
uunimodore
comments and bulletins

concerning your

COMMODORE PET™

The Transactor
/ PEIT>is a registered Trademark of Commodore Inc.

Vol.2
BULLETIN - 5

Oct. 31, 1979

Ca.se Converter

The -following rfia.ohine lansiuaae proar-afti c=>t~i foe used "to

convert old ROM u^^er/loujer csse to the convention used by

new ROM PETs.

LORD arid RUN the Pro-ar-am below. Then LOflD "the prosram

you wish "to convert -for- operation with new ROMs. Type SVS

826 ss'id wella! ..»=>. 11 uwer case beconies lower case and o-f'

oourse '•.■'i ce versa.

188 FOR J = 826 TO 925:REflD fl

118 POKE ,T, fl-'NEXT

138 DRTR 169 .• 4, 133 , 202 .■ 169,1,133, 201

148 DRTfl 32, 89, 3, 168, S, 196, 282.. 240, 13

158 DRTR 177, 201 , 178, 208, 1 77, 201 , 134

168 DRTR 201 , 133, 202, 76, SS, 3, 96, 160, 4

170 DRTH 177,291,240,44,281 , 34, 246, 4

138 DhTh 200,76,91,3,200,177, 201,248

1 98 DRTFi 31 , 201 , 34 , 240, 23, 201 , 65 , 144

200 DRTR 243,281,91,144,3,201,192,144

218 DRTR 235,201,219,176,231,73,128

228 DRTR 145,281,76,103,3,200,76,91,3

238 DRTR 96,255,255,255,255,255,255

240 DRTR 255,255,255,255,255,255,255

258 DRTR 255,255,255,255,255

Editor's Note

Due to 3. de-la.=i ., there ivi 11 be no September issue o-f The

Transactor. This does not mean that any less mill be

published or that any "double issues" wi 11 be sent to make up

•for lost time, but only that Transactor #5 will be dated Oct.

1979 rather than Sept. 15>79. transactor Vol. 2 subscriptions

wi "t 1 there-fore terminate the end o-^ Nay rather the er'icJ o +

flprl 1 -

The Transactor is written ar'id Produced almost entirely

usitT-i the C ooimodor" e Wordpc oces£or. WordPro II <vs±- written by

Steve Punter o+ Mi ss issa.u-ii^, Ontaric

dits and Pieces

Cnuan Che© o+" St. Catherines.. Ontarioj has written "the

Transactor with a -few items of interest1

1. When a. variable is assigned the ■-,'alue zero with " Ft = Q

".. it can be substituted with " ft = . !>. The decimal c-.oint

in this case is e*i.ui'-,'a.lent to zero and is 690 microseconds

-faster than zero. This does not (dean that " 1899 " can be

replaced by " 1... " since the latter is interpreted as "1"

+01 lowed by a. decioia.I t*omt and t'.uo zeros.

2. "LIST 8" lists the whole P-ro-sram instead o-f oust

statement 0.

3. "';shi-rt:>RETURN" acts only as a simple CRLF instead o-f

enter ins it into BFiSIC to be interpreted.

4. Sta.teri>erits such as " 2*-3 " and " 2/-3 " are possible

on the PET u.'hereas other oorri^uters require " 2#fi—3> " and "

2/'C—3> "• In -f'a.ot.. you can have uk- to 14 "-" signs and any

number o-f " + " preceedinst a. numeric. Finy more than 14 "-"

will result in an ?OUT OF MEMORV ERROR bs the sta.ck used by

EFtSIC is o'-..'er■ -P 1 owed.

5. ("heri trying ? ;"t'" C "VES".- FET replies with —1 which is

correct. How try.. Fif = "V" ? hS < "VES" and PET returns a.

6 which is i.urony. 1+ this is entered -B2 a. p-ro-sra/fi as

+0 1 lows :

19 H$ = "V" "VES"

....and RUN.. PET replies with -1. So why does it work in

r--r o3r 3/ii ru ocie l:>u t no t i mmed i at e rnod e ?

Hns mie r ■■ ss't y oneY

'Billy, As Soon As You Finish Your

Homework CouJ-J You Help Mommy

And Me Balanca th« Checkbook?'

'Do You Have Any "Sorry Your Pro

gram Bombed" Cards?'

Memory map; Original ROM to Upgrade ROM Jim Butterfield

To identify a function of PET's original ROM, and/or convert it
to the equivalent upgrade ROM location, use this table.

All addresses are given in hexadecimal.

OLD

ADBRS 0/8 1/9 2/A 3/B U/C $/D 6/E 7/F

0000: 0000 0001 0002 000E ** ** ** *»

0008t 0011 0012 0200 0201 0202 0203 020U 020$
0010: 0206 0207 0200 0209 020A 020B 020C 020D

0018: 020E 020F 0210 0211 0212 0213 021b 021$

0020: 0216 0217 0218 0219 021A 021B 021C 021D

0028: 021E 021F 0220 0221 0222 0223 022b 022$

0030: 0226 0227 0228 0229 022A 022B O22C 022D

0038: 022E 022F 0230 0231 0232 0233 023b 023$

OOliO: 0236 0237 0238 0239 023A O23B O23C O23D

0OU8; O23E O23F O2ttO 02bl 02b2 02U3 02bb 02b$

0050: 02lj6 021*7 O2b8 02U9 02bA 02bB 02bC 02bD

00$8: 02UB 02UF 0003 000b 000$ 0006 0007 0008

0060: 0009 O00A 0003 000C 000D 0013 001b 001$

0068: 0016 0017 0018 0019 001A 001B 001Q 001D

0070: 001E 001F 0020 0021 0022 0023 002U 002$

0078: 0026 0027 0028 0029 002A 002B 002C 0O2D

0080: 002E 002F 0030 0031 0032 0033 O03U 003$

0088: 0036 0037 0038 0039 003A O03B 003C 003D

0090: 003E 003F OOUO OObl 00b2 00b3 OObb 00b$
0098: 00U6 00U7 00b8 00U9 OObA 00b3 OObC OOUD

00A0: OOUE OOltF 00$0 00$l 00$2 00$3 00$b 00$$

00A8: 00$6 00$7 00$8 00$9 00$A 00$B 00$C 00$D

OOBO: 00$E 00$F 0060 0061 0062 0063 006b 006$
00B8: 0066 0067 0068 0069 006A 006B 006C 006D

OOCO: 006E 006F 0070 0071 0072 0073 007b 007$

00C8: 0076 0077 0078 0079 007A 007B 007C 007D

OODO: 007E 007F 0080 0081 0082 OO83 008b 008$

00D8: 0086 0087 0088 0089 008A 0083 008C »»

OOEO: OOCU 00C$ 00C6 00C7 00C8 00C9 OOCA OOCB
00E8: OOCC OOBb OOCD OOCS OOCF OODO 00D1 00D2

OOFO: 00D3 OODU 00D$ 00D6 00D7 00D8 00D9 OOFB

00F8: OOFC OOnA OODB OODC OODD POPE OODF »»

0200: 008D 008E 008F 0097 0098 0099 009A 00F9

0208: OOFA 009B 009C 009D 0096 009S 009F O26F

0210: 0270 0271 0272 0273 027U 027$ 0276 0277

0218: 0278 0090 0091 0092 0093 OOAO 00A1 *»

0220: O0A3 OOAb 00A$ 00A6 00A7 00A8 00A9 OOAA

O?28: OOAB OOEO 00E1 0052 0053 OOEb 00E$ 00E6

0230: 00E7 00E8 00E9 OOEA OOEB OOEC OOED OOEE
0238: OOEF OOFO O0F1 00F2 00F3 OOFb 00F$ 00F6

02U0: 00F7 00F8 02$l 02$2 O2$3 .. etc.

0260: OOAC OOAD OOAE OOAF OOBO 00B1 00B2 ♦*"
0268: 00B$ »» »» »» QQB7 *» ** QQB9

0270: OOBA OOBB OOBC OOBD OOBE OOBF OOCO O0C1

Memory Expans 1 ori. Cost .££1. £uj

Ever been stuck -for- "Chose reu.» e*.tra. n«yte=: needed "to

complete a. pro£irajy«? SK users Probably know the -feeling.

Well noa» there is a. consoiatioo. I-f" your program does not

use tape -Pile access with the second cassette; then the ROM

memory devoted to the Znd cassette bu-P-fer can be added to the

memory used -for BhSIC.

The procedure is somewhat di-P-Perent tor old ROMs arid new

but the concept is the same. Every byte o^ ROM in PET is

phys i oa I ly arid e lectron i oa. I ly i dent i ca I. PET sp I i ts up RflM

usin*i pointers. Since these pointers are stored in RflM they

can there-Pore be changed. Let's take a. look at these

poi nters i nd i vi dua I ly:

Old ROM-

In PETs with old ROMs., there ar-e basically 4 pointers

used to create partitions within RflM, Pointers use two bytes

arid are stored low order -first., hi-ah order second.

1. Start o-P BhSIC Pointer .

The start o-P BH3IC pointer does exactly what you

rrii**ht think it would do; point a.t the start o-P BflSIC.

It is stored in locations *@©7fl arid *©07B or decimal 122

arid 123 arid on poiue^—up it is set to $64© 1 or decima.I

1625. PET calls on this pointer to determine where to

be** in executing a. RUN.

2. End o-P BRSIC / Start o+ Var-i ai:« les Pointer

Rs BhSIC statemerits such as Ff=© arid X^=i9 are

executed .• a. var- i ate 1 e tab 1 e is set up i mmed i a.tely

-fo 1 1ow i n•£•» the BFiSIC &ro =•*t'■ asn - The '•.'ar i ah les ai'id the i r

correspond ins values are stored in the table arid arid

consume 7 bytes each- When called., in statements such

as- IF R=© THEN. PET Jumps to the location according

to the value o-P this pointer and he*»ins searching- When

arr exact match between the variable in the current

sta.teruer11 arid one stor•e*~J in the table is made.. PET

fetches the correspond in •=■* va. lue arid moves it to a. ».uork

area. ari cl BHSIC cont i nues.

This pointer is stored at £Q97C arid *@97D or decimal

124 and 1 25 arid on pcu»er-up is set to £64S4 or 1928

dec i rn a. 1. 11 **' s v a. 1 ue .• ho ».uever .• u> ill constaj-'i11y be

Chan**in*» .=is BhSIC code is inseated or de leted. This is

why the values o-^ a.II variables become zero when a.

pro*»ra/fi ohari^e is ma.de; i-P code is inserted.. pro*tra/rt

text is written over the -first variables in the table-.

1+' code is deleted.. the bytes used by the variable table

are untouched but the end o-f BhSIC i =: chart ^ed artd th i s

pointer- is no longer- set to the start o+" variables.

L.r»oi of V^rj-ebies . St»rTrfo-P Fir rays Pointer

Stored a.t *©.3rE-?F or decimal 126-127.- this pointer

a«orks much t^e sa/i»e way 33 the previous one when array

•variables are called. It is also set to $8484 on

fcower"--\jp. i^s DIM statements are executed.. arrays are

set uk> star-tinn at trie location determined by this

pointer. This will be the -Pirst byte -Po I low inn the last

0+ "the variable t*.ble. But what happens when a.

is assigned to a new variable? If no arrays

exist* the new variable and its value are simply stored

i--i the 7 bytes -Pol lowioa the location pointed at by the

End or Variables pointer inclusive. The pointer is then

updated to await the next new variable.

However., if Brr-B^i- are ic-r-esen"t.» a s^ace must be

created such that the neu» entry can be inserted as part

ot the variable -fc3.fc.le. This means that the arrays must

■first be moved uw- 7 b=«tes. Try the -following-"

~*ower—ui*

Type- ?TI • R=Q ?TI

Note the t irne d 1 •*-^erenoe

••low tyf=*e • I' IM R < 4.• 255 >

arid - TTI : E=9 ?TI

Notice how fuuch lon*ier it takes

The e---.tra time is si*ent traris+'erin-i* each byte o-^ the

Brr'3-js ahead by 7 bytes. 0-r course PET must start with the

i.a.st byte 0+ the Brr-B.^s- which br-in*is us to. . .

4. End ci- hrr-B:*3 / Start o-* available S>:«ace Pointer

t-4hen PET must open up a space -tor- a new variable by

ttovimi tr'.e arrays u«*.• 11 ca 1 Is on this pointer to

determine >}/*'i&re to start trans-Peri m* bytes. PET

continues xhis byte b'd fc =*te transfer unti 1 the byte

po i n ted a. t I', y 11 *.« t s t -3r-1 cj ■•- ar ra.ys &o i r"t ter i s a 1 so moved -

T*r•(£- r"1 €j•.».» entr"y is tI-"• en inserted... k>rocess com& 1ete.

T"r-;e E^-d c- Hrr&zfz. pointer lies at $0080-81 or

d &c 1 m a. 1 123-129 a/ *»»: ••! a 1so ccritains $0484 a.-fter p« ower—up» •

•-ew ROM-

In new ROM FETs there ar^ also basically 4 pointers used

to sec 11 o r-1 o i- -f; F- RM ar1d ar e used t i-1 e sa/ne way as o 1d R0M PETs.

Hom.«•=• ver••.. tr;ey are stor• ed i n d 1 -P-Perent p 1aces -

Po i n ter• s • Dec 1 ma 1 Local: 1 cms • 0 Id ROM New ROM

Start o-P E.SSIC 122-123 40-41

End 0-+= BriSIC . Start o^ Vari-ables 124-125 42-43

Er».;i o-r var-ial:» le =;"'.•' Start ot arrays 126-12? 44—45

End o-»-" firr=i.y:i: o-" S^Brx o-^' Ft'.'ai lab le S^a.ce 128-129 46-4?

Moving Pointers

Now that u.»e know where these pointers are and u.»ha.t they

do.» some experimenting can be done. Reca.ll that on Power-up

the Start; o-f BASIC Pointer is set to hex 84© 1 or decimal I

1825. However., location 1324 is also important. It has the

value zero arid re&resen'ts a. "dummy end-o-f-line".

The 2nd cassette bu-f-fer starts at hex 833R or decima.I

826. I-f this is to foe included as part o-f BRSIC memory

s^ace.- the Start o-f BRSIC Pointer must toe moved DOWN. Since

location 826 will have to serve a^ the dummy end-o-f-line

character., the new start of BRSIC will be 827 or $033B. The

procedure is a^. -fo I lows :

POKE 826 .. 8 -Dummy end-o-f- line

POKE 122 j 59 : low order- byte o-f pointer = *3B 03*16+11>

POKE 123 .. 3 -hissh o^dei- byte = *83

<Hew ROM users will substitute the other POKE locations.>

That takes care o-f the Start Off BRSIC Pointer but a. 11

those other pointers sre still up where they used to be when

BflSIC started at $8481. They must also be moved down. We

could use POKE to accomplish this however a. NEW command will

do them a. 11 at once. There-fore execute a. NEW arid then Print

FREOIO. Vou should be returned 7362 bytes -free.* an increase

o-f 195 bytes! This may not seem like much but when those +'ew

extra, bytes are needed to add those -finishing touches it-

could come in very handy.

\low that the BRSIC memory spa.oe has been increased does

not mean tha.t your • pro •=* r ajo w ill a.u1omat i cally -fill u r-> th i s

spaoe - Bes i des.• the NEW com rriand re rr»oves your pt *•o •=•» r a/ft

anywa.ys. 0ne way to e-r-feoti ve 1y use this modi +'i oa.t i on is the

■fo 1 lowi mi:

1. Power—up and LORD your program.

2. Us inn UNLIST < described in Transactor #2.. Vol. 2>.. record

the prosiram.

3. Increase memory usim-* the steps outlined above.. 3rtd. . .

4. Us i n-y thie Mer•iie pr•ooedljre.. a. 1 so desor i k«ed i n Tr• a^*isa.ctor

2.» br i n *» the pro i*rajo t:» a.ok i n by essent i a. 11y mer y i nii

i t w i th eTityz'ty spa.ce.

Nom.» the -first 135 bytes o-f your pr•o =ira/n ».«.»ill be res i dent

ir'i what used to he the seoond cassette bu-f-fer. Remember., you

no longer have a second cassette bu-f-fer uriti 1 you either

reset the machine or re—a.diust the pointers so don't try to

use it or- your program will be clobbered!

S-ooner- or la.te^- you u»i 11 need to ShVE the pro-sira/fi.

However., this osri no lorv=ier be done in the conventional

mariner. Tsi<e a. look a.t the method used by Bi 11 Sei ler on the

second pa.-ye o-f Transactor #3. Execute lines lGy through 226

direc11y on t,-"ie screen exa.o11y as shown. This is a. rrio»:ii-f ied

SRVE. The SV363153 accesses the tape write routines in ROM.

s4ou« th a:i a re :• o t' d i n*» h as heer i rnade there 1 s one 1&&t

»foklem. When tne ^oaram is LORDed back into the PET.. the

ftart of BR3IC Pointer is not a jtooia.tioa.l ly set- It stays at

0403 but our pro^aw starts at"333fi. POKE 122.'59 arid POKE

i23.• 3 ».»»ill -Pix this up,

h Short Note on

When a ^ro-sre/rt is recorded on taj*e. the start arid end

a.ddres-r-es of that P-^oara/i! &r# also recorded a-5 part o-f the

ta^e header. There-fore.- when tne ^ro-yr-a/ii is LOflDed.. PET

first looks at the start address arid begins trarrs-ferinii bytes

i^rorri ta-fc:*e into RfiM. The -first h=»te is trans-Perecl to the

location sp-eoi-Pied by the start *ddr&s.s. Increasing your

fueriiory usm-a this method does NOT iv?ean that your ^roiiraxris

».i.i± I i LO.RD to tnis e.-.tr-a. s«-ace. However**., they oari be rnodi+'ied

to do so. Trie in-^c- riiat*.ion needed is in the art io le by Jim

Eutter-fie Id or» the -ri^-st r^ane o-^ the -^irst Transactor in Vol.

Cassette file END markers Jin Butterfield, Toronto

End-of-tape blocks may be written on cassette tape*

If the conputer is searching for a program or file and finds

this block, it will stop and report 7FIIE NOT FOUND.

This is useful since it saves having to search through yards

of empty tape.

Here's how to write such an END marker* When youfre saving the

last program on a tape, use SAVE "PROGRAM-NAME",1,2. The END block

will be written behind the program* If you are writing files,

open the last file with OPEN 1,1,2, "FILE-NAME11. The END block

will be written after the file is closed* In either case. itfs

the value 2 which triggers writing of the END marker*

If you need to write an END marker on tape without having a

program or file to write, you can do it with one of the following

statements:

Original ROM: POKE 2lil,l : POKE 63U,5 : SIS 63673
Upgrade RCM: POKE 212,1 : POKE 63U,5 : SIS 63622

The first POKE statement specifies cassette drive #1* You may

change it for cassette #2 if you wish.

Httent 1 on Mu It 1 -P~r-1 phera 1 Us^rs-

It has been found that wh'en more than one peripheral is

connected to the IEEE—4SS buss... a slight problem may occur

should one device be ON and the other OFF. Take for example

the fol lou.iimi sequence of events-

PET ON

Printer OFF

Disk OFF

Type- OPEN 1 , S , 4 , il 8 HI3KFILE , S , W "

PET responds- 7BEVICE HOT PRESENT ERROR

This is of course what you would expect. How power up the

Printer., leaving the disk unit OFF.

Type- OPEN 1 , 8 , 4 , " 8 DISKFILE , S , M "

PET responds: REflDV.

But the disk is OFF or essentially "HOT PRESENT". Therefore-

PR I HT# 1.. " FILE DRTR "

. . . wi 11 resu It in lost data..

There is., however.» a test that cari be rnade to protect

against lost info. The status word.. ST.. is set to -128

whenever the above situation occurs. Therefore the following

test could be included immediately after the OPEN statement*

IF ST < © THEN PRINT "DEVICE NOT PRESENT"

Dorr't be alarmed since Brrd pf-o-yrams usiny disk file

access are usually loaded from the disk.. the disk will be

turned ON anyways aj-"id the akove situation will probably ne'^er-

be encou r"iterd.

F r o nr* V c? n I* i».« n • -1»

Toron to

?LOAD ERROR

This note deals with .program load errors on the 8K PFT

(Release 1)* and how to recover from them*

Within two dav;s after letting my PET <Nov78)* I discovered the

merits of bacK-up copies of programs end data files*

All I did was press PLAY and RECORD when the message said to

press PLAY! It was only some twenty seconds* but it was

sufficient to wipe out the file header and maKe the file

inaccessible*

Ever since I've made? sure to Keep multiple copies* on the same

tape for programs under development? on a dedicated bacK-up

tape for programs that are more or less static*

So also the Journal program that I was 'developing bacK in Ju.H;*

The only thins* was* I was also worKins.* on another program* whirh

that I accidently saved on the wrong tape* Scratch Journal

version 0*6*

No real harm done* since? I still had. version 0*5* ri^ht? Wrontf!

It Just so happened that good old 0*5 had a load error*

I tried Just about every thing* demagnetize & clpan heads*

both tape drives on my PET* LOAD vs STOP/shift* freeze Crjssettp*

rewind tape evenly* loosen screws in cassette housing and pJrv; on

several other PETs* About the only thing I did not p3?y with

was head allisnment (since the tape had been written with th:»?*

allisnment* it ought to be optimal for reading)*

All to no avail* A load error I got* and load errors I Kept

on getting*

Yet I knew the data ws-> there! There were r>ome 3500 rhrrc:rtrrr>

on that tape* most of which .loaded correct.lv?* hut could not

LIST* RUN or SAVE*

Since I still needed the JournaJ program* mm choice wa? r-inc-Jrt

salvage or re-develop end re-criler from memory*

So? with an ingenuitu born of 3 azincr;.r> (thai, br:in.3 one

of the prime tiualif irr: tions for si.1, rronr nniiucr^)*■ J nal varied!

f r om .Ji in Bu t i&r f i e 16 ' •• • \ucmor v, \a>:>r i «>c• c The; Tr <■■ n v><.*c tor ? vo 1 1

-or The Be?si. of T»c>ru>^ctor vol 3? r-r J';?■-.15? ~ and voj 2 f7>)

and n»y own ui sc>•:>sc?i$«bI f:d 1 i •:> t i nri of RQi) ? I hb6 r-i ricf p-cru :i r ro

essential information on pcintcrr f:iv:Jd:> f;nd r -outj ncf- ♦

First let me iiiii oclucc the eav.t of i:-h£*;rr.ci.ci :> ♦

♦ the pr o 3r a n« * i t '-, t«; r t & g i J o c i 0 2 A

♦ the file headc-r-* i<t lor 6:%4 for Ibfc? Jy] or B?6 for tare ?

♦ the lo^ci =ic<ii. point iu l\\c fjle he-.T.drr <l of fret r3

♦ the load exu.'i point in the holder r;t offr-et i?

♦ tht? i> t ^>r t «• f BA^:> IC /;-o i fj I*-• j • *: i. J;•■«{ 122

♦ the £• r i«.:! o f £ ASIC / •; t i-> i • I of v t;; :; ?": i ^ 1 ? • r:- p o .i ; 11 c r ■ <• t J o r 31? 4

♦ the end of v<>riah 1 (•?••:• pointer r;i 3.26

♦ the start of avj?i J afrle i-pocp pointer ci- loc 3 20

♦ th€> Next Instruction Pointer (NIP) that prcifid("r ever-

BASIC FT(«:-<r• c>\n i 11 «•.:. Ir u (11 oii

♦ the BASIC Line Number i BLN) that is part of evpm statement

♦ the zero byte that identifies the end of eat-h BASIC

statement

♦ the End Of Program < EOP) marKer* which is a dummy NIP of

which st least the second byte contains ?ero«

After s normal load PET updates the end of BASIC pointer * the

end of vsrisbles 3nd the start of available space pointers

based on the end of load address from the file header*

Not so on 3 load errorr the end of BASIC/start of variabJrs

pointer remains st 1024 <the start of BASIC pointer to he

exsct)♦

However* if variables sre used they will be stored sterling

locstion 1024 > i*e* smscK on top of the? program*

The following code will fix that (assuming LOAD from tape iJ >;

?Pe(637)?Pe(638) - which results in the values be.i.nr: prinU-ci

(remember f no variables may be used yet

237 17 example (237+256*17=4589)

Pol24*237:Pol25* 17- set end of BASIC/start of variable*:*

Po126*237:Po127f17- end of variables

Pol28t237:Pol29f17- start of available space*

Whew! Now we csn use vsriables* since they will now be stored

starting at 4589*

Next step is to rebuild the NIP pointer chain? where the* NIP

preceding every BASIC statement points to the NIP before the*

next statement? until we get to the dummy NIP that marKs

end of program*

SYS 50224 is an operating system routine that does Just that*

However f it does that based on zero bytes* It assumes thirst ever

zero byte it encounters represents either the end of p-

statement or the end of the entire? program* Thur> if

the load error introduces spurious zeroes* thc-y may throw

SYS 50224 for a loop? and the routine wouJd store NIPr> on top

of valid data* If it does worK* however y it"'s the by far easier

method* If it does not worK Just reset the system and trw the

other possible approach*

The alternative is to write a one-line immediate? routine thc:i

will follow the existing chain as fzr as possihJe* fi>: r.nd

continue♦

The following routine will print a list of NIPs in ascending

orderf with line numbers (BLN)f also in ascending order*

Any irregularity in either list indicates a Joad error*

1=1025 initialize pointer to first NIP

FoK=lT0900:j=Pe(I)+256*Pe(1 + 1)tB=Pe(If2) + 25A*Pe(1+3 >*

This results in 3 list such sst

1025

1052

1066

1099

1120

1052

1066

1099

1120

1156

10

20

21

50

60

L& & machine language subroutine that will

:-or.""r» t''i& corsterits i»-f t-:e scf£&n onto 2G2.Z-23 f--r interns.. it

.-••elides :r.. the s&cor»:l cauryetT.* bM^'*'"' =*/-rd could be

ir.cor r^or =«.Ted i-.*e«-""=« r«e=».t ly irit-j =»jVr» BhSIC £*roi-»r.=»jri where a. hard

tne screen rriii<ht be required.

033fl

033R

033ft

033?.

033ft

033ft

033ft

033ft

033ft

033ft

033ft

033ft

033ft

033ft

033E

0340

0342

0344

0346

034S

034B

034E

0350

0352

0354

0356

0359

035B

035E

0360

0362

0364

6367

6369

036B

WSbll

036E

037Q

6372

0374

0376

037S

037ft

037C

037F

0380

03S2

©384

0386

ft9

85

ft9

85

09

85

85

20

20

R9

85

ft9

85

20

fi9

ftE

E0

D0

fi9

20

R8

Bl

29

HH

Bl

45

10

Bl

85

29

49

20

8ft

C9

B0

©9

no

80

20

00

IF

04

B9

D4

Bfl

2D

19

22

em

21

D2

11

4C

0C

02

91

D2

00

IF

7F

IF

21

0B

IF

21

80

92

D2

20

04

40

0E

F0

Fl

FF

E8

FF

FF

.: SCREEN

.: CftLL U

POINT

RFLRG

COUNT

CR

DEVICE

CMD

PRINT

SLISTN

RTNOFF

BUSOFF

SCREEN

CftSE

SCPRT

LINE

LOWER

MORE

SRME

PRINT ROUTINE

ITH

*=

=

=

=

=

=

—

—

—

—

LDfl
STR

LDfl

STR

LDR

STR

STfi

JSR

JSR

LDfl

STfl

LDfl

STfl

JSR

LDfl

LDX

CPX

BNE

LDfl

JSR

LDV

LDfl

fiND

TftK

LDfl
EOR

BPL

LDfl

STfl

FIND

EOR

JSR

TXfl

CMP

BCS

ORfl

BNE

SVS 826

$033ft

flF

$21

$22

*9D
$D4

$B0

*FFD2

$F6Bfl

$F12D

*FFCC
$3008

$E84C,
#>SCREEN

POINT+1

#<SCREEN

POINT

#4

CMD

DEVICE

SLISTN

flTNOFF

#25

COUNT

#CR

RFLflG

PRINT

#$11

CftSE

#12

LOWER

#$91

PRINT

#0

(POINT>,V

#$7F

<POINT>,V

RFLflG
SOME

CPOINT>,V

RFLflG

#$30

#$92

PRINT

#$20

NOTftLF

#$4©

SEND

.:LISTEN TO IEEE

;grrphics or lc

;SET POINTER TO

;STRRT OF SCREEN

;OPEN PRINTER

.:25 LINES

.:STftRT NEW LINE

.: RVS-OFF

;SHIFT FOR L/C

;SHIFT FOR GRflPHICS

.: SCREEN CHftR

.: STRIP RVS

.: STORE

;CHECK RVS

;SftME ftS LftST CHRPRIK

;LOG NEW RVS STftTU?

.: build rvs on/off

;rechll print chrr

;CHftNGE RLPHft ZONE

;BRflNCH RLWftVS

8388

038R

038C
03SE

0398

0392

0394

8396

0399

039R

039C

039E

03ftO

03H2

03ft4

03fi6

03flS

C»3rSM

y.-:HL.

03fiE

03B1

C9

90

C9

B8

09

DO

49

20

C8

C0

90

R5

69

85

90

E6

C6

H0

20

4C

48 HOTRLF

0R

68

84

88

82

C8 6RRPH

H2 FF SEND

28

CB

IF

2?

IF

82

20

22

fit.

on

D2 FF

CC FF

CMP

BCC

CMP

BCS

ORfl

BNE

EOR

JSR

INV

CPV

BCC

LDR

RDC

STfl

BCC

INC

DEC

BNE

LDfi

JSR

JMP

#$48

SEND

#$68

GRfiPH

#$88

SEND

#$C8

PRINT

#48

MORE

POINT

#39

POINT

*+4

POINT+1

COUNT

LINE

#CR

PRINT

$FFCC

.ine "his-ebprint
--:, :•: it -:>rin

:-i3, -ive screen pointer.

."I HE ~ LI WE

I Z .£ES LIME

I"-:i. rIS r-OTHER

CLEFiR, BUS) QUIT

^O F

1 OO

i 10

L20

1*00

210

230

240

i50

260

270

2S0

:.90

:>O0

31fi

:-2:u

BRSIC LOnliER FOR SCREEN FF Ii

FOR J = t'26 TO 947

RERD R PORE J , n

NEXT

DRTR 169,128.133,32,169,0,133,

DRTR 1 69, 4 .. 1 33 • 1 76, 1 33, 2:2- 32,

DRTR 240, 32, 4 5, 241 , ±63, 25, ! 13,

DRTR 169 13, 133 33,32 2. 10,25?.

DRTR 1 7.. 174, 7 c, 232. 224 12, 208.

BFiTR I £9, 145, 32, 2 i 0, 2??«, i 60 ■ 0.

DRTR 31 .41, 12.?, 170 L7?.- 31 •• 6? . 3:

BRTn 1 I , 1 77 • 3 t , i 3.3, 33,41.123.7.;

BRTn 146. 32.. 2 L Q, 2*55, i 3S • 201 , 32

DRTR 176,4,9,64,208,14 ±01 -6< > 1

BRTR 10,201.36. i76.4-9,126 208,

DRTR 73, 192 32, 218. 25^- 2.00 192-

DRTR 14 4,203. i65, 31 • : :^5, 59 i 33-

DR T>-i 1 4 4 , 2. 230 3 2 . 1 >>.'. 34- 2 -71;

DhTm 1 e- 9, 1 3, 32 . 2 :0. 2: 5 7 c-. I- v

3i

1 7 7

40

i:;S6 5S5 70

5J85 126652 124 45

BRK

Ci&arir* il56y:ii57 clo not conlein <> valid NIFr♦

in this specific insUmee it appears:- that 1156*1157 «irp

indeed the NIP (since the PLN looK^ to be correct)* hut

the NIP has been clobbered due to the? Jo<*d error*

Frequently load errors are © resuJt of timintf errorr♦

This is where the r-ead routine cannot handJp the varistionr.

in tape speed th*t it perceives*

The result i=> commonly th«;l the x-wo routine readr. more hi if.

than were actuoii^ written to the tape* Converr.cJw the

routine ma^ actually rec»d fewer*

In my case the errors ocr-cjui onaJ 1 v; were wronri characterr.»

or in some instances one or more characters norrsrir: or

extra* Yet subsequent chwr-cters would stiJJ bvs and Jar.^r

be correct* In other wor«.l«,y it won 3d ppr-wr that the

read routine can recusEnize and swnchroni^e with hv^te

boundaries ss recorded on Ur,e*

The important- thins here i?; that TreQiientJv a NIP ad

would be out bs plus or minus one "or two hvier.? hut ro

would the next one znti the next*

To view what the internal rer-re&entati on of the prorir-<';m

1 ooK s 1 i K e f an i nim ed i a te r ou t i n e ?.u ch as Ihe fo 3 3 oi-; i n ? -:

vibm be used?

1 = 1155 -loc of last v*lid(?> NIP* nriruir, J to check

for presence of preceding zero

Fok = IT0I + 60J?Pe(K>J*Ne - wou3d result in

0 132 4 70 0 14S 137 32 A? 4?. 4P. 44 50 48 «♦

NIP BLN ON GOTO 5 0 0 * ? 0 * *

(sorry jf not the inter*vr€.'tf>tion shc.«wri au the vcrona .line)

An other approach is to ?•• r i111 ihe 31:«c-i;I,i («n riuif?r^er a?:• t-.»r 3 3

ss its content* That niaket:. it much p^r-irr to r*ee wh^l- iv-

soins on;

FoK=IT0I+60:?'R/K/ r--'P«:>(K)J ;Ne

' R' ~ R ev e r s e v i. d e o o 11

/r" - F^ever-se video off

This would show alternately; & 3 oc:<n:i on i*:.vldre?..v- (i r§ rever-r-e

video)y followed by it- content;

1055 0 1056 132 J.0:i7 A 1058 4 107? 0

1073 156 10 74 4 V ♦ ♦

This facili tates chut: Kin?.; the HIP crtvu;] location ;:?U".:\ nr-t

the expected one C bb lhw i < i in -.-.i in tiu t-r-«••(.:-eriih.-; NTP),

A further var lotion on this to i ru. J udf- two (ur f-or • J ri I.

characters;

FoK=ITQI+60:?'R'K'rcl'Pet iu'ri'*;Nc

ci - s single cursor-left character

This gets rid of the cursor-right the PET inserts sftpr

all numbers* Not only clues it compress the? listing* it

slso allows reuse of the? statement (such bs after a POKF*

or for a different aves) without occasional digits from

the previous data showing through♦

If an individual NIP is wrong* the most expedient solution

is to POKE in a new value*

If* however* several subsequent NIPs are aJ1 out by

the same amount* moving over the? rest of the prosr?!?!

may be indicated*

Visual inspection will have to indicate? which bytes to

surpress* or where to open it \\v*

Remember the main concern right now is to get the program

in such shape that it can i:«e LISTed and updated normally*

On compression* as in the following routine* bytes zre

copied into lower numbered locations* Thus if location 1112

is stored in 1111* 1113 in 1112* 1114 in 1113* etc**

location 1112 has already been used by the time 1113

is stored into it* and thus may be safely clobbered

For example*

Fol = 1111T04589IJ=Pe(I +2)♦PoI * J;Ne

The -f2 in the PEEK command causes everything to he

moved over ('to the left') by two bytes*

Note that merely changing the +2 to -7 will not roovp r-v(<rv:ih:i n-;

two positions to the risht*

Instead the leftmost two characters will he propB^ate-o through

the entire section being moved* In the above examp'p (with I'm

+2 changed to -2 > byte 1111 would be picked up first* and storr*.

in 1113* Then 1112 would be stored in 1J14* Next ill? would ht-

picKec! up to be stored in 1115* But 1113 contains the vaJut*

from 1111 by now* arid that is what would be deposited in :iJjT««

Thus 1111 end?:- up in 111?.* lllfj* J 1J 7 * etc** with 113.7 pndins

up in s 1 i tii&• i nbe tweeri j ocat i on =• ♦

To han die such b bhi f t r- j .•••:11i pr oppr• j y * the move ha?■ to r-1<--.r t

from the right* e*s»;

FoI = 4539T01111STEP-l tJ^ Pt< 1-2);PoJ *..UNe

That essentially sums up the totality of this techniRUP for

salvaging pr o s: r • a ni s f r o m 1 o o d t- r r o r • s ♦

I do* however* sincerely hc;pf:- I hat you*'3 1 never havp to ust:- :i i-«

The IE5E-h88 Bus

A parallel interface designed to exchange data with selected devices

connected to the bus.

Many devices may be connected at the same time, but only the one

that has been selected will send or receive data. For example,

two printers and a disk unit could be connected to a bus; the Basic

program would arrange to send to or receive from the various devices

as desired.

Selection works by means of a "calling11 system* Before sending data,

the computer first sends a selection character, which commands the

appropriate device to "listen". If the device is connected, it will

acknowledge the command. Now the data is sent; each byte is

acknowledged by the receiving device. Finally, the device is

disconnected by an "unlisten" command. .To receive data, the

computer instructs the appropriate device to "talk". It then

accepts data until the device signals "end of data", at which time

the coniputer sends an "untalk" command.

Commands are distinguished fjrom data by using a special line called

ATN (attention). If the ATN signal is low (meaning true), the
information being sent is a command: talk, untalk, listen, or unlisten.

If the ATM signal is high (meaning false), the information being sent

or received is data. In this systemf only one direction is used:

the computer sends ATN and the devices receive it. When ATN is low.

all devices receive the commands, to see if they are being selected.

When ATN is high, only the selected device will accept data.

Another line, called EOI (end or identify) is used to signal the

last byte of data. It works in both directions: if the computer

is sending, it signals EOI lew (meaning true) with its last character;
if the device is sending, it signals EOI lovr if it has no more data

after the character it is sending.

When a device sends to the computer, it delivers each character only

when invited by the computer. Similarly, the sending computer

delivers characters only as fast as the device is ready for them.

This flow is controlled by a "handshake" procedure.

An exarsple of selection: When Basic executes OPEN 3,b, the IEEE-U38

bus sets the ATN signal low and transmits hexadecimal 2k to the data

lines, instructing device #U to listen. If the device does not answer,

Basic will return either DEVICE NOT PRESENT (ST-128 decimal) or
WRITE TIMEOUT (ST-l). Subsequently, when the command PRIMT#3, "HELLO"
is given, the ATN signal is again set low and hex 2h transmitted

to instruct #ii to listen; then ATN is set high, and the characters

H, E, L, L and 0 are sent, with EOI set low during the transmission

of the 0 character; finally, the ATN is set low and hex 3F is sent

to cause the device to unlisten. Note that we haven't closed the

file yet; but we have (temporarily) disconnected the device.

Using CMD on the IB5B-U88 Bus

CMD does two things:

—it opens the appropriate device to "listen11;

—it will divert output 9 normally directed to the screen,
to the ISEE-U88 bus.

Both CMD activities are cancelled in any of three ways:

—preferred: when the bus is addressed with a normal PRINTS command;

—when any INPUT or GET is performed;

--when a Basic error is encountered.

It is best to avoid CMD within Basic programs, since any use of INPUT

or GET will cancel it, and the programmer will have to arrange to

repeat the CMD as necessary. Use PRINT# wherever possible* CMD is

most useful in obtaining program listings. The preferred method:

OPEN U,U (identify the printer as device # k)
CMD U (open the printer to listen & redirect cutout)
LIST (do the listing)
PRINT#li (cancel the CMD functions)

CLOSE h (close the file)

Never close a file until you have first cancelled the CMD command.

IEEE-b88 Handshake: a brief technical description

The same handshake orocedure is used for both command and data

transmission.

The talker uses the DAV (Data available) line to indicate that valid

data has now been placed on the bus. The listener uses two lines:

NRFD (Not ready for data) to indicate that it is not yet willing to
receive data; and NDAC (Data not accepted) to indicate that it has not

yet taken data from the bus.

Transfer of data takes place in the following manner:

1. The talker initially places DAV high (meaning false) to indicate

that data is not being sent yet. The listener will have NDAC low

(taeaning true) to indicate that no data is being received.

If the listener is still working on something (say, printing the

previous character) and can't accept data yet, it will set

NRFD to lew (true), meaning it's not ready.

2. The talker checks the NRFD and NDAC lines for both high (meaning false),

If they are both high, something is wrong. If the computer is the

talker, it will send DEVICE NOT PRESENT.

3. The talker places its data on the bus, but doesn't signal DAV lowr

for data available until it sees the "listener's NRFD is high,

which signal* that the listener is ready to receive data.

The talker will wait forever - there is no timeout.

lx* The data is ready, so the listener accepts and stores it.

Then the listener sets NRFD low (true) and NDAC high (false)
to acknowledge .its receipt* The listener has a time limit

on this activity: if it doesn't complete in 6U milliseconds,

the talker will flag TIMEOUT ON WRITE.

5* The talker responds to the acknowledgement by setting DAV high,

meaning that the data is no longer offered, and then clearing

the data bus.

6* The listener detects the change in DAV, and realizes that its

acknowledgement has been seen* It returns NDAC to low, completing

the character exchange cycle. There is a time limit here:

if the listener doesnft see DAV go high within 6U milliseconds,

it will flag TDEOOT ON READ.

Frans

Delete Rest of Instructions in Program

One of the more exciting* albeit undocumented* instructions

on the PET is the 'Delete Rest of Instructionsin Prosrarn'

or DRIP instruction*

If you haven't yet had occasion to use it* consider wour*e)f

lucky♦

Under certain conditions the updating and replacing of f* BASIC

program instruction results in the dissapearancp of that and

all subsequent instructions in the program* As this seems

to happen only after extensive (and not as yet saved) program

changes have been made* the result is a Jot of excitement*

This note describes what happens* when* how to recover from it*

and covers a technique that seems to prevent it* but sinrp I'm

not sure how or why I can't be certain that thp prevpntativp

measure always works*

The content of the note applies to ReJrasr .1 of the PFT BK sHstpm

the 'old ROM'*

The only cause that I am certain about i? ?n intprupt of a

program occurs that is using the PRINTS to write to the TFFF hup*

(Where my printer sits es device? no 4*)

Any subsequent attempt to chansie the program frp«upntJy

results in a 'DRIP'*

However* if I enter s 'CLR' command in betwepn or r?tiff> an

error* such as a RUN command with an invaJid operand1, a J'»RIP

does not arise*

The symptoms are ss follows* BASIC -oor^ somphow not rrr n^nj rr

thst the newly entered (updated) ^tatt-iiim I jr.aichr r- :-n c •: -'- vl:i nn

number* BASIC therefore treats the upd^i.^d :i n '■:■• I -i w< 'I .i^n sr -a

new one* and movers over the rest of ihp program lc fo^Ke

to insert this 'new' instruction*

However* BASIC maKes other errors* the^t are pv?n iHi'VP

It inserts s ;:ero in the? high-orde-r (?xrnnn) po-r-i t'i r-n of thr

Next Instruction Pointer (NIP) of Lhr. fir•••-•t err-:r; rnrr rr"

the uposted instruction f thu?> v>i :-.inri .1 J i n r; thr rrui of Prc^r^i-

The part of the program that has ho-en n.ov^d to allow for the

insert of the 'new' instruction? h<^ not h&ti :i ir. Po:>ii>tfr- u

Fortunately * BASIC leaves the -'end cf BAPir./r.tr-:j I of

pointer intact* so variables can hp uspd*

The solution of this F-robJem is actuaJJ^ «uitr *? tuple'*

♦ remove the spurious zrro

♦ rebuild the pointerchain♦

I had visions of ~>cphi h t. j c-r.■ I*-• d pr c"jf;r c:rii .1 (O.:s i fe t-•"• rec or»* f r ;jc J

pointers based on the m i n i r»§ i; m a r • *:J in a ;•: :i r»s;. j «• ji i * • jj rj * ; •: • f b yS e >

per instruction* zero b %r> t r- s ? r p; c: I, i c n '=» i • j r ;-. be * w e^ ^K st&*e t^.^

numbers and visual ins7--«?ction •

But once more* Jim Butterfie-id to thr rpv-nip! j»:i v- j:»r-t

routines identifies one- calJp-d ' Corrpr i?:- thf- r.'ia.i ii :i n:

between tUVoJC ij.ner, cott-r > nsfcf*1./«te.l£"te III

As it turns uu t * it i r> v c? r y s i m p .1 p ; i f t he add r r s r- p o i n t p d

by the current NIP* which itseJf is © NIP* contain* a 7Pro

in the second by te * i t is rori«r>i de-red t.o he the pnd of pro:::irc"•• r

All other zeros stc5rtin«5 st NIP+4 (to maKe Bllowanre for the

BASIC line number)sre considered to represent the end of an

instruction♦

Thus by removing the zero that eronenuslv* fJa£s Fnd Of Prog

the pointer chain can he rebuilt by invoKin=i this routinr

(SYS 50224 >♦

Theoretically SYS 50224 could aJso be used to find the location

on the End OF Prosram zero byte* as it leaves the address of

the last NIP in locations 113*114*

Unfortunatelyr however* this is not a closed subroutine* It

terminates by branching <JMP) into the PFT's main command

processing losic* rather than returning to thp ca.lJer*

Locations 113*114 have been clobbered by the time control

is returned to the keyboard

What can be used is an immediate command*such ast

I=1025:FoK=lT01000:j=Pe(I)+256*Pe(I-h-l)t?I * Jt I=J We

which will print a list of NIPb* that is in ascending

order? upto and including the address of the fauJty NIP* p*b*1

3255

3272

3301

3356

55

BRK < 5top

3272

3301

3356

55

12356

35 soon 35 dip occurs:-)

In this example locations 3356*3357 contain the fauJty NIP*

(These bytes contain 55 ond 0 respectively*)

Now all that is recuiired is the following:

POKE 3357*1

SYS 50224

The POKE instruction eradicates the vaJue 7.ero* and t-he SYS

rebuilds the pointer chain*

In above example byte 3356 would originally have contained .13

(13*256i55--33B3) y howpver that is immaterial as the

instruction tho-t was there? has been moved* whiJp the SYS 50724

only makes the distinction zero or non-?.ern»

I hope this will allow others to deaJ with the DRIP instruction*

however* the appr oar• h of f r eatipn t sav i n .^ of pr o&r f;m u pda tp s

is still preferable!

Cross Reference

I've recently completed & cror,F. reference* of f>3 i inplrorlj

in the 8K PET system (Release 1) thet refrrencr indivitW)

RAM snd PIA/VIA locations*

The process was actually cuiite sintpJe* J u*&ti f* rfir.Pf.r.rmhJpr

that scans for selected opcodes snti specific operand rridrt-r.r.rr.*

It only tooK some 280 hours of processing to scan thr r^ttcni

the reauired few hundred times*

Because of its size I've only included the first r&tU- uf Ihc

approximately 25 rsg& listing*

The tape file for this cross-refprencp ronipin? fornr 77000

characters snd 3000 records*

If anyone is interested* I'll glsdJt* send them f: cwv. of

either the listing or the tape* '-
I musty however r insist on a copying? por-tr-.^p f-nd hPndJinri

charse# Photocopies cost me a dime (pctuaJJv* 9 rpntf.) }\)kp

anybody elsey and it tf<kpr:. over <"m hour- tn popv? thf- live f))^>

If you are interested* send me a note? ^t he3ow cidrfr^r.r^ rmd

include $4*50 for photo copies-. * $ £«00 for Ihc t^rr (inr}udinyi

s print/di splay program)* or $3.0*00 for hoth coric<:. two iwp{

For the photocopies specify decim?O or hpx<~:dr(■•:» rurO ^oorc^i-.r^i

Frans VanDuiMen

175 Westminster ?vPf

Toron toy Ont* M6R 1N9

CROSS REFERENCE LISTING PAGE :

LEGEND

notation preceding address

A - Accumulator

ft

X

Y

F

S

-

-

Memory

X-register

Y-register

StatUS flo3T>

stacK register

notation following address

I - Indirect addressins

XI - Indexed indirect (on

IY

X

Y

D

-

Indirect indexed (on

Indexed on X reg

Indexed on Y res

Dynamically modified

0 L=3 Jump instr to USR

byte 0=$4C - JMP

A C493 X A C4C8 X

1

2

♦5

4

5

ar

6

ft

F

A

EOBO XI M EODE«

FD6B IY M FE05

FFB2 XI

Jump instr to USR routi

M D3BB X M D773 X

ft

A

F

D87B X M D8/F X

FD50 M FD59

FD74 h FE09

Jump instr to USR routi

ft D3BF X A D799 Y

ft

F

L=

A

A

ft

A

M

L=

ft

h

L=

Wl

M

A

L0E3 A FDb2

FE2F

1 Active I/O device

C35B M C364

C9E2 A CASE

UALU A UAD6

CB5D A CC06

D387 X M EOF2

1 Nulls for carriage

C76A X C9E8

uyyy x ft loka

1 Cursor pos'n for 3

11 so)

C4DE Y A C4E1 Y

CA14 A CA5A

X

Y

•

re£)

re^)

instruction

routine

A C4F8

A

A

np

A

M

F

M

ne

A

A

nr

Y

A

7T

A

El 99

FEOD

D7A0

naai

FD5P

FE18

D79C

FD69

* (for

C47C

CA6A

D792

? return

A D78B

[NPUT &

M

M

L1D4

1 Terminal width (not

C501

CA62

used

X

IY

IY

Y

X

X

pr

Y

Y

A

M

M

A

M

M

F

Y

M

oni?

M

A

A

A

1 i i

A

PRINT

Y M

Y

aricir

C51A

FD48

FFJ1

D7A3

D883

FDAl

FF.1A

D862

FF0 2

X

IY

X

X

X

M

M

F

Y

M

A

M

A

-\. surr-ress)

C993 A

nAP.£ M

r»7P.F

< coJ

X

3 (
v

A

Y

n o i
V
1

whc

M

M

n?p;7

FE13

TIB66

F0F.1.

FDA7

D86B

FEOF

H9CF

TAB4

CPIO

DRSF

used

D8SA

X

IY

IY

X

X

X

X

tp next

C9F4

F0F8

-

M

M

X

M

H

M

M

M

A

X

A

M

M

rh

A

M

np.91

FDfiF

FF43

ri86C

|D4A

FD72

naas

FF2U

TAni

CB17

D8A4

D860

C9F9

F1CF

J

XI

X

X

X

X

Technical comment on FOR/NEXT loon structures. Ji~ Putt erfield, Toronto.

Recent remarks on popular Basic imnlementaxtions indicate "chat

difficulties may be encountered if the prorran-ner .Im^ds out of

a FOR/NEXT loop.

This would be very serious if true. The programmer doinp a table

search would be required to continue scanning the table even after

finding the item he wants; or to use questionable practices such

as meddling with the loop variable while still within the loon.

Fortunately, it's true only for a few co^nlex situations - and these

are easv to fix if you \mderstand how the dynamic FORAfxT looo
works. (Dynamic looos are those set un durinr an actual nropram

run, .is contrasted to pre-co-Tmiled loons which are checked out

the actnnl rnn starts).

When a dynamic internreter, such as Microsoft Basic, encounters

a statement such as FOR J« ... it sets up internal tables to manare

the loon. These internal tables contain such things as: where to

return if a NEXT J is encountered; the identity of the loop variable

(in this case, J); whether the loop is counting up or down, etc.

These tables will remain until one of three things hannens.

If the loop goes through its connlete range (by encountering

a suitable number of NEXT J statements); if a new FOR J statement

is found; or if a higher priority loop is terminated for either

of the previous reasons.

The last rule is very sensible, and it's worth a closer look.

Suopose we have set up a sequence of conmands such as:

Xafittxffixrnxia FOR 1= ... : FOR J= ... : FOR K= ...t and sur>nose

the computer, while dealing with these three loops, finds a

new FOR I=... statement. It very wisely says, in its own conrute^ese,

M0K - looks like the big loop is being restarted; so the little

ones are finished, too11. And it promptly terminates the J and

K loops, removing the tables from its memory.

Fxactly what we want - but thnre are a couple of bidder, potchas

that the user must know about when he frets into trick-.- co^inr

rovtines.

The easiest one to sr>ot is the situation where ever1; loon has

a different variable name. The first loon is. sny. ^O"5 A ...

the next one, FOR 3 ... snrt the nro"r*»nmer continues throurh

the alphabet with eac"i loon. T:is idea is noo^: he can analvre

how each loop has behaved, for each variable remains untouched

for his examination. 3ut each time he jumps out of a loon,

the loop tables remain in memory, using up valuable stack or

table space. He'd be much better off to pive at least his

outer loops the sane variable name, and reclaim that snace.

The second problem spot is a little more subtle, and an exanple

would best illustrate it.

Here's a simple program to input a string, extract the individual

words (eliminating sinple or multiple spaces), and nrint them:

100 TPUT S$ get the string

110 K=l mark start-of-string

120 FOR J=K TO LEN(S$)

130 IF MID$(S$,J,l)<>ff " GOTO 150 skip snaces

HiO NEXT J

150 IF J>IEN(SS) GOTO 900

160 FOR K«J TO U«:N(S$)
170 IF MH»(Sft,K,l)»lf fl GOTO 200 scan to space or end

180 N^XT K

200 PRINT Mm$(S$fJtK-J)
800 IF K<-IFN(S&) GOTO 120
900 END

The nrorram works quite well, and isn't hard to follow.

It should be noted that if either the J or J(loops

run to completion, the variable will have a value of I£N(S$)+1;
this is intended and allowed for in lines 150 and 800.

Before we extend this program into catastrophe, let's note

one thing: by the time the program reaches line 200, both

the J and K loops will still be open most of the time -

we "jumped out" of both of them. No real problem; vtfien we

go back to 120, the new FOR J= .. will cancel them both.

Now let's get into trouble. V/e may be writing a little ELIZA

here, and want to check the word we've found against a

table of keywords' so as to pick a suitable reply.

We111 assume a table of twenty keywords, and start to build

a search loop. Replacing line POO, we start'a new Iood:

200 X§ - MID$(S$,J,K-J) ret word

210 FOR 1=1 TO 20

Our loop is now thrco deep - J and K are still considered active,

remember? No oroMem with three-level loops; we fr» still OK.

Put herefs wher^ we mipht get clever and wreck everything, ".-fe

need to preserve K - that's where our search for the next word

will start. But J has served its pumose, and co^ld be used

?painf ritfht? Well .. let's see.

This table of 20 words is really a double table. It contains

pairs of words such as "I",'1 YOU", or "MY","YOUR". To make our

computer talk we must spot a word from either column, and switch

in the word from the opposite column (so that "I HAV-v FIZAS" will

become "YOU HAVE FISAS"). So we need one more loop to search

over the two columns.

3.

Let*s be clever and use J, since we have decided that it isn!t

needed any more .at this point. We code:

220 FOR J»l TO 2

230 IFX$=T$(I,J) THEN X8-T$(J,3-J): SOTO hOO swan wor*

2hO NEXT J

2$0 NEXT I

U00 PRINT X$;w "l r*ne*t woH

Suddenly everything stems working, and the world tumbles down

around our program. VJhat hapnened?

Letfs stop and analyze. Just before executing line 220, the

computer had three active loops, with variables J, X, and I.

Now it reaches line 220, and what does it see? A loop based on J,

the "biggest11 loop! So what does it do? It cancels the K and I

loops, of course, and starts a new J loop. •

When we reach line 23>O, the computer sees 2EXT I - but it no longer

has an active FOR Is loop, and you get a NEXT WITHOUT FOR error notice.

The rule here is slightly more complex, but not too tough. If you

use J as an "outer11 loop variable, never use it for an inner loop.

If we reversed I and J in the coding from 210 to 25>O, we'd have

no problem. Try to think in terms of the hierarchy of loops, and

you can make sure that a given variable is used only at its

proper hierarchy level.

Let's try to put the rules together and create a tiny Eliza, polishing

ur some of the coding as we go. You rll have fun acdinr your own

features to it.

100 PIM TS(l,h) two bv fivp array

110 PATA M3,Y0U,I,Y0U,yY J0IIR,AM,ARw.f^r?.3I.F/

120 FOR J=*0 70 h
130 FOR K«0 TO 1

U0 TF.AD TS(JtK)
150 *F,X? K

160 }r.\T J

170 IN7JJT SS

160 Kl=l

190 FOR J=K1 TO IZN(S$)

200 IF MI3MS$,J,1) = " " THEN IIEXT J
210 J1=J

220 IF J>LEN(S3) GOTO 900
230 FOR J=J1 TO IEN(S$)

2hO IF MID$(S$,J,1)<>» " THEN ?E"<T J
250 Kl - J

260 XS»MTD$(SS,J1,K1-J1)
270 FOR J=0 TO U
280 FOR K=0 TO 1

290 IFTS(K,J)=Z5 T:ir\f XS=TS (1- K, J) :"0T0 320
300 NF.:CT K

310 NEXT J

320 7RTNT » »;X3;

3?° IF KL<-LE»(SS) GOTO 190
c 3OCQ170- 3^0

Notp that the outermost loon is now always called Jf the next down

always K. Ifve tightened un the arravy to use th^ zero rows and

columns to save memory; and the search loops are a little faster.

Even thouph the r^rorram is riddled with nremature loon exJ»tsf there'

are no nrohloms* Just observe a few simple rules, and you'll have

efficient and trouble-free loops.

11« r:'i i* u ter C 1 "t =' h as a/"»nounoed so nie neu» & r• o *'J uc "ts +' o r- PET.

ir'iter-na. L RrHM expansion boards

£43w.00

^ e -" •£-1 £• .• i r- cn e •£■ $ 23 - 9 _"«

ftr.«.cr 11 r ie i :-j- iaua.£ie ed 11•::>r■. assefnb 1 er- and »:4 i =■• s^-sern^:« 1er »•:• acka:^e

'7* i "^ r*i 33 f-• .=' i1 •£■• -? c» "H c^oo u 0*1 •=* r 'i "fc a."t i o r"i -f" o »■"■ I13 9. 9 *5

Ci ty

i ?53 f1 •:• r t a.-ye H»...»e.

W i nri i Pe 9.. Man i toba.

•:. 1:04 • 7^6 3381

The PET® Gazette With A New Name

COMPUTE.
The Journal for Progressive Computing

From: the new publisher of the PET® Gazette AUGUST 11979

To: readers of the PET Gazette

During the past year, the PET Gazette has grown from a one page newsletter with a circulation of 5O to a

multi-page magazine with a circulation of over 4OOO. Due to this rapid growth the magazine has reached a crucial

turning point. Len has been almost single handedly publishing the magazine each issue, and writing for it and many

other magazines, as well as typing it, handling advertising placement, and followups, and new subscribers, and print

ers, and ~ well you get the picture. The demand for the PET Gazette has begun to exceed Ns individual resources.

Regardless of best intentions, the press of business problems left him falling behind in adding new subscribers, press

ing his printer for delivery, and so on. Worst of all, he found himself losing the time needed for writing and programming.

The solution? Small System Services, Inc. has now acquired the PET Gazette. We're responsible for handling the

many problems associated with bringing an active, energetic magazine from conception to your door. We're lining

up an industry sensitive group of contributing editors; we're expanding the emphasis of the magazine. You'll still see

the PET Gazette with a primary emphasis on the products (and problems) of Commodore Business Machines, Inc. But"

you'H see other 65O2 products as well. And continuing features orrsuch areas as Education Business, New Prod

ucts, and Reviews. You'll see an orvgoing illustrative column on maintenance and trouble shooting for a wide range

of problems. And you'll get advice on program design and style. Plus new features to bring you more information

from several viewpoints. You will most assuredly benefit from all these additions.

Your role as a reader? We'll continue to solicit your advice and written contributions. From our perspective,

we'll shape up. The PET Gazette's next issue will be a massive super issue. Fall 1979, including a Christmas Buyers

Guide, and general Nnts of whafs to come. We're upgrading the quality of the magazine, and redesigning it for

reading ease and practical use. This super issue of the New PET Gazette will be distributed free to all current subscrib

ers. It will be followed by the first of our normal bi-monthly issues. As of the January/February 198O issue the PET

Gazette will carry an annual subscription price of S9.OO for 6 issues. The single copy newstand price will be S2OO. A

third optioa which we encourage where feasible, is a "personal/retail" subscriptioa You subscribe through us at the

reduced annual rate of S7.5O, and each of your prepaid issues will be included in the advance shipment to your local

dealer with his standing order. You simply stop in and pick up your prepaid copy. We save the mailing costs, and you

get your issue as fast as UPS reaches your dealer, and save a few dollars to boot.

But what happens to Len Lindsay after all this? Well, we've acquired the PET Gazette, not Len Lindsay. He'll

give,up the title of jack-of-alhtrades while retaining the title of Senior Contributing Editor. He'll remain his outspoken

self with no allegiance to anyone. We'll handle the business end, help coordinate the material from the newly added

associate editors, etc. but best of all, Len will return to the more exciting aspects of this "business"... writing, program

ming, and reviewing. The new expanded PET Gazette will continue to include all the help and information as previ

ously, but will now also Include articles and columns by the leading names In the flekl Included will be specific help

with PET Assembly Language Programming and good hardware help.

Stick with us. Ifs an exciting time for the new PET Gazette. Our titie is "COMPUTE, the Journal for Progressive

Computing.™" We plan to live up to the goals implicit in that statement. If you've sent in a donation check to Len

since May I let us know if you wish it applied toward your new subscription (include a photocopy of your receipt from

Len). If you are interested in our "Personal/Retail" subscription plaa include the name, address, and phone number of

the dealer you'd like to subscribe through along with your check. Checks should be made payable to: "COMPUTE."

Regardless of your decision now, you can expect to see the next issue of the new expanded PET Gazette in early

October. Or stop by the PET Gazette booth (119-A) at the Boston Computer show Sept. 28-3O. We hope you are as

excited as we are about these improvements and additions to the PET Gazette.Thank you for your continued support.

Cordially,

Robert C. Lock President, Small System Services, Inc.

Len Lindsay Senior Contributing F.ditor, COMPUTE. The Journal for Progressive Computing™

^ is a trademark of Commodore Business Machines, Inc.

"COMPUTE. The Journal for Progressive Computing" is a trademark of Small System Services, Inc.
9OO-9O2 Spring Garden Street

Greensboro, N.C. 274O3

919-272-4667.

