
Commodore 64: How To Use Those Mysterious CIA Timers

The Tech/News Journal For Commodore Computers Vol. 5

The Transition

To Machine Language
How BASIC Works: What Happens After You Press RETURN

Converting BASIC To Machine Language

Rocket Thruster Simulation In BASIC AND In Machine Code

• Machine Language Monitor In BASIC: A Learning Tool

• The Stack: What Happens In This BASIC Forbidden Zone?

• Merging Commodore BASIC Programs Together

• Butterfield: Use Your Commodore 64 To Emulate The SX-64

• Plus Lots More... And ALL On Commodore!

Issue 02

$2.95

"72246 00594

The Reference Transactor Is Coming! (See News BRK for details)

rPAL 64
The fastest and easiest to use t

/ assembler for the Commodore 64.
Pal 64 enables the user to perform

assembly language programming using the

standard MOS mnemonics. $69.95

64

Is an absolutely indispensible aid to

the programmer using Commodore

64 BASIC. Power 64 turbo-charges

resident BASIC with dozens of new super

useful commands like MERGE, UNDO,

TEST and DISK as well as all the old

standbys such as RENUM and SEARCH &

REPLACE. Includes MorePower 64. $69.95

^TOOL BOX 64

Is the ultimate programmer's utility

f package. Includes Pal 64 assembler
and Power 64 BASIC soup-up kit all

together in one fully integrated and

economical package. SI29.95

PRO-LINE

SPELLPRO 64

A-.SPELLPRO 64
"S f Is an easy to use spelling checker

//l^^ with a standard dictionary expandable
to 25,000 words. SpellPro 64 quickly

adapts itself to your personal vocabulary

and business jargon allowing you to add and

delete words to/from the dictionary, edit

documents to correct unrecognized words

and output lists of unrecognized words to

printer or screen. SpellPro 64 was designed

to work with the WordPro Series*and
other wordprocessing programs using the

WordPro file format. $69.95

NOW SHIPPING!!!

For Your Nearest Dealer

Call

(416) 273-6350

"Commodore 64 and Commodore are trademarks of

Commodore Business Machines Inc.

* Presently marketed by Professional Software Inc.

Specifications subject to change without notice...

This brand new offering from the

originators of the WordPro Series*

brings professional wordprocessing to the

Commodore 64 for the first time. Two

years under development, WP64 features

100% proportional printing capability as

well as 40/80 column display, automatic

word wrap, two column printing, alternate

paging for headers & footers, four way

scrolling, extra text area and a brand new

'OOPS' buffer that magically brings back

text deleted in error. All you ever dreamed

of in a wordprocessor program, WP64

sets a new high standard for the software

industry to meet. $69.95

/A^MAILPRO 64
^ j A new generation of data
^M organizer and list manager, MailPro
64 is the easiest of all to learn and use.

Handles up to 4,000 records on one disk,

prints multiple labels across, does minor

text editing ie: setting up invoices. Best of

all, MailPro 64 resides entirely within

memory so you don't have to constantly

juggle disks like you must with other data

base managers for the Commodore 64.

$69.95

MAILPRO.64

PRO-LINE
■MBieilSOFTWARE

(416)273-6350
755 THE QUEENSWAY EAST, UNIT 8,

MISSISSAUGA, ONTARIO, CANADA, L4Y 4C5

CAD/CAM! DONT SPEND 25k, 50k

or $500,000 BEFORE YOU SPEND $7900
OBJECTIVES
This book will provide managers,

engineers, manufacturing personnel

and any interested persons an

understanding of the fundamentals of

Computer Aided Design [CAD] and

Computer Aided manufacturing [CAM]

applications and technology.

PROGRAM

DESCRIPTION
The program will expose you to the

various CAD/CAM terminologies used.

Hardware and software comparisons

will be explored with heavy emphasis on

their advantages and disadvantages.

Cost justification and implementation

are presented using case studies.

WHO SHOULD

PARTICIPATE
The course is designed for but not

limited to:

— Those managers, engineers and

research professionals associated with

the manufacturing industry.

— Personnel from Product, Tool

Design, Plant Layout and Plant

Engineering who are interested in

CAD/CAM.

ADVANTAGES-

END RESULT
This program will enable participants to:

1. Learn basic CAD/CAM Vocabulary.

2. Better understand the various hard

ware and software components us

ed in a typical CAD work station.

3.Select the existing CAD/CAM

system most appropriate for cur

rent and projected needs.

4. Make an effective cost justification

as to Why they SHOULD or

SHOULD NOT implement a

CAD/CAM system.

5. Apply and use computer graphics as

a productivity tool.

PROGRAM

CONTENT
1. Introduction

a. History of CAD/CAM

b. Importance of CAD/CAM

2. Graphics work station peripherals

a. Input

b. Output

c. Advantages and disadvantages

of input and output devices.

3. Computer Graphics Systems

[Hardware]

a. Micros

b. Minis

c. Main Frames

d. Turnkey Graphics systems

4. Software

a. Operating systems

b. Graphics Packages

c. Graphics Modules

5. Computer Aided Design

a. Geometric Definitions

[Points, Lines, Circles, ETC.]

b. Control functions

c. Graphics Manipulations

d. Drafting Functions

e. Filing functions

f. Applications

CONTINUING EDUCATION FOR BETTER

CAD/CAM:
A PRODUCTIVITY

ENHANCEMENTTOOL

6. Implementation

a. Determining needs

b. Purchasing and Installing

c. Getting Started

7. Cost Justification and Survey

a. Cost comparisons of two and four

work station systems.

b. Presentation of recent survey of

CAD system users

ZANIM SYSTEMS MAKESTHIS SPECIAL

OFFER: IF YOU BUY CAD/CAM: A

PRODUCTIVITY ENHANCEMENT

TOOL BEFORE APRIL 15TH, WE WILL

INCLUDE FREEOFCHARGETHESETWO

PAPERS PUBLISHED NATIONALLY BY

ZANIM SYSTEMS CAD/CAM EXPERT.

1. "Creation of a Large Data Base for

a Small Graphics System"

2. "Shortest Path Algorithm Using

Computer Graphics"

Of course you could spend as much as

$495, $595 or $695 for a similar 3 day

seminar even though this book is not a

computer program.

We tell you April 15th for a special

reason...this product may be tax

deductible depending on your field or

needs. This 170 page course will satisfy

any of your CAD/CAM needs. We

guarantee it.

Please send $79 to:

ZANIM SYSTEMS

CAD/CAM GROUP

P.O. BOX 4364

FLINT, Ml 48504

(313) 233-5731

QUANTITY DISCOUNTS AVAILABLE FOR COLLEGES,

UNIVERSITIES AND/OR SEMINAR USE.

SOFTWARE FOR

VIC • COMMODORE 64 • PET

FROM KING MICROWARE

• S D COPY FAST EFFICIENT SINGLE DISC COPIER FOR THE 1541 $19.95

• WORDS & CALCS spread sheet for the c-64 allows text $42.95

• CHART PAC 64 FINEST CHART MAKER AROUND $42.95

• SMARTEES ACTION PACKED MAZE GAME $22.95

&^' THE BANKER the finest check book reconciliation
PROGRAM ON THE MARKET $38.95

• DAISY —DATA ADAPTABLE INFORMATION SYSTEM
—THE DATA BASE WITH A DIFFERENCE $39.95
— ALLOWS YOU TO CALCULATE BETWEEN FIELDS

• ASTRO POSITIONS FIND THE STARS AND CAST
YOUR HOROSCOPE $43.95

LOOK AT THE LANGUAGES WE HAVE

H&' WE HAVE PASCAL $52.95

ULTRABASIC with turtle graphics and sound $42.95

TINY BASIC COMPILER $22.95

TINY FORTH fig forth implementation $22.95

EDIT/ASM COMPLETE EDITOR ASSEMBLER PACKAGE $36.95

64-BUDGETEER

64-CRIBBAGE

SKIER-64

64 QUICK-CHART

SYNTHY-64

VIC TINY PILOT

VIC BUDGETEER

VIC VIGIL

VIC CRIBBAGE

GRAPHVICS

SCREEN DUMP

SPRITE-AID

VIC HIRES

VIC JOYSTICK PAINTER

VIC I-CHING

We are actively seeking SOFTWARE AUTHORS.

WHY NOT SEND US YOUR PROGRAM FOR

EVALUATION.

Dealer Inquiries Invited

Write for our FREE Catalogue

for VIC and C-64

Canadian manufacturer and distributor for ABACUS Software Products

MICROWARE

Suite 210,

5950 Cote des Neiges

Montreal, Quebec H3S 1Z6

Volume 5

Issue 02
Circulation 40,000

The Transition To Machine Language Editorial

News BRK
The Reference Transactor Is Coming!

Best Of The Transactor Volume 3 SOLD OUT!

Back Issue Quantity Orders

Subscription Problems

Department TR'

Commodore U.S. Updating Policy
Commodore International Announces New

Microcomputers And Related Peripheral Devices
Commodore Receives Royal Warrant

Computer Song Writing Contest '
Holt, Rineharl and Winston Now Publishing Software
SuperPET User's Group and the SuperPET Gazelle
Tutorial Diskette For The SuperPET

Programming The PET/CBM
The Machine Language Book For The Commodore 64

The Anatomy Of The Commodore 64
The Anatomy Of The 1541 Disk Drive

MASTER-64

JOSEF - A New Programming Language
Application Software From Fabtronics
Music Production Service

Flexidraw's New 3,0 Version
Opens Channel Of Communication

Flexidraw 3.0 Offers A Rainbow Of Colours
New Diskovery Early Math Programs

Turtle Toyland Jr.

Teaches Basic Computer Concepts

'Horses OTB': Horse Race Handicapping Software

Commodore 64 Memory Expander

'Bit Scrubber": Disk Residual Noise Eraser

SAD1 Communications Interface and Printer Adapter
Electronic Fingerprint Analysis Security System

Letters 16
Un-products? (C64 Keyboard & Drums Synthesizer)

Response? Response: (Auto Liner Revisited)

Existing Lost Copy: (more on Program Generators)

Bits and Pieces 18
Kernal 3 For The Commodore 64

Cylinder Screen

Down Scroll 64

FTOUTSM With Colour Mods

Machine Language FTOUTSM

amaZAMARAing

Stop RUN/STOP

Cursed Commodore Cursor!

Sorry, But That DOES Compute

Low-Res Screen Copy

Eep Eep

Mirror

Ram Scan

Crystal

Number Base Converter

The Un-Cursor

CompuKinks 24

The MANAGER Column 27

Review: MailPro 64 34

Perspective: To GET Or Not To GET 36

All About Commodore Abbreviations 37

Messing With The Stack 49

The Un-Token Twins 51

Merging BASIC Programs 53

An Introduction To The Tools

And Techniques Of Machine Language 55

Your BASIC Monitor 58

Finding Pi Experimentally 63

Translating A BASIC Program

To Machine Language 66

A Few Of The Stranger

6502 Op Codes Explained 72

Getting BASIC To Communicate

With Your Machine Code 76

CIA Timers 83

6526 Time Of Day Clock 86

Joycursor 90

Butterfield: SX64 Emulator 91

Advertising Section .., 92

Advertising Index 104

The Transactor Volume 5, Issue 02

Managing Editor

KarlJ. H. Hildon

Editor

Richard Evers

Advertising Manager

Kelly M. George

416 826 1662

Art Director

John Mostacci

Subscriptions

Mandy Sedgwick

Contributing Writers

Eric Armson

Don Bell

Michael Bertrand

Daniel Bingamon

Brad Bjorndahl

Jim Butterfield

Elizabeth Deal

Domenic Defrancisco

Bob Drake

Mike Forani

Jeff Goebei

Melissa Gibbins

Dave Gzik

Phil Honsinger

Mike Panning

Howy Parkins

Glen Pearce

Louis F. Sander

George Shirinian

Darren J. Spruyt

Colin Thompson

Mike Todd

Vikash Verma

James Whitewood

Chris Zamara

Production

Attic Typesetting Ltd.

Printing

Printed in Canada by

MacLean Hunter Printing

Program Listings In The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case

mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter "o" will of course

be in lower case. Secondly, the lower case L (T) has a flat top as opposed to the number 1 which has an

angled top.

Many programs will contain reverse video characters that represent cursor movements, colours, or

function keys. These will also be shown exactly as they would appear on your screen, but they're listed

here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs will contain lines that show consecutive spaces. Often the number of spaces you

insert will not be critical to correct operation of the program. When it is, the required number of spaces

will be shown. For example:

print" flush right" - would be shown as - print" [spacelOjflush right"

Cursor Characters For PET / CBM / VIC / 64

Down - Q

up -H

Right - II

Left - [Lft]

RVS - Q

RVS Off - 13

Insert - £j

Delete - Q

Clear Scrn - Q

Home - Q

STOP - Q

Colour Characters For VIC / 64

Black -

White -

Red -

Cyan -

Purple -

Green -

Blue -

□
B
□
[Cyn]

[Pur]

D

H

Orange -

Brown -

Lt. Red -

Grey 1 -

Grey 2

Lt. Green -

Lt. Blue -

Q
D
E
E

E
E
0

Yellow- [Yel] Grey 3 - [Gr3]

Function Keys For VIC / 64

Fl-

F2-

F3-

F4-

F5-

F7-

F8-

The Transactor is published bi-monthly by Transactor Publishing Inc. It is

in no way connected with Commodore Business Machines Ltd. or Commo

dore Incorporated. Commodore and Commodore product names (PET,

CBM, VIC, 64) are registered trademarks of Commodore Inc.

Volume 5 Subscriptions: Canada $ 15 Cdn Second Class Mail

U.S.A. $15 US. Permit Pending

Allother $18 US.

Send all subscriptions to: The Transactor, Subscriptions Department, 500

Steeles Avenue, Milton, Ontario, Canada, L9T 3P7, 416 876 4741. From

Toronto call 826 1662. Note: Subscriptions are handled at this address

ONLY.

Back Issues: $4.50 each. SOLD OUT: The Best of The Transactor
Volume 3, Volume 4, Issues 4, 5, & 6 no longer available.

ficcess
Access Computer Services

630B Magnetic Drive

Downsview, Ontario, M3J 2C4

(416)736 4402

Dealer Inquiries ONLY:

1 800 268 1238

Subscription related inquiries

are handled ONLY at Milton HQ

Quantity Orders:

CompuLit

PO Box 352

Port Coquitlam, BC

V5C 4K6

604 464 1221

U.S.A. Distributor: Prairie News, 2404 West Hirsch,

Chicago, IL, 60622, (312) 384 5350

Want to advertise a product or service? Call or write for more information.

Editorial contributions are always welcome and will appear in the issue

immediately following receipt. Remuneration is $40 per printed page.

Preferred media is 2031, 4040, 8050, or 8250 diskettes with WordPro,

WordCraft, Superscript, or SEQ text files. Program listings over 25 lines

should be provided on disk or tape. Manuscripts should be typewritten,

double spaced, with special characters or formats clearly marked. Photos of

authors or equipment, and illustrations will be included with articles

depending on quality. Diskettes, tapes and/or photos will be returned on

request.

All material accepted becomes the property of The Transactor. All material

is copyright by Transactor Publications Inc. Reproduction in any form

without permission is in violation of applicable laws. Please re-confirm any

permissions granted prior to this notice. Solicited material is accepted on an

all rights basis only. Write to the subscriptions address above for a writers
package.

The opinions expressed in contributed articles are not necessarily those of

The Transactor. Although accuracy is a major objective, The Transactor

cannot assume liability for errors in articles or programs.

TheTrqrtsoctor Volume 5, Issue 02

The Transition To Machine Language

Why are so many afraid of Machine Language? Even the name is

intimidating, like it's the dialect spoken on some silicon based

planet in another galaxy or something. Perhaps we should give it

some other name. Somehow I feel this wouldn't be enough,

though.

So what is it? Is it the concept of reaching inside that thing called

the microprocessor? Agreed, programming in raw hexadecimal

can be a painful experience, one which nobody should be sub

jected to and still be expected to maintain enthusiasm. No, poking

hex codes might be ok for the first couple of 5 byte programs, but

any more and you'll soon be turned off.

Using a good Assembler will take the sting away. Most offer 6

character labels on variables and subroutines. Calling a subroutine

by its name is much more practical than remembering its number.

Still, most say even assembly language is too unsophisticated. ..

no error messages, no string handling, no floating point variables,

no this, no that. . . you have to do everything yourself!

Ok, I admit, there are things you can do in BASIC that would be

hideously mind bending in machine language. Multiplication and

division of fractions is one task 1 would cringe over, same with

triginometry, and worse, calculus! But nobody said you should use

machine language all the time. In fact BASIC is perfect when you

need only a few calculations, a bit of file handling, and most

printers can't go faster than BASIC anyways.

Except there are things you just can't accomplish within reason

able time in BASIC. Imagine a ten field, cascade sort. . . with

enough data you wouldn't see the results in your own lifetime!

This is where machine language truly makes its mark. Moving text

around is a natural for machine code. And you don't need to 're

invent the wheel'. There are lots of sort routines and other

machine language utilities around that you can usually just slip

into your BASIC, and the crafty soon learn how to use ROM

subroutines for some particularly nasty jobs. Even writing them

yourself can often save you time in the long run. I don't need to

remind you, machine language is lightning fast!

With the right tools, mixing machine language with BASIC is not

only easy, but the results are much more rewarding. Yet we still

avoid it. I believe one problem is the process which humans seem

to naturally enjoy learning, that is, the easy way first. And too often

the easy way is determined for us.

When I first learned to ski, I was taught how to 'snow plow'. Then

when I tried parallel skiing, I found myself constantly reverting to

snow plowing. It took a long time to break that habit. I think the

same is true between BASIC and assembler. "Learn BASIC first, it'll

give you a feel for programming", we're told. Then we get too

comfortable in BASICs' care-free environment.

In my opinion, a students' first taste of computer programming

should be a generous helping of machine language. With no prior

experience of the high level approach, they would have nothing to

compare against, and the apprehension would be eliminated. Only

the fear of the unknown must then be overcome, which is true for

learning anything new. After assembling a month or two of simple

machine language efforts, unveil the high level interpreter and

suddenly they gain new appreciation for programming. "RUN, you

mean all I have to do is say RUN?" But with the order reversed,

several new fears develop. Suddenly it's no longer possible to just

say 'RUN', and the learner retreats.

Exposure to assembling machine language instills other disci

plines too; pre-planning, variable definitions, correct structuring,

and clear commenting and documentation, to name a few, are all

necessary ingredients for machine language. They're important in

BASIC too, but how many of you have deemed them 'unnecessary'

at one time or another. Then, 6 months later, you need to add a

variable to that program but don't know if it's already been used.

Or you can't remember what that silly looking subroutine does at

line 53427! High level environments lend themselves nicely to

side-stepping. Those that acquire a little machine language disci

pline early will naturally apply it when the time comes to write in

BASIC. And when that machine language subroutine just can't be

substituted, it will be treated like a natural step towards comple

tion, rather than a job to be procrastinated as long as possible.

I urge you to try your hand at machine language or assembler.

Read through the listings in this issue or disassemble some code in

a program you're using. Supermon has a disassembler in it and it's

available from TPUG and most club libraries.

Your computer is a creature of machine language. BASIC is there

merely to tame the creature. Well it's time to cast away the

protective shield and confront the creature on its own turf. You'll

find the challenge of the microprocessor is is no greater than any

other challenge, and once you conquer it, you'll be classifying

BASIC as an unworthy opponent!

There's nothing as constant as change. . . until next issue, I

remain,

KarlJ.H. Hildon

Managing Editor, The Transactor

Post Script: Notice our circulation figures? Almost double our last

number! Consequently we couldn't get enough Concorde book

paper in time for this issue so it had to be printed on this shiny

stuff. We were disappointed too, but we'll be back printing on the

quality stuff next issue!

The Transactor Volume 5, Issue 02

News BRK

Transactor News

The Reference Transactor Is Coining!

We've been getting so much response over The Reference Issue

(Volume 4, Issue 05) that we've simply run out trying to meet the

demand. Reference Issue "Users" have reported buying every

copy in the store just to have extras when one wears out. Others

have spent several dollars getting every page laminated. On behalf

of The T., I'd like to thank everyone for their compliments

regarding Issue 05 and particularly those who have forwarded

corrections and suggestions for improvements.

Although we will not be re-printing Volume 4, Issue 05, the NEW

Reference Transactor is already in motion. Scheduled to be re

leased around September 1st, 1984, it will be offered as a separate

item from Transactor Publishing Inc. and will therefore not be

included with a regular subscription. The book will be printed on

fine quality *1 book paper and "ring bound" so it will lie flat when

opened to any page. Cover pages will be made of a thicker stock to

prevent untimely wear. Several new sections are planned includ

ing a complete list of PEEK and POKE procedures for all of

memory, an expanded Glossary and book list, disk memory maps,

plus all memory maps and pertinent data for the new Commodore

equipment that should be on the market by then.

The price will be somewhere between $12.95 and $24.95. A rather

large spread I agree. The reason? We may include a diskette sewn

into the cover of every book. The disk would contain copies of any

utility type subroutines listed inside, plus a whole batch of pro

grams that get a lot of use around The Transactor development

department. Programs like Supermon (versions for all models),

assemblers and un-assemblers, disk monitors, file readers, data

generators, intelligent directory readers, games utilities, sort rou

tines, copy programs, programmers aids, communications soft

ware, text editors, plus anything else we can dig up that comes in

handy when you need it most. And with some 7 years of collecting

these programs, we'll have plenty to dig through!

Please do not submit orders yet. This time we plan to print enough

so there will be plenty to go around. Final details, including

quantity orders, will be released in our next issue (August '84).

Best Of The Transactor Volume 3 SOLD OUT!

Our current subscription cards show a space for ordering "The

Best Of The Transactor Volume 3". Please do not complete this

section as they too are all sold out. A "Best Of The Transactor

Volumes 1 to 4" has been considered, but no firm plans have been

set for its production so, once again, please do not submit orders

yet. It may also sport a diskette of programs contained within. . .

details to follow next issue.

Back Issue Quantity Orders

Please note that back issues are to be ordered from The Transactor

head office in Milton, Ontario, and the current issue from our

distributor nearest you. The current issue becomes a back issue as

soon as the next issue is released. At this point our distributors

return the unused portion of their shipment. Therefore you can

only get them from us.

Recently we've been receiving several orders for quantities of back

issues from US retailers. However, between shipping charges, the

quantity discount, and customs service charges, we actually lose

on the transaction. In light of this situation, quantity orders from

the USA for back issues will be costed at 25% of retail value plus

$40.00 for postage, handling, and customs surcharges.

Subscription Problems

If you have a problem with receiving magazines, we want it fixed

as quickly as you do! To help speed the process, please write us

with a complete explanation of the situation. If you paid by

cheque, send us a copy - not that we don't believe you've paid, it

just helps us find you easier and track the problem to the source.

The Transactor Volume 5, Issue 02

If you have renewed your subscription and find you are receiving

two of each issue, then you've probably been entered twice in our

mailing list system. In this case your subscription has been dupli

cated when it should have been extended. This is our mistake, but

if not reported, you will receive less issues than you are entitled to.

If you're currently receiving duplicate issues that you haven't

ordered, please inform us so we can correct it. And please keep the

duplicates with our apologies.

Department 'TR'

Each address given in the News BRK section will now include the

line, "Dept. TR." Please include this in the address should you

write for more information on a product listed here. It saves you

the trouble of noting where you found the initial product informa

tion (which we appreciate nonetheless) and it also gives the

manufacturer (or maybe potential advertiser?) an idea of how

much response The Transactor might generate for them (which we

also appreciate).

Commodore News

Commodore U.S. Updating Policy

To receive an update for any of Commodore's software, send $5.00

U.S. plus the original diskette, along with the replacement diskette

card or a receipt to;

Commodore Disk Replacement

1200 Wilson Drive

West Chester, PA 19380

Commodore International Announces New

Microcomputers And Related Peripheral Devices

NEW YORK, N.Y. — Commodore International Limited (NY-

SE:CBU) introduced a new line of microcomputers, related periph

eral devices and accessories, many of which have never been

shown publicly. The new introductions were made at the Hanno

ver Fair in Hannover, West Germany.

Among the new products publicly shown for the very first time

anywhere in the world were two new microcomputer systems for

the business market.

The first system is a 16-bit, Z8000 microprocessor based computer

system which features a Unix-oriented operating system, 256K

bytes, or 256,000 characters of built-in user RAM, or random

access memory, 80 column colour graphics, and built-in dual

floppy disk drives. Optional hard disks and printers will also be

available for this new system.

The second system, a 16 bit, 8088 microprocessor based Commo

dore PC, is a transportable system with software compatibility with

the IBM Personal Computer, and also includes 256K bytes of

built-in user RAM. This system has more features and will be sold

at a lower price than the IBM Personal Computer.

In addition to the two new business systems, other computers

shown at Hannover were two microcomputers designed for the

home market, the Commodore 16, featuring 16K bytes, or 16,000

characters of built-in user RAM, and the Commodore 264, the

series name for a 64K microcomputer that ws originally introduced

at the Consumer Electronics Show in Las Vegas, Nevada in early

January.

Among printers and other accessories introduced at the Hannover

Fair were four new printers designed for the VIC-20, the Commo

dore 64, and the new 264 series. These include a low cost dot

matrix printer, a higher-end dot matrix printer, a colour dot matrix

printer, and a low cost daisy wheel printer.

Finally, Commodore also introduced three new accessories for the

64, including a touch screen, a light pen and the Commodore CAT,

a mouse-like device.

All products, except the two business systems, will be available

during the last half of 1984, while delivery dates for the business

systems will be announced. Contact:

Mr. Steven A. Greenberg

30 Rockefeller Plaza

NEW YORK, N.Y. 10112.

(212)246-1000

Commodore Receives Royal Warrant

Commodore Business Machines (UK) Limited, the leading micro

computer manufacturer, has become the first manufacturing com

pany to be granted the Royal Warrant of Appointment by Her

Majesty The Queen of England for computer business systems.

General Manager of Commodore UK, Mr. Howard Stanworth, said:

"As a high technology company with a growing manufacturing

and ancillary supplier base in the UK we are delighted and

honoured to receive the Royal Warrant of Appointment to Her

Majesty The Queen."

The Warrant carries the legend "By Appointment to Her Majesty

The Queen, manufacturers of Computer Business Systems, Com

modore Business Machines (UK) Limited Slough" and is for an

initial period of ten years.

Commodore UK is based at Ajax Avenue, Slough, England and has

a factory at Corby, Northants, which produces more than 5,000

microcomputers a day.

The Company currently employs a total of more than 300 people

and later this year will create up to 1000 jobs when it opens its

European manufacturing and distribution headquarters at Corby.

Its best known products include the Commodore 8000 series

systems, the VIC 20 home computer and the Commodore 64,

recently voted "Home Computer of the Year" by a number of

international computer journals. For further information, please

contact:

Mr. Wu Yhee Ming (Managing Director)

Systems Technology Pte. Ltd.

149RochorRoad*04-10

Fu Lu Shou Complex

Singapore 0718

The Transactor Volume 5, Issue 02

General News

Computer Song Writing Contest

Vince Fleming of Strangeland Music (ASCAP) and Dan Seitz of

Aleph-Baze Music (BMI) have announced they will join the panel

of judges for EnTech Software's First Annual Computer Song

Writing Contest. Aleph-Baze and Strangeland are music publish

ing companies in the Los Angeles area. Other contest judges will

be named soon, and may possibly include executives from CBS

and Capitol Records.

EnTech's Computer Song Writing Contest, the first of its kind, will

award $1,000 and free studio time to the best musical composition

written on the Commodore 64 with EnTech's "Studio 64". Studio

musicians, an arranger, and a producer will help turn the winner's

composition into a hit song.

Contest entry blanks are available at participating dealers, and

entries will be accepted through November 1, 1984. For more

information, contact:

Mathew Stern

ENTECH Computer Song Writing Contest

PO Box 185

Dept TR'

Sun Valley, CA 91353

818 768-6646.

Holt, Rinehart and Winston Now Publishing Software

Canadian book publisher Holt, Rinehart & Winston has made the

move to publishing software; one of the first of the large publishing

firms to do so in this country. Already a distributor of CBS software,

as well as Compute!, Hayden Books and dilithium Press computer

books and software, HRW is going to develop, manufacture and

sell software here in Canada.

"What we intend to offer", said Carl Cross, Vice President of the

Trade and Professional Division, "are quality products for the

home educational and business applications market. We don't

want any 'three month wonders'; we're looking at solid items with

a longer selling life and strong backlist potential.

Carl also said that, while HRW's emphasis would be on Canadian

authors and content, they would also be looking for software

which has potential for international marketing, particularly in the

United States where their connections with CBS guarantee them a

large market reach.

HRW intends to bring out its first product, already under develop

ment inhouse, in early summer of this year. Others will follow

throughout the year. They are currently assembling a staff to

manage the projects and have hired Ian Chadwick, former editor of

InfoAge Magazine, freelance writer and author of "Mapping the

Atari", as Software Editor.

Rather than hiring a large staff base of programmers and devel

opers, Holt will work with a wide variety of talented, outside

resource people. They are interested in discussing projects with

any Canadian programmers, authors, teachers or developers who

feel they can contribute to the developement of software for the

popular home and business microcomputers, including the Apple

He, Macintosh, IBM PC and PCjr, Commodore 64, Atari 800XL and

others. Interested parties should contact Carl Cross or Ian

Chadwick at (416) 255-4491 during normal business hours.

Holt, Rinehart and Winston of Canada, Limited

Dept TR'

55 Homer Avenue

Toronto, Ontario M8Z 4X6

SuperPET News

SuperPET User's Group and the SuperPET Gazette

The SuperPET User's Group, with members from Canada, the

U.S., and Europe, has commenced publication of "The SuperPET

Gazette". This newsletter aims to provide valuable information on

using the SuperPET. For example, the September 1982 issue

included articles on the following subjects:

Waterloo microBASIC: The Keyboard and its Codes

Using BASIC Procedures in Immediate Mode

SuperPET News

A free copy of the September issue, which contains information on

how to become a SuperPET User's Group member, can be ob

tained by sending a request along with a U.S. 20-cent stamp to:

The Editor

SuperPET Gazette

PO Box 411

Dept TR'

Hatteras, NC 27943

Tutorial Diskette For The SuperPET

This product contains five tutorial files divided into 19 sections,

describing a variety of aspects of the SuperPET capabilities. The

most central facility of the SuperPET is the microEDITOR, but

unfortunately it is also the facility which is least well documented.

This tutorial disk discusses all uses and commands of the editor

and could be considered an equivalent to the programming-lan-

guage examples supplied by Waterloo on the tutorial disk. This

tutorial also contains much reference material not provided by

Waterloo or Commodore. Many of the facilities described will only

work under version 1.1 (and hopefully any later versions) of the

Waterloo software.

This diskette contains this DESCRIPTION file, a CONTENTS file

which is a table of contents for the tutorial sections; TUTORIAL

files numbered 1 through 5 containing the actual tutorial; and a

LICENSE file which explains the product warranty and conditions

of use. In addition there are some public-domain programs distrib

uted as a courtesy. All the contents of the disk are briefly described

in the DIRECTORY file.

The topics in the tutorial files are not presented in any particular

order, except to some extent from more general to more 'techni

cal'. It would be possible to read the entire 5 tutorials in order,

(although with 10000+ words it would take some time! but a

better approach might be to start with the topics of known interest

The Transactor Volume 5, Issue 02

and delve into the others as the need arises. You might want to

extract out into other files or print out some subsets of the tutorials

for quick reference. If you have the Waterloo IHelp! facility (and a

dual drive) you could use it to automate scrolling through the

tutorial files.

The CONTENTS file shows the file name and exact line number of

each section header. You can go to a particular section by just

typing this line number after GETting the file, or of course you can

always find the next section header with a +/SEC command. Of

course you should try out the various edit facilities while you are

going through the tutorial - you will learn to use the SuperPET

facilities by USING them. Naturally you should start by creating a

backup copy of the tutorial disk before you do anything else (copy

programs are supplied for that purpose).

We wish you the best of luck in mastering your Commodore

SuperPET. It is one of the most sophisticated micro systems

available and an excellent vehicle for learning to compute. Do try

to do what you can on your own, but you should feel free to call on

help. The BIBLIOGRAPHY file will lead you to some groups and

other sources as well as books. Feel free to write to this address if

you have questions:

Dyadic Resources Corporation

PO Box 1524, Stn.'A',

Dept 'TR'

Vancouver, BC V6C2P7

Books

Programming The PET/CBM

The UK edition of 'Programming the PET/CBM' is available in the

US (after Compute! discontinued printing) from this address:

Holford Enterprises

6065 Roswell Road

Suite 1398

Dept TR'

Atlanta, GA 30328

The Machine Language Book For The Commodore 64

The Machine Language Book For The Commodore 64 is aimed at

the Commodore 64 owner who wants to progress beyond BASIC. If

the reader wants to write programs that run faster, use less

memory or perform functions that are not available in BASIC, then

this book will help him understand machine language.

This is a 200+ page detailed guide to the complete instruction set

of the 6510 processor of the Commodore 64. The book is filled with

examples of machine language routines so that the reader can

learn from working programs. These examples are geared specifi

cally to architecture of the Commodore 64.

Included in these pages are listings of three full length programs.

One is a working assembler so the reader can create his own

machine language programs. The second is a working disas

sembler so the reader can inspect other machine language pro

grams. The third is a 6510 simulator so that the reader can better

understand the operation of the processor.

The Machine Language Book For The Commodore 64 is scheduled

for release in April in softcover for $19.95. Available from your

local dealer or directly from Abacus Software.

Abacus Software

PO Box 7211

Dept TR'

Grand Rapids, MI 49510

616 241-5510

The Anatomy Of The Commodore 64

The Anatomy Of The Commodore 64 is aimed at the Commodore

64 owner who wants to better understand his micro. It is a 300

page detailed guide to the lesser known features of the 64. Here's

an outline of the contents:

1. Machine Language Programming On The Commodore 64

2. The Next Step - Assembler Language Programming

3. A Close-Up Look At The Commodore 64

4. Music Synthesizer Programming

5. Graphics Programming

6. BASIC From A Different Viewpoint

7. Comparison Of The VIC-20 And The Commodore 64

8. Input And Output Control

9. ROM Listings

Those readers that need to delve deeply into their computer, we've

included a fully commented listing of the ROMS. Here's an authori

tative source for Commodore 64 information.

The Anatomy Of The Commodore 64 in softcover $19.95. Availa

ble from your local dealer or directly from Abacus Software.

The Anatomy Of The 1541 Disk Drive

The Anatomy Of The 1541 Disk Drive is aimed at the Commodore

64 owner who wants to better understand his disk drive. It is a

300+ page detailed guide that explains the mysteries of using the

floppy disk. Here's an outline of the contents:

1. Getting Started

2. Storing Programs On Disk

3. Disk Commands

4. Sequential Data Storage

5. Relative Data Storage

6. Disk Error Messages

7. Direct Access Commands

8. Overview Of DOS Operation

9. Structure Of A Diskette

10. Utiltiy Programs

11.1541 ROM Listings

If you've been confused about using files on the 1541 then this

guide clearly explains their use with many examples. We've also

included listings of many useful utilities that you can use including

a DISK MONITOR.

Those readers that need to delve deeply into their disk drive, we've

included a fully commented listing of the 1541 ROMS. Here's the

authoritative source for 1541 Disk Drive Information.

The Transactor Volume 5, Issue 02

The Anatomy Of The 1541 Disk Drive scheduled for March 1984 in

softcover $19.95. Available from your local dealer or directly from

Abacus Software.

Software News

MASTER-64

MASTER-64 is simply the best, most comprehensive professional

application program development package. No other software

package offers near the features of MASTER-64. MASTER-64 has

commands for programmer's aid, screen management, superior

indexed file management, high multiprecision arithmetic, ma

chine language monitor and much more. And software that you

develop using MASTER-64 can be distributed without paying

royalties.

MASTER-64 adds almost 100 new commands to BASIC that

include:

SCREEN MANAGEMENT - define, input, edit and output data in

exacting format to/from screen. Save, load or swap predefined

screen.

ISAM FILE SYSTEM - complete support of up to 10 indexed

sequential files. Data packing gives up to 40% more data storage.

Fast indexed or sequential retrieval.

PRINTER GENERATION - define and format printer pages similar

to screen management.

BASIC EXTENSIONS - multi-precision (22 digits) arithmetic, di

rect disk access, date control, more.

PROGRAMMER'S AID - auto, renumber, delete, print using, find,

if then else, trace, dump, error, etc.

BASIC 4.0 COMMANDS - for compatibility with other Commodore

micros. Includes relative record access.

MACHINE LANGUAGE MONITOR - built into MASTER-64 for

added usefulness.

For serious programming development, nothing comes close to

the power of MASTER-64. MASTER-64 comes complete with a

comprehensive 160 page user's manual in three-ring binder, the

MASTER-64 development system and the MASTER-64 runtime

package.

MASTER-64 Software & Manual on diskette $84.95. Available now

from your local dealer or directly from Abacus Software

JOSEF - A New Programming Language

JOSEF is a new powerful educational programming language for

microcomputers which combines the spirit of the Logo Turtle with

the structure of Pascal. With the Turtle it shares extendability

(programs become new language words), the challenging yet

toy-like and natural programming environment with visual orien

tation, and the possibility to execute commands directly without

the need to write programs.

JOSEF has standard programming features such as variable, as

signment and i/o statements, control structures, procedures and

functions with parameters and recursion, as well as unusual

constructs such as programmable interrupts allowing the writing

of games controlled from the keyboard. A consequence of the

screen oriented nature of the language is that pseudo-graphics is

possible without special hardware.

The latest Version 1.1 contains a built-in interactive tutorial that

allows the user to learn the language directly from and in interac

tion with the computer.

JOSEF is a robot who uses the screen of an ordinary terminal or

microcomputer as a geographical map of his world and can be

programmed to perform natural everyday tasks. He can move on

the map, write on it, manipulate user-created objects, communi

cate, sense information about the map, and so on. The program

contains a map editor which allows the user to create his/her own

maps.

JOSEF is intended for people who want to learn about program

ming in an interesting and natural way, children, but also for

mature programmers looking for something different. JOSEF is

ideal for education, particularly because of the increasing empha

sis on teaching Pascal in high school programs.

The program runs on a number of computers with enough mem

ory and sufficient disk drive capacity. The cost is $45 for individual

users and $65 for schools (permission to make multiple copies).

A textbook for the language called The First Book of JOSEF (list

price $13.95) by Ivan Tomek and published by Prentice-Hall is

available in bookstores and from Kobetek Systems.

Designed by:

Modular Systems 82

POB1456, Wolfville,

Nova Scotia, Canada

BOP 1X0

Distributed by:

Kobetek Systems

1113 Commercial Str.,

New Minas

Dept TR'

Nova Scotia, B4N 3E6

902 678-7771

Application Software From Fabtronics

Utiltiy File - VIC 20 (+ 3K)/C64 - Tape/Disk $27.95 (formerly

"Energy Master"). Extensive energy consumption data processing

program to calculate, display, store, print out data including daily

averages/totals and cost projections for any number of days.

Electric: K.W.H.

Water: Gals/cu-ft (automatic conversion)

Gas: cu-ft/meters

Oil: Gals/litres

Propane: Pounds

Special Features - prior meter readings are retrieved within auto

matically, also any utility not applicable is bypassed.

Utility File II - C64 Disk $87.95. A commercial version of above

with accounts payable including statements and billing on selected

commercial forms.

Fill-A-Form - VIC 20/C64 - Tape $17.95 Disk $19.95. A numer

ous selection of in house plain paper business/commercial forms

to help the private enterpreneur. Printer required.

The Transactor 10 Volume 5, Issue 02

Tenant File - VIC 20/C64 - Tape/Disk $19.95. Maintain a record

on each tenant with 22 fields of information including: active or

closed, name, rental rate, rent due day, unit # tenant in, social

security *, residence phone #, business phone #, auto yr/make,

plate #, driver lie #, sec. dep amt paid, sec. dep date paid, sec. dep

amt returned, retention reason, date moved in, date moved out, *

of bad checks, condition of unit on move in, condition of unit on

move out, comments/information pertinent to tenant or file

Rental Manager - C64 - Disk $47.95. Spreadsheet & data records

for rental applications dte oriented tracking/billing and recording

of payments. Also prints statements will support the following

entries: account #, rate, unit or item #, payment schedule, due

date, deposits, payments (10 per mo), utility charges, misc. chrgs,

dates in, dates out, name of occupant or user

Fab Mail - VIC 20/C64 - Tape $16.95 Disk $19.95. A super user

friendly mailing list with features others wish they had thought of,

ez select/edit, user selection of gemini lOx and similar printer

abilities, also great for cataloging/filing/sorting.

Fab Business - C64 - Disk $47.95. A mail order or small business

must. Easy invoice/packing list/label all in one, supports charge

card data and allows quick selection of items when used with

"inventory d-base"program. "Fab-Mail" data also quickly re

trieved. Plain paper or selected comm. forms.

Inventory D-Base - C64 - Disk $27.95. A stand alone program

that is also compatible with fab-business. Allows quick selection of

items during invoicing.

Printing on all programs where applicable are compatible with

commodore 1525, MPS801, Epson, Gemini, Prowriter, C-Itoh,

Epson MX/RX/FX 80-100, Okidata 82/83/84/92/94, Axiom GP/

100, Gorilla Banana and similar printers when properly interfaced.

S&H $3.00 — Visa/MC welcome no surcharge — all prices U.S.

funds - (cash)o.d. to U.S. only add $2.00. NY add sales tax

Music Production Service

I am introducing a professional music production service for

educational and game programmers at all levels who are inter

ested in putting together the most attractive possible software for

the Commodore 64 in order to stand out in todays's competitive

market.

Music is a powerful tool for communication. Think of the majestic

main theme from the "Star Wars" epics, or of Woody Woodpeck

er's laugh at the beginning of a cartoon. Obviously music can

provide an emotional response as immediate and as strong as a

visual display alone, and when the two are combined, the effect

which results can be potent.

The sound capability of the Commodore 64 is extensive. However,

without expertise in digital sound synthesis, three-voice harmony

and counterpoint, specialized systems of intonation, musical copy

right law, composition, and arranging, it can be difficult to produce

high quality music.

With 20 years of experience as a composer/arranger, performing

musician, and music educator, I can help with virtually any aspect

of musical programming for the Commodore 64, up to and includ

ing complete interactive soundtracks for software. I have written

for big bands, rock bands, school bands, club bands, brass quin

tets, woodwind ensembles, soloists, and now computers. I have

played principal trumpet with the St. Pul Chamber Orchestra, the

San Jose Symphony, and the Marin Symphony, played on records

with Dave Brubeck and the St. Paul Chamber Orchestra, and

played on many TV and radio shows and commercials, I have

taught for the University of Minnesota and Macalester College,

given clinics and master classes, and taught hundreds of private

students.

If you would like an audio tape demonstrating a variety of different

kinds of music that can be produced on the Commodore 64, send

$4.00 to Tom Jeffries, 2915 Harrison, Oakland, CA 94611. Further

information:

Tom Jeffries

2915 Harrison

Dept 'TR'

Oakland, CA 94611

415 451-3314

Flexidraw's New 3.0 Version

Opens Channel Of Communication

San Diego, CA — Inkwell Systems increased the versatility of

Flexidraw; graphics software and light pen, to include a communi

cation program which enables two C-64 owners to send and

receive graphics and text created by Flexidraw via modem.

This program, titled Transgraph, is easily accessed from a light pen

driven menu and implemented by a series of on-screen

user-friendly prompts. Any Flexidraw file can be sent or received

using the VIC or HES modem, saved to disk and printed at both

locations.

Sherry Kuzara, President of Inkwell Systems said "Transgraph

represents a major step in the evolution of affordable business and

personal communication." According to Kuzara, the network

capabilities of Transgraph coupled with the "print out" feature can

fill many business and personal needs, previously only available

in systems costing thousands of dollars.

Flexidraw will still retail for $149.95. Registered owners will be

notified by mail and can update their Flexidraw 2.1 version for a

nominal fee. Distributor and dealer inquiries can be directed to

Inkwell Systems:

Mr. Byrne Elliott/Ms. Sherry Kuzara

Inkwell Systems

P.O. Box 85152 MB290

7770VickersSt.,#202

Dept TR'

San Diego, CA 92138

619 268-8792

Flexidraw 3.0 Offers A Rainbow Of Colours

San Diego, CA — March 20, 1984, Inkwell Systems has expanded

the capabilities of Flexidraw; graphics software and light pen

combination, to include an interactive high resolution colour

The Transactor 11 Volume 5, Issue 02

program. Graphics previously created with Flexidraw can now be

painted in a dazzling array of 16 high-resolution colours.

Completely light pen and menu driven, the new addition to

Flexidraw version 3.0 entitled Pen Palette, features a similar

screen/menu format as Flexidraw. With the ease of an artist using

a paint brush and palette, the user chooses colour combinations

from a series of paint pots located on the menu and applys these

colours to areas on the work screen using the light pen.

Special features found on Pen Palette include; two demonstration

programs illustrating colour animation capabilities, and the ability

to save colour files to disk or re-load using the light pen driven

menu selector.

Flexidraw will still retail for $149.95. Registered owners will be

notified by mail and can update their Flexidraw 2.1 version for a

nominal fee. Distributor and dealer inquiries can be directed to

Inkwell Systems.

New Diskovery Early Math Programs

Internatinal Publishing & Software, Inc., announces the release of

TAKE-AWAY ZOO and The ADDING MACHINE; two early math

learning programs for 4 to 8 year olds. Take-Away Zoo and Adding

Machine are the latest additions to I.P.S.'s successful DISKOVERY

Learning Works line. Both use humorous graphics, sound and

colour to create the fun and excitement needed to insure high

student interest and long lasting learning.

These two new programs each consist of a set of three different but

related activities designed to help the child become more success

ful in arithmetic at school. As the child helps the "animal-master"

move animals in and out of their cages, he/she learns and

practices addition and subtraction.

Each aspect of each activity is user controlled to allow the child to

set the pace of the learning. These math activities are designed to

give every child a successful addition or subtraction learning

experience. While the activities are fun and exciting to play, they

provide a constant challenge for the children.

ADDING MACHINE and TAKE-AWAY ZOO feature the DIS

KOVERY ELECTRIC REPORT CARD. This user-transparent spe

cial feature tells the teacher or parent (or child) the activities the

child used, errors made (actually showing the problems answered

incorrectly), final score and percentage right. The ELECTRONIC

REPORT CARD is on, constantly providing complete up-to-date

information on the child's progress at any time; even in the middle

of an activity.

Each program teaches, tests, reviews and scores in an exciting

game format which helps and encourages children to practice

school subjects at home.

DISKOVERY Learning Materials are written and designed by

leading educators ensuring that each skill taught matches the

school curriculum.

TAKE-AWAY ZOO and THE ADDING MACHINE are currently

available for the Commodore 64 and the Timex Sinclair 2068

computers. Apple II and HE and TRS80 versions will be available

by mid-June, 1984. The suggested Retail Price for disk versions of

either program is $29.95. Dealer and distributor enquires are

welcome. Write to:

International Publishing & Software Inc.

3948 Chesswood Drive

Dept 'TR'

Downsview, Ontario M3J 2W6

416 636-9409

Turtle Toyland Jr.

Teaches Basic Computer Concepts

For children aged six and up, the challenge of learning about

computers and computer concepts has been made easier, and a lot

more fun, with the introduction of Turtle Toyland Jr. by Human

Engineered Software of Brisbane California, and distributed by

Micron Distributing.

Available for the Commodore 64, IBM Personal Computer and

Coleco systems, Turtle Toyland Jr. operates with just a joystick,

teaching children computer concepts by moving a turtle across the

computer screen to build film strips.

Turtle Toyland Jr. is an ideal introduction to creative programming

for young children. Because the program translates a child's

joystick movements into reproducible turtle graphics, children

learn programming concepts and techniques.

To achieve the best results from the game it is recommended that a

carefully designed sequence of activities is followed, beginning

with a playground to discover how to move the turtle and draw

images. From this introductory phase, children move on to turtle

training and then on to the Crossroads to decide where to go next.

After a stop in Training Land, children can try four other se

quences: Music Land, Sprite Land, the Roybox and Input/Output

Land. In Music Land, children can learn to write their own music

using the joystick to control notes from a piano, horn, guitar and

flute. The music created can be stored in the Toybox.

Children in Sprite Land fill in squares with the turtle to draw

sprites, which are animated drawings. Sprites can also be stored in

the Toybox. In Input/Output Land, saved files in the Toybox can

be called up and played again.

Turtle Toyland Jr. was developed jointly by Human Engineered

Software and Childware Corporatin, an innovative software devel

opment group.

These and other innovative educational programs are distributed

through Micron Distributing or can be found at your local com

puter store.

Micron Distributing

409 Queen St. West,

Dept TR'

Toronto, Ontario, M5V 2A5

416 593-9862

The Transactor 12 Volume 5, Issue 02

'Horses OTB': Horse Race Handicapping Software

Horses OTB is a thoroughbred horse race handicapping program.

This program can be used for off track betting (OTB).

Statistics from a large number of races are combined with com

puter simulation methods to calculate optimum betting strategies.

Data complied from over 1000 races shows superior performance

from this system.

The program is easy to use. The computer asks questions about

each horse in each race. The user needs to obtain the "Daily

Racing Form" and answer the questions using the data from the

form. The computer will tell the user which horses to bet on. No

judgement or comparison of odds is necessary and the user does

not need to know the track odds.

The complete instruction manual includes an explanation on how

to use Horses OTB, facts on all input data needed and how to

correct any mistakes on the data entered. The manual also con

tains tips on money management and presents simulated results of

the money management techniques.

Horses OTB sells for $34.95 and is available on disk for the

Commodore 64. It can be ordered by mail or through local dealers.

Or contact:

Jim Golts

3G Company, Incorporated

RT3, Box 28A

Dept 'TR'

Gaston, Oregon 97119

503 662-4492

Commodore 64 Memory Expander

The unexpandable memory configuration of the Commodore 64 is

no longer unexpandable! LETCO, the pioneer of the popular 64K

memory expander for the VIC 20, announces the adapter (Model

64KVA) to use with their 64KV memory expander on the Commo

dore 64. When used on the C-64, the addresses from $8000 to

$9FFF will have 8 separate blocks of 8K locations, each block

selected by a single poke instruction. Current owners of the 64KV

only need the adapter to use their memory on the C-64.

The adapter (Model 64KVA) is priced at $29.95. The memory

(Model 64KV) for use on the VIC 20, is priced at $109.95. The

combination (Model 64KVA) for use on the C-64, is priced at

$139.95. Complete instructions are included with each product.

All products are covered by a 90 day warranty on parts and labor

and of course satisfaction is guaranteed within a 15 day return

period.

LETCO will soon announce the ultimate expander for the 64, that

will allow up to 256K bytes of expansion. Of course, current

products will be compatible and pricing is expected to be about

$140 per 64K byte module.

LETCO is currently working with many popular software suppliers

to incorporate these added capabilities to their current and future

releases. Just think of the power that can be added to your word

processer or spreadsheet programs. All products are available

directly from:

LETCO

Leader Electronic Technology Company

7310 Wells Road

Dept 'TR'

Plain City, OH 43064

614 873-4410

'Bit Scrubber': Disk Residual Noise Eraser

Now - Wake up that old pile of diskettes you don't want to throw

away! Every computer has a common purpose—knowledge stored

in program format. But when dealing with giga and mega kilobytes

of data, one single bit erroneously entered can render a program

useless, create frustration, time delay and profit loss. Editing a

program also generates on-disk magnetic clutter causing a display

of "error messages", "disk overload", etc.

In addition, power supply fluctuations and disks remaining in the

computer during system power down, produce a magnetic field

around the drive head correspondent to these currents, generating

even more noise. When the head attempts to read/write data from

this portion of the disk, it cannot, and eventually this affects the

entire file.

During normal use, as a data file is revised, the head erases

previously stored data and replaces it with new data. This erasing

process is not perfect, always leaving a trace of magnetic noise.

After many write/erase operations, this noise level justifies thor

ough disk erasure.

Disk storage media replacement is expensive and time consum

ing. For these reasons, Techstar, Inc. has developed the "Bit

Scrubber". The fastest and most positive method to magnetically

"clean" and standardize both new and used diskettes.

The "Bit Scrubber" can restore used and noisy disks to their

original magnetic quality, providing a cost efficient method of

"error-free" storage eliminating the expense of purchasing new

floppy disks.

The "Bit Scrubber" can reclaim and maintain "SSSD" (single-

-sided, single density), "SSDD" (single-sided, double density),

"DSDD" (double-sided, double density), "SSQD", "DSQD", etc.

and any other type of commercially available floppy disk.

When used periodically, the "Bit Scrubber" prevents noise accu-

The Transactor 13 Volume 5, Issue 02

mulation on the disk, assuring reliable data storage and extending

the life of this costly recording medium.

• "Bit Scrubber" will clean 8", 5 1/4" and the new mini diskettes.

• Patented high energy magnetic "gap" insures uniform particle

orientation.

• Shielded magnetic circuit protects programmed disks.

• Dimensions: 9" x 4" x 1-3/4", Weight: 5 lbs.

$49.95 - plus $4.00 shipping and handling charges (Fla. residents

add 5 % sales tax)

Techstar Inc.

8651 N.W. 56th Street

Miami, FL 33166

Dept TR'

305 592-0201

SADI Communications Interface and Printer Adapter

The cMc SADI is a microprocessor based interface designed to

allow communication between Commodore PET and CBM com

puters and a wide range of devices including serial and parallel

printers, CRTs, modems, acoustic couplers, hardcopy terminals nd

other computers. SADI's two independent ports (one serial in/out

and one parallel out) give the Commodore computers tremendous

flexibility as controllers and as dumb or smart terminals. Data can

travel between the computer and one or both ports or between

ports.

General features include true ASCII conversion, cursor move

conversions for program listings, and automatic insertion or dele

tion of linefeeds. The SADI can also issue a form feed or any

number of blank lines. The device address is switch selectible

(0-15). Serial features include 11 baud rates (75 to 9600), selectible

parity and a 32 character input buffer with x-on / x-off feature.

For the parallel device the 'busy', 'ready' and 'data' polarities are

selectible.

The SADI is easily programmed using BASIC commands, and is

compatible with Wordpro, VISICALC and other software. It comes

assembled and tested with case, PET IEEE cable and power

supply. Thirty day money back trial period.

Retail price in USA $295.00, optional 230 V power supply $30.00.

Shirley Fletcher

Connecticut microcomputer Inc.

36 Del Mar Drive

Brookfield, CT 06804

Dept 'TR'

203 775-4595

Twx: 710-456-0052

Electronic Fingerprint Analysis Security System

Identix Incorporated has recently completed two rounds of ven

ture capital funding totaling $2.25 million. The lead investors are

Citicorp Venture Capital of New York and Genesis Capital Ltd. of

Bellevue, Washington.

Identix makes a computer terminal that verifies a person's identity

by means of encoding a fingerprint. The terminals will be used to

protect buildings and computers from unauthorized entry.

The Identix terminals are based on a patented design by the

company's founder, Randall C. Fowler. Although Identix is 19

months old, the technology goes back about 12 years, when

Fowler developed a device to record fingerprints on F.B.I, cards.

Within the last several years, the costs of computer chips have

decreased sufficiently to allow microprocessors to perform finger

print analyses. Identix is using the Motorola 68000 chip — widely

used in personal computers — in its fingerprint terminals. Produc

tion models of the terminals are being manufactured now.

Identix forsees that its terminals will be used in a number of

applications: (1) to control access to buildings and laboratories and

(2) for verification of persons involved in financial transactions

such as automatic teller machines (ATMs). The banking and

financial industries will be a major target of Identix's marketing

effort.

Another large market that Identix foresees is in computer access

control. An Identix terminal can positively identify a person who

wishes to gain access to a computer. With the security of corporate

computers being a major issue, the Identix terminals provide

much greater assurance than passwords — which are the primary

safeguards at this time.

In addition to company president, Randy Fowler, the management

team includes: Ken Ruby, vice president of engineering; Dave

Larin, vice president of marketing; and Frank Fowler, vice presi

dent of sales. Randy Fowler was formerly vice president and

general manager of Flow Industries, Energy Division. Ruby was

chief engineer at Motorola's Mechanical Laboratories in Phoenix,

Arizona. Larin was formerly vice president of marketing at Reticon

Corporation in Sunnyvale. Frank Fowler (not related to the com

pany president) was formerly vice president of marketing at Red

wood Software, San Jose.

Randy Fowler

Identix Incorporated

2452 Watson Court

Dept TR'

Palo Alto, CA 94303

415 858-1001

The Transactor 14 Volume 5, Issue 02

Letters

Un-products?: I am writing this letter in reference to The

Transactor issues for January and July 1983. In these two

issues, two products - a synthesizer keyboard and a drum

synthesizer for the Commodore 64 were described. I've

heard nothing of these products since. I was wondering if

you had any more information as to the release of these

products or even if they have been cancelled. As well, is

there any other information that you might be able to send

on computer music and interfacing instruments to the C64?.

R. Cooper, Thornhill, Ontario

I'm afraid both the synthesizer keyboard and the drum

synthesizer have been shoved to Commodore's back burner

as it were. Too bad too. Designer Paul Higginbottom, as I

recall, spent many long nights working on that project and

the version I saw last was literally stunning. I think Commo

dore's "reasoning" is that it takes 3 SID chips to make one

keyboard, so for every keyboard they make, they could have

made 3 C64s. Get the picture?

There are several Music packages out now for the 64 -

which one is best is hard to say unless you 're a musician

AND a hacker. See News BRK for more info on this. Perhaps

Ron Jeffries would have some advise for you. Instrument

interfacing is another story. I know Chris Zamara was

working on an idea, but said that problems with the SID chip

(nasty clicks) had his ambition somewhat cooled. Anyone

out there with further suggestions are invited to write in. -

M.Ed.

Response? Response: The program listed above has

become very familiar to me, chiefly through my proof-read

ing efforts. I have been unsuccessful in getting it to run in

practise. This letter incidentally, is by a golden ager (myself)

with a "B.S.W" on a C64+1541+ 1525 chain. Your very

excellent journal lends itself admirably to the untutored

neophyte in the occult art of plunking. Please be kind! 1 am

as a village "G.P." reading about the fine points of

open-heart surgery in a medical treatise. I know naught, but

it is fun trying to figure it all out. Your magazine format is just

great for my 3-ring binder. I could almost pun on the use of

that word in this context. So, to the point; not being Jim B., I

gotta ask, 'What is the correct reply to the prompt: "auto:

start, increment"?'

It is probably a blunder on my part. I have been conditioned

to wait a couple of months before attempting programs

appearing in the media. It keeps the blood pressure down to

have the expected errata in hand before transcribing a long

program. It must be a gimmick to sell magazines! After the

botch-up that Commodore have made of their user manuals

- even I could see the goofs after a weeks trial. Closer to

home, I would love to know how to put the "Function Key"

thing to work!

Pardon! I am getting carried away. See you in your next

edition. Keep the Ads out of the way. The "Star" would

never dream of putting Mom's cross-word on Dad's sports

page so you are thinking right. Sincerely,

Ralph McKnight, Hudson, Quebec

The program "above" is referring to the program "Auto

Liner" that appeared in The T. Volume 4, Issue 06. However,

the blunder was on our part, specifically my part. You see, in

my attempts to publish versions of programs for every

The Transactor 15 Volume 5, Issue 02

Commodore model, I got somewhat hasty with Auto-Liner.

The PEEK address in line 60040 of the 80 column version

starts with the second space of the third line down ie. the

screen start address, plus 3 times 80, plus 1, equals 33009.

For the C64 version I took the screen start address (1024)

and added 3 lines plus 1. But I forgot the lines are only 40

characters long. So the result was actually 6 lines, not 3.

Oops. Some other errors also slipped by. Since then, a mister

Keith Preston has sent us a new and improved version that

we 've reprinted in this issues' Bits and Pieces section.

Auto Liner's purpose in life was to reduce a little of the work

involved in transcribing programs (although I admit, the first

64 version doesn'/ do that very well -tongue in cheek- by the

way, for those reading, the 80 column version works as

shown in Issue 06). It prints a line number, turns on the

cursor, and enters that line for you when you hit Return.

After that, the next line number is printed foryou to continue.

So to answer your first question, the response to "start,

increment" is your choice for the first line number you wish

to start you program with, followed by the amount to add to

each previous line number to give you the next. For example,

if you're entering a program that shows lines ascending by

10, your increment is therefore 10. "Start" is simply the first

line of the program. You probably would have figured this

out had the program worked - as i was, no combination of

"startjncrement" would have got you going.

I've used Auto Liner myself, except with one minor modifica

tion. In between the variable S and the semi-colon on line

60010, I inserted the word DATA within quotes. Now Auto

Linerprints the line number, followedby "DATA"so that all I

need do is enter the numbers and commas contained on

each data line. Convenient. . ., when it works.

The Function Key program (I assume the one by Darren

Spruyt) is a program that allows you to define what will

appear when you hit a function key. This you probably

know, but using it is a matter of necessity. For example, if

you find yourself repeatedly PEEKing at some memory

locations, you need not type PRINT PEEK(etc. every time.

Just define a function key appropriately, and when you need

this information, press only one key instead of retyping the

whole shot. Ofcourse you need Darren's program in order to

define the function keys initially. It also works good for

reading the error channel with:

open 1,8,15 : for j = 1 to40: sys43906 #1 ,e$

: printe$;: if st = 0 then nextj

(Basic 2.0 use sys51844, VIC20 use sys52098) Imagine

typing this every time you want to read a disk error. With

Darren's utility (for the Commodore 64 only), define an F

key, and depending how many disk errors you get, you 11

save yourself a lot of time.

As for magazine selling gimmicks, I'd like to think that errors

in listings reduce repeat sales of a magazine. I suppose

errors are a fact of life, but we do try to be careful. Lastly, I

agree. . . Commodore's User Manuals do leave something to

be desired, but spotting "botch-ups" is an effective learning

process. Their Programmers Reference Guides, though, are

actually quite good. Thanks for writing and thanks for the

compliments. - M.Ed.

Existing Lost Copy: I am a relatively new subscriber to

your magazine. I recently received my first issue and copied

several of the programs, the most recent of which was "A

Simple Disk Copier For The Commodore 64" by Jim Butter-

field.

In the text, Mr. Butterfield states, that when the program is

run, "You'll be asked for the file type.. . Next, you'll be

asked for the name of the program or file you wish to

copy. . . If it can't find the file it will reply 'NO GO', otherwise

it will ask OTHER DISK READY?. . . etc".

All the program does for me is copy itself on the disk, and

when run agin it displays a disk error 'FILE EXISTS' and I

have another useless program. Perhaps I have done some

thing incorrectly. I admit to being a novice at this, but I am

trying to learn and I find this very frustrating.

Milton Reich, Brooklyn, New York

7776 program you entered was actually a program generator

for COPY FILE 64. (By now you have probably seen the

directory that shows this program name) Once the generator

program is RUN, the generator itself becomes virtually use

less. . . you need not even SA VE it. A LOAD of the directory

will show a new file that you yourself never put there with a

SA VE command - the generator did it! The next step is:

LOAD "COPY FILE 64" ,8

When that finishes, you can LIST COPYFILE 64 and see the

program that was "generated". RUN this program and

follow the original instructions. Perhaps this was a little

unclear in the article. Just remember that a program "gener

ator" is a program that writes another program which must

be subsequently LOADed to be used. After this is done once,

the generator is of no further use, but the program you have

now, "COPYFILE 64", will be ofmuch further use I'm sure-

M.Ed.

The Transactor 16 Volume 5, Issue 02

Bits and Pieces

Kernal 3 For The Commodore 64

Commodore has released Kernal 3 - a new retro fit ROM for

the C64. The "Kernal" is one of 4 ROMs found inside the 64.

It's called the Kernal because it handles the fundamental or

"inner most" operations of the machine. Reportedly, fixes

over Kernal 2 are:

1) The INPUT command has been fixed so that the INPUT

prompt is not included with the response when the prompt

is greater than 40 characters.

2) The problem with DELeting the last character of the last

line on the screen has been corrected. Recall, if you start

typing on the last line of the screen for 80 characters such

that the screen scrolls twice, and then use DEL to move back

and delete the 80th character, the CIA that lies above the

colour table is disturbed and becomes very unfriendly. Now

eliminated.

3) A problem was found in the RS-232 routines that oc

curred with either even or odd parity enabled that could

result in inaccurate status reads.

4) Serial Bus Timing has been slightly modified to allow for

several chained peripherals. When too many peripherals

were connected on the serial bus the system would occa

sionally misbehave.

To test for Kernal 3, PRINT PEEK(65408). Details of price

and availability are not yet available - call your local dealer

or Commodore Service.

Cylinder Screen

For an interesting but useless screen effect on your 8000/

9000 series machine, try this POKE from Dave Gzik of

Burlington, Ontario:

POKE 59521, 40

When the video chip recovers from this punch you'll notice

that your screen has bee twisted into a cylinder. Reset or

PRINT CHR$(14) will restore order.

Down Scroll 64

Another of Murphy's unwritten laws states that "while

trying to accomplish a specific task you will always accom

plish some other task that brings you no closer to your

original goal". Paul Blair of Holder, Australia has recon

firmed this law with the following submission.

". . .came across this while doing something else - all the

best discoveries happen that way. The routine will scroll the

Commodore 64 screen down starting from line D ie. from

the top line with D = 0, second line with D=l, etc. Colour

changes from line to line are also allowed. At the end of the

routine, some pointers are left a bit untidy, so use with

caution. A PRINT or two on the end seems to restore

order. . . thought you might like it - regards, Paul Blair".

The Transactor 17 Volume 5, Issue 02

100 d = 0 : x = 211 : v=15:a = 53280

110 poke a, 1 : poke a +1, 3

120 print"0";
130 read a$: v = v-1 : poke a, v : if a$ = " end" then end

140 print"0";
150 for t = 1 to 10 : print a$;d : next

160 for t = 0 to 14 : poke x + 3, d : sys 59749 : next

170 print: for dl = 1 to 2000 : next: d = d + 1 : goto 130

180 data " scroll down with this pgm"

190 data " it's really very easy to use"

200 data " include it in games and so on"

210 data " list the pgm to see the set up"

220 data " see how you can select scroll start?"

230 data " have fun paul blair"

240 data " end"

Equivalent VIC 20 and BASIC 2.0 routines have not been

investigated but presumably would work depending on

their ROMs. Fat 40 and 8000/9000 series machines don't

need a routine like this - use PRINT CHR$(153) instead.

FTOUTSM With Colour Mods

Remember FTOUTSM? - For Those Of Us That Smoke M—

—? Originally written by Benny Pruden of Norristown, PA,

it has since been updated by Louis Black of Oshawa, Ontario

to include colour on the C64. A VIC 20 version would not

pose too big a problem. . . just swap out the numbers that

reflect the screen width and address locations, as well as the

POKEs in line 4 for border and background colours, and

swap in the appropriate VIC 20 equivalents. Line 1 and 3

must be entered using abbreviated keywords on at least

some of the commands to make them fit on one line. If

abbreviations are new to you, see Louis Sanders' article this

issue on Commodore BASIC Abbreviations.

1 c = 32:fom = 1 to41 :gosub3:c = 192-c:fora = Oton

:forb = 1024 + ato2024stepn:pokeb,c:nextb,a,n

2 end

3 x = int(15*rnd(1)):y = int(15*rnd(1)):poke53280,x

:poke53281,y:fori = 1to100:next:return

Machine Language FTOUTSM

In keeping with our theme this issue, here's FTOUTSM in

machine language for the 64. Writer Chris Zamara said he

had to insert a delay loop into the code because it was just

too fast to have any adverse effect on your brain. Although

it's still faster than the BASIC version, you will also notice

that it's much smoother. Once again, the Surgeon General

advises that danger to mental health increases geometrically

with the number of FTOUTSM iterations. And as they say on

the 20-Minute Workout, "do not over FTOUTSM yourself".

And Murphys' first law says, "if something can go

FTOUTSM, it will". And Mr T. says "jus try it, fool"

1000 rem machine code ftoutsm

1010 for j = 49152 to 49330 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch<> 24671 then print "checksum error" : end

1040 sys 49152: goto 1040

1050 data 76, 9,192, 0, 0, 32, 0, 9

1060data 50,160, 0, 32,129,192,169, 32

1070 data 141, 5,192,169, 1,141, 6,192

1080 data 32, 52,192, 32,129,192,165,197

1090 data 201, 63,240, 10,238, 6,192,173

1100 data 6,192,201, 42,144,234,169, 0

1110 data 141, 33,208, 96,173, 5,192, 73

1120 data 128, 141, 5,192,169, 0,141. 3

1130 data 192, 32, 82,192,238, 3,192,173

1140 data 3,192,205, 6,192,240,242,144

1150 data 240, 96, 24,173, 3,192,105, 0

1160 data 133, 253, 169, 0,105, 4,133,254

1170 data 173, 5,192,145,253, 32,169,192

1180 data 24,165,253,109, 6,192,133,253

1190 data 165, 254, 105, 0,133,254,201, 7

1200 data 144, 230, 165, 253, 201, 192, 144, 224

1210 data 96,169, 0,133,251,169,216,133

1220 data 252, 173, 7, 192, 145, 251, 230, 251

1230 data 208, 2, 230, 252, 165, 252, 201, 219

1240 data 144, 239, 165, 251, 201, 232, 144, 233

1250 data 173, 33,208,205, 7,192,208, 0

1260 data 96, 174, 8, 192, 234, 234, 234, 202

1270 data 208, 250, 96

amaZAMARAing

(Sorry Chris - I just couldn't resist it) Here's another blitzoid

screenzler: Timescroll for the C64 from Chris Zamara of

Downsview, Ontario. Notice how the line is padded with

spaces in two spots? Change the number of these spaces for

different effects. Line 20 details the exact number to start

with. You can also change variable R to 53280 (the border

colour register) for madded adness.

10a = 0:b=1:r = 53281 :fori = 0to1 stepO

: poker.a: poker,b:next

20 rem stepO:3 spaces poker.a: 7 spaces poke etc.

Quick Note: The VIC 20, matched task for task, is the

fastest of the Commodore machines.

The Transactor 18 Volume 5, Issue 02

Stop RUN/STOP POKE 204, 1 : POKE 207, 0

Most of you have no doubt seen at least one RUN/STOP

disable for the C64. The following POKE was published

several issues ago. It disables RUN/STOP (and RUN/

STOP-RESTORE) without affecting the TI clock, but don't

try LOADing or SAVing and expect normal results!

POKE 808, PEEK(808)-16

Therefore, this should only be used after the program has

been LOADed and only with program that do not LOAD

subsequent software modules. This next routine is by James

Whitewood of Milton, Ontario. It does everything the above

POKE does without messing up LOAD and SAVE:

10lo=12*4096

20 c = int(lo/256): b = lo-c*256

30 for i = lo to i + 4 : read a : poke i,a : next

40 poke 808, b : poke 809, c : end

50 data 169, 255, 133, 145,96

The address computed in line 10 as variable LO can be any

available memory ie. the cassette buffer will host this rou

tine just fine. Notice how line 30 uses the loop variable I in

the calculation "I + 4" to specify the end of the loop. This is

quite legal since I is set to LO and entered in the simple

variables table (just like any other variable) before BASIC

interprets the TO operative. However, you might also notice

that 4 is one less than the number of DATA items. In

situations like these, inclusive logic must be used to deter

mine the number of loop iterations.

Cursed Commodore Cursor!

Keith Preston of Ottawa, Ontario, has these comments on

invoking the built-in cursor routines while a program is

running, as detailed in The T.

"Several articles in Volume 4, Issue 6 suggest that a flashing

cursor, the neophyte's comforter, may be retained during a

Commodore GET by invoking POKE 204, 0. These are

"Auto Liner" on page 18, "Subroutine Eliminators" on page

37 and "Three GET Subroutines" on page 38. When using

the C64, however, the single POKE does not guarantee a

flashing cursor for more than the first character of an input

string (as requested in "Auto Liner"). Furthermore, the

cursor may disappear upon hitting RETURN! To prevent

this, simply add:

POKE 207, 0

in any line after the GET. A further:

before exiting the input routine ensures a return to normal

cursor function.

The accompanying short routine illustrates the technique

and should be used to replace "Auto Liner". A number of

other minor errors in that program have also been cor

rected."

60000 input " 64 auto: start, increment" ;s,i

60010 print "ESS : s;:poke204,0
60020 geta$: if a$ — "" then 60020

60030 poke 207, 0 : print a$; : if asc(a$)<>13

then 60020

60040 p = peek(1145 + len(str$(s))): if p = 32 or p = 160

then 60010

60050 print " s = " s + i " :i = " i " :goto60010@"
60060 poke 631,13 : poke632,13 : poke198, 2

60070 poke 204, 1 : poke 207, 0 : end

60000 input "4.0/2.0 auto: start, increment" ;s,i

60010 print "ESBsT: s;:poke167,0
60020 get a$: if a$ = "" then 60020

60030 poke 170, 0 : print a$; : if asc(a$)<>13

then 60020

60040 p = peek(33009 + len(str$(s))): if p = 32 or p = 160

then 60010

60050 print " s = " s + i " :i = " i " :goto60010||"
60060 poke 623,13: poke624,13 : poke 158, 2

60070 poke 167, 1 : poke 170, 0 : end

Also have a look at Elizabeth Deal's article, "To GET Or Not

To GET", later in this issue - Ed.

Sorry, But That DOES Compute

Ernest Blaschke of Sudbury, Ontario has these comments:

"In the commercial world, we all have heard the phrase:

"Sorry, the computer made a mistake!". We know, of course,

that it is the programmer and not the computer that made

the mistake. Computers don't make mistakes. Right?

Well let me show you that your computer will make mis

takes and will logically contradict itself. Yet, not all is lost. A

programmer should know the computers' weaknesses and

keep it from making true mistakes.

Type into your computer the direct command:

PRlNT5t8

The Transactor 19 Volume 5, Issue 02

The reply will be 390625. The computer has in fact pro

duced the correct value which is 5*5*5*5*5*5*5*5

Now enter the following small program:

10 if 5 f 8 = 390625 then print "true"

20 if 518 <> 390625 then print " false"

Type "RUN" and the computer will print "false", contradict

ing its previous statement that 5t8 = 390625.

You probably know that your computer will reply with -1 to

a true statement and with 0 to a false one.

If you aren't sure about this, try:

PRINT (2*2 = 4)

The computer replies with -1 (true). PRINT (2*2 = 5) will

result in 0 (false). However, even using this approach, the

computer stubbornly denies its own findings that

518 = 390625.

PRINT (5t8 = 390625) will reply with 0, false.

So what happened? The problem is that the computer

calculates 5t8 in floating point arithmetic and due to round

off errors thinks the result is slightly greater than 390625.

For printing, it "rounds off" the value in memory to the

correct 390625. However, equality tests fail since the com

puter perceives the true result to be larger, and therefore

unequal.

There are whole sets of problems where it is essential for the

programmer to avoid this pitfall in order for the computer to

do its task reliably. Bearing potential roundoff errors in

mind, the programmer should have typed:

PRINT (INT(5t8) = 390625)

This would result with the -1 or true response. Of course

this is limited to numbers that can be anticipated to have no

fractional content. For numbers with magnitude to the right

of the decimal point, the programmer should consider

moving the decimal point right by multiplying by some

multiple of 10, say 100 or 1000, or as many significant digits

as desired. Then take the INTeger portion of this number

and divide by the same multiple of 10.

I hope to have convinced you may not blindly trust every

thing that appears on the screen or consider your com

puter's logic infalible."

Low-Res Screen Copy

If you've ever attempted to do a low resolution screen dump

of a screen containing graphics, you've seen that the printer

leaves a little horrible space on carriage returns. This leaves

the printout looking like it went through a shredder. But by

using "LOW RES COPY", you can eliminate that space on

the printout. The program itself is only 14 lines long,

somewhat shorter than the 22 lines of "Screen Copy" in the

VIC 1525 user's manual. I find this program to be a very

handy utility when the time arises that you need a true low

resolution screen copy. Brian Dobbs, Timmins, Ontario.

100 si$ = chr$(15): bs$ = chr$(8): d = 1024 : open4,4

110 for a = d to d + 39

120print#4, si$;

130b = peek(a)

140 if b>-1 and b<32 then e$ = chr$(b + 64)

150 if b>31 and b<64 then e$ = chr$(b)

160 if b>63 and b<96 then e$ = chr$(b + 32)

170 if b>95 and b<128 then e$ = ch r$(b + 64)

180 print#4, e$;

190 next

200 print#4, bs$

210 d = d + 40 : if d>1984 then 230

220 goto 110

230 end

Eep Eep

Eep Eep is a short interrupt driven routine that uses the

cursor countdown timing register to drive the CB2 trans

ducer (it's not really a speaker so it's called a transducer).

Eep Eep only works on BASIC 4.0 machines but could be

modified to drive the SID or VIC 20 sound registers. How

ever, it's only good for two things really: one, it demon

strates the concept of pre-interrupt code. Notice the first 9

numbers in the DATA statements - you can almost read

them without a dissassembler. They go LDA with 131, STA

in location 144, LDA with 2, STA in location 145, and RTS

(96). 2 times 256 plus 131 equals 643 which is where the

actual pre-interrupt program begins (LDA with 16 right after

the RTS). This is one of the most common methods to

engage a pre-interrupt routine, and the quickest ways to

spot one - something to remember when you find some old

listing lying around.

At the end of line 1090 are three 234's. These are NOPs. It

means simply No OPeration or NO oPeration, whichever

you prefer. The reason these are here is to accommodate the

three POKEs in line 1035. Line 1035 can be left out for a

different Eep Eep. RUN the program as is, then remove 1035

and RUN again.

The Transactor 20 Volume 5, Issue 02

Line 1100 contains the code JMP to location $E455. This is

the regular interrupt routine that the computer usually goes

to when there is no pre-interrupt code - another way to spot

pre-interrupt routines.

Eep Eep plays with the same chip responsible for LOADs

and SAVEs. It's suggested you purge your machine of Eep

Eep before continuing with more serious work.

Oh ya, the other thing Eep Eep does effectively is drive you

bonkers. Just hook your computer up to your stereo, start

Eep Eep, and tell no-one to touch your equipment. Then

leave.

1000 rem eep eep - rte 1984

1010 for j = 634 to 676 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 6145 then print" checksum error" : end

1035 poke 671, 238 : poke 672, 147 : poke 673, 2

1040sys634

1050 data 169, 131, 133, 144, 169, 2, 133, 145

1060 data 96,169, 16,141, 75,232,169, 20

1070 data 141, 74,232,165,168,141, 72,232

1080 data 160, 0, 200, 208, 253,169, 0, 141

1090 data 75, 232, 141, 74, 232, 234, 234, 234

1100 data 76, 85,228

Mirror

Mirror is another pre-interrupt routine also written by

Richard Evers. It was written for no other reason but to see it

work.

1000 rem mirror 40 - rte 1984

1010 for j = 634 to 682 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 6710 then print "checksum error" : end

1040sys634

1050 data 169, 131, 133, 144, 169, 2, 133, 145

1060 data 96,162, 0,160,255,189, 0,128

1070 data 153, 232, 130, 136, 232, 208, 246, 238

1080 data 137, 2,206,140, 2,173,137, 2

1090 data 201, 130,208,233, 169, 128, 141, 137

1100 data 2,169,130,141,140, 2, 76, 85

1110 data 228

1000 rem mirror 80 - rte 1984

1010 for j = 634 to 682 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 6696 then print" checksum error" : end

1040sys634

1050 data 169, 131, 133, 144, 169, 2, 133, 145

1060 data 96,162, 0,160,255,189, 0,128

1070 data 153, 208, 134, 136, 232, 208, 246, 238

1080 data 137, 2,206,140, 2,173,137, 2

1090 data 201, 132,208,233, 169, 128, 141, 137

1100 data 2,169,134,141,140, 2, 76, 85

1110 data 228

The C64 version is a little longer due to colour table

servicing required for Kernal 2 machines. However, it stops

working after a Clear Screen is done, until the POKE in line

1040 is given. Can someone help us here? It's probably just

some silly oversight that we can't seem to spot because of

the clouds between us and the screen - you know the ones

we mean, they're made of clear air? Hmm.

1000 rem mirror 64 - rte 1984

1010 for j = 828 to 900 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch<> 8190 then print "checksum error" : end

1040 poke 53281, 493-peek(53281): sys 828

1050 data 169, 71,141, 20, 3,169, 3,141

1060 data 21, 3, 96,162, 0,160,255,189

1070 data 0, 4,153,232, 6,189, 0,184

1080 data 153, 232, 186, 136, 232, 208, 240, 238

1090 data 77, 3,206, 80, 3,238, 83, 3

1100 data 206, 86, 3,173, 77, 3,201, 6

1110 data 208, 221, 169, 4,141, 77, 3,169

1120 data 6,141, 80, 3,169,184,141, 83

1130 data 3,169,186,141, 86, 3, 76, 49

1140 data 234

Ram Scan

Ram Scan might be useful to somebody out there. Once

engaged, it continually displays as many bytes of memory as

will fit on the screen. Positioned over Zero Page, it will show

the various timers, etc, in action. Same with the VIA and PIA

registers up at $E800. To move the display use the cursor

keys - cursor up/down moves it by one line of bytes, cursor

left/right by one byte at a time. The STOP key puts you back

in BASIC. Other than this, it too will give some pretty eye

crossing patterns, something Richard seems to enjoy inflict

ing. Try moving the display around just below, and then

above the first screen address.

1000 rem ram scan 80 - rte 1984

1010 for j = 634 to 724: read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 11974 then print" checksum error" : end

1040 sys 634

The Transactor 21 Volume 5, Issue 02

1050 data 165,

1060 data 224,

1070 data 238,

1080 data 208,

1090 data 201,

1100 data 171,

1110 data 2,

1120 data 255,

1130 data 178,

1140 data 201,

1150 data 128,

1160 data 208,

151,201,

0, 208,

178, 2,

16,206,

29, 208,

2,201,

160, 0,

153, 0,

2, 238,

136,208,

141,181,

166, 96

255, 240,

10,201,

76, 171,

178, 2,

6, 238,

29, 208,

174, 178,

128,200,

181, 2,

234, 142,

2, 165,

43, 166, 152

17,208, 16

2,201, 17

76,171, 2

177, 2, 76

3,206, 177

2,185, 0

208, 247, 238

173,181, 2

178, 2,169

155,201,239

1000 rem ram scan 40

1010 for j = 634 to 744 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 14739 then print "checksum error"

1040sys634

32, 210, 255, 165, 151, 201

41,166,152,208, 10,201

16,238,199, 2,

1050 data 169, 147,

1060 data 255, 240,

1070 data 17,208,

1080 data 2,201, 17,

1090 data 76, 174, 2,

1100 data 198, 2, 76,

1110 data 3,206,198,

1120 data 251, 173, 199,

1130 data 32,210,255,

1140 data 174, 199, 2,

76,174

208,

201,

174,

2,

2,

32,

185,

16,

29,

2,

173,

133,

23,

0,

206,

208,

201,

198,

252,

215,

255,

199,

6,

29,

2,

169,

160,

153,

2

238

208

133

19

0

5

1060

1070

1080

1090

1100

1110

data

data

data

data

data

data

1120 data

1130

1140

data

data

1150 data

1160 data

2,

115,

16,

2,

7,

160,

153,

3,

8,

141,

167

208,

3,

206,

208,

201,

0,

0,

238,

208,

118,

10,

184,

115,

6,

2,

174,

4,

118,

234,

3,

201,

80,

3,

238,

208,

115,

200,

3,

142,

32,

7,

27,

184,

114,

3,

3,

208,

173,

115,

225,

208, 16,

201, 7,

80, 17,

3, 184,

206, 114,

185, 0,

247, 238,

118, 3,

3, 169,

255,184,

238

208

201

80

3

255

115

201

4

80

end

2381150 data 128, 200, 208, 247, 238, 199, 2,

1160data202, 2,173,202, 2,201,132,208

1170 data 234, 142, 199, 2, 169, 128, 141, 202

1180 data 2, 32,225,255, 76,127, 2

1000 rem ram scan 64

1010 forj = 828 to 916: read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 10348 then print "checksum error" :

1040 poke 53281, 493-peek(53281): sys 828

1050 data 165, 203,201, 64,240, 42,174,141

Crystal

Crystal is just a short little program that draws a crystaline

pattern on your screen. Aside from that it demos how very

little code it takes to get something happening - something

like a game layout, a game intro, or an attract mode for a

game you may have just finished and thought you didn't

have room for an attract mode feature.

Crystal also demonstrates a technique that all programmers

should be used to or else get used to - portability. Some

programs aren't suited to be run on all machines, but those

that could potentially be run on any machine should include

for the user all necessary conversion information. It doesn't

take long and it's a courtesy that adds an extra professional

touch.

sw = 80

sw = 40

sw = 22

ss = 32768

ss = 1024 (default)

ss = 7680 (default)

ss = screen start

100 rem crystal

110 rem 8000/9000 series

120 rem 4000 + c64

130 rem vie 20

140 rem 4.0 basic

150 rem c64

160 rem vie 20

170 rem sw = screen width

180 print 02| ss = 32768 :sw = 80
: rem * place your variables here

190x = 1:y = 1:dx = 1:dy = 1

200 poke ss + x + sw*y,81 : poke ss + x + sw*y,91

210 x = x + dx : if x = 0 or x = sw-1 then dx = -dx

220 y = y + dy : if y = 0 or y = 24 then dy = -dy

230 s = peek(ss + x + sw*y): ifs = 91thendx = -dx

: poke ss + x + sw*y, 86 : goto210

240 goto 200

end Number Base Converter

This next program works on BASIC 4.0 machines only

because it uses some internal ROM routines of the built in

Machine Language Monitor which the other machines don't

have. Quite simply, it will convert numbers from one num

ber base to another that are in hexadecimal, decimal, or

binary.

There are two internal ROM routines used here: the first,

SYS HD (where HD = 55124), inputs a hexadecimal number

from the keyboard and places its high order and low order

components in locations 252 and 251. The program takes

over from there and uses variable NO to build a decimal

representation (line 12 or 13).

The Transactor 22 Volume 5, Issue 02

The second, SYS DH (where DH = 55063), is the MLM

routine for outputing a hexadecimal number whose high

order and low order components are in locations 252 and

251 (line 15 or 19).

0 rem save" @0:hex/dec/bin conv" ,8:verify

" O:hex/dec/bin conv" ,8

1 rem * richard evers - march 8th 1984 - 4.0 only *

10 input "|3lh|51ex>dec. hex>Hbl5In. Hdl51ec>hex.
dec>npyin, bin>flH|3ex, bin>|]D|yec" ;q$

11 print "B";:hd = 55124:dh = 55063:ifq$= "B"then
input "0decimal " ;no:goto16

12 if q$= "b"then print"0hex val " ;:syshd
:no = peek(251) + 256*peek(252):goto16

13 if q$= " h "then print"@hex val " ;:syshd
:printpeek(251) + 256*peek(252):goto10

14 if q$ = " H " or q$ = " D" then input" flbinary

number" ;bn$: goto17

15 input "0decimal " ;a:b = int(a/256):c = a-256*b
:poke251 ,c:poke252,b:sysdh:goto10

16 print:a = 32768:forc = 1 to16:b = int(no/a):printb;

:no = no-b*a:a = a/2:nextc:goto10

17 a = 0:c = 1 :forb = Ien(bn$)to1 step-1

:a = a + val(mid$(bn$,b, 1))*c:c = c*2:nextb

18 ifq$= " D"then print" decimal "a : gotolO

19 print" $";:b = int(a/256):c = a-256*b

:poke251,c:poke252,b:sysdh:goto10

The Un-Cursor

Still another pre-interrupt routine is this one called Un-Cur

sor. As the name might imply, Un-Cursor flashes every

thing on the screen except the space at the cursor position.

At least that was the original intention - the real cursor

seems to slip in an appearance every once in a while.

These pre-interrupt routines we've been bombarding you

with may have no place in your utilities library, but they do

serve one vital purpose. By giving you several examples we

believe we accomplish two things - eliminating the fear and

apprehension of messing with the fundamental operation of

the machine is an important step towards becoming profi

cient with your computer. And second, when you come up

with your own idea for a pre-interrupt program, we hope

one of these examples will serve as a guide to completing

your task.

1000 rem un-cursor 80

1010 for j = 634 to 692 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 7656 then print "checksum error" : end

1040sys634

1050

1060

1070

1080

1090

1100

1110

1120

data

data

data

data

data

data

data

data

169,

96,

128,

177,

247,

239,

2,

76,

131,

165,

133,

87,

230,

238,

208,

85,

133,

170,

88,

73,

88,

134,

5,

228

144,

201,

169,

128,

165,

2,

169,

169,

1,

0,

145,

88,

173,

0,

2,

240,

133,

87,

201,

134,

141,

133,

41,

87,

200,

136,

2,

134,

145

169

168

208

208

201

2

1000 rem un-cursor 40

1010 for j = 634 to 692 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 7652 then print "checksum error" : end

1040sys634

1050 data 169, 131, 133, 144, 169, 2, 133, 145

1060data 96,165,170,201, 1,240, 41,169

1070 data 128, 133, 88,169, 0,133, 87,168

1080 data 177, 87, 73,128,145, 87,200,208

1090 data 247, 230, 88,165, 88,201,132,208

1100 data 239, 238, 134, 2,173,134, 2,201

1110 data 2,208, 5,169, 0,141,134, 2

1120 data 76, 85,228

1000 rem un-cursor 64

1010 for j = 828 to 888 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 6949 then print" checksum error" : end

1040sys828

20, 3,169, 3,141

1, 240

0. 133

87,

71, 141,1050 data 169,

1060 data 21, 3, 96,165,207,201,

1070 data 41,169, 4,133, 88,169,

1080 data 87, 168, 177

1090 data 200, 208, 247, 230

1100 data 8,208,239,238

1110 data 3,201, 2,208

73,128,145. 87

88,165, 88,201

74, 3,173, 74

5,169, 0,141

1120 data 74, 3, 76, 49,234

1000 rem un-cursor 20

1010 for j = 828 to 888 : read x

1020 poke j, x : ch = ch + x : next

1030 if ch <> 7141 then print "checksum error" : end

1040sys828

20, 3,169, 3,141

96,165,207,201, 1,240

30,133, 88,169, 0,133

87,

1090 data 200, 208, 247, 230,

1100 data 32,208,239,238,

1110 data 3,201, 2,208,

1050 data 169

1060 data 21

1070 data 41

71, 141,

3,

169,

1080 data 87, 168, 177, 73,128,145, 87

88,165, 88,201

74, 3,173, 74

5,169, 0,141

1120 data 74, 3, 76,191,234

The Transactor 23 Volume 5, Issue 02

CompuKinks.

All right Earthling, turn around slowly

and keep your hands up!

He's the new shop assistant.

He seems to like it here,

but I don't think he's gonna work out.

^PMljtJwWtHI
Ik IJ, flU :2MK ' JW t U ST/iKHirJC TED0

" A/o

this is oeloxe

The Transactor 25 Volume 5, Issue 02

ARWUN
COMPUTE* GENIUS

For tr*rm/Al analogue input

aviy A SOLDEttM IWN

&SISTAHCE mm/YE GAUSS

STEP X -THE" SID
65 SET UP FOR, PKOPEK
De£AY SUSTAIN, f
and mdueiiti <-■

jg ENTHUSIASTIC...^.;

ARCHIVES,
ERGONOMlt LSEH

for.

/I* #4

The MflNfiGEfl Column Don Bell

Milton, Ontario

Letters to the Manager

Many subscribers have written to me about their frustration

with the manual and their desire to find more documenta

tion for the program. Instead of writing everyone on an

individual basis, I will use this column as my way of

answering all your letters. First off, make sure you have the

latest version of the '64 MANAGER, i.e. version 1.06b.

Secondly, I am not aware of any other sources of documen

tation for the '64 MANAGER other than the manual and

what you can glean from my columns. If I feel there is

sufficient demand and I have the time and energy, I will

attempt to put together a booklet of additional documenta

tion.

Subjects covered in previous '64 MANAGER columns are as

follows:

Vol 4 Issue 03 overview of '64 MANAGER

technical details on the screen file

Vol 4 Issue 05 Gift (Mailing) List part 1

designing a screen in CREATE/REVISE

option

creating a file

entering records

Vol 4 Issue 06 Gift(Mailing) List part 2

Potential Benefits of this Application

Review of Screen Format

Tricks for Entering Records Quickly

Searches

Vol 5 Issue 01 Gift(Mailing) List part 2

Designing Reports

Using Report Generate

Nelson Fung of Dallas, Texas wants to know how to modify

the program to produce an 80 column printout. The Com

modore '64 is a 40 column computer so you will never be

able to get an 80 column display or report on the screen.

However, you can get 80 column reports on a printer. In the

Report Generate option, specify output to printer, line length

80, lines per page 66. Of course, your report must be

designed as an 80 column report. When describing the

LISTZONE the column number references must reflect the

starting column positions of each print area in the LIST

ZONE.

A few answers for Pete Musselman of Royerford, PA. No you

cannot use two 1541 disk drives. The section on 'Accumu

late' on page 14 of the manual has an example of an

arithmetic file. Do not let it throw you, it's just an example.

The 'accumulate' function can only be used if you have

used the ARITHMETIC option to create an arithmetic file.

For example, in this issue there is a checkbook application.

In order for the application to calculate a running balance,

we had to do some arithmetic. This arithmetic was created

in ARITHMETIC OPTION and stored in an arithmetic file.

Now when we request 'accumulate' in the ENTER/EDIT

option, the program will quickly read through all the re

cords, select records satisfying the search criteria, perform

the arithmetic on these records, and display the balance at

the screen location specified in Arithmetic.

A.W. Lauer of Fredericksburg, VA wants to know how to

begin a search at a particular record number. Unfortunately,

the only direct way of doing this is by inserting a numeric

field for the record number in your screen design. Then

using the search string editor (F5), indicate records greater

than a specified record number. Another way around this

problem might be if there is a date field and records are

usually entered in order of date. Sort on the date field, then

The Transactor 27 Volume 5, Issue 02

the search criteria will be greater than a specific date. If you

have an alphabetical key you are sorting on, then you could

specify records greater than 'N', for example.

Warren Knighton of Wassau, WI. had problems with the

Rearrange a File function in the MANIPULATE files option.

This is the function you will use if you want to change your

file design. Unfortunately, I've also had several problems

with this option as well. If the program stops before comple

tion, before trying it again do the following. Load the Enter/

Edit option and see how many of the records got transferred

from the old file to the new file. If most of them are there,

then you may be OK. The next problem is that they may

appear to be there, but when you do a search for specific

records they don't show up. To correct this problem use the

Fix a File function in the MANIPULATE FILES option.

Richard Boisvert of Woonsocket, R.I. has been using the '64

MANAGER as a detective for the Woonsocket Police Depart

ment. Each record in his file has 6 fields in which to list

stolen objects. When a stolen object is recovered he wants to

search all 6 fields at once. Refer to the section of the manual

on the 'hunt' option in the search criteria (p.27). The

important points are (1) the use of complex search criteria

(F5); (2) the use df 'H' to specify hunt for the object anywhere

in the field; and (3) use of the logical operator 'OR to include

many different searches. To locate a stolen object (e.g. Atari

game) which could be at any location in any of the 6 fields,

you would use the following complex search criteria (F5).

HI'ATARI' OR H2'ATARI' OR H3'ATARI OR H4'ATARI' OR

H5ATARI' OR H6ATARI'. You can also get more complex

searches by looking for a number of objects at once. Hl'A-

TARI OR HI'SHOTGUN' OR H2'ATARI' OR

H2'SHOTGUN'. . . If the description of an object is ambigu

ous or you did not always describe it in the same way, you

could again use the 'OR' statement to hunt for the object

under different descriptions, e.g. HI'WALKMAN' OR

HI'CASSETTE'.

An Introduction to ARITHMETIC

Don't be frightened away by the description of the ARITH

METIC option in the manual. I know at first it looks like

advanced math, but once you grasp some basic concepts it's

fairly simple.

The search criteria and the Arithmetic work together to give

you very powerful accumulate and report possibilities. Us

ing the Arithmetic editor in the ARITHMETIC option, you

can describe what calculations you want to do on fields in

your records. Upon exiting the option, a special file (AR.fi-

lename) is created where your arithmetic is stored. When

ever you are doing a search, accumulate or report, the

search criteria select relevant records, then the Arithmetic

file operates on those records calculating new amounts and

displaying them at predefined places on the screen.

In the ARITHMETIC option you define bins or registers

where you want to store numbers. You can perform arith

metic on numbers in the registers and you can display the

contents of the registers at any location on any of your

screens.

Why would you want to use ARITHMETIC? You might want

to accumulate a total of the amount fields in our records. We

might want to know subtotals as well as totals at break

points in our reports. Sometimes it is desirable to transfer

data from one screen to another. There are of course

limitless reasons for wanting to use Arithmetic to create new

information about your file.

Checkbook Application With ARITHMETIC

I have chosen to do a checkbook application as the Arithme

tic logic is fairly simple.

You may have noticed the checkbook application in the

back of the '64 MANAGER manual. It has a nice-looking

colourful screen and includes most of the information you

want to store about your cheques. Initially I was just going to

use the application as is, go over how to copy the screens,

reports and arithmetic. However, once I got working with it

on a practical level (I always try to make an application work

in the real world!), I found it had several limitations. The

way it works, it could only handle 2 kinds of transactions -

cheques and deposits. What about withdrawals, bank

charges, loan and bill payments? Another problem is that

the balance just shows up in the middle of the screen

without any heading indicating that it is indeed the balance.

Of course, like the other applications included on the disk,

there is no indication of how to use the application.

This article is an attempt to overcome the deficiencies of the

original checkbook application. This application should

provide a workable tool for verifying your bank statement,

balancing your checkbook, and generating numerous re

ports about your bank account.

Screen Design

I have redesigned the screen to enable the distinction

between 5 different kinds of account transactions - bank

charges, loan payments, cheques, deposits and with

drawals. In accordance with these modifications, I have also

The Transactor 28 Volume 5, Issue 02

redesigned the 'arithmetic' that calculates the balance. The

balance is displayed in the screen heading next to the title

"BALANCE" so you'll know what it is when it magically

appears. I dropped the field "Signed By" as I do not have a

joint account. If you have a joint account, you may want

include it.

While on the subject of screen design, let me give you some

reasons for my screen design. One of the big factors to

consider is a design that facilitates minimal keystrokes. For

example, not all records require entries in the fields for

CHECK*, WRITTEN TO and DESCRIPTION. Therefore I put

them at the bottom of the screen so the user would not be

forced to cursor over these fields if they are not relevant.

Secondly, fields that need to be updated or revised should

also be near the top of the screen. The OUTSTANDING field

will have to be updated each time you get your bank

statement (i.e. change the status of transactions from out

standing to not outstanding). Thus I chose to make OUT

STANDING the first field in the record.

A third factor in screen design is the visibility of the most

important pieces of information - in our case the balance

and the amount. These 2 pieces of information were place in

very prominent positions in the top left corner of the screen.

Another factor in screen design is the correlation between

the sequence of data entry on the screen and the sequence

of information in the source document. In this case a

compromise had to be made to accommodate the other

factors. The sequence of entering data on the screen is

almost the same as reading it from your checkbook with the

exception of AMOUNT.

Finally, the screen should be visually pleasing to look at.

Text and fields should be easily read, and spaced for clarity.

Field prompts should not be ambiguous. The items on the

screen should be well-balanced, reflecting the rules of good

picture composition. Follow your creative instincts to

brighten the screen up with color. There are too many dull

computer screens out there already!

The Enter/Edit Screen

ROYAL CHECKINC

DON BELL

3 ACCOUNT* 503-209-9

BALANCE $

OUTSTANDING(Y/N) DATE AMOUNT

[1A] [t 6N t] [$t 7N t]

TRANSACTION

[1A]

B = BANK CHARGE C = CHEQUE D = DEPOSIT

L=LOAN PAYMENT W = WITHDRAWAL

AUTO

CASH

CLOTHING

CONTRIBUTIONS

CHECK*

[t 4N t]

[t

EXPENSE TYPE

[t2At]

FOOD MORTG./RENT

INSURANCE REPAIRS

MEDICAL TAXES UTILITIES

MISC. TELEPHONE

WRITTEN TO

[t 25A t]

DESCRIPTION

38A t]

Checkbook Arithmetic

Load the ARITHMETIC option from the main menu. You are

now going to indicate that you want to have only one display

position on the screen where the result of your arithmetic

(the balance) will be displayed. You will also describe the

exact screen location and length of the display position. In

our case, we want to display the balance for our account

next to the title 'BALANCE' in line 3 of our Enter/Edit

screen. Complete the screen as below:

ARITHMETIC

NO. OF DISPLAY POSITION ON SCREEN 1? 1

1. LINE? 3 COLUMN? 31 LENGTH? 9

Press back arrow I

The following illustration shows the Enter/Edit form that

was designed in the CREATE/REVISE option. Field lengths

and field types (A = alphanumeric N = numeric) are shown.

Note: there is no field under the title 'BALANCE'; this place

(starting at line 3, column 31)is reserved as a display posi

tion for the account balance.

We only use one register, Rl, to store the current balance in

our account. The object of our arithmetic is simply to

calculate the current balance, move it into the register Rl

where it is stored and then display it next to the title

'BALANCE' on the screen.

The Transactor 29 Volume 5, Issue 02

When calculating the balance in our account, we are dealing

with several different kinds of transactions - deposits,

checks, withdrawals, bank charges, etc. When looking at all

transactions as a group, they all do one of two things - they

either add to the balance or they subtract from it. The only

transaction that adds to the balance is a deposit. All other

transactions are subtracted from the balance.

Now you are in the EDIT MODE of Arithmetic. You will

enter the arithmetic logic for calculating the balance. Com

plete the screen as below. Only deposits are added to the

balance, all other transactions are subtracted. Therefore our

logic is that if the transaction is a deposit (if field 4 = 'D') then

add the amount in field 3(N3) to Rl, ELSE (otherwise)

subtract the amount in field 3 (N3) from Rl. The ENDIF is

required to complete the previous IF statement. Note: all

lines beginning with ';' are documentary comment lines not

required to execute the Arithmetic.

;CALCULATE BALANCE

;IF A DEPOSIT ADD IT TORI

IF(F4 = 'D')THENR1 + N3 TO Rl

;SUBTRACT ALL OTHER TRANSACTIONS

ELSE Rl - N3 TO Rl

ENDIF

;MOVE THE BALANCE IN Rl TO DISPLAY

;POSITION 1 WITH 2 DECIMAL PLACES

Rl T0 2D1

EDIT MODE

Press back arrow

CHECKING STRUCTURE

ARE YOU SURE(Y/N)?

Enter T <RETURN>

STORING MATH

Making Field Entries in the Enter/Edit Option

On the Enter/Edit menu at the bottom of the screen 'E' is for

entering/adding a new record. If you want to change a

record you first have to get the record ('G') then change it

CO.

2 requires a 6 digit number for the date in the form

YYMMDD, e.g. 840404 for April 4, 1984. One letter codes

(e.g. D = DEPOSIT) are entered in the Transaction field.

Two-letter codes are entered in the Expense Type field (e.g.

AU = AUTO). Remember to use F3 to duplicate an entry in

the previous record, or Shift 'E' to duplicate an entire record

already on the screen. Often it is faster to duplicate a similar

record you have already created and then modify it, then it

is to type in a whole new record.

Setting Up the File Using A Bank Statement

Record 1 must have starting balance for your bank account

in the 'amount' field. Begin with your last bank statement

balance. Enter the 'Balance Forward' amount from the

previous statement as the 'amount' in record #1 and record

the transaction as 'D' for deposit. Then enter all the subse

quent transactions on the bank statement. As the bank

knows about all these transactions they will all be entered as

NOT outstanding (i.e. field 1 will always be 'N'). Don't forget

bank charges, loan payments, withdrawals, etc. NSF

cheques are treated just as they are on your bank statement

i.e. they are entered twice - first as cheques and then as

deposits since they are returned to your account. (We're

going to first check are arithmetic against theirs.) When

you've made all the entries exactly like theirs, then try an

accumulate. The final balance should be the same as on the

bank statement. If there is a problem, check the records and

the arithmetic. It's unlikely their computer made an error,

but it is possible. If worse comes to worse, check the

statement with your calculator.

Now using your checkbook, enter all outstanding transac

tions that have not appeared on any of your bank state

ments. Make sure field 1 is 'Y' for all these transactions. You

will now have entered in your file all relevant transactions

since your previous bank statement.

If you wish to get the current balance in your bank account,

do an 'accumulate' with no search criteria. If you wish to test

the bank statement balance again now that you have en

tered all the transaction records to date, do an 'accumulate'

specifying only transactions that are not outstanding (i.e.

Fl = 'N' is the search criteria).

Updating the File Each Month

1. When you get your next bank statement is a good time to

update the file. Start by entering all new transactions from

your checkbook(T for OUTSTANDING). Make sure you

include all checks, deposits and withdrawals.

Field 1 (OUSTAND1NG(Y/N) requires a T or 'N' entry. Field 2. Now enter into your MANAGER file any transactions that

The Transactor 30 Volume 5, Issue 02

appear on your bank statement that are not in your check

book, e.g. bank charges and loan payments. They are

entered as NOT OUTSTANDING in field 1. Your MANAGER

file should now contain all transactions to date.

3. Now you are going to search for all outstanding transac

tions in your MANAGER file that also appear on your bank

statement. If an outstanding transaction in your MANAGER

file also appears on your bank statement, then you will have

to change the status of the record to NOT OUTSTANDING.

Note: during this process the balance shown on the screen

will not be correct. Do not worry about it.

While in the Enter/Edit option:

Place cursor in field 1

Press S (for search)

Enter T in field 1

Press F3 (indicates a position dependent search)

Press back arrow, (to execute the search)

You will now be presented with the first outstanding transac

tion. If it appears on your bank statement, checkmark it on

the statement and do the following:

Press 'C for change

Change T to 'N' for OUTSTANDING.

Press back arrow to store the revised record

Press space bar to find the next outstanding transaction

If a transaction does not appear on your bank statement, it is

still outstanding. Do not change anything. Press space bar to

view the next outstanding transaction.. .and so on.

Keep repeating this updating process until all the transac

tions in your MANAGERfile that are also on your bank

statement have an 'N' instead of a Y in field 1.

Verifying the Bank Statement

Now you can verify the bank statement balance using your

MANAGER file.

While in the Enter/Edit option do an 'Accumulate' specify

ing only transactions that are not outstanding (i.e. search

criteria is Fl ='N')

Type 'A' for accumulate

Press F5 to access the search string editor.

TypeFU'N'

Press back arrow

Getting the Current Balance in Your Account

If you wish to get the current balance in your bank account,

do an 'accumulate' with no search criteria. This will accumu

late amounts in all records in the file.

Note: 'Accumulate' rapidly executes the search criteria and

the arithmetic without forcing you to examine each record

in detail. It is very handy for accumulating a total amount.

Useful Searches

One of the big advantages of having your checkbook elec

tronically filed is that you can rapidly search for and find

individual transactions. For example, you might want to

look for all checks written for your auto maintenance. In the

Enter/Edit mode press 'S' for search, enter 'au' as expense

type, press F3 for a position independent search, press back

arrow. Press space bar to get the next record, and so on.

Similarly, you could search for any other expense type. You

will also notice that the balance displayed will be the

accumulated amounts of the search as a negative amount. If

you only want the total amount spent for a particular

expense type, specify 'accumulate', then enter your search

criteria, then press back arrow.

Using the search string editor you can specify more complex

searches. For example all checks written to someone after a

certain date. Press 'S', F5 (for search string editor), enter

search criteria, then press back arrow. For example, to

search for checks written to 'VISA' after the last day of

February, the search criteria would be:

F7 = 'VISA' and N2>840229.

Generating Checkbook Reports

I have designed two report formats, one for the screen and

one for the printer. Using these basic report formats you will

be able to generate numerous reports simply by changing

the search criteria and header description of the report.

Reports that you might want to generate could include: a

listing of all outstanding transactions; a summary of one or

more expense types for a certain time period; a list of all

checks written to one company.

Refer to the previous MANAGER Column (Vol. 5 issue 01)

for more details on using the Report Generate option.

Reporting to Screen

I designed my 40 column screen report on graph paper to

look like this:

The Transactor 31 Volume 5, Issue 02

HEADER ZON

line #1

2

LIST ZONE

line#l

*2

*3

#4

*5

*6

1 6

Column*

13 22 32

ROYAL CHECKING ACCOUNT* 504-209-9

REC# :23 BALANCED

DATE:849508 AMOUNT :$

TRAN:CH

35

250 OS:Y

75

TYPE : AU

TO :BENDER AUTO PARTS

CAR REPAIR

Line 5 of the LIST ZONE has no title. It is the description of the transaction in fielc

17 print areas. Here is a summary

Reporting to the Printer

Prin

of relevant

Data

Area* Type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A sample heading in your header;

T

R

T

D

T

F

T

F

T

F

T

F

T

F

T

F

F

sone might

ROYAL

entries for the LIST

Sub- Text/Title

script

REC#

101

BALANCE:

1

OS:

1

DATE:

2

AMOUNT:

3

4 TRAN :

4

TYPE :

5

TO :

7

8

look like this:

BANK CHECKING

ZONE. Use the

Area

Length

5

3

$ 9

9

3

1

5

6

$ 9

7

5

1

9

2

5

25

38

(Print Areas

(Print Areas

(Print Areas

(Print Areas

(Print Areas

8. The List Zone

1-4)

5-8)

9-12)

13-14)

15)

las a total of 6 lines and

defaults for the remaining entries.

Line* Col*

1

1

1

1

1

1

2

2

2

2

3

3

3

3

4

4

5

ACCT* 504-209-9

OUTSTANDING TRANSACTIONS

1

6

13

22

32

35

1

6

13

22

1

6

13

22

1

6

1

The Transactor 32 Volume 5, Issue 02

Here is a one line LIST ZONE format that includes all fields except description. (TR.=Transaction OS = OUTSTANDING?)

Subscript

or source

field

REC#

t

R101

6

DATE

t

N2

13

TR.

t

F4

17

CHK*

t

N6

Column*

23

WRITTEN TO

t

F7

t

49

OS

t

Fl

53

TYPE

t

F5

58

AMOUNT

t

N3

65

BALANCE

t

Dl

In order to produce the printer report format above, make the following screen entries in the REPORT GENERATE LIST

ZONE.

Print Data Sub- Text/Title

Area* Type script

Area Line* Col* Center * of

Length Dec.

1

2

3

4

5

6

7

8

9

R

F

F

F

F

F

F

F

D

101

2

4

6

7

1

5

3

1

REC*

DATE

TR.

CHK*

WRITTEN TO

OS

TYPE

AMOUNT

BALANCE

4

6

1

4

25

2

7]

9

1 1

I 6

1 13

I 17

1 23

I 49

I 53

1 58

t 65

N

N

N

Y

N

N

Y

Y

Y

0

0

0

0

0

0

0

2

2

More Complex Possibilities

As you enter more and more transactions into your MAN

AGER checkbook file, it will take longer and longer to

accumulate the balance. A way around this problem is to

create a new stafus for the OUSTANDINGF1ELD for transac

tions that are oh your current bank statement. Instead of

being labeled as 'Y' or 'N' in the OUTSTANDING field, you

could temporarily label them as 'S', indicating they are on

your current bank statement. In record 1 enter 'S' for

OUTSTANDING, the Balance Forward from the previous

statement as the 'Amount' and 'D' for a deposit transaction.

Then change the status of all transactions in your file that

are also on your statement from T to'S'. Now you can do an

'accumulate' specifying 'S' in field 1 as your search criteria.

The final balance should be the same as your bank state

ment. If your balance is off from the statement balance use

the search funcfibn to track down transactions by check*,

amount or outstanding status.

Once you've got your bank statement verified, you can

change records with 'S' in the OUTSTANDING field to 'N'.

Globally update all'S' status records to 'N' in the outstanding

field. (Press Shift 'C - PromptrChange Field Number - Enter

T - Enter 'N' in field 1 - Press back arrow - Prompt:

Change Field Number - Press back arrow - Prompt: Accu

mulate - Enter'S' in field 1 as the search criteria - Press F3 -

Press back arrow - see manual p. 15).

If your last bank statement verified correctly, you can now

get your current balance by entering the final balance on

your bank statement into the amount field in record 1 and

the status as 'Y' for outstanding. Then do an accumulate

specifying field 1 = 'Y'.

This application could be revised to keep track of a credit

card account instead of a bank balance.

DON'T PHONE - WRITE!

If you have questions regarding this application or you

would like to submit your own "terrific" application, please

write me a legible, coherent letter. If you submit an applica

tion, send it on disk or at least send screen dumps of the

ENTER/EDIT screen, a hand-drawn report chart and any

math and sample data. I will attempt to answer letters in this

column. Write to: Don Bell, c/o The Transactor, 500 Steeles

Ave., Milton, Ontario, Canada, L9T 3P7.

The Transactor 33 VokiiwS, l»wO2

MAILPRO 64: A Review Chris Zamara

Downsview, Ontario

Mailpro is a file management program for use on the C64

and 1541 disk drive. Written by Steve Punter, author of the

WordPro series, Mailpro is ideally suited for keeping mail

ing lists (as its name suggests), telephone numbers, or

similar lists for home or small business. Mailpro allows such

lists to be created, updated, and printed in any format, and

in any order. Data for a list may be entered using Wordpro,

and Mailpro will read the Wordpro file: a time saving feature

for long lists.

First, the documentation. The manual is packaged in an

attractive and sturdy little vinyl binder like the other PRO

-LINE software products. My main critisism of the manual is

its lack of a reference section containing a summary of all

single key control functions. Using the package for the first

few times may be a bit frustrating, since you will have to

keep skimming through the text to find out how to access

special functions while outside the main menu. The manual

is, however, reasonably well organized, with separate main

sections dedicated to creating, updating, and printing a file.

The text itself is generally understandable, but muddled in

some sections. I would rate the manual a 6 out of 10.

As for the program itself, it should first be realized what

Mailpro's intended use is. This package does not have the

features and flexibility of a full-blown database manage

ment system, but it is not designed as such. The documenta

tion claims Mailpro to be a "simple to use but sophisticated

mailing list program approaching a full fledged data base in

capability". It goes on to suggest that name and address lists

are a "natural" application of Mailpro. For this application,

Mailpro lives up to its claims, and certainly does everything

you could ask from a mailing list program. Mailpro will not,

however, generate complex reports and process data con

tained within fields, nor will it do any sort of automatic

updates on any records. Mailpro has all of the capabilities

one can expect from a package at its price- around $70.

I told you what it doesn't do. Now what does it do? The main

menu gives 12 options, including creating a file, entering

records, recalling specific records, and setting up a print

format.

The file create editor allows a record to be set up in the

format that data will be entered (this is not necessarily the

output format of the record). This editor is very easy to use,

and works like Wordpro, allowing full cursor control. Labels

up to 12 characters long can be entered, and the position,

length, and type of fields are defined. The label length

limitation is not so bad, since these labels are only used as a

reminder of which field is which when entering the data into

each record.

"Add New Record" mode allows new records to be entered

into the file, using a similar free-form cursor oriented editor

to fill in the fields. A control key submits a record to the file

once you are satisfied with its contents.

In "Recall a Record" mode, a specific record can be searched

for using any "sort" field as a key. The next record or

previous record in alphabetic sequence can be viewed by

pressing control keys. Records can also be deleted and

The Transactor 34 Volume 5, Issue 02

updated in this mode. Deleting or updating a record takes a

while, but the slowness probably has more to do with the

speed of the 1541 disk drive than with Mailpro.

The feature I was most impressed with is the "Setup Editor"

mode. The setup editor allows you to custom tailor the

output of the records in a file, and it gives total flexibility. A

setup file is created using a very Wordpro-like editor to

position labels and fields anywhere on the print page. The

screen scrolls left and right with the cursor, allowing text up

to 160 characters wide on a page. All record fields must be

defined as left or right justified, or compressed. Once a field

is defined, scrolling over the field with the cursor will reveal

the field type in a status line at the top of the screen. Very

nifty. A heading of any number of lines to top each page can

be provided, along with a page number, if desired. Record

numbers can also be printed anywhere on a page. Addi

tional information about the output records, such as width,

height, how many across on a page, etc. can also be supplied

from this mode. Up to ten printer setup files may be stored

along with a file. Overall, the output formatting is the most

flexible and powerful feature in Mailpro.

When actually printing records (by selecting "Output to

Printer" from the main menu), boolean decisions can be

made to selectively print records (inclusive, exclusive, in

side a range, or outside a range). For example, you could

print all records with the second field beginning with "z", or

print all records in sequence from "a" to "z". There are

many nice little features incorporated as well, such as giving

a printout of input record formats or setup files, and the use

of default information in entering records. Lots of features,

however, also means remembering lots of control se

quences, or frantically scanning through the manual to find

out how to do something. I suppose though, like any

complete software package, it just takes a little more time to

become totally familiar.

A Few Miscellaneous Gripes:

1) After certain operations, such as adding records, the drive

error light remains blinking. The manual says this is nor

mal, but it drives me crazy wondering if it is a serious error

and I have lost all of the data I have entered (which

happened to me once).

2) When creating a new file, an old file of the same name will

be replaced without any warning. This could be disastrous!

3) As mentioned previously, the multitude of control fea

tures in different modes could be confusing, at least at first,

and there is no summary of what does what in which mode.

4) Disk operations can sometimes leave you waiting a long

time. Mailpro adds records to the file in a batch after you

have entered all records (up to 127 at a time), not one at a

time as they are entered. The manual states that writing 127

records to a complex file could take up to 2 hours.

If some of the above gripes sound like nit-picking to you,

then that's good. They are the things that bothered me most

about using Mailpro.

Some Exceptionally Good Points Worth Mentioning:

1) The "Setup Editor" for setting up the output format is

fantastic. It's very easy to use, and allows total flexibility in

formatting your output. The only limitation is a maximum

length of 25 lines for each record, but that shouldn't be a

problem in most cases. The fact that you can save up to ten

setup files with each file is also a nice feature.

2) Mailpro is designed to be compatible in many ways with

Wordpro, and data from a Wordpro file can be used to fill

mailpro records. Conversely, the output from Mailpro can

be sent to disk instead of printer in a format such that

Wordpro can use the data as variables. Thus, if Mailpro

holds your mailing list, you can print form letters to selective

members of the list with Wordpro. The disk output feature

could also be used to transfer data from one Mailpro file to

another.

3) The "Index" function gives a list of all Mailpro files on

disk, and nothing else, so you can use a disk with all kinds of

stuff on it and only see what you need to from Mailpro.

Overall, Mailpro is good for keeping track of any household

or small business lists you might have, and great at generat

ing fancy selective printouts of the lists. It is fairly easy to

use, and if you are familiar with Wordpro, it's use is quite

natural. For the price of around $70.00, Mailpro is a good

buy, and may get you to finally do all of those things you

wanted to with your computer, like store your recipes,

record collection, telephone numbers. . .

The Transactor 35 Volume 5, Issue 02

PERSPECTIVE:

To GET Or Not To GET..

How Useful A Trick?

Elizabeth Deal

Malvern, PA

INPUT or GET? Each is useful in its own way. Each needs to

be used intelligently, matching the best features of the

command to the task at hand. Much was written about the

horrors of dropping out of INPUT on the PET when you

strike RETURN. While this feature makes INPUT unsuitable

for many serious applications, it is one of the nicest features

in debugging or in a quick run of a utility program: you can

get out at any time. Consider the "improved" INPUT in the

VIC or the C64. Unless you carefully code (see article v4 #6

p36, for instance) all possibilities (null entry, escape se

quence) even for the most trivial, tiny, routine, you're stuck

in the input loop. Forever.

Press RESTORE/STOP you say? Sure. Now the screen is

blinding blue so you type all the nasty POKEs to turn the

blue off. Utilities have disconnected, so you type all sorts of

code to hook them up again. Your carefully defined charac

ters are gone, so you connect them back. The bit-mapped

display setup is gone, so you poke some more. The sprites

you had on the screen are gone, you gotta bring them back.

The interrupt vector you changed is back to normal, so you

change that. An alternate BASIC language you connected is

gone, so you hook that up. . . some improvements we could

do without.

Unbreakable input routines are vital in many instances, of

course. Many good ones have been written and are in

circulation. They are needed when the features of INPUT do

not match what you need done. Most INPUT simulators use

GET in some fashion, with a graphic character used for the

missing cursor. A well-designed GET routine is capable of

tracking your typing in all directions. Other routines may

need to prevent the user from typing, say, up or clear-

screen. It all depends on the application. But the key feature

of good routines is that they work.

On the other hand, tricks such as the old POKE 167

(originally introduced, I believe, in the Osborne's PET

guide, subsequently reported in COMPUTE and most re

cently in The Transactor v4 #6 p37) pose hazards of which

you may not be aware. Let's look at it a bit more closely.

POKE 167 was meant to put the cursor on the screen during

a GET-type of input. A little fiddling with this trick shows

that it only works in forward typing. You can't delete/correct

your input and you can't go up or down to, perhaps, input

from a different line on the screen. It leaves REVERSE

FOOTPRINTS all over the screen at, seemingly, unpredicta

ble moments. Useless.

The reason behind the failure of POKE 167 is that there is

much more to the functioning of a cursor than just switching

it on or off. A careful reading of the Butterfield memory

maps, or even a superficial reading of the IRQ service

routine in the computer reveals that enabling a cursor must

be done IN THE RIGHT PLACE and AT THE RIGHT TIME.

Poke 167 ignores that second, vital, condition.

You may wish to look up an old issue of COMPUTE in which

Timothy Striker addressed this problem and introduced a

wonderful routine which puts the cursor on the screen at the

right time and takes it off at the right time. It's well worth

typing in. There is one typo there, but you should be able to

fix it after you understand the article.

Last, but not least, don't forget that the old screen and

keyboard inputs can do wonders. The point is to use either

one as a file, as in:

OPEN 1,0 or OPEN1,3: INPUT*1,1$: CLOSE1

It fits numerous applications quite well and is machine-

independent. It is up to you to decide if you can get away

with that or if you must go the, more complicated, but

foolproof, GET route.

The Transactor 36 Volume 5, Issue 02

All About Commodore

BASIC Abbreviations

Louis F. Sander

Pittsburgh, PA

Many Commodore owners know that some of their BASIC

keywords can be abbreviated to ease the work of program

entry. Those who know about the abbreviations often don't

use them extensively, because it's hard to find them listed

together in one place. Furthermore, they aren't all con

structed in the same way, and it's hard to remember the

difference, for instance, between the abbreviations for RE

STORE and RETURN. This article will end the confusion. It

provides alphabetized tables of all known abbreviations,

including versions for all ROMs and character sets. For folks

just learning about Commodore abbreviations, it contains a

tutorial on their use.

Except for the familiar question mark used for PRINT, all

Commodore abbreviations consist of one or two unshifted

letters from the keyword, plus one SHIFTed one. Table 1

shows the screen display for keywords and their abbrevia

tions when the graphics character set is enabled. Tables 2

and 3 show the same display when the 'lower case' charac

ter set is enabled for original PETs and for newer machines.

The keystrokes used to produce each table are exactly the

same; as long as the proper shifted and unshifted keys are

pressed, it doesn't matter what comes up on the screen. We

have printed several tables only to make abbreviating easier

for you — use whichever one you find most convenient.

We've also listed the BASIC 4.0 disk commands separately

in Table 4, to keep things simple for those who do not use

them.

Now look closely at the tables and notice that most abbrevia

tions consist of keyword's first letter, unshifted, plus its

second letter, shifted. Others have two unshifted letters

before the shifted one; this happens where the first two

letters of several keywords are identical, as in STEP and

STOP. Some statements in the tables, (e.g. COS), are fol

lowed by a double dash. We know of no abbreviations for

these, in spite of having searched diligently for them. (Let us

know if make any discoveries) and look carefully at the

abbreviations for SPC and TAB. They are actually abbrevia

tions for 'SPf and TABf. If you put tA(20) into a program

line, it will be interpreted as tab((20), and you'll get a

7SYNTAX ERROR when the line is executed.

It's not widely known that many abbreviations also have

longer forms. For these, you can type as much of the

keyword unshifted as you'd like, then shift the next letter

and stop. The computer will recognize your intent and fill in

the blanks accordingly. You can verify this for yourself by

entering 'r-i-shifted-g' instead of the more familiar

'r-shifted-i', and seeing that both forms produce a 'right$'

when listed. We haven't tested this on every keyword, but

we haven't ever found it to fail.

Now for something about using the abbreviations. They

work equally well in direct or program mode, as most of us

know from our experience with '?' as used for PRINT. Using

them in program lines does NOT save any memory, in spite

of what you may have read elsewhere. It only saves key

strokes and space on the line originally entered. Enter a

short program with, and then without, abbreviations,

PRINTing FRE(O) each time to prove it to yourself.

When your machine LISTs a program line that was entered

with abbreviations, it spells the keywords out in full. This

The Transactor 37 Volume 5, Issue 02

principle should also be familiar to anyone who has used a

question mark as shorthand for PRINT. What may not be

familiar is best illustrated by an example. Enter one 60-80

character program line containing many abbreviations,

such as

10 a = 5:?a:?a:?a:?a:?a:?a:?a:?a:?a: . . .

Be sure the line you enter fills most of two screen lines (one

for 8032's, four for VIC's). Now LIST your program. Surprise!

The long line now fills far more than 80 spaces on the

screen. RUN your program and observe that it executes

perfectly, even though it seems to exceed the 80-character

limit on line length. You can use this idiosyncracy to your

advantage when trying to pack a lot of statements into one

line. If what you want doesn't fit, just abbreviate some of the

statements, so that the abbreviated line fits into 80 spaces or

fewer. When you LIST the line, it will expand enough to

spell out all the statements in full, but it will RUN perfectly.

Do not attempt to edit any of these long lines after they have

been entered. The screen editor will enforce the 80-charac

ter limit as soon as you use it, and your line will be truncated

to 80 spaces on the screen. If you fail to allow for this, you'll

find yourself puzzling over vanished parts of your cleverly-

-squeezed-in program lines.

That's about all there is to know about keyword abbrevia

tions. Knowing about them has made my programming life

a little bit easier, and my fingers a little less fatigued. I have

fastened a copy of Table 3 to the front panel of my PET,

where it serves as an easy reference to the abbreviations I

haven't committed to memory. If you do the same, you'll

bask in the benefits of using abbreviations.

Editor's Note

If you entered the same command in its abbreviated form,

the character you type with the shift key will have a value

exactly 128 greater than the same character 'un-shifted'. The

interpreter detects the 128 difference and 'thinks' it has

come to the end, so go on to the next step.

Inotherwords, it doesn't matter which character is responsi

ble for the 128 difference when the compare is performed.

See Mike Todd's article, "How BASIC Works" for more

details on this anomaly.

The general rule of thumb, though, is the first letter followed

by the shifted second letter, unless this matches something

else first, then it's the shifted third letter. Two character

commands like IF and FN have no abbreviation.

Recall I said this 'feature' is actually a bug. Really, the editor

should force you to type the entire keyword (except ? for

PRINT). Try entering a keyword with the LAST character

shifted. Try for example:

lOnexT

Since the last character of 'nexT' will have the same value as

the corresponding character in the table, no match will be

found. The interpreter enters 'nex' onto line 10 as though it

were the beginning of a variable. The shifted T is lost

because the editor doesn't allow shifted letters outside

quotes (except on REMark lines, another anomaly).

Once you know how the keyword table is constructed, all

kinds of neat (but useless) tricks can be played. In the

keyword table, 'NEXT' is immediately followed by 'DATA'.

Try entering:

10 nexTdaT

The abbreviations phenomena is actually the result of a bug!

A quite harmless bug, but a bug just the same. Each

keyword is held in ROM in a 'table'. The table is simply each

keyword spelled out, one after the other. Naturally, the

interpreter must know where one starts and the next begins,

so the last letter of each keyword is OR'd with 128 (ie. Bit 7

set).

When you enter a command in its long form, the interpreter

begins comparing letters to those in the table. The inter

preter continues comparing until a mismatch is found.

Assuming it was spelled correctly, when the interpreter gets

to comparing the last letter, there will be a difference of

exactly 128. A difference of 128 (Bit 7) signals the interpreter

that a complete match has been made, so go on to the next

step.

The interpreter finds the 128 difference on comparing the

second T. The string is replaced by the corresponding

token, and LIST will show:

Try adding:

10 next

20 returN

30 gosuB

Now LIST and see if you can tell what the interpreter has

done.

The Transactor 38 Volume 5, Issue 02

HKS

RND

RSC

P T k!

CHR*

CLOSE

CLR

cmd

CONT

COS

DfiTH

DEF

RBS

RND

RSC

RTN

CHR*

CLUbE

CLR

CMD

CONT

COS

DflTR

DEF

dbs

aiid

■±sc

atn

chrt

close

c 1 r

C Hid

COT! t

C =-.' S

data

det

flPPENC

BflCKUP

CRTRLC

LUL i._ l_ C

CONCRT

H 1

Q /

m

R!

C i

clf

C!

c\

M

—

D«

D-

Rb

fifi

fls

fit

Ch

CLo

C1

L-fn

Co

—

r--. _

aB

iN

-. c

aT

c H

clO

c L

C ri

cO

—

dR

dL

n j

B*

G C*

t nni

—

P: T f;1

END

EXP

FN

FOR

FRE

Lit !

Lib- I it

GOSUB

GOTO

i. r

I nku \

DIM

END

ErtP

FN

FOR

FRE

GET

GETS

GOSUB

GOTO

IF

INPUT

dim

e Tid

exp

t TI

for

t f~ e

get

get*

gosub

goto

it

i Ti p U t

rnp V

DCLOSE

DIRECTO

D L 0 H D

DOPEN

E/

E*

—

pr

r

b

GO*

Gj~

Di

ETi

Ex

—

Fo

Fr

be

—

GOs

Go

—

d I

P N

ex

—

to

t R

gE

—

goS

go

r~

CO i

D-

P V fJ T

f>]

DP

INPUT*

1 N !

LEFT*

LEN

! ET

LIST

! f: -~1 T-;
L— =_= : : i-■■"

LOG

RID*

HEW

NFXT

NOT

INPUTS

IN I

LEFT*

LEN

; P T

I T :~~

LUHU

LUb

I1ID$

i.iryT

F'i LJ I

input*

1 Ti TI

1 eft*

leTi

let

list

load

log

mid*

Tie M.i

next

TiOt

DSRVE

HERDER

KLUURP

RENRME

SCRRTCH

Table 1

1/ ON

OPEN

LE- OR

prr l:"

L~ POKE

L-, PUS .

L_n PRINT

PRINTS

M-, RERD

REM

H~ RESTORE

HP RETURN

Table 2

I ti ON

OPEN

| p~-f np

PEEK

Le POKE

Li pns

Lo PRINT

PRINTS

Mi RERD

REM

Ne RESTORE

Ho RETURN

Table 3

iN OTi

— o p e Ti

L e F o r

peek

IE poke

11 POS

10 p ri Tit

— P r t Ti t#

ml read

rern

TiE res to re

T<0 returTi

Table 4

D# append

H~ backup

RE— catalog

RE/ collect

S- co Tic at

—

on

—

p-

pr~

Li-

R-

—

RE»

Up

—

p .-.

i 0

—

v

Pr

Re

—

REs

REt

—

ii P

—

P t.

PO

—

y

pR

rE

—

re S

re T

ar

bfl

cR

cot.

■--

■

RIGHT*

RHD

RUN

SRVE

SGH

SIN

SPCf

SQR

STEP

STOP

STRi

SVS

RIGHT*

RND

RUN

SflVE

SGN

SIN

SPCt

SQR

STEP

STOP

STR*

SVS

rig ht*

rTid

ruTi

S dvs

s g Ti

■I- iTi

5PC!

sq r

step

S X. 0 p

st r*

sys

copy

dc lose

d i reclio ru

d toad

d o P e Ti

R-,

R/

R r

S*

Si

3 m

ST"

Si

--_ —

S 1

Ri

RTi

Ru

Ss

Sg

C k

Sp

Sq

ST81

bt

Sir

r I

rN

rU

sfi

sb

-£. T

S P

sQ

stE

=: T

stR

cop

dC

d i R

d L

d U

©I9B2.

TfiB::

TRN

THEN

i 0

USR

VRL

V ii_ K i F V

10 ri j 1

TRB(

TRN

THEN

TO

j jqp

VRL

VERIFV

WRIT

tabf

tiLTi

then

to

u s r

va 1

ve rity

MJait

d s a v e

h e -~± d e r

r e c o r o

re Tiame

SC r-dtch

Louis V. Sawce

T*

—

T i

—

U»

V*

V

Uj ^

T=L

—

T k

—

1 ;.-
=_= —■

Va

Ve

Wa

f- P

__

U i

VH

vE

lUri

d S

hL

re C

¥~$* H

sC

The Transactor 39 Volume 5, Issue 02

How BASIC Works Mike Todd

Kent, England

Mike Todd is a member of the Independent Commodore

Products User Group of England. This article originally

appeared in the club newsletter some four years ago. Essen

tially not much has changed since then. Commodore has

added here and taken away there, but the fundamental

operation of all their machines (excluding the B and the new

264) is still the same. You might consider having your

memory map on hand as you read through this article. As

you become more familiar with your machine you 'II find

that writing new and more complex programs becomes

easier and easier. M.Ed.

It was difficult to decide at what level to aim this article, and 1

have attempted to keep it fairly simple (and consequently

omit a lot of detail - for which 1 apologise in advance). The

only requirement is that the reader understand the princi

ples of machine code programming and have some knowl

edge of simple terminology such as RAM, byte, stack, hex

notation and so on.

The Inside Story

The first consideration must be to sort out the organisation

of the massive amount of software in ROM. There are three

main divisions:

1) The Operating System - is the section of ROM dealing

with cassette, keyboard, screen and IEEE input or output. It

is written specifically to match the hardware.

2) The BASIC Interpreter - written by Microsoft, this is the

program which allows you to write lines of program, edit

them, and execute them. It was originally written in general

terms for use by different computers and is customized by

Commodore for use on their machines. In fact, most of the

interpreter is identical to that in other machines such as the

APPLE.

3) The Machine Language Monitor - although not really part

of the normal operation of the PET, this program provides

facilities for manipulating machine code programs using

hex codes and for saving and loading machine language

programs from disk or tape. On BASIC 1 PETs, this is

replaced by diagnostic routines which are of very limited

use to most owners. Therefore, a MLM program had to be

loaded into RAM to obtain this facility. Likewise on the VIC

and 64, however cartridges are available too that contain

this program.

At the heart of the machines is the microprocessor which at

switch-on starts to execute the ROM software at an address

placed at the end of ROM ($FFFC/D). This routine initializes

all registers, input/output chips, BASIC pointers and vectors

(a vector is an address held in;RAM for future use and which

indicates the entry point of a routine held somewhere in

memory). It clears the screen and checks RAM by writing a

number into every location and confirming that it is read

back correctly. It does this twice for every location and as

soon as it detects an error it assumes that it has run out of

RAM and sets the end of RAM pointer accordingly. The

greeting message is printed using this information to indi

cate the number of bytes free. Then the READY message is

printed, the cursor is flashed and a holding loop is entered

waiting for you to type something.

Interrupts

While waiting, the microprocessor is far from idle. Every

l/60th of a second, a pulse is generated and fed to the

Interrupt Request pin (IRQ). When the pulse is received, the

6502 (6510 in the 64) stops whatever it is doing, saves the

status register and return address and starts executing code

at the address given in $FFFE/F. This routine saves the

registers, does some housekeeping and then uses the IRQ

vector to jump to the main interrupt routine. Since this

vector is in RAM, the user can alter it to point to his own

interrupt routine - the only restriction being that it should

end with the same code that the regular interrupt routine

uses. Here the registers are restored to their previous condi

tions, followed by a Return from Interrupt instruction (RTI).

The first task of the main interrupt routine is to execute a

subroutine that updates the TI clock and sets a flag if the

STOP key is pressed. Bypassing this subroutine (by chang

ing the IRQ vector to enter the interrupt routine just beyond

this JSR) is one of the ways in which the stop key can be

disabled. However, this also stops the TI clock.

The Transactor 40 Volume 5, Issue 02

Initialize

Input/Output

Registers

Set up Variable

Pointers, etc.

Test RAM,

Output Number

of Bytes Free

Print 'READY.'

Get character and

put it in buffer

The interrupt routine then looks after the cursor on the

screen: if a cursor is required (flash cursor flag = 0, see your

memory map) a countdown is maintained and on every

20th interrupt, the character under the cursor is inverted,

making the cursor flash 3 times a second. The cassette

buttons are then checked and the motors turned on or off as

required. This is necessary since the motors are totally

under software control and need to be switched on and off to

allow wind or unwind to function correctly.

Finally, and probably the most important interrupt function,

the keyboard is scanned and if a key is pressed, the ASCII

value for the key is found in a table and placed in the

keyboard buffer. This buffer is 10 bytes long (which can be

altered in most models), and a count is kept of the number of

characters in the buffer. If this count goes over 9, the buffer

is full and the interrupt routine stops accepting characters.

By holding characters in this way, the user can type while a

program is executing some task. Then when the program

comes to an INPUT or GET statement (or direct mode), the

keyboard buffer empties its characters onto the screen ready

for use.

This process continues nearly all the time. However, an

instruction is available (SEI) to turn this interrupt off and this

is done now and again whenever time is critical. In addition,

cassette input and output uses a different interrupt facility

and keyboard servicing is bypassed altogether.When the

cassette has finished with the interrupt, it restores the

vector. In PET/CBMs the vector is restored to the main

interrupt routine, which means if the user has altered the

IRQ vector it will require "re-altering". VIC and 64s restore

the vector to its previous location even if it was altered by

the user.

YES

Crunch Keywords

to BASIC Tokens

Find Line in Text

and Delete it.

Crunch Keywords

to BASIC Tokens

The Transactor 41 Volume 5, Issue 02

Ready and Waiting

Armed with this information we can now rejoin the main

holding loop just after READY has been printed out. The

first thing that has to be done is to accept characters from the

keyboard (more precisely, from the keyboard buffer) and

print them to the screen along with a flashing cursor. When

you press the RETURN key, the characters on the screen are

read one at a time (by the subroutine at $FFCF) and placed

in an 80 character input buffer for analysis. This consists of a

check for a digit at the start of the line which indicates a

BASIC program line - a non-digit at the start would be taken

to mean that the line was a direct command.

If the line is a BASIC program line (and of course that

includes a null line which indicates a line to be deleted from

the program), the number at the start of the line is read and

converted into an integer of two bytes. The remainder of the

line has the keywords identified and converted into single

byte tokens, and then the entire line is inserted into the

BASIC program. In actual fact, BASIC is searched for the line

number given at the start of the line. That line is then

deleted from the program. If only a line number was given

the routine returns to the holding loop. If the line number is

followed by text, it is inserted into the program in RAM as a

BASIC line. Since the remainder of the program must be

"shifted" up or down in memory to accommodate the

alterations, another ROM routine is called that regenerates

the link addresses for the entire BASIC program.

The link address is simply an address that tells the system

where the next line of BASIC text is located. Every line has a

link address. This allows the interpreter to skip over lines,

for example, when a GOTO is encountered. This way the

interpreter can look at the line number, compare it to the

target line number, and jump directly to the next line if they

don't match. Imagine the time consumption if the inter

preter had to look through the entire line to find the next

line number. Also, when inserting or deleting lines, the

editor can determine immediately how many bytes to open

up or take out. Although these links consume memory, the

advantages are well worth the 2 bytes.

Direct command lines (with no number at the start) also

have keywords changed to tokens; however, the BASIC

program pointer is altered to point to the input buffer

instead of the BASIC program, and the line is then inter

preted in exactly the same way as a normal program line.

Let's return to the keyword to token conversion; this is quite

a time-consuming task - one reason why it is done when

the line is entered and not during program execution, is the

delay during a run would be intolerable. The other principal

reason is one of space saving - a one byte token saves

several bytes over keywords such as "RESTORE"! All these

keywords are held in a table starting near the beginning of

ROM with the last character in each having bit 7 (the most

significant bit) set to 1. The "crunch" routine, as it is

sometimes called, scans the keyword table character by

character for a match with the first character in the text.

When this is found, successive characters are checked until

a mismatch occurs, and if this mismatch is only bit 7 then a

complete keyword has been found and is replaced in the

text by a token generated from a number giving the table

position of the keyword with bit 7 set. If the mismatch is

other than bit 7 then the process is repeated through each

keyword in the table and if no match is found, the next

character in the text is used as the starting point for the next

table scan.

The fact that a mismatch in bit 7 is all that is required to

terminate the checking sequence gives us a clue as to why

keywords can be shortened. For instance "nE" can be used

instead of 'next', since the 'E' is the same as 'e' but with bit 7

set and this forces the match to me made. But, of course, the

match will only be valid for the first match in the table -

thus, 'next' occurs before 'new' and will be the first match for

'nE'. Similarly, 'read' occurs before 'restore' and will be

recognised if "rE" is used - restore would have to be

abbreviated to 'reS'.

The most important direct command which will be inter

preted is the RUN command, for this is the command that

instructs the interpreter to start execution of the BASIC

program that you have built up. The interpreter checks to

see if you have given a line number, and if you have,

performs a CLR followed by GOTO the line number speci

fied. Otherwise it resets all pointers to the start of BASIC text,

activates a clear and then returns to the main interpreter

which now has had its pointers reset, and execution starts at

the beginning of the program.

The Interpreter

The core of the interpreter first checks if the stop key is

pressed (in which case it performs the STOP command

automatically). It then handles the BASIC line pointers; it

checks for the end of the program (which is marked by three

consecutive zero bytes) and exits if found; it also handles the

occurrence of the end of a line (a single zero byte) by moving

the pointers past the line number and forward pointer of the

next line. The start of the current statement is saved (if not in

direct mode) so that CONT will know where to pick up from

if execution is stopped for any reason.

The Transactor 42 Volume 5, Issue 02

Perform 'STOP'

Perform 'END'

Flowchart Of The Main Execution Loop

Tokens

The statement is then interpreted. Here, the first byte of the

line is checked to see if it is a token (ie. if bit 7 = 1). If it is a

valid command token (and not something like SIN or

THEN), bit 7 is removed, and the resulting number (which is

the position of the keyword in the table) is used to access the

start address of the command routine from a table of

addresses in ROM directly above the keyword table. The

interpreter then jumps to the appropriate routine. If the

keyword is GO, then a check is made for TO (since GOTO is

the only keyword that can be split into two words) and if

found, the GOTO routine is entered. If the first byte is not a

keyword, the interpreter assumes that a 'LET' operation is

required (since LET can of course be omitted) and the LET

routine is entered. Any invalid start to the line will result in

the interpreter printing the SYNTAX ERROR message, flag

ging that an error has occurred, and then entering the main

holding loop after printing READY.

Everything else that the machine does is under control of

the keyword command set and consequently some of the

more important commands will be examined in detail.

However, all commands require the ability to retrieve a

character from the BASIC program text and a routine is

provided specifically for this purpose. Within this routine is

a pointer which is incremented as soon as the routine is

entered and then a character is retrieved from that location.

If the character is a colon or a zero-byte (both of which

signify the end of a statement) then the zero (Z) flag is set - if

it is not a digit, the carry (C) flag is set. If the character is a

space then the routine ignores it and reads the next non-

-space character.

Getting Characters

This routine, which starts at $0070 ($0073 in the VIC and

64), is often referred to as the CHRGET routine (pronounced

"char-get") and, being placed in RAM, is easily modified to

allow additional commands to be added as in the Program

mers Toolkit. Other user functions can also be imple

mented, and a variety of techniques are used to patch into

this important routine.

As well as using the CHRGET routine at $0070, the inter

preter will often enter at $0076 ($0079 in VIC/64) instead.

This entry (sometimes referred to as the REGET or CHRGOT

routine) does not increment the character pointer and is

used to fetch a character from text that the interpreter

already GOT once and needs to GET again.

Variables

It is also worth examining how BASIC stores its variables.

The simplest are the ordinary numeric variables. These are

stored at the end of BASIC text, each taking seven bytes.

Without describing the complex technique of "offset expo

nent, normalized binary floating point" storage, it is worth

pointing out that all numeric operations are performed in

this format. Even integer variables (stored in two byte fixed

point format) are converted back to floating point whenever

they are accessed. There is a floating point accumulator in

RAM consisting of 6 bytes - the first is the exponent, the

next 4 are the mantissa, and the 6th is the sign which is

recovered from the stored form of the number. There are

additional floating point accumulators which are used as

workspace when evaluating expressions. The principal ac

cumulator (FPACC#1) stores intermediate results and is also

the accumulator upon which the trigonometric functions

operate.

Numbers in arrays are stored in a similar format (except that

integers use only two bytes instead of seven and floating

point numbers five instead of seven) - but there is a header

to each array which contains the array name, the number of

bytes in the array and information about the dimensions of

the array. However, these are stored after ordinary variables

which means that every time a new ordinary variable is

defined, the entire array table has to be shifted up seven

bytes.

The Transactor 43 Volume 5, Issue 02

BASIC Text

0 000

BASIC RAM Memory Allocation

Variable Table Arrays Space Empty Space String Space

t t t t t " t

Start of BASIC Start of Variables Start of Arrays End of Arrays Bottom of Strings Top of Memory

BASIC 4/2: $28,29 $2A,2B $2C,2D $2E,2F $30,31 $34,35

VIC/C64: $2B,2C $2D,2E $2F,30 $31,32 $33,34 $37,38

BASIC Text Line Structure

0 L H H line text 0

t t-J1

end of previous line

H

line *

- pointer to next line

line text

Floating Point

N N

name t t msb — lsb t

(NN) exponent + 128

Variable Contstruction

Integer

J J H L 0 0 0

name value unused

(JJ%)

String

s G L H 0 0

name t t t

(SG$) start address of string

length of string in bytes

Strings

Ordinary string variables are also stored in seven bytes,

although only three are actually used for string information.

These three bytes are called a string descriptor, with the first

byte holding the number of characters in the string and the

other two the address of the first character in the string. If a

string is defined in a program (e.g. A$ = "TEST STRING"),

the string is already in RAM and the descriptor will point to

the characters within the text area. However, as soon as

strings are manipulated they need to be stored somewhere

else, otherwise a string operation could actually corrupt the

BASIC program text!.

This problem is overcome by using the empty space after

the arrays. But since the arrays are moved up each time a

new variable is defined and of course the end of arrays will

change if a new array is created, strings cannot be placed

immediately after the arrays. If they were, the strings would

have to be moved up as variables were created, and all

string descriptors modified accordingly - a mammoth task.

Instead, strings are built starting at the end of RAM. A

pointer is set to the end of RAM, and whenever a string is

created this pointer is moved down by the number of

characters in the string and the string stored starting at that

point. Unfortunately, if another string is defined, this pointer

is moved down yet again, until it reaches the end of the

arrays.

Garbage

When this pointer crashes into the top of the arrays, there

are two alternative solutions. The first is to abort and print

an OUT OF MEMORY error - a defeatist answer!. The other

solution assumes that there will be strings in this area which

are no longer of use - in other words the original descriptor

for that string has been changed because the variable has

been redefined and has therefore been rewritten elsewhere

in the string storage area. Thus the string storage area

contains garbage, and so a routine, referred to as "garbage

collect" is invoked to weed out all those unreferenced

strings. It does so as follows:

A pointer is set to the end of RAM (and so the top of string

space) - all string descriptions are checked (in both ordinary

and array string variables) to find which pointer is closest in

value to this garbage collection pointer. The position of the

final character of the string is calculated by adding its length

to the start of the string and the string is moved up to fill any

unused space - the string descriptor is then updated and the

string space pointer moved down to the start of the string.

All string variables are then checked for the next string

The Transactor 44 Volume 5, Issue 02

descriptor below this pointer and the same process repeated

until all strings have been checked and moved up to take up

the space occupied by the garbage thereby releasing space

for more strings. Only when the garbage collect routine fails

to release enough space does the OUT OF MEMORY error

occur.

In other words, the string space is scanned from top to

bottom; all unused strings are deleted and all used strings

moved up to overwrite them.

Minutes or Hours

Unfortunately, if a large number of strings are being used

(especially if a large string array is defined) then the garbage

collect routine has a lot of work to do. For instance, if the

only strings in use are all the elements of a 100 element

array, then the string space will have 100 strings in it and

there will have to be 100 searches through all string descrip

tors - amounting to 10000 descriptor checks! If there are

more than 1000 strings then over a million checks will have

to be done as well as 1000 string moves and updates - no

wonder garbage collect can take several minutes (or even

hours!!!). BASIC 4 (which is supplied in the new 4000 and

8000 series PETs and is available as an upgrade for older

PETs) has solved this problem by adding two bytes extra to

each string; these are used by a much improved garbage

collection routine to an acceptable level.

Input & Output

Before going on to consider a few BASIC commands, it is

worth considering how the operating system handles input

and output. There are three main types of output routines

directing characters to the screen, the cassettes or the IEEE

bus. All have their own separate routines, but can be

accessed through a single output routine at $FFD2. This

routine checks the contents of location $BO ($9A in VIC/64

- often referred to as the CMD output device number) and

uses this to access the appropriate output routine. If set to

device number 3, the screen output routine is used. This

routine handles all ASCII characters (including

clear-screen, cursor movements etc.) and places the charac

ter on the screen, updating the screen pointers.

IEEE Management

If the CMD output device is greater than 3 then the IEEE

handshake routines are called, while any other value is

assumed to be a cassette operation and the character is

placed in the appropriate cassette buffer. The buffer pointer

is incremented and if it is 192 the entire buffer contents are

written to tape and the buffer reset. It is worth noting that

CHR$(10) - line feed - is ignored when sent to tape to avoid

it interfering with the data when is is read back.

Whenever the $FFD2 output routine is called, it is assumed

that not only has $BO been set correctly, but that a channel

has been opened to the cassette or IEEE bus. This ensures

that IEEE or cassette protocols have been observed and the

data is sent to a valid device.

Keyboard

In a similar way, there is an input routine at $FFCF which

uses $AF ($99 on VIC/64) to indicate the device number

from which input will be taken. If it is zero, then the

keyboard is taken as the input device although strictly

speaking the input is taken from the screen. As soon as the

routine is entered (and $AF = 0), the cursor is set flashing

and the current position of the cursor logged as the start of

the line (thereby avoiding any prompts being accepted as

part of the input). Thereafter characters are read from the

keyboard buffer and placed on the screen until the RETURN

key is hit at which time the routine is left, returning the first

character on the line. Subsequent calls to the routine do not

set the cursor flashing, nor do they allow further input to be

accepted. Instead they return successive characters on the

line until the last character is read. The next call of the

routine starts the process over again.

Like the output routine, the input routine assumes that all

necessary protocols have been handled (normally through

the OPEN command). Characters from cassette are read

from the cassette buffer until such time as the buffer pointer

reaches 192 at which time the next data block is read from

tape. Alternatively, the IEEE routine simply handles the

necessary handshaking on the IEEE bus.

Error Messages

Unfortunately, this is not the full story, since there are

occasions when output to the screen has to be suppressed. A

flag exists which is used to suppress screen output. This flag

is at $10 ($13 in VIC/64) and contains the logical file

number of the most recently accessed input and output files.

Therefore if $10 is zero, both input and output are normal

and this allows INPUT error messages for instance to be

printed. If either is off normal (i.e. if an INPUT* or PRINT*

command has just been obeyed) then these error messages

are suppressed.

Although mention has been made of the INPUT routine at

$FFCF, there is another routine at $FFE4 which collects a

single character from the specified device. In the case of

cassette or IEEE input this is no different to the usual input

The Transactor 45 Volume 5, Issue 02

routine. But for keyboard input it has the effect of GET -

where only a single character is fetched from the keyboard

buffer, no cursor is flashed nor are the typed characters

placed on the screen.

LET Command

The first BASIC command to be considered is the LET

command. As already mentioned, this is the only time when

a statement does not need to start with a keyword token.

Although in principle the command routine is very simple,

the evaluation of the expression on the right hand side of

the equal sign is extremely complex and the details cannot

be described fully here. Any standard reference work on

computer compilers will describe the technique of evaluat

ing arithmetic expressions.

The first task of the LET routine is to ascertain which

variable is the target variable on the left of the expression

and then search the variable table or array table for it -

setting $44/5 ($47/8 in VIC/64) to point to the variable. If

not found, then a routine is called which creates a variable

(or array) as required. In addition, a note is made at this

point of the variable type.

After confirming that " = " follows the variables, the inter

preter enters a routine which evaluates the expression after

it. This routine is made more complex by the need to handle

string expressions as well as numeric expressions.

To evaluate an expression, it can be considered as individ

ual terms (i.e. a number, a variable or "pi") separated by

operators (such as +-/*etc). The expression is scanned for

the highest priority operator - the exponentiation operator -

and the terms either side of it are placed in the two main

floating point accumulators. If one of the terms is a brack

eted expression, the evaluation routine is re-entered to

evaluate the expression in brackets. Then the exponentia

tion routine is called and the intermediate result saved on

the stack. This is done for all operators working down from

the highest priority to the lowest priority (addition) which

will result in all operators being assigned their correct order

of precedence.

Experts will point out that this is not precisely what hap

pens, but it serves as an example. In fact, the process is

significantly more complex than this but the fundamentals

are the same.

String expressions are evaluated rather more simply, with

intermediate string results being placed (in descriptor form)

on a descriptor stack until a final descriptor is computed.

The result is passed back as a pointer which points to the

final descriptor.

In the case of numeric results, the final result will be placed

in the main floating point accumulator. The result is then

converted to the appropriate form for storage (e.g. the

floating point result converted to an integer) and then stored

at the target variable location.

FOR-NEXT

The next command to be examined is the FOR command,

which together with NEXT allows a simple method of loop

control. As with all other commands, FOR has its own

routine and its first task is to perform the LET routine on the

FOR variable. This sets the initial condition for the loop. The

stack is then searched to find if there is already a FOR loop

active using the same variable. If there is, then it and all FOR

loops declared after it are deleted from the stack.

After checking to see if the stack can hold the FOR entry (if it

cannot, an OUT OF MEMORY error is printed), the text is

scanned for the start of the next BASIC statement after the

FOR command and the pointer to this statement and line

number are pushed onto the stack. The routine then con

firms that "TO" is the next token in the text and the

expression following it is evaluated. The result (the final

value for the loop) is then pushed onto the stack. Next, the

text is checked for the STEP token and if present, the STEP

expression is evaluated. If STEP is not present the STEP

value is set to 1. The sign of the STEP value is then placed on

the stack followed by the absolute value (ABS) of the STEP.

The pointer to the FOR variable is then pushed onto the

stack and finally the FOR token ($91) is pushed on the stack

as a marker.

The interpreter continues execution of BASIC text until it

reaches a NEXT command. If a variable is specified, the

variable table is searched for and the pointer to the variable

compared with the variable pointer of all FOR entries on the

stack. If not found then NEXT WITHOUT FOR is printed. If

found, then the current value of the FOR variable is re

trieved from the variable table, the STEP value is added and

the result compared with the TO value. If greater, the FOR

entry is removed from the stack, together with any GOSUB

or FOR entries that were declared after the current entry and

execution continues normally.

However, if the result is equal or less than the TO value, the

pointer and line number are taken from the FOR entry on

the stack (they point to the first statement following the FOR

command) and execution of the program is resumed at that

point. If the STEP is negative, it is subtracted from the FOR

variable, and the loop terminates if the new value is less

than the TO value.

The Transactor 46 Volume 5, Issue 02

TOR' Stack Entry

LO

HI

HI

LO

M4

M3

M2

Ml

EXP

M4

M3

M2

Ml

EXP

HI

LO

$81

Pointer to first

statement in loop

Line number of first

statement in loop

'TO' value

Sign of 'STEP'

'STEP' value

Pointer to

'FOR' variable

'FOR' Token

'GOSUB' Stack Entry

HI

LO

HI

LO

$8D

Pointer to

'GOSUB' statement

Line Number of

'GOSUB' statement

'GOSUB' Token

GOSUB & RETURN

Since it also uses the stack, GOSUB will now be described.

On entry to the GOSUB routine, the stack is checked to see it

it can hold the entry and then the current pointer and line

number are pushed onto the stack, followed by the GOSUB

token ($8D) as a marker. The routine then joins the GOTO

routine which reads the line number, converts it into a two

byte integer, searches for the line number in the text and

then sets all the pointers to continue execution from that

point.

RETURN simply checks the stack for the latest active GO

SUB entry (deleting any FOR entries on the way!) and resets

the pointers which then point to the middle of the GOSUB

command. The DATA command routine is then entered

which scans to the end of the current statement, updates the

pointers accordingly and resumes execution at that point.

CONTINUE

CONT is another routine which updates the program

pointer (which is the pointer held in $77/8 in the CHRGET

routine). This time, however, the new value is retrieved

from $3A/B ($3D/E in VIC/64) where it was stored when

the program was stopped. The contents of $3B are first

checked to see if it is zero - if it is then the address pointed to

must be $00xx and the last command must have been a

direct command (if an error occurs $3B is also set to zero).

If this is the case, the interpreter does not allow the program

to continue. The reason for this is twofold. The first is that, in

direct mode, the statement is being executed in the input

buffer and if the statement has been stopped, it is possible

that it will have been overwritten by a new line of input, in

which case CONT would try to resume a potentially nonsen

sical statement. The other reason is that an error can occur

at any point during the execution of a statement and can

leave the BASIC pointers and vectors in an indeterminate

state - therefore, while CONT might rejoin EJASIC at the

correct point, there is no guarantee that execution would

continue correctly due to the possible corruption of the

BASIC pointers. If CONT is allowed, the CHRGET pointer

and line number are restored and execution continues from

that point.

Having mentioned that CONT during direct mode could

cause conflict in the use of the input buffer and is conse

quently disallowed, it is worth adding that this is the same

reason why the INPUT or GET commands are not allowed in

direct mode. In both cases, the input buffer is used to hold a

string of characters which would overwrite the direct mode

statement already in the buffer and cause great confusion to

the interpreter!.

Pointers

Before going on to look at the final commands of SAVE and

LOAD, it is worth examining briefly the pointers which

indicate the various sections of memory used by the inter

preter. The first is the start-of-BASIC pointer (at $28/9,

$2B/C in VIC/64) which is always set to the start of BASIC

text space. This address varies from machine to machine,

but it always points to the first byte of the first lines' header

which contains the pointer to the next line as well as the line

number.

The Transactor 47 Volume 5, Issue 02

The next pointer ($2A/B, $2D/E in VIC/64) indicates the

start of the variable table and normally points to the first

byte following the three consecutive zero bytes indicating

the end of the BASIC program. As well as indicating the start

of the variable table it is also used as an end-of-BASIC

pointer.

The start of the array table is held in $2C/D ($2F/30 in VIC/

64), and the end in $2E/F ($31/2) which is also used to

show the end of RAM usage (working up from the bottom of

RAM). It is this pointer that the strings, which work down

from the top of RAM, must not pass. The lower limit of

strings is held in $30/31 ($33/34) and it is the comparison of

this with $2E/F that instigates the garbage collect routine.

The last pointer is $34/5 ($37/8), which gives the Top of

Memory. This can be lowered to allocate some memory for

assembler routines for example. Note that if this is done, a

CLR instruction should follow the two POKEs.

SAVE

When you use the SAVE command, the limits of RAM to be

saved are indicated by the Start-of-BASIC pointer and the

Start-of-Variables pointer. If the device is one of the cas

settes then a header is created with .the start and end

addresses included together with the program name. This is

then written to tape followed by the complete program.

However, if an IEEE device is specified, the program name is

sent first (used to open a channel in the device) and the

program is sent byte by byte - the first two bytes sent being

the start address of the program.

LOAD

LOAD is rather different, however, and its operation de

pends on whether or not you are operating from within a

program or in direct mode. If from tape, the header of the

specified program is searched for (if none is specified, the

first program header read is used). This header contains the

start and end addresses of the program and it is the fate of

these which differs from program to direct mode. If an IEEE

LOAD is performed, the program name is sent to the IEEE

bus (to allow the device to find the program - for instance on

the disk unit) and the first two characters received are taken

as the start address of the program. When program LOAD is

complete the IEEE bus signals the fact and the address of the

last byte loaded used as the end address, since this address

is not explicitly saved as part of the program.

The VERIFY command operates identically to LOAD, except

that bytes are compared with those in RAM rather than

being stored.

In direct mode (and that includes a LOAD using the shifted

RUN/STOP key), once the program is loaded, the start-of-

-variables pointers is set to the end address of the loaded

program. In order to avoid problems of trying to read

variables from a now corrupted variable (and array) table, a

CLR is performed (which sets the start of arrays and end of

arrays to the end of program pointer and resets the lower

limit of string storage to the upper limit of RAM). This is

followed by the recalculation of all tHe link addresses at the

beginning of each line of the BASIC program. Finally, the

main waiting loop is rejoined at the point at which READY is

printed.

In program mode, LOAD operates rather differently. The

actual mechanism remains the same, bu't the End of BASIC/

Start of variables pointer is left untouched. This allows the

newly loaded program to access the same variables as the

program which loaded it. However, if the loaded program is

longer than the calling program, the variable table will be

over-written by the end of the new program and cause no

end of problems. This is why programs loaded from within a

BASIC program must always be shorter than the calling

program.

Once loaded, BASIC is reset to continue execution at the

beginning, and a partial CLR performed which cleans up the

stack to remove any outstanding GQSUB and FOR entries

and executes the RESTORE command routine. Unlike

LOAD in direct mode, LOAD in a program does not perform

the regeneration of the link addresses.

.. .And Beyond

That then is our look inside BASIC - or at least as much as

time and space will allow. Further investigations can be

made with the use of a simple disassembler (which converts

the machine code back into assembly language, but without

labels or variable names). With the information given

above, and the details given in tables of ROM and work

space RAM, most readers should be able to delve a little

deeper under the bonnet. Armed with a deeper understand

ing of the software processes involved in the BASIC inter

preter, many users have been able to make their

Commodore computers sing and dance far in excess of what

their creators ever imagined!

The Tronsqftor 48 Volume 5, Issue 02

Messing With The Stack Garry G. Kiziak

Burlington, Ont.

Sometimes it would be nice to be able to leave a subroutine by a

GOTO statement rather than the usual RETURN statement. Doing

so is usually considered 'poor programming practice'. However,

there are times when it can be useful (e.g. implementing an 'escape

key' feature in an input subroutine).

The most pressing reason why one should avoid this programming

technique, aside from the fact that it encourages 'bad program

ming habits', is that it does terrible things with the stack.

Try the following program.

100gosub200

110 print " eureka, it works! "

120 end

200 if i = 50 then return

210i=i+l

220 print i;" . here i am again."

230 goto 100

Program 1.

The program will print out the message "HERE 1 AM AGAIN."

twenty three times and then stop with an "? OUT OF MEMORY

ERROR IN 200".

In fact there is plenty of memory available. What has happened is

that each time line 100 is executed, 7 bytes are placed on the stack

(5 of these bytes tell the computer where to return to when it

encounters the 'RETURN' statement and the other two bytes are

placed there for internal reasons).

Since the 'RETURN' statement in line 200 doesn't get executed

until 1 = 50, the stack quickly fills up (the stack can contain a

maximum of 256 bytes, but much of that is used by the operating

system). When it is full the 'OUT OF MEMORY' error occurs.

Fortunately there is a simple way out of this problem, simply add

the following line.

225 sys clear: rem where clear = 46610 on 4.0 PETs

and 50583 on 2.0 PETs

This 'SYS' command accesses a ROM routine which is part of the

'CLR' command and effectively clears the stack each time it is

called. Now since the stack is no longer allowed to fill up, the

program should run to its conclusion printing 'HERE 1 AM AGAIN.'

50 times followed by 'EUREKA IT WORKS.'.

The CLEAR address for the Commodore 64 is 42622, and for the

VIC 20 it is 50814. However, as is well known (See The Transactor

Vol.4 Issue 3 page 26), it no longer works. This is somewhat

puzzling, especially when you look at the disassembled machine

code on each of the machines and find that they are identical -

except for some address changes which are necessary because the

routines are located in different places on each machine.

Here is the disassembled code on the Commodore 64.

01 $a67e 68 clear pla ;save the 2 bytes most recently

02

03

04

05

06

07

08

09

10

11

12

$a675

$a680

$a681

$a683

$a684

$a685

$a686

$a687

$a689

$a68b

$a68a

a8

68

a2

9a

48

98

48

a9

85

85

60

fa

00

3e

10

tay ;pushed onto the stack

pla

Idx *$fa ;place $fa in the stack pointer

txs

pha ; restore the two bytes saved

tya ; above

pha

Ida #$00 ;do some house cleaning

staoldtxt+1

sta subflg

rts ;return to the command interpreter

Before I explain how this works, let me recall one important fact

about the 6502 (or 6510) processor, and how it works in conjunc

tion with the JSR statement. Namely, that each time a JSR state

ment is executed, the processor automatically places two bytes

onto the stack. These two bytes tell the processor where it should

continue executing instructions from when it encounters an RTS

statement. On executing the RTS statement, these two bytes are

The Transactor 49 Volume 5, Issue 02

removed from the stack and execution continues from that address

- actually that address plus one.

Here is how the CLEAR routine works. First it saves the last two

bytes that were pushed onto the stack in the A and Y register (lines

1 to 3). This is necessary because this routine is normally called by

a JSR command in the 'command interpreter'. These two bytes

therefore tell the processor where to return to. (On a Commodore

64 these two bytes are $A7 and $E9 so the return address is

$A7EA). Lines 4 to 5 place $FA in the stack pointer. This in effect

clears the stack since this is the value put there by the computer on

power up. Lines 6 to 8 replace the two bytes saved above so that

the RTS in line 12 can return control to the command interpreter.

Since this code is virtually identical on all machines, why doesn't it

work on the Commodore 64 or the VIC 20. Well, the problem

doesn't lie in this routine. Instead it lies in the routine that executes

the 'SYS' command.

An extra feature has been incorporated into the 'SYS' command on

the Commodore 64 and the VIC 20, namely the ability to set the A,

X, Y, and status registers before entering the actual machine

language routine. These registers are set by poking values into

locations 780-783 before SYSing to the required routine. In order

to accommodate this extra feature the code that executes the SYS

command must be different. Here's what it looks like on the

Commodore 64.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

$el2a

$el2d

$el30

$el32

$el33

$el35

$el36

$el39

$el3a

$el3d

$el40

$el43

$el44

$el47

20 8a

20

a9

48

a9

48

ad

48

ad

ae

ac

28

6c

08

f7

el

46

Of

0c

ad jsr

b7jsr

03

03

0d03

Oe

14

$el48 8d0c

$el4b

$el4e

$el51

$el52

$el55

8e

8c

68

8d

60

Od

Oe

Of

03

Ida

pha

Ida

pha

Ida

pha

Ida

Idx

ldy

pip

OOjmp

03

03

03

03

php

sta

stx

sty

pla

sta

rts

frmnum

getadr

*$el

#$46

$030f

$030c

$030d

$030e

(linnum)

$030c

$030d

$030e

$030f

;get address after sys command

;convert it to an integer

;put address $el47—1

;on the stack so rts in

;user's routine will continue

;execution at $el47

;get status register from

;783 and save on stack

;get a-register from 780

;get x-register from 781

;get y-register from 782

;get status reg back from stack

;jump to the user's routine

;save status register on stack

;store a-register in 780

;store x-register in 781

;store y-register in 782

;get status register back

;store it in 783

;return to command interpreter

Notice that the A, X, Y, and status registers are loaded from

locations 780-783 (lines 7 to 12) before the actual machine

language routine is entered (line 13). Also notice that two extra

bytes are pushed onto the stack before entering the M/L routine as

well (lines 3 to 6). These are put onto the stack so that when an RTS

is encountered in the M/L routine, control will return to $E147

where the A, X, Y, and status registers are put back in locations

780-783 before returning to the command interpreter.

These extra two bytes are the cause of all our problems. For when

the CLEAR routine is called by SYS CLEAR, these two bytes are

saved instead of the two bytes that will return it to the command

interpreter. End result? When the RTS is encountered in the

CLEAR routine, control returns to $E147, and the stack is clear.

Now when the RTS is encountered in $E155 of the SYS routine,

there is no legitimate return address on the stack, so it takes two

meaningless bytes and returns to heaven knows where.

If you understood the above, the solution to the problem is now

quite simple. Instead of SYSing directly to the ROM routine, SYS to

your own routine where you first remove those two extra bytes

from the stack and then jump to the ROM routine.

For the Commodore 64

PLA

PLA

JMP $A67E

For the VIC 20

PLA

PLA

JMP $C67E

On the Commodore 64, the following BASIC loader added to the

beginning of Program 1 will make that program work properly.

10 clear = 828 : for k = clear to clear+ 4 : read j: poke k,j: next k

20 data 104,104,76,126,166

On a VIC 20, replace line 20 with:

20 data 104,104,76,126,198)

Of course you must still include line 225

225 sys clear

Notice that the routine is completely relocatable, so you can put it

in any (safe) place that you like.

POP For The Commodore 64

The CLEAR routine does its job just fine. However, it may also do

more than you really want. Its purpose is to clear the entire stack -

of RETURN addresses, of FOR . . . NEXT loop pointers, and

anything else that may be on the stack. Yet there may be times

when all you want to do is 'POP' the last RETURN address off the

stack. The following routine will do just that on the Commodore

64.

10 pop = 828 : for k = pop to pop + 24 : read j : poke k,j : next k

20 data 104,104,169,255,133,74,32,138,163,154,201,141,240,5

30 data 162,12,76,55,164,104,104,104,104,104,96

Replace lines 10 and 20 of the program above with these two lines

and replace line 225 with:

225 sys pop

You will see that the program works just as well. This time

however the entire stack is not cleared, just the last RETURN

address. Also like the normal RETURN statement, any active FOR

. . . NEXT loops within the subroutine will be removed by the POP.

Notice that this routine is also relocatable so it can be placed in any

'safe' place.

The Transactor 50 Volume 5, Issue 02

The Un-Token Twin's Richard Evers

The purpose of the 'un-token' twin's is to supply you with a

unique method to list programs from memory, or from disk.

Normally this task would be considered a rather anti-cli

matic event, but the programs demonstrate how one can

make use of information already living inside your machine.

Similar programs released in the past have usually kept

their keyword table in a stack of data statements somewhere

within the program. This fact alone has made these pro

grams quite large in size and fairly painfull to key in. My

program uses the basic ROM table of keywords for its token/

keyword conversion. With this change of direction, a lot of

space has been saved in memory, and a fair bit of time and

trouble trimmed off the keying in procedure. Hopefully, less

code will mean less mistakes.

As a bonus, the link address for the following line is printed

before the line number. If you find this totally useless to you,

simply remove it. . . the link address is held in variable 'C\

As the program progresses, it does a number things. The

first is to actually get the character to be printed. The value is

checked to see if it is a quote. If so, the program flow will

change direction a tad to avoid any trouble with tokeniza-

tion of capital letters and reverse case characters. If not, the

program will plod ahead to check if the value encountered

was a keyword. If so, 128 is subtracted from the ASCII value,

and an keyword array variable is assigned to it. In this

manner, all of the keywords match up exactly with their

token values.

After this, if the value was not a keyword, but the 'in quotes'

flag has been set, then the value is OR'd with 64 to get rid of

any strange reverse case characters that might be pretend

ing to be control characters. Control characters, or pseudo

control characters quite often make a real mess out of the

screen when they are printed. The 'quick OR with 64' will

reduce the chances of this happening. When all of this has

been performed, the character is finally printed to the

screen, and a test or two is done to keep the flow going.

Notice the line numbers in each version. The disk version

has been written with successive line numbers because it

will probably be alone in memory. The RAM version has

somewhat larger line numbers. Since this program must co

exist with the program you wish to un-tokenize, the larger

line numbers were chosen to make room for the other

program. Hopefully it will not have line numbers that will

interfere with 'un-token memory'.

For now, that is all that is to be said about the 'un-token

twins'. If you find further methods in which to make them

even better, please send us a note telling of your technique.

We are always looking for reader support, and will not

hesitate to print what is sent to us if given the chance.

Whenever you feel creative, please keep us in mind.

10 rem * un-token memory - richard evens

15 rem * will list a basic program in memory

20 rem *******************************

25 rem * 4.0 basic ts = 45234 : te = 45579 : sb = 1025

30 rem * c64 ts = 41118 : te = 41373 :sb = 2049

35 rem * ts + te = start and end of rom keyword table

40 rem * sb = start of basic

45 rem *******************************

63900 print chr$(147); : clr: ts = 45234 : te = 45579

: sb = 1025 : ps = sb : rem * 4.0 basic *

* set up your variables for your particular machines here

63901 dim kw$(90): kw = 0 : for a = ts to te : k = peek(a)

* the array kw$(90) will hold all keywords, the loop will

bring them in

63902 if k<128 then kw$(kw) = kw$(kw) + chr$(k): next

: print chr$(147): goto63904

* if the value peeked was below 128 ascii, then it is just part

of keyword

63903 k = k-128 : kw$(kw) = kw$(kw) + chr$(k): print

kw$(kw), : kw = kw+1 : next: printchr$(147)

* end of token encountered - subtract 128, add to string and

adjust pointers

63904 c = peek(sb) + 256*peek(sb + 1): d == peek

(sb + 2) + 256*peek(sb + 3): if c = 0 then 63910

* 'c' and 'd' hold the link address and line* respectively

63905 print c;d; : for e = sb + 4 to c-2 : f = peek(e)

:f$ = chr$(f) : if qt then 63907

* print 'c' and 'd', then loop throughout the entire line to

print

63906 if f>127 then f$ = kw$(f-128)

* if keyword encountered, subtract 128 then assign array

variable to it

The Transactor 51 Volume 5, Issue 02

63907 if qt then f$ = chr$(asc(f$)or64)

* if quote flag set, 'or' the value with 64 to get rid of control

characters

63908 print f$; : if f = 34 then qt = not qt

* print the string, check if the value was a quote and flip

QT if so

63909 next: print: qt = 0 : sb = c : goto 63904

* next the loop, drop a line and re-adjust pointers to

continue on

63910 print: print" program size" sb-ps" bytes" : end

* program complete ! show the size of program and end

10 rem * un-token disk - richard evers

15 rem * will list most basic programs from disk

20 rem *******************************

25 rem * 4.0 basic ts = 45234 : te = 45579 : sb = 1025

30 rem * c64 ts = 41118 : te = 41373 : sb = 2049

35 rem * ts + te = start and end of keyword table in rom

40 rem * sb = start of basic

45 rem *******************************

50 print chr$(147); : clr: ts = 45234 : te = 45579

:sb = 1025:qt = 0

* this one has been set up for 4.0 basic - re-adjust to suit

your needs

55 dim kw$(90): kw = 0 : for a = ts to te : k = peek(a)

* array kw$(90) will hold the basic keywords

60 if k<128then kw$(kw) = kw$(kw) + chr$(k): next

: goto 70

* this checks if end of keyword has been encountered

65 k = k-128 : kw$(kw) = kw$(kw) + chr$(k)

: print kw$(kw), : kw = kw + 1 : next

* value is beyond 128 ascii so the end of keyword has come

- act accordingly

70 print chr$(147) + " program file name "; : input pn$

: if len(pn$)>16then70

75 input" drive number" ;d$: if d$<" 0" or d$>" 1 "

then 75

* routine to get the program name and drive number

- nothing special here

80 print chr$(147);: open5,8,5,"" + d$ + ":" + pn$ + ""

* open the file on drive * d$ with file name pn$

85 gosub 140 : ps = asc(a$): gosub 140

: ps = ps + 256*asc(a$)

* get the low and high bytes of the start address from disk

90 if sbOps then print" not a basic program"

: close 5 : end

* if the address is higher or lower than basic as set, reject

and end

95 gosub 140 : c = asc(a$) : gosub 140

: c = c + 256*asc(a$): if c = 0 then 150

* get the low and high bytes of the link address from disk

100 gosubi 40 : d = asc(a$) : gosub 140

: d = d + 256*asc(a$)

* get the low and high bytes of the line number from disk

105 print c;d;

* print the link address followed by the line number - adjust

to your taste

110 gosub 140 : z = asc(a$): if qt then 120

* main routine to get the contents of the line - is quote set,

skip ahead

115 if asc(a$)>127 then a$ = kw$(asc(a$)-128)

* obviously out of quotes, is it above 127 ascii ? - if so, it is

a keyword

120 if qt then a$ = chr$(asc(a$)or64)

* if within quotes, 'or' the value with 64 to rid it of control

characters

125 print a$; : if z = 34 then qt = not qt

* print the value and flip the quote's flag if the char was a

quotation mark

130sb = sb+1 : ifsb + 4<cthen 110

* increment the start of basic pointer and go for more is we

haven't hit top

135 print: qt = 0 : sb = c : goto 95

* drop a line, re-adjust the pointers and continue at the top

again

140 get#5, a$: a$ = left$(a$ + chr$(0),1)

: if st = O then return

* a one line method to get a character from disk and check if

st set

145 close 5 : print: print" program size" sb-ps" bytes"

: end

* close the file, display the size of program and end

The Transactor 52 Volume 5, Issue 02

Merging BASIC Programs Glen Pearce

Randburg, South Africa

Several Merging techniques have been published in the past, but

Glen's program eliminates the need for LISTing the program to a

tape or disk file in order to prepare it for this operation. - M.Ed

I'm sure most of you have at one time or another been faced with

the need to "merge" one or more useful subroutines into a BASIC

program that you are writing. We all build up a library of routines

over the years and inevitably have to type the whole routine in

again each time we wish to use it in a new program. With program

development time becoming as expensive as it has lately, I decided

to write a program which would automatically "merge" a program

stored on disk with the one currently held in the computer's

memory - after all, that's what computers are for, aren't they - to

take the drudgery out of our lives?

1 have supplied two merge programs - one for the 64 and one for

the professional range of Commodore computers (the 4000 and

8000 series). To simplify the entry of the merge programs, I have

coded the machine-code part of the programs in DATA statements

which are simply 'POKEd' into memory by the BASIC section of

the program.

The machine-code merge program resides near the top of mem

ory. As the CBM operating system also uses this area to store

variables, we will have to protect the merge program in some way.

Here, the ever-friendly Commodore operating system comes to

our aid. By simply changing the value of 2 locations in memory,

we can lower the top of memory pointers by however much we

like. The CBM will then regard the address specified in these

locations as the new Top of Memory and ignore any memory

above that address, thus protecting the machine-code merge

program. Looking at the Commodore 64 program below, the two

locations are 55 and 56. Location 56 holds the Hi-byte address of

the top of memory and location 55 holds the LO-byte. Don't

worry, this is'nt as complicated as its sounds. By multiplying the

'peek' of location 56 (Hi-byte) by 256 and ADDING to it the value

in location 55 (LO-byte), we arrive at the memory location that is

the TOP OF MEMORY.

Now, every time we reduce the value in location 56 by ONE, we

lower the top of memory by 256 bytes (remember - 56 holds the

Hi-byte value). We'll forget about changing location 55 for the time

being - suffice to say that, by reducing value in 55 by ONE, the top

of memory will be lowered by 1 byte.

NOTE: THE ACTUAL MEMORY LOCATION SPECIFIED BY

THE ADDRESS IN 55 IS ALSO PROTECTED.

The statement lowering the Top of Memory pointers should always

be the FIRST statement in your program and the two 'pokes' must

be followed by a 'CLR' command as this instructs the operating

system to bring other memory pointers into line with the Top of

Memory pointers.

Anyway, back to the merge program. While the machine-code

program in the DATA statements is being POKEd into memory, a

running total of the values being POKEd is kept. Should the total

value of the DATA statements NOT equal that in line 140, the

program will be aborted with the message 'CHECKSUM ERROR'

meaning that you keyed in one (or more) of the data statements

incorrectly. If all goes well, a message on how to use the merge

program will be displayed and the BASIC program will be erased

by the 'NEW' command in line 175 (so ensure you've SAVEd the

program away before running it!). The machine-code merge

program will remain available for use until power-down or the top

of memory pointers are changed.

To merge two programs together proceed as follows:-

a) LOAD and RUN the Merge program listed below.

b) LOAD the first BASIC program into memory in the normal

manner;

c) Type SYS 32000, and press the RETURN key;

d) Type T in response to the prompt 'IS 1ST PROGRAM

LOADED?'

e) Type in the filename of the program you wish to merge with the

1st one you loaded and press RETURN. If you're using a Dual

disk drive, you should specify the drive number on which the

program resides as well (eg. 1 :PRGNAME);

f) The merge will then be performed.

If all goes well, the message 'MERGE OK' will appear on the screen

once the merge is completed and the complete merged program

will now reside in the computer's memory (whereupon you may

merge further programs into it if you wish by simply repeating the

steps from (b) through (d) above).

If an error is detected (eg: file not found, Read error, etc.), the

message 'MERGE ABORTED' will be printed on the screen.

NOTE: An important point to remember is that any line numbers

which are duplicated in the two programs being merged will cause

the line in the SECOND program to overwrite the line in the FIRST

program.

A useful feature of the merge program is its ability to merge

programs written on different models of Commodore computer

(this is normally impossible as BASIC programs are saved from

different addresses on the different models).

The Transactor S3 Volume 5, Issue 02

100 rem merge 4.0

110 poke 53, 125 : poke 52, 0 : clr

120 for j = 32000 to 32476 : read x

130 poke j, x : ch = ch + x : next

140 if ch <> 51230 then print "checksum error" : end

150 print " merge basic programs - basic 4.0

160 print " load the first program into ram

170 print " type sys 32000 and follow instructions

175 new :rem caution - save before running

180 data 169, 0,133,209,169,147, 32,210

190 data 255, 162, 0, 32, 79,126, 32,228

200 data 255, 201, 89,240, 7,201, 78,208

210 data 245, 76,255,179,162, 73, 32, 79

220 data 126, 32,207,255,201, 20,240, 18

230 data 201, 13,240, 14,166,209,224, 16

240 data 240, 231, 157, 131, 2,232, 134,209

250 data 208, 231, 166, 209, 240, 219,169, 44

260 data 157, 131, 2,232,169, 80,157,131

270 data 2,232,134,209,169, 13, 32,210

280 data 255, 169, 13, 133,210, 133,211, 169

290 data 8,133,212,169, 2,133,219,169

300 data 131, 133, 218, 32, 99,245,162, 13

310 data 32,175,247, 32, 57,126, 32, 57

320 data 126, 32,228,255,208, 24, 32,228

330 data 255, 208, 22,162,103, 32, 79,126

340 data 169, 13, 32,226,242, 32,204,255

350 data 32,233,181, 76,255,179, 32, 57

360 data 126, 32, 57,126,133, 17, 32, 57

370 data 126, 133, 18,160, 0, 32, 57,126

380 data 153, 0, 2,240, 3,200,208,245

390 data 200, 152, 24,105, 4,133, 5, 32

400 data 163, 181, 144, 68,160, 1,177, 92

410 data 133, 32,165, 42,133, 31,165, 93

420 data 133, 34,165, 92,136,241, 92, 24

430 data 101, 42,133, 42,133, 33,165, 43

440 data 105, 255, 133, 43,229, 93,170, 56

450 data 165, 92,229, 42,168,176, 3,232

460 data 198, 34, 24,101, 31,144, 3,198

470 data 32, 24,177, 31,145, 33,200,208

480 data 249, 230, 32,230, 34,202,208,242

490 data 32,255,181, 32,182,180, 24,165

500 data 42,133, 87,101, 5,133, 85,164

510 data 43,132, 88,144, 1,200,132, 86

520data 32, 80,179,165, 17,164, 18,141

530 data 254, 1,140,255, 1,165, 46,164

540 data 47,133, 42,132, 43,164, 5,136

550 data 185, 252, 1,145, 92,136, 16,248

560 data 32,255,181, 32,182,180, 76,113

570 data 125, 32,228,255,166,150,240, 13

580 data 32,204,255,162,114, 32, 79,126

590 data 104, 104, 76,128,125,170, 96,189

600 data 91,126,240, 6, 32,210,255,232

610 data 208,245, 96, 13, 13, 18, 71, 65

620 data 80, 32, 80, 82, 79, 71, 82, 65

630 data 77, 32, 77, 69, 82, 71, 69, 32

640 data 45. 32, 71, 65, 32, 80, 69, 65

650 data 82, 67, 69, 32, 45, 32, 56, 51

660 data 48. 53, 50, 50,146, 13, 13, 73

670 data 83. 32, 49, 83, 84, 32, 80, 82

680 data 79. 71, 82, 65, 77, 32, 76, 79

690 data 65. 68, 69, 68, 63, 32, 40, 89

700 data 47, 78, 41, 0, 13, 13, 68, 82

710 data 73, 86, 69, 35, 32, 38, 32, 50

720 data 78, 68, 32, 80, 82, 79, 71, 82

730 data 65, 77, 32, 78, 65, 77, 69, 63

740 data 32, 0, 13, 13, 77, 69, 82, 71

750 data 69, 32, 79, 75, 0, 13, 13, 77

760 data 69, 82, 71, 69, 32, 65, 66, 79

770 data 82. 84. 69, 68, 0

100 rem merge c64

110 poke 56, 125 : poke 55, 0 : clr

120 for j = 32000 to 32467 : read x

130 poke j, x : ch = ch + x : next

140 if ch <> 51230 then print" checksum error" : end

150 print " merge basic programs - commodore 64

160 print " load the first program into ram

170 print " type sys 32000 and follow instructions

175 new :rem caution - save before running

180 data 169, 0,133,183,169,147, 32,210

190 data 255, 162, 0, 32, 79,126, 32,228

200 data 255, 201, 89,240, 7,201, 78,208

210 data 245, 76,134,227,162, 73, 32, 79

220 data 126, 32,207,255,201, 20,240, 18

230 data 201, 13,240, 14.166,183,224, 16

240 data 240, 231, 157, 60. 3,232,134,183

250 data 208, 231, 166, 183,240,219, 169, 44

260 data 157, 60, 3,232,169, 80,157, 60

270 data 3,232,134,183,169, 13, 32,210

280 data 255, 169, 13, 133, 184, 133, 185, 169

290data 8,133,186,169, 3,133,188,169

300 data 60,133,187, 32,192,255,162, 13

310 data 32,198,255, 32, 57,126, 32, 57

320 data 126, 32,228,255,208, 24, 32,228

330 data 255, 208, 22,162, 94, 32, 79,126

340 data 169, 13, 32,195,255, 32,204,255

350 data 32, 89,166, 76,134,227, 32, 57

360 data 126, 32, 57,126,133, 20, 32, 57

370 data 126, 133, 21,160, 0, 32, 57,126

380 data 153, 0, 2, 240, 3, 200, 208, 245

390 data 200, 152, 24,105,- 4,133, 11, 32

400 data 19,166,144, 68,160, 1,177, 95

410 data 133, 35,165, 45,133, 34,165, 96

420 data 133, 37,165, 95,136,241, 95, 24

430 data 101, 45,133, 45,133, 36,165, 46

440 data 105, 255, 133, 46,229, 96,170, 56

450 data 165, 95,229, 45,168,176, 3,232

460 data 198, 37, 24,101, 34,144, 3,198

470 data 35, 24,177, 34,145, 36,200,208

480 data 249, 230, 35,230, 37,202,208,242

490 data 32, 99,166, 32, 51,165, 24,165

500 data 45,133, 90,101, 11,133, 88,164

510 data 46,132, 91,144, 1,200,132, 89

520data 32,184,163,165, 20,164, 21,141

530 data 254, 1,140,255, 1,165, 49,164

540 data 50,133, 45,132, 46,164, 11,136

550 data 185, 252, 1,145, 95,136, 16,248

560 data 32, 99,166, 32, 51,165, 76,113

570 data 125, 32,228,255,166,144,240, 13

580 data 32,204,255,162,105, 32, 79,126

590 data 104, 104, 76,128,125,170, 96,189

600 data 91,126,240, 6, 32,210,255,232

610 data 208,245, 96, 13, 13, 18, 71, 65

620 data 80, 32, 80, 82, 79, 71, 82, 65

630 data 77, 32, 77, 69, 82, 71, 69, 32

640 data 45, 32, 71, 65, 32, 80, 69, 65

650 data 82, 67, 69, 32, 45, 32, 56, 51

660 data 48, 53, 50, 50,146, 13, 13, 73

670 data 83, 32, 49, 83, 84, 32, 80, 82

680 data 79, 71, 82, 65, 77, 32, 76, 79

690 data 65, 68, 69, 68, 63, 32, 40, 89

700 data 47, 78, 41, 0, 13, 13, 50, 78

710 data 68, 32, 80, 82, 79, 71, 82, 65

720 data 77, 32, 78, 65, 77, 69, 63, 32

730 data 0, 13, 13, 77, 69, 82, 71, 69

740 data 32, 79, 75, 0, 13, 13, 77, 69

750 data 82, 71, 69, 32, 65, 66, 79, 82

760 data 84, 69, 68, 0

The Transactor 54 Volumes, Issue 02

An Introduction To Tools & Techniques Phil Honsinger

For Machine Language Programming Kitchener, Ont.

The special lure of writing machine language programs or

subroutines is the fantastic speed that can be attained in

program execution.

We can do things with machine language programs that

sometimes just cannot be done in BASIC. For example, I

have a digital music synthesizer keyboard hooked up to my

64 through the user port. I am using it for real-time playing

of music, but for the system to react fast enough to my

playing on the keyboard, I had to use machine language.

The BASIC prototype program would miss too many notes if

I played too fast.

Writing in machine language brings with it new problems of

program design and testing. Since we are operating at a

much more detailed level, we must make sure that we dot

our I's and cross our T's (so to speak) or the programs just

simply will not work. When there is a bug (a mistake) in a

machine language program, it can sometimes be VERY

difficult to find and correct, and the frustration of seeing

dawn appear, and your program STILL not working right, is

unbelievable.

Fear not, oh brave souls! There are many tools and tech

niques that can be borrowed from the professional program

mer's arsenal of tricks that will help us write code that is

more accurate from the start, and that will help us to find

and correct our bugs much faster. As a professional pro

grammer, I have many tricks-of-the-trade. Here are some

that we can use at home:

• reference manuals

• an ASSEMBLER program

• a MONITOR program

• structured programming and testing techniques

• other programs and programmers

Reference Manuals

The 64 uses a 6510 micro-processor chip that is functionally

equivalent to the 6502 chip, and there are lots of books on

the market for 6502 programming in machine language. If

you are an accomplished programmer and have worked

with machine language before, the books for you are the

more clinical 'this is how each instruction works' type of

book. If you are just starting out, then some of the books are

designed as a teaching tool that will step you through the

language and its syntax, with plenty of examples. You could

even steal programs from the books for (dare I mention it)

the APPLE (6502 chip again). The APPLE programs would

have to have addresses, etc. converted to 64'ese, and this

area is where a good reference book will be priceless. If you

can get the TRANSACTOR'S special reference issue (Vol. 4,

Issue 05) - everything you wanted to know, including a list

of Commodore related programming books.

An ASSEMBLER

An ASSEMBLER is actually another program that allows you

to develop the machine language programs in the symbolic

assembler language. The assembler will then translate the

symbolic program into the executable machine language

code that the 6510 chip understands. This abstractness is

what makes the assembler so valuable. You deal in the

higher level syntax, and this means the programs will be

easier to develop (and understand) and this translates into

faster program development.

I have been using the PROGRAMMER'S TOOLBOX from

PRO-LINE software. Among other things, this software

package has a very good assembler called PAL. After this

introduction I will go into more detail on Assemblers, or

more specifically, The Two-Pass Assembler.

The Transactor 55 Volume 5, Issue 02

A MONITOR Program

A MONITOR is another program that you will use for testing

your machine language programs. It allows you to interrupt

the execution of the machine language program at any point

and examine the 6510s registers, check memory locations

for proper results, and even manipulate data for the express

purposes of testing your application program. I have been

using Jim Butterfield's SUPERMON.

Structured Programming and Testing Techniques

This is a very big topic among data processing managers.

Programmers who use these techniques will develop pro

grams faster and more accurately than those who don't.

What is this mysterious subject, you ask? Well, simply put, it

is a way of thinking. You design your programs so that the

more general logic can be written and tested functionally

before you get deeper and deeper into the dark details of the

important processing. You can code and test file opening,

memory location initialization, or even a cursor positioning

routine as units that are somewhat "stand-alone". Once you

are satisfied that these units are working correctly on their

own, then they can be incorporated into the larger program,

and forgotten about until changes are required in these

functional areas. You could then re-test the unit with the

changes on its own, and/or back in the main program.

There are, of course, performance trade-offs to this kind of

programming. Subroutine calls require processing overhead

by the micro-processor, and you have to decide if the design

is appropriate to the application. A real-time, high speed

game would need as little code as possible to keep the

program reaction time to data changes as fast as required.

Other Programmers and Programs

Steal as much knowledge and experience as you can. Join

computer clubs, read books and mags (like The Transactor),

and experiment.

Above all don't forget to "SAVE OFTEN", and have fun.

The Two-Pass Assembler

Working directly with machine language code is a very

demanding and arduous task. All you have to work with is

hexadecimal numbers. To assist the programmer in generat

ing machine language programs, special programs called

ASSEMBLERS have been written.

An assembler is a program that accepts mnemonics and

parameters as input, and generates as output the machine

code program that the mnemonics represent.

The input coding is called the SOURCE code. It is the input

data to the assembler.

The output generated by the assembler is called the OBJECT

code. This is the machine language code that will actually be

executed at some later time. It is the actual machine lan

guage program that the source code symbolically repre

sents. There may also be additional output from the

assembler when it generates the object code, such as some

thing called a SYMBOL TABLE.

So as not to contradict its own purpose, the assembler is

usually another machine language program. Usually an

assembler will have been coded in it's own source code

format, so we can use one version of the assembler to

produce the next version (enhancements).

It is interesting to learn how an assembler actually generates

the object code from the source code, and that's the topic of

this part of the article. I will describe, in general terms,

something called a Two-Pass Assembler.

A Two-Pass Assembler does exactly that. . . two passes of

the source code. The first pass is used to build something

called the symbol table. The second pass uses the source

code and the symbol table generated in the first pass to

produce the final result. . . your object code.

The object code can be stored in many ways: directly in

memory (at the location that YOU tell it to); as a file on a disk

drive to be loaded in memory and executed later; or even

just to the printer for checking. The last option would be

used when you are in the design stage of a project. . . like

LISTing a BASIC program to your printer that you haven't

actually RUN yet.

Now for a quick description of what is contained in the

source code. . ..

OPCODES and OPERANDS (LDA #$00, for example)

(also called MNEMONICS and

PARAMETERS)

LABELS (to symbolically represent an

address or the location of an

instruction)

(same as in BASIC)COMMENTS

And special statements for the assembler run

The Transactor 56 Volume 5, Issue 02

The SYMBOL and INSTRUCTION TABLES are really the key

to the assembler's success. The SYMBOL TABLE is built

from the source code and the INSTRUCTION TABLE. The

first pass decodes each statement, and based on the known

length of the machine language instructions being gener

ated, creates entries in the symbol table with the symbol's

name, and its calculated address where it will appear in the

object code. The second pass of the source code by the

assembler takes any references to symbols (as a label, or in

the parameters) and inserts the corresponding value into the

actual object code generated.

~i ■

Symbol tables can be printed after the assembly has been

done, and are very useful in debugging a program, which

can be done from the source code, or from the object code

using a monitor (another special purpose program).

Here's a simple example:

lOO.OPTP.OO

110* = $C000

120 START = *

130LDA#00

140 STA POINTER

150 RTS

160 POINTER = $00FB

170 .END

This would produce a symbol table with 2 entries:

START $C000

POINTER $00FB

and would produce the object code as a string of 1 's and 0's,

which in hex notation would be:

B50095FB60

Related to addresses, it looks like :

$C000 B500 (LDA*00)

$C002 95FB (STA$00FB)

$C004 60 (RTS)

Running the program would load hex zero into location

$00FB and do a subroutine return.

The object code would be inserted directly into memory

starting at location $C000. The .OPT P,00 is a special

control statement that does not get translated into the object

code. Ditto with START = *, POINTER = $00FB, and the

statements starting with ; (comments only).

Pass one would have generated the SYMBOL TABLE. You

would not normally see anything happening at this time.

Pass two would display a listing of the assembled code, and

the object code.

The listing (or display on the screen) usually contains the

object code address for each of the source code statements,

along with the source code printed right beside its object

code values.

Each assembler will have different control statements and

assembly options, but they will usually all conform to the

same standards for the format of the actual source code

statements. At some point, you can optionally print the

SYMBOL TABLE.

When we are developing programs we will be working with

the source code and testing the object code, but after

development is completed only the object code is used. You

will, of course, keep the source code on file (a diskette,

maybe) so that future changes can be made to the program

just as easily as you created it in the first place.

The object code can be optionally stored on disk, and to run

this machine language program, you would load it, like any

BASIC program, and execute it. The only difference is

instead of 'RUN' you would enter the 'SYS' command fol

lowed by the program start address in decimal:

SYS 828

. .. tells the computer to begin executing a machine code

program that starts at location 828 decimal. Some Assem

blers have the facility to combine BASIC and ASSEMBLER

programs in the same source code file. Very handy! The SYS

command could be included with the object code so that

'RUN' would execute the 'SYS' which would execute the

machine code.

I hope this somewhat general article has helped you to

understand how an assembler works. If you are interested in

doing machine language programming, then buy an Assem

bler. . . you won't be sorry!!

The Transactor 57 Volume 5, Issue 02

Your BASIC Monitor Bob Drake

Brantford, Ont.

This first of 3 parts describes a monitor program, written in

BASIC, that performs most of the functions of a machine

language monitor such as TiNYMON. The second part will

implement a disassembler, and the third an assembler. The

programs are written for the Commodore 64. Modifications

for the VIC-20 are given. Changes for other computers

should be relatively minor as odd programming structures

are documented.

Why A Monitor In BASIC?

Many of the students I teach have problems with the

concepts of a low level language. What's a low level lan

guage you ask? BASIC is considered a 'high level' language

because it is very close to ordinary English. Words like

PRINT, TAB, FOR, NEXT are nice, simple, easy to under

stand words. Most high level languages (COBOL, LOGO,

FORTRAN) share this property. Some, like APL, don't. A

high level language does a lot of things for you automati

cally. PRINT "HI THERE" has the computer figure out what

the word PRINT means, what the quotes mean, set up a loop

and print the characters in order in the next locations on the

screen.

Low level languages (usually referred to as machine lan

guage (ML) or assembler) bear little resemblance to any

living language. If we work with numbers (A9, FF, 4C), in

base 16 (hexadecimal) we call that machine language or ML.

If we use 'assembler' then we get to work with neat words

like LDA, STA, DEC, ROL, ROR which are called mnemon

ics (noo-mon-iks (Greek for memory aid)).A program that

lets us write machine language in mnemonics is also called

an assembler.

I also find there are problems with the concepts and use of

PEEK and POKE. String handling is not much fun either.

The capper on all this is a monitor written in machine

language. There are monitor programs available for most

computers but the average student has an aversion to them.

This is a program they can't see (because it isn't written in a

language they can read, let alone see), don't understand and

which crashes for almost no reason at all. The BASIC

Monitor was written to try to solve some of these problems.

The program makes heavy use of some simple string tech

niques and peeks and pokes. A little simple disk and tape

filing is thrown in for good luck and completeness.

The program has several commands which correspond to

the commands as implemented on most monitors for Com

modore computers. All are accessed by single key presses.

The menu display is one I have used before to keep the

program commands on the screen. Pressing or holding

'RETURN' will erase the screen and bring back the menu.

Displaying Memory

Pressing 'M' for 'Memory' displays the contents of the

computer's RAM. This is a first look at the inside of a

program and machine language. I usually start teaching this

with something like:

for i = 2048 to 3000 : print peek(i),: next i

and we get a list of numbers. We're 'peeking' or looking into

those memory locations to see what's there. My favorite

spots to look begin (on the C64) at 1024 for the screen, 2048

for BASIC, and 58543 for the power up message. We also

type a lot entering that line again and again and again

and. . . so it makes sense to create a small program:

10 input "from" ;f

20 input" to " ;t

30 for i = f to t

40 print peek(i),

50 next i

and to clean up the presentation

10 input" from" ;f

20 input "to " ;t

30 for i = f to t step £

35 for s = 0 to 7

40 print peek(i + s);

45 next s

46 print

50 next i

The Transactor 58 Volume 5, Issue 02

Now we get a more or less 'normal' display. Not a terribly

neat display since the numbers may be one, two or three

digits long, but 'normal'. Normal means this is what you

usually get with a Commodore monitor program, eight bytes

or characters.

Thus 163 = $A3. Usually a dollar sign is written in front of

hex numbers. So 163 = $A3. Sometimes you will see hex

numbers written with an H preceding. So 163 = $A3 =

hA3. To do the conversion from decimal to hex on the

computer, I use a little subroutine.

I also like to show my students what those numbers mean. 110 h$= "0123456789abcdef'

So we add a line like:

44 print chr$(peek(i + s));

and better to control the printout,

44 print chr$(34) chr$(peek(i + s)) chr$(34);

CHR$(34) is the quote (") and keeps the display under

control when you hit a clear screen command or some other

screen command.

If you've followed me to here and tried this out you probably

have one awful screen display. Nasty things happen too.

Colours change; the screen clears; you get up and down

cursor movements. All sorts of horrible things happen. I've

even broken into the ML monitor on my PET doing this.

VERY nasty.

HEXADECIMAL

Let's clean up that display. First, we'll fix the numbers. As

humans, we use decimal arithmetic. That means we count

from 0 to 9 and then start reusing those symbols to form 10,

11 and so on. Probably we use decimal because we have ten

fingers. Most microcomputers use hexadecimal arithmetic.

They count from 0 to 15. (1 don't know what that says about

the number of fingers they have.) Now counting from 1 to 10

is easy. How the heck do we count from 0 to 15? You may

think all you do is count from 0 to 15 (I mean didn't I just do

that?) but the rules of numbering say you can only have one

symbol for each number in the base set. For example zero is

0, one is 1 and so on but 10 requires a zero and a one. We're

fine till we hit 10 through 15 and then we start reusing our

symbols. Well, to count rom 0 to 15 we need 16 symbols.

Zero through 9 are already okay. Now we only need 6 more.

The symbols usually used are A, B, C, D, E, and F. A is 10, B

is 11 and so on. F is 15.

The method of converting a number from 17 to 255 from

decimal to hex is simple. Divide by 16. The quotient is the

first digit, the remainder is the second. So. . . 163 becomes:

163/16 = 10 = $A

with a remainder of 3.

Ill by% = by/16 :rem quotient without decimal

112r = by-by%*16 :rem remainder

113 f$ = mid$(h$,by% + 1,1) :rem first hex digit

114 s$ = mid$(h$,r+ 1,1) :rem second digit

115by$ = f$ + s$:rem 2 digit hex number

Lines 111 to 115 can be condensed to:

7020 by$ = mid$(h$,by/16+1,1)

+ mid$(h$,by-int(by/16)*16+l,l)

H$ contains all the symbols for hex. The correct first digit is

found with the MID$(H$, BY% + 1,1). BY% includes an INT

function to get rid of the decimal after dividing. You need the

+1 because hex numbers start at zero and H$ doesn't have

a zeroeth character but does have a first character. We get

the second character the same way using the remainder.

These subroutines can be called directly from the monitor

by pressing C for Calculator. Enter a number and it is

converted to hex. If the number starts with either $ or h,

then the hex value it represents is converted to decimal.

Memory Display. . . Again

To fix up the string display, we have to remember that

certain peeked numbers will cause trouble. They are:

13 = $0D is a carriage return

20 = $14 is the delete character

34 = $22 is a quote

141 = $8D is a shifted carriage return

You can take care of the peeked values like this.

1150 t$= ""

1160 for s = 0to7

1170 by = peek(m + s)

1210 if by= 13 or by = 20 or by = 34 or by= 141 then by = 32

: rem convert to spaces

1220 t$ = t$ + chr$(by)

1230 next s

1240 print q$ t$ q$: rem q$ is a quote

T$ is a string of eight characters we build out of the peeks. It

is "nulled" or emptied in line 1150. BY is the value peeked.

The Transactor 59 Volume 5, Issue 02

Notice that 1210 changes the illegal characters to spaces and

1220 appends it to T$. Line 1240 prints the string between

quotes so that all the characters of T$ print.

Registers

The registers are memory locations in the CPU or central

processing unit that the computer uses for addition, count

ing, and transferring data. They are referred to on the 6500

series of chips as the accumulator (AC), the x register (XR),

the y register (YR) and the status register (SR). Commodore

makes it easy to look at these in the C64 and VIC 20. Copies

of their values are stored in locations 780 to 783. Just peek

them, convert to hexadecimal and print.

Poking Memory

Poking memory is sort of a first step to writing machine

language. Poking is the reverse of peeking. Instead of

looking at a spot in RAM and seeing what numbers are

there, you decide what numbers you want put into RAM and

poke puts them there. Those numbers can represent in

structions (like PRINT, only simpler) or data (like " HI

THERE"). At this level of the program you have to know the

numbers and what each does. You could for example say:

Put a 5 into the accumulator$A9 05 (169 5)

Add 2 $69 02(105 2)

Stop - return to BASIC $60 (96)

To do this poke 169,5,105,2,96 into 5 memory locations and

then run that program. The BASIC Monitor allows you to

poke the values in hex, the way they are normally listed and

run the program from the monitor. Just press P for POKE,

pick a spot to put your program ($33C is pretty good) and

enter bytes $A9 05 69 02 60 as your program and fill the rest

of the line with 00 (stop). You can run the program by

pressing G for GO.

Within the program, we can re-use our memory display to

see what is already in memory. When we poke values we

need them in decimal. The references you find for machine

language are in hex. We must convert hex to decimal. All we

do is take the first digit, multiply by 16 and add the second

digit. This subroutine is a little fancier than that. It accepts

hex numbers 1, 2,3, or 4 digits long. To make it work, I force

the hex number to be 4 digits long by adding "0000"

(leading zeros) then taking the four right hand characters.

Line 7440 looks at the number the computer assigns to the

first letter of the hex number. Line 7450 is the fancy line. It

converts this ASCII value to a number from 0 to 15 and

multiplies by the appropriate power of 16. The

+ 7*((ml>64)) is zero if ml>64 is false (i.e. ml represents a

number 0 to 9) and minus one if ml represents a letter (A to

7410m$ = right$("0000" +m$,4)

7420 m = 0

7430 for i=l to 4

7440 ml =asc(mid$(m$,i,l))

7450m = m + (ml-48 + 7*((ml>64)))*16t(4-i)

7460 next i

7470 return

SAVING And LOADING

The subroutines at 4000 and 4500 save a range of peeked

values as a tape or disk file. Disk errors are checked in lines

4800-4870.

GO

RUNning a machine language program from BASIC is easy.

Just type SYS (the same way you would type RUN) and the

address (location in memory) where your machine language

program starts. SYS is the ML equivalent of RUN, except

RUN will start with the first line of BASIC unless you specify

another (eg. RUN 100) - SYS will not default to an arbitrary

location, it must have an address specified. That's all the

subroutine at line 5000 does.

PRINTER

I wanted printer dumps of the memory peeks and registers.

The subroutine at 6000 and the PRINT*PR, in the routine at

line 1000 accomplish this in a simple manner. It's not

terribly fast, but it works easily.

That's pretty well it. You might try running this little pro

gram as well as the one given above. By the way, be sure to

check the registers in the one above to make sure you get

seven. Starting at $33C, poke values of 20 44 E5 60. You

should clear the screen on your C64. (Use 20 5F E5 60 on

your VIC 20). Press RETURN to get back to the menu.

The program listing follows. The command menu shows

selections that aren't available yet. Don't let that throw you.

In the next part of this article, we'll add the Disassembler

and after that the Assembler. Use the line numbers as

shown. If you don't, the additions and changes to come

won't fall into place. See you then!

The Transactor 60 Volume 5, Issue 02

100 rem basic monitor* copyright 1984 * r.drake*

free to copy-not to sell

101 rem * this program listing includes both the

commodore 64 and vie 20

102 rem * versions of the basic monitor program

103 rem * the overall program is that for the c64.

104 rem * changes for the vie are carefully notated within

the listing.

105 rem to enter the c64 version, just type in the listing ignoring

106 rem * lines referenced by vie*

107 rem * to enter the vie version, enter the replacement

lines as noted.

108 rem * line numbers on the first lines of changes

are important,

109 rem * second lines are not. do not enter lines 101-109

110 h$ = " 0123456789abcdef"

120 q$ = chr$(34): cr$ = chr$(13)

130 open 1,3 : rem screen

140 open 2,4 : rem printer

150 p = 1 :rem printer off

160 print "0";
170 print chrS(142) " Hbas-mon|5ijHrriEiemorv

HdlHisHaElssemble P jE»T< Sprinter"
180 print "HcfilalculatorQp|yoke||r|g|egisters

e|jx[2fii nTfiincic)ata"
181 rem vic*replace 170J80 with 182,183

182 print chr$(142) "HJm|jJem HdlflisHalflsmbl
HcilSlo HI Tsli m ; it■ ":

183 print " ncmalc yp|||oke []r||jeg eyxyjit

190 for i = 1 to 40 :rem vic*use 22 for 40

200 print ; :rem shift-*

210 next i

220 r$= "xmrpslg*c"

230r = len(r$)

240 get a$

250 if a$ = " |§1" or a$ = cr$ then goto 160
260 if a$ = mid$(r$,r,1) then goto 300

270 r = r-1

280 if r = 0 then goto 230

290 goto 260

300 if r<>1 then 350

310 close 1

320 close 2

330 print "Dend"
340 end

350 on r gosub 0,1000,2000,3000,4000,

4140,5000,6000,7500

360 fl = 0

370 goto 230

1000 rem memory

1010 print "fldisDlay memory"
1020 print" hold flshiffJQ to pause: ||return|3 to stop"
1021 rem vic*replace line 1020 with line 1022

1022 print" hold flshift0 to pause HJreturn0 to stop"
1030 gosub 4280

1040ifK = fthent = f + 7

1050 if K0 or K0 or f>65535 or O65535 then 1260

1060 for m = f tot step 8

1070 for pr=1 top

1080 n = m

1090 gosub 7030:rem convert to hex

1100 print#pr, by$":";

1110 t$ = " "

1120 for s = 0to7

1130 by = peek(m + s)

1140 gosub 7000:rem 2 digit hex

1150print#pr, by$ " ";

1151 rem vie*replace 1150 with 1152,1153

1152 if s/2 = int(s/2)then print"fl" ;:if pr = 2 then printJpr," ";
1153 print#pr, by$; "0";
1160 if by = 13 or by = 141 or by = 20 or by = 34 then by = 32

1170t$ = t$ + chr$(by)

1171 if s<>7 then t$ = t$ + " " :rem vic*add this fine

1180 next s

1190 print#pr, qtq$:rem vic*print#pr," " q$tq:rem4

spaces

1200 next pr

1210 if peek(653) then 1210 :rem look for shift key

1220 geta$:if aOcrthen 1250 :rem look for return key

1230 m = t

1240 goto 1250

1250 next m

1255 if m>t then get a$: if a$<"" then 1255

1260 return

2000 rem registers

2010 print" fldisplay registers"
2020 for pr = 1 top

2030 for m = 0 to 3

2040 by = peek(m + 780): rem not available on pet

2050 gosub 7000

2060 print#pr,mid$(" ac:xr:yr:sr:" ,m*3 +1,3)by$,

2070 next m

2080 print#pr

2090 next pr

2100 return

3000 rem poke memory

3010 print" flpoke memory"
3020 j = 0

3030 print

3040 input"from ";m$

3050 gosub 7120

3060 f = m

3070t=f+7

3080 print

3090 gosub 1060

3100 for k = 0 to 7

3110 input "| 0byte" ;m$:rem vic*use 3 up cursors
3120printtab(5 + k*2 + k);"fl" m$;"|3 ";
3121 rem vic*replace 3120 with 3122, 3123

3122 if k/2Oint(k/2)then print "fl";
3123 print tab(5 + k*2);m$;

3130 print :rem vic*print chr$(13);

3140 gosub 7120

3150pokef + k,m

3160 next k

3170 input" more y[3 lefts]" ;a$

3180 if a$<>" y" then return

3190 f = f+ 8

3200 print "E 3
3210 goto 3070

4000 rem save

4010 print "flsave"
4020 s$ = " w"

4030 gosub 4280: iff=-1 then goto 4130

4040 gosub 4380 : if fi$ = "" then goto 4130

The Transactor 61 Volume 5, Issue 02

4050 open3,dv,2,fi$

4060 gosub 4460

4070 print#3,f;cr$;t;cr$;

4080 for i = f tot

4090print#3,peek(i)cr$;

4100 next i

4110fl = 1

4120 gosub 4460

4130 return

4140 rem load

4150 print "Hload"
4160s$= "r"

4170 gosub 4380

4180open3,dv,2,fi$

4190 gosub 4460

4200 input#3,f,t

4210 for i = f tot

4220 input#3,a

4230 poke i,a

4240 next i

4250 fl = 1

4260 gosub 4460

4270 return

4280 rem from-to

4290 input"from ";m$

4300 gosub 7120

4310f = m

4320 orint"BI"..
4330 input"to";m$

4340 gosub 7120

4350 t = m

4360 if f<0 or t<0 or f>65535 or t>65535 then

print"Rvalues out of range" :f = -1
4370 return

4380 rem file name & device

4390 dvS -■ " " : input"m3ape orHd0isk" ;dv$
4400 fi$ = "" : dv = 1 -7*(dv$ = " d"): if dv$ = "" then 4420

4410 input "file name ";fi$

4420 if fi$ = "" then print" aborted" : return

4430 if len(fi$)>16 then fi$ = left$(fi$, 16)

4440 if dv = 8 then fi$ = " 0:" + fi$ + " ,s," + s$

4450 return

4460 rem disk status

4470 if fl = 0 then open 4,8,15

4480input#4,b$,b$

4490 print "disk status: " b$

4500 if fI = 0 then return

4510close3

4520 close4

4530 return

4540 stop

5000 rem go

5010 print" Qrun ml program"
5020 input" address" ;m$

5030 gosub 7120

5040 input" are you sure" ;a$

5050 if a$ = '\" then sys m

5060 print "ydone

5070 return

6000 rem printer

6010 if p = 1 then 6050

6020 p = 1

6030 print "Hprinter off"

The Transactor

6040 goto 6070

6050 p = 2

6060 print "flprinter on"
6070 return

7000 rem 2 digit dec to hex

7010 by$ = mid$(h$,by/16 + 1,1)

+ mid$(h$,by-int(by/16)*16 + 1,1)

7020 return

7030 rem 4 digit dec to hex

7040 by$ = ""

7050n = n/4096

7060 for i = 1 to 4

7070 n% = n

7080 by$ = by$ + chr$(n% + 55 + 7*(n%<10))

7090n = (n-n°/o)*16

7100 next i

7110 return

7120 rem hex to dec

7130 m$ = right$(" 0000" +m$,4)

7140m = 0

7150 for i = 1 to 4

7160 ml =asc(mid$(m$,i,1))

7170 m = m + (ml -48 + 7*((m1 >64)))*16t(4-i)

7180 next i

7190 return

7500 rem calculator

7510 print

7520 input" number" ;n$

7530 if left$(n$,1)= "$" or left$(n$,1)= "h" then 7580

7540n = val(n$)

7550 gosub 7030

7560 print "0",,"$" by$: rem vie* print tab(7) "$" by$
7570 goto 7610

7580m$ = mid$(n$,2)

7590 gosub 7120

7600 print " Q |".,m :rem vie* print tab(8) m
7610 return

62 Volume 5, Issue 02

Finding PI Experimentally

Michael Bertrand holds an MA in Mathematics from the

University of Wisconsin. Here he presents anew approach to

that age old puzzler.

Computers have opened up the possibility of doing experi

mental mathematics. Suppose, for example, we wish to

know the area of a circle of radius one. Fit the circle snugly

inside a square of side two (see figure 1). Paste this picture to

the wall and randomly throw darts at it, making sure that

they always fall inside the square (but not necessarily the

circle — a few darts will land in the corners outside the

circle). We expect the proportion of darts landing inside the

circle to equal approximately the ratio of the area of the

circle to the area of the square. That is:

Michael Bertrand

Madison, WI

100 for i = 1 ton:gosub200

110 if ut2 + vt2 < 1 then c = c +1

120 nextkend

200 gosub300 : u = s : gosub300 : v = s

210 return

300s = 197*s: s = s-int(s)

310 return

* darts falling inside circle _ area of circle

total * of darts thrown area of square

Now the area of the square = 22 = 4, so:

area of circle = 4 * * °^ ^arts ^a^'n? inside circle
total * of darts thrown

Two French mathematicians, the Comte de Buffon

(1707-1788) and Pierre Laplace (1749-1827), were the first

to discuss problems like this. Intrepid experimenters took

up the challenge over the years with mixed results. With a

computer, however, the physical experiment can be simu

lated with random numbers. And unless you can throw 90

darts per second, the computer does it faster.

Now the area of a circle of radius one is pi*I2 = pi — in fact

this could serve as the definition of pi. Thus finding the area

of a circle is identical to finding the value of pi.

Programming this experiment is facilitated by concentrating

on the upper right hand quarter of figure 1 — see figure 2.

The analysis for figure 2 is similar to that above, since we

have scaled down both circle and square by a factor of 4.

Thus:

pi = 4 *(area of quarter circle)

_ 4 t# of darts falling in qtr circle

total * of darts thrown

In our computer experiment the "darts" are of course just

random numbers. If s = an initial seed value between 0 and

1, and n = the number of trials, then the following BASIC

program performs the experiment n times:

Subroutine 300-310 is a random number generator — I

don't trust Commodore's. Keep in mind that a point (u,v) in

the unit square is within the quarter circle if and only if u2 +

v2 < 1 - this is line 110 - and the "hits" are counted by

variable C.

This works fine, but is slow — about 7 trials per second. I

rewrote the program in machine language on the Commo

dore 8032, improving run time by a factor of 13 (about 90

trials per second). My strategy must be identical to BASIC'S,

since the machine language gives the same result as the

above BASIC program every time. I depend heavily on the

floating point accumulator ROM routines for numerical

operations, as BASIC does. The actual value of pi, correct to

7 decimal places, is 3.141592. Here are the results of the

program for a seed value of s = .49032371:

1,000,000

1,000

10,000

100,000

1,000,000

approximation

of pi

3.128

3.1332

3.13572

3.140852

variance from

actual value

-.01359

-.00839

-.00587

-.00074

If we knew the radius of the earth and the last value here

were used for pi in the formula:

circumference = 2*pi*radius,

then the value given for the earth's circumference would be

off by less than 6 miles.

Running experiments is not a very efficient way of calculat

ing pi compared to evaluating power series expansions. My

purpose is rather to present an understandable example of

computer simulation, or what is aptly called the "Monte

Carlo" method. The technique is of great value when alter-

The Transactor 63 Volume 5, Issue 02

native analytical methods are unknown or prohibitively

difficult.

Following is a short annotation of the ml program:

$033c-0340: floating point work area

0341-0345: temporary storage of (random value)2

0346-034a: 197 in floating point format: (136,69,0,0,0)

decimal

034b-034f: 1 in floating point format: (129,0,0,0,0) deci

mal

0350-0352: total# of trials (n) in 3-byte format — ie, base

256

0353-0355: * of "hits" in 3-byte format — ie, base 256

0356-037b: subroutine to put new random value in $033c

and (random value)2 in fpacc#l

037c-03d6: main routine to do comparison n times and

count "hits"

The bit of code at $03cd-03d3 allows interruption of ml

execution by pressing the up arrow ($5e ASCII). I find this

invaluable in debugging ml programs. It doesn't hurt in the

final version either: additional run time is minimal, and

program execution can be resumed from BASIC with

"goto 180" since all necessary values are saved.

This program shows how to put BASIC'S floating point ROM

routines to work without BASIC'S overhead. Run time is

generally improved by factors of 12 to 15. If this is what you

need for number-crunching applications, then check out

those floating point ROMs.

Figure 1.

I!
v

■V

i

Figure 2.

The Transactor 64 Volume 5, Issue 02

10 rsm **

15 rem * *

20 rem * * pi program — calculates pi experimentally. *

25 rem * machine language depends heavily on the *

30 rem * floating point accumulator rom routines. *

35 rem* BASIC 4.0 ONLY

40 rem * * press the up arrow to interrupt ml execution - *

45 rem * execution can be continued with'gotol 80'. *

50 rem * *

55 rem * * data/prg at $033c-$03d6 (828-982 dec) *

60 rem * *

65 rem * + + + + by michael bertrand + + + + *

70 rem * *

75 rem ***

80:

90 print "Q";
100 input " number of trials" ;n : print

102 if n>l6777215 then print" * of trials must be < 16777216" :print:goto 100

110 input " seed (between 0 and 1)" ;s : print

112 if s< = 0 ors>=l then print "seed must be between 0 and 1 ":print:gotollO

120 m = 828:gosub200 :rem * puts seed, in fp format, into (828,829,. . .)

130 s.= 197:m = 838:gosub200 :rem * puts 197, in fp format, into (838, 839,. . .)

140s=l:m = 843:gosub200 :rem * puts 1, in fp format, into (843, 844,. . .)

144nl = n-l:d3 = int(nl/65536):nl=nl-d3*65536:d2 = int(nl/256):dl=nl-d2*256

148 poke 848, d3 : poke 849, d2 : poke 850, dl

170 for i = 851 to 982 : read x : ch = ch + x

175 poke i, x : next: if chOl 3424 then print " data error" : end

180sys892

184c = 65536*peek(851) + 256*peek(852) + peek(853)

188 print " approximation of pi= " 4*c/n : print: end

192 :

194 rem * subroutine 200-230 puts real number s,

196 rem * in floating point format, into memory

198 rem * locations [m,m+ l,m + 2,m + 3,m + 4]

200 e = int(log(s)/log(2)): p(0)= 129 + e

210p = (s/2te-l)*128:p(l) = int(p):r = p-p(l)

220 for i = 2 to 4 : p = r*256 : p(i) = int(p): r=p-p(i): next i

230 for i = 0 to 4 : poke m + i, p(i): next i: return

232:

300 data 0, 0, 0,169, 60,160, 3, 32,216,204,169

310 data 70,160, 3, 32, 94,203, 32, 66,205, 32, 2

320 data 206, 32,137,201,162, 60,160, 3, 32, 10,205

330 data 169, 60,160, 3, 32, 94,203, 96, 32, 86, 3

340 data 162, 65,160, 3, 32, 10,205, 32, 86, 3,169

350data 65,160, 3, 32,157,201,169, 75,160, 3, 32

360 data 145, 205, 201,255, 208, 19,238, 85, 3,173, 85

370 data 3,208, 11,238, 84, 3,173, 84, 3,208, 3

380 data 238, 83, 3,173, 82, 3, 72,206, 82, 3,104

390 data 208, 21,173, 81, 3, 72,206, 81, 3,104,208

400data 11,173, 80, 3, 72,206, 80, 3,104,208, 1

410 data 96, 32,228,255,201, 94,240,248, 76,124, 3

The Transactor 65 Volume 5, Issue 02

Translating a BASIC Program Chris Zamara

Into Machine Language Downsview, Ont.

Did you ever write a nifty and clever game in BASIC, only to

discover that once you added all the features you wanted,

the game was no fun to play because it was too slow? Did

you then vow that 'someday' you'd write that program in

machine language, putting it off indefinitely, because, while

understanding the basics of machine language, you didn't

know where to start? Well, if you are in a similar predica

ment with any sort of BASIC program, fear not: it can

sometimes be very easy to translate a program into machine

language, or at least use machine language subroutines to

speed things up. Read on and see how the humble little

BASIC program in Listing 1 went on to become the machine

language program in Listing 3. While you're at it, try typing

the programs in on your Commodore 64. They graphically

illustrate some physical laws of motion, and can be fun to

play around with.

Using the BASIC interpreter built into the C64 is an excellent

way to develop a program. Programs are easy to enter,

modify, and de-bug. Many programs can be used in their

final form as BASIC code, but for real-time simulations or

similar applications, BASIC just isn't fast enough. When this

is the case, we have to go to machine language, or at least

use one or more machine language subroutines with the

BASIC code.

Even if you plan on using machine language right from the

beginning, it is usually convenient to use BASIC to get the

logic of the program working right, and then 'translate' the

BASIC program into machine language. Many people are

familiar with the basic concepts of machine language, but

fear the jump from the world of BASIC, intimidated by

machine language's lack of floating-point variables, multi

ply and divide functions, etc. Fortunately, you can usually

get around the above limitations, without using routines

from ROM, and without writing lengthy subroutines. The

kind of program that requires the speed of machine lan

guage is usually a simple computer model, or simulation, of

some kind (such as a game). Such a program lends itself well

to machine language, and can usually be written using

simple integer operations, or using table-lookups for com

plex functions.

Rocket Simulator Example Conversion

To illustrate conversion of a BASIC program to machine

language, I will use the relatively short program "ROCKET"

in Listing 1. This program simulates the acceleration of a

rocket (represented by a sprite) under the influence of its

engines (pushing it up), and gravity (pulling it down). When

the program is running, pressing the space bar turns the

rocket's engines on, and releasing it cuts them. The rocket

accelerates as it would under these conditions, neglecting

wind resistance. The rocket's thrust and the strength of

gravity are variable. Further, this program has a few extras,

allowing you to try to land the craft without crashing (the

minimum crash velocity is also adjustable). To change any

of the three parameters displayed at the top of the screen

while the program is running, press BREAK, change the

values to whatever you want, then press RETURN. Note that

at faster rocket speeds, the sprite's movement is somewhat

jerky. This is because the sprite is moving more than one

line at a time, to make it move faster. To make the sprite

move just as quickly, but only one line at a time for smooth

motion, we have to go to machine language.

Before we start translating the program to machine lan

guage, an explanation of how it works: First the program

loads sprite definitions for the ship, two types of engine

flames, and the 'crash' shape into sprite pages 200-203 (you

can define your own sprites, or type in the program in listing

The Transactor 66 Volume 5, Issue 02

2 to create the sprite definition file. If you are the impatient

type, delete line 190 and don't bother with the sprite

definition for now: your 'rocket' will look funny, but the

program will still work). Then some sprite parameters are

POKEd into the VIC II video chip. The main program loop

begins at line 410. The variable 'VELOCITY' is the speed of

the rocket, and actually indicates how many Y values will be

skipped on each movement of the sprite. Each time through

the loop, 'GRAVITY' is added to this variable, and if the

space bar is pressed, 'THRUST' (the strength of the rocket's

engines) is subtracted from it. GRAVITY AND THRUST

remain constant unless manually changed by first stopping

the program. The rocket's 'flames' are also turned on and

flickered if the space bar is pressed: the flame sprite is

enabled, and the two flame shapes alternately selected. The

variable 'VELOCITY' is then added to the Y position of the

sprite, and 'Y' is stored in the sprite's Y register. The flame's

■Y register is also updated (20 units below the rocket).

Additional logic stops the ship at the top and bottom of the

screen, and indicates a crash or eood landing. These extra

features will not be incorporated in our machine language

translation, but left as an exercise for the ambitious reader.

Translating the first part of the program, setting up the sprite

parameters (lines 210-280 in Listing 1) is no problem.

POKEs are replaced by LDAs and STAs. This is done in lines

320-440 in the assembler program of Listing 3.1 decided to

add sound effects for the blasting of the rocket's engine in

the machine language version, so a few SID chip parameters

are set up in lines 460-520. So far, so good, but now comes

the hard part. How do we deal with the variables?

The main variables used to simulate the rocket's motion are

THRUST, GRAVITY, VELOCITY, and Y. In the BASIC pro

gram, these variables are floating point, and assume frac

tional values. How do we handle this in machine language?

Well, the easiest thing to do is to use large integers for all

calculations (we can use more than one byte for a single

variable), and then divide Y down by a large amount to get

the sprite's Y value, which must be between 0 and 255. Did I

say divide? In machine language? Egad! Actually, we can

divide by powers of 2 very easily, just by shifting a byte

(using LSR or ROR) right one or more times. But if we are

using two bytes to store a value (two bytes is a word), it's

even easier if we want to divide by 256. All we have to do is

use the most significant byte. For example, if 'Y' (called

'ROCKY' in the machine language program) is stored as a

word, the first byte in the word is the least significant byte,

and the next byte is the most significant byte. The most

significant byte increases by 1 when the least significant

byte generates a carry, i.e. it gets bigger than 255. If we use

the most significant byte as the Y value for the sprite, we

have effectively divided the variable 'ROCKY' by 256. This is

the way I wrote the original version of the program, using a

word to store the abovementioned variables.

The variables increased so quickly, though, that a very long

delay was needed each time through the loop to keep the

rocket's speed reasonable. The sprite's Y value ended up

being increased by more than one unit at a time, so I

decided to use three bytes per variable. In lines 210-240 of

Listing 3, you can see three bytes allocated to the important

variables. Now, when we use the most significant byte of

'ROCKY', we are actually dividing the variable by 65,536!

This gives us very good accuracy, and even at very high

rocket velocities, the sprite only moves one line at a time.

What about negative values? We certainly need negative

values in this program, since the velocity is positive when

the rocket is going down, and negative when rising. Luckily

for us, the 6502 deals with numbers represented in two's

complement form, so that we can represent negative values.

In two's complement, a negative value always has its most

significant bit (MSB) set. Using a single byte variable as an

example, negative 1 is represented by 255, negative 2 by

254, etc. Inverting all bits in a byte and adding 1 will make a

negative number positive, or a positive number negative. In

this way, a byte can hold values from -128 to +127. Two

bytes can store values from -32768 to +32767, and three

bytes, what we are using in this program, can store values

from around minus to plus 8.4 million. Thus, no special

code has to be written to deal with negative values; we can

simply add and subtract numbers freely, regardless of their

sign.

To add or subtract these three byte variables, we have to add

one byte at a time. For example, see lines 640-740 in Listing

3 where gravity is added to velocity. When an addition is

performed in the 6502 via the ADC instruction, the value of

the carry flag is always added to the result (ADC is an

acronym for ADd with Carry). The reason for this will

become apparent. Before adding the least significant bytes

of the variables together, we clear the carry flag with the CLC

instruction. The addition is then performed, in this case

storing the result back into 'VELOCITY'. If the result of this

addition causes a carry past the most significant bit, the

carry flag will be set. Thus, when we add the next most

significant byte of the variables (without clearing the carry

flag first), the carry will be added in. Likewise for the final,

most significant byte. We could add together any number of

bytes in this manner, representing huge integer values, or

very accurate floating point values.

Now that the basics of how to handle the main variables

have been determined, let's translate the actual code. Keep

in mind that this will be a very 'loose' translation: the

The Transactor 67 Volume 5, Issue 02

sequence of some events may be mixed up, some features

will be added, others dropped. Added will be the rocket

engine sound effects. Dropped will be Y value range check

ing, so that in the machine language version, the rocket will

come up through the bottom of the screen after it exits the

top, and vice versa.

The main loop in the BASIC program (Listing 1) is in lines

410-520. This translates to the main loop in the assembler

listing (Listing 3), lines 580-1290. The BASIC statement,

VELOCITY = VELOCITY + GRAVITY translates to the code

in lines 640-740 of Listing 3. In line 760, the keyboard is

checked, and if the Fl key is pressed, the program returns to

BASIC with an RTS. This is so that thrust and gravity values

can be changed if desired. If the space bar is not pressed, the

thrust portion of code is skipped. This is equivalent to line

440 in the BASIC listing,

IF PEEK(KEYBD)OSPACE THEN 480.

In the BASIC program, three things happen in the thrust

portion of code, which is executed if the space bar is

pressed. First, thrust is subtracted from velocity, then the

flames is flickered by switching it's shape, and finally, the

flame sprite is enabled in line 470. Moving to the assembler

listing, the flame is turned on and flickered in lines 810-860.

The sound for the flame is also turned on by gating voice 1

in lines 870 and 880. Finally, thrust is subtracted from

velocity in lines 900-1000. Note that when subtracting

multi-byte variables, the carry flag is first set with the SEC

instruction. If the space bar is not pressed, the flame is

turned off, the sound disabled, and some time wasted so that

the loop takes the same amount of time whether the space

bar is pressed or not. This latter feature, implemented in

lines 1091 and 1100, is to prevent the rocket from going

slower than it should when the space bar is pressed.

Next in the BASIC program, velocity is added to Y. This is

done in lines 1150-1240 of the assembler listing.

The final code in the BASIC program loop is the Y value

range checking: the rocket is stopped at the top of the

screen, and if it hits the bottom, either a crash or a good

landing is indicated. These features are not implemented in

the mai'iine language version, so that you can add them

yourself as an exercise, if you like.

The last thing in the machine language version's main loop

is a delay. Even though the variable 'ROCKY' has to reach

65,536 before the sprite moves just one line, the rocket

moves too quickly, even with very low values of gravity and

thrust! This gives an idea of how much speed we gain by

going to machine language. The delay, in lines 1260-1280,

wastes about 1100 cycles, or about 1 ms.

Well, there you have the translated program, written in

assembler. If you wish to see the program in action, you can

type in the source and assemble it, or if you don't have an

assembler you can enter and RUN the BASIC loader pro

gram in Listing 4. The new machine language version is

slightly different from the BASIC one, but it handles the

rocket's acceleration in the same way.

What about changing gravity and thrust? Well, if you recall,

pressing the Fl key causes a return to BASIC from the

program. We might as well use BASIC to accept new values,

POKE them into the correct addresses, and re-execute the

machine language program. Since speed isn't critical when

it comes to entering the values, it's better to use BASIC,

since we can more easily change the prompts, and we don't

have to call INPUT routines from machine language. The

short BASIC program in listing 5, when run with the ma

chine language code in memory (at $C000), will do the trick

quite nicely. To change thrust and gravity parameters while

you're flying the rocket, just press Fl, and reply to the

prompts that appear on the screen. If you later want to

change values again, the original values remain on the

screen to be modified, kept, or changed entirely.

A few additional tips for converting more complex pro

grams, while still keeping the machine language fairly

simple:

1) If you need to multiply a variable by a constant, write a

specific purpose multiply routine, eg. a routine that multi

plies a given variable by 40. A multiply by 40 could be

accomplished quickly by shifting the variable left 5 times

(with ASL or ROL) to multiply it by 32, then storing that

value and shifting the original variable left 3 times to

multiply it by 8. Adding these two results will give the

number multiplied by 40.

2) Complex functions, such as SIN, COS, etc. can often be

looked up in a table. A table of 256 SIN values ranging from

-128 to +127 could be stored in memory beforehand by a

BASIC program, and looked up as needed. This technique

can also be used for multiplication or division by a constant,

where the range of multipliers is known, and reasonably

small.

Now that you have a few tricks under your belt, go to it!

Convert that nifty game to machine language and watch it

fly. You might also want to use some of the code from

'ROCKET' as the basis for another program: maybe make

the ship rotate, thrust in the X direction, fire, add some

landscape on the bottom of the screen. . .

The Transactor 68 Volume 5, Issue 02

Listing 1

100 goto 190

120* "ROCKET" *

130* simulates a rocket under *

140* influence of thrust and gravity *

150* use space bar to thrust; break *

160 * program to change parameters *

170* *

i ftn

185 rem * delete line 190 if using

186 rem * cassette.

190 fl = not fl : if fl then load " rocket.sprt" ,8,1

:rem * load sprite shape definitions *

200:

210 rem* sprite/variable initialization

220 vic= 13*4096

230 poke vie+ 21, 1 : rem * enable sprite 0

240 poke 2040, 200 : rem * rocket shape

250 poke vie, 150 : rem * x coordinate

260 poke vic + 39, 1 : poke vic + 40, 1

270 poke vic + 2, 150 : poke vic + 3, 255

280 poke vie + 41,7 : poke vie + 42,8

290 keybd= 197: space = 60

300 bottm = 229 : rem * bottom of screen

310 gravity = .5 : thrust =1.4: crash = 5

320:

330 rem * take-off initialization *

340 y = bottm : velocity = 0

350 poke vie + l,y

360 print "@gravity= "gravity" : thrust = "thrust"
: crash = " crash " : cont"

370 get g$: if g$<>" "then 370

380 poke 2040, 200

400:

410 : rem ** main loop **

420 velocity = velocity + gravity

430 poke vie+ 21, 1 : rem * turn off flame

440 if peek(keybd)Ospace then 480

450 : velocity = velocity-thrust

460 : fl = not fl: poke 2041, 202-fl

470 : poke vie + 21, 3 : rem * turn on flame

480 y = y + velocity

490 if y>bottm then y = bottm : if velocity>0 then 560

500 if y<50 then y = 50 : velocity = 0

510 poke vic+ 1, y : poke vic + 3, y + 20

520 goto420

540:

550 rem * crash or good landing *

560 poke 198, 0 : rem * clear kbd buffer *

570 poke vie + 1, bottm

580 if velocity>crash then poke2040, 201 : goto340

: rem * drawexplosion *

590 print "| ||***good landing !***"
600 for delay = 1 to 800 : next delay

610 print "0" : poke 198, 0 : goto 340

The Transactor

Listing 2

100 rem *

1 1 ("I ram *
I I U I cl 11 *

120 rem *

* create sprites for " rocket"

• II Uoll ly a udo

* of diskdrive:

130 rem goto 230

140 rem *

150 rem *

160 rem *

170 open'

1 PD nrint#

3CLIC; II IOLCC1U

also, if using cassette, this

program must

executing the

,8,12, "0
-I .^hrcr/ru

be run before

nain rocket program

rocket.sprt,p,w

I OU fjl II IITT I , ui n vi;^wyL*i n <v\

190 for i = 0 to 1 stepO

200 read e

210 close'

220:

230 rem *

240 for i =

250 read i

1000 data

1010 data

1020 data

1030 data

1040 data

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

1110 data

1120 data

1130 data

1140 data

1150 data

1160 data

1170 data

1180 data

1190 data

1200 data

1210 data

1220 data

1230 data

1240 data

1250 data

1260 data

1270 data

1280 data

1290 data

1300 data

1310 data

1320 data

1330 data

1340 data

1350 data

1360 data

1370 data

1380 data

1390 data

1400 data

1410 data

1420 data

1430 data

69

i: if a> = (

: end

Dther print#1, chr$(a); : next i

cassette version starts here *

12800 to

i: poke i,

0, 16

0, 56

0, 124

0, 68

0, 108

0, 108

0, 124

1,255

1,255

1, 187

1, 1

0, 0

4, 0

0, 16

96, 4

2, 1

241, 24

248, 0

0, 112

128, 0

198, 49

238, 0

255, 0

187, 192

147, 128

199, 0

199, 0

110, 0

109, 0

56, 0

16, 0

16, 0

0, 56

1,215

1,211

0,206

0, 120

0, 172

1, 36

0, 144

0, 0

0, 0

0, 0

-1

13056

a : next i: end

0

0

0

0

0

0

0

0

0

0

0

0

0

8

72

0

3

247

59

127

241

0

3

3

1

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0, 56

0, 124

0, 124

0, 116

0, 108

0, 124

0,254

1,255

1,215

1, 1

0, 0

0, 0

8, 0

48, 8

192, 2

4, 0

216, 12

0, 0

0, 0

192, 16

199, 17

124, 0

215,128

147, 128

211, 64

199, 0

71, 64

109, 0

41, 0

56, 0

16, 0

0, 0

0,254

1,199

0,199

0,238

0, 112

1, 132

1, 96

0, 16

0, 0

0, 0

0, 64

0

0

0

0

0

0

0

0

0

0

0

10

8

8

0

1

6

246

63

251

225

1

3

1

1

0

0

0

0

0

0

0

0

128

0

0

0

0

0

0

0

0

0

Volume 5, Issue 02

Listing 3

100 sys700 : rem written on pal 64

110;

120; "ROCKET"

130 simulates a rocket under the

140 influence of thrust and gravity.

150 ;press space to thrust, f1 to

160 ;change thrust and gravity.

170;

180 .opt n,oo

190*=$c000

200 jmp start

210 thrust .byte 14,0,0

220 gravity .byte 5,0,0

230 velocity .byte 0,0,0

240 rocky .byte 0,0,100

250 flame .byte 202 ;flame shape pointr

260sprty =$d001

270 vie =$d000

280 sid =$d400

290sound = $d412

300keybd = 197

310 start =*

320 ;sprite set-up stuff

330 Ida #1

340 sta vie + 21 : sta vie + 39

350 Ida #7: sta vie+ 40

360 Ida #200 : sta 2040

370 Ida #150

380 sta vie : sta vie + 2

390 Ida #100 : sta vie+1

400 Ida #120: sta vie+ 3

410 Ida #0

420 sta vie +16 : sta vie + 23

430 sta vie + 29 : sta vie + 28

440 sta 53281 : sta 53280

450;

460 ;sound set-up stuff

470 Ida #15: sta sid+ 24

480 Ida #0: sta sid+ 14

490 Ida #4: sta sid+ 15

500 Ida #9*16 + 10: sta sid +19 ;a/d

510 Ida #11*16 + 8 : stasid + 20 ;s/r

520 Ida #128 : stasid + 18 ;ungate

530;

540;

550 Ida #0 : sta velocity

560 sta velocity +1 : sta velocity + 2

570;

580 loop =*

590 Ida rocky + 2 ;use msd of ship's y

600 sta sprty ;pos'n as sprite y coord

610clc:adc#20

620 sta sprty + 2 ;flame's y co-ord.

630;

640 ;add gravity to velocity

650 clc

660 Ida velocity

670 adc gravity

680 sta velocity

690 Ida velocity +1

700 adc gravity +1

The Transactor 70

710 sta velocity+1

720 Ida velocity+ 2

730 adc gravity+ 2

740 sta velocity+ 2

750;

760 Ida keybd

770cmp#4 ;checkforf1 key

780 beq exit

790 emp #60 ;check for space

800 bne nospace

810 Ida #3

820 sta vic + 21 ;turn on "flame"

830 Ida flame

840 eor #1

850 sta flame ;make flame flicker

860 sta 2041

870 Ida #129

880 sta sound ;turn on sound

890;

900 ;subtract thrust from velocity

910 sec

920 Ida velocity

930 sbc thrust

940 sta velocity

950 Ida velocity+1

960 sbc thrust+1

970 sta velocity+1

980 Ida velocity+ 2

990 sbc thrust+ 2

1000 sta velocity+ 2

1010;

1020 jmp spedone

1030 nospace =*

1040 Ida #1

1050 sta vic + 21 ;turn off flame

1060 Ida #128

1070 sta sound ;turn off sound

1080 ;waste time to equalize loop time

1090 ;whether space pressed or not

1091 Idy #10

1100 waste dey : bne waste

1110;

1120spedone =*

1130;

1140 ;add velocity to y position

1150 clc

1160 Ida rocky

1170 adc velocity

1180 sta rocky

1190 Ida rocky+ 1

1200 adc velocity+1

1210 sta rocky+ 1

1220 Ida rocky+ 2

1230 adc velocity+ 2

1240 sta rocky + 2

1250;

1260 ;delay (loop 100 times)

1270 Idy #100

1280 td dey : nop : nop : nop : bne td

1290 jmp loop

1300;

1310 exit rts

1320 .end

Volume 5, Issue 02

Listing 4

100 rem * data

110:

120cs = 0

130 os = 49152

140:

oaderfor "ROCKET" *

: rem * checksum

: rem * object start

150 read b : if b<0 then 180

160 cs = cs + b

170 poke os, b

180:

os = os + 1 : goto150

190 if cs<>31815 then print" * checksum error *

200:

240 end

1000 data 76,

1010 data 5,

1020 data 0,

1030 data 141,

1040 data 169,

1050 data 200,

1060 data 141,

1070 data 169,

1080 data 120,

1090 data 141,

1100 data 141,

1110 data 141,

1120 data 169,

1130 data 0,

1140 data 141,

1150 data 19,

1160 data 212,

1170 data 169,

1180 data 10,

1190 data 14,

1200 data 105,

1210 data 173,

1220 data 141,

1230 data 109,

1240 data 173

1250 data 141

1260 data 4

1270 data 52

1280 data 173

1290 data 15,

1300 data 129,

1310 data 9

1320 data 9,

1330 data 4

1340 data 11

1350 data 11

1360 data 1,

1370 data 141,

1380 data 208,

1390 data 109,

1400 data 173,

1410 data 141,

1420 data 109,

1430 data 160,

1440 data 208,

1450 data -1

16,192, 14, 0, 0

0, 0, 0, 0, 0

0,100,202,169, 1

21,208,141, 39,208

7,141, 40,208,169

141,248, 7,169,150

0,208,141, 2,208

100,141, 1,208,169

141, 3,208,169, 0

16,208,141, 23,208

29,208,141, 28,208

33,208,141, 32,208

15,141, 24,212,169

141, 14,212,169, 4

15,212, 169, 154, 141

212,169,184,141, 20

169,128,141, 18,212

0,141, 9,192,141

192,141, 11,192,173

192,141, 1,208, 24

20,141, 3,208, 24

9,192,109, 6,192

9,192,173, 10,192

7,192,141, 10,192

11,192,109, 8,192

11, 192,165, 197,201

240,110,201, 60,208

169, 3,141, 21,208

15,192, 73, 1,141

192,141,249, 7,169

141, 18,212, 56,173

192,237, 3,192,141

192,173, 10,192,237

192,141, 10,192,173

192,237, 5,192,141

192, 76,230,192,169

141, 21,208,169,128

18,212,160, 10,136

253, 24,173, 12,192

9,192,141, 12,192

13,192,109, 10,192

13,192,173, 14,192

11,192,141, 14,192

100, 136,234,234,234

250, 76,113,192, 96

Listing 5

100 rem * basic code for rocket program

110 rem * machine language rocket routine

120 rem * starts at $c000 (49152)

130:

140 p = 49152 : print"S"

141 rem * for cassette use, delete

142 rem * line 145 and first run the

143 rem * sprite create program

145 if peekM 2801)016 then load "rocket.sprt" ,8,1

150 print" @press space to thrust,"
160 print" press f1 to change thrust and gravity"

170sys(p)

180 poke 198^* clear kbd buffer *

190 mput "E5BBEEBBI^uus|" ;*n
200 input"gravity";gr

210 poke p +3, th and 255 : poke p + 4, th/256

220 poke p + 6, gr and 255 : poke p + 7, gr/256

230 goto 150

The Transactor 71 Volume 5, Issue 02

A Few Of The Stranger

6502 Op Codes Explained

Richard Evers

For a large percentage of assembly language programmers, most of

the 6502 instruction set is never actually used. Instructions like

LDA, STA, INC, DEC, BEQ, BNE, JMP, JSR are usually all that are

required for most applications. What I want to do today is go

beyond these instructions and advance into the lesser known, or

lesser understood op codes to try to shed some light on their

workings.

The Carry Flag

Let's start off a little slow. The term CARRY is used quite often

within most machine code programs. ADC - add with carry, SBC -

subtract with carry, SEC - set the carry flag, CLC - clear the carry

flag, BCS - branch on carry flag set, and BCC - branch on carry flag

clear, are all of the instructions that fit into this category.

Carry is a flag that is set to one (on) when an arithmetic operation

takes place in which the result generated goes beyond the 8 bit

maximum limit. Before an addition, carry has to be cleared with a

CLC, so we can later tell if we have exceeded the 8 bit maximum.

When the carry flag has been set, the op code BCS - branch on

carry set, will always succeed. On the other hand, the instruction

BCC, branch on carry clear, will always succeed if the arithmetic

operation has not gone past the 8 bit limit and carry is clear.

Before a subtraction operation is performed, the carry flag has to

be set. This is due to the fact that if your resulting value is less than

zero, which is beyond the 8 bit realm, the carry flag will be cleared,

and a test can be made of this condition with the BCC - branch on

carry clear, instruction.

Branching

A little note to slip in before we go much further. Confusion seems

to run rampant about how a branch actually works. Below is a very

useless program to demonstrate how a branch instruction calcu

lates the address to go to when you branch forward or backwards.

027a here = *

027a b8 civ

027b 50 03 bvc everywhere ;branch forward to

'everywhere'

027d there = *

027d b8 civ

027e 70 fa bvshere

0280 everywhere = *

0280 b8 civ

0281 50 fa bvc there

;branch backwards to 'here'

;branch backwards to here

As you can see from the program above, a branch forward uses the

next address after the branch line as location $00, and increments

the location from there until the branch destination has been

reached. A branch backwards works the same only in the opposite

direction. The branch offset itself is considered as location $FF,

and is decremented from that point backwards until the destina

tion is reached. The maximum branch in any direction is $80

characters, or a full page between the two directions. Beyond this

you must use a JMP instruction.

The Overflow Flag

Our next condition to cover is the overflow flag. In this category

are BVS - branch on overflow flag set, BVC - branch on overflow

flag clear, and CLV - clear overflow flag. The overflow flag will be

set when an arithmetic calculation exceeds 7 bits in magnitude.

During signed bit arithmetic operations within the 6502, positive

numbers are stored in true binary, with negative numbers stored

in twos compliment binary. Two's compliment rrieans that all the

bits but bit zero are reversed. A value of + 7 = %0000 0111 where

a value of -7 = % 1111 1001. The high bit is used to signify the sign

of the value. When an addition operation exceeds +127, the high

bit will be set, thus making it now appear to be a negative number.

If tested for, overflow would flag that a sign correction routine

should be called. Essentially, the overflow flag works just like the

carry flag except carry is set when a calculation exceeds 255,

overflow is set when a calculation exceeds 127.

The overflow flag can also be set externally from a pin on the

microprocessor chip. It's not an interrupt so you must anticipate

activity on this pin, therefore it's rarely used this way. But it's very

fast, much faster than an interrupt where you must save your

registers before actually servicing the interrupt. Commodore disk

drives use this pin to signal 'data ready' from the read/write head.

The BIT instruction is another one that alters the OVERFLOW flag.

BIT will be covered later in this article.

The Zero Flag

BEQ - branch if equal to zero (result true), and BNE - branch if not

equal to zero (result false). What do these mean to you? These

instructions use the Z (zero) flag to test if the last operation

performed was equalno zero or not. If you were to load the

accumulator with 255, then compare it to 40, they would not be

equal to each other. In this operation, the Z flag would be set to

zero to signify that the test failed, or the result was false. The

instruction BEQ would fail where BNE would succeed.

Consider a simple loop routine as shown below. CPX (or CPY if you

had used the Y register) is not required to test for 'Not Equal'. BEQ

and BNE test the result of the last operation performed.

ldx#0

loop inc $8000, x

inx

bne loop

The Transactor 72 Volume 5, Issue 02

No actual comparison was made, but the branch will succeed until

the X register returns to a zero value. As 1 mentioned earlier, BEQ

and BNE test the results of the last operation performed. This can

sometimes give rather unexpected results, so the Compare op

codes do have purpose too.

The Negative Flag

Two more branches for your contemplation. BPL - branch if plus

(negative flag set to zero), and BMI - branch on minus (negative

flag is set to one). Both of these are very handy at times when a test

to determine the actual values of characters encountered is re

quired. Take for example the little bit of code below:

loop jsr $ffe4 ;get a character from the keyboard

beq loop ;if no key pressed, go back to try again

sec

sbc #48 ;ascii zero

bmi loop ;was below an ascii one

sbc*3

bpl loop ;was above an ascii three

* followed by your code that uses the value between 1 and 3 *

In this example, the test does a very good job of allowing you to

pick and choose precisely what want from the keyboard.

Decimal Mode

Enough of the branches, lets get into further arithmetic instruc

tions. SED - set the decimal flag, and CLD - clear the decimal flag,

refer to a mode that will allow you to utilize BCD, binary coded

decimal form of arithmetic calculations. In this mode, each nybble

of a byte holds a single decimal number, that is 0 through 9. A full

byte can have a value up to 99 decimal. ADC, SBC, BCC and BCS

all work in the same way with this mode of operation, with carry

being set if decimal 99 is exceeded. As before, carry has to be set

before subtraction, and cleared before addition.

This mode of operation is not one in which Commodore have

made great strides in using to any advantage. When your machine

is first powered up, a CLD instruction is executed to ensure that all

arithmetic calculations are performed in regular binary. On en

trance into the machine language monitor, the decimal flag is also

set to zero, as an added incentive to avoid the BCD blues. As it

stands, not a single BASIC routine takes advantage of BCD.

Perhaps in a future version of CBM BASIC, BCD will finally be

used.

Stack Operations

The next instructions just crying for a little explanation are : PHA -

push the accumulator onto the stack, PLA - pull the accumulator

from the stack, PHP - push the processor status onto the stack,

PLP - pull the processor status from the stack, TSX - transfer the

stack pointer to the X register and TXS - transfer the X register to

the stack pointer. Except for TSX and TXS, these instructions are

used to either get characters from the stack, or store characters on

the stack. Quite often, before execution of a machine language

program, the current state of the computer should be saved for

future use. Below is a quick routine to demonstrate a method to

save everything for future retrieval:

php ;push the processor status onto the stack

pha ;push the contents of the accumulator onto the stack

tya transfer contents of y reg into the accumulator

pha

txa transfer contents of x reg into the accumulator

pha

tsx

txa

pha

transfer the stack point to the x register

;transfer contents of x reg into the accumulator

As you probably know, the stack is a 256 byte area in RAM held at

$0100 hex to $01 ff. The trick is that it is used for much more than

most can comprehend. That small block of RAM seerns to be the

centre of attraction for almost all of the computers functions. Not

only is the stack responsible for holding return addresses for

various functions, but it is also used for most of BASIC'S arithmetic

calculations.

Further, hundreds of currently available machine language pro

grams make use of the stack in some pretty un-orthodox ways.

Some of the most ingenious methods of program protection known

to date make use of the stack as a special hideaway spot for tricky

bits of code to trap the unwary hacker. Unless you are in the mood

for some pretty hairy protection techniques, stay away from this

one. For the balance of masochists in our reading audience, plow

ahead and create your own versions of the spiral of death, as one

particular technique has come to be known. Challenges like this

seem to make life more interesting.

Boolean Operations

And now, time for a bit of boolean fun. In our boolean lunchbox

we have : AND - and memory with the accumulator, ORA - or

memory with the accumulator and EOR - do an exclusive or of

memory and the accumulator.

For a lot of the examples in the rest of the article, 1 will be referring

to values in binary format. The reason for this will soon become

apparent.

AND

The diagram below shows exactly how this instruction operates.

accum. 1001 0110/150 decimal

AND 1101 1101 / 221 decimal

result 1001 0100/148 decimal

To AND a value with another, you simply match bits up and

determine which ones matched. The rule is:

AND: result is true if one AND the other

The bits that were ON in both values remain ON, the balance are

set OFF. In this way, if you wanted to keep a certain calculation

within your boundaries, you would AND the result with the

highest value that you want. The result can be worth less or equal

to the ANDed value, but cannot exceed it.

The Transactor 73 Volume 5, Issue 02

OR

Again, the diagram below will show its operation.

accum. 1001 0110 / 150 decimal

OR 1101 1101/221 decimal

result 1101 1111 / 223 decimal

When you OR a value with another, every corresponding bit that is

turned ON in either value is left ON in the final result. The rule:

OR: result is true if one OR the other

In this way you can stop a value from dropping below what you

want. OR the value with the lowest value you want and the result

will always be equal or higher.

For all of you that can remember back a few issues, a couple

articles appeared that mentioned a technique of OR'ing the charac

ters read from disk files with 64 to help stop the rude temptations

of pseudo control characters. If you were to directly read in the

contents of a program file, and print those contents to your screen,

every now and then a character will sneak in with the sole purpose

in life to make your days on earth difficult. Those characters

attempt to make you believe that they are control characters, and

set out in their task of clearing you screen, setting windows and

doing other equally rotten things. A quick OR with 64 will rob

these imposters of their power and knock them back down into the

ranks of the others. A pretty long winded way to say how not to let

the value drop below 64 decimal.

EOR

The next, and last, boolean operator is really a mixture of numer

ous boolean logic circles, and will take a little bit longer to explain.

As before, lets break it down into binary for the explanation

accum. 1001 0110/150 decimal

EOR 1101 1101 / 221 decimal

result 0100 1011 / 75 decimal

One step further will show that EOR is incredibly powerful to use

result 0100 1011 / 75 decimal (result from above EOR)

EOR 1101 1101 / 221 decimal (previous EOR value)

accum. 1001 0110/ 150 decimal (original accum. content)

As the above diagrams have shown, EOR will perform a bit flip

operation. The rule here is:

EOR: result is true if one OR the other,

but not both

Each pair of bits that do not match are turned ON, pairs that do

match are turned OFF. If a pair contained two l's or two 0's, then

they would be turned OFF. If the pair contained 1 and 0, or 0 and 1,

the result would be ON. When an EOR is performed again with the

same original value, the bits would be returned to their prior state.

The cursor is a good example of EOR in effect.

One particularly useful method of using EOR is in the encryption

of data within programs. If you wanted to have a password access

system for your program, but didn't want anyone to be able to read

the passwords, EOR them with a known variable before storing

them away. When you read them back, EOR them with the same

value again to un-encrypt them for usage. As long as the EOR

variable is kept secret, the passwords are pretty secure. A little

imagination at this point will help you design a very difficult

encryption system to break. As I said before, EOR is very useful.

Bit Shifters

And now, away from boolean logic and into stranger bit beating for

the enthusiastic programmer. Into this category I include ASL -

shift memory or accumulator one bit to the left, LSR - shift

memory or accumulator one bit to the right, ROL - rotate memory

or accumulator and the carry flag one bit left, and ROR - rotate

memory or accumulator and the carry flag right one bit. Each a

pretty valuable instruction, and each worthy of some explanation.

ASL: Shift memory or accumulator one bit to the left,

accum. 1001 0110/150 decimal

After an ASL, the result would be 0010 1100, or 44 decimal with

the carry flag set. The carry flag being set represents the result

exceeding 255. Therefore the result of this operation = 44 + 256

= 300, or double the original value. Thus we now have a way to

multiply by two from within assembly code.

LSR: Shift memory or accumulator one bit to the right,

accum. 1001 0110 / 150 decimal

After a LSR, the result would be 0100 1011, or 75 decimal with the

carry flag clear. This allows division by ywo in machine code. If bit

zero was originally ON, carry would be set after the operation to

signify that a fraction was encountered. Therefore, if the accumula

tor content was 0110 0101 before the operation (101 decimal), after

a LSR the bit structure would be 0011 0010 with carry set, which is

equal to 50 plus carry, or 50 with a remainder.

ROL: Rotate memory or accumulator and carry one bit left.

As the name implies, this operation is a rotate, not a shift. ROL

rotates the bits around in a circle in a counter clockwise direction.

As usual, lets start with the accumulator holding the value below,

but show carry as the left most bit of 9 bits. To start, carry is clear.

Carry Accumulator (start)

0 10010110 = 150 decimal with carry clear

After a ROL, the result would look like this:

Carry Accumulator (result)

1 0010 1100 = 44 decimal with carry set or 300 decimal

As can be seen, ROL is similar to an ASL, but with a difference. The

most significant bit becomes the current carry status, and the prior

carry status becomes the least significant bit. Used in conjunction

with ASL, some really heavy duty multiplication can be pre

formed. By ROL'ing everytime ASL generates carry, you could

The Transactor 74 Volume 5, Issue 02

double the original value, then repeatedly double the result each

time. By stringing multiple ROL's together, calculations of unbe

lievable length can be achieved.

ROR: Rotate memory or accumulator and carry one bit right.

By now you probably know what this one can do for you. As ROL

was similar to ASL, ROR is similar to LSR with the added advan

tage of rotating the carry bit along with the rest.

As can be expected, ROR will rotate all the bits in a clockwise

direction moving the low bit into carry, and the carry bit into the

high bit. A binary value of 960110 0101 with carry clear would

become 960011 0010 with carry set after a ROR is executed.

Below is a program to demonstrate how ROR can be used for

multiplication of two 8 bit numbers to generate a 16 bit result.

Below that is another demonstration program, this time for divi

sion of a sixteen bit number by an eight bit number generating an

eight bit result. This example uses the ROL instruction to produce

its expected result.

; *** let's multiply 87 * 16 ***

027a a9 57 Ida *96O1O1O111 ;87 decimal

027c 85 fb sta loval

027e a9 10 Ida #%00010000 ;16 decimal

0280 85 fc sta hival

0282 a2 08 ldx *8

0284 a9 00 Ida #%00000000 ;zero

0286 18 clc

0287 loop = *

0287 6a ror a

0288 66 fb ror loval

028a 90 03 bcc spot

028c 18 clc

028d 65 fc adc hival

028f spot = *

028f ca dex

0290 10 f5 bpl loop

0292 85 fc sta hival

0294 60 rts

The 16 bit result can be found in locations $fb + $fc (low byte/

high byte)

; *** divide 31587 by 227 ***

; 31587 = 960111 1011 01100011

027a a9 63 Ida #%01100011 ;low byte of

027c 85 59 sta loval ;16 bit value

027e a9 7b Ida *%01111011 ;high byte of

0280 85 5a sta hival ;16 bit value

0282 a9 e3 Ida *227 ;divided by

0284 85 5b sta by ;8 bit value

0286 a2 08 ldx #8

0288 a5 5a Ida hival

028a 18 clc

028b loop = *

028b 26 59 rol loval

028d

028e

0290

0292

0294

0294

0296

0297

0297

0298

029a

029c

029e

2a

bO

c5

90

04

5b

03

spot =

e5

38

5b

rol

bcs

a

spot

cmpby

bcc

sbc

sec

nextspot =

ca

dO

26

85

60

fl

59

5a

dex

nextspot

by

*

bne loop

rol

sta

rts

loval

hival

The 8 bit result can be found in $59 with the remainder in $5a.

Testing Memory and 'Hiding' Code

Our last instruction for today is the BIT instruction. BIT is really

rather strange, to say the least, for it does not alter memory in any

way, it just changes three of the processor register flags.

The three flags involved are the Z - zero flag, V - overflow, and N -

negation. The zero flag is set if the boolean expression accumula

tor AND memory fails, or the zero flag is clear if accumulator AND

memory succeeds. Bit 6 of the memory location of the BIT

operation is transferred into the V flag, and bit 7 of the memory

location is transferred into the N flag. BIT is a pretty good way to

test if bit seven has been set in a specific memory location, or bit

six if that is more to your liking. What ever the case, it really does

have its good points.

There is one more interesting use for BIT, if you are at all interested

in program protection. As Jim Butterfield and a host of thousands

have already pointed out, an absolute BIT op code before a LDA

instruction helps hide load instructions quite nicely. When disas

sembled, the code might look like:

027a 24 a5 77 bit $77a5

027d 48 pha

027e 20 95 02 jsr $0295

But in reality the code was written with this in mind:

100 * = $027a

110 .byte $24 ;bitopcode

115 Ida $77 ;get the low byte of basic from chrget

120 pha

125 jsr $0295 ;and do something else for a while

To enter this code, location $027a is bypassed and location $027b

is chosen instead. This different location of entry will ensure that

the code is used correctly.

There are probably more instructions that you are unfamiliar with

but, for today, thats all I intend to cover. If you really don't

understand a particular instruction, send us a letter and we'll

attempt to answer it in one of our future issues. If we receive

mountains of questions, perhaps another article like this one will

hit the pages of Transactor again. 'Till later, thanks for allowing me

to climb inside your mind and jiggle your bits about.

The Transactor 75 Volume 5, Issue 02

Getting BASIC

To Communicate

With Your Machine Code

Darren Spruyt

Gravenhurst, Ont.

There are several ways of communicating to your ML

program from BASIC and I wish to outline what I think are

the most common, and best-liked. The first method is by

the USR command, It allows one to pass a single variable

into the floating point accumulator* 1. Second is the POKE/

SYS method, in which you POKE values into memory, and

then your code loads the values back from memory. Thirdly,

the SYS/WEDGE method, which allows about 10-15 pa

rameters to be passed by using the CHRGET pointer. And

finally, the variable/sys method which allows an infinite

(realistically about 5428) amount of parameters to be

passed. I have tried to have information for three machines

- 64/VIC/PET-CBM - the information for the 64 is directly

stated, the PET/CBM info is in square brackets '[]', while

the VIC info is in backslashes '//'.

The POKE Method

The POKE method is quite simple and straight-forward.

There are two options we can use with the POKE format.

One involves a memory location (or several) which we write

data into from BASIC, and later, read back from our assem

bly code. The other just involves POKES from BASIC.

The first option involves POKEing a value to a location from

BASIC and then retrieving it from ML with a LDA, LDY or

LDX command, e.g POKE 8192,100/LDA $2000. Of course

the hex address used with the LDA, LDX, or LDY command

must match the value given in the POKE command, i.e.

$2000 is hex for 8192.

This method is simple and easy to use. It has a few draw

backs: it is code consuming in BASIC if more than one

parameter is to be passed; and to transfer large numbers, the

number must be broken into smaller byte-sized pieces and

is realistically limited to integer values. To transfer a value of

'X' in two byte unsigned arithmetic (range 0-65535) would

require two pokes:

POKE ADD,INT(X/256):POKE ADD+ l,X-INT(X/256)*256

where ADD = memory location to POKE to and X is the

value to be transferred.

The latter option may be slightly easier to use, but only 3

parameters can be passed with a range of 0-255 and it only

works on the C-64. In the 64 there are three locations in

page 3. These are locations 780, 781 and 782. The first is for

the accumulator, the second for the X-register and the last

for the Y-register.

If we POKE a value of 128 in the location for the accumula

tor, and zero in the others we can demonstrate the effect.

Code in memory somewhere a BRK command. Location

$4000 is a good place. . . and SYS to it:

poke 780, 128 : poke 781, 0 : poke 782, 0

poke 16284, 0 : sys 16384

(You will need a machine language monitor program in

stalled first, like Supermon64, to get the proper reaction) If

we now look at the register display (the info that comes up

when a BRK is executed) we will see that the accumulator

(ac) holds a value of $80 (hex for 128) and both X (xr) and Y

(yr) will be 0. With this we can see that values POKEd into

780, 781, and 782 appear in the respective registers when

control is transferred to an ML program. So we have an

easier way to transfer 3 parameters (range of 0-255).

We can also set what the processor status register will be the

instant that control is transferred to our program. We do this

by POKEing 783 with the correct value to set whatever flags

we wish to have set. One note: When our ML program

terminates with a RTS, the values that are in the accumula

tor, X-reg and Y-reg and the status register are then placed

back into the same memory locations mentioned above so

we can then examine them with a PEEK command.

The Transactor 76 Volume 5, Issue 02

The USR Method

The USR method uses one of BASIC'S lesser known and

used commands: USR. An illustration:

A = USR(100)

The value of 100 is placed into the Floating Point Accumula

tor *\ (FPACC*l-this is a group of 6 bytes in zero page in

which BASIC performs all of its arithmetic operations) for

your program to work on and when an RTS instruction is

encountered from your code, the current value that is in

FPACC#1 is then placed in the variable 'A' and control is

returned to BASIC.

Unlike SYS, USR has no starting address indicated in its

format. However, the starting address in specified in the

USR jmp vector: $0310-784 ($0000-0002) [$0000-0002].

The first byte of each is the jump opcode JMP or $4C. The

next two bytes are the destination in the standard 6502

format, destination lo and hi respectively. Here is an exam

ple of a computed-GOTO routine:

$2000 jsr $b7f7 [$c92d]/$d7f7/ -.convert FPACC#1 to in

teger

$2003 jsr $a613 [$b5a3]/$c613/;search for line

$2006 bcs $200b ;carry set if found

$2008 jmp$a8e3 [$bf00]/$c8e3/;undefn'd statement

$200B pla ;remove calling address

put on stack

$200C pla ;by the 'USR' routine

$200D jmp $a8c5 [$b850y$c8c5/ ;cont GOTO routine

Note: This routine does not return FPACC#1 into the varia

ble because we do not return control to the USR ROM

routine, instead we return control to the GOTO routine.

Before this code can be executed, The USR vector must be

pointed to it. This entails:

poke 785, 0 : poke 786, 32 (poke 1,0: poke 2, 32)

[poke 1,0: poke 2, 32]

This is just an idea of what can be done with it, however it

can be used to do anything you might require of it eg. data

transfers through user port/RS-232 or many other applica

tions.

This last and simple program using the USR function just

multiplies the given value by 10.

$2000 jsr $bae2 [$ccl8]/$dae2/;multiply FPACC#1 by

10

$2003 rts ;end of routine

We set the USR destination by using the above POKEs, and

whenever we call it, it will return a value multiplied by 10.

e.g. PRINT USR(115) will result in '1150' being printed.

The Wedge Technique

This technique requires some basic knowledge of the

CHRGET routine. This routine @ $0073 on VIC/64 and @

$0070 on PET/CBM is a routine that is called everytime

BASIC needs the next character in a program to execute.

Inside this routine is a pointer ($7A)-64/VIC and

($77)-PET/CBM that points at all times to the most recent

character fetched from BASIC text space.

Consider a program with a line such as '10 SYS

49152:GOTO 1000'. As control is transferred to our ML

program, the CHRGET pointer is left pointing to the next

character to be taken from BASIC code, in this example the

colon ':'. The pointer is not changed while our program is

executing, but we can change it by calling some ROM

routines, and being able to do this can be very advantageous

to us.

Maybe you have seen a program with an SYS like this :'SYS

49152,lo,hi', this program uses the wedge technique for the

ML program to obtain the two parameters that follow the

SYS.

In the example immediately abovee, the CHRGET pointer

will be left pointing to the comma (,). We can test for a

comma by calling JSR $AEFF [$BEF5-PET/CBM]

/$CEFF-VIC/. If the comma is present, control will return to

us and the CHRGET pointer will be increased by 1; other

wise 7SYNTAX ERROR' will result. The next step would be

to call the routine evaluate expression at $AD9E [$BD98]

/CD9E/, this will leave the type of expression in $0D [$07]

/$0D/ . A value of $00 means a numeric result, while a

value of $FF means it is alphanumeric or string. The

numeric value would be left in FPACC#1, while a string

value would occupy three bytes, pointed to by an indirect

pointer at ($64) [($61)] and /($64)/. The order of these bytes

are: length of the string, the low-byte of the address and the

high-byte of the address of the string.

Once we have copied the information that we needed i.e.

string length, destination lo and hi, we must then clean the

'descriptor stack.' We do this by the following code: LDA

$64/LDY $65/JSR $B6DB. If we do not do this, we may

eventually have a 'FORMULA TOO COMPLEX' error. No-

te:this is only needed when working with strings.

Listing 4 shows us how to retrieve a floating-point variable,

where the syntax for calling this routine is 'SYS8192;EXP'

where 'EXP' is a numeric expression. Listing 5 is an example

of crunching out an integer value from the expression:

The Transactor 77 Volume 5, Issue 02

syntax for this one is the same as above, but the allowable

range is 0-65535. Listing 6 retrieves a single byte value

(0-255) and prints it. Listing 7 is a psuedo POKE routine,

where syntax is 'SYS8192;ADD,VAL' where ADD is the

memory location to be POKEd to, and VAL is the value to be

put there (0-255). Finally, Listing 8 will display a string

expression using the wedge technique. If we wanted to

transfer about six variables, we can alternate between the

'check for comma' and the 'evaluate expression' routines.

The Variable Method

BASIC, in storing variables (simple, not arrays), uses seven

bytes for each variable. The first two are the name and the

next five are used differently for the different types. As more

variables get defined, BASIC keeps adding them to a table

that it keeps in memory, the start of this table is pointed to

by ($2D) [($2A)] /($2D)/ and the end is pointed to by ($2F)

[($2C)] /($2F)/. Lets examine the first two bytes represent

ing the name.

There are two bytes used, and BASIC only recognizes the

first two characters of a variable. Now you say 'How does

BASIC then tell a two character string variable from a two

character floating-point variable?' e.g. AA$ from AA. We

know that the first character of a variable is a letter and that

the second character can be either a letter or number. BASIC

stores the variables' names using the PETSCII character

value, but with a twist.

In the PETSCII range that the characters occupy, the MSB

(Most Significant BIT) is never touched since letters occupy

the range of 65-93 ($41-$5A; 96O1OOOOO1 - %01011010)

and numbers occupy 48-57 ($30-$39; 9600110000 -

%00111001). In both ranges, the MSB (bit 7) is never

touched. BASIC uses the MSB, in both character positions,

to represent the four types of variables (string,

floating-point, integer and functions). Table 1 represents

this idea.

Table 1

Type

F-P

INT

STR

FNCT

MSB-lstchar

0

1

0

1

MSB-2nd char

0

1

1

0

One character variables have a zero placed in the second

position, but the MSB is still manipulated accordingly.

Variable Names plus their storage values (hex) (Excluding

functions)

A - $41 and $00, AB - $41 and $42

C$ - $43 and $80, CZ$ - $43 and $DA

Z% - $DA and $80, Dl % - $C4 and $B1

The rest of the 5 bytes remaining in each variable type are

used as follows:

Floating-Point: sign + exponent and four bytes of mantissa.

String: length, string address lo, string address hi,

last two not used.

Integer: value hi, value lo, last three not used.

When the last several bytes are not used (string, integer) the

not used ones are filled with zeros. Question: Why the

unused bytes in the integer and string variables? Answer: to

be able to use a constant seven additive to increase speed

when searching through the variable tables.

A Real Example

A machine language monitor will be needed, so LOAD it

now if you don't already have one in the computer. Type:

NEW <return>

10A= 100:B$= " DARREN" :C% = 100

RUN

Now enter the monitor with SYS 8 [SYS4, PET/CBMJ. Type:

m 002d 002d <return> [$2A on PET/CBM] /$2D on VIC/

The pointer ($2D) [($2A)] /($2D)/ tells us where the simple

variables list starts and ($2F) [$2C] /($2F)/ tells us where

arrays start and variables end. In our example we should

have seen:

Now type:

Display of :

,:002d 20 08 35 08 35 08 ed 97 -64

.:002a 20 04 35 04 35 04 00 80 -PET/CBM

m 0820 0835 <retum>

.:0820 41 00 87 48 00 00 00 42 -PET/CBM is identical,

.:0828 80 06 Of 08 00 00 c3 80 but at $0420 - 0435

.:0830 00 64 00 00 00 00 00 00

Perhaps it is easier if we break into groups of seven from the

beginning.

name s/e mantissa

.:0820 41 00 87 48 00 00 00

name len lo hi unused

.:0827 42 80 06 Of 08 00 00

name hi lo unused

.:082ec3 80 00 64 00 00 00

-1st variable defined

-2nd variable defined

-3rd variable defined

With this information, we can now write Assembly language

subroutines to access the BASIC variables. Number 11 in the

list of ROM routines, is the routine used to find a BASIC

The Transactor 78 Volumes, Issue 02

variable. Listing 1 is an example of an assembly program to

retrieve a string variable 'AB$' from memory, while Listing 2

retrieves an integer variable and finally, listing 3 retrieves a

floating point variable.

Well this is the end, and while I hope that everything is

correct, it may not be so. If I find any problems (heaven

forbid), 1 will try to get them into the Transbloopers section

of the next issue. And finally, I hope that I have presented

everything clearly so that all may be able to use these

new-found procedures.

ROM Routines

In the following list, the values given outright are for the

C-64, while the ones in parenthesis '()' are for PET/CBMs

(BASIC 4.0) and the ones in square brackets '[]' are for the

VIC-20.

1. JSR $AEF7 ($BEEF) [$CEF7] - tests next character of

BASIC text for a right bracket')'.

2. JSR $AEFA ($BEF2) [$CEFA] - tests next character of

BASIC text for a left bracket '('•

3. JSR $AEFD ($BEF5) [$CEFD] - tests next character of

BASIC text for a comma ','•

4. JSR $AEFF ($BEF7) [$CEFF] - tests next character of

BASIC text for the indicated character in the accumulator

(using PETSCII codes).

All of the above routines leave the next BASIC character in

the accumulator and they exit leaving the Y-register at 0

and the X-reg unchanged.

5. JSR $B79E ($C8D1) [$D79E] - gets a one byte value

(0-255) from BASIC text (through CHRGET) and return it

in the X-reg.

6. JSR $B1BF ($XXXX) [$D1BF] - converts FPACC*1 into a

2-byte signed integer at $64 ($XX) [$64] in the standard

6502 format—low then high values.

7. JSR $B7F7 ($C92D) [$D7F7] - converts FPACC*1 into a

2-byte unsigned integer at $14 ($11) [$14]

8. JSR $B391 ($C4BC) [SD391] - converts the integer in Y

(low value) and A (high value) into a floating point value

inFPACC*l.

9. JSR $BBD7 ($CD0D) [$DBD7] - packs what is in FPACC

#1 into a memory variable at X (low value) and Y (high

value). X and Y point to the data of the variable, not the

name.

10. JSR $BBA2 ($CCD8) [$DBA2] - unpacks memory varia

ble into FPACC#1 where A is the low byte and Y is the

high byte. X and Y point as mention above (#9).

11. JSR $B0E7 ($C187) [$D0E7] - find variable given name

in $45 ($42) [$45] first character and $46 ($43) [$46]

second character and returns variables location (start of

the data, not the name) in Y (high value) and A (low

value), also in $47 ($44) [$47] which is to be used an an

indirect index, i.e. LDA ($47),Y (LDA ($44),Y) and [LDA

($47),Y]. Indirect address $5F ($5C) [$5F] points to the

start of the name of the variable. It must be remembered

that the high bits of the name must be modified depen

dant on the type of variable being searched for. e.g. to

find variable 'AB%':LDA #$C1/STA $45/LDA #$C2/

STA $46/JSR $B0E7-for the C-64, will leave the above

pointers set to the correct addresses for 'AB%'.

12. JSR $AD9E ($BD98) [$CD9E] - Evaluate expression

from where the CHRGET pointer was pointed to. Result

type is in $0D-$00 means result was numeric and $FF

means result was a string. If result was numeric, the

value is in FPACC#1, while is a string, $64 ($61) [$64] -

as an indirect index — points to a string of three bytes of

which the first is taken to be the length of the string and

the next two are the low-byte and the high-byte of the

location, in memory, of the string.

13. JSR $AD8A ($BD84) [$CD8A] - Evaluate numeric ex

pression. Calls $AD9E, but then tests type of result, and

if not numeric then a 'TYPE MISMATCH' error results.

Used if a numeric value is wanted.

14. JSR $BDD7 ($CF8D) [$DDD7] - Prints the number that

is currently in FPACC#1. To insure it to work (on the

C-64), load the Y-reg with $01 before calling (if not

done, what is printed is the absolute value).

15. JSR $AD8D ($BD87) [$CD8D] - check input was nu

meric.

16. JSR $AD8F ($BD89) [$CD8F] - check input was string.

Both This one and previous are called after Evaluate

Expression (#12) is called.

17. JSR $B6DB ($C811) [$D6DB] - cleans descriptor stack.

LDA $64 and LDY $65 before calling (64/VIC) or LDA

$61 and LDY $62 (PET/CBM)

18. JSR $B4F4 ($C59E) [$D4F4] - creates room for new

string with length in accumulator. Location for string is

at ($33)-64/VIC and ($5F)-PET/CBM.

Listings

Before typing in most of the listings, you should have a

machine language monitor installed like Supermon-64. All

of the listings presented here are for the C-64, with the help

of the ROM Routines section above, one should be able to

modify them easily to work on the PET/CBM or VIC.

Listing 1: Assemble at $2000

$2000 Ida #$41 ;first letter/bit 7 = 0

$2002 sta $45

$2004 Ida #$c2 ;second letter/bit 7= 1

$2006 sta $46

$2008 jsr $b0e7 ;find variable, given name

$200bldy *$02

$200d Ida ($5f),y ;pointer to start of variable/get length

The Transactor 79 Volume 5, Issue 02

$200f beq $202b

$2011 tax

$2012 iny

$2013 Ida ($5f),y

$2015 sta $14

$2017 iny

$2018 Ida ($5f),y

$201asta $15

$201cstx $2100

$201 f ldy #$00

$2021 Ida ($14),y

$2023 jsr $ffd2

$2026 iny

$2027 cpy $2100

$2029 bne $2021

$202Brts

of string

;length zero-go

\

j

;get address lo

;save it

j

;get address hi

;save it

;save length

;zero y reg

;get a char from string

;print it

;in

;printed all the chars

;no, get some more

;end of routine

Now anytime a call to $2000 (SYS 8192) is executed, it will

print the current value of the string 'AB$'

Listing 2: Assemble at $2000

$2000 Ida #$cl

$2002 sta $45

$2004 Ida #$c2

$2006 sta $46

$2008 jsr $b0e7

$200bldy #$00

$200dlda ($47),y

$200f tax

$2010 iny

$2011 Ida ($47),y

$2013 tay

$2014 txa

$2015 jsr $b391

$2018 ldy #$01

$201ajsr $bdd7

$201drts

Now, anytime this

the current value

had to change the

could print it—this

;lst char-bit 7=1

;save value

;2nd char-bit 7=1

;save value

;find variable

;.y=o

;get hi-byte

;into .x

;-y=-y+]
;get lo-byte

;into .y

;.a=.x

;convert to floating-point variable in

fpacc* 1

;.y=i
;print fpacc#l

;end of routine

routine is called (SYS 8192), it will print

of the integer variable 'AB%'. Note: we

integer to floating-point value before we

is the cause that makes integer variables

are slower than floating-point. The BASIC in the 64 cannot

handle integer arithmetic, it converts them to F-P's, then

does the operation

integer.

and then converts the result back into an

Listing 3: Assemble at $2000

$2000 Ida #$41

$2002 sta $45

$2004 Ida #$00

The Transactor

;lst char-bit 7 = 0

;save value

;2nd char-bit 7 = 0

$2006 sta $46

$2008 jsr $b0e7

$200bjsr $bba2

$200eldy *$01

$2010 jsr $bdd7

$2013 rts

;save value

;find variable

transfer from memory to fpacc #1

;.y=i
;print fpacc *1

;end of routine

Now, anytime this routine is called (SYS 8192), the

floating-point variable 'A' will be printed.

Listing 4: Assemble at $2000:

$2000 Ida *$3b

$2002 jsr $aeff

$2005 jsr $ad8a

$2008 ldy #$01

$200ajsr $bdd7

$200d rts

;chr$($3b)= ";"

;test chrget for char in .a

;get numeric value into fpacc#l

;.y=i
;print fpacc *1

;end of routine

Listing 5: As Listing 4, but change as follows:

$2008 jsr $b7f7

$200bldx $14

$200dlda $15

$200f jsr $bdcd

$2012 rts

;convert to integer

;.x = value in $14

;.a = value in $15

;print .a*256 + .x

;end of routine

Listing 6: As Listing 4, but change as follows:

$2005 jsr $b79e

$2008 Ida #$00

$200ajsr $bdcd

$200d rts

;get 1-byte value

;.a = $00

;print .a*256 + .x

;end of routine

Listing 7: As Listing 4, but change as follows:

$2008 jsr $b7f7

$200bjsr $aefd

$200ejsr $b79e

$2011 txa

$2012 ldy *$00

$2014 sta ($14),y

$2016 rts

;convert to integer

;check for comma

;get 1-byte value

;.a = .x

;.y = $00

;put value into memory

;end of routine

Listing 8: Assemble at $2000

$2000 Ida #$3b

$2002 jsr $aeff

$2005 jsr $ad9e

$2008 bit $0d

$200a bmi $200f

$200c jmp $ad99

$200f ldy #$00

$2011 Ida ($64),y

$2013 beq $202f

80

;.a = $3b

;test chrget for char in .a

;evaluate expression

indicator for type

;if neg then string

;'type mismatch'

;.y = $00

;get length of string

;if length = 0 then go

Volume 5, Issue 02

$2015 sta

$2017iny

$2018 Ida

$201asta

$201c iny

$201dlda

$201f sta

$2021 nop

$2022 nop

$2023 ldy

$2025 Ida

$2027 jsr

$202a iny

$202b cpy

$202d bne

$202f rts

$97

($64),y

$14

($64),y

$15

#$00

($14),y

$ffd2

$97

$2025

;save length

;-y=-y+i
;get lo of string address

;$14 = .a

;.y = .y+l

;get hi of string address

;$15 = .a

;at this point, the string is

;at ($14) and its length is in $97

;.y = $00

;get a character of the string

;print character

;.y=.y+l

;compare .y to length

;print another character of the string

;end of routine

The String Insert Program

This program takes three inputs: position at which to start

the insertion and two strings, the one to be inserted and the

receive the insert.

values using the

technique.

This program is an exercise in retrieving

wedge technique and also the variable

The program resides at $C000 on a C-64, but

with modifications

syntax for jsing is

sys 49152

The result is then

.could be made to fit anywhere else. The

:insert position, variable$, string

eft in Variable$'. e.g:

a$="darren" : sys 49152: 3, a$, "ccc"

will result

$c000 Ida

$c002 jsr

$cOO5 jsr

$c008 txa

$c009 bne

$c00b jmp

$c00e stx

$c010 jsr

$c013 jsr

$cO16 bit

$cO18 bpl

$c01a Ida

$c01c beq

$c01e Ida

$cO2O sta

$cO22 Ida

$cO24 sta

$cO26 ldy

$cO28 Ida

n A$ being " darcccren ".

*$3a

$aeff

$b79e

$c00e

$afO8

$15

$aefd

$ad9e

$0d

$c00b

$65

$c00b

$47

$3f

$48

$40

#$00

($64),y

;

;test for character in .a

;get a single byte value (0-255)

;set flags

;if not zero then fine

;'syntax error'

;save the value

;checjk for comma

;evaluate expression

;test flag for type

;if numeric then syntax

;get lo of address

;if zero, then it was not a variable

;get lo of address of string

;save it

;get hi of address of string

;save it

;.y=o

;get length of string *l(remember that

($64) pointed to a string of three bytes

$c02a

$cO2c

$c02e

$cO3O

$c032

$c035

$cO36

$cO38

$cO3b

$cO3c

$cO3e

$cO41

$cO44

$cO47

$cO49

$cO4b

$cO4d

$cO4f

$cO51

$cO54

$cO55

$c057

$cO5a

$c05b

$cO5d

$c060

$cO62

$cO64

$cO67

$cO68

$cO6b

$c06e

$c070

$c072

$c075

$cO78

$c07a

$c07d

$cO7f

$c080

$cO82

$cO84

$cO86

$cO88

$cO89

$cO8b

$cO8d

$cO8e

$cO8f

$cO91

$cO93

$c095

$c097

beq $c00b

cmp$15

bcc

beq

sta

iny

Ida

sta

iny

Ida

sta

jsr

jsr

bit

bpl

ldy

Ida

beq

sta

iny

Ida

sta

iny

Ida

sta

Ida

ldy

jsr

clc

Ida

adc

sta

bcc

jmp

jsr

ldx

Ida

sta

dex

bpl

ldy

Ida

sta

iny

cpy

bne

tya

clc

adc

sta

Ida

adc

sta

$c00b

$c00b

$c200

($64),y

$c201

($64),y

$c202

$aefd

$ad9e

$0d

$c00b

#$00

($64),y

$c00b

$c203

($64),y

$c204

($64),y

$c205

$64

$65

$b6db

$c200

$c203

$14

$c075

$b658

$b4f4

#$05

$c200,x

$22,x

$c07a

#$00

($23),y

($33),y

$15

$cO84

$33

$41

$34

#$00

$42

which were taken to be length, string

address lo and string address hi)

;if length is zero then syntax

;compare length with insert location

;is it less (insertion impossible)

;is it equal (use concatenation)

;save length

;.y=.y+l

;get string *\ address lo

;save it

;.y=.y+i
;get string #1 address hi

;save it

;check for comma

;evaluate expression

;test type flag

;numeric then 'syntax error'

;.y=o

;get length of string #2

;if length is zero then syntax

;save length

;.y=.y+l

;get string #2 address lo

;save string *2 lo address

;.y=.y+l

;get string *2 hi address

;save it

;

;

;clean des. stac

;

;get string #1 length

;add string #2 length

;save length

;under 255 total length

;'string too long'

;make room for string

;

;

transfer pointers to zero page

;string #l-len ' $22, pointer ($23)

;string *2-len ' $25, pointer ($22)

;transfer string *1

;

;

;until insert length achieved

;

increase ($33) by .y

;and leave result in ($41)

;

;

;

>

The Transactor 81 Volume 5, Issue 02

$cO99

$cO9b

$cO9d

$cO9f

$cOaO

$cOa2

$c0a4

$c0a5

$c0a6

$c0a8

$cOaa

$cOac

$cOae

$cObO

$cObl

$cOb3

$cOb5

$cOb7

$c0b9

$cObb

$cObd

$cObf

$cOcO

$cOc2

$c0c4

$c0c6

$c0c8

$cOca

ScOcb

$cOcd

$cOcf

$cO89

$cO8b

$cO8d

ldy

Ida

sta

iny

cpy

bne

tya

clc

adc

sta

bcc

inc

Ida

sec

sbc

bcs

dec

sta

ldy

Ida

sta

iny

cpy

bne

ldy

Ida

sta

iny

Ida

sta

iny

Ida

sta

rts

This last r.

#$00

($26),y

($41),y

$25

$cO9b

$41

$41

$cOae

$42

$41

$15

$c0b7

$42

$41

$15

($23),y

($41),y

$22

$cObb

#$00

$14

($3f),y

$33

($3f),y

$34

($3f),y

jrogram,

transfer string #2

j

j

;to memory' ($41)

finished?

;no

increase ($41) by

;value in .y/.a

;and leave

*

; result

;in($41)

;decrease($41)

;

;by value in $15

;

J

;get insert position

transfer last half

;of string #1

J

finished?

;no

;.y=0

;total length of new string

;store in in variable

;

;get string address lo

;store it in variable

;

;get string address hi

;store it in variable

;finished!!

by Jim Butterfield, uses the variable

techniques. It is a program to return a string of characters

input frorri the disk. It allows inputs including colons,

commas, and semi-colons which, if used with an INPUT*

statement

OPEN 1,8,

in BASIC

2," NAME

would cause a 'extra ignored' error.

1" is needed before this code will work

and first variable defined must be a string variable.

$02c0

$02c2

$02c4

$02c7

$02c8

$02ca

-after

ldy

Ida

sta

iny

cpy

bne

this

$8b, string

$02cc

$02ce

Ida

jsr

#$02

($2d),y

$0089,y

*$06

$02C2

loop has

;($2d) is start-of-variables (simple)

;this area is free space

;is it 6?

;no, lets get some more

been executed, the string length is in

address in ($8c) and both $8e and $8f are zero.

*$01

$ffc6 ;command file #1 to talk

$02dl jsr

$02d4 cmp

$02d6 beq

$02d8 ldy

$02da sta

$02dc iny

$02dd sty

$02dFcpy

$02el beq

$02e3 Ida

$02e5 beq

$02e7 jmp

$ffe4 ;get a char from file

#$0d ;is it a return character?

$02e7 ;yes!

$8e ;get index to string,' start =0

($8c),y ;store it in the string

;increase index by one

$8e ;save new index value

$8b jcompare it to actual length of string

$02e7 ;they are equal—no room left

$90 ;should always be zero

$02dl ;an always branch

$ffcc ;untalk file and return

BASIC Loader For String Insert

1000 rem string insert

1010 for j = 49152 to 49364 : read x

1020 poke j,x : ch = ch + x : next

o basic

1030 if ch<> 25843 then print" checksum error" : end

1040 rem

1050 data

1060 data

1070 data

1080 data

1090 data

1100 data

usesys49152:po,targ$,ins$

169, 58, 32,255, 174, 32,

138,208, 3, 76, 8,175,

32,253, 174, 32, 158, 173,

16,241, 165, 101,240,237,

133, 63,165, 72,133, 64,

177,100,240,223,197, 21,

1110 data 240, 217, 141, 0,194,200,

1120 data

1130 data

1140 data

1150 data

1160 data

1170 data

1180 data

1190 data

1200 data

1210 data

1220 data

1230 data

1240 data

1250 data

1260 data

1270 data

1280 data

1290 data

1300 data

1310 data

141, 1,194,200,177,100,

194, 32,253,174, 32,158,

13, 16,192,160, 0,177,

186,141, 3,194,200,177,

4, 194,200, 177, 100, 141,

165,100,164,101, 32,219,

173, 0,194,109, 3,194,

144, 3, 76, 88,182, 32,

162, 5,189, 0,194,149,

16,248,160, 0,177, 35,

200,196, 21,208,247,152,

51,133, 65,165, 52,105,

66,160, 0,177, 38,145,

196, 37,208,247,152, 24,

133, 65,144, 2,230, 66,

56,229, 21,176, 2,198,

65,164, 21,177, 35,145,

196, 34,208,247,160, 0,

145, 63,200,165, 51,145,

165, 52,145, 63, 96

158, 183

134, 21

36, 13

165, 71

160, 0

144,219

177, 100

141, 2

173, 36

100,240

100, 141

5, 194

182, 24

133, 20

244, 180

34, 202

145, 51

24, 101

0, 133

65, 200

101, 65

165, 65

66, 133

65, 200

165, 20

63,200

The Transactor 82 Volume 5, Issue 02

CIA Timers Elizabeth Deal

Malvern, PA

Timers on the CIA chip are fun to work with. They are

versatile little devices. They can measure time intervals of

several microseconds up to several minutes. They can time

a duration of a signal being in one logic state, they can be

used in continuous, recycling mode, or do a quick count and

quit. They can be given a new time value at any time, they

can be read reliably, the flags they set can be read correctly,

and they can ring a bell for attention . . . need I go on? Let

your imagination run wild - you can use those clocks for all

sorts of terrific experiments.

They aren't even all that difficult to use once you get the drift

of the jargon in the book. I find these translations helpful:

CRA/B is control register A or B - that is a panel of switches

on top of clock A and clock B. You flip and turn the switches

as you wish (position 0 to set the alarm, position 1 to set the

clock - this sort of thing).

ICR is interrupt control register - you tell it which (if any)

events should call you (alarm); it tells you the status of

events (eight bits have come in). It's a neat communication

link. It's two things in one place for two sided talk. The only

tricky thing here is that once you've asked it a question (has

clock B done its's job?) the status, if the answer is yes,

vanishes. Which is wonderful in a way, because it gets ready

for the next event, but you may need to remember the status

if you are looking at more than one thing. I wish VIC chip

was built like that.

In any case, I had my share of problems, and this article

discusses just one mode of the timers' operation, TIMING

fairly LONG EVENTS, by computer standards, that is.

I wanted the clocks to participate in a simple SID orchestra.

But I soon discovered that training a clock to be a musician

isn't simple. The clock refused to keep the beat (a contradic

tion in terms?). At first I thought I coded the whole thing

wrong, but subsequent snooping into the operation of the

timers revealed that there is a problem built into the CIA

chip.

According to the chip description in the Programmer's

Reference Guide, the timers can be used in, what they call,

'extended mode'. That's fancy talk meaning timing events

longer than about 1/15th of a second, precisely my goal.

The chip offers two options in how to use the timers: you can

set them and read them in a loop waiting for the elapsed

time to pass, or you can set them and ask that they call you

(interrupt) when the time is up.

The sort of thing I was coding did not need the speed of

attention and the accuracy of the interrupt-generating fea

ture. And since it's devilishly complicated to set up a whole

alternate interrupt system immune to crashes, I decided to

go the easy way. Let the clock run. I can check it about the

time I think it might be done. I knew I had lots of time to

spare. So I coded something like this:

1 set the timers for some duration

2 do other things, then look at the clock -

3 has the clock set its 'all-done' flag?

4 if not, waste more time i.e. goto 3

5 all done.

This didn't always work. Things got stuck. Music sounded

rather odd, being off-beat. Some notes sounded twice as

The Transactor 83 Volume 5, Issue 02

long as they should, and, (very infrequently), the loop never

ended crashing the computer which just sat there waiting for

that flag to be set. Thinking I had a coding error, I revised my

approach. But subsequent snooping revealed that while I

may well have coding problems, the chip has problems of its

own which the attached program demonstrates in vivid

colour and noise.

It includes two tests. You can change the timing by changing

variable TM in Basic code. Since I am only interested in

events exceeding 1/15th second, Basic uses only one byte

for time. This value should be greater than zero.

Test 1 puts the timers in the mode I was trying to use - no

interrupt request. When you run it you will hear fairly

regular clicking noises and the colours should be coordi

nated. At some point (normally within the first 5-45 sec

onds) things fall apart. We miss a click and the colors

become unsynchronized. The point of this exercise is to

show that timing is taking place, that timer B does in fact

count down past zero, but that it sometimes forgets to tell

the flag register that it's mission is finished. Hence, to use

this mode, the only reliable way seems to be to code around

the problem - to watch the clock itself and ignore the flag

altogether.

Test 2 does a more difficult thing: it tells timer B not only to

count but to interrupt the computer when the time is up.

This is a vital mode for critical timing operations, hence we

have to trust its reliability. I once thought that it, too,

misbehaved. But I can't duplicate the results any more

(program changes!). So while I can't be 100% sure it never

fails, 1 think 1 found a musician after all.

If any of you feel like running test 2 for a good, long time,

please share your results with all of us.

References

1. Jim Butterfield, Memory Maps and Machine Language

lessons without which I wouldn't know where to even begin

doing this sort of thing.

2. R West, Programming the PET/CBM which talks of

hardware matters in somewhat simpler terms than

3. Commodore64 Programmer's Reference Guide, hardware

appendix. Great book. The hardware pages are rough read

ing for people new to this sort of thing, but all the informa

tion is useful if you can somehow absorb their jargon into

your own thinking.

1000 rem

1010 rem 6526/cia timer-b liz deal

1020 rem

1050 tm = 08 : me = 832 : bO = 176

1052 if peek(mc)*peek(mc +1)<>76*75 then

for j = 832 to 1022 : read v : poke j,v : nextj

1060 i$="": i:hint"IBH^BBEilSiREEEBBBBIgBBE
1070 print" <cr;ctrl;wipe + cr>timeout: :intbit '

1080 input ""do test 1 2 ";i$

1090pokebO,tm

1100 onasc(i$ + " 0")-48goto1120,1130

1110 end

1120sysmc: goto1060

1130 sysmc + 6 : sysmc + 3 : gotoi 060

1135 rem source code below can be omitted,

1137 rem data from 5000 on must be entered

1140 rem—

1150sys700 ;pal source code

1160 .opt oo

1170* = $0340 ;saveto$3ff

1180;

1190 jmp testi

1200jrmptest2

1210 jmp nmisw

1220 here .word mynmi

1230;

1240 p = 17*40 + 28 ;for screen

1250cia2 =$ddOO ;non-kbci.a

1260ta2 =cia2 + 4 ;timera

1270tb2 =cia2 + 6 ;timer b

1280 cra2 = cia2 + $e ;Ctrl reg a

1290crb2 =cia2 + $f ;ctrl reg b

1300 icr2 =cia2 + $d ;int Ctrl + flags

1310 cial =$dc00 ;the other cia

1320 prb1 =cia1+1 ;stop key here

1330 col =$d800

1340mask1 =°/oOOOOOO1O

1350mask2 =%10000010

1360 ctrlky =$fb

1370anynmi =$318

1380nornmi =$fe47

1390 inex =$febc

1400 val =$b0

1410 once =val + 1

1420 to =col + p

1430 in =col

1440 noise =$d418

1450;

1460 ;tb sometimes fails to set a flag

1470 ;show#1 - not asking for interrupt

1480;

1490 testi =*

1500 Ida icr2

;goes into tb2

;to always moves

;in,noise when

;timerb sets fig

The Transactor 84 Volume 5, Issue 02

1510 sei: Ida #%01111111 : jsr setup

1520 Ida #mask1

1530 wait =*

1540 jsr teststop : beq quit

1550 ; watch timer b reload

1560 jsr watch

1570 ; check timeout flag,loop if 0

1580 bit icr2: beq wait

1590 ; flag worked this time

1600 jsr click : beq wait ;always more

1610 ; back to basic

1620 quit cli: rts
icon .

1 UOU ,

1640 ;show#2 - asking for an interrupt

1650 ;seems to work most of the time

1660 ; = = = = = (can't prove non-failure!)

1R7D ■I \J 1 \J ,

1680 nmisw = *

1690 ; clr flags in hope of surviving

1700 ; what follows

1710 Ida icr2 : Ida #%01111111 : sta icr2

1720 ; revector nmi stuff to here

1730 ; this can kill you

1740 Ida here : Idx here + 1 : jsr setvec

1750 ; now tell the icr & clocks

1760 Ida #mask2 : jsr setup : rts

1770;

1780 mynmi =*

1790 pha : Ida icr2 : and #2 : beq myi2

1800 txa : pha : tya : pha : jsr click : jmp inex

1810 myi2 pla : jmp nornmi

1820;

1830test2 =*

1840 ; nothing better to do loop

1850 jsr watch : jsr teststop : bne test2

1860 ; set things back to normal

1870 Ida #0 : sta icr2

1880 Ida #<nommi: Idx #>nommi

1890 setvec = *

1900 sta anynmi: stx anynmi +1

1910 rts

1920;

1930 teststop = *

1940 Idx prb1 : cpx #ctrlky : rts

1950;

1960 watch =*

1970 ; watches timer b reload

1980 ; ignore quick reading results

1990 Idx tb2 : cpx val: bcc watch9

2000 cpx once : beq watch9

2010incto ;displ timeout

2020 watch9 stx once : rts

2030;

2040 click = *

2050 inc in : Idx

2060 sig1 dex:

2070 stx noise:

2080;

2090 setup = *

; & displ flag set

#8: stx noise

bne sig1

rts ;z=1

2100 sta icr2 : sta to : sta in : inc in

2110; init clocks (val*ta)whatevers

2120 ldx#$ff: stx ta2 : stx ta2-

2130 inx : stx tb2 + 1 : stx once

2140 Idx val: stxtb2

f 1

2150 ; force load time.tb counts ta

2160 ; timeouts cont mode,clocks

2170 Ida #%00010001 : sta cra2

2180 Ida #%01010001 :stacrb2

2190 rts

??nn pnd

2210 end

5000 data 76,

5001 data 3,

5002 data 127,

5003 data 3,

5004 data 221,

5005 data 88,

5006 data 13,

5007 data 32,

5008 data 96,

5009 data 10,

5010 data 76,

5011 data 181,

5012 data 0,

5013 data 141,

5014 data 1,

5015 data 228,

5016 data 238,

5017 data 218,

5018 data 253,

5019 data 141,

5020 data 218,

5021 data 221,

5022 data 176,

5023 data 221,

75, 3, 76,

129, 3,173,

32,213, 3,

240, 13, 32,

240,243, 32,

96,173, 13,

221,173, 73,

168, 3,169,

72,173, 13,

138, 72,152,

188,254, 104,

3, 32,175,

141, 13,221,

24, 3,142,

220,224,251,

176,144, 7,

196,218,134,

162, 8,142,

142, 24,212,

196,218,141,

162,255, 142,

232,142, 7,

142, 6,221,

169, 81,141,

151

13

169

181

198

221

3

130

221

72

76

3

169

25

96

228

177

24

96

197

4

221

169

15

run

, 3,

,221,

, 2,

, 3,

, 3,

, 169,

, 174,

, 32,

, 41,

, 32,

, 71,

,208,

, 71,

, 3,

, 174,

, 177,

, 96,

,212,

, 141,

,218,

,221,

, 134,

, 17,

,221,

76,

120,

32,

44,

240,

127,

74,

213,

2,

198,

254,

248,

162,

96,

6,

240,

238,

202,

13,

238,

142,

177,

141,

96

106

169

175

13

238

141

3

3

240

3

32

169

254

174

221

3

197

208

221

197

5

166

14

The Transactor 85 Volume 5, Issue 02

Commodore 64:

6526 Time Of Day Clock

Mike Forani

Burlington, Ont.

Sometimes when you need it the most you can't get it. I'm

referring to the time. The Commodore 64's TI$ function can

sometimes cause a little frustration, too. You will often find

that the value for TI$ will be off by a minute or two after

having run for only 2 hours, and if you're using disk access

in a program, you'll find the time will be off by even more.

Therefore it would make a lot of sense to use the 6526's

Time Of Day clock (TOD) inside the C64, so you can keep

track of time more accurately. Ok, here we go!

The TI string is calculated on an interrupt basis: every time

the interrupt routines are called its value is incremented by

one. TI is measured in jiffies. A jiffy is 1/60 of a second and

this is how often the interrupts occur. Sometimes people

want to disable the stop key or the run/stop restore keys

and in doing this you must reroute the interrupts. Depend

ing on how you do this you could corrupt the TI$ timing.

Using the TOD clock you can avoid this problem. The 6526

TOD clock does not depend on interrupts to update the

time. The TOD clock is a free-running clock in the 6526

chip. Also if you are using machine language programming

and you need to wedge into the interrupt routines you will

often upset the TI$ timing and the time it gives you will be

way off the mark. What is needed is something that is

accurate and invisible to the C64. The TOD clock is about as

invisible as you can get and as for accuracy it's as good as a

$100 quartz watch. All you need to do is set the clock

running and then you don't have to worry about it again.

You can check the time as often or as little as you like.

Listed after this article is a machine language program that

sets and reads the TOD clock. To use this along with basic

you could have a little program like the following:

10 ifa = Othena = 1 :load" clock ",8,1

20 sys 12*4096 + 15*256 + 3

30 input" enter time (hh,mm,ss)" ;b(2), b(l), b(0)

40fora = 0to2:poke251+a, b(a): next

50 sys 12*4096+15*256

What this program does is the following:

10 Load in the machine language routine that sets and reads

the clock. It is located at $CFO0-$CFFF. (52992-53247 in

decimal)

20 Stop the clock if it is already running, (unwedge the

program if it is wedged in.)

30 Get the time in a 24 hour format, (eg. 22,14,45)

40 Poke the time values into zero page for the machine

language routine to use.

50 Call the machine language program to setup the clock

and wedge into the interrupts so the code that displays

the time will be executed.

This short little program just sets everything up. Once it is

finished the clock will be displayed on the top right hand

corner of the screen until you hit the run/stop restore or

until you turn the clock off by using the 'sys' in line 20. All

that will be going on at this point is that the time will be

constantly displayed on the screen while the computer

remains on. To get the time into a string incase you needed

to use it for something you could try the following little

routine:

10a$= "" :fora = 32to39:b(a-32) = peek(1024 + a):next

20 for a = 0 to 7 : a$ = a$ + chr$(b(a)): next

30 print a$

This routine does the following:

10 Get the time off the screen and into an array, (it is always

displayed)

20 Turn the numbers in the array into characters and

concatenate them into a string.

30 Print the string, (you could use it for something else)

In doing this the time can be taken off the screen and you

can build your own TI$, or something like it, when you need

it.

The machine language program has two entry points:

$CF00 and $CF03. The first entry point sets up and starts the

clock and the second stops it. Here is a description of what

the program does:

The Transactor 86 Volume 5, Issue 02

Setup

1) Reconstruct the input, at locations $fb, $fc, $fd, so it is in

the proper form for the 6526 TOD clock.

2) Set the clock values and start it running.

3) Wedge in at the IRQ vector and set a toggle flag. IRQ's

occur 60 times a second and I do not need to update the

clock display that often. Toggle' is used so the display is

updated once every N interrupts. N can be changed,

initially it is set to 15. Therefore the display is updated

every 15/60ths of a second, or 4 times per second.

4) Return to BASIC and leave the clock to running.

If the clock is to be turned off the code is simply unwedged

by replacing the wedged-in IRQ vector value with the

normal IRQ vector value.

The interrupt-driven part of the machine language code

works as follows:

Update

1) See if our toggle is timed down yet. If it isn't, go to the

regular IRQ routines.

2) If the toggle is timed out then put the current character

colour in the colour table in case it is a kernal 2/64 and

the screen was cleared.

3) Get the hours register and check it for the am/pm bit,

then get the minutes and the seconds.

4) Break apart the registers, so they can be displayed, and

then display them. (ie. the register will read as #$23 and it

must be broken down to #$32 and #$33 so it can be

displayed.)

5) Go do the regular IRQ routines.

All of this will be occuring in background interrupts while

you are operating in BASIC or machine language. Also listed

is a BASIC loader for the machine language program if you

do not have an assembler program.

In case you want the clock to be displayed differently, here

are a couple of modifications you can make:

1) 12 hour clock. To do this you need to put NOP's in the

machine language program at $cf8e, $cf8f, $cf90. In the

BASIC program do the following pokes after the program

is loaded in:

poke 53134, 234 : poke 53135, 234 : poke 53136, 234

With these changes the clock will only display in a 12 hour

mode. ie. 12:59:59 would roll to 01:00:00 instead of

13:00:00.

2) Rate of display. If for some reason you need to update and

display the clock more than 4 times a second all you need

to do is change the toggle value. In the machine language

program change the $0f at $cf51 and $cf6a to a number

between 1 and 255. For the basic program do the follow

ing pokes after the program is loaded into memory:

poke 53073, xx : poke53098, xx

Where xx is some number between 1 and 255. For the

display rate change I would suggest that you try to keep the

toggle values between 5 and 15. The reason for this is

because you don't want to update the clock every interrupt

or you will slow down the speed of the C64 and you must do

it at least twice a second so the flash of the ':' can occur.

The reason for having the program reside at $CF00 is just so

that it doesn't get in the way of anything, (I hope).

Enjoy this little program. I hope it helps you in discovering a

little more about the workings of the Commodore 64. In my

next article we could discuss the way in which to use the

6526 TOD clock to generate interrupts - AN ALARM

CLOCK.

Editor's Note

When I tried Mike's clock display on my 64, the clock

seemed to tick like a dripping faucet - steady for a while then

two quick ones, or two short ones, etc. The problem? An

inaccurate quartz crystal. (That 1 in a thousand had to be

mine) But everything else works just fine and until I get the

urge to write an extremely time sensitive program, I proba

bly won't bother replacing it. If yours is running a little

'rough' too, and you need the accuracy, your service center

can replace it in about 15 minutes (ie. 24 hours), or you

hackers can wip one in yourself for around 5 bucks.

100

110

120

130

140

150

160

170

180

190

200

210

220

230

>

irq

cinv

scrn

colour

;

clrtab

cial

;

sees

mins

hrs

;program variables

= $ea31

= $0314

= $0400

= $0286

= $d800

= $dc00

= $fb

= $fc

= $fd

;normal irq routines

;irq vector

;the screen starts here

;current character colour

value

;colour table ram

;cia number 1 irq's

;seconds

;minutes

; hours

The Transactor 87 Volume 5, Issue 02

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

;set up

setup

setll

setl2

setl3

setl4

J

;

* = $cf00

forse

jmp

jmp

sei

ldy

sed

Ida

clc

ldx

dex

bmi

adc

bcc

sta

dey

bpl

Ida

cmp

bcc

sec

sbc

ora

sta

eld

ldy

ldx

Ida

sta

stx

sty

Ida

sta

Ida

and

sta

Ida

sta

Ida

sta

Ida

t time

setup

kill

#2

#0

secs.y

setl3

#1

setl2

secs,y

setll

hrs

#$13

setl4

#$12

#128

hrs

hrs

mins

sees

cial + 9

cial + 10

cial + 11

#0

cial+8

cial +15

#%011111

cial + 15

#<update

cinv

#>update

cinv +1

#15

;the program resides at

$cfOO and up

;start the clock

;stop the clock

;no interrupts allowed

;convert inputs to bed

;adding one in decimal

;this way a #23 will be

come a #$23

;check and see if pm. flag is

to be set

;set pm. bit

;get registers

;set the 6526's time of day

clock

;.a = seconds, .x = minutes

;.y = hours

;tenths of seconds - clock

starts here

11 ;clock not alarm

;wedge irq so i can

;update the clock

;i don't want to do it every

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

J

kill

j

;update

j

update

loop

tohere

okhere

;

sta

cli

rts

sei

Ida

sta

Ida

sta

cli

rts

toggle

#<irq

cinv

#>irq

cinv+ 1

the clock and

dec

bne

Ida

sta

Ida

ldy

sta

dey

bpl

Ida

bmi

cmp

bne

Ida

beq

and

cmp

bes

sei

sed

clc

adc

sta

eld

cli

Ida

sta

Ida

sta

ldx

ldy

toggle

noupa

#15

toggle

colour

#7

;interrupt so use a toggle

;enable the irq again

;return to basic

;stop displaying the clock

;put irq vector back

;to normal value

;go back to basic

display it

;decrement the toggle byte

;is it time to display the

clock yet

;only need to update 4

times a second

;reset the toggle byte

;if a kernal 2 c64 then fix

up the colour

clrtab + 32,y ;table values

loop

cial + 11

tohere

#$12

okhere

#0

okhere

#%0001

#$12

okhere

#$12

time+ 2

cial + 10

time+1

cial+9

time

#2

#30

;hours

;see if am or pm

;turned from 235959 to

000000

1111

;if pm then fix the hours

value

;it must be pm so add 12

hours to value

;minutes

;seconds

The Transactor 88 Volume 5, Issue 02

1190 goer

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300;

1310

1320

1330

1340

1350

1360abov5

1370

1380

1390;

1400 noupa

1410;

1420distim

1430

1440

1450

1460

1470

1480 disui

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610;

1620 temp

1630 toggle

1640 time

1650;

1660

Ida

sta

jsr

iny

iny

sta

Ida

iny

sta

dex

bpl

Ida

cmp

bcs

Ida

.byt

Ida

sta

sta

imp

txa

pha

Ida

sta

Ida

Idx

asl

rol

dex

bpl

Ida

and

ora

sta

pla

tax

Ida

ora

rts

* = *

* = *

.end

The Transactor

time.x

temp+1

distim

scrn.y

temp+ 1

scrn.y

goer

cial+8

#5

abov5

#58

$2c

#32

scrn + 37

scrn + 34

irq

#0

temp

temp+ 1

#3

a

temp

disui

temp + 1

#%00001111

#$30

temp+1

temp

#$30

+ 2

+ 1

+ 3

;print the hours then min

utes

;and then the seconds

;tod tenths of seconds

;see if we sshould print a ':'

;or a '' inbetween the

;hours/minutes/and sec

onds

;to 'hide' next Ida

;go do normal irq stuff

;make the value in temp a

screen printable

;form

;take the 12 in one byte

and put

;it into two bytes 31 and 32

temporary storage

;toggle byte

;times stored here

89

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

rem c64 time of day clock display

for j = 52992 to 53239 : read x

poke j,x: ch = ch + x : next

ifch<>31658 then print "checksum error" : end

rem

sys 52995

input "entertime (hh,mm,ss) ";b(2), b(1), b(0)

for a = 0 to 2 : poke 251 +a, b(a): next

sys 52992

end

data 76,

data 120,

data 24,

data 105,

data 0,

data 201,

data 18,

data 164,

data 141,

data 140,

data 8,

data 127,

data 141,

data 21,

data 207,

data 141,

data 21,

data 207,

data 250,

data 7,

data 250,

data 201,

data 240,

data 176,

data 18,

data 173,

data 173,

data 162,

data 207,

data 207,

data 173,

data 4,

data 220,

data 58,

data 4,

data 234,

data 248,

data 3,

data 16,

data 15,

data 104,

data 48,

6, 207, 76, 87, 207

160, 2,248,169, 0

182,251,202, 48, 4

1, 144,249, 153,251

136, 16,238,165,253

19,144, 7, 56,233

9, 128, 133,253,216

253, 166,252, 165,251

9,220,142, 10,220

11,220,169, 0,141

220,173, 15,220, 41

141, 15,220,169,100

20, 3,169,207,141

3,169, 15,141,250

88, 96,120,169, 49

20, 3,169,234,141

3, 88, 96,206,250

208,103,169, 15,141

207,173,134, 2,160

153, 32,216,136, 16

173, 11,220, 48, 8

18,208, 15,169, 0

11, 41, 31,201, 18

5,120,248, 24,105

141,253,207,216, 88

10,220, 141,252,207

9,220, 141,251,207

2,160, 30,189,251

141,249,207, 32,211

200,200,153, 0, 4

249,207,200,153, 0

202, 16,232,173, 8

201, 5,176, 3,169

44,169, 32,141, 37

141, 34, 4, 76, 49

138, 72,169, 0,141

207, 173,249,207, 162

10, 46,248,207,202

249,173,249,207, 41

9, 48,141,249,207

170,173,248,207, 9

96

Volume 5, Issue 02

JOYCURSOR:

A Cheap Mouse

For Your Commodore 64

If you program like me, you probably find that your

fingers spend 90 percent of their time on just three

keys on the keyboard - the shift, and the two cursor

control keys. Let's face it: when you're staring at an

incorrigible program trying to find out what's wrong

with it, buzzing the cursor around the section of code

you're contemplating seems to help. Also, if you use

POWER, BASIC AID, or another utility that lets you

scroll your program up and down with the cursor

control keys, it's easy to while away the better part of a

cup of coffee by scrolling the program up down up

down up down until you can't see straight.

While doing this, I found myself wishing that I could

move around the cursor without having to wear out

my hand on those three poorly positioned keys. I

wanted something external, something like the

"mouse" used on some $10,000+ systems. Well,

what's the equivalent of a mouse on a Commodore

64? Right! The ubiquitous joystick.

Run the loader program shown below. If you get a

checksum error, re-check the DATA statement values

and try again. When you get a successful RUN, JOY-

CURSOR will be enabled. With the joystick plugged

into port #2, you should be able to move the cursor

around in all directions, including diagonally. You can

change the speed that the cursor moves by POKEing a

different value in location 49177 (it is originally set to

5).

Use RUN/STOP RESTORE to disable JOYCURSOR,

and SYS 49152 to re-enable it. enJOY!

The Transactor

100

110

120

130

140

150

160

170

180

190

*

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

90

rem

cs =

os =

read

cs =

poke

if cs

end

Chris Zamara

Downsview, Ont.

* data loader for " JOYCURSOR"

D : rem * checksum *

49152 : rem *

b : if b<0

cs + b

os,b: os =

then

= OS4

sbjec

180

start

■1: goto150

<> 12839 then print" ^

sys49152 :rem • enable

print

end

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

checksum error

"JOYCURSOR"

"** Ok, JOYCURSOR is

120, 169,

169, 192,

96, 145,

238, 17,

201, 5,

141, 17,

201, 127,

44, 0,

13, 192

2, 44

173, 14

169, 4

6, 173

192,169

208, 6

95, 192

198, 157

165, 198

169, 0

49,234

18

141

17

192

208

192

240

220

32

0

192

44

16

8

173

76

119

201

133

-1

141,

21,

29,

173,

85,

173,

73,

208,

95,

220,

32,

0,

192,

44,

15,

113,

2,

10,

198,

20

3

157

17

169

0

169

6

192

208

95

220

32

0

192

192

230

48

96

enabled. **"

3

88

0

192

0

220

1

173

169

6

192

208

95

220

32

166

198

4

76

Volume 5, Issue 02

An Executive SX-64 Emulator Jim Butterfield
Toronto, Ont.

Can't get an SX-64, because you can't afford one or they are out of

stock? And you say you need to check out a program or two to see

if it works OK on the SX-64 as well as on your regular 64?

This procedure will convert your Commodore 64 into a logical

SX-64. It replaces the ROM and a little of the RAM with SX-64

information. Thus, you can try your hand at running the machine.

Not Much Difference

In fact, the SX-64 is very close to a Commodore 64. The major

differences are: absence of cassette tape; different background/

foreground colors; a redefinition of the RUN/STOP key; and

reinstatement of easy screen POKEs. The screen POKE feature,

together with a few minor cleanups, is in all new Commodore 64

units; but if your machine dates back a few months or more, it will

be new for you.

Commodore have very carefully preserved "entry points" in the

computer's logic. Almost anything you code - machine language

or BASIC - will still work on the 64. We can all think of system

features that we would have liked to see changed or added, but

Commodore have stayed away from most of them. As a result,

there's excellent compatibility between portable and regular 64.

BASIC is identical to that of previous units; in fact, it hasn't

changed since VIC-20 days. Even though BASIC is the same, the

procedure given below loads it in; that way, future changes may be

accomodated.

How To Write It

Obtain access to an SX-64. Bring along a disk and format it. Now:

enter the following program:

100 data 1024,2023

110 data 55296,56295

120 data 40960,49151

130 data 57344,65535

140 for j = 1 to 8

150 read x:t = t + x

160 next j

170 if t<>327628 then stop

180 restore

190 for j = 1 to 4

200 read x,y

210 open 1,8,3, "0:sx" +str$(j)+ ",p,w"

220 x% = x/256:z = x-x%*256

230 print#1 ,chr$(z);chr$(x%);

240 for k = x to y

250print#1,chr$(peek(k));

260 next k

270 close 1

280 nextj

Be sure to include the semicolons at the end of lines 230 and 250.

When it's ready, RUN the program. It will take some time, but

eventually four program files will be written on your disk. Return

the SX-64 to its owner and take your disk home.

How To Read It

Power up your Commodore 64. Important: if possible, disconnect

external devices such as C-Link or Buscard. Enter the following

program:

90 poke 53280,3:poke 53281,1

100 a = a+1:ifa = 5 goto 120

110 load "sx" +str$(a),8,1

120 print chr$(31);

130 poke 1,53

Run the program. When it's finished, you'll have a pseudo-SX-64.

Check it by commanding, LOAD "ANYTHING" - the computer

will reply DEVICE NOT AVAILABLE. The SX-64 doesn't have tape.

How It's Done

We write four blocks: screen, color nybbles, BASIC ROM, and

kernal ROM. We write them as program files, so the first two bytes

are the load address. By the way, you couldn't save the Kernal

ROM from a typical machine language monitor, since there's no

way you could fit in that last address of 65535 (or $FFFF). In this

case, Basic seems to have a slight advantage over the monitor. We

must set the screen background and border colors separately, as

well as the cursor color, since they are not stored within any of the

four areas mentioned.

The reading program is elegant, but hard to read if you don't know

the trick. Here it is: after BASIC performs a LOAD, it always returns

to the first statement. Thus, there's really an invisible loop from

line 110 back to 90. When all loads are finished, variable A equals

5 and we skip ahead to set the cursor color.

Now: we've been reading this ROM information into RAM mem

ory. But on the 64, we can switch ROM out and let RAM take over.

If we wanted to do this for just BASIC, we'd give POKE 1,54; for

both BASIC and Kernal, we must say POKE 1,53.

Using the same methods, you can switch logic between various

generations of the Commodore 64.

Conclusion

If you don't have access to an SX-64, there will be a disk in the

TPUG library to do the job for you.

Now you have an SX-64, at least in a logical sense. As 1 said before,

you won't find much difference from the Commodore 64. But at

least you'll know how it feels. Now, if it only had a handle. . .

The Transactor 91 Volume 5, Issue 02

Tho Tech/News Journal For Commodore Compute:

PAYS

$40

per page for articles

We're also looking for

professionally

drawn cartoons!

Send all material to:

The Editor

The Transactor

500 Steeles Avenue

Milton, Ontario

L9T 3P7

Issue*

Volume 5 Editorial Schedule

Theme Copy Due Printed Release Date

1

2

3

4

5

6

1

2

3

4

5

Graphics and Sound

The Transition to Machine Code

Software Protection & Piracy

Business and Education

Hardware and Peripherals

Programming Aids & Utilities

Feb 1

Apr 1

Jun 1

Aug 1

Octl

Dec 1

Mar 19

May 21

Jul23

Sepl7

Novl9

Jan 19

Volume 6 Editorial Schedule

Communications & Networking Feb 1 Mar 21

Languages

Implementing The Sciences

Hardware & Software Interfacing

Real Life Applications

Apr 1

Jun 1

Augl

Octl

May 20

Jul 18

Sep21

Novl9

April 1

June 1

August 1

October 1

December 1

February 1/85

April 1/85

June 1

August 1

October 1

December 1

Advertisers and Authors should have material submitted no

later than the 'Copy Due' date to be included

with the respective issue.

PRO-LINE
HIIIIIISOFTWARE

A CANADIAN COMPANY

designing,

developing,

manufacturing,

publishing

and

distributing

microcomputer

software

DEALER ENQUIRIES WELCOME

AUTHOR'S SUBMISSIONS INVITED

CALL OR WRITE

(416) 273-6350

PRO-LINE
■IIIIII5DFTWARE

755 THE QUEEN5WAY EAST. UNIT 8.

MISSISSAUGA. ONTARIO L4Y 4C5

GRAPH-TERM 64
A GRAPHICS TERMINAL PROGRAM

FOR THE COMMODORE-64

GRAPH-TERM 64 is a 100% machine-language

program which

• plots hi-res graphs generated by a mainframe

computei ortheC-64 in standard Tektronix" format

• downloads text (36K) or plot files (20K)

• creates instant replays of text or graphs at high

speed, slow motion or stop action

• creates hard copies of plots on the Commodore

1520 Plotter

In addition, the machine language subroutines used

in GRAPH-TERM 64are documented soyou can use

them in your own programs to create fast, compact

plot files and to drive the plotter at top speed.

I| $49.95 U.S.

TO ORDER

Specify disk or tape

Add $4.00 postage and handling for U.S.

and Canada

Other foreign orders add 20%

Michigan residents add 4% sales tax

BENNETT SOFTWARE CO.
3465 Yellowstone Dr.

Ann Arbor, Ml 48105

(313)665-4156

Dealer inquiries invited

The 1520 plotter and the Commodore 64 are

products of Commodore Business Machines.

92

The Intelligent Software Package

For $35, you get all this on one disk:

DATA BASE: A complete fixed record-length data base.

Sort on any key, select using full logical operators on any

key or keys, perform numeric manipulation on fields. All

fields in a record fully customizable. Screen editing for

records, Can be used for accounts-receivable, inventory

control, or as an electronic rolodex. If you use your Com

modore for nothing else, this program will justify its expense.

WORD PROCESSOR: A full-featured word processor: very

fast file commands (including disk file catalog), screen

editing, string searches, full control over margins, spacing,

paging, and justification (all commands imbedded in text).

A very powerful, easy-to-learn program. Includes a program

interfacing W/P with DATA BASE to create custom form letters.

SPREADSHEET: Turns your Commodore into a visible

balance sheet. Screen editing. Great for financial

forecasting.

BASEBALL MANAGER: Compiles batting statistics for a

baseball or softball league. Generates reports on a player,

team, or the entire league (including standings).

All programs will load and run on any and every Com

modore computer having a minimum of 10k RAM; all pro

grams fully support tape, disk, and printer. Any two pro

grams on cassette, S20. Price includes shipping within USA

and Canada; Calif, residents add 6%. For orders over 10

in quantity, deduct 35%.

Since this ad is the catalog, no response to inquiries will

be made; however, documentation for any one program

may be purchased separately for $2 postpaid (deductible

from later order). Thank you.

William Robbins, Box 3745, San Rafael, CA 94912

Why Blank "Cheat" Sheets?
Because They're

Better Blank
O.K. So now you've got t

best Commodore 64 in

the world, and lots of

complex software to

run on it. One prob

lem. Unless you work

with some of these

programs everyday

or are a computer genius,

who can keep all those commands

straight? "F5" in one program means

one thing, and "F5" in another program means

something else. A few companies do otter a solu

tion ... a die cut "cheat" sheet that attaches to your key

board with all the commands of one program printed

on it. Great idea, unless you need them tor 1O or 2O

programs. You could purchase another disk drive for

the same investment. Our solution? Simple. A pack of 12

lined cards, die cut to fit your keyboard and just

waiting to be filled with those problem commands you

forget most often. Simple? Yes, but effective. Now you

can have all your program commands right at your

finger tips on YOUR VERY OWN, custom designed

"cheat" sheets. Order a couple packs today!

Please send me the following: pnCes m u s dollars
Qty. Item

Sets of 12 C-64 Keyboard Cheat Sheets @ $15.95 $

2 Packs (24 Sheets) for $24.95

Total for Merchandise Shipping and Handling

Canadian Funds Surcharge

TOTAL ENCLOSED

□ Please Charge to, D MasterCard D VISA

Number Expires

SHIP TO, Name

Address

City

State /Zip

Dealer Inquiries Invited

Price

~2OQ

3.OO

Bptes& Pieces, Inc.
55O N. 68th Street

Wauwatosa, WI 53213

414/257-3562

INTERNATIONAL CENTRE, TORONTO

NOVEMBER 29 & 30, DECEMBER 1 & 2, 1984

~«■■!««■!■■■■■■>

:ss:.r~
■MKKI

)■■■■■■■■■■■■■■■■ ■■

■■■■■■■■■■■■■ ■ '■■

■liiiimr

■■■■■:

■•■■■
■■■■■
■■■■■:

II" tiH
■■■
■linn
■mii■mii

■■■■■■■
■■■■■■■■
■■■■■■■■■

■■■■■ ■■■«■■■

The world oF
commodore

II
The Company that had the foresight and imagination

to design and build more computers for home,

business and education than any other will be pre

senting the most farsighted and imaginative show

to date with exhibitors from around the World.

The 1983 Canadian World ofCommodore Showwas

the largest and best attended show in Commodore

International's history. Larger than any other

Commodore show in the World and this year's

show will be even larger.

World of Commodore II is designed specifically

to appeal to die interests and needs of present

and potential Commodore owners.

Come and explore

the World of Commodore.

world of . _
commodoreII

A HUNTER NICHOLS PRESENTATION.

FOR MORE INFORMATION CALL

DEBBIE BANNON

(416) 439-4140

93

STOCK HELPER™
Commodore 64 and VIC-20

Stock HELPER is a tool to maintain a history of stock

prices and market indicators on diskette, to display

charts, and to calculate moving averages. Stock

HELPER was designed and written by a "weekend

investor" for other weekend investors.

Stock HELPER is available on diskette for:

Commodore 64 $30.00 ($37.00 Canadian)

VIC-20 (16K) $27.00 ($33.25 Canadian)

plus $1.25 shipping ($1.55 Canadian)

The VIC-20 version only charts 26 bi-weekly periods rather than

52 weekly periods.

(M)agreeable software, inc.

5925 Magnolia Lane • Plymouth, MN 55442

(612)559-1108

(M)agreeable and HELPER are trademarks of (M)agreeable software, inc.

Commodore 64 and VIC-20 are trademarks of Commodore Electronics Ltd.

The computer language for the

New Professional.

BASM is a unique blend of BASIC and standard 6510

Assembly language. This ingenious combination of

familiarity and flexibility provides an easier transition to

Assembly language while cutting your programming time

by 75%! Your program will then run over 200 times

faster than Commodore BASIC!

BASM—an entirely new programming environment for

the Commodore 64. (Also available for Atari)

TO ORDER WRITE OR PHONE

10730 White Oak Avenue

COMPUTER Granada Hills, CA. 91344

ALLIANCE (818) 368-4089

with
your

DIGITAL I/O

• ANALOG TO DIGITAL CONVERTER - 16 Channel 12 Bit. O-10 Volt Inputs,Dual

Machine language

• 12 BIT DIGITAL TO ANALOG CONVERTER- 0-10 volt output, drive chart

• 12 DIGITAL INPUTS - TTL Compatible. Monitor Switches, Contacts, Fire

alarms, or Burglar alarms

• 10 DIGITAL OUTPUTS- TTL Compatible, Control relays. Motors, turn on

• C-H0S RE\L TIME CLOCK CALANDER- with battery backup - set it once and

entry and s:reen output. DY/M0/YR HR/HN/SC
THE DATAOIJE comes complete with user's manual and software driver

Assembled and tested $249.00

Add $3.00 for shipping USA

OUIIKOISK

IF YOU NEED RELIABLITY AND SPEED then QU1KDISK is the answer. QUIKDISK

irmance floppy disk system designed especially for the

full set of disk utilities are also available.

KMMM
languages, KMMM PASCAL is a true compiler that generates machine code

from pascal source... FAST! Edit or,Compiler and Translatorincluded. KMMM

is a subset of Jensen and Wirth Pascal.

PRICE $99.00

FOR INFORMATION, SEE YOUR DEALER OR: P.O. BOX 102 • LANGHORNE, PA 19047 • (215)757-0284

("MICROTECH] ™===r

The

Reference

Transactor
Coming This Fall!

See News BRK for details

94

MIDNITE
SOFTWARE GAZETTE

The

PAPER
Five years of service to the PET community.

T

The Independent U.S. magazine for

users of Commodore brand computers.
EDITORS: Jim and Ellen Strasma

Sample Issue free on request, from:

635 MAPLE □ MT. ZION. IL 62549 USA

KHCRQ-F
54 FLERIMAC ROAD, WEST HILL, ONTARIO M1E 4A9 CANADA

TELEPHONE: (416) 282-1532

THE 64 SOFTWARE HOUSE

ENTERTAINMENT

A.E. "BRODERBUND"

SPARE CHANGE - " -

OPERATION WHIRLWIND — " —

ZAXXON "SYNAPSE"

QUASIMOTO —" —

SHAMUS CASE II - " -

SORCERER (INFOCOM)

FLIGHT SIMULATOR (SUBLOG)

SAMMY LIGHTFOOT (SIERRA)

PAINT BRUSH (HES)

BRUCE LEE (DATA SOFT]

CASTLE WOLFENSTEIN (MUSE)

BUSINESS

HOME ACCOUNTANT (CONT)

VIP TERMINAL

ELECTRONIC CHECKBOOK (TIMEWORKS)

BANK STREETWRITER

SPECIALS

KOALA PAD AND PAINTER &

SUCK STICK (JOYSTICK)

WHIZ KIDS INTRO TO BASIC

STRIP POKER

STAR MAZE

INTRODUCING THE RITEMAN

PRINTER

120 CPS 1 YR. WARRANTY

ONTARIO RESIDENTS ADD 7% SALES TAX.

D

D

D

T/D

T/D

T/D

D

T/D

D

C

C/D

D

D

D

T/D

D

D

D

D

39.95

39.95

40.95

44.95

39.95

39.95

59.95

59.95

33.95

23.95

39.95

33.95

76.95

65.95

27.95

72.95

109.95

29.95

37.95

38.95

499.00

ORDERING & TERMS: SEND CASHIER CHECK, MONEY ORDER, OR CERTIFIED CHECK.
VISAVMASTERCARD PLEASE INCLUDE CARD NUMBER & EXPIRY DATE AND SIGNATURE.

ADD S2.50 FOR SHIPPING AND HANDLING.

ALL ITEMS SUBJECT TO AVAILABILITY. PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

FOR CATALOG SEND S1.50 REDEEMABLE.

C-64, VIC, ATARI, TRS-COLOR

PROGRAMMER'S INSTITUTE

FUTUREHOUSE)

DISCOUNTED PRICE

FOR MOST SYST.

APPLE, ATARI, C-64, VIC 20

BRODERBUND (GAMES)

"Edumate Light Pen"

C-64, VIC, AtariLode Runner D C

Spare Change D

DrolD

Choplifter C D

Seafox D C

(Cartridge version extra)

Bank Street Writer D

INFOCOM

(ADVENTURES)

Witness D

Planetfall D

SYNAPSE (ATARI & C-64,

GAMES)

Fort Apocalypse D T

Blue Max DT

SMUiS (GAMES-

for most)

Snake Byte D

Bandits D

Type Attac D

Squish'em C APPLE

DC-64

SMA (SYSTEMS MGT.

ASSOC.)

Documate-template C-64

Code pro-64 — Tutorial for

basic plus sprite &

music gen.

C0MM* DATA

EDUCATIONAL (VIC & C-64)

Toddler Tutor

Primary Math Tutor

Math Tutor

English Invaders Games

Gotcha Math Games

Dealer inquiries for:

Programmer's Institute

Kiwisoft

Victory Software

Cotnm* Data

SMA

$85

$59

$59

$41

$41

$36

$41

$47

$48

$41

$16

$70

$34

$34

$34

$34

$34

"Playground Software" t.m.

(Uses Light Pen) C-64 & Atari

Animal Crackers D $36

Computer Crayons D $36

Alphabet Arcade D $36

Bedtime Stories D $36

"C.P.A. Complete Personal

Account" t.m. C-64, VIC, TRS,

Color,

Atari

Complete Set (1, 2 & 3) DT $94

Finance #1 D T $36

Finance #2 D T $36

Finance #3 DT $36

Finance #4 D T $36

KIWISOFT (C-64)

Paintpic-64 $45

Art on your screen

VICTORY SOFTWARE

20/64 Dual Packs

Cassettes (T) or Disks (D)

GAMES

Metamorphosis T D $30

Creators Revenge T D $30

Labyrinth of Creator T D $30

Galactic Conquest T D $30

Kongo Kong T D $30

Chomper Man T D $30

AnnihilatorTD $30

Adventure Pack I

(3 Prog) T D $30

Adventure Pack II

(3 Prog) T D $30

Bounty Hunter (Adv) T D $30

Grave Robbers-Graphic

(Adv) T D $24

(Disk version: $4. extra)

PRECISION SOFTWARE

(SILIC0M INT'L)

Super Base 64 Data Management

System D $117

Calc Result (Easy) $108

Calc Result (Advanced) $202

(C) Cartridge (T) Tape (D) Diskette

Please call for info on your computer model, availability and specific price.

Send certified cheque, money order or call and use your visa or Master

card. Personal cheques require two or three weeks to clear. All prices

subject to change without notice. Please include $2.00 per order for

postage and handling. Quebec residents only add P.s.T.

Call Toll Free 1 -(800)361 -0847
except Western Canada, Nfld. and

Montreal area (514) call collect

CALL COLLECT (514) 325-6203

between 9 a.m. and 5 p.m. Eastern time

or send order to: 6864 JARRY EAST, MONTREAL, QUE. H1P 3C1

95

T

This

Space

Could

Be

ansacti

For

You!

Kelly M. George

Advertising Manage

416 876 4741

COMMODORE OWNERS
WE'LL CHECK YOU OUT
Mr Tester TM

Is your Commodore 64 TM

Disk Drive, Printer, Memory,

loystick, Monitor and Sound

Chip operating correctly?

You may never know

for sure. Mr. Tester is a

complete diagnostic that

tests:

1.) Full joystick operation

in all axis.

2.) Continuous or standard

comprehensive memory

test.

3.) CommodorelM SID chip

test for sound analysis.

4.) Screen alignment and

color test.

5.) Complete read/write Disk

Track and Block Test.

6.) Diskette format analysis to

check Floppys.

7.) Complete printer test.

8.) Complete keyboard test.

9.) Cassette read/write test.

All this for only

181-

Wait! Don't do it!!

$2995

order from

M-W Dist. Inc.

1342B Route 23

Butter, N.1.07405

201-838-9027

COMMODORE OWNERS

WE'LL FIX YOCIR FILES WITH

FANTASTIC FILER
The all purpose Data Base management

system that provides:
All this for only

$29.95
1.) Menu driven subsections

2.) Logical key functions

3.) Average of 1000 records per disk

4.) Fast record access time

5.) Search for records by record number or by specific

search criteria

6.) Easy to edit, delete or update records

7.) Interface with FANTISTIC FORMS to print mail

ing labels or columnar reports

8.) Complete reference manual

9.) Technical support available to answer questions

10.) Up to 255 characters per record and up to 15 fields

Micro-W. D.I.

P.O. Box 113

Butler, N.J. 07405

^(201) 838-9027^
84-

96

Commodore 64

and

VIC-20

Telecommunications

with a difference!
Unexcelled communications power and

compatibility, especially for professionals and

serious computer users. Look us over; SuperTerm

isn'tjust "another" terminal program. Like our

famous Terminal-40, it's the one others will be

judged by.

• EMULATION—Most popular terminal protocols:

cursor addressing, clear, home, etc.

• EDITING—Full-screen editing of Receive Buffer

• UP/DOWNLOAD FORMATS-CBM,Xon-Xoff,

ACK-NAK, CompuServe, etc.

• FLEXIBILITY—Select baud, duplex, parity, stopbits,

etc. Even work off-line, then upload to system!

• DISPLAY MODES-40 column; 80/132 with

side-scrolling

• FUNCTION KEYS-8 standard, 52 user-defined

• BUFFERS—Receive, Transmit, Program, and Screen

• PRINTING—Continuous printing with Smart ASCII

interface and parallel printer; buffered printing

otherwise

• DISK SUPPORT—Directory, Copy, Rename, Scratch

Options are selected by menus and EXEC file. Software

on disk with special cartridge module. Compatible with

CBM and HES Automodems; select ORIG/ANS mode,

manual or autodial.

Write for the full story on SuperTerm; or, if you

already want that difference, order todayl

Requires: Commodore 64 or VIC-20, disk drive or Datasette, and

compatible modem. VIC version requires 16K memory expansion. Please

specify VIC or 64 when ordering.

Smart ASCII Plus ... $5995

The only interface which supports streaming —sending

characters simultaneously to the screen and printer — with

SuperTerm.

Also great for use with your own programs or most

application programs, i.e., word processors. Print modes:

CBM Graphics (w/many dot-addr printers), TRANSLATE,

DaisyTRANSLATE, CBM/True ASCII, and PIPELINE.

Complete with printer cable and manual. On disk or cassette.

VIC 20 and Commodore 64 are trademarks of Commodore Electronics, Ltd.

(816)333-7200

MIDWEST
MICRO me

Send for a free brochure.

MAIL ORDER: Add $1.50 shipping and
handling ($3.50 for C.O.D.); VISA/Mastercard

accepted (card# and exp. date). MO residents

add 5.625% sales tax. Foreign orders payable

U.S.$, U.S. Bank ONLY; add $5 shp/hndlg.

311 WEST 72nd ST. • KANSAS CITY • MO • 64114

COMMODORE

-USER WRITTEN SOFTWARE-
Supporting all COMMODORE computers

Written by users, for users

• GAMES • UTILITIES • EDUCATIONAL •

VIC 20™
Vic 20 collections #1, 2, 3, 4, 5, 6

over 70 programs per collection-Tape/Disk - $10.00

Vic 20 collections #7, 8

over 50 programs per collection - Tape/Disk -$1 0.00

COMMODORE 6*™
64 collections #1, 2, 3, 4, 5, 6, 7,

over25 programs per collection - Tape/Disk- $1 0.00

PET® / CBM®
22 collections - Tape/Disk - $10.00

DINSET™: Reset Switch
Works on Vic 20 or Commodore 64 - $5.00

SERIAL CABLES
10Ft.-S10.00 LOCMTF™ 15Ft.-$15.OO

Operation Status Indicator Assembled & Tested

$20.00
All prices include shipping and handling.

CHECK, MONEY ORDERS,
VISA and MASTERCARD accepted.

For A Free Catalog Write:

Public Domain, Inc.
5025 S. Rangeline Rd., W. Milton, OH 45383

10:00 a.m. - 5:00 p.m. EST - Mon thru Fri.

(513) 698-5638 or (51 3) 339-1725
VIC 20". CBM* and Commodore 64~ are Trademaiks o' Commodore Electronics Lid

PET* is < Registered Trademark of Commodore Business Machines Inc

THE BANNER MACHINE

Menu-driven program works like a

word processor. Great for busi

nesses, schools, or organizations.

Produces large signs up to 13" tall

by any length. Make borders of

widths up to Va". Eight sizes of let

ters from W to 8" high. Propor

tional spacing, automatic center

ing, right and left justification. Use

with Gemini 10 or 10X; Epson MX

with Graftrax, or the RX or FX; Com

modore 1525E or MPS 801; and the

Banana. Four extra fonts available

($19.95 each). Tape or disk $49.95

Menu Driven Disk Operating System

Execute disk commands by reading

the menu and pressing just one

key: LOAD, SAVE, initialize disk,

validate, scratch, rename, COPY,

auto list, renumber, search,

replace, and more! Disk $29.95

Flex File 2.1 By Michael Riley. Save

up to 1500 typical records on a

1541 disk drive. Print information

on labels or in report format. Select

records 9 ways. Sort on up to 3

keys. Calculate report columns.

1541 -4040 2031 Disk $59.95

CTRL-64 Permits listing of C-64

programs on non-Commodore

printers. Lists control symbols in

readable form. Disk $24.95

Screendump Print a copy of the

C-64 screen simply by pressing just

two keys. This machine-language

program is compatible with most

software. $19.95

Chessmate 64 Analyze your own

games, master games, book games,

and openings. Save, print, and

watch your games in a unique

"chess movie." Memorize any

board position and recall it after

you have played through varia

tions. Disk $29.95

Formulator A formula scientific

calculator for tasks which require

repetitive arithmetic computations.

Save formulas and numeric expres

sions. Ideal for chemistry, engineer

ing, or physics students. Tape or

disk $39.95

Space Raider An amazing arcade

simulation, your mission is to

destroy the enemy ships. $19.95

Order Toll Free: 800-763-5645

Information: 703-491-6502

HOURS: 10 a.m. to 4 p.m. Mon-Sat

Cardinal Software
13646 Jeff Davis Hwy.

Woodbridse, VA 22191

Catalogs available.

Specify: Educational,

Business/Utilities, or

Games/Simulations.

Commodore 64 is a resistered trademark of Commodore Electronics Ltd. J

97

letJhe SMUBlB4 terminal

Bo Jhe BBIVIHB
COMMODORE64*

No matter which direction you wish ro rravel in, experience

the advantage of computer communications with The /f /'
SMART 64 Terminal. Discover the program that puts you ((i
on the Right Road to: Public-Access Networks, University \j

Systems, Private Company Computers and Financial Services. _ j

The SMART 64 Terminal designed with Quality-Bred features, ^^~-v f ij*
Affordable Pricing. . .And Service.

So why not travel the communications highways the SMART way!

Accessories included:

□ Selective Storage ofReceived

Data.

□ Alarm Timer.

□ 40or80Col. Operation*.

□ Auto-Dial.

Suggested

$39.95
Retail

Formatted Lines.

□ Review, Rearrange, Print Files.

□ Sends/Receives Programs and

Files ofANYSIZE.

□ User-Defined Function Keys,

Screen Colors, Printerand

Modem Setting.

□ Screen Print.

□ Disk Wedge Built-in!

□ Adjustable transmit/receive tables allowcustom requirements. These and other features moke The SMART64 Terminal

the best choice forgrand touring telecommunications.

HI\/IICROTECHI\IICC

^SOLUTIONS*
P.O. BOX2940, New Haven. Ct. 06515

•Commodore 64 registered trademark

of Commodore Business Machines Inc.

•Supports 80-column cartridge

by Data 20 Corporation

Ptices are in US dollars.

2 programs for the

COMMDJ

TYPING TUTOR

WOHD INVADERS

JOIN THE

COMPUTER

REVOLUTION

WITH A MASTERY

OF THE KEYBOARD!

In the age of the computer, everyone

from the school child to the Chairman of

the Board should be at home at the

computer keyboard. Soon there will be

a computer terminal on every desk and

in every home. Learn how to use it right

...and have some fun at the same time!

Rated THE BEST educational program for the VIC 20™

by Creative Computing Magazine

TYPING TUTOR PLUS WORD INVADERS
The proven way to learn touch typing.

COMMODORE64 Tape $21.95 COMMODORE64 Disk$24.95

VIC20(unexpanded) Tape $21.95

Typing Tutor plus Word Invaders makes learning the keyboard easy and fun!

Typing Tutor teaches the keyboard in easy steps. Word Invaders makes typing

practice an entertaining game. Highly praised by customers:

"Typing Tutor is great!", "Fantastic", "Excellent", High quality", "Our children

(ages 7-15) literally wait in line to use it.", "Even my little sister likes it", "Word In

vaders is sensational!"

Customer comment says it all...

"... It was everything you advertised it would be. In three weeks, my 13 year old

son, who had never typed before, was typing 35 w.p.m. I had improved my typing

speed 15 w.p.m. and my husband was able to keep up with his college typing

class by practicing at home. "

(FLIGHT

SIMULATOR)

CARTRIDGE

FOR THE VIC 20

$39.95
COMMODORE 64

TAPE OR DISC

$29.95

JOYSTICK REQUIRED

Put yourself in the pilot's seat! A very challenging

realistic simulation of instrument flying in a light

plane. Take off, navigate over difficult terrain, and

land at one of the 4 airports. Artificial horizon, ILS,

and other working instruments on screen. Full air

craft features. Realistic aircraft performance —

stalls/spins, etc. Transport yourself to a real-time

adventure in the sky. Flight tested by professional

pilo-s and judged "terrific"!

^JJ^ Shipping and handling $1.00 per idjjjfljjti
mh order. CA residents add 6% tax. [<HjJ§|jr!

ACADEIilV
SOFTI/t^RE

P.O. Box 9403, San Rafael, CA 94912(415)499-0850

Programmers: Write to our New Program Manager concerning any exceptional VIC 20TM or Commodore 64TM game or other program you have developed.

98

MICROCOMPUTER

SUPPLIES m
Call us for all your C-64 Software

$33.00/10Memorex SS/DD

ECtype SS/DD

Single Superdrive

Dual Superdrive

Games on Disk*********

Spy's Demise

Pensate

Thunder Bombs

J-Bird (Best Arcade)

Flight Simulator

Business on Disk*******

Personal Accountant (Best)

Multiplan

Data Manager

Electronic Checkbook

Money Manager

Bank Street Writer

25.00/10

650.00

1050.00

39.95

39.95

39.95

49.95

37.95

49.95

124.95

31.95

31.95

31.95

87.95

To order: Send money order, certified cheque, personal cheques must clear

our bank, VISA or MASTERCARD. (Include card # and expiry date &

signature) Add 5% for shipping and handling. Minimum $3.00 per order.

Quebec residents add 9% P.S.T.

INTERNATIONAL MARKETING

P.O. Box 522, Boucherville, Quebec, J4B 6Y2

(514)655-9232

C64
PROVINCIAL
PAYROLL

A complete Canadian Payroll System for Small

Business.

• 50 Employees per disk (1541) •

Calculate and Print Journals • Print

Cheques • Calculate submissions

summary for Revenue Canada •

Accumulates data and prints T-4s • Also

available for 4032 and 8032 Commodore

Computers.

Available from your Commodore Dealer.

Distributed by:

ICROCOMPUTER

SOLUTIONS

1262 DON MILLS RD. STE. 4

DON MILLS. ONTARIO M3B 2W7

TEL: (416)447-4811

Disk Software for the Commodore 64™

JOT-A-WORD™
A computerized version of the old five letter word

game. Simply pick a secret five letter word (one of the

almost 5000 words contained on the disk) and then

play against the Jot-A-Word Genie or simply play a
solitaire version. Start by typing in a five letter word.
The Genie responds by telling you how many letters
your guess and the secret work have in common. Don't

try to cheat, because the Genie is too smart and it will

not accept non-words or continue a game that you have

given it wrong scores. This is a simple but stimulating

game for ages 9 to senior citizen. A real challenge to
your intellect, reasoning powers, logic and deduction

skills. It's simply hard to beat; as a fun and educational

experience! Graphics and music add to the enjoyment.

ONLY *2995
Micro-W. D.L

1342BRT.23

BUTLER, N.J. 07405

Dealers & Distributors

Inquiries Invited
Prices are in US dollars.

201-838-9027
'The Genie is hard to beat!"

99

I USED TO LAUGH WHEN

HE TOLD ME HE PRACTICED

AT HOME ON HIS COMPUTER

Here is your chance to play golf on a championship course without all the

headaches of getting a tee time, waiting for that slow foursome ahead of you,

losing balls, getting rained out or spoiling a good handicap. This game may be

played in the privacy of your home or in a clubhouse lounge for the enjoyment of

many members. A challenge to even the best players, this game requires a high

degree of practice, expertise and accuracy to attain a good score.

PRO GOLF Features:

• A full range of golf clubs (driveway, fairway wood,

wedge and irons 2-9)

• Realistic shot distances depending on club and

swing

• The ability to hook or slice a shot

• Up to 4 players in one game

• Detailed, colourful screen layouts of 18 different

holes (tee, trees, sandtraps, rough, water, out of

bounds)

• Simulated ball reaction to course hazards (e.g. ball

bounces off trees)

• Hole distances, par, yards to green, strokes taken

on hole, total strokes per round and player totals

displayed

• A full screen enlargement of greens for putting

• Accurate putting simulation for angle and distance

• Practice of real golf skills - club selection, type of

shot (normal, hook, slice), length of swing, special

shot strategy (e.g. chipping, getting around or over

trees, water, sandtraps)

TM

Name

Address _

Prov/State

PRO GOLF

For The Commodore 64

$34.95

(diskette only)

written by George Adams

available from your local retailer

distributed by

PACO Electronics Ltd.

20 Steelcase Rd. W.

Markham, ON.

L3R 1B2

416-475-0740

Dealer Inquiries Invited

Postal/Zip Code

□ Money Order

Acc#

□VISA ^MasterCard QCheque

Expiry

Please include numbers above name

Add $2.00 for shipping & handling

Ontario residents add 7% sales tax.

100

WE'LL BACK YOU UP!
ATTENTION COMMODORE 64 OWNERS

If you own a disk drive then you'll need "The
Clone Machine". Take control of your 1541 drive.

NEW IMPROVED WITH UNGUARD/
Package includes:

1.) Complete and thorough users manual

2.) Copy with one or two drives

3.) Investigate and back-up many "PROTECTED" disks ^^^

4.) Copy all file types including relative types (flS
5.) Edit and view track/block in Hex or ASCII

6.) Display full contents of directory and print

7.) Change program names, add delete files with single keystroke JS
8.) Easy disk initialization

9.) Supports up to four drives 49
'UNGUARD Now allows you to read, write and verify bad sectors and errors on
your disk making it easy to back-up most protected software.

Micro-W. D.L
1342BRt. 23

Butler, N.J. 07405

Dealers & Distributors

Inquiries Invited

CALL (201) 838-9027
"Should've made a back-up with the

Clone Machine."

COMMODORE COMPUTER

PRINTER ADAPTERS
COMPUTER INTERFACES

-232/>

—addressable-switch selectable upper/

lower, lower/upper case.

-works with BASIC, WORDPRO,

VISICALC and other software.

—IEEE card edge connector for con

necting disks and other peripherals

to the PET.

—power from printer unless otherwise

noted.

RS-232 SERIAL ADAPTER —

baud rates to 9600 — power supply

included.

MODEL ADA 1450a $149.00

CENTRONICS/NEC PARALLEL

ADAPTER — Centronics 36 pin

ribbon connector — handles graphics.

MODEL ADA 1800 $129.00

COMMUNICATIONS ADAPTER-

serial & parallel ports — true ASCII

conversion - baud rates to 9600 -

half or full duplex - X-ON, X-OFF -

selectable carriage return delay — 32

character buffer — Centronics com

patible.

MODEL SAD/ $295.00

COMMODORE 64 to RS-232

CABLE ADAPTER

MODEL ADA 6410 £79.00

Prices are in US dollars.

ANALOG AND DIGITAL INPUT/OUTPUT MODULES

The BUSSter line of analog and digital

products was designed to collect data and

to output signals to laboratory and industri

al equipment in conjunction with a

microcomputer system. These powerful

self-contained modules reduce a comput

er's workload by providing read or write

operations to external devices. They are

controlled as slave interfaces to real-world

physical applications. Control is over

an IEEE-488 (GPIB) bus or RS-232 port.

BUSSter modules are available in several digital and analog configurations. The internal
buffer and timer provide flexibility by allowing the BUSSter to collect data while the host

computer is busy with other tasks.

BUSSter A64—64 channel digital input module

to read 64 digital signals. Built-in

buffer $495.00

BUSSter B64—64 channel digital output

module to send 64 digital signals $495.00

BUSSter C64—64 channel digital input/output

module to read 32 and write 32 digital signals.

Built-in buffer $495.00

BUSSter D16—16 channel analog input
module to read up to 16 analog signals with 8
bit resolution (Vi%) Built-in buffer $495.00

BUSSter D32—32 channel version of the

D16 $595.00

BUSSter E4—4 channel analog output module
to send 4 analog signals with 12 bit resolution

(.06%) $495.00

BUSSter E8—8 channel version of the
E4 $595.00

BUSSter E16—16 channel version of the
E4 $695.00

Add the suffix -G for IEEE-488 (GPIB) or -R for

RS-232.

All prices are USA only. Prices and specifica

tions subject to change without notice.

30 DAY TRIAL—
Purchase a BUSSter product, use it, and if you
are not completely satisfied, return it within 30

days and receive a full refund.

US Dollars Quoted

$10.00 Shipping & Handling
MASTERCARD/VISA

Connecticut microcomputer, Inc.

INSTRUMENT DIVISION
36 Del Mar Drive

Brookfield, Ct. 06804

(203) 775-4595 TWX: 710-456-0052

101

IS PROGRAMMING

TURNING YOU INTO

A HULK?

-

j >

Write Advanced Programs Quickly!

Tired of writing reams of code? Take a quantum jump into the

future! Tommorrow's programmers are using software devel

opment tools such as THE TOOL. THE TOOL lets you make

use of powerful machine language subroutines. Your pro

grams will execute fast using less code. Input/output routines

and professional looking screens are easily created.

Features of THE TOOL include :

• Screen Design functions which allow controlled input and

output

• High Resolution Graphics with alpha/numeric display

• Screen Save and Load functions (for hi-res and text screens)

• Structured BASIC instructions , e.g. IF THEN ELSE

• Programming Aids (e.g. auto, renumber, delete, find, trace,

hardcopy)

• 2 keystroke disk commands (DOS support extensions)

• Game Design Instructions (joy, scroll, screen, colour)

• A 50 page user manual

Name

Address _

Prov/State

THE TOOL

For The Commodore 64 ™

$65.00

(diskette only)

developed by Micro Application

available from your local retailer

distributed by

PACO Electronics Ltd.

20SteelcaseRd. W.

Markham, ON.

L3R 1B2

416-475-0740

Dealer Inquiries Invited

Postal/Zip Code

Order DVISA

Acc# __

□ MasterCard DCheque

Expiry

Please include numbers above name

Add $2.00 for shipping & handling

Ontario residents add 7% sales tax.

102

CANADIAN SOFTWARE SOURCE
COMPUTERWARE CATALOGUE SHOPPING

► VISIT US AT THE

PERSONAL AND BUSINESS

COMPUTER SHOWPLACE,

APRIL 6 to 8/84

C.N.E. TORONTO

OVER
COMMODORE
64 PRODUCTS

CANADIAN DOLLARS

HOME ACCOUNTANT (Continental) (D)
BANK STREET (BRODERBUND) (D)

PAINT MAGIC (Datamost) (C & D)
COMBATLEADER(SSI](D1

KOALA PAD (Koala Tech)

KEN USTON'S BLACKJACK (Screenplay) (D)
MINER 2049'er (RESTON) (CAR)

STARFIRE/FIRE ONE (Epyx) (T & D)
WAYOUT(Sirius)(D)

FAMILY TREE GENEALOGY (D)
FCM (Continental)

THE HYPNOTIST (Psycom) (D)

FLIGHT SIMULATOR II (Sublogic) (D)
STRIP POKER (Artworx) (D)

ASTROPOSITIONS (King Microware) (D)

PAPER CLIP (Batteries included)
FRENCH-EASYSCRIPT64(Silicomlnt.)(D)

SEXUAL CONFIDENCE (Simutech) (CAR)

-IBC — INCLUDES 10% BONUS CREDIT

Retail

$ 99.95

99.95
69.96
49.95
149.95

94.95
59.95

49.95
51.95
49.95

69.95

149.95

69.95

54.95

49.95
**IBC

"IBC
69.95

C.S.S.

S 74.95
69.95

55.95
44.95

107.50

82.50

49.95

39.95
45.95

46.95
54.95

139.95

59.95
48.95

43.95

99.95
129.95

58.95

WEIGHT CONTROL (Simutech) (CAR)

BEAR JAM (Chalkboard) (CAR)

EARLY GAMES FOR YOUNG CHILDREN (Cntpt.)

(T&D)

GOTCHA MATH GAMES (Comm • Data) (D)

MATH TUTOR (Comm • Data) (D)

SPELLOCOPTER (Designware) (D)
TRIVIA 1(Cymbal)(D)

SYSRES(Solidus)(Dj

PRINTER INTERFACE +G(Cardco)

GEMINI - X (Star Miconics) including PRINTER

INTERFACE+G(Cardco)

BEACH-HEAD (ACCESS) (T & D)
IN SEARCH OF... (Spinnaker) (D)

PRINTERPAPER-30M-9Vxir-(3300shts/box)
MUSIC CALC (WaveformHD)
MUSIC CONSTRUCTION SET (Electronic Arts) (D)

JOYSTICK (Kraft)

Retail

S 69.95
49.95

39.95
Call
Call

49.95

49.95

115.95

149.95

Special

69.95

52.95

Special

100.00

59.95

Special

£S
S 58

4J

3^
(

<

M

A*

9S

11<

49!

33
41

43
73

53
2J

&.
.95

'.95

.95

:all

:all
.95

,95

'.95

'.95

i.OO
.95

'.95

:.95
■.00

..95
i.OO

FOR ORDER OR FREE CATALOGUE WRITE OR PHONE CANADIAN SOFTWARE SOURCE
BOX "340" STATION "W", TORONTO, ONTARIO M6M 5B9 (416) 491-2942

^^_. Ontario Residents add 7% sales tax. Send certified cheque or money order. Visa Add $2.50 for shipping and handling. All items subject to availability. Prices 4fk«
visa ohd Master Card please include card number, expiry date and signature. subject to change without notice. ^^E

^^^ "Delivery bv U.P.S. within 3 davs of order date if stocked bv local suDDliers.

COMMODORE OWNERS

Join the world's largest, active Commodore

Owners Association.

• Access to thousands of public domain programs

on tape and disk for your Commodore 64, VIC 20

and PET/CBM.

• Monthly Club Magazine

• Annual Convention

Member Bulletin Board

Local Chapter Meetings

Send $1.00 for Program Information Catalogue.

(Free with membership).

Membership

Fees for

12 Months

Canada — $20 Can.

U.S.A. — $20 U.S.

Overseas — $30 U.S.

T.P.U.G. Inc.

Department "M "

1912A Avenue Road, Suite 1

Toronto, Ontario, Canada M5M 4A1

* LET US KNOW WHICH MACHINE YOU USE *

COMMODORE 64™ COMAL

ADDS:

40 Graphics Statements

10 Sprite Statements

"LOGO" TURTLE GRAPHICS

RUN-TIME COMPILER

FAST program execution

auto line numbering

line renumbering

program structures

merging program segments

long variable names

named procedures

parameter passing

local and global variables

random access disk files

stop key disable

End Of File detection

What does this and more? COMAL

What is the cost? Only $19.95

All this and much, much more on disk with many sample

programs. ONLY $19.95. Also available: COMAL HANDBOOK,

$18.95. BEGINNING COMAL, $19.95. STRUCTURED

PROGRAMMING WITH COMAL. $24.95. FOUNDATIONS IN

COMPUTER STUDIES WITH COMAL, $19.95. CAPTAIN COMAL

GETS ORGANIZED, $19.95. COMAL TODAY newsletter, SI4,95.

Send check or Money Order in US Dollars plus $2 handling to:

COMAL Users Group, U.S.A., Limited, 5501 Groveland Ten,

Madison, Wl 53716 phone: 608-222-4432. COMMODORE 64 i

trademark of Commodore Electronics Ltd. CAPTAIN COMAL is

trademark of COMAL Users Group, U.S.A., Limited.

103

Software

Advertiser

Academy Software

Bennett Software Co.

Boston Educalional Computing

Canadian Software Source

Cass-A-Tapes

Cardinal Software

COMAL Users Group

Computer Alliance

Dexterity Software

Dyadic Resources Corp.

Eastern House

Info Mag Inc.

Input Systems Inc.

Isis Hathor

King Microware

Magreeable Software

Microcomputer Solutions

Micro-Fax

MicroSpec

Microtechnic Solutions

Micro W.D.I.

Midwest Micro Inc.

PACO Electronics Ltd.

Performance Micro Products

P.F. Communications

Pro-Line Software

Psycom Software Int'l

Public Domain Inc.

Silicom International

William Robbins Software

Hardware

Advertiser

Apropos Technology

cgrs Microtech

Connecticut microcomputer

Eastern House

George M. Drake & Associates

Micro W.D.I.

Micro World Electronix

Midwest Micro Inc.

Midwest Peripherals

Precision Technology

Richvale Telecommunications

Zanim Systems

Accessories

Advertiser

Bytes & Pieces Inc.

The Book Company

The Code Works

Hunter Nichol

Int'l Marketing Services

Midnight Software Gazette

Toronto PET Users Group

Zanim Systems

The Transactor

03

79

79

76

76

03

79

IFC

03

04

73

64

68

68

66

69

64

73

73

69

74

66

74

04

64

68

68

68

68

BC

70

70

65

69

74

73

IFC

04

69

72

75

Advertising Index
Issue*

05

77

72

81

81

IBC

75

81

70

77

75

82

83

73

76

86

72

72

74

78

83

80

75

Issue*

05

79

78

BC

74

72

IFC

84

Issue*

05

78

80

71

74

/Page

06

78

79

62

65

71

71

IBC

76

74

71

69

78

74

65

73

72

68

65

62

62

77

64

73

79

75

74

/Page

06

67

64

BC

77

62

IFC

70

/Page

06

64

79

66

77

01

89

91

88

83

88

82

88

79

IBC

87

81

86

91

89

81

82

80

90

84

2

83

85

86

80

78

81

01

86

BC

85

83

IFC

01

91

79

85

1

02

98

92

103

97

103

94

95

IBC

2

94

99

95

98

99

101

96

96

97

102

100

IFC

92

97

93

02

94

101

BC

97

02

93

93

99

95

103

1

Product Name (Description)

VIC20/C64 Software

Graph-Term 64

Educational Software

C64 Software

Commodore software

VIC20/C64 Games, Utilities, Edu.

C64 COMAL

BASM (language for the 64)

C64/VIC 20 games

SuperPET information

MAE Assembler

Commodore software

Typro (wordprocessor)

Laser Strike

VIC/64/PET software

Stock Helper

C64 Provincial Payroll

C64 Software

C64/VIC 20 Business Software

C64 Terminal software

C64 JOT-A-WORD

C64 Disk Utility

Mr. Tester (diagnostic pros,.)

Fantastic Filer

VIC20/C64 Graphics Util

VIC20/C64 SuperTerm

The TOOL (programming 5id)

Pro Golf

C64 Forth

J Butterfield video tutor

Commodore software

PAL 64 (assembler)

POWER 64 (programming aid)

MailPro

general

C64 software

Commodore software

SuperBase 64 (data base)

VIC/64/PET Software

Product Name (Description)

VIC20/C64 Printer, Exp board

A/D Converter, Quikdisk

Analog/Digital I/O

Trap 65

VIC Rabbit

Eprom Programmer

Communications Bd

Colour Monitors

Tape Interface

VIC20 RAM Expand

VIC20/C64 Printer Interface

Smart ASCII Plus

VIC20 Expander

VIC20/C64 Expander Boaids

C64 Link (IEEE adapter) + software

Home control hardware

Product Name (Descriptior)

C64 'Cheat Sheets'

Software review/exchange

'CURSOR', C64 Tape Magazine

World Of Commodore II show

Disk, printers, misc.

Subscriber Info

Membership info

CAD/CAM Tutorial

104

Manufacturer

Micro Application

Precision Software

Manufacturer

Amdek

Manufacturer

Volume 5, Issue 02

for the commodore 64

challenge the asteroid field,

maneuver the caves of ice,

experience the thrill,

play laser strike.

Laser strike, written in full machine language for the Commodore 64.

Commodore 64 is a registered trademark

of Commodore Business Machines Inc.

In U.S.

Cassette $24.95

Disk 329.95

Isis Hathor Digital Productions

6184VerduraAve.

Goleta, CA93117

(805) 964-6335
Add $2.00 postage and handling

California residents add 6% sales tax

<fc Ask about Laser strike posters

Visa/MC/Check/Money Order accepted

I/IS IIHTHOR
DIGITAL PRODUCTIONS

In U.K.

Cassette £ 9.00 VAT included
Disk £19.95 VAT included

Isis Hathor U.K.

Andrew Barrow

Royden, Perkslane

Prestwood, Gt. Missenden
Bucks, England HP16 OJD

02406-3224

You will be billed

for postage and handling

COMPATIBLE

-I ...

NEW 2 YEAR WARRANTY!
On all monitor electronics ... 3 yrs. on all CRT's

(See details at dealer)

The popular choice

for popular computers

... at a popular price.

The Color-I Monitor is designed to perform superbly

with your Apple II, Atari or VIC Commodore personal

computer and others. Highly styled cabinet. It accepts

a composite video signal to produce vivid, richly col

ored graphic and sharp text displays. Very reasonably

priced, the Color-I is a giant step above home TV sets

and other monitors.

Just write, or call to receive complete specifications ■ FCC/ULapprov

on the Amdek Color-I Monitor.

2201 Lively Blvd. • Elk Grove Village, IL 60007

(312)364-1180 TLX: 25-4786

REGIONAL OFFICES: Calif. (714) 662-3949

Amdek . . . your guide to innovative computing!

(duality 260(H) x 300(V) line resolution.

Built-in speaker and audio amplifier.

FJront mounted controls for easy adjustment.

Interface cables available for Atari and

VIC Commodore computers.

FCC/UL approved.

Texas (81 7) 498-2334

