The Tech/News Journal For Commodore Computers Vol. 4.

$2.50

ool Bk
MERIURY MAPS FOR THE BL

Diak UN-ASSENMBLER
BHGIC-AID FUR THE VIC 20
aUPERPET TERNHNAL PROGRAM
BUTTERFIELD OGN FILING

C‘ www.Commodore.ca
May Not Reprint Without Permission

From The Editor’s Desk (?)

Here it is! The first issue of The Transactor! Volume 4, Issue | marks a new chapter in the life of The Transactor since this is
actually the 31st issue, but the first with a typeset interior, colour cover, and advertising

Back (n April ol this year, Commodore Canada, the original publisher, decided to discontinue The Transactor in favour of
the Commodore U.S, magazine. To fullill subscription obligations, two more issues were assembled and the mail list
program was prepared for its final output, It seemed that The Transactor would suffer the same fate as several other original
PET publications, gobbled up by the "Mega-Mags"

shortly after the last Transactor was shipped, the calls and letters started coming in, They ranged from critical to
dissappointed, What could | say? | began answering explaining that, “the only hope for The Transactor was a chance for it to
compele In the prolessional magazine industry, a battle The Transactor could not possibly withstand in its present form”
Well, either the stars were in the right position that day, or my bio-wavelengths were being tuned in. The phone rang again
Frank Baillie of Canadian Micro Distributors (CMD) was on the other end

‘Karl, have you thought about taking on The Transactor as an independent publication?”

“oure, but the time, work and costs involved would put me in the proverblal poor house, I'd need a sponsor
"Well, you've got one, All we need is permission from Commodore,”

The Transactor was alive again!

I'd like to take this opportunity to welcome back Transactor subscribers that have forwarded renewals, I've seen several
lamiliar names come through our subscription department and we appreciate your support, without which there would be
no Transactor. I'd also like to extend greetings to any new Transactor readers. New interest is a major objective for any
magazine, and although we won't claim to be your single most desired computing resource, we do think that yvou'll find The
Transactor informative, entertaining, and a valuable asset to your computer investment

Like any magazine, we depend on revenue generated through advertising. But unlike most magazines, our sponsor is also
in the business of selling micros, peripherals, and accessories. Consiously aware of the position a competetor may take
when considering advertising under these circumstances, I'd like to point out right now that bias will in no way whatsoever
influence any decision to accept advertising for any product, You'll see CMD ads in The Transactor, but no more so than any
other magazine, The microcomputer industry seems to be one of the few that is unaffected by the economy. It would be a
crime to suppress the exposure of any fine quality item that enhances the microcomputer market.

I welcome your comments, favourable or not, because your feedback s the key
o improvement, something | intend to make perpetual

S0, The Transactor has a new home, a new look. and a new future
Once again, thank you for your support, | regain,

g - /
-Fif.;-.. / / g J/;a'g

Karld, Hildon

Editor, The Transaclon

The

&

(€3

nsactor

www.Commodore.ca
May Not Reprint Without Permission

Editorial

Listings Legend

News and New Products

Bits and Pieces

The WordPro Book Of Tricks
The MANAGER Column
Disk Un-Assembler
Universal String Thing

File Chain Tracer
Translation Arrays

Filing It

SuperPET Terminal Program
APL & SuperPET Serial Port

Tiny-Aid For VIC 20

VIC RS-232 ASCII Driver
The Commodore 64:

A Preliminary Review
Architecture Map
Memory Map

Processor 1/0 Port & SID
CIA 1/2 Architecture
Condensed Memory Map

Advertising Section
Advertising Index
Next Issue

39
14

47
50
51
58
59
60

62
64
64

Lditor
Karl 1. H. Hildaon

Fditorial Assistant
Ellzabwth Baillie

Contributing Editors
ave Hereeowskl

Him Butterfield

Donna Cireen

Paul Higginbottom
[ave Hook

Fike Kalser

Hill MacLean

lohn Sloveken

Production

Allie Typesetting Lid

With special thanks (o
Nate Redmon, Phyllis Fast,
and all the others

Printing

Squire & Carter Lid
with special thanks to
lan Kernol

Cover Art
Him Jones
MeLean-Walte Advertising

The Transactor

he Transactor is published bi-monthly, 6 times per year, by Canadian Micro Distributors, Limited. 1t s in
no way connected with Commaodore Business Machines Lid. or Commaodore Incorporated, Commodare
and Commodore product names (PET, CBM, VIC, MAX, 04) are registered trademarks of Commuodore T

Volume 4 Subscriptions: Canada 815 Cdn
LS A $15 LIS
All other 818 LS

second Class Mall
Permil Pending

Hack issues are stll avallable for Volumes 1, 2, & 3, Best ol Volume 1 $10 Cdn LS A RSO LS, sl other
312 US, Best of Volume 2: $15Cdn,, US A $17 US., all other $19 US, Volume 3: $10Cdn,, US A $11 US
all other $13 US, Subtract $5 from total when ordering all 4 Volumes!

Yolume 4 quantity orders: subtract 35% on orders ol 10 or more

send all subscriptions tor The Transactor, Subscriptions Department, 500 Steeles Avenue, Millon
Ontario, Canada, LYT 317, 416 B7T8 7277

Want to advertise a product or service? Call or write for more information

taitorial contributions are always welcome and will appear in the issue immediately lollowing receip
Preferred media s 2000, 4040, BOS0, or 8250 diskettes with WordPro, WordCralt, Superscript, or SEQ) tex
Mes. Program Hstings over 25 lines should be provided on disk or tape. Manuscripts should be
typewrilten, double spaced, with special characiers or lormats clearly marked. Photos ol authors o
equipment, and llustrations will be Included with articles depending on quality, Diskettes, tapes and
photos will be returned on reguest

All material acoepted becomes the property of The Transactor until it s published, Once released, Authors
may re-submit articles to other publications at their own discretion. Other magazines, of any nature, are

invited to copy material from The Transactor, provided that credit is given to the Author (when applicable)
AND The Transacton

Phe opinions expressed in contributed articles are not necessarlly those of The Transactor. Although
accuracy is a major objective, The Transactor cannot assume Hability lor errors in articles o Programes

| September/Oclober 1982

www.Commodore.ca
May Not Reprint Without Permission

Program Listings in The Transactor

All programs listed in The Transactor will appear as they would on your screen in Upper/Lower case mode. Many programs
will contain reverse video characters that represent cursor movements, colours, or function keys. These will also be shown
exactly as they would appear on your screen, but they're listed here for reference. (Editor's Note: Some characters could not
be typeset in time for this list. They will appear on this page next issue)

Octasionally programs will contain lines that show consecutive spaces. Often the number of spaces you insert will not be
critical to correct operation of the program. When it is, the required number of spaces will be shown. For example:

print” flush right” - would be shown as - print” [spacel0]flush right"

Cursor Characters For PET / CBM / VIC / 64

Down - |l Insert -
Up -9 Delete -
Right - |} Clear Scrn -
Left - [Lft] Home -
Rvs -H stor -
RVS Off - [

Colour Characters For VIC / 64

Black - n Orange -
White - - Brown -
Red - Light Red -
Cyan - [Cyn] Grey 1 -
Purple - [Pur] Grey 2 -
Green - K} Light Green -
Blue - Light Blue -
Yellow - [Yel] Grey 3 - [Gr3]

Function Keys For VIC / 64

lﬂ
on
|

ﬂ
W

|

Epen
1] 'T]
-3 O
EEEE

-
oo
|

The Transactor 2 September/October 1982

C‘ www.Commodore.ca
May Not Reprint Without Permission

News and New Products

Do you have a new product or service? Just send all the

details to us and we'll see that it's published in this section of
the next Transactor. Ed.

Standardized Educational Software

This summer, about 30 Boards of Ed. have been working on
a collection of over 1000 programs in an attempt to stand-
ardize educational software. On completion of this mam-
moth task, all of these programs will work on virtually every
Commodore machine with the exception of the early BASIC
1.0 PETs, the VIC-20, and the new ‘P’ and ‘B’ series
computers. BASIC 1.0 was excluded for obvious reasons, the
VIC-20 due to its 22 column screen size, and the ‘P’ and ‘B’
series because of new internal architecture.

Each program has been fitted with about 6K of “overhead”
subroutines. Pre-program code will test what machine the
program is being run on. That means each program can be
loaded into either the 2001 (BASIC 2.0), 4032, 8032, 8096,
SuperPET (in CBM mode), or even the new Commodore 64,
and will run without modification. Standard keyboard input
and screen formatting routines have also been included to
give the software a more uniform appearance.

Of course memory size will still restrict the use of larger
programs, but most machines in Canadian schools have
32K. 80 column machines will require a screen modification
program that converts to 40 column output. This will be
available on a utilities disk along with copies of the “over-
head” modules used in the standardization process. Other

utilities will also be included to make programming life
easier.

The complete library should be available from school
boards across Canada by October 1st or earlier. For $10 you
get a diskette, about 20 programs, and a Manager file
containing details of the programs. A master catalogue disk
can also be obtained for descriptions on the entire collec-
tion, an estimated 50 to 70 diskettes!

Commodore will be distributing the diskettes to their deal-
ers sometime around November lst, but no procedure
details have been released. Possibly they'll be free for
schools supplying their own diskettes?

Three New Commodore Info Sources

STRICTLY COMMODORE is a bi-monthly, software-o-
riented publication that is entirely devoted to VIC-20, PET,
CBM, and SuperPET owners. Product reviews, program-
ming tips, and other factual material is covered. Yearly
subscriptions are $20 in Canada, $18 US. dollars for state-
side subscribers, and $25 US. dollars in all other countries:
Sample issues are $2 in Canada and the U.S., $3 elsewhere.
Write to:

The Transactor

September/October 1982

g Wwww.Commodore.ca
May Not Reprint Without Permission

Strictly Commodore Inc.
Subscription Dept.

47 Coachwood Place N.W.
Calgary, Alberta

T3H 1EI

Strictly Commodore Inc. is also planning another publica-
tion. SUPER 64 will cover material on the new Commodore
64 and MAX, exclusively. Rates: $15 US. dollars in Canada
and the U.S., $20 US. elswhere. Samples: $4 Canada and
U.S.7 85 for other countries. S.C. Inc. asks that all cheques
and m/o’s be in U.S. dollars only.

Editor’ Note : So far I've only seen Volume 1/Issue 1 of
STRICTLY COMMODORE. It came on 8 1/2 by 11's folded
and stapled at the centre for 36, 5 1/2 by 8 1/2 inch pages.
The programs were documented nicely with descriptions of
important variables and conversions for other machines,
however, their reproduction quality can only get better.
Most of the mag is geared for beginners, which they openly
admit, but their intentions are admirable with good growth
potential,

PET PAPER and Midnight Merger

The PAPER (originally The PET PAPER), one of the oldest
independent publications supporting Commodore com-
puters is merging with another independent resource for
Commodore users, the Midnight Software Gazette, begin-
ning with the October, 1982 issue.

To celebrate the merger, a contest is underway to rename
the merged magazines. The person suggesting the best
name will receive a free VIC-20 courtesy of Computer
Country of Springfield, IL. Judging will be by the editors, and
in case of ties, by the readers of the combined magazine.

Entries must be received by November 1st at the address
below.

During the past two years, Midnite has become a widely
respected resource in 41 states and 11 countries. Specializ-
ing in brief independent reviews of products for Commo-
dore computers, it has received praise from nearly every
magazine supporting CBM products. Its current issue is a

300+ page $10 book, with advance committments for
10,000 copies.

The PAPER has traditionally been a strong source of articles
and tutorials for users of CBM equipment, with excellent
series on such topics as first steps in machine language, as
well as extended reviews of important products.

Subscriptions to the combined magazine are $20 US. or $25
CDN in North America for 6 bi-monthly issues. Overseas
subscriptions are $45 US. Each issue will be professionally
printed and securely shipped in envelopes via first class
mail.

Send subscriptions to:

Midnite Software Gazette
635 Maple

Mt. Zion, IL

62549

217 864 5320

Commander

The first issue of Commander is slated for December 1st,
1982, Like The Transactor, it will be devoted to information
on Commodore products only. Commander will be pub-

lished monthly by Micro Systems Specialties, Tacoma,
Washington.

Subscriptions are $22 in the US.A., $26 in Canada and
Mexico, all other countries $37 surface or $54 air mail (I
assume all figures are in US. dollars). Send all orders to:

Commander

P.O. Box 98827
Tacoma, Washington
98498

206 565 6818

Or call toll free in the US., (except WA, HI & AK)
1-800-426-1830 with your Visa, Master Card or American
Express number. Subscribe before the premier issue and
receive a $4 discount.

Editor's Note : Since a Commander has not yet been re-
leased, | can't give you an opinion. However, if what their
promotional material says is true, it sounds like a very
professional effort that should be considered.

Commodore Computing

This one is relatively new and worth mentioning. Without
question, it's the best from the U.K. Commodore Comput-
ing was originally Commodore U.K.s club newsletter
(known to some as “CPUCN”). Commodore sold publica-
tion rights to Nick Hampshire publications, and Pete
Gerrard, also a Commodore vet, is producing some super
work. I've seen two excellent issues so far.

The Transactor

September/October 1982

< www.Commodore.d

May Not Reprint Without Permissil

Subscription rates for 10 issues are 12.5 British pounds in
the U.K. and 15 pounds overseas. You'll have to work that
out in Canadian or U.S. dollars before sending. Air mail
rates are available on request. Write or subscribe using:

Commodore Computing
aubscription Manager
MAGSUB

Oakfield House
Perrymount Road
Haywards Heath

Sussex RH16 3DH

VIC Computing

The only pubiication | know of devoted soleiy to the VIC=-20.
I imagine as Commodore brings out new home entries
they’ll cover these too, VIC Computing is not related to the
above mentioned publication, but I believe they are closely
associated with (If not owned by) Microcomputer Printout, a
more general computing tabloid.

Annual subscriptions 6 pounds in the U K., 9 in Eurepe and
16 overseas. Once again you'll have to re-calculate for
Canadian and U.S. dollars. Their address:

VIC Computing
39-41 North Road
London, England
N7.9DP

Toronto Typesetter Connects To PET/CBMs

Attic Typesetting of Toronto have been in the typesetting
business since 1973. Over the years, co-founder Nate Red-
mon has been experimenting with his Quadex 500 typeset-
ting system and several microcomputers including Apple,
Radio Shack, and just recently, Commodore. Data generated
by the computer can be sent directly into the Quadex frant
end system. From there it's sent to the typesetting machine.
Resuit: the infinite quality line printer!

The connection is a standard RS-232 line at 9600 baud.
Using a SuperPET with Raymond Li's RS5-232 terminal
program, sequential files generated by WordPro for every

article you see in The Transactor were transfered to the
typesetter.

Even program listings can be typeset. Programs are simply
Li5Ted to disk and sent like any other SEQ file. Cursor
centrol characters can also be typeset, but only as they

appear in Upper/Lower case mode. The major advantage,
nowever, is the possibility of keyboarding error is elimi-
nated.

Once in the editor, a spell checking program with over
200,080 words checks your text in seconds.,

With all of the inherent capabilities, plus some custom
programs written by Mr. Redmon for the Quadex, Attic
offers a text processing service that's unparalleled by
“off-the-line"” typesetting equipment. [f there's enough de-
mand, Nate may consider installing a modem so that text
can be sent remotely.

For more information contact;

Nate Redmon

Attic Typesetting Lid,
5453 Yonge Street
Willowdale, Ontario
416221 8495

Leading Edge Introduces Low-Cost 12" Monitor.

The newest addition to the Leading Edge Products’ line of
BMC monitors is the BM-12EN; a hi-res, non-glare, green
screen 12" model in high demand for use by certain market
segments such as professional, educational and specialized
small businesses.

A 20 MHz bandwith gives the BM-12EN a sharper, more
precise image, and the non-glare screen reduces eye strain
substantially over prolonged periods. The unit comes with a

one year repair/replacement warranty at a dealer cost of
$99.00 U.S.

Leading Edge is the exclusive U.5. distributor of the
BM-12EN, as well as the “Mean Green” BM=12AlU, and the
color composite BM-1400CL. All monitors are competi-
tively priced and dealer inquiries are welcome. Contact:

Leacing Edge Products

225 Turnpike Street

Canton, MA.

02021

Toll free -1 800 343 6833
In MA & Can.: 1 617 828 8150
Telex : 951 - 624

On August 10, 1982, Leading Edge announced a one year,
end-user parts and labor warranty for their complete line of
C.ltoh Prowriters, F-10 Starwriters, and Printmasters. Con-

The Transactor

SeptemberiOctober 1982

2 www.Commodore.ca

May Not Reprint Without Permission

vac] vour newrest Leading Eder dealer T deliala,

Leading Bdge Products is the largest marketer o microcom-
puter prodsaces in the L3 emepivying over 100 people in 106
wareliouses across the counlry

Remole Switched Isolators by Electronlc Spechalisis

Famotely swilched [sululors apnounoea by Electronic Spe-
cialifts arc Lhe newast addilion 1o their patenied bsulator
filters supperessor hine of mterferesce contral pradacks Avadl
able on all Isnlator models, the renuse AC puwer control

swllch cap e onounied sear the equipment nperalor for
colreenienoe ind svstam rable nealness

Microcempuler applicatinns include Zal npslore, huspital,
indusreial and personal sysdcions baving o need th conven
ently contral power to the operaling sy Wi frem a central
Laral i<

Todal Rermgte Swilched lsolator load capacizy is TRTS warrs
maszriur wilh eatl: sncket capahle of handling o 1 KW@
wad, Bemote swilching avalable nn maodels ranging fram

single-hiltered models 10 quad-Dllered wmagnum cnodels,
Frices slarl al $78.85

Faor mnge indirmation conlac:

Srank Soliee

Electrunic Sperialisis, Ing,
L7T Sanah Mam Seree
Matick, MA.

10760

HET B6a5 L5

IELE For VIC=20 And Commodore id

Richvale Telecommuncativuns of Richmond Hill, Onearic,
ure: now marketing the Y-1ENE, an [EEE mlerface lor Uhe
VIC The packose consists of a cardridee 1hat plugs inlg 1he
cartradge slot on te back, On power-up, wilh the carte i;ige
in place, the VIC Parallel User Por is cunfigured as the |IEEE
port. The unit also includes BASIC 4.0 commands and can
be airdeied with addiicna RAM lor expanding 1he mamory
cd wour IC-2R0

Kactivale has a variety ol optinns far the Lsay Port IFEF: pne

1 AIMPly @ conneclur Chal cupwers i 1o an |IEEE card—edoe
[tu. for use with PET tn JEEE cables). another is essenhially a
¥ to [EEE <able tur daisy—chaining tu uther IEEE 10 |IEEF.
cables: 4 third 1vpe of cable allows inte-rrla.u:mg o prinl_ef;

s as Lencrnnics and MNialio,

YIU nwners mnw Rave easy aucess tu |[EEE peripherals af al
soils, including Conpnodare, Hewlett-Packard. and siliers
LEEE device cwners will lind the VIC: Y-LINK vembination
AN attraclive conlruder Far sach unrs as IEEF, cacilLoscopisg
afnd spectrium analysers,

Just racenthe. V- LINK fur the Comrmodure G4 was perected,
Due to e sophistcated naduee of the &4, this wnil s noeh
Hdier tean if's pipderesser Clpge conneclor does evervthing!
O ane side s g cadridgo slot sennectns, nn e ollier an
IEEF card-pdge cunneclur. o between is a 4K RO rha
contane e [EEE rawlines and also gives vou BASIC 4.
reemmands amd g Nacline lunguiwe minnitor No need ot
RAM expansiuz on this ane; the R has alz o can haedie,

Foor details on prices, elf., rontare

[Peteer SacnitfL 4 Bdoweard Hum
Kichvale Telecam munealions
[UGT0 Bawviow Avenue. 1nit 18
Eichmond Hill. Chararng

L4 3N4

k6 BH1 4165

Mew Yersivns of SuperPET Languages

Cormmudore Canada has sent new versions of all the Super-
FET language pracessors oy all Canadun dealers. Cotmn-
dofe U5, gy e handling thesn differenily, but | asaime
thew should he available from any dedler by 1he tioe you
tead Lhis nolice. Cubol wall also be in that shipment and, as
annaunced. is free of rhargs 1o SuperlET owners and will
b included witly new SPET ardess.

The Assembler and Editor programs are eepnfedly nin-
chiunged so vour diskeetes that conlam eslher ol these will
Nl need updatine.

A nole on MicreFORTRAN. & recent disenvery shoaved thal
FORTEAN dovs nat like disk associated commands and
slatements 1hal asswnie deive U, To avoid potential errnys,
ilways include 1he drive number. This may ol so be 1rue For
some od the ofhet lanwuages, Lot hasr't been lestad. Pnsss-
bly this bue will be fixed in 1he new version.

| The rmrasctar

L Ry Kt ST | | BESy

2 www.Commodore.ca

May Not Reprint Without Permission

Two New Assemblers From
French Silk Smoothware

The Assembler for the Commodore VIC-20 is a machine
language development system consisting of three programs:
The Editor, The Assembler and The Loader. The package
will function on all VIC configurations, including the 5K
cassette-based system. The user-friendly design allows
easy creation of machine language programs and BASIC-
—callable subroutines. A powerful two-pass symbolic as-
sembler interprets algebraic expressions, decimal, hex, and
literal data. It accepts programs from the source library
created by The Editor and it creates object modules for use
by The Loader. The ability to load and link multiple mod-
ules gives the VIC owner the opportunity to develope very
large and powerful machine language programs (eg. a 4K
program on the 3583 byte VIC). The user's manual is
professionally written, clear and complete. The package is
available on cassette for $24.95 plus $1.00 postage & han-
dling, or on diskette for $29.95 plus $1.00 p&h.

Develope-64 for the Commodore 64 is a machine language
development system consisting of an editor/assembler and
a loader. With the editor/assembler, machine language
programs may be created, modified, saved to the source
library and assembled. Load modules are created for input
by the loader and listings are produced containing source
and generated machine language in either hex or decimal.
This powerful two—pass symbolic assembler interprets alge-
braic expressions and a variety of data formats. Completely
compatible with The Assembler for the VIC-20, Deve-
lope-64 can accept statements up to 78 characters in length
and labels up to 73 characters long. This product is “hu-
man-engineered” for maximum user-friendliness. The
manual is professionally written, clear and complete. Deve-
lope~64 is available on cassette for $34.95 plus $1.00 p&h,
or on diskette for $39.95 plus $1.00 p&h.

Need more? Contact:

French Silk Smoothware
PO. Box 207

Cannon Falls, Minnesota
55009

507 263 4821

Toronto PET Users Group Now
2000 Members Strong!

TPUG started in 1978 with a mere 30 members. Chris
Bennett, club secretary, informs me that this month they
passed the 2000 member mark. They have regular monthly

meetings at two locations in Toronto, special interest
groups, their own newsletter (The TORPET), and a disk
library with almost 50 diskettes!

Memberships are worth every nickel! They get you The
TORPET and full access to the library.

Canadian Associate Members : $20
UJ.S. Associate Members : $30 US.
Overseas Associate Members : $30 US.

Canadian Regular Members : $30

Canadian Student Members : $20

For more information contact (after business hours):

Chris Bennett

381 Lawrence Ave West
Toronto, Ontario

MSM 1B9

416 782 9252

Or use your computer to call the TPUG Bulletin Board at 416
223 2625. (7 PM. to 9 AM., Mon. through Sat. - All day Sun.)

The Transactor

7 SeptemberiOctober 1982

2 www.Commodore.ca

May Not Reprint Without Permission

Bits and Pieces

Got some interesting bit of info you'd like to share?...a POKE,
a screen dazzler, a bug, or some other anomaly? Send it in!
We'll ge glad to print it! Ed.

Optical Ilusion

This neat little machine language program was written by
Dave Berezowski at Commodore Canada. It doesn’t do very
much except create a rather interesting looking screen. The
program will work on 40 or 80 column machines but the 80
column seemed to be the most impressive,

033¢ Idx #300

033e inc $8000, x vic users must subst,
0341 inx screen address
0342 bne $fa

0344 inc $033f

0347 imp $e455 for BASIC 4.0 users
0347 imp $et2e for BASIC 2.0 users
0347 imp $eabf for VIC-20 users

As you can see, the routine is interrupt driven which means
you'll need to POKE the interrupt vector to get it going.

poke 144, b0 : poxe 140, 3

After servicing this code, the normal interrupt routines are
executed which means you'll still see the cursor. You can
even edit {and RUN) BASIC while this is running, just don't
try to use the cassette buffer that it lives in or whammo! Try
moving the cursor around the “affected area”.

Notice that the program is self modifying, a practice that is
OK for small programs but should be avoided like the
plague in larger ones. Self-modifying software is the worst
for debugging and finding out the hard way is not fun.

Vic users could also get this going without too much diffi-
culty {maybe even with colour?). Just substitute the PET/
CBM screen start address ($8000 in the second line) with the
start address of the screen in your particular Vic, one of two
possibilities, $1E00 normally or $1000 with some memory
expansion units. To engage it, .

poke 788, 60 : poke 789, 3

For BASIC 4.0 users, just type in this loader. Others will
need to change just the last two DATA elements and the
interrupt vector POKEs.

10 for =828 to 841 : read x : poke |, x : next
20 data 162, 0,254, 0,128, 232, 208, 250
30 data 238, 63, 3, 76, RS, 228

One iast note.. .don’t try to include the interrupt vector
POKEs in the above program. Chances are your machine
will crash because before both POKEs get executed, an
interrupt occurs somewhere in-between.

The Transactor

September/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

Selective Directory

Ever been searching through your diskettes for a program
and found yourself sifting through SEQ and REL filenames
that just seem to get in the way? Or how 'bout the opposi-
te. . .when you're looking for an SEQ or REL filename that's
lost in diskettes full of programs, Well..here's a quick way
around it

. LOAD "$0:«=PRG’, 8
When finished, LIST will display all PRG files from the
directory. It would stand to reason that matching type
filenames would appear for both directories if the drive
number were omitted, but such is not the case. If you leave
out the drive number the disk only returns filenames from
the last drive used.

Mysteriously, DLOAD won't work the same way. You must
use the LOAD command followed by “.8". Any file type can

be selected though. Merely substitute PRG for SEQ, REL or
USR.

Another variation, , .subtitute the * for filename patterns.
This has been discussed before, but now you can look for
filenames that match a pattern and are also of a particular

type. .

LOAD"$1:B==SEQ’", 8

...would load a directory of all sequential files on drive |
that start with 'B".

A Most Welcome Error Message?

Never thought you'd see the day an error message would be
pleasant, did you? Well today is the day! Just turn on your
machine, hit HOME and RETURN. Too bad you can only get
it when the machine is empty!

Quick File Reader

This three-liner will read just about any SEQ file. It's not
very sophisticated but when you just want to “take a boo™ at
a file, it can be typed in quickly and isn't too hard to
memorize. The RVS will help to spot any trailing spaces.

10 dopen®8, "some file’
20 input*8, a$: ? " a$: if st=64 then dclose : end
30 goto 20

For REL files, simply change the IF statement in line 20 to:

if st =564 and ds=>50 then. . .

The Dreaded Illegal Quantity

Sometimes you want to read files one byte at a time. A
routine much like the one above might be used, only the
INPUT* would be replaced by a GET#*. There's just one
minor gotcha. It seems that when a byte value of zero is
retrieved by GET¥#, the string variable slated to receive it is
set to a null string, not CHR$(0).

The most common occurence of byte-by-byte reading is
with PRG files from disk. Program files contain lots of these
zeroes, at least one per line of BASIC (end—of-line markers).
Usually a program to read the PRG file is set up like this:

10 open 8, 8, 8, "some prg file,p,r’
20 get*8, a% : print a8, asc{a$) : if st=64 then close 8 : end
30 goto 20

The problem is that when a zero is read into A%, the ASC(

function cannot cope will a null string and bombs out with
ILLEGAL QUANTITY ERROR. The solution? You could add

an extra IF statement after the GET#, for example:
if a$="" then a$ = chr$(0)

.. .but that would mean an extra line for the PRINT state-
ment and the following IF. . .rather clumsy. Keep things tidy
with:

print a$, asc (a$ + chr${0))

The ASC(function returns the ASCII value of the first
character of A$. If A$ starts with a valid character, then
adding CHR$(0) will make no difference. If not, then
CHR$(0) will be added to the null string and a "0" will be
printed rather than the dreaded illegal quantity error.

The Mysterions Extra Records

Those of you familiar with the Relative Record system will
know that the end of a relative file is flagged by the
RECORD NOT PRESENT error, DS=50. However, the last

record used for data is not necessarily the last record of the
file.

As relative files get bigger, the DOS formats additional
sectors by filling them with “empty records”. An empty

The Transactor

SeptomberiOctober 1982

« www.Commodore.ca
. May Not Reprint Without Permission

record starts with a CHR$(255) followed by CHR$(0)'s to the
end of the record which is determined by the record length.
This formatting process occurs when data is written to a
record that will require more disk space than has been
allocated to the file so far.

Each 256 byte sector can contain 254 bytes of data {the other
2 are used by the DOS), Let's take an example record length
of 127, thus 2 records fit exactly into | sector. Inagine that 2
complete records have already been written to the file. Upon
writfng a third record, the DOS must format another sector.
Two empty records are written, but the first will be replaced
by the data of our third record. Closing the file causes our

third record and the one empty record to be stored on the
diskette.

Re-opening the file is no problem, but hrw do we find the
next available space for writing a new re «rd? Athough our
fourth record is empty, a RECORD*If, 4 * -ill NOT produce a
?RECORD NOT PRESENT etror and the CHR${255) could
successfully be retrieved and mistaken for valid informa-
tion. Therefore, we must test the first character of the record
for CHR${255). An INPUT* of this record will result in a
string of length 1, so a combination of the two conditions
might be appropriate. However, INPUT*ing live records of
length greater than 80 will produce ?STRING TOO LONG
error, so GET* must be used in combination with an ST test:

1000 rem »++ find next available record **»

1010 record* (If}, {rn) :rem rn = record number
1020 get#f, a$:rem get 1st char

1030 if ds=50 then return

1040 if a$ =chr$(255) and st =64 then return

1050 m=rn+1:goto 1010

This subroutine will search forward from wherever you set
RN initially. It stops when either a ’RECORD NOT PRESENT
occurs or when an empty record is found. For larger files,
you might consider starting at the end of the file an work
backwards, but you'll need to find the first live record and
then move the record pointer one forward.

In summary, relying on RECORD NOT PRESENT is not
good enough. Although it will insure an empty record every
time, it will eventually leave you with wasted disk space.
Often the first record of the file is used to store a “greatest
record number used” variable which is updated on closing
and read back on opening. Although this is probably the
cleanest approach, it will only return new record numbers.
Any records that have been deleted by writing a single
CHRE§(255) must be found with a subroutine like above.
Possibly a combination of both these techniques will pro-
duce a more efficient filing system.

The Transactor

10

September/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

The WordPro
Book Of Tricks

The WordPro Book Of Tricks is a regular column by Com-
modore Canada's wordprocessing consuitant, Donna M.
Green.

Quick-LOAD - For “Plus” Versions Of WordPro

As you know it is a simple, quick matter to turn your
Commodore computer into a word processor, once the chip
has been inserted inside the computer.

After pressing Shift + Run/Stop which loads the program -
several questions regarding the printer and device numbers
appear on the screen. To skip over these questions, simply
press:

CONTROL — and the Status Line will appear!

(Certain default values will be selected ~ “S” for NEC
Spinwriter, “116” lines available - or whatever the maxi-

mum is on your WordPro version, “4" for Printer Device
Number, “8" for Disk Drive Device Number.)

This will not only save time when starting up, but if you
have a Spinwriter printer, you'll also be ready to print!
Inputting, editing, and disk use is now possible; however, it
is important to be aware that if you are intending to print
using any other printer at this time, you will have to do
another quick reset to select the proper printer,

What if you decide to print on a CBM printer after this quick

Donna Green
Commodore Canada

start up? You can easily reset the system with the following
command:

CONTROL then Shift + Run/Stop

You will then be asked the usual questions; for example,
when it asks what printer, select “C" for CBM. If there is no
change to the remaining questions, you may “return”
through them until the control line is reached,

Using this quick reset, you can also change the number of
lines in main text (from the maximum — which is the default
value), to a smaller number if you wish.
If the “number of lines” is the only item to be changed,
simply type in the new number, then press “CONTROL” to
bypass the remaining questions.
Exit To BASIC (For “PLUS"” Versions)

CONTROL + SHIFT + Q{QUIT)

This command will take you out of WordPro and back to
BASIC without turning off your computer.

The Transactor

SeptemberiOctober 1983

2 www.Commodore.ca

May Not Reprint Without Permission

The Backslash Key - “\”

1. Make Use of “Shifted Mode” - Rather than the
“Shift Lock™ Key

To enter “Shifted Mode” - press the “\" key.

This will highlight the “5" on the status line and all letters
will be typed as capitals — but numbers will stay as numbers.
Thﬁrefme, to type a dollar sign for example, use the SHIFT
key and number four. To exit from “Shifted Mode™ press “\”
again.

A Note on the Shift Lock Key : If the “shift lock™ key is used
for capitals or upper case characters, spaces will appear as
solid lines on the screen; ie:

This__is__an__examf'e.

These are actually “required spaces” used to keep items
such as dates or names all joined together and to treat them
as one word; this way they won't be split at the end of a line.
When more characters than a line will hold are typed in this
manner a “Format Error” message could result because the
system cannot find a “space” to use as a line ending break
point. For this reason it is better to use the “shifted mode™ at
all times, rather than the “shift lock™ key.

2. Turn on the Beeper (Plus versions)
CONTROL + \ {same turns beeper off)

The Status Line will indicate either *Sound On’' or “Sound
Off”. The beeper will sound when you swiltch text areas,
recall, memorize, update, or finish printing a document.

3. Shortcut for Recalling - Using Backslash Key ““\"

You are also probably aware of the command to recalt when
the directory is on the screen. Before giving the command,
move the cursor to the “file name” and while pointing to it
with the cursor either in the space preceding, or on the first
~character of the name - press:

SHIFT + CLR/JHOME + R(RECALL) + \ + RETURN

4. Make Use of Comment Lines on Every Page for
Faster Recalling

Make use of a “comment line” as the first line of your
document {checkmark cm colon + name of file) and keep a
copy ©f the file name here. Then, when updating or Memo-
nzing a document, go to this comment line and have the

cursor on the first character of the file name. Press \, and the
file name will appear on the status line, rather than retyping
the name.

3. Quick Recall of File with Similar Name

To take advantage of the "\" shoricut (as in #*3 above)
without bringing the directory to the screen, recall a docu-
ment with a similar name the following way:

Cursor to the first character of the file name {(on line 1 in the
“comment”’ section), then press:

SHIFT + CLR/HOME + R(RECALL) + \
INST/DEL KEY + NEW NO. + RETURN

Example: If “report page 3" was the name indicated in the
“comment line”, and “report page 1" was required, recali
using “\" as above then press INST/DEL to delete the “3"
then type 1" and return.

[n a linked document, the “nx™ command which is always
the bottom line, can be used just like the “cm™ command
(which is usually the first line). The cursor can point to this
name, and the backslash key can then be used to display the
“file name” for recailing purposes.

FOR OTHER “QUICK RECALL” TIPS...
1. Quick Recall/Scroll Through Linked Files

This is a great time saver and a very helpful aid when
working with long linked documents;

SHIFT + CLR/HOME + R + CLR/HOME + RETURN

When the CLR/HOME key is pressed the second time in
this command, WordPro automatically searches out the
“nx" command and displays the file name contained there
on the Status Line.

2. Wild Card for Recalling — The Asterisk (*)

Perhaps you have forgotten exactly how a "file name” was
spelled on the directory but you know it started with “st”. To
recail the first document on the disk that begins with “st”,
give the following command:

SHIFT + CLR/HOME + R(RECALL) + st* + RETURN

This will find the first document that begins with “st” and
recall it to the screen.

The Tronsactor

September/October 1982

'= www.Commodore.ca

May Not Reprint Without Permission

3. Recall Both Directories With One Command
CONTROL + 2 + RETURN

The status line will prompt “Selective: __". By typing “2" at
this time it will bring both directories to the screen, Disk
Drive #1 first, and below it Disk Drive #0. Obviously, a disk
must be in both drives for this to work. (This will therefore
not work on the 2031 single disk drive,)

4. Recali Selectively from Directory

[f there are disks in both Disk Drives “0" and “1”, the
following command can be given to quickly view all the files
that begin with given characters:

CONTROL + 2 + st* + RETURN
This will bring to the screen a listing of only the files that
begin with “st” from both Drive *1 and Drive #0. To recall a
specific file, move cursor to file name and recall using the
backslash key as described above.
Quick Cursor Movements

1. Scroll Up & Down Quickly

As you already know, if you wish to scroll the cursor quickly
to the bottom of the screen, press:

CONTROL + CURSOR ARROW DOWN

To quickly scroll back up the screen, press either HOME/
HOME, or

CONTROL + CURSOR ARROW UP

2. To Jump to Bottom of Text

However, there is another way to reach the bottom of your
document without scrolling through the text on the screen,
and possibly going too far - press:

CONTROL + TAB KEY (OR BACK ARROW, OR UP
ARROW)

The cursor will quickly jump down to the last line of typing
in your document, and stop at column 80.

3. Cursor Forward - To Resume Inputting

To move the cursor forward from this point {column 80) -
press:

CURSOR RIGHT KEY

This will move the cursor forward one position (past column
80) to “celumn one” on the line below — exactly where you
would probably want to continue typing!

Also, when a tab is set (control + s) at column 80 — by
pressing the TAB key, the cursor can quickly be moved to
the right side of the screen.

Using these faster ways of moving the cursor around the
screen will be very helpful in editing text and making more
efficient use of the system.

4. Return Carriage Without Deleting Rest of Line
When the cursor is in the middie of a sentence, to return to
the beginning of the line below without erasing information
by accident - press:

SHIFT + RETURN

To quickly move the cursor up one line to column 80 or the
end of the preceding line - press:

SHIFT + CURSOR ARROW LEFT

Of course, since the cursor cannot go left of column 1, it will
move instead to column 80 of the line above!

That's all for now. More next issue!

The Transactor

SeptembariOctober 1982

2 www.Commodore.ca

May Not Reprint Without Permission

The MANAGER Column

The Manager Column is a regular feature of The Transactor,
If vou have any tips for other Manager users, send them in
and we'll include thern in the next issue. Ed

The MANAGER software system has become one of the
more popular database packages for the 80 column Commo-
dore computers. Now for some programmers goodies. . .

The following listings illustrate some of the BASIC exten-
sions that are contained in the MANAGER machine code.

String Input
x$="":\i,n, xp: xp=x$

This routine inputs a string into the called variable from
logical file number “n"”, The input routine will bring in all
ascil characters and terminate only on a carriage return
(ascii 13). The x$ =x$ is necessary to transfer the string from

the reserved buffer into BASIC space. Maximum string
length is 255.

Screen Dump

open 4,4 :\d: close 4

This routine performs a screen dump of the current contents
of the screen to the printer. It will perform a PET-ASCI|

conversion depending on the contents of memory address
22527, ie, poke22527, 14 = ASCII, poke22527, 12 = PET.

John Stoveken
Milton, Ont.

String Insert
a$="aaa :b%="1234567890" : \m, a$, b$, n
This routine inserts the string a$ into b$ starting at position

n. For example, if n = 3 the result of this operation would
result with:

a¥ = "aaa’
b% = "12aaa6789("

Mode Toggle
\a

Simply toggles the PET from upper-lower case {0 uppercase-
—graphics mode, or vice versa.

Printer Output

\p, a$

Prints a string to logical file 4 (which is OPENed by The
MANAGER on device 4) performing the same PET-ASCII
conversion as in the \d command (dependent of contents of
location 22527).

The Transactor

SeptemberiQOctober 1982

2 www.Commodore.ca

May Not Reprint Without Permission

Toggle Auto-Repeat/STOP Key

\r

Simply toggles the auto-repeat, disabled STOP key.
Program Load

\l, “program’

This command will load a program from disk to memory. If
the command \l;: "name” is used then a machine code
module {or .scr file) can be loaded into memory without
mucking up the BASIC pointers.

Program Load & Execute
\x, “name”

This command will Joad and execute a BASIC program from
disk. Its counterpart, \x; "name” will load a machine code
module and ‘sys’ to the start address of that module,

These routines may be used in your own software if it is
called from “The MANAGER" package. The simple route to
call a program from The MANAGER is to modify the
“MENU" program by adding these two lines.

146 print spc{15) “zee new program name’
166 if a$ ="Z" then \x, "new program’

MANAGER files may be viewed with a very simple program,
that must be called from the MANAGER.

0 ba=18432 : rem base address for machine code

10 print "input file name "; : | =16 : gosub 1000

20 na$ = x$ |

30 print “input drive *; : 1 =1 : gosub 1000

40 d = val (x$)

45 rem *** Open and read the file ***

50 dopen®1, {na$), d(d)

60af="":\i,1,a%:a%=a%

61 rem inputs a string into the specified variable (a$) from
the logical file specified (1)

70 if a$ =chr$(255) then dclose : stop

71 rem character 255 indicates the end of a MANAGER
relative file

80 print a$: goto 50

1000 rem *** [nput a string loop ***

1010 x = peek(198) : y = peek(216)

1020 x$=""—:sysba+57, vy, x, !

1021 rem inputs a string of length | at the row and column

specified by y and x into the variable x$
1030 return

If we wished to view a MANAGER file in sorted order, we
must first scan the pointer file associated with the main file
and use it to give us the records in the correct order. To do
this, we will change lines 50 to 90 to permit this.

50 dopen®1, (na$), d(d)

60 np$=na$ + ".ptr" : dopen*2, (np$), d(d)

70a$ ="":\i, 2,a$:a%=a$

72 rem this inputs a record from the pointer file in the
“sorted” sequence

80 sx=st : rem store status of ptr file

The record position in the main file is “stored™ in the last

two bytes of the pointer (or .ind file), and can be decoded
with this routine;

90 nn =(asc(right${a$,2))+ 256+(asc(right$(a$, 1))))/
32768+1

100 record*1, (nn)

10 x$="":\i, 1, x$: x$=x$

120 print x$: if sx = 64 then dclose : stop

130 goto 70

More MANAGER Notes

Three sub-programs of The MANAGER system have the
option of using “search criteria” to select records from a file.
The three are: Global Update, Produce Sub-Files, and Re-
port Generate.

Those of you that use The MANAGER will know that ALL
conditions specified in the search criteria must be met
before a record will be selected. Inotherwords, condition #1
must be true, AND condition #*2 must be true, AND condi-
tion #3. . . through to condition *n. Even if one fails, the
record is discarded and testing begins on the next record.

But suppose we'd like to select a record if only one of the
search criteria were true. That is, condition #*1 must be true,
OR condition *2 must be true, OR #3, etc. For example, to
produce a sub-file containing records that have “Ottawa” or
“Toronto” in the City field would be impossible using The
MANAGER as is. For this we need one simple modification.

The program you modify will depend on which function you
plan to use it with. For Global Update the program name is
"global”, Produce Sub-Files is "finish" and Report Generate
is "generate2”. Fortunately the line number is the same in al)
cases. Load the appropriate program using a DLOAD com-
mand and LIST line 2370, You should see something like:

2370 fi=ff+fl : next : fl=1 : if fi<nf then fl=0: ff=0

The Transactor

15 Septamber/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

The number of fields to be tested is represented by the the 8050, just remove the REM. Now DSAVE it back to the
variable nf. The variable FF is a flag accumulator. Variable disk using replace, eg:

FLis setto 1 if a condition is true, and 0 if false. Therefore FF

must be equal to NF for all conditions to be true. lf FF is less dsave "@create’

than NF, FL and FF are set to zero which tells another part of

the program to continue with the next record. To get the

program {o accept “any coendition true”, change line 2370 to:

2310 f=H+1fl:next: fl=1:i{ff=0thenfi=0:ff=0

A gne byte change! Now the program will only skip to the
next record if NONE of the conditions are met. Thus the
search criteria function has been changed from and ANDing
operation to an ORing operation,

You could take this one step further and replace the iF
statement to a GOSUB. The subroutine might test for certain
pairs of conditions to be true. just set F'. and FF appropri-
ately before exiting.

This “new” program must be SAVEd under the same name

so that the MANAGER menu program can load it (remem:-

ber, this program can’t be run unless the machine language

.’ subroutines are set up first). Rename the original version
with:

rename d0, "global” to “global.and"

Alternately, it wouldn't be difficult to modify the menu
program to call either version by choice.

Larger MANAGER Data Files

As you all know, REL files on the Commodore 8050 are
limited to a maximum size of 180K. This is why The
MANAGER can not fill an 8050 disk with just one file. But if
you get the new DOS for the 8050, (available now or soeon
from CBM) the restriction is lifted. The same holds true for
the new 8250 and the 9060/9090 hard disks.

To allow for larger files, two programs must be slightly
modified. Logically, they are the Create option (filename
“create”) and the Manipulate Files option (filename
“tileman” }. Each program needs only one line changed.
The lines are:

“create” : line 3070
"fileman” ; line 13070

LIST the appropriate line and simply place a REM statement
at the beginning. You couid delete the line completely, but
this way, if vou ever want the line back again for use with

The Transactor 16 September/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

Disk Un-Assembler

You've all heard of a “disassembler”. . . a utility for display-
ing machine code programs. But disassemblers are usually
limited to just that, ie. display only. You can list the code,
follow it around, and with some disassemblers like the one
in Supermon, even make minor changes. But inserting code
and major mods can be an awkward and tedious task.

Unless you have source code. Most machine language
programs are made from source code. . . a file, generated by
a programmer {using some sort of editor), that contains the
start address of the program followed by variable defini-
tions, machine language intructions, word and byte tables,
plus everything else that goes into producing a chunk of
machine code. An assembler is then used to convert source
code into a machine language program. However, this is
usually all you get; a file packed tightly with the hex
instruction codes. Often the source is not made available by
the programmer, and although a disassembier will undo the
program into an intelligible listing, it can not reverse the
process back to source code. For this we need an “Un-As-
sembler”.

Small machine language programs can be “POKEd in” or
hand-assembled without too much trouble. But larger pro-
grams usually require the aid of an assembler, or in most
cases, a symbolic assembler. Symbolic assemblers allow the
use of labels in source code. Labels can be any combination
of letters and numbers, but must start with a letter. The CBM

Paul Higginbottom
Toronto, Ont.

assembler allows a maximum of 6 characters. A label can be
used anywhere there can be an address or an expression.
Transfering execution is actually only possible by referenc-
ing a label. For example:

JSR OPNDSK
JSR GETCHR
CMP #CR

BNE INPUT

INPUT

By using labels, one can write machine code without the
need for calculating branch offsets, remembering storage
location addresses or subroutine addresses, or the value of a
particular character. Besides, they might all change as modi-
fications are made.

A disassembler won't show you labels but rather the abso-
lute values. JMPs and JSRs will be followed by hex ad-
dresses, branch intructions by their actual offsets, and load,
store, compare intructions and the like, by a hex address or
number. Although a disassembler could be used to create a
load file for an editor, the result would be approaching
useless. Every branch, JSR, and JMP address would have to
be altered by hand to a label. The same label would have to
be inserted at the lines containing the destination instruc-
tion. That's a lot of work.

Enter the Un-Assembler. This one was written by Paul

The Transactor

17

September/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

Higginbottom. It produces source code files compatible with
the Commodore assembler editor. The beauty of Paul's
program is that it works from disk. The program you wish to
produce source code for does not have to be resident in
memory which is a problem when the program lives in the
same space as the Un-assembler. Labels for branches and
jump type instructions are the only ones generated. Other
instructions are left alone.

The un-assembler vpens the machine language program on
disk as a program file. Another write file is opened that will
used to store the source listing. Three passes are made
through the program file. On pass 1, the first two bytes that
represent the load or start address of the program are
retrieved. Then it runs nght through the file to find the end
of the program. This is important since only jumps and
branches within the program itself are labeled. Jumps and
branches outside of the program cannot possibly be given a
label simply because the code at the destination does exist
in this file,

Pass 2 finds all the jumps and branches that transfer execu-
tion to some point within the boundaries of the program.
These entry points are “tagged” by the Un-assembiler.

Pass 3 completes the job. The Un-assembler re-opens the
program file and strips off the first two bytes. At this point it
looks in the tag table to see if this spot is an entry point. If it
1s, d label is sent to the scurce code file that is a combination
of the letters "AD” followed by the actual address of the next
instruction. Now |t retrieves this byte and disassembles it,
When it determines the mode of the instruction, 0, 1 or 2
more bytes are retrieved. If this instruction was a branch or a
jump lto some destination within the program, the Un-as-
sembler substitutes the offset or address with a label. The
label will be “AD" followed by the address of the destina-
tion. The process coentinues until the entire program is
un-assembled. Paul's program will automatically start a
new file if the first gets too large for the Commodore editor.

There are a few peculiarities to watch for. First, the Un-as-
sembler will try to decode everything. That means even
byte and .word tables will be treated as code. Byte tables are
often used for things like command tables or error mes-
sages. Usually they contain ASCII characters and although
some ASCIl values have corresponding machine codes, it's
unlikely that an entire table would be disassembled into
sensible code. What you'll probably see in the resulting
source code file is a number of .byt directives, separated
occasionally by some rather silly looking disassembly. This
silliness can be changed back to .byts, or left as is, according
to preference.

Secondly, BIT instructions get special treatment. Often, a
BIT instruction is used to “hide” a 1 or 2 byte code. Since
this hidden code will probably mark an entry point, BIT
instructions are placed on .byt lines. The Un-assembler
doesn't attempt to distinguish real BIT instructions from one
of these “code-hiders” so you'll have to decide whether to
make changes to the source.

Also watch for programs that start at the beginning of BASIC
text space. These will probably start with a SYS command,
but the Un-assembler will still try to decode it.

Ultimately, whatever the Un-assembler produces can be
re-assembled (using the Commodore assembler) into ex-
actly the same program you started with. The labels it
generates might be substituted for more meaningful names
and, of course, it won't comment your listing. Chances are
you're using this program because you can’t get the original
source. Although the Un-assembler won't give you a source
listing as complete, you sure will get it quicker and with no
questions asked.

The Transoctor

18

SeptemberiOctobar 1982

2 www.Commodore.ca

May Not Reprint Without Permission

100 pokeb2,peek(42) : pokeb3,peek(43)+ 27 : clr : pokel ,peek(52) : poke2,peek(53)

110 ts=peek(52) + peek(53)*256 : for i=634t0654 : read a : poke i, a : next : sys 639

115 datal65, 251, 76, 34, 215, 160, 0, 152, 145, 1, 230, 1, 208, 2, 230, 2, 166, 2, 16, 244, 96
120 h2=634 : h4=55063 : al=251 : ah=252:¢cl=1:c2=2: mh=256:p=0:mr=127 : mt=128 : ms=16
121 q=0:h$="":a8="":b$="":c4=4:i=0:al =0 : as=0: definl(p)=(p/mh-int{p/mh))*mh
130 as=0:nl$=chr${0): a=0:re=0: ad=0: deffnas(a)=({a>31)and(a<128))+(a>159)
140 lf=1000 : lc=0 : def fn rt{x) = peek({x +ts) : dim mn$(255), md(255)

150 print '.Disk Un-Assembler” : print”by Paul Higginbottom

754 fori=11t0 149: read a, a$, b : mn$(a)=a$: md(a}=b : next

790 print : input” drive, program filename ";dr$,f$: if dr$<"0"or dr$>"1"then790

791 openl 8,15 : print*1,"i" +dr$: f$=dr$+"" +1$

801 input "drive, source filename”;td$,of$: if len(of$)>>12 then 801

802 of$=td$+"" +of$ +".7 : if td$< 0" or td$>"1" then 802

803 print*1,"1" +td$: close 1 : open 2,8,0,1$: if ds then print ds$: close 2 : end

805 t=ti:gosub 3000 : nf=2: nf$=of$+"1.5" : p=s-cl : ss=0

809 open3,8,3,"@ +nf$ +" s,w : printnf$: lc=0 : if dd then print ds$: end

810 if p=s—c! then print*3,"*=$"; : ad=s : gosub 9000 : print*3 : print*3,”;”

815 le=lc+1 :if le<>If then 830

816 nfs =of$ + mid$(str¥(nf),2)+".5" : print*3,";" : print*3," fil "nf$

817 close 3 : nf=nf+1 : goto 809

830 p=p+cl : gosub 2000 : mn=q : sa=p : gosub 4000 : print*3," *;

840 if mn =236 or mn =44 then print*3,” ;<this was a bit instruction>" : goto 845

841 if mn$(mn}<>" then 850

845 print*3," byt $°; : ad=mn : gosub 9010 : print*3 : goto 815

850 print*3, mn$(mn} ";

860 on md(mn) goto870,900,930,960,990,1020,1050,1080,1110,1140,1170,1200,1230
870 gosub 2000 : print*3,"*%"; : ad=q : gosub 8010 ; print*3 : p=p+cl : goto 815

900 print*3,"a" : goto 815

930 print*3 : goto 815

960 gosub 2000 : print*3,"%"; : ad=q: gosub 8010 : print*3 : p=p+cl : goto 815

990 gosub 2000 : ad=q : gosub 2000

1000 p$="%" : ad=ad + q*mh ; if ad<s or ad>e then 1019

1001 if fnrt(ad-s) then p$ ="ad"

1019 print*3,p$; : gosub 9000 : print*3 : p=p+¢2 : goto 815

1020 gosub 2000 : ad =q : gosub 2000

1025 p$="%": ad=ad + q*mh : if ad<s or ad>e then 1030

1026 if fnrt{ad-s) then p$ ="ad"

1030 print*3,p$; : gosub 9000 : print*3," X" : p=p+¢2 : goto 815

1050 gosub 2000 : ad=q : gosub 2000

1051 p$="%": ad=ad + q*mh : if ad<s or ad>e then 1065

1052 if fnrt{ad-s) then p$ ="ad"

1065 print*3,p$; : gosub 9000 : print*3,"y" : p=p+c2 : goto 815

1080 gosub 2000 : print*3,"($"; : ad=q : gosub 9010 : print#*3,"),y"

1090 p=p+cl : goto 815

1110 gosub 2000 : print*3,"(8"; : ad = q : gosub 9010 : print*3,” x)’ *
1120 p=p+cl : goto 815

1140 gosub 2000 : print*3,"$": : ad=q : gosub 9010 : print*3,",x"
1150 p=p+cl : goto 815

1170 gosub 2000 : print®*3,°$"; : ad=q : gosub 9010 : print*3,” ,y’
1180 p=p+cl : goto 815

1200 gosub 2000 : ad=p+q+{g>mr*mh+c2 : p$="%" : if ad<s or ad>e then 1220
1211 if fnrt(ad-s) then p$ ="ad’

1220 print*3,p¥; : gosub 8000 : print*3 : p=p+c¢] : goto 815

The Transactor 19 September/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

1230 gosub 2000 : ad =q : gosub 2000
1231 print*3,"(; : p$="%": ad=ad + g*mh : if ad<s or ad>e then 1240
1232 if fnrt(ad-s) then p$="ad"
1240 print*3,p$; : gosub 95000 : print*3,"Y : p=p+c2 : goto 815
2000 get*2 a$: q=asc{a$ +nl$) : return
3000 print’gpass1” : get*2, a$, b$: rem get start address
3010 s=asc{a$ +nl$)+asc(b$+nif*mh:e=s
3021 get*2, a%$:e=e+]:if st=0then 3021
3022 gosub 9600 : p=s-1
) 3023 p=p+1:gosub 2000 : n$=mn${q) : n=md(q)
3026 on n gosub 3450, 4010, 4010, 3050, 3100, 3100, 3100, 3050, 3050, 3050, 3050, 3110, 3100
3030 if p<=e then 3025
3039 gosub 9600 : print’.passzn' s return
3050 gosub 2000 : p=p+cl : return
3100 gosub 2000 : ad=q : gosub 2000 : ad=ad+ q*mh
3101 if ad>=s and ad<=e then poke ts +ad-s, ¢]
3102 p=p+c? :return
3110 gosub 2000 : ad=p+q--iq>mr}*mh +¢2
3111 if ad>=s and ad<=e tl.en poke ts+ ad-s, cl
3120 p=p+cl : return
4000 ifp>e then print*3,";" : print*3," .end" : close 3 : close 2 : end
4001 if p<s or p>e then return
4005 if fnrt{p-s) then print*3,"" : print*3,"ad"; : ad = p : gosub 9000
4010 return
9000 poke al, fni(ad) : poke ah, ad/mh : cmd3,; : sys hd : return
9010 poke al, ad : cmd3,; : sys h2 : return
9600 close 2:open 2, §, 0, f$: get*2, a$, a$: return
10000 data O, brk, 3, 1, ora, 9, 5 ora, 4, 6, asl, 4
10010 data 8, php, 3, 9, ora, 1, 10, asl, 2, 13, ora, 5
10020 data 14, asl, 5, 16, bpl, 12, 17, ora, 8 21, ora, 10
10030 data 22, asl, 10, 24, «cle, 3, 25, ora, 7, 29, ora, 6
10040 data 30, asi, 6, 32, jsr, 5 33, and, 9 37, and, 4
10050 data 38, rol, 4, 40, plp, 3, 41, and, 1|, 42, rol, 2
10060 data 45, and, 5, 46, rol, 5, 48, bmi, 12, 49, and, 8
10070 data 53. and, 10, 54, rol, 10, 56, sec, 3, 57, and, 7
10080 data 61, and, 6, 62, rol, 6 64, ni, 3, 65 eor, 9
10090 data 69, eor, 4, 70, Isr, 4, 72, pha, 3, 73, eor, |1
10100 data 74, Isr, 2, 76, jmp, 5, 77, eor, 5, 78, Isr, 5
10110 data 80, bve, 12, 81, eor, 8 85 eor, 10, 86, Isr, 10
10120 data 88, cli, 3, 89, eor, 7, 93, eor, 6, 94, lIsr, 6
10130 data 96, rts, 3, 97, adc, 9, 101, ade, 4, 102, ror, 4
10140 data 104, pla, 3, 105, ade, 1, 106, ror, 2, 108, jmp, 13
10150 data 109, adc, 5, 110, ror, 5, 112, bvs, 12, 113, adc, 8
10160 data 117, adc, 10, 118, ror, 10, 120, sei, 3, 121, ade, 7
10170 data 125, adc, 6, 126, ror, 6, 129, sta, 9, 132, sty, 4
10180 data 133, sta, 4, 134, stx, 4, 136, dey, 3, 138, txa, 3
10190 data 140, sty, S5, 141, sta, 5, 142, stx, 5, 144, bee, 12
10200 data 145, sta, 8, 148, sty, 10, 149, sta, 10, 150, six, 11
10210 data 152, tya, 3, 153, sta, 7, 154, txs, 3, 157, sta, 6
10220 data 160, Idy, 1, 161, Ida, 9, 162, Iidx, 1, 164, Idy, 4 -
10230 data 165, Ida, 4, 166, Idx, 4, 168, tay, 3, 169, Ida, 1
10240 data 170, tax, 3, 172, |Idy, 35, 173, Ida, 5, 174, Idx, 5
The Transactor 20 SeptemberiQOctober 1982

2 www.Commodore.ca

May Not Reprint Without Permission

10250 data 176, bcs, 12, 177, |da, 8, 180, |Idy. 10, 181, Iida, 10
10260 data 182, |Idx, 11, 184, «clv, 3, 185 Ida, 7, 186, tsx, 3
10270 data 188, idy, 6, 189, Ida, 6, 190, Idx, 7, 192, cpy, 1
10280 data 193, cmp, 9, 196, cpy, 4, 197, cmp, 4, 198, dec, 4
10290 data 200, iny, 3, 201, emp, 1, 202, dex, 3, 204, cpy, 5
10300 data 205, cmp, 5, 206, dec, 5, 208, bne, 12, 209, cmp, 8
10310 data 213, cmp, 10, 214, dec, 10, 216, «cld, 3, 217, cmp, 7
10320 data 221, cmp, 6, 222, dec, 6, 224, cpx, 1, 225, sbc, 9
10330 data 228, cpx, 4, 229, sbc, 4, 230, inc, 4, 232, inx, 3
10340 data 233, sbe, 1, 234, nop, 3, 236, cpx, 5, 237, shc, 5
T0350 data 238, inc, 5, 240, beq, 12, 241, sbe, 8, 245, sbe, 10
10360 data 246, inc, 10, 248, sed, 3, 249, sbc, 7, 253, shc, 6
10370 data 254, inc,

Tha Transactor 21 SeptemberiOctober 1982

o s

2 www.Commodore.ca

May Not Reprint Without Permission

Universal String Thing

This is not a complete String Thing*, just the INPUT#
section. Quite simply, the program is an INPUT# utility that
lifts some of the restraints imposed by the BASIC INPUT#
command. it works on all versions of BASIC {except 1.0) for
PETs and CBMs. If there's enough demand, a VIC String
Thing will be released that will probably work on the
Commodore 64 when it arrives,

Logical file number 1 must be used in the DOPEN or OPEN
statement. Using the rouline with any other file number will
result in ?FILE NOT OPEN ERROR after the SYS call.

No buffer 1s required for the incoming data. The characters
are built directly into the space allocated for the string
variable. If the string resides in high RAM, they will be
delivered there. if the string is declared in the program, the
characters will land right in text space.

The string used for input must be the first variable seen by
BASIC, Location 183 decimal 1s used to store the length of
the input string. Input stops only on Carriage Return and
EOI which occurs at the end of a file or relative records not
terminated by a CR. Leading spaces, commas, colons and
quotation marks are all accepted.

The size of the string can be used to govern the amount of
input. For example, removing lines 110 and 120 from the
program below leaves a$="abcdelghijklmnopq", with a

Jim Butterfield
Toronto

length of 17. Now, strings longer than 17 can not be
retrieved in whole. Instead, the first 17 characters are
brought in and the remainder is received in subsequent
calls. If the string is exactly 17 long followed by a Carriage
Return, a subsequent input would be met by the CR and
PEEK(189) would equal zero.Be careful though. In this case
A% will contain the previcus input, not null string,

Using this routine as opposed to INPUT* can be especially
helpful when disk space is at a premium. It can handle
strings up to 255 characters long and there's no need for
Carriage Returns.

= - The String Thing was originally a utility written by Bill
MacLean of BMB Compuscience. It included string search,
string overlay, and string input functions. For details on this
program, see The Transactor, Volume 3, [ssue 1. Copies are
available from the Toronto PET Users Group.

The Transactor

22

SeptemberiOctobar 1982

2 www.Commodore.ca

May Not Reprint Without Permission

40 Tem ssserrersnr ks nsmad e nARRRER RN
50 rem += string thing (universal) **

60 rem =+ jim butterfield *¥
70 rem»« string used for input *+
80 rem >+ must be first variable ¥

O rein =t*rerrstnspatsrrrens b brbrbbn
100 a$="abcdefghijklmnopq’
110 a$=a$+a$+ad+ab+a
120 a$=a$+a$+ad
- 130 rem above sets string for maximum (ie. 255)
200 data 160, 2,177, 42,153,184, 0,200,192, 6
210 data 208, 246, 162, 1, 32, 198, 255
220 data 32, 228, 255, 201, 13,240, 11, 164, 189, 145
230 data 187, 200, 132, 189, 196, 186, 208, 238, 76, 204, 255
250 forj=8961t0933 :read x : poke j, x : t=t+x : nextj
260 if t<>5767 then stop
400 dopen¥l, "some SEQ file" .dD
410 rem : next sys same as ‘input*1,a$’
420 sys 896
425 rem : |=size of input (could be 0)
430 |=peek(189)
440 print left$(a$,])
450 if st=0 goto 420
460 dclose

The Transactor 23 September/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

File Chain Tracer

Think about it. Relative record lengths limited only by the
capacity of your disk. Number of files open simultaneously
limited only by FRE(0). All possible using this utility by Bill
MacLean of Milton Ontario.

Every disk file (SEQ, PRG, or USR) is contructed from sectors
that are linked together using “chain pointers”. Each chain
pointer consists of two bytes that represent the track and
sector co—ordinates ¢of the next block in the file. The peinter
to the first block is stored in the directory beside the
filename. Subsequent pointers are stored in the first two
bytes (0 and 1) of each sector in the file. To indicate the last
sector of a file, the track co—ordinate is set to zero (CBM disk
units do not use track O for this reason), and the byte used for
the sector co-ordinate is set to the last position used.

By reading all of these pointers into an array, a complete
map can be built of any file on disk. Then, using a Direct
Access channel, any part of any file can be read at any time
with a ‘block-read’ command followed by the correspond-
ing track and sector values stored in the array for that file,

Positioning into the sector is done with the “buffer-pointer”
command.

There are several ways of tracing these pointers to the end of
a file. The trick, of course, is to get the first one out of the
directory. One could OPEN the directory as an SEQ file, but
searching through a long directory is slow in BASIC. Bill's

Bill MacLean
Milton, Ont.

program lets the DOS do that work in machine language.
When a file is OPENed, the DOS must also know where the
directory entry lies. These values are stored in DOS memory
and can be retrieved with the "memory-read” and GET#
commands. Once the first sector is found from the directory,
the following sectors are “block-read” with the “Ul" com-
mand, and the pointers are collected by GET*ing the first 2
bytes from each until the track value equals zero.

Other Program Notes

This program will work on the 8050, 8250, 9060, 9090, and
the 4040 by removing the first “rem” in line 100. DOS
variables in the 4040 are all in the same places but offset by
4. The single drive 2031 is totaily different and will not

respond properly to this program. VIC disks were not tested.

Accomodations are made for 21 simultaneous open files
with a maximum size of 101 blocks each. The two integer
arrays use up a total of about 8K. Change the dimensions
appropriately for more or less files, and more or less maxi-
mum blocks, but they must be identical and there must be
enough RAM to hold them along with your program and
other variables. A quick approximaticn for RAM consump-
tion of one integer array is the product of the dimensions
times 2.

The D array is for Drive numbers. Preferably, all files

The Transactor

September/October 1982

;
1w
I‘. .
2
E
L]
-

'i"'I_._-E:._. At

LT it Y U T it

2 www.Commodore.ca

May Not Reprint Without Permission

concerned would be on one diskette, but the routine will
find files on either drive.

PRINT DS$ might be replaced by a GOSUB to your favorite
error routine. Non-existent files will also be reported by
lines 160 to 180.

Even though the data file has been CLOSEd (line 150), all
DOS variables are still present in RAM until they're over-
written by another OPEN. The sector, track, and drive
number ate used to “Ul” the actual directory sector that
holds the filename FI$. The track and sector co-ordinates of
the first block in a file are stored in the 2nd and 3rd positions
of a directory entry. Thus 1 is added to the offset before
executing the “"buffer-pointer” command.

Should the file you've OPENed be found in the last sector of
the directory, the track, as with any other file, is set to zero. if
Track=0, T is set back to the directory track number (line
270), but this must be decided by the operator (eg. another
INPUT) or, better vet, a subroutine designed to test what
type of disk unit is connected.

Using This Technique

With this routine, a relative file system could be imple-
mented with record sizes much larger than 254. Of course

strings are limited to 255 so more than one would be
necessary to store a record.

A subroutine for this would need the array index number
(1st dimension) that contains the pointers to a particular file.
This information should also be stored as pointers are
coliected. To position to a record, the program would “U1”
the closest sector. The co-ordinates for this sector will be
stored in the array at the element calculated by:

INT {(record number - 1)*{record size / 254))

The remainder of the above is used o position into the
sector when the record size is not a multiple of 254. A
counter must also be maintained so that the next block
would be read when the 254th byte has been retrieved. A
slight variation of Jim Butterfield's Universal String Thing

~ (this issue) would be ideal,

Now that you have all this done, a columnar report genera-
tor 1s a simple task. Figures from several different files could
be output side-by-side.

Although this approach is not immediately suited for ex-
panding files, it could be inciuded with a little extra code.
However, changes to existing data can be performed in a

fraction of the time it would take to open and close ali of the
files seperately.

On final note. . . Bill MacLean tells me that he may release a
more complete version of this utility if there's enough
demand. It would contain all necessary functions such as
those discussed, plus some extras, (no doubt). Comments
are welcome, please address them to me (Karl J. Hildon} at
The Transactor.

The Transoctar

tember/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

100 rem d4040=4 ; rem remove rem for use with 4040
110 2§ =chr${(0): dim t%{20, 100), s %{20, 100), d{20)
120 input’filename, file® ":f$, f: fi$={$ + " s.r"

. 130 open2,8,2,"¢" :open 15, 8, 15 . rem open direct and ecmd channel
140 open 5, 8, 5, (fi$) : rem open and
150} print ds$; close 5 : rem close file ‘fi$’
160 print*15, "m-r "chr${142 + d4);chr3(67)
t70 get¥15, a$: e=asc{ad +z$) . rem error?

180 if e=255 then print"'nut found” : print : goto 450
190 print*15, "m-r " chr$(146 + d4);chr$(67)

200 get*15, a3 : s=asc{a$ +z8) : rem sector in dir

210 print*15, "m-r "chr${149 + d4);.chr${67)

220 get*15, ab : t=asc(a$ +z$) . rem track in dir

230 print*15, "m-r " chr$(150 + d4);chr${67)

240 get*15, a$: o=asc(a$ +z3) : rem offset into sector
250 print*15, "m-r "chr$(144 + d4);chr$(67)

260 get*15, a$: d=asc{a$ +z$): d{f)=d : rem drive num

270 if1=0thent=139 . rern t =18 for 4040, 76 for 95060/90
280 print"entry dir track & sector =";t;" "5

290 print’ offset into sector =";0

300 print’ drive =":d

310 print*15, "ul:";2:d;t;s

320 print*15, "b-p";2;0+1 : rem position into dir
330 n=0 : rem array index

340 get*2, a$: rem get track

300 t=asc{a$ +z$)

360 get*2, a$: rem get sector

370 s=asc(a$ +2%)

380 1%, n)=t:s%(f, nN)=s ' rem store In array
390 if t=0 then 450 : rem track =07 yes, end
400 print'sec.”;n; of file at":t,s

410 n=n+1

420 print*15, "ul:";2:d:t;s : rem read subsequent blks
430 print*15, "b-p:";2;0 : rem pos n {o zero
440 goto 340

450 close 2 : close 15

The Transactor 26 September/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

'?. Translation Arrays

How many times have you wanted to represent a number 100 ky$="qwertyuiop'
using a key on the keyboard? Never, eh. Well. . . next time 110 geta$:ifa$=""then 110
you do, this tidy little piece of code will come in handy. 120 for j=1 to len(ky$)
130 ifa$ = mid$ (ky$, j, 1) then
100 get a$:ifa$=""then 100 print 2 1 (j-1): goto 110
110 ifa$="q then x=1 140 next: goto 110
120 ifa$="w"then x=2
130 ifa$="¢" thenx=4 Only the problem here is that as KY$ gets longer, the search
140 ifa$="r thenx=8 becomes slower, and our output numbers may not be so
150 ifa$="t" thenx=16 orderly.
160 ifa$="y" then x=32
170 ifa$="u" then x=64 The best way is a translation array. It allows for expansion,
180 ifa$="{" thenx=128 it's fast, and can handle every key on the keyboard.
190 if a$="0" then x=256
200 if a$="p" then x=512 100 ky$="qwertyuiop
210 printx: goto 100 105 dim out {255)
110 forj=1 to len{ky$)
But you say, “that’s not very tidy at all” , and you're 120 out (asc (mid$ (ky$, j})) = 2 t(j-1)
absolutely right. As a matter o' fact, it reeks. Here's a better 130 next
way. . . 140 geta$:ifa$=""then 140

150 print out (asc (a$)) : goto 140
Given the nature of the possibilities for X (ie. all powers of 2),
it becomes apparent that a FOR-NEXT loop couid search Of course the above is merely a transposition of the first two.
through KY$, and then output 2 raised to the power of N, The technique shows its true strength in the following
where N is the position of A% within KY$. For example: examples.

The Transactor 27 September/October 1982

2 www.Commodore.ca

May Not Reprint Without Permission

IEEE Modem Driver

Have you ever been in a bind for an ASCIf modem driver but
just didn't have one within reach? Converting PET ASCII
(sometimes cailed “"PETSCII™) to real ASCII is not so tough
using translation arrays, With this program you can be up
and running in no time from any PET/CBM through an
IEEE modem, and it's easily memorized.

100
170
120

gosub 200

get a$: if a$<> " then print*5, chr¥{t{asc(a$)));

if peek{srq) and 128 then get*5, a$: x9 =peekiieee) :
print chr$(i{asc{a$ + chr${0));

goto 110

dim t{255), f{255) : print chr${14)

forj=32 to 64:t(j)=| : next

forj=65 to 90:t(j)=i+32 : nv »t

forj=91 to 95:1(j}=]j S

forj=192to 218 : t{j}=)-128 : r ext

{(13)=13 : 1(20)=8

rem add more functions here

forj=0to 255 i t(j) then f{1(j)) = : f(t() + 128}=] : next
poke 1020, 0 : poke 59468, 14 : open 5, 5
srq="09427 : ieee =59426 : return

130
200
210
220
230
240
250
260
270
280
250

This modem drniver is actually an adaptation of one by Jim
Butterfield with a pinch of Paul Higginbottom flavouring.
Notice that the keyboard/modem servicing is kept close to
the start with the set-up called once as a subroutine, In a
communications type environment, maximum speed is es-
sential. When BASIC sees a backwards GOTO (as in line
130) it starts at the beginning of BASIC and searches forward
to the destination line. By moving the setup routine out of
the way, BASIC is relieved of looking through unnecessary
line numbers. The time saved is not much, but might be just

enough te save potentially lost characters while transmitting
and/or receiving.

Two translation tables are used here: the T array for charac-
ters sent to the modem and the ¥ array for characters
received from the modem. Integer arrays could have been
used but floating point arrays are faster,

Graphics are seldom wused in communications. PRINT
CHR$(14) sets Upper/Lower case mode.

Line 210 begins setting up the TO array. Characters 32
(space) through 64 (@) are the same in ASCI] as in PETSCII,
so a simple equate does it. In Upper/Lower case mode,
PETSCII 65 to 90 displays lower case letters, and in true
ASCH, lower case ranges from 97 to 122, so 32 is added to
each (Line 220). The five characters from 91 to 95 are the
same again for bath. True ASCII upper case is the same as

PETSCI lower case values, however, unlike dumb termi-
nals, one must use the SHIFT key to obtain them. This is
handied by line 240. Carriage return and Delete are away
from the main stream of things so they're set up individually
(line 250). POKE 1020, O disables I[EEE timeout and the
OPEN command is for the modem.

Getting back to our subject, it's lines 110 and 120 that take
advantage of the arrays. Line 110 GETs characters from the
keyboard. When it has one, the PETSCII value is used as an
index into the TO array. For example, pressing DELete,
which is CHR$(20), causes the contents of T(20) to be sent to

the modem as a singie byte value, in this case & which is
ASCII for Rubout.

Line 120 GETs from the modem. SRQ) signals a character
pending by setting bit 7 of 59427. After the GET*, the SRQ
flag is cleared by simply doing a read of the IEEE output
buffer {this is built into the smarts of the IC), The true ASCII
character received is used as an index into the FROM array.
The character is converted to PETSCIl and PRINTed using
CHR$. The CHR${0) is added to A$ as a precaution against
the null string.

Keyboard Setup

Now let's take things one step further. Addressing one
problem at a time is often the best way to solve a program-
ming task. Here we'll look at a simple organ keyboard.

First, a table of frequencies must be established. This is done
easily using a standard formula found in any book of music
fundamentals. It starts with the highest desired note and
then divides it down for subsequent descending notes. The
results are store into the F (Frequency) array.

Next the keyboard is defined. On octave covers 12 notes, A
to G plus the sharps. The 24 keys chosen to correspond to
the 24 calculated frequencies were selected to resemble a
dual-level piano keyboard (Lines 1000-1040),

The KY array is used to store ascending values from 1 to 24

in the element corresponding to the ASC value of the keys
(Lines 2000-2040).

So now we have two levels of indirection. The ASC value of
the key pressed is used to index the key array, and the value

The Transoctor

28 Septembaer/October 1982

< www.Commodore.ca
C May Not Reprint Without Permission

there is used to index into the frequency array.

1000 dim £(24) : f1 =7040

1010 forj=24to 1 step-1

1020 f1=f1/(21(1/12)

1030 f(j)=f1

1040 next

2000 dim ky (255)

2010 ky$ ="zsxdcvgbhnjmr5t6yu8iofip”
2020 forj=1to len (ky$)

2030 “ky (asc (mid$ (ky$,j,1))) = j

2040 next

3000 poke 59466, 15

3010 poke 59467, 16

3020 geta$:ifa$=""then 3020

3030 fr=(500000/4/f (ky (asc (a$)))) - 2
3040 poke 59464, fr :rem print fr
3050 if peek (151) <> 255 then 3050
3060 poke 59464, 0

3070 goto 3020

Several modifications are available to this program. First of
all, it uses only one waveform pattern. The “ 15" in line
3000 is binary 00001111, This will produce a VEry even
square wave. Try different values but 0 and 255 will produce
nothing. Secondly, try substituting the single 4 in line 3030
toa 2 oran 8. The variable FR can range from 1 to 255. Take
the REM out of line 3040 to see what it's doing. The range
could be increased several ways. You might add more
frequencies and keys or you can leave a couple of octaves
gap between the lower and the higher when setting up the F
array.

This program is extremely unsophisticated, so there's lots of
room for improvement. However, the emphasis was on
translation arrays. When we explore music synthesis, the
techniques employed here will undoubtedly re-surface,

The Transactor

29

September/October 1982

c‘ www.Commodore.ca
May Not Reprint Without Permission

Filing It.

Once you have learned how to input from the keyboard and
output to the screen, it's easy to take the next step, and input
or output using other devices.

The printer is handy, of course, But the super power comes
from devices you can both read and write. That way,
information can be stored now and brought back in later.
You can store names, addresses, phone numbers. . .and
read them in when you need them. This gives you two
advantages: first, the information isn't lost when you turn
the power off; and second, you have lots of storage space
even if your computer memory is small.

The Golden Rule.

You'll find it easy to remember the golden rule of input and
output: the information going out is almost exactly as you
would see it on the screen. So if you asked to print out a
value of 167, the following characters would be sent to the
cassette, printer or disk: Space; 1; 6; 7; Return. That's almost
exactly the same as would go to the screen; we wouldn't see
the Return on the screen, but we'd see its effect since a new
line would be started.

The opposite side of the golden rule concerns input. If the
above value was written to a device, and later we rewind
and ask to INPUT from that device, the program will re-
ceived exactly the same information as if we typed on the

Jim Butterfield
Toronto, Ont.

keys: Space, 1, 6, 7, and Return. On the keyboard, RETURN
signals that we are finished; and it means the same when
the information comes from some other device.

Two special situations should be mentioned. You might
have noticed that if we say PRINT 167 an extra character is
delivered to the screen: behind the last digit, 7, there's a
cursor-right. You may not notice it, since it doesn’t print, but
it's there. This extra character will not be sent to other
devices. That's good because we don't need it; we save the
space and no harm is done.

The other situation is another invisible character. Many
versions of Basic send one more character after RETURN.
Basic 4.0 does not normally send it, but most other Basics
send a special character called a Linefeed. The Linefeed is a
nice character for certain types of printers: it may be needed
to move the paper up ready for printing the next line. But it’s
wasted in data storage, and might even give us a little
trouble. More on this later.

Writing A File.

It's easy to write a file. All we need to do is: Open it, which
tells the computer to get everything ready to go; Print the
stuff; and then Close it, which tells the computer to wrap
everything up.

The Transactor

30 September/October 1982

C‘ www.Commodore.ca
May Not Reprint Without Permission

Let’s do it. If you have cassette tape, type:

OPEN 6, 1, 1, "DATAFILE"
or if you have disk, type:

OPEN 6, 8, 2, "0:DATAFILE,S,W"
.. .and in either case, your file number 6 is ready to go.

Now we can write a few things. Let’s try some numbers:
PRINT#6, 3

PRINT#6, 123
PRINT#6, 3*45%6

And a few names:

PRINT#6, "HELLO"
PRINT#6, "MY NAME IS FRED"

Finally, we wrap up the file with:

CLOSE 6

A few notes. Did you notice that after we opened the file, the
coding was the same no matter whether we were going lo
tape or disk? The OPEN statement sets everything up for us.
This can make things very easy.

Note that we use one print statement for one item. Don't try
punctuation: PRINT#6,3,123 would not work right — we
will need that extra RETURN when we read back the data.
It's also interesting to see that expressions are worked out

before being printed, so that 3*45*6 will be placed on the
file as value 42,

Now for that sneaky Linefeed. You don’t really need to
worry about this if you have 4.0 Basic or if you are using
cassette tape, but it's good practice. Those PRINT# state-
ments wrote the information we asked; then a Return,
which we wanted; then a Linefeed, which we didn’t want.
We can get rid of the unwanted Linefeed by writing the
Return ourselves — it codes as CHR$(13). So we might more
correctly write:

PRINT#6, "HELLO"; CHR$(13) ;

.. .and don’t forget both semicolons.

Reading It Back.

This is just as easy, except that we need to write these
statements as a program. INPUT and INPUT# won't work as

direct statements typed on the screen. So we code:
100 OPEN 4, 0, 0, "DATAFILE"
or, for disk;

100 OPEN 4, 8, 3. "DATAFILE"
And continue with:

110 INPUT#4, A%

120 PRINT A$

130 [F ST=0 GOTO 1100
140 CLOSE 4

What's ST doing? That's the Status word. If it's zero, we are
reading our file normally. If it's non-zero there is something

going on — usually we are at the end of the file (ST will equal
64 in this case).

Your data should come back very nicely just as you wrote it,

Conclusion.

It’s not hard to write and read files. We'll pick up a few fine
points next time around.

The Transactor

September/October 1982

B e

< www.Commodore.ca

May Not Reprint Without Permission

SuperPET Terminal Program

[f you have a SuperPET and an R5232 modem, then you
probably have a terminal program to make them go. But
unless you wrote the program, you may be wondering how
the SuperPET serial port works. This program will show you
just how easy it is.

The SuperPET R5232 port is controlled entirely by one chip;
the 6551 ACIA {Asynchronous Communications Interface
Adapter). The 6551 has 4 internal registers; dta, status, the
command register, and the control register. Incoming/
outgoing characters are routed through the Data Register.
The Status Register tells us if a character has arrived, if the
last one was sent, and other things like transmission errors.
The Command Register controls various transmit/receive
functions such as parity mode, full/half duplex, etc. Baud
rate, word length, number of stop bits, and clock source are

controlled by the Control Register. Addresses for the 6551
registers are from $EFF0 to $EFF3.

Only the Control and Command Registers need to be set up
before using the port. Various functions are invoked by
setting bits within the registers. The program sets the Con-
trol Reg. for 300 baud (baud=bits per second), a word
length of 7 with 1 stop bit, and all controlled by the 6551
internal clock. The Command Reg. is set for even parity and
no interrupts. Some other configurations are shown in the
listing, but for more details see the tables that follow.

John Stoveken
Milton, Ont.

Once you've eslablished the configuration of the ACIA, the
Data and Status registers do all the work. The Data Reg. is
used for both sending and receiving characters. The 6551
“knows” the difference between characters intended for
output and those that must be treated as input. Two bits in
the Status Register flag these conditions. When a character
comes in from the R5232 line, bit 3 of the Status Reg. is set to
1 (lines 220-230). [f you're sending a character by POKing it
to the Data Register, bit 4 fo the Status Reg. must be set to |
or else the last character has not been sent {lines 340 & 350).
The entire communications section in this program lies
between 200 and 390. 1t's easy to follow. . . start by imagin-
ing an inactive RS232 line and an inactive keyboard.

The Status Register also flags other potential conditions such
as errrors in transmission. But unless you go to a machine
language program, you won't have time in BASIC to do
anything with them. BASIC will permit about 300 baud

maximum. Anything higher and vou'll start dropping char-
acters.

Editor's Note

You'll notice that John is using translation arrays to convert
Pet ASCII to true ASCll and vice versa. For more information
on this powerful and versatile technique, see the article in
this issue entitled “Translation Arrays™ .

The Transactor

September/October 1982

(@3

www.Commodore.ca
May Not Reprint Without Permission

10 rem ###** simple basic terminal program for superpet ##=x

20rs = 14+4096 + 15#256 + 15*16:rem superpet 6551 address

30cn =6 + 16 + 32 + 0:rem 300 baud + clk + 7 bit word + 1 stop bit
31 rem other configs6 + 16 + 32 + 128 = above with 2 stop bits

32 rem 8+ 16 +32+0 = 1200 baud, good luck in basic
33 rem 6+16+0 +0 = 8bitword

40 cm = 96 + 11:rem even parity and no interrupts

41 rem 32 + 11 = odd parity,0 + 11 = no parity

50 pokers + 2, cm

60 pokers + 3, cn

70 d$ =chr$(20)

80 gosub 1000 :rem set up translation arrays

90 print’§Y";

98 rem R get character in B
g3

200 a = peek(rs+1) :rem status register

210 if (a and 8) = 0 then 300 :rem no character received

220 cr = peek(rs) :rem receive character

225 cr = ap(cr) :rem ascii to pet conversion

230 print chr$(cr);

297 ;

298 rem R R send character out *RKEE R
299 :

300 get a$: if a$="" then 200 :rem get keyboard character

310 ch = asc(a$)

320 ifch=18 then ct=1 : goto 300 :rem next character control

330 ifct=1thenct=0:ch=ch and 63
340 a = peek(rs+1)

350 ifaand 16 = 0then 340

360 print chr$(ch);

370 ch = pa(ch) :rem pet to ascii

380 poke rs, ch -rem send character out
390 goto 200

997 .

998 :rem ascii to pet to ascii table conversion

999 :

1000 dim pa(255), ap(255)

1010 for i=0to 64 : pa(i)=i : ap(i)=i : next :rem numbers and stuff
1020 for i=65 to 90

1030 pa(i) = i + 32

1040 ap(i) =i + 128

1050 next

1060 for i=91 to 96 : pa(i)=i : ap(i)=1i : next : ap(96)= 44

1070 for i=97 to 127

1090 ap(i)=i-32

1100 next

1110 fori=193 to 218

1120 pa(i)=i-128

‘rem last character not sent

1130 next

1140 ap(127)=20 : pa(20)=127 :rem deletes

1150 ap(8)=157 : pa(157)=8 :rem backspace

1160 pa(7)=7 : ap(T)=7 :rem bell

1170 ap(12)=147 : pa(147)=12 :rem clr screen/form feed
1180 ap(10)=10: pa(10)=10 :rem If

1190 pa(13)=13 : ap(13)=13 : pa(141)=13rem cr (permits shift lock)
1200 return

C‘ www.Commodore.ca

May Not Reprint Without Permission

APL And The SuperPET

Serial Port

Alter working with computers for only four years, the real
surprise in this relationship is probably the infrequency
rather than the frequency with which major problems arise.
[won't claim that this is because almost all my work is in
APL, but it probably does contribute. One such problem that
I've finally cleared up involved the use of the serial port
(RS-232C) on my SuperPET. It took a lot of help from a lot of
people, but my special thanks go to Peter Velocci of Commo-
dore Canada. He took the time and showed the interest to
set up the contacts that finally shed light on one more
hidden secret of the SuperPET.

Documentation of the SuperPET's serial port has only been
released in bits and pieces. At this point I'm still not
convinced that enough pieces have come out to let the
average user pull them all together, even if he happens to
have access to all the available literature. I'll try to correct
this here, at least for any APL users in the audience. Don't
stop though, if you are not an APL freak like me. Much of
this is not tied to any one language, other parts may at least
be a guiding milestone!

The first problem in using the serial port is to get some
information about its “pinouts”: the location and operation
of each of the 25 electrical connections that make up this
communications channel. Some of this has recently become
available, but none that | found was either explicit or
complete. Here is how the standard information goes:

Eike Kaiser
Toronto, Ont.

R5-232C has the following 25 pins, in two columns

1 earth ground 14 sec. transmitted data

2 tansmitted data (TXD) 15 transmit clock

3 receiveddata (RXD) 16 secondary received data
4 requesttosend (RTS) 17 receiver clock

5 clear to send (CTS) 18 .. .unassigned. . .

6 dataset ready (DSR) 19 sec. request to send

7 logic ground 20 data terminal ready (DTR)
8 carrierdetect (DCD) 21 signal quality detect

9 ...reserved. ..
10 .. .reserved. ..

22 ring detect

23 data rate select
24 transmit clock
25 .. .unassigned. ..

11 .. .unassigned. . .
12 sec. carrier detect
13 sec. clear to send

Normally, only pins 1-8 and pin 20 are used. Diablo and
SuperPET use only these pins but may have conflict on pins
2 &3, orpins 4 & 5.

REF: Byte, May 1982, p. 212 et al
Commodore Mag, Feb 82, p.58, Apr/May 82 p.87
Diablo documentation, p.2-10
Torpet, April 1982, p.23
Computers and Programming, Jul/Aug 1981, p.31
The Transactor, Volume 3, Issue #6, p.6

The pin allocations shown above reflect the industry stand-

c‘ www.Commodore.ca
May Not Reprint Without Permission

ard which, so far as | have seen, Commodore have adhered
to. As noted, only pins 1-8 and pin 20 are used by the
SuperPET. Among other things, this limits users to only one
serial device at a time being attached to the machine. If you

dreamed of a plotter and printer, one of them better be on
the IEEE port.

The note on a possible conflict on pins 2 and 3 turned out to
be a fact. I doubted this for a long time. The connection
inside the SuperPET is the female side of the RS-232 plug.
Without wishing to sexist, | reasoned that the “transmitted”

line on a male plug really ought to be the “received” line on

a female plug. After all, none of the documentation refer-
enced above said “transmitted to” or “transmitted from”.
My guess seemed a logical compromise, right???

Not so. It turns out that male or female doesn’t matter (at
least not in computers). Pin 2 sends data from whatever
device that pin is attached to, regardless of its sex! Count
one more for equality.

The moral of all this is that pins 2 and 3 MUST be reversed in
any connection between a SuperPET and a serial device that
adheres to the industry standard for the RS-232C ports.
That is a generalization gleaned from experience, but it
seems even more sensible than my male/female theory.

The possible conflict on pins 4 and 5 relates to a “hand-
shake” procedure, where the SuperPET confirms that the
printer is ready for input. Pins 6 and 8 are used to test that
the printer is in fact there. If your printer doesn't actually use
these pins then it's time to play electrician. Without remov-
Ing any existing connections, somewhere in either machine,
or in the cable joining them, you must make a connection
between pins 4 and 5, and/or pins 6, 8, and 20. These fool
the SuperPET into thinking that the printer is sending all the
right acknowledgements of its existence. For details, Water-
loo has a technical letter with a bit more information.

So much for the hardware. Now just plug it all up and watch
APL fly back and forth between machines — right? Wrong!

The SuperPET has its own special ASCII representations,
which differ from the standard that most manufacturers
~adhere to. This is more of a nuisance than a problem, since
Waterloo have provided some facility, however meagre, for
converting this “internal representation” into an “external
representation” that devices like ASCIl printers can use.
Conveniently, these are provide as the system functions
“OXR" and "OJIR". The former converts SuperPET jargon
into something that the rest of the world can understand,

while the latter turns incoming code into the SuperPET's
talk.

This difference doesn’t seem to affect other Waterloo lan-
guages, perhaps because they use the standard typewriter
character set, unlike the special characters used by APL.
Waterloo may also have found a less cumbersome way of
handling the conversion in the other languages, and are
moving slowly in this direction in release 1.1 of APL. Note
though, that in release 1.0 these conversions do not work on
matrices. This is the improvement that release 1.1 will
bring. For now we must convert our text line by line.

Note that | said “text”. Waterloo didn't provide for sending
anything other than characters out the serial port, at least in
APL. Numbers and function listings don’t qualify. Both must
first be converted to character representations of them-
selves. This again is quite contrary to the basic philosophy of
APL, which was to let users be users, and oblivious of
computer technicalities.

Fortunately these are not difficult tasks. “Thorn” (@) is the
APL operator that converts numbers into their character
representation. “®5 5pi25” gives a printable 5 by 5 matrix of
all the numbers from 1 through 25. Functions, the APL
equivalent of user defined programs, are converted by the
statement “CICR ‘FN' ", where FN represents the function's
name, which must be enclosed in single quotes. This has a
hidden problem though. OOCR strips the function of its line
numbers, making the printed listing very different from
users, especially new users, come to expect from their
experience with listing functions on the screen. Thus, yet
another step is forced on us by Waterloo — re-inserting line
numbers in a way that mirrors what APL would normally
give us. The program “"NUMBER" is included below to meet
this need.

Here then are our three functions. “PRINT” is the main
routine, and fairly thorough notes on its operation follow the
listings. “ASK" is a utility function that is called by PRINT, its
purpose being to modify the way that user input is handled
at the screen and to interrupt program execution until that
input is received. This is used to permit changing paper if
you are not using continuous forms. An alternative state-
ment allowing for automatic advance of continuous forms is
provided in the discussion below. “NUMBER" finally, pro-
vides for function line numbering as described above.

Do note that the problems we are fixing here are not APL
problems. They are little inconsistencies that Waterloo gave
us in an otherwise very acceptable APL implementation.
Hopefully future releases, beyond 1.1, will continue to work
towards the APL goal of encouraging a very casual user
relationship with the computer.

Discussion of Function “PRINT"

www.Commodore.ca
May Not Reprint Without Permission

Note: See end of article for program listings.

APL programs alway start with line zero, which defines the
syntax of the function, along with any local variables that it
will create. Their names, separated by semi-colons, list the
temporary work variables that will no longer be needed
when execution terminates. Having them here tells APL to
throw them out for you. Any variables created by the
executing function but not listed in this way remain availa-
ble for possible later use,

“PRINT" expects a right argument of X, which is the data we
want printed. “X" can be a variable name, it can be “ODATA”
(the character representation of numbers) or it can be “OCR
FN' ", as discussed above. In fact, APL even lets us string
together more complicated arguments to functions. Remem-
ber the problem of line numbers not appearing in the CJCR
of a function? To fix this, the “NUMBER" function above can
be used as in this statement:

PRINT NUMBER OCR ‘FN'

In this case “NUMBER” is just another function which does
its job before PRINT. The right argument in the header
permits this type of syntax.

Line one of an APL function is often reserved for a brief
statement of what the function does or how. This is strictly a
matter of style. [suggest you get into the habit, and a future
article will show how you can take great advantage of this
feature. Unlike BASIC, APL lets you have numerous pro-
grams and sets of data available simultaneously, mixing and
matching them as in our “PRINT NUMBER” example. This
saves a great deal of code, because you can re-use utilities
rather than re-coding them into every application that
needs them. With such a mixture of functions, that one line
of documentation can protect against confusion over similar
names, and help you or others find their way around.

Line 2 imposes a condition of our own on the data to be
printed. This can be removed, if you prefer, along with its
error report on line 13. Its purpose is to prevent printing
anything except two-dimensional matrices. The reason for
this is that it is much easier to re-structure the data to a

standard format than to generalize the program for n-di-
mensional output.

Line 3 sets up the ASCII printer as the output port. Even
though “serial” is a pre-defined file to the SuperPET, it is
necessary to ‘CREATE' it for use rather than just ‘TIE’ it. To
me this represents another anomally in the Waterloo imple-
mentation. . . but again too small to beef about. As in BASIC,
files are accessed by number. An APL system variable,

LINUMS, keeps a list of all of the currently active file “TIE’
numbers, and the “I'/ONUMS” returns the largest element
in this set. This illustrates the “monadic” use of “I'", or
ceiling, combined with reduction, “/”, to select only the
largest element from a set of data. Our statement also uses
"I in its ‘'dyadic’ sense, maximum, which selects the larger
of this primitive’s left and right arguments. In this case we
have 0 on the left, and the result of “I'/ONUMS” on the
right. Thus if any files are already TIEd then they will have a
TIE number larger than zero, and that will be the maximum
of the two values. If no files are TIEd, then 0 will be the
larger of the two values. In either case, we add one to the
resulting value, to create a new and currently unused TIE
number. This is stored in the variable “TIE”, with which we
then”0CREATE" the link to the serial port.

At this point we should test for the success of this operation.
Release 1.0 would allow this, but under release 1.1 of APL
there will be no return code from the “COCREATE” opera-
tion, and therefore nothing to test. (This is based on prelimi-
nary release 1.1 information, and remains to be proven
when this release becomes available) For now we will leave
the function in the form most likely to outlive the imminent
transition to release 1.1.

Line 4 now defines the number of rows of data (in X) that will
be printed. This is used later to test for completion of the
printing to be done. It wasn’t necessary to use a variable to
provide this control, but then we would have had to interro-
gate the system for the size of X after each line was printed.
In some APL systems this can waste time and computer
power, especially when large numbers of iterations are
involved.

Line 5 initializes a counter to zero. This will count the
iterations through the printing loop, and hence the number
of lines printed. It is immediately incremented on line 6,
which starts the loop to sequentially print each line of data.

Line 7 does the actual printing, but it also includes a test for
the success of this operation. Note that each line of data will
have two characters (carriage return and linefeed, from
OTC) catenated to it's end before being turned to its external
representation and then OPUT to the file “TIE”. If this
operation is not successful it returns an error message which
we store in "Q". Next we test if 0 is not equal to the shape of
Q (ie. that Q is not empty). If this is true (Q is not empty) then
Q must contain an error message and we branch to the line
“OUTERR” (line 15) where the user is advised of the failure
and it's cause.

Line 8 now tests whether we have printed an even multiple
of 60 lines. It uses the concept of residuals, and the assump-

g www.Commodore.ca
May Not Reprint Without Permission

tion that most paper forms will accommodate 60 lines of
print. You can change this value to suit your own needs. If
the residual of “I" relative to this base value is not zero, then
the program branches past line 9.

If this residual is zero (lines 60, 120, 180,...) then line 9
invokes the sub-function “ASK”. This prints to the screen
the message that is given as it's right argument: here,
"PAPER OUT. . .". This sub-function then waits for a re-
sponse from the operator, allowing whatever time is neces-
sary to permit changing paper. If you are using continuous
forms with 66 lines per page, replace this line with:

(OXR 5pOTC[3]))TPUT TIE

This will space the paper up by 5 lines, getting you well past
the perforations in the forms. For shorter forms you can
modify the value 60 in line 8, and even squeeze down the
vertical spaces in this revision to line 9.

Line 10 test whether “I” is less than “LINES” — have all
available lines been printed? If not, it branches back to the
top of LOOP1 for the next line of data. If so, it proceeds to
line 11, the equivalent of a “CLOSE" statement in BASIC.,
Lines 12 and 14 branch out of the program to avoid printing
error messages on 13 and 15, which were provided for
conditions that might arise on lines 2 and 7.

The utility function “ASK"” will not be explained here. It is
well worth playing with this one though, since with small
modifications it provides a wide range of control over user
input. For example, change it to expect a left argument
representing acceptable responses, then test for those re-
sponses and branch back to line 2 if the user input doesn't
match the allowed inputs. This is the basis of an almost

unbeatable trap to safeguard your programs against all sorts
of evils!

The function "NUMBER" will also not be explained here. At
this point we don’t know what audience the new Transactor
will gather to itself, and the last thing we want is to turn off

any of that audience with long monologues that don’t meet
their needs.

~ Our purpose was to unlock some of the secrets of the
SuperPET's serial port, particularly for APL users who seem
to have had an unfair share of undocumented problems to
face. In the process we have tried to illustrate some concepts
underlying the APL language. Other secrets are left for you
to face, such as the parity, duplex, and linefeed settings on
equipment that is available to you. Various suppliers and
retailers will no doubt be glad to help with further questions,
including Waterloo. Patience and experimentation on your

part will be invaluable though, since none of these sources
will have had the experience with every gadget you might
want to plug in to the RS-232C port on you machine.

Let us know how you feel about this article. Did it help with
the serial port? With introductory APL examples? With
example of APL style?

Did it confuse?... bore?... enlighten? Was it timely or
out-of-date, too simple or too advanced? Your interests are
our interests, because our magazine is your magazine.

www.Commodore.ca
May Not Reprint Without Permission

VPRINTLOIV

(0] PRINT X ;LINES:I;Q;TIE
[(1]la PRINTS X TO PRINTER VIA SERIAL PORT: NOT LIMITED TO SCREEN 0pPw
(2] +(22ppX)/IPTERR

(3] 'SERIAL'()CREATE TIE<«1+0[[/ONUMS
Lul LINES+1tpX
(5] I+0

[6]1LO0OP1: I+I+1
L7] +(02p@Q«(Oxr X(r;1,0rcL7 31)0OPUT TIE)/OUTERR
(8] +(02601I)/TEST
[9] @<ASK 'PAPER OUT: ~RETURN™ TO CONTINUE.®
L10]TEST:+(I<LINES)/LOOP1
[117 (WNTIE TIE
[12] =0
El 3 %IPTERR: 'INPUT MUST BE 2 DIMENSIONAL: RE<STRUCTURE AND RE-SUBMIT.'
14 -+0
(15 JOUTERR: ' INTERRUPT: OUTPUT FAILED, ',Q
v

vASK[O1v

(0] R«ASK X
[1ln ALLOWS RESPONSE ON SAME LINE AS PROMPT X
(2] Mex,* ==
[3] Re(u+pX)4M
V

VNUMBER[(]]V

(0] Z«NUMBER TXT:R

(1] Re14pTXT

[2] RO "14¥(R,1)p 1+ R

(3] Z~ ('R). T
v

c‘ www.Commodore.ca
May Not Reprint Without Permission

Tiny-Aid For VIC-20

Introduction

Since the early days of the PET, various enhancements for
BASIC have been available—Toolkit and Power are two
commercial examples. Bill Seiler, then of Commodore, pro-
duced the first public-domain version, called BASIC-Aid.

Many updates, corrections and improvements have been
made over the past couple of years. The PET/CBM program
has ballooned to a 4K package for almost every flavour of
equipment configuration.

As has been customary in the Commodore community, Mr.

Jim Butterfield developed a version of the BASIC-Aid. He
called this TINYAID2 (or TINYAID4, for Basic 4.0). This

offered the six most useful commands from the full-fledged
program.

Following is my modification of that work, designed to
provide VIC users with the same benefits. After using this for
a while, I think you will find the added commands nearly
indispensible.

Features
VIC Tiny Aid is a machine language program which con-

sumes about 1200 bytes of your RAM memory. After you
have loaded the program, type ‘RUN’ and hit 'RETURN’. The

David A. Hook
Barrie, Ont.

program repacks itself into high memory. The appropriate
pointers are set so that BASIC will not clobber it. VIC Tiny
Aid is now alive.

Once activated, five commands become attached to BASIC.

They will function only in “direct” mode, i.e. don’t include
them in a program.

(1) NUMBER 1000,5
NUMBER 100,10

‘RETURN'

Renumbers a BASIC program with a given starting line
number and given increment between line numbers. The
maximum increment is 255.

All references after GOTO, THEN, GOSUB and RUN are
automatically corrected. A display of these lines is presented
on the screen as it works. If a GOTO refers to a non-existent
line number, then it is changed to 65535. This is an illegal
line number, and must be corrected before the BASIC
program is used.

(2) DELETE 100-200
DELETE- 1500
DELETE 5199 -

‘RETURN

C‘ www.Commodore.ca
May Not Reprint Without Permission

Deletes a range of lines from a BASIC program. Uses the
same syntax as the LIST command, so any line-range may
be specified for removal. DELETE with no range will per-
form like a NEW command, so be careful.

(3) FIND /PRINT/ ‘RETURN’
FIND /A$/, 150-670

FIND "PRINT", 2000-

Willdocate any occurences of the characters between the “/”
marks. Almost any character may mark the start/end of the
string to be found, so long as both are the same. The first
example will find all the PRINT instructions in the program.

If you are looking for a string of text which contains a BASIC
keyword, you must use the quote characters as markers.
This will prevent the search string from being “tokenized”.

If a limited line-range is desired, use the same syntax as for
LIST. Note that a comma (“,”) must separate the line-range
from the end marker,

All lines containing the string are printed to the screen. If a
line has more than one of them, each occurence will cause a
repetiton of that line.

(4) CHANGE -PRINT-PRINT#4,-
CHANGE /ABC/XYZ/, 6000~
CHANGE /DS$/D1%/, -5000

‘RETURN’

Using the same syntax as FIND, you may change any string
to any other string in a BASIC program. This command is

very powerful, and was not part of the early versions of
Basic-Aid or Toolkit.

As before, you may indicate a line-range. As the changes
are made, the revised lines are displayed on the screen.

Watch out for the difference between BASIC keywords and
strings of text within quotes. You may use the quote charac-
ters to differentiate, as with FIND.

(5) KILL ‘RETURN’

This command disables VIC Tiny Aid and its associated
commands. A syntax error will be the result if any of the
above commands are now tried.

Since the routine is safe from interference from BASIC, you
may leave it active for as long as your machine stays on. It is

possible that VIC Tiny Aid may interfere with other pro-
grams that modify BASIC's internal ‘CHRGOT' routine. The
KILL command allows you to avoid this conflict.

Procedure

The VIC contains no internal machine language monitor,
which is really the only practical way to enter this program.
S0 follow one of the three methods below to perform the
task.

(1) Borrow an Upgrade (2.0) or Basic 4.0 PET/CBM, with its
internal ML monitor. This will be the easiest method to
work with the program included.

(2) Use your VIC-20, but you must have a machine language
monitor:

-Jim Butterfield’s TINYMON FOR VIC (Compute#20,
January 1982). -my adaption of SUPERMON FOR VIC
(The Transactor, Volume 3, Issue #5). -VICMON car-
tridge from Commodore.

(3) The easy way (7). Send $3, a blank cassette or 1540/
2031/4040 diskette in a stamped, self-addressed mailer
to me at:

58 Stee| Street
BARRIE, Ontario, CANADA
L4M 2E9

Be sure its packaged securely. Diskettes will be returned in
DOS 2.0 format. Only 2040 (DOS 1.0) owners need take
extra care. (The programs need to be copied to a DOS 1.0
formatted disk. Don’t SAVE or otherwise WRITE to the disk

you get).

[f you are using a VIC, and have a 3K RAM or SUPEREXPAN-
DER cartridge, plug this in. It will be somewhat easier to
follow, since programs are then “PET-compatible” without
further juggling. However don't use the 8K or 16K expan-
sion for this job.

If you are familiar with the operation of the ML monitor,
please skip ahead to the specifics below.

You are about to type in about 2500 characters worth of
“hexadecimal” numbers. In addition to the digits from zero
to nine, the alphabetic characters from A-F represent num-
bers from ten to fifteen. These characters, and three instruc-
tions, will be all that are used to enter our program. You
don’'t have to understand the process—ijust type in the

C‘ www.Commodore.ca
May Not Reprint Without Permission

characters exactly. It's not very exciting, but don't be too
intimidated by the “funny” display.

Enter the machine language monitor program :

TINYMON/SUPERMON FOR VIC — LOAD and RUN the
program,

PET/CBM — Type “SYS1024" and hit “RETURN" .
VICMON Cartridge — "SYS 6+4096” or “SYS 10+4096”
(depending on version you have), then type “RETURN” .
NOTE: If you are working on the unexpanded VIC you will
need to follow the alternate instructions in parentheses.

The cursor will be flashing next to a period character (“.").
Type the entry starting at the current cursor position:

M 0580 05CO “RETURN™ (M 1180 11C0)
Several lines should appear on the screen, much like the
“memory-dump” which accompanies this article. A four-
“digit” quantity called an “address” leads off a line, and
either eight or five columns of two- “digit” values appear
alongside.

Look at the tables of values in the article. They show eight
rows of these addresses. Note that the first “block” has the
address “0580" , which matches the first address just above.
The first row of the next table shows “05C0", which is the
second (or ending) address just above.

Your mission is to type in the matching values from the
article, in place of the two-"digit” values you see on the
sCreerl.

Remember to hit “RETURN" at the end of each screen line,
or the changes won't be made.

Double-check the values you've typed. It's not easy to find
an error later on.

Look at the next block of values. Type in the start/end
addresses to display:

MO0O5C0 0600 “RETURN” (.M 11C0 1200)

Type in the values required and go on with the rest of the
blocks.

You will use addresses ranging from:

05xx-06xx-07xx-08xx-09xx-0Axx

as shown in the tables. The “x" characters stand for the
other two “digits™ of the address in the leftmost column.

If you are working on the unexpanded VIC, the sequence of
addresses is:

11xx-12x%x-13xx-14xx-15xx-16xx

You will have to type these pairs of characters in place of the
leading two shown just above.

With that task complete, we are ready to preserve this work
on tape. So type:

S"VIC AID.ML' 01,0580,0AB6 “RETURN”

(or S"VIC AID.ML" ,01,1180,16B6 “RETURN")

Mount a blank tape, and follow the instructions. Save a
second copy, for safety.

Exit the ML monitor, with:
X% “RETURN"
VERIFY the program normally before going any further.

Now comes the easy part. Type “NEW", then the BASIC

listing. Enter this exactly, without including any extra text.
Save this as “VIC AID.BAS" and VERIFY it.

Finally, LOAD "VIC AID.ML" and SAVE “VIC AID.REL" on
another blank tape. Both the BASIC part and the machine
language part have been SAVEd together.

Check-0Out

We are going to check out the machine language using a
“checksum” method. Type in “"NEW" before proceeding.
Now enter the following program:

10 1=0:rem (i=3072 for unexpanded VIC)
20 t=0:forj= 1408 +ito 2741 +i

30 t=t+ peek()

40 next |

50 printt

Alter a few seconds, if the value 161705 appears, you've
likely got it perfect. Go to the next section.

If not, there's at least one incorrect entry. Change the two

g www.Commodore.ca
May Not Reprint Without Permission

values in Line 20, using the table below. Re-RUN the
program and compare against the value in the third column.

Repeat the process for each row, noting any that don’t
match. Each row corresponds to two “blocks” from the last
section. You will have to re-enter the ML monitor to re-

Operation

Thefinal acid test. ReLOAD the program from tape and RUN
it. The screen will clear and a brief summary of the added
commands will be displayed. The cursor should return
almost instantly, under the “READY.” message.

~check those sections that differ. Re-SAVE the ML part!!!

If the cursor does not come back, there is something still

Block* Valuel Value2 Checksum amiss. All the values appearing in the article were produced
from a working copy of the program (Honest!). You still have
«1- 2 1408 1535 15201 option (3) from the Procedure section available. If you do
3- 4 1536 1663 17221 send a tape/disk now, include your non-functioning ver-
- 6 1664 1791 15925 sion. | can then do a compare, to see where the error(s) were.
- 8 1792 1919 15117
9-10 1920 2047 15565 This has been a massive exercise, and mistakes can easily
11-12 2048 2175 14141 creep in. Your comments are welcome.
13-14 2176 2303 15840
15-16 2304 2431 16276
17-18 2432 2559 15152
19-20 2560 2687 15194
21 2688 2741 6073
1 print "r vic tiny aid”
2 print "§§lf adapted for vic by:"
3 print” david a. hook”
4 print "8 from ‘tiny aid’ by:"
5 print” jim butterfield”
6 print h and ‘basic aid’ by:"
7 print "bill seiler’
8 print”® ample commands:”
9 print “giichange /?/print#4,/"
10 print “find .gosub., 200-"
11 print "delete 130-625"
12 print "number 100,5"
13 print"kill (vic aid)’
14 sys (peek (43)+ peek (44)+256 + 383)

g www.Commodore.ca
c May Not Reprint Without Permission

20580 a5 2d 85 22 a5 2e 85 23 .+ 0740 7a 86 7b 20 d7 ca d0 0b 0900 38 60 a0 9d 84 ae a0 c0
20588 a5 37 85 24 a5 38 85 25 0748 c8 98 18 65 Ta 85 7a 90 - 0908 84 af 38 €9 7f aa a0 00
<0590 a0 00 a5 22 dO 02 c6 23 20750 02 e6 Tb 20 ca ff 00 f0 20910 00 ca fO ee e6 ae d0 02
0298 ¢6 22 bl 22 dO 3c a5 22 0758 05 20 dec td 00 b0 03 4c 0918 eb af bl ae 10 6 30 fl
2 05a0 d0 02 c6 23 c6 22 bl 22 - 0760 8f fc 00 84 55 e6 55 a4 .+ 0920 20 6b c9 a5 14 85 35 a5
-05a8 f0 21 85 26 a5 22 d0 02 + 0768 55 ab 31 a5 32 85 8b bl - 0928 15 85 36 20 fd ce 20 6b
2 05b0 ¢6 23 c6 22 bl 22 18 65 - 0770 7a f0 d8 dd 00 00 02 dO <0930 ¢ ad 14 85 33 a5 15 85
- 05b8 24 aa a5 26 65 25 48 a5 20778 ed e8 ¢8 c6 8b dD f1 88 20938 34 20 8 cb6 20 ca K 00
= 05¢0 37 d0 02 c6 38 c6 37 68 . 0780 84 Ob 84 97 a5 49 f0 5b + 0940 20 ca ff 00 dO0 21 20 ac
200c8 91 37 8a 48 a5 37 d0 02 20788 20 fO fd 00 a5 34 38 e5 0948 ff 00 20 ca ff 00 20 ca
2 05d0 c6 38 c6 37 68 91 37 18 + 0790 32 85 a7 f0 28 c8 f0 ca 20950 ff 00 dD 03 4c & fc 00
- 05d8 90 b6 9 df dO ed a5 37 0798 bl 7a d0 f9 18 98 65 a7 20958 20 ca ff 00 a5 63 91 7a
- 05e0 85 33 a5 38 85 34 6¢ 37 +07a0 ¢9 02 90 40 ¢9 4b b0 3c 20960 20 ca ff 00 a5 62 91 7a
:05e8 00 aa aa aa aa aa aa aa - 07a8 a5 a7 10 02 ¢6 8b 18 65 20968 20 b7 ff 00 f0 €2 20 ca
2 05f0 aa aa aa aa aa aa aa aa . 07b0 Ob 85 97 b0 05 20 24 fe 20970 ff 00 20 ca ff 00 20 ca
. 05f8 aa aa aa aa aa aa aa aa 2 07b8 00 f0 03 20 Oc fe 00 a5 20978 ff 00 ¢9 22 dO Ob 20 ca
20600 df ad fe ff 00 85 37 ad :07c0 97 38 €5 34 a8 c8 a5 34 20980 ff 00 f0 5 ¢9 22 d0 f7
20608 ff ff 00 85 38 a9 4c¢ 85 2 07c8 0 Of 85 8 a6 33 bd 00 20988 f0 ee aa f0 be 10 €9 a2
20610 7c ad d9 fb 00 85 7d ad 2 07d0 00 02 91 7a e8 ¢8 c6 8¢ 20990 04 dd d4 ff 00 f0 05 ca
20618 da fb 00 85 7e 4c 8f fc - 07d8 d0 5 18 a5 2d 65 a7 85 20998 dO f8 f0 dd a5 7a 85 3b
20620 00 f0 03 4c 08 cf a9 ¢9 2 07e0 2d a5 2e 65 8b 85 2e a5 -09a0 a5 b 85 3¢ 20 73 00 00
- 0628 85 7c a9 3a 85 7d a9 b0 :07e8 7a a6 7b 85 5f 86 60 a6 - 09a8 b0 d3 20 6b ¢9 20 51 ff
20630 85 7e 60 db fb 00 85 8b 207f0 43 a5 44 20 3d fe 00 20 .- 09b0 00 a5 3c 85 7b a5 3b 85
.. 0638 86 97 ba bd 01 01 ¢9 8¢ 2078 el ff a9 00 00 85 c6 a4 - 09b8 7a a0 00 00 a2 00 00 bd
.+ 0640 fO 10 dO 02 a4 8c a6 97 20800 97 4c 2 fc 00 a4 7a c8 - 09c0 00 00 01 ¢9 30 90 11 48
.+ 0648 a5 8b ¢9 3a bD 03 4c 80 0808 94 31 a9 00 00 95 32 b9 2098 20 73 00 00 90 03 20 82
0650 00 00 60 bd 02 01 c9 c4 20810 00 00 02 fO 15 c5 8b 0 - 09d0 ff 00 68 a0 00 00 91 7a
0658 d0 ed a5 8b 10 02 e6 Ta 20818 05 f6 32 c8 d0O f2 84 7a - 09d8 e8 dO e8 20 73 00 00 bO
. 0660 84 8¢ a2 00 00 86 a5 ca 20820 60 ¢9 ab 0 04 ¢9 2d dO <090 08 20 91 ff 00 20 79 00
.. 0668 8 a4 T7a b9 00 00 02 38 0828 01 60 4c 08 cf 90 05 {0 2098 00 90 f8 ¢9 2¢ f0 bR’ d0
0670 fd d9 ff 00 f0 13 c9 80 20830 03 20 a6 fd 00 20 6b c9 - 09f0 96 20 ac ff 00 20 ca ff
20678 f0 13 e6 a5 e8 bd d8 ff - 0838 20 13 ¢6 20 79 00 00 f0 ~ 0918 00 20 ca ff 00 dO 08 a9
- 0680 00 10 fa bd d9 #f 00 dO 0840 Ob 20 a6 fd 00 20 73 00 - 0a00 ff 85 63 85 62 30 0e 20
20688 e4 f0 bf e8 c8 d0 el 84 - 0848 00 20 6b ¢9 d0 e0 a5 14 2 0a08 ca ff 00 ¢5 14 d0 Of 20
20690 7a a5 a5 0a aa bd 5 ff 20850 05 15 d0 06 a9 ff 85 14 20al0 ca ff 00 ¢5 15 dO Ob 20
.- 0698 00 48 bd f4 ff 00 48 20 - 0858 85 15 60 20 ca ff 00 85 2 0al8 dl dd a9 20 4c d2 ff 20
2 06a0 €9 fb 00 4¢c 73 00 00 20 - 0860 43 20 ca ff 00 85 44 38 2 0a20 ca ff 00 20 b7 ff 00 f0
. 06a8 b2 fd 00 a5 5f a6 60 85 20868 ad 14 e5 43 a5 15 e5 44 - 0a28 d2 20 a2 ff 00 e6 97 20
.. 06b0 24 86 25 20 13 c6 a5 5f .. 0870 60 ab 7a 85 22 a5 7b 85 2 0a30 24 fe 00 e6 2d dO 02 eb
.. 06b8& a6 60 90 0a a0 01 bl 5f 0878 23 ab 2d 85 24 a5 2e 85 +0a38 2e 60 20 a2 ff 00 c6 97
2060 fO 04 aa 88 bl 5f 85 7a .- 0880 25 60 a5 22 ¢5 24 d0 04 2 0ad0 20 Oc fe 00 a5 2d d0O 02
. 06c8 86 Tb ad 24 38 e5 7a aa 20888 a5 23 ¢5 25 60 a4 Ob c8 - 0a48 cb 2e c6 2d 60 20 f0 fd
2 06d0 a5 25 e5 7Tb a8 b0 le 8a .- 0890 bl 22 a4 97 c8 91 22 20 . 0a50 00 a0 00 00 84 Ob 84 97
. 06d8 18 65 2d 85 2d 98 65 2e 20898 01 fe 00 dO 01 60 e6 22 .. 0ab8 60 a5 35 85 63 a5 36 85
.. 06e0 85 2e a0 00 00 bl 7a 91 2 08a0 dO ec e6 23 d0 e8 a4 (b .+ 0a60 62 4c 8e c6 a5 63 18 65
. 06e8 24 c8 d0 19 e6 Tb e6 25 .. 08a8 bl 24 a4 97 91 24 20 01 .. 0ab8 33 85 63 a5 62 65 34 85
2 06f0 ad 2e c5 25 b0 ef 20 33 - 08b0 fe 00 dO 01 60 a5 24 dO - 0a70 62 20 ca ff 00 dO fb 60
- 06f8 ¢b ab 22 a6 23 18 69 02 .+ 08b8 02 c6 25 c6 24 4¢ 24 fe - 0a78 a0 00 00 e6 Ta d0 02 e6
20700 85 2d 90 01 e8 86 2e 20 2 08c0 00 a0 00 00 84 a5 84 0Of :0a80 7b bl 7a 60 89 8a 8d a7
<0708 59 c6 4c 67 ed4 20 7c c5 2 08c8 20 cd dd a9 20 a4 a5 29 :0a88 43 48 41 de 47 ¢5 44 45
20710 20 73 00 00 85 8b a2 00 208d0 7f 20 d2 H <9 22 d0 06 +0a90 4c 45 54 ¢S5 46 49 4e ¢4
0718 00 86 49 20 8¢ fd 00 a5 -08d8& a5 Of 49 ff 85 Of c8 bl :0a98 4b 49 4c cc 4e 55 4d 42
0720 a5 ¢9 00 00 d0 07 a2 02 208el 5f f0 19 10 ec ¢9 ff {0 2 0aa0 45 d2 00 00 a5 fe 00 41
. 0728 86 49 20 8¢ fd 00 20 73 2 08e8 e8 24 Of 30 ed4d 84 a5 20 20aad fc 00 a5 fc 00 ¢6 fb 00
0730 00 00 fO 03 20 fd ce 20 :08f0 7c fe 00 c8 bl ae 30 d6 . 0ab0 98 fe 00 ac b 00 aa aa
- 0738 b2 fd 00 a5 5f a6 60 85 ~08f8 20 d2 ff dO f6 20 d7 ca .. 0ab8 aa aa aa aa aa aa aa aa

www.Commodore.ca
May Not Reprint Without Permission

ASCII Modem Driver For VIC RS-232

One very practical use of the Commodore VIC-20 is in
communications. Given the sticker price of the VIC and a
VICModem (or a standard RS-232 modem with the VIC
R5-232 adapter), you and your budget will find this rapidly
growing pastime an economical introduction to computing.

The VIC has a built-in RS232 interface. But don’t go looking
for a standard RS-232 connector (that trapezoid shaped
connector much like The Transactor masthead border) be-
cause you won't find one. Commodore decided they could
get some more mileage out of the User Port (the card-edge
connector on the far right looking from the back) and make
it double as RS-232 since it's unlikely both will be in use
simultaneously. There's just one catch. The User Port is
driven by a TTL device (known as the 6522 Versatile
Interface Adapter), so output levels range from 0 to 5 volts.
R5-232 modems requirea-12 to + 12 volt range, so the VIC
RS5-232 adapter (VIC 1011A) is required. The VICModem
also connects to the User Port, but it has the adapter built in.

The VIC also has built-in ROM routines for transmitting and
receiving characters over the R5-232. These routines do the
actual handshaking of data and are invisible to the user.
However, they don't do everything. Some BASIC is still
necessary o get them started, interact, and then shut them
off when no longer needed.

When a file is OPENed to device 2, the RS-232 port, 2

reservoirs or “buffers” are automatically allocated; one for
storing characters from the keyboard and the other for
characters coming in from the modem. Both buffers are 256
bytes long and are placed “back-to-back” in the topmost
512 bytes of RAM. The OPEN command also seals off this
area of memory so that nothing else (like strings) will try to
use it. If you plan to use RS-232, the OPEN should occur
very early in your program. Otherwise, any strings that are
built at the top of memory will get clobbered when the
OPEN command allocates these buffers. Also make sure
your program has a free space of at least 512 bytes (prefera-
bly more for variables and arrays) or you'll suddenly find
that the end of your text has been gobbled!

Two other rather noteworthy events occur upon opening
the RS-232. First, the serial port is disasled. That's right, no
more disk or printer. If that wasn’t enough, the cassette port
is also benched. It seems that the VIC devotes quite a bit of
its interface internals to supporting RS-232. Disk and
printer logging is still possible, however it would require
closing down the RS-232 while they are serviced. These
features would slow down a BASIC program to the point
where characters might be lost. A machine language driver
would be necessary for a more sophisticated terminal pro-
gram.

The transmit/receive routines begin working when charac-
ters start appearing in either one of these buffers. Usually

www.Commodore.ca
May Not Reprint Without Permission

only one buffer sees activity at any one time. Rarely do both
ends of a communications link want to talk at the same time.
So, after you send characters, you'll be waiting for a re-
sponse. Don’t worry about characters from both ends mix-
ing together on any single line. It probably won't happen.

Each buffer has 2 one-byte pointers that are stored from
$029B to $S029E. A one-byte pointer is more accurately

referred to as an “index”, but we'll use the term “pointer” for
better readability and clarity.

The Input or Receiver Buffer

This one collects characters coming from the modem. The
first pointer ($029B) tells the t/r routines where to store the
next incoming character and the other ($029C) tells BASIC
where it can GET* its next character from. Initially, the 2
pointers start out at the same place. At this point a GET#
would return a null string into the variable. When a charac-
ter arrives at the port, it’s stored in the receiver buffer and
the pointer at $029B is incremented. Now there’s a gap
between the two pointers. The next GET# would pull this
character out of the buffer and $029C is incremented,
making both pointers equal again. Essentially, one pointer
is chasing the another in an attempt to keep the gap as small
as possible, much like a race between two vehicles on a 256
unit track.

Thus, the ideal order of events is. . . 1 character comes in,
BASIC gets it out, another comes in, and so on. But such is
not always the case. At very high transfer speeds (which the
VIC is prepared to handle), BASIC can potentially fall be-

hind. A character comes in, and another, and another, and -

BASIC may only pull one out for every 2 or 3 that come in.
This situation is OK until there is 255 characters waiting for
BASIC o retrieve. When the next one arrives, $029B is
incremented, and the 2 pointers become equal ($092B has
“lapped” $029C). Those 256 characters are now lost be-
cause it appears to the VIC that there are no characters in the
buffer.

At 300 baud, approximately 30 chars per second, (a very
popular speed in the micro environment) this problem is not
likely to arise unless there is too much BASIC between
subsequent GET#'s. If a continuous stream of data is slam-
ming into the port, too many IF statements might slow down
BASIC enough that entire buffers get dropped. Short incom-
ing bursts should be no problem though. As long as the
strings are less than 256, they’ll wait in the buffer comfort-
ably until BASIC gets them out,

The Output or Transmitter Buffer

Characters are sent from this buffer which operates much
the same way as the receiver buffer. Once again, 2 pointers
control the flow of data in and out of the buffer. The first, at
$029D, tells the transmit/receive routines where to grab
another character for sending. The other pointer, at $029E,
indicates where the PRINT# command will place subse-
quent characters. As they arrive in the buffer, this pointer is
incremented, and as they get sent, $029D is incremented.
So, like the input buffer, the t/r routines are constantly
trying to eliminate any gap between the two pointers.

Unlike the input buffer, the t/r routines won't allow the
output buffer to overflow. If PRINT# tries to place more than
254 characters in the buffer, BASIC will wait until some of
them are sent before letting any more pile up. Since most
often the keyboard will be the main source of output
characters, it's unlikely that the output buffer will see this
condition. A send-from-disk feature could possible fill up
the transmitter buffer, but, as mentioned earlier, the serial
port is disabled by the RS-232, so disk is inaccessable
anyways. A machine code driver would need to close the
R5-232, bring in some disk material, re-open communica-
tions and continue from there. One would also have to
incorporate certain precautions to take care of the buffer
space that gets de-allocated and then re-allocated during
this procedure. A garbage collect during disk/printer access
might put some vital strings up there that would eventually
be destroyed. As you can see, an all-encompassing VIC
modem driver would require some careful thought.

Alias ST

The status variable ST takes on a whole new meaning
during RS-232 use. Bits within ST are used to flag various
transmission errors but if everything seems to be going OK,
an ST test is often unecessary. If you'd like to insert one, a
simple test for ST<>0 will indicate an error, otherwise
smooth sailing. ST is cleared to zero immediately after being
read, so if you want to know what it was, you'll need to trap
it into some other variable.

Closing Up

A simple CLOSE brings your VIC back to normal. The space
eaten up by those buffers is returned (try ?FRE(0)), the serial
port comes back, and the cassette works once more. But
before you do, Commodore suggests this line just to make
sure everything's been sent;

140 if peek(37151) and 64 then 140

(@3

More VIC RS-232 Info

The VIC Programmers Reference Guide has a section on
RS-232. Details on control register and command register
setup is covered along with some more RS-232 facts.

COMPUTE’s August ‘82 Issue 27 has a article worth looking
up by Jim Butterfield and Jim Law. For those of you getting
bored with details, here's what we've been leading up to.

100 gosub 200

110 get¥1, a$: if a$ then print

120 get a$
130 if a$<>"!" goto 110

ASCII Terminal Software

Below is a program that will get you started. Simpler ones
are around, but this one talks true ASCII. For a more detailed
description of the program, take a look at the article titled
Translation Arrays in this issue.

chr¥(f(asc(as)));

- if a$ then print*1 chr$(t(asc(a$)));

rem or subst. any char to end prog

140 if peek(37151) and 64 then 140

150 close 1

160 print chr$(9) :

170 end

rem enables Shift/CBM

200 open 1, 2, 3, chr$(6)+ chr$(160) : rem sets 300 baud

210 print chr$(14)

rem sets upper/lower case

220 print chr$(8) : rem locks out case change by Shift/CBM

230 dim t(255), f(255)
240 forj=32 to 64 :t(j)=]

250 forj=65 to 90:t(j)=j+32 :

260 forj=91 to 95:t()=]

270 forj=192t0 218 : t(j)=j-128:

280 t(13)=13:1(20)=8

: next
next
: next
next

290 rem add extra functions here
300 for j=0to255 :if t(j) then f(t()) =1 : f(t(}) + 128)=] : next

310 return

www.Commodore.ca
May Not Reprint Without Permission

c‘ www.Commodore.ca
May Not Reprint Without Permission

The Commodore 64: A Preliminary Review

In a world where new microcomputers seem to be appear-
ing faster than federal budgets, it's hard to decide when to
buy. That fear of obsolescence is very real when YOUR
money is on the line. But all computers will eventually
become obsolete, so waiting for a better one is perpetual.
Therefore, you must determine which computer will do
everything you desire at a price that suits your budget.
That's a pretty tall order, because you might find one that
does everything, but a second mortgage on your house was
not in your plans. Alternately, that inexpensive machine
you've had your eye on might only give you room for a
simple mortgage program and you find yourself faced with
expanding not only the computer but your investment too.
Finding a compromise can be tough.

If you've decided that you're definitely in the market for a
micro, check out the Commodore 64: Commodore’s newest
entry and, without a doubt, their best so far. Although it

looks like a VIC from the outside, inside it's a whole new
story.

The 64 already has 64K of RAM (hence the name), so
‘memory expansion’” can be scratched off your shopping
list. Of course, not all 64K is available simultaneously.
Memory is split into sections which must be switched in or
out as required. More on 64 bank-switching in a later issue.

Like the VIC, it comes in that “wedge” shaped plastic

housing, but in a colour that looks like a cross between
beige and grey. Unlike the VIC, it has a 40 column by 25 line
screen output and the modulator is contained inside the
housing where it belongs. The keyboard feels a little nicer
too, but that’s only a personal opinion, possibly influenced
by the order in which they came out.

Standard Design Features

* Cartridge slot for games, etc., compatible with the new
MAX machine.

¢ 8 bit user port

e Serial bus for disk, printer, etc., (like on the VIC)

e (assette tape port

* Composite video output and modulator output ports
¢ Audio output jack

e 38K available for BASIC text

¢ 2 built-in Analog to Digital converters

* 16 colours

And there’s more. ..

Several new chips have been used in the 64’s design. A new
microprocessor, the MOS 6510, makes its debut. The 6510 is
still an 8 bit machine, but internal bank switching capabili-
ties allow for the bonus RAM. Other features include: pro-

www.Commodore.ca
May Not Reprint Without Permission

grammable stack pointer, variable length stack, an 8 bit
bi-directional 1/0 port and it's software compatible with
6502 programs.

The 6566 Video Display Chip

This one’s a beauty! Everything you ever wanted to do in
movable graphics. .. and then some. The 6566 has the
capability of moving definable shapes, or more commonly
known as “sprites” . Up until now, sprites have only been
available on machines like arcade games. Pacmans, galaxi-
ans, frogs, etc, are all done using sprites.

The 64 allows 8 sprites to be displayed simultaneously (with
more by using “raster compare” which we'll explain in a
later issue). You simply define a shape somewhere in mem-
ory, select a sprite number, point that sprite at the shape,
and turn it on. Like magic that shape will appear instantly
on the screen. Then by merely giving X and Y coordinates,
the shape moves around the screen by itselfl No more
erasing the shape at its previous location, no more updating
screen RAM and colour tables. .. everything's done in
hardware!

Other sprite features include: horizontal and/or vertical size
expansion; hi-res or multi colour sprites; collision detection
between sprites, or sprites and background; sprite/
background display priority (sprites can appear in front of
background or disappear behind background).

Other 6566 features include: smooth scrolling horizontally
and vertically; 16 colours with 3 grey shades; bit map mode
for hi-resolution display; [/O ports for 2 joysticks or 4
paddles or light pen input.

The 6581 Sound Interface Device (SID)

The SID is virtually a synthesizer on a chip. It has 3
independently controllable voices, each with a 9 octave
range and 4 waveforms including square, triangle, sawtooth
and noise. Each voice also has a programmable envelope
generator and volume control with a master volume control
for all three voices. The SID has some other very sophisti-
cated features such as oscillator synchronization, ring mod-
ulation, filter resonance control, and it even has an external
input for processing signals from other sources such as an
electric guitar.

In all, the 6581 can produce sound with better quality than
some of the instruments it can simulate. With a little pro-

gramming, voice synthesis shouldn’t be too much trouble
either.

The 6526 Complex Interface Adapter (CIA)

The 64 comes with 2 of these. The 6526's replace the 6520
and 6522 of earlier machines. Each chip has an 8 bit shift
register for serial [/0, 24 clock with programmable alarm, 8
or 16 bit handshaking on read or write, 2 independent 16 bit
interval timers and the capability for sourcing or sinking 2
standard TTL loads. I've been told that the external input to
the SID can only process signals through the filter section
which eliminates several possibilities. However, the 6526
has two analog to digital converters. By connecting external
sources here, audio signals can be sent through all sections
of the SID which will provide for some rather interesting
experimentation. The A/D’s will also eliminate a lot of the
analog interfacing problems that have plagued us in the
past.

Accessories

Commodore intends to use many of the same accessories for
the 64 as are available now for the VIC. VIC joysticks,
paddles, disk drive, printer, modem, RS-232 cartridge and
C2N cassette are all compatible with the 64. About the only
difference is the slot for things like games and utility car-
tridges. It's been changed to a vertical pin type connector as
opposed to the card edge type connector on the VIC-20.
This is not only less space consuming, but promises to be a
little more rugged as the contacts appear to be less suscepti-
ble to friction wear.

Future accessories, according to Commodore, include a
Z-80 plug-in card, soft-load modules for BASIC 4.0, Pascal,
Forth, and Pilot, extended BASIC cartridges for graphics and
sound support, and monitor type cartridges for machine
language exercises.

Some Comments

This time Commodore’s done it right! They placed the
screen RAM immediately following zero page, the stack, and
RAM allocated for the cassette buffer. This leaves a 38K
stretch of uninterrupted memory which has been set up for
BASIC text. Unlike the VIC, the screen won't be moving
around on you, but like the VIC, the LOAD command will
adjust for the new start of text address, $0800.

The character generator is set up like in PET/CBMs. It takes
no address space away from the processor unless you want
to modify it. Using a very simple program, it can be transfer-
red to RAM (where it will require address space) and a
character pointer invokes the new location.

The 64 has 16 colours, 8 more than the VIC. Commodore

www.Commodore.ca
May Not Reprint Without Permission

had some trouble with colour quality on TV and monitor
output, but this has been cleared up in the release versions.
It has three distinct grey shades that come up beautifully
even through modulated output to a TV. They also have an
element of brilliance about them that make them appear
more like colours as opposed to just shades.

The Control key is always a nice feature on any machine.
The VIC Control key apparently had some problems when
used in a communications environment, but this is all
cleared ‘up for the 64. RUN/STOP-RESTORE will still get
you out of just about any crash, and changing from Upper/
Lower case to Graphics mode is a snap with the shifted
Commodore key at the lower left corner of the keyboard. 8
Function keys are included (4 plus 4 shifted) and I've been
informed that a new method of keyboard scanning will
allow the Control and Commodore keys to also be used as
shift keys. Combinations of CTRL, Shift, and the Commao-
dore key might result in as many as 32 effective function
keys!

Commodore opted to stay with the serial bus for interfacing
peripherals. Unlike IEEE parallel, bits are delivered in serial
which reduces communications speed considerably. This
reduction isn't really noticeable with the printer, but disk
access 1s somewhat hampered. Fortunately there will be an
IEEE interface card available for those that already own
IEEE peripherals (see the New Products section for informa-
tion on RTC's V-Link).

For some reason they decided to install BASIC 2.0 in the 64
which doesn’t have all those nice disk commands like
Catalog, Rename, Copy, etc. That's not too hard to live with,
but the problem with BASIC 2, as you'll recall, is the nasty
realm of “garbage collection™. Recapping, garbage collection
occurs when there isn't enough unused memory to accom-
modate a new string generated by BASIC. At this point the
operating system decides it must perform a garbage collec-
tion. The system re-packs all good strings at the top of
memory, effectively throwing away any old ones that are no
longer needed. During this process, the machine will appear
to “hang-up”. The delay will vary depending on several
conditions present at the time, but on 32K BASIC 2 PET/
CBM's, there were reports of garbage collections taking
anywhere from 20 seconds to 20 minutes. As mentioned
earlier, Commodore intends to make BASIC 4.0 available on
a plug-in cartridge, but this will probably contain the disk
commands only. Fortunately there are a number of ways to
avoid this problem which we’ll cover in a future article, but
BASIC 4.0 would have been much better suited for the 64.

In Summary

The Commodore 64 is superior in every aspect over the VIC.
The VIC still has its applications though so don't deem it out
for the count yet. But even at double the price of the VIC-20,
the 64 seems to be the logical choice. Programmers will find
the 64 a pleasure to work with. Games? A cinch on this
machine. . . and you can bet they'll be absolutely dazzling
with the added graphics and sound features.

Support for the 64 will probably reach unprecedented lev-
els. Besides being capable of nearly every PET feature seen
to date, the added features of this machine will have
programmer/writers just crankin' out material. You can
count on at least one 64 related article in every magazine
with CBM content. The Transactor will be no exception, but
with a difference. We'll let you know when a VIC/PET/CBM
application will work on a 64. See the article this issue on

VIC Modem Driver, and 64 memory maps appear at the
back.

C‘ www.Commodore.ca
May Not Reprint Without Permission

Commodore-64 Architecture Map

ail

$FFFF
$E000
CHARACTER SET
(bit 2 of $0001) $DCO0
0 = CHAR ROM $DS00
1 = 1/0 ROM/RAM
$D000
$C000
$A000
$8000
(32768)
$4000
(16384)
$2000
VIC Il Chip sees (8192)
this 16K block
On power-up
$0800
$0400

$0000

(65535)

KERNAL ROM

(57344)

CIA1,CIA 2 (JS.mBUi P.U.P)

(2332

Colour Ram Nibbles

(55296)

VIC I, SID

(53248)

4K RAM

(49152)

BASIC
INTERPRETER
ROM

(40960)

BASIC

User RAM

(38912 Bytes)

(2048)

Screen (1K)

(1024)
Workspace (1K)

Processor Reg ($0/1)

11111111

8K HI RAM
(bit 1 of $0001)
0 = RAM
1 = KERNAL ROM

4K RAM
maps to $D000 when
bits 0 & 1 of $0001 = 0

8K LO RAM
(bit 0 of S0001)
0 = RAM
1 = BASIC ROM

EXROM
8K ROM Cartridge
maps here

HI-RES Screen
maps here

HI-RES Colour Table

www.Commodore.ca
May Not Reprint Without Permission

Commodore 64 Memory Map

Compiled by
Jim Butterfield

0000 0 Chip directional register
0001 1 Chip 1/0; memory & tape control
0003 -0004 3-4 Float-Fixed vector
0005 -0006 5—6 Fixed-Float vector
0007 7 Search character
0008 8 Scan-quotes flag
0009 9 TAB column save

3 000A 10 0=LOAD, 1=VERIFY
000B 11 Input buffer pointer/# subscrpt
000C 12 Default DIM flag
000D 13 Type: FF =string, 00 = numeric
000E 14 Type: 80 =integer, 00 =floating point
000F 15 DATA scan/LIST quote/memry flag
0010 16 Subscript/FNx flag
0011 17 0=INPUT;$40 = GET:$98 =READ
0012 18 ATN sign/Comparison eval flag
0013 19 Current 1/0 prompt flag
0014 -0015 20-21 Integer value
0016 22 Pointer: temporary string stack
0017 -0018 23-24 Last temp string vector
0019 -0021 25-33 Stack for temporary strings
0022 -0025 34-37 Utility pointer area
0026 -002A 38-42 Product area for multiplication
002B -002C 43-44 Pointer: Start-of-Basic
002D -002E 45-46 Pointer: Start-of-Variables
002F -0030 47-48 Pointer: Start-of-Arrays
0031 -0032 49-50 Pointer: End-of-Arrays
0033 -0034 51-52 Pointer: String-storage(moving down)
0035 -0036 23-54 Utility string pointer
0037 -0038 55-56 Pointer: Limit-of-memory
0039 -003A 07-58 Current Basic line number
003B -003C 59-60 Previous Basic line number
003D -003E 61-62 Pointer: Basic statement for CONT
003F -0040 63-64 Current DATA line number
0041 -0042 65-66 Current DATA address
0043 -0044 67-68 Input vector
0045 -0046 69-70 Current variable name
0047 -0048 71-72 Current variable address
0049 -004A 73-74 Variable pointer for FOR/NEXT
004B -004C 75-76 Y-save; op-save; Basic pointer save
004D & Comparison symbol accumulator
004E -0053 78-83 Misc work area, pointers, etc
0054 -0056 84-86 Jump vector for functions
0057 -0060 87-96 Misc numeric work area
0061 97 Accum®1: Exponent
0062 -0065 98-101 Accum®1: Mantissa
0066 102 Accum#1: Sign
0067 103 Series evaluation constant pointer
0068 104 Accum®1 hi-order (overflow)
0069 -006E 105-110 Accum®2: Exponent, etc.
006F 111 Sign comparison, Acc*1 vs #2

« www.Commodore.ca
May Not Reprint Without Permission

0070
0071
0073
007A
008B
0090
0091
0092
0093
0054
0095
0096
0097
0098
0099
009A
009B
009C
009D
009E
009F
00A0
00A3
00A4
00A5
00AG
00A7
00A8
00A9
00AA
00AB
00AC
00AE
00BO
00B2
00B4
00B5
00B6
00B7
00B8
00B9
O0OBA
00BB
00BD
00BE
00BF
00C0
00C1
00C3
00C5
00C6
00C7
00C8
00C9
00CB

-0072
-008A
-007B
-008F

-00A2

-00AD
-00AF
-00B1

-00B3

-00BC

-00C2
-00C4

-00CA

112
113-114
115-138
122-123
139-143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160-162
163
164
165
166
167
168
169
170
171
172-173
174-175
176-177
178-179
180
181
182
183
184
185
186
187-188
189
190
191
192
193-194
195-196
197
198
199
200
201-202
203

Accum*] lo-order (rounding)
Cassette buff len/Series pointer
CHRGET subroutine; get Basic char
Basic pointer (within subrtn)
RND seed value

Status word ST

Keyswitch PIA: STOP and RVS flags
Timing constant for tape
Load=0, Verify=1

Serial output: deferred char flag
Serial deferred character

Tape EOT received

Register save

How many open files

Input device, normally 0

Output CMD device, normally 3
Tape character parity
Byte-received flag

Direct = $80/RUN =0 output control
Tp Pass 1 error log/char buffer
Tp Pass 2 err log corrected

Jiffy Clock HML

Serial bit count/EOI flag

Cycle count

Countdown,tape write/bit count
Tape buffer pointer

Tp Wrt Idr count/Rd pass/inbit
Tp Wrt new byte/Rd error/inbit cnt
Wrt start bit/Rd bit err/stbit

Tp Scan;Cnt;Ld;End/byte assy
Wr lead length/Rd checksum/parity
Pointer: tape bpafr, scrolling

Tape end adds/End of program
Tape timing constants

Pntr: start of tape buffer

1 =Tp timer enabled; bit count
Tp EOT/RS232 next bit to send
Read character error/outbyte buf
characters in file name
Current logical file

Current secndy address

Current device

Pointer to file name

Wr shift word/Rd input char

blocks remaining to Wr/Rd
Serial word buffer

Tape motor interlock

170 start address

Kernel setup pointer

Last key pressed

chars in keybd buffer

Screen reverse flag

End-of-line for input pointer
Input cursor log (row, column)
Which key: 64 if no key

www.Commodore.ca
May Not Reprint Without Permission

00CC
00CD
00CE
00CF
00DO
00D1
00D3
00D4
00D5
00D6
00D7
00D8
00D9
00F3
00F5
00F7
00FS
00FF
0100
0100
0200
0259
0263
026D
0277
0281
0283
0285
0286
0287
0288
0289
028A
028B
028C
028D
028E
028F
0291
0292
0293
0294
0295
0297
0298
0299
029B
029C
029D
029E
029F
02A1
02A2
02A3
02A4

-00D2

-00F2
-00F4
-00F6
-00F8
-00FA
-010A
-013E
-01FF
-0258
-0262
-026C
-0276
-0280
-0282
-0284

-0290

-0296

-029A

-02A0

204
205
206
207
208
209-210
211
212
213
214
215
216
217-242
243-244
245-246
247-248
249-250
206-266
256-318
256-511
512-600
601-610
611-620
621-630
631-640
641-642
643-644
645
646
647
648
649
650
651
652
653
654
655-656
657
658
659
660
661-662
663
664
665
667
668
669
670
671-672
673
674
675
676

0=flash cursor

Cursor timing countdown
Character under cursor
Cursor in blink phase

Input from screen/from keyboard
Pointer to screen line
Position of cursor on above line
O =direct cursor, else programmed
Current screen line length
Row where curosr lives

Last inkey/checksum/buffer
of INSERTS outstanding
Screen line link table

Screen color pointer
Keyboard pointer

RS-232 Rev pntr

RS-232 Tx pntr

Floating to ASCII work area
Tape error log

Processor stack area

Basic input buffer

Logical file table

Device # table

Sec Adds table

Keybd buffer

Start of Basic Memory

Top of Basic Memory
Serial bus timeout flag
Current color code

Color under cursor

Screen memory page

Max size of keybd buffer
Repeat all keys

Repeat speed counter
Repeat delay counter
Keyboard Shift/Control flag
Last shift pattern

Keyboard table setup pointer
Keyboard shift mode

0 =scroll enable

RS-232 control reg

RS-232 command reg

Bit timing

R5-232 status

bits to send

RS-232 speed/code

RS232 receive pointer
RS232 input pointer

RS232 transmit pointer
R5232 output pointer

IRQ save during tape 1/0
CIA 2 (NMI) Interrupt Control
CIA 1 Timer A control log
CIA 1 Interrupt Log

CIA 1 Timer A enabled flag

c‘ www.Commodore.ca
May Not Reprint Without Permission

02A5
02C0
0300
0302
0304
0306
0308
030A
030C
030D
030E
030F
0310
0314
0316
0318
031A
031C
031E
0320
0322
0324
0326
0328
032A
032C
032E
0330
0332
033C
0340
0380
03C0
0400
0800
8000
A000
A000
C000
D000
D400
D800
DCO00

-02FE
-0301

-0303
-0305
-0307
-0309
-030B

-0312
-0315
-0317
-0319
-031B
-031D
-031F
-0321
-0323
-0325
-0327
-0329
-032B
-032D
-032F
-0331
-0333
-03FB
-037E
-03BE
-03FE
~07FF
-9FFF
-9FFF
-BFFF
~-BFFF
~CFFF
-DO2E
-D41C
-DBFF
~DCOF

DDO0 -DDOF

DOOO
E000
E000

~DFFF

-FFFF
-FFFF

FF81 -FFF5
FFC6
FFC9
FFCC
FFCF
FFD2
FFEI1
FFE4

677
704-766
768-769
770-771
772-773
774-775
T76-777
T78-779
780
781
782
783
784-785
788-789
790-791
792-793
794-795
796-797
798-799
800-801
802-803
804-805
806-807
808-809
810-811
812-813
814-815
816-817
818-819
828-1019
832-89%4
896-958
960-1022
1024-2047
2048-40959
32768-40959
40960-49151
49060-59151
49152-53247
03248-53294
04272-54300
55296-56319
56320-56335
56576-56591
53248-53294
57344-65535
57344-65535
65409-65525

Screen row marker

(Sprite 11)

Error message link

Basic warm start link
Crunch Basic tokens link
Print tokens link

Start new Basic code link
Get arithmetic element link
SYS A-reg save

SYS X-reg save

SYS Y-reg save

SYS status reg save

USR function jump
Hardware interrupt vector
Break interrupt vector

NMI interrupt vector

OPEN vector

CLOSE vector

Set-input vector
Set-output vector

Restore [/0 vector

INPUT vector

Output vector

Test-STOP vector

GET vector

Abort I/0 vector

Warm start vector

LOAD link

SAVE link

Cassette buffer

(Sprite 13)

(Sprite 14)

(Sprite 15)

Screen memory

Basic RAM memory
Alternate: ROM plug-in area
ROM: Basic

Alternate: RAM

RAM memory, including alternate
Video Chip (6566)

Sound Chip (6581 SID)
Color nybble memory
Interface chip 1, IRQ (6526 CIA)
Interface chip 2, NMI (6526 CIA)
Alternate: Character set
ROM: Operating System
Alternate: RAM

Jump Table, Including:

- Set Input channel

- Set Output channel

- Restore default I/0O channels
- INPUT

— PRINT

— Test Stop key

- GET

(B248)
(EA31)
(FE66)
(FE47)
(F34A)
(F291)
(F20E)
(F250)
(F333)
(F157)
(F1CA)
(F6ED)
(F13E)
(F32F)
(FE66)
(F4A5)
(FSED)

Commodore 64 - ROM Memory Map

A000;
A00C;
A052:
AD80;
AQ9E;
A1S9E;
A328;
A365;
A38A;
A3B8:
A3FB;
A408;
A435;
A437;
A469;
A474;
A480;
A49C;
Ad33;
A560:;
A579;
Ab613;
Ab42;
AG65E;
AG8E;
ABIC;
AT42;
ATED:;
A81D;
A82C;
A82F:
A831;
A857T:
A8T1;
A883;
A8AQ:
ABD2;
ABF8;
A906;
A928:
AY3B;
A94B;
A96B;
A9AS5:;
AABO;
AA86:;
AAAQ;
ABIE;
AB3B:
ABA4D;
ABT7B:
ABA5;
ABBF;
ABF9;
ACO6;
ACFC;

ROM control vectors
Keyword action vectors
Function vectors
Operator vectors
Keywords

Error messages

Error message vectors
Misc messages

Scan stack for FOR/GOSUB
Move memory

Check stack depth

Check memory space
‘'out of memory’

Error routine

BREAK entry

'ready.’

Ready for Basic

Handle new line
Re—chain lines

Receive input line
Crunch tokens

Find Basic line

Perform [NEW]

Perform [CLR]

Back up text pointer
Perform [LIST]

Perform [FOR]

Execute statement
Perform [RESTORE]
Break
Perform [STOP]
Perform [END]
Perform [CONT]
Perform [RUN]
Perform [GOSUB]
Perform [GOTO]
Perform [RETURN]
Perform [DATA]
Scan for next statement
Perform [IF]

Perform [REM]
Perform [ON]

Get fixed point number
Perform [LET]
Perform [PRINT#]
Perform [CMD]
Perform [PRINT]
Print string from (y.a)
Print format character
Bad input routine
Perform [GET]
Perform [INPUT#]
Perform [INPUT]
Prompt & input
Perform [READ]
Input error messages

(@3

ADIE;
ADTS8;
ADYE;
AEAS:
AEF1:
AEFT:
AEFF:
AF08:
AF14:
AF28;
AFAT;
AFES6:
AFE9;
B0O16;
B081:
BO8B:
B113;
B11D;
B194;
B1A5;
B1B2:;
B1DI1;
B245;
B248:
B34C;
B37D;
B391:
B39E;
B3A6;
B3B3;
B3El;
B3F4:
B465;
B475;
B48T7;
B4F4;
B526;
B5BD;
B606:
B63D:
B67A;
B6A3:
B6DB;
B6EC:;
B700;:
B72C;
B737;
B761;
B77C;
B782;
B78B;
B79B;
B7AD;
B7EB;
B7F7;
B80D;
B824:
B82D;

Perform [NEXT]
Type match check
Evaluate expression
Constant - pi
Evaluate within brackets
'y
comma..
Syntax error
Check range
Search for variable
Setup FN reference
Perform [OR]
Perform [AND]
Compare
Perform [DIM]
Locate variable
Check alphabetic
Create variable
Array pointer subrtine
Value 32768
Float-fixed
Set up array
'bad subscript’
‘illegal quantity’
Compute array size
Perform [FRE]
Fix—float
Perform [POS]
Check direct
Perform [DEF]
Check fn syntax
Perform [FN]
Perform [STR$]
Calculate string vector
Set up string
Make room for string
Garbage collection
Check salvageability
Collect string
Concatenate
Build string to memory
Discard unwanted string
Clean descriptor stack
Perform [CHRS$]
Perform [LEFTS$]
Perform [RIGHTS$]
Perform [MID$]
Pull string parameters
Perform [LEN]
Exit string-mode
Perform [ASC]
Input byte paramter
Perform [VAL)
Parameters for POKE/WAIT
Float-fixed
Perform [PEEK]
Perform [POKE]
Perform [WAIT]

www.Commodore.ca
May Not Reprint Without Permission

www.Commodore.ca

May Not Reprint Without Permission

B849;
B850:
B853:
B86A:
B947;
BIY7E:
B983:
BO9EA;
BA2RB:
BAS9:
BAS8C:
BABT:
BAD4:
BAE2:
BAF9;
BAFE:
BB12;
BBA2;
BBCT:
BBFC;
BCOC;
BCIB;
BC2B:
BC39;
BC58;
BC5B:
BC9B:
BCCC;
BCF3;
BDTE;
BDC2;
BDCD:
BDDD:;
BF16:
BF3A:
BF71;
BF7B;
BFB4:
BFED:
E043;
E059;
E097;
EOf9;
E12A:;
E156:
E165;
E168:
E1BE:
E1CT7;
E1D4;
E206;
E20E:
E219:
E264;
E26B:
E2B4;
E30E:
E37B:

Add 0.5

Subtract-from

Perform [subtract]
Perform [add]
Complement FAC*1
‘overflow’

Multiply by zero byte
Perform [LOG]

Perform [multiply]
Multiply-a-bit

Memory to FAC*2

Adjust FAC#1/#2
Underflow/overflow
Multiply by 10

+ 10 in floating pt

Divide by 10

Perform [divide]

Memory to FAC#*1

FAC#1 to memory

FAC#2 to FAC#1

FAC*1 to FAC*2

Round FAC#1

Get sign

Perform [SGN]

Perform [ABS]

Compare FAC*] to mem
Float-fixed

Perform [int]

String to FAC

Get ascii digit

Print ‘IN..

Print line number

Float to ascii

Decimal constants

TI constants

Perform [SQR]

Perform [power]

Perform [negative]
Perform [EXP]

Series eval 1

Series eval 2

Perform [RND]

?? breakpoints 7?

Perform [SYS]

Perform [SAVE]

Perform [VERIFY]

Perform [LOAD]

Perform [OPEN]

Perform [CLOSE]
Parameters for LOAD/SAVE
Check default parameters
Check for comma
Parameters for open/close
Perform [COS]
Perform [SIN]
Perform [TAN]
Perform [ATN]
Warm restart

E394;
E3A2;
E3BF;
E447;
E453;
E45F;
E500;
E505;
E50A:
E518;
E544:
E566;
E56C;
E5AO0;
E5B4;
E632:
E684;
E691;
E6B6;
EGED;
E701;
E716;
E87C;
E891;
E8AL;
E8B3;
E8CB:
E8DA:
ESEA;
E965;
E9CS;
E9EO:;
E9FO0;
E9FF;
EA13;
EA24;
EA31;
EA8T7;
EB79;
EB81;
EBC2;
ECO03;
EC44;
ECAF;
EC78;
ECB9Y;
ECE7;
ECFO;
EDO09;
EDOC:
ED40;
EDB2;
EDB9;
EDBE:
EDC7;
EDCC;

EDDD;

EDEF;

Initialize

CHRGET for zero page
Initialize Basic

Vectors for $300
[nitialize vectors
Power-up message
Get 1/0 address

Get screen size
Put/get row/column
Initializel/O

Clear screen

Home cursor

Set screen pointers

Set 1/0 defaults

[nput from keyboard
[nput from screen
Quote test

Setup screen print
Advance cursor
Retreat cursor

Back into previous line
QOutput to screen

Go to next line
Perform <return>
Check line decrement
Check line increment
Set color code

Color code table

Scroll screen

Open space on screen
Move a screen line
Synchronize color transfer
Set start-of-line

Clear screen line

Print to screen
Synchronize color pointer
Interrupt - clock etc
Read keyboard
Keyboard select vectors
Keyboard 1 - unshifted
Keyboard 2 - shifted
Keyboard 3 - ‘comm’
Graphics/text contrl
Set graphics/text mode
Keyboard 4

Video chip setup
Shift/run equivalent
Screen In address low
Send ‘talk’

Send ‘listen’

Send to serial bus
Serial timeout

Send listen SA

Clear ATN

Send talk SA

Wait for clock

Send serial deferred
Send ‘untalk’

EDFE:
EE13;
EE85;
EES8E;
EE97;
EEAD:
EEA9:
EEB3:
EEBB:
EF06;
EF2E:
EF31:;
EF3B:
EF4A:
EF59;
EF7E;
EFC5;
EFCA;
EFCD:
EFDO:
EFE};
FOOD:;
FO17:
FO4D:
FO86;
FOA4:
FOBD:
F12B:
F13E:
F14E;
F157;
F199;
F1CA;
F1DD:
F20E;
F250;
F291;
F30F;
F31F:
F32F;
F333;
F34A;
F3D5:
F409;
F49E:
F5AF;
FaCl;
F5D2;
F5DD;
F68F;
FG69B:
F6BC;
F6DD;
FoE4;
F6ED:
FG6FB:
F72D:
F76A;

Send ‘unlisten’
Receive from serial bus
Serial clock on
Serial clock off
Serial output ‘1’
Serial output ‘0’
Get serial in & clock
Delay 1 ms
RS5-232 send
Send new RS-232 byte
No-DSR error
No-CTS error
Disable timer
Compute bit count
R5232 receive
Setup to receive
Receive parity error
Receive overflow
Receive break
Framing error
Submit to RS232
No-DSR error
Send to RS232 buffer
Input from RS232
Get from RS232
Check serial bus idle
Messages
Print if direct
Get..

.from RS232
Input
Get.. tape/serial/rs232
Output..

.to tape
Set input device
Set output device
Close file
Find file
Set file values
Abort all files
Restore default [/0
Do file open
Send SA
Open RS232
Load program
‘searching’
Print filename
'loading/verifying’
Save program
Print ‘saving'
Bump clock
Log PIA key reading
Get time
Set time
Check stop key
Qutput error messages
Find any tape headr
Write tape header

F7DO;
F7D7:
F7TEA;
F80D:
F817:
F82E;:
F838;
F841;
F864:
F&75;
F8DO;
F8E2:
Fo2C;
FABO;
FB&E;
FB97:
FBAG;
FBCS;
FBCD:
FC57:
FC93;
FCBS;
FCCA;
FCDI1;
FCDB;
FCE2:
FDO2:
FD10:
FD15:
FDI1A;
FD30;
FD50;
FD9B:
FDA3;

FDDD;

FDF9:;
FEOO:
FEO7;
FE18:
FE1C;
FE21:
FE25;
FE27;
FE2D:;
FE34;
FE43:
FEB6;
FEB6:
FEBC;
FEC2:
FED®:;
FFOT;
FF43:
FF48:
FF81;
FFFA:

Get buffer address
Set buffer start/end pointers
Find specific header
Bump tape pointer
‘press play..’

Check tape status
'press record..’
[nitiate tape read
[nitiate tape write
Common tape code
Check tape stop

Set read timing
Read tape bits

Store tape chars
Reset pointer

New character setup
Send transition to tape
Write data to tape
[RQ entry point
Write tape leader
Restore normal IRQ
Set IRQ) vector

Kill tape motor
Check r/w pointer
Bump r/w pointer
Power reset entry
Check 8-rom
&-rom mask

Kernal reset

Kernal move
Vectors

Initialize system constnts
IRQ vectors
Initialize 1/0

Enable timer

Save filename data
Save file details

Get status

Flag status

Set status

Set timeout
Read/set top of memory
Read top of memory
Set top of memory
Read/set bottom of memory
NMI entry

Warm start

Reset IRQ & exit
Interrupt exit
RS-232 timing table
NMI RS-232 in

NMI RS-232 out
Fake [RQ

IRQ entry

Jumbo jump table
Hardware vectors

www.Commodore.ca
May Not Reprint Without Permission

c‘ www.Commodore.ca
May Not Reprint Without Permission

Voice 1
$D400

$D401
$D402
D403
0404
5D405

5D406

Processor 1/0 Port (6510)

Note: Special Voice Features
(TEST, RING MOD, 5¥YNC)
are omitted from the above diagram.

$0000 IN IN ouT [N OuT OuUT ouT ouT
SRa0T Tape | Tape | Tape |D-ROM |EF RAM[AB RAM
Motor | Sense | Write | Switch | Switch | Switch
SID (6581)
Voice 2 Voice 3 Voice 1
SD40E L 54272
= Frequency =
SDAOF H p4273
$D410 Pulse Width L 54274
$D40A 3D411 0 () () () H 54275
; Voice Type:
Attack Time Decay Time
$D40C $D413 9ms-8ms : Gms~ 24 sec 54277
Sustain Level Release Time
$D40D $D414 ’ ; : : 6ms 24 sec 54278
Voices (write only)
$D415 0 0 0 0 0 54293
$D416 Filter Frequency H 54294
Resonance Filter Voices
$D417 . . ' CExt . V3 . V2 . VI 54295
Passband; Master
SD418 V3off, HI . BP . LO | Volyme | 24256
Filter & Volume (write only)
sD419 Paddle X (A/D *1) 24297
SD41A PaddleY (A/D *2) 54298
$D41B Noise 3 (random) 54299
$D41C Envelope 3 54300
Sense (read only)

DDR 0

PR

Voice 2 Voice 3

54279
24280
04281
24282
04283
24284

54285

54286
24287
24288
54289
54290
24291

24292

R T I S | S ——— o Y

$DCO0

5DCO1

3DCO2
5DC03
$DCO4
$DCO5
$DCO6

sDCOT

$DCOD
$DCOE
$DCOF

$DDO0
$DDO1
$DDO02
$DDO03
$DDOA
$DDO05
$DDO06

5DD07

$DDOD
SDDOE

$DDOF

(€3

www.Commodore.ca
May Not Reprint Without Permission

CIA1 (IRQ) (6526)

Paddle Se| Joystick 0
A B Fire Right Left Down Up
Keyboard Row Select (inverted)
‘ Joystick 1
Fire Right Left Down Up
Keyboard Column Read
SFF - All Output
300 = All Input
e Timer A
— Timer B =
N
Tape Timer Interrupt
3 ; Input B A
One Out Time | Timer
: Shot | Maode |PB6 Out| A Start
One Out | Time | Timer
, 5 : Shot | Mode [PB7 Out| B Start
CIA2 (NMI) (6526)
 Serial | Clock | Serial | Clock | ATN [RS-232] VICT | VICTI
IN IN OUT | OUT | OUT | OUT |addr 15 |addr 14
DSR CTS DCD* | RI* DTR RTS |RS-232
IN IN IN IN OUT | OUT IN
$3F - Serial
$00 - P.U.P. All Input or $06 - RS-232
— Timer A e
— Timer B —
N
R5-232 Timer Interrupt
: IN , B A
Timer
i [} 1 i A' Slaﬂ
Timer
g B Start

* Connected but not used by O.S.

PRA

PRB

DDRA
DDRB
TAL
TAH
TBL

TBH

ICR
CRA

CRB

PRA
PRB
DDORA
DDRB
TAL
TAH
TBL
TBH

ICR
CRA
CRB

26320

56321

26322
26323
26324
26325
26326

26327

n6333
p6334

26335

p6576
o6577

p6578

26580
56581
a6582

26583

56589
56590

26591

May Not Reprint Without Permission

C‘ www.Commodore.ca

dap L e L I T | Jgpnun, poag 4N ko T 1L | .._.2___.._..._ uamigang C(ITEY saflvwanu e e 3w
i __m._.“..h..u.._ OTld Pl L PR ST Tﬂ_.. Elopkad 0T Lt e B 01 e [T TN T Y
e L T P LT RARTIA B RN IE | ﬂ... Uy pgE e (T iy 3 wlusory hAHY
g dwenl ogpmny [N44 Aoy dogs maony (T YENm ey LW Lt e e | PARR-TPOL LR [Lridns] Eemiag mEY
Anua gl SErdd AL JaE CRFad MY TRy C3E3 =L T R e | B T e T b sk R B4 T L s T R e
Ol oy rdd BT e T | WG e i R S o by slapuerRs Hl5 _E._._ Lamrpidg Ivig Lo mgiey HIHY
W SEE-SH NN LDdd Bupead oy Boy “gEd DU (PSS TROE R REFTE R i | rmied kg nduy CRSIR amnag i ooy AREY
ol PET-OH BN T34 R i FINQ s on Pues T e B P IR ST (e | [e e gy) iy e gy
Sy Banetil 2PN RIS Humawu quiig ey (BT, Py ...Hn_.._ i.._...._..v._:..__.ﬂ._ Hj ilaplaried il ._._u__wn._ butis Wy Il [i) umniy Behuns pid CAIEY
Fle =k o FECTIE s i 1) urrioud 2488 054 AT pu=g AN O =g D0 i URERER] LG L1y muogsg oy
I g O AN aH A Emipsaa Hupes A0S !#Eﬂﬂ L - TG 1 AL __......“_.t., BlopkRg LA e o U CIPL)| Sy oy
W G, S P G 08 usmamba undsiEes LA v muepeag - Wi HE:_; T R w1 la uengAR) EYY
Anua Y RV ”MPEH “AvEd drasdiga gy, EG03 LA | iy CCG LT I LHOE wmpsay Srig] CCWEY
A po ey pE PRI EAd L per] el :.I.HE_: WL [AAYE | =llopk] W53 _.ﬂb-mu_ wEpas] O EH]LEL Ul EEERY
Al po dog 198 WA ivosd vy R0 aguviy grag amgded i=g 4K BAR| munpag I .hﬂ_r.__._ LAEE] TR [woy] mrmeag EEGY
Laouza g doy peay fTa4 VG oEd o poagsspdeny A spmodweany . CREE A ESap U g(Ed (3| migsey BERY
Amiliails po daj ya peay STAA s oy g WG JAEOS = [pARGASY Y o] suopag Czand By paloesun pesy] Ly 4i] miogiag CWEIEY
oW 1aE IR (U] PP aEay R pagiys — f parigiey IR I maaseiat Sgg00 A o Bmns ppmg Yo TRERTIE [0 B W 6
EMEE I T¥ 34 g gy C4TEH LR - | paogLy sl ! oA Sy AR yEiapE) (gE []| ey iay Ry
e By WlAd Ll T EE R T wan|aan e paronlay CRLE (00| s Crda Buund pojp ugng) _..._1. TH| memany CEORY
R i34 ampg J0Ed uTgiay ey oy [anneien | msopag R4 AP EEET AT AT (S DLOF| meogisy YV EY
I MY Aslg dWIAd b W R T | g - s m_—_...u |sagmanil | oy @Y ERHEAROR ARG HENH H______E_.E HLEARY CEHHY
TP) SRR 0L aajhop e pa 15T aajd] ey antOE RS RTYH e | minpiag LR Bupns aa) o0 AT R M| mmeeRaay CRLEY
W Ay (I amnaps e b i uSaLE o Ul E1Yd suesues 1§ Wi dusssdin by fruwn R e
] afenieg YO =] o) Ei b U TE e L i R E | | iETE ranke] 9] 4 B e e e I [N =emgiag CIERY
s 1 CBROd mdingy YA AU B (RS mnTol e CHE | T = | lnas) meapRyg TRV
s L0 ek SEEnI] gL ZEPs reses ot 1y ‘Rl e T T S 5% | daruma i) Ly I c._...r. wipisg bdEH Hehg RV
LU BT | malg tlgny E:E.—uﬂut WA Nl B ST Wl i e CIAER Fmious] =ssmg Oy
ancaE RARRY Y104 CETGH WnE HEld R g0 2ouds uady Ee] e e W T | [£308 usiEag R TUMLEEE MNIXY YLV
Il R T (L4 e Ui (08 YR wt o By, 4 Phnp ey ayEg TE"IIE TrLY
wAVUE Usab=g] (L Pasp RElLg AT A S EE) TR i) | midopiad 3000 [0 W] CHRER mEREy ehY
WE-g N2 T n._hﬂ.u’ 1 A0 0D B CEDET e e %! Jeug-xy CIREH Sguwnd Dy dn ey 3ROV
A i Jawmay FIM AJW T LA WY S Pl U SN NS CHEA Uk 0 |1 4 Sidusy G ampang (1LER (W) meapiay W5 HY
s o pidlioig CEIRE WM Ty o] RIASIRAE A R YR S SR G e Arnw apsdeueny TR LA meopeg T
saqmod ey LM TETSH wmug g S B T T NOR | ey RE Koemh peam, w3y Sup e i LY
gl sl N WO BN FETRN 01 pUEs L1] Eauayofy EHA ulim b=y CHE R sl emoes pe, ERR FUERH EREMEY 5L 5Y
s IS L E Rl i e [1T waRcE o ARG Gl 1% MWy Of e Aewnedn i C1lg A g astasay oy
fug pruses MnESY 3P0 TETCH ol e 134 auy el ol Aoy LA Faed 0 a0WA DN pery-peol] SRl s e I 445
sapvay iy iy, S FIATER T TR RS Y A TeW A i fad¥d O _Jhwm ey GY IR || m3u i 6K
L Ry Y Ry e | WY AR IR HEING el W0y L CTTE T T Rl 1 aampgns sqmed Sewy bR E ey oy Y
dey oy g iy, A mogaia ANGE] YA st st dnge C[EUE L 0] ANHIEHY TYH appERA ey LR JApRR REWW
adm o wopEEen PSS eVl g Apavd gasaasy M P ey CrEd (= muopag T @ e e A R AR HYTEHR MY
dnEs e sa, CEEgH SRR T S T C | LA W) 0 ol &g il CHAvE E LT I TG doddy CREAW
WY HREA T | pavoqaay wied idu] gl i Risreg gl ¢ AV (bl wping i Jnamaw joann, SEVY
£rrys adn Al YA a0 g Mnduy YRR SR PR G M An Apinngg Zava asrday 0706 i Rioamas HIHE) Y
Wi e pray S04 SRl GRS R LN UL Y SN B SO THIVE _.w...__._ i e M T - |) ik e Yan) R4V
Pupss) prod g R T T T I r | LSRR IR ¥ :s._r,u_.mi!.q v D] Wy ey ARMEIAE AAO) ORIV
dos ade yaouny K4 USRIy HE4A Uasos ey HG3 ZelVod 0l Adnmagy CevH s gl Ly W HE My e TS WY
S0 i) ey e apila PER-GH mau puss oY [T I HIGH X _E.-.Jh__“_#_#l vy SEYELE,) PIeeg DY uaBeisc |y SILY
agiem, adw atreel] CHIRd s ppr=a HETA IR M] N [Aphyma masegaag CHTVE fiuwa J LY finpas diram irg NIV
e T AT R4 ol | AR L] AITH BRLH) Oy _,u_..um”_!.ncgui Y3 HILK By et IR 1L
o [REFFAE BER WERA RO i B i D VR bt i ol R L1 | dgic) saad A Al i@l L BT P ipmimiay ROV
sy dm 1 Rk o[k) [T f A dn-damn,] igEd Fiet e e 11 | L Ly e aaa SPiElyy IROY
e T R e | LT RIS TR La o meausapduny g g Usjlle apemijesy] Py Raaa molmny LY
sy sdv dung) 004 MO NN s HRAR (0K § S EEgany ITpEd PP} o Syhial o = el EYEY BRI 1 pEAAY LW
sapran] e puly WA Ll B Bl o S] HIEY angEE] 486 1S meday GG unsTadia armEy R0 Rl Ll L
gt P R NG R N4 L T R Rt I o i aBpd s 3) EIHHD O VLA LT RPN RIS s L ey

EapeT Aagni] 3] 00 L4 B T e P a e | ampEa| C9EER SOPY S IR L e TEE N P dheyy SamIRI O - bSO
Jan- FA4 Fey| pappraa 43 [YL ai% W Aoy o gy iy o Eie L B b [0y e A B i1 e
Ay b pen = 1344 Sor) EEnassjiy | VLY gig VI Uy ‘wwed) Boyg s] 2= W M= g sl iRasmaTy 0] -0l K5 il
L = 2044 Eo| i a3 g [VI (9L Fa] asguiyesdl sy an) a0y M LAl (g BA] P -T | SRy il]
LRl - 444 Py pemaseeu| Ay 7OV (WL Iyoa B i daniad paade i) LM Sl LI Uy L TR A S (1] L
SERLIR g] LR Dy = add i] o), F e s | TR (TR et] | oy Ay L) R Wil Ln i ufln [alinsryg b1 A
|runEgy gy |25 = Bl siguiad predgne Siaiy T] R] pesand L wer) IR o FEURIV | glURL -2 Cl1-T000
[EIRLSTRY s TR a4 muenl ey T i {0 dopied degas oy 9R] <56 FOME M pmhicy - gamay 6 i5m
Aupajou) ame] henf CrEuu-Enesy SlAd=TRdd aajuopd gedlus FRiwy Wi JET TAIPPE EEEOY] B CER L1300 BT NI, M 6y =L (A= L0
ﬁmﬂu ALY GUENEITLY 4444~y mxjie] aiiacad TRy p AT o s weqnu e | R [URi ¢ SiEHEHN] a0 B0 SEINT aE-R b= R b
wagnds Bumeeadi) oM CTSSY-RHCLS AR bt LI gy pasls T RSy Goe VWET-HET JIEE A0 | Ry [A800 S TRsaLie] RS Y o |y EE-RL ESM
B I AR PRIESRITES AdAO-00 IS O K ki WS i A,) B R . {Hi T AngEprein e pousiy o]]
WL S50 Py T AR E0RRRI [EEE-RLERS ADCHI-(E Lk L LI o | (] SETD g el PP WL T, hi#d T aaps Ul Jpseg tases-do Saaw-g PG L]
e R L e e e LU 4 1T 10} Eunu gy =S DEIN-TET0 SR Ay o) Uiy gyl-ER] -2l LN 0] sy sapumod ey, | F i W= 0
Astitiol afGEAE IO BICOS-ORIEE ddp-no R Pk TR -5y L TR ATNA Gl 1t WHD VRSN A i E=11 =L
ACNS [RGEH SR pumes pOEYS-TLTG O -0k B papEnt FEE Sy Hi® b FERPNT AU TR K1 BED SAEFTD PP AL i S5 D
[osmdn oans, MEINCHIES AT T [[} boi] a1 S RG] Jualm L3 HEHN) sk HE-la e H T)
aiiisia e Hapnp Ao WvH SPSES-IGIAY ALy I B e Ly Les [T S S U I £ LH MAPOE Y LV eaE) Ge=ph Eh0= [
WYH WUy GRS ECEC ! L} sl dngas HOe parngiay GGR-GGE BETT= AR F0 I A SO ST PRy K1 HHK SN SO Y] WL) (M= 0
ey O LSIE-EE AddE-NY uaaped s mE pas I P O) 5 JEU Ep e s LA AL (15 CHIN LN S5 U LA R e, Fi R
war u=Bngd Wil SlRaney ENENENILEE AdAR~HE Hepy g paen ey fus (I suihn gig Py s d) - | i1 T daEmin 2l Jeewg) #hajaslg {968 0=
AEEIT Y W] BRI FEr e Jmumo AT jeaday e | I Adjeey ol g2 GAEGS] RLL-HLIL LA-ZAM SSUINGE A3 XIPT]] REAY ®ELF ot i n]
ABDLEHU BIRERT P HIT-ET] AR Japnoo pasds praday 123 BHE0 Sjrmsuo0 Bon ade] rrp-qrl 1 S —a00 S o e B ae-i e gl
151 | R |-G JADO-IEr ahaw jii sraday Liis] VHE ueriliosd o pugoppe s e] gLi-RLL A0~ axjlinl Buian Qi) H=LE S5 0
TR 1T T FHCT-THED BN PHI A 0 AT N e BTN TR T o e P T Y | TV) s FEppousaieaos-JoEg sy o FO-EE0
i) | pER-TER AL R TR TN ET S T] K L R g] PR B, 111 i SR LA —O-PUg LY {E-lik e L
Bl SgaEiwh RG-S HATE="WED B RIS FREL) L LHE A ajda, pErgpp Ry d | LR L] RAFLNg == IR HE=L¥ w1]
e HUHIAVE BiEHIR ITII-ZERN SN0 I0RET FLE alE W THEIE I TH] [HLU] LTS L, Tl &0 SRR IR AN UGk AT
15y A UV LlR9le I OE-EED Hwj) sl S0 rs bz] LRI |3 (R LR [s g) HiL SV I~ g i JP00-goan
i A4 HiGaEA LA UAIRRY SIH-RLE AREO=FEED Aaoiasgy e pida] pER-T1S G Fe e b gl g U &) G] & ¥ AHHIP A R ST P [1 -5 Ean
474 EERADANNY TIE-TIR {IECo=2E0 lnEis IR P IME DT TR 1RE s e 43| | sl W v Jaymod AT LE=IT LTI
L B e L I o HRE0-YTED B e I 1] [D] e L L e en] 541 SV IFULE sy o e EE-LE Lt]
il 2 1) BN AEA GNT-TR] Qg EET0~HZED g ey W Qra=1 08 ALEN=(ETN TN ARy Al L35 sy Bupia dees) e [4 =L L
Ll I PLEERT- (1 T T T ITISEED g W] ATE-118 JFAIT-Ta7in Ry gy carng) e %} (R s By danaslon g Fr L1)
(IS 1 et 5L | FE-R ST-sED ApyE) Iy P ala-ls rac g S WHA=0 L Zul-u bR L] danjen i) s | et i
Ky ENRA () RN CONeZIM CPU0=ELR0 lajmg vy ey aa=T1s eI P ma o By s g o] A Wi By adiienid) gy il i Lo
T | F e [e] | F0-0ERD PAIP WIRE SRANNE] || G-9GT o A8 =] [(6 aag] Jwg F) s | S HER T By prad a8 1y #1 i
(R s Il BRIHRD AlB-3TE0 Bo| andid i) RSG5 BT [Pt i (= 3 A0 = 1| a5l ChedN w3y = sl LD =N Lida=0 | [
(IR ML FROLY ZRI-96E ai=3En BaAPP R |9y of Bemedyy gaT-gn W= A0 ¥y paa A=) il 60E Moy ¥y g al LT
IV FL gRs NI BRL-FEL F1E0-¥1ED el n) ey OSE-6RE W A A oy ade | i1 Wi 7 Aauamaennb L) R v #1 A
(254 M pRLsAGUl [N ERI-TEL fl EI-E1ED dpul Avy TUT0 RPECLRT ANl 2 14N £ el A () Iy Bl vhim pundl R = [" Jaka L s g]] e
AR TL Ev|aaA PG NPAE] (RL=HL IR g pUEAsY SpE=GT G M= AN (0 et ues e o ghecii| Egl B Jidamt =) Buligis 4 A) LM | i H
HEYAl s iR TR R L-RRL S 1E0-g1En FERTEL TR E T S L o [LU 1L wapy wada durm me) el FE0 Bl i smea) &l MR
e died UGRIS] YET OB IlEn-01En A SO U UARLE PRE-20 AR daw pasiay 151 I wlimgng , csopunied wjjn b I L]
axps Bag s g5 THL A0 Hugpurm o s DS I . giT B PaasaaEn |y v (i} W LAPAA = | 'OVDT =0 af Wi
aamy Faa-) GRS THL o EERT BT REREEES HE L 1T L1 1T IRIRIT D L A | P fikl SE AATS LRINOD)] fi BN
AARE B3A-Y CRL 1L OEFED | A AL i HIZ B Y] S Pk g | Hil Htl e o g LI
anits Bebi-y GA g L St e Aisa]] maha fudamsy £ir CLH { = &jjdan “a= e LK LR A3 PRI sy] Si
LT R R T T I s T | S anE ESITY |8) FA T I iy aoy queysRo S|, akl i 7] I RO PR 5 TSI
WU s M M Sy Erl=fin BlEG—Ri0 S| AR LR ORI) L ey LIE DN EERY S PUE LS | ey Skl ([0 R PNl i B 58 Hig b
L L Ik o T L R A K - Suy UasEW O Mg] EeRg b (Lt LN [T L5 pansm emey kkl TEOE st dedi i Lot g | g3 i LIl
Ny SO0 HER g Eil=ELL CEN=Ri PP AW Cin | UASIOS BN (Tl L LLAEL aeA paas iy CRI=6ECl AR aapiifnd prudm enadng u THHEE

NiAg PP e R [LL-0LL ENE0-Ribh afwyd JUIE U3 SRR T A Uyt injisl Jaujod saey CRI-EEL HLHI-¥ Lo
L e T T | 0= HE LS L Ty) i Do TS Mueg AN sgnolgne RONHO SE1-G10 VROO=LL00 e puanag xaH

I syl wor-pl A7 UARIETHL g e G (LMY A S U (g s F1-E11 L

a1) UL o a3 L =) ey A [Bampuna.| sapan—q | Jnacy T BL0 dep dsonaly WYY - B Aepowiey

PIR1J13)Ing ”E—. Nn_ paiduwo) dejy A10wWB}) $9 S10powIWO))

May Not Reprint Without Permission

C‘ www.Commodore.ca

TBOFY
[[ohe 2
L4 4
RHERS

LBEKE

URErs
£ S3poy,

T
ERERG
(8 14 3

T |

HErS

BIEH
[

L o
0 HOO

BhTRC

FGEPY

EREkS

BATKE
LAk
SLEVE
SLEvy
L
ELERS

CLERG
| S

LLMEIER I AR U WON) PG He
LINAS ‘OO DNB 1530
salnea axop eraads SN

iAo peal) asuag

£ adnjasury

[aarapaine) g sy

(e QYT A HPPRG

[~ %1 X Hppe|

(8juo tim) unjoa B 1214

S

LT ™01 ' dd ' H NPEA
djETRy PRy

A EA . A g !
.ﬂu-l.-__.__-.w__Imm U.H.!_.-_n_-.rHI

1] At g sojgd

1 i L] i n 1]

tijuo anum) sadjo

TR * .
N A [T LRjSng

T T T v T OSALg = sLUE
MLIE] AP UL ey

& il ¥

o i} il]

Y1k 50,

.1|:|; _1]-_-;:

LRI T —

(1sc9) ais

M
HiHds
VIR
ks

Rl
Elas
S

KIS

PIFOE Ouedls
IR D0ks
Lirdf Hokds
TIHDS ViIRg
OLRas B0
A8 soRs

A0S LOkCs
EaMay oy

ynig [oims [Gime | anim | miog | iowg
WYE S¥|vH 43| WoR-0] ey | adep | oadeg g
Lo | o | mo | wmo| w | no| s NI (TP

(0129) o4 O/ 108520044

SO0
SN
F(s
(UL}
PR}]
{11785

MRS
[daviny

16596 EHD

CHSSS AL
IHuts Hwl
01 | Y
GLSSE HHOK

Lists Hud
9LE9C Yid

SEE9S HHD
FEESS YHI

LEE9S HAL

LeEdE HWL
koE9E TN
ECEDs Hu0
EeERs Yuld

IZEYS Hud

OZEBE WNd

£10) A PEER 10U Jhg PRI |,

e

(9zc9) (©dAD 1V

ey A0
RSy
P 0005
v 8
.__..rE—E_.._LEm. Hnmu_mnn Qs
q__r- _.-..t..
LOOas
== 4w |, e
D0
SIS
— ¥ dailin] it
0%
TET-54 - w3 o ndu] 1Y d 1V - 005 £000%
e = 40 Z000%
M [0 [o w NI [N
lzez-od| suw | wio | . | .00 o | wsq | toaas
pLippelciappel 100 | LNO | LNO | LOO | NI)
L1208 | 100t Jesz-su| iy | won | reuss | spop | jeuag | 20098
(9z<9) (WN) Z VDD
ﬁ-n_.._m uﬁ. 3 ﬂmu AMTE
UEE v apop | w0
s | oaeng | oangy !.__._.u_m FIE
¥ a4)
P suy | u&ﬂ._ (0%
N -,
LOd]E
— s vl
S00%
502408
e ¥ ISap .
FONIS
w1 = (s PRI
indingy oy = 44% Z0OM18
Pty U prRogtay
dn umeq g ey aang 1%
| ouredog
Papaa) g sy parogiay
dn umog gy gBly | ang) v | @0ds
0 3oy 5 #pped

wsmw.Commodore.ca

4
— C ENQ}.Repnmwnhout Permission
= ==
.-___.--"'
=
— ﬁ
— = —1
= = = =
— — _— = = =
a— — — — _—._.-I"-# —
— —_— - - — I =
= = = _— = e = = = == =
= = = = E=E EZ EEs = = == =
—_— — = — e — [—} — — — — —
— - < :_--__....--""'""-_- = = —a - —— .____,.---.'_.." - ;-_:'..—--""'" —
— -_— — -..-Il-'.'.-—.-'- — - ...-—"-—- o :-.- — " — — .-_..l'-'-.#-'.' — -
— —1 — — — = f— 0 — e .-:"'.__:" L —
— — . -_— __---"__...---"""--“ R — -....._-.__._._.--"" —— -_—
— E EF =53 S B as B WS =
g —
— = = B O == = = == —
—_— — --""':____.".-'-'-*- — "'---__..:—""".' —
e — —
o — — —— T
— S
-__-.-:.':-_____,--:.-"""—-—""'- _____...-.--"'#"'—r =
——— ——a
=
—

The Ultimate CBM®

A Commodore enthusiast wanted a word processor
that was simple, fast and easy to use. He wanted to

handle up to 20,000 characters of text, use a wide
screen format of up to 240 characters with full
window scrolling in all directions and be able to
use the screen while printing. He wanted a word
processor at a reasonable price. The enthusiast,

Simon Tranmer, couldn't find one. ..

So he wrote = t’

Word Processor

/ﬁ

gﬂ? does everything he wanted. . .and much
more. It provides a complete document preparation
and storage system, making optimum use of
memory and disk space. It gives access to all the
letter quality printer features such as boldface and

ribbon colour change. In short, it provides all of the
advantages of a dedicated professional word pro-

does everything Commodore

c(ﬁ.'u.l'hit:;h is why they are adopting it for all of

cessor.

S

wante

their forthcoming models.

ABOUT SUPERSCRIPT

Superscript transforms your
Commodore computer into a true word
processor, enabling your secretary to
turn out high quality letters, mailshots,
quotations, contracts and reports more
quickly and easily than ever before.

QUALITY AT YOUR
FINGERTIPS

Word processing with Superscript allows
you to make all the changes you need at
the screen, from a simple spelling
correction to a complex re-ordering of
paragraphs. You can control the final
format ©6f the printed document by
inserting printer commands where
required. These commands include bold
face, underlining, superscripts,
subscripts, variable pitch and ribbon
colour change, in fact all of the attractive
formatting features found on modern
letter quality printers.

PERFECT COPIES EVERY
TIME

Once the preparation of the document is
basically complete, you can view it on
the screen exactly as it will appear on
paper. Then you can either continue to
make corrections and improvements, or
proceed to print. Superscript will print as
many final copies as you like, whenever
you like.

UNBEATABLE VALUE

No ROM or cassette key needed
Multi-user at single price

Exclusive Canadian Distributor

v

J PRIMARY FEATURES

www.Commodore.ca
May Not Reprint Without Permission

Use of screen as a window on text with SCROLLING in all directions
MEMORY SPACE for 250 lines of text 80 columns wide (20,000 characters)
TEXT WIDTHS from screen size up to 240 characters

SIMPLE VIEWING of text with or without embedded commands

Ability to insert into the text explanatory COMMENT S that are not printed
LOAD files created by other packages, including Wordcraft™, Wordpro™ and
The Manager™, for merging, editing and printing.

EDITING FACILITIES

Ability to execute COMMANDS on a succession of linked documents
SEARCH and REPLACE of a piece of text in one or a string of documents
Powerful INSERTION and TRANSFER capability

ERASE all, remainder paragraph or sentence

Automatic or manual MERGING of files e g. for mailing or credit control
HORIZONTAL, VERTICAL and DECIMAL tabs, which can be

saved on disk

CENTERING and RIGHT ALIGNMENT with mix of normal and enlarged
characters

HEADERS and FOOTERS on every page with auto page numbering

PRINTING

CONTROL cf: bath margins, lines per page, text lines per page,

line spacing, auto line feed and forced paging

DOCUMENT PRINTING: continuous, singlesheet or multicopy singly or as a
string of documents with merging as required

BACKGROUND PRINTING: single page or continuous, freeing screen for
other tasks

RIGHT JUSTIFICATION with equal white spacing on letter quality printers
PRINT FEATURES include: underlining, enhancement, bold print,
superscripts, subscripts, ribbon colour change, variable line and character pitch
SPECIAL PRINTER CHARACTERS can be used e g. backspace,
escape codes, user defined characters

SUPERSCRIPT - one disk runs on the
2001, 4016/32, 8032 and 8096 Commodore computers, 4040 and 8050
disk drives, all Commodore printers and a wide range of letter quality printers.

CBM is a registered trademark of Commodore Business Machines
Wordcraft is a registered frademark of Dataview Limited
Wordpro is a registered trademark of Professional Software Inc.

$150.00

CANADIAN MICRO DISTRIBUTORS LTD.

500 Steeles Ave , Milton, Ontario, Canada L9T 3P7/416-878-7277

Syersaf?

« www.Commodore.ca
May Not Reprint Without Permission

Advertising Index

Software
Issue® / Page
Advertiser Product Name (Description) Manufacturer [ey S § TOSSh
Micro Applications Master (programming aid) IBC
Precision Software Superscript (wordprocessor) 61
ol
Accessories
Issue” / Page
Advertiser Product Name (Description) Manufacturer bl @ ol (B
Consultors Int’l Stock Market With Your PC (book) 64
: A To Z Book Of Games 64
Dynamics Of Money Magmt (book) 64
Invment. Analysis w/Your Micro (book) 64
Leading Edge Inc Elephant Diskettes BC

In The Next Issue Of
The Transactor

e Butterfield Centerfold
e Meet SID - Voice Of The 64

¢ Commodore 64 Organ Program
e 4040 Power/Error Indicator

e Machine Code Editor
Link To BASIC-Aid

e Plus More On - VIC-20
- PET/CBM
— SuperPET

Keep On Transactin ...

@F USE YOUR PERSONAL COMPUTER!
%‘ ! FOR FUN AND PROFIT!

{E!. O YOU CAN PLAY THE STOCK & BOND

AR B

= MARKETS WITH YOUR PERSONAL

COMPUTER! New! One-of-a-kind 308 page illus-

trated Source Book can teach you how to use computers in the

Investment Field. For Novice or Advanced Computer Hobbyists who
want MORE from their machines and make money! Shows how to get g

started in Stock & Bond Markets PLUS how 1o use your computer as a
data source for determining profitable stock selections, buy-sell de- @
%

cisions, market evaluations: Order #T1251 Delivered $11.75

$$$$5$5$$959$99% CHECK*CLIP*MAIL TODAY! $$$5355855555556$4%3

O NEW!ATO Z BOOK OF COMPUTER GAMES!
HOME ‘N' OFFICE FUN-TO-MAKE PROJECTS! I

* Tested, Ready-to-Run Programs with Adult & Kids Varia-
tions, Poker, Black Jack, Roulette, PLUS Gunners, Knights,
Hot-Shot ‘N" More! 308 Pages 73 lllust. Order T1026 Delivered $9.75.

e —

2 N L1 "INVESTMENT ANALYSIS WITH YOUR
MANAGEMENT" The Best Solid Money- | MICROCOMPUTERS" Latest In Depth
Managing Advice ever Stuffed info | Guide using every facet of good Invest-
One Graat Sourcel This is the Pime | ment Theory & Computer Usage. To Aid
source of the Best Money Saving. |in Decision Making Process & Ways to
Money Managing Information Avall- | Use The Results to Make Evaluations
able. A Finoncial Survival Manual of | Quickly, Order #11479 $12.75 Deliverad.

Saving & Investment Strategies That Will | QUT U.S. by AIR $16.25. Canada, Mexi
Send Your Net Worth Soaring: Order | by AR $18.25 - oo Mexico

#4P ., 514.95 Delivered. OUTUS. by Alr | T e
| $19.95. Canada, Mexico by AIR $19.25 | (Business Books Tax Deductible) |

h MONEY BACK GUARANTEE

“DYNAMICS OF PERSONAL MONEY

[CHECK YOUR SELECTION ABOVE! == == ‘

Check M.O. O visA 0O MASTERCARD
I # Exp. l
I Name I
I Address I
City State Zip
CONSULTORS INT'L. BOX6589-0 |

- e = =mDENVER, CO 80206 USAms =

c‘ www.Commodore.ca
May Not Reprint Without Permission

THE ULTIMATE TOOL FOR
THE PROFESSIONAL PROGRAMMER

®)

MAGSTER has /0 commands that allow you to create
your own business software

MULTIPLE FILE ACCESS Up to 10 ISAM files open simultaneously
& CREATION Maximum file size not limited by DOS
Supports data packing

SCREEN FORMATTING Controlled data input,
Complete PRINT USING
Graphics supported

REPORT GENERATOR Multiple file capability
Full printed formatting

96k MEMORY MANAGEMENT For BO9E or Z-RAM board
bk program space, 26k variables

Up to 16 programs co-resident with common
subroutines

Full programmers aid instructions including plotting

BCD MATH PACKAGE 2?2 digit precision
No binary rounding error

COMPUTED GOTOS AND GOSUBS

PROGRAM SECURITY WITH Now available for:
DATA-KEY AND NO-LIST OPTION 8096, Z-RAM B032. BO32 -

[No memory management)
Subset for 4032
As a DEVELOPMENT or RUN-TIME system

Developed by MICRO/APPLICATIONS
8096 is Commodore's, Z-RAM is Madison Computers

sa 50.00 Manual & Demo Disk only for Evaluation $30.00

[Applicable to Purchase of Package)

M CANADIAN MICRO DISTRIBUTORS LTD
S00 Stesles Ave Milton, Ontario, Canada 197 197 | 4Y6-ATR- 7277

Distributed by

g www.Commodore.ca
May Not Reprint Without Permission

FORGETS!

MORE THAN JUST ANOTHER PRETTY FAGE.
Says who? Says ANSI, make life miserable for everyone in the disk-making
Specifically, subcommittee X3B8 of the American business, .

National Standards Institute (ANSI) says so. The fact How? By gathering together periodically (often,

is all Elephant™ Hoppies meet or exceed the specs one suspects, under the tull moon) to concoct more

required to meet or exceed all their standards, and more rules to increase the quality of flexible
But just who is “subcommittee X3BB" to issue such disks, Their most recent rule book runs over 20 single

pronouncements? spaced pages—listing, and insisting upon—hundreds
They're a group of people representing a large, upon hundreds of standards a disk must meet in
well-balanced cross section of disciplines—from order to be blessed by ANSI, (And thereby be taken
academia, government agencies, and the computer seriously by people who take disks seriously.)
industry. People from places like IBM, Hewlett-Packard, In fact, it you'd like a copy of this formidable docu-
3M, Lawrence Livermore Labs, The U.S. Department ment, for free, just let us know and we'll send you

of Defense, Honeywell and The Association of Com- one. Because once you know what it takes to make

puter Programmers and Analysts, In short, it's @ bunch an Elephant for ANSI . . .

of high-caliber nitpickers whose mission, it seems, in We think you'll want us to make some Elephants

order to make better disks for consumers, is also to for you.

ELEPHANT. HEAVY DUTY DISKS.

For a free poster-size portrait of our powerful pachyderm, please write us.
Distributed Exclusively by Leading Edge Products, Inc., 225 Turnpike Street, Canton, Massachusetts 02021
Call; toll-free 1-800-343-6833; or in Massachusetts call collect (617) 828-8150, Telex 951-624.

