbc in m/l *

190 sys50057 : close5 : close6 : end

200 e = int(log(s)/log(2)): p(0) = 129 + e

210p = (s/2te-1)*128: p(1) = int(p): r = p-p(1)

220 for i = 2 to 4 : p = r*256 : p(i) = mt(p): r = p-p(i): nexti

230 for i = 0 to 4 : pokem + i,p(i): nexti: return

280 if z$ = "" then z = 0 : return

290z = asc(z$): return

300 data 162, 5, 32,198,255, 32,228,

255, 72, 32,204,255,104, 96

302 data 72,162, 6, 32,201,255,104,

32, 204, 255,

304 data

0,

306 data 90,

32,

308 data 32,

204,

32,210,255,

0, 0, 0,

0, 0,

195, 72, 169,

162, 187, 169,

40, 186,

188, 32,

32,

83,

312 data 160, 195, 32,212,

32, 60, 195,240,

314 data 195, 32, 74,195,

32, 100, 195

315 data 60, 195,208

173,

316 data 33,

0,

318 data 74,

32,

320 data 32,

173,

322 data 99,

99, 195,

169, 0,

32, 74,

195, 96,

74, 195,

74, 195,

98, 195,

195, 32,

100, 195, 32,

96

0, 0,136, 69,

0, 0, 24,109

88, 160,195.

93, 160,195

12,188, 32,

184, 162, 88

187,104, 96,

9, 32,100

76, 137, 195,

141, 98,195, 32

27, 32,100,195,

32, 60,195,208

32, 74,195,169,

195,169, 0, 32

72,173, 98,195,

104, 32,100,195

76, 137, 195, 72,

32, 74,195,173

74, 195, 104, 32,

74,195, 76,137,195

76,137, 3

The Transactor 59 Volume 5, Issue 03

Two Password

Protection Tools

G. Denis

Greenfield Park, Que.

Have you read the papers or been to the movies recently?.

Frankly, even if you are living on a deserted island, you

have probably heard about the latest avalanche of computer

break-ins. You have probably also heard about how easily

most of them could have been avoided: by using a password

at sign-on time, for example.

Techniques Of Password Protection

This article describes two programs that provide password

protection for program and data files.

The first program is a small Basic routine that you insert at

the beginning of your own program. Through an option, it

will ask for a password the first time it is run. From then on,

the only way to list or run the protected program is to enter

its password first.

The second program makes a protected copy of any file

using a password. The only way to ever use the protected

file is to rerun it through the program using the same

password.

Using Cryptography

We will be using one of many techniques in Cryptography,

the art of concealing the meaning of a message. We will take

an existing program or data file, assign it a password (or Key)

of up to eighty characters, and run it through an encryption

routine that will completely transform it into unrecognizable

garble. The result of this procedure is called a cryptogram. It

is stored just like the original program or file but the only

way to use the cryptogram is to transform it back into its

original form. To "decrypt" a file, you must use the original

password and run the file through a decryption routine.

Only the original password can be used: anything else will

garble the program or file beyond recognition.

Back To Basics: The Logical Operators

Before going through the actual programs, let us review

some background information. The encryption is done by

using the Exclusive Or (XOR) operator. You have probably

already used the logical operators (sometimes called Bool

ean Operators) AND, OR, NOT. The XOR operator is a less

commonly used member of the family (in fact, Commo

dore's Basic does not include a XOR operator although the

6502 machine language does allow for a XOR).

The logical operators perform their corresponding logical

operation on each binary digit (bit) of their operands. For

example, in C = A AND B, assuming that A, B and C are

each made up of 8 bits, bit*O of C is equal to the result of

AND'ing bit#0 of A with bit*O of B. Bit*l of C is equal to

bit#l of A AND'ed with bit* 1 of B and so on. . . The result of

AND'ing two bits is shown in Table 1 as well as the effect of

all the other logical operations on all the possible bit combi

nations.

Table 1

AND OR NOT XOR

1 AND] =

1 AND 0 =

0 AND 1 =

0 AND 0 =

Result is 1

if both bits

are 1

1

0

0

0

1 OR 1 = 1

1 OR0 = 1

0OR 1 = 1

0 OR 0 = 0

Result is 1

if either

bit is 1

NOT0 =

NOT1 =

Each bil

= 1

= 0

. is

complemented

1XOR 1 = 0

1 XOR 0 = 1

0XOR1 = 1

0 XOR 0 = 0

Result is 1 if

one or the other

but not both

Exclusive OR Properties

An interesting property of the XOR operator is it's so called

"reflexivity" property. Yeppp! you heard right, "reflexivity".

If we XOR a byte with a fixed value K, we obtain a new value

for the resulting byte. And if we take this result and XOR it

with the same value K we obtain the original byte value.

Example 1 will convince you of this: assume 15 is the value

of our byte and 34 is the value K. The result of the XOR

operation is 45. If we were to forget that our original value

was 15, we can work our way back to it from 45 providing

we remember our value K (34).

a) 15 XOR 34 = 45

b) 45 XOR 34 = 15

The reflexivity of the XOR operator'is the secret to our

encryption/decryption technique: we read in a file byte by

byte, XOR each byte with a chosen password (our K value)

The Transactor 60 Volume 5, Issue 03

and store the new byte in our destination file (cryptogram).

The new file is now unrecognizable. Unless we have the

key, the file is useless to us. If we have the password, we can

restore our file.

This simple technique easily lends itself to further refine

ments with the use of a sequence of K values that transform

successively all the bytes contained in a file.

Great! Now we know how to scramble a file using the XOR

operator. Right? Wrong! We don't have an XOR operator in

Basic!

Constructing The XOR Operator

If you studied Boolean operators in math, you probably

remember that we can build the XOR operator using the

AND, OR and NOT operators. Right?. . . Well if you did not,

some intuition. . . can give us an answer. Let us look at

Table 1. In C = A XOR B, C has the value one if: "A is one

and B is zero" OR "A is zero and B is one". More simply:

C = (A AND NOT B) OR (NOT A AND B)

. . .Well, take my word for it. . .

Manipulating BASIC

Listing 1 is the small BASIC routine that is to be inserted at

the beginning of any program you want to password-pro

tect. This routine does the actual encryption and decryption

of the program following it. Somehow, it has to find out

where the protected part of the program is located in

memory. In order to understand how it does this, we need to

know how BASIC programs are stored in memory.

Programs are stored in the Commodore-64 memory start

ing at location 2048 ($0800) (see Diagram 1). The first byte is

allways a zero byte. Each BASIC line has a two byte long

LINK field and a two byte long LINE NO. followed by the

actual BASIC code and one NULL byte indicating END of

LINE. The LINK field normally contains a two byte address

pointing to the next line's LINK field. The end of a BASIC

program is indicated by a dummy line with the LINK field

containing two NULLS.

Some Useful Addresses

Addresses 43-44 ($2B-$2C) in page zero contain the Star-

t-of-BASIC pointer (a two byte address) to the first line's

LINK field. They normally contain the value 2049 ($0801).

Addresses 45-46 ($2D-$2E) are BASIC'S Start-of-Variables

pointer which normally points just beyond the program

storage space, where the variables used in the program are

stored.

An interesting routine belonging to the BASIC-in-Rom is

located at 42291 ($A533) and is called the RE-CHAIN

routine. By doing a:

SYS(42291)

. . .you can force all the LINK fields to be recalculated. This

routine is called by BASIC whenever you LOAD a program;

it ensures that wherever your program is loaded into mem

ory, it's LINK addresses point to the right places.

Now, let's look at how the RUN, LIST, LOAD and SAVE

instructions use these different storage spaces and pointers.

LOAD transfers your program starting at the address found

in 43-44. When it has finished, it updates locations 45-46. It

then executes the RE-CHAIN routine up to the NULL LINK

field (end of program).

RUN and LIST use the address stored at 43-44 to begin their

operation and will not execute or list beyond the NULL LINK

field.

SAVE stores whatever is located between the addresses

contained in 43-44 and 45-46. Usually, this would be your

program.

As you will soon find out, the program that follows will

make clever use of what was just described.

PROGRAM 1: Password Protected Program

Type the routine shown in Listing 1 at the beginning of the

program you want to protect. Check for errors and save it.

Diagram 1: BASIC Text Line Structure

Link Link

t i_J t t

start 2048

t I

line"

pointer to next line ■

end of prg

0 L H L H line text 0 L H L H line text 0 0 0

pointer to next line ■

The Transactor 61 Volume 5, Issue 03

Running It

In order to protect or encrypt your program, type "RUN 10".

There should be some more program lines beyond line 160,

as noted in the listing, or there will be nothing to encrypt.

You will be asked for a password. Enter any number up to 80

characters. After a few seconds, the message "DONE"

should appear. The program is now encrypted and can be

saved.

To run a protected program, simply LOAD it and type

"RUN". You will be asked for the password under which it

was last protected. Typing in a wrong password will corrupt

your program and probably the machine. If you type in the

right password, the program should soon be executing

properly (after it has been decrypted).

When you run the program, you will notice that the pass

word is "invisible" as it is being typed. Line 70 changes the

cursor color to blue (the same as the background color)

before asking for the password.

You will probably also notice that if you list a program in its

encrypted form, only the password routine is visible: the

encrypted part will not be listed.

How It Works

Rather than explaining the listing

through it's main functions:

line by line, I will go

-Determination of the memory location at the end of the

password routine (or the beginning of the actual program):

Line 160 is crucial in this matter since the two dollar signs

(ASCII value 36) at the end of the line will indicate the end of

the password routine. Line 20 positions us to the first line's

LINK field. Using the Start-of-BASIC pointer, line 30 calcu

lates the address of the next LINK field. We will be jumping

from LINK field to LINK field until line 40 detects the two

dollar signs at the end of line 160. Variable A now points to

the first BASIC line to be encrypted or decrypted.

-Acceptance of the password: Line 70 accepts the password.

Line 90 places the password into an integer matrix.

-Determination of the location of the end of the program:

Line 100 calculates the position of the last character of the

last line using the Start-of-Variables pointer (Remember:

BASIC stores its variables just after the end of the program).

-Encryption/decryption routine: Lines 110-120 do the ac

tual cryptographic XOR'ing. As index J is sequentially mov

ing through memory, index I uses each password character

value as a new key. Using multiple key values reduces the

probability of a "pirate" deciphering the password.

-Hiding of the encrypted program: To make sure the en

crypted part of the program does not show when a LIST

command is passed, line 130 inserts a dummy NULL LINK

value right after the password routine. BASIC is then fooled

into thinking the program ends there because of the NULL

LINK.

-Re-enabling of the decrypted program: The decryption

process resets the NULL LINK value previously set during

encryption (last function). Line 140 will replace the dummy

NULL LINK by a non zero value. Line 150 calls the RE-

-CHAIN routine to make sure the LINK field is put back to

it's correct value.

PROGRAM 2: File Protection

The program shown in Listing 2 is complete by itself. It will

encrypt or decrypt any disk file.

Running It

Type "RUN". You will be asked for the name of the file to be

encrypted and the name under which the encrypted version

is to be created. To decrypt a file simply pass it through the

program a second time using the original password.

How It Works

-Opening of the files: Lines 10 through 70.

-Acceptance of the password: Line 80 accepts the password.

Lines 110 to 140 put the password into an integer matrix.

-Encryption/decryption: Lines 150 to 220 input a byte,

encrypt/decrypt it and send it out to the new file. Line 210

does the XOR'ing. Similarly to Program 1, index I uses each

password character value as a new key.

Conclusion

Although more foolproof encryption methods exist, the one

presented here offers the advantage of being effective yet

simple enough to be implemented quickly.

NOTE: On the PET/CBM, replace the following addresses:

POINTER C64 PET

Start-of-BASIC 43-44 ($2B-$2C) 40-41 ($28-$29)

Start-of-Variables 45-46 ($2D-$2E) 42-43 ($2A-$2B)

RE-CHAIN routine 42291 ($A533) 46262 ($B4B6) BASIC 4.0

50434 ($C442) BASIC 2.0

The Transactor 62 Volume 5, Issue 03

0 goto20 : rem***password decryption

10 s = -1 : rem***password encryption Listing 1

20 a = peek(44)*256 + peek(43)

30 a = peek(a) + peek(a + 1)*256

40 ifpeek(a-2)036orpeek(a-3)036thengoto30 : rem***locate end of password rout.

50 if s = 0 and (peek(a)<>0 or peek(a +1)<>0) then gotoi 60

60 if s = -1 and peek(a) = 0 and peek(a+ 1) = 0 then print"allready protected" : end

70 input" password: Q" ;p$: print "0" : if p$= "" then 130
75 rem control chars in 70 are blue, then It. blue

80 dim p(len(p$))

90 for pi = 1 tolen(p$): p(pl) = asc(mid$(p$,pl,1)) : next

100 b = peek(46)*256 + peek(45)-4

110forj = a + 2tob: i = i + 1 : if i>pl-1 then i = 1

120 c = peek(j): d = p(i): pokej.(candnotd) or (notcandd) : next: rem*** pokej, 'c xor d'

130 if s = -1 then pokea.O : pokea + 1,0 : print "done" : end : rem***hide program

140pokea,1 :pokea + 1,1 : rem***un-hide program

150 sys(42291): rem***re-chain basic links

160clr:rem$$ j
1000 **

1100 print" important!! line 160 must end with two dollar signs

1200 print" your program begins anywhere beyond line 160

1300 **

5 rem***file encryption/decryption***

10open15,8,15

20 input" source file name,type" ;f$,t$ Listing 2

30open5,8,5,f$+ "," +t$+ ",r"

40gosub1000

50 input" destination file name" ;f$

60 open 6,8,6,f$ + "," +1$ + " ,w"

70gosub1000

80 input "password: QJ" ;p$:pnnt"0"
90 print" wait. . ."

95 rem***no password entered forces a zero value key. i.e. no encryption***

100 if p$ = "" then pi = 1 : p(1) = 0 : goto150

110 dim p(len(p$))

120 for pi = 1 tolen(p$)

130 p(pl) = asc(mid$(p$,pl,1))

140 next

145 rem***beginning of copy loop***

150 get#5,c$: if c$ = "" then c$ = chr$(0)

160 sx = st

170i=i+1

180 if i>pl-1 then i = 1

190 c = asc(c$)

200 d = p(i)

205 rem***c xor d same as (c and not d) or (not c and d)***

210 print#6,chr$((candnotd) or (notcandd));

220ifsx = 0then 150

225 rem***end of copy loop***

230 close5

240gosub1000

250close6

260gosub1000

270close15

280 end

1000 input#15, e, e$, f$, g$

1010 if e<>0 then printe, e$, f$, g$: close5 : close6 : close15 : end

1020 return

The Transactor 63 Volume 5, Issue 03

Disk Defender David Cobb

Windsor, Ont.

This program was designed and written for a C64 with a

1541 disk drive, (see Editor's Note). It allows one to protect

and unprotect individual program files. Once a file is pro

tected, only the user who protected the file can have access

to the program. The gives the user's disk complete privacy.

The program asks the user to enter a 5 character combina

tion code. It is vital that you remember this code. Since the

code is not recorded by the program, if you forget it you will

not be able to recover any files protected by that code.

Should you enter an incorrect code you may never see that

file again. The program, in such a case, would attempt to

reverse the locking procedure using the incorrect code

which would compound the encryption. To unlock such a

file, it would first have to be unlocked with the incorrect

code to create a file that could be unlocked with the original

correct code. As you can see, it is necessary to remember the

code you make up.

This method may seem harsh on people with bad memo

ries, however it should stop software pirates cold. Without

the combination code, protected files are locked up solid.

The odds of anyone guessing your code are one in 50

trillion. You have a better chance winning a lottery.

The program protects files by using your combination code.

For example, suppose your code is "42345". The last digit 5

is added to the first byte in the first sector of your disk file.

Then all the numbers, except the first one (4), rotate one

position to the right. The last number 5 is moved to the

second position. Now your code is "45234". The cycle then

repeats itself, only the last digit 4 is added to the second byte

of the sector. The first digit serves as a counter. Every time a

cycle is complete the counter is decremented by 1. When it

reaches 0 the entire code is reset to its original state (45234).

The process continues for the entire sector.

Note: For the first RUN of Disk Defender, use a

diskette that contains nothing important. If you

make a mistake entering the program you may

harm some files.

The user need only remember the original code. The pro

gram keeps track of all rotations and alterations on disk.

Files are unprotected by the same process, only in reverse.

Instead of adding, the last digit is now subtracted from each

byte. However, the code digits still rotate right.

Disk Defender will only protect files specified by the user. If

Disk Defender is not on the disk containing the protected

files, it is a good idea to put it there. Otherwise you will need

to LOAD it from another disk and substitute the disk with

your protected files before RUNing.

You might even include it as part of another program. Disk

Defender will protect any type of file.

Editor's Note: Disk Defender was written for the 64/1541

but with minor modifications will work with any Commo

dore machine and drive type. The only change required lies

at line 10020. Variable T & S represent the first track and

sector of the directory. For 4040 drives, leave as is (18 and

0). For 8050 and 8250 change T to equal 39. For hard disk

change toT = 0,S=l.

When entering the program, you'll notice that a lot of the

code can be entered by making minor changes to previous

lines. Lines 120 to 170 can be entered in no time by merely

changing the previous line number and a couple of other

characters each line. Notice how lines 200 to 310 are

virtually the same as 300 to 410. Same with the first few

lines from 10000 on, and 20000 on.

David has chosen to "rotate" the first block of the file only.

But since the forward track and sector pointers are also

encoded, the disk has no way of knowing where the next

sector lies. When programs are involved, 256 bytes can hold

a lot of code unless you have 256 bytes of REM statements.

But the first 256 bytes of a long SEQ file will be long

forgotten when the next block is found. Seasoned pirates,

within 5 guesses, could find the next block of a Commodore

disk file which would, in this case, lead them to the rest of

that file. Perhaps David's program should do all blocks of a

file.

Finally, Disk Defender could be used in conjunction with

some other protection schemes in this issue to make a

program pretty tough to crack.

The Transactor 64 Volume 5, Issue 03

"lOrem disk defender

20 rem by david cobb

30 rem

40 dw$ = chr$(17): z$ = chr$(O) :cr$ = chr$(13)

50 dim r$(255), r(256)

60 print dw$" enter combination" :c$ = ""

70 print "5 digit code"

80 print dw$" code:" tab(6);

90 get a$: if a$ = "" or a$ = cr$ then 90

100 print " *"; :c$ = c$ + a$: a$ = "" : if len(c$)<>5

then 90

110 print cr$" are you sure ";

111 input an$: if left$(an$, 1)<>" y" then 60

120 n1 =asc(mid$(c$,1,1))

130n2 = asc(mid$(c$,2,1)): o2 = n2

140 n3 = asc(mid$(c$,3,1)): o3 = n3

150 n4 = asc(mid$(c$,4,1)): o4 = n4

160 n5 = asc(mid$(c$,5,1)): o5 = n5

170 print dw$" lock or unlock file? (l,u)" dw$

180 input an$: if an$<>" I" and an$<>" u" then 170

190 if an$ = " u" then 320

200 rem *** lock file ***

21 Ogosub 10000

220cn = n1

230 gosub 20000

240 for I = 0 to 255

250 r(l) = r(l) + n5

260 en = cn-1 : if en = 0 then gosub 40000 : goto 280

270 gosub 40500

280 if r(l)>255 then r(l) = r(l)-256

290 next: gosub 30000

300 print "file: "an$" is locked."

310 close2 : closei 5 : end : rem * * end of lock * *

320 rem *** unlock file ***

330 gosub 10000 : en = n1 : gosub 20000

340 for I = 0 to 255

350 r(l) = r(l)-n5

360 en = cn-1 : if en = 0 then gosub 40000 : goto 380

370 gosub 40500

380 if r(l)<0 then r(l) = r(l) + 256

390 next: gosub 30000

400 print "file: "an$" is unlocked."

410 close2 : close15 : end : rem ** end of unlock **

10000 rem * find track & sector of file *

10010 print " enter name of file" : input an$

10020 m = len(an$): t = 18 : s = 1

: rem * adjust for drive type *

10030 open2,8,2, "#" : open 15,8,15

10040 print#15," u1:" 2;8;t;s : gosub 50000

10050ln$= ""

10060 for I = 0 to 254

10070 get#2,r$(l): if r$(l) = "" then r$(l) = z$

10080 ln$ = ln$ + r$(l): next: z = 1

10090 if mid$(ln$,z,m) = an$ then 10120

10100z = z + 1 : if z=256-m then s = asc(r$(1))

: goto 10040

10110 goto 10090

10120 if m + z> 256 then 10140

10130 ifasc(mid$(ln$,m + z,1))<> 160 then 10100

10140 tr = asc(mid$(ln$,z-2,1))

10150 sc = asc(mid$(ln$,z-1,1))

10160 closei 5 : close2 : return

20000 rem * read track & sector *

20010open2,8,2,"#" : open 15,8,15

20020 print#15," u1:" 2;8;tr;sc : gosub 50000

20030 for I = 0 to 255

20040 get#2,r$(l): if r$(l) = "" then r$(l) = z$

20050 r(l) = asc(r$(l))

20060 next

20070 close15 : close2 : return

30000 rem * write track & sector *

30010open2,8,2,"#" : open 15,8,15

30020 print#15," b-p:" 2;0 : for I = 0 to 255

30040 r$(l) = chr$(r(l))

30050 print#2,r$(l); : next

30060 print#15," u2:" 2;8;tr;sc

30070 gosub 50000 : return

40000 rem * check code *

40010 en = n1 : n2 = o2 : n3 = o3 : n4 = o4 : n5 = o5

40020 return

40500 rem * rotate user code *

40510 oo = n5 : n5 = n4 : n4 = n3 : n3 = n2 : n2 = oo

40520 return

50000 rem * error check *

50010 input#15, a, a$, q1, q2

50020 if a = 0 then return

50030 print "error " ;a

50040 print a$

50050 print " track " ;q1;" sector " ;q2

50060 close15 : close2 : end

The Transactor 65 Volume 5, Issue 03

LockDisk: Force RUN On LOAD
Program by Jim Butterfield

Presented by Karl J.H. Hildon, Managing Editor

The only way to get programs to benefit from all those POKEs you

put inside is to make them execute those POKEs. You can add all

the protection in the world but if LOAD and SAVE is still allowed,

you've accomplished nothing.

LockDisk is a utility that adds data to the beginning of a program

file. This data has been carefully chosen.

The first two bytes of a program file on disk represent the address

at which the LOAD routine will place that file in memory. Lock-

Disk changes those bytes to a spot well beneath the Start of BASIC

text space. When the new doctored file comes into the machine,

several delicate memory locations get clobbered by the added

data. After LOAD does its part, the machine is literally taken by

surprise. Instead of giving control back to the keyboard, the

machine takes an abrupt detour straight to RUN.

Naturally, LockDisk disables the STOP key. Jim does some other

really nasty things to the operating system too. But if we reveal too

much about LockDisk, its potentcy will be severely diluted.

Two Versions

LockDisk is listed below for both the Commodore 64 and PET/

CBM machines. Sorry, no VIC version; too many memory configu

rations.

Both versions are used the same way. You'll be asked for the name

of the program you want locked. LockDisk checks to make sure

this file is a normal program by testing the start address. If the low

byte is not CHR$(1), LockDisk quits.

Then you supply a new program name as the title of your locked

file. The 64 version assumes you have a single drive; the PET/CBM

version will let you pick the drive number if you have two.

LockDisk takes off from there.

The Finished Product

Once done, try LOADing the new file. If you've written your

program with no vulnerable INPUT statements or anything else

that might relinquish control, chances are you'll need to power

down to get your machine back.

Unlike PET/CBMs, the 64 has a couple features that forces Lock-

Disk to be a little craftier. To make the new locked file do an auto

RUN, a non-relocating LOAD must be specified:

LOAD " LOCKED PROGRAM " ,8,1

If you don't, the LOAD routine will ignore the new start address,

relocate the file away from the hot spots, and the auto RUN is

defeated, you say. Not quite, hacker breath! LIST it and see.

OK. Now hit RUN/STOP-RESTORE. Thought you had it licked,

eh? Maybe next time.

A Humble Start

LockDisk won't last long against the seasoned pirate. But with

enough extras you'll be able to keep him busy for a while. And for

the average user, LockDisk will quickly discourage any dubious

intentions.

LockDisk isn't above improvement. The deeper you go into lower

memory, the more you can add to your protection efforts. Remem

ber, there's more pointers down there than you can shake a stick

at. And if you change them, have your program check for those

changes. If it sees they've been set back to normal, anything from a

warning to intense cruelty is optional. Just be sure about it though.

You don't want to go newing disks that belong to honest users with

equipment you haven't accounted for.

Above all, don't short change yourself. LockDisk is only one utility

you can take advantage of. There are lots more.

The Transactor 66 Volume S, Issue 03

LockDisk for the Commodore 64

5 print " auto start 64 - jim butterfield "

10open 15,8,15

20 input " name of program" ;n$

30 open 1,8,3,n$+ " ,p,r" : input#15,e,e$,e1 ,e2

40 if note then get#1,a$,b$: if a$Ochr$(1)then e=1 : e$= "oops!"

50 if e then printeS : closei : stop

60 input " name of converted program " ;c$

70 open 2,8,4, "0:" +c$+ ",p,w" : input#15,e,e$,e1 ,e2

80 if e then printeS : close2 : stop

90 data 192,2,0,8,1,0,147,34

100 for j = 0 to 7 : readx : print#2,chr$(x); : nextj

110 for j = 1 tolen(c$): print#2,mid$(c$,j,1); : nextj

120 data 34,44,56,44,49

130 for j = 0 to 4 : readx : print#2,chr$(x); : nextj

140 for j = 0 to 52-len(c$): print#2,chr$(0); : nextj

150 data 139, 227, 52, 3,124,165, 26,167

160 data 228, 167, 134, 174, 0, 0, 0, 0

170 data 76, 72,178, 0, 49,234,102, 2

180 data 71,254, 74,243,145,242, 14,242

190 data 80,242, 51,243, 87,241,202,241

200 data 237, 246, 62,241, 47,243,102,254

210 data 165, 244,237, 245, 32, 89,166, 76,174,167

220 for j = 0 to 57 : readx : print#2,chr$(x); : nextj

230forj = 0to 1221 : print#2,chr$(32); : nextj: print#2,chr$(0);

240 get#1 ,a$: sw = st: if len(a$) = 0 then a$ = chr$(0)

250 print#2,a$; : if sw = 0 goto 240

260 closei : close2 : close15

270 input" want to do more programs" ;a$

280 if a$ = " y" or a$ = " yes" goto 10

290 sys peek(65532) + peek(65533)*256

LockDisk for the PET/CBM

100 printchr$(147)"run-only (c) 1981 jim butterfield" : open3,0

110 closei : close15 : print" basic program to protect? "; : input#3,n$

120 print: open15,8,15

130open1,8,3,n$+ ",p,r"

140 input#15,dz : if dz<>0 gotoi 10

150 get#1 ,a$,b$: if a$Ochr$(1) and b$Ochr$(4) gotoi 10

200 close2 : print" name for protected version? "; : input#3,p$: print

210 print "write to drive? 0 "chr$(157)chr$(157); : input#3,d$: d = val(d$): print

220 if d<0 or d>1 goto210

230open2,8,4,chr$(d + 48)+ " : " +p$+ ",p,w"

240 input#15,dz : if dz<>0 goto200

300 for j = 0 to 2 : print#2,chr$(j); : nextj

310 for j = 1 to 255 : print#2,chr$(2); : nextj

320 for j = 1 to 3 : print#2,chr$(0); : nextj

330 readj: if j>255 goto400

340 n = n + 1 : print#2,chr$(j); : goto330

400forj = 515 + n to 1024 : print#2,chr$(peek(j)); : nextj

410get#1,x$: sw = st: if x$= "" then x$ = chr$(0)

420 print#2,x$;

430if sw = 0 goto 410

440 close2 : closei : close15

450 print" want to do more? "; : input#3,z$

460 if asc(z$) = 89 then run

470 syspeek(65532) + peek(65533)*256

700 data 165,144,164,145,16,12,24,105,3,144,1,200,141,130,2,140,131,2

710 data 162,18,189,84,2,157,111,2,202,16,247,154,169,1,72,72,72,72,72

720 data 169,122,160,2,120,133,144,132,145,88,169,5,133,158

730 data 165,40,133,42,165,41,133,43,160,0,162,3,177,42

740 data 230,42,208,2,230,43,201,0,208,242,202,208,241

760 data 108,148,0

770 data 147,82,85,78,13,0,0,0,0,0,0,32,234,255,169,255,133,155,76

780 data 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,108,252,255,256

The Transactor 67 Volume 5, Issue 03

Drive Protect
Richard T. Evers, Editor

YoO 3l>sT Bit into YooR. DISK AMD

IMSERTED 1C>OR. TbAST INTO THE C>I5< CK.IVE

Drive Protect has been written for everyone who has ever

lost important information on diskettes, due to accidental

scratching of files, or wiping out of entire disks. The program

below will help stop these little misadventures, and also

provide you with a few more avenues of protection as an

added benefit.

By using Drive Protect you can perform up to three differant

forms of protection that you probably didn't know were

possible. The first will allow you to SCRATCH protect any

files that you choose, for the specific purpose of thwarting

the cloddish people who make lending out disks a horror.

With this feature enabled, SCRATCHing will be disabled, but

SAVEing @, LOADing, reading from and COPYing are still

allowed. Not an earth shattering event in the protection

department, but still one that does come in handy when the

cards are not in your favour.

The second form of protection is one that will be usefull to a

very small minority of readers. This feature will enable you

to change the block count of specific files on disk. Though it

may appear to have few immediate protection benefits, for

the block count will appear correct on the new copy if

copyied, it does allow you to purposely confuse the heck out

of a lot of would be file snoopers. In the game of protection,

confusion can be truly effective.

The third and final form of protection available is one that I

feel will benefit most who use it. It rewrites your diskette in

such a way that you cannot duplicate it easily. This also

means that you can no longer SAVE to the disk, or write to it,

along with not being able to BACKUP at all. But you still can

COPY from it. This is accomplished by changing the DOS

version identifiers on the disk surface. The data pertaining

to this procedure can be found in the following chart.

Drive ID Index

1541 65 2

2031 65 2

4040 65 2

8050 67 2

Location

Track 18, Sector 0

Track 18, Sector 0

Track 18, Sector 0

Track 38, Sectors 0 & 3

8250 67 2 Track 38, Sectors 0, 3, 6, & 9

As the chart shows, the DOS ID is normally a 65 ascii for the

1541/2031/4040 drives, and 67 ascii for the 8050/8250

machines. A change of this value on the disk surface, on the

track & sector(s) specified, with an index of 2, which is the

third byte from the start, will produce the desired effect. If

these points seem too much for you to remember, don't

worry. Drive Protect has been written to do all the work for

you. The only action required of you is to key the program

in, RUN it, then specify your intent. With a groan of your

disk drive, and a flash of its lights you will find your diskette

takes on a new shape (essentially, not physically). It is for

this reason that I suggest you use a test diskette until you're

sure Drive Protect is working properly.

Further variations can be made to this program to allow you

to rename your files, change the pointers to the next direc

tory block, and the pointers to the first data block that

applies to the file chosen. These little improvements I leave

entirely at your discretion. If you create some twists, drop us

a letter and let us know how you managed it. Chances are if

you found your twist imaginative, some of our other readers

would also.

100 remark* richard evers-June 1984

110 remark * drive protect

120 remark * - scratch protect your files.

130 remark * - change the block count of files.

140 remark * - back up protect your diskette.

The Transactor 68 Volumes, Issue 03

145cs$ = chr$(147): dc$ = chr$(17) : ry$ = chr$(18) : rn$ = chr$(146)

150 print cs$" drive protect - transactor magazine"

155 print dc$" specify drive type" dc$

160 print "(1) 1541/2031 "

165 print "(2)4040"

170 print "(3)8050"

175 print "(4)8250"

180 print dc$" your choice : ";

185 input dt: if dt = 0 or dt>4 then 180

190 if dt = 1 then dt = 18 : dl = 144 : dh = 2 : di = 4 : rv = 1 : pt = 18 : ps = 0 : rem 1541 /2031

195 if dt = 2 then dt = 18 : dl = 150 : dh = 67 : di = 4 : rv = 1 : pt = 18 : ps = 0 : rem 4040

200ifdt = 3thendt = 39 : dl= 96 : dh = 67 : di = 8 : rv = 2 : pt = 38 : ps = 0 : rem 8050

205 if dt = 4 then dt = 39 : dl = 96 : dh = 67 : di = 8 : rv = 4 : pt = 38 : ps = 0 : rem 8250

215 print dc$" protection : (1) file or (2) disk ";

220 input fd$: if fd$ = " 2" then 475 : rem • disk protect

230 input" drive#, filename : " ;d$,f$

235 if len(f$)>16 or d$<" 0" or d$>" 1 " then 230

240 input" scratch protect file (y/n) " ;sp$: sp = sp$ = " y"

245 input" change block count (y/n) " ;cb$: cb = cb$ = " y"

250 if cb = 0 then 280

255 input "change to what value ";nb

260 if nb > 65535 then 255

265 ch = int(nb/256): cl = nb - ch*256

270:

275 rem * * * check if file exists - continue on if so

280 open 15,8,15

285 open 5,8,5,""+ d$ +":"+ f$ +"": get#5,a$: if st then 460 : rem * not there

295 print#15, "m-r"chr$(d!)chr$(dh); : rem * find sector of file in directory

300 get#15,s$: sec = asc(s$ + chr$(0))

305 print#15, "m-r"chr$(dl + di)chr$(dh); : rem * find index within directory

310 get#15,i$: ind = asc(i$ + chr$(0))

315:

320 open 6,8,6, "#"

325 print#15," u1 " ;6;val(d$);dt;sec; : rem * set up to read the data

330 print#15," b-p" ;6;0; : rem * position the buffer to the start

335 get#6,pl$: if pl$ = "" then pl$ = chr$(0): rem * next dir block low

340get#6,ph$: if ph$= "" then ph$ = chr$(0): rem * next dir block high

345 if ind = 2 then 365 : rem * it's the first file in

350forx = 2toind-1 : get#6,a$: ss$ = ss$ + chr$(asc(a$ + chr$(0))): nextx

355:

360 rem * * • time to bring in the actual data about the file chosen

365 get#6,ty$: if ty$ = "" then ty$ = chr$(0): rem * file type

370 get#6,tr$: if tr$ = "" then tr$ = chr$(0): rem * first data track

375 get#6,se$: if se$ = "" then se$ = chr$(0): rem * first data sector

380 for x = 1 to 16 : get#6,a$: na$ = na$ + chr$(asc(a$ + chr$(0))): next x

385 for x = 1 to 9 : get#6,a$: bs$ = bs$ + chr$(asc(a$ + chr$(0))): next x

390get#6,bl$: if bl$= "" then bl$ = chr$(0): rem * block count low

395 get#6,bh$: if bh$ = "" then bh$ = chr$(0): rem * block count high

405 if sp then ty$ = chr$(asc(ty$)or64): rem * set bit 6 for scratch protect

410 if cb then bl$ = chr$(cl): bh$ = chr$(ch): rem * change block count

415:

420 rem *•• and finally, bring in the balance of the data

425 if ind = 226 then 440 : rem * data already read in

430 for x = ind + 30 to 255 : get#6,a$: es$ = es$ + chr$(asc(a$ + chr$(0))): next x

440 open 7,8,7, "#"

445 print#15," b-p" ;7;0; : rem * position the buffer to the start

450print#7,pl$;ph$;ss$;ty$;tr$;se$;na$;bs$;bl$;bh$;es$;

455 print#15," u2" ;7;val(d$);dt;sec; : rem * let it know where to write

460 close 5 : close 6 : close 7 : close 15 : rem * and close it all up

465 printchr$(147)"file protection complete !!" : end

470:

475 print chr$(147)" disk protect - stops the backup blues"

480 input " drive number" ;d : if d>1 then 480

485 open 5,8,5, "#" : open 6,8,6, "#" : open 15,8,15

490 for lp= 1 torv

495 print: print " pass" Ip" of" rv": track" pt" sector" ps

500 print#15, "u1 " ;5;d;pt;ps : print#15," b-p" ;5,0 : rem * read from ch#5

505 print#15, "b-p";6,0 : rem * write to ch#6

510b$= "" :forx = 0to255

520: get#5,a$: a$ = left$(a$ + chr$(0),1): if x = 2thena$= "•"

525 : b$ = b$ + a$: if x = 128 then c$ = b$: b$ = ""

530 next x

535 print#6,c$;b$; : print#15," u2" ;6;d,pt,ps

540 ps = ps + 3 : next Ip

545 print#15," i" +mid$(str$(d),2)+ ""

550 close 5 : close 6 : close 15 : print chr$(147)" disk protection complete !!" : end

The Transactor 69 Volume 5, Issue 03

DiskMod: Examine Diskettes

Sector By Sector
Program By Jim Butterfield

Presented By Karl J.H. Hildon

If you've been lucky enough to never have a diskette go bad

on you, then perhaps you should stop reading this article.

Kinda like hitting your thumb with a hammer - it never

happens until you're thinking about it.

The fact is, diskettes do go bad. Not just Read Errors, but

chain pointers get mixed up, directories mysteriously drop

filenames, and files clobber each other by fighting for the

same sector. Why? Oh sure, sometimes it's the program

mers' fault. But I've known my drives to gobble a file or two

on me before - and at least once with no program present at

all.

Once I tried to COPY a file from one drive to the other on my

8050. The next Directory I did showed me a full disk with

only the first 8 filenames. There were no Read Errors. In fact

I recovered everything. Using DiskMod I simply called up

the sectors of the directory track, fixed the pointers, and

everything was back to normal. Then I took a backup.

Read Errors are tough to recover from even at the best of

times. Sometimes you can try the other drive, or another

unit, and find it goes away. But a true Read Error, for

instance a faulty disk surface, is virtually impossible to beat.

However, if the damage is limited to only a small portion of

the disk, DiskMod will let you sneak around and salvage

what you can.

Consider a SEQ that contains mailing list data. The file is,

say, 100 blocks long. The weather is sunny, you start

printing your list, and ZAP! A bolt of lightning comes out of

nowhere and cooks the second sector of the file. You get to

see what's in the first sector, but it can't get past the second

sector to find the third. After you try this 6, 7, maybe 8 times,

you start to get a little nervous, right? (don't worry, this

hasn't happened to our mailing list, yet)

Well hold it right there. A little nervous is all you should

get. At best you've only lost 1 block, not all 100! (At worst

you've lost all 100 but we're not gonna talk about it) Pull out

DiskMod. Your disk error routine should tell you where to

start. You know:

50000 open 1,8,15: input#1, e, e$, et, es

50010 print e$, "track:"; et ", sector:"; es

. . .or with BASIC 4.0 just print DS$. Run DiskMod and give

it a drive number. Then use the values for ET and ES as your

first response to:

track, sector ?

DiskMod will do it's best to read that sector. If it can't, don't

lose hope. There are still 98 blocks to go. The idea here is to

just make sure it's actually an error. If DiskMod does read

the sector successfully, there may be another reason for

your trouble. We'll assume there was an error for now.

(We'll get to non-read error problems in a minute).

Read the first sector of the directory.

4040: 18,0

2031: 18,0

1541: 18,0

8050: 39, 0

8250: 39, 0

Note: DiskMod automatically adjusts for your screen size.

Make sure the first lines of both programs are entered as

shown, including cursor movements. Since there are two

versions of DiskMod following, I'll be using general terms to

describe the operation. I'll get more specific later on.

DiskMod will display the contents of the sector. The BAM

(Block Availability Map) is always first. DiskMod will report

the coordinates of the next sector. All you need do is

respond with N for Next and DiskMod will read it and

display it. Keep going until you see some filenames you

The Transactor 70 Volume 5, Issue 03

recognize, especially the one that contains the error. Look

carefully at the display. All numbers are shown in hexadeci

mal for the sector contents. Notice the first two bytes of the

sector represent the track and sector of the next block of the

directory, in hex of course. The first byte after them is the file

type byte. After that is the first track and sector of the file,

and beyond that the file name itself. Check the tables on the

next page for Directory Formats.

Using the files' track and sector bytes, issue an R for Read

and enter them in. Remember you'll need to convert to

decimal yourself (ie $13 becomes 19 dec). DiskMod will now

show the contents of the first block of our mailing list. Once

again, the first two bytes of a sector represent the track/

sector coordinates of the next sector (unless the track is zero,

that means it's the last sector) But when we try to show the

next sector, we're gonna run into that nasty Read Error.

Instead, we'll go around it to the sector after that. But how?

The second sector contains those coordinates and we can't

read them.

You may have noticed by now that sectors are allocated

approximately 3 apart each time. This is how DOS uses up

blocks - about 3 apart. If the DOS used consecutive sectors

the data transfer rate would suffer speed loss. Imagine

you're a drive head with a diskette spinning underneath

you. You read one block and determine where the next one

is. But by the time you do that, the next sector has already

gone by and you have to go all the way around once to get

there again. By spacing them 3 apart, the DOS has just

enough time to read the block and prepare for the next one

just as it's coming into view. Clever eh? When the end of a

track is reached, DOS goes back to the beginning of the track

and starts using the inbetween blocks, again about 3 apart

each time. When the whole track is full, DOS starts again

with another track that is usually not too far away. Back to

our problem.

So the next sector is probably not far away. Usually it's not

hard to recognize the data once you find it. Record the

coordinates. What we do now is go back to the sector

previous (the first sector in this case), and change the

forward coordinates to point at the third sector, effectively

jumping over the bad block. You may have lost 1 block, but

at least now you can get to the remainder of the file. You'll

have to rebuild the lost data manually.

Complications come up when a diskette gets somewhat full,

especially after a lot of Scratching files or Saves with replace

have been done. When a disk gets almost full, the DOS can

litterally scatter a file all over the disk as it fills the last

remaining free sectors. You probably have diskettes right

now like this. Tracing these files once one block goes bad

can get irritating at best.

Jim has another program he has yet to release into public

domain; Disk Dupe. DiskDupe takes an otherwise ruined

diskette and salvages whatever it can onto a fresh disk.

Then, with his usual talent for writing programs approach

ing artificial intelligence, Jim builds a new directory after

searching out lost files. The program examines the forward

chain pointers of each sector and, based on the length of the

chain, decides whether it could be a file worth recovering.

An artificial directory entry is made that points to the

recovered data allowing you access to it from the rebuilt

copy of the disk. Perhaps Jim will let us publish DiskDupe?

Non Read Error Loss

Remember what I said before? Sometimes a disk can get

clobbered even though there is no Read Error anywhere on

the surface. Who knows why but it happens. The directory is

suddenly missing files that you damn well know are there!

Also, information can be written on disk without a directory

entry, ie. direct access files. You may want to examine them

too, or any other perfectly good sectors for that matter.

What do you do? Right. Pull out DiskMod. But first, make a

backup. No sense making mods to a disk when it might lead

to more trouble that could have been avoided. With a

backup you can start over again if you have to.

A quick check of the directory track will no doubt show you

the problem. Chances are one directory sector has been

pointed around the block containing the missing entries. In

my case, the BAM was pointing deep into the directory track

at the last directory block. I traced the chain from the block

that DOS normally uses as the first block for the directory.

Eventually 1 reached the last block (track pointer equals

zero) which was the only one showing. Everthing seemed

OK so I went over to the BAM block and altered its forward

pointer to the first block. Back to normal in five minutes.

Easy To Use

DiskMod is as easy to use as the BASIC screen editor. Once a

sector is displayed, DiskMod will prompt you for a com

mand. If you want to change the contents of a sector, ignore

the command prompt and cursor up/over to the byte you

want. Type the new value right over the old, being careful

not to change the length of the display line with any

accidental Deletes or Inserts. Hit Return and DiskMod will

write the new values back to the same block and display the

block all over again. You can change all or part of the line,

but only one line at a time. Remember, all values are in hex,

but if you make a mistake simply change it again.

DiskMod will only display as many bytes as will fit on your

screen. The first line of each program does a test for screen

size. This is why it MUST be entered exactly as shown. If you

have 80 columns, you'll see the whole sector. With less than

80, DiskMod will show only part of the sector. To see the rest

enter S for Swap. Naturally, the S command is not recog

nized with 80 columns.

The Transactor 71 Volume 5, Issue 03

Caution: Almost all protective mechanisms are bypassed by

DiskMod. Make sure you don't try to modify diskettes

formatted on an alien drive. That is, don't write to 1541s

with a 4040, and vice versa, etc.

Also, if you try to access tracks that don't exist (like track 50

on a 4040) you will hang up.

Two Versions

Two versions of DiskMod are listed below. The first is an all

purpose version that is pure BASIC. It will work with just

about any Commodore machine and drive type. The second

will work only with BASIC 4.0 machines and 8050 or 4040

drives (IEEE 2031 might work but hasn't been tested). This

version contains machine language making it considerably

faster than the all BASIC DiskMod. However, unlike version

2, version 1 can be modified - version 2 will have to be used

as is.

All Purpose Version

First you'll be asked for the drive. If you have a dual IEEE

unit, enter 1 or 0. For single drives enter the letter's'. Don't

be alarmed by the disk activity that immediately follows.

This is only an initialize command and is perfectly normal.

Next you'll be asked for Track and Sector. Enter these in

decimal. For ideas take a look at the charts following the

article. To Quit, enter "0, 0".

If the block you read has a valid next sector, you can enter N

for Next. DiskMod will take you there. Otherwise, enter R for

Read and supply new track and sector coordinates.

Again, to change as block, use the screen like a "sector

editor". Remember, one line at a time.

BASIC 4.0 DiskMod

This version has a few more commands than the last one.

First, Map will display a graphic Block Allocation Map. The

asterisks indicate allocated sectors. Hitting any key returns

the block display.

Use and Free will allocate or de-allocate the block you are

looking at. Allocate all you like, but remember, when you

Free a block you're telling the DOS that it's OK to use next

time it goes looking for a place to store something.

Next takes you to the next block in the chain, if there is one.

Watch it. You are not completely protected against non

existent tracks or sectors.

Read lets you pick your own Track and Sector. Use Q to

Quit.

Entering BASIC 4.0 DiskMod

Unlike the BASIC version, this has a machine language

module that lives just above the BASIC portion. Let's start

with. that.

Type in the program with all those DATA statements. Fix

any mistakes, SAVE it, and RUN it. A program file called

" MACH PART" will be written to drive 0 that we'll be using

later.

NEW and enter the BASIC part. The listing shows lots of

spaces mostly for neatness. Omit them. When you're fin

ished, PRINT FRE(0). If the free space is 28417 or less, it's

too big. Go back and remove some spaces between com

mands until FRE(0) is 28417 or greater. If you have a

programming utility stuck in high RAM, use the formula

below. It will adjust for the lower Top of Memory pointer that

will affect FRE(0).

print 31740-peek(52)-peek(53)*256 + fre(O)

Small enough? Good. SAVE it just to be safe. Now LOAD the

machine language PRG file "MACH PART" that was cre

ated by the last program. It will drop into memory just above

the BASIC part. Now:

save"0:DiskMod4.0",8

This will write both the BASIC and Machine language parts

to disk as one program. If you want, LIST the program right

to the end. If you did anything wrong it won't go unoticed,

believe me.

The finished file should take up 16 blocks on your disk. With

a fresh machine, LOAD it back and you're ready to go. Don't

try to make any changes though. If you do, the machine

language will shift in memory and you're in for a crash. Of

course if you get Syntax errors or anything, you'll have to

make changes. After that, you must repeat the final building

procedure before attempting to RUN it.

In Closing

Would someone like to convert the BASIC 4.0 version to the

C64? It's not as simple as just changing the machine code.

1541 disks have several internal changes compared to the

earlier IEEE drives. For clues, take a look at how Jim

handles the difference between drive '0' and drive 's' in the

BASIC version. If the machine language portion can be tied

in, Commodore 64 users will enjoy the increased speed.

One last time, be careful with DiskMod. It can cause more

harm than good if used improperly. With enough prepara

tion and understanding you should have no trouble. After

that you'll find DiskMod indispensible, especially when you

need it most.

The Transactor 72 Volume 5, Issue 03

100 print " ffldisk viewer/changer jim butterfield"
110 print " flcaution - use care - this program "
120 print " can wreck your disk if used"

130 print " without care & understanding!"

140 for j = 20 to 85 : if peek(32768 + j)<>32 gotoi 60

150 nextj: stop

16011 =j:s1 =11/5

170s2 = s1*16-1 :s3 = 5 + s1*3

180 dim a(255)

190 b$ = chr$(17): input" drive#" ;d$: if d$ = " s"

thend$= "0" : b$ = chr$(3)

200 if d$<>" 0" and d$<>" 1" gotoi 90

210open 15,8,15,"i" +d$: gosub500

230 print "| Q track,

sector 0,0[5left]";

240 input t, s

250 if t< 1 or t>77 then close2 : closei 5 : end

260 print" working " : print#15," b-r:2," ;d$;t;s : gosub500

270 print#15," b-r:2," ;d$;t;s : gosub500

280 for j = 0 to 255

290 print#15," m-r" ;chr$(j);b$

300 get#15,a$: if a$ = "" then a$ = chr$(0)

310a(j) = asc(a$): nextj

320 p = 0

330 print" @track" ;t;" sector" ;s
340 for j = p to p + s2 stepsi : print: print"]";

350 v = j: gosub800 : k$= "" : print"- "; : for k = 0tos1-1

: v = a(j + k): gosub800 : print" ";

360 next k: print"-";: for k = 0 tos1-1 : v = a(j + k)

: if (vandi 27)<32 then v = 32

370 v2 = v and 63 : if v2 = 44 or v2 = 58 or v2 = 34 then v = 32

380 print chr$(v); : nextk.j

390 print: printJflnQext / Drfljead "; : if s1 <9 then
print "/flsflwap";

400 print: print" nexttrack.sector: ";

410 if a(0) = 0 then print" none" : goto430

420 print a(0);a(1)

430 print "command > ";

440 input c$: z = asc(c$)

450 print "0" : if s1<9 and z = 83 then p = 128-p : goto330
460 if a(0)<>0 and z = 78 then t = a(0): s = a(1): goto250

470 if z = 93goto530

480 goto230

500 rem

510 input#15,e,e$,e1 ,e2 : if e = 0 then return

520 print "fldisk error:0"e;e$,e1;e2 ; end : return
530 if Ien(c$)<s3 goto230

540 if mid$(c$,4,1)<>"-" or mid$(c$,s3 +1,1)<>"-" goto230

550d =2:gosub700

560 c3 = c2-1 : for k = 1 to s1 : d = k*3 + 3 : gosub700

570 print#15," m-w" ;chr$(c3 + k);b$;chr$(1);chr$(c2)

580 next k

590 print#15," u2:2," ;d$;t;s : gosub500

600 goto270

700 c2 = 0 : for j = 0 to 1 : c% = asc(mid$(c$,d + j)): if c%<58

thenc°/o = c%-48

710 if c%>64 then c% = c%-55

720 if c%<0 or c%>15 then stop

730 c2 = c2*16 + c% : nextj: return

800v = v/16:forl = 1 to 2

810 v% = v : v = (v-v%)* 16 : if v%>9 then v°/o = v°/o + 7

820k$ = k$ + chr$(v1)

830 print chr$(v% +48); : next I : return

DiskMod 4.0 Machine Code: Enter, Run, and Save this first.

100 rem mach code for diskmod 4.0

110 for j = 1 to 243 : read x : ch = ch + x : next

120 if ch<>31709 then print" checksum error" : end

130 restore : open 8,8,8," 1:mach part,p,w"

140print#8,chr$(0)chr$(17);: rem start addr $1100

150 for j = 1 to 16 : print#8,chr$(32); : next

160 for j = 1 to 243 : read x : print#8, chr$(x); : next

170 for j = 1 to 253 : print#8,chr$(32); : next

180 close 8 : end

190 rem

200 data 162, 18,134,191,

210 data 15, 32,201,255,

220 data 32,210,255,202,

230 data 210, 255, 169, 17,

240 data 255, 162, 15, 32,

250 data 160, 0,145,190,

260 data 208, 208, 96, 72,

270 data 84, 17, 104, 41,

280 data 105, 6,105, 48,

290 data 134, 191,202, 134,193, 162,

300 data 165,190, 32, 73, 17,169,

310 data 255, 169, 32, 32,210,255,169, 0,133

320 data 192, 160, 0,177,190,170, 41,127,201

330 data 32, 144, 10, 144

340 data 201, 58,208, 2

350 data 32, 73, 17, 169

360 data 190, 230, 192, 166

370 data 169, 62,

380 data 177, 192,

160, 0,132,190,162

162, 2,189,253, 17

16,247,165,190, 32

32,210,255, 32,204

198,255, 32,228,255

32,204,255,230, 190

74, 74, 74, 74, 32

15,201, 10,144, 2

76.210,255,162, 18

16,134,136

60, 32,210

8,201, 44,240, 4

169, 32,145,192,138

32, 32,210,255,230

192,228, 194,208,212

32,210,255,160, 0,132,192

32,210,255,200, 196, 194,208

390 data 246, 169, 13, 32,210,255,198,136,208

400 data 165, 96,162, 20,165,208,201, 18,144

410 data 12,202,201, 25,144, 7,202,202,201

420 data 31,144, 1,202,134, 72, 70,139,102

430 data 138, 102, 137, 169, 46,144, 4,198,136

440 data 169, 42, 32,210,255,169,157, 32,210

450 data 255, 169, 17, 32,210,255,198, 72, 16

460 data 225, 96, 0, 82, 45, 77, 39, 0, 0

DiskMod 4.0 BASIC Part:

100 print "@" :print" disk viewer (c) jim butterfield"
110 12 = 8 : if peek(32848) = 4 then 12 = 16

120 t9 = 35 ; dim s°/o(t9),e$(2O)

130 data 17, 20

140 data 24, 19

150 data 30, 17

160 data 35, 16

170 d $ = chr$(1): c2$ = chr$(16): c3$ = chr$(17)

:c4$ = chr$(33) + c2$

180 for j = 0 to 20 : e$(j) = " e" + str$(j): nextj

190 e$(2) = " block not found"

no synch"

block not present"

checksum error in data"

verify error"

write protect!"

header checksum"

200 e$(3) =

210e$(4) =

220 e$(5) =

230 e$(7) =

240 e$(8) =

250 e$(9) =

260e$(10)= "overrun"

270e$(11)= "id mismatch"

280e$(14)= "format"

290 e$(16) = " decode err"

The Transactor 73 Volume 5, Issue 03

30011 = 1

310 readt.s : if s>s9then s9 = s

320 for j = t1 to t: s%(j) = s : nextj: t1 = t + 1 : if Kt9 goto310

330 data 1, 2, 4, 8, 16, 32, 64, 128

340 for j = 0 to 7 : readp%(j): nextj

350t5 = 10

360 input" drive* " ;d : if d<0 or d>1 goto340

370 open 15,8,15 : t$ = chr$(1): s$ = t$: id$= ".."

: c$ = chr$(192 + d): d$ = chr$(3): gosubi 220

380 i = 0 : s$ = d $: c$ = chr$(176 + d): t = 18 : t$ = chr$(t)

: s = 0 : s$ = chr$(s)

390 gosubi 220 : if e<>1 then stop

400print#15, "m-r" +c4$: get#15,i1$: if i$= ""

then i$ = chr$(0)

410 print#15, "m-r" +chr$(34) + c2$: get#15,i2$

:ifi2$= "" theni2$ = chr$(0)

420id$ = i1$ + i2$

430 d$ = chr$(4): t$ = chr$(18): s$ = chr$(0)

:c$ = chr$(128 + d)

440 print#15," m-w" + chr$(41) + c2$ + chr$(4) + id$ +1$ + s$

450 print#15," m-w" + chr$(19) + c2$ + d $ +1$

460 gosub1240 : if e<>1 then stop

470 d$ = chr$(3): print: input" track,sector" ;t,s

480 if t = 0 then stop

4901$ = chr$(t): s$ = chr$(s): c$ = chr$(128 + d): gosubi220

: if e<>1 then stop

500 s°/o = s/8 : s1 = s-s°/o*8

510p3 = 4*t:p1 =p3 + s% + 1 : p2 = po/o(s1)

520 print#15," m-r" + chr$(p1) + chr$(18): get#15,b$

530 b = len(b$): if b then b = asc(b$)

540 print#15, "m-r" +chr$(p3) + chr$(18): get#15,b$

550 p4 = len(b$): if p4 then p4 = asc(b$)

560 print"@";
57011=12

580 print#15," m-r" + chr$(0) + chr$(17): get#15,r$

59011 =0 : if r$= "" goto630

60011 = asc(r$)

610 print#15, "m-r" + chr$(1) + chr$(17): get#15,r$

620 s1 = len(r$): if s1 then s1 = asc(r$)

630gosub1120

640 if 12 = 8 then print" swap / ";

650 if b and p2 then print" use / ";: goto670

660 print " free / ";

670 ift1 >Othenprint" next / ";

680 print" map / read / quit / print[17spaces]"

690 input" [Sshiftedspaces^leftT^qS

: print "E SE3 " : rem home,17down
700 if Ien(q$)<l2*3 + 4 goto780

710x$ = mid$(q$,3,1): if x$<> "<" goto780

720 e = 0 : r=1 : gosub1330

730 x$ = " m-w" + chr$(v) + chr$(17) + chr$(l2)

: if e>0 then stop

740 for j = 0 to 12-1 : r = 5 + 3*j: gosubi 330

: x$ = x$ + chr$(v): nextj

750print#15,x$

760 c$ = chr$(144 + d): gosubi 240

770 goto490

780 for j = 1 to len(q$): q = asc(mid$(q$,j))

: if q = 63 or q = 32 then nextj

790 for j = 1 to 1 : next: if q = 85 gotoi 030

800ifq = 70goto1050

810 if q = 78 and t1 >0 then t=t1 : s = s1 : goto490

820 if q = 82 goto 470

830 if q = 81 then end

840 if q = 80 goto 1000

850 if q = 77 goto 890

860 if q<>83 goto640

870 s7 = s7 +12* 16 : if s7>255 then s7 = 0

880print"H"; : 11 = l2^osub1130 : goto640
890 print" @bam map0" : for j = 0 to 20

: print mid$(str$(j),2): nextj

900 for j = 1 to 35 : j% = j/10 : j1 = j-j%* 10

910z$= "" :ifj1 =0thenz$ = chr$(j% + 48)

920 print"0" ;tab(j + 2);z$:printtab(j + 2);
chr$(j1 +48); "[1 left, 1 down]";

930fork = 0to3:j1 =j*4 + k

940 print#15," m-r" + chr$(j1) + chr$(18)

950 get#15,z$: z = len(z$): if z then z = asc(z$)

960 pokei 36 + k,z : nextk : poke208,j: sys4550

970 if peek (136)00 then print" ?";

980 nextj: getz$

990 getz$: if z$ = "" goto990

991 goto880

1000 open4,4 :11 = 16 : cmd4 : gosubi 130

1010 print#4 : print#4 : close4

1020goto640

1030 if band p2then b = b-p2 : p4 = p4-1 : goto1070

1040goto640

1050 if band p2goto640

1060 b = b or p2 : p4 = p4 + 1

1070 d$ = chr$(4): c$ = chr$(144 + d)

1080 print#15,"m-w" +chr$(p1) + chr$(18) +

chr$(1) + chr$(b)

1090 print#15," m-w" + chr$(p3) + chr$(18) +

chr$(1) + chr$(p4)

1100 gosubi 240 : if e<>1 then stop

1110d$ = chr$(3):goto880

1120sys4368:s7 = 0

1130 a$ = " [allocated]" :ifbandp2then a$ = " [free] "

1140 print" track" ;t;" sector" ;s;a$;" id = " ;id$

1150 pokei 94,11 : pokei 90,s7 : sys4447

1160 if t1 = 0 then print" no next block" : gotoi 180

1170 print " next sector: track" ;t1;" sector" ;s1

1180 return

1190 for I = 1 to 2: w% = w: w = (w-w%)*16

: if w%>9 then w% = w% + 7

1200 printchr$(w% + 48); : nextl

1210 return

1220 print#15," m-w" + c4$ + chr$(4) + id$ +1$ + s$

1230 print#15," m-w" + chr$(18) + c2$ + d $ +1$

1240 n = 0

1250 print#15," m-w" + d$ + c2$ + d $ + c$

1260 print#15," m-r" + d$ + c2$: get#15,e$

1270 e = len(e$): if e then e = asc(e$)

1280ife>127goto1260

1290 if e<>1 then n = n +1 : if n<t5 gotoi 250

1300ife>20thene = 20

1310ife<>1 then print "diskerror: ";e$(e)

1320 return

1330 v = 0 : for k = r to r + 1 : x = asc(mid$(q$,k))

1340 if x<58 then x = x-48

1350 if x>64 then x = x-55

1360 if x<0orx>15thene=1 :goto1380

1370 v = v*16 + x : nextk

1380 return

The Transactor 74 Volume 5, Issue 03

Commodore Disk Specifications

Model

Drives per Head

Heads per Drive

Formatted Storage

Capacity per Unit

Max Sequential Files/Drive

Max Relative Files/Drive

Disk System Buffer

Disk Formats

Cylinders (Tracks)

Sectors per Cylinder

Sectors per Track

Bytes per Sector

Blocks Free

Transfer Rates (bytes per second)

Internal to Unit

IEEE-488 Bus

Access Times (milli-seconds)

Track-To-Track

Average Track

Head Settling Time

Average Latency

RPM

D9090

1

(i

7.47 MB

7.41 MB

7.35 MB

4KB

153

128

32

256

29162

5 MB

1.2 KB

3

153

15

8.34

3600

D9060

1

4

4.98 MB

4.94 MB

4.90 MB

4KB

153

192

32

256

19442

5 MB

1.2 KB

3

153

15

8.34

3600

8250

2

2

2.12 MB

1.05 MB

1.04 MB

4KB

77

23-29

256

8266

40 KB

1.2 KB

5

125

100

300

8050

2

1

1.05 MB

521 KB

183 KB

4 KB

77

23-29

256

4104

40 KB

1.2 KB

*

* *

100

300

4040

2

1

340 KB

168 KB

167 KB

4KB

35

17-21

256

1328

40 KB

1.2 KB

30

360

100

300

2031

1

1

170KB

168 KB

167 KB

2KB

35

17-21

256

664

40 KB

1.2 KB

30

360

100

300

1541

1

1

170KB

168KB

167KB

2KB

35

17-21

256

664

-

30

360

100

300

* Track-To-Track: Micropolis 8050 = 30 ms. Tandon 8050 = 5 ms.

"Average Track: Micropolis 8050 = 750 ms. Tandon 8050 = 125 ms.

Physical Dimensions

Height (inches)

Width (inches)

Depth (inches)

Weight (pounds)

Electrical

Power (Watts)

Voltage (all models)

5.75

8.25

15.25

21

200

5.75

8.25

15.25

21

200

7.0

15.0

13.75

28

60

7.0

15.0

13.75

28

50

7.0

15.0

13.75

28

50

5.5

8.0

14.25

20

40

3.0

7.0

13.0

10

35

110- 120 VAC. 60 Hz

Disk Utility-Command Set Sector Distribution By Track

Command

Block-Read

Block-Write

Block-Execute

Buffer-Pointer

Block-Allocate

Block-Free

Memory-Write

Memory-Read

Memory-Execute

User Command

Abbreviation

B-R

B-W

B-E

B-P

B-A

B-F

M-W

M-R

M-E

li

Format

"B-R:"ch:dr;t;s

"B-W:"ch;dr;t;s

"B-E:"ch;dr;t;s

"B-P:"ch:p

"B-A:"dr;t;s

" B-F:" dr;t;s

" M-W" adL/adH/nc/data

" M-R" adl/adh

" M-E" adl/adh

" ux:ch;dr;t;s

CH

DR

T

S

P

ADL

ADH

NC

DATA

X

PARMS

The channel number in DOS: identical to the Secondary Address in

the associated OPEN statement

The Drive number: 0 (or 1 floppy dual drives)

The Track number: 1 through 154 (depending on the model*)

Sector number : 0 through 112 (depending on the model*)

The pointer Position for the buffer pointer

The Low byte of the Address (use CHR$(ADL))

The High byte of the Address (use CHR$(ADL))

The Number of Characters: 1 through 34

The actual data in hexadecimal. This is transmitted by using the

CHR$ function, ie. CHR$(17) would send the decimal equivalent of

hexadecimal 11

The index to the user table

The Parameters associated with the U command (optional)

Track Number

1-17

18-24

25-30

31 -35

Track Number

1- 39

40- 53

54- 64

65- 77

78- 116

117- 130

131 - 141

142- 154

Number of Sectors

4040

21

19

18

17

8050

29

27

25

23

2031

21

19

18

17

8250

29

27

25

23

29

27

25

23

1541

21

19

18

17

D9060/D9090 - 153 tracks per recording surface (4 on

D9060 and 6 on the D9090) with 32 sectors per track

User Command Jump Table

Standard

Syntax

Ul

U2

U3

U4

U5

U6

U7

U8

U9

U:

Alternate

Syntax

UA

UB

UC

UD

UE

UF

UG

UH

Ul

UJ

Function

Block-Read replacement

Block-Write replacement

Jump to $1300

Jump to $1303

Jump to $1306

Jump to $1309

Jumpto$130C

Jumpto$130F

Jumpto$10F0 (NMI)

Power-Up vector (reset)

ie Transactor

BAM (Block Allocation Map) Formats

4040, 203 l,and 1541 BAM Format - Track 18 Sector 00

Byte*

0-1

2

3

4-143

Description

Track-Sector of first Directory block

ASCII 'a' Identifies DOS 2.6 format

Reserved for future DOS use

Bit map of available blocks

Data

18-00

65

00

tracks 1-35

8050 BAM Format

Byte*

0-1

2

3

4

5

6

7-10

11-255

Description

Track-Sector of next BAM block

ASCII 'c1 Identifies DOS 2.5 format

Reserved for future DOS use

Lowest track * mapped in this BAM block

Highest track *(+ 1) mapped in this BAM block

Number of unused blocks on track:

Bit map of available blocks on track:

(BAM 2: 11 — 140)Bit map of available blocks on tracks:

Data

BAM 1

Tr38 / ScOO

38-03

67

00

01

51

1

1

2-50

BAM 2

Tr38 / ScO3

39-01

67

00

51

78

51

51

52-77

8250 BAM Format

Byte*

0-1

2

3

4

5

6

7-10

11-255

Description

Track-Sector of next BAM block

ASCII 'c' Identifies DOS 2.7 format

Reserved for future DOS use

Lowest track * mapped in first BAM block

Highest track * (+ 1) mapped in first BAM block

number of unused blocks on track:

bit map of available blocks on track:

(BAM 4: 1 l-25)Bit map of available blocks on tracks:

Data

BAM 1

Tr38 / ScOO

38-03

67

00

01

51

1

1

2-50

BAM 2

Tr38 / ScO3

38-06

67

00

51

101

51

51

52-100

BAM 3

Tr38 / ScO6

38-09

67

00

101

151

101

101

102-150

BAM 4

Tr38 / ScO9

38-01 (Dir)

67

00

151

155

151

151

152-154

D9060 / D9090 BAM Format - Track 1 Sector 0 (normal location)

Byte*

0-1

2-3

4

5

6

7-10

11-255

Description

Track-Sector pointer to next BAM block

Track-Sector pointer to previous BAM block

Lowest track * mapped in this BAM block

Highest track * (+ 1) mapped in this BAM block

Number of blocks unused on this track

Bit map of available blocks on this track

Bit map of the next 49 tracks

Data

$FFFF = last

$FFFF = first

Directory Format

2031,4040,1541 Directory Header - Track 18 Sector 00

Byte*

1-143

144-161

162-163

164

165-166

167-170

171-255

Data

160

50,65

160

00

Description

Reserved for 2031 BAM

Diskette name, padded with shifted spaces

Diskette ID number

Shifted space

ASCII '2a' identifies DOS version and format

Shifted spaces

Not used

8050,8250 Directory Header - Track 39 Sector 00

Byte*

0-1

2

3

4-5

6-21

22-23

24-25

26

27-28

29-32

33-255

Data

38,00

67

00

160

160

50,67

160

00

Description

Track-Sector to first BAM block

ASCII 'c' identifies DOS 2.5 format

reserved for future DOS use

Not used

Diskette name, padded with shifted spaces

Shifted spaces

Diskette ID number

Shifted space

ASCII '2c' identifies DOS version and format

Shifted spaces

Not used

D9060 / D9090 Directory Header - Track 0 Sector 0

Byte*

0-1

2-3

4-5

6-7

8-9

Data

00,255

76, 00

00, 00

01, 00

Description

Track-Sector pointer to bad track and sector list

Identifies DOS 3.0 format,.

Track-Sector of first directory block

Not used

Track-Sector of first BAM block

2031 Directory Blocks-Track 18 Sector 01 through 18

4040 Directory Blocks - Track 18 Sector 01 through 18

8050 Directory Blocks - Track 39 Sector 01 through 29

8250 Directory Blocks - Track 39 Sector 01 through 29

D9060 / D9090 Director)' Blocks - Starting on cylin

der 76, uses all Tracks-Sectors 00 through 31, then

expands to additional blocks as required, providing

'unlimited' Directory size.

Byte*

0-1

2

3-4

5-20

21-22

23

24-27

28-29

30-31

32-255

Description

Track-sector pointer to next directory block

File type

Track-sector pointer to first file block

File name, padded with shifted spaces

Track-sector of first side sector if RELative file

Record length if relative file

Reserved for future file information

Track-sector pointer for replacement

Number of blocks used by the file

Seven more 32—byte file entries (same as 2-31

above, plus two additional unused bytes)

Additional Notes

32 bytes per file entry, except the first entry is 30 bytes

Total of eight (8) file entries per directory block

File types are: Scratched Files $00

Sequential Files $01

Program Files $02

User-Defined $03

Relative Record $04

File type codes are OR'ed with $80 when file is properly closed

Track value of 00 in byte zero indicates the last used block in

the directory. Sector value then shows next byte to use

The Transacto

Th« T««h/N•wi Journal For Comi

PAYS

$40

per page for articles

We're also looking for

professionally

drawn cartoons!

Send all material to:

The Editor

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

Issue*

Volume 5 Editorial Schedule

Theme Copy Due Printed Release Date

1

2

3

4

5

6

1

2

3

4

5

Graphics and Sound

The Transition to Machine Code

Software Protection & Piracy

Business and Education

Hardware and Peripherals

Programming Aids & Utilities

Feb 1

Aprl

Jun 1

Aug 1

Octl

Decl

Mar 19

May 21

Jul23

Sepl7

Novl9

Jan 19

Volume 6 Editorial Schedule

Communications & Networking Feb 1 Mar 21

Languages

Implementing The Sciences

Hardware & Software Interfacing

Real Life Applications

Aprl

Jun 1

Augl

Octl

May 20

Jull8

Sep21

Novl9

April 1

June 1

August 1

October 1

December 1

February 1/85

April 1/85

June 1

August 1

October 1

December 1

Advertisers and Authors should have material submitted no

later than the 'Copy Due' date to be included

with the respective issue.

PRO-LINE
■■■■IIIISOFTWARE

A CANADIAN COMPANY

designing,

developing,

manufacturing,

publishing

and

distributing

microcomputer

software

DEALER ENQUIRIES WELCOME
AUTHOR'S SUBMISSIONS INVITED

CALL OR WRITE

(416)273-6350

PRO-LINE
■■■IIIISOFTWARE

755 THE QUEENSWAY EAST. UNIT 8

MISSISSAUGA. ONTARIO L4Y 1C5

COMMODORE OWNERS

Join the world's largest, active Commodore

Owners Association.

Access to thousands of public domain programs

on tape and disk for your Commodore 64, VIC 20

and PET/CBM.

• Monthly Club Magazine

Annual Convention

Member Bulletin Board

• Local Chapter Meetings

Send $1.00 for Program Information Catalogue.

(Free with membership).

Membership

Fees for

12 Months

Canada — $20 Can.

U.S.A. — $20 U.S.

Overseas — $30 U.S.

T.P.U.G. Inc.

Department "M"

1912A Avenue Road, Suite 1

Toronto, Ontario, Canada M5M 4A1

* LET US KNOW WHICH MACHINE YOU USE *

Back Issues

ISSUE #1—JAN. '84 $4.00

The 64 v. the Peanut! The com

puter as communications device!

Protecto's Bill Badger inter

viewed! And ready to enter: the

Multi Draw 64 graphics system!

The Interrupt Music Maker/

Editor! A Peek at Memory! Pro

gramming Sequential Files!

Don't punch another key

without a complete collection

of Ahoy! and the program

ming strategies and product

analyses each issue provides.

Order while supplies last!

ISSUE #2—FEB. '84 $4.00

Illustrated tour of the 1541 disk

drive! Synapse'sIhorWolosenko

interviewed! Users groups! Arti

ficial intelligence! And ready to

enter: Music Maker Part II!

Night Attack! Programming Rel

ative Files! Screen Manipulation

on the Commodore 64!

V* • -
"«k/#,| r\ 1 X^ -
r_ i r \ r

64! 1 ,

MAS!

~t_^/i -.
k/l -__♦->

<A\VH "%.O
iii.M) mis? r^a
IK VOX l^t^
I'lll-SS j-Jl,

IIII.SI KIVS& WF%
ii it\ niii'Vii: •i^

Bill ^

-1 ♦\-:
— 'if
^ —!

~A !

0%

ISSUE #3—MAR. '84 $4.00

Anatomy of the 64! Printer In

terfacing for the 64 and VIC!

Educational software: first of a

series! Commodares! And

ready to enter: Space Lanes!

Random Files on the 64! Easy

Access Address Book! Dynamic

Power for your 64!

A!
iin'sii.i;

IH.VI

i-'ttir.MK/

i 1

1.1 V\ll\
l..\ \IH .If1
-\r,i

<n vi.i.r.1

[
muis

qmsT

Aimaii in:

(.ami :

1 O\HKHMH!I

i?*:it.s

1 MUSIVI!

•,

ISSUE #4-APR. '84 $4.00

Petspeed and Easy Script

tutorials! Printer interfacing and

educational software guide con

tinued! Lower case descenders

on your 1525! Laserdisc! The

Dallas Quest Adventure Game!

And ready to enter: Apple Pie!

Lunar Lander! Name that Star!

ISSUE #5-MAY '84 $4.00

The Future of Commodore! In

side BASIC program storage!

C-64 Spreadsheets! Memory

Management on the VIC and 64!

Educational Software Guide

continues! And ready to enter:

Math Master! Air Assault! Bio-

rhythms! VIC 20 Calculator!

Send coupon or facsimile to:

Ahoy! Back Issues, Ion International Inc., 45 West 34th Street—Suite 407, New York, NY 10001

Please Send Me The Following:

Copies of issue number

Copies of issue number

Copies of issue number

NAME

ADDRESS.

Enclosed Please Find My Check or

Money Order for $

(Outside the USA please

add $1.00 for every copy)

CITY

STATE

ZIP CODE.

COMMODORE 64™ COMAL

ADDS:

40 Graphics Statements

1 0 Sprite Statements

"LOGO" TURTLE GRAPHICS

RUN-TIME COMPILER

FAST program execution

auto line numbering

line renumbering

program structures

merging program segments

long variable names

named procedures

parameter passing

local and global variables

random access disk files

stop key disable

End Of File detection

What does this and more? COMAL

What is the cost? Only $19.95

All this and much, much more on disk with many sample

programs. ONLY $19.95. Also available: COMAL HANDBOOK.

$18.95. BEGINNING COMAL, $19.95. STRUCTURED

PROGRAMMING WITH COMAL, $24.95. FOUNDATIONS IN

COMPUTER STUDIES WITH COMAL, $19.95. CAPTAIN COMAL

GETS ORGANIZED, $19.95. COMAL TODAY newsletter. $14.95.

Send check or Money Order in US Dollars plus $2 handling to:

COMAL Users Group, U.S.A., Limited, 5501 Groveland Ten.

Madison, Wl 53716 phone: 608-222-4432. COMMODORE 64 is

trademark of Commodore Electronics Ltd. CAPTAIN COMAL is

trademark of COMAL Users Group, U.S.A., Limited.

MIDNITE
SOFTWARE GAZETTE

The

PAPER
Five years of service to the PET community.

T

The Independent U.S. magazine for

users of Commodore brand computers.
EDITOR8: Jim and Ellen Strasma

Sample Issue free on request, from:

635 MAPLE a MT. ZION. IL 62549 USA

INTERNATIONAL CENTRE, TORONTO

NOVEMBER 29 & 30, DECEMBER 1 & 2, 1984

■■■■■■■■■■■
■■■■■■■■■■■
■■■■■■■■■■■
MRHMMMVia«MB
■■■■■■■■■■■a

::::::::::::::::::::::::
■■■■■■■■■■■a

■■■•■■«■■■■■■■■•■■■

■■■■

::::

■■■■■■■■■•

iiiiiiiiiiiliiiiiiiii Iliiiiiiiil
liiiliiiliiiiiiiiilisiiiliiii

■■■■■■■■■■■■■■■■i
■■■■»■■■■«««■■ ■■!
■■■■■■■■■■■■■■■■I
-•••••••••■•■■■■I

■■■■■■■■■■■•■■■I

!■■•■••"■■■■■■■■■■■■■■■■■■•■■■■■■■a
!■■■■■■■■■■■■•■■■■■■■■;

■■■■■■■■a*•■■■■■■■■■■■■ ■■■■■■■■■■■■

::::::::::::

The world oF
commodore

II
The Company that had the foresight and imagination

to design and build more computers for home,

business and education than any other will be pre

senting the most farsighted and imaginative show

to date with exhibitors from around the World.

The 1983 Canadian World ofCommodore Showwas

the largest and best attended show in Commodore

International's history. Larger than any other

Commodore show in the World and this year's

show will be even larger.

World of Commodore II is designed specifically

to appeal to the interests and needs of present

and potential Commodore owners.

Come and explore

the World of Commodore.

world of . „
commodoreE

A HUNTER NICHOLS PRESENTATION.

FOR MORE INFORMATION CALL

DEBBIE BANNON

(416) 439-4140

In 1982 Commodore introduced the breathtaking Commodore64.

Now, in 1984 Comma-door-announces "the preposterous Comedian 264.

It bytes. It barks.

It even glows in the dark.

Does less, costs more,

The new Comedian264.

Graphics chip
GDC chip (graphic laser interface

ohi'p)

320 *4 pixte display

8 user deniable spiteful

araphics (24^2 pixies)
2. character sets (Japanese,

standard)

/->

is

ZDound chip
SICK chip (sound interface

condensed kernal)

8 line octave plus

6 line sestet equals

1 sonnet

3 voices (tenor, bass,soprano)

2. waveforms

""e attires-.
20K EFROM (easily forgettable

read only memor/l

64K SAM (sequential access

memory)

7251 Macroprocessor

66 triple stroke keyboard

16 pro9ramable function keys

Built. ir» Commodore Basick

(V3.1416 + circular commands)

CP/M computable

Potato chip
HOSTESS ch\p

Emulates five different flavours-.

salt and vinegar

barbeque

rippled

taco

Comedian
It's the biggest joke on

264
emarket.

If you read Transactor, you're not the average Commodore owner. You didn't buy

your computer to see what someone else's software could do. You want a discovery tool.
Over the years of teaching computer programing to adults and children, I've been

struck by how much more they discover about programming when they have a thing,

a device which they're writing for. One that's easy to build, easy to understand, easy

to program, and fun to use.

One of the simplest, yet most powerful gizmos you can plug into your computer.

It's a drawing device, a controller, a musical instrument, a discovery tool.
It has two essential parts: a board, and a pointer. As you guide the pointer around

the board, the computer always knows where you are.

Unlike its high-tech cousins, Koalapad ® and Powerpad ®, the

is something you can take apart, tinker with, put back together. Kids assemble their

own in class. All they need is a screwdriver.

The has two potentiometers mounted in its lucite pointer arm

and a durable-surface 12" x 16" drawing board you can write on and wipe off. Two

pushbuttons conveniently mounted right on the edge of the board act like an extra set

of function keys. The tutorial-based manual shows you how to put it together and check

it out. And getting you started are some sample programs in Basic with lots of comments.

a disk, with many more programs, for

registered owners.

Send a check or money order (U.S. funds) for $50 plus $4 postage and handling

(U.S. and Canada). Please specify what computer you have. If you want the disk, add

another $15 for the C64 « or $8 for the VIC s> version.

GETTHE MOSTOUTOF YOUR

orVK>2Ocomputer

ALSO AVAILABLE:

3 outstanding

Music Albums to
go with Synthy-64

Classical
Christmas and
Rag/Sing Along

See below

LANGUAGE

BOOK

FOR THE

COMMODORE

64

TAS-64
Technical Analysis System

lor stock Market Evaluation

CHART
PLOT-64
PLOTER SUPPORT:

AMDEK

Hewlett Packard

Houston Inst.

STROBE

Sweet-P

Roland DG

THE ANATOMY

OF THE 1541

DISK DRIVE

Professional

Development

Software

For Quality

Applications

ULTRABASIC-64...Add 50
commands: graphics,

music, TURTLE and game

features.Tutorie' demo plus.

TAPE $24.95 DISK $27.95

ASSEMBLER-MONITOR-M

High speed language

development. Eleven func
tion editor. Screen editing of

source file. DISK $32.95

MERCURE-64...Simple,

powerful file management

with fast design, entry
search report capabilities.

Tutorial. DISK $32.95

SYNTHY-M... Sets the standard for all of the rest.

Best 64-synthesizer anywhere. Samples and manual.
CASSETTE $24.95 DISK $27.95. Also available: 3 great

companion music albums: Classical, Christmas, and

Ragtime Sing-Along. DISK $12.95 Each.

MACHINE LANGUAGE BOOK

Learn all instructions.

Access ROM routines, I/O.

Listings for Assembler,

SIMULATOR, more.

GRAPHICS DESIGNER-S4...

Menu-driven drawings, floor

plans and illustrations etc..

Slide program capability.

DISK $32.95

TAS-64... Full featured
technical analysis for stock

market evaluations. Manual

200+PAGE BOOK $14.95

ANATOMY OF A C0MM0-

DORE-64 Complete guide.

or entire update capability Full comment ROMS list, de-
thru DJNRS.Printer hard- tailed internals, descriptions,
copy Disk $84.95 300 PAGE BOOK $19.95

CHARTPAK-64...Profes

sional qualtiy pie, line and
bar charts. Menu driven, in
teractive, hardcopy.

DISK $42.95

CHARTPL0T-64...Same fine
features as CHARTPAK-64

with high quality output to

plotters.

DISK $84.95

ANATOMY OF THE 1541
DISKDRIVE Explains se

quential random and pro

gram files, DOS, full ROM
listing, sample programs.

320 pp. book $19.95

ZOOM PASCAL-64...Pro

duces 6502 machine code
for speed. Boating point, In

tegers, strings File handling.
DISK $39.95

POOL-64/20...Play Full rack

or nine ball using hires
graphics, vlc-20 required 8K

expander.

TAPE $14.95 DISK $17.95

SUPER DISK UTILITY-64...
Speed copy 4 ways: Total,
Bam, Append or File. Dump

or modify sectors. More.

DISK $22.95

XREF-64...Sorted BASIC

cross-reference on screen or

printer Fast ML Sort. Add

your own tokens.

DISK ONLY $17.95

MASTER-64...Indexed files; powerful screen manag-

ment; excellent printer generator; programmer's aid;
BASIC 4.0 commands; machine language monitor. NO

RUNTIME ROYALTIES. 150 pp. manual for program

developers. Disk $84.95

FREE CATALOG Ask for a listing of other
Abacus Software for Commodore-64or Vic-20

DISTRIBUTORS

Great Britain:

ADAMSOFT

18 Norwich Ave

Rochdale. Lanes.

01-788-8963

West Germany:

DATA BECKER

Merowingerstr 30

4000 Dusseldorf

0211/312085

Beloinm-

Inter. Services

AVGuillaume 30

Brussel 1160, Belgium

2-660-1447

Sweden:

TIAL TRADING

P0 516

34300 Almhult

476-12304

France:

Micro Application

147 Avenue Paut-Doumer

Rueill Malmaison. France

1-732-9254

Australia:

CW ELECTRONICS

416 Logan Road
Brisbane, Queens.

07-397-0808

Canada East:

KING MICROWARE LTD.

5950 Cote des Neiges

Montreal, Quebec H3S 1Z6

514/737-9335

New Zealand:

VISCOUNT ELECTRONICS

306-308 Church Street

Palmerston North

63-86-696

AVAILABLE AT COMPUTER STORES, OR WRITE:

Abacus HI Software
P.O. BOX 7211 GRAND RAPIDS, MICH. 49510
For postage & handling, add $2.50 (U.S. and Canada), add $5.00
for foreign. Make payment in U.S. dollars by check, money order

or charge card. (Michigan Residents add 4% sales tax.)

FOR QUICK SERVICE PHONE 616-241-5510

DEALER INQUIRIES INVITED

