
^commodore

The Transactor

Commodore Canada's

Tech/News Periodical

VOLUME 3

Issue tl

Bits and Pieces

Mistaken Identity

The latest version of BASIC for Commodore computers is
BASIC 4.0. The version before this was BASIC 2.0. However,

this is often referred to as BASIC 3.0. There is no

difference between the two. In actual fact, BASIC 3.0 was

never released! A brief summary:

BASIC 1.0 : Original small keyboards PETs

Power-up message: *** COMMODORE BASIC ***

BASIC 2.0 : BASIC 1.0 upgrade and factory installed

in big keyboard 2001 series machines

Power-up message: ### COMMODORE BASIC ###

BASIC 3.0 : Only difference from 2.0 was faster garbage

collection. Never released.

BASIC 4.0 : Contains fast garbage collection and disk

commands implemented in BASIC keywords.

Factory installed in all 4000 and 8000

series PET/CBMs.

Power-up message: *** COMMODORE BASIC 4.0 ***

So BASIC 3.0 is BASIC 2.0 and vice versa... a simple

case of mistaken identity.

One last note: The main logic board that came with

original PETs (BASIC 1.0) has only enough ROM sockets to

allow upgrade to BASIC 2.0 (which most, if not all, of you

have done already). Upgrade to BASIC 4.0 on these boards

would require one more socket; the $B000 socket. The only

way to accomplish this would be to connect the ROM via the

memory expansion port. Otherwise a new board is necessary.

BASIC 4.0 upgrades are certainly possible on all other boards

as the $B000, $A000 and $9000 sockets are provided.

Software Portability

While on the subject of BASICs,... there have been
several inquiries concerning the operation of Commodore

software products from one BASIC version to the other.

Visicalc and WordPro 3 will work on both BASIC 2.0 and BASIC

4.0. WordPro 3 is for 40 column machines, but it will

actually work on the 80 column. It looks rather odd but it

works! However, most won't have this combination.

The Transactor is produced on the CBM 8032 with

Index Transactor *1, Volume3

Bits and Pieces FP

Mistaken Identity FP

Software Portability FP

NEC Again! 2

Microchess Conversion 2

8032 Reset Box 3

Montreal PET Club ...*.. 3

Backup 4

PHS Contest Results 5

The BMB String Thing ! 7

DATA Line Generator 12

BASIC Label Interface; Revisited ... 13

Review: The 8010 Modem 15

File Spooling 17

POKE OPEN Files 19

Some Disk Utilities 21

Cursor Coding 24

Tax Ontario 1980 25

Bar Graph Printer 29

Biocompatibilty 33

DATA Positioning 35

What's Available 36

Print Using 49

The Commodore Assembler Developement Pak is now

delivered with both versions included. If you already have

the BASIC 2.0 Pak, just send the original diskette (serial

numbered label!) back to Commodore in Toronto and we'll

return it to you with both versions*

As for other packages, the BASIC version number is

included in the title of the software. If not, this implies

correct operation on either BASIC 2 or 4.

NEC Again 1

WordPro 4 Plus has a new command that uses the

superscripting and subscripting features of the NEC

Spinwriter. Set the internal switches of the NEC as follows.

(X = Do NOT Change)

back board : SW1 = 00101X11

2nd from back board : SW1 = 00000.00.0

SW2 = 10100000

SW3 =^10100000

Also see Pg 4, Transactor #12, and Pg 1, Transactor #11

(Volume 2) for more information.

MICROCHESS Conversion

As everyone knows, MICROCHESS 2.0 only runs on PET/CBMs

that have BASIC 2.0 ROMs. For those that have upgraded to

the new BASIC 4.0f the following sequence of commands will

convert MICROCHESS for operation with the new ROMs.

1. LOAD "MICROCHESS11 ; use ',8' for disk,

do not use DLOAD

2. POKE 1055,0 ; conversion done!

3. SYS 4 ; break to monitor

4. .S "MICROCHESS 4",01,033A,2000 ;SAVE to Tape #1

do not use Tape #2

QE

4. .S "0:MICROCHESS 4",08,033A,2000 ;SAVE to disk drive

drive #0

Some copies of Microchess don't allow re-SAVing this

easily! If yours is one of them, just issue the above POKE
each time before playing. Don't re-SAVE over your 2.0
version. Use a blank!

8032 Reset Box

Several programmers have aquired reset switches for

their PETs to allow crash recovery and general resets without

power-down. These switches - usually come with a clip that

connects to a line off the 555 timer on the rear right corner

of the main logic board. On 40 column boards, this clip is

placed on a resistor lead near the 555 timer as it tends to

fall off the flat leads of the chip itself.

The arrangement of the 8032 boards is somewhat

different. To use these reset switches on the 8032r locate

the 555 timer at the rear right of the board. Just to the

right and forward a bit is a diode marked "C50" on the board.

The clip should be connected on the side of C50 that is

closest to the 555.

PET Club de la Montreal

Excuse my dreadful French. Last month I received a

letter from K. H. King in Montreal. It read:

Dear Karl J.,

I would be most grateful if you would publish

this letter or a condensed version in The

Transactor.

For some time now we have been without a PET

Users Group in Montreal and I wonder if there are

any PET owners who are still interested in having a

club through which ideas can be exchanged,

assistance given and in general support of all

those who have a hobby interest in computers.

If anyone is interested I would be very happy

if they contacted me at the following address, or

call me at (514) 842 7008 (home) or 844 6311 (Bus.)

Keith H. King

3450 Drummond St. Apt 701

Montreal, P.Q.

H3G 1Y3

So c'mon you users with that wonderful accent!... Start

a clubl The Toronto Pet Users Group is now over 300 strong

and still growing!

Backup

Screen Saver

In the last Transactor (Vol 2. #12f pg 3), a program was

published that would store the contents of the screen in a

PRG file on disk. Line 150 contains a bug a should be

changed to:

150 PRINT#8, CHR$(PEEK(J));

Anyone using this technique probably caught this error.

8032 IRQ

On page 40 of the same issuef a method of disabling the

window reset sequence was presented. It involved redirection

of the IRQ interrupt vector so that the home count was always

set to zero no matter how many times the HOME key were

pressed during an INPUT statement. It seems that upon

exiting the monitor f the IRQ vector is set back to normal,

making step 4 a waste of time.

The code entered in step 3 works. Skip step 4f exit the

montiorr and change IRQ with:

POKE 144,122 : POKE 145,2

Set a window by positioning the cursor and hitting the

'Z1, 'A1 and 'L1 keys simultaneously. Now try and clear it!

(Sorry 'bout that Ken)

ROM Entry Points

On page 34 of Transactor #12, an entry point table was

published for all ROM versions. 16 lines from the bottom is

a line that reads:

F7DC F7BC F7DF Set output device from LFN.

The BASIC 4.0 address (F7DF) should be changed to read F7FE.

You might also want to change this on the same table on the

reference page, centre of issue #12. (thanx Dave).

Cross-Ref

In Transactor #9f Volume 2f. Jim Butterfield published a

Cross Reference program (page 18) . Although nobody would

think it possible, even Jim Butterfield can be hit by bugs

(sorry Jim).

First erase lines 205 and 206. Now add " +L$ H to the
end of line 200 and add line:

315 IF C2=6 AND LEN(M$)<5 THEN M$=" "+M$: GOTO315

PHS Contest Results

The winner pf the PHS contest is:

• Larry I. Miller

Regina, Saskatchewan

In our last issue we held a contest for the shortest

routine to do a PHS; push the stack-pointer onto the stack.

We would like to thank all who submitted entries but we've

changed our minds about the winner* Instead we've decided

that all those who entered will receive free subscriptions

with an extra Volume 3 going to the address of Larry's choice.

Larry's entry was:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14,

08

08

48

8A

48

BA

8A

18

69 04

9D 04 01

68

AA

68

28

PHP

PHP

PHA

TXA

PHA

TSX

TXA

CLC

ADC #04

STA $0104,X

PLA

TAX

PLA

PLP

;dummy push

;save flags

;save .A (accumulator)

;save .X.register

;stack pointer to .X

;and then to .A

;restore SP value

;store SP on stack

;restore .X

;restore .A

;restore flags

17 bytes, 41 cycles

"All internal registers return with original

contents. No memory is used except for the stack

area. The value pushed onto the stack is equal to

that of the Stack Pointer before the routine. At

the end of the routine, SP is decremented like a

true PUSH instruction."

A variation of the above was submitted by Chuan Chee of

St. Catherines, Ontario. By reversing steps 5 and 6, the

Stack Pointer goes in .X before the original contents of .X

(now in .A) are pushed on the stack. This just means that .X

contains a value one greater than in Larry's implementation.

Remember, the Stack Pointer starts at $FF (See note 1). Every

PUSH decrements SP. To compensate, steps 9 and 10 become:

9. 69 03 ADC #03 ;restore SP value

10. 9D 03 01 STA $0103fX ;store SP on stack

Other entries were shorter but incorrect. Many entries

were correct but none as short and clean as 1st place.

Nonetheless, free Volume 3fs go out to:

Roger Burrows David Berezowski

Nepean, Ont. Thunder Bay, Ont.

Steve Punter James Yost c/o Eugenia Revas

Mississauga, Ont. Someryille, MA

John Macdonald ???, behalf of L. Miller
Wawa, Ont*

All 1194 of the other subscribers entries must have been

lost in the mail.

Note 1: The PET actually does a few PUSHes of its own during

reset. SP decrements to $FA before the cursor flashes. Try

resetingf then entering the monitor with SYS4. Notice SP at

$P8 ? Now exit the monitor ('X1 and RETURN) and re-enter it.

SP is now two less than before. The SYS command puts a return

address on the stack but exiting the M.L.M. does not take it

off. Perhaps there is a reason for this but RUN or 7SYNTAX

ERROR fixes everything.

If you picture stack memory space in memory map format,

that is low addresses at the top, high addresses at the

bottom, you111 see that it operates like "a stack". Think of

it like a stack of dishes. SP points at the location where

the next dish will go. Initially this is the very bottom of

the stack ($PP). As dishes are piled on the stack, SP goes
higher (towards the low addresses). '

$0100

01

02

03

04

05^

FB

SP -> FC

FD -dish-

FE -dish-

SPIFF -dish- stack starts here

$0200

Of course the last dish on is the first dish off. This

is called 'LIFO1; Last In First Out. But unlike dishes, the

stack can only handle 256 entries so be careful. The stack

pointer will "wrap around" if too many PUSHes are done. In

this case the "dishes" at the bottom of the pile are replaced

by new ones. If these were important return address dishes,

you might find the whole machine comes crashing down.

Those that attempted the exercise probably see how

virtually useless a PHS intruction is. Understanding the

stack is the main objective and coding a PHS does that rather
effectively!

The BMB String Thing !

This is the utility you/ve been waiting for i It's a

combination of-, two previous BMB utilities plus a new one

that's just fantastic! - Due to some tricky string

manipulations, this utility will only work on BASIC 4.0,

Jt Block Get

This is the INPUTt statement substitute. INPUT up to 255

characters at one time. Works with any type file (SEQ, USR,

REL) . The best thing about using Block Get is that every

character is retrieved; leading spaces, quotes, commas, colons

and even CHR$(0). Two back-to-back carriage returns will

crash the INPUT* command but this doesn't bother Block Get!

Input stops on a carriage return (CHR$(13)). This can be

changed to any other character that you wish to use as a

delimeter i.e. binary 13 might represent some other data. EOI

will also terminate input which is handy for REL file use i.e.

trailing carriage return not required. If EOI comes in with a

CHR$(0) the last character is chopped off.

In SEQuential file operations you don't even need

carriage returns (not suggested!).. Block Get will continue

getting characters until it has £55. At this point input
stops allowing you to juggle the string. The next Block Get

call starts with the next character from the file and goes

again to 255 or EOI, whichever comes first. Remember to check

ST after each call as is normal when INPUTting.

A 257 byte buffer is required for BASIC 4.0 string

structure.

Format:

60 DCLOSE #8

A$ need only be initialized once, eg. beginning of program.

2. Instring

Insert one string, within another at position specified.

The programmer is responsible for insuring that the string

being inserted is not longer than the place it's going to.

To insert A$ into B$ at position 10:

SYS 32517 A$, B$, 10

3. Position Search

This one is fabulous. Search for the occurrence of one

string within another string. If found, the position is

placed in location 0; if not found, PEEK(0) = 0. Pattern

matching capabilities (like the Commodore disks) can easily be

incorporated into this routine.

10

20

30

40

50

A$ = ""

DOPEN#8,

SYS 32514

PRINT A$

IF ST = 0

"SOME

,8,A$

THEN

FILE"

30

Format is: search for any occurence of A$ in B$

1. A$ = "ABCDE"

2. B$ = "ABCDEFGHIJKLM"

3. SYS 32520, A$, B$

4. PRINT PEEK(O)

5. A$ ■ "FGHIJ"

6. SYS 32520, A$, B$

7. PRINT PEEK(O)

Try this using direct commands. Note: No other string
operators are allowed after the SYS (i.e. MID$, LEFT$, STR$f
etc.).

Preparing For The BMB String Thing

You should already have set up the utility before

anything else is done. Since the utility sits in high memory,
it must be sealed off so that BASIC can't clobber it.

POKE 53,126 : CLR

This POKE brings the top-of-memory pointer down,

protecting it from other string operations. This BMB String
Thing works in address space from $7E00 to $7FFF. If you have
an assembler, type in the mere 3 pages of source and you can

move it anywhere.

1000 FORJ= 32514 TO 32767 :READ X:POKE J,X:NEXT

1001 POKE53,126 : CLR :REM ROUTINE PROTECTED

1008 DATA 76, 107, 127, 76, 180, 127, 76, 211

1016 DATA 127, 32, 245, 190, 32, 152, 189, 160
1024 DATA 0, 96, 32, 11, 127, 177, 68, 133

1032 DATA 0, 200, 177, 68, 133, 1, 200, 177

1040 DATA 68, 133, 2, 32, 11, 127, 177, 68

1048 DATA 133, 136, 200, 177, 68, 133, 137, 200

1056 DATA 177, 68, 133, 138, 96, 56, 165, 138

1064 DATA 197, 47, 144, 28, 165, 137, .197, 46

1072 DATA 144, 22, 165, 136, 24, 101, 137, 133

1080 DATA 137, 144, 2, 230, 138, 160, 1, 165

1088 DATA 136, 145, 137, 200, 169, 255, 145, 137

1096 DATA 96, 32, 11, 127, 32, 45, 201, 165

1104 DATA 18, 240, 3, 76, 0, 191, 165, 17

1112 DATA 96, 32, 91, 127, 133, 210, 169, 0

1120 DATA 133, 1, 169, 126, 133, 2, 32, 37

1128 DATA 127, 32, 55, 127, 166, 210, 32, 198

1136 DATA 255, 32, 228, 255, 170, 201, 13, 240

1144 DATA 21, 160, 0, 145, 1, 230, 1, 164

1152 DATA 1, 192, 255, 240, 4, 164, 150, 240

1160 DATA 232, 138, 208, 2, 198, 1, 32, 204

1168 DATA 255, 160, 0, 165, 1, 145, 68, 200

1176 DATA 169, 0, 145, 68, 200, 169, 126, 145

1184 DATA 68, 96, 32, 20, 127, 32, 91, 127

1192 DATA 198, 17, 165, 137, 24, 101, 17, 133

1200 DATA 137, 144, 2, 230, 138, 160, 0, 177

1208 DATA 1, 145, 137, 200, 196, 0, 208, 247

1216 DATA 96, 32, 20, 127, 169, 0, 170, 133

1224 DATA 182, 160, 0, 177, 1, 209, 137, 208

1232 DATA 12, 200, 196, 0, 208, 245, 230, 182

1240 DATA 165, 182, 133, 0, 96, 230, 137, 208

1248 DATA 2, 230, 138, 230, 182, 165, 182, 197

1254 DATA 136, 208, 222, 134, 0, 96

BMBSTRINGTHING PAGE 0001

LIKE* LOC CODE LINE

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

3031

0032

0033

0034

0035

0O36

0037

003 8

0039

3040

0041

0042

0043

0044

)045

)046

D04/

0048

3049

D050

3051

)052

)053

3054

0055

00.00

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

7F02

7F02

7F02

7F05

7F08

7F0B

7F0B

7F0E

7F11

7F13

7F14

7F17

7F19

7F1B

7F1C

7F1E

7F20

7F21

7F23

7F25

7F28

7F2A

7F2C

7F2D

7F2F

7F31

7F32

7F34

7F36

7F37

7F38

7F3A

7F3C

;GENERAL PURPOSE ROUTINES FOR THE PET/CBM SYSTEM

;REQUIRES A 257 CHARACTER BUFFER

;STARTING AT A PAGE BOUNDARY

;FOR 32K BASIC 4.0 ONLY

CHKCOM

VARPAR

FLTINT

SYNERR

LEN1

LEN2

TEMPI

TEMP2

VARPTR

INTEG

CURFIL

BUFFER
•

STATUS

ARYEND

= $BEF5

= $BD98

= $C92D

= $BF00

= $00

= $88

» $01

= $89
= $44

= $11

= $D2

= $7E00

= $96

= $2E

* = $7F02

; VECTOR TABLE

4C 6B 7F JMP BLKGET

4C B4 7F JMP INSTRG

4C D3 7F JMP POSTRG

20 F5 BE CHKPAR JSR CHKCOM

20 98 BD JSR VARPAR

A0 00 LDY #00

60 RTS

20 0B 7F FINDAB JSR CHKPAR

Bl 44 LDA (VARPTR),Y

85 00 STA LEN1

C8 INY

Bl 44 LDA (VARPTR)fY

85 01 STA TEMPI

C8 INY

Bl 4 4 LDA (VARPTR),Y

85 02 STA TEMP1+1

20 0B 7F FINDB JSR CHKPAR

Bl 44 LDA (VARPTR),Y

85 88 STA LEN2

C8 INY

Bl 44 LDA (VARPTR),Y

85 89 STA TEMP2

C8 INY

Bl 44 LDA (VARPTR),Y

85 8A STA TEMP2+1

60 R^TS

3 8 KILSTR SEC

A5 8A LDA TEMP2+1

C5 2F CMP ARYEND+1

90 1C BCC NOKILL

;CHECK FOR COMMA

;EVALUATE EXPRESSION

;FLOATING PT TO INT

;?SYNTAX ERROR

;WORK SPACE
t i

i i

i i

;CURRENT VARAIBLE POINTER

;INT VALUE FOR SYS

;CURRENT FILE NUMBER

;BLOCK GET BUFFER, MUST BE SEALED

;OFF WITH POKE53,126:CLR

;ST STORAGE

;END OF ARRAYS

;STARTS 2 BYTS IN DUE TO BUFFER

;BLOCK GET - SYS 32514

;INSTRING - SYS 32517

;POS SEARCH - SYS 32520

;CHECK FOR COMMA AND

;SET UP POINTER TO STRING

:FIND FIRST STRING

; STORE STRING 1 LENGTH

;STRING 1 ADDRESS LOW

;STRING 1 ADDRESS HI

;FIND ANOTHER STRING

;STORE STRING 2 LENGTH

;STRING 2 ADDRESS LOW

;STRING 2 ADDRESS HI

;GET RID OF OLD STRING

;STRING IN TEXT?

;YES, EXIT

BMBSTRINGTH ING PAGE 0002

LINE# LOC CODE LINE

0056
0057

0058

0059

0060

0061

0062

0063

0064

» 0065

0066

0067

- 0068

0069

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

0080

0081

0082

008J

0084

0085

008b

0087

0088

0089

0090

0091

0092

0093

0094

0095

0096

0097

' 0098
0099

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

0110

7F3E

7F40

7F42

7F44

7F46

7F47

7F49

7F4B

7F4D

7F4F

7F51

7F53

7F55

7F56

7F58

7F5A

7F5B

7F5B

7F5E

7F61

7F63

7F65

7F68

7F6A

7F6B

7F6B

7F6B

7F6E

7F70

7F72

7F74

7F76

7F78

7F7B

7F7E

7F80

7F83

7F86

7F87

7F89

7F8B

7F8D

7F8F

7F91

7F93

7F95

7F97

7F99

7F9B

7F9C

7F9E

7FA0

7FA3

7FA5

7FA7

A5

C5

90

A5

18

65

85

90

E6

A0

A5

91

C8

A9

91

60

20

20

A5

F0

4C

A5

60

20

85

A9

85

A9

85

20

20

A6

20

20

AA

C9

FO

AO

91

E6

A4

CO

FO

A4

FO

8A

DO

C6

20

AO

A5

91

89
2E

16

88

89

89

02

8A

01

88

89

FF

89

OB

2D

12

03

00

11

5B

D2

00

01

7E

02

25

37

D2

C6

E4

OD

15

00

01

01

01

FF

04

96

E8

02

01

CC

00

01

44

7F

C9

BF

7F

7F

7F

FF

FF

FF

NOHIIN

NOKILL
•

FINDI

Rl

•

/

• **

BLKGET

INLOOP

PRES.ET

VARSET

LDA

CMP

BCC

LDA

CLC

ADC

STA

BCC

INC

LDY

LDA

STA

INY

LDA

STA

RTS

JSR

JSR

LDA

BEQ

JMP

LDA

RTS

JSR

STA

LDA

STA

LDA

STA

JSR

JSR

LDX

JSR

JSR

TAX

CMP

BEQ

LDY

STA

INC

LDY

CPY

BEQ

LDY

BEQ

TXA

BNE

DEC

JSR

LDY

LDA

STA

TEMP2

ARYEND

NOKILL

LEN2

TEMP2

TEMP2

NOHIIN

TEMP2+1

#01

LEN2

(TEMP2),Y

#$FF

(TEMP2),Y

CHKPAR

FLTINT •

INTEG+1

Rl

SYNERR

INTEG

BLOCK GET

FINDI

CURFIL

#<BUFFER

TEMPI

#>BUFFER

TEMP1+1

FINDB

KILSTR

CURFIL

$FFC6

$FFE4

#$0D

VARSET

#$00

(TEMPI),Y

TEMPI

TEMPI

#255

PRESET

STATUS

INLOOP

VARSET

TEMPI

$FFCC

#$00

TEMPI

(VARPTR),

;OLD STRING DEAD

;EVALUATE NUMERIC

ROUTINE **

;GET FILE NUMBER

;GET BUFFER ADDRESS

;FIND STRING VARIABLE

;KILL OLD STRING

;SET INPUT DEVICE

;GET A CHARACTER

;SAVE CHAR IN .X

/CARRIAGE RETURN?

;YES, STOP INPUT

;STORE CHAR IN BUFFER

;INCREMENT LENGTH

;GET LENGTH

;MAX ?

;MORE CHARS?

;YES, CONTINUE

;GET CHAR FROM .X

;LAST CHAR CHR$(0)?

;YES, DEC LENGTH

;CLOSE CHANNEL

Y ;STOR LEN IN POINTER

10

1BSTRINGTHING PAGE 0G'%3

NE# LOC CODE LINE

11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

i26

L27

L28

L29

L30

131

L32

133

134

135

136

L37

L38

L39

140

141

142

143

144

145

146

14/

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

7FA9

7FAA

7FAC

7FAE

7FAF

7FB1

7FB3

7FB4

7FB4

7FB4

7FB7

7FBA

7FBC

7FBE

7FBF

7FC1

7FC3

7FC5

7FC7

7FC9

7FCB

7FCD

7FCE

7FD0

7FD2

7FD3

7FD3

7FD3

7FD6

7FD8

7FD9

7FDB

7 FDD

7FDF

7FE1

7FE3

7FE4

7FE6

7FE8

7FEA

7FEC

7FEE

7FEF

7FF1

7FF3

7FF5

7FF7

7FF9

7FFB

7FFD

7FFF

8000

C8

A9

91

C8

A9

91

60

20

20

C6

A5

18

65

85

90

E6

A0

Bl

91

C8

C4

DO

60

20

A9

AA

85

A0

Bl

Dl

DO

C8

C4

DO

E6

A5

85

60

E6

DO

E6

E6

A5

C5

DO

86

60

00

44

7E

44

14 7F

5B 7F

11

89

11

89

02

8A

00

01

89

00

F7

14 7F

00

B6

00

01

89

OC

00

F5

B6

B6

00

89

02

8A

B6

B6

88

DE

00

•

/

.**

INSTRG

11

12

•

/

• ••
f

POSTRG

LOOPP

PI

BUMP

P2

INY

LDA #<BUFFER

STA (VARPTR),Y

INY

LDA #>BUFFER

STA (VARPTR),Y

RTS

INSTRING

JSR FINDAB

JSR FINDI

DEC INTEG

LDA TEMP2

CLC

ADC INTEG

STA TEMP2

BCC 11

INC TEMP2+1

LDY #$00

LDA (TEMPI),Y

STA (TEMP2),Y

INY

CPY LEN1

BNE 12

RTS

;STORE POINTER LOW

;STORE POINTER HI

ROUTINE **

;FIND BOTH VARIABLES

;GET INSERT POSITION

;TRANSFER BYTES

;END OF INSERT

;NO, DO MORE

POSITION SEARCH ROUTINE **

JSR FINDAB

LDA #$00

TAX

STA $B6

LDY #$00

LDA (TEMPI)rY

CMP (TEMP2),Y

BNE BUMP

INY

CPY LEN1

BNE PI

INC $B6

LDA $B6

STA $00

RTS

INC TEMP2

BNE P2

INC TEMP2+1

INC $B6

LDA $B6

CMP LEN2

BNE LOOPP

STX $00

RTS

.END

;FIND BOTH VARIABLES

;X REG = 0

;RESET POSITION

;ZEROIZE OFFSET

;GET CHAR AT A$,Y

;SAME AS CHAR AT B$fY ?

;NO, MOVE TO NEXT A$ CHAR

;YES, INCREMENT Y

;SAME AS LEN OF A$?

;NO, MORE CHARS TO COMPARE

;YES, BUMP POSITION

;AND STORE IT

;IN LOCATION 0

;MOVE TO NEXT CHAR IN B$

;BUMP POSITION

;END OF B$?

;NO, DO MORE COMPARES

;NOT FOUND

;rrors = oooo

Machine Code TO DATA Statements

This small program can be used to take bytes out of

memory and put them into DATA statements. The program is self

modifying. Once complete, the program itself must be removed

from text, leaving the DATA statements behind.

Line 3 prompts for the starting DATA line number. This

should obviously be out of the line range of the program.

Line 4 prompts for how many bytes per DATA statement. The

number of bytes extracted from memory will be the difference

of the starting line number and the ending line number.

This program is an adaptation from one written by Dave

Middleton, Commodore U.K.

1 INPUT " STARTING ADDRESS IN DECIMAL ";AD

2 INPUT n ENDING ADDRESS IN DECIMAL ";EN
3 INPUT " STARTING LINE NUMBER 1000[CL CL CL CL CL CL]";LN

4 INPUT "# OF BYTES/DATA LINE (MAX 13) 8[CL CL CL]";NB

5 PRINT"[CLR]"LN;"FORJ="AD;"TO"EN;":READ X:POKE J,X:NEXT:END":J=NB:GOTO16

6 IF AD>EN THEN PRINT"[CLR]DONE. NOW ERASE,GENERATOR" : END

7 FOR J=l TO NB

8 V=PEEK(AD) : AD=AD+1

9 S$=STR$(V)

10 A$=A$+RIGHT$(" "+S$,4)

11 IF AD>EN THEN LN=LN-NB+J : GOTO14

12 IF J<NB THEN A$=A$+","

13 NEXT J : J=J-1

14 A$=STR$(LN)+" DATA"+A$

15 PRINT"ICLR]"A$
16 PRINTMAD="AD;":EN=MEN;":LN="LN;"+"J;":NB="NB;":GOTO6"

17 POKE 158, 3 : POKE 623,19 : POKE 624,13 : POKE 625,13 : END

12

PET BASIC Label Support Interface: Revisited

In Transactor #12, Volume 2, J. Hoogstraat of Calgary

submitted an excellent routine which allows alpha labelling of

BASIC statements. This routine is most useful when developing

software. By labelling your subroutines with words, a

renumber operation doesn't force you to remember a whole new

set of line numbers. When developement is complete, the

labels can be swapped back to line numbers using a

"find/change" function like in 'The Toolkit1 or 'AID41.

The routine published last issue was for BASIC 2.0. Here

are two new versions for BASIC 4.0; one for use with cassette

and the other for use with disk.

Recall that BASIC 4.0 disk commands (eg. DOPEN, BACKUP,

SCRATCH, etc.) use parts of the 2nd cassette buffer which

would clobber any machine language set up there previously.

Use the version that resides in the 1st cassette buffer (634

to 816) if any of these disk commands are coded elsewhere in

your program.

On the other hand, cassette users will probably want to

use cassette port #1 which prohibits using cassette buffer #1

for anything else. In that case, use" the version that resides

in the 2nd cassette buffer (826 to 1008). It will be safe

there so long as no 4.0 disk commands get executed.

The version you choose will determine the SYS address

used to engage the routine into BASIC (see example)

10 SYS634 :REM USE SYS826 FOR 2ND CASSETTE BUFFER

20 :

100 FOR 1=1 TO 3

110 ON I GOSUB #SUB1, #SUB2, #SUB3

120 NEXT

13 0 GOTO #ALLDONE

140 :

150 #SUB1:PRINT"SUBROUTINE";I : RETURN

510 :

550 #SUB2

560 PRINTflSUBROUTINEM ;I : RETURN

570 :

600 #SUB3 : PRINT"SUBROUT";I : RETURN

610 :

800 #ALLDONE : PRINT "END OF TEST" : END

13

HN)tO

M M M IO M tO tOtO tOK) to M M tO M M 1-3

U) OJ -J ^ (Jl tO WOOHW VO VOO O it^U)^ O OHO^WHWO

tOtOH tO M tO IO tO M \-*h-» \-* \-* \-i y-t M *-j M

O^C0^4^4^J^JOOOO0JWO^Ca>^J0>0>OMMi^ V» Ul M O> OJ
j

M M tO tO tO tO M tO tO H
VO MVOVO *wO 0^000>00--JM

X
M tO M tO 1-* V-* >-> \~* \-» \-* *-* V-» tO tO H N3 to MM

HO00OWWWW00^W^0^>JOW|O^iJk O OJCTi««

M M M tO tO tO tO M M tOH

U1 CO^J*-J^4tOCO CO^VOtOVOVOVOil^tO^OO^CO^J l+> \~*

MMvovovovovovovovovovovovovovovovococococococococococococococo
OOV00000^^0M^01^^UN}tOHHOV0V00000vJ0>0>CJiai^0J0tON)

OOiUCObOO>04^00tOC^O*fcCOtOC^04^COtOONOiUCOtOO>0*woOt

> > ^
MtOtO MMMMtOtOMM -MMtOMMtOMtOM MM M MMH

^V04CTOU)^OOOMt0MJK>V00J0

t-j i-j !-• |OM tO tOtO tO tO tOMMtOMf-3

tO OJ ^1 iU U1 tO U) CO M U> VO VOO O rf* UJ «U O OHO^WH^O
O^tOMOJMtnOOLnVOVOtOtOtOOJOJOOOOVOtOOMMMOO^OiUM
^^^^^^^^^^^^^^^>^.^^^^^^-.^-»^^^^^M

o
tO tO M tO M tO tO tO tO M \~t^t^t\^i M M MMMO

U)lU)J^O\OHH^ OJ Ul M <T> U> CO
JOO^taJHUOU

hj»Mih-' MtO M M tO tO tO tO M tO tO M *3d
slW0\0\0\HOOW VO H^VO 4^O O *fc O O ON OO ^J MW

OMOOJM^OMtOOOUOMOMOOOJ>

tO M M M tO MtO tO h^h^ M M MM M M tO tO MtO IO M M X
OJUitJcO^JOJ^JON^JOCAJtOVO^ O 0JO\

000

- s
M M M tO tO tO tO M M tO M «

Ul CO ^ ^J-"J tO CO CO ^ VO tO VO VO VO ** tO *fc O O *w CO ^ Va> M W
MOU>VOJO^tOtOtOMON^MOO>JOJOtU)

X
H3

The Commodore 8010 Modem Gord Campbell, Toronto

Hurray! It works! In fact, the main benefit of the

Commodore Modem (CBM 8010) is that it is so easy to use. You

just take it out of the box, plug it in, attach an IEEE 488

cable, and you.have completed the installation.

But what does it do? It allows the PET or CBM to

communicate with other 'similar1 devices. Thus you can

communicate with not only another PET with a modern, but also

with mainframe computers or a wide variety of terminals. The

only restriction is that the other end must also run at 3uO

baud (30 characters per second), and be fBELL-103'

compatible. Since BELL-103 is the North-American standard,

this is not a restriction. Most terminals these days support

300 baud: the major exception is the good OLD Teletype.

To establish communications, one end phones the other,

agreement is made on who will run in answer mode, and both

ends place their telephone handset in the cups in the top of

the modem. The modems sing away at each other, sending and

receiving characters*

Like any device on the PET, it doesn't do anything

without a program, but that isn't a big deal. In the 11 page

manual are listings of programs' to do PET-to-PET or

Pet-to-mainframe communications, as well as a program which

helps to pin down any problems which might occur.

Unfortunately, at least one of these has a bug (take line 240

out of the terminal program) . Since many of the people who

might like to use the PET as a terminal have no interest in

programming, it would have been nice to have a tape right in

the box. Presumably any dealer who is selling modems has

working versions of the programs.

The most difficult concept to grasp in programming for

the modem is that the program must handle events which are

coming from an external source, possibly quite quickly. For

example, a mainframe computer will send characters to you at

the rate of 30 per second. If you fall behind in processing

them, you miss a few. A BASIC program to accept characters

from the modem and write them to disk must be structured for

speed or it will lose some. This will be less of a problem

if the other end is producing characters at someone's typing

speed. Any extra overhead which slows down programs (such as

DOS support) will make the problem worse of course.

The commands used in programming the modem are the same

as for pther devices (OPEN, CLOSE, PRINTt, GET#, and INPUT#).

Thus it should be simple to set up two-player games by phone.

One of my desires is a program to play bridge by phone: me

and the PET versus a friend and his computer. The computers

would get to do all the dull stuff like deal, keep score, and

be dummy. The only clever things they would have to do is

bid and play defense. The easy part of sucH a program would

be the part handling the modem.

15

The price of the modem does seem a little steep (about

$600), but this is a professional, well-integrated

peripheral. The owners of the other two major personal

computer systems have to pay about the same amount to obtain

the officially-approved equivalent capability. The only

reason that it seems so much is that there are other ways to

get communications without paying as much. Unfortunately,the
other ways are not nearly so easy to use.

Are there any complaints? A couple of minor ones, but
no big deal. The Commodore modem does not allow sending a

true 'break1. Many large computers accept a break (which is

not a character as such) to stop them from doing what they

are doing. For example, if you are editing a large file

using IBM's TSO (time sharing option), and you accidentally
say LIST, you will have to wait a long time before you can

enter another command. (This can be overcome by telling TSO,

1. don't send more than say 20 lines without giving me a
shot, and 2. if I send you a certain character string, take
that to be a 'break').

Finally, the main thing which makes the modem so easy to

use (the IEEE bus), can be a drawback* at times. For example,

it is very difficult to use the modem ahd the printer at the

same time. This is beceiuse the printer will not accept the

first character of a line until it has finished printing the

previous line. By the time your program continues, you have

lost characters. This could have been avoided by giving the

modem a fair sized buffer, but that would have made the price

even higher.

In summary, if you want to add data communications to

the PET, the Commodore modem deserves consideration. For

hassle-free installation and operation, it is probably your

best choice!

Editor's Note

Two excellent machine language modem drivers have been

sent to all Canadian Commodore dealers (CEAB #6 disk) . These

are free for copying to any customer but they will only work
the 8010 modem.

spooling disk Files to Printers

In Compute #8 , T.M. Peterson published a neat trick for

getting the 20'40 disk to talk to a printer without PET/CBM

supervision of the IEEE bus. I imagine this would work for

4040s, 8050s and any make printer interfaced via the IEEE bus,

but naturally I can't be sure for all cases. However, the

idea was so incredible that I felt it definitely worth

repeating.

Everyone knows how to LIST a program to the printer. But

long listings can wear patience thin, especially on a slew

printer! Not only that, but while your printer is chugging

along, the PET just sits there with everthing disabled except

RUN/STOP. Wouldn't it be nice if the disk fed the printer

while you continue editing or play a quick round of space

invaders or Microchess, that is if you can bear some of those

arrogant printers. By the way, those wing nuts on the bottom

of Commodore 202X printers... take them out. They're only
shipping screws that hold the mechanism tight. Once removed,

the noise level is reduced considerably.

First a file must be created on disk. This could be any

SEQ file with any contents that are printer recognizable, but

for now we'll create one of a program LISTing.

1. Enter some small program

2. OPEN 8,8,8,"0:TEST SPOOL,S,W" : CMD8 : LIST

3. PRINT#8,""; : CLOSE8

4. NEW

5. OPEN 8,8,8, M0: TEST SPOOL" ; defaults to '^r1

6. POKE 165,72 : SYS 61695 ;use SYS 61668

7. POKE 165,104 : SYS 61695 for BASIC 2

8. OPEN 4,4 : CMD4 : POKE 176,3 : POKE 174,0

On hitting return the printer should fire up and continue

at full speed to the end of the file. At this point your

cursor might be acting funny (try hitting return on a blank

line). To stop this, POKE 14,0 for BASIC 2.0 or POKE 16,0 for

BASIC 4.0. If you're lazy like me, invoking a couple of

?SYNTAX ERRORS (eg. ' = • and Return) will do the same thing.

However, to restore normal cursor operation under program

control (yes program control!), you would have to use the

POKE. More on this in upcoming paragraphs.

Once the printer starts, don't try using the IEEE bus or

the spool will abort. When its all finished you can CLOSE the

open disk file by sending an Initialize command or with:

OPEN 1,8,8 : CLOSE 1

A filename isn't necessary, but use the same secondary

address as in step 5.

The NEW command at step 4 is only for clarity. Instead

you might load another program or just leave the current one

in for further editing. You can RUN the program in memory and

even use the cassettes, but they're still as slow as before.

17

The example here uses all direct commands but they could

just as easily be put in a program. Think of the

applications! In a user oriented system, a report could be

output to the disk and immediately spooled to the printer

while the operator continues "working on the next tasK. Of

course the user might inadvertently try a bus operation which

would kill everything. Fortunately this busy state can be

detected using the following "trap":

100 IF (NOT(PEEK(59456))) AND 64 THEN 100
110 OPEN lf8,SA : CLOSE 1

130 ...and continue

If a spool is in progress, line 100 will loop back to

itself until the bus is free. Line 110 is for closing the

disk file and also turns off the active LED. SA is a variable

containing the secondary address which might be used in coding

the OPEN command that starts the operation. Also note that

line 110 causes no disk activity so there's no need to go
around it to save time.

Theory and Variations

This example uses device number 8 right through.

However, you might have more than one ?disk on line which would

mean a different device number. In step 6, address 165 (the

IEEE output buffer) is POKEd with 72. This number (72) is

derived from 64 + 8, where 8 is the device number. For

versatility, this '8' might be replaced by a variable like DV.

The following SYS activates the ATN line on the bus

telling all devices to 'pay attention1. The contents of 165

are then sent to the bus but only the device that has a

matching 'talk' address responds, in this case device 8; the
disk.

The disk is ready to start sending but from where? All

it needs now is the secondary address of the OPENed file.

Step 7 sets up the output buffer with the secondary address

plus 96. Since 8 was chosen, the result is 104. This step

might also be modified to read POKE 165,96+SA.

Nothing happens yet because the ATN line isn't released

by the PET. When CMD4 is executed (step 8), the printer

becomes the output command device. PET releases ATN, the disk

starts talking and the printer listens.

POKE 176,3 tricks the PET into thinking the output

command device is the screen and POKE 17 4,0 simulates no files

OPEN. In a program you would have to re-open files (eg.

command channel, modem, etc.) at spool completion. By the

same token, you might want to CLOSE any open write files
before starting.

Should anyone '.discover any useful variations to this
technique, let us know. We'll be glad to here about it!

POKE OPEN Files •

If a file is OPENed from a program and a 7SYNTAX ERROR

occurs before the program gets a chance to CLOSE it, you can

still CLOSE it from the keyboard using a direct command (i.e.

CLOSE If). But if you edit the program before CLOSing,

you'll find this is no longer possible.

Editing essentialy does a CLR which also aborts all file

activity. However, nothing is sent to the disk to close its1

open files. If these were •read1 files, send an Initialize

or Catalog command and the disk is back to normal.

OPEN 'write1 files are a different story. If they

aren't CLOSEd properly, a number of nasty conditions can

occur that are no fault of the DOS.

All disk files (PRG, SEQ, REL or USR) are created by

recording data in sectors around the disk and then linking

them together using two bytes to store the track and sector

co-ordinates of the next sector in the chain. The first link

is stored in the directory as soon as the file is OPENed for

write. As successice sectors are written, successive links

are also recorded (first two bytes of sector). Thus the

directory points at the first sector, the first sector points

at the second, and so on*

When the DOS closes a write file, an 'end marker1 is

recorded in the last sector. This is characterized by

setting the track byte to zero (since there is no track 0) ,

and pointing the sector byte at the last character recorded.

If the file is not closed, this end marker never gets stored.

An "open chain" condition results.

Blocks that haven't been used contain all zeroes. The

previous link would point at two zeroes which is ok.

However, blocks that have been used and then freed due to

some earlier scratch operation, still contain old links. If

an open chain points at one of these, a "phantom chain" is

created. This can be deadly!

Consider a Scratch operation on an improperly closed

file. The DOS would follow the chain, releasing sectors to

the BAM (Block Availability Map) right up to the point where

the write was aborted. But if a phantom chain exists, the

DOS continues along the chain releasing more sectors which

might lead right into a good file! In the next write

operation, the DOS might select one of these sectors and

clobber live data (BLECCH!).

Fortunately we have the Validate or Collect command. A

Collect will discard improperly closed files, freeing all

sectors that do not belong to a chain and allocating all

sectors that do. Collect also frees any allocated direct

access blocks, which may not be too desirable. Besides that,

an 8050 Collect operation can take awfully long if your

directory contains many entries. Wouldn't it be nice if we

could just CLOSE that pesky opeii filef scratch it, and start

all over?!

Well,.., you canl As long as the disk is not disturbed
by a Catalog, reset, etc. When the PET aborts external file

activity due to editing, a CLR, etc., it merely sets the

number of OPEN files to zero (address 174). All file

parameter tables are left in tact (addresses 593 through

622)• These files can be ressurected as long as no new files

have been OPENed.

POKE 17 4, X

..• where 'X1 is the number of OPEN files. If you don't know
how many files were OPEN, simply POKE 174,10* This sets it
to maximum at which point even some properly CLOSEd files

would now be OPEN again! Now you can issue any necessary

CLOSE commands directly from the keyboard and exterminate

those disk gremlins that show up as an asterisk beside the

file type.

Although this will get you out of a jam, it is not

suggested practice! CLOSing disk files properly will reduce

knashing-of-teeth and pulling-of-hair considerably! (right

Jim?)

Some Commodore Disk Utilties

The following routines are for use with 4040 and 8050

disk units.

The first two are for reading the disk ID from the

specified drive DR, device DV. Line 150 sets the drive. Line

160 sets the track. Line 170 tells the disk to read any

header on track 18. Initializing not necessary! 18Uf 190 and

200 wait for the DOS to finish the read. Line 210 does any

error processing (i.e. read error or no disk in drive). The

first character of the ID is read from DOS memory (line 220)

and the DOS puts it in the command channel. Line 250 reads

the second character and both characters are put in lID$f.

This routine is particularly usetul (and fast) to see if

the user has placed a disk in the drive. It can also be used

to detect insertion of incorrect diskettes. The software

would have to anticipate ID numbersf perhaps ID'S that were

selected by the program in an earlier formatting operation.

The second two will return the BLOCKS FREE count BF, from

the specified drive DR, device DV. BF is reset before

entering. Initialize is necessary here! The block free count

is not.stored on the disk but rather calculated from the Block

Availibilty Map. Line 170 sends the DOS oft to that routine

in disk ROM! The result is placed in disk RAM where it is

read, once again, into the command channel by lines 18U and

210. A few calculations and presto! Block Free!

Knowing blocks-free from within a program can be

especially useful for anticipating the nasty DISK FULL error.

Versions for both 4040 (DOS 2.0) and 8050 (DOS 2.5) have

been provided. The fifth program was written by John Collins

of the U.K. Itfs the definitive subroutine for determining

host equipment.

100 REM ID READER FOR 4040

110 ID$=M>t : REM RESET ID$

120 DR=0 : REM DRIVE #

13 0 DV=8 : REM DEVICE*

140 OPEN15,DV,15 : REM UNLESS ALREADY OPEN

150 PRINT#15,"M-W"CHR$(18) CHR$(0) CHR$(1)CHR$(DR)

160 PRINT#15,?lM-WflCHR$(43) CHR$ (16) CHR$ (1) CHR$ (18)

170 PRINT#15,MM-W"CHR$(4) CHR$(16)CHR$(1)CHR$(17 6+DR)

18U PRINT#15,flM-R"CHR$(4) CHR$(16)

190 GET#15,X$

200 IF ASC(X$)>127 THEN 180

210 IF ASC(X$)<>1 THEN PRINT#15,"M-E"CHR$(37)CHR$(217):PRINTDS,DS$:END

220 PRINT#15,"M-RMCHR$(41)CHR$(16)

230 GET#15,A$

240 ID$=A$
250 PRINT#15,MM-R"CHR$(42)CHR$(16)

260 GET#15,A$

270 ID$=ID$+A$

280 PRINTID$

21

100 REM ID READER FOR 8050

110 ID$="" : REM RESET ID$

120 DR=0 : REM DRIVE #

130 DV=8 : REM DEVICE!

140 OPEN15,DV,15 : REM UNLESS ALREADY OPEN

150 PRINT#15,"M-W"CHR$(18) CHR$(0) CHR$(l)CHR$(DR)
160 PRINT#15,"M-W"CHR$(43) CHR$(16)CHR$(1)CHR$(18)
170 PRINT#15,"M-W"CHR$(4) CHR$(16)CHR$(1)CHR$(176+DR)
180 PKlNT#15,"M-RnCHR$(4) CHR$(16)

190 GET#15,X$

200 IF ASC(X$)>127 THEN 180

210 IF ASC(X$)<>1 THEN PRINT#15,"M-E"CHR$(179)CHR$(238):PRINTDS,DS$:END
220 PRINT#15,"M-R"CHR$(41)CHR$(16)
230 GET#15,A$

240 ID$=A$

250 PRINT#15,"M-R"CHR$(42)CHR$(16)
260 GET#15,A$

270 ID$=ID$+A$

280 PRINTID$

100 REM SUBROUT. RETURNS BLOCKS-FREE FOR DOS 2.0

110 DR=0 : REM DR = DRIVE #

120 DV=8 : REM DV = DEVICE*

130 BF=0 : REM RESET BLOCK FREE COUNT

140 OPEN15,DV,15 : REM UNLESS ALREADY OPEN

150 PRINT#15,"In+STR$(DR): REM UNLESS ALREADY INIT'D

160 PRINT#15,"M-W"CHR$(18)CHR$(0)CHR$(1)CHR$(DR)

170 PRINT#15,"M-E"CHR$(52)CHR$(219)

18U PKINT#15,"M-R"CHR$(119)CHR$(67)

190 GET#15,A$

200 BF=ASC(A$+CHR$(0)) : REM IN CASE A$=""

210 PRINT#15,"M-R"CHR$(120)CHR$(67)

220 GET#15fA$

230 BF=BF+ASC(A$+CHR$(0))*256

240 PRINT BF

100 REM SUBROUT. RETURNS BLOCKS-FREE FOR DOS 2.5 (8050)
110 DR=0 : REM DR = DRIVE #

120 DV=9 : REM DV = DEVICE*

130 BF=0 : REM RESET BLOCK FREE COUNT

140 OPEN15,DV,15 : REM UNLESS ALREADY OPEN

150 REMPRINT#15,"10"

160 PRINT#15,"M-W"CHR$(18)CHR$(0)CHR$(1)CHR$(DR)

170 PRINT#15,"M-E"CHR$(231)CHR$(211)
180 PKINT#15,"M-R"CHR$(158)CHR$(67)
190 GET#15,A$

200 BF=ASC(A$+CHR$(0)) : REM IN CASE A$

210 PRINT#15f"M-RMCHR$(160)CHR$(67)
220 GET#15,A$

230 BF=BF+ASC(A$+CHR$(0))*256
240 PRINT BF

"n

100 REM VERSION TEST FOR PET/CBM AND DISK

110 REM BY: JOHN COLLINS

120 REM PET/CBM TEST TP;

uo

140

150

160

170

18U

190

200

210

220

REM

REM

REM

REM
•

2001

2001

4032

8032

BASIC

BASIC

BASIC

BASIC

A=PEEK(57345):
•

•

REM

REM

REM

DISK

2040

4040

TEST

(DOS

(DOS

1

2

4

4

TP

1.

2.

.0

.0

.0

.0

=0

0)

0)

= 0

= 1

= 2

= 3

:IF A THEN TP=1:IF

TD;

= 1

« 2

A AND 1 THEN TP=3:IF A AND 4 THEN TP=2

230 REM 8050 (DOS 2.5) =3

240 :

250 OPEN 15, 8f 15

260 PRINT#15,"M-R"CHR$(255)CHR$(255)
270 GET#15, A$

280 CLOSE 15

290 A=ASC(A$):TD=1:IF A AND 16 THEN TD=3:IF A AND 1 THEN TD=2

300 :

310 REM RESULTS:

320 PRINT TP, TD

23

Cursor Coding

Publishing programs is one main function of The

Transactor. But publishing legible code is important too*

Using the Spinwriter does this* well but it won't print any of

the special graphic characters that make their way into so

many programs• The following method of representing graphics

will be used in The Transactor:

1. Square brackets ("[CL]") within quotes indicates

cursor graphics*

2. Where necessary, successive apostraphes (f) will

be enclosed in square brackets to represent

successive spaces.

3. Any other graphics will be converted to their CHR$
equivalents to accomodate business keyboard users.

4. Special 8032 screen operators will also be

represented by CHR$.

"[CLRJ"

"[HOME]"

"[DP]"

"IDN]"

"[CL]"

"[CR]"

"[RVS]"

"[OFF]"

"[']"

= clear screen

= cursor home

=. cursor up

= ' cursor down

= cursor left

= cursor right

= reverse mode on

= reverse mode off

=• 1 space

Examples

[CLR DN DN DN]"

[CL CL CL]"

[RVS • ■ ■ ■ • OFF]

r[CL •]"

= clear screen followed by 3

cursor downsf no spaces.

= three cursor lefts, no spaces

= reverse mode onr 5 spaces,

reverse oft

= 1 cursor left, 1 space

24

Tax Ontario 1980

Here it is I Jim Eutterfields income tax return program

for 1980. If you still have one of Jims earlier tax programs,

pull it out and you may avoid a' lot of unecessary typing. The

program will work on any BASIC, 8K minimum. It also

calculates your tax refund (or payment as the case may be) to

the penny! No unfair rounding the way the tax tables in the

book do it.

100 DIMC(5),F(5),D(13):REM V3.0 APR3/81

110 s$=w[''f f f f'f f f''f'''''''''''f''••'''f''f]w
120 PRINT" [CLR DNJONTARIO INCOME TAX 1980 TAXATION YEAR11

130 PRINT"!11 RVSJJ BUTTERFIELD"
140 FORJ=lTO90:IFPEEK(J+32768)=32THENNEXTJ

150 L=J

160 INPUT* [DN] INSTRUCTIONS11 ;Z$: IFASC(Z$) =7 8GOTO240

170 PRINT"[DN]ONTARIO INCOME TAX FOR 1980"

180 PRINT"[DN]FOLLOW YOUR FORM: THIS PROGRAM WILL"

190 PK1NT"HELP WITH THE ARITHMETIC."

200 PRINT"[DN]FOR 'NIL1 ITEMS, JUST PRESS fRETURNf."

210 PRINT"[DN]FOR 'MULTIPLE1 ENTRIES, ENTER AMOUNT"

220 PRINT"AND PRESS • + ■ INSTEAD OF 'RETURN1 TO"

230 PRINT"SIGNAL MORE ITEMS TO COME.[DN]"

240 INPUT"PRINTER(Y/N)";Z$:IFASC(Z$)=89THENOPEN2,4:P5=-1

250 DEFFNS(M)=(M+S-ABS(M-S))/2

260 DEFFNB(M)=(M+B+ABS(M-B))/2

270 DE*TNP(M)=INT(M*P/100+.49)

280 DEFFNI(M)=INT(M*100+.5)

290 GQSUB1340

300 P1=1:GOSUB1440

310 I$="INCOME FROM EMPLOYMENT"rGOSUBl490

320 P=3:S=5E4:GOSUB1380:I=FNS(FNP(I)):I$="LESS EMPLOYMT EXPENS":GOSUB1400

330 I$="*NET EMPL EARNINGS":GOSUB1420

340 I$="DIVD FROM CDN CORP":GOSUB1510

350 D(0)=I:I$="INTEREST & INV INCM":GOSUB1510

360 D(1)=I:I$="CANADIAN CAPITAL GAINS":GOSUB1510

370 D(4)=I:I$="ALL OTHER INCOME":GOSUB1510

3 8U I$="**TOTAL INCOME**":GOSUB1420

3 90 D(2)=I:P1=2:GOSUB14 40:GOSUB17 20

400 PRINTMLESS:":GOSUB1380:I$="CPP CONTRIBUTIONS":GOSUB1490

410 I$="UIC PREMIUMS":GOSUB1510

420 I$=MOTHER DEDUCTIONS":GOSUB1510

430 I$=" *TOT DEDUCTIONS:":GOSUB1420

440 I=C(C):I$=" *NET INCOME*":D(3)=1:GOSUB1720

450 PRINT"[RVS]EXEMPTIONS:":GOSUB13 80

460 I=289E3:I$="BASIC EXEMPTION":GOSUB1680

470 I$=MAGE EXEMPT":GOSUB1510:I$="MARRIED EXEMPT":GOSUB1510

480 I$="DEPNDT CHILD EXMPT" :GOSUB1510: I$=lfOTHER EXMPT":GOSUB1510

490 I$=" *TOTAL EXEMPT*":GOSUB1420:D(12)=1

500 I$=" **LINE 46**":GOSUB1660

510 GOSUB13 80:GOSUB1360:I$="MEDICAL EXPENSES":GOSUB1490
520 IFl=0GOTO550

530 GOSUB1380:P=3:I=FNP(D(3)):I$="*LESS 3% N.I.":GOSUB1400

540 I$="ALLOWABLE MED EXP":GOSUB1660

550 I$="CHARITABLE DONATNS":GOSUB1510:I=C(C)

25

D C=C-1:B=1E4:I=FNB(I):I$="**STANDARD DEDCTN**":GOSUB168U

!) S=1E5:I=FNS(D(O)+D(1)+D(4)) :D(10)=I .

0 IFl>OTHENI$="*I, D & CG DEDUCTION":GOSUB1700

0 I$="ALL OTHER DEDUCTIONS":GOSUB1510

0 I$="**TOTAL DEDUCTIONS":GOSUB1420

0 I$=" **TAXABLE INCOME**":GOSUB1660:D(5)=I:GOSUB1840

0 IFK=30E5ANDD(0)=0THENPRINT"YOU MAY USE TAX TABLE .. OR..."

0 P1=1:GOSUB1460

0 DATA108360,35849,43

0 DATA70434,21058,39

0 DATA43344,11306,36 "{CLRJ" = clear screen

0 DATA25284,5526,32 "IHOME]" ■ cursor home
'o DATA19866,4009,28 "[UP]" «• cursor up
0 DATA16254,3106,25 "[DN]" = cursor down
0 DATA12642,2276,23 "[CL]" ■ cursor left
'0 DATA9030,1517,21 "[CR]" ■ cursor right
.0 DATA5418,831,19 "[RVS]" = reverse mode on
;0 DATA3612,506,18 "[OFF]" = reverse mode off
10-DATA1806,199,17 "I •]" » 1 space
50 DATA903,54,16

JO DATA0,0,6

70 DATA-1

30 READX,Y,P:IFKX*100GOTO7 80

)0 T=Y*100:P$="ON FIRST $"+STR$(X)+" TAX IS "+STR$(Y):GOSUB1820

DO J=I-X*100:I=FNP(J)

L0 P$="ON RMG $"+STR$(J/10O)+" TAX AT"+STR$(P)+"% IS $"+STR$(1/100)

20 GOSUB1820

30 I=I+T:GOSUB1340:C=C-1:I$="TOTAL FED INCM TAX":GOSUB16 80

40 S=I:P=25:I=FNS(FNP(D(0))):D(11)=I

50 IFI>0THENGOSUB13 80:I$="DIV TAX CREDIT":GOSUB1400

50 I$=" *BASIC FEDERAL TAX*":I=C(C):GOSUB1720:GOSUB1840:D(6)=1

70 IFK2E4GOTO900

80 IfK=2222E2THENI=2E4:GOTO900

90 P=9:S=5E4:I=FNS(FNP(I))

00 GOSUB1380:I$="GENERAL TAX REDUCTION":GOSUB1400

10 I$=" **FEDERAL TAX**":GOSUB1660:D(7) =1

20 GOSUB13 80:I$="FOREIGN TAX PAID":GOSUB1510:IFI=0GOTO980

30 W=I:I$="FORGN INCOME":GOSUB1510:K=I:X=(D(3)-D(10))/100:Y=(D(7)+D(11))/100

40 S=INT(K/X*Y)

50 P$=STR$(K/100)+"/"+STR$(X)+"*"+STR$(Y)+" ="+STR$(S/100):GOSUB1820

60 I=FNS(W) :I$="~DEDUCT:":GOSUB1400

70 PRINT"..ANOTHER COUNTRY...":GOTO920

•80 C=C-1:I$="FEDERAL TAX PAYABLE":GOSUB1420:D(8)=1tGOSUBl840

■90 D1=D(6):IFD(5)<182E3THEND1=O
000 P=44:I=FNP(D1)

.010 I$="BASIC ONTARIO TAX"-.GOSUB1720 :D (9) =1

.020 READX:IFXO-1GOT01020

.030 P$=" ==ONTARIO PROPERTY & SALES TAX==":GOSUB1820:GOSUB1340

L040 INPUT"ARE YOU ELIGIBLE FOR THESE CREDITS Y[CL CL CL]";Z$

1050 IFASC(Z$)089GOT01170

1060 I$="TOTAL RENT PAYMENTS":GOSUB1490:IFI=0THENC=C-l:GOTO1080

L070 P=20:I=FNP(I):I$="*20% OF RENT":GOSUB1400
L080 I$="PROPERTY TAXES&COLLG RES":GOSUB1510

1090 I=C(C):P=10:X=FNP(I):I$="*OCCUPANCY COST*":GOSUB1420:GOSUB1840:C(C+l)=0

26

1100 GOSUB1340 '

1110 S=18E3:I=FNS(I):I$=" ADD..":GOSUB1680:I=X:I$=" TO..":GOSUB1700

1120 I$="PROPERTY TAX CREDIT":GOSUB1420

1130 P=1:I=FNP(D(12)):I$="SALES TAX CREDIT":GOSUB1700
1140 I$="TOTAL CREDITS":GOSUB1420

1150 D1=D(5) :IFDK182E3THEND1=O

1160 GOSOB1380:P=2:I=FNP(D1):I$="LESS(B)—":GOSUB1400

1170 B=0:S=5E4:I=FNS(FNB(C(C))):I$="ONTARIO P & S CREDITS":GOSDB1400
1180 GOSOB1360:I$="ONT POLITICAL TAX CREDIT":GOSDB1490

1190 I$="*TOTAL ONT TAX CREDITS":I=C(C-1)+I:D(13)=I:GOSUB1400

1200 GOSUB1340

1210 P1=4:GOSUB1440:GOSUB1340:I=D(8):I$="FEDERAL TAX PAYABLE":GOSUB1400

1220 I$="POLIT/BUS/EMPLMT CREDIT":GOSUB1510:X=D(8>+D(9)-I

1230 OC-1:1$="ONTARIO TAX PAYABLE" :I=D(9) :GOSUB1720

1240 C=C-1:I$="TOTAL PAYABLE" :I=X-.GOSUB1720:GOSUB1840

1250 GOSUB1380:I$="TAX DEDUCTED PER SLIPS":GOSUB1490

1260 I$="ONTARIO TAX CREDITS":I=D(13):GOSOB1700
1270 I$="OVERPAYMENTS/INSTALMENTS":GOSDB1510
1280 I$="CHILD TAX CREDIT":GOSUB1510

1290 I=C(C):C=3:I$="**TOTAL CREDITS**":GOSUB1720:GOSUB1840

1300 C=2:I$="BALANCE DUE" :I=X-I:IFK0THENI$-"REFUND:" :I=ABS(I)

1310 GOSUB17 201 PRINT: IFP5THENFORJ=1TO10: PRINT! 2: NEXTJ: CLOSE2

1320 END

1330 REM CLEAR ALL ACCUMS

1340 C=1:C(1)=0:GOSUB1360:GOSUB1360

1350 REM MOVE TO SUBTOTAL

1360 C=C+l:F(C)=l:C(C)=0:RETURN

137 0 REM MOVE TO NEG SUBTOTAL

13 80 C=C+l:F(C)=-l:C(C)=0:RETURN

13 90 REM SUM I INTO NEXT HIGHER TOTAL

1400 C(C)=I

1410 REM SUM C(C) INTO NEXT HIGHER TOT

1420 I=C(C):F=F(C):C=C-1:C(C)=C(C)+I*F:GOTO1720

143 0 REM PRINT PAGE ID

1440 P$=M ===PAGE":GOTO1470

1450 REM PRINT SCHED ID

1460 P$=" ===SCHEDULE"

1470 GOSUB1900:P$=STR$(P1)+" OF RETURN===":GOTO1820

1480 REM PROMPT NEW VALUE

1490 C(C)=0

1500 REM PROMPT INPUT

1510 I=0:GETZ$:PRINTI$;"? ";

1520 Y$=*":PRINT CHR$(166)"[CL]B;

1530 GETZ$:IFZ$=""GOTO1530

1540 Z=ASC(Z$):IFZ>47ANDZ<5 8GOTO1630

1550 IFZ$="-"ANDY$=""GOTO1630

1560 IFZ$=n."GOTO1630

1570 lr(Z=157ORZ=20)ANDY$<>-"THENY$=LEFT$(Y$,,LEN(Y$)-l) :PRINT" [CL ' } " ; :GOTO1640

1580 IF Z$<>"+" THEN 1600

1590 PRINT" [DN] " ; : I=I+VAL(Y$) :FORJ=1TOLEN(Y$) :PRINT" [CLJ " ; :NEXT:GOTO1520

1600 IFZ=13ANDI=0THENPRINT"[UP]";

1610 IFZ=13THENI=FNI(I+VAL(Y$>):PRINT:GOTO1700

16 20 GOTO153 0

1630 Y$=Y$+Z$

640 PRINTZ$;:GOTO1530

650 REM FORCE NON NEGATIVE

660 B=0:I=FNB(C(C))

670 REM SET VALUE TO I

.680 C(C)=0

690 REM ADD VALUE

,700 C(C)=C(C)+I

L710 REM PRINT 1$, VALUE

1720 P$=I$:GOSUB1900:M=1E8:GOSUB1860
L730 J=ABS(I):Z$=" ":Z=0

L740 D=INT(J/M):J=J-D*M:IFD=ZTHENP$=" ":GOTO1760
L750 Z$=",":Z=10:P$=CHR$(D+48)
1760 GOSUB1900:M=M/10:IFM=1E4THENP$=Z$:GOSUB1900
L770 IFM=10THENP$=".":GOSUB1900:Z=M
L780 IFM>=lGOTO1740

'L790 IFK0THENP$="CR":GOSUB1900: REM NOTE: NO SQUARE BRACKETS HERE
L800 GOTO1840

L810 REM PRE PRINT

1820 GOSUB1900

18J0 REM NEW LINE

1840 P$=CHR$(13)+CHR$(10):GOTO1900

1850 REM COLUMN TAB

18bO IfP5THENPRINT#2fLEFT$(S$f41-C*10);

1870 IFL>70THENPRINTLEFT$(S$,41-C*10);

1880 P$=LEFT$(S$f25-LEN(I$))

1890 REM PRINT

1900 IFP5THENPRINT#2,P$;.

1910 PRINTP$;:RETURN

28

202X Bar Graph Printer

John Easton of Toronto Ontario submitted this bar graph

plotter for those who might need such a utility. The program

here comes complete with "demonstrations. It could be
substantially snorter once all the cosmetics are removed.

100 REM VERSION 2.4 * APRIL 11 '81
110 REM **********************************

120 REM * BAR GRAPH *

130 REM * ADAPTED FROM CBM NOTES BY *

140 REM * JOHN EASTON *

150 REM * FOR CHRISTIAN *

160 REM * COMPUTER/BASED COMMUNICATIONS *

170 REM * 44 DELMA DRIVE - TORONTO *

18U REM **********************************

190 :

200 REM THIS FORM OF GRAPH IS KNOWN AS A GATT GRAPH

210 REM - (BAR GRAPHS ARE VERTICAL)

220 :
230 REM **********************************

240 REM * CLEAR & INITIALIZE VARIABLES *

250 REM **********************************

260 :

270 CLR : PRINT"[CLR]" : PRINT"[RVS] * BAR-GRAPH * " : PRINT

280 PRINT "IRVS »••••••»•••••••]BY JOHN EASTON * TORONTO "

290 PRINT : PRINT

300, PRINT n[RVS] NOTE > FOR USE WITH CBM 2022 PRINTER ":PRINT:PRINT

310 PRINT "SELECT PRINTOUT FORMAT 'A1 OR 'B|n

320 INPUT "OR ENTER '*' FOR EXAMPLES ";F$

330 IF F$="*" THEN GOSUB 153 0 : F$=FF$

340 IF F$="A" OR F$="B" THEN 360

350 PRINT n[DN]" : GOTO 310

360 INFUT " OUTPUT TO PRINTER Y/N ";P$

370 REM FOLLOWING LINES SET OUTPUT FORMAT

3 8U LF=1 : DV=3 : REM OUTPUT FILE 1 - DEVICE 3 (SCREEN)

390 BAR=PEEK(213)-11:IF P$O"Y"THEN 440: REM SET SCREEN WIDTH (40 OR 80 CHR)

400 BAR=68:DV=4:PRINT: REM PAGE WIDTH FOR OUTPUT ON DEVICE 4

410 IF PEEK(50003)=160 THEN LF=200: REM SET OUTPUT CHANNEL HIGH FOR ROM 4

420 INPUT" WANT AN ENHANCED TITLE Y/N ";T$

43 0 T=129:IF T$="Y" THEN T=l : REM SET TITLE FOR ENHANCED MODE

440 A$(0)="n

450 A$(1)=-IRVS]"+CHR$(165): REM SET UP FRACTIONAL PRINTOUT ARRAY

460 A$(2)="lRVS]"+CHR$(180)

470 A$(3)="[RVS]"+CHR$(181)

480 A$(4)="[RVS]"+CHR$(161)

490 A$(5)=CHR$(182)

500 A$(6)=CHR$(170)

510 A$(7)=CHR$(167)

520 :

on

off

29

"[CLR]n =

"[HOME]" =

"[UP]"

n[DN]"

"[CL]"

"[CR]"

"[RVS]" =

"[OFF]" =

-[•]-> =

clear screen

cursor home

cursor up

cursor down

cursor left

cursor right

reverse mode

reverse mode

1 space

-30 REM **********************************

>.4O REM * SCREEN INPUT *

J60 :

i70 PKINT : INPUT "TITLE *[CL CL CL]";T1$

580 IF Tl$<>"*" THEN 600

590 Tl$=""

500 PRINT : INPUT "SUBTITLE *[CL CL CL]";T2$
510 IF T2$<>"*" THEN 630

520 T2$="" : GOTO 640

530 PRINT : INPUT "SUBTITLE AT 'T'OP OR 'B'OTTOM OF CHART B[CL CL CL]";TT$

540 PKINT : INPUT "NUMBER OF ITEMS THIS GRAPH ";N

550 PRINT : INPUT " LOWEST ITEM VALUE ";L

.560 IF L<0 THEN PRINT "SORRY - NO NEGATIVE BARS"; : GOTO 650
570 L$=STR$(L) : LL=LEN(L$) : REM CALCULATE LENGTH OF LOWEST VAL.

580 PRINT : INPUT " HIGHEST ITEM VALUE ";H
.590 H$=STR$(H) : HH=LEN(H$)

700 IF FLAG THEN 870

710 IF F$="B" THEN BAR=BAR-HH : FLAG=1 : GOTO 870

720 GOTO 940

730 :

740 REM **********************************

750 REM * OUT OF RANGE ? *
760 REM **********************************

770 PRINT : PRINT " RANGE IS TOO LARGE TO REPRODUCE WITH THIS FORMAT";

780 IF F$="B" THEN PRINT" - SELECT NEW 'R'ANGE" : GOTO 800

7 90 PRINT "-SELECT NEW 'R'ANGE OR 'F'ORMAT B"

800 GET B$: IF B$="R"THEN 650

810 IF B$="F" THENPRINT"CHANGING TO FORMAT B FOR PRINTOUT ":F$="B":GOTO 650

820 GOTO 800

830 :
840 REM **********************************

850 REM * FORMAT B *

860 REM **********************************

870 MIN=(INT(H/(BAR)*100))/100 : MAX=(BAR/10)*L
880 MIN$=STR$(MIN) : MAX$=STR$(MAX)

890 PKINT : GOTO 1010

900 :
910 REM **********************************

920 REM * FORMAT A *

930 REM **********************************

940 PRINT

950 MIN=(INT(H/BAR*100))/100:MAX=(INT(L/LL*100))/100 : REM ROUND TO 2 DECIMALS

960 MIN$=STR$(MIN) : MAX$=STR$(MAX)

970 :

980 REM **********************************

990 REM * SELECT SCALE VALUE *
1000 REM **********************************

1010 IF MIN>MAX THEN 770

1020 PRINT " SELECT SCALE VALUE "MIN$" TO"MAX$" "

1030 PRINT " SMALLER SCALE NUMBER GIVES LARGER GRAPH "

1040 INPUT " SCALE ";S

1050 IF S<MIN OR S>MAX THEN PRINT"ILLEGAL - PLEASE RE-ENTER SCALE" : GOTO1040

1060 :

30

1070 REM **********************************

1080 REM * DATA INPUT *
1090 REM **********************************

1100 PRINT "ENTER ITEMS IN FOLLOWING FORM :"

1110 PRINT : PRINT,"[RVS]ITEM DESC.[OFF] , [RVS]VALUE"

1120 DIM D$(N),V(N): REM DIMENSION INPUT ARRAY TO VAL.N

1130 FOR I=1TO N

1140 : PRINT"ITEM"If : INPUT" *[CL CL CL]n;D$(I),V(I)

1150 IF V(I)=>L AND V(I)<=H THEN 1180

1160 IF V(I)<L OR V(I)>H THEN PRINT"OUT OF RANGE - RE-ENTER VALUE -";

1170 INPUT" #[CL CL CL]";V(I): GOTO 1150
1180 : D$(I)=D$(I)+"

1190 : D$(I)=LEFT$(D$(I),10) : REM PAD DESCRIPTOR TO 10 CHAR.

1200 NEXT

1210 :
1220 REM **********************************

1230 REM * OUTPUT *
1240 REM **********************************

1250 :

1260 SP$="" : FOR I=1TO BAR : SP$=SP$+" " : NEXT : REM SET MAX BAR LENGTH

1270 PRINT "[CLR]"

1280 OPEN LF, DV

1290 PRINTtLF, TAB(ll)CHR$(T);T1 $

1300 IF TT$="B" THEN 1330

1310 PRINT#LF

1320 PRINTtLF, TAB(ll);T2$

1330 PRINT#LF, : PRINTtLF

1340 FOR 1=1 TO N

1350 REM FOLLOWING LINE ADJUSTS SCALE BY DIVIDING VALUE BY 'S1 ADJUSTABLE VAL

1360 : X=V(I)/S : Y=INT(X) : V$=STR$(V(I))

1370 IF F$="B" THEN 1400

1380 : PRINTtLF, D$(I);" [RVS]"V$;

13yO : PRINTtLF, "[RVS]"LEFT$(SP$,(Y-LEN(V$)));A$(8*(X-Y)) "[DN]":GOTO 1430

1400 V$=" "+V$: V$=RIGHT$(V$+" ",HH+1)

1410 : PRINTtLF, D$(I);V$;

1420 : PRINTtLF, "[RVS]"LEFT$(SP$,Y);A$(8*(X-Y))"[DN]"

143 0 NEXT

1440 IF TT$O"B" THEN 1470

1450 PRINTtLF : PRINTtLF,TAB(11);T2$

1460 PKINTtLF : PRINTtLF : PRINTtLF

1470 END

1480 :

1490 REM **********************************

1500 REM * OUTPUT FORMAT EXAMPLES *
1510 REM **********************************

1520 :

1530 PRINT M[CLR DN DN »••••»••]OUTPUT FORMAT EXAMPLES"

1540 PRINT " "

1550 PRINT

1560 PRINT "[RVS] FORMAT 'A1 "

157 0 PRINT

1580 PRINT : PRINT TAB(10) "TITLE (WITH ENHANCED OPTION)"

1590 PRINT : PRINT TAB(10) "SUB TITLE OPTIONAL"

1600 PRINT : PRINT : PRINT "DESCRIP'N [RVS] VALUE [•••'•• »••>]•>

610

620

630

640

650

660

670

680

.690

.700

.710

.720

.730

L7 40

'1750

L760

L770

L7 80

17 90

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT TAB(10)

" 10 CHAR [RVS] VALUE[••••••••••••••]

"SUB TITLE OPTIONAL"
..._ ; ._ » . print : PRINT

* SELECT FORMAT A OR B * "
OR PRESS RETURN FOR OTHER FORMAT "

[RVS] FORMAT 'B'

GET FF$: IF FF$="" THEN 1660

IF FF$="A" OR FF$="B" THEN RETURN

PRINT "[CLR DN DN DN]"

PRINT

PRINT

PRINT

PRINT : PRINT TAB(10)

PRINT TAB(10)

PRINT

PRINT

PRINT TAB(10)

"TITLE (WITH ENHANCED OPTION)"

"SUB TITLE OPTIONAL"

PRINT "DESCRIP'N VALUE [RVS »•••«]»
" 10 CHAR VARIABLE [RVS •••••••••••••••]

"SUB TITLE OPTIONAL"

PRINT

PRINT

PRINT

PRINT

GET FF$: IF FF$="" THEN 1770

IF FF$="A" OR FF$="B" THEN RETURN

PRINT "[CLR DN DN DN]" : GOTO 1550

Biocompatibilitv Program

This neat little number came from Joe Cannata of Medford,

Long Island.. It compares " the biorythyms of two people at
their time of birth. Commodore cannot be held responsible
for any domestic differences this program may incur!

100 REM CALCULATE BIO COMPATIBILITY

110 DIM A(24),B(29),C(34),M(12)
92.3, 81.6, 73.9, 65.2, 56.5, 47.8, 39.1, 30.4

13, 4.3, 4.3, 13, 21.7, 30.4, 39.1

120 DATA 100,

130 DATA 21.7,

140 DATA 47.8, 56.5, 65.2, 73.9, 81.6, 92.3,

150

160

170

18U

190

200

210

220

230

240

250

DATA

DATA

DATA

DATA

DATA

DATA

DATA

FOR

FOR

FOR

FOR

100,

14,

79,

100,

27,

52,

31,

Z=l TO

Z=l TO

Z=l TO

Z=l TO

93

7

86

94

21

58

28

24 :

29 :

34 :

12 :

86,

o,

93,

88,

15,

64,

31,

READA(Z)

READB(Z)

READC(Z)

READM(Z)

79

7

100

82

9

70

30
•

•

•

•

•

, 71,

, 14,

, 76,

3,

, 76,

, 31,

NEXT

NEXT

NEXT

NEXT

64,

21 ,

70,

3,

82,

30,

100

57, 50, 43, 36, 29, 21

29, 36, 43, 50, 57, 64,

64, 58, 52, 46, 39, 33

9, 15, 21, 27, 33, 39,

88, 94, 100

31, 31, 30, 31, 30, 31

71

46

260 PRINT "ICLR]"

2/0 PRINT "BIORHYTHM COMPATIBILITY TEST"

280 PRINT "TYPE IN YOUR BIRTHDATE MM,DD,YY"

290 INPUT P, Q, R

300 GOSUB630

310 IF S=0 THEN 290

320 S1=S

330 PRINT : PRINT "TYPE OTHER PERSON'S BIRTHDATE"

340 INPUT P, Q, R

350 GOSUB630

360 IF S=0 THEN 330

370 S2=S

38U D9=ABS(S1-S2)

390 X2=A(D9-(INT(D9/23)*23)+l)

400 X3=B(D9-(INT(D9/28)*28)+l)

410 X4=C(D9-(INT(D9/33)*33)+l)

420 X5=(X2+X3+X4)/3

430 IF X5<25 THEN 470

440 IF X5<50 THEN 500

450 IF X5<75 THEN 530

460 GOTO550

4/U PKINT : PRINT "WITH ONLY"X5"% COMPATIBILITY"

4 80 PRINT "FIND SOMEONE ELSE"

490 GOTO560

500 PRINT : PRINT "YOU SHOULD BE ABLE TO GET ALONG"

510 PRINT "WITH"X5"% COMPATIBILITY"

520 GOTO56 0

530 PRINT : PRINT"A RATING OF"X5"% IS NOT BAD"

540 GOTO560

550 PRINT : PRINT"MADE IN HEAVEN WITH"X5"%"

560 PRINT

570 PRINT "HERE ARE THE COMPATIBILITY BREAKDOWNS:"

580 PRINT " ■ "

590 PRINT "YOU ARE"X2"% PHYSICALLY"

600 PRINT "YOU ARE"X3"% EMOTIONALLY"

610 PRINT "YOU ARE"X4"% INTELLECTUALLY"
620 PRINT : PRINT : GOTO270

630 REM CALCULATE ELAPSED DAYS

640 IF R<1 THEN 860

650 IF R>99 THEN 860

660 IF INT(R)OR THEN 860

670 S=R*365

68U S=S+((R-l)/4)

690 IF P<1 OR P>12 THEN 860

700 IP INT(P)OP THEN 860

710 FOR 1=1 TO P

720 S=S+M(I)

730 NEXTI

740 L=INT((R/4)*4)
750 IF P<3 THEN 770

760 S=S+1

770 IF Q<1 THEN 860

7 80 IF QOINT(Q) THEN 860

790 IF Q>M(P) THEN 810

800 GOTO840

810 IF LOO THEN 860

820 IF PO2 THEN 860

830 IF Q>29 THEN 860

840 S=S+Q

850 RETURN

860 PRINT "[CLR]" : PRINT "INVALID DATE - TRY AGAIN"

870 S=0

880 RETURN

34

Positioning For DATA READs

Everyone knows: how RESTORE, READ and DATA statements

operate* The first READ gets the first DATA element, and so

on. RESTORE sets the READ pointer back to the beginning of
text. But there is no command that allows positioning to a

particular DATA line.

This could be useful iff for example, a DATA line were

part of a subroutine. The only way to accomplish this in

strict BASIC is to RESTORE and then issue enough READ

commands to position to the desired data. This can be a

pain!

RUN, CLR or RESTORE sets the DATA Read Pointer (address

62 and 63 decimal) back to $0400; the start of BASIC text.

When a READ command is given, this pointer starts advancing

through text looking for a 'DATA1 line. If the pointer

reaches the end of text before finding data, an ?OUT OF DATA

ERROR occurs.

PET maintains another pointer that climbs up and down

through text. This pointer is part of the CHRGET routine and

essentially points at the code currently being executed. If

this pointer (addresses 119 & 120) is transferred into the

DATA Read Pointer, the next READ command would force a search

to the next DATA line.

10 DATA FIRST, SECOND, THIRD

20 DATA FOURTH

3 0 READ A$, B$

40 POKE 62, PEEKQ19) : POKE 63, PEEK(120)

50 READ A, B

60 PRINT A$, B$, A, B

70 DATA 1, 2, 3, 4

80 END

The READ command in line 30 gets "FIRST" into A$ and "SECOND"

into B$, leaving the pointer pointing at "THIRD". Line 40

moves the pointer past line 10 and line 20 leaving it at some

point in line 40. Since this is obviously not a DATA

statement, the next READ causes an advance to line 70.

In summary, the POKEs of line 40 position to the next

DATA statement in text.

WHAT'S AVAILABLE ? Don White, Nepean Ontario

Recently, I have heard complaints that there is not much

software available for the PET and CBM computers, that it is
too difficult and expensive to add memory, that the number of

peripherals is limited, etc., etc., etc. Therefore, over the

next few issues of The Transactor I am going to try to provide

a comprehensive list of software and hardware available. Most

of the information will be culled from advertising in the

computer magazines. If I miss anybody and you wish to be

mentioned, please drop me a note with a brief description of
your product. Users with comments, good or bad, about products

they have purchased can drop me a line and I will attempt to
include them when the product is mentioned.

Don White

Ottawa 6502 User Group

47 Ariel Court

NEPEAN, Ontario

K2H 8J1

This first offering consists of products that have been

reviewed during the last 15 months in COMPUTE(COMP),

KILOBAUD(KB) and CREATIVE COMPUTING(CC).

Word Processor Software

Wordpro II (COMP 1, p 14) & Wordpro III (COMP 2, p 32),

Commodore Business Machines, Santa Clara, CA 95051

Word Processor Program (COMP 1, p 17), Connecticut

Microcomputers Inc., 150 Pocono Rd, Brookfield, CT 068U4

Word Processor (COMP 1, p 19), Programma International,

3400 Wilshire Blvd, Los Angeles, CA 90010

Medit (COMP 2, p 30), Total Information Services, P.O.Box

921, Los Alamos, NM 87544

Textcast (COMP 2, p 30, p 100), Textcast, P.O.Box 2592,

Chapel Hill, NC 27514

Papermate Command 60 (CC, Oct 80, p 168 & KB, Oct 80,

p 13), AB Computers, 155 E Stump Road, Montgomeryville,

PA 18936

Printers

Axiom EX-801 & EX-820 (KB, Jan 80, p 14), Axiom

Corporation, 5932 San Fernando Road, Glendale, CA 91202

CBM 2022 (CC, May 80, p 14 & CC, Dec 80, p 64), Commodore

Business Machines, Santa Clara, CA 95051

Comprint 912 (CCf June 8Q, p 90 & KB, May 80, p 56),

Computer Printers International, 340 E Middlefield Rd.,

Mountain View, CA 94043 *

M-100 Microprinter (COMP 4, p 66), Digiclocks, 3016

Oceanview Ave., Orange, CA 92665

XYMEC HY-Q 1000 (KB, July 80, P 6), XYMEC, 17791 Skypark

Circle, Suite H, Irvine, CA 92714

Languages

V7aterloo BASIC (COMP 6, p 82), Computer Systems Group,

University of Waterloo, Waterloo, Ontario N2L 3G1

Tiny PASCAL (COMP 9, p 124), Abacus Software, P.O.Box

7211, Grand Rapids, MI 49510

PET PILOT (CC, Feb 81, p 160 & KB, June 80, p 8), David

Gromberg, Seven Gateview Court, San Francisco, CA 94116

PILOT (CC, Feb 81, p 158), Practical Applications,

P.O.Box 4139, Foster City, CA $4404

PILOT (CC, Feb 81, p 158), Dr. Daley's Software, 425

Grove Ave.f Berrien Springs, MI 49103

PILOT (CC, Feb 81, p 158) , Peninsula School Software,

Computer Project, Peninsula School, Peninsula Way, Menlo

Park, CA 94025

KL-4M DAC (COMP 2, p 86) & Visible Music Monitor (COMP 8,

p 110 & CC, Feb 81, p 18), AB Computers, 115 E Stump Rd.,

Montgomeryville, PA 18936

Petunia DAC & Petunia Player (COMP 1, p 42), HUH

Electronics, 1429 Maple Street, San Mateo, CA 94402

K-1002-2 PETDAC (COMP 1, p 90) & K-1002-3C 4 Voice Music

Software (CC, Oct 80, p 28), Micro Technology Unlimited,

2806 Hillsborough St., P.O.Box 12106, Raleigh, NC 27605

Music Box (CCf June 80, p 82), New England Electronics

Co., 679 Highland Ave., Needham, MA 02194

RAM & ROM Adapters

PH-001 2114 RAM Adapter (COMP 5, p 81)f Optimized Data

Systems, P.O.Box 595, Placentia, CA 92670

Basic Switch (COMP 1, p 87 & KBf Mar 80, p 7)f Applied

Micro Systems, 3502 Home St., Misshawaka, Indiana 46b44

Spacemaker II (KB, July 80, p 7), CGRS Microtech, P.O.Box

102f Langhorne, PA 19047

Dial-A-Rom (CC, Feb 81, p 154), Kobotek Systems Ltd.,

RR#1, Wolfville, N.S. BOP 1X0

Disk & Tape Systems

CGRS PEDISK (COMP 9, p 126), CGRS Microtech, P.O.Box 102,

Laanghorne, PA 19047

D&R Cassette System (COMP 4, p 86 & KB, May 80, p 7), D&R

Creative Systems, P.O.Box 402B, St. Clair Shores, MI

48080

Exatron Stringy Floppy (CC, Sept 80, p 60, p 190),

Exatron Corporation, 181 Commercial St., Sunnyvale, CA

94086

Communications

TNW 488/103 Modem & PTERM Software (KB, Nov 80, p 12),

TNW Corporation , 3351 Hancock St.r San Diego, CA 92110

SOURCE Kit (KBf Nov 80, p 14)f New England Electronics

Co., 679 Highland Ave., Needham, MA 02194

Software - Computer Aided Instruction

Conduit, P.O Box 388, Iowa City, Iowa 52244 (CC, Jan 81,

P 36)

Educational Activities Inc., P.O. Box 392, Freeport, NY

11520 (CCf Sept 80f p 68)

Milliken Publishing Co., St. Louis, Missouri (CC, Sept

80, p 56)

Microphys, 2048 Ford St., Brooklyn, NY 11229 (CC, Sept

80, p 192 & Oct 80, p 58)

Personal Software Inc., 1330 Bordeaux Drive, Sunnyvale,

CA 940 86

Program Design Inc., 11 Idar Court, Greenwich, CT 06830

(CC, Oct 80, p 58)

Tycom Associates, 68 Veelma Ave., Pittsfield, MA 01201

(CCf Jan 81, p 38)

Software - Business

General Ledger, Accounts Payable, Accounts Receivable,

Payroll (KB, Oct 80, p 13), CMS Software Systems, 5115

Menefee Dr., Dallas, TX 75227

JINSAM Data Base Management System (KB, Feb 81, p 12),

Jini Micro Systems, Box 274, Bronx, NY 10463

Mailing List (COMP 4, p 79), Dr. Daley's Software, 425

Grove Ave., Berrien Springs, MI 49103

VISICALC (COMP 5, p 19), Personal Software Inc., 1330

Bordeaux Dr., Sunnyvale, CA 94086

Software - Recreational

Temple of Apshai (COMP 1, p 86 & CC, Mar 80, p 40) &

Morloc's Tower (COMP 2, p 5)', Automated Simulations,

P.O.Box 4232, Mountain View, CA 94040

Household Finance, Household Utilities (KB, May 80, p 8),

Creative Software, P.O.Box 4030, Mountain View, CA 94040

Software for 3G Lightpen (KB, Oct 80fp 13), Quill

Software, 2512 Roblar Lane, Santa Clara, CA 95051

Hicrosail (CCr Dec 80, p 24) & Batter Up! (COMP 2, p 98),

Hayden Book Company Inc., 50 Essex Street, Rochelle

Parks, NJ 07662

Talking Calculator (COMP 5, p 39), Programma

International, 2908 Naomi St., Burbank, CA 91504

Jagdstaffel (CC, Dec 80, p 22), Discovery Games, 936 W

Highway 36, St. Paul, MN 55113

Softpac-1 (CC, Sept 80, p 194), Competitive Software,

21650 Maple Glen Dr., Edwardsburg, MI 49112

Bridge Challenger (COMP 1, p 91), Personal Software, 592

Weddell Dr., Sunnyvale, CA 94086

Software - Utilities, Assemblers, etc

PROGANAL (CC, Jan 81, p 158 & KB, Oct 80, p 12), Benson

Greene, 210 Fifth Ave., New York, NY 10010

EDIT, SNAPSHOT (KB, Mar 81, p 10), California Software

Associates, Box 969, Laguna Beach, CA 92652

MAE (COMP 3, p 93 & KBf Aug 80, p 20) & PET RABBIT (COMP

3, p 94), Eastern House Software, 3239 Linda Dr.,

Winston-Salem, NC 27106

MONJANA/1 (KB, Jan 81, p 10), Elcorop Publishing, 3873L

Schaefer Ave., Chino, CA 91710

PRO-KIT#1 (KB, Mar 81, p 8), Intex Datalog Ltd.,

Eaglescliffe Industrial Estate, Eaglescliffe, .

Stockton-on-Tees, Cleveland TS16 OPN, England

EP-2A-79 EPROM Programmer Software (COMP 2, p 89),
Optimal Technology Inc., VA 22936

BIG KBD (CC, Oct 80, p 170), PROGRAMMERS TOOLKIT (COMP 2,

p 4 & CC, July 80, p 24 & KB, Apr 80, P 34), PROGRAMMERS

DISK-O-PRO (COMP 8, p 112 & CC, Feb 81, p 156), Skyles

Electric Works, 231 E South Whisman Rd., Mountain View,

CA 94041

Miscellaneous

3G Lightpen (CC, Mar 80, p 161 ^& KB, June 80, p 9) , 3G

Company, Rt.3, Box 28A, Gaston, OR 97119

Plexi-Vue High Contrast Screen (COMP 2, p 99 & CC, Sept

80, p 192), Competitive Software, 21650 Maple Glen Dr.,

Edwardsburg, MI 49112

Anti-Glare Screen (CC, Sept 80, p 192), Pf Research, 866

Hummingbird Dr., San Jose, California

Prestodigitizer (COMP 3, p 56 & CC, Nov 80f p 168 & KB,

Mar 80, p 8), Innovision, P.O.Box 1317, Los Altos, CA

94022

New-Cursor (COMP 1, p 79, p 82), International Technical

Systems, P.O.Box 264, Woodbridge, VA 22194

PETSET la (COMP 1, p 31), AIM-16 & SADI (KB, Nov 80,

p 12), Connecticut Microcomputers Inc., 150 Pocono Rd.,

Brookfield, CT 06804

THS224 Real Time 1/3 Octave Audio Analyser (KB, Jan 81,

p 48), Eventide Clockworks, 265 West 54th St., New York,
NY 10019

Mathematics & Foreign Language ROMs (CC, Feb 81, p 154 &

KB, Dec 80, p 7), Kobetek Systems Ltd., RR#1, Wolfville,

N.S. BOP 1X0

Full Sized Keyboard (CC, Jan 81, p 160), Century Research

& Marketing, 4815 West 77th St., Minneapolis, Minn 55435

PIE Parallel Interfacing Element (KB, Nov 80, p 15), LEM

Data Products, P.O.Box 1080, Columbia, MD 21044

PET BIBLIOGRAPHY Don White, Nepean Ontario

The following is a bibliography of PET related articles

published* in Creative Computing and Kilobaud Microcomputing

from January 1980 to February 1981.

January

Page 116

126

14

February

112

158

March

Kilobaud Microcomputing 1980

The Metamorphosis of a 'Custom1 PET

Darkroom Master

PET-pourri

Development of a Text-Handling Program

Add a Digital Tape-Index Counter to the PET

59 The Comprint Printer

132 The Keyed-up PET

7 PET-pourri

34 The BASIC Programmers Toolkit

172 The PET Librarian

186 Indexing for the PET

9 PET-pourri

May

June

July

7 PET-pourri

58 PET I/O Expander

122 Computer Survival Course for Kids

8 PET-pourri

22 Get Your PET on the IEEE 488 Bus

36 New Additions to the Commodore Line

84 PET Pen

7 PET-pourri

August

96 PET I/O Expander

134 Get Your PET on the IEEE 488 Bus

168 A 'Personable' Calendar

20 PET-pourri

September

26 New Productf New Philosophies

30 Write Self-Modifying PET Programs

32 Memory Expansion Candidates

34 PET Machine-Language Masquerade

36 Add a Reset Button to Any PET

40 The Phantom Tape Drive

44 Get Your PET on the IEEE 4 88 Bus

56 PET I/O Expander

60 The PET/CMC/H14 Connection

10 PET-pourri

October

88 PET Mini Monitor

180 Betting on Old POKEy

12 PET-pourri

November

173

12

December

218

7

Microcomputer Hardware for the Handicapped

PET-pourri

Give Character To Your PET Printer

PET-pourri

Kilobaud Microcomputing 1981

January

48

78

188

10

February

Real Time Spectrum Analyser

Scramble

Second Cassette Interface

PET-pourri

56 London Computer Club a Huge Success

72 Portrait of a Dynamic French Company

12 PET—pourri

Creative Computing 1980

January

148 Personal Electronic Transactions

February

112 Blackbox for the PET

156 Personal Electronic Transactions

March

60 PET as a Remote Terminal

160 Personal Electronic Transactions

April

22 Atari in Perspective

May

14 PET 2022 Line printer

152 Personal Electronic Transactions

June

July

52 Neelco's Music Box for the PET

90 Comprint 912 Printer

154 Making a PET

24 The BASIC Programmers Toolkit

28 BASICS Comparison Chart

Septeember

98 Computer Countdown

190 Personal Electronic Transactions

October

26 Sound Advice

168 Personal Electronic Transactions

November

164 Personal Electronic Transactions

December

22 Softwar, Hardware and Otherware for Christmas

26 Christmas Buyers Guide

60 The PET

64 The CBM 2022 Smart Printer

70 Comparative Evaluation of Basic Systems

January

24

156

February

Creative Computing 1981

No PET Peeves

Personal Electronic Transactions

18 Music Editors for Small Computers

154 Personal Electronic Transactions

The following is a bibliography of PET related articles

in COMPUTE! from FALL 1979„to February 1981.

COMPUTE! 1979

Fall 1979, Issue 1

13 Three Word Processors

24 Microcomputers for Nuclear Instrumentation

29 Tokens Aren't Just For Subways

31 PETSET la

40 Flying With PET PILOT

42 Petunia & Petunia Player

42 Teacher, Computers and the Classroom

65 The Evolution of a Magazine

6 8 PET in Transition

71 A Commodore Perspective

76 Retrofitting ROMs

78 Screen Print Routine

7 8 PET Resources

79 Review: New-Cursor

80 Cassette Format Revisited

82 Review: New-Cursor

84 Trace for the PET

86 32K Programs Arrive

87 Review: The BASIC Switch

89 Non-Stop PET, Old and New

89 Un-crashing on Upgrade ROM Computers

90 Review: 8-Bit Digital to Analog Converter

91 Review: Bridge Challenger

93 Using Direct Access Files with the 2040

COMPUTE! 19 80

January/February, Issue 2

3 A Visit to Commodore

4 The Programmers Toolkit

5 Micro Quest/Simulation

5 Space Invaders

6 Comprehensive and Massive PET Manual

7 Interview with Dr. Chip

18 Memory Partition of BASIC Workspace

29 Word Processors

41 BASIC Memory Map

43 The Learning Lab

44 Micros and the Handicapped

78 Computer Programs and Your Ethics

81 Lower Case Descension on the Commodore 2022 Printer

82 Saving Memory in Large Programs

82 Apparent Malfunction of the < Key

82 Yes Nova Scotia, There is a 4 ROM PET

82 The Deadly Linefeed

86 4-Part Music System for PET

87 Using Direct Access Files with the 2040

90 Null Return Simulation for PET Users

93 A few entry points,.original/upgrade ROM

93 Plotting With the CBM 2022 Printer

94 Inside the 2040 Disk Drive

96 PET Programs on Tape Exchange

98 Review: Batter Upl

99 Review: Plexi-Vue

100 Review: Text Cast

March/April, Issuq 3.

8 Dr. Chip

10 A Preview of Commodore's New Disk BASIC 4.0

15 Enhancing Commodore's WordPro II

18 File Conversion on the Commodore 2040 Drive

23 Using the GET Statement on the PET

34 UTINSEL: Enabling Utilities

41 Manual Alphabet Tutorial on a PET

51 The Learning Lab

56 Review: The Prestodigitizer

60 Light Pen Selection from Large Menus

63 The Consumer Computer

81 Fix for Lower Case Descension Program

81 Comments on Null Return Simulation

82 Cheep Print .

88 Direct Screen Input

88 No CB2 Sound?

90 A Versatile Serial Printer Interface

92 Ramblin1: Bar Charts

93 Review: MAE, A PET Disk-based Macro Assembler

94 Review: The PET Rabbit

95 PET Programs on Tape Exchange

96 Memo to Machine Language Programmers

May/June, Issue 4

14 The CBM 8032

37 Review: PET and the IEEE 4 88 Bus

42 Big Files on a Small Computer

48 Using the 2nd Cassette Buffer to Increase Memory

53 Enhancing Commodores WordPro III

58 Algebraic Input for the PET

59 PET Data Copier

63 Cross-Reference for the PET
69 The Learning Lab

74 The PET 'ANSWER BOX1 Program for Teachers

77 PET GET With Flashing Cursor

86 D&R Cassette System

89 PETting With a Joystick

90 PET and the Dual Joysticks

104 Block Access Method Map for a 2040 Disk Drive

109 Ramblin1: Hard Copy Without a Printer

111 Cheep Print, Part 2

115 Relocate PET Monitor Almost Anywhere

119 PET Programs on Tape Exchange

July/August, Issue 5

23 Programming in BASIC with the Power of FORTRAN

28 Computers and "the Handicapped
69 Butterfield Reports: The 8032

73 Plotting with the 2022 Printer

81 Un-New

81 Review: PH-001 2114 RAM Adapter

83 Disk ID Changer(Note: Do NOT use this)

85 Shift Work

86 ML Code for Appending Disk Files

89 Mixing BASIC & Machine Language

92 After the Monitor's Moved

94 Fitting Machine Language into the PET

96 Using Disk Overlays on the PET

99 Joystick Revised

103 Ramblin1: The User Port

September/October• Issue 6

18 Teaching Basic Academic Skills

40 Computers for the Handicapped

42 Hat In The Ring

82 Waterloo Structured BASIC for the PET

86 TelePET

89 WordPro Converter

90 Quadra-PET

92 Update to Disk ID Changer, Issue 5

94 Variable-Field-Length Random Access Files

98 Flexible GET for the PET

100 ROM-antic Thoughts

102 Converting ASCII Files to PET BASIC

104 Compactor

110 A few entry point, original/upgrade/4.0 ROM

112 Feed Your PET Some APPLESOFT

November/December, Issue 6

18 Music and the Personal Computer

22 Micros and the Handicapped

24 Small Computers and Small Libraries

30 Efficiency with Subroutines

78 Basic CBM 8010 Modem Routines

80 Programmer's Notes for the CBM 8032

84 Keyprint

88 PET 4.0 ROM Routines

92 BASIC 4.0 Memory Map

94 Algebraic Expression Input, Version 2

96 Defining a Function Whilst Running a Program

98 Machine Language Addressing Modes

104 Visible Memory Printer Dump

110 Disk Lister

115 Commodore Dealers Form Cooperative

COMPUTE! 19 81

January, Issue 8

10 An interview with Dr. Chip

12 VIC!

22 Spend Time, Save Money!

26 Micros with the Handicapped

28 Kids for Computers

32 The Mysterious and Unpredictable RND

38 CURSOR Classifications Revisited

44 Odds & Ends re PET Cassette Tape

92 The Screen Squeeze Fix for CBM 8000

96 Hooray for SYS

102 Scanning the Stack

10 8 Review: The PET Revealed

108 Review: Library of PET Subroutines

110 Review: Visible Music Monitor

112 Review: Disk-O-Pro

114 Correcting Alignment on your PET Tape

118 Spooling for PET with 2040 Disk Drive

118 Variable Dump for New ROM PETs

120 The 32K Bug

121 The Ideal ML Save for the PET

122 PET Metronome

123 The IEEE Bus - Standing Room Only

124 PET/CBM IEEE Bus Error

February, Issue 9

16 LED A Line-Oriented Text Editor

34 The Mysterious and Unpredictable RND

54 Basic Math for Fun and Profit

60 PET Spelling Lessons your Students Can Prepare

97 Contour Plotting

103 Relocate

104 Mixing & Matching Commodore Disk Systems

109 Memory Calendar

114 Crash Prevention for the PET

116 Machine Language Printer Command

118 Odds & Ends on PET/CBM Files

120 Three PET Tricks

124 Review: PASCAL on the PET

126 Review: The PEDISK from CGRS Microtech

127 Review: Disk Operating System for the PEDISK

48

Print Using

Wnaf. to format numbers before printing ? Just use this

neat little subroutine-by Jim Butterf ield. Pass it a value

•V and it gives you back 'V$', all nicely padded with

leading spaces and trailing zeroes. VI and V2 are the the

number of digits to the left and right of the decimal place.

An overflow will return all asterisks. (Also in Compute)

100

110

120

130

140

150

160

170

18U

190

200

50000

50010

50020

50030

50040

50050

50060

50070

50080

50090

REM DEMO PROGRAM FOR SUBROUTINE

FORJ=lTO20

REM V IS VALUE TO BE FORMATTED

V=EXP(RND(l)*14-6)*SGN(RND(l)-.2)

OF DIGITS LEFT OF .

OF DECIMAL PLACES (RIGHT OF

:GOSUB50000:PRINTV$;" ";

:GOSUB50000:PRINTV$;" " ;

:GOSUB50000:PRINTV$

REM VI IS

REM V2 IS # OF DECIMAL PLACES (RIGHT OF .)

Vl=4:V2=0:

V1=3:V2=1

V1=3:V2=4

NEXTJ

END

REM 'USING1 ARRANGE IN COLUMNS

REM V IS VALUE; VI.V2 PRINTS

V4=INT(V*10~V2+.5)
V$=RIGHT$(" "+STR$(V4),V1+V2+1):Q$=V$

IF V2<1 GOTO50080

FORV5=V1+2TOV1+V2+1:IF ASC (MID$ (V$, V5) X4 8THENNEXTV5

V6=V5-V1-1

V$=MID$(V$,V6,VI+1)+LEFT$(".00000",V6)+MID$(V$,V5)

IF ASC(V$)>47 THEN V$=LEFT$("**********",VI+V2+2+(V2=0))
RETURN

49

