g www.Commodore.ca
leReprrsilithout Permission

C‘ commOdore Commodore Canada's

Tech/News Periodical

The Transactor ==

BItS & Picces
Suppressed '?’'

In the 1latest Midnight Software Gazette a POKE was

published to suppress the question mark that follows an INPUT
command prompt. Try this short program:

10 POKE 16, 1 (BASIC 2.0: POKE 14, 1)
20 INPUT "DATA ";AS

30 PRINT AS

Note that line 20 prompts for 'DATA ' with no "?" following.
But when you hit RETURN after typing some characters, line 30
prints this string on the same line. This is a residual
affect of the POKE in line 10. You might be able to use this
to your advantage but to get a line feed between lines 20 and
30 you'll have to do an extra PRINT. Subsequent INPUT
commands will also have the "?" suppressed. Get it back with
POKE 16, 0. The program then becomes:

1 0= POKES] 65, 1 (BASIC 2.0: POKE 14, 1)
20 INPUT "DATA ";AS

10 POKE 16, 0 (BASIC 2.0: POKE 14, 0)
40 PRINT - '

50 PRINT AS

By the way, the Midnight Software Gazette is avallable FREE
by sending a self-address STAMPED envelope to:

CIPUG

635 Maple

Mt. Zion, Illinois
U.S.A.

62549

The Midnight publishes some great editorials and
reviews, the latest news, other info sources, and 1nterest1ng

facts about PET, CBM and now VIC! And SEor ‘the price;sit
can't be beat!

The Transactor is produced on the CBM 8032 witb WordPro 1V
Plus and the NEC Soinwriter

G

Index Transactor %4

BAES 38 P ECeS i s ot sl ss o elib eeiee
S P PIEE SSE G 2 e e ele oiele ois siale s o o sto
(CRSSEIEEE IHNERE 566606 0000000000 00000
Weekday sCalculator titesceiceccesnee
SISV S BIESS S a5 00 000060 G050 000060 000
DA Skl SeE e NOEES ik ot s e o osis o s oisicoioiole
S S A e eveie s iois chelels s ols oicis s erslotora s
Linefeed De=Defeat . iccecsosssscosesns
HarmleSs Bugs DepEsicic.ceascoces e
CONCAT ® ® 009 O 000 00O 0O OO OO O OO O O 0 OO 0 00
Sound OFF © © 9 0 0000009000 OOO OSSOSO TS OOS
COLLEC R sre s7s cio s slaioioa cle sio o sisie otese
Keyword AbbreviationsS: «..sceceseeoi

SUDSCTIPEIONEPEES o vure/snis® s oo s socsssss

MishieKeved Random ACCeSS . cicic ols oiseoeios

ROM S e Ce S i e e sieit e e

4082 EEOgrEaAm: CONVELESIONS . tleloie oloie cieieie’s

Butterfield:On {Tapl $ic wesis o5 s evssineie

WO GO g s e e o eie o s ibitre Sioreiets

COMALSUSerSEGroupS N EOEMAt ION Fe'sle el siss

Review: SX-100 Modem Software ...cc...

DUMP-MATE; A Cassette Multi-Loader ...

The User Port Cookbook
Get Your PET On The IEEE-488 Bus
J.B.'s SuperChart -

ONNON U s W

=
o

12

(o)
@

20
24
28
S

40

www.Commodore.ca

May Not Reprint Without Permission

”n

ey

o\

g www.Commodore.ca‘

May Wo?ReperVivhou'Perﬁwemcn!

4SSETTE NOTES

Jeff Kriss of Toronto has submitted the POKEs for
turning the cassette motors on or off for BASIC 4.0 machines,
It seems they're not quite the same as before. Now you need

an extra POKE to turn them off.

Cassette #1: OFF POKE 249, 52
POKE 59411, 61

ON POKE 249, 0

Cassette #2: OFF POKE 250, 52
POKE 59456, 61

ON POKE 250, O

Ernest Blaschke of Toronto has this ftiendly bit of
information:

"When loading a program or reading a data-file from tape,
quite often I forget to press the cassette deck STOP button
after the tape has stopped moving. - This can result in dire
consequences when later, in the program, a file is opened for
writing on tape, and yet the cassette is still on "PLAY"
rather than "PLAY & RECORD". As a safeguard against this

happening, I now routinely include a line in my program as
follows: 4

10 IF (PEEK (59408) AND 16) = 0 THEN
PRINT "STOP TAPE" : WAIT 59408, 16

Anyone using two tape drives will need these two lines:

10 P9 = PEEK(241) : P8 = 59408 '
20 IF (PEEK (P8) AND 16 * P9) = 0 THEN
PRINT "STOP TAPE #";P9 : WAIT P8, 16 * P9

This will eliminate any potential problems. Presumably the
59408 location may have changed with the new ROMs 2"

The above is for BASIC 1.0 ROMs. For BASIC 2.0 & 4.0 the

59408 location stays the same. Change the 241 in line 10 to
a 212. N - .

s

The circuit below can be added to the Poor Man's D/A

Converter (Volume 2, Issue #11) or simply used by itself.
Pins 6 and 8 of the User Port (top pins) are connected to the
tape read pins on the cassette ports. Due to numerous main
logic board variations, it would be too difficult to say
which pin belongs to which cassette. But for the price of
two 330K resistors, it would be a shame not to hook up both,

6 330K
Top Pins 330K
8 o—MM— .
D/A - —o0 V out

8K L .01ufd
f T
.|r }

0

1

2 www.Commodore.ca

May Not Reprint Without Permis

The 8K resitor and the .01 microfd cap. are already in the
D/A. If you already have this D/A circuit built, simply add
these parts. Now when the cassette is being read, the signal

will also be -sent to your amplifier... an audio cassette
monitor!

Hggkdéz_sélgnlgsgz

This neat little subroutine returns the day of the week
for any date given in DAY/MONTH/YEAR format. Of course you
could change it around for YEAR/MONTH/DAY... just alter the
order of the variables following the INPUT statement. The
program does not check for date validity... but that's no
problem. Just do some testing for day greater than 31 some
months, 30 other months and 28 for February. For leapyears,

do an extra test of YEAR/4=INT(YEAR/4) in the case of Feb.
29.

100 INPUT "DD, MM, YYYY";D,M,Y

110 K = INT((60+ (100/M))/100)

120 F = 365 * Y + D + 31 * (M-1) - INT(.4*M+2.3) * (1-K)
130 F = F + INT((Y-K/4) - INT(.75*(INT((Y-K) / 100+1)))
140 F = F - INT(F/7) * 7

150 PRINT MIDS("SATSUNMONTUEWEDTHUFRI", F * 3 + 1, 3)

Steve's BBS

Steve Punter of WordPro fame (and fortune I hasten to
add), has developed a Bulletin Board System for use with
PET/CBMs. Much like WordPro, the system has several great
features; User LOG and daily LOG, upload/download
capabilities for programs, WordPro files and SEQ files,
optional protection on messages and - programs, optional
password sign-on, formatted messages, bulletin section and
much more... plus all the editing functions a SYSOP could

ever ask for! Steve runs his own system at 416-624-5431.
Operating hours are:

Mon-Fri: 8 PM. - 9 AM.
Weekends: All Day!

Give it a try! (mention how you found out about it) Steve's
gystem runs TV, movie, and restaurant reviews plus numerous
provocative discussions and debates by regular columnists.
Any ASCII terminal or terminal program can be used, but to
up/download programs you'll need Steve's own terminal program
which is FREE of charge (see your Commodore dealer).

The Bulletin Board Host System will soon be distributed
by Commodore and available from any authorized Commodore
dealer. A simple circuit schematic is included to modify the
Commodore 8010 Modem for auto-answering capability. Steve

even plans to make the system compatable w1th the DATAPAC
network (available early 1982).

sion

n

)

)

(; www.Commodore.ca

AY
May Not Reprint Without Permission

Disk User Notes

Henry Troup of Mississauga has this valuable information
for BASIC 4.0 programmers with disk units:

"Mixing BASIC 2.0 OPEN to disk and BASIC 4.0 DOPEN commands
can be hazardous to your health! The full OPEN comnmand is:

OPEN 1f, dv, sa, fn

where: 1f is the logical file number
dv 1is the device number
sa 1is the secondary address
fn 1is the filename

But the BASIC 4.0 command is:
DOPEN#1f, fn

Notice that only 'lf' and 'fn' are declared by the programmer
(*dv' defaults to 8). While there is convenience in allowing
the machine to choose the secondary address, there is danger
in mixing the two forms. If DOPEN has used a secondary
address, there is absolutely nothing to stop you from
re-using it in a subsequent OPEN. . There never was before
either (when DOPEN didn't exist), but at least you could see
the secondary addresses selected.

The only mechanism the disk drive has to tell two files apart
is the secondary address: if two open files have the same SA,

they are considered the same file. This can cause all kinds
of havoc with your files.

What's the cure? Don't mix OPEN to disk with DOPEN. Use one
or the other, but if you choose the OPEN command for disk I/0
(which 1is still supported by . BASIC 4.0), be sure that
different secondary addresses are selected for files that
will be open simultaneously. If you want to see what DOPEN
is doing in terms of secondary addresses, see my article
"FILESTATUS" in Transactor #10, Volume 2.

One last note... a string variable to specify the filename in
a DOPEN command, the variable must enclosed in round brackets
or parenthesis. The same goes for variables used to specify

logical file number, drive number, device or unit number, and
record length.

100 DOPEN#8, "SOME FILE", dl, u9

using variables: 100 LF=8 : FN$="SOME FILE" : DR=1] : DV=9
110 DOPEN#(LF), (FN$), D(DR), U(DV)

< www.Commodore.ca

May Not Reprint Without Permission

SYS 'EM!
Two useful SYS addresses to note:

SYs 64790-
SYS 54386

The first does a jump to 'warm start'... kinda like
turning the machine off and back on again, but without that
nasty power interruption. The second can be extremely handy
when you want to send an M.L.M. memory dump to the printer.
It seems that breaking to the monitor with SYS 4 cancels any
CMD status vou may have set up previously.

Extra Linefeeds Anyone 2

In BASIC 2.0, the PRINT# command always wanted to send a
Linefeed (CHR$(10)) after the Carriage Return (CHR$(10)).
As a lot of us disk users know, this was a pain! But not
always... some printers that don't automatically do a line
advance require that linefeed character to be sent (eg. LIST
to printer). So when Commodore decided to alter this for
BASIC 4.0, some careful thinking was necessary. The
engineers decided that logical file numbers of 128 or greater
would send the LF, while numbers below 128 would not. With
PRINT# to the disk, you would usually opt to suppress LFs,
while you could OPEN]28,4 to do double spacing, or follow

that with CMD128 to LIST to a printer without a hardware line
advance.

A—mﬂ—ﬂimmwg-n———' -

Jim Butterfield (who else?! wins the award for
discovering the most insignifigant DOS bug, although he'll
get absolutely nothing for it! He found that after using
APPEND# to add a small bit of data to a very small SEQ file,
that the block count was unjustifiably increased from 1 block
to 2. This wasn't possible since the total amount of data
was less than 60 bytes, which is nowhere near the 254 byte
capacity of a block. The answer? A bug. It seems that DOS
just assumes that the result of an append will increase any
file size by at least 1 block. But the 'blocks free' count
didn't change, indicating that the disk hadn't really used
another block but just incremented the block count that's
stored in the directory along with the filename.

APPEND#ing large amounts of data won't cause this
problemn. Evidently it only happens when the results of the
'‘append' do NOT warrant the use of an extra block. When
extra blocks are required for the appended data, the DOS

correctly increments the block count before updating the
directory.

s WwWww.Commodore.ca

May Not Reprint Without Permission

X

ay

The same bug may surface after a CONCAT of two files,
depending (of course) on the size of the file being
concatenated (ie. the file that is added, NOT tke file that

is added to). Apparently the DOS uses the same routines to

perform this operation.

The solution? There isn't one.. nor is one necessary!
Even a COLLECT won't restore proper block count, BUT, this
bug will cause absolutely no damage or ill side effects on
your diskette! Thanks again Jim.

CONCATenating Programs

The preceding item brings to mind another question
frequently posed to Commodore. "Why will the CONCAT command
concatenate two SEQ files but fail to work on two programs 2"

The answer ?: CONCAT will not join two program files because
it can't merge two programs. What if there were a line in
each file that has the same line number ? The disk was not
designed to deal with this type of situation.

But you say, "I could make sure that all line numbers in
the file to be concatenated are higher than the line numbers
in the first file". Well... that's not really the problem.
211 BASIC program files (PET/CBM) end with three binary
zeros. This is so the LIST command knows when to stop
listing. GOTO and GOSUB also look for these zeros when
searching for a line. If the line is not found before
encountering '00 00 00', an 2UNDEF'D STATEMENT ERROR occurs.
If you could concatenate two program files, the three zeros
that belong to the first programwould reside in memory ahead
of code that was concatenated. LIST, GOTO and GOSUB would
never look past this point.

For those doing a lot of program merging, it might be
best to consider one of many 'toolkit' or programmers aid
ROMs that include this feature.

Sound Off!

No this is not the complaints department, but rather a
neat trick out of St. Catherines Ontario. Have you ever been
playing a game with sound, and then STOPped the game while
the sound is activated ? The scenario is usually a frantic
programmer looking through memory maps or trying to remember
that POKE to turn it off. Before you turn the power off, try
this (12" screens only): use CRSR right until you get to that
point on the screen that rings the bell. After the jingle,
CB2 sound will be de-activated.

e

C" www.Commodore.ca

May Not Reprint Without Permission

(o] ct

One disk command that doesn't get nearly as much
attention as it should is COLLECT. BASIC 2 users will know
this as the disk Verify or Validate command.

Collect causes the disk to throw away the old BAM (Block
Availability Map) and rebuild a new one. The process starts
with the first directory entry. The disk picks up the track
and sector co-ordinates of the first block of the first file
and begins tracing the block chain. During the trace, the
disk re-allocates each block back into the BAM. Collect is

complete once all directory entries (PRG, SEQ, REL and USR)
have been examined.

Improperly closed files are thrown away by the Collect
operation. An improperly closed file is indicated by an
asterisk (*) preceding the file type in a directory listing.
This can occur in any number of ways; no DCLOSE or CLOSE
command after recording a file; DISK FULL occurring before
the file is CLOSEd; hitting STOP while saving a program; or a
power failure while storing data.

Regardless of how it happens; unclosed files should NOT
be SCRATCHED! As you know, SCRATCH does not erase blocks, it
merely de-allocates them from the BAM. This means that the
old data is left behind (including track & sector chain
pointers) but in blocks that are now available for re-use.

Consider this: You pull out a full or almost full
diskette. The diskette has no improperly closed files. Now
you want to save a couple of programs on this diskette but'
there's not enough room. So you SCRATCH 4 or 5 old files
that are no longer needed. With more than enough space you
SAVE your first new program... no problem. Now you go to
save the second program and for some reason the operation is
aborted (DISK FULL, STOP key, etc.) 1leaving this file
improperly closed! Chances are that the 1last block to be
written points at a block that was previously used by one of
your old files. This block would contain old track & sector
pointers which might point at other blocks that are now in
use by (quite possibly) the program that you just 'saved
successfully. SCRATCHing this unclosed file would then go
de-allocating blocks that were just written PLUS blocks that :
belong to your other program. Another SAVE at this point
could be hazardous. The disk might choose to re-use those
free blocks that belong to the other program, thus replacing
parts of the first program with parts of the second... YUK!

A COLLECT after the aborted SAVE would have avoided all
problems. The unclosed PRG file would be discarded, and the
integrity of the other files preserved. Some believe that
reported problems with write & replace (using the '@' symbol)
are connected somehow to the presence of unclosed files, but
no proof is available.

Y

Y

\

« www.Commodore.ca

May Not Reprint Without Permission

Collect has only one drawback. Any blocks allocated by
the block-allocate (E-A) command will be freed by Collect as
these will not belong to a chain as with other files.
Subsequent B-A & BE-W commands will use these blocks, possibly
overwriting valid data. However, with the advent of Relative
files, direct access should be fading from use.

Otherwise, it's never too soon for a Collect. If your
block count coesn't 2dd up or you suspect another undesirable
concéition, use Collect to be safe.

“Now let’s see, for optimum results add 1.29987143 cups of flour."

= www.Commodore.ca

May Not Reprint Without

Keyword Abbreviations

PLT/CDL/VIC keyworcs inrclude all commands 1in BASIC:
LOAD, POKE, NEXT, GOSUB, HMIDS, to name but a few. Each
keyword has a respective number or 'token' (eg. END is a 128,
FOR 1is 129 and so on). As commands are entered, the
operating system scans c¢r parses the characters typed and
conpares them against the keyword table in ROM. When it
'sees' a keywvorc¢ that it recognizes, PET crunches it into its
respective t.oken. In direct mode, this token is then passed
to the operating system to be executed. When writing a
program line, the token is stored in RAM for later execution.
By doing this, PET can use a single byte to represent a
commancé, thus optimizing on memory space and maximizing on
speed during execution.

But just 1like- PRINT, which is abbreviated with a "?",
~all BASIC commands and statements can be abbreviated. Thanks
to a "bug" (?!) in the operating system, all keywords can be
entered by typing the first letter followed by the shifted
second letter. Depending of what mode you're in, the latter
will show up as either a graphic character or a capital
letter. If they are entered into program lines, you'll see

that the LIST command uncrunches the tokens 1into their
expanded versions.

This can be extremely useful in circumstances such as:
often used commands like CATALOG (eg. caAd0O), LIST (1I) and
DSAVE (dS) can be entered quickly with a minimum of typing
effort; program 1lines that, for one reason or another,
contain more code than can fit on a 1line and; after
displaying the directory, the cursor can be moved up beside
the filename where any number of commands could be issued
without the need for retyping the filename or moving it over
to accommodate the expanded keyword. Here you coulcd give dL
for DLOAD, sC for SCRPATCE, reM for RENAME, cO for COPY, and
more just by typing the abbreviation on top of the block
count (you'll also have to erase the file type or place a
colon after the filename else ?SYNTAX ERROR).

There are a few exceptions. The abbreviation for PRINT
is not "pR"... that belongs to PRINT%#. There is no
abbreviation for INPUT, but INPUT# is "iN". Words such as
TO, IF, OR and ON also cannot be abbreviated, nor can
reserved variables such as ST, TI, TIS$, DS or DSS$... but lets
not be too 1lazy since they're only two 1letters anyways.
Other keywords have the same second letter: LET, LEN and
LEFTS$; READ, RESTORE, RETURMN and REMAME; GOTO and GOSUB. The
shortest of theses sets will be abbreviated with the shifted
second letter, the others with the shifted third letter. The
TAB (tA) and SPC (sP) functions will also give you the
opening bracket, so watch that you don't add in a second one!

There are a few rules to remember, but with practise
you'll find using abbreviations most enjoyable!:

- 10 -

Permissi

N

on

)

= www.Commodore.ca

May Not Reprint Without Permission

From The Editor - Karl J. Hildon

This issue is probably our biggest ever! Many thanks to all
contributing writers, especially Dave Hook, Ted Evers, Glen
Pearce, Jim Butterfield and Greg Yob. Don't miss Gregs' two
articles on the IEEE bus and the User Port, reprinted by
permission from Kilobaud Mag. Jim Butterfield's 1latest
"SuperChart" appears again this issue with updates for screen
control characters and VIC-20 colour controls. Next issue we
plan a special VIC bonus section which may develope into a
new Commodore Canada magazine... any ideas for a name ?

S l 3 I 3) E
Canada U.S.A. All other
foreign

The Best of
The Transactor Volume 1 $10.00 $10.00 $12.00

' The Transactor Volume 2 $15.00 $17.00 $19.00
The Transactor Volume 3 $10.00 $11.00 $13.00

The Best of The Transactor Volume 1 is Volume 1 back
issues together in one bind.

All 12 of The Transactor Volume 2 back issues will be
available for a limited time only. After supplies run out,
The Best of The Transactor Vol. 2 will replace the back
issues, cost unchanged.

A subscription to The Transactor Volume 3 will cover 6
issues, back issues included.

NOTE: Pre-payment required. Invoices cannot be issued for
subscription fees.

Commodore Business Machines
3370 Pharmacy Ave.
AGINCOURT, Ontario

M1W 2K4

Atn: The Transactor

- 17 -

= www.Commodore.ca

May Not Reprint Without Permiss

d R F T PET Glen Pearce
' Commodore Johannesburg

Since the advent of Relative Files and the large storage
capacity of the CBM 8050 Disk, some form of 'K.R.A' (Keyed
Random Access) would be useful to make full use of these
facilities. Here is a version -that meets most of the
specifications of K.R.A, but is relatively (excuse the pun!)
easy to use. It works as follows:-

An ordinary sequential file is used to store a
'key-file' of all records held within a system (eg. Stock,
Accounts, Clients, etc.). This key-file would normally
contain the first 10 characters of a Customer's name (Part #,
Account #, etc.) followed by the Relative Record Number of

the record containing the remaing data for that Customer.

Right - now all you have to do is search through this
key-flle until you find the record you're 1looking for;
retrieve the relative record number and you have access to
the main record. The only problem in doing this in BASIC is
time - especially if you have 500 to 1000 records or more!

Here is a machine-code routine which will do the above
significantly faster (it searches through 500 ten-character
record keys in approximately 4 seconds). This routine may
only be used with BASIC 4.0 .and DOS 2.0. Here's how you use
it:-

The length of each record in the key-file (SEQ) is not
important and it may contain any valid ASCII characters (for
safety's sake, stick to alpha-numerics only). To seperate
the record-key from the associated relative record number, a
delimiter must be used. In this case the delimiter is a '#'

symbol. Therefore, a record in the SEQ key-file should look
something like:

SMITH# 1234

The space between the delimiter and the rel/rec number is the
sign of the number and can be suppressed if space-saving on
the disk is necessary.

It is important that each record in the key-file be

seperated by a Carriage Return - CHR$(13). This shouldn't

present any problem as the PET/CBM automatically sends this
character after each PRINT# command.

The K.R.A. machine code program must be located at the
top of memory and protected in the usual way:

POKE 53, 127 : POKE 52, 0 : CLR

...must be the first statement in YOur program.

- 12 -

ion

g www.Commodore.ca

May Not Reprint Without Permission

This program also allows you to do a form of
'pattern-matching'. Say, for instance, you don't know the
exact spelling of a record-key in the key-file. All you do
is enter the first few characters of the record-key and allow
the program to search for that. When a ‘match' is founé in
the file, the attached rel/rec number will be returned. You
could then retrieve that relative record and display it. 1If
it is NOT the correct record, simply tell the program to
continue searching the key-file until it finds another match
and so on. If NO match is found, a relative record number of
0 (zero) will be returned by the K.R.A. routine.

Here is an example of a BASIC program using the routine:

100 AS$="" : A=0 : REM INITIALIZE VARIABRLES BEFORE
USING K.R.A.

110 INPUT "ENTER SEARCH-STRING";AS

120 DOPEN#2,"KEY-FILE" : IF DS <> 0 THEN PRINT DS$:
STOP

130 SYs 32512, 2, AS, A :

140 IF A = 0 THEN DCLOSE#2 : STOP : REM NO MATCH

150 REM RETRIEVE THE ASSOCIATED RELATIVE RECORD

160 REM AT THIS STAGE, IF THE REL/REC IS NOT CORRECT

170 REM YOU COULD 'GOTO 130' TO LOOK FOR ANOTHER MATCH

Any string and numeric variable may be used, but should
be declared before the SYS 32512 to the routine. (In the
above example 'AS$' would have been initialized by the INPUT
statement anyways). The '2' used after the first comma in
the SYS command is the logical file number used in the DOPEN

statement. It is important to check the DISK STATUS word
(DS) after opening the file.

Adding records to the key-file could be a problem once
the file gets large. Make use of the APPEND# command in
BASIC 4.0 to simply append new record-keys to the file.

Another suggestion is to have seperate key-files. For
alphabetic keys there would be 26 titled ‘'A' to 'Z'; for
numeric keys, 10 1labelled '0' to '9'; or combine for
alphanumeric and have 36 seperate key files. Now you could
simply check the first character of the search string (ie.
LEFTS(AS$,1)) and open that particular file. This would
reduce your key-file size to approximately 100 records per

file in a 2000 record system, thereby making your search
times even faster!

Editor's Note

Glen's K.R.A. routine could be a perfect partner for the
BMB Stringthing published in Volume 3, Issue #1. Only one
problem... they both want to 1live at the same place in
menory. For those with assemblers, either routine could be
reassembled lower in memory ($7D00). Don't forget to change

the SYS numbers and also the POKEs to lower top of memory
farther down.

For those without assemblers, it will probably be easier

= www.Commodore.ca

May Not Reprint Without Permission

to move E.R.A. down rather than Stringthing. Simply change
each occurence of $7F in the source 1listings (127 in the
BASIC loader) to $7D (decimal 125). This means that K.R.A.
will stert at $7D00. Remember that the BME Stringthing
requires a 256 byte buffer which has been slated for the
$7E00 page and followed by the program at $7F02. Therefore
K.R.A. must go an extra page lower... but no problem. Now
enter K.R.A. with SYS 32000 and the POKEs to protect it in
high memory become: POKE 53, 125 : POKE 52, 0 : CLR

You'll also have to change the parameters of the FOR/MNEXT
loop in the loader to FOR I = 32000 to 32255...

One last thing to watch... both K.R.A. and Stringthing
use locations 0 and 1 in zero page for work space. This
won't harm the operation of either routine but the
Stringthing returns the results of Position Search into $00.
This result is then PEEKed by the programmer. If, for any
reason, you'll need this value after a call to K.R.A., then

yg?'d better save it (ie. PS=PEEK(0)) or K.R.A. will clobber
it}

30 REM I 2222 RIS R R RS RSSSSSSS RSS2 S22 220 0 2 2 24

40 REM * *
50 REM * BASIC LOADER FOR MACHINE CODE ISAM ROUTINE *
60 REM * GLEN PEARCE 20/8/81 . *
70 REM * " *

80 REM 22 222222223 XSRS SRS RXZSR 222222 S22 8 80 2
90 REM '

100 POKE53,127:CLR:REM LOWER MEMTOP TO PROTECT PROGRAM
110 FOR I = 32512 TO 32767 : READ J : POKE I, J :NEXT : END
200 paTa 32, 73, 127, 32, 45, 201, 165, 18, 240, 3
210 DATA 76, o, 191, 165, 17, 133, 210, 32, 82, 127
220 DATA 166, 210, 32, 198, 255, 160, 0, 32, 228, 255
230 DATA 166, 150, 208, 66, 201, 13, 240, 243, 209, 1
240 DATA 208, 18, 200, 196, 0, 144, 236, 32, 228, 255
250 DATA 166, 150, 208, 46, 201, 35, 240, 90, 208, 243
260 DATA 32, 228, 255, 166, 150, 208, 33, 201, 13, 240
270 DATA 210, 208, 243, 32, 245, 190, 32, 152, 189, 160
280 DATA o, 96, 32, 73, 127, 177, 68, 133, -0, 200
290 DATA 177, 68, 133, 1, 200, 177, 68, 133, 2, 96
300 pATA 32, 73, 127, 169, 0, 133, 95, 133, 96, 133
310 DATA 7, 162, 144, 32, 122, 205, 160, 0, 165, 94
320 DATA 145, 68, 200, 165, 95, 41, 127, 145, 68, 200
330 DATA 165, 96, 145, 68, 200, 165, 97, 145, 68, 200
340 DATA 165, 98, 145, 68, 32, 204, 255, 96, 32, 73
350 DATA 127, 169, 0, 133, 95, 133, 7, 32, 195, 127
360 DATA 201, 13, 240, 23, 166, 150, 208, 188, 133, 96
370 paTa 32, 195, 127, 201, 13, 240, 10, 166, 150, 208
380 DATA 175, 32, 213, 127, 76, 170, 127, 162, 144, 32
390 DATA 122, 205, 76, 116, 127, 32, 228, 255, 201, 13
400 DATA 240, 10, 201, 48, 144, 245, 201, 58, 176, 241
410 DATA 41, 15, 96, 133, 0, 165, 95, 72, 165, 96
420 DATA 72, 6, 96, 38, 95, 6, 96, 38, 95, 104
430 DATA 101, 96, 133, 96, 104, 101, 95, 133, 95, 6
440 DATA 96, 38, 95, 165, 0, 101, 96, 133, 96, 169
450 DATA 0o, 101, 95, 133, - 95, 96

a

« www.Commodore.ca

May Not Reprint Without Permission
ISAM.SRC......PAGE 0001
LINE# LOC CODE LINE

0001 0000 R L T T T
0002 0000 ;¥ SEARCH THRU A SEQ FILE FOR A KEY RECORD AND *
0003 0000 ;¥ THEN RETRIEVE AN ATTACHED REL/REC NUMBER. ¥
0004 0000 % *
0005 0000 ¥ GLEN PEARCE 22/08/81 *
0006 0000 ¥ COMMODORE, JOHANNESBURG, SOUTH AFRICA *
0007 0000 i e T e T T T T T T T
0008 0000 :

0009 0000 ; #Hf CONSTANTS FROM PET BASIC (BASIC 4.0) i##

0010 0000 GETCHR = $FFEU4 3GET A CHARACTER

0011 0000 CLRCHN = $FFCC ;CLOSE I/0 CHANNELS

0012 0000 COIN = $FFC6 s SET INPUT DEVICE

0013 0000 CHKCOM = $BEF5 ;CHK FOR COMMA

0014 0000 FRMEVL = $BD98 s EVALUATE EXPRESSION

0015 0000 FACINT = $C92D ; CONVERT FL/P TO INT

0016 0000 SNERR = $BF00 ‘ sPRINT SYNTAX ERROR

0017 0000 :

0018 0000 ; i PAGE ZERO VARIABLES ##

0019 0000 LENGTH = $00 ;s TEMP STORE OF STR LENGTH
0020 0000 WORK1 = $01 ; TEMP WORK AREA

0021 0000 CHKINT = $11 ;CHECK FOR INTEGER

0022 0000 CURFIL = $D2 ;s CURRENT FILE NUMBER

0023 0000 VARPNT = $44 ; PNTR TO CURRENT VARIABLE
0024 0000 FAC = $5E ;sMAIN FLT/PNT ACCUMULATOR
0025 0000 :

0026 0000 ¥ - $7F00

0027 TFOO ;

0028 TFO0 20 49 7F FIND JSR EVALEX ;CHK SYNTAX OF COMMAND

0029 T7F03 20 2D C9 JSR FACINT ;IN BASIC LINE & EXTRACT LFN
0030 T7F06 A5 12 LDA CHKINT+1 ;AND SEARCH STRING

0031 T7F08 FO 03 BEQ ISINTG

0032 TFOA 4C 00 BF JMP SHERR ;EXIT IF SYNTAX ERROR

0033 TFOD A5 11 ISINTG LDA CHKINT

0034 TFOF 85 D2 STA CURFIL ;SET UP LFN FOR READ

0035 TF11 20 52 TF JSR FNDEXP sFIND SRCH STRING

0036 TF14 A6 D2 LDX CURFIL :

0037 T7F16 20 C6 FF JSR COIN ;SET 170 FOR READ

0038 T7F19 ;

0039 T7F19 AO 00 GET10 LDY #0

0040 TF1B 20 E4 FF GET11 JSR GETCHR ;GET ClIAR FROM FILE

0041 TF1E A6 96 LDX $96 ;CHK STATUS BYTE FOR EOF
0042 TF20 DO y2 BNE DONE1

0043 TF22 C9 OD CMP #13 ;CHK FOR C/RET

0044 TF24 FO F3 BEQ GET10 ;sMOVE TO NEXT RECORD

oous5 TF26 D1 01 CMP (WORK1)Y ; COMPARE TO EQUIVALENT
0046 TF28 DO 12 BNE CLRSTR ;CHAR OF SEARCH STRING

oou7 TF2A C8 INY

0048 TF2B C4 00 CPY LENGTH ;IF NUMBR OF CHARS CHK'D
o049 TF2D 90 EC . BCC GET11 ;EQUALS LEN OF SEARCH STRING
0050 TF2F 20 E4 FF FNDDEL JSR GETCHR ; THEN MATCH IS MADE

0051 TF32 A6 96 LDX $96 .

0052 T7F34 DO 2E BNE DONE1

0053 TF36 C9 23 CMP #'# .;FIND DELIMITER & THEN GO
0054 TF38 FO 5A BEQ RELNUM ;AND READ IN REL/NO.

0055 TF3A DO F3 BNE FNDDEL

- 15 -

CLSROL ... PiAGE 0002

LILE# LOC CODE LINE

0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101

0102

0103
0104
0105
0106
0107
0108
0109
0110

TF3C
TF3F
TF41
TFU3
TFU5
TFUT
TF49
TF49
TFUC
TFUF
TF51
TF52
TF52
TF55
TF57
TF59
TF5A
TF5C
TF5E
TF5F
TF61
TF63
TF64
TF64
TF67
TF69
7TF6B
TF6D
TF6F
TF71
TF7Y
TF76
TF78
TFTA
TF7B
TF7D
TFTF
TF81
TF82
TF8Y
TF86
TF8T
TF89
TF8B
TF8C
TF8E
7F90
TF93
TF94
TF94
TF97
TF99
TF9B
7F9D
TFAO

20
A6
DO
C9
FO
DO

E4 FF
96
21
0D
b2
F3

F5 BE
98 BD
00

49 TF
44
00

uy
01

4y
02

49 TF
00
5F
60
o7
90
7A CD
00
SE
4y

5F
TF
4y

60
uy

61
y

62
uy
CC FF

49 7F
00
S5F
07
C3 7F
oD

CLRSTR

EVALEX

FNDEXP

DOKE1

DONE2

)
RELNUM

JSR GETCIIR
LDX $96
BNE DONE1
CMP #13
BEQ GET10
BNE CLRSTR

JSR CHKCOM
JSR FRMEVL
LDY #0

RTS

JSR EVALEX
LDA (VARPNT)Y
STA LE:GTH
INY

LDA (VARPNT)Y
STA WORK1

INY

LDA (VARPNT)Y
STA WORK1+1
RTS

JSR EVALEX
LDA #0

STA $5F
STA $60
STA 307
LDX #$90
JSR $CD7A
LDY #0

LDA FAC

STA (VARPNT)Y"

INY .

LDA FAC+1

AND #$7F

STA (VARPNT)Y
INY

LDA FAC+2

STA (VARPNT)Y
INY

LDA FAC+3

STA (VARPNT)Y
INY

LDA FAC+4

STA (VARPNT)Y
JSR CLRCHN
RTS

JSR EVALEX
LDA #0

STA $5F
STA $07
JSR NEWDIG
CMP #13

- 16 -

2 www.Commodore.ca

May Not Reprint Without Permission

;DISCARD REST OF STRING

;GO AND CHK NEXT STRING

;CHK FOR COMMA
;& EVALUATE EXPRESSION

; FIND SRCH STRING
sSET UP STRING PNTRS
; IN TEMP WORK AREAS

;IF NO MATCH FOUND THEN .
;RETURN A REL/NO. OF ZERO

;SET VARIABLE TYPE TO NUMERIC

; CONVERT HEX TO FL/P

; TRANSFER BCD VALUE OF

; REL/NO. TO NUMERIC VAR

;SPECIFIED IN SYS CMD

s STRIP OFF SIGN

;CLEAR ALL I/O CHANS AND
; EXIT PROGRAM

;FIND VARIABLE FOR REL/NO.

" ;READ IN REL/NO. AND CONVERT

;IT TO A 2-BYTE HEX DIGIT

LINE# LOC CODE

o
0112
0113
0114
0115
0116
0117
0118

0119

0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
o4y
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160

‘[FA2
TFAY
TFA6
TFA8
TFAA
TFAD
TFAF
TFB1
TFB3
TFB5
TFB8
TFBB
TFBD
TFCO
TFC3
[FC3
TFC6
TFC8
TFCA
TFCC
TFCE
TFDO
TFD2
TFDU
TFD5
TFD5
TEDT
TFD9
TFDA
TFDC
TFDD
TFDF
TFE1
TFE3
TFE5
TFE6
TFE8
TFEA
TFEB
TFED
TFEF
TFF1
TFF3
TFF5
TFF7
TFF9
TFFB

TFFD-

TFFF
8000

ERRORS = 0000

PAGE 0003

LINE

17
96
BC
60
C3 TF
)y
0A
96
AF
D5 TF
AA TF
90
TA CD
T4 TF

E4 FF
oD
0A
30
F5
3A
F1
OF

00
S5F

60

60
5F
60
S5F

60
60

5F
5F
60
5F
00
60
60
00

S5F

5F

NXTDIG

PUTVAR

NEWDIG

ENDDIG
ASCHEX

RETN

BEQ PUTVAR
LDX $96
BNE DONE1
STA $60
JSR NEWDIG
CMP #13
BEQ PUTVAR
LDX $96
BNE DONE1
JSR ASCHEX
JMP NXTDIG
LDX #$90
JSR $CD7A
JMP DONE2

JSR GETCHR
CMP #13
BEQ ENDDIG
CMP #$30
BCC NEWDIG
CMP #$3A
BCS NEWDIG
AND #$0F
RTS

STA LENGTH -

LDA $5F

ADC $60
STA $60
PLA

ADC $5F
STA $5F
ASL $60
ROL $5F
LDA LENGTH

~ADC $60

STA $60
LDA #0
ADC $5F
STA $5F
RTS
.END

- 17 -

= www.Commodore.ca

May Not Reprint Without Permission

;GET NEXT REL/NO. DIGIT

;CHK FOR NUMERIC

;MASK OUT THE FOUR MSB'S p

; HANDLE ASC - HEX CONVERSION

< www.Commodore.ca

May Not Reprint Without Permission

RO _Sockets S. Dornalc, Rossland L.C.

For those of you with the ¢ld 8k PET and 24 pin RONs who
envy the three empty sockets in the newer machines, good '
news.

The 'upgrade' RONs for these machines only occupy four of 5 -
the seven sockets and a simple cut and hack operation on your
main boaré will enable you to use two of the freed sockets.

All three sockets may be used by the simple addition of one *
more IC.

Furthermcre, if you want to only use one socket for the

Toolkit, or the Word Pro 3, you don't even have to pull the
board from the case.

A woréd of advice, however. If you are not reasonably
expert in handling this type of operation (soldering directly
to the IC pins), or 1live and work in a high ‘'static
electricty' environment, don't try it.

This modification requires two sequences of events:

1. Change the bank select 1lines to the
emptied ROM sockets, and

2. Chance the bank access to the external
PET data bus.:

Both these operations may be done with the main board
still in the case if only one socket is to be enabled. If
you want two sockets operational, you have to pull the board
to get at a trace on the undersicde.

a n C

The 'bank' addresses of the three freed sockets has to be
changed from C, D, and F, (in hexadecimal notation; 12, 13,
and 15, in decimal), to 9, A, and B, or whatever. The three
bank select lines of interest originate at IC G2, pin 14
(select C or, 12), pin 15 (select D, or 13), and pin 16
(select F, or 15). They run a short distance towarcd the)
front of the boaréd on the underside of the card, then surface '
near socket HE4. They run across upper surface of the board
toward the power supply for several inches then return to the
underside of the boarc to connect to pin 20 of the appropiate
socket. These three traces are to be cut just above H5. Be
very sure that the traces are completely cut and that you
remove all the metal scrap that is generated.

Now carefully solder three wires to IC G2 pin 10 (select
9), pin 11 (select A, or 10), and pin 13 (select B, or 11).
Run these wires to the solder dots on the ROM ends of the
traces just cut. Simple. But if you try to get the machine

to recognize ROMs plugged into these sockets, it will insist
that there is nothing there! '

C’ www.Commodore.ca

May Not Reprint Without Permission

Data Bus Access

The problem lies in the design of the data bus. The PET
presumes that all addresses between the screen memory and the
four ROMs of the operating system are external to the
machine. When accessing these addresses, it enables the
external data bus drivers. These drivers take data from the
outside worléd and place it on the internal bus. 1In the
meantime the ROM you have just installed is trying to do the
same thing. That doesn't work well at all. The solution
here is quite simple; don't allow the external data bus

drivers to be activated when your ROM Socket 1is being
addressed.

The IC which controls this action is G4, a 74LS2l. Two
of the input lines to this chip are not used in the original
model and may be 'stolen' to enable two of the freed sockets.
The trace that ties the two pins of interest (pins 4 and 5)
together is on the underside of the board. If only one
socket is to be used (say for WordPro) you do not have to

seperate them and the board can be left in place during the
alteration.

These pins are held at logic 'l1' ('high') by a resistor
at IC G3. The trace of interest is on the upper surface of
the boaréd, and goes from the resistor to IC G3, pin 9, and IC
G4, pin 5. Cut the trace near G4, remove the scrap metal,
and run a wire from G4 pin 5 to the appropiate bank select
wire installed in part 1, above. To use a second socket, you
have to remove the main board, cut the trace connecting IC G4
pins 4 and 5 together, and run a second wire from pin 4 to
another bank select line.

The third socket may be used, but you have to instal
another IC. Drop me a line and I'll sené you a schematic.
My address is Box 481, Rossland B.C., V0OG 1YO.

If you are like me and have the Toolkit hung on the side
of the PET at the expansion port, you can even have two ROMs
with same address, selectable with an external switch. The
bank select signal goes- to the switch and is routed to the
appropiate ROM. The unselected -ROM must have the bank select
line pulled high with a 1lk resistor to the +5 volt pover
supply line. The circuit is left as a exercise, but don't

forget to switch the exterrnal data bus drivers at the same
time.

= www.Commodore.ca

May Not Reprint Without Permission

4032 Preogran Canersicns Joe Ferrari,

Commodore Canada

The addition of some nev features te the 4C column PET
has brcught about. some problems with program compatibility
between the 4032 nine inch and 4C32 twelve inch CPT display
machines. In some cases the changes requiredé to programs for
proper cperation on the 'FAT FORTY' may be trivial, and in
other czses the conversion may be a little more cGifficult.
In the followinc text I will atterpt to cover as many areas

where possible failure can occur and what chances need
implenenting.

LEVEL l: Programs Loading Below BASIC (<S$0400)

Standard BASIC programs should work without any
nodification, unless they employ PEEKs and PCKEs or if the
program loads into memory below BASIC. The latter rproblem
can be a bit tricky to spot unless you know specifically what
to look for. If the prograrn does load below BASIC (say
$033A) but cdoes not use locations S03ES-03F9, one metlod that
will correct the problem is:

1) LOAD the progream (don't execute)
2) enter the monitor (SYS 4)

3) display hex 03E9 - 03F9

4) modify the display as follows:

.2 O03E9 10 10 09 10 00 00 00 OO B
.2 C3F1 00 00 00 00 00 00 00 OO
.t O3F2 00 ...[don't changel...

5) resave the program via the monitor

Tape Unit #2

Another area where the standard BASIC rpogram can fail ' |
is in the wutilization of the seconé cassette unit for : ‘
sequential file access. If any program calls files from Tape ‘ |
Unit #2, unpredictable effects can result depencding on the
data coming in to the buffer. 1In this case nothing can be
done to resolve the problem unless the data can be handled
from Cassette #1. This would require all associated OPEN
comnands to be nodified for device 1. The 12" 4032 uses

parts of the second cassette buffer for other reasons that
can't be interferecé with.

PEEKs & POKEs

Decimal location 151, which is often used to check if a
particular key has been pressed, is still the same on the 12
inch, but the value of the keys have changed and therefore
expected values for certain keys will returr false
information. The following table will assist in the
conversion of a program with this problen.

- 20 -

< www.Commodore.ca

May Not Reprint Without Pemwsycr‘l
KEY OLDV {EW KEY OLDV REWV

e 15 64 S 40 83
A 48 65 T 62 84
E 30 66 U 61 85
C 31 - 67 v 23 86
b 47 68 1 56 87
E €3 6¢ X 24 53]
F 29 70 Y 54 €9
G 46 71 4 32 90
H 38 72

I 53 73 0 10 48
J 45 74 1l 26 4¢
K 37 75 2 18 50
L 44 76 3 25 51
M 29 77 4 42 52
N 22 78 5 34 53
0 60 79 6 41 54
P 52 80 7 58 55
0 64 81 8 50 56
R 55 82 9 57 57

When POKEs to this problem area are used for saving byte
variables (or any data for whatever purpose), they must be
moved to a free spot elsewhere in memory. If space is free
just below $03E9, then this could be a good area for
relocating the byte variables.

VE : i

BASIC programs using machine language utilities that
reside in the second 'cassette buffer can work properly
provided they don't use the taboo area of the buffer (ie
decimal 1001-1017). Again, if the utility uses this area,
the space must be relinquished to the PET operating system in
order to obtain successful operation of the progranm.
Usually, in the case of small machine language utilities, it
shouldn't be too difficult to understand and relocate to an
area of memory that is free.

LEVEL 3: Machine Language Programs

This will be the most difficult area to troubleshoot.
If you are going to attempt modifying this type of program,
be prepared to spend a good deal of time. Making the-
necessary changes to get the program working will most likely
require a considerable amount of effort, which I personally
don't recommend. In most cases the author should be
contacted and he/she should facilitate the changes. If you
are really desperate, here are a few helpful hints that may
assist you:

- 21 -

2 www.Commodore.ca

May Not Reprint Without Permission

1) use Supermon or Extremon to locate any
absolute occurences of memory addresses
from SC3E9 to $03F9 and re-assign new
values

2) check hi—loﬁ‘tables for references to the
- same address locations and, if any,
re-assign new values

3) seek all immediate operations involving
$03 and $E9-F9... if any, look at code
vhere occurence takes place and evaluate

" 4) check all JSR & JMP occurences into the

SE000 ROM. All other ROMs can be ignored
since they are identical.

Factory CRT Setup

One other problem that may be encountered is screen

setup. If the user decides to enter ‘'text mode' with
-"PRINT CHRS$(14)", the top line of the screen may run off the
upper edge and not be visible. To restore 'graphics mode’
enter "PRINT CHR$(142)". One easy solution to this problem
is to use "POKE 59468, 14". This will put the PET in text
mode without opening up pixel lines between text.

CONCLUSION

The changes required to existing softwaremay be a
problem now but, at the same time, these changes bring the
4032 to a closer compatibility with the 8032 model. Features
such as repeat keys, scroll up and down, the bell, and more
have been implemented. These changes make the 4032 a much
more desirable product. I hope the information in this
report will help support the 12 inch 4032. If anyone

encounters a problem that I have not covered, please let me
know.

Editor's Note

The new 12" monitors have an adjustment for screen
height. At the factory, the machines are turned on, and this
adjustment is used to set the top line of text just under the
top of the CRT face. However, unlike the 8032 which comes up
in text mode, the 4032 comes up in graphics mode. Therefore,
when text mode is set on the 4032, the top and bottom lines
get pushed off the screen. You'll also note that when
graphics mode is entered on the 8032, a 'rectancular' display
results with a gap at the top and bottom of the screen.

r

(>3

C; www.Commodore.ca

May Not Reprint Without Permission

If you want to use text mode on the 4032, you can adjust
the screen height with very little effort and bring the top
and. bottom lines of text back onto the glass. Undo the
machines main "housing screws under both sides of the
keyboard, open the 'lid', and set the stand in place. If you
look up. underreath the monitor, you'll see the bottom of the
video circuit board. There are two adjustments accessible
from here. One is marked 'Screen Height'. Fill the screen
with: characters and enter text mode (CRR$(14)). With a

small screwdriver you can adjust Screen Height to get the
full display.

.:N‘
S—

,Miog to these calculations,
~ wa're only going to be able to
_-make three payments on this thing.

- 23 -

eapp e

2 www.Commodore.ca

May Not Reprint Without Permiss

Half = Dialogue - Inputting) Jim Butterfield, Toronto

Asking a program to go and -get input from the user is a
subtle thing for beginners. When you write your first
programs, it's haré to 1look ahead and see the program
independently communicating with the user. "If the program
needs a value, I'll program it in right now ... ® It takes a
level of sophistication to imagine a program accepting
vorking values at a later time, when it runs, and using
different values supplied by the user in different runs.

There are three fundamental ways of checking what the user is

doing at the keyboaré: INPUT, GET, and a PEEK. We'll talk
abaout each, and its uses.

INPUT,

The INPUT statement does a 1lot 'of work for you. It's
certainly one of the most powerful statements in Basic. Some
of us would like to see it more powerful, and some would like

to see it less sophisticated; for the moment, we'll have to
accept it as it is.

When you give the command INPUT in a program, a prompting
question mark is printed and the cursor begins to flash.
Your program is held in suspended animation; it will not
resume operation until RETURN is pressed. There's no code
which allows something like:

INPUT M:IF (NO REPLY IN 15 SECONDS) GOTO...

Your code will hang on the INPUT statement forever if the
user doesn't reply.

When the user presses RETURM, -INPUT takes the information
from the screen. It doesn't matter if the user wandered back
and forth, changing, deleting and inserting; INPUT looks only
at the screen which is the result of his actions. In fact,
if there's something on the screen that the user didn't type,
INPUT will take that too. This can be useful for prompting:
you can arrange to type a sample response on the screen, and
the user will be able to press RETURN to have that response
entered. As INPUT takes the information from the screen, it
trims away all leading and trailing spaces; other than that
it takes the whole line, even though it may not need it.

Now INPUT starts to plow through the line, digging out the
information you need for your program. If it's looking for a
number it will not like to find a string, and will ask, REDO
FROM START. If it's looking for a string, it won't mind a
number at all: it will accept it as a string.

Road Signs for INPUT,

Whether INPUT is looking for a number or a string, it will
stop its search when it finds one of three things; comma,
colon, or end of line, If it finds a comma it will assume
that more information will be needed 1later in the INPUT
statement; if it finds a colon or end of line it assumes that
there is no more useful input from the user. If it needs
more, it will ask for it.

ion

(; www.Commodore.ca
) e May Not Reprint Without Permission
Suppose you need to input a string that contains' a comma or a

colon, such as ULYSSES M PHIPPS, PHD. or ATTENTION: JOHN,

MARY. Since INPUT normally stops at the comma or colon

character, we need to do something. The answer is easy: the

user must put the desired input in quotes: "ATTENTION:

JOHN, MARY" and the whole thing, commas, colon and all, will

be received as a single string. '

Keep in mind that the INPUT statement allows prompting.
INPUT “YOUR NAME";N$ causes the computer to type YOUR NAME?

and wait for input. That's a good human interface; help the
user along.

If a user presses RETURN without supplying any information on
the screen, programs on the PET/CBM will stop. There are
several ways to prevent this from happening; the easiest is
to add a "canned reply" to the input prompt message. When
you are writing the INPUT statement prompt (such as
YOUR NAME) add two extra spaces and, say, an asterisk
character; then type three Cursor-Lefts (they will print as
an odd-looking reversed bar) and close the quotes on the
prompt. Finish the INPUT statement in the usual way: a
semicolon behind the prompt and then the name of the variable
to be input. Now: the asterisk or whatever will print to
the right of the prompt and question mark. Unless the user
overtypes it, this character will be received from the screen
as his input - and the program won't stop.

One last comment: don't forget that INPUT can accept several _
values. You can say INPUT N$,A$,C$S and allow the user to i
type JOE BLOW, CITY HALL, DENVER. 1It's often better to use

separate input statements: users can respond better when

prompted for each piece of information.

GET and PEEK: a preview

GET isn't as clever as INPUT,- - but it has valuable uses.
First of all, it doesn't wait; if a key isn't ready in the
keyboard buffer, the GET statement 1lets Basic continue,
Secondly, keystrokes received with GET don't affect the
screen unless you, the programmer, decide to allow them to do

so. This means that you have much more control over what the
user can do.

There's a PEEK .location (PEEK(151) on most PET/CBMs,
PEEK(515) on Original ROMs, and PEEK(197) on the VIC that
tells you whether a key is being held down or not. This can
be useful to avoid the situation where a user needs to press
the same key repeatedly to cause some action; you can program
so that the key repeats its action if it is held down.

We'll talk in more detail about the GET and PEEK next time
around. They are more fun in some ways that the INPUT

statement... but they call for quite a bit more programming
work to be done.

Editor's Note

Jim's next article was made available to The Transactor just
shortly after this one. Rather than splitting them between
two issues, we've decided to include it here in Issue #4.

2 www.Commodore.ca

May Not Reprint Without Permission

llalf a _dialogue - Reading keys Jim Rutterfield, Toronto

Fe've already discussed the INPUT statement. When you do an
INPUT, the program pauses and waits for the user to compose a
line on the s¢reen. When the user presses RETURMN, the
program resumes and uses the information entered.

This is often useful and convenient; but when we use INPUT,
we don't have complete control over the user. If the user
cdoesn't answer, the program is stopped forever, and other
jobs will not take place. The user might also do undesirable
things like clearing the screen, and might even stop the
program if he presses RETURN without any input on the screen.

We can deal with the user on a more elemental level by using
the GET command.

GET.

GET takes one character directly from the keyboard buffer;
the character does not go via the screen. 1It's usually a
good idea to echo the character to the screen so that the
user can see what he's typing (GET X$:PRINT X$;). There is a
GET numeric (GET X) which gets a single numeric digit, but
it's rare since the program will stop if the |user
inadvertantly presses an alphabetic key.

GET doesn't wait. If there's no character in the input
buffer, GET returns with a null string. We can wait for a
key to be pressed with a line like: 2

300 GET X$:IF X$="" GOTO 300

You can see that if we get no character, we go back and try
again. More sophisticated versions of the same program might

allow us to wvait for up to 10 seconds for the user to type a
key.

GET receives everything typed at .the keyboard. ' Even cursor
movements or insert and delete keys are received as single
character strings. The RUN/STOP key and the SHIFT are about
the only keys that GET won't receive directly.

Screen control keys - cursor move, reverse, home, etc. - are
picked up directly by GET and don't influence the screen when y
typed. 1If you want them actioned, you'll have to arrange for
it yourself, again by echoing the character with a PRINT. On 7
the other hand, GET is an excellent way to prevent a user :
from clearing the screen or doing other things that you don't
want. The easiest way to identify such characters is by
their ASC ascii value, but the obvious also works:
GET X$:IF X$="[HOME]" GOTO... The Reverse-S$S symbol will
appear where I have typed [HOME].

Sometimes there are 1left-over characters in the keyboard
buffer. The user might have touched the keyboaré
accidentally, or the last key pressed might have "bounced"
and been registered twice. You can strip out such characters
with simple coding like GET X$,X$,X§$,XS. If the ‘keyboard

@; www.Commodore.ca

May Not Reprint Without Permission

buffer contains up to four characters, they will be cleared
out; if there were none, GET still doesn't hold anything up.

Remember that GET takes characters from the keyboard buffer.
For one key depression, no matter if you tap a key quickly or
hold it down for five minutes, only one character will go
into the buffer and GET will find it there only once.

PEEK.

The value of PEEK(151) will tell you whether or not a key is
being held down. If you find 255 there, no key is being
pressed - except maybe the SHIFT key which doesn't register
there. If there is any value other than 255 in PEEK(151),
somebody's holding down a key.

Special note: for Original ROM PETs, the place to check is
PEEK(515). And on the VIC, check location PEEK(197); a value
of 64 means that no key is being pressed.

It's possible to figure out which key is pressed based on the
value you find in the PEEK location, but I don't recommend
it. Different keyboards are "decoded" in different ways, and
what works on one machine won't necessarily work on another.

The best way to sort out which key is pressed is to use the
PEEK together with the GET statement.

The trick is this: if GET says that there is no character in
the keyboard buffer and PEEK says that someone is holding a
key down, it's safe to assume that the key being held down is s
the last one you received with GET. Timing is important
here, since a key could be touched in the split second

between two Basic statements. I recommend the following kind
of sequence:

300 X=PEEK(151))

310 GET X$:IF X$<>"" THEN X1=ASC(XS$):GOTO 330
320 IF X=255 GOTO [...NO KEY ACTIVE]

330 KEY ACTIVITY

This kind of test is very good for movement games, where you
are directing something (a ball, a paddle, a tank) around the
screen based on whether a key is held down or not. .

Summary.

GET is more elementary than INPUT. You'll need to do more

work with GET, but you'll have more control over the user
input.

Use the PEEK where it's necessary to find out if a key is
being held down or not ... it can give you a nice interface,

especially where the user would otherwise pound repeatedly on
a key. . :

- 27 -

2 www.Commodore.ca

May Not Reprint Without Permission

WORD COUNT 9 David A. Hook, Barrie Ontario

Purpose:

After slaving over the composition of an article, most
writers are required to count the words, as the basis for
payment for their work. I am told that many commercial
word-processors include this function. Neither WordPro 3 nor
WordPro 4 contain this feature.

Although my writing efforts are infrequent, my wife has
done a lot of freelance work. Currently she is working on a
complete rewrite of a BASIC text to be used in Grade 9. This
project involves a 40% reduction in word count. Thus, this
program was created.

An initial effort was accomplished using BASIC. For a
WordPro file with 2200 woréds, the time to perform the count
was a shade over 21 minutes. This was acceptable, since

other tasks (non-computer) could be performed while the CBM
was busy.

Hovever, we've all heard the praises sung for the speed
of Machine Language. The 1logic aspect was fairly
straightforward and already de-bugged in Basic. The results
are before you in this article.

The same WordPro file was counted in 12.67 seconds!!

The program works with either WordPro 3 or VordPro 4
files and with Basic 2.0 and Basic 4.0 (Regular-, Fat-40 and
80-column machines). The WordPro file is read from Drive #0
of the disk unit. DOS 2.1 is not necessary, although I have

not included an error-checking routine (except for Basic
4.0).

Procedure;

First, type in the BASIC listing exactly as given below.
Be very careful to include all the spaces specified,
especially in Line 8 of the program. There is one after the
CLR/HOME, 13 before the title and 12 following.

Now SAVE this part as "WC.BAS". After VERIFYing, reset
the machine for the next step:

For those who wish their own Assembly, skip to Step "b"
below.

a) For the "non-Assembler"-crowd here's the method for
you. Type in 'SYS4' to get into the M.L. monitor. Then
enter the following line, right after the displayed "." (at
the present cursor position):

.M 0624 06BC <RETURN>

o0

2 www.Commodore.ca

May Not Reprint Without Permission

) The screen will fill with a display much like that shown
in the 'HEX DUMP' listing below. Your task is to carefully

change all of the displayed figures to match the listing (top

half). Simply type in the proper values, remembering to hit
'RETURN' at the end of each line. ’

Y For the remainder, do the same again after typing this
ine:

.M 06BC 0733 <RETURN>

After making the required changes,.this should be SAVEd,
using the monitor, as follows:

.S "0:WC.ML",08,0624,0733 <RETURN>
.X <RETURN> (exit the monitor)
You may VERIFY this normally, if you wish.

Now skip to Step "c" below.

b) The source code for the program has been included.
This code will work with either MAE or ASM/TED assemblers.

If you choose to relocate the machine-language "start
address”, remember that there are three references in the
Basic portion. Be sure that these get corrected, too.

c) If you're still with me, only two things remain to be
done:

Simply reLOAD "WC.BAS" first, then reLOAD "WC.ML". Use
the normal BASIC SAVE command now, and both pieces will be
linked together.

Remember that any changes to the Basic portion.now'will
also move the machine language. Do so at your own risk.

Operation;

Before you RUN the program, be sure you know the file
name of the WordPro file to be counted. Put this diskette
into Drive #0, and you are ready to go.

The program self-adjusts for 40- or 80-column operation.-
This assumes that you will only be counting 40-column files
on a 40-column machine, and 80-column files on an 80-column
machine. Thus, the correction is based on the machine in
use, not the file being read.

The program ignores WordPro format commands (and
anything on the same line as a format command).

- 29 -

C= www.Commodore.ca

May Not Reprint Without Permission

If you have used the "--" charicters as a dash, there
should be no preceding or follcowing blanks. If you use a

series of "-", (as I sometimes do for underlining) the. count
~may not be correct.

If you've entered everything correctly, the word count
total shoula have appeared on the screen, after 2-25 seconds.

Disk activity should end and the "READY" prompt should now be
displayed.

Since none of us ever make any misteaks (22?), you should
be ready to count every WordPro file within reach. In our

house, this program has had a real workout. I hope it proves i
useful to you too.

I blame him for getting me into this all-consuming habit...er

This is the usual place to acknowledge Jim Butterfiela. i
i
hobby! i
i

iR COOLIaT =

LI =T INNG

PRINT"MSFLACE PROGRAM DISK IM DRIVE #0
® PRINT"MHIT A KEY WHEM RERDY =
1 GETZ$:IFZ$=""THEN11
12 PRINT" OK"
13 INPUT"NFROGRAM HAME #IRNI";F$
14 OPEN1,3,15,"I@":CLOSE]
15 OPEN2,&.2, "8:"+F$+" , P.R"
16 IFDSTHENZ$=D5$:GOTOZ -
17 SY51582 |
18 PRINT"SaIINASPANEORT COUNT = " 1
19 PRINTPEEK(1572 3 +2S5#PEEK 15730 .|
26 2$="DONE"
21 PRINT"MH"Z$:CLOSEZ : EMD
READY.

@ REM WORD COUNT 5 -- WORDPRO

1 REM AS OF NOYEMEER 29. 1351 o
Z REM P
3 REM <C)> DAVID A. HOOK, S2 STEEL ST.

4 REM ERRRIE. ONTRRICO. CANADA. L4M ZE9

S REM

& REM ALL RIGHTS RESERVED

7 REM

5 PRINT"D & - WORD COUNT ML "

9

1

1

- 30 -

-1 a1 Ol IHT

HE ==

C*
PC
R780

[]
L1}

0624
062C
0634
063C
0644
064C
0654
065C
0664
066C
0674
067C
0684
068C
0694
069C
06A4
06AC
06B4
06BC
06C4
06CC
06D4
06DC
06E4
06EC
06F4
06FC
0704
070C
0714
071C
0724
072C

..00...0000.0.000.p......‘.....l.

00 00 00 00 00 00 00 00 00 00 00 00 00 00 se 00 00 90 00 00 00 00 00 00 00 eo 00 00 O 00 00 00 00 o0

o o

I

IRQ SR AC XR YR SP
E455 34 33 38 36 FA

45 01
24 3A

99 22 11
A2 09 A9
10 FA A9
84 AE 00
0a 8D 28
FF 20 06
00 SE 2B
27 06 18
06 8D 24
00 8D 25
27 06 EC
06 07 EE
AC 2D 06
09 8E 26
55 06 C9
06 FO 03
06 AE 29
06 CA DO
CO 6F FO
C9 6F DO
20 FO AC
FF 8E 29
C9 6F FO
CO 2D FO
8E 2A 06
06 DO 84
EE 26 06
A2 FF 8E
AE 2C 06
FF DO 02
A5 96 FO
F8 92 60
B4 20 06
27 06 BO

- 31 -

12
00
28
80

22
oD
A2
EO
A2
20

C; www.Commodore.ca

May Not Reprint Without Permission

2 www.Commodore.ca

May Not Reprint Without Permission

PAGE 01
0001 .LS
0002 ;***************************************t
G003 ;* *
0004 ;* WORDCOUNT.SRCY9 -- WORDPRO 3 *
0005 ;* . *
0006 ;* AS OF NOVEMBER 29, 1981 *
0007 ;* *
0008 ;* (C) DAVID A. HOOK, 58 STEEL STREET *
0009 ;* BARRIE, ONTARIO L4M 2E9 * .
0010 ;* CANADA (705) 726-8126 * {
0011 ;* * '
0012 ;* ALL RIGHTS RESERVED *
0013 ;* * |
0014 ;**
0015 ;
0016 ; VARIABLES :
0017 ; P
0018 CHANNEL .DE $02 ;DISK CHANNEL NUMBER P
0019 ENDLIN .DE $1F ;END OF LINE '
0020 BLANK .DE $20 ; BLANK !
0021 LENGTH .DE $28 ; NORMAL = 40 CHARS. !
0022 DASH .DE $2D ; SINGLE DASH |
0023 SHFSPC .DE $60 ; SHIFTED SPACE ;
0024 FORSPC .DE $6F ; FORCED SPACE
0025 FORCMD .DE $7A ; FORMAT COMMAND
0026 ST .DE $96 ; STATUS BYTE P
0027 "SAVX .DE $B4 :KEEP R(X) i
0028 H :
0029 SCREEN .DE $8000 ; SCREEN MEMORY . :
0030 IMAGES .DE $8400 ; SCREEN IMAGES (40 COL.)
0031 ;
0032 ; BASIC POUTINES
0033 ; ’
0034 SETINP .DE S$FFC6 ;SET INPUT DEVICE
0035 CLRCHN .DE SFFCC ; RESTORE DEFAULT I/0 DEV.
0036 WRT .DE SFFD2 ;PRINT CHARACTER
0037 GETCHR .DE SFFE4 ;GET CHARACTER
0038 ;
0039 ; .0S (DON'T STORE CODE)
0040 ; .
0041 .BA $0624 :
0042 ; '
0624- 0043 WORDTOT .DS 2 ;# WORDS (TOTAL) _
0626- 0044 LINETOT .DS 1 ;# WORDS (CURRENT LINE) e
0627- 0045 CHARTOT .DS 1 ; # CHARACTERS (CUR. LINE) 1
0628~ 0046 LINLEN .DS 1 ;LENGTH OF WORDPRO LINE
0047 ; ;
0629~ 0048 LINFLG .DS 1 ;LINE START FLAG |
062A- 0049 BLNKFLG .DS 1 ;BLANK FLAG |
062B- 0050 WORDFLG .DS 1 ;WORD FLAG .
0051 ; f
062C- €052 CURCHAR .DS 1 ; CURRENT CHARACTER
06 2D- 0053 LASTCHAR .DS 1 ;LAST CHARACTER
0054 ;
062E- A2 09 0055 START LDX #LASTCHAR-WORDTOT " ;INITIALIZE LOCS.
0630- A9 00 0056 LDA #0
0632- 9D 2406 0057 LOOP STA WORDTOT, X

0635~
0636-

063 8-
063A-
063C-
063F-
0642-
0644~

0646-
0647~

064A-
064C-

064F-
0652~

0655~
0657~
06 5A~
065D~

0660~
0661~
066 4-
0667~
066A~
066D~
066F-

0672-

0675~
067 8-
067B-

067D~
06 80—
0683~
0686—-
06 89-
06 8B-
06 8D-

06 8F-
0692~
0695~

0698-
069A-

069C-
069F-

06Al1-

84
80

06

06

07

06

06

06

0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115

; .
SETLEN

i
EIGHTY
FORTY

;.
SETCHN

i
LOADADR

4
LINESTRT

’
ADDLINE

°
’

L4
CHKLINE

-0

i
FORMAT
FINISH

i
NOTFORMAT

°
’

e

<

DEX
BPL

LDA
LDX
STX
LDX
CPX
BEQ

ASL
STA

LDX
JSR

JSR
JSR

LDX

STX
STX

CLC
LDA
ADC
STA
LDA
ADC
STA

STX

LDX
CPX
BEQ

JSR
INC
LDA
LDY
LDX
CMP
BNE

STX
JSR
JMP

CMP
BNE

LDX
BEQ

INC

C‘ www.Commodore.ca

May Not Reprint Without Permission

PAGE 02

LooP

#4LENGTH ;40/80 COLUMN ?
#SHFSPC

IMAGES

SCREEN

#SHFSPC

FORTY

A
LINLEN

#CHANNEL : SET CHANNEL FOR INPOT
SETINP

GET ;s IGNORE LOAD ADDRESS
GET :

$0 ;s START A WORDPRO LINE
WORDFLG

LINFLG

CHARTOT

;SUM PREV. LINE INTO TOTAL
WORDTOT
LINETOT
WORDTOT
WORDTOT+1
$0 '
WORDTOT+1

e

LINETOT

CHARTOT ;IS LINE DONE ?
LINLEN
LINESTRT

GET

CHARTOT

CURCHAR

LASTCHAR A
$0

§FORCMD ; WORDPRO FORMAT COMMAND ?
NOTFORMAT

LINETOT ;ZERO LINE COUNT
GETREST ;IGNORE REST OF LINE
LINESTRT

#ENDLIN ;;END OF LINE SYMBOL ?
MORE

WORDFLG
DONELINE

LINETOT ;GOT A WORD

- 33 -

06A4-

06A7-
06 AA-

06AC-
06AF-
06B0-

06B2-
06B4-

06B6-
06B8-

06BA-
06BC-

06BE-
06CO-

06C2-

06C5-
06C7-

06C9-
06CB-

06CD-
06CF-

06D2-
06D4-

06D6-
06D8-

06DA-
06DC-

-06DE-.

06EOQ-

06E2-
06E5-
06E6-
06E9-

06EC-
06EF-

06F1-
06F4-

06F6-
06F9-

06FB-

4C

AE
DO

AE
DO

co
FO

co
FO

C9
FO

Cco
DO

EE

Cc9
FO

C9
FO

A2
8E

C9
FO

C9
FO

Cc9
DO

Cco
FO

8E
E8

4C

AE
DO

AE
FO

EE
A2
8E

92

29
21

27
13

20
OF

€F
0B

20
04

6F
03

26

20
AC

6F
A8

FF
29

20
16

6F
12

2D
04

2D
OF

2B

2A
75

2A
84

2B
08

26
00
2B

06
06

06

06

06

06
06

06

06

06
06

0116
0117
0l18
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141

DONELINE
;
MORE '

.
LEADBLK

.o

e

<o

<o

i

COUNT

i
NOTLEAD

.
’

’
CONTLIN

.
!

-e

<0

-

8
NOTDASH

WORDCOUNT

DASHCOUNT

.
’

JMP

LDX
BNE

LDX
DEX
BNE

CPY
BEQ

CPY
BEQ

CMP
BEQ

CMP
BNE

INC

CMP
BEQ

CMP
BEQ

LDX
STX

CMP
BEQ

CMP
BEQ

CMP
BNE

CPY
BEQ

STX
INX
STX
JMP

LDX
BNE

LDX
BEQ

INC
LDX
STX

PAGE 03
FINISH

LINFLG
CONTLIN

CHARTOT
NOTLEAD

#BLANK
NOTLEAD

$FORSPC
NOTLEAD

#BLANK
COUNT

#FORSPC
NOTLEAD

LINETOT

#BLANK
CHKLINE

#FORSPC
CHKLINE

#SFF
LINFLG

#BLANK
WORDCOUNT

#FORSPC
WORDCOUNT

#DASH
NOTDASH

$DASH
DASHCOUNT

WORDFLG

BLNKFLG
CHKLINE

BLNKFLG
CHKLINE

WORDFLG
NOTYET

LINETOT
10
WORDFLG

- 34 -

2 www.Commodore.ca

:+ STARTED LINE YET ?

May Not Reprint Without Permission

;LEAD BLANK IMPORTANT ?

;NOT FIRST CHAR.

;LAST OF PREV. LINE ?

; CURRENT CHARACTER ?

;LEAD BLANK MEANS A WORD

; IGNORE LEAD BLANKS
;CONTINUE THE LINE

;CONTINUE THE LINE e

; START THE LINE

;s '=--' IS ALSO A WORD END

(Y4

;CONTINUE THE LINE

;sFOUND END OF WORD

)

;CONTINUE THE LINE o

;sWERE WE ON A WORD

s COUNT A WORD

-~

O6FE-
0700-
0703~

0706-
0709-
070C-
070F-

0711~
0713~

0716~
0718~

071A-
071D~
071F-

0720~

0721~
0724~
0725~
0727-
07 2A-
072C-
072D~
0730~

0732~

A2
8E
4C

AE

FF
2A
75

2C
2D
E4
02

40
2C

96
06

cC
F8

28
B4

06
B4

27
F3

06
06

06
FF

06

FF

06

07

06

0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206

e
’

NOTYET
,
GET

°
’

NONZERO

’

<o

;
OK
GETREST
LOOP?2

<o

«e

LDX
STX
JMP

LDX
STX
JSR
BNE

ORA
STA

LDA
BEQ

JSR
LDX
TXS

RTS

LDX
DEX
STX
JSR
LDX
DEX
CPX
BCS

RTS

< www.Commodore.ca

May Not Reprint Without Permission

PAGE 04

#SFF sMARK THE BLANK
BLNKFLG
CHRLINE ;CONTINUE THE LINE

CURCHAR ;GET A CHARACTER
LASTCHAR

GETCHR

NONRZERO

301000000
CURCHAR

*ST sEND OF TEXT ?
OK

CLRCHN ;RESTORE NORMAL 1/0 DEVS.
#SF8 sRESTORE STACK AND .
;GO BACK TO BASIC

LINLEN ; IGNORE REST OF LINE

*SAVX sKEEP R(X)
GET
*SAVX

CHARTOT
LOOP2

- 35 -

0208

LABEL FILE: [/

/CHANNEL=0002
/LERGTH=C028

" /FORSPC=006F
/SAVX=00B4
/SETINP=FFC6
/GETCHR=FFE4
CHARTOT=0627
BLNKFLG=062A
LASTCHAR=062D
SETLEN=0638
SETCHN=064A
ADDLINE=0660
FINISH=0692
MORE=06A7
NOTLEAD=06C5
WORDCOUNT=06EC
GET=0706
GETREST=0721
//0000,0733,0733

PAGE

.EJ
.EN

EXTERNAL)

/ENDLIN=001F
/DASH=002D
/FORCMD=007A
/SCREEN=8000
/CLRCHN=FFCC
WORDTOT=0624
LINLEN=0628
WORDFLG=062B
START=062E
EIGHTY=0646
LOADADR=06 4F
CHKLINE=0675
NOTFORMAT=0698
LEADBLK=06AC
CONTLIN=06CD
DASHCOUNT=06F1
NONZERO=0713
LOOP2=0725

- 36 -

05

2 www.Commodore.ca

May Not Reprint Without Permission

/BLANK=0020
/SHFSPC=0060
/ST=0096" -
/IMAGES=8400
/WRT=FFD2
LINETOT=0626
LINFLG=0629
CURCHAR=062C
LOOP=0632
FORTY=0647
LINESTRT=0655
FORMAT=06 8F
DONELINE=06A4
COUNT=06C2
NOTDASH=06E2
NOTYET=06FE
OK=0720

@

i
W\

The battle between BASIC and PASCAL may soon be over. Enter
COMAL, a new programming language that combines the best of both.

COMAL gives you the ease of BASIC, along with the power and
structures of PASCAL.

Commodore has generously placed CBM COMAL in the public domain.

Feel free to make disk copies for your friends or include it in a
User Group Program Library.

If you are interested in COMAL, keep us in mind. We are the COMAL
USERS GROUP. We keep you in mind with a Program Exchange,
Newsletter, COMAL Manual, COMAL Handbook, and COMAL Reference
Card. If you would like to be a COMAL PIONEER, we have a
complete deluxe COMAL STARTER KIT that provides you with
everything you need now, and includes a subscription to our
newsletter, the COMAL CATALYST, as well as one year of free
updates to the Manual and Handbook. Here is what you get:

* CBM COMAL Interpretter

FULL version (only 5K free in a 32K PET/CBM)

SPLIT version (INPUT and EXECUTE modules, each 16K long)
USER GROUP DISK #1 (Introduction to COMAL)

HELP DISK (includes 90 sample programs, one for almost every

COMAL Keyword - with an automatic loading MENU)
CBM COMAL Manual
One year free updates.to the manual
COMAL Handbook
One year free updates to the handbook
COMAL Reference Card)
Subscription to the COMAL CATALYST Newsletter
Plastic diskette sleeve that holds two diskettes

* %

* ¥ % % * * ¥

This comes neatly packaged in our custom padded 3 ring binder,
vith a notepad included for your notes as you use COMAL. We ship
the kit in a box we had specially made to provide safe shipping.

The complete COMAL STARTER KIT costs only $47.50 (plus $2.00
shipping within the US, $4.50 shipping to Canada & Mexico, $7.00
Air Mail shipping elsewhere). Or we provide an 18 page COMAL
. INFORMATION PACKET for FREE if you send us a large buszness size
envelope, self addressed with 40 cents postage.

OMAL 253

5501 Groveland Terrace, Madison, WI 53716 U.S.A.

- 37 -

=
s May Not Reprint Without Perm

7« WwW.Commodore.ca

ISsion

2 www.Commodore.ca

May Not Reprint Without Permission

SX-100 IEEE HMModem Software: A Review Don White
. Nepean, Ontario

The SX-100 IEEE Modem .Software was written by Eugene
Fisher, designer of the Livermore STAR Modem and, as marketed
under another cover, the CBM 8010 Modem. Gene is also
co-author of 'PET and the IEEE-48& Bus (GPIB)'. The package

is marketed by ECX Company, 2678 North Main Street #6, Walnut
Creek, CA 94596.

According to the advertising, the SX-100 software offers
the following features:

1. Menu driven ' i
2. Communications mode : ;
3. Save communications to disk '
4. PET to ASCII conversions

5. Save communications to printer

6. Business keyboard conversions

7. 40 or 8C character PET/CBM compatible

8. Full/half duplex operation

9. Receive files to disk(prg/seq)

10. Line verification before transmission, protocol
11. Disk directory handler - ,
12. Automatic file creation for text storage
13. File playback for off-line viewing

14. Automatic talker/listener syncronization
15. WordPro III or IV compatible
16. Control operation: formfeed, linefeed, tab, .
backspace, delete, escape, break, bell, etc. s

The program requires a 16K PET/CBM. When run, it lowers
the top-of-memory and pokes a machine language routine into
memory and then requests you to input the date. Following
this you are presented with a menu of seven options.

Start Communication f
Directory Listing i
Key Function Tables ‘ !
Look At Disk File ‘ i
Quit

Receive To Disk ;
Transmit To Disk 5

HOyorROO

The 'Start Communication' option allows you to use the
PET as a terminal to communicate with another system. 1In
this mode it will be possible to use the printer to retain a
hardcopy of the session if data is not being input too
quickly from the other computer, i.e. if the data being
transmitted is being typed into the transmitting computer.
While in the communications mode you can activate the disk
log. You will be prompted for the drive number and then a
SEQ file will be opened under a name created using the date
(ex: MODEM81-11-11.A). This file can be closed at any time
or it will be closed automatically on returning to the menu.
Subsequent files can be opened during the same session. The
new file name will have the last 1letter incremented to
differentiate it from previous files. :

(&4

- 38 -

(; www.Commodore.ca

May Not Reprint Without Permission

The 'Directory Listing' option allows you to view the
directories of either drives and is useful in preparation for
disk-to-disk communications.

The 'Key Function Tables' is simply a help mode that
informs you of the keys to push to transmit the control
functions of the ASCII code to timesharing systems and
bulleting boards requiring them. Special IEEE and other
functions are controlled by typing a shifted number (or
shift-return, number on the business keyboard).

The 'Look At Disk Files' option allows you to view the
contents of program or sequential disk files. A copy of the
file can be sent to the printer and the file dump can be
stopped by simply typing 'end'. The dump of a PRG file is
only useful in giving you and indication of what the program
is about. It does not provide a program listing.

The 'Quit' option resets the top-of-memory pointers and
ends the program.

The 'Receive To Disk' option allows you to receive
program and sequential disk files. The program will
automatically generate a file name utilizing the date or you
can supply a file name. The routine uses a handshake routine
‘which is only available from another SX-100 program. If you
indicate that the transmitting program is the SX-100 then
nothing will be sent to the disk until the proper 1link has
been established. Otherwise, everything received is sent to =1
the disk.

Finally, the 'Transmit To Disk®' routine is the companion
option to 'Receive To Disk'. If connection with the other
computer cannot be established, you can exit this routine by
pressing any key on the keyboard. 1If you indicate that the
receiving computer is operating under an SX-100 program,
nothing will be sent until the proper handshake has taken
place. If the receiving program is not the SX-100 then
transmission will begin immediately. Exit from the routine
is automatic once transmission is completed.

I have used this program for a number of weeks now and
it seems to operate as described. It also appears to be
‘bug-free'. I only have two complaints. Firstly, no cursor
is displayed when in the communications mode and secondly,
there is no routine included to handle parity and this has
prevented me from communicating with some time-sharing
systems. However, for anyone requiring the capability to
easily transmit and receive files between PETs I would
recommend this program.

The major drawback is the price, $79.95(US) - NOT $49.95
as advertised in COMPUTE!. There is also a 5% service charge
if you use VISA and a $1.50 shipping charge. By the time I
received the VISA statement I was committed to $102.75
(Canadian). The choice is yours. '

- 39 -

g WWW. Commodore.ca

May Not Reprint Without Permis

DUMP-HATE _ _ Ted Evers, Toronto

A nulti-lecac system fcr use with Comnodore PET/CBHMs.

As mentioned in a previous article, the original
multi-load system was part of our 2V-8101 video-audio

interface fer the Commodore 200C series ccmputers, as shown
below.

Somér | pLuG:
c PREN | Pren
s $2.2 '71100-05'0':714“8 -050
S . & S \ 3)
¢ el ol
T %1406 QD o |
€ ! “_o 5| lu
] \
P £y |
o
R o | |
T "inTeaNaL W-Q"HG-anopn"l "EwTcRNALT “T0 SLAVES®

By means of the spare inverter-driver on this board,
programs could be dumped from the master computer to about
twenty slave units. In order to increase its capability to
load programs to up to sixty slaves, when so required, the
first "Dump-Mate", a multi-output driver, was built.

However, with the introduction of the Commodore 8032 and
4032 (12" screen), the multi-load system used in the 2001 was
no loncer possible, as all six inverters of the 7406 I.C.
were now required for the video interface. This probler was
overcome by the redesign of the "Dump-Mate" into a
self-contained, external type nmulti-loader.

4

Dump-mAaTe " .

+ Sy o—

A,

/:tv

‘Din " SockeT,
PREH. &
71200-950.

E ——
nyv c H 4 78052 o a4sv

A4l

INYo0 |}

sion

« www.Commodore.ca
- :
May Not Reprint Without Permission
~Each of the four outputs can be connected to up to
twenty "slave" computers by means of the cassette-ports
interface assembly shown below.

@ ¢ P 2) Lok
Mol€En . A
}l':‘”:f ® ;,‘07-94-69‘1 Comneclsr Hesing
Dumpmare # o03-%° =31-9b] |coatats
out puTs (5::%)
g fnn gid] MhLh e
F D A F © A F D F A
ToSLavE # | To:5lave &2 To-Slave sy To:-SWAvE 3 &4
casstla Cat Sl Casretta cas'a T
fert Port port port

Connection between the input of. the Dump-Mate and the
output of the master computer is made by a short length of
five-conductor cable with "DIN" plugs (PREH #71418-50) on
both ends.

The output socket at the computer end is wired as per

diagram below:. b

LUy

A .

/x/
(n DoeD A
LeAD
‘ Yowa

! *Dump-our” .

oF
AV-&101
E A InTeRFACE 5 F A g
\———va-__/ ~v"
"CASS& TTE - PorT" "CASSETTE-PorT"

Figure "A" is used for PET 2001 series with the AV-8101
interface and dump circuit, while figure "B" is the wiring

required for use with the regular 2000, 4000 and 8000 series
computers, ' o

Another way of connecting the Dump-Mate to the computer
is shown below:

e
=8
e EDC 1——-% .
N P MASTER
:.._.;;E ‘XASSETTE -

- — o F -~ PoRrT
Lin’ Plua Lt

PreEH & 71418-050

- 4] -

2 www.Commodore.ca

May Not Reprint Without Permission

In this manner, any PET computer can be utilized as the
master unit, however, the cassette port will not be available
for program loading.

The following is a-short "how to" guide:

1. Be sure that the power to all equipment is OFF before
connecting or disconnecting cables.

2. When everything is in place, switch on all units,
including the Dump-Mate.

3. LOAD a program into the master computer.

4. The slave computers requiring this program should now
type:

NEW <return>
LOAD <return>
5. The monitors of these units should now show:
SEARCHING '
6. On the master unit, type:
SAVE "name" <return>
7. Push the "dump® switch.

8. After about seven seconds, the "data" light will go off
and the slave monitors will show:

FOUND "name"
LOADING

9. Push the "dump" switch again.

10. The "data" light will stay on until the program is
loaded, at which time READY. and flashing cursor should
appear on all monitors.

11. Typing RUN <return> will execute the program.

- 42 -

g www.Commodore.ca
Construction May Not Reprint Without Permission

Although the cicuit is simple enough to use direct
point-to-point wiring, for convenience sake. However, our
unit was built on two 2 1/2" x 1 3/4" printed c1rcu1t boards,
mounted back-to-back on a "U"-bracket.

Etching and drilling guides, with a components placenent
diagram has been included.

DUMP-MATE Suggested Parts List

Hammond #1454G Case
Hammond $#166Gl2 Transformer
Preh $71200-050 Socket

Switchcraft #3501-FP Connectors
N/O pushbutton - Grayhill -
L.E.D. Mount
3-wire AC Cord Assy.
-AC Cord Retainer - Heyco
Marrette Connectors
"U" Bracket
7406 1IC
7805 Regulator (TO-3 .pkg)
2N3906
L.E.D.,
1N4001 diode
10 microfd 15v Tant. Cap.
10 microfd 15v Elco
100 microfd 35v Elco .
470 ohm resistor o
2200 ohm resistor
22 K-ohm resistor
Miscellaneous Mounting Hardware

OV b b b N et e et et bt N e b b et i et et et

Editor's Note

Dump-nate was built originally for PET/CBMs, but it will
no doubt work with the VIC-20 since the cassette interface is
identical to the PETs.

- 43 -

-
@:J’

P ek 3 J
— \5:_—--?0 Din* SecKEfL_z'J
Lo, MeuntiNg ‘s
NN Heies "

v
Al

Vs a—

MourTinG @
HQLEQ —=

- 45 -

www.Commodore.ca

May Not Reprint Without Permission

..,‘"

n

May Not Reprint Without Permiss

= www.Commodore.ca

2107313330 1L

(<]] [[($3

4 131

- u 314 Tt s 1N a %t [P4 T8 ¢ ¢ < % o
m,m 13 M u sz ot 11 W) (= n o6t W:« H - &. mn ’ v Iy . . .« o it
2 1: a o ¢33 T 1wl 4B e at 61 1] t 09 >)) X 09
2 2 N 133 T I v. ~ o [} Al oo AR s 1 1 < 1
183 [7] R i any -3 [} 9t w ‘D W . 0 n ' ' ' “ 13
b aa oo Moam oo B a W w1 e 15 e & ‘ i
R 1xs [~] n "ﬁ ““ i Nw M.. "u m “.. mnﬁ ot 128 m o ozt mm as “ " " ﬂ m“

as) o
o 8 u oo, W s O 1L 8 A ¥ nim 9 9 9 % s
A B 4 M.n u“ n." ﬂ... nm Wu & & """ it 1'2 v s 134 .m rrav $ _“_ H m .m
‘T s S] X .

ot YR £ ol X oaw e m o m & om] i ¢ S
143 1] o it) (s (e t 1 u nt o5 : t ¢ I
m u e W e 34 1] [Mr 2(1)%ay 4 o Mmoot 1 PR "
(xS] u J\3 ut 2'(1wn ¢ 1 " ut o = o " o e s ’ s "
ot e o ol o Wt = w g g o8 9Lt o % L n / ! ;7 a 4
«2 <} a “«e ot [3 - &n St ont or » ott " 108 1 ”
o2 x) o b m [- B ") o w o o a wr - : TR |
Y] N§ o a we (i v / ¢ B o ({3 fot SV 4 e m us x n
« p 7% [+ 21 o’ AT un . -3 2 v [73% fot 4 Tot <] . . . (]
s 7l 3 sce ut o ees vt I o LA 4 Mmoo orov . . e w
e aon o 1 "2 ot m ¢ e nw ot - sy . P14 ot u ray | ((S 1
[(T A] 1.} [1] €« M rwWl Jus (e S [69t fol o 4 ot oy a)) [T o
3] 1l) [x "t v e) gt ot 4 Cot « ' ' [T I
we] u e n [T i 9 o i g o 8¢ T8 * H v R .m

- €] PR - (3 ofe 3 Tm Jus 9 9v 9t .ot 1 oy % o1 .o 3 anv s s s S i
s 1 s "] s 113 Mot wn [sv m oot » oot o 1 ue 1 1 t o o
gz 130] m o2 mﬁ 31:n 0f =3 av 9 & b4 P & H H 1« m
w m €1 13 9t Jevs s.u Cv (43 % 4 9 x : ot . MM X
b a & in v 20 i- m W tn & (r'nay n e (€ (rnun s3vde .».3- avds (.3 113
s x'(1)Ns 0 u s W (DY 30 1 i 34 “ Fr o o He w ¢
e # = 01 " on sm o W o o 5 - - - 9 % M - e A
w@e B'D & [$1] $13 AMO e 2 I3 }1 » 1) Y .) 2% 1 o 198y 1 u [
wr 19m FE] e M S5 4 aoried M 9t] 1@ ¢ ¢ s % Q@ I { Wi s @ I
w T | @ w st 1Uus 00 (N8 ytm of st] § { 5% u " \ pea o1 ”
o , @ a ox 9l na A wuers % o u) 18 ou u) ai
e B % Hy = Yoy 1 u m_m“ ol 3 .. LI % ¥ 1 anase .J “
e 1wy v w s i | o) 2 . o ot 1wr 1 & 16 “ s 1vo i &
2 100 KInds 3 +0) & ne T awms bl la upsade .» ~m~ o s 1 z 1 1 113 EY) H N_ ¥
e @ 3 . r*E % ne [N noaaW 14] i H 1 - I I @ A e B u
su e S g e oo b T e o w i . A 9% 0w @ raaw PRt N t
m: :'12a 4w 5 o8 = e OSt L3 US4 a4 pustie 051 Yiwa 8) 2 Ss % w I'iwo 0 suUYT'TeP U t
(10 It ATy & P @ 34 € X'3 VIS MIGA g~ eutisuy & m % a by - % ot 1 st m u
ne [-} LN N ane M XIS VS N wew i (118 Ma N s M s« '] o § oy n (t o
me 103 . [(] e 14 w1 ™~ deote (¢ 1544 ~. N o M P 9t , PR i "
ou ove =] o m SA g Je s iy T .. Yaws b ¥ o 1§ It it b wopdm [T i
0 3 (1) 137109 o u s0r ST 2%(1)vis N0 b dname ¢ m v by M M i of o9 [us 4 ot n.
002 N waavan g « (14 m 206 J0i8 44 XI%1Q of m n ° g o 4 Ht st 0 1je1-doy L hi
o YOI Qg (113 “n N 0°4 33'miq &9 ({18 L v M « M " o n 95y " IS) n
[m N v) 02 MM ue A K~ ofudvad 33 m .» w1 ¥ o X a i €t o N W ® 143
so2 &I N3y o e so2 mn ViE QD0 N~ e dee @ m r bt S v 10N ol o 1 Y i
BowwgooddE B | @ wesmogEo@mo| i N N T T N ST R N

09) o ,
P e G o "’ w0 oW (1 - M. fa & ‘ 7 0 I aotun 0 €
o2 N wnlt Vg 6 102 % = o“u u.h Mw ““ xw u w X M) M u u P __.. ﬂn» w“ “
]) 002 s 1 u
ot wWone e BREIR o1 e o4 S oW At om0 3 e N U H 118 ‘ [
o6t P] a5 EN » (731 T 3 us N1a ded 3 = Kt & H3 H i i B b H 1 vo H ™ “ s
6y 1o I (Y=] 161 (T Ivs Mg 14 U % {34 b4 H » ¢ n 99 L] . q o
B w8 B | om o eaws 8 om | B - I A
i . 1 . t .

R Be & AR - & - I I R R - o
ut e my woom 3 o ed I 1 Inaim cfy oW wamst 1Y Th Imivi Wiz 2059 OISYE KOS 1196V DN IMING

__zmuu 9 OISV KIS 1Y T AIWDRA InaIm 59 OISV ATNOE 136V NN IWIYK

(—-“ﬁ www.Commodore.ca
[)
e May Not Reprint Without Permission

PET User Port
Cookbook

Gregory Yob
Box 354
Palo Alto CA 94302

he PET personal computer

has several expansion ca-
pabilities, including one known
as the user port. This Is a set of
eight bidirectional lines and
two handshake lines intended
as a parallel port for the hobby-

ist to use in his experimental
projects. Commodore has not
released much information re-
garding the user port, and the
object of this article is to ex-
plain the user port and its use.

Fig. 1 shows the location of
the user port on the back of the
PET and the pin-out of the PC
edge. If youdo not have a 12-po-
sition, 24-contact edge connec-
tor, use a larger one and cut it
off to the 12-position size. If you
do this, be sure to insert a po-

" sacxk oF rET

POLARIZATION SLOTS

GND CA! PAD PAI PA2 PA3 P4 PAS PAG MT CB2 GND

Fig. 1. The user port—Ilocation and pin-out. The user port pin-out
as seen from the top. The user port pins are on the bottom of the
PC card edge. The pins on top carry a variety of signals that are not
related to the user port. Electrically, the lines correspond to one
TTL source or load, depending on whether the line is in output or in-
put mode. Use buflering or short cables If high data rates are re-
quired. The CB2 line does not have a pull-up resistor, so you may

have to provide one if you are using CB2 In input mode.

Copyright 1980 by Kilobaud Microcomputing All nights reserved Useq'by permission

larization key in your connec-
tor; | found that it was easy to
misalign a sawed-off connector
with the PC edge, causing vari-
ous mysterious glitches. Also,
be sure that the top and bottom
connections are really separate
—the upper edge has a variety
of signals that will interfere
with the correct operation of
the user port.

The pin designations corre-
spond to those on a MOS 6522
VIA (Versatile Interface Adap-
ter), which is a complex LS! /O
chip produced by MOS Tech-

nology. (Write MOS Technology,

950 Rittenhouse Road, Norris-
town PA 19401, for the specifi-
cation sheet.) The user port is
connected directly to the VIA
within the PET, and the lines
are capable of sourcing or sink-
ing one TTL load. If your appli-
cation calls for a high data rate,
note that your cables should be

_short or some buffering will be

required. .

As with all of the 650X micro-
computer systems, the Input
and output appear to the micro-
processor as a group of mem-
ory locations. PET's BASIC does
not have any PRINT or INPUT
statements for the user port,
which requires you to use the
PEEK and POKE statements.
This also places another limita-
tion, that is, BASIC's speed,

which limits /O through the

user port to around 50 charac-
ters per second. if you want to
use a2 more rapid rate, you must
use machine language.

Since this article is con-
cerned with the mechanics of
using the user port, most of the
examples will be in BASIC.
Table 1 shows the memory lo-
cations for the 6522 in the PET.

At this point | must wam you:
all of the other VIA lines are
used within the PET for intemal
uses. If you fall to restore the
VIA to its original state when
you are finished, you will find
that the PET behaves strangely,
especially when dealing with
the tape drives.

When | wrote the program for
display of the VIA registers
(which you will see later on), {
didn’t save it until | had it de-
bugged. The PET wouldn*t vert-
fy or even find the copy | had
tried to save, and after hand-
writing the program, | realized

" the next morning that the VIA .

registers were not in their orig-
inal states. Fortunately | had
left the PET on ovemnight, and
when | restored the registers, |
was able to save the-program.

The Blinkin® Lights Machine

For experimentation with the
user port It Is convenient to
bulid a miniature “front panel”
to indicate the state of each
line and to control the lines via
manual switches. A breadboard
and some $20 worth of parts
(bought at the local costly retail
outlet) provided a handy “8link-
in’ Lights Machine” that hooked
to the user port and used the +5
volt supply from the second
cassette drive. '

POKE 59459,255
FORJ=0TO 255

POKE 594713
NEXT J

REM DO IT AGAIN
GOTO 50

88838885833

-

REM SIMPLE OUTPUT EXAMPLE
REM SET DATA DIRECTION REGISTER TO OUTPUT

REM COUNT FROM 0 TO 255 -

REM POKE TO OUTPUT REGISTER

Example 1. Simple output example for user port.

Note that the circuil draws
200 mA, which is close to the
maximum you can sieal from
the PET. If you have other PET
extensions that use the PET
supply, power the Blinkin'
Lights externally.

Fig. 2 shows the circuit for
the Blinkin' Lights Machine.
The extra inverter and capaci-
tor on the CB2 line are for an
audio output to attach to your
hi-fi set for some simple music
making. One of the best ways
to bulid this device is on a Vec-
tor breadboard, which has the
fingers for an edge connector.
This permits putting the Blinkin®
Lights in series with a device
under test to help with de-
bugging the interface software
and hardware.)

Most of the examples shown
below make use of the Blinkin'
Lights Machine, so buliding
one might be handy.

Simple Output

The simplest thing to do is
output bytes to the user port.
To do this, you must first set
the Data Direction register to
255 (all bits set) and then set
the Output register to the
byte(s) that are to be output. Ex-
ample 1 is a short program that
‘counts from 0 to 255 and out-
puts the count to the user port.

The Data Direction register
controls the PAO through PA7
lines' data direction. if the bit is
set for a given line (l.e., bit O Is

for line PAO), the line wilil be an:

output. if the bit is zero, the line
wilil be an Input.

When the PET is turned on
with the Blinkin® Lights at-
tached, all the LEDs will be lit.
The PAO-PAT lines are Initlally
set for input, and the Blinkin’
Lights wlil see lines in the high-
ilmpedance state as “Mqh"

POKE 59459,255

K=l

POKE 59471,K
FOR J =170 200 : NEXT
K=K2

IF K = 256 THEN 20
GOTO 30

3888883

Example 2. Another simple
output example.

(pulied up by the 7404s), turning
on the LED for the line.

When the program (Example
1) Is RUN, the data lines show
that a binary count appears,
which cycles through about
once every three seconds. To
slow the rate down so that the
least significant bits (PAO and
PA1) will change state, add:

65 FORK=1T70 50: NEXT

This will slow the counting loop
down to around 10 Hz.

To see the eftect of changing
the Data Direction register,

= www.Commodore.ca

May Not Reprint Without Permission

Name Address(hex) Address(decimal) Function

ORB EB40 59456 ## (internal to PET)
ORA E841 59457 Data with Handshake
PDRB EB842 59458 [7]

DDRA E843 59459 Data Direction
TiL-W E844 59460 L1]

T1C-H EB45 59461 L1

TiLL E846 59462 [1]

TiL-H E847 59463 L1}

T2L-W EB848 59464 [1]

T2C-H E849 59465 [1]

SR EB4A 59466 Shitt Register

ACR E848 59467 Auxiliary Control
PCR EB4C 59468 Peripheral Control
IFR EB84D 59469 Interrupt Flags

IER EB4E 59470 Interrupt Enable
ORA EB4F 59471 Data (no handshake)

Table 1. PET VIA register addresses. The named registers may be
used to work with the user port. Some of the settings used may dis-
able other PET functions, such as tape 1/0, so you should restore
the original settings when you are done. The registers with “##" in
the Function column are used internally by the PET. If you are bold,
there are two other I/0 chips in the PET. These are MOS 6520s, with
one starting at $E810 (59408) for internal uses and one at $E820

(59425) for the IEEE-844 bus.

30° POKE 58459,15

Now the lines PAO-PA3 will
count, and lines PA4-PA7 will
remain lit (recall that an uncon-
nected line will float to high
with the Blinkin' Lights).

Example 2 shows another
short program. Try it and see
what it does! Note that in PET
BASIC the NEXT statement may
omit the loop counter if the in-
nermost loop s being termi-
nated. Another diversion Is to,
change the program in Example
2.

20 Kst:L=128

50 K=Ke2:L=Us2

(Just change these lines and let
the others remain the same.)

Simple Input

To see simple Input, POKE
the Data Direction register to
input mode and connect the
switches to the PAO-7 lines.
Note that the Blinkin’ Lights
has some DIP switches to iso-
late the manual switches from
the data lines. This Is because
If they were always tled In, the
switch setting would force the

change line 30 to: 30 POKE 50471, KORL line to the switch’s state.
{Oca
s Sono
- Oorar
v O Ooraz
T {Oras 8
1 o Oorae >
- s o
[e
C S>ear 2
- {>ce2
eno - O eno
] 2 .
"N, T it
1 1
2-V20F A . LX))
SO
% J

s2ilrl7z 172 17 17 §7

) .220F
)

ANY HANDY LEDs
(10)

100,F 32

v

[Sddddsa

|81 4L il

44

OATA DI ?FLAV

FROM
PET 2a¢ TAPE PORT

DATA SWITCHES
Of EXTEANAL SUPPLY

(SLIDE SWITCHES)
®1SOLATION SwiTCHES

HANOSHAKE SWITCHES
(MOMENTARY CONTACT
*» TOGGLE SWITCHES)

.8V

A0 €82 CcAs
MANDI HAXE
OASPLAY

Flg. 2. Blinkin’ Lights—PET user port sw'hch register and Indicator.

Shown What It Represents

Ao

SPACE character (when not clear)
A lowercase character in a square box represents

the corresponding graphics character. For example, «
[@ is the spade graphics character, or SHIFT-A:

Clear Screen
Home Cursor
Cursor Up
Cursor Down
Cursor Right
Cursor Left
INST key
DEL key

COPLO DB

Table 2. PET program listing special characters.

Data Register

Data Register, Handshake
Peripheral Control Register
Auxiliary Control Register

tnterrupt Flag Register

Table 3.

Then, PEEK the Dataregister
and display the resuit on the
PET display screenin aloop. As
you change the switches, the
number displayed will change.
Example 3 is a program that
does this. (Note: Table 2 shows
how this articie represents PET
listings.) Line 70 homes the cur-
sor and prints the value of the
Data register. It then prints a
CURSOR LEFT and three blanks.
The reason for the CURSOR
LEFT is that the PET has an
oddity when it prints numbers
onto the screen. When a num-
ber is printed, the format is:
{(SPACE or +)Digits of Num-
ber{CURSOR RIGHT).

When a short number is
printed over a longer one, the
printing stops after the CUR-
SOR RIGHT. It is necessary to
erase the old numbers with
some blanks, so the cursor is
moved left once and three
blanks are printed. This pre-
vents spurious numbers, such
as 328, appearing on the dis-
play. (Try it, you won't like it!)

RUN this program and try the
manual switches one at a time.
You should see the sequence 0,
1,2,4,8...128 appear on the

DATA 59471
HDATA 59457
PCR 59468
ACR 59467
IFR 59469
debugging.
Joysticks

A simple and enjoyable way
to use the user port is to attach
a switch-operated pair of joy-
sticks to your PET. Each joy-
stick has four switches—one
for each direction—that are
closed when the stick is pointed
that way. Fig. 3 shows a joy-
stick circuit.

The program in Example 4
sets up the screen with a solid
and hollow ball. Each joystick
controls one of the balls, and
both balls may be in motion at
the same time. The switches
and bit settings are the same as
in Fig. 3.

Lines 170 and 180 clear the
screen and print the character
for the right and left joysticks.
The PEEK sets the cursors (C1
and C2) to the value needed for
use by POKE iater. The value
32768 is the first address in
memory in the display, which
occupies memory locations
32768 to 33767.

Line 260 fetches the data
from the user port. Since the
joysticks ground the lines to in-
dicate switch closures, the byie
is complemented. It is then
ANDed with 255 to return to
eight bits, as the integer opera-
tions of the PET are 2's comple-
ment for 16 bits.

In Line 2010, the value for Z
must be shifted right by four
bits. This is done by dividing by
16 and truncating.

Lines 3020 and 3140 place a
blank and the cursor, respec-
tively, on the screen. The multi-
plication by 40 for Y is because
the PET screen is 40 characters
wide. If you delete line 3020, the
motions of the joysticks will
leave trails and let you draw
pictures.

Transterring Data
with Handshakes

The CA1 and CB2 lines per-
mit data transfer with full hand-
shaking for input and output.
The 6522 VIA has a variety of
options, and these are con-
trolled by the registers in Table
3. In the 6522, the Peripheral
Control register and the Auxil-
iary Control register select the
various options for the opera-
tional modes for the VIA. Some
of these bits affect the CA1 and
CB2 lines and will be described
in detail later.

. The Interrupt Flag register
has bits for the detection of
several conditions that may be
used for interrupts. In the PET,
the use of the interrupts is a
hazardous affair, as the PET
has a 60 Hz internal interrupt,
which handles various house-
keeping tasks such as scan-
ning the keyboard and main-
taining the internal clock. Since
these functions can only be
handled in machine language,
this article will not discuss how
to handle the Interrupt Enable

« wWww.Commodore.ca

May Not Reprint Without Permission

register.

To detect a condition. such
as the transition of the CA1
line, PEEK the Interrupt Flag
register and AND for the de-
sired bit. The bitin the Flag reg-
ister will remain set until other
actions are taken, usually the
reading or writing of data
through the Data Handshake
register.

If the above sounds confus-
ing, that is because it is confus-
ing, and with this in mind, you
should attempt the examples in
the following sections when
you try to use the PET user port.

Using CA1

The CA1 line is an input-only
line usually used to detect the
handshakes for data transfers.
For example, if a device is send-

REM SIMPLE INPUT EXAMPLE
REM SET DATA DIRECTION TO INPUT

S REM BY GREGORY Y0B, MAY 1978

10 REM DUAL CURSORS FOR JOY-STICKS
20 REM ATTACHED TO USER PORT WiTH
30 REM BITS AS FOLLOWS:

40 REM L INE GROUNDED MEANS SWITCH IS
50 REM CLOSED AND TO MOVE CURSOR

60 REM BIT 7 = LEFT STIX WP

MREM " 6= OOWN
80 REM " S = RIGHT
QO RN * 4= LEFT
100 REM ™ 3 = RIGHT STICK WP
MNOREM ~ 2= DOwN
120 REM * | = RIGHT
130 REM “ 0 = LET

140 FEM DISFLAY IS WRAPAROUND
150 REM

OWN CURSORS HERE

" ; :C1 <PEEK(32768)

»; :C2+PEEK(32763)
IATIZE SCREEN & POSITIONS
200 PRINT" ©)"

220 POKE 33252,C):FOKE 33283,C2
230 REM SET LP DATA DIRECTION REG
240 POKE 9459,0

250 REM LOOK AT PORT

260 P=NOT(PEEK(59471))AND 255

270 REM OHEOK RIGHT & LEFT

P AND 15 THEN GOSUB 1000

B

200

290 IF P AND 240 THEN GOSUB 2000

300 GOTO 260

500 REM ROUTINES 1000 & 2000 SET UP

510 REM X,Y = POSITION

520 REM Z » SWITOH SETTINGS

530 REM C = CURSOR CHARACTER

540 REM FOR ROUTINE 3000 WHICH

%mmmmtm
L)

RE
1000 REM RIGHT STICK
1010 XsX1:YaY):2=P AND 15:CoCI
1020 GOSUB 3000
1030 X1sX:Y1=Y:RETURN
2000 REM LEFT STIOK
2010 X=X2:YaY2:2sINT((P AND 240)/16)
2020 C=C2:G0SUB 3000

3040 1F 2 AND 8 THEN YsY-1
3050 IF Z AND & THEN YsYet
3060 1F 2 AND 2 THEN XeXel
3070 IF 2 AND | THEN XaX-}

3100 If X<O THEN X«39
PET screen. Poaeagcmo AEEN 3110 IF ¥ 324 THEN Y50
- sc 3120 1F YO THEN Y=24

If you set all the manual PRINT» © ™ 3130 REM POKE 1IN NEW CURSOR

switches to zero and discon-
nect one of them with the DIP
switch, the line will go high and
the PET will see the bit as set.
Be careful of this when you are
using the Blinkin' Lights for

3140 POKE 32768+40°Yex,C

REM PEEK DATA REGISTER & SHOW IT 3150 RE TRy

PRINT* @ “PEEK(S9471)* (© bbb™
REM DO IT AGAIN
GOTO 70

8BIBEE883

Example 4. Program to
move two cursors with the

Example 3. Simple input example fof user port. joysticks in Fig. 3.

ing 3ata to the PET, the CA1
lin2 will be used to say that the
da:a is now valid. If the PET is
sending data, the CA1 line is
used by the device to signal
that it is ready for the data.

Using the CA1 line involves

these steps:
. 1. Select the options you
want and POKE the Peripheral
Control register (PCR) and Aux-
iliary Control register (ACR)
accordingly.

2. In a loop, check the CA1
Flag bit in the tnterrupt Flag
register (IFR) until it is set.

. 3. PEEK or POKE the HDATA
(Data with Handshake! register
with the data. This will reset the
CA1 bit in the IFR.

Your options are as follows:

1. Positive or negative tran-
sition. CA1 will set its flag bit
when the line goes high or low,
depending on bit 1 in the PCR.

For a negative transition,
use:

POKE (594688), PEEK{59468)AND 254

This Is the value the PET initial-

izes to when It is powered up.
The reason it uses a PEEK in-
stead of just POKEingto a 1is
that the other bits in the PCR
should not be changed be-
cause they control other
things.
For a positive transition, use:
POKE (59488), PEEK(5946810R 1
2. Latching of the input data.
If the input data is latched, the
values present on the data lines
will be latched when the CA1
line makes the correct trahsi-
tion. If the data is not latched,
the values in the HDATA regis-
ter will change as the data lines
change. It is safest to use the
latched mode when handshak-
_ing your dzta.
To enable latching, use this
statement:
POKE (59467), PEEK(SS46TIOR 1
To disable latching, use:
POKE (S9487), PEEK(59467) AND 254
Todetect the Flagbitinthe IFR,
use a statement of the form:
IF PEEK(S9469)AND 2 THEN
or

WAIT 55469,2

It you use the WAIT state-
ment, note that the STOP key
will be ignored by the PET,
which means you must be sure

that the CA1 line wili make a
transition—otherwise your PET
will be hung up. For debugging.
usethe IF-THEN form. For read-
ing or writing the HDATA regis-

. teruse:

PEEN (59457)
or
POKE 58457, ———

At last it is time for some ex-
amples. First, let’s try counting
from 0 10 255, with a wait for the
CA1 line to be toggled before
the next value is sent to the
user port. Enter the program
in Example 5, recalling Exam-
ple 1.

When this programis run, the
data lights will go out and will
stay out until the CA1 switch is
toggled. (If it doesn't, be surc
that your DIP swich has been
closed for CA1.) The first light
(PAD) will then light, and as you
toggle the CA1 swich, the
Blinkin' Lights will count in
binary.

Two things should be noted.
First, the bounce of the CA1
switch will guarantee that both
transitions occur, so the setting
of the transition bit doesn’t
matter. Also, the speed of
BASIC is slow enough that the
bounce of CA1 doesn‘t cause
double or more rapid counts. (If
you try the equivalent program
in machine language, your CA1
will count 10 to 25 times each

- time you flick the switch unless

you have debounced it.)
Second, you can shorten
your program by using the in-
verse condition in line 110,
eliminating line 120:

110 IF(PEEK(S9469)AND 2) = 0 THEN 110

Beware of the precedence of
operators. If you trled;

110 IF PEEK(59469) AND 2 =0 THEN 110

your lights would have counted
up ignoring the CA1 line. The
reason for this is that the oper-
ator = is evaluated before AND
is. So, the sub-expression 2=0
is evaluated, giving a -1,
which is ANDed with the IFR
with the result that any bit will
make the relation true. In this
case, no other bits are set; the
program then thinks that the
CA1 line had toggled; and it
drops through the loop.

Try it out—this error is quite
common, and that's the reason

g www.Commodore.ca

May Not Reprint Without Permission

(T2 o C—

ue
pas [>-
cas O~ - — N IR RIGNY
tae TO—
Pas O DOwNn
ca: -4
s>
ran (O
one O
/
L- — v
L]

Fig. 3a. Joysticks lorthe PET. The switch arrangement lor my PET
joysticks is shown here. The switches are normally open.

FORMAT OF THE OYTE INPUT VIA THE USER PORT"
MSD(PAT: LS8 (PAOY

l vr l”"‘ lmcuv l LEFT I w]ooma = Iun I
” < —

LEFT JOTSTICK RIGHT JOYSTICK

Fig. 3b. The byte input from the user port is shown here. This
de'sign exploits the fact that the PET lines PAO to PA7 will lloat to
high when they are disconnected. When a line goes low, the cor-
responding switch is closed.

PLASTIC DISH FOR FLOWERPOTS WOOD 8LOCK
L

H
CE=
DIRECTION
OF MOTION
PLASTK O wETAL SHEET— S—Tanie TP

RUBBER DUMPER V4 . PLYWOOO

s0TTrONM VIEW

RUBBER
BUNMPER

@)

Fig. 3c. The Wobbilator—a low-cost alternative to Joysticks that is
easier to use as well. Eight low-cost miniature push buttons are
used to build two of these units. Either normally open or normally
closed push buttons may be used. (If normally closed, change
lines 260 in Example 4 accordingly.) The push buttons should not
be “’snap action" or “detent’ or go *“click” when depressed, and
should only move about 1/8 inch for closure. Use a bit of ribbon
cable to attach the connector for the user port to the Wobbilators.
Mark each Wobbilator with a dot for “Up’ and “Right” and “Left.”
Choose a'dish that tits your hand comfortably. :

\»

10 REM SIMPLE OUTPUT WITH HANDSHAKE
20 REM SET DDR TO OUTPUT

30 POKE 59459255

40 REM SET POSITIVE TRANSITION FOR CA1
50 POKE 59468 PEEK(59468)0R 1

60 REM COUNT 0 TO 255

70 FORJ=0TO 255

80 REM OUTPUT TO PORT

90 POKE 59457.J

100 REM WAIT FOR FLAG BIT

10 IF PEEK(59469)AND 2 THEN 130
20 GOTO 110

30 NEXTJ

40 REM DO IT AGAIN

50 GOTO 70

Example 5. Simple output with handshake for PET user port.
This program waits for a strobe on CA1 before sending the data
from the PET.

883888883

screen.

REM SIMPLE INPUT VIA HANDSHAKE
REM DOR TO INPUT

POKE 59459,0

REM NEGATIVE CA1 TRANSITION
POKE 59468, PEEK(S9468)AND 254
REM CLEAR SCREEN

PRINT* © ™

REM WAIT FOR CA1

IF (PEEK(S9469)AND 2) =0 THEN 90
REM FETCH DATA & DISPLAY
C=C+1

A = PEEK(59457)

PRINT* () bbbbbbbbbbbbbbbbbbbbd @ *:
PRINT*COUNT"C"DATA"A

GOTO 90

Example 6. Simple input with handshake for PET user port.
This program waits for a low on CA1 before accepting the data
and then displays the decimal value of the data on the PET

REM INPUT ASC!I FROM KEYBOARD
REM CONVERT 8 DISPLAY ON SCREEN
GOSUB 1000: REM INITIALIZE
GOSUB 2000: REM GET CHAR AS AS
PRINT AS:

GOTO 40

REM INITIALIZE PORT & TABLE
POKE 59468,PEEK(59468)0R 1

POKE 59467, PEEK(59467I10R 1

DIM TB(31)

FORJ=0TO 31

READ TB{J): NEXT J

MD =0: RETURN

DATA 0,0,0,0,19,145,29,0,0,18,0,0
DATA 0,13,0,146,0,147,0,157,0,20
DATA 0,0,17,148,0,0,0,0,00

REM

REM FETCH CHAR & CONVERT
IF(PEEK(S9469)AND 2) =0 THEN 2010
CH = PEEK(S9457)AND 127

REM TEST IF CTRL CHAR

IF CH>31 THEN 2130

REM MODE FLAG TESTS

IFCH=10 THEN MD =0

2070 IF CH =27 THEN MD =128

2080 REM CONVERT VIA TABLE

2090 CH=TB(CH)

2100 IF CH =0 THEN 2010

2110 GOTO 2160

2120 REM CASE CONVERT

2130 IF CH>95 THEN CH =CH - 32

2140 REM MODE CONVERT

2150 CH=CHOR MD

2160 AS =CHRS$(CH). RETURN

BBEENYEEE238828888essnns

-

‘

Example 7. Input ASCII from keyboard, convert for all PET keys
and display on PET screen. This program will accept the ASCI!
codes from the user port and follow the convention in Table 5
and in the text.

1or this 1enginy expianation. Be
sure your expression is doing
what you want it to, and if you
aren't sure, use parentheses or
try trial variations and print the
results on your screen.

The next thing to try is enter-
ing a value on the data switches
with the Blinkin' Lights and
have the PET accept the data
when the CA1 line is toggled.
The program in Example 6
shows how.

When the program is run, you
may set the switches to a value

(be sure your DIP switches are

closed or you will just get 255s),
and when you toggle the CA1
switch, the count and value will
appear at the top of the PET dis-
play. The count is used so you
can tell when you reenter the
same data value. Though the
desired transition for CA1is not
important in this example, line
50 shows the opposite direc-
tion from the preceding output

example. In line 140, the de-

limiter *;" is ignored because
PET BASIC will permit this.

A Keyboard Via the User Port

As an example of a useful
project for the user port, | inter-
faced an ASCll-encoded key-
board to the PET. Since | am a
fair typist, the PET keyboard is
frustrating for program entry
and debugging. The following
example is specific to my key-
board, but almost any full ASCII
keyboard and most “Dumb
Teletype’ keyboards can be in-
terfaced in a similar way.

The pin-out for the keyboard
was determined and wired to
the PET user port as shown in
Table 4. Since the keyboard
drew 500 mA, it was connected
to a separate 5 voit supply.

At this point, the card edge
on the Blinkin® Lights was very
handy. The keyboard was con-
nected to the Blinkin' Lights
and the Blinkin' Lights not con-
nected to the PET. Some inves-

" tigation revealed that the key-

board did encode the parity bit
and that it had a 2-key rollover.

The CA1 LED would turn on
when a key was depressed and
when a second key was de-

pressed, it would flicker when’

the first key was released. This
indicated that the strobe was a
positive transition and that

= www.Commodore.ca

May Not Reprint Without Permission

there was a 2-key rollover.

The keyboard was then at-
tached to the PET, and the Sim-
ple Input via Handshake pro-
gram (Example 6) was tried with
line 50 changed to a positive
CA1 transition. After a short
warm-up, each keypress
showed a value, and the roll-
over worked just tine.

Now that the keyboard was
working electrically, a dilemma
appeared: How can you emu-
late all the PET keyboard func-
tions? A careful study of the
PET keyboard, character set
and cursor control functions re-
veals that there are 138 func-
tions and that the ASClI code
has only 128 characters in it.

The solution | chose (feel tree
to choose one of your own) was
to let the control character rep-

-resent the various nonprinting

keys (cursor movements, RVS
and so on) and to convert all
other characters from the key-
board to uppercase. Since the
high bit for a given PET charac-
ter is set if the character is a
graphics character, | decided to
have a Mode flag—if you
pressed ESCAPE, all further al-
phanumeric keys would show
their graphics character, and
when you pressed LINEFEED,
the mode would be “normal,”
and the character would ap-
pear.

It should be noted that the
PET character set is not ASClI
but is similar to ASCIL. This re-
sulted in some further transla-
tion steps, and the entire con-
version routine used these
steps:

1. Get the character from the
user port and remove the Parity
bit.

2. If it was a control charac-
ter (0 to 31), do the following:

(a) Find a value in a

32-element translation array
for the correct PET charac-
ter.

(b) if the table value is zero,
ignore and go to step 1.

(c) Print the character on the
screen and go to step 1.

3. If the character is in the
range 96 to 127, subtract 32.
(Converts lowercase to upper-
case.)

. 4. 1f the Mode flag is set (for
graphics), OR with 128 to set
the highest bit.

5. Print the character on the
PET.

6. Gotostep 1.
Note: in step 2, if the character

2 www.Commodore.ca

May Not Reprint Without Permission

10 REM ®°°¢ PET MACHINE COOE LOADER °°°°
20 REM BY GRLGORY YO8, 1978

30 REM READS DATA STRINGS IN FORMAT

40 REM IDENTICAL TO PET MONITOR AND

50 REM LOADS INTO IRDICATED M MORY

700 D=ASC(HS$)-48
710 HEX=HEX®16 + O
T20 NEXT H

730 RETURN

900 mmr' (© 7444 BAD VALLE IN DATA 22477
60 REM LOCATIONS. FIRST NUMBER IS 910 PRINT" OAD ABORTED™:END
was an ESCAPE or a LINE- 70 REM START ADDRESS, NEXT B VALLES 950 PRINT-(©) () LOAD FINISUED™ X0
80 REM ARE BYTES TO LOAD. 1000 DATA"0338 XX XX 78 A9 75 80 19 O (Note: a1l O
FEED, the Mode llag‘would be 90 REM IF A BYTE IS 'XX* IT WiLL NOT 1010 DATA"0340 A9 03 8D 1A 2 A9 00 80" are zeroes)
set or reset, respectively, and 100 REM BE LOADED, AND MEMORY CELL WILL 1020 DATA"0348 43 ga gg 27: gs g o 58“
110 REM BE UNCHANGED, AND NEXT BYTE 1030 DATA"0350 09 01 8 AD 4B E€8"
the table entry for these char- 120 RCM LOADED INTO MEXT CELL. 1040 DATA"0338 09 01 80 48 €8 58 60 78"
130 REM IF A BYTE IS "°°* OR AN ADORE 1050 DATA"0360 A9 85 80 19 02 A9 E6 80"
acters would l?e a zero. 140 FEM 1S '---:E'. ?m I.ONODR iLL STo. 1060 DATA"0368 1A 02 S8 60 A9 00 48 48"
The next thing to do was to 150 REM LINE 20000 GUARANTEES END IF 1070 DATA70370 48 48 & 85 E6 :g ;g g:
R reer Y . *037!
choose the meanings for the 150 fem OR =eee? 1S MOT FOUND. N0 ATA"030 & P B R e a5
s. Some con- 180 REM NOTE: THIS PGM MORE USEFWL IF 1100 DATA™0388 C9 IF 10 30 C9 OA DO 07"
control character 190 REM EXTENDED TO DATA TAPE FILES. 1110 DATA"0390 A9 00 80 C7 03 FO ES C9”
trol characters, such as CTRL-M 200 REM © 1120 DATA0398 18 0O 07 A9 60 80 C? 03"
300 PRINT"(©) LPET LOADER PROGRAM" 1130 DATA"03A0 DO DA AA BO CB 03 FO 04"
and CTRL-J, were already used 310 READ AS:. IF AS="END" THEN 950 1140 DATA"O3AB EA AE 00 02 90 OF 02 £8"
for RETURN, LINEFEED, etc. 315 PRINT" @ © "As"©@* 1150 DATA%0380 EO OA DO 02 A2 00 BE 00"
! g 320 GOSUB 4C0 : REM GET ADDR 1160 DATA"0388 02 4C 7C 03 C9 60 30 02"
Keys were choseii for their con- 330 IF ADDR €O THEN 950 1170 DATA™03CO E9 20 00 C7 03 00 €2 00"
- 110 00"
venience on the keyboard in 350 COSUB 500 + REM GET BYTE 119 OATAO300 00 12 05 60 09 90 00 93"
Table 5. 355 IF BYTE = -2 THEN 380 1200 DATA™0308 00 93 00 $D 00 14 00 00"
360 IF BYTE ¢ 0 THEN 950 1210 DATA"03E0 11 94 00 00 00 00 00 00"
The appropriate PET charac- 370 POKE ADOR,BYTE : REM 0O THE DEED 1220 DATA"O3ES % ®¢ *% oo o oo a0 ven

ter values were then placed ina
32-value table for lcokup by the
translating routine. A BASIC
program was written to test
this scheme out (see Example
7). Note that RETURN is the
same value, 13, as the value
tetchingit (i.e., CH is 13 aiso). In
line 2020, the masking is done

375 PRINT ADOR;TAB(10);8YTE

380 ADOR=ADDR*1 : NEXT B

30 GOTO 310

400 REM ®® PARSE ADDRESS **

410 BS=MID$(AS,1,4)

420 IF BS="**%%* THEN ADOR=-1 :RETURN
430 GOSUB 600 : REM HEX CONVERTER
440 ADOR=HEX

450 RETURN

S00 REM *® PARSE BYTES **

S10 BS=MID$(AS,B"3+3,2)

520 IF BS="XX" THEN BYTEx-2 :RETURN
530 |F B$="**" THEN BYTE»-1 :RETURN
540 GOSUB 600 : REM HEX CONVERTER

Machine-Language Source

INTERRUPT 1S SERVICED.

THE PET INPUT BUFFER.
TOBEY. IMPLEMENTED BY GREGORY YO0B.
®®& INITIALIZATION COOE *°**

FOOL THE PET INTO READING THE USER PORT AS THE
COMMAND KEYBOARD IN PARALLEL WITH THE NORMAL
KEYBOARD BY READING THE USER PORT WHEN THE 60 HZ
IF A CHARACTER 1S
PRESENT, TRANSLATES ACCORDING TO SCHEME DESCRIBED
IN USER PORT ARTICLE AND PUTS CHARACTER INTO

THIS CODE TAKEN FROM AN 1DEA BY RICHARD

550 BYTE =HEX TURN OFF INTERRUPTS, AND SET THE PET

to remove parity when the char- 560 nznn'{c oo " INTERRUPT VECTOR™ TO POINT TO THE ACTIVE COCE.
X PORT 'YBOA!

acter is read from the user port. 2?8 :E:-o VERTER T e R T . e YEOARD: 0

The Mode flag is set to 0 or 128,
which permits the use of OR in
line 2150.

Though this program is suit-
able for entering data into a
BASIC program, the keyboard
cannot be used In direct mode,
that is, entering BASIC state-
ments or LIST, etc. Example 8
shows a BASIC program which,
when run, will load a machine-
language program into the sec-
ond cassette buffer. When this
machine-language program is

Keyboard Pin

620 FOR H=1 TO LEN(BS)

630 HS=MID$(BS,H,1)

640 IF H$ (@~ THEN 900
650 IF HS >"F™ THEN 900
660 1F HS C":" THEN 700
670 IF H$ (™A™ THEN 900
680 D=ASC(HS$)-55 : GOTO 710

("@" is zero)

J s L R R

033 78 XON
0338 A9 75
0330 80 19 02

SET THE MODE VARIABLE TO "CHARACTER MODE™ (0)

NOTE®®® THIS CODE RESIDES IN THE SECOND CASSETTE
1 BUFFER (033A TO O3FF)
]

SEL ! DISABLE INTERRUPTS
LDA #8375 ! SET UP NEw
STA s0219 ¢ " INTERRUPT

executed (by §°YS(826)). the
keyboard attached to the user
port wlll operate “in paraliel”
with the PET keyboard. If you
follow the cautions indicated in
Example 8, you wlil be able to
use the auxiliary keyboard for

PET User Port
1 INT Key —
2 RPT Key —
3 No connection CcB2
4 No connection -
5 GND GND
6 +5 Volts (separate supply) —_
7 Strobe CA1
8 Parity PA7
9 Bit4 PA3
10 Bit3 PA2
11 Bit1 PAO
12 Bit7 PA6
13 Bit2 PA1
14 Bit6 PAS
15 BitS PA4

Table 4. ASCII keyboard to PET user port wiring list. Your key-
board will, no doubt, have a different pin-out—just notice the data
and handshake lines. It your keyboard requires an acknowledge,

connect your ACK to CB2.

other programs, etc.

The first program, A BASIC
Machine-Language Loader, will
load any machine-language
code In this format: AAAA HH
HH HH HH HH HH HH HH.
AAAA Is the starting address
for the first hexadecimal value,
HH. Eight hexadecimal values
are permitted per DATA string.
Each string must begin with the
address, and a space must sep-
arate the values.

If the characters in an HH
field are “XX,” the program will
not load a value into the corre-
sponding byte (skipping it). The
characters “**" in an HH field,
or*****" in an AAAA fleld, will
end the load.

This data format (except
“XX"and "t -**")is Identi-
cal to the one used by the PET
TIM monitor, so at a later time
you can easily use the PET
monitor to directly load this
code from the DATA state-
ments.

The DATA statements in this

program contain the object
code for the second command
keyboard program described in
the text. To start the machire
program, enter SYS(826) ard
press RETURN. The PET tape
110 will not work while the mia-
chine code Is running! Use
SYS(863) to stop the machine
code and make the tape l/O
workable. .

Input from the second key-
board follows the rules in Table
5 and as described In the text.

It is beyond the scope of this
article to describe the details of
the machine-language program.
A source listing Is provided in
Example 8 for those who wish
to puzzie it out.

A User Port Monitor Program

When you are attempting to
interface to the user port, it Is
cften necessary to write séveral
small programs to set and dls-
play the VIA registers. The pro-
gram in Example 9 performs
these functions and wilif often

S

*sAay 181o9ds | 34 J0} $I910818YD |03UOD °S 3|qBL

10 SAY

uo SAHY

J3a

1SNI

umoq Josind
WY Josin)
o1 Josind
dn Josind
J08InD BWOH
uevIs Jes|d

cownouwux>>2-0

uopouNy 134 YLD +10198I8YD

MO| 3y} 189S noA j| “suondun;
Buidesresnoy sy 10} 13d 6ul
Aq Ajjeusejuy pesn s1915)801 oY)
jo s1oedse ase syq ,1,, OYL

FO00L=1 LUNO=0 d13IH=H
MOHS=S PNIOd=d ViVQ=0

'SIYY a1 40O Jiim Aeydsip
13d 8y} ‘(s1eysiBes uod Josn
oyl jo Aue pobueyd juaaey
nok) 134 10ses e wol} Buy
-UB)S 88 NOK §| “MO] O) SBYIYMS
eleg oy) 188 pue SOYO}MS
uojie|os] ejeQq 6y) Jo |je esol)
“weiB0id JO}JUOW Y} uni pue
uod sesn ey 0} SIYBIT upung
oY) yoeye ‘weyl yyw sejjjwey

= www.Commodore.ca

May Not Reprint Without Permission

‘as|nd axeyspuey e
e9luesend 0} moj pue yby yioq
8210} S) 28D "pasolsal ‘BuyB60o)
Jajje pue ‘DOABS aJe HOv pue
HOd 9y} jo senjea jeuiBud ay)
‘318601 s 8UY 28D BY) UaYM

'swesBoid Auvew u)

Apuey S| yojym ‘108100 esiey,,
© sepjaosd 066y oulnoiqng

*(oosy

aupinoiqns 33s) induy ayy s) os
‘Kreuiq uy sy Keydsip ayy ssuig

‘umoys eq

M seweu ayy jje pue ,,'XXX,,

Se yons ‘sweu ssajbujuesw

®© J8jud ‘(0p uayjo |) saweu sy

19810) noA j) “pakeidsip sos 0}

Juem nok si9)siBas ay) abueys
nok s)9] 000E supnoigng

*19)s1601 S|y} peas

1M puewwod (viva) @ syl ‘uq

Bel4 1dnueju) oY) 10535 jIm 10}

-s1804 sjy) 0} s59098 Yoea jey)

S| uosess ayjy -0)sibas ejyeq

9)Yeyspuel 9y} $S8098 0} awy)

3yl 0} (1Z aiqepes))Q ysew

e Bujaow Aq Aseuiq vy Jequiny
e Aejdsip 0SOL O} 00OL SeuN

“Alinjeses

way) junod o} eins og °Aeid

-SIp 9y} J0JIU0D O} A|9A|SUBIXa
Posn eJe SIUBWBAOW JOSIND

*sJels|B8as 91 jje Bujkeidsip

S| wesboid ey} ueym uehium

-J9A0 ©Q J0U |IIM ey} uopsod
© 0} NUBW 8Y) SBAOW 0ZE BuY

‘ole

38Ul Ul £ 8y} pue § 8Y) ueam)
-2Q s)ue|q 93Jy} 8y} adNON

‘spels wesb

-04d a8y} uaym siaysibas pasn

Ajuowwod sow ayy Aejdsip o}
Aeue sBejd ay) s19s 052 au

‘sasod

-nd Aeidsip 10} eweu 10}s|6as

Yora JO pue 8y} Je Syue|q swos
pue uojod ® sind Q12 au

. T Bi4 u asoyy

‘Se JOpIO 8wes 8y} ul pue ‘o}

Jejiwis ase Yolym ‘ssweu Ja)sy

3781 NOI SUANCD

KUALIVIVO
IV 41 821
SUWJIO-MW! 3000

31 JIHIVYI OL LM3ANDD §

35V ¥3ddN 0L IM3ANDD §

“3L48 V 03AVS 3AWH QTI00 1 “MONDI 1 §
UANIOS N3N 3AVS i 00Z0S XIS

(HLSNI 3NO dINS) P LMONS §
LRIERFIED ok Lo B

¥343N8 JO L4VIS S) X3ONI JO 3SVE i X‘JOZ0S V1S
YIUNIOD ¥34ING LNANI 13d § 00208 X071 HSVIS 2

% 0DOFO 38 1SW Y3LNIOD ¥33NE LVl UON
ees YNNG LNGNI OLNI YILIVIVHO HSVLS sesn

PUBWWOD pu0D3S B 10} We1B0sd 3p0d aulyoeW 134 ‘8 ddwex3

ese 3000 JO ON3 sse § 8XO0
i

00°00°00°00°00°00°¥6°11 “31A8° 0X0
00°00°¥1°00°06°00°C6°00 *31AB° 00£0
26°00°00°00°00°00°Z4°00 “3UA8" 0050
00°G1°16°C1°00°00°00°00 *UAS" X0

mmx |vL 8X%0

“; LX%0
sen VRV IOVIOLS VIVD eee |
i
0< 3000 § HSVIS 38 - 2300 §X0
3000 V0 €0 £J G0 ZXO0
0z3s J8s o 63 0X0
3SVN 18 20 ¢ X0
0937 O UM (] 63‘ 860
HSINID ohif €0 X v 66X0
20:00 38 90
0087 x01 00 Zv 98X0
¥+s NG 20 00 2650
vos/ X0 V0 03 08X0
XN} 83 Jwo
20 30 06 IO
0 00 3v 6W0

“QUSHIQY AU

8

383

S80S —mo e
2
o

dON evio
Q4IZ SIANLY 3|VL 1 RONOI § HSINIS 038
x ‘Igvl Y01 €0 8 14,10
B m w10 %50
i
<NN00T 318 A8 SHVHO YCYINOD SSID0UJ §
d
3148 Y3HIONV 3AVS i HSINIS 3NG ¥d 00 0%0
SIIHIVE9 i 30W VIS €2 12 C8 Q60
OL 300w 135 i 0837 V01 08 6v 860
SUVHD LD YIHO i 1D 38 L0 00 660
¢3dv2S3 i 8137 a0 QW g1 60 (650
'
2UAE v SIAVS 038 i HSINII 038 53 04 $650
SylLovewrO OL 300w 135 i 3004 VIS €0 (2 08 2660
0084 v01 00 6v 0650
O032INIT VY LNS) uvO @ O4W 3n8 L0 00 38€Q
v0s# O v0 63 28€0
8O 03INM0 ¥ LLNSI *3A1LISOd 41 @ MION R o€ 01 vego

¥AUSION VAVO INVHSONVH V0

M WONI SI HKOTHA
3000 NOILVHOLS3S 13d
3HL TWVI 0L N 1S
YIAUINWVIO 0AUDU 30

YAUSION SHVU LARYUN

3ML 40 NOIIVY3JO D300
Y03 YOVIS 13d OL SIHSNG ew |

¥371IVO OL NuNL3Y ONV
S1M3IING 38VN3

wY01J3A
1m:um..
0 N 13S
SLMMNI 378vsig i

%377VD OL ML CNv
S2cWHIINE 3V
)Y

d3LS1O WRILMOD aAgvi tivay

¥3L51933 TOINOC: WH3HI8Id
: 1130 A0m
Y3LS192A rOILIRIIC VIVS
3004 ¢ 1¥0d B3SO N 135

w801I3A

2d &

i
i

i
i
i
i

ONISS3O0Hd IWILNOD OL §
YIWNVH LARRIIINI L3d OL o §

3000 NOVLIVNOLS3Y §

i
sas INILINCY INFALSNIOY XOVIS eee i
Siy 09

i
i

i

000O0O0OOO OO : Viva
000001 1t 0: uy °F PUBSPUBLWOD ‘"’""" 3y} esooyd o} nok yuuad o} -Bas 8yl PIOY 06 O 02 SeUN
00 1 L 00 0 O : udd OYllno payl eaey NOA o)y paJinbes s§ 0002 aupnoiqng :JopJO U{ 88 3P0 By}
: : : : : g : : : m weiBosd JOYUOW 1104 (0601 Bul) }INSBI BY} BUJUIBIUOD SIUBWILIOD BWOS
oL ZEcVrs 9o ¢ sesn oY) Buisn jo uBis ayy Bupuud pue yBu *3]QNOJ} PUR BWI} BWOS 3ABS
‘pseoqhay 31 &0 31 60 6850
ALINVA 440 NSWW | LS4 ONY 6T 9850

1¥838 VO1 SAD 83 1y Qv €8K0
i
ONISSId YILIVIWIOI
i

30938 onf 93 3¢ J» 0850
dON v3 30

XVLS ¥SF HSINIZ €0 29 02 SO

SADI 3N0 L0 00 vI£0

2084 QW 20 62 8L£0

0¥83s V01 30004 83 Ov GV $LE0
i

*H33INE INGNI ML OLNI SINd ONV §

IIHOS O ONICHOOOV SILVISNVML °INISId JI i
"HOSS300Md LAMRIINI 13d OL SNUNLIY ‘INISId §

10N J1 YILIVUWIO ¥O3 ¥41 1¥0d ¥3ISN HOFO i

ssa 3000 3AILIY eee i
i

68938 oW 9368 ¥ SO
wd ey g0

YHd 8y 00

ey I%0

8y 3%0-

008# Y071 xviS 00 6y %0

3dV1 LVHL 0S5 WHOLJ3A 1NEd3INIL 3HL 3W0LSHY i

8%0
[B+ 8¢ v¥O0
vIZ0s V1S 20 vi 08 (%0
933/ V01 93 6V $%O
61208 V1S 20 61 08 Z%O
<8ss Va1 68 6v 09€0
138 4J0x 8L 4550
i
*ATRY3d0Md RIOM WD O/1
ese 3000 NOILVHOLSRS eee 5
i
S1y 09 350
10 ’ 96 0550
av338 VIS 83 €7 08 vs€0
1084 Vu0 12 €0 85€0
3v83§ V01 %3 9 Qv 65€O
838 V1S 82 2v 09 24€0
1037 V40 1c 6C 05€0
19833 vO1 @3 2v Qv OK0
300w V1S €¢ 299 w0
iv633 vis 83 (v €8 (¥0
0037 V01 nQ 6V 6pE0
1
71208 Vit 20 vi 08 Z¥S0

0%/ vo? §C 6v OvS0

REM CB2 BLINKER

3888883

GOTO 30

Lights will blink at about 1Hz.

POKE 59487, PEEK(50487) AND 227

POKE 59468 (PEEK(59468) AND 31) OR 192
FOR J =1 T0 300, NEXT

POKE 59468, PEEK(59468) OR 244

FOR J = 170 300; NEXT

Example 10. CB2 Blinker program. The CB2 LED in the Blinkin’

four bits on the Blinkin’ Lights
Data switches to high, the
DATA: line will become 0000
111 1. Asyouchange the switch
settings, you will notice that
there is a lag of about one sec-
ond before the display
responds.

This illustrates how the Mon-
itor program can show the data
you input to the user port. Now
. disconnect the Data switches
by opening the Data isolation
switches—the DATA: will now
become all ones.

With the P command, change

the DDRAto 1111 1111.The
DATA:isnow 0000 0000.
This is the initial value storéd in
the PET. Using P again, change
the DATA register to some
other value and watch it appear
on the LEDs on the Blinkin®
Lights. This illustrates data
output.

It you close the Data Isola-
tion switches and change these
registers. with the P command,
you can demonstrate input via
handshake with the CA1 line:

DDRA setto 0000 0000
PCR setto 0000 1100 (Negative

transition)
ACR setto 0000 0001 (Enable
Istching)

When you return to the dis-
play, the IFR may look like:
0110 0010.ifitdoes, pressD
and then press any key. The IFR
will now returnto:0110 0000,
indicating that the Flag bit was
reset when the Data with Hand-
shake was read.

Set the Blinkin’ Lights Data
switches to some value and
watch the DATA: on the dis-
play. The value will follow the
switch settings. Now, flick the
CAT1 toggle switch (be sure the
isolation switch is closed), and
the IFR will show bit 1 as set. If
you now change the Data
switches, the DATA: value will
not change. It will remain
tatched until you do the D com-
mand. This illustrates input
with latching and handshaking.

Feel free to experiment with
other settings for the user port
with the Monitor program.

< www.Commodore.ca

May Not Reprint Without Permission

The CB2 Line

The CB2line is the most com-
plex of the user port lines. It can
be operated in a variety of
modes, including the provision
of an output handshake and the
serial transfer of data. As most
of the CB2 modes can only be
controlled from machine lan-
guage, this article will cover
only the two modes that are
usable from BASIC.

CB2 as an Output or Handshake

The CB2 line may be turned
off or on directly to provide
either a handshake line or a 9th
output bit for the user port. In
either case, the shift register
modes must be disabled by set-
ting the Auxiliary Control regis-
ter (ACR) as foltows:

POKXE 59467, PEEK(50487) AND 227

(In most cases the ACR Is al-
ready zero, so this may be ig-
nored. However, safety first!)

E

B8Y: GREGORY Y08, 1978

SET UP R$= REGISTER NAMES,

AC)=REGISTER ADORESSES,
F()=SHOW REGISTER IF)0

§8g88s

i
4y
31
ot

833888%A3

238

100 DATA™PCR™ " IFR™,* IER" o "DATA"

120 DIM R$(16),A(16),F(16)
200 A=59456: FOR J=1 O 16

220 ACJ)AzAmAS

0

240 RO

SET_UP DISPLAY
) boddOLLLR

320 PRINT® O@@@@@@@

330 PRINT"D=OATA PePOKE S=SHOW"

400 FEM DISPLA --
410 PRINT* (®)

420 FOR J=1 TO l6

430 IF F(J)=0 THEN 450

430 NEXT J
460 REM IF NO INPUT 00 LOOP AGAIN

0000

6522 VIA DISPLAY ANO MONITOR

A "TILCA","TIC-H", "TIL-L" “TIL-H"
TA *T2.C-L","TX-H", "SR 'w:w'

110 ROM *DATA® 1S ORA Wi THOUT HANDSHAXE

210 READ AS:RE(J)=LEFTS(AS+"bOOOOLDL™ ,6)+" ;"

SET FLAGS FOR INITIAL DISPLAY .
23 F(4)e1:F(12)=1:F(13)e1:F(14)a1 :F(16) o1

PEOOOON

340 PRINT"HHELP Q=QUIT T=TOGGLE™

440 Z=PEEK(A(J)):PRINTRS(J); :G0SUB1000

3000 PRINT™(©) bb 6522 FEGISTER DISPLAY AND OWNGE (DD
3010 PRINT"THIS SHOWS TME VALLES FOR THE PET’S

3020 PRINT™VIA REGISTERS. YOU CAN LOOK AT ALL OF

3030 PRINT"THEM. THOSE USED FOR THE USER

3040 PRINT™PORT ARE SHOWN

MEN THE PROGRAM

3050 PRINTSTARTS. (©) (DD THE DISALAY 1S REFRESHED ABOUT ONCE
3060 PRINT™FER SECOND. PRESS A KEY TO DO A COMMAND

3070 PRINT® (©) bLLO=DATA READS ORA WITH HANOSHAKE

3080 PRINT® P=POKE LETS YOU POXE A REGISTER

$=SHOW SELECTS REGISTERS TO DISPLAY

3090 PRINT®

3100 PRINT® Q=QUIT STOPS PROGRAM
3110 PRINT® T=TOGRE

3120 PRINT™

3130 PRINT™

3300 PRINT™ (@YD) "; :G0SUB4990:!

3500 REM OHANGE DISPLAYED REG!

”;g mm-@ SHOW REGISTERS @5‘0
3330 mm-sm.:m.umsow.:m‘m

3340 IF A$s"S® THEN F(2)e1
3930 tF g"‘i" THEN F(2)=0
3560 IF AS«"X" THEN RETURN
3% PRINTHDEPD ":
3380 GOTO 3520

4000 REM GET
4010 PRINT™

AS
4020 n:sux FW-"O!G READBS
4030 IFBSaASTHEN

TURNS CB2 ON, THEM OFF TO
FORCE MANOSHAXE & THEN

GISTER MAME, RETURN Ze INDEX
REGISTER RAME :bbbbbbbbbbbd DDDDUDDO0D0 ":

470 GETAS:1FAS""THEN 410

300 REM DO COMMANGS

310 IF AS="0" THEN GOSUB 2000
520 IF AS+"P" THEN GOSUB 2500
530 IF A3="S® THEN GOSUB 3500

€™ Is & null string)

1000 REM DISPLAY IN BINARY

1010 Z1=128

1020 FOR 22=1 TO 8

1030 PRINT SGN(Z AND 21);

1040 IF Z2+4 THEN PRINT "b";

1050 Z1=21/2 : NEXT 22: PRINT : RETURN

2010 Z = PEEX(59457) :PRINT®
2020 PRINT*(D)"; : GOSUB 4990
2500 PRINT(O) POKE azcnsvsa-
2510 GOSUB 4000

4040 NEXTZ: mmr- THE REGISTERS ASE CALLED:

4050 FOR J=1TO16:PRINT LEFTS(RE(J),6)"bbbb": :NEXT J

4060 PRINT" *:: GOTD 4010 -
4500 ‘REM - GET BINARY MMBER

4510 PRINT™BINARY VALUE: ";:INPUT AS:Z1=128:8=0

4320 IF LEN(AS) < B THEN PRINT *(@";: GOTO 4310

4530 FOR J=1T08

4540 IF MIDSCAS, J, 1)« 1°THEN B=8 OR 2)
4550 Z1e21/2:MEXT J

4360 RETURN

4990 PRINTPRESS A KEY"

5000 GET A$: mur-m(b-..roa Kel 70 20
5010 PRINT"®(D";:FOR K = 1 TO 20: NEXT
5020 IF A$«""THEN 5000

5030 RETURN

5500 REM TOGRLE CE2

5510 ASPEEX(59467) :B=PEEX(59468)

5520 C«8 AND 131 OR 192

3330 D= 8 OR 224

5540 POKE 99468,C

S350 POKE 59468,0

NEXT X

x

(" is a null string)

R Example 9. PET user pori display and monitor program.

2 www.Commodore.ca

May Not Reprint Without Permission

» Interfacing the Writehander

The Writehander is a one-
handed input keyboard manu-
tactured by the NewO Com-
pany, 246 Walter Hays Drive,
Palo Alto CA 94303 (see Kilo-
baud No. 23, p. 9, for a descrip-
tion of the Writehander).

The Writehander is a gray
plastic ball about six inches
across with switches placed so
that the fingers and thumb may
touch them. By altering the fin-
ger arrangements, you can
send any of the 128 ASCli codes
to the computer. When the byte
is ready, the Writehander pro-
vides a strobe and then re-
quires an acknowledge signal
before it senus the next byte.

The wiring to the PET user
port is shown in Table 6. The
grounds were connected to-
gether for the power supply, the
PET and the Writehander. The
Writehander has several jJumper
options that were wired as:

1) Strobe goes activelow +to-"_
2) Acknowledge active low +to-"__
3) Parity (Bit8)setiow Gnd

This means that the follow-
ing steps are required to talk
with the Writehander.

1. Poke the DDR to all in-

Function

and display the data (or

whatever)

9. Turn CB2 off (low)

10. Gotostep5

These steps were incorporat-
ed into a program, Example 11,
which was only intended to ac-
cept characters from the Write-
hander and display their values
on the PET screen. See the pro-
gram in Example 7 for a more
complete processing of the
characters. (If you are a real
diehard, modify the assembly
program in Example 8 to pro-
vide the required CB2 logic.)

Lines 30 and 40 can be com-
bined, but this program keeps
them separate to show the dif-
terent things being done. If you
want to show the character
rather than the value, use:
90 PRINT CHR$(X AND 127);

| encountered several frus-
trating experiences during the
development of the above
(simple!) program:

1. The Writehander would
work perfectly when attached
to the Blinkin' Lights by itself,
and the program would work
perfectly when it was attached
to the Blinkin' Lights...and
(guess), when the Writehander

Then, the CB2 line is set high puts

by: 2. Set CA1 t.o.de!ect the Hi 5 PRINT- ©
POKE 59468, PEEK(59468) OR 224 to Low transition 10 POKE 59459,0

s 3. Disable the CB2 Shift 20 POKE 59468, PEEK(59468) AND 254
and it is set low by: Register mode 30 POKE 50467, PEEK(S9467) AND 227

40 POKE 59467, PEEK(59467) OR 1
POKE 59468 (PEEKISS4GEIAND 31) OR 152 4. Enable latching with CA1 50 POKE 59468, PEEK(59468) OR 224
The parentheses are required 5. Turn CB2 on (high) :0 IF (:eeesx(s;?sss;’momoweuso
H 0 X= K(594
to ensure that the operations 6. Waitfor the Interrupt flag 80 POKE 59468, (PEEK(S9468)AND 31) OR 182
AND and OR are done correctly. in the IFR 90 PRINT X AND 127- .
_ Example 10 is a short “CB2 7. Read the Data with Hang- 100 GoTos0

Blinker” that blinks CB2 at shake Example 11. Writehander input program.
about 1 Hz. 8. Mask oft the parity bit

was attached to the PET, it
wouldn’t work! After much fid-
dling, | discovered that the
Writehander required that the
ACK (CB2) be high before it
would bring the Strobe (CA1)
low. Thus CB2 had to be set
high before trying to look for a
character.

2. The parenthesis around
the PEEK in line 80 is required
for the CB2 to be set low due to
the precedence relations of
AND and OR.

3. PET ASCII isn't ASCII, so
the “wrong” character would
be displayed (see A Keyboard
Via the User Port section for a
detailed discussion).

CB2 as a Shift Register

The CB2 line may be made to
act as a shift register by setting

- a combination of bits 2,3 and 4

in the Auxiliary Control register
(ACRY). Only one of these modes
is usable from BASIC. The
others require the use of ma-
chine language to be controlled
properly (see the 6522 VIA spec-
ification for details).

One nice way to experiment
with this is to use the PET to
make ‘“square wave music.”
Fig. 4 shows two ways to attach
an audio extension to the PET.
Each of these simply uses the
CB2 line for the audio signal.

Checking It Out

Once you have your audio ex-
tension together, one way to
check it out is to toggle CB2 in
Handshake mode as fast as
BASIC will go:

10 POKE 59467, PEEK(S3467)AND 227

20 A =58468: X = PEEK(AJAND 131 OR 182
30 Y=PEEK(A) OR 224

ce2

Leo
2200 / red
n.r
)] T0 AUDIO
AuPLIFIER

Fig. 4a. Add the Inverter and capacitor to the output of the CB2 in-
verter in the Blinkin' Lights. Fig. 2 has this addition indicated.

.3V

a8

1008 POT

ﬂ[[] 00 sreaxen

ANY MANDY NPN CAPABLE OF SINKING
0 mA

Table 6. Writehander wiring list.

Line Color PET
- 1 Brown Bit 1 PAO
2 Red +7to +23V power (unused)
3 Orange Bit2 PA1
4 VYellow Ground GND
5 Green Bit3 PA2
6 Blue +5 V (separate power supply)
7 Violet Bit 4 PA3
8 Gray -
9 White Bit 5 PA4
10 Black —_
11 Brown Bit 6 PAS
12 Red —
13 Orange Bit7 PA6
14 Yellow Strobe CA1
15 Green Bit8 PA7
16 Blue Acknowledge(ACK) cB2

GROUND

Fig. 4b. This circuit lets you add sound effects, etc., for you PET
without any additional equipment. Take the +5 volts from the
second tape port. (That's the top or bottom pin, second in from the
side of the PET. Check your lirst tape recorder to find whether it is
on top or bottom—Commodore makes both kinds!) Find a 2 or 3
inch speaker and any handy NPN transistor. phpable of 200 mA cur-
rent. The 47 Ohm resistor should be 1/2 Watt or larger and should
not be omitted. My unit was put on a 3 x 5 inch perfboard with con-
nectors glued to one edge, which makes it easy to hook to my PET.

2 www.Commodore.ca

May Not Reprint Without Permission

Data Directions Register

POKE 59459, 255
POKE 59459, 0

Simple Input and Output (no handshakes)

(value) = PEEK(59471)
POKE 59471, (value)

Input and Output with Handshaking
POKE 59468, PEEK(59468) AND 254
POKE 59468, PEEK(59468) OR 1
POKE 59467, PEEK(58467) OR 1
POKE 59467, PEEK(59467) AND 254

|F PEEK(59469) AND 2 THEN —
WAIT 59469, 2

nnn IF(PEEK(59469) AND 2) =0 THEN nnn

(value) = PEEK}59457)

Set user port to 8 bits output.
Set user port to 8 bits Input.

Input (value) from user port.
Qutput (value) to user port.

CA1 will trigger on falling edge.
CA1 will trigger on rising edge.

Data is latched when CA1 triggers.
Data is not latched.

Three ways of detecting the CA1 Flag Bit.
Be careful with using WAIT.

Reads from user port, resets CA1 flag bit.

POKE 59457, (alue) Writes to user port, resets CA1 flag bit.
POKE 59468, PEEK(59468) OR 224 Set CB2 line high.
POKE 59468, (PEEK(59468) AND 31) OR 192 Set CB2 line low.
Shift Registery
POKE 59467, PEEK(S9467) AND 227 OR 16 Sets shift register to free running mode.
POKE 59467, PEEK(59487) AND 227 Disables shift register modes.
POKE 59466, (value) Puts (value) into shift register.
POKE 59464, (value) Sets timer 2 to (value)
Miscellany

(value) = PEEK(515)

(value) = PEEK(516)

Reads matrix value of key pressed.
255 = no keys pressed.
Reads shift keys. 1 if pressed, 0 otherwise.

Table 7. Summary of BASIC statements used to control the PET user port.

40 POKE AX:POKEA,Y: GOTO 40

Line 10 disables the Shift
Register mode, and line 40
turns CB2 on and off. The rea-
son that varlables are used in
Hine 40 for the addresses is that
BASIC runs much faster when
varlables are substituted for
constants.

RUN the program, and a buzz
wiil emerge from your speaker.

Try changling line 40 to:
40 POKES8488X:POKES9468,Y:GOTO 40
and you will notice that the
pitch of the buzz Is much lower.
(Note: You will also hear a varia-
tion in the pitch of the buzz.
This Is caused by the PET's in-
terrupt routines “beating’ with
the execution of the BASIC pro-
gram.) ’

A last variation before going

INPUT TC

383888833

K= PEEK(515)

130 GOTO 120

REM CLUMSY MUSIC MACHINE

REM SET S.R. MODE IN ACR -
POKE 50487, PEEK(59467) AND 227 OR 18
PRINT TIMBRE :";

IF TC<1 OR TC>254 THEN 40
REM CHECK FOR KEYPRESSES
PRINT"PRESS KEYS FOR TONES™

100 IF K= 255 THEN POKE 504088,0: GOTO 80

110 POKE 50464,X: POKE 50400,TC
120 K= PEEX(S1S) IF K = 255 THEN 100

Example 12. A clumsy music machine.

20 POKE 50408,15

110 POKE 50408,0

10 POKE 50467 PEEX(SO4ETIAND 227 OR 16

30 FOR J =0 TO 255 POKE 50464.3: NEXT
< 100 GET AS: IF A$ =™ THEN 30

Example 13. Program for effect 1.

on to the shift register is to
change the above program as
follows:
40 Z=515
50 POKE AX:FOR J =1TO PEEXZY
NEXT: POKE A,Y: GOTO 50
Pressing different keys will
vary the rate of clicking. (Note:
Location 515 Indicates which
key is depressed on the PET
keyboard. This Is not in PET
ASCII but represents-the matrix
position of the key.)

Shift Register Mode

When the ACR bits 4,3 and 2
are *100” the shift register Is in
“free running mode.” Two ad-

dresses are now of interest:

SR Shift Register
T2W Timer-2

58468
50484

At arate determined by the con-
tents of Timer-2, the contents of
the shift register are placed on
the CB2 line. When eight bits
have been shifted out, the shift
register is again shifted out.
This creates a continuous
stream of bits that repeats
every eight Timer-2 cycles.

Timer-2 accepts a number
from 0 to 225 and counts it
down to zero at the PET clock
rate. When it reaches zero, the
shift register is shifted and the
least significant bit (bit 0) is
placed on the CB2 line.

By placing an appropriate
number into Timer-2 for the

pitch and a 15 into the shift reg- -

ister, square waves at audio fre-
quency wlll emerge from CB2.
Here Is the world’s clumsiest
musical instrument (see Ex-
ample 12). Try it and you will
know why. Line 50 inputs a
waveform to be put into the
shift register when a key is

pressed. Line 60 guarantees e

that the waveform will result In
a sound (a 0 or a 255 will come
out as a dc voltage).

Line 90 detects the state of
the PET keyboard matrix. When
no key is depressed, the value
in this address is 255. Line 100
puts a zero into the shift regis-
ter, turning the sound *“oft.”
Then the keyboard Is checked
again.

it a key Is depressed, the
“pitch,” or the matrix value of
the key, Is put into the timer and
the timbre Is put into the shift
register. Now a'sound is heard
(for most of the keys; some will

30 FORJ =10 TO 255 STEP 10: POKE 50484,J: NEXT
40 FORJ =255 TO 10 STEP — 10: POKE 50484,J: NEXT

Example 14. Changes in Example 13 for effect 2.

30 FORJ=1TO 100: POKE 50484, 240°RNDX1) + 10: NEXT

Example 15. Change in Example 13 for effect 3.

0 Fon.u-nonvoxesoiu,wo:mxﬁmmum
40 FOR J =1 TO 30: POKE 50484,150: POKE 50484,250. NEXT

Example 16. Changes in Example 13 for effect 4.

1]

make inaudibly high notes). line 100.

Line 120 waits until the key is

Some time spent with a cal-

released before starting overat culator or scope will yield

REM BETTER WOLF

REM GREGORY YO8

REM CB2 ON USER PORT & AMP

POKE 59467,16 :POKE 59466,15

FOR L =180 TO 50 STEP - J:POKE 59464, L:NEXT
FOR J = 1TO 6:NEXT

POKE 59466,0

FORJ = 1TO 150: NEXT

POKE 59468,15

FOR L = 150 TO 80 STEP - 2: POKE 53464,L:NEXT
FOR L =90 TO 190: POKE 59464.L

FOR J = 1TO U70: NEXT

NEXT

POKE 59467,0

PRINT“PRESS KEY TO DO IT AGAIN"

GET AS: IF AS =" THEN 150

GOTO 100

Example 17,

about two octaves of pitches
that are reasonably close to the

‘musical scale(s). Feel free to

write your own musical pro-
grams.

Since the CB2 line, once in
Shift Register mode, will run in-
dependently of the PET's other
activities, other computations
may be done while a tone is
sounded. Another aspect is the
making of sound effects for
games. See Examples 13-17
and try them out to find out
what they do.

Lines 100 and 110 in Example
13 provide a way of turning the
sound off. If you don’t do this,
the PET will squeak at you after
you press the STOP key—and
only a direct version of line 110

c= www.Commodore.ca

May Not Reprint Without Permission

will turn the squeak off! Exam-
ples 14-16 show changes to Ex-

ample 13.

Summing Up

The PET user port is a versa-
tile way with which to commu-
nicate between the PET and the
rest of the world. This article
has shown you the “nuts and
bolts™ required to interface
many devices, including joy-
sticks, keyboards and music
makers, that add to the capabil-
ities or your PET.

For your convenience, Table
7 summarizes the various
BASIC statements used to con-
trol the user port. Now let me
see . . . robots, turtles, printers,
my lawn sprinklers.... B’

= www.Commodore.ca

May Not Reprint Without Permission

Get Your Pet on
The IEEE 488 Bus

This 3-part odysséy takes you along route 488. The first stop is here . .. tickets, please.

Gregory Yob this article will sketch the pre- dore used to provide a S-page don't need a separate interface
Box 354 requisites and give you enough list of these. The PET was later and connector for each new

Palo Alto, CA 94301

erhaps the most obscure

Commodore PET feature is
its IEEE 488 (or HPIB or GPIB) in-
terface. This three-part article
describes the rudiments of the
488 bus and how to use your
PET to communicate with in-
struments having the 488 inter-
tace. Several working examples
with Hewlett-Packard equip-
ment are shown. (HP lent me
eseveral 488-compatible instru-
ments to prepare this article.)

It you just want your PET to
talk to that costly instrument on
your bench, skip this month's in-
staliment and start next time

information to track down bugs
on your own.

What's a 488 Bus?

In 1972, engineers —some

with Hewlett-Packard —pro-
posed a method of joining many
instruments in a standardized
way to help automate lab and
test measurements. This re-
sulted in the IEEE Standard
488-1975, which describes how
to connect as many as 15 instru-
ments on the same cable.

HP and several other labora-
tory-instrument manutacturers
then offered the IEEE 438
scheme as an option. Presently,
several hundred instruments

designed with the instrumenta-
tion and control market in mind,
so the IEEE 488 interface was
put into the PET.

Before the introduction of the
PET, instruments capable of
controlling the 488 bus cos! sev-
eral thousand dollars. Now the
PET often costs less than the in-
struments it controls. Some 488
manufacturers have trouble ad-
justing to this — their customers
balk at the idea of purchasing an
$800 microcomputer to control a
$30,000 instrument!

Now one connector joins the
PET to many peripherals. You

gadget. Commodore's printer
and disk are designed to use the
PET's 488 interface.

Physical Aspects

A PET and a 488-compatible
device have ditferent connec-
tors. Your first project is to wire
a cable to tie the two machines
together.

Fig. 1 shows the location of
the IEEE 488 connector on the
back of the PET, and Fig. 2
describes the pins and connec-
tors used for the PET and the
|EEE 488. | used a 20-conductor
ribbon cable and tied the

- - n e o o
with part 2. The first two partsof have the 488 capability: Commo- ge2ggsissriid
B8ACa OF PET
A
TOoPr VILWwW
:wotg‘ 2
ABIN 'O’C " —
N poTYOMTY €0GE Vit w L4
© sces8888ssTs
© 0 0 0 9 v © © © Vv e o
‘5
1 I
© (-] (] o

8LACK PO

010 ¢

/

0103

010 2 2 e | o104
010 3 > w | oor
€ee- aon ruse saevem oo o N o | oloe
om0 eee -

:::’I T vste N3TRUNIaTATION to1 £) (3] [1{]
O Qo LI Oav L3 " EmD o
[y | pr—— | —— | werp v " Gup ¥
JL »0AC L] 0 Cad o
\ J/ ”"e A n Cn0 9
1m0 0 22 | cwo 10
ara " 2 | cwon

sovts coso ” 2e GMD 110CCH

Fig. 1. Location of PET IEEE 488 pori on the back of the PET next to

the power switch and luse.

$eilLD

\-/i NOTE Tet

POLARIZATION

Fig. 2. Pin-outs and connectors lor the IEEE 488.

Copyright 1980 by Kiiobaud Microcomputing All nghts reserved. Used Dy permission.

<

Ed

grounds together into the four
lines left over after { connected
the signal wires.

When making the cable, bear
in mind that there are strict
limits to cable tengths:

1. The maximum distance be-
tween two devices is 5 meters.
2. The longest distance from
one end of your setup to the
other is 20 meters.

3. A maximum of 15 devices, in-
cluding the PET, can be hooked
together.

Itis also wise to avoid electrical-
ly noisy areas; don't drape your
IEEE 488 cable over your TV set.

i more than one device is
connected to the 488, you must
use extension cables. HP has

-cables for about $50. If you want

to make your own, consult the
two configurations in Fig. 3. The
488 instruments always have a
female connector, so have an
excess of male connectors on
your cables.

Electrically, the 488 bus
works on an active-low princi-
ple. Fig. 4 shows acircuit similar
to a 488 bus line. When all the
switches are open, the voltmeter
will show 5 volts, which is the
false state (or 0) for the line. If
any of the switches are closed,
the tine is grounded, and the
voltmeter shows zero voits, or
the true state.

This peculiar arrangement
permits several devices to be
connected to the same line. If
any one of them has a switch
closed, the line is true. Devices
frequently operate at ditferent
speeds, and when eachdevice is
ready, it opens its switch. How-
ever, the line remains true (low)

. ... until the slowest device opens

“Hs'switch, T
SEEE Blinkin Lites Display
It is always convenient to

have a display and switches to
perform a front panel function

when you debug interfaces. |
built a2 box, which | call the 488
Blinkin Lites, to display the
states of each of the IEEE 488
lines and some switches to
force lines low if needed. Fig. 5
shows the circuil, and Fig. 6 is a
sketch of my box.

Each line is pulled up to +5
volts with a 10k resistor —the
high value was chosen to mini-
mize the load on the 488 bus.
The switches can override any
line when they are closed to
ground. Though the PET doesn't
use all the IEEE 488 lines, future
machines will —so | put them all
in my box.

If you build this box, don't use
the PET's + Svolts from the tape
port—the LEDs draw 170 mA,
which is too much for the PET.
Provide a connector to the PET's
IEEE port and a male and female
|EEE connector. This lets you in-
terpose the IEEE Blinkin Lites
between the PET and an instru-
ment.

| mounted a §x7 inch perf-
board with 0.10 inch holes into a
standard breadboard box and
placed a label near each switch/
LED combination to identity the
IEEE lines. The three ICs are the
7404s used to drive the LEDs.
The cable leads to a homemade
junction with a PET connector
and IEEE male and female con-
nectors. A mini phono jack con-
nects to a separate + 5 volt sup-
ply {(see Fig. 6).

When you plug in the IEEE
Blinkin Lites, the LEDs will show
the state of the lines—an LED
that is off indicates a low line,
which is true; an on LED indi-

‘cates high, which is false.

The IEEE 488 Lines

The |EEE 488 is composed of
16 lines. Eight are for transter of
data, five are for bus manage-
ment and three are for hand-
shaking. The eight data lines are

®aLE

=]

" FEMALE

]
£

“aLE

Fig. 3. Convenient cable contigurations for the |EEE 488 bus.

ConCEr?
OF 1ELE 488 LINES

.13 1 10x

JOE viCE 2 JDE VICE 3

=

VICE |

voL TuETER P
TRUC 10}
faLst ()

g

>

-y
STANDARD ITL 1O 1EEE
400 INTERFACING

mﬁl:
RECEIVER]

Vee tusuaLLy

WHEN INTERFACING TO THE
ICEE 488 BUS, OPEN COLLECTOR
OEVICES MUST BE USED

Fig. 4. IEEE 488 equivalent circuits. The lower circuit is the standard
method of connecting TTL logic to the 488 bus. The driver must be an
open collector and able to sink at least 48 mA at .4 volts and source
5.2mA at 2.4 or more volts. The PET uses MC 3446P bidirectional line

interface ICs for this function.

labeled DIO1 through DIO8, with
the most significant bit (MSB)
on DIO8. The 488 bus can trans-
fer one byte at a time and is
sometimes called byte-parallel.”

The five bus-management
lines in various combinations
and .sequences provide many
bus facilities, most of which are
rarely used:

EOI—End of Message. When
a group of bytes is sent via the
DIO lines, EOIl is made true on
the last byte to indicate that the
message is completed. This is
optionat, and many instruments
send the ASCIl characters CR
and LF as data instead. Check
your instrument’s manual.

IFC—Interface Clear. When
this line is true, all instruments
disconnect {o a defined state.
(This usually is unaddressed
and untatked.) When you turn on
the PET, IFC s true for about 100

ms. If the PET is reset, IFC will-
. again be true. ’

SRQ-— Service Request. This
permits an instrument to.signal

that it needs attention... and
the device in charge of the bus
must find out what it needs.
The PET has this line as an in-
put, but it takes some program-
ming effort to use SRQ; most in-
struments don‘t use SRQ.
REN— Remote Enable. Most
IEEE instruments have front
panels that permit stand-alone
operation—that is, they work
as ordinary instruments when
the 488 bus isn't connected.
REN lets the instrument dis-
connect from the bus and be
controlled from its front panel.

*3v

TO IEEE MaLL
o e s
FROM PET tEEE { FOALE
suoe ’
Switcn
3 : 4700 ov
Veno xo.

X4
7404

Fig. 5. LEEE "Blinkin Lites" cir-
cuit. Each -IEEE line uses one
copy of this circuit.

Fig. 6. Sketch of the “Blinkin Lites.”

« Wwww.Commodore.ca

May Not Reprint Without Permission

Tawgm

. eng oCYe

L wees ang ..
wuet stwseu §

~bw .

B . El

On O
Lints

oyt va
Caanct Data
aca

LISTENEW

— e}

@y

(Y watp
An0 nDaC

e am—— - ——y

D WAT
s vaLiD 85
catd = e

cata

acceey

Y uaro
‘ow
Y |
ves a3,
SRR 3103 gy
1003 mave accrorey ."‘ LT noal

O]

was oav |
cm =l cong wicm |

SLY mDaC
Low

Fig. 7. The IEEE 488 handshake reproduced trom Electronics, Nov. 14, 1974, p. 98, as reproduced in HP

part #5952-0058.

The PET's REN line is always
grounded.

ATN—Attention. This is the
most relevant line for this arti-
cle. It tells the device whether
to regard the data on the DIO
lines as a command or as data.
When ATN is true, the byte on
the DIO fInes is a command.
When ATN is false, DIO is seen
as data.

The three handshake lines
are used to pass bytes on the
DIO lines. When a byte is trans-
terred, the stow devices will
keep one or more of the hand-
shake lines true until they are
finished. This ensures thatdata
is passed at the speed of the
slowest device and isn't lost.
The handshake lines are:

DAV (Data Valid)—When this
line is true, the.data on the DIO
lines is correct and the receiv-
ing instruments can pick up the
byte.

NRFO (Not Ready For Data)—

When a receiving device is busy
or is still processing prior data,
it will make NRFD true, which
stops data transfers.

NDAC (Not Data Accepted)—
When the data is on the DIO
lines, the receiving devices
keep NDAC true until all of
them have read the data byte.
Note that the handshake lines
don’t care whether thedatais a
command or not; every byte of
data or command has to under-
go the handshake sequence.

The Handshake

For data transfer, one device
is the “talker,” which provides
the data or commands for trans-
fer. The recipients, or “listen.
ers,” pick up the data, and more
than one device may listen at
the same time. The handshake
specifies exactly how the data
transter is accomplished.

Fig. 7 shows a flowchart of
the handshake sequence. When

the first event, NRFD, goes
talse, this tells the talker that all
of the listeners are now ready to
receive a new data byte. The
slowest listener is the last one
to release NRFD, which will go
high. ’
Next, the talker puts the data
byte on the DIO lines and waits
briefly to let the signals settle
(usually about 10 us). Once the
datais on the DIO lines, NRFD is
checked by the talker; if it is
false, the talker sets DAV to
true. The listeners now know
that the new data is ready for
pickup. (f NRFD is true, the
tatker waits until it goes false.)
The first listener that detects
DAV true now sets NRFD true,
and all of the listeners pick up
the data byte from the DIO lines.
Up to now, NDAC has been true,
and as each listener gets its
byte, it releases NDAC. NDAC
goes false when all the listeners
have the data. The talker waits

2 www.Commodore.ca

May Not Reprint Without Permission

for NDAC to go false, and when
it does, the talker sets DAV to
false. The listeners then make
NDAC true, and the entire hand-
shake sequence begins again.

Since a device is either a
listener, talker or not addressed,
Fig. 7 is broken into two flow-
charts: one for the talker and
one for the ‘listener. A listener
will start the handshake with
NBFD and NDAC true, while the
talker checks these. if both are
false — the listener isn't there —
an error condition exists.

Commands and Messages

When ATN is true, any data on
DIO is seen as a command. Fig.
8 shows the entire ASCII set of
128 characters devoted to IEEE
488 commands.

The ASCII codes 32 through
62 (all numbers in decimal) des-
ignate the listen address for a
device. Most IEEE-488-compati-
ble devices have a five-position
DIP switch next to the 488 con-
nector set to the device's ad-
dress, a number from 0 to 31.
(Note: For the PET, use 4-15)
When the listen address is sent
with ATN true and this address
matches the device's address,
the device will now be ad-
dressed to listen and will accept
any data sent with ATN false.

If the device is supposed to
send data, the talk address —
trom ASCII codes 64 through 94
—will be used instead. The
device (if with matching ad-
dress) will now send data bytes
to the bus.

if the device's address (by the
switches) is number 7, the listen
address value will be 32+ 7, or
39 (apostrophe). The talk ad-
dress will be 64 + 7, or 71 (letter
G). Notice that bits"5-7 desig-
nate talk or listen, and bits 0-5
designate the address. Address
31 is reserved for two special
commands. Although you can
set the switches on a device to
31, it won't operate with this set-
ting.

One instrument must provide
these talk and listen addresses.
Thijs device is the controller, and
the PET is always the controlier.
The controller can talk and lis-
ten t0o, but only the controller
can set ATN true.

[

Two of the ASCIl codes, 63
and 95, serve as ‘“universal”
commands. The 63 code is
known as “unlisten™and tells all
addressed devices to stop

data is present. (In normal oper-
ation of the bus, the controller
doesn't have to take these
drastic measures.)

In some cases, a device will

« www.Commodore.ca

May Not Reprint Without Permission

1EEE B8 PIA (6520)

Table 1. All PET I/0 lines.

ADORESS: $ €820 59424

PAB IEEE Dats in | P8O (ECE Data Out 1V
listening to the bus. This is have a secondary address, o3 S
taster than trying to tell the which permits more than 31 ef- Y B 4 173 B 4
devices one at a time to stop fective addresses on the bus. oo B ne .. 3
listening. The 95 code, “untalk,” For example, the Commodore ::: o g ;:t; .o g
stops all data transmitters printer might be set as device 4.
(talkers). To control internal functions, A aone ! ut ol I

When a message — oOf a group
of data bytes—is sent on the

secondary addresses select the
function in use. (See Commo-

. MULTILING INTERFACE MESSAGES 150-7 8IT COOE REPRESENTATION

(SENT AND RECEIVED WITH ATNe))

with a NAND and some resistors

to the IEEE specitication.
> b ° ° .“Go o |msc °, usG ° ¢ Juse] o Juse|' o [wse ! |° wse|' | Table 1 reveals some interest-
S ° ! ° ! ° ! ing irregularities concerning the
NAREEENNB . R R . > . ’ IEEE 468 buz: 1f EOF fo m«: the
oTololol o [wx T3 r r r ry » | 1| PET's display is turned off.
olojols| + [somfercfoci (Lo o v a ° o o _| (Programs that PEEK and POKE
ofofifo] 2 [smx ocz . 2 . . D + L I_] 1thedisplay area in memory can
oJo e[e] s Jex ocs - 3 3 [c | » o+ 18 | .
o|]1]ojo] « Jeor|soc|ocafoa | s - a |9 ° gl+v]8 « | S ' §_ use this to avo.'d sm'). Later-
o 1ol s Tew TR [Ty N - 3 I - I - I s model PETs don't have this prob-
olv]1]o| & |acx SYn s | o lelolr ST viel It ~1:> lem. REN isn't listed; the PET's
ANEDERDD €Te el 7 lelolalw :.: s lolelel REN line is wired to ground
1]ofo]o] o [os Jcer|can|see] « £l e " x | 3 » e | s | X |
"{oJojr| ® Wi [scT|em[sro] 3 | & | » 1 v | & HEEERR (true). IFC ,is nol shown. The
T iol » T o o0 TS 1T 3 3 " Le 1 [o] PET's IFC is connected to the
fols el v |vr €sc OO 3N N 3 - O -3 O O K g: power-on one-shot, which sets
"] 1]ojo] | rrF rs 11 < L \ v 112 1 5 1 - IFCtrue for about 100 ms when it
: : ‘: ; :: : :: - =~ : ’ = 2 —| - the PETis turned on. If you reset -
]] ' 1 193 St us 4 6_[b d UNL (] - UNT [ofL :‘he Plgéby grounding 'he RES
N L — , - line, may not go true. A bet-
| W] W W iy
AcORESSED viavERSAL sten e scconoanv ter approach is to tri?ger l.he
orour caour 7::‘: croue m‘“ﬂ power-on one-shot by inserting

—

NOTES: () M3G+INTERFACE MESSAGE
@ &) *DIOI .8y * OIO7
s st RY C

@ DENSE SUBSET (COLUMN 2 THROUGH 3)

PRIMARY COMMAND GROUP (PCG)

Fig. 8. IEEE 488 command set reproduced from the |EEE Standard 488-1975/ANSI MC 1.1-1975, p. 77.

488 bus, the controller sets ATN
true and sends a listen address;
the controller sets ATN true and
sends a talk address; the talker
puts data on the bus, and the lis-
tener picks it up. When the
talker is finished, it may set EOI
true on the last byte or send CR
LF as the last bytes. The con-
troller now sets ATN true and
s2nds untalk (UNT) and unlisten
(UNL), which reset the two de-
vices.

In many cases, the controller
—in this case, the PET —does
the talking or listening. The con-
troller can make everything stop
by ?ithet setting IFC true or set-
ting ATN true and putting UNT
on the bus. Since UNT has its
tive lowest significant bits true,
the active low operation of the
IEEE lines overrides whatever

dore’s “PET Communication
with the Outside World," p. 19.) i
a secondary address is in use, it
is sent immediately after the
talk or listen address, known &s
the primary address, with ATN
true.

Several of the bus-manage-
ment lines, such as SRQ, EOI,
REN and IFC, serve special
functions. Many instruments do
respond to these, and often the
response depends upon the in-
strument.

When ATN is low. about half
the ASCIl code is devoted to
special commands, which come
in dehned sequences whose
definition takes about two-
thirds of the formal IEEE 488
specification. Most instruments

use only a few of these.

Flipping Bits

The PET ultimately communi-
cates to the rest of the world by
the screen and some interface
chips—two 6520s and one 6522.
(For the specs on these chips,
contact MOS Technology.) The
6520 and 6522 chips can only
drive one TTL load, so the PET’s
IEEE lines are connected to
some bufter chips to provide the
currents needed in the IEEE 488
bus.

Table 1 indicates al! of the
PET's /0 line assignments as a
reference. The PET utilizes all 60
110 lines as shown here. Most of
the IEEE lines are butfered with
MC 3446P bidirectional line
driver chips to provide the IEEE
current fequirements. SRQ Is an
input only and connects directly
to the 6520 chip. IFC is buffered

a switch between power and the
555°'s power pin. The SRQ line is
an input only. The PET's firm-
ware does not use SRQ, so you
have to program it directly.

In 2 650x-based system, all IO
is seen as a set of memory ad-
dresses. This means that BA-
SIC's PEEK and POKE can be
used to control the IEEE 488
lines. Table 2 indicates the ad-
dresses and bits invojved tor.the
PET's IEEE lines. In most cases,
a direct PEEK or POKE will do.
Twolines, ATN in and SRQin, re-
quire a more complex sequence.
These are connected to CA1and
CB1 of a 6520, which set tlag
bits in the Interrupt Flag regis-
ter. Resetting these bits re-
quires a memory access 10 the
DIO data register.

Table 3 lists the specific
PEEKs and POKESs to individual-
ly sense or modify the IEEE
hnes. In many cases the PEEK
or POKE values can be ANDed
or ORed together to do several
operations at once. If you have
built the IEEE Blinkin Lites, try a

=

KEYBOARD Pia (6520)

PAS Keyboard Row Select, LSB
PAL . - .

PA2 . - .

) . . ., mse
Pab ;-.n» Cossette 21

PAS - I

PAG €01 in

PA] Diagnostic Jumper

CA) Read, Cassette #3

CAZ Screen Blank L EOI Out

The Diagnostic LED will legnt if PAB-Hign,

ADDPESS: § [B10 59408
14 .1] l\eyboud (olum 'y
P8y 8
Po2 : 4
P83 - - o
PoL .o i
PBS f
4:13 14
Py7 L]

(Bl V:deo Mor.z Sync In
(87 motor, Cascette 3

PAI-High, PA2-Low, PA}-Winm.

USCR PORT viA (6522}
PA® uUser
PAY -
PA2

a3 . “
PAL

pag -
PAG " -
pay e

Fort LS8

nse

i
a2

User Port Mandshake
Characters ROM Select

(A2 selects the MSB of the characters ROM, selecting the PLT's
graphics or lower case characters for the display.

ADDRESS - § (84D 59456
P88
PR
82
°83
Pot
LT
PB6
°87

NDAC In

NRFD Out

ATN Out

Write, Bo:h Cascettes
#otor, Cassette # 2
Video MOriz Svac in
NRFD In

DAV in

(43
ce2

Read, Cassette #2
User Port Mandshake

few of these PEEKs and POKEs
to see how they work.

When | was tlipping bits with
PEEK and POKE for the IEEE
lines, | was confused each time |
had to tigure out the decimal
numbers for each changed bit.
Perhaps it would be easier to
display a byte of memory on the
PET's screen in a “front panel”
format with simulated LEDs for
each bit and some simple key-
board commands to change bits
and addresses. Memory Monitor

(see Listing 1) does this.

When Memory Monitor is
loaded and run, and the first
page of instructions is read, the
display in Fig. 9 is shown. A box
with four parts appears in the
middie of the screen with the ti-
tle Memory Monitor placed
above the box. Left of the box is
a marker, >>, which indicates
the part of the box accessible by
the keyboard.

The top of the box shows the
address of a memory location in

decimal. If you press SPACE,
the address will be erased, and a
new number can be entered.
Pressing number keys enters a
new address, and a reverse-field
cursor appears.

When a cursor isn't on the
screen, pressing RETURN will
move the marker to the next part
of the box. (The second part in
the box indicates the bit num-
bers and is skipped by the
marker.)

The third part of the box dis-

plays a front panel made of sclid
or hollow “balls” (or “LEDs").
This shows the eight bits of the
byte under investigation. Thz
numbers above the “LEDs” in
dicate the bit numbers, 7 the
MSB and 0 the LSB. To change
the byte, enter 0 or 1 (or Shift-Q
and Shift-W), and the cursor will
appear. Pressing RETURN
enters the value.

The fourth part of the box is
the value of the byte in decimal
and is entered in the same way

www.Commodore.ca
May Not Reprint Without

Permission

"w

Listing 1. Memory Monitor.

10 PRINT CHr sp Sp SP $SP SP SP Sp ==D MEMORY MONITOR {--
20 PRINT"0n sp sp THIS PGM DISPLAYS A LOCATION IN THE

30 PRINT™PET'S MEMORY IN BOTH DECIMAL AND IN A

40 PRINT™'FRONT PANEL® FORMAT.

50 PRINT™0n sp sp YOU CAN OHANGE THE mss OR VALLE

60 PRINT™BY ENTERING A NEW VALUE WHEN THE))

70 PRINTTMARKER 1S NEXT TO THE ITEM YOU ARE

80 PRINTTCHANGING.

90 PRINT™dn sp sp PRESS "RETURN® TO ENTER THE OHANGE

100 PRINT™OR TO MOVE THE MARXER.

110 PRINT™0n sp sp THE PGM CONSTANTLY PEEKS THE LOCATION
120 PRINT™WHEN YOU AREN'T OWNGING A VALLE. IF

130 PRINT™YOU OANGE THE ADORESS, THE PGM

140 PRINT™WILL SHOW THE NEW VALUE. IF YOU OHANGE

150 PRINT"A VALLE, 1T 1S POKED INTO MEMORY.

160 PRINT"0n sp sp "M WILL GIVE YOU SOME HELP FOR EAOH
170 PRINT™ITEM.

190 PRINT"On PRESS ANY KEY TO STARY

195 GETAS: IFAS=""THEN19S

200 REM DRAW DISPLAY FORMAT

210 PRINT"CIr dn On On On dn dn";
_______________ (15 shitr-@)

€10 re's)

240 PRINT®rFt rt rt rt ¢t rt r1 =) sp MEMORY BONITOR spg ==~

250 PRINTD)S"E"DIS"."

255 PRINTD3S"] ADORESS:3p sp sp sp sp sp 5p sp 1°

260 PRINTDIS™+=D13" 3"

265 PRINTDIS™] 7 » 6 3,

(] is & vertical tine)

pS
270 PRINTD3S™S € 2 ou;g_gz
260 PRINTD33"T sp] sp] sp 1 sp]spj splso]
290““""0!‘""_'?.!.!!1!2222

300 PRINTD3$"]
310 PRINTD3$"-"D1§" "
320 PRINT"Gn On on*

NOTE: For Lines 200-320 see Fig. 9.

400 REM 10U ING PROGRAM
430 AD=59471:PT=1

500 REM DISPLAY ADDRESS
$10 GOS8 1000

520 REM DISP PANEL LITES
525 DT=PEEK(AD)

$30 GOS8 1200

540 REM DISP DECIMAL

600 IF A3="" THEN 500

610 IF A$=0{R$(13) THEN 700
620 FG=8:G05UB 2500

630 IF FG=8 THEN 510

640 GOTO 210

700 REM BUP PTR

710 GOSWB 1800

720 GOTO 510

1000 REM DISP ADDR

1010 PRINT"hm on o0 o0 o0 On O on”
1020 V3=STRS(AD)*"sp sp sp sp sp sp sp”
1030 V$=MI0S$(Vv$,2,6)

1040 PRINT TAB(28);Vv$S

1050 RETURN

1200 REM DISP PANEL

1210 PRINT"0n on dn"TAB(11);

1220 VT=DT:0v=128

1230 FOR J=1 TO 8

1240 1F v1/Ov< | THEN 1260

1250 PRINT™ Q r1";:VT=VT-DV:GOTO 1300
1260 PRINT" W r1";

1300 Ov=DVv/2

1310 NEXT J

1400 REM DISP DECIMAL

1410 PRINT" 00"

1420 V3=STRS(DT)+" sp sp sp sp sp sp sp sp ”
1430 VS=MIDS(V4,2,6)

1440 PRINT TAB(20);V$

1450 RETURN

1600 REM DISP PTR

1610 PRINT hm gn dn dn ¢n an an dn"

1620 IF PT D1 THEN 1640 :
1630 PRINT TAB(8)™) D" ; :RETURN

1640 PRINT™0n dn 00"

1650 IF PT 2 THEN 1670

1660 GOTO 1630

1670 PRINT"0n" :GOTO 1630

1800 REM BUP PTR

1810 GOSWB 1600

1820 PRINT"rt rt sp sp”

1830 PT=PTel: IF PT D3 THEN PTs1
1840 GOSWB 1600
1850 RETURN
2000 RETURN (This line prodadbly Isn't needed)
2500 REM OWNGE ITEM

2510 ON PT GOSUB 3000, 3500, 4000

2520 RETURN

3000 REM CHANGE ADOR
X010 1F Ase"H" THEN GOSUB JSOO.K’IW

VALUES FOR INPUTS VALUES FOR OUTPUTS
1EEE LINT ADDRESS ADORESS 8T (EEE LINE ADDRESS ADODRESS [104
(nex) (DECImAL) (HEX) (DECINAL)
010 €820 59424] 010"1 €822 59426 [
010 2 €820 59424 ' 010 2 1822 59426)
010 3 £820 59424 2 010 3 59426 2
010 & €820 59424 3 010 & 59426 3
010 S €620 59424 4 010§ 59426 &
010 6 €820 59424 5 010 6 59426 5
010 7 €820 59424 6 D10 7 59426 6
010 8 €820 59424 ? pio 8 59426 7
€or €810 59408 3 €01 59409 3
1FC —eee eee-- - 123 -
SAQ €823 59427 ? SRQ -
REM Lt emee- - REN -
ATH €821 59425 ? ATN 2
oAV €840 59456 ? DAV 3
NRFD €840 9456 [NRFD 1
NDAC €840 59456 0 NOAC 3
Table. 2 Addresses and bits for the IEEE 488 lines.
as the address. The Memory Monitor eased D0ing It the Hard Way

It you press RETURN several
times, the marker rotates
through the three accessible
parts of the box. To recall how to
enter a value, press the letter H,
which clears the screen and pro-
vides instructions.

the tedium and frustration of
checking the PEEKs and POKEs
used in the IEEE 488 memory lo-
cations. | have made Memory
Monitor simple to use, and | con-
sider it a good example of user-
oriented programming.

With direct access to the
PET's IEEE 488 lines, you can
use PEEK and POKE to operatée

_an IEEE instrument “by hand.”

"This is probably more difficult
than using the IEEE Blinkin
.ites box to communicate

2 www.Commodore.ca

May Not Reprint Without Permission

swilch by switch because it

takes more keystrokes to
change a bit with POKE.

The next step is to write a
BASIC program that performs
the required IEEE 488 opera-
tions directly. Though the PET
has these “built in,” there are a
few advantages to doing the
whole thing in BASIC.

Everything goes slowly. As
events happen, there is a
chance of seeing them as they
go by.

BASIC is accessible. If the
PET or your instrument decides
that the sky's the limit, pressing
the STOP key can illuminate
where the ditficulties lie. The
PET's built-in IEEE 488 services

*=> MEMORY MONITOR <.
>> | ADDRESS. 3947

7 695 64 32 1 0
o[ololololol-lo

OECIMAL . 293

Fig. 9. Listing 1's initial display.

3040 IF v2< O THEN RETURN
3050 IF V2D 65535 THEN RETURN
3060 AD=V2:RETURN

3500 REM OHANGE BINARY VALUE

3510 IF A$s™H"THEN GOSUB 4600: RETURN
3520 vi=0T

3530 GOS\B 5500

3540 IF v2< @ THEN RETURN

3550 IF V2255 THEN RETURN

3560 DT=V2:POKE AD,OT:RETURN

4000 REM OHANGE VALUE

4010 IF AS:="W" THEN ROSUB 4500: RETURN
4020 v1=D01

4030 GOSUB 5000

4040 IF V2¢ @ THEN RETURN

4050 IF V2D 255 THEN RETURN

4060 OT=v2:POXE AD,DT: RETURN

4500 PRINT"cir sp sp TYPE IN THE NEW NUMBER AND PRESS
4505 FG=1

4510 PRINT"RETURN. PRESS X' TO ABORT & NOT MAKE

4515 PRINT"THE OHANGE .

4520 PRINT™ gp sp PRESS SPACE TO ERASE REST OF NUMBER.
4530 PRINT"gn sp sp PRESS ANY KEY

4580 GETAS: IFA3=""THEN 4540

4550 RETURN

4600 PRINT"cIr sp sp ENTER *1' OR ' Q * TO SET A BIT, ANU
4610 PRINT™'@' OR * W * 1O RESET A BIT. PRESS

4620 PRINT"RE TURN WHEN DOEN.

4625 PRINT” sp sp PRESS SPACE TO SKiP A BIT.

4630 PRINT"0n sp sp PRESS ANY KEY

4640 GETAS:IF A3="" THEN 4540

4650 RETURN

S000 REM NUMERIC ENTRY

S010 REM POS CURSOR

5020 PRINT TAB(20);

S030 REM MAXE DISP STR

5040 D3=MIDS(STRI(V1),2)+"sp sp sp Sp sp $p SP”
5050 D$=LEFT3(D3,6)

%060 REM SET RVS PTR & RETURN VALUE

5070 PC=1:v2==1 -
5080 REM SEE INPUT & ACT

9090 1F A$z2"X" THEN RETURM

5100 1F AS=OHRS(13) THEN V2avAL (D) :RE TURN
5110 IF AK " sp * THEN 5120

5112 IF PC=) THEN D3:"sp sp sp sp sp sp*:G0T0 9210

5114 D3=LEFTI(DA,PC-1)+"sp sp sp s¢ sr sp":CH=LEFTI(DS, €1
$118 GOTO 5210

5120 IF A3< @™ OR A3 D9 THEN SZ1U

5129 REM REMAKE STRING

5130 Dx$=03:03=""

5140 FOR J=1 TO 6

5150 IF PC=J THEN 03:03+A3:G0TO0 5170
5160 D$=DS+MIDS(OXS,J,1)

5170 NEXT J

$180 PC=PC+1: IF PC D7 THEN PCs1

9200 REM DISPLAY RESULT & RESTORE CURSOR
$210 FOR J=1 T0 6

5220 IF J=PC THEN PRINT “rvs™;

5230 PRINT M1D$(DS,J,1);

5240 IF J=PC THEN PRINT "of{™;

5250 NEXT J:PRINT™If¢ 1ft 168 11t (4t 1fe";
5260 GET A$: IF A3:z"" THEN 5260

- $270 GOTO 5090

5500 REM BINARY ENTRY

5510 PRINT TAB(11);

5520 FOR J= ¥ TO 8

9525 Vi1=V1/2 .

$%30 IF VI=INT(V]) THEN D3=" W “+D3$: GOTO 5540

5535 D$=" Q "+D3

5540 V1 = INT(VY)

5550 NEXT J

9570 REM SET AVS PTR

5580 PCz1:v2:-1

5590 REM LOOK AT INPUT

5600 IF A$="X" THEN RETURN

5605 IF A$=OHRS(13)THEN 5780

5610 IF A3="sp” THEN 5715

5620 IF A3="1" OR AS=" Q * THEN A3=" Q ":GOTO 5660

5630 If A3="0" OR A$=" W = THEN A$+™ W ":GOTO 5660 -

9640 GETAS :1FAS=""THEN 5640

5650 GOTO 5600

$660 REM REMAXE STRING

5670 Dx$=03:03=""

5680 FOR J= 1 10 8

5690 IF PCzJ THEN D3=D3+A$: GOTO 5710

9700 D3=03+M1D8(DxX3, J, 1)

5710 NEXT J

5719 PC=PCe1:IF PCDH 8 THEN PC:1

5720 REM DISP 8 Fix CURSOR

9730 FOR 4= 1 70 8

5735 IF J = PC THEN PRINT “rvs®;

4740 PRINT MIDI(DS,J, 1) re";

9749 IF J=PC THEN PRINT “oft™;

€750 NEXT J:PRINT™ 161 141 111 101 141 101 109 141
TET LMY LET 00T TEY 14T 40T 1007 (16 11t's)

M OT0 S8

LIN PIM MAKE VALUL

49780 v2=0:F0Fy:1 1C 8

5769 v2=vi°2 .

9790 1F MIDS(DS, J,1)=" W THEN 5810

95800 V2:=V2+1

5810 NEXT J

5820 RETURN

are mostly invisidle, anc there's
often no way to find out why

-something went wrong.
Everything 1s under control. It

&1 DO Lines *
IN POKE 59426.25% V = PEEK(5G424. v . :NOTIVIAND255
ouY v =iNOT(V)AND255. POKE 59:22¢ v
2o
IN V = 11F PEEKIS9408)AND 64 THEN Vv =0
TRUE OUT. POKE 50409. PEEK(59409) AND 247
FALSE OUT. POKE 59409. PEEK(59409) OR &

REN & IFC — Not Applicable

SRQ"*
IN. V=0IF PEEKI59427) AND 128 THEN V =1
2 = PEEK(59426)
LO-HI POKE 53427 PEEKI59427) OR 2
HILLO POKE 59427, PEEK!53427) AND 253
ATN"*
IN. V=OIF PrEK(S9425; AND 64 THEN V=1
2 = PEEKI59424)
LO-HI. POKE 55409. PEEK(53409) OR 2
HILO: POKE 53409 PEEK(59409) AND 253
TRUE OUT POKE 59456. PEEKI59456) AND 251
FALSE OUT POKE 59456. PEEK(59456) OR 4
DAV
IN V=1 IF PEEKI59456) AND 128 THEN V=0
TRUE OUT: POKE 59427. PEEX(59427) AND 247
FALSE OUT POKE 59427, PEEK(59427) OR 8
NRFD
IN: V=1 IF PEEKIS9456) AND 64 THEN V=0
TRUE OUT. POKE 53456, PEEK(534561 AND 253
FALSE OUT: POKE 53456. PEEK(59456) OR 2
NDAC
IN V=1 IF PEEK(53456) AND 1 THEN V=0
TRUE OUT: POKE 59425. PEEK(59425) AND 247
FALSE OUT. POKE 59425, PEEK(59425) OR 8
“The extra p: n ihe of V 1s req . 1ot the PET

10. Set the HI-LO
Be sure 10 reset

SRQ OUT 15 not

evaluates AND before NOT
*°The HI-LO or LO-HI determuines which transition the CA’CB 1 inputs will respond

or LO-Hi betore doing the IN. ine. The Z = PEEK resets the liag bit
the flag bit before checking the first ime

avaiable on the PET

Table 3. PEEKs and POKEs tor the IEEE 488 lines.

1Is simple enough to display
every step with suitable mes-
sages to the screen. If neces-
sary, you ‘can insert a GET loop
tc make the PET wait until a key
is pressed before proceeding.

Changes are easy.

It's an educational experi-
ence—those who must learn the
“nuts and bolts™ of the IEEE bus
will find a BASIC emulator
useful.

| constructed the BASIC 488
program (see Listing 2) to pro-
vide the following essential ser-
vices: put the PEEK and POKE
values into variable form for rea-
sonably tast execution and to
simplify debugging with direct
commands; do most of the
PEEKs and POKEs for line con-
trol as short subroutines; pro-
vide the listen and talk hand-
shake sequences for one byte
and display their progress; pro-
vide a way to send and receive
strings to a device on the bus;
set the program up as a skeleton
onto which you can add specific
programs to suit changing
needs.

Table 4 indicates the subrou-
tines and variables used in the
BASIC 488 program. Load these
subroutines and then add the
code you need for your devices.
Some devices, such as those by
Commodore, may not follow the

< www.Commodore.ca

May Not Reprint Without Permission

IEEE time standard, and the BA-
SIC 488 program will not be fast
enough to prevent time-outs.

I built the program from the
bottom up, starting with subrou-
tines 1500 and the series start-
ing at 9000. Subroutine 1500
sets up the essential variables. N
A1-7 are the addresses of the
PEEK/POKE locations; M0-M7
and NO-N8 are AND and OR -
masks to extract bits 0-7 froma
location (or to set the desired
bits); 01-07_are the original
values for addresses A1-A7.
(POKE A1,01, for example, will
restore location A1 to the PET's
power-on value, which helps you
to recover from disasters.)

The variables H1to H6 are the
sense values for the IEEE lines.
For example, if H1 is 1, the DAV
line is true. If H1 is zero, DAV is
false.

When you enter BASIC 488,
enter lines 1000-1620 and lines
9000-9640 first. Use the IEEE
Blinkin Lites to check that the
subroutines in the 9000 series
function correctly. First, GOSUB
1000 in direct mode to set things
up. Then, GOSUB to the section
under test and look at the
Blinkin Lites to see what hap-
pened. A PRINT H1 will inform
you of the sensing subroutines’
results. Be sure to thoroughly
test the 9000 series first!

Listing 2. BASIC 488 program.

1000 REM **e® [EEE 488 *°*

1005 REM GPEGORY YOR, JAn 1979
1010 REM BOX 354, PALD ALTG LA 92301
1015 REV

705 PRINT"CIr SIND MLSSAGE™
1510 INPUTdr 0 MESSAGE :";C3
7520 D2sFNF (DV+32) :GOSUE945) :GOSUBBS00 :GOSUBIA 70

7530 FOR J=1 10 LEN(CS)

7540 U2=FNF (ASC:M1D3(CS, 1))

7550 GOSUBBS0D:NEXTS

1020 REM THESE ROUTINES PEPMIT LIPLCT
1025 REM MAKIPULATION OF THE PET I1ELL
1030 PEM 488 BUSS LINES ANU (LMW',

1035 REM 1EEE 4B COMVALL AND DATA

1040 REM TRANSFEPRS

1045 REM

1500 FEM == INITIALIZATION --

1510 RESTOR:READ A1,A2,A3,A4,A% 4 AT
1520 DATA 99424,57426,59425,59427,5740%,545¢, 59409
1530 READ M3 M1, Mz, W3 14,05 MG U]

1540 DATA 1,2,4,€,14,22,64,128

1550 READ *@2 .M, RN]
247,239,223,19',127

1570 READ N8

1580 DATA 255

1590 READ 01,02,02,%4,5%,24,957
1600 DATA 25%,26€,0%,4%,287,255,45
1610 DEF FNF (X)z (0777, 1A6T2SS
1620 RETURN

(Eaor ¢ trese i Letter O).

7000 PRINT ¢tr GET MLLOAGE™

7010 PRINT"gn PR{., vEv 17, <TaDT"

7020 GETAS : 1FASa™" Tuig s ©f V12 g an erzey grring)
7030 D2=FNF (Dv+64, :505UBY 455 : SOLUBRLYY 1 S0LLESE 2T

7040 83="""

7050 GOSUR B0D0:1F FNFICVI=13T4ERTDT0

7060 B3=83°04RL(FNF (D1),:G0TS755C

7070 GOSUBBO0O:PEY LF BULYE”
7080 PRINT"dn on MCLSAGE 1%:
7090 RETURN

2”81

7560 PPINT"dn dn MESSAGE SENT: sp"C3
7570 RETURN

8000 PRINT™CIr LISTEN HANDSHAXE gn"

8710 GOSUB9350:G0SUB92%50 :GOSLBI 370

8020 PRINT™ sp NRFD TRUE an”:PRINT™ sp NDAC TRUE™
:PRINT" gp NRFD FALSE"

8030 PPINT"WAITING FOP DAV TRUE"

8047 GETAS: IFASC D " THENPRINT"--FORCED" : GOTOBOGO

8050 GOSUB9100: 1FH1=BTHENBOAO

8065 GOSUBI000:PRINT"dn spDATA:“FNF {D1)ICHRI(FNF(D1))

6070 505UB9350:G05UB9270

8080 PRINT™gn sp NRED TRUE™:PRINT” sp NDAC FALSE™

8090 PRINT"WAITING FOR DAV FALSE™

8100 GETAS : 1IFASK) “"THENPRINT"~-FORCED™ :GOTO8120

8110 GOSUB9I100: 1FH1 =1 THENBIOO

8126 50SUB9250

B130 PPINT"an sp NDAC TRUE™

814G RLTUA

2500 PPINT"Clr TALK HADSHARE"
€510 GOSUBY'70
EY92C PPINT"0dn sp DAV FALTE™
8430 6OSUB9200 :GOSUBY 300
540 If MIeHZ > THEN 8570
. 8550 PRINT"gn)D> sp ERROR STATE-PRESS KfY TO FORCE™
8559 PPINT"NOTE : MAKE NRFD, NDAC TRUE™
8560 GETAS; IFAS=""THENBL60
8570 5OSUBS00
8530 PRINT"gn DATA ON L INE :“FNF(D2)CHRS(FNF(D2))

Nothing else will work it these
don't!

it all else tails, refer to Tables
1, 2 and 3 and try a few direct
PEEKs and POKEs to ensure
that the IEEE lines are func-
tional. :

Add lines 8000-8140 and lines
8500-8690, which you can check
by attaching the 488 Blinkin
Lites and carefully tracing
through the handshake flow-
chartin Fig. 7. Again, it is essen-
tial to be sure these routines
work correctly. An additional
benefit is that you will learn the

Most devices will send an EOI
along with the last character of
their messages. This will turn off
the screen. in some cases, you
will have to provide an EOI,
which will again turn off the
screen. To recover, enter:

GOSUB 9570 (and RETURN)

Another approach is to move the
cursor down until the screen
scrolls. A scroll turns the screen
off, and then on. If you have a
16K PET, the screen will not
blink.

Testing the last part via the

shown in Example 3. If you look
at the line DATA: on the display
for the Listen Handshake, you
can barely see the clock’s mes-
sage. A different version (see Ex-
ample 4) will pick up the mes-
sage and leave it later. Below
the Listen Handshake display
appears the clock’'s message:
0101000520

The BASIC 488 program has
two routines for sending and
reading entire strings via the
IEEE 488. Subroutine 7000 ad-

2 www.Commodore.ca

May Not Reprint Without Permission

dresses device DV to talk and
read a string. Subroutine 7500
addresses device DV to listen
and sends a string. (Note: Roy-
tine 7000 reads a string until a
carriage return is seen, and then
reads one more character. This
is because the HP clock ends
messages with CR and LF. You
might have to change this for
your device.)

To reset the clock:
DV =7:GOSUB 7500
The screen clears and asks for

ence in detail. L .
""‘:‘;f:"::atseq‘:e deata frans IEEE Blinkin Lites is tedious. If S
ferred, D1 or D2, must be com- V‘;"‘ have an “‘s"““‘e"'s'ea"ai" SUBROUTINE 1500 Initialization (Must be done first)
. . able, try taiking to it! sure i
plemented with the FNF func- v 1aing SUBROUTINE 7000 Get Message as B, Requires DV
i it enters or leaves the you know exactly what your in- SUBROUTINE 7500 Put Message C3, Requites DV
on as Cthowaiting Sfument expects and its re- SUBROUTINE 8000 Listen Handshake)
IEEE bus. In some of thewaiting o) SUBROUTINE 8500 Tatk Handshake
toops, such as lines 8030-8050, SUBROUTINES S000HI600 IEEE Lines Primitives
a GET AS check is inserted. |f o000 040 a5 D1
the instrument hangs up, press- 13Iking 1o the HP Clock via 50 o o1 o 02
X . . BASIC 488 :
ing a key will force the !land 9100 Read DAV a3 H1
shake to proceed, and a suitable Now that you have checked 9150 Set DAV TRUE
message will appear on the out BASIC 488 by hand, try it m Set %;:gfm
screen. As the handshakes pro- with areal live instrumenl!(l con- 9250 Set NDAC TRUE
ceed, their progress is reported nected the HP clock, loaded 9270 Set NDAC FALSE
to the screen for your reference. BASIC 488 and gave it a try (see oo porpiisk i
Next, add lines 7000-7570. Example 1). The clock's front 8370 Set NRFD FALSE
These routines require a device panel shows the reset worked. 9400 Trap for ATN
address, DV, to function correct- These commands can be 9430 Check ATN as H4 (if changed)
ly. Subroutine 7000 will fetch a compressed to one line (see Ex- :ﬁ ::mms
message from a device, and ample 2). 9500 Read EOf as H5
subroutine 7500 will send a mes- Next, try to read the clock. Ad- 9550 Set EOl TRUE (Screen will blank)
szge. The strings B$ and C$ are dress the clock to talk, then read 80 Set EOI FALSE @croen retums)
used to store the messages. the 14-character message - 9630 Check SRQ a3 HG (f changed)
Varisbles:
PEEK/POKE ADDRESSES ORIGINAL VALUES
Al 0424 01 2%
8590 print™an WAITING FOR NRFD FALSE™ A2 0426 @ 55
8600 GETAS : IFASC D> "NTHENPRINT"~~F ORCED" :GOT08620 A3 0425 P
8610 GOSUB9300: 1FH3=1THENBSDO pogriis
8620 GOSUB91SO . M]
8630 PRINT"Gn sp DAV TRUE® AS 408 05 260
8640 PRINT"WAITING FOR NDAC FALSE™ A6 456 06 25
8650 GETAS: IFAYK) ""THENB670 A7 50400 07 0
8670 GOSUBII 70
e .. 8680 PRINT"dn sp DAV FALSE"
8690 RETURN Masks: . . , .
9000 POKEA2,NB:DI=PEEK(AT) :RETURN MO 00000001 1 NO 1111110 254
9050 POKEA2,02:RETURN M1 00000010 2 N1 1111 1101 253 .
9100 :;-mmmmmmnmnso M2 0000 0100 4 N2 1111 1011 254
9110 RETURN :
L S My w0 dom 8 N mont 20
9170 POKEA4, PEEK(A4)ORM3:RETURN
9200 H2=1:1FPEEK(AS JANDMBTHENH2=0 M5 00100000 32 NS 1101 1111 223
9210 RETURN M6 01000000 €4 N6 1011 1191 191
9250 POKEAS,PEEK(A3JANDN3 :RETURN M7 1000 0000 128 N7 0111 1191 127 N
9270 POKEAS, PEEK(A3)JORM3:RETURN N8 1111 111 255
9300 H3=1: | FPEEK(AGJANDHMG THENH 3=
9310 RETURN
3350 POKEAS, PEEK(AS IANDN € TURN Misceilanecus:
A6, PEEK (AG JORM1 : RETURN
9400 PRINT"NO ATN LEVEL":STOP ov Device Address
9430 H4=0: IFPEEK(A3)ANDMTITHENHA: 1 .
9440 ZZ«PEEX(A1) :RETURN " AS Keyboard dummy entry
94% POKEAG ,PEEK(AG JANDNZ :RETURN 8s Message from Device
9470 POKEAG, PEEK (A6)0RM2: RETURN
9500 HS=1: IFPEEK(AS JANDMETHENHS =0 cs Message to Device
9510 RETURN . '
9550 POKEA?,PEEK(A7)ANDN3:RETURN Functions:
:2;8 :g:zg;é%:(m 3:RETURN FENF(X) Returns complement of argument
9630 H6=@: |FPEEK (AQ JANDMTTHENHG= | .
9640 22sPEEK(A2):RETURN Table 4. BASIC 488 program notes.

g www.Commodore.ca
May Not Reprint Without Permission

GOSCE AN GOSUR 1M Gl everytting ready
SENTENE 3D . T . X
I3 This 1s the value tor DZ as a isten adoress
GQOSUB 4s%) "Mahe ATN true
=21 4 0OSUB947 =
£2: 216 GCSUB 6500 Send histen address via handshahe b2 = 216 GOSUB9450 GOSUBAS00 G 8547002 = 173.GOSUBAS00 '
TALK HANDSHAKE Tne PET responas with the siep by -step .
DAV FALSE outpul handshake and goes successiully Example 2. A one-line command for Example 1.
DATA ON LiNE 39 1RIGugh the €nhire PIOCess
WAITING FOR NRFD FALSE
DAV TRUE
WAITING FOR NDAC FALSE . ~
DAV FALSE The HP Clock s * 3Caressed nght tutns on'
READY PRINT FNF(64 + 1) Find out D2 for talk address
GOSuUB 9470 Make ATN taise 184
PRINT FNF(ASCI ‘R R tesets the clock D2 = 184 GOSUB9450 GOSUBS500 GOSUB9470 .
n t) The handshake goes through
D2 = 173:GOSUB 8500 Send 'R’ as data FOR J = 1 TO 14°-GOSUB B0O0O:NEXT
[| Ang this handshakes through OK 100 f 10: 14 imes .)
Example 1. My cialogue with the HP clock via BASIC 488. Example 3. The dialogue for reading the clock.

the message (see Example 5).

The Talk Handshake flashes 1EEE Bus Handshake Routine Subroutine to Handle .
on the screen twice, and the = Main Program Handshake From Bus
i § 1800 A200 LDX 00 prepare indes regioter 1830 A%02 LDA #02 set WRFD high
message sent is displayed be- 1602 ASF3 LDA /78 28t ATH low 1832 GDLOES ORA 2840
low: 180< 2D4OES AND R840 1883 8D40ES STA 2840
1807 BD4OES STA £8.0 1808 ADLOLS LDA £840 DAV ?
180A 4928 LDA 428 KA (28 for thie device) 1883 2980 AND 80
. . 180C 8501 STA 01 1830 DOFS SNE 1838 jump back if mot velid
..... € SENT: 1802 208018 JSk 1880 hendehake into bue 1887 AD20TS LDA E820 get date byte from bus
MESSACE SENT:R 1811 AS08 LDA #08 crr 18C2 4977 EOR TV complement
1813 8501 STA O) 18C4 8302 STA 02 store in § 0002
. 1815 208018 Jst 1880 handshake 18C6 A9TD LDA #7D set NRFD lov
The program uses routine 7000 3818 A948 LDA ¢4B MTA 18C8 2D40E8 AND L840
? H B 1814 8502 STA 0) 18CB BDLOLB STA E840
to read the time. Since DV is al- 101C 208010 ISR 1880 hendabake 18CE A908 LDA 408 set NDAC high
: . 1817 A9FO LDA ¥7D t NRFD 1 1800 OD21EE ORA E821
ready set. we don't have lo reas 1821 2D40L8 AND E840 > (ready : teaceive data) 18D} BD21ES STA E821
sign DV = 7 again. See Example 1324 BDLOES STA E840 :::: ::::n A'|.|::: ::;o DAV high ?
1827 A977 LDA ¢F? and NDAC low also
5. Note that there are three 182 2D21E8 AND E821 1808 rg;; ¥ca 1oms ump ‘::znlu sot
182C 8D21E8 STA £821 D> A set ov
spaces between the colon and 1827 ASOL LDA e0b eut ATH high :::; :::::: ;,3 ::;:
i 1831 ODACES ORA E840
the first zero. Two of these are 1834 8DLOIS STA E840 18ES AIFT 1DA OFF 233, into bus
trom the HP clock, which starts 1837 ACO8 LDY ¢08 resdy to count 8 bytes 13£7 8D22E8 STA E822
. 1839 203018 JSR 1330 haodshake dets froe bue 18LA 60 xTS teturn to main
all messages with two blanks. 183C AS02 LDA 02 result to A
183Z 900119 STA 1901,X store {o 1901eX
The BASIC 488 program, 1841 28 ™
prog 1842 88 pEY
though slow to operate, never 1843 DOTA BNZ 1839 jump if T mot sero
times-out and lets you control T Aroce adTyeen AT e 1EEE Bus Handshake Routine
h 4 . This is helptul 184A BDLOES STA £840 Object Listing
the IEEE 488 bus. This is helpfu 1oid aoert Ta e aer WP bigh o 12 00 & 1o 20 10 28 8
when you debug a new IEEE ::;: oumam: os:: :::: 1808 40 E8 A9 28 B3 Ol 20 80
: : 1810 18 A9 08 83 O1 20 80 18
device with your PET. ::;; oomzxu ::: :::‘ set WDAC bigh 1818 A9 48 85 01 20 80 18 A9
. 1820 YD 2D 40 €8 8D 40 E8 A9
If you are an experienced 6502 ::;: ::::u 3:5::1 wr 1828 17 ;n 21 28 80 21 E8 A9
it i s 40 E8 8D 40 E8 AO
programmer, it is simple to 18SY 8501 STA O1 :ﬁ: : : bt :. pede g
translate the BASIC 488 pro- :::} :::‘:“ -l'_:: ;;‘“’ :::‘;:‘;i:: bus :::: :z :: :: » :: :: nn
gram into a set of machine- :::: m: :: :m 1850 40 £8 8D 40 I8 A9 08 OD -
: 1858 21 E8 €D 21 8 A9 SP 85
languaga routines. It you do so, }::: ?o:" :;: :m ;nu::o e:\nt-r 1860 01 20 80 18 A9 O4 0D 40
‘d i ump it sot sero 1868 £8 8D 40 B8 CE 0O 19 DO
I'd like a copy (tape and source). 1871 60 ars Teturs to MASIC progras oo 1 o ea A £ Eawaoa
Listing 3 shows a copy of the .- 1876 PA FA ZA PA ZA TA LA IA
. . Subroutine to Handle 1880 AD 40 28 29 40 FO 79 AS s
IEEE handshakes in machine Hand 1888 01 49 Y7 8D 22 28 A9 ?? -
shake Into Bus 1680 2D 23 K8 BD 23 K8 AD 40
language. (From the PET User
. 1880 ADLOZS LDA 840 WRIFD ? ::::5‘:::;3::::::?
1 . 1883 290 AND 940 3 D
Notes, PO Box 373, Mont 1883 FOP9 BLQ 1880 jump back if oot ready 18A2 22 £8 60 BA EA TA BA EA
gomeryville, PA 18936, Vol. 1, Is- 1887 ASOl LD O) teady: got data byte 1850 A9 02 OD 40 ES 8D 40 E8
. 1889 4977 EOR dTP complement it 1838 AD 40 £8 29 80 DO F9 AD
sue 7, (Nov.-Dec. '78), p. 8. This 188 8D22E8 STA E822 send to bus 18C0 20 U8 49 FT 85 02 A9 TD
. ; 1852 ASF7 LDA 077 sec DAY lov 18C8 2D 40 E8 8D 40 B8 AY 08
is a reprint trom the Commodore 1890 20238 AWD 2823 1800 ©D 21 E8 8D 21 E8 AD 40
1893 8D23ES STA 823 1808 £8 29 80 YO V9 AY ¥7 20
PET Users Club ot England.) 1896 ADLOES LDA E840 WDAC 1 1820 21 £6 8D 21 E8 A9 FF 8D
The PET handles the IEEE 488 1899 2901 AND «O1 1288 22 £8 60
. . . 1899 rOT9 3EQ 1896 jump back if pot accepted
as a file. Part 2 will cover this. B 109D A908 LDA 08 sccepted; eet DAV high 0001 dats to go into bus

1097 OD23E8 ORA E82)

0002 dats from dus
1842 8D23E8 STA L82)

184S AIFT LDA ATY zssw into bue 1900 counter for sumber of data transfers]
18A7 8D22E8 STA E822
18AA 6O TS teturn to msin

1901 start of results area

Listing 3. IEEE bus handshake routire in machine language. MLA is My Listen Address; MTA is
My Talk Address: UNT is Untalk Command.

)
=T
y =

=z www.Commodore.ca
Gregory Yob i
Box 354

e May Not Reprint Without Permission
Palo Alto, CA 94301

Get Your PET on the IEEE 488 Bus

Part 2 of this “opus computerus’ examines the file characteristics of the |IEEE 488 bus.

our PET has a “built-in” way

of communicating through
the IEEE 488 bus. In BASIC, the
IEEE 488 looks like a file—just
- as the cassettes are files. The
OPEN statement is used to
specify a physical device num-
ber of 4 to 30, and the open logi-
cal file now talks via the IEEE
488 bus.

A complete understanding of
PET tape files is a prerequisite
for working with the IEEE 488 as
a BASIC file. An article in the
January 1979 Kilobaud Micro-
computing (“PET Techniques
Explained") covers many “inno-
cent” errors that will result in
mysterious malfunctions.

1EEE 488 information Transfers

Talking to a Device.

1. OPEN a BASIC file to the
device's address. For example,
OPEN 1,4 will open the IEEE bus
to device 4. Your BASIC program
will see this as file #1.

2. PRINT# to your OPENed
file. PRINT#1,"HELLO, DEVICE"
will address the device to listen,
send the string HELLO, DEVICE,
add a carriage return with EO!
true and then issue the UNT (Un-
talk) command.

3. Repeat step 2 as needed.
Note that after each PRINT#, the
IEEE bus is free, since the UNT
has been sent.

PRINT# will send the same
characters, including the skip
character after numbers, as
PRINT does to the screen. If you
want to send several items, be
sure that any needed delimiters,
such as “,", are included.

Listening to a Device.

1. OPEN a BASIC file to the
device's address:

2. Use INPUT# or GET# to
fetch a line or a character from
the IEEE bus.)

3. Check the status word, ST,
for an error, such as time-out. If
the device is slow, the PET will
complete the INPUT# or GET#
and put a nonzero value into ST,
which must be checked immedi-
ately after the VO operation. If
ST indicates a time-out, jump
back to step 2.

4. Convert the data from the
INPUT# or GET# as needed, and
if more is needed, go to step 2.

Note that after each INPUT#
or GET#, the UNT command is
sent to the IEEE bus. This will
truncate long messages from
the device, especially with
GET#. Also note that INPUT#
(string) and GET# (string) work
the best. The BASIC string func-
tions (MIDS, RIGHTS, LEFTS and
VAL) will help you get the data
into a usable form.

Talking to More than One De-
vice.

oo

PRIN
OPEN 1

GET#1, AS
PRINT AS;

GOTO 40
REM Z

83888883

REM CMD EXAMPLE

IF AS = CHRS(90]THEN PRINT-* *~END

Example 1.

Copyright 1980 by Kilobaud M.

1. OPEN a file for each device.

2. Using CMD, send a dummy
message to each device. For ex-
ample, CMD 1:CMD 2:CMD 3 will
set up.each device (as specified
in the OPENSs for files 1,2 and 3)
by sending carriage returns to
the devices and leaving them as
listeners on the bus.

3. PRINT# to the IEEE bus.
Any of the OPENed files may be
used.

4. Repeat steps 2 and 3 as
needed. Since PRINT# ends with
the UNT, step 2 must be re-
peated after each PRINT#.

Transfer from One Device to
Another.

1. OPEN a file for each device.

2.CMD to the device that is to
be the listener.

3. INPUT# from the device
that is to be the talker.

4. Repeat step 3 as needed.

INPUT# does not send a UNL,
so the device that was CMDed
remains on the bus as a listener.
All information sent by the
talker to the PET is also received
by the listener. To turn off the
listener, use a PRINT# to the
listener's file. If the talker is
slow, check ST and repeat step 3
as required.

LISTing a BASIC Program to a
Device

1. OPEN a file to the device.

2. CMD to the device.

3. Enter the LIST command.

4. When the LIST is finished,
doaCLR. .

The PET's graphics and cur-
sor characters will not print cor-
rectly on a standard ASCIl
printer. (I have a BASIC listing
program available.)

The best way to learn the PET
files and IEEE 488 is by specific

g. All nghts reserved. Used by permission.

examples. After a detour
through CMD, we will continue
with two examples. These
should provide you with enough
information to get started. If you
have no success, refer to the
section on Common Errors
(found later in this instaliment).

CMD

CMD is an unusual PET com-
mand. Consider its functions:

1. Anything that BASIC wants
to say is now routed to the
device that CMD's file number
refers to. If this isn't the screen,
nothing that BASIC says will ap-
pear on the screen.

2. If a list of variables and
literals is provided after the
CMD, they will be sent to the
device in the same way as
PRINT# will.

3. However, if the device is on
the IEEE bus, no UNL will be
sent, 8o the device will remainin
the listening state and receive
any following data sent on the
|EEE bus.

To see how CMD operates,
get two scratch tapes and enter
the program in Example 1. Now
SAVE and VERIFY this program
on one of your tapes. Put the
other tape in the tape unit and
execute the following:

OPEN 1,1,1
PRESS PLAY & RECORD ON TAPE#S

Pertorm this and wait until the
tape stops.
oK
READY.

Now enter CMD 1. Note that
READY. didn't appear; it was
provided by BASIC and is now
residing in the tape buffer. The
cursor is blinking below the C in
CMD. Continue with:

3

CiosE |
,'.".;
SEAD~

Note that the CLOSE 1 didn't
get the READY. back. It took the
CLR to return BASIC's mes-
sages to the screen. If you enter
LIST. the program will appear on
the screen. Rewind the tape and
RUN. Three asterisks now ap-
pear after the RUN. These were
printed by the program. This is
one reason | don't trust my PET
after a CMD. The text between
the OK and the ending READY
was found as a data file.

When the PET was under the
influence of CMD, the letters
you typed in were put onto the
screen. This echoing is done by
the PET's operating system, so
CMD won't put these out to the
device.

Though CMD looks like a
good way to LIST program to
tapes as data files, there is a
snag. My example is shorter
than 191 characters, and a LIST
via CMD isn’t smart enough to
“jitfy" the data tape (this has
been fixed on the new PETSs).
You run the risk of !osing tape
records when you try to read an
“unjitfied” tape.

Try to verify that CMD
1,"HELLO OUT THERE™ will
print HELLO OU1 THERE onto
the tape. Remember that if you
CMD a device on the IEFE 488
bus, any PRINT# to the bus will
require a repetition of the CMD if
you want the device to remain in
the listening state.

Talking to the Clock Again

(For a description of the HP
clock see part 1 of this article.)

First, you must check the de-
vice address on the DIP switch
(which will be near the 488 fe-,
male connector) and make sure
the address is in the range 4 to
15. The enter a short program
(Example 2) into the PET. This
program consists of three sub-

10 OPEN1T

20 RETURN
100 INPUT-SAY TO CLOCK.":S$
110 PRINT,1.SS
120 RETURN
200 INPUTL1CS
210 PRINT-CLOCK SAYS: ":CS
220 RETURN

Example 2.

routines to facilitate communi-
cating with the clock. Remem-
ber that the PET will not accept
an INPUT statement as a direct
command.

First, enter GOSUB 10 as a di-
rect command. This opens file 1
to device 7. which is our clock on
the IEEE bus. OPEN merely sets
things up: nothing is sent to the
bus yet.

To read the time, enter GO-
SUB 200:

GOSuB 200
CLOCK SAYS: 0103020204 iJan 3. 2:02:04

AM)

Your PET might give ? SYN-
TAX ERROR after this opera-
tion. This is a harmless feature
of the PET.

To set the clock, using Jan.
29, 9:17 pm, as our example,
enter:

GOSUB 100
SAY TO CLOCK? RDDDDDDDDDDDDDDD
DDDDDDODDDDDDI28 Ds)

The clock starts at day 1. To
settoday n, use n—1Ds. To set
the hour, enter the following.
GOSUB 100
SAY TO CLOCK? HHHHHHHHHHHHHHH
HHHHHH(21Hs)

Minutes and seconds are set
similarly.

GOSUB 100

SAY TO CLOCK? MMMMMMMMMMMMM
MMMMSSS (17Ms, 3Ss)

We are now set t09:17:03. When
| did this by hand, the clock
moved forward about a minute,
so the number oi M's used
should be changed to accom-
modate for this.

Talking to the HP 8165A Pro-
grammable Signal Source

(For a description of the HP
8165A, see part 1 of this article.)

The 8165A is a fine instrument
with many switches, knobs, but-
tons and options and a cor-
respondingly wide array of IEEE
488 commands (see Fig. 12, part
1).

The precise contents of each
example concern the 8165A,
which is an instrument you will
probably never meet! My inten-
tion is to show you how direct
mode commands—that is, BA-
SIC statements without line
numbers—can be used to con-
trol an instrument and help in
debugging. .

First, | hooked the'8165 to the
488 cable, and the PET turned
on. The 8165 was addressed to

8. When the PET came on. IFC
was true for about cne second.
This put the 8165 in local mode,
where the front panel works as
usual. Many instruments will ig-
nore their front panels when the
488 bus addresses them. Once
the PET addresses the 8165, you
cannot control it from the front
panel anymore. (An LED indi-
cates this on the 8165.)

The following short program
takes care of input from the in-
strument:

10 INPUTH#I AS

20 PRINT AS

This substitutes for the illegal
direct command (INPUT#1,AS:
PRINTAS), which | would like o
use, but the PET forbids (try it
and see!).

Since | wanted the 8165 to
output a 1 kHz sine wave at an
amplitude of 1.5 volts, | used the
following IEEE commands:
F1—Set to sine wave
FRQ 1 kHz—Set frequency
AMP 1.5 V—Set amplitude
11—Set to normal operation
(continuous signal output)

First, open the IEEE file:
OPEN 18 -

READY.
Then send the settings:

PRINT &1, "F1'" (At this point. the
“Remote” LED went on. and | can no longer
work the front panel.)

PRINT #1.FROIKHZ"

PRINT #1.AMP1.5V"

PRINT #1.-11"

Nothing happened! My scope
showed only a flat trace! Upon
reviewing my steps, | noticed
that | overlooked the Disable
Output (OD) and Enable Output
(OE) commands. | entered
PRINT #1,OE", and a sine wave
appeared on the scope.

You could also send this set-
ting as one string. For example,
PRINT #1,"F2FRQ1.2KHZAMP
1.2VI1OE” sets up a 1.2 kHz
triangle wave at 1.2V amplitude.

The 8165 can also report
some of its switch settings. Now
we can use the tiny program in
the PET:

GOTO 10
F1'D2 12 FMO AMO

Since the PET has difficulty
with GOSUB in direct mode and
the IEEE bus, we must make a
programi change:

10 INPUTHL, AS

20 PRINTAS
30 RETURN

We will quickly be reminded

< www.Commodore.ca

May Not Reprint Without Permission

that any time we change a pro-
gram. all the variables, including
opened files, will be lost:
GOSUB 10 ‘
IFILE NOT OPEN ERROR IN 10
So we try again:
OPEN 1.8
GOSUB 10
F1 D212 FMO AMO
2SYNTAX ERROR IN 22066

The PET will provide the
?SYNTAX ERROR about 90 per-
cent of the time when the IEEE
is accessed via the INPUT#
statement and the PET is exe-
cuting a directly called subrou-
tine. However, this doesn't ap-
pear to affect anything. | avoid-
ed this by not making the little
program a subroutine the first
time.

So, if you are in a pinch, re-
member that the PET's direct
command capability can rescue
you with IEEE 488 devices and
provides an inexpensive way to
explore a new instrument.

Talking to More than
One Device

Now that each of the instru-
ments has been in the bus in-
dividually, the next step is to try
the 488 with both of them on at
the same time. | connected the
HP clock and the 8165 to the 488
bus and gave the clock address
#7. and the 8165 address #8.
Then | entered the short pro-
gram for INPUTs:

10 INPUT #1_AS
20 PRINTAS
¢ END
100 INPUT #2.BS
110 PRINTBS
120 END
First, OPEN the files:
OPEN 1.7
OPEN 28
f yougeta ?FILE OPEN ERROR,
just enter CLR and start over.

Taking a peek at the clock re-

sulted in:

GOTO 10

0130051957 30 Jan.. 5:19:57)

And peeking at the 8165 gets
me:
GOTO 100
F1 D2 12 FM0 AMO
which is the usual mystery mes-
sage that the 8165 says to me.
There isn't any point in explain-
ing this message, for your in-
strument will say something dif-
ferent and meaningful only to
you.

PRINT #1 and PRINT #2 will

]

= www.Commodore.ca

May Not Reprint Without Permission

X$ = ~":FORJ = 1TO14:GOSUBBO00.XS = XS + CHRS(FNF(D1) NEXT-PRINTXS
0101000520 .

Example 4. Putting the clock’s message into X$, and the con-
tents of X$.

DV =7:GOSuUB7500
SEND MESSAGE

MESSAGE:? R R for reset

GET MESSAGE

PRESS KEY TO START

(..... ‘A ot of Listen Handshakes)
MESSAGE IS: 0101000158

Example 5. Resetting the clock.

Program Listing Conventions

The PET's graphics and cursor control characters aren't easily
duplicated for program listings, so the conventions described
here will be used instead.

If a letter or numeral (or any character) is underlined, it means
the corresponding graphics character is to be used. (A is the
spade symbol on the PET.)

Lowercase letters indicate PET special functions:

cir ClearScreen hm Home Cursor

rt Cursor Right 1ft Cursor Left

up Cursor Up dn Cursor Down

rvs RVSfieldon off RVS field off

cr RETURNkey sp SPACE key

Sp in a line indicates leading or more-than-one blank. For ex-
ample, dn/sp/sp/HELLO THERE means Cursor Down space
HELLO space THERE.

Two IEEE 488 Instruments

The two instruments described here are typical in the way they
are controlled via the IEEE 488 bus. Most instruments are con-
trolled by sending and receiving ASCII characters, which are
mnemonics of the function being controlled. For example, the
HP clock uses the letter D to increment its days' counter. Num-
bers are usually sent as ASCll strings—in the same way that
PRINT provides an ASCII string of digits to a terminal. CRand LF
usually indicate a message's end. ’

Some instruments will use more difficult formats. Two popular
forms are BCD, in which two digits per byte are sent, and pure bi-
nary, where the value 0-255 is sent. Be sure you know the exact
formats used by your instruments! Most instruments are unfor-
giving of bad data; and the responses range from ignoring mean-
ingless characters to the instrument’s unaddressing and leaving
the bus. Check your instrument’s manual!

The HP 59309A Digital Clock

The HP clock is almost the simplest instrument that uses the
|EEE 488 bus. Your options are to either set the time or read the
time.

When the clock is addressed to talk, it will provide a string of
characters with the time in the following format:

(sp or ?) sp NNDDHHMMSS cr If
The first character is a space or a question mark. If the clock
hasn't been set since the last power-off, the question mark will
indicate this. The next two digits indicate the month, from 01 to
12. Then comes the day of the month, 01 to 31. (The clock keeps
track of the days in each month correctly and has a leap-year
switch). Then the hours (00 to 23), minutes and seconds are sent.
The carriage return and line feed indicate the end of the message.
- Inside the clock are switches that provide variations of the for-
mat—colons or commas can either separate the fields, i.e.,
NN:DD:HH:MM:SS, or simply send the 24-hour time.

When the clock is addressed to listen, eight ASCIl characters
are used for control:
P—Stop the clock
T—Start the clock

R—Reset the 01:01:00:00:00

S—Each S will increment the Seconds counter
M—Increment Minutes counter

H—Increment Hours counter

D—Increment Days counter .
C—Note time, send it when addressed to talk.

For example, the following string will reset the clock to Jan 5,
8:07:12 AM. .
PRDODDHHHHHHHHMMMMMMMSSSSSSSSSSSST
The T at the end restarts the clock.

The HP 8165A Programmable Signal Source

This is a **cadillac” 488 instrument—the front panel of this ma-
chine has 41 buttons for selection of modes and a 12-button num-
ber pad for entering times, and frequencies. This works out to 35
ditferent command formats for setting up parameters and switch
settlings and nine commands for telling the controller the ma-
chine's setting or starting a sequence of actions. Some of the for-
mats include:

F1—Select Sine Wave

F2—Select Triangle Wave

F3—Select Square Wave .

FRQ f MZ—Select frequency in MHz. f is a number from 1 t09999.

FRQ f MZ—Same for Hz’

FRQ t KHZ—Same for kHz -

SET:—Report all parameters currently operating when add’tgesed
to talk.

SET: n—Report setting in memory # n (0-9)

The 8165 can store up to ten complete settings in its mem-
ories, so the SET commands permit the controlier to find out
what's in the 8165.

An instrument of this complexity is usually programmed with a
set of special-purpose programs as needed. Writing a general-
purpose BASIC program would be both tedious and wasteful. My
experience is that the hardest part is to get the PET and the in-
strument to communicate. Once that is accomplished, the rest is
easy.

work just fine. and sG two instru-
ments and the FET can live in
harmony together

A Gotcha

| decided to turn oft the 8165
with the PET set up for two in-
struments as described above.
Sure enough, strange things
happened.

The clock worked fine:

GOTO 10
0130052525

And just for fun, look what
happens with the 8165 (which
isn't on):

GOTO 100
F1 D2 12 FMO AMO

The 8165 has some internal
batteries to store and memorize
settings until it is turned on
again. It also will respond to the
|EEE 488 bus.

Now to try things in reverse—
the clock doesn't have any bat-
teries. (Clock is off; 8165 is on.)

GOTO 100

F1 D212 FM0 AMC
GOTO 10

F1.D2 12 FMO AMO

The 8165 :s tine

Wrat's this?

The 8165 will reply to any ad-
dress if it is the only device on
the bus. The clock acts in the
same way. (I don’t know if this is
a PET fault or an HP design deci-
sion. Check your device.)

It your program is intended
tor more than one device, this
can be a disaster. Make sure all
required devices are operating
when using multiple devices on
the bus.

| ran into ancther gotcha: the
8165 wouldn't accept every fre-
quency change. | tracked this
problem down to the presence
of the HP clock on the bus.
When | turned the clock off.
evervthing worked fine. When
debugging., remember to have
Jnly one device on your bus.

Common Errors

In theory, if you have under-
stood everything to this point.
you can now get an IEEE 488 in-
strument and make it play with
your PET. In practice, this won't
happen.

Finding errors is the hardest
part of programming, and when
you work with the IEEE bus, you
can make many mistakes that
don’t look like errors. When you
are able to see errors easily and
immediately, you won't need
this article.

Here i> an incomplete list of
the common errors in 'wait for
the unwary IEEE/PET program-
mer. -

The misplaced address. The
PET's IEEE addresses are from 4
through 30. The addresses 010 3
are reserved for the PET's other
/O devices:

0— Keyboard
1—Tape unit #1
2—Tape unit #2
3—Video screen

If you OPEN a file to the re-
served addresses, you won't be
speaking to the IEEE bus!

it a device isn't running when
the PET wants to talk to it, you
will usually get a 2DEVICE NOT
PRESENT ERROR. However, if
some other device is operating

" on the bus, you might get the

other device's response instead.
This happened to me with the
HP clock and the 8165. if one
was turned off, the other would
respond, even though the OPEN
statement was referring to the
inactive device. This can badly
confuse your program.

Time-outs. The PET will only
wait for 64 milliseconds before
giving up on a device that is
slow to respond to the iEEE 488
handshake. Though the IEEE
488 is supposed to work at any
speed, you may wonder what to
do if a device on the bus has
failed. If the PET were to wait for
a response, there would be no
way to return to the user. The 64
ms interval was chosen from the
timers available on the 6522 VIA
chip, which can count up to
65535 at the 1 MHz clock rate of
the PET.

Most instruments will re-
spond within the 64 ms interval,
and the PET will read and write
the data correctly. This was true
of the HP instruments at my dis-
posal. To exercise the PET time-
outs, | attached both the clock
and the 8165 to the bus, and
then OPENed a file to a non-
existent address:

NEW

10 INPUT#3.AS

20 IF ST THEN PRINT ST IS” ST
30 PRINT AS

40 AS=""

OPEN 17 (Open the clock 10 file 1)
OPEN 28 (Open the 8165 to tile 2)
OPEN 310 (The nonexistent device)

(=

The iittle program attempts to
input from the nonexisting de-
vice. The ST value is a reserved
BASIC variable used by the PET
for indicating /O conditions. If
ST isn't zero. something went
awry.

Now to talk a bit to the de-
vices to wake them up:

PRINT #1.'R" {And the clock resets)
PRINT #2°EO0" {And the 8165 puts out
a signal)
If a look at ST is made, all's
well:
PRINT ST
(]

This may take a few tries to work
right.

Now to try that nonexistent
device:
PRINT #3, “HELLO"
Looks OK, right? Well. let's
see...
PRINT ST
-128
This is the PET's ST code for
“device not present.”

Now to try the little program:

GOTO 10
STIS2

READY.

The ST code is 2, which is the
time-out for reading data; the
nonexistent device didn't say
anything. Recall that line 30 said
to print A$. The PET did print AS$,
which was an empty string.
The solution to this dilemma
is to keep on trying! Write a loop
that redoes the INPUT# or
PRINT#. In most cases, a slow
device will send its characters
rapidly enough—once it has its
message ready.
Consider these two sample
loops:
100 PRINT #5. some message or other”
110 F ST =1 THEN 100
200 INPUT #6.8S
210 IF ST =2 THEN 200
If you want to mask for certain
bits, you can use the AND
operator, but parentheses are
needed. The above examples
would read:
110 IF(STIAND 1 THEN 100 and
210 IF (ST) AND 2 THEN 200
The removal of the parentheses
makes the PET see the expres-
sion as:
IF ST AND 1

looks ke IFSTAND1

which will result in a 2SYNTAX
ERROR. Use parentheses or re-
arrange the order of operations
in these cases. ’

g Bwaewy

www.Commodore.ca

May Not Reprint Without Permission

The literal principle. PET (-
puts to a file the same charac
ters that it sends to the screer,
This is also true for the IEEE 48¢
The PET's format for PRINTing a
number is:

{space of - sign) (digits) (optienal e,
ponent) (Cursor righty

This can raise havoc with an
IEEE device that is expecting a
character after the number.

Consider the following exam.

°
®

PRINT “cir™;
FORJ=17010
PRINT #**cssccccscetecnccran
NEXT J

PRINT “hm™;
FORJ=1TO 10
PRINT J"IS A NUMBER™
NEXT J

(clear screen)

(home cursor)

83888833

RUN

1°1S ANUMBER®****
2°1S A NUMBER®****
3°1S A NUMBER***"*

etc

The asterisk after the number
comes from the cursor righ:
character that was sent to the
screen. The cursor right follows
any numbers sent to the IEEE
488 bus.

The following program sets
the frequency of the 8165.
10 OPEN 18 (The 8165 s at address 8+
FOR J = 1000 TO 2000 STEP 10
PRINT #1,"FRQ"J"HZ"
FOR K = 1 TO 1000
NEXT K {This 1s 3 3 seconc Oelay

loop)

NEXT J
When this is RUN, the 8165 gives
all signs of distress. The fre
quency appears on the front
panel, but the LED that indi
cates correct entry stays blink-
ing (not completed). Also, the
scope shows no change. The
PET screen blinks at intervals.
indicating that EOI is made true
now and then. (I suspect the in-
strument is making this hap-
pen.)

The following moditication
will fix this:
30 PRINT®“FRO“STR3(J)"HZ"

The STRS function converts a
number to the string that would
be PRINTed, without the cursor
right at the end! The general fix
for numbers is simple: convert
all numbers to strings before
putting on the IEEE 488 bus.

Fractions. Now that the fre-
quency example is working
right, how about trying some
other STEP sizes. Here is a sim-
ple change: ’

[

20 FORJ=1TO2STEP 01
30 PRINT #1."FRO"STRS{J)'KHZ"

The J loop was changed to do
the same thing. but in kilohertz.
Line 30 was changed to reflect
this. When RUN, it all works fine
until about 1.25 kHz—the 8165
now shows 1.259 kHz instead of
1.260. A look at J gives us the
clue we need:

PRINT J
1.25999999

The PET slips up when com-
puting with fractions...and
this eventually shows up. The

fraction .01 becomes a repeat-

ing binary decimal, and after
repeated addition, the round-oft
appears as a slight reduction of
the number being added to. In
this case, 1.260 turns into

Catching this is easy ... it J
were put onto the screen first!
35 PRINT STR$(J)

If you do this, the first “blow up™
comes at 1.22999999. Now you
are faced with a programming
problem: how to get around
nasty numbers. One way is to
take the INT function, such as:

STR$(INT(J- 100 + .5¥100)

g Www. Commodore.ca

vy Not Reprint Without

v undreéths place.” More com-
plex tricks will be needed if the
PET insists on scientific nota-
tion, such as

2.35€ - 03

PRINT your IEEE output onto
the screen while debugging.
Next month, we will wrap up
our three-part series with a fur-
ther look at the programming

BREAK IN &0 (Press STOP key)

1.25993999.

which rounds the number in the style with the |IEEE 488. @

The PET IEEE 488 File I/0O Statements
The PET sees the IEEE 488 bus as a file, and the file IO statements apply to IEEE 488
transfers. Be sure you know the cassette file I/O before tackling the IEEE 488 bus.
The PET file IO statements are:

@®OPEN (file number), (devi ber), y (fik)

OPEN i the PET to iate the file ber with the d /O device. BA-
SIC uses the file number in its PRINT,, INPUTs and GET statements to determine
where the 1O 15 10 take place. The tile number may be from 1 to 255.

The device bers are gned as f
0- Keyboard :
1—Cassette unit p1
2-Cassette unit 2
3-Screen
4230 \EEE 488 bus
'l’hcsunpueslhalyoleEEdevioemustoeaddvessedinthevwoulom.hnosllsee

devices have a switch or jumpers !hatpemmme ging of their
The dary add! and fit are I H Nyouwanllouselhe
il the dary add must aiso be included. The Y has

the range of 0 to 31.
If the filename is not specified, the OPEN statement sends nothing to the IEEE 488
bus. When BASIC sees the PRINTy, INPUT# and GET) statements, the device number
(and secondary address. if specitied) are put on the IEEE bus as part of the usual trans-
fer sequences.
It a filename is specified. (1.e., AS or "SOME NAME"), the OPEN

@ GET) (tile number), (value for entry)

GET) sets ATN true and sends the device number as a TALK address and the second-
ary address, it specified. ATN is made false, and a single character is accepted.

Then, the UNTALK with ATN true is sent, and the character given 10 BASIC. For the
reasons that make GET X unusable, be sure 10 only use the GET' (string) form.

The assertion of tm UNTALK anev GETy makes ion of multich

ges from devi ical, as most o will try to repeat their message on

repeated application of GE‘I’;

As with INPUT) ST should be checked for a time out, and if timed out, the GET)
should be repeated.

@ CLOSE (file number)

CLOSE ret the 10 assig: The PET will atiow a maximum of ten files
OPEN at one time, and CLOSE will let you reuse an IO assignment. If you OPEN more
than ten files, old PETs will go into limbo and all will be lost. New PETs presumably
have this fixed.

if the corresponding OPEN statement had a tilename specified, CLOSE sets ATN
true and sends the device ber and y ad (ORed 11100000). This fea-
ture is ded for PET p I

@ CMD (tile number), (values to be sent)
CMD initiates the same sequence as PRINT¢ and sends the values, if any, in the
same way that PRINT} does. When finished, CMD does not send the UNUSTEN, so any

the IEEE bus making ATN true and sends:

LISTEN (to the appropriate device)

SECONDARY ADDRESS (ORed with 11110000)

FILENAME (ail chaucters)

Thus permi itably that require ATN to be true to be
sent. If the command sequence has to be repeated later, CLOSE the file and OPEN it
again. | haven't been able to check i the above ions about the fik aretrue. it
you have a bus analyzer, check this out!

@ PRINT) (tile number), (values to be sent)

First, dont use the abbreviation 2y ; it won't work (when executed, you will see 2SYN-
TAX ERROR) and will list as PRINTy. Spell out PRINT completely!

The PRINT) sets ATN true and sends the device number as a LISTEN address. If a
secondary address as specified, it will be sent also. The device number and secondary
address ase taken from the appropriate OPEN

ATN is then made false, and the values to be sent are transmitted as ASCII charac-
ters in exactly the same way as they would be sent to the screen. For example, if a num-
ber is sent, 8 cursor right character follows the last digit. If you use “,” to separate col-
umns, lots of cursor rights are sent. if the PET feels a number should be in scientific for-
mat (i.e., 1.53E - 07), that's what is sent! EO1 is made true with the last character of data
sent.

After the values are sent, an UNLISTEN is sent (with ATN true), and all listemng de-
vices are set free. .

®INPUT} (file numben), (values to be input)

d with CMD will listen to further CMDs or PRINT? 10 the IEEE bus.

All of BASIC's output will be routed 1o the device defined in the OPEN statement for
the fite number. if the PET is in command mode, this includes the READY., error
messages and LIST. If in run mode, any BASIC printouts, from PRINT to the screen, will
00 to the IEEE bus instead. A PRINTy will recover from the etfects of CMD.

it you are using CMD in command mode, the cursor may not echo the RETURNS you
press. The PET will “echo” your key , but any outputs from BASIC will vanish to
the IEEE device. The PRINT? to your IEEE device is the safest recovery from CMD. Re-
member that any editing of a BASIC prog will & y all variables. This i O
open files and CMDs.

O ST (status word)

Atter each VO operation, the PET sets the value of a special variabie named ST, which
will hold its value until the next YO operation. So the best policy is to check it immedi-
ately! The vatues of ST for the IEEE bus are:

1 Timeout on write

2 Timeoutonread (This one should always be checked)
64 EOitrue

- 128 Device not present

The PET waits for 64 milliseconds 0 see if a device will respond to the IEEE hand-
shake. if the device doesn?, the /O ion is quietly aborted, and ST is set. if you are
INPUTjing, you will get “nothing™ or zeroes back. If you m PRINT¢ing, everything
seems 10 be all right. If your device is slow 0 respond, ch 9 STis Y.

PRINT, INPUTj and GET¢ will return the ?DEVICE NOT PRESENT error if the bus is
in an illegal state (which is true it the bus has no devices or the LISTEN or TALK isn't re-

INPUT)» sets ATN true and sends the device ber as a TALK add! ifa d:
ary address was specitied, it will be sent 100. The pertinent OPEN statement is used for
these values.

ATN is then made false, and the PET accepts characters from the device to the PET's
input buffer. if the talker activates EOI, a carriage return is added to the end of the but-
ter.

After the are and iage return or EOl is

ded 10). ST will atso be set.

@LOAD, SAVE and VERIFY
The old PETs have a severe error in their IEEE soh which p: the functi
ing of LOAD, SAVE or VERIFY. The ATN line was left true during the data part of the
fer. This is why of old PETs who purchase the PET disk get the new ROMS;

gnized, the PET
sets ATN true and sends an UNTALK, which releases the device.

BASIC then scans the input buffer in the same way that dinary INPUT
tooks at what is typed in. This means that commas and quotes will have the same ef-
tects as with normal INPUT 1t is best to use an INPUT (slnng) form and hope your de-
vice doesn't send any commas!

As with cassette INPUTs. an 80-character butler 1s used. it more than 79 characters
arnive without a carriage return, the PET will go into “imbo,” and all 1s lost. (New PETs
have thus fixed Over 80 characters are ignored (or worse, the butler 1s initialized. and
the first 80 characters are lost!). It you have a new PET, try it with cassettes and hind out
what happens.

INPUT« 1s susceptible 10 “time out.” and ST should be checked for a time out. Repeat
the INPUT, «f 3 time out is detected.

the disk wont function with the old ROMs.

The format is the same as with tapes:

LOAD (Mename) (device numbev)
SAVE "
VERIFY ~ * "

Once the IEEE bus is set to listen or taik, the first four bytes must contain the begin-
ning and ending address + 10f the block 1o be transterred. The transter is then done as
pure binary until fimished. The bus s then released with an UNT or UNL as needed

VERIFY will say ?VERIFY ERROR and set ST to 16 11 any mismatches were lound be-
tween the incoming data and the core image in the PET's memory Since my PET 1s an
old mode! with the oniginal ROMs, | haven't been able to check LOAD. SAVE and VERI-
FY tor the IEEE 488 bus.

Permission

Get Your PET
On the IEEE 488 Bus

2 www.Commodore.ca

May Not Reprint Without Permission

The final stop on this three-part tour.

Gregory Yob
Box 354
Palo Alto, CA 94302

ommodore’s printer and

disk use the secondary ad-
dresses to control special func-
tions within each device. The
secondary address extends the
range of allowable addresses
on the IEEE 488 bus and is in-
cliuded after the LISTEN or
TALK address with ATN made
true. Most |IEEE devices do not
use secondary addresses.

The secondary address per-
mits the device to distinguish
between data transfers (for ex-
ample, file I/0 via the disk) and
command sequences (for ex-
ample, to initialize a new disk).
The tollowing is a brief sum-
mary of the secondary address-
es used by Commodore's
devices.

PET Printer.

0-— Normal printing. The printer
accepts characters and prints
them as received.

1-— Formatted printing. The
characters are accepted and re-
arranged according to an inter-
nally stored format specifica-
tion.

2 - Format specification. The
characters specitying the tor-
mat to be used are accepted by
the printer.

3 - Pagination control. Accepts
a number indicating the num-
ber of lines per page.
4 —Control of diagnostic mes-
sages. |t desired, diagnostic
messages will be printed when
errors are found. For example,
it a number overflows its for-
mat, a message indicating this
will be printed. This secondary
address controls the options to
use this feature.
5—Load programmable char-
acter. The printer accepts bytes
that specify the dot matrix for
one programmable character.
PET Disk.
2 to 14— Disk "channels” data
transfers. The PET disk can
have from zero to five files open
at once. Each file is defined
with an OPEN statement of the
form:
OPEN (Log Addr). (Device Addr). (Channet
Number), (Commang String)
The channel number is a sec-
ondary address in the range of

2 to 14. The command string.

specifies the tile type and drive.
For example, "0,FILEONE,
SEQ, WRITE™ means open the
tile named FILEONE on drive 0
as a sequential file for write on-
ly access.

15— Disk command channel. A
variety of commands to the
disk is sent via PRINT# to a file
opened to the secondary ad-
dress of 15. The disk ccn also

send error and diagnostic mes-
sages to the PET through this
channel.

Though it is possible to con-
trol complex devices in this
manner, these methods can be-
come awkward and clumsy if
many data transfers are need-
ed, as is the case for disks and
printers. Commodore chose
this method to avoid having to
modify or extend the PET's
BASIC. ’

Ironically, Commodore now
ofters a machine-language pro-
gram, WEDGE, which functions
as an extension to BASIC for

"control of the PET Disk.

Two Examples

In most applications of IEEE
instruments, your task will ex-
tend beyond communicating
with the device. Once commu-
nications with the device are
established, there remains the
conversion of thedatato aform
usable by people of some other
instrument that uses a ditferent
torm of data. Also, care should
be taken to make human com-
munications as pleasant as
possible. it your application is
in a production (that is, for daily
use, and not as an occasional
experiment), clarity and relia-
bility are important. ’

Two BASIC programs, which
illustrate how the HP Clock and

Copyright 1980 by Kilobaud Microcomputing. All rights reserved. Used by permission.

the HP Signal Source might be
used in real-life situations,
follow. They are presented here
as examples of programming
style with the IEEE 488.

Example 1: The HP Clock

Part 1 (Microcomputing, July
1980) describes the codes used
tor the HP Clock with the IEEE
488 bus. Listing 1 interacts with
the HP clock in a “human-work-
able™ form. Let's first take a
look at how the program s seen
from the outside (often called
“human engineering” or “the
user interface™).

When the program is RUN,
the following message appears
on the screen:

HP CLOCK PROGRAM
PRESS ANY KEY WHEN YOU HAVE THE
CLOCK CONNECTED VIA THE IEEE 488
AND THE POWER ON.

This reminds the user to con-
nect the clock on the bus and
turn on the clock's power. It the
PET tries to address a device
that isn't connected or turned
on, the ?DEVICE NOT PRES-
ENT error message will appear
and stop the program. Unfor-
tunately, there is no gracetful
way to prevent this and keep
the program running (some ver-

sions of BASIC have error
traps: i.e., ON ERROR 5
GOTO...).

- After you press a key, the re-
quest appears:

aal

3]

o

C— www.Commodore.ca

Listing 1. HP Clock program.

10 REM NICE HP CLOCK PROGRAM

20 PRINT"Cir HP CLOCK PROGRAM"

30 PRINT"dn dn PRESS ANY KEY WHEN YOU HAVE THE

40 PRINT"CLOCK CONNECTED VIA THE IEEE 488

50 PRINT"AND THE POWER ON.

60 GET AS:IFA$="" THEN 60

70 REM INITIALIZE

\ 80. DIM M$(12) ,M(12)

90 FOR J=1 TO 12:READ M$(J),M(J):NEXT

100 DATA JAN,31,FEB,28,MAR, 31

110 DATA APR,30,MAY,31,JUN,30

120 DATA JW_,31,AUG,31,SEP,30

130 DATA OCT,31,NOV,20,DEC, 31

180 INPUT"Gn dn CLOCX'S DEVICE ADDRESS: ,

150. 1F ADC 3 AND ADD16 THEN 170

160 PRINT"SORRY, LEGAL ADORESSES ARE 4 - 15":GOTO 140

170 OPEN 1,AD

180 INPUT"dn dn IS THIS A LEAPYEAR™;LS

190 IF LEFT$(LS,1)="Y" THEN M(2)=29:PRINT"BE SURE TO SET
THE CLOCK TO 366 DAYS"

200 REM TIME SETTING REQUEST

230 REM DISPLAY TIME
240 GOSUB 2000
250 GOTO 210

1050 INPUT"dn" ;MD$

1110 M13=LEFT$(MOS,3)
1120 FOR MN=1 TO 12

1180 GOTO 1010
1200 FOR J=1 TO LEN(MOS)

1220 NEXT J

1240 GOTO 1160
1300 DY=VAL(MID$(MDS,J))

1340 GOTO 1160

1130 IF MIS=MS(MN) THEN 1200

1140 NEXT MN: PRINT"dn dn | DON'T RECOGNIZE THE MONTH.
1150 PRINT"PLEASE SPELL THE MONTH COMPLETELY.

1160 PRINT"dn dn’ PRESS ANY KEY TO TRY AGAIN

1170 GETAS:IFAS="" THEX 1170

210 INPUT"dn dn SET THE TIME™;LS
220.1F LEFTS(LS,1)="Y" THEN GOSUB 1000

1000 REM TIME SETTING ROUTINE

1010 PRINT"clr sp SET THE DATE™
) 1020 PRINT"dn dn ENTER MONTH AND DAY IN THE FORM:
i 1030 PRINT"dn sp sp sp sp sp MONTH (SPACE) DAY
' 1040 PRINT"dn FOR EXAMPLE: sp sp MARCH 25

1100 REM PARSE OUT MONTH & DAY *

1210 IF MIDS(MDS,J,1)=" sp " THEN 1300

1230 PRINT"dn dn YOU FORGOT THE DAY

1310 IF DYD @ AND uv(mm)n THEN 1400

1320 PRINT"dn dn YOUR DAY 1S INCORRECT. IT MUST BE
1330 PRINT"FROM 1 TO"M(MN)"."

1400 REM COMPUTE NUMBER OF DAY TICKS

CLOCK'S DEVICE ADDRESS:?

Now enter the address on the
DIP switches for the device. If
an unacceptable value, such as
16, is entered, the PET will re-
spond with:

SORRY, LEGAL ADDRESSES ARE 4-15
and ask again. The best way to
avoid problems is to forbid il-
legal values for inputs, tell the
user that he has goofed and
mention the correct range of
values.

Once the device address is
in, the PET asks:

IS THIS A LEAP YEAR?

if “YES" is entered, a reminder
appears to set the clock ac-
cordingly.

BE SURE TO SET THE CLOCK TO 366
DAYS

The last request asks:

SET THE TIME?

If the user doesn't want to set
the time, the screen clears and

the date and time are shown:
THE CURRENT TIME IS

DATE: JAN 29

TIME: 7:02:54 PM

PRESS ANY KEY TO SET TIME

The time ticks away with the
seconds changing the most
rapidly. A different set of values
will appear on the clock:

0129 1902 54

The program has translated
from 24-hour time to normal
amiPm time and changed the
month from a number to the
month's name.

The HP clock will send a ? as
the first time character if the
clock has not been set since a
loss of power. If you pull the
plug on the clock and plug it in
again, the program will stop
with a ?2DEVICE NOT PRESENT
ERROR. When the program is
RUN, the time will be displayed
with the following in the space

MetRaprint Wit
haa=-3am . —

1410 OT=@: 1F MN: 1 mm 4% :
1420 FOR J=i TO Mu=': DT:=DT+MUJ):NEXT o
1430 DT=CY+0v-1

1450 REM DT 1S # OF CAYS Y0 ADVANCE

1500 PRINT"z1r sp SET THE Tive"
1505 PRINT"gn dn ENTER THE TIML IN THE Fi=M:
1510 PRINT"dn sp HOUR : MINCTE : SECOND : A% ¢
1520 PRINT"dn FOR EXAMPLE: €D on 2:25:3€:7%"
1530 FRINT"gn"; :COSUE 40CO
1600 PFM PARSE OUT HOLRS MINS SECS, AMIEM
1610 TH:=T3+"xs" :TH=VAL(TY)
1620 GOSUR 3070: IF FTD & THEN 1705
1630 PRINT™an YOU DIDN'T INCLUDE EViF TeiN
1640 PRINT"PLEASE ENTER ALL FOUR ITEMS WiTh
1650 PRINT"COLONS BETWEEN EACH OF THEM
1660 PRINT"gn PRESS ANY vEv TO TRY AGAIN
1670 GETAS: IFAS="" THEN 1670
1680 GOTO 1500
1700 T$=MIDS(TS,PT+1)
1710 TM=VAL(TS)
1720 GOSUB 3000: IF PT=@ THEN 1630
1730 T$=MIDS(TS,PT+1)
1740 TS=VAL(TS)
1750 GOSUB 3000: IF PT = @ THEN 1630
1760 T$=MIDS(TS PT+1,2) .
1800 REM ERROR MESSAGES T
1810 IF THC) OR TH)12 THEN PRINT"dn dn YOUR MOURS MUST
BE FROM 1 TO 12":G0TO 1660
1820 IF TMC @ OR TMDS9 THEN PRINT"dn dn YOUR MINUTES
MUST BE FROM @ TO 59":GOTO 1660
1830 IF TS @ OR TS 59 THEN PRINT"dn dn YOUR SECONDS
MUST BE FROM @ TO 59" :GOTO 1660
1840 IF T$="AM" OR T$="PM" THEN 1860
1850 PRINT"dn dn PLEASE USE AM OR PM ONLY".Gom 1660
1860 REM AM/PM LOGIC
1870 IF T$="AM" AND TH=12 THEN TH=@
1880 IF T$="PM" AND THC 12 THEN TH=TH+12
1900 REM SET CLOCK AT LAST
1910 PRINT#I,"RP";
1920 IF DTD @ THEN FOR J=1 TO DT:PRINT#1,"D"; :NEXT
1930 IF THO @ THEN FOR J=1 TO TH:PRINTA1,"H"; :NEXT
1940 IF TMD@ THEN FOR J=1 TO TM:PRINT#),"M™; :NEXT
1950 IF TS> @ THEN FOR J=1 TO TS:PRINT#1,"S™; :NEXT
1960 PRINT#1,"T"
1970 RETURN

2000 REM DISPLAY TIME

2010 PRINT"clr sp sp sp sp sp, THE CURRENT TIME IS

2020 PRINT"dn dn sp sp DATE:"

2030 PRINT"dn dn sp sp TIME:"

mwm;nwmmmmmm«
*sp sp PRESS ANY

2050 GETAS:IFAKD ™"

2060 REM FETCH TIME

2070 INPUT N,TS

2080 IF LEFT$(TS,1)="2" THEN GOSUB 5000

2090 REM PARSE OUT PARTS

2100 T1=VAL{MID$(T$,1,2))

2110 T2=VAL(MID$(T$,3,2))

2120 T3=VAL(MID$(TS,5,2))

2130 T5$=M108(T$,5,2)

2140 T43=M108(18,7,2)

2150 T53=MI1D$(T78,9,2)

2160 PRINT"hm dn dn dn rt rt rt rt rt rt rt et rt"MS(T1);T2

2170 REM AM/PM CALCS

2180 T6$="AM"

2190 IF T3D11 THEN T6$="PM"

2200 IF T3 D12 THEN T3=T3-12

2210 IF T3=@ THEN T3<12

2220 T33=RIGHTS(STR(T3),2)

2250 PRINT"dn dn rt rt rt rt rt rt rt rt®

T3$":"T4S":"TSS":"T6S
2500 GOTO 2050

3000 REM SCAN T$ FOR COLONS

3010 FCR PT=1 TO LEN(TS)

3020 IF MIDS(TS,PT,1)=":" THEN RETURN

3030 NEXT PT

3040 P1=@: RETURN

4000 REM FETOH STRING VIA GET DE TO

4010 REM FLAKEY PET INPUT STATEMENT

4015 T$=""

4020 GET AS: IF ASCD ™™ THEN 4100

4030 PRINT"rvs sp 114";:FOR J=1 TO 300: NEXT
4040 GET AS: IF AS "™ THEN 4100

4050 PRINT"oft sp 1#1";:FOR J=1 TO 300: NEXT
4060 GOTO 4020

4100 PRINT"off sp 1£1";

4110 IF AS$=CHR$(13) THEN PRINT: RETURN

4120 PRINT A3;: T$=T$+A$: GOTO 4020

dn dn dn dn ¢n dn
KEY TO SET TIME
THEN RETURN

(14 O\'S)H

5000 PRINT"hm gn dn dn dn dn gn dn dn dn dn ¢n .

> p_TIME NEEDS TO BE SET sp<««<< .
5010 mmr-un;» 222> sp DUE TO POWER FAILURE sp LKL
5020 T$=MID$(T$,3) :RETURN

nout

Permissi

on

setween the iuns aag (he
PRESS ANY KEY Qine

N Tt

LT} RN] R
Nzw it you press a hey. the SET
THE T!ME? request will rean-
pear
SETOVHE Ti0E vt S
The screen clears and will
display:
SET THE DATE
ENTER MONTH AND DAY N THE FORM.
MONTH (SPACE) DAY

FQR EXAMPLE. MARCH 25
7 JANUARY 23

if the first three letlers in the
month are incorrect, the pro-
gram will make you start over:

1 DON'T RECOGNIZE THE MONTH
PLEASE SPELL THE MONYH COM-
PLETELY.

PRESS.ANY KEY TO TRY AGAIN

If you missed the date, the PET
says:

YOU FORGOT THE DAY
PRESS ANY KEY TO TRY AGAIN

If you enter an inappropriate
date, such as JAN 45, the PET,
will say:

YOUR DAY 1S INCORPECT. IT MUST BE
FROM 1 T0 31.

The program has the number of
days for each month stored in-
side. It the month were Febru-
ary, the range 1 to 28 would
have been shown instead.

Now that the date is entered
correctly, the screen clears to
let the time be entered.

SET THE TIME

ENTER TIME IN THE FORM

HOUR - MINUTE - SECOND AM OR Pt
FOR EXAMPLE: 2.25 36 PM

7.19.25.PM (you enter th:s hine)

The screen will flicker a bit, and
then the time display will ap-
pear.

The PET won't correctly input
a string with colons init, so the
entry here is “faked™ to fook like
a normal INPUT line. Unfortu-
nately, if you must INST or DEL
to correct your line, the cor-
rection won't really be entered.
This can be programmed
around, but 1 didn't feel like do-
ing it with an instrument on
loan to me for a week. The sub-
ject of taking INPUT is an arti-
cle in itself.

Again, there are some error
messages to help and assist
the user:

YOU DION'T INCLUDE EVERYTHING
PLEASE ENTER ALL FOUR ITEMS WITH
COLONS BETWEEN EACH OF THEM
PRESS ANY KEY TO TRY AGAIN

YOUR HOURS MUST BE FROM 1 TO 12
YOUR MINUTES MUST BE FROM 0 TO 59
YOUR SECONDS MUST BE FROM 0 TO 59
PLEASE USE AM OR PM ONLY

Here, a bad entry only forces

yUL (O reenter ine tLme The
date 1s OK, so why redo 11?

Perhaps this example is ex-
treme In many sﬂuahohs "
isnt worth the programming
time to make a program com-
pletely convenient to use Asan
idealist. | wrote it up to show
what can be done if ease of use
is required.

HP Clock BASIC Program
Review (Listing 1)

Lines 10 to 60 announce the
program and force the user to
wait until he has made sure the
HP Clock is attached to the
PET's IEEE 488 and the power is
turned on. DATA in lines 100 to
130 are placed in the months’
names’ array M$ and the
months’ lengths’ array M.

Lines 140 to 170 request the
HP Clock's address and check
to see if the address is legal.
Line 160 tells the user to try
again and mentions the legal
range as a hint. Lines 180 and
190 take care of the leap-year
problem by changing the
month length tor February to 29
days and reminds the user to
check the leap-year switch on
the HP Clock.

In lines 200-220, the user is
asked if the time is to be set
(which must be done when the
clock is first used),and aloop is
entered in lines 240 and 250.
Subroutine 1000 sets the time,
and subroutine 2000 displays
the time. The program will not
leave subroutine 2000 until a
key is pressed. Line 250 jumps
to the time-change request as
needed.

Setting the time in subrou-
tine 1000 is a complicated job,
requiring correctly entering the
data. First, you must enter the
month and day as explained in
lines 1010 to 1040, which give
an example of the expected for-
mat.

Line 1050 picks up the user’s
entry, and lines 1000 to 1180
take a look at the first three
characters to see if they fit a
month’'s name. Lines 1140 to
1180 take care of any mistake in
the entry of a month’s name.

Lines 1200 to 1220 scan the
input string, MDS$, until a space
is found. This removes the rem-
nants of the month's name and
brings us up to the date digits.

Failyre 10 ©ind @ space means
the day was forgotten. and the
user 15 told to start all over.

Lines 1300 to 1340 check the
day number with the number of
days in the month M(MN). It
everything is OK. lines 1400 to
1450 will figure out the value
DT. which is used to send the
correct number of Ds to the
clock for date setting.

Now that we have the num-
ber of days from Jan. 1 (in the
number DT). lines 1500 to 1530
will tell the user to enter the
time in a famihar format-—
HH:MM:SS:AM or PM. Subrou-
tine 4000 is used to enter the
string T$ via the GET state-
ment. In lines 1620 to 1850, the
string T$ is snipped apart atthe
colons, and each part is ex-
amined for the correct range ot
values; subroutine 3000 looks
for the colons, and lines 1680 to
1760 do the scissor-work. We
eventually end up with the
values TH, TM, TS and T8. for
hours, minutes. seconds and
amrPm values.

Lines 1860 to 1880 adjust the
hours, TH. according to the am
or P value. Lines 1900 to 1970
set tre HP Clock — first the
clock s reset via "RP." and then
the correct numbers of “D,” "H.”
“M™ and S” are sent to set the
time. Then “T" is sent to start
the clock.

Subroutine 2000 sets up the
screen in lines 2010 to 2060.
Note that the GET in line 2050
only checks if a character was
entered. if not, it will continue
to line 2070. The HP Clock is ac-
cessed in line 2070, and line
2080 checks for “2." The “?"
means the clock saw a power
failure, and subroutine 5000
will warn of this event.

Lines 2100 to 2150 get the
various parts of the HP Clock’s
message. T1 is the month
number; T2 is the day number.
Line 2160 displays the month
and day values.

Lines 2170 10 2220 adjust the
hours value, T3%. to reflect
whether an am or PM time is be-

-ing shown. Then line 2250

prints the hours, minutes,
seconds and am:Pm marker.

In subroutine 3000, PT is the
position of the tirst colon found
in the string TS.

Subroutine 4000 simulates a

2 www.Commodore.ca

May Not Reprint Without Permission

‘cursor and constructs T$ from’

the characlers entered through
GET AS. No editing is provided.
so if you make an error, the en-
try must be repeated. A little
more code could catch Ag =20
(code for DEL) and give some
limited editing (equivalent to
back space or rubout on a ter-
minal).

Subroutine 5000 puts the
power failure message on the
screen and strips the “?" from
T$. This permits the display of
time code to work correctly.

The astute programmer will
note that no provision is made
for bad messages from the HP
clock (which might make the
program f{ail in some cases).
You should check the values
T1,T2, T3. T33. T4$ and 153 for
their legal values and make
another attempt to read the
time made in case of anerror. In
the event of several consecu-
tive errors, the program should
mention this to the user.

There are limits to how “fail-
safe” a program must be made.
In many cases, malfunctions
will not be critical, and it isn't
worth the effort required to
make the program survive the
errors. | do not recommend the
PET for any real-time control
applications that may result in
injury or loss of property in the
event of the PET's tailure!

Example 2: The HP 8165A
Signal Source

Part 1 introduced the 8165A.
Naturally, your interest will be
with the devices that you have
available, and the example
shown here is a “laboratory ap-
plication™; that is, a program
similar to one you might want
to build for your instrument.

Let's pretend that the re-
sponse of a stereo amplifier
needs to be tested in a produc-
tion line. The frequencies and
voltages to be tested are:

10 Hz. Sine Wave, 1.000 volts
10 Hz, Square Wave, 1.000 voits
20H2, ... -

20 Hz.

50 Hz.

Test sine wave and square
wave responses at 1.000 volts
for 10, 20, 50, 100...up to 20
kHz.

The ptan for a program is as
{o!lows: :
1) Initialize. For example, open

S]

(¥

A Y

10 PRINT"clr STEREO TEST PROGRAM

20 PRINT"dn dn BE SURE: THE 8165 IS ON AND THAT
30 PRINT" THE IEEE 488 1S CONNECTED.

40 PRINT"on REMEMBER THE ADDRESS FOR THE 8165
50 PRINT"MUST BE 8. PLEASE CHECK THIS.

60 GOSLB 1000
70 OPEN 1,8
[80 REM SET WP 8165

. 100 REM HOOK UP STEREO

130 PRINT"TEST STATION."
140 GOSLB 1000
- 200 REM PERFORM TEST

220 FOR L1=1 70 4

230 FAs19% LY

240FORL2=1T0 3

250 IF L2 = 1 THEN FR=FA/1000
260 IF L2 = 2 THEN FR=FA®2/10090
270 IF L2 = 3 THEN FR=FA®5/1000
275. \F FR D25 THEN 430

280 FOR'W = 1 TO 2

290 IF W=) THEN W$ = "SINE"

300 IF W=2 THEN W§ = “SQUARE"
310 REM SET 8165 WP

320 PRINT#1,"FRQ"STRS (FRI"KHZ"
330 IF W=1 THEN PRINT#1,"F10E"
|- 340 IF W=2 THEN PRINT#1 ,"F30E"
350 REM SET TIMER & REPORT

360 T1 =TI

370 PRINT"hm dn dn dn TEST AT:";

390 IF TI' = T1< 609 THEN 39
400 REM TURN 8165 OFF
410 PRINT#1,"CD"

420 NEXT W

430 NEXT L2

440 NEXT L1

450 REM TEST COMPLETE

460 PRINT"GIr ®#ee0e TEST

480 GOSUB 1000
490 GOTO 110

1010 GETAS: IF AS="" THEN 1010
1020 RETURN

90 PRINT#I "FMIOHMI @00VvF 10200"

© 110 PRINT"clr STEREQ AMPLIFIER TEST"
120 PRINT"gn ATTACH THE NEW UINIT TO THE

. 210 PRINT"cir ?>>>> TEST IN PROGRESS <<<C "

380 PRINT"sp sp FREQ: "FR"IGM"sp sp"wt“sp sp sp"

ETED ®otesen
470 PRINT"dn. dn REMOVE AMPLIFIER FROM TEST STATION"

1000 PRINT"dn dn PRESS ANY KEY WHEN READY"

Listing 2. Stereo Test program.

(letter F, numeral 1,
letters OE)

(tee one = tee eye)’

(letters 0D)

the IEEE 488 file.
2) Tell the operator to. hook up
an amplitier
3) Start the test
4) Loop through the frequen-
cies for each frequency
5) Loop through sine and
square
6) Walt for 10 seconds before
continuing
7) Report where the test is on
the screen
8) End of both loops
Q) Tell the operator the test is
finished
10) Go to step 2

Listing 2 shows these steps
in-a BASIC program. From the
user's point of view, when the
program is RUN, the message
below appears:
STEREO TEST PROGRAM

BE SURE THE 8165 1S ON AND THAT THE
1EEE 488 IS CONNECTED.

REMEMBER THE ADDRESS FOR THE
8165 MUST BE 8. PLEASE CHECK THIS.
PRESS ANY KEY WHEN READY

This reminder ensures that the

8165 is properly connected,

powered and addressed. The
PET program won't work if
these conditions aren't met.

Now it is time to test a unit.”

The screen clears (after a key is
pressed) and displays:
STEREO AMPLIFIER TEST

ATTACH THE NEW UNIT TO THE TEST
STATION.

PRESS ANY KEY WHEN READY
Now the test commences, with
a report on the current frequen-
cy and waveform being used:
>>>>>TEST IN PROGRESS<<<<<

TEST AT: FREQ: 200 SQUARE (

important in this example,
more serious equipment
should always be set to a “safe”
state when the operator has to
handle the equipment.

Lines 10 to 60 in the BASIC
code state the program’'s name
and remind the user to check
the address setting on the HP
8165. Subroutine 1000 waits for
you to press a key.

Three nested loops are used
to scan through the frequen-
cies and waveforms. The L1
loop sets the frequency decade
from the range 10-99 Hz to
10000-99999 Hz. The L2 loop is
used to select between 1,2 and
5 times the frequency selected
by L1. W chooses between sine
and square waves.

Lines 200 to 300 compute the

frequency FR in two steps (FA

Is set to 10L1, and FR is set to
1,2 or 5 times FA), and W$ is set
to report sine or square. In line
275 the top value to be tested is
20000 Hz, so to terminate the
loops requires a test of the fre-
quency larger than 20000 Hz.

Instead of using 20000 for
the test, | am using 25000. (If
you look at the code, FA is in
kilohertz, so the test is for 25.)
Due to the PET's way of com-
puting numbers, when L1 is 3
and L2is 2, FAturnsouttobe a
tiny amount over 20, which ter-
minates the test too soon.

When testing for equality or
differences, make sure the
number in the PET is what you
think it is. Most floating point
numbers will be slightly (and
unprintably) different than the
value you want, so fudge ac-
cordingly.

Line 320 sends the correct
command to the 8165 for fre-

g Www, Commodore.ca

May Not Reprint Without Permis
quency. Note that FR is sent as
the string STR$(FR). This
avoids the Cursor Right after
the number, which could totalty
contuse the 8165. Lines 330 and
340 specity the waveshape by
directly sending the correct set
of characters to the 8165. “OE”
turns the 8165 on.

Lines 350 to 390 print the test
values and wait for 600 jiffies,
or ten seconds. When they are
finished, line 410 turns the 8165
off (this is a “safe” state; e.g.,
during hook-up, the test leads
could be shorted).

Lines 450.to 490 announce
the end of the test and tell the
user to remove the stereo am-
plifier. Note that the 8165 is in
the “off" state. :

| will leave it to you to tigure
out how to use the HP clock to
control the timing of the stereo
test program (Listing 2, part 2)
instead of the PET's internal
clock. Another variation is to
put up the time each test is run
for logging purposes.

More “Gotchas”

Program bugs.. When | was
debugging the HP Clock pro-
gram (see Listing 1), the days’
count wouldn't come out right.
Some months tended to have
two or three too many days,
while others ran short. For ex-
ample, May 5 put May 11 on the
clock, and February 10 showed
February 7. .

| first thought that the IEEE
488 device was miscounting
characters. | checked by print-
ing the number sent onto the
screen. The error wasn't here.

The eventual source of the
problem was that the routine
that counted the total days in

treq & waveform)

After about two minutes
(each frequency and waveform
takes ten seconds), the screen
clears and tells the user:
esess TEST COMPLETED <0«

REMOVE AMPLIFIER FROM TEST STA-
TION

PRESS ANY KEY WHEN READY

Now we are ready to perform
another test. Look at the scope
and notice that the output of
the 8165 is turned off between
tests and between mounting
the new. amplifiers. Though un-

Function Old Pot Now PET
Mex) (oc) (hex) (dec)

Send TALK (MTA) FOBG 01622 FOBS 61622
Send LISTEN (MLA) FOBA 61626 FOBA 61626
Send UNTALK FI7TA 61818 F1IF 61823
Send UNLISTEN FI7TE 6182 FI& 61827
Set ATN true and send FOBC 61828 FOBC 61828
character in accumulator
Send data character in FOF1 61681 FOEE 61678
accumulator..«
Get data character in F187 61831 F18C 618368
accumulator
Flag byte 0222 545 00AS 165
«+Set flag byte to Ff {255) betore caliing this routine.

Table 1. PET IEEE ROM and RAM locations.

sion

the previous months just addea
the same number each ime For

May. 1t added 31 four times. and -

tor February, it added 28 once!
Another bug came from the
~hidden bits™ in PET numbers. In
the Stereo Test program (Listing
2), there was the following line:

IF FR>20 THEN. ...

The testing program stopped at
10 kHz instead of 20 kHz. When |
printed FR, | got 20. FR was
formed from the two computa-
tions:

Faz 0%
FR = F2a21000

The PET's exponentiation op-
erator 1sn’t totally exact, so a
few bits slipped through. The
division didn't help, and FR end-
ed up a slight amount over 20.
which is enough to make the
condition true. The cure was to
test for more than 25 instead.

These errors are subtle. If you
aren’t a total expert on your PET,
these are nearly impossible to
find.

iM BO(6),RT(6)

80 READ BD(J),RT(J}
90 NEXT J

20

30

40 READ BT: IF BT 0 THEN 60
50 POKE PT,B87: PT=FT+1: G070 40
60 Dim
70

100 PRINT"cir SERIAL OUTPUT"
A 110 PRINT"dn PARITY"

120 PRINT"0=EVEN, 1=0DD, Z=MARK"
130 INPUT F

140 IF P=0 THEN 1£3

150 IF Psl THEN 125

170 GO0 110
18C POKE 994,P

200 INPUT BT
210 FOR J=1 TQO €

23C NEXT J
240 PRINT"RATES A%

260 GOTO 19C
380 POKE 995, RT(J)

40C 1NPUT N
427 PRINT“PRISS AN
447 PRINT AS

460 SYS(826)
470 GOTD 420

1242 (™4 G
125C DAY
1260 DATA
1275 LATE
1280 DATA (,
1300 OATA -1

432 GET A$: IF agene

455 POKE 997 ,N: POKE 932, ASCT(AY)

2000 DATA 9€3C,5,4800,11,240G,
2010 DATA 1200,46,609,97,300,1%5

160 IF P=2 THEN F=I5%: GOTC 180
19C PRINT"dr BAUD RATE"
220 IF BT=BOU(J) THEN 380

250 FOR J=) TU €. rRINT BD(J): NEXT

390 PRINT"# TIMES TO REPZAT CHAR™

A0 NEINTIND: IF NG @ OR N D255 TEN 303

YEY IC SEINT CHre ™
TREN 230

1000 DATA 173,4,2,234,234,240,1
1010 DATA 96€,173,64,232,41,64,24C
1020 DATA 241,123,21,132,3,144,2
1030 DATA 8€,96,32,98,3,32,153
1040 DATA 3,88,76,58,3,234,24
1050 DATA 173,224,3,96,234,169,C
1060 DATA 141,22%,1,173,224,3,%2
1070 DATA 1,160,0,24,74,144,5
1080 DATA 160,22%,238,225,3,72,152
1090 DATA 157,24C,3,104,232,224,8
1100 DATA 208,234,273,226,3,48,'2
1110 DATA 240,3,238,225,3,173,225
1120 DATA 3,41,1,240,2,169,255
1130 DATA 157,240,3,96,162,255,232
1140 DATA 189,240,3,141,34,232,172
1150 DATA 227,3,173,6,64,173,
1150 DATA 64,173,0,64,136,208,244
1170 DATA 234,236,228,3,20€,22€,96
118C DATA 96,3,0,0,0,0,0

1190 DATA 0,24,173,229,3,708,2
1200 DATA 56,96,173,224,3,206,:29
1210 DATA 3,96,0,0,0,0,0

1220 DATA 0,0,0,0,0,0,C

1230 DATA 0,0,6,0,0,65,2

Listing 3. Serial output via the IEEE 488 bus por:.

Using the PET ROM

Since the PET knows the
IEEE bus, there have to be
routines in the PET ROM that
know how to work the bus. A
year ago, some of my clients’
requirements forced me to ac-
cess the PET's ROM for the
IEEE. (One had a machine that
didn't like the PET's state be-
tween |EEE messages; the
other wanted to know the PET's
maximum IEEE transfer rate.)

Table 1 indicates the perti-
nent RAM and ROM locations
tor the PET IEEE routines. Use
caution when working with
these, as | have only been able
to check the ones mentioned
below. In one case, a routine
sent a character at an apparent
rate of 5000 characters/sec-
ond! (The listener didn't see
anything at all.) The routine in
qguestion took a look at the bus,
decided the bus wasn't in a
legal state and returned, in-
stead of sending the character!
if you have an accurate PET dis-
assembly, here is a good place
to use it.

Input from the IEEE Bus. This
can be approached either from
machine language or as a mix
of machine language and
BASIC. In all cases, the first
step is to open a file to the bus
via BASIC. (This must be done;
make sure that only one file is
open.)

The next step is to send a
TALK to the device. From
BASIC, tnis is a SYS(61622),
and in machine language it is a
JSR F0B6 (or 20 B6 FO).

To handshake a character in
requires calling the machine
language in ROM. Here's a
catch: the character arrives in
the A register. From BASIC, you
must SYS to a short routine
that performs JSR F187 and an
STA (somewhere) (and RTS to
get back). Then PEEK (some-
where) gets your character. The
machine code in hexadecimal is
20 87 F1 8D xx xx 60. The xx
xx is your “somewhere.” The
value from the IEEE bus is the
complement of your character;
that is, the 1's and Q's are ex-
changed.

Send to the IEEE Bus. Again, ’

the first step is to open a file to
the bus and be sure that oniy

2 www.Commodore.ca

May Not Reprint Without Permission

one file is open. Then, send the
ATN LISTEN via SYS(61626). (In
machine language, JSR FOBA,
or 20 BA F0.) Now, put the com-
plemented value into location
$0222 with a POKE 546, CHAR-
ACTER.

The last step is to SYS
(61681), which sends the char-
acter. In some cases, you will
have to set a tlag ftirst by set-
ting location $021D to $FF by
POKE 541,255. | have used both
methods with success.

The machine-language se-
quence is A9 FF 8D 1D 02 20 xx
xx 8D 22 02 20 F1 F0 60. The 20
xx xx is @ JSR to your routine at
xx xx, which gets a character in
the A register.

Both the input and the output
will leave the device active on
the bus. Make ATN true and
send the UNL and UNT value to
release the device.

The IEEE lines in the PET
don’t have to be used for the
IEEE 488 bus. There are 12 easi-
ly used bits of parallel /O that
can be controlled with suitable
PEEKs and POKEs, and two
PET Hard Copy Easy,” Kilobaud
Microcomputing, September
1979, p. 100.

Printing Hazards

The ditference between the
PET's display and character
codes and the ASCII character
set causes some difficulties
when you use the |EEE 488 bus
for printed output.

1. ASCH printers use the
most significant bit (MSB) as a
parity bit. If the PET is sending
a graphics character (or lower-
case, as provided by the POKE
59468,14 for old PETs), the
printer will either ignore this
and print the corresponding
ASCII for the seven less signifi-
cant bits or print a “parity error”
character. If you get a parity er-
ror character, set your printer
to the “no parity,” or “mark”
parity, option.

2. The PET cursor control
characters result in the ASCII
values in the range 0 to 31,
which are control characters in
ASCIL. 1t you are lucky, these
will be ignored; if you aren’,
some of these may result in set-
ting your printer to unwanted
modes. (The Comprint printer is

L]

Listing 4. Serial output, machine-language assembly listing.

Thls code was hand assembled and then patched = so the flow
Isn't continuious and there are occasional NOPs that aren't needed.

’ ! Check SHIFT key
033A AD 04 02 SENSE LDA SHIFT (0203) read shift key location
EA EA

NOP, NOP (tis a patch)
FO 01 BEQ GO (0342)
60 RTS back t0'BASIC it SHIFT

pressed
! See if device is ready
0342 AD 40 €8 GO LDA $EB40 Get all PB2 lines trom VIA

29 40 AND #40 Mask NRFD bit
FO F1 BEQ SENSE (033A) Wait if not ready

! Set up PET for transmission of characters
! Turn oft interrupts

! Get character e

! Set carry if no more characters

1 Set up Xmission tadble

1 Send character

0349 78 SEI Interrupts of
034A 20 CO 03 JSR FETOH (03C0) Fetch Character
(Set up as a subroutine
to let you "roll your own"

routine)
90 02 BCC GOV (0351) .
58 cLt Interrupts on. If Carry Is
60 RTS set, no more chars to send.
If you make your own FETCH,
use this convention.
0351 20 62 03 GO} ISR SETUP Set up Xmit table for char in A
20 49 03 JSR XMIT Send char
58 cLi restore interrupts
4C 3A 03 JMP SENSE , Look at SHIFT key again
EA . . NOP (patch)
035C 18 FFETCH cc Oummy version of FETCH
A0 €0 03/ LDA GHAR (03€0) Test Char location
60 RTS .
EA NOP (guess)

! Set up Xmission Table
0362 A9 00 SETUP LDA #00

8D E1 03 STA PARITY (03€E1) Initialize parity counter
AD EO 03 LDA CHAR (03E0) Get char
A2 0V LDX #01 X reg counts/7 bits of char.

! Shi¢t char & If carry set, load FF Into

! Xmit table. If carry not set, icad 00 .
! (NOTE: Start & Stop bits are assumed preset
! in Xmit table. Be sure this Is so In your

! program too.)

036C A2 00 SLOAD LOY #00 Y holds 00 or FF for bit
18 cLc in char.
4A LSR A Shitt LSB into Carry
90 05 BCC HOPPITY Bit is Zero
EE E1 O3 INC PARITY (03E1) '1' bit adds to parity count
48 PHA Stuff A on stack
98 TYA Y to A
9D FO 03 STA START,X Put into Xmit table. 1 just

love non-symmetrical
instruction sets! (6502
has no Y indexed addressing)

68 PLA Restore A from stack
[1:] INX On to next bit

£0 08 CPx #08 7 bits yet?

D0 EA BNE SLOAD (036C) no, repeat

! According to option, set the parity
! bit in the Xmit table

0382 AD €2 03 LDA POPTION (03E2) Get option value
30 oC BMI MARK MSB means MARX parity
FO 03 BEQ EVEN zero is EVEN
EE €1 03 INC PARITY Add 1 tor odd parity
AD E1 03 EVEN LDA PARITY
29 01 AND #01 LSB has parity in it
FO 02 BEQ ZILCH Save LDA #00 it A is 00
A9 FF MARK LOA #FF
9D FO 03 ZILCH STA START,X Put in Xmit table. X happens
60 RTS 10 be right value!
! Send Character
0399 A2 FF XMIT LOX #FF . The next instruction
€8°* CONT INX makes X zero.
80 FO 03 LDA START,X Get byte to send
80 22 €8 STA $EB822 Put on IEEE DIO Lines (out)
! Delay loop for baud rate
03A2 AC E3 03 LOY RATE (03E3) Get countdown valve
03A5 AD 00 40 AGAIN LDA $0400 4 cycles of delay
© AD 00 40 LDA 30400 ditto R
03AB AD 00 40 LDA $0400 ditto

2 www.Commodore.ca

May Not Reprint Without Permission

a “fucky” one.)

3. As a result of these first
two steps, if you use CMD and
LIST, the listings you get will
have missing or misleading
characters. | have a program
(drop me a card) that will list a
BASIC program in a legible
form.

4.The PET does not transmit
a line feed. You must provide
CHRS$(10) after every carriage
return.

5. If your printer needs a car-
riage return delay, either print
the required number of CHRS$(0)
or insert a small waiting loop;
i.e., FORJ = 1TO20:NEXT.

6. Most printers have no for-
matting capabilities. If you
keep careful count of the num-

. ber of characters sent, format-

ting is clumsy, but possible. Pit-
falls include: .

*A printed number has a
CHRS${29) sent after the last
digit, which is not a space and
is usually ignored by printers.
eTAB and SPC provide
CHR$(29), and not spaces.
(New PETs have this fixed.)
*LEN(STR$(number)) will not
count a CHR$(29), since STR$
produces a string without a
blank or skip after the last digit.
o|if the number is small or large,

ware of scientific format; i.e.,

23E+23. .

7. It you are attempting a
word-processing program, the
PET's codes for the lowercase
characters and the ASCli codes
are different. The PET thinks
the lowercase letters lie in the
range 192 to 223, and ASCII
likes the range 96 to 127.

A further complicationis that
the ASCII character set and the
PET character sets don't
match. Backarrow on the PET is
ASCIl underline; the curly
brackets, vertical bar and tilde
in ASCI! don't exist on the PET.
The ASCII accent mark (looks
like a reverse apostrophe) is
seen by the PET as a space.
Your printer might have other
character options to puzzle
you.

Wrapping i1t Up

Working with the IEEE 488
bus is nearly an entire engineer-
ing discipline in itself. | hope
my ettorts enable you to get

&8 oty recuce Countdown
oo t4 : BNE AGAIN (U3AS) keep going till count is 2ero
£EA NOF Successful branch takes 3
: sO this compensates tc
make 2 17 cycle per loop
de tay
EC'E4 03 CPX BITCOWNT Check number ot bits to
be sent.
00 E4 BNE OONT Do next bit
60 RTS
....... (some room here)

! Fetch Character for real. Feel free to
! moke your own routine. Set carry bit when
! out of characters.

03C0 18 FETCH cLc Be sure to do this!
AD ES 03 LDA CHCOWNT (O3E5) # chars to send
D0 02 BNE OK
38 SEC Set carry, out of chars
60 RTS
AD E0 03 OK LDA CHAR Get char - you might use
TAX & LDA CHAR,X here.
CE €5 03 DEC CHCOWNT decmt chars counter
60 RTS
eeeee.. (come room here)
. ! Data Area
03E0 00 CHAR ! Character to send. (Move elsewhere if you
want to send more than one)
G3E1V 00 PARITY t Parity Counter
032 00 POPTION ! Pa?ity Option. O-even,1-odd,FF-mark
03E3 00 RATE ! Initial countdown for baud rate. POKEd
by the BASIC program.
03E4 00 BITCOWNT ! Numper of bits to send (10 or 11 decimal)
03€5 00 CHCOWNT ! Number of chars to send
....... (a2 gap 2gain)
03F0 00 START ! Start of Xmit table

03F1 00 00 00 00 00 00 00
03F8 00 :
03F9 FF FF

1 Character, Isb first
! Parity bit
! Stop bit(s)

2 www.Commodore.ca

May Not Reprint Without Permission

aboard the IEEE 488 bus of your
PET and turn it to some profit-
able use. B

References

1. “IEEE Standard Digital In-
terface for Programmable In- v
strumentation,” IEEE Std 488-
1975, ANSI MC 1.1-1975.

2. Hewlett-Packard, 1502
Page Mill Road, Palo Aito, CA
or PO Box 301, Loveland, CO
80537. Several publications are
available on request.

3. “PET 2001-8 User's Man-
val” and "PET Communication
with the Outside World,” Com-
modore Business Machines.

4. “Getting Aboard the
488-1975 Bus,” Motorola.

5. “PET User Notes,” PO Box
371, Montgomeryville, PA

18936.

6. MOS Technology, inc., 950
Rittenhouse Road, Norristown, B
PA 19401.

O

,J

May Not Reprint Without Permiss

« www.Commodore.ca

=

-,
£3
PI2TJF19330g wip
€. : ‘ ¢ € 143
- 4 ss2 61 [L] ut in a we « =
.m_m 11 M u 2 6l 1x WO (=8 u ot T rwa ¥ m 8 Im ¢ < ¢ % 4
2 1] u 2 T 8 T B a 1o b+ i o9 > > > X ®
2 2 a s Wi I ;) 28 (1) ot bt Tt '3 ' 3 [It
R o R Ity an I [it w = w W o o ' : ["
o2 0@ u osz NT m ws 1 b ow b L S M L] i 1o0v ¢ ¢ 6 « I
R 1 %S =] o R Lt 1w o “ st I M1 ont 9 as ¢ [] ¢ X 9
e ™ 8 R oo mh B L & o g e IO S
e T3 3 TR /L 12m @ a0 W Mo rno % m m o ! ! ! % H
S® O X'T %8s 0 9 sz W orzwn o Comr s 2 Wt w3 v i 1] H H i
me : n e gl YIin ko6 §d N oo o 3 I & : d ! &]
4]] (4] @ y (= @« ar st [st 3 H H S o8
Mmoo u m [e 3 2 st Mm . o had @ rmmy 1t LR TSt
w2 (1xs o uowm ut 1w ¢ 1 W out v u (u H Da o H g oo
on (] 7] o4 o Wt 4 0 g [[T 114] ol m n / 7] & 1
602 =] a R4 st TR] = [m H mwm " 08 ° . - "
(1] b [o Y m [T - B T on ot » o b v - . - @ N
" NS o a e (413]] == ~ av it 6ot L4 Q9 0ot n ue . . LR+ "
(£ P71 [+ 21 o"e ut un . ‘= 2 o ut ot (low » 0t o . . . w2 o
s a0 [502 ut . e-a v ut ot ® . ot n voE e . PO "
ne don [/ ¢ e oLy ™ o o= w olt ot v ou w %ot ™ sy (((¢ n
[T -] 61 «e U P Wl dus (=3 @ e o st 4 v (4] ot a)) et o
] 1 n A 4 M w3 ot o w " o i) ! L
.o = u L e v In ot o HEE T) 4 y % X
o 1 " v oz ot 1In NS ¥ g ow LI R P wm it sav 3 s s w© "
62 1% n s 622 M 1w w5 v o; © Wt 3w » w T X us 8 H I o
w1 5] m (113 wMm tium 03 #=3 u- ~= oot u_v oot < H ’ 1 @ <
sie 5] HE o g b g ¥ » oK x RS
) - s
s r(nxs 0 u sz Muhm m i B v in 4 (rnav v U € DY e eds wonis o H;
LT) - 03 e ot s 3010 W ov ot EA Lol e“ »* © - onyq 4T ©
(411 & e St WBO -3 usko g6 6t “ - - 4 % o« zaev s ueead §T of
ut 1m T 1] i S5 IN moTtek ¥ ST 1wl g - T & 1w wWea @ &
w1 @ W I 1wus 00 (= uymme & Ut ¢ 1o ¢ o ¢] $ pex ot 9
oz - A 2 o022 " 1) V-3 wmuetw % 951 L 3 3 ¥ U b) o i
34 « e F$13 PU S O 3 st u [“ o 2 M ®
o1 1oLy w e [hi L TR B TN % ay 06 2 1% 4 1w 3 dneass 61 b
2 100 KLMOS & e €t 1WE WIW 14 upeads 6 st] i, 1 16 4] u 25 H ot %"
e @ o P i ioagw 18 %) 1] m L I b H a o«
s ovry 8 W e st i Avd u w T A [W z 1'zasy 4 upseqrae ¢ @
e 1r'i1va aww G « e OSt 1'2 LS J;W A uecIe o ost N 13w A A9 » © xXTw B SUTT TP ST w
(W Xaéud MYy “a (e M X' WS MIGA ONeUTTSUT & o .8 rim a a s 5 . ot 1 ey w
e owdr 2 (] e M I'TLS U N veay i o] .3 X $ m“ a M § owoyam (1 6
W e G oq | & omogomE g S B B Hc=E B
o m A ¢ WAsp SN0
60 1'(1)0 1702 w el ST 1(Dvs X0 b= dame T4 Su W (e b . L. T 8 vum HE -
o2 N vaovn o1 02 m 04 IS d~ xosta of m % w4 b 4 of o s 0 3jo1-d0n & T
o oI » e on NQ 04 33'mq & (44 o ° o o AN 6t n asv H W n
Y m N » 902 m s KA KN ojuded m o w oo v N o o L34 X wiim o a
s &3 N30U IH soz w WIS Qa0 NN e dve Q) m u wi N e, L) i a 1 2 au
o M3 Lvwod) e om 1S ol 1~ [T | o o o 1 ¥ 1 A 9l a 3 » 4.
oz 00 © oz &« a a~ 9 ® o1 st 1 EX P | St X v sy H b ot
W om e n w0 1 v omw f~ oy oW g ¥ o ywm Y ¢ 7 X ¢ I I wouwm b0
W s SO & o i oo 1z & IQ [T B S X - 9 w T O
W W WA 9 oo a1 m om koW K u wo¥ T8 o+ o9 i o T\l 4
1 fwo i) &1 1 o o4 $3 W - u (4 N o H 2 18y 4 % 9
Wl wom o5y » %61 Mt 3WUS NI d~4 G = %t o L 3, 4 9 o H HE I Nw o $
B 1o In 9 Ut € 2w @ 3 W9 1 6 1o 3 . 1 N 8 H v 3
%L T1MI sus n 91 AT T us Mg g N * 9 [" ¢ a 8 < 3 € 1
“t X7 (¢] £734 ut] . (7] e 19] »] 4 H H P H
% 7 o Mt oy um e W ot b - 4 by LI T 4 T (r'nwo v vt
w n.:nsa B b+ m“ H G'nus 3 e o “M “ : cmn . 8 . .-.“ L 0 I wilpue @ © 0
3 1§ 0 . s
™I w59 u:r TS wm IwDR .:xwﬁ. 289 OISV NIDE IINY NGH IWIdN ™ 2059 ISW MM 116V XN TWIIN WI™ 0% dIsw 1osY TN TWiNg
[AP]

