WYL COTTITTITogo e. ca

May Not Reprint Without Per

commodor B anosrming your
e concerning your

COMMODORE PET

The Transactor %2,

PET "is a registered Trademerk of Commodore Inc. Jan/Feb 1980

[

vy

10N

BITS AND PIECES

Re-DIMensioning Arrays

You all know what happens when you attempt tc re-cefire
an array that has already been defined. PET returns a
2REDIM'D ARRAY ERROR. But maybe you had a good reascn to
re-dimension. And now you must perform a CLR wkich clobbers
all your variables, or else work around it. No longer! By
manipulating some pointers down in zero fpage, arrays can be
REDIM'D with no problem at all. Try the followirg example:

100 DIM AS (1000)
110 GOSUB 2000
120 DIM AS (2000)
130 GOSUB 2000
140 DIM AS (126)
150 END

2000 POKE 46 , PEEK (44)
2010 POKE 47 , PEEK (45)
2020 Z9 = FRE (0)

2030 RETURN

The <cubroutine at 2000 "squeezes" the array out by
making the End of Arrays Pointer equal to the Start cf Arrays
Pointer. PET now believes that there are no arrays of any
name so DIMensioning is ok. The new array(s) is "built" in
the same memory space.

Line 2000 forces a "garbage collecticn" so that any
strings associated with Array A$ are thrown away. This
wouldn't really be necessary with floating point or integer
arrays since the values are stored in the array itself. With
string arrays, only the string lengths and pointers to the
strings are stored in the array. The strings lie elsewhere
in RAM; in high memory if they were the result of a
concatenation or INPUT from the keyboard, disk, etc. and
directly in text if that's where they were defined (why store
it twice?). This is also true for non-array type string
variables. Of course strings residing in text are not thrown
away by a garbage collection.

The Transactor is produced by WordPro III in conjunction with
the NEC Spinwriter 5530

www.Commodore.ca
May Not Reprint Without Permission

« Www.Commodore.c
This trick can be played especially well Swhenicther @bzeSinout ermission
of your arrays are maintained in a disk file along with the
file information.

Sometimes clearing all the arrays may not always be
desirable. 1In that case, the order in which the arrays are
defined becomes important. The 'permanent' arrays must be
DIMensioned first, 'temporary' arrays last. However, if the
value of the End of Arrays Pointer is stored immediately
after defining the last 'permanent' array, the 'temporary'
arrays can be squeezed out by POKing the End of Arrays
Pointer with this value later on. For example:

100 DIM A(1000) , B%(1500) , C$(1450)
110 PL% = PEEK (46) : PH¥ = PEEK (47)

...1000 INPUT #8, I% , J% , K%
1010 GOSUB 2100...

2110 POKE 46, PL% : POKE 47, PH®
2120 DIM X (I%) , Y% (J%) , ZS (K%)
2130 RETURN

The subroutine at 2100 would allow Arrays X, Y% and 73
to be redimensioned any number of times without destroying
Arrays A, B% and CS. : ‘

Dynamic LOADing

Steve Punter of Mississauga has a note for those
performing LOADs from within ~programs. If strings are
defined in text and are to be passed between programs they
must be placed in high memory before the LOAD is executed.

As mentioned earlier, a string variable is set up with
only the length and a pointer to the location of the first
character of that string. When strings are defined in part
of a line of BASIC, this pointer points right into that part
of text. A dynamic LOAD replaces that text with new text
and although the variable remains intact, the string itself
is lost. Inotherwords, the pointer doesn't change but what
lies in that location and the locations following is not what
it used to be. In fact, it could be virtually anything;
BASIC command or keyword tokens, line numbers or even another
(or part of another) string.

About the easiest way to avoid this is to define strings
in text as a concatenation. For example:

"nn + " "

"" 4+ "0123456789"

50 SPS$
60 NOS

When a concatenation of any kind is performed, PET
automatically rebuilds the string up in high RAM area thus
protecting them from dynamic LOADSs.

, www.Commodore.c

o

A~

May Not Reprint Without Permiss

Cursor Positionin

The following subroutines will remember the position of
the cursor at a given time and restore the cursor to that
position at a later time. This is often handy for displaying
prompts or status messages in an area of the screen set aside
for that purpose. Once the message is PRINTed, the cursor
can be "brought back" to its former position to await user
input, etc.

Another application would be to re-position the cursor
for re-input of data that may have been unsuitable or
unrelated to the previous prompt.

30049 REM + REMEMBER CURSOR POSITION +

30050 W% = PEEK (196) :01d ROM 224
30060 X% = PEEK (197) :01d ROM 225
30070 Y% = POS (0)

30080 z% = PEEK (216) :01d ROM 245

30090 RETURN

30149 REM + RESTORE CURSOR POSITION +
30150 POKE 196, W%

30160 POKE 197, X%

30170 POKE 216, Z%

30180 POKE 198, Y% :01d ROM 226
30190 RETURN

BASIC and the Machi Langua Monitor

Want to look at parts of your BASIC code with the
monitor? Easy! Simply place a STOP command just before the
code to be examined and execute it with a GOTO or a RUN
followed by the appropriate 1line number. Now enter the
monitor with SYS 4 and type:

.M 003A 003B

(Note: In the Machine Language Monitor, a space can be used
as well as a comma for delimiting parameters.)

In memory locations 003A and 3B is a pointer which is
mainly used by the CONTinue command. When a line containing
STOP or END is executed, the hex address of that 1line is
stored in 3A and 3B so that PET can pick up where it left
off.

The address will appear low order first, high order
second. Now a second ".M" command can be given using this
address and some higher address to display the BASIC code in
the general vicinity of the inserted STOP.

Wil

o

SAVing With The Monitor May Not Reprint Without Permissio

Many BASIC programs are set up to access a machine
language subroutine (Screen Print, Block GET, etc.) (also see
F. VanDuinen's article PROGRAM PLUS). This code usually
resides in the second cassette buffer. But the contents of
the second cassette buffer are not recorded with a BASIC SAVE
command. Including a loader routine as part of your program
avoids this problem entirely as the machine code would be set

up in the buffer on each RUN. However the 1loader will

probably contain DATA statements which must be accounted for
if other DATA statements are read and re-read later in the
program (RESTORE brings the data pointer back to the first
DATA element). Working around this can be cumbersome.

The solution is to ".S" the program with the Machine
Language Monitor. Syntax for a Monitor SAVE is:

.S "PROGRAM NAME",Dv#,start addrs,end addrs (RETURN)

If the machine code is placed at the beginning of the
2nd cassette buffer, the start address will be 033A. But
where does the program end ? This can be determined by first
doing a memory display of the End of BASIC Pointer:

.M 002A 002B (RETURN)
The above might return something like:
.002A 87 2C 16 2D 4F 2F 45 7A

The first two bytes indicate the end address (again, low
order first, high order second) and in this case is 2C87.
The Monitor SAVE command for this example would therefore be:

.S "0:PROGRAM NAME",08,033A,2C87

The above is of course for disk users but 08 could also
be 01 for cassette #1. Cassette #2 could not be used in this
case since the recording process would wipe out the code in
the 2nd cassette buffer.

_ Now when the program is LOADed, it will start loading
with your machine code subroutine directly into the second
cassette buffer.

Careful though! Any updates to this sort of program
must pe recorded using this same procedure. Additions or
deletions will also cause the End of BASIC Pointer to change.

, www.Commodore.c

i

TRANSACTOR - A Philosophy

The January/February, 1980 issue marksGtheybeginning, QL parm

the third year of The Transactor and the beginning of an new
decade. Starting with this issue you will be noticing changes
to the Transactor format and content which we hope will benefit
you - the dedicated PET user. It is safe to say that the dream
of a computer in every home, which you the reader are
pioneering, is well under way. This trend will no doubt
accelerate geometrically in the early 1980's. The Transactor
will evolve as necessary to keep pace (or slightly ahead of

that pace).

Naturally the 1life blood of any non-profit publication
such as The Transactor is your input. The potential of the PET
system is so vast that no one or a small group of humans can
hope to know all there is to know about the PET system. Each
of us approach the PET with different needs, desires and
applications. However in the process we discover answers OL
maybe as important raise questions which can be of incalculable
use to the PET (and the greater 6502) community. This
SYNERGISTIC process, where one plus one equals more than two,
is the major function of The Transactor!

To make it easier for you to participate, and as an
inducement, we will issue a free one year subscription (or
extend your present subscription) for any original article
submitted to and published in The Transactor. The publishing
decision wil remain with COMMODORE so be patient if you do not
see your article published at once. No doubt there will be a
backlog of good articles.

We will experiment with annual BEST FEATURE ARTICLE and
MOST CREATIVE APPLICATION awards. Beginning with Volume 2,
bulletin #12 will contain a ballot. For best feature article,
the winning author will receive a Commodore software product of
their choice to a maximum value of $125.00; for most creative
application, a Commodore calculator (max. $50.00). If reader
response warrants it, we will issue runner-up awards also.

We will continue to welcome your many letters and
telephone <calls. We will +try to answer all, either
individually (if we can) or through calls for help in the The
Transactor . If your question proves particullarly widespread
we will publish a general answer in The Transactor.

With this and future issues we will include an index. For
this issue we include an outline of articles we would like to
cover in future issues. We welcome your comments particularly
those articles which are of most interest to you. Of course
such an objective will require considerable dedication from our
readership. As readership increases (it presently numbers
800+) we may be able to provide a modest honarium.

If all the above sounds like an attempt to create another
slick, glossy magazine please be assured this is not the case.
Only by maintaining our present non-commercial, non-profit
status will we be able to continue to provide and improve the
support for the PET system.

Karl J. Hildon
Editor

www.Commadore.ca

10N

REVIEWS IN FUTURE TRANSACTOR PUBLICATIONS

g Wwww.Commodore

.. . May Not.Reprint \
on a limited basis, to review

The Transactor will begin,
The

significant Pet related hardware and software products.
following is an outline of items under consideration:

Software: Programs

Adventures Automated Simulatidns
Creative Computing Software
Assemblers Moser's MAE

Skyles' MacroTea
Programmer's Toolkit

Basic Extensions .
Softside Structured Basic

Compilers Graphics
‘ Music
Micro-Go aid-com
Music Generation AB Computers
Bonnycastle

MTU/Chamberlain/Covitz
Osborne Accounts Rec/Pay '
Osborne General Ledger
Visi-Calc Data Base Manager

Wordprocessors IT & ITI

CBM Wordpros I,
CMC version 2

Medit
Software: Books

New Osborne PET and IEEE publications
PET' Machine Language Guide Abacus
The PET Manual G. Yob
New H.Sams 6502 Programming publication
New Scelbi 6502 publicaticn

Hardware:

Bus expansion (S-100)
DAC's

Digitizers

High resolution Graphics
Memory expansion

Modems

Music synthesis
Rom expansion

Prom programming
Plotters

* Sylvanhills
RS-232-C

Speech recognition
Speech synthesis

Spectrum analysis
Video pen

* When available

Betsi

California Computer Systems
AB Computers

MTU

Bit-Pad
Presto-Digitizer
MTU

MTU

Skyles

Hayes

Novation

TNW

Ackerman/G.I.Sound Generator

Kobotek

Skyles

Small Systems Services, Inc.
Optimal Technology Inc.
Houston Instr.

Computer Associates
TNW

Hueristics
Computalker

Votrax

Eventide Clock Works
Ez-Mark

.Ca

Without Permission

o« WWW.,
CALL FOR ARTICLES / A PRIORIZATION OF INTERESES™ JC?TmoEi?rec

10N

The following is an outline of PET related applications The
Transactor would like to publish in future issues (many ideas
have been noted in your correspondence to The Transactor) .
Please forward this page (or a copy) to indicate a specific
application(s) you would like to see published soon. As an
inducement we provide a life size PET poster (limited supply)
for each reply. In reviewing this outline you may discover you
are already working on a particular application and would like
to share it with other Transactor readers (and perhaps, through
feedback, learn something new in the process.)

CATEGORY APPLICATION PREFERENCE

Business/Finance Accounts Rec/Pay &
General Ledger for Canadian Practice
Data Base Management Techniques
Income Tax Records Maintenance
Income Tax Returns, Simple and Complex
Mailing Lists
Mathematics
Payroll Methods
Property Management
Real Estate Analysis
Sorting and Filing Techniques
Statistics for Business and Finance
Stock Market Analysis
Wordprocessors
Commun./Media Computer Aids for Vision,
Hearing and Motive Impairment
Computer Bulletin Board
Systems and Techniques
Dark-Room Micro-processor Applications
Encryptography
Language translation,
English to French etc.
Modem Methods and Techniques
Motion Picture
Camera & Projection Control Systems
Photography and Film Index Methods
Satelite Reception
Slow-scan TV Reception
Studic and Home
Recording and Mixing Control
Telidon
Education Computer Aided Instruction
Foreign Language Instruction
School/College Student
Timetable Scheduler
Student Attendance & Academic
Performance Stats. Main.
Games Backgammon
Bridge
Checkers
Chess
Gaming
Go
Role playing

—~ ~~

o~~~ —~

—
—

S — p— S~ S P P T
Nttt S St S Vet Sl N Sl

ATEGORY

Graphics

Household

Languages

Music

Peripherals

PET

Science&Industry

Speech Synthesis

o

May Not Reg

APPLICATION PREFEREN

Dl
CE

Animation
Colour
High Resolution
3D Simulation
Video Synthesis & digitizing
Character Recognition
AC Control Systems
Automated Kitchens
Automated Shopping list
Cheque Booking, Plain and Fancy
Consumer Expenditure Decision Maker
Effective Dieting
Energy Conservation
Method & Techniques
Menu Planning/Nutrition
Periodical/Bibliography Indexing
Personal Finance Methods & Techniques
Personal Fitness
Security Systems, Fire, Burglary
Basic Dialect and
Translation Strategies
Basic Extensions (
Basic Programming Techniques,
Beginner & Advanced (
Machine Language Programming,
Beginner & Advanced (
Other Languages:Compilers,
Focal, Forth, Lisp, Pascal, Pilot
Analog Synthesizer Control
CB2-Port Music Generation Techniques
DAC Hardware and Software Techniques
Digital Synthesizers
Fundamentals of Music Theory
Music (sound) Spectrum Analysis
Sound Processing: Reverb, Echo,
Phasing, Phlanging (
A Commodore Disk Primer (
A Commodore Printer Primmer (
IEEE Uses (
Memory Expansion Bus Uses (
Parallel User Port (
RS-232-C Applications (
Monitor Techniques & Extensions (
(
(
(
(
(
(

o~ — T~~~ TN SN TN SN

o~~~ —

—

T~ e~

More on Interrupts

PET Operating System Primmer

Computer Oscilliscopes

Digital Logic Circuit Analysis
Interfacing Analog Measuremnt Instruments
Mathematics for Electronics and Science
Measurement of Capacitance,

Current, Resistance & Voltage

Computer Aids for Speech Impairment
Speech Recognition

Speech Synthesis

~ T~~~

e e N St Nt e

R R i g

— P e

, www.Commodore.c

t Without P‘_" miss

Wil

= www.Commodore.ca

May Not Reprint Without Permission

Name

Address

Comments

I would like to contribute an article on

The Transactor

Commodore Bsuiness Machines
3370 Pharmacy Ave.,
Agincourt, Ont., MIW 2K4

hhkkhkhkhhkhkhhkhkkhkhkhkhhkhhhkhhhkkhhhhkhdhhhhhhhhhhkhkhkdkhkrhhhhhkhhkk

o

A~

May Not Reprint Without Permiss

POP a RETURN and Your Stack Will Feel Better

Ever wanted to 'POP' out of a subroutine ? The POP
function, available in some forms of BASIC, allows_you to
jump out of a subroutine using GOTO without leaving the
RETURN information on the stack. But what if this
information is left on the stack ? Try the following "bad"

example:

100 GOSUB 200

110 END

200 PRINT"SUBROUTINE ENTRY"

210 GOTO 100

220 PRINT"SUBROUTINE EXIT" : RETURN

Of course line 220 will never execute but is the proper
way to terminate a subroutine. Instead, execution 1is
re—directed back to line 100 where another GOSUB is performed
and more RETURN information is pushed onto the stack. Soon
the stack fills to capacity and PET displays the ?20U0T OF
MEMORY ERROR IN 200.

Now change line 210 to:
210 SYS 50583 : GOTO 100

With this modification the RETURN information will be
artificially POPed off the stack before jumping out of the
subroutine. (SYS 50568 for 0l1d ROM)

This POP resets the entire stack. That is all RETURNs
are POPed (eg. subroutines called by subroutines). A single
POP can be accomplished by doing a SYS to 7 PLA's followed by
an RTS.

Jumping out of subroutines is bad programming practice
and should be avoided at all cost. But these simulated POPs
have their applications. Consider an INPUT subroutine that
handles an escape key (eg. the "@" symbol). This escape key
takes the program back to a "warm start", for instance the
Main Menu. You could test for the "@" and RUN if true, but
RUN also CLRs all variables. Another method would be to
RETURN from the INPUT subroutine upon detecting the "@" but a
second "@" key test would be necessary upon RETURNing. This
second test would also have to be repeated for every GOSUB to
the INPUT subroutine which might consume considerable memory
depending on the number of times the INPUT subroutine is
used. The third method, and probrably the best for handling
an escape key, is to use POP:

20000 +++ INPUT SUBROUTINE +++

20010 GET AS : IF AS = "" THEN 20010

20020 IF AS = "@" THEN SYS 50583 : GOTO {Menu)
20030 See Transactor #6, Bullet Proof INPUT

10

, www.Commodore.c

Wil

Disk Merge g www.Commodore.c
May Not Reprint Without Permission

The following program uses disk in much the same fashion

as the existing tape merge to merge one program with another

in new ROM PETs.

First LOAD the sub-program or subroutine that you wish
to merge with your main program. Make sure that this code
doesn't use line 0 as the merge routine makes use of this
line. Now type directly on the screen:

OPEN 8,8,8, " 0 : MERGE FILE NAME , S ,W™" : CMD 8 : LIST

Of course 'MERGE FILE NAME' can be any filename and any
part of the program can be 'LISTed' by following the LIST
command with parameters.

Now type:
PRINT #8 : CLOSE 8

The merge file is now complete and can be merged with
any program at any time. LOAD the main program into RAM and
enter the following 1line of BASIC without the spaces.
Abbreviations must be used so that Disk Merge will fit on one
line.

0 INPUT#8,A$: PRINT "cs"A$: PRINT "POKE 174,1 : POKE
593,8 : GOTO 0 " : POKE 158,3 : POKE 623,19 : POKE
624,13 : POKE 625,13 : END

Wwith Abbreviations:

0 iN8,AS : ? "cs"AS
158,3 : pO 623,19

? "pO 174,1 : p0593,8
pO 624,13 : pO 625,13

g0 0" : pO
eN

Now type:
OPEN 8,8,8,"0:MERGE FILE NAME,S,R" : GOTO 0 (Return)

and watch it go. One glitch...any lines in the merge
file that span greater than two lines (>80 characters) such
as those originally entered using abreviations, will <cause
the process to halt. Since Disk Merge makes use of the PET
screen editor, these lines cannot be properly entered anyways
as the BASIC input buffer is only 80 bytes long (see upgrade
ROM memory map locations 512 to 592 decimal). If this
happens you can fix up the 1line with the appropriate
abreviations, enter it with a 'RETURN', and continue the
merge by executing the command line underneath (Po 174,1 :
Po 593,8 : Go 0).

As with tape merge (Transactor #2, Vol 2), a ?SYNTAX

ERROR or ?0UT OF DATA ERROR will appear when the merge is
complete.

- 11 -

o

A~

MICRO-GO 9L: A REVIEW May Not Reprint Without Permissio

W.T.Garbutt
Mississauga,Ontario
Canada

Last March I read an intriguing article by Milton
Bradley on the game of GO (Creative Computing -March 1979 vol
5, no 3). At the time I made a mental note:who would be the
first to meet the challenge of marketing a micro-computer
version and for which system ?

Recently those questions were answered. Mr. H. Mueller,
a teacher at the Oakville Ontario Canada campus of Sheridan
College has the first commercial honors. Mr. Mueller's
program is written primarily in Basic to run on an 8k or
16/32k PET, old or upgrade ROM .

First, for all the gentle readers who may not rerenber,
a brief description of GO is in order. GO has & history at
least as old as chess. Originating in the East it adi¢ not
receive widespread exposure in the West until the end of WW
ITI. '

The game is played on a 19 x 19 board. Two opposing
players add pieces, called stones, to the intersecticns of
the playing grid. The move scenario is extremely simple.
The object of the game is to occupy more intersecticns,
surrounded empty intersections and prisoners than your
opponent at the games end. An opponent can be captured and
removed from the board by surrounding that stone horizontally
and vertically (see Table 1).

WG

'R 1SOHERS
c’H‘E:DDEFGHJC‘ ELHEEI LHEJHITE
§ FHYH
A -

THEI*ZDEFG‘H.TT
- o CLOCK MOVE
ELACK: 7 a8 : 69 1
Table 1

A capture configuration:
Black's stone is captured

A player cannot make a move thhat results in an
identical previous board position--the Rule of KO. They may
however, pass and give up a stone. When both players pass
in succession the game is over. The winner is the player
with the most number of intersections, surrounded
intersections and prisoners.

The perceptive reader will have noted the immense

- 12 -

, www.Commodore.c

i

complexity of the game given the 19 x 19 plagidgV@@ﬂaO(BHECﬂjOre.C
permutations and combinations are staggering).*VhTheyvﬁwiLIWAerwx;:n

also have noted that by stringing together intersections,
called chaining, capture strategies are particularly complex
and difficult. So difficult in fact that professional and
amateur GO comprises some 17 levels (or Dan as they are

called).
Now to Mr. Mueller's implementation.

Mr. Mueller uses a 9 x 9 grid. Hathalyou say . this
certainly cannot compete with the 19 x 19 version. Of course
not! wWhat micro-computer can presently handle that
complexity? However for the beginning GO player this
implementation is .ideal.

Let's take a look at the PET screen after GO has been
loaded and initialized (all automatic and note the cassette
is protected against copying but a back-up copy is provided.
Mr. Mueller will of course replace a defective tape).

WERRRRLa

LISOHERS
HECTIEFGHT pLAER PR e
;
& THLTTHE
3 3
LLLLLLLLY
RECDEFGHI o nege Move
BLACK:D 5 0885)
WHITE: 7 @@:61 2

Table 2

PET screen on game start

As you can see in Table 2 the Pet screen is segmented
into three distinct areas; the game board; the move, move
clocks and current move number block; and the prisioner area.

The game starts with the computer, playing black,
entering the cordinates of the first move. The player then
selects the counter move, enters the cordinates (in any
order), presses RETURN and the computer repeats the sequence.
The computer will not allow an illegal move, say a violation
of the Rule of KO or a move to an occupied intersection.
Initially the computer responds in under a minute. However
as the game progresses the computer's reaction time slows
down. In the end game the computer can take as long as ten
minutes! (An ideal length of time to read a few pages of a GO
strategy text and improve one's knowledge for the next
encounter.) Moves of both players are monitored on screen
clock displays. ‘

Mr. Mueller has allowed for computer or player handicaps

- 13 -

by permitting the addition of extra stones (an aévX%PQQS;Oggrn

Without Permiss

the beginning of the game. In addition the boatfd can be Sé
up in a pre-determined configuration, after a game
interruption or for analysis of a particular move strategy.

The game comes Wwith complete and above average
documentation. It explains in considerable detail all
operating instructions as well as stepping through highlights
of a typical game (complete with screen printouts).

As I mentioned earlier Mr. Mueller has written the first
implementation in Basic. He has used a ‘'brute force'
approach. Naturally this approach requires some concessions.
The major penalty is speed. As the game progresses the
computer takes longer to respond. Further as Mr. Mueller has
used the screen board as an array (to conserve memory) the
prisoner capture routine requires additional time after each
computer move,

Close examination of the screen display clocks will
reveal small hesitancies. These are created by interrupts
while the computer analyses the move strategy. They in no
way affect the clock accuracies.

Incorporated in the algorithm is a thoughtful 'stop key
disable' provision to prevent game stoppage in the event of
accidental stop key contact.

For $18.95 the beginning GO player will acquire a
quality program with good documentation. For that investment
they will find a willing partner and the means to develop a
sound foundation for advanced play. Naturally a quicker,
machine language version, with a larger playing grid and
perhaps a look ahead feature for levels of- difficulty would
appeal to the advanced GO enthusiast. How about it Mr.
Mueller!

The program is available from:

"aidcom",
P.0O. Box 165,
Clarkson Postal Station,
Mississauga, Ontario,
Canada L5J 3Y1
(Ontario residents please add 7% PST)

- 14 -

odore.c

Wil

, www.Commodore.c

vty

Supermon 1.0 - h ‘
ay Not Reprint Without Permiss

Supermon is a machine language program which seals
itself off in RAM and 1links itself to the built-in ROM
Monitor. Once 1initialized, Supermon provides extended
machine language monitor (M.L.M.) commands in much the same
way that the Programmers Toolkit adds extra direct commands
to BASIC. It is the ideal machine language programmers tool.

S U P ERDMONIL.

| cormAnDs - USER IWFUT IN EERUEETEN |
GO_RUN

-

GO TD THE ADDRESS Ie THE PO
REGISTER DIZFLAY AMD BEGIM RUN CODE.
ALL THE REGISTERE WILL EE REFPLRACED
WITH THE DISFLAYED WVARLLUEZ.

B WEEE

GO To ADDRESS 1e6s HEX RHID BEGIH
RUMHHING CODE.

LOAD FROM TAPE

LOAD AMY FROGRAM FROM CASSETTE #1.

N W'FAM TEST"

LOAD FROM CASSETTE #1 THE PROGRAM
SR AN TESTH '

NLE"RAM TEST" .82

LOAD FROM CASSETTE #2 THE FROGEAM
RISIS ST AN TESTH

- 15 -

10N

S [PR b R R
AT T 0L HEH

HATH WEH EET

RITRE= I AHL =TI A

= . Er EEIE ZREEDR B

www.Commodore.ca

I R = T P S b Ll R L RO A N R D B & D 1=

FTOHTY W TOEMBIME SHEM WD T

AL HAHM SH FWES FHL ST B3NS STHL

LML HEHEL 3T ITWI0HS 2ddD TEW0L0EF3d 3

TIM IHMALMT HIHM TRARES 30T HIELE GHL
CATON ATHEY J0SHT 0L N3

L

"

HLIM 9MIJ43L0s FT9MIS F40433 3n7T-s O
FHL SN L3S 0L HOILINALEMI STIHL 33N

HeLES HoAd

IIMOTI04 LI03 FHL HLIKM I39HUHD 39 AHW

SIS FHL CTHAELNT SHM E HEHM
“Hm_..._.n,:m.. “mum.l”J.Hf.... \ww._.._m“H,rH_m“m MI.._.. ; .T_ _Hm H_H

SEoPD £H F@ 1O 3T53 g00s
45 HA HM D ¥E 2Wl 04

HILEI1934

AHTTdS IO

-_Hmm;J .w".H .._.._H.:...- ._mhm.u. ._.H
k) W UESHEIIE HHL LHTEd (T
ad FO B SHLAE 40 FOMINDAS FHL MO04 REH
EEET 0L FEH @R WOEd S0 LHOH

EE| Ehi G GEED EEES G

TIEEO 33 Al jmu%ummzld T 40 WO s
BTG ST LT HeEHM SSEWIIHE 3HL LN
I PEEE) DT H‘ TI05H FHL 404 «<3H gl
D4 @AM EEHET WO AH0WNIN TRYHL LHOH

GEEER CEEMN EEEE G-
[AHOWIL_LNOH

AETE OMIANAIMI LOM LN DL 4 H3H 9026
WOMH 4H0MEW T# FLLISSHD 0L 3

"HANLIA B OMIdNL HEHL
ARl OMILITE &3 IITATI0W 3T AHW SS3AIIH
AHL OMIMOTI0L SHLAT AHL TH3IH DEH8E

Of =dH Beas Wledd :&:EME AHTAE T

43 30 T8 05 g6 -HE 25 20 2059 "
P T s s T v T v B T D v 1 O 1 515 1

CEER GEEE §°

ABIAS T A0

QECEEREER I Lr-MI H3S0 - SOHBWHO0D

AHTWEN 434SN 1
. 43L5 F3OHIS 6@
o AHOMEN LHAH &
‘ :&::m: 1114 B
- HIEMASSHS 1T @
= HOMEST FLHW0ED &
H4IFMISEE INHNIS &

Z CEMOTLONELEHT THHNOT LTIIE HOWE3A0E

www.Commodore.ca

aIEed 0L LIK3 B8

oWl 0L Foas B

AHTASTT 4305103 B

AHTSE DT AHOW3N 6

Tdid L b0 IHE0TT

Hitd 09 @

CEROT Lo LEHT H0L THOW = KX D Lt O b
P e IR e

MIHOW 30ud LHHL 3TEMISSHE IO HEHL UM
REEEERE CO30HHHD 3T TN AWE0MH3W M
cgiad FHL AHE HENLIM LIH "S3L4T 3HL

AATION THHE 0L FA0e 0L SAFH WEdD 3HL 3B

CIATATION 39 AW SSHATIY AHL OMHIMOTI0H

c3ad 3FEHAL FHL THAH 9EET L OMIL™-LE
SHOTLOMNELEMT 2F S3HEMASSEE I

CEMOTLONELSHT 40 30HA 44:&.

kL WH SR
k] W SERZ
PEEEE HLE ST e B L
TTEE DT F1ogk BEET
¢ SHWITD HIIHDE

ek [N "

R 1S uu: HaH B9 3HL HLIM I3IH0DSEH

“3H BTET S SS3MIOH 130adl

IHL MM H3H BEET 1- S 2T0D--0 HIMHET

aHL .Z:Hk::&kr:H HOM&E W 40 3lsd
IHODES FHL S3LETNDD 3TdWEE 3HL

I EXEN EEED 8-

L,J]

HOMHbAE 31H N0 HD

CHOLTHOM DL HEnl3d 0L SRS
OMTHHALE LSHA M0d ENEES
fA3LE MOTE W0 S
TAILE FTONIS W0d B

CETIOE LMD

fLWIH AHL 3TEMASSUS DI TIM INE 2AN233
DL 43405 FOHIS & 3300 IM BT 3HL
OIS FATOMNIS H0d HOLLIELSHT
LSHT A I3«4I1S3T 3HL 0L SE3-II- 24 3HL
L35 OH BT OHLIM &ETESTT @3LS103" D

*A4ALE AT A4FLE HNE 3T 0L
MO0 3OEN0HETT SHIHIEN B OSMDTTR

“LNALTD HITEWNIASEES T AHL S
s GHL BT HHLNAS CLdlEd SE3E0TR 3HL
IHL H3ldl MHAENLEY B 3480 HITEMITEY 3HL
113 0L *SS3WMI0M LE3M 3HL HLIM Sldkid
HATHMISSE 3THNIE B3HL TEREIWIIE IHE B
ML Hded DL I33R L0M IDI #3207 3HL 3HIT
IHOIEs IHL NI WA ST FLWIIEMMI HLTIM
HIALSTOT WoIH0T S HOTLELEHT 15T o
i "EAH BRET LW ATEWISSY J3Lud L

4T FHL 3G E 3A0FH 3HL NI

The procedure to follow is about the simplest paper to
PET transcription for obtaining a fully operational Supermon.
The time spent here will be saved ten fold by dedicated
machine code programmers and for those just getting started
in machine language, Supermon is the perfect launch to more
sophisticated assemblers and programs.

Step 1,

The two programs below are, respectively, the
loader/relocator and checksum programs for the Supermon
machine code to be entered later. Enter them into PET,
double check, and SAVE seperately. Tape users should use
seperate cassettes. Note: the two letter mnemonics within
square brackets designate PET cursor control characters and
should be entered as such.

CAUTION: These programs should be entered exactly as they
appear. Spaces can be omitted but anything that will cause
the programs to be larger than shown (i.e. added commands,
cursor control, spaces or characters, indenting, REMarks,
etc.) must be avoided. Immediately before SAVing, check that
FRE(0) is less than or equal to 31052 (14668 for 16k machines
and 6476 for 8k). If not, LIST and edit out any text that
doesn't belong. Otherwise I predict extreme exasperation in
your future.

100 PRINT"[CS DN DN RV] SUPERMON! "

110 PRINT"[DN] DISSASSEMBLER [RV]D[RO] BY WOZNIAK/BAUM
120 PRINT" SINGLE STEP [RV]I[RO] BY JIM RUSSO

130 PRINT"MOST OTHER STUFF [RV],CHAFT[RO] BY BILL SEILER
140 PRINT" [DN]BLENDED & PUT IN RELOCATABLE FORM"

150 PRINT" BY JIM BUTTERFIELD"

155 'POKE42,182 :POKE43,6 :CLR

160 L=PEEK(52)+PEEK(53)*256

170 N=L-1466:P=3391:FORJ=L-1TONSTEP-1

180 X=PEEK(P) : IFX>0GOT0190

185 P=P-2:X=PEEK(P+1)+PEEK(P) *256: IFX=0GOT0190

186 X=X+L-65536:X%=X/256 :X=X-X%*256 : POKEJ,X%:J=J-1

190 POKEJ,X:P=P-1:PRINT"[HM]";X;"[CL] ":NEXTJ ,
200 X%=N/256:Y=N-X%*256 : POKE52,Y :POKE53,X% : POKE48,Y :POKE49,X%
210 PRINT"[CS DN]LINK TO MONITOR -- SYS";N

220 PRINT:PRINT"SAVE WITH MLM:"

« www.Commodore.c
Supermon 1.0 : Set up ™ May Not Reprint Without Perm

230 PRINT".S ";CHR$(34);“SUPERMON";CHR$(34);",01";:X=N/4096:GOSUB250

240 X=L/4096 :GOSUB250:END :
250 PRINT",";:FORJ=1TO4:X%=X:X=(X—X%)*16:IFX%>9THENX%=X%+7
260 PRINTCHRS (X%+48) ; :NEXTJ:RETURN: : : :

- 18 -

10N

= www.Commodore.c
May Not Reprint Without Permission

100 PRINT"SUPERMON CHECKSUM":CH=0
110 FOR J = 1718 TO 3397 STEP 40
120 FOR I = 0 TO 39

130 CH = CH + PEEK(J + I)

140 NEXT I

150 READ CK : IF CK <> CH THEN 180
160 CH = 0 : NEXT J

170 PRINT" NO ERRORS !!" : END

180 PRINT" DATA ENTRY ERROR IN BLOCK ".(J - 1718 + I)/40

190 PRINT" ENTER M.L.M. WITH SYS 4 AND VERIFY" :END

200 DATA 5428, 5429, 5348, 5125, 6141, 5576, 5622, 5845, 4883, 5703
210 DATA 4966, 5273, 5006, 5594, 5091, 5266, 5066, 4152, 4942, 4180
220 DATA 5697, 4801, 5690, 5363, 3398, 4556, 4639, 5236, 4843, 5232
230 DATA 5359, 4924, 5653, 5717, 2711, 2631, 1965, 2874, 3707, 4148
240 DATA 2832, 4501

Step 2.

On the pages to follow is the machine code data for
Supermon 1,0, This data will be read by the loader/relocater
program and packed into the top of memory, wherever that
happens to be on your machine*. Note: this is not the actual
machine language for Supermon but rather the machine code
data in relocatable form.

To enter this data, first (pour yourself a fresh tea or
coffee or open another pint and) enter:

SYS 64715

This is power-on reset or the equivalent of power down-power
up. Now enter the machine language monitor with:

SYS 4

To make it easier, the code has been sectioned off into
groups of ten 1lines, each displaying 8 bytes in hex. The
first section (see next page) starts at $06B6 and continues
down to SO6FE+8 or $0705. However, the monitor will complete
the line regardless of where in the line the contents of the
last address specified will be printed. Therefore, enter the
monitor command "M", for memory display, followed by these
two addresses:

M 06B6,06FE

On hitting 'RETURN', the screen displays 10 hex addresses and
the 8 hex bytes following that address inclusively. Since
what is displayed is "empty space”, all bytes should be the

same. In most cases they will be hex "AA's".

* Supermon relocates according to PET's Top of Memory
Pointer. Therefore any programs already residing in the very
top of user RAM (e.g. DOS Support, TRACE, etc.) will not be
touched by Supermon.

- 190 -

Now move the cursor up to the first AA (besiéQYX®;§§BBaQTQCV?f§-Cé
and, using the screen editor just as in BASIC, begin & E8FPhYThout Permission

the data as shown in the first section. Use spaces between
each byte and hit 'RETURN' at the end of each line. This
enters all 8 bytes of the line simultaneously into their
respective addresses in RAM. Don't worry too much about
mistakes...the checksum program will help you find them later
on.

Upon completing a section entry, execute another
"M"emory display using the first and last ,addresses shown for
the next section (as above). Continue entering bytes as
before until all sections have been completed. (The 5 "AA's"
at the end need not be re—entered but should be there for the
checksum to work.)

Once finished, SAVE it! Type:
S "p:MON DATA 0“,08,06B6,0D45
This is of course for disk users; tape users can omit the

drive number in the file name and substitute 08 with the
appropriate cassette number.

Step 3,

Exit the monitor (X and 'RETURN') but do not reset PET,
Instead, LOAD the checksum program (recorded earlier) and
RUN. This checks a block at a time by summing consecutive
bytes and comparing against a checksum. A block is half of a
section so if a " DATA ENTRY ERROR IN BLOCK x " -occurs,
count two blocks for each section. An odd number will
indicate an error in the first half of the section and of
vice versa. Fix any and all errors using the monitor, each
time eXiting and re-RUNning the checksum program until a " NO
ERRORS !! " is returned. If there were no errors on the
first RUN, there's no need to re-SAVE. Otherwise do a second
SAVE using the same monitor command as above but of course
with a different file name.

Once again, eXit the monitor but do not reset. LOAD the
relocator program and RUN. Assuming all .goes well, the
program will end with instructions for initializing Supermon
and SAvVing just the relocated machine language. However,
SAVE the relocator and the byte data together for later use
(in case Supermon is to be relocated into a different size
machine or along with other relocatable utilities e.g. TRACE
:see Compute Issue #1). Enter the monitor with SYS4 and

Type:
S "¢ :SUPERMON.REL",08,0400,0D45

...for SUPERMON Point RELocatable.

- 20 -

06B6
06BE
06C6
06CE
06D6
06DE
06E6
06EE
06F6
06FE

AD
FF
8D
FB
FF
OA
FF
FF
00
8D

00
35
AD
00
DO
FF
FE
85
03
00

AD
FC
00
08
B4
48
34
FF
FD
A2

FF
00
8D
DD
8A
BD
AD
FC
00
08

0706
070E
0716
071E
0726
072E
0736
073E
0746
074E

DD
8A
BD

00
FC
FB
F9
00
BE

00
BD
00
E7
B4
E6
EB
00
20
AA

00
CA
2C
08
FC
20
8D

09

B4

10
A2
B4
D6
FO
00
20
60

0756
075E
0766
076E
0776
077E
0786
078E
0796
079E

20
4C
FA

02
DO

02

FE
FC
00

20
20
FD
B5
68
AD
DD
FB
CF
E7

BO
CA
E6
BD
02
RC
FD
98
FA
A5

DE
DO
FE
0A
CA
0C
A4
ES
94
00

ee os les se se oo oo

0776
07AE
07B6
07BE
07Cé
07CE
07D6
07DE
07E6
O7EE

20

20
15
00
FA
20
FD
20
Al
BO

00
00

5 DO

Al
20
00
98
00
FD
FA

A5
E7
FA
FD
DO
CF
85
DO
DO
20

00
90
DO
20
EB
65
FE
3D
00
FA

.

07F6
07FE
0806
080E
0816
08lE
0826
082E
0836
083E

7B
94
00
B6
DO
A5

EE’

FA
AS
A2

FB
97
E7
14

FB
E7
20

97 .

00

20
FA
E7
A6
90
FD

" FD

20
EB
E7

FA
A5
20
DE
0C
DO

FA

E7
C9

e ® o 3 o o e & & & & 85 o 8 € & ;0 o o o s e e & o & ;6 @8 s ° s ° 2 * 0 @] e o e o e o o o o o o 3 e e 8 o . @

0846
084E
0856
085E
0866
086E
0876

27
02
22
00
C6
Cc9
B6

20
CF
DO
01
02
09
DO

9D
0D
1C
E7
CF
E7
B4

10
FO
8E
90
FF
90
20

- 21 -

087E
0886
088E

FD
00
C8

www.Commodore.c

May Not Repr

A2
Bl
E8

00
FB
E4

00
DD
B4

nt Without Permission

00
10
DO

A0
02
F3

00
DO
20

ee so ss oo

0896
089E
08A6
08AE
08B6
08BE
08C6
08CE
08D6
08DE

E7
DE
DD
8D
A9
86
16
FC
B5
4C

20
DO
4C
0D
04
B9
85
6D
DO
56

CD
92
56
02
A2
A9
B5
00
F2
FD

FD
20
FD
A5
00
93
20
85
A9
A0

20
FA
20
FC
00
20
FC
FB
91
2C

D5
D9
FA
8D
00
D2
10
84
20
20

FD
00
94
OE
85
FF
00
FC
D2
15

[y

08E6
O08EE
08F6
08FE
0906
090E
0916
091E
0926
092E

20
00
48
D8
A4
Bl
88
FF
FF
00

6A
00
20
00
B6
FB
DO
4A
50
CA

E7
Al
FC
A2
FO
BO
F2
00
00
DO

20
FB
C2
06
OE
1C
06
20
FO
D5

CD
20
00
EO
A5
20
FF
FD
03
60

FD
FC
68
03
FF
FC
90
4D
20
20

A2
7C
20
DO
C9
65
OE
00
FD
FC

40 o0 e so oo e

0936
093E
0946
094E
0956
095E
0966
096E
0976
097E

00
FC
E7
FC
01
BO
09
BO
DO
AA

AA
65
A6
AA
C8
17
80
04
04
BD

E8
00
B4
10
60
C9
4A
4A
A0
FF

DO
8A
60
01
A8
22
AA
4A
80
3D

01
86
A5
88
4A
FO
BD
4A
A9
00

C8
B4
B6
65
90
13
FE
4A
00
85

98
20
38
FB
0B
29
F9
29
00
FF

0986
098E
0996
099E
09A6
09AE
09B6
09BE
09C6
09CE

03
A0

- 08

c8
FC

00

C4
57
00
A0

85
03
4A
88
65
C4
B8
00
8D
05

B6
EO
4A
DO
00
B6
90
8D
0C
OE

98
8A
09
F2
A2
C8
F2
0B
02
0C

29
FO
20
60
01
90
60
02
A9
02

8F
0B
88
Bl
20
Fl
A8
B9
00
2E

AA
4A
DO
FB
FA
A2
B9
FF
00
0B

00 00 a0 [ee oo o8 o0 00 ee e

ssfes o0 os o0 oo

09D6
09DE
09E6
09EE
09F6
O9FE

. OAO6

OAOQE
OAl6
OAlE

2A
FF
FA
FD
20

D9

CF
A5
56
00

88
CA
94
20
97
00
30
CF
FD
A9

DO
DO
00
97
E7
90
OF
10
4C
03

F6
EA
20
E7
20
09
10
06
F7
85

69
4C
D5
20
CcA
98
07
20
E7
B5

3F
CD
FD
FA
FD
DO
Cc8
75
20
20

20
FD
20
A5
20
13
DO
E7
FA
EB

I...CQ...O...'..Q‘OQ.!.....Q.....0..0....Oll...'..."".'

e oe

0A26

0A2E
0A36
0A3E

20
85
FB
D2

A7
FB
F1l
FF

FD
AD
00
60

DO
OE
C5
A9

F8
02
B9
03

AD
85
FO
A2

0D
FC
03
24

www.Commodore.c

May Not Reprint Without Permission

0A46
OA4E
OA56
OASE
0A66
OAGE

B8
FF
00
CE
A9
06

FD
AD
8D
8D
49
FE

¢ e 3¢ es s lue eo se se 5 o0

0A76
OA7E
0A86
OABE
0A96
OA9E
OAAb6
0AAE
0AB6
0ABE

FC
02
02
00
20
A0
CDh
FC
E7
Cc9

68
68
68
06
FD
9A
00
FB

01

OAC6
0ACE
0AD6
OADE
OAE6
OAEE
OAF6
OAFE
0BO6
0BOE

03
AC
FA
02
ca
3F
10
A2
1E
00

FF
00
E7
8C
68
11
ca
Cc9
20
E7

0B16
OBlE
0B26
0B2E
0B36
OB3E
0B46
0B4E
0B56
0B5E

84
02
8E
DE
DE
0cC
FE
FE
12
E8

30
E8
00
86
Ab
97
57
EO
A5
20

0B66
OB6E
0B76
OB7E
0B86
0BS8E
0B96
OB9E
0BA6
0BAE

00
BD
BD
D5
FE
0B
E7
C9

46

FF
FE
03
FO
D2
59
AD
FA
A6
41

s a9 o0 se o
o o000 60 90 60 o5 08 o4 oe a0 se s se e o0 se 0 oo er 5o se|ec e se es se se se s es 00 oo N0 e o8 o0 »

0BB6
OBBE
0BC6
0BCE
0BD6
0BDE
OBE6
0BEE
0BF6
OBFE

10
03
88
FC
41
CcDh
D5

03
E8

Ad
00
91
84
6A
00
B5
E6
4C
60

- 22 -

0CO06
O0COE
0C16
0ClE
0C26
0C2E
0C36
0C3E
0C46
0C4E

90
02
22
02
02
00
00
8C
08
08

Cc9
03
33
33
B3
22
00
9A
09
09

38
40
40
40

DO
44
44
44
78

0C56
0C5E
0C66
0C6E
0C76
0C7E
0C86
0C8E
0C96
0C9E

00
00
4A
24
00
8B
8B
AE
23
1A

21

9D
00
00
Al
Al
A8
53
5B

00
91
2C
58
1C
1D
00
24
00
24

0CAb
0CAE
0CB6
0CBE
0CCé6
0CCE
0CD6
0CDE
0CE6
0CEE

AE
00

69

62
44
84
4A
AR

AD
00
53
AO
88
94
B4
F2
A2

00
6D
34
5A
Cc8
00
74
00
74

0CF6
OCFE
0DO06
ODOE
0D16
OD1E
0D26
OD2E
0D36
OD3E

00
72
44

2F

41
00
DD
FD
FD
00

00
c8
C8
54
4E
3C
FC
00
00

26
26

44
00
6A
FD
00
00

o

ww.Commodore.c

May Not Reprint Without Permission

RS-232C;: AN QVERVIEW

W.T. Garbutt
Mississauga
Ontario, L5L 1K3

Sooner or later the PET owner requires greater memory
storage or printed copy. For the former he can purchase a
CBM disc, connect the cable, sit back and compute; for the
later he can purchase a CBM printer. If the user needs a more
esoteric peripheral say photometric analysis, current
measurement etc. they will 1likely use the IEEE bus, so
thoughtfully provided by the folks at Commodore. In a
previous issue of The TRANSACTOR, Jim Butterfield talked
about the IEEE buss. At the end of this article we provide a
brief bibliographpy for further exploration.

The IEEE port is not the only means a PET owner has to
access the real world. As a matter of fact the most common
peripheral interfacing technique in use is not the IEEE port.
It is of course RS-232C.

A brief digression to review the differences between
PARALLEL and SERIAL data transfer will prove useful.

As we may recall PARALLEL data transfer involves sending
out eight bits of data simultaneously over eight hard wires
to define a byte or character. In addition a number of
additional wires are needed to provide processor control and
translation. While this method has the advantage of speed (
a byte is available at one time) it requires complex
circuitry to interface to analog terminals as well as
multi-conductor cable. The IEEE interface is a special
example of the PARALLEL method.

SERIAL data transmission, on the other hand is the
method of sending data one bit at a time over a single wire.
While inherently slower than the PARALLEL method it is
ideally suited to the slow, single line analog
interconnections such as phone lines, cassette tapes, radio
or human operated printers or teletypes.

Essentially RS-232C is the title for a standard
formulated by the Electronic Industries Association (EIA).
As a standard it decribes a set of parameters that must exist
to provide the housekeeping necessary to interface a
peripheral and transmit data to a computer.

During the early 1960's the EIA formulated a set of
standards to allow for an orderly interconnection and
communication of peripherals to the then newly developing
mini-computers. Prior to EIA's RS-232C standard what
communication did take place was, in the vast majority of
cases, handled by the 60 or 20 ma current loop teletypes.

Let's take a close look at the standardyyyxyﬂéaqgﬁ
Standard RS-232C is entilted "Interface Between Data Termin
Equipment and Data Communications Equipment Employing Serial
Binary Data Interchange". For the compulsive reader the
standard comprises a 29 page document covering "Electrical
Signal Characteristics", "Interface Circuits and Mechanical
Interface", and "Standard Interface for Selected

Communication System Configuration".

The standard has gained widespread use not only in the
original area of intent, communication between terminal and
modems, but also for the interconnection of computer
peripherals such as printers, plotters, etc.

Electrical Signal Characteristics

The RS-232C standard as we indicated previously is based
on SERIAL data transmission eg. a bit at a time over a single
wire (as opposed to PARALLEL, in which different bits travel
over seperate wires at the same time). Electrically, a logic
zero is represented by a voltage between +5 and +15 V; a
logic one by a voltage between -5 and -15 V (see FIGURE 1).
The RS-232C standard also prescribes electrical impedence;
drive capabilities, and signal voltage rate-of-change limits
etc.

E RE
BIT REPRESENTATION

The transmission can be synchronous or asynchronous.
Synchronous transmission requires that a clock signal be
present (usually transmitted on a seperate line) to mark the
start of each bit of information. Optionally, special data
patterns are used to define the start of a message. Data must
of course follow uninterrupted in sychronization with the
clock signal. With asynchronous transmission a clock signal
is not transmitted with data. Instead the synchronizing
information is incorporated into the data itself as a single
logic zero at the start of a character and a logic one at the
end of the character (see FIGURE 2). The receiver contains an
internal clock that examines the data triggered by the logic
one and zero bit and locates the character bit.

- 24 -

i

odore.c

hout Permission

The advantages of using asynchronous trang‘rﬁ\f/s:’ylG@nTaE@Od?rec
clearly obvious; May Not Reprint Without Permission

1.The transmission need not be continuous (desirable
when entering data to a terminal manually)

2.Less complex (no clock) and hence less prone to error.

3.Capable of moderately high transmission speeds.

& DATA BITE

e
‘—-L
P
]
v
ol
P
BN

m‘—
trd
fa

e

FIGURE 2

ASYNCHRONOUS ASCII
CHARACTER REPRESENTATION

Interchange Circuits

The signal interchange circuits defined by RS-232C fall
into four groups: ground, data, control, and timing. We
have already mentioned timing (e.g.. synchronous and
asynchronous transmission). Grounding 1is, of course,
obvious. Let's examine data and control.

Data

Within an RS-232C interface are two seperate
bi-directional data channels. The primary channel is the main
data channel. The secondary channel is intended to serve as
a low speed channel or as an auxilliary channel to convey
status information.

Control

Associated with each of the two data channels are three
control signals; Request to Send to the Data Communication
Equipment (DCE); Clear to Send (from DCE) and Received Line
Signal Detector (from DCE). Six additional signals are
associated with the interface: Data Set Ready (from DCE),
Data Terminal Ready (to DCE), Ring Indicator (from DCE),
Signal Quality Detector (from DCE), and Data Signal Rate
Selectors for both Data Terminal Equipment (DTE) and DCE.

- 25 -

 www.Commodore.c

These control iines serve several major functiops® .,

1 .OPERATIONAL STATUS: Data Terminal Ready (pin 20) is
set by the DTE to indicate that it is functional (often a
power-on indicator). Data Set Ready (pin 6) 1is the
complimentary function performed by the DCE.

2 . INITIATION OF DATA TRANSFER: Request to Send (pin 4)
is activated by the DTE when it wishes to transmit data to
the DCE; Clear to Send (pin 5) is the signal by which the DCE
indicates that it is capalbe of receiving data from the DTE
for transmission.

3 .STATUS CHECKING: Signal Detect (pin 8) is set by the
DCE to indicate that a carrier of sufficient amplitude 1is
present. Signal Quality Detector (pin 21) is set by the DCE
to indicate that the quality of communication is acceptable.

4., INITIATION OF LINK: Ring Indicator (pin 22) is set by
the DCE to indicate that an incoming call is being initiated.
While the majority of these signals are intended for
interconnection of a terminal to a modem the user is free to
assign them other functions, provided they are common toG the
interconnected devices.

Mechanical Interface

The RS-232C specification calls for a 25 pin connector,
with the male part tied to the DTE and the female to the DCE.
Consult Table 1 for RS-232C pin assignments.

NOTE: The reader is reminded that the RS-232C was initially
designed as a communication interface standard hence the
numerous pinouts. The simplest configurations can operate
with a combination of 3 or 4 pins (the most common are *1d) .

- 26 -

1y Not Reprint Without Permiss

Wil

« www.Commodor

RS-232C PIN-OUT FUNCTION May Not Reprint Without Pe
1 Protective ground
* 2 Transmitted Data
* 3 Received Data
* 4 Request to Send
* 5 Clear to Send
* 6 Data Set Ready
* 7 Signal Ground
8 Received Line Signal Detector
9 (Reserved for Data Set Testing)
10 (Reserved for Data Set Testing)
11 Unassigned
12 Secondary Rec'd Line Signal Detector
13 Secondary Clear to Send
14 Secondary Transmitted Data
15 Transmission Signal Element Timing
16 Secondary Received Data
17 Receiver Signal Element Timing
18 Unassigned
19 Secondary request to Send
20 Data Terminal Ready
21 Signal Quality Detector
22 Ring Indicator
23 Data Signal Rate Selector: DTE/DCE
24 Transmitter Signal Timing Element
25 Unassigned
TABLE 1
RS-232C PIN
ASSIGNMENTS

Foot-note

In the mid 1970's with increased peripheral
sophistication made possible by integrated circuits new
standards were clearly needed. On the initiation of Hewlett
Packard (which was manufacturing a great number of these new
sophisticated peripherals) the International Electical and
Electronics Engineers issued it's 488th standard in 1975.
Called appropriately enough the IEEE-488-1975. (A revision
was issued in 1978.) Essentially the standards were based on
PARALLEL rather than SERIAL data transmission.

Commodore has provided a PARALLEL User Port as well as
an IEEE Port. Numerous methods have been described in
micro-computer periodicals for simple and complex RS-232C
circuits using either the IEEE or PARALLEL User Port.

Bibliography

IEEE-488/RS-232C Printer Adapter Prentice Orswell
Pet User Notes (Now Compute) Vol 1 Issue 1

IEEE-488 Bus, Jim Butterfield
The Transactor Vol.2 #5 (Oct.,1979)

IEEE Bus Handshake Routine in Machine Language J.A. Cooke
The Transactor Vol.2 #3 (July,1979)

- 27 -

€.Ca

i

gz Www.Commodore.ca
IEEE Standard 488-1975: IEEE Standard Digital t ntdPEAL 8epripithout Permission

Programmable Instrumentation Hewlett-Packard

"Interface Between Data Terminal Equipment and Data
Communication Equipment Employing Serial Binary Data

Interchange"
Electronic Industries Association Washington DC 20006

Microprocessor Interfacing Techniques A. Lesea, R. Zaks

2nd ed. 1978 Sybex Berkeley Ca. 94704

TV Typewriter Cookbook Don Lancaster

Howard W. Sams and Co. 1976 Indianapolis , Indiana 46268
Kilobaud Klassroom:#14 Parallel & Serial I/O P.Stark
Kilobaud Nov 1978 1Issue # 23 Pg. 38

PET User Port Cookbook Greg Yob
Kilobaud Microcomputing March 1979 Pg.62

(Portions of this article also printed in The Transactor
Volume #1)

Parallel Port to RS-232C--Inexpensively R.Hallen
Kilobaud Microcomputing April 1979 Pg.62

Manufacturers of PET compatible RS-232C Interface:

Computer Associates Ltd.
1107 Airport Rd.,
Ames, Iowa 50010 (515) 233-4470

Connecticut microComputer, Inc.,
150 Pocono Rd.,
Brookfield, Ct., 06804 (203) 775-9659

Electronics Systems
P.O. Box 21638,
San Jose, Ca., 95151 (408) 448-0800

TNW Corporation,

5924 Quiet Slope Dr.
San Diego, Ca., 92120 (714) 225-1040

- 28 -

i

g Www.Commodore.c
May Not Reprint Without Permission
The following letter was receiyed _from _PET
user/enthusiast F. VanDuinen. It precedes his third article
for the Transactor and contains a most unique request....

3 February 1980

Karl J. Hildon, Editor,

The Transactor

Commodore Business Machines, Ltd.
3370 Pharmacy Ave.

Agincourt, Ont. MI1W 2K4

Dear Karl:

Here is another article for your newsletter. I do
hope it is suitable for publication. Should you feel that it
is worthwhile to revise it, such as make it less verbose, do
not hesitate to let me know and I'll gladly oblige.

I also have a question I'd like to submit to the
Transactor readers. 1I'd appreciate if you'd include it in
whatever way you deem appropriate:

Many of the advantages of emulating one machine on
another (also referred to sometimes as simulation), are well
known. (A good example is the article '8080 Simulation with
a 6502' by Dann McCreary in Micro, September '79, pp53-56.)
There is one less obvious advantage, however. Consider a
6502 emulator (or simulator) to run on the 6502. That's
right, emulate a machine on itself!

Such an emulator, provided it could handle
breakpoints without modifying the code to be executed, and
relocation of fields operated on, would be very useful in
studying the function of code in Read Only Memory.

I'm looking for just such an emulator to learn more
about the exact functioning of PET system routines. So if
anybody knows of just such an emulator, let's hear about it
through our newsletter, The Transactor.

F. VanDuinen,
175 Westminster Ave.
Toronto, Ont. M6R 1N9

- 29 -

g Www.Commodore.c
. PLDE BRsvint Without Permission
Toronto
30 Jan 80

PROGRAM PLUS

Qverview

Many BASIC programs require assembler routines that are
not part of the PET system (ROM), but that must be brought
into memory before the program can execute properly. This
article looks at techniques for SAVing these with the BASIC

program, so they will be brought in automatically when the
main program is LOADed.

One of these techniques can even be used to set PET
operating system fields as part of the LOAD instruction.
That allows such esoteric tricks as program protection and
changing LOAD to LOAD-and-RUN.

The system used in the examples is an 8K old ROM PET
with only tape storage. While these technigues are directly
adaptable to new ROM PET, only a few have relevance to
disk-based systems.

M i Fi

The most straightforward way would be to have the
various programs, BASIC and assembler, in individual
consecutive files on the same tape. That way the main
program would issue in sequence a LOAD for each of the other
files.

Unfortunately that does not work. After the loading of
each individual program, the PET updates BASIC's program
pointers. Therefore the main BASIC program must be LOADed
last. Also, the first program (assembler) must be started
using the SYS command.

Simpler would be if everything could be SAVed together
on one single file. The following techniques all do just
that.

BAS Xo

If the assembler routine is stored immediately following
the end of program marker, it must be protected from variable
storage. This can easily be done by setting the End of
BASIC/Start of variables pointer (loc 124/125) to follow the
appended code. As an added bonus, that is all that is
required to cause the appended code to be SAVed with the
BASIC program on the next SAVE. On subsequent LOADs all
code will be brought into memory, and the End of BASIC/Start
of Variables pointer will be automatically set from the end
of program pointer in the program file header.

- 30 -

May Not Reprin
I don't know exactly how, but when there is a
discrepancy between the End of BASIC pointer and the end.of
program as marked by the Next Instruction P01nter(NIQ) chalp,
the End of BASIC pointer isused for the SAVE. This 1s 1n
spite of the fact that the SAVE instruction does rebuild the
NIP pointer chain.

The problem with this approach, of course, lies with
BASIC program updates, (Analogous to Parkinson's third law,
programs tend to expand untill they fill all available
memory.) Every time the program is extended, the assembler
code following it will have to be moved, thus necessitating
changes to all absolute references (e.s. SYS, JMP, JSR etc.).
This can to some extent be accomodated by leaving some unused
space between the BASIC and the assembler code, but only at
the dual cost of increased load time and reduced space for

variable storage.

This approach of appending can be very nicely used to
reserve memory space for tables etc., that will be created
only at RUN-time, i.e. where the content of these locations
at LOAD-time is irrelevant. I have used this tecchnique in
the case of a BASIC program (not a compiler) that creates an
assembler program and then SAVes it on tape. Most of the
assembler code was constant and was carried as strings of hex
characters in DATA statements in the BASIC program. Variable
portions of the assembler program were then tailored based on
input received the BASIC program and added to the constant

code.

Because of memory constraints and the size of the target
assembler program, it was necessary to create the latter in
the space previously occupied by the DATA. = The added
variable portion, however, could be so large that the DATA.
space might be insufficient. All DATA statements were
therefore set up at the very end of the program, with
additional space reserved {(but not used until execution time)
by adjusting PET'S End of BASIC pointer. The start of the
DATA statements was determined -at execution time from loc
144/145, where PET leaves the address of the . next DATA
statement (after at least one READ).

Within BASIC

An interesting approach is that of storing assembler
code within a BASIC program. While the technique is
practical only for very short assembler routines, it does
handle those very neatly.

The technique involves setting up a REM statement at the
beginning of the program to set aside the space required for
the assembler routine, and then pokins the assembler code in.
A few conditions must be met: '

.the End of Instruction marker (zero) and NIP pointers
must not be disturbed B
.the assembler code may not contain any zeroes, e.S.
LDY #0 is out (use LDY #255 & INY to effect this)

- 31 -

« www.Commodore.c

t Without Permission

e WWW,
.set up a quote mark immediately before the& Es$emq1e§???mogj?rec
object code, to accomodate listing the funny characters) S
.no BASIC statements should precede this carrier REM
(any updates to these would relocate the assembler

code)
.the carrier REM must be clearly marked as such, as

LIST will not clearly indicate the assembler code.

More than one routine could be set up by using more than
one carrier REM, however one routine per REM. A good example
of this is a disassembler program in BASIC that needs an
assembler routine to 'PEEK' at the region occupied by the
BASIC interpreter (old ROM).

The following is an example of such code, showing both
the way the BASIC program would 1look, and the assembler
source code. The example shown is for a disassembler for
both 0ld and new ROM. (PEEK(50003) will return 1 (one) for
new ROM, 0 (zero) for old.)

10 REM DO NOT DELETE '......statement carrying assembler
20 POKE 1,23 : POKE 2,4 set up USR address as 1047

100 REM PEEK ROUTINE
110 IF PEEK(50003) THEN S1=PEEK(S1) : RETURN handle new ROM
120 S1 = USR(S1l) : RETURN handle old ROM

The assembler routine at 1047 could be as follows:

20A7D0 JSR S$DOA7 convert USR parameter to fixed pt.
AQFF LDY #255 *clear Y index register

C8 INY *

B1B3 LDA (179),Y get contents of specified byte
2078D2 JSR $D278 set up USR value in F.P.

60 RTS return

In File Header

File headers are the same length as data blocks, 192
bytes. The system recognizes the various blocks from the
record type in the first position:

program file header

data block

data file header

end of volume marker (OPEN ererlye)

(2000
1

Following, that in the program file header, are the beginning
and end addresses where the program is to be loaded (two 2
byte addresses). (In data file headers similar addresses are
present. Those are merely the beginning and end of the
buffer from which the file was written.)

Starting in byte 6 is the file name. While the name has

a maximum length of 128 bytes, typically less than a quarter
of that is used.

- 32 -

g Www.Commodore.c

Mayv Not Reprint-Without Perm
That leaves from (192-128-5)=59 to some (192—32—5)9155‘“F“ v

bytes that could be used to carry somethiqg glse. The main
problem with this approach is that it is difficult to set up

the assembler code.

One method is to key in the characters corresponding to
the object code as part of the name. The format and length
of the name are very critical that way. Furthermore, not all
255 possible codes are present on the keyboard.

Another way is as follows:

.issue a SAVE specifying the normal name etc, and
immediately press the STOP/RUN key.

.this results in a proper file header in the buffer,
and all pointers properly set up

_then POKE the assembler code into this header

.write out this header by:

POKE 633,100 (specify length of shorts to write)
(195 for new ROM) :
SYS 63676+8 (write block with leader length as
set)
(63622+8(?) for new ROM)
.set up start and end of '‘buffer' pointers at 247/248
and 229/230 respectively (251/252 and 201/202 for new
ROM) to beginning and end of program to be saved
.write out program by:

SYS 63676 (write block preceded by standard
: leader) ‘
(63622 for new ROM

For subsequent program update, use can be made of the
fact that the header and pointers have already been set up.
Using the above sequence first, the existing header and then
the updated programsegment can be saved.

A few caveats are in order, however:

.if the update changes the programs lenght, the
header's end of program marker (in loc 4/5 of the
header (639/640 or 831/832 absolute)) has to be updated
from PET's End of BASIC/Start of Variables pointer
124/125 (new ROM 42/43)

.any tape I/O on the device from which the program was
LOADed will also destroy the file header copy in the
buffer

The VERIFY command may be used, if need be, to obtain a
fresh copy of the file header without disturbing anything
else.

Precedi BAS
It is curious to reflect,ythat in a way the reason I'm

writing this article is because Len Lindsay in his PET-Pourri
column in Kilobaud (June 79, p6) talked about program

- 33 -

a

« WWW.Commodore.c

protection that changed LOAD to LOAD-and-RUN, andodisdpred

the STOP key. That got me intrigued, trying to figure out
how that was done. Until suddenly my mental block cleared:
why not load operating system data along with the program.
That could set the RUN in the keyboard buffer, and the
modified interrupt address. That, of course, was very smart
and at the same time very wrong, as there is a special
interrupt routine in use during tape read, and the system
resets that to the normal interrupt routine address at the
end of the LOAD. But at least it got me thinking in the
right direction.

Normally when a BASIC program is SAved, the starting
address used is 1024 or $400. More precisely, the SAVE
command gets its starting address from loc 122/123 (new ROM
40/41), PET's Start of BASIC pointer.

Consider, however, the possibilities of lower addresses;
826 (tape 2), 634 (tape 1), or even lower. That's right, why
not include system fields! Set things 1like the keyboard
buffer, interrupt addresses (careful there) and stuff 1like
that.

To be sure, there are complexities in setting it up and
scores of ways of crashing the system, but possibilities
nonetheless.

During a LOAD operation, the system first reads the
program file header into the appropriate buffer (tape 1 or
tape 2). Then it transfers the start and end of program from
the file header (2/3 and 4/5 in header) to loc 247/248 and
229/230 respectively (new ROM 251/252 & 201/202). Thus by
the time the actual program segment is read in, the header is
no longer required. If the start of program address 1is
before the end of the tape buffer, the program segment will
simply be stored on top of the header.

Looking at the system fields, starting at the end and
working backwards we see a lot of fields that are not really
relevant during a LOAD operation. Most of these standard
values will do nicely. For instance, 553-577 (new ROM
224-248) contains the 'Line Address and Screen Wrap table'.
Setting these up as after a clear screen should not affect
most programs.

Some fields are critical, but predictable. For
instance, the Hardware Interrupt Vector at 537/538 (new ROM
144/145) is critical (I believe). Predictable, however, as
it should contain the address of the Tape Read Interrupt
Routine, $F95F (new ROM $F931). The Stack (267-511) is also
critical, unfortunately I have not the faintest idea what it
contains during the loading of a program segment. I do
believe it is constant during most of this process and is the
same for every direct LOAD. (It will be different for LOADs
issued from a program.)

I hope someone will investigate what the Stack looks
like during this time and publish it.

- 34 -

Nithout Perm

10N

gz Www.Commodore.ca
Locations 247/248 and 229/230 are c ik i dady Niateprbeasitout Permission
229/230 is), but are known to be as per the file header
fields. All other fields are essentially immaterial.

That leaves of course the SAVing of the wanted valges
for these fields. While they are predictable or known during
a LOAD, many of them are affected by a SAVE.

The trick is to copy all relevant fields and the entire
BASIC program to a location where they are out of harms way,
and SAVE them from there in such a way that they will be
LOADed back into their original location.

The technique is to write a file header whose start and
end of program addresses specify the desired LOAD location,
and then write the program segment with PET's start and end
of buffer pointers (247/248 and 229/230 respectively)
pointing to the program's current location. The routine at
the end of this article (Relocate and SAVE) will do just that

Applications

The ability to set system fields has a number of
interesting applications. Program protection is but one of
these. Another is the use of relocated BASIC programs.

The main trick to program protection is to ensure the
user can not use Immediate Mode. Thus the program must not
release control. There are at least the following items to
consider: '

.force automatic RUN by LOADing to keyboard buffer
(don't forget cariage return and countfield)

.disable RUN/STOP key by modifying interrupt address at

537/538 (new ROM 144/145) ,
use POKE 537,136 for old ROM, POKE 144,49 for new ROM
.do not use INPUT, use GET and ignore RUN/STOP

That leaves tape I/0. I don't know if the STOP key can
be disabled there. It may be necessary to include assembler
code that duplicates the tape read interrupt routine at
SF95F, minus the check for STOP key, and further code to
simulate INPUT# and PRINT# to ensure the address for the
other routine is used in 537/538.

Unfortunately all that effort still would not make it
foolproof. The way around it is still quite simple (as per
Jim Butterfield's article on page 1 of Transactor #1, Vol 2).
Instead of LOAD use:

SYS 62894 to load the header
POKE 638,... : POKE639,... to modify the area the program
is to be LOADed into

To avoid critical system fields, inspect the code using
immediate PEEK instructions, and modify to disable the code
that disables the STOP key. Also correct any pointers that
may have been messed up to prevent the LIST function from

- 35 -

g Www.Commodore.c

May Not Repr
being wused. Then copy over the program to its propér
location (using immediate instructions).

In Transactor #5, Vol 2, was an article (Memory
Expansion, Cost $0.00) about using the tape buffers for BASIC
program storage. As indicated in the article, before
programs located there could be executed, certain PET system
pointers had to be changed. Well, here's the way to set
those pointers automatically.

The only time I've used this technique so far was for a
loader program to load the object code written by my
assembler program. The assembler program I'm using 1is
written in BASIC, and resides at address $400 and up. So,
when I assembled a program that was to reside there itself
(and was too large to assemble in the few bytes not used for
the assembler), I had no choice but to write it out to a file
(one byte at a time). The, using a simple BASIC program, I
could read each byte in and POKE it into consecutive
locations, provided the loader program itself was not in the
way. That program was thus created in the tape 2 buffer, and
because it was small, did not use any memory above $400.

- 36 -

nt Without Permiss

Wil

g Www.Commodore.c

May Not Reprint Without Permission

RELOCATE & SAVE V0.0 22JAN80 PAGE 1

1 REM RTN TO SAVE & RELOCATE

2 REM F. VANDUINEN 22JANSO

10 EL = 2000 :REM END ADDR FOR LOAD

20 SL = 525 :REM START ADDR FOR LOAD

30 SS = 2525 :REM START ADDR FOR SAVE

40 ES = SS + EL - SL :REM END ADDR FOR SAVE

50 DN = 241 ¢:REM DEVICE NO (212)

60 DB = 243 <:REM DEVICE NO PNTR (214)

70 B = 634 :REM BUFFER ADDR

80 R1 = 63101 +REM RTN TO SET BUFFER START & END (63082)
90 R2 = 63763 :REM WAIT FOR 1/0 COMPL (63718)

100 R3 = 63676 :REM WRITE BLOCK (DATA PGM) (63622)
110 REM R3 + 8 WRITE BLOCK WITH HEADER LENGTH SET IN 633 (195)
120 LL = 633 :REM LEADER LENGTH (SEC OF SHORTS B/4 DATA) (195)
130 BS = 247 :REM START OF BUFFER TO BE WRITTEN (PNTR) (251)
140 BE = 229 :REM END OF BUFFER TO BE WRITTEN (PNTR) (201)
150 D = 1 :REM TAPE NUMBER

200 REM * CONSRUCT HEADER

210 POKE DN,D:M=DB:K=B:GOSUB900:FOR I=B TO B+191:POKE I1,32:NEXT
220 POKE B,1 :REM SET FILE TYPE

230 M = B + 1 ¢ K=SL : GOSUB900 : M = B + 3 : K = EL : GOSUB900
300 REM *WRITE HEADER

305 PRINT "305"

310 SYS R1

315 PRINT "315"

320 SYS R2

330 POKE LL,100 : SYS R3+8

335 PRINT "335"

400. REM *MOD POINTERS

410 M = BS : K = SS : GOSUB900 : M = BE : K = ES : GOSUB900
450 REM *WRITE PROGRAM BLOCK

460 SYS R3

500 END

900 I = INT (K/256) : J = K - 256 * I : POKE M,J : POKE M+l,I
+:RETURN

- 37 -

, www.Commodore.c

=
B. Brown May Not Reprint Without Permiss

10N

Austin O'Brien School
6110 95th Ave.
Edmonton, Alta.

Feb. 4, 1980

Commodore Business Systems
3370 Pharmacy Ave.
Agincourt, Ont.

Editor Transactor:

I am enclosing some material in the hopes that it might
be of some use to other PET users. First of all I have some
outlines of routines for allowing reading and writing of
files without having to go into the program to change file
names in the OPEN statement every time the program is used.
This is especially important if non-precgrarmers are to use
the disk system.

In the following program, a prograr file named by the
user is to be LOADed. Generality is allowed for both file
name and drive number.

F$
DS

100 INPUT "FILE NAME"
110 INPUT "ON DRIVE#"
120 2$ = DS .+ “":" + FS$S
130 LOAD z$S,8

140 END -

-e w¢

The purpose of the following program is to allow the
user to read in a data file from drive 1. It is interestirg
to note that CHRS$(34) is needed so that the string explicitly
includes quotes. (see note 1) I was very puzzled by this
for a long time as the LOAD and OPEN commands both indicate
the need for use of quotes in the same manner, yet the LOAD
does not need explicit quotes whereas the OPEN does. The
only other comment I want to make about this program is that
flexibility in choice of drives is possible though it was not
done here.

2500 INPUT "INPUT FILE NAME" ;
2510 Z$ = CHRS(34) + "1:" + FS$
2520 OPEN 2,8,2,2%

F$
+ ",SEQ,READ" + CHRS$(34)

The last two program segments are used to read in a file
and then rewrite it at a later date when some editing has
been completed. The reason for this long drawn out procedure
was simply that the @ does not seem to work for data files,
however @ does work with the SAVE command. (see note 2)

Essentially what is done is to OPEN a scratch file for
writing the edited data and then having done so, scratching
the file F of lines 2500-2520, followed by a renaming of the
scratchingfile to F$. I hope somebody has found an easier
fix, however for now this has had to suffice.

- 38 -

 www.Commodore.ca
prin MNISSION

t Without Pe

5300 7$ = CHR$(34) + "@l:TEMP,SEQ,WRITE" + CHRS (34).,
5310 OPEN 2,8,2,2%

5320 W (0) = M : W(l) =N

5330 FOR I = 0 TO N+l

.

5700 NEXT I : CLOSE 2
5710 OPEN 1,8,15
5720 2$ = "Sl:" + F$

5730 PRINT #1,Z$:REM SCRATCH FILE
5740 7Z$ = "R1:" + F$ + "=1:TEMP"
5750 PRINT #1,Z$:REM RENAME TEMP FILE

Finally the 1last program can be used to renumber a
program (see note 3) under one restriction that line numbers
greater than 62999 are not allowed. Of course modification
of line 63090 and renumbering of this program would allow for
any upper limit you want within the limits allowed by BASIC.
I intend to convert this into machine code when I have the
time but I am hoping someone will beat me to it and publish
their results. To use this program procede as follows:

clear the screen ’

LIST the renumbering program

LOAD the program to be renumbered
using the screen editor append the
renumber program to your program
RUN 63000

B LD N
o o o o

(S}
.

63000 INPUT "[CS DN DN RV]INPUT STARTING LINE" ; LI
63010 INPUT "[DN DN RV] INPUT INCREMENT" ; IN '
63020 PO = 1025 ‘

63030 PL = PEEK(PO) : PH = PEEK(PO+1)

63040 IF PL=0 AND PH=0 THEN END

63050 PO = PO + 2
63060 LH = INT(LI/256)
63070 LL = LI - LH * 256

63080 P = PO + 1 : A = PEEK(PO) : B = PEEK(P)
63090 IF B * 256 + A = 63000 THEN END

63100 POKE PO,LL : POKE P,LH : LI = LI + IN
63110 PO = PH * 256 + PL : GOTO 63030)
63120 END

Editor's Notes: 1 Explicit quotes don't seem to be always
’ necessary when passing strings to the

disk. An interesting note nonetheless.

See Disk Notes page

This renumber will not renumber GOTOs

and GOSUBs. One that will may be

published in a later Transactor

w N

i

g www.Commodore.ca

Commodore EQ!JQEIJ' on Ed!lj SOy EQEEQ May Not Reprint Without Permission

Commodore Business Machines is pleased to announce the
formation of the CEAB. This board will provide suggestions
for Commodore in promoting the use of microcomputers in
education.

The board members are:

Mr. Wes Graham, University of Waterloo

Mr. Al Lott, University of Western Ontario
Mr. Don Whitewood, Toronto Board of Education
Mr. Frank Winter, Sheridan College

Commodore, upon advice of these gentlemen, will be
preparing an education newsletter and will be promoting the

sharing of software.

Educators are encouraged to send any software or
articles to:

Commodore Business Machines
3370 Pharmacy Ave.
AGINCOURT, Ontario

M1w 2K4

(416) 499 4292

With your help this program can be a success!

Schools - The first CEAB software release is now available
for copying at your local dealer.

i

, www.Commodore.c

Disk Notes " May Not Reprint Without Permissio

iYiay

Four items to note when using disk:

l. Try not to use identical ID numbers. If a disk

is

inserted that has the same ID number as the disk there
previously, it can be written on without an Initialize,

That can be hazardous!

2. If a WRITE PROTECT ON error occurs, power down the disk

and re-Initialize everything.

3. As a precaution, always Initialize both drives before
doing a drive-to-drive Duplicate. If a raw disk is in

the destination drive, New it with formatting first.

4. Avoid using the "@" symbol for write-and-replace.

It

has an intermittent tendency to throw a wrench into the

system. Instead write the replacement file to

a

temporary file. Then Scratch the file to be replaced
and Rename the temporary file to the name of the file

just Scratched.

Try the following:

1. PET and 2040 on; Commodore diskette in Drive 0
2. Clear Screen

3. Type 5-10 spaces then: "*",8 (HOME)

4. Now hit a shifted RUN/STOP

Index Transactor #8

Bits and Pieces. ® & © 5 O 6 0 0 0 0 0 0 e e e ® @ & & 0 6 & 0 00 O 8 G O O T O OGS * ¢ o o 0o 0
Editorial.oo..ll...l‘.....'...l'.l'.!..l....'.lt...lo..!.
Future Reviews...

Call For Articles/A Prioritization of InterestS............7

POP a RETURN and Your Stack Will Feel Better.......e.ee..
Disk Merge.'.....‘.:-.‘.............'.."...-............
MiCrO—GO 9L"AReVIGW............-......................

Supermon 1.00.....00'00oo.-.-o.on....oo.-..'.o-o.."onlot

Rs-232C: An Overview.ooooobo.-.-.o..-‘.oc-.o.co.oo.oon.'c
PROGRAM PLUS...t.oooo'...tot.o...u...ulo..c.co.o.c.t.ta..

- 40 -

10
11
12
15
23
30

i

